Phase Two Environmental Site Assessment Burnside Site, NCC Property Asset 95979 Ottawa, Ontario

Revision: 0 (Final)

Prepared for:

National Capital Commission 202-40 Elgin Street Ottawa, Ontario, K1P 1C7

Prepared by:

1 Raymond St., Suite 200 Ottawa, Ontario K1R 1A2 Tel: (613) 232-2525 Fax: (613) 232-7149

www.geofirma.com

Document ID: 18-262-1_Phase Two ESA_Burnside Site_R0.docx

July 10, 2019

Title	Phase Two Environmental Site Assessment,		
The.	Burnside Site, NCC Property Asset 95979, Ottawa, Ontario		
Client:	National Capital Commission		
Document ID:	18-262-1_Phase Two ESA_Burns	ide Site_R0.docx	
Revision Number:	0	Date: July 10, 2019	
Prepared by:	Kenneth Raven, Tim Galt, Angela	Garrison, Nattawadee Panikom	
Reviewed by:	Glen Briscoe, QP _{ESA} , P.Eng.		
Approved by:	Glen Briscoe, QP _{ESA} , P.Eng.		

TABLE OF CONTENTS

1	EXE	EXECUTIVE SUMMARY1			
2	INTI 2.1	RODUCTION Site Description	3		
	2.2	Property Ownership	3		
	2.3	Current and Proposed Future Uses	4		
	2.4	Applicable Site Condition Standards	4		
3	BAC	CKGROUND INFORMATION	5		
	3.1	Physical Setting	5		
	3.2	Past Investigations	6		
		3.2.1 Mapping and Assessment of Former Industrial Sites – Intera Technologies Ltd. (1988)	6		
		3.2.2 Phase I and II Environmental Site Assessment - DE&S (2000)	6		
		3.2.3 Phase II Environmental Site Assessment – DE&S (2001)	7		
		3.2.4 Risk Assessment and Risk Strategy Report - Intera Engineering Ltd. (2002a)	8		
		3.2.5 Inspection and Groundwater Monitoring - Intera Engineering Ltd. (2002b)	9		
		3.2.6 2003 Inspection and Groundwater Monitoring - Intera Engineering Ltd. (2003)	9		
		3.2.7 Lemieux Forcemain Easement Properties, Phase 2 ESA - CH2MHILL (2005)	9		
		3.2.9 Surface Soil and Groundwater Monitoring Program - Trow Associates Inc. (2010)	10		
		3.2.10 November 2012 Groundwater Monitoring and Sampling – SNC Lavalin Environment	t		
		(2013)	11		
		3.2.11 Fall 2014 Groundwater Monitoring – Stantec Consulting Ltd. (2014)	12		
		3.2.12 Preliminary Geotechnical Investigation – EXP Services Inc. (2018)	12		
		3.2.13 Phase Two ESA, West Portion of Bayview Yard – AMEC Earth and Environmental			
	• •	(2014)	13		
	3.3	Data Quality	13		
4	SCC	OPE OF THE INVESTIGATION	15		
	4.1	Overview of the Site Investigation and Media Investigated	15		
	4.2	Phase One Conceptual Site Model	16		
	4.3	Impediments and Deviations from Sampling and Analysis Plan	18		
5	INV	ESTIGATION METHOD	19		
	5.1	General	19		
	5.2	Drilling and Soil Logging	19		
	5.3	Soil Sampling	19		
	5.4	Field Screening Measurements	20		
	5.5	Groundwater Elevation Monitoring	20		
	5.6	Analytical Testing	20		
	5.7	Residue Management Procedures	20		
	5.8	Elevation Surveying	20		
	5.9	Quality Assurance and Quality Control Measures	21		

6	REV	IEW AND EV	ALUATION	
	6.1	Geology an	d Hydrogeology	
	6.2	Groundwate	er: Elevations and Flow Directions	
	6.3	Groundwate	er: Hvdraulic Gradients	
	6.4	Soil: Field S	Screening	24
	6 5	Soil Quality		24
	6.6	Groundwate	ar Quality	27
	6.7		urance and Auglity Control Results	28
	6.8	Phase Two	Concentual Site Model	30
	0.0		iow	
		6.8.2 Propo	sed Future Site Hee	
		683 PCAs	COPCs and APECs	
		6.8.4 Subsi	Inface Structures and Utilities	
		6.8.5 Physic	cal Setting of Property	
		6.8.5.1	Site Stratigraphy	
		6.8.5.2	Depth to Water Table	33
		6.8.5.3	Hydrogeological Characteristics	33
		6.8.5.4	Approximate Depth to Bedrock	34
		6.8.5.5	Applicability of Sections 41 and 43.1	34
		6.8.5.6	Imported Fill	34
		6.8.5.7	Proposed Buildings and Other Structures	
		6.8.6 Enviro	onmental Conditions	
		6.8.6.1	Soil Screening and Quality	
		6.8.6.2	Areas Where Contaminants are Present	
		0.0.0.3	Discribution of Contaminants	
		6865	Climatic and Meteorological Conditions	
		6866	Potential for Vanour Intrusion	36
		6.8.6.7	Contaminant Transport and Exposure Diagrams	
		6.8.6.8	Human and Ecological Receptors, Exposure Points and Routes	
7	CON	NCLUSIONS.		
Q	DEE			40
0	REF	LNENCES		
9	MAI	N FIGURES	AND TABLES	

LIST OF FIGURES

Figure 9.1	Site Location	43
Figure 9.2	Site Layout, APEC-1 and 2019 Phase Two ESA Sampling Locations	44
Figure 9.3	Historical Sampling Locations and Cross Sections	45
Figure 9.4	Phase One Conceptual Site Model – PCAs and Cross Sections	46
Figure 9.5	Phase One Conceptual Site Model – Cross Section A-A'	47
Figure 9.6	Phase One Conceptual Site Model – Cross Section B-B'	48
Figure 9.7	Overburden Thickness	49
Figure 9.8	Groundwater Elevations and Interpreted Flow Directions	50
Figure 9.9	Plan Distribution of Soil Quality Results - Metals and Inorganics (West)	51
Figure 9.10	Plan Distribution of Soil Quality Results – Metals and Inorganics (Centre)	52
Figure 9.11	Plan Distribution of Soil Quality Results - Metals and Inorganics (East)	53
Figure 9.12	Vertical Distribution of Soil Quality Results - Cross Section A-A'	54

Vertical Distribution of Soil Quality Results – Cross Section B-B'	
Vertical Distribution of Soil Quality Results - Cross Section C-C'	
Plan Distribution of Soil Quality Results - PAHs (West)	57
Plan Distribution of Soil Quality Results – PAHs (Centre)	
Plan Distribution of Soil Quality Results – PAHs (East)	59
Plan Distribution of Soil Quality Results - PHCs/BTEX and PCBs	60
Plan Distribution of Soil Quality Results – VOCs	61
Plan Distribution of Groundwater Quality Results	62
Phase Two Conceptual Site Model – PCAs and Cross Sections	63
Phase Two Conceptual Site Model, Cross Section A-A'	64
Phase Two Conceptual Site Model, Cross Section B-B'	65
Phase Two Conceptual Site Model, Cross Section C-C'	66
	Vertical Distribution of Soil Quality Results – Cross Section B-B' Vertical Distribution of Soil Quality Results – Cross Section C-C' Plan Distribution of Soil Quality Results – PAHs (West) Plan Distribution of Soil Quality Results – PAHs (Centre) Plan Distribution of Soil Quality Results – PAHs (East) Plan Distribution of Soil Quality Results – PHCs/BTEX and PCBs Plan Distribution of Soil Quality Results – VOCs Plan Distribution of Groundwater Quality Results Phase Two Conceptual Site Model – PCAs and Cross Sections Phase Two Conceptual Site Model, Cross Section A-A' Phase Two Conceptual Site Model, Cross Section B-B' Phase Two Conceptual Site Model, Cross Section C-C'

LIST OF TABLES

Table 4.1	Summary of Borehole Drilling and Soil Sampling Location Rationale	.15
Table 6.1	Stratigraphic Units at Burnside Site, Ottawa	22
Table 6.2	2019 Soil Sampling Locations at Burnside Site, Ottawa	25
Table 6.3	Summary of Potential Contaminating Activities on and in the Vicinity of Burnside Site Ottawa	e, 31
Table 6.4	Areas of Potential Environmental Concern, Burnside Site, Ottawa	31
Table 9.1	Borehole and Monitoring Well Locations and Completion Details, Burnside Site, Ottawa, Ontario	67
Table 9.2	Historical and Current Groundwater Elevations, Burnside Site, Ottawa, Ontario	68
Table 9.3	Soil Sample Locations and Laboratory Analyses, Burnside Site, Ottawa, Ontario	.71
Table 9.4	Soil Analytical Results – Metals, Burnside Site, Ottawa, Ontario	73
Table 9.5	Soil Analytical Results – Polycyclic Aromatic Hydrocarbons, Burnside Site, Ottawa,	
	Ontario	82
Table 9.6	Soil Analytical Results – Petroleum Hydrocarbons, BTEX and PCBs, Burnside Site,	
	Ottawa, Ontario	89
Table 9.7	Soil Analytical Results – Volatile Organic Compounds, Burnside, Ottawa, Ontario	.91
Table 9.8	Soil Analytical Results – General Inorganics, Burnside Site, Ottawa, Ontario	92
Table 9.9	Maximum Concentrations in Soil, Burnside Site, Ottawa, Ontario	93
Table 9.10	Groundwater Sample Locations and Laboratory Analyses, Burnside Site, Ottawa	
	Ontario	94
Table 9.11	Groundwater Analytical Results – Metals, Burnside Site, Ottawa, Ontario	95
Table 9.12	Groundwater Analytical Results – Polycyclic Aromatic Hydrocarbons, Burnside Site, Ottawa, Ontario	97
Table 9.13	Groundwater Analytical Results – Petroleum Hydrocarbons and BTEX, Burnside Site, Ottawa, Ontario	99
Table 9.14	Groundwater Analytical Results, Volatile Organic Compounds, Burnside Site,	
	Ottawa, Ontario	101
Table 9.15	Maximum Concentrations in Groundwater, Burnside Site, Ottawa, Ontario	103

LIST OF APPENDICES

- Appendix A Sampling and Analysis Plan
- Appendix B Test Pit Logs and Borehole Stratigraphic and Instrumentation Logs
- Appendix C Laboratory Certificates of Analysis

LIST OF ACRONYMS

- APEC Area of Potential Environmental Concern
- AST Aboveground Storage Tank
- BTEX Benzene, Toluene, Ethylbenzene, Xylenes
- CCME Canadian Council Ministers of the Environment
- COC Contaminant of Concern
- COPC Contaminant of Potential Concern
- CSM Conceptual Site Model
- DEM Digital Elevation Model
- ESA Environmental Site Assessment
- FIGQG Federal Interim Groundwater Quality Guidelines
- GIS Geographical Information System
- LiDAR Light Detection and Ranging
- mASL metres above sea level
- mBGS metres below ground surface
- mBTOR metres below top of riser
- MOE Ontario Ministry of the Environment (information prior to June 24, 2014)
- MTM Modified Transverse Mercator
- MNR Ontario Ministry of Natural Resources
- MOECC Ontario Ministry of the Environment and Climate Change (information after June 24, 2014)
- MECP Ontario Ministry of the Environment, Conservation and Parks (information after June 28, 2019)
- NCC National Capital Commission
- ODWS Ontario Drinking Water Standards
- OGS Ontario Geological Survey
- PCA Potentially Contaminating Activity
- PCB Polychlorinated Biphenyls
- PAH Polycyclic Aromatic Hydrocarbon
- PHC Petroleum Hydrocarbons
- QP Qualified Person
- RSC Record of Site Condition
- SJMP Sir John A. Macdonald Parkway
- SSRA Site Specific Risk Assessment
- TPH Total Petroleum Hydrocarbons

1 EXECUTIVE SUMMARY

Geofirma Engineering Ltd. was retained by the National Capital Commission (NCC), to conduct a Phase Two Environmental Site Assessment (ESA) for the Burnside property, in Ottawa, Ontario (the site). The site includes several smaller properties and municipal PIN numbers. The site is currently owned by the National Capital Commission.

The NCC intends on applying for a municipal zoning change for the Phase Two ESA property from parkland to diplomatic mission use (i.e., office space defined as commercial under O.Reg. 153/04) to facilitate development the site. The Phase Two ESA was completed in accordance with the general requirements of O. Reg. 153/04 as requested by the NCC for the planned City of Ottawa zoning application. The Phase Two ESA is a follow-up report to a Phase One ESA report prepared by Geofirma in accordance with O.Reg. 153/04 requirements. Neither the Phase One nor Phase Two ESA reports are intended to support filing for a Record of Site Condition.

The site has been subject to commercial, industrial and parkland uses since the mid to late 1800's. Historical use of the property included lumber yards, parkland, residential housing and the importation of large amounts of fill materials in the former area of Lazy Bay and over the remainder of the site. Although the Phase One ESA identifies several PCAs within the Phase One study area, historical and current soil and groundwater quality investigations on the site show that none of the identified PCA's surrounding the site have negatively impacted environmental conditions on the site. One APEC (APEC-1, PCA #30) due to importation of poor quality fill is identified for the entire site.

The site stratigraphy consists of a thin veneer of topsoil overlying generally one to three metres of granular fill overlying about two metres of native alluvial sand in the former Lazy Bay fill area and a discontinuous layer of native silty sandy glacial till found in an eroded bedrock fault depression. Fill materials in APEC-1 consist of a mixture of silt, sand, clay, cobbles and boulders with debris including asphalt, brick, concrete, plastics, glass, metal, cinders, ashes and wood pieces. These overburden deposits are underlain by horizontally and vertically fractured grey limestone of the Bobcaygeon Formation, with minor dark grey to black shale layers.

Approximate depth to bedrock ranges from 0 m to 6.0 m with a site average of about 1.5 m. The depth to bedrock is greatest in the centre of the site near the former Lazy Bay fill area and is a minimum in the western part of the site. The depth to bedrock in the eastern part of the site approximates 1.5 to 2 m. Given the site stratigraphy, MECP Table 7 shallow soil standards for coarse-textured soil, non-potable groundwater and parkland use are applicable to the site.

Groundwater flow occurs primarily within the bedrock as the groundwater table is typically found at or below the bedrock surface at the site. Groundwater flow at the site is focussed to the former Lazy Bay fill area and discharges to the Ottawa River located about 70 m north of the northern property line via permeable fill and alluvial deposits. Some groundwater flow will also be channelled via overburden infill of utility excavations into bedrock (i.e., storm and sanitary sewers and low-pressure forcemain) and via the bedrock depression created by eroded splays of the Gloucester Fault.

The results of historical and 2019 laboratory soil quality testing show that the imported fill across the entire site frequently contains metals (lead, barium, zinc, selenium, copper, vanadium, mercury, antimony, molybdenum and cadmium) and heavy molecular weight PAH exceedences of MECP Table

7 standards and that general inorganics, PHCs/BTEX, PCBs and VOCs are not significant COCs in site soil. The sporadic but widespread occurrence of the metal and PAH COCs in site soil is consistent with the site history. A reasonable and conservative assumption is that all fill at the site is contaminated by metals and PAHs. Soil quality testing also shows that the minor pockets of native soil at the site including sandy alluvium and glacial till are not contaminated. Consequently, the vertical limits of metal and PAH contaminated soil are defined by the bottom of the topsoil layer and top of either the native sandy alluvium, glacial till or bedrock.

The results of historical and 2012 and 2014 laboratory testing of groundwater quality show that groundwater at the site is not contaminated above MECP Table 7 standards. This conclusion is consistent with the observations that most of contaminated soil is found above the groundwater table and most of the identified soil COCs are low solubility and low mobility chemicals in groundwater systems.

The site does not meet applicable site condition standards, MECP Table 7 for soil.

2 INTRODUCTION

Geofirma Engineering Ltd. was retained by the National Capital Commission (NCC), to conduct a Phase Two Environmental Site Assessment (ESA) for the Burnside property, in Ottawa, Ontario (the site). The site includes several smaller properties and municipal PIN numbers and is currently parkland. The site location is provided in Figure 9.1 in Section 9. The site is currently owned by the National Capital Commission.

The Phase Two ESA was completed following a Phase One ESA (Geofirma Engineering Ltd., 2019) completed and submitted to the NCC under separate cover. Following the completion of the Phase One ESA and as defined in Section 32 of O.Reg 153/04, the site is mandated to a Phase Two ESA based on historic site usage and the known historical presence of contaminants exceeding current Ontario Ministry of Environment, Conservation and Parks (MECP) standards in site soil. Additionally, Phase Two ESA investigations may support future remediation or risk assessment, as deemed necessary to support site redevelopment.

The Phase Two ESA work was completed in accordance with the general requirements of Canadian Standards Association (CSA) Standard *"Z769-00 – Phase II Environmental Site Assessment - R2018"* (CSA, 2018) and, more importantly, the specific MECP mandatory requirements of Phase Two Environmental Site Assessments as defined in Part VIII and Schedule E of Ontario Regulation 153/04 (as amended). The Phase Two ESA was completed in accordance with the requirements of O. Reg. 153/04 following MOE (2011b) guidance, as the property owner intends on applying for a municipal zoning change for the Phase Two ESA property from parkland to diplomatic mission use (i.e., office space defined as commercial under O.Reg. 153/04), in hopes of developing the site. Property redevelopment does not require completion of a Record of Site Condition.

Main mandatory tables and figures are provided in Section 9 as per O.Reg. 153/04 requirements. Other supplementary tables and figures are provided in report sections where they are discussed.

2.1 Site Description

The Phase Two ESA property is bordered by parkland and the Sir John A. Macdonald Parkway (the parkway or SJMP) to the north; Slidell Street and the City of Ottawa Bayview Works Yard to the east; Burnside Avenue and residential uses to the south; and Hinchey Avenue and residential uses and Forward Avenue and the Embassy of Indonesia to the west.

The irregular-shaped site has an area of approximately 3 hectares and is vacant parklands with minor wooded areas. The northern boundary of the site is located about 70 m south of the Ottawa River. The current site layout is provided in Figure 9.2.

2.2 Property Ownership

The site is currently owned by the National Capital Commission. The main contact for the assessment of the site is Andrea McKenzie, Senior Environmental Advisor, National Capital Commission, 202-40 Elgin Street, Ottawa, ON, K1P 1C7.

2.3 Current and Proposed Future Uses

The site is currently vacant grassed parkland with minor treed areas with no municipal address. According to the City of Ottawa Zoning information provided on the geoOttawa website, the central and eastern portions of the site are currently zoned as O1 – Parks and Open Space Zone. The western portion of the site is currently zoned as R5 – Residential Fifth Density Zone.

Future re-development to diplomatic mission use (i.e., office space defined as commercial under O.Reg. 153/04) is contemplated for the property. The details of future property use are not known at this time. Based on this proposed change in land use to include diplomatic mission use, a Record of Site Condition would not be required for site redevelopment.

2.4 Applicable Site Condition Standards

In accordance with the regulation, the applicable site conditions standards for the NCC Burnside site, are MECP *Table 7 Shallow Soils in a Non-Potable Ground Water Condition, Coarse-Textured Soils* (MOE, 2011a).

The site is located in the developed part of Ottawa, and is serviced by municipal water supply; drinking water wells will not be established at the site, or within a 250 metre radius of the site. The City of Ottawa has not been notified of the intent to apply non-potable groundwater standards to the site. The overburden that exists on the site is generally medium- to coarse-grained fill material with an average thickness of less than 2 metres (see Figure 9.7). The nearest water body proximate to the site is the Ottawa River located greater than 30 m to the north of the site.

The site is not environmentally sensitive. It is not within, adjacent to or within 30 m of an area of natural significance. Soil pH, based on historical and current Phase Two ESA testing is within acceptable ranges (i.e., 5 to 9 pH units for surface soils). Although the site currently has parkland use, proposed future development may include commercial structures. Parkland and residential standards are applied in the Phase Two ESA.

3 BACKGROUND INFORMATION

3.1 Physical Setting

Information on site topography, hydrology and geology were obtained from review of surficial and bedrock geology mapping, topographical maps, information obtained from Google Earth website and information provided in the Phase One ESA (Geofirma Engineering Ltd., 2019) and historical reports.

Topographical relief at the site is governed by bedrock depths and fill areas on the site. The highest area of the site, with an elevation of approximately 63 metres above sea level (mASL) is at the corner of Burnside Avenue and Hinchey Street, along the southwestern boundary of the site. The site slopes to the northwest corner and to the eastern boundary, both with elevations of approximately 58 mASL according to Google Earth elevation information. The lowest point on the site appears to the approximately 55 mASL along the SJMP in the northcentral portion of the site.

Nearby permanent surface water bodies include the Ottawa River which is located approximately 70 m north of the site. The shallow groundwater table is located near the limestone bedrock surface of the site, at depths on the order of 3 to 5 metres below grade. Shallow groundwater from the site discharges to the Ottawa River.

Surface drainage at the site is directed north and east to catch basins at SJMP, the east end of Burnside Avenue and to Slidell Street.

The geological setting of the area is described as follows:

- Surficial Geology (Ontario Geological Survey, 2010): Paleozoic bedrock and a small sliver at the western boundary as stone-poor sandy silty to silty sand-textured till on Paleozoic terrain.
- Bedrock Geology (Armstrong and Dodge, 2007): Middle Ordovician Bobcaygeon Formation consisting of limestone with minor shales in the upper part. Williams et al., (1984) maps several northwest-striking splays of the regional Gloucester Fault as being present near the eastern site boundary.

In historical investigations (Duke Engineering & Services (Canada), DE&S, 2000; 2001; Intera Engineering Ltd., 2002a;, CH2MHILL, 2005; and EXP, 2018) the geology of the site and surrounding area was shown to be generally 1 to 5 m of granular fill with waste materials overlying aphanitic to fine grained, medium to thickly bedded, grey limestone presumably of the Bobcaygeon Formation. Some native materials in the form of a basal silty clayey sand glacial till may also be present on top of bedrock and within bedrock depressions caused by erosion along splays of the Gloucester Fault. Thickness of overburden material appears to greatest in the former Lazy Bay fill area located in the central and eastern parts of the property.

There are no areas of natural significance, as defined by O.Reg. 153/04 (as amended) located on or within 250 m of the site based on Ontario Ministry of Natural Resources (2012) data as provided in the MNR GIS database.

3.2 Past Investigations

Many historical environmental assessment reports have been prepared for the site and surrounding areas. The following list while not exhaustive, describes the pertinent information necessary for the purposes of this Phase Two ESA. Reports are listed in chronological order of completion date. Historical sampling locations are provided on Figure 9.3.

3.2.1 <u>Mapping and Assessment of Former Industrial Sites – Intera Technologies Ltd. (1988)</u>

This report entitled: *Mapping and Assessment of Former Industrial Sites, City of Ottawa – July 1988* was completed for the City of Ottawa to identify and inventory former industrial sites within the City from 1850 to 1984 that potentially handled or produced hazardous chemicals and therefore might create site contamination.

No former industrial sites were identified on the site.

The Bayview and Slidell Landfill was identified approximately 50 m east of the site and the Stonehurst and Bayview Landfill was identified approximately 200 m south of the site, however no additional information for these landfills was provided in the report.

The closest former industrial property was located approximately 100 m south of the site. Modern Containers Ltd. was reported at 20 Bayview Road and was in operation in the 1940's. This company was the manufacturer of metal toilet tube containers. No additional information was provided for the property.

No other industrial sites were identified within the 250 m radius site study area.

3.2.2 Phase I and II Environmental Site Assessment - DE&S (2000)

This report entitled: *Phase I and II Environmental Site Assessment, Burnside Vacant Land, Ottawa, Ontario – July 2000* was completed for the National Capital Commission on a small part of the current NCC Burnside site along Forward Avenue to identify any potential historical land uses of environmental concern and investigate potential soil contamination concerns based on landfilling and historical industrial activities in the surrounding area.

The Phase I ESA portion of the report did not identify any historical owners on the subject property of environmental concern, however it was noted that Lazy Bay was infilled in the 1960's.

As part of the Phase II ESA investigation, a total of ten test pits (TP1 to TP10) were excavated in the northern portion of the property as the southern portion was being used as a temporary gravel parking lot at the time of the work. Minimal overburden was encountered on the property and waste fill materials were found in 8 of the 10 test pits. Waste materials including wood, metals and concrete were identified at surface in the treed areas and concrete building foundations were also observed. Waste materials identified in the test pits, mainly along the western boundary and near the parking area included concrete, brick, plastic, polystyrene insulation, asphalt, asphalt singles, metal and glass. Three soil samples were submitted for metals and one for polycyclic aromatic hydrocarbons (PAH). There were no total petroleum hydrocarbon (TPH) soil samples submitted as there was no visual or olfactory evidence of potential contamination. Groundwater was not encountered and therefore not

sampled as part of this work.

Soil samples were compared to the 1997 Ontario Ministry of the Environment, Guideline for Use at Contaminated Sites in Ontario (MOE Guideline), Table F (background values). Table F values were used as the overburden encountered was less than 2 meters thick across the site, making it considered a sensitive site according to the regulation. Soil was also compared to the 1999 Canadian Council of Ministers of the Environment, Interim Canadian Environmental Quality Criteria for Contaminated Sites (CCME Guideline) or 1997 Recommended Canadian Soil Quality Guidelines for residential/parkland land use.

The soil sample from TP-3 exceeded both MOE Table F and CCME guidelines for lead, molybdenum and zinc. The soil sample from TP-1 and TP-6 exceeded MOE Table F guideline for molybdenum. The soil sample collected TP-7 exceeded all 16 PAH parameters when compared to MOE Table F guidelines and 8 PAH parameters when compared to CCME guidelines.

Additional investigations were recommended to further characterize the site.

It should be noted to avoid confusion with later sampling at the site these test pits are labelled as TP#A on figures in this report showing historical sampling locations.

3.2.3 <u>Phase II Environmental Site Assessment – DE&S (2001)</u>

This report entitled: *Phase II ESA, Burnside Site – April 2001* was completed for the National Capital Commission to investigate soil and groundwater conditions at the site to address the filling of Lazy Bay, the presence of surface and subsurface construction debris and elevated polycyclic aromatic hydrocarbons (PAH) historically identified in soils. The site was separated into three distinct areas, Area A, B and C. Area A is the part of the site previously investigated by DE&S in 2000.

A total of 49 test pits (TP1 to TP49) were excavated across the site to bedrock refusal or a maximum of 3 metres below ground surface (mBGS). It was reported that the majority of the site was covered in approximately 0.2 m of topsoil underlain by sand and gravel fill with metals, bricks, ash, glass and wood overlying the bedrock. Some of the test pits also included plastic, concrete and fabrics. Overburden ranged from 0.2 m to greater than 3 m with no native soils encountered on the site. Soil sample analyses included a total of 55 samples for metals, 22 samples for PAHs and 5 samples for benzene, ethylbenzene, toluene, xylenes (BTEX) and TPH. Groundwater was only encountered in one test pit TP6 and was sampled for metals and general chemistry parameters.

For the purposes of this report MOE Table F guidelines were not used, and instead the MOE Table B guidelines for surface soil and groundwater criteria in a residential/parkland land use for a non-potable groundwater condition was used in addition to the CCME guidelines used previously.

A total of 27 of the 55 metals soil samples showed exceedences of CCME and/or MOE Table B guidelines with these mainly distributed across areas A, B and C. Metals parameters exceeding guidelines included lead, copper, zinc, barium and total chromium. A total of 10 of the 21 PAH soil samples showed exceedences of CCME and/or MOE Table B guidelines with these distributed across areas A and B. Of the 5 BTEX/TPH soil samples, only one exceeded CCME guidelines. The groundwater sample showed no exceedences of applicable guidelines.

Although this ESA report provides the most extensive set of soil sampling and laboratory analyses, the analyte lists are incomplete with respect to current MOE (2011a) standard lists. Soil sampling did not include testing for boron, hot-water soluble boron, hexavalent chromium, mercury and uranium, as well as general inorganic parameters of cyanide, electrical conductivity and SAR. As this work predates development of CCME PHC-F1 to -F4, such analyses are lacking, and instead TPH_{gas}, TPH_{diesel} and TPH_{heavy oil} results are reported.

It was recommended that a Site Specific Risk Assessment be completed for the site.

3.2.4 Risk Assessment and Risk Strategy Report - Intera Engineering Ltd. (2002a)

This report entitled: *Risk Assessment & Risk Strategy Report, Burnside Site, Ottawa, ON – March 2002* was completed for the National Capital Commission as recommended in the former Phase II ESA report.

Five groundwater monitoring wells (MW-1 to MW-5) were drilled as part of the site-specific risk assessment (SSRA) and sampled for general chemistry, metals and PAHs. Groundwater results were compared to 1997 MOE Table B guidelines for metals and PAHs, however because there were no guideline values for general chemistry parameters, these parameters were compared to 2001 *Ontario Drinking Water Quality Standards/Objectives* (ODWS). There were no exceedences of metals or PAH parameters when compared to applicable guidelines. Elevated levels of chloride in groundwater were reported which was attributed to road salting activities.

Submission of surficial soil samples from 2001 was also completed as part of this risk assessment for PAHs and metals. Once again all soil results (historical test pitting results and current surficial soil samples) were compared to MOE Table B guidelines. It was noted that none of the soil contaminants exceeding MOE Table B criteria had cleanup guidelines based on soil to groundwater leaching and metals and PAHs were not shown in groundwater concentrations above MOE non-potable groundwater guidelines, which was the reasoning for using the MOE Table B guidelines.

Deeper soil samples showed exceedences of MOE and CCME guidelines for copper, lead, zinc and total chromium, and PAH parameters. One sample marginally exceeded the benzene guideline in the former parking area on Area A. No exceedences of TPH were noted in deeper soils.

Marginal exceedences of beryllium, total chromium and selenium were noted in surficial soils when compared to applicable guidelines. Four marginal exceedences of PAH parameters were noted when compared to CCME guidelines, but these met MOE guidelines.

The results of the SSRA showed that the human exposure to metals and PAHs was limited by the 0.2 m of clean surficial soil covering the site. The SSRA also showed that risks to soil microorganisms, microbial processes and some terrestrial invertebrates were not considered significant.

Based on the above, it was recommended that residential or institutional uses that would involve human occupancy should be prohibited until an SSRA demonstrates that it does not pose undue risks. It was also recommended that growing food for human consumption should be prohibited.

Ongoing groundwater monitoring was recommended as well as continued annual inspections to ensure contaminated soils were not exposed at surface.

3.2.5 Inspection and Groundwater Monitoring - Intera Engineering Ltd. (2002b)

This report entitled: *Inspection and Groundwater Monitoring, Burnside Site, Ottawa – December 2002* was completed for the National Capital Commission to satisfy the recommendation in the above risk assessment report for the inspection of surficial soils and annual groundwater monitoring.

A site inspection showed that contaminated soils were not being exposed at surface and no stressed vegetation was observed.

The five monitoring wells located on the site were sampled and analysed for metals and PAHs. There were no exceedences of 1998 MOE Table B guidelines in any of the samples.

3.2.6 <u>2003 Inspection and Groundwater Monitoring - Intera Engineering Ltd. (2003)</u>

This report entitled: 2003 Inspection and Groundwater Monitoring, Burnside Site – November 2003 was completed for the National Capital Commission to as part of the annual surficial soils inspection and groundwater monitoring.

A site inspection showed that contaminated soils were not being exposed at surface and no stressed vegetation was observed.

The five monitoring wells located on the site were sampled and analysed for metals and PAHs. There were no exceedences of 1998 MOE Table B guidelines in any of the samples.

3.2.7 Lemieux Forcemain Easement Properties, Phase 2 ESA - CH2MHILL (2005)

This report entitled: *Lemieux Forcemain Easement Properties, Ottawa, Ontario, Phase 2 Environmental Site Assessment – November 2005 (DRAFT)* was completed for the City of Ottawa to assess soil and groundwater conditions within the easement lands for the proposed forcemain and to identify any health and safety issues that would need to be addressed during construction.

Soil and groundwater conditions were investigated by drilling two boreholes which were completed as monitoring wells (CH2M MW-1 and CH2M MW-2), as well as excavating three test pits (CH2M-TP3 to CH2M-TP5). Soils encountered at the site included fill materials consisting of sand and gravel with some brick, wood, and glass.

Soil and groundwater samples were submitted for selected parameters including metals, VOCs, PAH, petroleum hydrocarbons (PHC), polychlorinated biphenyls (PCBs) and pH.

MOE Ontario Regulation 153/04 (O. Reg 153/04) came into effect in 2004 and replaced the former 1998 MOE Guidelines. The Soil, Ground Water and Sediment Standards for Use under Part XV.1 of the Environmental Protection Act (2004) was used to assess groundwater and soil conditions at the site. MOE Table 1 values (background) were used as it was determined that soils along the easement were less than 2 m thick, therefore making the work area a sensitive site under the regulation.

Metals parameters in soil exceeded MOE Table 1 standards in all boreholes and test pits except CM2M MW-2. Soil BTEX parameters exceeded MOE Table 1 standards in all five samples submitted for analysis. PAH soil exceedences of MOE Table 1 standards were identified in CH2M-TP5. There

were no exceedences of PHC or PCB standards.

Groundwater exceedences of metals MOE Table 1 standards for cobalt and/or copper in all samples (except the duplicate). PAH exceedences were noted in all samples, except CH2M MW-2, however this sample had laboratory analytical detection limits above that of the applicable standards. There were no exceedences of BTEX, VOC, PHC or PCB standards.

3.2.8 Enhanced Phase I ESA - Trow Associates Inc. (2008)

This report entitled: Enhanced Phase I Environmental Site Assessment, Ottawa River Parkway, Ottawa, Ontario, Property Asset #95979 – December 2008 was completed for the National Capital Commission to determine if land uses on and surrounding the site impacted environmental conditions at the site.

This Phase I ESA covered a much larger stretch of the Parkway and was divided into five separate sections (Section A to E). Only Section E covered the subject site, however Section E also covered a larger amount of land to the west and north.

The Burnside site was identified as an area of potential environmental concern (APEC) in the report with potential contaminants of potential concern (COPCs) included PAHs, PHCs, VOCs and metals. It was reported that soils on the site were shown to be contaminated with PAHs and metals. Even though the wells had previously shown no exceedences, it was recommended they be sampled once to confirm there were still no exceedences and then decommissioned.

It was also reported that the filling of Lazy Bay was an APEC for the site with COPCs including PAHs, PHCs, BTEX and metals. A Phase II ESA was recommended in this area with additional boreholes/monitoring wells being drilled north of the parkway to assess fill quality.

In addition, two landfills were reported in the area of the site. Bayview and Slidell Landfill and Stonehurst and Bayview Landfill were identified east and south of the site respectively.

Modern Containers – Metal Tube Manufacturers was also identified south of the site at 80 Bayview Road. The report included a plan showing the location of TCE contaminated groundwater on the property and adjacent Laroche Park.

3.2.9 Surface Soil and Groundwater Monitoring Program - Trow Associates Inc. (2010)

This report entitled: *Surface Soil and Groundwater Monitoring Program, Burnside Site, Ottawa, ON (Property Asset #95979) – January 2010* was completed for the National Capital Commission to inspect ground surface at the site to ensure contaminated soils were not exposed and to confirm surface soil and groundwater quality posed no risk to human health and the environment.

A total of ten surficial soil samples were collected across the site (SS1 to SS10) from a depth of 0-0.1 m. Groundwater sampling was also conducted from the six monitoring wells remaining on the site (MW-1 to MW-5 and a CH2MHILL well) for PHCs, VOCs, PAHs and metals. It was reported that CH2M MW-1 was sampled and CH2M MW-2 had been destroyed during the installation of a sewer line. It should be noted that when comparing this Trow report with the former CH2MHILL report, the CM2M well locations were switched on the plan and in the report, meaning the well destroyed was

actually CH2M MW-1, located at the northeast corner of the site and the well sampled was actually CH2M MW-2.

The primary guidelines for soil quality comparison were the 2008 CCME *Canadian Soil Quality Guidelines for the Protection of Environment and Human Health* for parkland/residential use. The 2008 CCME *Canada-Wide Standards for Petroleum Hydrocarbons in Soil* was used for PHC soil samples. The 2004 MOE Table 1 (background) and Table 3 (residential/parkland in a non-potable groundwater condition) standards was also used for comparison.

CCME did not have groundwater guidelines for a non-potable groundwater condition. For comparative purposes, the MOE Table 1 (background) and MOE Table 3 (non-potable groundwater) values were used. As these MOE guidelines did not include values for PHCs, Trow used the *Atlantic Partners in Risk Based Corrective Action (RBCA) Implementation (2003)* Tier 1 values (residential/parkland in a non-potable groundwater condition) for these values. It was also noted that based on the close proximity of the site to the Ottawa River, the CCME *Canadian Water Quality Guidelines for the Protection of Aquatic Life* (2007) was used for comparison purposes only and did not actually apply to groundwater, only to surface water.

No exceedences of PAHs were noted in any of the soil samples. Three of the soil samples (SS3, SS4, SS5) marginally exceeded CCME and MOE Table 1 guidelines and standards for chromium, and MOE Table 1 standards for barium.

All groundwater analyses were less than MOE Table 3 standards and PHC values were less than the Atlantic RBCA criteria.

It was noted that TCE was not detected in any of the groundwater samples suggesting the two TCE plumes identified in the area of the site (Bayview Works Yard) and south of the site (80 Bayview Road and Laroche Park) did not extend to the groundwater at the site.

Bi-yearly groundwater monitoring was recommended to ensure current conditions remain unchanged.

It should be noted to avoid confusion with later surficial soil sampling at the site, these soil samples are labelled as SST# on figures in this report showing historical sampling locations.

3.2.10 November 2012 Groundwater Monitoring and Sampling – SNC Lavalin Environment (2013)

This report entitled: *November 2012 Groundwater Monitoring and Sampling, Burnside Site, Ottawa, Ontario (NCC Property Asset Number 95979) – February 2013* was completed for the National Capital Commission to satisfy recommendations from the previous report and to ensure groundwater conditions remain unchanged.

The CH2M well confusion continues in this report. It was noted that MW-1 to MW-5 wells were found and used for groundwater sampling. SNC reported that CH2M MW-1 was found as a flush-mount well and was located in a wooded area. It was also reported that an unknown stick-up well was identified in the southeastern portion of the site near the roundabout. It is Geofirma's position that the unknown stick-up well found by SNC was actually CH2M MW-2. However, since CH2M MW-1 was destroyed historically during the construction of the forcemain, it is unknown what the flush-mount well found was. None of the documentation provided to Geofirma describes any flush-mount wells being drilled

on the site. SNC sampled groundwater from the flush-mount, but not the stick-up (CH2M MW-2). Six groundwater samples were submitted for VOCs, PAHs, PHCs and metals.

Groundwater results were compared against the 2012 *Guidance Document on Federal Interim Groundwater Quality Guidelines for Federal Contaminated Sites* (FIGQG) Table 2, Tier 2 for residential/parkland land use, and the MOE (2011a) Table 7 standards for shallow soil sites in a non-potable groundwater condition. All samples satisfied MOE and FIGQG for VOC parameters. There were no exceedences of PAHs, PHCs or metals for MOE Table 7 standards, however several PAH and metals parameters exceeded FIGQG values in a few of the wells. PAH exceedences were noted in MW-1, MW-2 and MW-5. Metals exceeded for selenium in MW-4, and chromium and copper in MW-5.

Recommendations for the site included continued biannual monitoring of groundwater at the site, as well as a few monitoring well repairs and resolving the monitoring well discrepancies identified.

3.2.11 Fall 2014 Groundwater Monitoring – Stantec Consulting Ltd. (2014)

This report entitled: *Fall 2014 Groundwater Monitoring, Burnside Site, Ottawa, ON, NCC Property Asset 95979 – November 2014* was completed for the National Capital Commission as part of the biannual monitoring of the site.

Groundwater samples were collected at the site for PHCs, metals, PAHs and VOCs. Assessment criteria used included the 2014 FIGQG Table 2, Tier 2 guidelines and the MOE (2011a) Table 7 standards as in the above report. All parameters measured in groundwater at the site were below applicable guidelines and standards with the exception of FIGQGs for iron in MW-1, iron and pyrene in MW-2, iron in MW-3 and cadmium in MW-5.

It was recommended that no further sampling be conducted at the site and the monitoring wells be decommissioned.

3.2.12 Preliminary Geotechnical Investigation – EXP Services Inc. (2018)

This report entitled: *Preliminary Geotechnical Investigation, Burnside OPA & ZBLA Supporting Studies, Burnside Avenue, City of Ottawa, Ontario – May 2018 (DRAFT)* was completed for the National Capital Commission in support of the proposed development at the site. The development plan included dividing the site into four separate buildable parcels in addition to green space. The usage of the parcels was unknown at the time of the report. A total of four boreholes were drilled and 13 test pits excavated on the site. No groundwater or soil sampling occurred as part of this report.

It was reported that fill materials were encountered from depths of 0.2 to 1.7 m occasionally underlain by glacial till veneer to the surface of shallow limestone bedrock. One of the boreholes (BH-4) on the site was drilled in the area of the Lazy Bay infilling. Fill materials were encountered in this hole to a depth of 7.4 m with glacial till to the bottom of the hole at 24.1 m. Bedrock was not encountered in this hole. In addition to the infilling area, this borehole was reportedly also drilled in the area of splays of the regionally extensive Gloucester Fault that runs through the site.

It was reported that building on Lots 1-3 was considered feasible however the fill from the infilling of Lazy Bay on Lot 4 made this area more problematic and challenging for development.

3.2.13 Phase Two ESA, West Portion of Bayview Yard – AMEC Earth and Environmental (2014)

This report entitled: *Phase Two Environmental Site Assessment, West Portion of Bayview Yard, 7 Bayview Road, Ottawa, ON - AMEC Earth and Environmental – June 2014,* describes a Phase Two ESA prepared in accordance with O.Reg. 153/04. This report was completed for just the western portion of the adjacent City of Ottawa Bayview Works Yard to address APECs identified in a Phase One ESA historically completed for the entire yard in 2013, as well as to provide a Phase Two ESA using the updated MOE O. Reg. 153/04 standards (MOE, 2011a) to support the potential future requirement for an RSC in the event of site redevelopment. This property is located immediately east off the site and is considered a potentially contaminating activity (PCA) with respect to the subject site.

A total of 37 APECs were identified for the entire yard in 2001. The City Works Yard included: storage, use and handling of chlorinated solvent by the former Regional Test Lab and the subsequent disposal of spent solvent into two dry wells located north of the building; a former Fleet Vehicle Refueling Facility; several former aboveground storage tanks (ASTs) and underground storage tanks (USTs) containing different petroleum hydrocarbon products; a former PCB storage site; a historical maintenance garage; and a former machine shop, just to name a few.

It was reported that MOE (2011a) Table 7 standards for both residential/parkland and commercial/industrial were used based on the results of the Phase II ESA drilling and overburden depths being generally less than 2 m across the property. However, it was also reported that bedrock was encountered during investigations at a depth of up to 6.7 mBGS at the northeast corner of the Phase II ESA site boundary.

Soil exceedences of MOE (2011a) Table 7 residential/parkland standards for PHCs, PAHs, and metals were found on the property.

Groundwater exceedences of MOE Table 7 residential/parkland standards for PHCs, VOCs, PAHs, sodium and chloride, were also found on the property. A known VOC (TCE and degradation products) plume extends to the north of the Works Yard property.

3.3 Data Quality

Historical ESA investigations at the site were conducted by various consultants, and although different analytical protocols and sampling methods were in effect at the time of historic investigations, the main contaminants of concern in soil and groundwater at the site are persistent, and historical information is therefore deemed useful in this Phase Two ESA.

Both historical and recent soil quality data for the site are presented, and compared to current standards. A comparison of soil quality data from 2000 to 2019 shows that metals and PAH concentrations have not changed noticeably over this 19 year period. This is not unexpected given the source of the soil contamination is the presence of impacted overburden material from on-site and possibly off-site historical land uses. Consequently, historical soil quality information can be used to augment current soil quality data to provide an overall picture of the nature and extent of contaminants at the site.

Groundwater elevations collected through historical ESA investigations at the site are presented for historical site monitoring wells MW-1 to MW-5 from December, 2001 to April, 2019, and for historical

site monitoring wells CH2M MW-1 and CH2M MW-2 from October, 2005 to April, 2019. Historical water levels were measured and reported relative to a local site datum. Based on geodetic elevation surveying completed as part of the current investigation, these historical water levels are reported relative to geodetic elevations in meters above sea level (mASL). Historical groundwater elevation data provides information on the long term trends in groundwater elevation at the site over the last 18 years, illustrating the relatively stable elevation of the water table at the site.

Groundwater quality data, collected in November, 2012 and October 2014 from monitoring wells MW-1 to MW-5 and CH2M MW-2 are presented for use in this report as they represent the two most recent rounds of historical groundwater sampling completed at the site. Review of the historical reports describing 2012 and 2014 groundwater sampling shows that these investigations were completed under appropriate quality assurance and quality control programs including use of certified analytical laboratories and methods, and blind replicate samples. Prior to 2012, groundwater sampling was undertaken at the site in 2001, 2002, 2003, 2005 and 2010 with results that are comparable to 2012 and 2014 data.

Recent groundwater elevation data (April 2019) presented for the site were collected by Geofirma staff, under the firm's ISO-certified Quality Management System, using the same protocols and procedures for data collection outlined under O.Reg 153/04 and those used in historical groundwater investigations.

Review of historical soil quality investigations completed at the site shows that these investigations were completed under appropriate quality assurance and quality control programs including use of soil field screening, quality control samples and qualified analytical laboratories and methods. Site soil data collected by Geofirma in 2019 were collected under an ISO-certified Quality Management System, using certified analytical laboratories, and were completed in accordance with O.Reg 153/04. For these reasons, soil and groundwater data are deemed to be of adequate quality, such that they can be relied upon for use in this Phase Two ESA.

4 SCOPE OF THE INVESTIGATION

4.1 Overview of the Site Investigation and Media Investigated

The intention of the Phase Two ESA for the NCC Burnside property is to address soil quality conditions existing today, as compared to current MECP standards, to support application for a municipal zoning change for the property from parkland to commercial to facilitate development the site. This proposed sampling and analysis plan given in Appendix A describes the proposed borehole drilling, soil sampling and analytical activities to achieve these Phase Two ESA goals.

As documented in the Phase One ESA Report (Geofirma Engineering Ltd., 2019), Phase Two ESA investigations need to include drilling boreholes and laboratory testing in areas of fill thickness greater than 3 m (e.g., in and near the Lazy Bay fill area). Additional testing of fill for metals and PAHs is recommended to improve spatial coverage and address O.Reg. 153/04 delineation requirements within APEC-1, unknown fill quality that covers the entire site. Testing of fill quality for PHC-F1 to -F4 and BTEX near the historical TPH_{gas/diesel} and TPH_{heavy oil} hotspot as well as similar testing at the benzene hotspot is also recommended to address O.Reg. 153/04 delineation requirements. All borehole soil samples should be field screened using a combustible gas detector and/or organic vapour meter.

The Phase Two ESA investigation included clearance of underground utilities, borehole drilling, soil field screening and sampling, groundwater elevation surveys and soil analyses for site contaminants of potential concern (COPCs). Based on historical investigations site COPCs include primarily PAHs and metals in soil and to a lesser extent PHCs and BTEX in soil. Proposed borehole and monitoring well locations were selected to provide areal coverage of the site and to obtain overburden and fill quality information in addition to further delineation of the horizontal and vertical extent of possible contamination in site overburden. The proposed drilling and soil sampling and testing program included 10 new boreholes at the site, as summarized in the following Table 4.1 and as shown in the appended Figure A.1.

Borehole ID	Location Rationale
BH19-01	Quality testing of soil for O.Reg. 153/04 listed metals, general inorganics (EC, SAR, CN, pH) and PAHs below depth of 3 m near EXP borehole BH4 in former Lazy Bay Fill Area
BH19-02	Quality testing of soil for O.Reg. 153/04 listed metals, general inorganics (EC, SAR, CN, pH) and PAHs below depth of 3 m near Intera well MW-5 in former Lazy Bay Fill Area
BH19-03	Quality testing of soil for O.Reg. 153/04 listed metals, general inorganics (EC, SAR, CN, pH) and PAHs below depth of 3 m near Intera well MW-2 in former Lazy Bay Fill Area
BH19-04	Quality testing of soil for O.Reg. 153/04 listed metals, general inorganics (EC, SAR, CN, pH) and PAHs below depth of 3 m near DE&S TP20 in near edge of former Lazy Bay Fill Area
BH19-05	Quality testing of soil for O.Reg. 153/04 listed metals, general inorganics (EC, SAR, CN, pH) and PAHs above of 2 m near DE&S TP34 to increase spatial coverage
BH19-06 & BH19-07	Quality testing of soil for O.Reg. 153/04 listed TPH and BTEX parameters to provide horizontal delineation above a depth of 2 m near TPH hotspot near DE&S TP29

 Table 4.1
 Summary of Borehole Drilling and Soil Sampling Location Rationale

Borehole ID	Location Rationale	
BH19-08	Quality testing of soil for O.Reg.153/04 listed metals, general inorganics (EC, SAR, CN, pH) and PAHs above of 2 m near DE&S TP9A to increase spatial coverage	
BH19-09 &BH19-10	Quality testing of soil for O.Reg. 153/04 listed TPH and BTEX parameters to provide horizontal delineation above a depth of 2 m near benzene hotspot near DE&S TP41	

Drilling was completed to bedrock refusal, with soil screening and soil sampling at 10 locations with expected depth to bedrock ranging from <2 m to 6 m. Drilling and continuous soil sampling was completed using a track-mounted GM100GT GeoMachine using direct push drilling technology. Use of direct-push drilling technology and soil sample volume requirements did not generate excess soil requiring disposal.

During the drilling of each new borehole, continuous samples of fill were collected, logged for stratigraphy and screened in the field for visual, olfactory and instrument evidence of contamination. Instrument soil screening included measurement of total combustible vapours using a calibrated Combustible Gas Indicator and measurement of total organic vapours using a calibrated Photoionization Detector.

Representative samples of the fill layer in boreholes BH19-01 to BH19-05 and BH19-08 (typically one sample per borehole) were collected for laboratory analysis of MECP-listed metals and general inorganic parameters (electrical conductivity [EC], sodium absorption ratio [SAR], cyanide [CN] and pH) which were historically not analyzed at the site, and for PAHs. One blind QA/QC duplicate soil sample was collected and submitted for analysis of MECP-listed metals, general inorganics and PAHs.

Representative samples of the fill layer in boreholes BH19-06, BH19-07, BH19-09 and BH19-10 (typically one sample per borehole) were collected for laboratory analysis of PHCs and BTEX to assess extent of previously identified TPH and benzene hotspots.

An allowance was made in the sampling and analysis plan to complete additional PHC, BTEX and PCB analyses on soil if field conditions and screening information warrant such analyses. No such additional soil sampling and testing was undertaken.

The groundwater investigation program consisted of the collection of groundwater elevations from accessible monitoring wells on site, on one occasion and surveying of the existing monitoring well network to geodetic elevations. No groundwater samples were collected as part of the Phase Two ESA.

Collected soil samples were submitted to Paracel Laboratories Ltd, Ottawa in coolers with ice packs under chain of custody procedures for analysis of O.Reg. 153/04-listed metals, general inorganics, PAHs, PHCs and BTEX following O.Reg. 153/04 MECP-approved analytical methods.

4.2 Phase One Conceptual Site Model

Interpreting the probable environmental conditions of the site is undertaken by reference to a Phase One Conceptual Site Model (CSM). A Conceptual Site Model is an idealization of potential site contaminants and their interaction with the hydrogeologic system and surrounding properties, based

16

on the known conditions of a site. The Conceptual Site Model includes a description of the potentially contaminating activities at the Phase One ESA property and surrounding properties, identifying potential contaminants of concern and their source locations. The model also demonstrates the interaction of these contaminants with the natural environment (soil, groundwater, bedrock, water bodies) and the built environment (utilities, buildings), identifying potential receptors.

The Phase One ESA study area is located in a predominately residential and parkland area about 70 m south of the Ottawa River. The site has had former use as a lumber yard, parkland and residential housing and has been subject to importation of fill of poor quality. The site is currently parkland located between the Sir John A. MacDonald Parkway and residential neighbourhoods.

Figures 9.2, 9.3, 9.4, 9.5, 9.6, 9.7 and 9.8 illustrate the CSM for the site. Figure 9.4 identifies PCAs on the site and within the Phase One study area, as wells as the locations of waterbodies, former Lazy Bay, existing buildings, and roads (as applicable). Although Figure 9.4 identifies several PCAs within the Phase One study area, historical soil and groundwater quality investigations on the site, show that none of the identified PCA's surrounding the site have negatively impacted environmental conditions on the site.

Figure 9.2 identifies one APEC for the entire Phase One ESA site related to importation of fill of poor quality. The former infilling of Lazy Bay and the presence of fill across the site have the potential to contaminate the subsurface soils and groundwater beneath the site and is the only APEC identified for the site. Fill materials in this APEC consist of a mixture of silt, sand, clay, cobbles and boulders with debris including asphalt, brick, concrete, plastics, glass, metal, cinders, ash and wood pieces. Extensive historical testing of the overburden fill at the site shows that fill is contaminated by metals including in order of decreasing frequency of exceedence of MECP Table 7 standards: lead, barium, zinc, selenium, copper, vanadium, mercury, antimony, molybdenum and cadmium. PAHs including light to heavy molecular weight compounds are also present throughout the fill layer. PHCs and BTEX are occasional possible COPCs. Surficial fill is generally of better quality than deeper fill. Based on measured soil pH, the site is not environmentally sensitive as per Section 41 of O.Reg. 153/04. Several years of groundwater sampling completed at the site over a 13 year period (i.e., 2001 to 2014) show that these soil COPCs do not create groundwater contamination at the site. Figure 9.3 shows the location of historical soil and groundwater sampling locations, and Phase One CSM cross sections A-A' and B-B'.

Figures 9.5 and 9.6 demonstrate the interaction of the identified APEC with the surrounding natural and built environment through two cross sections (A-A' and B-B') constructed through the site. Figures 9.5 and 9.6 show the current understanding of former land uses of concern, COPCs in soil and groundwater, site stratigraphy, groundwater and bedrock conditions, and shallow utility corridors excavated into bedrock.

The overburden thickness at the site (see Figure 9.7) is generally less than 2 m identifying the property as a shallow soil site under O.Reg. 153/04. Overburden thickness is negligible in the northwestern and southeastern parts of the site where bedrock is exposed at ground surface. Overburden thickness is thicker in the former Lazy Bay fill area and greatest at 24.1 m in EXP (2018) BH-4 that is interpreted to intersect an eroded splay of the regionally significant northwest striking bedrock Gloucester Fault.

Groundwater flow occurs primarily within the bedrock as the groundwater table is typically found at or below the bedrock surface at the site. Groundwater flow at the site is focussed to the former Lazy Bay fill area and discharges to the Ottawa River located about 70 m north of the northern property line. Some groundwater flow will also be channelled via overburden infill of utility excavations into bedrock and via the bedrock depression created by splays of the Gloucester Fault.

4.3 Impediments and Deviations from Sampling and Analysis Plan

There were no impediments or deviations from the borehole drilling and soil sampling and analysis plan. One impediment to the groundwater level monitoring program was encountered. A water level could not be recorded at MW-1 on April 17, 2019 due to suspected infilling of the monitoring well with soil.

There were no other impediments or deviations from the sampling and analysis plan during the Phase Two ESA investigations.

5 INVESTIGATION METHOD

5.1 General

Prior to any intrusive investigations at the site, underground utility locates were completed. Underground Service Locaters (USL-1) of Ottawa, Ontario was contracted to identify the location of all underground buried utilities at the site in the vicinity of proposed drilling locations. Utilities including telephone, gas, hydro, municipal services and private utilities were cleared through these services. Proposed drilling locations were staked by Geofirma personnel to assist USL-1 in utility clearances.

Overburden borehole drilling and soil sampling was completed on May 24, 2019 using a trackmounted GM100GT GeoMachine using direct push drilling technology. Drilling services were by Strata Soil Sampling Inc., an MECP-licensed well contractor based out of Richmond Hill, Ontario under supervision by Geofirma field staff.

Boreholes were advanced through the shallow overburden to bedrock or refusal using 95 mm diameter direct push casing. Continuous soil samples were collected in 1.2 m length plastic sample sleeves. Soil samples were logged for stratigraphy, moisture and visual/olfactory evidence of contamination. In addition, soil samples were collected in air tight bags and screened in the field using a combustible gas indicator (CGI) and a photoionization detector (PID).

Soil samples selected for laboratory analysis of metals, inorganics, PAHs and PHCs/BTEX were containerized on site in laboratory supplied containers and delivered to Parcel Laboratories in Ottawa, Ontario, under chain-of-custody procedures.

5.2 Drilling and Soil Logging

Ten boreholes (BH19-01 to BH19-10), were advanced at the property on May 24, 2019, in accordance with the sampling plan described in Section 4.1 using a track-mounted GM100GT GeoMachine using direct push drilling technology. Soil samples were logged for stratigraphy, as well as visual and olfactory evidence of contamination.

5.3 Soil Sampling

Continuous soil samples were collected using 95 mm diameter direct push casing and 1.2 m length plastic sample sleeves. Samples were split, with a portion transferred immediately into laboratory supplied containers, and placed in a cooler with ice, and the remainder placed in a re-sealable plastic bag to allow for field screening.

Soil samples are identified as BHXX-YY-Z, where XX is the year, YY is the borehole identifier, and Z is the sequential sample interval. For example, BH19-02-1 indicates that it is the first sample collected from borehole two, in 2019.

Borehole stratigraphic and instrumentation logs are included in Appendix B, and borehole locations are shown on Figure 9.2.

5.4 Field Screening Measurements

Soil samples were collected, placed in re-sealable plastic bags and screened using a RKI Eagle 2 portable gas detector, which is a dual gas instrument capable of operating as a combustible gas indicator (CGI), methane elimination, and in photoionization detector (PID) mode. The RKI Eagle 2 was rented from Maxim Environmental and Safety Inc. Maxim provided an instrument specific calibration certificate for the RKI Eagle 2.

Generally, screened soils samples that produced the highest PID value or showed the highest degree of staining for each individual borehole were selected for laboratory analysis for PAHs.

5.5 Groundwater Elevation Monitoring

On April 17, 2019, groundwater elevations were recorded in all accessible groundwater monitoring wells. Groundwater levels were measured relative to the top of PVC riser (TOR) using an electronic water level tape that was decontaminated between wells with soapy water, methyl alcohol and deionised water and recorded to the nearest 0.01 m. Table 9.1 provides information on the location, screen length, stratigraphy intersecting the screen, total well depth and elevations of the ground surface, top of riser, and the screened interval for all groundwater monitoring wells accessible at the site.

Water levels could not be measured in MW-1 on April 17, 2019 due to presence of debris in the well above the water table.

5.6 Analytical Testing

All soil samples collected for metals/inorganics, PAHs and PHCs/BTEX analysis were collected directly into laboratory-supplied sampling containers. All samples were stored and shipped in coolers with ice packs. Samples were submitted to Paracel Laboratories of Ottawa, Ontario, a CALA-certified analytical laboratory, under standard chain-of-custody procedures and in accordance with Geofirma QA/QC procedures. Complete laboratory analytical reports for 2019 analyses are included in Appendix C.

5.7 Residue Management Procedures

No soil residual wastes were generated during drilling activities due to use of direct push drilling technology. No liquid residual wastes were generated as no groundwater sampling was undertaken.

5.8 Elevation Surveying

The locations of test pits, boreholes and monitoring wells, including historical locations, were surveyed for both horizontal and vertical elevation by Geofirma personnel as part of the Phase Two ESA. Horizontal locations of all 2019 drilling locations were determined using a hand-held GPS unit. Horizontal locations of all historical sampling locations were determined by overlaying sample location maps over the City of Ottawa georeferenced site plans. Vertical elevations of ground surface for all historical and 2019 sampling locations were determined from overlaying georeferenced sampling locations against a City of Ottawa LiDAR digital elevation model (DEM) survey flown in 2014.

Vertical elevations of top of casing and ground surface of all groundwater monitoring wells were determined by geodetic elevation surveying of the top of casing at well MW-5 and converting earlier ground surface and top of casing elevations that were surveyed to a local site datum to geodetic elevations as mASL. Geodetic elevation surveying was undertaken by Annis O'Sullivan Vollebekk Ltd. - Ontario Land Surveyors.

5.9 Quality Assurance and Quality Control Measures

Following amendments to O. Reg. 153/04, samples collected for BTEX/F1 petroleum hydrocarbons in soil were collected by preserving a 10 mL (approximately 6 g wet weight of soil) with methanol immediately following sample collection.

Soil samples collected for PAHs, other PHCs, metals and/or inorganic analyses were collected directly into laboratory supplied unpreserved clear class jars with Teflon-lined lids. All sample containers used for the collection and submission of soil samples for analytical results were supplied directly by the laboratory (Paracel Laboratories) and stored in coolers with ice packs. All samples selected for laboratory analysis were shipped in custody-sealed coolers to Paracel's Ottawa office via courier, under chain-of-custody procedures

Use of dedicated new plastic sampling sleeves for each direct push casing advance eliminated the need for cleaning of soil sampling equipment during drilling.

Field quality control measured used during the Phase Two ESA consisted of the collection of one blind field duplicate sample for metals, general inorganics and PAHs in soil. Historical soil quality investigations also included duplicate sample analyses for metals. Historical groundwater quality investigations included duplicate sample analyses for metals, PAHs, PHC/BTEX and VOCs. Relative percent difference (RPD) values for comparison of soil and groundwater samples to corresponding field duplicates were calculated and compared to MECP quality requirements for both historical and current soil and groundwater duplicate analyses. RPD values for comparison of samples to the corresponding field duplicates are discussed in Section 6.7.

Groundwater sampling also included analyses of field blanks and/or trip blanks for metals, PAH, PHC/BTEX and VOC analyses.

All Geofirma field and office work for the Phase Two ESA was completed in accordance with procedures established as part of Geofirma's ISO 9001-2015 certified Quality Management System.

6 REVIEW AND EVALUATION

6.1 Geology and Hydrogeology

Based on historical and 2019 investigations, the geology of the Burnside site can be described as generally one to three metres of granular fill overlying about two metres of alluvial sand in the former Lazy Bay fill area and a discontinuous layer of native silty sandy glacial till found in a bedrock fault depression, which are all underlain by horizontally and vertically fractured grey limestone of the Bobcaygeon Formation, with minor dark grey to black shale layers observed.

The site stratigraphy consists of a thin veneer of topsoil, underlain by fill and occasional discontinuous layers of native alluvium and glacial till. The native alluvium is intersected by borehole BH19-02. Total overburden thickness ranges from 0 to 6.0 m, as illustrated in Figure 9.7 and in cross sections of the site given in Figures 9.12 to 9.14, 9.22 to 9.24.

The eastern part of the site was subject to landfilling as part of the filling of Lazy Bay between 1958 and 1965. The western portion of the site was historically developed residential lands which were demolished between 1958 and 1965. Additional areas across the site have been used for parking areas and former roadways and filling in these areas is also likely. Historical investigations have shown that fill is located across the majority of the site with no native materials found above bedrock except in one location (near a splay of the bedrock Gloucester Fault). Fill materials at the site consisted of a mixture of silt, sand, clay, cobbles and boulders with debris including asphalt, brick, concrete, plastics, glass, metal, cinders, ash and wood pieces.

Natural bedrock elevations at the site are on the order of 51 to 63 mASL sloping towards the northeast and the erosional depression of the former Lazy Bay (see Figure 9.8) which is interpreted to be related to splays of the regionally significant, northwest-striking Gloucester Fault.

Bedrock fractures are expected to be primarily horizontal and associated with bedding. A secondary set of northwest striking, sub-vertical fractures are also expected to present given the presence of splays of the Gloucester Fault at and near the site. The following Table 6.1 below lists the thickness of each geologic unit where present and the corresponding elevations of the top and bottom of each unit at the Burnside site.

Unit	Description	Average Thickness (m)	Top Elevation (mASL)	Bottom Elevation (mASL)
Fill	Sand, gravel and various construction debris and waste	1.5	55.8-63.0	53.2-62.8
Alluvium	Sand to silty sand	2.0	53.2	51.2
Glacial Till*	Silty clay with trace gravel	<1.0	49.8	33.2
Bedrock	Grey limestone – Bobcaygeon Formation	> 40	51.2-63.0	< 33.2

Table 6.1Stratigraphic Units at Burnside Site, Ottawa

*as found in EXP (2018) BH-4 within eroded splay of bedrock Gloucester Fault

Hydraulic testing of the overburden and bedrock at the property has not been completed in either historical investigations or the current 2019 Phase Two ESA investigations. Based on soil logging of existing and new boreholes the overburden fill and alluvium are estimated based on observed grain size (coarse sand) to be permeable with hydraulic conductivity of about 1×10^{-4} m/s or higher (Freeze and Cherry, 1979). Hydraulic testing of similar bedrock at the NCC's Bayview Landfill site (Golder Associates Ltd., 2011) indicates a range of hydraulic conductivity of 4.5 $\times 10^{-10}$ to 3.4 $\times 10^{-5}$ m/s for bedrock to depths of about 40-50 m.

The water table at the site is generally found at or below the bedrock surface, at depths between 2.6 and 5.5 metres below ground surface (see Table 9.2) with the exception of the former Lazy Bay fill area where the water table is within the overburden. Historical groundwater elevations at the site and data provided in historical reports summarized in Section 3.2 confirm that overburden is generally above the water table and that COPCs in site soils are not likely to occur in a saturated state.

6.2 Groundwater: Elevations and Flow Directions

Groundwater depths were measured directly from the top of each monitoring well riser using an electronic contact water level tape. Depth measurements were converted to groundwater elevations by subtracting the measured depth from the elevation of the top of each monitoring well riser. Elevations of the top of monitoring well risers were established following the geodetic elevation survey discussed in Section 5.8. Historical groundwater elevations recorded between 2001 and 2014 are presented in Table 9.2 for review, 2019 groundwater elevations collected as part of this Phase Two ESA investigation are also presented in Table 9.2.

Groundwater elevations in the vicinity of the site have remained relatively consistent historically, with elevations on the order of 52.9 to 59.6 mASL in monitoring wells on site, equivalent to water table depths of about 2.6 to 5.5 mBGS. Shallow groundwater at the site reflects topography and hydraulic properties of the saturated materials at the site. Water levels are highest in the southwest part of the site where topography is highest and where bedrock is the saturated material. Water levels are lowest in the former Lazy Bay fill area near the SJMP in the central and eastern parts of the site where topography is lowest and permeable saturated overburden occurs. Figure 9.8 illustrated the interpreted water level contours and flow directions of the shallow groundwater systems at the site.

Groundwater flow occurs primarily within the bedrock as the groundwater table is typically found at or below the bedrock surface at the site. Groundwater flow at the site is focussed to the former Lazy Bay fill area and discharges to the Ottawa River located about 70 m north of the northern property line via permeable fill and alluvial deposits. Some groundwater flow will also be channelled via overburden infill of utility excavations into bedrock (i.e., storm and sanitary sewers and low-pressure forcemain) and via the bedrock depression created by eroded splays of the Gloucester Fault.

Due to the site location in parkland/green space and with hydraulic connection to the nearby Ottawa River, there is opportunity for significant groundwater infiltration following seasonal precipitation trends and fluctuations in Ottawa River levels. Historical groundwater elevation data collected over several years from December, October, November and April presented in Table 9.2 confirm this statement with water level fluctuations of up to 3 m observed.

Consequently, shallow groundwater flow in the area of the site may be affected by the presence of underground structures such as utility trenches excavated into bedrock, channelling of flow along fractured and faulted parts of the bedrock due to proximity to the Gloucester Fault and water level fluctuations in the Ottawa River.

6.3 Groundwater: Hydraulic Gradients

Based on the interpreted water level contours presented for the shallow groundwater system in Figure 9.8, the horizontal hydraulic gradients in the shallow bedrock in the western and central parts of the site are approximately 0.06 m/m directed to the northeast. In the former Lazy Bay fill area in the central and eastern parts of the site horizontal hydraulic gradients in the more permeable overburden deposits are lower at 0.009 m/m directed to the north to the Ottawa River. These lower hydraulic gradients in more permeable saturated materials are consistent with hydrogeological principles and Darcy's Law.

There are no deep groundwater monitoring wells at the site with which to assess vertical hydraulic gradients. Lacking this information, data from the adjacent Bayview Landfill site are used to infer vertical hydraulic gradients. Data from multi-level bedrock monitoring wells at the adjacent Bayview Landfill site (Golder Associates Ltd., 2011) show that hydraulic gradients between deep bedrock at depths of 40-50 mBGS and shallow bedrock/overburden are upward. These data are transferable to the Burnside site given the similarity of hydrogeological settings and site proximities. They are also consistent with hydrogeological expectations given that the Ottawa River is a regional groundwater discharge feature.

6.4 Soil: Field Screening

Field screening of soils (as described in Section 5.4) prior to selection for laboratory testing, consisted of using a CGI and PID to detect combustible gases and volatile organic gas vapors. Each soil sample retrieved from the plastic sleeve of the direct push casing was screened with a CGI and PID value. In total 26 individual CGI and PID values were recorded during the 2019 borehole drilling program.

CGI and PID values for overburden materials collected from within the fill unit in 2019 were typically low. CGI values ranged from 0 to 15 ppm total combustible gases, and PID values ranged from 0 to 1 ppm total organic vapours. These CGI and PID readings are essentially background values and reflect variability in moisture content, and not contaminant levels.

Field screening results from 2019 and earlier investigations are summarized on the borehole stratigraphic logs in Appendix B.

6.5 Soil Quality

One of the primary focuses of this Phase Two ESA was the collection and analyses of soil samples to provide an assessment of soil quality at the site in accordance with O.Reg. 153/04. To this end, the following soil samples were collected in 2019:

- 9 samples (plus one QA/QC duplicate) were collected and submitted for metals analyses;
- 8 samples (plus one QA/QC duplicate) were collected and submitted for PAH analyses;

- 7 samples (plus one QA/QC duplicate) were collected and submitted for general inorganics analyses; and
- 4 samples were collected and submitted for PHC/BTEX analyses.

In total, 11 soil samples, including one blind field duplicate were collected and analysed for metals, general inorganics, PAHs and/or PHCs/BTEX in 2019. The following Table 6.2 contains the horizontal and vertical locations and depths of each soil sample collected during the 2019 borehole drilling and soil sampling program, while Table 9.3 includes further data on individual soil sample dates, analysis dates and corresponding laboratory analytical reports for all historical and current soil quality analyses. Table 6.2 and this report use the Modified transverse Mercator (MTM) coordinate system for specifying sampling locations, as both the NCC and City of Ottawa use this coordinate system.

Sample ID	MTM Easting	MTM Northing	Depth (mBGS)
BH19-01-1	365073	5030276	0.3-1.1
BH19-02-1	365127	5030264	0.2-1.5
BH19-02-3	365127	5030264	3.0-4.6
BH19-03-1	365016	5030302	0.7-0.8
BH19-04-1	365001	5030266	0.2-1.5
BH19-05-1	364942	5030203	0-0.8
BH19-06-1	364933	5030262	0-0.8
BH19-07-1	364939	5030273	0.5-1.4
BH19-08-1	364838	5030312	0.2-0.6
BH19-09-1	364848	5030259	0.1-0.6
BH19-10-1	364839	5030263	0.3-1.1

 Table 6.2
 2019 Soil Sampling Locations at Burnside Site, Ottawa

Soil quality analytical results are summarized in Tables 9.4 through 9.8, for metals, PAHs, PHCs/BTEX and PCBs, VOCs and general inorganics, respectively. Historical soil quality results for existing site surficial sampling and from testpits and boreholes are presented alongside 2019 data in Tables 9.4 through 9.8. Results are compared to MECP Table 7 soil quality standards for coarse-grained soils in a non-potable groundwater environment, residential or parkland property use.

Soil quality exceedences of MECP Table 7 standards are shown in plan and on the three cross sections in a series of figures generally based on contaminant group. Cross section locations are shown on Figures 9.3 and 9.4. Because of the large number of soil samples submitted for metals (103 samples including duplicates) and PAHs (64 samples including duplicates) plan figures of these soil quality results are presented on three separate figures covering west, central and east parts of the site. Because of the relatively small number of soil quality analyses captured on the three cross sections, all soil quality testing data are shown on each of the three cross sections.

As a result, Figures 9.9, 9.10 and 9.11 show the plan distribution of all metals and general inorganics testing in the west, centre and east parts of the site, respectively. Figures 9.12, 9.13 and 9.14 show

the vertical distribution of all soil quality testing along cross sections A-A', B-B' and C-C', respectively. Figures 9.15, 9.16 and 9.17 show the plan distribution of all PAH testing in the west, centre and east parts of the site, respectively. Figures 9.18 and 9.19 show the plan distribution of PHCs/BTEX and PCBs, and VOCs, respectively, for the entire site. Complete laboratory analytical reports for 2019 and historical soil quality results are included in Appendix C.

Historical soil quality results for metals, general inorganics, PAH and PCB parameters are deemed useful in the discussion of soil quality, as these parameters are generally persistent, are typically located above the water table, and not subject to significant chemical and biological transformations. Historical PHC/BTEX and VOC parameters are also presented as such historical analyses likely represent maximum concentrations.

Review of the combined 2019 and historical soil quality results indicates the following:

- Metal exceedences of MECP Table 7 standards occurred in 32 of 103 samples (31% of samples). Most common metals exceedences in order of decreasing frequency of exceedence of MECP Table 7 standards were lead, barium, zinc, selenium, copper, vanadium, mercury, antimony, molybdenum and cadmium. There were no exceedences of MECP Table 7 standards for new parameters added in 2019 testing (i.e., boron, boron (hot water soluble), hexavalent chromium, mercury, uranium) versus original 2000 soil quality testing.
- PAH exceedences of MECP Table 7 standards occurred in 30 of 64 samples (47% of samples). The most common PAH exceedences were with heavy molecular weight carcinogenic PAHs including benz(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(g,h,i)perylene, chrysene, dibenz(a,h)anthracene and indeno(1,2,3-cd)pyrene.
- PHC/BTEX exceedences of Table 7 MECP standards were very minor. Only one of 14 BTEX analyses exceeded applicable standards. This exceedence was for benzene at TP-41. Follow-up 2019 testing in the vicinity of TP-41 (at BH19-09 and BH19-10, see Figure 9.18) did not show detectable concentrations of BTEX, indicating that the historical benzene exceedence was an isolated occurrence. The historical moderately elevated TPH_{gas+diesel} measured at TP-29 (360 µg/g) was investigated with two adjacent boreholes (BH19-06 and BH19-07, see Figure 9.18). Only trace levels of PHCs were detected in one borehole with no detections in the second borehole indicating that there are no PHC exceedences of MECP Table 7 standards in soil at the site.
- There were no VOC exceedences of MECP Table 7 standards in the five soil samples submitted for VOC analyses.
- There were no PCB exceedences of MECP Table 7 standards in the one soil sample submitted for PCB analyses.
- There were no MECP Table 7 exceedences for general organics (SAR, conductivity, free cyanide) in eight soil samples submitted for general inorganic analyses.
- All 19 soil samples submitted for pH analyses were within the MECP approved range of pH 5 to 9 for surface soil indicating the site is not environmental sensitive as per Section 41 of O.Reg. 153/04.

Based on the data presented in Tables 9.4 to 9.8 and the information summarized above, contaminants of concern (COCs) in soil at the site include:

Metals: antimony, barium, cadmium, copper, lead, mercury, molybdenum, selenium, vanadium and

zinc;

PAHs: acenaphthylene, anthracene, benzo[a]anthracene, benzo[a]pyrene, benzo[b]fluoranthene, benzo[k]fluoranthene, chrysene, dibenzo[a,h]anthracene, indeno[1,2,3-cd]pyrene, fluoranthene, methylnaphthalene, naphthalene and phenanthrene.

BTEX: benzene

The maximum detected concentrations of each parameter analysed in the soil of the site are presented in Table 9.9. Exceedences of MECP Table 7 standards in soil (both historic and 2019) are provided in plan and cross sections in Figures 9.9 to 9.19.

6.6 Groundwater Quality

In addition to soil quality, groundwater quality was a focus of this Phase Two ESA. Most groundwater at the site occurs near or within the bedrock. The collection and analysis of groundwater samples provides an assessment of groundwater quality at the site in accordance with O.Reg 153/04. To this end, the following groundwater samples were collected in 2012 and 2014, which is the most recent groundwater sampling at the site following 2011 revisions to O.Reg. 153/04 (note, no groundwater sampling was completed in 2019):

- 12 samples (plus two QA/QC duplicates and one QA/QC field blank) were collected and submitted for metals analyses;
- 12 samples (plus two QA/QC duplicates and one QA/QC field blank) were collected and submitted for PAH analyses;
- 12 samples (plus two QA/QC duplicates, one field blank and one trip blank) were collected and submitted for PHC/BTEX analyses;
- 12 samples (plus two QA/QC duplicates, one field blank and one trip blank) were collected and submitted for analysis of VOCs.

Table 9.10 includes data on individual groundwater sample collection dates, analysis dates and corresponding laboratory analytical reports for the 2012 and 2014 groundwater quality analyses. The summary Table 9.2 provides a list of all bedrock groundwater monitoring wells sampled in 2012 and 2014, identifying their location, stratigraphic unit and screened interval lengths and elevations.

Groundwater quality analytical results are summarized in Tables 9.10 through 9.14, for metals, PAHs, PHCs/BTEX and VOCs, respectively. Results are compared to MECP Table 7 groundwater quality standards for coarse-grained soils in a non-potable groundwater environment, residential or parkland property use. Groundwater quality results assessed relative to MECP Table 7 standards are shown in plan in Figure 9.20. Complete laboratory analytical reports for 2012 and 2014 groundwater sampling results are included in Appendix C.

Based on the data presented in Tables 9.10 to 9.14 and on Figure 9.20 there are no contaminants of concern (COCs) in groundwater at the site. Although not given on tables or shown on figures in this report, the results of historical groundwater sampling completed in 2001, 2002, 2005 and 2010 confirm this conclusion. Consequently, there is no requirement for delineation in accordance with O.Reg. 153/04 and no need to present groundwater quality data on cross sections. The maximum detected

concentrations of each parameter analysed in the groundwater of the site are presented in Table 9.15.

6.7 Quality Assurance and Quality Control Results

A quality assurance/quality control (QA/QC) program was implemented during the 2019 Phase Two ESA field investigations as described in Section 5.9. Historical soil and groundwater sampling programs completed by other consultants also included QA/QC programs. These QA/QC programs consisted of the use of standard field protocols, and for Geofirma use in accordance with Geofirma's Quality Management System (QMS), which is certified and registered as ISO 9001:2015. All relevant Geofirma QMS Procedures, Work Instructions and Field Protocols were adhered to during the completion of the assignment. The QA/QC programs also included internal laboratory QC performed by all analytical laboratories.

The Geofirma and other consultant QA/QC programs consisted of standard sampling protocols and the collection and submission of blind field duplicate soil and groundwater samples and use of field and trip blanks. Blind duplicate samples were typically collected at a frequency of one in ten samples. Duplicate sample results are presented in the summary analytical tables in Section 9. A total of six duplicate samples were collected for analyses of metals, PAHs and/or inorganic analyses in soil, and two duplicate samples were collected for analysis of metals and PAHs in groundwater. Groundwater sampling also included analysis of metals, PAHs, PHCs/BTEX and/or VOCs in two field blanks and two trip blanks.

Historical laboratory analyses of soil and groundwater were completed by Accutest Laboratories, Paracel Laboratories and Maxam Analytics, all CALA-certified laboratories. 2019 soil analytical work was completed by Paracel Laboratories. All laboratories completed all analyses in accordance with internal laboratory QC programs that include referenceable standardized analytical methods and procedures, in accordance with O.Reg 153/04. All samples were received by the laboratory within the accepted holding time, with the correct preservation method and container type (as provided by the laboratory).

Quality assurance reports were provided by analytical laboratories for all completed analyses. These certificates summarize the laboratory results for laboratory QA/QC samples including matrix spikes, spiked blanks, method blanks and relative percent difference (RPD). Complete laboratory analytical reports are provided in Appendix C. Laboratory quality assurance reports noted the following remarks or qualifications for soil analyses completed in 2000 to 2019 and for groundwater analyses in 2012 and 2014:

- There are no qualifications for 2000 soil quality analyses completed by Accutest Laboratories.
- There are no qualifications for 2000 soil quality analyses completed by Parcel Laboratories.
- There are no qualifications for 2001 soil quality analyses completed by Parcel Laboratories.
- There are no qualifications for 2005 soil quality analyses completed by Maxxam Analytics.
- There are no qualifications for 2009 soil quality analyses completed by Parcel Laboratories.
- Qualifications for 2012 groundwater quality analyses completed by Parcel Laboratories include:
 - QM-05: the spike recovery was outside acceptance limits for matrix spike due to matrix interference.

- QR-01: Duplicate RPD is high, however, the sample result is less than 10x the MDL.
- QS-02: Spike level outside of control limits. Analysis batch accepted based on other QC included in the batch.
- There are no qualifications for 2014 groundwater quality analyses completed by Maxxam Analytics.
- There are no qualifications for 2019 soil quality analyses completed by Parcel Laboratories.

Geofirma's review of all analytical laboratory certificates indicates that soil and groundwater analytical results noted above fell within acceptable QA/QC limits for constituent recovery as defined by the protocols for the analytical methods.

Precision for duplicate analysis was determined by the relative percent difference (RPD) between the set of duplicate samples and was calculated as follows:

$$RPD = \frac{|x_1 - x_2|}{\bar{x}} \times 100\%$$

Where: x_1 = concentration of original sample

 x_2 = concentration of duplicate sample

 \bar{x} = average concentration of original and duplicate sample

RPD values for homogeneous samples are generally considered acceptable in laboratory QC if they are less than 30%. However, due to different conditions encountered in the field, acceptance limits for RPD in field QC are broader (MOE, 2004). As well, because the uncertainty associated with a value increases dramatically as the result approaches the MDL, the MOE recommends using a duplicate result in RPD calculations only if the average of the two duplicates is greater than five times the MDL (5x MDL) (MOE, 2004).

RPD values were calculated using the equation provided for all duplicate parameters sampled, following MOE (2004) guidance. The calculated average RPD values for soil were 24.5% to 57.1% for metals, 35.9% to 66.4% for PAHs and 26.9% for general inorganics, for individual duplicate samples. The calculated average RPD values for groundwater were 0% and 18.7% for metals and 6.5% and 48.9.% for PAHs, for individual duplicate samples. The slightly elevated RPD values for metals and PAHs in soils and for PAHs in groundwater are not unexpected given the heterogeneous nature of the fill at the site, and poor reproducibility of PAH analyses in groundwater samples where variable suspended sediment levels can results in wide ranges of PAH concentrations due to sorption of PAHs to suspended sediment.

Two field blanks and two trip blanks were submitted with groundwater samples analyzed for metals, PAHs/BTEX and/or VOCs. There were no detections of metals, PAHs, PHCs/BTEX or VOC parameters above MDLs in the field and trip blanks.

As the concentrations of duplicate samples were comparable to respective original samples, including RPD values within MOE guidelines, field and trip blanks were non-detect and confirmation that laboratory internal quality control results are acceptable, the laboratory data presented and summarized within this report are considered acceptable for use without qualification.

6.8 Phase Two Conceptual Site Model

6.8.1 <u>Overview</u>

A Conceptual Site Model (CSM) is an idealization of the site contaminants and their interaction with the hydrogeologic system and surrounding properties and human and ecological receptors, based on the known conditions of a site. The Phase Two CSMs described herein include a summary of the Phase One CSM, and a Phase Two CSM that describes potential contaminating activities, areas of potential environment concern, contaminants of concern, their source locations and release and contaminant transport pathways and mechanisms. CSMs also demonstrate the interaction of these contaminants with the natural environment (soil, groundwater, bedrock, water bodies) and the built environment (utilities, buildings), identifying potential receptors. The Phase Two ESA CSMs are illustrated in text, figures and tables herein, and in Section 9.

6.8.2 <u>Proposed Future Site Use</u>

The Burnside.site is currently vacant grassed parkland with minor treed areas with no municipal address. The site is located adjacent and south of the SJMP and about 70 m south of the Ottawa River in west-central Ottawa. According to the City of Ottawa Zoning information provided on the geoOttawa website, the central and eastern portions of the site are currently zoned as O1 – Parks and Open Space Zone. The western portion of the site is currently zones as R5 – Residential Fifth Density Zone.

Future re-development to diplomatic mission use (i.e., office space defined as commercial under O.Reg. 153/04) is contemplated for the property. The specific details of future property use are not known at this time. Based on this proposed change in land use to include diplomatic mission uses, a Record of Site Condition would not be required for site redevelopment.

6.8.3 PCAs, COPCs and APECs

Burnside site has been subject to commercial, industrial and parkland uses since the mid to late 1800's. Historical use of the property included lumber yards, parkland, residential housing and the importation of large amounts of fill materials in the former area of Lazy Bay and over the remainder of the site. Numerous potentially contaminating activities (PCAs) are located within the Phase One study area according to the historical review. The City of Ottawa Bayview Works Yard, Bayview and Slidell Landfill, Stonehurst and Bayview Landfill; Modern Containers Ltd., and gasoline service stations/garages are located within the Phase One study area, historical and current soil and groundwater quality investigations on the site, show that none of the identified PCA's surrounding the site have negatively impacted environmental conditions on the site.

Table 6.3 summarizes the on-site and off-site PCAs determined from the Phase One ESA. Table 6.3 indicates only one on-site and several off-site Potential Contaminating Activities. Table 6.4 summarizes the one Area of Potential Environmental Concern (APEC-1) determined from the Phase One ESA. Fill materials in APEC-1 consist of a mixture of silt, sand, clay, cobbles and boulders with debris including asphalt, brick, concrete, plastics, glass, metal, cinders, ashes and wood pieces. The contaminants of potential environmental concern (COPCs) associated with APEC-1 include metals and PAHs and to a lesser degree PHCs/BTEX and general inorganics in soil and groundwater.

Table 6.3	Summary of Potential Contaminating Activities on and in the Vicinity of Burnside
Site, Ottawa	

Address	Business Name	PCA #	Potential Issue			
On-Site						
Entire site	National Capital Commission 30		Importation of fill material of unknown quality			
	Off-Site					
Bayview and Slidell Street	Bayview and Slidell Landfill	58, 30	Waste Disposal, Importation of fill material of unknown quality			
Stonehurst and Bayview Road	Stonehurst and Bayview Landfill	58, 30	Waste Disposal, Importation of fill material of unknown quality			
7 Bayview Road	City of Ottawa Bayview Works Yard	28, 52	Gasoline and associated products stored in fixed tanks, Fuelling and repair of transportation vehicles			
80 Bayview Road	Modern Containers Ltd. – Metal Tube Manufacturing	34	Metal Fabrication			
80 Bayview Road	Keyes Supply Co. Ltd.	28	Gasoline and associated products stored in fixed tanks			
55 Carruthers Avenue	Gordie's Hydraulic Service	28	Gasoline and associated products stored in fixed tanks			
55 Carruthers Avenue	Ouimet's Garage	28	Gasoline and associated products stored in fixed tanks			
55 Carruthers Avenue	Hank's Auto Service	28	Gasoline and associated products stored in fixed tanks			
140 Hinchey Avenue	Crawford's Motors Garage	28	Gasoline and associated products stored in fixed tanks			
140 Hinchey Avenue	Mario's Garage	28	Gasoline and associated products stored in fixed tanks			
140 Hinchey Avenue	Rideau Pump Service	28	Gasoline and associated products stored in fixed tanks			
154 Hinchey Avenue	Bastien Fuels Ltd.	28	Gasoline and associated products stored in fixed tanks			

Table 0.4 Areas (Table	6.4	Areas
-------------------	-------	-----	-------

Areas of Potential Environmental Concern, Burnside Site, Ottawa

Area of Potential Environmental Concern	Location of Area of Potential Environmental Concern on Phase One Property	Potentially Contaminating Activity (PCA#)	Location of PCA (on-site or off-site)	Contaminants of Potential Concern	Media Potentially Impacted (Groundwater, soil and/or sediment)
Fill Materials (APEC-1)	All of the site with the thickest areas in the former Lazy Bay fill area (central portion)	Importation of fill of unknown quality (PCA #30)	On-site	Metals, PAHs, PHCs, BTEX, Inorganics	Soil and groundwater

Figures 9.2, 9.4 and 9.21 summarize the location of the on-site and off-site PCAs and the one on-site APEC considered in the Phase 2 CSM. APEC-1 covers the entire property and is related to importation of fill of poor quality. Figure 9.2 shows the extent of APEC-1 and Phase Two ESA sampling locations.

6.8.4 <u>Subsurface Structures and Utilities</u>

There are underground utilities of low-pressure forcemain and storm and sanitary sewers transecting the property that may be excavated into shallow bedrock in parts of the site. The excavations into bedrock for these utility trenches likely occur in the western, central, and eastern parts of the site where the overburden thickness is less than 2 m (see Figure 9.7).

In the western part of the site there are sanitary sewers that extend from the ends of Emmerson Ave. and Hinchey Ave. onto the site. There are storm sewers along the western property line extending north from the end of Forward Ave. onto the site. In the central part of the site there is a sanitary sewer extending from the end of Carruthers Ave. onto the site. In the eastern part of the site there are storm sewers that traverse the site from south to north. A low-pressure forcemain is located in the eastern part of the site near Slidell St. Figures 9.22 to 9.24 show the location of these underground utilities on cross sections A-A', B-B' and C-C'.

Where these utility trenches are below the depth of the local groundwater table, there is some potential for interception and diversion of groundwater flow within these permeable backfilled utility trench excavations. As shown on Figures 9.22 to 9.24, most of these underground utilities appear to be above the groundwater table. However, in selected areas where bedrock is near surface and groundwater tables are shallow (e.g., southwest part and near Slidell St.) there is potential for channelling of groundwater flow along utility trenches excavated into bedrock.

6.8.5 <u>Physical Setting of Property</u>

6.8.5.1 Site Stratigraphy

The site stratigraphy consists of a thin veneer of topsoil overlying generally one to three metres of granular fill overlying about two metres of native alluvial sand in the former Lazy Bay fill area and a discontinuous layer of native silty sandy glacial till found in an eroded bedrock fault depression. These overburden deposits are underlain by horizontally and vertically fractured grey limestone of the Bobcaygeon Formation, with minor dark grey to black shale layers. There are bedrock exposures in the western part of the property and in north central and north east parts of the site in proximity to the SJMP.

Total overburden thickness ranges from 0 to 6.0 m, as illustrated in Figure 9.7 and in cross sections of the site given in Figures 9.22 to 9.24. Landfilling of the site was greatest in the former Lazy Bay fill area located in central to eastern part of the site. The filling of Lazy Bay occurred between 1958 and 1965. Table 6.1 of Section 6.1 summarizes the description, average thickness and ranges of top and bottom elevations of each stratigraphic unit present at the site. Fill materials at the site consisted of a mixture of silt, sand, clay, cobbles and boulders with debris including asphalt, brick, concrete, plastics, glass, metal, cinders, ash and wood pieces.

Given the site stratigraphy, MECP Table 7 shallow soil standards for coarse-textured soil are applicable to the site.

6.8.5.2 Depth to Water Table

The water table at the site is generally found at or below the bedrock surface, at depths between 2.6 and 5.5 metres below ground surface (see Table 9.2) with the exception of the former Lazy Bay fill area where the water table is within the overburden. Historical groundwater elevations at the site and data provided in historical reports summarized in Section 3.2 confirm that overburden is generally above the water table and that COPCs in site soils are not likely to occur in a saturated state.

6.8.5.3 Hydrogeological Characteristics

The shallow groundwater system at the Burnside site is conceptualized as unsaturated fill and shallow bedrock overlying a shallow bedrock aquifer extending to depth of at least 6 m. In the Lazy Bay fill area the shallow bedrock aquifer discharges to a shallow sandy alluvial aquifer that has hydraulic connection to the Ottawa River.

Groundwater flow occurs primarily within the bedrock as the groundwater table is typically found at or below the bedrock surface at the site. Groundwater flow at the site is focussed to the former Lazy Bay fill area and discharges to the Ottawa River located about 70 m north of the northern property line via permeable fill and alluvial deposits. Some groundwater flow will also be channelled via overburden infill of utility excavations into bedrock (i.e., storm and sanitary sewers and low-pressure forcemain) and via the bedrock depression created by eroded splays of the Gloucester Fault.

Shallow groundwater elevations at the site reflect topography and hydraulic properties of the saturated materials at the site. Water levels are highest in the southwest part of the site where topography is highest and where bedrock is the saturated material. Water levels are lowest in the former Lazy Bay fill area near the SJMP in the central and eastern parts of the site where topography is lowest and permeable saturated overburden occurs. Figure 9.8 illustrated the interpreted water level contours and flow directions of the shallow groundwater systems at the site.

Hydraulic testing of the overburden and bedrock at the property has not been completed in either historical investigations or the current 2019 Phase Two ESA investigations. Based on soil logging of existing and new boreholes the overburden fill and alluvium are estimated based on observed grain size (coarse sand) to be permeable with hydraulic conductivity of about 1×10^{-4} m/s or higher (Freeze and Cherry, 1979). Hydrualic testing of similar bedrock at the NCC's Bayview Landfill site (Golder Associates Ltd., 2011) indicates a range of hydraulic conductivity of 4.5 $\times 10^{-10}$ to 3.4 $\times 10^{-5}$ m/s for bedrock to depths of about 40-50 m.

Based on the interpreted water level contours presented for the shallow groundwater system in Figure 9.8, the horizontal hydraulic gradients in the shallow bedrock in the western and central parts of the site are approximately 0.06 m/m directed to the northeast. In the former Lazy Bay fill area in the central and eastern parts of the site horizontal hydraulic gradients in the more permeable overburden deposits are lower at 0.009 m/m directed to the north to the Ottawa River. These lower hydraulic gradients in more permeable saturated materials are consistent with hydrogeological principles and Darcy's Law.

6.8.5.4 Approximate Depth to Bedrock

Approximate depth to bedrock shown in Figure 9.7 ranges from 0 m to 6.0 m with a site average of about 1.5 m. The depth to bedrock is greatest in the centre of the site near the former Lazy Bay fill area and is the west a minimum in the western part of the site. The depth to bedrock in the eastern part of the site approximates 1.5 to 2 m.

6.8.5.5 Applicability of Sections 41 and 43.1

Section 41 of the Regulation does not apply to the property. The site is not environmentally sensitive. It is not within, adjacent to or within 30 m of an area of natural significance. All soil pH testing (see Table 9.8) shows values within the MECP defined acceptable range of 5 to 9 for surface soil.

Section 43.1 of the Regulations applies to the property. Although none of the site is adjacent to or within 30 m of a water body, one third or more of the area of the site consists of soil equal to or less than 2 m depth beneath the soil surface excluding any non-soil surface treatment such as asphalt. Hence the site is a shallow soil property.

6.8.5.6 Imported Fill

Imported fill as granular foundation material likely exists throughout the site based on former site use and presence of historical site building and structures. The majority of fill importation occurred in the 1960s. However, sources of such imported fill are unknown. Historical and 2019 soil quality testing of the fill shows it is of poor quality being contaminated primarily with metals and PAHs.

6.8.5.7 Proposed Buildings and Other Structures

Future re-development to diplomatic mission use (i.e., office space defined as commercial under O.Reg. 153/04) is contemplated for the property. The details of future property use are not known at this time. Based on this proposed change in land use to include diplomatic mission use, a Record of Site Condition would not be required for site redevelopment.

6.8.6 <u>Environmental Conditions</u>

Environmental conditions at the Burnside site as part of the Phase Two CSM are illustrated in plan (Figures 9.9 to 9.11, 9.15 to 9.19 and 9.20) and three cross sections A-A', B-B' and C-C' (Figures 9.12 to 9.14 and 9.22 to 9.24) constructed west-east, south-north and south-north through the site and surrounding lands, and are discussed below based on results of historical and 2019 Phase Two ESA work.

6.8.6.1 Soil Screening and Quality

Overburden material on the site is unsaturated, generally very shallow (typically less than 2 metres thickness), and generally consists of sand and gravel fill overlying limestone bedrock. Soil samples collected during historical and 2019 investigations were screened with a CGI and/or a PID. Soil CGI and PID values (see Appendix B) were typically less than 30 ppm and 1 ppm, respectively indicating that PHCs, BTEX and other VOCs were not widespread contaminants in site soil.

6.8.6.2 Areas Where Contaminants are Present

The results of historical and 2019 laboratory soil quality testing show that the imported fill across the entire site frequently contains metals (lead, barium, zinc, selenium, copper, vanadium, mercury, antimony, molybdenum and cadmium) and heavy molecular weight PAH exceedences of MECP Table 7 standards and that general inorganics, PHCs/BTEX and PCBs are not significant COCs in site soil. The sporadic but widespread occurrence of the metals and PAH COCs in site soil is consistent with the site history.

Soil quality testing also shows that the minor pockets of native soil at the site including sandy alluvium and glacial till are not contaminated.

The results of historical and 2012 and 2014 laboratory testing of groundwater quality show that groundwater at the site is not contaminated above MECP Table 7 standards. This conclusion is consistent with the observations that most of contaminated soil is found above the groundwater table and most of the identified soil COCs are low solubility and low mobility chemicals in groundwater systems.

6.8.6.3 Distribution of Contaminants

The horizontal and vertical distribution of contaminants in soil and groundwater at the Burnside site are shown in plan and in cross sections based on contaminant groups of metals and general inorganics, PAHs, PHCs/BTEX and PCBs and VOCs in Figures 9.9 to 9.19 for soil and Figures 9.20 for groundwater.

Soil

Figures 9.9 to 9.14 show that occurrences of metals exceedences of MECP standards in fill are sporadic but widespread across the site and that delineation of areas of individual metals exceedences cannot practically be achieved at the site. A reasonable and conservative assumption is that all fill at the site is contaminated by metals. There are no general inorganic exceedences of MECP standards. The vertical limits of metal contaminated fill are defined by the bottom of the topsoil layer and top of either native sandy alluvium, glacial till or bedrock.

Figures 9.12 to 9.17 similarly show that PAH exceedences of MECP standards in fill are also sporadic but widespread across the site and that delineation of areas of individual PAH exceedences cannot practically be achieved at the site. A reasonable and conservative assumption is that all fill at the site is contaminated by PAHs. The vertical limits of PAH contaminated fill are defined by the bottom of the topsoil layer and top of either native sandy alluvium, glacial till or bedrock.

Figures 9.12 to 9.14 and 9.18 show there are no PHC exceedences of MECP standards in soil at the site. The 2019 targeted investigations of the historically elevated $TPH_{gas+diesel}$ measured at TP-29 (360 µg/g) confirm there are no PHC exceedences of MECP Table 7 standards in soil at the site.

Figures 9.12 to 9.14 and 9.18 show that there is only one very minor BTEX exceedence of MECP standards in soil at the site. This BTEX exceedence is due to slightly elevated benzene historically measured at TP-41 (concentration of 0.56 μ g/g vs standard of 0.21 μ g/g). Follow-up 2019 testing in the vicinity of TP-41 (at BH19-09 and BH19-10, see Figure 9.18) did not show detectable

concentrations of BTEX, indicating that the historical benzene exceedence was a minor isolated occurrence.

Figures 9.12 to 9.14, 9.18 and 9.19 show there are no PCB or VOC exceedences of MECP standards in site soil.

Groundwater

There are no COCs in site groundwater as shown in Figure 9.20.

6.8.6.4 Discharge and Migration of Contaminants

Groundwater from the site is channelled to the former Lazy Bay fill area and discharges to the Ottawa via permeable fill and native alluvial deposits (see Figure 9.8). However, since there are no COCs in site groundwater there is no discharge and migration of contaminants by groundwater flow.

6.8.6.5 Climatic and Meteorological Conditions

Climatic and meteorological conditions have potential to affect the distribution and migration of contaminants. This can occur through changes in groundwater infiltration rates that affect the rate of leaching of contaminants present in the unsaturated zone into groundwater and through changes in directions and rates of groundwater flow that affect the migration of dissolved chemical plumes.

Due to the site location in parkland/green space and with hydraulic connection to the nearby Ottawa River, there is opportunity for significant groundwater infiltration following seasonal precipitation trends and fluctuations in Ottawa River levels. Historical groundwater elevation data collected over several years from December, October, November and April presented in Table 9.2 confirm this statement with water level fluctuations of up to 3 m observed.

6.8.6.6 Potential for Vapour Intrusion

The potential for vapour intrusion into future buildings and/or structures at the Burnside site is generically assessed based on results of soil vapour screening and soil quality results for volatile chemicals including light molecular weight PAHs (e.g., naphthalene and methylnaphthalenes) and PHCs (e.g., PHC-F1 and PHC-F2), BTEX and VOCs. Other than generic assessment is not possible as there are no specific building development plans for site.

The very low soil vapour screening levels, low concentrations or volatile COPCs in site soil and lack of volatile COCs in site groundwater indicate that the potential for vapour intrusion to future buildings and structures at the site in negligible.

6.8.6.7 Contaminant Transport and Exposure Diagrams

Figures 9.8 and 9.22 are the contaminant transport and exposure diagrams for the site that illustrate contaminant release mechanisms, contaminant transport pathways as well human and ecological receptors on and off site, receptor exposure points and routes of exposure.

As there are no COCs in site groundwater there are no release and transport mechanisms due to dissolution of soil COCs and migration in site groundwater. Since identified COCs in site soil (i.e.,

metals, PAHs and minor benzene) are strongly sorbed to site soil, the only identifiable contaminant release and transport mechanisms for COC in site soil are due to windblown or surface runoff dispersal of exposed COCs during excavation and construction activities. The presence of a grassed topsoil cover eliminates such windblown and surface runoff release and transport of soil COCs today. Diligent future excavation and construction measures would mitigate any potential for off-site release and transport of soil COCs by wind or surface runoff.

6.8.6.8 Human and Ecological Receptors, Exposure Points and Routes

As shown on Figure 9.22 on-site human receptors include park visitors, maintenance/utility or construction workers and future commercial site users. Assuming diligent excavation and construction activities, there are no exposed off-site human or ecological receptors. On-site ecological receptors include all terrestrial receptors including mammals, birds, soil invertebrates and plants. As there are no groundwater COCs, off-site aquatic receptors in the nearby Ottawa River are not at risk due to exposure to site soil COCs.

Given current and projected future site use (parkland and commercial), the primary route of on-site human exposure to soil COCs is via direct exposure including soil dust inhalation, soil ingestion and soil dermal absorption. The primary route of on-site terrestrial ecological exposure is also via direct contact. For terrestrial plants the exposure route includes contact and uptake from contaminated soil. For soil invertebrates the exposure route includes direct contact and soil ingestion. For terrestrial mammals and birds, the exposure route includes soil ingestion, and ingestion of plants, invertebrates and smaller animals as food sources contaminated by soil COCs via uptake.mechanisms.

7 CONCLUSIONS

Based on a review of historical information, and completion of Phase Two ESA soil and groundwater investigations described herein, the following conclusions are made regarding the Burnside site, Ottawa, Ontario.

- The site is currently vacant grassed parkland with minor treed areas with no municipal address. The site is located adjacent and south of the SJMP and about 70 m south of the Ottawa River in west-central Ottawa. Future re-development to diplomatic mission use (i.e., office space defined as commercial under O.Reg. 153/04) is contemplated for the property. The specific details of future property use are not known at this time. Based on this proposed change in land use to include diplomatic mission uses, a Record of Site Condition would not be required for site redevelopment.
- The site has been subject to commercial, industrial and parkland uses since the mid to late 1800's. Historical use of the property included lumber yards, parkland, residential housing and the importation of large amounts of fill materials in the former area of Lazy Bay and over the remainder of the site. Although the Phase One ESA identifies several PCAs within the Phase One study area, historical and current soil and groundwater quality investigations on the site show that none of the identified PCA's surrounding the site have negatively impacted environmental conditions on the site. One APEC (APEC-1, PCA #30) due to importation of poor quality fill is identified for the entire site.
- The site stratigraphy consists of a thin veneer of topsoil overlying generally one to three metres of granular fill overlying about two metres of native alluvial sand in the former Lazy Bay fill area and a discontinuous layer of native silty sandy glacial till found in an eroded bedrock fault depression. Fill materials in APEC-1 consist of a mixture of silt, sand, clay, cobbles and boulders with debris including asphalt, brick, concrete, plastics, glass, metal, cinders, ashes and wood pieces. These overburden deposits are underlain by horizontally and vertically fractured grey limestone of the Bobcaygeon Formation, with minor dark grey to black shale layers.
- Approximate depth to bedrock ranges from 0 m to 6.0 m with a site average of about 1.5 m. The depth to bedrock is greatest in the centre of the site near the former Lazy Bay fill area and is a minimum in the western part of the site. The depth to bedrock in the eastern part of the site approximates 1.5 to 2 m. Given the site stratigraphy, MECP Table 7 shallow soil standards for coarse-textured soil, non-potable groundwater and parkland use are applicable to the site.
- Groundwater flow occurs primarily within the bedrock as the groundwater table is typically found at
 or below the bedrock surface at the site. Groundwater flow at the site is focussed to the former
 Lazy Bay fill area and discharges to the Ottawa River located about 70 m north of the northern
 property line via permeable fill and alluvial deposits. Some groundwater flow will also be
 channelled via overburden infill of utility excavations into bedrock (i.e., storm and sanitary sewers
 and low-pressure forcemain) and via the bedrock depression created by eroded splays of the
 bedrock Gloucester Fault.
- The results of historical and 2019 laboratory soil quality testing show that the imported fill across the entire site frequently contains metals (lead, barium, zinc, selenium, copper, vanadium, mercury, antimony, molybdenum and cadmium) and heavy molecular weight PAH exceedences of MECP Table 7 standards and that general inorganics, PHCs/BTEX, PCBs and VOCs are not significant COCs in site soil. The sporadic but widespread occurrence of the metal and PAH COCs in site soil is consistent with the site history. A reasonable and conservative assumption is that all fill at the site is contaminated by metals and PAHs. Soil quality testing also shows that the minor pockets of native soil at the site including sandy alluvium and glacial till are not contaminated. Consequently, the vertical limits of metal and PAH contaminated soil are defined by the bottom of the topsoil layer and top of either the native sandy alluvium, glacial till or bedrock.

- The results of historical and 2012 and 2014 laboratory testing of groundwater quality show that groundwater at the site is not contaminated above MECP Table 7 standards. This conclusion is consistent with the observations that most of contaminated soil is found above the groundwater table and most of the identified soil COCs are low solubility and low mobility chemicals in groundwater systems.
- The site does not meet applicable site condition standards, MECP Table 7 for soil.
- As there are no COCs in site groundwater there are no release and transport mechanisms due to dissolution of soil COCs and migration in site groundwater. Since identified COCs in site soil (i.e., metals, PAHs and minor benzene) are strongly sorbed to site soil, the only identifiable contaminant release and transport mechanisms for COC in site soil are due to windblown or surface runoff dispersal of exposed COCs during excavation and construction activities.
- On-site human receptors include park visitors, maintenance/utility or construction workers and future commercial site users. Assuming diligent excavation and construction activities, there are no exposed off-site human or ecological receptors. On-site ecological receptors include all terrestrial receptors including mammals, birds, soil invertebrates and plants. As there are no groundwater COCs, off-site aquatic receptors in the nearby Ottawa River are not at risk due to exposure to site soil COCs.
- Given current and projected future site use (parkland and commercial), the primary route of on-site human exposure to soil COCs is via direct exposure including soil dust inhalation, soil ingestion and soil dermal absorption. The primary route of on-site terrestrial ecological exposure is also via direct contact. For terrestrial plants the exposure route includes contact and uptake from contaminated soil. For soil invertebrates the exposure route includes direct contact and soil ingestion. For terrestrial mammals and birds, the exposure route includes soil ingestion, and ingestion of plants, invertebrates and smaller animals as food sources contaminated by soil COCs via uptake.mechanisms.

This Phase Two ESA was prepared by and under the supervision of Mr. Kenneth Raven a Qualified Person for environmental site assessment and risk assessment under O Reg. 153/04. Mr. Raven has reviewed all information included in this Phase Two ESA report, and confirms the findings and conclusions contained herein.

Respectfully submitted,

Kenneth Raven, QP_{ESA}, P.Geo., P.Eng. Principal

Glen Briscoe, QP_{ESA}, P.Eng. Project Manager

8 REFERENCES

AMEC Earth and Environmental (AMEC), 2014. Phase Two Environmental Site Assessment, West Portion of Bayview Yard, 7 Bayview Road, Ottawa, Ontario, Report prepared for City of Ottawa, June.

Armstrong, D.K., and J.E.P. Dodge, 2007. Paleozoic Geology of Southern Ontario, Miscellaneous release – Data 219.

Canadian Standards Association (CSA), 2018. Phase II Environmental Site Assessment, CAN/CSA-Z769-00, National Standard of Canada, (reaffirmed 2018).

CH2MHILL, 2005. Lemieux Forcemain Easement Properties, Ottawa, Ontario, Phase 2 Environmental Site Assessment, Report prepared for City of Ottawa, November.

Duke Engineering & Services (Canada) Inc. (DE&S), 2000. Phase I and II Environmental Site Assessment, Burnside Vacant Land, Ottawa, Ontario, Report prepared for National Capital Commission, July.

Duke Engineering & Services (Canada) Inc. (DE&S), 2001. Phase II ESA, Burnside Site, Areas A, B & C, Ottawa, Ontario, Part of Property Asset #95979, Report prepared for National Capital Commission, April.

EXP Services Inc., 2018. Preliminary Geotechnical Investigation, Burnside OPA & ZBLA Supporting Studies, Burnside Avenue, City of Ottawa, Ontario, Report prepared for National Capital Commission, May.

Freeze, R.A. and J.A. Cherry, 1979. Groundwater, Prentice Hall Inc., Englewood Cliffs, N.J.

Geofirma Engineering Ltd., 2019. Phase One Environmental Site Assessment, Burnside Site, NCC Property Asset 95979, Ottawa, Ontario. Final Report prepared for the National Capital Commission., Revision 0, June 28.

Golder Associates Ltd., 2011. Supplemental Phase II Environmental Site Assessment, Former Bayview Landfill, Ottawa, Ontario, NCC Property Asset 96014, Report prepared for National Capital Commission, March.

Intera Engineering Ltd., 2002a. Risk Assessment and Risk Strategy Report, Burnside Site, Ottawa, Ontario, Report prepared for National Capital Commission, March.

Intera Engineering Ltd., 2002b. Inspection and Groundwater Monitoring - Burnside Site, Ottawa, Report prepared for National Capital Commission, December.

Intera Engineering Ltd., 2003. 2003 Inspection and Groundwater Monitoring - Burnside Site, Report prepared for National Capital Commission, November.

Intera Technologies Ltd., 1988. Mapping and Assessment of Former Industrial Sites, City of Ottawa, Report prepared for the City of Ottawa, July.

Ontario Geological Survey (OGS), 2010. 1:50,000 Surficial Geology of Southern Ontario, Miscellaneous Release Data - MRD128_Rev.

Otario Regulation 153/04 Records of Site Condition – Part XV.1 of the Environmental Protection Act. E-laws currency date May 31, 2019.

Ontario Ministry of the Environment (MOE), 2011a. Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act. April

Ontario Ministry of the Environment (MOE), 2011b. Guide for Completing Phase Two Environmental Site Assessments under Ontario Regulation 153/04, PIBS 8486e, June, Queen's Printer for Ontario.

Ontario Ministry of the Environment (MOE), 2004. Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act. Amended as of July 1, 2011.

Ontario Ministry of Natural Resources (MNR), 2012. Areas of Natural and Scientific Interest, Land Information Ontario, March.

SNC Lavalin Environment, 2013. November 2012 Groundwater Monitoring and Sampling, Burnside Site, Ottawa, Ontario (NCC Property Asset Number 95979), Report prepared for National Capital Commission, February.

Stantec Consulting Ltd., 2014. Fall 2014 Groundwater Monitoring, Burnside Site, Ottawa, ON, NCC Property Asset 95979, Report prepared for National Capital Commission, November.

Trow Associates Inc., 2008. Enhanced Phase I Environmental Site Assessment, Ottawa River Parkway, Ottawa, Ontario, Property Asset #95979, Report prepared for National Capital Commission, December.

Trow Associates Inc., 2010. Surface Soil and Groundwater Monitoring Program, Burnside Site, Ottawa, ON (Property Asset #95979), Report prepared for National Capital Commission, January.

Williams, D.A., A.M. Rae and R. R. Wolf, 1984. Paleozoic Geology, Ottawa Area, Southern Ontario, Ontario Geological Survey Preliminary Map P.2716, Scale 1:50,000.

