patersongroup

August 19, 2020 File: PE4914-LET.02

Taggart (O'Connor) Corporation 225 Metcalfe Street, Suite 708 Ottawa, Ontario K2P 1P9

Attention: **Ms. Emily McGirr**

Subject: Phase II - Environmental Site Assessment Update 267 O'Connor Street Ottawa, Ontario

Consulting Engineers

154 Colonnade Road South Ottawa, Ontario Canada, K2E 7J5

> Tel: (613) 226-7381 Fax: (613) 226-6344

Geotechnical Engineering Environmental Engineering Hydrogeology Geological Engineering Materials Testing Building Science Archaeological Studies

www.patersongroup.ca

Dear Madam,

Further to your request, Paterson Group (Paterson) carried out a Phase II - Environmental Site Assessment (ESA) Update for the aforementioned property. This report updates a previous Phase II-ESA report entitled, "Phase II Environmental Site Assessment, 267 O'Connor Street, Commercial Property, Ottawa, Ontario," prepared by Paterson Group, dated April 8, 2014.

This update report is intended to meet the requirements for an updated Phase II ESA, as per the MECP O.Reg 153/04, as amended. This report is to be read in conjunction with the 2014 report.

Background Information

Physical Setting

The Phase II Property is occupied by a multi-storey medical/office building with associated parking areas and is situated in a mixed-use urban setting. The adjacent properties are generally at the same grade as the Phase II ESA property, while the regional topography slopes downwards towards the north and east. Site drainage consists mainly of sheet flow to catch basins located on the Phase II ESA property and along the adjacent roadways.

No water bodies are present on the Phase II Property or within the Phase I ESA study area. No Areas of Natural or Scientific Interest (ANSIs) are present within the 250 m study area.

Ms. Emily McGirr Page 2 File: PE4914-LET.02

Past Investigations

Phase I Environmental Site Assessment, Commercial Property, 267 O'Connor Street, Ottawa, Ontario", prepared by Paterson Group. Dated March 19, 2014. Prepared for: Mastercraft Starwood.

Based on the historical review and site visit, several potentially contaminating activities (PCAs) which result in Areas of Potential Environmental Concern (APEC) on the Phase I ESA property were identified. The following APECs were considered to exist on the Phase I ESA property:

- Existing Above Ground Storage Tank An above ground storage tank was identified in the basement mechanical room of the office building.
- □ Fill Material of Unknown Quality Fill Material of Unknown Quality was identified during previous subsurface investigations on the Phase I ESA property.
- Former Portrait Studio A former portrait studio was present in the northeast corner of the Phase I ESA property.

No other PCAs considered to represent APECs on the Phase I ESA property were identified during the Phase I ESA.

"Phase II Environmental Site Assessment, Commercial Property, 267 O'Connor Street, Ottawa, Ontario", prepared by Paterson Group. Dated April 8, 2014. Prepared for: Mastercraft Starwood.

Paterson drilled three boreholes and installed two groundwater monitoring wells as part of the Phase II ESA. Paterson identified fill material in one borehole which exceeded the MECP Table 3 Residential Standards for Barium and Vanadium. All groundwater samples were in compliance with the MECP Table 3 Standards.

A remediation was recommended to be completed in conjunction with the redevelopment of the property. No further actions were recommended.

Paterson completed a Phase I ESA Update in August 2020. Based on the report, several potentially contaminating activities were identified on the Phase I ESA property and within the Phase I ESA study area. Four of these PCAs were identified on the Phase I ESA property and are considered APECs.

- □ APEC1 Existing AST
- □ APEC2 Former Portrait Studio
- □ APEC3 Fill Material of Unknown Quality
- □ APEC4 Existing Transformer.

Ms. Emily McGirr Page 3 File: PE4914-LET.02

Based on a review of the past investigations, Paterson completed additional Phase II ESA work to address APEC1 and APEC4.

Investigation Method

As part of the Phase II ESA Update Paterson installed one monitoring well in the basement of the existing medical/office building. The monitoring well was installed by CCC Geotechnical and Environmental Drilling under the full-time supervision of Paterson personnel.

All soil samples collected underwent a preliminary screening procedure, which included visual screening for colour and evidence of deleterious fill, as well as screening with a photo ionization detector (PID). The detection limit is 0.1 ppm, with a precision of +/- 2 ppm or 10% of the reading. No environmental concerns were identified during the screen procedure.

Paterson completed groundwater sampling at BH1-14 and the newly installed groundwater monitoring well (BH4-20) to update the groundwater quality at the Phase II ESA property.

Phase II Conceptual Site Model

Potentially Contaminating Activities and Areas of Potential Environmental Concern

Based on the results of the Phase I ESA and the Phase I ESA Update completed for the Phase II ESA property, four APECs were identified on the Phase II ESA property. The APECs are summarized in the table below.

TABLE 3: Area	TABLE 3: Areas of Potential Environmental Concern											
Area of Potential Environmental Concern	Location of Area of Potential Environmental Concern	Potentially Contaminating Activity	Location of PCA (on-site or off-site)	Contaminants of Potential Concern	Media Potentially Impacted (Groundwater, Soil, and/or Sediment)							
Existing AST	Within basement of the existing building	Item 28: Gasoline and Associated Products Storage in Fixed Tanks	On-site	BTEX, PHCs	Soil, Groundwater							
Former Portrait Studio	Northwest corner of Phase I ESA property	Not Applicable	On-site	Metals	Soil, Groundwater							
Fill Material of Unknown Quality	Throughout Phase I ESA property	Item 30: Importation of fill material of unknown quality	On-site	Metals	Soil, Groundwater							
Transformer	Within basement of the existing building	Item 55: Transformer manufacturing, processing, and use	On-site	BTEX, PHCs, PCBs	Soil, Groundwater							

Ms. Emily McGirr Page 4 File: PE4914-LET.02

Contaminants of Potential Concern

The following contaminants of potential concern (CPCs) were identified with respect to the Phase II ESA property:

Soil and Groundwater

- Benzene, Ethylbenzene, Toluene, and Xylenes (BTEX)
- Petroleum Hydrocarbons Fractions 1 to 4 (PHCs)
- □ Metals (including CrVI and Hg)
- Polychlorinated Biphenyls (PCBs)

Subsurface Structures and Utilities

Underground utilities, both public and private, are expected to be present on the Phase I ESA property, however they are not expected to affect contaminant distribution and transport, based on the known contaminants on the Phase I ESA property.

No concerns regarding vapour intrusion and utility trenches are considered to be present on the RSC property at this time.

Physical Setting

Site Stratigraphy

The site stratigraphy, from ground surface to the deepest aquifer or aquitard investigated, is illustrated on the attached cross-section. The stratigraphy of the Phase II Property generally consists of:

- Asphalt pavement structure with an approximate thickness of 0.06 m.
- Fill material consisting of sand and gravel with trace building debris. The fill material is not expected to be a significant water generating unit at the Phase II ESA property.
- Silty clay starting beneath the fill material extending to the full depth of all boreholes. This is the deepest unit investigated. The silty clay is considered to function as the main aquifer at the Phase II ESA property.

Hydrogeological Setting

The Geological Survey of Canada website on the Urban Geology of the National Capital Area was consulted as part of this assessment. Based on this information, bedrock in the

Ms. Emily McGirr Page 5 File: PE4914-LET.02

area of the site consists of shale of the Billings Formation. Overburden soils consist clay and offshore marine sediment, with a drift thickness of greater than 20m.

Based on the groundwater levels collected as part of the Phase II ESA Update, groundwater beneath the Phase II Property flows towards the northeast.

Approximate Depth to Bedrock

Bedrock was not encountered during the Phase II ESA. During previous geotechnical investigations the bedrock depth was determined to be in excess of 20m below the existing ground surface.

Approximate Depth to Water Table

Depth to water table at the Phase II Property was approximately 4.5m below the existing ground surface based on the most recent water levels.

Sections 41 and 43.1 of the Regulation

Section 41 of the Regulation (Site Condition Standards, Environmentally Sensitive Areas) does not apply to the Phase II Property. A search for areas of natural significance and features was completed on the Ontario Ministry of Natural Resources (MNR) website as part of the Phase I ESA within the Phase I ESA Study Area (250m Radius from site boundary) and did not reveal any areas of natural significance or environmentally sensitive areas within the Phase I ESA Study Area.

Section 43.1 of the Regulation does not apply to the Phase II ESA Property in that the subject site is not a shallow soil property and is not within 30m of a water body or sensitive receptor.

Fill Placement

No potential deleterious fill material was identified on the Phase I ESA Property during the Phase I ESA site visit. The only observed fill material at the time of the Phase I ESA was crushed stone/engineered fill related to the pavement structure and is not considered soil.

Fill material was identified across the Phase II ESA property beneath the pavement structure as part of the historical Phase II ESA work. The fill material is suspected to be a mixture of reworked native soil and engineered fill with trace demolition material from the historical buildings. The fill material is considered to be the result of grading and excavation operations during site development.

Existing Structures and Utilities

Ms. Emily McGirr Page 6 File: PE4914-LET.02

The site is occupied with a six-storey office/medical building and associated parking areas, with the current footprint of the building constructed in the 1960s. The building is currently heated using a natural gas boiler, however the building was formerly heated using furnace oil, as evidenced by the existing AST in the basement and vent and fill pipes. Due to the tank location (in a concrete bunker), no observations were able to be made regarding the tank size, age, and condition.

Site drainage consists mainly of sheet flow to catch basins located within the parking areas and adjacent streets. No signs of staining or discolouration were observed on the asphalt. No distressed vegetation was observed on the property.

Underground utilities, both public and private, are expected to be present on the Phase I ESA property, however they are not expected to affect contaminant distribution and transport, based on the known contaminants on the Phase I ESA property.

Proposed Buildings and Other Structures

It is our understanding that two multi-storey residential apartment buildings with underground parking areas covering the majority of the property footprint are proposed for the site.

Environmental Condition

Areas Where Contaminants are Present

Based on the results of the 2014 Phase II ESA and the Phase II ESA Update, fill material which exceeds the MECP Table 3 Standards for Barium and Vanadium was identified in the southeast corner of the Phase II ESA property.

Types of Contaminants

Based on the results of the 2014 Phase II ESA and the Phase II ESA Update, the contaminants of concern on the Phase II ESA property are considered to be the following;

D Metals (Barium and Vanadium) in the fill material

Contaminated Media

Based on the results of the Phase II ESA, the soil (fill material) at the Phase II ESA property is impacted above the MECP Table 3 Standards.

Ms. Emily McGirr Page 7 File: PE4914-LET.02

What Is Known About Areas where Contaminants are Present

The impacted fill material is present in the southeast corner of the Phase II ESA property. The impacts (Barium and Vanadium) are consistent with the naturally occurring concentrations of silty clays in the City of Ottawa. The impacts are expected to be related to either the importation of silty clay material or re-working of native silty clay on the site for grading purposes during the development of the property.

Distribution of Contaminants

The impacts are expected to be contained within the fill layer in the southeast corner of the Phase II ESA property.

Discharge of Contaminants

The discharge of contaminants is anticipated to be related to the importation of silty clay or the re-working of native silty clay on the Phase II ESA property. The contaminant concentrations are representative of the natural background concentrations within the soil/fill and are not considered to be related to any anthropogenic causes.

Migration of Contaminants

Based on the updated groundwater results, the contaminants are present only in the fill material above the water table and are not considered to have migrated.

Climatic and Meteorological Conditions

In general, climatic and meteorological conditions have the potential to affect contaminant distribution. Two ways by which climatic and meteorological conditions may affect contaminant distribution include the downward leaching of contaminants by means of the infiltration of precipitation, and the migration of contaminants via groundwater levels and/or flow, which may fluctuate seasonally. Based on the results of the subsurface investigation, the contaminated areas appear to be restricted to the overburden soils, and as such, the aforementioned climatic and meteorological conditions are not considered to have affected contaminant distribution at the subject site.

