

729-753 Ridgewood Ave

TIA Strategy Report

Prepared for:

Brigil Construction

98 Lois Gatineau, QC J8Y 3R7

Prepared by:

Parsons

1223 Michael Street North, Suite 100 Ottawa, ON K1J 7T2

Document Control Page

OLIENT.	Drigil Construction				
CLIENT:	Brigil Construction				
PROJECT NAME:	729-753 Ridgewood Ave				
REPORT TITLE:	TIA Step 4 Strategy Report				
APPLICATION TYPE	Zoning By-Law Amendment (ZBLA) Application				
PARSONS PROJECT NO:	477549 - 01000				
VERSION:	Draft				
DIGITAL MASTER:	H:\\SO\477549\1000\DOCS\Step 4 - Strategy Report\729-753 Ridgewood Strategy Report 2021-06-15.docx				
ORIGINATOR	Basel Ansari, E.I.T.				
REVIEWER:	Austin Shih, P.Eng.				
AUTHORIZATION:					
CIRCULATION LIST:	Mike Giampa				
HISTORY:	- TIA Step 1 Screening Form – March 23, 2021 - TIA Step 2 Scoping Report – March 23, 2021 - TIA Step 3 Forecasting Report – April 13, 2021 - TIA Step 4 Strategy Report – July 7, 2021				

TABLE OF CONTENTS

2.1.1. PROPOSED DEVELOPMENT 1 2.1.2. EXISTING CONDITIONS. 3 2.1.3. PLANNED CONDITIONS. 10 740 SPRINGLAND DR 10 770 BROOKFIELD RD. 10 3071 RIVERSIDE DR. 10 2.2. STUDY AREA AND TIME PERIODS. 10 2.3. EXEMPTION REVIEW. 11 3.1. DEVELOPMENT GENERATED TRAVEL DEMAND. 11 3.1.1. DEVELOPMENT GENERATED TRAVEL DEMAND. 11 3.1.1. TRIP DESTRIBUTION AND MODE SHARES. 11 3.1.2. TRIP DISTRIBUTION AND ASSIGNMENT. 16 3.2. BACKGROUND NETWORK TRAFFIC. 16 3.2.1. TRANSPORTATION NETWORK PLANS. 16 3.2.2. BACKGROUND GROWTH. 16 3.2.3. OTHER DEVELOPMENTS. 18 3.3. DEMAND RATIONALIZATION. 21 4.4. ANALYSIS. 22 4.1. DEVELOPMENT DESIGN. 22 4.2. PARKING. 22 4.3. BOUNDARY STREET DESIGN. 23 4.4. ACCESS INTERSECTION DESIGN.	DOCUM	MENT CONTROL PAGE	
2. SCOPING REPORT 2. 1. EXISTING AND PLANNED CONDITIONS	STRATE	EGY REPORT	
2.1.1. EXISTING AND PLANNED CONDITIONS	1. SCR	REENING FORM	1
2.1.1. PROPOSED DEVELOPMENT 1 2.1.2. EXISTING CONDITIONS. 3 2.1.3. PLANNED CONDITIONS. 10 770 BROOKFIELD RD. 10 3071 RIVERSIDE DR. 10 3071 RIVERSIDE DR. 10 32.2. STUDY AREA AND TIME PERIODS. 10 2.2. STUDY AREA AND TIME PERIODS. 10 3.3. EXEMPTION REVIEW. 11 3.1. DEVELOPMENT GENERATED TRAVEL DEMAND 11 3.1. DEVELOPMENT GENERATED TRAVEL DEMAND 11 3.1.1. TRIP DESTRIBUTION AND MODE SHARES. 11 3.1.2. TRIP DISTRIBUTION AND ASSIGNMENT 16 3.2. BACKGROUND NETWORK TRAFFIC. 16 3.2.1. TRANSPORTATION NETWORK PLANS 16 3.2.2. BACKGROUND GROWTH 16 3.2.3. OTHER DEVELOPMENTS 18 3.3. DEMAND RATIONALIZATION 21 4. ANALYSIS. 22 4.1. DEVELOPMENT DESIGN 22 4.2. PARKING. 22 4.3. BOUNDARY STREET DESIGN 23	2. SCC	PING REPORT	
2.1.2. EXISTING CONDITIONS	2.1.	EXISTING AND PLANNED CONDITIONS	
2.1.3. PLANNED CONDITIONS	2.1.1.	PROPOSED DEVELOPMENT	1
100 100	2.1.2.	EXISTING CONDITIONS	3
100 100	2.1.3.		
100 2.2. STUDY AREA AND TIME PERIODS			
2.2. STUDY AREA AND TIME PERIODS			
2.3. EXEMPTION REVIEW	3071 F		
3. FORECASTING REPORT	2.2.		
3.1. DEVELOPMENT GENERATED TRAVEL DEMAND	2.3.		
3.1.1. TRIP GENERATION AND MODE SHARES	3. FOR		
3.1.2. TRIP DISTRIBUTION AND ASSIGNMENT 16 3.2. BACKGROUND NETWORK TRAFFIC 16 3.2.1. TRANSPORTATION NETWORK PLANS 16 3.2.2. BACKGROUND GROWTH 16 3.2.3. OTHER DEVELOPMENTS 18 3.3. DEMAND RATIONALIZATION 21 4. ANALYSIS 22 4.1. DEVELOPMENT DESIGN 22 4.2. PARKING 22 4.3. BOUNDARY STREET DESIGN 23 4.4. ACCESS INTERSECTION DESIGN 23 4.5. TRANSPORTATION DEMAND MANAGEMENT 23 4.6. NEIGHBOURHOOD TRAFFIC MANAGEMENT 23 4.7. TRANSIT 24 4.9. INTERSECTION DESIGN 24 4.9.1. INTERSECTION CONTROL 24 4.9.2. INTERSECTION DESIGN 24 4.9.1. INTERSECTION DESIGN 24 4.9.2. INTERSECTION DESIGN 24 4.9.2. INTERSECTION DESIGN 24 5. FINDINGS, CONCLUSIONS AND RECOMMENDATIONS 27 LIST OF FIGURES 5 FIGURE 1: LOCAL CONTEXT 1 figure 2: CONCEPT PLAN. 2 FIGURE 3: ADJACENT DRIVEWAYS 5 FIGURE 6: AREA TRANSIT NETWORK	3.1.		
3.2. BACKGROUND NETWORK TRAFFIC	3.1.1.		
3.2.1. TRANSPORTATION NETWORK PLANS 16 3.2.2. BACKGROUND GROWTH 16 3.2.3. OTHER DEVELOPMENTS 18 3.3. DEMAND RATIONALIZATION 21 4. ANALYSIS 22 4.1. DEVELOPMENT DESIGN 22 4.2. PARKING 22 4.3. BOUNDARY STREET DESIGN 23 4.4. ACCESS INTERSECTION DESIGN 23 4.5. TRANSPORTATION DEMAND MANAGEMENT 23 4.6. NEIGHBOURHOOD TRAFFIC MANAGEMENT 23 4.7. TRANSIT 24 4.8. REVIEW OF NETWORK CONCEPT 24 4.9. INTERSECTION DESIGN 24 4.9.1. INTERSECTION OF SIGN 24 4.9.2. INTERSECTION OF SIGN 24 4.9.2. INTERSECTION DESIGN 24 4.9.2. INTERSECTION DESIGN 24 5. FINDINGS, CONCLUSIONS AND RECOMMENDATIONS 27 LIST OF FIGURES FIGURE 1: LOCAL CONTEXT 11 FIGURE 2: CONCEPT PLAN 25 FIGURE 3: ADJACENT DRIVEWAYS 55 FIGURE 4: EXISTING PEDESTRIAN AND CYCLING FACILITIES 75 FIGURE 6: AREA TRANSIT NETWORK 28	3.1.2.		
3.2.2. BACKGROUND GROWTH	3.2.		
3.2.3. OTHER DEVELOPMENTS 18 3.3. DEMAND RATIONALIZATION 21 4. ANALYSIS 22 4.1. DEVELOPMENT DESIGN 22 4.2. PARKING 22 4.3. BOUNDARY STREET DESIGN 23 4.4. ACCESS INTERSECTION DESIGN 23 4.5. TRANSPORTATION DEMAND MANAGEMENT 23 4.6. NEIGHBOURHOOD TRAFFIC MANAGEMENT 23 4.7. TRANSIT 24 4.8. REVIEW OF NETWORK CONCEPT 24 4.9.1 INTERSECTION DESIGN 24 4.9.2. INTERSECTION DESIGN 24 5. FINDINGS, CONCLUSIONS AND RECOMMENDATIONS 27 LIST OF FIGURES 5 FIGURE 1: LOCAL CONTEXT 1 FIGURE 2: CONCEPT PLAN 2 FIGURE 3: ADJACENT DRIVEWAYS 5 FIGURE 4: EXISTING PEDESTRIAN AND CYCLING FACILITIES 7 FIGURE 5: EXISTING ACTIVE TRANSPORTATION 7 FIGURE 6: AREA TRANSIT NETWORK 8	3.2.1.		
3.3. DEMAND RATIONALIZATION 21 4. ANALYSIS 22 4.1. DEVELOPMENT DESIGN 22 4.2. PARKING 22 4.3. BOUNDARY STREET DESIGN 23 4.4. ACCESS INTERSECTION DESIGN 23 4.5. TRANSPORTATION DEMAND MANAGEMENT 23 4.6. NEIGHBOURHOOD TRAFFIC MANAGEMENT 23 4.7. TRANSIT 24 4.8. REVIEW OF NETWORK CONCEPT 24 4.9.1 INTERSECTION DESIGN 24 4.9.2. INTERSECTION CONTROL 24 4.9.2. INTERSECTION DESIGN 24 5. FINDINGS, CONCLUSIONS AND RECOMMENDATIONS 27 LIST OF FIGURES 1 FIGURE 1: LOCAL CONTEXT 1 FIGURE 2: CONCEPT PLAN 2 FIGURE 3: ADJACENT DRIVEWAYS 5 FIGURE 4: EXISTING PEDESTRIAN AND CYCLING FACILITIES 7 FIGURE 5: EXISTING ACTIVE TRANSPORTATION 7 FIGURE 6: AREA TRANSIT NETWORK 8	3.2.2.		
4. ANALYSIS. 22 4.1. DEVELOPMENT DESIGN. 22 4.2. PARKING. 22 4.3. BOUNDARY STREET DESIGN. 23 4.4. ACCESS INTERSECTION DESIGN. 23 4.5. TRANSPORTATION DEMAND MANAGEMENT. 23 4.6. NEIGHBOURHOOD TRAFFIC MANAGEMENT. 23 4.7. TRANSIT. 24 4.8. REVIEW OF NETWORK CONCEPT. 24 4.9. INTERSECTION DESIGN. 24 4.9.1. INTERSECTION CONTROL 24 4.9.2. INTERSECTION DESIGN. 24 5. FINDINGS, CONCLUSIONS AND RECOMMENDATIONS. 27 LIST OF FIGURES 1 FIGURE 1: LOCAL CONTEXT. 1 FIGURE 2: CONCEPT PLAN. 2 FIGURE 3: ADJACENT DRIVEWAYS. 5 FIGURE 4: EXISTING PEDESTRIAN AND CYCLING FACILITIES. 7 FIGURE 5: EXISTING ACTIVE TRANSPORTATION. 7 FIGURE 6: AREA TRANSIT NETWORK 8	3.2.3.		
4.1. DEVELOPMENT DESIGN	3.3.		
4.2. PARKING 22 4.3. BOUNDARY STREET DESIGN 23 4.4. ACCESS INTERSECTION DESIGN 23 4.5. TRANSPORTATION DEMAND MANAGEMENT 23 4.6. NEIGHBOURHOOD TRAFFIC MANAGEMENT 23 4.7. TRANSIT 24 4.8. REVIEW OF NETWORK CONCEPT 24 4.9. INTERSECTION DESIGN 24 4.9.1. INTERSECTION CONTROL 24 4.9.2. INTERSECTION DESIGN 24 5. FINDINGS, CONCLUSIONS AND RECOMMENDATIONS 27 LIST OF FIGURES 27 FIGURE 1: LOCAL CONTEXT 1 FIGURE 2: CONCEPT PLAN 2 FIGURE 3: ADJACENT DRIVEWAYS 5 FIGURE 4: EXISTING PEDESTRIAN AND CYCLING FACILITIES 7 FIGURE 5: EXISTING ACTIVE TRANSPORTATION 7 FIGURE 6: AREA TRANSIT NETWORK 8	4. ANA		
4.3. BOUNDARY STREET DESIGN 23 4.4. ACCESS INTERSECTION DESIGN 23 4.5. TRANSPORTATION DEMAND MANAGEMENT 23 4.6. NEIGHBOURHOOD TRAFFIC MANAGEMENT 23 4.7. TRANSIT 24 4.8. REVIEW OF NETWORK CONCEPT 24 4.9. INTERSECTION DESIGN 24 4.9.1. INTERSECTION CONTROL 24 4.9.2. INTERSECTION DESIGN 24 5. FINDINGS, CONCLUSIONS AND RECOMMENDATIONS 27 LIST OF FIGURES FIGURE 1: LOCAL CONTEXT 1 FIGURE 2: CONCEPT PLAN 2 FIGURE 3: ADJACENT DRIVEWAYS 5 FIGURE 4: EXISTING PEDESTRIAN AND CYCLING FACILITIES 7 FIGURE 5: EXISTING ACTIVE TRANSPORTATION 7 FIGURE 6: AREA TRANSIT NETWORK 8	4.1.		
4.4. ACCESS INTERSECTION DESIGN 23 4.5. TRANSPORTATION DEMAND MANAGEMENT 23 4.6. NEIGHBOURHOOD TRAFFIC MANAGEMENT 23 4.7. TRANSIT 24 4.8. REVIEW OF NETWORK CONCEPT 24 4.9. INTERSECTION DESIGN 24 4.9.1. INTERSECTION CONTROL 24 4.9.2. INTERSECTION DESIGN 24 5. FINDINGS, CONCLUSIONS AND RECOMMENDATIONS 27 LIST OF FIGURES 1 FIGURE 1: LOCAL CONTEXT 1 FIGURE 2: CONCEPT PLAN 2 FIGURE 3: ADJACENT DRIVEWAYS 5 FIGURE 4: EXISTING PEDESTRIAN AND CYCLING FACILITIES 7 FIGURE 5: EXISTING ACTIVE TRANSPORTATION 7 FIGURE 6: AREA TRANSIT NETWORK 8	4.2.		
4.5. TRANSPORTATION DEMAND MANAGEMENT 23 4.6. NEIGHBOURHOOD TRAFFIC MANAGEMENT 23 4.7. TRANSIT 24 4.8. REVIEW OF NETWORK CONCEPT 24 4.9. INTERSECTION DESIGN 24 4.9.1. INTERSECTION CONTROL 24 4.9.2. INTERSECTION DESIGN 24 5. FINDINGS, CONCLUSIONS AND RECOMMENDATIONS 27 LIST OF FIGURES FIGURE 1: LOCAL CONTEXT 1 FIGURE 2: CONCEPT PLAN 2 FIGURE 3: ADJACENT DRIVEWAYS 5 FIGURE 4: EXISTING PEDESTRIAN AND CYCLING FACILITIES 7 FIGURE 5: EXISTING ACTIVE TRANSPORTATION 7 FIGURE 6: AREA TRANSIT NETWORK 8	4.3.		
4.6. NEIGHBOURHOOD TRAFFIC MANAGEMENT 23 4.7. TRANSIT 24 4.8. REVIEW OF NETWORK CONCEPT 24 4.9. INTERSECTION DESIGN 24 4.9.1. INTERSECTION CONTROL 24 4.9.2. INTERSECTION DESIGN 24 5. FINDINGS, CONCLUSIONS AND RECOMMENDATIONS 27 LIST OF FIGURES FIGURE 1: LOCAL CONTEXT 1 FIGURE 2: CONCEPT PLAN 2 FIGURE 3: ADJACENT DRIVEWAYS 5 FIGURE 4: EXISTING PEDESTRIAN AND CYCLING FACILITIES 7 FIGURE 5: EXISTING ACTIVE TRANSPORTATION 7 FIGURE 6: AREA TRANSIT NETWORK 8	4.4.		
4.7. TRANSIT 24 4.8. REVIEW OF NETWORK CONCEPT 24 4.9. INTERSECTION DESIGN 24 4.9.1. INTERSECTION CONTROL 24 4.9.2. INTERSECTION DESIGN 24 5. FINDINGS, CONCLUSIONS AND RECOMMENDATIONS 27 LIST OF FIGURES 5 FIGURE 1: LOCAL CONTEXT 1 FIGURE 2: CONCEPT PLAN 2 FIGURE 3: ADJACENT DRIVEWAYS 5 FIGURE 4: EXISTING PEDESTRIAN AND CYCLING FACILITIES 7 FIGURE 5: EXISTING ACTIVE TRANSPORTATION 7 FIGURE 6: AREA TRANSIT NETWORK 8	4.5.		
4.8. REVIEW OF NETWORK CONCEPT 24 4.9. INTERSECTION DESIGN 24 4.9.1. INTERSECTION CONTROL 24 4.9.2. INTERSECTION DESIGN 24 5. FINDINGS, CONCLUSIONS AND RECOMMENDATIONS 27 LIST OF FIGURES FIGURE 1: LOCAL CONTEXT 1 FIGURE 2: CONCEPT PLAN 2 FIGURE 3: ADJACENT DRIVEWAYS 5 FIGURE 4: EXISTING PEDESTRIAN AND CYCLING FACILITIES 7 FIGURE 5: EXISTING ACTIVE TRANSPORTATION 7 FIGURE 6: AREA TRANSIT NETWORK 8	4.6.		
4.9. INTERSECTION DESIGN	4.7.		
4.9.1. INTERSECTION CONTROL	4.8.		
4.9.2. INTERSECTION DESIGN	4.9.		
5. FINDINGS, CONCLUSIONS AND RECOMMENDATIONS 27 LIST OF FIGURES FIGURE 1: LOCAL CONTEXT 1 FIGURE 2: CONCEPT PLAN 2 FIGURE 3: ADJACENT DRIVEWAYS 5 FIGURE 4: EXISTING PEDESTRIAN AND CYCLING FACILITIES 7 FIGURE 5: EXISTING ACTIVE TRANSPORTATION 7 FIGURE 6: AREA TRANSIT NETWORK 8	4.9.1.		
LIST OF FIGURES FIGURE 1: LOCAL CONTEXT	4.9.2.		
FIGURE 1: LOCAL CONTEXT	5. FINI	DINGS, CONCLUSIONS AND RECOMMENDATIONS	27
FIGURE 1: LOCAL CONTEXT			
FIGURE 2: CONCEPT PLAN	LIST	OF FIGURES	
FIGURE 3: ADJACENT DRIVEWAYS			
FIGURE 4: EXISTING PEDESTRIAN AND CYCLING FACILITIES			
FIGURE 5: EXISTING ACTIVE TRANSPORTATION			
FIGURE 6: AREA TRANSIT NETWORK8			
FIGURE 7: BUS STOP LOCATIONS		7: BUS STOP LOCATIONS	