9 MAIN FIGURES AND TABLES

G:\Data\Project\Burnside\Maps\18-262-1_Phase_II_Burnside\18-262-1_Burnside_P2_F9_1_Location.mxd

 $\label{eq:G:DataProject} G: DataProject \\ Burnside \\ Maps \\ 18-262-1 \\ Phase \\ II \\ Burnside \\ 18-262-1 \\ Burnside \\ P2 \\ F9 \\ 4 \\ P1CSA \\ PCA \\ Sections.mxd \\ Section \\ Sect$

 $\label{eq:generalized_states} G: Data \eqref{eq:generalized_states} G: \eqref{eq:generalized_stat$

G:\Data\Project\Burnside\Maps\18-262-1_Phase_II_Burnside\18-262-1_Burnside_P2_F9_10_Soil_Metals_Centre.mxc

Burnside Site Boundary

Borehole/Monitoring Well

- No samples submitted for analysis
- S No Exceedence of applicable standards
- S Exceedence of applicable standards

Test Pit

- No samples submitted for analysis
- No Exceedence of applicable standards
- **Exceedence of applicable standards**

Soil Interval Sampled (metres below ground surface)

Applicable Site Standard: MECP Table 7 Residential, Non Potable, Coarse Grained, Shallow Soils

MECP Table 7 (µg/g)			
Parameter	Standard		
Antimony	7.5		
Barium	390		
Cadmium	1.2		
Copper	140		
Lead	120		
Mercury	0.27		
Molybdenum	6.9		
Selenium	2.4		
Vanadium	86		
Zinc	340		

Notes

1) Values in red indicate an exceedence of applicable site standards.

2) Parameters not exceeding applicable site standards are not included in this figure.

Figure 9.10

Plan Distribution of Soil Quality Results - Metals and Inorganics (Centre)

		SCALE 1:8	00	Ņ	
				Λ	
0	10	20	40		
		Metres			
Coordinate Sy Source: NCC	vstem: NAD 1 property bour	983 MTM 9 ndary			
ervice Layer Credits: Source: Esri, DigitalGlobe, GeoEye, Earthstar eographics, CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and the GIS ser Community					
PROJECT No	. 18-262-1				

Phase Two Environmental Site Assessment Burnside Site, Ottawa, ON

DESIGN: NMP CAD/GIS: NMP CHECK: KGR REV: 0 Geofirma Engineering Ltd

G:\Data\Project\Burnside\Maps\18-262-1 Phase II Burnside\18-262-1 Burnside P2 F9 11 Soil Metals East.mxd

Burnside Site Boundary

Borehole/Monitoring Well

- No samples submitted for analysis
- S No Exceedence of applicable standards
- S Exceedence of applicable standards

Test Pit

- No samples submitted for analysis
- No Exceedence of applicable standards
- Exceedence of applicable standards

Sample ID Date Sampled Parameters Analyzed

<u>MW2-97</u> Sample Date: 23-Jul-14 Sample Interval: 0.6-1.2 mBGS Analysis Suite: Metals

156

Copper

Soil Interval Sampled (metres below ground surface)

> Applicable Site Standard: MECP Table 7 Residential, Non Potable, Coarse Grained, Shallow Soils

MECP Table 7 (µg/g)			
Parameter	Standard		
Antimony	7.5		
Barium	390		
Cadmium	1.2		
Copper	140		
Lead	120		
Mercury	0.27		
Molybdenum	6.9		
Selenium	2.4		
Vanadium	86		
Zinc	340		

<u>Notes</u>

1) Values in red indicate an exceedence of applicable site standards.

2) Parameters not exceeding applicable site standards are not included in this figure.

Figure 9.11 Plan Distribution of Soil Quality Results - Metals and Inorganics (East)

0	
GS	
λHs	
0	
GS	
70	

G:\Data\Project\Burnside\Maps\18-262-1 Phase II Burnside\18-262-1 Burnside P2 F9 16 Soil PAHs Centre.mxd

Burnside Site Boundary

Borehole/Monitoring Well

- No samples submitted for analysis
- No Exceedence of applicable standards
- Exceedence of applicable standards

Test Pit

- <u>-</u> No samples submitted for analysis
- -No Exceedence of applicable standards
- 4 Exceedence of applicable standards

MW2-97 Sample Date: 23-Jul-14 Sample Interval: 0.6-1.2 mBGS Analysis Suite: PAHs

1.2

Anthracene

Soil Interval Sampled (metres below ground surface)

Parameter and Value (µg/g)

	MECP Table 7 (μg/g)			
	Parameter	Standard		
Applicable Site Standard: MECP Table 7 idential, Non Potable, Coarse Grained, Shallow Soils	Parameter Acenaphthylene Anthracene Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Benzo[b+k]fluoranthene Chrysene Dibenzo[a,h]anthracene Indeno[1,2,3-cd]pyrene Fluoranthene Methylnaphthalene, 2-(1-)	Standard 0.15 0.67 0.5 0.3 0.78 0.69 0.99 0.66 0.66 0.69 0.66 0.66 0.99 0.66 0.66 0.66 0.78 0.99 0.66 0.66 0.66 0.99 0.66 0.66 0.66 0.99 0.66 0.66 0.66 0.99 0.66 0.66 0.66 0.99 0.66 0.66 0.66 0.66 0.99 0.66 0.66 0.66 0.66 0.66 0.99 0.66 0.66 0.66 0.66 0.66 0.99 0.66 0.66 0.99 0.66 0.66 0.66 0.66 0.99 0.66 0.66 0.66 0.66 0.99 0.66		
Resi	Phenanthrene	0.6		
Neter	Pyrene	0.2 79		
Notes	i yrono	10		

1) Values in red indicate an exceedence of applicable site standards.

2) Parameters not exceeding applicable site standards are not included in this figure.

Figure 9.16 **Plan Distribution of Soil Quality Results - PAHs (Centre)**

		SCALE 1:800		Ņ
0	10	20 Metres	40	\mathbf{A}

Coordinate System: NAD 1983 MTM 9 Source: NCC property boundary

Service Layer Credits: Source: Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and the GIS User Community

PROJECT No. 18-262-1

Phase Two Environmental Site Assessment Burnside Site, Ottawa, ON

DESIGN: NMP CAD/GIS: NMP CHECK: KGR REV: 0

G:\Data\Project\Burnside\Maps\18-262-1_Phase_II_Burnside\18-262-1_Burnside_P2_F9_17_Soil_PAHs_East.mxd

LEGEND

Burnside Site Boundary

Borehole/Monitoring Well

- No samples submitted for analysis
- No Exceedence of applicable standards
- S Exceedence of applicable standards

Test Pit

- No samples submitted for analysis
- Solution No Exceedence of applicable standards
- **Exceedence of applicable standards**

Sample ID Date Sample
Parameters Analyzed

Soil Interval — Sampled (metres below ground surface)

57

	MECP Table 7 (µg/g)				
	Parameter	Standard			
Soils	Acenaphthylene	0.15			
Ň	Anthracene	0.67			
ole 7 Shall	Benzo[a]anthracene	0.5			
o Tab	Benzo[a]pyrene	0.3			
IECF	Benzo[b]fluoranthene	0.78			
ĕ G G Z	Benzo[k]fluoranthene	0.78			
ndar	Benzo[b+k]fluoranthene	0.78			
Stal le, C	Chrysene	7			
Site otab	Dibenzo[a,h]anthracene	0.1			
able on Po	Indeno[1,2,3-cd]pyrene	0.38			
plica I, No	Fluoranthene	0.69			
Ap entia	Methylnaphthalene, 2-(1-)	0.99			
sside	Naphthalene	0.6			
R	Phenanthrene	6.2			
Notes	Pyrene	78			

1) Values in red indicate an exceedence of applicable site standards.

2) Parameters not exceeding applicable site standards are not included in this figure.

Figure 9.17 Plan Distribution of Soil Quality Results - PAHs (East)

		Ņ						
0	10	20 Metres	40	· \land				
Coordinate System: NAD 1983 MTM 9 Source: NCC property boundary								
Service Layer Credits: Source: Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and the GIS Jser Community								
PROJECT No. 1	8-262-1							
Phase	e Two Er Burns	nvironment side Site, C	al Site Asse Ottawa, ON	ssment				
DESIGN: NMP CAD/GIS: NMP CHECK: KGR			Geo	firma				

Engineering Ltd

G:\Data\Project\Burnside\Maps\18-262-1_Phase_II_Burnside\18-262-1_Burnside_P2_F9_18_Soil_PHC_BTEX.mxd

<u>MW-3</u>

Sample Date: 7-Nov-12 Sample Interval: 49.72-52.77 mASL Analysis Suite: Metals, PAHs, PHCs, BTEX, VOCs

No Exceedences

<u>MW-3</u>

Sample Date: 17-Oct-14 Sample Interval: 49.72-52.77 mASL Analysis Suite: Metals, PAHs, PHCs, BTEX, VOCs

No Exceedences

<u>MW-2</u>

Śir John A Macdonald Parkway

Sample Date: 7-Nov-12 Sample Interval: 51.33-54.38 mASL Analysis Suite: Metals, PAHs, PHCs, BTEX, VOCs

No Exceedences

<u>MW-2</u> Sample Date: 17-Oct-14 Sample Interval: 51.33-54.38 mASL Analysis Suite: Metals, PAHs, PHCs, BTEX, VOCs

No Exceedences

<u>MW-1</u> Sample Date: 7-Nov-12 Sample Interval: 51.88-54.93 mASL Analysis Suite: Metals, PAHs, PHCs, BTEX, VOCs

No Exceedences

<u>MW-1</u>

Sample Date: 17-Oct-14 Sample Interval: 51.88-54.93 mASL Analysis Suite: Metals, PAHs, PHCs, BTEX. VOCs

No Exceedences

<u>MW-4</u>

Sample Date: 7-Nov-12 Sample Interval: 54.71-57.76 mASL Analysis Suite: Metals, PAHs, PHCs, BTEX, VOCs

No Exceedences

<u>MW-4</u>

Sample Date: 17-Oct-14 Sample Interval: 54.71-57.76 mASL Analysis Suite: Metals, PAHs, PHCs, BTEX, VOCs

No Exceedences

<u>MW-5</u>

Sample Date: 7-Nov-12 Sample Interval: 51.52-54.57 mASL Analysis Suite: Metals, PAHs, PHCs, BTEX, VOCs

No Exceedences

<u>MW-5</u>

Sample Date: 17-Oct-14 Sample Interval: 51.52-54.57 mASL Analysis Suite: Metals, PAHs, PHCs, BTEX, VOCs

No Exceedences

CH2M MW-2

Sample Date: 7-Nov-12 Sample Interval: 52.62-55.67 mASL Analysis Suite: Metals, PAHs, PHCs, BTEX, VOCs

No Exceedences CH2M MW-2

Sample Date: 17-Oct-14 Sample Interval: 52.62-55.67 mASL Analysis Suite: Metals, PAHs, PHCs, BTEX, VOCs

No Exceedences

	LEGEND									
	Bu	rnside Si	te Bounda	rv						
	Monitoring Well									
	No samples submitted for analysis									
	No Exceedence of applicable standards									
		Excourt								
ĝ		MM40 07]					
	Date Sampled	Sample I	Date: 23-Jul	-14	Soil Interval					
	Parameters Analyzed	Sample I Analysis	nterval: 0.6- Suite: VOC	-1.2 mBGS s	 Sampled (metres below ground 					
	Parameter	Acetone			surface)					
	and Value (µg/g)				J					
	No Exceed	lences of Ap	blicable Site Si	andard: MECP	Table 7					
	Resident	iai, non Pola	ible, Coalse G	raineu, Shallow	50115					
	Notes									
	 Values in red indicate an exceedence of applicable site standards. 									
2	2) Paramete site standare	ers not exce ds are not i	eding applic	able his figure.						
				0						
1										
1										
3										
1										
1										
~										
ŝ										
		Fi	aure 9.20	0						
	Plan Distribution of Groundwater									
		Qua	lity Resu	llts						
		0 10	SCALE 1:1,200) 	N					
			Metres	40	\wedge					
	Coordinate System:	: NAD 1983 M	IN 9							

Source: NCC property boundary Service Layer Credits: Source: Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and the GIS User Community

PROJECT No. 18-262-1

Phase Two Environmental Site Assessment Burnside Site, Ottawa, ON

DESIGN: NMP CAD/GIS: NMP CHECK: KGR REV: 0

Geofirma Engineering Ltd

Table 9.1 - Borehole and Monitoring Well Locations and Completion Details, Burnside Site, Ottawa, Ontario

	MTM Co	ordinates	Ground	Top of Riser					
Borehole/ Monitoring Well ID	Easting	Northing	Surface Elevation (mASL)	Elevation (mASL)	Total Depth (m)	Depth (mASL)	Stratigraphic Unit	Screen Length (m)	Screened Interval (mASL)
CH2M MW-2	365151	5030270	57.72*	57.94	5.10	52.62	Bedrock	3.05	52.62-55.67
MW-1	365101	5030321	55.54	56.48	3.66	51.88	Overburden/Bedrock	3.05	51.88-54.93
MW-2	365009	5030302	55.81	56.58	4.48	51.33	Overburden	3.05	51.33-54.38
MW-3	364849	5030399	59.17	60.07	9.45	49.72	Bedrock	3.05	49.72-52.77
MW-4	364862	5030287	61.72	62.75	7.01	54.71	Bedrock	3.05	54.71-57.76
MW-5	365129	5030259	56.09	56.96	4.57	51.52	Overburden	3.05	51.52-54.57

* - ground surface elevation unknown at the time of drilling, value provided is from 2014 LIDAR information

Table 9.2 - Historical and Current Groundwater Elevations, Burnside Site, Ottawa, Ontario

	Ground	Ton of Disor	11-D	ec-01	16-C	Oct-02	07-Oct-03			
Monitoring Well ID	Surface Elevation (mASL)	Elevation (mASL)	Water Level (mBTOR)	Groundwater Elevation (mASL)	Water Level (mBTOR)	Groundwater Elevation (mASL)	Water Level (mBTOR)	Groundwater Elevation (mASL)		
MW-1	55.54	56.48	3.410	53.07	3.700	52.78	3.600	52.88		
MW-2	55.81	56.58	3.530	53.05	3.470	53.11	3.720	52.86		
MW-3	59.17	60.07	5.320	54.75	6.060	54.01	6.410	53.66		
MW-4	61.72	62.75	3.160	59.59	4.500	58.25	4.440	58.31		
MW-5	56.09	56.96	3.530	53.43	3.930	53.03	3.800	53.16		
CH2M-MW-1	(3)	(3)	(1)	(1)	(1)	(1)	(1)	(1)		
CH2M-MW-2	(3)	57.94	(1)	(1)	(1)	(1)	(1)	(1)		

Notes:

All historical groundwater elevations are presented in metres above sea level (mASL) All recorded water levels are presented in meters below top of riser (mBTOR)

Geodetic Elevation Survey of MW-5 (Top of Riser) complete by Annis, O'Sullivan, Vollebekk Ltd., May 17, 2019

-- = not measured

- (1) = Prior to monitoring well installation
- (2) = Not measured

(3) = Unknown

(4) = Monitoring well not found / destroyed

(5) = Incorrectly labelled as CH2M-MW1 in historical reports

(6) = Dry well

Table 9.2 - Historical and Current Groundwater Elevations, Burnside Site, Ottawa, Ontario

	Ground	Ton of Disor	15-0	oct-05	03-N	ov-09	07-Nov-12			
Monitoring Well ID	Surface Elevation (mASL)	Elevation (mASL)	Water Level (mBTOR)	Groundwater Elevation (mASL)	Water Level (mBTOR)	Groundwater Elevation (mASL)	Water Level (mBTOR)	Groundwater Elevation (mASL)		
MW-1	55.54	56.48	(2)	(2)	3.530	52.95	3.380	53.10		
MW-2	55.81	56.58	(2)	(2)	3.710	52.87	3.610	52.97		
MW-3	59.17	60.07	(2)	(2)	4.970	55.10	5.540	54.53		
MW-4	61.72	62.75	(2)	(2)	3.250	59.50	3.910	58.84		
MW-5	56.09	56.96	3.030	53.93	3.630	53.33	3.720	53.24		
CH2M-MW-1	(3)	(3)	4.470	⁽³⁾	(4)	⁽⁴⁾	(4)	⁽⁴⁾		
CH2M-MW-2	(3)	57.94	3.810	54.13	5.05 ⁽⁵⁾	52.89 ⁽⁵⁾	4.95 ⁽⁵⁾	52.99 ⁽⁵⁾		

Notes:

All historical groundwater elevations are presented in metres above sea level (mASL) All recorded water levels are presented in meters below top of riser (mBTOR)

Geodetic Elevation Survey of MW-5 (Top of Riser) complete by Annis, O'Sullivan, Vollebekk Ltd., May 17, 2019

-- = not measured

(1) = Prior to monitoring well installation

(2) = Not measured

(3) = Unknown

(4) = Monitoring well not found / destroyed

(5) = Incorrectly labelled as CH2M-MW1 in historical reports

(6) = Dry well

Table 9.2 - Historical and Current Groundwater Elevations, Burnside Site, Ottawa, Ontario

	Ground	Top of Bigor	17-0	oct-14	17-A	pr-19
Monitoring Well ID	Surface Elevation (mASL)	Elevation (mASL)	Water Level (mBTOR)	Groundwater Elevation (mASL)	Water Level (mBTOR)	Groundwater Elevation (mASL)
MW-1	55.54	56.48	3.510	52.97	(6)	⁽⁶⁾
MW-2	55.81	56.58	3.730	52.85	3.678	52.90
MW-3	59.17	60.07	5.600	54.47	4.741	55.33
MW-4	61.72	62.75	4.050	58.70	6.338	56.41
MW-5	56.09	56.96	3.690	53.27	3.800	53.16
CH2M-MW-1	(3)	(3)	(4)	⁽⁴⁾	(4)	⁽⁴⁾
CH2M-MW-2	(3)	57.94	5.090	52.85	5.015	52.93

Notes:

All historical groundwater elevations are presented in metres above sea level (mASL) All recorded water levels are presented in meters below top of riser (mBTOR)

Geodetic Elevation Survey of MW-5 (Top of Riser) complete by Annis, O'Sullivan, Vollebekk Ltd., May 17, 2019

-- = not measured

- (1) = Prior to monitoring well installation
- (2) = Not measured
- (3) = Unknown

(4) = Monitoring well not found / destroyed

(5) = Incorrectly labelled as CH2M-MW1 in historical reports

(6) = Dry well

Table 9.3 - Soil Sample Locations and Laboratory Analyses, Burnside Site, Ottawa, Ontario

	Samula Danth	Sample			Sample Anal	ysis Date			Laboratory
Sample ID	(mBGS)	Collection Date	Metals	PAHs	PHC/BTEX	VOC/BTEX	РСВ	General Inorganics	Report Number
TP-1 (TP-1A)	0.4	8-Jun-00	8-Jun-00						2005493
SS-3A	0 - 0.2	8-Jun-00	22-Oct-01						G5830
TP-3 (TP-3A)	0-0.8	8-Jun-00	8-Jun-00						2005493
TP-6 (TP-6A)	0.5	8-Jun-00	8-Jun-00						2005493
SS-7A	0-0.2	8-Jun-00		22-Oct-01					G5830
TP-7 (TP-7A)	0.6	8-Jun-00		8-Jun-00					2005493
SS-1	0 - 0.2	22-Nov-00	22-Oct-01						G5830
TP-1 (0.4)	0.4	22-Nov-00	28-Nov-00	28-Nov-00					F1669
TP-2 (0.4)	0.4	22-Nov-00	28-Nov-00						F1669
IP-3 (1.3)	1.3	22-Nov-00	28-Nov-00						F1669
55-4 TD 4 (0.0)	0-0.2	22-NoV-00		22-Oct-01					G5830
TP-4 (0.8)	0.8	22-Nov-00	28-INOV-00	 28 Nov 00					F1669
TP-4 (1.2)	1.2	22-Nov-00	 29 Nov 00	20-INOV-00					F 1009
SS-6	0.02	22-Nov-00	20-1100-00						G5830
TP-6 (0.9)	0 - 0.2	22-Nov-00	28-Nov-00	28-Nov-00					E1669
TP-6 (2.5)	2.5	22-Nov-00	28-Nov-00						F1669
SS-7	0 - 0.2	22-Nov-00	22-Oct-01	22-Oct-01					G5830
PH-7	0.3 - 0.5	22-Nov-00						22-Oct-01	G5830
TP-7 (1.5)	1.5	22-Nov-00	28-Nov-00		28-Nov-00				F1669
TP-8 (0.8)	0.8	22-Nov-00	28-Nov-00	28-Nov-00	28-Nov-00				F1669
TP-8 (2.9)	2.9	22-Nov-00	28-Nov-00						F1669
TP-9 (0.4)	0.4	22-Nov-00	28-Nov-00						F1669
TP-10 (0.3)	0.3	22-Nov-00	28-Nov-00						F1669
SS-11	0-0.2	22-Nov-00		22-Oct-01					G5830
TP-11 (1.5)	1.5	22-Nov-00	28-Nov-00	28-Nov-00					F1669
TP-12 (1.3)	1.3	22-Nov-00	28-Nov-00						F1669
TP-12 (2.6)	2.6	22-Nov-00	28-Nov-00						F1669
TP-13 (0.9)	0.9	22-Nov-00	28-Nov-00						F1669
TP-13 (2.5)	2.5	22-Nov-00	28-Nov-00						F1669
SS-14	0 - 0.2	22-Nov-00	22-Oct-01	22-Oct-01					G5830
TP-14 (2.0)	2	22-Nov-00	28-Nov-00						F1669
1P-14 (2.9)	2.9	22-INOV-00	28-INOV-00						F1669
TP-15 (1 0)	0 - 0.2	23-Nov-00	22-001-01 28-Nov-00	22-001-01					G5630 E1660
TP-15 (1.0)	2	23-Nov-00	28-Nov-00	20-1100-00					F1669
TP-16 (1.5)	1.5	23-Nov-00	28-Nov-00		28-Nov-00				F1669
TP-17 (0.5)	0.5	23-Nov-00	28-Nov-00						F1669
TP-18 (1.4)	1.4	23-Nov-00	28-Nov-00	28-Nov-00					F1669
TP-19 (2.0)	2	23-Nov-00	28-Nov-00						F1669
SS-20	0 - 0.2	23-Nov-00	22-Oct-01	22-Oct-01					G5830
PH-20	0.3-0.5	23-Nov-00						22-Oct-01	G5830
TP-20 (1.5)	1.5	23-Nov-00	28-Nov-00						F1669
TP-20 (2.5)	2.5	23-Nov-00		28-Nov-00					F1669
TP-21 (0.45)	0.45	23-Nov-00	28-Nov-00						F1669
TP-22 (0.4)	0.4	23-Nov-00	28-Nov-00						F1669
TP-23 (1.2)	1.2	23-Nov-00	28-Nov-00	28-Nov-00					F1669
TP-24 (0.2)	0.2	23-Nov-00	28-Nov-00						F1669
TP-25 (0.6)	0.6	23-Nov-00	28-Nov-00						F1669
SS-26	0 - 0.2	23-Nov-00	22-Oct-01						G5830
1P-26 (0.3)	0.3	23-Nov-00	28-Nov-00	28-Nov-00					F1669
TP-26 (0.8)	0.8	23-Nov-00	28-Nov-00						F1669
12-27 (0.4)	0.4	23-INOV-UU	28-IN0V-UU	 22 Oct 04					F1009
33-20 TP-28 (0.2)	0 - 0.2	23-NOV-00	22-001-01 28-Nov 00	22-UCT-U1					G0030 E1660
SS-20	0.2	23-Nov-00	20-110V-00	 22-Oct-01					G5830
TP-20 (0 7)	0-0.2	23-Nov-00	28-Nov-00	28-Nov-00	 28-Nov-00				F1660
SS-30	0-02	23-Nov-00	22-Oct-01	22-Oct-01					G5830
PH-30	0.3-0.5	23-Nov-00						22-Oct-01	G5830
TP-30 (0.7)	0.7	23-Nov-00	28-Nov-00						F1669
SS-31	0 - 0.2	23-Nov-00	22-Oct-01						G5830
TP-31 (0.4)	0.4	23-Nov-00	28-Nov-00						F1669
TP-32 (0.3)	0.3	23-Nov-00	28-Nov-00						F1669
TP-32 (1.3)	1.3	23-Nov-00		28-Nov-00					F1669
SS-33	0-0.2	23-Nov-00		22-Oct-01					G5830
TP-33 (0.4)	0.4	23-Nov-00	28-Nov-00						F1669
TP-33 (0.7)	0.4	23-Nov-00		28-Nov-00					F1669
TP-34 (0.8)	0.8	23-Nov-00	28-Nov-00						F1669
TP-35 (1.2)	1.2	23-Nov-00	28-Nov-00						F1669
SS-36	0 - 0.2	24-Nov-00	22-Oct-01	22-Oct-01					G5830
TP-36 (1.2)	1.2	24-Nov-00	28-Nov-00	28-Nov-00					F1669

Table 9.3 - Soil Sample Locations and Laboratory Analyses, Burnside Site, Ottawa, Ontario

		Sample			Sample Anal	vsis Date			Laboratory
Sample ID	Sample Depth	Collection		`				General	Report
	(mBGS)	Date	Metals	PAHs	PHC/BTEX	VOC/BTEX	PCB	Inorganics	Number
SS-37	0-02	24-Nov-00	22-Oct-01						G5830
PH-37	0.3-0.5	24-Nov-00						22-Oct-01	G5830
TP-37 (0.5)	0.5	24-Nov-00	28-Nov-00						F1669
SS-38	0-0.2	24-Nov-00		22-Oct-01					G5830
TP-38 (0.4)	0.4	24-Nov-00	28-Nov-00						F1669
SS-39	0 - 0.2	24-Nov-00	22-Oct-01	22-Oct-01					G5830
TP-39 (0.5)	0.5	24-Nov-00	28-Nov-00	28-Nov-00					F1669
	0-02	24-Nov-00	22-Oct-01	22-Oct-01					G5830
TP-40 (0.9)	0.9	24-Nov-00	28-Nov-00	28-Nov-00					F1669
TP-41 (0.2)	0.0	24-Nov-00	28-Nov-00		28-Nov-00				F1669
TP-42 (0.4)	0.2	24-Nov-00	28-Nov-00	28-Nov-00					F1669
TP-43 (0.5)	0.4	24-Nov-00	28-Nov-00						F1669
SS-44	0.02	24-Nov-00	22-Oct-01	22-Oct-01					G5830
TP-44 (0.8)	0 0.2	24-Nov-00	28-Nov-00						E1669
TP-45 (1.0)	1	24-Nov-00	28-Nov-00						F1669
<u> </u>	0-02	24-Nov-00	20-1101-00	22-Oct-01					C 5830
TP-46 (1 3)	13	24-Nov-00	22-001-01 28-Nov-00	22-001-01					E1669
TP-47 (0.55)	0.55	24-Nov-00	28-Nov-00	28-Nov-00					F1669
TP-48 (0.8)	0.55	24-Nov-00	28-Nov-00	28-Nov-00					F1660
SS-40	0.0	24-Nov-00	20-1100-00	22-0ct-01					C 5830
DH_40	0 - 0.2	24-Nov-00	22-001-01	22-001-01				 22-Oct-01	G5830
TP 40 (0.5)	0.3-0.3	24-Nov-00	29 Nov 00	29 Nov 00				22-001-01	E1660
CH2M TP2 (2.2)	0.0	24-N0V-00	20-1100-00	20-1100-00	 21 Oct 05	 21 Oct 05		24 Oct 05	250247
	0.0-0.9	14-0ct-05	24-001-05	21-001-05	21-Oct-05	21-Oct-05	 21 Oct 05	24-Oct-05	250247
CH2M-TP5 (2-4)	0.6-1.2	14-Oct-05	24-Oct-05	21-Oct-05	21-Oct-05	21-0ct-05	21-001-03	24-Oct-05	350347
CH2M-M/M-1/2 1/2-4 1/2)	0.0-1.2	12-Oct-05	24-Oct-05	21-Oct-05	21-001-03	21-001-03		24-Oct-05	350347
	1.5.2.1	12-0ct-05	24-001-05	21-001-05		 21 Oct 05		24-001-05	250247
CH2MMW/2(2.1/2.2.1/2)	0.9.1.1	12-0ct-05	 24 Oct 05	 21 Oct 05		21-001-05		24-001-05	250247
	0.0-1.1	02 Nov 00	24-001-05	21-001-03		21-001-05		24-001-05	045145
5511	0-0.1	03-N0V-09	03-IN0V-09	03-Nov-09					945145
<u> </u>	0-0.1	03-N0V-09	03-IN0V-09	03-Nov-09					945145
5513	0-0.1	03-N0V-09	03-IN0V-09	03-Nov-09					945145
5514	0-0.1	03-1100-09	03-1007-09	03-100-09					945145
5515	0-0.1	03-N0V-09	03-INOV-09	03-INOV-09					945145
5516	0-0.1	03-N0V-09	03-INOV-09	03-INOV-09					945145
5517	0-0.1	03-N0V-09	03-INOV-09	03-INOV-09					945145
5518	0-0.1	03-Nov-09	03-Nov-09	03-Nov-09					945145
5519	0-0.1	03-Nov-09	03-Nov-09	03-Nov-09					945145
55110	0-0.1	03-Nov-09	03-Nov-09	03-Nov-09					945145
BH19-01-1	0.3-1.1	24-May-19	29-May-19	31-May-19				28-May-19	1921547
BH19-02-1	0.2-1.5	24-May-19	29-May-19	31-May-19				28-May-19	1921547
BH19-02-3	3.0-4.6	24-May-19	29-May-19	31-May-19				28-May-19	1921547
BH19-03-1	0.7-0.8	24-May-19	29-May-19	31-May-19				28-May-19	1921547
BH19-04-1	0.2-1.5	24-May-19	29-May-19	31-May-19				28-May-19	1921547
BH19-05-1	0-0.8	24-May-19	29-May-19	31-May-19				28-May-19	1921547
BH19-06-1	0-0.8	24-May-19			30-May-19				1921547
BH19-07-1	0.5-1.4	24-May-19	29-May-19		30-May-19				1921547
BH19-08-1	0.2-0.6	24-May-19	29-May-19	31-May-19				28-May-19	1921547
BH19-09-1	0.1-0.6	24-May-19			30-May-19				1921547
BH19-10-1	0.3-1.1	24-May-19	29-May-19	31-May-19	30-May-19				1921547

Notes:

-- = Parameter not analysed

mBGS = meters below ground surface

Parameter	MECP	TP-1 A	SS-3A	TP-3 A	TP-6 A	SS-1	TP-1	TP-2	TP-3	TP-4	TP-5	SS-6	TP-6	TP-6
Sample Depth (mBGS)>	Table 7	0.4	0 - 0.2	0-0.8	0.5	0 - 0.2	0.4	0.4	1.3	0.8	0.8	0 - 0.2	0.9	2.5
Date Sampled>	(µg/g)	8-Jun-00	8-Jun-00	8-Jun-00	8-Jun-00	22-Nov-00								
Antimony	7.5		<1			<1	<1	<1	<1	<1	<1	<1	1	<1
Arsenic	18		<1			<1	5	3	<1	<1	2	<1	7	2
Barium	390	48	460	152	123	40	130	90	50	340	120	20	460	130
Beryllium	4	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.5	<0.5	<0.5	1	<0.5
Boron (hot water soluble)	1.5													
Boron (total)	120													
Cadmium	1.2	<1	<1	0.9	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chromium Total	160	16	85	25	22	15	20	15	20	90	25	10	20	15
Chromium, Hexavalent	8													
Cobalt	22	<5	20	<5	1	<5	5	5	5	20	5	<5	5	5
Copper	140	11	35	36	16	20	15	15	10	45	15	<5	40	25
Lead	120	16	10	165	41	20	140	55	5	25	20	5	480	45
Mercury	0.27													
Molybdenum	6.9	3	<1	29	3	<1	<1	<1	<1	<1	<1	<1	2	<1
Nickel	100	10	45	16	14	5	15	15	15	50	20	<5	20	15
Selenium	2.4		<1			<1	<1	<1	<1	<1	<1	<1	<1	<1
Silver	20	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Thallium	1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Uranium	23													
Vanadium	86	17	70	24	26	20	30	20	30	90	30	20	30	30
Zinc	340	30	100	273	51	40	280	60	60	200	100	20	440	160

All units are μ g/g unless otherwise noted.

NV = No Value.

-- = Parameter not analysed.

mBGS = Meters below ground surface.

<0.5 = not detected above laboratory method detection limit shown

MECP = Soil, Groundwater and Sediment Standards for use under Part XV.1 of the Environmental Protection Act, April 2011.

Table 7 = Generic site condition standards for shallow soils in a non-potable groundwater condition for residential/parkland land use, coarse textured soil.

Parameter	MECP	SS-7	SS-77	TP-7	TP-8	TP-8	TP-9	TP-10	TP-11	TP-12	TP-12	TP-13	TP-13
Sample Depth (mBGS)>	Table 7	0 - 0.2	dup SS-7	1.5	0.8	2.9	0.4	0.3	1.5	1.3	2.6	0.9	2.5
Date Sampled>	(µg/g)	22-Nov-00											
Antimony	7.5	<1	1	8	<1	<1	2	<1	<1	<1	<1	<1	<1
Arsenic	18	1	<1	5	4	<1	2	2	2	2	1	1	<1
Barium	390	50	50	130	230	70	170	120	180	100	90	200	70
Beryllium	4	1	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.5	<0.5
Boron (hot water soluble)	1.5												
Boron (total)	120												
Cadmium	1.2	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chromium Total	160	10	5	15	20	15	20	20	30	20	20	45	20
Chromium, Hexavalent	8												
Cobalt	22	<5	<5	<5	5	5	5	5	10	5	5	10	5
Copper	140	10	10	60	60	5	20	20	20	20	15	25	10
Lead	120	25	45	570	210	10	110	40	40	35	10	10	15
Mercury	0.27												
Molybdenum	6.9	<1	<1	1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Nickel	100	5	5	15	15	10	20	15	25	20	10	25	15
Selenium	2.4	5	<1	1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Silver	20	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Thallium	1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Uranium	23												
Vanadium	86	20	20	30	20	30	30	20	40	30	30	50	40
Zinc	340	40	40	180	240	140	160	80	100	80	60	80	80

All units are μ g/g unless otherwise noted.

NV = No Value.

-- = Parameter not analysed.

mBGS = Meters below ground surface.

<0.5 = not detected above laboratory method detection limit shown

MECP = Soil, Groundwater and Sediment Standards for use under Part XV.1 of the Environmental Protection Act, April 2011.

Table 7 = Generic site condition standards for shallow soils in a non-potable groundwater condition for residential/parkland land use, coarse textured soil.

Parameter	MECP	SS-14	TP-14	TP-14	SS-15	TP-15	TP-15	TP-16	TP-17	TP-18	TP-19	SS-20	TP-20	TP-21
Sample Depth (mBGS)>	Table 7	0 - 0.2	2	2.9	0 - 0.2	1	2	1.5	0.5	1.4	2	0 - 0.2	1.5	0.45
Date Sampled>	(µg/g)	22-Nov-00	22-Nov-00	22-Nov-00	23-Nov-00									
Antimony	7.5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Arsenic	18	<1	3	10	<1	5	<1	1	2	1	2	<1	1	2
Barium	390	250	220	310	100	180	70	190	220	190	130	130	140	290
Beryllium	4	<0.5	<0.5	<0.5	<0.5	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.5
Boron (hot water soluble)	1.5													
Boron (total)	120													
Cadmium	1.2	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chromium Total	160	60	25	25	25	25	15	40	35	45	25	25	25	60
Chromium, Hexavalent	8													
Cobalt	22	15	10	10	5	5	<5	10	10	10	10	10	5	10
Copper	140	30	25	30	15	150	15	25	30	25	20	15	20	40
Lead	120	20	100	370	10	380	20	45	50	25	45	15	35	120
Mercury	0.27													
Molybdenum	6.9	<1	<1	<1	<1	1	<1	<1	<1	<1	<1	<1	<1	<1
Nickel	100	30	25	25	15	20	15	30	25	30	20	15	20	35
Selenium	2.4	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Silver	20	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Thallium	1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Uranium	23													
Vanadium	86	50	30	20	30	30	20	40	40	50	30	40	30	50
Zinc	340	80	80	240	60	160	80	220	200	120	60	60	220	140

All units are μ g/g unless otherwise noted.

NV = No Value.

-- = Parameter not analysed.

mBGS = Meters below ground surface.

<0.5 = not detected above laboratory method detection limit shown

MECP = Soil, Groundwater and Sediment Standards for use under Part XV.1 of the Environmental Protection Act, April 2011.

Table 7 = Generic site condition standards for shallow soils in a non-potable groundwater condition for residential/parkland land use, coarse textured soil.

Parameter	MECP	TP-22	TP-23	TP-24	TP-25	SS-26	TP-26	TP-27	SS-28	TP-28	SS-29	TP-29	SS-30	TP-30
Sample Depth (mBGS)>	Table 7	0.4	1.2	0.2	0.6	0 - 0.2	0.8	0.4	0 - 0.2	0.2	0 - 0.2	0.7	0 - 0.2	0.7
Date Sampled>	(µg/g)	23-Nov-00												
Antimony	7.5	<1	<1	<1	<1	<1	<1	<1	1	<1	<1	<1	<1	2
Arsenic	18	<1	1	1	4	<1	3	3	2	2	<1	5	<1	5
Barium	390	30	80	390	180	150	180	150	120	370	200	200	290	150
Beryllium	4	<0.5	1	0.5	1	<0.5	0.5	0.5	1.5	1	<0.5	<0.5	<0.5	<0.5
Boron (hot water soluble)	1.5													
Boron (total)	120													
Cadmium	1.2	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	1.0	<1	<1
Chromium Total	160	10	30	90	30	30	20	20	15	75	50	15	65	20
Chromium, Hexavalent	8													
Cobalt	22	<5	10	20	5	10	5	<5	<5	15	10	<5	20	<5
Copper	140	10	10	45	20	15	20	15	15	45	25	130	35	35
Lead	120	15	40	10	90	15	370	45	90	90	15	480	20	230
Mercury	0.27													
Molybdenum	6.9	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Nickel	100	5	20	55	20	15	15	15	10	45	25	25	40	15
Selenium	2.4	<1	<1	<1	<1	<1	<1	2	<1	<1	<1	1	<1	<1
Silver	20	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Thallium	1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Uranium	23													
Vanadium	86	20	20	90	20	40	20	20	20	70	50	20	60	20
Zinc	340	60	100	120	80	60	160	60	180	200	80	1300	80	240

All units are μ g/g unless otherwise noted.

NV = No Value.

-- = Parameter not analysed.

mBGS = Meters below ground surface.

<0.5 = not detected above laboratory method detection limit shown

MECP = Soil, Groundwater and Sediment Standards for use under Part XV.1 of the Environmental Protection Act, April 2011.

Table 7 = Generic site condition standards for shallow soils in a non-potable groundwater condition for residential/parkland land use, coarse textured soil.

Parameter	MECP	SS-31	TP-31	TP-32	TP-33	TP-34	TP-35	SS-36	TP-36	SS-37	TP-37	TP-38	SS-39	TP-39
Sample Depth (mBGS)>	Table 7	0 - 0.2	0.4	0.3	0.4	0.8	1.2	0 - 0.2	1.2	0 - 0.2	0.5	0.4	0 - 0.2	0.5
Date Sampled>	(µg/g)	23-Nov-00	23-Nov-00	23-Nov-00	23-Nov-00	23-Nov-00	23-Nov-00	24-Nov-00						
Antimony	7.5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Arsenic	18	<1	1	4	5	1	4	<1	3	<1	7	1	<1	3
Barium	390	200	320	160	230	30	110	190	320	240	320	380	40	210
Beryllium	4	<0.5	0.5	<0.5	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.5	0.5	<0.5	<0.5
Boron (hot water soluble)	1.5													
Boron (total)	120													
Cadmium	1.2	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chromium Total	160	40	70	30	20	5	15	40	20	50	25	80	10	20
Chromium, Hexavalent	8													
Cobalt	22	10	15	10	5	<5	<5	10	<5	15	5	15	<5	5
Copper	140	20	40	50	35	10	20	20	20	25	30	40	5	25
Lead	120	10	10	65	160	10	95	15	170	25	660	10	10	520
Mercury	0.27													
Molybdenum	6.9	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Nickel	100	25	40	25	20	10	20	25	15	30	20	50	5	15
Selenium	2.4	9	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Silver	20	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Thallium	1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Uranium	23													
Vanadium	86	50	70	30	20	10	20	40	10	50	20	80	20	20
Zinc	340	60	120	160	200	100	180	60	240	80	240	200	40	180

All units are μ g/g unless otherwise noted.

NV = No Value.

-- = Parameter not analysed.

mBGS = Meters below ground surface.

<0.5 = not detected above laboratory method detection limit shown

MECP = Soil, Groundwater and Sediment Standards for use under Part XV.1 of the Environmental Protection Act, April 2011.

Table 7 = Generic site condition standards for shallow soils in a non-potable groundwater condition for residential/parkland land use, coarse textured soil.

Parameter	MECP	SS-40	TP-40	TP-41	TP-42	TP-43	SS-44	TP-44	TP-45	SS-46	TP-46	TP-47	TP-48
Sample Depth (mBGS)>	Table 7	0 - 0.2	0.9	0.2	0.4	0.5	0 - 0.2	0.8	1	0 - 0.2	1.3	0.55	0.8
Date Sampled>	(µg/g)	24-Nov-00											
Antimony	7.5	<1	<1	<1	<1	<1	<1	<1	<1	<1	4	<1	<1
Arsenic	18	<1	8	1	3	1	<1	3	1	<1	5	2	8
Barium	390	40	440	60	160	280	100	270	70	360	270	440	180
Beryllium	4	1	0.5	<0.5	1	1	<0.5	0.5	1	<0.5	0.5	0.5	1
Boron (hot water soluble)	1.5												
Boron (total)	120												
Cadmium	1.2	<1	1.0	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chromium Total	160	10	25	10	35	65	25	25	30	75	25	75	20
Chromium, Hexavalent	8												
Cobalt	22	<5	5	<5	10	15	5	5	5	20	10	15	5
Copper	140	5	45	10	20	35	15	40	10	40	45	45	20
Lead	120	20	390	20	120	30	35	170	35	10	510	180	190
Mercury	0.27												
Molybdenum	6.9	<1	1	<1	<1	<1	<1	<1	<1	<1	1	<1	<1
Nickel	100	5	20	10	25	40	15	20	20	40	20	45	15
Selenium	2.4	4	1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Silver	20	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Thallium	1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Uranium	23												
Vanadium	86	20	20	20	30	60	30	20	20	70	20	70	20
Zinc	340	40	300	60	180	140	40	300	60	100	220	160	100

All units are μ g/g unless otherwise noted.

NV = No Value.

-- = Parameter not analysed.

mBGS = Meters below ground surface.

<0.5 = not detected above laboratory method detection limit shown

MECP = Soil, Groundwater and Sediment Standards for use under Part XV.1 of the Environmental Protection Act, April 2011.

Table 7 = Generic site condition standards for shallow soils in a non-potable groundwater condition for residential/parkland land use, coarse textured soil.

Parameter	MECP	SS-49	TP-49	CH2M-TP3	CH2M-TP4	CH2M-TP5	SOIL-DUP-1	CH2M-MW-1	CH2M-MW-2	SST1	SST2	SST3	SST4
Sample Depth (mBGS)>	Table 7	0 - 0.2	0.5	0.6-0.9	0.6-0.9	0.6-1.2	dup CH2M-TP5	0.8-1.4	0.8-1.1	0-0.1	0-0.1	0-0.1	0-0.1
Date Sampled>	(µg/g)	24-Nov-00	24-Nov-00	14-Oct-05	14-Oct-05	14-Oct-05	14-Oct-05	12-Oct-05	12-Oct-05	03-Nov-09	03-Nov-09	03-Nov-09	03-Nov-09
Antimony	7.5	<1	2	<1	1	3	2	<1	<1	<1	<1	<1	<1
Arsenic	18	<1	8	8	5	7	5	2	3	1	1	1	1
Barium	390	60	610	260	140	310	180	200	83	58	62	404	348
Beryllium	4	1	0.5	1.1	<0.5	<0.5	<0.5	<0.5	0.6	<0.5	<0.5	0.6	0.6
Boron (hot water soluble)	1.5												
Boron (total)	120												
Cadmium	1.2	<1	1	1	0.9	1.5	0.9	<0.3	<0.3	<0.5	<0.5	<0.5	<0.5
Chromium Total	160	10	25	27	15	14	13	13	32	17	16	90	73
Chromium, Hexavalent	8									<0.4	<0.4	<0.4	<0.4
Cobalt	22	5	5	8.8	6.3	4.1	3.8	4.4	9.7	3	5	18	15
Copper	140	10	65	43	120	73	61	18	24	7	11	39	35
Lead	120	25	1100	39	97	970	670	210	16	14	20	24	24
Mercury	0.27			0.09	0.17	0.46		0.19	<0.05	<0.1	<0.1	<0.1	<0.1
Molybdenum	6.9	<1	<1	2	1.2	0.8	<0.5	0.6	1.4	<1	<1	<1	<1
Nickel	100	10	20	18	14	9.4	8.2	8.5	21	8	9	49	41
Selenium	2.4	4	1	2	<1	<1	<1	<1	<1	<1	<1	<1	<1
Silver	20	<5	<5	<0.3	1.1	<0.3	<0.3	<0.3	<0.3	<0.3	< 0.3	<0.3	<0.3
Thallium	1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Uranium	23												
Vanadium	86	20	20	29	20	20	18	20	44	23	27	76	64
Zinc	340	40	420	100	150	1700	980	75	53	27	34	85	81

All units are μ g/g unless otherwise noted.

NV = No Value.

-- = Parameter not analysed.

mBGS = Meters below ground surface.

<0.5 = not detected above laboratory method detection limit shown

MECP = Soil, Groundwater and Sediment Standards for use under Part XV.1 of the Environmental Protection Act, April 2011.

Table 7 = Generic site condition standards for shallow soils in a non-potable groundwater condition for residential/parkland land use, coarse textured soil.

Parameter	MECP	SST5	SST6	SST7	SST70	SST8	SST9	SST10	BH19-01-1	BH19-D1	BH19-02-1	BH19-02-3	BH19-03-1
Sample Depth (mBGS)>	Table 7	0-0.1	0-0.1	0-0.1	0-0.1	0-0.1	0-0.1	0-0.1	0.3-1.1	Dup BH19-01-1	0.2-1.5	3.0-4.6	0.7-0.8
Date Sampled>	(µg/g)	03-Nov-09	24-May-19	24-May-19	24-May-19	24-May-19	24-May-19						
Antimony	7.5	<1	<1	<1	<1	<1	<1	<1	<1.0	<1.0	1.3	<1.0	<1.0
Arsenic	18	1	<1	1	1	<1	<1	<1	4.2	4.5	5.9	1.9	4
Barium	390	420	144	34	40	74	48	40	158	291	269	73	286
Beryllium	4	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.6	0.7	<0.5	<0.5	0.7
Boron (hot water soluble)	1.5								<0.5	<0.5	<0.5	<0.5	<0.5
Boron (total)	120								10.2	12.1	14.4	7	10.2
Cadmium	1.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Chromium Total	160	82	31	8	10	20	15	10	36	41.1	50.2	12.1	63.5
Chromium, Hexavalent	8	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.2	<0.2	<0.2	<0.2	<0.2
Cobalt	22	17	8	2	3	6	4	4	10.8	12.3	13.6	5.3	14.8
Copper	140	38	17	<5	5	13	11	9	26	29.7	41.9	15.1	37
Lead	120	21	9	9	11	15	20	6	46.3	58.7	92.5	5.3	56.4
Mercury	0.27	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Molybdenum	6.9	<1	<1	<1	<1	<1	<1	<1	<1.0	<1.0	1.1	<1.0	<1.0
Nickel	100	45	17	<5	5	10	8	6	23	26.7	32.7	10.8	38.6
Selenium	2.4	<1	<1	<1	<1	<1	<1	<1	<1.0	<1.0	<1.0	<1.0	<1.0
Silver	20	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Thallium	1	<1	<1	<1	<1	<1	<1	<1	<1.0	<1.0	<1.0	<1.0	<1.0
Uranium	23								<1.0	<1.0	<1.0	<1.0	<1.0
Vanadium	86	73	43	17	20	29	21	15	45.7	51.2	55.9	26.6	64.5
Zinc	340	88	42	22	25	29	30	<20	80.9	93.3	130	27.2	107

All units are μ g/g unless otherwise noted.

NV = No Value.

-- = Parameter not analysed.

mBGS = Meters below ground surface.

<0.5 = not detected above laboratory method detection limit shown

MECP = Soil, Groundwater and Sediment Standards for use under Part XV.1 of the Environmental Protection Act, April 2011.

Table 7 = Generic site condition standards for shallow soils in a non-potable groundwater condition for residential/parkland land use, coarse textured soil.

Parameter	MECP	BH19-04-1	BH19-05-1	BH19-08-1
Sample Depth (mBGS)>	Table 7	0.2-1.5	0-0.8	0.2-0.6
Date Sampled>	(µg/g)	24-May-19	24-May-19	24-May-19
Antimony	7.5	<1.0	2	1.1
Arsenic	18	3.9	5.8	4.9
Barium	390	204	225	317
Beryllium	4	0.6	0.6	0.9
Boron (hot water soluble)	1.5	<0.5	<0.5	0.6
Boron (total)	120	10	11.1	18.9
Cadmium	1.2	<0.5	0.5	<0.5
Chromium Total	160	41	39.5	55.8
Chromium, Hexavalent	8	2.5	<0.2	<0.2
Cobalt	22	11.1	10.3	12.3
Copper	140	27.9	42.1	36.6
Lead	120	52	176	221
Mercury	0.27	<0.1	<0.1	<0.1
Molybdenum	6.9	1.4	1.8	<1.0
Nickel	100	25.4	27	32.4
Selenium	2.4	<1.0	<1.0	<1.0
Silver	20	<0.3	<0.3	<0.3
Thallium	1	<1.0	<1.0	<1.0
Uranium	23	<1.0	<1.0	<1.0
Vanadium	86	44.4	41.9	49.9
Zinc	340	83.5	153	205

All units are µg/g unless otherwise noted.

NV = No Value.

-- = Parameter not analysed.

mBGS = Meters below ground surface.

<0.5 = not detected above laboratory method detection limit shown

MECP = Soil, Groundwater and Sediment Standards for use under Part XV.1 of the Environmental Protection Act, April 2011.

Table 7 = Generic site condition standards for shallow soils in a non-potable groundwater condition for residential/parkland land use, coarse textured soil.

Parameter	MECP	SS-7A	TP-7 A	TP-1	SS-4	TP-4	TP-6	SS-7	TP-8	SS-11	TP-11	SS-14
Sample Depth (mBGS)>	Table 7	0 - 0.2	0.6	0.4	0 - 0.2	1.2	0.9	0 - 0.2	0.8	0 - 0.2	1.5	0 - 0.2
Date Sampled>	(µg/g)	8-Jun-00	8-Jun-00	22-Nov-00								
Acenaphthene	7.9	< 0.017	1.7	< 0.018	< 0.017	0.13	0.02	< 0.017	0.039	0.12	0.14	< 0.017
Acenaphthylene	0.15	0.017	0.2	0.036	< 0.017	2	0.32	0.033	0.24	0.05	0.11	< 0.017
Anthracene	0.67	0.066	9	0.036	< 0.017	1.7	0.28	0.033	0.27	0.41	0.47	0.017
Benzo[a]anthracene	0.5	0.21	24.8	0.072	0.017	1.7	0.54	0.099	0.41	0.96	0.58	0.15
Benzo[a]pyrene	0.3	0.2	14.7	0.072	< 0.017	3.5	0.9	0.12	0.65	0.89	0.74	0.12
Benzo[b]fluoranthene	0.78	0.17			< 0.017			0.12		0.86		0.099
Benzo[k]fluoranthene	0.78	0.17			< 0.017			0.12		0.86		0.12
Benzo[g,h,i]perylene	6.6	0.13	2.4	0.054	< 0.017	1.2	0.42	0.15	0.25	0.69	0.25	0.083
Chrysene	7	0.21	17.5	0.09	0.017	1.7	0.6	0.099	0.43	0.87	0.58	0.12
Dibenzo[a,h]anthracene	0.1	0.066	0.6	0.018	< 0.017	0.62	0.14	0.066	0.12	0.4	0.13	0.05
Indeno[1,2,3-cd]pyrene	0.38	0.13	1.4	0.054	< 0.017	1.2	0.38	0.13	0.24	0.78	0.25	0.083
Fluoranthene	0.69	0.46	43	0.14	0.033	1.3	1.2	0.15	0.9	2	1.4	0.2
Fluorene	62	< 0.017	2.2	< 0.018	< 0.017	0.19	0.06	< 0.017	0.059	0.13	0.25	< 0.017
Methylnaphthalene, 1-	NV	< 0.017		< 0.018	< 0.017	0.038	0.08	< 0.017	0.02	0.017	0.054	< 0.017
Methylnaphthalene, 2-	NV	< 0.017		0.018	< 0.017	0.056	0.12	< 0.017	0.039	0.017	0.036	< 0.017
Methylnaphthalene, 2-(1-)-**	0.99	< 0.017		0.018	< 0.017	0.094	0.2	< 0.017	0.059	0.034	0.09	< 0.017
Naphthalene	0.6	< 0.017	1.5	< 0.018	< 0.017	0.038	0.08	< 0.017	0.039	0.066	0.072	< 0.017
Phenanthrene	6.2	0.33	32.2	0.09	< 0.017	0.15	0.52	0.066	0.49	1.6	1.1	0.066
Pyrene	78	0.51	38.3	0.13	0.017	1.6	0.96	0.13	0.73	1.6	1.1	0.17

Notes:

All units are $\mu g/g$ unless otherwise noted.

NV = No Value.

-- = Parameter not analysed.

mBGS = Meters below ground surface.

<0.5 = not detected above laboratory method detection limit shown

**The methylnaphthalene standards are applicable to both 1-methylnaphthalene and 2-methylnaphthalene, with the provision that if both are detected the sum of the two must not exceed the standard.

MECP = Soil, Groundwater and Sediment Standards for use under Part XV.1 of the Environmental Protection Act, April 2011.

Table 7 = Generic site condition standards for shallow soils in a non-potable groundwater condition for residential/parkland land use,

coarse textured soil. 10

Parameter	MECP	SS-15	TP-15	TP-18	SS-20	TP-20	TP-23	TP-26	SS-28	SS-29	SS-129	TP-29
Sample Depth (mBGS)>	Table 7	0 - 0.2	1	1.4	0 - 0.2	2.5	1.2	0.3	0 - 0.2	0 - 0.2	0 - 0.2	0.7
Date Sampled>	(µg/g)	23-Nov-00										
Acenaphthene	7.9	< 0.017	1.3	0.091	0.017	0.29	< 0.019	< 0.018	0.05	< 0.017	< 0.017	2.5
Acenaphthylene	0.15	< 0.017	1.7	0.14	0.017	0.37	< 0.019	0.12	0.17	< 0.017	< 0.017	1.8
Anthracene	0.67	< 0.017	4.5	0.38	0.083	1.2	< 0.019	0.12	0.41	< 0.017	< 0.017	6.2
Benzo[a]anthracene	0.5	0.05	6.6	0.45	0.31	2.1	< 0.019	0.23	1.4	0.033	0.05	12
Benzo[a]pyrene	0.3	0.033	8.6	0.47	0.28	2.6	< 0.019	0.39	1.2	0.033	0.033	16
Benzo[b]fluoranthene	0.78	0.033			0.28				1.2	0.033	0.05	
Benzo[k]fluoranthene	0.78	0.033			0.28				1.2	0.033	0.05	
Benzo[g,h,i]perylene	6.6	0.033	3	0.16	0.2	0.81	< 0.019	0.16	0.96	0.033	0.033	5.7
Chrysene	7	0.033	5.9	0.43	0.3	1.9	< 0.019	0.23	1.6	0.033	0.05	11
Dibenzo[a,h]anthracene	0.1	< 0.017	1.5	0.072	0.13	0.44	< 0.019	0.071	0.56	0.017	< 0.017	2.8
Indeno[1,2,3-cd]pyrene	0.38	0.033	3.2	0.18	0.23	0.88	< 0.019	0.16	1.1	0.033	0.033	5.7
Fluoranthene	0.69	0.083	12	1.1	0.59	4.5	< 0.019	0.46	3.1	0.066	0.083	23
Fluorene	62	< 0.017	2.5	0.16	0.017	0.44	< 0.019	0.018	0.15	< 0.017	< 0.017	2.6
Methylnaphthalene, 1-	NV	< 0.017	0.66	0.054	< 0.017	0.11	< 0.019	< 0.018	0.05	< 0.017	< 0.017	1
Methylnaphthalene, 2-	NV	< 0.017	0.73	0.072	< 0.017	0.15	< 0.019	< 0.018	0.05	< 0.017	< 0.017	1.2
Methylnaphthalene, 2-(1-)-**	0.99	< 0.017	1.39	0.126	< 0.017	0.26	< 0.019	< 0.018	0.1	< 0.017	< 0.017	2.2
Naphthalene	0.6	< 0.017	0.85	0.11	< 0.017	0.26	< 0.019	< 0.018	0.13	< 0.017	< 0.017	1.6
Phenanthrene	6.2	0.05	7.6	1	0.3	3.2	< 0.019	0.21	2.6	0.033	0.033	19
Pyrene	78	0.066	9.5	0.83	0.5	3.6	< 0.019	0.39	2.3	0.05	0.066	18

Notes:

All units are $\mu g/g$ unless otherwise noted.

NV = No Value.

-- = Parameter not analysed.

mBGS = Meters below ground surface.

<0.5 = not detected above laboratory method detection limit shown

**The methylnaphthalene standards are applicable to both 1-methylnaphthalene and 2-methylnaphthalene, with the provision that if both are detected the sum of the two must not exceed the standard.

MECP = Soil, Groundwater and Sediment Standards for use under Part XV.1 of the Environmental Protection Act, April 2011.

Table 7 = Generic site condition standards for shallow soils in a non-potable groundwater condition for residential/parkland land use,

coarse textured soil. 10

Parameter	MECP	SS-30	TP-32	SS-33	TP-33	SS-36	TP-36	SS-38	SS-39	TP-39	SS-40	TP-40
Sample Depth (mBGS)>	Table 7	0 - 0.2	1.3	0 - 0.2	0.7	0 - 0.2	1.2	0 - 0.2	0 - 0.2	0.5	0 - 0.2	0.9
Date Sampled>	(µg/g)	23-Nov-00	23-Nov-00	23-Nov-00	23-Nov-00	24-Nov-00						
Acenaphthene	7.9	0.083	< 0.018	< 0.017	0.052	0.033	< 0.71	< 0.017	< 0.017	0.18	< 0.017	0.021
Acenaphthylene	0.15	0.017	0.054	< 0.017	0.12	0.066	6.4	< 0.017	< 0.017	0.18	< 0.017	0.18
Anthracene	0.67	0.31	0.054	< 0.017	0.19	0.13	11	< 0.017	< 0.017	0.71	< 0.017	0.21
Benzo[a]anthracene	0.5	0.68	0.11	0.05	0.38	0.41	16	< 0.017	0.033	1.1	< 0.017	0.55
Benzo[a]pyrene	0.3	0.61	0.11	0.05	0.48	0.48	13	< 0.017	0.033	0.71	< 0.017	0.62
Benzo[b]fluoranthene	0.78	0.53		0.05		0.45		< 0.017	0.017		0.017	
Benzo[k]fluoranthene	0.78	0.5		0.05		0.38		< 0.017	0.017		< 0.017	
Benzo[g,h,i]perylene	6.6	0.43	0.054	0.05	0.26	0.4	5.6	< 0.017	0.033	0.53	< 0.017	0.33
Chrysene	7	0.64	0.11	0.05	0.4	0.41	14	< 0.017	0.033	1.2	< 0.017	0.57
Dibenzo[a,h]anthracene	0.1	0.23	0.018	0.017	0.1	0.2	2.8	< 0.017	< 0.017	< 0.18	< 0.017	0.14
Indeno[1,2,3-cd]pyrene	0.38	0.51	0.054	0.05	0.26	0.43	7.1	< 0.017	0.017	0.35	< 0.017	0.35
Fluoranthene	0.69	1.7	0.2	0.083	0.73	0.86	38	< 0.017	0.05	2.6	< 0.017	0.96
Fluorene	62	0.099	< 0.018	< 0.017	0.052	0.033	0.71	< 0.017	< 0.017	0.18	< 0.017	0.041
Methylnaphthalene, 1-	NV	< 0.017	< 0.018	< 0.017	0.017	< 0.017	< 0.71	< 0.017	< 0.017	< 0.18	< 0.017	< 0.021
Methylnaphthalene, 2-	NV	< 0.017	< 0.018	< 0.017	0.035	< 0.017	< 0.71	< 0.017	< 0.017	< 0.18	< 0.017	< 0.021
Methylnaphthalene, 2-(1-)-**	0.99	< 0.017	< 0.018	< 0.017	0.052	< 0.017	< 0.71	< 0.017	< 0.017	< 0.18	< 0.017	< 0.021
Naphthalene	0.6	< 0.017	< 0.018	< 0.017	0.035	< 0.017	< 0.71	< 0.017	< 0.017	< 0.18	< 0.017	0.021
Phenanthrene	6.2	1.6	0.072	0.05	0.45	0.53	13	< 0.017	0.033	2.1	< 0.017	0.41
Pyrene	78	1.2	0.18	0.066	0.62	0.71	27	< 0.017	0.033	2.1	< 0.017	0.86

All units are $\mu g/g$ unless otherwise noted.

NV = No Value.

-- = Parameter not analysed.

mBGS = Meters below ground surface.

<0.5 = not detected above laboratory method detection limit shown

**The methylnaphthalene standards are applicable to both 1-methylnaphthalene and 2-methylnaphthalene, with the provision that if both are detected the sum of the two must not exceed the standard.

MECP = Soil, Groundwater and Sediment Standards for use under Part XV.1 of the Environmental Protection Act, April 2011.

Table 7 = Generic site condition standards for shallow soils in a non-potable groundwater condition for residential/parkland land use,

coarse textured soil. 10

Parameter	MECP	TP-42	SS-44	SS-46	TP-46	TP-47	TP-48	SS-49	TP-49	CH2M-TP3	CH2M-TP4
Sample Depth (mBGS)>	Table 7	0.4	0 - 0.2	0 - 0.2	1.3	0.55	0.8	0 - 0.2	0.5	0.6-0.9	0.6-0.9
Date Sampled>	(µg/g)	24-Nov-00	14-Oct-05	14-Oct-05							
Acenaphthene	7.9	0.037	< 0.017	< 0.017	0.072	0.019	0.039	< 0.017	< 0.98	<0.01	<0.01
Acenaphthylene	0.15	0.13	0.017	< 0.017	0.16	0.057	0.14	< 0.017	0.98	<0.005	<0.005
Anthracene	0.67	0.2	0.017	< 0.017	0.36	0.11	0.21	< 0.017	2	0.019	0.008
Benzo[a]anthracene	0.5	0.48	0.066	< 0.017	0.63	0.21	0.46	0.033	3.9	0.08	0.04
Benzo[a]pyrene	0.3	0.56	0.099	< 0.017	0.85	0.19	0.5	0.017	2.9	0.057	0.027
Benzo[b]fluoranthene	0.78		0.12	0.017				0.017		0.08	0.037
Benzo[k]fluoranthene	0.78		0.12	< 0.017				0.017		0.03	0.02
Benzo[g,h,i]perylene	6.6	0.26	0.099	< 0.017	0.33	0.11	0.27	< 0.017	2	0.05	0.02
Chrysene	7	0.48	0.099	< 0.017	0.62	0.19	0.44	0.017	3.9	0.06	0.03
Dibenzo[a,h]anthracene	0.1	0.11	0.033	< 0.017	0.16	0.057	0.12	< 0.017	< 0.98	<0.02	<0.02
Indeno[1,2,3-cd]pyrene	0.38	0.28	0.099	< 0.017	0.36	0.11	0.29	< 0.017	2	0.05	0.02
Fluoranthene	0.69	0.93	0.099	0.017	1.4	0.34	1.1	0.05	6.9	0.128	0.061
Fluorene	62	0.037	< 0.017	< 0.017	0.11	0.038	0.077	< 0.017	< 0.98	<0.005	<0.005
Methylnaphthalene, 1-	NV	< 0.019	0.033	< 0.017	0.054	< 0.019	0.019	< 0.017	< 0.98	0.01	<0.005
Methylnaphthalene, 2-	NV	< 0.019	0.033	< 0.017	0.054	< 0.019	0.039	< 0.017	< 0.98	0.007	<0.005
Methylnaphthalene, 2-(1-)-**	0.99	< 0.019	0.066	< 0.017	0.108	< 0.019	0.058	< 0.017	< 0.98	0.017	<0.005
Naphthalene	0.6	0.019	0.05	< 0.017	0.11	< 0.019	0.039	< 0.017	< 0.98	<0.005	<0.005
Phenanthrene	6.2	0.43	0.066	0.017	0.94	0.27	0.83	0.033	4.9	0.062	0.029
Pyrene	78	0.85	0.099	0.017	1.2	0.29	0.91	0.033	5.9	0.111	0.053

Notes:

All units are $\mu g/g$ unless otherwise noted.

NV = No Value.

-- = Parameter not analysed.

mBGS = Meters below ground surface.

<0.5 = not detected above laboratory method detection limit shown

**The methylnaphthalene standards are applicable to both 1-methylnaphthalene and 2-methylnaphthalene, with the provision that if both are detected the sum of the two must not exceed the standard.

MECP = Soil, Groundwater and Sediment Standards for use under Part XV.1 of the Environmental Protection Act, April 2011.

Table 7 = Generic site condition standards for shallow soils in a non-potable groundwater condition for residential/parkland land use,

coarse textured soil. 10

Parameter	MECP	CH2M-TP5	CH2M-MW-1	CH2M-MW-2	SST1	SST2	SST3	SST4	SST5	SST6
Sample Depth (mBGS)>	Table 7	0.6-1.2	0.8-1.4	0.8-1.1	0-0.1	0-0.1	0-0.1	0-0.1	0-0.1	0-0.1
Date Sampled>	(µg/g)	14-Oct-05	12-Oct-05	12-Oct-05	03-Nov-09	03-Nov-09	03-Nov-09	03-Nov-09	03-Nov-09	03-Nov-09
Acenaphthene	7.9	0.01	0.02	<0.1	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Acenaphthylene	0.15	0.076	0.029	<0.05	<0.02	<0.02	<0.02	0.05	0.02	<0.02
Anthracene	0.67	0.147	0.136	<0.05	<0.02	0.02	<0.02	0.08	0.02	<0.02
Benzo[a]anthracene	0.5	1.29	0.44	0.2	0.03	0.05	0.03	0.12	0.03	0.04
Benzo[a]pyrene	0.3	1.13	0.367	<0.05	0.03	0.04	0.03	0.12	0.03	0.03
Benzo[b]fluoranthene	0.78	1.5	0.453	0.07	0.04	0.07	0.05	0.17	0.05	0.05
Benzo[k]fluoranthene	0.78	0.67	0.22	<0.1	0.02	0.03	0.03	0.12	0.03	0.03
Benzo[g,h,i]perylene	6.6	0.75	0.2	<0.2	0.02	0.03	0.02	0.09	0.03	0.02
Chrysene	7	1.19	0.36	<0.1	0.04	0.05	0.04	0.15	0.04	0.04
Dibenzo[a,h]anthracene	0.1	0.2	0.05	<0.2	<0.02	<0.02	<0.02	0.02	<0.02	<0.02
Indeno[1,2,3-cd]pyrene	0.38	0.87	0.22	<0.2	0.02	0.03	0.02	0.08	0.02	0.02
Fluoranthene	0.69	2.4	0.904	0.12	0.07	0.12	0.07	0.28	0.06	0.09
Fluorene	62	0.032	0.041	<0.05	<0.02	<0.02	<0.02	0.02	<0.02	<0.02
Methylnaphthalene, 1-	NV	0.015	0.025	<0.05	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Methylnaphthalene, 2-	NV	0.008	0.012	<0.05	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Methylnaphthalene, 2-(1-)-**	0.99	0.023	0.037	<0.05	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Naphthalene	0.6	0.02	0.015	<0.05	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Phenanthrene	6.2	1.12	0.566	0.1	0.03	0.05	0.03	0.13	0.02	0.04
Pyrene	78	2.05	0.75	0.1	0.06	0.09	0.05	0.23	0.05	0.07

Notes:

All units are $\mu g/g$ unless otherwise noted.

NV = No Value.

-- = Parameter not analysed.

mBGS = Meters below ground surface.

<0.5 = not detected above laboratory method detection limit shown

**The methylnaphthalene standards are applicable to both 1-methylnaphthalene and 2-methylnaphthalene, with the provision that if both are detected the sum of the two must not exceed the standard.

MECP = Soil, Groundwater and Sediment Standards for use under Part XV.1 of the Environmental Protection Act, April 2011.

Table 7 = Generic site condition standards for shallow soils in a non-potable groundwater condition for residential/parkland land use,

coarse textured soil. 10

Parameter	MECP	SST7	SST70	SST8	SST9	SST10	BH19-01-1	BH19-D1	BH19-02-1
Sample Depth (mBGS)>	Table 7	0-0.1	Dup SST7	0-0.1	0-0.1	0-0.1	0.3-1.1	Dup 19-01-1	0.2-1.5
Date Sampled>	(µg/g)	03-Nov-09	03-Nov-09	03-Nov-09	03-Nov-09	03-Nov-09	24-May-19	24-May-19	24-May-19
Acenaphthene	7.9	0.02	<0.02	<0.02	<0.02	<0.02	0.1	0.08	0.04
Acenaphthylene	0.15	0.04	0.02	0.02	<0.02	<0.02	0.07	0.09	0.07
Anthracene	0.67	0.11	0.04	0.07	0.03	<0.02	0.36	0.24	0.13
Benzo[a]anthracene	0.5	0.2	0.1	0.17	0.06	0.02	0.81	0.5	0.25
Benzo[a]pyrene	0.3	0.17	0.09	0.15	0.05	<0.02	0.65	0.43	0.21
Benzo[b]fluoranthene	0.78	0.26	0.14	0.25	0.07	0.02	0.77	0.57	0.36
Benzo[k]fluoranthene	0.78	0.15	0.09	0.15	0.03	<0.02	0.36	0.25	0.26
Benzo[g,h,i]perylene	6.6	0.11	0.06	0.1	0.04	<0.02	0.48	0.42	0.14
Chrysene	7	0.21	0.11	0.19	0.06	0.02	0.82	0.56	0.3
Dibenzo[a,h]anthracene	0.1	0.03	<0.02	0.03	<0.02	<0.02	0.12	0.09	0.04
Indeno[1,2,3-cd]pyrene	0.38	0.1	0.06	0.1	0.03	<0.02	0.4	0.3	0.12
Fluoranthene	0.69	0.46	0.22	0.37	0.14	0.03	1.6	1.11	0.55
Fluorene	62	0.03	<0.02	<0.02	<0.02	<0.02	0.12	0.1	0.05
Methylnaphthalene, 1-	NV	<0.02	<0.02	<0.02	<0.02	<0.02	0.03	<0.02	0.02
Methylnaphthalene, 2-	NV	<0.02	<0.02	<0.02	<0.02	<0.02	0.04	0.02	0.03
Methylnaphthalene, 2-(1-)-**	0.99	<0.02	<0.02	<0.02	<0.02	<0.02	0.07	0.04	0.05
Naphthalene	0.6	<0.02	<0.02	<0.02	<0.02	<0.02	0.07	0.04	0.04
Phenanthrene	6.2	0.26	0.1	0.15	0.06	<0.02	1.23	0.71	0.36
Pyrene	78	0.38	0.18	0.31	0.11	0.02	1.3	0.89	0.46

Notes:

All units are $\mu g/g$ unless otherwise noted.

NV = No Value.

-- = Parameter not analysed.

mBGS = Meters below ground surface.

<0.5 = not detected above laboratory method detection limit shown

**The methylnaphthalene standards are applicable to both 1-methylnaphthalene and 2-methylnaphthalene, with the provision that if both are detected the sum of the two must not exceed the standard.

MECP = Soil, Groundwater and Sediment Standards for use under Part XV.1 of the Environmental Protection Act, April 2011.

Table 7 = Generic site condition standards for shallow soils in a non-potable groundwater condition for residential/parkland land use,

coarse textured soil. 10

Deveneter	MECD	DU10 02 2	DU10 02 1	DU10 04 1		
	MECP	БП 19-02-3	БП19-03-1	БП19-04-1	БП19-05-1	БП19-00-1
Sample Depth (mBGS)>	Table 7	3.0-4.6	0.7-0.8	0.2-1.5	8.0-0	0.2-0.6
Date Sampled>	(µg/g)	24-May-19	24-May-19	24-May-19	24-May-19	24-May-19
Acenaphthene	7.9	<0.02	0.42	0.37	0.03	0.19
Acenaphthylene	0.15	<0.02	0.47	0.3	0.09	0.11
Anthracene	0.67	<0.02	2.01	1.25	0.11	0.73
Benzo[a]anthracene	0.5	<0.02	3.43	2.31	0.28	1.81
Benzo[a]pyrene	0.3	<0.02	2.14	1.59	0.24	1.63
Benzo[b]fluoranthene	0.78	<0.02	3.13	2.37	0.43	2.45
Benzo[k]fluoranthene	0.78	<0.02	2.2	1.85	0.26	1.42
Benzo[g,h,i]perylene	6.6	<0.02	0.97	0.87	0.17	1.07
Chrysene	7	<0.02	3.38	2.35	0.33	1.92
Dibenzo[a,h]anthracene	0.1	<0.02	0.25	0.23	0.04	0.24
Indeno[1,2,3-cd]pyrene	0.38	<0.02	0.6	0.82	0.13	1
Fluoranthene	0.69	<0.02	8.22	5.26	0.59	4.04
Fluorene	62	<0.02	0.8	0.53	0.03	0.22
Methylnaphthalene, 1-	NV	<0.02	0.11	0.1	<0.02	0.06
Methylnaphthalene, 2-	NV	<0.02	0.1	0.12	<0.02	0.06
Methylnaphthalene, 2-(1-)-**	0.99	<0.04	0.21	0.21	<0.04	0.12
Naphthalene	0.6	<0.01	0.12	0.21	0.02	0.11
Phenanthrene	6.2	<0.02	6.64	4.16	0.37	2.27
Pyrene	78	<0.02	6.08	4.06	0.49	3.12

Notes:

All units are $\mu g/g$ unless otherwise noted.

NV = No Value.

-- = Parameter not analysed.

mBGS = Meters below ground surface.

<0.5 = not detected above laboratory method detection limit shown

**The methylnaphthalene standards are applicable to both 1-methylnaphthalene and 2-methylnaphthalene, with the provision that if both are detected the sum of the two must not exceed the standard.

MECP = Soil, Groundwater and Sediment Standards for use under Part XV.1 of the Environmental Protection Act, April 2011.

Table 7 = Generic site condition standards for shallow soils in a non-potable groundwater condition for residential/parkland land use,

coarse textured soil. 10

Parameter	MECP	TP-7	TP-8	TP-16	TP-29	TP-41	CH2M-TP3	CH2M-TP4	CH2M-TP5	CH2M-MW-1	CH2M-MW-2
Sample Depth (mBGS)>	Table 7	1.5	0.8	1.5	0.7	0.2	0.6-0.9	0.6-0.9	0.6-1.2	1.5-2.1	0.8-1.1
Date Sampled>	(µg/g)	22-Nov-00	22-Nov-00	23-Nov-00	23-Nov-00	24-Nov-00	14-Oct-05	14-Oct-05	14-Oct-05	12-Oct-05	12-Oct-05
F1 PHCs (C6-C10)	55						<10	<10	19		
F2 PHCs (C10-C16)	98						<10	<10	<10		
F3 PHCs (C16-C34)	300						42	12	<10		
F4 PHCs (C34-C50)	2800						<10	<10	<10		
Petroleum Hydrocarbons (gasoline)	NV	<10	<10	<10	<10	<10					
Petroleum Hydrocarbons (diesel)	NV	<10	30	30	360	10					
Petroleum Hydrocarbons (gasoline + diesel)	NV	<10	30	30	360	10					
Petroleum Hydrocarbons (heavy oils)	NV	100	100	250	500	100					
Benzene	0.21	< 0.040	< 0.040	< 0.040	< 0.040	0.56	0.008	0.003	0.006	0.003	0.002
Ethylbenzene	2	< 0.040	< 0.040	< 0.040	< 0.040	< 0.040	<0.002	<0.002	<0.002	<0.002	<0.002
Toluene	2.3	< 0.040	< 0.040	< 0.040	< 0.040	< 0.040	0.091	0.005	0.005	0.01	0.007
Xylenes, m,p-	NV	< 0.040	< 0.040	< 0.040	< 0.040	0.04	<0.002	<0.002	<0.002	0.008	0.007
Xylene, o-	NV	< 0.040	< 0.040	< 0.040	< 0.040	< 0.040	<0.002	<0.002	<0.002	<0.002	<0.002
Xylenes, Total	3.1	< 0.040	< 0.040	< 0.040	< 0.040	0.04	< 0.003	<0.003	<0.003	0.008	0.007
Total PCB	0.35							<0.02			

All units are µg/g unless otherwise noted.

NV = No Value.

-- = Parameter not analysed.

mBGS = Meters below ground surface.

<0.5 = not detected above laboratory method detection limit shown

MECP = Soil, Groundwater and Sediment Standards for use under Part XV.1 of the Environmental Protection Act, April 2011.

Table 7 = Generic site condition standards for shallow soils in a non-potable groundwater condition for residential/parkland land use,

coarse textured soil.

10

= Indicates concentrations which exceed MECP 2011 Table 7 standards.

Table 9.6- Soil Analytical Results - Petroleum Hydrocarbons, BTEX and PCBs, Burnside Site, Ottawa, Ontario

Parameter	MECP	BH19-06-1	BH19-07-1	BH19-09-1	BH19-10-1
Sample Depth (mBGS)>	Table 7	0-0.8	0.5-1.4	0.1-0.6	0.3-1.1
Date Sampled>	(µg/g)	24-May-19	24-May-19	24-May-19	24-May-19
F1 PHCs (C6-C10)	55	<7	<7	<7	<7
F2 PHCs (C10-C16)	98	<4	<4	5	<4
F3 PHCs (C16-C34)	300	<8	71	33	45
F4 PHCs (C34-C50)	2800	<6	40	11	30
Petroleum Hydrocarbons (gasoline)	NV				
Petroleum Hydrocarbons (diesel)	NV				
Petroleum Hydrocarbons (gasoline + diesel)	NV				
Petroleum Hydrocarbons (heavy oils)	NV				
Benzene	0.21	<0.02	<0.02	<0.02	<0.02
Ethylbenzene	2	< 0.05	<0.05	< 0.05	<0.05
Toluene	2.3	< 0.05	<0.05	<0.05	<0.05
Xylenes, m,p-	NV	< 0.05	<0.05	< 0.05	<0.05
Xylene, o-	NV	< 0.05	<0.05	< 0.05	<0.05
Xylenes, Total	3.1	< 0.05	<0.05	<0.05	<0.05
Total PCB	0.35				

Notes:

All units are µg/g unless otherwise noted.

NV = No Value.

-- = Parameter not analysed.

mBGS = Meters below ground surface.

<0.5 = not detected above laboratory method detection limit shown

MECP = Soil, Groundwater and Sediment Standards for use under Part XV.1 of the Environmental Protection Table 7 = Generic site condition standards for shallow soils in a non-potable groundwater condition for reside

coarse textured soil.

10

Table 9.7 - Soil Analytical Results - Volatile Organic Compounds, Burnside Site, Ottawa, Ontario

Parameter	MECP	CH2M-TP3	CH2M-TP4	CH2M-TP5	CH2M-MW-1	CH2M-MW-2
Sample Depth (mBGS)>	Table 7	0.6-0.9	0.6-0.9	0.6-1.2	1.5-2.1	0.8-1.1
Date Sampled>	(µg/g)	14-Oct-05	14-Oct-05	14-Oct-05	12-Oct-05	12-Oct-05
Acetone	16	<0.1	<0.1	<0.1	<0.1	<0.1
Bromodichloromethane	13	<0.002	<0.002	<0.002	<0.002	<0.002
Bromoform	0.27	< 0.002	<0.002	<0.002	<0.002	<0.002
Bromomethane	0.05	<0.002	<0.002	<0.002	<0.002	<0.002
Carbon Tetrachloride	0.05	<0.002	<0.002	<0.002	<0.002	<0.002
Chlorobenzene	2.4	<0.002	<0.002	<0.002	<0.002	<0.002
Chloroform	0.05	<0.002	<0.002	<0.002	<0.002	<0.002
Dibromochloromethane	9.4	< 0.002	<0.002	<0.002	<0.002	<0.002
Dichlorobenzene, 1,2-	3.4	<0.002	<0.002	<0.002	<0.002	<0.002
Dichlorobenzene, 1,3-	4.8	< 0.002	<0.002	<0.002	<0.002	<0.002
Dichlorobenzene, 1,4-	0.083	< 0.002	<0.002	<0.002	<0.002	<0.002
Dichloroethane, 1,1-	3.5	<0.002	<0.002	<0.002	<0.002	<0.002
Dichloroethane, 1,2-	0.05	<0.002	<0.002	<0.002	<0.002	<0.002
Dichloroethylene, 1,1-	0.05	<0.002	<0.002	<0.002	<0.002	<0.002
Dichloroethylene, cis-1,2-	3.4	<0.002	<0.002	<0.002	<0.002	<0.002
Dichloroethylene, trans-1,2-	0.084	< 0.002	<0.002	<0.002	<0.002	<0.002
Dichloropropylene, cis-1,3-	NV	<0.002	<0.002	<0.002	<0.002	<0.002
Dichloropropylene, trans-1,3-	NV	<0.002	<0.002	<0.002	<0.002	<0.002
Dichloropropylene, cis+trans	0.05	<0.002	<0.002	<0.002	<0.002	<0.002
Dichloropropane, 1,2-	0.05	<0.002	<0.002	<0.002	<0.002	<0.002
Ethylene Dibromide	0.05	<0.002	<0.002	<0.002	<0.002	<0.002
Methyl Ethyl Ketone	16	< 0.002	<0.002	<0.002	<0.002	<0.002
Methyl Isobutyl Ketone	1.7	<0.002	<0.002	<0.002	<0.002	<0.002
Methyl t-Butyl Ether	0.75	<0.002	<0.002	<0.002	<0.002	<0.002
Methylene Chloride	0.1	<0.002	<0.002	<0.002	<0.002	<0.002
Styrene	0.7	< 0.002	<0.002	<0.002	<0.002	<0.002
Tetrachloroethane, 1,1,1,2-	0.058	<0.002	<0.002	<0.002	<0.002	<0.002
Tetrachloroethane, 1,1,2,2-	0.05	<0.002	<0.002	<0.002	<0.002	<0.002
Tetrachloroethylene	0.28	< 0.002	<0.002	<0.002	<0.002	<0.002
Trichloroethane, 1,1,1-	0.38	< 0.002	<0.002	<0.002	<0.002	<0.002
Trichloroethane, 1,1,2-	0.05	<0.002	<0.002	<0.002	<0.002	<0.002
Trichloroethylene	0.061	<0.002	<0.002	<0.002	<0.002	<0.002
Vinyl chloride	0.02	<0.002	<0.002	<0.002	<0.002	<0.002

Notes:

All units are $\mu g/g$ unless otherwise noted.

NV = No Value.

-- = Parameter not analysed.

10

mBGS = Meters below ground surface.

MECP = Soil, Groundwater and Sediment Standards for use under Part XV.1 of the Environmental Protection Act, April 2011.

Table 7 = Generic site condition standards for shallow soils in a non-potable groundwater condition for residential/parkland land use, coarse textured soil.

Parameter	MECP	PH-7	PH-20	PH-30	PH-37	PH-49	CH2M-TP3	CH2M-TP4	CH2M-TP5	CH2M-MW-1-1	CH2M-MW-1-2	CH2M-MW-2
Sample Depth (mBGS)>	Table 7	0.3-0.5	0.3-0.5	0.3-0.5	0.3-0.5	0.3-0.5	0.6-0.9	0.6-0.9	0.6-1.2	0.8-1.4	1.5-2.1	0.8-1.1
Date Sampled>		22-Nov-00	23-Nov-00	23-Nov-00	24-Nov-00	24-Nov-00	14-Oct-05	14-Oct-05	14-Oct-05	12-Oct-05	12-Oct-05	12-Oct-05
General Inorganics												
SAR	5 µg/g											
Conductivity	700 uS/cm											
Cyanide, free	0.051 μg/g											
рН	5 to 9	8.09	7.98	7.88	7.93	7.78	7.03	7.39	6.93	7.46	7.51	7.46

Parameter	MECP	BH19-01-1	BH19-D1	BH19-02-1	BH19-02-3	BH19-03-1	BH19-04-1	BH19-05-1	BH19-08-1
Sample Depth (mBGS)>	Table 7	0.3-1.1	Dup of BH19-01-1	0.2-1.5	3.0-4.6	0.7-0.8	0.2-1.5	0-0.8	0.2-0.6
Date Sampled>		24-May-19	24-May-19	24-May-19	24-May-19	24-May-19	24-May-19	24-May-19	24-May-19
General Inorganics									
SAR	5 µg/g	0.17	0.39	0.38	0.39	0.24	0.12	0.12	0.37
Conductivity	700 uS/cm	185	183	180	136	238	160	197	235
Cyanide, free	0.051 μg/g	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
рН	5 to 9	7.74	7.66	7.79	7.86	7.74	7.73	7.66	7.61

-- = Parameter not analysed.

mBGS = Meters below ground surface.

MECP = Soil, Groundwater and Sediment Standards for use under Part XV.1 of the Environmental Protection Act, April 2011.

Table 7 = Generic site condition standards for shallow soils in a non-potable groundwater condition for residential/parkland land use, coarse textured soil.

Table 9.9 - Maximum Concentrations in Soil, Burnside Site, Ottawa, Ontario

	Max Soil				Max Soil		
Parameter	Concentration	Sample	Depth	Parameter	Concentration	Location	Depth
	(µg/g)	Location	(mBGS)		(µg/g)		(mBGS)
	Metals			Petroleur	n Hydrocarbons a	and BTEX	
Antimony	8	TP-7	1.5	F1 PHCs (C6-C10)	19	CH2M TP-5	0.6-1.2
Arsenic	10	TP-14	2.9	F2 PHCs (C10-C16)	5	BH19-09	0.1-0.6
Barium	610	TP-49	0.5	F3 PHCs (C16-C34)	71	BH19-07	0.5-1.4
Beryllium	1.5	SS-28	0-0.2	F4 PHCs (C34-C50)	40	BH19-07	0.5-1.4
Boron (HVVS)	0.0	BH19-08	0.2-0.6	Benzene	0.50	1P-41 NA	0.2
Boron (lolal)	10.9		0.2-0.0				
Chromium Total*	90	TP-49	0.0-1.2	Yulanas min-	0.031	TP-41	0.0-0.3
Chromium, Hexavalent	2.5	BH19-04	0.2-1.5	Xylene, o-	ND	NA	NA
Cobalt*	20	TP-4	0.8	Xvlenes, Total	0.04	TP-41	0.2
Copper	150	TP-15	1	Volat	ile Organic Comp	ounds	
Lead	1100	TP-45	0.5	Acetone	ND	NA	NA
Mercury	0.46	CH2M TP-5	0.6-1.2	Bromodichloromethane	ND	NA	NA
Molybdenum	29	TP-3A	0-0.8	Bromoform	ND	NA	NA
Nickel	55	TP-24	0.2	Bromomethane	ND	NA	NA
Selenium*	9	SS-31	0-0.2	Carbon Tetrachloride	ND	NA	NA
Silver	1.1	CH2M TP-4	0.6-0.9	Chlorobenzene	ND	NA	NA
Thallium	ND	NA	NA	Chloroform	ND	NA	NA
Uranium	ND	NA	NA	Dibromochloromethane	ND	NA	NA
Vanadium*	90	TP-4	0.8	Dichlorobenzene, 1,2-	ND	NA	NA
Zinc	1700	CH2M TP-5	0.6-1.2	Dichlorobenzene, 1,3-	ND	NA	NA
	Inorganics			Dichlorobenzene, 1,4-	ND	NA	NA
SAR	0.39	BH19-02	3.0-4.6	Dichloroethane, 1,1-	ND	NA	NA
Conductivity µS/cm	238	BH19-03	0.7-0.8	Dichloroethane, 1,2-	ND	NA	NA
Cyanide, free	ND	NA	NA	Dichloroethylene, 1,1-	ND	NA	NA
Polycyc	clic Aromatic Hydr	rocarbons		Dichloroethylene, cis-1,2-	ND	NA	NA
Acenaphthene	2.5	TP-29	0.7	Dichloroethylene, trans-1,2-	ND	NA	NA
Acenaphthylene	6.4	TP-36	1.2	Dichloropropylene, cis-1, 3-	ND	NA	NA
Anthracene	11	TP-36	1.2	Dichloropropylene,trans-1,3	ND	NA	NA
Benzo[a]anthracene	24.8	TP-7A	0.6	Dichloropropylene, cis+trans	ND	NA	NA
Benzo[a]pyrene	16	TP-29	0.7	Dichloropropane, 1,2-	ND	NA	NA
Benzo[b]fluoranthene	3.13	BH19-03	0.7-0.8	Ethylene Dibromide	ND	NA	NA
Benzo[k]fluoranthene	2.2	BH19-03	0.7-0.8	Methyl Ethyl Ketone	ND	NA	NA
Benzo[g,h,i]perylene	5.7	TP-29	0.7	Methyl Isobutyl Ketone	ND	NA	NA
Chrysene	17.5	TP-7A	0.6	Methyl t-Butyl Ether	ND	NA	NA
Dibenzo[a,h]anthracene*	2.8	TP-29	0.7	Methylene Chloride	ND	NA	NA
Indeno[1,2,3-cd]pyrene	7.1	TP-36	1.2	Styrene	ND	NA	NA
Fluoranthene	43	TP-7A	0.6	Tetrachloroethane, 1,1,1,2-	ND	NA	NA
Fluorene	2.6	TP-29	0.7	Tetrachloroethane, 1,1,2,2-	ND	NA	NA
Methylnaphthalene, 1-	1	TP-29	0.7	Tetrachloroethylene	ND	NA	NA
Methylnaphthalene, 2-	1.2	TP-29	0.7	Trichloroethane, 1,1,1-	ND	NA	NA
Methylnaphthalene, 2&1	2.2	TP-29	0.7	Trichloroethane, 1,1,2-	ND	NA	NA
Naphthalene	1.6	TP-29	0.7	Trichloroethylene	ND	NA	NA
Phenanthrene	32.2	TP-7A	0.6	Vinyl chloride	ND	NA	NA
Pyrene	38.3	TP-7A	0.6				
Polychlorinated Biphenyl	[]						
Total PCB	ND	NA	NA				

Notes:

ND = Parameter not detected above laboratory detections limits

NA = Not applicable

* = maximum concentration found in more than one sample

Monitoring	Sample	Sample			Sam	ple Analysis	Date			Laboratory
Well / Sample	Interval	Collection		Metals				PHC (F1) /	Voca	Report
ID	(mASL)	Date	Hg	CrVI	Others	PARS	РПС (Г2-Г4)	BTEX	VUCS	Number
		7-Nov-12	9-Nov-12	9-Nov-12	9-Nov-12	10-Nov-12	9-Nov-12	9-Nov-12	10-Nov-12	1245252
CH2M MW-2	52.62-55.67	17-Oct-14	23-Oct-14	22-Oct-14		21-Oct-14	24-Oct-14	21-Oct-14	22-Oct-14	R3201080
		17-Oct-14			24-Oct-14					R1671257
		7-Nov-12	9-Nov-12	9-Nov-12	9-Nov-12	10-Nov-12	9-Nov-12	9-Nov-12	10-Nov-12	1245252
MW-1	51.88-54.93	17-Oct-14	23-Oct-14	22-Oct-14		21-Oct-14	24-Oct-14	21-Oct-14	22-Oct-14	R3201080
		17-Oct-14			24-Oct-14					R1671257
		7-Nov-12	9-Nov-12	9-Nov-12	9-Nov-12	10-Nov-12	9-Nov-12	9-Nov-12	10-Nov-12	1245252
MW-2	51.33-54.38	17-Oct-14	23-Oct-14	22-Oct-14		21-Oct-14	24-Oct-14	21-Oct-14	22-Oct-14	R3201080
		17-Oct-14			24-Oct-14					R1671257
		7-Nov-12	9-Nov-12	9-Nov-12	9-Nov-12	10-Nov-12	9-Nov-12	9-Nov-12	10-Nov-12	1245252
MW-3	49.72-52.77	17-Oct-14	23-Oct-14	22-Oct-14		21-Oct-14	24-Oct-14	21-Oct-14	22-Oct-14	R3201080
		17-Oct-14			24-Oct-14					R1671257
		7-Nov-12	9-Nov-12	9-Nov-12	9-Nov-12	10-Nov-12	9-Nov-12	9-Nov-12	10-Nov-12	1245252
MW-4	54.71-57.76	17-Oct-14	23-Oct-14	22-Oct-14		21-Oct-14	24-Oct-14	21-Oct-14	22-Oct-14	R3201080
		17-Oct-14			24-Oct-14					R1671257
		7-Nov-12	9-Nov-12	9-Nov-12	9-Nov-12	10-Nov-12	9-Nov-12	9-Nov-12	10-Nov-12	1245252
MW-5	51.52-54.57	17-Oct-14	23-Oct-14	22-Oct-14		21-Oct-14	24-Oct-14	21-Oct-14	22-Oct-14	R3201080
		17-Oct-14			24-Oct-14					R1671257

Parameter	MECP	CH2M	MW-2		MW-1			MW-2		MW-3	
Stratigraphic Unit>	Table 7	Overburde	n/Bedrock		Bedrock			Overburden		Bed	rock
Date Sampled>	(µg/L)	07-Nov-12	17-Oct-14	07-Nov-12	Duplicate	17-Oct-14	07-Nov-12	17-Oct-14	Duplicate	07-Nov-12	17-Oct-14
Antimony	16000	0.6	<0.6	<0.5	<0.5	<0.6	<0.5	<0.6	<0.6	1.7	<0.6
Arsenic	1500	<1	<0.2	<1	<1	<0.2	<1	<0.2	<0.2	5	1
Barium	23000	43	82	456	385	460	384	360	360	118	120
Beryllium	53	<0.5	<1	<0.5	<0.5	<1	<0.5	<1	<1	<0.5	<1
Boron (total)	36000	58	100	219	142	130	221	160	160	174	90
Cadmium	2.1	<0.1	<0.02	<0.1	<0.1	<0.02	<0.1	<0.02	<0.02	<0.1	<0.02
Chromium	640	<1	<1	5	6	<1	5	<1	<1	<1	<1
Hexvalent (IV) Chromium	110	<10	<0.5	<10	<10	<0.5	<10	<0.5	<0.5	<10	<0.5
Cobalt	52	4.2	0.35	<0.5	<0.5	0.33	<0.5	<0.3	<0.3	<0.5	0.3
Copper	69	<0.5	1.7	<0.5	0.6	<0.2	<0.5	<0.2	<0.2	<0.5	<0.2
Lead	20	<0.1	<0.2	<0.1	<0.1	<0.2	<0.1	<0.2	<0.2	<0.1	<0.2
Molybdenum	7300	3.3	0.54	0.5	0.6	<0.2	<0.5	<0.2	<0.2	2.4	1.7
Mercury	0.1	<0.1	<0.01	<0.1	<0.1	<0.01	<0.1	<0.01	<0.01	<0.1	0.02
Nickel	390	6	4.7	5	5	<0.5	3	<0.5	<0.5	4	1.4
Selenium	50	<1	<0.2	<1	<1	0.88	<1	0.44	0.49	<1	<0.2
Silver	1.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Sodium	1800000	53900	70000	281000	278000	140000	247000	170000	170000	48400	37000
Thallium	400	<0.1	<0.2	<0.1	<0.1	<0.2	<0.1	<0.2	<0.2	<0.1	<0.2
Uranium	330	1.9	1.4	0.9	0.8	0.11	<0.1	0.13	0.16	8.3	1.1
Vanadium	200	2.9	<1	6.5	8.1	<1	5.5	1.1	1.2	3.7	<1
Zinc	890	5	3.5	<5	<5	<3	<5	<3	<3	<5	<3

All units are $\mu g/L$ unless otherwise noted.

NV = No Value.

-- = Parameter not analysed.

<0.1 = not detected above the laboratory method detection limit shown

MECP = Soil, Groundwater and Sediment Standards for use under Part XV.1 of the Environmental Protection Act, April 2011.

Table 7 = Generic site condition standards for shallow soils in a non-potable ground water condition

for residential/parkland land use, coarse textured soil

10

Parameter	MECP	MW-4		MV	V-5	Field
Stratigraphic Unit>	Table 7	Bed	rock	Overb	ourden	Blank
Date Sampled>	(µg/L)	07-Nov-12	17-Oct-14	07-Nov-12	17-Oct-14	07-Nov-12
Antimony	16000	25.6	<0.6	0.6	<0.6	<0.5
Arsenic	1500	<1	2.8	<1	<0.2	<1
Barium	23000	124	91	160	190	<1
Beryllium	53	<0.5	<1	<0.5	<1	<0.5
Boron (total)	36000	66	27	112	100	<10
Cadmium	2.1	<0.1	<0.02	<0.1	0.087	<0.1
Chromium	640	<1	<1	14	<1	<1
Hexvalent (IV) Chromium	110	<10	<0.5	<10	<0.5	<10
Cobalt	52	0.6	0.47	1.7	1.1	<0.5
Copper	69	0.7	0.31	3.9	1.6	<0.5
Lead	20	<0.1	<0.2	<0.1	<0.2	<0.1
Molybdenum	7300	1.3	1.6	1.3	2.2	<0.5
Mercury	0.1	<0.1	<0.01	<0.1	<0.01	<0.1
Nickel	390	6	1.5	8	4	<1
Selenium	50	3	<0.2	<1	<0.2	<1
Silver	1.2	<0.1	<0.1	<0.1	<0.1	<0.1
Sodium	1800000	39400	23000	1080000	860000	<200
Thallium	400	<0.1	<0.2	<0.1	<0.2	<0.1
Uranium	330	1.8	0.75	1.8	2.2	<0.1
Vanadium	200	7.8	<1	3.4	<1	<0.5
Zinc	890	<5	<3	<5	<3	<5

All units are $\mu g/L$ unless otherwise noted.

NV = No Value.

-- = Parameter not analysed.

<0.1 = not detected above the laboratory method detection limit shown

MECP = Soil, Groundwater and Sediment Standards for use under Part XV.1 of the Environmental Protection Act, April 2011.

Table 7 = Generic site condition standards for shallow soils in a non-potable ground water condition

for residential/parkland land use, coarse textured soil

10

Parameter	MECP	CH2M	MW-2		MW-1			MW-2		MW-3	
Stratigraphic Unit>	Table 7	Overburde	n/Bedrock		Bedrock			Overburden		Bed	rock
Date Sampled>	(µg/L)	07-Nov-12	17-Oct-14	07-Nov-12	Duplicate	17-Oct-14	07-Nov-12	17-Oct-14	Duplicate	07-Nov-12	17-Oct-14
Acenaphthene	17	<0.05	<0.01	0.16	0.14	0.13	0.31	0.28	0.3	<0.05	<0.01
Acenaphthylene	1	0.83	<0.01	0.19	0.56	<0.01	0.08	<0.01	<0.01	<0.05	<0.01
Anthracene	1	<0.01	<0.01	0.04	0.15	<0.01	0.08	0.011	0.012	<0.01	<0.01
Benzo[a]anthracene	1.8	<0.01	<0.01	0.17	0.2	0.017	0.17	<0.01	<0.01	<0.01	<0.01
Benzo[a]pyrene	0.81	<0.01	<0.01	0.12	0.11	0.015	0.11	<0.01	<0.01	<0.01	<0.01
Benzo[b]fluoranthene	0.75	<0.05	<0.01	0.11	0.12	0.021	0.1	<0.01	<0.01	<0.05	<0.01
Benzo[k]fluoranthene	0.4	<0.05	<0.01	0.06	0.12	<0.01	0.05	<0.01	<0.01	<0.05	<0.01
Benzo[g,h,i]perylene	0.2	<0.05	<0.01	0.1	0.07	<0.01	0.09	<0.01	<0.01	<0.05	<0.01
Chrysene	0.7	<0.05	<0.01	0.15	0.25	0.016	0.15	<0.01	<0.01	<0.05	<0.01
Dibenzo[a,h]anthracene	0.4	<0.05	<0.01	<0.05	<0.05	<0.01	<0.05	<0.01	<0.01	<0.05	<0.01
Indeno[1,2,3-cd]pyrene	0.2	<0.05	<0.01	0.07	0.08	<0.01	0.07	<0.01	<0.01	<0.05	<0.01
Fluoranthene	44	<0.01	<0.01	0.29	0.4	0.066	0.37	0.068	0.064	<0.01	<0.01
Fluorene	290	<0.05	<0.01	0.06	0.07	0.023	<0.05	<0.01	<0.01	<0.05	<0.01
Methylnaphthalene, 1-	NV	<0.05	<0.01	< 0.05	0.05	<0.01	<0.05	<0.01	<0.01	<0.05	<0.01
Methylnaphthalene, 2-	NV	<0.05	<0.01	0.06	0.05	<0.01	<0.05	<0.01	<0.01	0.06	<0.01
Methylnaphthalene, 2-(1-)	1500	<0.1	<0.01	0.1	<0.1	<0.01	<0.1	<0.01	<0.01	0.06	<0.01
Naphthalene	7	0.5	<0.01	0.2	0.32	0.019	0.13	<0.01	<0.01	0.23	<0.01
Phenanthrene	380	0.06	<0.01	0.15	0.24	0.027	0.15	0.014	<0.01	0.08	<0.01
Pyrene	5.7	<0.01	<0.01	0.32	0.41	0.047	0.39	0.049	0.045	<0.01	<0.01

Notes:

All units are μ g/L unless otherwise noted.

NV = No Value.

-- = Parameter not analysed.

<0.1 = not detected above the laboratory method detection limit shown

* The methylnaphthalene standards are applicable to both 1-methylnaphthalene and 2-methylnaphthalene, with the provision that if both are detected the sum of the two must not exceed the standard.

MECP = Soil, Groundwater and Sediment Standards for use under Part XV.1 of the Environmental Protection Act, April 2011.

Table 7 = Generic site condition standards for shallow soils in a non-potable ground water condition

for residential/parkland land use, coarse textured soil

10

Parameter	MECP	MV	V-4	MV	V-5	Field
Stratigraphic Unit>	Table 7	Bed	rock	Overb	ourden	Blank
Date Sampled>	(µg/L)	07-Nov-12	17-Oct-14	07-Nov-12	17-Oct-14	07-Nov-12
Acenaphthene	17	<0.05	<0.01	<0.05	<0.01	<0.05
Acenaphthylene	1	<0.05	<0.01	0.24	<0.01	<0.05
Anthracene	1	<0.01	<0.01	0.04	<0.01	<0.01
Benzo[a]anthracene	1.8	<0.01	<0.01	<0.01	<0.01	<0.01
Benzo[a]pyrene	0.81	<0.01	<0.01	<0.01	<0.01	<0.01
Benzo[b]fluoranthene	0.75	<0.05	<0.01	< 0.05	<0.01	<0.05
Benzo[k]fluoranthene	0.4	<0.05	<0.01	<0.05	<0.01	<0.05
Benzo[g,h,i]perylene	0.2	<0.05	<0.01	<0.05	<0.01	<0.05
Chrysene	0.7	<0.05	<0.01	< 0.05	<0.01	<0.05
Dibenzo[a,h]anthracene	0.4	<0.05	<0.01	<0.05	<0.01	<0.05
Indeno[1,2,3-cd]pyrene	0.2	<0.05	<0.01	<0.05	<0.01	<0.05
Fluoranthene	44	<0.01	<0.01	<0.01	<0.01	<0.01
Fluorene	290	<0.05	<0.01	< 0.05	<0.01	<0.05
Methylnaphthalene, 1-	NV	<0.05	<0.01	0.07	<0.01	<0.05
Methylnaphthalene, 2-	NV	<0.05	<0.01	0.06	<0.01	<0.05
Methylnaphthalene, 2-(1-)	1500	<0.1	<0.01	0.12	<0.01	<0.1
Naphthalene	7	<0.05	<0.01	0.2	<0.01	<0.05
Phenanthrene	380	<0.05	<0.01	0.1	<0.01	<0.05
Pyrene	5.7	<0.01	<0.01	<0.01	<0.01	<0.01

All units are $\mu g/L$ unless otherwise noted.

NV = No Value.

-- = Parameter not analysed.

<0.1 = not detected above the laboratory method detection limit shown

* The methylnaphthalene standards are applicable to both 1-methylnaphthalene and 2-methylnaphthalene, with the provision that if both are detected the sum of the two must not exceed the standard.

MECP = Soil, Groundwater and Sediment Standards for use under Part XV.1 of the Environmental Protection Act, April 2011.

Table 7 = Generic site condition standards for shallow soils in a non-potable ground water condition

for residential/parkland land use, coarse textured soil

10

Table 9.13 - Groundwater Analytical Results - Petroluem Hydrocarbons and BTEX, Burnside Site, Ottawa, Ontario

Parameter	MECP	CH2M	MW-2	MW-1				MW-2		MW-3	
Stratigraphic Unit>	Table 7	Overburde	n/Bedrock	Bedrock			Overburden			Bedrock	
Date Sampled>	(µg/L)	07-Nov-12	17-Oct-14	07-Nov-12	Duplicate	17-Oct-14	07-Nov-12	17-Oct-14	Duplicate	07-Nov-12	17-Oct-14
F1 PHCs (C6-C10)	420	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25
F2 PHCs (C10-C16)	150	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100
F3 PHCs (C16-C34)	500	<100	<200	<100	<100	<200	<100	<200	<200	<100	<200
F4 PHCs (C34-C50)	500	<100	<200	<100	<100	<200	<100	<200	<200	<100	<200
Benzene	0.5	<0.5	<0.1	<0.5	<0.5	<0.1	<0.5	<0.1	<0.1	<0.5	<0.1
Ethylbenzene	54	<0.5	<0.1	<0.5	<0.5	<0.1	<0.5	<0.1	<0.1	<0.5	<0.1
Toluene	320	<0.5	<0.2	<0.5	<0.5	<0.2	<0.5	<0.2	<0.2	<0.5	<0.2
Xylenes, m,p-	NV	<0.5	<0.1	<0.5	<0.5	<0.1	<0.5	<0.1	<0.1	<0.5	<0.1
Xylene, o-	NV	<0.5	<0.1	<0.5	<0.5	<0.1	<0.5	<0.1	<0.1	<0.5	<0.1
Xylenes, Total	72	<0.5	<0.1	<0.5	<0.5	<0.1	<0.5	<0.1	<0.1	<0.5	<0.1

Notes:

All units are $\mu g/L$ unless otherwise noted.

NV = No Value.

-- = Parameter not analysed.

<0.1 = not detected above the laboratory method detection limit shown

MECP = Soil, Groundwater and Sediment Standards for use under Part XV.1 of the Environmental Protection Act, April 2011.

Table 7 = Generic site condition standards for shallow soils in a non-potable ground water condition

for residential/parkland land use, coarse textured soil

Table 9.13 - Groundwater Analytical Results - Petroluem Hydrocarbons and BTEX, Burnside Site, Ottawa, Ontario

Parameter	MECP	MW-4		MV	V-5	Fie	ld	Trip	
Stratigraphic Unit>	Table 7	Bedrock		Overb	Overburden		Blank		nk
Date Sampled>	(µg/L)	07-Nov-12	17-Oct-14	07-Nov-12	17-Oct-14	07-Nov-12	17-Oct-14	07-Nov-12	17-Oct-14
F1 PHCs (C6-C10)	420	<25	<25	<25	<25	<25		<25	
F2 PHCs (C10-C16)	150	<100	<100	<100	<100	<100		<100	
F3 PHCs (C16-C34)	500	<100	<200	<100	<200	<100		<100	
F4 PHCs (C34-C50)	500	<100	<200	<100	<200	<100		<100	
Benzene	0.5	<0.5	<0.1	<0.5	<0.1	<0.5	<0.1	<0.5	<0.1
Ethylbenzene	54	<0.5	<0.1	<0.5	<0.1	<0.5	<0.1	<0.5	<0.1
Toluene	320	<0.5	<0.2	<0.5	<0.2	<0.5	<0.2	<0.5	<0.2
Xylenes, m,p-	NV	<0.5	<0.1	<0.5	<0.1	<0.5	<0.1	<0.5	<0.1
Xylene, o-	NV	<0.5	<0.1	<0.5	<0.1	<0.5	<0.1	<0.5	<0.1
Xylenes, Total	72	<0.5	<0.1	<0.5	<0.1	<0.5	<0.1	<0.5	<0.1

Notes:

All units are $\mu g/L$ unless otherwise noted.

NV = No Value.

-- = Parameter not analysed.

<0.1 = not detected above the laboratory method detection limit shown

MECP = Soil, Groundwater and Sediment Standards for use under Part XV.1 of the Environmental Protection Act, April 2011.