Potential for Vapour Intrusion

Based on the nature of the contaminants (non-volatile) and the location (approximately 25m to the southeast of the building) the potential for vapour intrusion is negligible.

Ms. Emily McGirr Page 8 File: PE4914-LET.02

Recommendations

Based on the 2014 soil results, fill material exists at the Phase II ESA Property which exceeds the MECP Table 3 Standards for Barium and Vanadium. It is our recommendation that a confirmatory sampling program be completed prior to redevelopment. If the confirmatory sampling program is unsuccessful, an environmental remediation will be required.

Following the confirmatory sampling program and/or environmental remediation, a record of site condition will be required to change the land use.

Statement of Limitations

This Phase II - Environmental Site Assessment Update report has been prepared in general accordance with Ontario Regulation 153/04, as amended, under the Environmental Protection Act. The conclusions presented herein are based on information gathered from a limited historical review and field inspection program. The findings of the Phase II - ESA Update are based on a review of readily available geological, historical and regulatory information and a cursory review made at the time of the field assessment.

Should any conditions be encountered at the subject site and/or historical information that differ from our findings, we request that we be notified immediately in order to allow for a reassessment.

This report was prepared for the sole use of Taggart (O'Connor) Corporation. Permission and notification from the above noted party and this firm will be required to release this report to any other party.

Ms. Emily McGirr Page 9 File: PE4914-LET.02

We trust that this submission satisfies your current requirements. Should you have any questions please contact the undersigned.

Paterson Group Inc.

Michael Beaudoin, P. Eng., QPESA

12

Mark D'Arcy, P. Eng., QPESA

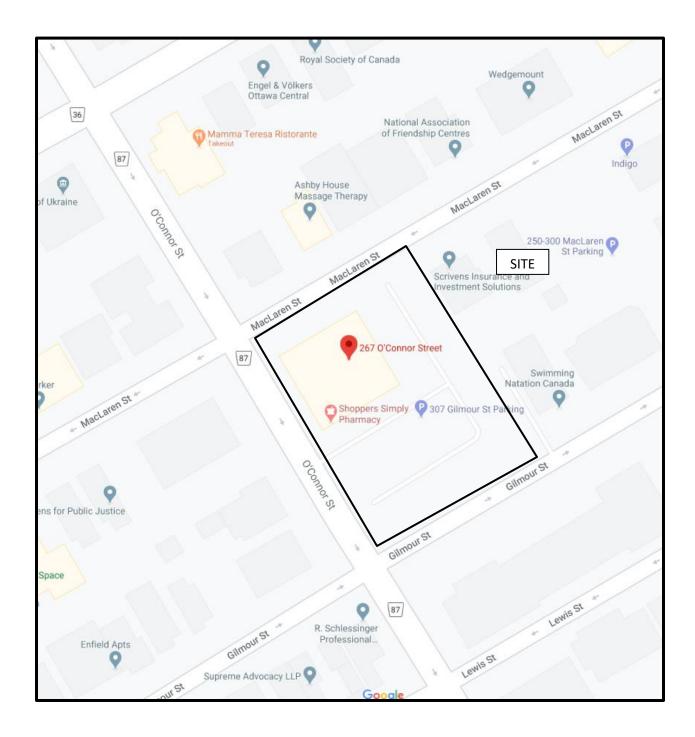
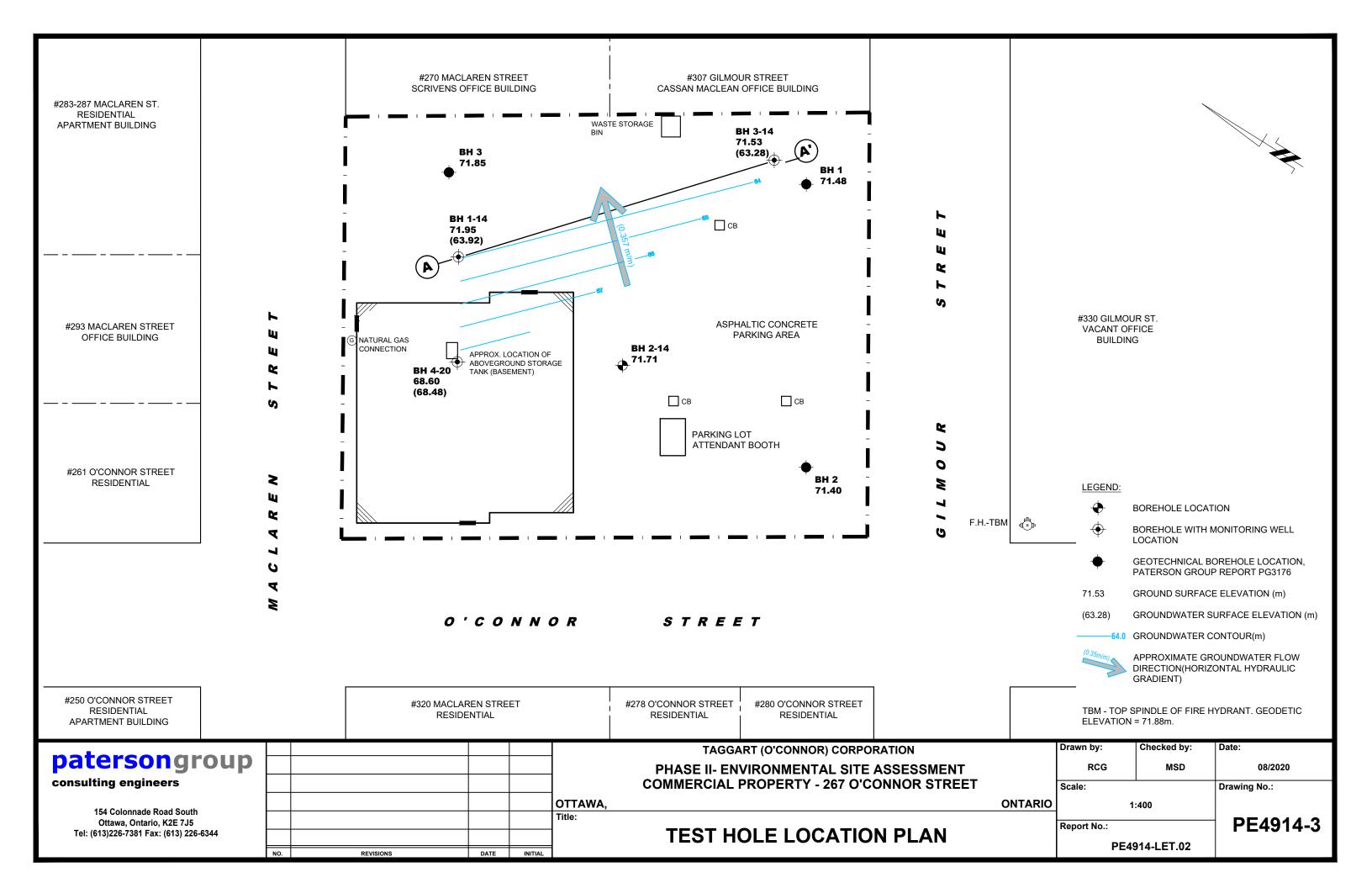
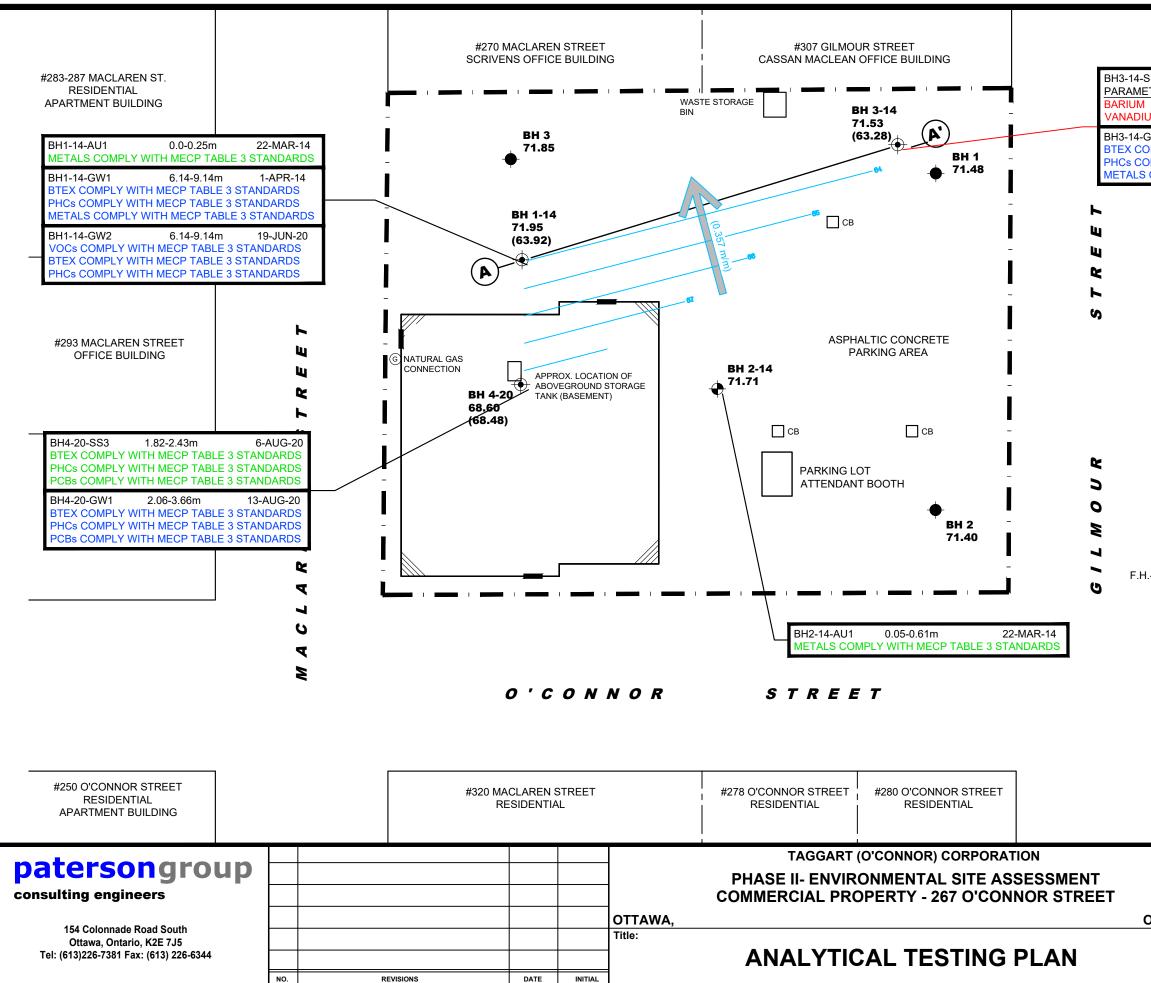
Report Distribution