FIGURE 8: EXISTING PEAK HOUR TRAFFIC VOLUMES	9
FIGURE 9: STUDY AREA	11
FIGURE 10: EXISTING STRIP MALL GROSS FLOOR AREA	12
FIGURE 11: PROPOSED DEVELOPMENT SITE-GENERATED TRAFFIC	16
FIGURE 12: FUTURE BACKGROUND 2024 TRAFFIC VOLUMES	17
FIGURE 13: FUTURE BACKGROUND 2029 TRAFFIC VOLUMES	
FIGURE 14: FUTURE ADJACENT DEVELOPMENTS TOTAL SITE-GENERATED TRAFFIC VOLUMES	
FIGURE 15: TOTAL FUTURE BACKGROUND 2024 TRAFFIC VOLUMES	20
FIGURE 16: TOTAL FUTURE BACKGROUND 2029 TRAFFIC VOLUMES	20
FIGURE 17: TOTAL PROJECTED 2024 TRAFFIC VOLUMES	
FIGURE 18: TOTAL PROJECTED 2029 TRAFFIC VOLUMES	22
LIST OF TABLES	
TABLE 1: EXEMPTIONS REVIEW SUMMARY	11
TABLE 2: EXISTING STRIP MALL TRIP RATE ADJUSTMENT	
TABLE 3: EXISTING STRIP MALL PERSON TRIPS	13
TABLE 4: RESIDENTIAL TRIP GENERATION TRIP RATES	13
TABLE 5: APARTMENT UNITS PEAK PERIOD PERSON TRIP GENERATION	
TABLE 6: PEAK PERIOD TRIPS MODE SHARES BREAKDOWN	13
TABLE 7: PEAK PERIOD TO PEAK HOUR CONVERSION FACTORS (2020 TRANS MANUAL)	14
TABLE 8: PEAK HOUR TRIPS MODE SHARE BREAKDOWN	14
TABLE 9: ADJUSTED MODE SHARE PERCENTAGES AND PEAK HOUR TRIPS	
TABLE 10: INBOUND/OUTBOUND MORNING AND AFTERNOON PERSON TRIPS	15
TABLE 11: COMMERCIAL TRIP GENERATION TRIP RATES	15
TABLE 12: COMMERCIAL SPACE PEAK HOUR PERSON TRIP GENERATION	15
TABLE 13: NET NEW PERSON TRIPS OF SHOPPING CENTRE (COMMERCIAL SPACE)	15
TABLE 14: THE REQUIRED AND PROVIDED VEHICLE AND BICYCLE PARKING SUPPLYS	23
TABLE 15: EXISTING CONDITIONS INTERSECTION PERFORMANCE	25
TABLE 16: FUTURE BACKGROUND 2024 INTERSECTION PERFORMANCE	
TABLE 17: TOTAL FUTURE BACKGROUND 2029 INTERSECTION PERFORMANCE	26
TABLE 18: TOTAL PROJECTED 2024 INTERSECTION PERFORMANCE	26
TABLE 19: TOTAL PROJECTED 2029 INTERSECTION PERFORMANCE	27