Table 7 = Generic site condition standards for shallow soils in a non-potable ground water condition

for residential/parkland land use, coarse textured soil

Table 9.14 - Groundwater Ana	alvtical Results -	 Volatile Organ 	nic Compounds.	Burnside Site.	Ottawa. Ontario

Parameter	MECP	CH2M MW-2		MW-1		MW-2			MW-3		
Stratigraphic Unit>	Table 7	Overburden/Bedrock		Bedrock		Overburden			Bedrock		
Date Sampled>	(µg/L)	07-Nov-12	17-Oct-14	07-Nov-12	Duplicate	17-Oct-14	07-Nov-12	17-Oct-14	Duplicate	07-Nov-12	17-Oct-14
Acetone	100000	<5	<10	<5	<5	<10	<5	<10	<10	<5	<10
Benzene	0.5	<0.5	<0.1	<0.5	<0.5	<0.1	<0.5	<0.1	<0.1	<0.5	<0.1
Bromodichloromethane	67000	<0.5	<0.1	<0.5	<0.5	<0.1	<0.5	<0.1	<0.1	<0.5	<0.1
Bromoform	5	<0.5	<0.2	<0.5	<0.5	<0.2	<0.5	<0.2	<0.2	<0.5	<0.2
Bromomethane	0.89	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Carbon Tetrachloride	0.2	<0.2	<0.1	<0.2	<0.2	<0.1	<0.2	<0.1	<0.1	<0.2	<0.1
Chlorobenzene	140	<0.5	<0.1	<0.5	<0.5	<0.1	<0.5	<0.1	<0.1	<0.5	<0.1
Chloroform	2	<0.5	<0.1	<0.5	<0.5	<0.1	<0.5	<0.1	<0.1	<0.5	<0.1
Dibromochloromethane	65000	<0.5	<0.2	<0.5	<0.5	<0.2	<0.5	<0.2	<0.2	<0.5	<0.2
Dichlorobenzene, 1,2-	150	<0.5	<0.2	<0.5	<0.5	<0.2	<0.5	<0.2	<0.2	<0.5	<0.2
Dichlorobenzene, 1,3-	7600	<0.5	<0.2	<0.5	<0.5	<0.2	<0.5	<0.2	<0.2	<0.5	<0.2
Dichlorobenzene, 1,4-	0.5	<0.5	<0.2	<0.5	<0.5	<0.2	<0.5	<0.2	<0.2	<0.5	<0.2
Dichlorodifluoromethane	3500	<1	<0.5	<1	<1	<0.5	<1	<0.5	<0.5	<1	<0.5
Dichloroethane, 1,1-	11	<0.5	<0.1	<0.5	<0.5	<0.1	<0.5	<0.1	<0.1	<0.5	0.59
Dichloroethane, 1,2-	0.5	<0.5	<0.2	<0.5	<0.5	<0.2	<0.5	<0.2	<0.2	<0.5	<0.2
Dichloroethylene, 1,1-	0.5	<0.5	<0.1	<0.5	<0.5	<0.1	<0.5	<0.1	<0.1	<0.5	<0.1
Dichloroethylene, cis-1,2-	1.6	<0.5	<0.1	<0.5	<0.5	<0.1	<0.5	<0.1	<0.1	<0.5	<0.1
Dichloroethylene, trans-1,2-	1.6	<0.5	<0.1	<0.5	<0.5	<0.1	<0.5	<0.1	<0.1	<0.5	<0.1
Dichloropropane, 1,2-	0.58	<0.5	<0.1	<0.5	<0.5	<0.1	<0.5	<0.1	<0.1	<0.5	<0.1
Dichloropropylene, cis-1,3-	NV	<0.5	<0.2	<0.5	<0.5	<0.2	<0.5	<0.2	<0.2	<0.5	<0.2
Dichloropropylene, trans-1,3-	NV	<0.5	<0.2	<0.5	<0.5	<0.2	<0.5	<0.2	<0.2	<0.5	<0.2
Dichloropropylene, cis + trans	0.5	<0.5	<0.2	<0.5	<0.5	<0.2	<0.5	<0.2	<0.2	<0.5	<0.2
Ethylbenzene	54	<0.5	<0.1	<0.5	<0.5	<0.1	<0.5	<0.1	<0.1	<0.5	<0.1
Ethylene Dibromide	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Hexane	5	<1	<0.5	<1	<1	<0.5	<1	<0.5	<0.5	<1	<0.5
Methylene Chloride	26	<5	<0.5	<5	<5	<0.5	<5	<0.5	<0.5	<5	<0.5
Methyl Isobutyl Ketone	5200	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Methyl Ethyl Ketone	21000	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Methyl t-butyl ether	15	<2	<0.2	<2	<2	<0.2	<2	<0.2	<0.2	<2	<0.2
Styrene	43	<0.5	<0.2	<0.5	<0.5	<0.2	<0.5	<0.2	<0.2	<0.5	<0.2
Tetrachloroethane, 1,1,1,2-	1.1	<0.5	<0.2	<0.5	<0.5	<0.2	<0.5	<0.2	<0.2	<0.5	<0.2
Tetrachloroethane, 1,1,2,2-	0.5	<0.5	<0.2	<0.5	<0.5	<0.2	<0.5	<0.2	<0.2	<0.5	<0.2
Tetrachloroethylene	0.5	<0.5	<0.1	<0.5	<0.5	<0.1	<0.5	<0.1	<0.1	<0.5	<0.1
Toluene	320	<0.5	<0.2	<0.5	<0.5	<0.2	<0.5	<0.2	<0.2	<0.5	<0.2
Trichloroethane, 1,1,1-	23	<0.5	<0.1	<0.5	<0.5	<0.1	<0.5	<0.1	<0.1	<0.5	<0.1
Trichloroethane, 1,1,2-	0.5	<0.5	<0.2	<0.5	<0.5	<0.2	<0.5	<0.2	<0.2	<0.5	<0.2
Trichloroethylene	0.5	<0.5	<0.1	<0.5	<0.5	<0.1	<0.5	<0.1	<0.1	<0.5	<0.1
Trichlorofluoromethane	2000	<1	<0.2	<1	<1	<0.2	<1	<0.2	<0.2	<1	<0.2
Vinyl chloride	0.5	<0.5	<0.2	<0.5	<0.5	<0.2	<0.5	<0.2	<0.2	<0.5	<0.2
Xylenes, m,p-	NV	<0.5	<0.1	<0.5	<0.5	<0.1	<0.5	<0.1	<0.1	<0.5	<0.1
Xylene, o-	NV	<0.5	<0.1	<0.5	<0.5	<0.1	<0.5	<0.1	<0.1	<0.5	<0.1
Xylenes, Total	72	< 0.5	<0.1	< 0.5	<0.5	<0.1	< 0.5	<0.1	<0.1	<0.5	<0.1

All units are μ g/L unless otherwise noted.

NV = No Value. -- = Parameter not analysed.

<0.1 = not detected above the laboratory method detection limit shown

MECP = Soil, Groundwater and Sediment Standards for use under Part XV.1 of the Environmental

Protection Act, April 2011.

Table 7 = Generic site condition standards for shallow soils in a non-potable ground water condition

for residential/parkland land use, coarse textured soil

10 = Indicates concentrations which exceed MECP 2011 Table 7 standards

18-262-1_GW Results_Burnside_R0.xlsx Prepared by: NMP Reviewed by: ADG Date: 12-Jun-19

Parameter	MECP	MV	V-4	MV	V-5	Fie	əld	Ti	rip
Stratigraphic Unit>	Table 7	Bed	rock	Overb	urden	Bla	ank	Bla	ank
Date Sampled>	(µg/L)	07-Nov-12	17-Oct-14	07-Nov-12	17-Oct-14	07-Nov-12	17-Oct-14	07-Nov-12	17-Oct-14
Acetone	100000	<5	<10	<5	<10	<5	<10	<5	<10
Benzene	0.5	<0.5	<0.1	<0.5	<0.1	<0.5	<0.1	<0.5	<0.1
Bromodichloromethane	67000	<0.5	<0.1	<0.5	<0.1	<0.5	<0.1	<0.5	<0.1
Bromoform	5	<0.5	<0.2	<0.5	<0.2	<0.5	<0.2	<0.5	<0.2
Bromomethane	0.89	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Carbon Tetrachloride	0.2	<0.2	<0.1	<0.2	<0.1	<0.2	<0.1	<0.2	<0.1
Chlorobenzene	140	<0.5	<0.1	<0.5	<0.1	<0.5	<0.1	<0.5	<0.1
Chloroform	2	<0.5	<0.1	<0.5	<0.1	<0.5	<0.1	<0.5	<0.1
Dibromochloromethane	65000	<0.5	<0.2	<0.5	<0.2	<0.5	<0.2	<0.5	<0.2
Dichlorobenzene, 1,2-	150	<0.5	<0.2	<0.5	<0.2	<0.5	<0.2	<0.5	<0.2
Dichlorobenzene, 1,3-	7600	<0.5	<0.2	<0.5	<0.2	<0.5	<0.2	<0.5	<0.2
Dichlorobenzene, 1,4-	0.5	<0.5	<0.2	<0.5	<0.2	<0.5	<0.2	<0.5	<0.2
Dichlorodifluoromethane	3500	<1	<0.5	<1	<0.5	<1	<0.5	<1	<0.5
Dichloroethane, 1,1-	11	<0.5	<0.1	<0.5	0.4	<0.5	<0.1	<0.5	<0.1
Dichloroethane, 1,2-	0.5	<0.5	<0.2	<0.5	<0.2	<0.5	<0.2	<0.5	<0.2
Dichloroethylene, 1,1-	0.5	<0.5	<0.1	<0.5	<0.1	<0.5	<0.1	<0.5	<0.1
Dichloroethylene, cis-1,2-	1.6	<0.5	<0.1	<0.5	1.2	<0.5	<0.1	<0.5	<0.1
Dichloroethylene, trans-1,2-	1.6	<0.5	<0.1	<0.5	0.11	<0.5	<0.1	<0.5	<0.1
Dichloropropane, 1,2-	0.58	<0.5	<0.1	<0.5	<0.1	<0.5	<0.1	<0.5	<0.1
Dichloropropylene, cis-1,3-	NV	<0.5	<0.2	<0.5	<0.2	<0.5	<0.2	<0.5	<0.2
Dichloropropylene, trans-1,3-	NV	<0.5	<0.2	<0.5	<0.2	<0.5	<0.2	<0.5	<0.2
Dichloropropylene, cis + trans	0.5	<0.5	<0.2	<0.5	<0.2	<0.5	<0.2	<0.5	<0.2
Ethylbenzene	54	<0.5	<0.1	<0.5	<0.1	<0.5	<0.1	<0.5	<0.1
Ethylene Dibromide	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Hexane	5	<1	<0.5	<1	<0.5	<1	<0.5	<1	<0.5
Methylene Chloride	26	<5	<0.5	<5	<0.5	<5	<0.5	<5	<0.5
Methyl Isobutyl Ketone	5200	<5	<5	<5	<5	<5	<5	<5	<5
Methyl Ethyl Ketone	21000	<5	<5	<5	<5	<5	<5	<5	<5
Methyl t-butyl ether	15	<2	<0.2	<2	<0.2	<2	<0.2	<2	<0.2
Styrene	43	<0.5	<0.2	<0.5	<0.2	<0.5	<0.2	<0.5	<0.2
Tetrachloroethane, 1,1,1,2-	1.1	<0.5	<0.2	<0.5	<0.2	<0.5	<0.2	<0.5	<0.2
Tetrachloroethane, 1,1,2,2-	0.5	<0.5	<0.2	<0.5	<0.2	<0.5	<0.2	<0.5	<0.2
Tetrachloroethylene	0.5	<0.5	<0.1	<0.5	<0.1	<0.5	<0.1	<0.5	<0.1
Toluene	320	<0.5	<0.2	<0.5	<0.2	<0.5	<0.2	<0.5	<0.2
Trichloroethane, 1,1,1-	23	<0.5	<0.1	<0.5	<0.1	<0.5	<0.1	<0.5	<0.1
Trichloroethane, 1,1,2-	0.5	<0.5	<0.2	<0.5	<0.2	<0.5	<0.2	<0.5	<0.2
Trichloroethylene	0.5	<0.5	<0.1	<0.5	<0.1	<0.5	<0.1	<0.5	<0.1
Trichlorofluoromethane	2000	<1	<0.2	<1	<0.2	<1	<0.2	<1	<0.2
Vinyl chloride	0.5	<0.5	<0.2	<0.5	<0.2	<0.5	<0.2	<0.5	<0.2
Xylenes, m,p-	NV	<0.5	<0.1	<0.5	<0.1	<0.5	<0.1	<0.5	<0.1
Xylene, o-	NV	<0.5	<0.1	<0.5	<0.1	<0.5	<0.1	<0.5	<0.1
Xylenes, Total	72	<0.5	<0.1	<0.5	<0.1	<0.5	<0.1	<0.5	<0.1

Notes:

All units are µg/L unless otherwise noted.

NV = No Value.

-- = Parameter not analysed.

<0.1 = not detected above the laboratory method detection limit shown

MECP = Soil, Groundwater and Sediment Standards for use under Part XV.1 of the Environmental

Protection Act, April 2011.

Table 7 = Generic site condition standards for shallow soils in a non-potable ground water condition

for residential/parkland land use, coarse textured soil

10 = Indicates concentrations which exceed MECP 2011 Table 7 standards

18-262-1_GW Results_Burnside_R0.xlsx Prepared by: NMP Reviewed by: ADG Date: 12-Jun-19

Table 9.15 - Maximum Concentrations in Groundwater, Burnside Site, Ottawa, Ontario

Max GW				Max GW]	
Parameter	Concentration	Sample	Elevation	Parameter	Concentration	Sample	Elevation
	(µa/L)	Location	(mASL)		(µa/L)	Location	(mASL)
			Petroleum	Hydrocarbons an	d BTEX		
Antimony	25.6	MW-4	54.90-57.91	F1 PHCs (C6-C10)	ND	NA	NA
Arsenic	5	MW-3	49.93-52.93	F2 PHCs (C10-C16)	ND	NA	NA
Barium	460	MW-1	51.77-54.77	F3 PHCs (C16-C34)	ND	NA	NA
Beryllium	ND	NA	NA	F4 PHCs (C34-C50)	ND	NA	NA
Boron (total)	221	MW-2	51.97-55.00	Benzene	ND	NA	NA
Cadmium	0.087	MW-5	51.74-54.81	Ethvlbenzene	ND	NA	NA
Chromium	14	MW-5	51.74-54.81	Toluene	ND	NA	NA
Chromium. Hexavalent	ND	NA	NA	Xvlenes. m.p-	ND	NA	NA
Cobalt	4.2	CH2 MW-2	51.77-54.77	Xvlene. o-	ND	NA	NA
Copper	3.9	MW-5	51,74-54,81	Xylenes, Total	ND	NA	NA
Lead	ND	NA	NA	Volatile	e Organic Compoi	inds	
Molybdenum	33	CH2 MW-2	51 77-54 77	Acetone	ND	NA	NA
Mercury	0.02	MW-3	49 93-52 93	Bromodichloromethane	ND	NA	NA
Nickel	8	MW-5	40.00 02.00	Bromoform	ND	NA	NA
Selenium	3	M\\/_4	54 90-57 91	Bromomethane	ND	NA	NA
Silver	ND	NA	NA	Carbon Tetrachloride	ND	ΝA	NA
Sodium	1080000	M\\/_5	51 74-54 81	Chlorobenzene	ND	NA	NA
Thallium		NIA	NIA	Chloroform			
Uropium	ND 9.2		10 02 52 02	Dibromochloromothana			
Vanadium	0.5		49.93-52.93			NA NA	
	0.1		51.77-54.77	Dichlorobenzene, 1,2-		NA NA	
Zinc	5		51.77-54.77	Dichlorobenzene, 1,3-		NA NA	
	0.04	NAV O	54 07 55 00			NA NA	
Acenaphthene	0.31		51.97-55.00	Dichlorodifiuoromethane			INA 40.02.52.02
Acenaphinylene	0.65		51.77-54.77	Dichloroethane, 1,1-	0.59	10100-3	49.93-52.93
Antinacene	0.15		51.77-54.77	Dichloroethulane, 1,2-		NA NA	
Benzo[a]anthracene	0.2		51.77-54.77	Dichloroethylene, 1,1-			
Benzo[a]pyrene	0.12		51.77-54.77	Dichloroethylene, cis-1,2-	1.2	IVIVV-5	51.74-54.81
Benzo[b]iluoranthene	0.12		51.77-54.77	Dichloroethylene, trans-1,2-	0.11	IVIV-5	51.74-54.81
Benzo[k]fluoranthene	0.12		51.77-54.77	Dichlerences 4.2	ND	NA	NA
Benzolg,n,Ijperviene	0.1	IVIVV-1	51.77-54.77	Dichloropropylene,trans-1,3	ND	NA	NA
Chrysene	0.25	MVV-1	51.77-54.77	Dichloropropylene, cis+trans	ND	NA	NA
Dibenzo[a,h]anthracene	ND	NA	NA	Dichloropropane, 1,2-	ND	NA	NA
Indeno[1,2,3-cd]pyrene	0.08	MVV-1	51.77-54.77	Ethylene Dibromide	ND	NA	NA
Fluoranthene	0.4	MW-1	51.77-54.77	Hexane	ND	NA	NA
Fluorene	0.07	MVV-1	51.//-54.//	Methyl Ethyl Ketone	ND	NA	NA
Methylnaphthalene, 1-	0.07	MW-5	51.74-54.81	Methyl Isobutyl Ketone	ND	NA	NA
Methylnaphthalene, 2-	0.06	MW-5	51.74-54.81	Methyl t-Butyl Ether	ND	NA	NA
Methylnaphthalene, 2&1	0.12	MW-5	51.74-54.81	Methylene Chloride	ND	NA	NA
Naphthalene	0.5	CH2 MW-2	51.77-54.77	Styrene	ND	NA	NA
Phenanthrene	0.24	MW-1	51.77-54.77	Tetrachloroethane, 1,1,1,2-	ND	NA	NA
Pyrene	0.41	MW-1	51.77-54.77	Tetrachloroethane, 1,1,2,2-	ND	NA	NA
				Tetrachloroethylene	ND	NA	NA
				Trichloroethane, 1,1,1-	ND	NA	NA
				Trichloroethane, 1,1,2-	ND	NA	NA
				Trichloroethylene	ND	NA	NA
				Trichlorofluoromethane	ND	NA	NA
				Vinyl chloride	ND	NA	NA

Notes: ND = Parameter not detected above laboratory detections limits NA = Not applicable

Appendix A

Sampling and Analysis Plan

1 Raymond St., Suite 200 Ottawa, Ontario K1R 1A2 Tel: (613) 232-2525 Fax: (613) 232-7149

April 15, 2019

Ref. No.: 18-262-1

Phase Two ESA Site Sampling and Analysis Plan: NCC Burnside Site, Ottawa, ON

BACKGROUND

The Phase One ESA documents that historical site use of the property included the importation of large amounts of fill materials in the area of former Lazy Bay and over the remainder of the site. This historical filling of the site is the only identified APEC for the property and extends over the entire property. Historical site investigations show that the imported fill is generally of poor quality being contaminated by metals, PAHs and to a lesser degree potentially PHCs and BTEX above applicable MECP Table 7 standards for the coarse-textured shallow soil site under non-potable groundwater conditions.

Several years of groundwater sampling completed at the site over a 13 year period (i.e., 2001 to 2014) show that these soil contaminants of potential concern (COPCs) do not create groundwater contamination at the site. Consequently, sampling and analytical testing of groundwater quality is not part of the Phase Two ESA sampling and analysis plan. However, collection of water levels in existing wells and presenting all such data as geodetic elevations (e.g., mASL) is part of the Phase Two sampling and analyses plan as all historical water level measurements were reported to an arbitrary local site datum.

Review of historical soil quality testing shows that such testing does not encompass the full suite of metals, PHCs and other inorganic contaminants currently regulated under O.Reg. 153/04. Historical soil quality testing typically did not analyze soil for boron, hot-water-soluble boron, hexavalent chromium, mercury, uranium, cyanide, electrical conductivity and sodium adsorption ratio and PHC-F1 to -F4. Historical test pit and borehole drilling investigations also did not investigate fill quality below a depth of 3.0 mBGS.

As documented in the Phase One ESA Report, Phase Two ESA investigations should include drilling boreholes and laboratory testing in areas of fill thickness greater than 3 m (e.g., in and near the Lazy Bay fill area). Additional testing of fill for metals and PAHs is recommended to improve spatial coverage and address O.Reg. 153/04 delineation requirements. Testing of fill quality for PHC-F1 to -F4 and BTEX near the historical TPH_{gas/diesel} and TPH_{heavy oil} hotspot as well as similar testing at the benzene hotspot is also recommended to address O.Reg. 153/04 delineation requirements. All borehole soil samples should be field screened using a combustible gas detector and/or organic vapour meter.

The intention of the Phase Two ESA for the NCC Burnside property is to address soil quality conditions existing today, as compared to current MECP standards, to support application for a municipal zoning change for the property from parkland to residential or commercial to facilitate development the site. This proposed sampling and analysis plan describes the proposed borehole drilling, soil sampling and analytical activities to achieve these Phase Two ESA goals.

Proposed borehole locations are selected to provide areal coverage of the site and to obtain overburden and fill quality information in addition to further delineation of the horizontal and vertical extent of possible soil contamination in the overburden fill of the site. The proposed drilling program includes 10 new boreholes at the site, as summarized in the following table and as shown in the appended Figure A.1.

Summary of Borehole Drilling	g and Soil Sampling Location	Rationale, NCC Burnside Site
------------------------------	------------------------------	------------------------------

Borehole ID	Location Rationale
BH19-01	Quality testing of soil for O.Reg. 153/04 listed metals, general inorganics (EC, SAR, CN, pH) and PAHs below depth of 3 m near EXP borehole BH4 in former Lazy Bay Fill Area
BH19-02	Quality testing of soil for O.Reg. 153/04 listed metals, general inorganics (EC, SAR, CN, pH) and PAHs below depth of 3 m near Intera well MW5 in former Lazy Bay Fill Area
BH19-03	Quality testing of soil for O.Reg. 153/04 listed metals, general inorganics (EC, SAR, CN, pH) and PAHs below depth of 3 m near Intera well MW2 in former Lazy Bay Fill Area
BH19-04	Quality testing of soil for O.Reg. 153/04 listed metals, general inorganics (EC, SAR, CN, pH) and PAHs below depth of 3 m near DE&S TP20 in near edge of former Lazy Bay Fill Area
BH19-05	Quality testing of soil for O.Reg. 153/04 listed metals, general inorganics (EC, SAR, CN, pH) and PAHs above of 2 m near DE&S TP34 to increase spatial coverage
BH19-06 & BH19-07	Quality testing of soil for O.Reg. 153/04 listed TPH and BTEX parameters to provide horizontal delineation above a depth of 2 m near TPH hotspot near DE&S TP29
BH19-08	Quality testing of soil for O.Reg.153/04 listed metals, general inorganics (EC, SAR, CN, pH) and PAHs above of 2 m near DE&S TP9Ato increase spatial coverage
BH19-09 &BH19-10	Quality testing of soil for O.Reg. 153/04 listed TPH and BTEX parameters to provide horizontal delineation above a depth of 2 m near benzene hotspot near DE&S TP41

Key Site Information

- Overburden thickness at the site typically ranges from 1 to 3 m and consists mostly of imported fill that locally has been impacted by former site uses. Overburden thickness approaching 3 to 6 m is greatest in the former Lazy Bay fill area (as shown on Figure A.1).
- Contaminants of potential concern in fill are metals and polycyclic aromatic hydrocarbons (PAHs), and to a lesser extent potentially PHCs and BTEX.
- The groundwater table is typically found at depths of 3-5 mBGS near the bedrock surface. Groundwater flow at the NCC Burnside site in north to the Ottawa River.
- There are six accessible and useable groundwater monitoring wells at the site.

The Phase Two ESA Investigation will consist of the following tasks:

- Task 1 Underground Utility Locates;
- Task 2 Borehole Drilling, Soil Screening and Soil Sampling;
- Task 3 –Surveying and Water Level Monitoring of Existing Wells; and
- Task 4 Laboratory Soil Quality Analyses.

TASK 1 – UNDERGROUND UTILITY LOCATES

Prior to any intrusive site activities the clearance of all public and private underground utilities for site will need to be undertaken by a commercial utility locator (USL-1).

TASK 2 – BOREHOLE DRILLING, SOIL SCREENING AND SOIL SAMPLING

Task 2 will involve the drilling to assumed bedrock refusal, soil screening and soil sampling at 10 locations with expected depth to bedrock ranging from <2 m to 6 m. Drilling and continuous soil sampling will be completed using a track-mounted GM100GT GeoMachine using direct push drilling technology. Use of direct-push drilling technology and soil sample volume requirements should not generate excess soil requiring disposal.

During the drilling of each new borehole, continuous samples of fill will be collected, logged for stratigraphy and screened in the field for visual, olfactory and instrument evidence of contamination. Instrument soil screening will include measurement of total combustible vapours using a calibrated Combustible Gas Indicator and measurement of total organic vapours using a calibrated Photoionization Detector.

Representative samples the fill layer in boreholes BH19-01 to BH19-05 and BH19-08 (typically one sample per borehole) will be collected for laboratory analysis of MECP-listed metals and general inorganic parameters (electrical conductivity [EC], sodium absorption ratio [SAR], cyanide [CN] and pH) and for PAHs. One blind QA/QC duplicate soil sample will be collected and submitted for analysis of MECP-listed metals, general inorganics and PAHs.

Representative samples of the fill layer in boreholes BH19-06, BH19-07, BH19-09 and BH19-10 (typically one sample per borehole) will be collected for laboratory analysis of PHCs and BTEX to assess extent of previously identified TPH and benzene hotspots.

An allowance has been made in the sampling and analysis plan to complete additional PHC, BTEX and PCB analyses on soil if field conditions and screening information warrant such analyses.

TASK 3 – SURVEYING AND WATER LEVEL MONITORING OF EXISITING WELLS

Task 3 will involve surveying and water level monitoring of accessible groundwater monitoring wells at the NCC Burnside site. A licensed Ontario Land Surveyor will complete a geodetic elevation survey of the top of one the existing groundwater monitoring wells (e.g. MW-5) to tie all of the monitoring to geodetic elevations.

Water levels will be measured in all six accessible groundwater monitoring wells with levels expressed in meters above sea level (mASL) for use in the Phase Two ESA Report.

TASK 4 – LABORATORY SOIL QUALITY ANALYSES

Collected soil samples will be submitted to Paracel Laboratories Ltd, Ottawa in coolers with ice packs under chain of custody procedures for analysis of O.Reg. 153/04-listed metals, general inorganics, PAHs, PHCs and BTEX following O.Reg. 153/04 MECP-approved analytical methods.

Applicable Geofirma Field Protocols:

- FP01_Decontamination
- FP03_Direct Push Drilling and Soil Sampling
- FP05_Mointoring Well Gauging
- FP18_Field Logbooks

Attach: Figure A.1 – APEC and Proposed Drilling and Soil Sampling Locations

Doc. ID:	18-262-1_Burnside Site_Phase Two ESA_Sampling Plan_R0A.docx				
Revision Number:	0	Date: April 15, 2019			
Prepared By:	Kenneth Raven, P.Eng., P.	Kenneth Raven, P.Eng., P.Geo., QP _{ESA}			
Reviewed By:	Glen Briscoe, P.Eng.				

 $G: Data Project Burnside Maps 18-262-1_Phase_II_Burnside 18-262-1_Burnside_P2_A1_APEC_Proposed Drilling.mxd$

Appendix B

Test Pit Logs and Borehole Stratigraphic and Instrumentation Logs

Test Pit	Soil/Fill Description	Sample	CGI Reading
TP-1	Fine brown sand and gravel fill with plastic, metal and polystyrene insulation over bedrock at 0.5 mBGS.	at 0.4mBGS	15 ppm
TP-2	Light grey/brown clayey sand fill to over broken rock with brick and concrete to bedrock at 0.6 mBGS.	composite 0.4-0.6 mBGS	0 ppm
TP-3	Located adjacent to an old poured concrete foundation on rock. Dark brown topsoil, waste rock and concrete at surface over sand with bricks, plastic, polystyrene insulation, glass, minor asphalt and shingles over bedrock at 0.8 mBGS.	composite of fill	0 ppm
TP-4	Excavated through fill pile of sand and gravel with minor concrete over grass and topsoil over grey clayey sand over broken rock from 0.3 to 0.6 mBGS. Bedrock at 0.6 mBGS.	composite of sand	25 ppm
TP-5	Grey/brown clayey sand over broken rock from 0.3 to 0.6 mBGS. Bedrock at 0.6 mBGS. CGI in test pit = 0 ppm.	composite	50 ppm
ТР-6	Grey/brown clayey sand with broken rock with an asphalt layer at 0.45 mBGS (likely former Hinchey Ave.) Test pit terminated at 1.7 mBGS, bedrock not encountered. CGI reading in test pit = 5 ppm.	soil beneath asphalt layer	30 ppm
TP-7	Excavated through fill pile of clayey sand and gravel over grass over grey/brown clayey sand to 0.4 mBGS over sand fill with brick, concrete and minor metal. Ash and asphalt shingle layer at 0.6 mBGS. Slight hydrocarbon odour in test pit near buried shingles. Bedrock @ 1.2 mBGS. CGI reading in test pit = 10-15 ppm.	composite of fill at 0.6 mBGS	60 ppm
TP-8	Grey/brown clayey sand to 0.4 mBGS over sand fill with broken rock, brick, wood, concrete and minor glass and metal. Bedrock @ 1.4 mBGS.	composite of fill	40 ррт
TP-9	Topsoil over grey/brown clayey sand to 0.4 mBGS over fine and medium brown sand with broken rock. Terminated at 1.5 mBGS, bedrock not encountered.	no sample	
TP-10	Grey/brown clayey sand to 0.5 mBGS over sand fill with broken rock, wood and brick. Bedrock at 1 mBGS.	composite	20 ppm

Table D.1 Test Pit Summary

TEST PIT NUMBER: TP-1 DATE : November 22, 2000 TOTAL DEPTH: 0.4 mBGS

Sample ID	Depth	Stratigraphy	Odour	Stain	CGI (ppm)	Analysis
	0-0.2 m	Topsoil: organic, rooty.	no	no	-	NA
TP-1 (0.4)	0.2-0.4 m	Sandy fill: Brown, with small pieces of	no	no	16	PAH, metals
		concrete. Dry.				

TEST PIT NUMBER: TP-2 DATE : November 22, 2000 TOTAL DEPTH: 0.4 mBGS

Sample ID	Depth	Stratigraphy	Odour	Stain	CGI	Analysis
					(ppm)	
	0-0.2 m	Topsoil: organic, rooty	no	no	7	NA
TP-2 (0.4)	0.2-0.4 m	Sandy fill: Brown, with pebbles and cobbles. Dry.	no	no	4	metals

TEST PIT NUMBER: TP-3 DATE : November 22, 2000 TOTAL DEPTH: 1.6 mBGS

Sample ID	Depth	Stratigraphy	Odour	Stain	CGI (ppm)	Analysis
	0-0.2 m	Topsoil: organic, rooty.	no	no	-	NA
TP-3 (0.3)	0.2-0.4 m	Sandy fill: Light brown. Dry.	no	no	4	NA
TP-3 (0.6)	0.4-0.8 m	Sandy fill: Dark brown, very rooty, pieces of dry wood.	no	no	4	NA
TP-3 (1.3)	0.8-1.6 m	Sandy fill: Brown, with pebbles and cobbles. Dry.	no	no	2	metals

TEST PIT NUMBER: TP-4 DATE : November 22, 2000 TOTAL DEPTH: 1.4 mBGS

Sample ID	Depth	Stratigraphy	Odour	Stain	CGI (ppm)	Analysis
	0-0.2 m	Topsoil: organic, rooty	no	no	-	NA
TP-4 (0.3)	0.2-0.6 m	Sandy fill: Light brown, rooty. Dry.	no	no	10	NA
TP-4 (0.65)	0.6-0.8 m	Sandy fill: Dark brown, rooty, pieces of wood and wood chips. Dry.	no	no	5	NA
TP-4 (0.8)	0.8-1.0 m	Grey silty clay fill mixed with light brown sandy fill: Dry	no	no	8	metals
TP-4 (1.2)	1.0-1.4 m	Sandy fill: Dark brown, mostly rotted wood, some glass bottles and pieces of concrete. Dry.	no	no	4	PAH

TEST PIT NUMBER: TP-5 DATE : November 22, 2000 TOTAL DEPTH: 1.6 mBGS

Sample ID	Depth	Stratigraphy	Odour	Stain	CGI (ppm)	Analysis
	0-0.3 m	Topsoil: organic, rooty.	no	no	-	NA
TP-5 (0.4)	0.3-0.5 m	Sandy fill: Dark brown-black, rooty. Dry.	no	no	5	metals
TP-5 (0.8)	0.5-0.9 m	Sandy fill: Brown, rooty, with rotted wood and angular pebbles. Dry.	no	no	8	NA
TP-5 (1.0)	0.9-1.2 m	Sandy fill: Grey, rooty, >50% angular pebbles, Dry.	no	no	9	NA
TP-5 (1.4)	1.2-1.6 m	Sandy fill: Light brown, rooty. Dry	no	no	3	NA

TEST PIT NUMBER: TP-6 DATE : November 22, 2000 TOTAL DEPTH: 3.0 mBGS

Sample ID	Depth	Stratigraphy	Odour	Stain	CGI	Analysis
· · · · · · · · · · · · · · · · · · ·					(ppm)	
	0-0.4 m	Sandy topsoil: brown to dark brown, rooty.	no	no	-	NA
TP-6 (0.45)	0.4-0.5 m	Sandy fill: Light brown, rooty. Dry.	no	no	13	NA
TP-6 (0.9)	0.5-1.0 m	Sandy fill: Dark brown, rooty, with some grey-	no	no	10	PAH, metals
		red areas, possibly ash. Bricks, glass bottles,				
		rotted wood, pieces of metal. Dry.				
TP-6 (1.3)	1.0-1.5 m	Clayey sandy fill: Dark brown to brown, rooty,	no	no	26	NA
		with rotted wood and some shiny bituminous				
		pieces. Slightly moist.				
TP-6 (1.9)	1.5-3.0 m	Silty sandy fill: Reddish-brown to dark brown	no	no	10	NA
TP-6 (2.5)		with pebbles and bricks, glass, a crushed	no	no	8	metals
	1	metal bucket. Slightly moist to wet.				
	1	Groundwater penetration at 2.9 mBGS.				soil: NA water:
	1	· · · · · · · · · · · · · · · · · · ·				metals, general
TP-6 (2.9) soil						chemistry and
TP-6 water			no	no	18	ions.

TEST PIT NUMBER: TP-7 DATE : November 22, 2000 TOTAL DEPTH: 1.9 mBGS

Sample ID	Depth	Stratigraphy	Odour	Stain	CGI (ppm)	Analysis
	0-0.2 m	Topsoil: organic, rooty.	no	no	-	NA
	0.2-0.4 m	Sandy fill: Dark brown, with angular pebbles and cobbles. Dry.	no	no	2	NA
TP-7 (0.4)	0.4-0.6 m	Sandy fill: Light brown, rooty, with shards of glass and brick. Dry.	no	no	13	NA
TP-7 (0.7)	0.6-1.9 m	Silty sandy fill: Brown to dark brown with rust-	no	no	3	NA
TP-7 (1.5)		coloured patches (large one @ 1.5 mBGS), glass and metal. Dry.	no	no	27	metals, BTEX/TPH

TEST PIT NUMBER: TP-8 DATE : November 22, 2000 TOTAL DEPTH: 3.0 mBGS

Sample ID	Depth	Stratigraphy	Odour	Stain	CGI (ppm)	Analysis
	0-0.2 m	Topsoil: organic, rooty.	no	no	-	NA
TP-8 (0.3)	0.2-0.4 m	Sandy fill: Dark brown, with angular pebbles and cobbles. Dry.	no	no	6	NA
TP-8 (0.5)	0.4-0.6 m	Sandy fill: Light brown, rooty, with shards of glass and brick. Dry.	no	no	8	NA
TP-8 (0.8)	0.6-1.0 m	Sandy fill: Dark brown, rooty, with some grey- red areas, possibly ash. Bricks, glass bottles, rotted wood, pieces of metal. Dry.	no	no	26	PAH, metais, BTEX/TPH
TP-8 (1.8)	1.0-3.0 m	Sandy fill: Reddish-brown with cobbles and	no	no	26	NA
TP-8 (2.9)		boulders. Dry.	no	no	20	metals

TEST PIT NUMBER: TP-9 DATE : November 22, 2000 TOTAL DEPTH: 0.4 mBGS

Sample ID	Depth	Stratigraphy	Odour	Stain	CGI	Analysis
					(ppm)	
	0-0.2 m	Topsoil: organic, rooty.	no	no	-	NA
TP-9 (0.4)	0.2-0.4 m	Sandy fill: Dark brown, with angular pebbles and cobbles. Dry.	no	no	8	metals

TEST PIT NUMBER: TP-10 DATE : November 22, 2000 TOTAL DEPTH: 0.3 mBGS

Sample ID	Depth	Stratigraphy	Odour	Stain	CGI	Analysis
					(ppm)	
	0-0.15 m	Topsoil: organic, rooty	no	no	T .(NA
TP-10 (0.3)	0.15-0.3 m	Sandy fill: Dark brown, with angular pebbles	no	no	6	metals
		and cobbles and bricks. Dry.				

TEST PIT NUMBER: TP-11 DATE : November 22, 2000 TOTAL DEPTH: 2.0 mBGS

Note: large concrete slab 0.5 mBGS on south side of TP and metal cable and wire 0.6 mBGS

Sample ID	Depth	Stratigraphy	Odour	Stain	CGI	Analysis
					(ppm)	
	0-0.2 m	Topsoil: organic, rooty.	no	no	-	NA
TP-11 (0.5)	0.2-1.4 m	Silty sandy fill: Dark brown, with bricks, concrete pieces, boulders, rock slabs. Dry.	no	no	13	NA
TP-11 (1.5)	1.4-2.0 m	Clayey sandy fill: Grey-brown, with darker and lighter areas (possibly ash). Wood, bricks, metal, boulders. Dry.	no	no	22	metals

TEST PIT NUMBER: TP-12 DATE : November 22, 2000 TOTAL DEPTH: 2.7 mBGS

Sample ID	Depth	Stratigraphy	Odour	Stain	CGI (ppm)	Analysis
	0-0.2 m	Topsoil: organic, rooty.	no	no	-	NA
TP-12 (0.5)	02-0.6 m	Sandy fill: Dark brown, with angular pebbles and cobbles and bricks. Dry.	no	no	10	NA
TP-12 (1.3)	0.6-2.2 m	Sandy fill: Brown, compacted with some rust- coloured areas. Glass, fabric, brick, old insulated wire. Dry.	no	no	18	metals
TP-12 (2.6)	2.2-2.7 m	Sandy fill: Light brown to brown. Slightly moist at the bottom.	no	no	16	metals

TEST PIT NUMBER: TP-13 DATE : November 22, 2000 TOTAL DEPTH: 3.0 mBGS

Sample ID	Depth	Stratigraphy	Odour	Stain	CGI	Analysis
					(ppm)	
TP-13 (0.3)	0-0.5 m	Topsoil: organic, rooty, with bricks and pebbles.	no	no	7	NA
TP-13 (0.55)	0.5-0.6 m	Sandy fill: Brown, rooty. Dry.	no	no	12	NA
TP-13 (0.9)	0.6-1.0	Clayey sandy fill: Brown-grey with rotted wood and glass. Dry.	no	no	22	metals
TP-13 (1.7)	1.0-3.0	Sandy fill: Brown to dark brown with brick and	no	no	13	NA
TP-13 (2.5)		rotted wood. Dry.	no	no	22	metals

TEST PIT NUMBER: TP-14 DATE : November 22, 2000 TOTAL DEPTH: 3.0 mBGS

Sample ID	Depth	Stratigraphy	Odour	Stain	CGI	Analysis
					(ppm)	
	0-0.3 m	Topsoil: organic, rooty.	no	no	-	NA
TP-14 (0.8)	0.3-3.0 m	Sandy fill: Brown. Rooty, many angular	no	no	6	NA
TP-14 (2.0)		pebbles and cobbles. Scrap metal and wire	no	no	2	metals
TP-14 (2.9)	1	near the bottom. Dry.	no	no	12	metals

TEST PIT NUMBER: TP-15 DATE : November 23, 2000 TOTAL DEPTH: 3.0 mBGS

Sample ID	Depth	Stratigraphy	Odour	Stain	CGI	Analysis
					(ppm)	
	0-0.25 m	Topsoil: organic, rooty.	no	no	-	NA
TP-15 (0.3)	0.25-0.5 m	Sandy fill: Dark brown, with angular pebbles and cobbles. Dry.	no	no	5	NA
TP-15 (1.0)	0.5-3.0 m	Sandy fill: Brown, with many pebbles and	no	no	5	PAH, metals
TP-15 (2.0)		cobbles. Garbage in fill down to 2.0 mBGS:	no	no	7	metals
TP-15 (3.0)		plastic, metal, bricks. Dry.	no	no	12	NA

TEST PIT NUMBER: TP-16 DATE : November 23, 2000 TOTAL DEPTH: 2.0 mBGS

Sample ID	Depth	Stratigraphy	Odour	Stain	CGI (ppm)	Analysis
	0-0.2 m	Topsoil: organic, rooty, some sandy lenses.	no	no		NA
TP-16 (0.5)	0.2-1.2 m	Silty sandy fill: Brown, with pebbles, cobbles, brick, metal wire. Dry.	no	no	8	NA
TP-16 (1.5)	1.2-2.0 m	Clayey sandy fill: Grey-brown, with bricks, rotted wood, pebbles and cobbles.	no	no	28	metals, BTEX/TPH
TP-16 (2.0)			no	no	12	NA

TEST PIT NUMBER: TP-17 DATE : November 23, 2000 TOTAL DEPTH: 0.6 mBGS

Sample ID	Depth	Stratigraphy	Odour	Stain	CGI	Analysis
					(ppm)	
	0-0.4 m	Topsoil: clayey, grey.	no	no	-	NA
TP-17 (0.5)	0.4-0.6 m	Silty sandy fill: Brown, with pebbles, cobbles. Dry.	no	no	4	metals

TEST PIT NUMBER: TP-18 DATE : November 23, 2000 TOTAL DEPTH: 1.5 mBGS

Sample ID	Depth	Stratigraphy	Odour	Stain	CGI	Analysis
					(ppm)	
TP-18 (0.4)	0-0.5 m	Topsoil: clayey sandy, rooty.	no	no	14	NA
TP-18 (1.4)	0.5-1.5 m	Clayey sandy fill: Rooty, with pebbles,	no	no	8	PAH, metals

TEST PIT NUMBER: TP-19 DATE : November 23, 2000 TOTAL DEPTH: 2.0 mBGS

Sample ID	Depth	Stratigraphy	Odour	Stain	CGI	Analysis
					(ppm)	
	0-0.2 m	Topsoil: organic, rooty	no	no	-	NA
TP-19 (1.0)	0.2-2.0 m	Clayey sandy fill: With pebbles, cobbles,	no	no	12	NA
TP-19 (2.0)		bricks. Dry.	no	no	16	metals

TEST PIT NUMBER: TP-20 DATE : November 23, 2000 TOTAL DEPTH: 3.0 mBGS

Sample ID	Depth	Stratigraphy	Odour	Stain	CGI (ppm)	Analysis
	0-0.2 m	Topsoil: organic, rooty.	no	no	-	NA
TP-20 (0.5)	0.2-2.5 m	Clayey sandy fill: With pebbles, cobbles,	no	no	7	NA
TP-20 (1.5)		concrete pieces and slab, bricks, rock slabs.	no	no	20	metals
TP-20 (2.5)	2.5-3.0 m	Silty sandy fill: With concrete pieces, brick, metal, glass, wood, possible ash. Dry.	no	no	10	PAH

TEST PIT NUMBER: TP-21 DATE : November 23, 2000 TOTAL DEPTH: 0.5 mBGS

Sample ID	Depth	Stratigraphy	Odour	Stain	CGI	Analysis
					(ppm)	
	0-0.4 m	Topsoil: clayey, rooty.	no	no	1	NA
TP-21 (0.45)	0.4-0.5 m	Silty sandy fill: Brown, dry.	no	no	10	metals

TEST PIT NUMBER: TP-22 DATE : November 23, 2000 TOTAL DEPTH: 0.6 mBGS

Sample ID	Depth	Stratigraphy	Odour	Stain	CGI	Analysis
				4	(ppm)	
	0-0.4 m	Topsoil: clayey, rooty.	no	no	-	NA
TP-22 (0.4)	0.4-0.5 m	Sandy fill: Light brown, rooty, with glass and brick. Dry.	no	no	8	metals
TP-22 (0.5)	0.5-0.6 m	Silty sandy fill: Brown, dry.	no	no	7	NA

TEST PIT NUMBER: TP-23 DATE : November 23, 2000 TOTAL DEPTH: 1.3 mBGS

Sample ID	Depth	Stratigraphy	Odour	Stain	CGI	Analysis
					(ppm)	
	0-0.1 m	Topsoil: organic, rooty	no	no	4	NA
TP-23 (0.3)	0.1-0.6 m	Silty sandy fill: Brown, with reddish areas,	no	no	10	NA
		pebbles and cobbles, glass. Dry.				
TP-23 (1.2)	0.6-1.3 m	Clayey sandy fill: Red-brown with pebbles and	no	no	2	PAH, metals
		cobbles. Dry.				

TEST PIT NUMBER: TP-24 DATE : November 23, 2000 TOTAL DEPTH: 0.3 mBGS

Sample ID	Depth	Stratigraphy	Odour	Stain	CGI	Analysis
					(ppm)	
	0-0.1 m	Topsoil: organic, rooty.	no	no	÷2	NA
TP-24 (0.2)	0.1-0.3 m	Silty sandy clayey fill: Brown, dry.	no	no	20	metals

TEST PIT NUMBER: TP-25 DATE : November 23, 2000 TOTAL DEPTH: 0.7 mBGS

Sample ID	Depth	Stratigraphy	Odour	Stain	CGI (ppm)	Analysis
	0-0.2 m	Topsoil: clayey, rooty	no	no	-	NA
TP-25 (0.6)	0.2-0.7 m	Silty sandy fill: Brown, rooty, with pebbles and	no	no	3	metals
		cobbles. Dry.				

TEST PIT NUMBER: TP-26 DATE : November 23, 2000 TOTAL DEPTH: 1.0 mBGS

Sample ID	Depth	Stratigraphy	Odour	Stain	CGI	Analysis
					{ppm}	
	0-0.2 m	Topsoil: organic, rooty.	no	no	-	NA
TP-26 (0.3)	0.2-0.5 m	Sandy fill: Light brown with a lens of white	no	no	0	NA
		ash. Dry.			1	
TP-26 (0.8)	0.5-1.0 m	Sandy fill: Brown, Siltier and ligther brown at	no	no	0	metals
		the bottom. Dry.				

TEST PIT NUMBER: TP-27 DATE : November 23, 2000 TOTAL DEPTH: 0.5 mBGS

Sample ID	Depth	Stratigraphy	Odour	Stain	CGI	Analysis
					(ppm)	
TP-27 (0.3)	0-0.3 m	Topsoil: clayey, sandy, brown at bottom.	no	no	0	NA
TP-27 (0.4)	0.3-0.5 m	Silty sandy fill: Brown-red with pebbles and	no	no	0	metals
		cobbles. Dry.				

TEST PIT NUMBER: TP-28 DATE: November 23, 2000 TOTAL DEPTH: 0.2 mBGS

Sample ID	Depth	Stratigraphy	Odour	Stain	CGI (ppm)	Analysis
TP-28 (0.2)	0-0.2 m	Topsoil: clayey, sandy, rooty.	no	no	0	metals

TEST PIT NUMBER: TP-29 DATE : November 23, 2000 TOTAL DEPTH: 1.0 mBGS

Sample ID	Depth	Stratigraphy	Odour	Stain	CGI (ppm)	Analysis
	0-0.15 m	Topsoil: grey, clayey, sandy.	no	no		NA
TP-29 (0.4)	0.15-0.5 m	Clayey fill: Grey-brown with pebbles. Dry.	no	no	22	NA
TP-29 (0.7)	0.5-0.8 m	Sandy fill: Dark brown, with pebbles and cobbles, metal, wood and possibly ash. Dry/	no	no	30	PAH, metals, BTEX/TPH
TP-29 (0.9)	0.8-1.0 m	Silty sandy fill: Brown with pebbles and cobbles, metal, wood. Slightly moist.	no	no	18	NA

TEST PIT NUMBER: TP-30 DATE : November 23, 2000 TOTAL DEPTH: 1.1 mBGS

Sample ID	Depth	Stratigraphy	Odour	Stain	CGI	Analysis
					(ppm)	
	0-0.1 m	Topsoil: grey, clayey, sandy.	no	по		NA
TP-30 (0.2)	0.1-0.3 m	Clayey fill: Grey-brown with pebbles. Dry.	no	no	14	NA
TP-30 (0.5)	0.3-0.6 m	Silty sandy fill: Light brown to brown with	no	no	9	NA
		pebbles and cobbles, bricks. Dry.				
TP-30 (0.7)	0.6-1.1 m	Silty sandy fill: Brown with pebbles and	no	no	15	metals
		cobbles, bricks. Dry.				

TEST PIT NUMBER: TP-31 DATE : November 23, 2000 TOTAL DEPTH: 0.75 mBGS

Sample ID	Depth	Stratigraphy	Odour	Stain	CGI	Analysis
					(ppm)	
	0-0.15 m	Topsoil: rocky.	no	no	-	NA
TP-31 (0.4)	0.15-0.5 m	Silty sandy fill: Grey-brown with pebbles and	no	no	3	metals
		icoobles, metal, glass. Dry.				
TP-31 (0.6)	0.5-0.75 m	Sandy fill: Brown, with pebbles and cobbles,	no	no	2	NA
n		metal, glass. Dry.	li			

TEST PIT NUMBER: TP-32 DATE : November 23, 2000 TOTAL DEPTH: 1.5 mBGS

Sample ID	Depth	Stratigraphy	Odour	Stain	CGI	Analysis
					(ppm)	11
	0-0.3 m	Topsoil: organic, rooty.	no	no	-	NA
TP-32 (0.3)	0.3-0.7 m	Sandy fill: Brown, with pebbles. Dry.	no	no	0	metals
TP-32 (0.9)	0.7-1.0 m	Sandy fill: Dark to light brown with many	no	no	0	NA
		bricks, metal, metal pipe and pebbles.				
TP-32 (1.3)	1.0-1.5 m	Sandy fill: Brown to light brown with white ash,	no	no	0	PAH
		bricks, pebbles. Dry.				

TEST PIT NUMBER: TP-33 DATE : November 23, 2000 TOTAL DEPTH: 0.8 mBGS

Sample ID	Depth	Stratigraphy	Odour	Stain	CGI (ppm)	Analysis
	0-0.2 m	Topsoil: organic, rooty	no	no	-	NA
TP-33 (0.4)	0.2-0.5 m	Sandy fill: Light brown to brown, with pebbles and cobbles, metal, bricks. Dry.	no	no	2	metals
TP-33 (0.7)	0.5-0.8 m	Sandy fill: Brown with white ash, metal, bricks, pebbles. Dry.	no	no	0	PAH

TEST PIT NUMBER: TP-34 DATE : November 23, 2000 TOTAL DEPTH: 1.0 mBGS

Sample ID	Depth	Stratigraphy	Odour	Stain	CGI (ppm)	Analysis
	0-0.2 m	Topsoil: organic, rooty.	no	no	-	NA
TP-34 (0.4)	0.2-0.5 m	Sandy fill: Brown, with pebbles and cobbles, metal, bricks. Dry.	no	no	0	NA
TP-34 (0.8)	0.5-1.0 m	Sandy fill: Light brown (gets lighter at bottom) with metal, bricks, pebbles and cobbles. Dry.	no	no	2	metals

TEST PIT NUMBER: TP-35 DATE : November 23, 2000 TOTAL DEPTH: 1.6 mBGS

Sample ID	Depth	Stratigraphy	Odour	Stain	CGI	Analysis
				1	(ppm)	
	0-0.2 m	Topsoil: organic, rooty.	no	no	-	NA
TP-35 (0.3)	0.2-0.4 m	Sandy fill: Light brown, rooty, with glass and	no	no	0	NA
	-	brick. Dry.				
TP-35 (1.2)	0.4-1.6 m	Sandy fill: Brown with many pebbles, cobbles,	no	no	0	metals
		boulders. Dry.				

TEST PIT NUMBER: TP-36 DATE : November 24, 2000 TOTAL DEPTH: 2.3 mBGS

Note: concrete foundation on west side of TP

Sample ID	Depth	Stratigraphy	Odour	Stain	CGI (ppm)	Analysis
	0-0.3 m	Topsoil: organic, rooty.	no	no	•	NA
TP-36 (0.4)	0.3-0.5 m	Sandy fill: Dark brown, with pebbles and cobbles, and metal. Dry.	no	no	4	NA
TP-36 (0.5)	0.5-0.6 m	Sandy fill: Brown with pebbles, cobbles. Dry.	no	no	3	NA
TP-36 (1.2)	0.6-1.4 m	Sandy fill: Light brown to whitish grey with ash, bricks, paint, glass, metal, wood, many pebbles and cobbles. Dry.	no	no	4	PAH, metals
TP-36 (2.2)	1.4-2.3 m	Sandy fill: Brown with possible ash, metal, glass, pebbles and cobbles. Dry.	no	no	4	NA

TEST PIT NUMBER: TP-37 DATE : November 24, 2000 TOTAL DEPTH: 1.0 mBGS

Note: bedrock undulates. At south end of TP it is at 0.6 mBGS $% \left({{{\rm{TP}}} \right) = 0.05} \right)$

Sample ID	Depth	Stratigraphy	Odour	Stain	CGI (ppm)	Analysis
	0-0.2 m	Topsoil: organic, rooty.	no	no	-	NA
TP-37 (0.5)	0.2-0.8 m	Sandy fill: Brown, with pebbles and cobbles, glass, wood. Dry.	no	no	5	metals
TP-37 (1.0)	0.8-1.0 m	Silty sandy fill: Light brown with pebbles and cobbles. Dry.	no	no	6	NA

TEST PIT NUMBER: TP-38 DATE : November 24, 2000 TOTAL DEPTH: 0.4 mBGS

Sample ID	Depth	Stratigraphy	Odour	Stain	CGI (ppm)	Analysis
TP-38 (0.4)	0-0.4 m	Topsoil: organic, rooty.	no	no	5	metals

TEST PIT NUMBER: TP-39 DATE : November 24, 2000 TOTAL DEPTH: 0.6 mBGS

Sample ID	Depth	Stratigraphy	Odour	Stain	CGI (ppm)	Analysis
	0-0.15 m	Topsoil: grey, sandy	no	no	÷	NA
TP-39 (0.25)	0.15-0.3 m	Sandy fill: Brown, with pebbles. Dry.	no	no	4	NA
TP-39 (0.5)	0.3-0.6 m	Silty sandy fill: Brown (darkens near bottom) with pebbles and cobbles, bricks. Dry.	no	no	14	PAH, metals

TEST PIT NUMBER: TP-40 DATE : November 24, 2000 TOTAL DEPTH: 1.0 mBGS

Sample ID	Depth	Stratigraphy	Odour	Stain	CGI	Analysis
					(ppm)	
	0-0.1 m	Topsoil: organic, rooty.	no	no	-	NA
TP-40 (0.2)	0.1-0.25 m	Sandy fill: Light brown, with pebbles. Dry	no	no	16	NA
TP-40 (0.5)	0.25-0.65m	Sandy fill: Brown, with pebbles. Dry.	no	no	16	NA
TP-40 (0.9)	0.65-1.0 m	Silty sandy fill: Dark brown with pebbles and	no	no	16	PAH, metals
		cobbles, bricks. Slightly moist.				1

TEST PIT NUMBER: TP-41 DATE : November 24, 2000 TOTAL DEPTH: 0.95 mBGS

Sample ID	Depth	Stratigraphy	Odour	Stain	CGI (ppm)	Analysis
	0-0.1 m	Topsoil: sandy.	no	no	-	NA
TP- 41 (0.2)	0.1-0.3 m	Sandy fill: Brown, with pebbles. Dry.	no	no	42	metals, BTEX/TPH
TP-41 (0.7)	0.3-0.95 m	Silty sandy fill: Dark brown (gets darker at bottom). Slightly moist.	no	no	26	NA

TEST PIT NUMBER: TP-42 DATE : November 24, 2000 TOTAL DEPTH: 0.5 mBGS

Sample ID	Depth	Stratigraphy	Odour	Stain	CGI (ppm)	Analysis
	0-0.2 m	Topsoil: organic, rooty.	no	no	-	NA
TP-42 (0.4)	0.2-0.5 m	Silty sandy fill: Brown with pebbles. Dry.	no	no	14	PAH, metals

TEST PIT NUMBER: TP-43 DATE : November 24, 2000 TOTAL DEPTH: 0.6 mBGS

Sample ID	Depth	Stratigraphy	Odour	Stain	CGI	Analysis
					(ppm)	
	0-0.2 m	Topsoil: organic, rooty.	no	no	-	NA
TP-43 (0.5)	0.2-0.6 m	Silty sandy fill: Brown, reddish-brown at	no	no	11	metals
		bottom, with pebbles. Dry.				

TEST PIT NUMBER: TP-44 DATE : November 24, 2000 TOTAL DEPTH: 0.9 mBGS

Sample ID	Depth	Stratigraphy	Odour	Stain	CGI	Analysis	
					(ppm)		
	0-0.15 m	Topsoil: organic, rooty.	no	no	-	NA	
TP-44 (0.4)	0.15-0.55m	Clayey sandy fill: Grey-brown with pebbles and cobbles, glass. Dry.	no	no	20	NA	
TP-44 (0.8)	0.55-0.9 m	Sandy fill: Brown, gets clayey and reddish- brown near the bottom, with pebbles and cobbles and glass. Dry.	no	no	18	metals	

TEST PIT NUMBER: TP-45 DATE : November 24, 2000 TOTAL DEPTH: 1.25 mBGS

Sample ID	Depth	Stratigraphy	Odour	Stain	CGI (ppm)	Analysis
	0-0.15 m	Topsoil: organic, rooty	no	no	-	NA
TP-45 (0.2)	0.15-0.3 m	Sandy fill: Brown, with pebbles and cobbles. Dry.	no	no	10	NA
TP-45 (0.6)	0.3-0.6 m	Clayey sandy fill: Grey-brown. Slightly moist.	no	no	8	NA
TP-45 (1.0)	0.6-1.25 m	Silty sandy fill: Brown with pebbles and cobbles. Wet at bottom.	no	no	16	metals

TEST PIT NUMBER: TP-46

DATE : November 24, 2000 TOTAL DEPTH: 1.5 mBGS

Note: a concrete foundation lay next to TP

Sample ID	Depth	Stratigraphy	Odour	Stain	CGI (ppm)	Analysis
	0-0.3 m	Topsoil: sandy.	no	no		NA
TP-46 (0.8)	0.3-1.5 m	Sandy fill: Brown, with pebbles and cobbles, metal, wood. Dry.	no	no	13	NA
TP-46 (1.3)		0.3-0.6 m: with lots of ash, slag and some brown-red areas. 0.6-0.8 m: with some light brown sandier lenses.	ло	no	12	PAH, metals

TEST PIT NUMBER: TP-47 DATE : November 24, 2000 TOTAL DEPTH: 0.6 mBGS

Sample ID	Depth	Stratigraphy	Odour	Stain	CGI	Analysis
					(ppm)	
	0-0.1 m	Clay fill: hard, compacted.	no	no	-	NA
TP-47 (0.15)	0.1-0.2 m	Sandy fill: Brown. Dry.	no	no	6	NA
TP-47 (0.55)	0.2-0.6 m	Clayey sandy fill: Brown, with pebbles and cobbles, grey and more clayey at bottom.	no	no	10	PAH, metals
		Dry.				

TEST PIT NUMBER: TP-48 DATE : November 24, 2000 TOTAL DEPTH: 0.9 mBGS

Sample ID	Depth	Stratigraphy	Odour	Stain	CGI (ppm)	Analysis
	0-0.25 m	Clay fill: Grey-brown, hard, compacted, with pebbles.	no	no	-	NA
TP-48 (0.3)	0.25-0.4 m	Sandy fill: Red-brown with pebbles and cobbles, metal. Dry.	no	no	12	NA
TP-48 (0.8)	0.4-0.9 m	Sandy fill: Brown, gets clayey and darker at bottom. With pebbles and cobbles, metal. Dry.	no	no	18	PAH, metals

TEST PIT NUMBER: TP-49 DATE : November 24, 2000 TOTAL DEPTH: 0.6 mBGS

Sample ID	Depth	Stratigraphy	Odour	Stain	CGI	Analysis
					(ppm)	
	0-0.1 m	Sandy fill. (top cover)	no	no		NA
	0.1-0.2 m	Sandy fill: Red-brown with pebbles and	no	no		NA
		cobbles, metal. Dry.				
TP-49 (0.2)	0.2-0.4 m	Clayey sandy fill: Grey-brown with pebbles	no	no	14	NA
		and cobbles, metal, wood. Dry.				
TP-49 (0.5)	0.4-0.6 m	Sandy fill: Brown with pebbles and cobbles,	no	no	20	PAH, metals
		glass and metal. Dry.				

Project Number: 01-242-1

Client: NCC

Site Location: Burnside Avenue, Ottawa

Ground Surface Elevation: 93.069 mASD

Borehole Number: MW-1

Date Completed: October 17, 2001

Drilling Method: Hollow Stem Auger and Air Hammer

Supervisor: AMC

DEPTH BGS	SAMPLES	LAB SAMPLE	BLOW COUNT	CGI (ppm)	PID (ppm)	POG	STRATIGRAPHIC DESCRIPTION	INSTALLATION		
т m -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 4 14 15 11 12 13 14 15 11 12 13 14 15 15 15 15 15 15 15 15 15 15 15 15 15							EDROCK Air hammered through bedrock to 3.66 mBGS.	Native Backfill Silica Well Sand Bentonite Seal Water level = 3.41 mBRiser vit Bentonite Seal Silica Well Sand Bentonite Seal Steel Casing		
Page 1	Page 1 of 1									

Project Number: 01-242-1

Client: NCC

Borehole Number: MW-2

Date Completed: October 17, 2001 Drilling Method: Hollow Stem Auger Supervisor: AMC

Site Location: Burnside Avenue, Ottawa Ground Surface Elevation: 93.337 mASD

DEPTH BGS	SAMPLES	LAB SAMPLE	BLOW COUNT	CGI (ppm)	PID (ppm)	907	STRATIGRAPHIC DESCRIPTION	INSTALLATION	
т п -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 4 4 5 6 7 8 9 10 11 12 13 4 4 5 6 7 8 9 10 11 12 13 14 15 10 11 12 13 14 15 10 11 12 13 14 15 10 11 12 13 14 15 10 10 11 12 13 14 15 10 10 11 11 11 11 11 11 11 11 11 11 11							GROUND SURFACE FILL Augered through topsoil underlain by clayey sandy fill with pebbles and cobbles to 4.57 mBGS.	Depth of water = 3.53 BRiser Silica Well Sand Bentonite Seal Bentonite Steel Casing Bentonite Seal Bentonite Seal Bentonite Steel Casing Bentonite Seal Bentonite Sea Bentonite Seal Bentonite Seal	
Page 1	Page 1 of 1								

Project Number: 01-242-1

Client: NCC

Site Location: Burnside Avenue, Ottawa

Ground Surface Elevation: 96.698 mASD

Borehole Number: MW-3

Date Completed: October 17, 2001

Drilling Method: Hollow Stem Auger and Air Hammer Supervisor: AMC

DEPTH BGS	SAMPLES	LAB SAMPLE	BLOW COUNT	CGI (ppm)	PID (ppm)	POG	STRATIGRAPHIC DESCRIPTION	INSTALLATION		
-3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 4 14 15 14 15							GROUND SURFACE FIL Augered through topsoil underlain by brown/grey sandy fill with clay, silt and pebbles to bedrock refusal at 0.91 mBGS. BEDROCK Air hammered through bedrock to 9.45 mBGS.	Bentonite Seal Native Backfill Image: Seal Native backfill Image: Seal Native backfill Image: Seal Seal Image: Seal Seal Image: Seal Steel Casing Steel Casing Steel Casing		
Page 1	Page 1 of 2									

Project Number: 01-242-1

Client: NCC

Site Location: Burnside Avenue, Ottawa

Ground Surface Elevation: 96.698 mASD

Borehole Number: MW-3

Date Completed: October 17, 2001

Drilling Method: Hollow Stem Auger and Air Hammer Supervisor: AMC

Project Number: 01-242-1

Client: NCC

Site Location: Burnside Avenue, Ottawa

Ground Surface Elevation: 99.250 mASD

Borehole Number: MW-4

Date Completed: October 17, 2001

Drilling Method: Hollow Stem Auger and Air Hammer

Supervisor: AMC

DEPTH BGS	SAMPLES	LAB SAMPLE	BLOW COUNT	CGI (ppm)	PID (ppm)	POG	STRATIGRAPHIC DESCRIPTION	INSTALLATION		
-3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 4 14 14 14 14 14 14 14 14 14 14 14 14 1							GROUND SURFACE FILI Augered through topsoil underlain by brown/grey sandy fill with clay, pebbles, cobbles and metal to bedrock refusal at 0.61 mBGS. BEDROCK Air hammered through bedrock to 7.01 mBGS.	Silica Well Sand Depth of water = 3.16 mBRiser		
Page 1	Page 1 of 2									

Project Number: 01-242-1

Site Location: Burnside Avenue, Ottawa

Ground Surface Elevation: 99.250 mASD

Client: NCC

Borehole Number: MW-4

Date Completed: October 17, 2001

Drilling Method: Hollow Stem Auger and Air Hammer Supervisor: AMC

BLOW COUNT LAB SAMPLE DEPTH BGS PID (ppm) SAMPLES CGI (ppm) STRATIGRAPHIC DESCRIPTION INSTALLATION LOG 38.1 mm diameter PVC Screen Depth of well = 7.01 mBGS BOREHOLE TERMINATED (The second seco 24 25 փոփոփոփոկոն 26 8 27 28 1 1111111 29 (30 - 9 31 32 33 33 33 10 uppypup 34 **INCERA** Page 2 of 2

Project Number: 01-242-1

Client: NCC

Site Location: Burnside Avenue, Ottawa

Ground Surface Elevation: 93.620 mASD

Borehole Number: MW-5

Date Completed: October 17, 2001 Drilling Method: Hollow Stem Auger Supervisor: AMC

BLOW COUNT LAB SAMPLE DEPTH BGS SAMPLES CGI (ppm) PID (ppm) STRATIGRAPHIC DESCRIPTION INSTALLATION LOG ft m -3 -Steel Casing -2 🗄 38,1 mm diameter PVC Riser alta -1 **GROUND SURFACE** 0 10 FILL Augered through topsoil underlain by brown/grey այուրուրո Native Backfill 1 r sandy fill with silt, pebbles, cobbles, glass and metal to 4.57 mBGS. 2 **Bentonite Seal** 3 4 5 6 7 8 9 0 1 38.1 mm diameter PVC Screen 2 Silica Well Sand Depth of water = 3.53 mBRiser Depth of well = 4.57 mBGS 3 10 **U** 11 ulu 12 13 4 14 15 BOREHOLE TERMINATED **INCERA** Page 1 of 1

	CH2MHILL
-100-	

SHEET 1 OF 1 **RECORD OF MONITORING WELL:**

Water level measure 4.47 mbgs, October 14, 2005 CH2M - MW-1

LOCATION: Ottawa - River St.

LOGGED BY: KA

Ţ

2

3

4

5

End of borehole at 5.79 mbgs

PROJECT NUMBER: 316461 BORING METHOD: HQ CORE DRILLER! Downing Drilling

TOP OF PIPE DATE DRILLED 12 October 2005 GROUND ELEVATION: Datum WELL CONSTRUCTION DETAILS SAMPLES PLO14 and i SOIL 0 ELEV DEPTH OVERV STRATA 05:0 DESCRIPTION ula Al (mhqs) DEPTH ⊕ CRIGANK, VAPOUR READINGS PID. (pp#t) 100.44 ũ 10 20 30 40 Gaass cover layer 11, Above ground protective well clasing in cement seal 125 0.00 10 0 B 30 au TOP SOIL. Trace gravet, dark brown, rootlets, moist 10 16 SAND: Light brown, loose, dry, black carders present, 2.5 cm of rasted motal debris. Rock fragments, asphall fragments, metal debris. В Bentonite pellet seal SAND Medium to fine 0 0 ⊕ SAND Fine, pive grey, becoming light brown, black anders present, loose, most 9 9 50/5* SAND: Medium to fire, trace gravel, white, kose, moist 5 cm of rish back fragments and white powder. 0 0 0 0 A State SAND and ORGANICS (FILL) Rootlets, dark brown, nucl. Φ 24 12 40 56/3 Sindy SILT. Some gravel, brown to grey, dense 000 LIMESTONE (Ordovician) (Verulam Formation)) Grey to dark grey interbedded with shales, fossils present No. 3 Sile a send pack 2° diameter PVC Sch. 40, No. 10 slet well screen The state adalation and the second second states and the second

7/11/05 UTTAWA 2005 GPJ CG45 GD1 SICANNIN

CH2M HILL Canada Limited

ATE DRILLED	tawa 12 KA	- River St. October 2005	PROJECT NUMBER BORING METHOD: GROUND ELEVATIO	316461 HQ CORE DN			DRILLEF TOP ÖF Datum	ł: Downing PIPE	า Dn¥ing	_
SAMPLE SAMPLE A ECOAEKA	BLCWS(0.15 m [6]	SOIL DESCRIPTION	STRATA PLOT	ELEV DEPTH P ^{ebpi}		ONSTRUCTION DETAILS	6	€ околис (10 - 21	аан жир ре асия Трите) 30	к. <i>с.</i> рър 40
30	2 5 9 38 17 50/2*	TOP SOIL Dark brown, gross, moders, most Asphalt layer, black SAND and GRAVEL. Trace growel, light brown, k silly SAND Trace growel, light brown, kesser, dry IONEOUS Granite <u>IGNEOUS</u> Loose igneous and limestone fragmes grey <u>LIMESTONE (Ordovician)</u> -(Verulam Formation) interbedded with shales, fossals present Exit of borehole at 5.1 mbgs	nose, dry			Protective well casing in coment seal Bentonife pellet soul Bentonife pellet soul 2º diagneticr PVC, Sch 40, No 10 slot well screen Water level measured 3.61 mbgs, Octuber 14, 2005	€			

CH2MHILL

SHEET	1	OF	1
-------	---	----	---

RECORD OF TEST PIT:

TP-3

DATE DRILLED: 14 October 2005

PROJECT NUMBER: 316461
BORING METHOD: Backhoe

DRILLER CACE

ND ELEVATION	
--------------	--

GROUND	ELEVATION

LOC	IGEE	BY	KA	GROUND	ELEVATION		C	DATUM				
	1	W/P	ES		⊢		TEST PIT					
	(NID		Ē	SOIL DESCRIPTION	PLO	maati.	DUTAILS					
DEPTH	19.2	щ.	0.15	SOLE DE SOME FION	₹.	ELEV						
univer)	NO	TYP	SWC		THA	DEPTH			D OR DANK.	VAPOUR FF	ADINGS PID	(p ₁ ==)
	민교		35		50				12 I	14 3	6 4	8
				TOP SOIL Dark brown, grass cover, reotlets								
	1				1000							
					Little							
				CAND Multium to Sup and the support downed looks shart	him	0.25			11 1	() j		
				SAMD Regitim to fine, real to orange staining, wose, moist	° n	023				n i		
				1								
					0							
					0	1						
					0							
	1			State rock tragments, grey, red brick fragments		0.60				1		
				Weed debris, fibrous, brown		0.67						
				siny <u>SAND</u> Fine, trace gray, some gravet, light grey, rock tractionarity	_ http://	0.73						
				clayey <u>SILT</u> Brown rock fragments	ИИ	0 79						
					INN	1						
- 1					UN K	1		Ð				
					nını	1						
1					nun							
ł.					HUH.							
		1		Bedrock encountered	1	1 22						
										1	1 1	
		1								1		
										<u> </u>	0.00	
										i i		
1										C.	a - 1	
- 2												1 8
										d 0.		
									1			
											-	
5												
2												
5												
	1											
				CH2M	I HILL Ca	nada L	imited					
÷	_		_									

SHEET I OF 1

RECORD OF TEST PIT: TP-4

LOCATION.	Ottawa	•	River	SL

DATE DRILLED: 14 October 2005

LOGGED BY KA

PROJECT NUMBER: 316461 BORING METHOD Backhoe

DRILLER CACE

GROUND ELEVATION:

DATUM

SAMPLES		LES		5	in an	TEST PIT DETAILS						
OEPTH antags)	ECOVERNOR	TYPE	u 0/45/0 15 m	SOIL DESCRIPTION	STRATA P.	ELEV DEPTH		Œ	ORGANE	VAPOUR PUA	DINGS PID	ppm)
	Œ		di .	TOP SOIL, Grass lover, motlets SAND, Medium to fine, light brown, becoming black with depth.		0 25					,	
				rootlets rock tragments supply <u>SILT</u> . Some day, rock tragments, rootlets. Mod Uktrage dates bettes, mod	0 0 0 0	0 52						
				brick tragments, broken plates				٩				
-: Ť						0.68						
- 2												
				CH2M F	{ILL Ca	nada L	.imited					

11	8	G		2	ï
1	Į.)	ļ
	7	9	2		
1	-	×.	8	ie.	

SHEET	1	OF	1
-------	---	----	---

RECORD OF TEST PIT:

TP-5

DRILLER: C A C E

LOCATION Ottawa - River St. DATE DRILLED 14 October 2005

CH2MHILL

LOGGED BY: KA

BORING METHOD: Backhoe	
GROUND ELEVATION:	

PROJECT NUMBER: 316461

DATUM	

<u> </u>	_				· · · ·					_	_
	100	AMPI	ES E		101	(ma)	DETAILS				
DEPTH	Rec	w	C 15	SOIL DESCRIPTION	₹ F	ELEV					
initiajs)	Dov E	네~1	SWC		TRA	DEPTH		e cec	ABA VAPARA	ADING 5 P.O	(Cons)
	E E		θ.L.		v,			12:	24	36 4	8
				TOP SQIL Dark brown, grass cover, motilets							
				SAND Fine, light brown, poorly sorted	man	0.25					
	1				1.37						
ł					51.1						
					4 T 14						
					6.0.2			1			
				FILL Red brick dobris, glass, mood tragments, black, fibrous metal dobris, posts	\otimes	061			1		
					\otimes						
ļ					\otimes						
					\otimes						
					\boxtimes	1					
- 30					\otimes		Ð				
					8888						
					\otimes						
1					\otimes						
					\otimes						
ļ				SAND, Coarse to fine, gravel and boulders, trace day, brown,	<u>kw</u>	1 37	-				
				loose	0				-		
					0 1						
					0						
					0 0						
					0						
					0						
- 32					0						
					0						
ł					0 0						
					0.4						
					0						
						2.37					
				Groundwater seepage at bottom of test pill							
P -											
5											
100											
2											
0											
VXX 20											
5											
				СН2М Н	ILL Ca	nada L	_imited				
÷	_										

Log of Borehole <u>BH 1</u>

	Log of Bo	orehole BH 1	6.0.0 	exn
Project No:	OTT-00245595-A0			CAP.
Project:	Preliminary Geotechnical Investigation - Burnside C	OPA and ZBLA Supporting Studies	Page 1 of 1	I
Location	Burnside Avenue, Ottawa, ON			
Date Drilled:	'April 5, 2018	Split Spoon Sample 🛛 🛛 🛛	Combustible Vapour Reading	
Drill Type:	CME 75 Track Mounted Drill Rig	Auger Sample	Natural Moisture Content	×
риштуре.	CIME-75 Track Mounted Drill Rig	SPT (N) Value O	Atterberg Limits	⊢ −−0
Datum:	Geodetic Elevation	Dynamic Cone Test	Undrained Triaxial at	Ð
		Shelby Tube	% Strain at Failure	Ŷ
Logged by:	A.N. Checked by: S.P.	Shear Strength by + Vane Test S	Shear Strength by Penetrometer Test	A

I I maintain Dearbart

G W L	SYMBO.	SOIL DESCRIPTION	Geodetic Elevation	Geodelic D e 20 40 60 81					250 500 750 80 Natural Moisture Content % kPa Atterberg Limits (% Dry Weight)			Natural Unit Wt kN/m
n	L	Power augered to 1.2 m auger refusal depth.	59 17	0	50	100 13	50 2	00	20	40 60	Š	
100			_									
					2010010							
			58.0	1								
		Aphanitic to fine grained, medium to thickly	57.5	7							1411 141	
		bedded, grey, (good and excellent quality)	57,5	"								
A125			-0.5	2	0.00000	1.1.1.1.1.1.1.1.1	241.5			2 11 21 211		Run 1
	HT.		_		3213113	61) 610 6 61) 610 6	3213	1331				
	무	-					2412	112911 11291			÷	
旧				3	3613-13				$\frac{1}{2}(1+\frac{1}{2})$			
II.			_		2012013		2212					Run 2
			54.9	4						<u>; :::::::</u> ::::		
100		Borehole Terminated at 4.3 m Depth	010				1111					
/18												
T 5/9											-	
AGD											-	
TAW												
											i	
TRO											-	
GPJ												
AVE											-	
ISIDE												
BURN											1	
- 595 -											-	
- 245												
ogs											1	
	I							1111			<u></u>	
REHC	DIES:	ala data requires interpretation hu CVD hafara	WAT	ER	LEVEL RECO	RDS			CORE D	RILLING RECOR	D	
BOI	use by	others	psed me		Water Level (m)	Hole Ope To (m)	en	Run No	Depth (m)	% Rec	F	RQD %
1 2 HOH	19 mm shown	n diameter standpipe piezometer installed as	mpletion		N/A			1	12-27	100		88 100
3 SORE	Field v	work supervised by an EXP representative	udys		1.0				21-43	100		100
4 JO	See N	otes on Sample Descriptions										
90 <u>5</u>	Log to	be read with EXP Report OTT-00245595-A0										
Log of Borehole <u>BH 2</u>

	Log of	Borehole <u>BH 2</u>	6.9 6 7 6 7 6 7 6	exp
Project No:	OTT-00245595-A0		Figure No. 5	CAP.
Project:	Preliminary Geotechnical Investigation - Burns	side OPA and ZBLA Supporting Studies	Pigure No5_	2
Location	Burnside Avenue, Ottawa, ON.			
Date Drilled:	'April 4, 2018	Split Spoon Sample	Combustible Vapour Reading	
Drill Type:	CME 75 Trook Mounted Drill Pig	Auger Sample	Natural Moisture Content	×
Dim Type.	CIVIE-75 Track Wounted Drift Rig	SPT (N) Value O	Atterberg Limits	⊢0
Datum:	Geodetic Elevation	Dynamic Cone Test	Undrained Triaxal at % Strain at Failure	\oplus
Logged by:	A.N. Checked by: S.P.	Shetby Tube Shear Strength by + Vane Test S	Shear Strength by Penetrometer Test	•

	G W L	SYMBOL	SOIL DESCRIPTION	Geodetic Elevation	Depth	Standard 20 Shear Streng 50	d Penetration Test N Va 40 60 juh 100 150 ::	80 kPa 200	250 Natural Mois Atterberg Limi	pour Reading (ppm) 500 750 sture Content % ts (% Dry Weight) 40 60		Natural Unit Wt. kN/m ³
			Power augered to 1.9 m auger refusal depth.	61.6 61.19	n 0 1 2 3							Run 1 Run 2
1000				50.2	4							
LELOGS - 245595 - BURNSIDE AVE GPJ TROW OTTAWA GDT 5/9/18			Borehole Terminated at 4.3 m Depth									
SOREHC	1 E	TES Borehu	ole data requires interpretation by EXP before	WATE sed 1	RL	EVEL RECO	RDS Hole Open	Run	CORE DF Depth	RILLING RECORI	D	IQD %
LOG OF BOREHOLE B	2 1 3 F 4 9 5 L	19 mn shown Field v See N Log to	Trin a diameter standpipe piezometer installed as a. work supervised by an EXP representative. totes on Sample Descriptions be read with EXP Report OTT-00245595-A0	ays	1	Level (m) N/A 2.3	To (m)	No. 1 2	(m) 1.9 - 2.7 2.7 - 4.3	100	L	30 95

Log	of	Bo	rehole	BH 3
	_			

Project No:	Log of Bo	orehole <u>BH 3</u>	exp.
Project:	Preliminary Geotechnical Investigation - Burnside C	PA and ZBLA Supporting Studies	Figure No. <u>6</u> Page <u>1</u> of <u>1</u>
Date Drilled:	'April 4, 2018	Split Spoon Sample	Combustible Vapour Reading
Drill Type: Datum:	CME-75 Track Mounted Drill Rig Geodetic Elevation	SPT (N) Value O Dynamic Cone Test Shelby Tube	Atterberg Limits
Logged by:	A.N. Checked by: S.P.	Shear Strength by + Vane Test S	Shear Strength by Arrow Strength by Arrow Strength by Arrow Strength by Arrow Strength Branch

G	S Y M		Geodetic	D De	2	S	Stand	dard	Pen	etration 1	Test	N Vi	alue		0	Combi	ustit 250	lle Va	3pou 50(ur Re D	adın 75	g (pp 50	vm)	S A M	Natura
Ľ	B O L	SULDESCRIPTION	Elevation m	י ף ו h	s	ihe ar	20 Str	engt	4 10	0 1	e0		200	kPa		Na Atter	atura berg	il Mo 3 Lin	istur VIS (40	re Co % D	nlen ry W	it % eight n	t)		Jnit W kN/m
100		Power augered to 1.0 m auger refusal depth.	_ 60.27	0	10.02				1.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4		1						20								
103 103			59.3	1	14624						10101							4-4-4 4-4-4 4-4-4 4-4-4				10004			
		Aphanitic to fine grained, medium to thickly – bedded, grey, (very poor and excellent	-		1010						0.015														Run
Y		quaiity)	58 2	27 2	010 0						11111	4-1- 4-1- 4-1-								1:1: 1-1- 1-1-					Run
		-			2220						12.2											31		I	
<u>,</u> [].(Borehole Terminated at 2.9 m Depth	57.4	1					1								13								
																				II.					
									1.1																
			-																						
					******									=											
												NUCCESS.													
									-																
											1								-						
NOT 1. E	TES: Boreho	le data requires interpretation by EXP before	WAT	ER L	EVE	ELR	REC	OR	DS							С	OR	E DI	RILL	ling	6 RE	CO	RD		
1 2 1	use by 19 mm	others diameter standpipe piezometer installed as	ne ne npletion	1	Wa Leve N	ater el (m I/A	1)		ł	Hole Op To (m))			≺un No. 1	-	Dej (n 1 -	pth n) 1 3		-	%	Rec	>	-	RG	0 0
s 3 F	Field w	ork supervised by an EXP representative	lays		2	.0								2		1.3 -	2.9)			100			1	00
4.5	See No	bles on Sample Descriptions																							
1	.og to t	De lead mut EAF Nepul OTT-00240090-AU																					_		

Log of Borehole BH 4

	Log of Bo	rehole BH 4		exp
Project No	OTT-00245595-A0		Figure No. 7	CAP.
Project:	Preliminary Geotechnical Investigation - Burnside O	PA and ZBLA Supporting Studies	Page 1 of 3	,
Location:	Burnside Avenue, Ottawa, ON			=).
Date Drilled:	'April 4 and 5, 2018	Split Spoon Sample 🛛 🔯	Combustible Vapour Reading	
Drill Type:	CME-75 Track Mounted Drill Rig	Auger Sample II SPT (N) Value O	Natural Moisture Content Atterberg Limits	× ⊢⊖
Datum:	Geodetic Elevation	Dynamic Cone Test	Undrained Triaxial at % Strain at Failure	\oplus
Logged by:	A.N. Checked by: S.P.	Shear Strength by + Vane Test S	Shear Strength by Penetrometer Test	A

Ē	Π	ş		Geodetic		Standar	d Penetration Test	N Valu	e	Combustible	Vapour Reading (ppr		Madaina
	GW	MB	SOIL DESCRIPTION	Elevation	e p	20	40 60	0	0	250 Natural	Moisture Content %	P	Unit Wt
	-	ÕL		m 57 22	h	Shear Streng	100 150	-26	kPa	Atterberg 20	40 60	DIRIT	kN/m ³
			Power augered to 1.3 m auger refusal depth. FILL Silty sand with gravel, cobbles, boulders, correte, glass and wood debris, grev	55.9	1								
			Borehole advanced from 1.3 m to 7.4 m depths by coring technique.		3								Run 1
					4							4-1-4-1-4-1-4-1-4-1-4-1-4-1-4-1-4-1-4-1	Run 2
3DT 5/9/18					6							22.22 6.026 61.05	Run 3
PJ TROW OTTAWA (- GLACIAL TILL Silty clayey sand with gravel, cobbles,	49.8	Ĩ								Run 4
595 - BURNSIDE AVE G			boulders, grey, (very dense) Borehole advanced from 7.4 m to 24.0 m depths by coring techniques.		9								Run 5
LE LOGS - 245.			Continued Nevt Page		10	0							Run 6
HO	NO	TES	SAMMINE NEAL LOVE	WATE	RI	LEVEL RECO	RDS			CORE	DRILLING RECOF	RD	
BOR	1 8	Boreho Jse bv	le data requires interpretation by EXP before	osed		Water	Hole Open	-	Run	Depth	% Rec.	F	RQD %
OG OF BOREHOLE E	2 E 3 F 4 S 5 L	Boreho Field w See No Log to	Ile backfilled upon completion of drilling. On Corr ork supervised by an EXP representative. Ness on Sample Descriptions be read with EXP Report OTT-00245595-A0	me npletion		<u>Level (m)</u> N/A	<u>To (m)</u>		No	(m)			

Log of Borehole BH 4

Project No: OTT-00245595-A0

Project:

Preliminary Geotechnical Investigation - Burnside OPA and ZBLA Supporting Studies

Log of Borehole BH 4

Project No: OTT-00245595-A0

Preliminary Geotechnical Investigation - Burnside OPA and ZBLA Supporting Studies Project:

°exp 7 of 3 Figure No.: 2

											FC	iye.	<u> </u>	<u> </u>		
	S		Geodetic	D	8	Standar	d Per	netralion T	est N Val	ue	Comb	ustible Vap 250 - 5	our Readir	ng (ppm) 50	SA	Natural
U L	B	SOIL DESCRIPTION	Elevation	P t	Shar	20	4	0 6	0 6	VPa	Atten	tural Mois	ture Conte	nt% /eight)	PPL	Unit WL
	Ľ		35.22	h	01425	50	1	00 15	50 2	00	CARAN COLORED	20	40 E	0	ES	KIN/ITI
	20	GLACIAL TILL			201		21	\$494 \$104	-2-4-4-4 	1121	10-049-0 17-02-0	12213	11122			
	12	boulders arey (very dense)	_		334			2444	1444	li se i	1.1.1.1	1.1.1.1	1.1.52		1	
					244	214	÷.:-				++++++ ++++++		+:::::	23-14	1	
		Borehole advanced from 7.4 m to 24.0 m	_	23	1.52	311			3413		1324					
	100	depins by coning techniques, (continued)			1241	2443	21	11111	2012	11111	2111			12213		Run 15
	10				1411								+++++			
	2%				1244	3413	21	1111	2212	1131	13113	1330		12513		
	19		33.2	24					1111						Ш	
		Dynamic Cone Penetration Test (DCPT)	/ ^{33:1}		111		11	1111			1111	1111	1111	1111		
		at 24.1 m.	/								111		1111			
		Cone Refusal at 24.1 m Depth												111		
					111	111	::	1111		11111	111	1111	11111			
	1				111		11							1111		
							11				111					
					111	111	11	1:11								
										1111				1111		
										ШH						
							11			HHH	183	1111				
					1.11	1 1	11			1:11	111					
			1 m.							11111						
							11			日田						
				1	111	111	11			11111	1111					
					193		11									
										1111				1111		
				11								1111				
						111			199							
															2	
						111				11111		161		111		
						111				11111	111	1111		1111		
P					111	111				11111	111			1111		
16/0										11111				1111		
5											1140				1	
2 A								1111		11111	111				1	
A A										1111	111			1:11		
5					111					11011						
Š.					1111			11111	1111	1111	111	111		111		
Ĭ								1111	i i i i	114	1.1.1					
2					111	111				1111						
2					111			1111	1111		耕			1		
8					:::									1111		
5						11	11	1111	1111	1111	111			1111		
ź							11							1111		
D A						111					111			1111		
22															:	
455														1111		
1																
í í											111			111	1	
_ات					1			1:13		1111	164			1:::		l
PIN	OTES		1474-			DECC								ECOP	>	
Å.	Boreh	ole data requires interpretation by EXP before	TAW	ERI	Wate	RECC	I T	Hole Or	00	Pue	(Dr				ر -	
ň	use by	/ others	ime	_	Level (m)		To (m))	No.		n)	70 100	-	F	NGU 70
	Boreh	ole backfilled upon completion of drilling. On Ca	mpletion		N/A											
튄 :	Field v	vork supervised by an EXP representative.														
	See N	otes on Sample Descriptions														
5 :	Log to	be read with EXP Report OTT-00245595-A0														
20	2															
				_			1.									

	Log of Te	est Pit <u>TP 1</u>	€	ovn
Project No:	OTT-00245595-A0	o ODA and ZDI A Suprating Studios	Figure No. 8	exp.
Location:	Burnside Avenue, Ottawa, ON.	e OPA and ZBLA Supporting Studies	Page <u>1</u> of <u>1</u>	
Date Drilled:	'March 29, 2018	Split Spoon Sample	Combustible Vapour Reading	
Drill Type	Rubber Tired Backhoe	Auger Sample II SPT (N) Value O	Natural Moisture Content Atterberg Limits	× ───⊖
Datum	Geodetic Elevation	Dynamic Cone Test	Undrained Triaxial at % Strain at Failure	\oplus
Logged by:	M.L. Checked by: S.P.	Shear Strength by + Vane Test S	Shear Strength by Penetrometer Test	A
S		Standard Penetration Test N Value	Combustible Vapour Reading (ppm)	Ş

	G∛∟	Y B U L	SOIL DESCRIPTION	Elevation m 59.17	Degun	20 Shear Str 50	ength	40 60 100 150	80 kPa 200	250 Natural Moi Atterberg Lim 20	500 750 sture Content % ts (% Dry Weight) 40 60	משור שבא	Natural Unit Wt kN/m ³
			TOPSOIL ~100 mm FILL Mixture of silty sand and silty clay, gravel, cobbles, boulders, angular blast-rock pieces, brick and glass debris, brown and grey, moist	59.1						×			
245595 BURNSIDE AVE GPJ TROW OTTAWA GDT 5/9/18			Bucket Refusal at 1.2 m Depth	25.0									
SOOT	NO 1	TES Boreho	ble data requires interpretation by EXP before	WATE	RI	LEVEL RE	CORE)S Hole Open	Ruo	CORE DI	RILLING RECORD		00%
LOG OF BOREHOLE TI	2 3 4 5	Test Pi Field w See No Log to	t backfilled upon completion. vork supervised by an EXP representative otes on Sample Descriptions be read with EXP Report OTT-00245595-A0	pletion		Level (m) Dry		<u>To (m)</u> 1.1	No.	(m)			

			LUY		e	:51	Г	L <u>1</u>	F 2					6	2	yn
Pr	oject	No:	OTT-00245595-A0									la	0		-	ΛP
Pr	oject		Preliminary Geotechnical Investigation -	Burnside	OF	A and 2	ZBLA S	upporti	ng Stud	ies	-igure i	NO.	9	4		I
Lo	catio	n:	Burnside Avenue, Ottawa, ON								Pa	ge. 1	of	_		
Da	ite Di	rilled	'March 29, 2018		-	Split Spc	ion Samp	le			Combus	tible Vap	our Read	ling		
Dr	ill Typ	be:	Rubber Tired Backhoe			Auger Sa	ample				Natural I	Moisture (Content	h-		×
Da	itum:		Geodetic Elevation			Dynamic	Cone Te	st			Undraine	ed Triaxia	lat			⊕
Lo	gged	l by:	M.L. Checked by: S.P.		-	Shelby T Shear Sl Vane Te	übe rength by st	,	+ s		Shear S Penetror	trength by meter Tes	e / st			▲
G₩L	S Y M B O L		SOIL DESCRIPTION	Geodetic Elevation m	Deplh	Sta 2 Shear S	andard Per 0 4 Strength	Detration T	est N Valu 0 81	e D kPa	Combu 2: Nat Atterb	stible Vapo 50 50 ural Moistu berg Limits	our Readir 00 7: ure Conter (% Dry W	ng (ppm) 50 nt % /eight)	משבת שלצמי	Natural Unit Wt kN/m ³
	3.4:	TOP	<u>SOIL</u> ~ 50 mm	60.08	0	1111	Ĭ.							Č.	-	
		FILL Grav brow	elly silty sand, cobbles, asphalt debris, n, moist	59 7												
	1999	GLA	CIAL TILL	59.6	1					111	X				Ċ	
		Silty	clayey sand with gravel, brown, moist Bucket Refusal at 0.5 m Depth													

200	NOTES	WAT	ER LEVEL RECOR	RDS		CORE DF		D
2	1 Borehole data requires interpretation by EXP before use by others	Elapsed	Water	Hole Open	Rún	Depth (m)	% Rec	RQD %
1014	2. Test Pit backfilled upon completion	On Completion	Dry	0.5				
CTER -	3. Field work supervised by an EXP representative.							
a UL DV	4 See Notes on Sample Descriptions 5-Log to be read with EXP Report OTT-00245595-A0							

	Log of	Test Pit <u>TP 3</u>	AVD
Project No:	OTT-00245595-A0		
Project:	Preliminary Geotechnical Investigation - Burnsic	le OPA and ZBLA Supporting Studies	
Location:	Burnside Avenue, Ottawa, ON		Page I or _ I
Date Drilled:	'March 29, 2018	Split Spoon Sample	Combustible Vapour Reading
Drill Type:	Pubbor Tirod Backboo	Auger Sample	Natural Moisture Content
Dim Type.	Rubber Tileu Dackiloe	- SPT (N) Value O	Atterberg Limits
Datum:	Geodetic Elevation	Dynamic Cone Tesl	Undrained Triaxial at
		Shelby Tube	% Strain at Failure
Logged by:	M.L. Checked by: S.P.	Shear Strength by +	Shear Strength by Penetrometer Test

	G W L	SYMBO.	SOIL DESCRIPTION	Geodetic Elevation m	Deplh	20 Shear Streng	40 th	60 8	10 KPa	250 Natural Mo Atterberg Lin	500 750 sture Content % ns (% Dry Weight)	AND-10	Natural Unit WL kN/m ³
	_	L.	TOPSON 50 mm	62,18	0	50	100	150 21	00	20	40 60	S	
		$\overline{\mathbf{x}}$	FUL ~50 mm	62.0		1441444	41-4-1-4-	14444		X	heider	· m	
			Gravelly silty sand, cobbles, asphalt debris,	61.9	-								
			GLACIAL TILL Silty clayey sand with gravel, brown, moist										
S - 245595 - BURNSIDE AVE GPJ TROW OTTAWA GDT 5/9/18			Bucket Refusal at 0.3 m Depth										
00	NO 1 1	IES: Poreto	ale data requires interpretation by EVD before	WATE	R۱	LEVEL RECO	RDS			CORED	RILLING RECOR	D	
E TP L		use by	others	ised ne	1	Water Level (m)	Hole O To (r	pen n)	Run No	Depth (m)	% Rec.	R	QD %
HOLE	2	1est P	It backfilled upon completion On Com	pletion		Dry	03						
ORE	3.1	Field v	vork supervised by an EXP representative										
л В	4 3	see N	ores on Sample Descriptions										
0 901	5 1	Log to	be read with EXP Report OTT-00245595-A0										

	Log of	Test Pit <u>TP 4</u>	
Project No:	OTT-00245595-A0		exp.
Project:	Preliminary Geotechnical Investigation - Burnside	e OPA and ZBLA Supporting Studies	Figure No. 11
Location:	Burnside Avenue, Ottawa, ON.		Page. I of I
Date Drilled:	March 29, 2018	Split Spoon Sample	Combustible Vapour Reading
Drill Type:	Rubber Tired Backhoe	Auger Sample	Natural Moisture Content
Datum:	Geodetic Elevation	Dynamic Cone Test	Undrained Triaxial at
Logged by:	M.L. Checked by: S.P.	Shear Strength by + Vane Test S	Shear Strength by Penetrometer Test
SY	Geodetii	c D Standard Penetration Test N Value	Combustible Vapour Reading (ppm) S

	G ₩ L	M B O	SOIL DESCRIPTION	Geodet Elevatio	lic D on p	20 Shear Stren	412 60	80 kPa	250 Natural Mo Atterberg Lim	500 750 sture Content % ds (% Dry Weight)	AMP	Natural Unit Wt kN/m ³
			FILL Mixture of silty sand and silty clay, grav cobbles, angular blast-rock pieces, roo dark brown and grey, moist to wet	62.74 rel, ts,	0	50	100 150	200	20		00	
245595 - BURNSIDE AVE GPJ TROW OTTAWA GDT <i>5/9/</i> 18			Bucket Refusal at 0.8 m Depth									
FOGS	NO'	TES: Borehol	e data requires interpretation by EXP before	WA	TERL	LEVEL RECO	RDS		CORE DI	RILLING RECORI	D	
LOG OF BOREHOLE TF	2 1 3 F 4 S 5 L	ise by c Fest Pit Field wo See Not Log to b	backfilled upon completion ork supervised by an EXP representative, les on Sample Descriptions e read with EXP Report OTT-00245595-A0	Etapsed Time On Completion	1	water Level (m) Dry	Hole Open To (m) 0.8	Run No.	Uepth (m)	% Rec.	R	

	Log of	Test Pit <u>TP 5</u>	* ovn
Project No:	OTT-00245595-A0		
Project:	Preliminary Geotechnical Investigation - Burr	nside OPA and ZBLA Supporting Studies	Page 1 of 1
Location:	Burnside Avenue, Ottawa, ON.		
Date Drilled;	March 29, 2018	Split Spoon Sample	Combustible Vapour Reading
Drill Type:	Rubber Tired Backhoe	Auger Sample 🛛 🚺 SPT (N) Value O	Natural Moisture Content X Atterberg Limits
Datum:	Geodetic Elevation	Dynamic Cone Test See	Undrained Triaxial at 🛛 🕀 % Strain at Failure
Logged by:	M.L. Checked by: S.P.	Shear Strength by + Vane Test S	Shear Strength by Penetrometer Test
S	G	Standard Penetration Test N Value	Combustible Vapour Reading (ppm) S

	G ₩ L	Y B O L	SOIL DESCRIPTION	Elevation m 62.32	e pth	20 Shear Streng 50	40 th 100	60 8 150 20	0 kPa	250 Natural Moi Atterberg Lim 20	500 750 sture Content % ts (% Dry Weight) 40 60	.∑₽_LШØ	Unit WL kN/m ³
			FILL Silty clayey gravel with sand, cobbles and angular blast-rock pieces, brick debris, brown to reddish brown and grey, moist to wet	61.1	*					×		5	
45595 - BURNSIDE AVE GPJ TROW OTTAWA GDT 5/9/18			Bucket Refusal at 1.2 m Depth										
PLOGS - 2	NO 1 E	TES Boreho	le data requires interpretation by EXP before	WATE	RL	LEVEL RECO	RDS Hole C	Doen	Run	CORE D	RILLING RECORD) R	OD %
LOG OF BOREHOLE T	2 7 3 F 4 S 5 L	Test Pi Field w See No Log to	t backfilled upon completion. Tin On Com ork supervised by an EXP representative, stes on Sample Descriptions be read with EXP Report OTT-00245595-A0	ne pletion		<u>Level (m)</u> Dry	<u>To (</u> 1.2	<u>m)</u> 2	No.	(m)			-

Log of Test Pit <u>TP 6</u>

	Log of T	est Pit TP 6		ovn
Project No:	OTT-00245595-A0		F	erp.
Project:	Preliminary Geotechnical Investigation - Burnside	OPA and ZBLA Supporting Studies	Figure No. 15	1
Location	Burnside Avenue, Ottawa, ON.		Page 01	
Date Drilled:	'March 29, 2018	Split Spoon Sample 🛛 🛛	Combustible Vapour Reading	
Drill Type:	Rubber Tired Backhoe	Auger Sample II SPT (N) Value O	Natural Moisture Content Atterberg Limits	× ——⊙
Datum:	Geodetic Elevation	Dynamic Cone Test Shelby Tube	Undrained Triaxial at % Strain at Failure	\oplus
Logged by:	M.L. Checked by: S.P.	Shear Strength by + Vane Test S	Shear Strength by Penetrometer Test	A
		Observed Designation Teach Marchine		181

	G∛L	S Y M B O	SOIL DESCRIPTION	Geodetic Elevation	Depth	Shear	andard 20 Streng	41 41	0 60) (30 kPa	2 Na Atter	50 1 50 1 tural Mois berg Limit	500 75 Sture Conter Is (% Dry W	g (ppm) 0 it % eight)		Natural Unit Wt kN/m ³
			FILL Mixture of silty sand and silty clay, gravel, cobbles, boulders, angular blast-rock pieces, brick debris, brown and grey, moist to wet	_63.16	0		50		0 15	0 2	00		20	40 6		0	
		***	-	61.6		1111	+++		++++	++++	++++	+++++			÷÷÷		
- 245595 - BURNSIDE AVE GPJ TROW OTTAWA GDT 5/9/18			Bucket Refusal at 1.6 m Depth														
LOG	NO	IES Porebo	le deta requires intermetation by EVD before	WATE	ERL	EVEL R	ECO	RDS				C	ORE DR	RILLING RE	CORE)	
TPI		use by	others	sed	1	Water		1	Hole Ope	n	Run	Dep	oth	% Re		Ĩ	QD %
OLE	2	Fest Pit	t backfilled upon completion On Con	npletion		Dry			16		NO.		<u>u</u>				
REH	3 1	Field w	ork supervised by an EXP representative.														
BO	4 \$	See No	tes on Sample Descriptions														
LOG OF	5 L	.og to t	be read with EXP Report OTT-00245595-A0														

	Log of T	est Pit <u>TP 7</u>		ovn
Project No:	OTT-00245595-A0		E N 14	erp.
Project:	Preliminary Geotechnical Investigation - Burn	side OPA and ZBLA Supporting Stud	dies Page 1 of 1	I
Location:	Burnside Avenue, Ottawa, ON			2
Date Drilled	'March 29, 2018	Split Spoon Sample	Combustible Vapour Reading	
Drill Type:	Pubbor Tirod Backboo	Auger Sample	Natural Moisture Content	×
опп туре.	Rubber Tired Backfibe		Atterberg Limits	⊢0
Datum:	Geodetic Elevation	Dynamic Cone Test	Undrained Triaxial at	Ð
		Shelby Tube	% Strain at Failure	•
Logged by:	M.L. Checked by: S.P.	Shear Strength by + Vane Test S	Shear Strength by Penetrometer Test	A

S			Geodetic	tic D Standard Penetration Test N Value					Combustible Vapour Reading (ppm) 250 500 750				SA	S A M Natural
VI VI	M	SOIL DESCRIPTION	Elevation	e p	20	40	60 I	30	Nat	ural Mois	ture Conter	nt %	P	Unit Wt
	Ê		m 63.49	h	Snear Stren 50	100	150 2	CG KPa	2	o D	40 6	0	ES	kN/m '
		TOPSOIL ~50 mm FILL Mixture of silty sand and silty clay, gravel, cobbles, boulders, angular blast-rock pieces, brick and metal debris, brown and grey, moist	63.4	0										
			-	1										
							: Bili						M	
	***	LIMESTONE BEDROCK	62.0										+	
	-	Weathered, grey	61,8	-										
S - 245595 - BURNSIDE AVE GPJ TROW OTTAWA GDT 5/9/18														
0070	1 Boreh	ole data requires interpretation by EXP before	WATE	RL	EVEL RECO	RDS	Doop	Pup	CO	DRE DF)	00.94
H H	use by	y others Elap	ne	1	Level (m)	To	(m)	No	Uep (m))	% Re	C	- K	.uU %
EHOI	3 Field v	work supervised by an EXP representative	npletion		Dry	1	4							
BOR	4 See N	loles on Sample Descriptions												
LOG OF	5 Log to	be read with EXP Report OTT-00245595-A0												

	Log of Tes	st Pit <u>TP 8</u>	
Project No:	OTT-00245595-A0		
Project:	Preliminary Geotechnical Investigation - Burnside C	OPA and ZBLA Supporting Studies	
Location:	Burnside Avenue, Ottawa, ON.		Page. I of I
Date Drilled:	'March 29, 2018	Split Spoon Sample	Combustible Vapour Reading
Drill Type:	Rubber Tired Backhoe	Auger Sample II SPT (N) Value O	Natural Moïsture Content X Atterberg Limits
Datum:	Geodetic Elevation	Dynamic Cone Test Shelby Tube	Undrained Triaxial al 🛛 🕀 % Strain at Failure
Logged by:	M.L. Checked by: S.P.	Shear Strength by + Vane Test S	Shear Strength by Area Strength Shear Strength Shear Strength Shear Strength Shear S
S	Contra	Standard Penetration Test N Value	Combustible Vapour Reading (ppm)

	Ģ	Y M		Geodelic	e	- 20		900 V.		250	500 750	- Â	Natural
	Ľ	B O L	SUIL DESCRIPTION	Elevation m	p t h	Shear Streng	40 6 (b) 100 14	<u>so o</u>	kPa 00	Attorberg Lim	sture Content % ts (% Dry Weight) 40 60	D-LILLO	kN/m ³
		<u>. 1</u>	TOPSOIL ~150 mm	60.1	0	THE		Î III Î		THI	<u>THEFT</u>	:	
		***	FILL			122.12.1.2							
		888	Mixture of silty sand and silty clay, gravel,										
		888	cobbles, boulders, brick and wood debris,			1711111	ti i ti ti ti ti	ditti	hiti				
		8881	- brown and grey, moist to wet			10.111	<u>11111</u>					ŧ.	
		<u>888</u>		59.6		13413413							
		222	GLACIAL TILL	59.5	+							-	
			wet		1								
			Bucket Refusal at 0.8 m Depth	N									
												-	
												-	
							HHH						
						HHH						÷	
									HH			ŝ.	
												÷	
												-	
				-									
												÷	
/18												1	
5/9									HH			÷	
50												÷.	
NA O													
Æ	1											1	
5													
S S													
Ę													
9													ľ
¥.									1111			÷.	
۳												1	
SNS								li li li				1	
BUI												-	
- 58													
245													
30	10.	TES			1	Service and the service of the servi							
010	1.6	Boreho	le data requires interpretation by EXP before	WATE	RI	LEVEL RECO	RDS	0.0	Due	CORE D		D	
H H	ו חי	use by	others	Time		vvater Level (m)	To (m)	en)	No.	(m)	% Rec.	H	(QD %
10H	2	rest Pi	t backfilled upon completion	Completion		Dry	0.8						
ORE	3 F	-ield w	ork supervised by an EXP representative										
F BC	4 5	See No	otes on Sample Descriptions										
00	5 l	Log to	be read with EXP Report OTT-00245595-A0										
õ													

	Log of	Test Pit <u>TP 9</u>	*ovn
Project No:	OTT-00245595-A0		CAP
Project:	Preliminary Geotechnical Investigation - Burn	side OPA and ZBLA Supporting Studies	Figure No. 10
Location:	Burnside Avenue, Ottawa, ON.		Page, I or I
Date Drilled:	'March 29, 2018	Split Spoon Sample	Combustible Vapour Reading
Drill Type:	Rubber Tired Backhoe	Auger Sample SPT (N) Value O	Natural Moisture Content X Atterberg Limits
Datum:	Geodetic Elevation	Dynamic Cone Test	Undrained Triaxial at % Strain at Failure
Logged by:	M.L. Checked by: S.P.	Shear Strength by + Vane Test S	Shear Strength by Area Strength by Area Strength by Area Strength by Area Strength Branch Stre
_ c		Standard Penetration Test N Value	Combustible Vapour Reading (ppm) S

	Ģ	Y M			Geodetic	De	20	40 0		0	250	500 75	i0	Ā	Natural
ľ	Ľ	BO	SOIL DESCRIPTION		Elevation m	P l h	Shear Streng	40 <u>6</u>	0 0	kPa	Alterberg	Limits (% Dry W	eight)	Ë	kN/m ³
H	-	34	TOPSOIL ~100 mm		59 78	0	50	100 1	50 20	0	20	40 60) 	S	
			TOPSOIL ~100 mm FILL Gravel with silty clay and sand, cobbles boulders, angular blast-rock pieces, roo asphalt, brick, glass, metal debris, dark brown to brown, moist to wet	ts,	59,78 59,7	1	50 50		50 20	кра 00	200	40 6(ama	KN/m
	000000000000000000000000000000000000000		=*		57 2	2									
	ſ		Bucket Refusal at 2.6 m Depth												
- 245595 - BURNSIDE AVE GPJ TROW OTTAWA GDT 5/9/18															
1 0 0 0	NO1	TES;			WATE	RI	EVEL RECO	RDS	1		COR	E DRILLING RE	CORE)	
LPL(1.8	Boreho use bv	le data requires interpretation by EXP before	Elaps	sed	_1 \ 1	Water	Hole Op	en	Run	Depth	% Rei		R	QD %
- L	2.1	Fest Pi	t backfilled upon completion.	On Com	pletion	-	Level (m) Drv	To (m)		No	(m)				
EHO	3.F	Tield w	ork supervised by an EXP representative,	on com				2,3							
BOR	4 5	See No	otes on Sample Descriptions												
LOG OF	5.L	.og to	be read with EXP Report OTT-00245595-A0												

	Log of Tes	st Pit <u>TP 10</u>	5 5 5 6 6 7 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7	ovn
Project No:	OTT-00245595-A0		- 47	evb.
Project:	Preliminary Geotechnical Investigation - Burnside	OPA and ZBLA Supporting Studies	Page 1 of 1	1
Location:	Burnside Avenue, Ottawa, ON			
Date Drilled:	'March 29, 2018	Split Spoon Sample 🛛 🛛	Combustible Vapour Reading	
Drill Type:	Pubbar Tirad Backhaa	Auger Sample	Natural Moisture Content	×
Dim type.	Rubbel Hieu Dackhoe	SPT (N) Value O	Atterberg Limits	⊢–€
Datum:	Geodetic Elevation	Dynamic Cone Test	Undrained Triaxial at	Ð
		Shelby Tube	% Strain at Failure	÷
Logged by:	M.L. Checked by: S.P.	Shear Strength by + Vane Test S	Shear Strength by Penetrometer Test	A

	G ₩	SY MBO	SOIL DESCRIPTION	Geodetic Elevation	Depth	20 Shear Streng	40 40	60 B	o kPa	250 Naturat Atterberg	500 750 Moisture Content Limits (% Dry Wei	(ppm) % ght)	A Natural P Unit Wt kN/m ³
	_		FILL Mixture of silty sand and silty clay, gravel, cobbles, boulders and angular blast-rock pieces, reddish brown and grey, moist to wet	62.37	0	50		150 21	10	20	40 60		3
				61.5							×		®-
GS - 245695 - BURNSIDE AVE GPJ TROWOTTAWA GDT 5/9/18	NO	TES											
LOC	1 8	Borehol	le data requires interpretation by EXP before	WATI sed	ERI	LEVEL RECO Water	RDS Hole	Open	Run	CORE	DRILLING REC		RQD %
OG OF BOREHOLE	2 7 3 F 4 S 5 L	Fest Pit Field we See No	backfilled upon completion. ork supervised by an EXP representative. tes on Sample Descriptions per read with EXP Report OTT-00245595-A0	ne Ipletion		<u>Level (m)</u> Dry	0 0	<u>(m)</u> 1.9	No.	(m)			

	Log of Tes	st Pit <u>TP 11</u>	ovn
Project No:	OTT-00245595-A0		
Project:	Preliminary Geotechnical Investigation - Burnside	OPA and ZBLA Supporting Studies	
Location:	Burnside Avenue, Ottawa, ON		Page 1 01 1
Date Drilled	'March 29, 2018	Split Spoon Sample	Combustible Vapour Reading
Drill Type:	Rubber Tired Backhoe	Auger Sample	Natural Moisture Content X Atterberg Limits
Datum:	Geodetic Elevation	Dynamic Cone Test	Undrained Triaxial at \oplus Strain at Failure
Logged by:	M.L. Checked by: S.P.	Shear Strength by + Vane Test S	Shear Strength by Area Strength Strengt Strength Strength Strength Strengt Strength Strength
S	Candelia	Standard Penetration Test N Value	Combustible Vapour Reading (ppm)

		S Y		Geodetic	D	Slandar	Penetration	Fest N Val	ue	Combus 2	stible Vapi 50 5	our Readin 00 75	g (ppm) i0	SAC	Natural
	Ŵ	M B	SOIL DESCRIPTION	Elevation	e p	20 Shear Strang	40 i	50 i	80 617a	Nat	ural Moist	ure Conten	it % eight)	PL	Unit Wt
	_	L		57.22 m	h	50	100 1	50 2	00	2	0 4	10 6(0	COTTL:	KN/m
ſ		1.1	TOPSOIL ~ 100 mm	57 1				13343					3415		
		***	FILL							1111					
		***	Silly clayey gravel with sand, cobbles,				******		++++++++++++++++++++++++++++++++++++++	· • • • • •				•	
		888	wood debris, brown and grey, moist			1111111			11111	1111		t i i i i i	121.1		

		***				1201210						1.1.1.1.1	3444		
		***						13333		1.1.1.1		16134	i i i i		
		***							+1441	÷×:			44.14	心	
		***	5. .	-	Ť	11111111	*****		+++++						
		883				10000	11 1111	1111	THE	1111	1111	THE T	1111	1	
		888						1111					::::		
		888				3010		13343	1.1.1.1.	1111					
		***	=; +	-		141111	+++++++	1111	+++++	1111	1111			4	
		***					***	9999	+ + + + + +			+++++++	4		
		***				1111111		1000	titti	1999			1117	11	
		\approx				1111111	111111		11221			11121	2111		
		***			2				1111						
		***				1111111		13413					3443		
		***										+++++			
	1	***						1111	THEFT	THE		ti i i			
	ł	××						11711		1111					
		***				1.2.1.2.1.1.2	in and	14.13	1.1.1.1.1.	11.14	1.1.1.3	1.1.1.1.1	31.13		
		***				1.			41.2.4.1.	4.44	4444		4444		
	ł	***				444444	4.1.4.4.4.4	1444	+ + + + + +	4144	4914	4-1-5-5	44.14	4	
		***				1 Contraction of the last of t	+++++++	1777	11111		1111	titt:	1111		
-1	Į.	***	Ē)		3	1111111		1111				11111		1	
-00	Į.	***		54.0	_				1:::::						
5/9/			Test Pit Terminated at 3.2 m Depth						1111					100	
١ä	- 1								11111	1111					
AG							HI HI	100	1111						
TAV	- 1														
5						H H H H			1111			1111		1010	
S							11111		11111				111		
H H							11 111	11111	1111	1111		11111			
G									11111				114		
y.	- 1						111111		HH	1111					
EΑ	- 1					11010	11111	1111	11111	1111	1111	1111			
ISI	- 1						11 111				1111				
R I								1111	1111						
8										111		1111			
5595							H H H	1111	1111	111		HHH			
24							11 111	11:11	11:11	3143	13131	3144			
30	NO	TES:					200		1	~					
2	1_E	Boreho	le data requires interpretation by EXP before	ITAW	EKI	LEVEL RECO	KUS		Due	Der		ILLING RE		-	00%
Ë.	t	ise by	others Elap	ne		vvater Level (m)	To (m)	No	(л	0	% Re	G	R	QU %
OLE	2 1	Fest Pit	t backfilled upon completion On Com	pletion		Dry	2.6								
핆	3 F	ield w	ork supervised by an EXP representative.												
BO	4 5	See No	tes on Sample Descriptions												
Ы	5.L	.og to l	pe read with EXP Report OTT-00245595-A0												
8															

