

# URBANDALE CONSTRUCTION LTD. 130 Huntmar Drive

**Transportation Impact Assessment (TIA)** 

# Certification

I have reviewed and have a sound understanding of the objectives, needs, and requirements of the City of Ottawa's Official Plan and the Transportation Impact Assessment (2017) Guidelines;

I have a sound knowledge of industry standard practice with respect to the presentation of transportation impact assessment reports, including multimodal level of service review;

I have substantial experience (more than 5 years) in undertaking and delivering transportation impact studies (analysis, reporting and geometric design) with strong background knowledge in transportation planning, engineering, or traffic operations; and,

I am either a licensed or registered professional in good standing, whose field of expertise is either transportation engineering or transportation planning.

Signature of individual certifier that s/he meets the above four criteria.

Shawn Doyle, P.Eng., LEED AP Senior Transportation Engineer Project Manager 101-177 Colonnade Road Nepean, ON K2E 7J4

Phone: (613) 745-2213 x3012 sdoyle@dillon.ca Ian Borsuk, P.Eng. Project Coordinator 101-177 Colonnade Road Nepean, ON K2E 7J4

Phone: (613) 745-2213 x3013 iborsuk@dillon.ca

# **Table of Contents**

| 1.0 | Screenin  | g                                   | 1  |
|-----|-----------|-------------------------------------|----|
|     | 1.1       | Description of Proposed Development | 1  |
|     | 1.2       | Trip Generation Trigger             | 1  |
|     | 1.3       | Location Triggers                   | 2  |
|     | 1.4       | Safety Triggers                     | 2  |
|     | 1.5       | Summary                             | 2  |
| 2.0 | Scoping   |                                     | 6  |
|     | 2.1       | Existing and Planned Conditions     | 6  |
|     | 2.2       | Study Parameters                    | 27 |
|     | 2.3       | Exemptions Review                   | 28 |
| 3.0 | Forecast  | ing                                 | 29 |
|     | 3.1       | Development-Generated Travel Demand | 29 |
|     | 3.2       | Background Network Travel Demand    | 36 |
|     | 3.3       | Demand Rationalization              | 39 |
| 4.0 | Analysis  |                                     | 42 |
|     | 4.1       | Development Design                  | 42 |
|     | 4.2       | Parking                             | 43 |
|     | 4.3       | Boundary Street Design              | 43 |
|     | 4.4       | Access Intersection Design          | 46 |
|     | 4.5       | Transportation Demand Management    | 49 |
|     | 4.6       | Neighbourhood Traffic Management    | 50 |
|     | 4.7       | Transit                             | 50 |
|     | 4.8       | Review of Network Concept           | 50 |
|     | 4.9       | Intersection Design                 | 50 |
| 5.0 | Conclusio | ons                                 | 63 |

# Figures

| Figure 1: Site Location                                         |
|-----------------------------------------------------------------|
| Figure 2: Land Use Plan                                         |
|                                                                 |
| Figure 3: Site Plan                                             |
| Figure 4: Proposed New Full Access Intersections for Assessment |
| Figure 5: Proposed Lane Configuration                           |
| Figure 6: Existing Intersections for Assessment                 |
| Figure 7: Urban Road Network                                    |
| Figure 8: Existing Walking and Cycling Facilities               |
| Figure 9: Existing Transit Service                              |
| Figure 10: Existing Traffic Volumes                             |
| Figure 11: Existing Lane Geometry and Traffic Control17         |
| Figure 12: Collision Map (2013 to 2018)                         |
| Figure 13: 2031 Affordable Road Network 21                      |
| Figure 14: 2031 Affordable Transit Network                      |
| Figure 15: Ultimate Transit Network (2013 TMP)                  |
| Figure 16: Ultimate Transit Network (2017 Kanata LRT EA)        |
| Figure 17: Background Developments                              |
| Figure 18: Study Area Intersections                             |
| Figure 19: Trip Assignment                                      |
| Figure 20: Background Traffic Volumes - 2024                    |
| Figure 21: Background Traffic Volumes – 2029                    |
| Figure 22: Total Traffic Volumes - 2024 40                      |
| Figure 23: Total Traffic Volumes - 2029 41                      |
| Figure 24: Internal Intersections                               |

#### **Tables**

| Table 1: Existing Area Roads                                                           | 10 |
|----------------------------------------------------------------------------------------|----|
| Table 2: Existing Transit Routes                                                       | 13 |
| Table 3: Traffic Counts                                                                | 15 |
| Table 4: Collision Table                                                               | 18 |
| Table 5: Background Development Information                                            | 25 |
| Table 6: Exemptions Review                                                             | 28 |
| Table 7: Person Trip Generation Rates – Residential and Commercial                     | 30 |
| Table 8: Person Trips – Residential and Commercial                                     | 30 |
| Table 9: Elementary School Trip Generation                                             | 31 |
| Table 10: Trip Generation by Mode – Retail and Residential                             | 31 |
| Table 11: Trip Generation by Mode After Internal Capture                               | 32 |
| Table 12: Pass-By and Diverted Traffic (Auto Driver Trips)                             | 33 |
| Table 13: Trip Distribution                                                            | 34 |
| Table 14: TRANS O-D Survey Annual Growth Prediction for Kanata / Stittsville           |    |
| Table 15: Peak Period Ratios                                                           | 39 |
| Table 16: Roadway Design for Sustainable Modes                                         | 42 |
| Table 17: Proposed Development Cross Section Design                                    | 43 |
| Table 18: Minimum Desirable MMLOS Targets                                              | 44 |
| Table 19: MMLOS Conditions - Intersections                                             | 45 |
| Table 20: Proximity to Adjacent Driveways                                              | 46 |
| Table 21: Access Intersections – 2024 Total Traffic                                    | 47 |
| Table 22: Access Intersections – 2029 Total Traffic                                    | 48 |
| Table 23: Signal Warrant Analysis                                                      | 48 |
| Table 24: 2019 Existing Huntmar Drive at Hazeldean Road Traffic Operations             | 51 |
| Table 25: 2019 Existing Huntmar Drive at Palladium Drive Traffic Operations            | 52 |
| Table 26: 2019 Existing Huntmar Drive at Palladium Drive Traffic Operations            | 52 |
| Table 27: 2019 Existing Terry Fox Drive at Palladium Drive Traffic Operations          | 53 |
| Table 28: 2019 Existing Terry Fox Drive at Maple Grove Traffic Operations              | 53 |
| Table 29: 2019 Existing Huntmar Drive at Rosehill Avenue Roundabout Traffic Operations | 54 |
| Table 30: 2024 Future Huntmar Drive at Hazeldean Road Traffic Operations               | 54 |
| Table 31: 2024 Future Huntmar Drive at Maple Grove Road Traffic Operations             | 55 |
| Table 32: 2024 Future Huntmar Drive at Palladium Drive Traffic Operations              | 56 |

| Table 33: 2024 Future Terry Fox Drive at Palladium Drive Traffic Operations         | . 57 |
|-------------------------------------------------------------------------------------|------|
| Table 34: 2024 Future Huntmar Drive at Maple Grove Road Traffic Operations          | . 57 |
| Table 35: 2024 Future Huntmar Drive at Rosehill Avenue Roundabout M (PM) Peak Hour  | . 58 |
| Table 36: 2029 Future Huntmar Drive at Hazeldean Road Traffic Operations            | . 59 |
| Table 37: 2029 Future Huntmar Drive at Maple Grove Road Traffic Operations          | . 59 |
| Table 38: 2029 Future Huntmar Drive at Palladium Drive Traffic Operations           | . 60 |
| Table 39: 2029 Future Terry Fox Drive at Palladium Drive Traffic Operations         | . 61 |
| Table 40: 2029 Future Terry Fox Drive at Maple Grove Road Traffic Operations        | . 62 |
| Table 41: 2029 Future Huntmar Drive at Rosehill Avenue Roundabout AM (PM) Peak Hour | . 62 |

# Appendices

Appendix A - Synchro Performance Worksheets

Appendix B - Signal Warrant Analysis

Appendix C - TDM Checklists

# 1.0 Screening

# 1.1 Description of Proposed Development

| Municipal Address          | 130 Huntmar Drive, located in the NorthEast quadrant of the Huntmar Drive /<br>Maple Grove Road intersection in Kanata West.                                                                                                                                                                                                                                                                    |
|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Description of<br>Location | The proposed development will be a mixed-use concept, consistent with the<br>Official Plan and the Kanata West Concept Plan. The site will include commercial<br>lands adjacent to the planned Maple Grove Rapid Transit Station with low and<br>medium density residential along the Rapid Transit corridor. There is a school<br>planned at the corner of Huntmar Drive and Maple Grove Road. |
| Ward                       | Ward 6 - Stittsville                                                                                                                                                                                                                                                                                                                                                                            |
| Land Use                   | Residential (low and medium density)                                                                                                                                                                                                                                                                                                                                                            |
| Classification             | Commercial                                                                                                                                                                                                                                                                                                                                                                                      |
|                            | School                                                                                                                                                                                                                                                                                                                                                                                          |
| Development Size           | 235,568 m2                                                                                                                                                                                                                                                                                                                                                                                      |
|                            | ~100 Single family homes                                                                                                                                                                                                                                                                                                                                                                        |
|                            | ~200 Townhomes                                                                                                                                                                                                                                                                                                                                                                                  |
|                            | ~270 Stacked townhomes                                                                                                                                                                                                                                                                                                                                                                          |
|                            | 30 000 ft2 of retail (2 790 m2)                                                                                                                                                                                                                                                                                                                                                                 |
|                            | School - 2.409 Ha.                                                                                                                                                                                                                                                                                                                                                                              |
| Number of accesses         | Huntmar Drive - 3 accesses                                                                                                                                                                                                                                                                                                                                                                      |
| and locations              | Maple Grove Road - 3 accesses                                                                                                                                                                                                                                                                                                                                                                   |
| Phases of development      | One phase                                                                                                                                                                                                                                                                                                                                                                                       |
| Build-out year             | 2024                                                                                                                                                                                                                                                                                                                                                                                            |

# 1.2 Trip Generation Trigger

| Land Use Type                       | Minimum Development Size                          | Yes | No |
|-------------------------------------|---------------------------------------------------|-----|----|
| Single-family homes                 | 40 units                                          | x   |    |
| Townhomes or apartments             | 90 units                                          | x   |    |
| Office                              | 3,500 sq.m.                                       |     | x  |
| Industrial                          | 5,000 sq.m.                                       |     | х  |
| Fast-food restaurant or coffee shop | 100 sq.m.                                         |     | x  |
| Destination retail                  | 1,000 sq.m.                                       |     | x  |
| Gas station or convenience market   | 75 sq.m.                                          |     | x  |
| Other                               | 60 person trips or more during weekday peak hours | x   |    |

| 1.3 | Location Triggers                                                                                                                                                                                                                                                          |                   |      |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|------|
|     |                                                                                                                                                                                                                                                                            | Yes               | No   |
|     | Does the development propose a new driveway to a boundary street that is designated as part of the City's Transit Priority, Rapid Transit or Spine Bicycle Networks?                                                                                                       | x                 |      |
|     | Is the development in a Design Priority Area (DPA) or Transit-oriented Development (TOD) zone?*                                                                                                                                                                            | x                 |      |
| 1.4 | Safety Triggers                                                                                                                                                                                                                                                            |                   |      |
|     |                                                                                                                                                                                                                                                                            | Yes               | No   |
|     | Are posted speed limits on a boundary street are 80 km/hr or greater?                                                                                                                                                                                                      |                   | x    |
|     | Are there any horizontal/vertical curvatures on a boundary street limits sight lines at a proposed driveway?                                                                                                                                                               |                   | x    |
|     | Is the proposed driveway within the area of influence of an adjacent traffic signal or roundabout (i.e. within 300 m of intersection in rural conditions, or within 150 m of intersection in urban/ suburban conditions)?                                                  |                   | x    |
|     | Is the proposed driveway within auxiliary lanes of an intersection?                                                                                                                                                                                                        |                   | x    |
|     | Does the proposed driveway make use of an existing median break that serves an existing site?                                                                                                                                                                              |                   | x    |
|     | Is there is a documented history of traffic operations or safety concerns on the boundary streets within 500 m of the development?                                                                                                                                         |                   | x    |
|     | Does the development include a drive-thru facility?                                                                                                                                                                                                                        |                   | x    |
| 1.5 | Note that it is unknown at this time where institutional land-use driveways will be located. The located in close proximity to the signalized intersection of Maple Grove Road and Huntmar D Summary                                                                       | he site<br>vrive. | is   |
|     |                                                                                                                                                                                                                                                                            | Yes               | No   |
|     | Does the development satisfy the Trip Generation Trigger?                                                                                                                                                                                                                  | x                 |      |
|     | Does the development satisfy the Location Trigger?                                                                                                                                                                                                                         | x                 |      |
|     | Does the development satisfy the Safety Trigger?                                                                                                                                                                                                                           |                   | x    |
|     | Since the development satisfies the Trip Generation and Location Triggers, the network impact<br>component will be addressed in the TIA. <b>Figure 1</b> illustrates the site location, <b>Figure 2</b> shows<br>land uses, and <b>Figure 3</b> illustrates the site plan. | ict<br>the var    | ious |



Background image source: geoOttawa, accessed October 25, 2019

**Urbandale Construction Ltd.** *130 Huntmar Drive - Transportation Impact Assessment (TIA)* March 2020 – 19-1698 Figure 2: Land Use Plan



Background image source: provided by Urbandale, accessed October 25, 2019

Urbandale Construction Ltd. 130 Huntmar Drive - Transportation Impact Assessment (TIA) March 2020 – 19-1698



Figure 3: Site Plan



Background image source: provided by Urbandale, accessed October 25, 2019



# 2.0 Scoping

## 2.1 Existing and Planned Conditions

#### 2.1.1 Proposed Development

The proposed development is within the Kanata West Secondary Plan area. 130 Huntmar Drive, a Western suburb of Ottawa, is located approximately one kilometre South of Highway 417. The site is bound by Palladium Drive to the North, Terry Fox Drive to the East, Maple Grove Road to the South, and Huntmar Drive to the West.

The right-of-way (ROW) protection for Huntmar Drive, Maple Grove Road, and EW Road 3 is 37.5 metres. All other internal roadways will consist of local roads with a ROW protection of approximately 20 metres as per ROW protection requirements for the City of Ottawa. The North-South arterial (NS Road 2) roadway, South of the roundabout will have ROW protection of approximately 47 metres in order to accommodate the future roundabout turning requirements.

**Figure 4** illustrates the proposed new intersections that will be assessed as part of the transportation analysis. **Figure 5** illustrates the proposed lane configuration of the development. The following list corresponds to both of these figures:

- 1. Huntmar Drive and School Access
- 2. Huntmar Drive and EW Road 3
- 3. Huntmar Drive and EW Road 1
- 4. Maple Grove Road and NS Road 1
- 5. Maple Grove Road and NS Road 2

Note that there are two other access intersections that will be part of the proposed development. Both of these access points will have right-in right-out movements and are expected to have minimal traffic impacts on the development; they have not been analyzed in this study. To ensure the analysis appropriately captures potential traffic impacts, all site generated trips have been assigned to the five full access intersections and the school driveway, shown in **Figure 4** and **Figure 5**.

Figure 6 illustrates the network intersections that will be assessed as part of the transportation analysis:

- 1. Huntmar Drive & Hazeldean Road
- 2. Huntmar Drive & Rosehill Avenue
- 3. Huntmar Drive & Maple Grove Road
- 4. Palladium Drive & Huntmar Drive
- 5. Palladium Drive & Terry Fox Drive
- 6. Terry Fox Drive & Maple Grove Road





#### Figure 4: Proposed New Full Access Intersections for Assessment

Background image source: provided by Urbandale, accessed October 25, 2019

Urbandale Construction Ltd. 130 Huntmar Drive - Transportation Impact Assessment (TIA) March 2020 – 19-1698





**Figure 5: Proposed Lane Configuration** 



#### **Figure 6: Existing Intersections for Assessment**



### Background image source: geoOttawa, accessed October 25, 2019 Urbandale Construction Ltd.

130 Huntmar Drive - Transportation Impact Assessment (TIA) March 2020 – 19-1698



| 2.1.2   | Existing Cond                                                                      | itions                                                                                                                                                                                                                                                                                                                                         |                                                                                   |
|---------|------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| 2.1.2.1 | Roads and Tra                                                                      | affic Control                                                                                                                                                                                                                                                                                                                                  |                                                                                   |
|         | The roadways                                                                       | s under consideration in the vicinity of the study area are described as                                                                                                                                                                                                                                                                       | follows:                                                                          |
|         | Table 1: Exist                                                                     | ing Area Roads                                                                                                                                                                                                                                                                                                                                 |                                                                                   |
|         | Road                                                                               | Description                                                                                                                                                                                                                                                                                                                                    | Posted Speed                                                                      |
|         | Huntmar<br>Drive                                                                   | Huntmar Drive Road is two-lane municipally-owned Arterial road<br>running North-South, bordering the proposed development on the<br>West side. Huntmar Drive connects to the Highway 417 via<br>Palladium Drive.                                                                                                                               | 50 km/h                                                                           |
|         | Maple Grove<br>Road                                                                | Maple Grove Road is a two-lane municipally-owned Arterial road<br>running East-West from Alon Street in Stittsville to Young's Farm<br>Way with connections to Highway 417 and Terry Fox Drive.                                                                                                                                                | 50 km/h                                                                           |
|         | Terry Fox<br>Drive                                                                 | Terry Fox Drive is a four-lane, divided, municipally-owned road<br>running North-South from Herzberg Road to Eagleson Road, where it<br>becomes Hope Side Road. It is classified as a Major Collector East of<br>March Road and as an Arterial West to Hope Side Road.                                                                         | 70 km/h                                                                           |
|         | Palladium<br>Drive                                                                 | Palladium Drive is a four-lane, divided, municipally-owned Arterial road running East-West from Campeau Drive to Terry Fox Drive.                                                                                                                                                                                                              | 70 km/h                                                                           |
|         | Hazeldean<br>Road                                                                  | Hazeldean Road is a is a four-lane, divided, municipally-owned<br>Arterial road running West to East from Spruce Ridge Road (West of<br>Highway 417) Market to Eagleson Road. It is located South of the<br>proposed development.                                                                                                              | 60 km/h                                                                           |
| 2.1.2.2 | Figure 7 show<br>Walking and (                                                     | vs the road classification in the study area.<br>Cycling                                                                                                                                                                                                                                                                                       |                                                                                   |
|         | Figure 8 illust<br>of Palladium I<br>sidewalks on<br>Avenue.                       | rates the pedestrian and cycling facilities in the study area. Sidewalks o<br>Drive, Huntmar Drive (South of Maple Grove Road), and Hazeldean Roa<br>the South side of Maple Grove Road from Huntmar Drive to 90 metres                                                                                                                        | exist along both sides<br>ad. There are<br>s east of Rosehill                     |
|         | The City's 201<br>Huntmar Driv<br>lane along the<br>side of Maple<br>pathways exis | 3 Transportation Master Plan (TMP) identifies Terry Fox Drive, Hazeld<br>e as part of the Cycling Network as Spine Routes. Existing cycling facili<br>e East side of Huntmar Drive between Maple Grove Road and Palladiu<br>Grove Road and the west side of Huntmar Drive consists of paved sho<br>st in the area connecting various roadways. | ean Road and<br>ties include a bike<br>m Drive. The north<br>pulders. Other major |





Background image source: geoOttawa, accessed October 25, 2019







#### 2.1.2.3 Transit

**Figure 9** shows the existing transit service near the proposed development. Existing transit services operate 7 days / week in all time periods along Huntmar Drive and Palladium Drive with convenient access to the O-Train. Transit services operate at headways between 15 minutes and 60 minutes near the site location. Route numbers along with respective transit operation information can be found in **Table 2**.

The TRANS Committee's 2011 *NCR Household Origin-Destination Survey* (O-D Survey) indicates that within the Kanata/ Stittsville district, approximately 46% of residents make trips destined outside of the area during the AM peak period and 34% of trips originating elsewhere conclude within the Kanata / Stittsville district.

Furthermore, approximately 24% of residents originating from the Kanata / Stittsville district during the AM Peak Hour use transit as their primary mode of transportation, compared to 59% using a personal vehicle. Approximately 21% of residents destined to the Kanata / Stittsville district during the PM peak hour use transit, compared to 61% that use a personal vehicle. Roughly 4% of residents travelling within the Kanata / Stittsville district (internal trips) use transit as their primary travel mode during the AM peak period, compared to 2% during the PM peak period.

| Route | Stop Location           | Destination                                      | Service Hours | Headway<br>(Minutes) |
|-------|-------------------------|--------------------------------------------------|---------------|----------------------|
| 62    | Huntmar / Maple Grove   | Tunney's Pasture<br>(O-Train Confederation Line) | 07:00 - 23:59 | 30                   |
| 261   | Huntmar / Maple Grove   | Tunney's Pasture<br>(O-Train Confederation Line) | 06:00 - 08:00 | 20                   |
| 263   | Huntmar / Maple Grove   | Tunney's Pasture<br>(O-Train Confederation Line) | 06:00 - 08:00 | 20                   |
| 162   | Huntmar / Maple Grove   | Tanger Outlets and Kanata<br>Centrum             | 14:00 - 00:00 | 60                   |
| 88    | Terry Fox / Maple Grove | Hurdman Station                                  | 05:00 - 13:00 | 15                   |

#### **Table 2: Existing Transit Routes**





Image source: Except from OC Transpo, accessed November 27, 2019



| 2.1.2.4 | Traffic Management Measures                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                           |                                                                                                                           |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
|         | There are no traffic management measures in the st                                                                                                                                                                                                                                                                                            | udy area.                                                                                                                                                                                 |                                                                                                                           |
| .1.2.5  | Traffic Volumes                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                           |                                                                                                                           |
|         | Table 3 summarizes the traffic counts used for this s                                                                                                                                                                                                                                                                                         | tudy.                                                                                                                                                                                     |                                                                                                                           |
|         | Table 3: Traffic Counts                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                           |                                                                                                                           |
|         | Intersection                                                                                                                                                                                                                                                                                                                                  | Date                                                                                                                                                                                      | Source                                                                                                                    |
|         | Huntmar Drive & Hazeldean Road                                                                                                                                                                                                                                                                                                                | July 2019                                                                                                                                                                                 | City of Ottawa                                                                                                            |
|         | Huntmar Drive & Rosehill Avenue                                                                                                                                                                                                                                                                                                               | December 2016                                                                                                                                                                             | City of Ottawa                                                                                                            |
|         | Palladium Drive & Huntmar Drive                                                                                                                                                                                                                                                                                                               | April 2019                                                                                                                                                                                | City of Ottawa                                                                                                            |
|         | Palladium Drive & Terry Fox Drive                                                                                                                                                                                                                                                                                                             | November 2017                                                                                                                                                                             | City of Ottawa                                                                                                            |
|         | Terry Fox Drive & Maple Grove Road                                                                                                                                                                                                                                                                                                            | March 2016                                                                                                                                                                                | City of Ottawa                                                                                                            |
|         | Huntmar Drive & Maple Grove Road                                                                                                                                                                                                                                                                                                              | November 2017                                                                                                                                                                             | City of Ottawa                                                                                                            |
|         | A separate field investigation was also undertaken b<br>Huntmar Drive in October 2019. This intersection wa<br>in order to confirm the general distribution of traffic<br>confirmation of annual growth rates between 2017<br>analysis confirmed that a 3% annual growth rate is r<br>applied to all intersections in the area to obtain a ba | y Dillon at the intersection o<br>as chosen due to new develo<br>through the intersection. Th<br>traffic count and the 2019 ex<br>easonable for this location. T<br>useline 2019 network. | f Maple Grove Road a<br>pment in the area and<br>is location also allowe<br>isting conditions. The<br>his growth rate was |
|         | <b>Figure 10</b> illustrates the existing 2019 study area tra<br>lane geometry and traffic control. For the purpose o<br>were assumed on Maple Grove Road. A third RIRO is                                                                                                                                                                    | ffic volumes and <b>Figure 11</b> ill<br>f this analysis, only two full a<br>s provided but to ensure the                                                                                 | ustrates the existing<br>access intersections<br>results of the traffic                                                   |

assigned to the full access intersections.

The 2016 and 2017 traffic volumes were grown by 3% per year to simulate existing 2019 conditions. This growth rate was derived from population growth in the surrounding area and by comparing 2016 and 2019 traffic volumes at Huntmar Drive and Rosehill Avenue.

purpose of this analysis, only two full access intersections were assumed on Huntmar Drive. A third RIRO is provided but to ensure the results of the traffic analysis capture potential impacts, all site traffic was











#### **Urbandale Construction Ltd.** 130 Huntmar Drive - **Transportation Impact Assessment (TIA)** March 2020 – 19-1698

#### 2.1.2.6 Collision History

**Figure 12** illustrates the location and number of collisions in the study area between 2014 and 2018. The white number in the red circle indicates the number of total collisions at the location specified within this timeframe.

There are between five (5) and 30 collisions per year at major intersections. **Table 4** provides a breakdowns of collision types at three intersections from 2014 to 2018. The intersection of Huntmar Drive at Maple Grove Road was chosen based on its proximity to the proposed development, while Terry Fox Drive at Pallium Drive and Terry Fox Drive at Maple Grove Road were chosen based on having the highest collision rates of all the study intersections.

The majority of these collisions were rear-end and most resulted in property damage only. The accident rate for the intersection of Huntmar Drive and Maple Grove Road, including the North leg, is 2.9 accidents per million vehicle KMs, indicating low collision numbers in proximity to the development. None of the study area intersections are within the top 10 intersection collision areas within Ottawa based on the data from the 2016 City of Ottawa Road Safety Report.

| Intersection        | Year  | Rear End | Turning | Sideswipe | Angle | SMV | Approaching | Total |
|---------------------|-------|----------|---------|-----------|-------|-----|-------------|-------|
| Huntmar Drive and   | 2014  | 1        | -       | -         | 1     | 1   | -           | 3     |
| Maple Grove Road    | 2015  | 7        | -       | -         | 2     | 2   | -           | 11    |
|                     | 2016  | 5        | 2       | 1         | -     | 3   | -           | 11    |
|                     | 2017  | -        | -       | 1         | -     | -   | 1           | 2     |
|                     | 2018  | 5        | -       | -         | -     | 2   | -           | 7     |
|                     | Total | 18       | 2       | 2         | 3     | 8   | 1           | 34    |
| Terry Fox Drive and | 2014  | 29       | 2       | 3         | 1     | -   | -           | 35    |
| Palladium Drive     | 2015  | 20       | -       | 1         | 2     | -   | -           | 23    |
|                     | 2016  | 18       | -       | 1         | -     | -   | -           | 19    |
|                     | 2017  | 9        | -       | 3         | -     | -   | -           | 12    |
|                     | 2018  | 12       | -       | -         | -     | -   | -           | 12    |
|                     | Total | 88       | 2       | 8         | 3     | 0   | 0           | 101   |
| Terry Fox Drive and | 2014  | 11       | 2       | 1         | 2     | 1   | -           | 17    |
| Maple Grove Road    | 2015  | 15       | 3       | 3         | 2     | -   | -           | 23    |
|                     | 2016  | 10       | 3       | 1         | 2     | -   | -           | 16    |
|                     | 2017  | 6        | 2       | 1         | -     | -   | -           | 9     |
|                     | 2018  | 7        | 1       | -         | 1     | 1   | -           | 10    |
|                     | Total | 49       | 11      | 6         | 7     | 2   | 0           | 75    |

### Table 4: Collision Table









| Planned Conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Road Network                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| The 2013 TMP identified several road network improvements in the study area:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1. Huntmar Drive to be widened between Maple Grove Road and Campeau Drive;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2. A new E/W Arterial road is to be constructed connecting with E/W Road 3 (Robert Grant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Expansion); and,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3. A new N/S Arterial road is to be constructed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Figure 13 shows the 2031 Affordable Network from the TMP. We understand that discussions are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| underway regarding the alignment of the new NS Arterial and it may shift further east as a result.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| At the time of the 2013 TMP, these projects were all planned for completion prior to the 2031 horizon.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| However, as of late 2019, City staff indicated that these projects are unlikely to be completed prior to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| the 2031 horizon.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| This analysis has not included the impacts of these road projects and therefore the analysis within this                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| report represents a "worst case" scenario (most constrained transportation scenario). The inclusion of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| the identified road projects would increase area roadway capacity, alleviating potential vehicle impacts.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Transit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Transit<br>Figure 14 shows the 2031 Affordable Transit Network in the study area. This included isolated transit<br>measures on Hazeldean Road and isolated transit measures on the new NS Arterial roadway.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Transit         Figure 14 shows the 2031 Affordable Transit Network in the study area. This included isolated transit measures on Hazeldean Road and isolated transit measures on the new NS Arterial roadway.         Figure 15 shows the Ultimate Transit Network in the study area. This included LRT service to the Canadian Tire Centre and then BRT with grade-separated crossings to Robertson Road and then LRT with at-grade crossings further south to Fernbank Road. The Ultimate Transit Network was amended                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| TransitFigure 14 shows the 2031 Affordable Transit Network in the study area. This included isolated transitmeasures on Hazeldean Road and isolated transit measures on the new NS Arterial roadway.Figure 15 shows the Ultimate Transit Network in the study area. This included LRT service to theCanadian Tire Centre and then BRT with grade-separated crossings to Robertson Road and then LRT withat-grade crossings further south to Fernbank Road. The Ultimate Transit Network was amendedfollowing the Kanata Light Rail Transit (LRT) Planning and Environmental Assessment Study (2017).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Transit         Figure 14 shows the 2031 Affordable Transit Network in the study area. This included isolated transit measures on Hazeldean Road and isolated transit measures on the new NS Arterial roadway.         Figure 15 shows the Ultimate Transit Network in the study area. This included LRT service to the Canadian Tire Centre and then BRT with grade-separated crossings to Robertson Road and then LRT with at-grade crossings further south to Fernbank Road. The Ultimate Transit Network was amended following the Kanata Light Rail Transit (LRT) Planning and Environmental Assessment Study (2017).         Figure 16 shows the amended Ultimate Transit Network. This included LRT service to the intersection of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Transit         Figure 14 shows the 2031 Affordable Transit Network in the study area. This included isolated transit measures on Hazeldean Road and isolated transit measures on the new NS Arterial roadway.         Figure 15 shows the Ultimate Transit Network in the study area. This included LRT service to the Canadian Tire Centre and then BRT with grade-separated crossings to Robertson Road and then LRT with at-grade crossings further south to Fernbank Road. The Ultimate Transit Network was amended following the Kanata Light Rail Transit (LRT) Planning and Environmental Assessment Study (2017).         Figure 16 shows the amended Ultimate Transit Network. This included LRT service to the intersection of Hazeldean Road and the new NS Arterial with a park and ride lot located at said intersection. LRT to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Image: Instrume projection of the provided of t |
| <ul> <li>Transit</li> <li>Figure 14 shows the 2031 Affordable Transit Network in the study area. This included isolated transit measures on Hazeldean Road and isolated transit measures on the new NS Arterial roadway.</li> <li>Figure 15 shows the Ultimate Transit Network in the study area. This included LRT service to the Canadian Tire Centre and then BRT with grade-separated crossings to Robertson Road and then LRT with at-grade crossings further south to Fernbank Road. The Ultimate Transit Network was amended following the Kanata Light Rail Transit (LRT) Planning and Environmental Assessment Study (2017).</li> <li>Figure 16 shows the amended Ultimate Transit Network. This included LRT service to the intersection of Hazeldean Road and the new NS Arterial with a park and ride lot located at said intersection. LRT to Hazeldean Road is part of LRT Stage 3 and at this time is anticipated to occur until sometime after 2031, following completion of LRT Stage 2 in 2025.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| <ul> <li>Transit</li> <li>Figure 14 shows the 2031 Affordable Transit Network in the study area. This included isolated transit measures on Hazeldean Road and isolated transit measures on the new NS Arterial roadway.</li> <li>Figure 15 shows the Ultimate Transit Network in the study area. This included LRT service to the Canadian Tire Centre and then BRT with grade-separated crossings to Robertson Road and then LRT with at-grade crossings further south to Fernbank Road. The Ultimate Transit Network was amended following the <i>Kanata Light Rail Transit (LRT) Planning and Environmental Assessment Study (2017)</i>.</li> <li>Figure 16 shows the amended Ultimate Transit Network. This included LRT service to the intersection of Hazeldean Road and the new NS Arterial with a park and ride lot located at said intersection. LRT to Hazeldean Road is part of LRT Stage 3 and at this time is anticipated to occur until sometime after 2031, following completion of LRT Stage 2 in 2025.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| <ul> <li>Transit</li> <li>Figure 14 shows the 2031 Affordable Transit Network in the study area. This included isolated transit measures on Hazeldean Road and isolated transit measures on the new NS Arterial roadway.</li> <li>Figure 15 shows the Ultimate Transit Network in the study area. This included LRT service to the Canadian Tire Centre and then BRT with grade-separated crossings to Robertson Road and then LRT with at-grade crossings further south to Fernbank Road. The Ultimate Transit Network was amended following the <i>Kanata Light Rail Transit (LRT) Planning and Environmental Assessment Study (2017)</i>.</li> <li>Figure 16 shows the amended Ultimate Transit Network. This included LRT service to the intersection of Hazeldean Road and the new NS Arterial with a park and ride lot located at said intersection. LRT to Hazeldean Road is part of LRT Stage 3 and at this time is anticipated to occur until sometime after 2031, following completion of LRT Stage 2 in 2025.</li> <li>Summary</li> <li>City staff indicated that new road construction, road widening, BRT, and LRT projects will not be</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| <ul> <li>Transit</li> <li>Figure 14 shows the 2031 Affordable Transit Network in the study area. This included isolated transit measures on Hazeldean Road and isolated transit measures on the new NS Arterial roadway.</li> <li>Figure 15 shows the Ultimate Transit Network in the study area. This included LRT service to the Canadian Tire Centre and then BRT with grade-separated crossings to Robertson Road and then LRT with at-grade crossings further south to Fernbank Road. The Ultimate Transit Network was amended following the <i>Kanata Light Rail Transit (LRT) Planning and Environmental Assessment Study (2017)</i>.</li> <li>Figure 16 shows the amended Ultimate Transit Network. This included LRT service to the intersection of Hazeldean Road and the new NS Arterial with a park and ride lot located at said intersection. LRT to Hazeldean Road is part of LRT Stage 3 and at this time is anticipated to occur until sometime after 2031, following completion of LRT Stage 2 in 2025.</li> <li>Summary</li> <li>City staff indicated that new road construction, road widening, BRT, and LRT projects will not be completed by the 2024 or 2029 horizon years and therefore they will not be included in the analysis.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| <ul> <li>Transit</li> <li>Figure 14 shows the 2031 Affordable Transit Network in the study area. This included isolated transit measures on Hazeldean Road and isolated transit measures on the new NS Arterial roadway.</li> <li>Figure 15 shows the Ultimate Transit Network in the study area. This included LRT service to the Canadian Tire Centre and then BRT with grade-separated crossings to Robertson Road and then LRT with at-grade crossings further south to Fernbank Road. The Ultimate Transit Network was amended following the <i>Kanata Light Rail Transit (LRT) Planning and Environmental Assessment Study (2017)</i>.</li> <li>Figure 16 shows the amended Ultimate Transit Network. This included LRT service to the intersection of Hazeldean Road and the new NS Arterial with a park and ride lot located at said intersection. LRT to Hazeldean Road is part of LRT Stage 3 and at this time is anticipated to occur until sometime after 2031, following completion of LRT Stage 2 in 2025.</li> <li>Summary</li> <li>City staff indicated that new road construction, road widening, BRT, and LRT projects will not be completed by the 2024 or 2029 horizon years and therefore they will not be included in the analysis. The resulting analysis will be conservative since it assumes a constrained transportation scenario.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| <b>Iransit Figure 14</b> shows the 2031 Affordable Transit Network in the study area. This included isolated transit measures on Hazeldean Road and isolated transit measures on the new NS Arterial roadway. <b>Figure 15</b> shows the Ultimate Transit Network in the study area. This included LRT service to the Canadian Tire Centre and then BRT with grade-separated crossings to Robertson Road and then LRT with at-grade crossings further south to Fernbank Road. The Ultimate Transit Network was amended following the <i>Kanata Light Rail Transit (LRT) Planning and Environmental Assessment Study (2017)</i> . <b>Figure 16</b> shows the amended Ultimate Transit Network. This included LRT service to the intersection of Hazeldean Road and the new NS Arterial with a park and ride lot located at said intersection. LRT to Hazeldean Road is part of LRT Stage 3 and at this time is anticipated to occur until sometime after 2031, following completion of LRT Stage 2 in 2025. <b>Summary</b> City staff indicated that new road construction, road widening, BRT, and LRT projects will <b>not</b> be completed by the 2024 or 2029 horizon years and therefore they will <b>not</b> be included in the analysis. The resulting analysis will be conservative since it assumes a constrained transportation scenario.         The Affordable and Ultimate networks will have additional road and transit capacity. The transit service                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |



network. With improved transit, the auto mode share will likely be reduced and the new Arterial roadways will provide additional capacity for the remaining auto vehicles.





Image source: City of Ottawa 2013 TMP, 2031 Affordable Network, accessed November 28, 2019





Image source: City of Ottawa 2013 TMP, 2031 Affordable Transit Network, accessed November 28, 2019





Image source: City of Ottawa 2013 TMP, Ultimate Network, accessed January 16, 2020



| (       | Figure 16: Ultimate Transit Network (2017 Kanata LRT EA)                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|         | CAMPEAU<br>DIDSBURY<br>HALLADIUM<br>DIDSBURY<br>TERRY FOX<br>HARCH/EAGLESON<br>CENTRE-VILLE<br>DE KANATA<br>TOWN CENTRE<br>CENTRE-VILLE<br>DE KANATA |  |  |  |  |  |
| 2424    | Image source: City of Ottawa Kanata Light Rail Transit Planning and Environmental Assessment Study website, accessed January 16, 2020                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |
| 2.1.3.1 | Walking and Cycling                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
|         | Maple Grove Road and Campeau Drive to increase the number of driving lanes from two to four by 2031, with sidewalks and facilities for pedestrians and cyclists. These lanes would be added following the completion of an EA, pending funding. In advance of this, a multi-use pathway will be implemented along Huntmar Drive.                                                                                                                                         |  |  |  |  |  |
|         | Maple Grove Road will also see improvements by 2031 through infrastructure such as sidewalks and bike lanes.                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |
| 2.1.3.2 | Future Background Developments                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |
|         | The City of Ottawa's development applications search tool was used to identify other developments within the study area that could impact study area intersections.                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |



**Table 5** contains further detail regarding these developments. The application type is mostly Plan ofSubdivision and Site Plan Control. Additional developments are also underway along Palladium Drive tothe West of Huntmar Drive. Figure 17 illustrates the surrounding developments.

### Table 5: Background Development Information

| Development<br>Number | Application<br>Type    | Land Use                         | Address                        | Size                                                                                                                                           |
|-----------------------|------------------------|----------------------------------|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| D07-16-14-0016        | Plan of<br>Subdivision | Mixed-use<br>Development         | 173 Huntmar<br>Drive           | 206 residential units<br>65 000 ft <sup>2</sup> of office / retail                                                                             |
| D07-16-16-0011        | Plan of<br>Subdivision | Mixed-use<br>Development         | 195 Huntmar<br>Drive           | 691 residential units, a<br>commercial block, and 5.98 ha<br>district park                                                                     |
| D07-16-18-0010        | Plan of<br>Subdivision | Residential<br>Subdivision       | 1981 Maple<br>Grove Road       | 196 residential units                                                                                                                          |
| D07-12-19-0168        | Site Plan<br>Control   | Community Retail<br>Development  | 5707<br>Hazeldean<br>Road      | 47 710 ft <sup>2</sup> GFA retail                                                                                                              |
| D07-12-16-0032        | Site Plan<br>Control   | Commercial Retail<br>Development | 5649/5705<br>Hazeldean<br>Road | 15 750 ft <sup>2</sup> GFA retail                                                                                                              |
| D07-12-19-0045        | Site Plan<br>Control   | Mixed-use<br>Development         | 800 Palladium<br>Drive         | <ul> <li>11 000 ft<sup>2</sup> GFA commercial</li> <li>7 400 ft<sup>2</sup> GFA office</li> <li>5 000 ft<sup>2</sup> GFA restaurant</li> </ul> |
| D07-12-14-0147        | Site Plan<br>Control   | Silver Seven<br>Corporate Centre | 777/737 Seven<br>Silver Road   | 130 000 ft <sup>2</sup> GFA commercial                                                                                                         |





# Legend

Development Area

1: D07-16-18-0010 - 1981 Maple Grove Road - Residential Subdivision

- 2: D07-16-14-0016 173 Huntmar Drive Mixed Use Development
- 3: D07-16-16-0011 195 Huntmar Drive Mixed Use Development
- 4: D07-12-19-0168 5707 Hazeldean Road Community Retail Development 5: D07-12-16-0032 - 5649/5705 Hazeldean Road - Residential and Commercial
- 6: D07-12-19-0045 800 Palladium Drive Mixed Use Development

7: D07-12-14-0147 - 777/737 Silver Seven Road - Silver Seven Corporate Centre

Background image source: geoOttawa, accessed December 4, 2019



#### **Urbandale Construction Ltd.** 130 Huntmar Drive - **Transportation Impact Assessment (TIA)** March 2020 – 19-1698





| Exemptions Review                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                  |                                                                                                                                                                               |          |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--|--|--|--|
| <ul> <li><b>Fable 6</b> presents the exemptions review table from the City of Ottawa's 2017 <i>Transportation Impact Assessment Guidelines</i>. The exemptions were rationalized as follows:</li> <li>1. the TIA is not being submitted for a site plan and therefore elements 4.1.2, 4.2.1, 4.2.2, and 4.5 are exempt; and,</li> <li>2. the proposed development generates less than 200 person trips in excess of the equivalent volume permitted by established zoning.</li> </ul> |                                  |                                                                                                                                                                               |          |  |  |  |  |
| Table 6: Exemptions I<br>Module                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Review<br>Element                | Exemption Consideration                                                                                                                                                       | Status   |  |  |  |  |
| Design Review Compo                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                  |                                                                                                                                                                               |          |  |  |  |  |
| 4.1 Development<br>Design                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.1.2 Circulation<br>and Access  | Only required for site plans                                                                                                                                                  | Exempt   |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.1.3 New Street<br>Networks     | Only required for plans of subdivision                                                                                                                                        | Include  |  |  |  |  |
| 4.2 Parking                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.2.1 Parking Supply             | Only required for site plans                                                                                                                                                  | Exempt   |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.2.2 Spillover<br>Parking       | Only required for site plans where parking supply is 15% below unconstrained demand                                                                                           | Exempt   |  |  |  |  |
| Network Impact Com                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ponent                           | ·                                                                                                                                                                             | <u> </u> |  |  |  |  |
| 4.5 Transportation<br>Demand<br>Management                                                                                                                                                                                                                                                                                                                                                                                                                                            | All Elements                     | Not required for site plans expected to have fewer<br>than 60 employees and/or students on location at<br>any given time                                                      | Include  |  |  |  |  |
| 4.6 Neighbourhood<br>Traffic Management                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.6.1 Adjacent<br>Neighbourhoods | Only required when the development relies on<br>Local or Collector streets for access <u>and</u> total<br>volumes exceed ATM capacity thresholds                              | Exempt   |  |  |  |  |
| 4.8 Network Concept                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                  | Only required when proposed development<br>generates more than 200 person trips during the<br>peak hour in excess of the equivalent volume<br>permitted by established zoning | Exempt   |  |  |  |  |
| 4.9 Intersection<br>Design                                                                                                                                                                                                                                                                                                                                                                                                                                                            | All Elements                     | Not required if site generation trigger is not met                                                                                                                            | Included |  |  |  |  |



# 3.0 Forecasting

### 3.1 Development-Generated Travel Demand

#### 3.1.1 Trip Generation and Mode Shares

The proposed development includes residential, retail, recreation, and an elementary school. Several data sources were referenced to estimate the trip generation for the proposed development.

For residential and retail developments, the data sources are for vehicle trip generation. As per the TIA Guidelines, these vehicle trip rates were converted to person trip rates so that custom mode shares could be applied for the Kanata/Stittsville development context. The mode share for each land use was estimated using a combination of TRANS OD survey data, field observations, and professional judgement.

**Residential Trips:** The TRANS Trip Generation Study Report (2009) was used to estimate residential trip generation. The person trip rates were obtained by dividing the vehicle trip generation rates<sup>1</sup> by the auto vehicle mode share<sup>2</sup>.

**Retail Trips:** The Institute of Transportation Engineers (ITE) Trip Generation Manual, 10<sup>th</sup> edition, was used to estimate the retail trip generation. ITE rates often correspond with data collected in the United States as far back as 1980; ITE rates typically represent a high auto driver mode share (assumed 90%).

**Recreation Trips:** The planned park was not included in the trip generation calculation as it was assumed it will generate few trips during the peak hours and many of those trips would be local trips via walking or cycling and therefore there is minimal impact on the transportation network.

**Elementary School Trips:** The elementary school trip generation was estimated based on a trip generation study conducted in 2018 at the French catholic elementary school Bernard-Grandmaître, located in Riverside South. Bernard-Grandmaître has ~449 sq.m. of daycare, 765 students, 59 staff, and 11 school buses; this is more students, staff, and school buses than another French catholic elementary school in the area despite having a smaller footprint.The catchment areas of French catholic schools can be larger than English catholic or public schools, however, the vehicle trip generation is similar to the ITE rates (for the lower end of the spectrum).Overall, the trip generation for Bernard-Grandmaître is a reasonable proxy for estimating trip generation for the proposed school in Stittsville.

**Table 7** and **Table 8** trip generation rates and total trips generated by the residential and retail landuses. **Table 9** summarizes the forecasted elementary school trip generation which is the same as theobserved trip generation at Bernard-Grandmaître.

<sup>1</sup> TRANS Trip Generation Study Report (2009) Table 6.3 <sup>2</sup> TRANS Trip Generation Study Report (2009) Table 3.13


|                                                |        | Auto Trip Gen Rate |      |      | Au   | ito  |       | Person Trip         |         |          |
|------------------------------------------------|--------|--------------------|------|------|------|------|-------|---------------------|---------|----------|
| Land Use Code /                                | Source | IA I               | N    | P    | М    | Mode | Share | Units               | Generat | ion Rate |
|                                                |        | Rate               | In % | Rate | In % | AM   | PM    |                     | AM      | PM       |
| 210: Single-detached homes                     | TRANS  | 0.7                | 29%  | 0.9  | 62%  | 55%  | 64%   | Dwellings           | 1.27    | 1.41     |
| 224: Semi-detached,<br>townhomes               | TRANS  | 0.54               | 37%  | 0.71 | 53%  | 52%  | 62%   | Dwellings           | 1.04    | 1.15     |
| 223: Mid-rise<br>apartment 3-10 floors         | TRANS  | 0.29               | 24%  | 0.37 | 62%  | 44%  | 44%   | Dwellings           | 0.66    | 0.84     |
| 816: Hardware/Paint<br>Store                   | ITE    | 1.08               | 54%  | 2.68 | 47%  | 90%  | 90%   | 1000<br>sq. ft. GFA | 1.20    | 2.98     |
| 851: Convenience<br>Market                     | ITE    | 62.5               | 50%  | 49.1 | 51%  | 90%  | 90%   | 1000<br>sq. ft. GFA | 69.49   | 54.57    |
| 890: Furniture Store                           | ITE    | 0.26               | 71%  | 0.52 | 47%  | 90%  | 90%   | 1000<br>sq. ft. GFA | 0.29    | 0.58     |
| 912: Drive-In Bank                             | ITE    | 9.5                | 58%  | 20.5 | 50%  | 90%  | 90%   | 1000<br>sq. ft. GFA | 10.56   | 22.72    |
| 933: Fast-Food<br>Restaurant w/o<br>Drive-Thru | ITE    | 25.1               | 60%  | 28.3 | 50%  | 90%  | 90%   | 1000<br>sq. ft. GFA | 27.89   | 31.49    |
| 936: Coffee/Donut<br>Shop w/o Drive-Thru       | ITE    | 101.1              | 51%  | 36.3 | 50%  | 90%  | 90%   | 1000<br>sq. ft. GFA | 112.38  | 40.34    |

Table 7: Person Trip Generation Rates – Residential and Commercial

## Table 8: Person Trips – Residential and Commercial

|                                          | Sizo         | AM Peak Hour |     |     | PM    | PM Peak Hour |     |  |
|------------------------------------------|--------------|--------------|-----|-----|-------|--------------|-----|--|
|                                          | 5120         | Total        | In  | Out | Total | In           | Out |  |
| 210: Single-detached homes               | 100 D.U.     | 127          | 37  | 90  | 141   | 87           | 54  |  |
| 224: Semi-detached, townhomes            | 200 D.U.     | 208          | 77  | 131 | 229   | 121          | 108 |  |
| 223: Mid-rise apartment 3-10 floors      | 270 D.U.     | 178          | 43  | 135 | 227   | 141          | 86  |  |
| 816: Hardware/Paint Store                | 2.9 k sq.ft. | 3            | 2   | 1   | 8     | 4            | 4   |  |
| 851: Convenience Market                  | 1.4 k sq.ft. | 97           | 49  | 48  | 76    | 39           | 37  |  |
| 890: Furniture Store                     | 1.7 k sq.ft. | 0            | 0   | 0   | 1     | 0            | 1   |  |
| 912: Drive-In Bank                       | 1.0 k sq.ft. | 11           | 6   | 5   | 23    | 12           | 11  |  |
| 933: Fast-Food Restaurant w/o drive-thru | 1.2 k sq.ft. | 32           | 19  | 13  | 37    | 19           | 18  |  |
| 936: Coffee/Donut Shop w/o drive-thru    | 1.0 k sq.ft. | 110          | 56  | 54  | 1     | 1            | 0   |  |
| Total                                    |              | 766          | 289 | 477 | 318   | 187          | 131 |  |



| Location                                     | Weekda              | ay AM Pe<br>f Roadwa | ak Hour<br>Iy | Weekday PM Peak Hour<br>of Roadway <sup>3</sup> |    |     |
|----------------------------------------------|---------------------|----------------------|---------------|-------------------------------------------------|----|-----|
|                                              | Total               | In                   | Out           | Total                                           | In | Out |
| Staff parking lot vehicles                   | 25                  | 25                   | 0             | 5                                               | 0  | 5   |
| Student drop-offs / pick-up vehicles         | 94                  | 47                   | 47            | 0                                               | 0  | 0   |
| Daycare drop-off / pick-up vehicles          | 74                  | 37                   | 37            | 30                                              | 15 | 15  |
| School buses                                 | 22                  | 11                   | 11            | 0                                               | 0  | 0   |
| Cycling (10% of students)                    | 77                  | 77                   | 0             | 0                                               | 0  | 0   |
| Walking (10% of students)                    | 77                  | 77                   | 0             | 0                                               | 0  | 0   |
| Total vehicle trips                          | 193                 | 109                  | 84            | 35                                              | 15 | 20  |
| Pass-by trips (student and daycare drop off) | 94 + 74 / 193 = 87% |                      | 30 / 35 = 86% |                                                 |    |     |
| New trips (staff)                            | 13%                 |                      |               | 14%                                             |    |     |

## Table 9: Elementary School Trip Generation

For the retail and commercial land uses, the mode shares for the proposed development were determined using the TRANS O-D survey for the Kanata/Stittsville district:

- For residential mode shares, a blend of the 'from' and 'within' the district was used for the AM peak hour, and 'to' and 'within' the district was used for the PM peak hour.
- For retail mode shares, a blend of the 'to' and 'within' district was used for the AM peak hour and 'from' and 'within' the district was used for the PM peak hour.

**Table 10** summarizes the trip generation by mode for the proposed residential and retail land uses. This 'other' category includes walking, cycling, school bus, paratransit, motorcycle / scooter, taxi, ferry, VIA rail, intercity chartered bus, and airplane.

| Land Use    | Troub Made   | Mode | Share | AN    | 1 Peak H | our | PN    | PM Peak Hour |     |  |
|-------------|--------------|------|-------|-------|----------|-----|-------|--------------|-----|--|
| Land Use    | I ravel wode | AM   | PM    | Total | In       | Out | Total | In           | Out |  |
| Residential | Auto Driver  | 52%  | 59%   | 267   | 82       | 185 | 352   | 206          | 146 |  |
|             | Auto Pass.   | 13%  | 19%   | 67    | 20       | 46  | 113   | 66           | 47  |  |
|             | Transit      | 14%  | 12%   | 72    | 22       | 50  | 69    | 40           | 29  |  |
|             | Other        | 21%  | 11%   | 108   | 33       | 75  | 63    | 37           | 26  |  |
|             | Total        | 100% | 100%  | 513   | 157      | 356 | 597   | 349          | 248 |  |
|             | Auto Driver  | 60%  | 65%   | 151   | 79       | 72  | 120   | 61           | 59  |  |
|             | Auto Pass.   | 12%  | 20%   | 30    | 16       | 15  | 37    | 19           | 18  |  |
| Retail      | Transit      | 6%   | 5%    | 15    | 8        | 7   | 8     | 4            | 4   |  |
|             | Other        | 23%  | 11%   | 57    | 30       | 27  | 19    | 10           | 9   |  |
|             | Total        | 100% | 100%  | 253   | 132      | 121 | 184   | 94           | 90  |  |

## Table 10: Trip Generation by Mode – Retail and Residential

 $^{3}$  The Weekday PM pk hr was not observed at the French catholic elementary school Bernard-Grandmaître. The total vehicle trips were assumed to be  $1/7^{th}$  the AM pk hr trip generation. This assumption was based on the difference between the AM and PM pk hr average vehicle trip generation rates for an elementary school (LUC 520), ITE Trip Generation Manual,  $10^{th}$  edition.



There are a total of 57 outbound and 44 inbound transit trips forecast for the AM and PM peak hours respectively. (Peak Direction)

## 3.1.1.1 Internal Capture

This analysis includes the assignment and evaluation of internal roadways for the proposed development and therefore it is not appropriate to apply the principle of internal capture reduction for trips **between** residential, retail, and school land uses. Instead, trips between these land uses will be assigned explicitly.

The retail is concentrated in one area and therefore the principle of internal capture can be applied for retail-retail trips; it may reduce the impact of the proposed development on the study area road network, since some trips may visit multiple retail properties.

The magnitude of internal capture depends on the land uses and the likelihood of users to visit multiple properties. For this proposed development, the major retail trip generators were assumed to be a convenience market, fast-food restaurant (without drive through), and coffee/donut shop (without drive through). These are relatively similar land uses and therefore the internal capture rate is anticipated to be low (assumed to be 5%).

**Table 11** summarizes the trip generation by mode after internal capture reductions.

|          | Travel Mede | Internal Capture Rate |    | AM    | Peak H | our | PM    | our |     |
|----------|-------------|-----------------------|----|-------|--------|-----|-------|-----|-----|
| Land Use | Traver Moue | AM                    | PM | Total | In     | Out | Total | In  | Out |
|          | Auto Driver | 5%                    | 5% | 143   | 75     | 68  | 114   | 58  | 56  |
|          | Auto Pass.  | 5%                    | 5% | 29    | 15     | 14  | 35    | 18  | 17  |
| Retail   | Transit     | 5%                    | 5% | 14    | 8      | 7   | 8     | 4   | 4   |
|          | Other       | 5%                    | 5% | 54    | 28     | 26  | 18    | 9   | 9   |
|          | Total       | 5%                    | 5% | 240   | 125    | 115 | 175   | 89  | 86  |

## Table 11: Trip Generation by Mode After Internal Capture

## 3.1.1.2 Pass-By and Diverted Traffic

Fast-food restaurants, convenience markets, and elementary schools are rarely the primary trip purpose; they are usually the mid-point of a trip, called a 'pass-by' or 'diverted' trip.

**Table 12** summarizes the breakdown of new trips, pass-by trips, and diverted trips. The assumed ratesare based on professional judgement, since there is limited ITE data for these land uses or the ITE datawas collected in the United States in 1987.

Overall it is anticipated that there will be 603 vehicle trips generated during the AM peak hour and 501 vehicle trips generated during the PM peak hour. Of these vehicle trips, there will be 311 new vehicle



trips during the AM peak hour and 371 new vehicle trips during the PM peak hour. These values can be seen in **Table 12**. The remainder of the vehicle trips are anticipated to be pass-by or diverted trips.

|                            |                           | Percent           | Auto Driver Trips |       |     |     |       |     |     |
|----------------------------|---------------------------|-------------------|-------------------|-------|-----|-----|-------|-----|-----|
| Land Use                   | Тгір Туре                 | A N.4             | DM                |       | AM  |     | PM    |     |     |
|                            |                           | AIVI              | FIVI              | Total | In  | Out | Total | In  | Out |
|                            | Total trips               | 100%              |                   | 193   | 109 | 84  | 35    | 15  | 20  |
|                            | New staff trips           | from <b>Table</b> | 9                 | 25    | 25  | 0   | 5     | 0   | 5   |
| School                     | Drop-off / Pick-up        | remainder         |                   | 168   | 84  | 84  | 30    | 15  | 15  |
|                            | from new residential      |                   | 33%               | 56    | 28  | 28  | 10    | 5   | 5   |
|                            | from existing residential |                   | 67%               | 112   | 56  | 56  | 20    | 10  | 10  |
|                            | Total trips               | 100%              |                   | 143   | 75  | 68  | 114   | 58  | 56  |
| Retail                     | Pass-by trips             | 90%               |                   | 124   | 62  | 62  | 100   | 50  | 50  |
|                            | New trips                 | 10%               |                   | 19    | 13  | 6   | 14    | 8   | 6   |
|                            | Total trips               | 100%              |                   | 267   | 82  | 185 | 352   | 206 | 146 |
| Residential<br>(new trips) | Home-School-Work Trips    | 33% of drop-off,  | /pick-up          | 56    | 28  | 28  | 10    | 5   | 5   |
| (new trips)                | Home-Work Trips           | Remainde          | er                | 211   | 54  | 157 | 342   | 201 | 141 |
|                            | Pass-by / diverted trips  |                   |                   | 292   | 146 | 146 | 130   | 65  | 65  |
| Total                      | New trips                 |                   |                   | 311   | 119 | 192 | 371   | 214 | 157 |
|                            | Total                     |                   |                   | 603   | 265 | 338 | 501   | 279 | 222 |

## Table 12: Pass-By and Diverted Traffic (Auto Driver Trips)

## 3.1.2 Trip Distribution

The trip distribution for new residential trips, pass-by school trips, and pass-by retail trips was specified separately than new retail trips and new school trips, since the former are likely home-work based and the latter are likely local only and therefore the distributions are different.

The TRANS O-D Survey indicated that 69% of all AM peak hour trips originating in the Kanata / Stittsville district are trips to work. Using this information it was determined that the majority of the origins (during PM peak period) and destinations (during AM peak period) are office and industry sectors located north and east of the study area. Traffic was assigned using three main points of destination to and from the area:

- 1. Ottawa Center (Destination for large majority of residents during peak hours);
- 2. Kanata North (Destination for residents during peak hours due to density of office spaces); and,
- 3. Nearby retail/schools (Destination within the district for smaller portion of residents during peak hours).

**Table 13** summarizes the trip distribution used for this analysis.



| Cardinal Direction | New Residential<br>New School (staff)<br>Pass-by School<br>Pass-by Retail | New Retail Trips<br>New School<br>(Home-School-Home<br>drop-offs) |
|--------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------|
| North              | 12%                                                                       | 25%                                                               |
| East               | 50%                                                                       | 25%                                                               |
| South              | 30%                                                                       | 25%                                                               |
| West               | 8%                                                                        | 25%                                                               |
| Total              | 100%                                                                      | 100%                                                              |

## 3.1.3 Trip Assignment

**Figure 19** illustrates the trip assignment to the study area road network. The trip assignment for new retail trips and new school trips was a simple assignment to the local road network surrounding the proposed development.







| 3.2   | Background Network Tr                                                                                                                               | avel Demand                                                                                                                                                                                                                                                                        |                                                                                                                                                          |                                                                                                                       |  |  |  |  |  |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| 3.2.1 | Transportation Network P                                                                                                                            | lans                                                                                                                                                                                                                                                                               |                                                                                                                                                          |                                                                                                                       |  |  |  |  |  |
|       | There are several road net<br>indicated that these projec<br>these road network projec                                                              | There are several road network projects identified in the Transportation Master Plan, however, City staft indicated that these projects are unlikely to be completed prior to 2031 and therefore the impact of these road network projects has not been included in this analysis. |                                                                                                                                                          |                                                                                                                       |  |  |  |  |  |
|       | The Affordable and Ultima<br>will also be greatly improv<br>network. With improved to<br>roadways will provide add<br>identified as part of this ar | te networks will have add<br>ed, particularly for the pr<br>ransit, the auto mode sha<br>itional capacity for the re<br>nalysis may be short-term                                                                                                                                  | ditional road and transit cap<br>oposed development for th<br>are will likely be reduced an<br>maining auto vehicles. In ot<br>and remedied by already-p | pacity. The transit service<br>e Ultimate transit<br>d the new Arterial<br>her words, issues<br>planned improvements. |  |  |  |  |  |
| 3.2.2 | Background Growth                                                                                                                                   |                                                                                                                                                                                                                                                                                    |                                                                                                                                                          |                                                                                                                       |  |  |  |  |  |
|       | Table 14 summarizes the pthe TRANS O-D Surveys. Thcompounding, to representTable 14: TRANS O-D Surveys                                              | predicted growth rate for<br>the 2019 traffic counts we<br>t 2024 and 2029 backgro<br>ey Annual Growth Predi                                                                                                                                                                       | the Kanata / Stittsville distr<br>re grown at a rate of 2.43%<br>ound traffic volumes.<br>ction for Kanata / Stittsville                                 | ict based on data from<br>annually, non-                                                                              |  |  |  |  |  |
|       | Measurement                                                                                                                                         | 2011 Actual                                                                                                                                                                                                                                                                        | 2031 Predicted                                                                                                                                           | Annual Growth                                                                                                         |  |  |  |  |  |
|       | Population                                                                                                                                          | 105,215                                                                                                                                                                                                                                                                            | 156,396                                                                                                                                                  | 2.43%                                                                                                                 |  |  |  |  |  |
|       | Auto trips                                                                                                                                          | 157,040                                                                                                                                                                                                                                                                            | 233,431                                                                                                                                                  | 2.43%                                                                                                                 |  |  |  |  |  |
| 3.2.3 | A review of historic interse<br>reflecting background grov<br>Other Developments                                                                    | ection volumes (3%) confi<br>vth.                                                                                                                                                                                                                                                  | rms that this level of growt                                                                                                                             | h is appropriate for                                                                                                  |  |  |  |  |  |
|       | There are seven planned d<br>intersections. Details for e<br>applications tool and were<br>These development volum<br>to the future road network    | evelopments near the pr<br>ach planned developmer<br>outlined in <b>Section 2.1.3</b><br>es have been included as<br>ss separately.                                                                                                                                                | oposed development which<br>It were listed on the City of<br><b>3.2</b> .<br>Is part of the background tra                                               | n will impact study area<br>Ottawa's development<br>ffic analysis and applied                                         |  |  |  |  |  |
|       | Figure 20 and Figure 21 illerer respectively.                                                                                                       | ustrate the forecasted 20                                                                                                                                                                                                                                                          | 24 and 2029 background tra                                                                                                                               | affic volumes,                                                                                                        |  |  |  |  |  |











|       | The proposed development is expe<br>accommodated by the roadway ne<br>representative of typical suburban<br>transit usage and would minimize<br>that the widening of Huntmar Driv<br>complete by the 2029 planning ho<br>volumes via the existing road netw<br>vehicle impacts. | ected to generate add<br>etwork. The analysis is<br>areas. Future rapid t<br>the proposed vehicle<br>re and/or construction<br>rizon, the analysis is th<br>ork. The analysis is th | ditional vehicle t<br>s based on appli<br>ransit would end<br>network impact<br>n of the new No<br>based on accom<br>nerefore a conse | rips that are to be<br>cation of transit m<br>courage increased<br>s. Without a full c<br>rth-South Arterial<br>modating the fore<br>ervative estimate c | node shares<br>shares of<br>ommitment<br>would be<br>cast vehicle<br>of potential |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| 3.3.1 | Peak Period Ratio Analysis                                                                                                                                                                                                                                                      |                                                                                                                                                                                     |                                                                                                                                       |                                                                                                                                                          |                                                                                   |
|       | indicate that peak hour volumes a<br>with peak period ratios of between<br>is the ability to accommodate furth<br>of widening Huntmar Drive or cons<br><b>Table 15: Peak Period Ratios</b>                                                                                      | re maintained across<br>n 0.81 and 0.91 in the<br>ner spreading of peak<br>struction of the North                                                                                   | the entire peak<br>AM and betwee<br>vehicles. This w<br>n-South Arterial.                                                             | period. The table<br>en 0.89 and 0.95 in<br>vill likely be achiev                                                                                        | shows that<br>n the PM, there<br>red in advance                                   |
|       | Intersection                                                                                                                                                                                                                                                                    | Peak Period<br>Volume*<br>AM (PM)                                                                                                                                                   | Peak Hour<br>Volume*<br>AM (PM)                                                                                                       | Peak Period<br>Ratio                                                                                                                                     |                                                                                   |
|       | 1. Huntmar & Hazeldean                                                                                                                                                                                                                                                          | 444 (767)                                                                                                                                                                           | 542 (830)                                                                                                                             | 0.82 (0.92)                                                                                                                                              |                                                                                   |
|       | 2. Huntmar & Rosehill                                                                                                                                                                                                                                                           | 161 (270)                                                                                                                                                                           | 186 (298)                                                                                                                             | 0.86 (0.91)                                                                                                                                              |                                                                                   |
|       | 3. Huntmar & Maple Grove                                                                                                                                                                                                                                                        | 249 (374)                                                                                                                                                                           | 274 (416)                                                                                                                             | 0.91 (0.9)                                                                                                                                               |                                                                                   |
|       | 4. Huntmar & Palladium                                                                                                                                                                                                                                                          | 260 (405)                                                                                                                                                                           | 315 (457)                                                                                                                             | 0.83 (0.89)                                                                                                                                              |                                                                                   |
|       | 5. Terry Fox & Palladium                                                                                                                                                                                                                                                        | 589 (963)                                                                                                                                                                           | 728 (1012)                                                                                                                            | 0.81 (0.95)                                                                                                                                              |                                                                                   |
|       | 6. Terry Fox & Maple Grove                                                                                                                                                                                                                                                      | 437 (649)                                                                                                                                                                           | 504 (704)                                                                                                                             | 0.87 (0.92)                                                                                                                                              |                                                                                   |
|       | *Based of average of all moveme                                                                                                                                                                                                                                                 | nts                                                                                                                                                                                 |                                                                                                                                       |                                                                                                                                                          |                                                                                   |
| 3.3.2 | 2024 and 2029 Vehicle Volumes                                                                                                                                                                                                                                                   |                                                                                                                                                                                     |                                                                                                                                       |                                                                                                                                                          |                                                                                   |
|       | Figure 22 and Figure 23 show the analysis.                                                                                                                                                                                                                                      | 2024 and 2029 AM ar                                                                                                                                                                 | nd PM peak hou                                                                                                                        | r traffic volumes u                                                                                                                                      | sed in the                                                                        |











| 4.0   | Analysis                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                |                                                                                                          |  |  |  |  |  |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|       | Operational level of s<br>10.0. This software pa<br>produces results in te<br>percentile queues, ar                                                                                                                                                                                                            | Operational level of service (LOS) analysis was completed using Trafficware's Synchro software version 10.0. This software package, which uses the methodologies of the Highway Capacity Manual (HCM), produces results in terms of level-of-service (LOS), volume to capacity ratio (V/C), vehicle delay, 50 <sup>th</sup> percentile queues, and 95 <sup>th</sup> percentile queues,. |                                                                                                |                                                                                                          |  |  |  |  |  |
|       | The volume-to-capacity ratio (V/C) is a measure of the utilization of the capacity of the inter<br>using the intersection's critical movements and approaches. <b>Appendix A</b> contains the Synch<br>performance worksheets.                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                |                                                                                                          |  |  |  |  |  |
| 4.1   | Development Desig                                                                                                                                                                                                                                                                                              | gn                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                |                                                                                                          |  |  |  |  |  |
| 4.1.1 | Design for Sustainable Modes                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                |                                                                                                          |  |  |  |  |  |
|       | The community will be designed to match neighbourhood roadway designs. Facilities of the surroundin area and the local streets of the proposed development can be found in <b>Table 16</b> . On-street parking will be limited to collector roadways.           Table 16: Roadway Design for Sustainable Modes |                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                |                                                                                                          |  |  |  |  |  |
|       | Roadway                                                                                                                                                                                                                                                                                                        | Cycling                                                                                                                                                                                                                                                                                                                                                                                 | Pedestrian                                                                                     | Parking                                                                                                  |  |  |  |  |  |
|       | Palladium Drive                                                                                                                                                                                                                                                                                                | Palladium Drive Mixed Traffic Sidewalk on both sides                                                                                                                                                                                                                                                                                                                                    |                                                                                                | None                                                                                                     |  |  |  |  |  |
|       | Maple Grove Road                                                                                                                                                                                                                                                                                               | Mixed Traffic                                                                                                                                                                                                                                                                                                                                                                           | Sidewalk on both sides                                                                         | On-street parking on one side                                                                            |  |  |  |  |  |
|       | Huntmar Drive                                                                                                                                                                                                                                                                                                  | Mixed Traffic                                                                                                                                                                                                                                                                                                                                                                           | Sidewalk on both sides                                                                         | None                                                                                                     |  |  |  |  |  |
|       | Terry Fox Road                                                                                                                                                                                                                                                                                                 | Mixed Traffic                                                                                                                                                                                                                                                                                                                                                                           | Sidewalk on both sides                                                                         | None                                                                                                     |  |  |  |  |  |
|       | Local Streets                                                                                                                                                                                                                                                                                                  | Mixed Traffic                                                                                                                                                                                                                                                                                                                                                                           | Sidewalk on both sides                                                                         | On-street parking on one side                                                                            |  |  |  |  |  |
|       | Transit service is curr<br>stops will be situated<br>of a stop. There will b<br>developments and th                                                                                                                                                                                                            | ently provided alor<br>along Huntmar Dr<br>be direct and conve<br>e transit stops.                                                                                                                                                                                                                                                                                                      | ng Huntmar Drive. As service<br>ive and Maple Grove Road to<br>mient sidewalks and paved s     | expands in the area, additional<br>o ensure residents are within 400m<br>urfaces between the residential |  |  |  |  |  |
| 4.1.2 | Circulation and Acces                                                                                                                                                                                                                                                                                          | SS                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                |                                                                                                          |  |  |  |  |  |
|       | Not applicable; exem                                                                                                                                                                                                                                                                                           | pted during screen                                                                                                                                                                                                                                                                                                                                                                      | ing and scoping.                                                                               |                                                                                                          |  |  |  |  |  |
| 4.1.3 | New Street Networks                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                |                                                                                                          |  |  |  |  |  |
|       | Planned cross-section<br>Collector Streets prov<br>collectors. <b>Table 17</b> li                                                                                                                                                                                                                              | ns for the study are<br>vided by the City of<br>sts the cross sectio                                                                                                                                                                                                                                                                                                                    | a roadways were obtained for<br>Ottawa to obtain cross section<br>details for individual local | rom the Designing Neigbourhood<br>on design standards for major<br>roads.                                |  |  |  |  |  |



The proposed development will have a total of five (5) accesses: three on Huntmar Drive and two on Maple Grove Road. Internal roadways will be designed to accommodate transit vehicles, delivery trucks, and garbage trucks.

| Road          | ROW (m) | Rows of trees<br>in ROW | Transit Service<br>Frequency | Driveway<br>Parking | Pavement<br>Width (m) |
|---------------|---------|-------------------------|------------------------------|---------------------|-----------------------|
| EW Road 1     | 26      | 0                       | None                         | 2.3                 | 9.4                   |
| EW Road 2     | 26      | 2                       | 2                            | 0                   | 9.4                   |
| EW Road 3     | 26      | 2                       | 2                            | 0                   | 9.4                   |
| School Access | 26      | 0                       | None                         | 2.3                 | 9.4                   |
| NS Road 1     | 26      | 2                       | 2                            | 0                   | 9.4                   |
| NS Road 2     | 26      | 2                       | 2                            | 0                   | 9.4                   |

## Table 17: Proposed Development Cross Section Design

The proposed development will have three interior intersections. These intersections are EW Road 3 at NS Road 1, EW Road 3 at NS Road 2, and EW Road 2 at NS Road 2. The three new intersections are anticipated to operate at a LOS 'A' under the site generated traffic conditions for both the AM and the PM peak hours.

The roadway network for 130 Huntmar includes the construction of EW Road 2 as a future Major Collector and NS Road 3 as a future Arterial.

| 4.2   | Parking                                                                                                                                                                                                              |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | Not applicable; exempted during screening and scoping.                                                                                                                                                               |
| 4.3   | Boundary Street Design                                                                                                                                                                                               |
| 4.3.1 | Design Concept                                                                                                                                                                                                       |
|       | The Multi-Modal Level of Service (MMLOS) was evaluated for the intersection at Huntmar Drive and Maple Grove Road to assist with developing a design concept that maximizes the achievement of the MMLOS objectives. |
|       | Palladium Drive, Huntmar Drive, and Maple Grove Road are subject to MMLOS targets of school policy areas as the development will be within 300 metres of a school in the future.                                     |
|       | <b>Table 18</b> presents the minimum desirable LOS targets for each mode considering the policy area and road classification for each of the roads under review.                                                     |
|       |                                                                                                                                                                                                                      |

## Table 18: Minimum Desirable MMLOS Targets

| Policy Area                | Road<br>Segment     | Road Class | Pedestrian<br>LOS (PLOS) | Bicycle LOS<br>(BLOS) | Transit LOS<br>(TLOS) | Truck LOS<br>(TkLOS) | Vehicle LOS<br>(VLOS) |
|----------------------------|---------------------|------------|--------------------------|-----------------------|-----------------------|----------------------|-----------------------|
| Within 300m<br>of a School | Huntmar<br>Drive    | Arterial   | А                        | С                     | С                     | No Target            | E                     |
|                            | Maple Grove<br>Road | Arterial   | А                        | С                     | С                     | No Target            | E                     |

Notes on the MMLOS analysis are as follows:

- The City's TMP identifies both Huntmar Drive as a cycling Spine Route therefore it has a BLOS target of "C".
- The transit LOS target for both Huntmar Drive and Maple Grove Road is a "C" as they are planned transit priority corridor with continuous lanes.
- Neither Huntmar Drive nor Maple Grove Road are designated truck routes therefore there is no Truck LOS target.

**Table 19** provides the MMLOS conditions for the roadway intersection. The posted speeds wereassumed to be 50 km/h on Huntmar Drive and Maple Grove Road.

The intersection does not achieve the PLOS target 'A' because the cycle length of the intersection and the effective walk time of the pedestrian provides a level of service 'E'. This may be remedied by reducing the cycle length of the intersection or by increasing the effective walk time available to pedestrians.

The intersection does not achieve the BLOS target 'C' because the intersection bikeway type is mixed traffic. This may be remedied through installing bike lanes along Maple Grove Road, which would increase overall safety for bikers and increase the intersection LOS to 'B'. A future MUP will be constructed along Huntmar Drive connecting to the area active transportation network.