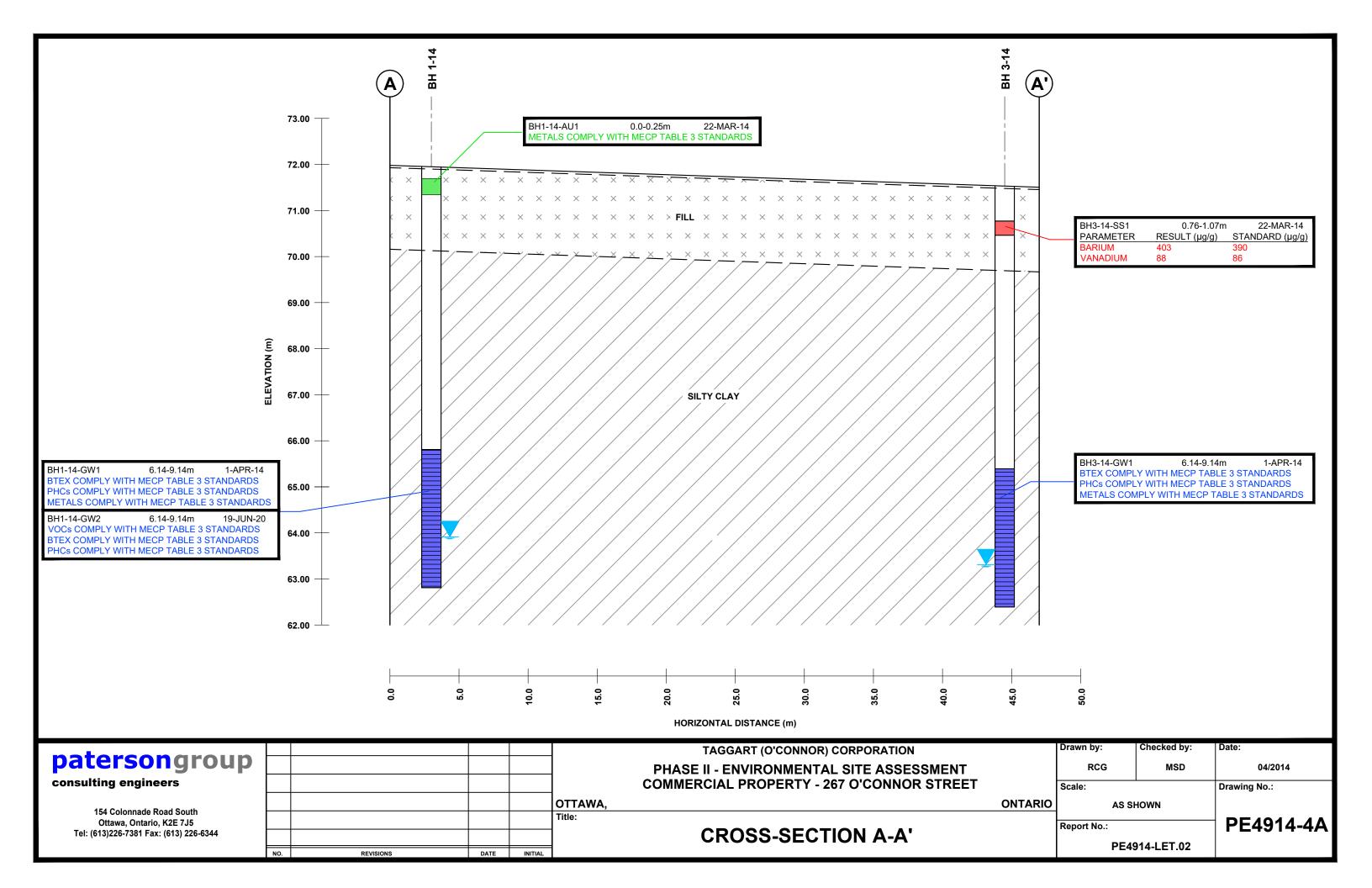
□ Taggart (O'Connor) Corporation

□ Paterson Group

Appendix

- Key Plan
- Drawing PE4914-3 Test Hole Location Plan
- Drawing PE4914-4 Analytical Testing Plan
- Drawing PE4914-4A Cross-section A-A'
- Laboratory Certificates of Analysis


FIGURE 1 KEY PLAN

patersongroup

S1		0.76-1.07m	22-MAR-14	
TER	RE 403		STANDARD (μg/g) 390	
JM	88		86	
MPLY	WITH	6 14-9.14m MECP TABLE 3 MECP TABLE 3 TH MECP TABLE		W
TBM		VAC/ B LEGEND: ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	SPINDLE OF FIRE HY I = 71.884m. LT COMPLIES WITH M LT EXCEEDS MECP T NDWATER RESULTS	DNITORING WELL REHOLE LOCATION, REPORT PG3176 ELEVATION (m) RFACE ELEVATION (m) DRANT. GEODETIC
		Drawn by:	Checked by:	Date:
		RCG	MSD	08/2020
ONTA	RIO	Scale:	1:400	Drawing No.:
		Report No.:		PE4914-4
		PE	E4914-LET.02	

RELIABLE.

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

Paterson Group Consulting Engineers

154 Colonnade Road South Nepean, ON K2E 7J5 Attn: Mark D'Arcy

Client PO: 30067 Project: PE4914 Custody: 125758

Report Date: 26-Jun-2020 Order Date: 19-Jun-2020

Order #: 2026014

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID 2026014-01 2026014-02

Client ID BH1-14-GW2 Dup1

Approved By:

Dale Robertson, BSc Laboratory Director

Any use of these results implies your agreement that our total liability in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.

Report Date: 26-Jun-2020 Order Date: 19-Jun-2020

Order #: 2026014

Project Description: PE4914

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
PHC F1	CWS Tier 1 - P&T GC-FID	22-Jun-20	22-Jun-20
PHCs F2 to F4	CWS Tier 1 - GC-FID, extraction	25-Jun-20	25-Jun-20
REG 153: VOCs by P&T GC/MS	EPA 624 - P&T GC-MS	22-Jun-20	22-Jun-20

Client PO: 30067

Order #: 2026014

Report Date: 26-Jun-2020

Order Date: 19-Jun-2020

Project Description: PE4914

Г	Client ID: Sample Date: Sample ID: MDL/Units	BH1-14-GW2 19-Jun-20 09:00 2026014-01 Water	Dup1 19-Jun-20 09:00 2026014-02 Water	- - -	
Volatiles	MDE/Onits				ц
Acetone	5.0 ug/L	<5.0	<5.0	-	-
Benzene	0.5 ug/L	<0.5	<0.5	-	-
Bromodichloromethane	0.5 ug/L	<0.5	<0.5	-	-
Bromoform	0.5 ug/L	<0.5	<0.5	-	-
Bromomethane	0.5 ug/L	<0.5	<0.5	-	-
Carbon Tetrachloride	0.2 ug/L	<0.2	<0.2	-	-
Chlorobenzene	0.5 ug/L	<0.5	<0.5	-	-
Chloroform	0.5 ug/L	<0.5	<0.5	-	-
Dibromochloromethane	0.5 ug/L	<0.5	<0.5	-	-
Dichlorodifluoromethane	1.0 ug/L	<1.0	<1.0	-	-
1,2-Dichlorobenzene	0.5 ug/L	<0.5	<0.5	-	-
1,3-Dichlorobenzene	0.5 ug/L	<0.5	<0.5	-	-
1,4-Dichlorobenzene	0.5 ug/L	<0.5	<0.5	-	-
1,1-Dichloroethane	0.5 ug/L	<0.5	<0.5	-	-
1,2-Dichloroethane	0.5 ug/L	<0.5	<0.5	-	-
1,1-Dichloroethylene	0.5 ug/L	<0.5	<0.5	-	-
cis-1,2-Dichloroethylene	0.5 ug/L	<0.5	<0.5	-	-
trans-1,2-Dichloroethylene	0.5 ug/L	<0.5	<0.5	-	-
1,2-Dichloropropane	0.5 ug/L	<0.5	<0.5	-	-
cis-1,3-Dichloropropylene	0.5 ug/L	<0.5	<0.5	-	-
trans-1,3-Dichloropropylene	0.5 ug/L	<0.5	<0.5	-	-
1,3-Dichloropropene, total	0.5 ug/L	<0.5	<0.5	-	-
Ethylbenzene	0.5 ug/L	<0.5	<0.5	-	-
Ethylene dibromide (dibromoethane, 1,2-)	0.2 ug/L	<0.2	<0.2	-	-
Hexane	1.0 ug/L	<1.0	<1.0	-	-
Methyl Ethyl Ketone (2-Butanone)	5.0 ug/L	<5.0	<5.0	-	-
Methyl Isobutyl Ketone	5.0 ug/L	<5.0	<5.0	-	-
Methyl tert-butyl ether	2.0 ug/L	<2.0	<2.0	-	-
Methylene Chloride	5.0 ug/L	<5.0	<5.0	-	-
Styrene	0.5 ug/L	<0.5	<0.5	-	-
1,1,1,2-Tetrachloroethane	0.5 ug/L	<0.5	<0.5	-	-
1,1,2,2-Tetrachloroethane	0.5 ug/L	<0.5	<0.5	-	-
Tetrachloroethylene	0.5 ug/L	<0.5	<0.5	-	-
Toluene	0.5 ug/L	<0.5	<0.5	-	-
1,1,1-Trichloroethane	0.5 ug/L	<0.5	<0.5	-	-

PARACEL LABORATORIES LTD.

Certificate of Analysis Client: Paterson Group Consulting Engineers Client PO: 30067

Report Date: 26-Jun-2020

Order #: 2026014

Order Date: 19-Jun-2020

Project Description: PE4914

	-				
	Client ID:	BH1-14-GW2	Dup1	-	-
	Sample Date:	19-Jun-20 09:00	19-Jun-20 09:00	-	-
	Sample ID:	2026014-01	2026014-02	-	-
	MDL/Units	Water	Water	-	-
1,1,2-Trichloroethane	0.5 ug/L	<0.5	<0.5	-	-
Trichloroethylene	0.5 ug/L	<0.5	<0.5	-	-
Trichlorofluoromethane	1.0 ug/L	<1.0	<1.0	-	-
Vinyl chloride	0.5 ug/L	<0.5	<0.5	-	-
m,p-Xylenes	0.5 ug/L	<0.5	<0.5	-	-
o-Xylene	0.5 ug/L	<0.5	<0.5	-	-
Xylenes, total	0.5 ug/L	<0.5	<0.5	-	-
4-Bromofluorobenzene	Surrogate	123%	115%	-	-
Dibromofluoromethane	Surrogate	89.7%	89.4%	-	-
Toluene-d8	Surrogate	107%	106%	-	-
Hydrocarbons					
F1 PHCs (C6-C10)	25 ug/L	<25	<25	-	-
F2 PHCs (C10-C16)	100 ug/L	<100	-	-	-
F3 PHCs (C16-C34)	100 ug/L	<100	-	-	-
F4 PHCs (C34-C50)	100 ug/L	<100	-	-	-

Certificate of Analysis Client: Paterson Group Consulting Engineers Client PO: 30067

Method Quality Control: Blank

	Order #: 2026014
--	------------------

Report Date: 26-Jun-2020

Order Date: 19-Jun-2020

Project Description: PE4914

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	25	ug/L						
Volatiles			3, -						
Acetone	ND	5.0	ug/L						
Benzene	ND	0.5	ug/L						
Bromodichloromethane	ND	0.5	ug/L						
Bromoform	ND	0.5	ug/L						
Bromomethane	ND	0.5	ug/L						
Carbon Tetrachloride	ND	0.2	ug/L						
Chlorobenzene	ND	0.5	ug/L						
Chloroform	ND	0.5	ug/L						
Dibromochloromethane	ND	0.5	ug/L						
Dichlorodifluoromethane	ND	1.0	ug/L						
1,2-Dichlorobenzene	ND	0.5	ug/L						
1,3-Dichlorobenzene	ND	0.5	ug/L						
1,4-Dichlorobenzene	ND	0.5	ug/L						
1,1-Dichloroethane	ND	0.5	ug/L						
1,2-Dichloroethane	ND	0.5	ug/L						
1,1-Dichloroethylene	ND	0.5	ug/L						
cis-1,2-Dichloroethylene	ND	0.5	ug/L						
trans-1,2-Dichloroethylene	ND	0.5	ug/L						
1,2-Dichloropropane	ND	0.5	ug/L						
cis-1,3-Dichloropropylene	ND	0.5	ug/L						
trans-1,3-Dichloropropylene	ND	0.5	ug/L						
1,3-Dichloropropene, total	ND	0.5	ug/L						
Ethylbenzene	ND	0.5	ug/L						
Ethylene dibromide (dibromoethane, 1,2	ND	0.2	ug/L						
Hexane	ND	1.0	ug/L						
Methyl Ethyl Ketone (2-Butanone)	ND	5.0	ug/L						
Methyl Isobutyl Ketone	ND	5.0	ug/L						
Methyl tert-butyl ether	ND	2.0	ug/L						
Methylene Chloride	ND	5.0	ug/L						
Styrene	ND	0.5	ug/L						
1,1,1,2-Tetrachloroethane	ND	0.5	ug/L						
1,1,2,2-Tetrachloroethane	ND	0.5	ug/L						
Tetrachloroethylene	ND	0.5	ug/L						
Toluene	ND	0.5	ug/L						
1,1,1-Trichloroethane	ND	0.5	ug/L						
1,1,2-Trichloroethane	ND	0.5	ug/L						
Trichloroethylene	ND	0.5	ug/L						
Trichlorofluoromethane	ND	1.0	ug/L						
Vinyl chloride	ND	0.5	ug/L						
m,p-Xylenes	ND	0.5	ug/L						
o-Xylene	ND	0.5	ug/L						
Xylenes, total	ND	0.5	ug/L						
Surrogate: 4-Bromofluorobenzene	97.9		ug/L		122	50-140			
Surrogate: Dibromofluoromethane	72.0		ug/L		90.0	50-140			
Surrogate: Toluene-d8	90.9		ug/L		114	50-140			