	Log of Tes	st Pit <u>TP 12</u>	ovn
Project No:	OTT-00245595-A0		
Project:	Preliminary Geotechnical Investigation - Burnside C	OPA and ZBLA Supporting Studies	
Location:	Burnside Avenue, Ottawa, ON.		Page or
Date Drilled	'March 29, 2018	Split Spoon Sample	Combustible Vapour Reading
Drill Type:	Rubber Tired Backhoe	Auger Sample SPT (N) Value O	Natural Moisture Content X Atterberg Limits
Datum:	Geodetic Elevation	Dynamic Cone Test	Undrained Triaxal at % Strain at Failure
Logged by:	M.L. Checked by: S.P.	Shear Strength by + Vane Test S	Shear Strength by Areat Strength by Areat Strength by Areat Strength Streng
s	Contribu	Standard Penetration Test N Value	Combustible Vapour Reading (ppm)

Γ	Т	ş		Geodetic	D	Standa	d Pen	etration Tes	st N Valu	e	Combus	stible Vap	our Readir	ng (ppm)	SA	Natural
V V	V V	M B	SOIL DESCRIPTION	Elevation	e P	20	40	60	80		Nat	ural Moist	ure Conte	nt %	P	Unit Wt
		Õ			h	Shear Stren	ցնի 1Ռ	0 150	20	kPa n	Atterb	erg Limits	s (% Dry W 10 F	(eight) (0	JES	kN/m ³
			TOPSOIL ~100 mm FILL Mixture of silty sand and silty clay, gravel, cobbles, boulders, angular blast-rock pieces, roots, asphalt, brick and concrete pieces, brown to dark brown, moist to wet	57 3	U										•	
	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX				3				· · · · · · · · · · · · · · · · · · ·		×			······································		
	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		GLACIAL TILL Silty sand with clay, gravel, cobbles, brown and grey, moist	55 7					· · · · · ·							
			Bucket Refusal at 2.0 m Depth		-			1111								
- 245595 - BURNSIDE AVE GPJ TROW OTTAWA GDT 5/9/18																
NOGS	IOT	ES:		WATE	RI	LEVEL RECO	RDS				C	ORE DR	ILLING R	ECORE)	
TPL	1 Bi	orehol se by	e gata requires interpretation by EXP before Elap	sed	1	Water	1.1	Hole Oper	ı I	Run	Dep	oth	% Re	ec	R	QD %
OREHOLE	2 Te 3. Fi	est Pit ield we	backfilled upon completion. On Com ork supervised by an EXP representative.	npletion		Dry		1.9		INU.	(II					
LOG OF B	4 30 5 Lo	og to t	eread with EXP Report OTT-00245595-A0													

	Log of Tes	st Pit <u>TP 13</u>		ovn
Project No:	OTT-00245595-A0		Figure No. 20	exp.
Project:	Preliminary Geotechnical Investigation - Burnside C	PA and ZBLA Supporting Studies		1
Location:	Burnside Avenue, Ottawa, ON			
Date Drilled;	'March 29, 2018	Split Spoon Sample 🛛 🛛	Combustible Vapour Reading	
Drill Type:	Rubber Tired Backhoe	Auger Sample II SPT (N) Value O	Natural Moisture Content Atterberg Limits	× ⊢–⊖
Datum:	Geodetic Elevation	Dynamic Cone Test	Undrained Triaxal at % Strain at Failure	\oplus
Logged by:	M,L, Checked by: S.P.	Shear Strength by + Vane Test S	Shear Strength by Penetrometer Test	•
s	Geodetic	Standard Penetration Test N Value	Combustible Vapour Reading (ppr	1) S

0	3	Ŷ		Geodet	uc	De	0.0110011			250 500 750				Â	Natural	
U L	V	B	SOIL DESCRIPTION	Elevatio	on	P -	20 Shear Strend	40 th	60	80 kPa	Atterberg Limits (% Dry Weight)			PL	Unit Wt	
		ĭ		56 79		h	50	100	150	200	100000	20	40 6	0	E ST	NIN/IO
		2	TOPSOIL ~100 mm	56.7		ľ.										
	ß	889	FILL									1111				
	B	883	Sand with silt and gravel, cobbles, boulders,					1.i.l.			1111	1111	11111	1111		
	R	883 I	angular blast-rock pieces, roots, brick debris,					21.								
	Į.	***	prown and grey, moist to wet	-							444	1.1.1.1				
	ß	88					\$4444	÷i.	61.561.561.	44.44	\$1.55	1. 3	44444	444	-	
	B	888					sei o pi o	44 -	5130 5 64	5-1-5-6-4-	6.64	1.2 4. 1. 2	- 6136-	-23-1-		
	R	883				1					14144					
	ě	\sim				1	****	***			X			ti i i i i	103	
	ß	888-				1		+++			1111		++++++			
	ß	888					****	÷ † †				1.1.1.1		2014		
	R	XX				1		÷++			10100	14444	11111		-	
	ß	888					44.2.44	÷÷+			0440	1944	+11+4-	211	ŝ.	
	B	888				1	经营业时间	÷ ! • •	999 9 99 P		10110	12:44-2	++++++	****	8	
	R	XX7	-					+++	· · · · · · · · · · · · · · · · · · ·	+++++	+++++	+++++	++++++	****		
	K	***						eit:					11111			
	ß	\approx				1		: t			12112	11711	11171	TTT		
	B	888					in the	111	ment	11111	11111	11111	11111	1111		
	Į.	**				1	经增益	针	erre erre	terre i	1111	自會自	11121	Pff:	1	
	Ķ	88				2					1111	11111	1111	111		
	B	888						ti t			24.20	11111		1940		
	R	889							TTT TTT		×	TTT	THEFT	THE	win.	
	k	88						111			11111	1111	11111	1111	ĬŬ	
	\$	88					111111	11	CEEE FEE		1111	11111	THIT	1111		
	8	889		5725							1111	11111	Titt			
	R	888									19119	1111	THE			
	F	88						ШT		TTTT		1111	THE	11 H		
	ß	883				18	entr				1111	1111	THEFT		81	
	R	883		53.8		2 3						1111	1111			
	ſ		Test Pit Terminated at 3.0 m Depth			1			HE HE			1111	1111	111		
202							HBH	11	13 13 33 1	11111	3113	1312	13111	111	8	
18											1111	1111	1111			
21	L	- 11									1111	1111	1111	111		
5		- 6			- 1			11		iliifi	日日	1111	11111	111		
₹.											1111	HHH	11111	111		
₹	1	- 11						11	1111111		1111	11111				
5					- 1											
8					- 1	1						11111				
ž											1111	11111	11111			
2	Т						i a la	11			11111	11111	11111			
5								11		11111	1333	1::::	11111	111	1	
2											11111	11111	1111			
												11111	1111			
														68		
Z Y																
P C												1994				
							ii ii ii	11		11111	1111	11111	HHH.			
222								11			1111	1111	1111			
4					_	1	11111	11	11111	1 1 1 1 1 1	11111	11111	11110	13.53	:	
S N	OT	ES:	1				-		1	ſ	-					
2 1	1.8	loreho	le data requires interpretation by EXP before	WA	TER	(LE	VEL RECOR	KUS			C	JRE DRI	ILLING RE	-CORE)	
-	u	se by	others	lapsed		V	Vater	H	ole Open	Run	Dep	ith	% Re	C	R	QD %
2 12	2 т	est Pit	t backfilled upon completion	ompletion	-	Le			26	INO.	(m	4		-		
입]				ompieuuri			Di y		2.0							
뭐 3	3 1-	ield W	ork supervised by an EXP representative													
뇌 4	4 S	iee No	tes on Sample Descriptions													
히	5 L	og to t	be read with EXP Report OTT-00245595-A0							1						
8		-														

Borehole Number: BH19-01

Project Number: 18-262-1 Client: National Capital Commission Site Location: Burnside NCC Coordinates: 365073E, 5030276N (MTM) Drilling Method: Direct Push Drilling Rig: Geomachine GM100GT

MOE Well ID: N/A Date Completed: May 24, 2019 Supervisor: CAM Logged By: CAM Ground Surface Elevation: 56.92 mASL Date of Water Level Measurement: N/A

DEPTH BGS	SAMPLES	LAB SAMPLE	BLOW COUNT	CGI (ppm)	PID (ppm)	POG	SRATIGRAPHIC DESCRIPTION	INSTALLATION
ft m							GROUND SURFACE	
							TOPSOIL silty sand and clay, fine to medium grained, low plasticity, no odour, light brown, moist to dry.	No Well Installation
2 2 3 4 1		x		0	0		FILL silty sand and gravel, some plant debris, medium to coarse grained, no odour, brown and grey, dry.	
$\begin{array}{c} +1 \\ 4 \\ +1 \\ 5 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1$							BOREHOLE TERMINATED Total Depth of BH19-01 1.07 mBGS	
Prepare	ed By	CAI	M				- · · · ·	
Doc: 18	eu By 3-262	-1_R	G DA.GP	J			Page 1 of 1	
Templa	ite: G	EOF	IRMA_	TEMF	LATE.	GDT		Engineering Ltd

Borehole Number: BH19-02

Project Number: 18-262-1 Client: National Capital Commission Site Location: Burnside NCC Coordinates: 365127E, 5030264N (MTM) Drilling Method: Direct Push Drilling Rig: Geomachine GM100GT

MOE Well ID: N/A Date Completed: May 24, 2019 Supervisor: CAM Logged By: CAM Ground Surface Elevation: 56.21 mASL Date of Water Level Measurement: N/A

DEPTH BGS	SAMPLES	LAB SAMPLE	BLOW COUNT	CGI (ppm)	PID (ppm)	POG	SRATIGRAPHIC DESCRIPTION	INSTALLATION
ft m 0−						$\sim \sim$	GROUND SURFACE	No Well Installation
						\sim	TOPSOIL sandy silt with some plant debris, fine grained,	
1							FILL	
2							light brown, dry.	
		v		5	1			
3-1-1		^		-				
4								
5-1								
6								
2								
				5	1			
8								
103							SAND	
11-1 11-1							poorly sorted sand, coarse grained, no odour, brown, wet.	
12-1				0				
13-11		X		0	0			
14-1								
15- <u>-</u>	┝╋╋					* • • • • • • • • •	SAND	
				0	0		sand to silty sand, coarsens upwards, fine to medium grained, no odour, brown-grey, wet.	
16								
17							BUREHOLE TERMINATED Total Depth of BH19-02	
							0.00 1000	
Prepare	ed By red Br	: CAN	и G				Page 1 of 1	· Coofirma
Doc: 18 Templa	3-262 ate: G	-1_R(EOFI)a.gp Rma	J TEMF	PLATE.	GDT		Engineering Ltd

Borehole Number: BH19-03

Project Number: 18-262-1 Client: National Capital Commission Site Location: Burnside NCC Coordinates: 365016E, 5030302N (MTM) Drilling Method: Direct Push Drilling Rig: Geomachine GM100GT

MOE Well ID: N/A Date Completed: May 24, 2019 Supervisor: CAM Logged By: CAM Ground Surface Elevation: 56.51 mASL Date of Water Level Measurement: N/A

DEPTH BGS	SAMPLES	LAB SAMPLE	BLOW COUNT	CGI (ppm)	PID (ppm)	POG	SRATIGRAPHIC DESCRIPTION	INSTALLATION
ft m 0−							GROUND SURFACE	
						$\langle \rangle \langle \rangle \langle \rangle$	TOPSOIL clay and silt, fine grained, low plasticity, no	No Well Installation
1						$\langle \rangle \rangle \langle \rangle \langle \rangle$	odour, grey, moist.	
2-		X		5	1	$\widetilde{\widetilde{X}}$) FILL r	
3							silty sand and gravel, medium to coarse grained, no odour, brown, dry.	
1 1							BOREHOLE TERMINATED Total Depth of BH19-03	
4							0.76 mBGS	
5								
6								
8-1								
9								
10-3								
11-1								
12								
13-4-4								
11								
17 1								
15-								
10								
17								
-18 Prepare	ed By	: CAN	M					
Review Doc: 18	ed By 3-262	y: TK(-1_R(G DA.GP	Ŋ			Page 1 of 1	Geofirma
Templa	ate: G	EOFI	RMA_	TEMF	PLATE.	GDT		. The second sec

Borehole Number: BH19-04

Project Number: 18-262-1 Client: National Capital Commission Site Location: Burnside NCC Coordinates: 365001E, 5030266N (MTM) Drilling Method: Direct Push Drilling Rig: Geomachine GM100GT

MOE Well ID: N/A Date Completed: May 24, 2019 Supervisor: CAM Logged By: CAM Ground Surface Elevation: 59.83 mASL Date of Water Level Measurement: N/A

DEPTH BGS	SAMPLES	LAB SAMPLE	BLOW COUNT	CGI (ppm)	PID (ppm)	POG	SRATIGRAPHIC DESCRIPTION	INSTALLATION
ft m 0−						~~	GROUND SURFACE	No Well Installation
							silt, fine grained, no odour, brown-grey, moist.	
							silty sand and gravel, no odour, brown, moist to wet.	
2								
		x		5	1			
3- 		~						
4								
5-1								
							BOREHOLE TERMINATED Total Depth of BH19-04	
6							1.52 mBGS	
1-2 7-1								
8								
9-1								
10 - 3								
11-1								
12-1								
13-4								
15-								
16_1								
17								
Prepare	ed By ed B۱	: CAN	M G				Page 1 of 1	···· Coofirma
Doc: 18	-262- te: G	-1_R()A.GP RMA	IJ TEME	PI ATF	GDT		Engineering Ltd

Borehole Number: BH19-05

Project Number: 18-262-1 Client: National Capital Commission Site Location: Burnside NCC Coordinates: 364942E, 5030203N (MTM) Drilling Method: Direct Push Drilling Rig: Geomachine GM100GT

MOE Well ID: N/A Date Completed: May 24, 2019 Supervisor: CAM Logged By: CAM Ground Surface Elevation: 63.58 mASL Date of Water Level Measurement: N/A

DEPTH BGS	SAMPLES	LAB SAMPLE	BLOW COUNT	CGI (ppm)	PID (ppm)	DOG	SRATIGRAPHIC DESCRIPTION	INSTALLATION
ft m 0−							GROUND SURFACE	
						$\frac{1}{1}$	TOPSOIL silt with organic material, fine grained, no	
1		L					∖ odour, grey, moist to dry.	
		x		15	1		silty sand with gravel, some brick fragments, medium to coarse grained, no odour, brown,	
2							moist.	
3							BOREHOLE TERMINATED Total Depth of BH19-05	
1							0.76 mBGS	
4								
5								
6								
-2								
7-								
8								
9								
10 - 3								
11-1								
12-1								
13-1								
14								
15-								
16								
5								
17								
Prepare	ed By	: CAI	M G					
Doc: 18	8-262	-1_R	0A.GF	J			Page 1 of 1	
Templa	te: G	EOF	IRMA_	TEMF	PLATE.	GDT		

Borehole Number: BH19-06

Project Number: 18-262-1 Client: National Capital Commission Site Location: Burnside NCC Coordinates: 364933E, 5030262N (MTM) Drilling Method: Direct Push Drilling Rig: Geomachine GM100GT

MOE Well ID: N/A Date Completed: May 24, 2019 Supervisor: CAM Logged By: CAM Ground Surface Elevation: 62.55 mASL Date of Water Level Measurement: N/A

DEPTH BGS	SAMPLES	LAB SAMPLE	BLOW COUNT	CGI (ppm)	PID (ppm)	POG	SRATIGRAPHIC DESCRIPTION	INSTALLATION
ft∣m							GROUND SURFACE	
							TOPSOIL sandy silt and clay, fine grained, low plasticity, no odour, grey, moist to dry.	No Well Installation
2		x		5	0		FILL gravel and sand, coarse grained, no odour, grey-brown, dry.	
3 1 4 1 4 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1							BOREHOLE TERMINATED Total Depth of BH19-06 0.76 mBGS	
12								
13-4-4								
14 14								
15								
16 - 5								
17								
18 [¬] Prepare	ed By	: CAI	M			1		
Review	ed By	/: TK	G				Page 1 of 1	😲 💽 Geofirma
Templa	-262 ite: G	EOF	IRMA	_ <u>TEM</u> F	PLATE.	GDT		Engineering Ltd

Borehole Number: BH19-07

Project Number: 18-262-1 Client: National Capital Commission Site Location: Burnside NCC Coordinates: 364939E, 5030273N (MTM) Drilling Method: Direct Push Drilling Rig: Geomachine GM100GT

MOE Well ID: N/A Date Completed: May 24, 2019 Supervisor: CAM Logged By: CAM Ground Surface Elevation: 62.12 mASL Date of Water Level Measurement: N/A

DEPTH BGS	SAMPLES	LAB SAMPLE	BLOW COUNT	CGI (ppm)	PID (ppm)	POG	SRATIGRAPHIC DESCRIPTION	INSTALLATION
ft m							GROUND SURFACE	
							TOPSOIL clay, fine grained, plastic, no odour, grey, moist.	No Well Installation
2 2 3 1 1 4 1 4		x		0	0		FILL sand with some gravel, brick fragments, medium grained, no odour, brown, moist to dry.	
5 5 6 7 7						~~~~	BOREHOLE TERMINATED Total Depth of BH19-07 1.37 mBGS	
8 8 9								
103								
11 11 11								
12								
13-4-4								
17 17								
-18 - Prepare	ed By	: CAI	M					
Review	ed By	y: TK	G				Page 1 of 1	😲 💽 Geofirma
Templa	-∠62 ite: G	EOF	IRMA	_TEMF	LATE.	GDT		Engineering Ltd

Borehole Number: BH19-08

Project Number: 18-262-1 Client: National Capital Commission Site Location: Burnside NCC Coordinates: 364838E, 5030312N (MTM) Drilling Method: Direct Push Drilling Rig: Geomachine GM100GT

MOE Well ID: N/A Date Completed: May 24, 2019 Supervisor: CAM Logged By: CAM Ground Surface Elevation: 59.36 mASL Date of Water Level Measurement: N/A

n Image: Constraint of the second s	DEPTH BGS	SAMPLES	LAB SAMPLE	BLOW COUNT	CGI (ppm)	PID (ppm)	LOG	SRATIGRAPHIC DESCRIPTION	INSTALLATION
Image: Second	ft m							GROUND SURFACE	
1 1 5 0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>$\langle \rangle \rangle \langle \rangle \langle \rangle$</td> <td>TOPSOIL silt and clay, fine to medium grained, no odour,</td> <td>No Well Installation</td>							$\langle \rangle \rangle \langle \rangle \langle \rangle$	TOPSOIL silt and clay, fine to medium grained, no odour,	No Well Installation
2 3 0 Sili with sand, some gravel, coarse grained, no 3 0 0.00000000000000000000000000000000000	1				_			brown, moist.	
3 1 3 1 4 1 6 2 7 3 10 3 11 1 12 1 13 4 14 1 15 1 16 5 17 1 18 5 17 1 18 5 17 1 18 1 19 1 10 1 11 1 12 1 13 4 14 1 15 1 16 5 17 1 18 1 19 1 10 1 10 1 11 1 12 1 13 4 14 1 15 1 16 1 17 1 18 1 19 1 19 1 10 1 10 1 10 1 11	2		X		5	0		silt with sand, some gravel, coarse grained, no odour, grey-brown, moist.	
3 - 1	2							BOREHOLE TERMINATED Total Depth of BH19-08	
4 5 6 7 7 8 9 10 10 10 10 10 10 10 10 10 10	3							0.61 mBGS	
4 5 6 7 7 8 9 10 10 10 10 10 10 10 10 10 10	1								
5	4								
6 - 2 7 - 3 9 3 10 3 11	5								
6 - 2 7 - 3 9 3 10 3 10 3 11	J								
7 8 9 9 10 10 10 10 10 10 10 10 10 10	6-								
7 1 1 9 -3 10 -3 11 12 13 -4 14 -4 15 -7 16 -5 17 -8 18 -9 19 -7 10 -8 10 -9 10 -9 11 -9 12 -9 13 -4 14 -9 15 -9 16 -5 17 -9 18 -9 19 -9 10 -9 10 -9 10 -9 10 -9 11 -9 13 -4 14 -9 15 -9 16 -5 17 -9 18 -9 19 -9 10 -9 10 -9 10 -9 10 -9 10 -9 10 -9 10 -9 17 -9	-2								
8 9 10 13 10 13 14 14 13 14 14 14 14 14 15 17 16 16 -5 17 17 14 14 18 16 16 19 Prepared By: CAM Reviewed By: TKG Do:: 18-282-1; ROA.GPJ Page 1 of 1	7-								
9 9 10 13 14 14 14 15 16 15 17 16 15 17 16 15 17 16 15 17 16 15 17 16 15 17 16 15 17 16 15 17 16 15 17 16 15 17 16 15 17 16 15 17 16 17 17 18 19 19 19 19 19 19 19 19 19 19	8								
9 10 11 12 13 14 14 14 15 16 15 17 16 15 17 16 15 17 16 15 17 16 15 17 16 15 17 16 15 17 16 15 17 16 15 17 16 15 17 16 15 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 17 16 17 17 16 17 17 16 17 17 16 17 17 16 17 17 16 17 17 17 17 17 17 17 17 17 17									
10	9								
10 10 11 11 12 13 13 4 14 14 15 16 16 -5 17 10 18 Prepared By: CAM Reviewed By: TKG Doc: 18-282-1, ROA.GPJ Page 1 of 1 Doc: 18-282-1, ROA.GPJ Templete: GEOEIRMA TEMPLATE GDT									
11 12 13 4 14 15 16 5 17 14 16 17 17 14 18 14 19 14 10 15 11 16 12 16 13 16 14 16 15 17 16 16 17 16 18 16 19 16 10 16 10 16 10 16 11 16 12 16 13 16 14 16 15 17 16 16 17 16 18 16 19 16 10 16 10 16 11 16 12 16 13 16 14 17 15 17 16 16 17 17 18 16 19 16 10 16 10	103								
12 13 4 14 14 14 15 16 5 17 16 16 5 17 16 18 16 19 Prepared By: CAM Reviewed By: TKG Page 1 of 1 Doc: 18-262-1 ROA.GPJ Page 1 of 1 Temple: GEOFIRMA TERMENTATE GOT									
12 13 14 14 14 15 16 15 17 16 15 17 17 17 17 17 18 18 19 19 19 19 19 19 10 10 10 10 10 10 10 10 10 10									
13 14 14 15 16 17 17 17 17 17 17 17 17 17 17	12								
13 4 4 14 4 15 4 16 5 17 5 18 Frepared By: CAM Reviewed By: TKG Doc: 18-262-1_R0A.GPJ Template: GEOERBMA TEMPLATE GDT									
14 15 16 17 17 17 17 17 17 17 17 17 17	134								
16 16 16 17 17 17 17 17 17 17 17 17 17	14								
15 16 17 17 17 17 17 17 17 17 17 17									
16 17 17 17 17 17 17 17 17 17 17	15								
16 17 17 17 17 17 17 17 17 17 17									
17 18 Prepared By: CAM Reviewed By: TKG Doc: 18-262-1_R0A.GPJ Template: GEOEIRMA_TEMPLATE GDT Template: GEOEIRMA_TEMPLATE GDT	16-								
Prepared By: CAM Reviewed By: TKG Doc: 18-262-1_R0A.GPJ Template: GEOEIRMA_TEMPLATE GDT									
18 Image: CAM Prepared By: CAM Reviewed By: TKG Page 1 of 1 Doc: 18-262-1_R0A.GPJ Template: GEOEIRMA_TEMPLATE GDT									
Reviewed By: TKG Page 1 of 1 Doc: 18-262-1_R0A.GPJ Template: GEOFIRMA_TEMPLATE GDT Engineering Ltd	- <u>18</u>								
Doc: 18-262-1_R0A.GPJ	Prepare Review	ea By red Br	y: CAľ y: TK	vi G				Page 1 of 1	Goofirma
	Doc: 18	3-262	-1_R	DA.GF	Ŋ T⊑N4⊓		CDT		Engineering Ltd

Borehole Number: BH19-09

Project Number: 18-262-1 Client: National Capital Commission Site Location: Burnside NCC Coordinates: 364848E, 5030259N (MTM) Drilling Method: Direct Push Drilling Rig: Geomachine GM100GT

MOE Well ID: N/A Date Completed: May 24, 2019 Supervisor: CAM Logged By: CAM Ground Surface Elevation: 60.90 mASL Date of Water Level Measurement: N/A

DEPTH BGS	SAMPLES	LAB SAMPLE	BLOW COUNT	CGI (ppm)	PID (ppm)	POG	SRATIGRAPHIC DESCRIPTION	INSTALLATION
ft m 0−							GROUND SURFACE	
		~		E	1		TOPSOIL sand with silt, fine to medium grained, no odour, brown, moist.	No Well Installation
2		X		5			FILL gravel and sand, coarse grained, no odour, grey, dry.	
3-1-1							BOREHOLE TERMINATED Total Depth of BH19-09 0.61 mBGS	
4								
5								
6								
7								
8								
9								
10 - 3								
11 11 11								
12								
134								
14								
15 - 								
16 -1 -5								
18 Prepare	ed By	: CAI	M					
Review	ed By	/: TK	G NA CE				Page 1 of 1	🛟 💽 Geofirma
Templa	ite: G	EOFI	IRMA	_TEMF	PLATE	.GDT		Engineering Ltd

Borehole Number: BH19-10

Project Number: 18-262-1 Client: National Capital Commission Site Location: Burnside NCC Coordinates: 364839E, 5030263N (MTM) Drilling Method: Direct Push Drilling Rig: Geomachine GM100GT

MOE Well ID: N/A Date Completed: May 24, 2019 Supervisor: CAM Logged By: CAM Ground Surface Elevation: 60.63 mASL Date of Water Level Measurement: N/A

DEPTH BGS	SAMPLES	LAB SAMPLE	BLOW COUNT	CGI (ppm)	PID (ppm)	LOG	SRATIGRAPHIC DESCRIPTION	INSTALLATION
ft m							GROUND SURFACE	
							TOPSOIL silty sand, organic, fine to medium grained, no odour, brown, moist.	No Well Installation
2 2 3 1 1		x		5	1		FILL gravel with sand, coarse grained, no odour, grey, dry.	
$\begin{array}{c} 1\\ 1\\ 4\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\$							BOREHOLE TERMINATED Total Depth of BH19-10 1.07 mBGS	
Prepare	ed By red By		M G				Page 1 of 1	···· Coofirmo
Doc: 18	3-262	-1_R(DA.GP	J			Faye I UI I	
Templa	te: G	EOF	IRMA_	_TEMF	LATE.	GDT		

Appendix C

Laboratory Certificates of Analysis

REPORT OF ANALYSIS

Client:

Duke Engineering & Services Attn: Ms. Krista Trounce

Report Number: Date: Date Submitted: Date Collected: Project:

2005493 Jun 20,2000 Jun 8,2000 Jun 8,2000 99-202-18

				Sample Matr	ix:	SOIL	
PARAMETER	LINITS	MDI	RN 70595				
	UIIIŞ		TP-7				
Acenaphthylene Acenaphthene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)filuoranthene Benzo(k)filuoranthene Benzo(g,h,i)perylene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-c,d)pyrene Naphthalene Phenanthrene Pyrene	ha\a ha\a ha\a ha\a ha\a ha\a ha\a ha\a	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	TP-7 0.2 1.7 9.0 24.8 14.7 10.8 3.2 2.4 17.5 0.6 43.0 2.2 1.4 1.5 32.2 38.3				
ID = Not Detected (< MDL)			IDL = Metho		nit		

Comment:

APPROVAL: 200

146 Colonnade Road, Unit 8, Nepean, Ontario K2E 7Y1 Tel:(613)727-5692 Fax:(613)727-5222

Ø001

ACCUTEST LABORATORIES LTD.

REPORT OF ANALYSIS

Client: Duke Engineering & Services

ATT: Ms. Krista Trounce

Report Number: Date: Date Submitted: Date Collected: Project:

2005493 2000-06-20 2000-06-08 2000-06-08 99-202-18

				P.O. Number	1:		
	1	1	70501	Matrix:		Soil	
PARAMETER	UNITE		70594	70596	70597		
	UNITS	MUL	TP-6	TP-1	TP-3		
Ag	100						
AI	09/9		\$1	<1	<1		
Ba	ug/g		11000	5200	10500	1	
Be	ug/g		123	48	152		1
Ca	ug/g		<1	<1	<1		
Cd	ug/g	100	205000	104000	118000		1
Co	ug/g	0.5	<0.5	<0.5	0.9		
Cr	ug/g		1	<1	<1		
Gu	ug/g		22	16	25	1	1
Fa	ugyg	1	16	11	36		
Ph	ug/g		13700	8220	13700		
Ma	ug/g	3	41	16	165		
An a	nð\ð	100	33400	14700	8000		
	ug/g	1	466	261	471		
	ug/g	1	3	3	29		
	ug/g	1	14	10	16		
	ug/g	100	4970	1530	3050		
	ug/g	100	1280	949	1140		
50	ug/g	1	234	74	137		
	ug/g	4	<4	<4	<a< td=""><td></td><td></td></a<>		
1	ug/g	1	26	17	24		
0	ug/q	1	51	30	27		1
				30	213		
DL = Method Detection Limit		NC = loco	molete				

Comment

reompiete

Metals analysis was performed on an aqua-regia digest of the sample material.

APPROVAL: K.L

146 Colonnade Road, Unit 8, Nepean, Ontario, K2E 7Y1 Tel:(613)727-5692 Fax:(613)727-5222

Paracel Laboratories Ltd.

Certificate of Analysis	Order #: F1669
Duke Engineering & Services Inc. 265 Carling Avenue, suite 208 Ottawa, Ontario K1S 2E1 Attn: Ms. Krista Trounce	Tel: 613-232-2525 Fax: 613-232-7149
Client Reference: Project: 00-313-12 Reference:	Report Date: 12/05/00 Order Date: 11/28/00 Sample Date: 11/22/00

This Certificate of Analysis contains analytical data for the following samples:

Paracel ID	Client ID		
F1669.1	TP-46 (1.3)	F1669.34	TP-35 (1.2)
F1669.2	TP-47 (0.55)	F1669.35	TP-30 (0.7)
F1669.3	TP-48 (0.8)	F1669.36	TP-16 (1.5)
F1669.4	TP-49 (0.5)	F1669.37	TP-5 (0.8)
F1669.5	TP-39 (0.5)	F1669.38	TP-28 (0.2)
F1669.6	TP-40 (0.9)	F1669.39	TP-22 (0.4)
F1669.7	TP-42 (0.4)	F1669.40	TP-31 (0.4)
F1669.8	TP-36 (1.2)	F1669.41	TP-10 (0.3)
F1669.9	TP-33 (0.7)	F1669.42	TP-12 (2.6)
F1669 10	TP-32(1.3)	F1669.43	TP-2 (0.4)
F1669:11	TP-29 (0.7)	F1669.44	TP-12(1.3)
F1669 12	TP-26 (0.3)	F1669.45	TP-3 (1.3)
F1669 13	TP-15 (1.0)	F1669.46	TP-45 (1.0)
F1669=14	TP-11 (1.5)	F1669.47	TP-37 (0.5)
F1669_15	TP-6 (0.9)	F1669.48	TP-41 (0.2)
F1669-16	TP-1 (0.4)	F1669.49	TP-38 (0.4)
F1669 17	TP-4 (1.2)	F1669.50	TP-43 (0.5)
F1669_18	TP-23 (1.2)	F1669.51	TP-7 (1.5)
F1669.19	TP-20 (2.5)	F1669.52	TP-13 (2.5)
F1669.20	TP-8 (0.8)	F1669.53	TP-27 (0.4)
F1669.21	TP-18(1.4)	F1669.54	TP-21 (0.45)
F1669.22	TP-32 (0.3)	F1669.55	TP-19 (2.0)
F1669.23	TP-33 (0.4)	F1669.56	TP-13 (0.9)
F1669_24	TP-26 (0.8)	F1669.57	TP-25 (0.6)
F1669.25	TP-15 (2.0)	F1669.58	TP-14 (2.9)
F1669.26	TP-4 (0.8)	F1669.59	TP-14 (2.0)
F1669.27	TP-20 (1.5)	F1669.60	TP-24 (0.2)
F1669.28	TP-9 (0.4)		
F1669.29	TP-8 (2.9)		
F1669.30	TP-6 (2.5)		
F1669.31	TP-17 (0.5)		
F1669 32	TP-44 (0.8)		
F1669_33	TP-34 (0.8)		
roval: 7	Dea	Dale Robertson	n, B.Sc.

Any use of these test results implies your agreement that our total fiability in connection with this work, however arising, shall be limited to the amount paid by you for this work and that our employees or agents shall not under any circumstance be liable to you in connection with this work.

Paracel Laboratories Ltd.

Certificate of Analysis

Client: Duke Engineering & Services Inc.

Client Ref:

 Report Date:
 12/05/00

 Order Date:
 11/28/00

 Sample Date:
 11/22/00

Matrix: Soil		TP-46 (1.3)	TP-47 (0.55)	TP-48 (0.8)
Parameter	MDL	F1669.1	F1669.2	F1669.3
Antimony	1.0 ug/g	4.0	< 1.0	< 1.0
Arsenic	1.0 ug/g	5.0	2.0	8.0
Barium	10 ug/g	270	440	180
Beryllium	0.50 ug/g	0.50	0.50	1.0
Cadmium	1.0 ug/g	< 1.0	< 1.0	< 1.0
Calcium	200 ug/g	33000	18000	27000
Chromium	5.0 ug/g	25	75	20
Cobalt	5.0 ug/g	10	15	5.0
Copper	5.0 ug/g	45	• 45	20
Iron	200 ug/g	23000	33000 '	24000
Lead	5.0 ug/g	510	180	190
Magnesium	200 ug/g	4400	18000	5600
Molybdenum	1.0 ug/g	1.0	< 1.0	< 1.0
Nickel	5.0 ug/g	20	45	15
Selenium	1.0 ug/g	< 1.0	< 1.0	< 1.0
Silver	5.0 ug/g	< 5.0	< 5.0	< 5.0
Sodium	200 ug/g	400	1000	200
Thallium	1.0 ug/g	< 1.0	< 1.0	< 1.0
Tin	5.0 ug/g	15	< 5.0	5.0
Vanadium	10 ug/g	20	70	20
Zinc	20 ug/g	220	160	100
Acenaphthene	0.017 ug/g	0.072	0.019	0.039
Acenaphthylene	0.017 ug/g	0.16	0.057	0.14
Anthracene	0.017 ug/g	0.36	0.11	0.21
Benzo[a]anthracene	0.017 ug/g	0.63	0.21	0.46
Benzo[a]pyrene	0.017 ug/g	0.85	0.19	0.50
Benzo[b+k]fluoranthene	0.033 ug/g	1.1	0.31	0.81
Benzo[ghi]perylene	0.017 ug/g	0.33	0.11	0.27
Biphenyl	0.017 ug/g	< 0.018	< 0.019	< 0.019
Chrysene	0.017 ug/g	0.62	0.19	0.44
Dibenzo[a,h]anthracene	0.017 ug/g	0.16	0.057	0.12
Fluoranthene	0.017 ug/g	1.4	0.34	1.1
Fluorene	0.017 ug/g	0.11	0.038	0.077
Indeno[1,2,3-cd]pyrene	0.017 ug/g	0.36	0.11	0.29

Order #: F1669

Certificate of Analys	is			Report Date: 12/05/00
Client: Duke Engineering & Services Inc.				Order Date: 11/28/00
Client Ref:	ing a services me.	Project: 00-313-12	2	Sample Date: 11/22/00
		TP-46 (1 3)	TP - 47 (0.55)	
		F1669 1	F1669 2	IP-48 (0.8)
-Methylnaphthalene	0.017 ug/g	0.054	< 0.019	F1009.3
		0.054	0.019	0.019
-Metnyinaphthaiene	0.017 ug/g	0.054	< 0.019	0.039
aphthalene	0.017 ug/g	0.11	< 0.019	0.039
henanthrene	0.017 ug/g	0.94	0.27	0.83
Yrene	0.017 ug/g	1.2	0.29	0.91
-Fluorobiphenyl	surrogate	123%	106%	117%
o-Terphenyl d-14	surrogate	112%	93%	120%
Matrix: Soil		TP-49 (0.5)	TP-39 (0.5)	TP-40 (0.9)
Parameter	MDL	F1669.4	F1669.5	F1669.6
Intimony	1.0 ug/g	2.0	< 1.0	< 1.0
arsenic	1.0 ug/g	8.0	3.0	8.0
Jarium	10 ug/g	610	210	440
eryllium	0.50 ug/g	0.50	< 0.50	0.50
admium	1.0 ug/g	1.0	< 1.0	1.0
alcium	200 ug/g	35000	55000	23000
hromium	5.0 ug/g	25	20	25
obalt	5.0 ug/g	5.0	5.0	5.0
opper	5.0 ug/g	65	25	45
ron	200 ug/g	19000	14000	26000
ead	5.0 ug/g	1100	520	390
lagnesium	200 ug/g	4400	9800	5200

< 1.0

< 5.0

< 1.0

< 0.98

20

1.0

400

20

20 %

420

0.98

2.0

3.9

< 1.0

< 1.0

< 5.0

< 1.0

15

400

10

20

180

0.18

0 18

0.71

1.1

1.0 ug/g

5.0 ug/g

1.0 ug/g

5.0 ug/g

200 ug/g

1.0 ug/g

5.0 ug/g

10 ug/g

20 ug/g

0_017 ug/g

0.017 ug/g

0.017 ug/g

0.017 ug/g

Molybdenum

Nickel

Silver

Sodium

Tin

Zinc

Thallium

Vanadium

Acenaphthene

Anthracene

Acenaphthylene

Benzo[a]anthracene

Selenium

Data: 2 of 19

1.0

20

1.0

400

50

20

300

0.021

0.18

0.21

0.55

< 5.0

< 1.0

Certificate of Analysis				Order #: F1669 Report Date: 12/05/00
Client: Duke Engineerir	or & Services Inc			Order Date: 11/28/00
Client Ref:		Sample Date: 11/22/0 Project: 00-313-12		
		TP-49 (0.5)	TP-39 (0.5)	TP-40 (0.9)
	T	F1669.4	F1669.5	F1669.6
Benzo[a]pyrene	0.017 ug/g	2.9	0.71	0.62
Benzo[b+k]fluoranthene	0.033 ug/g	5.9	1.4	0.98
Benzo[ghi]perylene	0.017 ug/g	2.0	0.53	0.33
Biphenyl	0.017 ug/g	< 0.98	< 0.18	< 0.021
Chrysene	0.017 ug/g	3.9	1.2	0.57
Dibenzo[a,h]anthracene	0.017 ug/g	< 0.98	< 0.18	0.14
Fluoranthene	0.017 ug/g	6.9	2.6	0.96
Fluorene	0.017 ug/g	< 0.98	0.18	0.041
Indeno[1,2,3~cd]pyrene	0.017 ug/g	2.0	0.35	0.35
1-Methylnaphthalene	0.017 ug/g	< 0.98	< 0.18	< 0.021
2-Methylnaphthalene	0.017 ug/g	< 0.98	< 0.18	< 0.021
Naphthalene	0.017 ug/g	< 0.98	< 0.18	0.021
Phenanthrene	0.017 ug/g	4.9	2.2	L 0.41
Pyrene	0.017 ug/g	5.9	2.:	L 0.86
2-Fluorobiphenyl	surrogate	NA - Dilution	NA - Dilutio	ո 124%
p-Terphenyl d-14	surrogate	NA - Dilution	NA - Dilutio	n 108%
Matrix: Soil		TP-42 (0.4)	TP-36 (1.2) TP-33 (0.7)
Parameter	MDL	F1669.7	F1669.	B F1669 .9
Antimony	1.0 ug/g	< 1.0	< 1.0	
Arsenic	1.0 ug/g	3.0	3.	0
Barium	10 ug/g	160	32	0
Beryllium	0.50 ug/g	1.0	< 0.50	
Cadmium	1.0 ug/g	< 1.0	< 1.0	
Calcium	200 ug/g	47000	10000	0
Chromium	5.0 ug/g	35	2	0
Cobalt	5.0 ug/g	10	< 5.0	
Copper	5.0 ug/g	20	2	0
Iron	200 ug/g	22000	620	0
Lead	5.0 ug/g	120	17	0
Magnesium	200 ug/g	13000 !	520	0
Molybdenum	1.0 ug/g	< 1.0	< 1.0	
Nickel	5.0 ug/g	25	1	.5
Selenium	1.0 ug/g	< 1.0	< 1.0	
Silver	5.0 ug/g	< 5.0	< 5.0	NAME AND ADDRESS OF A DRESS OF A

Data: 3 of 19

Certificate of Analysis				Report Date: 12/05/00 Order Date: 11/28/00
Client: Duke Engineerin	ig & Services Inc.	0. 1. 0. 117 13		Sample Date: 11/22/00
Client Ref:		Project: 00-313-12	يت التحقيق الت	
		TP-42 (0.4)	TP-36 (1.2)	TP-33 (0.7)
		F1669.7	F1669.8	F1669.9
Sodium	200 ug/g	400	400	
Thallium	1.0 ug/g	< 1.0	< 1.0	
Tin	5.0 ug/g	< 5.0	1	5
Vanadium	10 ug/g	30	10	0
Zinc	20 ug/g	180	24	0
Acenaphthene	0.017 ug/g	0.037	< 0.71	0.052
Acenaphthylene	0.017 ug/g	0.13	6.	4 0.12
Anthracene	0.017 ug/g	0.20	1	1 0.19
Benzo[a]anthracene	0.017 ug/g	0.48	1	б 0.38
Benzo[a]pyrene	0.017 ug/g	0.56	1	3 0.48
Benzo[b+k]fluoranthene	0.033 ug/g	0.81	2	1 0.73
Benzo[ghi]perylene	0.017 ug/g	0.26	5.	6 0.26
Biphenyl	0.017 ug/g	< 0.019	< 0.71	< 0.017
Chrysene	0.017 ug/g	0.48	1	4 0.40
Dibenzo[a,h]anthracene	0.017 ug/g	0.11	2.	8 0.10
Fluoranthene	0.017 ug/g	0.93	3	8 0.73
Fluorene	0.017 ug/g	0.037	0.7	1 0.052
Indeno[1,2,3-cd]pyrene	0.017 ug/g	0.28	7.	1 0.26
1-Methylnaphthalene	0.017 ug/g	< 0.019	< 0.71	0.017
2-Methylnaphthalene	0.017 ug/g	< 0.019	< 0.71	0.035
Naphthalene	0.017 ug/g	0.019	< 0.71	0.035
Phenanthrene	0.017 ug/g	0.43	1	0.45
Pyrene	0.017 ug/g	0.85	2	27 0.62
2-Fluorobiphenyl	surrogate	115%	NA - Dilutio	on 106%
p-Terphenyl d-14	surrogate	101%	NA - Dilutio	on 89%
Matrix: Soil		TP-32 (1.3)	TP-29 (0.	7) TP-26 (0.3)
Parameter	MDL	F1669.10	F1669.	5 11 F1669.12
Antimony	1.0 ug/g		< 1.0	
Arsenic	1.0 ug/g	internet in a second	5	. 0
Barium	10 ug/g		2	00
Beryllium	0.50 ug/g	14 A	< 0.50	
Cadmium	1.0 ug/g		1	. 0
Calcium	200 ug/g		540	00
Chromium	5.0 ug/g			15

Order #: F1669

Paracel Laboratories Ltd.
Certificate of Analysis

Client Ref:

Client: Duke Engineering & Services Inc.

		TP-32 (1.3)	TP-29	(0.7)	TP-26	(0.3)
		F1669.10	Fl	569.11	F1	.669.12
Cobalt	5.0 ug/g		< 5.0			
Copper	5.0 ug/g			130		
Iron	200 ug/g			15000	17 - 18 - 19 - 19 - 19 - 19 - 19 - 19 - 19	
Lead	5.0 ug/g			480	4 - E26 - 175 E A	*
Magnesium	200 ug/g			5200		
Molybdenum	1.0 ug/g		< 1.0			
Nickel	5.0 ug/g			25		
Selenium	1.0 ug/g			1.0		
Silver	5.0 ug/g		< 5.0			
Sodium	200 ug/g			400		
Thallium	1.0 ug/g		< 1.0			5 m/mil 18
Tin	5.0 ug/g			15		
Vanadium	10 ug/g			20		
Zinc	20 ug/g			1300	-	
Benzene	0.040 ug/g		< 0.040			
Ethylbenzene	0.040 ug/g		< 0.040			
Toluene	0.040 ug/g		< 0.040			
m/p-Xylene	0.040 ug/g		< 0.040			
o-Xylene	0.040 ug/g		< 0.040		an a	5 A
Toluene-D8	surrogate			96%	17. //11.71.11.11.11.11.11.11.11.11.11.11.11.1	
Petroleum Hydrocarbons (gasoline)	10 ug/g		< 10	1944 - 2019 I		
Petroleum Hydrocarbons (diesel)	10 ug/g			360	1 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	
Petroleum Hydrocarbons (heavy oils)	50 ug/g			500		-
Acenaphthene	0.017 ug/g	< 0.018		2.5	< 0.018	
Acenaphthylene	0.017 ug/g	0.054		1.8		0 12
Anthracene	0.017 ug/g	0.054		6.2		0.12
Benzo[a]anthracene	0.017 ug/g	0.11	C I martin de la compañía	12		0.23
Benzo[a]pyrene	0.017 ug/g	0.11	0.00	16		0 39
Benzo[b+k]fluoranthene	0.033 ug/g	0.18		20		0.33
Benzo[ghi]perylene	0.017 ug/g	0.054	1007 (1)	5 7		0.16
Biphenyl	0.017 ug/g	< 0.018		0.22	< 0.019	0.10
Chrysene	0.017 ug/g	0.11		11	< 0.018	0.23
Dibenzo[a,h]anthracene	0.017 ug/g	0.018		2 8		0.23
Fluoranthene	0.017 ug/a	0.20		2.0		0.071
Fluorene	0.017 ug/g	< 0.018		2.6		0 010
	-3/3			2.0		0.018

Project: 00-313-12

Order #: F1669

Report Date: 12/05/00 Order Date: 11/28/00 Sample Date: 11/22/00

Certificate of Analysis				Order #: F1669 Report Date: 12/05/00 Order Date: 11/28/00
Client: Duke Engineering & Services Inc. Client Ref:		Project: 00-313-12		Sample Date: 11/22/00
		TP-32 (1.3)	TP-29 (0.7)	TP-26 (0.3)
		F1669.10	F1669.11	F1669.12
Indeno[1,2,3-cd]pyrene	0.017 ug/g	0.054	5.7	0.16
1-Methylnaphthalene	0.017 ug/g	< 0.018	1.0) < 0.018
2-Methylnaphthalene	0.017 ug/g	< 0.018	1.2	< 0.018
Naphthalene	0.017 ug/g	< 0.018	1.6	5 < 0.018
Phenanthrene	0.017 ug/g	0.072	19	0.21
Pyrene	0.017 ug/g	0.18	16	3 0.39
2-Fluorobiphenyl	surrogate	108% ;	NA - Dilution	119%
p-Terphenyl d-14	surrogate	89%	NA - Dilution	n 106%
Matrix: Soil		TP-15 (1.0)	TP-11 (1.5)) TP-6 (0.9)
Parameter	MDL	F1669.13	F1669.14	4 F1669.15
Antimony	1.0 ug/g	< 1.0	< 1.0	1.0
Arsenic	1.0 ug/g	5.+0	2.0	0 7.0
Barium	10 ug/g	180 .	18	0 ~460
Beryllium	0.50 ug/g	0.50	< 0.50	1.0
Cadmium	1.0 ug/g	< 1.0	< 1.0	< 1.0
Calcium	200 ug/g	29000	6100	0 36000
Chromium	5.0 ug/g	25	3	0 20
Cobalt	5.0 ug/g	5.0	1	0 5.0
Copper	5.0 ug/g	150	2	0 40
Iron	200 ug/g	20000	1800	0 14000
Lead	5.0 ug/g	380	4	0 480
Magnesium	200 ug/g	6600	1100	0 3200
Molybdenum	1.0 ug/g	1.0	< 1.0	2.0
Nickel	5.0 ug/g	20	2	5 20
Selenium	1.0 ug/g	< 1.0	< 1.0	< 1.0
Silver	5.0 ug/g	< 5.0	< 5.0	< 5.0
Sodium	200 ug/g	400	60	0 400
Thallium	1.0 ug/g	< 1.0	< 1.0	< 1.0
Tin	5.0 ug/g	20	< 5.0	5.0
Vanadium	10 ug/g	30	4	.0 30
Zinc	20 ug/g	160	10	00 440
Acenaphthene	0.017 ug/g	1.3	0.1	.4 0.020
Acenaphthylene	0.017 ug/g	1.7	0.1	.1 0.32
Anthracene	0.017 ug/g	4.5	0.4	0.28

Certificate of Analysis	es Ltd.			Order #: F1669 Report Date: 12/05/00
Client: Duke Engineering Client Ref:	g & Services Inc.	Project: 00-313-12		Sample Date: 11/22/00
		TP-15 (1.0)	TP-11 (1.5)	TP-6 (0.9)
		F1669.13	F1669.14	F1669.15
Benzo[a]anthracene	0.017 ug/g	6.6	0.58	0.54
Benzo[a]pyrene	0.017 ug/g	8.6 [!]	0.74	0.90
Benzo[b+k]fluoranthene	0.033 ug/g	10	0.86	1.1
Benzo[ghi]perylene	0.017 ug/g	3.0	0.25	0_42
Biphenyl	0.017 ug/g	0.16	0.018	< 0.020
Chrysene	0.017 ug/g	5.9	0.58	0.60
Dibenzo[a,h]anthracene	0.017 ug/g	1.5	0.13	0.14
Fluoranthene	0.017 ug/g	12	1.4	1.2
Fluorene	0.017 ug/g	2.5	0.25	0.060
Indeno[1,2,3-cd]pyrene	0.017 ug/g	3.2	0.25	0.38
1-Methylnaphthalene	0.017 ug/g	0.66	0.054	0.080
2-Methylnaphthalene	0.017 ug/g	0.73	0.036	0.12
Naphthalene	0.017 ug/g	0.85	0.072	0.080
Phenanthrene	0.017 ug/g	7.6	1.1	0.52
Pyrene	0.017 ug/g	9.5	1.1	0.96
2-Fluorobiphenyl	surrogate	122%	89%	108%
p-Terphenyl d-14	surrogate	110%	78%	89%
Matrix: Soil		TP-1 (0.4)	TP-4 (1.2)	TP-23 (1.2)
Parameter	MDL	F1669.16	F1669.17	F1669.18
Antimony	1.0 ug/g	< 1.0		< 1.0
Arsenic	1.0 ug/g	5.0		1.0
Barium	10 ug/g	130	2.00	80
Beryllium	0.50 ug/g	< 0.50		1.0
Cadmium	1.0 ug/g	< 1.0		< 1.0
Calcium	200 ug/g	15000		5400
Chromium	5.0 ug/g	20		30
Cobalt	5.0 ug/g	5.0	-	10
Copper	5.0 ug/g	15		10
Iron	200 ug/g	15000		33000
Lead	5.0 ug/g	140		40
Magnesium	200 ug/g	4200		4800
Molybdenum	1.0 ug/g	< 1.0		< 1.0
Nickel	5.0 ug/g	15		20
Selenium	1.0 ug/g	< 1.0		< 1.0

Data: 7 of 19

Paracel Laborator	ies Ltd.			Order #: F1669
Certificate of Analysis	S C C C			Report Date: 12/05/00 Order Date: 11/28/00
Client Ref:	ng & Services Inc.	Project: 00-313-12	2	Sample Date: 11/22/00
		TP-1 (0.4)	TP-4 (1.2)	TP-23 (1.2)
		F1669.16	F1669.17	F1669.18
Silver	5.0 ug/g	< 5.0		< 5.0
Sodium	200 ug/g	400		400
Thallium	1.0 ug/g	< 1.0		< 1.0
Tin	5.0 ug/g	< 5.0		< 5.0
Vanadium	10 ug/g	30		20
Zinc	20 ug/g	280		100
Acenaphthene	0.017 ug/g	< 0.018	0.13	< 0.019
Acenaphthylene	0.017 ug/g	0.036	2.0	< 0.019
Anthracene	0.017 ug/g	0.036	1.7	< 0.019
Benzo[a]anthracene	0.017 ug/g	0.072	1.7	< 0.019
Benzo[a]pyrene	0.017 ug/g	0.072	3.5	< 0.019
Benzo[b+k]fluoranthene	0.033 ug/g	0.14	3.9	< 0.037
Benzo[ghi]perylene	0.017 ug/g	0.054	1.2	< 0.019
Biphenyl	0.017 ug/g	< 0.018	< 0.019	< 0.019
Chrysene	0.017 ug/g	0.090	1.7	< 0.019
Dibenzo[a,h]anthracene	0.017 ug/g	0.018	0.62	< 0.019
Fluoranthene	0.017 ug/g	0.14	1.3	< 0.019
Fluorene	0.017 ug/g	< 0.018	0.19	< 0.019
Indeno[1,2,3-cd]pyrene	0.017 ug/g	0.054	1.2	< 0.019
1-Methylnaphthalene	0.017 ug/g	< 0.018	0.038	< 0.019
2-Methylnaphthalene	0.017 ug/g	0.018	0.056	< 0.019
Naphthalene	0.017 ug/g	< 0.018	0.038	< 0.019
Phenanthrene	0.017 ug/g	0.090	0.15	< 0.019

Pyrene 0.017 ug/g 0.13 < 0.019 1.6 2-Fluorobiphenyl surrogate 113% 109% 118% p-Terphenyl d-14 surrogate 94% 81% 102%

Matrix: Soil		TP-20 (2.5)	TP-8 (0.8)	TP-18	(1.4)
Parameter	MDL	F1669.19	F166	9.20	Fl	.669.21
Antimony	1.0 ug/g		< 1.0		< 1.0	
Arsenic	1.0 ug/g			4.0		1.0
Barium	10 ug/g			230		190
Beryllium	0.50 ug/g		< 0.50		< 0.50	
Cadmium	1.0 ug/g		< 1.0		< 1.0	
Calcium	200 ug/g		:	17000		57000
		The state of the second st				

Certificate of Analysis	-5 27141					Report Date	12/05/00
Client: Duke Engineerin	a le Samiana	[ma				Order Date	12/03/00
Client Ref:	g & Services	Inc.	Project: 00-313-1	2		Sample Date	11/22/00
			TP-20 (2.5)	TP-8	(0.8)	TP-1	LO (1.4)
			F1669.19	F1	669.20	enter liter i de	1669.21
Chromium	5.0 u	g/g			20	100 C	45
Cobalt	5.0 u	g∕g		i. 10	5.0	edia n Dativ	10
Copper	5.0 u	g/g			60		25
Iron	200 u	g/g			12000		22000
Lead	5.0 u	g/g		**** *** **** *** (**** *)	210		25
Magnesium	200 u	g/g	1		2400	COLUMN CRAFT OF	11000
Molybdenum	1.0 u	g/g		< 1.0		< 1.0	
Nickel	5.0 u	g/g			15		30
Selenium	1.0 u	g/g		< 1.0		< 1.0	
Silver	5.0 u	g/g		< 5.0	-	< 5.0	111 at ()
Sodium	200 u	g/g	1911		600		1000
Thallium	1.0 u	g/g		< 1.0	-	< 1.0	S 11 1
Tin	5.0 u	g/g			30		10
Vanadium	10 u	g/g		and the second	20		50
Zinc	20 u	g/g		10 X2 V2 III	240		120
Benzene	0.040 u	g/g		< 0.040			5-35/N = 3
Ethylbenzene	0.040 u	g/g		< 0.040			
Toluene	0.040 u	g/g	······································	< 0.040			
m/p-Xylene	0.040 u	g/g		< 0.040			
o-Xylene	0.040 u	g/g		< 0.040			
Toluene-D8	surroga	te			97%		
Petroleum Hydrocarbons (gasoli	ne) 10 u	g/g		< 10			
Petroleum Hydrocarbons (diesel) 10 ug	g/g			30		
Petroleum Hydrocarbons (heavy	oils) 50 u	g/g			100		3 0 E
Acenaphthene	0.017 ug	g/g	0.29		0.039	/	0.091
Acenaphthylene	0.017 ug	g/g	0.37		0.24		0.14
Anthracene	0.017 ug	g/g	1.2		0.27		0.38
Benzo[a]anthracene	0.017 ug	g/g	2.1		0.41	- (A	0.45
Benzo(a)pyrene	0.017 u	g/g	2.6		0.65		0.47
Benzo[b+k]fluoranthene	0.033 u	g/g	3.0		0.75		0.65
Benzo[ghi]perylene	0.017 u	g/g	0.81		0.25	*	0.16
Biphenyl	0.017 u	g/g	0.037	< 0.020			0.018
Chrysene	0.017 ug	g/g	1.9		0.43	init a press	0.43
Dibenzo[a,h]anthracene	0.017 u	g/g	0.44		0.12		0,072
Fluoranthene	0.017 u	g/g	4.5		⊒		1.1

Paracel Laborator	ies Ltd.			Order #: F1669
Client: Duke Engineering & Services Inc. Client Ref:		Project: 00-313-12		Order Date: 11/28/00 Sample Date: 11/22/00
		TP-20 (2.5)	TP-8 (0.8)	TP-18 (1 4)
		F1669.19	F1669.20	F1669.21
Fluorene	0.017 ug/g	0.44	0.059	0.16
Indeno[1,2,3-cd]pyrene	0.017 ug/g	0.88	0.24	0.18
1-Methylnaphthalene	0.017 ug/g	0.11	0.020	0.054
2-Methylnaphthalene	0.017 ug/g	0.15	0.039	0.072
Naphthalene	0.017 ug/g	0.26	0.039	0.11
Phenanthrene	0.017 ug/g	3.2	0.49	1.00
Pyrene	0.017 ug/g	3.6	0.73	0.83
2-Fluorobiphenyl	surrogate	NA - Dilution	133%	129%
p-Terphenyl d-14	surrogate	NA - Dilution	116%	118%
Matrix: Soil		TP-32 (0.3)	TP-33 (0.4)	TP-26 (0.8)
Parameter	MDL	F1669.22	F1669.23	F1669.24
Antimony	1.0 ug/g	< 1.0	< 1.0	< 1.0
Arsenic	1.0 ug/g	4.0	5.0	3.0
Barium	10 ug/g	160	230	180
Beryllium	0.50 ug/g	< 0.50	0.50	0.50
Cadmium	1.0 ug/g	< 1.0	< 1.0	< 1.0
Calcium	200 ug/g	27000	54000	28000
Chromium	5.0 ug/g	30	20	20
Cobalt	5.0 ug/g	10	5.0	5.0
Copper	5.0 ug/g	50	35	20
Iron	200 ug/g	23000	18000	20000
Lead	5.0 ug/g	65	160	370
Magnesium	200 ug/g	6600	5200	4400
Molybdenum	1.0 ug/g	< 1.0	< 1.0	< 1.0
Nickel	5.0 ug/g	25	20) 15
Selenium	1.0 ug/g	< 1 0	< 1.0	< 1.0
Silver	5.0 ug/g	< 5.0	< 5.0	< 5.0
Sodium	200 ug/g	400	400) 200
Thallium	1.0 ug/g	< 1.0	< 1.0	< 1.0
Tin	5.0 ug/g	5.0	10	0 < 5.0
Vanadium	10 ug/g	30	2	٥ 20
Zinc	20 ug/g	160	20	0 160

Paracel Laborato	ories Ltd.			Order #: F1669
Certificate of Analys	sis			Report Date: 12/05/00
Client: Duke Enginee	ring & Services Inc.			Sample Date: 11/22/00
Client Ref:		Project: 00-313-12		
Matrix: Soil		TP-15 (2.0)	TP-4 (0.8)	TP-20 (1.5)
Parameter	MDL	F1669.25	F1669.26	F1669.27
Antimony	1.0 ug/g	< 1.0	< 1.0	< 1.0
Arsenic	1.0 ug/g	< 1.0	< 1.0	1.0
Barium	10 ug/g	70	340	140
Beryllium	0.50 ug/g	< 0.50	0.50	< 0.50
Cadmium	1.0 ug/g	< 1.0	< 1.0	< 1.0
Calcium	200 ug/g	46000	11000	42000
Chromium	5.0 ug/g	15	90	25
Cobalt	5.0 ug/g	< 5.0	20	5.0
Copper	5.0 ug/g	15	45	20
Iron	200 ug/g	12000	38000	17000
Lead	5.0 ug/g	20	25	35
Magnesium	200 ug/g	13000 !	16000	9000
Molybdenum	1.0 ug/g	< 1.0	< 1.0	< 1.0
Nickel	5.0 ug/g	15	50	20
Selenium	1.0 ug/g	< 1.0	< 1.0	< 1.0
Silver	5.0 ug/g	< 5.0	< 5.0	< 5.0
Sodium	200 ug/g	400	1600	400
Thallium	1.0 ug/g	< 1.0	< 1.0	< 1.0
Tin	5.0 ug/g	< 5.0	< 5.0	< 5.0
Vanadium	10 ug/g	20	90	30
Zinc	20 ug/g	80	200	i 220
				and the second
Matrix: Soil	$q \rightarrow$	TP-9 (0.4)	TP-8 (2.9)	TP-6 (2.5)
Parameter	MDL	F1669.28	F1669.29	F1669.30
Antimony	1.0 ug/g	2.0	< 1.0	< 1.0
Arsenic	1.0 ug/g	2.0	< 1.0	2.0
Barium	10 ug/g	170	70	130
Beryllium	0.50 ug/g	< 0.50	< 0.50	< 0.50
Cadmium	1.0 ug/g	< 1.0	< 1.0	< 1.0
Calcium	200 ug/g	58000	6000	14000
Chromium	5.0 ug/g	20	15	15
Cobalt	5.0 ug/g	5.0	5.0	5.0
Copper	5.0 ug/g	20	5.0	25
Iron	200 ug/g	16000	21000	17000
Lead	5.0 ug/g	110	10	45

D

1

Paracel Laborato Certificate of Analys	ries Ltd.			Order #: F1669 Report Date: 12/05/00 Order Date: 11/28/00
Client Ref:		Project: 00-313-12		Sample Date: 11/22/00
		TP-9 (0.4)	TP-8 (2.9)	TP-6 (2.5)
		F1669.28	F1669.29	F1669.30
Magnesium	200 ug/g	9600	4800	6400
Molybdenum	1.0 ug/g	< 1.0	< 1.0	< 1.0
Nickel	5.0 ug/g	20	10	15
Selenium	1.0 ug/g	< 1.0	< 1.0	< 1.0
Silver	5.0 ug/g	< 5.0	< 5.0	< 5.0
Sodium	200 ug/g	400	600	400
Thallium	1.0 ug/g	< 1.0	< 1.0	< 1.0
Tin	5.0 ug/g	10	< 5.0	< 5.0
Vanadium	10 ug/g	30	30	30
Zinc	20 ug/g	160 :	140	160
Matrix: Soil		TP-17 (0.5)	TP-44 (0.8)	TP-34 (0.8)
Parameter	MDL	F1669.31	F1669.32	F1669.33
Antimony	1.0 ug/g	< 1.0	< 1.0	< 1.0
Arsenic	1.0 ug/g	2.0	3.0	1.0
Barium	10 ug/g	220	270	30
Beryllium	0.50 ug/g	< 0.50	0.50	< 0.50
Cadmium	1.0 ug/g	< 1.0	< 1.0	< 1.0
Calcium	200 ug/g	54000	37000	52000
Chromium	5.0 ug/g	35	25	5.0
Cobalt	5.0 ug/g	10	5.0	< 5.0
Copper	5.0 ug/g	30	40	10
Iron	200 ug/g	20000	22000	8600
Lead	5.0 ug/g	50	170	10
Magnesium	200 ug/g	11000	5400	16000
Molybdenum	1.0 ug/g	< 1.0	< 1.0	< 1.0
Nickel	5.0 ug/g	25	20	10
Selenium	1.0 ug/g	< 1.0	< 1.0	< 1.0
Silver	5.0 ug/g	< 5.0	< 5.0	< 5.0
Sodium	200 ug/g	600	400	200
Thallium	1.0 ug/g	< 1.0	< 1.0	< 1.0
Tin	5.0 ug/g	< 5.0	10	< 5.0
Vanadium	10 ug/g	40	20	10
Zinc	20 ug/g	200	300	100

Paracel Laboratories Ltd.				Order #:	F1669
Client: Duke Engineering & Client Ref:	Services Inc.	Project: 00-313-12		Order Date Sample Date	12/05/00 11/28/00 11/22/00
Matrix: Soil		TP-35 (1.2)	TP - 30 (0.7)	 ΤΡ-16	(1.5)
Parameter	MDL	F1669.34	F1669.35	F1	669 36
Antimony	1.0 ug/g	< 1.0	2.0	< 1.0	
Arsenic	1.0 ug/g	4.0	5.0		1.0
Barium	10 ug/g	110	150		190
Beryllium	0.50 ug/g	< 0.50	< 0.50	< 0.50	
Cadmium	1.0 ug/g	< 1.0	< 1.0	< 1.0	
Calcium	200 ug/g	66000	37000		43000
Chromium	5.0 ug/g	15	20		40
Cobalt	5.0 ug/g	< 5.0	< 5.0		10
Copper	5.0 ug/g	20	35		25
Iron	200 ug/g	14000	14000		22000
Lead	5.0 ug/g	95	230		45
Magnesium	200 ug/g	6400	4400		11000
Molybdenum	1.0 ug/g	< 1.0	< 1.0	< 1.0	
Nickel	5.0 ug/g	20	15		30
Selenium	1.0 ug/g	< 1.0	< 1.0	< 1.0	
Silver	5.0 ug/g	< 5.0	< 5.0	< 5.0	
Sodium	200 ug/g	400	400		800
Thallium	1.0 ug/g	< 1.0	< 1.0	< 1.0	
Tín	5.0 ug/g	< 5.0	5.0	< 5.0	
Vanadium	10 ug/g	20	20		40
Zinc	20 ug/g	180	240		220
Benzene	0.040 ug/g			< 0.040	
Ethylbenzene	0.040 ug/g			< 0.040	
Toluene	0.040 ug/g			< 0.040	
m/p-Xylene	0.040 ug/g			< 0.040	
o-Xylene	0.040 ug/g		· ·····	< 0.040	
Toluene-D8	surrogate				96%
Petroleum Hydrocarbons (gasoline)	10 ug/g			< 10	
Petroleum Hydrocarbons (diesel)	10 ug/g				30
Petroleum Hydrocarbons (heavy oils	s) 50 ug/g				250

Paracel Laborato	ories Ltd.			Order #: F1669
Certificate of Analys	sis			Report Date: 12/05/00
Client: Duke Enginee	ring & Services Inc.			Sample Date: 11/28/00
Client Ref:		Project 00-313-12		
Matrix: Soil		TP-5 (0.8)	TP-28 (0.2)	TP-22 (0.4)
Parameter	MDL	F1669.37	F1669.38	F1669.39
Antimony	1.0 ug/g	< 1.0	< 1.0	< 1.0
Arsenic	1.0 ug/g	2.0	2.0	< 1.0
Barium	10 ug/g	120	370	an a
Beryllium	0.50 ug/g	< 0.50	1.0	< 0.50
Cadmium	1.0 ug/g	< 1.0	< 1.0	< 1.0
Calcium	200 ug/g	56000	19000	8600
Chromium	5.0 ug/g	25	75	10
Cobalt	5.0 ug/g	5.0	15	< 5.0
Copper	5.0 ug/g	15. ¹	45	< 5.0
Iron	200 ug/g	18000	33000	8200
Lead	5 Ω υσ/σ	20	90	
Magnesium	200 μα/α	9200	14000	15
Molybdenum	1.0.μα/α	< 1.0	< 1.0	3000 5
Nickel	5.0 ug/g	20	< 1.0 	
Selenium	1.0 ug/g	< 1.0	< 1.0	5.0
Silver	5.0 ug/g	< 5.0		< 1.0
Sodium	200 ug/g	400	1000	< 5 0
Thallium	200 ug/g	400	1000	400
Tin	5.0 ug/g	< 5.0	< 1.0	< 1.0
Vanadium	10 ug/g	< 5.0	< 5.0 HEINE	< 5.0
Zinc	10 ug/g	30 -	70	20
anne	20 ug/g	100	200	60
Matrix: Soil		TP-31 (0.4)	TP-10 (0.3)	TP = 12 (2.6)
Parameter	MDL	F1669.40	F1669.41	F1669.42
Antimony	1.0 ug/g	< 1.0	< 1.0	< 1.0
Arsenic	1.0 ug/g	1.0	2.0	1.0
Barium	10 ug/g	320	120	90
Beryllium	0.50 ug/g	0.50	< 0.50	< 0.50
Cadmium	1.0 ug/g	< 1.0	< 1.0	< 1.0
Calcium	200 ug/g	40000	32000	13000
Chromium	5.0 ug/g	70	20	20
Cobalt	5.0 ua/a	15	5.0	5.0
Copper	5.0 ug/g	40	20	5
Iron	200 ua/a	33000	15000	15000
Lead	5.0 ua/a	10	40	10
	5. 5	1 (R) (R)	40	10

300-2319 St. Laurent Blvd., Ottawa, ON K1G 4K6 tel: (613) 731-9577 fax (613) 731-9064 email: paracel@magma.ca Data 14 of 19

Paracel Laborato Certificate of Analys	ries Ltd.			Order #: F1669 Report Date: 12/05/00 Order Date: 12/05/00
Client: Duke Engineering & Services Inc. Client Ref:		Project: 00-313-12		Sample Date: 11/22/00
		TP-31 (0.4)	TP-10 (0.3)	TP-12 (2.6)
		F1669.40	F1669.41	F1669.42
Magnesium	200 ug/g	21000	7200	4600
Molybdenum	1.0 ug/g	< 1.0	< 1.0	< 1.0
Nickel	5.0 ug/g	40	15	10
Selenium	1.0 ug/g	< 1.0	< 1.0	< 1.0
Silver	5.0 ug/g	< 5.0	< 5.0	< 5.0
Sodium	200 ug/g	1200	400	400
Thallium	1.0 ug/g	< 1.0	< 1.0	< 1.0
Tin	5.0 ug/g	< 5.0	5.0	< 5.0
Vanadium	10 ug/g	70	20	30
Zinc	20 ug/g	120	80	60
Matrix: Soil		TP-2 (0.4)	TP-12 (1.3)	TP-3 (1.3)
Parameter	MDL	F1669.43	F1669.44	F1669.45
Antimony	1.0 ug/g	< 1.0	< 1.0	< 1.0
Arsenic	1.0 ug/g	3.0	2.0	< 1.0
Barium	10 ug/g	90	100	50
Beryllium	0.50 ug/g	< 0.50	< 0.50	< 0.50
Cadmium	1.0 ug/g	< 1.0	< 1.0	< 1.0
Calcium	200 ug/g	19000	42000	5800
Chromium	5.0 ug/g	15	20	20
Cobalt	5.0 ug/g	5.0	5.0	5.0
Copper	5.0 ug/g	15	20	10
Iron	200 ug/g	18000	15000	19000
Lead	5.0 ug/g	55	35	5.0
Magnesium	200 ug/g	4000	11000	6000
Molybdenum	1.0 ug/g	< 1.0	< 1.0	< 1.0
Nickel	5.0 ug/g	15	20	15
Selenium	1.0 ug/g	< 1.0	< 1.0	< 1.0
Silver	5.0 ug/g	< 5.0	< 5.0	< 5.0
Sodium	200 ug/g	200	400	200
Thallium	1.0 ug/g	< 1.0	< 1.0	< 1.0
Tin	5.0 ug/g	5.0	< 5.0	< 5.0
Vanadium	10 ug/g	20	30	30
Zinc	20 ug/g	60	80	60

Paracel Laborator	ies Ltd.			Order #: F	1669
Certificate of Analysi Client: Duke Engineeri	s ng & Services Inc.			Report Date:12/Order Date:11/Sample Date:11	/05/00 /28/00 /22/00
Client Ref:		Project: 00-313-12			
Matrix: Soil		TP-45 (1.0)	TP-37 (0.5)	TP-41 ((0.2)
Parameter	MDL	F1669.46	F1669.47	F166	59.48
Antimony	1.0 ug/g	< 1.0	< 1.0	< 1.0	5 & 625
Arsenic	1.0 ug/g	1.0	7.0		1.0
Barium	10 ug/g	70	320		60
Beryllium	0.50 ug/g	1.0	0.50	< 0.50	
Cadmium	1.0 ug/g	< 1.0	< 1.0	< 1.0	
Calcium	200 ug/g	54000	64000		46000
Chromium	5.0 ug/g	30	25		10
Cobalt	5.0 ug/g	5.0	5.0	< 5.0	
Copper	5.0 ug/g	10	30		10
Iron	200 ug/g	20000	27000		9400
Lead	5.0 ug/g	35	660		20
Magnesium	200 ug/g	5600	4200		6800
Molybdenum	1.0 ug/g	< 1.0	< 1.0	< 1.0	
Nickel	5.0 ug/g	20	20		10
Selenium	1.0 ug/g	< 1.0	< 1.0	< 1.0	
Silver	5.0 ug/g	< 5.0	< 5.0	< 5.0	
Sodium	200 ug/g	200	200	:	200
Thallium	1.0 ug/g	< 1.0	< 1.0	< 1.0	
Tin	5.0 ug/g	< 5.0	110	< 5.0	
Vanadium	10 ug/g	20	20		20
Zinc	20 ug/g	60	240		60
Benzene	0.040 ug/g				0.56
Ethylbenzene	0.040 ug/g			< 0.040	
Toluene	0.040 ug/g			< 0.040	
m/p-Xylene	0.040 ug/g				0.040
o-Xylene	0.040 ug/g			< 0.040	
Toluene-D8	surrogate				96%
Petroleum Hydrocarbons (gas	oline) 10 ug/g			< 10	
Petroleum Hydrocarbons (die	sel) 10 ug/g	and a second secon			10
Petroleum Hydrocarbons (hea	vy oils) 50 ug/g		1000 million (1000 million (10		100

Faracer Labo	ratories L				Order #	: F1669
Certificate of Ar	ialysis				Report Date:	12/05/00
Client: Duke Eng	ineering & S	Services Inc.			Sample Date:	11/28/00
Client Ref:			Project: 00-313-12	2		11/22/00
Matrix: Soil			TP-38 (0.4)	TP-43(0.5)	TD-	7 () 5)
Parameter		MDL	F1669.49	F1669.50		(1.5)
Antimony		1.0 ug/g	< 1.0	< 1.0		8 0
Arsenic		1.0 ug/g	1.0	1.0		5.0
Barium		10 ug/g	380	280	A	130
Beryllium		0.50 ug/g	0.50	1.0	< 0.50	
Cadmium		1.0 ug/g	< 1.0	< 1.0	< 1.0	
Calcium		200 ug/g	31000	26000		28000
Chromium		5.0 ug/g	80	65		15
Cobalt		5.0 ug/g	15	15	< 5.0	ē: 11
Copper		5.0 ug/g	40	35		60
Iron		200 ug/g	38000	34000		15000
Lead		5.0 ug/g	10	30		570
Magnesium		200 ug/g	19000	13000		4800
Molybdenum		1.0 ug/g	< 1.0	< 1.0		1.0
Nickel		5.0 ug/g	50	40		15
Selenium		1.0 ug/g	< 1.0	< 1.0		1.0
Silver		5.0 ug/g	< 5.0	< 5.0	< 5.0	
Sodium		200 ug/g	1400	800	2017 I.C.I. 18	400
Thallium	a 100 m a ne ac	1.0 ug/g	< 1.0	< 1.0	< 1.0	
Tin		5.0 ug/g	< 5.0	< 5.0		25
Vanadium		10 ug/g	80	60		30
Zinc	71 /= 1200-1 ×	20 ug/g	200	140		180
Benzene		0.040 ug/g			< 0.040	
Ethylbenzene		0.040 ug/g			< 0.040	
Toluene		0.040 ug/g			< 0.040	
m/p-Xylene		0.040 ug/g			< 0.040	
o-Xylene		0.040 ug/g			< 0.040	
Toluene-D8		surrogate				94%
Petroleum Hydrocarbons	(gasoline)	10 ug/g			< 10	
Petroleum Hydrocarbons	(diesel)	10 ug/g			< 10	
Petroleum Hydrocarbons	(heavy oils)	50 ug/g				100

Paracel Laborato Certificate of Analys	ries Ltd.			Order #: F1669 Report Date: 12/05/00 Order Date: 11/28/00
Client: Duke Engineer Client Ref:	ing & Services Inc.	Project: 00-313-12		Sample Date: 11/22/00
Matrix: Soil		TP-13(25)	TP-27 (0.4)	TP-21 (0.45)
Parameter	MDL	F1669.52	F1669.53	F1669.54
Antimony	1.0 ug/g	< 1.0	< 1.0	< 1.0
Arsenic	1.0 ug/g	< 1.0	3.0	2.0
Barium	10 ug/g	70	150	290
Beryllium	0.50 ug/g	< 0.50	0.50	0.50
Cadmium	1.0 ug/g	< 1.0	< 1.0	< 1.0
Calcium	200 ug/g	9200	73000	34000
Chromium	5.0 ug/g	20 :	20	60
Cobalt	5.0 ug/g	5.0	< 5.0	10
Copper	5.0 ug/g	10	15	40
Iron	200 ug/g	22000 ,	16000	26000
Lead	5.0 ug/g	15	45	120
Magnesium	200 ug/g	6600	5200	13000
Molybdenum	1.0 ug/g	< 1.0	< 1.0	< 1.0
Nickel	5.0 ug/g	15	15	35
Selenium	1.0 ug/g	< 1.0	2.0	< 1.0
Silver	5.0 ug/g	< 5.0	< 5.0	< 5.0
Sodium	200 ug/g	400	200	800
Thallium	1.0 ug/g	< 1.0	< 1.0	< 1.0
Tin	5.0 ug/g	< 5.0	< 5.0	< 5.0
Vanadium	10 ug/g	40	20	50
Zinc	20 ug/g	80	60	140
Matrix: Soil		TP-19 (2.0)	TP-13 (0.9)	TP-25 (0.6)
Parameter	MDL	F1669.55	F1669.56	F1669.57
Antimony	1.0 ug/g	< 1.0	< 1.0	< 1.0
Arsenic	1.0 ug/g	2.0	1.0	4.0
Barium	10 ug/g	130	200	180
Beryllium	0.50 ug/g	< 0.50	0.50	1.0
Cadmium	1.0 ug/g	< 1.0	< 1.0	< 1.0
Calcium	200 ug/g	48000	18000	32000
Chromium	5.0 ug/g	25	45	30
Cobalt	5.0 ug/g	10	10	5.0
Copper	5.0 ug/g	20	25	20
Iron	200 ug/g	16000	24000	21000
Lead	5.0 ug/g	45	10	90

Data: 18 of 19

Certificate of Analysi				Beport Date	t: F1669
Client: Duke Engineeri Client Ref:	ng & Services Inc.	Project: 00-313-12		Order Date: Sample Date:	12/05/00 11/28/00 11/22/00
		TP-19 -(2.0)	TP-13 (0.9)	TP-	25 (0.6)
		F1669.55	F1669.56		F1669.57
fagnesium	200 ug/g	9000	8200	r#5 10 10	5200
folybdenum	1.0 ug/g	< 1.0	< 1.0	< 1.0	
lickel	5.0 ug/g	20	25		20
elenium	1.0 ug/g	< 1.0	< 1.0	< 1.0	
ilver	5.0 ug/g	< 5.0	< 5.0	< 5.0	
odium	200 ug/g	400	800	,	200
hallium	1.0 ug/g	< 1.0	< 1.0	< 1.0	er el este de trà
'in	5.0 ug/g	< 5.0	< 5.0		5.0
'anadium	10 ug/g	30	50		20
linc	20 ug/g	60	80)	80
Anna 1999 - Anna 199					
Matrix: Soil	A1577	TP-14 (2.9)	TP-14 (2.0)	TP-	24 (0.2)
Parameter	MDL	F1669.58	F1669.59	9	F1669.60
ntimony	1.0 ug/g	< 1.0	< 1.0	< 1.0	
rsenic	1.0 ug/g	10	3.0	þ	1.0
arium	10 ug/g	310	220	D	390
eryllium	0.50 ug/g	< 0.50	< 0.50		0.50
admium	1.0 ug/g	< 1.0	< 1.0	< 1.0	
alcium	200 ug/g	58000	6300	0	22000
hromium	5.0 ug/g	25	2	5	90
obalt	5.0 ug/g	10	1	0	20
opper	5.0 ug/g	30	2	5	45
ron	200 ug/g	34000	1900	0	40000
ead	5.0 ug/g	370	10	0	10
agnesium	200 ug/g	7400	1000	0	18000
olybdenum	1.0 ug/g	< 1.0	< 1.0	< 1.0)
ickel	5.0 ug/g	25	2	5	55
elenium	1.0 ug/g	< 1.0	< 1.0	< 1.0)
ilver	5.0 ug/g	< 5.0	< 5.0	< 5.0)
odium	200 ug/g	400	40	0	1400
hallium	1.0 ug/g	< 1.0	< 1.0	< 1.0)
in	5.0 ug/g	60	< 5.0	< 5.0)
anadium	10 ug/g	20	3	0	90
inc	20 ug/g	240	6	0	120

Client: Duke Engineering & Services Inc.

Client Ref:

Order #: F1669

Project: 00-313-12

Blank QC Results - Matrix: Soil				
Parameter	Method	DL		Measured
Antimony	EPA 6020	1 0	ua/a	< 1.0
Arsenic	EPA 6020	1_0	ua/a	< 1 0
Barium	EPA 6020	10	ua/a	< 10
Beryllium	EPA 6020	0.50	-s, s uα/σ	< 0.50
Cadmium	EPA 6020	1 0	- <u>,</u> ,,,	
Chromium	EPA 6020	5.0	ua/a	< 5.0
Cobalt	EPA 6020	5.0	ua/a	< 5.0
Copper	EPA 6020	5-0	ua/a	< 5.0
Lead	EPA 6020	5 0	-,, , , , , , , , , , , , , , , , , , ,	< 5.0
Molybdenum	EPA 6020	1 :: 0	ua/a	< 1.0
Nickel	EPA 6020	5.0	ug/g	< 5.0
Selenium	EPA 6020	1.0	na/a	< 1-0
Silver	EPA 6020	5-0		< 5-0
Thallium	EPA 6020	1.0	ua/a	< 1 0
Tin	EPA 6020	5.0	na/a	< 5.0
Vanadium	EPA 6020	10	ua/a	< 10
Zinc	EPA 6020	20	ua/a	< 20
Benzene	SW-846 Method 8260/3550	0.040	ug/g	< 0.040
Ethylbenzene	SW-846 Method 8260/3550	0 040	ua/a	< 0:040
Toluene	SW-846 Method 8260/3550	0 040	ua/a	< 0.040
m/p-Xylene	SW-846 Method 8260/3550	0 040	ua/a	< 0_040
o-Xylene	SW-846 Method 8260/3550	0_040	uq/q	< 0.040
Toluene-D8 (surrogate)	SW-846 Method 8260/3550		n/a	94%
Petroleum Hydrocarbons - gasoline	SW-846 Method 8000A/3500A	10	ug/g	< 10
Petroleum Hydrocarbons - diesel	SW-846 Method 8000A/3500A	10	ug/g	< 10
Petroleum Hydrocarbons - heavy oils	Gravimetric	50	ug/g	< 50
Acenaphthene	Modified SW-846 Method 8270	0 017	ug/g	< 0.017
Acenaphthylene	Modified SW-846 Method 8270	0_017	ug/g	< 0.017
Anthracene	Modified SW-846 Method 8270	0 017	ug/g	< 0.017
Benzo[a]anthracene	Modified SW-846 Method 8270	0 0 17	ug/g	< 0.017
Benzo(a)pyrene	Modified SW-846 Method 8270	0 017	ug/g	< 0.017
Benzo[b+k]fluoranthene	Modified SW-846 Method 8270	0:033	ug/g	< 0.033
Benzo[gh1]perylene	Modified SW-846 Method 8270	0 017	ug/g	< 0 017
Bibpeul	Modified SW-846 Method 8270	0 017	ug/g	< 0 017
Chrysene	Modified SW-846 Method 8270	0 017	ug/g	< 0.017
Dibenzo[a,h]anthracene	Modified SW-846 Method 8270	0 017	ug/g	< 0.017
Fluoranthene	Modified SW-846 Method 8270	0 017	ug/g	< 0.017
Fluorene	Modified SW-846 Method 8270	0 017	ug/g	< 0 017
Indeno[1,2,3-cd]pyrene	Modified SW-846 Method 8270	0 017	ug/g	< 0.017
l-Methylnaphthalene	Modified SW-846 Method 8270	0.017	ug/g	< 0.017
2-Methylnaphthalene	Modified SW-846 Method 8270	0.017	ug/g	< 0 017
Naphthalene	Modified SW-846 Method 8270	0 017	ug/g	< 0 017
Phenanthrene	Modified SW-846 Method 8270	0_017	ug/g	< 0 017
Pyrene	Modified SW-846 Method 8270	0.017	ug/g	< 0.017
2-Fluorobiphenyl (surrogate)	Modified SW-846 Method 8270		n/a	784
p-Terphenyl d-14 (surrogate)	Modified SW-846 Method 8270		n/a	89%

Client: Duke Engineering & Services Inc.

Reference Standard QC Results - Matrix: Soil

Client Ref:

Project: 00-313-12

Parameter	Expected	LLA	- ULA	Recovery
Antimony	125 ug/g	80%	- 120%	96%
Arsenic	125 ug/g	80%	- 120%	98%
Barium	125 ug/g	80%	- 120%	93%
Beryllium	125 ug/g	80%	- 120%	103%
Cadmium	125 ug/g	80%	- 120%	105%
Chromium	125 ug/g	80%	- 120%	94%
Cobalt	125 ug/g	80%	- 120%	82%
Copper	125 ug/g	80%	- 120%	92%
Lead	125 ug/g	80%	- 120%	96%
Molybdenum	125 ug/g	80%	- 120%	99%
Nickel	125 ug/g	80%	- 120%	91%
Selenium	125 ug/g	80%	- 120%	106%
Silver	125 ug/g	80%	- 120%	102%
Thallium	125 ug/g	80%	- 120%	05%
Tin	125 ug/g	80%	- 120%	100%
Vanadium	125 ug/g	80%	- 120%	200%
Zinc	125 ug/g	80%	- 120%	101%
Benzene	2.5 µg/g	50%	- 150%	1128
Ethylbenzene	2.5 ug/g	378	- 162%	105%
Toluene	2.5 ug/g	50%	- 150%	105%
m/p-Xylene	5.0 ug/g	50%	- 150%	104%
o-Xylene	2.5 µg/g	70%	~ 130%	103%
Toluene-D8 (surrogate)	100%	50%	- 150%	1038
Petroleum Hydrocarbons - gasoline	100	50%	- 150%	105%
Petroleum Hydrocarbons - diesel	300 ug/g	50%	- 150%	120%
Acenaphthene	0.33.ug/g	47%	- 145%	1203
Acenaphthylene	0.33 ug/g	338	- 145%	0.95
Anthracene	0.33 ug/g	27%	- 133%	0.0%
Benzo[a]anthracene	0.33 ug/g	278	- 1439	70%
Benzo[a]pyrene		17%	- 163%	108
Benzo[b+k]fluoranthene	0.67 µg/g	11%	- 162%	1003
Benzo[ghi]perylene	0.33.ug/g	1.	- 219%	00%
Biphenyl	0.33.ug/g	35%	- 114%	70%
Chrysene	0.33 ug/g	17%	- 168%	000
Dibenzo[a,h]anthracene	0.33 µg/g	1%	- 227%	00%
Fluoranthene	0.33 µg/g	26%	- 137%	028
Fluorene	0.33 ug/g	59%	- 121%	928
Indeno[1,2,3-cd]pyrene	0.33 ug/g	18	- 171%	943
1-Methylnaphthalene	0.33 ug/g	35%	- 1149	90%
2-Methylnaphthalene		35%	- 1148	0.0%
Naphthalene		219	- 1739	074
Phenanthrene	0.33 ug/g	519	- 120%	۲/۴ ۵۵°
Pyrene	0.33 ug/g	5415	- 1150	00%
2-Fluorobiphenyl (surrogate)	100%	228	- 116°	90%
p-Terphenyl d-14 (surrogate)	1005	4.36	- 1419	100%
	100%	4 د د	- 1412	102#

Date: 12/05/00

Order #: F1669

Client: Duke Engineering & Services Inc.

Spike QC Results - Matrix: Soil

Client Ref:

Parameter

Antimony

Phenanthrene

2-Fluorobiphenyl (surrogate)

p-Terphenyl d-14 (surrogate)

Pyrene

Measured

125

Expected

129 ug/g

Date: 12/05/00

Order #: F1669

Meas./Expt.

97%

66%

67%

76%

78%

ULA - LLA

70% - 130%

Arsenic	130 ug/g	116	70% - 130%	90% :
Barium	397 ug/g	395	70% - 130%	99%
Beryllium	126 ug/g	122	70% - 130%	97%
Cadmium	126 ug/g	121	70% - 130%	96%
Chromium	149 ug/g	133	70% - 130%	89%
Cobalt	133 ug/g	113	70% - 130%	85%
Copper	169 ug/g	151	70% - 130%	89%
Lead	633 ug/g	666	70% - 130%	105%
Molybdenum	126 ug/g	112	70% - 130%	89%
Nickel	147 ug/g	131	70% - 130%	89%
Selenium	126 ug/g	120	70% - 130%	95%
Silver	125 ug/g	115	70% - 130%	92%
Thallium	125 ug/g	122	70% - 130%	98%
Tin	141 ug/g	134	70% - 130%	95%
Vanadium	143 ug/g	127	70% - 130%	88%
Zinc	336 ug/g	327	70% - 130%	97%
Benzene	3.8 ug/g	4.4	50% - 150%	118%
Ethylbenzene	3.8 ug/g	4.4	37% - 162%	117%
Toluene	3.8 ug/g	4.4	50% - 150%	117%
m/p-Xylene	7.5 ug/g	8.7	50% - 150%	116%
o-Xylene	3.8 ug/g	4.4	70% - 130%	116%
Toluene-D8 (surrogate)	100 %	93	50% - 150%	93%
Petroleum Hydrocarbons - gasoline	50 ug/g	48	50% - 150%	96%
Petroleum Hydrocarbons - diesel	150 ug/g	187	50% - 150%	125%
Petroleum Hydrocarbons - heavy oils	500 ug/g	445	75% - 125%	89%
Acenaphthene	0.33 ug/g	0.20	47% - 147%	61%
Acenaphthylene	0.33 ug/g	0.19	33% - 145%	58%
Anthracene	0.33 ug/g	0.20	27% - 133%	60%
Benzo[a]anthracene	0.33 ug/g	0.21	33% - 143%	64%
Benzo[a]pyrene	0.33 ug/g	0.26	17% - 163%	79%
Benzo(b+k)fluoranthene	0.66 ug/g	0.44	11% - 162%	66%
Benzo[ghi]perylene	0.33 ug/g	0.21	1% - 219%	64%
Biphenyl	0.33 ug/g	0.18	23% - 120%	54%
Chrysene	0.33 ug/g	0.22	17% - 168%	67%
Dibenzo[a,h]anthracene	0.33 ug/g	0.23	1% - 227%	68%
Fluoranthene	0.33 ug/g	0.23	26% - 137%	69%
Fluorene	0.33 ug/g	0.22	59% - 121%	67%
Indeno[1,2,3-cd]pyrene	0.33 ug/g	0.22	1% - 171%	68%
1-Methylnaphthalene	0.33 ug/g	0.24	23% - 120%	71%
2-Methylnaphthalene	0.33 ug/g	0.25	23% - 120%	76%
Naphthalene	0.33 ug/g	0.21	21% - 133%	64%

0.33 ug/g

0.33 ug/g

100 %

100 %

0.22 54% - 120%

0.22 52% - 115%

76 30% - 115%

78 18% - 137%

Client: **Duke Engineering & Services Inc.** Client Ref:

300-2319 St. Laurent Blvd., Ottawa, ON K1G 4K6 tel: (613) 731-9577 fax: (613) 731-9064 email: paracel@magma.ca QC-Data: 4 of 4

rioject. 00-313-12

Duplicate QA Results - Matrix: Soil	Duplicate QA Results - Matrix: Soil							
· · · · · · · · · · · · · · · · · · ·		Detection	Sample	Duplicate				
Parameter	units	Limit	Result	Result				
Antimony	ug/g	1.0	4.0	3.0				
Arsenic	ug/g	1.0	5.0	5.0				
Barium	ug/g	10	270	270				
Beryllium	ug/g	0.50	0.50	0.50				
Cadmium	ug/g	1.0	< 1.0	< 1.0				
Chromium	ug/g	5.0	25	25				
Cobalt	ug/g	5.0	10	10				
Copper	ug/g	5.0	45					
Lead	ug/g	5.0	510	520				
Molybdenum	ug/g	1.0	1.0	1.0				
Nickel	ug/g	5.0	20					
Selenium	 ug/g	1.0	< 1.0	23				
Silver	ug/g	5.0	< 5.0	1.0				
Thallium	ug/g	1.0	< 5.0	< 5.0				
Tin	ug/g	5.0	< 1.0	< 1.0				
Vanadium	ug/g	10		15				
Zinc	ug/g	10	20	20				
Benzene	ug/g	0.040	220	200				
Ethylbenzene	ug/g	0.040	< 0.040	< 0.040				
Toluene	ug/g	0.040	< 0.040	< 0.040				
m/p-Xylene	ug/g	0.040	< 0.040	< 0.040				
o-Xvlene	ug/g	0.040	< 0.040	< 0.040				
Toluene-D8 (surrogate)	ug/g	0.040	< 0.040	< 0.040				
Petroleum Hydrocarbons - gasolino	percent	n/a	95%	95%				
Petroleum Hydrocarbons - diesel	ug/g	10	< 10	< 10				
Petroleum Hydrocarbons - beaux oils	ug/g	10	< 10	< 10				
Acenaphthene	ug/g	0.010	< 50	< 50				
Acenaphthylene	ug/g	0.018	0.072	0.036				
Anthracene	ug/g	0.018	0.16	0.13				
Benzo[alanthracene	ug/g	0.018	0.36	0.22				
Benzo(a)pyrepe	ug/g	0.018	0.63	0.56				
Benzo[b+k]f]uoranthono	ug/g	0.018	0.85	0.60				
Benzo [ghi] begy]ene	ug/g	0.036	1.1	0.91				
Binhenvl	ug/g	0.018		0.27				
Chrysene	ug/g	0.018	< 0.018	< 0.018				
	ug/g	0.018	0.62	0.52				
	ug/g	0.018	0.16	0.13				
	ug/g	0.018	1.4	1.1				
	ug/g	0.018	0.11	0.072				
	ug/g	0.018	0.36	0.31				
2 Methylashtalene	ug/g	0.018	0.054	0.036				
2-Methylnaphthalene	ug/g	0.018	0.054	0.036				
Naphichalene	ug/g	0.018	0.11	0.036				
Priese	ug/g	0.018	0.94	0.56				
ryzene	ug/g	0.018	1.2	0.92				
2-riuorobipnenyi (surrogate)	percent	n/a	123%	109%				
p-Terphenyl d-14 (surrogate)	percent	n/a	112%	101%				

Order #: F1669

Paracel Laboratories Ltd. Glossary of Terms

MDL	The laboratory Detection Limit. The value is based on instrument response and is the lowest level that can be quantitated with confidence
n/a	Not applicable to this particular analysis.
NV	No Value, typically used for calculated results when the divisor is zero.
Surrogate Data	Surrogates are 'not naturally occuring' compounds which are added to the sample prior to analysis in order to monitor method performance. The results of the surrogate recoveries are reported in percent.
Blank	The results from the analysis of a matrix blank in the same run.
Duplicate Data	The results from an intralaboratory split sample that has been processed identically to that of the primary sample. Result for split sample are listed together with the results from the primary sample.
Reference Standard	Results from the analysis of a Reference Standard. A Reference Standard is a standard that contains the parameters of interest and is procured from a source secondary to the Calibration standard. EXPECTED: The actual concentration of the analyte in the Reference Standard. RECOVERY - Recovery of the spiked material reported in percent.
Spike Data	The results obtained from a sample fortified at a known level. The recovery of the spike is dependent on the level of the analyte found in the sample and spike.
	EXPECTED - Calculated value of the sample results + fortification amount which yield 100 % Recovery
	MEASURED - Results from the analysis of the fortified sample
	RECOVERY - Recovery of the spiked material reported in percent.
LLA	Lower Limit of Acceptability for QC recovery data.
ULA	Upper Limit of Acceptability for QC recovery data.

Certificate of Analysis	Order #: G5830
Duke Engineering & Services Inc.	
265 Carling Avenue, suite 208	
Ottawa, Ontario K1S 2E1	Tel: 613-232-2525
Attn: Mr. Mac Carmichael	Fax: 613-232-7149
Client Reference:	Report Date: 11/01/01
Project: 01-242-1	Order Date: 10/22/01
Reference: Burnside	Sample Date: 10/17/01

This Certificate of Analysis contains analytical data for the following samples:

Paracel ID	Client ID		
G5830.1	SS-44	G5830.30	SS-40
G5830.2	SS-38	G5830.31	SS-39
G5830.3	SS-49		
G5830.4	PH-49		
G5830.5	SS-7A		
G5830.6	SS-46		
G5830.7	SS-3A		
G5830.8	SS-7		
G5830.9	PH-7		
G5830.10	SS-77		
G5830.11	SS-6		
G5830.12	SS-1		
G5830.13	SS-4		
G5830.14	SS-14		
G5830.15	SS-11		
G5830.16	SS-15		
G5830.17	SS-20		
G5830.18	PH-20		
G5830.19	SS-26		
G5830.20	SS-29		
G5830.21	SS-129		
G5830.22	SS-36		
G5830.23	SS-37		
G5830.24	PH-37		
G5830.25	SS-28		
G5830.26	SS-30		
G5830.27	PH-30		
G5830.28	SS-31		
G5830.29	SS-33		
	21		
oval:	Nosa	 Dale Robertson,	B.Sc.

Any use of these test results implies your agreement that our total liability in connection with this work, however arising, shall be limited to the anount paid by you for this work and that our employees or agreement that our employees are agreed and that and that our employees or agreed and the agreed and that agreed and that and the and the agreed and the agree

Paracel Laboratories Ltd. Certificate of Analysis

Client: Duke Engineering & Services Inc.

Client Ref:

Fluoranthene

Fluorene

Project: 01-242-1

Matrix: Soil		SS-44	SS-38	SS-49
Parameter	MDL	G5830.1	G5830.2	G5830.3
Antimony	1.0 ug/g	< 1.0		< 1.0
Arsenic	1.0 ug/g	< 1.0		< 1.0
Barium	10 ug/g	100		60
Beryllium	0.50 ug/g	< 0.50		1.0
Cadmium	1.0 ug/g	< 1.0		< 1.0
Calcium	200 ug/g	11000		15000
Chromium	5.0 ug/g	25		10
Cobalt	5.0 ug/g	5.0		5.0
Copper	5.0 ug/g	15		10
Iron	200 ug/g	11000		7800
Lead	5.0 ug/g	35		25
Magnesium	200 ug/g	7400		5800
Molybdenum	1.0 ug/g	< 1.0		< 1.0
Nickel	5.0 ug/g	15		10
Selenium	1.0 ug/g	< 1.0		4.0
Silver	5.0 ug/g	< 5.0		< 5.0
Sodium	200 ug/g	400		< 200
Thallium	1.0 ug/g	< 1.0		< 1.0
Tin	5.0 ug/g	< 5.0		< 5.0
Vanadium	10 ug/g	30		20
Zinc	20 ug/g	40		40
Acenaphthene	0.017 ug/g	< 0.017	< 0.017	< 0.017
Acenaphthylene	0.017 ug/g	0.017	< 0.017	< 0.017
Anthracene	0.017 ug/g	0.017	< 0.017	< 0.017
Benzo[a] anthracene	0.017 ug/g	0.066	< 0.017	0.033
Benzo[a]pyrene	0.017 ug/g	0.099	< 0.017	0.017
Benzo[b]fluoranthene	0.017 ug/g	0.12	< 0.017	0.017
Benzo[ghi]perylene	0.017 ug/g	0.099	< 0.017	< 0.017
Benzo[k]fluoranthene	0.017 ug/g	0.12	< 0.017	0.017
Biphenyl	0.017 ug/g	< 0.017	< 0.017	< 0.017
Chrysene	0.017 ug/g	0.099	< 0.017	0.017
Dibenzo (a, h) anthracene	0.017 ug/g	0.033	< 0.017	< 0.017

< 0.017

< 0.017

0.050

< 0.017

Order #: G5830

Report Date: 11/01/01 Order Date: 10/22/01 Sample Date: 10/17/01

0.099

< 0.017

0.017 ug/g

0.017 ug/g

Certificate of Analysis

Client: Duke Engineering & Services Inc.

Order #:	G5830
Report Date:	11/01/01
Order Date:	10/22/01
0 . I D.(8	10/17/01

Sample Date: 10/17/01

Client Ref:		Project: 01-242-1		
		SS-44	SS-38	SS-49
		G5830.1	G5830.2	G5830.3
Indeno [1, 2, 3-cd] pyrene	0.017 ug/g	0.099	< 0.017	< 0.017
1-Methylnaphthalene	0.017 ug/g	0.033	< 0.017	< 0.017
2-Methylnaphthalene	0.017 ug/g	0.033	< 0.017	< 0.017
Naphthalene	0.017 ug/g	0.050	< 0.017	< 0.017
Phenanthrene	0.017 ug/g	0.066	< 0.017	0.033
Pyrene	0.017 ug/g	0.099	< 0.017	0.033
2-Fluorobiphenyl	surrogate	48%	52%	51%
p-Terphenyl d-14	surrogate	76%	76%	67%

Certificate of Analysis

Client: Duke Engineering & Services Inc.

Client Ref:

Matrix: Soil		PH-49	SS-7A	SS-46
Parameter	MDL	G5830.4	G5830.5	G5830.6
Antimony	1.0 ug/g			< 1.0
Arsenic	1.0 ug/g			< 1.0
Barium	10 ug/g			360
Beryllium	0.50 ug/g			< 0.50
Cadmium	1.0 ug/g			< 1.0
Calcium	200 ug/g			8400
Chromium	5.0 ug/g			75
Cobalt	5.0 ug/g			20
Соррег	5.0 ug/g			40
Iron	200 ug/g			30000
Lead	5.0 ug/g			10
Magnesium	200 ug/g			15000
Molybdenum	1.0 ug/g			< 1.0
Nickel	5.0 ug/g			40
Selenium	1.0 ug/g			< 1,0
Silver	5.0 ug/g			< 5.0
Sodium	200 ug/g			1200
Thallium	1.0 ug/g			< 1.0
Tin	5.0 ug/g			< 5.0
Vanadium	10 ug/g			70
Zinc	20 ug/g			100
рН	0.050 pH units	7.8		
Acenaphthene	0.017 ug/g		< 0.017	< 0.017
Acenaphthylene	0.017 ug/g		0.017	< 0.017
Anthracene	0.017 ug/g		0.066	< 0.017
Benzo (a) anthracene	0.017 ug/g		0.21	< 0.017
Benzo [a] pyrene	0.017 ug/g		0.20	< 0.017
Benzo[b]fluoranthene	0.017 ug/g		0.17	0.017
Benzo[ghi]perylene	0.017 ug/g		0.13	< 0.017
Benzo[k] fluoranthene	0.017 ug/g		0.17	< 0.017
Biphenyl	0.017 ug/g		< 0.017	< 0.017
Chrysene	0.017 ug/g		0.21	< 0.017
Dibenzo (a, h) anthracene	0.017 ug/g		0.066	< 0.017
Fluoranthene	0.017 ug/g		0.46	0.017

Project: 01-242-1

Order #: G5830

 Report Date:
 11/01/01

 Order Date:
 10/22/01

 Sample Date:
 10/17/01

Certificate of Analysis

Client:	Duke	Engineering	&	Services	Inc.
---------	------	-------------	---	----------	------

Client Ref:		Project: 01-242-1		
		PH-49	SS-7A	SS-46
		G5830.4	G5830.5	G5830.6
Fluorene	0.017 ug/g		< 0.017	< 0.017
Indeno [1, 2, 3-cd] pyrene	0.017 ug/g		0.13	< 0.017
1-Methylnaphthalene	0.017 ug/g		< 0.017	< 0.017
2-Methylnaphthalene	0.017 ug/g		< 0.017	< 0.017
Naphthalene	0.017 ug/g		< 0.017	< 0.017
Phenanthrene	0.017 ug/g		0.33	0.017
Pyrene	0.017 ug/g		0.51	0.017
2-Fluorobiphenyl	surrogate		43%	55%
p-Terphenyl d-14	surrogate		61%	78%

300-2319 St. Laurent Blvd., Ottawa, ON. K1G 4K6 - tel. (613) 731-9577 - fax. (613) 731-9064 - email: naricel@tmagma.ca. Data: 4 of 21

Order #: G5830

 Report Date:
 11/01/01

 Order Date:
 10/22/01

 Sample Date:
 10/17/01

Certificate of Analysis

Client: Duke Engineering & Services Inc.

Client Ref:

Order #:	G5830
Report Date:	11/01/01
Order Date:	10/22/01
Sample Date:	10/17/01

Matrix: Soil		SS-3A	SS-7	PH-7
Parameter	MDL	G5830.7	G5830.8	G5830.9
Antimony	1.0 ug/g	< 1.0	< 1.0	
Arsenic	1.0 ug/g	< 1.0	1.0	
Barium	10 ug/g	460	50	
Beryllium	0.50 ug/g	< 0.50	1.0	
Cadmium	1.0 ug/g	< 1.0	< 1.0	
Calcium	200 ug/g	7200	12000	
Chromium	5.0 ug/g	85	10	
Cobalt	5.0 ug/g	20	< 5.0	
Copper	5.0 ug/g	35	10	
Iron	200 ug/g	30000	6600	
Lead	5.0 ug/g	10	25	
Magnesium	200 ug/g	15000	4600	
Molybdenum	1.0 ug/g	< 1.0	< 1.0	
Nickel	5.0 ug/g	45	5.0	
Selenium	1.0 ug/g	< 1.0	5.0	
Silver	5.0 ug/g	< 5.0	< 5.0	
Sodium	200 ug/g	1000	< 200	
Thallium	1.0 ug/g	< 1.0	< 1.0	
Tín	5.0 ug/g	< 5.0	< 5.0	
Vanadium	10 ug/g	70	20	
Zinc	20 ug/g	100	40	
рн	0.050 pH units			8.1
Acenaphthene	0.017 ug/g		< 0.017	
Acenaphthylene	0.017 ug/g		0.033	
Anthracene	0.017 ug/g		0.033	
Benzo [a] anthracene	0.017 ug/g		0.099	
Benzo[a]pyrene	0.017 ug/g		0.12	
Benzo [b] fluoranthene	0.017 ug/g		0.12	
Benzo[ghi]perylene	0.017 ug/g		0.15	
Benzo(k)fluoranthene	0.017 ug/g		0.12	
Biphenyl	0.017 ug/g		< 0.017	
Chrysene	0.017 ug/g		0.099	
Dibenzo (a, h) anthracene	0.017 ug/g		0.066	
Fluoranthene	0.017 ug/g		0.15	

Certificate of Analysis

Client:	Duke	Engineering	&	Services	Inc.
---------	------	-------------	---	----------	------

Client Ref:		Project: 01-242-1		
		SS-3A	SS-7	PH-7
		G5830.7	G5830.8	G5830.9
Fluorene	0.017 ug/g		< 0.017	
Indeno [1,2,3-cd] pyrene	0.017 ug/g		0.13	
1-Methylnaphthalene	0.017 ug/g		< 0.017	
2-Methylnaphthalene	0.017 ug/g		< 0.017	
Naphthalene	0.017 ug/g		< 0.017	
Phenanthrene	0.017 ug/g		0.066	
Pyrene	0.017 ug/g		0.13	
2-Fluorobiphenyl	surrogate		70%	
p-Terphenyl d-14	surrogate		73%	

300-2319 St Laurent Blvd Ottawa ON K1G4K6 (el-(613) 731-9577 fav. (613) 731-9064 email: paracel@magnum.ca

Order #: G5830

 Report Date:
 11/01/01

 Order Date:
 10/22/01

 Sample Date:
 10/17/01

Certificate of Analysis

Client: Duke Engineering & Services Inc.

Client Ref:

Matrix: Soil	[SS-77	SS-6	SS-1
Parameter	MDL	G5830.10	G5830.11	G5830.12
Antimony	1.0 ug/g	1.0	< 1.0	< 1.0
Arsenic	1.0 ug/g	< 1.0	< 1.0	< 1.0
Barium	10 ug/g	50	20	40
Beryllium	0.50 ug/g	0.50	< 0.50	< 0.50
Cadmium	1.0 ug/g	< 1.0	< 1.0	< 1.0
Calcium	200 ug/g	12000	2600	5400
Chromium	5.0 ug/g	5.0	10	15
Cobalt	5.0 ug/g	< 5.0	< 5.0	< 5.0
Copper	5.0 ug/g	10	< 5.0	20
Iron	200 ug/g	5600	6000	7000
Lead	5.0 ug/g	45	5.0	20
Magnesium	200 ug/g	3200	1000	2200
Molybdenum	1.0 ug/g	< 1.0	< 1.0	< 1.0
Nickel	5.0 ug/g	5.0	< 5.0	5.0
Selenium	1.0 ug/g	< 1.0	< 1.0	< 1.0
Silver	5.0 ug/g	< 5.0	< 5.0	< 5.0
Sodium	200 ug/g	< 200	< 200	< 200
Thallium	1.0 ug/g	< 1.0	< 1.0	< 1.0
Tin	5.0 ug/g	< 5.0	< 5.0	< 5.0
Vanadium	10 ug/g	20	20	20
Zinc	20 ug/g	40	20	40

Report Date: 11/01/01 Order Date: 10/22/01 Sample Date: 10/17/01

Order #: G5830

Paracel Laboratories Ltd. Certificate of Analysis

Client: Duke Engineering & Services Inc.

Client Ref:

Matrix: Soil		SS-4	SS-14	SS-11
Parameter	MDL	G5830.13	G5830.14	G5830.15
Antimony	1.0 ug/g		< 1.0	
Arsenic	1.0 ug/g		< 1.0	
Barium	10 ug/g		250	
Beryllium	0.50 ug/g		< 0.50	
Cadmium	1.0 ug/g		< 1.0	
Calcium	200 ug/g		10000	
Chromium	5.0 ug/g		60	
Cobalt	5.0 ug/g		15	
Copper	5.0 ug/g		30	
Iron	200 ug/g		21000	
Lead	5.0 ug/g		20	
Magnesium	200 ug/g		11000	
Molybdenum	1.0 ug/g		< 1.0	
Nickel	5.0 ug/g		30	
Selenium	1.0 ug/g		< 1.0	
Silver	5.0 ug/g		< 5.0	
Sodium	200 ug/g		800	
Thallium	1.0 ug/g		< 1.0	
Tin	5.0 ug/g		< 5.0	
Vanadium	10 ug/g		50	
Zinc	20 ug/g		80	
Acenaphthene	0.017 ug/g	< 0.017	< 0.017	0.12
Acenaphthylene	0.017 ug/g	< 0.017	< 0.017	0.050
Anthracene	0.017 ug/g	< 0.017	0.017	0.41
Benzo[a]anthracene	0.017 ug/g	0.017	0.15	0.96
Benzo[a]pyrene	0.017 ug/g	< 0.017	0.12	0.89
Benzo(b)fluoranthene	0.017 ug/g	< 0.017	0.099	0.86
Benzo[ghi]perylene	0.017 ug/g	< 0.017	0.083	0.69
Benzo[k]fluoranthene	0.017 ug/g	< 0.017	0.12	0.86
Biphenyl	0.017 ug/g	< 0.017	< 0.017	< 0.017
Chrysene	0.017 ug/g	0.017	0.12	0.87
Dibenzo[a,h]anthracene	0.017 ug/g	< 0.017	0.050	0.40
Fluoranthene	0.017 ug/g	0.033	0.20	2.0
Fluorene	0.017 ug/g	< 0.017	< 0.017	0.13

Order #: G5830

Report Date: 11/01/01 Order Date: 10/22/01 Sample Date: 10/17/01

Paracel Laboratori	Order #: G5830			
Certificate of Analysis				Report Date: 11/01/01
Client: Duke Engineerin ; Client Ref:	g & Services Inc.	Project: 01-242-1		Order Date: 10/22/01 Sample Date: 10/17/01
		SS-4	SS-14	SS-11
		G5830.13	G5830.14	G5830.15
Indeno[1,2,3-cd]pyrene	0.017 ug/g	< 0.017	0.083	0.79
1-Methylnaphthalene	0.017 ug/g	< 0.017	< 0.017	0.017
2-Methylnaphthalene	0.017 ug/g	< 0.017	< 0.017	0.017
Naphthalene	0.017 ug/g	< 0.017	< 0.017	0.066
Phenanthrene	0.017 ug/g	< 0.017	0.066	1.6
Pyrene	0.017 ug/g	0.017	0.17	1.6
2-Fluorobiphenyl	surrogate	77%	42%	74%

surrogate

p-Terphenyl d-14

84%

72%

83%

Paracel Laboratories Ltd. Certificate of Analysis

Client: Duke Engineering & Services Inc.