The intersection does not achieve the TLOS target 'C' because of the average signal delay on the eastbound movement. This may be remedied by installing a left turn lane on the eastbound movement, which would reduce the overall delay of the intersection. Note that the primary transit movement is via the North-South approaches. Also, the future Rapid Transit facility will significantly improve transit service with a station planned to accommodate the planned development.



|            | Approach                                                                        | Northbound                  | Southbound           | Eastbound            | Westbound                   |
|------------|---------------------------------------------------------------------------------|-----------------------------|----------------------|----------------------|-----------------------------|
|            | Lanes to cross                                                                  | 2                           | 3                    | 2                    | 2                           |
|            | Median                                                                          | No                          | No                   | No                   | No                          |
|            | Island refuge                                                                   | No                          | No                   | No                   | No                          |
|            | Conflicting left turns                                                          | Perm                        | Perm                 | Perm                 | Perm                        |
|            | Conflicting right turns                                                         | Prot                        | Perm / yield         | Perm / yield         | Perm / yield                |
|            | RTOR?                                                                           | Certain times               | Always               | Always               | Always                      |
|            | Pedestrian leading interval?                                                    | Yes                         | No                   | No                   | No                          |
|            | Corner radius (largest)                                                         | 10-15m                      | 5-10m                | 5-10m                | 10-15m                      |
| Pedestrian | Crosswalk type                                                                  | Std. transverse             | Std. transverse      | Std. transverse      | Std. transvers              |
|            | PETSI points                                                                    | 93                          | 71                   | 86                   | 85                          |
|            | Cycle length                                                                    | 130                         | 130                  | 130                  | 130                         |
|            | Effective walk time                                                             | 22                          | 22                   | 27                   | 27                          |
|            | Calculated pedestrian delay                                                     | 45                          | 45                   | 41                   | 41                          |
|            | Level of service (PETSI points)                                                 | А                           | С                    | В                    | В                           |
|            | Level of service (ped. delay)                                                   | E                           | E                    | E                    | E                           |
|            | Level of Service                                                                | E                           | E                    | E                    | E                           |
|            | Level of Service (Select worst)                                                 |                             | E                    |                      |                             |
|            | Type of bikeway                                                                 | Mixed Traffic               | Mixed Traffic        | Mixed Traffic        | Mixed Traffic               |
|            | Bike lane shift                                                                 | N/A                         | N/A                  | N/A                  | N/A                         |
|            | Length of right-turn lane                                                       | N/A                         | N/A                  | N/A                  | N/A                         |
|            | Right-turn vehicle turning speed<br>(from int. geom.)                           | <=25 km/h                   | <=25 km/h            | <=25 km/h            | <=25 km/h                   |
| Bicycle    | Dual right-turn lane (shared or exclusive)                                      | No                          | No                   | No                   | No                          |
|            | Left-turn type / lanes crossed and turn speed                                   | 1 lane, 50km/h              | None, <=50km/h       | None,<br><=50km/h    | None,<br><=50km/h           |
|            | Level of Service                                                                | D                           | В                    | В                    | В                           |
|            | Level of Service (Select worst)                                                 |                             | D                    |                      |                             |
|            | Average signal delay                                                            | 20                          | 20                   | 50                   | 40                          |
| Transit    | Level of Service                                                                | С                           | С                    | F                    | E                           |
|            | Level of Service (Select worst)                                                 |                             | F                    |                      |                             |
|            | Effective turning radius (smallest)                                             | 10 to 15m                   | 10 to 15m            | 10 to 15m            | 10 to 15m                   |
| - ·        | Number of Receiving Lanes                                                       | 1                           | 1                    | 1                    | 1                           |
| Truck      | Level of Service                                                                | E                           | Ε                    | Ε                    | E                           |
| TTUCK      |                                                                                 |                             | F                    |                      |                             |
| HUCK       | Level of Service (Select worst)                                                 |                             |                      |                      |                             |
|            | Level of Service (Select worst) Volume to capacity ratio                        | 0.53 (0.51)                 | 0.32 (0.84)          | 0.87 (0.65)          | 0.23 (0.87)                 |
| Auto       | Level of Service (Select worst)<br>Volume to capacity ratio<br>Level of Service | 0.53 (0.51)<br><b>A (A)</b> | 0.32 (0.84)<br>A (D) | 0.87 (0.65)<br>D (A) | 0.23 (0.87)<br><b>A (D)</b> |



## 4.4 Access Intersection Design

#### 4.4.1 Location and Design of Driveway

It is anticipated that there will be six access points to the residential area. The roads that provide entry and the distance to boundary roads are presented in **Table 20**. Four full movement accesses were analyzed. It is not anticipated that they will be impacted by tapers. It is noted that there are two other access roads in close proximity to the intersection of Huntmar Drive and Maple Grove Road, these would likely be configured as RIRO movements only and were not included in the analysis. Currently these access roads are offset with existing local roadways. NS Road 2, connecting with EW Road 3, is to be an arterial road in the future past the horizon year 2029, and therefore will require signalization at its intersection with Maple Grove Road and Huntmar Drive.

To accommodate the school access, a driveway will be required within 100 metres of the intersection of Huntmar Drive and Maple Grove Road. School accesses are typically provided via the arterial and collector road network and do not rely on local roadways. School access is also controlled (particularly for elementary schools) limiting the number of locations for pedestrian site access. For the purposes of traffic analysis, this driveway was determined to be a RIRO configuration. There is limited ability to accommodate on-street school bus loading/ unloading and parent drop off. On-site facilities would be required with appropriate sidewalks and accessible connections to the building.

| Proposed<br>Access Road |                  | AccessBoundaryBoundary Road 1IntersectionRoad 1Distance (m) |                    | Boundary<br>Road 2 | Boundary Road 2<br>Distance (m) |      |
|-------------------------|------------------|-------------------------------------------------------------|--------------------|--------------------|---------------------------------|------|
| 1.                      | School<br>Access | Huntmar Drive                                               | Palladium<br>Drive | 700                | Maple Grove<br>Road             | 160  |
| 2.                      | EW Road 3        | Huntmar Drive                                               | Palladium<br>Drive | 560                | Maple Grove<br>Road             | 300  |
| 3.                      | EW Road 1        | Huntmar Drive                                               | Palladium<br>Drive | 350                | Maple Grove<br>Road             | 510  |
| 4.                      | NS Road 1        | Maple Grove<br>Road                                         | Huntmar<br>Drive   | 160                | Terry Fox<br>Drive              | 1530 |
| 5.                      | NS Road 2        | Maple Grove<br>Road                                         | Huntmar<br>Drive   | 310                | Terry Fox<br>Drive              | 1380 |

### **Table 20: Proximity to Adjacent Driveways**

## 4.4.2 Intersection Control

The four full access intersections that were analyzed along Huntmar Drive and Maple Grove Road will be two-way stop controlled maintaining a LOS A. NS Road 2, connecting with EW Road 3, is to be an arterial road in the future beyond the 2029 horizon year, and will require signalization at its intersections with Maple Grove Road and Huntmar Drive in the future. Two other access intersections part of the proposed



development are for right-in right-out movements; vehicles have not been assigned to these access to demonstrate the full impact of accommodating site vehicles via the other unsignalized accesses.

### 4.4.3 Intersection Design

The sections that follow present the analysis of access and internal intersection operations during the AM and PM peak hour for existing and future conditions.

#### 4.4.3.1 Existing Access Intersection Operations

The proposed development is in a greenfield area and there are no existing access intersections.

### 4.4.3.2 Future Access Intersection Operations

The analysis confirms that vehicles will operate with satisfactory conditions at all access intersections with each movement operating at LOS A <u>based on the volume to capacity ratio</u>. It is noted that some intersections experience minor delays. **Table 21** and **Table 22** summarizes the Synchro results for the access intersections during the weekday AM and PM peak hours for the 2024 and 2029 horizon years.

| Interception  | AM (PM) |                |         |               |             |             |  |  |
|---------------|---------|----------------|---------|---------------|-------------|-------------|--|--|
| Intersection  | Mvmt.   | Delay LOS      | V/C LOS | Delay (s/veh) | V/C         | Q95%        |  |  |
| Huntmar &     | WB      | D ( <b>E</b> ) | A (A)   | 26 (44)       | 0.26 (0.33) | 7 m (7 m)   |  |  |
| EW            | NB      | A (A)          | A (A)   | 0 (0)         | 0.00 (0.00) | 0 m (0 m)   |  |  |
| RD 1          | SB      | A (A)          | A (A)   | 10 (10)       | 0.01 (0.05) | 0 m (0 m)   |  |  |
| Huntmar &     | WB      | С (В)          | A (A)   | 17 (15)       | 0.13 (0.10) | 0 m (0 m)   |  |  |
| EW            | NB      | A (A)          | A (A)   | 0 (0)         | 0.00 (0.00) | 0 m (0 m)   |  |  |
| RD 3          | SB      | A (A)          | A (A)   | 10 (2)        | 0.05 (0.07) | 0 m (1.8 m) |  |  |
|               | WB      | C (B)          | A (A)   | 18 (14)       | 0.24 (0.05) | 7 m (0 m)   |  |  |
| School Access | NB      | A (A)          | A (A)   | 0 (0)         | 0.00 (0.00) | 0 m (0 m)   |  |  |
|               | SB      | A (A)          | A (A)   | 0 (0)         | 0.00 (0.00) | 0 m (0 m)   |  |  |
| Maple Grove   | EB      | A (A)          | A (A)   | 7.5 (8)       | 0.00 (0.00) | 0 m (0 m)   |  |  |
| &             | WB      | A (A)          | A (A)   | 7.5 (8)       | 0.00 (0.00) | 0 m (0 m)   |  |  |
| NS RD 1       | SB      | B (B)          | A (A)   | 10 (13)       | 0.11 (0.08) | 0 m (0 m)   |  |  |
| Maple Grove   | EB      | A (A)          | A (A)   | 8 (8)         | 0.03 (0.03) | 0 m (0 m)   |  |  |
| &             | WB      | A (A)          | A (A)   | 8 (8)         | 0.05 (0.03) | 0 m (0 m)   |  |  |
| NS RD 2       | SB      | С (В)          | A (A)   | 15 (14)       | 0.21 (0.17) | 7 m (7 m)   |  |  |

#### Table 21: Access Intersections – 2024 Total Traffic





| Interception  | AM (PM) |                |         |               |             |             |  |  |  |
|---------------|---------|----------------|---------|---------------|-------------|-------------|--|--|--|
| intersection  | Mvmt.   | Delay LOS      | V/C LOS | Delay (s/veh) | V/C         | Q95%        |  |  |  |
| Huntmar &     | WB      | D ( <b>F</b> ) | A (A)   | 32 (68)       | 0.32 (0.45) | 7 m (14 m)  |  |  |  |
| EW            | NB      | A (A)          | A (A)   | 0 (0)         | 0.00 (0.00) | 0 m (0 m)   |  |  |  |
| RD 1          | SB      | B (A)          | A (A)   | 10 (10)       | 0.01 (0.06) | 0 m (0 m)   |  |  |  |
| Huntmar &     | WB      | С (В)          | A (A)   | 17 (15)       | 0.13 (0.10) | 0 m (0 m)   |  |  |  |
| EW            | NB      | A (A)          | A (A)   | 0 (0)         | 0.00 (0.00) | 0 m (0 m)   |  |  |  |
| RD 3          | SB      | A (A)          | A (A)   | 10 (2)        | 0.05 (0.07) | 0 m (1.8 m) |  |  |  |
|               | WB      | C (C)          | A (A)   | 21 (15)       | 0.27 (0.05) | 7 m (0 m)   |  |  |  |
| School Access | NB      | A (A)          | A (A)   | 0 (0)         | 0.00 (0.00) | 0 m (0 m)   |  |  |  |
|               | SB      | A (A)          | A (A)   | 0 (0)         | 0.00 (0.00) | 0 m (0 m)   |  |  |  |
| Maple Grove   | EB      | A (A)          | A (A)   | 7.5 (8)       | 0.00 (0.00) | 0 m (0 m)   |  |  |  |
| &             | WB      | A (A)          | A (A)   | 7.5 (8)       | 0.00 (0.00) | 0 m (0 m)   |  |  |  |
| NS RD 1       | SB      | B (B)          | A (A)   | 10 (14)       | 0.12 (0.08) | 0 m (0 m)   |  |  |  |
| Maple Grove   | EB      | A (A)          | A (A)   | 8 (8)         | 0.03 (0.03) | 0 m (0 m)   |  |  |  |
| &             | WB      | A (A)          | A (A)   | 8 (8)         | 0.05 (0.03) | 0 m (0 m)   |  |  |  |
| NS RD 2       | SB      | C (B)          | A (A)   | 15 (14)       | 0.21 (0.17) | 7 m (7 m)   |  |  |  |

 Table 22: Access Intersections – 2029 Total Traffic

A signal warrant analysis (based on OTM Book 12) was performed on the intersection of Huntmar Drive and EW Road 1. Total forecasted traffic for the horizon year 2029 was used for this analysis, shown in **Table 23**. If both conditions A and B for Justification 1, or both conditions A and B for Justification 2 were met, a signal would be warranted. It can be seen that signalization was not justified at this time for the intersection of Huntmar Drive and EW Road 1. **Appendix B** provides the full signal warrant analysis.

## Table 23: Signal Warrant Analysis

|                                   |   |                                                | Huntmar Dri | ve & EW RD 1      |
|-----------------------------------|---|------------------------------------------------|-------------|-------------------|
| Justification                     |   |                                                | Compliance  | Signal Justified? |
| 1. Minimum<br>Vehicular<br>Volume | А | Total Volume (all approaches)                  | 100%        |                   |
|                                   | В | Crossing Volume (minor streets)                | 10%         | No                |
| 2. Delay to<br>Cross Traffic      | А | Total Volume (major streets)                   | 100%        | Na                |
|                                   | В | Crossing Volume (minor streets vehicle volume) | 13%         | INO               |



## 4.4.3.3 Internal Intersections

The internal intersections are forecast to operate well with LOS A at all movements, operating well below capacity and having no queue.

### **Figure 24: Internal Intersections**

|                          |       |     | AM               |      |      |       |     | ΡΜ               |      |      |  |  |  |
|--------------------------|-------|-----|------------------|------|------|-------|-----|------------------|------|------|--|--|--|
| Intersection             | Mvmt. | LOS | Delay<br>(s/veh) | V/C  | Q95% | Mvmt. | LOS | Delay<br>(s/veh) | V/C  | Q95% |  |  |  |
| NS Road 1 &              | NB    | А   | 7                | 0.01 | 0 m  | NB    | А   | 7                | 0.04 | 0 m  |  |  |  |
|                          | EB    | А   | 7                | 0.05 | 0 m  | EB    | А   | 8                | 0.09 | 0 m  |  |  |  |
| EW Road 3                | WB    | А   | 7                | 0.04 | 0 m  | WB    | А   | 7                | 0.02 | 0 m  |  |  |  |
|                          | SB    | А   | 7                | 0.07 | 0 m  | SB    | А   | 7                | 0.05 | 0 m  |  |  |  |
| NS Road 2 &<br>EW Road 3 | EB    | А   | 2.7              | 0    | 0 m  | EB    | А   | 2.9              | 0.2  | 0 m  |  |  |  |
|                          | NB    | А   | 2.7              | 0.01 | 0 m  | NB    | А   | 2.9              | 0.03 | 0 m  |  |  |  |
|                          | SB    | А   | 2.9              | 0.04 | 0 m  | SB    | А   | 2.9              | 0.04 | 0 m  |  |  |  |

## 4.5 Transportation Demand Management

TDM program measures can be adopted to complement the development's proposed design. These measure encourage sustainable transportation choices, benefit occupants and visitors, and increase marketability.

**Appendix C** contains the complete TDM checklists which help identify relevant TDM measures to be adopted in the future.

From the TDM checklists, some recommendations are:

- Display local area maps with walking/cycling access routes and key destinations at major
- entrances;
- Display relevant transit schedules and route maps at residential building entrances;
- Contract with provider to install on-site bike share station;
- Contract with provider to install on-site car share vehicles and promote their use by residents;
- Unbundle parking costs condominium purchase price / monthly rent;
- Provide a multimodal travel option information package to new residents.

TDM-supportive design & infrastructure measures:

• Locate buildings close to the street, and do not locate parking areas between the street and building entrances



|     | Locate building entrances in order to minimize walking distances to sidewalks and transit     stops (stations)                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | <ul> <li>Locate building doors and windows to ensure visibility of nedestrians from the building, for their</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                            |
|     | security and comfort                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|     | <ul> <li>Provide shower and lockers for retail employees.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 4.6 | Neighbourhood Traffic Management                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|     | Not applicable; exempted during screening and scoping.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 4.7 | Transit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|     | In order to achieve target transit shares, transit facilities will need to be provided along Maple Grove<br>road in advance of the new development. Transit stops are recommended to be built at the access<br>intersections EW road 3 at Huntmar Drive and NS road 2 at Maple Grove road. Once these stops are<br>built all residents will be within 400 metres of transit, therefore there is no need for transit to travel<br>through the development.                                                                                         |
|     | The existing transit services that run along Huntmar Drive will need to be improved in the future to accommodate the increased transit demand. Standard and articulated buses have seated capacities of 40 and 55 people respectively. In order to be conservative, the average seated capacity was approximated to be 45. To serve the additional passengers related to the 130 Huntmar Drive development, an additional 1-2 bus trips would be required during the peak hours (to serve the peak 60 passengers per hour in the peak direction). |
| 4.8 | Review of Network Concept                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|     | Not applicable; exempted during screening and scoping.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 4.9 | Intersection Design                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|     | This section addresses the potential impacts to area intersections beyond the immediate access intersections presented in <b>Section 4.4</b> . Six existing intersections were identified during the project Scoping that are to be assessed for impacts due to the additional site-generated vehicles as follows:                                                                                                                                                                                                                                |
|     | 1. Huntmar Drive and Hazeldean Road                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|     | 2. Huntmar Drive and Rosehill Avenue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|     | 3. Huntmar Drive and Maple Grove Road                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|     | 4. Huntmar Drive and Palladium Drive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|     | 5. Terry Fox Road and Palladium Drive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|     | 6. Terry Fox Road and Maple Grove Road                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|     | Refer to <b>Figure 11</b> for lane configurations of the study area. <b>Appendix B</b> contains the intersection performance worksheets.                                                                                                                                                                                                                                                                                                                                                                                                          |



## 4.9.1.1 Existing Signalized Network Intersection Operations

It is noted that lost time reduction was included in the PM peak hour for the following intersection approaches:

- Huntmar Drive and Palladium Drive: WBL (2.0 seconds)
- Terry Fox Drive and Palladium Drive: EBL, WBL, NBL (2.0 seconds)

This lost time reduction is included to ensure that observed vehicles are being processed by the modelled network. It reflects vehicles using a portion of the amber phase for traversing the intersection. The same lost time reduction is applied to both future forecasts as it is expected that drivers' behavior will not change.

### Huntmar Drive at Hazeldean Road

**Table 24** summarizes the Synchro results for the existing network intersection during the AM and PM peak hours. The overall intersection is operating acceptably with each movement at LOS C or better and below capacity.

| Movement       | Volume      | Delay (s)   | LOS   | V/C         | Q50th       | Q95th         |
|----------------|-------------|-------------|-------|-------------|-------------|---------------|
| EBL            | 200 (195)   | 63.5 (63.3) | B (A) | 0.61 (0.59) | 27 (26.3)   | 39 (38.2)     |
| EBTR           | 775 (750)   | 23.2 (38)   | A (B) | 0.48 (0.64) | 67.8 (84.7) | 104.8 (118.6) |
| WBL            | 160 (315)   | 63 (52.3)   | A (A) | 0.54 (0.52) | 21.5 (40.7) | 32.6 (57.3)   |
| WBT            | 395 (985)   | 21 (33.4)   | A (B) | 0.24 (0.66) | 31 (109)    | 51.6 (#160.3) |
| WBR            | 80 (205)    | 4 (4.7)     | A (A) | 0.1 (0.26)  | 0 (0)       | 8.4 (17.4)    |
| NBL            | 45 (135)    | 32.4 (40)   | A (B) | 0.17 (0.6)  | 8.9 (25.6)  | 16.7 (37)     |
| NBT            | 235 (270)   | 63.1 (50.8) | C (B) | 0.73 (0.64) | 60.9 (65.8) | 82.1 (86.6)   |
| NBR            | 245 (235)   | 9.4 (6.8)   | A (A) | 0.54 (0.44) | 0 (0)       | 21.5 (18.9)   |
| SBL            | 115 (135)   | 41.2 (33.9) | A (A) | 0.5 (0.47)  | 23.7 (25.4) | 35.7 (36.7)   |
| SBT            | 210 (330)   | 54 (59.2)   | A (C) | 0.59 (0.79) | 53 (83.7)   | 73.8 (107.3)  |
| SBR            | 110 (380)   | 8.9 (21.3)  | A (C) | 0.28 (0.7)  | 0 (31.8)    | 15.1 (62.6)   |
| OVERALL        | 2570 (3935) | 33.1 (36.6) |       | 0.47 (0.61) |             |               |
| WORST MOVEMENT |             | NBT (SBT)   |       | 0.73 (0.79) |             |               |

## Table 24: 2019 Existing Huntmar Drive at Hazeldean Road Traffic Operations

Notes:

Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles.

# 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

#### Huntmar Drive at Maple Grove Road

**Table 25** summarizes the Synchro results for the existing network intersection during the AM and PM peak hours. The overall intersection is operating acceptably with each movement at LOS D or better and below capacity.



| Movement       | Volume      | Delay (s)     | LOS   | V/C         | Q50th        | Q95th          |
|----------------|-------------|---------------|-------|-------------|--------------|----------------|
| EBTLR          | 385 (240)   | 58.6 (44.7)   | D (B) | 0.87 (0.65) | 94.8 (52.7)  | 121.7 (72.3)   |
| WBTLR          | 105 (310)   | 25 (64.4)     | A (D) | 0.23 (0.87) | 15.9 (61)    | 26.5 (82.5)    |
| NBL            | 30 (95)     | 15.3 (16.4)   | A (A) | 0.07 (0.3)  | 3.4 (10.9)   | 10 (28.2)      |
| NBTR           | 535 (555)   | 20.2 (16.2)   | A (A) | 0.53 (0.51) | 82.2 (74.2)  | 140.6 (132.4)  |
| SBTLR          | 315 (890)   | 13.5 (25.9)   | A (D) | 0.32 (0.84) | 24.5 (102.7) | 63.2 (m#322.0) |
| OVERALL        | 1370 (2090) | 29.7 (30.8)   |       | 0.54 (0.71) |              |                |
| WORST MOVEMENT |             | EBTLR (WBTLR) |       | 0.87 (0.87) |              |                |

### Table 25: 2019 Existing Huntmar Drive at Palladium Drive Traffic Operations

Notes:

~ Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles.

# 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

#### Huntmar Drive at Palladium Drive

**Table 26** summarizes the Synchro results for the existing network intersection during the AM and PM peak hours. The overall intersection is operating acceptably with each movement at LOS E or better and below capacity.

| Movement | Volume      | Delay (s)   | LOS   | V/C         | Q50th       | Q95th         |
|----------|-------------|-------------|-------|-------------|-------------|---------------|
| EBL      | 30 (25)     | 35.2 (31.7) | A (A) | 0.12 (0.15) | 6.6 (4.9)   | 11.5 (10.2)   |
| EBTR     | 320 (560)   | 28.7 (15.6) | B (B) | 0.6 (0.67)  | 21.3 (17.4) | 29.8 (31.8)   |
| WBL      | 40 (155)    | 38.2 (95.3) | A (E) | 0.24 (0.95) | 8.9 (32.8)  | 14.6 (#57.8)  |
| WBTR     | 115 (505)   | 32.2 (49.8) | A (C) | 0.22 (0.7)  | 10.6 (65.5) | 16.1 (75.3)   |
| NBL      | 325 (215)   | 18 (21.4)   | A (A) | 0.4 (0.34)  | 35.2 (24.2) | 104.1 (73.1)  |
| NBT      | 260 (190)   | 14.4 (17.6) | A (A) | 0.21 (0.17) | 25.4 (19.3) | 72 (57.7)     |
| NBR      | 130 (70)    | 6.7 (8.8)   | A (A) | 0.12 (0.07) | 2.5 (0)     | m18.5 (m14.8) |
| SBL      | 85 (80)     | 10.4 (12.5) | A (A) | 0.12 (0.11) | 6.6 (8.2)   | 22.2 (20.5)   |
| SBT      | 145 (280)   | 9.6 (12.9)  | A (A) | 0.12 (0.25) | 11.3 (31.8) | 32.8 (62.3)   |
| SBR      | 45 (85)     | 1 (3.2)     | A (A) | 0.04 (0.09) | 0 (0)       | 2.2 (8.5)     |
| OVERALL  | 1495 (2165) | 18.9 (29.0) |       | 0.31 (0.5)  |             |               |
| WORST I  | MOVEMENT    | EBTR (WBL)  |       | 0.6 (0.95)  |             |               |

#### Table 26: 2019 Existing Huntmar Drive at Palladium Drive Traffic Operations

Notes:

~ Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles.

# 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.



## Terry Fox Drive at Palladium Drive

**Table 27** summarizes the Synchro results for the existing network intersection during the AM and PM peak hours. The overall intersection is operating acceptably with each movement at LOS E or better and below capacity.

| Movement       | Volume      | Delay (s)   | LOS   | V/C         | Q50th         | Q95th          |
|----------------|-------------|-------------|-------|-------------|---------------|----------------|
| EBL            | 225 (680)   | 68.3 (90.5) | A (E) | 0.59 (0.99) | 34.8 (110.6)  | 48.1 (#152.9)  |
| EBT            | 55 (245)    | 54.8 (60.1) | A (B) | 0.2 (0.62)  | 15.7 (70.5)   | 26.3 (97.1)    |
| EBR            | 95 (315)    | 2.5 (16.1)  | A (B) | 0.26 (0.6)  | 0 (15.8)      | 2.2 (47.1)     |
| WBL            | 55 (130)    | 74.1 (74.4) | A (B) | 0.43 (0.62) | 16.7 (39.2)   | 32.6 (59.9)    |
| WBT            | 95 (175)    | 70 (75.7)   | A (C) | 0.5 (0.71)  | 29.1 (53.5)   | 43.1 (73.9)    |
| WBR            | 140 (145)   | 11.7 (11)   | A (A) | 0.48 (0.43) | 0 (0)         | 16.1 (18.3)    |
| NBL            | 290 (215)   | 72.3 (73.3) | C (B) | 0.7 (0.63)  | 45.5 (33.5)   | 60.2 (#52.2)   |
| NBT            | 1095 (1080) | 25 (39.4)   | A (C) | 0.58 (0.73) | 107.6 (143.1) | 183.8 (#213.6) |
| NBR            | 75 (95)     | 0.2 (1.1)   | A (A) | 0.09 (0.13) | 0 (0)         | 0 (2.5)        |
| SBL            | 80 (115)    | 73.6 (74)   | A (A) | 0.41 (0.49) | 12.6 (18.1)   | 21.7 (28.6)    |
| SBT            | 775 (1270)  | 28.2 (53.3) | A (E) | 0.47 (0.92) | 78.4 (197)    | 133.7 (#274.2) |
| SBR            | 695 (625)   | 6.9 (7.5)   | B (B) | 0.65 (0.65) | 7.8 (8)       | 59 (48.6)      |
| OVERALL        | 3675 (5090) | 30.4 (48.2) |       | 0.54 (0.76) |               |                |
| WORST MOVEMENT |             | NBL (EBL)   |       | 0.7 (0.99)  |               |                |

Table 27: 2019 Existing Terry Fox Drive at Palladium Drive Traffic Operations

Notes:

~ Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles.

# 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

#### Terry Fox Drive at Maple Grove Road

**Table 28** summarizes the Synchro results for the existing network intersection during the AM and PM peak hours. The overall intersection is operating acceptably with each movement at LOS C or better and below capacity.

| Movement | Volume      | Delay (s)   | LOS   | V/C         | Q50th       | Q95th         |
|----------|-------------|-------------|-------|-------------|-------------|---------------|
| EBL      | 195 (130)   | 73.3 (63.5) | D (B) | 0.81 (0.65) | 52.7 (34.4) | 76 (m47.3)    |
| EBT      | 25 (30)     | 39.8 (42.5) | A (A) | 0.07 (0.1)  | 5.9 (7.2)   | m10.1 (m12.6) |
| EBR      | 135 (280)   | 11.7 (22.4) | A (B) | 0.35 (0.68) | 5.4 (20.6)  | m16.6 (m42.9) |
| WBL      | 30 (15)     | 39.2 (41.5) | A (A) | 0.12 (0.07) | 6.6 (3.5)   | 32.6 (8.8)    |
| WBTR     | 70 (60)     | 17.7 (22.3) | A (A) | 0.19 (0.21) | 5.5 (5.9)   | 16.9 (16.1)   |
| NBL      | 170 (170)   | 9.9 (28.7)  | A (B) | 0.37 (0.66) | 13.7 (15.1) | 28.5 (45.5)   |
| NBTR     | 1185 (1230) | 13.1 (14.5) | A (A) | 0.53 (0.55) | 70.6 (82.5) | 144.4 (155.6) |

#### Table 28: 2019 Existing Terry Fox Drive at Maple Grove Traffic Operations





| Movement | Volume      | Delay (s)   | LOS   | V/C         | Q50th        | Q95th         |
|----------|-------------|-------------|-------|-------------|--------------|---------------|
| SBL      | 10 (55)     | 8.8 (8.4)   | A (A) | 0.03 (0.18) | 0.7 (3)      | 3.2 (10.7)    |
| SBT      | 710 (1545)  | 17.3 (23.8) | A (C) | 0.39 (0.75) | 51.9 (140.3) | 85.1 (#288.0) |
| SBR      | 85 (125)    | 1.6 (4.2)   | A (A) | 0.11 (0.14) | 0 (0.8)      | 4.6 (13.5)    |
| OVERALL  | 2615 (3640) | 18.7 (21.5) |       | 0.46 (0.62) |              |               |
| WORST    | MOVEMENT    | EBL (SBT)   |       | 0.81 (0.75) |              |               |

Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles.

# 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

#### 4.9.1.2 Existing Unsignalized Network Intersection Operations

#### Huntmar Drive at Rosehill Avenue

**Table 29** summarizes the Synchro results for the existing roundabout intersection during the AM and PM peak hours. The overall intersection performs well with each movement at LOS B or better and below capacity.

#### Table 29: 2019 Existing Huntmar Drive at Rosehill Avenue Roundabout Traffic Operations

|       | AM           |         |                  |      |      | РМ    |              |         |                  |      |      |
|-------|--------------|---------|------------------|------|------|-------|--------------|---------|------------------|------|------|
| Mvmt. | Delay<br>LOS | V/C LOS | Delay<br>(s/veh) | V/C  | Q95% | Mvmt. | Delay<br>LOS | V/C LOS | Delay<br>(s/veh) | V/C  | Q95% |
| EB    | А            | А       | 5.1              | 0.07 | 0 m  | EB    | А            | А       | 7.8              | 0.09 | 0 m  |
| WB    | А            | А       | 5.5              | 0.06 | 0 m  | WB    | А            | А       | 6.3              | 0.11 | 0 m  |
| NB    | А            | А       | 7.0              | 0.42 | 2 m  | NB    | А            | А       | 7.8              | 0.49 | 3 m  |
| SB    | А            | А       | 5.6              | 0.30 | 1 m  | SB    | В            | В       | 12.2             | 0.67 | 5 m  |

#### 4.9.1.3 2024 Network Intersection Operations

#### Huntmar Drive at Hazeldean Road

**Table 30** summarizes the Synchro results for the 2024 forecast network intersection during the AM and PM peak hours. The overall intersection is operating acceptably with each movement at LOS E or better and below capacity.

#### Table 30: 2024 Future Huntmar Drive at Hazeldean Road Traffic Operations

| Movement | Volume     | Delay (s)   | LOS   | V/C         | Q50th        | Q95th         |
|----------|------------|-------------|-------|-------------|--------------|---------------|
| EBL      | 225 (220)  | 63.2 (64)   | B (B) | 0.63 (0.63) | 30.3 (29.7)  | 43 (42.5)     |
| EBTR     | 870 (845)  | 27.3 (51.1) | A (D) | 0.56 (0.85) | 85.3 (110.6) | 124.9 (137.7) |
| WBL      | 180 (355)  | 62.3 (55.5) | A (B) | 0.56 (0.61) | 24.2 (46)    | 35.8 (#87.5)  |
| WBT      | 445 (1110) | 23.7 (47.8) | A (D) | 0.29 (0.87) | 38.2 (146.2) | 60.1 (#234.2) |
| WBR      | 120 (285)  | 4.9 (5.6)   | A (A) | 0.16 (0.38) | 0 (0)        | 13.1 (22.2)   |



| Movement | Volume      | Delay (s)   | LOS   | V/C         | Q50th        | Q95th        |
|----------|-------------|-------------|-------|-------------|--------------|--------------|
| NBL      | 55 (150)    | 31.8 (38.7) | A (B) | 0.23 (0.67) | 10.5 (25.9)  | 19.1 (36)    |
| NBT      | 280 (335)   | 63.7 (44.6) | C (B) | 0.78 (0.64) | 72.2 (78.4)  | 97.1 (99.1)  |
| NBR      | 275 (265)   | 9.6 (5.6)   | A (A) | 0.55 (0.42) | 1.8 (0.4)    | 25 (18.3)    |
| SBL      | 140 (190)   | 45 (33.7)   | B (B) | 0.62 (0.61) | 28.2 (33.5)  | 41.8 (44.7)  |
| SBT      | 275 (430)   | 56.3 (55.1) | C (D) | 0.7 (0.82)  | 70.3 (107.7) | 95.6 (133.1) |
| SBR      | 125 (425)   | 8.1 (23.3)  | A (C) | 0.29 (0.7)  | 0 (46.8)     | 15.7 (76.9)  |
| OVERALL  | 2990 (4610) | 35.2 (42.0) |       | 0.53 (0.72) |              |              |
| WORST I  | MOVEMENT    | EBTR (NBL)  |       | 0.78 (0.87) |              |              |

Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles.

# 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

### Huntmar Drive at Maple Grove Road

**Table 31** summarizes the Synchro results for the 2024 forecast network intersection during the AM and PM peak hours. The intersection is operating at unsatisfactory levels of service during the afternoon peak hours of travel demand. The intersection maintains LOS F, a v/c ratio of 1.38, and an expected delay of over 200 seconds corresponding to the southbound through / left / right movement during PM peak hours.

It is recommended that intersection modifications are implemented to mitigate traffic congestion. Intersection modifications should include auxiliary left-turn lanes on all approaches. Traffic congestion at this intersection may also be mitigated through higher transit mode shares from implementing isolated transit measures or bus rapid transit in the area, or from the Huntmar Drive road widening from two lanes to four lanes. It is also noted that peak spreading may occur throughout the peak period as shown in **Table 15**.

| Movement       | Volume      | Delay (s)     | LOS   | V/C         | Q50th         | Q95th         |
|----------------|-------------|---------------|-------|-------------|---------------|---------------|
| EBTLR          | 490 (310)   | 81.5 (41.7)   | F (C) | 1.01 (0.71) | 124.7 (66.1)  | #200.1 (93.4) |
| WBTLR          | 210 (410)   | 24.5 (54)     | A (E) | 0.4 (0.91)  | 32.2 (61.8)   | 49.2 (97.6)   |
| NBL            | 35 (110)    | 18.7 (37.2)   | A (A) | 0.1 (0.58)  | 5 (19.2)      | 11.6 (#54.2)  |
| NBTR           | 645 (700)   | 31.1 (28.5)   | C (C) | 0.73 (0.73) | 136.2 (137.4) | 188.7 (213.8) |
| SBTLR          | 400 (1120)  | 18.3 (288.1)  | A (F) | 0.49 (1.38) | 40.7 (~428.8) | 89 (m#513.1)  |
| OVERALL        | 1780 (2650) | 41.1 (144.1)  |       | 0.7 (1.11)  |               |               |
| WORST MOVEMENT |             | EBTLR (SBTLR) |       | 1.01 (1.38) |               |               |

#### Table 31: 2024 Future Huntmar Drive at Maple Grove Road Traffic Operations

#### Notes:

Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles.



# 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

## Huntmar Drive at Palladium Drive

**Table 32** summarizes the Synchro results for the 2024 forecast network intersection during the AM and PM peak hours. The intersection is operating at unsatisfactory levels of service during the afternoon peak hours of travel demand. The intersection maintains LOS 'F', a v/c ratio of 1.17, and an expected delay of 150 seconds corresponding to the westbound left movement during PM peak hours. Traffic congestion at this intersection may be mitigated through higher transit mode shares from implementing isolated transit measures or bus rapid transit through the area. The Huntmar Drive road widening would also reduce congestion at this intersection. It is also noted that peak spreading may occur throughout the peak period as shown in **Table 15**.

| Movement | Volume         | Delay (s)    | LOS   | V/C           | Q50th        | Q95th            |
|----------|----------------|--------------|-------|---------------|--------------|------------------|
| EBL      | 35 (25)        | 33.8 (28.6)  | A (A) | 0.14 (0.14)   | 7.5 (4.6)    | 12.5 (9.9)       |
| EBTR     | 410 (760)      | 28.1 (34.5)  | B (E) | 0.68 (0.99dr) | 25.7 (54.4)  | 35.2 (71.2)      |
| WBL      | 60 (225)       | 31.6 (150.1) | A (F) | 0.36 (1.17)   | 12.9 (~58.5) | m10.0 (#102.7)   |
| WBTR     | 130 (595)      | 24 (45.2)    | A (B) | 0.23 (0.67)   | 11.3 (76.7)  | m13.0 (88.2)     |
| NBL      | 455 (335)      | 23.7 (37.4)  | A (B) | 0.58 (0.64)   | 79.5 (75.5)  | m148.6 (m#128.4) |
| NBT      | 315 (235)      | 15.4 (23)    | A (A) | 0.26 (0.22)   | 45.6 (43)    | m78.2 (m73.4)    |
| NBR      | 185 (100)      | 5.5 (10.1)   | A (A) | 0.17 (0.11)   | 8.1 (5.6)    | m16.4 (m16.4)    |
| SBL      | 95 (90)        | 11.8 (14.9)  | A (A) | 0.15 (0.15)   | 8.2 (10.4)   | 25.5 (24)        |
| SBT      | 175 (340)      | 10.7 (16.2)  | A (A) | 0.15 (0.33)   | 15 (44.4)    | 40.5 (79.7)      |
| SBR      | 50 (95)        | 1.6 (3.3)    | A (A) | 0.05 (0.1)    | 0 (0)        | 3.2 (9.1)        |
| OVERALL  | 1910 (2800)    | 19.6 (40.6)  |       | 0.4 (0.38)    |              |                  |
| WORST I  | WORST MOVEMENT |              |       | 0.68 (1.17)   |              |                  |

#### Table 32: 2024 Future Huntmar Drive at Palladium Drive Traffic Operations

Notes:

~ Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles.

# 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

#### **Terry Fox Drive at Palladium Drive**

**Table 33** summarizes the Synchro results for the 2024 forecast network intersection during the AM and PM peak hours. The intersection is operating at unsatisfactory levels of service during the afternoon peak hours of travel demand. The intersection maintains LOS F, a v/c ratio of 1.42, and an expected delay of 244 seconds corresponding to the eastbound left movement during PM peak hours. The failure LOS is clearly a pre-existing condition and the proposed development is anticipated to generate 2.4% of the traffic of this movement during forecast (2024) conditions. The total 2024 forecast traffic traveling along this movement is 830 veh/h and the total site generated traffic is 20 veh/h. Hence, the new



development is estimated to produce 2.4% (20/830) of total peak hour trips along the eastbound left movement.

The failure LOS is a pre-existing condition and traffic congestion at this intersection may be mitigated through higher transit mode shares from implementing isolated transit measures or bus rapid transit in the area. It is also noted that peak spreading may occur throughout the peak period as shown in **Table 15**.

| Movement | Volume      | Delay (s)     | LOS   | V/C         | Q50th          | Q95th          |
|----------|-------------|---------------|-------|-------------|----------------|----------------|
| EBL      | 285 (830)   | 252.7 (243.5) | F (F) | 1.4 (1.42)  | ~54.0 (~180.0) | #84.5 (#222.2) |
| EBT      | 60 (250)    | 53.9 (66.4)   | A (C) | 0.28 (0.71) | 13.6 (74.7)    | 22.4 (94)      |
| EBR      | 125 (395)   | 7.9 (47.9)    | A (D) | 0.38 (0.88) | 0 (64.8)       | 9.6 (97.8)     |
| WBL      | 60 (135)    | 110.4 (78.1)  | C (B) | 0.76 (0.66) | 16.3 (41.2)    | 35.8 (#74.9)   |
| WBT      | 105 (180)   | 58.2 (68.1)   | A (B) | 0.48 (0.64) | 27.5 (54.4)    | 39.7 (73.5)    |
| WBR      | 155 (150)   | 8.9 (10.2)    | A (A) | 0.46 (0.41) | 0 (0)          | 13.7 (18.9)    |
| NBL      | 380 (245)   | 70.8 (76)     | C (C) | 0.71 (0.71) | 54.7 (38)      | #78.9 (#71.0)  |
| NBT      | 1255 (1130) | 15.5 (39.2)   | B (C) | 0.65 (0.74) | 54.2 (147.8)   | 144.6 (#225.3) |
| NBR      | 85 (100)    | 0.4 (0.4)     | A (A) | 0.1 (0.13)  | 0 (0)          | m0.8 (0)       |
| SBL      | 90 (120)    | 62.7 (74)     | A (A) | 0.4 (0.5)   | 12.2 (19)      | 20.9 (29.5)    |
| SBT      | 880 (1335)  | 26.5 (54.9)   | A (E) | 0.56 (0.94) | 83.1 (210.5)   | 128.4 (#282.2) |
| SBR      | 835 (695)   | 20.3 (10.9)   | D (C) | 0.84 (0.72) | 78 (22.8)      | #205.0 (81.2)  |
| OVERALL  | 4315 (5565) | 42.3 (74.5)   |       | 0.68 (0.86) |                |                |
| WORST N  | MOVEMENT    | NBT (NBT)     |       | 1.4 (1.42)  |                |                |

## Table 33: 2024 Future Terry Fox Drive at Palladium Drive Traffic Operations

Notes:

~ Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles.

# 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

## Terry Fox Drive at Maple Grove Road

**Table 34** summarizes the Synchro results for the 2024 forecast network intersection during the AM and PM peak hours. The overall intersection is operating acceptably with each movement at LOS E or better and below capacity.

| Movement | Volume    | Delay (s)   | LOS   | V/C         | Q50th       | Q95th         |
|----------|-----------|-------------|-------|-------------|-------------|---------------|
| EBL      | 245 (170) | 71.1 (66.6) | D (C) | 0.25 (0.19) | 64.8 (44.7) | m82.2 (m56.1) |
| EBT      | 45 (45)   | 35.2 (39.6) | A (A) | 0.25 (0.19) | 9.6 (10)    | m15.0 (m15.1) |
| EBR      | 180 (335) | 7.8 (28.2)  | A (C) | 0.25 (0.19) | 2.8 (34.6)  | m12.5 (m53.3) |
| WBL      | 35 (20)   | 35.8 (39.8) | A (A) | 0.25 (0.19) | 7.3 (4.5)   | 35.8 (10.7)   |

## Table 34: 2024 Future Huntmar Drive at Maple Grove Road Traffic Operations



| Movement       | Volume      | Delay (s)   | LOS   | V/C         | Q50th         | Q95th        |
|----------------|-------------|-------------|-------|-------------|---------------|--------------|
| WBTR           | 80 (90)     | 16.3 (28.7) | A (A) | 0.25 (0.19) | 6.2 (13.4)    | 17.8 (25.8)  |
| NBL            | 205 (220)   | 14.1 (61)   | A (D) | 0.67 (0.73) | 19.7 (42.3)   | 37.2 (72.8)  |
| NBTR           | 1385 (1410) | 20 (18.5)   | B (B) | 0.63 (0.65) | 105.8 (117.4) | 196 (194.7)  |
| SBL            | 15 (60)     | 13.5 (11.1) | A (A) | 0.57 (0.61) | 1 (4)         | m4.0 (11.4)  |
| SBT            | 810 (1810)  | 18.6 (43)   | A (E) | 0.53 (0.55) | 36.2 (235.3)  | 77 (#370.5)  |
| SBR            | 105 (175)   | 5.5 (7.8)   | A (A) | 0.53 (0.55) | 0 (7)         | m13.3 (25.5) |
| OVERALL        | 3105 (4335) | 22.3 (33.6) |       | 0.53 (0.54) |               |              |
| WORST MOVEMENT |             | NBL (NBL)   |       | 0.67 (0.73) |               |              |

~ Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles.

# 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

#### 4.9.1.4 2024 Unsignalized Network Intersection Operations - Huntmar Drive at Rosehill Avenue

**Table 35** summarizes the Synchro results for the 2024 forecast roundabout intersection during the AMand PM peak hours. The overall intersection continues to perform well with each movement at LOS C orbetter and below capacity.

#### Table 35: 2024 Future Huntmar Drive at Rosehill Avenue Roundabout M (PM) Peak Hour

| Mvmt. | LOS (Delay) | LOS (V/C) | Delay (s/veh) | V/C         | Q95%       |
|-------|-------------|-----------|---------------|-------------|------------|
| EB    | A (A)       | A (A)     | 5.7 (9.7)     | 0.09 (0.12) | 0 m (0 m)  |
| WB    | A (A)       | A (A)     | 6.2 (7.2)     | 0.07 (0.13) | 0 m (0 m)  |
| NB    | A (A)       | A (A)     | 8.1 (9.0)     | 0.50 (0.56) | 3 m (4 m)  |
| SB    | A (B)       | A (B)     | 6.4 (19.9)    | 0.37 (0.83) | 2 m (10 m) |

#### 4.9.1.5

## 2029 Network Intersection Operations

Huntmar Drive at Hazeldean Road

**Table 36** summarizes the Synchro results for the 2029 forecast network intersection during the AM and PM peak hours. The intersection is operating at unsatisfactory levels of service during the afternoon peak hours of travel demand. The intersection maintains LOS F, a v/c ratio of 1.07, and an expected delay of 88 seconds corresponding to the westbound through movement during PM peak hours. Traffic congestion at this intersection may be mitigated through higher transit mode shares from implementing isolated transit measures or bus rapid transit through the area. It is also noted that peak spreading may occur throughout the peak period as shown in **Table 15**.



| Movement | Volume      | Delay (s)   | LOS   | V/C         | Q50th         | Q95th          |
|----------|-------------|-------------|-------|-------------|---------------|----------------|
| EBL      | 250 (250)   | 62.3 (66.6) | B (C) | 0.64 (0.7)  | 33.6 (33.6)   | 46.7 (#52.6)   |
| EBTR     | 975 (950)   | 33 (62)     | B (E) | 0.68 (0.95) | 106.7 (130)   | 154.4 (#173.4) |
| WBL      | 205 (400)   | 60.7 (66.3) | A (D) | 0.57 (0.8)  | 27.3 (54.7)   | 39.8 (#114.7)  |
| WBT      | 500 (1250)  | 27 (87.5)   | A (F) | 0.35 (1.07) | 46.3 (~203.8) | 72.2 (#276.1)  |
| WBR      | 130 (310)   | 5.3 (5.9)   | A (A) | 0.18 (0.43) | 0 (0)         | 14.3 (23.1)    |
| NBL      | 60 (170)    | 30.3 (44.3) | A (C) | 0.25 (0.76) | 11.2 (28.1)   | 19.5 (#39.9)   |
| NBT      | 310 (375)   | 61.2 (42.6) | C (B) | 0.78 (0.65) | 79.6 (85.9)   | 103.9 (107.4)  |
| NBR      | 310 (300)   | 14.4 (8.9)  | B (A) | 0.6 (0.47)  | 13.3 (10.5)   | 40.1 (30.8)    |
| SBL      | 155 (210)   | 46.9 (34.7) | B (B) | 0.68 (0.68) | 30.7 (35.5)   | 44 (46.5)      |
| SBT      | 305 (475)   | 54.7 (53.4) | C (D) | 0.71 (0.83) | 77.8 (117.4)  | 102.5 (143.9)  |
| SBR      | 140 (480)   | 7.3 (28.1)  | A (C) | 0.3 (0.76)  | 0 (64.8)      | 15.8 (97.3)    |
| OVERALL  | 3340 (5170) | 37.3 (55.2) |       | 0.58 (0.83) |               |                |
| WORST N  | MOVEMENT    | NBT (WBT)   |       | 0.78 (1.07) |               |                |

Table 36: 2029 Future Huntmar Drive at Hazeldean Road Traffic Operations

~ Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles.

# 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

## Huntmar Drive at Maple Grove Road

Table 37 summarizes the Synchro results for the 2029 forecast network intersection during the AM and PM peak hours. The intersection is operating at unsatisfactory levels of service during the afternoon peak hours of travel demand. The intersection maintains LOS F, a v/c ratio of 1.41, and an expected delay of over 200 seconds corresponding to the southbound through / left / right movement during PM peak hour. Eastbound and westbound movements are also operating at unsatisfactory levels of service during the PM peak period.

It is recommended that intersection modifications are implemented to mitigate traffic congestion. Intersection modifications should include auxiliary left-turn lanes on all approaches. Traffic congestion at this intersection may also be mitigated through higher transit mode shares from implementing isolated transit measures or bus rapid transit in the area, or from the Huntmar Drive road widening from two lanes to four lanes. It is also noted that peak spreading may occur throughout the peak period as shown in **Table 15**.

| Movement | Volume    | Delay (s)    | LOS   | V/C         | Q50th          | Q95th           |
|----------|-----------|--------------|-------|-------------|----------------|-----------------|
| EBTLR    | 545 (340) | 93.8 (108.2) | F (F) | 1.06 (1.05) | ~160.8 (~97.3) | #233.1 (#159.9) |
| WBTLR    | 220 (450) | 24.5 (223.3) | A (F) | 0.4 (1.39)  | 31.6 (~155.4)  | 52.6 (#223.4)   |
| NBL      | 40 (125)  | 19.6 (24.4)  | A (A) | 0.13 (0.56) | 5.7 (17.4)     | 13.4 (41.7)     |

## Table 37: 2029 Future Huntmar Drive at Maple Grove Road Traffic Operations



| Movement            | Volume     | Delay (s)     | LOS   | V/C         | Q50th         | Q95th           |
|---------------------|------------|---------------|-------|-------------|---------------|-----------------|
| NBTR                | 715 (780)  | 39.2 (18.8)   | D (C) | 0.84 (0.7)  | 161.3 (124.4) | #223.1 (173)    |
| SBTLR               | 445 (1245) | 23.9 (208.7)  | B (F) | 0.67 (1.41) | 47.2 (~456.2) | 146.4 (m#489.5) |
| OVERALL 1965 (2940) |            | 48.8 (141.1)  |       | 0.8 (1.14)  |               |                 |
| WORST MOVEMENT      |            | EBTLR (SBTLR) |       | 1.06 (1.41) |               |                 |

~ Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles.

# 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

#### Huntmar Drive at Palladium Drive

**Table 38** summarizes the Synchro results for the 2029 forecast network intersection during the AM and PM peak hours. The intersection is operating at unsatisfactory levels of service during the afternoon peak hours of travel demand. The intersection maintains LOS F, a v/c ratio of 1.3, and an expected delay of 196 seconds corresponding to the westbound left movement during PM peak hours. Traffic congestion at this intersection may be mitigated through higher transit mode shares from implementing isolated transit measures or bus rapid transit through the area. The Huntmar Drive road widening would also reduce congestion at this intersection. It is also noted that peak spreading may occur throughout the peak period as shown in **Table 15**.

| Movement       | Volume      | Delay (s)    | LOS   | V/C           | Q50th        | Q95th            |
|----------------|-------------|--------------|-------|---------------|--------------|------------------|
| EBL            | 35 (30)     | 35.6 (26.9)  | A (A) | 0.14 (0.16)   | 7.6 (5.2)    | 13.3 (11.2)      |
| EBTR           | 455 (840)   | 30.4 (39.8)  | C (F) | 0.71 (1.07dr) | 30.7 (71.7)  | 40.7 (93.2)      |
| WBL            | 65 (250)    | 49.5 (196.3) | A (F) | 0.5 (1.3)     | 14.6 (~71.8) | m12.1 (m#115.0)  |
| WBTR           | 145 (665)   | 31.6 (42.5)  | A (B) | 0.26 (0.67)   | 13.1 (87.4)  | m12.8 (99.4)     |
| NBL            | 500 (370)   | 23.7 (48.6)  | B (D) | 0.64 (0.84)   | 86.6 (90.5)  | m152.6 (m#144.6) |
| NBT            | 355 (260)   | 14.3 (23.9)  | A (A) | 0.29 (0.26)   | 51.9 (47.4)  | m77.3 (m67.7)    |
| NBR            | 205 (110)   | 4.2 (8.5)    | A (A) | 0.19 (0.12)   | 7.2 (5.4)    | m12.5 (m11.5)    |
| SBL            | 105 (100)   | 10.8 (17.2)  | A (A) | 0.17 (0.18)   | 8.8 (13.1)   | 26.5 (26.7)      |
| SBT            | 195 (380)   | 9.7 (19.2)   | A (A) | 0.16 (0.39)   | 16.4 (57.1)  | 41.4 (90.4)      |
| SBR            | 55 (110)    | 1.6 (3.3)    | A (A) | 0.05 (0.13)   | 0 (0)        | 3.9 (9.8)        |
| OVERALL        | 2115 (3115) | 20.7 (46.9)  |       | 0.43 (0.43)   |              |                  |
| WORST MOVEMENT |             | EBTR (WBL)   |       | 0.71 (1.3)    |              |                  |

#### Table 38: 2029 Future Huntmar Drive at Palladium Drive Traffic Operations

Notes:

Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles.

# 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.



## **Terry Fox Drive at Palladium Drive**

**Table 39** summarizes the Synchro results for the 2029 forecast network intersection during the AM and PM peak hours. The intersection is operating at unsatisfactory levels of service during both the morning and the afternoon peak hours of travel demand. The intersection maintains LOS F, a v/c ratio of 1.51, and an expected delay of over 200 seconds corresponding to the eastbound left movement during PM peak hours. The failure LOS is clearly a pre-existing condition and the proposed development is anticipated to generate 2.4% of the traffic of this movement during forecast (2029) conditions. The total 2024 forecast traffic traveling along this movement is 845 veh/h and the total site generated traffic is 20 veh/h. Hence, the new development is estimated to produce 2.4% (20/845) of total peak hour trips along the westbound left movement.

The failure LOS is a pre-existing condition and traffic congestion at this intersection may be mitigated through higher transit mode shares from implementing isolated transit measures or bus rapid transit in the area. It is also noted that peak spreading may occur throughout the peak period as shown in **Table 15**.

| Movement       | Volume      | Delay (s)     | LOS   | V/C         | Q50th          | Q95th          |
|----------------|-------------|---------------|-------|-------------|----------------|----------------|
| EBL            | 315 (845)   | 178.8 (277.8) | F (F) | 1.21 (1.51) | ~61.7 (~188.7) | #94.1 (#230.9) |
| EBT            | 65 (260)    | 59.4 (63.2)   | A (B) | 0.29 (0.68) | 19 (77.4)      | 30.8 (99.2)    |
| EBR            | 135 (405)   | 12.1 (46.5)   | A (D) | 0.43 (0.86) | 0 (68.8)       | 18.3 (104.1)   |
| WBL            | 65 (135)    | 112.5 (97.7)  | C (D) | 0.75 (0.8)  | 20.4 (41.7)    | 39.8 (#74.9)   |
| WBT            | 120 (185)   | 72.5 (69.3)   | A (B) | 0.59 (0.66) | 36.7 (55.6)    | 52.3 (75.9)    |
| WBR            | 175 (150)   | 13.1 (5.1)    | A (A) | 0.53 (0.38) | 0 (0)          | 21 (8.9)       |
| NBL            | 420 (250)   | 66.3 (73.9)   | С (В) | 0.72 (0.69) | 64.2 (38.7)    | #98.6 (#72.7)  |
| NBT            | 1410 (1160) | 25.9 (39)     | C (C) | 0.71 (0.75) | 151.4 (153.6)  | 241 (#232.5)   |
| NBR            | 95 (100)    | 3.3 (0.4)     | A (A) | 0.11 (0.13) | 0 (0)          | 9.4 (0)        |
| SBL            | 100 (125)   | 73.9 (74.1)   | A (A) | 0.46 (0.51) | 15.8 (19.7)    | 25.7 (30.6)    |
| SBT            | 985 (1370)  | 31.6 (57.9)   | B (E) | 0.62 (0.96) | 115.9 (220.5)  | 158.3 (#290.3) |
| SBR            | 935 (710)   | 44.1 (16.4)   | E (C) | 0.98 (0.76) | 184.7 (55.7)   | #313.0 (123)   |
| OVERALL        | 4820 (5695) | 46.6 (80.9)   |       | 0.74 (0.89) |                |                |
| WORST MOVEMENT |             | EBL (EBL)     |       | 1.21 (1.51) |                |                |

## Table 39: 2029 Future Terry Fox Drive at Palladium Drive Traffic Operations

Notes:

Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles.

# 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.



## Terry Fox Drive at Maple Grove Road

**Table 40** summarizes the Synchro results for the 2029 forecast network intersection during the AM and PM peak hours. The intersection is operating at unsatisfactory levels of service during the afternoon peak hours of travel demand. The intersection maintains LOS F, a v/c ratio of 1.15, and an expected delay of over 100 seconds corresponding to the southbound through movement during PM peak hours. The proposed site is not expected to produce traffic along southbound through movement at this intersection hence the failure LOS is a byproduct of emergent developments in the area. It is also noted that peak spreading may occur throughout the peak period as shown in **Table 15**.

| Movement       | Volume      | Delay (s)    | LOS   | V/C         | Q50th         | Q95th           |
|----------------|-------------|--------------|-------|-------------|---------------|-----------------|
| EBL            | 270 (190)   | 71.8 (69)    | D (D) | 0.88 (0.81) | 70.6 (49.6)   | m86.2 (m60.5)   |
| EBT            | 50 (50)     | 34.7 (38.2)  | A (A) | 0.11 (0.14) | 10.2 (11)     | m15.4 (m16.0)   |
| EBR            | 195 (375)   | 7.6 (33.2)   | A (D) | 0.39 (0.82) | 2.7 (47.6)    | m10.1 (m63.6)   |
| WBL            | 35 (20)     | 34.4 (38.5)  | A (A) | 0.11 (0.08) | 7.1 (4.4)     | 39.8 (10.6)     |
| WBTR           | 90 (100)    | 16 (28.6)    | A (A) | 0.2 (0.28)  | 7 (15.2)      | 19.7 (28.4)     |
| NBL            | 225 (245)   | 18.4 (58.7)  | B (D) | 0.63 (0.83) | 23.6 (48.1)   | 40.9 (#88.4)    |
| NBTR           | 1550 (1585) | 24.3 (22.9)  | C (C) | 0.77 (0.76) | 139.6 (155.2) | #256.7 (#262.1) |
| SBL            | 15 (70)     | 12.3 (15.4)  | A (A) | 0.09 (0.36) | 1.4 (5)       | 4.6 (13)        |
| SBT            | 905 (2030)  | 25.9 (103.4) | A (F) | 0.56 (1.15) | 88.2 (~342.8) | 127.8 (#434.8)  |
| SBR            | 115 (190)   | 4.4 (9.3)    | A (A) | 0.16 (0.23) | 0 (9.8)       | 11.5 (29.1)     |
| OVERALL        | 3450 (4855) | 26.4 (60.7)  |       | 0.64 (0.89) |               |                 |
| WORST MOVEMENT |             | EBL (SBT)    |       | 0.88 (1.15) |               |                 |

### Table 40: 2029 Future Terry Fox Drive at Maple Grove Road Traffic Operations

Notes:

~ Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles.

# 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

4.9.1.6

#### 2029 Unsignalized Network Intersection Operations - Huntmar Drive at Rosehill Avenue

**Table 41** summarizes the Synchro results for the 2029 forecast roundabout intersection during the AM and PM peak hours. Although the southbound movement fails in the PM peak hour in terms of volume capacity, it can be seen that the intersection performs acceptably in terms of delay.

## Table 41: 2029 Future Huntmar Drive at Rosehill Avenue Roundabout AM (PM) Peak Hour

| Mvmt. | LOS (Delay) | LOS (V/C) | Delay (s/veh) | V/C         | Q95%       |
|-------|-------------|-----------|---------------|-------------|------------|
| EB    | A (B)       | A (A)     | 6.2 (11.5)    | 0.11 (0.16) | 0 m (1 m)  |
| WB    | A (A)       | C (A)     | 6.6 (7.6)     | 0.72 (0.15) | 0 m (1 m)  |
| NB    | A (A)       | A (A)     | 9.1 (9.6)     | 0.55 (0.59) | 4 m (4 m)  |
| SB    | A (D)       | A (E)     | 6.8 (33.7)    | 0.40 (0.94) | 2 m (17 m) |



# 5.0 Conclusions

This Transportation Impact Assessment for 130 Huntmar Drive was undertaken to identify potential pressures on the transportation network once the site is developed. The analysis addressed all modes of travel in and around the site with a MMLOS assessment of boundary roads and detailed intersection analysis at access intersections, network intersections beyond the immediate study area, as well as internal circulation on new streets within the site.

While many of these intersections operate at unsatisfactory levels, congestion may be mitigated through peak spreading, implementation of the N-S arterial, the Huntmar Drive widening, and increasing transit mode share in the surrounding development. Study intersections which are forecasted to experience deficiencies by 2024 are listed below:

- Huntmar Drive and Maple Grove Road:
- Huntmar Drive and Palladium Drive:
- Terry Fox Drive and Palladium Drive:

By 2029 additional intersections are expected to operate at or exceed the capacity. Planned capacity improvements will be required such as the widening of Huntmar Drive and construction of the new North-South Arterial. Study intersections which are forecasted to experience deficiencies by 2029 are listed below:

- Huntmar Drive and Hazeldean Road: This intersection operates at an unsatisfactory LOS along the westbound left movement for the PM peak period. Traffic congestion at this intersection may be mitigated through higher transit mode shares from implementing isolated transit measures or bus rapid transit through the area.
- Huntmar Drive and Maple Grove Road: This intersection operates at an unsatisfactory LOS along the southbound through / left / right movement, the westbound through / left / right movement, and the southbound through / left / right movement for the PM peak period. Traffic congestion at this intersection may also be mitigated through higher transit mode shares from implementing isolated transit measures or bus rapid transit in the area, or from the Huntmar Drive road widening from two lanes to four lanes.
- Huntmar Drive and Palladium Drive: This intersection operates at an unsatisfactory LOS along the westbound left movement for the PM peak period. Traffic congestion at this intersection may be mitigated through higher transit mode shares from implementing isolated transit measures or bus rapid transit through the area. The Huntmar Drive road widening would also reduce congestion at this intersection.



- **Terry Fox Drive and Palladium Drive**: This intersection operates at an unsatisfactory LOS along the eastbound left and westbound left movements for all conditions. This is a pre-existing condition of the intersection and the site generated traffic of the proposed development is anticipated to be only 2.4% of the total traffic travelling along the movements that fail. The failure LOS is a pre-existing condition and traffic congestion at this intersection may be mitigated through higher transit mode shares from implementing isolated transit measures or bus rapid transit in the area.
- **Terry Fox Drive and Maple Grove Road**: This intersection operates at an unsatisfactory LOS along the southbound through movement for the PM peak period. The proposed site is not expected to produce traffic along southbound through movement at this intersection hence the failure LOS is a byproduct of emergent developments in the area.
  - The westbound movements at the access intersections along Huntmar Drive are projected to operate at LOS E or worse in 2024 and 2029. A signal warrant analysis was performed to determine if signalized intersections are warranted, and it was deemed unwarranted.

# **Appendix A**

Synchro Performance Worksheets


# Lanes, Volumes, Timings 3: Iber/Huntmar & Hazeldean

|                         | ٩     | -           | 7    | 1     | •          | 1     | 1     | t      | 1     | 6     | ŧ     | ~     |
|-------------------------|-------|-------------|------|-------|------------|-------|-------|--------|-------|-------|-------|-------|
| Lane Group              | EBL   | EBT         | EBR  | WBL   | WBT        | WBR   | NBL   | NBT    | NBR   | SBL   | SBT   | SBR   |
| Lane Configurations     | 2     | <b>≜t</b> a |      | 27    | <b>*</b> * | 1     | 3     | 4      | 1     | 3     | 4     | 1     |
| Traffic Volume (vph)    | 200   | 665         | 110  | 160   | 395        | 80    | 45    | 235    | 245   | 115   | 210   | 110   |
| Future Volume (vph)     | 200   | 665         | 110  | 160   | 395        | 80    | 45    | 235    | 245   | 115   | 210   | 110   |
| Confl. Peds. (#/hr)     | 5     |             | 5    | 5     |            | 5     | 5     |        | 5     | 5     |       | 5     |
| Confl. Bikes (#/hr)     |       |             |      |       |            |       |       |        |       |       |       |       |
| Peak Hour Factor        | 1.00  | 1.00        | 1.00 | 1.00  | 1.00       | 1.00  | 1.00  | 1.00   | 1.00  | 1.00  | 1.00  | 1.00  |
| Growth Factor           | 100%  | 100%        | 100% | 100%  | 100%       | 100%  | 100%  | 100%   | 100%  | 100%  | 100%  | 100%  |
| Heavy Vehicles (%)      | 3%    | 3%          | 14%  | 4%    | 5%         | 2%    | 4%    | 0%     | 5%    | 3%    | 3%    | 0%    |
| Bus Blockages (#/hr)    | 0     | 0           | 0    | 0     | 0          | 0     | 0     | 0      | 0     | 0     | 0     | 0     |
| Parking (#/hr)          |       |             |      |       |            |       |       |        |       |       |       |       |
| Mid-Block Traffic (%)   |       | 0%          |      |       | 0%         |       |       | 0%     |       |       | 0%    |       |
| Shared Lane Traffic (%) | )     |             |      |       |            |       |       |        |       |       |       |       |
| Lane Group Flow (vph)   | 200   | 775         | 0    | 160   | 395        | 80    | 45    | 235    | 245   | 115   | 210   | 110   |
| Turn Type               | Prot  | NA          |      | Prot  | NA         | Perm  | pm+pt | NA     | Perm  | pm+pt | NA    | Perm  |
| Protected Phases        | 5     | 2           |      | 1     | 6          |       | 3     | 8      |       | 7     | 4     |       |
| Permitted Phases        |       |             |      |       |            | 6     | 8     |        | 8     | 4     |       | 4     |
| Detector Phase          | 5     | 2           |      | 1     | 6          | 6     | 3     | 8      | 8     | 7     | 4     | 4     |
| Switch Phase            |       |             |      |       |            |       |       |        |       |       |       |       |
| Minimum Initial (s)     | 5.0   | 10.0        |      | 5.0   | 10.0       | 10.0  | 5.0   | 10.0   | 10.0  | 5.0   | 10.0  | 10.0  |
| Minimum Split (s)       | 12.5  | 38.6        |      | 12.5  | 38.6       | 38.6  | 12.5  | 58.0   | 58.0  | 12.5  | 41.3  | 41.3  |
| Total Split (s)         | 18.2  | 44.8        |      | 14.6  | 41.2       | 41.2  | 12.5  | 58.0   | 58.0  | 12.6  | 58.1  | 58.1  |
| Total Split (%)         | 14.0% | 34.5%       |      | 11.2% | 31.7%      | 31.7% | 9.6%  | 44.6%  | 44.6% | 9.7%  | 44.7% | 44.7% |
| Yellow Time (s)         | 3.6   | 3.6         |      | 3.6   | 3.6        | 3.6   | 3.0   | 3.3    | 3.3   | 3.0   | 3.3   | 3.3   |
| All-Red Time (s)        | 2.0   | 2.0         |      | 2.0   | 2.0        | 2.0   | 0.0   | 2.0    | 2.0   | 0.0   | 2.0   | 2.0   |
| Lost Time Adjust (s)    | 0.0   | 0.0         |      | 0.0   | 0.0        | 0.0   | 0.0   | 0.0    | 0.0   | 0.0   | 0.0   | 0.0   |
| Total Lost Time (s)     | 5.6   | 5.6         |      | 5.6   | 5.6        | 5.6   | 3.0   | 5.3    | 5.3   | 3.0   | 5.3   | 5.3   |
| Lead/Lag                | Lead  | Lag         |      | Lead  | Lag        | Lag   | Lead  | Lag    | Lag   | Lead  | Lag   | Lag   |
| Lead-Lag Optimize?      | Yes   | Yes         |      | Yes   | Yes        | Yes   | Yes   | Yes    | Yes   | Yes   | Yes   | Yes   |
| Recall Mode             | None  | C-Max       |      | None  | C-Max      | C-Max | None  | None   | None  | None  | None  | None  |
| Act Effct Green (s)     | 13.3  | 65.9        |      | 12.0  | 64.6       | 64.6  | 33.5  | 23.2   | 23.2  | 36.4  | 26.4  | 26.4  |
| Actuated g/C Ratio      | 0.10  | 0.51        |      | 0.09  | 0.50       | 0.50  | 0.26  | 0.18   | 0.18  | 0.28  | 0.20  | 0.20  |
| v/c Ratio               | 0.61  | 0.48        |      | 0.54  | 0.24       | 0.10  | 0.17  | 0.73   | 0.54  | 0.50  | 0.59  | 0.28  |
| Control Delay           | 63.5  | 23.2        |      | 63.0  | 21.0       | 4.0   | 32.4  | 63.1   | 9.4   | 41.2  | 54.0  | 8.9   |
| Queue Delay             | 0.0   | 0.0         |      | 0.0   | 0.0        | 0.0   | 0.0   | 0.0    | 0.0   | 0.0   | 0.0   | 0.0   |
| Total Delay             | 63.5  | 23.2        |      | 63.0  | 21.0       | 4.0   | 32.4  | 63.1   | 9.4   | 41.2  | 54.0  | 8.9   |
| LOS                     | E     | С           |      | E     | С          | A     | С     | E      | A     | D     | D     | A     |
| Approach Delay          |       | 31.5        |      |       | 29.4       |       |       | 35.4   |       |       | 39.2  |       |
| Approach LOS            |       | С           |      |       | С          |       |       | D      |       |       | D     |       |
| Queue Length 50th (m)   | 27.0  | 67.8        |      | 21.5  | 31.0       | 0.0   | 8.9   | 60.9   | 0.0   | 23.7  | 53.0  | 0.0   |
| Queue Length 95th (m)   | 39.0  | 104.8       |      | 32.6  | 51.6       | 8.4   | 16.7  | 82.1   | 21.5  | 35.7  | 73.8  | 15.1  |
| Internal Link Dist (m)  |       | 871.0       |      |       | 1427.4     |       |       | 1305.6 |       |       | 301.9 |       |
| Turn Bay Length (m)     | 50.0  |             |      | 90.0  |            | 225.0 | 30.0  |        | 60.0  | 50.0  |       | 275.0 |
| Base Capacity (vph)     | 349   | 1625        |      | 296   | 1617       | 777   | 280   | 729    | 725   | 232   | 709   | 675   |
| Starvation Cap Reductr  | n 0   | 0           |      | 0     | 0          | 0     | 0     | 0      | 0     | 0     | 0     | 0     |
| Spillback Cap Reductn   | 0     | 0           |      | 0     | 0          | 0     | 0     | 0      | 0     | 0     | 0     | 0     |
| Storage Cap Reductn     | 0     | 0           |      | 0     | 0          | 0     | 0     | 0      | 0     | 0     | 0     | 0     |
| Reduced v/c Ratio       | 0.57  | 0.48        |      | 0.54  | 0.24       | 0.10  | 0.16  | 0.32   | 0.34  | 0.50  | 0.30  | 0.16  |
| Intersection Summary    |       |             |      |       |            |       |       |        |       |       |       |       |

130 Huntmar Drive 02-06-2020 2029 Future AM Dillon Consulting Limited

| Cycle Length: 130                                 |                        |
|---------------------------------------------------|------------------------|
| Actuated Cycle Length: 130                        |                        |
| Offset: 0 (0%), Referenced to phase 2:EBT and 6:W | BT, Start of Green     |
| Natural Cycle: 125                                |                        |
| Control Type: Actuated-Coordinated                |                        |
| Maximum v/c Ratio: 0.73                           |                        |
| Intersection Signal Delay: 33.1                   | Intersection LOS: C    |
| Intersection Capacity Utilization 70.9%           | ICU Level of Service C |
| Analysis Period (min) 15                          |                        |

Splits and Phases: 3: Iber/Huntmar & Hazeldean

| <b>1</b> 01 |        | 103         | 04            |
|-------------|--------|-------------|---------------|
| 14.6 s      | 44.8 s | 12.5 s      | 58.1 s        |
| ♪<br>Ø5     | Ø6 (R) | <b>1</b> 07 | * <b>1</b> 08 |
| 18.2 s      | 41.2 s | 12.6 s      | 58 s          |

# Lanes, Volumes, Timings <u>6: Terry Fox & Palladium/Katimavik</u>

|                          | ٩         | -            | 7     | 1     | •         | •         | 1     | t            | 1            | 6          | ŧ        | ~            |
|--------------------------|-----------|--------------|-------|-------|-----------|-----------|-------|--------------|--------------|------------|----------|--------------|
| Lane Group               | EBL       | EBT          | EBR   | WBL   | WBT       | WBR       | NBL   | NBT          | NBR          | SBL        | SBT      | SBR          |
| Lane Configurations      | ሻሻ        | 1            | 1     | 3     | 1         | 1         | ሻሻ    | <b>^</b>     | 1            | ሻሻ         | <b>^</b> | 1            |
| Traffic Volume (vph)     | 225       | 55           | 95    | 55    | 95        | 140       | 290   | 1095         | 75           | 80         | 775      | 695          |
| Future Volume (vph)      | 225       | 55           | 95    | 55    | 95        | 140       | 290   | 1095         | 75           | 80         | 775      | 695          |
| Confl. Peds. (#/hr)      | 5         |              | 5     | 5     |           | 5         | 5     |              | 5            | 5          |          | 5            |
| Confl. Bikes (#/hr)      |           |              |       |       |           |           |       |              |              |            |          |              |
| Peak Hour Factor         | 1.00      | 1.00         | 1.00  | 1.00  | 1.00      | 1.00      | 1.00  | 1.00         | 1.00         | 1.00       | 1.00     | 1.00         |
| Growth Factor            | 100%      | 100%         | 100%  | 100%  | 100%      | 100%      | 100%  | 100%         | 100%         | 100%       | 100%     | 100%         |
| Heavy Vehicles (%)       | 6%        | 6%           | 3%    | 12%   | 6%        | 4%        | 0%    | 3%           | 13%          | 3%         | 5%       | 1%           |
| Bus Blockages (#/hr)     | 0         | 0            | 0     | 0     | 0         | 0         | 0     | 0            | 0            | 0          | 0        | 0            |
| Parking (#/hr)           |           |              |       |       |           |           |       |              |              |            |          |              |
| Mid-Block Traffic (%)    |           | 0%           |       |       | 0%        |           |       | 0%           |              |            | 0%       |              |
| Shared Lane Traffic (%)  |           |              |       |       |           |           |       |              |              |            |          |              |
| Lane Group Flow (vph)    | 225       | 55           | 95    | 55    | 95        | 140       | 290   | 1095         | 75           | 80         | 775      | 695          |
| Turn Type                | Prot      | NA           | Perm  | Prot  | NA        | Perm      | Prot  | NA           | Perm         | Prot       | NA       | Perm         |
| Protected Phases         | 7         | 4            |       | 3     | 8         |           | 5     | 2            |              | 1          | 6        |              |
| Permitted Phases         | _         |              | 4     |       |           | 8         | _     |              | 2            |            |          | 6            |
| Detector Phase           | 7         | 4            | 4     | 3     | 8         | 8         | 5     | 2            | 2            | 1          | 6        | 6            |
| Switch Phase             |           |              |       |       |           |           |       |              |              |            |          |              |
| Minimum Initial (s)      | 5.0       | 10.0         | 10.0  | 5.0   | 10.0      | 10.0      | 5.0   | 10.0         | 10.0         | 5.0        | 10.0     | 10.0         |
| Minimum Split (s)        | 12.0      | 40.6         | 40.6  | 12.0  | 40.3      | 40.3      | 12.0  | 42.5         | 42.5         | 30.0       | 41.0     | 41.0         |
| Total Split (s)          | 17.0      | 44.3         | 44.3  | 30.7  | 58.0      | 58.0      | 22.0  | 45.0         | 45.0         | 30.0       | 53.0     | 53.0         |
| Total Split (%)          | 11.3%     | 29.5%        | 29.5% | 20.5% | 38.7%     | 38.7%     | 14.7% | 30.0%        | 30.0%        | 20.0%      | 35.3%    | 35.3%        |
| Yellow Time (s)          | 3.6       | 3.6          | 3.6   | 3.3   | 3.3       | 3.3       | 4.0   | 4.0          | 4.0          | 4.0        | 4.0      | 4.0          |
| All-Red Time (s)         | 2.0       | 2.0          | 2.0   | 2.0   | 2.0       | 2.0       | 2.0   | 2.0          | 2.0          | 2.0        | 2.0      | 2.0          |
| Lost Time Adjust (s)     | -2.0      | 0.0          | 0.0   | -2.0  | 0.0       | 0.0       | 0.0   | 0.0          | 0.0          | 0.0        | 0.0      | 0.0          |
| Total Lost Time (s)      | 3.0       | 5.6          | 5.0   | 3.3   | 5.3       | 5.3       | 0.0   | 6.0          | 6.0          | 0.0        | 6.0      | 6.0          |
| Lead/Lag                 | Lag       | Lag          | Lag   | Lead  | Lead      | Lead      | Lead  | Lag          | Lag          | Lead       | Lag      | Lag          |
| Lead-Lag Optimize?       | Yes       | Neg          | Yes   | Yes   | Yes       | Yes       | Yes   | res<br>C Max | res<br>C Max | Yes        | C Max    | Yes<br>C Mex |
| Act Effet Creen (a)      |           |              |       | 12.9  |           |           | 10.7  |              |              |            |          |              |
| Act Elici Green (S)      | 10.4      | 24.0         | 24.0  | 12.0  | 0.11      | 0.11      | 10.7  | 04.9         | 04.9         | 9.1        | 75.4     | 75.4         |
| Actuated g/C Ratio       | 0.12      | 0.10         | 0.10  | 0.09  | 0.11      | 0.11      | 0.12  | 0.57         | 0.57         | 0.00       | 0.50     | 0.50         |
| V/C Rallo                | 0.09      | 0.20<br>54 9 | 0.20  | 74.1  | 70.0      | 0.40      | 72.2  | 25.0         | 0.09         | 72.6       | 0.47     | 0.05         |
|                          | 00.3      | 04.0         | 2.5   | 74.1  | 70.0      | 11.7      | 12.3  | 25.0         | 0.2          | 73.0       | 20.2     | 0.9          |
| Queue Delay              | 68.3      | 54 Q         | 0.0   | 7/ 1  | 70.0      | 11 7      | 72.2  | 25.0         | 0.0          | 72.6       | 28.2     | 0.0          |
|                          | 00.3<br>E | 04.0<br>D    | 2.5   | 74.1  | 70.0      | 11.7<br>B | 12.5  | 25.0         | 0.2          | / 3.0<br>E | 20.2     | 0.9          |
| Approach Delay           |           | 10.6         | A     | E     | 42 G      | Б         | E     | 33.1         | A            | E          | 21.0     | A            |
| Approach LOS             |           | 49.0<br>D    |       |       | 42.0<br>D |           |       | 55.1         |              |            | 21.0     |              |
| Oueue Length 50th (m)    | 34.8      | 15.7         | 0.0   | 16.7  | 20.1      | 0.0       | 15.5  | 107.6        | 0.0          | 12.6       | 78 /     | 78           |
| Queue Length $95$ th (m) | 48.1      | 26.3         | 2.2   | 31.4  | 43.1      | 16.1      | 60.2  | 183.8        | 0.0          | 21.0       | 133.7    | 59.0         |
| Internal Link Dist (m)   | 40.1      | 1802.0       | 2.2   | 51.4  | 304.5     | 10.1      | 00.2  | 406.9        | 0.0          | 21.1       | 280.2    | 55.0         |
| Turn Bay Length (m)      | 100.0     | 1002.0       |       | 115.0 | 004.0     | 115.0     | 240.0 | +00.5        | 115.0        | 70.0       | 200.2    | 190.0        |
| Base Canacity (yph)      | 383       | 438          | 485   | 278   | 596       | 604       | 420   | 1879         | 830          | 515        | 1636     | 1067         |
| Starvation Can Reduction | 000       | -50          | -05   | 210   | 030       | 004       | 420   | 1073         | 0.00         | 0          | 1000     | 1007         |
| Spillback Can Reducto    | 0         | 0            | 0     | 0     | 0         | 0         | 0     | 0            | 0            | 0          | 0        | 0            |
| Storage Can Reductn      | 0         | 0            | 0     | 0     | 0         | 0         | 0     | 0            | 0            | 0          | 0        | 0            |
| Reduced v/c Ratio        | 0.59      | 0.13         | 0.20  | 0.20  | 0 16      | 0.23      | 0.69  | 0.58         | 0.09         | 0.16       | 0 47     | 0.65         |
| Intersection Summary     | 0.00      | 0.10         | 0.20  | 0.20  | 0.10      | 0.20      | 0.00  | 0.00         | 0.00         | 0.10       | 0.17     | 0.00         |