LIST OF APPENDICES

APPENDIX A – SCREENING FORM

APPENDIX B - TRANSIT ROUTE MAPS

APPENDIX C – TRAFFIC DATA

APPENDIX D - COLLISION DATA

APPENDIX E - TDM CHECKLISTS

APPENDIX F - SYNCHRO AND SIDRA ANALYSIS REPORTS

Strategy Report

Parsons has been retained by Brigil Construction to prepare a TIA in support of a Zoning By-Law Amendment (ZBLA) for a residential development located at 729-753 Ridgewood Ave. This document follows the new TIA process, as outlined in the City Transportation Impact Assessment (TIA) Guidelines (2017). The following report represents Step 4 – Strategy Report.

1. Screening Form

The screening form confirmed the need for a TIA Report based on the Trip Generation trigger and the Safety trigger. Trip Generation module is triggered given that the proposed development consists of five buildings ranging from 4 to 15-storeys high, with approximately 387 residential apartment units. Safety module is triggered given that the proposed development access is located less than 150 meters from the signalized intersection of Riverside/Ridgewood. The Location module was not triggered. The Screening Form has been provided in Appendix A.

2. Scoping Report

2.1. Existing and Planned Conditions

2.1.1. PROPOSED DEVELOPMENT

The proposed site is located at the combined addresses of 729 & 753 Ridgewood Avenue and will be composed of five apartment buildings that are 4 to 15-storeys high and consist of 387 residential units and 856 m² (9,213 ft²) of commercial space, which will be constructed in a single phase by horizon year 2024. The site is currently occupied by a small shopping center containing a pharmacy, a grocer, and insurance brokers. The site proposes a single driveway access connection to Ridgewood Avenue, located on the south west edge of the site. Additionally, the total number of parking spaces proposed are approximately 572 vehicle parking spaces and 198 bicycle parking spaces. The two properties are currently zoned as GM1 F (1.0), General Mixed-Use Zone. The local context of the site is displayed in Figure 1 and the proposed Concept Plan is shown in Figure 2.

Figure 1: Local Context

Figure 2: Concept Plan

2.1.2. EXISTING CONDITIONS

Area Road Network

Riverside Drive is a municipal arterial roadway in Ottawa, that extends from its north terminus at Tremblay Road and the Hwy 417 EB Off Ramps, to its south terminus at Limebank Road, where it continues as River Road until the City's limits. Riverside Drive provides a four-lane cross-section, with auxiliary turn lanes at major intersections. The posted speed limit is 60 km/h.

Brookfield Road is a municipal major collector roadway in Ottawa, that runs from Bronson Avenue in the east to Riverside Drive in the west, where it continues as Hog's Back Road. The roadway provides a four-lane cross-section. The posted speed limit is 50 km/h.

Ridgewood Avenue is a municipal collector roadway in Ottawa, that runs from Springland Drive in the east to Riverside Drive in the west. The roadway provides a two-lane cross-section with space for on-street parking. The posted speed limit is 40 km/h.

Springland Drive is a municipal collector roadway in Ottawa, that runs from Walkley Road in the south to the VIA Rail tracks in the northeast, where it reaches a dead end. The roadway provides a two-lane cross-section. The posted speed limit is 40 km/h.

Flannery Drive is a municipal collector roadway in Ottawa, that runs from Springland Drive in the south to Brookfield Road in the north. The roadway provides a two-lane cross-section. The posted speed limit is 50 km/h.

Existing Study Area Intersections

Riverside/Brookfield

The Riverside/Brookfield intersection is a four-legged signalized intersection. The northbound and southbound approaches consist of a left-turn lane, a channelized right-turn and three through-lanes. The eastbound and westbound approaches consist of a left-turn lane, a channelized right-turn, and a single through-lane. All movements are permitted at this intersection.

Riverside/Ridgewood

The Riverside/Ridgewood intersection is a four-legged signalized intersection. The north and south legs of the intersection provide a left-turn lane, a channelized right turn lane and two through lanes. The eastbound approach provides a left-turn lane, a channelized right-turn and one through-lane. The westbound approach provides a shared left/through lane and a channelized right-turn. All movements are permitted at this location.

Brookfield/Flannery

The Brookfield/Flannery intersection is a roundabout intersection with two conventional legs and two sets of on-off ramps from Airport Pkwy. The west leg consists of two entry lanes and one exit lane that widens to two lanes. The south leg consists of a single in and out lane. The north and east legs consist of two on and two off single lane ramps that connect to Airport Pkwy.

Springland/Flannery

The Springland/Flannery intersection is a four-legged all-way stop controlled intersection. All of the approaches consist of a single all movement lane. All movements are permitted at this location.

Springland/Ridgewood

The Springland/Ridgewood intersection is a three-legged all-way stop controlled intersection. The northbound, southbound and eastbound approaches all consist of a single all movement lane. There is an access on the east leg of the intersection for a driveway loop used for pick-up/drop-off at a residential building. All movements are permitted at this location.

Existing Driveways to Adjacent Developments

As shown highlighted red in Figure 3, there are several adjacent driveways within 200m of the proposed sites driveways.

Figure 3: Adjacent Driveways

- Ridgewood Avenue North Side
 - 2951 Riverside Dr: a full access driveway for a residential building is located approximately 70 meters west of the proposed site access.
 - 757A Ridgewood Ave: full access to a residential building's underground parking garage is located approximately 70 meters east of the proposed site access.
- Ridgewood Avenue South Side
 - 2975 Riverside Dr: three full access driveways to the St. Elias Cathedral parking are located approximately 6, 65 and 100 meters west of the proposed site access.

- 770 Ridgewood Ave: full access driveway to a single private residency driveway is located approximately 100 meters east of the proposed site access.
- 778 Ridgewood Ave: full access driveway to a single private residency driveway is located approximately 120 meters east of the proposed site access.

Existing Area Traffic Management Measures

Below are the existing area traffic management measures within the study area, which have been identified using Google Earth and street view:

- Channelized right-turns at all Riverside Dr intersections;
- On-street parking on Ridgewood Ave and Springland Dr;
- "MAX 40 km/h" pavement markings along Springland Dr;
- Chicane and flashing pedestrian signs provided at some of the Brookfield/Flannery roundabout legs.

Pedestrian/Cycling Network

Pedestrian sidewalk facilities are provided on both sides of the roadways throughout the study area, with the exception of a short segment along Springland Dr between Hobson Rd and Flannery Dr where only a south sidewalk is provided.

With regards to cycling, a pathway on the south side of Brookfield Rd was recently (in 2020) converted to a cycle track which extends on to the existing Multi-Use Pathway (MUP) on the south side of Hog's Back Road and connects to the Rideau River Eastern Pathway system. West of Ridgewood, there is another connection point to the Rideau River Eastern Pathway system. A network of cycle-tracks and pathways can be accessed from the Brookfield/Flannery roundabout and include Brookfield Pathway which extends east, Sawmill Creek Pathway which extends south, and curbside bike lanes on both sides of Airport Pkwy heading north. Curbside bike lanes are also provided for small sections on the north side of Brookfield Rd and along both sides of Riverside Dr. Based on GeoOttawa maps, Brookfield Rd and Flannery Dr are suggested cycling routes.

Figure 4 illustrates the existing pedestrian and cycling facilities in the surrounding road network and Figure 5 shows the existing active transportation volumes at study area intersections.

Figure 4: Existing Pedestrian and Cycling Facilities

Transit Network

The transit network for the study area is illustrated in Figure 6, with nearby bus stops illustrated in Figure 7. The transit route maps are provided in Appendix B. The following OC Transpo routes currently operate within the study area:

- Route #90 (Greenboro <-> Hurdman): identified by OC Transpo as a "frequent route", this
 route operates at a high frequency along major roads and provides connectivity to Trillium
 Line 2 LRT and Confederation Line 1 LRT. Route #90 operates 7 days a week, at an average
 rate of every 15 minutes or less during weekday peak hours. Bus stops for this route are
 available on both sides of Ridgewood Ave, at the frontage of the site.
- Route #190 (Mooney's Bay <-> Hurdman): identified by OC Transpo as a "local route", this
 route operates on customized routing and schedules, to serve local destinations. Route #190
 operates twice a day. Bus stops for this route are available on both sides of Riverside Dr,
 approximately 360 meters northwest of the site.
- Route #290 (McCarthy <-> Hurdman): identified by OC Transpo as a "connexion route", this route operates on customized routing and schedules, to provide convenient connections to and from the LRT. Route #290 operates during weekday peak hours only. Bus stops for this route are available on both sides of Springland Dr less than 250 meters east of the site.

Figure 6: Area Transit Network Figure 7: Bus Stop Locations 0 Paget Park Under Athletic Facility Mooney's 19 Hog's Back Bay Brookfield ney's Bay ground (Giver) i Cook Persian Cuisin Brookfield 🚹 Moone Bay Groceteria SITE 190 Mooneys bay P park parking o Mooney's Bay Park and Beach Springland Mooney's Bay Beach O Walkley Erni Calcutt Park 290 0 8 Sue Holloway Fitness Park Fielding 0

Peak Hour Travel Demands

The existing peak hour traffic volumes within the study area, as illustrated in Figure 8, were obtained from the City of Ottawa. The peak hour traffic volume count data has been provided in Appendix C.