Client Ref:

Matrix: Soil SS-15 SS-20 PH-20 Parameter MDL G5830.18 G5830.17 G5830.16 < 1.0 Antimony 1.0 ug/g < 1.0 < 1.0 Arsenic 1.0 ug/g < 1.0 100 130 Barium 10 ug/g Beryllium 0.50 ug/g < 0.50 < 0.50 < 1.0 Cadmium 1.0 ug/g < 1.0 Calcium 4200 6400 200 ug/g Chromium 5.0 ug/g 25 25 10 5.0 Cobalt 5.0 ug/g 15 15 Copper 5.0 ug/g 13000 Iron 200 ug/g 10000 5.0 ug/g 15 10 Lead Magnesium 200 ug/g 4600 6000 Molybdenum < 1.0 < 1.0 1.0 ug/g 15 Nickel 5.0 ug/g 15 Selenium 1.0 ug/g <1.0 < 1.0 Silver < 5.0 < 5.0 5.0 ug/g 400 600 Sodium 200 ug/g Thallium < 1.0 < 1.0 1.0 ug/g < 5.0 Tin 5.0 ug/g < 5.0 Vanadium 30 40 10 ug/g 60 60 Zinc 20 ug/g pН 0.050 pH units 8.0 0.017 Acenaphthene 0.017 ug/g < 0.017 0.017 Acenaphthylene 0.017 ug/g < 0.017 Anthracene 0.017 ug/g < 0.017 0.083 0.017 ug/g Benzo [a] anthracene 0.050 0.31 0.017 ug/g 0.033 0.28 Benzo[a]pyrene Benzo[b] fluoranthene 0.017 ug/g 0.033 0.28 0.017 ug/g 0.20 Benzo[ghi]perylene 0.033 Benzo[k] fluoranthene 0.017 ug/g 0.033 0.28 0.017 ug/g Biphenyl < 0.017 < 0.017 Chrysene 0.017 ug/g 0.033 0.30 Dibenzo[a, h] anthracene 0.017 ug/g < 0.017 0.13 0.017 ug/g Fluoranthene 0.083 0.59

> Data: 10 of 71 300-2319 St Laurent Blvd - Ottawa - ON-K1G 4K6 - tel (613) 731-9577 - fax (613) 731-9064 - umail namoal@magnet #

Order #: G5830

Report Date: 11/01/01 Order Date: 10/22/01 Sample Date: 10/17/01

Certificate of Analysis

Client: Duke Engineering & Services Inc.

Client Ref:

Uluel #	- G2020
Report Date:	11/01/01
Order Date:	10/22/01
Sample Date:	10/17/01

S			
	SS-15	SS-20	PH-20
	G5830.16	G5830.17	G5830.18
0.017 ug/g	< 0.017	0.017	
0.017 ug/g	0.033	0.23	
0.017 ug/g	< 0.017	< 0.017	
0.017 ug/g	< 0.017	< 0.017	
0.017 ug/g	< 0.017	< 0.017	
0.017 ug/g	0.050	0.30	
0.017 ug/g	0.066	0.50	
surrogate	52%	65%	
surrogate	67%	86%	
	0.017 ug/g 0.017 ug/g 0.017 ug/g 0.017 ug/g 0.017 ug/g 0.017 ug/g 0.017 ug/g 0.017 ug/g surrogate surrogate	G5830.16 0.017 ug/g < 0.017	G5830.16 G5830.17 0.017 ug/g < 0.017

Order #: C5830

Paracel Laboratories Ltd. Certificate of Analysis

Client: Duke Engineering & Services Inc.

Client Ref:

Order #:	G5830
Report Date:	11/01/01
Order Date:	10/22/01
Sample Date:	10/17/01

Matrix: Soil		SS-26	SS-29	SS-129
Parameter	MDL	G5830.19	G5830.20	G5830.21
Antimony	1.0 ug/g	< 1.0	< 1.0	
Arsenic	1.0 ug/g	< 1.0	< 1.0	
Barium	10 ug/g	150	200	
Beryllium	0.50 ug/g	< 0.50	< 0.50	
Cadmium	1.0 ug/g	< 1.0	< 1.0	
Calcium	200 ug/g	5200	6200	
Chromium	5.0 ug/g	30	50	
Cobalt	5.0 ug/g	10	10	
Copper	5.0 ug/g	15	25	
Iron	200 ug/g	14000	17000	
Lead	5.0 ug/g	15	15	
Magnesium	200 ug/g	5800	8800	
Molybdenum	1.0 ug/g	< 1.0	< 1.0	
Nickel	5.0 ug/g	15	25	
Selenium	1.0 ug/g	< 1.0	< 1.0	
Silver	5.0 ug/g	< 5.0	< 5.0	
Sodium	200 ug/g	400	600	
Thallium	1.0 ug/g	< 1.0	< 1.0	
Tin	5.0 ug/g	< 5.0	< 5.0	
Vanadium	10 ug/g	40	50	
Zinc	20 ug/g	60	80	
Acenaphthene	0.017 ug/g		< 0.017	< 0.017
Acenaphthylene	0.017 ug/g		< 0.017	< 0.017
Anthracene	0.017 ug/g		< 0.017	< 0.017
Benzo[a] anthracene	0.017 ug/g		0.033	0.050
Benzo (a) pyrene	0.017 ug/g		0.033	0.033
Benzo[b]fluoranthene	0.017 ug/g		0.033	0.050
Benzo[ghi]perylene	0.017 ug/g		0.033	0.033
Benzo [k] fluoranthene	0.017 ug/g		0.033	0.050
Biphenyl	0.017 ug/g		< 0.017	< 0.017
Chrysene	0.017 ug/g		0.033	0.050
Dibenzo(a,h) anthracene	0.017 ug/g		0.017	< 0.017
Fluoranthene	0.017 ug/g		0.066	0.083
Fluorene	0.017 ug/g		< 0.017	< 0.017

Certificate of Analysis

Client: Duke Engineering & Services Inc.

Client Ref:		Project: 01-242-1		
		SS-26	SS-29	SS-129
		G5830.19	G5830.20	G5830.21
Indeno [1,2,3-cd] pyrene	0.017 ug/g		0.033	0.033
1-Methylnaphthalene	0.017 ug/g		< 0.017	< 0.017
2-Methylnaphthalene	0.017 ug/g		< 0.017	< 0.017
Naphthalene	0.017 ug/g		< 0.017	< 0.017
Phenanthrene	0.017 ug/g		0.033	0.033
Pyrene	0.017 ug/g		0.050	0.066
2-Fluorobiphenyl	surrogate		61%	56%
p-Terphenyl d-14	surrogate		71%	70%

Order #: G5830

 Report Date:
 11/01/01

 Order Date:
 10/22/01

 Sample Date:
 10/17/01

Certificate of Analysis

Client: Duke Engineering & Services Inc.

Order #: G5830 Report Date: 11/01/01

 Report Date:
 11/01/01

 Order Date:
 10/22/01

 Sample Date:
 10/17/01

Matrix: Soil		SS-36	SS-37	PH-37
Parameter	MDL	G5830.22	G5830.23	G5830.24
Antimony	1.0 ug/g	< 1.0	< 1.0	
Arsenic	1.0 ug/g	< 1.0	< 1.0	
Barium	10 ug/g	190	240	
Beryllium	0.50 ug/g	< 0.50	< 0.50	
Cadmium	1.0 ug/g	< 1.0	< 1.0	
Calcium	200 ug/g	5200	6600	
Chromium	5.0 ug/g	40	50	
Cobalt	5.0 ug/g	10	15	
Copper	5.0 ug/g	20	25	
Iron	200 ug/g	14000	20000	
Lead	5.0 ug/g	15	25	
Magnesium	200 ug/g	7800	11000	
Molybdenum	1.0 ug/g	< 1.0	< 1.0	
Nickel	5.0 ug/g	25	3 0	
Selenium	1.0 ug/g	< 1.0	< 1.0	
Silver	5.0 ug/g	< 5.0	< 5.0	
Sodium	200 ug/g	600	800	
Thallium	1.0 ug/g	< 1.0	< 1.0	
Tin	5.0 ug/g	< 5.0	< 5.0	
Vanadium	10 ug/g	40	50	
Zinc	20 ug/g	60	80	
рĦ	0.050 pH units			8.0
Acenaphthene	0.017 ug/g	0.033		
Acenaphthylene	0.017 ug/g	0.066		
Anthracene	0.017 ug/g	0.13		
Benzo[a] anthracene	0.017 ug/g	0.41		
Benzo [a] pyrene	0.017 ug/g	0.48		
Benzo[b] fluoranthene	0.017 ug/g	0.45		
Benzo[ghi]perylene	0.017 ug/g	0.40		
Benzo(k)fluoranthene	0.017 ug/g	0.38		
Biphenyl	0.017 ug/g	< 0.017		
Chrysene	0.017 ug/g	0.41		
Dibenzo (a, h) anthracene	0.017 ug/g	0.20		
Fluoranthene	0.017 ug/g	0.86		

Client Ref:

Certificate of Analysis

Client: Duke Engineering & Services Inc.

Client Ref:

Order #:	G5830
Report Date:	11/01/01
Order Date:	10/22/01
Sample Date:	10/17/01

		55-36		PH-37
		G5830.22	G5830.23	G5830.24
Fluorene	0.017 ug/g	0.033		
Indeno [1, 2, 3-cd] pyrene	0.017 ug/g	0.43		
1-Methylnaphthalene	0.017 ug/g	< 0.017		
2-Methylnaphthalene	0.017 ug/g	< 0.017		
Naphthalene	0.017 ug/g	< 0.017		
Phenanthrene	0.017 ug/g	0.53		
Pyrene	0.017 ug/g	0.71		
2-Fluorobiphenyl	surrogate	54%		
p-Terphenyl d-14	surrogate	61%		
Client: Duke Engineering & Services Inc.

Client Ref:

Project: 01-242-1

Matrix: Soil		SS-28	SS-30	PH-30
Parameter	MDL	G5830.25	G5830.26	G5830.27
Antimony	1.0 ug/g	1.0	< 1.0	
Arsenic	1.0 ug/g	2.0	< 1.0	
Barium	10 ug/g	120	290	
Beryllium	0.50 ug/g	1.5	< 0.50	
Cadmium	1.0 ug/g	< 1.0	< 1.0	
Calcium	200 ug/g	8200	1600	
Chromium	5.0 ug/g	15	65	
Cobalt	5.0 ug/g	< 5.0	20	
Copper	5.0 ug/g	15	35	
Iron	200 ug/g	11000	3800	
Lead	5.0 ug/g	90	20	
Magnesium	200 ug/g	2800	13000	
Molybdenum	1.0 ug/g	< 1.0	< 1.0	
Nickel	5.0 ug/g	10	40	
Selenium	1.0 ug/g	< 1.0	< 1.0	
Silver	5.0 ug/g	< 5.0	< 5.0	
Sodium	200 ug/g	< 200	< 200	
Thallium	1.0 ug/g	< 1.0	< 1.0	
Tin	5.0 ug/g	5.0	< 5.0	
Vanadium	10 ug/g	20	60	
2inc	20 ug/g	180	80	
рн	0.050 pH units			7.9
Acenaphthene	0.017 ug/g	0.050	0.083	
Acenaphthylene	0.017 ug/g	0.17	0.017	
Anthracene	0.017 ug/g	0.41	0.31	
Benzo[a] anthracene	0.017 ug/g	1.4	0.68	
Benzo[a] pyrene	0.017 ug/g	1.2	0.61	
Benzo[b]fluoranthene	0.017 ug/g	1.2	0.53	
Benzo[ghi]perylene	0.017 ug/g	0.95	0.43	
Benzo[k]fluoranthene	0.017 ug/g	1.2	0.50	
Biphenyl	0.017 ug/g	< 0.017	< 0.017	
Chrysene	0.017 ug/g	1.6	0.64	
Dibenzo[a,h]anthracene	0.017 ug/g	0.56	0.23	
Fluoranthene	0.017 ug/g	3.1	1.7	

Order #: G5830

Report Date: 11/01/01 Order Date: 10/22/01 Sample Date: 10/17/01

Client: Duke Engineering & Services Inc.

Order #: G5830

 Report Date:
 11/01/01

 Order Date:
 10/22/01

 Sample Date:
 10/17/01

Client Ref:	Project: 01-242-1					
		55-28	SS-30	PH-30		
		G5830.25	G5830.26	G5830.27		
Fluorene	0.017 ug/g	0.15	0.099			
Indeno [1,2,3-cd] pyrene	0.017 ug/g	1.1	0.51			
1-Methylnaphthalene	0.017 ug/g	0.050	< 0.017			
2-Methylnaphthalene	0.017 ug/g	0.050	< 0.017			
Naphthalene	0.017 ug/g	0.13	< 0.017			
Phenanthrene	0.017 ug/g	2.6	1.6			
Pyrene	0.017 ug/g	2.3	1.2			
2-Fluorobiphenyl	surrogate	72%	62%			
p-Terphenyl d-14	surrogate	80%	69%			

Client: Duke Engineering & Services Inc.

Client Ref:

 Order #: G5830

 Report Date:
 11/01/01

 Order Date:
 10/22/01

 Sample Date:
 10/17/01

Project: 01-242-1

Matrix: Soil		SS-31	SS-33	SS-40
Parameter	ADD.	G5830.28	G5830.29	G5830.30
Antimony	1.0 ug/g	< 1.0		< 1.0
Arsenic	1.0 ug/g	< 1.0		< 1.0
Barium	10 ug/g	200		40
Beryllium	0.50 ug/g	< 0.50		1.0
Cadmium	1.0 ug/g	< 1.0		< 1.0
Calcium	200 ug/g	15000		7800
Chromium	5.0 ug/g	40		10
Cobalt	5.0 ug/g	10		< 5.0
Copper	5.0 ug/g	20		5.0
Iron	200 ug/g	17000		6800
Lead	5.0 ug/g	10		20
Magnesium	200 ug/g	13000		3400
Molybdenum	1.0 ug/g	< 1.0		< 1.0
Nickel	5.0 ug/g	25		5.0
Selenium	1.0 ug/g	9.0		4.0
Silver	5.0 ug/g	< 5.0		< 5.0
Sodium	200 ug/g	600		< 200
Thallium	1.0 ug/g	< 1.0		< 1.0
Tin	5.0 ug/g	< 5.0		< 5.0
Vanadium	10 ug/g	50		20
Zinc	20 ug/g	60		40
Acenaphthene	0.017 ug/g		< 0.017	< 0.017
Acenaphthylene	0.017 ug/g		< 0.017	< 0.017
Anthracene	0.017 ug/g		< 0.017	< 0.017
Benzo(a)anthracene	0.017 ug/g		0.050	< 0.017
Benzo (a) pyrene	0.017 ug/g		0.050	< 0.017
Benzo[b]fluoranthene	0.017 ug/g		0.050	0.017
Benzo[ghi]perylene	0.017 ug/g		0.050	< 0.017
Benzo(k)fluoranthene	0.017 ug/g		0.050	< 0.017
Biphenyl	0.017 ug/g		< 0.017	< 0.017
Chrysene	0.017 ug/g		0.050	< 0.017
Dibenzo[a,h]anthracene	0.017 ug/g		0.017	< 0.017
Fluoranthene	0.017 ug/g		0.083	< 0.017
Fluorene	0.017 ug/g	-	< 0.017	< 0.017

Par	acel	Lab	or	ato	ries	Ltd.
~		0	4			

Certificate of Analysis

Client:	Duke	Engineering	&	Services	Inc.
---------	------	-------------	---	----------	------

Client Ref:

Order #: G5830

 Report Date:
 11/01/01

 Order Date:
 10/22/01

 Sample Date:
 10/17/01

Project:	01-242-1
----------	----------

		SS-31	\$8-33	SS-40
		G5830.28	G5830.29	G5830.30
Indeno [1,2,3-cd] pyrene	0.017 ug/g		0.050	< 0.017
1-Methylnaphthalene	0.017 ug/g		< 0.017	< 0.017
2-Methylnaphthalene	0.017 ug/g		< 0.017	< 0.017
Naphthalene	0.017 ug/g		< 0.017	< 0.017
Phenanthrene	0.017 ug/g		0.050	< 0.017
Pyrene	0.017 ug/g		0.066	< 0.017
2-Fluorobiphenyl	surrogate		43%	55%
p-Terphenyl d-14	surrogate		46%	58%

Certificate of Analysis

Client: Duke Engineering & Services Inc.

Client Ref:

Project: 01-242-1

Matrix: Soil				SS-39
Parameter		MDL	G	5830.31
Antimony	1.0	ug/g	< 1.0	
Arsenic	1.0	ug/g	< 1.0	
Barium	10	ug/g		40
Beryllium	0.50	ug/g	< 0.50	
Cadmium	1.0	ug/g	< 1.0	
Calcium	200	ug/g		13000
Chromium	5.0	ug/g		10
Cobalt	5.0	ug/g	< 5.0	
Copper	5.0	ug/g		5.0
Iron	200	ug/g		7400
Lead	5.0	ug/g		10
Magnesium	200	ug/g		5600
Molybdenum	1.0	ug/g	< 1.0	
Nickel	5.0	ug/g		5.0
Selenium	1.0	ug/g	< 1.0	
Silver	5.0	ug/g	< 5.0	
Sodium	200	ug/g	< 200	
Thallium	1.0	ug/g	< 1.0	
Tin	5.0	ug/g	< 5.0	
Vanadium	10	ug/g		20
Zinc	20	ug/g		40
Acenaphthene	0.017	ug/g	< 0.017	
Acenaphthylene	0.017	ug/g	< 0.017	
Anthracene	0.017	ug/g	< 0.017	
Benzo[a] anthracene	0.017	ug/g		0.033
Benzo[a]pyrene	0.017	ug/g		0.033
Benzo[b]fluoranthene	0.017	ug/g		0.017
Benzo[ghi]perylene	0.017	ug/g		0.033
Benzo[k]fluoranthene	0.017	ug/g		0.017
Biphenyl	0.017	ug/g	< 0.017	
Chrysene	0.017	ug/g		0.033
Dibenzo[a,h]anthracene	0.017	ug/g	< 0.017	
Fluoranthene	0.017	ug/g		0.050
Fluorene	0.017	ug/g	< 0.017	

Order #: G5830

 Report Date:
 11/01/01

 Order Date:
 10/22/01

 Sample Date:
 10/17/01

Client: Duke Engineering & Services Inc.

Client Ref:

Project: 01-242-1

		\$\$-39
		G5830.31
Indeno[1,2,3-cd]pyrene	0.017 ug/g	0.017
1-Methylnaphthalene	0.017 ug/g	< 0.017
2-Methylnaphthalene	0.017 ug/g	< 0.017
Naphthalene	0.017 ug/g	< 0.017
Phenanthrene	0.017 ug/g	0.033
Pyrene	0.017 ug/g	0.033
2-Fluorobiphenyl	surrogate	68%
p-Terphenyl d-14	surrogate	80%

 Order #: G5830

 Report Date:
 11/01/01

 Order Date:
 10/22/01

 Sample Date:
 10/17/01

Certificate of Analysis - QA/QC Data

Client: **Duke Engineering & Services Inc.** Client Ref:

Project: 01-242-1

Parameter		Method					DL		Me	asured
Antimony		EPA 6020					1.0	ug/g		< 1.0
Arsenic	2 ()	EPA 6020					1.0	ug/g		< 1.0
Barium		BPA 6020				74.57	10	ug/g		< 10
Beryllium		BPA 6020					0.50	ug/g		< 0.50
Cadmium		EPA 6020		10 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -			1.0	ug/g		< 1.0
Chromium		EPA 6020					5.0	ug/g		< 5.0
Cobalt		EPA 6020	-				5.0	ug/g		< 5.0
Copper		EPA 6020					5.0	ug/g		< 5.0
Lead		BPA 6020					5.0	ug/g		< 5.0
Molybdenum		EPA 6020					1.0	ug/g		< 1.0
Nickel		EPA 6020					5.0	ug/g		< 5.0
Selenium		EPA 6020					1.0	ug/g		< 1.0
Silver		EPA 6020					5.0	ug/g		< 5.0
Thallium		EPA 6020				-	1.0	ug/g		< 1.0
Tin		EPA 6020					5.0	ug/g		< 5.0
Vanadium		EPA 6020	1.710-0-4.1	**			10	ug/g		< 10
Zinc		EPA 6020					20	ug/g	-	< 20
Acenaphthene		Modified	SW-846	Method	8270		0.017	ug/g	<	0.017
Acenaphthylene		Modified	SW-846	Method	8270		0.017	ug/g	<	0.017
Anthracene		Modified	SW-846	Method	8270		0.017	ug/g	<	0.017
Benzo[a] anthracene		Modified	SW-846	Method	8270		0.017	ug/g	<	0.017
Benzo[a]pyrene	-	Modified	SW-846	Method	8270		0.017	ug/g	<	0.017
Benzo (b) fluoranther	ne	Modified	SW-846	Method	8270		0.017	ug/g	<	0.017
Benzo[ghi]perylene	-	Modified	SW-846	Method	8270		0.017	ug/g	<	0.017
Benzo[k] fluoranther	le	Modified	SW-846	Method	8270		0.017	ug/g	<	0.017
Biphenyl		Modified	SW-846	Method	8270		0.017	ug/g	<	0.017
Chrysene		Modified	SW-846	Method	8270		0.017	ug/g	<	0.017
Dibenzo[a,h] anthrac	cene	Modified	SW-846	Method	8270		0.017	ug/g	<	0.017
Fluoranthene		Modified	SW-846	Method	8270		0.017	ug/g	<	0.017
Fluorene		Modified	9W-846	Method	8270		0.017	ug/g	<	0.017
Indeno[1,2,3-cd]pyr	rene	Modified	SW-846	Method	8270		0.017	ug/g	<	0.017
1-Methylnaphthalene	•	Modified	SW-846	Method	8270		0.017	ug/g	<	0.017
2-Methylnaphthalene	•	Modified	SW-846	Method	8270		0.017	ug/g	<	0.017
Naphthalene		Modified	SW-846	Method	8270	120	0.017	ug/g	<	0.017
Phenanthrene		Modified	SW-846	Method	8270		0.017	ug/g	<	0.017
Pyrene		Modified	SW-846	Method	8270		0.017	ug/g	<	0.017
2-Fluorobiphenyl	(surrogate)	Modified	SW-846	Method	8270			n/a		62%
p-Terphenyl d-14	(surrogate)	Modified	SW-846	Method	8270			n/a		85%

Certificate of Analysis - QA/QC Data

Date: 11/01/01 Order #: G5830

Client: Duke Engineering & Services Inc.

Client Ref:

Project: 01-242-1

Reference Standard QC Results - Matrix: Soil			
Parameter	Expected	LLA - ULA	Recovery
Antimony	125 ug/g	80% - 120%	90%
Antimony	125 ug/g	80% - 120%	83%
Arsenic	125 ug/g	80% - 120%	91%
Arsenic	125 ug/g	80% - 120%	88%
Barium	125 ug/g	80% - 120%	107%
Barium	125 ug/g	80% - 120%	108%
Beryllium	125 ug/g	80% - 120%	98%
Beryllium	125 ug/g	80% - 120%	94%
Cadmium	125 ug/g	80% - 120%	91%
Cadmium	125 ug/g	80% - 120%	88%
Chromium	125 ug/g	80% - 120%	95%
Chromium	125 ug/g	80% - 120%	95%
Cobalt	125 ug/g	80% - 120%	97%
Cobalt	125 ug/g	80% - 120%	93%
Copper	125 ug/g	80% - 120%	97%
Copper	125 ug/g	80% - 120%	92%
Lead	125 ug/g	80% - 120%	88%
Lead	125 ug/g	80% - 120%	92%
Molybdenum	125 ug/g	80% - 120%	89%
Molybdenum	125 ug/g	80% - 120%	86%
Nickel	125 ug/g	80% - 120%	93%
Nickel	125 ug/g	80% - 120%	93%
Selenium	125 ug/g	80% - 120%	92%
Selenium	125 ug/g	80% - 120%	88%
Silver	125 ug/g	80% - 120%	107%
Silver	125 ug/g	80% - 120%	100%
Thallium	125 ug/g	80% - 120%	89%
Thallium	125 ug/g	80% - 120%	99%
Tin	125 ug/g	80% - 120%	103%
Tin	125 ug/g	80% - 120%	95%
Vanadium	125 ug/g	80% - 120%	92%
Vanadium	125 ug/g	80% - 120%	92%
Zinc	125 ug/g	80% - 120%	99%
Zinc	125 ug/g	80% - 120%	93%
pH	7.0 pH units	98% - 102%	100%
Acenaphthene	0.33 ug/g	47% - 145%	91%
Acenaphthylene	0.33 ug/g	33% - 145%	95%
Anthracene	0.33 ug/g	27% - 133%	105%
Benzo [a] anthracene	0.33 ug/g	139 - 1439	100%
Benzo [a] nurane	0.33 ug/g	176 - 1676	069
Benzo[b]fluoranthene	0.33 ug/g	119 - 1629	1039
Benzo [ghi] nerv]ene	0.33 ug/g	14 7109	105%
Benzo [k] fluoranthene	0.33 ug/g	116 1626	1034
Binhenv]	0.33 ug/g	259 - 1149	223 0EQ
Chrysene	0.33 ug/g	174 1604	839
Dihenzo (a hlanthracena	0.33 ug/g	T10 - T002	30%
Pluoranthane	0.33 ug/g	15 - 22/8	100 <i>#</i>
	0.33 ug/g	205 - 13/8 COB - 13/8	107%
Indeno(1, 2, 3-cd) pyrane	0.33 ug/g	275 - 121%	95%
-Methylnanhthalene	0.33 ug/g	72 - T\T#	TORA
2-Methylnaphthalene	0.33 ug/g	8911 - 8CC	106%
*-we ensing for the second s	v.jj ug/g	35% - 114%	81%

p-Terphenyl d-14

(surrogate)

Certificate of Analysis - QA/QC Data

Client: Duke Engineering & Services Inc.

Client Ref:		Project:	01-242-1		
Naphthalene		#2.0 D 2.	0.33 ug/g	21% - 133%	98%
Phenanthrene			0.33 ug/g	54% - 120%	104%
Pyrene			0.33 ug/g	52% - 115%	110%
2-Fluorobiphenyl	(surrogate)	İ.	100%	43% = 116%	119%
p-Terphenyl d-14	(surrogate)		100%	33% - 141%	108%

Spike QC Results - Matrix: Soil Parameter Meas./Expt. Measured ULA - LLA Expected 70% - 130% Antimony 100 125 ug/g 80% Arsenic 101 70% - 130% 80% 126 ug/g 70% - 130% Barium 226 ug/g 220 97% Beryllium 70% - 130% 116 924 125 ug/g Cadmium 101 70% - 130% 125 ug/g 80% Chromium 70% - 130% 148 ug/g 133 90% Cobalt 70% - 130% 115 132 ug/g 87% Copper 120 70% = 130% 140 ug/g 86% Lead 132 70% = 130% 158 ug/g 84% 70% - 130% Molybdenum 99 125 ug/g 79% Nickel 70% - 130% 140 ug/g 123 88% Selenium 104 70% = 130% 125 ug/g 83% Silver 114 70% = 130% 125 ug/g 91% Thallium 70% - 130% 125 ug/g 111 88% Tin 70% - 130% 126 ug/g 112 89% Vanadium 124 70% 🖂 130% 158 ug/g 79% 70% - 130% Zinc 167 ug/g 152 91% Acenaphthene 0.19 478 - 1478 0.33 ug/g 57% 33% - 145% Acenaphthylene 0.20 59% 0.33 ug/g 27% 🖙 133% Anthracene 0.23 0.33 ug/g 69% Benzo [a] anthracene 0.23 33% - 143% 0.33 ug/g 69% Benzo (a) pyrene 0.33 ug/g 0.23 17% 🖃 163% 69% Benzo [b] fluoranthene 0.33 ug/g 0.24 11% 🖃 162% 73% 18 🕫 2198 Benzo[ghi]perylene 0.24 0.33 ug/g 72% Benzo [k] fluoranthene 0.24 11% - 162% 0.33 ug/g 74% Biphenyl 0.33 ug/g 0.16 23% - 120% 49% Chrysene 0.22 17% 🖘 168% 0.33 ug/g 66% Dibenzo[a, h] anthracene 0.33 ug/g 0.25 18 2278 76% Fluoranthene 0.23 26% - 137% 0.33 ug/g 70% 0.21 59% - 121% Fluorene 0.33 ug/g 63% Indeno[1,2,3-cd]pyrene 0.25 1% - 171% 0.33 ug/g 77% 0.33 ug/g 1-Methylnaphthalene 0.20 23% - 120% 59% 0.33 ug/g 23% - 120% 2-Methylnaphthalene 0.15 46% Naphthalene 0.18 21% - 133% 0.33 ug/g 54% Phenanthrene 0.33 ug/g 0.23 54% - 120% 70% 0.24 52% - 115% Pyrene 0.33 ug/g 73% 2-Fluorobiphenyl 67 30% 🖘 115% (surrogate) 100 % 67%

100 %

77

18% 🖅 137%

77%

Certificate of Analysis - QA/QC Data

Date: 11/01/01 Order #: G5830

Client: Duke Engineering & Services Inc.

Client Ref:

Project: 01-242-1

Duplicate QA Results - Matrix: Soil

12-02		Detection	Sample	Duplicate
Parameter	units	Limit	Result	Result
Antimony	ug/g	1.0	< 1.0	< 1.0
Arsenic	ug/g	1.0	< 1.0	< 1.0
Barium	ug/g	10	100	100
Beryllium	ug/g	0.50	< 0.50	< 0.50
Cadmium	ug/g	1.0	< 1.0	< 1.0
Chromium	ug/g	5.0	25	25
Cobalt	ug/g	5.0	5.0	10
Copper	ug/g	5.0	15	15
Lead	ug/g	5.0	35	35
Molybdenum	ug/g	1.0	< 1.0	< 1.0
Nickel	ug/g	5.0	15	15
Selenium	ug/g	1.0	< 1.0	< 1.0
Silver	ug/g	5.0	< 5.0	< 5.0
Thallium	ug/g	1.0	< 1.0	< 1.0
Tin	ug/g	5.0	< 5.0	< 5.0
Vanadium	ug/g	10	30	30
Zinc	ug/g	20	40	40
рH	pH units	0.050	7.8	7.8
Acenaphthene	ug/g	0.017	< 0.017	< 0.017
Acenaphthylene	ug/g	0.017	0.017	0.033
Anthracene	ug/g	0.017	0.017	0.050
Benzo (a) anthracene	ug/g	0.017	0.066	0.12
Benzo (a) pyrene	ug/g	0.017	0.099	0.17
Benzo[b]fluoranthene	ug/g	0.017	0.12	0.20
Benzo[ghi]perylene	ug/g	0.017	0.099	0.20
Benzo[k]fluoranthene	ug/g	0.017	0.12	0.20
Biphenyl	ug/g	0.017	< 0.017	< 0.017
Chrysene	ug/g	0.017	0.099	0.17
Dibenzo [a, h] anthracene	ug/g	0.017	0.033	0.099
Fluoranthene	ug/g	0.017	0.099	0.13
Fluorene	ug/g	0.017	< 0.017	< 0.017
Indeno [1, 2, 3-cd] pyrene	ug/g	0.017	0.099	0.18
1-Methylnaphthalene	ug/g	0.017	0.033	0.21
2-Methylnaphthalene	ug/g	0.017	0.033	0.21
Naphthalene	ug/g	0.017	0.050	0.17
Phenanthrene	ug/g	0.017	0.066	0.18
Ругеле	ug/g	0.017	0.099	0.15
2-Fluorobiphenyl (surrogate)	percent	n/a	48%	59%
p-Terphenyl d-14 (surrogate)	percent	n/a	76%	73%

Paracel Laboratories Ltd. Glossary of Terms

MDL	The laboratory Detection Limit. The value is based on instrument response and is the lowest level that can be quantitated with confidence
n/a	Not applicable to this particular analysis.
NV	No Value, typically used for calculated results when the divisor is zero.
Surrogate Data	Surrogates are 'not naturally occuring' compounds which are added to the sample prior to analysis in order to monitor method performance. The results of the surrogate recoveries are reported in percent.
Blank	The results from the analysis of a matrix blank in the same run.
Duplicate Data	The results from an intralaboratory split sample that has been processed identically to that of the primary sample. Result for split sample are listed together with the results from the primary sample.
Reference Standard	Results from the analysis of a Reference Standard. A Reference Standard is a standard that contains the parameters of interest and is procured from a source secondary to the Calibration standard. EXPECTED: The actual concentration of the analyte in the Reference Standard. RECOVERY - Recovery of the spiked material reported in percent.
Spike Data	The results obtained from a sample fortified at a known level. The recovery of the spike is dependent on the level of the analyte found in the sample and spike.
	EXPECTED - Calculated value of the sample results + fortification amount which yield 100 % Recovery
	MEASURED - Results from the analysis of the fortified sample
	RECOVERY - Recovery of the spiked material reported in percent.
LLA	Lower Limit of Acceptability for QC recovery data.
ULA	Upper Limit of Acceptability for QC recovery data.

Your Project #: 316461.TT.HA LEMREUS ISLAND FO Site: OTTAWA Your C.O.C. #: 359347

Attention: Kevin Allin

CH2M Hill Canada Limited North York Head Office 255 Consumers Rd Toronto, ON M2J 5B6

Report Date: 2005/10/25

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: A5A3629 Received: 2005/10/17, 14:58

Sample Matrix: Soil # Samples Received: 7

	Date	Date		Method
Quantity	Extracted	Analyzed	Laboratory Method	Reference
3	2005/10/21	2005/10/21	Ont SOP-0816	CCME CWS
3	2005/10/21	2005/10/21	Ont SOP-0817	CCME CWS
5	2005/10/24	2005/10/24	Ont SOP 0112	EPA 7470
6	2005/10/24	2005/10/24	SOP ING-101	EPA_SW846-M6010B
7	N/A	2005/10/21	Ont SOP-0114	MOE HANDBOOK(1983)
5	2005/10/21	2005/10/21	EPA 8270	GC/MS
1	2005/10/20	2005/10/21	Ont SOP 0127	SW 846 3rd Edition
6	N/A	2005/10/24	IN-206	SM 4500 H
5	N/A	2005/10/21	Ont SOP-0806	EPA 8260 modified
	Quantity 3 5 6 7 5 1 6 5 5	Date Quantity Extracted 3 2005/10/21 3 2005/10/21 5 2005/10/24 6 2005/10/24 7 N/A 5 2005/10/21 1 2005/10/21 1 2005/10/20 6 N/A 5 N/A	Date Date Quantity Extracted Analyzed 3 2005/10/21 2005/10/21 3 2005/10/21 2005/10/24 5 2005/10/24 2005/10/24 6 2005/10/24 2005/10/24 7 N/A 2005/10/24 5 2005/10/24 2005/10/24 6 2005/10/24 2005/10/24 7 N/A 2005/10/21 6 N/A 2005/10/24 6 N/A 2005/10/24 5 N/A 2005/10/24	Date Date Quantity Extracted Analyzed Laboratory Method 3 2005/10/21 2005/10/21 Ont SOP-0816 3 2005/10/21 2005/10/24 Ont SOP-0817 5 2005/10/24 2005/10/24 Ont SOP 0112 6 2005/10/24 2005/10/24 SOP ING-101 7 N/A 2005/10/24 SOP ING-101 5 2005/10/21 2005/10/24 SOP 0114 5 2005/10/21 2005/10/21 EPA 8270 1 2005/10/20 2005/10/21 Ont SOP 0127 6 N/A 2005/10/24 IN-206 5 N/A 2005/10/24 IN-206

Sample Matrix: Water

Samples Received: 4

		Date	Date		Method
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Petroleum Hydro, CCME FI & BTEX in Water	2	N/A	2005/10/22	Ont SOP 0816	CCME CWS
Petroleum Hydrocarbons F2-F4 in Water	2	2005/10/21	2005/10/21	Ont SOP 0817	CCME Hydrocarbons
Mercury	3	2005/10/21	2005/10/21	Ont SOP 0112	EPA 7470
Dissolved Metals by ICPMS	4	N/A	2005/10/21	Ont SOP 0624	EPA 6020
PAH Compounds in Water by GC/MS (SIM)	3	2005/10/21	2005/10/21	EPA 8270	GC/MS
pH	3	N/A	2005/10/21	Ont SOP 0067	APHA 4500H
Volatile Organic Compounds in Water	3	N/A	2005/10/21	Ont SOP 0806	EPA 8260 modified

MAXXAM ANALYTICS INC.

BRAD NEWMAN Scientific Services

BNE/aun encl.

CH2M Hill Canada Limited Client Project #: 316461.TT.HA LEMREUS ISLAND FO Project name: OTTAWA Sampler Initials:

Maxxam ID		180797	180798		
Sampling Date		2005/10/15	2005/10/15		
		15:00	10:00		
COC Number		359347	359347		
	Units	CH2M-MW-1	CH2M-MW-2	RDL	OC Batc
F1 PHC and BTEX					
F1 (C6-C10)	ug/L	ND	ND	100	848007
F1 (C6-C10) - BTEX	ug/L	ND	ND	100	848007
F2-F4 PHC					
F2 (C10-C16 Hydrocarbons)	ug/L	ND	ND	100	848247
F3 (C16-C34 Hydrocarbons)	ug/L	ND	ND	100	848247
F4 (C34-C50 Hydrocarbons)	ug/L	ND	ND	100	848247
Reached Baseline at C50	ug/L	YES	YES		848247
Surrogate Recovery (%)					
1,4-Difluorobenzene	%	98	98		848007
4-Bromofluorobenzene	%	106	105		848007
D10-Ethylbenzene	%	102	100		848007
D4-1,2-Dichloroethane	%	109	108		848007
o-Terphenyl	%	100	101		848247

OREG 153 PETROLEUM HYDROCARBONS (WATER)

QC Batch = Quality Control Batch

May 2

CH2M Hill Canada Limited Client Project #: 316461.TT.HA LEMREUS ISLAND FO Project name: OTTAWA Sampler Initials:

O'REG 153 METALS PACKAGE (SOIL)

Maxxam ID	0 7	180790	180791	180793	180794		
Sampling Date		2005/10/12	2005/10/12	2005/10/14	2005/10/14		
-		10:40	14:20	09:00	09:30		
COC Number		359347	359347	359347	359347	-	
	Units	CH2M-MW-2(2	CH2M-MW-1(2	CH2M-TP5 (2-4)	CH2M-TP4 (2-3)	HDL	QC Batch
	1	1/2 - 3 1/2)	112-4 (12)				
INORGANICS							
Moisture	%	9.7	6.6	39	11	0.2	848359
METALS							
Total Antimony (Sb)	ug/g	ND	ND	3	1	1	848599
Total Arsenic (As)	ug/g	3	2	7	5	1	848599
Total Barium (Ba)	ug/g	83	200	310	140	0.5	848599
Total Beryllium (Be)	ug/g	0.6	ND	ND	ND	0.5	848599
Total Cadmium (Cd)	ug/g	ND	ND	1,5	0.9	0.3	848599
Total Chromium (Cr)	ug/g	32	13	14	15	0,5	848599
Total Cobalt (Co)	ug/g	9.7	4.4	4.1	6.3	0.5	848599
Total Copper (Cu)	ug/g	24	18	73	120	0.5	848599
Total Lead (Pb)	ug/g	16	210	970	97	1	848599
Acid Extractable Mercury (Hg)	ug/g	ND	0.19	0.46	0.17	0.05	848579
Total Molybdenum (Mo)	ug/g	1.4	0.6	0.8	1.2	0.5	848599
Total Nickel (Ni)	ug/g	21	8 5	9,4	14	0.5	848599
Total Selenium (Se)	ug/g	ND	ND	ND	ND	1	848599
Total Silver (Ag)	ug/g	ND	ND	ND	1,1	03	848599
Total Thailium (TI)	ug/g	ND	ND	ND	ND	1	848599
Total Vanadium (V)	ug/g	44	20	20	20	0.5	848599
Total Zinc (Zn)	ug/g	53	75	1700	150	3	848599

ND = Not detected

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

CH2M Hill Canada Limited Client Project #: 316461.TT.HA LEMREUS ISLAND FO Project name: OTTAWA Sampler Initials:

Maxxam ID 180795 180796 Sampling Date 2005/10/14 2005/10/12 10:00 359347 COC Number 359347 Units CH2M-TP3 (2-3) SOIL-DUP-1 RDL QC Batch INORGANICS Moisture 0/0 41 45 0.2 848359 METALS Total Antimony (Sb) ug/g ND 2 1 848578 Total Arsenic (As) 5 848578 ug/g 8 1 Total Barium (Ba) ug/g 260 180 0.5 848578 Total Beryllium (Be) 1.1 ND 0.5 848578 ug/g Total Cadmium (Cd) 1_0 0.9 0.3 848578 ug/g Total Chromium (Cr) 27 0.5 848578 ug/g 13 Total Cobalt (Co) ug/g 8.8 3.8 0.5 848578 Total Copper (Cu) ug/g 43 61 0.5 848578 Total Lead (Pb) ug/g 39 670 1 848578 Acid Extractable Mercury (Hg) 0.09 0.05 848579 ug/g Total Molybdenum (Mo) ug/g 2.0 ND 0.5 848578 Total Nickel (Ni) 18 8.2 0.5 848578 ug/g Total Selenium (Se) ND 848578 2 1 ug/g Total Silver (Ag) ug/g ND ND 0.3 848578 Total Thallium (TI) ug/g ND ND 1 848578 Total Vanadium (V) ug/g 29 18 0.5 848578 Total Zinc (Zn) 100 980 3 848578 ug/g ND = Not detected RDL = Reportable Detection Limit QC Batch = Quality Control Batch

O'REG 153 METALS PACKAGE (SOIL)

Page 4 of 35

Max ar

CH2M Hill Canada Limited Client Project #: 316461.TT.HA LEMREUS ISLAND FO Project name: OTTAWA Sampler Initials:

O'REG 153 ICPMS DISSOLVED METALS (WATER)

Maxxam ID		180797	1	180798		180799		
Sampling Date		2005/10/15		2005/10/15		2005/10/15		
		15:00		10:00			-	
COC Number		359347	60.0.1	359347		359347	0.01	000.11
	Units	CH2M-MW-1	QC Batch	CH2M-MW-2	DC Batch	GW-DUP-1	RDL	DC Batch
METALS								
Dissolved Antimony (Sb)	ug/L	ND	847602	ND	847598	ND	1	847602
Dissolved Arsenic (As)	ug/L	NÐ	847602	ND	847598	ND	1	847602
Dissolved Barium (Ba)	ug/L	84	847602	62	847598	72	5	847602
Dissolved Beryllium (Be)	ug/L	ND	847602	ND	847598	ND	0.5	847602
Dissolved Boron (B)	ug/L	94	847602	98	847598	110	10	847602
Dissolved Cadmium (Cd)	ug/L	NÐ	847602	NÐ	847598	ND	0,1	847602
Dissolved Chromium (Cr)	ug/L	NÐ	847602	ND	847598	ND	5	847602
Dissolved Cobalt (Co)	ug/L	0.6	847602	0.6	847598	0.7	0.5	847602
Dissolved Copper (Cu)	ug/L	3	847602	3	847598	2	1	847602
Dissolved Lead (Pb)	ug/L	ND	847602	ND	847598	ND	0.5	847602
Dissolved Molybdenum (Mo)	ug/L	6	847602	5	847598	5	1	847602
Dissolved Nickel (Ni)	ug/L	3	847602	1	847598	2	1	847602
Dissolved Selenium (Se)	ug/L	ND	847602	ND	847598	ND	2	847602
Dissolved Silver (Ag)	ug/L	ND	847602	ND	847598	ND	0.5	847602
Dissolved Sodium (Na)	ug/L	290000	847602	25000	847598	28000	100	847602
Dissolved Tellurium	ug/L	ND	847602	ND	847598	ND	1	847602
Dissolved Thallium (TI)	ug/L	ND	847602	ND	847598	ND	0,05	847602
Dissolved Thorium (Th)	ug/L	ND	847602	ND	847598	ND	1	847602
Dissolved Vanadium (V)	ug/L	ND	847602	ND	847598	ND	1	847602
Dissolved Zinc (Zn)	ug/L	15	847602	8	847598	18	5	847602

ND = Not detected

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

CH2M Hill Canada Limited Client Project #: 316461 TT.HA LEMREUS ISLAND FO Project name: OTTAWA Sampler Initials:

1

O'REG 153 ICPMS DISSOLVED METALS (WATER)

Maxxam ID	1	180800	1				
Sampling Date		2005/10/15	-				
COC Number	Unite	359347 DRUM	PDI	DC Ratab			
	philis	DHOM	MUL	De Daten			
METALS							
Dissolved Antimony (Sb)	ug/L	ND	1	847602			
Dissolved Arsenic (As)	ug/L	ND	1	847602			
Dissolved Barium (Ba)	ug/L	140	5	847602			
Dissolved Beryllium (Be)	ug/L	ND	0.5	847602			
Dissolved Boron (B)	ug/L	88	10	847602			
Dissolved Cadmium (Cd)	ug/L	ND	0.1	847602			
Dissolved Chromium (Cr)	ug/L	5	5	847602			
Dissolved Cobalt (Co)	ug/L	1.1	0.5	847602			
Dissolved Copper (Cu)	ug/L	4	1	847602			
Dissolved Lead (Pb)	ug/L	ND	0.5	847602			
Dissolved Molybdenum (Mo)	ug/L	7	1	847602			
Dissolved Nickel (Ni)	ug/L	4	1	847602			
Dissolved Selenium (Se)	ug/L	ND	2	847602			
Dissolved Silver (Ag)	ug/L	ND	0.5	847602			
Dissolved Sodium (Na)	ug/L	290000	100	847602			
Dissolved Tellurium	ug/L	ND	1	847602			
Dissolved Thallium (TI)	ug/L	ND	0.05	847602			
Dissolved Thorium (Th)	ug/L	ND	1	847602			
Dissolved Vanadium (V)	ug/Ł	1	1	847602			
Dissolved Zinc (Zn)	ug/L	16	5	847602			
ND = Not detected RDL = Reportable Detection Limit QC Batch = Quality Control Batch							

Page 6 of 35

May

CH2M Hill Canada Limited Client Project #: 316461.TT.HA LEMREUS ISLAND FO Project name: OTTAWA Sampler Initials:

RESULTS OF ANALYSES OF SOIL

		1/2 - 3 1/2)	1/2 - 4 1/2)					
	Units	CH2M-MW-2(2	CH2M-MW-1(2	CH2M-MW-1(5-7)	CH2M-TP5 (2-4)	CH2M-TP4 (2-3)	RDL	QC Batch
COC Number		359347	359347	359347	359347	359347		
		10:40	14.20	15:50	09:00	09:30	_	
Sampling Date		2005/10/12	2005/10/12	2005/10/12	2005/10/14	2005/10/14	1	
Maxxam ID		180790	180791	180792	180793	180794		

INORGANICS								
Moisture	%			9.2			0.2	848359
pН	pН	7.46	7.46	7.51	6.93	7 39	N/A	848577

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

	Units	CH2M-TP3 (2-3)	RDL	QC Batch
COC Number		359347		
		10:00		
Sampling Date		2005/10/14		
Maxxam ID		180795		

INORGANICS			_	
рН	рН	7.03	N/A	848577

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

CH2M Hill Canada Limited Client Project #: 316461.TT.HA LEMREUS ISLAND FO Project name: OTTAWA Sampler Initials:

SEMI-VOLATILE ORGANICS BY GC-MS (SOIL)

Maxxam ID		180790	114	180791	180793		1
Sampling Date		2005/10/12		2005/10/12	2005/10/14		
000 11		10:40	-	14:20	09:00		
COC Number	Linite	359347	1201	359347	359347	BDI	DC Batab
	Units	1/2 - 3 1/2)	HUL	1/2 - 4 1/2)	CH2N-1P5 (2-4)	RUL	GC Batch
PAHs	1		1			1	1
Acenaphihene	ua/a	ND	0.1	0.02	0.01	0.01	847325
Acenaphthylene	ug/g	ND	0.05	0.029	0.076	0.005	847325
Anthracene		ND	0.05	0.136	0.070	0.005	8.17325
Renzo(a)anthracono	ugrg	0.0	0.05	0.100	0.147	0,000	047323
Penzo(a)animacene	ug/g	0.2	0.1	0.44	1.29	0.01	847325
Benzo(a)pyrene	ug/g		0.05	0.367	1.13	0.005	847325
	ug/g	0.07	0.05	0.453	1,50	0.005	847325
Benzo(g,h,i)perylene	ug/g	ND	0.2	0.20	0.75	0.02	847325
Benzo(k)fluoranthene	ug/g	ND	0,1	0.22	0.67	0 01	847325
Chrysene	ug/g	ND	0.1	0.36	1:19	0.01	847325
Dibenzo(a,h)anthracene	ug/g	ND	0.2	0.05	0.20	0.02	847325
Fluoranthene	ug/g	0.12	0.05	0.904	2,40	0.005	847325
Fluorene	ug/g	ND	0.05	0.041	0.032	0.005	847325
Indeno(1,2,3-cd)pyrene	ug/g	ND	0,2	0.22	0.87	0.02	847325
1-Methylnaphthalene	ug/g	ND	0.05	0.025	0.015	0.005	847325
2-Methylnaphthalene	ug/g	ND	0.05	0.012	0.008	0,005	847325
Naphthalene	ug/g	ND	0.05	0.015	0.020	0,005	847325
Phenanthrene	ug/g	0.10	0.05	0.566	1.12	0.005	847325
Pyrene	ug/g	O, 10	0.05	0.750	2.05	0.005	847325
Surrogate Recovery (%)							
D10-Anthracene	%	126		76	72		847325
D14-Terphenyl (FS)	%	NS		NS	NS		847325
D7-Quinoline	%	70		39	45		847325
D8-Acenaphthylene	%	NS		NS	NS		847325
ND = Not detected RDL = Reportable Detectio	n Limit						

C Batch = Quality Control Batch

CH2M Hill Canada Limited Client Project #: 316461,TT,HA LEMREUS ISLAND FO Project name: OTTAWA Sampler Initials:

SEMI-VOLATILE ORGANICS BY GC-MS (SOIL)

Maxxam ID		180794	180795		
Sampling Date		2005/10/14	2005/10/14		
DOC N	-	09:30	10:00		
COC Number	Unito	359347	359347	BDI	DC Rotak
	Units	CH2W-1P4 (2-3)	CH2WF1P3 (2-3)	INDL	MC Dater
PAHs					
Acenaphthene	ug/g	ND	ND	0.01	847325
Acenaphthylene	ug/g	ND	ND	0.005	847325
Anthracene	ug/g	0.008	0.019	0.005	847325
Benzo(a)anthracene	ug/g	0.04	0.08	0.01	847325
Benzo(a)pyrene	ug/g	0.027	0.057	0.005	847325
Benzo(b/j)fluoranthene	ug/g	0.037	0.080	0.005	847325
Benzo(g,h,i)perylene	ug/g	0.02	0.05	0.02	847325
Benzo(k)fluoranthene	ug/g	0.02	0 03	0.01	847325
Chrysene	ug/g	0.03	0.06	0.01	847325
Dibenzo(a,h)anthracene	ug/g	ND	ND	0.02	847325
Fluoranthene	ug/g	0.061	0.128	0.005	847325
Fluorene	ug/g	ND	ND	0.005	847325
Indeno(1.2,3-cd)pyrene	ug/g	0.02	0.05	0.02	847325
1-Methylnaphthalene	ug/g	ND	0,010	0.005	847325
2-Methylnaphthalene	ug/g	ND	0_007	0.005	847325
Naphthalene	ug/g	ND	ND	0 005	847325
Phenanthrene	ug/g	0,029	0.062	0.005	847325
Pyrene	ug/g	0.053	0,111	0.005	847325
Surrogate Recovery (%)					
D10-Anthracene	%	79	82		847325
D14-Terphenyl (FS)	%	NS	NS		847325
D7-Quinoline	%	43	65		847325
D8-Acenaphthylene	%	NS	NS		847325

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

May an

CH2M Hill Canada Limited Client Project #: 316461.TT.HA LEMREUS ISLAND FO Project name: OTTAWA Sampler Initials:

VOLATILE ORGANICS BY GC/MS (SOIL)

Maxxam ID	1	180790	180792	180793	1	1
Sampling Date		2005/10/12	2005/10/12	2005/10/14		1
COC Number		10:40	15:50	09:00	-	
	Units	CH2M-MW-2(2	CH2M-MW-1(5-7)	359347 CH2M-TP5 (2-4)	BDI	QC Batch
		1/2 - 3 1/2)				
VOLATILES						1
Acetone	ug/g	ND	ND	ND	0.1	847487
Benzene	ug/g	0.002	0.003	0.006	0.002	847487
Bromodichloromethane	ug/g	ND	ND	ND	0.002	847487
Bromoform	ug/g	ND	ND	ND	0.002	847487
Bromomethane	ug/g	ND	ND	ND	0.003	847487
Carbon Tetrachloride	ug/g	ND	ND	ND	0.002	847487
Chlorobenzene	ug/g	ND	ND	ND	0.002	847487
Chloroform	ug/g	ND	ND	ND	0.002	847487
Dibromochloromethane	ug/g	ND	ND	ND	0.002	847487
1,2-Dichlorobenzene	ug/g	ND	ND	ND	0 002	847487
1,3-Dichlorobenzene	ug/g	ND	ND	ND	0.002	847487
1,4-Dichlorobenzene	ug/g	ND	ND	ND	0.002	847487
1.1-Dichloroethane	ug/g	ND	ND	ND	0.002	847487
1,2-Dichloroethane	ug/g	ND	ND	ND	0.002	847487
1,1-Dichloroethylene	ug/g	ND	ND	ND	0.002	847487
cis-1,2-Dichloroethylene	ug/g	ND	ND	ND	0.002	847487
trans-1,2-Dichloroethylene	ug/g	ND	ND	ND	0.002	847487
1,2-Dichloropropane	ug/g	ND	ND	ND	0.002	847487
cis-1,3-Dichloropropene	ug/g	ND	ND	ND	0,002	847487
trans-1,3-Dichloropropene	ug/g	ND	ND	ND	0.002	847487
Ethylbenzene	ug/g	ND	ND	ND	0.002	847487
Ethylene Dibromide	ug/g	ND	ND	ND	0.002	847487
Methylene Chloride(Dichloromethane)	ug/g	ND	ND	ND	0.003	847487
Methyl Isobutyl Ketone	ug/g	ND	ND	ND	0.025	847487
Methyl Ethyl Ketone	ug/g	ND	ND	ND	0.025	847487
Methyl t-butyl ether (MTBE)	ug/g	ND	ND	ND	0.002	847487
Styrene	ug/g	ND	ND	ND	0 002	847487
1,1,1,2-Tetrachloroethane	ug/g	ND	ND	ND	0.002	847487
1,1.2,2-Tetrachloroethane	ug/g	ND	ND	ND	0.002	847487
Tetrachloroethylene	ug/g	ND	ND	ND	0.002	847487
ND = Not detected RDL = Reportable Detection Limit QC Batch = Quality Control Batch						

Driven by service and Science www.maxxamanalytics.com

Maxxam Job #: A5A3629 Report Date: 2005/10/25 CH2M Hill Canada Limited Client Project #: 316461.TT.HA LEMREUS ISLAND FO Project name: OTTAWA Sampler Initials:

VOLATILE ORGANICS BY GC/MS (SOIL)

Maxxam ID		180790	180792	180793	1	T
Sampling Date		2005/10/12	2005/10/12	2005/10/14	1	
		10:40	15:50	09:00		
COC Number		359347	359347	359347		
	Units	CH2M-MW-2(2 1/2 - 3 1/2)	CH2M-MW-1(5-7)	CH2M-TP5 (2-4)	RDL	QC Batch
Teluses		2.007		[1	Laurun
loluene	nð\ð	0_007	.0.010	0.005	0.002	847487
1,1,1-Trichloroethane	ug/g	ND	ND	ND	0,002	847487
1,1,2-Trichloroethane	ug/g	ND	ND	ND	0.002	847487
Trichloroethylene	ug/g	ND	ND	ND	0.002	847487
Vinyl Chloride	ug/g	ND	ND	ND	0.002	847487
p+m·Xylene	ug/g	0_007	0.008	ND	0.002	847487
o-Xylene	ug/g	ND	ND	ND	0.002	847487
Xylene (Total)	ug/g	0.007	0.008	ND	0.003	847487
Surrogate Recovery (%)						
4-Bromofluorobenzene	9%	75	80	75		847487
D4-1,2-Dichloroethane	%	93	79	97		847487
D8-Toluene	%	119	120	131		847487
ND = Not detected RDL = Reportable Detection Lim	it .					

QC Batch = Quality Control Batch

CH2M Hill Canada Limited Client Project #: 316461.TT.HA LEMREUS ISLAND FO Project name: OTTAWA Sampler Initials:

VOLATILE ORGANICS BY GC/MS (SOIL)

Maxxam ID	r	180794	180795	1	
Sampling Date	1	2005/10/14	2005/10/14	-	
COC Number		09:30	10:00		
	Units	359347 CH2M-TP4 (2-3)	359347 CH2M-TP3 (2-3)	BDL	OC Batch
	printo			11101	No boton
VOLATILES					
Acetone	ug/g	ND	ND	0.1	847487
Benzene	ug/g	0.003	0.008	0.002	847487
Bromodichloromethane	ug/g	ND	ND	0.002	847487
Bromoform	ug/g	ND	ND	0.002	847487
Bromomethane	ug/g	ND	ND	0.003	847487
Carbon Tetrachloride	ug/g	ND	ND	0.002	847487
Chlorobenzene	ug/g	ND	ND	0_002	847487
Chloroform	ug/g	ND	ND	0.002	847487
Dibromochloromethane	ug/g	ND	ND	0.002	847487
1.2-Dichlorobenzene	ug/g	ND	ND	0.002	847487
1.3-Dichlorobenzene	ug/g	ND	ND	0.002	847487
1,4-Dichlorobenzene	ug/g	ND	ND	0.002	847487
1.1-Dichloroethane	ug/g	ND	ND	0.002	847487
1,2-Dichloroethane	ug/g	ND	ND	0.002	847487
1,1-Dichloroethylene	ug/g	ND	ND	0.002	847487
cis-1,2-Dichloroethylene	ug/g	ND	ND	0.002	847487
trans-1,2-Dichloroethylene	ug/g	ND	ND	0.002	847487
1,2-Dichloropropane	ug/g	ND	ND	0.002	847487
cis-1,3-Dichloropropene	ug/g	ND	ND	0.002	847487
trans-1,3-Dichloropropene	ug/g	ND	ND	0.002	847487
Elhylbenzene	ug/g	ND	ND	0.002	847487
Ethylene Dibromide	ug/g	ND	ND	0.002	847487
Methylene Chloride(Dichloromethane)	ug/g	ND	ND	0.003	847487
Methyl Isobutyl Ketone	ug/g	ND	ND	0.025	847487
Methyl Ethyl Ketone	ug/g	ND	ND	0.025	847487
Methyl t-butyl ether (MTBE)	ug/g	ND	ND	0.002	847487
Styrene	ug/g	ND	ND	0,002	847487
1,1,1,2-Tetrachloroethane	ug/g	ND	ND	0.002	847487
1,1,2,2-Tetrachloroethane	ug/g	ND	ND	0.002	847487
Tetrachloroethylene	ug/g	ND	ND	0.002	847487
Toluene	ug/g	0.005	0.091	0.002	847487
ND = Not detected RDL = Reportable Detection Limit QC Batch = Quality Control Batch					

CH2M Hill Canada Limited Client Project #: 316461.TT.HA LEMREUS ISLAND FO Project name: OTTAWA Sampler Initials:

VOLATILE ORGANICS BY GC/MS (SOIL)

Maxxam ID		180794	180795		
Sampling Date		2005/10/14	2005/10/14		
		09:30	10:00		
COC Number		359347	359347		
	Units	CH2M-TP4 (2-3)	CH2M-TP3 (2-3)	RDL	QC Batch
1,1,1-Trichloroethane	ug/g	ND	ND	0.002	847487
1,1,2-Trichloroethane	ug/g	ND	ND	0.002	847487
Trichloroethylene	ug/g	ND	ND	0.002	847487
Vinyl Chloride	ug/g	ND	ND	0.002	847487
p+m-Xylene	ug/g	ND	ND	0.002	847487
o-Xylene	ug/g	ND	ND	0.002	847487
Xylene (Total)	ug/g	ND	ND	0.003	847487
Surrogate Recovery (%)					
4-Bromofluorobenzene	%	68	71		847487
D4-1,2-Dichloroethane	%	93	94		847487
D8-Toluene	%	132	128		847487

QC Batch = Quality Control Batch

CH2M Hill Canada Limited Client Project #: 316461.TT.HA LEMREUS ISLAND FO Project name: OTTAWA Sampler Initials:

1

PETROLEUM HYDROCARBONS (CCME)

Maxxam ID		180793	180794	180795	T	-
Sampling Date		2005/10/14	2005/10/14	2005/10/14		
		09:00	09:30	10:00		
COC Number	-	359347	359347	359347		
	Units	CH2M-TP5 (2-4)	CH2M-TP4 (2-3)	CH2M-TP3 (2-3)	RDL	OC Batch
F1 PHC and BTEX						
F1 (C6-C10)	ug/g	19	ND	ND	10	847560
F1 (C6-C10) - BTEX	ug/g	19	ND	ND	10	847560
F2-F4 PHC				1		
F2 (C10-C16 Hydrocarbons)	ug/g	ND	ND	ND	10	848296
F3 (C16-C34 Hydrocarbons)	ug/g	ND	12	42	10	848296
F4 (C34-C50 Hydrocarbons)	ug/g	ND	ND	ND	10	848296
Reached Baseline at C50	ug/g	YES	YES	YES		848296
Surrogate Recovery (%)						
1,4-Difluorobenzene	%	105	106	105		847560
4-Bromolluorobenzene	%	98	98	98		847560
D10-Ethylbenzene	%	104	95	97		847560
D4-1,2-Dichloroethane	%	99	96	97		847560
	0	88	85	86		848296

CH2M Hill Canada Limited Client Project #: 316461.TT.HA LEMREUS ISLAND FO Project name: OTTAWA Sampler Initials:

POLYCHLORINATED BIPHENYLS BY GC-ECD (SOIL)

Maxxam ID		180794		
Sampling Date		2005/10/14		
		09:30		
COC Number	1	359347		
	Units	CH2M-TP4 (2-3)	RDL	QC Batch
	,		,	
PCBs				
Aroclor 1262	ug/g	ND	0.01	847267
Arockir 1016	ug/g	ND	0.01	847267
Aroclor 1221	ug/g	ND	0.02	847267
Aroclor 1232	ug/g	ND	0.01	847267
Aroclor 1242	ug/g	ND	0.02	847267
Aroclor 1248	ug/g	ND	0.01	847267
Aroclor 1254	ug/g	0.01	0.01	847267
Aroclor 1260	ug/g	ND	0.01	847267
Arocior 1268	ug/g	ND	0.01	847267
Total PCB	ug/g	ND	0.02	847267
Surrogate Recovery (%)				
2,4,5,6-Tetrachloro-m-xylene	%	73		847267
Decachlorobiobenvl	%	72		847267

QC Batch = Quality Control Batch

Page 15 of 35

Driven by service and Science www.maxxamanalytics.com

Maxxam Job #: A5A3629 Report Date: 2005/10/25 CH2M Hill Canada Limited Client Project #: 316461.TT.HA LEMREUS ISLAND FO Project name: OTTAWA Sampler Initials:

RESULTS OF ANALYSES OF WATER

Maxxam ID		180797	180798	180800	Т	
Sampling Date		2005/10/15	2005/10/15	2005/10/15		
		15:00	10:00			
COC Number		359347	359347	359347	1	
	Units	CH2M-MW-1	CH2M-MW-2	DRUM	RDL	QC Batch

INORGANICS						
рН	рН	7,83	7.88	7.92	0.01	847416
RDL = Reporta QC Batch = Qu	ble Detect ality Contr	ion Limit rol Batch				

Page 16 of 35

CH2M Hill Canada Limited Client Project #: 316461.TT.HA LEMREUS ISLAND FO Project name: OTTAWA Sampler Initials:

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

	Units	CH2M-MW-1	CH2M-MW-2	DRUM	RDL	OC Batch
COC Number		359347	359347	359347		
		15:00	10:00			
Sampling Date		2005/10/15	2005/10/15	2005/10/15		
Maxxam ID		180797	180798	180800		l

METALS						
Mercury (Hg)	ug/L	ND	ND	ND	0.1	847647
Mercury (Hg)	ug/L	NU	NU	ND	0.1	847647
ND = Not deter	cted					
RDL = Reporta	able Detect	ion Limit				
QC Batch = Qi	uality Contr	ol Batch				

Page 17 of 35

CH2M Hill Canada Limited Client Project #: 316461 TT.HA LEMREUS ISLAND FO Project name: OTTAWA Sampler Initials:

SEMI-VOLATILE ORGANICS BY GC-MS (WATER)

Maxxam ID	1 1	180797		180798	1	180800	1	1
Sampling Date		2005/10/15		2005/10/15		2005/10/15	1	
		15:00		10.00				
COC Number	lining.	359347	0.01	359347	0.01	359347	12.01	
	Units	CH2W-WW-1	RUL	CH2M-MW-2	RDL	DRUM	HDL	DC Batch
PAHs								
Acenaphthene	ug/L	ND	0.05	ND	0,25	ND	0.05	847343
Acenaphthylene	ug/L	ND	0.05	ND	0.25	0.09	0.05	847343
Anthracene	ug/L	ND	0.05	ND	0.25	0.08	0.05	847343
Benzo(a)anthracene	ug/L	ND	0,05	ND	0.25	0,12	0.05	847343
Benzo(a)pyrene	ug/L	0.01	0.01	ND	0.05	0.06	0.01	847343
Benzo(b/j)fluoranthene	ug/L	NÐ	0.05	ND	0.25	0.07	0.05	847343
Benzo(g,h,i)perylene	ug/L	ND	0.1	ND	0.5	ND	0.1	847343
Benzo(k)fluoranthene	ug/L	ND	0.05	ND	0.25	ND	0.05	847343
Chrysene	ug/L	ND	0.05	ND	0.25	0.12	0.05	847343
Dibenzo(a,h)anthracene	ug/L	ND	0.1	ND	0.5	ND	0,1	847343
Fluoranthene	ug/L	ND	0.05	ND	0.25	0.29	0.05	847343
Fluorene	ug/L	ND	0.05	ND	0.25	ND	0.05	847343
Indeno(1,2,3-cd)pyrene	ug/L	ND	0.1	ND	0.5	ND	0,1	847343
1-Methylnaphthalene	ug/L	ND	0.05	ND	0.25	ND	0,05	847343
2-Methylnaphthalene	ug/L	ND	0.05	ND	0.25	ND	0.05	847343
Naphthalene	ug/L	ND	0.05	ND	0.25	0.09	0.05	847343
Phenanthrene	ug/L	ND	0.05	ND	0.25	0.38	0,05	847343
Pyrene	ug/L	ND	0.05	ND	0.25	0.42	0.05	847343
Surrogate Recovery (%)								
D10-Anthracene	%	68		96		68		847343
D14-Terphenyl (FS)	%	NS		NS		NS		847343
D7-Quinoline	%	73		83		71		847343
·								0.170.10

Page 18 of 35

CH2M Hill Canada Limited Client Project #: 316461.TT.HA LEMREUS ISLAND FO Project name: OTTAWA Sampler Initials:

VOLATILE ORGANICS BY GC/MS (WATER)

Maxxam ID		180797	180798	180800		
Sampling Date		2005/10/15	2005/10/15	2005/10/15		
EOC Number		15:00	10:00	250247	-	
	Units	359347 CH2M-MW-1	359347 CH2M-MW-2	DBUM	BDI	OC Batch
	letine 1			I. Enem		
VOLATILES						
Acetone	ug/L	ND	ND	ND	10	846864
Benzene	ug/L	ND	0,1	ND	0.1	846864
Bromodichloromethane	ug/L	ND	ND	ND	0_1	846864
Bromoform	ug/L	ND	ND	ND	0.2	846864
Bromomethane	ug/L	ND	ND	ND	0,5	846864
Carbon Tetrachloride	ug/L	ND	ND	ND	0,1	846864
Chlorobenzene	ug/L	ND	ND	ND	0.1	846864
Chloroform	ug/L	ND	ND	ND	0,1	846864
Dibromochloromethane	ug/L	ND	ND	ND	0,2	846864
1,2-Dichlorobenzene	ug/L	ND	ND	ND	0.1	846864
1,3-Dichlorobenzene	ug/L	ND	ND	ND	0.1	846864
1,4-Dichlorobenzene	ug/L	ND	ND	ND	0.1	846864
1,1-Dichloroethane	ug/L	ND	ND	ND	0.1	846864
1,2-Dichloroethane	ug/L	ND	ND	ND	0.1	846864
1,1-Dichloroethylene	ug/L	ND	ND	ND	0.1	846864
cis-1,2-Dichloroethylene	ug/L	ND	ND	ND	0.1	846864
trans-1,2-Dichloroethylene	ug/L	NĎ	ND	ND	0.1	846864
1,2-Dichloropropane	ug/L	ND	ND	ND	0.1	846864
cis-1,3-Dichloropropene	ug/L	ND	ND	ND	0.2	846864
Irans-1,3-Dichloropropene	ug/L	ND	ND	ND	0.2	846864
Ethylbenzene	ug/L	ND	ND	ND	0.1	846864
Ethylene Dibromide	ug/L	ND	ND	ND	0.2	846864
Methylene Chloride(Dichloromethane)	ug/L	ND	ND	ND	0.5	846864
Methyl Isobutyl Ketone	ug/L	ND	ND	ND	5	846864
Methyl Ethyl Ketone	ug/L	ND	ND	ND	5	846864
Methyl t-butyl ether (MTBE)	ug/L	ND	ND	ND	0.2	846864
Styrene	ug/L	ND	ND	ND	0.1	846864
1,1,1,2-Tetrachloroethane	ug/L	ND	ND	ND	0.1	846864
1,1,2,2-Tetrachloroethane	ug/L	ND	ND	ND	0.1	846864
Tetrachloroethylene	ug/L	ND	ND	ND	0.1	846864
Toluene	ug/L	0.3	0.3	0.4	0.2	846864

QC Batch = Quality Control Batch

May ar

CH2M Hill Canada Limited Client Project #: 316461.TT.HA LEMREUS ISLAND FO Project name: OTTAWA Sampler Initials:

VOLATILE ORGANICS BY GC/MS (WATER)

Maxxam ID		180797	180798	180800		
Sampling Date		2005/10/15	2005/10/15	2005/10/15		
		15:00	10:00			
COC Number		359347	359347	359347		
	Units	CH2M-MW-1	CH2M-MW-2	DRUM	RDL	QC Batch
					1	
1,1,1-Trichloroethane	ug/L	ND	ND	ND	0.1	846864
1.1,2-Trichloroethane	ug/L	ND	ND	ND	0.2	846864
Trichloroethylene	ug/L	ND	ND	ND	0.1	846864
Vinyl Chloride	ug/L	ND	ND	ND	0.2	846864
p+m-Xylene	ug/L	0.1	0.1	0.1	0,1	846864
o-Xylene	ug/L	ND	ND	ND	0,1	846864
Xylene (Total)	ug/L	0.1	0.1	0.1	0.1	846864
Surrogate Recovery (%)						
4-Bromofluorobenzene	0.J 70	84	84	86		846864
D4-1,2-Dichloroethane	%	108	108	111		846864
D8-Toluene	%	104	105	103		846864

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Page 20 of 35

Driven by service and Science www.maxxamanalytics.com

CH2M Hill Canada Limited Client Project #: 316461.TT.HA LEMREUS ISLAND FO Project name: OTTAWA Sampler Initials:

GENERAL COMMENTS

Sample 180790-01: PAH: The sample was diluted due to background interference. MDLs were adjusted accordingly.

Sample 180793-01: F1-BTEX analysis: F1-BTEX calculation were obtained from Headspace-GC analysis. The BTEX results used for the

SEMI-VOLATILE ORGANICS BY GC-MS (SOIL)

PAH Compounds in Soil by GC/MS (SIM); PAH: NS: Surrrogate could not be reported because it was not spiked...

Results relate only to the items tested.

CH2M Hill Canada Limited www.maxamanatytics.com Attention: Kevin Allin Client Project #: 316461.TT.HA LEMREUS ISLAND FO P.O. #: Project name: OTTAWA

Quality Assurance Report Maxxam Job Number: MA5A3629

OA/QC			Date				
Batch			Analyzed				
Num Init	QC Type	Parameter	yyyy/mm/dd	Value	Recovery	Units	QC Limits
846864 DKI	MATRIX SPIKE						
	[180797-07]	4-Bromofluorobenzene	2005/10/21		100	0.0	70 - 130
		D4-1,2-Dichloroethane	2005/10/21		102	0/0	70 - 130
		D8-Toluene	2005/10/21		99	0,0	70 - 130
		Acetone	2005/10/21		122	0,0	60 - 140
		Benzene	2005/10/21		106	°/0	70 - 130
		Bromodichloromethane	2005/10/21		108	%	70 - 130
		Bromoform	2005/10/21		104	%	70 - 130
		Bromomethane	2005/10/21		92	0.0	60 - 140
		Carbon Tetrachloride	2005/10/21		99	0	70 - 130
		Chlorobenzene	2005/10/21		98	0,0	70 - 130
		Chloroform	2005/10/21		99	%	70 - 130
		Dibromochloromethane	2005/10/21		104	%	70 - 130
		1,2-Dichlorobenzene	2005/10/21		97	%	70 - 130
		1,3-Dichlorobenzene	2005/10/21		102	%	70 - 130
		1.4-Dichlorobenzene	2005/10/21		106	0,0	70 - 130
		1,1-Dichloroethane	2005/10/21		101	0,0	70 - 130
		1.2-Dichloroethane	2005/10/21		100	%	70 - 130
1		1.1-Dichloroethylene	2005/10/21		101	0/0	70 - 130
		cis-1,2-Dichloroethylene	2005/10/21		104	P/0	70 - 130
		trans-1,2-Dichloroethylene	2005/10/21		101	%	70 - 130
		1,2-Dichloropropane	2005/10/21		104	0,0	70 - 130
		cis-1,3-Dichloropropene	2005/10/21		111	0/0	70 - 130
		trans-1,3-Dichloropropene	2005/10/21		90	0,0	70 - 130
		Ethylbenzene	2005/10/21		93	0,0	70 - 130
		Ethylene Dibromide	2005/10/21		103	10	70 - 130
		Methylene Unionde(Dichloromethane)	2005/10/21		98	<i></i>	70 - 130
		Methyl Isobutyl Ketone	2005/10/21		122	0	60 - 140
		Methyl Enyl Retone	2005/10/21		108	~	60 - 140
		Shrape	2005/10/21		108	%σ 0/	70 - 130
		Styrene 1.1.1.2 Totrachloreethane	2005/10/21		90	70	70 - 130
			2005/10/21		102	70	70 - 130
		Tetrachioroethylene	2003/10/21		105	0/	70 - 130
		Toluene	2005/10/21		100	/o 6/1	70 - 130
		1 1 1-Trichloroethane	2005/10/21		100	70 10/.	70 - 130
		1.1.2-Trichloroethane	2003/10/21		100	2/2	70 - 130
		Trichloroethylene	2005/10/21		102	%	70 - 130
		Vinvl Chloride	2005/10/21		85	0/	60 - 140
		n+m-Xvlene	2005/10/21		114	0/2	70 - 130
		o-Xvlene	2005/10/21		113	0/	70 - 130
	Spiked Blank	4-Bromofluorobenzene	2005/10/21		99	0/	70 - 130
		D4-1.2-Dichloroethane	2005/10/21		101	%	70 - 130
		D8-Toluene	2005/10/21		100	%	70 - 130
		Acetone	2005/10/21		108	9/0	60 • 140
		Benzene	2005/10/21		104	0/	70 - 130
		Bromodichloromethane	2005/10/21		108	80	70 - 130
		Bromoform	2005/10/21		103	0,0	70 - 130
		Bromomethane	2005/10/21		94	%	60 - 140
		Carbon Tetrachloride	2005/10/21		102	%	70 - 130
		Chlorobenzene	2005/10/21		98	%	70 - 130
		Chloroform	2005/10/21		101	%	70 - 130
		Dibromochloromethane	2005/10/21		104	%	70 - 130
		1,2-Dichlorobenzene	2005/10/21		99	%	70 - 130
		1,3-Dichlorobenzene	2005/10/21		105	%	70 - 130
		1,4-Dichlorobenzene	2005/10/21		110	%	70 - 130

This document is in electronic format, hard copy is available on request-

CH2M Hill Canada Limited www.maxxamanatytics.com Attention: Kevin Allin Client Project #: 316461.TT.HA LEMREUS ISLAND FO P.O. #: Project name: OTTAWA

Quality Assurance Report (Continued) Maxxam Job Number: MA5A3629

QA/QC			Date			
Batch			Analyzed			
Num Init	QC Type	Parameter	/mm/dd	Value Recovery	Units	QC Limits
846864 DKI	Spiked Blank	1,1-Dichloroethane	2005/10/21	103	°/o	70 - 130
		1,2-Dichloroethane	2005/10/21	100	0	70 - 130
		1,1-Dichloroethylene	2005/10/21	103	9/0	70 - 130
		cis-1.2-Dichloroethylene	2005/10/21	105	%	70 - 130
		trans-1 2-Dichloroethylene	2005/10/21	101	%	70 - 130
		1.2-Dichloropropane	2005/10/21	105	%	70 - 130
		cis-1.3-Dichloropropene	2005/10/21	109	0%	70 - 130
		trans-1.3-Dichloropropene	2005/10/21	90	0,0	70 - 130
		Ethylbenzene	2005/10/21	93	%	70 - 130
		Ethylene Dibromide	2005/10/21	101	0,0	70 - 130
		Methylene Chloride(Dichloromethane)	2005/10/21	99	2/0	70 - 130
		Methyl Isobutyl Ketone	2005/10/21	117	0/0	60 140
		Methyl Ethyl Ketone	2005/10/21	103	0/	60 - 140
		Methyl t-butyl ether (MTBE)	2005/10/21	105	970	70 - 130
		Shrene	2005/10/21	91	9/0	70 - 130
		1.1.1.2-Tetrachloroethane	2005/10/21	102	9/0	70 - 130
		1 1 2 2. Tetrachloroethane	2005/10/21	104	0,0	70 - 130
		Totrachioroathylane	2005/10/21	97	•/_	70 - 130
		Toluene	2005/10/21	100	0/0	70 - 130
		1 1 1 Trichloroothang	2005/10/21	102	9/0	70 - 130
		1,1,2 Trichloroothane	2005/10/21	101	8/	70 - 130
		Trichloroathylana	2005/10/21	102	9/2	70 - 130
		Vinyl Chlorida	2005/10/21	90	0/_	60 - 140
		num-Yulana	2005/10/21	112	0/	70 - 130
			2005/10/21	112	0,0	70 - 130
	Mothed Block	4 Bromolluombonzono	2005/10/21	80	%	70 - 130
	Method Diams	A-Dichloroothoog	2005/10/21	114	0/_	70 - 130
		D9 Taluana	2005/10/21	103	0/	70 130
		Acatono	2005/10/21	ND DI -10	un/l	10 100
		Benzone	2005/10/21	ND DL-01	ug/L	
		Bremediableramethane	2003/10/21	ND DL-0.1	ug/L	
		Biomodicinorumetriarie	2003/10/21	ND DL-02	ug/L	
		Bromomothana	2000/10/21		ug/L	
		Bromomethane Corthon Totrachlorido	2005/10/21	ND DL=0.1	ug/L	
		Chlorabonzano	2005/10/21	ND DL =0.1	ug/L	
		Chlorotem	2005/10/21		ug/L	
		Dibromochloromothana	2005/10/21		ug/l	
		1.2-Dicblorobenzene	2003/10/21	ND DL=0.2	սց/ե	
		1.2 Dichlorobenzene	2003/10/21		ug/t	
		1.4-Dichlorobenzece	2003/10/21	ND DL-01	ug/L	
		1.1-Dichloroethane	2000/10/21		սց/ե	
		1.2-Dichloroethane	2003/10/21	ND DL-0.1	ug/c un/l	
		1.1 Dichloroathylace	2003/10/21		ug/c ug/l	
		r, r-Dichloroethylene	2003/10/21		un/l	
		trans 1.2-Dichlorosthylene	2000/10/21	ND DL-01	ug/L	
		1.2-Dichloropropage	2003/10/21	ND DL=0.1	ug/t.	
		ais 1.2 Dichloropropage	2003/10/21	ND DL-02	ug/L	
		trans 1.3 Dichloropropene	2003/10/21	ND DL=0.2	ug/L	
		nans-1,3-Dichoropropene	2000/10/21	ND DL=0,2	ug/L	
		Euryidenzene Ethulana Dihambida	2003/10/21	ND DL=0.1	ug/L	
		Euryrene Dioromide	2000/10/21	ND DL-05	ug/L	
		Methylene Unioride(Dichloromethane)	2005/10/21		ug/L	
		Methyl Isobutyl Ketone	2005/10/21	ND DL=5	ug/L	
		Methyl Ethyl Ketone	2005/10/21		uy/L	
		Methyl t-butyl ether (MIBE)	2005/10/21	ND, DL=0.2	ug/L	
		Styrene	2005/10/21	ND, DL=0.1	ug/L	
		1, 1, 1, 2-1 etrachioroethane	2005/10/21	NU, UL=0.1	ug∕∟	

This document is in electronic format, hard copy is available on request.

CH2M Hill Canada Limited www.maxxamanatytics.com Attention: Kevin Allin Client Project #: 316461.TT.HA LEMREUS ISLAND FO P.O. #: Project name: OTTAWA

Quality Assurance Report (Continued) Maxxam Job Number: MA5A3629

QA/QC			Date			
Batch			Analyzed			
Num Init	QC Type	Parameter	vvvv/mm/dd	Value Becovery	Units	OC Limits
846864 DKI	Method Blank	1.1.2.2-Tetrachloroethane	2005/10/21	ND DI =0.1		QO EIIIII3
		Teirachloroethylene	2005/10/21	ND DL-01	ug/L	
		Toluene	2005/10/21	ND DL-0.2	ug/c ug/l	
		1.1.1-Trichlomethane	2005/10/21	ND DL-01	ug/L	
		1 1 2-Trichloroethane	2005/10/21	ND DL-0.2	ug/L	
1		Trichlomethylene	2005/10/21	ND DL-0.1	ug/L	
		Vinul Chlorida	2003/10/21	ND, DL=0.1	ug/L	
		n+m-Yulana	2005/10/21	ND, DL=0.2	ug/L	
		o-Yulong	2005/10/21	ND, DL=0,1	ug/L	
		Vulana (Total)	2005/10/21	ND, DL=0.1	ug/L	
		Agetopo	2005/10/21	ND, DE=0,1	ug/L	40
	nrD [160600-00]	Regard	2005/10/21	NC	6	40
		Denzene Denzene	2005/10/21	NC	%	40
		Bromotionomethane	2005/10/21	NC		40
		Bromotorm	2005/10/21	NC	0.0	40
		Bromomethane	2005/10/21	NC	10	40
1		Carbon Tetrachioride	2005/10/21	NC	9/o	40
		Chlorobenzene	2005/10/21	NC	%	40
		Chloroform	2005/10/21	NC	0	40
		Dibromochloromethane	2005/10/21	NC	0/0	40
		1,2-Dichlorobenzene	2005/10/21	NC	20	40
		1,3-Dichlorobenzene	2005/10/21	NC	0,0	40
		1,4-Dichlorobenzene	2005/10/21	NC	%	40
		1,1-Dichloroethane	2005/10/21	NC	0,0	40
1		1,2-Dichloroethane	2005/10/21	NC	0,6	40
		1,1-Dichloroethylene	2005/10/21	NC	%	40
		cis-1,2-Dichloroethylene	2005/10/21	NC	%	40
		trans-1,2-Dichloroethylene	2005/10/21	NC	%	40
		1,2-Dichloropropane	2005/10/21	NC	0/0	40
		cis-1,3-Dichloropropene	2005/10/21	NC	0,0	40
		trans-1,3-Dichloropropene	2005/10/21	NC	0.0	40
		Ethylbenzene	2005/10/21	NC	0/0	40
		Ethylene Dibromide	2005/10/21	NC	9/0	40
		Methylene Chloride(Dichloromethane)	2005/10/21	NC	0,0	40
1		Methyl Isobutyl Ketone	2005/10/21	NC	%	40
		Methyl Ethyl Ketone	2005/10/21	NC	2/0	40
		Methyl t-butyl ether (MTBE)	2005/10/21	NC	%	40
		Styrene	2005/10/21	NC	26	40
		1,1,1,2 Tetrachloroethane	2005/10/21	NC	%	40
		1,1,2,2-Tetrachloroethane	2005/10/21	NC	%	40
		Tetrachloroethylene	2005/10/21	NC	%	40
		Toluene	2005/10/21	NC	9%	40
		1,1,1-Trichloroethane	2005/10/21	NC	%	40
		1,1,2-Trichloroethane	2005/10/21	NC	0,0	40
		Trichloroethylene	2005/10/21	NC	%	40
		Vinvl Chloride	2005/10/21	NC	%	40
		p+m-Xvlene	2005/10/21	NC	2/2	40
		o-Xvlene	2005/10/21	NC	0/	40
		Xvlene (Total)	2005/10/21	NC	9/0	40
847267 ANL	MATRIX SPIKE	Alfond (Foldi)	2003/10/21	NO	70	40
	[180794-03]	2.4.5.6-Tetrachloro-m-xvlene	2005/10/21	70	9/_	40 - 120
	1.00101.001	Decachlorobinhenyl	2005/10/21	70	-0 0/_	40 - 120
		Aroclor 1260	2005/10/21	74	70 0/_	90 - 130
	Sniked Blank	2 4 5 6-Tetrachloro-m-vuleno	2000/10/21	74	70 0/	40 120
	opined bidlin	Decachlorobinheov	2003/10/21	70	/@ 0/	40 - 130
		Anclor 1260	2000/10/21	12	/0	40 - 130
	Method Blank	2456 Tetrachlore missions	2000/10/21	69	70	53 - 135
	MELING DIGITIN	2,7,0,0°1 60 avrito 011°X yielie	2000/10/21	85	/0	40 - 130

This document is in electronic format, hard copy is available on request.

CH2M Hill Canada Limited www.maxxamanalytics.com Attention: Kevin Allin Client Project #: 316461.TT.HA LEMREUS ISLAND FO P.O. #: Project name: OTTAWA

Quality Assurance Report (Continued) Maxxam Job Number: MA5A3629

QA/QC			Date				
Batch			Analyzed				
Num Init	QC Type	Parameter	vvvv/mm/dd	Value	Recoverv	Units	QC Limits
847267 ANL	Method Blank	Decachlorobiphenyl	2005/10/21		82	%	40 - 130
		Aroclor 1262	2005/10/21	ND, D	DL≃0.01	uq/q	
		Aroclor 1016	2005/10/21	ND. E	DL=0.01	uq/q	
		Aroclor 1221	2005/10/21	ND. [DL=0.02	uq/q	
		Aroclor 1232	2005/10/21	ND.	DL=0.01	ug/g	
		Aroclor 1242	2005/10/21	ND. E	DL=0.02	ua/a	
		Aroclor 1248	2005/10/21	ND. D	DL=0.01	uq/q	
		Aroclor 1254	2005/10/21	ND. [DL≈0.01	uq/q	
		Aroclor 1260	2005/10/21	ND. 0	DL=0.01	uq/q	
		Aroclor 1268	2005/10/21	ND, I	DL=0.01	uq/q	
		Total PCB	2005/10/21	ND, I	DL=0.02	uq/q	
	RPD [180794-03]	Aroclor 1262	2005/10/21	NC		%	50
	. ,	Aroclor 1016	2005/10/21	NC		%	50
		Aroclor 1221	2005/10/21	NC		%	50
		Aroclor 1232	2005/10/21	NC		0/	50
		Aroclor 1242	2005/10/21	NC		9/	50
		Aroclor 1248	2005/10/21	NC		%	50
1		Aroclor 1254	2005/10/21	NC		0/0	50
		Aroclor 1260	2005/10/21	NC		0/0	50
		Aroclor 1268	2005/10/21	NC		%	50
		Total PCB	2005/10/21	NC		0.0	50
847325 NMO	Spiked Blank	D10-Anthracene	2005/10/21		70	0/	30 - 130
	1	D14-Terphenyl (FS)	2005/10/21		NS	%	30 - 130
		D7-Quinoline	2005/10/21		51	%	30 - 130
		D8-Acenaphthylene	2005/10/21		NS	%	30 - 130
		Acenaphthene	2005/10/21		99	%	30 - 130
	RPD	Acenaphthene	2005/10/21	1.5		%	50
1	Spiked Blank	Acenaphthylene	2005/10/21		92	0/0	30 - 130
	RPD	Acenaphthylene	2005/10/21	2.0		%	50
	Spiked Blank	Anthracene	2005/10/21		101	%	30 - 130
	RPD	Anthracene	2005/10/21	0.4		0%	50
	Spiked Blank	Benzo(a)anthracene	2005/10/21		120	%	30 - 130
	RPD	Benzo(a)anthracene	2005/10/21	3.1		%	50
	Spiked Blank	Benzo(a)pyrene	2005/10/21		122	%	30 - 130
	RPD	Benzo(a)pyrene	2005/10/21	7.3		%	50
	Spiked Blank	Benzo(b/j)fluoranthene	2005/10/21		119	%	30 - 130
	RPD	Benzo(b/j)fluoranthene	2005/10/21	4.2		%	50
	Spiked Blank	Benzo(g,h,i)perylene	2005/10/21		107	%	30 - 130
	RPD	Benzo(g,h,i)pervlene	2005/10/21	9.1		%	50
	Spiked Blank	Benzo(k)fluoranthene	2005/10/21		120	0/	30 - 130
	RPD	Benzo(k)fluoranthene	2005/10/21	0.9		%	50
	Spiked Blank	Chrysene	2005/10/21		119	%	30 - 130
	RPD	Chrysene	2005/10/21	0_6		%	50
	Spiked Blank	Dibenzo(a,h)anthracene	2005/10/21		110	%	30 - 130
	RPD	Dibenzo(a,h)anthracene	2005/10/21	79		%	50
	Spiked Blank	Fluoranthene	2005/10/21		116	%	30 - 130
	RPD	Fluoranthene	2005/10/21	1.3		%	50
	Spiked Blank	Fluorene	2005/10/21		110	%	30 - 130
	RPD	Fluorene	2005/10/21	2.7		%	50
	Spiked Blank	Indeno(1,2,3-cd)pyrene	2005/10/21		104	%	30 - 130
	RPD	Indeno(1,2,3-cd)pyrene	2005/10/21	6.4		%	50
	Spiked Blank	1-Methylnaphthalene	2005/10/21	- /	110	0/0	30 - 130
	RPD	1-Methylnaphthalene	2005/10/21	3.9		%	50
	Spiked Blank	2-Methylnaphthalene	2005/10/21		94	%	30 - 130
	RPD	2-Methylnaphthalene	2005/10/21	2.0	-	%	50
	Spiked Blank	Naphthalene	2005/10/21		94	%	30 - 130
			and the state of the state of the state				

This document is in electronic format, hard copy is available on request.

Quality Assurance Report (Continued) Maxxam Job Number: MA5A3629

QA/QC			Date				
Batch			Analyzed				
Num Init	QC Type	Parameter	yyyy/mm/dd	Value	Recovery	Units	QC Limits
847325 NMO	RPD	Naphthalene	2005/10/21	3.6		0/0	50
	Spiked Blank	Phenanthrene	2005/10/21		109	0.0	30 - 130
	RPD	Phenanthrene	2005/10/21	1.9		0,0	50
	Spiked Blank	Pyrene	2005/10/21		118	20	30 - 130
	RPD	Pyrene	2005/10/21	1.6		%	50
	Method Blank	D10-Anthracene	2005/10/21		73	20	30 - 130
		D14-Terphenyl (FS)	2005/10/21		NS	0,0	30 - 130
		D7-Quinoline	2005/10/21		32	00	30 - 130
		D8-Acenaphthylene	2005/10/21		NS	%	30 - 130
		Acenaphthene	2005/10/21	ND, E	DL=0.01	ug/g	
		Acenaphthylene	2005/10/21	ND, D	0L=0.005	ug/g	
		Anthracene	2005/10/21	ND, D)L=0.005	ug/g	
		Benzo(a)anthracene	2005/10/21	ND, D	0L=0.01	ug/g	
		Benzo(a)pyrene	2005/10/21	ND, D)L=0.005	ug/g	
		Benzo(b/j)fluoranthene	2005/10/21	ND, D	0L=0.005	ug/g	
		Benzo(g,h,i)perylene	2005/10/21	ND, C)L=0.02	ug/g	
		Benzo(k)fluoranthene	2005/10/21	ND, D	0L=0.01	ug/g	
		Chrysene	2005/10/21	ND, É	0L=0.01	ug/g	
		Dibenzo(a,h)anthracene	2005/10/21	ND, D	0L=0.02	ug/g	
		Fluoranthene	2005/10/21	ND, D	0L=0.005	ug/g	
		Fluorene	2005/10/21	ND, D)L=0.005	ug/g	
		Indeno(1,2,3-cd)pyrene	2005/10/21	ND, D)L=0.02	ug/g	
		1-Methylnaphthalene	2005/10/21	ND, D)L=0.005	nð\ð	
		2-Methylnaphthalene	2005/10/21	ND, D)L=0.005	ug/g	
		Naphthalene	2005/10/21	ND, D)L=0.005	ug/g	
		Phénanthrene	2005/10/21	ND, E)L=0.005	nð\ð	
0.172.12 MIMO		Pyrene D10 A sthese	2005/10/21	ND, L	DL=0.005	nð/ð	
847343 NMU	MATRIX SPIKE	D10-Anthracene	2005/10/21		76	9/0	30 - 130
		D14-Terphenyl (FS)	2005/10/21		NS	%	30 - 130
		D7-Quinoline	2005/10/21		61	~	30 - 130
		D8-Acenaphthylene	2005/10/21		NS		30 - 130
		Acenaphthene	2005/10/21		88	%	30 - 130
		Acenaphinylene	2005/10/21		84	%	30 - 130
		Aninracene Repro(a)anthropping	2005/10/21		82	70	30 - 130
		Benzo(a)antinacene	2005/10/21		93	70	30 - 130
		Benzo(b/i)/luoranthono	2005/10/21		90	7/a	30 - 130
		Benzo(a b i)populano	2005/10/21		95	70 0.	30 - 130
		Benzo(k)fluoranthono	2005/10/21		100	70 0/	30 - 130
		Chargene	2005/10/21		94	70 0/	30 - 130
		Dibenzo(a b)anthracono	2005/10/21		90	70	30 - 130
		Eluoranthene	2005/10/21		102	70	30 - 130
		Fluorene	2005/10/21		09	7o p/	30 - 130
		Indeno(1.2.3.cd)ovrene	2005/10/21		105	/0 0/.	30 - 130
		1-Methylnaphthalene	2005/10/21		70	/0	30 • 130
		2-Methylnaphthalene	2005/10/21		97	0/	30 - 130
		Nanhthalene	2005/10/21		70	/0 9/	30 - 130
		Phenanthrone	2005/10/21		13	/o 0/	30 - 130
		Pyrene	2005/10/21		04	/0 9/	30 - 130
	Sniked Blank	D10-Anthracene	2005/10/21		74	70 0/_	30 - 130
	opinoo biank	D14-Tembenyl (ES)	2003/10/21		10	/0 0/	30 130
		D7-Ouinoline	2003/10/21		60	70 0/	30 - 130
		D8-Acenanhthylene	2003/10/21		02 NIC	/0 9/	30 130
			2003/10/21		140	/o 0/	30 - 130
		Acenaphthylene	2002/10/21		00	1/o 0/	30 - 130
		Anthracene	2000/10/21		00	/0 0/	30 130
			2003/10/21		02	70	50-150

This document is in electronic format, hard copy is available on request.

6740 Campobello Road, Mississauga, Ontario Canada L5N 2L8 Tel. 905-817-5700 Toll free:800-563-6266 Fax: 905-817-5777

Quality Assurance Report (Continued) Maxxam Job Number: MA5A3629

QA/QC			Date			
Batch			Analyzed			
Num Init	QC Type	Parameter	vvvv/mm/dd	Value Recovery	Units	OC Limits
847343 NMO	Spiked Blank	Benzo(a)anthracene	2005/10/21	95	%	30 - 130
	- In case of the transmission	Benzo(a)pyrene	2005/10/21	93	9/0	30 - 130
		Benzo(b/i)tluoranthene	2005/10/21	100	0/-	30 - 130
		Benzo(a h i)pervlene	2005/10/21	111	070	30 130
		Benzo(k)fluoranthene	2005/10/21	95	90 0/_	30 130
		Chrysene	2005/10/21	55	0,_	30 - 130
		Dibenzo(a h)anthracone	2005/10/21	110	. o	20 120
		Fluoranthene	2005/10/21	112	0/	30 130
		Fluorene	2005/10/21	05	20 0;	30 130
		Indepo(1.2.3-cdipuropa	2005/10/21	115	20	30 - 130
		1. Methylnaphthalene	2005/10/21	115	/a 0.:	30 - 130
		2-Mathulsaphthalana	2005/10/21	70	70	30 - 130
		Naphthalong	2005/10/21	81	70	30 - 130
		Phopphthropp	2005/10/21	68	No.	30 - 130
		Phenanisriene	2005/10/21	83	70	30 - 130
	Mathod Blank		2005/10/21	94	%	30 - 130
	wiethod biank	D10-Aninracene	2005/10/21	60	70	30 - 130
		D14-TerprienyL(FS)	2005/10/21	NS	%	30 - 130
		D7-Quinoline	2005/10/21	57	%	30 - 130
		D8-Acenaphtnylene	2005/10/21	NS	~	30 - 130
		Acenaphinene	2005/10/21	ND, DL=0.05	ug/L	
		Acenaphinylene	2005/10/21	ND. DL=0.05	ug/L	
		Anthracene Researcher anthracene	2005/10/21	ND, DL=0.05	ug/L	
		Benzo(a)anthracene	2005/10/21	ND, DL=0.05	ug/L	
		Benzo(a)pyrene	2005/10/21	ND, DL=0.01	ug/L	
		Benzo(b/j)fluoranthene	2005/10/21	ND, DL=0.05	ug/L	
		Benzo(g,h,i)perylene	2005/10/21	ND, DL=0.1	ug/L	
		Benzo(k)lluoranthene	2005/10/21	ND, DL=0.05	ug/L	
		Chrysene	2005/10/21	ND, DL=0.05	ug/L	
		Dibenzo(a,h)anthracene	2005/10/21	ND, DL=0.1	ug/L	
		Fluoranthene	2005/10/21	ND, DL=0.05	ug/Ĺ	
		Fluorene	2005/10/21	ND, DL=0.05	ug/L	
		Indeno(1,2,3-cd)pyrene	2005/10/21	ND, DL=0 1	ug/L	
		1-Methylnaphthalene	2005/10/21	ND, DL=0.05	ug/L	
		2-Methylnaphthalene	2005/10/21	ND, DL=0.05	ug/L	
		Naphthalene	2005/10/21	ND, DL=0.05	ug/L	
		Phenanthrene	2005/10/21	ND, DL=0_05	ug/L	
		Pyrene	2005/10/21	ND, DL=0.05	ug/L	
	RPD	D14-Terphenyl (FS)	2005/10/21	NC	%	N/A
		Acenaphthene	2005/10/21	NC	9,0	40
		Acenaphthylene	2005/10/21	NC	%	40
		Anthracene	2005/10/21	NC	%	40
		Benzo(a)anthracene	2005/10/21	NC	%	40
		Benzo(a)pyrene	2005/10/21	NC	0/0	40
		Benzo(b/j)fluoranthene	2005/10/21	NC	%	40
		Benzo(g.h.i)perylene	2005/10/21	NC	9/0	40
		Benzo(k)fluoranthene	2005/10/21	NC	0/0	40
		Chrysene	2005/10/21	NC	%	40
		Dibenzo(a,h)anthracene	2005/10/21	NC	%	40
		Fluoranthene	2005/10/21	NC	%	40
		Fluorene	2005/10/21	NC	%	40
		Indeno(1,2,3-cd)pyrene	2005/10/21	NC	0,0	40
		1-Methylnaphthalene	2005/10/21	NC	2/0	40
		2-Methylnaphthalene	2005/10/21	NC	%	40
		Naphthalene	2005/10/21	NC	%	40
		Phenanthrene	2005/10/21	NC	%	40
		Pyrene	2005/10/21	NC	%	40

This document is in electronic format, hard copy is available on request.

6740 Campobello Road, Mississauga, Ontario Canada L5N 2L8 Tel: 905-817-5700 Toll free: 800-563-6266 Fax: 905-817-5777

Quality Assurance Report (Continued)

Maxxam Job Number: MA5A3629	
-----------------------------	--

QA/QC			Date				
Batch			Analyzed				
Num Init	QC Type	Parameter	www/mm/dd	Value	Becovery	Units	OC Limits
847487 SRY	Spiked Blank	4-Bromofluorobenzene	2005/10/21		99	%	60 - 140
		D4-1 2-Dichloroethane	2005/10/21		103	0,0	60 - 140
f		D8-Toluene	2005/10/21		101	0/	60 - 140
		Acetope	2005/10/21		104	0/ 0/	50 140
1		Benzene	2005/10/21		104	/0 0/	50 - 140
		Bramadiableramathera	2005/10/21		109	20	60 - 140
		Bromodicnioromethane	2005/10/21		113	70	60 - 140
		Bromotorm	2005/10/21		111	10	60 - 140
		Bromomethane	2005/10/21		62	20	60 - 140
		Carbon Letrachloride	2005/10/21		105	%	60 - 140
		Chlorobenzene	2005/10/21		111	0,0	60 - 140
		Chloroform	2005/10/21		107	%	60 - 140
		Dibromochloromethane	2005/10/21		111	9/0	60 - 140
		1,2-Dichlorobenzene	2005/10/21		115	%	60 · 140
		1,3-Dichlorobenzene	2005/10/21		119	0/0	60 - 140
		1,4-Dichlorobenzene	2005/10/21		119	0.' /D	60 - 140
		1,1-Dichloroethane	2005/10/21		105	0/	60 - 140
		1,2-Dichloroethane	2005/10/21		105	%	60 - 140
		1,1-Dichloroethylene	2005/10/21		105	°,	60 - 140
		cis-1.2-Dichloroethylene	2005/10/21		106	%	60 - 140
		trans-1.2-Dichloroethylene	2005/10/21		112	%	60 - 140
		1.2-Dichloropropane	2005/10/21		107	0,	60 - 140
		cis-1 3-Dichloropropene	2005/10/21		116	9/2	60 - 140
1		trans-1.3-Dichlomoropene	2005/10/21		112	9/2	60 - 140
		Elhylbenzene	2005/10/21		110	%	60 - 140
		Ethylene Dibromide	2005/10/21		109	0,	60 140
		Methylene Chloride(Dichloromethano)	2005/10/21		100	/a a,	60 - 140
		Methylene Onoride(Dichoroniemane)	2005/10/21		110	/0	60 - 140
1		Methyl Ethyl Ketene	2005/10/21		112	70	60 - 140
		Methyl Lanyl Retone	2005/10/21		110	70	60 - 140
		Methyl t-butyl ether (MTBE)	2005/10/21		110	10	60 - 140
		Styrene	2005/10/21		104	70	60 - 140
		1,1,1,2-1 etrachioroethane	2005/10/21		108	%	60 · 140
		1,1,2,2-1 etrachloroethane	2005/10/21		109	%	60 - 140
		letrachloroethylene	2005/10/21		115	%	60 - 140
		loluene	2005/10/21		109	%	60 - 140
		1,1,1-Trichloroethane	2005/10/21		105	%	60 - 140
		1,1,2-Trichloroethane	2005/10/21		110	%	60 - 140
		Trichloroethylene	2005/10/21		110	%	60 - 140
		Vinyl Chloride	2005/10/21		96	2/0	60 - 140
		p+m-Xylene	2005/10/21		122	%	60 - 140
		o-Xylene	2005/10/21		118	0,0	60 - 140
	Method Blank	4-Bromolluorobenzene	2005/10/21		95	%	60 - 140
		D4-1,2-Dichloroethane	2005/10/21		98	%	60 - 140
		D8-Toluene	2005/10/21		100	%	60 - 140
		Acetone	2005/10/21	ND, D	L=0:1	uq/g	
		Benzene	2005/10/21	ND, D	L=0.002	ua/a	
		Bromodichloromethane	2005/10/21	ND. D	L=0.002	ua/a	
		Bromoform	2005/10/21	ND. D	1=0.002	ua/a	
		Bromomethane	2005/10/21	ND D	1=0.003	 ua/a	
		Carbon Tetrachloride	2005/10/21	ND D	1=0.002	ug/g	
		Chiorobenzene	2005/10/21	ND D			
		Chloroform	2005/10/21		L-0.002	ug/g	
		Dibromochloromethane	2003/10/21	, שאו ס מוא	L-0.002	ug/g	
		1.2 Disblorobonzono	2005/10/21	ND, D		ug/g	
		1.2 Dichlorobenzene	2005/10/21	ND, D	L=0.002	uy/g	
		1.3-Dichlorobenzene	2005/10/21	ND. D	L=0.002	ug/g	
			2005/10/21	ND, D	L=0.002	ug/g	
		r,Dichloroethane	2005/10/21	NU, D	L=0.002	ug/g	

This document is in electronic format, hard copy is available on request.

6740 Campobello Road, Mississauga, Ontario Canada L5N 2L8 Tel: 905-817-5700 Toll free: 800-563-6266 Fax: 905-817-5777

Quality Assurance Report (Continued) Maxxam Job Number: MA5A3629

QA/QC			Date			
Batch			Analyzed			
Num Init	QC Type	Parameter	yyyy/mm/dd	Value Recovery	Units	QC Limits
847487 SRY	Method Blank	1,2-Dichloroethane	2005/10/21	ND, DL=0.002	ug/g	
		1.1-Dichloroethylene	2005/10/21	ND, DL=0.002	ug/g	
		cis-1,2-Dichloroethylene	2005/10/21	ND, DL=0.002	ug/g	
		trans-1,2-Dichloroethylene	2005/10/21	ND, DL=0.002	ug/g	
		1.2-Dichloropropane	2005/10/21	ND, DL=0.002	ug/g	
		cis-1,3-Dichloropropene	2005/10/21	ND, DL=0.002	ug/g	
		trans-1,3-Dichloropropene	2005/10/21	ND, DL=0.002	ug/g	
		Ethylbenzene	2005/10/21	ND, DL=0.002	ug/g	
		Ethylene Dibromide	2005/10/21	ND, DL=0.002	ug/g	
		Methylene Chloride(Dichloromethane)	2005/10/21	ND, DL=0 003	ug/g	
		Methyl Isobutyl Ketone	2005/10/21	ND, DL=0.025	ug/g	
		Methyl Ethyl Ketone	2005/10/21	ND, DL=0 025	ug/g	
		Methyl t-butyl ether (MTBE)	2005/10/21	ND, DL=0.002	ug/g	
		Styrene	2005/10/21	ND, DL=0.002	ug/g	
		1,1,1,2-Tetrachloroethane	2005/10/21	ND, DL=0.002	ug/g	
		1,1,2,2-Tetrachloroethane	2005/10/21	ND, DL=0.002	ug/g	
		Tetrachloroethylene	2005/10/21	ND, DL=0.002	ug/g	
		Toluene	2005/10/21	ND, DL=0.002	ug/g	
		1,1,1-Trichloroethane	2005/10/21	ND, DL=0.002	ug/g	
		1.1.2-Trichloroethane	2005/10/21	ND, DL=0.002	ug/g	
		Trichloroethylene	2005/10/21	ND, DL=0.002	ug/g	
		Vinyl Chloride	2005/10/21	ND, DL=0.002	ug/g	
		p+m-Xylene	2005/10/21	ND, DL=0.002	ug/g	
		o-Xylene	2005/10/21	ND, DL=0,002	ug/g	
0.47500 CDV		Xylene (Total)	2005/10/21	ND, DL=0.003	ug/g	
847560 SPV	MATRIX SPIKE	1,4-Difluorobenzene	2005/10/21	104	%	60 - 140
		4-Bromoliuorobenzene	2005/10/21	98	0	60 - 140
		D10-Emylbenzene	2005/10/21	101	%	30 - 130
		D4-1,2-Dichloroeinane	2005/10/21	96	70	60 - 140
	Called Direl		2005/10/21	107	10 0/	60 - 140
	Spikeu Dialik	4. Bromoffuorobenzene	2005/10/21	105	76	60 - 140
		4-bromonborobenzene D10-Ethylbonzono	2005/10/21	97	70 0/	00 - 140
		D4-1 2-Dichloroethane	2005/10/21	00	0/_	60 - 140
		F1 (C6-C10)	2005/10/21	118	0/0	60 - 140
4	Method Blank	1 4-Difluorobenzene	2005/10/21	105	0	60 - 140
		4-Bromofluorobenzene	2005/10/21	96	%	60 - 140
		D10-Ethylbenzene	2005/10/21	100	20	30 - 130
		D4-1 2-Dichloroethane	2005/10/21	84	9/0	60 - 140
		F1 (C6-C10)	2005/10/21	ND DL=10	ua/a	00
		F1 (C6-C10) - BTEX	2005/10/21	ND $DL=10$	-9-9 U0/0	
	RPD	F1 (C6-C10)	2005/10/21	NC	-3-3	50
		F1 (C6-C10) - BTEX	2005/10/21	NC	%	50
847598 AHE	MATRIX SPIKE	Dissolved Antimony (Sb)	2005/10/21	94	%	75 - 125
		Dissolved Arsenic (As)	2005/10/21	97	0/0	75 - 125
		Dissolved Barium (Ba)	2005/10/21	94	%	75 · 125
1		Dissolved Beryllium (Be)	2005/10/21	98	%	75 - 125
		Dissolved Boron (B)	2005/10/21	100	%	75 - 125
		Dissolved Cadmium (Cd)	2005/10/21	96	%	75 - 125
		Dissolved Chromium (Cr)	2005/10/21	90	%	75 - 125
		Dissolved Cobalt (Co)	2005/10/21	86	%	75 - 125
		Dissolved Copper (Cu)	2005/10/21	88	%	75 - 125
		Dissolved Lead (Pb)	2005/10/21	88	0/0	75 - 125
		Dissolved Molybdenum (Mo)	2005/10/21	95	%	75 · 125
		Dissolved Nickel (Ni)	2005/10/21	89	%	75 - 125
		Dissolved Selenium (Se)	2005/10/21	93	%	75 - 125

This document is in electronic format, hard copy is available on request.