130 Huntmar Drive 02-06-2020 2029 Future AM Dillon Consulting Limited

| Cycle Length: 150                                  |                                         |
|----------------------------------------------------|-----------------------------------------|
| Actuated Cycle Length: 150                         |                                         |
| Offset: 0 (0%), Referenced to phase 2:NBT and 6:SI | BT, Start of Green, Master Intersection |
| Natural Cycle: 130                                 |                                         |
| Control Type: Actuated-Coordinated                 |                                         |
| Maximum v/c Ratio: 0.70                            |                                         |
| Intersection Signal Delay: 30.4                    | Intersection LOS: C                     |
| Intersection Capacity Utilization 80.3%            | ICU Level of Service D                  |
| Analysis Period (min) 15                           |                                         |

Splits and Phases: 6: Terry Fox & Palladium/Katimavik

| ØI   | 🚽 🗖 Ø2 (R) | <b>1</b> 03               | <b>→</b> Ø4 |      |
|------|------------|---------------------------|-------------|------|
| 30 s | 45 s       | 30.7 s                    | 44.3 s      |      |
| 105  | 🔹 🦛 (R)    | <b>4</b> <sup>⊕</sup> _Ø8 |             | ▶ 07 |
| 22 5 | 53 s       | 58 s                      |             | 17 s |

## Lanes, Volumes, Timings 8: Huntmar & Palladium

|                         | مر    | -           | 7    | 1     | ←           | •    | 1     | t     | 1     | 4     | ŧ     | ~     |
|-------------------------|-------|-------------|------|-------|-------------|------|-------|-------|-------|-------|-------|-------|
| Lane Group              | EBL   | EBT         | EBR  | WBL   | WBT         | WBR  | NBL   | NBT   | NBR   | SBL   | SBT   | SBR   |
| Lane Configurations     | 3     | <b>≜t</b> ₀ |      | 3     | <b>≜</b> 16 |      | 2     | 4     | 1     | 1     | 4     | 1     |
| Traffic Volume (vph)    | 30    | 155         | 165  | 40    | 80          | 35   | 325   | 260   | 130   | 85    | 145   | 45    |
| Future Volume (vph)     | 30    | 155         | 165  | 40    | 80          | 35   | 325   | 260   | 130   | 85    | 145   | 45    |
| Confl. Peds. (#/hr)     | 5     |             | 5    | 5     |             | 5    | 5     |       | 5     | 5     |       | 5     |
| Confl. Bikes (#/hr)     |       |             |      |       |             |      |       |       |       |       |       |       |
| Peak Hour Factor        | 1.00  | 1.00        | 1.00 | 1.00  | 1.00        | 1.00 | 1.00  | 1.00  | 1.00  | 1.00  | 1.00  | 1.00  |
| Growth Factor           | 100%  | 100%        | 100% | 100%  | 100%        | 100% | 100%  | 100%  | 100%  | 100%  | 100%  | 100%  |
| Heavy Vehicles (%)      | 0%    | 4%          | 2%   | 11%   | 1%          | 0%   | 1%    | 1%    | 1%    | 2%    | 4%    | 2%    |
| Bus Blockages (#/hr)    | 0     | 0           | 0    | 0     | 0           | 0    | 0     | 0     | 0     | 0     | 0     | 0     |
| Parking (#/hr)          |       |             |      |       |             |      |       |       |       |       |       |       |
| Mid-Block Traffic (%)   |       | 0%          |      |       | 0%          |      |       | 0%    |       |       | 0%    |       |
| Shared Lane Traffic (%) |       |             |      |       |             |      |       |       |       |       |       |       |
| Lane Group Flow (vph)   | 30    | 320         | 0    | 40    | 115         | 0    | 325   | 260   | 130   | 85    | 145   | 45    |
| Turn Type               | pm+pt | NA          |      | pm+pt | NA          |      | Perm  | NA    | Perm  | Perm  | NA    | Perm  |
| Protected Phases        | 7     | 4           |      | 3     | 8           |      |       | 2     |       |       | 6     |       |
| Permitted Phases        | 4     |             |      | 8     |             |      | 2     |       | 2     | 6     |       | 6     |
| Detector Phase          | 7     | 4           |      | 3     | 8           |      | 2     | 2     | 2     | 6     | 6     | 6     |
| Switch Phase            |       |             |      |       |             |      |       |       |       |       |       |       |
| Minimum Initial (s)     | 5.0   | 10.0        |      | 5.0   | 10.0        |      | 10.0  | 10.0  | 10.0  | 10.0  | 10.0  | 10.0  |
| Minimum Split (s)       | 12.5  | 43.0        |      | 12.5  | 43.0        |      | 42.3  | 42.3  | 42.3  | 42.3  | 42.3  | 42.3  |
| Total Split (s)         | 14.9  | 43.0        |      | 15.0  | 43.1        |      | 72.0  | 72.0  | 72.0  | 72.0  | 72.0  | 72.0  |
| Total Split (%)         | 11.5% | 33.1%       |      | 11.5% | 33.2%       |      | 55.4% | 55.4% | 55.4% | 55.4% | 55.4% | 55.4% |
| Yellow Time (s)         | 4.0   | 4.0         |      | 4.0   | 4.0         |      | 3.3   | 3.3   | 3.3   | 3.3   | 3.3   | 3.3   |
| All-Red Time (s)        | 2.0   | 2.0         |      | 2.0   | 2.0         |      | 2.0   | 2.0   | 2.0   | 2.0   | 2.0   | 2.0   |
| Lost Time Adjust (s)    | 0.0   | 0.0         |      | 0.0   | 0.0         |      | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   |
| Total Lost Time (s)     | 6.0   | 6.0         |      | 6.0   | 6.0         |      | 5.3   | 5.3   | 5.3   | 5.3   | 5.3   | 5.3   |
| Lead/Lag                | Lead  | Lag         |      | Lead  | Lag         |      |       |       |       |       |       |       |
| Lead-Lag Optimize?      | Yes   | Yes         |      | Yes   | Yes         |      |       |       |       |       |       |       |
| Recall Mode             | None  | None        |      | None  | None        |      | C-Max | C-Max | C-Max | C-Max | C-Max | C-Max |
| Act Effct Green (s)     | 23.0  | 16.9        |      | 25.2  | 19.9        |      | 90.4  | 90.4  | 90.4  | 90.4  | 90.4  | 90.4  |
| Actuated g/C Ratio      | 0.18  | 0.13        |      | 0.19  | 0.15        |      | 0.70  | 0.70  | 0.70  | 0.70  | 0.70  | 0.70  |
| v/c Ratio               | 0.12  | 0.60        |      | 0.24  | 0.22        |      | 0.40  | 0.21  | 0.12  | 0.12  | 0.12  | 0.04  |
| Control Delay           | 35.2  | 28.7        |      | 38.2  | 32.2        |      | 18.0  | 14.4  | 6.7   | 10.4  | 9.6   | 1.0   |
| Queue Delay             | 0.0   | 0.0         |      | 0.0   | 0.0         |      | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   |
| Total Delay             | 35.2  | 28.7        |      | 38.2  | 32.2        |      | 18.0  | 14.4  | 6.7   | 10.4  | 9.6   | 1.0   |
| LOS                     | D     | С           |      | D     | С           |      | В     | В     | A     | В     | A     | A     |
| Approach Delay          |       | 29.2        |      |       | 33.7        |      |       | 14.7  |       |       | 8.5   |       |
| Approach LOS            |       | С           |      |       | С           |      |       | В     |       |       | A     |       |
| Queue Length 50th (m)   | 6.6   | 21.3        |      | 8.9   | 10.6        |      | 35.2  | 25.4  | 2.5   | 6.6   | 11.3  | 0.0   |
| Queue Length 95th (m)   | 11.5  | 29.8        |      | 14.6  | 16.1        |      | 104.1 | 72.0  | m18.5 | 22.2  | 32.8  | 2.2   |
| Internal Link Dist (m)  |       | 535.2       |      |       | 1802.0      |      |       | 357.2 |       |       | 231.7 |       |
| Turn Bay Length (m)     | 95.0  |             |      | 75.0  |             |      | 120.0 |       | 45.0  | 50.0  |       |       |
| Base Capacity (vph)     | 258   | 977         |      | 177   | 946         |      | 820   | 1238  | 1074  | 716   | 1203  | 1047  |
| Starvation Cap Reductn  | 0     | 0           |      | 0     | 0           |      | 0     | 0     | 0     | 0     | 0     | 0     |
| Spillback Cap Reductn   | 0     | 0           |      | 0     | 0           |      | 0     | 0     | 0     | 0     | 0     | 0     |
| Storage Cap Reductn     | 0     | 0           |      | 0     | 0           |      | 0     | 0     | 0     | 0     | 0     | 0     |
| Reduced v/c Ratio       | 0.12  | 0.33        |      | 0.23  | 0.12        |      | 0.40  | 0.21  | 0.12  | 0.12  | 0.12  | 0.04  |
| Intersection Summary    |       |             |      |       |             |      |       |       |       |       |       |       |

130 Huntmar Drive 02-06-2020 2029 Future AM Dillon Consulting Limited

| Cycle Length: 130                                                     |                        |  |  |  |  |  |
|-----------------------------------------------------------------------|------------------------|--|--|--|--|--|
| Actuated Cycle Length: 130                                            |                        |  |  |  |  |  |
| Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green |                        |  |  |  |  |  |
| Natural Cycle: 100                                                    |                        |  |  |  |  |  |
| Control Type: Actuated-Coordinated                                    |                        |  |  |  |  |  |
| Maximum v/c Ratio: 0.60                                               |                        |  |  |  |  |  |
| Intersection Signal Delay: 18.9                                       | Intersection LOS: B    |  |  |  |  |  |
| Intersection Capacity Utilization 86.4%                               | ICU Level of Service E |  |  |  |  |  |
| Analysis Period (min) 15                                              |                        |  |  |  |  |  |
| m Volume for 95th percentile queue is metered by upstream signal.     |                        |  |  |  |  |  |

Splits and Phases: 8: Huntmar & Palladium

| <1 Ø2 (R) | <b>√</b> ø3 | A 04        |
|-----------|-------------|-------------|
| 72 s      | 15 s        | 43 s        |
| Ø6 (R)    | ▲<br>Ø7     | <b>₩</b> Ø8 |
| 72.6      | 14.9 s      | 43.16       |

# Lanes, Volumes, Timings 21: Huntmar & Maple Grove

|                         | ٩     | -              | 7    | 1     | +     | 1    | 1        | t     | 1    | 6        | ŧ        | ~    |
|-------------------------|-------|----------------|------|-------|-------|------|----------|-------|------|----------|----------|------|
| Lane Group              | EBL   | EBT            | EBR  | WBL   | WBT   | WBR  | NBL      | NBT   | NBR  | SBL      | SBT      | SBR  |
| Lane Configurations     |       | 4              |      |       | 4     |      | 2        | 4     |      |          | 4        |      |
| Traffic Volume (vph)    | 220   | 115            | 50   | 40    | 40    | 25   | 30       | 445   | 90   | 5        | 270      | 40   |
| Future Volume (vph)     | 220   | 115            | 50   | 40    | 40    | 25   | 30       | 445   | 90   | 5        | 270      | 40   |
| Confl. Peds. (#/hr)     | 5     |                | 5    | 5     |       | 5    | 5        |       | 5    | 5        |          | 5    |
| Confl. Bikes (#/hr)     |       |                |      |       |       |      |          |       |      |          |          |      |
| Peak Hour Factor        | 1.00  | 1.00           | 1.00 | 1.00  | 1.00  | 1.00 | 1.00     | 1.00  | 1.00 | 1.00     | 1.00     | 1.00 |
| Growth Factor           | 100%  | 100%           | 100% | 100%  | 100%  | 100% | 100%     | 100%  | 100% | 100%     | 100%     | 100% |
| Heavy Vehicles (%)      | 1%    | 2%             | 6%   | 0%    | 10%   | 5%   | 23%      | 2%    | 4%   | 14%      | 3%       | 0%   |
| Bus Blockages (#/hr)    | 0     | 0              | 0    | 0     | 0     | 0    | 0        | 0     | 0    | 0        | 0        | 0    |
| Parking (#/hr)          |       |                |      |       |       |      |          |       |      |          |          |      |
| Mid-Block Traffic (%)   |       | 0%             |      |       | 0%    |      |          | 0%    |      |          | 0%       |      |
| Shared Lane Traffic (%) | )     |                |      |       |       |      |          |       |      |          |          |      |
| Lane Group Flow (vph)   | 0     | 385            | 0    | 0     | 105   | 0    | 30       | 535   | 0    | 0        | 315      | 0    |
| Turn Type               | Perm  | NA             |      | Perm  | NA    |      | Perm     | NA    |      | Perm     | NA       |      |
| Protected Phases        |       | 4              |      |       | 8     |      |          | 2     |      |          | 6        |      |
| Permitted Phases        | 4     |                |      | 8     |       |      | 2        |       |      | 6        |          |      |
| Detector Phase          | 4     | 4              |      | 8     | 8     |      | 2        | 2     |      | 6        | 6        |      |
| Switch Phase            |       |                |      |       |       |      |          |       |      |          |          |      |
| Minimum Initial (s)     | 10.0  | 10.0           |      | 10.0  | 10.0  |      | 10.0     | 10.0  |      | 10.0     | 10.0     |      |
| Minimum Split (s)       | 33.0  | 33.0           |      | 33.0  | 33.0  |      | 29.0     | 29.0  |      | 49.0     | 49.0     |      |
| Total Split (s)         | 61.0  | 61.0           |      | 61.0  | 61.0  |      | 69.0     | 69.0  |      | 69.0     | 69.0     |      |
| Total Split (%)         | 46.9% | 46.9%          |      | 46.9% | 46.9% |      | 53.1%    | 53.1% |      | 53.1%    | 53.1%    |      |
| Yellow Time (s)         | 3.0   | 3.0            |      | 3.0   | 3.0   |      | 3.3      | 3.3   |      | 3.3      | 3.3      |      |
| All-Red Time (s)        | 2.0   | 2.0            |      | 2.0   | 2.0   |      | 2.0      | 2.0   |      | 2.0      | 2.0      |      |
| Lost Time Adjust (s)    |       | 0.0            |      |       | 0.0   |      | 0.0      | 0.0   |      |          | 0.0      |      |
| Iotal Lost Time (s)     |       | 5.0            |      |       | 5.0   |      | 5.3      | 5.3   |      |          | 5.3      |      |
| Lead/Lag                |       |                |      |       |       |      |          |       |      |          |          |      |
| Lead-Lag Optimize?      |       |                |      |       |       |      | <u> </u> | 0.14  |      | <u> </u> | <u> </u> |      |
|                         | None  | None           |      | None  | None  |      | C-Max    | C-Max |      | C-Max    | C-Max    |      |
| Act Effect Green (s)    |       | 43.6           |      |       | 43.6  |      | /6.1     | 76.1  |      |          | 76.1     |      |
| Actuated g/C Ratio      |       | 0.34           |      |       | 0.34  |      | 0.59     | 0.59  |      |          | 0.59     |      |
| V/C Ratio               |       | 0.87           |      |       | 0.23  |      | 0.07     | 0.53  |      |          | 0.32     |      |
| Control Delay           |       | 58.6           |      |       | 25.0  |      | 15.3     | 20.2  |      |          | 13.5     |      |
| Queue Delay             |       | 0.0            |      |       | 0.0   |      | 0.0      | 0.0   |      |          | 0.0      |      |
|                         |       | 58.6           |      |       | 25.0  |      | 15.3     | 20.2  |      |          | 13.5     |      |
| LUS<br>Anna agh Dalau   |       | E              |      |       |       |      | В        |       |      |          | 40 F     |      |
| Approach Delay          |       | 58.6           |      |       | 25.0  |      |          | 19.9  |      |          | 13.5     |      |
| Approach LOS            |       | E<br>04.0      |      |       | 15.0  |      | 2.4      | B     |      |          | D4 5     |      |
| Queue Length 50th (m)   |       | 94.8           |      |       | 15.9  |      | 3.4      | 8Z.Z  |      |          | 24.5     |      |
| Queue Lengin 95in (m)   |       | 121.7<br>620 F |      |       | 20.0  |      | 10.0     | 140.0 |      |          | 175 1    |      |
| Turn Boy Longth (m)     |       | 630.5          |      |       | 80.3  |      | 20.0     | 293.1 |      |          | 175.1    |      |
| Reco Consoity (upb)     |       | EGO            |      |       | 560   |      | 20.0     | 1000  |      |          | 000      |      |
| Starvation Can Paduate  |       | 800            |      |       | 509   |      | 401      | 1002  |      |          | 998      |      |
| Starvation Cap Reductin | I     | 0              |      |       | 0     |      | 0        | 0     |      |          | 0        |      |
| Storage Cap Reducth     |       | 0              |      |       | 0     |      | 0        | 0     |      |          | 0        |      |
| Reduced v/c Patio       |       | 0 69           |      |       | 0 19  |      | 0.07     | 0.52  |      |          | 0 33     |      |
|                         |       | 0.00           |      |       | 0.10  |      | 0.07     | 0.00  |      |          | 0.52     |      |
| Intersection Summary    |       |                |      |       |       |      |          |       |      |          |          |      |

130 Huntmar Drive 02-06-2020 2029 Future AM Dillon Consulting Limited

| Cycle Length: 130                                 |                        |
|---------------------------------------------------|------------------------|
| Actuated Cycle Length: 130                        |                        |
| Offset: 0 (0%), Referenced to phase 2:NBTL and 6: | SBTL, Start of Green   |
| Natural Cycle: 85                                 |                        |
| Control Type: Actuated-Coordinated                |                        |
| Maximum v/c Ratio: 0.87                           |                        |
| Intersection Signal Delay: 29.7                   | Intersection LOS: C    |
| Intersection Capacity Utilization 68.4%           | ICU Level of Service C |
| Analysis Period (min) 15                          |                        |

Splits and Phases: 21: Huntmar & Maple Grove

|          | 404  |
|----------|------|
| 69 s     | 61s  |
| ₩ Ø6 (R) | ₩ Ø8 |
| 59 8     | 619  |

### Lanes, Volumes, Timings 31: Terry Fox & Maple Grove

|                        | ٩     | <b>→</b> | 7     | 1     | +     | *    | 1     | t           | 1    | 1     | ŧ        | ~     |
|------------------------|-------|----------|-------|-------|-------|------|-------|-------------|------|-------|----------|-------|
| Lane Group             | EBL   | EBT      | EBR   | WBL   | WBT   | WBR  | NBL   | NBT         | NBR  | SBL   | SBT      | SBR   |
| Lane Configurations    | 1     | 4        | 1     | 1     | 1.    |      | 1     | <b>≜t</b> a |      | 3     | <b>^</b> | 1     |
| Traffic Volume (vph)   | 195   | 25       | 135   | 30    | 25    | 45   | 170   | 1150        | 35   | 10    | 710      | 85    |
| Future Volume (vph)    | 195   | 25       | 135   | 30    | 25    | 45   | 170   | 1150        | 35   | 10    | 710      | 85    |
| Confl. Peds. (#/hr)    | 5     |          | 5     | 5     |       | 5    | 5     |             | 5    | 5     |          | 5     |
| Confl. Bikes (#/hr)    |       |          |       |       |       |      |       |             |      |       |          |       |
| Peak Hour Factor       | 1.00  | 1.00     | 1.00  | 1.00  | 1.00  | 1.00 | 1.00  | 1.00        | 1.00 | 1.00  | 1.00     | 1.00  |
| Growth Factor          | 100%  | 100%     | 100%  | 100%  | 100%  | 100% | 100%  | 100%        | 100% | 100%  | 100%     | 100%  |
| Heavy Vehicles (%)     | 10%   | 9%       | 12%   | 11%   | 9%    | 0%   | 8%    | 5%          | 7%   | 0%    | 8%       | 19%   |
| Bus Blockages (#/hr)   | 0     | 0        | 0     | 0     | 0     | 0    | 0     | 0           | 0    | 0     | 0        | 0     |
| Parking (#/hr)         |       |          |       |       |       |      |       |             |      |       |          |       |
| Mid-Block Traffic (%)  |       | 0%       |       |       | 0%    |      |       | 0%          |      |       | 0%       |       |
| Shared Lane Traffic (% | )     |          |       |       |       |      |       |             |      |       |          |       |
| Lane Group Flow (vph)  | 195   | 25       | 135   | 30    | 70    | 0    | 170   | 1185        | 0    | 10    | 710      | 85    |
| Turn Type              | Perm  | NA       | Perm  | Perm  | NA    |      | pm+pt | NA          |      | pm+pt | NA       | Perm  |
| Protected Phases       |       | 4        |       |       | 8     |      | 5     | 2           |      |       | 6        |       |
| Permitted Phases       | 4     |          | 4     | 8     |       |      | 2     |             |      | 6     |          | 6     |
| Detector Phase         | 4     | 4        | 4     | 8     | 8     |      | 5     | 2           |      | 1     | 6        | 6     |
| Switch Phase           |       |          |       |       |       |      |       |             |      |       |          |       |
| Minimum Initial (s)    | 10.0  | 10.0     | 10.0  | 10.0  | 10.0  |      | 5.0   | 10.0        |      | 5.0   | 10.0     | 10.0  |
| Minimum Split (s)      | 42.0  | 42.0     | 42.0  | 42.0  | 42.0  |      | 12.0  | 43.0        |      | 12.0  | 43.0     | 43.0  |
| Total Split (s)        | 46.0  | 46.0     | 46.0  | 46.0  | 46.0  |      | 24.0  | 72.0        |      | 12.0  | 60.0     | 60.0  |
| Total Split (%)        | 35.4% | 35.4%    | 35.4% | 35.4% | 35.4% |      | 18.5% | 55.4%       |      | 9.2%  | 46.2%    | 46.2% |
| Yellow Time (s)        | 3.0   | 3.0      | 3.0   | 3.0   | 3.0   |      | 4.0   | 4.0         |      | 4.0   | 4.0      | 4.0   |
| All-Red Time (s)       | 2.0   | 2.0      | 2.0   | 2.0   | 2.0   |      | 2.0   | 2.0         |      | 2.0   | 2.0      | 2.0   |
| Lost Time Adjust (s)   | 0.0   | 0.0      | 0.0   | 0.0   | 0.0   |      | 0.0   | 0.0         |      | 0.0   | 0.0      | 0.0   |
| Total Lost Time (s)    | 5.0   | 5.0      | 5.0   | 5.0   | 5.0   |      | 6.0   | 6.0         |      | 6.0   | 6.0      | 6.0   |
| Lead/Lag               |       |          |       |       |       |      | Lead  | Lag         |      | Lead  | Lag      | Lag   |
| Lead-Lag Optimize?     |       |          |       |       |       |      | Yes   | Yes         |      | Yes   | Yes      | Yes   |
| Recall Mode            | None  | None     | None  | None  | None  |      | None  | C-Max       |      | None  | C-Max    | C-Max |
| Act Effct Green (s)    | 27.2  | 27.2     | 27.2  | 27.2  | 27.2  |      | 91.8  | 89.3        |      | 81.1  | 75.3     | 75.3  |
| Actuated g/C Ratio     | 0.21  | 0.21     | 0.21  | 0.21  | 0.21  |      | 0.71  | 0.69        |      | 0.62  | 0.58     | 0.58  |
| v/c Ratio              | 0.81  | 0.07     | 0.35  | 0.12  | 0.19  |      | 0.37  | 0.53        |      | 0.03  | 0.39     | 0.11  |
| Control Delay          | 73.3  | 39.8     | 11.7  | 39.2  | 17.7  |      | 9.9   | 13.1        |      | 8.8   | 17.3     | 1.6   |
| Queue Delay            | 0.0   | 0.0      | 0.0   | 0.0   | 0.0   |      | 0.0   | 0.0         |      | 0.0   | 0.0      | 0.0   |
| Total Delay            | 73.3  | 39.8     | 11.7  | 39.2  | 17.7  |      | 9.9   | 13.1        |      | 8.8   | 17.3     | 1.6   |
| LOS                    | E     | D        | В     | D     | В     |      | А     | В           |      | A     | В        | A     |
| Approach Delay         |       | 47.5     |       |       | 24.2  |      |       | 12.7        |      |       | 15.5     |       |
| Approach LOS           |       | D        |       |       | С     |      |       | В           |      |       | В        |       |
| Queue Length 50th (m)  | 52.7  | 5.9      | 5.4   | 6.6   | 5.5   |      | 13.7  | 70.6        |      | 0.7   | 51.9     | 0.0   |
| Queue Length 95th (m)  | 76.0  | m10.1    | m16.6 | 14.1  | 16.9  |      | 28.5  | 144.4       |      | 3.2   | 85.1     | 4.6   |
| Internal Link Dist (m) |       | 1246.0   |       |       | 796.0 |      |       | 547.8       |      |       | 406.9    |       |
| Turn Bay Length (m)    | 65.0  |          | 60.0  | 40.0  |       |      | 145.0 |             |      | 125.0 |          | 70.0  |
| Base Capacity (vph)    | 365   | 520      | 515   | 377   | 522   |      | 515   | 2226        |      | 297   | 1834     | 772   |
| Starvation Cap Reductr | ו 0   | 0        | 0     | 0     | 0     |      | 0     | 0           |      | 0     | 0        | 0     |
| Spillback Cap Reductn  | 0     | 0        | 0     | 0     | 0     |      | 0     | 0           |      | 0     | 0        | 0     |
| Storage Cap Reductn    | 0     | 0        | 0     | 0     | 0     |      | 0     | 0           |      | 0     | 0        | 0     |
| Reduced v/c Ratio      | 0.53  | 0.05     | 0.26  | 0.08  | 0.13  |      | 0.33  | 0.53        |      | 0.03  | 0.39     | 0.11  |
| Intersection Summary   |       |          |       |       |       |      |       |             |      |       |          |       |

130 Huntmar Drive 02-06-2020 2029 Future AM Dillon Consulting Limited

| Cycle Length: 130                                                        |                        |  |  |  |  |  |
|--------------------------------------------------------------------------|------------------------|--|--|--|--|--|
| Actuated Cycle Length: 130                                               |                        |  |  |  |  |  |
| Offset: 112 (86%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green |                        |  |  |  |  |  |
| Natural Cycle: 100                                                       |                        |  |  |  |  |  |
| Control Type: Actuated-Coordinated                                       |                        |  |  |  |  |  |
| Maximum v/c Ratio: 0.81                                                  |                        |  |  |  |  |  |
| Intersection Signal Delay: 18.7                                          | Intersection LOS: B    |  |  |  |  |  |
| Intersection Capacity Utilization 75.0%                                  | ICU Level of Service D |  |  |  |  |  |
| Analysis Period (min) 15                                                 |                        |  |  |  |  |  |
| m Volume for 95th percentile queue is metered by                         | upstream signal        |  |  |  |  |  |

Splits and Phases: 31: Terry Fox & Maple Grove



| Intersection                    |            |          |          |        |            |  |
|---------------------------------|------------|----------|----------|--------|------------|--|
| Intersection Delay, s/yel       | 2 63       |          |          |        |            |  |
| Intersection LOS                | 1 0.3<br>A |          |          |        |            |  |
|                                 | A          |          |          |        |            |  |
| Approach                        | EB         |          | WB       | NB     | SB         |  |
| Entry Lanes                     | 1          |          | 1        | 1      | 1          |  |
| <b>Conflicting Circle Lanes</b> | 1          |          | 1        | 1      | 1          |  |
| Adj Approach Flow, veh          | /h 55      |          | 40       | 530    | 375        |  |
| Demand Flow Rate, veh           | ı/h 61     |          | 43       | 557    | 393        |  |
| Vehicles Circulating, vel       | n/h 419    |          | 557      | 37     | 48         |  |
| Vehicles Exiting, veh/h         | 22         |          | 37       | 443    | 552        |  |
| Ped Vol Crossing Leg, #         | ‡/h 5      |          | 5        | 5      | 5          |  |
| Ped Cap Adj                     | 0.999      | 0        | .999     | 0.999  | 0.999      |  |
| Approach Delay, s/veh           | 5.1        |          | 5.5      | 7.0    | 5.6        |  |
| Approach LOS                    | A          |          | А        | А      | А          |  |
| Lane                            | Left       | Left     | Left     | t      | Left       |  |
| Designated Moves                | LTR        | LTR      | LTR      |        | LTR        |  |
| Assumed Moves                   | LTR        | LTR      | LTR      |        | LTR        |  |
| RT Channelized                  |            |          |          |        |            |  |
| Lane Util                       | 1.000      | 1.000    | 1.000    | )      | 1.000      |  |
| Follow-Up Headway, s            | 2.609      | 2.609    | 2.609    | )      | 2.609      |  |
| Critical Headway, s             | 4.976      | 4.976    | 4.976    | ;      | 4.976      |  |
| Entry Flow, veh/h               | 61         | 43       | 557      | ,      | 393        |  |
| Cap Entry Lane, veh/h           | 900        | 782      | 1329     |        | 1314       |  |
| Entry HV Adj Factor             | 0.902      | 0.936    | 0.952    | 2      | 0.954      |  |
| Flow Entry, veh/h               | 55         | 40       | 530      | )      | 375        |  |
| Cap Entry, veh/h                | 811        | 732      | 1264     | Ļ      | 1252       |  |
| V/C Ratio                       | 0.068      | 0.055    | 0.419    | )      | 0.299      |  |
|                                 |            |          |          |        | <b>F</b> 0 |  |
| Control Delay, s/veh            | 5.1        | 5.5      | 7.0      | )      | 5.6        |  |
| Control Delay, s/veh<br>LOS     | 5.1<br>A   | 5.5<br>A | 7.0<br>A | )<br>\ | 5.6<br>A   |  |

# Lanes, Volumes, Timings 3: Iber/Huntmar & Hazeldean

|                         | ٩     | -           | 7    | 1     | •          | 1     | 1     | t      | 1     | 6     | ŧ     | ~     |
|-------------------------|-------|-------------|------|-------|------------|-------|-------|--------|-------|-------|-------|-------|
| Lane Group              | EBL   | EBT         | EBR  | WBL   | WBT        | WBR   | NBL   | NBT    | NBR   | SBL   | SBT   | SBR   |
| Lane Configurations     | 2     | <b>≜t</b> a |      | 27    | <b>*</b> * | 1     | 3     | 4      | 1     | 3     | 4     | 1     |
| Traffic Volume (vph)    | 195   | 630         | 120  | 315   | 985        | 205   | 135   | 270    | 235   | 135   | 330   | 380   |
| Future Volume (vph)     | 195   | 630         | 120  | 315   | 985        | 205   | 135   | 270    | 235   | 135   | 330   | 380   |
| Confl. Peds. (#/hr)     | 5     |             | 5    | 5     |            | 5     | 5     |        | 5     | 5     |       | 5     |
| Confl. Bikes (#/hr)     |       |             |      |       |            |       |       |        |       |       |       |       |
| Peak Hour Factor        | 1.00  | 1.00        | 1.00 | 1.00  | 1.00       | 1.00  | 1.00  | 1.00   | 1.00  | 1.00  | 1.00  | 1.00  |
| Growth Factor           | 100%  | 100%        | 100% | 100%  | 100%       | 100%  | 100%  | 100%   | 100%  | 100%  | 100%  | 100%  |
| Heavy Vehicles (%)      | 0%    | 2%          | 3%   | 1%    | 1%         | 0%    | 7%    | 2%     | 1%    | 1%    | 2%    | 1%    |
| Bus Blockages (#/hr)    | 0     | 0           | 0    | 0     | 0          | 0     | 0     | 0      | 0     | 0     | 0     | 0     |
| Parking (#/hr)          |       |             |      |       |            |       |       |        |       |       |       |       |
| Mid-Block Traffic (%)   |       | 0%          |      |       | 0%         |       |       | 0%     |       |       | 0%    |       |
| Shared Lane Traffic (%) | )     |             |      |       |            |       |       |        |       |       |       |       |
| Lane Group Flow (vph)   | 195   | 750         | 0    | 315   | 985        | 205   | 135   | 270    | 235   | 135   | 330   | 380   |
| Turn Type               | Prot  | NA          |      | Prot  | NA         | Perm  | pm+pt | NA     | Perm  | pm+pt | NA    | Perm  |
| Protected Phases        | 5     | 2           |      | 1     | 6          |       | 3     | 8      |       | 7     | 4     |       |
| Permitted Phases        |       |             |      |       |            | 6     | 8     |        | 8     | 4     |       | 4     |
| Detector Phase          | 5     | 2           |      | 1     | 6          | 6     | 3     | 8      | 8     | 7     | 4     | 4     |
| Switch Phase            |       |             |      |       |            |       |       |        |       |       |       |       |
| Minimum Initial (s)     | 5.0   | 10.0        |      | 5.0   | 10.0       | 10.0  | 5.0   | 10.0   | 10.0  | 5.0   | 10.0  | 10.0  |
| Minimum Split (s)       | 12.5  | 38.6        |      | 12.5  | 38.6       | 38.6  | 12.5  | 58.0   | 58.0  | 12.5  | 41.3  | 41.3  |
| Total Split (s)         | 18.2  | 44.8        |      | 14.6  | 41.2       | 41.2  | 12.5  | 58.0   | 58.0  | 12.6  | 58.1  | 58.1  |
| Total Split (%)         | 14.0% | 34.5%       |      | 11.2% | 31.7%      | 31.7% | 9.6%  | 44.6%  | 44.6% | 9.7%  | 44.7% | 44.7% |
| Yellow Time (s)         | 3.6   | 3.6         |      | 3.6   | 3.6        | 3.6   | 3.0   | 3.3    | 3.3   | 3.0   | 3.3   | 3.3   |
| All-Red Time (s)        | 2.0   | 2.0         |      | 2.0   | 2.0        | 2.0   | 0.0   | 2.0    | 2.0   | 0.0   | 2.0   | 2.0   |
| Lost Time Adjust (s)    | 0.0   | 0.0         |      | 0.0   | 0.0        | 0.0   | 0.0   | 0.0    | 0.0   | 0.0   | 0.0   | 0.0   |
| Total Lost Time (s)     | 5.6   | 5.6         |      | 5.6   | 5.6        | 5.6   | 3.0   | 5.3    | 5.3   | 3.0   | 5.3   | 5.3   |
| Lead/Lag                | Lead  | Lag         |      | Lead  | Lag        | Lag   | Lead  | Lag    | Lag   | Lead  | Lag   | Lag   |
| Lead-Lag Optimize?      | Yes   | Yes         |      | Yes   | Yes        | Yes   | Yes   | Yes    | Yes   | Yes   | Yes   | Yes   |
| Recall Mode             | None  | C-Max       |      | None  | C-Max      | C-Max | None  | None   | None  | None  | None  | None  |
| Act Effct Green (s)     | 12.9  | 46.1        |      | 24.0  | 57.2       | 57.2  | 42.7  | 31.0   | 31.0  | 42.7  | 31.0  | 31.0  |
| Actuated g/C Ratio      | 0.10  | 0.35        |      | 0.18  | 0.44       | 0.44  | 0.33  | 0.24   | 0.24  | 0.33  | 0.24  | 0.24  |
| v/c Ratio               | 0.59  | 0.64        |      | 0.52  | 0.66       | 0.26  | 0.60  | 0.64   | 0.44  | 0.47  | 0.79  | 0.70  |
| Control Delay           | 63.3  | 38.0        |      | 52.3  | 33.4       | 4.7   | 40.0  | 50.8   | 6.8   | 33.9  | 59.2  | 21.3  |
| Queue Delay             | 0.0   | 0.0         |      | 0.0   | 0.0        | 0.0   | 0.0   | 0.0    | 0.0   | 0.0   | 0.0   | 0.0   |
| Total Delay             | 63.3  | 38.0        |      | 52.3  | 33.4       | 4.7   | 40.0  | 50.8   | 6.8   | 33.9  | 59.2  | 21.3  |
| LOS                     | E     | D           |      | D     | С          | A     | D     | D      | A     | С     | E     | С     |
| Approach Delay          |       | 43.2        |      |       | 33.4       |       |       | 32.4   |       |       | 38.1  |       |
| Approach LOS            |       | D           |      |       | С          |       |       | С      |       |       | D     |       |
| Queue Length 50th (m)   | 26.3  | 84.7        |      | 40.7  | 109.0      | 0.0   | 25.6  | 65.8   | 0.0   | 25.4  | 83.7  | 31.8  |
| Queue Length 95th (m)   | 38.2  | 118.6       |      | 57.3  | #160.3     | 17.4  | 37.0  | 86.6   | 18.9  | 36.7  | 107.3 | 62.6  |
| Internal Link Dist (m)  |       | 871.0       |      |       | 1427.4     |       |       | 1305.6 |       |       | 301.9 |       |
| Turn Bay Length (m)     | 50.0  |             |      | 90.0  |            | 225.0 | 30.0  |        | 60.0  | 50.0  |       | 275.0 |
| Base Capacity (vph)     | 352   | 1166        |      | 605   | 1489       | 775   | 226   | 715    | 742   | 288   | 716   | 752   |
| Starvation Cap Reductn  | n 0   | 0           |      | 0     | 0          | 0     | 0     | 0      | 0     | 0     | 0     | 0     |
| Spillback Cap Reductn   | 0     | 0           |      | 0     | 0          | 0     | 0     | 0      | 0     | 0     | 0     | 0     |
| Storage Cap Reductn     | 0     | 0           |      | 0     | 0          | 0     | 0     | 0      | 0     | 0     | 0     | 0     |
| Reduced v/c Ratio       | 0.55  | 0.64        |      | 0.52  | 0.66       | 0.26  | 0.60  | 0.38   | 0.32  | 0.47  | 0.46  | 0.51  |
| Intersection Summary    |       |             |      |       |            |       |       |        |       |       |       |       |

130 Huntmar Drive 02-28-2020 2019 Existing PM Dillon Consulting Limited

| Cycle Length: 130                                                   |                        |  |  |  |  |  |
|---------------------------------------------------------------------|------------------------|--|--|--|--|--|
| Actuated Cycle Length: 130                                          |                        |  |  |  |  |  |
| Offset: 0 (0%), Referenced to phase 2:EBT and 6:WBT, Start of Green |                        |  |  |  |  |  |
| Natural Cycle: 125                                                  |                        |  |  |  |  |  |
| Control Type: Actuated-Coordinated                                  |                        |  |  |  |  |  |
| Maximum v/c Ratio: 0.79                                             |                        |  |  |  |  |  |
| Intersection Signal Delay: 36.6                                     | Intersection LOS: D    |  |  |  |  |  |
| Intersection Capacity Utilization 80.0%                             | ICU Level of Service D |  |  |  |  |  |
| Analysis Period (min) 15                                            |                        |  |  |  |  |  |
| 95th percentile volume exceeds capacity, queue may be longer.       |                        |  |  |  |  |  |

Queue shown is maximum after two cycles.

| Splits and | Phases: | 3: Iber/Huntmar | & Hazeldean |
|------------|---------|-----------------|-------------|
|            |         |                 |             |

| <b>1</b> 01 |          | 103         | <b>↓</b> Ø4 |
|-------------|----------|-------------|-------------|
| 14.6 5      | 44.8 s   | 12.5 s      | 58.1 s      |
| ♪<br>Ø5     | ● Ø6 (R) | <b>1</b> 07 | 1 08        |
| 18.2 s      | 41.2 s   | 12.6 s      | 58 s        |

# Lanes, Volumes, Timings <u>6: Terry Fox & Palladium/Katimavik</u>

|                        | ٩         | <b>→</b>  | 7         | 1         | •         | 1         | 1         | t            | 1        | 1            | ŧ            | ~            |
|------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|--------------|----------|--------------|--------------|--------------|
| Lane Group             | EBL       | EBT       | EBR       | WBL       | WBT       | WBR       | NBL       | NBT          | NBR      | SBL          | SBT          | SBR          |
| Lane Configurations    | 3         | 1         | 1         | 1         | 1         | 1         | ሻሻ        | <b>^</b>     | 1        | ሻሻ           | <b>^</b>     | 1            |
| Traffic Volume (vph)   | 680       | 245       | 315       | 130       | 175       | 145       | 215       | 1080         | 95       | 115          | 1270         | 625          |
| Future Volume (vph)    | 680       | 245       | 315       | 130       | 175       | 145       | 215       | 1080         | 95       | 115          | 1270         | 625          |
| Confl. Peds. (#/hr)    | 5         |           | 5         | 5         |           | 5         | 5         |              | 5        | 5            |              | 5            |
| Confl. Bikes (#/hr)    |           |           |           |           |           |           |           |              |          |              |              |              |
| Peak Hour Factor       | 1.00      | 1.00      | 1.00      | 1.00      | 1.00      | 1.00      | 1.00      | 1.00         | 1.00     | 1.00         | 1.00         | 1.00         |
| Growth Factor          | 100%      | 100%      | 100%      | 100%      | 100%      | 100%      | 100%      | 100%         | 100%     | 100%         | 100%         | 100%         |
| Heavy Vehicles (%)     | 0%        | 0%        | 1%        | 5%        | 2%        | 0%        | 0%        | 2%           | 4%       | 0%           | 1%           | 0%           |
| Bus Blockages (#/hr)   | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0            | 0        | 0            | 0            | 0            |
| Parking (#/hr)         |           |           |           |           |           |           |           |              |          |              |              |              |
| Mid-Block Traffic (%)  |           | 0%        |           |           | 0%        |           |           | 0%           |          |              | 0%           |              |
| Shared Lane Traffic (% | )         |           |           |           |           |           |           |              |          |              |              |              |
| Lane Group Flow (vph)  | 680       | 245       | _ 315     | 130       | 175       | _ 145     | 215       | 1080         | 95       | 115          | 1270         | 625          |
| Turn Type              | Prot      | NA        | Perm      | Prot      | NA        | Perm      | Prot      | NA           | Perm     | Prot         | NA           | Perm         |
| Protected Phases       | 7         | 4         |           | 3         | 8         |           | 5         | 2            |          | 1            | 6            |              |
| Permitted Phases       | _         |           | 4         |           |           | 8         | _         |              | 2        |              |              | 6            |
| Detector Phase         | 7         | 4         | 4         | 3         | 8         | 8         | 5         | 2            | 2        | 1            | 6            | 6            |
| Switch Phase           |           |           |           |           |           |           |           |              |          |              |              |              |
| Minimum Initial (s)    | 5.0       | 10.0      | 10.0      | 5.0       | 10.0      | 10.0      | 5.0       | 10.0         | 10.0     | 5.0          | 10.0         | 10.0         |
| Minimum Split (s)      | 12.0      | 40.6      | 40.6      | 12.0      | 40.3      | 40.3      | 12.0      | 42.5         | 42.5     | 30.0         | 41.0         | 41.0         |
| Total Split (s)        | 34.7      | 45.3      | 45.3      | 29.7      | 40.3      | 40.3      | 16.0      | 45.0         | 45.0     | 30.0         | 59.0         | 59.0         |
| Total Split (%)        | 23.1%     | 30.2%     | 30.2%     | 19.8%     | 26.9%     | 26.9%     | 10.7%     | 30.0%        | 30.0%    | 20.0%        | 39.3%        | 39.3%        |
| Yellow Time (s)        | 3.6       | 3.6       | 3.6       | 3.3       | 3.3       | 3.3       | 4.0       | 4.0          | 4.0      | 4.0          | 4.0          | 4.0          |
| All-Red Lime (s)       | 2.0       | 2.0       | 2.0       | 2.0       | 2.0       | 2.0       | 2.0       | 2.0          | 2.0      | 2.0          | 2.0          | 2.0          |
| Lost Time Adjust (s)   | -2.0      | 0.0       | 0.0       | -2.0      | 0.0       | 0.0       | 0.0       | 0.0          | 0.0      | 0.0          | 0.0          | 0.0          |
| Total Lost Time (s)    | 3.0       | 5.6       | 5.6       | 3.3       | 5.3       | 5.3       | 0.0       | 6.0          | 6.0      | 0.0          | 6.0          | 6.0          |
| Lead/Lag               | Lead      | Lag       | Lag       | Lead      | Lag       | Lag       | Lead      | Lag          | Lag      | Lead         | Lag          | Lag          |
| Lead-Lag Optimize?     | Yes       | res<br>C Mex | C Max    | Yes          | res<br>C Mex | Yes<br>C Mex |
| Act Effet Creen (a)    | None      |           |           | None      | None      | None      |           | C-Max        | C-IVIAX  | None<br>10.6 | C-IVIAX      | C-IVIAX      |
| Act Elici Green (S)    | 0.21      | 0.22      | 0.22      | 19.2      | 21.2      | 21.2      | 15.4      | 00.3         | 00.3     | 0.07         | 01.4         | 01.4         |
| Actualed g/C Rallo     | 0.21      | 0.22      | 0.22      | 0.13      | 0.14      | 0.14      | 0.10      | 0.44         | 0.44     | 0.07         | 0.41         | 0.41         |
| Control Dolay          | 0.99      | 60.1      | 16.1      | 74.4      | 75.7      | 0.43      | 72.2      | 20.73        | 0.13     | 74.0         | 0.9Z         | 0.05         |
|                        | 90.5      | 00.1      | 10.1      | 74.4      | 13.1      | 0.0       | 13.3      | 0.0          | 1.1      | 74.0         | 0.0          | 7.5          |
|                        | 0.0       | 60.1      | 16.1      | 74.4      | 75.7      | 11.0      | 73.3      | 30.0         | 0.0      | 74.0         | 53.3         | 7.5          |
|                        | 90.5<br>F | 00.1      | 10.1<br>B | /4.4<br>E | 73.7<br>F | 11.0<br>B | 73.3<br>F |              | Ι.Ι<br>Δ | 74.0<br>E    | -<br>л       | Λ.5          |
| Approach Delay         | L         | 65.6      | U         | <b>-</b>  | 54 5      | D         | <b>-</b>  | 42.0         | ~        | <b>-</b>     | 40.2         | ~            |
| Approach LOS           |           | 00.0<br>F |           |           | 04.0<br>D |           |           | 42.0<br>D    |          |              | 40.2<br>D    |              |
| Oueue Length 50th (m)  | 110.6     | 70.5      | 15.8      | 30.2      | 53 5      | 0.0       | 33 5      | 143.1        | 0.0      | 18 1         | 197.0        | 8.0          |
| Queue Length 95th (m)  | #152 Q    | 97.1      | 47.1      | 59.2      | 73.9      | 18.3      | #52.2     | #213.6       | 2.5      | 28.6         | #274.2       | 48.6         |
| Internal Link Dist (m) | #102.0    | 1802.0    | 77.1      | 00.0      | 304.5     | 10.0      | #JZ.Z     | 406.9        | 2.0      | 20.0         | 280.2        | 40.0         |
| Turn Bay Length (m)    | 100.0     | 1002.0    |           | 115.0     | 004.0     | 115.0     | 240.0     | 400.5        | 115.0    | 70.0         | 200.2        | 190.0        |
| Base Capacity (vph)    | 687       | 476       | 580       | 286       | 411       | 463       | 341       | 1481         | 718      | 530          | 1386         | 958          |
| Starvation Can Reductr |           | 0         | 000       | 200       | 0         | 0         | 0         | 0            | 0        | 000          | 000          | 000          |
| Spillback Can Reductn  | . 0       | 0         | 0         | 0         | 0         | 0         | 0         | 0            | 0        | 0            | 0            | 0            |
| Storage Can Reductn    | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0            | 0        | 0            | 0            | 0            |
| Reduced v/c Ratio      | 0 99      | 0.51      | 0.54      | 0 45      | 0 43      | 0.31      | 0.63      | 0 73         | 0 13     | 0 22         | 0.92         | 0.65         |
| Intersection Summary   | 0.00      | 0.01      | 0.01      | 0.10      | 0.10      | 0.01      | 0.00      | 0.70         | 0.10     | 0.22         | 0.02         | 0.00         |

130 Huntmar Drive 02-28-2020 2019 Existing PM Dillon Consulting Limited

#### Lanes, Volumes, Timings <u>6: Terry Fox & Palladium/Katimavik</u>

| Cycle Length: 150                             |                                               |  |
|-----------------------------------------------|-----------------------------------------------|--|
| Actuated Cycle Length: 150                    |                                               |  |
| Offset: 0 (0%), Referenced to phase 2:NBT an  | nd 6:SBT, Start of Green, Master Intersection |  |
| Natural Cycle: 150                            |                                               |  |
| Control Type: Actuated-Coordinated            |                                               |  |
| Maximum v/c Ratio: 0.99                       |                                               |  |
| Intersection Signal Delay: 48.2               | Intersection LOS: D                           |  |
| Intersection Capacity Utilization 94.1%       | ICU Level of Service F                        |  |
| Analysis Period (min) 15                      |                                               |  |
| # 95th percentile volume exceeds capacity, of | queue may be longer.                          |  |

Queue shown is maximum after two cycles.

Splits and Phases: 6: Terry Fox & Palladium/Katimavik

| ØI            | Ø2 (R) | <b>1</b> 03 | <b>**</b> 04 |  |
|---------------|--------|-------------|--------------|--|
| 30 s          | 45 s   | 29.7 s      | 45.3 s       |  |
| <b>1</b> Ø5 ₽ | Ø6 (R) | ▲ Ø7        | Ø8           |  |
| 16 s 59 s     |        | 34,7 s      | 40.3 s       |  |

## Lanes, Volumes, Timings 8: Huntmar & Palladium

|                         | مر    | -           | 7    | 1     | ←           | •    | 1     | t     | 1     | 1     | ŧ     | ~     |
|-------------------------|-------|-------------|------|-------|-------------|------|-------|-------|-------|-------|-------|-------|
| Lane Group              | EBL   | EBT         | EBR  | WBL   | WBT         | WBR  | NBL   | NBT   | NBR   | SBL   | SBT   | SBR   |
| Lane Configurations     | 3     | <b>≜t</b> ₀ |      | 3     | <b>≜</b> 16 |      | 1     | 4     | 1     | 1     | 4     | 1     |
| Traffic Volume (vph)    | 25    | 140         | 420  | 155   | 395         | 110  | 215   | 190   | 70    | 80    | 280   | 85    |
| Future Volume (vph)     | 25    | 140         | 420  | 155   | 395         | 110  | 215   | 190   | 70    | 80    | 280   | 85    |
| Confl. Peds. (#/hr)     | 5     |             | 5    | 5     |             | 5    | 5     |       | 5     | 5     |       | 5     |
| Confl. Bikes (#/hr)     |       |             |      |       |             |      |       |       |       |       |       |       |
| Peak Hour Factor        | 1.00  | 1.00        | 1.00 | 1.00  | 1.00        | 1.00 | 1.00  | 1.00  | 1.00  | 1.00  | 1.00  | 1.00  |
| Growth Factor           | 100%  | 100%        | 100% | 100%  | 100%        | 100% | 100%  | 100%  | 100%  | 100%  | 100%  | 100%  |
| Heavy Vehicles (%)      | 12%   | 0%          | 1%   | 1%    | 0%          | 0%   | 1%    | 1%    | 0%    | 1%    | 2%    | 1%    |
| Bus Blockages (#/hr)    | 0     | 0           | 0    | 0     | 0           | 0    | 0     | 0     | 0     | 0     | 0     | 0     |
| Parking (#/hr)          |       |             |      |       |             |      |       |       |       |       |       |       |
| Mid-Block Traffic (%)   |       | 0%          |      |       | 0%          |      |       | 0%    |       |       | 0%    |       |
| Shared Lane Traffic (%) | )     |             |      |       |             |      |       |       |       |       |       |       |
| Lane Group Flow (vph)   | 25    | 560         | 0    | 155   | 505         | 0    | 215   | 190   | 70    | 80    | 280   | 85    |
| Turn Type               | pm+pt | NA          |      | pm+pt | NA          |      | Perm  | NA    | Perm  | Perm  | NA    | Perm  |
| Protected Phases        | 7     | 4           |      | 3     | 8           |      |       | 2     |       |       | 6     |       |
| Permitted Phases        | 4     |             |      | 8     |             |      | 2     |       | 2     | 6     |       | 6     |
| Detector Phase          | 7     | 4           |      | 3     | 8           |      | 2     | 2     | 2     | 6     | 6     | 6     |
| Switch Phase            |       |             |      |       |             |      |       |       |       |       |       |       |
| Minimum Initial (s)     | 5.0   | 10.0        |      | 5.0   | 10.0        |      | 10.0  | 10.0  | 10.0  | 10.0  | 10.0  | 10.0  |
| Minimum Split (s)       | 12.5  | 43.0        |      | 12.5  | 43.0        |      | 42.3  | 42.3  | 42.3  | 42.3  | 42.3  | 42.3  |
| Total Split (s)         | 14.9  | 43.0        |      | 15.0  | 43.1        |      | 72.0  | 72.0  | 72.0  | 72.0  | 72.0  | 72.0  |
| Total Split (%)         | 11.5% | 33.1%       |      | 11.5% | 33.2%       |      | 55.4% | 55.4% | 55.4% | 55.4% | 55.4% | 55.4% |
| Yellow Time (s)         | 4.0   | 4.0         |      | 4.0   | 4.0         |      | 3.3   | 3.3   | 3.3   | 3.3   | 3.3   | 3.3   |
| All-Red Time (s)        | 2.0   | 2.0         |      | 2.0   | 2.0         |      | 2.0   | 2.0   | 2.0   | 2.0   | 2.0   | 2.0   |
| Lost Time Adjust (s)    | 0.0   | 0.0         |      | 0.0   | 0.0         |      | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   |
| Total Lost Time (s)     | 6.0   | 6.0         |      | 6.0   | 6.0         |      | 5.3   | 5.3   | 5.3   | 5.3   | 5.3   | 5.3   |
| Lead/Lag                | Lead  | Lag         |      | Lead  | Lag         |      |       |       |       |       |       |       |
| Lead-Lag Optimize?      | Yes   | Yes         |      | Yes   | Yes         |      |       |       |       |       |       |       |
| Recall Mode             | None  | None        |      | None  | None        |      | C-Max | C-Max | C-Max | C-Max | C-Max | C-Max |
| Act Effct Green (s)     | 28.2  | 21.1        |      | 33.1  | 27.7        |      | 82.6  | 82.6  | 82.6  | 82.6  | 82.6  | 82.6  |
| Actuated g/C Ratio      | 0.22  | 0.16        |      | 0.25  | 0.21        |      | 0.64  | 0.64  | 0.64  | 0.64  | 0.64  | 0.64  |
| v/c Ratio               | 0.15  | 0.67        |      | 0.95  | 0.70        |      | 0.34  | 0.17  | 0.07  | 0.11  | 0.25  | 0.09  |
| Control Delay           | 31.7  | 15.6        |      | 95.3  | 49.8        |      | 21.4  | 17.6  | 8.8   | 12.5  | 12.9  | 3.2   |
| Queue Delay             | 0.0   | 0.0         |      | 0.0   | 0.0         |      | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   |
| Total Delay             | 31.7  | 15.6        |      | 95.3  | 49.8        |      | 21.4  | 17.6  | 8.8   | 12.5  | 12.9  | 3.2   |
| LOS                     | С     | В           |      | F     | D           |      | С     | В     | A     | В     | В     | A     |
| Approach Delay          |       | 16.3        |      |       | 60.5        |      |       | 18.0  |       |       | 11.0  |       |
| Approach LOS            |       | В           |      |       | E           |      |       | В     |       |       | В     |       |
| Queue Length 50th (m)   | 4.9   | 17.4        |      | 32.8  | 65.5        |      | 24.2  | 19.3  | 0.0   | 8.2   | 31.8  | 0.0   |
| Queue Length 95th (m)   | 10.2  | 31.8        |      | #57.8 | 75.3        |      | 73.1  | 57.7  | m14.8 | 20.5  | 62.3  | 8.5   |
| Internal Link Dist (m)  |       | 535.2       |      |       | 1802.0      |      |       | 357.2 |       |       | 231.7 |       |
| Turn Bay Length (m)     | 95.0  |             |      | 75.0  |             |      | 120.0 |       | 45.0  | 50.0  |       |       |
| Base Capacity (vph)     | 187   | 1138        |      | 164   | 961         |      | 630   | 1132  | 983   | 714   | 1121  | 976   |
| Starvation Cap Reductn  | 0     | 0           |      | 0     | 0           |      | 0     | 0     | 0     | 0     | 0     | 0     |
| Spillback Cap Reductn   | 0     | 0           |      | 0     | 0           |      | 0     | 0     | 0     | 0     | 0     | 0     |
| Storage Cap Reductn     | 0     | 0           |      | 0     | 0           |      | 0     | 0     | 0     | 0     | 0     | 0     |
| Reduced v/c Ratio       | 0.13  | 0.49        |      | 0.95  | 0.53        |      | 0.34  | 0.17  | 0.07  | 0.11  | 0.25  | 0.09  |
| Intersection Summary    |       |             |      |       |             |      |       |       |       |       |       |       |

130 Huntmar Drive 02-28-2020 2019 Existing PM Dillon Consulting Limited

| Cycle Length: 130                             |                                                               |  |  |  |  |  |
|-----------------------------------------------|---------------------------------------------------------------|--|--|--|--|--|
| Actuated Cycle Length: 130                    |                                                               |  |  |  |  |  |
| Offset: 0 (0%), Referenced to phase 2:NBTL a  | nd 6:SBTL, Start of Green                                     |  |  |  |  |  |
| Natural Cycle: 100                            |                                                               |  |  |  |  |  |
| Control Type: Actuated-Coordinated            |                                                               |  |  |  |  |  |
| Maximum v/c Ratio: 0.95                       |                                                               |  |  |  |  |  |
| Intersection Signal Delay: 29.0               | Intersection LOS: C                                           |  |  |  |  |  |
| Intersection Capacity Utilization 92.0%       | ICU Level of Service F                                        |  |  |  |  |  |
| Analysis Period (min) 15                      |                                                               |  |  |  |  |  |
| # 95th percentile volume exceeds capacity, of | 95th percentile volume exceeds capacity, queue may be longer. |  |  |  |  |  |
| Queue shown is maximum after two cycles.      |                                                               |  |  |  |  |  |
| m Volume for 95th percentile queue is meter   | ed by upstream signal.                                        |  |  |  |  |  |

Splits and Phases: 8: Huntmar & Palladium

|          | <b>√</b> Ø3 | -04    |
|----------|-------------|--------|
| 72 5     | 15 s        | 43 32  |
| € Ø6 (R) | ♪<br>Ø7     | ₹_Ø8   |
| 72.5     | 14.9 5      | 43.1 s |

# Lanes, Volumes, Timings 21: Huntmar & Maple Grove

|                         | مر    | -            | 7    | 1     | +      | 1    | 1        | t     | 1    | 5        | ŧ        | ~    |
|-------------------------|-------|--------------|------|-------|--------|------|----------|-------|------|----------|----------|------|
| Lane Group              | EBL   | EBT          | EBR  | WBL   | WBT    | WBR  | NBL      | NBT   | NBR  | SBL      | SBT      | SBR  |
| Lane Configurations     |       | 4            |      |       | 4      |      | 2        | et.   |      |          | 4        |      |
| Traffic Volume (vph)    | 90    | 85           | 65   | 135   | 145    | 30   | 95       | 455   | 100  | 35       | 660      | 195  |
| Future Volume (vph)     | 90    | 85           | 65   | 135   | 145    | 30   | 95       | 455   | 100  | 35       | 660      | 195  |
| Confl. Peds. (#/hr)     | 5     |              | 5    | 5     |        | 5    | 5        |       | 5    | 5        |          | 5    |
| Confl. Bikes (#/hr)     |       |              |      |       |        |      |          |       |      |          |          |      |
| Peak Hour Factor        | 1.00  | 1.00         | 1.00 | 1.00  | 1.00   | 1.00 | 1.00     | 1.00  | 1.00 | 1.00     | 1.00     | 1.00 |
| Growth Factor           | 100%  | 100%         | 100% | 100%  | 100%   | 100% | 100%     | 100%  | 100% | 100%     | 100%     | 100% |
| Heavy Vehicles (%)      | 0%    | 1%           | 0%   | 0%    | 0%     | 0%   | 2%       | 1%    | 0%   | 0%       | 1%       | 0%   |
| Bus Blockages (#/hr)    | 0     | 0            | 0    | 0     | 0      | 0    | 0        | 0     | 0    | 0        | 0        | 0    |
| Parking (#/hr)          |       |              |      |       |        |      |          |       |      |          |          |      |
| Mid-Block Traffic (%)   |       | 0%           |      |       | 0%     |      |          | 0%    |      |          | 0%       |      |
| Shared Lane Traffic (%) | )     |              |      |       |        |      |          |       |      |          |          |      |
| Lane Group Flow (vph)   | 0     | 240          | 0    | 0     | 310    | 0    | 95       | 555   | 0    | 0        | 890      | 0    |
| Turn Type               | Perm  | NA           |      | Perm  | NA     |      | Perm     | NA    |      | Perm     | NA       |      |
| Protected Phases        |       | 4            |      |       | 8      |      |          | 2     |      |          | 6        |      |
| Permitted Phases        | 4     |              |      | 8     |        |      | 2        |       |      | 6        |          |      |
| Detector Phase          | 4     | 4            |      | 8     | 8      |      | 2        | 2     |      | 6        | 6        |      |
| Switch Phase            |       |              |      |       |        |      |          |       |      |          |          |      |
| Minimum Initial (s)     | 10.0  | 10.0         |      | 10.0  | 10.0   |      | 10.0     | 10.0  |      | 10.0     | 10.0     |      |
| Minimum Split (s)       | 33.0  | 33.0         |      | 33.0  | 33.0   |      | 29.0     | 29.0  |      | 49.0     | 49.0     |      |
| Total Split (s)         | 61.0  | 61.0         |      | 61.0  | 61.0   |      | 69.0     | 69.0  |      | 69.0     | 69.0     |      |
| Total Split (%)         | 46.9% | 46.9%        |      | 46.9% | 46.9%  |      | 53.1%    | 53.1% |      | 53.1%    | 53.1%    |      |
| Yellow Lime (s)         | 3.0   | 3.0          |      | 3.0   | 3.0    |      | 3.3      | 3.3   |      | 3.3      | 3.3      |      |
| All-Red Time (s)        | 2.0   | 2.0          |      | 2.0   | 2.0    |      | 2.0      | 2.0   |      | 2.0      | 2.0      |      |
| Lost Time Adjust (s)    |       | 0.0          |      |       | 0.0    |      | 0.0      | 0.0   |      |          | 0.0      |      |
| Total Lost Time (s)     |       | 5.0          |      |       | 5.0    |      | 5.3      | 5.3   |      |          | 5.3      |      |
| Lead/Lag                |       |              |      |       |        |      |          |       |      |          |          |      |
| Lead-Lag Optimize?      |       |              |      |       |        |      | <u> </u> | 0.14  |      | <u> </u> | <u> </u> |      |
| Recall Mode             | None  | None         |      | None  | None   |      | C-Max    | C-Max |      | C-Max    | C-Max    |      |
| Act Effet Green (s)     |       | 37.3         |      |       | 37.3   |      | 82.4     | 82.4  |      |          | 82.4     |      |
| Actuated g/C Ratio      |       | 0.29         |      |       | 0.29   |      | 0.63     | 0.63  |      |          | 0.63     |      |
| V/C Ratio               |       | 0.65         |      |       | 0.87   |      | 0.30     | 0.51  |      |          | 0.84     |      |
| Control Delay           |       | 44.7         |      |       | 64.4   |      | 16.4     | 16.2  |      |          | 25.9     |      |
|                         |       |              |      |       | 0.0    |      | 0.0      | 0.0   |      |          | 0.0      |      |
|                         |       | 44.7         |      |       | 64.4   |      | 16.4     | 16.2  |      |          | 25.9     |      |
| LUS<br>Annraach Dalau   |       |              |      |       | E      |      | В        | 16 D  |      |          |          |      |
| Approach Delay          |       | 44.7         |      |       | 64.4   |      |          | 16.2  |      |          | 25.9     |      |
| Approach LOS            |       | 50 Z         |      |       | E 61 0 |      | 10.0     | 54 O  |      |          |          |      |
| Queue Length 50th (m)   |       | 52.1<br>70.2 |      |       | 01.0   |      | 10.9     | 122.4 |      | -        | 102.7    |      |
| Queue Lengin 95in (m)   |       | 12.3         |      |       | 0Z.0   |      | 28.2     | 132.4 |      | m        | #3ZZ.U   |      |
| Turn Roy Longth (m)     |       | 030.5        |      |       | 00.3   |      | 20.0     | 293.1 |      |          | 175.1    |      |
| Rece Canacity (upb)     |       | <b>E</b> 4 4 |      |       | 520    |      | 20.0     | 1000  |      |          | 1055     |      |
| Base Capacity (vpn)     |       | 544          |      |       | 532    |      | 320      | 1098  |      |          | 1055     |      |
| Starvation Cap Reductr  | I     | 0            |      |       | 0      |      | 0        | 0     |      |          | 0        |      |
| Storage Cap Reducth     |       | 0            |      |       | 0      |      | 0        | 0     |      |          | 0        |      |
| Boducod v/o Botio       |       | 0 4 4        |      |       | 0 50   |      | 0 20     | 0.51  |      |          | 0 0 4    |      |
|                         |       | 0.44         |      |       | 0.00   |      | 0.30     | 0.01  |      |          | 0.04     |      |
| Intersection Summary    |       |              |      |       |        |      |          |       |      |          |          |      |

130 Huntmar Drive 02-28-2020 2019 Existing PM Dillon Consulting Limited

| Cycl  | le Length: 130                                                |                        |  |  |  |  |
|-------|---------------------------------------------------------------|------------------------|--|--|--|--|
| Actu  | ated Cycle Length: 130                                        |                        |  |  |  |  |
| Offs  | et: 0 (0%), Referenced to phase 2:NBTL and 6:                 | SBTL, Start of Green   |  |  |  |  |
| Natu  | ural Cycle: 85                                                |                        |  |  |  |  |
| Con   | Control Type: Actuated-Coordinated                            |                        |  |  |  |  |
| Max   | Maximum v/c Ratio: 0.87                                       |                        |  |  |  |  |
| Inte  | rsection Signal Delay: 30.8                                   | Intersection LOS: C    |  |  |  |  |
| Inter | rsection Capacity Utilization 113.5%                          | ICU Level of Service H |  |  |  |  |
| Ana   | Analysis Period (min) 15                                      |                        |  |  |  |  |
| # 9   | 95th percentile volume exceeds capacity, queue may be longer. |                        |  |  |  |  |
| C     | Queue shown is maximum after two cycles.                      |                        |  |  |  |  |
| m     | Volume for 95th percentile queue is metered by                | / upstream signal.     |  |  |  |  |

#### Splits and Phases: 21: Huntmar & Maple Grove

| ¶        | -04  |
|----------|------|
| 69 \$    | 61 s |
| ₩ Ø6 (R) | ✓ Ø8 |
| 69 s     | 615  |

### Lanes, Volumes, Timings 31: Terry Fox & Maple Grove

|                        | ٩     | <b>→</b> | 7     | 1     | •     | 1    | 1     | t           | 1    | 1     | ŧ        | ~     |
|------------------------|-------|----------|-------|-------|-------|------|-------|-------------|------|-------|----------|-------|
| Lane Group             | EBL   | EBT      | EBR   | WBL   | WBT   | WBR  | NBL   | NBT         | NBR  | SBL   | SBT      | SBR   |
| Lane Configurations    | 1     | 4        | 1     | 1     | 1.    |      | 1     | <b>≜t</b> ₀ |      | 3     | <b>^</b> | 1     |
| Traffic Volume (vph)   | 130   | 30       | 280   | 15    | 25    | 35   | 170   | 1190        | 40   | 55    | 1545     | 125   |
| Future Volume (vph)    | 130   | 30       | 280   | 15    | 25    | 35   | 170   | 1190        | 40   | 55    | 1545     | 125   |
| Confl. Peds. (#/hr)    | 5     |          | 5     | 5     |       | 5    | 5     |             | 5    | 5     |          | 5     |
| Confl. Bikes (#/hr)    |       |          |       |       |       |      |       |             |      |       |          |       |
| Peak Hour Factor       | 1.00  | 1.00     | 1.00  | 1.00  | 1.00  | 1.00 | 1.00  | 1.00        | 1.00 | 1.00  | 1.00     | 1.00  |
| Growth Factor          | 100%  | 100%     | 100%  | 100%  | 100%  | 100% | 100%  | 100%        | 100% | 100%  | 100%     | 100%  |
| Heavy Vehicles (%)     | 3%    | 0%       | 1%    | 0%    | 0%    | 0%   | 3%    | 2%          | 0%   | 0%    | 1%       | 4%    |
| Bus Blockages (#/hr)   | 0     | 0        | 0     | 0     | 0     | 0    | 0     | 0           | 0    | 0     | 0        | 0     |
| Parking (#/hr)         |       |          |       |       |       |      |       |             |      |       |          |       |
| Mid-Block Traffic (%)  |       | 0%       |       |       | 0%    |      |       | 0%          |      |       | 0%       |       |
| Shared Lane Traffic (% | )     |          |       |       |       |      |       |             |      |       |          |       |
| Lane Group Flow (vph)  | 130   | 30       | 280   | 15    | 60    | 0    | 170   | 1230        | 0    | 55    | 1545     | 125   |
| Turn Type              | Perm  | NA       | Perm  | Perm  | NA    |      | pm+pt | NA          |      | pm+pt | NA       | Perm  |
| Protected Phases       |       | 4        |       |       | 8     |      | 5     | 2           |      | 1     | 6        |       |
| Permitted Phases       | 4     |          | 4     | 8     |       |      | 2     |             |      | 6     |          | 6     |
| Detector Phase         | 4     | 4        | 4     | 8     | 8     |      | 5     | 2           |      | 1     | 6        | 6     |
| Switch Phase           |       |          |       |       |       |      |       |             |      |       |          |       |
| Minimum Initial (s)    | 10.0  | 10.0     | 10.0  | 10.0  | 10.0  |      | 5.0   | 10.0        |      | 5.0   | 10.0     | 10.0  |
| Minimum Split (s)      | 42.0  | 42.0     | 42.0  | 42.0  | 42.0  |      | 12.0  | 43.0        |      | 12.0  | 43.0     | 43.0  |
| Total Split (s)        | 46.0  | 46.0     | 46.0  | 46.0  | 46.0  |      | 24.0  | 72.0        |      | 12.0  | 60.0     | 60.0  |
| Total Split (%)        | 35.4% | 35.4%    | 35.4% | 35.4% | 35.4% |      | 18.5% | 55.4%       |      | 9.2%  | 46.2%    | 46.2% |
| Yellow Time (s)        | 3.0   | 3.0      | 3.0   | 3.0   | 3.0   |      | 4.0   | 4.0         |      | 4.0   | 4.0      | 4.0   |
| All-Red Time (s)       | 2.0   | 2.0      | 2.0   | 2.0   | 2.0   |      | 2.0   | 2.0         |      | 2.0   | 2.0      | 2.0   |
| Lost Time Adjust (s)   | 0.0   | 0.0      | 0.0   | 0.0   | 0.0   |      | 0.0   | 0.0         |      | 0.0   | 0.0      | 0.0   |
| Total Lost Time (s)    | 5.0   | 5.0      | 5.0   | 5.0   | 5.0   |      | 6.0   | 6.0         |      | 6.0   | 6.0      | 6.0   |
| Lead/Lag               |       |          |       |       |       |      | Lead  | Lag         |      | Lead  | Lag      | Lag   |
| Lead-Lag Optimize?     |       |          |       |       |       |      | Yes   | Yes         |      | Yes   | Yes      | Yes   |
| Recall Mode            | None  | None     | None  | None  | None  |      | None  | C-Max       |      | None  | C-Max    | C-Max |
| Act Effct Green (s)    | 21.0  | 21.0     | 21.0  | 21.0  | 21.0  |      | 97.4  | 87.6        |      | 86.0  | 79.3     | 79.3  |
| Actuated g/C Ratio     | 0.16  | 0.16     | 0.16  | 0.16  | 0.16  |      | 0.75  | 0.67        |      | 0.66  | 0.61     | 0.61  |
| v/c Ratio              | 0.65  | 0.10     | 0.68  | 0.07  | 0.21  |      | 0.66  | 0.55        |      | 0.18  | 0.75     | 0.14  |
| Control Delay          | 63.5  | 42.5     | 22.4  | 41.5  | 22.3  |      | 28.7  | 14.5        |      | 8.4   | 23.8     | 4.2   |
| Queue Delay            | 0.0   | 0.0      | 0.0   | 0.0   | 0.0   |      | 0.0   | 0.0         |      | 0.0   | 0.0      | 0.0   |
| Total Delay            | 63.5  | 42.5     | 22.4  | 41.5  | 22.3  |      | 28.7  | 14.5        |      | 8.4   | 23.8     | 4.2   |
| LOS                    | E     | D        | С     | D     | С     |      | С     | В           |      | A     | С        | A     |
| Approach Delay         |       | 35.9     |       |       | 26.1  |      |       | 16.2        |      |       | 21.9     |       |
| Approach LOS           |       | D        |       |       | С     |      |       | В           |      |       | С        |       |
| Queue Length 50th (m)  | 34.4  | 7.2      | 20.6  | 3.5   | 5.9   |      | 15.1  | 82.5        |      | 3.0   | 140.3    | 0.8   |
| Queue Length 95th (m)  | m47.3 | m12.6    | m42.9 | 8.8   | 16.1  |      | 45.5  | 155.6       |      | 10.7  | #288.0   | 13.5  |
| Internal Link Dist (m) |       | 1246.0   |       |       | 796.0 |      |       | 547.8       |      |       | 406.9    |       |
| Turn Bay Length (m)    | 65.0  |          | 60.0  | 40.0  |       |      | 145.0 |             |      | 125.0 |          | 70.0  |
| Base Capacity (vph)    | 393   | 567      | 608   | 416   | 536   |      | 326   | 2249        |      | 303   | 2064     | 916   |
| Starvation Cap Reductr | 1 O   | 0        | 0     | 0     | 0     |      | 0     | 0           |      | 0     | 0        | 0     |
| Spillback Cap Reductn  | 0     | 0        | 0     | 0     | 0     |      | 0     | 0           |      | 0     | 0        | 0     |
| Storage Cap Reductn    | 0     | 0        | 0     | 0     | 0     |      | 0     | 0           |      | 0     | 0        | 0     |
| Reduced v/c Ratio      | 0.33  | 0.05     | 0.46  | 0.04  | 0.11  |      | 0.52  | 0.55        |      | 0.18  | 0.75     | 0.14  |
| Intersection Summary   |       |          |       |       |       |      |       |             |      |       |          |       |

130 Huntmar Drive 02-28-2020 2019 Existing PM Dillon Consulting Limited

| Cycle Length: 130                                 |                          |  |  |  |
|---------------------------------------------------|--------------------------|--|--|--|
| Actuated Cycle Length: 130                        |                          |  |  |  |
| Offset: 112 (86%), Referenced to phase 2:NBTL and | I 6:SBTL, Start of Green |  |  |  |
| Natural Cycle: 100                                |                          |  |  |  |
| Control Type: Actuated-Coordinated                |                          |  |  |  |
| Maximum v/c Ratio: 0.75                           |                          |  |  |  |
| Intersection Signal Delay: 21.5                   | Intersection LOS: C      |  |  |  |
| Intersection Capacity Utilization 87.4%           | ICU Level of Service E   |  |  |  |
| Analysis Period (min) 15                          |                          |  |  |  |
| # 95th percentile volume exceeds capacity, queue  | may be longer.           |  |  |  |
| Queue shown is maximum after two cycles.          |                          |  |  |  |
| m Volume for 95th percentile queue is metered by  | upstream signal.         |  |  |  |