Method Quality Control: Duplicate

Order #: 2026014

Report Date: 26-Jun-2020

Order Date: 19-Jun-2020

Project Description: PE4914

	Analyta	Develt	Reporting		Source		%REC		RPD	
F1 PHCs (C6-C10) ND 25 ug/L ND NC 30 Volative ND 0.5 ug/L ND NC 30 Earcane ND 0.5 ug/L ND NC 30 Bromodichioromethane ND 0.5 ug/L ND NC 30 Choroberzene ND 0.5 ug/L ND NC 30 Dichorodifucromethane ND 0.5 ug/L ND NC 30 1.3-Dichoroberzene ND 0.5 ug/L ND NC 30 1.3-Dichoroberzene ND 0.5 ug/L ND NC 30 1.3-Dichoroberzene ND 0.5 ug/L ND NC 30 1.3-Dichorochylene ND 0.5	Analyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes
Valuation ND 5.0 ug/L ND NC 30 Acotone ND 0.5 ug/L ND NC 30 Barcanel ND 0.5 ug/L ND NC 30 Bromolachilocomethane ND 0.5 ug/L ND NC 30 Bromolachilocomethane ND 0.5 ug/L ND NC 30 Chicotomethane ND 0.5 ug/L ND NC 30 Dibromolforomethane ND 0.5 ug/L ND NC 30 Dibromolforomethane ND 0.5 ug/L ND NC 30 12-Dichtorobenzene ND 0.5 ug/L ND NC 30 13-Dichtorobenzene ND 0.5 ug/L ND NC 30 14-Dichtorobenzene ND 0.5 ug/L ND NC 30 14-Dichtorobenzene ND 0.5 ug/L	Hydrocarbons									
Acatone ND 5.0 ug/L ND NC 30 Benzene ND 0.5 ug/L ND NC 30 Bromodichiormethane ND 0.5 ug/L ND NC 30 Bromodichiormethane ND 0.5 ug/L ND NC 30 Gration Tetrachioride ND 0.5 ug/L ND NC 30 Chiorobenzene ND 0.5 ug/L ND NC 30 Dichiorodifuormethane ND 0.5 ug/L ND NC 30 Dichiorodifuoremethane ND 0.5 ug/L ND NC 30 1,3Dichiorobenzene ND 0.5 ug/L ND NC 30 1,4Dichiorobenzene ND 0.5 ug/L ND NC 30 1,2Dichiorobenzene ND 0.5 ug/L ND NC 30 1,2Dichiorobenzene ND 0.5 ug/	F1 PHCs (C6-C10)	ND	25	ug/L	ND			NC	30	
Parzone ND 0.5 ug/L ND NC 30 Bromodinkomethane ND 0.5 ug/L ND NC 30 Bromodinkomethane ND 0.5 ug/L ND NC 30 Bromodinkomethane ND 0.5 ug/L ND NC 30 Chicoform ND 0.5 ug/L ND NC 30 Chicoform ND 0.5 ug/L ND NC 30 Dibromodinkomethane ND 0.5 ug/L ND NC 30 1,2-Dichicofebrazene ND 0.5 ug/L ND NC 30 1,3-Dichicofebrazene ND 0.5 ug/L ND NC 30 1,2-Dichicorethylene ND 0.5 ug/L ND NC 30 1,2-Dichicorethylene ND 0.5 ug/L ND NC 30 1,2-Dichicorethylene ND 0.5 ug/L	Volatiles									
BenzeneND0.5ug/LNDNC30Bromodic/incomethaneND0.5ug/LNDNC30Bromodic/incomethaneND0.5ug/LNDNC30Catbon TetrachlorideND0.2ug/LNDNC30ChorobenzeneND0.5ug/LNDNC30ChorobenzeneND0.5ug/LNDNC30DibromochloromethaneND0.5ug/LNDNC30DibromochloromethaneND0.5ug/LNDNC30DibromochloromethaneND0.5ug/LNDNC301,2-DichlorobenzeneND0.5ug/LNDNC301,3-DichlorobenzeneND0.5ug/LNDNC301,4-DichlorobenzeneND0.5ug/LNDNC301,2-DichlorobethaneND0.5ug/LNDNC301,2-DichlorobethyleneND0.5ug/LNDNC301,2-DichlorobethyleneND0.5ug/LNDNC301,2-DichlorobethyleneND0.5ug/LNDNC301,2-DichlorobethyleneND0.5ug/LNDNC301,2-DichlorobethyleneND0.5ug/LNDNC301,2-DichlorobethyleneND0.5ug/LNDNC301,2-Dichlorobethylene <td>Acetone</td> <td>ND</td> <td>5.0</td> <td>ug/L</td> <td>ND</td> <td></td> <td></td> <td>NC</td> <td>30</td> <td></td>	Acetone	ND	5.0	ug/L	ND			NC	30	
BromodichloromethaneND0.5ug/LNDNC30BromodernND0.5ug/LNDNC30BromodernaneND0.5ug/LNDNC30Carbon TetrachinieND0.5ug/LNDNC30ChiorobenzeneND0.5ug/LNDNC30ChiorobenzeneND0.5ug/LNDNC30DichiorodifluromethaneND0.5ug/LNDNC30J.2bichiorobenzeneND0.5ug/LNDNC301.3-DichiorodenzeneND0.5ug/LNDNC301.4-DichiorobenzeneND0.5ug/LNDNC301.4-DichiorobenzeneND0.5ug/LNDNC301.1-DichioroethaneND0.5ug/LNDNC301.1-DichioroethyleneND0.5ug/LNDNC301.2-DichioroethyleneND0.5ug/LNDNC301.2-DichioroethyleneND0.5ug/LNDNC301.2-DichioroethyleneND0.5ug/LNDNC301.2-DichioroethyleneND0.5ug/LNDNC301.2-DichioroethyleneND0.5ug/LNDNC301.2-DichioroethyleneND0.5ug/LNDNC301.2-DichioroethyleneND<	Benzene	ND	0.5	-	ND			NC	30	
BromorefmND0.5ug/LNDNC30Gratom TetrachlorideND0.5ug/LNDNC30Catton TetrachlorideND0.5ug/LNDNC30ChoroberzeneND0.5ug/LNDNC30ChoroberzeneND0.5ug/LNDNC30DibromochloromethaneND0.5ug/LNDNC30DichorodibromethaneND0.5ug/LNDNC301,2-DichloroberzeneND0.5ug/LNDNC301,3-DichloroberzeneND0.5ug/LNDNC301,4-DichloroberzeneND0.5ug/LNDNC301,2-DichlorobethaneND0.5ug/LNDNC301,2-DichlorobethyleneND0.5ug/LNDNC301,2-DichlorobethyleneND0.5ug/LNDNC301,2-DichloropethyleneND0.5ug/LNDNC301,2-DichloropethyleneND0.5ug/LNDNC301,2-DichloropethyleneND0.5ug/LNDNC301,2-DichloropethyleneND0.5ug/LNDNC301,2-DichloropethyleneND0.5ug/LNDNC301,2-DichloropethyleneND0.5ug/LNDNC301,2-Dichloropethylene	Bromodichloromethane			•					30	
Bromomethane ND 0.5 ug/L ND NC 30 Carbon Tetrachoride ND 0.5 ug/L ND NC 30 Chlorobenzene ND 0.5 ug/L ND NC 30 Chlorodenzene ND 0.5 ug/L ND NC 30 Dichlorodifluoromethane ND 0.5 ug/L ND NC 30 1,3-Dichlorobenzene ND 0.5 ug/L ND NC 30 1,4-Dichlorobenzene ND 0.5	Bromoform	ND	0.5	•	ND			NC	30	
Cathon Tetrachloride ND 0.2 ug/L ND NC 30 Chlorobenzene ND 0.5 ug/L ND NC 30 Chlorobenzene ND 0.5 ug/L ND NC 30 Dibromochloromethane ND 0.5 ug/L ND NC 30 1.2-Dichlorobenzene ND 0.5 ug/L ND NC 30 1.3-Dichlorobenzene ND 0.5 ug/L ND NC 30 1.4-Dichlorobenzene ND 0.5 ug/L ND NC 30 1.1-Dichlorobethane ND 0.5 ug/L ND NC 30 1.2-Dichloropethane ND 0.5 ug/L ND NC 30 1.2-Dichloropethylene ND 0.5 ug/L ND NC 30 1.2-Dichloropethylene ND 0.5 ug/L ND NC 30 1.2-Dichloropethylene ND 0	Bromomethane			•				NC	30	
Chloroberzene ND 0.5 ug/L ND				•						
Choronom ND 0.5 ug/L ND				•						
Dibmochloromethane ND 0.5 ug/L ND NC 30 Dichlorodifluoromethane ND 1.0 ug/L ND NC 30 1.2-Dichlorobenzene ND 0.5 ug/L ND NC 30 1.3-Dichlorobenzene ND 0.5 ug/L ND NC 30 1.4-Dichlorobenzene ND 0.5 ug/L ND NC 30 1.4-Dichlorobenzene ND 0.5 ug/L ND NC 30 1.4-Dichloroethylene ND 0.5 ug/L ND NC 30 1.2-Dichloroethylene ND 0.5 ug/L ND NC 30 1.2-Dichlorophypene ND				•						
Dicklorodifuoromethane ND 1.0 ug/L ND ND NC 30 1.2-Dickloroberzene ND 0.5 ug/L ND NC 30 1.4-Dickloroberzene ND 0.5 ug/L ND NC 30 1.4-Dickloroberzene ND 0.5 ug/L ND NC 30 1.4-Dickloroethane ND 0.5 ug/L ND NC 30 1.1-Dickloroethylene ND 0.5 ug/L ND NC 30 1.1-Dickloroethylene ND 0.5 ug/L ND NC 30 1.1-Dickloroethylene ND 0.5 ug/L ND NC 30 cis-1.2-Dickloroethylene ND 0.5 ug/L ND NC 30 cis-1.2-Dickloroethylene ND 0.5 ug/L ND NC 30 cis-1.2-Dickloroethylene ND 0.5 ug/L ND NC 30 tanas-1.2-Dick										
1.2-Dichlorobenzene ND 0.5 ug/L ND <				•						
1,3-Dicklorobenzene ND 0.5 ug/L ND ND NC 30 1,4-Dicklorobenzene ND 0.5 ug/L ND NC 30 1,2-Dickloroethane ND 0.5 ug/L ND NC 30 1,2-Dickloroethane ND 0.5 ug/L ND NC 30 1,2-Dickloroethylene ND 0.5 ug/L ND NC 30 cis-1,2-Dickloroethylene ND 0.5 ug/L ND NC 30 cis-1,3-Dickloropropane ND 0.5 ug/L ND NC 30 cis-1,3-Dickloropropane ND 0.5 ug/L ND NC 30 cis-1,3-Dickloropropylene ND 0.5 ug/L ND NC 30 Ethylene dibromide (dibromoethane, 1,2: ND 0.5 ug/L ND NC 30 Ethylene dibromide (dibromoethane, 1,2: ND 0.5 ug/L ND NC 30 Methyl Ethyl Ketone (2-Butanone) ND 5.0 ug/L ND N				•						