6740 Campobello Road, Mississauga, Ontario Canada L5N 2L8 Tel: 905-817-5700 Toll free:800-563-6266 Fax: 905-817-5777

Quality Assurance Report (Continued) Maxxam Job Number: MA5A3629

QA/QC			Date				
Batch			Analyzed				
Num Init	QC Type	Parameter	vvvv/mm/dd	Value Reco	overv	Units	OC Limits
847598 AHE	MATRIX SPIKE	Dissolved Silver (Ag)	2005/10/21		82	%	75 - 125
		Dissolved Sodium (Na)	2005/10/21		93	0,0	75 - 125
		Dissolved Tellurium	2005/10/21		96	%	75 - 125
		Dissolved Thallium (TI)	2005/10/21		87	0/	75 - 125
		Dissolved Thorium (Th)	2005/10/21		91	0,/	75 - 125
1		Dissolved Vanadium (V)	2005/10/21		88	%	75 - 125
1		Dissolved Zinc (Zn)	2005/10/21		93	9/0	75 - 125
	Spiked Blank	Dissolved Antimony (Sb)	2005/10/21		99	%	85 - 115
	,	Dissolved Arsenic (As)	2005/10/21		100	%	85 - 115
		Dissolved Barium (Ba)	2005/10/21		100	07	85 - 115
		Dissolved Beryllium (Be)	2005/10/21		104	0%	85 - 115
		Dissolved Boron (B)	2005/10/21		108	0.	85 - 115
		Dissolved Cadmium (Cd)	2005/10/21		103	0,	85 - 115
		Dissolved Chromium (Cr)	2005/10/21		97	0,0	85 - 115
1		Dissolved Cobalt (Co)	2005/10/21		93	%	85 - 115
		Dissolved Copper (Cu)	2005/10/21		94	0/ /0	85 - 115
		Dissolved Lead (Pb)	2005/10/21		97	%	85 - 115
		Dissolved Molybdenum (Mo)	2005/10/21		102	%	85 - 115
		Dissolved Nickel (Ni)	2005/10/21		96	%	85 - 115
		Dissolved Selenium (Se)	2005/10/21		98	0/0	85 - 115
		Dissolved Silver (Ag)	2005/10/21		100	0,0	85 - 115
		Dissolved Sodium (Na)	2005/10/21		98	%	85 - 115
		Dissolved Tellurium	2005/10/21		101	9/0	85 - 115
		Dissolved Thallium (TI)	2005/10/21		94	%	85 - 115
		Dissolved Thorium (Th)	2005/10/21		99	0/0	85 - 115
		Dissolved Vanadium (V)	2005/10/21		93	0,0	85 - 115
		Dissolved Zinc (Zn)	2005/10/21		97	0/0	85 - 115
	Method Blank	Dissolved Antimony (Sb)	2005/10/21	ND, DL=1		ug/L	
		Dissolved Arsenic (As)	2005/10/21	ND, DL=1		ug/L	
		Dissolved Barium (Ba)	2005/10/21	ND, DL=5		ug/L	
		Dissolved Beryllium (Be)	2005/10/21	ND, DL=0.5		ug/L	
		Dissolved Boron (B)	2005/10/21	ND, DL=10		ug/L	
		Dissolved Cadmium (Cd)	2005/10/21	ND, DL=0.1		ug/L	
		Dissolved Chromium (Cr)	2005/10/21	ND, DL=5		ug/L	
1		Dissolved Cobalt (Co)	2005/10/21	ND, DL=0,5		ug/L	
		Dissolved Copper (Cu)	2005/10/21	ND, DL=1		ug/L	
		Dissolved Lead (Pb)	2005/10/21	ND, DL=0.5		ug/L	
		Dissalved Molybdenum (Mo)	2005/10/21	ND, DL=1		ug/L	
		Dissolved Nickel (Ni)	2005/10/21	ND, DL=1		ug/L	
		Dissolved Selenium (Se)	2005/10/21	ND, DL=2		ug/L	
		Dissolved Silver (Ag)	2005/10/21	ND, DL=0.5		ug/L	
		Dissolved Sodium (Na)	2005/10/21	ND, DL=100		ug/L	
		Dissolved Tellurium	2005/10/21	ND, DL=1		ug/L	
		Dissolved Thallium (TI)	2005/10/21	ND, DL=0.05		ug/L	
		Dissolved Thorium (Th)	2005/10/21	ND, DL=1		ug/L	
		Dissolved Vanadium (V)	2005/10/21	ND, DL≃1		ug/L	
		Dissolved Zinc (Zn)	2005/10/21	ND, DL=5		ug/L	
	RPD	Dissolved Lead (Pb)	2005/10/21	NC		%	25
847602 VIV	MATRIX SPIKE	Dissolved Antimony (Sb)	2005/10/21		102	%	75 - 125
		Dissolved Arsenic (As)	2005/10/21		103	%	75 - 125
		Dissolved Barium (Ba)	2005/10/21		99	%	75 - 125
		Dissolved Beryllium (Be)	2005/10/21		99	%	75 - 125
		Dissolved Boron (B)	2005/10/21		107	%	75 - 125
		Dissolved Cadmium (Cd)	2005/10/21		106	%	75 - 125
		Dissolved Chromium (Cr)	2005/10/21		104	%	75 - 125
		Dissolved Cobalt (Co)	2005/10/21		103	9/0	75 - 125

This document is in electronic format, hard copy is available on request.

6740 Campobello Road, Mississauga, Ontario Canada L5N 2L8 Tel: 905-817-5700 Toll free: 800-563-6266 Fax: 905-817-5777

Quality Assurance Report (Continued) Maxxam Job Number: MA5A3629

QA/QC			Date			
Batch			Analyzed			
Num Init	QC Type	Parameter	yyyy/mm/dd	Value Recovery	Units	QC Limits
847602 VIV	MATRIX SPIKE	Dissolved Copper (Cu)	2005/10/21	101	%	75 - 125
		Dissolved Lead (Pb)	2005/10/21	98	%	75 - 125
		Dissolved Molybdenum (Mo)	2005/10/21	105	%	75 - 125
		Dissolved Nickel (Ni)	2005/10/21	102	%	75 - 125
		Dissolved Selenium (Se)	2005/10/21	104	0/0	75 - 125
		Dissolved Silver (Ag)	2005/10/21	99	%	75 - 125
		Dissolved Sodium (Na)	2005/10/21	99	%	75 - 125
		Dissolved Tellurium	2005/10/21	102	%	75 - 125
		Dissolved Thallium (TI)	2005/10/21	101	0	75 - 125
		Dissolved Thorium (Th)	2005/10/21	99	0%	75 - 125
		Dissolved Vanadium (V)	2005/10/21	104	0/0	75 - 125
		Dissolved Zinc (Zn)	2005/10/21	103	0/0	75 - 125
	Spiked Blank	Dissolved Antimony (Sb)	2005/10/21	95	%	85 - 115
		Dissolved Arsenic (As)	2005/10/21	99	°/o	85 - 115
		Dissolved Barium (Ba)	2005/10/21	102	%	85 - 115
		Dissolved Beryllium (Be)	2005/10/21	104	20	85 - 115
		Dissolved Boron (B)	2005/10/21	108	%	85 - 115
		Dissolved Cadmium (Cd)	2005/10/21	103	26	85 - 115
		Dissolved Chromium (Cr)	2005/10/21	102	%	85 - 115
		Dissolved Cobalt (Co)	2005/10/21	101	%	85 - 115
		Dissolved Copper (Cu)	2005/10/21	100	9/0	85 - 115
		Dissolved Lead (Pb)	2005/10/21	102	%	85 - 115
		Dissolved Molybdenum (Mo)	2005/10/21	99	%	85 - 115
		Dissolved Nickel (Ni)	2005/10/21	101	9/0	85 - 115
		Dissolved Selenium (Se)	2005/10/21	100	0	85 - 115
		Dissolved Silver (Ag)	2005/10/21	98	%	85 - 115
		Dissolved Sodium (Na)	2005/10/21	104	%	85 - 115
		Dissolved Tellurium	2005/10/21	96	%	85 - 115
		Dissolved Thallium (11)	2005/10/21	105	20	85 - 115
		Dissolved Thorium (Th)	2005/10/21	106	20	85 - 115
		Dissolved Vanadium (V)	2005/10/21	102	.0	85 - 115
	Mothed Black	Dissolved Zinc (Zh)	2005/10/21		7a	85 - 115
	WELINU DIANK	Dissolved Amonia (As)	2005/10/21	ND, DL=1	ug/L	
		Dissolved Arsenic (As)	2005/10/21	ND, DL=1	ug/L	
		Dissolved Bandlium (Ba)	2005/10/21	ND, DL=0.5	ug/L	
		Dissolved Boron (B)	2005/10/21	ND, DL=0.5	- Ug/L	
		Dissolved Cadmium (Cd)	2005/10/21		ug/L	
		Dissolved Chromium (Cr)	2005/10/21		ug/L	
		Dissolved Cobalt (Co)	2005/10/21	ND DL-05	ug/L	
		Dissolved Copper (Cu)	2005/10/21	ND DL-1	ug/L	
		Dissolved Lead (Pb)	2005/10/21		ug/L	
		Dissolved Molybdenum (Mo)	2005/10/21	ND DL-1	ug/L	
		Dissolved Nickel (Ni)	2005/10/21	ND DL-1	ug/L	
		Dissolved Selenium (Se)	2005/10/21	ND DL-2	ug/L	
5		Dissolved Silver (Ag)	2005/10/21	ND DL=0.5	ug/l	
		Dissolved Sodium (Na)	2005/10/21	ND DL=100	ug/l	
		Dissolved Tellurium	2005/10/21	ND. DL=1	ug/L	
		Dissolved Thallium (TI)	2005/10/21	ND, DL=0.05	ua/L	
		Dissolved Thorium (Th)	2005/10/21	ND. DL=1	ua/L	
		Dissolved Vanadium (V)	2005/10/21	ND. DL=1	ua/L	
		Dissolved Zinc (Zn)	2005/10/21	ND, DL=5	ua/L	
	RPD	Dissolved Antimony (Sb)	2005/10/21	NC		25
		Dissolved Arsenic (As)	2005/10/21	NC	%	25
		Dissolved Barium (Ba)	2005/10/21	0.6	%	25
		Dissolved Beryllium (Be)	2005/10/21	NC	%	25

This document is in electronic format, hard copy is available on request.

6740 Campobelio Road, Mississauga, Ontario Canada L5N 2L8 Tel: 905-817-5700 Toll free: 800-563-6266 Fax: 905-817-5777

Quality Assurance Report (Continued)

Maxxam Job Number: MA5A3629

QAVQC			Date				
Batch			Analyzed				
Num Init	OC Type	Parameter	www/mm/dd	Value	Becovery	Units	OC Limits
847602 VIV	RPD	Dissolved Boron (B)	2005/10/21	NC	(heedvor)	9/	25
		Dissolved Cadmium (Cd)	2005/10/21	NC		0/_	20
		Dissolved Chromium (Cr)	2005/10/21	NC		0,	2.5
		Dissolved Cobalt (Co)	2005/10/21	NC		- 0	20
		Dissolved Lond (Pb)	2005/10/21	NC		- /0	20
		Dissolved Lead (FD)	2005/10/21	NC		70	25
		Dissolved Molybuerlulli (MD)	2005/10/21	NC		70	25
		Dissolved Nickel (NI)	2005/10/21	NC		70	25
		Dissolved Selenium (Se)	2005/10/21	NC		10	25
		Dissolved Sliver (Ag)	2005/10/21	NC		%	25
		Dissolved Inallium (11)	2005/10/21	NG		/0	25
0.170.17 KOO		Dissolved Variadium (V)	2005/10/21	NC		2/0	25
847647 KCQ	MATRIX SPIKE						
	[180797-06]	Mercury (Hg)	2005/10/21		95	%	75 - 125
	QC STANDARD	Mercury (Hg)	2005/10/21		95	%	75 - 125
	Spiked Blank	Mercury (Hg)	2005/10/21		96	%	84 - 113
	Method Blank	Mercury (Hg)	2005/10/21	ND, DI	L=0:1	ug/L	
	RPD [180797-06]	Mercury (Hg)	2005/10/21	NC		%	25
848007 KJI	MATRIX SPIKE	1,4-Difluorobenzene	2005/10/22		101	%	70 - 130
		4-Bromofluorobenzene	2005/10/22		106	%	70 - 130
		D10-Ethylbenzene	2005/10/22		103	%	30 - 130
		D4-1,2-Dichloroethane	2005/10/22		108	9/0	70 - 130
		F1 (C6-C10)	2005/10/22		84	%	70 - 130
	Spiked Blank	1,4-Difluorobenzene	2005/10/22		101	0/0	70 - 130
		4-Bromofluorobenzene	2005/10/22		105	%	70 - 130
		D10-Ethylbenzene	2005/10/22		99	%	30 - 130
		D4-1,2-Dichloroethane	2005/10/22		116	°.	70 - 130
		F1 (C6-C10)	2005/10/22		84	0,0	70 - 130
	Method Blank	1.4-Difluorobenzene	2005/10/22		101	%	70 - 130
		4-Bromofluorobenzene	2005/10/22		105	%	70 - 130
		D10-Ethylbenzene	2005/10/22		104	%	30 - 130
		D4-1,2-Dichloroethane	2005/10/22		108	%	70 - 130
		F1 (C6-C10)	2005/10/22	ND. DI	=100	uo/l	
		F1 (C6-C10) - BTEX	2005/10/22	ND D	=100	ug/l	
	RPD	F1 (C6-C10)	2005/10/22	NC	- 100	%	40
		F1 (C6-C10) - BTEX	2005/10/22	NC		0/2	40
848247 STE	MATRIX SPIKE	o-Terphenyl	2005/10/21		117	9/2	30 . 130
		F2 (C10-C16 Hydrocarbons)	2005/10/21		114	04	60 - 130
		F3 (C16-C34 Hydrocarbons)	2005/10/21		114	°_	60 - 130
		F4 (C34-C50 Hydrocarbons)	2005/10/21		114	0/2	60 - 130
1	Spiked Blank	o-Terphenyl	2005/10/21		106	0/ 0/	20 120
		E2 (C10-C16 Hydrocarbons)	2005/10/21		105	0 <u>/</u>	60 - 130
		F3 (C16-C34 Hydrocarbons)	2005/10/21		105	0/_	60 - 130
		F4 (C34-C50 Hydrocarbons)	2005/10/21		105	/G Ø/	60 130
	Method Blank	o-Tembenyl	2003/10/21		100	/G 9/	20 120
	motrog bidrik	E2 (C10-C16 Hydrocarbons)	2005/10/21		-100	/0	30 - 130
		E3 (C16-C34 Hudrocarbons)	2005/10/21	ND, DI	100	ug/L	
		E4 (C24 C50 Hydrocarbons)	2003/10/21		100	ug/L	
	DDD	F4 (C34-C30 Hydrocarbons)	2005/10/21		_=100	ug/L	50
	nrD	F2 (C10-C16 Hydrocarbons)	2005/10/21	3.7		%	50
		E4 (C24 CE0 Hudrocarbors)	2005/10/21	NC		76	50
949902 D.C.A		- T	2005/10/21	NC		%	50
040290 DCA	WATHIX SPIKE	o-remnenyi	2005/10/21		90	%	30 - 130
		F2 (C10-C16 Hydrocarbons)	2005/10/21		71	20	60 - 130
		F3 (C16-C34 Hydrocarbons)	2005/10/21		71	%	60 - 130
		F4 (C34-C50 Hydrocarbons)	2005/10/21		71	%	60 - 130
	Spiked Blank	o-Terphenyl	2005/10/21		93	%	30 - 130
		F2 (C10-C16 Hydrocarbons)	2005/10/21		72	%	60 - 130

This document is in electronic format, hard copy is available on request-

6740 Campobello Road, Mississauga, Ontario Canada L5N 2L8 Tel: 905-817-5700 Toll free: 800-563-6266 Fax: 905-817-5777

Quality Assurance Report (Continued) Maxxam Job Number: MA5A3629

QA/QC			Date				
Batch			Analyzed				
Num Init	QC Type	Parameter	vvvv/mm/dd	Value Reco	overv	Units	QC Limits
848296 DCA	Spiked Blank	F3 (C16-C34 Hydrocarbons)	2005/10/21		72	B/0	60 - 130
		F4 (C34-C50 Hydrocarbons)	2005/10/21		72	%	60 - 130
	Method Blank	o-Terphenyl	2005/10/21		88	%	30 - 130
		F2 (C10-C16 Hydrocarbons)	2005/10/21	ND, DL=10		uq/q	
		F3 (C16-C34 Hydrocarbons)	2005/10/21	ND, DL=10		ug/g	
		F4 (C34-C50 Hydrocarbons)	2005/10/21	ND, DL=10		ua/a	
	RPD	F2 (C10-C16 Hydrocarbons)	2005/10/21	NC		9%	50
		F3 (C16-C34 Hydrocarbons)	2005/10/21	NC		%	50
		F4 (C34-C50 Hydrocarbons)	2005/10/21	NC		0/0	50
848359 SPU	RPD	Moisture	2005/10/21	8.8		0,0	50
848578 APT	MATRIX SPIKE	Total Antimony (Sb)	2005/10/24		93	%	75 - 125
		Total Arsenic (As)	2005/10/24		95	0	75 - 125
		Total Barium (Ba)	2005/10/24		90	%	75 - 125
		Total Beryllium (Be)	2005/10/24		98	%	75 - 125
		Total Cadmium (Cd)	2005/10/24		94	9/0	75 - 125
		Total Chromium (Cr)	2005/10/24		96	9/0	75 - 125
1		Total Cobalt (Co)	2005/10/24		95	0,0	75 - 125
		Total Copper (Cu)	2005/10/24		95	0	75 - 125
		Total Lead (Pb)	2005/10/24		93	0	75 . 125
		Total Molybdenum (Mo)	2005/10/24		96	0/0	75 - 125
		Total Nickel (Ni)	2005/10/24		94	0/2	75,125
		Total Selenium (Se)	2005/10/24		93	0/	75 . 125
		Total Silver (Ag)	2005/10/24		99	%	75 - 125
		Total Thallium (TI)	2005/10/24		94	0,	75 - 125
		Total Vanadium (V)	2005/10/24		95	0,	75 - 125
		Total Zinc (Zn)	2005/10/24		90	0	75 - 125
	QC STANDARD	Total Arsenic (As)	2005/10/24		116	0	20.170
		Total Barium (Ba)	2005/10/24		106	9	70 . 120
		Total Chromium (Cr)	2005/10/24		03	0/_	40 160
		Total Cobalt (Co)	2005/10/24		102	/0 0/	75 105
		Total Copper (Cu)	2005/10/24		102	/a a/_	73 - 123
1		Total Lead (Pb)	2005/10/24		00	0/_	54.146
		Total Nickel (Ni)	2005/10/24		100	0 0/_	61 - 120
		Total Vanadium (V)	2005/10/24		112	94 94	50.150
		Total Zinc (Zn)	2005/10/24		101	0/_	72 - 129
	Method Blank	Total Antimony (Sb)	2005/10/24		101	ua/a	12 - 120
		Total Arsenic (As)	2005/10/24	ND DL-1		ug/g	
		Total Barium (Ba)	2005/10/24			ug/g	
		Total Beryllium (Be)	2005/10/24	ND DL=0.5		ug/g un/n	
		Total Cadmium (Cd)	2005/10/24	ND DI =0.3		un/a	
		Total Chromium (Cr)	2005/10/24	ND DL=0.5		ug/g ug/g	
		Total Cobalt (Co)	2005/10/24	ND DL-0.5		ug/g uo/g	
		Total Copper (Cu)	2005/10/24	ND DL-0.5		ug/g	
		Total Lead (Pb)	2005/10/24	ND DL-1		ug/g	
		Total Molybdenum (Mo)	2005/10/24	ND DL=0.6		ug/g	
		Total Nickel (Ni)	2005/10/24	ND DL=0.5		ug/g ug/g	
		Total Selenium (Se)	2005/10/24	ND DL-1		ugyg	
		Total Silver (An)	2003/10/24			ug/g	
		Total Thallium (TI)	2005/10/24	ND DL-1		ug/g ug/g	
		Total Vanadium (V)	2005/10/24	ND DL-05		ug/g ug/g	
		Total Zinc (Zn)	2005/10/24			ugry	
	RPD	Total Antimony (Sb)	2003/10/24	NC NC		uyyg «	00
		Total Arsenic (As)	2000/10/24	NC		/0 0/	20
		Total Barium (Ba)	2002/10/24	20		70	20
		Total Benyllium (Be)	2003/10/24	2.0		70	20
		Total Cadmium (Cd)	2003/10/24	NC		0/	20
		(ou)	2000/10/24	NO		.'0	20

This document is in electronic format, hard copy is available on request.

6740 Campobello Road, Mississauga, Ontario Canada L5N 2L8 Tel: 905-817-5700 Toll free: 800-563-6266 Fax: 905-817-5777

Quality Assurance Report (Continued) Maxxam Job Number: MA5A3629

Batch Num Intel Cost Type Parameter Yang Merit Value Recovery Units OCC Limits 648578 APT RPD Total Cobati (Co) 2005/1024 4.1 % 20 648578 APT RPD Total Cobati (Co) 2005/1024 2.0 % 200 1 Total Cobati (Co) 2005/1024 2.0 % 2.00 1 Total Cobati (Co) 2005/1024 2.0 % 2.00 1 Total Cobati (Pb) 2005/1024 NC % 2.00 1 Total Schell (Ni) 2005/1024 NC % 2.00 1 Total Schell (Ni) 2005/1024 NC % 2.00 1 Total Xonatium (Ni 2005/1024 NC % 8.65 1.5 2 Total Xonatium (Th) 2005/1024 0.7 % 8.65 1.5 3 Match Blank Acce Estractable Mercury (Hg) 2005/1024 ND 0.0 % 7.5 1.25 4 Acte Estractable Mercury (Hg) 2005/1024 ND 0.0 %	QA/QC			Date				
Num linit OC Type Parameter younmuidt Value Recovery Units OC Limits 848578 APT RPD Yola Chromum (Cr) 2005/1024 4.1 % 20 648578 APT RPD Yola Chromum (Cr) 2005/1024 2.0 % 20 Total Locati (Co) 2005/1024 2.0 % 20 Total Locati (Co) 2005/1024 2.1 % 20 Total Mobilearum (Mo) 2005/1024 NC % 20 Total Selerum (Se) 2005/1024 NC % 20 Total Selerum (Se) 2005/1024 NC % 20 Total Selerum (Se) 2005/1024 NC % 20 Selection (Se) 2005/1024 NC % 20 Selection (Se) 2005/1024 ND 100 % 7 7 12 Selection (Se) 2005/1024 ND ND 100 % 7 15 15 Selection (Se)	Batch			Anabized				
848578 APT RPD Total Cohati (Co) 2005/1024 1	Num Ind	QC Type	Parameter	vvvv/mm/dd	Value	Recovery	1 Inite	OC Limite
848579 LCH Total Cobart (Co) 2005/1024 0.6 % 20 848579 LCH Kickal (N) 2005/1024 2.0 % 20 7614 Coper (Cu) 2005/1024 2.1 % 20 7614 Lead (Pb) 2005/1024 NC % 20 7614 Molytelmum (Ke) 2005/1024 NC % 20 7618 Molytelmum (Se) 2005/1024 NC % 85 15 7618 Molytelmum (Se) 2005/1024 ND 0 % 85 15 7618 Molytelmum (Se) 2005/1024 ND 0 % 75 125 7618 Molytelmum (Se) 2005/1024 ND 0 % 75 125 7618 Molytelmum (Se) 2005/1024 ND 0 % 75	848578 APT	RPD	Total Chromium (Cr)	2005/10/24	4.1	locovery	96	20
848579 LCH Total Copper (Cu) 2005/10/24 2.0 % 20 848579 LCH Name 2005/10/24 NC % 20 848579 LCH MATRIX SPIKE Cold Red 2005/10/24 NC % 20 848579 LCH MATRIX SPIKE Cold Red 2005/10/24 NC % 20 848579 LCH MATRIX SPIKE Cold Red 2005/10/24 NC % 20 Cold Stratable Mercury (Hg) 2005/10/24 ND 0.1 % 75:125 Spiked Blank Acid Extractable Mercury (Hg) 2005/10/24 ND 0.1 % 75:125 Acid Extractable Mercury (Hg) 2005/10/24 ND 0.1 % 75:125 Acid Extractable Mercury (Hg) 2005/10/24 ND 0.1 % 75:125 Total Arenic (Ae) 2005/10/24 ND 0.1 % 75:125 Total Commit (Ae) 2005/10/24 ND 0.1 % 75:125 Total Arenic (Ae) 2005/10/24			Total Cobalt (Co)	2005/10/24	0.6		0/_	20
Balasci Load (Pb) 2005/1024 2.1 % 20 Total Molydownm (Mo) 2005/1024 3.3 % 20 Total Molydownm (Mo) 2005/1024 NC % 20 Total Steer (Ag) 2005/1024 NC % 20 Total Steer (Ag) 2005/1024 NC % 20 Total Tailoum (Se) 2005/1024 NC % 20 Total Tailoum (Th) 2005/1024 NC % 20 Total Vanadium (V) 2005/1024 NC % 75 125 CC STANDAPD Acid Extractable Mercury (Hg) 2005/1024 ND 102 % 75 125 Acid Extractable Mercury (Hg) 2005/1024 ND 102 % 75 125 Acid Extractable Mercury (Hg) 2005/1024 ND 100 % 75 125 Total Antimory (Sb) 2005/1024 ND 104 % 75 125 Total Steer (Ag) 2005/1024 104			Total Copper (Cu)	2005/10/24	2.0		·0	20
348579 LCH MaTRIX SPIKE Total Nobel (Ni) 2005/10/24 3/3 % 20 848579 LCH MATRIX SPIKE Total Nobel (Ni) 2005/10/24 N/C % 20 848579 LCH MATRIX SPIKE Total Vandum (Vi) 2005/10/24 0.7 % 20 848579 LCH MATRIX SPIKE Total Vandum (Vi) 2005/10/24 0.7 % 85 75 125 848579 LCH MATRIX SPIKE Total Vandum (Vi) 2005/10/24 0.7 % 85 75 125 RPD Acid Extractable Mercury (Hg) 2005/10/24 ND, DL=0.05 ugg 35 75 125 Acid Extractable Mercury (Hg) 2005/10/24 ND, DL=0.05 ugg 35 75 125 Total Annony (Sb) 2005/10/24 101 % 75 125 Total Annony (Sb) 2005/10/24 101 % 75 125 Total Commum (Ch) 2005/10/24 101 % 75 125 104 104			Total Lead (Pb)	2005/10/24	2.0		/0 0/	20
848579 LCH MATRIX SPIRE (N) C005/10/24 (N) NO % 20 205/10/24 (N) NO % 75 12 20 205/10/24 (N) NO % 75 12 20 20 20 20 20 20 20 20 20 20 20 20 20			Total Molybdenum (Mo)	2005/10/24	2.1		10 07	20
848579 LCH MATRIX SPIKE (84579 LCH Set Stratable Mercury (Hg) 2005/10/24 2005/10/24 (910 2005/10/24 93 (910 2005/10/24	1		Total Nickel (Ni)	2005/10/24	2.2		70	20
Interface Total Shear (n) (Ser) 2005/10/24 NC % 20 Statistics Total Shear (N) 2005/10/24 NC % 20 Statistics Total Vanadium (N) 2005/10/24 NC % 20 Statistics CC STANDAR AccE Extractable Mercury (Hg) 2005/10/24 95 % 86 115 Spixed Blank AccE Extractable Mercury (Hg) 2005/10/24 ND, DL=0.05 ugg % 86 115 B48599 MME MATRIX SPIKE AccE Extractable Mercury (Hg) 2005/10/24 ND, DL=0.05 ugg % 86 115 B48599 MME MATRIX SPIKE Total Attimory (Sb) 2005/10/24 ND, DL=0.05 ugg % 75 125 B48599 MME MATRIX SPIKE Total Attimory (Sb) 2005/10/24 ND, DL=0.05 ugg % 75 125 B48599 MME MATRIX SPIKE Total Attimory (Sb) 2005/10/24 101 % 75 125 Italal Cadmum (Ca) 2005/10/24 <			Total Selenium (Se)	2005/10/24	3.3		70	20
848579 LCH MATRIX SPIKE Method Blank Method Blank MATRIX SPIKE (IB0730-01) Total Xanadium (V) 2005/10/24 0.02 2005/10/24 0.7 95 % 7 20 20 848579 LCH MATRIX SPIKE Method Blank Method Blank CG STANDARD Splied Blank Method Blank CG STANDARD CG STANDARD Splied Blank Method Blank CG STANDARD CG STANDARD Splied Blank Method Blank CG STANDARD CG STANDARD Splied Blank CG STANDARD Acd Estractable Mercury (Hg) 2005/10/24 ND, DL=0.05 U/2 95 % 75 75 125 848599 MME MATRIX SPIKE [IB0730-01] Total Antimony (Sb) Total Assenic (As) Total Assenic (As) Total Assenic (As) Total Assenic (As) Total Cadmium (Cd) 2005/10/24 ND, DL=0.05 U/2 96 % 75 125 Total Assenic (As) Total Cadmium (Cd) 2005/10/24 101 % 75 75 125 Total Assenic (As) Total Cadmium (Cd) 2005/10/24 101 % 75 75 125 Total Assenic (As) Total Cadmium (Cd) 2005/10/24 96 % 75 125 101 % 75 125 Total Assenic (As) 2005/10/24 97 % 75 125 126 Total Assenic (As) 2005/10/24 98 %			Total Silver (Ag)	2005/10/24	NC		%o	20
Balasson Description 2005/10/24 No. % 20 Balasson Ana Trix SPike OC STANDAR Spiked Blank Method Blank Acd Estractable Mercury (Hg) 2005/10/24 0.7 % 20 Balasson Acd Estractable Mercury (Hg) 2005/10/24 93 % 865-115 Spiked Blank Method Blank Acd Estractable Mercury (Hg) 2005/10/24 ND. DL=0.05 u0g 75-125 Balasson Total Aminory (Sb) 2005/10/24 ND. DL=0.05 u0g 75-125 Balasson Total Aminory (Sb) 2005/10/24 101 % 75-125 Balasson Total Aminory (Sb) 2005/10/24 101 % 75-125 Total Aminory (Sb) 2005/10/24 101 % 75-125 75-125 Total Aminory (Sb) 2005/10/24 101 % 75-125 75-125 Total Cadmum (Ca) 2005/10/24 101 % 75-125 75-125 Total Aminory (Sb) 2005/10/24 101 % 75-125 75-125 Total Cadmum (Ca) 2005/10			Total Thallium (TI)	2005/10/24	NC		%	20
848579 LCH MATTRIX SPIKE Acd Extractable Mercury (Hg) 2005/10/24 0.7 95 % 75 120 848579 LCH MATTRIX SPIKE Acd Extractable Mercury (Hg) 2005/10/24 93 % 85 115 Spiked Blank, MPDO Blank Acd Extractable Mercury (Hg) 2005/10/24 ND, DL=0.00 % 75 125 Acd Extractable Mercury (Hg) 2005/10/24 ND, DL=0.00 % 75 125 Acd Extractable Mercury (Hg) 2005/10/24 ND, DL=0.00 % 75 125 Acd Extractable Mercury (Hg) 2005/10/24 101 % 75 125 Acd Extractable Mercury (Hg) 2005/10/24 101 % 75 125 Total Animony (Sb) 2005/10/24 101 % 75 125 Total Commun (Co) 2005/10/24 90 % 75 125 Total Cobatt (Co) 2005/10/24 97 % 75 125 Total Cobatt (Co) 2005/10/24 98 % 75			Total Vanadium (V)	2005/10/24	NC		%	20
8485/9 LCH MATRIX SPIKE Dr.7 % 200 Add Extractable Mercury (Hg) 2005/10/24 95 % 75-125 Spiked Baink Add Extractable Mercury (Hg) 2005/10/24 91 % 75-125 Method Blank Add Extractable Mercury (Hg) 2005/10/24 ND, DL=0.05 ug/g 75-125 Add Extractable Mercury (Hg) 2005/10/24 ND, DL=0.05 ug/g 75-125 Add Extractable Mercury (Hg) 2005/10/24 ND, DL=0.05 ug/g 75-125 Add Extractable Mercury (Hg) 2005/10/24 101 % 75-125 Total Antimony (Sb) 2005/10/24 104 % 75-125 Total Antimony (Sb) 2005/10/24 104 % 75-125			Total Zine (Za)	2005/10/24	3.3		16	20
000000000000000000000000000000000000	848579 LCH	MATRIX SPIKE	Acid Extractable Marcuss (Lts)	2005/10/24	0.7		%	20
Build Structure Dub Structure 933 % 865 115 Method Blank Acid Extractable Mercury (Hg) 2005/10/24 ND DL=0.05 ug/g B485393 MME MATRIX SPIKE Itotal Antimony (Sb) 2005/10/24 NC % 75 125 B485393 MME Total Antimony (Sb) 2005/10/24 101 % 75 125 Total Arsenic (As) 2005/10/24 101 % 75 125 Total Arsenic (As) 2005/10/24 100 % 75 125 Total Chromium (Cr) 2005/10/24 96 % 75 125 Total Commum (Cr) 2005/10/24 97 % 75 125 Total Commum (Cr) 2005/10/24 97 % 75 125 Total Copper (Cu) 2005/10/24 97 % 75 125 Total Kerkel (Ni) 2005/10/24 97 % 75 125 Total Arsenic (As) 2005/10/24 98 % 75 <th>04007.0 E011</th> <th>OC STANDADD</th> <th>Acid Extractable Mercury (Hg)</th> <th>2005/10/24</th> <th></th> <th>95</th> <th>0/0</th> <th>75 - 125</th>	04007.0 E011	OC STANDADD	Acid Extractable Mercury (Hg)	2005/10/24		95	0/0	75 - 125
Base Procession Add Extractable Mercury (Hg) 2005/10/24 ND, DL=0.05 ug/g B48599 MME Add Extractable Mercury (Hg) 2005/10/24 NC % 75 B48599 MME MATRIX SPIRE Total Antimony (Sb) 2005/10/24 101 % 75 125 Total Cadmium (Cd) 2005/10/24 101 % 75 125 Total Cadmium (Cd) 2005/10/24 96 % 75 125 Total Cobatt (Co) 2005/10/24 97 % 75 125 Total Antime (Ch) 2005/10/24 97 % 75 125 Total Nekel (Ni) 2005/10/24 98 % 75 125 Total Antime (Ca) 2005/10/24 98 % 75 125 <		Soiked Block	Acid Extractable Mercury (Hg)	2005/10/24		93	°/o	85 - 115
Method Bakink PPD Acide ExtraCtable Mercury (Hig) 2005/10/24 NC % 35 248599 MME MATRIX SPIKE [I80739-01] Total Antimony (Sb) 2005/10/24 101 % 75-125 Total Arsenic (As) 2005/10/24 100 % 75-125 Total Barium (Ba) 2005/10/24 100 % 75-125 Total Commum (Cd) 2005/10/24 104 % 75-125 Total Commum (Cd) 2005/10/24 104 % 75-125 Total Commum (Cd) 2005/10/24 96 % 75-125 Total Commum (Cd) 2005/10/24 97 % 75-125 Total Copper (Cu) 2005/10/24 96 % 75-125 Total McKel (Ni) 2005/10/24 98 % 75-125 Total McKel (Ni) 2005/10/24 98 % 75-125 Total Silver (Ag) 2005/10/24 96 % 75-125 Total Arsenic (As) 2005/10/24 96 % 75-125 Total Arsenic (A		Mothed Dialik	Acid Extractable Mercury (Hg)	2005/10/24		102	%	75 - 125
B48599 MME MC % 35 B48599 MME MATRIX SPIKE 101 % 75-125 Total Antimony (Sb) 2005/10/24 101 % 75-125 Total Antimony (Sb) 2005/10/24 101 % 75-125 Total Arsenic (As) 2005/10/24 101 % 75-125 Total Arsenic (As) 2005/10/24 101 % 75-125 Total Cadmium (Cd) 2005/10/24 96 % 75-125 Total Cobatt (Co) 2005/10/24 97 % 75-125 Total Cobatt (Co) 2005/10/24 97 % 75-125 Total Active (Ni) 2005/10/24 98 % 75-125 Total Active (Ni) 2005/10/24 98 % 75-125 Total Assenic (As) 2005/10/24 98 % 75-125 Total Assenic (As) 2005/10/24 104 % 75-125 Total Assenic (As) 2005/10/24 104 % 75-125 Total Assenic (As) </th <th>1</th> <th></th> <th>Acid Extractable Mercury (Hg)</th> <th>2005/10/24</th> <th>ND, DL=</th> <th>0.05</th> <th>ug/g</th> <th></th>	1		Acid Extractable Mercury (Hg)	2005/10/24	ND, DL=	0.05	ug/g	
Corbost Mille Mini NA SPICE [180790-01] Total Ansenic (As) 2005/10/24 101 % 75 - 125 Total Baraim (Ba) 2005/10/24 100 % 75 - 125 Total Baraim (Ba) 2005/10/24 100 % 75 - 125 Total Baraim (Ba) 2005/10/24 96 % 75 - 125 Total Cardmium (Cd) 2005/10/24 96 % 75 - 125 Total Commum (Cd) 2005/10/24 97 % 75 - 125 Total Copper (Cu) 2005/10/24 97 % 75 - 125 Total Nockel (N) 2005/10/24 98 % 75 - 125 Total Nockel (N) 2005/10/24 98 % 75 - 125 Total Nockel (N) 2005/10/24 98 % 75 - 125 Total Nockel (N) 2005/10/24 96 % 75 - 125 Total Service (Ag) 2005/10/24 96 % 75 - 125 Total Asenic (As) 2005/10/24 104 % 75 - 125 <t< th=""><th>849500 MMC</th><th></th><th>Acid Extractable Mercury (Hg)</th><th>2005/10/24</th><th>NC</th><th></th><th>%</th><th>35</th></t<>	849500 MMC		Acid Extractable Mercury (Hg)	2005/10/24	NC		%	35
(Id0730-01) Total Antimony (Sb) 2005/10/24 101 % 75:125 Total Barium (Ga) 2005/10/24 100 % 75:125 Total Barium (Ga) 2005/10/24 100 % 75:125 Total Barium (Ca) 2005/10/24 101 % 75:125 Total Commum (Cr) 2005/10/24 96 % 75:125 Total Commum (Cr) 2005/10/24 97 % 75:125 Total Cobatt (Co) 2005/10/24 97 % 75:125 Total Copper (Cu) 2005/10/24 97 % 75:125 Total Molybdenum (Mo) 2005/10/24 98 % 75:125 Total Stelenium (Se) 2005/10/24 103 % 75:125 Total Stiver (Ag) 2005/10/24 104 % 75:125 Total Stiver (Ag) 2005/10/24 104 % 75:125 Total Assenic (As) 2005/10/24 104 % 75:125 Total Assenic (As) 2005/10/24 104 %	040399 MIMIE	MATHIX SPIKE	Tetel Antiper (OL)					
Iotal Arsenic (As) 2005/10/24 101 % 75 - 125 Total Beryllium (Be) 2005/10/24 101 % 75 - 125 Total Commum (Cd) 2005/10/24 104 % 75 - 125 Total Commum (Cd) 2005/10/24 96 % 75 - 125 Total Commum (Cd) 2005/10/24 97 % 75 - 125 Total Coper (Cu) 2005/10/24 97 % 75 - 125 Total Coper (Cu) 2005/10/24 97 % 75 - 125 Total Mickel (Ni) 2005/10/24 98 % 75 - 125 Total Nickel (Ni) 2005/10/24 96 % 75 - 125 Total Silver (Ag) 2005/10/24 96 % 75 - 125 Total Arsenic (As) 2005/10/24 104 % 75 - 125 Total Arsenic (As) 2005/10/24 104 % 75 - 125 Total Arsenic (As) 2005/10/24 104 % 75 - 125 Total Arsenic (As) 2005/10/24 104 % <		[180/90-01]	Total Antimony (Sb)	2005/10/24		101	%	75 - 125
Iotal Banum (Isa) 2005/10/24 100 % 75-125 Total Beryllium (ISa) 2005/10/24 96 % 75-125 Total Cadmium (Cr) 2005/10/24 96 % 75-125 Total Cobait (Co) 2005/10/24 97 % 75-125 Total Copper (Cu) 2005/10/24 97 % 75-125 Total Copper (Cu) 2005/10/24 99 % 75-125 Total Lead (Pb) 2005/10/24 98 % 75-125 Total Molybdenum (Mo) 2005/10/24 98 % 75-125 Total Selenium (Se) 2005/10/24 96 % 75-125 Total Selenium (Se) 2005/10/24 96 % 75-125 Total Selenium (Sa) 2005/10/24 96 % 75-125 Total Trailum (Ti) 2005/10/24 96 % 75-125 Total Assenic (As) 2005/10/24 104 % 75-125 Total Assenic (As) 2005/10/24 104 % 75-125 <			Total Arsenic (As)	2005/10/24		101	٥,0	75 - 125
Iotal Beryllum (Be) 2005/10/24 101 % 75-125 Total Cadmium (Cd) 2005/10/24 104 % 75-125 Total Chomium (Cr) 2005/10/24 97 % 75-125 Total Copper (Cu) 2005/10/24 97 % 75-125 Total Copper (Cu) 2005/10/24 97 % 75-125 Total Mokel (Ni) 2005/10/24 98 % 75-125 Total Selenium (Se) 2005/10/24 98 % 75-125 Total Selenium (Se) 2005/10/24 98 % 75-125 Total Selenium (Se) 2005/10/24 96 % 75-125 Total Siver (Ag) 2005/10/24 104 % 75-125 Total Siver (Ag) 2005/10/24 104 % 75-125 Total Assenic (As) 2005/10/24 104 % 75-125 Total Assenic (As) 2005/10/24 104 % 75-125 Total Assenic (As) 2005/10/24 104 % 75-125 <th></th> <td></td> <th>Total Banum (Ba)</th> <td>2005/10/24</td> <td></td> <td>100</td> <td>%</td> <td>75 - 125</td>			Total Banum (Ba)	2005/10/24		100	%	75 - 125
Iotal Cadmum (Cd) 2005/10/24 96 % 75-125 Total Chomium (Cr) 2005/10/24 97 % 75-125 Total Cobat (Co) 2005/10/24 97 % 75-125 Total Copper (Cu) 2005/10/24 97 % 75-125 Total Molybdenum (Mo) 2005/10/24 97 % 75-125 Total Molybdenum (Mo) 2005/10/24 98 % 75-125 Total Molybdenum (Mo) 2005/10/24 98 % 75-125 Total Selenium (Se) 2005/10/24 96 % 75-125 Total Selenium (Se) 2005/10/24 96 % 75-125 Total Silver (Ag) 2005/10/24 103 % 75-125 Total Total Zinc (Zn) 2005/10/24 104 % 75-125 Total Total Xasenic (As) 2005/10/24 104 % 75-125 Total Chardium (V) 2005/10/24 103 % 75-125 Total Arsenic (As) 2005/10/24 104 % 71			Total Beryllium (Be)	2005/10/24		101	%	75 - 125
Total Chromium (Cr) 2005/10/24 104 % 75 - 125 Total Coper (Cu) 2005/10/24 97 % 75 - 125 Total Lead (Pb) 2005/10/24 97 % 75 - 125 Total Mickel (Ni) 2005/10/24 97 % 75 - 125 Total Selenium (Se) 2005/10/24 98 % 75 - 125 Total Selenium (Se) 2005/10/24 98 % 75 - 125 Total Selenium (Se) 2005/10/24 96 % 75 - 125 Total Siver (Ag) 2005/10/24 96 % 75 - 125 Total Vanadium (V) 2005/10/24 96 % 75 - 125 Total Vanadium (V) 2005/10/24 96 % 75 - 125 Total Ansenic (As) 2005/10/24 94 % 76 - 125 Total Zinc (Zn) 2005/10/24 104 % 75 - 125 Total Coper (Cu) 2005/10/24 106 % 76 - 125 Total Zinc (Zn) 2005/10/24 106 % 76 - 125 Total Coper (Cu) 2005/10/24 106 % <			Total Cadmium (Cd)	2005/10/24		96	9%	75 - 125
Total Cobatt (Co) 2005/10/24 97 % 75-125 Total Copper (Cu) 2005/10/24 97 % 75-125 Total Motybdenum (Mo) 2005/10/24 97 % 75-125 Total Motybdenum (Mo) 2005/10/24 98 % 75-125 Total Setenium (Se) 2005/10/24 98 % 75-125 Total Setenium (Se) 2005/10/24 96 % 75-125 Total Thallum (TI) 2005/10/24 103 % 75-125 Total Thallum (TI) 2005/10/24 104 % 75-125 Total Thallum (TI) 2005/10/24 104 % 75-125 Total Thallum (TI) 2005/10/24 104 % 75-125 Total Cobatt (Co) 2005/10/24 104 % 75-125 Total Arsenic (As) 2005/10/24 104 % 75-125 Total Cobatt (Co) 2005/10/24 106 % 73-125 Total Arsenic (As) 2005/10/24 106 % 73-125 <th></th> <th></th> <th>Total Chromium (Cr)</th> <th>2005/10/24</th> <th></th> <th>104</th> <th>9/0</th> <th>75 - 125</th>			Total Chromium (Cr)	2005/10/24		104	9/0	75 - 125
Total Copper (Cu) 2005/10/24 99 % 75-125 Total Molydenum (Mo) 2005/10/24 101 % 75-125 Total Nickel (Ni) 2005/10/24 98 % 75-125 Total Selenium (Se) 2005/10/24 96 % 75-125 Total Siver (Ag) 2005/10/24 96 % 75-125 Total Siver (Ag) 2005/10/24 103 % 75-125 Total Siver (Ag) 2005/10/24 104 % 75-125 Total Ansenic (As) 2005/10/24 104 % 75-125 Total Zinc (Zn) 2005/10/24 104 % 75-125 Total Arsenic (As) 2005/10/24 106 % 70-130 Total Chronium (Cr) 2005/10/24 106 % 70-130 Total Copper (Cu) 2005/10/24 104 % 61-139 Total Copper (Cu) 2005/10/24 104 % 61-139 Total Arsenic (As) 2005/10/24 104 % 61-139			Total Cobalt (Co)	2005/10/24		97	%	75 - 125
Total Lead (Pb) 2005/10/24 97 % 75 125 Total Molyddenum (Mo) 2005/10/24 98 % 75 125 Total Nickel (Ni) 2005/10/24 98 % 75 125 Total Silver (Ag) 2005/10/24 96 % 75 125 Total Total Total Silver (Ag) 2005/10/24 96 % 75 125 Total Total Total Total Total Total Can 2005/10/24 94 % 75 125 Total Zinc (Zn) 2005/10/24 94 % 75 125 Total Zinc (Zn) 2005/10/24 93 % 40 160 Total Arisenic (As) 2005/10/24 106 % 75 125 Total Cobatl (Co) 2005/10/24 103 % 40 160 75 125 Total Cobatl (Co) 2005/10/24 104 % 75 125 Total Arisenic (As) 2005/10/24 103 % 54 146 <t< th=""><th></th><th></th><th>Total Copper (Cu)</th><th>2005/10/24</th><th></th><th>99</th><th>%</th><th>75 - 125</th></t<>			Total Copper (Cu)	2005/10/24		99	%	75 - 125
Total Molybdenum (Mo) 2005/10/24 101 % 75.125 Total Nickel (Ni) 2005/10/24 96 % 75.125 Total Selenium (Se) 2005/10/24 103 % 75.125 Total Silver (Ag) 2005/10/24 103 % 75.125 Total Thallum (TI) 2005/10/24 104 % 75.125 Total Znac (Zn) 2005/10/24 104 % 75.125 Total Znac (Zn) 2005/10/24 104 % 75.125 Total Arsenic (As) 2005/10/24 106 % 70.130 Total Cobatt (Co) 2005/10/24 106 % 73.127 Total Cobatt (Co) 2005/10/24 104 % 73.127 Total Cobatt (Co) 2005/10/24 104 % 73.127 Total Cobatt (Clo) 2005/10/24 104 % 73.127 Total Cobatt (Clo) 2005/10/24 104 % 73.127 Total Cobatt (Co) 2005/10/24 104 % 72.128 <			Total Lead (Pb)	2005/10/24		97	%	75 - 125
Total Nickel (Ni) 2005/10/24 98 % 75 - 125 Total Selenium (Se) 2005/10/24 96 % 75 - 125 Total Silver (Ag) 2005/10/24 96 % 75 - 125 Total Vanadium (V) 2005/10/24 96 % 75 - 125 Total Vanadium (V) 2005/10/24 94 % 75 - 125 Total Zinc (Zn) 2005/10/24 103 % 75 - 125 OC STANDARD Total Arsenic (As) 2005/10/24 106 % 70 - 130 Total Cobper (Cu) 2005/10/24 106 % 75 - 125 Total Cobper (Cu) 2005/10/24 106 % 75 - 125 Total Cobper (Cu) 2005/10/24 104 % 73 - 125 Total Cobper (Cu) 2005/10/24 104 % 73 - 125 Total Cobper (Cu) 2005/10/24 104 % 73 - 125 Total Cobper (Cu) 2005/10/24 104 % 72 - 128 Total Cobatt (Co) 2005/10/24 ND, DL=1<			Total Molybdenum (Mo)	2005/10/24		101	%	75 - 125
Total Selenium (Se) 2005/10/24 96 % 75 · 125 Total Silver (Ag) 2005/10/24 103 % 75 · 125 Total Thallium (TI) 2005/10/24 104 % 75 · 125 Total Vanadium (V) 2005/10/24 104 % 75 · 125 OC STANDARD Total Arsenic (As) 2005/10/24 106 % 70 · 130 Total Arsenic (As) 2005/10/24 106 % 70 · 130 Total Cobalt (Co) 2005/10/24 106 % 75 · 125 Total Cobalt (Co) 2005/10/24 106 % 70 · 130 Total Cobalt (Co) 2005/10/24 106 % 75 · 125 Total Cobalt (Co) 2005/10/24 104 % 75 · 125 Total Cobalt (Co) 2005/10/24 104 % 75 · 125 Total Cobalt (Co) 2005/10/24 104 % 75 · 125 Total Cobalt (Co) 2005/10/24 104 % 75 · 125 Total Arsenic (As) 2005/10/24 104 % 75 · 125 Total Antimony (Sb) 2005/10/24 <th></th> <th></th> <th>Total Nickel (Ni)</th> <th>2005/10/24</th> <th></th> <th>98</th> <th>%</th> <th>75 - 125</th>			Total Nickel (Ni)	2005/10/24		98	%	75 - 125
Total Silver (Ag) 2005/10/24 103 % 75-125 Total Thallium (TI) 2005/10/24 96 % 75-125 Total Vanadium (V) 2005/10/24 94 % 75-125 Total Zinc (Zn) 2005/10/24 113 % 30-170 Total Arsenic (As) 2005/10/24 113 % 30-170 Total Arsenic (As) 2005/10/24 106 % 75-125 QC STANDARD Total Arsenic (As) 2005/10/24 106 % 75-125 Total Chromium (Cr) 2005/10/24 106 % 75-125 Total Cobatt (Co) 2005/10/24 104 % 73-127 Total Cobatt (Co) 2005/10/24 104 % 61-139 Total Ansenic (Ni) 2005/10/24 104 % 72-128 Total Anickel (Ni) 2005/10/24 ND, DL=1 ug/g 1212 % 50-150 Total Animory (Sb) 2005/10/24 ND, DL=0.5 ug/g 1212 % 50-150 10/24 <th></th> <th></th> <th>Total Selenium (Se)</th> <th>2005/10/24</th> <th></th> <th>96</th> <th>0/ /0</th> <th>75 - 125</th>			Total Selenium (Se)	2005/10/24		96	0/ /0	75 - 125
Total Thallium (TI) 2005/10/24 96 % 75 - 125 Total Zina (Zn) 2005/10/24 104 % 75 - 125 CC STANDARD Total Arsenic (As) 2005/10/24 113 % 30 - 170 Total Arsenic (As) 2005/10/24 106 % 70 - 130 Total Arsenic (As) 2005/10/24 93 % 40 - 160 Total Chomium (Cr) 2005/10/24 106 % 75 - 125 Total Cobalt (Co) 2005/10/24 106 % 75 - 125 Total Chomium (Cr) 2005/10/24 106 % 75 - 125 Total Cobalt (Co) 2005/10/24 104 % 75 - 125 Total Cobalt (Co) 2005/10/24 104 % 75 - 125 Total Cad Poper (Cu) 2005/10/24 104 % 75 - 125 Total Aritimony (Sb) 2005/10/24 104 % 75 - 125 Total Antimony (Sb) 2005/10/24 ND, DL=1 ug/g 104 % 72 - 128 Method Blan			Total Silver (Ag)	2005/10/24		103	%	75 - 125
Total Vanadium (V) 2005/10/24 104 % 75 - 125 Total Zinc (Zn) 2005/10/24 113 % 30 - 170 QC STANDARD Total Arsenic (As) 2005/10/24 106 % 75 - 125 OC STANDARD Total Arsenic (As) 2005/10/24 106 % 70 - 130 Total Chromium (Cr) 2005/10/24 106 % 75 - 125 Total Chromium (Cr) 2005/10/24 106 % 75 - 125 Total Cobatt (Co) 2005/10/24 104 % 73 - 127 Total Cobatt (Co) 2005/10/24 104 % 73 - 127 Total Copper (Cu) 2005/10/24 104 % 61 - 139 Total Anditom (V) 2005/10/24 104 % 61 - 139 Total Anadium (V) 2005/10/24 104 % 72 - 128 Method Blank Total Antimony (Sb) 2005/10/24 ND, DL=1 ug/g Total Antimony (Sb) 2005/10/24 ND, DL=0.5 ug/g Total Berylium (Be) 2005/10/24 ND, DL=0.5 ug/g Total Cobatt (Co) 2			Total Thallium (TI)	2005/10/24		96	%	75 - 125
Total Zinc (Zn) 2005/10/24 94 % 75 : 125 QC STANDARD Total Arsenic (As) 2005/10/24 113 % 30 : 170 Total Arsenic (As) 2005/10/24 106 % 70 : 130 Total Chromium (Cr) 2005/10/24 105 % 75 : 125 Total Cobatt (Co) 2005/10/24 105 % 75 : 125 Total Cobatt (Co) 2005/10/24 104 % 73 : 127 Total Lead (Pb) 2005/10/24 104 % 61 : 139 Total Vanadium (V) 2005/10/24 104 % 72 : 128 Method Blank Total Antimony (Sb) 2005/10/24 ND, DL=1 ug/g Total Arsenic (As) 2005/10/24 ND, DL=0.5 ug/g Total Barium (Ba) 2005/10/24 ND, DL=0.5 ug/g Total Barium (Cd) 2005/10/24 ND, DL=0.5 ug/g Total Arsenic (Ca) 2005/10/24 ND, DL=0.5 ug/g Total Cadmium (Cd) 2005/10/24 ND, DL=0.5 ug/g <t< th=""><th></th><th></th><th>Total Vanadium (V)</th><th>2005/10/24</th><th></th><th>104</th><th>%</th><th>75 - 125</th></t<>			Total Vanadium (V)	2005/10/24		104	%	75 - 125
CC STANDARD Total Arsenic (As) 2005/10/24 113 % 30 - 170 Total Barium (Ba) 2005/10/24 106 % 70 - 130 Total Conmium (Cr) 2005/10/24 105 % 75 - 125 Total Copper (Cu) 2005/10/24 103 % 54 - 146 Total Vanadium (V) 2005/10/24 104 % 72 - 128 Total Vanadium (V) 2005/10/24 104 % 72 - 128 Total Vanadium (V) 2005/10/24 104 % 72 - 128 Total Arsenic (As) 2005/10/24 104 % 72 - 128 Method Blank Total Antimony (Sb) 2005/10/24 ND, DL=1 ug/g Total Arsenic (As) 2005/10/24 ND, DL=0.5 ug/g Total Barium (Ba) 2005/10/24 ND, DL=0.5 ug/g Total Arsenic (As) 2005/10/24 ND, DL=0.5 ug/g Total Arsenic (As) 2005/10/24 ND, DL=0.5 ug/g Total Cobalt (Cd) 2005/10/24 ND, DL=0.5 ug/g			Total Zinc (Zn)	2005/10/24		94	%	75 - 125
Total Barium (Ba) 2005/10/24 106 % 70 - 130 Total Chromium (Cr) 2005/10/24 93 % 40 - 160 Total Cobalt (Co) 2005/10/24 105 % 75 - 125 Total Copper (Cu) 2005/10/24 103 % 54 - 146 Total Nickel (Ni) 2005/10/24 104 % 61 - 139 Total Vanadium (V) 2005/10/24 104 % 61 - 139 Total Vanadium (V) 2005/10/24 104 % 61 - 139 Total Vanadium (V) 2005/10/24 104 % 61 - 139 Total Zinc (Zn) 2005/10/24 ND, DL=1 ug/g Total Arsenic (As) 2005/10/24 ND, DL=1 ug/g Total Barium (Ba) 2005/10/24 ND, DL=0.5 ug/g Total Barium (Ba) 2005/10/24 ND, DL=0.5 ug/g Total Cobalt (Co) 2005/10/24<		QC STANDARD	Total Arsenic (As)	2005/10/24		113	9/0	30 - 170
Total Chromium (Cr) 2005/10/24 93 % 40 - 160 Total Cobatt (Co) 2005/10/24 105 % 75 - 125 Total Copper (Cu) 2005/10/24 103 % 54 - 146 Total Lead (Pb) 2005/10/24 104 % 61 - 139 Total Xanadium (V) 2005/10/24 104 % 61 - 139 Total Xanadium (V) 2005/10/24 104 % 61 - 139 Total Xanadium (V) 2005/10/24 104 % 61 - 139 Total Animony (Sb) 2005/10/24 ND, DL=1 ug/g Total Animony (Sb) 2005/10/24 ND, DL=1 ug/g Total Baruim (Ba) 2005/10/24 ND, DL=0.5 ug/g Total Chromium (Cr) 2005/10/24 ND, DL=0.5 ug/g Total Cobatt (Co) 2005/10/24			Total Barium (Ba)	2005/10/24		106	%	70 - 130
Total Cobalt (Co) 2005/10/24 105 % 75 - 125 Total Copper (Cu) 2005/10/24 104 % 73 - 127 Total Lead (Pb) 2005/10/24 103 % 54 - 146 Total Nickel (Ni) 2005/10/24 104 % 61 - 139 Total Vanadium (V) 2005/10/24 104 % 72 - 128 Total Anadium (V) 2005/10/24 104 % 72 - 128 Method Blank Total Arsenic (As) 2005/10/24 ND, DL=1 ug/g Total Arsenic (As) 2005/10/24 ND, DL=1 ug/g Total Baryllium (Ba) 2005/10/24 ND, DL=0.5 ug/g Total Chromium (Cd) 2005/10/24 ND, DL=0.5 ug/g Total Cobalt (Co) 2005/10/			Total Chromium (Cr)	2005/10/24		93	%	40 - 160
Total Copper (Cu) 2005/10/24 104 % 73 - 127 Total Lead (Pb) 2005/10/24 103 % 54 - 146 Total Nickel (Ni) 2005/10/24 104 % 61 - 139 Total Vanadium (V) 2005/10/24 104 % 61 - 139 Total Vanadium (V) 2005/10/24 104 % 72 - 128 Method Blank Total Antimony (Sb) 2005/10/24 ND, DL=1 ug/g Total Arsenic (As) 2005/10/24 ND, DL=1 ug/g Total Barium (Ba) 2005/10/24 ND, DL=0.5 ug/g Total Cadmium (Cd) 2005/10/24 ND, DL=0.5 ug/g Total Cadmium (Cd) 2005/10/24 ND, DL=0.5 ug/g Total Cobper (Cu) 2005/10/24 ND, DL=0.5 ug/g Total Molybdenum (Mo) 2005/10/24			Total Cobalt (Co)	2005/10/24		105	%	75 - 125
Total Lead (Pb) 2005/10/24 103 % 54 - 146 Total Nickel (Ni) 2005/10/24 104 % 61 - 139 Total Vanadium (V) 2005/10/24 112 % 50 - 150 Total Zinc (Zn) 2005/10/24 104 % 72 - 128 Method Blank Total Antimony (Sb) 2005/10/24 ND, DL=1 ug/g Total Bary Total Arsenic (As) 2005/10/24 ND, DL=1 ug/g Total Beryllium (Ba) 2005/10/24 ND, DL=0.5 ug/g Total Cadmium (Cd) 2005/10/24 ND, DL=0.5 ug/g Total Cobalt (Co) 2005/10/24 ND, DL=0.5 ug/g Total Motybdenum (Mo) 2005/10/24 ND, DL=0.5 ug/g Total Motybdenum (Mo) 2005/10/24 ND, DL=0.5 ug/g Total Nickel (Ni) 2005/10/24 ND, DL=0.5 ug/g Total Motybdenum (Mo)			Total Copper (Cu)	2005/10/24		104	%	73 - 127
Total Nickel (Ni) 2005/10/24 104 % 61 - 139 Total Vanadium (V) 2005/10/24 112 % 50 - 150 Total Zinc (Zn) 2005/10/24 ND, DL = 1 ug/g Method Blank Total Arsenic (As) 2005/10/24 ND, DL = 1 ug/g Total Arsenic (As) 2005/10/24 ND, DL = 1 ug/g Total Barum (Ba) 2005/10/24 ND, DL=0.5 ug/g Total Beryllium (Be) 2005/10/24 ND, DL=0.5 ug/g Total Cadmium (Cd) 2005/10/24 ND, DL=0.5 ug/g Total Chromium (Cr) 2005/10/24 ND, DL=0.5 ug/g Total Cobalt (Co) 2005/10/24 ND, DL=0.5 ug/g Total Cobalt (Co) 2005/10/24 ND, DL=0.5 ug/g Total Molybdenum (Mo) 2005/10/24 ND, DL=0.5 ug/g Total Molybdenum (Mo) 2005/10/24 ND, DL=0.5 ug/g Total Molybdenum (Mo) 2005/10/24 ND, DL=0.5 ug/g Total Selenium (Se) 2005/10/24 ND, DL=0.5 ug/g Total Selenium (Se) 2005/10/24 ND, DL=0.3			Total Lead (Pb)	2005/10/24		103	%	54 - 146
Total Vanadium (V) 2005/10/24 112 % 50 - 150 Total Zinc (Zn) 2005/10/24 104 % 72 - 128 Method Blank Total Antimony (Sb) 2005/10/24 ND, DL=1 ug/g Total Ansenic (As) 2005/10/24 ND, DL=1 ug/g Total Barium (Ba) 2005/10/24 ND, DL=0.5 ug/g Total Cadmium (Cd) 2005/10/24 ND, DL=0.5 ug/g Total Cadmium (Cf) 2005/10/24 ND, DL=0.5 ug/g Total Cobalt (Co) 2005/10/24 ND, DL=0.5 ug/g Total Cobalt (Co) 2005/10/24 ND, DL=0.5 ug/g Total Cobalt (Co) 2005/10/24 ND, DL=0.5 ug/g Total Copper (Cu) 2005/10/24 ND, DL=0.5 ug/g Total Molybdenum (Mo) 2005/10/24 ND, DL=1 ug/g Total Selenium (Se) 2005/10/24 ND, DL=0.5 ug/g Total Selenium (Se) 2005/10/24 ND, DL=0.5 ug/g Total Antickel (Ni) 2005/10/24 ND, DL=0.5 ug/g Total Selenium (Se) 2005/10/24 ND, DL=0.5 ug/g			Total Nickel (Ni)	2005/10/24		104	%	61 - 139
Total Zinc (Zn) 2005/10/24 104 % 72 - 128 Method Blank Total Antimony (Sb) 2005/10/24 ND, DL=1 ug/g Total Arsenic (As) 2005/10/24 ND, DL=1 ug/g Total Barium (Ba) 2005/10/24 ND, DL=0.5 ug/g Total Beryllium (Be) 2005/10/24 ND, DL=0.5 ug/g Total Codmium (Cd) 2005/10/24 ND, DL=0.5 ug/g Total Cobalt (Coo 2005/10/24 ND, DL=0.5 ug/g Total Cobalt (Co) 2005/10/24 ND, DL=0.5 ug/g Total Motybdenum (Mo) 2005/10/24 ND, DL=0.5 ug/g Total Selenium (Se) 2005/10/24 ND, DL=0.5 ug/g			Total Vanadium (V)	2005/10/24		112	%	50 - 150
Method Blank Total Antimony (Sb) 2005/10/24 ND, DL=1 ug/g Total Arsenic (As) 2005/10/24 ND, DL=1 ug/g Total Barium (Ba) 2005/10/24 ND, DL=0.5 ug/g Total Beryllium (Be) 2005/10/24 ND, DL=0.5 ug/g Total Cadmium (Cd) 2005/10/24 ND, DL=0.5 ug/g Total Cobalt (Co) 2005/10/24 ND, DL=0.5 ug/g Total Molybdenum (Mo) 2005/10/24 ND, DL=1 ug/g Total Nickel (Ni) 2005/10/24 ND, DL=1 ug/g Total Selenium (Se) 2005/10/24 ND, DL=0.3 ug/g Total Silver (Ag) 2005/10/24 ND, DL=0.3 ug/g Total Si			Total Zinc (Zn)	2005/10/24		104	%	72 - 128
Total Arsenic (As)2005/10/24ND. DL=1ug/gTotal Barium (Ba)2005/10/24ND. DL=0.5ug/gTotal Beryllium (Be)2005/10/24ND. DL=0.5ug/gTotal Cadmium (Cd)2005/10/24ND. DL=0.3ug/gTotal Chromium (Cr)2005/10/24ND. DL=0.5ug/gTotal Cobalt (Co)2005/10/24ND. DL=0.5ug/gTotal Cobalt (Co)2005/10/24ND. DL=0.5ug/gTotal Copper (Cu)2005/10/24ND. DL=0.5ug/gTotal Lead (Pb)2005/10/24ND. DL=1ug/gTotal Nickel (Ni)2005/10/24ND. DL=0.5ug/gTotal Selenium (Se)2005/10/24ND. DL=1ug/gTotal Silver (Ag)2005/10/24ND. DL=0.3ug/gTotal Thallium (TI)2005/10/24ND. DL=1ug/g		Method Blank	Total Antimony (Sb)	2005/10/24	ND, DL=	1	ua/a	
Total Barium (Ba)2005/10/24ND. DL=0.5ug/gTotal Beryllium (Be)2005/10/24ND. DL=0.5ug/gTotal Cadmium (Cd)2005/10/24ND. DL=0.3ug/gTotal Chromium (Cr)2005/10/24ND. DL=0.5ug/gTotal Cobalt (Co)2005/10/24ND. DL=0.5ug/gTotal Copper (Cu)2005/10/24ND. DL=0.5ug/gTotal Lead (Pb)2005/10/24ND. DL=1ug/gTotal Molybdenum (Mo)2005/10/24ND. DL=0.5ug/gTotal Nickel (Ni)2005/10/24ND. DL=0.5ug/gTotal Selenium (Se)2005/10/24ND. DL=1ug/gTotal Silver (Ag)2005/10/24ND. DL=0.3ug/gTotal Thallium (Ti)2005/10/24ND. DL=1ug/g			Total Arsenic (As)	2005/10/24	ND, DL=1		ug/g	
Total Beryllium (Be)2005/10/24ND. DL=0.5ug/gTotal Cadmium (Cd)2005/10/24ND. DL=0.3ug/gTotal Chromium (Cr)2005/10/24ND. DL=0.5ug/gTotal Cobalt (Co)2005/10/24ND. DL=0.5ug/gTotal Copper (Cu)2005/10/24ND. DL=0.5ug/gTotal Lead (Pb)2005/10/24ND. DL=1ug/gTotal Molybdenum (Mo)2005/10/24ND. DL=0.5ug/gTotal Nickel (Ni)2005/10/24ND. DL=0.5ug/gTotal Selenium (Se)2005/10/24ND. DL=1ug/gTotal Silver (Ag)2005/10/24ND. DL=0.3ug/gTotal Thallium (TI)2005/10/24ND. DL=1ug/g			Total Barium (Ba)	2005/10/24	ND, DL=().5	ua/a	
Total Cadmium (Cd)2005/10/24ND, DL=0.3ug/gTotal Chromium (Cr)2005/10/24ND, DL=0.5ug/gTotal Cobalt (Co)2005/10/24ND, DL=0.5ug/gTotal Copper (Cu)2005/10/24ND, DL=0.5ug/gTotal Lead (Pb)2005/10/24ND, DL=1ug/gTotal Molybdenum (Mo)2005/10/24ND, DL=0.5ug/gTotal Nickel (Ni)2005/10/24ND, DL=0.5ug/gTotal Selenium (Se)2005/10/24ND, DL=1ug/gTotal Silver (Ag)2005/10/24ND, DL=0.3ug/gTotal Thallium (Tl)2005/10/24ND, DL=1ug/g			Total Beryllium (Be)	2005/10/24	ND, DL=0).5	ua/a	
Total Chromium (Cr) 2005/10/24 ND. DL=0.5 ug/g Total Cobalt (Co) 2005/10/24 ND. DL=0.5 ug/g Total Copper (Cu) 2005/10/24 ND. DL=0.5 ug/g Total Lead (Pb) 2005/10/24 ND. DL=1 ug/g Total Molybdenum (Mo) 2005/10/24 ND. DL=0.5 ug/g Total Nickel (Ni) 2005/10/24 ND. DL=0.5 ug/g Total Selenium (Se) 2005/10/24 ND. DL=1 ug/g Total Silver (Ag) 2005/10/24 ND. DL=0.3 ug/g Total Thallium (TI) 2005/10/24 ND. DL=1 ug/g			Total Cadmium (Cd)	2005/10/24	ND, DL=0).3	ua/a	
Total Cobalt (Co) 2005/10/24 ND, DL=0.5 ug/g Total Copper (Cu) 2005/10/24 ND, DL=0.5 ug/g Total Lead (Pb) 2005/10/24 ND, DL=1 ug/g Total Molybdenum (Mo) 2005/10/24 0.8, DL=0.5 ug/g Total Nickel (Ni) 2005/10/24 ND, DL=0.5 ug/g Total Selenium (Se) 2005/10/24 ND, DL=1 ug/g Total Silver (Ag) 2005/10/24 ND, DL=0.3 ug/g Total Thallium (Tl) 2005/10/24 ND, DL=1 ug/g			Total Chromium (Cr)	2005/10/24	ND. DL=0) 5	ua/a	
Total Copper (Cu) 2005/10/24 ND, DL=0.5 ug/g Total Lead (Pb) 2005/10/24 ND, DL=1 ug/g Total Molybdenum (Mo) 2005/10/24 ND, DL=0.5 ug/g Total Nickel (Ni) 2005/10/24 ND, DL=0.5 ug/g Total Selenium (Se) 2005/10/24 ND, DL=1 ug/g Total Silver (Ag) 2005/10/24 ND, DL=0.3 ug/g Total Thallium (TI) 2005/10/24 ND, DL=1 ug/g			Total Cobalt (Co)	2005/10/24	ND. DL=0).5	ua/a	
Total Lead (Pb) 2005/10/24 ND, DL=1 ug/g Total Molybdenum (Mo) 2005/10/24 0.8, DL=0.5 ug/g Total Nickel (Ni) 2005/10/24 ND, DL=0.5 ug/g Total Selenium (Se) 2005/10/24 ND, DL=1 ug/g Total Silver (Ag) 2005/10/24 ND, DL=0.3 ug/g Total Thallium (TI) 2005/10/24 ND, DL=1 ug/g			Total Copper (Cu)	2005/10/24	ND. DL=).5		
Total Molybdenum (Mo) 2005/10/24 0.8, DL=0.5 ug/g Total Nickel (Ni) 2005/10/24 ND, DL=0.5 ug/g Total Selenium (Se) 2005/10/24 ND, DL=1 ug/g Total Silver (Ag) 2005/10/24 ND, DL=0.3 ug/g Total Thallium (TI) 2005/10/24 ND, DL=1 ug/g			Total Lead (Pb)	2005/10/24	ND DI =1		-9/9 U0/0	
Total Nickel (Ni) 2005/10/24 ND, DL=0.5 ug/g Total Selenium (Se) 2005/10/24 ND, DL=1 ug/g Total Silver (Ag) 2005/10/24 ND, DL=0.3 ug/g Total Thallium (TI) 2005/10/24 ND, DL=1 ug/g			Total Molybdenum (Mo)	2005/10/24	0.8 DL-0).5	-9-9 uo/n	
Total Selenium (Se) 2005/10/24 ND, DL=1 ug/g Total Silver (Ag) 2005/10/24 ND, DL=0.3 ug/g Total Thallium (TI) 2005/10/24 ND, DL=1 ug/g			Total Nickel (Ni)	2005/10/24	ND DI -0).5		
Total Silver (Ag) 2005/10/24 ND, DL=0.3 ug/g Total Thallium (TI) 2005/10/24 ND, DL=1 ug/g			Total Selenium (Se)	2005/10/24	ND DI -1		9/9 ua/a	
Total Thallium (Tl) 2005/10/24 ND, DL=1 ug/g			Total Silver (Ag)	2005/10/24		13	ug/g	
			Total Thallium (Ti)	2005/10/24	ND DI -1	.,	ug/g	
•				2000 10/24	ND, 0L-		ugry	

This document is in electronic format, hard copy is available on request.

6740 Campobello Road, Mississauga, Ontario Canada L5N 2L8 Tel: 905-817-5700 Toll free:800-563-6266 Fax: 905-817-5777

Quality Assurance Report (Continued) Maxxam Job Number: MA5A3629

QA/QC			Date			
Batch			Analyzed			
Num Init	QC Type	Parameter	yyyy/mm/dd	Value Recovery	Units	QC Limits
848599 MME	Method Blank	Total Vanadium (V)	2005/10/24	ND, DL=0.5	ug/g	
		Total Zinc (Zn)	2005/10/24	ND, DL=3	ug/g	
	RPD [180790-01]	Total Antimony (Sb)	2005/10/24	NC	%	20
		Total Arsenic (As)	2005/10/24	NC	%	20
		Total Barium (Ba)	2005/10/24	1.1	%	20
		Total Beryllium (Be)	2005/10/24	NC	%	20
		Total Cadmium (Cd)	2005/10/24	NC	%	20
		Total Chromium (Cr)	2005/10/24	1.9	%	20
		Total Cobalt (Co)	2005/10/24	1.1	9/0	20
		Total Copper (Cu)	2005/10/24	3.4	%	20
		Total Lead (Pb)	2005/10/24	2.4	%	20
		Total Molybdenum (Mo)	2005/10/24	NC	%	20
		Total Nickel (Ni)	2005/10/24	2.9	0/ /0	20
		Total Selenium (Se)	2005/10/24	NC	%	20
		Total Silver (Ag)	2005/10/24	NC	%	20
		Total Thallium (TI)	2005/10/24	NC	%	20
		Total Vanadium (V)	2005/10/24	3.0	%	20
		Total Zinc (Zn)	2005/10/24	4.0	%	20
ND = Not detect N/A = Not Applic NC = Non-calcu RPD = Relative QC Standard = (SPIKE = Fortifie	ed cable lable Percent Difference Quality Control Stand d sample	dard				

Page 35 of 35

This document is in electronic format, hard copy is available on request.

6740 Campobelio Road, Mississauga, Ontano Canada L5N 2L8 Tel: 905-817-5700 Toll free: 800-563-6266 Fax: 905-817-5777

TRUSTED. Responsive. Reliable. 300-2319 St. Laurent Blvd, Ottawa, Ontario K1G 4J8 pt 1-800-749-1947

e paracel@paracellabs.com

www.paracellabs.com

OTTAWA 🖲 NIAGARA FALLS 💿 MISSISSAUGA 💽 SARNIA

Certificate of Analysis

Trow Associates Inc. (Ottawa)

154 Colonnade Rd. S Ottawa, ON K2E 7J5 Attn: Mark McCalla

Client PO: Project: OTEN00020038C Custody: 54717 Phone: (613) 225-9940 Fax: (613) 225-7337

	Order #: 0945145
Orde	er Date: 3-Nov-2009
Report	Date: 10-Nov-2009

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Client ID Paracel ID 0945145-01 **S1** 0945145-02 S2 0945145-03 **S**3 0945145-04 S4 0945145-05 S5 0945145-06 S6 0945145-07 **S**7 **S**8 0945145-08 0945145-09 S9 0945145-10 S10 0945145-11 S70

Approved By:

Mark Foto

Mark Foto, M.Sc. For Dale Robertson, BSc Laboratory Director

Any use of these results implies your agreement that our total liability in connection with this work, however arising shall be limited to the amount paid by you for this work, and that our employees or agents shall not under circumstances be liable to you in connection with this work

Client: Trow Associates Inc. (Ottawa)

Client PO:

Project Description: OTEN00020038C

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
Metals	EPA 6020 - Digestion - ICP-MS	9-Nov-09	9-Nov-09
PAHs by GC-MS, standard scan	EPA 8270 - GC-MS, extraction	6-Nov-09	6-Nov-09
Solids, %	Gravimetric, calculation	5-Nov-09	5-Nov-09

1-800-749-1947 Paracel@paracellabs.com

WWW.PARACELLABS, COM

OTTAWA 900-2319 St. Lawrent Bivd Ottawa, ON K105 928 M LSS LSSAUGA 0645 Kulmar Ad. Unit #27 Mississauga. ON LSN AU3 NIAGARA FALLS 5415 Morning Glary Crt Niagara Falls, ON (2010A3

SARNIA 123 Christina St. N Sarnia: ON N7T 517

Page 2 of 12

Order #: 0945145

1-800-749-1947 Paracel@paracellabs.com OTTAHA 300-2319 St. Landing Brvd Otlevva, ON 515 128 MISSISSAUGA 6515 Kilmar Ad. Onit #27 Mississangal ON 15N 633 NIAGARA FALLS 5415 Morning Glary Cr Niagara Falls, ON U21 0Atr SARNIA 123 Christina Sr. N Sarnia ON R/11517

Page 3 of 12

Report Date: 10-Nov-2009 Order Date:3-Nov-2009

Order #: 0945145

Client: Trow Associates Inc. (Ottawa) Client PO:

Client PU:	Project Description: OTEN00020038C					
Sam S	Client ID: ple Date: ample ID: /Units	S1 03-Nov-09 0945145-01 Soil	S2 03-Nov-09 0945145-02 Soil	S3 03-Nov-09 0945145-03 Soil	S4 03-Nov-09 0945145-04 Soil	
Physical Characteristics	./0/11(3					
% Solids 0.1 %	by Wt.	80.1	84.9	74.1	76.7	
Metals						
Antimony 1 ug	/g dry	<1	<1	<1	<1	
Arsenic 1 ug	/g dry	1	1	1	1	
Barium 10 ug	g/g dry	58	62	404	348	
Beryllium 0.5 u	g/g dry	<0.5	<0.5	0.6	0.6	
Cadmium 0.5 u	g/g dry	<0.5	<0.5	<0.5	<0.5	
Chromium 5 ug	/g dry	17	16	90	73	
Cobalt 1 ug	ı/g dry	3	5	18	15	
Copper 5 ug	i/g dry	7	11	39	35	
Lead 1 ug	ı/g dry	14	20	24	24	
Molybdenum 1 ug	ı/g dry	<1	<1	<1	<1	
Nickel 5 ug	ı/g dry	8	9	49	41	
Selenium 1 ug	ı/g dry	<1	<1	<1	<1	
Silver 0.3 u	g/g dry	<0.3	<0.3	<0.3	<0.3	
Thallium 1 ug	/g dry	<1	<1	<1	<1	
Vanadium 10 u	g/g dry	23	27	76	64	
Zinc 20 u	g/g dry	27	34	85	81	
Semi-Volatiles						
Acenaphthene 0.02 u	ug/g dry	<0.02	<0.02	<0.02	<0.02	
Acenaphthylene 0.02 t	ug/g dry	<0.02	<0.02	<0.02	0.05	
Anthracene 0.02 t	ug/g dry	<0.02	0.02	<0.02	0.08	
Benzo[a]anthracene 0.02 0	ug/g dry	0.03	0.05	0.03	0.12	
Benzo[a]pyrene 0.02 0	ug/g dry	0.03	0.04	0.03	0.12	
Benzo[b]fluoranthene 0.02 0	ug/g dry	0.04	0.07	0.05	0.17	
Benzo[g,h,i]perylene 0.02	ug/g dry	0.02	0.03	0.02	0.09	
Benzo[k]fluoranthene 0.02	ug/g dry	0.02	0.03	0.03	0.12	
Biphenyl 0.02	ug/g dry	<0.02	<0.02	<0.02	<0.02	
Chrysene 0.02	ug/g dry	0.04	0.05	0.04	0.15	
Dibenzo[a,h]anthracene 0.02	ug/g dry	<0.02	<0.02	<0.02	0.02	
Fluoranthene 0.02	ug/g dry	0.07	0.12	0.07	0.28	

Certificate of Analysis

Client: Trow Associates Inc. (Ottawa)

Client PO:

Project Description: OTEN00020038C

	Client ID: Sample Date: Sample ID:	S1 03-Nov-09 0945145-01	S2 03-Nov-09 0945145-02	S3 03-Nov-09 0945145-03	S4 03-Nov-09 0945145-04
	MDL/Units	Soil	Soil	Soil	Soil
Fluorene	0.02 ug/g dry	<0.02	<0.02	<0.02	0.02
Indeno[1,2,3-cd]pyrene	0.02 ug/g dry	0.02	0.03	0.02	0.08
1-Methylnaphthalene	0.02 ug/g dry	<0.02	<0.02	<0.02	<0.02
2-Methylnaphthalene	0.02 ug/g dry	<0.02	<0.02	<0.02	<0.02
Naphthalene	0.02 ug/g dry	<0.02	<0.02	<0.02	<0.02
Phenanthrene	0.02 ug/g dry	0.03	0.05	0.03	0.13
Pyrene	0.02 ug/g dry	0.06	0.09	0.05	0.23
2-Fluorobiphenyl	Surrogate	112%	88.3%	88.8%	93.0%
Terphenyl-d14	Surrogate	120%	103%	105%	102%

1-800-749-1947 PARACEL@PARACELLABS.COM

WWW.PARACELLABS.COM

00 2219 St Lawlord Blvd Ottawe ON K1G 4 8 HISSISSAUGA 6645 Kirimar Rd. Unit #27 Minacsanga, DN 151 633

OTTAWA

NTAGARA FALLS 5415 Monning Glory Crt Nagara Falls, Oh (21 0As SARNIA 123 Christinii St. N Sama: ON N7T 517

Page 4 of 12

Order #: 0945145

Client: Trow Associates Inc. (Ottawa)

Client PO:

Project Description: OTEN00020038C **S6 S**5 **S**7 **S**8 Client ID: 03-Nov-09 03-Nov-09 03-Nov-09 03-Nov-09 Sample Date: 0945145-05 0945145-06 0945145-07 0945145-08 Sample ID: Soil Soil Soil Soil MDL/Units **Physical Characteristics** 0.1 % by Wt. % Solids 81.0 85.0 81.6 88.8 Metals Antimony 1 ug/g dry <1 <1 <1 <1 1 ug/g dry 1 Arsenic 1 <1 <1 10 ug/g dry 144 34 74 Barium 420 0.5 ug/g dry Beryllium <0.5 < 0.5 < 0.5 < 0.5 0.5 ug/g dry <0.5 < 0.5 <0.5 < 0.5 Cadmium 5 ug/g dry 20 82 31 8 Chromium Cobalt 1 ug/g dry 17 8 2 6 5 ug/g dry 38 17 <5 13 Copper 1 ug/g dry 21 9 9 15 Lead 1 ug/g dry Molybdenum <1 <1 <1 <1 Nickel 5 ug/g dry 45 17 <5 10 1 ug/g dry <1 <1 <1 Selenium <1 0.3 ug/g dry < 0.3 <0.3 < 0.3 < 0.3 Silver 1 ug/g dry Thallium <1 <1 <1 <1 10 ug/g dry Vanadium 73 43 17 29 20 ug/g dry 22 Zinc 88 42 29 Semi-Volatiles 0.02 ug/g dry Acenaphthene < 0.02 <0.02 0.02 < 0.02 0.02 ug/g dry Acenaphthylene 0.02 < 0.02 0.04 0.02 0.02 ug/g dry 0.07 Anthracene 0.02 < 0.02 0.11 0.02 ug/g dry 0.20 0.17 0.03 0.04 Benzo[a]anthracene 0.02 ug/g dry 0.03 0.03 0.17 0.15 Benzo[a]pyrene 0.02 ug/g dry Benzo[b]fluoranthene 0.05 0.05 0.26 0.25 0.02 ug/g dry 0.02 0.11 0.10 Benzo[g,h,i]perylene 0.03 Benzo[k]fluoranthene 0.02 ug/g dry 0.03 0.03 0.15 0.15 0.02 ug/g dry < 0.02 < 0.02 < 0.02 < 0.02 Biphenyl 0.02 ug/g dry 0.04 0.21 0.19 Chrysene 0.04 0.02 ug/g dry < 0.02 0.03 0.03 < 0.02 Dibenzo[a,h]anthracene 0.02 ug/g dry 0.09 0.46 0.37 Fluoranthene 0.06 0.02 ug/g dry 0.03 <0.02 < 0.02 < 0.02 Fluorene

1-800-749-1947

PARACEL@PARACELLABS.COM

WWW.PARACELLABS.COM

OTTAWA 309-2319 St. Laulent Blyd Oltawa, ON K1G-LJB M155155AUGA 6645 K Uniar 7d, Unia #27 Minisiasa iga, ON - 511 033

NIAGARA FALLS SAIS Morning Giary Crt Nuigara Fails, ON 121043 SARNIA 123 Utiristina St. N Sainea, ON N7T ST7

Page 5 of 12

Order #: 0945145

Client: Trow Associates Inc. (Ottawa)

Client PO:

Project Description: OTEN00020038C

	Client ID: Sample Date: Sample ID: MDL/Units	S5 03-Nov-09 0945145-05 Soil	S6 03-Nov-09 0945145-06 Soil	S7 03-Nov-09 0945145-07 Soil	S8 03-Nov-09 0945145-08 Soil
Indeno[1,2,3-cd]pyrene	0.02 ug/g dry	0.02	0.02	0.10	0.10
1-Methylnaphthalene	0_02 ug/g dry	<0.02	<0.02	<0.02	<0.02
2-Methylnaphthalene	0.02 ug/g dry	<0.02	<0.02	<0.02	<0.02
Naphthalene	0.02 ug/g dry	<0.02	<0.02	0.02	<0.02
Phenanthrene	0.02 ug/g dry	0.02	0.04	0.26	0.15
Pyrene	0.02 ug/g dry	0.05	0.07	0.38	0.31
2-Fluorobiphenyl	Surrogate	90.7%	86.7%	106%	105%
Terphenyl-d14	Surrogate	110%	108%	108%	107%

1 - 800 - 749 - 1947 Paracel@paracellabs.com

WWW.PARACELLABS.COM

OTTAWA 300-2319 St. Laufert Bivd O'Lawa, ON K10 128 MISSISSAUGA 6455 Kimogr 7d, Lika #27 Missaseigal ON 155 633 NIAGARA FALLS Sit15 Morning Glory Cit Neigora Falls, ON 122 DAS SARNIA 122 Christina St. N. Sitnia, Oti N/1 517 Order #: 0945145

Report Date: 10-Nov-2009 Order Date:3-Nov-2009

Page 6 of 12

Client: Trow Associates Inc. (Ottawa)

Client PO:		Project Description	on: OTEN00020038	BC	
	Client ID: Sample Date: Sample ID: MDL/Units	S9 03-Nov-09 0945145-09 Soil	S10 03-Nov-09 0945145-10 Soil	S70 03-Nov-09 0945145-11 Soil	-
Physical Characteristics					
% Solids	0.1 % by Wt.	87.2	85.1	82.1	
Metals					
Antimony	1 ug/g dry	<1	<1	<1	*
Arsenic	1 ug/g dry	<1	<1	1	#
Barium	10 ug/g dry	48	40	40	5
Beryllium	0.5 ug/g dry	<0.5	<0.5	<0.5	ā
Cadmium	0.5 ug/g dry	<0.5	<0.5	<0.5	2
Chromium	5 ug/g dry	15	10	10	2
Cobalt	1 ug/g dry	4	4	3	슽
Copper	5 ug/g dry	11	9	5	-
Lead	1 ug/g dry	20	6	11	ii ii
Molybdenum	1 ug/g dry	<1	<1	<1	
Nickel	5 ug/g dry	8	6	5	
Selenium	1 ug/g dry	<1	<1	<1	ाग
Silver	0.3 ug/g dry	<0.3	<0.3	<0.3	i i
Thallium	1 ug/g dry	<1	<1	<1	14 14
Vanadium	10 ug/g dry	21	15	20	4
Zinc	20 ug/g dry	30	<20	25	-
Semi-Volatiles					
Acenaphthene	0.02 ug/g dry	<0.02	<0.02	<0.02	e
Acenaphthylene	0.02 ug/g dry	<0.02	<0.02	0.02	3 7 0
Anthracene	0.02 ug/g dry	0.03	<0.02	0.04	1
Benzo[a]anthracene	0.02 ug/g dry	0.06	0.02	0.10	
Benzo[a]pyrene	0.02 ug/g dry	0.05	<0.02	0.09	121
Benzo[b]fluoranthene	0.02 ug/g dry	0.07	0.02	0.14	(2 3)
Benzo[g,h,i]perylene	0.02 ug/g dry	0.04	<0.02	0.06	1 2 3
Benzo[k]fluoranthene	0.02 ug/g dry	0.03	<0.02	0.09	-
Biphenyl	0.02 ug/g dry	<0.02	<0,02	<0.02	300
Chrysene	0.02 ug/g dry	0.06	0.02	0.11	
Dibenzo[a,h]anthracene	0.02 ug/g dry	<0.02	<0.02	<0.02	÷.
Fluoranthene	0.02 ug/g dry	0.14	0.03	0.22	2
Fluorene	0.02 ug/g dry	<0.02	<0.02	<0.02	1.2

1-800-749-1947 PARACEL@PARACELLABS.COM

WWW.PARACELLABS.COM

OTTAWA 200-2319 St. Lawent Blvd. Offawal ON K1G 41B MISSISSAUGA 6645 kilimat 9a. Unit #27 Minsipsauga. ON 155 633

NIAGARA FALLS SAIS Morning Glory Crt Ningara Falls, ON 121 043 SARNIA 129 Christina St. N Gamual ON N7T ST7

Page 7 of 12

Order #: 0945145

Client: Trow Associates Inc. (Ottawa)

Client PO:

Project Description: OTEN00020038C

	Client ID:	S9	S10	S70	
	Sample Date	03-Nov-09	03-Nov-09	03-Nov-09	ă.
	Sample ID:	0945145-09	0945145-10	0945145-11	94°
	MDL/Units	Soil	Soil	Soil	3 - 2
Indeno[1,2,3-cd]pyrene	0.02 ug/g dry	0.03	<0.02	0.06	
1-Methylnaphthalene	0.02 ug/g dry	<0.02	<0.02	<0.02	172
2-Methylnaphthalene	0.02 ug/g dry	<0.02	<0.02	<0.02	:32
Naphthalene	0.02 ug/g dry	<0.02	<0.02	<0.02	2 0
Phenanthrene	0.02 ug/g dry	0.06	<0.02	0.10	
Pyrene	0.02 ug/g dry	0.11	0.02	0.18	-
2-Fluorobiphenyl	Surrogate	104%	89.2%	107%	540
Terphenyl-d14	Surrogate	107%	91.2%	108%	<u></u>

1 - 800 - 749 - 1947 Paracel⊕paracellabs.com

WWW . PARACELLABS . COM

OTTAWA 200-2319 St. Lawlent Bird Ditzwa, On KTG 4,8 MISSISSAUGA 6645 Kitmat Rd. Unit #27 Artssissenga, ON CS1 6,3 NIAGARA FALLS 5415 Mething Glary Cer-Nagara Falls, ON 121 0A3 SARNIA 123 Christina 51 N Saraia, ON N/7 517

Page 8 of 12

Order #: 0945145

Certificate of Analysis

Client: Trow Associates Inc. (Ottawa)

Client PO:

Project Description: OTEN00020038C

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Metals									
Antimony	1.0	1	ua/a						
Arsenic	ND	1	ua/a						
Barium	ND	10	ua/a						
Bervllium	ND	0.5	ug/g						
Cadmium	ND	0.5	ug/g						
Chromium	ND	5	ug/g						
Cobalt	ND	1	ug/g						
Соррег	ND	5	ug/g						
Lead	ND	1	ug/g						
Molybdenum	ND	1	ug/g						
Nickel	ND	5	ug/g						
Selenium	ND	1	ug/g						
Silver	ND	0.3	ug/g						
Thallium	ND	1	ug/g						
Vanadium	ND	10	ug/g						
Zinc	ND	20	ug/g						
Semi-Volatiles									
Acenaphthene	ND	0.02	ug/g						
Acenaphthylene	ND	0.02	ug/g						
Anthracene	ND	0.02	ug/g						
Benzo[a]anthracene	ND	0.02	ug/g						
Benzo[a]pyrene	ND	0.02	ug/g						
Benzo[b]fluoranthene	ND	0.02	ug/g						
Benzo[g,h,i]perylene	ND	0.02	ug/g						
Benzo[k]fluoranthene	ND	0.02	ug/g						
Biphenyl	ND	0.02	ug/g						
Chrysene	ND	0.02	ug/g						
Dibenzo[a,h]anthracene	ND	0.02	ug/g						
Fluoranthene	ND	0.02	ug/g						
Fluorene	ND	0.02	ug/g						
Indeno[1,2,3-cd]pyrene	ND	0.02	ug/g						
1-Methylnaphthalene	ND	0.02	ug/g						
2-Methylnaphthalene	ND	0.02	ug/g						
Naphthalene	ND	0.02	ug/g						
Phenanthrene	ND	0.02	ug/g						
Pyrene	ND	0.02	ug/g		447	20 450			
Surrogate: 2-Fluorobiphenyl	1.57	0.01	ug/g		11/	32-156			
Surrogate: Terphenyl-d14	1.47	0.01	ug/g		111	39-146			

1-800-749-1947 Paracel@paracellabs.com

WWW.PARACELLABS.COM

OTTAWA 200-2219 St. Laurent Brot Ottowa CN STO 418 HISSISSAUGA 6635 Kitmat Ro Unit 827 Mississauga CN 155 613 NTAGARA FALLS SATS Morning Glory Crt Nuagura Falls, ON L2 I DAS SARN LA 123 Christina St. N. Surnia On N71 ST2

Page 9 of 12

Order #: 0945145

Certificate of Analysis

Client: Trow Associates Inc. (Ottawa)

Client PO:

Project Description: OTEN00020038C

Method Quality Control: Duplicate

		Reporting		Source		%REC		RPD	
Analyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes
Motals									
Antimonia	ND	4					000.0	20	
Amumony		1	ug/g ary	1.1			200.0	26	
Arsenic	1.7	1	ug/g ary	1.8			6.7	30	
Banum	37.3	10	ug/g ary	38.0			1.9	34	
Beryllium	ND	0.5	ug/g dry	ND			45.0	25	
Cladmium	0.56	0.5	ug/g ary	0.65			15.3	33	
Chromium	7,1	5	ug/g ary	6.9			2.2	32	
Cobait	2.0	1	ug/g ary	2.0			1.6	32	
Copper	19.6	5	ug/g dry	20.9			6,7	32	
Lead	16.9	1	ug/g dry	15.8			6.8	44	
Noiybaenum	1.1	1	ug/g dry	1.2			11.6	29	
NICKEI	5.7	5	ug/g dry	5.9			4.2	29	
Selenium	ND	1	ug/g dry	ND				28	
Silver	ND	0.3	ug/g dry	ND				28	
Inallium	ND	1	ug/g dry	ND				27	
Vanadium	ND	10	ug/g dry	ND				27	
Zinc	361	20	ug/g dry	333			8.1	27	
Physical Characteristics									
% Solids	40.4	0.1	% by Wt.	40.5			0.2	25	
Semi-Volatiles									
Acenaphthene	ND	0.02	ua/a drv	ND				50	
Acenaphthylene	ND	0.02	ua/a drv	ND				50	
Anthracene	ND	0.02	ua/a dry	ND				50	
Benzo[a]anthracene	ND	0.02	ua/a drv	ND				50	
Benzolajpyrene	ND	0.02	ua/a drv	ND				50	
Benzo[b]fluoranthene	ND	0.02	ug/g dry	ND				50	
Benzo[g,h,i]perylene	ND	0.02	ua/a drv	ND				50	
Benzo[k]fluoranthene	ND	0.02	ug/g dry	ND				50	
Biphenyl	ND	0.02	ua/a dry	ND				50	
Chrysene	ND	0.02	ua/a dry	ND				50	
Dibenzo[a,h]anthracene	ND	0.02	ug/g dry	ND				50	
Fluoranthene	ND	0.02	ug/g dry	ND				50	
Fluorene	ND	0.02	ug/g dry	ND				50	
Indeno[1,2,3-cd]pyrene	ND	0.02	ua/a dry	ND				50	
1-Methylnaphthalene	ND	0.02	ua/a dry	ND				50	
2-Methylnaphthalene	ND	0.02	ug/g dry	ND				50	
Naphthalene	ND	0.02	ug/g dry	ND				50	
Phenanthrene	ND	0.02	ua/a dry	ND				50	
Pyrene	ND	0.02	ug/g drv	ND				50	
Surrogate: 2-Fluorobiphenyl	0.943	0.01	ug/g drv	ND	66.6	32-156			
Surrogate: Terphenyl-d14	0.886	0.01	ug/g dry	ND	62.5	39-146			

Report Date: 10-Nov-2009 Order Date:3-Nov-2009

Paracel@paracellabs.com
WWW.PARACELLABS.com

OTTAWA 200-2219 St. Laurent Bive Otawa, CN K15 428 MISSISSAUGA 6625 Kutman To, Unit #22 Memissauga, ON 1511623 NIAGARA FALLS 5415 Monning Glory Cit Nultgora Falls, ON 124 0A3 SARNIA 123 Christina St. N Sarria Oh 127 512

Page 10 of 12

Certificate of Analysis

Client: **Trow Associates Inc. (Ottawa)** Client PO:

Project Description: OTEN00020038C

Method Quality Control: Spike

Analyte	Result	Reporting	Linito	Source	% PEC	%REC	RDD	RPD Limit	Notes
	Result		Units	Result	MILEU	Lind		LITIK	110103
Semi-Volatiles									
Acenaphthene	0.148	0.02	ug/g	ND	88.5	31-121			
Acenaphthylene	0.141	0.02	ug/g	ND	84.4	26-124			
Anthracene	0.157	0.02	ug/g	ND	94.3	29-128			
Benzo[a]anthracene	0.121	0.02	ug/g	ND	72.8	29-129			
Benzo[a]pyrene	0.155	0.02	ug/g	ND	93.0	29-111			
Benzo[b]fluoranthene	0.128	0.02	ug/g	ND	76.7	26-11 1			
Benzo[g,h,i]perylene	0.123	0.02	ug/g	ND	73.9	23-128			
Benzo[k]fluoranthene	0.171	0.02	ug/g	ND	103	23-135			
Biphenyl	0.143	0.02	ug/g	ND	85.6	31-107			
Chrysene	0.171	0.02	ug/g	ND	103	28-136			
Dibenzo[a,h]anthracene	0.110	0.02	ug/g	ND	66.2	20-131			
Fluoranthene	0.163	0.02	ug/g	ND	97.6	24-131			
Fluorene	0.180	0.02	ug/g	ND	108	28-123			
Indeno[1,2,3-cd]pyrene	0.114	0.02	ug/g	ND	68.7	20-128			
1-Methylnaphthalene	0.156	0.02	ug/g	ND	93,6	24-127			
2-Methylnaphthalene	0.101	0.02	ug/g	ND	60.3	21-127			
Naphthalene	0.120	0.02	ug/g	ND	71.7	29-118			
Phenanthrene	0:123	0.02	ug/g	ND	73.9	34-108			
Pyrene	0.163	0.02	ug/g	ND	98.1	29-131			
Surrogate: 2-Fluorobiphenyl	1.46	0.01	ug/g		110	32-156			
Surrogate: Terphenyl-d14	1.41	0.01	ug/g		105	39-146			

1 - 800 - 749 - 1947 Paracel@paracellabs.com

WWW.PARACELLABS.COM

OTTAWA 300-2319 Stitustort Bivit Ottawa, CIN K IG 0.28 MISSISSAUGA 66:5 Attmat Ad Onti #27 Mississingal DN 151 623 NIAGARA FALLS 5415 Maximug Gray, C+ Ningara Falls, ON L21043 SARNIA 123 Chestion ST N. 54446 ON E/11.517

Page 11 of 12

Order #: 0945145

Client: Trow Associates Inc. (Ottawa) Client PO:

Project Description: OTEN00020038C

Sample Data Revisions None Work Order Revisions/Comments: None Other Report Notes: n/a: not applicable MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference. Soil results are reported on a dry weight basis when the units are denoted with 'dry'.

Where %Solids is reported, moisture loss includes the loss of volatile hydrocarbons.

1-800-749-1947 Paracel@paracellabs.com

300-2319 St. Laurent Blvd Ottawa, ON K1G 4J8 MISSISSAUGA 6845 Kitmat Rd. Unit 627 Mississauga, ON L6N 6J3

OTTAWA

N I A GARA FALLS SA IS Morning Glary Cri Ningare Fells, ON L2J 0A3 SARN I A 123 Christine S1, N Sarnia, ON NJT 517 Order #: 0945145 Report Date: 10-Nov-2009 Order Date:3-Nov-2009

Page 12 of 12

WWW.PARACELLABS.COM

5,COM 684

OTTAWA & NIAGABA FALLS & MISSI	TRUSTED. RESPONSIVE. RELIABLE. SSAUGA I SARNIA	300-2319 St. Laurent Bivd. Ottawa, Ontario K1G 438 p.: 1-800-749-1947 ii: paracell@paracellabs.com www.paracellabs.com	Chain of Custody Record Nº 68764
Company Name Trow	Project Ref: OTEA	000200385	Ditte Required
Contact Name: North Unclairer	TISTA LEONARO=	Not Ounted	fum from time (()-dis ()-take (X)ertia
Tel. (ell:	Quint		Reaganess containes Requirements
Email	Preservative to be add	led by Paracel? □Yes □No	
Matrix Types(S, Soil Sed, GW, G	round Water, SW, Surface Water, SS, Storm S	anitary Sewer A-Air O-Other RDV	N-Regulated Drinking Water
Sample In	dormation	\ \ \	analysis Required
0945145	dd nim/ <u>y</u> * Containers Air Volume Matrix	Matalo DAt H	Hazardous" (Y N
Sample Identification			
5	5 Na.	it the	250
2 52			
53			
4 54			
s 55			
1 56			
÷ \$7			
8 58			
4 59			
10 S/D			
Comments:	Replacen gunder Ref represente	all co	p rastile
1. 111 Acres 11 11 11 11 11 11 11 11 11 11 11 11 11	d'ar Dypert	HALAN R. LC Nov. 3/CA Lak 15 ST	Lantrolly (1:22 C Date North STOR Date 11:35

Please refer to the back page for Locations and Sample Preservation, Container and Hold Time Requirements,

WHITE - Lab Copy. PINK - Client Copy

OTTAWA © NIAGARA FALLS / MISS	TRUSTED. RESPONSIVE. RELIABLE.	300-2319 Ottawa, 0 № 1-800 © рамс) St Laurent Bivd, Ontario: K1G 458 -749-1947 BIÆparacellans.com	Chain of Custody Record Nº 68763
Company Name- Down	Prive R.	www.pa	racellabs.com	Pg Z of Z
Contact Name: Mark H c(olday Address:Cell	K. She Louis (PO)= Quote =		□Not Quoted	The sound time 1. 13 day 1. 12 day (Argendi Semilates function Remarking)
1 mail	Preservati	ve to be added by Paracel?	DYes DNo	
Matrix Types: S. Soil Sed. GW Samile	Ground Water SW Sortace Water nformation	SS-Storm Sanitary Sewer A-	Air O-Other RDW	-Regulated Drinking Water
Paraeet Order =				
0945145	Aut Volume Matrix	Date sampled definitions		
Sample Identification				
570	S	1 la 3/09 to 6		350
2				
3				
1				
8				
16				
8				
Q				
(d)			-	
Comments:	a works	Apricio	the site	<u>- 20 , anterna</u>
Telenersked its flight i Recent Inde har Sligg here: 3'56 Water	ed ar Dapet Luig	Record at Lath (12 cas) (That is a 13 (c ⁵)	1mc 15 57	Sembed its Virtue C Date Nicol 5 [69] Linne VI 355

Please refer to the back page for Locations and Sample Preservation, Container and Hold Time Requirements.

WHITE - Lab Copy, PINK - Client Copy

TRUSTED. RESPONSIVE. RELIABLE. 300-2319 St. Laurent Blvd. Ottawa, Ontario K1G 4J8 p: 1-800-749-1947 e: paracel@paracellabs.com

www.paracellabs.com

OTTAWA 💩 NIAGARA FALLS 🔮 MISSISSAUGA 💩 SARNIA

Certificate of Analysis

Trow Associates Inc. (Ottawa)

154 Colonnade Rd. S Ottawa, ON K2E 7J5 Attn: Mark McCalla

Client PO: Project: OTEN00020038S Custody: 54717 Phone: (613) 225-9940 Fax: (613) 225-7337

Report	Date: 17-Nov-2009
Order	Date: 11-Nov-2009
	Order #: 0946156

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID Client ID 0946156-01 **S**1 0946156-02 S2 0946156-03 **S**3 0946156-04 **S**4 0946156-05 S5 0946156-06 S6 0946156-07 **S**7 0946156-08 **S**8 0946156-09 S9 0946156-10 S10 0946156-11 S70

Approved By:

Jack Foto

Mark Foto, M.Sc. For Dale Robertson, BSc Laboratory Director

Any use of these results implies your agreement that our total liabilty in connection with this work, however arising shall be limited to the amount paid by you for this work, and that our employees or agents shall not under circumstances be liable to you in connection with this work

6	Ρ	Α	R	Α	С	Ε	L
	LA	8.64	ALC:	0.81	683.	10	10.

Client: **Trow Associates Inc. (Ottawa)** Client PO:

Project Description: OTEN00020038S

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date Analysi	s Date
Chromium, hexavalent	MOE E3056 - Extraction, colourimetric	12-Nov-09 16-	Nov-09
Mercury	EPA 7471A - CVAA, digestion	16-Nov-09 16-	Nov-09
Solids, %	Gravimetric, calculation	13-Nov-09 13-	Nov-09

1-800-749-1947 Paracel@paracellabs.com WWW.**PARACELLABS.COM** 300-2219 St. Laurent Bivd Ottewa: ON KTG 4JR MISSISSAUGA 6625 Riterial 7d: Unit #27 Mississauga: DM 15N 6J3

OTTAWA

NIAGARA FALLS 5415 Marnello Glovy Crt Nagara Falls, ON 12,1 0A3 SARNIA 123 Christina 5t, N Sarnia, ON N77 512

Page 2 of 7

Order #: 0946156

6	Ρ	Α	R	Α	С	E	L
	ËĂ	801	AT	0.84	6.5	ί.τ	Π.

Client: Trow Associates Inc. (Ottawa)

Client PO:	ino: (ottana)	Project Descript	ion: OTEN0002003	8S	
	Client ID: Sample Date: Sample ID:	S1 03-Nov-09 0946156-01	S2 03-Nov-09 0946156-02	S3 03-Nov-09 0946156-03	S4 03-Nov-09 0946156-04
Physical Characteristics	MDL/Units	Soll	Sol	Soli	Soli
Physical Characteristics	0.4.0(5)(10/4		1		1
% Solids	0.1 % by Wt.	80.1	84.9	/4.1	/6./
Metals					
Chromium (VI)	0.4 ug/g dry	<0.4	<0.4	<0.4	<0.4
Mercury	0.1 ug/g dry	<0.1	<0.1	<0.1	<0.1
	Client ID Sample Date: Sample ID:	S5 03-Nov-09 0946156-05 Soil	S6 03-Nov-09 0946156-06 Soil	S7 03-Nov-09 0946156-07 Soil	S8 03-Nov-09 0946156-08 Soil
Physical Characteristics					
% Solids	0.1 % by Wt.	81.0	85.0	81.6	88.6
Metals					
Chromium (VI)	0,4 ug/g dry	<0.4	<0.4	<0,4	<0.4
Mercury	0.1 ug/g dry	<0.1	<0.1	<0.1	<0.1
•					
	Client ID: Sample Date: Sample ID:	S9 03-Nov-09 0946156-09	\$10 03-Nov-09 0946156-10	S70 03-Nov-09 0946156-11	त्. म स
	MDL/Units	Soil	Soil	Soil	
Physical Characteristics					
% Solids	0.1 % by Wt.	87.2	85.1	82.1	<u>1</u>
Metals					·····
Chromium (VI)	0.4 ug/g dry	<0.4	<0.4	<0.4	12
Mercury	0.1 ug/g dry	<0.1	<0.1	<0,1	<u>s</u>

1-800-749-1947 Paracel@paracellabs.com

OTTAWA 300-2319 St. Lawrent Brvd Offawar ON K10-128 MISSISSAUGA

NIAGARA FALLS

6645 Kitimat Rd. Unit #27 Minsissaliga. QN L5N 603

5415 Morning Glary Crt Nugara Fails: ON L21 0A3 SARNIA 123 Christina St. N Sama: ON N7T 517

WWW.PARACELLABS.COM

Page 3 of 7

Order #: 0946156

Certificate of Analysis

Client: Trow Associates Inc. (Ottawa)

Client PO:

Project Description: OTEN00020038S

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Metals Chromium (VI) Mercury	ND ND	0.4 0.1	ug/g ug/g						

1-800-749-1947 Paracel@paracellabs.com

WWW.PARACELLABS.COM

300-2319 SI Laurent Bivd Ottawe, DN K1G JJ8 M I SS I SSAU GA 6645 Kitmat Rd Unit #27 Mississauge ON L5N 6J3

OTTAWA

N I AGARA FALLS 5415 Morning Glory Cri Niagara Felis, ON L2J 0A3 SARN I A 123 Christing St. N Sarna, ON N/T S17

Page 4 of 7

Order #: 0946156

Certificate of Analysis

Client: Trow Associates Inc. (Ottawa)-Client PO:

Project Description: OTEN00020038S

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Metals									
Chromium (VI)	ND	0.4	ug/g dry	ND				35	
Mercury	1:10	0:1	ug/g dry	1.22			10.3	35	
Physical Characteristics % Solids	83.7	0.1	% by Wt.	80.7			3.7	25	

1 - 800 - 749 - 1947 Paracel@paracellabs,com

WWW.PARACELLABS.COM

OTTAWA 300-2319 Sr. Learent Bivd Ottawa, ON K1G 408 MISSISSAUGA 6555 Kitmar Rd. Unit #27 Micessauga: ON USN 633 NTAGARA FALLS 5415 Maching Glory Cir Niligara Falls, ON 123 DA3 SARNTA 123 Christing St. N Silona ON N/1 517

Page 5 of 7

Order #: 0946156

Certificate of Analysis

Client: Trow Associates Inc. (Ottawa)

Client PO:

Project Description: OTEN00020038S

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Metals Chromium (VI) Mercury	5.2 1.48	0.4 0.1	ug/g ug/g	ND ND	104 98.5	89-123 72-128			

1-800-749-1947 Paracel@paracellabs.com

WWW.PARACELLABS.COM

OTTAWA 300-2219 St Laurent Blvd Ottawa, ON K1G 418 M1SS1SSAUGA 6645 Kitomat Rd Unut #27 Mississauga ON L6N 623 NIAGARA FALLS 5415 Morning Glory Crt Nugara Falts, ON L2J 0A3 SARN FA 123 Christing St. N Sarna ON N/T 517

Order #: 0946156

Certificate of Analysis

Client: Trow Associates Inc. (Ottawa) Client PO:

Project Description: OTEN00020038S

Sample Data Revisions None Work Order Revisions/Comments: None Other Report Notes: n/a: not applicable MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference.

Soil results are reported on a dry weight basis when the units are denoted with 'dry'. Where %Solids is reported, moisture loss includes the loss of volatile hydrocarbons.