Splits and Phases: 31: Terry Fox & Maple Grove



| Intersection                    |         |       |       |       |       |     |
|---------------------------------|---------|-------|-------|-------|-------|-----|
| Intersection Delay, s/vel       | n 9.9   |       |       |       |       |     |
| Intersection LOS                | А       |       |       |       |       |     |
| Approach                        | EB      |       | WB    | NB    |       | SB  |
| Entry Lanes                     | 1       |       | 1     | 1     |       | 1   |
| <b>Conflicting Circle Lanes</b> | 1       |       | 1     | 1     |       | 1   |
| Adj Approach Flow, veh          | /h 50   |       | 80    | 650   |       | 795 |
| Demand Flow Rate, veh           | ı/h 54  |       | 81    | 656   |       | 804 |
| Vehicles Circulating, veh       | n/h 849 |       | 646   | 32    |       | 131 |
| Vehicles Exiting, veh/h         | 86      |       | 42    | 870   | -     | 596 |
| Ped Vol Crossing Leg, #         | ‡/h 5   |       | 5     | 5     |       | 5   |
| Ped Cap Adj                     | 0.999   |       | 0.999 | 0.999 | 0.    | 999 |
| Approach Delay, s/veh           | 7.8     |       | 6.3   | 7.8   | 1     | 2.2 |
| Approach LOS                    | A       |       | А     | А     |       | В   |
| Lane                            | Left    | Left  |       | Left  | Left  |     |
| Designated Moves                | LTR     | LTR   |       | LTR   | LTR   |     |
| Assumed Moves                   | LTR     | LTR   |       | LTR   | LTR   |     |
| RT Channelized                  |         |       |       |       |       |     |
| Lane Util                       | 1.000   | 1.000 |       | 1.000 | 1.000 |     |
| Follow-Up Headway, s            | 2.609   | 2.609 |       | 2.609 | 2.609 |     |
| Critical Headway, s             | 4.976   | 4.976 |       | 4.976 | 4.976 |     |
| Entry Flow, veh/h               | 54      | 81    |       | 656   | 804   |     |
| Cap Entry Lane, veh/h           | 580     | 714   |       | 1336  | 1207  |     |
| Entry HV Adj Factor             | 0.932   | 0.988 |       | 0.991 | 0.989 |     |
| Flow Entry, veh/h               | 50      | 80    |       | 650   | 795   |     |
| Cap Entry, veh/h                | 541     | 705   |       | 1323  | 1193  |     |
| V/C Ratio                       | 0.093   | 0.114 |       | 0.492 | 0.666 |     |
| Control Delay, s/veh            | 7.8     | 6.3   |       | 7.8   | 12.2  |     |
| LOS                             | A       | А     |       | А     | В     |     |
| 95th %tile Queue, veh           | 0       | 0     |       | 3     | 5     |     |

# Lanes, Volumes, Timings 3: Iber/Huntmar & Hazeldean

|                         | ٩     | <b>→</b>    | 7    | 1     | •          | 1     | 1     | t      | 1     | 5     | ŧ     | ~     |
|-------------------------|-------|-------------|------|-------|------------|-------|-------|--------|-------|-------|-------|-------|
| Lane Group              | EBL   | EBT         | EBR  | WBL   | WBT        | WBR   | NBL   | NBT    | NBR   | SBL   | SBT   | SBR   |
| Lane Configurations     | 2     | <b>≜t</b> a |      | 27    | <b>*</b> * | 1     | 3     | 4      | 1     | 3     | 4     | 1     |
| Traffic Volume (vph)    | 225   | 750         | 120  | 180   | 445        | 120   | 55    | 280    | 275   | 140   | 275   | 125   |
| Future Volume (vph)     | 225   | 750         | 120  | 180   | 445        | 120   | 55    | 280    | 275   | 140   | 275   | 125   |
| Confl. Peds. (#/hr)     | 5     |             | 5    | 5     |            | 5     | 5     |        | 5     | 5     |       | 5     |
| Confl. Bikes (#/hr)     |       |             |      |       |            |       |       |        |       |       |       |       |
| Peak Hour Factor        | 1.00  | 1.00        | 1.00 | 1.00  | 1.00       | 1.00  | 1.00  | 1.00   | 1.00  | 1.00  | 1.00  | 1.00  |
| Growth Factor           | 100%  | 100%        | 100% | 100%  | 100%       | 100%  | 100%  | 100%   | 100%  | 100%  | 100%  | 100%  |
| Heavy Vehicles (%)      | 2%    | 2%          | 13%  | 3%    | 4%         | 2%    | 4%    | 0%     | 5%    | 3%    | 2%    | 0%    |
| Bus Blockages (#/hr)    | 0     | 0           | 0    | 0     | 0          | 0     | 0     | 0      | 0     | 0     | 0     | 0     |
| Parking (#/hr)          |       |             |      |       |            |       |       |        |       |       |       |       |
| Mid-Block Traffic (%)   |       | 0%          |      |       | 0%         |       |       | 0%     |       |       | 0%    |       |
| Shared Lane Traffic (%) | )     |             |      |       |            |       |       |        |       |       |       |       |
| Lane Group Flow (vph)   | 225   | 870         | 0    | 180   | 445        | 120   | 55    | 280    | 275   | 140   | 275   | 125   |
| Turn Type               | Prot  | NA          |      | Prot  | NA         | Perm  | pm+pt | NA     | Perm  | pm+pt | NA    | Perm  |
| Protected Phases        | 5     | 2           |      | 1     | 6          |       | 3     | 8      |       | 7     | 4     |       |
| Permitted Phases        |       |             |      |       |            | 6     | 8     |        | 8     | 4     |       | 4     |
| Detector Phase          | 5     | 2           |      | 1     | 6          | 6     | 3     | 8      | 8     | 7     | 4     | 4     |
| Switch Phase            |       |             |      |       |            |       |       |        |       |       |       |       |
| Minimum Initial (s)     | 5.0   | 10.0        |      | 5.0   | 10.0       | 10.0  | 5.0   | 10.0   | 10.0  | 5.0   | 10.0  | 10.0  |
| Minimum Split (s)       | 12.5  | 38.6        |      | 12.5  | 38.6       | 38.6  | 12.5  | 58.0   | 58.0  | 12.5  | 41.3  | 41.3  |
| Total Split (s)         | 18.2  | 44.8        |      | 14.6  | 41.2       | 41.2  | 12.5  | 58.0   | 58.0  | 12.6  | 58.1  | 58.1  |
| Total Split (%)         | 14.0% | 34.5%       |      | 11.2% | 31.7%      | 31.7% | 9.6%  | 44.6%  | 44.6% | 9.7%  | 44.7% | 44.7% |
| Yellow Time (s)         | 3.6   | 3.6         |      | 3.6   | 3.6        | 3.6   | 3.0   | 3.3    | 3.3   | 3.0   | 3.3   | 3.3   |
| All-Red Time (s)        | 2.0   | 2.0         |      | 2.0   | 2.0        | 2.0   | 0.0   | 2.0    | 2.0   | 0.0   | 2.0   | 2.0   |
| Lost Time Adjust (s)    | 0.0   | 0.0         |      | 0.0   | 0.0        | 0.0   | 0.0   | 0.0    | 0.0   | 0.0   | 0.0   | 0.0   |
| Total Lost Time (s)     | 5.6   | 5.6         |      | 5.6   | 5.6        | 5.6   | 3.0   | 5.3    | 5.3   | 3.0   | 5.3   | 5.3   |
| Lead/Lag                | Lead  | Lag         |      | Lead  | Lag        | Lag   | Lead  | Lag    | Lag   | Lead  | Lag   | Lag   |
| Lead-Lag Optimize?      | Yes   | Yes         |      | Yes   | Yes        | Yes   | Yes   | Yes    | Yes   | Yes   | Yes   | Yes   |
| Recall Mode             | None  | C-Max       |      | None  | C-Max      | C-Max | None  | None   | None  | None  | None  | None  |
| Act Effct Green (s)     | 14.3  | 61.9        |      | 13.0  | 60.6       | 60.6  | 36.5  | 26.0   | 26.0  | 39.1  | 29.2  | 29.2  |
| Actuated g/C Ratio      | 0.11  | 0.48        |      | 0.10  | 0.47       | 0.47  | 0.28  | 0.20   | 0.20  | 0.30  | 0.22  | 0.22  |
| v/c Ratio               | 0.63  | 0.56        |      | 0.56  | 0.29       | 0.16  | 0.23  | 0.78   | 0.55  | 0.62  | 0.70  | 0.29  |
| Control Delay           | 63.2  | 27.3        |      | 62.3  | 23.7       | 4.9   | 31.8  | 63.7   | 9.6   | 45.0  | 56.3  | 8.1   |
| Queue Delay             | 0.0   | 0.0         |      | 0.0   | 0.0        | 0.0   | 0.0   | 0.0    | 0.0   | 0.0   | 0.0   | 0.0   |
| Total Delay             | 63.2  | 27.3        |      | 62.3  | 23.7       | 4.9   | 31.8  | 63.7   | 9.6   | 45.0  | 56.3  | 8.1   |
| LOS                     | E     | С           |      | E     | С          | A     | С     | E      | A     | D     | E     | A     |
| Approach Delay          |       | 34.6        |      |       | 30.0       |       |       | 36.4   |       |       | 42.2  |       |
| Approach LOS            |       | С           |      |       | С          |       |       | D      |       |       | D     |       |
| Queue Length 50th (m)   | 30.3  | 85.3        |      | 24.2  | 38.2       | 0.0   | 10.5  | 72.2   | 1.8   | 28.2  | 70.3  | 0.0   |
| Queue Length 95th (m)   | 43.0  | 124.9       |      | 35.8  | 60.1       | 13.1  | 19.1  | 97.1   | 25.0  | 41.8  | 95.6  | 15.7  |
| Internal Link Dist (m)  |       | 871.0       |      |       | 1427.4     |       |       | 1305.6 |       |       | 301.9 |       |
| Turn Bay Length (m)     | 50.0  |             |      | 90.0  |            | 225.0 | 30.0  |        | 60.0  | 50.0  |       | 275.0 |
| Base Capacity (vph)     | 368   | 1542        |      | 321   | 1532       | 750   | 256   | 729    | 738   | 225   | 716   | 684   |
| Starvation Cap Reductr  | n 0   | 0           |      | 0     | 0          | 0     | 0     | 0      | 0     | 0     | 0     | 0     |
| Spillback Cap Reductn   | 0     | 0           |      | 0     | 0          | 0     | 0     | 0      | 0     | 0     | 0     | 0     |
| Storage Cap Reductn     | 0     | 0           |      | 0     | 0          | 0     | 0     | 0      | 0     | 0     | 0     | 0     |
| Reduced v/c Ratio       | 0.61  | 0.56        |      | 0.56  | 0.29       | 0.16  | 0.21  | 0.38   | 0.37  | 0.62  | 0.38  | 0.18  |
| Intersection Summary    |       |             |      |       |            |       |       |        |       |       |       |       |

130 Huntmar Drive 02-06-2020 2024 Future AM Dillon Consulting Limited

| Cycle Length: 130                                                   |                        |  |  |  |  |
|---------------------------------------------------------------------|------------------------|--|--|--|--|
| Actuated Cycle Length: 130                                          |                        |  |  |  |  |
| Offset: 0 (0%), Referenced to phase 2:EBT and 6:WBT, Start of Green |                        |  |  |  |  |
| Natural Cycle: 125                                                  |                        |  |  |  |  |
| Control Type: Actuated-Coordinated                                  |                        |  |  |  |  |
| Maximum v/c Ratio: 0.78                                             |                        |  |  |  |  |
| Intersection Signal Delay: 35.2                                     | Intersection LOS: D    |  |  |  |  |
| Intersection Capacity Utilization 75.3%                             | ICU Level of Service D |  |  |  |  |
| Analysis Period (min) 15                                            |                        |  |  |  |  |

Splits and Phases: 3: Iber/Huntmar & Hazeldean

| <b>1</b> 01 |        | 103         | ◆ Ø4   |
|-------------|--------|-------------|--------|
| 14.6 s      | 44.8 s | 12.5 s      | 58.1 s |
| ♪<br>Ø5     | Ø6 (R) | <b>1</b> 07 | - Pas  |
| 18.2 s      | 41.2 s | 12.6 s      | 58 s   |

# Lanes, Volumes, Timings <u>6: Terry Fox & Palladium/Katimavik</u>

|                         | ٩     | <b>→</b> | 7     | 1     | •     | 1     | 1     | t        | 1     | 1     | ŧ        | ~      |
|-------------------------|-------|----------|-------|-------|-------|-------|-------|----------|-------|-------|----------|--------|
| Lane Group              | EBL   | EBT      | EBR   | WBL   | WBT   | WBR   | NBL   | NBT      | NBR   | SBL   | SBT      | SBR    |
| Lane Configurations     | 2     | 4        | 1     | 1     | 4     | 1     | 22    | <b>^</b> | 1     | 11    | <b>^</b> | 1      |
| Traffic Volume (vph)    | 285   | 60       | 125   | 60    | 105   | 155   | 380   | 1255     | 85    | 90    | 880      | 835    |
| Future Volume (vph)     | 285   | 60       | 125   | 60    | 105   | 155   | 380   | 1255     | 85    | 90    | 880      | 835    |
| Confl. Peds. (#/hr)     | 5     |          | 5     | 5     |       | 5     | 5     |          | 5     | 5     |          | 5      |
| Confl. Bikes (#/hr)     |       |          |       |       |       |       |       |          |       |       |          |        |
| Peak Hour Factor        | 1.00  | 1.00     | 1.00  | 1.00  | 1.00  | 1.00  | 1.00  | 1.00     | 1.00  | 1.00  | 1.00     | 1.00   |
| Growth Factor           | 100%  | 100%     | 100%  | 100%  | 100%  | 100%  | 100%  | 100%     | 100%  | 100%  | 100%     | 100%   |
| Heavy Vehicles (%)      | 5%    | 5%       | 3%    | 11%   | 5%    | 3%    | 0%    | 2%       | 12%   | 2%    | 5%       | 1%     |
| Bus Blockages (#/hr)    | 0     | 0        | 0     | 0     | 0     | 0     | 0     | 0        | 0     | 0     | 0        | 0      |
| Parking (#/hr)          |       |          |       |       |       |       |       |          |       |       |          |        |
| Mid-Block Traffic (%)   |       | 0%       |       |       | 0%    |       |       | 0%       |       |       | 0%       |        |
| Shared Lane Traffic (%) |       |          |       |       |       |       |       |          |       |       |          |        |
| Lane Group Flow (vph)   | 285   | 60       | 125   | 60    | 105   | 155   | 380   | 1255     | 85    | 90    | 880      | 835    |
| Turn Type               | Prot  | NA       | Perm  | Prot  | NA    | Perm  | Prot  | NA       | Perm  | Prot  | NA       | Perm   |
| Protected Phases        | 7     | 4        |       | 3     | 8     |       | 5     | 2        |       | 1     | 6        |        |
| Permitted Phases        |       |          | 4     |       |       | 8     |       |          | 2     |       |          | 6      |
| Detector Phase          | 7     | 4        | 4     | 3     | 8     | 8     | 5     | 2        | 2     | 1     | 6        | 6      |
| Switch Phase            |       |          |       |       |       |       |       |          |       |       |          |        |
| Minimum Initial (s)     | 5.0   | 10.0     | 10.0  | 5.0   | 10.0  | 10.0  | 5.0   | 10.0     | 10.0  | 5.0   | 10.0     | 10.0   |
| Minimum Split (s)       | 12.0  | 40.6     | 40.6  | 12.0  | 40.3  | 40.3  | 12.0  | 42.5     | 42.5  | 30.0  | 41.0     | 41.0   |
| Total Split (s)         | 12.0  | 40.6     | 40.6  | 12.0  | 40.6  | 40.6  | 21.0  | 47.4     | 47.4  | 30.0  | 56.4     | 56.4   |
| Total Split (%)         | 9.2%  | 31.2%    | 31.2% | 9.2%  | 31.2% | 31.2% | 16.2% | 36.5%    | 36.5% | 23.1% | 43.4%    | 43.4%  |
| Yellow Time (s)         | 3.6   | 3.6      | 3.6   | 3.3   | 3.3   | 3.3   | 4.0   | 4.0      | 4.0   | 4.0   | 4.0      | 4.0    |
| All-Red Time (s)        | 2.0   | 2.0      | 2.0   | 2.0   | 2.0   | 2.0   | 2.0   | 2.0      | 2.0   | 2.0   | 2.0      | 2.0    |
| Lost Time Adjust (s)    | -2.0  | 0.0      | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0      | 0.0   | 0.0   | 0.0      | 0.0    |
| Total Lost Time (s)     | 3.6   | 5.6      | 5.6   | 5.3   | 5.3   | 5.3   | 6.0   | 6.0      | 6.0   | 6.0   | 6.0      | 6.0    |
| Lead/Lag                | Lead  | Lag      | Lag   | Lead  | Lag   | Lag   | Lead  | Lag      | Lag   | Lead  | Lag      | Lag    |
| Lead-Lag Optimize?      | Yes   | Yes      | Yes   | Yes   | Yes   | Yes   | Yes   | Yes      | Yes   | Yes   | Yes      | Yes    |
| Recall Mode             | None  | None     | None  | None  | None  | None  | None  | C-Max    | C-Max | None  | C-Max    | C-Max  |
| Act Effct Green (s)     | 8.4   | 16.2     | 16.2  | 6.7   | 16.5  | 16.5  | 20.9  | 75.2     | 75.2  | 9.0   | 63.2     | 63.2   |
| Actuated g/C Ratio      | 0.06  | 0.12     | 0.12  | 0.05  | 0.13  | 0.13  | 0.16  | 0.58     | 0.58  | 0.07  | 0.49     | 0.49   |
| v/c Ratio               | 1.40  | 0.28     | 0.38  | 0.76  | 0.48  | 0.46  | 0.71  | 0.65     | 0.10  | 0.40  | 0.56     | 0.84   |
| Control Delay           | 252.5 | 53.2     | 7.7   | 110.4 | 58.2  | 8.9   | 70.9  | 15.5     | 0.4   | 62.7  | 26.5     | 20.3   |
| Queue Delay             | 0.0   | 0.0      | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0      | 0.0   | 0.0   | 0.0      | 0.0    |
| Total Delay             | 252.5 | 53.2     | 7.7   | 110.4 | 58.2  | 8.9   | 70.9  | 15.5     | 0.4   | 62.7  | 26.5     | 20.3   |
| LOS                     | F     | D        | A     | F     | E     | A     | E     | B        | A     | E     | C        | C      |
| Approach Delay          |       | 162.0    |       |       | 44.1  |       |       | 27.0     |       |       | 25.4     |        |
| Approach LOS            |       | H        |       | 40.0  | D     |       | = 4 0 | C        |       | 40.0  | C        | 70.0   |
| Queue Length 50th (m)   | ~53.9 | 13.5     | 0.0   | 16.3  | 27.5  | 0.0   | 54.6  | 54.2     | 0.0   | 12.2  | 83.1     | /8.0   |
| Queue Length 95th (m)   | #84.5 | 22.3     | 9.0   | #41.6 | 39.7  | 13.7  | #/8.8 | 144.6    | m0.8  | 20.9  | 128.4    | #205.0 |
| Internal Link Dist (m)  | 400.0 | 1802.0   |       | 445.0 | 304.5 | 445.0 | 040.0 | 406.9    | 445.0 | 70.0  | 280.2    | 400.0  |
| Turn Bay Length (m)     | 100.0 | 101      | 540   | 115.0 | 405   | 115.0 | 240.0 | 4000     | 115.0 | 70.0  | 4504     | 190.0  |
| Base Capacity (vph)     | 204   | 461      | 519   | 79    | 465   | 522   | 534   | 1939     | 847   | 600   | 1584     | 991    |
| Starvation Cap Reductn  | 0     | 0        | 0     | 0     | 0     | 0     | 0     | 0        | 0     | 0     | 0        | 0      |
| Spillback Cap Reducth   | 0     | 0        | 0     | 0     | 0     | 0     | 0     | 0        | 0     | 0     | 0        | 0      |
| Storage Cap Reductn     | 0     | 0        | 0     | 0 70  | 0     | 0     | 0     | 0        | 0     | 0     | 0        | 0      |
| Reduced V/C Ratio       | 1.40  | 0.13     | 0.24  | 0.76  | 0.23  | 0.30  | 0.71  | 0.65     | 0.10  | 0.15  | 0.56     | 0.84   |
| Intersection Summary    |       |          |       |       |       |       |       |          |       |       |          |        |

130 Huntmar Drive 02-06-2020 2024 Future AM Dillon Consulting Limited

| Су   | cle Length: 130                                               |                                         |  |  |  |  |  |
|------|---------------------------------------------------------------|-----------------------------------------|--|--|--|--|--|
| Act  | tuated Cycle Length: 130                                      |                                         |  |  |  |  |  |
| Off  | fset: 0 (0%), Referenced to phase 2:NBT and 6:SI              | 3T, Start of Green, Master Intersection |  |  |  |  |  |
| Na   | tural Cycle: 150                                              |                                         |  |  |  |  |  |
| Со   | ntrol Type: Actuated-Coordinated                              |                                         |  |  |  |  |  |
| Ma   | Maximum v/c Ratio: 1.40                                       |                                         |  |  |  |  |  |
| Inte | ersection Signal Delay: 42.3                                  | Intersection LOS: D                     |  |  |  |  |  |
| Inte | ersection Capacity Utilization 92.1%                          | ICU Level of Service F                  |  |  |  |  |  |
| An   | alysis Period (min) 15                                        |                                         |  |  |  |  |  |
| ~    | Volume exceeds capacity, queue is theoretically               | infinite.                               |  |  |  |  |  |
|      | Queue shown is maximum after two cycles.                      |                                         |  |  |  |  |  |
| #    | 95th percentile volume exceeds capacity, queue may be longer. |                                         |  |  |  |  |  |
|      | Queue shown is maximum after two cycles.                      |                                         |  |  |  |  |  |
| m    | Volume for 95th percentile queue is metered by                | upstream signal.                        |  |  |  |  |  |

Splits and Phases: 6: Terry Fox & Palladium/Katimavik



## Lanes, Volumes, Timings 8: Huntmar & Palladium

|                         | ٩     | -           | 7    | 1     | •           | 1    | 1      | t     | 1     | 4     | ŧ     | ~     |
|-------------------------|-------|-------------|------|-------|-------------|------|--------|-------|-------|-------|-------|-------|
| Lane Group              | EBL   | EBT         | EBR  | WBL   | WBT         | WBR  | NBL    | NBT   | NBR   | SBL   | SBT   | SBR   |
| Lane Configurations     | 3     | <b>≜t</b> ₀ |      | 3     | <b>≜</b> 16 |      | 1      | 4     | 1     | 3     | 4     | 1     |
| Traffic Volume (vph)    | 35    | 185         | 225  | 60    | 90          | 40   | 455    | 315   | 185   | 95    | 175   | 50    |
| Future Volume (vph)     | 35    | 185         | 225  | 60    | 90          | 40   | 455    | 315   | 185   | 95    | 175   | 50    |
| Confl. Peds. (#/hr)     | 5     |             | 5    | 5     |             | 5    | 5      |       | 5     | 5     |       | 5     |
| Confl. Bikes (#/hr)     |       |             |      |       |             |      |        |       |       |       |       |       |
| Peak Hour Factor        | 1.00  | 1.00        | 1.00 | 1.00  | 1.00        | 1.00 | 1.00   | 1.00  | 1.00  | 1.00  | 1.00  | 1.00  |
| Growth Factor           | 100%  | 100%        | 100% | 100%  | 100%        | 100% | 100%   | 100%  | 100%  | 100%  | 100%  | 100%  |
| Heavy Vehicles (%)      | 0%    | 3%          | 2%   | 7%    | 1%          | 0%   | 0%     | 1%    | 1%    | 2%    | 4%    | 2%    |
| Bus Blockages (#/hr)    | 0     | 0           | 0    | 0     | 0           | 0    | 0      | 0     | 0     | 0     | 0     | 0     |
| Parking (#/hr)          |       |             |      |       |             |      |        |       |       |       |       |       |
| Mid-Block Traffic (%)   |       | 0%          |      |       | 0%          |      |        | 0%    |       |       | 0%    |       |
| Shared Lane Traffic (%) | )     |             |      |       |             |      |        |       |       |       |       |       |
| Lane Group Flow (vph)   | 35    | 410         | 0    | 60    | 130         | 0    | 455    | 315   | 185   | 95    | 175   | 50    |
| Turn Type               | pm+pt | NA          |      | pm+pt | NA          |      | Perm   | NA    | Perm  | Perm  | NA    | Perm  |
| Protected Phases        | 7     | 4           |      | 3     | 8           |      |        | 2     |       |       | 6     |       |
| Permitted Phases        | 4     |             |      | 8     |             |      | 2      |       | 2     | 6     |       | 6     |
| Detector Phase          | 7     | 4           |      | 3     | 8           |      | 2      | 2     | 2     | 6     | 6     | 6     |
| Switch Phase            |       |             |      |       |             |      |        |       |       |       |       |       |
| Minimum Initial (s)     | 5.0   | 10.0        |      | 5.0   | 10.0        |      | 10.0   | 10.0  | 10.0  | 10.0  | 10.0  | 10.0  |
| Minimum Split (s)       | 12.5  | 43.0        |      | 12.5  | 43.0        |      | 42.3   | 42.3  | 42.3  | 42.3  | 42.3  | 42.3  |
| Total Split (s)         | 16.9  | 43.0        |      | 17.0  | 43.1        |      | 70.0   | 70.0  | 70.0  | 70.0  | 70.0  | 70.0  |
| Total Split (%)         | 13.0% | 33.1%       |      | 13.1% | 33.2%       |      | 53.8%  | 53.8% | 53.8% | 53.8% | 53.8% | 53.8% |
| Yellow Time (s)         | 4.0   | 4.0         |      | 4.0   | 4.0         |      | 3.3    | 3.3   | 3.3   | 3.3   | 3.3   | 3.3   |
| All-Red Time (s)        | 2.0   | 2.0         |      | 2.0   | 2.0         |      | 2.0    | 2.0   | 2.0   | 2.0   | 2.0   | 2.0   |
| Lost Time Adjust (s)    | 0.0   | 0.0         |      | 0.0   | 0.0         |      | 0.0    | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   |
| Total Lost Time (s)     | 6.0   | 6.0         |      | 6.0   | 6.0         |      | 5.3    | 5.3   | 5.3   | 5.3   | 5.3   | 5.3   |
| Lead/Lag                | Lead  | Lag         |      | Lead  | Lag         |      |        |       |       |       |       |       |
| Lead-Lag Optimize?      | Yes   | Yes         |      | Yes   | Yes         |      |        |       |       |       |       |       |
| Recall Mode             | None  | None        |      | None  | None        |      | C-Max  | C-Max | C-Max | C-Max | C-Max | C-Max |
| Act Effct Green (s)     | 24.1  | 17.8        |      | 28.2  | 21.9        |      | 88.2   | 88.2  | 88.2  | 88.2  | 88.2  | 88.2  |
| Actuated g/C Ratio      | 0.19  | 0.14        |      | 0.22  | 0.17        |      | 0.68   | 0.68  | 0.68  | 0.68  | 0.68  | 0.68  |
| v/c Ratio               | 0.14  | 0.68        |      | 0.36  | 0.23        |      | 0.58   | 0.26  | 0.17  | 0.15  | 0.15  | 0.05  |
| Control Delay           | 33.8  | 28.1        |      | 31.6  | 24.0        |      | 22.6   | 14.6  | 4.8   | 11.8  | 10.7  | 1.6   |
| Queue Delay             | 0.0   | 0.0         |      | 0.0   | 0.0         |      | 0.0    | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   |
| Total Delay             | 33.8  | 28.1        |      | 31.6  | 24.0        |      | 22.6   | 14.6  | 4.8   | 11.8  | 10.7  | 1.6   |
| LOS                     | С     | С           |      | С     | С           |      | С      | В     | A     | В     | В     | A     |
| Approach Delay          |       | 28.5        |      |       | 26.4        |      |        | 16.5  |       |       | 9.6   |       |
| Approach LOS            |       | С           |      |       | С           |      |        | В     |       |       | A     |       |
| Queue Length 50th (m)   | 7.5   | 25.7        |      | 12.9  | 11.3        |      | 75.5   | 43.3  | 6.9   | 8.2   | 15.0  | 0.0   |
| Queue Length 95th (m)   | 12.5  | 35.2        |      | m10.0 | m13.0       | r    | n144.7 | m74.6 | m14.4 | 25.5  | 40.5  | 3.2   |
| Internal Link Dist (m)  |       | 535.2       |      |       | 1802.0      |      |        | 357.2 |       |       | 231.7 |       |
| Turn Bay Length (m)     | 95.0  |             |      | 75.0  |             |      | 120.0  |       | 45.0  | 50.0  |       |       |
| Base Capacity (vph)     | 289   | 1019        |      | 187   | 958         |      | 787    | 1209  | 1069  | 647   | 1174  | 1024  |
| Starvation Cap Reductn  | ı 0   | 0           |      | 0     | 0           |      | 0      | 0     | 0     | 0     | 0     | 0     |
| Spillback Cap Reductn   | 0     | 0           |      | 0     | 0           |      | 0      | 0     | 0     | 0     | 0     | 0     |
| Storage Cap Reductn     | 0     | 0           |      | 0     | 0           |      | 0      | 0     | 0     | 0     | 0     | 0     |
| Reduced v/c Ratio       | 0.12  | 0.40        |      | 0.32  | 0.14        |      | 0.58   | 0.26  | 0.17  | 0.15  | 0.15  | 0.05  |
| Intersection Summary    |       |             |      |       |             |      |        |       |       |       |       |       |

130 Huntmar Drive 02-06-2020 2024 Future AM Dillon Consulting Limited

| Cycle Length: 130                                                     |                                    |  |  |  |  |  |  |  |
|-----------------------------------------------------------------------|------------------------------------|--|--|--|--|--|--|--|
| Actuated Cycle Length: 130                                            |                                    |  |  |  |  |  |  |  |
| Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green |                                    |  |  |  |  |  |  |  |
| Natural Cycle: 100                                                    |                                    |  |  |  |  |  |  |  |
| Control Type: Actuated-Coordinated                                    | Control Type: Actuated-Coordinated |  |  |  |  |  |  |  |
| Maximum v/c Ratio: 0.68                                               |                                    |  |  |  |  |  |  |  |
| Intersection Signal Delay: 19.1                                       | Intersection LOS: B                |  |  |  |  |  |  |  |
| Intersection Capacity Utilization 96.5%                               | ICU Level of Service F             |  |  |  |  |  |  |  |
| Analysis Period (min) 15                                              |                                    |  |  |  |  |  |  |  |
| Volume for 95th percentile queue is metered by upstream signal.       |                                    |  |  |  |  |  |  |  |

Splits and Phases: 8: Huntmar & Palladium

| <1 Ø2 (R) | <b>√</b> Ø3 | 04     |
|-----------|-------------|--------|
| 70 s      | 17 s        | 43 s   |
| Ø6 (R)    | ▲ 07        | ₩Ø8    |
| 70 s      | 16.9 s      | 43.1 s |

# Lanes, Volumes, Timings 21: Huntmar & Maple Grove

|                         | ٩     | -      | 7    | 1        | +     | 1    | 1          | t     | 1    | 1     | ŧ      | ~    |
|-------------------------|-------|--------|------|----------|-------|------|------------|-------|------|-------|--------|------|
| Lane Group              | EBL   | EBT    | EBR  | WBL      | WBT   | WBR  | NBL        | NBT   | NBR  | SBL   | SBT    | SBR  |
| Lane Configurations     |       | 4      |      |          | 4     |      | 2          | 4     |      |       | 4      |      |
| Traffic Volume (vph)    | 280   | 150    | 60   | 70       | 60    | 80   | 35         | 540   | 105  | 20    | 325    | 55   |
| Future Volume (vph)     | 280   | 150    | 60   | 70       | 60    | 80   | 35         | 540   | 105  | 20    | 325    | 55   |
| Confl. Peds. (#/hr)     | 5     |        | 5    | 5        |       | 5    | 5          |       | 5    | 5     |        | 5    |
| Confl. Bikes (#/hr)     |       |        |      |          |       |      |            |       |      |       |        |      |
| Peak Hour Factor        | 1.00  | 1.00   | 1.00 | 1.00     | 1.00  | 1.00 | 1.00       | 1.00  | 1.00 | 1.00  | 1.00   | 1.00 |
| Growth Factor           | 100%  | 100%   | 100% | 100%     | 100%  | 100% | 100%       | 100%  | 100% | 100%  | 100%   | 100% |
| Heavy Vehicles (%)      | 1%    | 1%     | 5%   | 0%       | 7%    | 1%   | 21%        | 2%    | 3%   | 5%    | 3%     | 0%   |
| Bus Blockages (#/hr)    | 0     | 0      | 0    | 0        | 0     | 0    | 0          | 0     | 0    | 0     | 0      | 0    |
| Parking (#/hr)          |       |        |      |          |       |      |            |       |      |       |        |      |
| Mid-Block Traffic (%)   |       | 0%     |      |          | 0%    |      |            | 0%    |      |       | 0%     |      |
| Shared Lane Traffic (%) | )     |        |      |          |       |      |            |       |      |       |        |      |
| Lane Group Flow (vph)   | 0     | 490    | 0    | 0        | 210   | 0    | 35         | 645   | 0    | 0     | 400    | 0    |
| Turn Type               | Perm  | NA     |      | Perm     | NA    |      | Perm       | NA    |      | Perm  | NA     |      |
| Protected Phases        |       | 4      |      |          | 8     |      |            | 2     |      |       | 6      |      |
| Permitted Phases        | 4     |        |      | 8        |       |      | 2          |       |      | 6     |        |      |
| Detector Phase          | 4     | 4      |      | 8        | 8     |      | 2          | 2     |      | 6     | 6      |      |
| Switch Phase            |       |        |      |          |       |      |            |       |      |       |        |      |
| Minimum Initial (s)     | 10.0  | 10.0   |      | 10.0     | 10.0  |      | 10.0       | 10.0  |      | 10.0  | 10.0   |      |
| Minimum Split (s)       | 33.0  | 33.0   |      | 33.0     | 33.0  |      | 29.0       | 29.0  |      | 49.0  | 49.0   |      |
| Total Split (s)         | 61.0  | 61.0   |      | 61.0     | 61.0  |      | 69.0       | 69.0  |      | 69.0  | 69.0   |      |
| Total Split (%)         | 46.9% | 46.9%  |      | 46.9%    | 46.9% |      | 53.1%      | 53.1% |      | 53.1% | 53.1%  |      |
| Yellow Time (s)         | 3.0   | 3.0    |      | 3.0      | 3.0   |      | 3.3        | 3.3   |      | 3.3   | 3.3    |      |
| All-Red Time (s)        | 2.0   | 2.0    |      | 2.0      | 2.0   |      | 2.0        | 2.0   |      | 2.0   | 2.0    |      |
| Lost Time Adjust (s)    |       | 0.0    |      |          | 0.0   |      | 0.0        | 0.0   |      |       | 0.0    |      |
| Total Lost Time (s)     |       | 5.0    |      |          | 5.0   |      | 5.3        | 5.3   |      |       | 5.3    |      |
| Lead/Lag                |       |        |      |          |       |      |            |       |      |       |        |      |
| Lead-Lag Optimize?      |       |        |      | <u>.</u> |       |      | <u> </u>   |       |      |       |        |      |
| Recall Mode             | None  | None   |      | None     | None  |      | C-Max      | C-Max |      | C-Max | C-Max  |      |
| Act Effct Green (s)     |       | 52.9   |      |          | 52.9  |      | 66.8       | 66.8  |      |       | 66.8   |      |
| Actuated g/C Ratio      |       | 0.41   |      |          | 0.41  |      | 0.51       | 0.51  |      |       | 0.51   |      |
| v/c Ratio               |       | 1.01   |      |          | 0.40  |      | 0.10       | 0.73  |      |       | 0.49   |      |
| Control Delay           |       | 81.5   |      |          | 24.5  |      | 18.7       | 31.1  |      |       | 18.3   |      |
| Queue Delay             |       | 0.0    |      |          | 0.0   |      | 0.0        | 0.0   |      |       | 0.0    |      |
| Total Delay             |       | 81.5   |      |          | 24.5  |      | 18.7       | 31.1  |      |       | 18.3   |      |
| LOS<br>Anna de Dalas    |       |        |      |          | 04.5  |      | В          | 00 5  |      |       | B      |      |
| Approach Delay          |       | 81.5   |      |          | 24.5  |      |            | 30.5  |      |       | 18.3   |      |
| Approach LOS            |       |        |      |          |       |      | <b>F</b> 0 |       |      |       | B 40 7 |      |
| Queue Length 50th (m)   |       | 124.7  |      |          | 32.2  |      | 5.0        | 136.2 |      |       | 40.7   |      |
| Queue Length 95th (m)   |       | #200.1 |      |          | 49.2  |      | 11.6       | 188.7 |      |       | 89.0   |      |
| Internal Link Dist (m)  |       | 630.5  |      |          | 86.3  |      | 00.0       | 293.1 |      |       | 175.1  |      |
| Turn Bay Length (m)     |       | E40    |      |          | FFO   |      | 20.0       | 004   |      |       | 040    |      |
| Base Capacity (Vpn)     |       | 512    |      |          | 558   |      | 352        | 884   |      |       | 818    |      |
| Starvation Cap Reducth  |       | 0      |      |          | 0     |      | 0          | 0     |      |       | 0      |      |
| Spillback Cap Reducth   |       | 0      |      |          | 0     |      | 0          | 0     |      |       | 0      |      |
| Boduced v/a Reduction   |       | 0.06   |      |          | 0 20  |      | 0 10       | 0 73  |      |       | 0.40   |      |
| Reduced V/C Rallo       |       | 0.90   |      |          | 0.38  |      | 0.10       | 0.73  |      |       | 0.49   |      |
| Intersection Summary    |       |        |      |          |       |      |            |       |      |       |        |      |

130 Huntmar Drive 02-06-2020 2024 Future AM Dillon Consulting Limited

| Cycle Length: 130                                                     |                        |  |  |  |  |  |  |
|-----------------------------------------------------------------------|------------------------|--|--|--|--|--|--|
| Actuated Cycle Length: 130                                            |                        |  |  |  |  |  |  |
| Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green |                        |  |  |  |  |  |  |
| Natural Cycle: 85                                                     |                        |  |  |  |  |  |  |
| Control Type: Actuated-Coordinated                                    |                        |  |  |  |  |  |  |
| Maximum v/c Ratio: 1.01                                               |                        |  |  |  |  |  |  |
| Intersection Signal Delay: 41.1                                       | Intersection LOS: D    |  |  |  |  |  |  |
| Intersection Capacity Utilization 94.5%                               | ICU Level of Service F |  |  |  |  |  |  |
| Analysis Period (min) 15                                              |                        |  |  |  |  |  |  |
| 95th percentile volume exceeds capacity, queue may be longer.         |                        |  |  |  |  |  |  |

Queue shown is maximum after two cycles.

| Splits and Phases: | 21: Huntmar & Maple Grove |
|--------------------|---------------------------|
|--------------------|---------------------------|

|        | -04  |
|--------|------|
| 69 s   | 61's |
| Ø6 (R) | ₹ Ø8 |
| 69 s   | 615  |

### Lanes, Volumes, Timings 31: Terry Fox & Maple Grove

|                         | ٩     | <b>→</b> | 7     | 1     | +     | *    | 1     | t           | 1    | 1     | ŧ          | ~     |
|-------------------------|-------|----------|-------|-------|-------|------|-------|-------------|------|-------|------------|-------|
| Lane Group              | EBL   | EBT      | EBR   | WBL   | WBT   | WBR  | NBL   | NBT         | NBR  | SBL   | SBT        | SBR   |
| Lane Configurations     | 3     | 4        | 1     | 1     | 1.    |      | 3     | <b>≜</b> 1₀ |      | 3     | <b>*</b> * | 1     |
| Traffic Volume (vph)    | 245   | 45       | 180   | 35    | 30    | 50   | 205   | 1350        | 35   | 15    | 810        | 105   |
| Future Volume (vph)     | 245   | 45       | 180   | 35    | 30    | 50   | 205   | 1350        | 35   | 15    | 810        | 105   |
| Confl. Peds. (#/hr)     | 5     |          | 5     | 5     |       | 5    | 5     |             | 5    | 5     |            | 5     |
| Confl. Bikes (#/hr)     |       |          |       |       |       |      |       |             |      |       |            |       |
| Peak Hour Factor        | 1.00  | 1.00     | 1.00  | 1.00  | 1.00  | 1.00 | 1.00  | 1.00        | 1.00 | 1.00  | 1.00       | 1.00  |
| Growth Factor           | 100%  | 100%     | 100%  | 100%  | 100%  | 100% | 100%  | 100%        | 100% | 100%  | 100%       | 100%  |
| Heavy Vehicles (%)      | 8%    | 5%       | 9%    | 10%   | 7%    | 0%   | 7%    | 4%          | 6%   | 0%    | 7%         | 16%   |
| Bus Blockages (#/hr)    | 0     | 0        | 0     | 0     | 0     | 0    | 0     | 0           | 0    | 0     | 0          | 0     |
| Parking (#/hr)          |       |          |       |       |       |      |       |             |      |       |            |       |
| Mid-Block Traffic (%)   |       | 0%       |       |       | 0%    |      |       | 0%          |      |       | 0%         |       |
| Shared Lane Traffic (%) | )     |          |       |       |       |      |       |             |      |       |            |       |
| Lane Group Flow (vph)   | 245   | 45       | 180   | 35    | 80    | 0    | 205   | 1385        | 0    | 15    | 810        | 105   |
| Turn Type               | Perm  | NA       | Perm  | Perm  | NA    |      | pm+pt | NA          |      | pm+pt | NA         | Perm  |
| Protected Phases        |       | 4        |       |       | 8     |      | 5     | 2           |      |       | 6          |       |
| Permitted Phases        | 4     |          | 4     | 8     |       |      | 2     |             |      | 6     |            | 6     |
| Detector Phase          | 4     | 4        | 4     | 8     | 8     |      | 5     | 2           |      | 1     | 6          | 6     |
| Switch Phase            |       |          |       |       |       |      |       |             |      |       |            |       |
| Minimum Initial (s)     | 10.0  | 10.0     | 10.0  | 10.0  | 10.0  |      | 5.0   | 10.0        |      | 5.0   | 10.0       | 10.0  |
| Minimum Split (s)       | 42.0  | 42.0     | 42.0  | 42.0  | 42.0  |      | 12.0  | 43.0        |      | 12.0  | 43.0       | 43.0  |
| Total Split (s)         | 46.0  | 46.0     | 46.0  | 46.0  | 46.0  |      | 24.0  | 72.0        |      | 12.0  | 60.0       | 60.0  |
| Total Split (%)         | 35.4% | 35.4%    | 35.4% | 35.4% | 35.4% |      | 18.5% | 55.4%       |      | 9.2%  | 46.2%      | 46.2% |
| Yellow Time (s)         | 3.0   | 3.0      | 3.0   | 3.0   | 3.0   |      | 4.0   | 4.0         |      | 4.0   | 4.0        | 4.0   |
| All-Red Time (s)        | 2.0   | 2.0      | 2.0   | 2.0   | 2.0   |      | 2.0   | 2.0         |      | 2.0   | 2.0        | 2.0   |
| Lost Time Adjust (s)    | 0.0   | 0.0      | 0.0   | 0.0   | 0.0   |      | 0.0   | 0.0         |      | 0.0   | 0.0        | 0.0   |
| Total Lost Time (s)     | 5.0   | 5.0      | 5.0   | 5.0   | 5.0   |      | 6.0   | 6.0         |      | 6.0   | 6.0        | 6.0   |
| Lead/Lag                |       |          |       |       |       |      | Lead  | Lag         |      | Lead  | Lag        | Lag   |
| Lead-Lag Optimize?      |       |          |       |       |       |      | Yes   | Yes         |      | Yes   | Yes        | Yes   |
| Recall Mode             | None  | None     | None  | None  | None  |      | None  | C-Max       |      | None  | C-Max      | C-Max |
| Act Effct Green (s)     | 32.0  | 32.0     | 32.0  | 32.0  | 32.0  |      | 87.0  | 82.2        |      | 74.6  | 68.8       | 68.8  |
| Actuated g/C Ratio      | 0.25  | 0.25     | 0.25  | 0.25  | 0.25  |      | 0.67  | 0.63        |      | 0.57  | 0.53       | 0.53  |
| v/c Ratio               | 0.85  | 0.11     | 0.38  | 0.12  | 0.19  |      | 0.51  | 0.67        |      | 0.07  | 0.48       | 0.14  |
| Control Delay           | 71.1  | 35.2     | 7.8   | 35.8  | 16.3  |      | 14.1  | 20.0        |      | 13.5  | 18.6       | 5.5   |
| Queue Delay             | 0.0   | 0.0      | 0.0   | 0.0   | 0.0   |      | 0.0   | 0.0         |      | 0.0   | 0.0        | 0.0   |
| Total Delay             | 71.1  | 35.2     | 7.8   | 35.8  | 16.3  |      | 14.1  | 20.0        |      | 13.5  | 18.6       | 5.5   |
| LOS                     | E     | D        | Α     | D     | В     |      | В     | В           |      | В     | В          | A     |
| Approach Delay          |       | 43.4     |       |       | 22.2  |      |       | 19.2        |      |       | 17.0       |       |
| Approach LOS            |       | D        |       |       | С     |      |       | В           |      |       | В          |       |
| Queue Length 50th (m)   | 64.8  | 9.6      | 2.8   | 7.3   | 6.2   |      | 19.7  | 105.8       |      | 1.0   | 36.2       | 0.0   |
| Queue Length 95th (m)   | m82.2 | m15.0    | m12.5 | 15.2  | 17.8  |      | 37.2  | 196.0       |      | m4.0  | 77.0       | m13.3 |
| Internal Link Dist (m)  |       | 1246.0   |       |       | 796.0 |      |       | 547.8       |      |       | 406.9      |       |
| Turn Bay Length (m)     | 65.0  |          | 60.0  | 40.0  |       |      | 145.0 |             |      | 125.0 |            | 70.0  |
| Base Capacity (vph)     | 368   | 540      | 558   | 373   | 530   |      | 451   | 2069        |      | 213   | 1690       | 732   |
| Starvation Cap Reductr  | n 0   | 0        | 0     | 0     | 0     |      | 0     | 0           |      | 0     | 0          | 0     |
| Spillback Cap Reductn   | 0     | 0        | 0     | 0     | 0     |      | 0     | 0           |      | 0     | 0          | 0     |
| Storage Cap Reductn     | 0     | 0        | 0     | 0     | 0     |      | 0     | 0           |      | 0     | 0          | 0     |
| Reduced v/c Ratio       | 0.67  | 0.08     | 0.32  | 0.09  | 0.15  |      | 0.45  | 0.67        |      | 0.07  | 0.48       | 0.14  |
| Intersection Summary    |       |          |       |       |       |      |       |             |      |       |            |       |

130 Huntmar Drive 02-06-2020 2024 Future AM Dillon Consulting Limited

| Cycle Length: 130                                                        |                        |  |  |  |  |  |  |  |
|--------------------------------------------------------------------------|------------------------|--|--|--|--|--|--|--|
| Actuated Cycle Length: 130                                               |                        |  |  |  |  |  |  |  |
| Offset: 112 (86%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green |                        |  |  |  |  |  |  |  |
| Natural Cycle: 100                                                       |                        |  |  |  |  |  |  |  |
| Control Type: Actuated-Coordinated                                       |                        |  |  |  |  |  |  |  |
| Maximum v/c Ratio: 0.85                                                  |                        |  |  |  |  |  |  |  |
| Intersection Signal Delay: 22.3                                          | Intersection LOS: C    |  |  |  |  |  |  |  |
| Intersection Capacity Utilization 81.4%                                  | ICU Level of Service D |  |  |  |  |  |  |  |
| Analysis Period (min) 15                                                 |                        |  |  |  |  |  |  |  |
| <ul> <li>Volume for 95th percentile queue is metered by</li> </ul>       | upstream signal.       |  |  |  |  |  |  |  |

Splits and Phases: 31: Terry Fox & Maple Grove



Int Delay, s/veh 0.8

| Movomont            |         |      | NIDT | NDD  | CDI  | CBT  |
|---------------------|---------|------|------|------|------|------|
| Movement            | VVDL    | VDR  | INDI | NDK  | SDL  | SBI  |
| Lane Configuration  | าร 🏹    |      | - îs |      |      | ন    |
| Traffic Vol, veh/h  | 0       | 45   | 860  | 10   | 40   | 435  |
| Future Vol, veh/h   | 0       | 45   | 860  | 10   | 40   | 435  |
| Conflicting Peds, # | #/hr 5  | 5    | 0    | 5    | 5    | 0    |
| Sign Control        | Stop    | Stop | Free | Free | Free | Free |
| RT Channelized      | -       | None | -    | None | -    | None |
| Storage Length      | 0       | -    | -    | -    | -    | -    |
| Veh in Median Sto   | rage0,7 | # -  | 0    | -    | -    | 0    |
| Grade, %            | 0       | -    | 0    | -    | -    | 0    |
| Peak Hour Factor    | 100     | 100  | 100  | 100  | 100  | 100  |
| Heavy Vehicles, %   | 6 0     | 0    | 1    | 0    | 0    | 3    |
| Mvmt Flow           | 0       | 45   | 860  | 10   | 40   | 435  |

| Major/Minor      | Minor1            | Maj | jor1 | Ma | ajor2 |   |  |
|------------------|-------------------|-----|------|----|-------|---|--|
| Conflicting Flow | v Al11390         | 875 | 0    | 0  | 875   | 0 |  |
| Stage 1          | 870               | -   | -    | -  | -     | - |  |
| Stage 2          | 520               | -   | -    | -  | -     | - |  |
| Critical Hdwy    | 6.4               | 6.2 | -    | -  | 4.1   | - |  |
| Critical Hdwy S  | tg 1 5.4          | -   | -    | -  | -     | - |  |
| Critical Hdwy S  | tg 2 5.4          | -   | -    | -  | -     | - |  |
| Follow-up Hdwy   | / 3.5             | 3.3 | -    | -  | 2.2   | - |  |
| Pot Cap-1 Man    | euver158          | 351 | -    | -  | 780   | - |  |
| Stage 1          | 413               | -   | -    | -  | -     | - |  |
| Stage 2          | 601               | -   | -    | -  | -     | - |  |
| Platoon blocked  | d, %              |     | -    | -  |       | - |  |
| Mov Cap-1 Mar    | neuv <b>a</b> r46 | 348 | -    | -  | 777   | - |  |
| Mov Cap-2 Mar    | neuv <b>a</b> r46 | -   | -    | -  | -     | - |  |
| Stage 1          | 411               | -   | -    | -  | -     | - |  |
| Stage 2          | 558               | -   | -    | -  | -     | - |  |
|                  |                   |     |      |    |       |   |  |

| Approach    | WB                    | NB | SB  |  |
|-------------|-----------------------|----|-----|--|
| HCM Control | l Delay,1 <b>6</b> .9 | 0  | 0.8 |  |
| HCM LOS     | С                     |    |     |  |

| Minor Lane/Major Mvmt | NBT | NB₽ | VBLn1 | SBL   | SBT |
|-----------------------|-----|-----|-------|-------|-----|
| Capacity (veh/h)      | -   |     | 348   | 777   | -   |
| HCM Lane V/C Ratio    | -   |     | 0.129 | 0.051 | -   |
| HCM Control Delay (s) | -   |     | 16.9  | 9.9   | 0   |
| HCM Lane LOS          | -   |     | . С   | Α     | А   |
| HCM 95th %tile Q(veh) | -   |     | 0.4   | 0.2   | -   |

Int Delay, s/veh 1.2

| Movement            | WBL      | WBR  | NBT  | NBR  | SBL  | SBT  |
|---------------------|----------|------|------|------|------|------|
| Lane Configuration  | ns 🏹     |      | eî 👘 |      |      | र्भ  |
| Traffic Vol, veh/h  | 25       | 35   | 895  | 5    | 10   | 445  |
| Future Vol, veh/h   | 25       | 35   | 895  | 5    | 10   | 445  |
| Conflicting Peds, # | #/hr 5   | 5    | 0    | 5    | 5    | 0    |
| Sign Control        | Stop     | Stop | Free | Free | Free | Free |
| RT Channelized      | -        | None | -    | None | -    | None |
| Storage Length      | 0        | -    | -    | -    | -    | -    |
| Veh in Median Sto   | orage0,# | # -  | 0    | -    | -    | 0    |
| Grade, %            | 0        | -    | 0    | -    | -    | 0    |
| Peak Hour Factor    | 100      | 100  | 100  | 100  | 100  | 100  |
| Heavy Vehicles, %   | 60       | 0    | 1    | 0    | 0    | 3    |
| Mvmt Flow           | 25       | 35   | 895  | 5    | 10   | 445  |

| Major/Minor      | Minor1           | Maj | or1 | Ma | ajor2 |   |  |
|------------------|------------------|-----|-----|----|-------|---|--|
| Conflicting Flow | All1373          | 908 | 0   | 0  | 905   | 0 |  |
| Stage 1          | 903              | -   | -   | -  | -     | - |  |
| Stage 2          | 470              | -   | -   | -  | -     | - |  |
| Critical Hdwy    | 6.4              | 6.2 | -   | -  | 4.1   | - |  |
| Critical Hdwy St | g1 5.4           | -   | -   | -  | -     | - |  |
| Critical Hdwy St | g2 5.4           | -   | -   | -  | -     | - |  |
| Follow-up Hdwy   | 3.5              | 3.3 | -   | -  | 2.2   | - |  |
| Pot Cap-1 Mane   | uver162          | 336 | -   | -  | 760   | - |  |
| Stage 1          | 399              | -   | -   | -  | -     | - |  |
| Stage 2          | 633              | -   | -   | -  | -     | - |  |
| Platoon blocked  | , %              |     | -   | -  |       | - |  |
| Mov Cap-1 Man    | euv <b>e</b> r58 | 333 | -   | -  | 757   | - |  |
| Mov Cap-2 Man    | euv <b>e</b> t58 | -   | -   | -  | -     | - |  |
| Stage 1          | 397              | -   | -   | -  | -     | - |  |
| Stage 2          | 619              | -   | -   | -  | -     | - |  |
|                  |                  |     |     |    |       |   |  |

| Approach   | WB                   | NB | SB  |  |
|------------|----------------------|----|-----|--|
| HCM Contro | l Delay2 <b>6</b> .3 | 0  | 0.2 |  |
| HCM LOS    | D                    |    |     |  |

| Minor Lane/Major Mvmt | NBT | NB | <b>∦</b> BLn1 | SBL   | SBT |
|-----------------------|-----|----|---------------|-------|-----|
| Capacity (veh/h)      | -   |    | - 228         | 757   | -   |
| HCM Lane V/C Ratio    | -   |    | -0.263        | 0.013 | -   |
| HCM Control Delay (s) | -   |    | - 26.3        | 9.8   | 0   |
| HCM Lane LOS          | -   |    | - D           | Α     | А   |
| HCM 95th %tile Q(veh) | -   |    | - 1           | 0     | -   |

Int Delay, s/veh 2.7

| • •                 |                      |      |      |      | 0.01 | ~~~  |
|---------------------|----------------------|------|------|------|------|------|
| Movement            | EBL                  | FRI  | WBI  | WBR  | SBL  | SBR  |
| Lane Configuration  | ns                   | - स  | f,   |      | - Y  |      |
| Traffic Vol, veh/h  | 60                   | 235  | 290  | 25   | 70   | 25   |
| Future Vol, veh/h   | 60                   | 235  | 290  | 25   | 70   | 25   |
| Conflicting Peds, # | #/hr 5               | 0    | 0    | 5    | 5    | 5    |
| Sign Control        | Free                 | Free | Free | Free | Stop | Stop |
| RT Channelized      | - 1                  | None | -    | None | -    | None |
| Storage Length      | -                    | -    | -    | -    | 0    | -    |
| Veh in Median Sto   | orage <del>,</del> # | ŧ 0  | 0    | -    | 0    | -    |
| Grade, %            | -                    | 0    | 0    | -    | 0    | -    |
| Peak Hour Factor    | 100                  | 100  | 100  | 100  | 100  | 100  |
| Heavy Vehicles, %   | ώ Ο                  | 3    | 2    | 0    | 0    | 0    |
| Mvmt Flow           | 60                   | 235  | 290  | 25   | 70   | 25   |

| Major/Minor Major1       | N    | lajor2 | M    | inor2 |      |  |
|--------------------------|------|--------|------|-------|------|--|
| Conflicting Flow All 320 | 0    | -      | 0    | 668   | 313  |  |
| Stage 1                  | · -  | -      | -    | 308   | -    |  |
| Stage 2                  | · -  | -      | -    | 360   | -    |  |
| Critical Hdwy 4.1        | -    | -      | -    | 6.4   | 6.2  |  |
| Critical Hdwy Stg 1      |      | -      | -    | 5.4   | -    |  |
| Critical Hdwy Stg 2      | · -  | -      | -    | 5.4   | -    |  |
| Follow-up Hdwy 2.2       |      | -      | -    | 3.5   | 3.3  |  |
| Pot Cap-1 Maneuve251     | -    | -      | -    | 426   | 732  |  |
| Stage 1                  |      | -      | -    | 750   | -    |  |
| Stage 2                  |      | -      | -    | 710   | -    |  |
| Platoon blocked, %       | -    | -      | -    |       |      |  |
| Mov Cap-1 Maneuvler46    | ; –  | -      | -    | 399   | 726  |  |
| Mov Cap-2 Maneuver       |      | -      | -    | 399   | -    |  |
| Stage 1                  |      | -      | -    | 706   | -    |  |
| Stage 2                  |      | -      | -    | 707   | -    |  |
|                          |      |        |      |       |      |  |
| Approach EE              | i i  | WB     |      | SB    |      |  |
| HCM Control Delay, \$.6  | i    | 0      |      | 15    |      |  |
| HCM LOS                  |      |        |      | С     |      |  |
|                          |      |        |      |       |      |  |
| Minor Lane/Major Mvm     | EBL  | EBT W  | BT \ | NBRS  | BLn1 |  |
| Capacity (veh/h)         | 1246 | -      | -    | -     | 453  |  |

| HCM Lane V/C Ratio    | 0.048 | - | - | - ( | ).21 |  |  |
|-----------------------|-------|---|---|-----|------|--|--|
| HCM Control Delay (s) | 8     | 0 | - | -   | 15   |  |  |
| HCM Lane LOS          | А     | А | - | -   | С    |  |  |
| HCM 95th %tile Q(veh) | 0.2   | - | - | -   | 0.8  |  |  |

Int Delay, s/veh 1.8

|                     | EDI                  |      |      |      |      | 000  |
|---------------------|----------------------|------|------|------|------|------|
| Movement            | EBL                  | EBI  | WBI  | WBR  | SBL  | SBR  |
| Lane Configuration  | ns                   | 4    | Þ    |      | Y    |      |
| Traffic Vol, veh/h  | 5                    | 275  | 145  | 5    | 25   | 60   |
| Future Vol, veh/h   | 5                    | 275  | 145  | 5    | 25   | 60   |
| Conflicting Peds, # | #/hr 5               | 0    | 0    | 5    | 5    | 5    |
| Sign Control        | Free                 | Free | Free | Free | Stop | Stop |
| RT Channelized      | -                    | None | -    | None | -    | None |
| Storage Length      | -                    | -    | -    | -    | 0    | -    |
| Veh in Median Sto   | orage <del>,</del> a | # 0  | 0    | -    | 0    | -    |
| Grade, %            | -                    | 0    | 0    | -    | 0    | -    |
| Peak Hour Factor    | 100                  | 100  | 100  | 100  | 100  | 100  |
| Heavy Vehicles, %   | 60                   | 2    | 4    | 0    | 0    | 0    |
| Mvmt Flow           | 5                    | 275  | 145  | 5    | 25   | 60   |

| Major/Minor      | Major1             | Ma   | ajor2 | Μ   | inor2 |      |  |
|------------------|--------------------|------|-------|-----|-------|------|--|
| Conflicting Flow | All 155            | 0    | -     | 0   | 443   | 158  |  |
| Stage 1          | -                  | -    | -     | -   | 153   | -    |  |
| Stage 2          | -                  | -    | -     | -   | 290   | -    |  |
| Critical Hdwy    | 4.1                | -    | -     | -   | 6.4   | 6.2  |  |
| Critical Hdwy St | tg 1 -             | -    | -     | -   | 5.4   | -    |  |
| Critical Hdwy St | tg 2 -             | -    | -     | -   | 5.4   | -    |  |
| Follow-up Hdwy   | / 2.2              | -    | -     | -   | 3.5   | 3.3  |  |
| Pot Cap-1 Mane   | euv <b>e</b> 438   | -    | -     | -   | 576   | 893  |  |
| Stage 1          | -                  | -    | -     | -   | 880   | -    |  |
| Stage 2          | -                  | -    | -     | -   | 764   | -    |  |
| Platoon blocked  | d, %               | -    | -     | -   |       |      |  |
| Mov Cap-1 Mar    | 1eu <b>v1e</b> 432 | -    | -     | -   | 569   | 885  |  |
| Mov Cap-2 Mar    | neuver -           | -    | -     | -   | 569   | -    |  |
| Stage 1          | -                  | -    | -     | -   | 873   | -    |  |
| Stage 2          | -                  | -    | -     | -   | 761   | -    |  |
|                  |                    |      |       |     |       |      |  |
| Approach         | EB                 |      | WB    |     | SB    |      |  |
| HCM Control De   | elay, <b>9</b> .1  |      | 0     |     | 10.3  |      |  |
| HCM LOS          | • ·                |      |       |     | В     |      |  |
|                  |                    |      |       |     |       |      |  |
| Minor Lane/Maj   | or Mvmt            | EBL  | EBT \ | WBT | WBRS  | BLn1 |  |
| Capacity (veh/h  | )                  | 1432 | -     | _   | -     | 761  |  |

|                       | 1402  |   |   | 701    |  |
|-----------------------|-------|---|---|--------|--|
| HCM Lane V/C Ratio    | 0.003 | - | - | -0.112 |  |
| HCM Control Delay (s) | 7.5   | 0 | - | - 10.3 |  |
| HCM Lane LOS          | А     | А | - | - B    |  |
| HCM 95th %tile Q(veh) | 0     | - | - | - 0.4  |  |
0

#### 03-12-2020

## Intersection

Int Delay, s/veh

|                      |                                                                                                  | MAD T                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|----------------------|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EBL                  | EBT                                                                                              | WBI                                                                                                                                                                                                                                                                                                                                 | WBR                                                                                                                                                                                                                                                                                                                                                                                                                  | SBL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SBR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ns                   | - 4                                                                                              | 4                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                      | - ¥                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0                    | 300                                                                                              | 315                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0                    | 300                                                                                              | 315                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| #/hr 5               | 0                                                                                                | 0                                                                                                                                                                                                                                                                                                                                   | 5                                                                                                                                                                                                                                                                                                                                                                                                                    | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Free                 | Free                                                                                             | Free                                                                                                                                                                                                                                                                                                                                | Free                                                                                                                                                                                                                                                                                                                                                                                                                 | Stop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Stop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| -                    | None                                                                                             | -                                                                                                                                                                                                                                                                                                                                   | None                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| -                    | -                                                                                                | -                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| orage <del>,</del> i | # 0                                                                                              | 0                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| -                    | 0                                                                                                | 0                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 100                  | 100                                                                                              | 100                                                                                                                                                                                                                                                                                                                                 | 100                                                                                                                                                                                                                                                                                                                                                                                                                  | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 6 0                  | 2                                                                                                | 2                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0                    | 300                                                                                              | 315                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                      | EBL<br>0<br>0<br>f/hr 5<br>Free<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | EBL         EBT           ns         0         300           0         300         0         300           #/hr         5         0         Free           - None         -         -           - nage;         #         0         0           100         100         0         2           0         300         300         300 | EBL         EBT         WBT           0         300         315           0         300         315           0         300         315           #/hr         5         0         0           Free         Free         Free           - None         -         -           - nage, #         0         0           100         100         100           0         2         2           0         300         315 | EBL         EBT         WBT WBR           0         300         315         0           0         300         315         0           0         300         315         0           #/hr         5         0         0         5           Free         Free         Free         Free         Free           -         -         -         -         -           orage;         #         0         0         -           100         100         100         100         -           0         2         2         0         -           0         300         315         0         - | EBL         EBT         WBT         WBR         SBL           ns         300         315         0         0           0         300         315         0         0           0         300         315         0         0           #/hr         5         0         0         5           Free         Free         Free         Free         Stop           -         None         -         None         -           -         -         -         0         0         -           orage;         #         0         0         -         0           100         100         100         100         100         100           0         2         2         0         0         0         0           0         300         315         0         0         0         0 |

| Major/Minor      | Major1           | М    | ajor2 | Μ   | inor2 |      |  |
|------------------|------------------|------|-------|-----|-------|------|--|
| Conflicting Flow | v All 320        | 0    | -     | 0   | 625   | 325  |  |
| Stage 1          | -                | -    | -     | -   | 320   | -    |  |
| Stage 2          | -                | -    | -     | -   | 305   | -    |  |
| Critical Hdwy    | 4.1              | -    | -     | -   | 6.4   | 6.2  |  |
| Critical Hdwy St | tg 1 -           | -    | -     | -   | 5.4   | -    |  |
| Critical Hdwy St | tg 2 -           | -    | -     | -   | 5.4   | -    |  |
| Follow-up Hdwy   | / 2.2            | -    | -     | -   | 3.5   | 3.3  |  |
| Pot Cap-1 Mane   | euv <b>e</b> 251 | -    | -     | -   | 452   | 721  |  |
| Stage 1          | -                | -    | -     | -   | 741   | -    |  |
| Stage 2          | -                | -    | -     | -   | 752   | -    |  |
| Platoon blocked  | d, %             | -    | -     | -   |       |      |  |
| Mov Cap-1 Mar    | neuv1@146        | -    | -     | -   | 448   | 715  |  |
| Mov Cap-2 Mar    | neuver -         | -    | -     | -   | 448   | -    |  |
| Stage 1          | -                | -    | -     | -   | 738   | -    |  |
| Stage 2          | -                | -    | -     | -   | 749   | -    |  |
|                  |                  |      |       |     |       |      |  |
| Approach         | EB               |      | WB    |     | SB    |      |  |
| HCM Control De   | elay, s 0        |      | 0     |     | 0     |      |  |
| HCM LOS          | -                |      |       |     | А     |      |  |
|                  |                  |      |       |     |       |      |  |
| Minor Lane/Maj   | or Mvmt          | EBL  | EBT V | VBT | NBRSI | 3Ln1 |  |
| Capacity (veh/h  | ı)               | 1246 | -     | -   | -     | -    |  |
|                  | Dette            |      |       |     |       |      |  |

| HCM Lane V/C Ratio    | - | - | - | - | - |  |
|-----------------------|---|---|---|---|---|--|
| HCM Control Delay (s) | 0 | - | - | - | 0 |  |
| HCM Lane LOS          | А | - | - | - | А |  |
| HCM 95th %tile Q(veh) | 0 | - | - | - | - |  |

Int Delay, s/veh 1.1

| • •                 |        |      |      |      |      | ~~~      |
|---------------------|--------|------|------|------|------|----------|
| Movement            | WBL    | WBR  | NBT  | NBR  | SBL  | SBT      |
| Lane Configuration  | าร     | 7    | - îs |      |      | <b>↑</b> |
| Traffic Vol, veh/h  | 0      | 85   | 790  | 110  | 0    | 435      |
| Future Vol, veh/h   | 0      | 85   | 790  | 110  | 0    | 435      |
| Conflicting Peds, # | ‡/hr 5 | 5    | 0    | 5    | 5    | 0        |
| Sign Control        | Stop   | Stop | Free | Free | Free | Free     |
| RT Channelized      | -      | None | -    | None | -    | None     |
| Storage Length      | -      | 0    | -    | -    | -    | -        |
| Veh in Median Sto   | rage0; | # -  | 0    | -    | -    | 0        |
| Grade, %            | 0      | -    | 0    | -    | -    | 0        |
| Peak Hour Factor    | 100    | 100  | 100  | 100  | 100  | 100      |
| Heavy Vehicles, %   | 6 0    | 0    | 2    | 0    | 0    | 3        |
| Mvmt Flow           | 0      | 85   | 790  | 110  | 0    | 435      |

| Major/Minor N      | /linor1 | Ma  | ajor1 | Maj | or2 |   |  |
|--------------------|---------|-----|-------|-----|-----|---|--|
| Conflicting Flow A | All –   | 855 | 0     | 0   | -   | - |  |
| Stage 1            | -       | -   | -     | -   | -   | - |  |
| Stage 2            | -       | -   | -     | -   | -   | - |  |
| Critical Hdwy      | -       | 6.2 | -     | -   | -   | - |  |
| Critical Hdwy Stg  | 1 -     | -   | -     | -   | -   | - |  |
| Critical Hdwy Stg  | 2 -     | -   | -     | -   | -   | - |  |
| Follow-up Hdwy     | -       | 3.3 | -     | -   | -   | - |  |
| Pot Cap-1 Maneu    | ver 0   | 361 | -     | -   | 0   | - |  |
| Stage 1            | 0       | -   | -     | -   | 0   | - |  |
| Stage 2            | 0       | -   | -     | -   | 0   | - |  |
| Platoon blocked, 9 | %       |     | -     | -   |     | - |  |
| Mov Cap-1 Maneu    | uver -  | 358 | -     | -   | -   | - |  |
| Mov Cap-2 Maneu    | uver -  | -   | -     | -   | -   | - |  |
| Stage 1            | -       | -   | -     | -   | -   | - |  |
| Stage 2            | -       | -   | -     | -   | -   | - |  |
|                    |         |     |       |     |     |   |  |

| Approach       | WB                 | NB | SB |
|----------------|--------------------|----|----|
| HCM Control De | elay,1 <b>8</b> .2 | 0  | 0  |
| HCM LOS        | С                  |    |    |

| Minor Lane/Major Mvmt | NBT | NBR/BLn1 | SBT |
|-----------------------|-----|----------|-----|
| Capacity (veh/h)      | -   | - 358    | -   |
| HCM Lane V/C Ratio    | -   | -0.237   | -   |
| HCM Control Delay (s) | -   | - 18.2   | -   |
| HCM Lane LOS          | -   | - C      | -   |
| HCM 95th %tile Q(veh) | -   | - 0.9    | -   |

|--|

| Intersection                                                                                                                                                                                                                                          |                                                                                       |       |                                                                                               |       |                                                                                         |       |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-------|-----------------------------------------------------------------------------------------------|-------|-----------------------------------------------------------------------------------------|-------|--|
| Intersection Delay, s/vel                                                                                                                                                                                                                             | h 2.9                                                                                 |       |                                                                                               |       |                                                                                         |       |  |
| Intersection LOS                                                                                                                                                                                                                                      | А                                                                                     |       |                                                                                               |       |                                                                                         |       |  |
| Approach                                                                                                                                                                                                                                              |                                                                                       | EB    |                                                                                               | NB    |                                                                                         | SB    |  |
| Entry Lanes                                                                                                                                                                                                                                           |                                                                                       | 1     |                                                                                               | 1     |                                                                                         | 1     |  |
| Conflicting Circle Lanes                                                                                                                                                                                                                              |                                                                                       | 1     |                                                                                               | 1     |                                                                                         | 1     |  |
| Adj Approach Flow, veh                                                                                                                                                                                                                                | /h                                                                                    | 5     |                                                                                               | 10    |                                                                                         | 60    |  |
| Demand Flow Rate, veh                                                                                                                                                                                                                                 | ı/h                                                                                   | 5     |                                                                                               | 10    |                                                                                         | 60    |  |
| Vehicles Circulating, vel                                                                                                                                                                                                                             | h/h                                                                                   | 30    |                                                                                               | 5     |                                                                                         | 0     |  |
| Vehicles Exiting, veh/h                                                                                                                                                                                                                               |                                                                                       | 30    |                                                                                               | 30    |                                                                                         | 15    |  |
| Ped Vol Crossing Leg, #                                                                                                                                                                                                                               | ‡/h                                                                                   | 5     |                                                                                               | 5     |                                                                                         | 5     |  |
| Ped Cap Adj                                                                                                                                                                                                                                           |                                                                                       | 0.999 |                                                                                               | 0.999 | (                                                                                       | 0.999 |  |
| Approach Delay, s/veh                                                                                                                                                                                                                                 |                                                                                       | 2.7   |                                                                                               | 2.7   |                                                                                         | 2.9   |  |
| Approach LOS                                                                                                                                                                                                                                          |                                                                                       | А     |                                                                                               | А     |                                                                                         | А     |  |
| Lane                                                                                                                                                                                                                                                  | Left                                                                                  |       | Left                                                                                          |       | Left                                                                                    |       |  |
| Designated Moves                                                                                                                                                                                                                                      | LR                                                                                    |       | IΤ                                                                                            |       | TR                                                                                      |       |  |
| -                                                                                                                                                                                                                                                     |                                                                                       |       | L I                                                                                           |       | 111                                                                                     |       |  |
| Assumed Moves                                                                                                                                                                                                                                         | LR                                                                                    |       | LT                                                                                            |       | TR                                                                                      |       |  |
| Assumed Moves<br>RT Channelized                                                                                                                                                                                                                       | LR                                                                                    |       | LT                                                                                            |       | TR                                                                                      |       |  |
| Assumed Moves<br>RT Channelized<br>Lane Util                                                                                                                                                                                                          | LR<br>1.000                                                                           |       | LT<br>1.000                                                                                   |       | TR<br>1.000                                                                             |       |  |
| Assumed Moves<br>RT Channelized<br>Lane Util<br>Follow-Up Headway, s                                                                                                                                                                                  | LR<br>1.000<br>2.609                                                                  |       | 1.000<br>2.609                                                                                |       | 1.000<br>2.609                                                                          |       |  |
| Assumed Moves<br>RT Channelized<br>Lane Util<br>Follow-Up Headway, s<br>Critical Headway, s                                                                                                                                                           | LR<br>1.000<br>2.609<br>4.976                                                         |       | 1.000<br>2.609<br>4.976                                                                       |       | 1.000<br>2.609<br>4.976                                                                 |       |  |
| Assumed Moves<br>RT Channelized<br>Lane Util<br>Follow-Up Headway, s<br>Critical Headway, s<br>Entry Flow, veh/h                                                                                                                                      | LR<br>1.000<br>2.609<br>4.976<br>5                                                    |       | LT<br>1.000<br>2.609<br>4.976<br>10                                                           |       | 1.000<br>2.609<br>4.976<br>60                                                           |       |  |
| Assumed Moves<br>RT Channelized<br>Lane Util<br>Follow-Up Headway, s<br>Critical Headway, s<br>Entry Flow, veh/h<br>Cap Entry Lane, veh/h                                                                                                             | LR<br>1.000<br>2.609<br>4.976<br>5<br>1338                                            |       | LT<br>1.000<br>2.609<br>4.976<br>10<br>1373                                                   |       | TR<br>1.000<br>2.609<br>4.976<br>60<br>1380                                             |       |  |
| Assumed Moves<br>RT Channelized<br>Lane Util<br>Follow-Up Headway, s<br>Critical Headway, s<br>Entry Flow, veh/h<br>Cap Entry Lane, veh/h<br>Entry HV Adj Factor                                                                                      | LR<br>1.000<br>2.609<br>4.976<br>5<br>1338<br>1.000                                   |       | LT<br>LT<br>1.000<br>2.609<br>4.976<br>10<br>1373<br>1.000                                    |       | TR<br>1.000<br>2.609<br>4.976<br>60<br>1380<br>1.000                                    |       |  |
| Assumed Moves<br>RT Channelized<br>Lane Util<br>Follow-Up Headway, s<br>Critical Headway, s<br>Entry Flow, veh/h<br>Cap Entry Lane, veh/h<br>Entry HV Adj Factor<br>Flow Entry, veh/h                                                                 | LR<br>1.000<br>2.609<br>4.976<br>5<br>1338<br>1.000<br>5                              |       | LT<br>LT<br>1.000<br>2.609<br>4.976<br>10<br>1373<br>1.000<br>10                              |       | TR<br>1.000<br>2.609<br>4.976<br>60<br>1380<br>1.000<br>60                              |       |  |
| Assumed Moves<br>RT Channelized<br>Lane Util<br>Follow-Up Headway, s<br>Critical Headway, s<br>Entry Flow, veh/h<br>Cap Entry Lane, veh/h<br>Entry HV Adj Factor<br>Flow Entry, veh/h<br>Cap Entry, veh/h                                             | LR<br>1.000<br>2.609<br>4.976<br>5<br>1338<br>1.000<br>5<br>1337                      |       | LT<br>LT<br>1.000<br>2.609<br>4.976<br>10<br>1373<br>1.000<br>10<br>1372                      |       | TR<br>1.000<br>2.609<br>4.976<br>60<br>1380<br>1.000<br>60<br>1379                      |       |  |
| Assumed Moves<br>RT Channelized<br>Lane Util<br>Follow-Up Headway, s<br>Critical Headway, s<br>Entry Flow, veh/h<br>Cap Entry Lane, veh/h<br>Entry HV Adj Factor<br>Flow Entry, veh/h<br>Cap Entry, veh/h<br>V/C Ratio                                | LR<br>1.000<br>2.609<br>4.976<br>5<br>1338<br>1.000<br>5<br>1337<br>0.004             |       | LT<br>LT<br>1.000<br>2.609<br>4.976<br>10<br>1373<br>1.000<br>10<br>1372<br>0.007             |       | TR<br>1.000<br>2.609<br>4.976<br>60<br>1380<br>1.000<br>60<br>1379<br>0.044             |       |  |
| Assumed Moves<br>RT Channelized<br>Lane Util<br>Follow-Up Headway, s<br>Critical Headway, s<br>Entry Flow, veh/h<br>Cap Entry Lane, veh/h<br>Entry HV Adj Factor<br>Flow Entry, veh/h<br>Cap Entry, veh/h<br>V/C Ratio<br>Control Delay, s/veh        | LR<br>1.000<br>2.609<br>4.976<br>5<br>1338<br>1.000<br>5<br>1337<br>0.004<br>2.7      |       | LT<br>LT<br>1.000<br>2.609<br>4.976<br>10<br>1373<br>1.000<br>10<br>1372<br>0.007<br>2.7      |       | TR<br>1.000<br>2.609<br>4.976<br>60<br>1380<br>1.000<br>60<br>1379<br>0.044<br>2.9      |       |  |
| Assumed Moves<br>RT Channelized<br>Lane Util<br>Follow-Up Headway, s<br>Critical Headway, s<br>Entry Flow, veh/h<br>Cap Entry Lane, veh/h<br>Entry HV Adj Factor<br>Flow Entry, veh/h<br>Cap Entry, veh/h<br>V/C Ratio<br>Control Delay, s/veh<br>LOS | LR<br>1.000<br>2.609<br>4.976<br>5<br>1338<br>1.000<br>5<br>1337<br>0.004<br>2.7<br>A |       | LT<br>LT<br>1.000<br>2.609<br>4.976<br>10<br>1373<br>1.000<br>10<br>1372<br>0.007<br>2.7<br>A |       | TR<br>1.000<br>2.609<br>4.976<br>60<br>1380<br>1.000<br>60<br>1379<br>0.044<br>2.9<br>A |       |  |

| Intersection                    |         |       |       |       |       |       |
|---------------------------------|---------|-------|-------|-------|-------|-------|
| Intersection Delay, s/ve        | h 7.2   |       |       |       |       |       |
| Intersection LOS                | А       |       |       |       |       |       |
| Approach                        | EB      |       | WB    | N     | В     | SB    |
| Entry Lanes                     | 1       |       | 1     |       | 1     | 1     |
| <b>Conflicting Circle Lanes</b> | ; 1     |       | 1     |       | 1     | 1     |
| Adj Approach Flow, veh          | ı/h 65  |       | 45    | 63    | 0     | 465   |
| Demand Flow Rate, veh           | n/h 71  |       | 48    | 65    | 6     | 483   |
| Vehicles Circulating, ve        | h/h 514 |       | 661   | 4     | 2     | 53    |
| Vehicles Exiting, veh/h         | 22      |       | 37    | 54    | 4     | 656   |
| Ped Vol Crossing Leg, #         | #/h 5   |       | 5     |       | 5     | 5     |
| Ped Cap Adj                     | 0.999   |       | 0.999 | 0.99  | 9     | 0.999 |
| Approach Delay, s/veh           | 5.7     |       | 6.2   | 8.    | 1     | 6.4   |
| Approach LOS                    | A       |       | А     |       | 4     | A     |
| Lane                            | Left    | Left  |       | Left  | Left  |       |
| Designated Moves                | LTR     | LTR   |       | LTR   | LTR   |       |
| Assumed Moves                   | LTR     | LTR   |       | LTR   | LTR   |       |
| RT Channelized                  |         |       |       |       |       |       |
| Lane Util                       | 1.000   | 1.000 |       | 1.000 | 1.000 |       |
| Follow-Up Headway, s            | 2.609   | 2.609 |       | 2.609 | 2.609 |       |
| Critical Headway, s             | 4.976   | 4.976 |       | 4.976 | 4.976 |       |
| Entry Flow, veh/h               | 71      | 48    |       | 656   | 483   |       |
| Cap Entry Lane, veh/h           | 817     | 703   |       | 1322  | 1307  |       |
| Entry HV Adj Factor             | 0.915   | 0.945 |       | 0.961 | 0.962 |       |
| Flow Entry, veh/h               | 65      | 45    |       | 630   | 465   |       |
| Cap Entry, veh/h                | 747     | 664   |       | 1269  | 1257  |       |
| V/C Ratio                       | 0.087   | 0.068 |       | 0.497 | 0.370 |       |
| Control Delay, s/veh            | 5.7     | 6.2   |       | 8.1   | 6.4   |       |
| LOS                             | A       | A     |       | A     | A     |       |
| 95th %tile Queue, veh           | 0       | 0     |       | 3     | 2     |       |

| Intersection              |     |
|---------------------------|-----|
| Intersection Delay, s/veh | 7.1 |
| Intersection LOS          | Α   |

| Movement                   | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
|----------------------------|------|------|------|------|------|------|------|------|------|------|------|------|
| Lane Configurations        |      | 4    |      |      | 4    |      |      | 4    |      |      | 4    |      |
| Traffic Vol, veh/h         | 10   | 5    | 35   | 10   | 20   | 0    | 0    | 10   | 0    | 0    | 40   | 20   |
| Future Vol, veh/h          | 10   | 5    | 35   | 10   | 20   | 0    | 0    | 10   | 0    | 0    | 40   | 20   |
| Peak Hour Factor           | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Heavy Vehicles, %          | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| Mvmt Flow                  | 10   | 5    | 35   | 10   | 20   | 0    | 0    | 10   | 0    | 0    | 40   | 20   |
| Number of Lanes            | 0    | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    |
| Approach                   | EB   |      |      | WB   |      |      |      | NB   |      |      | SB   |      |
| Opposing Approach          | WB   |      |      | EB   |      |      |      | SB   |      |      | NB   |      |
| Opposing Lanes             | 1    |      |      | 1    |      |      |      | 1    |      |      | 1    |      |
| Conflicting Approach Left  | SB   |      |      | NB   |      |      |      | EB   |      |      | WB   |      |
| Conflicting Lanes Left     | 1    |      |      | 1    |      |      |      | 1    |      |      | 1    |      |
| Conflicting Approach Right | htNB |      |      | SB   |      |      |      | WB   |      |      | EB   |      |
| Conflicting Lanes Right    | 1    |      |      | 1    |      |      |      | 1    |      |      | 1    |      |
| HCM Control Delay          | 6.9  |      |      | 7.3  |      |      |      | 7.2  |      |      | 7.1  |      |
| HCM LOS                    | А    |      |      | А    |      |      |      | А    |      |      | А    |      |

| Lane                   | NBLn1 | EBLn1V | VBLn1 | SBLn1 |
|------------------------|-------|--------|-------|-------|
| Vol Left, %            | 0%    | 20%    | 33%   | 0%    |
| Vol Thru, %            | 100%  | 10%    | 67%   | 67%   |
| Vol Right, %           | 0%    | 70%    | 0%    | 33%   |
| Sign Control           | Stop  | Stop   | Stop  | Stop  |
| Traffic Vol by Lane    | 10    | 50     | 30    | 60    |
| LT Vol                 | 0     | 10     | 10    | 0     |
| Through Vol            | 10    | 5      | 20    | 40    |
| RT Vol                 | 0     | 35     | 0     | 20    |
| Lane Flow Rate         | 10    | 50     | 30    | 60    |
| Geometry Grp           | 1     | 1      | 1     | 1     |
| Degree of Util (X)     | 0.011 | 0.051  | 0.034 | 0.064 |
| Departure Headway (Hd) | 4.084 | 3.664  | 4.126 | 3.846 |
| Convergence, Y/N       | Yes   | Yes    | Yes   | Yes   |
| Сар                    | 874   | 975    | 866   | 930   |
| Service Time           | 2.121 | 1.695  | 2.157 | 1.875 |
| HCM Lane V/C Ratio     | 0.011 | 0.051  | 0.035 | 0.065 |
| HCM Control Delay      | 7.2   | 6.9    | 7.3   | 7.1   |
| HCM Lane LOS           | А     | А      | А     | А     |
| HCM 95th-tile Q        | 0     | 0.2    | 0.1   | 0.2   |