Figure 8: Existing Peak Hour Traffic Volumes

Existing Road Safety Conditions

A five-year collision history data (2015-2019, inclusive) was requested and obtained from the City of Ottawa for all intersections and road segments within the study area. Upon analyzing the collision data, the total number of collisions observed within the study area was determined to be 120 collisions within the five-year period. Of the total collisions, 96 (80%) resulted in property damage only, while the remaining collisions resulted in a non-fatal injury. Furthermore, the type of impacts that resulted in 120 collisions were broken down into the following: 82 (68%) rear end, 18 (15%) sideswipes, 14 (12%) turning movement, 4 (3%) angle, and 2 (2%) other.

A standard unit of measure for assessing collisions at an intersection is based on the number of collisions per million entering vehicles (MEV). Locations with MEV higher than 1.0 are considered to have a higher propensity for collisions. To understand the severity, a secondary measure is conducted which looks at what percentage of collisions caused injury. Locations that have more than 30% producing non-fatal injuries could have design deficiencies or other factors making them more dangerous. At signalized intersections within the study area, reported collisions have historically taken place at a rate of:

- 0.82 Collisions/MEV with 22% producing non-fatal injuries at the intersection of Riverside/Brookfield (total of 68 collisions, where 45 (66%) resulted from rear-ends)
- 0.28 Collisions/MEV with 6% producing non-fatal injuries at the intersection of Riverside/Ridgewood (total of 17 collisions, where 14 (82%) of collision involved rear ends)
- 0.25 Collisions/MEV with 31% producing non-fatal injuries at the intersection of Riverside/Mooney's Bay (total of 13 collisions, 11 (85%) of the collisions involved rear-ends). Although the percentage of non-fatal injury is higher than 30%, the total number of collisions and the propensity of collisions at this location are notably low.

Other collisions within the study area include:

- 22 collisions in mid-block sections, with 16 or 73% of them occurring between Brookfield Rd and Ridgewood Ave on Riverside Dr.
- There was one collision in 2019 that involved a pedestrian. The collision occurred on Ridgewood Ave, between Riverside Dr and Dupont St, which resulted in property damage only.
- 3 collisions involving cyclists, 2 occurring at Riverside/Brookfield intersection and 1 at Riverside/Ridgewood. All collisions resulted in non-fatal injury.

The source collision data as provided by the City of Ottawa and related analysis is provided as Appendix D.

2.1.3. PLANNED CONDITIONS

Planned Study Area Transportation Network Changes

Transit Network

The City of Ottawa Transportation Master Plan (TMP) does not illustrate changes to the surrounding transit network with regards to the 2031 affordable network plan. However, the ultimate network plan illustrates Riverside Dr as a transit priority corridor with isolated measures between Hunt Club Rd and Heron Rd.

Cycling Network

Within the Ultimate Cycling Plan, Riverside Dr, Brookfield Rd, and Hog's Back Rd are all designated as future 'spine routes'. Flannery Dr, which is currently a 'suggested route', is designated as future 'local route'.

Other Area Developments

The following section outlines adjacent developments in the surrounding area that were considered in the TIA. Using the City of Ottawa's Development Application Search tool, the following development applications have been identified in the study area.

740 SPRINGLAND DR

Norberry Residences is proposing an extension to the existing residential complex. The extension would comprise of three 4.5-storey buildings with a total of 231 new units. A TIA prepared by Castleglenn Consultants projects two-way vehicle trips of approximately 85 and 93 veh/h during the AM and PM peak hours respectively. This development is anticipated to be fully constructed prior to the construction of the 729 Ridgewood development.

770 BROOKFIELD RD

Hobin Architecture is proposing a mixed-use development consisting of 13,600 ft² of commercial retail and 808 apartment units. A TIA prepared by Parsons projects two-way vehicle trips of approximately 95 to 120 veh/h during the AM and PM peak hours respectively. This development is anticipated to be fully constructed prior to the construction of the 729 Ridgewood development.

3071 RIVERSIDE DR

Canoe Bay Development Inc is proposing a senior's home development, with two 3-storey mixed-use building, a 6-storey retirement complex, townhouses and low-rise apartment dwellings. The development will consist of 110 residential units, 513 senior/retirement units and 21,795 ft2 of retail space. This development is anticipated to be fully constructed prior to the construction of the 729 Ridgewood development.

2.2. Study Area and Time Periods

The proposed site is a residential development that is planned to be constructed by 2024. As such, the horizon years being analyzed in this report are the 2024 and 2029 (five-years after full buildout) horizon years, using the weekday morning and afternoon peak hour time periods. Proposed study area intersections and boundary roads are outlined below and highlighted in Figure 9.

- Riverside/Brookfield/Hog's Back intersection;
- Riverside/Ridgewood intersection;
- Brookfield/Flannery intersection;

- Springfield/Flannery intersection;
- Springfield/Ridgewood intersection;
- Along Ridgewood Drive adjacent to the site;

Figure 9: Study Area

2.3. Exemption Review

The following modules/elements of the TIA process are recommended to be exempt in the subsequent steps of the TIA process, based on the City's TIA guidelines and the subject site:

Table 1: Exemptions Review Summary

Module	Element	Exemption Consideration		
4.1 – 4.4 Design Review Component	All elements	Not required for applications involving ZBLA. However, a brief description may be provided.		
4.8 Network Concept	4.8 Network Concept	Only required if proposed development is anticipated to generate more than 200 person-trips over the permitted zoning.		

3. Forecasting Report

3.1. Development Generated Travel Demand

3.1.1. TRIP GENERATION AND MODE SHARES

Existing Development Trips

As mentioned previously, the site is currently occupied by a strip mall consisting of a grocery store, a pharmacy and insurance brokers, which generate trips for the site in existing conditions. These trips are accounted for as they reduce the number of 'new' trips that would be generated by the proposed development at this site. Note that, using google maps street view, it was determined that the grocery store has been closed since at least 2019. Most counts used for this study (provided in Appendix C) are dated 2019 and 2020, as such, they are assumed to already exclude any would be trips of the grocery store. For the remainder of the strip mall, the ITE Trip Generation Manual (10th edition) can be used to obtain trip rates.

The "Shopping Centre" land use from the ITE Manual has been assumed to encompass the remaining land uses of the strip mall. However, this would result in an overly conservative estimate of trips, as the strip mall is relatively old and consists of specialty stores that would not generate a large number of trips at once. For this purpose, the shopping centre trip rates have been reduced by 50% as shown in Table 2.

Table 2: Existing Strip Mall Trip Rate Adjustment

	Land Haa		Trip I	Rates	
Land Use		Source	AM Peak Hour	PM Peak Hour	
	Shopping Centre	ITE 820	T = 0.94(x);	T = 3.81(x);	
Shopping Centre 50%			T = 0.47(x);	T = 1.90(x);	
Notes: T = Average Vehicle Trip Ends					
$x = Gross Floor Area (GFA) (1000 ft^2)$					

The gross floor area used for the strip mall was determined using the GeoOttawa measuring tool, as shown in Figure 10, which indicates a total area of approximately 15,500 ft².

Figure 10: Existing Strip Mall Gross Floor Area

Using the total gross floor area and the readjusted shopping centre trip rates, the person trips generated by the existing strip mall can be calculated. Note that the trip rates are multiplied by a factor of 1.28, as per TIA standards, to account for typical North American auto occupancy values of approximately 1.15 and combined transit and non-motorized modal shares of less than 10%. The resulting total person trips/hour for the existing strip mall are provided in Table 12. The inbound and outbound percentages were also obtained from the ITE Manual.

Table 3: Existing Strip Mall Person Trips

Land Use	Area (ft²)	AM Peak (Person Trips/h)			PM Peak (Person Trips/h)		
Land USE	Area (IL²)	In (62%) Out (38%) To		Total	In (48%)	Out (52%)	Total
Shopping Centre	15,500	5	4	9	18	20	38

As such, the strip mall is assumed to generate a total of 9 and 38 person trips during the morning and afternoon peak hours respectively.

Proposed Development Trips

The proposed development will consist of 387 residential units within 4 to 15-storey high apartment buildings, as well as 9,213 ft² of commercial space.

Residential Trips Generated

The appropriate trip generation rates for a high-rise apartment land use were obtained from the 2020 TRANS Trip Generation Manual. Table 3 in the Manual provides person-trip rates during the peak AM and PM periods (7am-9:30am and 3:30PM-6PM). The trip rates are summarized in Table 4 below.

Table 4: Residential Trip Generation Trip Rates

Land Use		Data	Trip Rates	
		Source	AM Peak Period (7-9:30am)	PM Peak Period (3:30-6pm)
High	n-Rise Apartment Buildings	TRANS 2020	T = 0.8(du);	T = 0.9(du);
Notes:	T = Average Vehicle Trip Ends	3		
	du = Dwelling unit			

Using the trip rates provided in Table 4, the total number of person trips generated during the morning and afternoon peak periods can be found in Table 5.

Table 5: Apartment Units Peak Period Person Trip Generation

Land Use	Dwelling Units	AM Peak Period Person Trips	PM Peak Period Person Trips
High-Rise Apartment Buildings	387	310	348

The proposed development is anticipated to generate 310 and 348 person trips during the morning and afternoon peak periods, respectively. The total peak period person trips in Table 5 are then divided into different travel modes, as shown in Table 6, using mode share percentages obtained from the 2020 TRANS Manual, which is aggregated for the Alta Visa zone.

Table 6: Peak Period Trips Mode Shares Breakdown

Travel Mode	Mode Share	AM Peak Period Person Trip	Mode Share	PM Peak Period Person Trips
Auto Driver	38%	118	45%	157
Auto Passenger	12%	37	16%	56
Transit	41%	127	28%	97
Cycling	2%	6	2%	7
Walking	7%	22	9%	31
Total Person Trips	100%	310	100%	348

Standard traffic analysis is usually conducted using the morning and afternoon peak hour trips as they represent a worst-case scenario. In the 2020 TRANS Manual, Table 4 provides conversions rates from peak period to peak hours for different mode shares. The conversion rates are provided in Table 7 below.