1-800-749-1947 Paracel@paracellabs.com WWW.PARACELLABS.COM OTTAWA 300-2319 St, Laurent Bivd Ottawa, ON K1G 4J8 MISSISSAUGA 6645 Kitmat Rd Unit #27 Misakasauga ON LEN 6J3 NIAGARA FALLS 5415 Morning Glory Crt Nugara Fells, ON L2J 0A3 SARNIA 123 Christina St. N Serna DN N/T 517

Report Date: 17-Nov-2009 Order Date:11-Nov-2009

Order #: 0946156

CETADA + NIAGARA FALLS MISSISSA	TRUSTED. RESPONSIVE RELIABLE. UGA = SARNIA	100-2014 (Friday) - Laborat Brad Ottawin Ondari 1016 (Lab In: 1980-728-1981) - Daniel Operand Demonstration oper	Chain of Custudy Record
Company Same To Marco	Prove But & The	www.paracellabs.com	Pe f old
Contra Time Mark Willilla/Kus	fre lander		lit. Card,
Address	Quote :	□Not Quoted	lan haad de 111 de 111 de 110 de
-mail	Preservative to be a	idded by Paracel? [] Yes [] No	
Matrix ExpertS, Soil S, d. GW, Ground	Water SW Surface Water SS Storn	n Sanitary Sewer A-Air O-Other - RD	W-R 20 lated Orinking Water
Sample Inform	ation		Analysis Required
0946136	et .	2 ²	1102
6945145	Containers Ir Valunie Marris	Market DAH DAH dommised	adeus -
Sample Identification			
5	5	with the	NG
52			
53			
+ 54			
55			
56			
57			
* 5s			
0 59			
6 <u>5/0</u>			
fomments <u>H</u> dec	Alter marke	and And	yze for Citle & Hog go per
- A 1 - A)		LH with Hay	R LAT TAT LOVIDOR
MAC Tol	nt litera	alach I. C	hadt he
1125/19 - 350 00	150	1. 16 T 15 St	- G. S.C 11 - 55

Please refer to the back page for Locations and Sample Preservation, Container and Hold Time Requirement,

WHITE I I Copy PPAK Client Copy

Contact Name Contact Name	TRUSTED. RESPONSIVE RELIABLE. SUGATE SARTIA M. Haston Project	i Kel. <u>ZTE A</u>	Instantia Si Lauran Bia Crown Oranis Kitt 4.0 In 1605 749 1947 Dimon Pipersonaus www.paracellabs.com	Chain of Custody Record Nº 68763 Pg 2 of 2
Louit	Pre-erv	vative to be added	by Paracel? []Yes []No	
Mattis Paper Stand Sed raw Sample	Coround Water SW Southers W Information	ag (S) Sinni Sini	En nester A-Añ (GOther RD)	Wifeenhard Drinking Water
(145145	Nators Nators	Containers	PAH	
Sample Identification				
530 1	5	,ta 3/1.	2 + + +	350
x				
3				
minients:	HON R.	510		
				La marchage
harstig 500 m	22 ¹ 21 Jay	minetter (3 151 - A	and the second	in the state

Person returns the back page for the constant of Sample Preservation, Container and Hold Time Requirements.

WHERE Lab Copy, PINK - Client Cany

10.

Head Office 300-2319 St. Laurent Blvd. Ottawa, Ontario K1G 4J8 p 1-800-749-1947 paracel@paracellabs.com

www.paracellabs.com

OTTAWA 📧 KINGSTON + NIAGARA + MISSISSAUGA + SARNIA

Certificate of Analysis

SNC-Lavalin Inc. (Ottawa)

20 Colonnade Road Suite 110 Ottawa, ON K2E 7M6 Attn: Melanie Siewert

Phone: (613) 226-2456 Fax: (613) 226-5529

Client PO: NCC Burnside	Report Date: 14-Nov-2012
Project: 12-316	Order Date: 8-Nov-2012
Custody: 4877	Order #: 1245252

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID	Client ID
1245252-01	MW-1
1245252-02	MW-2
1245252-03	MW-3
1245252-04	MW-4
1245252-05	MW-5
1245252-06	CH2M MW-1
1245252-07	MW-99
1245252-08	Field Blank
1245252-09	Trip Blank

Approved By:

Dale Robertson, BSc Laboratory Director

Any use of these results implies your agreement that our total liability in connection with this work, however arising shall be limited to the amount paid by you for this work, and that our employees or agents shall not under circumstances be liable to you in connection with this work

OPARACEL		Order	#: 1245252
Certificate of Analysis		Beport I	Date: 14-Nov-2012
Client: SNC-Lavalin Inc. (Ottawa)		Orde	r Date:8-Nov-2012
Client PO: NCC Burnside	Project Description: 12-316		
Analysis Summary Table			
Analysis	Method Reference/Description	Extraction Date	e Analysis Date
CCME PHC F1	CWS Tier 1 - P&T GC-FID	9-Nov-12	10-Nov-12
CCME PHC F2 - F4	CWS Tier 1 - GC-FID, extraction	9-Nov-12	9-Nov-12
Chromium, hexavalent	MOE E3056 - colourimetric	9-Nov-12	9-Nov-12
Mercury	EPA 245.1 - Cold Vapour AA	9-Nov-12	9-Nov-12
Metals, low level	EPA 200.8 - ICP-MS	9-Nov-12	9-Nov-12
PAHs by GC-MS, standard scan	EPA 625 - GC-MS, extraction	9-Nov-12	10-Nov-12
VOCs	EPA 624 - P&T GC-MS	9-Nov-12	10-Nov-12

1~800~749~1947 Paracel@paracellabs.com WWW.**Paracellabs.com** OTTAMA 300–2319 St. Laurent Bivd Orlawin, ON K15 4L8 M1SSISSAUGA 6645 Kilmat Pd. Unit #27 Mississaugh, ON 15N 628 NIAGARA FALLS 5415 Morning Glary Crt Nagara Fare, ON L27 0A3 SARNIA 123 Christina St. N Sarela, ON N71 517

Page 2 of 18

Certificate of Analysis

Client: SNC-Lavalin Inc. (Ottawa)

Client PO: NCC Burnside Project Description: 12-316					
	Client ID: Sample Date: Sample ID: MDI /Units	MW-1 07-Nov-12 1245252-01 Water	MW-2 07-Nov-12 1245252-02 Water	MW-3 07-Nov-12 1245252-03 Water	MW-4 07-Nov-12 1245252-04 Water
Metals					
Mercury	0_1 ug/L	<0.1	<0.1	<0.1	<0.1
Antimony	0.5 ug/L	<0.5	<0,5	1.7	25.6
Arsenic	1 ug/L	<1	<1	5	<1
Barium	1 ug/L	456	384	118	124
Beryllium	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Boron	10 ug/L	219	221	174	66
Cadmium	0.1 ug/L	<0.1	<0.1	<0.1	<0.1
Chromium	1 ug/L	5	5	<1	<1
Chromium (VI)	10 ug/L	<10	<10	<10	<10
Cobalt	0.5 ug/L	<0.5	<0.5	<0.5	0.6
Copper	0.5 ug/L	<0.5	<0,5	<0.5	0.7
Lead	0.1 ug/L	<0.1	<0.1	<0.1	<0.1
Molybdenum	0.5 ug/L	0.5	<0.5	2.4	1.3
Nickel	1 ug/L	5	3	4	6
Selenium	1 ug/L	<1	<1	<1	3
Silver	0.1 ug/L	<0.1	<0.1	<0,1	<0.1
Sodium	200 ug/L	281000	247000	48400	39400
Thallium	0.1 ug/L	<0.1	<0.1	<0.1	<0.1
Uranium	0.1 ug/L	0.9	<0.1	8.3	1.8
Vanadium	0.5 ug/L	6.5	5.5	3.7	7.8
Zinc	5 ug/L	<5	<5	<5	<5
Volatiles					1
Acetone	5.0 ug/L	<5.0	<5.0	<5.0	<5.0
Benzene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Bromodichloromethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Bromoform	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Bromomethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Carbon Tetrachloride	0.2 ug/L	<0.2	<0.2	<0.2	<0.2
Chlorobenzene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Chloroethane	1.0 ug/L	<1.0	<1.0	<1.0	<1.0
Chloroform	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Chloromethane	3.0 ug/L	<3.0	<3.0	<3.0	<3.0
Dibromochloromethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5

1-800-749-1947 Paracel@paracellabs_com

WWW.PARACELLABS.COM

OTTAWA 100-2310 Sr. Laurent Bivd Ottawa, ON K1G 1J8 MISSISSAUGA 6645 Kitzeat Rd. Ueit #27 Mississa gal ON 15N G J

NIAGARA FALLS 5415 Morning Glory Crt Ningara Falls, ON 123 0AX SARNIA 123 Chilstina St. M Sama, ON N71 517

Page 3 of 18

Order #: 1245252
OPARACEL

Certificate of Analysis

Client: SNC-Lavalin Inc. (Ottawa)

Report Date: 14-Nov-2012 Order Date:8-Nov-2012

Client PO: NCC Burnside					
	Client ID: Sample Date: Sample ID: MDL/Units	MW-1 07-Nov-12 1245252-01 Water	MW-2 07-Nov-12 1245252-02 Water	MW-3 07-Nov-12 1245252-03 Water	MW-4 07-Nov-12 1245252-04 Water
Dichlorodifluoromethane	1.0 ug/L	<1.0	<1.0	<1.0	<1.0
1,2-Dibromoethane	0.2 ug/L	<0.2	<0.2	<0.2	<0.2
1,2-Dichlorobenzene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,3-Dichlorobenzene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,4-Dichlorobenzene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,1-Dichloroethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,2-Dichloroethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,1-Dichloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
cis-1,2-Dichloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
trans-1,2-Dichloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,2-Dichloroethylene, total	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,2-Dichloropropane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
cis-1,3-Dichloropropylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
trans-1,3-Dichloropropylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,3-Dichloropropene, total	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Hexane	1.0 ug/L	<1.0	<1.0	<1.0	<1.0
Methyl Ethyl Ketone (2-Butanone)	5.0 ug/L	<5.0	<5.0	<5.0	<5.0
Methyl Butyl Ketone (2-Hexanone	10.0 ug/L	<10.0	<10.0	<10.0	<10.0
Methyl Isobutyl Ketone	5.0 ug/L	<5.0	<5.0	<5.0	<5.0
Methyl tert-butyl ether	2,0 ug/L	<2.0	<2.0	<2.0	<2.0
Methylene Chloride	5.0 ug/L	<5.0	<5.0	<5.0	<5.0
Styrene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,1,1,2-Tetrachloroethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,1,2,2-Tetrachloroethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Tetrachloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Toluene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,2,4-Trichlorobenzene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,1,1-Trichloroethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,1,2-Trichloroethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Trichloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Trichlorofluoromethane	1.0 ug/L	<1.0	<1.0	<1.0	<1.0
1,3,5-Trimethylbenzene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Vinyl chloride	0.5 ug/L	<0.5	<0.5	<0.5	<0.5

13800-749-1947

PARACEL@PARACELLABS

WWW.PARACELLABS.COM

OTTAWA 300–2319 SL Laulent Blvd Ottawn, DN K15 4J8 MISSISSAUGA 6045 Kilmat Rd Unit #27 Misenshuga, DN ISN 6J3 NTAGARA FALLS 5415 Morang Glaty Crt Nugara Paris, ON 123 OA's

SARNIA 123 Christina St. N. Silteria, ON N21 512

Page 4 of 18

OPARACEL

Certificate of Analysis

Order #: 1245252

Report Date: 14-Nov-2012 Order Date:8-Nov-2012

Client: SNC-Lavalin Inc. (Ottawa)				0	rder Date:8-Nov-2
Client PO: NCC Burnside		Project Description	12-316		1
	Client ID:	MW-1	MW-2	MW-3	MW-4 07 Nov 12
	Sample Date:	1245252-01	1245252-02	1245252-03	1245252-04
	MDL/Units	Water	Water	Water	Water
m,p-Xylenes	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
o-Xylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Xylenes, total	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
4-Bromofluorobenzene	Surrogate	101%	104%	101%	103%
Dibromofluoromethane	Surrogate	100%	100%	103%	101%
Toluene-d8	Surrogate	98.7%	98.4%	97.9%	97.8%
Hydrocarbons					
F1 PHCs (C6-C10)	25 ug/L	<25	<25	<25	<25
F2 PHCs (C10-C16)	100 ug/L	<100	<100	<100	<100
F3 PHCs (C16-C34)	100 ug/L	<100	<100	<100	<100
F4 PHCs (C34-C50)	100 ug/L	<100	<100	<100	<100
Semi-Volatiles					
Acenaphthene	0.05 ug/L	0.16	0.31	<0.05	<0.05
Acenaphthylene	0.05 ug/L	0.19	0.08	<0.05	<0.05
Anthracene	0.01 ug/L	0.04	0.08	<0.01	<0.01
Benzo [a] anthracene	0.01 ug/L	0.17	0.17	<0.01	<0.01
Benzo [a] pyrene	0.01 ug/L	0.12	0.11	<0.01	<0.01
Benzo [b] fluoranthene	0.05 ug/L	0.11	0.10	<0.05	<0.05
Benzo [g,h,i] perylene	0.05 ug/L	0.10	0.09	<0.05	<0.05
Benzo [k] fluoranthene	0.05 ug/L	0.06	0.05	<0.05	<0.05
Biphenyl	0.05 ug/L	<0.05	<0.05	0.16	<0.05
Chrysene	0.05 ug/L	0.15	0.15	<0.05	<0.05
Dibenzo [a,h] anthracene	0.05 ug/L	<0.05	<0.05	<0.05	<0.05
Fluoranthene	0.01 ug/L	0.29	0.37	<0.01	<0.01
Fluorene	0.05 ug/L	0.06	<0.05	<0.05	<0.05
Indeno [1,2,3-cd] pyrene	0.05 ug/L	0.07	0.07	<0.05	<0.05
1-Methylnaphthalene	0.05 ug/L	<0.05	<0.05	<0.05	<0.05
2-Methylnaphthalene	0.05 ug/L	0.06	<0.05	0.06	<0.05
Methylnaphthalene (1&2)	0_10 ug/L	<0.10	<0.10	<0.10	<0.10
Naphthalene	0.05 ug/L	0.20	0.13	0.23	<0.05
Phenanthrene	0.05 ug/L	0.15	0.15	0.08	<0.05
Pyrene	0.01 ug/L	0.32	0.39	<0.01	<0.01
2-Fluorobiphenyl	Surrogate	64.7%	68.5%	63.4%	65.6%
Terphenyl-d14	Surrogate	52.4%	63.1%	68.7%	77.4%

1 · 800 · 749 · 1947 PARACEL@PARACELLABS.COM

WWW.PARACELLABS.COM

OTTAWA 200-2319 Sr. Laurent Blvd. Offava, ON K1G 418 MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississanga: ON USN 633

NIAGARA FALLS 5415 Morning Glary Cit Magara Falls, ON L22 0A3

SARNIA 123 Christina St. N. Siltria, ON N27 512

Page 5 of 18

GPARACEL

Certificate of Analysis

Client: SNC-Lavalin Inc. (Ottawa)

Order #: 1245252

Report Date: 14-Nov-2012 Order Date:8-Nov-2012

ent PO: NCC Burnside Project Description: 12-316						
	Client ID: Sample Date: Sample ID: MDL/Units	MW-5 07-Nov-12 1245252-05 Water	CH2M MW-1 07-Nov-12 1245252-06 Water	MW-99 07-Nov-12 1245252-07 Water	Field Blank 08-Nov-12 1245252-08 Water	
Metals	1					
Mercury	0.1 ug/L	<0.1	<0.1	<0.1	<0.1	
Antimony	0.5 ug/L	0.6	0.6	<0.5	<0.5	
Arsenic	1 ug/L	<1	<1	<1	<1	
Barium	1 ug/L	160	43	385	<1	
Beryllium	0.5 ug/L	<0,5	<0.5	<0.5	<0.5	
Boron	10 ug/L	112	58	142	<10	
Cadmium	0_1 ug/L	<0.1	<0.1	<0,1	<0.1	
Chromium	1 ug/L	14	<1	6	<1	
Chromium (VI)	10 ug/L	<10	<10	<10	<10	
Cobalt	0.5 ug/L	1.7	4.2	<0.5	<0.5	
Copper	0.5 ug/L	3.9	<0.5	0.6	<0.5	
Lead	0.1 ug/L	<0.1	<0.1	<0.1	<0.1	
Molybdenum	0.5 ug/L	1.3	3.3	0.6	<0.5	
Nickel	1 ug/L	8	6	5	<1	
Selenium	1 ug/L	<1	<1	<1	<1	
Silver	0.1 ug/L	<0.1	<0.1	<0.1	<0.1	
Sodium	200 ug/L	1080000	53900	278000	381	
Thallium	0.1 ug/L	<0.1	<0.1	<0.1	<0.1	
Uranium	0,1 ug/L	1.8	1.9	0.8	<0.1	
Vanadium	0.5 ug/L	3.4	2.9	8.1	<0.5	
Zinc	5 ug/L	<5	5	<5	<5	
Volatiles	1		1			
Acetone	5.0 ug/L	<5.0	<5.0	<5_0	<5.0	
Benzene	0,5 ug/L	<0.5	<0.5	<0.5	<0.5	
Bromodichloromethane	0.5 ug/L	<0.5	<0.5	<0.5	<0_5	
Bromoform	0,5 ug/L	<0.5	<0.5	<0.5	<0.5	
Bromomethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5	
Carbon Tetrachloride	0.2 ug/L	<0.2	<0,2	<0,2	<0.2	
Chlorobenzene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5	
Chloroethane	1.0 ug/L	<1.0	<1.0	<1.0	<1.0	
Chloroform	0.5 ug/L	<0.5	<0.5	<0.5	<0.5	
Chloromethane	3.0 ug/L	<3.0	<3.0	<3.0	<3.0	
Dibromochloromethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5	

1-800-749-1947

PARACEL@PARACELLABS COM

WWW.PARACELLABS.COM

OTTAWA 300-2319 St. Lausent Blvd Othivia, ON K1G 4J3 MISSISSAUGA 6645 Kitmart Pd. Unit 427 Mississiuga, ON SSN 6J3 N LAGARA FALLS 5415 Morning Glary Crt Nisgara Falls, ON 521 DAS SARN LA 123 Creatina St. N. Sarana ON N71 517

Page 6 of 18

GPARACEL

Certificate of Analysis

Client: SNC-Lavalin Inc. (Ottawa)

Order	#:	1245252
Oraci		LTVLVL

Report Date: 14-Nov-2012 Order Date:8-Nov-2012

Client PO: NCC Burnside Project Description: 12-316					
	Client ID: Sample Date: Sample ID: MDL/Units	ID: MW-5 CH2M MW-1 ite: 07-Nov-12 07-Nov-12 ID: 1245252-05 1245252-06 Water Water		MW-99 07-Nov-12 1245252-07 Water	Field Blank 08-Nov-12 1245252-08 Water
Dichlorodifluoromethane	1.0 ug/L	<1.0	<1.0	<1.0	<1.0
1,2-Dibromoethane	0.2 ug/L	<0,2	<0.2	<0.2	<0.2
1,2-Dichlorobenzene	0,5 ug/L	<0.5	<0.5	<0.5	<0.5
1,3-Dichlorobenzene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,4-Dichlorobenzene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,1-Dichloroethane	0,5 ug/L	<0.5	<0.5	<0.5	<0.5
1,2-Dichloroethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,1-Dichloroethylene	0,5 ug/L	<0.5	<0.5	<0.5	<0.5
cis-1,2-Dichloroethylene	0 5 ug/L	<0.5	<0.5	<0.5	<0.5
trans-1,2-Dichloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,2-Dichloroethylene, total	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,2-Dichloropropane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
cis-1,3-Dichloropropylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
trans-1,3-Dichloropropylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,3-Dichloropropene, total	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Hexane	1_0 ug/L	<1.0	<1.0	<1.0	<1.0
Methyl Ethyl Ketone (2-Butanone)	5.0 ug/L	<5.0	<5.0	<5.0	<5.0
Methyl Butyl Ketone (2-Hexanone	10.0 ug/L	<10.0	<10.0	<10.0	<10.0
Methyl Isobutyl Ketone	5.0 ug/L	<5.0	<5.0	<5.0	<5.0
Methyl tert-butyl ether	2.0 ug/L	<2.0	<2.0	<2.0	<2.0
Methylene Chloride	5.0 ug/L	<5.0	<5.0	<5.0	<5.0
Styrene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,1,1,2-Tetrachloroethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,1,2,2-Tetrachloroethane	0.5 ug/L	<0.5	<0.5	<0,5	<0.5
Tetrachloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Toluene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,2,4-Trichlorobenzene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,1,1-Trichloroethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,1,2-Trichloroethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Trichloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Trichlorofluoromethane	1.0 ug/L	<1.0	<1.0	<1.0	<1.0
1,3,5-Trimethylbenzene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5

1 - 800 - 749 - 1947 Paracel@paracellabs_com

WWW.PARACELLABS.COM

OTTAWA 300-2319 St. Laisent Blvd. Orlawn, ON 616 428 MISSISSAUGA 6645 Kistmat Pd. Unit #27 Mississatiga: UNICSN 613

NIAGARA FALLS 5415 Morning Glory Cri. Niagara Faili, CIN L20 040 SARNIA 123 Christina St. N. Sarna, ON N71 517

Client: SNC-Lavalin Inc. (Ottawa)

Report Date: 14-Nov-2012 Order Date:8-Nov-2012

Client PO: NCC Burnside	C Burnside Project Description: 12-316					
	Client ID: Sample Date: Sample ID: MDL/Units	MW-5 07-Nov-12 1245252-05 Water	CH2M MW-1 07-Nov-12 1245252-06 Water	MW-99 07-Nov-12 1245252-07 Water	Field Blank 08-Nov-12 1245252-08 Water	
Vinyl chloride	0.5 ug/L	<0.5	<0.5	<0.5	<0.5	
m,p-Xylenes	0,5 ug/L	<0.5	<0.5	<0,5	<0.5	
o-Xylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5	
Xylenes, total	0.5 ug/L	<0.5	<0.5	<0.5	<0.5	
4-Bromofluorobenzene	Surrogate	102%	104%	103%	99.4%	
Dibromofluoromethane	Surrogate	104%	101%	104%	108%	
Toluene-d8	Surrogate	97.2%	98.2%	96.8%	95.4%	
Hydrocarbons						
F1 PHCs (C6-C10)	25 ug/L	<25	<25	<25	<25	
F2 PHCs (C10-C16)	100 ug/L	<100	<100	<100	<100	
F3 PHCs (C16-C34)	100 ug/L	<100	<100	<100	<100	
F4 PHCs (C34-C50)	100 ug/L	<100	<100	<100	<100	
Semi-Volatiles			*			
Acenaphthene	0.05 ug/L	<0.05	<0.05	0.14	<0.05	
Acenaphthylene	0.05 ug/L	0.24	0.83	0.56	<0.05	
Anthracene	0.01 ug/L	0.04	<0.01	0.15	<0.01	
Benzo [a] anthracene	0.01 ug/L	<0.01	<0.01	0.20	<0.01	
Benzo [a] pyrene	0_01 ug/L	<0.01	<0,01	0.11	<0.01	
Benzo [b] fluoranthene	0.05 ug/L	<0.05	<0.05	0.12	<0.05	
Benzo [g,h,i] perylene	0.05 ug/L	<0.05	<0.05	0.07	<0.05	
Benzo [k] fluoranthene	0.05 ug/L	<0.05	<0.05	0.12	<0.05	
Biphenyl	0.05 ug/L	<0.05	0.07	<0.05	<0.05	
Chrysene	0.05 ug/L	<0.05	<0.05	0.25	<0.05	
Dibenzo [a,h] anthracene	0.05 ug/L	<0.05	<0.05	<0.05	<0.05	
Fluoranthene	0.01 ug/L	<0.01	<0.01	0.40	<0.01	
Fluorene	0_05 ug/L	<0.05	<0.05	0.07	<0.05	
Indeno [1,2,3-cd] pyrene	0.05 ug/L	<0.05	<0.05	0.08	<0.05	
1-Methylnaphthalene	0.05 ug/L	0.07	<0.05	0.05	<0.05	
2-Methylnaphthalene	0.05 ug/L	0.06	<0.05	0.05	<0.05	
Methylnaphthalene (1&2)	0.10 ug/L	0,12	<0.10	0.10	<0.10	
Naphthalene	0.05 ug/L	0.20	0.50	0.32	<0.05	
Phenanthrene	0.05 ug/L	0.10	0.06	0.24	<0.05	
Pyrene	0.01 ug/L	<0.01	<0.01	0.41	<0.01	
2-Fluorobiphenyl	Surrogate	77.8%	76.6%	76.6%	72.0%	

1-800-749-1947

PARACEL@PARACELLABS.COM

WWW.PARACELLABS.COM

OTTAWA 100-2319 St Laurent Blvd Orava, OTLKTG 4J8 MISSISSAUGA 6646 Kirrart Rd Unit #27 Mississanga, ON USN 603 NIAGARA FALLS 5415 Morning Glory Crit Niagara Falls, DN 1,210A3 SARNIA

123 Christina St. N Sarola, ON N71 517

Page 8 of 18

CABURATORIES LIS					and the second se
Certificate of Analysis				Repo	ort Date: 14-Nov-2012
Client: SNC-Lavalin Inc. (Ottawa)				Oi	der Date:8-Nov-2012
Client PO: NCC Burnside		Project Description	n: 12-316		
	Client ID:	MW-5	CH2M MW-1	MW-99	Field Blank
	Sample Date:	07-Nov-12	07-Nov-12	07-Nov-12	08-Nov-12
	Sample ID:	1245252-05	1245252-06	1245252-07	1245252-08
	MDL/Units	Water	Water	Water	Water
Terphenyl-d14	Surrogate	89.0%	83.6%	84.3%	86.0%

GPARACEL

Order #: 1245252

1-800-749-1947 Paracel@paracellabs.com WWW.PARACELLABS.COM

QTTAWA 300–2319 St Laurent Blvd Ottawa, ON K1G 4J8 M I S S I S S A U G A 6645 Kitimat Rd Unit #27 Misaissauga, ON LSN 6J3

NIAGARA FALLS 5415 Morning Glory Crt Niagara Falls ON L2J 0A3 SARNIA 123 Christine St. N Serne ON N7T 5T7

Page 9 of 18

GPARACEL

Certificate of Analysis

Client: SNC-Lavalin Inc. (Ottawa)

Report Date: 14-Nov-2012 Order Date:8-Nov-2012

Client PO: NCC Burnside Project Description: 12-316					
m	Client ID:	Trip Blank	-18		
	Sample Date:	08-Nov-12	-	<u>i</u>	÷
	Sample ID: MDL/Linits	Water	-	-	
Volatiles	Indefenite				
Acetone	5.0 ug/L	<5.0	-	-	170
Benzene	0_5 ug/L	<0.5	-	=	
Bromodichloromethane	0.5 ug/L	<0.5	-	-	()
Bromoform	0.5 ug/L	<0.5	2	i i i i i i i i i i i i i i i i i i i	3
Bromomethane	0.5 ug/L	<0.5	-	-	2 <u>1</u> 3
Carbon Tetrachloride	0.2 ug/L	<0.2	2	9	121
Chlorobenzene	0.5 ug/L	<0.5	14	1	(a)
Chloroethane	1.0 ug/L	<1.0	.+	-	191
Chloroform	0.5 ug/L	<0.5		-	1.4/
Chloromethane	3.0 ug/L	<3.0	-	-	ಚನೆ
Dibromochloromethane	0.5 ug/L	<0.5	-	e.	
Dichlorodifluoromethane	1.0 ug/L	<1.0	ž		10
1,2-Dibromoethane	0.2 ug/L	<0.2	-	<u>1</u>	120 L
1,2-Dichlorobenzene	0.5 ug/L	<0.5	12	14	14 14
1,3-Dichlorobenzene	0.5 ug/L	<0.5	2	-	*
1,4-Dichlorobenzene	0.5 ug/L	<0.5	•	H H	
1,1-Dichloroethane	0.5 ug/L	<0.5	-	77	
1,2-Dichloroethane	0.5 ug/L	<0.5		1	
1,1-Dichloroethylene	0.5 ug/L	<0.5			
cis-1,2-Dichloroethylene	0.5 ug/L	<0.5	÷,		٠
trans-1,2-Dichloroethylene	0.5 ug/L	<0.5			
1,2-Dichloroethylene, total	0.5 ug/L	<0.5	-	4	
1,2-Dichloropropane	0.5 ug/L	<0.5	*	14	
cis-1,3-Dichloropropylene	0.5 ug/L	<0.5		1	
trans-1,3-Dichloropropylene	0.5 ug/L	<0.5			
1,3-Dichloropropene, total	0.5 ug/L	<0.5			1.
Ethylbenzene	0.5 ug/L	<0.5		ā.	A.T.S.
Hexane	1.0 ug/L	<1.0	7	÷.	
Methyl Ethyl Ketone (2-Butanone)	5.0 ug/L	<5.0	4		848
Methyl Butyl Ketone (2-Hexanone	10.0 ug/L	<10.0	22	14 c	
Methyl Isobutyl Ketone	5.0 ug/L	<5.0	2	41	(=)
Methyl tert-butyl ether	2.0 ug/L	<2.0	÷		1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 -
Methylene Chloride	5.0 ug/L	<5.0	-		-

1-800-749-1947

PARACEL@PARACELLABS.COM

WWW.PARACELLABS.COM

OTTAWA 300-2319 St. Laurent Blud Ottawin, ON K10 Alile MISSISSAUGA 6645 Kitumat Pd. Unit #27 Mississinigal, ON LSN GJD NIAGARA FALLS 5415 Morning Gary Crt Ningera Falls, ON 1270A3 SARN1A 123 Christiela 51 N Stermi, ON N77 517

Page 10 of 18

Client: SNC-Lavalin Inc. (Ottawa)

Report Date: 14-Nov-2012 Order Date:8-Nov-2012

Client PO: NCC Burnside Project Description: 12-316						
	Client ID: Sample Date Sample ID:	Trip Blank 08-Nov-12 1245252-09			-	
	MDL/Units	Water	ž	×	?`	
Styrene	0,5 ug/L	<0.5	¥:	е -	<u>14</u>	
1,1,1,2-Tetrachloroethane	0,5 ug/L	<0.5	+	÷		
1,1,2,2-Tetrachloroethane	0,5 ug/L	<0.5	-			
Tetrachloroethylene	0,5 ug/L	<0.5	+		•	
Toluene	0,5 ug/L	<0.5	*	•	at (
1,2,4-Trichlorobenzene	0.5 ug/L	<0.5	=	ā	24	
1,1,1-Trichloroethane	0,5 ug/L	<0.5		A	50	
1,1,2-Trichloroethane	0,5 ug/L	<0.5	-			
Trichloroethylene	0.5 ug/L	<0.5	÷	2	20	
Trichlorofluoromethane	1.0 ug/L	<1.0	똨	2	1 48	
1,3,5-Trimethylbenzene	0.5 ug/L	<0.5	¥	2	2 4 3)	
Vinyl chloride	0.5 ug/L	<0.5	¥	¥	940) 1	
m,p-Xylenes	0.5 ug/L	<0.5	÷	*	(H)	
o-Xylene	0,5 ug/L	<0.5			2	
Xylenes, total	0.5 ug/L	<0.5	5	π		
4-Bromofluorobenzene	Surrogate	102%		Ē	-	
Dibromofluoromethane	Surrogate	105%	5			
Toluene-d8	Surrogate	96.7%	-	×	190	

1 · 800 - 749 - 1947 PARACEL@PARACELLABS.COM OTTAWA 300-2319 ST Laurent Blvd Drawin, ON × 13-418 M ISSISSAUGA 6645 Kureta Pdr. Ont #27 MissisSauga, DN LSN 673 NEAGARA FALLS 5415 Morning Glary Crt Neigare Falls: ON 121043

SARNIA 123 Christina St. N 23 Sarcia, ON N7T 517

Page 11 of 18

WWW.PARACELLABS.COM

Client: SNC-Lavalin Inc. (Ottawa)

Client PO: NCC Burnside

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
E1 PHCs (C6-C10)	ND	25	ua/l						
E2 PHCs (C10 C16)	ND	100	ug/L						
F2 PHOs (C10-C10)	ND	100	ug/L						
F3 PHCs (C16-C34)	ND	100	ug/L						
F4 PHCs (C34-C50)	ND	100	ug/L						
Metals									
Mercury	ND	0.1	ug/L						
Antimony	ND	0.5	ug/L						
Arsenic	ND	1	ug/L						
Barium	ND	1	ug/L						
Beryllium	ND	0.5	ug/L						
Boron	ND	10	ug/L						
Cadmium	ND	0.1	ua/L						
Chromium (VI)	ND	10	ua/L						
Chromium	ND	1	ua/L						
Cobalt	ND	0.5	ug/l						
Conper	ND	0.5	ug/L						
Lead	ND	0.0	ug/L						
Molyhdenum	ND	0.5	ug/L						
Nickel	ND	1	ug/L						
Selenium	ND	1	ug/L						
Silver		01	ug/L						
Sodium		200	ug/L						
Thallium		200	ug/L						
l Iranium		0.1	ug/L						
Venadium		0.1	ug/L						
Zino		0.5	ug/L						
	ND	5	uy/L						
Semi-Volatiles									
Acenaphthene	ND	0.05	ug/L						
Acenaphthylene	ND	0.05	ug/L						
Anthracene	ND	0.01	ug/L						
Benzo [a] anthracene	ND	0.01	ug/L						
Benzo [a] pyrene	ND	0.01	ug/L						
Benzo [b] fluoranthene	ND	0.05	ug/L						
Benzo [g,h,i] pervlene	ND	0.05	ug/L						
Benzo [k] fluoranthene	ND	0.05	ua/L						
Biphenyl	ND	0.05	ug/L						
Chrysene	ND	0.05	ua/L						
Dibenzo [a,h] anthracene	ND	0.05	ua/L						
Fluoranthene	ND	0.01	ua/L						
Fluorene	ND	0.05	ug/L						
Indeno [1 2 3-cd] pyrene	ND	0.05	ug/1						
1-Methylnaphthalene	ND	0.05	ug/L						
2-Methylnaphthalene	ND	0.05	ug/L						
Methylnaphthalene (1&2)	ND	0.10	ug/L						
Nanhthalene	ND	0.05	ug/L						
Phenanthrene	ND	0.05	ug/L						
Pyrene	ND	0.00	ug/L						
Surrogate: 2-Eluorobinhenul	12.0	0.01	ug/L		64 4	50-140			
Surrogate: Terphenyl-d14	14.0		ug/L ug/l		69.8	50-140			
Volatiles	1 135				0010				
Acetono		5.0	110/						
		5.0	ug/L						
Bromodiabloromothene		0.0	ug/L						
Bromotionormethane		0.5	ug/L						
Bromomothano		0.5	ug/L						
Dromomethane	ND	0.0	ug/L						

Project Description: 12-316

PARACEL@PARACELLABS.COM

WWW, PARACELLABS.COM

100-2319 \$; Laurest Blvd Onaver, ON K19 4.3 MISSISSAUGA: 6645 Kilmat Rei UmL#27 Mississegia ON LSN 6.3

OTTAWA

NTAGARA FALLS 5415 Molening Glary Crt Niagarii Falli, ON 125 0A3

SARNIA 123 Christina St. N Satista, ON N71 ST7

Page 12 of 18

Order #: 1245252

Report Date: 14-Nov-2012 Order Date:8-Nov-2012

Client: SNC-Lavalin Inc. (Ottawa)

Client PO: NCC Burnside

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Carbon Tetrachloride	ND	0.2	ua/L						
Chlorobenzene	ND	0.5	ug/L						
Chloroethane	ND	1.0	ua/L						
Chloroform	ND	0.5	ua/L						
Chloromethane	ND	3.0	ug/L						
Dibromochloromethane	ND	0.5	ug/L						
Dichlorodifluoromethane	ND	1.0	ug/L						
1,2-Dibromoethane	ND	0.2	ug/L						
1,2-Dichlorobenzene	ND	0.5	ug/L						
1,3-Dichlorobenzene	ND	0.5	ug/L						
1,4-Dichlorobenzene	ND	0.5	ug/L						
1,1-Dichloroethane	ND	0.5	ug/L						
1.2-Dichloroethane	ND	0.5	ug/L						
1,1-Dichloroethylene	ND	0.5	ug/L						
cis-1,2-Dichloroethylene	ND	0.5	ug/L						
trans-1,2-Dichloroethylene	ND	0.5	ug/L						
1,2-Dichloroethylene, total	ND	0.5	ug/L						
1,2-Dichloropropane	ND	0.5	ug/L						
cis-1,3-Dichloropropylene	ND	0.5	ug/L						
trans-1,3-Dichloropropylene	ND	0.5	ug/L						
1,3-Dichloropropene, total	ND	0.5	ug/L						
Ethylbenzene	ND	0.5	ug/L						
Hexane	ND	1.0	ug/L						
Methyl Ethyl Ketone (2-Butanone)	ND	5.0	ug/L						
Methyl Butyl Ketone (2-Hexanone)	ND	10.0	ug/L						
Methyl Isobutyl Ketone	ND	5.0	ug/L						
Methyl tert-butyl ether	ND	2.0	ug/L						
Methylene Chloride	ND	5.0	ug/L						
Styrene	ND	0.5	ug/L						
1,1,1,2-Tetrachloroethane	ND	0.5	ug/L						
1,1,2,2-Tetrachloroethane	ND	0.5	ug/L						
Tetrachloroethylene	ND	0.5	ug/L						
Toluene	ND	0.5	ug/L						
1,2,4-Trichlorobenzene	ND	0.5	ug/L						
1,1,1-Trichloroethane	ND	0.5	ug/L						
1,1,2-Trichloroethane	ND	0.5	ug/L						
Trichloroethylene	ND	0.5	ug/L						
Irichlorofluoromethane	ND	1.0	ug/L						
1,3,5-Trimethylbenzene	ND	0.5	ug/L						
Vinyl chloride	ND	0.5	ug/L						
m,p-Xylenes	ND	0.5	ug/L						
o-Xylene	ND	0.5	ug/L						
Aylenes, total	ND	0.5	ug/L		400	50 4 40			
Surrogate: 4-Bromotiluorobenzene	32.5		ug/L		102	50-140			
Surrogate: Dibromofluoromethane	29.7		ug/L		92.8	50-140			
Surrogate: Toluene-d8	32.1		ug/L		100	50-140			

Project Description: 12-316

Order #: 1245252

Report Date: 14-Nov-2012 Order Date:8-Nov-2012

1 - 800 - 749 - 1947

OTTAWA 300-2310 St. Laurent Bivd Ottevin, DN K1G 418 MISSISSAUGA 6645 Kitimat Rol Unit #27 Mississauga, ON LSN 613

NIAGARA FALLS 5415 Microllog Gloty Crt Nagera Palis, ON 1210A3 SARNIA

123 Christina St. N. Sama, ON N7T 5T7

Page 13 of 18

PARACEL@PARACELLABS.COM

WWW.PARACELLABS.COM

Client: SNC-Lavalin Inc. (Ottawa)

Client PO: NCC Burnside

Method Quality Control: Duplicate

		Reporting		Source %REC			RPD		
Analyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes
Hudrogarbong									
		25		ND				20	
	ND	25	ug/L	ND				30	
Metals									
Mercury	ND	0.1	ug/L	ND			0.0	20	
Antimony	ND	0.5	ug/L	ND			0.0	20	
Arsenic	2,1	1	ug/L	2,2			6.1	20	
Bendlium	495	0.5	ug/L	55Z			10.8	20	
Boron	986	100	ug/L	9/1			47	20	
Cadmium	ND	0.1	ug/L	ND			0.0	20	
Chromium (VI)	ND	10	ug/L	ND			0.0	13	
Chromium	4.9	1	ug/L	5.3			7.7	20	
Cobalt	1.80	0.5	ug/L	1.76			2.1	20	
Copper	1.45	0.5	ug/L	1.39			4.2	20	
Lead	0.17	0,1	ug/L	0.11			48.2	20	QR-01
Molybdenum	3.37	0.5	ug/L	3.76			10.8	20	
Nickel	12.2	1	ug/L	12.1			1.2	20	
Selenium	2,4	1	ug/L	2.5			7.8	20	
Sodium	ND 210000	2000	ug/L	ND			0.0	20	
Thallium	219000 ND	2000	ug/L	229000 ND			4.5	20	
Uranium	27	0.1	ug/L	27			27	20	
Vanadium	7 01	0.5	ug/L	6.68			4.8	20	
Zinc	8	5	ug/L	ND			0.0	20	
Volatiles			5						
Acetone	ND	5.0	ua/l	ND				30	
Benzene	ND	0.5	ua/L	ND				30	
Bromodichloromethane	ND	0.5	ug/L	ND				30	
Bromoform	ND	0.5	ug/L	ND				30	
Bromomethane	ND	0.5	ug/L	ND				30	
Carbon Tetrachloride	ND	0.2	ug/L	ND				30	
Chlorobenzene	ND	0.5	ug/L	ND				30	
Chloroethane	ND	1.0	ug/L	ND				30	
Chloromethane		0.5	ug/L	ND				30	
Dibromochloromethane	ND	5.0	ug/L					30	
Dichlorodifluoromethane	ND	1.0	ug/L					30	
1,2-Dibromoethane	ND	0.2	ug/L	ND				30	
1,2-Dichlorobenzene	ND	0.5	ug/L	ND				30	
1,3-Dichlorobenzene	ND	0.5	ug/L	ND				30	
1,4-Dichlorobenzene	ND	0.5	ug/L	ND				30	
1,1-Dichloroethane	ND	0.5	ug/L	ND				30	
1,2-Dichloroethane	ND	0.5	ug/L	ND				30	
I, I-DIChloroethylene	ND	0.5	ug/L	ND				30	
trans-1,2-Dichloroethylene		0.5	ug/L	ND				30	
1 2-Dichloropronane		0.5	ug/L					30 20	
cis-1.3-Dichloropropylene		0.5	ug/L					30	
trans-1.3-Dichloropropylene	ND	0.5	ug/L	ND				30	
Ethylbenzene	ND	0.5	ua/L	ND				30	
Hexane	ND	1.0	ug/L	ND				30	
Methyl Ethyl Ketone (2-Butanone)	ND	5.0	ug/L	ND				30	
Methyl Butyl Ketone (2-Hexanone)	ND	10.0	ug/L	ND				30	
Methyl Isobutyl Ketone	ND	5.0	ug/L	ND				30	
Methyl tert-butyl ether	ND	2.0	ug/L	ND				30	
Methylene Chloride	ND	5.0	ug/L	ND				30	
		1	OTTAWA		NTAGAR	FALLS			

1 - 800 - 749 - 1947 PARACEL@PAPACE

PARACEL@PARACELLABS.COM

WWW.PARACELLABS.COM

300-2319 St. La John Blvd Dhave, Dfv K1G 418 M I S S I S S A U G A 6645 Kumat Pd. Uch #27 Missoksauga, CN USN 653

NIAGARA FALLS 5415 Morning Glary Cra Niagara Falls, ON C23 0A3

SARNIA 123 Christina St. N. Samia, ON N7T 517

13

Order #: 1245252

Report Date: 14-Nov-2012 Order Date:8-Nov-2012

Project Description: 12-316

Client: SNC-Lavalin Inc. (Ottawa)

Client PO: NCC Burnside

Project Description: 12-316

Order #: 1245252

Report Date: 14-Nov-2012 Order Date:8-Nov-2012

		Reporting		Source		%REC		RPD	
Analyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes
Styrene	ND	0.5	ug/L	ND				30	
1,1,1,2-Tetrachloroethane	ND	0.5	ug/L	ND				30	
1,1,2,2-Tetrachloroethane	ND	0.5	ug/L	ND				30	
Tetrachloroethylene	ND	0.5	ug/L	ND				30	
Toluene	ND	0.5	ug/L	NĎ				30	
1,2,4-Trichlorobenzene	ND	0.5	ug/L	ND				30	
1,1,1-Trichloroethane	ND	0.5	ug/L	ND				30	
1,1,2-Trichloroethane	ND	0.5	ug/L	ND				30	
Trichloroethylene	ND	0.5	ug/L	ND				30	
Trichlorofluoromethane	ND	1:0	ug/L	ND				30	
1,3,5-Trimethylbenzene	ND	0.5	ug/L	ND				30	
Vinyl chloride	ND	0.5	ug/L	ND				30	
m,p-Xylenes	ND	0.5	ug/L	ND				30	
o-Xylene	ND	0.5	ug/L	ND				30	
Surrogate: 4-Bromofluorobenzene	31.7		ug/L	ND	99.1	50-140			
Surrogate: Dibromofluoromethane	31.2		ug/L	ND	97.5	50-140			
Surrogate: Toluene-d8	32.4		ua/L	ND	101	50-140			

1 - 800 - 749 - 1947 Paracel@paracellabs.com 0 T T A W A 300 - 2319 St. Laurent 9 vd Ottavin, 07 415 - 429 M I S S I S S A U G A 6645 Kilmat Rd Unit #27 Mississaiga - ON 15N 621 NIAGARA FALLS 5415 Molming Glory Crt Niggara Falls, ON L23 DAB SARNIA 123 Chilatha St. N Sarola, ON N7T 517

WWW.PARACELLABS.COM

Client: SNC-Lavalin Inc. (Ottawa)

Client PO: NCC Burnside

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	1970	25	ug/L	ND	98.6	68-117			
F2 PHCs (C10-C16)	1440	100	ug/L	ND	90.0	60-140			
F3 PHCs (C16-C34)	3800	100	ug/L	ND	95.0	60-140			
F4 PHCs (C34-C50)	2720	100	ug/L	ND	113	60-140			
Metals									
Mercury	3,42	0.1	ug/L	ND	114	78-137			
Antimony	48,2		ug/L	0.07	96.3	80-120			
Arsenic	44.9		ug/L	0.2	89.5	80-120			
Barium	44.7		ug/L	0.6	88.1	80-120			
Beryllium	43.8		ug/L	0.02	87.5	80-120			
Boron	42		ug/L	2	80.9	80-120			
Cadmium	44.5		ug/L	ND	89.0	80-120			
Chromium (VI)	166	10	ug/L	ND	83.0	75-120		C	2M-05
Chromium	44.2		ug/L	0.5	87.3	80-120			
Cobalt	44.1		ug/L	0.003	88.2	80-120			
Copper	44.2		ug/L	ND	88.6	80-120			
Lead	42.8		ug/L	ND	85.8	80-120			
Molybdenum	38.2		ug/L	0.08	76,1	80-120		(QS-02
Nickel	44.9		ug/L	0.03	89,8	80-120			
Selenium	45.4		ug/L	0.1	90.7	80-120			
Silver	43.0		ug/L	ND	86,2	80-120			
Sodium	1160		ug/L	381	77,9	80-120		(QS-02
Thallium	44.7		ug/L	ND	89,4	80-120			
Uranium	41.7		ug/L	ND	83.4	80-120			
Vanadium	44.1		ug/L	0.10	87.9	80-120			
Zinc	44		ug/L	0.9	85,3	80-120			
Semi-Volatiles									
Acenaphthene	4.57	0.05	ug/L	ND	91.4	50-140			
Acenaphthylene	2.75	0.05	ug/L	ND	55.0	50-140			
Anthracene	5.18	0.01	ug/L	ND	104	50-140			
Benzo [a] anthracene	6.18	0.01	ug/L	ND	124	50-140			
Benzo [a] pyrene	6.02	0.01	ug/L	ND	120	50-140			
Benzo [b] fluoranthene	4.15	0.05	ug/L	ND	83.0	50-140			
Benzo [g,h,i] perylene	6.10	0.05	ug/L	ND	122	50-140			
Benzo [k] fluoranthene	4.07	0.05	ug/L	ND	81.4	50-140			
Biphenyl	5.64	0.05	ug/L	ND	113	50-140			
Chrysene	5.61	0.05	ug/L	ND	112	50-140			
Dibenzo [a,h] anthracene	6.04	0.05	ug/L	ND	121	50-140			
Fluoranthene	5.52	0.01	ug/L	ND	110	50-140			
Fluorene	5.06	0.05	ug/L	ND	101	50-140			
indeno [1,2,3-cd] pyrene	6.14	0.05	ug/L	ND	123	50-140			
1-Methylnaphthalene	4.15	0.05	ug/L	ND	83.1	50-140			
2-Methylnaphthalene	4.33	0.05	ug/L	ND	86.5	50-140			
Naphthalene	4.04	0.05	ug/L	ND	80.8	50-140			
Phenanthrene	6.25	0.05	ug/L	ND	125	50-140			
Pyrene	6.77	0.01	ug/L	ND	135	50-140			
Surrogate: 2-Fluorobiphenyl	12.9		ug/L		64.3	50-140			
Volotiloo									

Project Description: 12-316

Volatiles

1 - 800 - 749 - 1947

PARACEL@PARACELLABS.COM

WWW.PARACELLABS.COM

OTTAWA 300.2019 St. Lausent Blvd Ottawa, ON K16 418 MISSISSAUGA 6645 scimat Rd. USH #27 Misosanga, ON 155 63 NIAGARA FALLS 5415 Morning Gory Ort Nagara Falls, UN L23 0A r

SARNIA 123 Christina St. N Saroja, ON N71 ST7

Page 16 of 18

Order #: 1245252

Report Date: 14-Nov-2012 Order Date:8-Nov-2012

Client: SNC-Lavalin Inc. (Ottawa)

Client PO: NCC Burnside

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Acetone	92.9	5.0	ug/L	ND	92.9	50-140			
Benzene	43.4	0.5	ug/L	ND	109	60-130			
Bromodichloromethane	40.2	0.5	ug/L	ND	101	60-130			
Bromoform	50.4	0.5	ug/L	ND	126	60-130			
Bromomethane	6,66	0.5	ug/L	ND	16_6	50-140			
Carbon Tetrachloride	39.4	0.2	ug/L	ND	98.5	60-130			
Chlorobenzene	40.7	0.5	ug/L	ND	102	60-130			
Chloroethane	36.1	1.0	ug/L	ND	90.2	50-140			
Chloroform	39.2	0.5	ug/L	ND	98.0	60-130			
Chloromethane	25.0	3.0	ug/L	ND	62_4	50-140			
Dibromochloromethane	34.7	0.5	ug/L	ND	86.7	60-130			
Dichlorodifluoromethane	26.6	1.0	ug/L	ND	66,6	50-140			
1,2-Dibromoethane	37.5	0.2	ug/L	ND	93.8	60-130			
1,2-Dichlorobenzene	42.5	0.5	ug/L	ND	106	60-130			
1,3-Dichlorobenzene	30,1	0.5	ug/L	ND	75.2	60-130			
1,4-Dichlorobenzene	41.6	0.5	ug/L	ND	104	60-130			
1,1-Dichloroethane	41.2	0.5	ug/L	ND	103	60-130			
1,2-Dichloroethane	37.1	0.5	ug/L	ND	92.8	60-130			
1,1-Dichloroethylene	42.4	0.5	ug/L	ND	106	60-130			
cis-1,2-Dichloroethylene	44.3	0.5	ug/L	ND	111	60-130			
trans-1,2-Dichloroethylene	44.1	0.5	ug/L	ND	110	60-130			
1,2-Dichloropropane	43.9	0.5	ug/L	ND	110	60-130			
cis-1,3-Dichloropropylene	41_7	0.5	ug/L	ND	104	60-130			
trans-1,3-Dichloropropylene	39.8	0.5	ug/L	ND	99.4	60-130			
Ethylbenzene	43.0	0.5	ug/L	ND	107	60-130			
Нехапе	42.8	1.0	ug/L	ND	107	60-130			
Methyl Ethyl Ketone (2-Butanone)	88.0	5.0	ug/L	ND	88,0	50-140			
Methyl Butyl Ketone (2-Hexanone)	134	10.0	ug/L	ND	134	50-140			
Methyl Isobutyl Ketone	83.9	5.0	ug/L	ND	83.9	50-140			
Methyl tert-butyl ether	102	2.0	ug/L	ND	102	50-140			
Methylene Chloride	45.2	5.0	ug/L	ND	113	60-130			
Styrene	46.6	0.5	ug/L	ND	116	60-130			
1,1,1,2-Tetrachloroethane	34.8	0.5	ug/L	ND	86.9	60-130			
1,1,2,2-Tetrachloroethane	49.2	0.5	ug/L	ND	123	60-130			
Tetrachloroethylene	38.0	0,5	ug/L	ND	95.0	60-130			
Toluene	45.2	0.5	ug/L	ND	113	60-130			
1,2,4-Trichlorobenzene	39.6	0.5	ug/L	ND	99.0	60-130			
1,1,1-Trichloroethane	40.3	0.5	ug/L	ND	101	60-130			
1,1,2-Trichloroethane	41.9	0.5	ug/L	ND	105	60-130			
Trichloroethylene	39.3	0.5	ug/L	ND	98.3	60-130			
	35,6	1.0	ug/L	ND	89.0	60-130			
1,3,5-1 rimethylbenzene	33.9	0.5	ug/L	ND	84.8	60-130			
Vinyl chloride	27.5	0.5	ug/L	ND	68.8	50-140			
m,p-Xylenes	82.6	0.5	ug/L	ND	103	60-130			
o-Xylene	41.8	0,5	ug/L	ND	105	60-130			

Project Description: 12-316

1=800-749-1947 Paracel@paracellabs=com

WWW.PARACELLABS.COM

OTTAWA 300-2319 St Laurent Blvd Otawar, ON 615-628 MISSISSAUGA 6645 Katemat Rd, Onic #27 Misstassauga, ON 629 NTAGARA FALLS 5415 Morning Giory Cr. Naugara Falls, ON L21 OAS SARN LA 123 Cristina St. N. Sartina, ON N71 517 Order #: 1245252

Report Date: 14-Nov-2012 Order Date:8-Nov-2012

Page 17 of 18

Client: SNC-Lavalin Inc. (Ottawa)

Client PO: NCC Burnside

Order #: 1245252

Report Date: 14-Nov-2012 Order Date:8-Nov-2012

Qualifier Notes:

QC Qualifiers :

QM-05 : The spike recovery was outside acceptance limits for the matrix spike due to matrix interference.

Project Description: 12-316

QR-01: Duplicate RPD is high, however, the sample result is less than 10x the MDL.

QS-02: Spike level outside of control limits. Analysis batch accepted based on other QC included in the batch.

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference.

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.

- F1 range corrected for BTEX.

- F2 to F3 ranges corrected for appropriate PAHs where available.

- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.

- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.

1 - 800 - 749 - 1947 Paracel@paracellabs.com OTTAWA 300-2319 St. Laurent Blvd Ottawn: ON KTG 4.18 MISSISSAUGA 6645 Kitmiat Rd. Unit #27 Mississiugh: CN LSN 6.03 NIAGARA FALLS 5415 Morning Glory Crt Nuigara Falls, ON L23 0A3 SARNIA

SARNIA 120 Christina St. N Satina: ON N7T 517

Page 18 of 18

WWW.PARACELLABS.COM

6	PARACEL		JSTE SPON	D.	Ε.		H 30	ead Olf 00-2319	ice St. Lau	rent Blvd kt/G 4J8			Cl	ain of (Lab Use	Custod Onlyi	y	
	LABORATORIES LTD.	REI	liabi	Ε.			p: e:	1-800- parace	749-194 I G parac	7 :ellabs.co	200]	N?	4	877		
NATTO	VA 🖲 KINGSTON 🖲 NIAGARA 🖲 MISSISS	AUGA 🖲	SARI	NIA			W	ww.para	icellabs	com		Page of					
lient N	ame SNC -Lavalin Environma	at		Project Reference: 12-316 (NCC BLASSIDE)							TAT: N/Regular []3 Day						
dires	Melanie Siewert			00 2							_		2 Dav	ĺ] 1 Dav		
Dettel 2-24	110 - de Calonnala Ka				L.L.												
elephn	Melanie, Siewed & Si						iclar	ialin	.00.	~		1.5ate Re	quired:				_
Pellor	10 3- 30 - 10 - 10 0 -	ATAL 2	tperi	TIMA I	1.0 0.4 62000	1.1002203.1.1	ome		IN COL	e a presió	n			172	, la	10.00	1 Ki
Ciner Luis 1	Land S. SollSed (CW)Cound Waters SW -Surface Waters	CE (Ciame Ca	INSU.	rung (Palati A (Ala) (D.(11170011	COME	[] 208	(21000)	1120B1	Saultar	y) Munic	ileguit.	108 202	- M0	ther. I jt	44
	The a monoto in the state of th	10 1000 10 04	intary se	νει) Γ (I					r		ĸequ	Ired Ar	INIYSES				
'aracı	245252	гіх	Volame	Containers	Sample	e Taken	000	DHA HI	Stol State	AHS							
	Sample ID/Location Name	Mat	Air	# of	Date	Time	Š	14	124	4							
1	Mw-I	GW		7	Nov 7/12	14:15	1	1	1								1
2	MW-2	GW	_	7	Nov 7/12	14:30	1	V	V	V							/
3	MW-3	GW		7	Nov 7/12	15:30		\bigvee	1								1
4	MW-4	GW	_	7	Nov7/12	15.40	V	1	1	V							
5	MW-5	GW		7	Nov7/12	15:05			V								
6	CH2M MW-1	GW		7	Nov7/12	15:15		J	1	1							
7	Mw-99	GW	-	7	Nov 7/12	14:15	V	V	V							-	
8	field Blank	W		7	Nov B/12	10.15				\checkmark							
9	Trid Ster Blank	W		4	No.18/12	10.15	\bigvee										,
10																	
Comm	ients:-metals (incl. Ch) # Hg)	are f	-i el c	1-4	iltered.									Method (Delivery	-ix	
Engy	ieled By (Print & Sign).	Received	d by Drin	ren Depe	Ж.	Receive	ed at Lab		-1			Verified	iby: U.C.				
	I muly Ungenhords	Date/Tir	ne			Date/Ti	int: A	IN 8	112	11	25	Date/Ti	me l	Viev S	12	12	31
late Tr	ne Nevre 12 / 11-10 am	Tempera	Hure:		6	Temper	rature:	24_*	-	11 10		pH Veri	fied 1	By: At	C	- 1	

Chain of Custody (Blank) - Rev 0.0 December 2011

Success Through Science

Your P.O. #: 16300R-20 Your Project #: 122510993 Site Location: BAYVIEW/BURNSIDE Your C.O.C. #: 489367-02-01

Attention:Chris Bowie

Stantec Consulting Ltd 1331 Clyde Avenue Suite 400 Ottawa, ON K2C 3G4

> Report Date: 2014/10/27 Report #: R3201080 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B4J4887 Received: 2014/10/17, 17:25

Sample Matrix: Water # Samples Received: 10

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
1,3-Dichloropropene Sum	10	N/A	2014/10/23	CAM SOP-00226	EPA 8260
Chromium (VI) in Water	8	N/A	2014/10/22	CAM SOP-00436	EPA 7199 m
Petroleum Hydro. CCME F1 & BTEX in Water	8	N/A	2014/10/23	CAM SOP-00315	CCME PHC-CWS m
Petroleum Hydrocarbons F2-F4 in Water	8	2014/10/23	2014/10/24	CAM SOP-00316	CCME PHC-CWS m
Mercury (low level)	8	2014/10/23	2014/10/23	CAM SOP-00453	EPA 7470 m
PAH Compounds in Water by GC/MS (SIM)	8	2014/10/20	2014/10/21	CAM SOP-00318	EPA 8270 m
Volatile Organic Compounds in Water	8	N/A	2014/10/22	CAM SOP-00226	EPA 8260 m
Volatile Organic Compounds in Water	2	N/A	2014/10/23	CAM SOP-00226	EPA 8260 m

Remarks:

Maxxam Analytics has performed all analytical testing herein in accordance with ISO 17025 and the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act. All methodologies comply with this document and are validated for use in the laboratory. The methods and techniques employed in this analysis conform to the performance criteria (detection limits, accuracy and precision) as outlined in the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection act.

The CWS PHC methods employed by Maxxam conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following the 'Alberta Environment Draft Addenda to the CWS-PHC, Appendix 6, Validation of Alternate Methods'. Documentation is available upon request. Maxxam has made the following improvements to the CWS-PHC reference benchmark method: (i) Headspace for F1; and, (ii) Mechanical extraction for F2-F4. Note: F4G cannot be added to the C6 to C50 hydrocarbons. The extraction date for samples field preserved with methanol for F1 and Volatile Organic Compounds is considered to be the date sampled.

Maxxam Analytics is accredited for all specific parameters as required by Ontario Regulation 153/04. Maxxam Analytics is limited in liability to the actual cost of analysis unless otherwise agreed in writing. There is no other warranty expressed or implied. Samples will be retained at Maxxam Analytics for three weeks from receipt of data or as per contract.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Success Through Science®

Your P.O. #: 16300R-20 Your Project #: 122510993 Site Location: BAYVIEW/BURNSIDE Your C.O.C. #: 489367-02-01

Attention:Chris Bowie

Stantec Consulting Ltd 1331 Clyde Avenue Suite 400 Ottawa, ON K2C 3G4

> Report Date: 2014/10/27 Report #: R3201080 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B4J4887 Received: 2014/10/17, 17:25

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Parnian Baber, Project Manager Email: pbaber@maxxam.ca Phone# (905) 817-5700

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Stantec Consulting Ltd Client Project #: 122510993 –Site-Location: BAYVIEW/BURNSIDE Your P.O. #: 16300R-20 Sampler Initials: AH

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

Maxxam ID		YB3205	YB3205	YB3206	YB3207	YB3208	YB3209		
Sampling Date		2014/10/17	2014/10/17	2014/10/17	2014/10/17	2014/10/17	2014/10/17		
COC Number		489367-02-01	489367-02-01	489367-02-01	489367-02-01	489367-02-01	489367-02-01		
	Units	MW-1	MW-1 Lab-Dup	MW-2	MW14-54	MW-3	CH2M MW-1	RDL	QC Batch
Metals									
Chromium (VI)	ug/L	ND		ND	ND	ND	ND	0.50	3791658
Mercury (Hg)	ug/L	ND	ND	ND	ND	0.02	ND	0.01	3795649
RDL = Reportable Detection L	imit								
QC Batch = Quality Control Ba	atch								
Lab-Dup = Laboratory Initiate	d Dupl	icate							
ND = Not detected									

Maxxam ID		YB3210	YB3211	YB3212						
Compling Date		2014/10/17	2014/10/17	2014/10/17						
sampling Date		14:30	15:30	16:30						
COC Number		489367-02-01	489367-02-01	489367-02-01						
	Units	CH2M MW-2	MW-5	MW-4	RDL	QC Batch				
Metals										
Chromium (VI)	ug/L	ND	ND	ND	0.50	3791658				
Mercury (Hg)	ug/L	ND	ND	ND	0.01	3795649				
RDL = Reportable Detection L	imit									
QC Batch = Quality Control Batch										
ND = Not detected										

Stantec Consulting Ltd Client Project #: 122510993 Site Location: _____BAYVIEW/BURNSIDE Your P.O. #: 16300R-20 Sampler Initials: AH

SEMI-VOLATILE ORGANICS BY GC-MS (WATER)

Maxxam ID		YB3205	YB3206	YB3206	YB3207	YB3208	YB3209		
Sampling Date		2014/10/17 09:00	2014/10/17 09:30	2014/10/17 09:30	2014/10/17 10:00	2014/10/17 10:30	2014/10/17 13:30		
COC Number		489367-02-01	489367-02-01	489367-02-01	489367-02-01	489367-02-01	489367-02-01		
	Units	MW-1	MW-2	MW-2 Lab-Dup	MW14-54	MW-3	CH2M MW-1	RDL	QC Batch
Polyaromatic Hydrocarbons	\$								
Benzo(e)pyrene	ug/L	0.012	ND	ND	ND	ND	ND	0.010	3791976
Biphenyl	ug/L	ND	ND	ND	ND	ND	ND	0.010	3791976
Perylene	ug/L	ND	ND	ND	ND	ND	ND	0.010	3791976
Acenaphthene	ug/L	0.13	0.28	0.32	0.30	ND	ND	0.010	3791976
Acenaphthylene	ug/L	ND	ND	ND	ND	ND	ND	0.010	3791976
Anthracene	ug/L	ND	0.011	0.014	0.012	ND	ND	0.010	3791976
Benzo(a)anthracene	ug/L	0.017	ND	ND	ND	ND	ND	0.010	3791976
Benzo(a)pyrene	ug/L	0.015	ND	ND	ND	ND	ND	0.010	3791976
Benzo(b/j)fluoranthene	ug/L	0.021	ND	ND	ND	ND	ND	0.010	3791976
Benzo(g,h,i)perylene	ug/L	ND	ND	ND	ND	ND	ND	0.010	3791976
Benzo(k)fluoranthene	ug/L	ND	ND	ND	ND	ND	ND	0.010	3791976
Chrysene	ug/L	0.016	ND	ND	ND	ND	ND	0.010	3791976
Dibenz(a,h)anthracene	ug/L	ND	ND	ND	ND	ND	ND	0.010	3791976
Fluoranthene	ug/L	0.066	0.068	0.066	0.064	ND	ND	0.010	3791976
Fluorene	ug/L	0.023	ND	ND	ND	ND	ND	0.010	3791976
Indeno(1,2,3-cd)pyrene	ug/L	ND	ND	ND	ND	ND	ND	0.010	3791976
1-Methylnaphthalene	ug/L	ND	ND	ND	ND	ND	ND	0.010	3791976
2-Methylnaphthalene	ug/L	ND	ND	ND	ND	ND	ND	0.010	3791976
Naphthalene	ug/L	0.019	ND	ND	ND	ND	ND	0.010	3791976
Phenanthrene	ug/L	0.027	0.014	0.011	ND	ND	ND	0.010	3791976
Pyrene	ug/L	0.047	0.049	0.046	0.045	ND	ND	0.010	3791976
Surrogate Recovery (%)									
D10-Anthracene	%	72	84	83	87	89	83		3791976
D14-Terphenyl (FS)	%	75	88	90	94	95	80		3791976
D8-Acenaphthylene	%	70	83	85	87	88	83		3791976
RDL = Reportable Detection QC Batch = Quality Control E Lab-Dup = Laboratory Initiat	Limit Batch	icate							

ND = Not detected

Success Through Sciencer

Stantec Consulting Ltd Client Project #: 122510993 Site Location: <u>BAYVIEW/BURNSIDE</u> Your P.O. #: 16300R-20 Sampler Initials: AH

Maxxam ID	YB3210	YB3211	YB3212		
Sampling Date	2014/10/17 14:30	2014/10/17 15:30	2014/10/17 16:30		
COC Number	489367-02-01	489367-02-01	489367-02-01		
Uni	s CH2M MW-2	MW-5	MW-4	RDL	QC Batch
Polyaromatic Hydrocarbons					
Benzo(e)pyrene ug/	L ND	ND	ND	0.010	3791976
Biphenyl ug/	L ND	ND	ND	0.010	3791976
Perylene ug/	L ND	ND	ND	0.010	3791976
Acenaphthene ug/	L ND	ND	ND	0.010	3791976
Acenaphthylene ug/	L ND	ND	ND	0.010	3791976
Anthracene ug/	L ND	ND	ND	0.010	3791976
Benzo(a)anthracene ug/	L ND	ND	ND	0.010	3791976
Benzo(a)pyrene ug/	L ND	ND	ND	0.010	3791976
Benzo(b/j)fluoranthene ug/	L ND	ND	ND	0.010	3791976
Benzo(g,h,i)perylene ug/	L ND	ND	ND	0.010	3791976
Benzo(k)fluoranthene ug/	L ND	ND	ND	0.010	3791976
Chrysene ug/	L ND	ND	ND	0.010	3791976
Dibenz(a,h)anthracene ug/	L ND	ND	ND	0.010	3791976
Fluoranthene ug/	L ND	ND	ND	0.010	3791976
Fluorene ug/	L ND	ND	ND	0.010	3791976
Indeno(1,2,3-cd)pyrene ug/	L ND	ND	ND	0.010	3791976
1-Methylnaphthalene ug/	L ND	ND	ND	0.010	3791976
2-Methylnaphthalene ug/	L ND	ND	ND	0.010	3791976
Naphthalene ug/	L ND	ND	ND	0.010	3791976
Phenanthrene ug/	L ND	ND	ND	0.010	3791976
Pyrene ug/	L ND	ND	ND	0.010	3791976
Surrogate Recovery (%)					
D10-Anthracene %	90	85	85		3791976
D14-Terphenyl (FS) %	96	92	87		3791976
D8-Acenaphthylene %	88	84	82		3791976
RDL = Reportable Detection Limit QC Batch = Quality Control Batch ND = Not detected					

SEMI-VOLATILE ORGANICS BY GC-MS (WATER)

Stantec Consulting Ltd Client Project #: 122510993 Site Location: BAYVIEW/BURNSIDE Your P.O. #: 16300R-20 Sampler Initials: AH

O.REG 153 PETROLEUM HYDROCARBONS (WATER)

Maxxam ID		YB3205	YB3206	YB3207	YB3208	YB3209	YB3210		
Sampling Date		2014/10/17 09:00	2014/10/17 09:30	2014/10/17 10:00	2014/10/17 10:30	2014/10/17 13:30	2014/10/17 14:30		
COC Number		489367-02-01	489367-02-01	489367-02-01	489367-02-01	489367-02-01	489367-02-01		
	Units	MW-1	MW-2	MW14-54	MW-3	CH2M MW-1	CH2M MW-2	RDL	QC Batch
BTEX & F1 Hydrocarbons									
F1 (C6-C10)	ug/L	ND	ND	ND	ND	ND	ND	25	3795796
F1 (C6-C10) - BTEX	ug/L	ND	ND	ND	ND	ND	ND	25	3795796
F2-F4 Hydrocarbons									
F2 (C10-C16 Hydrocarbons)	ug/L	ND	ND	ND	ND	ND	ND	100	3795646
F3 (C16-C34 Hydrocarbons)	ug/L	ND	ND	ND	ND	ND	ND	200	3795646
F4 (C34-C50 Hydrocarbons)	ug/L	ND	ND	ND	ND	ND	ND	200	3795646
Reached Baseline at C50	ug/L	Yes	Yes	Yes	Yes	Yes	Yes		3795646
Surrogate Recovery (%)									
1,4-Difluorobenzene	%	105	102	104	100	103	103	[]	3795796
4-Bromofluorobenzene	%	98	94	97	95	96	94		3795796
D10-Ethylbenzene	%	122	117	124	122	121	120		3795796
D4-1,2-Dichloroethane	%	104	102	105	102	102	100		3795796
o-Terphenyl	%	98	97	97	97	99	98		3795646
RDL = Reportable Detection L	imit								
QC Batch = Quality Control Ba	atch								
ND = Not detected									

Stantec Consulting Ltd Client Project #: 122510993 Site Location: BAYVIFW/BURNSIDE Your P.O. #: 16300R-20 Sampler Initials: AH

Maxxam ID		YB3211	YB3212		
Sampling Date		2014/10/17 15:30	2014/10/17 16:30		
COC Number		489367-02-01	489367-02-01		
	Units	MW-5	MW-4	RDL	QC Batch
BTEX & F1 Hydrocarbons					
F1 (C6-C10)	ug/L	ND	ND	25	3795796
F1 (C6-C10) - BTEX	ug/L	ND	ND	25	3795796
F2-F4 Hydrocarbons					
F2 (C10-C16 Hydrocarbons)	ug/L	ND	ND	100	3795646
F3 (C16-C34 Hydrocarbons)	ug/L	ND	ND	200	3795646
F4 (C34-C50 Hydrocarbons)	ug/L	ND	ND	200	3795646
Reached Baseline at C50	ug/L	Yes	Yes		3795646
Surrogate Recovery (%)					
1,4-Difluorobenzene	%	105	102		3795796
4-Bromofluorobenzene	%	96	94		3795796
D10-Ethylbenzene	%	123	119		3795796
D4-1,2-Dichloroethane	%	102	101		3795796
o-Terphenyl	%	98	101		3795646
RDL = Reportable Detection	Limit				
QC Batch = Quality Control B	atch				
ND = Not detected					

O.REG 153 PETROLEUM HYDROCARBONS (WATER)

Stantec Consulting Ltd Client Project #: 122510993 Site Location: BAYVIEW/BURNSIDE Your P.O. #: 16300R-20 Sampler Initials: AH

O.REG 153 VOLATILE ORGANICS (WATER)

Maxxam ID		YB3203	YB3204	YB3205	YB3206	YB3206		
Sampling Date		2014/10/17	2014/10/17	2014/10/17 09:00	2014/10/17 09:30	2014/10/17 09:30		
COC Number		489367-02-01	489367-02-01	489367-02-01	489367-02-01	489367-02-01		
	Units	TRIP BLANK	FIELD BLANK	MW-1	MW-2	MW-2 Lab-Dup	RDL	QC Batch
Calculated Parameters								
1,3-Dichloropropene (cis+trans)	ug/L	ND	ND	ND	ND		0.28	3791295
Volatile Organics	L	h						
Acetone (2-Propanone)	ug/L	ND	ND	ND	ND	ND	10	3792231
Benzene	ug/L	ND	ND	ND	ND	ND	0.10	3792231
Bromodichloromethane	ug/L	ND	ND	ND	ND	ND	0.10	3792231
Bromoform	ug/L	ND	ND	ND	ND	ND	0.20	3792231
Bromomethane	ug/L	ND	ND	ND	ND	ND	0.50	3792231
Carbon Tetrachloride	ug/L	ND	ND	ND	ND	ND	0.10	3792231
Chlorobenzene	ug/L	ND	ND	ND	ND	ND	0.10	3792231
Chloroform	ug/L	ND	ND	ND	ND	ND	0.10	3792231
Dibromochloromethane	ug/L	ND	ND	ND	ND	ND	0.20	3792231
1,2-Dichlorobenzene	ug/L	ND	ND	ND	ND	ND	0.20	3792231
1,3-Dichlorobenzene	ug/L	ND	ND	ND	ND	ND	0.20	3792231
1,4-Dichlorobenzene	ug/L	ND	ND	ND	ND	ND	0.20	3792231
Dichlorodifluoromethane (FREON 12)	ug/L	ND	ND	ND	ND	ND	0.50	3792231
1,1-Dichloroethane	ug/L	ND	ND	ND	ND	ND	0.10	3792231
1,2-Dichloroethane	ug/L	ND	ND	ND	ND	ND	0.20	3792231
1,1-Dichloroethylene	ug/L	ND	ND	ND	ND	ND	0.10	3792231
cis-1,2-Dichloroethylene	ug/L	ND	ND	ND	ND	ND	0.10	3792231
trans-1,2-Dichloroethylene	ug/L	ND	ND	ND	ND	ND	0.10	3792231
1,2-Dichloropropane	ug/L	ND	ND	ND	ND	ND	0.10	3792231
cis-1,3-Dichloropropene	ug/L	ND	ND	ND	ND	ND	0.20	3792231
trans-1,3-Dichloropropene	ug/L	ND	ND	ND	ND	ND	0.20	3792231
Ethylbenzene	ug/L	ND	ND	ND	ND	ND	0.10	3792231
Ethylene Dibromide	ug/L	ND	ND	ND	ND	ND	0.20	3792231
Hexane	ug/L	ND	ND	ND	ND	ND	0.50	3792231
Methylene Chloride(Dichloromethane)	ug/L	ND	ND	ND	ND	ND	0.50	3792231
Methyl Isobutyl Ketone	ug/L	ND	ND	ND	ND	ND	5.0	3792231
Methyl Ethyl Ketone (2-Butanone)	ug/L	ND	ND	ND	ND	ND	5.0	3792231
Methyl t-butyl ether (MTBE)	ug/L	ND	ND	ND	ND	ND	0.20	3792231
Styrene	ug/L	ND	ND	ND	ND	ND	0.20	3792231
RDL = Reportable Detection Limit								

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

ND = Not detected

Maxxam Analytics International Corporation o/a Maxxam Analytics 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.maxxam.ca

Stantec Consulting Ltd Client Project #: 122510993 Site Location: BAYVIEW/BURNSIDF Your P.O. #: 16300R-20 Sampler Initials: AH

Maxxam ID		YB3203	YB3204	YB3205	YB3206	YB3206		
Sampling Date		2014/10/17	2014/10/17	2014/10/17 09:00	2014/10/17 09:30	2014/10/17 09:30		
COC Number		489367-02-01	489367-02-01	489367-02-01	489367-02-01	489367-02-01		
	Units	TRIP BLANK	FIELD BLANK	MW-1	MW-2	MW-2 Lab-Dup	RDL	QC Batch
1,1,1,2-Tetrachloroethane	ug/L	ND	ND	ND	ND	ND	0.20	3792231
1,1,2,2-Tetrachloroethane	ug/L	ND	ND	ND	ND	ND	0.20	3792231
Tetrachloroethylene	ug/L	ND	ND	ND	ND	ND	0.10	3792231
Toluene	ug/L	ND	ND	ND	ND	ND	0.20	3792231
1,1,1-Trichloroethane	ug/L	ND	ND	ND	ND	ND	0.10	3792231
1,1,2-Trichloroethane	ug/L	ND	ND	ND	ND	ND	0.20	3792231
Trichloroethylene	ug/L	ND	ND	ND	ND	ND	0.10	3792231
Vinyl Chloride	ug/L	ND	ND	ND	ND	ND	0.20	3792231
p+m-Xylene	ug/L	ND	ND	ND	ND	ND	0.10	3792231
o-Xylene	ug/L	ND	ND	ND	ND	ND	0.10	3792231
Xylene (Total)	ug/L	ND	ND	ND	ND	ND	0.10	3792231
Trichlorofluoromethane (FREON 11)	ug/L	ND	ND	ND	ND	ND	0.20	3792231
Surrogate Recovery (%)								
4-Bromofluorobenzene	%	95	95	96	97	98		3792231
D4-1,2-Dichloroethane	%	101	101	102	101	103		3792231
D8-Toluene	%	97	99	98	98	98		3792231
RDL = Reportable Detection Limit QC Batch = Quality Control Batch Lab-Dup = Laboratory Initiated Duplicat	te							
ND = Not detected								

Stantec Consulting Ltd Client Project #: 122510993 Site Location: _____BAYVIEW/BURNSIDE Your P.O. #: 16300R-20 Sampler Initials: AH

Maxxam ID		YB3207	YB3208	YB3209	YB3210	YB3211		
Sampling Date		2014/10/17	2014/10/17	2014/10/17	2014/10/17	2014/10/17		
Samping Date		10:00	10:30	13:30	14:30	15:30		
COC Number		489367-02-01	489367-02-01	489367-02-01	489367-02-01	489367-02-01		
	Units	MW14-54	MW-3	CH2M MW-1	CH2M MW-2	MW-5	RDL	QC Batch
Calculated Parameters								
1,3-Dichloropropene (cis+trans)	ug/L	ND	ND	ND	ND	ND	0.28	3791295
Volatile Organics								
Acetone (2-Propanone)	ug/L	ND	ND	ND	ND	ND	10	3792231
Benzene	ug/L	ND	ND	ND	ND	ND	0.10	3792231
Bromodichloromethane	ug/L	ND	ND	ND	ND	ND	0.10	3792231
Bromoform	ug/L	ND	ND	ND	ND	ND	0.20	3792231
Bromomethane	ug/L	ND	ND	ND	ND	ND	0.50	3792231
Carbon Tetrachloride	ug/L	ND	ND	ND	ND	ND	0.10	3792231
Chlorobenzene	ug/L	ND	ND	ND	ND	ND	0.10	3792231
Chloroform	ug/L	ND	ND	ND	ND	ND	0.10	3792231
Dibromochloromethane	ug/L	ND	ND	ND	ND	ND	0.20	3792231
1,2-Dichlorobenzene	ug/L	ND	ND	ND	ND	ND	0.20	3792231
1,3-Dichlorobenzene	ug/L	ND	ND	ND	ND	ND	0.20	3792231
1,4-Dichlorobenzene	ug/L	ND	ND	ND	ND	ND	0.20	3792231
Dichlorodifluoromethane (FREON 12)	ug/L	ND	ND	ND	ND	ND	0.50	3792231
1,1-Dichloroethane	ug/L	ND	0.59	ND	ND	0.40	0.10	3792231
1,2-Dichloroethane	ug/L	ND	ND	ND	ND	ND	0.20	3792231
1,1-Dichloroethylene	ug/L	ND	ND	ND	ND	ND	0.10	3792231
cis-1,2-Dichloroethylene	ug/L	ND	ND	ND	ND	1.2	0.10	3792231
trans-1,2-Dichloroethylene	ug/L	ND	ND	ND	ND	0.11	0.10	3792231
1,2-Dichloropropane	ug/L	ND	ND	ND	ND	ND	0.10	3792231
cis-1,3-Dichloropropene	ug/L	ND	ND	ND	ND	ND	0.20	3792231
trans-1,3-Dichloropropene	ug/L	ND	ND	ND	ND	ND	0.20	3792231
Ethylbenzene	ug/L	ND	ND	ND	ND	ND	0.10	3792231
Ethylene Dibromide	ug/L	ND	ND	ND	ND	ND	0.20	3792231
Hexane	ug/L	ND	ND	ND	ND	ND	0.50	3792231
Methylene Chloride(Dichloromethane)	ug/L	ND	ND	ND	ND	ND	0.50	3792231
Methyl Isobutyl Ketone	ug/L	ND	ND	ND	ND	ND	5.0	3792231
Methyl Ethyl Ketone (2-Butanone)	ug/L	ND	ND	6.0	ND	ND	5.0	3792231
Methyl t-butyl ether (MTBE)	ug/L	ND	ND	ND	ND	ND	0.20	3792231
Styrene	ug/L	ND	ND	ND	ND	ND	0.20	3792231
1,1,1,2-Tetrachloroethane	ug/L	ND	ND	ND	ND	ND	0.20	3792231
RDL = Reportable Detection Limit QC Batch = Quality Control Batch ND = Not detected								

Stantec Consulting Ltd Client Project #: 122510993 Site Location:—BAYVIEW/BURNSIDE Your P.O. #: 16300R-20 Sampler Initials: AH

Maxxam ID		YB3207	YB3208	YB3209	YB3210	YB3211		
Sampling Date		2014/10/17 10:00	2014/10/17 10:30	2014/10/17 13:30	2014/10/17 14:30	2014/10/17 15:30		
COC Number		489367-02-01	489367-02-01	489367-02-01	489367-02-01	489367-02-01		
	Units	MW14-54	MW-3	CH2M MW-1	CH2M MW-2	MW-5	RDL	QC Batch
1,1,2,2-Tetrachloroethane	ug/L	ND	ND	ND	ND	ND	0.20	3792231
Tetrachloroethylene	ug/L	ND	ND	ND	ND	ND	0.10	3792231
Тоlueле	ug/L	ND	ND	ND	ND	ND	0.20	3792231
1,1,1-Trichloroethane	ug/L	ND	ND	ND	ND	ND	0.10	3792231
1,1,2-Trichloroethane	ug/L	ND	ND	ND	ND	ND	0.20	3792231
Trichloroethylene	ug/L	ND	ND	ND	ND	ND	0.10	3792231
Vinyl Chloride	ug/L	ND	ND	ND	ND	ND	0.20	3792231
p+m-Xylene	ug/L	ND	ND	ND	ND	ND	0.10	3792231
o-Xylene	ug/L	ND	ND	ND	ND	ND	0.10	3792231
Xylene (Total)	ug/L	ND	ND	ND	ND	ND	0.10	3792231
Trichlorofluoromethane (FREON 11)	ug/L	ND	ND	ND	ND	ND	0.20	3792231
Surrogate Recovery (%)								
4-Bromofluorobenzene	%	97	95	96	96	96		3792231
D4-1,2-Dichloroethane	%	102	103	102	102	102		3792231
D8-Toluene	%	99	98	98	98	98		3792231
RDL = Reportable Detection Limit QC Batch = Quality Control Batch ND = Not detected								

Success Through Sciences

Stantec Consulting Ltd Client Project #: 122510993 Site Location: BAYVIEW/BURNSIDE Your P.O. #: 16300R-20 Sampler Initials: AH

Maxxam ID		YB3212		
Sampling Date		2014/10/17		
		16:30		
COC Number		489367-02-01		
	Units	MW-4	RDL	QC Batch
Calculated Parameters				
1,3-Dichloropropene (cis+trans)	ug/L	ND	0.28	3791295
Volatile Organics				
Acetone (2-Propanone)	ug/L	ND	10	3792231
Benzene	ug/L	ND	0.10	3792231
Bromodichloromethane	ug/L	ND	0.10	3792231
Bromoform	ug/L	ND	0.20	3792231
Bromomethane	ug/L	ND	0.50	3792231
Carbon Tetrachloride	ug/L	ND	0.10	3792231
Chlorobenzene	ug/L	ND	0.10	3792231
Chloroform	ug/L	ND	0.10	3792231
Dibromochloromethane	ug/L	ND	0.20	3792231
1,2-Dichlorobenzene	ug/L	ND	0.20	3792231
1,3-Dichlorobenzene	ug/L	ND	0.20	3792231
1,4-Dichlorobenzene	ug/L	ND	0.20	379223:
Dichlorodifluoromethane (FREON 12)	ug/L	ND	0.50	3792231
1,1-Dichloroethane	ug/L	ND	0.10	3792231
1,2-Dichloroethane	ug/L	ND	0.20	3792231
1,1-Dichloroethylene	ug/L	ND	0.10	3792231
cis-1,2-Dichloroethylene	ug/L	ND	0.10	3792231
trans-1,2-Dichloroethylene	ug/L	ND	0.10	3792231
1,2-Dichloropropane	ug/L	ND	0.10	3792231
cis-1,3-Dichloropropene	ug/L	ND	0.20	3792232
trans-1,3-Dichloropropene	ug/L	ND	0.20	3792233
Ethylbenzene	ug/L	ND	0.10	3792233
Ethylene Dibromide	ug/L	ND	0.20	379223
Hexane	ug/L	ND	0.50	379223:
Methylene Chloride(Dichloromethane)	ug/L	ND	0.50	379223:
Methyl Isobutyl Ketone	ug/L	ND	5.0	379223:
Methyl Ethyl Ketone (2-Butanone)	ug/L	ND	5.0	379223:
Methyl t-butyl ether (MTBE)	ug/L	ND	0.20	379223
Styrene	ug/L	ND	0.20	379223
1,1,1,2-Tetrachloroethane	ug/L	ND	0.20	379223
RDL = Reportable Detection Limit QC Batch = Quality Control Batch ND = Not detected				

Stantec Consulting Ltd Client Project #: 122510993 Site Location:— BAYVIEW/BURNSIDE Your P.O. #: 16300R-20 Sampler Initials: AH

Maxxam ID		YB3212		
Sampling Date		2014/10/17 16:30		
COC Number		489367-02-01		
	Units	MW-4	RDL	QC Batch
1,1,2,2-Tetrachloroethane	ug/L	ND	0.20	3792231
Tetrachloroethylene	ug/L	ND	0.10	3792231
Toluene	ug/L	ND	0.20	3792231
1,1,1-Trichloroethane	ug/L	ND	0.10	3792231
1,1,2-Trichloroethane	ug/L	ND	0.20	3792231
Trichloroethylene	ug/L	ND	0.10	3792231
Vinyl Chloride	ug/L	ND	0.20	3792231
p+m-Xylene	ug/L	ND	0.10	3792231
o-Xylene	ug/L	ND	0.10	3792231
Xylene (Total)	ug/L	ND	0.10	3792231
Trichlorofluoromethane (FREON 11)	ug/L	ND	0.20	3792231
Surrogate Recovery (%)				
4-Bromofluorobenzene	%	95		3792231
D4-1,2-Dichloroethane	%	103		3792231
D8-Toluene	%	99		3792231
RDL = Reportable Detection Limit				
QC Batch = Quality Control Batch				
ND = Not detected				

Stantec Consulting Ltd Client Project #: 122510993 Site Location: BAYVIEW/BURNSIDE Your P.O. #: 16300R-20 Sampler Initials: AH

TEST SUMMARY

Maxxam ID: Sample ID: Matrix:	YB3203 TRIP BLANK Water					Collected: 2014/10/17 Shipped: Received: 2014/10/17	
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
1,3-Dichloropropene Sum)	CALC	3791295	N/A	2014/10/23	Automated Statchk	
Volatile Organic Compour	nds in Water	P&T/MS	3792231	N/A	2014/10/22	Sarah Lam	
Maxxam ID: Sample ID: Matrix:	YB3204 FIELD BLANK Water					Collected: 2014/10/17 Shipped: Received: 2014/10/17	
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
1,3-Dichloropropene Sum		CALC	3791295	N/A	2014/10/23	Automated Statchk	
Volatile Organic Compour	nds in Water	P&T/MS	3792231	N/A	2014/10/22	Sarah Lam	
Maxxam ID: Sample ID: Matrix:	YB3205 MW-1 Water		0-t-h	Freedow	Data Analismati	Collected: 2014/10/17 Shipped: Received: 2014/10/17	
1.2 Dichloropropago Sum			Batch	Extracted	Date Analyzed	Analyst	
Chromium (VI) in Water			3791295		2014/10/23		
Potroloum Hudro CCME	1 9. PTEV in Water		3791038		2014/10/22	Lingels Remdahin	
Petroleum Hydrocarbons	52 E4 in Water		3795796	N/A	2014/10/23	Riliana Lazovia	
Mercupy (low level)	rz-r4 III Water	GC/FID	2705640	2014/10/23	2014/10/24	Magdalona Carlos	
PAH Compounds in Water	r by GC/MS (SIM)	GC/MS	3791976	2014/10/23	2014/10/23		
Volatile Organic Compour	nds in Water	P&T/MS	3792221	N/A	2014/10/21	Sarah Lam	
Maxxam ID: Sample ID: Matrix:	YB3205 Dup MW-1 Water					Collected: 2014/10/17 Shipped: Received: 2014/10/17	
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Mercury (low level) Maxxam ID: Sample ID: Matrix:	YB3206 MW-2 Water	CVAA	3795649	2014/10/23	2014/10/23	Collected: 2014/10/17 Shipped: Received: 2014/10/17	
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
1,3-Dichloropropene Sum		CALC	3791295	N/A	2014/10/23	Automated Statchk	
Chromium (VI) in Water		IC	3791658	N/A	2014/10/22	Lang Le	
Petroleum Hydro. CCME F	1 & BTEX in Water	HSGC/MSFD	3795796	N/A	2014/10/23	Lincoln Ramdahin	
Petroleum Hydrocarbons	F2-F4 in Water	GC/FID	3795646	2014/10/23	2014/10/24	Biljana Lazovic	
Mercury (low level)		CVAA	3795649	2014/10/23	2014/10/23	Magdalena Carlos	
PAH Compounds in Water	r by GC/MS (SIM)	GC/MS	3791976	2014/10/20	2014/10/21	Lingyun Feng	
Volatile Organic Compour	nds in Water	P&T/MS	3792231	N/A	2014/10/22	Sarah Lam	

Page 14 of 26

Maxxam Analytics International Corporation o/a Maxxam Analytics 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.maxxam ca

Stantec Consulting Ltd Client Project #: 122510993 Site Location: BAYVIEW/BURNSIDE Your P.O. #: 16300R-20 Sampler Initials: AH

TEST SUMMARY

Maxxam ID:	YB3206 Dup	Collected:	2014/10/17
Sample ID:	MW-2	Shipped:	2014/10/17
Matrix:	Water	Received:	

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
PAH Compounds in Water by GC/MS (SIM)	GC/MS	3791976	2014/10/20	2014/10/21	Lingyun Feng
Volatile Organic Compounds in Water	P&T/MS	3792231	N/A	2014/10/22	Sarah Lam

Maxxam ID:	YB3207
Sample ID:	MW14-5
Matrix	Water

54 Matrix: Water

Collected:	2014/10/17
Shipped:	
Received:	2014/10/17

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
1,3-Dichloropropene Sum	CALC	3791295	N/A	2014/10/23	Automated Statchk	
Chromium (VI) in Water	IC	3791658	N/A	2014/10/22	Lang Le	
Petroleum Hydro. CCME F1 & BTEX in Water	HSGC/MSFD	3795796	N/A	2014/10/23	Lincoln Ramdahin	
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	3795646	2014/10/23	2014/10/24	Biljana Lazovic	
Mercury (low level)	CVAA	3795649	2014/10/23	2014/10/23	Magdalena Carlos	
PAH Compounds in Water by GC/MS (SIM)	GC/MS	3791976	2014/10/20	2014/10/21	Lingyun Feng	
Volatile Organic Compounds in Water	P&T/MS	3792231	N/A	2014/10/22	Sarah Lam	

Maxxam ID: YB3208 Sample ID: MW-3 Matrix: Water

Collected: 2014/10/17 Shipped: Received: 2014/10/17

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
1,3-Dichloropropene Sum	CALC	3791295	N/A	2014/10/23	Automated Statchk
Chromium (VI) in Water	IC	3791658	N/A	2014/10/22	Lang Le
Petroleum Hydro. CCME F1 & BTEX in Water	HSGC/MSFD	3795796	N/A	2014/10/23	Lincoln Ramdahin
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	3795646	2014/10/23	2014/10/24	Biljana Lazovic
Mercury (low level)	CVAA	3795649	2014/10/23	2014/10/23	Magdalena Carlos
PAH Compounds in Water by GC/MS (SIM)	GC/MS	3791976	2014/10/20	2014/10/21	Lingyun Feng
Volatile Organic Compounds in Water	P&T/MS	3792231	N/A	2014/10/22	Sarah Lam

Maxxam ID:	YB3209
Sample ID:	CH2M MW-1
Matrix:	Water

Collected:	2014/10/17
Shipped:	
Received:	2014/10/17

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
1,3-Dichloropropene Sum	CALC	3791295	N/A	2014/10/23	Automated Statchk
Chromium (VI) in Water	IC	3791658	N/A	2014/10/22	Lang Le
Petroleum Hydro. CCME F1 & BTEX in Water	HSGC/MSFD	3795796	N/A	2014/10/23	Lincoln Ramdahin
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	3795646	2014/10/23	2014/10/24	Biljana Lazovic
Mercury (low level)	CVAA	3795649	2014/10/23	2014/10/23	Magdalena Carlos
PAH Compounds in Water by GC/MS (SIM)	GC/MS	3791976	2014/10/20	2014/10/21	Lingyun Feng
Volatile Organic Compounds in Water	P&T/MS	3792231	N/A	2014/10/22	Sarah Lam

Page 15 of 26

Maxxam Analytics International Corporation o/a Maxxam Analytics 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.maxxam ca

Success Through Sciences

Stantec Consulting Ltd Client Project #: 122510993 Site Location: _____BAYVIEW/BURNSIDE Your P.O. #: 16300R-20 Sampler Initials: AH

TEST SUMMARY

Maxxam ID	YB3210
Sample ID:	CH2M MW-2
Matrix:	Water

Collected: 2014/10/17 Shipped: Received: 2014/10/17

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
1,3-Dichloropropene Sum	CALC	3791295	N/A	2014/10/23	Automated Statchk
Chromium (VI) in Water	IC	3791658	N/A	2014/10/22	Lang Le
Petroleum Hydro. CCME F1 & BTEX in Water	HSGC/MSFD	3795796	N/A	2014/10/23	Lincoln Ramdahin
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	3795646	2014/10/23	2014/10/24	Biljana Lazovic
Mercury (low level)	CVAA	3795649	2014/10/23	2014/10/23	Magdalena Carlos
PAH Compounds in Water by GC/MS (SIM)	GC/MS	3791976	2014/10/20	2014/10/21	Lingyun Feng
Volatile Organic Compounds in Water	P&T/MS	3792231	N/A	2014/10/22	Sarah Lam

Maxxam ID:	YB3211
Sample ID:	MW-5
Matrix:	Water

Collected: 2014/10/17 Shipped: Received: 2014/10/17

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
1,3-Dichloropropene Sum	CALC	3791295	N/A	2014/10/23	Automated Statchk
Chromium (VI) in Water	IC	3791658	N/A	2014/10/22	Lang Le
Petroleum Hydro. CCME F1 & BTEX in Water	HSGC/MSFD	3795796	N/A	2014/10/23	Lincoln Ramdahin
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	3795646	2014/10/23	2014/10/24	Biljana Lazovic
Mercury (low level)	CVAA	3795649	2014/10/23	2014/10/23	Magdalena Carlos
PAH Compounds in Water by GC/MS (SIM)	GC/MS	3791976	2014/10/20	2014/10/21	Lingyun Feng
Volatile Organic Compounds in Water	P&T/MS	3792231	N/A	2014/10/23	Sarah Lam

Maxxam ID:	YB3212
Sample ID:	MW-4
Matrix:	Water

Collected: 2014/10/17 Shipped: Received: 2014/10/17

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
1,3-Dichloropropene Sum	CALC	3791295	N/A	2014/10/23	Automated Statchk
Chromium (VI) in Water	IC	3791658	N/A	2014/10/22	Lang Le
Petroleum Hydro. CCME F1 & BTEX in Water	HSGC/MSFD	3795796	N/A	2014/10/23	Lincoln Ramdahin
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	3795646	2014/10/23	2014/10/24	Biljana Lazovic
Mercury (low level)	CVAA	3795649	2014/10/23	2014/10/23	Magdalena Carlos
PAH Compounds in Water by GC/MS (SIM)	GC/MS	3791976	2014/10/20	2014/10/21	Lingyun Feng
Volatile Organic Compounds in Water	P&T/MS	3792231	N/A	2014/10/23	Sarah Lam

Stantec Consulting Ltd Client Project #: 122510993 Site Location: BAYVIEW/BURNSIDE Your P.O. #: 16300R-20 Sampler Initials: AH

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Ì	Package 1	12.0°C
	Package 2	12.0°C

Results relate only to the items tested.

Stantec Consulting Ltd Client Project #: 122510993 Site Location: _____BAYVIEW/BURNSIDE Your P.O. #: 16300R-20 Sampler Initials: AH

QUALITY ASSURANCE REPORT

QA/QC				Date				
Batch	Init	QC Туре	Parameter	Analyzed	Value	Recovery	Units	QC Limits
3791658	LLE	Matrix Spike	Chromium (VI)	2014/10/22		92	%	80 - 120
3791658	LLE	Spiked Blank	Chromium (VI)	2014/10/22		92	%	80 - 120
3791658	LLE	Method Blank	Chromium (VI)	2014/10/22	ND,		ug/L	
					RDL=0.50			
3791658	LLE	RPD	Chromium (VI)	2014/10/22	NC		%	20
3791976	LFE	Matrix Spike [YB3205-01]	Benzo(e)pyrene	2014/10/21		105	%	50 - 130
			Biphenyl	2014/10/21		97	%	50 - 130
			D10-Anthracene	2014/10/21		83	%	50 - 130
			D14-Terphenyl (FS)	2014/10/21		90	%	50 - 130
			D8-Acenaphthylene	2014/10/21		84	%	50 - 130
			Perylene	2014/10/21		98	%	50 - 130
			Acenaphthene	2014/10/21		103	%	50 - 130
			Acenaphthylene	2014/10/21		98	%	50 - 130
			Anthracene	2014/10/21		94	%	50 - 130
			Benzo(a)anthracene	2014/10/21		103	%	50 - 130
			Benzo(a)pyrene	2014/10/21		100	%	50 - 130
			Benzo(b/j)fluoranthene	2014/10/21		101	%	50 - 130
			Benzo(g,h,i)perylene	2014/10/21		75	%	50 - 130
			Benzo(k)fluoranthene	2014/10/21		110	%	50 - 130
			Chrysene	2014/10/21		103	%	50 - 130
			Dibenz(a,h)anthracene	2014/10/21		74	%	50 - 130
			Fluoranthene	2014/10/21		105	%	50 - 130
			Fluorene	2014/10/21		100	%	50 - 130
			Indeno(1,2,3-cd)pyrene	2014/10/21		79	%	50 - 130
			1-Methylnaphthalene	2014/10/21		98	%	50 - 130
			2-Methylnaphthalene	2014/10/21		94	%	50 - 130
			Naphthalene	2014/10/21		96	%	50 - 130
			Phenanthrene	2014/10/21		103	%	50 - 130
			Pyrene	2014/10/21		104	%	50 - 130
3791976	LFE	Spiked Blank	Benzo(e)pyrene	2014/10/21		105	%	50 - 130
			Biphenyl	2014/10/21		95	%	50 - 130
			D10-Anthracene	2014/10/21		86	%	50 - 130
			D14-Terphenyl (FS)	2014/10/21		91	%	50 - 130
			D8-Acenaphthylene	2014/10/21		87	%	50 - 130
			Perylene	2014/10/21		102	%	50 - 130
			Acenaphthene	2014/10/21		98	%	50 - 130
			Acenaphthylene	2014/10/21		98	%	50 - 130
			Anthracene	2014/10/21		95	%	50 - 130
			Benzo(a)anthracene	2014/10/21		101	%	50 - 130
			Benzo(a)pyrene	2014/10/21		102	%	50 - 130
			Benzo(b/j)fluoranthene	2014/10/21		106	%	50 - 130
			Benzo(g,h,i)perylene	2014/10/21		82	%	50 - 130
			Benzo(k)fluoranthene	2014/10/21		105	%	50 - 130
			Chrysene	2014/10/21		104	%	50 - 130
			Dibenz(a,h)anthracene	2014/10/21		82	%	50 - 130
			Fluoranthene	2014/10/21		101	%	50 - 130
			Fluorene	2014/10/21		99	%	50 - 130
			Indeno(1,2,3-cd)pyrene	2014/10/21		84	%	50 - 130
			1-Methylnaphthalene	2014/10/21		95	%	50 - 130
			2-Methylnaphthalene	2014/10/21		91	%	50 - 130
			Naphthalene	2014/10/21		93	%	50 - 130

Page 18 of 26

Stantec Consulting Ltd Client Project #: 122510993 Site Location: BAYVIEW/BURNSIDE Your P.O. #: 16300R-20 Sampler Initials: AH

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC				Date				
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	Units	QC Limits
			Phenanthrene	2014/10/21		101	%	50 - 130
			Pyrene	2014/10/21		102	%	50 - 130
3791976	LFE	Method Blank	Benzo(e)pyrene	2014/10/21	ND,		ug/L	
					RDL=0.010			
			Biphenyl	2014/10/21	ND,		ug/L	
				, ,	RDL=0.010		2.	
			D10-Anthracene	2014/10/21		90	%	50 - 130
			D14-Terphenyl (FS)	2014/10/21		95	%	50 - 130
			D8-Acenanhthylene	2014/10/21		90	%	50 - 130
			Pervlene	2014/10/21	ND .	20	ug/l	
			. or preside	201 () 10/ 21	RDL=0.010		- 6/ -	
			Acenanhthene	2014/10/21	ND		uø/l	
			Accuapitatione	2014/10/21	RDI =0.010		ч6/ ч	
			Aconophthulona	2014/10/21			110/1	
			Acenaphthylene	2014/10/21	עוז, 2014-0-010		ug/L	
				2011/10/01	KDL=0.010			
			Anthracene	2014/10/21	ND,		ug/L	
				+ +-	KDL=0.010			
			Benzo(a) anthracene	2014/10/21	ND,		ug/L	
					RDL=0.010			
			Benzo(a)pyrene	2014/10/21	ND,		ug/L	
					RDL=0.010			
			Benzo(b/j)fluoranthene	2014/10/21	ND,		ug/L	
					RDL=0.010			
			Benzo(g,h,i)perylene	2014/10/21	ND,		ug/L	
					RDL=0.010			
			Benzo(k)fluoranthene	2014/10/21	ND,		ug/L	
					RDL=0.010			
			Chrysene	2014/10/21	ND,		ug/L	
			,	,	RDL=0.010		0,	
			Dibenz(a.h)anthracene	2014/10/21	ND.		ug/L	
			<i>Discriziqui qui in deche</i>	2011/10/21	RDL=0.010		0/ -	
			Eluoranthene	2011/10/21	ND		υσ/I	
			Haorantinene	2014/10/21	RDI =0.010		46/L	
			Elucrope	2014/10/21	ND		ug/I	
			Fluorene	2014/10/21	RDI =0.010		ug/L	
				201 4 140 104			11-11	
			indeno(1,2,3-cd)pyrene	2014/10/21	NU , RDI0.010		ug/L	
				20444010	NDL-0.010			
			1-Methylnaphthalene	2014/10/21	ND,		ug/L	
					KDL=0.010			
			2-Methylnaphthalene	2014/10/21	ND,		ug/L	
					RDL=0.010			
			Naphthalene	2014/10/21	ND,		ug/L	
					RDL=0.010			
			Phenanthrene	2014/10/21	ND,		ug/L	
					RDL=0.010			
			Pyrene	2014/10/21	ND,		ug/L	
					RDL=0.010			
3791976	LFE	RPD [YB3206-01]	Benzo(e)pyrene	2014/10/21	NC		%	30
]	Biphenyl	2014/10/21	NC		%	30
	_						-	

Page 19 of 26

Maxxem Analytics International Corporation o/a Maxxam Analytics 6740 Campoballo Road, Mississauga, Ontario, LSN 2L3 Tel: [905] 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.maxxam.ca

Stantec Consulting Ltd Client Project #: 122510993 Site Location: _____BAYVIEW/BURNSIDE Your P.O. #: 16300R-20 Sampler Initials: AH

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC				Date				
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	Units	QC Limits
			Perylene	2014/10/21	NC		%	40
			Acenaphthene	2014/10/21	13		%	30
			Acenaphthylene	2014/10/21	NC		%	30
			Anthracene	2014/10/21	NC		%	30
			Benzo(a)anthracene	2014/10/21	NC		%	30
			Benzo(a)pyrene	2014/10/21	NC		%	30
			Benzo(b/j)fluoranthene	2014/10/21	NC		%	30
			Benzo(g,h,i)perylene	2014/10/21	NC		%	30
			Benzo(k)fluoranthene	2014/10/21	NC		%	30
			Chrysene	2014/10/21	NC		%	30
			Dibenz(a,h)anthracene	2014/10/21	NC		%	30
			Fluoranthene	2014/10/21	3.0		%	30
			Fluorene	2014/10/21	NC		%	30
			Indeno(1,2,3-cd)pyrene	2014/10/21	NC		%	30
			1-Methylnaphthalene	2014/10/21	NC		%	30
			2-Methylnaphthalene	2014/10/21	NC		%	30
			Naphthalene	2014/10/21	NC		%	30
			Phenanthrene	2014/10/21	NC		%	30
			Pyrene	2014/10/21	NC		%	30
3792231	SLM	Matrix Spike [YB3205-07]	4-Bromofluorobenzene	2014/10/22		99	%	70 - 130
		, , , ,	D4-1,2-Dichloroethane	2014/10/22		98	%	70 - 130
			D8-Toluene	2014/10/22		99	%	70 - 130
			Acetone (2-Propanone)	2014/10/22		95	%	60 - 140
			Benzene	2014/10/22		97	%	70 - 130
			Bromodichloromethane	2014/10/22		107	%	70 - 130
			Bromoform	2014/10/22		114	%	70 - 130
			Bromomethane	2014/10/22		88	%	60 - 140
			Carbon Tetrachloride	2014/10/22		103	%	70 - 130
1			Chlorobenzene	2014/10/22		108	%	70 - 130
			Chloroform	2014/10/22		101	%	70 - 130
			Dibromochloromethane	2014/10/22		113	%	70 - 130
			1,2-Dichlorobenzene	2014/10/22		113	%	70 - 130
			1,3-Dichlorobenzene	2014/10/22		110	%	70 - 130
			1,4-Dichlorobenzene	2014/10/22		108	%	70 - 130
			Dichlorodifluoromethane (FREON 12)	2014/10/22		79	%	60 - 140
			1,1-Dichloroethane	2014/10/22		95	%	70 - 130
			1,2-Dichloroethane	2014/10/22		99	%	70 - 130
			1,1-Dichloroethylene	2014/10/22		97	%	70 - 130
			cis-1,2-Dichloroethylene	2014/10/22		97	%	70 - 130
			trans-1,2-Dichloroethylene	2014/10/22		95	%	70 - 130
			1.2-Dichloropropane	2014/10/22		102	%	70 - 130
			cis-1,3-Dichloropropene	2014/10/22		103	%	70 - 130
			trans-1,3-Dichloropropene	2014/10/22		112	%	70 - 130
			Ethylbenzene	2014/10/22		106	%	70 - 130
			Ethylene Dibromide	2014/10/22		106	%	70 - 130
			Hexane	2014/10/22		88	%	70 - 130
			Methylene Chloride(Dichloromethane)	2014/10/22		95	%	70 - 130
			Methyl Isobutyl Ketone	2014/10/22		111	%	70 - 130
			Methyl Ethyl Ketone (2-Butanone)	2014/10/22		102	%	60 - 140
			Methyl t-butyl ether (MTBE)	2014/10/22		95	%	70 - 130
			Styrene	2014/10/22		113	%	70 - 130

Page 20 of 26

Stantec Consulting Ltd Client Project #: 122510993 Site Location: BAYVIEW/BURNSIDE Your P.O. #: 16300R-20 Sampler Initials: AH

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC				Date				
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	Units	QC Limits
			1,1,1,2-Tetrachloroethane	2014/10/22		113	%	70 - 130
			1,1,2,2-Tetrachloroethane	2014/10/22		114	%	70 - 130
			Tetrachloroethylene	2014/10/22		105	%	70 - 130
			Toluene	2014/10/22		100	%	70 - 130
			1,1,1-Trichloroethane	2014/10/22		99	%	70 - 130
			1,1,2-Trichloroethane	2014/10/22		106	%	70 - 130
			Trichloroethylene	2014/10/22		101	%	70 - 130
			Vinyl Chloride	2014/10/22		82	%	70 - 130
			p+m-Xylene	2014/10/22		107	%	70 - 130
1			o-Xylene	2014/10/22		107	%	70 - 130
			Trichlorofluoromethane (FREON 11)	2014/10/22		85	%	70 - 130
3792231	SLM	Spiked Blank	4-Bromofluorobenzene	2014/10/22		99	%	70 - 130
			D4-1,2-Dichloroethane	2014/10/22		97	%	70 - 130
			D8-Toluene	2014/10/22		101	%	70 - 130
			Acetone (2-Propanone)	2014/10/22		95	%	60 - 140
			Benzene	2014/10/22		100	%	70 - 130
			Bromodichloromethane	2014/10/22		104	%	70 - 130
			Bromoform	2014/10/22		111	%	70 - 130
			Bromomethane	2014/10/22		109	%	60 - 140
			Carbon Tetrachloride	2014/10/22		106	%	70 - 130
			Chlorobenzene	2014/10/22		105	%	70 - 130
			Chloroform	2014/10/22		100	%	70 - 130
			Dibromochloromethane	2014/10/22		111	%	70 - 130
			1,2-Dichlorobenzene	2014/10/22		108	%	70 - 130
			1,3-Dichlorobenzene	2014/10/22		108	%	70 - 130
			1,4-Dichlorobenzene	2014/10/22		104	%	70 - 130
			Dichlorodifluoromethane (FREON 12)	2014/10/22		101	%	60 - 140
			1,1-Dichloroethane	2014/10/22		100	%	70 - 130
			1,2-Dichloroethane	2014/10/22		100	%	70 - 130
			1,1-Dichloroethylene	2014/10/22		109	%	70 - 130
			cis-1,2-Dichloroethylene	2014/10/22		103	%	70 - 130
			trans-1,2-Dichloroethylene	2014/10/22		102	%	70 - 130
			1,2-Dichloropropane	2014/10/22		101	%	70 - 130
			cis-1,3-Dichloropropene	2014/10/22		101	%	70 - 130
			trans-1,3-Dichloropropene	2014/10/22		111	%	70 - 130
			Ethylbenzene	2014/10/22		104	%	70 - 130
			Ethylene Dibromide	2014/10/22		106	%	70 - 130
			Hexane	2014/10/22		99	%	70 - 130
			Methylene Chloride(Dichloromethane)	2014/10/22		102	%	70 - 130
			Methyl Isobutyl Ketone	2014/10/22		102	%	70 - 130
			Methyl Ethyl Ketone (2-Butanone)	2014/10/22		102	%	60 - 140
			Methyl t-butyl ether (MTBE)	2014/10/22		97	%	70 - 130
			Styrene	2014/10/22		112	%	70 - 130
			1.1.1.2-Tetrachloroethane	2014/10/22		109	%	70 - 130
			1.1.2.2-Tetrachloroethane	2014/10/22		110	%	70 - 130
			Tetrachloroethylene	2014/10/22		107	%	70 - 130
			Toluene	2014/10/22		100	%	70 - 130
			1.1.1-Trichloroethane	2014/10/22		103	%	70 - 130
			1.1.2-Trichloroethane	2014/10/22		104	%	70 - 130
			Trichloroethylene	2014/10/22		103	%	70 - 130
			Vinvl Chloride	2014/10/22		93	%	70 - 130
			rinyi chionac	201 1 10/22			/0	100

Page 21 of 26

Stantec Consulting Ltd Client Project #: 122510993 Site Location: BAYVIEW/BURNSIDE Your P.O. #: 16300R-20 Sampler Initials: AH

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC				Date				
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	Units	QC Limits
			p+m-Xylene	2014/10/22		105	%	70 - 130
			o-Xylene	2014/10/22		105	%	70 - 130
			Trichlorofluoromethane (FREON 11)	2014/10/22		96	%	70 - 130
3792231	SLM	Method Blank	4-Bromofluorobenzene	2014/10/22		95	%	70 - 130
			D4-1,2-Dichloroethane	2014/10/22		99	%	70 - 130
			D8-Toluene	2014/10/22		99	%	70 - 130
			Acetone (2-Propanone)	2014/10/22	ND, RDL=10		ug/L	
			Benzene	2014/10/22	ND , RDL=0.10		ug/L	
			Bromodichloromethane	2014/10/22	ND , RDL=0.10		ug/L	
			Bromoform	2014/10/22	ND <i>,</i> RDL≃0.20		ug/L	
			Bromomethane	2014/10/22	ND , RDL=0.50		ug/L	
			Carbon Tetrachloride	2014/10/22	ND , RDL=0.10		ug/L	
			Chlorobenzene	2014/10/22	ND , RDL=0.10		ug/L	
			Chloroform	2014/10/22	ND , RDL=0.10		ug/L	
			Dibromochloromethane	2014/10/22	ND , RDL=0.20		ug/L	
			1,2-Dichlorobenzene	2014/10/22	ND , RDL=0.20		ug/L	
			1,3-Dichlorobenzene	2014/10/22	ND , RDL=0.20		ug/L	
			1,4-Dichlorobenzene	2014/10/22	ND , RDL=0.20		ug/L	
			Dichlorodifluoromethane (FREON 12)	2014/10/22	ND , RDL≃0.50		ug/L	
			1,1-Dichloroethane	2014/10/22	ND , RDL=0.10		ug/L	
			1,2-Dichloroethane	2014/10/22	ND , RDL=0.20		ug/L	
			1,1-Dichloroethylene	2014/10/22	ND , RDL=0.10		ug/L	
			cis-1,2-Dichloroethylene	2014/10/22	ND , RDL=0.10		ug/L	
			trans-1,2-Dichloroethylene	2014/10/22	ND , RDL=0.10		ug/L	
			1,2-Dichloropropane	2014/10/22	ND, RDL=0.10		ug/L	
			cis-1,3-Dichloropropene	2014/10/22	ND , RDL=0.20		ug/L	
			trans-1,3-Dichloropropene	2014/10/22	ND , RDL=0.20		ug/L	

Page 22 of 26

Stantec Consulting Ltd Client Project #: 122510993 Site Location: BAYVIEW/BURNSIDE Your P.O. #: 16300R-20 Sampler Initials: AH

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC				Date			
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery Units	QC Limits
			Ethylbenzene	2014/10/22	ND , RDL=0.10	ug/l	
			Ethylene Dibromide	2014/10/22	ND , RDL=0.20	ug/l	
			Hexane	2014/10/22	ND , RDL=0.50	ug/l	
			Methylene Chloride(Dichloromethane)	2014/10/22	ND, RDL=0.50	ug/l	
			Methyl Isobutyl Ketone	2014/10/22	ND , RDL=5.0	ug/l	
			Methyl Ethyl Ketone (2-Butanone)	2014/10/22	ND , RDL=5.0	ug/l	
			Methyl t-butyl ether (MTBE)	2014/10/22	ND , RDL=0.20	ug/I	
			Styrene	2014/10/22	ND, RDL=0.20	ug/I	
			1,1,1,2-Tetrachloroethane	2014/10/22	ND , RDL=0.20	ug/I	
			1,1,2,2-Tetrachloroethane	2014/10/22	ND , RDL=0.20	ug/	-
			Tetrachloroethylene	2014/10/22	ND , RDL=0.10	ug/	-
			Toluene	2014/10/22	ND , RDL=0.20	ug/	
			1,1,1-Trichloroethane	2014/10/22	ND , RDL=0.10	ug/	-
			1,1,2-Trichloroethane	2014/10/22	ND , RDL=0.20	ug/	-
			Trichloroethylene	2014/10/22	ND , RDL=0.10	ug/	-
			Vinyl Chloride	2014/10/22	ND , RDL=0.20	ug/	-
			p+m-Xylene	2014/10/22	ND , RDL=0.10	ug/	-
			o-Xylene	2014/10/22	ND , RDL=0.10	ug/	
			Xylene (Total)	2014/10/22	ND , RDL=0.10	ug/	L
			Trichlorofluoromethane (FREON 11)	2014/10/22	ND , RDL=0.20	ug/	L
3792231	SLM	RPD [YB3206-07]	Acetone (2-Propanone)	2014/10/22	NC	%	30
			Benzene	2014/10/22	NC	%	30
			Bromodichloromethane	2014/10/22	NC	%	30
			Bromoform	2014/10/22	NC	%	30
			Bromomethane	2014/10/22	NC	%	30
			Carbon Tetrachloride	2014/10/22	NC	%	30
			Chlorobenzene	2014/10/22	NC	%	30
			Chloroform	2014/10/22	NC	%	30
			Dibromochloromethane	2014/10/22	NC	%	30

Page 23 of 26

Stantec Consulting Ltd Client Project #: 122510993 Site Location: _____BAYVIEW/BURNSIDE Your P.O. #: 16300R-20 Sampler Initials: AH

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC				Date				
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	Units	QC Limits
			1,2-Dichlorobenzene	2014/10/22	NC		%	30
			1,3-Dichlorobenzene	2014/10/22	NC		%	30
			1,4-Dichlorobenzene	2014/10/22	NC		%	30
			Dichlorodifluoromethane (FREON 12)	2014/10/22	NC		%	30
			1,1-Dichloroethane	2014/10/22	NC		%	30
			1.2-Dichloroethane	2014/10/22	NC		%	30
			1.1-Dichloroethylene	2014/10/22	NC		%	30
			cis-1.2-Dichloroethylene	2014/10/22	NC		%	30
			trans-1 2-Dichloroethylene	2014/10/22	NC		%	30
			1.2-Dichloropronane	2014/10/22	NC		%	30
			cis-1 3-Dichloropropene	2014/10/22	NC		%	30
			trans-1 3-Dichloropropene	2014/10/22	NC		%	30
			Ethylbenzene	2014/10/22	NC		%	30
			Ethylene Dibromide	2014/10/22	NC		%	30
			Hexane	2014/10/22	NC		%	30
			Methylene Chloride(Dichloromethane)	2014/10/22	NC		%	30
			Methyl Isobutyl Ketone	2014/10/22	NC		%	30
			Methyl Ethyl Ketone (2-Butanone)	2014/10/22	NC		%	30
			Methyl t-butyl ether (MTBE)	2014/10/22	NC		%	30
			Styrene	2014/10/22	NC		%	30
			1.1.1.2-Tetrachloroethane	2014/10/22	NC		%	30
			1.1.2.2-Tetrachloroethane	2014/10/22	NC		%	30
			Tetrachloroethylene	2014/10/22	NC		%	30
			Toluene	2014/10/22	NC		%	30
			1 1 1-Trichloroethane	2014/10/22	NC		%	30
			1 1 2-Trichloroethane	2014/10/22	NC		%	30
			Trichloroethylene	2014/10/22	NC		%	30
			Vinyl Chloride	2014/10/22	NC		%	30
			p+m-Xvlene	2014/10/22	NC		%	30
			o-Xvlene	2014/10/22	NC		%	30
			Xvlene (Total)	2014/10/22	NC		%	30
			Trichlorofluoromethane (EREON 11)	2014/10/22	NC		%	30
3795646	BI 7	Matrix Snike	o-Terphenyl	2014/10/24	iii c	102	%	60 - 130
			F2 (C10-C16 Hydrocarbons)	2014/10/24		113	%	50 - 130
			F3 (C16-C34 Hydrocarbons)	2014/10/24		112	%	50 - 130
			F4 (C34-C50 Hydrocarbons)	2014/10/24		113	%	50 - 130
3795646	BI Z	Spiked Blank	o-Terphenyl	2014/10/24		101	%	60 - 130
57 55040	DLL	Spined Blaink	F2 (C10-C16 Hydrocarbons)	2014/10/24		112	%	60 - 130
			F3 (C16-C34 Hydrocarbons)	2014/10/24		114	%	60 - 130
			FA (C34-C50 Hydrocarbons)	2014/10/24		114	%	60 = 130
3795646	BI 7	Method Blank	o-Terphenyl	2014/10/24		100	%	60 - 130
37 33040		Method Blank	F2 (C10-C16 Hydrocarbons)	2014/10/24	ND	100	110/1	00 - 100
				2014/10/24	BDI =100		MB/ L	
			E2 (C16 C24 Hudrosorbons)	2014/10/24	NDL-100		ug/l	
			PS (C10-C34 Hydrocarbons)	2014/10/24	עא , פר בוסק		ug/t	
				0011/10/01	NDL=200		. //	
			F4 (C34-C50 Hydrocarbons)	2014/10/24	ND,		ug/L	
					KDL=200			
3795646	BLZ	KPD	F2 (C10-C16 Hydrocarbons)	2014/10/24	NC		%	30
			F3 (C16-C34 Hydrocarbons)	2014/10/24	NC		%	30
			F4 (C34-C50 Hydrocarbons)	2014/10/24	NC		%	30
3795649	MC	Matrix Spike [YB3205-04]	Mercury (Hg)	2014/10/23		109	%	75 - 125

Page 24 of 26

Stantec Consulting Ltd Client Project #: 122510993 Site Location: BAYVIEW/BURNSIDE Your P.O. #: 16300R-20 Sampler Initials: AH

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC				Date				
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	Units	QC Limits
3795649	MC	Spiked Blank	Mercury (Hg)	2014/10/23		108	%	80 - 120
3795649	MC	Method Blank	Mercury (Hg)	2014/10/23	ND,		ug/L	
					RDL=0.01			
3795649	MC	RPD [YB3205-04]	Mercury (Hg)	2014/10/23	NC		%	20
3795796	LRA	Matrix Spike	1,4-Difluorobenzene	2014/10/24		99	%	70 - 130
			4-Bromofluorobenzene	2014/10/24		98	%	70 - 130
			D10-Ethylbenzene	2014/10/24		101	%	70 - 130
			D4-1,2-Dichloroethane	2014/10/24		103	%	70 - 130
			F1 (C6-C10)	2014/10/24		77	%	70 - 130
3795796	LRA	Spiked Blank	1,4-Difluorobenzene	2014/10/23		99	%	70 - 130
			4-Bromofluorobenzene	2014/10/23		97	%	70 - 130
			D10-Ethylbenzene	2014/10/23		107	%	70 - 130
			D4-1,2-Dichloroethane	2014/10/23		104	%	70 - 130
			F1 (C6-C10)	2014/10/23		95	%	70 - 130
3795796	LRA	Method Blank	1,4-Difluorobenzene	2014/10/23		100	%	70 - 130
			4-Bromofluorobenzene	2014/10/23		96	%	70 - 130
			D10-Ethylbenzene	2014/10/23		111	%	70 - 130
			D4-1,2-Dichloroethane	2014/10/23		102	%	70 - 130
			F1 (C6-C10)	2014/10/23	ND,		ug/L	
					RDL=25			
			F1 (C6-C10) - BTEX	2014/10/23	ND,		ug/L	
					RDL=25			
3795796	LRA	RPD	F1 (C6-C10)	2014/10/24	NC		%	30
			F1 (C6-C10) - BTEX	2014/10/24	NC		%	30

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (one or both samples < 5x RDL).