# Lanes, Volumes, Timings 3: Iber/Huntmar & Hazeldean

|                         | ٩     | -           | 7    | 1     | •          | 1     | 1     | t      | 1     | 4     | ŧ     | ~     |
|-------------------------|-------|-------------|------|-------|------------|-------|-------|--------|-------|-------|-------|-------|
| Lane Group              | EBL   | EBT         | EBR  | WBL   | WBT        | WBR   | NBL   | NBT    | NBR   | SBL   | SBT   | SBR   |
| Lane Configurations     | 2     | <b>≜t</b> ₀ |      | 22    | <b>*</b> * | 1     | 3     | 4      | 1     | 1     | 4     | 1     |
| Traffic Volume (vph)    | 220   | 710         | 135  | 355   | 1110       | 285   | 150   | 335    | 265   | 190   | 430   | 425   |
| Future Volume (vph)     | 220   | 710         | 135  | 355   | 1110       | 285   | 150   | 335    | 265   | 190   | 430   | 425   |
| Confl. Peds. (#/hr)     | 5     |             | 5    | 5     |            | 5     | 5     |        | 5     | 5     |       | 5     |
| Confl. Bikes (#/hr)     |       |             |      |       |            |       |       |        |       |       |       |       |
| Peak Hour Factor        | 1.00  | 1.00        | 1.00 | 1.00  | 1.00       | 1.00  | 1.00  | 1.00   | 1.00  | 1.00  | 1.00  | 1.00  |
| Growth Factor           | 100%  | 100%        | 100% | 100%  | 100%       | 100%  | 100%  | 100%   | 100%  | 100%  | 100%  | 100%  |
| Heavy Vehicles (%)      | 0%    | 2%          | 2%   | 1%    | 1%         | 0%    | 6%    | 2%     | 1%    | 1%    | 2%    | 1%    |
| Bus Blockages (#/hr)    | 0     | 0           | 0    | 0     | 0          | 0     | 0     | 0      | 0     | 0     | 0     | 0     |
| Parking (#/hr)          |       |             |      |       |            |       |       |        |       |       |       |       |
| Mid-Block Traffic (%)   |       | 0%          |      |       | 0%         |       |       | 0%     |       |       | 0%    |       |
| Shared Lane Traffic (%) | )     |             |      |       |            |       |       |        |       |       |       |       |
| Lane Group Flow (vph)   | 220   | 845         | 0    | 355   | 1110       | 285   | 150   | 335    | 265   | 190   | 430   | 425   |
| Turn Type               | Prot  | NA          |      | Prot  | NA         | Perm  | pm+pt | NA     | Perm  | pm+pt | NA    | Perm  |
| Protected Phases        | 5     | 2           |      | 1     | 6          |       | 3     | 8      |       | 7     | 4     |       |
| Permitted Phases        |       |             |      |       |            | 6     | 8     |        | 8     | 4     |       | 4     |
| Detector Phase          | 5     | 2           |      | 1     | 6          | 6     | 3     | 8      | 8     | 7     | 4     | 4     |
| Switch Phase            |       |             |      |       |            |       |       |        |       |       |       |       |
| Minimum Initial (s)     | 5.0   | 10.0        |      | 5.0   | 10.0       | 10.0  | 5.0   | 10.0   | 10.0  | 5.0   | 10.0  | 10.0  |
| Minimum Split (s)       | 12.5  | 38.6        |      | 12.5  | 38.6       | 38.6  | 12.5  | 58.0   | 58.0  | 12.5  | 41.3  | 41.3  |
| Total Split (s)         | 18.2  | 44.8        |      | 14.6  | 41.2       | 41.2  | 12.5  | 58.0   | 58.0  | 12.6  | 58.1  | 58.1  |
| Total Split (%)         | 14.0% | 34.5%       |      | 11.2% | 31.7%      | 31.7% | 9.6%  | 44.6%  | 44.6% | 9.7%  | 44.7% | 44.7% |
| Yellow Time (s)         | 3.6   | 3.6         |      | 3.6   | 3.6        | 3.6   | 3.0   | 3.3    | 3.3   | 3.0   | 3.3   | 3.3   |
| All-Red Time (s)        | 2.0   | 2.0         |      | 2.0   | 2.0        | 2.0   | 0.0   | 2.0    | 2.0   | 0.0   | 2.0   | 2.0   |
| Lost Time Adjust (s)    | 0.0   | 0.0         |      | 0.0   | 0.0        | 0.0   | 0.0   | 0.0    | 0.0   | 0.0   | 0.0   | 0.0   |
| Total Lost Time (s)     | 5.6   | 5.6         |      | 5.6   | 5.6        | 5.6   | 3.0   | 5.3    | 5.3   | 3.0   | 5.3   | 5.3   |
| Lead/Lag                | Lead  | Lag         |      | Lead  | Lag        | Lag   | Lead  | Lag    | Lag   | Lead  | Lag   | Lag   |
| Lead-Lag Optimize?      | Yes   | Yes         |      | Yes   | Yes        | Yes   | Yes   | Yes    | Yes   | Yes   | Yes   | Yes   |
| Recall Mode             | None  | C-Max       |      | None  | C-Max      | C-Max | None  | None   | None  | None  | None  | None  |
| Act Effct Green (s)     | 13.6  | 39.2        |      | 23.2  | 48.8       | 48.8  | 50.3  | 38.5   | 38.5  | 50.5  | 38.6  | 38.6  |
| Actuated g/C Ratio      | 0.10  | 0.30        |      | 0.18  | 0.38       | 0.38  | 0.39  | 0.30   | 0.30  | 0.39  | 0.30  | 0.30  |
| v/c Ratio               | 0.63  | 0.85        |      | 0.61  | 0.87       | 0.38  | 0.67  | 0.64   | 0.42  | 0.61  | 0.82  | 0.70  |
| Control Delay           | 64.0  | 51.1        |      | 55.5  | 47.8       | 5.6   | 38.7  | 44.6   | 5.6   | 33.7  | 55.1  | 23.3  |
| Queue Delay             | 0.0   | 0.0         |      | 0.0   | 0.0        | 0.0   | 0.0   | 0.0    | 0.0   | 0.0   | 0.0   | 0.0   |
| Total Delay             | 64.0  | 51.1        |      | 55.5  | 47.8       | 5.6   | 38.7  | 44.6   | 5.6   | 33.7  | 55.1  | 23.3  |
| LOS                     | E     | D           |      | E     | D          | А     | D     | D      | A     | С     | E     | С     |
| Approach Delay          |       | 53.8        |      |       | 42.5       |       |       | 29.6   |       |       | 38.3  |       |
| Approach LOS            |       | D           |      |       | D          |       |       | С      |       |       | D     |       |
| Queue Length 50th (m)   | 29.7  | 110.6       |      | 46.0  | 146.2      | 0.0   | 25.9  | 78.4   | 0.4   | 33.5  | 107.7 | 46.8  |
| Queue Length 95th (m)   | 42.5  | 137.7       |      | #87.5 | #234.2     | 22.2  | 36.0  | 99.1   | 18.3  | 44.7  | 133.1 | 76.9  |
| Internal Link Dist (m)  |       | 871.0       |      |       | 1427.4     |       |       | 1305.6 |       |       | 301.9 |       |
| Turn Bay Length (m)     | 50.0  |             |      | 90.0  |            | 225.0 | 30.0  |        | 60.0  | 50.0  |       | 275.0 |
| Base Capacity (vph)     | 362   | 995         |      | 585   | 1270       | 741   | 225   | 715    | 759   | 310   | 716   | 742   |
| Starvation Cap Reductn  | n 0   | 0           |      | 0     | 0          | 0     | 0     | 0      | 0     | 0     | 0     | 0     |
| Spillback Cap Reductn   | 0     | 0           |      | 0     | 0          | 0     | 0     | 0      | 0     | 0     | 0     | 0     |
| Storage Cap Reductn     | 0     | 0           |      | 0     | 0          | 0     | 0     | 0      | 0     | 0     | 0     | 0     |
| Reduced v/c Ratio       | 0.61  | 0.85        |      | 0.61  | 0.87       | 0.38  | 0.67  | 0.47   | 0.35  | 0.61  | 0.60  | 0.57  |
| Intersection Summary    |       |             |      |       |            |       |       |        |       |       |       |       |

130 Huntmar Drive 02-06-2020 2024 Future PM Dillon Consulting Limited

| Cycle Length: 130                                                   |                        |  |  |  |  |  |  |  |
|---------------------------------------------------------------------|------------------------|--|--|--|--|--|--|--|
| Actuated Cycle Length: 130                                          |                        |  |  |  |  |  |  |  |
| Offset: 0 (0%), Referenced to phase 2:EBT and 6:WBT, Start of Green |                        |  |  |  |  |  |  |  |
| Natural Cycle: 135                                                  |                        |  |  |  |  |  |  |  |
| Control Type: Actuated-Coordinated                                  |                        |  |  |  |  |  |  |  |
| Maximum v/c Ratio: 0.87                                             |                        |  |  |  |  |  |  |  |
| Intersection Signal Delay: 42.0 Intersection LOS: D                 |                        |  |  |  |  |  |  |  |
| Intersection Capacity Utilization 89.3%                             | ICU Level of Service E |  |  |  |  |  |  |  |
| Analysis Period (min) 15                                            |                        |  |  |  |  |  |  |  |
| 95th percentile volume exceeds capacity, queue may be longer.       |                        |  |  |  |  |  |  |  |

Queue shown is maximum after two cycles.

|  | Splits and F | Phases: 3 | 3: Iber/Huntmar | & Hazeldean |
|--|--------------|-----------|-----------------|-------------|
|--|--------------|-----------|-----------------|-------------|

| <b>1</b> 01 |          | 103         | ↓ Ø4   |  |
|-------------|----------|-------------|--------|--|
| 14.6 s      | 44.8 s   | 12.5 s      | 58.1 s |  |
| ♪<br>Ø5     | ● Ø6 (R) | <b>1</b> 07 | 108    |  |
| 18.2 s      | 41.2 s   | 12.6 s      | 58 s   |  |

# Lanes, Volumes, Timings <u>6: Terry Fox & Palladium/Katimavik</u>

|                         | ٩      | <b>→</b> | 7     | 1     | •     | 1     | 1     | t        | 1     | 1     | ŧ        | ~     |
|-------------------------|--------|----------|-------|-------|-------|-------|-------|----------|-------|-------|----------|-------|
| Lane Group              | EBL    | EBT      | EBR   | WBL   | WBT   | WBR   | NBL   | NBT      | NBR   | SBL   | SBT      | SBR   |
| Lane Configurations     | 2      | 1        | 1     | 1     | 1     | 1     | ሻሻ    | <b>^</b> | 1     | ሻሻ    | <b>^</b> | 1     |
| Traffic Volume (vph)    | 830    | 250      | 395   | 135   | 180   | 150   | 245   | 1130     | 100   | 120   | 1335     | 695   |
| Future Volume (vph)     | 830    | 250      | 395   | 135   | 180   | 150   | 245   | 1130     | 100   | 120   | 1335     | 695   |
| Confl. Peds. (#/hr)     | 5      |          | 5     | 5     |       | 5     | 5     |          | 5     | 5     |          | 5     |
| Confl. Bikes (#/hr)     |        |          |       |       |       |       |       |          |       |       |          |       |
| Peak Hour Factor        | 1.00   | 1.00     | 1.00  | 1.00  | 1.00  | 1.00  | 1.00  | 1.00     | 1.00  | 1.00  | 1.00     | 1.00  |
| Growth Factor           | 100%   | 100%     | 100%  | 100%  | 100%  | 100%  | 100%  | 100%     | 100%  | 100%  | 100%     | 100%  |
| Heavy Vehicles (%)      | 0%     | 0%       | 1%    | 5%    | 2%    | 0%    | 0%    | 2%       | 4%    | 0%    | 1%       | 0%    |
| Bus Blockages (#/hr)    | 0      | 0        | 0     | 0     | 0     | 0     | 0     | 0        | 0     | 0     | 0        | 0     |
| Parking (#/hr)          |        |          |       |       |       |       |       |          |       |       |          |       |
| Mid-Block Traffic (%)   |        | 0%       |       |       | 0%    |       |       | 0%       |       |       | 0%       |       |
| Shared Lane Traffic (%) | )      |          |       |       |       |       |       |          |       |       |          |       |
| Lane Group Flow (vph)   | 830    | 250      | 395   | 135   | 180   | 150   | 245   | 1130     | 100   | 120   | 1335     | 695   |
| Turn Type               | Prot   | NA       | Perm  | Prot  | NA    | Perm  | Prot  | NA       | Perm  | Prot  | NA       | Perm  |
| Protected Phases        | 7      | 4        |       | 3     | 8     |       | 5     | 2        |       | 1     | 6        |       |
| Permitted Phases        |        |          | 4     |       |       | 8     |       |          | 2     |       |          | 6     |
| Detector Phase          | 7      | 4        | 4     | 3     | 8     | 8     | 5     | 2        | 2     | 1     | 6        | 6     |
| Switch Phase            |        |          |       |       |       |       |       |          |       |       |          |       |
| Minimum Initial (s)     | 5.0    | 10.0     | 10.0  | 5.0   | 10.0  | 10.0  | 5.0   | 10.0     | 10.0  | 5.0   | 10.0     | 10.0  |
| Minimum Split (s)       | 12.0   | 40.6     | 40.6  | 12.0  | 40.3  | 40.3  | 12.0  | 42.5     | 42.5  | 30.0  | 41.0     | 41.0  |
| Total Split (s)         | 30.0   | 48.3     | 48.3  | 22.0  | 40.3  | 40.3  | 17.0  | 49.7     | 49.7  | 30.0  | 62.7     | 62.7  |
| Total Split (%)         | 20.0%  | 32.2%    | 32.2% | 14.7% | 26.9% | 26.9% | 11.3% | 33.1%    | 33.1% | 20.0% | 41.8%    | 41.8% |
| Yellow Time (s)         | 3.6    | 3.6      | 3.6   | 3.3   | 3.3   | 3.3   | 4.0   | 4.0      | 4.0   | 4.0   | 4.0      | 4.0   |
| All-Red Time (s)        | 2.0    | 2.0      | 2.0   | 2.0   | 2.0   | 2.0   | 2.0   | 2.0      | 2.0   | 2.0   | 2.0      | 2.0   |
| Lost Time Adjust (s)    | -2.0   | 0.0      | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0      | 0.0   | 0.0   | 0.0      | 0.0   |
| Total Lost Time (s)     | 3.6    | 5.6      | 5.6   | 5.3   | 5.3   | 5.3   | 6.0   | 6.0      | 6.0   | 6.0   | 6.0      | 6.0   |
| Lead/Lag                | Lead   | Lead     | Lead  | Lag   | Lag   | Lag   | Lead  | Lag      | Lag   | Lead  | Lag      | Lag   |
| Lead-Lag Optimize?      | Yes    | Yes      | Yes   | Yes   | Yes   | Yes   | Yes   | Yes      | Yes   | Yes   | Yes      | Yes   |
| Recall Mode             | None   | None     | None  | None  | None  | None  | None  | C-Max    | C-Max | None  | C-Max    | C-Max |
| Act Effct Green (s)     | 26.4   | 29.3     | 29.3  | 19.0  | 23.9  | 23.9  | 15.7  | 68.0     | 68.0  | 10.8  | 63.1     | 63.1  |
| Actuated g/C Ratio      | 0.18   | 0.20     | 0.20  | 0.13  | 0.16  | 0.16  | 0.10  | 0.45     | 0.45  | 0.07  | 0.42     | 0.42  |
| v/c Ratio               | 1.42   | 0.71     | 0.88  | 0.66  | 0.64  | 0.41  | 0.71  | 0.74     | 0.13  | 0.50  | 0.94     | 0.72  |
| Control Delay           | 243.5  | 66.4     | 47.9  | 78.1  | 68.1  | 10.2  | 76.0  | 39.2     | 0.4   | 74.0  | 54.9     | 10.9  |
| Queue Delay             | 0.0    | 0.0      | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0      | 0.0   | 0.0   | 0.0      | 0.0   |
| Total Delay             | 243.5  | 66.4     | 47.9  | /8.1  | 68.1  | 10.2  | 76.0  | 39.2     | 0.4   | 74.0  | 54.9     | 10.9  |
| LOS                     | F      | E        | D     | E     | E     | В     | E     | D        | A     | E     | D        | В     |
| Approach Delay          |        | 161.1    |       |       | 52.3  |       |       | 42.7     |       |       | 41.7     |       |
| Approach LOS            | 100.0  | +        | 04.0  | 44.0  | D     | 0.0   |       | D        |       | 40.0  | D        | 00.0  |
| Queue Length 50th (m)   | ~180.0 | /4./     | 64.8  | 41.2  | 54.4  | 0.0   | 38.0  | 147.8    | 0.0   | 19.0  | 210.5    | 22.8  |
| Queue Length 95th (m)   | #222.2 | 94.0     | 97.8  | #74.9 | 73.5  | 18.9  | #71.0 | #225.3   | 0.0   | 29.5  | #282.2   | 81.2  |
| Internal Link Dist (m)  | 100.0  | 1802.0   |       | 445.0 | 304.5 | 445.0 | 040.0 | 406.9    | 445.0 | 70.0  | 280.2    | 400.0 |
| Turn Bay Length (m)     | 100.0  | 540      | 500   | 115.0 | 444   | 115.0 | 240.0 | 4540     | 115.0 | 70.0  | 4 4 0 0  | 190.0 |
| Base Capacity (vph)     | 583    | 512      | 566   | 206   | 411   | 465   | 347   | 1519     | 755   | 530   | 1423     | 970   |
| Starvation Cap Reductr  | 1 0    | 0        | 0     | 0     | 0     | 0     | 0     | 0        | 0     | 0     | 0        | 0     |
| Spillback Cap Reductn   | 0      | 0        | 0     | 0     | 0     | 0     | 0     | 0        | 0     | 0     | 0        | 0     |
| Storage Cap Reductin    | 1 40   | 0 40     | 0 70  | 0     | 0 44  | 0     | 0 74  | 0 74     | 0 40  | 0     | 0        | 0 70  |
| Reduced V/C Ratio       | 1.42   | 0.49     | 0.70  | 0.66  | 0.44  | 0.32  | 0.71  | 0.74     | 0.13  | 0.23  | 0.94     | 0.72  |
| Intersection Summary    |        |          |       |       |       |       |       |          |       |       |          |       |

130 Huntmar Drive 02-06-2020 2024 Future PM Dillon Consulting Limited

| Cycle Length: 150                                                                        |                        |  |  |  |  |  |  |
|------------------------------------------------------------------------------------------|------------------------|--|--|--|--|--|--|
| Actuated Cycle Length: 150                                                               |                        |  |  |  |  |  |  |
| Offset: 0 (0%), Referenced to phase 2:NBT and 6:SBT, Start of Green, Master Intersection |                        |  |  |  |  |  |  |
| Natural Cycle: 150                                                                       |                        |  |  |  |  |  |  |
| Control Type: Actuated-Coordinated                                                       |                        |  |  |  |  |  |  |
| Maximum v/c Ratio: 1.42                                                                  |                        |  |  |  |  |  |  |
| Intersection Signal Delay: 74.5                                                          | Intersection LOS: E    |  |  |  |  |  |  |
| Intersection Capacity Utilization 101.6%                                                 | ICU Level of Service G |  |  |  |  |  |  |
| Analysis Period (min) 15                                                                 |                        |  |  |  |  |  |  |
| ~ Volume exceeds capacity, queue is theoretically                                        | infinite.              |  |  |  |  |  |  |
| Queue shown is maximum after two cycles.                                                 |                        |  |  |  |  |  |  |
| # 95th percentile volume exceeds capacity, queue                                         | may be longer.         |  |  |  |  |  |  |

Queue shown is maximum after two cycles.

Splits and Phases: 6: Terry Fox & Palladium/Katimavik



## Lanes, Volumes, Timings 8: Huntmar & Palladium

|                         | ٩     | -           | 7    | 1      | ←           | 1    | 1      | t     | 1     | 4     | ŧ     | ~     |
|-------------------------|-------|-------------|------|--------|-------------|------|--------|-------|-------|-------|-------|-------|
| Lane Group              | EBL   | EBT         | EBR  | WBL    | WBT         | WBR  | NBL    | NBT   | NBR   | SBL   | SBT   | SBR   |
| Lane Configurations     | 3     | <b>≜t</b> ⊧ |      | 3      | <b>≜</b> 16 |      | 1      | 4     | 1     | 1     | 4     | 1     |
| Traffic Volume (vph)    | 25    | 165         | 595  | 225    | 470         | 125  | 335    | 235   | 100   | 90    | 340   | 95    |
| Future Volume (vph)     | 25    | 165         | 595  | 225    | 470         | 125  | 335    | 235   | 100   | 90    | 340   | 95    |
| Confl. Peds. (#/hr)     | 5     |             | 5    | 5      |             | 5    | 5      |       | 5     | 5     |       | 5     |
| Confl. Bikes (#/hr)     |       |             |      |        |             |      |        |       |       |       |       |       |
| Peak Hour Factor        | 1.00  | 1.00        | 1.00 | 1.00   | 1.00        | 1.00 | 1.00   | 1.00  | 1.00  | 1.00  | 1.00  | 1.00  |
| Growth Factor           | 100%  | 100%        | 100% | 100%   | 100%        | 100% | 100%   | 100%  | 100%  | 100%  | 100%  | 100%  |
| Heavy Vehicles (%)      | 11%   | 0%          | 1%   | 0%     | 0%          | 0%   | 1%     | 1%    | 0%    | 1%    | 2%    | 1%    |
| Bus Blockages (#/hr)    | 0     | 0           | 0    | 0      | 0           | 0    | 0      | 0     | 0     | 0     | 0     | 0     |
| Parking (#/hr)          |       |             |      |        |             |      |        |       |       |       |       |       |
| Mid-Block Traffic (%)   |       | 0%          |      |        | 0%          |      |        | 0%    |       |       | 0%    |       |
| Shared Lane Traffic (%) | )     |             |      |        |             |      |        |       |       |       |       |       |
| Lane Group Flow (vph)   | 25    | 760         | 0    | 225    | 595         | 0    | 335    | 235   | 100   | 90    | 340   | 95    |
| Turn Type               | pm+pt | NA          |      | pm+pt  | NA          |      | Perm   | NA    | Perm  | Perm  | NA    | Perm  |
| Protected Phases        | 7     | 4           |      | 3      | 8           |      |        | 2     |       |       | 6     |       |
| Permitted Phases        | 4     |             |      | 8      |             |      | 2      |       | 2     | 6     |       | 6     |
| Detector Phase          | 7     | 4           |      | 3      | 8           |      | 2      | 2     | 2     | 6     | 6     | 6     |
| Switch Phase            |       |             |      |        |             |      |        |       |       |       |       |       |
| Minimum Initial (s)     | 5.0   | 10.0        |      | 5.0    | 10.0        |      | 10.0   | 10.0  | 10.0  | 10.0  | 10.0  | 10.0  |
| Minimum Split (s)       | 12.5  | 43.0        |      | 12.5   | 43.0        |      | 42.3   | 42.3  | 42.3  | 42.3  | 42.3  | 42.3  |
| Total Split (s)         | 16.9  | 43.0        |      | 17.0   | 43.1        |      | 70.0   | 70.0  | 70.0  | 70.0  | 70.0  | 70.0  |
| Total Split (%)         | 13.0% | 33.1%       |      | 13.1%  | 33.2%       |      | 53.8%  | 53.8% | 53.8% | 53.8% | 53.8% | 53.8% |
| Yellow Time (s)         | 4.0   | 4.0         |      | 4.0    | 4.0         |      | 3.3    | 3.3   | 3.3   | 3.3   | 3.3   | 3.3   |
| All-Red Time (s)        | 2.0   | 2.0         |      | 2.0    | 2.0         |      | 2.0    | 2.0   | 2.0   | 2.0   | 2.0   | 2.0   |
| Lost Time Adjust (s)    | 0.0   | 0.0         |      | 0.0    | 0.0         |      | 0.0    | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   |
| Total Lost Time (s)     | 6.0   | 6.0         |      | 6.0    | 6.0         |      | 5.3    | 5.3   | 5.3   | 5.3   | 5.3   | 5.3   |
| Lead/Lag                | Lead  | Lag         |      | Lead   | Lag         |      |        |       |       |       |       |       |
| Lead-Lag Optimize?      | Yes   | Yes         |      | Yes    | Yes         |      |        |       |       |       |       |       |
| Recall Mode             | None  | None        |      | None   | None        |      | C-Max  | C-Max | C-Max | C-Max | C-Max | C-Max |
| Act Effct Green (s)     | 32.1  | 25.2        |      | 40.6   | 34.0        |      | 76.5   | 76.5  | 76.5  | 76.5  | 76.5  | 76.5  |
| Actuated g/C Ratio      | 0.25  | 0.19        |      | 0.31   | 0.26        |      | 0.59   | 0.59  | 0.59  | 0.59  | 0.59  | 0.59  |
| v/c Ratio               | 0.14  | 0.99dr      |      | 1.17   | 0.67        |      | 0.64   | 0.22  | 0.11  | 0.15  | 0.33  | 0.10  |
| Control Delay           | 28.6  | 34.5        |      | 150.1  | 45.2        |      | 37.4   | 23.0  | 10.1  | 14.9  | 16.2  | 3.3   |
| Queue Delay             | 0.0   | 0.0         |      | 0.0    | 0.0         |      | 0.0    | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   |
| Total Delay             | 28.6  | 34.5        |      | 150.1  | 45.2        |      | 37.4   | 23.0  | 10.1  | 14.9  | 16.2  | 3.3   |
| LOS                     | С     | С           |      | F      | D           |      | D      | С     | В     | В     | В     | A     |
| Approach Delay          |       | 34.3        |      |        | 74.0        |      |        | 28.3  |       |       | 13.7  |       |
| Approach LOS            |       | С           |      |        | E           |      |        | С     |       |       | В     |       |
| Queue Length 50th (m)   | 4.6   | 54.4        |      | ~58.5  | 76.7        |      | 76.3   | 43.4  | 5.7   | 10.4  | 44.4  | 0.0   |
| Queue Length 95th (m)   | 9.9   | 71.2        |      | #102.7 | 88.2        | m    | #128.0 | m72.6 | m16.1 | 24.0  | 79.7  | 9.1   |
| Internal Link Dist (m)  |       | 535.2       |      |        | 1802.0      |      |        | 357.2 |       |       | 231.7 |       |
| Turn Bay Length (m)     | 95.0  |             |      | 75.0   |             |      | 120.0  |       | 45.0  | 50.0  |       |       |
| Base Capacity (vph)     | 225   | 1111        |      | 193    | 973         |      | 520    | 1048  | 926   | 612   | 1038  | 914   |
| Starvation Cap Reductn  | n 0   | 0           |      | 0      | 0           |      | 0      | 0     | 0     | 0     | 0     | 0     |
| Spillback Cap Reductn   | 0     | 0           |      | 0      | 0           |      | 0      | 0     | 0     | 0     | 0     | 0     |
| Storage Cap Reductn     | 0     | 0           |      | 0      | 0           |      | 0      | 0     | 0     | 0     | 0     | 0     |
| Reduced v/c Ratio       | 0.11  | 0.68        |      | 1.17   | 0.61        |      | 0.64   | 0.22  | 0.11  | 0.15  | 0.33  | 0.10  |
| Intersection Summary    |       |             |      |        |             |      |        |       |       |       |       |       |

130 Huntmar Drive 02-06-2020 2024 Future PM Dillon Consulting Limited

| Су  | /cle Length: 130                                |                          |   |
|-----|-------------------------------------------------|--------------------------|---|
| Ac  | tuated Cycle Length: 130                        |                          |   |
| Of  | fset: 0 (0%), Referenced to phase 2:NBTL and    | d 6:SBTL, Start of Green |   |
| Na  | atural Cycle: 100                               |                          |   |
| Сс  | ontrol Type: Actuated-Coordinated               |                          |   |
| Ma  | aximum v/c Ratio: 1.17                          |                          |   |
| Int | ersection Signal Delay: 40.6                    | Intersection LOS: D      |   |
| Int | ersection Capacity Utilization 108.8%           | ICU Level of Service G   | ÷ |
| An  | alysis Period (min) 15                          |                          |   |
| ~   | Volume exceeds capacity, queue is theoretic     | cally infinite.          |   |
|     | Queue shown is maximum after two cycles.        |                          |   |
| #   | 95th percentile volume exceeds capacity, qu     | ieue may be longer.      |   |
|     | Queue shown is maximum after two cycles.        |                          |   |
|     | Values for OFthe perceptile succession protono. | d by unstroom signal     |   |

m Volume for 95th percentile queue is metered by upstream signal.

dr Defacto Right Lane. Recode with 1 though lane as a right lane.

#### Splits and Phases: 8: Huntmar & Palladium

| <sup>≪</sup> ¶ø₂ (R) | <b>√</b> Ø3     | -04   |
|----------------------|-----------------|-------|
| 20 \$                | 17 s            | 43.5  |
| ₩ Ø6 (R)             | ▲ <sub>07</sub> | ₹ø8   |
| 70 s                 | 16.9 s          | 43.1s |

# Lanes, Volumes, Timings 21: Huntmar & Maple Grove

|                         | ٩     | -     | 7    | 1     | +     | *    | 1     | t     | 1    | 6     | ŧ      | ~    |
|-------------------------|-------|-------|------|-------|-------|------|-------|-------|------|-------|--------|------|
| Lane Group              | EBL   | EBT   | EBR  | WBL   | WBT   | WBR  | NBL   | NBT   | NBR  | SBL   | SBT    | SBR  |
| Lane Configurations     |       | 4     |      |       | 4     |      | 2     | 4     |      |       | 4      |      |
| Traffic Volume (vph)    | 120   | 115   | 75   | 170   | 190   | 50   | 110   | 575   | 125  | 50    | 815    | 255  |
| Future Volume (vph)     | 120   | 115   | 75   | 170   | 190   | 50   | 110   | 575   | 125  | 50    | 815    | 255  |
| Confl. Peds. (#/hr)     | 5     |       | 5    | 5     |       | 5    | 5     |       | 5    | 5     |        | 5    |
| Confl. Bikes (#/hr)     |       |       |      |       |       |      |       |       |      |       |        |      |
| Peak Hour Factor        | 1.00  | 1.00  | 1.00 | 1.00  | 1.00  | 1.00 | 1.00  | 1.00  | 1.00 | 1.00  | 1.00   | 1.00 |
| Growth Factor           | 100%  | 100%  | 100% | 100%  | 100%  | 100% | 100%  | 100%  | 100% | 100%  | 100%   | 100% |
| Heavy Vehicles (%)      | 0%    | 1%    | 0%   | 0%    | 0%    | 0%   | 2%    | 1%    | 0%   | 0%    | 1%     | 0%   |
| Bus Blockages (#/hr)    | 0     | 0     | 0    | 0     | 0     | 0    | 0     | 0     | 0    | 0     | 0      | 0    |
| Parking (#/hr)          |       |       |      |       |       |      |       |       |      |       |        |      |
| Mid-Block Traffic (%)   |       | 0%    |      |       | 0%    |      |       | 0%    |      |       | 0%     |      |
| Shared Lane Traffic (%) | )     |       |      |       |       |      |       |       |      |       |        |      |
| Lane Group Flow (vph)   | 0     | 310   | 0    | 0     | 410   | 0    | 110   | 700   | 0    | 0     | 1120   | 0    |
| Turn Type               | Perm  | NA    |      | Perm  | NA    |      | Perm  | NA    |      | Perm  | NA     |      |
| Protected Phases        |       | 4     |      |       | 8     |      |       | 2     |      |       | 6      |      |
| Permitted Phases        | 4     |       |      | 8     |       |      | 2     |       |      | 6     |        |      |
| Detector Phase          | 4     | 4     |      | 8     | 8     |      | 2     | 2     |      | 6     | 6      |      |
| Switch Phase            |       |       |      |       |       |      |       |       |      |       |        |      |
| Minimum Initial (s)     | 10.0  | 10.0  |      | 10.0  | 10.0  |      | 10.0  | 10.0  |      | 10.0  | 10.0   |      |
| Minimum Split (s)       | 33.0  | 33.0  |      | 33.0  | 33.0  |      | 29.0  | 29.0  |      | 49.0  | 49.0   |      |
| Total Split (s)         | 61.0  | 61.0  |      | 61.0  | 61.0  |      | 69.0  | 69.0  |      | 69.0  | 69.0   |      |
| Total Split (%)         | 46.9% | 46.9% |      | 46.9% | 46.9% |      | 53.1% | 53.1% |      | 53.1% | 53.1%  |      |
| Yellow Time (s)         | 3.0   | 3.0   |      | 3.0   | 3.0   |      | 3.3   | 3.3   |      | 3.3   | 3.3    |      |
| All-Red Time (s)        | 2.0   | 2.0   |      | 2.0   | 2.0   |      | 2.0   | 2.0   |      | 2.0   | 2.0    |      |
| Lost Time Adjust (s)    |       | 0.0   |      |       | 0.0   |      | 0.0   | 0.0   |      |       | 0.0    |      |
| Total Lost Time (s)     |       | 5.0   |      |       | 5.0   |      | 5.3   | 5.3   |      |       | 5.3    |      |
| Lead/Lag                |       |       |      |       |       |      |       |       |      |       |        |      |
| Lead-Lag Optimize?      |       |       |      |       |       |      |       |       |      |       |        |      |
| Recall Mode             | None  | None  |      | None  | None  |      | C-Max | C-Max |      | C-Max | C-Max  |      |
| Act Effct Green (s)     |       | 47.5  |      |       | 47.5  |      | 72.2  | 72.2  |      |       | 72.2   |      |
| Actuated g/C Ratio      |       | 0.37  |      |       | 0.37  |      | 0.56  | 0.56  |      |       | 0.56   |      |
| v/c Ratio               |       | 0.71  |      |       | 0.91  |      | 0.58  | 0.73  |      |       | 1.58   |      |
| Control Delay           |       | 41.7  |      |       | 54.0  |      | 37.2  | 28.5  |      |       | 288.1  |      |
| Queue Delay             |       | 0.0   |      |       | 0.0   |      | 0.0   | 0.0   |      |       | 0.0    |      |
| Total Delay             |       | 41.7  |      |       | 54.0  |      | 37.2  | 28.5  |      |       | 288.1  |      |
| LOS<br>Anna de Dalas    |       |       |      |       | D     |      | D     | 00 7  |      |       |        |      |
| Approach Delay          |       | 41.7  |      |       | 54.0  |      |       | 29.7  |      |       | 288.1  |      |
| Approach LOS            |       | D     |      |       | D     |      | 40.0  |       |      |       | F      |      |
| Queue Length 50th (m)   |       | 66.1  |      |       | 61.8  |      | 19.2  | 137.4 |      |       | ~428.8 |      |
| Queue Length 95th (m)   |       | 93.4  |      |       | 97.6  |      | #54.Z | 213.8 |      | m     | #513.1 |      |
| Internal Link Dist (m)  |       | 630.5 |      |       | 86.3  |      | 00.0  | 293.1 |      |       | 1/5.1  |      |
| Turn Bay Length (m)     |       | E 4 4 |      |       | 500   |      | 20.0  | 062   |      |       | 700    |      |
| Dase Capacity (Vpn)     |       | 514   |      |       | 529   |      | 190   | 963   |      |       | 708    |      |
| Starvation Cap Reducth  |       | 0     |      |       | 0     |      | 0     | 0     |      |       | 0      |      |
| Spillback Cap Reducth   |       | 0     |      |       | 0     |      | 0     | 0     |      |       | 0      |      |
| Boduced v/a Reduction   |       | 0.60  |      |       | 0 79  |      | 0 5 9 | 0 73  |      |       | 1 5 9  |      |
| Reduced V/C Rallo       |       | 00.0  |      |       | 0.78  |      | 0.58  | 0.73  |      |       | 1.58   |      |
| Intersection Summary    |       |       |      |       |       |      |       |       |      |       |        |      |

130 Huntmar Drive 02-06-2020 2024 Future PM Dillon Consulting Limited

| Су                                                   | cle Length: 130                                                 |                        |  |  |  |  |  |
|------------------------------------------------------|-----------------------------------------------------------------|------------------------|--|--|--|--|--|
| Ac                                                   | tuated Cycle Length: 130                                        |                        |  |  |  |  |  |
| Of                                                   | fset: 0 (0%), Referenced to phase 2:NBTL and (                  | δ:SBTL, Start of Green |  |  |  |  |  |
| Na                                                   | atural Cycle: 105                                               |                        |  |  |  |  |  |
| Сс                                                   | ontrol Type: Actuated-Coordinated                               |                        |  |  |  |  |  |
| Ma                                                   | aximum v/c Ratio: 1.58                                          |                        |  |  |  |  |  |
| Intersection Signal Delay: 144.1 Intersection LOS: F |                                                                 |                        |  |  |  |  |  |
| Int                                                  | Intersection Capacity Utilization 146.3% ICU Level of Service H |                        |  |  |  |  |  |
| An                                                   | alysis Period (min) 15                                          |                        |  |  |  |  |  |
| ~                                                    | Volume exceeds capacity, queue is theoretically infinite.       |                        |  |  |  |  |  |
|                                                      | Queue shown is maximum after two cycles.                        |                        |  |  |  |  |  |
| #                                                    | # 95th percentile volume exceeds capacity, queue may be longer. |                        |  |  |  |  |  |
|                                                      | Queue shown is maximum after two cycles.                        |                        |  |  |  |  |  |
| m                                                    | Volume for 95th percentile queue is metered                     | by upstream signal.    |  |  |  |  |  |

Splits and Phases: 21: Huntmar & Maple Grove

|        | -04  |
|--------|------|
| 69 \$  | 61/5 |
| Ø6 (R) | ₹ Ø8 |
| 69 s   | 61s  |

## Lanes, Volumes, Timings 31: Terry Fox & Maple Grove

|                        | ٩        | <b>→</b> | 7     | 1     | +     | *    | 1     | t           | 1    | 1     | ŧ          | ~     |
|------------------------|----------|----------|-------|-------|-------|------|-------|-------------|------|-------|------------|-------|
| Lane Group             | EBL      | EBT      | EBR   | WBL   | WBT   | WBR  | NBL   | NBT         | NBR  | SBL   | SBT        | SBR   |
| Lane Configurations    | 3        | 4        | 1     | 1     | 1.    |      | 1     | <b>≜</b> 1₀ |      | 1     | <b>*</b> * | 1     |
| Traffic Volume (vph)   | 170      | 45       | 335   | 20    | 50    | 40   | 220   | 1365        | 45   | 60    | 1810       | 175   |
| Future Volume (vph)    | 170      | 45       | 335   | 20    | 50    | 40   | 220   | 1365        | 45   | 60    | 1810       | 175   |
| Confl. Peds. (#/hr)    | 5        |          | 5     | 5     |       | 5    | 5     |             | 5    | 5     |            | 5     |
| Confl. Bikes (#/hr)    |          |          |       |       |       |      |       |             |      |       |            |       |
| Peak Hour Factor       | 1.00     | 1.00     | 1.00  | 1.00  | 1.00  | 1.00 | 1.00  | 1.00        | 1.00 | 1.00  | 1.00       | 1.00  |
| Growth Factor          | 100%     | 100%     | 100%  | 100%  | 100%  | 100% | 100%  | 100%        | 100% | 100%  | 100%       | 100%  |
| Heavy Vehicles (%)     | 2%       | 0%       | 1%    | 0%    | 0%    | 0%   | 3%    | 2%          | 0%   | 0%    | 1%         | 3%    |
| Bus Blockages (#/hr)   | 0        | 0        | 0     | 0     | 0     | 0    | 0     | 0           | 0    | 0     | 0          | 0     |
| Parking (#/hr)         |          |          |       |       |       |      |       |             |      |       |            |       |
| Mid-Block Traffic (%)  |          | 0%       |       |       | 0%    |      |       | 0%          |      |       | 0%         |       |
| Shared Lane Traffic (% | )        |          |       |       |       |      |       |             |      |       |            |       |
| Lane Group Flow (vph)  | ,<br>170 | 45       | 335   | 20    | 90    | 0    | 220   | 1410        | 0    | 60    | 1810       | 175   |
| Turn Type              | Perm     | NA       | Perm  | Perm  | NA    |      | pm+pt | NA          |      | pm+pt | NA         | Perm  |
| Protected Phases       |          | 4        |       |       | 8     |      | 5     | 2           |      | 1     | 6          |       |
| Permitted Phases       | 4        |          | 4     | 8     |       |      | 2     |             |      | 6     |            | 6     |
| Detector Phase         | 4        | 4        | 4     | 8     | 8     |      | 5     | 2           |      | 1     | 6          | 6     |
| Switch Phase           |          |          |       |       |       |      |       |             |      |       |            |       |
| Minimum Initial (s)    | 10.0     | 10.0     | 10.0  | 10.0  | 10.0  |      | 5.0   | 10.0        |      | 5.0   | 10.0       | 10.0  |
| Minimum Split (s)      | 42.0     | 42.0     | 42.0  | 42.0  | 42.0  |      | 12.0  | 43.0        |      | 12.0  | 43.0       | 43.0  |
| Total Split (s)        | 46.0     | 46.0     | 46.0  | 46.0  | 46.0  |      | 24.0  | 72.0        |      | 12.0  | 60.0       | 60.0  |
| Total Split (%)        | 35.4%    | 35.4%    | 35.4% | 35.4% | 35.4% |      | 18.5% | 55.4%       |      | 9.2%  | 46.2%      | 46.2% |
| Yellow Time (s)        | 3.0      | 3.0      | 3.0   | 3.0   | 3.0   |      | 4.0   | 4.0         |      | 4.0   | 4.0        | 4.0   |
| All-Red Time (s)       | 2.0      | 2.0      | 2.0   | 2.0   | 2.0   |      | 2.0   | 2.0         |      | 2.0   | 2.0        | 2.0   |
| Lost Time Adjust (s)   | 0.0      | 0.0      | 0.0   | 0.0   | 0.0   |      | 0.0   | 0.0         |      | 0.0   | 0.0        | 0.0   |
| Total Lost Time (s)    | 5.0      | 5.0      | 5.0   | 5.0   | 5.0   |      | 6.0   | 6.0         |      | 6.0   | 6.0        | 6.0   |
| Lead/Lag               |          |          |       |       |       |      | Lead  | Lag         |      | Lead  | Lag        | Lag   |
| Lead-Lag Optimize?     |          |          |       |       |       |      | Yes   | Yes         |      | Yes   | Yes        | Yes   |
| Recall Mode            | None     | None     | None  | None  | None  |      | None  | C-Max       |      | None  | C-Max      | C-Max |
| Act Effct Green (s)    | 24.5     | 24.5     | 24.5  | 24.5  | 24.5  |      | 94.5  | 83.9        |      | 79.1  | 72.1       | 72.1  |
| Actuated g/C Ratio     | 0.19     | 0.19     | 0.19  | 0.19  | 0.19  |      | 0.73  | 0.65        |      | 0.61  | 0.55       | 0.55  |
| v/c Ratio              | 0.76     | 0.13     | 0.76  | 0.08  | 0.27  |      | 0.84  | 0.65        |      | 0.25  | 0.96       | 0.21  |
| Control Delay          | 66.6     | 39.6     | 28.2  | 39.8  | 28.7  |      | 61.0  | 18.5        |      | 11.1  | 43.0       | 7.8   |
| Queue Delay            | 0.0      | 0.0      | 0.0   | 0.0   | 0.0   |      | 0.0   | 0.0         |      | 0.0   | 0.0        | 0.0   |
| Total Delay            | 66.6     | 39.6     | 28.2  | 39.8  | 28.7  |      | 61.0  | 18.5        |      | 11.1  | 43.0       | 7.8   |
| LOS                    | E        | D        | С     | D     | С     |      | E     | В           |      | В     | D          | A     |
| Approach Delay         |          | 41.0     |       |       | 30.7  |      |       | 24.3        |      |       | 39.1       |       |
| Approach LOS           |          | D        |       |       | С     |      |       | С           |      |       | D          |       |
| Queue Length 50th (m)  | 44.7     | 10.0     | 34.6  | 4.5   | 13.4  |      | 42.3  | 117.4       |      | 4.0   | 235.3      | 7.0   |
| Queue Length 95th (m)  | m56.1    | m15.1    | m53.3 | 10.7  | 25.8  |      | 72.8  | 194.7       |      | 11.4  | #370.5     | 25.5  |
| Internal Link Dist (m) |          | 1246.0   |       |       | 796.0 |      |       | 547.8       |      |       | 406.9      |       |
| Turn Bay Length (m)    | 65.0     |          | 60.0  | 40.0  |       |      | 145.0 |             |      | 125.0 |            | 70.0  |
| Base Capacity (vph)    | 378      | 567      | 606   | 411   | 547   |      | 298   | 2154        |      | 238   | 1878       | 852   |
| Starvation Cap Reductr | ט ו      | 0        | 0     | 0     | 0     |      | 0     | 0           |      | 0     | 0          | 0     |
| Spillback Cap Reductn  | 0        | 0        | 0     | 0     | 0     |      | 0     | 0           |      | 0     | 0          | 0     |
| Storage Cap Reductn    | 0        | 0        | 0     | 0     | 0     |      | 0     | 0           |      | 0     | 0          | 0     |
| Reduced v/c Ratio      | 0.45     | 0.08     | 0.55  | 0.05  | 0.16  |      | 0.74  | 0.65        |      | 0.25  | 0.96       | 0.21  |
| Intersection Summary   |          |          |       |       |       |      |       |             |      |       |            |       |

130 Huntmar Drive 02-06-2020 2024 Future PM Dillon Consulting Limited

| Cycle Length: 130                           |                               |  |
|---------------------------------------------|-------------------------------|--|
| Actuated Cycle Length: 130                  |                               |  |
| Offset: 112 (86%), Referenced to phase 2:NB | TL and 6:SBTL, Start of Green |  |
| Natural Cycle: 140                          |                               |  |
| Control Type: Actuated-Coordinated          |                               |  |
| Maximum v/c Ratio: 0.96                     |                               |  |
| Intersection Signal Delay: 33.6             | Intersection LOS: C           |  |
| Intersection Capacity Utilization 98.6%     | ICU Level of Service F        |  |
| Analysis Period (min) 15                    |                               |  |
| # 95th percentile volume exceeds capacity,  | queue may be longer.          |  |
| Queue shown is maximum after two cycles     | s.                            |  |
| m Volume for 95th percentile queue is mete  | red by upstream signal.       |  |

Splits and Phases: 31: Terry Fox & Maple Grove



| 03-12- | 2020 |
|--------|------|
|--------|------|

## Intersection Int Delay, s/veh 0.6

| Movement            | WBL    | WBR  | NBT  | NBR  | SBL  | SBT  |
|---------------------|--------|------|------|------|------|------|
| Lane Configuration  | าร 🏹   |      | - îs |      |      | 4    |
| Traffic Vol, veh/h  | 0      | 40   | 735  | 15   | 60   | 1080 |
| Future Vol, veh/h   | 0      | 40   | 735  | 15   | 60   | 1080 |
| Conflicting Peds, # | ‡/hr 5 | 5    | 0    | 5    | 5    | 0    |
| Sign Control        | Stop   | Stop | Free | Free | Free | Free |
| RT Channelized      | -      | None | -    | None | -    | None |
| Storage Length      | 0      | -    | -    | -    | -    | -    |
| Veh in Median Sto   | rage0; | # -  | 0    | -    | -    | 0    |
| Grade, %            | 0      | -    | 0    | -    | -    | 0    |
| Peak Hour Factor    | 100    | 100  | 100  | 100  | 100  | 100  |
| Heavy Vehicles, %   | 5 0    | 0    | 0    | 0    | 0    | 1    |
| Mvmt Flow           | 0      | 40   | 735  | 15   | 60   | 1080 |

| Major/Minor      | Minor1    | Ma  | ajor1 | Ma | ajor2 |   |  |  |  |  |
|------------------|-----------|-----|-------|----|-------|---|--|--|--|--|
| Conflicting Flow | / All1953 | 753 | 0     | 0  | 755   | 0 |  |  |  |  |
| Stage 1          | 748       | -   | -     | -  | -     | - |  |  |  |  |
| Stage 2          | 1205      | -   | -     | -  | -     | - |  |  |  |  |
| Critical Hdwy    | 6.4       | 6.2 | -     | -  | 4.1   | - |  |  |  |  |
| Critical Hdwy St | tg 1 5.4  | -   | -     | -  | -     | - |  |  |  |  |
| Critical Hdwy St | tg 2 5.4  | -   | -     | -  | -     | - |  |  |  |  |
| Follow-up Hdwy   | / 3.5     | 3.3 | -     | -  | 2.2   | - |  |  |  |  |
| Pot Cap-1 Mane   | euver 71  | 413 | -     | -  | 865   | - |  |  |  |  |
| Stage 1          | 471       | -   | -     | -  | -     | - |  |  |  |  |
| Stage 2          | 286       | -   | -     | -  | -     | - |  |  |  |  |
| Platoon blocked  | l, %      |     | -     | -  |       | - |  |  |  |  |
| Mov Cap-1 Mar    | neuver58  | 410 | -     | -  | 861   | - |  |  |  |  |
| Mov Cap-2 Mar    | neuver58  | -   | -     | -  | -     | - |  |  |  |  |
| Stage 1          | 469       | -   | -     | -  | -     | - |  |  |  |  |
| Stage 2          | 235       | -   | -     | -  | -     | - |  |  |  |  |
|                  |           |     |       |    |       |   |  |  |  |  |
| Approach         | WB        |     | NB    |    | SB    |   |  |  |  |  |

| Approach         | WB               | NB | SB  |  |
|------------------|------------------|----|-----|--|
| HCM Control Dela | ay,1 <b>4</b> .7 | 0  | 0.5 |  |
| HCM LOS          | В                |    |     |  |

| Minor Lane/Major Mvmt | NBT | NB₩ | BLn1  | SBL  | SBT |
|-----------------------|-----|-----|-------|------|-----|
| Capacity (veh/h)      | -   | -   | 410   | 861  | -   |
| HCM Lane V/C Ratio    | -   | - ( | 0.098 | 0.07 | -   |
| HCM Control Delay (s) | -   | -   | 14.7  | 9.5  | 0   |
| HCM Lane LOS          | -   | -   | В     | А    | Α   |
| HCM 95th %tile Q(veh) | -   | -   | 0.3   | 0.2  | -   |

| 03-12-2020 | ) |
|------------|---|
|------------|---|

| Intersection        |          |       |              |      |      |      |
|---------------------|----------|-------|--------------|------|------|------|
| Int Delay, s/veh    | 1.2      |       |              |      |      |      |
| Maxamant            |          |       | NDT          |      | CDI  | ODT  |
| Movement            | VVBL     | VV BR | INPT         | NBR  | SBL  | 201  |
| Lane Configuration  | ns 🌱     |       | - <b>1</b> + |      |      | - 4  |
| Traffic Vol, veh/h  | 15       | 30    | 750          | 25   | 45   | 1120 |
| Future Vol, veh/h   | 15       | 30    | 750          | 25   | 45   | 1120 |
| Conflicting Peds, # | #/hr 5   | 5     | 0            | 5    | 5    | 0    |
| Sign Control        | Stop     | Stop  | Free         | Free | Free | Free |
| RT Channelized      | -        | None  | -            | None | -    | None |
| Storage Length      | 0        | -     | -            | -    | -    | -    |
| Veh in Median Sto   | orage0,# | 4 -   | 0            | -    | -    | 0    |
| Grade, %            | 0        | -     | 0            | -    | -    | 0    |
| Peak Hour Factor    | 100      | 100   | 100          | 100  | 100  | 100  |
| Heavy Vehicles, %   | 60       | 0     | 0            | 0    | 0    | 1    |
| Mvmt Flow           | 15       | 30    | 750          | 25   | 45   | 1120 |
|                     |          |       |              |      |      |      |

| Major/Minor      | Minor1   | Ma  | ajor1 | Ma | ajor2 |   |  |  |
|------------------|----------|-----|-------|----|-------|---|--|--|
| Conflicting Flow | Al1983   | 773 | 0     | 0  | 780   | 0 |  |  |
| Stage 1          | 768      | -   | -     | -  | -     | - |  |  |
| Stage 2          | 1215     | -   | -     | -  | -     | - |  |  |
| Critical Hdwy    | 6.4      | 6.2 | -     | -  | 4.1   | - |  |  |
| Critical Hdwy St | g1 5.4   | -   | -     | -  | -     | - |  |  |
| Critical Hdwy St | g2 5.4   | -   | -     | -  | -     | - |  |  |
| Follow-up Hdwy   | 3.5      | 3.3 | -     | -  | 2.2   | - |  |  |
| Pot Cap-1 Mane   | euver 68 | 402 | -     | -  | 846   | - |  |  |
| Stage 1          | 461      | -   | -     | -  | -     | - |  |  |
| Stage 2          | 283      | -   | -     | -  | -     | - |  |  |
| Platoon blocked  | , %      |     | -     | -  |       | - |  |  |
| Mov Cap-1 Man    | euver58  | 399 | -     | -  | 842   | - |  |  |
| Mov Cap-2 Man    | euver58  | -   | -     | -  | -     | - |  |  |
| Stage 1          | 459      | -   | -     | -  | -     | - |  |  |
| Stage 2          | 242      | -   | -     | -  | -     | - |  |  |
|                  |          |     |       |    |       |   |  |  |
| •                |          |     |       |    | 00    |   |  |  |

| Approach       | WB               | NB | SB  |  |
|----------------|------------------|----|-----|--|
| HCM Control De | lay4 <b>4</b> .5 | 0  | 0.4 |  |
| HCM LOS        | E                |    |     |  |

| Minor Lane/Major Mvmt | NBT | NB | VBLn1  | SBL   | SBT |
|-----------------------|-----|----|--------|-------|-----|
| Capacity (veh/h)      | -   |    | - 135  | 842   | -   |
| HCM Lane V/C Ratio    | -   |    | 0.333  | 0.053 | -   |
| HCM Control Delay (s) | -   |    | - 44.5 | 9.5   | 0   |
| HCM Lane LOS          | -   |    | - E    | A     | А   |
| HCM 95th %tile Q(veh) | -   |    | - 1.3  | 0.2   | -   |

Int Delay, s/veh 1.7

| Movement            | EBL                  | EBT  | WBT  | WBR  | SBL  | SBR  |
|---------------------|----------------------|------|------|------|------|------|
| Lane Configuratio   | ns                   | 4    | ţ,   |      | Y    |      |
| Traffic Vol, veh/h  | 30                   | 275  | 375  | 70   | 30   | 55   |
| Future Vol, veh/h   | 30                   | 275  | 375  | 70   | 30   | 55   |
| Conflicting Peds, a | #/hr 5               | 0    | 0    | 5    | 5    | 5    |
| Sign Control        | Free                 | Free | Free | Free | Stop | Stop |
| RT Channelized      | -                    | None | -    | None | -    | None |
| Storage Length      | -                    | -    | -    | -    | 0    | -    |
| Veh in Median Sto   | orage <del>,</del> ‡ | ¥ 0  | 0    | -    | 0    | -    |
| Grade, %            | -                    | 0    | 0    | -    | 0    | -    |
| Peak Hour Factor    | 100                  | 100  | 100  | 100  | 100  | 100  |
| Heavy Vehicles, %   | 60                   | 0    | 3    | 0    | 0    | 0    |
| Mvmt Flow           | 30                   | 275  | 375  | 70   | 30   | 55   |

| Major/Minor      | Major1            | Ma | ajor2 | Μ | inor2     |     |  |
|------------------|-------------------|----|-------|---|-----------|-----|--|
| Conflicting Flow | All 450           | 0  | -     | 0 | 755       | 420 |  |
| Stage 1          | -                 | -  | -     | - | 415       | -   |  |
| Stage 2          | -                 | -  | -     | - | 340       | -   |  |
| Critical Hdwy    | 4.1               | -  | -     | - | 6.4       | 6.2 |  |
| Critical Hdwy St | g1 -              | -  | -     | - | 5.4       | -   |  |
| Critical Hdwy St | g2 -              | -  | -     | - | 5.4       | -   |  |
| Follow-up Hdwy   | 2.2               | -  | -     | - | 3.5       | 3.3 |  |
| Pot Cap-1 Mane   | euv <b>éri</b> 21 | -  | -     | - | 379       | 638 |  |
| Stage 1          | -                 | -  | -     | - | 671       | -   |  |
| Stage 2          | -                 | -  | -     | - | 725       | -   |  |
| Platoon blocked  | , %               | -  | -     | - |           |     |  |
| Mov Cap-1 Man    | euvler16          | -  | -     | - | 364       | 633 |  |
| Mov Cap-2 Man    | euver -           | -  | -     | - | 364       | -   |  |
| Stage 1          | -                 | -  | -     | - | 647       | -   |  |
| Stage 2          | -                 | -  | -     | - | 722       | -   |  |
|                  |                   |    |       |   |           |     |  |
| Approach         | FR                |    | WB    |   | SB        |     |  |
| HCM Control Do   |                   |    | 0     |   | 13.6      |     |  |
|                  | 51ay, <b>9</b> .0 |    | 0     |   | 13.0<br>D |     |  |
|                  |                   |    |       |   | D         |     |  |
|                  |                   |    |       |   |           |     |  |

| Minor Lane/Major Mvm  | t EBL | EBT | WBT | WBRSBI | Ln1 |
|-----------------------|-------|-----|-----|--------|-----|
| Capacity (veh/h)      | 1116  | -   | -   | - !    | 502 |
| HCM Lane V/C Ratio    | 0.027 | -   | -   | -0.    | 169 |
| HCM Control Delay (s) | 8.3   | 0   | -   | - 1    | 3.6 |
| HCM Lane LOS          | Α     | Α   | -   | -      | В   |
| HCM 95th %tile Q(veh) | 0.1   | -   | -   | -      | 0.6 |

Int Delay, s/veh 0.7

|                     |                                                                  |                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|---------------------|------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EBL                 | EBT                                                              | WBT                                                                                                                                                                                                                                                                                                                                    | WBR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SBL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SBR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| าร                  | - च                                                              | - îs                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ۰Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5                   | 285                                                              | 400                                                                                                                                                                                                                                                                                                                                    | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 5                   | 285                                                              | 400                                                                                                                                                                                                                                                                                                                                    | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| #/hr 5              | 0                                                                | 0                                                                                                                                                                                                                                                                                                                                      | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Free                | Free                                                             | Free                                                                                                                                                                                                                                                                                                                                   | Free                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Stop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Stop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| -                   | None                                                             | -                                                                                                                                                                                                                                                                                                                                      | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| -                   | -                                                                | -                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| rage <del>,</del> i | # 0                                                              | 0                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| -                   | 0                                                                | 0                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 100                 | 100                                                              | 100                                                                                                                                                                                                                                                                                                                                    | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 6 0                 | 0                                                                | 3                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 5                   | 285                                                              | 400                                                                                                                                                                                                                                                                                                                                    | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                     | EBL<br>15<br>5<br>5<br>4/hr 5<br>Free<br>-<br>-<br>100<br>5<br>5 | EBL         EBT           1s         5         285           5         285         5         285           \$/hr         5         0         7           Free         Free         -         0           -         -         -         0           100         100         0         0           5         285         285         285 | EBL         EBT         WBT           5         285         400           5         285         400           5         285         400           5         285         400           6         785         400           7         8         0           6         7         0           7         7         7           7         7         7           7         7         7           7         7         7           7         7         7           7         7         7           7         7         7           7         7         7           7         7         7           7         7         7           7         7         7           7         7         7           8         7         7           9         7         7           9         7         7           9         7         7           9         7         7           9         7         7           9         7< | EBL         EBT         WBT         WBR           5         285         400         25           5         285         400         25           5         285         400         25           #/hr         5         0         0         5           Free         Free         Free         Free         Free           -         None         -         None           -         -         -         -           rage, #         0         0         -           100         100         100         100           0         0         3         0           5         285         400         25 | EBL         EBT         WBT         WBR         SBL           1s         285         400         25         20           5         285         400         25         20           5         285         400         25         20           5         285         400         25         20           #/hr         5         0         0         5         5           Free         Free         Free         Free         Stop         -           -         None         -         None         -         0           -         0         0         -         0         0           rage;         #         0         0         -         0           100         100         100         100         100         0           0         0         3         0         0         0           5         285         400         25         20 |

| Major/Minor Ma       | ajor1        | Ma | ajor2 | Μ | inor2 |     |  |
|----------------------|--------------|----|-------|---|-------|-----|--|
| Conflicting Flow All | 430          | 0  | -     | 0 | 718   | 423 |  |
| Stage 1              | -            | -  | -     | - | 418   | -   |  |
| Stage 2              | -            | -  | -     | - | 300   | -   |  |
| Critical Hdwy        | 4.1          | -  | -     | - | 6.4   | 6.2 |  |
| Critical Hdwy Stg 1  | -            | -  | -     | - | 5.4   | -   |  |
| Critical Hdwy Stg 2  | -            | -  | -     | - | 5.4   | -   |  |
| Follow-up Hdwy       | 2.2          | -  | -     | - | 3.5   | 3.3 |  |
| Pot Cap-1 Maneuve    | <b>1</b> 140 | -  | -     | - | 399   | 635 |  |
| Stage 1              | -            | -  | -     | - | 669   | -   |  |
| Stage 2              | -            | -  | -     | - | 756   | -   |  |
| Platoon blocked, %   |              | -  | -     | - |       |     |  |
| Mov Cap-1 Maneuv     | 11135        | -  | -     | - | 394   | 630 |  |
| Mov Cap-2 Maneuv     | /er -        | -  | -     | - | 394   | -   |  |
| Stage 1              | -            | -  | -     | - | 663   | -   |  |
| Stage 2              | -            | -  | -     | - | 753   | -   |  |
|                      |              |    |       |   |       |     |  |
| Approach             | EB           |    | WB    |   | SB    |     |  |
| HCM Control Delay    | , €.1        |    | 0     |   | 13.3  |     |  |
| HCM LOS              |              |    |       |   | В     |     |  |
|                      |              |    |       |   |       |     |  |

| Minor Lane/Major Mvm  | t EBL | EBT | WBT V | VBRSBLn1 |  |
|-----------------------|-------|-----|-------|----------|--|
| Capacity (veh/h)      | 1135  | -   | -     | - 469    |  |
| HCM Lane V/C Ratio    | 0.004 | -   | -     | -0.075   |  |
| HCM Control Delay (s) | 8.2   | 0   | -     | - 13.3   |  |
| HCM Lane LOS          | Α     | Α   | -     | - B      |  |
| HCM 95th %tile Q(veh) | 0     | -   | -     | - 0.2    |  |

0

#### 03-12-2020

## Intersection

Int Delay, s/veh

| Maxamant            | EDI                  | ГРТ  |      |      | CDI  | CDD  |
|---------------------|----------------------|------|------|------|------|------|
| wovernent           | EBL                  | EBI  | VVBI | WBR  | SBL  | SBR  |
| Lane Configuration  | ns                   | - स  | - îs |      | ۰Y   |      |
| Traffic Vol, veh/h  | 0                    | 305  | 430  | 0    | 0    | 0    |
| Future Vol, veh/h   | 0                    | 305  | 430  | 0    | 0    | 0    |
| Conflicting Peds, # | #/hr 5               | 0    | 0    | 5    | 5    | 5    |
| Sign Control        | Free                 | Free | Free | Free | Stop | Stop |
| RT Channelized      | -                    | None | -    | None | -    | None |
| Storage Length      | -                    | -    | -    | -    | 0    | -    |
| Veh in Median Sto   | orage <del>,</del> i | # 0  | 0    | -    | 0    | -    |
| Grade, %            | -                    | 0    | 0    | -    | 0    | -    |
| Peak Hour Factor    | 100                  | 100  | 100  | 100  | 100  | 100  |
| Heavy Vehicles, %   | 60                   | 0    | 3    | 0    | 0    | 0    |
| Mvmt Flow           | 0                    | 305  | 430  | 0    | 0    | 0    |

| Major/Minor      | Major1           | Μ    | lajor2 | Μ   | inor2 |      |  |
|------------------|------------------|------|--------|-----|-------|------|--|
| Conflicting Flow | All 435          | 0    | -      | 0   | 745   | 440  |  |
| Stage 1          | -                | -    | -      | -   | 435   | -    |  |
| Stage 2          | -                | -    | -      | -   | 310   | -    |  |
| Critical Hdwy    | 4.1              | -    | -      | -   | 6.4   | 6.2  |  |
| Critical Hdwy St | g1 -             | -    | -      | -   | 5.4   | -    |  |
| Critical Hdwy St | g2 -             | -    | -      | -   | 5.4   | -    |  |
| Follow-up Hdwy   | 2.2              | -    | -      | -   | 3.5   | 3.3  |  |
| Pot Cap-1 Mane   | euv <b>en</b> 35 | -    | -      | -   | 384   | 621  |  |
| Stage 1          | -                | -    | -      | -   | 657   | -    |  |
| Stage 2          | -                | -    | -      | -   | 748   | -    |  |
| Platoon blocked  | , %              | -    | -      | -   |       |      |  |
| Mov Cap-1 Man    | euvlei30         | -    | -      | -   | 381   | 616  |  |
| Mov Cap-2 Man    | euver -          | -    | -      | -   | 381   | -    |  |
| Stage 1          | -                | -    | -      | -   | 654   | -    |  |
| Stage 2          | -                | -    | -      | -   | 745   | -    |  |
|                  |                  |      |        |     |       |      |  |
| Approach         | EB               |      | WB     |     | SB    |      |  |
| HCM Control De   | elay, s 0        |      | 0      |     | 0     |      |  |
| HCM LOS          | -                |      |        |     | А     |      |  |
|                  |                  |      |        |     |       |      |  |
| Minor Lane/Majo  | or Mvmt          | EBL  | EBT    | WBT | WBRS  | BLn1 |  |
| Capacity (veh/h  | )                | 1130 | -      | -   | -     | -    |  |
|                  | D - 41 -         |      |        |     |       |      |  |

| HCM Lane V/C Ratio    | - | - | - | - | - |  |
|-----------------------|---|---|---|---|---|--|
| HCM Control Delay (s) | 0 | - | - | - | 0 |  |
| HCM Lane LOS          | А | - | - | - | А |  |
| HCM 95th %tile Q(veh) | 0 | - | - | - | - |  |