Table 7: Peak Period to Peak Hour Conversion Factors (2020 TRANS Manual)

Travel Mode	Peak Period to Peak Hour Conversion Factors			
Travel Mode	AM	PM		
Auto Driver	0.48	0.44		
Passenger	0.31	0.29		
Transit	0.55	0.47		
Bike	0.58	0.48		
Walk	0.58	0.52		

Note that conversion factors for auto passenger trips are not available in the 2020 TRANS Manual. To obtain the passenger trip factor it is assumed that the total person trip peak hour conversion factor is the average of the provided adjustment factors minus the passenger trip peak hour conversion factor and has been calculated as shown in the example below:

$$0.5 = \frac{x + 0.48 + 0.55 + 0.58 + 0.58}{5}$$

$$x = 2.5 - 0.48 - 0.55 - 0.58 - 0.58$$

$$x = 0.31 \rightarrow AM \text{ passenger trip peak hour conversion factor}$$

Using the conversion rates in Table 7 and the peak period person trips for different travel modes in Table 6, the peak hour trips for different travel modes can be calculated as shown in Table 8. The actual peak hour mode share percentages can be reverse calculated using the percentage of each travel mode to the total person trips.

Table 8: Peak Hour Trips Mode Share Breakdown

Travel Mode	Mode Share	AM Peak Hour Trips	Mode Share	PM Peak Hour Trips
Auto Driver	37%	57	46%	69
Auto Passenger	7%	11	11%	16
Transit	45%	70	30%	46
Cycling	2%	3	2%	3
Walking	8%	13	11%	16
Total Person Trips	100%	154	100%	150

As shown in Table 8, the proposed development is anticipated to generate a total of 154 and 150 person trips during the morning and afternoon peak hours. However, the TRANS mode share assumptions were adjusted to reflect the local context more appropriately, as shown in Table 9. It was assumed that the same mode share distribution would occur in the morning and afternoon peak hours.

The transit and walk mode shares were lowered based on the suburban context, and the lack of rapid transit adjacent to the site. The auto-driver mode share was increased accordingly, while the passenger mode share was adjusted to maintain an auto-occupancy factor of approximately 1.20, closer to the city-wide average. Cycling mode share was increased to account for the proximity of major pathways at Mooney's Bay following the Rideau River.

Table 9: Adjusted Mode Share Percentages and Peak Hour Trips

Travel Mode	Mode Share	AM Peak Hour Trips	PM Peak Hour Trips
Auto Driver	60%	92	90
Auto Passenger	12%	18	18
Transit	20%	31	30
Cycling	5%	8	8
Walking	3%	5	4
Total Person Trips	100%	154	150

Inbound and outbound percentages were obtained from Table 9 of the 2020 TRANS Manual and applied to each travel mode in Table 9 as shown in Table 10.

Table 10: Inbound/Outbound Morning and Afternoon Peak Hour Trips

Travel Mode Mode Shares		AM Pe	eak (Person T	rips/h)	PM Peak (Person Trips/h)			
Travel Mode	Widde Shares	In (31%)	Out (69%)	Total	In (58%)	Out (42%)	Total	
Auto Driver	60%	29	63	92	52	38	90	
Passenger	12%	6	12	18	10	8	18	
Transit	20%	10	21	31	17	13	30	
Bike	5%	2	6	8	5	3	8	
Walk	3%	2	3	5	2	2	4	
Total Person Trips	100%	49	105	154	86	64	150	

As shown in Table 10, approximately 90 new vehicular trips and 30 new transit trips are expected in the morning and afternoon peak hours from the proposed development.

Commercial Trips Generated

Appropriate Trip Generation rates for the commercial land use were obtained from the ITE Trip Generation Manual (10th edition), assuming "Shopping Centre" land use. The trip rates for the commercial land use are summarized in Table 11.

Table 11: Commercial Trip Generation Trip Rates

Land Use	Data	Trip F	Rates
Land ose	Source	AM Peak Hour	PM Peak Hour
Shopping Centre (commercial space)	ITE 820	T = 0.94(x);	T = 3.81(x);
Notes: $T = Average Vehicle Trip Ends$ x = Gross Floor Area (GFA) (10)			

Person trips per hour for the commercial land use are calculated directly using the trip rates shown in Table 11 and multiplied by a factor of 1.28, as per TIA standards, to account for typical North American auto occupancy values of approximately 1.15 and combined transit and non-motorized modal shares of less than 10%. The resulting total person trips/hour for the commercial space of the proposed development are provided in Table 12. The inbound and outbound percentages were also obtained from the ITE Manual.

Table 12: Commercial Space Peak Hour Person Trip Generation

Land Use	Area (ft²)	AM Peal	k (Person Trip	(Person Trips/h)		PM Peak (Person Trips/h)	
Land USE	Area (IL²)	In (62%)	Out (38%)	Total	In (48%)	Out (52%)	Total
Shopping Centre (commercial space)	9,213	6	5	11	21	24	45

For simplicity, the assumed existing strip mall person trips in Table 3 can be subtracted from the projected person trips of the commercial land use, resulting in a 'net' number of trips generated by the "Shopping Centre" of the proposed development, as shown in Table 13.

Table 13: Net New Person Trips of Shopping Centre (Commercial Space)

Landling	AM Peal	k (Person Trip	os/h)	PM Peak (Person Trips/h)			
Land Use	In (62%)	Out (38%)	Total	In (48%)	Out (52%)	Total	
Shopping Centre (commercial space)	1	1	2	3	4	7	

The net change in estimated commercial trips was minimal. The addition of high-density residential units on site was expected to reduce external trips, as local residents would make up the majority of customers. Therefore, no new commercial trips were expected to be generated at full buildout.

Total Trips Generated

Therefore, the estimated total trips by mode generated by the proposed development can be found in Table 10. Approximately **90 new vehicular trips** and **30 new transit trips** are expected to be generated by the proposed development in both the morning and afternoon peak hours.

3.1.2. TRIP DISTRIBUTION AND ASSIGNMENT

Based on the 2011 OD Survey (Alta Vista district) and the location of adjacent arterial roadways and neighbourhoods, the distribution of site-generated traffic volumes was estimated as follows:

- 45% to/from the north, via Riverside Dr and the Airport Pkwy;
- 25% to/from the south, via Riverside Dr;
- 10% to/from the east, via Riverside Dr; and,
- 20% to/from the west, Via Riverside Dr and Hog's Back Rd.

The anticipated site-generated auto trips for the proposed development from Table 10 were then assigned to the road networks as shown in Figure 11.

Figure 11: Proposed Development Site-Generated Traffic

3.2. Background Network Traffic

3.2.1. TRANSPORTATION NETWORK PLANS

Refer to Section 2.1.3: Planned Study Area Transportation Network Changes.

3.2.2. BACKGROUND GROWTH

Given that the proposed development will be located in the inner suburbs of the City of Ottawa, traffic along study area roadways is not anticipated to increase drastically within the future horizon years. Nonetheless, a 1% background growth has been applied to Riverside Dr, Hog's Back Rd and Brookfield Rd to account for future

traffic increases along these roadways. Note that this is consistent with the approved TIA report for the future 740 Springland Drive development, which also applied a 1% background growth to Riverside Dr. Figure 12 provides the 2024 future background traffic and Figure 13 provides the 2029 future background traffic.

Figure 13: Future Background 2029 Traffic Volumes

3.2.3. OTHER DEVELOPMENTS

Description of other area developments taking place within the study area was provided in Section 2.1.3: Other Area Developments. Traffic volumes generated by all three identified future adjacent developments will be considered in the TIA. The total traffic volumes anticipated to be generated by the future adjacent development in the study area are illustrated in Figure 14.

Figure 14: Future Adjacent Developments Total Site-Generated Traffic Volumes

The anticipated buildout year of the future adjacent development is anticipated to be prior to the buildout date of the proposed 729 Ridgewood development. As such, their traffic volumes will be included in both the total projected 2024 and 2029 traffic volumes. The volumes in Figure 14 can be added to the future background volumes in Figure 12 and Figure 13 to create total future background 2024 and 2029 traffic volumes illustrated in Figure 15 and Figure 16.

Figure 15: Total Future Background 2024 Traffic Volumes

Figure 16: Total Future Background 2029 Traffic Volumes

3.3. Demand Rationalization

The total projected future traffic volumes can be determined by superimposing the site-generated traffic volumes in Figure 11, onto the total future background traffic volumes in Figure 15 and Figure 16, resulting in the total projected traffic volumes 2024 and 2029 illustrated in Figure 17 and Figure 18. The proposed development is anticipated to have little impact on the vehicle operations along the study area intersections. Further analysis of study area intersections is provided as part of Section 4.9.2.

Figure 17: Total Projected 2024 Traffic Volumes

Figure 18: Total Projected 2029 Traffic Volumes

4. Analysis

4.1. Development Design

As this is a ZBLA, design related elements will be provided in more detail in the future Site Plan Application submission of the proposed development. The majority of vehicle and bicycle parking spaces will be provided in an underground parking garage, with some surface vehicle parking spaces provided. Within the site, sidewalk facilities will be provided to allow safe and efficient pedestrian maneuverability and access to all building entrances. There are no anticipated changes to the existing transit routes in the surrounding road network. The City of Ottawa's TDM-supportive Development Design and Infrastructure has been provided in Appendix E.

4.2. Parking

Based on City of Ottawa Parking Provisions, Schedule 1A, the proposed development is located in "Area C". A total of 572 vehicle parking spaces will be provided for the proposed development. Of the total, 559 spaces will be provided in a two-level underground parking lot, while 13 will be provided on the surface, within the site.

For the residential land use, 465 vehicle parking spaces are proposed, with an additional 78 visitor parking spaces. For the commercial land use, 29 vehicle parking spaces are proposed. Included in the total number of parking spaces are 14 accessible vehicle parking spaces. For bicycle parking, 194 spaces are provided for residential use and 4 are provided for commercial use, for a total of 198 spaces. Table 14 summarizes the parking requirements of the proposed development and the proposed number of spaces currently provided.

Table 14: The Required and Provided Vehicle and Bicycle Parking Supplys

Land Use	Size	Pa	arking Rate	es .	Required Spaces			Pr	Proposed Spaces	
Land USE	Size	Base	Visitors	Bicycle	Base	Visitors	Bicycle	Base	Visitors	Bicycle
High-Rise Residential	387 Units	1.2 per unit	0.2 per unit	0.5 per unit	465	78	194	465	78	194
Commercial	856 m ²	3.4 per 100 m ²	-	1.0 per 250 m ²	29	1	4	29	-	4
	Total						198	494	78	198

As such, the proposed number of parking spaces meet all parking requirements for vehicle and bicycle parking spaces.

4.3. Boundary Street Design

The detailed Multi-Modal Level of Service (MMLOS) analysis for boundary streets and signalized intersections will be provided in the future Site Plan Application.