1.4-DichlorobenzeneND0.5ug/LNDNDNC301.1-DichloroethaneND0.5ug/LNDNC301.2-DichloroethyleneND0.5ug/LNDNC301.2-DichloroethyleneND0.5ug/LNDNC30cis-1.2-DichloroethyleneND0.5ug/LNDNC301.2-DichloroethyleneND0.5ug/LNDNC301.2-DichloroethyleneND0.5ug/LNDNC301.2-DichloropropaneND0.5ug/LNDNC30cis-1.3-DichloropropyleneND0.5ug/LNDNC30Ethylene dibromide (dibromoethane, 1.2ND0.5ug/LNDNC30HexaneND1.0ug/LNDNC30HexaneND5.0ug/LNDNC30Hethyle Ethyl Ketone (2-Butanone)ND5.0ug/LNDNC30Methyl Ethyl Ketone (2-Butanone)ND5.0ug/LNDNC30Methyle Ethyl Ketone (2-Butanone)ND5.0ug/LNDNC30Methyle Ethyl Ketone (2-Butanone)ND5.0ug/LNDNC30Methyle Ethyle ethileND0.5ug/LNDNC301.1.2-TertachloroethaneND0.5ug/LNDNC301.1.2-EthyleneND0.5<	,			0						
1,1-Dichloroethane ND 0.5 ug/L ND ND 30 1,2-Dichloroethylene ND 0.5 ug/L ND NC 30 1,1-Dichloroethylene ND 0.5 ug/L ND NC 30 cis-1,2-Dichloroethylene ND 0.5 ug/L ND NC 30 trans-1,2-Dichloroethylene ND 0.5 ug/L ND NC 30 1,2-Dichloroethylene ND 0.5 ug/L ND NC 30 cis-1,3-Dichloroepropylene ND 0.5 ug/L ND NC 30 trans-1,3-Dichloropropylene ND 0.5 ug/L ND NC 30 trans-1,3-Dichloropropylene ND 0.5 ug/L ND NC 30 Ethylenzene ND 0.5 ug/L ND NC 30 Hexane ND 5.0 ug/L ND NC 30 Methyl Ethyl Ketone (2-Butanone) ND 5.0 ug/L ND NC 30 Methyl				-						
1/2-Dichloroethane ND 0.5 ug/L ND NC 30 1,1-Dichloroethylene ND 0.5 ug/L ND NC 30 cis1,2-Dichloroethylene ND 0.5 ug/L ND NC 30 1,2-Dichloroethylene ND 0.5 ug/L ND NC 30 1,2-Dichloroptopane ND 0.5 ug/L ND NC 30 cis1,3-Dichloroptopylene ND 0.5 ug/L ND NC 30 Ethylene dibromide (dibromoethane, 1,2 ND 0.5 ug/L ND NC 30 Hexane ND 1.0 ug/L ND NC 30 Hethyl Ethyl Ketone (2-Butanone) ND 5.0 ug/L ND NC 30 Methyl Ethyl Ketone ND 5.0 ug/L ND NC 30 Methyl Ethyl Ketone ND 5.0 ug/L ND NC 30 Methyl Ethyl Ketone ND 5.0 ug/L ND NC 30 1,1,1,				•						
1,1-Dichloroethylene ND 0.5 ug/L ND NC 30 cis 1,2-Dichloroethylene ND 0.5 ug/L ND NC 30 trans-1,2-Dichloroethylene ND 0.5 ug/L ND NC 30 1,2-Dichloropropane ND 0.5 ug/L ND NC 30 1,2-Dichloropropylene ND 0.5 ug/L ND NC 30 trans-1,3-Dichloropropylene ND 0.5 ug/L ND NC 30 Ethylbenzene ND 0.5 ug/L ND NC 30 Ethylene dibromide (dibromoethane, 1,2 ND 0.2 ug/L ND NC 30 Methyl Ethyl Ketone (2-Butanone) ND 5.0 ug/L ND NC 30 Methyl Isobutyl Ketone ND 0.5 ug/L ND NC 30 Methylene Chloride ND 0.5 ug/L ND NC 30 Styrene ND 0.5 ug/L ND NC 30 <	,			•						
cis-1,2-Dichloroethylene ND 0.5 ug/L ND NC 30 trans-1,2-Dichloroethylene ND 0.5 ug/L ND NC 30 1,2-Dichloropropane ND 0.5 ug/L ND NC 30 cis-1,3-Dichloropropylene ND 0.5 ug/L ND NC 30 Ethylene dibromide (dibromoethane, 1,2 ND 0.5 ug/L ND NC 30 Ethylene dibromide (dibromoethane, 1,2 ND 0.5 ug/L ND NC 30 Methyl Ethyl Ketone (2-Butanone) ND 5.0 ug/L ND NC 30 Methyl tort-butyl ether ND 5.0 ug/L ND NC 30 Methyl tort-butyl ether ND 5.0 ug/L ND NC 30 Styrene ND 0.5 ug/L ND NC 30 1,1,2-Tetrachloroethane ND 0.5 ug/L ND NC 30 <t< td=""><td>,</td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	,			-						
trans-1,2-Dichloroofthylene ND 0.5 ug/L ND ND NC 30 1,2-Dichloropropane ND 0.5 ug/L ND NC 30 cis:1,3-Dichloropropylene ND 0.5 ug/L ND NC 30 trans-1,3-Dichloropropylene ND 0.5 ug/L ND NC 30 Ethylbenzene ND 0.5 ug/L ND NC 30 Ethylbenzene ND 0.5 ug/L ND NC 30 Hexane ND 1.0 ug/L ND NC 30 Methyl Ethyl Ketone (2-Butanone) ND 5.0 ug/L ND NC 30 Methyl Isobutyl Ketone ND 5.0 ug/L ND NC 30 Methyl Isobutyl Ketone ND 5.0 ug/L ND NC 30 Methyl Isobutyl Ketone ND 5.0 ug/L ND NC 30 Styrene ND 0.5 ug/L ND NC 30 1,1,2.Tetrac				•						
1,2-Dichloropropylene ND 0.5 ug/L ND NC 30 cis-1,3-Dichloropropylene ND 0.5 ug/L ND NC 30 trans-1,3-Dichloropropylene ND 0.5 ug/L ND NC 30 Ethylenzene ND 0.5 ug/L ND NC 30 Ethylenzene ND 0.5 ug/L ND NC 30 Hexane ND 0.2 ug/L ND NC 30 Methyl Ethyl Ketone (2-Butanone) ND 5.0 ug/L ND NC 30 Methyl terbulyl ether ND 5.0 ug/L ND NC 30 Methyl terbulyl ether ND 5.0 ug/L ND NC 30 Styrene ND 0.5 ug/L ND NC 30 1,1,2-Tetrachloroethane ND 0.5 ug/L ND NC 30 1,1,1,2-Tetrachloroethylene ND 0.5 ug/L ND NC 30 1,1,1,2-Tichloroethane				•						
cis-1,3-Dichloropropylene ND 0.5 ug/L ND NC 30 trans-1,3-Dichloropropylene ND 0.5 ug/L ND NC 30 Ethylbenzene ND 0.5 ug/L ND NC 30 Ethylene dibromide (dibromoethane, 1,2: ND 0.2 ug/L ND NC 30 Hexane ND 1.0 ug/L ND NC 30 Methyl Ethyl Ketone (2-Butanone) ND 5.0 ug/L ND NC 30 Methyl Isobutyl Ketone ND 2.0 ug/L ND NC 30 Methyl Isobutyl Ketone ND 5.0 ug/L ND NC 30 Methyl Isobutyl Ketone ND 0.5 ug/L ND NC 30 Methyl Isobutyl Ketone ND 0.5 ug/L ND NC 30 Styrene ND 0.5 ug/L ND NC 30 1,1,1.2-Tietrachloroethane<	•			•						
trans-1,3-Dichloropropylene ND 0.5 ug/L ND NC 30 Ethylbenzene ND 0.5 ug/L ND NC 30 Ethylbenzene ND 0.2 ug/L ND NC 30 Ethylene dibromide (dibromoethane, 1,2 ND 0.2 ug/L ND NC 30 Hexane ND 1.0 ug/L ND NC 30 Methyl Ethyl Ketone (2-Butanone) ND 5.0 ug/L ND NC 30 Methyl Isrbutyl Ketone (2-Butanone) ND 5.0 ug/L ND NC 30 Methyl Isrbutyl Ketone (2-Butanone) ND 5.0 ug/L ND NC 30 Methyl Isrbutyl Ketone (2-Butanone) ND 5.0 ug/L ND NC 30 Methyl Isrbutyl Ketone (2-Butanone) ND 5.0 ug/L ND NC 30 Methyl Isrbutyl Ketone (2-Butanone) ND 0.5 ug/L ND NC	· · · ·			•						
Ethylenzene ND 0.5 ug/L ND NC 30 Ethylene dibromide (dibromoethane, 1,2: ND 0.2 ug/L ND NC 30 Hexane ND 1.0 ug/L ND NC 30 Methyl Ethyl Ketone (2-Butanone) ND 5.0 ug/L ND NC 30 Methyl Isobutyl Ketone (2-Butanone) ND 5.0 ug/L ND NC 30 Methyl Ethyl Ketone (2-Butanone) ND 5.0 ug/L ND NC 30 Methyl Isobutyl Ketone ND 5.0 ug/L ND NC 30 Methylene Chloride ND 5.0 ug/L ND NC 30 Styrene ND 0.5 ug/L ND NC 30 1,1,2.2-Tetrachloroethane ND 0.5 ug/L ND NC 30 1,1,1.2-Trichloroethane ND 0.5 ug/L ND NC 30 1,1,2-Trichlo				•						
Ethylene dibromide (dibromoethane, 1,2: ND 0.2 ug/L ND ND ND ND ND ND ND ND ND NC 30 Hexane ND 1.0 ug/L ND NC 30 Methyl Isbutyl Ketone (2-Butanone) ND 5.0 ug/L ND NC 30 Methyl Isrbutyl Ketone ND 5.0 ug/L ND NC 30 Methyl Isrbutyl Ketone ND 5.0 ug/L ND NC 30 Methyl Isrbutyl Ketone ND 5.0 ug/L ND NC 30 Methyl Isrbutyl Ketone ND 5.0 ug/L ND NC 30 Methyl Isrbutyl Ethutyl Isrbutyl Ketone ND 0.5 ug/L ND NC 30 Styrene ND 0.5 ug/L ND NC 30 11,1,2.7 NC 30 Titrachoroethane ND 0.5 ug/L ND NC 30 Toluene ND 0.5 ug/L ND NC 30 <td></td> <td></td> <td></td> <td>•</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>				•						
Hexane ND 1.0 ug/L ND NC 30 Methyl Ethyl Ketone (2-Butanone) ND 5.0 ug/L ND NC 30 Methyl Isobutyl Ketone ND 5.0 ug/L ND NC 30 Methyl Iethoutyl Ether ND 2.0 ug/L ND NC 30 Methyl Iethoutyl Ether ND 5.0 ug/L ND NC 30 Methyl Iethoutyl Ether ND 5.0 ug/L ND NC 30 Methyl Iethoutyl Ether ND 0.5 ug/L ND NC 30 Styrene ND 0.5 ug/L ND NC 30 1,1,2,2-Tetrachloroethane ND 0.5 ug/L ND NC 30 Tetrachloroethylene ND 0.5 ug/L ND NC 30 1,1,2-Trichloroethane ND 0.5 ug/L ND NC 30 1,1,2-Trichloroethylene ND										