Int Delay, s/veh 0.2

|        |                                                                     |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ~~~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|--------|---------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| WBL    | WBR                                                                 | NBT                                                                                                               | NBR                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SBL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SBT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| าร     | 7                                                                   | - î>                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0      | 20                                                                  | 730                                                                                                               | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1080                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0      | 20                                                                  | 730                                                                                                               | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1080                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| /hr 5  | 5                                                                   | 0                                                                                                                 | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Stop   | Stop                                                                | Free                                                                                                              | Free                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Free                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Free                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| -      | None                                                                | -                                                                                                                 | None                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| -      | 0                                                                   | -                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| rage0; | # -                                                                 | 0                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0      | -                                                                   | 0                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 100    | 100                                                                 | 100                                                                                                               | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| » O    | 0                                                                   | 0                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0      | 20                                                                  | 730                                                                                                               | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1080                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|        | WBL<br>15<br>0<br>2<br>/hr 5<br>Stop<br>-<br>rage0<br>0<br>100<br>0 | WBL WBR<br>15 7<br>0 20<br>0 20<br>4/hr 5 5<br>Stop Stop<br>- None<br>- 0<br>rage0 # -<br>0 -<br>100 100<br>0 0 0 | WBL WBR         NBT           1s         1           0         20         730           0         20         730           0         20         730           /hr         5         0           stop         Stop         Free           - None         -           - 0         -           rage0         4         0           0         -         0           0         0         0           0         0         0           0         0         0 | WBL WBR         NBT         NBR           0         20         730         15           0         20         730         15           0         20         730         15           0         20         730         15           /hr         5         5         0         5           Stop         Stop         Free         Free           -         0         -         -           rage() #         0         -         -           0         -         0         -           0         0         0         0         0           0         0         0         0         0         0           0         0         0         0         0         0 | WBL WBR         NBT         NBR         SBL           15         730         15         0           0         20         730         15         0           0         20         730         15         0           0         20         730         15         0           4/hr         5         5         0         5         5           Stop         Stop         Free         Free         Free           - None         -         None         -           - 0         -         -         -         -           rage() #         0         -         0         -         -           100         100         100         100         100         0           0         0         0         0         0         0         0           0         0         0         0         0         0         0         0 |

| Major/Minor M       | 1inor1 | Ma  | ajor1 | Maj | or2 |   |  |
|---------------------|--------|-----|-------|-----|-----|---|--|
| Conflicting Flow A  |        | 748 | 0     | 0   | -   | - |  |
| Stage 1             | -      | -   | -     | -   | -   | - |  |
| Stage 2             | -      | -   | -     | -   | -   | - |  |
| Critical Hdwy       | -      | 6.2 | -     | -   | -   | - |  |
| Critical Hdwy Stg   | 1 -    | -   | -     | -   | -   | - |  |
| Critical Hdwy Stg 2 | 2 -    | -   | -     | -   | -   | - |  |
| Follow-up Hdwy      | -      | 3.3 | -     | -   | -   | - |  |
| Pot Cap-1 Maneuv    | ver 0  | 416 | -     | -   | 0   | - |  |
| Stage 1             | 0      | -   | -     | -   | 0   | - |  |
| Stage 2             | 0      | -   | -     | -   | 0   | - |  |
| Platoon blocked, %  | 6      |     | -     | -   |     | - |  |
| Mov Cap-1 Maneu     | iver - | 412 | -     | -   | -   | - |  |
| Mov Cap-2 Maneu     | iver - | -   | -     | -   | -   | - |  |
| Stage 1             | -      | -   | -     | -   | -   | - |  |
| Stage 2             | -      | -   | -     | -   | -   | - |  |
|                     |        |     |       |     |     |   |  |

| Approach          | WB              | NB | SB |  |
|-------------------|-----------------|----|----|--|
| HCM Control Delay | y,1 <b>4</b> .2 | 0  | 0  |  |
| HCM LOS           | В               |    |    |  |

| Minor Lane/Major Mvmt | NBT | NBR/BLn1 | SBT |
|-----------------------|-----|----------|-----|
| Capacity (veh/h)      | -   | - 412    | -   |
| HCM Lane V/C Ratio    | -   | -0.049   | -   |
| HCM Control Delay (s) | -   | - 14.2   | -   |
| HCM Lane LOS          | -   | - B      | -   |
| HCM 95th %tile Q(veh) | -   | - 0.2    | -   |

|--|

| Intersection                                                                                                                                                                                                                                          |                                                                                         |                                                                                         |       |                                                                                               |   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------|-----------------------------------------------------------------------------------------------|---|
| Intersection Delay, s/vel                                                                                                                                                                                                                             | h 2.9                                                                                   |                                                                                         |       |                                                                                               |   |
| Intersection LOS                                                                                                                                                                                                                                      | А                                                                                       |                                                                                         |       |                                                                                               |   |
| Approach                                                                                                                                                                                                                                              |                                                                                         | EB                                                                                      | NB    | SE                                                                                            | 3 |
| Entry Lanes                                                                                                                                                                                                                                           |                                                                                         | 1                                                                                       | 1     | •                                                                                             | 1 |
| Conflicting Circle Lanes                                                                                                                                                                                                                              | ;                                                                                       | 1                                                                                       | 1     |                                                                                               | 1 |
| Adj Approach Flow, veh                                                                                                                                                                                                                                | ı/h                                                                                     | 30                                                                                      | 40    | 50                                                                                            | 0 |
| Demand Flow Rate, veh                                                                                                                                                                                                                                 | ו/h                                                                                     | 30                                                                                      | 40    | 50                                                                                            | ) |
| Vehicles Circulating, ve                                                                                                                                                                                                                              | h/h                                                                                     | 30                                                                                      | 30    | (                                                                                             | ) |
| Vehicles Exiting, veh/h                                                                                                                                                                                                                               |                                                                                         | 20                                                                                      | 30    | 70                                                                                            | ) |
| Ped Vol Crossing Leg, #                                                                                                                                                                                                                               | #/h                                                                                     | 5                                                                                       | 5     | Į                                                                                             | 5 |
| Ped Cap Adj                                                                                                                                                                                                                                           | 0                                                                                       | .999                                                                                    | 0.999 | 0.999                                                                                         | 9 |
| Approach Delay, s/veh                                                                                                                                                                                                                                 |                                                                                         | 2.9                                                                                     | 2.9   | 2.9                                                                                           | 9 |
| Approach LOS                                                                                                                                                                                                                                          |                                                                                         | А                                                                                       | А     | ŀ                                                                                             | ł |
| Lane                                                                                                                                                                                                                                                  | Left                                                                                    | Left                                                                                    |       | Left                                                                                          |   |
| Designated Moves                                                                                                                                                                                                                                      | IR                                                                                      | 1 T                                                                                     |       | тр                                                                                            |   |
|                                                                                                                                                                                                                                                       | <b>L</b> I (                                                                            | L I                                                                                     |       | IR                                                                                            |   |
| Assumed Moves                                                                                                                                                                                                                                         | LR                                                                                      | LT                                                                                      |       | TR                                                                                            |   |
| Assumed Moves<br>RT Channelized                                                                                                                                                                                                                       | LR                                                                                      | LT                                                                                      |       | TR                                                                                            |   |
| Assumed Moves<br>RT Channelized<br>Lane Util                                                                                                                                                                                                          | LR<br>1.000                                                                             | LT<br>1.000                                                                             |       | 1.000                                                                                         |   |
| Assumed Moves<br>RT Channelized<br>Lane Util<br>Follow-Up Headway, s                                                                                                                                                                                  | LR<br>1.000<br>2.609                                                                    | LT<br>1.000<br>2.609                                                                    |       | 1.000<br>2.609                                                                                |   |
| Assumed Moves<br>RT Channelized<br>Lane Util<br>Follow-Up Headway, s<br>Critical Headway, s                                                                                                                                                           | LR<br>1.000<br>2.609<br>4.976                                                           | LT<br>1.000<br>2.609<br>4.976                                                           |       | 1.000<br>2.609<br>4.976                                                                       |   |
| Assumed Moves<br>RT Channelized<br>Lane Util<br>Follow-Up Headway, s<br>Critical Headway, s<br>Entry Flow, veh/h                                                                                                                                      | LR<br>1.000<br>2.609<br>4.976<br>30                                                     | LT<br>1.000<br>2.609<br>4.976<br>40                                                     |       | 1.000<br>2.609<br>4.976<br>50                                                                 |   |
| Assumed Moves<br>RT Channelized<br>Lane Util<br>Follow-Up Headway, s<br>Critical Headway, s<br>Entry Flow, veh/h<br>Cap Entry Lane, veh/h                                                                                                             | LR<br>1.000<br>2.609<br>4.976<br>30<br>1338                                             | LT<br>1.000<br>2.609<br>4.976<br>40<br>1338                                             |       | 1.000<br>2.609<br>4.976<br>50<br>1380                                                         |   |
| Assumed Moves<br>RT Channelized<br>Lane Util<br>Follow-Up Headway, s<br>Critical Headway, s<br>Entry Flow, veh/h<br>Cap Entry Lane, veh/h<br>Entry HV Adj Factor                                                                                      | LR<br>1.000<br>2.609<br>4.976<br>30<br>1338<br>1.000                                    | LT<br>1.000<br>2.609<br>4.976<br>40<br>1338<br>1.000                                    |       | 1.000<br>2.609<br>4.976<br>50<br>1380<br>1.000                                                |   |
| Assumed Moves<br>RT Channelized<br>Lane Util<br>Follow-Up Headway, s<br>Critical Headway, s<br>Entry Flow, veh/h<br>Cap Entry Lane, veh/h<br>Entry HV Adj Factor<br>Flow Entry, veh/h                                                                 | LR<br>1.000<br>2.609<br>4.976<br>30<br>1338<br>1.000<br>30                              | LT<br>1.000<br>2.609<br>4.976<br>40<br>1338<br>1.000<br>40                              |       | 1.000<br>2.609<br>4.976<br>50<br>1380<br>1.000<br>50                                          |   |
| Assumed Moves<br>RT Channelized<br>Lane Util<br>Follow-Up Headway, s<br>Critical Headway, s<br>Entry Flow, veh/h<br>Cap Entry Lane, veh/h<br>Entry HV Adj Factor<br>Flow Entry, veh/h<br>Cap Entry, veh/h                                             | LR<br>1.000<br>2.609<br>4.976<br>30<br>1338<br>1.000<br>30<br>1337                      | LT<br>1.000<br>2.609<br>4.976<br>40<br>1338<br>1.000<br>40<br>1337                      |       | 1.000<br>2.609<br>4.976<br>50<br>1380<br>1.000<br>50<br>1379                                  |   |
| Assumed Moves<br>RT Channelized<br>Lane Util<br>Follow-Up Headway, s<br>Critical Headway, s<br>Entry Flow, veh/h<br>Cap Entry Lane, veh/h<br>Entry HV Adj Factor<br>Flow Entry, veh/h<br>Cap Entry, veh/h<br>V/C Ratio                                | LR<br>1.000<br>2.609<br>4.976<br>30<br>1338<br>1.000<br>30<br>1337<br>0.022             | LT<br>1.000<br>2.609<br>4.976<br>40<br>1338<br>1.000<br>40<br>1337<br>0.030             |       | 1.000<br>2.609<br>4.976<br>50<br>1380<br>1.000<br>50<br>1379<br>0.036                         |   |
| Assumed Moves<br>RT Channelized<br>Lane Util<br>Follow-Up Headway, s<br>Critical Headway, s<br>Entry Flow, veh/h<br>Cap Entry Lane, veh/h<br>Entry HV Adj Factor<br>Flow Entry, veh/h<br>Cap Entry, veh/h<br>V/C Ratio<br>Control Delay, s/veh        | LR<br>1.000<br>2.609<br>4.976<br>30<br>1338<br>1.000<br>30<br>1337<br>0.022<br>2.9      | LT<br>1.000<br>2.609<br>4.976<br>40<br>1338<br>1.000<br>40<br>1337<br>0.030<br>2.9      |       | 1R<br>TR<br>1.000<br>2.609<br>4.976<br>50<br>1380<br>1.000<br>50<br>1379<br>0.036<br>2.9      |   |
| Assumed Moves<br>RT Channelized<br>Lane Util<br>Follow-Up Headway, s<br>Critical Headway, s<br>Entry Flow, veh/h<br>Cap Entry Lane, veh/h<br>Entry HV Adj Factor<br>Flow Entry, veh/h<br>Cap Entry, veh/h<br>V/C Ratio<br>Control Delay, s/veh<br>LOS | LR<br>1.000<br>2.609<br>4.976<br>30<br>1338<br>1.000<br>30<br>1337<br>0.022<br>2.9<br>A | LT<br>1.000<br>2.609<br>4.976<br>40<br>1338<br>1.000<br>40<br>1337<br>0.030<br>2.9<br>A |       | 1R<br>TR<br>1.000<br>2.609<br>4.976<br>50<br>1380<br>1.000<br>50<br>1379<br>0.036<br>2.9<br>A |   |

| Intersection             |        |       |       |       |       |       |       |  |
|--------------------------|--------|-------|-------|-------|-------|-------|-------|--|
| Intersection Delay s/ve  | h 14 7 |       |       |       |       |       |       |  |
| Intersection LOS         | R      |       |       |       |       |       |       |  |
|                          | U      |       |       |       |       |       |       |  |
| Approach                 |        | EB    |       | WB    |       | NB    | SB    |  |
| Entry Lanes              |        | 1     |       | 1     |       | 1     | 1     |  |
| Conflicting Circle Lanes | 5      | 1     |       | 1     |       | 1     | 1     |  |
| Adj Approach Flow, veh   | ı/h    | 55    |       | 85    |       | 750   | 985   |  |
| Demand Flow Rate, veh    | n/h    | 58    |       | 86    |       | 757   | 996   |  |
| Vehicles Circulating, ve | h/h    | 1040  |       | 747   |       | 32    | 136   |  |
| Vehicles Exiting, veh/h  |        | 91    |       | 42    |       | 1066  | 697   |  |
| Ped Vol Crossing Leg, #  | #/h    | 5     |       | 5     |       | 5     | 5     |  |
| Ped Cap Adj              |        | 1.000 |       | 0.999 | (     | 0.999 | 0.999 |  |
| Approach Delay, s/veh    |        | 9.7   |       | 7.2   |       | 9.1   | 19.9  |  |
| Approach LOS             |        | A     |       | А     |       | Α     | C     |  |
| Lane                     | Left   |       | Left  |       | Left  |       | Left  |  |
| Designated Moves         | LTR    |       | LTR   |       | LTR   |       | LTR   |  |
| Assumed Moves            | LTR    |       | LTR   |       | LTR   |       | LTR   |  |
| RT Channelized           |        |       |       |       |       |       |       |  |
| Lane Util                | 1.000  |       | 1.000 |       | 1.000 |       | 1.000 |  |
| Follow-Up Headway, s     | 2.609  |       | 2.609 |       | 2.609 |       | 2.609 |  |
| Critical Headway, s      | 4.976  |       | 4.976 |       | 4.976 |       | 4.976 |  |
| Entry Flow, veh/h        | 58     |       | 86    |       | 757   |       | 996   |  |
| Cap Entry Lane, veh/h    | 478    |       | 644   |       | 1336  |       | 1201  |  |
| Entry HV Adj Factor      | 0.944  |       | 0.988 |       | 0.991 |       | 0.989 |  |
| Flow Entry, veh/h        | 55     |       | 85    |       | 750   |       | 985   |  |
| Cap Entry, veh/h         | 451    |       | 636   |       | 1323  |       | 1188  |  |
| V/C Ratio                | 0.121  |       | 0.134 |       | 0.567 |       | 0.830 |  |
| Control Delay, s/veh     | 9.7    |       | 7.2   |       | 9.1   |       | 19.9  |  |
| LOS                      | А      |       | А     |       | А     |       | С     |  |
| 95th %tile Queue, veh    | 0      |       | 0     |       | 4     |       | 10    |  |

| Intersection              |     |  |
|---------------------------|-----|--|
| Intersection Delay, s/veh | 7.3 |  |
| Intersection LOS          | Α   |  |

| Movement                 | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
|--------------------------|------|------|------|------|------|------|------|------|------|------|------|------|
| Lane Configurations      |      | \$   |      |      | 4    |      |      | 4    |      |      | 4    |      |
| Traffic Vol, veh/h       | 40   | 30   | 5    | 0    | 20   | 0    | 0    | 30   | 0    | 0    | 30   | 20   |
| Future Vol, veh/h        | 40   | 30   | 5    | 0    | 20   | 0    | 0    | 30   | 0    | 0    | 30   | 20   |
| Peak Hour Factor         | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Heavy Vehicles, %        | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| Mvmt Flow                | 40   | 30   | 5    | 0    | 20   | 0    | 0    | 30   | 0    | 0    | 30   | 20   |
| Number of Lanes          | 0    | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    |
| Approach                 | EB   |      |      |      | WB   |      |      | NB   |      |      | SB   |      |
| Opposing Approach        | WB   |      |      |      | EB   |      |      | SB   |      |      | NB   |      |
| Opposing Lanes           | 1    |      |      |      | 1    |      |      | 1    |      |      | 1    |      |
| Conflicting Approach Lef | t SB |      |      |      | NB   |      |      | EB   |      |      | WB   |      |
| Conflicting Lanes Left   | 1    |      |      |      | 1    |      |      | 1    |      |      | 1    |      |
| Conflicting Approach Rig | htNB |      |      |      | SB   |      |      | WB   |      |      | EB   |      |
| Conflicting Lanes Right  | 1    |      |      |      | 1    |      |      | 1    |      |      | 1    |      |
| HCM Control Delay        | 7.5  |      |      |      | 7.2  |      |      | 7.3  |      |      | 7.1  |      |
| HCM LOS                  | А    |      |      |      | А    |      |      | А    |      |      | А    |      |

| Lane                   | NBLn1 | EBLn1V | VBLn1 | SBLn1 |  |
|------------------------|-------|--------|-------|-------|--|
| Vol Left, %            | 0%    | 53%    | 0%    | 0%    |  |
| Vol Thru, %            | 100%  | 40%    | 100%  | 60%   |  |
| Vol Right, %           | 0%    | 7%     | 0%    | 40%   |  |
| Sign Control           | Stop  | Stop   | Stop  | Stop  |  |
| Traffic Vol by Lane    | 30    | 75     | 20    | 50    |  |
| LT Vol                 | 0     | 40     | 0     | 0     |  |
| Through Vol            | 30    | 30     | 20    | 30    |  |
| RT Vol                 | 0     | 5      | 0     | 20    |  |
| Lane Flow Rate         | 30    | 75     | 20    | 50    |  |
| Geometry Grp           | 1     | 1      | 1     | 1     |  |
| Degree of Util (X)     | 0.034 | 0.086  | 0.023 | 0.053 |  |
| Departure Headway (Hd) | 4.104 | 4.121  | 4.096 | 3.849 |  |
| Convergence, Y/N       | Yes   | Yes    | Yes   | Yes   |  |
| Сар                    | 866   | 867    | 869   | 924   |  |
| Service Time           | 2.159 | 2.156  | 2.144 | 1.902 |  |
| HCM Lane V/C Ratio     | 0.035 | 0.087  | 0.023 | 0.054 |  |
| HCM Control Delay      | 7.3   | 7.5    | 7.2   | 7.1   |  |
| HCM Lane LOS           | A     | А      | А     | А     |  |
| HCM 95th-tile Q        | 0.1   | 0.3    | 0.1   | 0.2   |  |

# Lanes, Volumes, Timings 3: Iber/Huntmar & Hazeldean

|                         | ٩     | -           | 7    | 1     | •          | 1     | 1     | t      | 1     | 6     | ŧ     | ~     |
|-------------------------|-------|-------------|------|-------|------------|-------|-------|--------|-------|-------|-------|-------|
| Lane Group              | EBL   | EBT         | EBR  | WBL   | WBT        | WBR   | NBL   | NBT    | NBR   | SBL   | SBT   | SBR   |
| Lane Configurations     | 2     | <b>≜t</b> a |      | 27    | <b>*</b> * | 1     | 3     | 4      | 1     | 3     | 4     | 1     |
| Traffic Volume (vph)    | 250   | 840         | 135  | 205   | 500        | 130   | 60    | 310    | 310   | 155   | 305   | 140   |
| Future Volume (vph)     | 250   | 840         | 135  | 205   | 500        | 130   | 60    | 310    | 310   | 155   | 305   | 140   |
| Confl. Peds. (#/hr)     | 5     |             | 5    | 5     |            | 5     | 5     |        | 5     | 5     |       | 5     |
| Confl. Bikes (#/hr)     |       |             |      |       |            |       |       |        |       |       |       |       |
| Peak Hour Factor        | 1.00  | 1.00        | 1.00 | 1.00  | 1.00       | 1.00  | 1.00  | 1.00   | 1.00  | 1.00  | 1.00  | 1.00  |
| Growth Factor           | 100%  | 100%        | 100% | 100%  | 100%       | 100%  | 100%  | 100%   | 100%  | 100%  | 100%  | 100%  |
| Heavy Vehicles (%)      | 2%    | 2%          | 12%  | 3%    | 4%         | 2%    | 4%    | 0%     | 4%    | 3%    | 2%    | 0%    |
| Bus Blockages (#/hr)    | 0     | 0           | 0    | 0     | 0          | 0     | 0     | 0      | 0     | 0     | 0     | 0     |
| Parking (#/hr)          |       |             |      |       |            |       |       |        |       |       |       |       |
| Mid-Block Traffic (%)   |       | 0%          |      |       | 0%         |       |       | 0%     |       |       | 0%    |       |
| Shared Lane Traffic (%) | )     |             |      |       |            |       |       |        |       |       |       |       |
| Lane Group Flow (vph)   | 250   | 975         | 0    | 205   | 500        | 130   | 60    | 310    | 310   | 155   | 305   | 140   |
| Turn Type               | Prot  | NA          |      | Prot  | NA         | Perm  | pm+pt | NA     | Perm  | pm+pt | NA    | Perm  |
| Protected Phases        | 5     | 2           |      | 1     | 6          |       | 3     | 8      |       | 7     | 4     |       |
| Permitted Phases        |       |             |      |       |            | 6     | 8     |        | 8     | 4     |       | 4     |
| Detector Phase          | 5     | 2           |      | 1     | 6          | 6     | 3     | 8      | 8     | 7     | 4     | 4     |
| Switch Phase            |       |             |      |       |            |       |       |        |       |       |       |       |
| Minimum Initial (s)     | 5.0   | 10.0        |      | 5.0   | 10.0       | 10.0  | 5.0   | 10.0   | 10.0  | 5.0   | 10.0  | 10.0  |
| Minimum Split (s)       | 12.5  | 38.6        |      | 12.5  | 38.6       | 38.6  | 12.5  | 58.0   | 58.0  | 12.5  | 41.3  | 41.3  |
| Total Split (s)         | 18.2  | 44.8        |      | 14.6  | 41.2       | 41.2  | 12.5  | 58.0   | 58.0  | 12.6  | 58.1  | 58.1  |
| Total Split (%)         | 14.0% | 34.5%       |      | 11.2% | 31.7%      | 31.7% | 9.6%  | 44.6%  | 44.6% | 9.7%  | 44.7% | 44.7% |
| Yellow Time (s)         | 3.6   | 3.6         |      | 3.6   | 3.6        | 3.6   | 3.0   | 3.3    | 3.3   | 3.0   | 3.3   | 3.3   |
| All-Red Time (s)        | 2.0   | 2.0         |      | 2.0   | 2.0        | 2.0   | 0.0   | 2.0    | 2.0   | 0.0   | 2.0   | 2.0   |
| Lost Time Adjust (s)    | 0.0   | 0.0         |      | 0.0   | 0.0        | 0.0   | 0.0   | 0.0    | 0.0   | 0.0   | 0.0   | 0.0   |
| Total Lost Time (s)     | 5.6   | 5.6         |      | 5.6   | 5.6        | 5.6   | 3.0   | 5.3    | 5.3   | 3.0   | 5.3   | 5.3   |
| Lead/Lag                | Lead  | Lag         |      | Lead  | Lag        | Lag   | Lead  | Lag    | Lag   | Lead  | Lag   | Lag   |
| Lead-Lag Optimize?      | Yes   | Yes         |      | Yes   | Yes        | Yes   | Yes   | Yes    | Yes   | Yes   | Yes   | Yes   |
| Recall Mode             | None  | C-Max       |      | None  | C-Max      | C-Max | None  | None   | None  | None  | None  | None  |
| Act Effct Green (s)     | 15.5  | 57.7        |      | 14.6  | 56.8       | 56.8  | 39.2  | 28.6   | 28.6  | 41.6  | 31.6  | 31.6  |
| Actuated g/C Ratio      | 0.12  | 0.44        |      | 0.11  | 0.44       | 0.44  | 0.30  | 0.22   | 0.22  | 0.32  | 0.24  | 0.24  |
| v/c Ratio               | 0.64  | 0.68        |      | 0.57  | 0.35       | 0.18  | 0.25  | 0.78   | 0.60  | 0.68  | 0.71  | 0.30  |
| Control Delay           | 62.3  | 33.0        |      | 60.7  | 27.0       | 5.3   | 30.3  | 61.2   | 14.4  | 46.9  | 54.7  | 7.3   |
| Queue Delay             | 0.0   | 0.0         |      | 0.0   | 0.0        | 0.0   | 0.0   | 0.0    | 0.0   | 0.0   | 0.0   | 0.0   |
| Total Delay             | 62.3  | 33.0        |      | 60.7  | 27.0       | 5.3   | 30.3  | 61.2   | 14.4  | 46.9  | 54.7  | 7.3   |
| LOS                     | E     | С           |      | E     | С          | A     | С     | E      | В     | D     | D     | A     |
| Approach Delay          |       | 39.0        |      |       | 31.9       |       |       | 37.2   |       |       | 41.6  |       |
| Approach LOS            |       | D           |      |       | С          |       |       | D      |       |       | D     |       |
| Queue Length 50th (m)   | 33.6  | 106.7       |      | 27.3  | 46.3       | 0.0   | 11.2  | 79.6   | 13.3  | 30.7  | 77.8  | 0.0   |
| Queue Length 95th (m)   | 46.7  | 154.4       |      | 39.8  | 72.2       | 14.3  | 19.5  | 103.9  | 40.1  | 44.0  | 102.5 | 15.8  |
| Internal Link Dist (m)  |       | 871.0       |      |       | 1427.4     |       |       | 1305.6 |       |       | 301.9 |       |
| Turn Bay Length (m)     | 50.0  |             |      | 90.0  |            | 225.0 | 30.0  |        | 60.0  | 50.0  |       | 275.0 |
| Base Capacity (vph)     | 393   | 1440        |      | 362   | 1436       | 716   | 255   | 729    | 734   | 227   | 716   | 693   |
| Starvation Cap Reductn  | n 0   | 0           |      | 0     | 0          | 0     | 0     | 0      | 0     | 0     | 0     | 0     |
| Spillback Cap Reductn   | 0     | 0           |      | 0     | 0          | 0     | 0     | 0      | 0     | 0     | 0     | 0     |
| Storage Cap Reductn     | 0     | 0           |      | 0     | 0          | 0     | 0     | 0      | 0     | 0     | 0     | 0     |
| Reduced v/c Ratio       | 0.64  | 0.68        |      | 0.57  | 0.35       | 0.18  | 0.24  | 0.43   | 0.42  | 0.68  | 0.43  | 0.20  |
| Intersection Summary    |       |             |      |       |            |       |       |        |       |       |       |       |

130 Huntmar Drive 02-06-2020 2029 Future AM Dillon Consulting Limited

| Cycle Length: 130                                                   |                        |  |  |  |  |  |  |  |
|---------------------------------------------------------------------|------------------------|--|--|--|--|--|--|--|
| Actuated Cycle Length: 130                                          |                        |  |  |  |  |  |  |  |
| Offset: 0 (0%), Referenced to phase 2:EBT and 6:WBT, Start of Green |                        |  |  |  |  |  |  |  |
| Natural Cycle: 125                                                  |                        |  |  |  |  |  |  |  |
| Control Type: Actuated-Coordinated                                  |                        |  |  |  |  |  |  |  |
| Maximum v/c Ratio: 0.78                                             |                        |  |  |  |  |  |  |  |
| Intersection Signal Delay: 37.3                                     | Intersection LOS: D    |  |  |  |  |  |  |  |
| Intersection Capacity Utilization 80.2%                             | ICU Level of Service D |  |  |  |  |  |  |  |
| Analysis Period (min) 15                                            |                        |  |  |  |  |  |  |  |

Splits and Phases: 3: Iber/Huntmar & Hazeldean

| <b>1</b> Ø1 |          | 103         | 04     |
|-------------|----------|-------------|--------|
| 14.6 s      | 44.8 s   | 12.5 s      | 58.1 s |
| ▲ Ø5        | ● Ø6 (R) | <b>1</b> 07 | * Pos  |
| 18.2 \$     | 41.2 s   | 12.6 s      | 58 s   |

# Lanes, Volumes, Timings <u>6: Terry Fox & Palladium/Katimavik</u>

|                         | ٩     | -       | 7     | 1     | •     | •     | 1     | t        | 1     | 6     | ŧ        | ~      |
|-------------------------|-------|---------|-------|-------|-------|-------|-------|----------|-------|-------|----------|--------|
| Lane Group              | EBL   | EBT     | EBR   | WBL   | WBT   | WBR   | NBL   | NBT      | NBR   | SBL   | SBT      | SBR    |
| Lane Configurations     | 2     | 1       | 1     | 1     | 1     | 1     | 2     | <b>^</b> | 1     | ሻሻ    | <b>^</b> | 1      |
| Traffic Volume (vph)    | 315   | 65      | 135   | 65    | 120   | 175   | 420   | 1410     | 95    | 100   | 985      | 935    |
| Future Volume (vph)     | 315   | 65      | 135   | 65    | 120   | 175   | 420   | 1410     | 95    | 100   | 985      | 935    |
| Confl. Peds. (#/hr)     | 5     |         | 5     | 5     |       | 5     | 5     |          | 5     | 5     |          | 5      |
| Confl. Bikes (#/hr)     |       |         |       |       |       |       |       |          |       |       |          |        |
| Peak Hour Factor        | 1.00  | 1.00    | 1.00  | 1.00  | 1.00  | 1.00  | 1.00  | 1.00     | 1.00  | 1.00  | 1.00     | 1.00   |
| Growth Factor           | 100%  | 100%    | 100%  | 100%  | 100%  | 100%  | 100%  | 100%     | 100%  | 100%  | 100%     | 100%   |
| Heavy Vehicles (%)      | 5%    | 5%      | 2%    | 10%   | 5%    | 3%    | 0%    | 2%       | 11%   | 2%    | 4%       | 1%     |
| Bus Blockages (#/hr)    | 0     | 0       | 0     | 0     | 0     | 0     | 0     | 0        | 0     | 0     | 0        | 0      |
| Parking (#/hr)          |       |         |       |       |       |       |       |          |       |       |          |        |
| Mid-Block Traffic (%)   |       | 0%      |       |       | 0%    |       |       | 0%       |       |       | 0%       |        |
| Shared Lane Traffic (%) | )     |         |       |       |       |       |       |          |       |       |          |        |
| Lane Group Flow (vph)   | 315   | 65      | 135   | 65    | 120   | 175   | 420   | 1410     | 95    | 100   | 985      | 935    |
| Turn Type               | Prot  | NA      | Perm  | Prot  | NA    | Perm  | Prot  | NA       | Perm  | Prot  | NA       | Perm   |
| Protected Phases        | 7     | 4       |       | 3     | 8     |       | 5     | 2        |       | 1     | 6        |        |
| Permitted Phases        |       |         | 4     |       |       | 8     |       |          | 2     |       |          | 6      |
| Detector Phase          | 7     | 4       | 4     | 3     | 8     | 8     | 5     | 2        | 2     | 1     | 6        | 6      |
| Switch Phase            |       |         |       |       |       |       |       |          |       |       |          |        |
| Minimum Initial (s)     | 5.0   | 10.0    | 10.0  | 5.0   | 10.0  | 10.0  | 5.0   | 10.0     | 10.0  | 5.0   | 10.0     | 10.0   |
| Minimum Split (s)       | 12.0  | 40.6    | 40.6  | 12.0  | 40.3  | 40.3  | 12.0  | 42.5     | 42.5  | 30.0  | 41.0     | 41.0   |
| Total Split (s)         | 16.0  | 42.3    | 42.3  | 14.0  | 40.3  | 40.3  | 24.0  | 63.7     | 63.7  | 30.0  | 69.7     | 69.7   |
| Total Split (%)         | 10.7% | 28.2%   | 28.2% | 9.3%  | 26.9% | 26.9% | 16.0% | 42.5%    | 42.5% | 20.0% | 46.5%    | 46.5%  |
| Yellow Time (s)         | 3.6   | 3.6     | 3.6   | 3.3   | 3.3   | 3.3   | 4.0   | 4.0      | 4.0   | 4.0   | 4.0      | 4.0    |
| All-Red Time (s)        | 2.0   | 2.0     | 2.0   | 2.0   | 2.0   | 2.0   | 2.0   | 2.0      | 2.0   | 2.0   | 2.0      | 2.0    |
| Lost Time Adjust (s)    | -2.0  | 0.0     | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0      | 0.0   | 0.0   | 0.0      | 0.0    |
| Total Lost Time (s)     | 3.6   | 5.6     | 5.6   | 5.3   | 5.3   | .5.3  | 6.0   | 6.0      | 6.0   | 6.0   | 6.0      | 6.0    |
| Lead/Lag                | Lead  | Lag     | Lag   | Lead  | Lag   | Lag   | Lead  | Lag      | Lag   | Lead  | Lag      | Lag    |
| Lead-Lag Optimize?      | Yes   | Yes     | Yes   | Yes   | Yes   | Yes   | Yes   | Yes      | Yes   | Yes   | Yes      | Yes    |
| Recall Mode             | None  | None    | None  | None  | None  | None  | None  | C-Max    | C-Max | None  | C-Max    | C-Max  |
| Act Effct Green (s)     | 12.4  | 19.9    | 19.9  | 8.5   | 17.9  | 17.9  | 26.3  | 88.8     | 88.8  | 10.0  | 72.5     | 72.5   |
| Actuated g/C Ratio      | 0.08  | 0.13    | 0.13  | 0.06  | 0.12  | 0.12  | 0.18  | 0.59     | 0.59  | 0.07  | 0.48     | 0.48   |
| v/c Ratio               | 1.21  | 0.29    | 0.43  | 0.75  | 0.59  | 0.53  | 0.72  | 0.71     | 0.11  | 0.46  | 0.62     | 0.98   |
| Control Delay           | 1/8.8 | 59.4    | 12.1  | 112.5 | 72.5  | 13.1  | 66.3  | 25.9     | 3.3   | 73.9  | 31.6     | 44.1   |
| Queue Delay             | 0.0   | 0.0     | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0      | 0.0   | 0.0   | 0.0      | 0.0    |
| Total Delay             | 178.8 | 59.4    | 12.1  | 112.5 | 72.5  | 13.1  | 66.3  | 25.9     | 3.3   | 73.9  | 31.6     | 44.1   |
| LOS<br>Anna de Dalas    | F     | E 400.0 | В     | F     | E     | В     | E     | 0        | A     | E     | 00 5     | D      |
| Approach Delay          |       | 120.0   |       |       | 50.9  |       |       | 33.6     |       |       | 39.5     |        |
| Approach LOS            | 04.7  | F       | 0.0   | 00.4  | D     | 0.0   | 04.0  |          | 0.0   | 45.0  | U        | 404 7  |
| Queue Length 50th (m)   | ~61.7 | 19.0    | 0.0   | 20.4  | 36.7  | 0.0   | 64.2  | 151.4    | 0.0   | 15.8  | 115.9    | 184.7  |
| Queue Length 95th (m)   | #94.1 | 30.8    | 18.3  | #46.7 | 52.3  | 21.0  | #98.6 | 241.0    | 9.4   | 25.7  | 158.3    | #313.0 |
| Internal LINK Dist (m)  | 100.0 | 1802.0  |       | 445 0 | 304.5 | 4450  | 040.0 | 406.9    | 4450  | 70.0  | 280.2    | 100.0  |
| Turn Bay Length (m)     | 100.0 | 440     | 400   | 115.0 | 200   | 115.0 | 240.0 | 4004     | 115.0 | 70.0  | 4500     | 190.0  |
| Base Capacity (Vpn)     | 261   | 419     | 462   | 90    | 399   | 4/4   | 581   | 1984     | 841   | 520   | 1589     | 955    |
| Starvation Cap Reductin |       | 0       | 0     | 0     | 0     | 0     | 0     | 0        | 0     | 0     | 0        | 0      |
| Spiliback Cap Reducth   | 0     | 0       | 0     | 0     | 0     | 0     | 0     | 0        | 0     | 0     | 0        | 0      |
| Storage Cap Reducth     | 1 04  | 0 10    | 0 20  | 0 70  | 0 20  | 0 07  | 0 70  | 0 74     | 0 44  | 0 40  | 0 60     | 0.00   |
| Reduced V/C Ratio       | 1.21  | 0.16    | 0.29  | 0.72  | 0.30  | 0.37  | 0.72  | 0.71     | 0.11  | 0.19  | 0.62     | 0.98   |
| Intersection Summary    |       |         |       |       |       |       |       |          |       |       |          |        |

130 Huntmar Drive 02-06-2020 2029 Future AM Dillon Consulting Limited

| Cycle Length: 150                                                   |                                         |
|---------------------------------------------------------------------|-----------------------------------------|
| Actuated Cycle Length: 150                                          |                                         |
| Offset: 0 (0%), Referenced to phase 2:NBT and 6:S                   | BT, Start of Green, Master Intersection |
| Natural Cycle: 150                                                  |                                         |
| Control Type: Actuated-Coordinated                                  |                                         |
| Maximum v/c Ratio: 1.21                                             |                                         |
| Intersection Signal Delay: 46.6                                     | Intersection LOS: D                     |
| Intersection Capacity Utilization 99.9%                             | ICU Level of Service F                  |
| Analysis Period (min) 15                                            |                                         |
| <ul> <li>Volume exceeds capacity, queue is theoretically</li> </ul> | <sup>,</sup> infinite.                  |
| Queue shown is maximum after two cycles.                            |                                         |
| # 95th percentile volume exceeds capacity, queue                    | e may be longer.                        |

Queue shown is maximum after two cycles.

Splits and Phases: 6: Terry Fox & Palladium/Katimavik



## Lanes, Volumes, Timings 8: Huntmar & Palladium

|                         | مر    | -           | 7    | 1     | +           | *    | 1             | t       | 1       | 4       | ŧ       | ~     |
|-------------------------|-------|-------------|------|-------|-------------|------|---------------|---------|---------|---------|---------|-------|
| Lane Group              | EBL   | EBT         | EBR  | WBL   | WBT         | WBR  | NBL           | NBT     | NBR     | SBL     | SBT     | SBR   |
| Lane Configurations     | 3     | <b>≜t</b> ⊧ |      | 3     | <b>≜</b> 16 |      | 3             | 4       | 7       | 3       | 4       | 1     |
| Traffic Volume (vph)    | 35    | 205         | 250  | 65    | 100         | 45   | 500           | 355     | 205     | 105     | 195     | 55    |
| Future Volume (vph)     | 35    | 205         | 250  | 65    | 100         | 45   | 500           | 355     | 205     | 105     | 195     | 55    |
| Confl. Peds. (#/hr)     | 5     |             | 5    | 5     |             | 5    | 5             |         | 5       | 5       |         | 5     |
| Confl. Bikes (#/hr)     |       |             |      |       |             |      |               |         |         |         |         |       |
| Peak Hour Factor        | 1.00  | 1.00        | 1.00 | 1.00  | 1.00        | 1.00 | 1.00          | 1.00    | 1.00    | 1.00    | 1.00    | 1.00  |
| Growth Factor           | 100%  | 100%        | 100% | 100%  | 100%        | 100% | 100%          | 100%    | 100%    | 100%    | 100%    | 100%  |
| Heavy Vehicles (%)      | 0%    | 3%          | 2%   | 7%    | 1%          | 0%   | 0%            | 1%      | 1%      | 2%      | 3%      | 2%    |
| Bus Blockages (#/hr)    | 0     | 0           | 0    | 0     | 0           | 0    | 0             | 0       | 0       | 0       | 0       | 0     |
| Parking (#/hr)          |       |             |      |       |             |      |               |         |         |         |         |       |
| Mid-Block Traffic (%)   |       | 0%          |      |       | 0%          |      |               | 0%      |         |         | 0%      |       |
| Shared Lane Traffic (%) | 1     |             |      |       |             |      |               |         |         |         |         |       |
| Lane Group Flow (vph)   | 35    | 455         | 0    | 65    | 145         | 0    | 500           | 355     | 205     | 105     | 195     | 55    |
| Turn Type               | pm+pt | NA          |      | pm+pt | NA          |      | Perm          | NA      | Perm    | Perm    | NA      | Perm  |
| Protected Phases        | 7     | 4           |      | 3     | 8           |      |               | 2       |         |         | 6       |       |
| Permitted Phases        | 4     |             |      | 8     |             |      | 2             |         | 2       | 6       |         | 6     |
| Detector Phase          | 7     | 4           |      | 3     | 8           |      | 2             | 2       | 2       | 6       | 6       | 6     |
| Switch Phase            |       |             |      |       |             |      |               |         |         |         |         |       |
| Minimum Initial (s)     | 5.0   | 10.0        |      | 5.0   | 10.0        |      | 10.0          | 10.0    | 10.0    | 10.0    | 10.0    | 10.0  |
| Minimum Split (s)       | 12.5  | 43.0        |      | 12.5  | 43.0        |      | 42.3          | 42.3    | 42.3    | 42.3    | 42.3    | 42.3  |
| Total Split (s)         | 12.5  | 43.0        |      | 12.6  | 43.1        |      | 74.4          | 74.4    | 74.4    | 74.4    | 74.4    | 74.4  |
| Total Split (%)         | 9.6%  | 33.1%       |      | 9.7%  | 33.2%       |      | 57.2%         | 57.2%   | 57.2%   | 57.2%   | 57.2%   | 57.2% |
| Yellow Time (s)         | 4.0   | 4.0         |      | 4.0   | 4.0         |      | 3.3           | 3.3     | 3.3     | 3.3     | 3.3     | 3.3   |
| All-Red Time (s)        | 2.0   | 2.0         |      | 2.0   | 2.0         |      | 2.0           | 2.0     | 2.0     | 2.0     | 2.0     | 2.0   |
| Lost Time Adjust (s)    | 0.0   | 0.0         |      | 0.0   | 0.0         |      | 0.0           | 0.0     | 0.0     | 0.0     | 0.0     | 0.0   |
| Total Lost Time (s)     | 6.0   | 6.0         |      | 6.0   | 6.0         |      | 5.3           | 5.3     | 5.3     | 5.3     | 5.3     | 5.3   |
| Lead/Lag                | Lead  | Lag         |      | Lead  | Lag         |      |               |         |         |         |         |       |
| Lead-Lag Optimize?      | Yes   | Yes         |      | Yes   | Yes         |      | <u></u>       | <u></u> | <u></u> | <u></u> | <u></u> |       |
| Recall Mode             | None  | None        |      | None  | None        |      | C-Max         | C-Max   | C-Max   | C-Max   | C-Max   | C-Max |
| Act Effct Green (s)     | 24.0  | 18.8        |      | 25.3  | 21.4        |      | 89.8          | 89.8    | 89.8    | 89.8    | 89.8    | 89.8  |
| Actuated g/C Ratio      | 0.18  | 0.14        |      | 0.19  | 0.16        |      | 0.69          | 0.69    | 0.69    | 0.69    | 0.69    | 0.69  |
| V/c Ratio               | 0.14  | 0.71        |      | 0.50  | 0.26        |      | 0.64          | 0.29    | 0.19    | 0.17    | 0.16    | 0.05  |
| Control Delay           | 35.6  | 30.4        |      | 49.5  | 31.6        |      | 23.7          | 14.3    | 4.2     | 10.8    | 9.7     | 1.6   |
|                         | 0.0   | 0.0         |      | 0.0   | 0.0         |      | 0.0           | 0.0     | 0.0     | 0.0     | 0.0     | 0.0   |
| Total Delay             | 35.6  | 30.4        |      | 49.5  | 31.6        |      | 23.7          | 14.3    | 4.2     | 10.8    | 9.7     | 1.6   |
| LUS<br>Anna ach Dalau   | U     |             |      | D     |             |      | U<br>U        | 40 O    | A       | В       | A       | A     |
| Approach Delay          |       | 30.8        |      |       | 37.1        |      |               | 16.8    |         |         | 8.8     |       |
| Approach LOS            | 7.6   |             |      | 1 A E | 12.1        |      | 02.4          | 40 Z    | 6.0     | 0.0     | A 10.4  | 0.0   |
| Queue Length 50th (m)   | 12.2  | 30.7        |      | 14.5  | 10.1        | -    | 83.4<br>250.4 | 49.7    | 0.3     | 0.0     | 10.4    | 0.0   |
| Queue Length 95th (m)   | 13.3  | 40.7        |      | 21.9  | 19.2        | I    | 11150.4       | 257.0   | m11.0   | 20.5    | 41.4    | 3.9   |
| Turn Poyl ongth (m)     | 05.0  | 555.Z       |      | 75.0  | 1602.0      |      | 120.0         | 357.2   | 45.0    | 50.0    | 231.7   |       |
| Page Capacity (upb)     | 95.0  | 1027        |      | 121   | 051         |      | 120.0         | 1021    | 40.0    | 607     | 120.9   | 1042  |
| Base Capacity (Vpn)     | 244   | 1027        |      | 131   | 951         |      | /8/           | 1231    | 1092    | 627     | 1208    | 1042  |
| Starvation Cap Reductin | 0     | 0           |      | 0     | 0           |      | 0             | 0       | 0       | 0       | 0       | 0     |
| Storage Con Reductin    | 0     | 0           |      | 0     | 0           |      | 0             | 0       | 0       | 0       | 0       | 0     |
| Reduced v/c Potio       | 0 1/  | 0 4 4       |      | 0 50  | 0 15        |      | 0.64          | 0 20    | 0 10    | 0 17    | 0.16    | 0.05  |
|                         | 0.14  | 0.44        |      | 0.50  | 0.15        |      | 0.04          | 0.29    | 0.19    | 0.17    | 0.10    | 0.05  |
| Intersection Summary    |       |             |      |       |             |      |               |         |         |         |         |       |

130 Huntmar Drive 02-06-2020 2029 Future AM Dillon Consulting Limited

| Cycle Length: 130                                  |                        |
|----------------------------------------------------|------------------------|
| Actuated Cycle Length: 130                         |                        |
| Offset: 0 (0%), Referenced to phase 2:NBTL and 6:S | SBTL, Start of Green   |
| Natural Cycle: 110                                 |                        |
| Control Type: Actuated-Coordinated                 |                        |
| Maximum v/c Ratio: 0.71                            |                        |
| Intersection Signal Delay: 20.7                    | Intersection LOS: C    |
| Intersection Capacity Utilization 100.3%           | ICU Level of Service G |
| Analysis Period (min) 15                           |                        |
| m Volume for 95th percentile queue is metered by   | upstream signal.       |

Splits and Phases: 8: Huntmar & Palladium

| < <b>1</b> Ø2 (R) | <b>√</b> Ø3 | -04    |
|-------------------|-------------|--------|
| 74.4s             | 12.6 s      | 43 s   |
| Ø6 (R)            | <b>→</b> Ø7 | ØB     |
| 74,43             | 12.5 5      | 43.1 s |

# Lanes, Volumes, Timings 21: Huntmar & Maple Grove

| Lane Group         EBL         EBT         EBR         WBL         WBT         WBR         NBL         NBT         NBR         SBL         SBT         SBR           Lane Configurations         1         165         70         75         65         80         40         600         115         20         365         60           Future Volume (vph)         310         165         70         75         65         80         40         600         115         20         365         60           Confl. Peds. (#/hr)         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5 <th></th> <th>مر</th> <th>-</th> <th>7</th> <th>1</th> <th>+</th> <th>1</th> <th>1</th> <th>t</th> <th>1</th> <th>6</th> <th>ŧ</th> <th>~</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                         | مر    | -           | 7    | 1     | +            | 1    | 1        | t                | 1    | 6        | ŧ     | ~    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-------|-------------|------|-------|--------------|------|----------|------------------|------|----------|-------|------|
| Lane Configurations         Image: Configuration of the second of th | Lane Group              | EBL   | EBT         | EBR  | WBL   | WBT          | WBR  | NBL      | NBT              | NBR  | SBL      | SBT   | SBR  |
| Traffic Volume (vph)       310       165       70       75       65       80       40       600       115       20       365       60         Future Volume (vph)       310       165       70       75       65       80       40       600       115       20       365       60         Confl. Peds. (#/hr)       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Lane Configurations     |       | 4           |      |       | 4            |      | 2        | 4                |      |          | 4     |      |
| Future Volume (vph)       310       165       70       75       65       80       40       600       115       20       365       60         Confl. Peds. (#/hr)       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5 <td>Traffic Volume (vph)</td> <td>310</td> <td>165</td> <td>70</td> <td>75</td> <td>65</td> <td>80</td> <td>40</td> <td>600</td> <td>115</td> <td>20</td> <td>365</td> <td>60</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Traffic Volume (vph)    | 310   | 165         | 70   | 75    | 65           | 80   | 40       | 600              | 115  | 20       | 365   | 60   |
| Confl. Peds. (#/hr)         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         6         6         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100 <td>Future Volume (vph)</td> <td>310</td> <td>165</td> <td>70</td> <td>75</td> <td>65</td> <td>80</td> <td>40</td> <td>600</td> <td>115</td> <td>20</td> <td>365</td> <td>60</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Future Volume (vph)     | 310   | 165         | 70   | 75    | 65           | 80   | 40       | 600              | 115  | 20       | 365   | 60   |
| Confl. Bikes (#/hr)         Peak Hour Factor       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       0.0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Confl. Peds. (#/hr)     | 5     |             | 5    | 5     |              | 5    | 5        |                  | 5    | 5        |       | 5    |
| Peak Hour Factor         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Confl. Bikes (#/hr)     |       |             |      |       |              |      |          |                  |      |          |       |      |
| Growth Factor       100%       100%       100%       100%       100%       100%       100%       100%       100%       100%       100%       100%       100%       100%       100%       100%       100%       100%       100%       100%       100%       100%       100%       100%       100%       100%       100%       100%       100%       100%       100%       100%       100%       100%       100%       100%       100%       100%       100%       100%       100%       100%       100%       100%       100%       100%       100%       100%       100%       100%       100%       100%       100%       100%       100%       100%       100%       100%       100%       100%       100%       100%       100%       100%       100%       100%       100%       100%       100%       00%       0%       0%       0%       0%       0%       0%       0%       0%       0%       0%       0%       0%       0%       0%       0%       0%       0%       0%       0%       0%       0%       0%       0%       0%       0%       0%       0%       0%       0%       0%       0%       0%       0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Peak Hour Factor        | 1.00  | 1.00        | 1.00 | 1.00  | 1.00         | 1.00 | 1.00     | 1.00             | 1.00 | 1.00     | 1.00  | 1.00 |
| Heavy Vehicles (%)       1%       1%       5%       0%       7%       1%       20%       1%       3%       5%       2%       0%         Bus Blockages (#/hr)       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Growth Factor           | 100%  | 100%        | 100% | 100%  | 100%         | 100% | 100%     | 100%             | 100% | 100%     | 100%  | 100% |
| Bus Blockages (#/hr)       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Heavy Vehicles (%)      | 1%    | 1%          | 5%   | 0%    | 7%           | 1%   | 20%      | 1%               | 3%   | 5%       | 2%    | 0%   |
| Parking (#/hr)         Mid-Block Traffic (%)       0%       0%       0%         Shared Lane Traffic (%)       0       545       0       0       220       0       40       715       0       0       445       0         Lane Group Flow (vph)       0       545       0       0       220       0       40       715       0       0       445       0         Turn Type       Perm       NA       Perm       NA       Perm       NA       Perm       NA         Protected Phases       4       8       2       6       6         Permitted Phases       4       4       8       2       2       6       6         Detector Phase       4       4       8       8       2       2       6       6         Switch Phase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Bus Blockages (#/hr)    | 0     | 0           | 0    | 0     | 0            | 0    | 0        | 0                | 0    | 0        | 0     | 0    |
| Mid-Block Traffic (%)       0%       0%       0%       0%         Shared Lane Traffic (%)       0       545       0       0       220       0       40       715       0       0       445       0         Turn Type       Perm       NA       Perm       NA       Perm       NA       Perm       NA         Protected Phases       4       8       2       6       6         Permitted Phases       4       4       8       2       6       6         Detector Phase       4       4       8       2       2       6       6         Switch Phase          10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0 <td>Parking (#/hr)</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Parking (#/hr)          |       |             |      |       |              |      |          |                  |      |          |       |      |
| Shared Lane Traffic (%)         Lane Group Flow (vph)       0       545       0       0       220       0       40       715       0       0       445       0         Turn Type       Perm       NA       Perm       NA       Perm       NA       Perm       NA         Protected Phases       4       8       2       6       6         Permitted Phases       4       4       8       2       2       6         Detector Phase       4       4       8       8       2       2       6         Switch Phase       4       10.0       10.0       10.0       10.0       10.0       10.0       10.0         Minimum Initial (s)       10.0       10.0       10.0       10.0       10.0       10.0       10.0         Minimum Split (s)       33.0       33.0       33.0       29.0       29.0       49.0       49.0         Total Split (s)       61.0       61.0       61.0       69.0       69.0       69.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Mid-Block Traffic (%)   |       | 0%          |      |       | 0%           |      |          | 0%               |      |          | 0%    |      |
| Lane Group Flow (vph)       0       545       0       0       220       0       40       715       0       0       445       0         Turn Type       Perm       NA       Perm       NA       Perm       NA       Perm       NA         Protected Phases       4       8       2       6       6         Permitted Phases       4       4       8       2       2       6         Detector Phase       4       4       8       8       2       2       6         Switch Phase       4       4       8       8       2       2       6       6         Minimum Initial (s)       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0         Minimum Split (s)       33.0       33.0       33.0       33.0       29.0       29.0       49.0       49.0         Total Split (s)       61.0       61.0       61.0       69.0       69.0       69.0       69.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Shared Lane Traffic (%) |       |             |      |       |              |      |          |                  |      |          |       |      |
| Turn Type         Perm         NA         Perm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Lane Group Flow (vph)   | 0     | 545         | 0    | 0     | 220          | 0    | 40       | 715              | 0    | 0        | 445   | 0    |
| Protected Phases       4       8       2       6         Permitted Phases       4       8       2       6         Detector Phase       4       4       8       8       2       2       6         Switch Phase       4       4       8       8       2       2       6       6         Minimum Initial (s)       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0         Minimum Split (s)       33.0       33.0       33.0       33.0       29.0       29.0       49.0       49.0         Total Split (s)       61.0       61.0       61.0       61.0       69.0       69.0       69.0       69.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Turn Type               | Perm  | NA          |      | Perm  | NA           |      | Perm     | NA               |      | Perm     | NA    |      |
| Permitted Phases         4         8         2         6           Detector Phase         4         4         8         8         2         2         6         6           Switch Phase           10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Protected Phases        |       | 4           |      |       | 8            |      |          | 2                |      |          | 6     |      |
| Detector Phase         4         4         8         8         2         2         6         6           Switch Phase                        6         6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Permitted Phases        | 4     |             |      | 8     |              |      | 2        |                  |      | 6        |       |      |
| Switch Phase         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Detector Phase          | 4     | 4           |      | 8     | 8            |      | 2        | 2                |      | 6        | 6     |      |
| Minimum Initial (s)         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0 </td <td>Switch Phase</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Switch Phase            |       |             |      |       |              |      |          |                  |      |          |       |      |
| Minimum Split (s)         33.0         33.0         33.0         33.0         29.0         29.0         49.0         49.0           Total Split (s)         61.0         61.0         61.0         69.0         69.0         69.0         69.0         69.0         69.0         69.0         69.0         69.0         69.0         69.0         69.0         69.0         69.0         69.0         69.0         69.0         69.0         69.0         69.0         69.0         69.0         69.0         69.0         69.0         69.0         69.0         69.0         69.0         69.0         69.0         69.0         69.0         69.0         69.0         69.0         69.0         69.0         69.0         69.0         69.0         69.0         69.0         69.0         69.0         69.0         69.0         69.0         69.0         69.0         69.0         69.0         69.0         69.0         69.0         69.0         69.0         69.0         69.0         69.0         69.0         69.0         69.0         69.0         69.0         69.0         69.0         69.0         69.0         69.0         69.0         69.0         69.0         69.0         69.0         69.0         69.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Minimum Initial (s)     | 10.0  | 10.0        |      | 10.0  | 10.0         |      | 10.0     | 10.0             |      | 10.0     | 10.0  |      |
| Total Split (s) 61.0 61.0 61.0 61.0 69.0 69.0 69.0 69.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Minimum Split (s)       | 33.0  | 33.0        |      | 33.0  | 33.0         |      | 29.0     | 29.0             |      | 49.0     | 49.0  |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Total Split (s)         | 61.0  | 61.0        |      | 61.0  | 61.0         |      | 69.0     | 69.0             |      | 69.0     | 69.0  |      |
| Total Split (%)         46.9%         46.9%         46.9%         53.1%         53.1%         53.1%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Total Split (%)         | 46.9% | 46.9%       |      | 46.9% | 46.9%        |      | 53.1%    | 53.1%            |      | 53.1%    | 53.1% |      |
| Yellow Time (s) 3.0 3.0 3.0 3.0 3.3 3.3 3.3 3.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Yellow Time (s)         | 3.0   | 3.0         |      | 3.0   | 3.0          |      | 3.3      | 3.3              |      | 3.3      | 3.3   |      |
| All-Red Time (s) 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | All-Red Time (s)        | 2.0   | 2.0         |      | 2.0   | 2.0          |      | 2.0      | 2.0              |      | 2.0      | 2.0   |      |
| Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Lost Time Adjust (s)    |       | 0.0         |      |       | 0.0          |      | 0.0      | 0.0              |      |          | 0.0   |      |
| Iotal Lost Time (s)         5.0         5.0         5.3         5.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Total Lost Time (s)     |       | 5.0         |      |       | 5.0          |      | 5.3      | 5.3              |      |          | 5.3   |      |
| Lead/Lag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Lead/Lag                |       |             |      |       |              |      |          |                  |      |          |       |      |
| Lead-Lag Optimize?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Lead-Lag Optimize?      |       |             |      |       |              |      | <u> </u> | 0.14             |      | <u> </u> | 0.14  |      |
| Recall Mode None None None C-Max C-Max C-Max C-Max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                         | None  | None        |      | None  | None         |      | C-Max    | C-Max            |      | C-Max    | C-Max |      |
| Act Effect Green (s) 56.0 56.0 63.7 63.7 63.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Act Effet Green (s)     |       | 56.0        |      |       | 56.0         |      | 63.7     | 63.7             |      |          | 63.7  |      |
| Actuated g/C Ratio 0.43 0.43 0.49 0.49 0.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Actuated g/C Ratio      |       | 0.43        |      |       | 0.43         |      | 0.49     | 0.49             |      |          | 0.49  |      |
| V/C Ratio 1.06 0.40 0.13 0.84 0.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | V/C Ratio               |       | 1.06        |      |       | 0.40         |      | 0.13     | 0.84             |      |          | 0.67  |      |
| Control Delay 93.8 24.5 19.6 39.2 23.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Control Delay           |       | 93.8        |      |       | 24.5         |      | 19.6     | 39.2             |      |          | 23.9  |      |
| Queue Delay         0.0         0.0         0.0         0.0         0.0           Total Delay         02.9         04.5         10.6         20.0         02.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                         |       | 0.0         |      |       | 0.0          |      | 10.6     | 20.0             |      |          | 22.0  |      |
| 10tal Delay 95.0 24.5 19.0 59.2 25.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                         |       | 93.0<br>E   |      |       | 24.5         |      | 19.0     | 39.Z             |      |          | 23.9  |      |
| Approach Delay 03.8 24.5 38.1 23.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Approach Dolay          |       | 03 8<br>L   |      |       | 24.5         |      | D        | 29 1             |      |          | 22.0  |      |
| Approach LOS E C D C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Approach LOS            |       | 93.0<br>E   |      |       | 24.5         |      |          | JO. 1            |      |          | 23.9  |      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Approach 2005           |       | ⊤<br>≈160 8 |      |       | 21.6         |      | 57       | 161.3            |      |          | 47.2  |      |
| Queue Length 95th (m)       #233.1       52.6       13.4 #223.1       146.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Queue Length 30th (III) |       | #233.1      |      |       | 52.6         |      | 13.7     | #223.1           |      |          | 47.Z  |      |
| Internal Link Dist (m) 630.5 86.3 203.1 140.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Internal Link Dist (m)  |       | #233.1      |      |       | 92.0<br>86.3 |      | 13.4     | #ZZJ. 1<br>203 1 |      |          | 175 1 |      |
| Turn Bay Length (m) 20.0 200.1 175.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Turn Bay Length (m)     |       | 030.5       |      |       | 00.5         |      | 20.0     | 295.1            |      |          | 175.1 |      |
| Base Capacity (yph) 512 544 310 849 664                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Base Capacity (vph)     |       | 512         |      |       | 544          |      | 20.0     | 8/0              |      |          | 664   |      |
| Starvation Can Reductn 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Starvation Can Reducto  |       | 0           |      |       | 044          |      | 510      | 049              |      |          | 004   |      |
| Snillback Can Reductn 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Snillback Can Reductn   |       | 0           |      |       | 0            |      | 0        | 0                |      |          | 0     |      |
| Storage Can Reductin 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Storage Can Reducto     |       | 0           |      |       | 0            |      | 0        | 0                |      |          | 0     |      |
| Reduced v/c Ratio 1.06 0.40 0.13 0.84 0.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Reduced v/c Ratio       |       | 1 06        |      |       | 0.40         |      | 0 13     | 0.84             |      |          | 0.67  |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |       | 1.00        |      |       | 0.70         |      | 0.10     | 0.04             |      |          | 0.01  |      |

130 Huntmar Drive 02-06-2020 2029 Future AM Dillon Consulting Limited

| Cycle Length: 130                                  |                        |
|----------------------------------------------------|------------------------|
| Actuated Cycle Length: 130                         |                        |
| Offset: 0 (0%), Referenced to phase 2:NBTL and 6:S | BTL, Start of Green    |
| Natural Cycle: 85                                  |                        |
| Control Type: Actuated-Coordinated                 |                        |
| Maximum v/c Ratio: 1.06                            |                        |
| Intersection Signal Delay: 48.8                    | Intersection LOS: D    |
| Intersection Capacity Utilization 100.7%           | ICU Level of Service G |
| Analysis Period (min) 15                           |                        |
| ~ Volume exceeds capacity, queue is theoretically  | infinite.              |
| Queue shown is maximum after two cycles.           |                        |
| # 95th percentile volume exceeds capacity, queue   | may be longer.         |

Queue shown is maximum after two cycles.

Splits and Phases: 21: Huntmar & Maple Grove



## Lanes, Volumes, Timings 31: Terry Fox & Maple Grove

|                         | ٩     | <b>→</b> | 7     | 1     | •     | *    | 1     | t           | 1    | 1     | ŧ        | ~     |
|-------------------------|-------|----------|-------|-------|-------|------|-------|-------------|------|-------|----------|-------|
| Lane Group              | EBL   | EBT      | EBR   | WBL   | WBT   | WBR  | NBL   | NBT         | NBR  | SBL   | SBT      | SBR   |
| Lane Configurations     | 3     | 4        | 1     | 1     | 1.    |      | 3     | <b>≜t</b> ₀ |      | 3     | <b>^</b> | 1     |
| Traffic Volume (vph)    | 270   | 50       | 195   | 35    | 35    | 55   | 225   | 1510        | 40   | 15    | 905      | 115   |
| Future Volume (vph)     | 270   | 50       | 195   | 35    | 35    | 55   | 225   | 1510        | 40   | 15    | 905      | 115   |
| Confl. Peds. (#/hr)     | 5     |          | 5     | 5     |       | 5    | 5     |             | 5    | 5     |          | 5     |
| Confl. Bikes (#/hr)     |       |          |       |       |       |      |       |             |      |       |          |       |
| Peak Hour Factor        | 1.00  | 1.00     | 1.00  | 1.00  | 1.00  | 1.00 | 1.00  | 1.00        | 1.00 | 1.00  | 1.00     | 1.00  |
| Growth Factor           | 100%  | 100%     | 100%  | 100%  | 100%  | 100% | 100%  | 100%        | 100% | 100%  | 100%     | 100%  |
| Heavy Vehicles (%)      | 7%    | 5%       | 9%    | 9%    | 7%    | 0%   | 7%    | 4%          | 6%   | 0%    | 7%       | 15%   |
| Bus Blockages (#/hr)    | 0     | 0        | 0     | 0     | 0     | 0    | 0     | 0           | 0    | 0     | 0        | 0     |
| Parking (#/hr)          |       |          |       |       |       |      |       |             |      |       |          |       |
| Mid-Block Traffic (%)   |       | 0%       |       |       | 0%    |      |       | 0%          |      |       | 0%       |       |
| Shared Lane Traffic (%) | )     |          |       |       |       |      |       |             |      |       |          |       |
| Lane Group Flow (vph)   | 270   | 50       | 195   | 35    | 90    | 0    | 225   | 1550        | 0    | 15    | 905      | 115   |
| Turn Type               | Perm  | NA       | Perm  | Perm  | NA    |      | pm+pt | NA          |      | pm+pt | NA       | Perm  |
| Protected Phases        |       | 4        |       |       | 8     |      | 5     | 2           |      |       | 6        |       |
| Permitted Phases        | 4     |          | 4     | 8     |       |      | 2     |             |      | 6     |          | 6     |
| Detector Phase          | 4     | 4        | 4     | 8     | 8     |      | 5     | 2           |      | 1     | 6        | 6     |
| Switch Phase            |       |          |       |       |       |      |       |             |      |       |          |       |
| Minimum Initial (s)     | 10.0  | 10.0     | 10.0  | 10.0  | 10.0  |      | 5.0   | 10.0        |      | 5.0   | 10.0     | 10.0  |
| Minimum Split (s)       | 42.0  | 42.0     | 42.0  | 42.0  | 42.0  |      | 12.0  | 43.0        |      | 12.0  | 43.0     | 43.0  |
| Total Split (s)         | 46.0  | 46.0     | 46.0  | 46.0  | 46.0  |      | 24.0  | 72.0        |      | 12.0  | 60.0     | 60.0  |
| Total Split (%)         | 35.4% | 35.4%    | 35.4% | 35.4% | 35.4% |      | 18.5% | 55.4%       |      | 9.2%  | 46.2%    | 46.2% |
| Yellow Time (s)         | 3.0   | 3.0      | 3.0   | 3.0   | 3.0   |      | 4.0   | 4.0         |      | 4.0   | 4.0      | 4.0   |
| All-Red Time (s)        | 2.0   | 2.0      | 2.0   | 2.0   | 2.0   |      | 2.0   | 2.0         |      | 2.0   | 2.0      | 2.0   |
| Lost Time Adjust (s)    | 0.0   | 0.0      | 0.0   | 0.0   | 0.0   |      | 0.0   | 0.0         |      | 0.0   | 0.0      | 0.0   |
| Total Lost Time (s)     | 5.0   | 5.0      | 5.0   | 5.0   | 5.0   |      | 6.0   | 6.0         |      | 6.0   | 6.0      | 6.0   |
| Lead/Lag                |       |          |       |       |       |      | Lead  | Lag         |      | Lead  | Lag      | Lag   |
| Lead-Lag Optimize?      |       |          |       |       |       |      | Yes   | Yes         |      | Yes   | Yes      | Yes   |
| Recall Mode             | None  | None     | None  | None  | None  |      | None  | C-Max       |      | None  | C-Max    | C-Max |
| Act Effct Green (s)     | 34.2  | 34.2     | 34.2  | 34.2  | 34.2  |      | 84.8  | 80.0        |      | 71.4  | 65.6     | 65.6  |
| Actuated g/C Ratio      | 0.26  | 0.26     | 0.26  | 0.26  | 0.26  |      | 0.65  | 0.62        |      | 0.55  | 0.50     | 0.50  |
| v/c Ratio               | 0.88  | 0.11     | 0.39  | 0.11  | 0.20  |      | 0.63  | 0.77        |      | 0.09  | 0.56     | 0.16  |
| Control Delay           | 71.8  | 34.7     | 7.6   | 34.4  | 16.0  |      | 18.4  | 24.3        |      | 12.3  | 25.9     | 4.4   |
| Queue Delay             | 0.0   | 0.0      | 0.0   | 0.0   | 0.0   |      | 0.0   | 0.0         |      | 0.0   | 0.0      | 0.0   |
| Total Delay             | 71.8  | 34.7     | 7.6   | 34.4  | 16.0  |      | 18.4  | 24.3        |      | 12.3  | 25.9     | 4.4   |
| LOS                     | E     | С        | А     | С     | В     |      | В     | С           |      | В     | С        | A     |
| Approach Delay          |       | 43.9     |       |       | 21.2  |      |       | 23.5        |      |       | 23.3     |       |
| Approach LOS            |       | D        |       |       | С     |      |       | С           |      |       | С        |       |
| Queue Length 50th (m)   | 70.6  | 10.2     | 2.7   | 7.1   | 7.0   |      | 23.6  | 139.6       |      | 1.4   | 88.2     | 0.0   |
| Queue Length 95th (m)   | m86.2 | m15.4    | m10.1 | 15.2  | 19.7  |      | 40.9  | #256.7      |      | 4.6   | 127.8    | 11.5  |
| Internal Link Dist (m)  |       | 1246.0   |       |       | 796.0 |      |       | 547.8       |      |       | 406.9    |       |
| Turn Bay Length (m)     | 65.0  |          | 60.0  | 40.0  |       |      | 145.0 |             |      | 125.0 |          | 70.0  |
| Base Capacity (vph)     | 368   | 540      | 568   | 375   | 534   |      | 405   | 2013        |      | 165   | 1612     | 710   |
| Starvation Cap Reductr  | n 0   | 0        | 0     | 0     | 0     |      | 0     | 0           |      | 0     | 0        | 0     |
| Spillback Cap Reductn   | 0     | 0        | 0     | 0     | 0     |      | 0     | 0           |      | 0     | 0        | 0     |
| Storage Cap Reductn     | 0     | 0        | 0     | 0     | 0     |      | 0     | 0           |      | 0     | 0        | 0     |
| Reduced v/c Ratio       | 0.73  | 0.09     | 0.34  | 0.09  | 0.17  |      | 0.56  | 0.77        |      | 0.09  | 0.56     | 0.16  |
| Intersection Summary    |       |          |       |       |       |      |       |             |      |       |          |       |

130 Huntmar Drive 02-06-2020 2029 Future AM Dillon Consulting Limited

| Cycle Length: 130                                 |                          |
|---------------------------------------------------|--------------------------|
| Actuated Cycle Length: 130                        |                          |
| Offset: 112 (86%), Referenced to phase 2:NBTL and | I 6:SBTL, Start of Green |
| Natural Cycle: 110                                |                          |
| Control Type: Actuated-Coordinated                |                          |
| Maximum v/c Ratio: 0.88                           |                          |
| Intersection Signal Delay: 26.4                   | Intersection LOS: C      |
| Intersection Capacity Utilization 87.5%           | ICU Level of Service E   |
| Analysis Period (min) 15                          |                          |
| # 95th percentile volume exceeds capacity, queue  | may be longer.           |
| Queue shown is maximum after two cycles.          |                          |
| m Volume for 95th percentile queue is metered by  | upstream signal.         |

Splits and Phases: 31: Terry Fox & Maple Grove



Int Delay, s/veh 0.8

| Movement            | WBL      | WBR  | NBT  | NBR  | SBL  | SBT  |
|---------------------|----------|------|------|------|------|------|
| Lane Configuration  | ns ¥     |      | 1    |      |      | 4    |
| Traffic Vol, veh/h  | 0        | 45   | 960  | 10   | 40   | 485  |
| Future Vol, veh/h   | 0        | 45   | 960  | 10   | 40   | 485  |
| Conflicting Peds, # | #/hr 5   | 5    | 0    | 5    | 5    | 0    |
| Sign Control        | Stop     | Stop | Free | Free | Free | Free |
| RT Channelized      | -        | None | -    | None | -    | None |
| Storage Length      | 0        | -    | -    | -    | -    | -    |
| Veh in Median Sto   | orage0,# | 4 -  | 0    | -    | -    | 0    |
| Grade, %            | 0        | -    | 0    | -    | -    | 0    |
| Peak Hour Factor    | 100      | 100  | 100  | 100  | 100  | 100  |
| Heavy Vehicles, %   | 60       | 0    | 1    | 0    | 0    | 3    |
| Mvmt Flow           | 0        | 45   | 960  | 10   | 40   | 485  |

| Major/Minor N       | linor1         | Maj | or1 | Ma | ajor2 |   |  |
|---------------------|----------------|-----|-----|----|-------|---|--|
| Conflicting Flow A  | 111540         | 975 | 0   | 0  | 975   | 0 |  |
| Stage 1             | 970            | -   | -   | -  | -     | - |  |
| Stage 2             | 570            | -   | -   | -  | -     | - |  |
| Critical Hdwy       | 6.4            | 6.2 | -   | -  | 4.1   | - |  |
| Critical Hdwy Stg   | 1 5.4          | -   | -   | -  | -     | - |  |
| Critical Hdwy Stg 2 | 2 5.4          | -   | -   | -  | -     | - |  |
| Follow-up Hdwy      | 3.5            | 3.3 | -   | -  | 2.2   | - |  |
| Pot Cap-1 Maneuv    | /ef128         | 308 | -   | -  | 716   | - |  |
| Stage 1             | 371            | -   | -   | -  | -     | - |  |
| Stage 2             | 570            | -   | -   | -  | -     | - |  |
| Platoon blocked, %  | 6              |     | -   | -  |       | - |  |
| Mov Cap-1 Maneu     | v <b>đr</b> 17 | 305 | -   | -  | 713   | - |  |
| Mov Cap-2 Maneu     | v <b>đr</b> 17 | -   | -   | -  | -     | - |  |
| Stage 1             | 370            | -   | -   | -  | -     | - |  |
| Stage 2             | 524            | -   | -   | -  | -     | - |  |
|                     |                |     |     |    |       |   |  |

| Approach      | WB                  | NB | SB  |
|---------------|---------------------|----|-----|
| HCM Control E | Delay,1 <b>6</b> .8 | 0  | 0.8 |
| HCMLOS        | C                   |    |     |

| Minor Lane/Major Mvmt | NBT | NBR | /BLn1 | SBL   | SBT |  |
|-----------------------|-----|-----|-------|-------|-----|--|
| Capacity (veh/h)      | -   | -   | 305   | 713   | -   |  |
| HCM Lane V/C Ratio    | -   | -   | 0.148 | 0.056 | -   |  |
| HCM Control Delay (s) | -   | -   | 18.8  | 10.3  | 0   |  |
| HCM Lane LOS          | -   | -   | С     | В     | А   |  |
| HCM 95th %tile Q(veh) | -   | -   | 0.5   | 0.2   | -   |  |

Int Delay, s/veh 1.3

| Movement           | WBL     | WBR  | NBT  | NBR  | SBL  | SBT  |
|--------------------|---------|------|------|------|------|------|
| Lane Configuratio  | ns ¥    |      | 1    |      |      | 4    |
| Traffic Vol, veh/h | 25      | 35   | 995  | 5    | 10   | 495  |
| Future Vol, veh/h  | 25      | 35   | 995  | 5    | 10   | 495  |
| Conflicting Peds,  | #/hr 5  | 5    | 0    | 5    | 5    | 0    |
| Sign Control       | Stop    | Stop | Free | Free | Free | Free |
| RT Channelized     | -       | None | -    | None | -    | None |
| Storage Length     | 0       | -    | -    | -    | -    | -    |
| Veh in Median Sto  | orage0; | # -  | 0    | -    | -    | 0    |
| Grade, %           | 0       | -    | 0    | -    | -    | 0    |
| Peak Hour Factor   | 100     | 100  | 100  | 100  | 100  | 100  |
| Heavy Vehicles, %  | 6 0     | 0    | 1    | 0    | 0    | 3    |
| Mvmt Flow          | 25      | 35   | 995  | 5    | 10   | 495  |

| Major/Minor      | Minor1    | Ma   | ijor1 | Ma  | ajor2 |   |  |
|------------------|-----------|------|-------|-----|-------|---|--|
| Conflicting Flow | / All1523 | 1008 | 0     | 0 ′ | 1005  | 0 |  |
| Stage 1          | 1003      | -    | -     | -   | -     | - |  |
| Stage 2          | 520       | -    | -     | -   | -     | - |  |
| Critical Hdwy    | 6.4       | 6.2  | -     | -   | 4.1   | - |  |
| Critical Hdwy St | ig 1 5.4  | -    | -     | -   | -     | - |  |
| Critical Hdwy St | ig 2 5.4  | -    | -     | -   | -     | - |  |
| Follow-up Hdwy   | 3.5       | 3.3  | -     | -   | 2.2   | - |  |
| Pot Cap-1 Mane   | euver131  | 295  | -     | -   | 697   | - |  |
| Stage 1          | 358       | -    | -     | -   | -     | - |  |
| Stage 2          | 601       | -    | -     | -   | -     | - |  |
| Platoon blocked  | I, %      |      | -     | -   |       | - |  |
| Mov Cap-1 Mar    | neuven27  | 293  | -     | -   | 694   | - |  |
| Mov Cap-2 Mar    | neuven27  | -    | -     | -   | -     | - |  |
| Stage 1          | 357       | -    | -     | -   | -     | - |  |
| Stage 2          | 587       | -    | -     | -   | -     | - |  |
|                  |           |      |       |     |       |   |  |

| Approach    | WB        | NB | SB  |  |
|-------------|-----------|----|-----|--|
| HCM Control | Delay32.5 | 0  | 0.2 |  |
| HCM LOS     | D         |    |     |  |

| Minor Lane/Major Mvmt | NBT | NB₽ | /BLn1 | SBL   | SBT |  |
|-----------------------|-----|-----|-------|-------|-----|--|
| Capacity (veh/h)      | -   | -   | 190   | 694   | -   |  |
| HCM Lane V/C Ratio    | -   | -   | 0.316 | 0.014 | -   |  |
| HCM Control Delay (s) | -   | -   | 32.5  | 10.3  | 0   |  |
| HCM Lane LOS          | -   | -   | D     | В     | А   |  |
| HCM 95th %tile Q(veh) | -   | -   | 1.3   | 0     | -   |  |
Int Delay, s/veh 2.6

| Maxanaant           | EDI                  | ГРТ  |      |      | CDI  | CDD  |
|---------------------|----------------------|------|------|------|------|------|
| iviovement          | EBL                  | FRI  | VVBI | WBR  | SBL  | SBR  |
| Lane Configuration  | ns                   | - स  | 1.   |      | ۰Y   |      |
| Traffic Vol, veh/h  | 60                   | 265  | 325  | 25   | 70   | 25   |
| Future Vol, veh/h   | 60                   | 265  | 325  | 25   | 70   | 25   |
| Conflicting Peds, # | #/hr 5               | 0    | 0    | 5    | 5    | 5    |
| Sign Control        | Free                 | Free | Free | Free | Stop | Stop |
| RT Channelized      | - 1                  | None | -    | None | -    | None |
| Storage Length      | -                    | -    | -    | -    | 0    | -    |
| Veh in Median Sto   | orage <del>,</del> # | ¥ 0  | 0    | -    | 0    | -    |
| Grade, %            | -                    | 0    | 0    | -    | 0    | -    |
| Peak Hour Factor    | 100                  | 100  | 100  | 100  | 100  | 100  |
| Heavy Vehicles, %   | 60                   | 3    | 2    | 0    | 0    | 0    |
| Mvmt Flow           | 60                   | 265  | 325  | 25   | 70   | 25   |

| Major/Minor      | Major1            | Μ    | ajor2 | Μ     | inor2 |      |  |
|------------------|-------------------|------|-------|-------|-------|------|--|
| Conflicting Flow | / All 355         | 0    | -     | 0     | 733   | 348  |  |
| Stage 1          | -                 | -    | -     | -     | 343   | -    |  |
| Stage 2          | -                 | -    | -     | -     | 390   | -    |  |
| Critical Hdwy    | 4.1               | -    | -     | -     | 6.4   | 6.2  |  |
| Critical Hdwy St | <u>ig 1 -</u>     | -    | -     | -     | 5.4   | -    |  |
| Critical Hdwy St | g2 -              | -    | -     | -     | 5.4   | -    |  |
| Follow-up Hdwy   | 2.2               | -    | -     | -     | 3.5   | 3.3  |  |
| Pot Cap-1 Mane   | euv <b>e</b> 215  | -    | -     | -     | 391   | 700  |  |
| Stage 1          | -                 | -    | -     | -     | 723   | -    |  |
| Stage 2          | -                 | -    | -     | -     | 689   | -    |  |
| Platoon blocked  | l, %              | -    | -     | -     |       |      |  |
| Mov Cap-1 Man    | ieuv1@110         | -    | -     | -     | 365   | 694  |  |
| Mov Cap-2 Man    | euver -           | -    | -     | -     | 365   | -    |  |
| Stage 1          | -                 | -    | -     | -     | 678   | -    |  |
| Stage 2          | -                 | -    | -     | -     | 686   | -    |  |
|                  |                   |      |       |       |       |      |  |
| Approach         | FR                |      | W/R   |       | SB    |      |  |
| HCM Control Do   |                   |      |       |       | 16.2  |      |  |
|                  | slay, <b>s</b> .5 |      | 0     |       | 10.2  |      |  |
|                  |                   |      |       |       | U     |      |  |
|                  |                   |      |       |       |       |      |  |
| Minor Lane/Majo  | or Mvmt           | EBL  | EBT ' | WBT \ | NBRS  | 3Ln1 |  |
| 0 1 / 1 //       | <b>`</b>          | 4040 |       |       |       | 447  |  |

| Capacity (ven/n)      | 1210 | - | - | - 417  |  |
|-----------------------|------|---|---|--------|--|
| HCM Lane V/C Ratio    | 0.05 | - | - | -0.228 |  |
| HCM Control Delay (s) | 8.1  | 0 | - | - 16.2 |  |
| HCM Lane LOS          | Α    | Α | - | - C    |  |
| HCM 95th %tile Q(veh) | 0.2  | - | - | - 0.9  |  |