4.4. Access Intersection Design

Vehicle access to the proposed development will be provided via a single access on the north side of Ridgewood Ave. The access will use Stop control for vehicles exiting the site. Within the site internal driveways, there are two ramps that provide access to the underground parking garage, one ramp is located between building 3 and 4, while another ramp is located to the north of building 5. Existing adjacent accesses to the proposed development access are discussed in Section 2.1.2: Existing Driveways to Adjacent Developments.

4.5. Transportation Demand Management

The TDM Measures Checklist has been provided in Appendix E.

4.6. Neighbourhood Traffic Management

This module compares the maximum one-way traffic of a local or collector road during morning and afternoon peak hours, to the recommended thresholds outlined in the City of Ottawa TIA Guidelines. The main access/egress streets included in this analysis were Ridgewood Ave, Springland Dr and Flannery Dr.

The thresholds provided in the TIA Guidelines indicate a maximum one-way traffic of 300 veh/h for collector roads. Using the total projected 2029 traffic volumes in Figure 18, future traffic volumes along the respective collector roads can be compared to the threshold as follows:

- For Ridgewood Ave, the maximum one-way traffic volume is approximately 172 veh/h between Riverside
 Dr and Springland Dr, which occurs during the morning peak hour. This volume is well below the 300
 veh/h threshold of a collector road
- For Springland Dr between Ridgewood Ave and Flannery Dr, the 300 veh/h threshold is slightly exceeded
 at the WB egress of the intersection of Springland/Flannery, with an afternoon volume of 306 veh/h.
 Side street movements at this intersection have generally low volumes. As such, there are no concerns
 with regards to traffic operations.
- For Flannery Dr, north of Ridgewood Ave, the 300 veh/h threshold is currently exceeded in the southbound direction from Brookfield Rd and will continue to be so in the future, with an afternoon volume of 432 veh/h. By the time traffic arrives at the SB approach of the intersection of Springland/Flannery, it is reduced to approximately 389 veh/h during the afternoon peak hour, most of which make a right-turn and continue onto Springland Dr.

However, the design of Flannery Dr between Brookfield Rd and Ridgewood is more consistent with a major collector road. This section clearly has far more stringent access management compared to Springland Dr, which has direct residential frontage with driveway access to the roadway. There are also daytime on-street parking restrictions, which reduces friction and increases its overall vehicular capacity, whereas Springland Dr has no time restrictions.

The City recommended major collector roadway threshold is 600 vehicles per hour per direction, which adequately accommodates anticipated vehicle traffic in the future. At this time, there are no indications the existing vehicular volumes cannot be accommodated.

Ultimately, this section of the roadway can be monitored by the City of Ottawa's Area Traffic Management unit if needed to determine if reclassification or modification of the roadway is necessary. The City may also incorporate traffic calming measures such as road narrowing, pavement markings and signage to address potential safety concerns if required.

4.7. Transit

Transit facilities are anticipated to continue operating in the future as mentioned in Section 2.1.2: Transit Network. The proposed development is anticipated to generate 31 and 30 transit trips during the morning and afternoon peak hours respectively. Bus route #90 is a frequent route that travels in both directions on Ridgewood Ave and arrives 4 to 5 times during peak hours, for a total of 8 to 10 buses in both directions. As such, the proposed development will have little impact to the surrounding transit network.

4.8. Review of Network Concept

Exempt – see Table 1.

4.9. Intersection Design

4.9.1. INTERSECTION CONTROL

Stop control is anticipated to be sufficient for vehicles exiting the proposed site access.

4.9.2. INTERSECTION DESIGN

Synchro 10 Trafficware was used to analyze intersection performance of signalized and unsignalized intersections within the study area. For the Brookfield/Flannery roundabout, the Sidra software was used for analysis. Critical movements at each of the intersections were assessed based on either the movement with the highest volume-to-capacity ratio (at signalized intersections), or the movement experiencing the highest average delay (at unsignalized and roundabout intersections).

Generally, an overall ('as a whole') level-of-service (LOS) 'D' or better is recommended for intersection operations during the peak hour periods. For signalized intersections, an overall LOS 'E' is generally considered acceptable at major arterial intersections in the City of Ottawa, as multi-lane arterial roads are intended to accommodate high levels of traffic volumes during peak hour periods.

It should be noted that, as per the TIA Guidelines, the Peak Hour Factor (PHF) used for analysis was 0.9 in existing conditions and 1.0 in all future scenario conditions. All Synchro and Sidra report outputs for existing and future conditions have been provided in Appendix F.

Existing Conditions

Table 15 below summarizes the intersection performance of study area intersections, based on the existing conditions traffic volumes illustrated in Figure 8.

Table 15: Existing Conditions Intersection Performance

Intersection		Weekday AM Peak (PM Peak)							
		Critical Movement			Intersection 'As a Whole'				
		max. v/c or							
	LOS	avg. delay	Movement	Delay (s)	LOS	v/c			
		(s)							
Riverside Dr/Hog's Back Rd/Brookfield Rd (S)	F(F)	1.10(1.42)	NBT(WBL)	66.1(57.6)	E(D)	0.98(0.90)			
Riverside Dr/Ridgewood Ave (S)	E(B)	0.93(0.68)	NBT(SBT)	18.0(8.8)	D(B)	0.90(0.67)			
Springland Dr/Ridgewood Ave (U)	A(A)	8.4(9.4)	NB(SB)	8.0(8.9)	A(A)	-			
Flannery Dr/Springland Dr (U)	A(A)	9.0(9.4)	EB(SB)	8.4(9.2)	A(A)	-			
Brookfield Rd/Flannery Dr (R)	A(A)	6.0(6.1)	NB(NB)	3.9(4.0)	A(A)	-			

Note: Analysis of signalized intersections assumes a PHF of 0.9 and a saturation flow rate of 1800 veh/h/lane.

- (S) Signalized intersection, critical movement based on max v/c
- (U) Unsignalized intersection, critical movement based on highest average delay
- (R) Roundabout intersection, critical movement based on highest average delay

As shown in Table 15, the intersection of Riverside/Brookfield 'as a whole' operates near capacity during the morning peak hour, with critical NBT and WBL movements operating at capacity during the morning and afternoon peak hours respectively. The intersection of Riverside/Ridgewood operates acceptably 'as a whole', with the critical NBT movement operating near capacity during the morning peak hour. The unsignalized and roundabout intersections all operate at a LOS 'A' during both peak hours.

Total Future Background 2024

Table 16 below summarizes the Synchro traffic operations at study area intersections, based on the total future background 2024 conditions in Figure 15.

Table 16: Future Background 2024 Intersection Performance

		Weekday AM Peak (PM Peak)								
		Critical Move	ement	Intersection 'As a Whole'						
Intersection	LOS	max. v/c or avg. delay (s)	Movement	Delay (s)	LOS	v/c				
Riverside Dr/Hog's Back Rd/Brookfield Rd (S)	F(F)	1.07(1.33)	NBT(WBL)	59.2(52.1)	E(D)	0.96(0.86)				
Riverside Dr/Ridgewood Ave (S)	D(B)	0.88(0.65)	NBT(SBT)	15.2(8.6)	D(B)	0.85(0.64)				
Springland Dr/Ridgewood Ave (U)	A(A)	8.3(9.1)	NB(SB)	8.0(8.7)	A(A)	=				
Flannery Dr/Springland Dr (U)	A(A)	9.0(9.3)	EB(SB)	8.4(9.1)	A(A)	-				
Brookfield Rd/Flannery Dr (R)	A(A)	5.9(5.9)	NB(NB)	3.9(4.0)	A(A)	-				

Note: Analysis of signalized intersections assumes a PHF of 1.0 and a saturation flow rate of 1800 veh/h/lane.

- (S) Signalized intersection, critical movement based on max v/c
- (U) Unsignalized intersection, critical movement based on highest average delay
- (R) Roundabout intersection, critical movement based on highest average delay

As shown in Table 16, study area intersections are projected to operate similar or better than existing conditions due to increasing the PHF to 1.0.

Total Future Background 2029

Table 17 below summarizes the Synchro traffic operations at study area intersections, based on future background 2029 traffic volumes in Figure 16.

Table 17: Total Future Background 2029 Intersection Performance

		Weekday AM Peak (PM Peak)							
	Critical Movement			Intersection 'As a Whole'					
Intersection	LOS	max. v/c or avg. delay (s)	Movement	Delay (s)	LOS	v/c			
Riverside Dr/Hog's Back Rd/Brookfield Rd (S)	F(F)	1.11(1.40)	NBT(WBL)	68.4(56.7)	E(E)	0.99(0.91)			
Riverside Dr/Ridgewood Ave (S)	E(B)	0.92(0.68)	NBT(SBT)	17.6(9.1)	D(B)	0.89(0.67)			
Springland Dr/Ridgewood Ave (U)	A(A)	8.3(9.1)	NB(SB)	8.0(8.7)	A(A)	-			
Flannery Dr/Springland Dr (U)	A(A)	9.0(9.3)	EB(SB)	8.4(9.1)	A(A)	-			
Brookfield Rd/Flannery Dr (R)	A(A)	5.9(5.9)	NB(NB)	3.9(4.0)	A(A)	-			

Note: Analysis of signalized intersections assumes a PHF of 1.0 and a saturation flow rate of 1800 veh/h/lane.

- (S) Signalized intersection, critical movement based on max v/c
- (U) Unsignalized intersection, critical movement based on highest average delay
- (R) Roundabout intersection, critical movement based on highest average delay

As indicated by Table 17, traffic operations are anticipated to be similar to the total future background 2024 traffic operations, with slightly higher delays and v/c ratios.

Total Projected 2024

Based on total projected 2024 traffic volumes in Figure 17, study area intersections were analyzed using Synchro, with results summarized in Table 18 below.

Table 18: Total Projected 2024 Intersection Performance

	-							
	Weekday AM Peak (PM Peak)							
		Critical Move	ement	Intersection 'As a Whole'				
Intersection	LOS	max. v/c or avg. delay (s)	Movement	Delay (s)	LOS	v/c		
Riverside Dr/Hog's Back Rd/Brookfield Rd (S)	E(E)	0.99(0.99)	NBT(WBL)	46.4(44.2)	E(D)	0.91(0.89)		
Riverside Dr/Ridgewood Ave (S)	E(B)	0.93(0.66)	NBT(SBT)	21.3(10.4)	D(B)	0.90(0.65)		
Springland Dr/Ridgewood Ave (U)	A(A)	8.4(9.3)	NB(SB)	8.1(8.8)	A(A)	-		
Flannery Dr/Springland Dr (U)	A(A)	9.2(9.5)	EB(SB)	8.5(9.2)	A(A)	-		
Ridgewood Ave/Site Access (U)	A(A)	9.5(9.3)	SB(SB)	2.3(2.4)	A(A)	-		
Brookfield Rd/Flannery Dr (R)	A(A)	5.8(5.8)	NB(NB)	4.0(4.1)	A(A)	-		

Note: Analysis of signalized intersections assumes a PHF of 1.0 and a saturation flow rate of 1800 veh/h/lane.