Methyl Ethyl Ketone (2-Butanone) ND 5.0 ug/L ND NC 30 Methyl Isobutyl Ketone ND 5.0 ug/L ND NC 30 Methyl Isobutyl Ketone ND 5.0 ug/L ND NC 30 Methyl Isobutyl Ketone ND 2.0 ug/L ND NC 30 Methyl Isobutyl Ketone ND 5.0 ug/L ND NC 30 Methylene Chloride ND 0.5 ug/L ND NC 30 Styrene ND 0.5 ug/L ND NC 30 1,1,2-Tetrachloroethane ND 0.5 ug/L ND NC 30 1,1,2-Tetrachloroethane ND 0.5 ug/L ND NC 30 1,1,2-Tetrachloroethane ND 0.5 ug/L ND NC 30 1,1,2-Trichloroethane ND 0.5 ug/L ND NC 30 1,1,2-Trichloroethane				•						
Methyl Isobutyl Ketone ND 5.0 ug/L ND NC 30 Methyl Iert-butyl ether ND 2.0 ug/L ND NC 30 Methylene Chloride ND 5.0 ug/L ND NC 30 Styrene ND 0.5 ug/L ND NC 30 1,1,1,2-Tetrachloroethane ND 0.5 ug/L ND NC 30 1,1,1,2-Tetrachloroethane ND 0.5 ug/L ND NC 30 Tetrachloroethane ND 0.5 ug/L ND NC 30 Toluene ND 0.5 ug/L ND NC 30 1,1,1-Trichloroethane ND 0.5 ug/L ND NC 30 1,1,1-Trichloroethane ND 0.5 ug/L ND NC 30 1,1,2-Trichloroethylene ND 0.5 ug/L ND NC 30 Trichloroethylene ND <td< td=""><td></td><td></td><td></td><td>•</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>				•						
Methyl tert-butyl ether ND 2.0 ug/L ND ND Styrene Methylene Chloride ND 5.0 ug/L ND NC 30 Styrene ND 0.5 ug/L ND NC 30 1,1,1,2-Tetrachloroethane ND 0.5 ug/L ND NC 30 1,1,2,2-Tetrachloroethane ND 0.5 ug/L ND NC 30 1,1,1-Trichloroethane ND 0.5 ug/L ND NC 30 1,1,2-Trichloroethane ND 0.5 ug/L ND NC 30 1,1,2-Trichloroethane ND 0.5 ug/L ND NC 30 Trichloroethane				•						
Methylene Chloride ND 5.0 ug/L ND ND Sol ug/L ND ND Sol Sol Sol ND ND Sol Ug/L ND ND Sol Sol Sol Sol Sol ND Sol Ug/L ND ND Sol Sol <ths< td=""><td></td><td></td><td></td><td>•</td><td></td><td></td><td></td><td></td><td></td><td></td></ths<>				•						
Styrene ND 0.5 ug/L ND NC 30 1,1,1,2-Tetrachloroethane ND 0.5 ug/L ND NC 30 1,1,2,2-Tetrachloroethane ND 0.5 ug/L ND NC 30 1,1,2,2-Tetrachloroethane ND 0.5 ug/L ND NC 30 Tetrachloroethylene ND 0.5 ug/L ND NC 30 Toluene ND 0.5 ug/L ND NC 30 1,1,2-Trichloroethane ND 0.5 ug/L ND NC 30 Trichloroethylene ND 0.5 ug/L ND NC 30 Trichlorofluoromethane ND				-						
1,1,2-Tetrachloroethane ND 0.5 ug/L ND NC 30 1,1,2,2-Tetrachloroethane ND 0.5 ug/L ND NC 30 Tetrachloroethylene ND 0.5 ug/L ND NC 30 Toluene ND 0.5 ug/L ND NC 30 Toluene ND 0.5 ug/L ND NC 30 1,1,1-Trichloroethane ND 0.5 ug/L ND NC 30 1,1,1-Trichloroethane ND 0.5 ug/L ND NC 30 1,1,1-Trichloroethane ND 0.5 ug/L ND NC 30 1,1,2-Trichloroethane ND 0.5 ug/L ND NC 30 Trichloroethylene ND 0.5 ug/L ND NC 30 Trichlorofluoromethane ND 0.5 ug/L ND NC 30 Vinyl chloride ND 0.5 ug/L ND NC 30 o-Xylene ND 0.5										
1,1,2,2-Tetrachloroethane ND 0.5 ug/L ND NC 30 Tetrachloroethylene ND 0.5 ug/L ND NC 30 Toluene ND 0.5 ug/L ND NC 30 Toluene ND 0.5 ug/L ND NC 30 1,1,1-Trichloroethane ND 0.5 ug/L ND NC 30 1,1,2-Trichloroethane ND 0.5 ug/L ND NC 30 1,1,2-Trichloroethane ND 0.5 ug/L ND NC 30 1,1,2-Trichloroethane ND 0.5 ug/L ND NC 30 Trichloroethylene ND 0.5 ug/L ND NC 30 Trichlorofluoromethane ND 0.5 ug/L ND NC 30 Vinyl chloride ND 0.5 ug/L ND NC 30 o-Xylene ND 0.5 ug/L ND NC 30 o-Xylene ND 0.5 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>										
Tetrachloroethylene ND 0.5 ug/L ND NC 30 Toluene ND 0.5 ug/L ND NC 30 1,1,1-Trichloroethane ND 0.5 ug/L ND NC 30 1,1,2-Trichloroethane ND 0.5 ug/L ND NC 30 1,1,2-Trichloroethane ND 0.5 ug/L ND NC 30 1,1,2-Trichloroethane ND 0.5 ug/L ND NC 30 Trichloroethylene ND 0.5 ug/L ND NC 30 Trichlorofluoromethane ND 1.0 ug/L ND NC 30 Vinyl chloride ND 0.5 ug/L ND NC 30 m,p-Xylenes ND 0.5 ug/L ND NC 30 o-Xylene ND 0.5 ug/L ND NC 30 Surrogate: Dibromofluorobenzene 93.4 ug/L				•						
Toluene ND 0.5 ug/L ND NC 30 1,1,1-Trichloroethane ND 0.5 ug/L ND NC 30 1,1,2-Trichloroethane ND 0.5 ug/L ND NC 30 1,1,2-Trichloroethane ND 0.5 ug/L ND NC 30 Trichloroethylene ND 0.5 ug/L ND NC 30 Trichlorofluoromethane ND 1.0 ug/L ND NC 30 Vinyl chloride ND 0.5 ug/L ND NC 30 m,p-Xylenes ND 0.5 ug/L ND NC 30 o-Xylene ND 0.5 ug/L ND NC 30 Surrogate: 4-Bromofluorobenzene 93.4 ug/L 117 50-140 50-140 Surrogate: Dibromofluoromethane 70.4 ug/L 87.9 50-140 50-140				•						
1,1,1-Trichloroethane ND 0.5 ug/L ND NC 30 1,1,2-Trichloroethane ND 0.5 ug/L ND NC 30 1,1,2-Trichloroethane ND 0.5 ug/L ND NC 30 Trichloroethylene ND 0.5 ug/L ND NC 30 Trichlorofluoromethane ND 1.0 ug/L ND NC 30 Vinyl chloride ND 0.5 ug/L ND NC 30 m,p-Xylenes ND 0.5 ug/L ND NC 30 o-Xylene ND 0.5 ug/L ND NC 30 Surrogate: 4-Bromofluorobenzene 93.4 ug/L ND NC 30 Surrogate: Dibromofluoromethane 70.4 ug/L 87.9 50-140 50-140	,			•						
1,1,2-Trichloroethane ND 0.5 ug/L ND NC 30 Trichloroethylene ND 0.5 ug/L ND NC 30 Trichlorofluoromethane ND 1.0 ug/L ND NC 30 Vinyl chloride ND 0.5 ug/L ND NC 30 m,p-Xylenes ND 0.5 ug/L ND NC 30 o-Xylene ND 0.5 ug/L ND NC 30 Surrogate: 4-Bromofluorobenzene 93.4 ug/L ND NC 30 Surrogate: Dibromofluoromethane 70.4 ug/L 87.9 50-140 14				-						
Trichloroethylene ND 0.5 ug/L ND NC 30 Trichlorofluoromethane ND 1.0 ug/L ND NC 30 Vinyl chloride ND 0.5 ug/L ND NC 30 m,p-Xylenes ND 0.5 ug/L ND NC 30 o-Xylene ND 0.5 ug/L ND NC 30 Surrogate: 4-Bromofluorobenzene 93.4 ug/L ND 50-140 117 Surrogate: Dibromofluoromethane 70.4 ug/L 87.9 50-140 140				•						
Trichlorofluoromethane ND 1.0 ug/L ND NC 30 Vinyl chloride ND 0.5 ug/L ND NC 30 m,p-Xylenes ND 0.5 ug/L ND NC 30 o-Xylene ND 0.5 ug/L ND NC 30 Surrogate: 4-Bromofluorobenzene 93.4 ug/L ND 50-140 117 Surrogate: Dibromofluoromethane 70.4 ug/L 87.9 50-140 117				•						
Vinyl chloride ND 0.5 ug/L ND NC 30 m,p-Xylenes ND 0.5 ug/L ND NC 30 o-Xylene ND 0.5 ug/L ND NC 30 surrogate: 4-Bromofluorobenzene 93.4 ug/L 117 50-140 50-140 Surrogate: Dibromofluoromethane 70.4 ug/L 87.9 50-140 50-140	,			-						
m.p-Xylenes ND 0.5 ug/L ND NC 30 o-Xylene ND 0.5 ug/L ND NC 30 surrogate: 4-Bromofluorobenzene 93.4 ug/L 117 50-140 Surrogate: Dibromofluoromethane 70.4 ug/L 87.9 50-140				•						
o-Xylene ND 0.5 ug/L ND NC 30 Surrogate: 4-Bromofluorobenzene 93.4 ug/L 117 50-140 Surrogate: Dibromofluoromethane 70.4 ug/L 87.9 50-140	5			•						
Surrogate: 4-Bromofluorobenzene 93.4 ug/L 117 50-140 Surrogate: Dibromofluoromethane 70.4 ug/L 87.9 50-140				•						
Surrogate: Dibromofluoromethane 70.4 ug/L 87.9 50-140			0.5		ND	447	50 440	NC	30	
с	-									
Surrogate: Toluene-d8 74.5 ug/L 93.2 50-140	5			-						
	Surrogate: Toluene-d8	74.5		ug/L		93.2	50-140			