Int Delay, s/veh 1.6

| Maxamant            | EDI                  | ГРТ  |      |      | CDL  | CDD  |
|---------------------|----------------------|------|------|------|------|------|
| wovernent           | EBL                  | EBI  | VVBI | WBR  | SBL  | SBR  |
| Lane Configuration  | ns                   | - 4  | 1.   |      | ۰Y   |      |
| Traffic Vol, veh/h  | 5                    | 305  | 160  | 5    | 25   | 60   |
| Future Vol, veh/h   | 5                    | 305  | 160  | 5    | 25   | 60   |
| Conflicting Peds, # | #/hr 5               | 0    | 0    | 5    | 5    | 5    |
| Sign Control        | Free                 | Free | Free | Free | Stop | Stop |
| RT Channelized      | -                    | None | -    | None | -    | None |
| Storage Length      | -                    | -    | -    | -    | 0    | -    |
| Veh in Median Sto   | orage <del>,</del> : | # 0  | 0    | -    | 0    | -    |
| Grade, %            | -                    | 0    | 0    | -    | 0    | -    |
| Peak Hour Factor    | 100                  | 100  | 100  | 100  | 100  | 100  |
| Heavy Vehicles, %   | 6Ο                   | 2    | 3    | 0    | 0    | 0    |
| Mvmt Flow           | 5                    | 305  | 160  | 5    | 25   | 60   |

| Major/Minor       | Major1             | М   | ajor2 | М   | inor2 |       |  |
|-------------------|--------------------|-----|-------|-----|-------|-------|--|
| Conflicting Flow  | All 170            | 0   | -     | 0   | 488   | 173   |  |
| Stage 1           | -                  | -   | -     | -   | 168   | -     |  |
| Stage 2           | -                  | -   | -     | -   | 320   | -     |  |
| Critical Hdwy     | 4.1                | -   | -     | -   | 6.4   | 6.2   |  |
| Critical Hdwy Stg | j1 -               | -   | -     | -   | 5.4   | -     |  |
| Critical Hdwy Stg | 12 -               | -   | -     | -   | 5.4   | -     |  |
| Follow-up Hdwy    | 2.2                | -   | -     | -   | 3.5   | 3.3   |  |
| Pot Cap-1 Maneu   | uv <b>e</b> 420    | -   | -     | -   | 543   | 876   |  |
| Stage 1           | -                  | -   | -     | -   | 867   | -     |  |
| Stage 2           | -                  | -   | -     | -   | 741   | -     |  |
| Platoon blocked,  | %                  | -   | -     | -   |       |       |  |
| Mov Cap-1 Mane    | euvl <b>ei</b> r14 | -   | -     | -   | 536   | 869   |  |
| Mov Cap-2 Mane    | euver -            | -   | -     | -   | 536   | -     |  |
| Stage 1           | -                  | -   | -     | -   | 860   | -     |  |
| Stage 2           | -                  | -   | -     | -   | 738   | -     |  |
|                   |                    |     |       |     |       |       |  |
| Approach          | EB                 |     | WB    |     | SB    |       |  |
| HCM Control Del   | ay, <b>9</b> .1    |     | 0     |     | 10.5  |       |  |
| HCM LOS           |                    |     |       |     | В     |       |  |
|                   |                    |     |       |     |       |       |  |
| Minor Lane/Maio   | r Mymt             | FRI | FRT V | WRT | N/RRS | RI n1 |  |

| MINOT Lane/Major MVIII |       |   |   | DIODLIII |  |
|------------------------|-------|---|---|----------|--|
| Capacity (veh/h)       | 1414  | - | - | - 735    |  |
| HCM Lane V/C Ratio     | 0.004 | - | - | -0.116   |  |
| HCM Control Delay (s)  | 7.6   | 0 | - | - 10.5   |  |
| HCM Lane LOS           | Α     | А | - | - B      |  |
| HCM 95th %tile Q(veh)  | 0     | - | - | - 0.4    |  |

0

### 03-12-2020

# Intersection

Int Delay, s/veh

| Movement            | FRI                  | FRT  | W/RT | W/RR | SBI  | SBR  |
|---------------------|----------------------|------|------|------|------|------|
| Movement            | LDL                  | LDI  | VVDT | NDK  | ODL  | JDK  |
| Lane Configuration  | ns                   | - 4  | 4    |      | ۰Y   |      |
| Traffic Vol, veh/h  | 0                    | 330  | 350  | 0    | 0    | 0    |
| Future Vol, veh/h   | 0                    | 330  | 350  | 0    | 0    | 0    |
| Conflicting Peds, # | #/hr 5               | 0    | 0    | 5    | 5    | 5    |
| Sign Control        | Free                 | Free | Free | Free | Stop | Stop |
| RT Channelized      | -                    | None | -    | None | -    | None |
| Storage Length      | -                    | -    | -    | -    | 0    | -    |
| Veh in Median Sto   | orage <del>,</del> a | # 0  | 0    | -    | 0    | -    |
| Grade, %            | -                    | 0    | 0    | -    | 0    | -    |
| Peak Hour Factor    | 100                  | 100  | 100  | 100  | 100  | 100  |
| Heavy Vehicles, %   | 60                   | 2    | 2    | 0    | 0    | 0    |
| Mvmt Flow           | 0                    | 330  | 350  | 0    | 0    | 0    |

| Major/Minor      | Major1           | М    | ajor2 | М     | inor2 |      |  |   | <br> |  |  |  |  |  |  |
|------------------|------------------|------|-------|-------|-------|------|--|---|------|--|--|--|--|--|--|
| Conflicting Flov | v All 355        | 0    | -     | 0     | 690   | 360  |  |   |      |  |  |  |  |  |  |
| Stage 1          | -                | -    | -     | -     | 355   | -    |  |   |      |  |  |  |  |  |  |
| Stage 2          | -                | -    | -     | -     | 335   | -    |  |   |      |  |  |  |  |  |  |
| Critical Hdwy    | 4.1              | -    | -     | -     | 6.4   | 6.2  |  |   |      |  |  |  |  |  |  |
| Critical Hdwy S  | tg 1 -           | -    | -     | -     | 5.4   | -    |  |   |      |  |  |  |  |  |  |
| Critical Hdwy S  | tg 2 -           | -    | -     | -     | 5.4   | -    |  |   |      |  |  |  |  |  |  |
| Follow-up Hdwy   | y 2.2            | -    | -     | -     | 3.5   | 3.3  |  |   |      |  |  |  |  |  |  |
| Pot Cap-1 Man    | euv <b>e</b> 215 | -    | -     | -     | 414   | 689  |  |   |      |  |  |  |  |  |  |
| Stage 1          | -                | -    | -     | -     | 714   | -    |  |   |      |  |  |  |  |  |  |
| Stage 2          | -                | -    | -     | -     | 729   | -    |  |   |      |  |  |  |  |  |  |
| Platoon blocked  | d, %             | -    | -     | -     |       |      |  |   |      |  |  |  |  |  |  |
| Mov Cap-1 Mar    | neuvlen10        | -    | -     | -     | 411   | 683  |  |   |      |  |  |  |  |  |  |
| Mov Cap-2 Mar    | neuver -         | -    | -     | -     | 411   | -    |  |   |      |  |  |  |  |  |  |
| Stage 1          | -                | -    | -     | -     | 711   | -    |  |   |      |  |  |  |  |  |  |
| Stage 2          | -                | -    | -     | -     | 726   | -    |  |   |      |  |  |  |  |  |  |
|                  |                  |      |       |       |       |      |  |   |      |  |  |  |  |  |  |
| Annroach         | FR               |      | WR    |       | SB    |      |  |   |      |  |  |  |  |  |  |
| HCM Control D    |                  |      |       |       | 00    |      |  | _ |      |  |  |  |  |  |  |
|                  | elay, S U        |      | 0     |       | 0     |      |  |   |      |  |  |  |  |  |  |
|                  |                  |      |       |       | A     |      |  |   |      |  |  |  |  |  |  |
|                  |                  |      |       |       |       |      |  |   |      |  |  |  |  |  |  |
| Minor Lane/Maj   | or Mvmt          | EBL  | EBT \ | WBT \ | WBRS  | BLn1 |  |   |      |  |  |  |  |  |  |
| Capacity (veh/h  | າ)               | 1210 | -     | -     | -     | -    |  |   |      |  |  |  |  |  |  |
| HCM Lane V/C     | Ratio            | _    | _     | -     | _     | _    |  |   |      |  |  |  |  |  |  |

| HCM Lane V/C Ratio    | - | - | - | - | - |  |  |  |  |
|-----------------------|---|---|---|---|---|--|--|--|--|
| HCM Control Delay (s) | 0 | - | - | - | 0 |  |  |  |  |
| HCM Lane LOS          | А | - | - | - | А |  |  |  |  |
| HCM 95th %tile Q(veh) | 0 | - | - | - | - |  |  |  |  |

Int Delay, s/veh 1.1

| Movement            | WBL    | WBR  | NBT  | NBR  | SBL  | SBT      |
|---------------------|--------|------|------|------|------|----------|
| Lane Configuration  | าร     | 7    | 4    |      |      | <b>↑</b> |
| Traffic Vol, veh/h  | 0      | 85   | 885  | 110  | 0    | 485      |
| Future Vol, veh/h   | 0      | 85   | 885  | 110  | 0    | 485      |
| Conflicting Peds, # | ‡/hr 5 | 5    | 0    | 5    | 5    | 0        |
| Sign Control        | Stop   | Stop | Free | Free | Free | Free     |
| RT Channelized      | -      | None | -    | None | -    | None     |
| Storage Length      | -      | 0    | -    | -    | -    | -        |
| Veh in Median Sto   | rage0  | # -  | 0    | -    | -    | 0        |
| Grade, %            | 0      | -    | 0    | -    | -    | 0        |
| Peak Hour Factor    | 100    | 100  | 100  | 100  | 100  | 100      |
| Heavy Vehicles, %   | 6 0    | 0    | 1    | 0    | 0    | 3        |
| Mvmt Flow           | 0      | 85   | 885  | 110  | 0    | 485      |

| Major/Minor M       | linor1 | Ma  | jor1 | Maj | or2 |   |  |
|---------------------|--------|-----|------|-----|-----|---|--|
| Conflicting Flow A  | II -   | 950 | 0    | 0   | -   | - |  |
| Stage 1             | -      | -   | -    | -   | -   | - |  |
| Stage 2             | -      | -   | -    | -   | -   | - |  |
| Critical Hdwy       | -      | 6.2 | -    | -   | -   | - |  |
| Critical Hdwy Stg 2 | 1 -    | -   | -    | -   | -   | - |  |
| Critical Hdwy Stg 2 | 2 -    | -   | -    | -   | -   | - |  |
| Follow-up Hdwy      | -      | 3.3 | -    | -   | -   | - |  |
| Pot Cap-1 Maneuv    | ver 0  | 318 | -    | -   | 0   | - |  |
| Stage 1             | 0      | -   | -    | -   | 0   | - |  |
| Stage 2             | 0      | -   | -    | -   | 0   | - |  |
| Platoon blocked, %  | 6      |     | -    | -   |     | - |  |
| Mov Cap-1 Maneu     | iver - | 315 | -    | -   | -   | - |  |
| Mov Cap-2 Maneu     | iver - | -   | -    | -   | -   | - |  |
| Stage 1             | -      | -   | -    | -   | -   | - |  |
| Stage 2             | -      | -   | -    | -   | -   | - |  |
|                     |        |     |      |     |     |   |  |

| Approach      | WB                | NB | SB |
|---------------|-------------------|----|----|
| HCM Control D | elay2 <b>9</b> .6 | 0  | 0  |
| HCMLOS        | C                 |    |    |

| Minor Lane/Major Mvmt | NBT | NBR/BLn1 | SBT |
|-----------------------|-----|----------|-----|
| Capacity (veh/h)      | -   | - 315    | -   |
| HCM Lane V/C Ratio    | -   | - 0.27   | -   |
| HCM Control Delay (s) | -   | - 20.6   | -   |
| HCM Lane LOS          | -   | - C      | -   |
| HCM 95th %tile Q(veh) | -   | - 1.1    | -   |

|--|

| Intersection                                                                                                                                                                                                                                          |                                                                                       |       |                                                                                               |       |                                                                                         |       |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-------|-----------------------------------------------------------------------------------------------|-------|-----------------------------------------------------------------------------------------|-------|--|
| Intersection Delay, s/vel                                                                                                                                                                                                                             | h 2.9                                                                                 |       |                                                                                               |       |                                                                                         |       |  |
| Intersection LOS                                                                                                                                                                                                                                      | А                                                                                     |       |                                                                                               |       |                                                                                         |       |  |
| Approach                                                                                                                                                                                                                                              |                                                                                       | EB    |                                                                                               | NB    |                                                                                         | SB    |  |
| Entry Lanes                                                                                                                                                                                                                                           |                                                                                       | 1     |                                                                                               | 1     |                                                                                         | 1     |  |
| Conflicting Circle Lanes                                                                                                                                                                                                                              |                                                                                       | 1     |                                                                                               | 1     |                                                                                         | 1     |  |
| Adj Approach Flow, veh                                                                                                                                                                                                                                | /h                                                                                    | 5     |                                                                                               | 10    |                                                                                         | 60    |  |
| Demand Flow Rate, veh                                                                                                                                                                                                                                 | ı/h                                                                                   | 5     |                                                                                               | 10    |                                                                                         | 60    |  |
| Vehicles Circulating, vel                                                                                                                                                                                                                             | h/h                                                                                   | 30    |                                                                                               | 5     |                                                                                         | 0     |  |
| Vehicles Exiting, veh/h                                                                                                                                                                                                                               |                                                                                       | 30    |                                                                                               | 30    |                                                                                         | 15    |  |
| Ped Vol Crossing Leg, #                                                                                                                                                                                                                               | ‡/h                                                                                   | 5     |                                                                                               | 5     |                                                                                         | 5     |  |
| Ped Cap Adj                                                                                                                                                                                                                                           |                                                                                       | 0.999 |                                                                                               | 0.999 | (                                                                                       | 0.999 |  |
| Approach Delay, s/veh                                                                                                                                                                                                                                 |                                                                                       | 2.7   |                                                                                               | 2.7   |                                                                                         | 2.9   |  |
| Approach LOS                                                                                                                                                                                                                                          |                                                                                       | А     |                                                                                               | А     |                                                                                         | А     |  |
| Lane                                                                                                                                                                                                                                                  | Left                                                                                  |       | Left                                                                                          |       | Left                                                                                    |       |  |
| Designated Moves                                                                                                                                                                                                                                      | LR                                                                                    |       | IΤ                                                                                            |       | TR                                                                                      |       |  |
| -                                                                                                                                                                                                                                                     |                                                                                       |       | L I                                                                                           |       | 111                                                                                     |       |  |
| Assumed Moves                                                                                                                                                                                                                                         | LR                                                                                    |       | LT                                                                                            |       | TR                                                                                      |       |  |
| Assumed Moves<br>RT Channelized                                                                                                                                                                                                                       | LR                                                                                    |       | LT                                                                                            |       | TR                                                                                      |       |  |
| Assumed Moves<br>RT Channelized<br>Lane Util                                                                                                                                                                                                          | LR<br>1.000                                                                           |       | LT<br>1.000                                                                                   |       | TR<br>1.000                                                                             |       |  |
| Assumed Moves<br>RT Channelized<br>Lane Util<br>Follow-Up Headway, s                                                                                                                                                                                  | LR<br>1.000<br>2.609                                                                  |       | 1.000<br>2.609                                                                                |       | 1.000<br>2.609                                                                          |       |  |
| Assumed Moves<br>RT Channelized<br>Lane Util<br>Follow-Up Headway, s<br>Critical Headway, s                                                                                                                                                           | LR<br>1.000<br>2.609<br>4.976                                                         |       | 1.000<br>2.609<br>4.976                                                                       |       | 1.000<br>2.609<br>4.976                                                                 |       |  |
| Assumed Moves<br>RT Channelized<br>Lane Util<br>Follow-Up Headway, s<br>Critical Headway, s<br>Entry Flow, veh/h                                                                                                                                      | LR<br>1.000<br>2.609<br>4.976<br>5                                                    |       | LT<br>1.000<br>2.609<br>4.976<br>10                                                           |       | 1.000<br>2.609<br>4.976<br>60                                                           |       |  |
| Assumed Moves<br>RT Channelized<br>Lane Util<br>Follow-Up Headway, s<br>Critical Headway, s<br>Entry Flow, veh/h<br>Cap Entry Lane, veh/h                                                                                                             | LR<br>1.000<br>2.609<br>4.976<br>5<br>1338                                            |       | LT<br>1.000<br>2.609<br>4.976<br>10<br>1373                                                   |       | TR<br>1.000<br>2.609<br>4.976<br>60<br>1380                                             |       |  |
| Assumed Moves<br>RT Channelized<br>Lane Util<br>Follow-Up Headway, s<br>Critical Headway, s<br>Entry Flow, veh/h<br>Cap Entry Lane, veh/h<br>Entry HV Adj Factor                                                                                      | LR<br>1.000<br>2.609<br>4.976<br>5<br>1338<br>1.000                                   |       | LT<br>LT<br>1.000<br>2.609<br>4.976<br>10<br>1373<br>1.000                                    |       | TR<br>1.000<br>2.609<br>4.976<br>60<br>1380<br>1.000                                    |       |  |
| Assumed Moves<br>RT Channelized<br>Lane Util<br>Follow-Up Headway, s<br>Critical Headway, s<br>Entry Flow, veh/h<br>Cap Entry Lane, veh/h<br>Entry HV Adj Factor<br>Flow Entry, veh/h                                                                 | LR<br>1.000<br>2.609<br>4.976<br>5<br>1338<br>1.000<br>5                              |       | LT<br>LT<br>1.000<br>2.609<br>4.976<br>10<br>1373<br>1.000<br>10                              |       | TR<br>1.000<br>2.609<br>4.976<br>60<br>1380<br>1.000<br>60                              |       |  |
| Assumed Moves<br>RT Channelized<br>Lane Util<br>Follow-Up Headway, s<br>Critical Headway, s<br>Entry Flow, veh/h<br>Cap Entry Lane, veh/h<br>Entry HV Adj Factor<br>Flow Entry, veh/h<br>Cap Entry, veh/h                                             | LR<br>1.000<br>2.609<br>4.976<br>5<br>1338<br>1.000<br>5<br>1337                      |       | LT<br>LT<br>1.000<br>2.609<br>4.976<br>10<br>1373<br>1.000<br>10<br>1372                      |       | TR<br>1.000<br>2.609<br>4.976<br>60<br>1380<br>1.000<br>60<br>1379                      |       |  |
| Assumed Moves<br>RT Channelized<br>Lane Util<br>Follow-Up Headway, s<br>Critical Headway, s<br>Entry Flow, veh/h<br>Cap Entry Lane, veh/h<br>Entry HV Adj Factor<br>Flow Entry, veh/h<br>Cap Entry, veh/h<br>V/C Ratio                                | LR<br>1.000<br>2.609<br>4.976<br>5<br>1338<br>1.000<br>5<br>1337<br>0.004             |       | LT<br>LT<br>1.000<br>2.609<br>4.976<br>10<br>1373<br>1.000<br>10<br>1372<br>0.007             |       | TR<br>1.000<br>2.609<br>4.976<br>60<br>1380<br>1.000<br>60<br>1379<br>0.044             |       |  |
| Assumed Moves<br>RT Channelized<br>Lane Util<br>Follow-Up Headway, s<br>Critical Headway, s<br>Entry Flow, veh/h<br>Cap Entry Lane, veh/h<br>Entry HV Adj Factor<br>Flow Entry, veh/h<br>Cap Entry, veh/h<br>V/C Ratio<br>Control Delay, s/veh        | LR<br>1.000<br>2.609<br>4.976<br>5<br>1338<br>1.000<br>5<br>1337<br>0.004<br>2.7      |       | LT<br>LT<br>1.000<br>2.609<br>4.976<br>10<br>1373<br>1.000<br>10<br>1372<br>0.007<br>2.7      |       | TR<br>1.000<br>2.609<br>4.976<br>60<br>1380<br>1.000<br>60<br>1379<br>0.044<br>2.9      |       |  |
| Assumed Moves<br>RT Channelized<br>Lane Util<br>Follow-Up Headway, s<br>Critical Headway, s<br>Entry Flow, veh/h<br>Cap Entry Lane, veh/h<br>Entry HV Adj Factor<br>Flow Entry, veh/h<br>Cap Entry, veh/h<br>V/C Ratio<br>Control Delay, s/veh<br>LOS | LR<br>1.000<br>2.609<br>4.976<br>5<br>1338<br>1.000<br>5<br>1337<br>0.004<br>2.7<br>A |       | LT<br>LT<br>1.000<br>2.609<br>4.976<br>10<br>1373<br>1.000<br>10<br>1372<br>0.007<br>2.7<br>A |       | TR<br>1.000<br>2.609<br>4.976<br>60<br>1380<br>1.000<br>60<br>1379<br>0.044<br>2.9<br>A |       |  |

| Intersection             |       |       |       |       |       |
|--------------------------|-------|-------|-------|-------|-------|
| Intersection Delay, s/ve | h 8.0 |       |       |       |       |
| Intersection LOS         | A     |       |       |       |       |
| Approach                 |       | EB    | WB    | NB    | SB    |
| Entry Lanes              |       | 1     | 1     | 1     | 1     |
| Conflicting Circle Lanes | 3     | 1     | 1     | 1     | 1     |
| Adj Approach Flow, veh   | ı/h   | 75    | 45    | 705   | 515   |
| Demand Flow Rate, veh    | ካ/h   | 82    | 47    | 734   | 530   |
| Vehicles Circulating, ve | h/h 5 | 561   | 739   | 47    | 52    |
| Vehicles Exiting, veh/h  |       | 21    | 42    | 596   | 734   |
| Ped Vol Crossing Leg, #  | #/h   | 5     | 5     | 5     | 5     |
| Ped Cap Adj              | 0.9   | 999   | 0.999 | 0.999 | 0.999 |
| Approach Delay, s/veh    |       | 6.2   | 6.7   | 9.2   | 6.8   |
| Approach LOS             |       | A     | А     | А     | А     |
| Lane                     | Left  | Left  |       | Left  | Left  |
| Designated Moves         | LTR   | LTR   |       | LTR   | LTR   |
| Assumed Moves            | LTR   | LTR   |       | LTR   | LTR   |
| RT Channelized           |       |       |       |       |       |
| Lane Util                | 1.000 | 1.000 |       | 1.000 | 1.000 |
| Follow-Up Headway, s     | 2.609 | 2.609 |       | 2.609 | 2.609 |
| Critical Headway, s      | 4.976 | 4.976 |       | 4.976 | 4.976 |
| Entry Flow, veh/h        | 82    | 47    |       | 734   | 530   |
| Cap Entry Lane, veh/h    | 779   | 649   |       | 1315  | 1309  |
| Entry HV Adj Factor      | 0.915 | 0.950 |       | 0.961 | 0.971 |
| Flow Entry, veh/h        | 75    | 45    |       | 705   | 515   |
| Cap Entry, veh/h         | 712   | 617   |       | 1263  | 1270  |
| V/C Ratio                | 0.105 | 0.072 |       | 0.558 | 0.405 |
| Control Delay, s/veh     | 6.2   | 6.7   |       | 9.2   | 6.8   |
| LOS                      | А     | A     |       | A     | А     |
| 95th %tile Queue veh     | 0     | 0     |       | 4     | 2     |

| Intersection             |     |
|--------------------------|-----|
| ntersection Delay, s/veh | 7.1 |
| ntersection LOS          | А   |

| Movement                  | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
|---------------------------|------|------|------|------|------|------|------|------|------|------|------|------|
| Lane Configurations       |      | \$   |      |      | 4    |      |      | 4    |      |      | 4    |      |
| Traffic Vol, veh/h        | 10   | 5    | 35   | 10   | 20   | 0    | 0    | 10   | 0    | 0    | 40   | 20   |
| Future Vol, veh/h         | 10   | 5    | 35   | 10   | 20   | 0    | 0    | 10   | 0    | 0    | 40   | 20   |
| Peak Hour Factor          | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Heavy Vehicles, %         | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| Mvmt Flow                 | 10   | 5    | 35   | 10   | 20   | 0    | 0    | 10   | 0    | 0    | 40   | 20   |
| Number of Lanes           | 0    | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    |
| Approach                  | EB   |      |      | WB   |      |      |      | NB   |      |      | SB   |      |
| Opposing Approach         | WB   |      |      | EB   |      |      |      | SB   |      |      | NB   |      |
| Opposing Lanes            | 1    |      |      | 1    |      |      |      | 1    |      |      | 1    |      |
| Conflicting Approach Left | SB   |      |      | NB   |      |      |      | EB   |      |      | WB   |      |
| Conflicting Lanes Left    | 1    |      |      | 1    |      |      |      | 1    |      |      | 1    |      |
| Conflicting Approach Rig  | htNB |      |      | SB   |      |      |      | WB   |      |      | EB   |      |
| Conflicting Lanes Right   | 1    |      |      | 1    |      |      |      | 1    |      |      | 1    |      |
| HCM Control Delay         | 6.9  |      |      | 7.3  |      |      |      | 7.2  |      |      | 7.1  |      |
| HCM LOS                   | А    |      |      | А    |      |      |      | А    |      |      | А    |      |

| Lane                   | NBLn1 | EBLn1V | VBLn1 | SBLn1 |  |
|------------------------|-------|--------|-------|-------|--|
| Vol Left, %            | 0%    | 20%    | 33%   | 0%    |  |
| Vol Thru, %            | 100%  | 10%    | 67%   | 67%   |  |
| Vol Right, %           | 0%    | 70%    | 0%    | 33%   |  |
| Sign Control           | Stop  | Stop   | Stop  | Stop  |  |
| Traffic Vol by Lane    | 10    | 50     | 30    | 60    |  |
| LT Vol                 | 0     | 10     | 10    | 0     |  |
| Through Vol            | 10    | 5      | 20    | 40    |  |
| RT Vol                 | 0     | 35     | 0     | 20    |  |
| Lane Flow Rate         | 10    | 50     | 30    | 60    |  |
| Geometry Grp           | 1     | 1      | 1     | 1     |  |
| Degree of Util (X)     | 0.011 | 0.051  | 0.034 | 0.064 |  |
| Departure Headway (Hd) | 4.084 | 3.664  | 4.126 | 3.846 |  |
| Convergence, Y/N       | Yes   | Yes    | Yes   | Yes   |  |
| Сар                    | 874   | 975    | 866   | 930   |  |
| Service Time           | 2.121 | 1.695  | 2.157 | 1.875 |  |
| HCM Lane V/C Ratio     | 0.011 | 0.051  | 0.035 | 0.065 |  |
| HCM Control Delay      | 7.2   | 6.9    | 7.3   | 7.1   |  |
| HCM Lane LOS           | Α     | Α      | Α     | А     |  |
| HCM 95th-tile Q        | 0     | 0.2    | 0.1   | 0.2   |  |

# Lanes, Volumes, Timings <u>3: Iber/Huntmar & Hazeldean</u>

|                         | ٩     | <b>→</b>   | 7    | 1      | •        | *     | 1     | t      | 1     | 1     | ŧ     | ~     |
|-------------------------|-------|------------|------|--------|----------|-------|-------|--------|-------|-------|-------|-------|
| Lane Group              | EBL   | EBT        | EBR  | WBL    | WBT      | WBR   | NBL   | NBT    | NBR   | SBL   | SBT   | SBR   |
| Lane Configurations     | শ     | <b>↑</b> Ъ |      | ሻሻ     | <b>^</b> | 1     | 2     | 1      | 1     | 2     | 1     | 1     |
| Traffic Volume (vph)    | 250   | 800        | 150  | 400    | 1250     | 310   | 170   | 375    | 300   | 210   | 475   | 480   |
| Future Volume (vph)     | 250   | 800        | 150  | 400    | 1250     | 310   | 170   | 375    | 300   | 210   | 475   | 480   |
| Confl. Peds. (#/hr)     | 5     |            | 5    | 5      |          | 5     | 5     |        | 5     | 5     |       | 5     |
| Confl. Bikes (#/hr)     |       |            |      |        |          |       |       |        |       |       |       |       |
| Peak Hour Factor        | 1.00  | 1.00       | 1.00 | 1.00   | 1.00     | 1.00  | 1.00  | 1.00   | 1.00  | 1.00  | 1.00  | 1.00  |
| Growth Factor           | 100%  | 100%       | 100% | 100%   | 100%     | 100%  | 100%  | 100%   | 100%  | 100%  | 100%  | 100%  |
| Heavy Vehicles (%)      | 0%    | 1%         | 2%   | 1%     | 1%       | 0%    | 6%    | 1%     | 1%    | 1%    | 2%    | 1%    |
| Bus Blockages (#/hr)    | 0     | 0          | 0    | 0      | 0        | 0     | 0     | 0      | 0     | 0     | 0     | 0     |
| Parking (#/hr)          |       |            |      |        |          |       |       |        |       |       |       |       |
| Mid-Block Traffic (%)   |       | 0%         |      |        | 0%       |       |       | 0%     |       |       | 0%    |       |
| Shared Lane Traffic (%) | )     |            |      |        |          |       |       |        |       |       |       |       |
| Lane Group Flow (vph)   | 250   | 950        | 0    | 400    | 1250     | 310   | 170   | 375    | 300   | 210   | 475   | 480   |
| Turn Type               | Prot  | NA         |      | Prot   | NA       | Perm  | pm+pt | NA     | Perm  | pm+pt | NA    | Perm  |
| Protected Phases        | 5     | 2          |      | 1      | 6        |       | 3     | 8      |       | 7     | 4     |       |
| Permitted Phases        |       |            |      |        |          | 6     | 8     |        | 8     | 4     |       | 4     |
| Detector Phase          | 5     | 2          |      | 1      | 6        | 6     | 3     | 8      | 8     | 7     | 4     | 4     |
| Switch Phase            |       |            |      |        |          |       |       |        |       |       |       |       |
| Minimum Initial (s)     | 5.0   | 10.0       |      | 5.0    | 10.0     | 10.0  | 5.0   | 10.0   | 10.0  | 5.0   | 10.0  | 10.0  |
| Minimum Split (s)       | 12.5  | 38.6       |      | 12.5   | 38.6     | 38.6  | 12.5  | 58.0   | 58.0  | 12.5  | 41.3  | 41.3  |
| Total Split (s)         | 18.2  | 44.8       |      | 14.6   | 41.2     | 41.2  | 12.5  | 58.0   | 58.0  | 12.6  | 58.1  | 58.1  |
| Total Split (%)         | 14.0% | 34.5%      |      | 11.2%  | 31.7%    | 31.7% | 9.6%  | 44.6%  | 44.6% | 9.7%  | 44.7% | 44.7% |
| Yellow Time (s)         | 3.6   | 3.6        |      | 3.6    | 3.6      | 3.6   | 3.0   | 3.3    | 3.3   | 3.0   | 3.3   | 3.3   |
| All-Red Time (s)        | 2.0   | 2.0        |      | 2.0    | 2.0      | 2.0   | 0.0   | 2.0    | 2.0   | 0.0   | 2.0   | 2.0   |
| Lost Time Adjust (s)    | 0.0   | 0.0        |      | 0.0    | 0.0      | 0.0   | 0.0   | 0.0    | 0.0   | 0.0   | 0.0   | 0.0   |
| Total Lost Time (s)     | 5.6   | 5.6        |      | 5.6    | 5.6      | 5.6   | 3.0   | 5.3    | 5.3   | 3.0   | 5.3   | 5.3   |
| Lead/Lag                | Lead  | Lag        |      | Lead   | Lag      | Lag   | Lead  | Lag    | Lag   | Lead  | Lag   | Lag   |
| Lead-Lag Optimize?      | Yes   | Yes        |      | Yes    | Yes      | Yes   | Yes   | Yes    | Yes   | Yes   | Yes   | Yes   |
| Recall Mode             | None  | C-Max      |      | None   | C-Max    | C-Max | None  | None   | None  | None  | None  | None  |
| Act Effct Green (s)     | 14.1  | 39.2       |      | 19.8   | 44.9     | 44.9  | 53.7  | 41.9   | 41.9  | 53.9  | 42.0  | 42.0  |
| Actuated g/C Ratio      | 0.11  | 0.30       |      | 0.15   | 0.35     | 0.35  | 0.41  | 0.32   | 0.32  | 0.41  | 0.32  | 0.32  |
| v/c Ratio               | 0.70  | 0.95       |      | 0.80   | 1.07     | 0.43  | 0.76  | 0.65   | 0.47  | 0.68  | 0.83  | 0.76  |
| Control Delay           | 66.6  | 62.0       |      | 66.3   | 87.5     | 5.9   | 44.3  | 42.6   | 8.9   | 34.7  | 53.4  | 28.1  |
| Queue Delay             | 0.0   | 0.0        |      | 0.0    | 0.0      | 0.0   | 0.0   | 0.0    | 0.0   | 0.0   | 0.0   | 0.0   |
|                         | 66.6  | 62.0       |      | 66.3   | 87.5     | 5.9   | 44.3  | 42.6   | 8.9   | 34.7  | 53.4  | 28.1  |
| LUS                     | E     | E          |      | E      | F        | A     | D     | D      | A     | C     | D     | C     |
| Approach Delay          |       | 62.9       |      |        | 70.2     |       |       | 31.0   |       |       | 39.6  |       |
| Approach LUS            | 22.6  | 120 0      |      | E 4 7  | 202.0    | 0.0   | 00.4  |        | 10 E  | 25 F  |       | 64.9  |
| Queue Length 50th (m)   | 33.0  | 130.0      |      | 54.7   | ~203.8   | 0.0   | 28.1  | 85.9   | 10.5  | 35.5  | 117.4 | 04.8  |
| Queue Length 95th (m)   | #52.0 | #1/3.4     |      | #114.7 | #270.1   | 23.1  | #39.9 | 107.4  | 30.8  | 40.5  | 143.9 | 97.3  |
| Turn Day Longth (m)     | 50.0  | 871.0      |      | 00.0   | 1427.4   | 225.0 | 20.0  | 1305.0 | 60.0  | 50.0  | 301.9 | 075.0 |
| Turn Bay Length (m)     | 50.0  | 1000       |      | 90.0   | 4470     | 225.0 | 30.0  | 700    | 50.0  | 50.0  | 746   | 275.0 |
| Base Capacity (vpn)     | 305   | 1003       |      | 500    | 11/0     | 122   | 224   | 122    | /48   | 311   | / 16  | 735   |
| Starvation Cap Reductin |       | 0          |      | 0      | 0        | 0     | 0     | 0      | 0     | 0     | 0     | 0     |
| Storage Con Reducth     | 0     | 0          |      | 0      | 0        | 0     | 0     | 0      | 0     | 0     | 0     | 0     |
| Boduced v/a Reduction   | 0.69  | 0.05       |      | 0 00   | 1 07     | 0.42  | 0.76  | 0.50   | 0.40  | 0.60  | 0.66  | 0.65  |
| Intersection Summer     | 0.00  | 0.95       |      | 0.00   | 1.07     | 0.43  | 0.70  | 0.52   | 0.40  | 0.08  | 0.00  | 0.03  |

130 Huntmar Drive 02-06-2020 2029 Future AM Dillon Consulting Limited

Synchro 10 Report Page 1

| Cycle Length: 130                                  |                                                               |  |  |  |  |  |
|----------------------------------------------------|---------------------------------------------------------------|--|--|--|--|--|
| Actuated Cycle Length: 130                         |                                                               |  |  |  |  |  |
| Offset: 0 (0%), Referenced to phase 2:EBT and 6:WI | BT, Start of Green                                            |  |  |  |  |  |
| Natural Cycle: 145                                 |                                                               |  |  |  |  |  |
| Control Type: Actuated-Coordinated                 |                                                               |  |  |  |  |  |
| Maximum v/c Ratio: 1.07                            |                                                               |  |  |  |  |  |
| Intersection Signal Delay: 55.2                    | Intersection LOS: E                                           |  |  |  |  |  |
| Intersection Capacity Utilization 97.6%            | ICU Level of Service F                                        |  |  |  |  |  |
| Analysis Period (min) 15                           |                                                               |  |  |  |  |  |
| ~ Volume exceeds capacity, queue is theoretically  | infinite.                                                     |  |  |  |  |  |
| Queue shown is maximum after two cycles.           |                                                               |  |  |  |  |  |
| # 95th percentile volume exceeds capacity, queue   | 95th percentile volume exceeds capacity, queue may be longer. |  |  |  |  |  |

Queue shown is maximum after two cycles.

Splits and Phases: 3: Iber/Huntmar & Hazeldean

| <b>√</b> Ø1 | ₩Ø2 (R)  | <b>1</b> Ø3 | 04            |
|-------------|----------|-------------|---------------|
| 14.6 s      | 44.8 s   | 12.5 5      | 58.1 s        |
| ▶ Ø5        | ● Ø6 (R) | <b>1</b> 07 | - <b>1</b> 08 |
| 18.2 s      | 41.2 s   | 12.6 s      | 58 s          |

# Lanes, Volumes, Timings <u>6: Terry Fox & Palladium/Katimavik</u>

|                        | ٩      | <b>→</b> | 7     | 1     | •     | 1     | 1     | t        | 1     | 1     | ŧ          | ~      |
|------------------------|--------|----------|-------|-------|-------|-------|-------|----------|-------|-------|------------|--------|
| Lane Group             | EBL    | EBT      | EBR   | WBL   | WBT   | WBR   | NBL   | NBT      | NBR   | SBL   | SBT        | SBR    |
| Lane Configurations    | 11     | 4        | 1     | 3     | 4     | 1     | 27    | <b>^</b> | 1     | 11    | <b>*</b> * | 1      |
| Traffic Volume (vph)   | 845    | 260      | 405   | 135   | 185   | 150   | 250   | 1165     | 100   | 125   | 1375       | 710    |
| Future Volume (vph)    | 845    | 260      | 405   | 135   | 185   | 150   | 250   | 1165     | 100   | 125   | 1375       | 710    |
| Confl. Peds. (#/hr)    | 5      |          | 5     | 5     |       | 5     | 5     |          | 5     | 5     |            | 5      |
| Confl. Bikes (#/hr)    |        |          |       |       |       |       |       |          |       |       |            |        |
| Peak Hour Factor       | 1.00   | 1.00     | 1.00  | 1.00  | 1.00  | 1.00  | 1.00  | 1.00     | 1.00  | 1.00  | 1.00       | 1.00   |
| Growth Factor          | 100%   | 100%     | 100%  | 100%  | 100%  | 100%  | 100%  | 100%     | 100%  | 100%  | 100%       | 100%   |
| Heavy Vehicles (%)     | 0%     | 0%       | 1%    | 5%    | 2%    | 0%    | 0%    | 2%       | 4%    | 0%    | 1%         | 0%     |
| Bus Blockages (#/hr)   | 0      | 0        | 0     | 0     | 0     | 0     | 0     | 0        | 0     | 0     | 0          | 0      |
| Parking (#/hr)         |        |          |       |       |       |       |       |          |       |       |            |        |
| Mid-Block Traffic (%)  |        | 0%       |       |       | 0%    |       |       | 0%       |       |       | 0%         |        |
| Shared Lane Traffic (% | )      |          |       |       |       |       |       |          |       |       |            |        |
| Lane Group Flow (vph)  | 845    | 260      | 405   | 135   | 185   | 150   | 250   | 1165     | 100   | 125   | 1375       | 710    |
| Turn Type              | Prot   | NA       | Perm  | Prot  | NA    | Perm  | Prot  | NA       | Perm  | Prot  | NA         | Perm   |
| Protected Phases       | 7      | 4        |       | 3     | 8     |       | 5     | 2        |       | 1     | 6          |        |
| Permitted Phases       |        |          | 4     |       |       | 8     |       |          | 2     |       |            | 6      |
| Detector Phase         | 7      | 4        | 4     | 3     | 8     | 8     | 5     | 2        | 2     | 1     | 6          | 6      |
| Switch Phase           |        |          |       |       |       |       |       |          |       |       |            |        |
| Minimum Initial (s)    | 5.0    | 10.0     | 10.0  | 5.0   | 10.0  | 10.0  | 5.0   | 10.0     | 10.0  | 5.0   | 10.0       | 10.0   |
| Minimum Split (s)      | 12.0   | 40.6     | 40.6  | 12.0  | 40.3  | 40.3  | 12.0  | 42.5     | 42.5  | 30.0  | 41.0       | 41.0   |
| Total Split (s)        | 12.0   | 40.6     | 40.6  | 12.0  | 40.6  | 40.6  | 21.0  | 47.4     | 47.4  | 30.0  | 56.4       | 56.4   |
| Total Split (%)        | 9.2%   | 31.2%    | 31.2% | 9.2%  | 31.2% | 31.2% | 16.2% | 36.5%    | 36.5% | 23.1% | 43.4%      | 43.4%  |
| Yellow Time (s)        | 3.6    | 3.6      | 3.6   | 3.3   | 3.3   | 3.3   | 4.0   | 4.0      | 4.0   | 4.0   | 4.0        | 4.0    |
| All-Red Time (s)       | 2.0    | 2.0      | 2.0   | 2.0   | 2.0   | 2.0   | 2.0   | 2.0      | 2.0   | 2.0   | 2.0        | 2.0    |
| Lost Time Adjust (s)   | -2.0   | 0.0      | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0      | 0.0   | 0.0   | 0.0        | 0.0    |
| Total Lost Time (s)    | 3.6    | 5.6      | 5.6   | 5.3   | 5.3   | 5.3   | 6.0   | 6.0      | 6.0   | 6.0   | 6.0        | 6.0    |
| Lead/Lag               | Lead   | Lag      | Lag   | Lead  | Lag   | Lag   | Lead  | Lag      | Lag   | Lead  | Lag        | Lag    |
| Lead-Lag Optimize?     | Yes    | Yes      | Yes   | Yes   | Yes   | Yes   | Yes   | Yes      | Yes   | Yes   | Yes        | Yes    |
| Recall Mode            | None   | None     | None  | None  | None  | None  | None  | C-Max    | C-Max | None  | C-Max      | C-Max  |
| Act Effct Green (s)    | 8.4    | 24.9     | 24.9  | 6.7   | 25.2  | 25.2  | 14.2  | 65.2     | 65.2  | 10.3  | 61.3       | 61.3   |
| Actuated g/C Ratio     | 0.06   | 0.19     | 0.19  | 0.05  | 0.19  | 0.19  | 0.11  | 0.50     | 0.50  | 0.08  | 0.47       | 0.47   |
| v/c Ratio              | 3.95   | 0.76     | 0.82  | 1.63  | 0.54  | 0.35  | 0.69  | 0.69     | 0.12  | 0.48  | 0.86       | 0.77   |
| Control Delay          | 1353.4 | 63.1     | 32.0  | 367.4 | 52.0  | 5.7   | 79.9  | 19.0     | 0.7   | 62.9  | 38.5       | 19.3   |
| Queue Delay            | 0.0    | 0.0      | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0      | 0.0   | 0.0   | 0.0        | 0.0    |
| Total Delay            | 1353.4 | 63.1     | 32.0  | 367.4 | 52.0  | 5.7   | 79.9  | 19.0     | 0.7   | 62.9  | 38.5       | 19.3   |
| LOS                    | F      | E        | С     | F     | D     | A     | E     | B        | A     | E     | D          | В      |
| Approach Delay         |        | //6.8    |       |       | 127.8 |       |       | 27.8     |       |       | 33.7       |        |
| Approach LOS           | 040.0  |          | 00.0  | 50.4  |       | 0.0   | 07.0  | C        | 0.0   | 10.0  | C 400 7    | 70.0   |
| Queue Length 50th (m)  | ~216.6 | 65.1     | 36.2  | ~52.1 | 45.7  | 0.0   | 37.2  | 54.9     | 0.0   | 16.9  | 169.7      | 70.2   |
| Queue Length 95th (m)  | #258.6 | m86.1    | /1.1  | #95.3 | 63.7  | 11.7  | m49.3 | 142.8    | m1.6  | 27.0  | #256.4     | #170.0 |
| Internal Link Dist (m) | 400.0  | 1802.0   |       | 445.0 | 304.5 | 445 0 | 040.0 | 406.9    | 445.0 | 70.0  | 280.2      | 400.0  |
| Turn Bay Length (m)    | 100.0  | 40.4     | 507   | 115.0 | 470   | 115.0 | 240.0 | 1000     | 115.0 | 70.0  | 4507       | 190.0  |
| Base Capacity (Vpn)    | 214    | 484      | 587   | 83    | 479   | 534   | 391   | 1682     | 809   | 612   | 1597       | 923    |
| Starvation Cap Reducti | n O    | 0        | 0     | 0     | 0     | 0     | 0     | 0        | 0     | 0     | 0          | 0      |
| Spillback Cap Reducth  | 0      | 0        | 0     | 0     | 0     | 0     | 0     | 0        | 0     | 0     | 0          | 0      |
| Storage Cap Reducth    | 2.05   | 0 5 4    | 0     | 1 00  | 0 00  | 0 00  | 0     | 0        | 0 40  | 0     | 0          | 0 77   |
| Reduced V/C Ratio      | 3.95   | 0.54     | 0.69  | 1.63  | 0.39  | 0.28  | 0.64  | 0.69     | 0.12  | 0.20  | 0.86       | 0.77   |
| Intersection Summary   |        |          |       |       |       |       |       |          |       |       |            |        |

130 Huntmar Drive 02-06-2020 2029 Future AM Dillon Consulting Limited

Synchro 10 Report Page 3

# Lanes, Volumes, Timings 6: Terry Fox & Palladium/Katimavik

| Cycle Length: 130                                                   |                                                                                          |  |  |  |  |  |  |  |
|---------------------------------------------------------------------|------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Actuated Cycle Length: 130                                          |                                                                                          |  |  |  |  |  |  |  |
| Offset: 0 (0%), Referenced to phase 2:NBT and 6:S                   | Offset: 0 (0%), Referenced to phase 2:NBT and 6:SBT, Start of Green, Master Intersection |  |  |  |  |  |  |  |
| Natural Cycle: 150                                                  |                                                                                          |  |  |  |  |  |  |  |
| Control Type: Actuated-Coordinated                                  |                                                                                          |  |  |  |  |  |  |  |
| Maximum v/c Ratio: 3.95                                             |                                                                                          |  |  |  |  |  |  |  |
| Intersection Signal Delay: 236.6                                    | Intersection LOS: F                                                                      |  |  |  |  |  |  |  |
| Intersection Capacity Utilization 103.6%                            | ICU Level of Service G                                                                   |  |  |  |  |  |  |  |
| Analysis Period (min) 15                                            |                                                                                          |  |  |  |  |  |  |  |
| <ul> <li>Volume exceeds capacity, queue is theoretically</li> </ul> | <sup>,</sup> infinite.                                                                   |  |  |  |  |  |  |  |
| Queue shown is maximum after two cycles.                            | Queue shown is maximum after two cycles.                                                 |  |  |  |  |  |  |  |
| # 95th percentile volume exceeds capacity, queue                    | 95th percentile volume exceeds capacity, queue may be longer.                            |  |  |  |  |  |  |  |
| Queue shown is maximum after two cycles.                            |                                                                                          |  |  |  |  |  |  |  |
| m Volume for 95th percentile queue is metered by                    | upstream signal.                                                                         |  |  |  |  |  |  |  |

Splits and Phases: 6: Terry Fox & Palladium/Katimavik



# Lanes, Volumes, Timings 8: Huntmar & Palladium

|                         | ٩     | -           | 7    | 1      | •           | *    | 1      | t     | 1     | 1     | ŧ     | ~     |
|-------------------------|-------|-------------|------|--------|-------------|------|--------|-------|-------|-------|-------|-------|
| Lane Group              | EBL   | EBT         | EBR  | WBL    | WBT         | WBR  | NBL    | NBT   | NBR   | SBL   | SBT   | SBR   |
| Lane Configurations     | 3     | <b>≜t</b> ⊧ |      | 3      | <b>≜</b> 15 |      | 3      | 4     | 1     | 1     | 4     | 1     |
| Traffic Volume (vph)    | 30    | 185         | 650  | 245    | 525         | 140  | 370    | 250   | 110   | 100   | 365   | 110   |
| Future Volume (vph)     | 30    | 185         | 650  | 245    | 525         | 140  | 370    | 250   | 110   | 100   | 365   | 110   |
| Confl. Peds. (#/hr)     | 5     |             | 5    | 5      |             | 5    | 5      |       | 5     | 5     |       | 5     |
| Confl. Bikes (#/hr)     |       |             |      |        |             |      |        |       |       |       |       |       |
| Peak Hour Factor        | 1.00  | 1.00        | 1.00 | 1.00   | 1.00        | 1.00 | 1.00   | 1.00  | 1.00  | 1.00  | 1.00  | 1.00  |
| Growth Factor           | 100%  | 100%        | 100% | 100%   | 100%        | 100% | 100%   | 100%  | 100%  | 100%  | 100%  | 100%  |
| Heavy Vehicles (%)      | 11%   | 0%          | 0%   | 0%     | 0%          | 0%   | 1%     | 1%    | 0%    | 1%    | 2%    | 1%    |
| Bus Blockages (#/hr)    | 0     | 0           | 0    | 0      | 0           | 0    | 0      | 0     | 0     | 0     | 0     | 0     |
| Parking (#/hr)          |       |             |      |        |             |      |        |       |       |       |       |       |
| Mid-Block Traffic (%)   |       | 0%          |      |        | 0%          |      |        | 0%    |       |       | 0%    |       |
| Shared Lane Traffic (%) | l.    |             |      |        |             |      |        |       |       |       |       |       |
| Lane Group Flow (vph)   | 30    | 835         | 0    | 245    | 665         | 0    | 370    | 250   | 110   | 100   | 365   | 110   |
| Turn Type               | pm+pt | NA          |      | pm+pt  | NA          |      | Perm   | NA    | Perm  | Perm  | NA    | Perm  |
| Protected Phases        | 7     | 4           |      | 3      | 8           |      |        | 2     |       |       | 6     |       |
| Permitted Phases        | 4     |             |      | 8      |             |      | 2      |       | 2     | 6     |       | 6     |
| Detector Phase          | 7     | 4           |      | 3      | 8           |      | 2      | 2     | 2     | 6     | 6     | 6     |
| Switch Phase            |       |             |      |        |             |      |        |       |       |       |       |       |
| Minimum Initial (s)     | 5.0   | 10.0        |      | 5.0    | 10.0        |      | 10.0   | 10.0  | 10.0  | 10.0  | 10.0  | 10.0  |
| Minimum Split (s)       | 12.5  | 43.0        |      | 12.5   | 43.0        |      | 42.3   | 42.3  | 42.3  | 42.3  | 42.3  | 42.3  |
| Total Split (s)         | 12.5  | 43.0        |      | 12.6   | 43.1        |      | 74.4   | 74.4  | 74.4  | 74.4  | 74.4  | 74.4  |
| Total Split (%)         | 9.6%  | 33.1%       |      | 9.7%   | 33.2%       |      | 57.2%  | 57.2% | 57.2% | 57.2% | 57.2% | 57.2% |
| Yellow Time (s)         | 4.0   | 4.0         |      | 4.0    | 4.0         |      | 3.3    | 3.3   | 3.3   | 3.3   | 3.3   | 3.3   |
| All-Red Time (s)        | 2.0   | 2.0         |      | 2.0    | 2.0         |      | 2.0    | 2.0   | 2.0   | 2.0   | 2.0   | 2.0   |
| Lost Time Adjust (s)    | 0.0   | 0.0         |      | 0.0    | 0.0         |      | 0.0    | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   |
| Total Lost Time (s)     | 6.0   | 6.0         |      | 6.0    | 6.0         |      | 5.3    | 5.3   | 5.3   | 5.3   | 5.3   | 5.3   |
| Lead/Lag                | Lead  | Lag         |      | Lead   | Lag         |      |        |       |       |       |       |       |
| Lead-Lag Optimize?      | Yes   | Yes         |      | Yes    | Yes         |      |        |       |       |       |       |       |
| Recall Mode             | None  | None        |      | None   | None        |      | C-Max  | C-Max | C-Max | C-Max | C-Max | C-Max |
| Act Effct Green (s)     | 34.9  | 28.6        |      | 37.7   | 33.7        |      | 77.5   | 77.5  | 77.5  | 77.5  | 77.5  | 77.5  |
| Actuated g/C Ratio      | 0.27  | 0.22        |      | 0.29   | 0.26        |      | 0.60   | 0.60  | 0.60  | 0.60  | 0.60  | 0.60  |
| v/c Ratio               | 0.20  | 1.01dr      |      | 1.79   | 0.76        |      | 0.73   | 0.24  | 0.12  | 0.16  | 0.35  | 0.12  |
| Control Delay           | 31.0  | 34.4        |      | 397.2  | 42.4        |      | 38.6   | 21.8  | 8.2   | 14.4  | 15.8  | 2.9   |
| Queue Delay             | 0.0   | 0.0         |      | 0.0    | 0.0         |      | 0.0    | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   |
| Total Delay             | 31.0  | 34.4        |      | 397.2  | 42.4        |      | 38.6   | 21.8  | 8.2   | 14.4  | 15.8  | 2.9   |
| LOS                     | С     | С           |      | F      | D           |      | D      | С     | A     | В     | В     | A     |
| Approach Delay          |       | 34.2        |      |        | 137.9       |      |        | 28.3  |       |       | 13.1  |       |
| Approach LOS            |       | С           |      |        | F           |      |        | С     |       |       | В     |       |
| Queue Length 50th (m)   | 5.5   | 61.8        |      | ~84.6  | 92.0        |      | 83.3   | 43.9  | 5.2   | 12.0  | 49.6  | 0.0   |
| Queue Length 95th (m)   | 11.9  | 83.1        | m    | #127.0 | 100.8       | n    | n125.4 | m62.8 | m11.2 | 24.5  | 79.8  | 9.1   |
| Internal Link Dist (m)  |       | 535.2       |      |        | 1802.0      |      |        | 357.2 |       |       | 231.7 |       |
| Turn Bay Length (m)     | 95.0  |             |      | 75.0   |             |      | 120.0  |       | 45.0  | 50.0  |       |       |
| Base Capacity (vph)     | 152   | 1128        |      | 137    | 960         |      | 509    | 1061  | 940   | 608   | 1051  | 931   |
| Starvation Cap Reductn  | 0     | 0           |      | 0      | 0           |      | 0      | 0     | 0     | 0     | 0     | 0     |
| Spillback Cap Reductn   | 0     | 0           |      | 0      | 0           |      | 0      | 0     | 0     | 0     | 0     | 0     |
| Storage Cap Reductn     | 0     | 0           |      | 0      | 0           |      | 0      | 0     | 0     | 0     | 0     | 0     |
| Reduced v/c Ratio       | 0.20  | 0.74        |      | 1.79   | 0.69        |      | 0.73   | 0.24  | 0.12  | 0.16  | 0.35  | 0.12  |
| Intersection Summary    |       |             |      |        |             |      |        |       |       |       |       |       |

130 Huntmar Drive 02-06-2020 2029 Future AM Dillon Consulting Limited

Synchro 10 Report Page 5

| Су  | /cle Length: 130                                |                        |
|-----|-------------------------------------------------|------------------------|
| Ac  | tuated Cycle Length: 130                        |                        |
| Of  | fset: 0 (0%), Referenced to phase 2:NBTL and 6: | SBTL, Start of Green   |
| Na  | atural Cycle: 130                               |                        |
| Сс  | ontrol Type: Actuated-Coordinated               |                        |
| Ma  | aximum v/c Ratio: 1.79                          |                        |
| Int | ersection Signal Delay: 59.5                    | Intersection LOS: E    |
| Int | ersection Capacity Utilization 114.1%           | ICU Level of Service H |
| An  | alysis Period (min) 15                          |                        |
| ~   | Volume exceeds capacity, queue is theoretically | infinite.              |
|     | Queue shown is maximum after two cycles.        |                        |
| #   | 95th percentile volume exceeds capacity, queue  | may be longer.         |
|     | Queue shown is maximum after two cycles.        |                        |
| m   | Volume for 05th perceptile queue is metered by  | unstream signal        |

- Volume for 95th percentile queue is metered by upstream signal. Defacto Right Lane. Recode with 1 though lane as a right lane. m
- dr

#### Splits and Phases: 8: Huntmar & Palladium

| ↑ Ø2 (R) | <b>1</b> 03 | A 104 |
|----------|-------------|-------|
| 74.4 s   | 12.6 s      | 43.5  |
| Ø6 (R)   | ▶ Ø7        | ₹Ø8   |
| 74,4 s   | 12.5 s      | 43.1s |

# Lanes, Volumes, Timings 21: Huntmar & Maple Grove

|                         | ٩     | -      | 7    | 1     | +      | 1    | 1      | t     | 1    | 6     | ŧ        | ~    |
|-------------------------|-------|--------|------|-------|--------|------|--------|-------|------|-------|----------|------|
| Lane Group              | EBL   | EBT    | EBR  | WBL   | WBT    | WBR  | NBL    | NBT   | NBR  | SBL   | SBT      | SBR  |
| Lane Configurations     |       | 4      |      |       | 4      |      | 2      | ţ,    |      |       | 4        |      |
| Traffic Volume (vph)    | 130   | 125    | 85   | 185   | 210    | 55   | 125    | 630   | 150  | 60    | 915      | 280  |
| Future Volume (vph)     | 130   | 125    | 85   | 185   | 210    | 55   | 125    | 630   | 150  | 60    | 915      | 280  |
| Confl. Peds. (#/hr)     | 5     |        | 5    | 5     |        | 5    | 5      |       | 5    | 5     |          | 5    |
| Confl. Bikes (#/hr)     |       |        |      |       |        |      |        |       |      |       |          |      |
| Peak Hour Factor        | 1.00  | 1.00   | 1.00 | 1.00  | 1.00   | 1.00 | 1.00   | 1.00  | 1.00 | 1.00  | 1.00     | 1.00 |
| Growth Factor           | 100%  | 100%   | 100% | 100%  | 100%   | 100% | 100%   | 100%  | 100% | 100%  | 100%     | 100% |
| Heavy Vehicles (%)      | 0%    | 1%     | 0%   | 0%    | 0%     | 0%   | 2%     | 1%    | 0%   | 0%    | 1%       | 0%   |
| Bus Blockages (#/hr)    | 0     | 0      | 0    | 0     | 0      | 0    | 0      | 0     | 0    | 0     | 0        | 0    |
| Parking (#/hr)          |       |        |      |       |        |      |        |       |      |       |          |      |
| Mid-Block Traffic (%)   |       | 0%     |      |       | 0%     |      |        | 0%    |      |       | 0%       |      |
| Shared Lane Traffic (%) | )     |        |      |       |        |      |        |       |      |       |          |      |
| Lane Group Flow (vph)   | 0     | 340    | 0    | 0     | 450    | 0    | 125    | 780   | 0    | 0     | 1255     | 0    |
| Turn Type               | Perm  | NA     |      | Perm  | NA     |      | Perm   | NA    |      | Perm  | NA       |      |
| Protected Phases        |       | 4      |      |       | 8      |      |        | 2     |      |       | 6        |      |
| Permitted Phases        | 4     |        |      | 8     |        |      | 2      |       |      | 6     |          |      |
| Detector Phase          | 4     | 4      |      | 8     | 8      |      | 2      | 2     |      | 6     | 6        |      |
| Switch Phase            |       |        |      |       |        |      |        |       |      |       |          |      |
| Minimum Initial (s)     | 10.0  | 10.0   |      | 10.0  | 10.0   |      | 10.0   | 10.0  |      | 10.0  | 10.0     |      |
| Minimum Split (s)       | 33.0  | 33.0   |      | 33.0  | 33.0   |      | 29.0   | 29.0  |      | 49.0  | 49.0     |      |
| Total Split (s)         | 41.0  | 41.0   |      | 41.0  | 41.0   |      | 89.0   | 89.0  |      | 89.0  | 89.0     |      |
| Total Split (%)         | 31.5% | 31.5%  |      | 31.5% | 31.5%  |      | 68.5%  | 68.5% |      | 68.5% | 68.5%    |      |
| Yellow Time (s)         | 3.0   | 3.0    |      | 3.0   | 3.0    |      | 3.3    | 3.3   |      | 3.3   | 3.3      |      |
| All-Red Time (s)        | 2.0   | 2.0    |      | 2.0   | 2.0    |      | 2.0    | 2.0   |      | 2.0   | 2.0      |      |
| Lost Time Adjust (s)    |       | 0.0    |      |       | 0.0    |      | 0.0    | 0.0   |      |       | 0.0      |      |
| Iotal Lost Time (s)     |       | 5.0    |      |       | 5.0    |      | 5.3    | 5.3   |      |       | 5.3      |      |
| Lead/Lag                |       |        |      |       |        |      |        |       |      |       |          |      |
| Lead-Lag Optimize?      |       |        |      |       |        |      | ~ ~ ~  | 0.14  |      | 0.14  | <u> </u> |      |
|                         | None  | None   |      | None  | None   |      | C-Max  | C-Max |      | C-Max | C-Max    |      |
| Act Effect Green (s)    |       | 36.0   |      |       | 36.0   |      | 83.7   | 83.7  |      |       | 83.7     |      |
| Actuated g/C Ratio      |       | 0.28   |      |       | 0.28   |      | 0.64   | 0.64  |      |       | 0.64     |      |
| V/C Ratio               |       | 1.05   |      |       | 1.39   |      | 0.56   | 0.70  |      |       | 1.46     |      |
| Control Delay           |       | 108.2  |      |       | 224.0  |      | 24.6   | 18.8  |      |       | 232.8    |      |
| Queue Delay             |       | 0.0    |      |       | 0.0    |      | 0.0    | 0.0   |      |       | 0.0      |      |
|                         |       | 108.2  |      |       | 224.0  |      | 24.6   | 18.8  |      |       | 232.8    |      |
| LUS<br>Annraach Dalau   |       | 100 0  |      |       | F      |      | U<br>U | 10 G  |      |       | - F      |      |
| Approach LOS            |       | 108.2  |      |       | 224.0  |      |        | 19.6  |      |       | 232.8    |      |
| Approach LOS            |       | 07.0   |      |       | 100 P  |      | 47 5   | 404.0 |      |       | 470 C    |      |
| Queue Length 50th (m)   |       | ~97.3  |      |       | ~100.8 |      | 17.5   | 124.3 |      |       | ~470.0   |      |
| Queue Lengin 95in (m)   |       | #159.9 |      |       | 0.222# |      | 42.2   | 1/2./ |      | m     | 475.0    |      |
| Turp Boy Longth (m)     |       | 030.5  |      |       | 00.3   |      | 20.0   | 295.1 |      |       | 175.1    |      |
| Turn Day Lengin (m)     |       | 202    |      |       | 204    |      | 20.0   | 1115  |      |       | 957      |      |
| Starvation Can Paduate  |       | 323    |      |       | 324    |      | 224    | 6111  |      |       | 007      |      |
| Spillback Con Poducto   |       | 0      |      |       | 0      |      | 0      | 0     |      |       | 0        |      |
| Storage Cap Reducto     |       | 0      |      |       | 0      |      | 0      | 0     |      |       | 0        |      |
| Reduced v/c Potio       |       | 1 05   |      |       | 1 20   |      | 0 56   | 0 70  |      |       | 1 /6     |      |
|                         |       | 1.05   |      |       | 1.59   |      | 0.00   | 0.70  |      |       | 1.40     |      |
| Intersection Summary    |       |        |      |       |        |      |        |       |      |       |          |      |

130 Huntmar Drive 02-06-2020 2029 Future AM Dillon Consulting Limited

Synchro 10 Report Page 7

| Су   | /cle Length: 130                                 |                        |
|------|--------------------------------------------------|------------------------|
| Act  | tuated Cycle Length: 130                         |                        |
| Off  | fset: 0 (0%), Referenced to phase 2:NBTL and 6:S | BTL, Start of Green    |
| Nat  | atural Cycle: 125                                |                        |
| Co   | Introl Type: Actuated-Coordinated                |                        |
| Ma   | aximum v/c Ratio: 1.46                           |                        |
| Inte | ersection Signal Delay: 151.7                    | Intersection LOS: F    |
| Inte | ersection Capacity Utilization 164.9%            | ICU Level of Service H |
| Ana  | alysis Period (min) 15                           |                        |
| ~    | Volume exceeds capacity, queue is theoretically  | infinite.              |
|      | Queue shown is maximum after two cycles.         |                        |
| #    | 95th percentile volume exceeds capacity, queue   | may be longer.         |
|      | Queue shown is maximum after two cycles.         |                        |
| m    | Volume for 95th percentile queue is metered by   | upstream signal.       |

Splits and Phases: 21: Huntmar & Maple Grove

| 39 s   | 41 s |
|--------|------|
| Ø6 (R) | ₩ Ø8 |
| 39 s   | 41s  |

# Lanes, Volumes, Timings 31: Terry Fox & Maple Grove

|                        | ٨     | <b>→</b> | 7     | 1     | •     | *    | 1     | t           | 1    | 1               | ŧ        | ~     |
|------------------------|-------|----------|-------|-------|-------|------|-------|-------------|------|-----------------|----------|-------|
| Lane Group             | EBL   | EBT      | EBR   | WBL   | WBT   | WBR  | NBL   | NBT         | NBR  | SBL             | SBT      | SBR   |
| Lane Configurations    | 1     | 4        | 1     | 1     | 1.    |      | 1     | <b>≜</b> 16 |      | 1               | <b>^</b> | 1     |
| Traffic Volume (vph)   | 195   | 50       | 355   | 20    | 55    | 45   | 215   | 1535        | 50   | 70              | 2030     | 195   |
| Future Volume (vph)    | 195   | 50       | 355   | 20    | 55    | 45   | 215   | 1535        | 50   | 70              | 2030     | 195   |
| Confl. Peds. (#/hr)    | 5     |          | 5     | 5     |       | 5    | 5     |             | 5    | 5               |          | 5     |
| Confl. Bikes (#/hr)    |       |          |       |       |       |      |       |             |      |                 |          |       |
| Peak Hour Factor       | 1.00  | 1.00     | 1.00  | 1.00  | 1.00  | 1.00 | 1.00  | 1.00        | 1.00 | 1.00            | 1.00     | 1.00  |
| Growth Factor          | 100%  | 100%     | 100%  | 100%  | 100%  | 100% | 100%  | 100%        | 100% | 100%            | 100%     | 100%  |
| Heavy Vehicles (%)     | 2%    | 0%       | 1%    | 0%    | 0%    | 0%   | 3%    | 2%          | 0%   | 0%              | 1%       | 3%    |
| Bus Blockages (#/hr)   | 0     | 0        | 0     | 0     | 0     | 0    | 0     | 0           | 0    | 0               | 0        | 0     |
| Parking (#/hr)         |       |          |       |       |       |      |       |             |      |                 |          |       |
| Mid-Block Traffic (%)  |       | 0%       |       |       | 0%    |      |       | 0%          |      |                 | 0%       |       |
| Shared Lane Traffic (% | )     |          |       |       |       |      |       |             |      |                 |          |       |
| Lane Group Flow (vph)  | 195   | 50       | 355   | 20    | 100   | 0    | 215   | 1585        | 0    | 70              | 2030     | 195   |
| Turn Type              | Perm  | NA       | Perm  | Perm  | NA    |      | pm+pt | NA          |      | pm+pt           | NA       | Perm  |
| Protected Phases       |       | 4        |       |       | 8     |      | 5     | 2           |      |                 | 6        |       |
| Permitted Phases       | 4     |          | 4     | 8     |       |      | 2     |             |      | 6               |          | 6     |
| Detector Phase         | 4     | 4        | 4     | 8     | 8     |      | 5     | 2           |      | 1               | 6        | 6     |
| Switch Phase           |       |          |       |       |       |      |       |             |      |                 |          |       |
| Minimum Initial (s)    | 10.0  | 10.0     | 10.0  | 10.0  | 10.0  |      | 5.0   | 10.0        |      | 5.0             | 10.0     | 10.0  |
| Minimum Split (s)      | 42.0  | 42.0     | 42.0  | 42.0  | 42.0  |      | 12.0  | 43.0        |      | 12.0            | 43.0     | 43.0  |
| Total Split (s)        | 46.0  | 46.0     | 46.0  | 46.0  | 46.0  |      | 24.0  | 72.0        |      | 12.0            | 60.0     | 60.0  |
| Total Split (%)        | 35.4% | 35.4%    | 35.4% | 35.4% | 35.4% |      | 18.5% | 55.4%       |      | 9.2%            | 46.2%    | 46.2% |
| Yellow Time (s)        | 3.0   | 3.0      | 3.0   | 3.0   | 3.0   |      | 4.0   | 4.0         |      | 4.0             | 4.0      | 4.0   |
| All-Red Time (s)       | 2.0   | 2.0      | 2.0   | 2.0   | 2.0   |      | 2.0   | 2.0         |      | 2.0             | 2.0      | 2.0   |
| Lost Time Adjust (s)   | 0.0   | 0.0      | 0.0   | 0.0   | 0.0   |      | 0.0   | 0.0         |      | 0.0             | 0.0      | 0.0   |
| Total Lost Time (s)    | 5.0   | 5.0      | 5.0   | 5.0   | 5.0   |      | 6.0   | 6.0         |      | 6.0             | 6.0      | 6.0   |
| Lead/Lag               |       |          |       |       |       |      | Lead  | Lag         |      | Lead            | Lag      | Lag   |
| Lead-Lag Optimize?     |       |          |       |       |       |      | Yes   | Yes         |      | Yes             | Yes      | Yes   |
| Recall Mode            | None  | None     | None  | None  | None  |      | None  | C-Max       |      | None            | C-Max    | C-Max |
| Act Effct Green (s)    | 26.7  | 26.7     | 26.7  | 26.7  | 26.7  |      | 92.3  | 81.2        |      | 77.5            | 70.1     | 70.1  |
| Actuated g/C Ratio     | 0.21  | 0.21     | 0.21  | 0.21  | 0.21  |      | 0.71  | 0.62        |      | 0.60            | 0.54     | 0.54  |
| v/c Ratio              | 0.82  | 0.14     | 0.77  | 0.08  | 0.27  |      | 0.82  | 0.76        |      | 0.36            | 1.11     | 0.23  |
| Control Delay          | 69.1  | 37.7     | 27.9  | 38.3  | 28.4  |      | 58.3  | 23.2        |      | 17.0            | 84.8     | 12.9  |
| Queue Delay            | 0.0   | 0.0      | 0.0   | 0.0   | 0.0   |      | 0.0   | 0.0         |      | 0.0             | 0.0      | 0.0   |
| Total Delay            | 69.1  | 37.7     | 27.9  | 38.3  | 28.4  |      | 58.3  | 23.2        |      | 17.0            | 84.8     | 12.9  |
| LOS                    | E     | D        | С     | D     | С     |      | E     | С           |      | В               | F        | В     |
| Approach Delay         |       | 42.1     |       |       | 30.0  |      |       | 27.4        |      |                 | 76.6     |       |
| Approach LOS           |       | D        |       |       | С     |      |       | С           |      |                 | E        |       |
| Queue Length 50th (m)  | 50.7  | 10.7     | 40.1  | 4.4   | 15.1  |      | 40.8  | 157.2       |      | 5.8             | ~326.4   | 7.9   |
| Queue Length 95th (m)  | m61.4 | m15.6    | m55.3 | 10.7  | 28.5  |      | 70.5  | #262.1      |      | m12. <b>ნ</b> ი | #415.3   | m23.9 |
| Internal Link Dist (m) |       | 1246.0   |       |       | 796.0 |      |       | 547.8       |      |                 | 406.9    |       |
| Turn Bay Length (m)    | 65.0  |          | 60.0  | 40.0  |       |      | 145.0 |             |      | 125.0           |          | 70.0  |
| Base Capacity (vph)    | 367   | 567      | 605   | 409   | 547   |      | 299   | 2083        |      | 193             | 1824     | 831   |
| Starvation Cap Reductr | n 0   | 0        | 0     | 0     | 0     |      | 0     | 0           |      | 0               | 0        | 0     |
| Spillback Cap Reductn  | 0     | 0        | 0     | 0     | 0     |      | 0     | 0           |      | 0               | 0        | 0     |
| Storage Cap Reductn    | 0     | 0        | 0     | 0     | 0     |      | 0     | 0           |      | 0               | 0        | 0     |
| Reduced v/c Ratio      | 0.53  | 0.09     | 0.59  | 0.05  | 0.18  |      | 0.72  | 0.76        |      | 0.36            | 1.11     | 0.23  |
| Intersection Summary   |       |          |       |       |       |      |       |             |      |                 |          |       |

130 Huntmar Drive 02-06-2020 2029 Future AM Dillon Consulting Limited

Synchro 10 Report Page 9

| Су  | /cle Length: 130                                |                          |
|-----|-------------------------------------------------|--------------------------|
| Ac  | tuated Cycle Length: 130                        |                          |
| Of  | fset: 112 (86%), Referenced to phase 2:NBTL and | d 6:SBTL, Start of Green |
| Na  | atural Cycle: 150                               |                          |
| Сс  | ontrol Type: Actuated-Coordinated               |                          |
| Ma  | aximum v/c Ratio: 1.11                          |                          |
| Int | ersection Signal Delay: 52.8                    | Intersection LOS: D      |
| Int | ersection Capacity Utilization 106.0%           | ICU Level of Service G   |
| An  | alysis Period (min) 15                          |                          |
| ~   | Volume exceeds capacity, queue is theoretically | / infinite.              |
|     | Queue shown is maximum after two cycles.        |                          |
| #   | 95th percentile volume exceeds capacity, queue  | e may be longer.         |
|     | Queue shown is maximum after two cycles.        |                          |
| m   | Volume for 05th perceptile queue is metered by  | unatroom aignal          |

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 31: Terry Fox & Maple Grove