- (S) Signalized intersection, critical movement based on max v/c
- (U) Unsignalized intersection, critical movement based on highest average delay
- (R) Roundabout intersection, critical movement based on highest average delay

Note that the intersection of Riverside/Brookfield was optimized for phase splits in Synchro, resulting in improved traffic operations during both peak hours; 'as a whole' the intersection is projected to operate acceptably given that Riverside Dr is a major arterial intersection, with critical movements operating near capacity during both peak hours.

The intersection of Riverside/Ridgewood 'as a whole' operates near capacity in the morning peak hour. Unsignalized intersections, including the roundabout intersection and the proposed site access, operate at a LOS 'A' during both peak hours.

Total Projected 2029

Based on total projected 2029 traffic volumes in Figure 18, study are intersections were analyzed using Synchro, with results summarized in Table 19 below.

Table 19: Total Projected 2029 Intersection Performance

		Weekday AM Peak (PM Peak)							
	Critical Movement			Intersection 'As a Whole'					
Intersection	LOS	max. v/c or avg. delay (s)	Movement	Delay (s)	LOS	v/c			
Riverside Dr/Hog's Back Rd/Brookfield Rd (S)	F(F)	1.08(1.04)	NBT(WBL)	62.2(50.0)	E(E)	0.97(0.95)			
Riverside Dr/Ridgewood Ave (S)	E(B)	0.97(0.69)	NBT(SBT)	23.2(10.8)	E(B)	0.94(0.68)			
Springland Dr/Ridgewood Ave (U)	A(A)	8.4(9.3)	NB(SB)	8.1(8.8)	A(A)	-			
Flannery Dr/Springland Dr (U)	A(A)	9.2(9.5)	EB(SB)	8.5(9.2)	A(A)	-			
Ridgewood Ave/Site Access (U)	A(A)	9.5(9.3)	SB(SB)	2.3(2.4)	A(A)	-			
Brookfield Rd/Flannery Dr (R)	A(A)	5.8(5.8)	NB(NB)	4.0(4.1)	A(A)	-			

Note: Analysis of signalized intersections assumes a PHF of 1.0 and a saturation flow rate of 1800 veh/h/lane.

As indicated by Table 19, traffic operations are anticipated to be similar to the total future projected 2024 traffic operations, with only slightly higher delays and v/c ratios.

The intersection of Riverside/Brookfield was optimized in Synchro with regards to phase splits during both peak hours; 'as a whole', the intersection operates near capacity. The intersection of Riverside/Ridgewood operate 'as a whole' near capacity during the morning peak hour. All unsignalized and roundabout intersections operate at LOS 'A' during both peak hours.

Generally, operations at the two Riverside Drive intersections are expected to only approach congested conditions in the peak hour periods, but still operate within acceptable limits for major arterial intersections. If desired, operations can be improved to a LOS 'D' at each of the intersection with the following modifications:

- At Riverside/Brookfield: Add a left-turn lane to the southbound and westbound approaches for double left-turn lanes.
- At Riverside/Ridgewood: adjust the timing of the southbound left-turn lane to increase the available green time, but would adversely impact cycle length timing priority.

5. Findings, Conclusions and Recommendations

Based on the results summarized herein, the following transportation related conclusions are offered:

Proposed Development

- The proposed development will be located at the combined addresses of 729 & 753 Ridgewood Avenue. The site is currently occupied by a strip mall, which will be replaced by the proposed development.
- The development will consist of five apartment buildings that are 4 to 15 storeys and consist of 387 residential units and 856 m² (9.213 ft²) of commercial space, which will all be constructed in a single phase by 2024.
- Access will be provided via a driveway on the north side of Ridgewood Ave. Stop control is anticipated
 to be sufficient for future traffic exiting the site.
- A total of 572 vehicle parking spaces and 198 bicycle parking spaces are proposed, which meets the requirements of City of Ottawa Parking Provisions.
- At full buildout in 2024, the development is expected approximately 154 and 150 person trips during the morning and afternoon peak hours respectively.
- Approximately 90 new vehicular trips and 30 new transit trips are expected to be generated by the
 proposed development in both the morning and afternoon peak hours. Approximately 13 new bike and
 walk trips were expected in both the morning and afternoon peak hours.

⁽S) - Signalized intersection, critical movement based on max v/c

⁽U) - Unsignalized intersection, critical movement based on highest average delay

⁽R) - Roundabout intersection, critical movement based on highest average delay

Existing and Background Conditions

- In existing conditions, the following traffic operations are noted:
 - Riverside/Brookfield 'as a whole' operates near capacity (at a LOS 'E'), but acceptably for an significant urban arterial intersection in the morning peak hour, with poorly operating movements (the NBT and WBL) in the morning and afternoon peak hours respectively.
 - The Riverside/Ridgewood intersection operates acceptably 'as a whole' (at a LOS 'D') in the morning peak hour.
 - o The remaining intersections all operate at a LOS 'A' during both peak hours.
- A background growth rate of 1% per year was applied to Riverside Dr, Hog's Back Rd, and Brookfield Rd for future horizon years 2024 and 2029.
- Other proposed developments within the area were also included in the future traffic analysis, including:
 740 Springland (Norberry Residences), 770 Brookfield, and 3071 Riverside (Canoe Bay).
- As required by the TIA Guidelines, the PHF in future conditions is increased to 1.0, which results in improved or similar traffic operations for total future background 2024 and 2029 as compared to existing conditions.

Projected Conditions

- Ridgewood Ave and Springland Dr are appropriately classified as collector roadways. Flannery Dr
 between Ridgewood Ave and Brookfield Rd experiences higher vehicular traffic volumes that suggests
 a major collector classification may be appropriate. However, the intersection operational analysis
 indicates there are no traffic concerns along the corridor in the future and the design does include
 characteristics found in major collectors, e.g. parking restrictions and no direct residential frontage.
- For total projected 2024 conditions, the intersection of Riverside/Brookfield has poorly operating individual movements, but 'as a whole' operates acceptably (at a LOS 'E') during both peak hours. All other intersections operate acceptably, similar to existing conditions.
- For total projected 2029 conditions, higher delays and v/c ratios are experienced compared to total
 projected 2024 conditions. The intersection of Riverside/Brookfield continues to operate acceptably
 overall. Similarly, the intersection of Riverside/Ridgewood 'as a whole' operates closer to capacity (at a
 LOS 'E), but acceptably in the morning peak hour. All other intersections operate similar to existing
 conditions.

In summary, the adjacent road network is expected to accommodate anticipated development traffic in the future. Therefore, the proposed development is recommended to proceed from a transportation perspective.

Appendix A SCREENING FORM

22-Mar-21

City of Ottawa 2017 TIA Guidelines

TIA Screening Form Project 729-753 Ridgewood Ave

Project Number 477549 - 01000

Date

Results of Screening	Yes/No
Development Satisfies the Trip Generation Trigger	Yes
Development Satisfies the Location Trigger	No
Development Satisfies the Safety Trigger	Yes

Module 1.1 - Description of Proposed Development	
Municipal Address	729-753 Ridgewood Avenue, Ottawa, ON
Description of location	North side of Ridgewood Ave
Land Use	Five residential buildings and commercials space
Development Size	390 apartment units and 835 m^2 commercial
Number of Accesses and Locations	Single access proposed along north side of Ridgewood Ave
Development Phasing	Single Phase
Buildout Year	2024
Sketch Plan / Site Plan	See attached

Module 1.2 - Trip Generation Trigger		
Land Use Type	Townhomes or Apartments	
Development Size	390	Units
Trip Generation Trigger Met?	Yes	

Module 1.3 - Location Triggers	
Development Proposes a new driveway to a boundary street that is designated as part of the City's Transit Priority, Rapid Transit, or Spine Bicycle Networks (See Sheet 3)	No
Development is in a Design Priority Area (DPA) or Transit- oriented Development (TOD) zone. (See Sheet 3)	No
Location Trigger Met?	No

Module 1.4 - Safety Triggers		
Posted Speed Limit on any boundary road	<80	km/h
Horizontal / Vertical Curvature on a boundary street limits sight lines at a proposed driveway	No	
A proposed driveway is within the area of influence of an adjacent traffic signal or roundabout (i.e. within 300 m of intersection in rural conditions, or within 150 m of intersection in urban/ suburban conditions) or within auxiliary lanes of an intersection;	Yes	
A proposed driveway makes use of an existing median break that serves an existing site	No	
There is a documented history of traffic operations or safety concerns on the boundary streets within 500 m of the development	No	
The development includes a drive-thru facility	No	
Safety Trigger Met?	Yes	