Method Quality Control: Spike

Report Date: 26-Jun-2020

Order Date: 19-Jun-2020

Project Description: PE4914

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	1760	25	ug/L	ND	88.1	68-117			
Volatiles									
Acetone	121	5.0	ug/L	ND	121	50-140			
Benzene	41.0	0.5	ug/L	ND	103	60-130			
Bromodichloromethane	45.4	0.5	ug/L	ND	114	60-130			
Bromoform	42.6	0.5	ug/L	ND	106	60-130			
Bromomethane	46.0	0.5	ug/L	ND	115	50-140			
Carbon Tetrachloride	45.5	0.2	ug/L	ND	114	60-130			
Chlorobenzene	44.0	0.5	ug/L	ND	110	60-130			
Chloroform	45.7	0.5	ug/L	ND	114	60-130			
Dibromochloromethane	44.3	0.5	ug/L	ND	111	60-130			
Dichlorodifluoromethane	46.1	1.0	ug/L	ND	115	50-140			
1,2-Dichlorobenzene	44.8	0.5	ug/L	ND	112	60-130			
1,3-Dichlorobenzene	48.9	0.5	ug/L	ND	122	60-130			
1,4-Dichlorobenzene	39.4	0.5	ug/L	ND	98.5	60-130			
1,1-Dichloroethane	42.3	0.5	ug/L	ND	106	60-130			
1,2-Dichloroethane	44.2	0.5	ug/L	ND	110	60-130			
1,1-Dichloroethylene	36.7	0.5	ug/L	ND	91.7	60-130			
cis-1,2-Dichloroethylene	49.4	0.5	ug/L	ND	123	60-130			
trans-1,2-Dichloroethylene	39.9	0.5	ug/L	ND	99.7	60-130			
1,2-Dichloropropane	38.8	0.5	ug/L	ND	97.0	60-130			
cis-1,3-Dichloropropylene	40.0	0.5	ug/L	ND	99.9	60-130			
trans-1,3-Dichloropropylene	41.2	0.5	ug/L	ND	103	60-130			
Ethylbenzene	45.9	0.5	ug/L	ND	115	60-130			
Ethylene dibromide (dibromoethane, 1,2	41.7	0.2	ug/L	ND	104	60-130			
Hexane	49.3	1.0	ug/L	ND	123	60-130			
Methyl Ethyl Ketone (2-Butanone)	89.4	5.0	ug/L	ND	89.4	50-140			
Methyl Isobutyl Ketone	101	5.0	ug/L	ND	101	50-140			
Methyl tert-butyl ether	122	2.0	ug/L	ND	122	50-140			
Methylene Chloride	45.8	5.0	ug/L	ND	115	60-130			
Styrene	42.9	0.5	ug/L	ND	107	60-130			
1,1,1,2-Tetrachloroethane	40.2	0.5	ug/L	ND	101	60-130			
1,1,2,2-Tetrachloroethane	40.6	0.5	ug/L	ND	102	60-130			
Tetrachloroethylene	45.0	0.5	ug/L	ND	112	60-130			
Toluene	45.6	0.5	ug/L	ND	114	60-130			
1,1,1-Trichloroethane	48.9	0.5	ug/L	ND	122	60-130			
1,1,2-Trichloroethane	46.9	0.5	ug/L	ND	117	60-130			
Trichloroethylene	44.4	0.5	ug/L	ND	111	60-130			
Trichlorofluoromethane	43.9	1.0	ug/L	ND	110	60-130			
Vinyl chloride	44.1	0.5	ug/L	ND	110	50-140			
m,p-Xylenes	98.4	0.5	ug/L	ND	123	60-130			
o-Xylene	48.5	0.5	ug/L	ND	121	60-130			
Surrogate: 4-Bromofluorobenzene	62.2		ug/L		77.7	50-140			
Surrogate: Dibromofluoromethane	70.3		ug/L		87.9	50-140			
Surrogate: Toluene-d8	68.0		ug/L		85.0	50-140			

Qualifier Notes:

None

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference. NC: Not Calculated

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.

- F1 range corrected for BTEX.

- F2 to F3 ranges corrected for appropriate PAHs where available.
- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.
- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.
- When reported, data for F4G has been processed using a silica gel cleanup.

Paracel ID: 2026014			Head Office 300-2319 St. Laurent Blvd. Ottawa, Ontario K1G 4J8 p: 1-800-749-1947 e: paracel@paracellabs.com www.paracellabs.com			Paracel Order Number (Lab Use Only)						Chain Of Custody (Lab Use Only) Nº 125758								
Client Name: PATERSON				Proje	t Ref:	PE4914						- (T			F	age /	of	L	
Contact Name: MARK D'A	Rey			Quote	; #:											Turr	arour	nd Tin	ne	
Address: 154 (danse		1				067									1 day	y			🗆 3 day	ļ
IST (alonna	e ken	C		E-mai	l:	duna	a.t								2 day	y			🛿 Regul	ar
Telephone: 613 - 226 -	7381					n down of	puteson	g neu	p. (6			٥	Date	Requ	uired:				
Regulation 153/04	Other Re	gulation	N	latrix 1	Type:	S (Soil/Sed.) GW (C	Fround Water)							•						
Table 1 Res/Park Med/Fine	REG 558	D PWQO	1		rface V	Vater) SS (Storm/Sa	anitary Sewer)						R	equi	red A	Analys	ils			
Table 2 Ind/Comm Coarse	🗆 ССМЕ				P (P	aint) A (Air) O (Ot	her)					Τ		Τ						
🗹 Table 3 🛛 Agri/Other	🛛 SU - Sani	🛛 SU - Storm			e rs			PHCs F1-F4+BTEX												
Table	Mun:			am	of Containers	Sample Taken			F		Metals by ICP				F4					
For RSC: Yes No	Other:		trix	Air Volume	f Cor	Logo Contraction of the second s			S	łs	tals b		_	2	1				7 - 11 - 0 8	
Sample ID/Location	n Name		Matrix	Air	0 #	Date	Time	РНО	vocs	PAHs	Me	ВН	2 V	2	4				-	
1 BHI - 14- GW	2	р. 1	66		3	June 19/20			X	, î					X					
2 DUPI			Gv		2	\checkmark			χ				Τ						1 - <u>}</u> _	
3					1. Y	1. R. (1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	· •									9 - 21 1	n. 1	- 1		
4									Π					┢						
5								+	Н	-		+	+	┢	+					_
6	-							+	\mathbf{H}	-	+	+	+	╋	+			1.1		_
7								+	\square	-	+	+	+	╀	+		_			
8								+		-	-	+	+	╉	-					
9	ta de la composición de la com							+	$\left \cdot \right $	-	+	+	+	╉	\dashv					
10								-	$\left \cdot \right $	_	-	+	+	+	\rightarrow				э Г	
Comments:																				
ý s												N	lethod	d of D	Deliver	y: WE	GV			
Relinquished By (Sign)	-	Received By Dr	iver/De	pot:			Received at Lab:	1	1	-		V	erified	i By:		14		5		
Relinquished By (Print):		Date/Time:					Date/Time:	1	1.	70-	-	0	ate/Ti	me:	2	2	2	2	mic	22
Date/Time:)	7	Temperature:				°C	Temperature:	720 1/22				$\frac{O_{6}-22-2}{Verified:} = \frac{B_{V}}{B_{V}}$								
Chain of Custody (Env.) xisx	٥					Revision 3.0		9.9				P		areu.	-	51.				

RELIABLE.

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

Paterson Group Consulting Engineers

154 Colonnade Road South Nepean, ON K2E 7J5 Attn: Mark D'Arcy

Client PO: 30542 Project: PE4914 Custody: 128052

Report Date: 12-Aug-2020 Order Date: 7-Aug-2020

Order #: 2032518

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Client ID Paracel ID 2032518-01 BH4-20-SS3 2032518-02 BH10-20-SS20

Approved By:

Mark Foto

Mark Foto, M.Sc. Lab Supervisor

Any use of these results implies your agreement that our total liability in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.

Report Date: 12-Aug-2020

Order #: 2032518

Order Date: 7-Aug-2020

Project Description: PE4914

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
BTEX by P&T GC-MS	EPA 8260 - P&T GC-MS	10-Aug-20	10-Aug-20
PCBs, total	SW846 8082A - GC-ECD	10-Aug-20	11-Aug-20
PHC F1	CWS Tier 1 - P&T GC-FID	10-Aug-20	10-Aug-20
PHCs F2 to F4	CWS Tier 1 - GC-FID, extraction	7-Aug-20	11-Aug-20
Solids, %	Gravimetric, calculation	10-Aug-20	10-Aug-20

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Client PO: 30542

Report Date: 12-Aug-2020

Order Date: 7-Aug-2020

Project Description: PE4914

	-				
	Client ID:	BH4-20-SS3	BH10-20-SS20	-	-
	Sample Date:	06-Aug-20 11:00	06-Aug-20 11:00	-	-
	Sample ID:	2032518-01	2032518-02	-	-
	MDL/Units	Soil	Soil	-	-
Physical Characteristics					
% Solids	0.1 % by Wt.	59.6	56.2	-	-
Volatiles					
Benzene	0.02 ug/g dry	<0.02	<0.02	-	-
Ethylbenzene	0.05 ug/g dry	<0.05	<0.05	-	-
Toluene	0.05 ug/g dry	<0.05	<0.05	-	-
m,p-Xylenes	0.05 ug/g dry	<0.05	<0.05	-	-
o-Xylene	0.05 ug/g dry	<0.05	<0.05	-	-
Xylenes, total	0.05 ug/g dry	<0.05	<0.05	-	-
Toluene-d8	Surrogate	121%	121%	-	-
Hydrocarbons			i i		
F1 PHCs (C6-C10)	7 ug/g dry	<7	<7	-	-
F2 PHCs (C10-C16)	4 ug/g dry	<4	<4	-	-
F3 PHCs (C16-C34)	8 ug/g dry	<8	<8	-	-
F4 PHCs (C34-C50)	6 ug/g dry	<6	<6	-	-
PCBs	· · ·		· · ·		
PCBs, total	0.05 ug/g dry	<0.05	-	-	-
Decachlorobiphenyl	Surrogate	111%	-	-	-

Report Date: 12-Aug-2020

Order Date: 7-Aug-2020

Project Description: PE4914

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	7	ug/g						
F2 PHCs (C10-C16)	ND	4	ug/g						
F3 PHCs (C16-C34)	ND	8	ug/g						
F4 PHCs (C34-C50)	ND	6	ug/g						
PCBs									
PCBs, total	ND	0.05	ug/g						
Surrogate: Decachlorobiphenyl	0.107		ug/g		107	60-140			
Volatiles									
Benzene	ND	0.02	ug/g						
Ethylbenzene	ND	0.05	ug/g						
Toluene	ND	0.05	ug/g						
m,p-Xylenes	ND	0.05	ug/g						
o-Xylene	ND	0.05	ug/g						
Xylenes, total	ND	0.05	ug/g						
Surrogate: Toluene-d8	3.86		ug/g		121	50-140			

Client PO: 30542

Report Date: 12-Aug-2020

Order Date: 7-Aug-2020

Project Description: PE4914

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	l laite	Source		%REC	חחח	RPD	Notes
, maryte	Result	Linint	Units	Result	%REC	Limit	RPD	Limit	notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	7	ug/g dry	ND			NC	40	
F2 PHCs (C10-C16)	ND	4	ug/g dry	ND			NC	30	
F3 PHCs (C16-C34)	ND	8	ug/g dry	ND			NC	30	
F4 PHCs (C34-C50)	ND	6	ug/g dry	ND			NC	30	
PCBs									
PCBs, total	ND	0.05	ug/g dry	ND			NC	40	
Surrogate: Decachlorobiphenyl	0.130		ug/g dry		110	60-140			
Physical Characteristics									
% Solids	83.0	0.1	% by Wt.	83.9			1.1	25	
Volatiles			-						
Benzene	ND	0.02	ug/g dry	ND			NC	50	
Ethylbenzene	ND	0.05	ug/g dry	ND			NC	50	
Toluene	ND	0.05	ug/g dry	ND			NC	50	
m,p-Xylenes	ND	0.05	ug/g dry	ND			NC	50	
o-Xylene	ND	0.05	ug/g dry	ND			NC	50	
Surrogate: Toluene-d8	4.04		ug/g dry		116	50-140			

Report Date: 12-Aug-2020

Order Date: 7-Aug-2020

Project Description: PE4914

Method Quality Control: Spike

Analyte	Result	Reporting Units Source Limit Units Result		Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	197	7	ug/g	ND	98.3	80-120			
F2 PHCs (C10-C16)	84	4	ug/g	ND	92.2	60-140			
F3 PHCs (C16-C34)	222	8	ug/g	ND	99.4	60-140			
F4 PHCs (C34-C50)	160	6	ug/g	ND	113	60-140			
PCBs									
PCBs, total	0.548	0.05	ug/g	ND	116	60-140			
Surrogate: Decachlorobiphenyl	0.132		ug/g		112	60-140			
Volatiles									
Benzene	2.65	0.02	ug/g	ND	66.4	60-130			
Ethylbenzene	4.04	0.05	ug/g	ND	101	60-130			
Toluene	3.90	0.05	ug/g	ND	97.5	60-130			
m,p-Xylenes	8.07	0.05	ug/g	ND	101	60-130			
o-Xylene	4.28	0.05	ug/g	ND	107	60-130			
Surrogate: Toluene-d8	3.01		ug/g		94.2	50-140			

Qualifier Notes:

None

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference. NC: Not Calculated

Soil results are reported on a dry weight basis when the units are denoted with 'dry'. Where %Solids is reported, moisture loss includes the loss of volatile hydrocarbons.