Int Delay, s/veh 0.6

| Movement            | WBL      | WBR  | NBT  | NBR  | SBL  | SBT  |
|---------------------|----------|------|------|------|------|------|
| Lane Configuration  | ns 🌱     |      | Þ    |      |      | च    |
| Traffic Vol, veh/h  | 0        | 40   | 820  | 15   | 60   | 1200 |
| Future Vol, veh/h   | 0        | 40   | 820  | 15   | 60   | 1200 |
| Conflicting Peds, # | #/hr 5   | 5    | 0    | 5    | 5    | 0    |
| Sign Control        | Stop     | Stop | Free | Free | Free | Free |
| RT Channelized      | -        | None | -    | None | -    | None |
| Storage Length      | 0        | -    | -    | -    | -    | -    |
| Veh in Median Sto   | orage0,# | # -  | 0    | -    | -    | 0    |
| Grade, %            | 0        | -    | 0    | -    | -    | 0    |
| Peak Hour Factor    | 100      | 100  | 100  | 100  | 100  | 100  |
| Heavy Vehicles, %   | 60       | 0    | 0    | 0    | 0    | 1    |
| Mvmt Flow           | 0        | 40   | 820  | 15   | 60   | 1200 |

| Major/Minor      | Minor1   | Ma  | jor1 | Ma | ajor2 |   |  |
|------------------|----------|-----|------|----|-------|---|--|
| Conflicting Flow | / AI2158 | 838 | 0    | 0  | 840   | 0 |  |
| Stage 1          | 833      | -   | -    | -  | -     | - |  |
| Stage 2          | 1325     | -   | -    | -  | -     | - |  |
| Critical Hdwy    | 6.4      | 6.2 | -    | -  | 4.1   | - |  |
| Critical Hdwy St | tg 1 5.4 | -   | -    | -  | -     | - |  |
| Critical Hdwy St | tg 2 5.4 | -   | -    | -  | -     | - |  |
| Follow-up Hdwy   | / 3.5    | 3.3 | -    | -  | 2.2   | - |  |
| Pot Cap-1 Mane   | euver 53 | 369 | -    | -  | 804   | - |  |
| Stage 1          | 430      | -   | -    | -  | -     | - |  |
| Stage 2          | 251      | -   | -    | -  | -     | - |  |
| Platoon blocked  | l, %     |     | -    | -  |       | - |  |
| Mov Cap-1 Mar    | neuver41 | 366 | -    | -  | 801   | - |  |
| Mov Cap-2 Mar    | neuver41 | -   | -    | -  | -     | - |  |
| Stage 1          | 428      | -   | -    | -  | -     | - |  |
| Stage 2          | 194      | -   | -    | -  | -     | - |  |
|                  |          |     |      |    |       |   |  |
|                  |          |     |      |    |       |   |  |

| Approach    | WB         | NB | SB  |  |
|-------------|------------|----|-----|--|
| HCM Control | Delay, s16 | 0  | 0.5 |  |
| HCM LOS     | С          |    |     |  |

| Minor Lane/Major Mvmt | NBT | NBR | /BLn1 | SBL   | SBT |
|-----------------------|-----|-----|-------|-------|-----|
| Capacity (veh/h)      | -   | -   | 366   | 801   | -   |
| HCM Lane V/C Ratio    | -   | -   | 0.109 | 0.075 | -   |
| HCM Control Delay (s) | -   | -   | 16    | 9.9   | 0   |
| HCM Lane LOS          | -   | -   | С     | А     | А   |
| HCM 95th %tile Q(veh) | -   | -   | 0.4   | 0.2   | -   |

| 03-12-2020 | ) |
|------------|---|
|------------|---|

| Intersection        |         |      |      |      |      |      |
|---------------------|---------|------|------|------|------|------|
| Int Delay, s/veh    | 1.6     |      |      |      |      |      |
|                     |         |      |      |      |      | ~~~  |
| Movement            | WBL     | WBR  | NBT  | NBR  | SBL  | SBT  |
| Lane Configuration  | ns 🏹    |      | Þ    |      |      | 4    |
| Traffic Vol, veh/h  | 15      | 30   | 830  | 25   | 45   | 1240 |
| Future Vol, veh/h   | 15      | 30   | 830  | 25   | 45   | 1240 |
| Conflicting Peds, # | #/hr 5  | 5    | 0    | 5    | 5    | 0    |
| Sign Control        | Stop    | Stop | Free | Free | Free | Free |
| RT Channelized      | -       | None | -    | None | -    | None |
| Storage Length      | 0       | -    | -    | -    | -    | -    |
| Veh in Median Sto   | rage0 a | # -  | 0    | -    | -    | 0    |
| Grade, %            | Ő       | -    | 0    | -    | -    | 0    |
| Peak Hour Factor    | 100     | 100  | 100  | 100  | 100  | 100  |
| Heavy Vehicles. %   | 6 0     | 0    | 0    | 0    | 0    | 1    |
| Mymt Flow           | 15      | 30   | 830  | 25   | 45   | 1240 |
|                     |         |      | 200  |      |      |      |

| Major/Minor      | Minor1    | Ma  | ajor1 | Ma | ajor2 |   |  |  |  |
|------------------|-----------|-----|-------|----|-------|---|--|--|--|
| Conflicting Flow | / AII2183 | 853 | 0     | 0  | 860   | 0 |  |  |  |
| Stage 1          | 848       | -   | -     | -  | -     | - |  |  |  |
| Stage 2          | 1335      | -   | -     | -  | -     | - |  |  |  |
| Critical Hdwy    | 6.4       | 6.2 | -     | -  | 4.1   | - |  |  |  |
| Critical Hdwy St | ig 1 5.4  | -   | -     | -  | -     | - |  |  |  |
| Critical Hdwy St | ig 2 5.4  | -   | -     | -  | -     | - |  |  |  |
| Follow-up Hdwy   | 3.5       | 3.3 | -     | -  | 2.2   | - |  |  |  |
| Pot Cap-1 Mane   | euver 51  | 362 | -     | -  | 790   | - |  |  |  |
| Stage 1          | 423       | -   | -     | -  | -     | - |  |  |  |
| Stage 2          | 248       | -   | -     | -  | -     | - |  |  |  |
| Platoon blocked  | I, %      |     | -     | -  |       | - |  |  |  |
| Mov Cap-1 Man    | neuver41  | 359 | -     | -  | 787   | - |  |  |  |
| Mov Cap-2 Man    | neuver41  | -   | -     | -  | -     | - |  |  |  |
| Stage 1          | 421       | -   | -     | -  | -     | - |  |  |  |
| Stage 2          | 202       | -   | -     | -  | -     | - |  |  |  |
|                  |           |     |       |    |       |   |  |  |  |
| Annesach         |           |     |       |    | CD    |   |  |  |  |

| Approach         | WB             | NB | SB  |  |  |
|------------------|----------------|----|-----|--|--|
| HCM Control Dela | y6 <b></b> ₹.6 | 0  | 0.3 |  |  |
| HCMLOS           | F              |    |     |  |  |

| Minor Lane/Major Mvmt | NBT | NB₩ | BLn1  | SBL   | SBT |  |
|-----------------------|-----|-----|-------|-------|-----|--|
| Capacity (veh/h)      | -   | -   | 100   | 787   | -   |  |
| HCM Lane V/C Ratio    | -   | -   | 0.450 | ).057 | -   |  |
| HCM Control Delay (s) | -   | -   | 67.6  | 9.9   | 0   |  |
| HCM Lane LOS          | -   | -   | F     | А     | А   |  |
| HCM 95th %tile Q(veh) | -   | -   | 1.9   | 0.2   | -   |  |

| 03-12-20 | 20 |
|----------|----|
|----------|----|

| Intersection       |     |                    |            |      |      |          |      |
|--------------------|-----|--------------------|------------|------|------|----------|------|
| Int Delay, s/veh   |     | 1.6                |            |      |      |          |      |
| Movement           |     | FBI                | FBT        | WBT  | WBR  | SBI      | SBR  |
| Lene Cenfinumeti   |     |                    |            |      |      |          | 0011 |
| Lane Configuration | on  | s                  | - 4        |      |      | <b>Υ</b> |      |
| Traffic Vol, veh/h | ۱   | 30                 | 310        | 420  | 70   | 30       | 55   |
| Future Vol, veh/h  | ۱   | 30                 | 310        | 420  | 70   | 30       | 55   |
| Conflicting Peds,  | #/  | hr 5               | 0          | 0    | 5    | 5        | 5    |
| Sign Control       |     | Free               | Free       | Free | Free | Stop     | Stop |
| RT Channelized     |     | -                  | None       | -    | None | -        | None |
| Storage Length     |     | -                  | -          | -    | -    | 0        | -    |
| Veh in Median St   | tor | age <del>,</del> ‡ | <b>#</b> 0 | 0    | -    | 0        | -    |
| Grade, %           |     | -                  | 0          | 0    | -    | 0        | -    |
| Peak Hour Facto    | r   | 100                | 100        | 100  | 100  | 100      | 100  |
| Heavy Vehicles,    | %   | 0                  | 0          | 3    | 0    | 0        | 0    |
| Mvmt Flow          |     | 30                 | 310        | 420  | 70   | 30       | 55   |

| Major/Minor Maj      | jor1        | М    | ajor2 | Μ   | inor2  |      |  |
|----------------------|-------------|------|-------|-----|--------|------|--|
| Conflicting Flow All | 495         | 0    | -     | 0   | 835    | 465  |  |
| Stage 1              | -           | -    | -     | -   | 460    | -    |  |
| Stage 2              | -           | -    | -     | -   | 375    | -    |  |
| Critical Hdwy        | 4.1         | -    | -     | -   | 6.4    | 6.2  |  |
| Critical Hdwy Stg 1  | -           | -    | -     | -   | 5.4    | -    |  |
| Critical Hdwy Stg 2  | -           | -    | -     | -   | 5.4    | -    |  |
| Follow-up Hdwy       | 2.2         | -    | -     | -   | 3.5    | 3.3  |  |
| Pot Cap-1 Maneuve    | 079         | -    | -     | -   | 340    | 602  |  |
| Stage 1              | -           | -    | -     | -   | 640    | -    |  |
| Stage 2              | -           | -    | -     | -   | 699    | -    |  |
| Platoon blocked, %   |             | -    | -     | -   |        |      |  |
| Mov Cap-1 Maneuvle   | <b>0</b> 74 | -    | -     | -   | 326    | 597  |  |
| Mov Cap-2 Maneuve    | er -        | -    | -     | -   | 326    | -    |  |
| Stage 1              | -           | -    | -     | -   | 616    | -    |  |
| Stage 2              | -           | -    | -     | -   | 696    | -    |  |
|                      |             |      |       |     |        |      |  |
| Approach             | EB          |      | WB    |     | SB     |      |  |
| HCM Control Delay    | 87          |      | 0     |     | 14.5   |      |  |
| HCM LOS              | <b>Q</b> .1 |      | Ū     |     | е<br>В |      |  |
|                      |             |      |       |     |        |      |  |
| Minor Lane/Maior M   | vmt         | EBL  | EBT   | WBT | WBRS   | BLn1 |  |
| Capacity (veh/h)     |             | 1074 | -     | -   | -      | 462  |  |

| •••••••••••••••••••••••••••••••••••••• |       |   |   |        |  |
|----------------------------------------|-------|---|---|--------|--|
| HCM Lane V/C Ratio                     | 0.028 | - | - | -0.184 |  |
| HCM Control Delay (s)                  | 8.4   | 0 | - | - 14.5 |  |
| HCM Lane LOS                           | А     | А | - | - B    |  |
| HCM 95th %tile Q(veh)                  | 0.1   | - | - | - 0.7  |  |

Int Delay, s/veh 0.6

|                     |                      | -DT        | WDT  |      | 0.01 | 000  |
|---------------------|----------------------|------------|------|------|------|------|
| Movement            | EBL                  | FRI        | WBI  | WBR  | SBL  | SBR  |
| Lane Configuration  | ns                   | - च        | 4    |      | ۰Y   |      |
| Traffic Vol, veh/h  | 5                    | 320        | 445  | 25   | 20   | 15   |
| Future Vol, veh/h   | 5                    | 320        | 445  | 25   | 20   | 15   |
| Conflicting Peds, # | #/hr 5               | 0          | 0    | 5    | 5    | 5    |
| Sign Control        | Free                 | Free       | Free | Free | Stop | Stop |
| RT Channelized      | -                    | None       | -    | None | -    | None |
| Storage Length      | -                    | -          | -    | -    | 0    | -    |
| Veh in Median Sto   | orage <del>,</del> ‡ | <b>#</b> 0 | 0    | -    | 0    | -    |
| Grade, %            | -                    | 0          | 0    | -    | 0    | -    |
| Peak Hour Factor    | 100                  | 100        | 100  | 100  | 100  | 100  |
| Heavy Vehicles, %   | ώ Ο                  | 0          | 3    | 0    | 0    | 0    |
| Mvmt Flow           | 5                    | 320        | 445  | 25   | 20   | 15   |

| Major/Minor      | Major1            | Μ    | lajor2 | Μ     | inor2 |      |  |
|------------------|-------------------|------|--------|-------|-------|------|--|
| Conflicting Flow | All 475           | 0    | -      | 0     | 798   | 468  |  |
| Stage 1          | -                 | -    | -      | -     | 463   | -    |  |
| Stage 2          | -                 | -    | -      | -     | 335   | -    |  |
| Critical Hdwy    | 4.1               | -    | -      | -     | 6.4   | 6.2  |  |
| Critical Hdwy St | g1 -              | -    | -      | -     | 5.4   | -    |  |
| Critical Hdwy St | g2 -              | -    | -      | -     | 5.4   | -    |  |
| Follow-up Hdwy   | 2.2               | -    | -      | -     | 3.5   | 3.3  |  |
| Pot Cap-1 Mane   | euv <b>e</b> 098  | -    | -      | -     | 358   | 599  |  |
| Stage 1          | -                 | -    | -      | -     | 638   | -    |  |
| Stage 2          | -                 | -    | -      | -     | 729   | -    |  |
| Platoon blocked  | , %               | -    | -      | -     |       |      |  |
| Mov Cap-1 Man    | euv <b>1@</b> 193 | -    | -      | -     | 353   | 594  |  |
| Mov Cap-2 Man    | euver -           | -    | -      | -     | 353   | -    |  |
| Stage 1          | -                 | -    | -      | -     | 632   | -    |  |
| Stage 2          | -                 | -    | -      | -     | 726   | -    |  |
|                  |                   |      |        |       |       |      |  |
| Approach         | EB                |      | WB     |       | SB    |      |  |
| HCM Control De   | elay, <b>9</b> .1 |      | 0      |       | 14.2  |      |  |
| HCM LOS          |                   |      |        |       | В     |      |  |
|                  |                   |      |        |       |       |      |  |
| Minor Lane/Majo  | or Mvmt           | EBL  | EBT V  | VBT \ | WBRS  | BLn1 |  |
| Capacity (veh/h) | )                 | 1093 | -      | -     | -     | 427  |  |
|                  |                   |      |        |       |       |      |  |

| HCM Lane V/C Ratio    | 0.005 | - | - | -0.082 |  |
|-----------------------|-------|---|---|--------|--|
| HCM Control Delay (s) | 8.3   | 0 | - | - 14.2 |  |
| HCM Lane LOS          | А     | А | - | - B    |  |
| HCM 95th %tile Q(veh) | 0     | - | - | - 0.3  |  |

0

### 03-12-2020

# Intersection

Int Delay, s/veh

| Movement            | FRI                  | FRT   | W/RT | W/BR | SBI  | SBR  |
|---------------------|----------------------|-------|------|------|------|------|
| Movement            | LDL                  | LDI   | VVDI | NDK  | ODL  | JDK  |
| Lane Configuration  | ns                   | ୍ - ଶ | - îs |      | ۰Y   |      |
| Traffic Vol, veh/h  | 0                    | 335   | 475  | 0    | 0    | 0    |
| Future Vol, veh/h   | 0                    | 335   | 475  | 0    | 0    | 0    |
| Conflicting Peds, # | #/hr 5               | 0     | 0    | 5    | 5    | 5    |
| Sign Control        | Free                 | Free  | Free | Free | Stop | Stop |
| RT Channelized      | -                    | None  | -    | None | -    | None |
| Storage Length      | -                    | -     | -    | -    | 0    | -    |
| Veh in Median Sto   | orage <del>,</del> a | # 0   | 0    | -    | 0    | -    |
| Grade, %            | -                    | 0     | 0    | -    | 0    | -    |
| Peak Hour Factor    | 100                  | 100   | 100  | 100  | 100  | 100  |
| Heavy Vehicles, %   | 60                   | 0     | 2    | 0    | 0    | 0    |
| Mvmt Flow           | 0                    | 335   | 475  | 0    | 0    | 0    |

| Major/Minor      | Major1                                  | Μ    | lajor2 | N   | linor2 |      |
|------------------|-----------------------------------------|------|--------|-----|--------|------|
| Conflicting Flow | / All 480                               | 0    | -      | 0   | 820    | 485  |
| Stage 1          | -                                       | -    | -      | -   | 480    | -    |
| Stage 2          | -                                       | -    | -      | -   | 340    | -    |
| Critical Hdwy    | 4.1                                     | -    | -      | -   | 6.4    | 6.2  |
| Critical Hdwy St | ig 1 -                                  | -    | -      | -   | 5.4    | -    |
| Critical Hdwy St | ig 2 -                                  | -    | -      | -   | 5.4    | -    |
| Follow-up Hdwy   | 2.2                                     | -    | -      | -   | 3.5    | 3.3  |
| Pot Cap-1 Mane   | euv <b>e</b> 093                        | -    | -      | -   | 347    | 586  |
| Stage 1          | -                                       | -    | -      | -   | 627    | -    |
| Stage 2          | -                                       | -    | -      | -   | 725    | -    |
| Platoon blocked  | I, %                                    | -    | -      | -   |        |      |
| Mov Cap-1 Man    | 1001 100 100 100 100 100 100 100 100 10 | -    | -      | -   | 344    | 581  |
| Mov Cap-2 Man    | neuver -                                | -    | -      | -   | 344    | -    |
| Stage 1          | -                                       | -    | -      | -   | 624    | -    |
| Stage 2          | -                                       | -    | -      | -   | 722    | -    |
|                  |                                         |      |        |     |        |      |
| Approach         | EB                                      |      | WB     |     | SB     |      |
| HCM Control De   | =                                       |      | 0      |     | 0      |      |
| HCMLOS           |                                         |      | 0      |     | A      |      |
|                  |                                         |      |        |     | , (    |      |
|                  |                                         |      |        |     |        |      |
| Minor Lane/Majo  | or Mvmt                                 | EBĹ  | EBT    | WBT | WBRS   | BLn1 |
| Capacity (veh/h  | )                                       | 1088 | -      | -   | -      | -    |
| HCM Lane V/C     | Ratio                                   | -    | -      | -   | -      | -    |

| - | -                | -                     | -               | -               |               |
|---|------------------|-----------------------|-----------------|-----------------|---------------|
| 0 | -                | -                     | -               | 0               |               |
| А | -                | -                     | -               | А               |               |
| 0 | -                | -                     | -               | -               |               |
|   | -<br>0<br>A<br>0 | <br>0 -<br>A -<br>0 - | <br>0<br>A<br>0 | <br>0<br>A<br>0 | 0<br>A A<br>0 |

Int Delay, s/veh 0.1

| Movement            | WBL     | WBR  | NBT  | NBR  | SBL  | SBT  |
|---------------------|---------|------|------|------|------|------|
| Lane Configuration  | าร      | 7    | 4    |      |      | 1    |
| Traffic Vol, veh/h  | 0       | 20   | 815  | 15   | 0    | 1200 |
| Future Vol, veh/h   | 0       | 20   | 815  | 15   | 0    | 1200 |
| Conflicting Peds, # | #/hr 5  | 5    | 0    | 5    | 5    | 0    |
| Sign Control        | Stop    | Stop | Free | Free | Free | Free |
| RT Channelized      | -       | None | -    | None | -    | None |
| Storage Length      | -       | 0    | -    | -    | -    | -    |
| Veh in Median Sto   | rage0,# | # -  | 0    | -    | -    | 0    |
| Grade, %            | 0       | -    | 0    | -    | -    | 0    |
| Peak Hour Factor    | 100     | 100  | 100  | 100  | 100  | 100  |
| Heavy Vehicles, %   | 6 0     | 0    | 0    | 0    | 0    | 1    |
| Mvmt Flow           | 0       | 20   | 815  | 15   | 0    | 1200 |

| Major/Minor       | Mino       | r1  | Ma  | ajor1 | Maj | or2 |   |  |
|-------------------|------------|-----|-----|-------|-----|-----|---|--|
| Conflicting Flow  | All        | -   | 833 | 0     | 0   | -   | - |  |
| Stage 1           |            | -   | -   | -     | -   | -   | - |  |
| Stage 2           |            | -   | -   | -     | -   | -   | - |  |
| Critical Hdwy     |            | -   | 6.2 | -     | -   | -   | - |  |
| Critical Hdwy Stg | g 1        | -   | -   | -     | -   | -   | - |  |
| Critical Hdwy Stg | <u>j</u> 2 | -   | -   | -     | -   | -   | - |  |
| Follow-up Hdwy    |            | -   | 3.3 | -     | -   | -   | - |  |
| Pot Cap-1 Maneu   | uver       | 0   | 372 | -     | -   | 0   | - |  |
| Stage 1           |            | 0   | -   | -     | -   | 0   | - |  |
| Stage 2           |            | 0   | -   | -     | -   | 0   | - |  |
| Platoon blocked,  | %          |     |     | -     | -   |     | - |  |
| Mov Cap-1 Mane    | euver      | · - | 369 | -     | -   | -   | - |  |
| Mov Cap-2 Mane    | euver      | · - | -   | -     | -   | -   | - |  |
| Stage 1           |            | -   | -   | -     | -   | -   | - |  |
| Stage 2           |            | -   | -   | -     | -   | -   | - |  |
|                   |            |     |     |       |     |     |   |  |
|                   |            |     |     |       |     |     |   |  |

| Approach         | WB              | NB | SB |  |  |
|------------------|-----------------|----|----|--|--|
| HCM Control Dela | y,1 <b>5</b> .3 | 0  | 0  |  |  |
| HCMLOS           | С               |    |    |  |  |

| Minor Lane/Major Mvmt | NBT | NBR/BLn1 | SBT |
|-----------------------|-----|----------|-----|
| Capacity (veh/h)      | -   | - 369    | -   |
| HCM Lane V/C Ratio    | -   | -0.054   | -   |
| HCM Control Delay (s) | -   | - 15.3   | -   |
| HCM Lane LOS          | -   | - C      | -   |
| HCM 95th %tile Q(veh) | -   | - 0.2    | -   |

|--|

| Intersection                                                                                                                                                                                                                                          |                                                                                         |                                                                                         |       |                                                                                               |   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------|-----------------------------------------------------------------------------------------------|---|
| Intersection Delay, s/vel                                                                                                                                                                                                                             | h 2.9                                                                                   |                                                                                         |       |                                                                                               |   |
| Intersection LOS                                                                                                                                                                                                                                      | А                                                                                       |                                                                                         |       |                                                                                               |   |
| Approach                                                                                                                                                                                                                                              |                                                                                         | EB                                                                                      | NB    | SE                                                                                            | 3 |
| Entry Lanes                                                                                                                                                                                                                                           |                                                                                         | 1                                                                                       | 1     |                                                                                               | 1 |
| Conflicting Circle Lanes                                                                                                                                                                                                                              | ;                                                                                       | 1                                                                                       | 1     |                                                                                               | 1 |
| Adj Approach Flow, veh                                                                                                                                                                                                                                | ı/h                                                                                     | 30                                                                                      | 40    | 50                                                                                            | 0 |
| Demand Flow Rate, veh                                                                                                                                                                                                                                 | ו/h                                                                                     | 30                                                                                      | 40    | 50                                                                                            | ) |
| Vehicles Circulating, ve                                                                                                                                                                                                                              | h/h                                                                                     | 30                                                                                      | 30    | (                                                                                             | ) |
| Vehicles Exiting, veh/h                                                                                                                                                                                                                               |                                                                                         | 20                                                                                      | 30    | 70                                                                                            | ) |
| Ped Vol Crossing Leg, #                                                                                                                                                                                                                               | #/h                                                                                     | 5                                                                                       | 5     | Į                                                                                             | 5 |
| Ped Cap Adj                                                                                                                                                                                                                                           | 0                                                                                       | .999                                                                                    | 0.999 | 0.999                                                                                         | 9 |
| Approach Delay, s/veh                                                                                                                                                                                                                                 |                                                                                         | 2.9                                                                                     | 2.9   | 2.9                                                                                           | 9 |
| Approach LOS                                                                                                                                                                                                                                          |                                                                                         | А                                                                                       | А     | ŀ                                                                                             | ł |
| Lane                                                                                                                                                                                                                                                  | Left                                                                                    | Left                                                                                    |       | Left                                                                                          |   |
| Designated Moves                                                                                                                                                                                                                                      | IR                                                                                      | 1 T                                                                                     |       | тр                                                                                            |   |
|                                                                                                                                                                                                                                                       | <b>L</b> I (                                                                            | L I                                                                                     |       | IR                                                                                            |   |
| Assumed Moves                                                                                                                                                                                                                                         | LR                                                                                      | LT                                                                                      |       | TR                                                                                            |   |
| Assumed Moves<br>RT Channelized                                                                                                                                                                                                                       | LR                                                                                      | LT                                                                                      |       | TR                                                                                            |   |
| Assumed Moves<br>RT Channelized<br>Lane Util                                                                                                                                                                                                          | LR<br>1.000                                                                             | LT<br>1.000                                                                             |       | 1.000                                                                                         |   |
| Assumed Moves<br>RT Channelized<br>Lane Util<br>Follow-Up Headway, s                                                                                                                                                                                  | LR<br>1.000<br>2.609                                                                    | LT<br>1.000<br>2.609                                                                    |       | 1.000<br>2.609                                                                                |   |
| Assumed Moves<br>RT Channelized<br>Lane Util<br>Follow-Up Headway, s<br>Critical Headway, s                                                                                                                                                           | LR<br>1.000<br>2.609<br>4.976                                                           | LT<br>1.000<br>2.609<br>4.976                                                           |       | 1.000<br>2.609<br>4.976                                                                       |   |
| Assumed Moves<br>RT Channelized<br>Lane Util<br>Follow-Up Headway, s<br>Critical Headway, s<br>Entry Flow, veh/h                                                                                                                                      | LR<br>1.000<br>2.609<br>4.976<br>30                                                     | LT<br>1.000<br>2.609<br>4.976<br>40                                                     |       | 1.000<br>2.609<br>4.976<br>50                                                                 |   |
| Assumed Moves<br>RT Channelized<br>Lane Util<br>Follow-Up Headway, s<br>Critical Headway, s<br>Entry Flow, veh/h<br>Cap Entry Lane, veh/h                                                                                                             | LR<br>1.000<br>2.609<br>4.976<br>30<br>1338                                             | LT<br>1.000<br>2.609<br>4.976<br>40<br>1338                                             |       | 1.000<br>2.609<br>4.976<br>50<br>1380                                                         |   |
| Assumed Moves<br>RT Channelized<br>Lane Util<br>Follow-Up Headway, s<br>Critical Headway, s<br>Entry Flow, veh/h<br>Cap Entry Lane, veh/h<br>Entry HV Adj Factor                                                                                      | LR<br>1.000<br>2.609<br>4.976<br>30<br>1338<br>1.000                                    | LT<br>1.000<br>2.609<br>4.976<br>40<br>1338<br>1.000                                    |       | 1.000<br>2.609<br>4.976<br>50<br>1380<br>1.000                                                |   |
| Assumed Moves<br>RT Channelized<br>Lane Util<br>Follow-Up Headway, s<br>Critical Headway, s<br>Entry Flow, veh/h<br>Cap Entry Lane, veh/h<br>Entry HV Adj Factor<br>Flow Entry, veh/h                                                                 | LR<br>1.000<br>2.609<br>4.976<br>30<br>1338<br>1.000<br>30                              | LT<br>1.000<br>2.609<br>4.976<br>40<br>1338<br>1.000<br>40                              |       | 1.000<br>2.609<br>4.976<br>50<br>1380<br>1.000<br>50                                          |   |
| Assumed Moves<br>RT Channelized<br>Lane Util<br>Follow-Up Headway, s<br>Critical Headway, s<br>Entry Flow, veh/h<br>Cap Entry Lane, veh/h<br>Entry HV Adj Factor<br>Flow Entry, veh/h<br>Cap Entry, veh/h                                             | LR<br>1.000<br>2.609<br>4.976<br>30<br>1338<br>1.000<br>30<br>1337                      | LT<br>1.000<br>2.609<br>4.976<br>40<br>1338<br>1.000<br>40<br>1337                      |       | 1.000<br>2.609<br>4.976<br>50<br>1380<br>1.000<br>50<br>1379                                  |   |
| Assumed Moves<br>RT Channelized<br>Lane Util<br>Follow-Up Headway, s<br>Critical Headway, s<br>Entry Flow, veh/h<br>Cap Entry Lane, veh/h<br>Entry HV Adj Factor<br>Flow Entry, veh/h<br>Cap Entry, veh/h<br>V/C Ratio                                | LR<br>1.000<br>2.609<br>4.976<br>30<br>1338<br>1.000<br>30<br>1337<br>0.022             | LT<br>1.000<br>2.609<br>4.976<br>40<br>1338<br>1.000<br>40<br>1337<br>0.030             |       | 1.000<br>2.609<br>4.976<br>50<br>1380<br>1.000<br>50<br>1379<br>0.036                         |   |
| Assumed Moves<br>RT Channelized<br>Lane Util<br>Follow-Up Headway, s<br>Critical Headway, s<br>Entry Flow, veh/h<br>Cap Entry Lane, veh/h<br>Entry HV Adj Factor<br>Flow Entry, veh/h<br>Cap Entry, veh/h<br>V/C Ratio<br>Control Delay, s/veh        | LR<br>1.000<br>2.609<br>4.976<br>30<br>1338<br>1.000<br>30<br>1337<br>0.022<br>2.9      | LT<br>1.000<br>2.609<br>4.976<br>40<br>1338<br>1.000<br>40<br>1337<br>0.030<br>2.9      |       | 1R<br>TR<br>1.000<br>2.609<br>4.976<br>50<br>1380<br>1.000<br>50<br>1379<br>0.036<br>2.9      |   |
| Assumed Moves<br>RT Channelized<br>Lane Util<br>Follow-Up Headway, s<br>Critical Headway, s<br>Entry Flow, veh/h<br>Cap Entry Lane, veh/h<br>Entry HV Adj Factor<br>Flow Entry, veh/h<br>Cap Entry, veh/h<br>V/C Ratio<br>Control Delay, s/veh<br>LOS | LR<br>1.000<br>2.609<br>4.976<br>30<br>1338<br>1.000<br>30<br>1337<br>0.022<br>2.9<br>A | LT<br>1.000<br>2.609<br>4.976<br>40<br>1338<br>1.000<br>40<br>1337<br>0.030<br>2.9<br>A |       | 1R<br>TR<br>1.000<br>2.609<br>4.976<br>50<br>1380<br>1.000<br>50<br>1379<br>0.036<br>2.9<br>A |   |

| Intersection             |        |       |       |       |       |       |       |  |
|--------------------------|--------|-------|-------|-------|-------|-------|-------|--|
| Intersection Delay s/ve  | h 14 7 |       |       |       |       |       |       |  |
| Intersection LOS         | R      |       |       |       |       |       |       |  |
|                          | U      |       |       |       |       |       |       |  |
| Approach                 |        | EB    |       | WB    |       | NB    | SB    |  |
| Entry Lanes              |        | 1     |       | 1     |       | 1     | 1     |  |
| Conflicting Circle Lanes | 5      | 1     |       | 1     |       | 1     | 1     |  |
| Adj Approach Flow, veh   | ı/h    | 55    |       | 85    |       | 750   | 985   |  |
| Demand Flow Rate, veh    | n/h    | 58    |       | 86    |       | 757   | 996   |  |
| Vehicles Circulating, ve | h/h    | 1040  |       | 747   |       | 136   |       |  |
| Vehicles Exiting, veh/h  |        | 91    |       | 42    |       | 1066  | 697   |  |
| Ped Vol Crossing Leg, #  | #/h    | 5     |       | 5     |       | 5     | 5     |  |
| Ped Cap Adj              |        | 1.000 |       | 0.999 | (     | 0.999 | 0.999 |  |
| Approach Delay, s/veh    |        | 9.7   |       | 7.2   |       | 9.1   | 19.9  |  |
| Approach LOS             |        | Α     |       | А     |       | Α     | C     |  |
| Lane                     | Left   |       | Left  |       | Left  |       | Left  |  |
| Designated Moves         | LTR    |       | LTR   |       | LTR   |       | LTR   |  |
| Assumed Moves            | LTR    |       | LTR   |       | LTR   |       | LTR   |  |
| RT Channelized           |        |       |       |       |       |       |       |  |
| Lane Util                | 1.000  |       | 1.000 |       | 1.000 |       | 1.000 |  |
| Follow-Up Headway, s     | 2.609  |       | 2.609 |       | 2.609 |       | 2.609 |  |
| Critical Headway, s      | 4.976  |       | 4.976 |       | 4.976 |       | 4.976 |  |
| Entry Flow, veh/h        | 58     |       | 86    |       | 757   |       | 996   |  |
| Cap Entry Lane, veh/h    | 478    |       | 644   |       | 1336  |       | 1201  |  |
| Entry HV Adj Factor      | 0.944  |       | 0.988 |       | 0.991 |       | 0.989 |  |
| Flow Entry, veh/h        | 55     |       | 85    |       | 750   |       | 985   |  |
| Cap Entry, veh/h         | 451    |       | 636   |       | 1323  |       | 1188  |  |
| V/C Ratio                | 0.121  |       | 0.134 |       | 0.567 |       | 0.830 |  |
| Control Delay, s/veh     | 9.7    |       | 7.2   |       | 9.1   |       | 19.9  |  |
| LOS                      | А      |       | А     |       | А     |       | С     |  |
| 95th %tile Queue, veh    | 0      |       | 0     |       | 4     |       | 10    |  |

| Intersection              |     |  |
|---------------------------|-----|--|
| Intersection Delay, s/veh | 7.3 |  |
| Intersection LOS          | Α   |  |

| Movement                 | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
|--------------------------|------|------|------|------|------|------|------|------|------|------|------|------|
| Lane Configurations      |      | \$   |      |      | 4    |      |      | 4    |      |      | 4    |      |
| Traffic Vol, veh/h       | 40   | 30   | 5    | 0    | 20   | 0    | 0    | 30   | 0    | 0    | 30   | 20   |
| Future Vol, veh/h        | 40   | 30   | 5    | 0    | 20   | 0    | 0    | 30   | 0    | 0    | 30   | 20   |
| Peak Hour Factor         | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Heavy Vehicles, %        | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| Mvmt Flow                | 40   | 30   | 5    | 0    | 20   | 0    | 0    | 30   | 0    | 0    | 30   | 20   |
| Number of Lanes          | 0    | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    |
| Approach                 | EB   |      |      |      | WB   |      |      | NB   |      |      | SB   |      |
| Opposing Approach        | WB   |      |      |      | EB   |      |      | SB   |      |      | NB   |      |
| Opposing Lanes           | 1    |      |      |      | 1    |      |      | 1    |      |      | 1    |      |
| Conflicting Approach Lef | t SB |      |      |      | NB   |      |      | EB   |      |      | WB   |      |
| Conflicting Lanes Left   | 1    |      |      |      | 1    |      |      | 1    |      |      | 1    |      |
| Conflicting Approach Rig | htNB |      |      |      | SB   |      |      | WB   |      |      | EB   |      |
| Conflicting Lanes Right  | 1    |      |      |      | 1    |      |      | 1    |      |      | 1    |      |
| HCM Control Delay        | 7.5  |      |      |      | 7.2  |      |      | 7.3  |      |      | 7.1  |      |
| HCM LOS                  | А    |      |      |      | А    |      |      | А    |      |      | А    |      |

| Lane                   | NBLn1 | EBLn1V | VBLn1 | SBLn1 |  |
|------------------------|-------|--------|-------|-------|--|
| Vol Left, %            | 0%    | 53%    | 0%    | 0%    |  |
| Vol Thru, %            | 100%  | 40%    | 100%  | 60%   |  |
| Vol Right, %           | 0%    | 7%     | 0%    | 40%   |  |
| Sign Control           | Stop  | Stop   | Stop  | Stop  |  |
| Traffic Vol by Lane    | 30    | 75     | 20    | 50    |  |
| LT Vol                 | 0     | 40     | 0     | 0     |  |
| Through Vol            | 30    | 30     | 20    | 30    |  |
| RT Vol                 | 0     | 5      | 0     | 20    |  |
| Lane Flow Rate         | 30    | 75     | 20    | 50    |  |
| Geometry Grp           | 1     | 1      | 1     | 1     |  |
| Degree of Util (X)     | 0.034 | 0.086  | 0.023 | 0.053 |  |
| Departure Headway (Hd) | 4.104 | 4.121  | 4.096 | 3.849 |  |
| Convergence, Y/N       | Yes   | Yes    | Yes   | Yes   |  |
| Сар                    | 866   | 867    | 869   | 924   |  |
| Service Time           | 2.159 | 2.156  | 2.144 | 1.902 |  |
| HCM Lane V/C Ratio     | 0.035 | 0.087  | 0.023 | 0.054 |  |
| HCM Control Delay      | 7.3   | 7.5    | 7.2   | 7.1   |  |
| HCM Lane LOS           | А     | А      | А     | А     |  |
| HCM 95th-tile Q        | 0.1   | 0.3    | 0.1   | 0.2   |  |

# **Appendix B**

Signal Warrant Analysis



Urbandale Construction Ltd. 130 Huntmar DriveTransportation Impact Assessment (TIA) March 2020 – 19-1698

|                                                                                                                  | ta Sheet                                               |                                                                                                     |                                                                                                                             | Analysis                               | Sheet                                   | Results S                                  | Sheet                                                                                                | Proposed                                                                         | d Collisior                   | ы до то                                                                     | ) Justificati     | on:                                                           |                                      |
|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-----------------------------------------|--------------------------------------------|------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------|-----------------------------------------------------------------------------|-------------------|---------------------------------------------------------------|--------------------------------------|
| Nhat are the in                                                                                                  | ntersecting roa                                        | adways?                                                                                             | Hu                                                                                                                          | untmar Drive                           | and EW R                                | oad 1                                      |                                                                                                      |                                                                                  |                               |                                                                             |                   |                                                               | -                                    |
| What is the dire                                                                                                 | ection of the N                                        | 1ain Road                                                                                           | street?                                                                                                                     | No                                     | rth-South                               | -                                          | When was t                                                                                           | he data coll                                                                     | ected?                        | 2029 Total                                                                  | Traffic           |                                                               |                                      |
|                                                                                                                  |                                                        |                                                                                                     |                                                                                                                             |                                        |                                         |                                            |                                                                                                      |                                                                                  |                               |                                                                             |                   |                                                               |                                      |
| Justification                                                                                                    | n 1 - 4: Volu                                          | ume Wa                                                                                              | rrants                                                                                                                      |                                        |                                         |                                            |                                                                                                      |                                                                                  |                               |                                                                             |                   |                                                               |                                      |
| a Number of                                                                                                      | lanes on the M                                         | Main Road                                                                                           | 1?                                                                                                                          | 1                                      | •                                       |                                            |                                                                                                      |                                                                                  |                               |                                                                             |                   |                                                               |                                      |
| o Number of                                                                                                      | lanes on the M                                         | Minor Roa                                                                                           | d?                                                                                                                          | 1                                      | -                                       |                                            |                                                                                                      |                                                                                  |                               |                                                                             |                   |                                                               |                                      |
| c - How many                                                                                                     | approaches?                                            | 3                                                                                                   | <b>-</b>                                                                                                                    |                                        |                                         |                                            |                                                                                                      |                                                                                  |                               |                                                                             |                   |                                                               |                                      |
| or room many                                                                                                     | approaction                                            |                                                                                                     |                                                                                                                             |                                        |                                         |                                            |                                                                                                      |                                                                                  |                               |                                                                             |                   |                                                               |                                      |
|                                                                                                                  |                                                        |                                                                                                     |                                                                                                                             |                                        |                                         |                                            |                                                                                                      |                                                                                  |                               |                                                                             |                   |                                                               |                                      |
| d What is the                                                                                                    | operating env                                          | vironment                                                                                           | ?                                                                                                                           | Urban                                  | -                                       | Popula                                     | tion >= 10,000                                                                                       | AND                                                                              | Speed < 70 I                  | km/hr                                                                       |                   |                                                               |                                      |
| d What is the                                                                                                    | e operating env<br>e eight hour ve                     | vironment<br>hicle volu                                                                             | ?<br>me at the i                                                                                                            | Urban<br>ntersection?                  | Ţ<br>• (Please fil                      | Popula<br>I in table bei                   | tion >= 10,000<br>low)                                                                               | AND                                                                              | Speed < 70 I                  | km/hr                                                                       |                   |                                                               |                                      |
| d What is the                                                                                                    | e operating env<br>e eight hour ve<br>Main North       | vironment<br>hicle volu                                                                             | ?<br>me at the i                                                                                                            | Urban<br>ntersection<br>Minor E        | (Please fil astbound A                  | Popula<br>I in table be<br>oproach         | tion >= 10,000<br>low)<br>Main Sol                                                                   | AND<br>uthbound Ap                                                               | Speed < 70 k                  | (m/hr<br>Minor W                                                            | estbound A        | pproach                                                       | Pedestrians                          |
| d What is the<br>a What is the<br>Hour Ending                                                                    | e operating env<br>e eight hour ve<br>Main North<br>LT | vironment<br>hicle volu<br>hbound Ap<br>TH                                                          | ?<br>me at the i<br>pproach<br>RT                                                                                           | Urban<br>ntersection?<br>Minor E<br>LT |                                         | Popula<br>I in table be<br>pproach<br>RT   | tion >= 10,000<br>low)<br>Main Sor<br>LT                                                             | AND<br>uthbound Ap<br>TH                                                         | Speed < 70 H<br>oproach<br>RT | km/hr<br>Minor W<br>LT                                                      | /estbound A       | pproach<br>RT                                                 | Pedestrians<br>Crossing Main<br>Road |
| d What is the<br>What is the<br>Hour Ending<br>7:00                                                              | e operating env<br>e eight hour ve<br>Main North<br>LT | vironment<br>chicle volu<br>hbound Ap<br>TH<br>456                                                  | ?<br>me at the i<br>pproach<br>RT<br>8                                                                                      | Urban<br>ntersection?<br>Minor E<br>LT | (Please fil<br>astbound Ap              | Popula<br>I in table be<br>pproach<br>RT   | tion >= 10,000<br>low)<br><u>Main Sor</u><br><u>LT</u><br>14                                         | AND<br>uthbound Ap<br>TH<br>434                                                  | Speed < 70 F<br>oproach<br>RT | km/hr<br>Minor W<br>LT<br>10                                                | /estbound A       | pproach<br>RT<br>16                                           | Pedestrians<br>Crossing Main<br>Road |
| d What is the<br>What is the<br>Hour Ending<br>7:00<br>8:00                                                      | e operating env<br>e eight hour ve<br>Main North<br>LT | vironment<br>chicle volu<br>hbound Ap<br>TH<br>456<br>456                                           | ?<br>me at the i<br>pproach<br>RT<br>8<br>8<br>8                                                                            | Urban<br>ntersection?<br>Minor E<br>LT | (Please fil<br>astbound A<br>TH         | Popula<br>I in table be<br>oproach<br>RT   | tion >= 10,000<br>low)<br><u>Main Sor</u><br><u>LT</u><br>14<br>14                                   | AND<br>uthbound Ap<br>TH<br>434<br>434                                           | Speed < 70 H<br>oproach<br>RT | m/hr<br>Minor W<br>LT<br>10<br>10                                           | /estbound A<br>TH | pproach<br>RT<br>16<br>16                                     | Pedestrians<br>Crossing Main<br>Road |
| d What is the<br><b>Hour Ending</b><br>7:00<br>8:00<br>9:00                                                      | e operating env<br>e eight hour ve<br>Main North<br>LT | vironment<br>chicle volue<br>hbound Ap<br>TH<br>456<br>456<br>456                                   | ?<br>me at the i<br>pproach<br>RT<br>8<br>8<br>8<br>8<br>8                                                                  | Urban<br>ntersection?<br>Minor E<br>LT | (Please fil<br>astbound Ap              | Popula<br>I in table be<br>pproach<br>RT   | tion >= 10,000<br>low)<br>Main Sou<br>LT<br>14<br>14<br>14<br>14                                     | AND<br>uthbound Ap<br>TH<br>434<br>434<br>434                                    | Speed < 70 H<br>oproach<br>RT | m/hr<br>Minor W<br>LT<br>10<br>10<br>10                                     | 'estbound A<br>TH | <b>pproach</b><br><b>RT</b><br>16<br>16<br>16                 | Pedestrians<br>Crossing Main<br>Road |
| d What is the<br><b>Hour Ending</b><br>7:00<br>8:00<br>9:00<br>10:00                                             | e operating env<br>e eight hour ve<br>Main North<br>LT | vironment<br>hicle volue<br>hbound Ap<br>TH<br>456<br>456<br>456<br>456                             | ?<br>me at the i<br>pproach<br>RT<br>8<br>8<br>8<br>8<br>8<br>8                                                             | Urban<br>ntersection?<br>Minor E<br>LT | (Please fil<br>astbound Ap<br>TH        | Popula<br>I in table be<br>pproach<br>RT   | tion >= 10,000<br>low)<br>Main Sou<br>LT<br>14<br>14<br>14<br>14<br>14                               | AND<br>uthbound Ap<br>TH<br>434<br>434<br>434<br>434                             | Speed < 70 H<br>oproach<br>RT | m/hr<br>Minor W<br>LT<br>10<br>10<br>10<br>10                               | 'estbound A<br>TH | pproach<br>RT<br>16<br>16<br>16<br>16                         | Pedestrians<br>Crossing Main<br>Road |
| d What is the<br><b>Hour Ending</b><br>7:00<br>8:00<br>9:00<br>10:00<br>15:00                                    | e operating env<br>e eight hour ve<br>Main North<br>LT | vironment'<br>hicle volue<br>hbound Ap<br>TH<br>456<br>456<br>456<br>456<br>456                     | ?<br>me at the i<br>pproach<br>RT<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8                                                   | Urban                                  | (Please fill astbound Ap TH             | Popula<br>I in table be<br>oproach<br>RT   | tion >= 10,000<br>low)<br>Main Sou<br>LT<br>14<br>14<br>14<br>14<br>14<br>14                         | AND<br>uthbound Ap<br>TH<br>434<br>434<br>434<br>434<br>434                      | Speed < 70 H<br>oproach<br>RT | m/hr<br>Minor W<br>LT<br>10<br>10<br>10<br>10<br>10<br>10                   | 'estbound A<br>TH | pproach<br>RT<br>16<br>16<br>16<br>16<br>16                   | Pedestrians<br>Crossing Main<br>Road |
| d What is the<br><b>Hour Ending</b><br>7:00<br>8:00<br>9:00<br>10:00<br>15:00<br>16:00                           | e operating env<br>e eight hour ve<br>Main Nortł<br>LT | vironment<br>hicle volu<br>hbound Ap<br>TH<br>456<br>456<br>456<br>456<br>456<br>456<br>456         | ?<br>me at the i<br>pproach<br>RT<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8                | Urban                                  | Please fil<br>astbound Ap               | Popular<br>I in table bei<br>oproach<br>RT | tion >= 10,000<br>low)<br>Main Sou<br>LT<br>14<br>14<br>14<br>14<br>14<br>14<br>14                   | AND<br>uthbound Ap<br>TH<br>434<br>434<br>434<br>434<br>434<br>434               | Speed < 70 H<br>oproach<br>RT | m/hr<br>Minor W<br>LT<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | 'estbound A<br>TH | pproach<br>RT<br>16<br>16<br>16<br>16<br>16<br>16<br>16       | Pedestrians<br>Crossing Main<br>Road |
| d What is the<br><b>Hour Ending</b><br>7:00<br>8:00<br>9:00<br>10:00<br>15:00<br>16:00<br>17:00                  | e operating env<br>e eight hour ve<br>Main North<br>LT | vironment<br>hicle volu<br>hibound Ap<br>TH<br>456<br>456<br>456<br>456<br>456<br>456<br>456<br>456 | ?<br>me at the i<br>pproach<br>RT<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8                               | Urban                                  | (Please fil astbound A     TH           | Popula<br>I in table bel<br>pproach<br>RT  | tion >= 10,000<br>low)<br>Main Sou<br>LT<br>14<br>14<br>14<br>14<br>14<br>14<br>14<br>14             | AND<br>uthbound Ap<br>TH<br>434<br>434<br>434<br>434<br>434<br>434<br>434<br>434 | Speed < 70 k<br>oproach<br>RT | m/hr<br>Minor W<br>LT<br>10<br>10<br>10<br>10<br>10<br>10<br>10             | /estbound A<br>TH | pproach<br>RT<br>16<br>16<br>16<br>16<br>16<br>16<br>16       | Pedestrians<br>Crossing Main<br>Road |
| d What is the<br>What is the<br>Hour Ending<br>7:00<br>8:00<br>9:00<br>10:00<br>15:00<br>16:00<br>17:00<br>18:00 | e operating en<br>e eight hour ve<br>Main North<br>LT  | vironment<br>shicle volu<br>hbound Ap<br>TH<br>456<br>456<br>456<br>456<br>456<br>456<br>456<br>456 | ?<br>me at the i<br>pproach<br>RT<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8 | Urban<br>ntersection?<br>Minor E<br>LT | ▼<br>? (Please fil<br>astbound Ap<br>TH | Popula<br>I in table bei<br>pproach<br>RT  | tion >= 10,000<br>low)<br>Main Sou<br>LT<br>14<br>14<br>14<br>14<br>14<br>14<br>14<br>14<br>14<br>14 | AND<br>uthbound Ap<br>TH<br>434<br>434<br>434<br>434<br>434<br>434<br>434<br>43  | Speed < 70 H<br>oproach<br>RT | m/hr<br>Minor W<br>LT<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | lestbound A<br>TH | pproach<br>RT<br>16<br>16<br>16<br>16<br>16<br>16<br>16<br>16 | Pedestrians<br>Crossing Main<br>Road |

#### **Justification 5: Collision Experience**

| Preceding<br>Months | Number of Collisions* |
|---------------------|-----------------------|
| 1-12                | 0                     |
| 13-24               | 0                     |
| 25-36               | 0                     |

\* Include only collisions that are susceptable to correction through the installation of traffic signal control

#### **Justification 6: Pedestrian Volume**

a.- Please fill in table below summarizing total pedestrians crossing major roadway at the intersection or in proximity to the intersection (zones). Please reference Section 4.8 of the Manual for further explanation and graphical representation.

|                                                     | Zor      | ne 1       | Zone 2   |            | Zone 3 (if needed) |            | Zone 4 (if needed) |            | Total |
|-----------------------------------------------------|----------|------------|----------|------------|--------------------|------------|--------------------|------------|-------|
|                                                     | Assisted | Unassisted | Assisted | Unassisted | Assisted           | Unassisted | Assisted           | Unassisted | Total |
| Total 8 hour pedestrian volume                      | 0        | 0          | 0        | 0          | 0                  | 0          | 0                  | 0          |       |
| Factored 8 hour pedestrian volume 0                 |          |            | 0        |            | 0                  |            | 0                  |            |       |
| % Assigned to crossing rate                         | 10       | 0%         | 50       | 0%         | c                  | 1%         | C                  | 1%         |       |
| Net 8 Hour Pedestrian Volume at Crossing            |          |            |          |            |                    |            |                    |            | 0     |
| Net 8 Hour Vehicular Volume on Street Being Crossed |          |            |          |            |                    |            |                    |            |       |

b.- Please fill in table below summarizing delay to pedestrians crossing major roadway at the intersection or in proximity to the intersection (zones). Please reference Section 4.8 of the Manual for further explanation and graphical representation.

|                                                          | Zor      | ne 1       | Zo       | ne 2       | Zone 3 (i | f needed)  | Zone 4 ( | if needed) |       |
|----------------------------------------------------------|----------|------------|----------|------------|-----------|------------|----------|------------|-------|
|                                                          | Assisted | Unassisted | Assisted | Unassisted | Assisted  | Unassisted | Assisted | Unassisted | Total |
| Total 8 hour pedestrian volume                           | 0        | 0          | 0        | 0          | 0         | 0          | 0        | 0          |       |
| Total 8 hour pedestrians delayed greater than 10 seconds | 0        | 0          | 0        | 0          | 0         | 0          | 0        | 0          |       |
| Factored volume of total pedestrians                     | 0        |            | 0        |            | 0         |            |          |            |       |
| Factored volume of delayed pedestrians                   | (        | 0          | 0        |            |           | 0          |          | 0          |       |
| % Assigned to Crossing Rate                              | 10       | 0%         | 50       | 0%         | 0         | %          | C        | 1%         |       |
| Net 8 Hour Volume of Total Pedestrians                   |          |            |          |            |           |            |          |            | 0     |
| Net 8 Hour Volume of Delayed Pedestrians                 |          |            |          |            |           |            |          |            | 0     |

Intersection: Huntmar Drive and EW Road 1

Count Date: 2029 Total Traffic

#### Justification 1: Minimum Vehicle Volumes

#### Restricted Flow Urban Conditions

| luctification                              | Gu                    | idance Ap      | proach Lan | es                              |                                                                                                                              | Percentage Warrant |      |       |       |       |       |       |         | Section |
|--------------------------------------------|-----------------------|----------------|------------|---------------------------------|------------------------------------------------------------------------------------------------------------------------------|--------------------|------|-------|-------|-------|-------|-------|---------|---------|
| Justineation                               | 1 Lanes 2 or More Lan |                | e Lanes    | Hour Ending                     |                                                                                                                              |                    |      |       |       |       |       |       | Percent |         |
| Flow<br>Condition                          | FREE FLOW             | RESTR.<br>FLOW | FREE FLOW  | RESTR.<br>FLOW                  | 7:00                                                                                                                         | 8:00               | 9:00 | 10:00 | 15:00 | 16:00 | 17:00 | 18:00 |         |         |
|                                            |                       | $\checkmark$   |            |                                 |                                                                                                                              |                    |      |       |       |       |       |       |         |         |
| 14                                         | 480                   | 720            | 600        | 900                             | 938                                                                                                                          | 938                | 938  | 938   | 938   | 938   | 938   | 938   |         |         |
|                                            |                       | COMPL          | IANCE %    |                                 | 100                                                                                                                          | 100                | 100  | 100   | 100   | 100   | 100   | 100   | 800     | 100     |
| 18                                         | 180                   | 255            | 180        | 255                             | 26                                                                                                                           | 26                 | 26   | 26    | 26    | 26    | 26    | 26    |         |         |
| 16                                         |                       | COMPL          | IANCE %    |                                 | 10                                                                                                                           | 10                 | 10   | 10    | 10    | 10    | 10    | 10    | 82      | 10      |
| Restricted Flow<br>Signal Justification 1: |                       |                |            | Both 1A and 1<br>Lesser of 1A o | 3oth 1A and 1B 100% Fulfilled each of 8 hours Yes □ No<br>.esser of 1A or 1B at least 80% fulfilled each of 8 hours Yes □ No |                    |      |       |       |       | 2     |       |         |         |

#### **Justification 2: Delay to Cross Traffic**

#### **Restricted Flow Urban Conditions**

| luctification     | Guidance Approach Lanes                    |                |          |                | Percentage Warrant |                                                                                                                                             |      |       |       |       |       | Total    | Section |    |
|-------------------|--------------------------------------------|----------------|----------|----------------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------|------|-------|-------|-------|-------|----------|---------|----|
| Justincation      | 1 lanes 2 or More lanes                    |                | re lanes |                | Hour Ending        |                                                                                                                                             |      |       |       |       |       |          | Percent |    |
| Flow<br>Condition |                                            | RESTR.<br>FLOW |          | RESTR.<br>FLOW | 7:00               | 8:00                                                                                                                                        | 9:00 | 10:00 | 15:00 | 16:00 | 17:00 | 18:00    |         |    |
| 24                | 480                                        | 720            | 600      | 900            | 912                | 912                                                                                                                                         | 912  | 912   | 912   | 912   | 912   | 912      |         |    |
| 24                | COMPLIANCE %                               |                |          | 100            | 100                | 100                                                                                                                                         | 100  | 100   | 100   | 100   | 100   | 800      | 100     |    |
| 0B                | 50                                         | 75             | 50       | 75             | 10                 | 10                                                                                                                                          | 10   | 10    | 10    | 10    | 10    | 10       |         |    |
| 28                |                                            | COMPL          | ANCE %   |                | 13                 | 13                                                                                                                                          | 13   | 13    | 13    | 13    | 13    | 13       | 107     | 13 |
|                   | Restricted Flow<br>Signal Justification 2: |                |          |                |                    | 3oth 2A and 2B 100% fulfilled each of 8 hours     Yes     No       .esser of 2A or 2B at least 80% fulfilled each of 8 hours     Yes     No |      |       |       |       |       | <b>V</b> |         |    |

#### **Justification 3: Combination**

#### Combination Justification 1 and 2

|                 | Justification Satisfied 80% or Mo | Two Justifications<br>Satisfied 80% or More |               |       |      |
|-----------------|-----------------------------------|---------------------------------------------|---------------|-------|------|
| Justification 1 | Minimum Vehicle Volume            | YES 🗖                                       | NO 🔽          | YES 🗖 | NO 🔽 |
| Justification 2 | Delay Cross Traffic               |                                             | NOT JUSTIFIED |       |      |

#### **Justification 4: Four Hour Volume**

| Justification   | Time Period | Total Volume of Both<br>Approaches (Main) | Heaviest Minor<br>Approach | Required Value        | Average % Compliance | Overall %<br>Compliance |  |
|-----------------|-------------|-------------------------------------------|----------------------------|-----------------------|----------------------|-------------------------|--|
|                 |             | X                                         | Y (actual)                 | Y (warrant threshold) |                      |                         |  |
|                 | 7:00        | 912                                       | 26                         | 121                   | 21 %                 |                         |  |
| Justification 4 | 8:00        | 912                                       | 26                         | 122                   | 21 %                 | 21.9/                   |  |
| Justification 4 | 9:00        | 912                                       | 26                         | 122                   | 21 %                 | 21 /0                   |  |
|                 | 10:00       | 912                                       | 26                         | 122                   | 21 %                 |                         |  |

Analysis Sheet

Intersection: Huntmar Drive and EW Road 1

| Count | Date: | 2020 | Total | Traffi |
|-------|-------|------|-------|--------|
| Oouni | Dale. | 2023 | TULAI | IIaiii |

| Count | Data  | 2020 | Total | Troffic |
|-------|-------|------|-------|---------|
| Count | Date: | 2029 | Total | Tranic  |

Proposed Collision

#### **Justification 5: Collision Experience**

| Justification   | Preceding Months | % Fulfillment | Overall %<br>Compliance |
|-----------------|------------------|---------------|-------------------------|
|                 | 1-12             | 0 %           |                         |
| Justification 5 | 13-24            | 0 %           | 0 %                     |
|                 | 25-36            | 0 %           |                         |

#### **Justification 6: Pedestrian Volume**

#### Pedestrian Volume Analysis

| 8 Hour Vehicular<br>Volume V <sub>8</sub> |             | Net 8 Hour Pedestrian Volume |           |           |            |       |  |  |
|-------------------------------------------|-------------|------------------------------|-----------|-----------|------------|-------|--|--|
|                                           |             | < 200                        | 200 - 275 | 276 - 475 | 476 - 1000 | >1000 |  |  |
| Justification<br>6A                       | < 1440      |                              |           |           |            |       |  |  |
|                                           | 1440 - 2600 |                              |           |           |            |       |  |  |
|                                           | 2601 - 7000 | Not Justified                |           |           |            |       |  |  |
|                                           | > 7000      |                              |           |           |            |       |  |  |

#### Pedestrian Delay Analysis

| of Total Pedestrians          | Net Total 8 Hour Volume of Delayed Pedestrians           < 75         75 - 130         > 130           Not Justified |
|-------------------------------|----------------------------------------------------------------------------------------------------------------------|
|                               | 130                                                                                                                  |
| < 200 Not Justified           |                                                                                                                      |
| Justification<br>6B 200 - 300 |                                                                                                                      |
| > 300                         |                                                                                                                      |

▣

Input Sheet **Results Sheet** 

| Results Sheet |
|---------------|
|---------------|

Intersection: Huntmar Drive and EW Road 1

Count Date: 2029 Total Traffic

## Summary Results

|                                   |       |                 |                       | 0.001    |                   |  |
|-----------------------------------|-------|-----------------|-----------------------|----------|-------------------|--|
| Justification                     |       | fication        | Compliance            | Signal J | Signal Justified? |  |
|                                   | -     | YES             | NO                    |          |                   |  |
| 1. Minimum<br>Vehicular<br>Volume | A     | Total Volume    | 100 %                 |          | ~                 |  |
|                                   | в     | Crossing Volume | 10 %                  |          | 12.2              |  |
| 2. Delay to<br>Cross              | A     | Main Road       | 100 %                 |          | <b>N</b>          |  |
| Traffic                           | в     | Crossing Road   | 13 %                  |          | M                 |  |
| 3. Combination                    | A     | Justificaton 1  | 10 %                  |          |                   |  |
|                                   | в     | Justification 2 | 13 %                  | J        |                   |  |
| 4. 4-Hr Volume                    |       |                 | 21 %                  |          | ~                 |  |
|                                   |       |                 |                       |          |                   |  |
| 5. Collision Expe                 | rienc | e               | 0 %                   |          | V                 |  |
|                                   |       |                 |                       |          |                   |  |
| 6. Pedestrians                    | A     | Volume          | Justification not met |          |                   |  |
|                                   | в     | Delay           | Justification not met |          | L.T., I           |  |

# Appendix C

TDM Checklists



Urbandale Construction Ltd. 130 Huntmar DriveTransportation Impact Assessment (TIA) March 2020 – 19-1698

# Introduction

The City of Ottawa's *Transportation Impact Assessment (TIA) Guidelines* (specifically Module 4.3—Transportation Demand Management) requires proponents of qualifying developments to assess the context, need and opportunity for transportation demand management (TDM) measures at their development. The guidelines require that proponents complete the City's **TDM Measures Checklist**, at a minimum, to identify any TDM measures being proposed.

The remaining sections of this document are:

- Using the Checklist
- Glossary
- TDM Measures Checklist: Non-Residential Developments
- TDM Measures Checklist: Residential developments

**Using the Checklist** 

The City's *TIA Guidelines* are designed so that *Module 3.1—Development-Generated Travel Demand*, *Module 4.1—Development Design*, and *Module 4.2—Parking* are complete before a proponent begins *Module 4.3—Transportation Demand Management*.

Within Module 4.3, *Element 4.3.1—Context for TDM* and *Element 4.3.2—Need and Opportunity* are intended to create an understanding of the need for any TDM measures, and of the results they are expected to achieve or support. Once those two elements are complete, proponents begin *Element 4.3.3—TDM Program* that requires proponents to identify proposed TDM measures using the **TDM Measures Checklist**, at a minimum. The *TIA Guidelines* note that the City may require additional analysis for large or complex development proposals, or those that represent a higher degree of performance risk; as well, proponents proposing TDM measures for a new development must also propose an implementation plan that addresses planning and coordination, funding and human resources, timelines for action, performance targets and monitoring requirements.

This **TDM Measures Checklist** document includes two actual checklists, one for non-residential developments (office, institutional, retail or industrial) and one for residential developments (multi-family, condominium or subdivision). Readers may download the applicable checklist in electronic format and complete it electronically, or print it out and complete it by hand. As an alternative, they may create a freestanding document that lists the TDM measures being proposed and provides additional detail on them, including an implementation plan as required by the City's *TIA Guidelines*.

Each measure in the checklist is numbered for easy reference. Each measure is also flagged as:

- **BASIC** —The measure is generally feasible and effective, and in most cases would benefit the development and its users.
- **BETTER** The measure could maximize support for users of sustainable modes, and optimize development performance.
- The measure is one of the most dependably effective tools to encourage the use of sustainable modes.

Readers are encouraged to contact the City of Ottawa's TDM Officer for any guidance and assistance they require to complete this checklist.

# Glossary

This glossary defines and describes the following measures that are identified in the **TDM Measures Checklist**:

## TDM program management

- Program coordinator
- Travel surveys

# Parking

Priced parking

# Walking & cycling

- Information on walking/cycling routes & destinations
- Bicycle skills training
- Valet bike parking

# Transit

- Transit information
- Transit fare incentives
- Enhanced public transit service
- Private transit service

# Ridesharing

- Ridematching service
- Carpool parking price incentives
- Vanpool service

## Carsharing & bikesharing

- Bikeshare stations & memberships
- Carshare vehicles & memberships

## TDM marketing & communications

- Multimodal travel information
- Personalized trip planning
- Promotions

## Other incentives & amenities

- Emergency ride home
- Alternative work arrangements
- Local business travel options
- Commuter incentives
- On-site amenities

For further information on selecting and implementing TDM measures (particularly as they apply to non-residential developments, with a focus on workplaces), readers may find it helpful to consult Transport Canada's *Workplace Travel Plans: Guidance for Canadian Employers*, which can be downloaded in English and French from the ACT Canada website at www.actcanada.com/resources/act-resources.

# **TDM** program management

While some TDM measures can be implemented with a minimum of effort through routine channels (e.g. parking or human resources), more complex measures or a larger development site may warrant assigning responsibility for TDM program coordination to a designated person either inside or outside the implementing organization. Similarly, some TDM measures are more effective if they are targeted or customized for specific audiences, and would benefit from the collection of related information.

**Program coordinator**. This person is charged with day-to-day TDM program development and implementation. Only in very large employers with thousands of workers is this likely to be a full-time, dedicated position. Usually, it is added to an existing role in parking, real estate, human resources or environmental management. In practice, this role may be called TDM coordinator, commute trip reduction coordinator or employee transportation coordinator. The City of Ottawa can identify external resources (e.g. non-profit organizations or consultants) that could provide these services.

**Travel surveys.** Travel surveys are most commonly conducted at workplaces, but can be helpful in other settings. They identify how and why people travel the way they do, and what barriers and opportunities exist for different behaviours. They usually capture the following information:

- *Personal data* including home address or postal code, destination, job type or function, employment status (full-time, part-time and/or teleworker), gender, age and hours of work
- Commute information including distance or time for the trip between home and work, usual methods of commuting, and reasons for choosing them
- Barriers and opportunities including why other commuting methods are unattractive, willingness to consider other options, and what improvements to other options could make them more attractive

# Parking

**Priced parking.** Charging for parking is typically among the most effective ways of getting drivers to consider other travel options. While drivers may not support parking fees, they can be more accepting if the revenues are used to improve other travel options (e.g. new showers and change rooms, improved bicycle parking or subsidized transit passes). At workplaces or daytime destinations, parking discounts (e.g. early bird specials, daily passes that cost significantly less than the equivalent hourly charge, monthly passes that cost significantly less than the equivalent hourly charge, monthly passes that cost significantly less than the equivalent daily charge) encourage long-term parking and discourage the use of other travel options. For residential uses, unbundling parking costs from dwelling purchase, lease or rental costs provides an incentive for residents to own fewer cars, and can reduce car use and the costs of parking provision.

# Walking & cycling

Active transportation options like cycling and walking are particularly attractive for short trips (typically up to 5 km and 2 km, respectively). Other supportive factors include an active, health-conscious audience, and development proximity to high-quality walking and cycling networks. Common challenges to active transportation include rain, darkness, snowy or icy conditions, personal safety concerns, the potential for bicycle theft, and a lack of shower and change facilities for those making longer trips.

**Information on walking/cycling routes & destinations.** Ottawa, Gatineau and the National Capital Commission all publish maps to help people identify the most convenient and comfortable walking or cycling routes.

**Bicycle skills training.** Potential cyclists can be intimidated by the need to ride on roads shared with motor vehicles. This barrier can be reduced or eliminated by offering cycling skills training to interested cyclists (e.g. CAN-BIKE certification courses).

**Valet bike parking.** For large events, temporary "valet parking" areas can be easily set up to maximize convenience and security for cyclists. Experienced local non-profit groups can help.

# Transit

**Transit information.** Difficulty in finding or understanding basic information on transit fares, routes and schedules can prevent people from trying transit. Employers can help by providing online links to OC Transpo and STO websites. Transit users also appreciate visible maps and schedules of transit routes that serve the site; even better, a screen that shows real-time transit arrival information is particularly useful at sites with many transit users and an adjacent transit stop or station.

**Transit fare incentives.** Free or subsidized transit fares are an attractive incentive for nontransit riders to try transit. Many non-users are unsure of how to pay a fare, and providing tickets or a preloaded PRESTO card (or, for special events, pre-arranging with OC Transpo that transit fares are included with event tickets) overcome that barrier.

**Enhanced public transit service.** OC Transpo may adjust transit routes, stop locations, service hours or frequencies for an agreed fee under contract, or at no cost where warranted by the potential ridership increase. Information provided by a survey of people who travel to a given development can support these decisions.

**Private transit service.** At remote suburban or rural workplaces, a poor transit connection to the nearest rapid transit station can be an obstacle for potential transit users, and an employer in this situation could initiate a private shuttle service to make transit use more feasible or attractive. Other circumstances where a shuttle makes sense include large special events, or a residential development for people with limited independent mobility who still require regular access to shops and services.
## Ridesharing

Ridesharing's potential is greatest in situations where transit ridership is low, where parking costs are high, and/or where large numbers of car commuters (e.g. employees or full-time students) live reasonably far from the workplace.

**Ridematching service.** Potential carpoolers in Ottawa are served by www.OttawaRideMatch.com, an online service to help people find carpool partners. Employers can arrange for a dedicated portal where their employees can search for potential carpool partners only among their colleagues, if they desire. Some very large employers may establish internal ridematching services, to maximize employee uptake and corporate control. Ridematching service providers typically include a waiver to relieve employers of liability when their employees start carpooling through a ridematching service. Ridesharing with co-workers

**Carpool parking price incentives.** Discounted parking fees for carpools can be an extra incentive to rideshare.

**Vanpool service.** Vanpools operate in the Toronto and Vancouver metropolitan areas, where vans that carry up to about ten occupants are driven by one of the vanpool members. Vanpools tend to operate on a cost-recovery basis, and are most practical for long-distance commutes where transit is not an option. Current legislation in Ontario does not permit third-party (i.e. private or non-profit) vanpool services, but does permit employers to operate internal vanpools.

## Carsharing & bikesharing

also tends to eliminate security concerns.

**Bikeshare station & memberships.** VeloGO Bike Share and Right Bike both operate bikesharing services in Ottawa. Developments that would benefit from having a bikeshare station installed at or near their development may negotiate directly with either service provider.

**Carshare vehicles & memberships.** VRTUCAR and Zipcar both operate carsharing services in Ottawa, for use by the general public or by businesses as an alternative to corporate fleets. Carsharing services offer 24-hour access, self-serve reservation systems, itemized monthly billings, and outsourcing of all financing, insurance, maintenance and administrative responsibilities.

#### TDM marketing & communications

**Multimodal travel information.** Aside from mode-specific information discussed elsewhere in this document, multimodal information that identifies and explains the full range of travel options available to people can be very influential—especially when provided at times and locations where individuals are actively choosing among those options. Examples include: employees when their employer is relocating, or when they are joining a new employer; students when they are starting a program at a new institution; visitors or customers travelling to an unfamiliar destination, or when faced with new options (e.g. shuttle services or parking restrictions); and residents when they purchase or occupy a residence that is new to them.

**Personalized trip planning.** As an extension to the simple provision of information, this technique (also known as *individualized marketing*) is effective in helping people make more sustainable travel choices. The approach involves identifying who is most likely to change their travel choices (notably relocating employees, students or residents) giving them customized information, training and incentives to support them in making that change. It may be conducted with assistance from an external service provider with the necessary skills, and delivered in a variety of settings including workplaces and homes.

**Promotions.** Special events and incentives can raise awareness and encourage individuals to examine and try new travel options.

- Special events can help attract attention, build participation and celebrate successes. Events that have been held in Ottawa include Earth Day (in April) Bike to Work Month (in May), Environment Week (early June), International Car Free Day (September 22), and Canadian Ridesharing Week (October). At workplaces or educational institutions, similarly effective internal events could include workshops, lunch-and-learns, inter-departmental challenges, pancake breakfasts, and so on.
- Incentives can encourage trial of sustainable modes, and might include loyalty rewards for duration or consistency of activity (e.g. 1,000 km commuted by bicycle), participation prizes (e.g. for completing a survey or joining a special event), or personal recognition that highlights individual accomplishments.

### Other incentives & amenities

**Emergency ride home.** This measure assures non-driving commuters that they will be able to get home quickly and conveniently in case of family emergency (or in some workplaces, in case of unexpected overtime, severe weather conditions, or the early departure of a carpool driver) by offering a chit or reimbursement for taxi, carshare or rental car usage. Limits on annual usage or cost per employee may be set, although across North America the actual rates of usage are typically very low.

**Alternative work arrangements.** A number of alternatives to the standard 9-to-5, Monday-to-Friday workweek can support sustainable commuting (and work-life balance) at workplaces:

- Flexible working hours allow transit commuters to take advantage of the fastest and most convenient transit services, and allow potential carpoolers to include people who work slightly different schedules in their search for carpool partners. They also allow active commuters to travel at least one direction in daylight, either in the morning or the afternoon, during the winter.
- Compressed workweeks allow employees to work their required hours over fewer days (e.g. five days in four, or ten days in nine), eliminating the need to commute on certain days. For employees, this can promote work-life balance and gives flexibility for appointments. For employers, this can permit extended service hours as well as reduced parking demands if employees stagger their days off.
- Telework is a normal part of many workplaces. It helps reduce commuting activity, and can lead to significant cost savings through workspace sharing. Telework initiatives involve many stakeholders, and may face as much resistance as support within an organization. Consultation, education and training are helpful.

**Local business travel options.** A common obstacle for people who might prefer to not drive to work is that their employer requires them to bring a car to work so they can make business trips during the day. Giving employees convenient alternatives to private cars for local business travel during the workday makes walking, cycling, transit or carpooling in someone else's car more practical.

- Walking and cycling—Active transportation can be a convenient and enjoyable way to make short business trips. They can also reduce employer expenses, although they may require extra travel time. Providing a fleet of shared bikes, or reimbursing cyclists for the kilometres they ride, are inexpensive ways to validate their choice.
- Public transit—Transit can be convenient and inexpensive compared to driving. OC Transpo's PRESTO cards are transferable among employees and automatically reloadable, making them the perfect tool for enabling transit use during the day.
- Ridesharing—When multiple employees attend the same off-site meeting or event, they can be reminded to carpool whenever possible.
- Taxis or ride-hailing—Taxis and ride-hailing can eliminate parking costs, save time and eliminate collision liability concerns. Taxi chits eliminate cash transactions and minimize paperwork.
  - *Fleet vehicles or carsharing*—Fleet vehicles can be cost-effective for high travel volumes, while carsharing is a great option for less frequent trips.
  - Interoffice shuttles—Employers with multiple worksites in the region could use a shuttle service to move people as well as mail or supplies.
  - *Videoconferencing*—New technologies mean that staying in the office to hold meetings electronically is more viable, affordable and productive than ever.

**Commuter incentives.** Financial incentives can help create a level playing field and support commuting by sustainable modes. A "commuting allowance" given to all employees as a taxable benefit is one such incentive; employees who choose to drive could then be charged for parking, while other employees could use the allowance for transit fares or cycling equipment, or for spending or saving. (Note that in the United States this practice is known as "parking cash-out," and is popular because commuting allowances are not taxable up to a certain limit). Alternatively, a monthly commuting allowance for non-driving employees would give drivers an incentive to choose a different commuting mode. Another practical incentive for active commuters or transit users is to offer them discounted "rainy day" parking passes for a small number of days each month.

**On-site amenities.** Developments that offer services to limit employees' need for a car during their commute (e.g. to drop off clothing at the dry cleaners) or during their workday (e.g. to buy lunch) can free employees to make the commuting decision that otherwise works best for them.

# **TDM Measures Checklist:**

Residential Developments (multi-family, condominium or subdivision)

|          | TDM   | measures: Residential developments                                                                                                         | Check if proposed &<br>add descriptions                              |
|----------|-------|--------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
|          | 1.    | TDM PROGRAM MANAGEMENT                                                                                                                     |                                                                      |
|          | 1.1   | Program coordinator                                                                                                                        |                                                                      |
| BASIC ★  | 1.1.1 | Designate an internal coordinator, or contract with an external coordinator                                                                |                                                                      |
|          | 1.2   | Travel surveys                                                                                                                             |                                                                      |
| BETTER   | 1.2.1 | Conduct periodic surveys to identify travel-related behaviours, attitudes, challenges and solutions, and to track progress                 |                                                                      |
|          | 2.    | WALKING AND CYCLING                                                                                                                        |                                                                      |
|          | 2.1   | Information on walking/cycling routes & des                                                                                                | tinations                                                            |
| BASIC    | 2.1.1 | Display local area maps with walking/cycling access routes and key destinations at major entrances (multi-family, condominium)             | Routes and maps will be<br>displayed inside apartment<br>buildings.  |
|          | 2.2   | Bicycle skills training                                                                                                                    |                                                                      |
| BETTER   | 2.2.1 | Offer on-site cycling courses for residents, or<br>subsidize off-site courses                                                              |                                                                      |
|          | 3.    | TRANSIT                                                                                                                                    |                                                                      |
|          | 3.1   | Transit information                                                                                                                        |                                                                      |
| BASIC    | 3.1.1 | Display relevant transit schedules and route maps at entrances (multi-family, condominium)                                                 | Routes and maps will be<br>displayed inside apartment<br>buildings.  |
| BETTER   | 3.1.2 | Provide real-time arrival information display at entrances (multi-family, condominium)                                                     |                                                                      |
|          | 3.2   | Transit fare incentives                                                                                                                    |                                                                      |
| BASIC ★  | 3.2.1 | Offer PRESTO cards preloaded with one monthly transit pass on residence purchase/move-in, to encourage residents to use transit            |                                                                      |
| BETTER   | 3.2.2 | Offer at least one year of free monthly transit passes on residence purchase/move-in                                                       |                                                                      |
|          | 3.3   | Enhanced public transit service                                                                                                            |                                                                      |
| BETTER ★ | 3.3.1 | Contract with OC Transpo to provide early transit services until regular services are warranted by occupancy levels ( <i>subdivision</i> ) | OC Transpo already has plans to run a route through the subdivision. |
|          | 3.4   | Private transit service                                                                                                                    |                                                                      |
| BETTER   | 3.4.1 | Provide shuttle service for seniors homes or<br>lifestyle communities (e.g. scheduled mall or<br>supermarket runs)                         |                                                                      |

|        | 4.                                                                                 | CARSHARING & BIKESHARING                                                                                                                                                                                                                 |                                                                                                                       |
|--------|------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
|        | 4.1                                                                                | Bikeshare stations & memberships                                                                                                                                                                                                         |                                                                                                                       |
| BETTER | 4.1.1                                                                              | Contract with provider to install on-site bikeshare station ( <i>multi-family</i> )                                                                                                                                                      | Client will contract with provider<br>to install on-site bike share<br>vehicles.                                      |
| BETTER | 4.1.2                                                                              | Provide residents with bikeshare memberships, either free or subsidized <i>(multi-family)</i>                                                                                                                                            |                                                                                                                       |
|        | 4.2                                                                                | Carshare vehicles & memberships                                                                                                                                                                                                          |                                                                                                                       |
| BETTER | 4.2.1                                                                              | Contract with provider to install on-site carshare vehicles and promote their use by residents                                                                                                                                           | Client will contract with provider<br>to install on-site car share<br>vehicles.                                       |
| BETTER | 4.2.2                                                                              | Provide residents with carshare memberships, either free or subsidized                                                                                                                                                                   |                                                                                                                       |
|        | 5.                                                                                 | PARKING                                                                                                                                                                                                                                  |                                                                                                                       |
|        | 5.1                                                                                | Priced parking                                                                                                                                                                                                                           |                                                                                                                       |
| BASIC  | ★ 5.1.1                                                                            | Unbundle parking cost from purchase price (condominium)                                                                                                                                                                                  | $\boxtimes$ Parking cost will not be bundled.                                                                         |
| DACIO  | <b>F</b> 4 0                                                                       |                                                                                                                                                                                                                                          |                                                                                                                       |
| BASIC  | ★ 5.1.2                                                                            | Unbundle parking cost from monthly rent (multi-family)                                                                                                                                                                                   | Parking cost will not be bundled.                                                                                     |
| BASIC  | • 5.1.2                                                                            | Unbundle parking cost from monthly rent<br>(multi-family)                                                                                                                                                                                | Parking cost will not be bundled.                                                                                     |
| BASIC  | <ul><li>★ 5.1.2</li><li>6.</li><li>6.1</li></ul>                                   | Unbundle parking cost from monthly rent<br>(multi-family)<br>TDM MARKETING & COMMUNICATIONS<br>Multimodal travel information                                                                                                             | Parking cost will not be bundled.                                                                                     |
| BASIC  | <ul> <li>★ 5.1.2</li> <li>6.</li> <li>6.1.1</li> </ul>                             | Unbundle parking cost from monthly rent<br>( <i>multi-family</i> )<br>TDM MARKETING & COMMUNICATIONS<br>Multimodal travel information<br>Provide a multimodal travel option information<br>package to new residents                      | <ul> <li>Parking cost will not be bundled.</li> <li>Information package will be provided to new residents.</li> </ul> |
| BASIC  | <ul> <li>★ 5.1.2</li> <li>6.</li> <li>6.1</li> <li>★ 6.1.1</li> <li>6.2</li> </ul> | Unbundle parking cost from monthly rent<br>(multi-family)<br>TDM MARKETING & COMMUNICATIONS<br>Multimodal travel information<br>Provide a multimodal travel option information<br>package to new residents<br>Personalized trip planning | <ul> <li>Parking cost will not be bundled.</li> <li>Information package will be provided to new residents.</li> </ul> |