Success Through Science*

Stantec Consulting Ltd Client Project #: 122510993 Site Location: BAYVIEW/BURNSIDE Your P.O. #: 16300R-20 Sampler Initials: AH

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

avisting Carriere

Cristina Carriere, Scientific Services

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Your Project #: MB4J4887 Your C.O.C. #: B4J4887

Attention: SUB CONTRACTOR

MAXXAM ANALYTICS CAMPOBELLO 6740 CAMPOBELLO ROAD MISSISSAUGA, ON CANADA L5N 2L8

> Report Date: 2014/10/24 Report #: R1671257 Version: 1

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B495316 Received: 2014/10/22, 08:40

Sample Matrix: Water # Samples Received: 8

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Cadmium - low level CCME - Dissolved	8	N/A	2014/10/24	AB SOP-00043	EPA 200.8 R5 4 m
Hardness	8	N/A	2014/10/24	AB WI-00065	SM 2340B
Elements by ICP - Dissolved	8	N/A	2014/10/24	AB SOP-00042	EPA 200.7 CFR 2012 m
Elements by ICPMS - Dissolved	8	N/A	2014/10/22	AB SOP-00043	EPA 200.8 R5.4 m

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Cynny Hagen, Project Manager Assistant Email: CHagen@maxxam.ca Phone# (403) 735-2273

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Total cover pages: 1

Maxxam Analytics International Corporation o/a Maxxam Analytics Calgary: 2021 - 41st Avenue N.E. T2E 6P2 Telephone(403) 291-3077 Fax(403) 291-9488

MAXXAM ANALYTICS Client Project #: MB4J4887

HARDNESS (WATER)

Maxxam ID	7 — ———————————————————————————————————	KX7555	KX7556	KX7557	KX7558		
Sampling Date		2014/10/17	2014/10/17	2014/10/17	2014/10/17		
		09:00	09:30	10:00	10:30		
COC Number		B4J4887	B4J4887	B4J4887	B4J4887		
	UNITS	MW-1 (YB3205-05)	MW-2 (YB3206-05)	MW-14-54 (YB3207-05)	MW-3 (YB3208-05)	RDL	QC Batch
Calculated Parameters							
Hardness (CaCO3)	mg/L	720	500	500	410	0.50	7688570
RDL = Reportable Detecti	on Limit						

	UNITS	CH2M MW-1 (YB3209-05)	CH2M MW-2 (YB3210-05)	MW-5 (YB3211-05)	MW-4 (YB3212-05)	RDL	QC Batch
COC Number		B4J4887	B4J4887	B4J4887	B4J4887		
		13:30	14:30	15:30	16:30		
Sampling Date		2014/10/17	2014/10/17	2014/10/17	2014/10/17		
Maxxam ID		KX7559	KX7560	KX7561	KX7562		

Calculated Parameters							
Hardness (CaCO3)	mg/L	340	600	540	360	0.50	7688570
RDL = Reportable Detection	on Limit						

Ma xam

MAXXAM ANALYTICS Client Project #: MB4J4887

REGULATED METALS (CCME/AT1) - DISSOLVED

Maxxam ID		KX7555		KX7556	KX7557	KX7558		
Sampling Date		2014/10/17		2014/10/17	2014/10/17	2014/10/17		
200 Number		09:00		09:30	10:00 P4 14997	10:30		
	UNITS	MW-1	RDL	B4J4887 MW-2	MW-14-54	MW-3	RDL	QC Batch
	e.u.e	(YB3205-05)		(YB3206-05)	(YB3207-05)	(YB3208-05)		
	r							r - 1
Low Level Elements								
Dissolved Cadmium (Cd)	ug/L	<0.020	0.020	<0.020	<0.020	<0.020	0.020	7687766
Elements								
Dissolved Aluminum (Al)	mg/L	0.017	0.0030	0.015	0.016	0.012	0.0030	7688837
Dissolved Antimony (Sb)	mg/L	<0.00060	0.00060	<0.00060	<0.00060	<0.00060	0.00060	7688837
Dissolved Arsenic (As)	mg/L	<0.00020	0.00020	<0.00020	<0.00020	0.0010	0.00020	7688837
Dissolved Barium (Ba)	mg/L	0.46	0.010	0.36	0.36	0.12	0.010	7691698
Dissolved Beryllium (Be)	mg/L	<0.0010	0.0010	<0.0010	<0.0010	<0.0010	0.0010	7688837
Dissolved Boron (B)	mg/L	0.13	0.020	0.16	0.16	0.090	0.020	7691698
Dissolved Calcium (Ca)	mg/L	240	0.30	160	160	110	0.30	7691698
Dissolved Chromium (Cr)	mg/L	<0.0010	0,0010	<0,0010	<0.0010	<0.0010	0.0010	7688837
Dissolved Cobalt (Co)	mg/L	0.00033	0.00030	<0.00030	<0.00030	0.00030	0.00030	7688837
Dissolved Copper (Cu)	mg/L	<0.00020	0.00020	<0.00020	<0.00020	<0.00020	0.00020	7688837
Dissolved Iron (Fe)	mg/L	18	0.060	4.3	4.1	0.64	0.060	7691698
Dissolved Lead (Pb)	mg/L	<0.00020	0.00020	<0.00020	<0.00020	<0.00020	0.00020	7688837
Dissolved Lithium (Li)	mg/L	<0.020	0.020	<0,020	<0.020	<0.020	0.020	7691698
Dissolved Magnesium (Mg)	mg/L	33	0.20	24	24	29	0.20	7691698
Dissolved Manganese (Mn)	mg/L	1.3	0.0040	1.4	1.4	0.018	0.0040	7691698
Dissolved Molybdenum (Mo)	mg/L	<0.00020	0.00020	<0.00020	<0.00020	0.0017	0.00020	7688837
Dissolved Nickel (Ni)	mg/L	<0.00050	0.00050	<0.00050	<0.00050	0,0014	0.00050	7688837
Dissolved Phosphorus (P)	mg/L	0.58	0.10	0,38	0,39	<0.10	0.10	7691698
Dissolved Potassium (K)	mg/L	10	0.30	7.5	7.5	7.6	0.30	7691698
Dissolved Selenium (Se)	mg/L	0.00088	0.00020	0,00044	0.00049	<0.00020	0.00020	7688837
Dissolved Silicon (Si)	mg/L	9.4	0.10	6.5	6,5	4.1	0.10	7691698
Dissolved Silver (Ag)	mg/L	<0.00010	0.00010	<0.00010	<0.00010	<0.00010	0.00010	7688837
Dissolved Sodium (Na)	mg/L	140	0.50	170	170	37	0.50	7691698
Dissolved Strontium (Sr)	mg/L	3.9	0.020	6.6 (1)	6.6 (1)	7.2 (1)	0.10	7691698
Dissolved Sulphur (S)	mg/L	5.6	0.20	3.3	3.5	33	0.20	7691698
Dissolved Thallium (TI)	mg/L	<0.00020	0.00020	<0.00020	<0.00020	<0.00020	0.00020	7688837
Dissolved Tin (Sn)	mg/L	<0.0010	0.0010	<0.0010	<0.0010	<0.0010	0.0010	7688837
Dissolved Titanium (Ti)	mg/L	0.0015	0.0010	<0.0010	0.0013	<0.0010	0.0010	7688837
Dissolved Uranium (U)	mg/L	0.00011	0.00010	0.00013	0.00016	0.0011	0.00010	7688837

RDL = Reportable Detection Limit

(1) Detection limits raised due to dilution to bring analyte within the calibrated range.

MAXXAM ANALYTICS Client Project #: MB4J4887

Maxxam ID	1 1	KX7555		KX7556	KX7557	KX7558	1	
Sampling Date		2014/10/17		2014/10/17	2014/10/17	2014/10/17		
		09:00	1	09:30	10:00	10:30		
COC Number		B4J4887		B4J4887	B4J4887	B4J4887		
	UNITS	MW-1 (YB3205-05)	RDL	MW-2 (YB3206-05)	MW-14-54 (YB3207-05)	MW-3 (YB3208-05)	RDL	QC Batch
Dissolved Vanadium (V)	mg/L	<0.0010	0.0010	0.0011	0.0012	<0,0010	0.0010	7688837
Dissolved Zinc (Zn)	mg/L	<0.0030	0.0030	<0.0030	<0.0030	<0.0030	0.0030	7688837
RDL = Reportable Detectio	n Limit				•			

Maxxam A Bureau Verilas Group Company

MAXXAM ANALYTICS Client Project #: MB4J4887

REGULATED METALS (CCME/AT1) - DISSOLVED

Maxxam ID		KX7559	KX7560		KX7561		
Sampling Date		2014/10/17	2014/10/17		2014/10/17		
COC Number		13:30 R4 (4997	14:30 R4 14997		15:30 B4 14887		
	UNITS	CH2M MW-1	CH2M MW-2	RDL	MW-5	RDL	QC Batch
		(YB3209-05)	(YB3210-05)		(YB3211-05)		
	n n			1 1		r –	
Low Level Elements					0.007		7007700
Dissolved Cadmium (Cd)	ug/L	<0.020	<0.020	0.020	0,087	0.020	/68//66
Elements							
Dissolved Aluminum (AI)	mg/L	0.0070	0.012	0.0030	0.0057	0.0030	7688837
Dissolved Antimony (Sb)	mg/L	<0.00060	<0.00060	0.00060	<0_00060	0.00060	7688837
Dissolved Arsenic (As)	mg/L	0,00038	<0.00020	0.00020	<0_00020	0,00020	7688837
Dissolved Barium (Ba)	mg/L	0.033	0.082	0.010	0.19	0.010	7691698
Dissolved Beryllium (Be)	mg/L	<0.0010	<0.0010	0.0010	<0.0010	0.0010	7688837
Dissolved Boron (B)	mg/L	0.034	0.10	0.020	0,10	0.020	7691698
Dissolved Calcium (Ca)	mg/L	110	200	0.30	180	0.30	7691698
Dissolved Chromium (Cr)	mg/L	<0.0010	<0.0010	0.0010	<0.0010	0.0010	7688837
Dissolved Cobalt (Co)	mg/L	0.00043	0.00035	0.00030	0.0011	0.00030	7688837
Dissolved Copper (Cu)	mg/L	0.0050	0.0017	0.00020	0.0016	0.00020	7688837
Dissolved Iron (Fe)	mg/L	<0.060	<0.060	0.060	<0.060	0.060	7691698
Dissolved Lead (Pb)	mg/L	<0.00020	<0.00020	0.00020	<0.00020	0.00020	7688837
Dissolved Lithium (Li)	mg/L	<0.020	<0.020	0.020	<0.020	0.020	7691698
Dissolved Magnesium (Mg)	mg/L	16	24	0.20	26	0.20	7691698
Dissolved Manganese (Mn)	mg/L	<0.0040	0.013	0.0040	0.71	0.0040	7691698
Dissolved Molybdenum (Mo)	mg/L	0.0022	0.00054	0.00020	0.0022	0.00020	7688837
Dissolved Nickel (Ni)	mg/L	0.0032	0.0047	0.00050	0.0040	0.00050	7688837
Dissolved Phosphorus (P)	mg/L	0.13	<0.10	0.10	<0.10	0.10	7691698
Dissolved Potassium (K)	mg/L	11	8.5	0.30	12	0.30	7691698
Dissolved Selenium (Se)	mg/L	<0.00020	<0.00020	0.00020	<0.00020	0.00020	7688837
Dissolved Silicon (Si)	mg/L	4.4	3.9	0.10	5,1	0.10	7691698
Dissolved Silver (Ag)	mg/L	<0.00010	<0.00010	0.00010	<0.00010	0.00010	7688837
Dissolved Sodium (Na)	mg/L	28	70	0.50	860 (1)	2.5	7691698
Dissolved Strontium (Sr)	mg/L	1.5	3,9	0.020	5.5 (1)	0.10	7691698
Dissolved Sulphur (S)	mg/L	30	55	0.20	87	0.20	7691698
Dissolved Thallium (TI)	mg/L	<0.00020	<0.00020	0.00020	<0.00020	0.00020	7688837
Dissolved Tin (Sn)	mg/L	<0.0010	<0.0010	0.0010	<0.0010	0.0010	7688837
Dissolved Titanium (Ti)	mg/L	<0.0010	<0,0010	0.0010	<0.0010	0.0010	7688837
Dissolved Uranium (U)	mg/L	0,0014	0.0014	0.00010	0.0022	0.00010	7688837

RDL = Reportable Detection Limit (1) Detection limits raised due to dilution to bring analyte within the calibrated range.

am

MAXXAM ANALYTICS Client Project #: MB4J4887

Maxxam ID		KX7559	KX7560		KX7561	1	
Sampling Date		2014/10/17	2014/10/17		2014/10/17		
		13:30	14:30		15:30		
COC Number		B4J4887	B4J4887		B4J4887	101	
	UNITS	CH2M MW-1 (YB3209-05)	CH2M MW-2 (YB3210-05)	RDL	MW-5 (YB3211-05)	RDL	QC Batch
Dissolved Vanadium (V)	mg/L	<0.0010	<0.0010	0.0010	<0.0010	0.0010	7688837
Dissolved Zinc (Zn)	mg/L	0.0032	0.0035	0.0030	<0.0030	0.0030	7688837
RDL = Reportable Detection	ייש. Limit						

Maxxam A Bureau Verilas Group Company

MAXXAM ANALYTICS Client Project #: MB4J4887

Maxxam ID		KX7562		
Sampling Date		2014/10/17 16:30		
COC Number		B4J4887		
	UNITS	MW-4 (YB3212-05)	RDL	QC Batch
Low Level Elements			1	
Dissolved Cadmium (Cd)	ug/L	<0.020	0.020	7687766
Elements				
Dissolved Aluminum (Al)	mg/L	<0_0030	0.0030	7688837
Dissolved Antimony (Sb)	mg/L	0.0024	0.00060	7688837
Dissolved Arsenic (As)	mg/L	0.00028	0.00020	7688837
Dissolved Barium (Ba)	mg/L	0.091	0.010	7691698
Dissolved Beryllium (Be)	mg/L	<0.0010	0.0010	7688837
Dissolved Boron (B)	mg/L	0.027	0.020	7691698
Dissolved Calcium (Ca)	mg/L	110	0.30	7691698
Dissolved Chromium (Cr)	mg/L	<0.0010	0.0010	7688837
Dissolved Cobalt (Co)	mg/L	0.00047	0.00030	7688837
Dissolved Copper (Cu)	mg/L	0.00031	0.00020	7688837
Dissolved Iron (Fe)	mg/L	<0.060	0.060	7691698
Dissolved Lead (Pb)	mg/L	<0.00020	0.00020	7688837
Dissolved Lithium (Li)	mg/L	<0.020	0.020	7691698
Dissolved Magnesium (Mg)	mg/L	19	0.20	7691698
Dissolved Manganese (Mn)	mg/L	<0.0040	0.0040	7691698
Dissolved Molybdenum (Mo)	mg/L	0.0016	0.00020	7688837
Dissolved Nickel (Ni)	mg/L	0.0015	0.00050	7688837
Dissolved Phosphorus (P)	mg/L	0.13	0,10	7691698
Dissolved Potassium (K)	mg/L	3.9	0,30	7691698
Dissolved Selenium (Se)	mg/L	<0.00020	0.00020	7688837
Dissolved Silicon (Si)	mg/L	4.3	0.10	7691698
Dissolved Silver (Ag)	mg/L	<0.00010	0.00010	7688837
Dissolved Sodium (Na)	mg/L	23	0.50	7691698
Dissolved Strontium (Sr)	mg/L	2.1	0.020	7691698
Dissolved Sulphur (S)	mg/L	19	0.20	7691698
Dissolved Thallium (TI)	mg/L	<0.00020	0.00020	7688837
Dissolved Tin (Sn)	mg/L	<0.0010	0.0010	7688837
Dissolved Titanium (Ti)	mg/L	<0.0010	0.0010	7688837
Dissolved Uranium (U)	mg/L	0.00075	0.00010	7688837
Dissolved Vanadium (V)	mg/L	<0.0010	0.0010	7688837

Max Xamp

MAXXAM ANALYTICS Client Project #: MB4J4887

Maxxam ID		KX7562		0				
Sampling Date		2014/10/17						
		16:30						
COC Number		B4J4887		· · · · · · · · · · · · · · · · · · ·				
	UNITS	MW-4	RDL	QC Batch				
		(YB3212-05)						
Dissolved Zinc (Zn)	mg/L	<0.0030	0.0030	7688837				
RDL = Reportable Detection Limit								

am

Success Through Science

MAXXAM ANALYTICS Client Project #: MB4J4887

 Package 1
 4.0°C

 Each temperature is the average of up to three cooler temperatures taken at receipt

General Comments

Results relate only to the items tested.

MAXXAM ANALYTICS Attention: SUB CONTRACTOR Client Project #: MB4J4887 P.O. #: Site Location:

Quality Assurance Report Maxxam Job Number: CB495316

QA/QC			Date				
Batch			Analyzed				
Num Init	QC Type	Parameter	yyyy/mm/dd	Value	Recovery	UNITS	QC Limits
7688837 TDB	Matrix Spike	Dissolved Aluminum (Al)	2014/10/23		119	%	80 - 120
		Dissolved Antimony (Sb)	2014/10/23		83	%	80 - 120
		Dissolved Arsenic (As)	2014/10/23		96	%	80 - 120
		Dissolved Beryllium (Be)	2014/10/23		92	%	80 - 120
		Dissolved Chromium (Cr)	2014/10/23		94	%	80 - 120
		Dissolved Cobalt (Co)	2014/10/23		92	%	80 - 120
		Dissolved Copper (Cu)	2014/10/23		92	%	80 - 120
		Dissolved Lead (Pb)	2014/10/23		91	%	80 - 120
		Dissolved Molybdenum (Mo)	2014/10/23		96	%	80 - 120
		Dissolved Nickel (Ni)	2014/10/23		92	%	80 - 120
		Dissolved Selenium (Se)	2014/10/23		95	%	80 - 120
		Dissolved Silver (Ag)	2014/10/23		95	%	80 - 120
		Dissolved Thallium (TI)	2014/10/23		89	%	80 - 120
		Dissolved Tin (Sn)	2014/10/23		87	%	80 - 120
		Dissolved Titanium (Ti)	2014/10/23		97	%	80 - 120
		Dissolved Uranium (U)	2014/10/23		89	%	80 - 120
		Dissolved Vanadium (V)	2014/10/23		100	%	80 - 120
		Dissolved Zinc (Zn)	2014/10/23		97	%	80 - 120
	Spiked Blank	Dissolved Aluminum (Al)	2014/10/22		111	%	80 - 120
		Dissolved Antimony (Sb)	2014/10/22		95	%	80 - 120
		Dissolved Arsenic (As)	2014/10/22		98	%	80 - 120
		Dissolved Beryllium (Be)	2014/10/22		95	%	80 - 120
		Dissolved Chromium (Cr)	2014/10/22		99	%	80 - 120
		Dissolved Cobalt (Co)	2014/10/22		100	%	80 - 120
		Dissolved Copper (Cu)	2014/10/22		101	%	80 - 120
		Dissolved Lead (Pb)	2014/10/22		97	%	80 - 120
		Dissolved Molybdenum (Mo)	2014/10/22		96	%	80 - 120
		Dissolved Nickel (Ni)	2014/10/22		99	%	80 - 120
		Dissolved Selenium (Se)	2014/10/22		97	%	80 - 120
		Dissolved Silver (Ag)	2014/10/22		94	%	80 - 120
		Dissolved Thallium (TI)	2014/10/22		95	%	80 - 120
		Dissolved Tin (Sn)	2014/10/22		91	%	80 - 120
		Dissolved Titanium (Ti)	2014/10/22		90	%	80 - 120
		Dissolved Uranium (U)	2014/10/22		91	%	80 - 120
		Dissolved Vanadium (V)	2014/10/22		100	%	80 - 120
		Dissolved Zinc (Zn)	2014/10/22		103	%	80 - 120
	Method Blank	Dissolved Aluminum (AI)	2014/10/22	<0.0030		mg/L	
		Dissolved Antimony (Sb)	2014/10/22	<0.00060		mg/L	
		Dissolved Arsenic (As)	2014/10/22	<0.00020		mg/L	
		Dissolved Beryllium (Be)	2014/10/22	<0.0010		mg/L	
		Dissolved Chromium (Cr)	2014/10/22	<0.0010		mg/L	
		Dissolved Cobalt (Co)	2014/10/22	<0.00030		mg/L	
		Dissolved Copper (Cu)	2014/10/22	<0.00020		mg/L	
		Dissolved Lead (Pb)	2014/10/22	<0.00020		mg/L	
		Dissolved Molybdenum (Mo)	2014/10/22	<0.00020		mg/L	
		Dissolved Nickel (Ni)	2014/10/22	<0.00050		mg/L	
		Dissolved Selenium (Se)	2014/10/22	<0.00020		mg/L	
		Dissolved Silver (Aa)	2014/10/22	<0.00010		ma/L	
		Dissolved Thallium (TI)	2014/10/22	<0.00020		mg/L	
		Dissolved Tin (Sn)	2014/10/22	<0.0010		mg/L	
		Dissolved Titanium (Ti)	2014/10/22	<0.0010		ma/L	
		Dissolved Uranium (U)	2014/10/22	<0.00010		mg/L	
		Dissolved Vanadium (V)	2014/10/22	<0.0010		ma/L	
		Dissolved Zinc (Zn)	2014/10/22	<0.0030		mg/L	
	RPD	Dissolved Aluminum (Al)	2014/10/22	NC		%	20

Maxxam Analytics International Corporation o/a Maxxam Analytics Calgary: 2021 - 41st Avenue N.E. T2E 6P2 Telephone(403) 291-3077 Fax(403) 291-9468

MAXXAM ANALYTICS Attention: SUB CONTRACTOR Client Project #: MB4J4887 P.O. #: Site Location:

Quality Assurance Report (Continued)
Maxxam Job Number: CB495316

Batch Analyzed Analyzed Num Int OC Lmits OC Lmits 7889837 TDB RPD Dissolved Animory (Sb) 2014/10/22 NC % 20 7889837 TDB RPD Dissolved Animory (Sb) 2014/10/22 NC % 20 Dissolved Coball (Co) 2014/10/22 NC % 20 Dissolved Coball (Co) 2014/10/22 NC % 20 Dissolved Coball (Co) 2014/10/22 NC % 20 Dissolved Molydenum (Mo) 2014/10/22 NC % 20 Dissolved Idek (Ni) 2014/10/22 NC % 20 Dissolved Thalium (TI) 2014/10/22 NC % 20 Dissolved Trailum (TI) 2014/10/22 NC % 20 Dissolved Trailum (TI) 2014/10/22 NC % 80 120 Dissolved Trailum (TI) 2014/10/24 NC % 80 120 Dissolved Trailum (TI) 2014/10/24 NC % 8	QA/QC			Date				
Num init OC Type Parameter yyyyminudd Value Recovery UNITS OC Lunits 7688837 TD8 RPD Dissolved Ansenic (As) 2014/10/22 NC % 20 Dissolved Chromium (Cr) 2014/10/22 NC % 20 Dissolved Coper (Cu) 2014/10/22 NC % 20 Dissolved Tosin (Mo) 2014/10/22 NC % 20 Dissolved Tosin (Mo) 2014/10/22 NC % 20 Dissolved Tosin (Mo) 2014/10/22 NC % 20 Dissolved Tosin (M) 2014/10/22 NC % 20 Dissolved Tosin (M) 2014/10/24 NG % 60 120 % <	Batch			Analyzed				
7688837 TDB RPD Dissolved Animory (Sb) 2014/10/22 NC % 20 Dissolved Sensin (As) 2014/10/22 NC % 20 Dissolved Consum (Cs) 2014/10/22 NC % 20 Dissolved Ackel (Ni) 2014/10/22 NC % 80 10 Dissolved Ackel (Ni) 2014/10/22 NC % 80 10 10 10 10 10 10 10 10 10 10 10 10 <	Num Init	QC Type	Parameter	yyyy/mm/dd	Value	Recovery	UNITS	QC Limits
7891698 SRT Matrix Spike Disolved Arsenic (As) 2014/10/22 NC % 20 Disolved Chromium (Cr) 2014/10/22 NC % 20 Disolved Copper (Cu) 2014/10/22 NC % 20 Disolved Copper (Cu) 2014/10/22 NC % 20 Disolved Caper (Cu) 2014/10/22 NC % 20 Disolved Caper (Cu) 2014/10/22 NC % 20 Disolved Sickle (Ni) 2014/10/22 NC % 20 Disolved Sickle (Ni) 2014/10/22 NC % 20 Disolved Titalium (Ti) 2014/10/22 NC % 20 Disolved Titalium (Ti) 2014/10/22 NC % 20 Disolved Titalium (Ti) 2014/10/24 NG % 80 10 Disolved Titalium (Ti) 2014/10/24 NC % 80 10 10 11 % 80 10 10 11 10 10 10 10	7688837 TDB	RPD	Dissolved Antimony (Sb)	2014/10/22	NC		%	20
7691693 SRT Matrix Spike Dissolved Commum (Cr) 2014/10/22 NC % 200 Dissolved Cobait (Co) 2014/10/22 NC % 200 Dissolved Cobait (Co) 2014/10/22 NC % 200 Dissolved Cobait (Co) 2014/10/22 NC % 200 Dissolved Load (Pb) 2014/10/22 NC % 200 Dissolved Solver (Ma) 2014/10/22 NC % 200 Dissolved Solver (Ma) 2014/10/22 NC % 200 Dissolved Solver (Ma) 2014/10/22 NC % 200 Dissolved Tin (Sh) 2014/10/22 NC % 200 Dissolved Tin (Sh) 2014/10/24 NC % 80-120 Dissolved Calcium (Ca) 2014/10/24 NC % 80-120 Dissolved Calcium (Ca) 2014/10/24 NC % 80-120 Dissolved Calcium (Ca) 2014/10/24 NC % 80-120 Dissolved Solved Solved Mangenese (Mn) 201	CONTRACTOR CONTRACTOR		Dissolved Arsenic (As)	2014/10/22	NC		%	20
7691698 SRT Matrix Spike Dissolved Copier (Cu) 2014/10/22 NC % 20 Dissolved Copper (Cu) 2014/10/22 NC % 20 Dissolved Copper (Cu) 2014/10/22 NC % 20 Dissolved Milydierum (Mo) 2014/10/22 NC % 20 Dissolved Milydierum (Mo) 2014/10/22 NC % 20 Dissolved Nike(N) 2014/10/22 NC % 20 Dissolved Silver (Ag) 2014/10/22 NC % 20 Dissolved Tinalium (Ti) 2014/10/22 NC % 20 Dissolved Tinalium (Ti) 2014/10/22 NC % 80 10 Dissolved Tinalium (Ti) 2014/10/22 NC % 80 10<			Dissolved Bervllium (Be)	2014/10/22	NC		%	20
Testored Cobert (Co) 2014/10/22 NC % 20 Dissolved Cooper (Cu) 2014/10/22 NC % 20 Dissolved Cooper (Cu) 2014/10/22 NC % 20 Dissolved Mickel (NI) 2014/10/22 NC % 20 Dissolved Mickel (NI) 2014/10/22 NC % 20 Dissolved Stelentum (Se) 2014/10/22 NC % 20 Dissolved Trainium (Ti) 2014/10/22 NC % 20 Dissolved Brainium (Ba) 2014/10/24 96 % 80 -120 Dissolved Brainium (Ba) 2014/10/24 96 % 80 -120 Dissolved Brainium (Ba) 2014/10/24 96 % 80 -120 Dissolved Brainium (Ba) 2014/10/24 96 % <td< td=""><td></td><td></td><td>Dissolved Chromium (Cr)</td><td>2014/10/22</td><td>NC</td><td></td><td>%</td><td>20</td></td<>			Dissolved Chromium (Cr)	2014/10/22	NC		%	20
7691698 SRT Matrix Spike Dissolved Large (Ma) 2014/10/22 NC % 20 Dissolved Large (Pb) 2014/10/22 NC % 20 Dissolved Malyderum (Mo) 2014/10/22 NC % 20 Dissolved Nickel (N) 2014/10/22 NC % 20 Dissolved Silver (Ag) 2014/10/22 NC % 20 Dissolved Tinalium (Th) 2014/10/22 NC % 20 Dissolved Tinalium (Th) 2014/10/22 NC % 20 Dissolved Tinalium (Th) 2014/10/22 NC % 80 20 Dissolved Dissolve			Dissolved Cobalt (Co)	2014/10/22	NC		%	20
7891698 SRT Matrix Spike Dissolved Mix/Mix(N) 2014/10/22 NC % 20 Dissolved Mix(el (N) 2014/10/22 NC % 20 Dissolved Mix(el (N) 2014/10/22 NC % 20 Dissolved Schemum (Se) 2014/10/22 NC % 20 Dissolved Trailium (Ti) 2014/10/22 NC % 20 Dissolved Drandium (U) 2014/10/22 NC % 80 120 Dissolved Drandium (Di) 2014/10/24 96 % 80 120 Dissolved Drandium (Ti) 2014/10/24 98 % 80 120 Dissolved Drangense (Mn) 2014/10/24 90 % 80 120 Dissolved Drangense (Mn) 2014/10/24 90 % 80 <			Dissolved Copper (Cu)	2014/10/22	7.8		%	20
7691698 SRT Matrix Spike Major Magnesium (Mo) 2014/10/22 NC % 20 Dissolved Scientum (Go) 2014/10/22 NC % 20 Dissolved Scientum (Go) 2014/10/22 NC % 20 Dissolved Thalium (T) 2014/10/22 NC % 20 Dissolved Tinalium (T) 2014/10/22 NC % 20 Dissolved Tinalium (T) 2014/10/22 NC % 20 Dissolved Uranium (U) 2014/10/22 NC % 20 Dissolved Bartum (Ba) 2014/10/22 NC % 80 120 Dissolved Bartum (Ga) 2014/10/24 90 % 80 120 Dissolved Magnesium (Ma) 2014/10/24 NC % 80 120 Dissolved Magnesium (Ma) 2014/10/24 104 % 80 120 Dissolved Magnesium (Ma) 2014/10/24 113 % 80 120 Dissolved Magnesium (Ma) 2014/10/24 120 %			Dissolved Lead (Ph)	2014/10/22	NC		%	20
7891698 SRT Matrix Spike Dissolved Scientum (So) 2014/10/22 NC % 20 Dissolved Scientum (So) 2014/10/22 NC % 20 Dissolved Tinalium (TI) 2014/10/22 NC % 20 Dissolved Tinalium (TI) 2014/10/22 NC % 20 Dissolved Tinalium (TI) 2014/10/22 NC % 20 Dissolved Vanadium (U) 2014/10/22 NC % 20 Dissolved Vanadium (U) 2014/10/22 NC % 20 Dissolved Vanadium (U) 2014/10/24 NC % 80 120 Dissolved Barvan (Ba) 2014/10/24 96 % 80 120 Dissolved Calcium (Ca) 2014/10/24 90 % 80 120 Dissolved Magnesium (Mg) 2014/10/24 90 % 80 120 Dissolved Magnesium (Mg) 2014/10/24 90 % 80 120 Dissolved Magnesium (Mg) 2014/10/24 90 %			Dissolved Molybdenum (Mo)	2014/10/22	NC		%	20
Dissolved Selentim (Se) 2014/10/22 NC % 20 Dissolved Thailium (TI) 2014/10/22 NC % 20 Dissolved Thailium (TI) 2014/10/22 NC % 20 Dissolved Thailium (TI) 2014/10/22 NC % 20 Dissolved Uranium (U) 2014/10/22 NC % 20 Dissolved Vanadium (V) 2014/10/22 NC % 20 Dissolved Vanadium (V) 2014/10/22 NC % 20 Dissolved Vanadium (V) 2014/10/24 NC % 80 120 Dissolved Boron (B) 2014/10/24 NC % 80 120 Dissolved Magnesium (Mg) 2014/10/24 00 % 80 120 Dissolved Magnesium (Mg) 2014/10/24 00 % 80 120 Dissolved Magnesium (Mg) 2014/10/24 01 % 80 120 Dissolved Magnesium (Mg) 2014/10/24 09 % 80 120			Dissolved Nickel (Ni)	2014/10/22	NC		%	20
7891698 SRT Matrix Spike Dissolved Tinalium (Th) 2014/10/22 NC % 20 Dissolved Vanadium (U) 2014/10/22 NC % 20 Dissolved Vanadium (U) 2014/10/22 NC % 20 Dissolved Vanadium (U) 2014/10/24 NC % 80 120 Dissolved Bartum (Ba) 2014/10/24 96 % 80 120 Dissolved Galian (Ca) 2014/10/24 90 % 80 120 Dissolved Hangensium (Mg) 2014/10/24 101 % 80 120 Dissolved Hangensium (Mg) 2014/10/24 96 % 80 120 Dissolved Hangensium (Mg) 2014/10/24 101 % 80 120 Dissolved Galian (Ga) 2014/10/24 96 <td></td> <td></td> <td>Dissolved Selenium (Se)</td> <td>2014/10/22</td> <td>NC</td> <td></td> <td>%</td> <td>20</td>			Dissolved Selenium (Se)	2014/10/22	NC		%	20
7691698 SRT Matrix Spike Dissolved Thailum (Th) 2014/10/22 NC % 20 Dissolved Titanium (Th) 2014/10/22 NC % 20 Dissolved Titanium (Th) 2014/10/22 NC % 20 Dissolved Vanadium (V) 2014/10/22 NC % 20 Dissolved Zinc (Zn) 2014/10/24 NC % 20 Dissolved Zinc (Zn) 2014/10/24 NC % 20 Dissolved Calcium (Ca) 2014/10/24 96 % 80 120 Dissolved Magnese (Mn) 2014/10/24 NC % 80 120 Dissolved Magnese (Mn) 2014/10/24 90 % 80 120 Dissolved Magnese (Mn) 2014/10/24 91 % 80 120 Dissolved Solutim (Ns) 2014/10/24 94 % 80 120 Dissolved Solutim (Ns) 2014/10/24 94 % 80 120 Dissolved Bartum (Ba) 2014/10/24 90 % </td <td></td> <td></td> <td>Dissolved Silver (Ag)</td> <td>2014/10/22</td> <td>NC</td> <td></td> <td>%</td> <td>20</td>			Dissolved Silver (Ag)	2014/10/22	NC		%	20
7691698 SRT Matrix Spike Dissolved Trainin (1/1) 2014/10/22 NC % 20 7691698 SRT Matrix Spike Dissolved Trainium (U) 2014/10/22 NC % 20 7691698 SRT Matrix Spike Dissolved Calcium (Ca) 2014/10/24 NC % 20 7691698 SRT Matrix Spike Dissolved Barium (Ca) 2014/10/24 96 % 80 - 120 Dissolved Calcium (Ca) 2014/10/24 96 % 80 - 120 Dissolved Calcium (Ca) 2014/10/24 96 % 80 - 120 Dissolved Magnesium (Mg) 2014/10/24 90 % 80 - 120 Dissolved Magnesium (Mg) 2014/10/24 90 % 80 - 120 Dissolved Potassium (R) 2014/10/24 91 % 80 - 120 Dissolved Potassium (R) 2014/10/24 99 % 80 - 120 Dissolved Potassium (R) 2014/10/24 90 % 80 - 120 Dissolved Potassium (R) 2014/10/24 90 % 80 - 120			Dissolved Thallium (Ti)	2014/10/22	NC		%	20
7691698 SRT Matrix Spike Dissolved Uranium (U) 2014/10/22 NC % 20 7691698 SRT Matrix Spike Dissolved Zinc (Zn) 2014/10/22 NC % 20 7691698 SRT Matrix Spike Dissolved Zinc (Zn) 2014/10/24 96 % 80 - 120 Dissolved Earom (Ba) 2014/10/24 96 % 80 - 120 Dissolved Calcium (Ca) 2014/10/24 96 % 80 - 120 Dissolved Magnases (Mn) 2014/10/24 90 % 80 - 120 Dissolved Manganese (Mn) 2014/10/24 101 % 80 - 120 Dissolved Manganese (Mn) 2014/10/24 90 % 80 - 120 Dissolved Phosphorus (P) 2014/10/24 94 % 80 - 120 Dissolved Phosphorus (P) 2014/10/24 94 % 80 - 120 Dissolved Strontium (Sr) 2014/10/24 90 % 80 - 120 Dissolved Strontium (Sr) 2014/10/24 90 % 80 - 120 Dissolved Barton (B)			Dissolved Tin (Sn)	2014/10/22	NC		%	20
Dissolved Uranium (1) 2014/10/22 NC % 20 Dissolved Vanaum (1) 2014/10/22 NC % 20 Dissolved Zinc (2n) 2014/10/22 NC % 20 7691698 SRT Matrix Spike Dissolved Baron (B) 2014/10/24 96 % 80 - 120 Dissolved Baron (B) 2014/10/24 96 % 80 - 120 Dissolved Caloum (Ca) 2014/10/24 96 % 80 - 120 Dissolved daron (B) 2014/10/24 90 % 80 - 120 Dissolved Magnesium (Mg) 2014/10/24 101 % 80 - 120 Dissolved Magnesium (Mg) 2014/10/24 99 % 80 - 120 Dissolved Phosphorus (P) 2014/10/24 94 % 80 - 120 Dissolved Soron (R) 2014/10/24 94 % 80 - 120 Dissolved Soron (R) 2014/10/24 97 % 80 - 120 Dissolved Soron (R) 2014/10/24 97 % 80 - 120 Dissolved Baron (B)			Dissolved Titanium (Ti)	2014/10/22	NC		%	20
Dissolved Vanadium (U) 2014/10/22 NC % 20 Dissolved Zinc (Zn) 2014/10/22 NC % 20 7691693 SRT Matrix Spike Dissolved Barium (Ba) 2014/10/24 NC % 80 120 Dissolved Calcium (Ca) 2014/10/24 NC % 80 120 Dissolved Calcium (Ca) 2014/10/24 NC % 80 120 Dissolved Manganess (Mn) 2014/10/24 101 % 80 120 Dissolved Manganess (Mn) 2014/10/24 101 % 80 120 Dissolved Potassium (K) 2014/10/24 101 % 80 120 Dissolved Potassium (K) 2014/10/24 103 % 80 120 Dissolved Strontium (Sr) 2014/10/24 90 % 80 120 Dissolved Barium (Ba) 2014/10/24 90 % 80 120 Dissolved Barium (Ba) 2014/10/24 90 % 80 120			Dissolved I tranium (11)	2014/10/22	NC		70 0/_	20
Dissolved Zinc (2n) 2014/10/22 NC % 20 7691698 SRT Matrix Spike Dissolved Born (B) 2014/10/24 96 % 80 - 120 Dissolved Born (B) 2014/10/24 NC % 80 - 120 Dissolved Calcium (Ca) 2014/10/24 NC % 80 - 120 Dissolved Tron (Fe) 2014/10/24 NC % 80 - 120 Dissolved Magnesum (Mg) 2014/10/24 104 % 80 - 120 Dissolved Magnesum (Mg) 2014/10/24 98 % 80 - 120 Dissolved Potassium (K) 2014/10/24 99 % 80 - 120 Dissolved Potassium (K) 2014/10/24 91 % 80 - 120 Dissolved Potassium (K) 2014/10/24 90 % 80 - 120 Dissolved Solium (Na) 2014/10/24 97 % 80 - 120 Dissolved Barium (Ba) 2014/10/24 97 % 80 - 120 Dissolved Barium (Ma) 2014/10/24 96 % 80 - 120 Disso			Dissolved Urandium (U)	2014/10/22	NC		70 0/.	20
7691698 SRT Matrix Spike Dissolved Barium (Ba) 2014/10/24 NC % 80 - 120 7691698 SRT Matrix Spike Dissolved Barium (Ba) 2014/10/24 96 % 80 - 120 Dissolved Calcium (Ca) 2014/10/24 96 % 80 - 120 Dissolved Calcium (Ca) 2014/10/24 90 % 80 - 120 Dissolved Itimum (Li) 2014/10/24 90 % 80 - 120 Dissolved Mangenser (Mn) 2014/10/24 91 % 80 - 120 Dissolved Phosphorus (P) 2014/10/24 91 % 80 - 120 Dissolved Phosphorus (P) 2014/10/24 91 % 80 - 120 Dissolved Strontim (Sr) 2014/10/24 90 % 80 - 120 Dissolved Barium (Ba) 2014/10/24 95 % 80 - 120 Dissolved Barium (Sr) 2014/10/24 90 % 80 - 120 Dissolved Barium (Ca) 2014/10/24 95 % 80 - 120 Dissolved Barium (Ba) 2014/10/24 96			Dissolved Vanadium (V)	2014/10/22	NC		70	20
Profiles/s Sk1 Mathix Spike Dissolved Boron (B) 2014/10/24 90 % 80 - 120 Dissolved Calcium (Ca) 2014/10/24 NC % 80 - 120 Dissolved Iron (Fe) 2014/10/24 00 % 80 - 120 Dissolved Iron (Fe) 2014/10/24 101 % 80 - 120 Dissolved Magnesium (Mg) 2014/10/24 104 % 80 - 120 Dissolved Magnesium (Mg) 2014/10/24 94 % 80 - 120 Dissolved Phosphorus (P) 2014/10/24 94 % 80 - 120 Dissolved Potassium (K) 2014/10/24 96 % 80 - 120 Dissolved Sodium (Na) 2014/10/24 90 % 80 - 120 Dissolved Sorium (Ba) 2014/10/24 97 % 80 - 120 Dissolved Barium (Ba) 2014/10/24 97 % 80 - 120 Dissolved Barium (Ba) 2014/10/24 97 % 80 - 120 Dissolved Barium (Ba) 2014/10/24 98 % 80 - 120	7004600 007	Makin Online	Dissolved Zinc (Zn)	2014/10/22	NC	06	70	20 00 120
Dissolved Data (ID) 2014/10/24 90 % 80 - 120 Dissolved Calcium (Ca) 2014/10/24 90 % 80 - 120 Dissolved Intinum (Li) 2014/10/24 90 % 80 - 120 Dissolved Magnesium (Mg) 2014/10/24 101 % 80 - 120 Dissolved Magnese (Mn) 2014/10/24 94 % 80 - 120 Dissolved Phosphorus (P) 2014/10/24 94 % 80 - 120 Dissolved Solution (Si) 2014/10/24 99 % 80 - 120 Dissolved Solution (Si) 2014/10/24 90 % 80 - 120 Dissolved Solution (Si) 2014/10/24 90 % 80 - 120 Dissolved Solution (Si) 2014/10/24 97 % 80 - 120 Dissolved Solution (Ca) 2014/10/24 97 % 80 - 120 Dissolved Calcium (Ca) 2014/10/24 96 % 80 - 120 Dissolved Magnesium (Mg) 2014/10/24 96 % 80 - 120 Dissolved Magnesium (Mg)	1091098 SK1	Matrix Spike	Dissolved Barlum (Ba)	2014/10/24		90	70	80 - 120
Dissolved Calculum (Ca) 2014/10/24 NC % 80 - 120 Dissolved Iron (Fe) 2014/10/24 104 % 80 - 120 Dissolved Maganese (Mn) 2014/10/24 104 % 80 - 120 Dissolved Maganese (Mn) 2014/10/24 94 % 80 - 120 Dissolved Potassium (K) 2014/10/24 99 % 80 - 120 Dissolved Potassium (K) 2014/10/24 99 % 80 - 120 Dissolved Stition (Si) 2014/10/24 90 % 80 - 120 Dissolved Storntium (Sr) 2014/10/24 90 % 80 - 120 Dissolved Storntium (Sr) 2014/10/24 97 % 80 - 120 Dissolved Baran (Ba) 2014/10/24 97 % 80 - 120 Dissolved Baran (Ba) 2014/10/24 98 % 80 - 120 Dissolved Baran (Ca) 2014/10/24 98 % 80 - 120 Dissolved Maganese (Mn) 2014/10/24 90 % 80 - 120 Dissolved Maganese (Mn) 201			Dissolved Boron (B)	2014/10/24		90	%0 0/	00 - 120 00 - 120
Dissolved Lithium (Li) 2014/10/24 90 % 80 - 120 Dissolved Magnesium (Mg) 2014/10/24 101 % 80 - 120 Dissolved Magnese (Mn) 2014/10/24 101 % 80 - 120 Dissolved Phosphorus (P) 2014/10/24 99 % 80 - 120 Dissolved Phosphorus (P) 2014/10/24 99 % 80 - 120 Dissolved Sincer (Si) 2014/10/24 90 % 80 - 120 Dissolved Sodium (Na) 2014/10/24 90 % 80 - 120 Dissolved Sodium (Na) 2014/10/24 90 % 80 - 120 Dissolved Barium (Ba) 2014/10/24 90 % 80 - 120 Dissolved Bron (B) 2014/10/24 95 % 80 - 120 Dissolved Bron (Pe) 2014/10/24 90 % 80 - 120 Dissolved Iron (Fe) 2014/10/24 103 % 80 - 120 Dissolved Magnesium (Mg) 2014/10/24 102 % 80 - 120 Dissolved Magnesium (K) 2014/10/			Dissolved Calcium (Ca)	2014/10/24		NC	70	80 - 120
Dissolved function 2014/10/24 104 % 80 - 120 Dissolved Manganese (Mn) 2014/10/24 101 % 80 - 120 Dissolved Potassium (Ms) 2014/10/24 94 % 80 - 120 Dissolved Potassium (K) 2014/10/24 99 % 80 - 120 Dissolved Solutium (Si) 2014/10/24 90 % 80 - 120 Dissolved Solutium (Na) 2014/10/24 90 % 80 - 120 Dissolved Strontium (Sr) 2014/10/24 90 % 80 - 120 Dissolved Baron (B) 2014/10/24 97 % 80 - 120 Dissolved Boron (B) 2014/10/24 95 % 80 - 120 Dissolved Brorn (Ca) 2014/10/24 95 % 80 - 120 Dissolved Manganese (Mn) 2014/10/24 90 % 80 - 120 Dissolved Manganese (Mn) 2014/10/24 90 % 80 - 120 Dissolved Solutim (Li) 2014/10/24 91 % 80 - 120 Dissolved Manganese (Mn) 20			Dissolved Iron (Fe)	2014/10/24		90	70	00 - 120
Dissolved Magness (Mn) 2014/10/24 101 % 80-120 Dissolved Phosphorus (P) 2014/10/24 99 % 80-120 Dissolved Phosphorus (P) 2014/10/24 99 % 80-120 Dissolved Sodium (Na) 2014/10/24 90 % 80-120 Dissolved Sodium (Na) 2014/10/24 90 % 80-120 Dissolved Sodium (Na) 2014/10/24 90 % 80-120 Dissolved Barium (Ba) 2014/10/24 97 % 80-120 Dissolved Barium (Ba) 2014/10/24 95 % 80-120 Dissolved Calcium (Ca) 2014/10/24 95 % 80-120 Dissolved Iron (Fe) 2014/10/24 90 % 80-120 Dissolved Iron (Fe) 2014/10/24 90 % 80-120 Dissolved Magnesium (Mg) 2014/10/24 90 % 80-120 Dissolved Magnesium (Mg) 2014/10/24 91 % 80-120 Dissolved Potassium (K) 2014/10/24 96 <td></td> <td></td> <td>Dissolved Lithium (LI)</td> <td>2014/10/24</td> <td></td> <td>104</td> <td>% 0/</td> <td>80 - 120</td>			Dissolved Lithium (LI)	2014/10/24		104	% 0/	80 - 120
Dissolved Manganese (Mn) 2014/10/24 94 % 80 - 120 Dissolved Potassium (K) 2014/10/24 113 % 80 - 120 Dissolved Potassium (K) 2014/10/24 102 % 80 - 120 Dissolved Strontium (Sr) 2014/10/24 90 % 80 - 120 Dissolved Strontium (Sr) 2014/10/24 97 % 80 - 120 Dissolved Boron (B) 2014/10/24 97 % 80 - 120 Dissolved Boron (B) 2014/10/24 98 % 80 - 120 Dissolved Calcium (Ca) 2014/10/24 98 % 80 - 120 Dissolved Calcium (Ca) 2014/10/24 90 % 80 - 120 Dissolved Manganese (Mn) 2014/10/24 90 % 80 - 120 Dissolved Manganese (Mn) 2014/10/24 91 % 80 - 120 Dissolved Phosphorus (P) 2014/10/24 94 % 80 - 120 Dissolved Phosphorus (P) 2014/10/24 93 % 80 - 120 Dissolved Socium (Na)			Dissolved Magnesium (Mg)	2014/10/24		101	%o	80 - 120
Dissolved Phosphorus (P) 2014/10/24 99 % 80 - 120 Dissolved Silicon (Si) 2014/10/24 103 % 80 - 120 Dissolved Solium (Na) 2014/10/24 90 % 80 - 120 Dissolved Solium (Na) 2014/10/24 97 % 80 - 120 Dissolved Barium (Ba) 2014/10/24 97 % 80 - 120 Dissolved Barium (Ba) 2014/10/24 98 % 80 - 120 Dissolved Calcium (Ca) 2014/10/24 98 % 80 - 120 Dissolved Calcium (Ca) 2014/10/24 90 % 80 - 120 Dissolved Calcium (Ca) 2014/10/24 102 % 80 - 120 Dissolved Magnese (Mn) 2014/10/24 102 % 80 - 120 Dissolved Magnese (Mn) 2014/10/24 103 % 80 - 120 Dissolved Phosphorus (P) 2014/10/24 103 % 80 - 120 Dissolved Strontium (Sr) 2014/10/24 12 % 80 - 120 Dissolved Strontium (Sr) <t< td=""><td></td><td></td><td>Dissolved Manganese (Min)</td><td>2014/10/24</td><td></td><td>94</td><td>70</td><td>80 - 120</td></t<>			Dissolved Manganese (Min)	2014/10/24		94	70	80 - 120
Dissolved Potassium (K) 2014/10/24 113 % 80 - 120 Dissolved Solium (Na) 2014/10/24 90 % 80 - 120 Dissolved Stontium (Sr) 2014/10/24 97 % 80 - 120 Dissolved Strontium (Sr) 2014/10/24 95 % 80 - 120 Dissolved Barium (Ba) 2014/10/24 95 % 80 - 120 Dissolved Barium (Ba) 2014/10/24 95 % 80 - 120 Dissolved Calcium (Ca) 2014/10/24 95 % 80 - 120 Dissolved Calcium (Ca) 2014/10/24 90 % 80 - 120 Dissolved Calcium (Ca) 2014/10/24 90 % 80 - 120 Dissolved Manganese (Mn) 2014/10/24 102 % 80 - 120 Dissolved Phosphorus (P) 2014/10/24 96 % 80 - 120 Dissolved Strontium (K) 2014/10/24 113 % 80 - 120 Dissolved Manganese (Mn) 2014/10/24 102 % 80 - 120 Dissolved Strontium (Sr)			Dissolved Phosphorus (P)	2014/10/24		99	%	80 - 120
Dissolved Silicon (Si) 2014/10/24 90 % 80 - 120 Dissolved Sodium (Na) 2014/10/24 102 % 80 - 120 Dissolved Strontium (Sr) 2014/10/24 97 % 80 - 120 Spiked Blank Dissolved Barium (Ba) 2014/10/24 95 % 80 - 120 Dissolved Strontium (Ca) 2014/10/24 95 % 80 - 120 Dissolved Calcium (Ca) 2014/10/24 96 % 80 - 120 Dissolved Magnesium (Ca) 2014/10/24 90 % 80 - 120 Dissolved Magnesium (Mg) 2014/10/24 102 % 80 - 120 Dissolved Magnesium (Mg) 2014/10/24 103 % 80 - 120 Dissolved Phosphorus (P) 2014/10/24 96 % 80 - 120 Dissolved Sodium (Na) 2014/10/24 96 % 80 - 120 Dissolved Sodium (Na) 2014/10/24 96 % 80 - 120 Dissolved Sodium (Na) 2014/10/24 96 % 80 - 120 Dissolv			Dissolved Potassium (K)	2014/10/24		113	%	80 - 120
Dissolved Sodium (Na) 2014/10/24 102 % 80 - 120 Dissolved Strontium (Sr) 2014/10/24 95 % 80 - 120 Spiked Blank Dissolved Barium (Ba) 2014/10/24 95 % 80 - 120 Dissolved Calcium (Ca) 2014/10/24 95 % 80 - 120 Dissolved Calcium (Ca) 2014/10/24 96 % 80 - 120 Dissolved Calcium (Ca) 2014/10/24 90 % 80 - 120 Dissolved Iron (Fe) 2014/10/24 90 % 80 - 120 Dissolved Magnesium (Mg) 2014/10/24 102 % 80 - 120 Dissolved Manganese (Mn) 2014/10/24 94 % 80 - 120 Dissolved Phosphorus (P) 2014/10/24 91 % 80 - 120 Dissolved Sodium (Na) 2014/10/24 93 % 80 - 120 Dissolved Sodium (Na) 2014/10/24 93 % 80 - 120 Dissolved Sodium (Na) 2014/10/24 90 % 80 - 120 Dissolved Sodiu			Dissolved Silicon (Si)	2014/10/24		90	%	80 - 120
Dissolved Strontium (Sr) 2014/10/24 97 % 80 - 120 Spiked Blank Dissolved Boron (B) 2014/10/24 98 % 80 - 120 Dissolved Calcium (Ca) 2014/10/24 98 % 80 - 120 Dissolved Calcium (Ca) 2014/10/24 90 % 80 - 120 Dissolved Lithium (Li) 2014/10/24 90 % 80 - 120 Dissolved Magnesium (Mg) 2014/10/24 90 % 80 - 120 Dissolved Magnesium (Mg) 2014/10/24 90 % 80 - 120 Dissolved Magnesium (Mg) 2014/10/24 91 % 80 - 120 Dissolved Phosphorus (P) 2014/10/24 96 % 80 - 120 Dissolved Phosphorus (P) 2014/10/24 96 % 80 - 120 Dissolved Strontium (Sr) 2014/10/24 93 % 80 - 120 Dissolved Strontium (Sr) 2014/10/24 93 % 80 - 120 Dissolved Barium (Ba) 2014/10/24 <0.01			Dissolved Sodium (Na)	2014/10/24		102	%	80 - 120
Spiked Blank Dissolved Baron (Ba) 2014/10/24 95 % 80 - 120 Dissolved Calcium (Ca) 2014/10/24 95 % 80 - 120 Dissolved Calcium (Ca) 2014/10/24 90 % 80 - 120 Dissolved Calcium (Li) 2014/10/24 90 % 80 - 120 Dissolved Magnesium (Mg) 2014/10/24 103 % 80 - 120 Dissolved Mangenese (Mn) 2014/10/24 94 % 80 - 120 Dissolved Posphorus (P) 2014/10/24 94 % 80 - 120 Dissolved Potassium (K) 2014/10/24 93 % 80 - 120 Dissolved Potassium (K) 2014/10/24 93 % 80 - 120 Dissolved Strontium (Sr) 2014/10/24 95 % 80 - 120 Dissolved Strontium (Sr) 2014/10/24 93 % 80 - 120 Dissolved Strontium (Sr) 2014/10/24 <0.010			Dissolved Strontium (Sr)	2014/10/24		97	%	80 - 120
Dissolved Boron (B) 2014/10/24 98 % 80 120 Dissolved Calcium (Ca) 2014/10/24 95 % 80 120 Dissolved Lithium (Li) 2014/10/24 90 % 80 120 Dissolved Manganese (Mn) 2014/10/24 102 % 80 120 Dissolved Manganese (Mn) 2014/10/24 103 % 80 120 Dissolved Potassium (K) 2014/10/24 94 % 80 120 Dissolved Potassium (K) 2014/10/24 96 % 80 120 Dissolved Potassium (K) 2014/10/24 93 % 80 120 Dissolved Sodium (Na) 2014/10/24 93 % 80 120 Dissolved Boron (B) 2014/10/24 93 % 80 120 Dissolved Boron (B) 2014/10/24 <0.010		Spiked Blank	Dissolved Barium (Ba)	2014/10/24		95	%	80 - 120
Dissolved Calcium (Ca) 2014/10/24 95 % 80 120 Dissolved Lithium (Li) 2014/10/24 90 % 80 120 Dissolved Magnesium (Mg) 2014/10/24 102 % 80 120 Dissolved Magnesium (Mg) 2014/10/24 103 % 80 120 Dissolved Magnese (Mn) 2014/10/24 94 % 80 120 Dissolved Phosphorus (P) 2014/10/24 96 % 80 120 Dissolved Solium (K) 2014/10/24 96 % 80 120 Dissolved Solium (Na) 2014/10/24 93 % 80 120 Dissolved Solium (Na) 2014/10/24 95 % 80 120 Dissolved Boron (B) 2014/10/24 <0.010			Dissolved Boron (B)	2014/10/24		98	%	80 - 120
Dissolved Iron (Fe) 2014/10/24 90 % 80 - 120 Dissolved Lithium (Li) 2014/10/24 102 % 80 - 120 Dissolved Magnesium (Mg) 2014/10/24 103 % 80 - 120 Dissolved Magnesium (Mg) 2014/10/24 103 % 80 - 120 Dissolved Phosphorus (P) 2014/10/24 96 % 80 - 120 Dissolved Potassium (K) 2014/10/24 96 % 80 - 120 Dissolved Stilicon (Si) 2014/10/24 93 % 80 - 120 Dissolved Sodium (Na) 2014/10/24 93 % 80 - 120 Dissolved Sodium (Na) 2014/10/24 93 % 80 - 120 Dissolved Barium (Ba) 2014/10/24 102 % 80 - 120 Dissolved Barium (Ba) 2014/10/24 <0.010			Dissolved Calcium (Ca)	2014/10/24		95	%	80 - 120
Dissolved Lithum (Li) 2014/10/24 102 % 80 - 120 Dissolved Magnesium (Mg) 2014/10/24 103 % 80 - 120 Dissolved Magnese (Mn) 2014/10/24 94 % 80 - 120 Dissolved Phosphorus (P) 2014/10/24 96 % 80 - 120 Dissolved Phosphorus (Si) 2014/10/24 96 % 80 - 120 Dissolved Silcon (Si) 2014/10/24 93 % 80 - 120 Dissolved Sodium (Na) 2014/10/24 93 % 80 - 120 Dissolved Strontium (Sr) 2014/10/24 95 % 80 - 120 Dissolved Barium (Ba) 2014/10/24 <0.010			Dissolved Iron (Fe)	2014/10/24		90	%	80 - 120
Dissolved Magnesium (Mg) 2014/10/24 103 % 80 - 120 Dissolved Manganese (Mn) 2014/10/24 94 % 80 - 120 Dissolved Phosphorus (P) 2014/10/24 96 % 80 - 120 Dissolved Potassium (K) 2014/10/24 112 % 80 - 120 Dissolved Stontium (Si) 2014/10/24 93 % 80 - 120 Dissolved Stontium (Sr) 2014/10/24 93 % 80 - 120 Dissolved Stontium (Sr) 2014/10/24 93 % 80 - 120 Dissolved Stontium (Sr) 2014/10/24 95 % 80 - 120 Dissolved Stontium (Sr) 2014/10/24 <0.010			Dissolved Lithium (Li)	2014/10/24		102	%	80 - 120
Dissolved Manganese (Mn) 2014/10/24 94 % 80 - 120 Dissolved Phosphorus (P) 2014/10/24 96 % 80 - 120 Dissolved Phosphorus (P) 2014/10/24 112 % 80 - 120 Dissolved Silicon (Si) 2014/10/24 93 % 80 - 120 Dissolved Sodium (Na) 2014/10/24 93 % 80 - 120 Dissolved Strontium (Sr) 2014/10/24 95 % 80 - 120 Method Blank Dissolved Barium (Ba) 2014/10/24 95 % 80 - 120 Dissolved Barium (Ba) 2014/10/24 <0.010			Dissolved Magnesium (Mg)	2014/10/24		103	%	80 - 120
Dissolved Phosphorus (P) 2014/10/24 96 % 80 - 120 Dissolved Potassium (K) 2014/10/24 112 % 80 - 120 Dissolved Soliuen (Si) 2014/10/24 93 % 80 - 120 Dissolved Sodium (Na) 2014/10/24 93 % 80 - 120 Dissolved Sodium (Na) 2014/10/24 102 % 80 - 120 Dissolved Strontium (Sr) 2014/10/24 95 % 80 - 120 Dissolved Barium (Ba) 2014/10/24 <0.010			Dissolved Manganese (Mn)	2014/10/24		94	%	80 - 120
Dissolved Potassium (K) 2014/10/24 112 % 80 - 120 Dissolved Silicon (Si) 2014/10/24 93 % 80 - 120 Dissolved Sodium (Na) 2014/10/24 102 % 80 - 120 Dissolved Strontium (Sr) 2014/10/24 102 % 80 - 120 Method Blank Dissolved Strontium (Sr) 2014/10/24 <0.010			Dissolved Phosphorus (P)	2014/10/24		96	%	80 - 120
Dissolved Silicon (Si) 2014/10/24 93 % 80 - 120 Dissolved Sodium (Na) 2014/10/24 102 % 80 - 120 Dissolved Strontium (Sr) 2014/10/24 95 % 80 - 120 Method Blank Dissolved Barium (Ba) 2014/10/24 <0.010			Dissolved Potassium (K)	2014/10/24		112	%	80 - 120
Dissolved Sodium (Na) 2014/10/24 102 % 80 - 120 Dissolved Strontium (Sr) 2014/10/24 95 % 80 - 120 Method Blank Dissolved Barium (Ba) 2014/10/24 <0.010			Dissolved Silicon (Si)	2014/10/24		93	%	80 - 120
Dissolved Strontium (Sr) 2014/10/24 95 % 80 - 120 Method Blank Dissolved Barium (Ba) 2014/10/24 <0.010			Dissolved Sodium (Na)	2014/10/24		102	%	80 - 120
Method Blank Dissolved Barium (Ba) 2014/10/24 <0.010 mg/L Dissolved Boron (B) 2014/10/24 <0.020			Dissolved Strontium (Sr)	2014/10/24		95	%	80 - 120
Dissolved Boron (B) 2014/10/24 <0.020		Method Blank	Dissolved Barium (Ba)	2014/10/24	<0.010		mg/L	
Dissolved Calcium (Ca) 2014/10/24 <0.30			Dissolved Boron (B)	2014/10/24	<0.020		mg/L	
Dissolved Iron (Fe) 2014/10/24 <0.060 mg/L Dissolved Lithium (Li) 2014/10/24 <0.020			Dissolved Calcium (Ca)	2014/10/24	<0.30		mg/L	
Dissolved Lithium (Li) 2014/10/24 <0.020 mg/L Dissolved Magnesium (Mg) 2014/10/24 <0.20			Dissolved Iron (Fe)	2014/10/24	<0.060		mg/L	
Dissolved Magnesium (Mg) 2014/10/24 <0.20 mg/L Dissolved Manganese (Mn) 2014/10/24 <0.0040			Dissolved Lithium (Li)	2014/10/24	<0.020		mg/L	
Dissolved Manganese (Mn) 2014/10/24 <0.0040 mg/L Dissolved Phosphorus (P) 2014/10/24 <0.10			Dissolved Magnesium (Mg)	2014/10/24	<0.20		mg/L	
Dissolved Phosphorus (P) 2014/10/24 <0.10 mg/L Dissolved Potassium (K) 2014/10/24 <0.30			Dissolved Manganese (Mn)	2014/10/24	<0.0040		mg/L	
Dissolved Potassium (K) 2014/10/24 <0.30 mg/L Dissolved Silicon (Si) 2014/10/24 <0.10			Dissolved Phosphorus (P)	2014/10/24	<0.10		mg/L	
Dissolved Silicon (Si) 2014/10/24 <0.10 mg/L Dissolved Sodium (Na) 2014/10/24 <0.50			Dissolved Potassium (K)	2014/10/24	<0:30		mg/L	
Dissolved Sodium (Na) 2014/10/24 <0.50 mg/L Dissolved Strontium (Sr) 2014/10/24 <0.020			Dissolved Silicon (Si)	2014/10/24	<0.10		mg/L	
Dissolved Strontium (Sr) 2014/10/24 <0.020 mg/L Dissolved Sulphur (S) 2014/10/24 <0.20			Dissolved Sodium (Na)	2014/10/24	<0.50		mg/L	
Dissolved Sulphur (S) 2014/10/24 <0.20 mg/L RPD Dissolved Barium (Ba) 2014/10/24 0.4 % 20			Dissolved Strontium (Sr)	2014/10/24	<0.020		mg/L	
RPD Dissolved Barium (Ba) 2014/10/24 0.4 % 20			Dissolved Sulphur (S)	2014/10/24	<0.20		mg/L	
		RPD	Dissolved Barium (Ba)	2014/10/24	0.4		%	20

Maxxam Analytics International Corporation o/a Maxxam Analytics Calgary: 2021 - 41st Avenue N.E. T2E 6P2 Telephone(403) 291-3077 Fax(403) 291-9468

MAXXAM ANALYTICS Attention: SUB CONTRACTOR Client Project #: MB4J4887 P.O. #: Site Location:

Quality Assurance Report (Continued) Maxxam Job Number: CB495316

QA/QC			Date				
Batch			Analyzed				
Num Init	QC Type	Parameter	yyyy/mm/dd	Value	Recovery	UNITS	QC Limits
7691698 SRT	RPD	Dissolved Boron (B)	2014/10/24	NC		%	20
		Dissolved Calcium (Ca)	2014/10/24	0.3		%	20
		Dissolved Iron (Fe)	2014/10/24	0.8		%	20
		Dissolved Lithium (Li)	2014/10/24	NC		%	20
		Dissolved Magnesium (Mg)	2014/10/24	0.5		%	20
		Dissolved Manganese (Mn)	2014/10/24	0.3		%	20
		Dissolved Phosphorus (P)	2014/10/24	NC		%	20
		Dissolved Potassium (K)	2014/10/24	NC		%	20
		Dissolved Silicon (Si)	2014/10/24	0.4		%	20
		Dissolved Sodium (Na)	2014/10/24	NC		%	20
		Dissolved Strontium (Sr)	2014/10/24	0.4		%	20
		Dissolved Sulphur (S)	2014/10/24	0.2		%	20

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spiked amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than 2x that of the native sample concentration).

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (one or both samples < 5x RDL).

Maxxam Analytics International Corporation o/a Maxxam Analytics Calgary: 2021 - 41st Avenue N E. T2E 6P2 Telephone(403) 291-3077 Fax(403) 291-9468

Validation Signature Page

Maxxam Job #: B495316

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

nay

Ghayasuddin Khan, M.Sc., B.Ed., P.Chem, Scientific Specialist

Michelle Fritz Gatehouse, Senior Analyst

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

RELIABLE.

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

Geofirma Engineering Ltd.

1 Raymond St., Suite 200 Ottawa, ON K1R1A2 Attn: Tim Galt

Client PO: 182621-001 Project: 18-262-1 Custody:

Report Date: 31-May-2019 Order Date: 24-May-2019

Order #: 1921547

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID	Client ID
1921547-01	BH19-01-1
1921547-02	BH19-02-1
1921547-03	BH19-02-3
1921547-04	BH19-03-1
1921547-05	BH19-04-1
1921547-06	BH19-05-1
1921547-07	BH19-06-1
1921547-08	BH19-07-1
1921547-09	BH19-08-1
1921547-10	BH19-09-1
1921547-11	BH19-10-1
1921547-12	BH19-D1

Approved By:

Mark Foto

Mark Foto, M.Sc. Lab Supervisor

Any use of these results implies your agreement that our total liability in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.

Analysis Summary Table

Order	#:	1921547
-------	----	---------

Report Date: 31-May-2019 Order Date: 24-May-2019

Analysis	Method Reference/Description	Extraction Date	Analysis Date	
Boron, available	MOE (HWE), EPA 200.7 - ICP-OES	29-May-19	29-May-19	
BTEX by P&T GC-MS	EPA 8260 - P&T GC-MS	28-May-19	30-May-19	
Chromium, hexavalent - soil	MOE E3056 - Extraction, colourimetric	24-May-19	28-May-19	
Conductivity	MOE E3138 - probe @25 °C, water ext	29-May-19	30-May-19	
Cyanide, free	MOE E3015 - Auto Colour, water extraction	24-May-19	28-May-19	
Mercury by CVAA	EPA 7471B - CVAA, digestion	29-May-19	29-May-19	
pH, soil	EPA 150.1 - pH probe @ 25 °C, CaCl buffered ext.	28-May-19	28-May-19	
PHC F1	CWS Tier 1 - P&T GC-FID	28-May-19	30-May-19	
PHCs F2 to F4	CWS Tier 1 - GC-FID, extraction	24-May-19	27-May-19	
REG 153: Metals by ICP/MS, soil	EPA 6020 - Digestion - ICP-MS	29-May-19	29-May-19	
REG 153: PAHs by GC-MS	EPA 8270 - GC-MS, extraction	24-May-19	31-May-19	
SAR	Calculated	29-May-19	29-May-19	
Solids, %	Gravimetric, calculation	29-May-19	29-May-19	

Report Date: 31-May-2019

Order #: 1921547

Order Date: 24-May-2019

	Client ID:	BH19-01-1 24-May-19-00:00	BH19-02-1	BH19-02-3	BH19-03-1 24-May-19-00:00
	Sample ID:	1921547-01	1921547-02	1921547-03	1921547-04
	MDL/Units	Soil	Soil	Soil	Soil
Physical Characteristics			1		
% Solids	0.1 % by Wt.	89.6	89.0	88.4	86.2
General Inorganics					
SAR	0.01 N/A	0.17	0.38	0.39	0.24
Conductivity	5 uS/cm	185	180	136	238
Cyanide, free	0.03 ug/g dry	<0.03	<0.03	<0.03	<0.03
рН	0.05 pH Units	7.74	7.79	7.86	7.74
Metals					
Antimony	1.0 ug/g dry	<1.0	1.3	<1.0	<1.0
Arsenic	1.0 ug/g dry	4.2	5.9	1.9	4.0
Barium	1.0 ug/g dry	158	269	73.0	286
Beryllium	0.5 ug/g dry	0.6	<0.5	<0.5	0.7
Boron	5.0 ug/g dry	10.2	14.4	7.0	10.2
Boron, available	0.5 ug/g dry	<0.5	<0.5	<0.5	<0.5
Cadmium	0.5 ug/g dry	<0.5	<0.5	<0.5	<0.5
Chromium	5.0 ug/g dry	36.0	50.2	12.1	63.5
Chromium (VI)	0.2 ug/g dry	<0.2	<0.2	<0.2	<0.2
Cobalt	1.0 ug/g dry	10.8	13.6	5.3	14.8
Copper	5.0 ug/g dry	26.0	41.9	15.1	37.0
Lead	1.0 ug/g dry	46.3	92.5	5.3	56.4
Mercury	0.1 ug/g dry	<0.1	<0.1	<0.1	<0.1
Molybdenum	1.0 ug/g dry	<1.0	1.1	<1.0	<1.0
Nickel	5.0 ug/g dry	23.0	32.7	10.8	38.6
Selenium	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0
Silver	0.3 ug/g dry	<0.3	<0.3	<0.3	<0.3
Thallium	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0
Uranium	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0
Vanadium	10.0 ug/g dry	45.7	55.9	26.6	64.5
Zinc	20.0 ug/g dry	80.9	130	27.2	107
Semi-Volatiles					
Acenaphthene	0.02 ug/g dry	0.10	0.04	<0.02	0.42
Acenaphthylene	0.02 ug/g dry	0.07	0.07	<0.02	0.47
Anthracene	0.02 ug/g dry	0.36	0.13	<0.02	2.01
Benzo [a] anthracene	0.02 ug/g dry	0.81	0.25	<0.02	3.43
Benzo [a] pyrene	0.02 ug/g dry	0.65	0.21	<0.02	2.14
Benzo [b] fluoranthene	0.02 ug/g dry	0.77	0.36	<0.02	3.13

Order #: 1921547

Report Date: 31-May-2019 Order Date: 24-May-2019

			-		
	Client ID:	BH19-01-1	BH19-02-1	BH19-02-3	BH19-03-1
	Sample Date:	24-May-19 00:00	24-May-19 00:00	24-May-19 00:00	24-May-19 00:00
	Sample ID:	1921547-01	1921547-02	1921547-03	1921547-04
	MDL/Units	Soil	Soil	Soil	Soil
Benzo [g,h,i] perylene	0.02 ug/g dry	0.48	0.14	<0.02	0.97
Benzo [k] fluoranthene	0.02 ug/g dry	0.36	0.26	<0.02	2.20
Chrysene	0.02 ug/g dry	0.82	0.30	<0.02	3.38
Dibenzo [a,h] anthracene	0.02 ug/g dry	0.12	0.04	<0.02	0.25
Fluoranthene	0.02 ug/g dry	1.60	0.55	<0.02	8.22
Fluorene	0.02 ug/g dry	0.12	0.05	<0.02	0.80
Indeno [1,2,3-cd] pyrene	0.02 ug/g dry	0.40	0.12	<0.02	0.60
1-Methylnaphthalene	0.02 ug/g dry	0.03	0.02	<0.02	0.11
2-Methylnaphthalene	0.02 ug/g dry	0.04	0.03	<0.02	0.10
Methylnaphthalene (1&2)	0.04 ug/g dry	0.07	0.05	<0.04	0.21
Naphthalene	0.01 ug/g dry	0.07	0.04	<0.01	0.12
Phenanthrene	0.02 ug/g dry	1.23	0.36	<0.02	6.64
Pyrene	0.02 ug/g dry	1.30	0.46	<0.02	6.08
2-Fluorobiphenyl	Surrogate	81.6%	86.5%	69.7%	81.8%
Terphenyl-d14	Surrogate	92.6%	100%	103%	83.7%

Report Date: 31-May-2019

Order #: 1921547

Order Date: 24-May-2019

	Client ID: Sample Date: Sample ID:	BH19-04-1 24-May-19 00:00 1921547-05	BH19-05-1 24-May-19 00:00 1921547-06	BH19-06-1 24-May-19 00:00 1921547-07	BH19-07-1 24-May-19 00:00 1921547-08
Physical Characteristics	MDL/Units	501	5011	Soll	Soil
% Solids	0.1 % by Wt.	89.9	84.5	89.5	82.4
General Inorganics		00.0	00	00.0	02.1
SAR	0.01 N/A	0.12	0.12	-	-
Conductivity	5 uS/cm	160	197	-	-
Cyanide, free	0.03 ug/g dry	<0.03	<0.03	-	-
рН	0.05 pH Units	7.73	7.66	-	-
Metals			-		
Antimony	1.0 ug/g dry	<1.0	2.0	-	-
Arsenic	1.0 ug/g dry	3.9	5.8	-	-
Barium	1.0 ug/g dry	204	225	-	-
Beryllium	0.5 ug/g dry	0.6	0.6	-	-
Boron	5.0 ug/g dry	10.0	11.1	-	-
Boron, available	0.5 ug/g dry	<0.5	<0.5	-	-
Cadmium	0.5 ug/g dry	<0.5	0.5	-	-
Chromium	5.0 ug/g dry	41.0	39.5	-	-
Chromium (VI)	0.2 ug/g dry	2.5	<0.2	-	-
Cobalt	1.0 ug/g dry	11.1	10.3	-	-
Copper	5.0 ug/g dry	27.9	42.1	-	-
Lead	1.0 ug/g dry	52.0	176	-	-
Mercury	0.1 ug/g dry	<0.1	<0.1	-	-
Molybdenum	1.0 ug/g dry	1.4	1.8	-	-
Nickel	5.0 ug/g dry	25.4	27.0	-	-
Selenium	1.0 ug/g dry	<1.0	<1.0	-	-
Silver	0.3 ug/g dry	<0.3	<0.3	-	-
Thallium	1.0 ug/g dry	<1.0	<1.0	-	-
Uranium	1.0 ug/g dry	<1.0	<1.0	-	-
Vanadium	10.0 ug/g dry	44.4	41.9	-	-
Zinc	20.0 ug/g dry	83.5	153	-	-
Volatiles	1			-	
Benzene	0.02 ug/g dry	-	-	<0.02	<0.02
Ethylbenzene	0.05 ug/g dry	-	-	<0.05	<0.05
Toluene	0.05 ug/g dry	-	-	<0.05	<0.05
m,p-Xylenes	0.05 ug/g dry	-	-	<0.05	<0.05
o-Xylene	0.05 ug/g dry	-	-	<0.05	<0.05
Xylenes, total	0.05 ug/g dry	-	-	<0.05	<0.05

Order #: 1921547

Report Date: 31-May-2019 Order Date: 24-May-2019

	Client ID:	BH19-04-1	BH19-05-1	BH19-06-1	BH19-07-1
	Sample Date:	24-May-19 00:00	24-May-19 00:00	24-May-19 00:00	24-May-19 00:00
	Sample ID:	1921547-05 Soil	1921547-06 Soil	1921547-07	1921547-08
T 1 10	MDL/Units	301	3011	501	5011
Ioluene-d8	Surrogate	-	-	99.2%	98.4%
Hydrocarbons	Zug/g day			_	_
F1 PHCs (C6-C10)	7 ug/g dry	-	-	<7	<7
F2 PHCs (C10-C16)	4 ug/g dry	-	-	<4	<4
F3 PHCs (C16-C34)	8 ug/g dry	-	-	<8	71
F4 PHCs (C34-C50)	6 ug/g dry	-	-	<6	40
Semi-Volatiles			1		
Acenaphthene	0.02 ug/g dry	0.37	0.03	-	-
Acenaphthylene	0.02 ug/g dry	0.30	0.09	-	-
Anthracene	0.02 ug/g dry	1.25	0.11	-	-
Benzo [a] anthracene	0.02 ug/g dry	2.31	0.28	-	-
Benzo [a] pyrene	0.02 ug/g dry	1.59	0.24	-	-
Benzo [b] fluoranthene	0.02 ug/g dry	2.37	0.43	-	-
Benzo [g,h,i] perylene	0.02 ug/g dry	0.87	0.17	-	-
Benzo [k] fluoranthene	0.02 ug/g dry	1.85	0.26	-	-
Chrysene	0.02 ug/g dry	2.35	0.33	-	-
Dibenzo [a,h] anthracene	0.02 ug/g dry	0.23	0.04	-	-
Fluoranthene	0.02 ug/g dry	5.26	0.59	-	-
Fluorene	0.02 ug/g dry	0.53	0.03	-	-
Indeno [1,2,3-cd] pyrene	0.02 ug/g dry	0.82	0.13	-	-
1-Methylnaphthalene	0.02 ug/g dry	0.10	<0.02	-	-
2-Methylnaphthalene	0.02 ug/g dry	0.12	<0.02	-	-
Methylnaphthalene (1&2)	0.04 ug/g dry	0.21	<0.04	-	-
Naphthalene	0.01 ug/g dry	0.21	0.02	-	-
Phenanthrene	0.02 ug/g dry	4.16	0.37	-	-
Pyrene	0.02 ug/g dry	4.06	0.49	-	-
2-Fluorobiphenyl	Surrogate	96.5%	92.3%	-	-
Terphenyl-d14	Surrogate	98.1%	100%	-	-

Report Date: 31-May-2019

Order #: 1921547

Order Date: 24-May-2019

	Client ID:	BH19-08-1	BH19-09-1	BH19-10-1	BH19-D1
	Sample Date:	24-May-19 00:00	24-May-19 00:00	24-May-19 00:00	24-May-19 00:00
	Sample ID:	1921547-09	1921547-10	1921547-11 Soil	1921547-12
Physical Characteristics	MDL/Units	3011	501	301	5011
% Solids	0.1 % by Wt.	83.8	03.0	03.0	80.8
General Inorganics	,	00.0	55.5	30.5	00.0
SAR	0.01 N/A	0.37	-	-	0.39
Conductivity	5 uS/cm	235	-	-	183
Cyanide, free	0.03 ug/g dry	<0.03	-	-	<0.03
рН	0.05 pH Units	7.61	-	-	7.66
Metals					
Antimony	1.0 ug/g dry	1.1	-	-	<1.0
Arsenic	1.0 ug/g dry	4.9	-	-	4.5
Barium	1.0 ug/g dry	317	-	-	291
Beryllium	0.5 ug/g dry	0.9	-	-	0.7
Boron	5.0 ug/g dry	18.9	-	-	12.1
Boron, available	0.5 ug/g dry	0.6	-	-	<0.5
Cadmium	0.5 ug/g dry	<0.5	-	-	<0.5
Chromium	5.0 ug/g dry	55.8	-	-	41.1
Chromium (VI)	0.2 ug/g dry	<0.2	-	-	<0.2
Cobalt	1.0 ug/g dry	12.3	-	-	12.3
Copper	5.0 ug/g dry	36.6	-	-	29.7
Lead	1.0 ug/g dry	221	-	-	58.7
Mercury	0.1 ug/g dry	<0.1	-	-	<0.1
Molybdenum	1.0 ug/g dry	<1.0	-	-	<1.0
Nickel	5.0 ug/g dry	32.4	-	-	26.7
Selenium	1.0 ug/g dry	<1.0	-	-	<1.0
Silver	0.3 ug/g dry	<0.3	-	-	<0.3
Thallium	1.0 ug/g dry	<1.0	-	-	<1.0
Uranium	1.0 ug/g dry	<1.0	-	-	<1.0
Vanadium	10.0 ug/g dry	49.9	-	-	51.2
Zinc	20.0 ug/g dry	205	-	-	93.3
Volatiles					
Benzene	0.02 ug/g dry	-	<0.02	<0.02	-
Ethylbenzene	0.05 ug/g dry	-	<0.05	<0.05	-
Toluene	0.05 ug/g dry	-	<0.05	<0.05	-
m,p-Xylenes	0.05 ug/g dry	-	<0.05	<0.05	-
o-Xylene	0.05 ug/g dry	-	<0.05	<0.05	-
Xylenes, total	0.05 ug/g dry	-	<0.05	<0.05	-

Order #: 1921547

Report Date: 31-May-2019 Order Date: 24-May-2019

	Client ID:	BH19-08-1	BH19-09-1	BH19-10-1	BH19-D1
	Sample Date:	24-May-19 00:00	24-May-19 00:00	24-May-19 00:00	24-May-19 00:00
	Sample ID:	1921547-09	1921547-10	1921547-11	1921547-12
	MDL/Units	Soil	Soil	Soil	Soil
Toluene-d8	Surrogate	-	95.2%	95.4%	-
Hydrocarbons					
F1 PHCs (C6-C10)	7 ug/g dry	-	<7	<7	-
F2 PHCs (C10-C16)	4 ug/g dry	-	5	<4	-
F3 PHCs (C16-C34)	8 ug/g dry	-	33	45	-
F4 PHCs (C34-C50)	6 ug/g dry	-	11	30	-
Semi-Volatiles			-		
Acenaphthene	0.02 ug/g dry	0.19	-	-	0.08
Acenaphthylene	0.02 ug/g dry	0.11	-	-	0.09
Anthracene	0.02 ug/g dry	0.73	-	-	0.24
Benzo [a] anthracene	0.02 ug/g dry	1.81	-	-	0.50
Benzo [a] pyrene	0.02 ug/g dry	1.63	-	-	0.43
Benzo [b] fluoranthene	0.02 ug/g dry	2.45	-	-	0.57
Benzo [g,h,i] perylene	0.02 ug/g dry	1.07	-	-	0.42
Benzo [k] fluoranthene	0.02 ug/g dry	1.42	-	-	0.25
Chrysene	0.02 ug/g dry	1.92	-	-	0.56
Dibenzo [a,h] anthracene	0.02 ug/g dry	0.24	-	-	0.09
Fluoranthene	0.02 ug/g dry	4.04	-	-	1.11
Fluorene	0.02 ug/g dry	0.22	-	-	0.10
Indeno [1,2,3-cd] pyrene	0.02 ug/g dry	1.00	-	-	0.30
1-Methylnaphthalene	0.02 ug/g dry	0.06	-	-	<0.02
2-Methylnaphthalene	0.02 ug/g dry	0.06	-	-	0.02
Methylnaphthalene (1&2)	0.04 ug/g dry	0.12	-	-	0.04
Naphthalene	0.01 ug/g dry	0.11	-	-	0.04
Phenanthrene	0.02 ug/g dry	2.27	-	-	0.71
Pyrene	0.02 ug/g dry	3.12	-	-	0.89
2-Fluorobiphenyl	Surrogate	91.2%	-	-	78.4%
Terphenyl-d14	Surrogate	94.5%	-	-	109%

Method Quality Control: Blank

Order #: 1921547
Report Date: 31-May-2019

Order Date: 24-May-2019

Project Description: 18-262-1

.

		Reporting		Source		%REC		RPD	
Analyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes
Conorol In ormanico									
		F							
Conductivity Cvanide free		C 03	uS/cm						
	ND	0.03	uy/y						
Hydrocarbons		-	,						
F1 PHCs (C6-C10) F2 PHCs (C10 C16)		1	ug/g						
F2 FHCs (C10-C10) F3 PHCs (C16-C34)	ND	4	ug/g ug/g						
F4 PHCs (C34-C50)	ND	6	ug/g ua/a						
Motals		-	- 3- 3						
Antimony	ND	1.0	ua/a						
Arsenic	ND	1.0	ug/g ua/a						
Barium	ND	1.0	ug/g						
Beryllium	ND	0.5	ug/g						
Boron, available	ND	0.5	ug/g						
Boron	ND	5.0	ug/g						
Cadmium Chromium ()(I)		0.5	ug/g						
Chromium	ND	5.0	ug/g ug/g						
Cobalt	ND	1.0	ug/g ua/a						
Copper	ND	5.0	ug/g						
Lead	ND	1.0	ug/g						
Mercury	ND	0.1	ug/g						
Molybdenum	ND	1.0	ug/g						
Nickel Selenium		5.0	ug/g						
Silver	ND	0.3	ug/g ug/g						
Thallium	ND	1.0	ug/g						
Uranium	ND	1.0	ug/g						
Vanadium	ND	10.0	ug/g						
Zinc	ND	20.0	ug/g						
Semi-Volatiles									
Acenaphthene	ND	0.02	ug/g						
Acenaphthylene	ND	0.02	ug/g						
Anthracene Bonzo [2] anthraceno		0.02	ug/g						
Benzo [a] antiliacene Benzo [a] pyrene	ND	0.02	ug/g ug/g						
Benzo [b] fluoranthene	ND	0.02	ug/g ua/a						
Benzo [g,h,i] perylene	ND	0.02	ug/g						
Benzo [k] fluoranthene	ND	0.02	ug/g						
Chrysene	ND	0.02	ug/g						
Dibenzo [a,h] anthracene	ND	0.02	ug/g						
Fluorene	ND	0.02	ug/g ug/g						
Indeno [1.2.3-cd] pyrene	ND	0.02	ug/g ua/a						
1-Methylnaphthalene	ND	0.02	ug/g						
2-Methylnaphthalene	ND	0.02	ug/g						
Methylnaphthalene (1&2)	ND	0.04	ug/g						
Naphthalene	ND	0.01	ug/g						
Phenanthrene		0.02	ug/g						
Surrogate: 2-Fluorobinhenvl	1 34	0.02	ug/g ua/a		101	50-140			
Surrogate: Terphenyl-d14	1.44		ug,g ua/a		108	50-140			
Volatiles			3/8						
VIALICO Benzene	ND	0.02	ua/a						
Ethylbenzene		0.02	ug/g ua/a						
Toluene	ND	0.05	ug/a						
m,p-Xylenes	ND	0.05	ug/g						
o-Xylene	ND	0.05	ug/g						

Report Date: 31-May-2019 Order Date: 24-May-2019

Page 10 of 15

Project Description: 18-262-1

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Xylenes, total Surrogate: Toluene-d8	ND 8.04	0.05	ug/g <i>ug/g</i>		101	50-140			

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
General Inorganics									
SAR	0.16	0.01	N/A	0.17			6.1	200	
Conductivity	183	5	uS/cm	185			1.3	5	
Cvanide, free	ND	0.03	ua/a drv	ND				35	
pH	6.82	0.05	pH Units	6.79			0.4	10	
							-	-	
		-	<i>,</i> ,					40	
F1 PHCs (C6-C10)	ND	(ug/g dry	ND				40	
F2 PHCs (C10-C16)	ND	4	ug/g dry	ND				30	
F3 PHCs (C16-C34)	ND	8	ug/g dry	ND				30	
F4 PHCS (C34-C50)	ND	6	ug/g ary	ND				30	
Metals									
Antimony	1.4	1.0	ug/g dry	ND			0.0	30	
Arsenic	4.2	1.0	ug/g dry	4.2			0.3	30	
Barium	167	1.0	ug/g dry	158			5.6	30	
Beryllium	0.6	0.5	ug/g dry	0.6			1.8	30	
Boron, available	ND	0.5	ug/g dry	ND			0.0	35	
Boron	11.4	5.0	ug/g dry	10.2			11.0	30	
Cadmium	ND	0.5	ug/g dry	ND			0.0	30	
Chromium (VI)	ND	0.2	ug/g dry	ND				35	
Chromium	38.0	5.0	ug/g dry	36.0			5.4	30	
Cobalt	11.0	1.0	ug/g dry	10.8			2.3	30	
Copper	27.0	5.0	ug/g dry	26.0			3.9	30	
Lead	49.1	1.0	ug/g dry	46.3			5.9	30	
Mercury	ND	0.1	ug/g dry	ND			0.0	30	
Molybdenum	ND	1.0	ug/g dry	ND			0.0	30	
	24.3	5.0	ug/g dry	23.0			5.4	30	
Selenium	ND	1.0	ug/g dry	ND			0.0	30	
Silver		0.3	ug/g dry				0.0	30	
Inallum		1.0	ug/g dry				0.0	30	
Vapadium	ND 47.0	1.0	ug/g dry	ND 45.7			0.0	30	
Zinc	47.9	20.0	ug/g dry	40.0			4.0	30	
	03.0	20.0	ug/g ury	00.9			10.5	50	
Physical Characteristics									
% Solids	90.5	0.1	% by Wt.	90.2			0.3	25	
Semi-Volatiles									
Acenaphthene	ND	0.02	ug/g dry	ND				40	
Acenaphthylene	ND	0.02	ug/g dry	ND				40	
Anthracene	ND	0.02	ug/g dry	ND				40	
Benzo [a] anthracene	ND	0.02	ug/g dry	ND				40	
Benzo [a] pyrene	ND	0.02	ug/g dry	ND				40	
Benzo [b] fluorantnene	ND	0.02	ug/g dry	ND				40	
Benzo [g,n,i] perviene		0.02	ug/g dry					40	
Benzo [k] fluorantnene		0.02	ug/g ary	ND				40	
Chrysene Dibenze [e b] enthreeene		0.02	ug/g dry					40	
Diberizo [a,ii] antiliacene		0.02	ug/g dry					40	
Fluorono		0.02	ug/g dry					40	
Indeno [1 2 3-cd] nyrene		0.02	ug/g dry					40	
1-Methylpaphthalene		0.02	ug/g dry					40	
2-Methylnaphthalene		0.02	ug/g dry					40	
Naphthalene	ND	0.02	ug/g dry ug/a dry	ND				40	
Phenanthrene	ND	0.02	ug/g dry	ND				40	
Pyrene	ND	0.02	ug/g dry	ND				40	
Surrogate: 2-Fluorobinhenvl	1.44	0.02	ua/a drv		84.9	50-140			
Surrogate: Ternhenyl-d14	1 43		ua/a drv		84 3	50-140			
	1.40		ug, g ui y		04.0	00 140			
volatiles									
Benzene	ND	0.02	ug/g dry	ND				50	

Report Date: 31-May-2019

Order Date: 24-May-2019

Order #: 1921547

Report Date: 31-May-2019 Order Date: 24-May-2019

Page 12 of 15

Project Description: 18-262-1

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Ethylbenzene	ND	0.05	ug/g dry	ND				50	
Toluene	ND	0.05	ug/g dry	ND				50	
m,p-Xylenes	ND	0.05	ug/g dry	ND				50	
o-Xylene	ND	0.05	ug/g dry	ND				50	
Surrogate: Toluene-d8	9.04		ug/g dry		51.1	50-140			

Method Quality Control: Spike

Report Date: 31-May-2019 Order Date: 24-May-2019

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
General Inorganics									
Cyanide, free	0.313	0.03	ug/g	ND	92.1	70-130			
Hvdrocarbons									
F1 PHCs (C6-C10)	219	7	ug/g		109	80-120			
F2 PHCs (C10-C16)	95	4	ug/g	ND	78.8	60-140			
F3 PHCs (C16-C34)	259	8	ug/g	ND	87.3	60-140			
F4 PHCs (C34-C50)	153	6	ug/g	ND	81.4	60-140			
Metals									
Antimony	43.7		ug/L	ND	86.9	70-130			
Arsenic	52.6		ug/L	1.7	102	70-130			
Barium	113		ug/L	63.2	100	70-130			
Beryllium	51.5		ug/L	ND	102	70-130			
Boron, available	4.79	0.5	ug/g	ND	95.8	70-122			
Boron	48.8		ug/L	ND	89.5	70-130			
Cadmium	47.7		ug/L	ND	95.2	70-130			
Chromium (VI)	4.3	0.2	ug/g	ND	74.0	70-130			
Chromium	67.7		ug/L	14.4	107	70-130			
Cobalt	54.8		ug/L	4.3	101	70-130			
Copper	60.0		ug/L	10.4	99.3	70-130			
Lead	68.0		ug/L	18.5	98.9	70-130			
Mercury	1.45	0.1	ug/g	ND	96.9	70-130			
Molybdenum	49.8		ug/L	ND	99.0	70-130			
Nickel	60.0		ug/L	9.2	102	70-130			
Selenium	51.2		ug/L	ND	102	70-130			
Silver	47.8		ug/L	ND	95.5	70-130			
Thallium	50.3		ug/L	ND	100	70-130			
Uranium	51.6		ug/L	ND	103	70-130			
Vanadium	71.0		ug/L	18.3	105	70-130			
Zinc	82.0		ug/L	32.3	99.3	70-130			
Semi-Volatiles									
Acenaphthene	0.166	0.02	ug/g	ND	78.6	50-140			
Acenaphthylene	0.157	0.02	ug/g	ND	74.3	50-140			
Anthracene	0.142	0.02	ug/g	ND	67.0	50-140			
Benzo [a] anthracene	0.132	0.02	ug/g	ND	62.3	50-140			
Benzo [a] pyrene	0.151	0.02	ug/g	ND	71.2	50-140			
Benzo [b] fluoranthene	0.166	0.02	ug/g	ND	78.7	50-140			
Benzo [g,h,i] perylene	0.146	0.02	ug/g	ND	69.2	50-140			
Benzo [k] fluoranthene	0.153	0.02	ug/g	ND	72.4	50-140			
Chrysene	0.147	0.02	ug/g	ND	69.4	50-140			
Dibenzo [a,h] anthracene	0.137	0.02	ug/g	ND	64.9	50-140			
Fluoranthene	0.133	0.02	ug/g	ND	63.0	50-140			
Fluorene	0.162	0.02	ug/g	ND	76.8	50-140			
Indeno [1,2,3-cd] pyrene	0.147	0.02	ug/g	ND	69.4	50-140			
1-Methylnaphthalene	0.232	0.02	ug/g	ND	110	50-140			
2-Methylnaphthalene	0.260	0.02	ug/g	ND	123	50-140			
Naphthalene	0.207	0.01	ug/g	ND	97.8	50-140			
Phenanthrene	0.131	0.02	ug/g	ND	62.0	50-140			
Pyrene	0.126	0.02	ug/g	ND	59.8	50-140			
Surrogate: 2-Huorobiphenyl	1.71		ug/g		101	50-140			
Volatiles									
Benzene	3.71	0.02	ug/g		92.7	60-130			

Order #: 1921547

Report Date: 31-May-2019 Order Date: 24-May-2019

Page 14 of 15

Project Description: 18-262-1

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Ethylbenzene	3.16	0.05	ug/g		79.0	60-130			
Toluene	3.19	0.05	ug/g		79.7	60-130			
m,p-Xylenes	6.42	0.05	ug/g		80.3	60-130			
o-Xylene	3.10	0.05	ug/g		77.4	60-130			

Qualifier Notes:

None

Sample Data Revisions None

none

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference.

Soil results are reported on a dry weight basis when the units are denoted with 'dry'. Where %Solids is reported, moisture loss includes the loss of volatile hydrocarbons.

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.

- F1 range corrected for BTEX.
- F2 to F3 ranges corrected for appropriate PAHs where available.
- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.
- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.
- When reported, data for F4G has been processed using a silica gel cleanup.

(BARACEL	-	TRI RE: RELI	ABI	E.							parac	ice St. Ont -749	Laure ario K 9-1947 paracel	nt Blv 1G 4J	d. 8 om		Ch	(Lal	of C	lusto Only)	dy	
lient N	1004				Project Reference		_		-	_	_		_	_	_	+		-	Page	10	1 2		_
minet	Geofirma Engineering		-	_	Ouote # 18262	18-262-1		_		_		_	_			-	1. 0	Tur	nai	oun	a Tu	ne:	
Idress	200-1 Robinson Ave	_			PO#	1-001	-	_	-	-	_			_	_	ł	ли	ay			L)	Da	y
di cas	Ottawa, ON				Email Address:	toalt@geofirma	com	-			_		_			t]2 D	Jay				legi	ular
lepho	e: 673-232-2525			10										I	Date	Requ	uire	d:		2			
riteri	n: 🖸 O. Reg. 153/04 (As Amended) Table 🗌 RS	C Filing]O. Reg	. 558/0	0 PWQ0		B (Sto	orm)		UB (Sanit	ary)	Mu	nicipal	ity: _			_ (01	her:			_
atrix	ype: S (Son/Sed.) GW (Ground water) SW (Surface water	() 55 (Storius	Sannary S	ewer) r	(Panic) A(Air) O((Other)	X	lau	cu A		ses	-	- 1	_	_	-	_	T-	_		_	_	_
arac	921547	trix	Volume	f Containers	Sample	e Taken	s F1-F4+BTE	M	Is	als by ICP		_	(SMI	organics									
	Sample ID/Location Name	Ma	Air	0 #	Date	Time	PHC	NOC	PAF	Meth	Hg	S	B (H	Ē						_			_
í.	BH19-01-1	S	1	2	May 24, 2019	11114			2	1	2	0	2	1							L		
2	BH19-02-1	S	1	2	May 24, 2019	11:46			Ľ	2	2	0	2	4							L		
3	BH19-02-3	S	1	2	May 24, 2019	11:53			4	1	2	9	2	1	L			L			L		
4	BH19-03-1	S	1	2	May 24, 2019	0.52			2	1	2	2	2	4				L			L		
5	BH19-04-1	S	1	2	May 24, 2019	10:37			2	1	2	9	-	1				L			L		
6	BH19-05-1	S	1	4	May 24, 2019	8:53			2	1	2	9	~	1									
7	BH19-06-1	S		2	May 24, 2019	9:14	2											L			L		
8	BH19-07-1	S		2	May 24, 2019	9:28	2									Л		L	Л		L	Л	
9	BH18-08-1	S	1	2	May 24, 2019	10112			0	~	•	9	2	1	TL			IL]		L		
10	BH18-09-1	S		2	May 24, 2019	9:42									L	Л		L]		L	Л	
omm	ents: Full metals suite for O.Reg. 153/04, Inorgan	ics (pH, con	ductivity	, free C	Cn, SAR)		_			_					_	_	0	Meth		f Deliv	erv:	in	
linqui	shed By (Sign)	Receive	ed by Driv	er/Depo	X	Receipt	ed at 1	ab:	S	tu	a	J		2.7	Verif		A	l	Z		7		4
andm	sice by (rink). The CAUE	Date/Tr	me:	-		Date/T	nut.	4	10	Y	17	10	1.5	23	Date/	1 ime	1	24	N	4	70	4	Ľ

Chain of Custody (Env) - Rev 0.7 Feb. 2016

G	OPARACEL TR INTERVIEW IN THE INFORMATION INTERVIEW. INTERVIEWED INTO INTERVIEWED INTERVIE										ant B 1G 4 Iabs.	lvd. J8 .com	Chain of Custod (Lab Use Only)						Y					
	LABORATORIES LID	. E 1 Desiset Defenseer													Page 2_ of _2_									
lient Na	ame: Geofirma Engineering	Project Reterence: 18-262-1																	nd Time:					
ontact	Name. Tim Galt		Quole # 182621-001													Day				Da	Ŋ			
Address: 200-1 Robinson Ave. Ottawa, ON					PO # Email Address: tgalt@geofirma.com												□2 Day					Regular		
																	Date Required:				1778	- 0		
acpuor	• 673-232-2525	CEN	10 8	220104			R/Ste	(mn)		UR	Sani	tary)	Mu	nicina	lity		Date			ther				
riteri	a: ☑O. Reg. 153/04 (As Amended) Table □RS	C Filing	JO. Reg.	. 338/00		ME [] 30	51510	ann)		00(Jan	uny)	IVIU	areipa	ing.	-	-			and -	11111	-		
latrix 1	'ype: S (Soil/Sed.) GW (Ground Water) SW (Surface Water	ewer) P	Paint) A (Air) O (Other) Required Analyses												_		_	-	_	-				
aracel Order Number: 1921547		rix	Volume	Containers	Sample T	`aken	SFI-F4+BTEX		ls	als by ICP		-	(SMI	organics										
	Sample ID/Location Name	Mat	Air	fo #	Date	Time	PHIC	VOC	PAF	Met	Hg	CrV	B (F	2			_		_			_	_	
1	BH19-10-1	S		2	May 24, 2019	9:55	2							L			L			L		1	L	
2	BH19-D1	S	1	ţ	May 24, 2019				2	0	1	2	2	1			L	III		L		1	L	
3		S		2													L	JIL		L		1	L	
4		S		2																L			L	
5		S		2																L			L	
6		S		2													L			L	IL		L	
7		S		2																			L	
8		S		2											Ш		L	Л		L			L	
9		S		2											П			Л		L	П	Л	L	
10		S		2											П		L	П		L	ΠL		L	
Comm	Lents; Full metals suite for O.Reg. 153/04, Inorgan	ics (pH, cor	ductivity	y, free C	Cn, SAR)												(M	ethod	of Del	ivery: K	n		
Relinquished By (Sign):					N.	Received as Lab. Stewart Verifi										erified	led By							
Relinquished By (Print) (1- Cour Date/Time:					2011113	Date/Time24/1/44/9 /6:33 Date									te/Tin	Time: Man 24/19								

Chain of Custody (Env) - Rev 0.7 Feb. 2016