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.

- F1 range corrected for BTEX.
- F2 to F3 ranges corrected for appropriate PAHs where available.
- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.
- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.
- When reported, data for F4G has been processed using a silica gel cleanup.

G PARA LABORATORI	ES LTD.					2032518			acel O (Lab U	lse (Only)		States -		(Lat	b Use O	stody nly) 3052	
Client Name: Poter	son r L D'			Projec	t Ref:	PE	4914						Τ		Pa	ige 🖌	of	
Contact Name: Ma	~ L D'	Arcy		Quote	#:											round		
Address:				PO #:		305	42							🗆 1 da	ıy		3	day
				E-mail	:									🗆 2 da	y		V R	egular
Telephone: 226	- 738	3/											Da	te Req	uired: _			
Regulation 153/04	Other R	egulation	N	latrix T	vpe: S	(Soil/Sed.) GW (G	round Water)						-		A		- 23	
Table 1 🗌 Res/Park 🗌 Med/Fin	e 🗆 REG 558	D pwqo			rface W	/ater) SS (Storm/Sa	nitary Sewer)						Rec	quired	Analysis			
Table 2 Ind/Comm Coarse	CCME	🗆 misa			P (P	aint) A (Air) O (Oth	her)					Τ	Τ					
Table 3 🗌 Agri/Other	🗆 SU - Sani	SU - Storm			ers			F1-F4+BTEX						N-1				
Table	Mun:			e R	Containers	Sample	Taken	-F4+			by ICP			CB				
For RSC: Yes 🗆 No	Other:		Matrix	Air Volume				Cs F1	S	1	Metals I		B (HWS)	2				
Sample ID/Locati				Air	# of	Date	Time	PHCs	VOCS	PAHs	Å Å	s S	B	X				
1 BH4-20-	223		2	2	2	Arg. 6	11:00	\lor						\checkmark				
2 BH10-20-	5520		5	1	2	2620	19			Τ		Τ						
3																		
4										1	1	\top				+		
5										╋	+	+						
6								+		╉	+	+	\vdash					+
7								+		╉	+	+	\vdash					+
8								+		+	+	+	\vdash					-
								+		+		-	Н				_	-
9								+	_	-	-	-	$\mid \mid$					-
10																		
Comments:												Met	thod o	of Delive	Y: YEI	La	UCIE	e
Relinquished By (Sign).		Received By Dri	ver/De	epot:	1	TAUE	Received at Lab:	-	ar	n		Ver	ified 8	by:	ele	m	NCIEL	
Relinquished By (Print):	DIA	Date/Time:	71	DR	17	ALSE 3 10	Date/Time: Avg 0	V			39	Date	e/Tim	e: Au	507.	1070	13	7:16
Date/Time: Apr. 7/2	020 1	Temperature:	4	0	10	°C 21	Temperature:	10.0) °(: 00	21	1.1.1.1	Verifi	-	By:	1010		
Chain of Custody (Env.) disx						Revision 3.0		10.0		103								

RELIABLE.

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

Paterson Group Consulting Engineers

154 Colonnade Road South Nepean, ON K2E 7J5 Attn: Mark D'Arcy

Client PO: 30414 Project: PE4914 Custody: 125766

Report Date: 18-Aug-2020 Order Date: 13-Aug-2020

Order #: 2033502

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID 2033502-01 2033502-02

Client ID BH4-20-GW1 BH10-20-GW1

Approved By:

Dale Robertson, BSc Laboratory Director

Any use of these results implies your agreement that our total liability in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.

Report Date: 18-Aug-2020 Order Date: 13-Aug-2020

Order #: 2033502

Project Description: PE4914

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
BTEX by P&T GC-MS	EPA 624 - P&T GC-MS	14-Aug-20	14-Aug-20
PCBs, total	EPA 608 - GC-ECD	14-Aug-20	14-Aug-20
PHC F1	CWS Tier 1 - P&T GC-FID	14-Aug-20	14-Aug-20
PHCs F2 to F4	CWS Tier 1 - GC-FID, extraction	13-Aug-20	14-Aug-20

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Client PO: 30414

Order #: 2033502

Report Date: 18-Aug-2020

Order Date: 13-Aug-2020

Project Description: PE4914

	Client ID:	BH4-20-GW1	BH10-20-GW1	-	-
	Sample Date:	13-Aug-20 12:00	13-Aug-20 12:00	-	-
	Sample ID:	2033502-01	2033502-02	-	-
	MDL/Units	Water	Water	-	-
Volatiles					
Benzene	0.5 ug/L	<0.5	<0.5	-	-
Ethylbenzene	0.5 ug/L	<0.5	<0.5	-	-
Toluene	0.5 ug/L	<0.5	<0.5	-	-
m,p-Xylenes	0.5 ug/L	<0.5	<0.5	-	-
o-Xylene	0.5 ug/L	<0.5	<0.5	-	-
Xylenes, total	0.5 ug/L	<0.5	<0.5	-	-
Toluene-d8	Surrogate	119%	119%	-	-
Hydrocarbons					
F1 PHCs (C6-C10)	25 ug/L	<25	<25	-	-
F2 PHCs (C10-C16)	100 ug/L	<100	<100	-	-
F3 PHCs (C16-C34)	100 ug/L	<100	<100	-	-
F4 PHCs (C34-C50)	100 ug/L	<100	<100	-	-
PCBs					
PCBs, total	0.05 ug/L	<0.05	-	-	-
Decachlorobiphenyl	Surrogate	94.6%	-	-	-

Client PO: 30414

Report Date: 18-Aug-2020

Order Date: 13-Aug-2020

Project Description: PE4914

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	25	ug/L						
F2 PHCs (C10-C16)	ND	100	ug/L						
F3 PHCs (C16-C34)	ND	100	ug/L						
F4 PHCs (C34-C50)	ND	100	ug/L						
PCBs									
PCBs, total Surrogate: Decachlorobiphenyl	ND 0.636	0.05	ug/L <i>ug/L</i>		127	60-140			
Volatiles									
Benzene	ND	0.5	ug/L						
Ethylbenzene	ND	0.5	ug/L						
Toluene	ND	0.5	ug/L						
m,p-Xylenes	ND	0.5	ug/L						
o-Xylene	ND	0.5	ug/L						
Xylenes, total	ND	0.5	ug/L						
Surrogate: Toluene-d8	98.9		ug/L		124	50-140			

Order #: 2033502

Report Date: 18-Aug-2020

Order Date: 13-Aug-2020

Project Description: PE4914

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	25	ug/L	ND			NC	30	
Volatiles									
Benzene	ND	0.5	ug/L	ND			NC	30	
Ethylbenzene	ND	0.5	ug/L	ND			NC	30	
Toluene	ND	0.5	ug/L	ND			NC	30	
m,p-Xylenes	ND	0.5	ug/L	ND			NC	30	
o-Xylene	ND	0.5	ug/L	ND			NC	30	
Surrogate: Toluene-d8	96.0		ug/L		120	50-140			

Method Quality Control: Spike

Report Date: 18-Aug-2020

Order Date: 13-Aug-2020

Project Description: PE4914

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	2120	25	ug/L	ND	106	68-117			
F2 PHCs (C10-C16)	1320	100	ug/L	ND	82.8	60-140			
F3 PHCs (C16-C34)	3470	100	ug/L	ND	88.5	60-140			
F4 PHCs (C34-C50)	2480	100	ug/L	ND	100	60-140			
PCBs									
PCBs, total	1.36	0.05	ug/L	ND	136	60-140			
Surrogate: Decachlorobiphenyl	0.390		ug/L		78.0	60-140			
Volatiles									
Benzene	24.3	0.5	ug/L	ND	60.7	60-130			
Ethylbenzene	30.6	0.5	ug/L	ND	76.6	60-130			
Toluene	25.6	0.5	ug/L	ND	64.0	60-130			
m,p-Xylenes	60.7	0.5	ug/L	ND	75.9	60-130			
o-Xylene	29.7	0.5	ug/L	ND	74.3	60-130			
Surrogate: Toluene-d8	82.4		ug/L		103	50-140			

Qualifier Notes: None

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference. NC: Not Calculated

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.

- F1 range corrected for BTEX.

- F2 to F3 ranges corrected for appropriate PAHs where available.

- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.

- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.

- When reported, data for F4G has been processed using a silica gel cleanup.

Order #: 2033502

Report Date: 18-Aug-2020 Order Date: 13-Aug-2020 Project Description: PE4914

CIERT Name: Partician		el ID				ent Blvd. 1G 4J8 Ilabs.com .com	Par Da			r Nun Only)					b Use (1
PATERSON	1		Quot		PE4914									Р	age (of [
Contact Name: Move D'ARC Address:	1		PO #											Turn	around	l Time	
154 Colonna	ade Read		E-ma	0	0414							-	□ 1 d			03	3 day
Telephone: 613 - 226 -	7381	0	C-1110	Mdary@patersongroup.ce								Ø 2 day □ F Date Required:			Regular		
Regulation 153/04	Other Regulation		Matrix	Type	S (Soil/Sed.) GW (C	Fround Mater											
Table 1 Res/Park Med/Fine	REG 558 PWQO			urface \	Water) SS (Storm/S	anitary Sewer)						Rec	quired	l Analys	is		
				P (1	Paint) A (Air) O (Ot	her)				Τ	Τ	Τ				T	1
	SU - Sani SU - Sto	m		ers			BTEX										
Table	Mun:	-	ame	ntain	Sample	e Taken	F1-F4+BTEX			oy ICF	1						
For RSC: Yes No	Other:	Matrix	Air Volume	of Containers			PHCs F1	Ű	Hs	Metals by ICP	-	B (HWS)	180				7
Sample ID/Location	nName	_	-	#	Date	Time	-	VOCS	PAHS	ž	ŝ	8	 				
		Gn		4	Aug 13/2020		X			_	\perp		X				
2 BH10-20-GW1		GW	-	3	Aug 13/2020	PM	X										
4			-									Ц	L				
5		-								\perp		Ц					
								_		\perp		Ц					
6																	
The second second second		_						_									
8																	
9																	
10 Comments:	1																
											Met	hod ol	f Delive		20		
Relinquished Buttign):	Received By	Driver/De	pot:			Received at Lab:	R	200			Veril	fied By	v: Q	Dal	50,	<u>r</u>	
Relinguished By (Print): Joshung Dempery	Date/Time:					Date/Time:	12 -	iri)	.0		Date	/Time	A	Re	20	2.5	1
Date/Time: Aug 13/2026	Temperature	n.			°C	Temperature:	13, 7	070 °(53	pH V	erifie	d: 0	By:	Sa	NA	201
Chain of Custody (Env.) xlsx					Revision 3.0		V	-	-		-			-			