Appendix B TRANSIT ROUTE MAPS

GREENBORO HURDMAN

7 days a week / 7 jours par semaine

All day service Service toute la journée

CC Transpo

2020.04

INFO 613-741-4390

octranspo.com

190

MOONEY'S BAY HURDMAN

Local

7 days a week / 7 jours par semaine

Selected trips only Trajets sélectionnés seulement

HURDMAN

Transitway & Station

Timepoint / Heures de passage

2020.04

En vigueur 3 mai 2020

CC *Transpo* INFO 613-741-4390 octranspo.com

HURDMAN McCARTHY

Monday to Friday / Lundi au vendredi

Peak periods only Périodes de pointe seulement

Transitway & Station AM trips only / Trajets du matin seulement

2021.03

octranspo.com

Appendix C TRAFFIC DATA

Turning Movement Count - 15 Minute Summary Report

AIRPORT PKWY/BROOKFIELD RD @ FLANNERY DR/AIRPORT PKWY RAMPS 52A/53

Survey Date: Thursday, September 22, 2016 Total Observed U-Turns

Northbound: 1 Southbound: 0 Eastbound: 34 Westbound: 0

		No	orthbou	und		So	uthbour	nd			Ea	stbound			We	stbound				
Time P	Period	LT	ST	RT	N TOT	LT	ST	RT	S TOT	STR TOT	LT	ST	RT	E TOT	LT	ST	RT	W TOT	STR TOT	Grand Total
07:00		6	0	20	26	0	6	38	44	70	0	69	3	72	3	40	0	43	115	185
07:15	07:30	8	0	40	48	0	4	47	51	99	0	81	4	87	0	44	0	44	131	230
07:30	07:45	15	1	49	65	0	3	36	39	104	0	110	10	120	1	55	0	56	176	280
07:45	08:00	14	0	39	53	1	8	41	50	103	0	118	4	122	0	52	0	52	174	277
08:00	08:15	18	0	63	81	0	8	36	44	125	1	92	17	111	0	57	0	57	168	293
08:15	08:30	16	0	42	58	0	10	43	53	111	1	80	8	91	1	60	0	61	152	263
08:30	08:45	24	0	44	68	1	3	51	55	123	0	91	14	105	3	45	0	48	153	276
08:45	09:00	27	0	35	62	2	10	46	58	120	0	98	28	127	0	62	0	62	189	309
09:00	09:15	13	0	23	36	0	8	44	52	88	0	78	16	95	6	37	0	43	138	226
09:15	09:30	5	0	19	24	0	7	32	39	63	1	71	12	84	3	30	0	33	117	180
09:30	09:45	12	0	24	36	0	6	24	30	66	2	60	8	72	2	22	0	24	96	162
09:45	10:00	16	0	22	38	2	6	17	25	63	0	32	6	39	3	19	0	22	61	124
11:30	11:45	12	0	16	29	3	12	18	33	62	0	72	12	85	1	19	0	20	105	167
11:45	12:00	6	0	18	24	0	11	20	31	55	1	69	11	84	3	16	0	19	103	158
12:00	12:15	10	0	21	31	1	8	16	25	56	0	66	18	84	3	18	0	21	105	161
12:15	12:30	9	0	14	23	0	16	13	29	52	0	79	17	98	1	22	0	23	121	173
12:30	12:45	12	1	21	34	0	17	23	40	74	0	56	12	68	3	20	0	23	91	165
12:45	13:00	6	0	13	19	0	10	19	29	48	0	48	13	62	2	23	0	25	87	135
13:00	13:15	11	0	15	26	3	12	23	38	64	0	51	10	61	1	27	0	28	89	153
13:15	13:30	5	0	20	25	3	12	12	27	52	1	48	16	67	0	29	0	29	96	148
15:00	15:15	14	0	12	26	3	18	30	51	77	0	125	34	160	6	28	0	34	194	271
15:15	15:30	13	1	10	24	2	20	47	69	93	0	105	24	129	3	31	0	34	163	256
15:30	15:45	13	1	21	35	2	18	53	73	108	0	120	25	147	8	38	0	46	193	301
15:45	16:00	10	0	13	23	0	34	53	87	110	1	122	27	152	2	30	0	32	184	294
16:00	16:15	13	0	12	25	5	33	69	107	132	0	136	31	167	0	24	0	24	191	323
16:15	16:30	4	0	18	22	2	62	70	134	156	1	109	27	140	3	31	0	34	174	330
16:30	16:45	8	0	19	27	3	68	62	133	160	2	101	46	149	7	24	0	31	180	340
16:45	17:00	8	0	17	25	0	73	69	142	167	0	93	38	134	6	25	0	31	165	332
17:00	17:15	12	0	15	27	0	63	48	111	138	0	99	24	124	3	26	0	29	153	291
17:15	17:30	13	0	12	25	0	60	47	107	132	1	101	29	132	6	34	0	40	172	304
17:30	17:45	6	0	25	31	2	55	52	109	140	0	109	23	132	6	24	0	30	162	302
17:45	18:00	7	0	26	33	0	33	47	80	113	1	87	26	116	3	28	0	31	147	260
TOTAL	: 3	366	4	758	1129	35	714	1246	1995	3124	13	2776	593	3416	89	1040	0	112	29 4545	7669

Northbound Southbound Eastbound Westbound S STR Ε STR Grand W Time Period LT ST RT TOT LT ST RT тот тот LT ST RT TOT LT ST RT TOT TOT Total

Note: U-Turns are included in Totals.

Comment:

Turning Movement Count - Cyclist Volume Report

Work Order 36342

AIRPORT PKWY/BROOKFIELD RD @ FLANNERY DR/AIRPORT PKWY RAMPS 52A/53

Count Date: Thursday, September 22, 2016 Start Time: 07:00

_							
Time Period	Northbound	Southbound	Street Total	Eastbound	Westbound	Street Total	Grand Total
07:00 08:00	11	1	12	1	6	7	19
08:00 09:00	14	1	15	4	4	8	23
09:00 10:00	1	0	1	0	2	2	3
11:30 12:30	3	4	7	2	0	2	9
12:30 13:30	1	0	1	4	2	6	7
15:00 16:00	0	3	3	4	2	6	9
16:00 17:00	3	4	7	13	1	14	21
17:00 18:00	2	2	4	12	2	14	18
Total	35	15	50	40	19	59	109

Comment:

Note: These volumes consists of bicycles only (no mopeds or motorcycles) and ARE NOT included in the Turning Movement Count Summary.

Turning Movement Count - Full Study Diagram

AIRPORT PKWY/BROOKFIELD RD @ FLANNERY DR/AIRPORT PKWY RAMPS 52A/53

Survey Date: Thursday, September 22, 2016 WO#: 36342

Device: Miovision

Comments

W.O. 36342

Turning Movement Count - Heavy Vehicle Report

AIRPORT PKWY/BROOKFIELD RD @ FLANNERY DR/AIRPORT PKWY RAMPS 52A/53

Survey Date: Thursday, September 22, 2016

		Northb	ound		5	Southb	ound	_			Eastb	ound		\	Westbo	ound				
Time F	Period	LT	ST	RT	N TOT	LT	ST	RT	S TOT	STR TOT	LT	ST	RT	E TOT	LT	ST	RT	W TOT	STR TOT	Grand Total
07:00	08:00	9	0	0	9	0	0	0	0	9	0	1	4	5	0	0	0	0	5	14
08:00	09:00	6	0	1	7	0	0	1	1	8	0	1	6	7	0	2	0	2	9	17
09:00	10:00	7	0	0	7	0	0	1	1	8	0	1	7	8	0	0	0	0	8	16
11:30	12:30	4	0	0	5	0	1	0	1	6	0	0	5	6	0	1	0	1	7	13
12:30	13:30	4	0	1	5	0	1	0	1	6	0	2	4	6	0	0	0	0	6	12
15:00	16:00	5	1	1	7	0	0	1	1	8	0	3	12	16	0	2	0	2	18	26
16:00	17:00	4	0	1	5	0	0	0	0	5	0	1	9	10	0	0	0	0	10	15
17:00	18:00	3	0	1	4	0	0	1	1	5	0	1	8	9	0	0	0	0	9	14
Sub	Γotal	42	1	5	49	0	2	4	6	55	0	10	55	67	0	5	0	5	72	127
U-Turn	s (Heav	y Veh	icles)		1				0	1				2				0	2	3
Tot	al	42	1	5	0	0	2	4	6	56	0	10	55	69	0	5	0	5	74	130

Heavy Vehicles include Buses, Single-Unit Trucks and Articulated Trucks. Further, they ARE included in the Turning Movement Count Summary.

Work Order 36342

Turning Movement Count - Pedestrian Volume Report

AIRPORT PKWY/BROOKFIELD RD @ FLANNERY DR/AIRPORT PKWY RAMPS 52A/53

Count Dat	e: Thursday, Se	eptember 22, 2016	•			Start Time:	07:00
Time Period	NB Approach (E or W Crossing)	SB Approach (E or W Crossing)	Total	EB Approach (N or S Crossing)	WB Approach (N or S Crossing)	Total	Grand Total
07:00 07:15	1	0	1	0	0	0	1
07:15 07:30	5	0	5	3	5	8	13
07:30 07:45	2	1	3	2	2	4	7
07:45 08:00	1	0	1	2	4	6	7
07:00 08:00	9	1	10	7	11	18	28
08:00 08:15	1	2	3	2	6	8	11
08:15 08:30	21	1	22	7	4	11	33
08:30 08:45	65	1	66	13	6	19	85
08:45 09:00	2	4	6	29	0	29	35
08:00 09:00	89	8	97	51	16	67	164
09:00 09:15	7	4	11	5	3	8	19
09:15 09:30	0	0	0	0	0	0	0
09:30 09:45	0	3	3	0	7	7	10
09:45 10:00	0	2	2	1	5	6	8
9:00 10:00	7	9	16	6	15	21	37
1:30 11:45	2	1	3	1	8	9	12
1:45 12:00	0	0	0	2	4	6	6
2:00 12:15	0	2	2	5	1	6	8
12:15 12:30	0	3	3	7	5	12	15
1:30 12:30	2	6	8	15	18	33	41
2:30 12:45	0	2	2	6	4	10	12
2:45 13:00	0	0	0	2	2	4	4
13:00 13:15	0	0	0	2	4	6	6
3:15 13:30	0	0	0	1	4	5	5
12:30 13:30	0	2	2	11	14	25	27
5:00 15:15	6	4	10	25	2	27	37
5:15 15:30	5	4	9	20	6	26	35
5:30 15:45	4	1	5	4	8	12	17
5:45 16:00	0	1	1	0	4	4	5
5:00 16:00	15	10	25	49	20	69	94
6:00 16:15	0	1	1	1	3	4	5
16:15 16:30	1	0	1	3	4	7	8
6:30 16:45	5	0	5	0	11	11	16
6:45 17:00	2	0	2	3	6	9	11
6:00 17:00	8	1	9	7	24	31	40
7:00 17:15	2	2	4	5	5	10	14
7:15 17:30	1	1	2	0	9	9	11
17:30 17:45	2	0	2	2	12	14	16
17:45 18:00	0	0	0	1	8	9	9
17:00 18:00	5	3	8	8	34	42	50
Total	135	40	175	154	152	306	481

Comment:

2016

Transportation Services - Traffic Services

Work Order

36342

Turning Movement Count - Full Study Summary Report

AIRPORT PKWY/BROOKFIELD RD @ FLANNERY DR/AIRPORT PKWY RAMPS 52A/53

Survey Date: Thursday, September 22, Total Observed U-Turns

Total Observed 0-10111

AADT Factor

Northbound: 1 Eastbound: 34 Southbound: 0 Westbound: 0

1.00

Full Study

_	N	orthbo	ound		S	Southb	ound				Eastb	ound		,	Westbo	ound			
Period	LT	ST	RT	NB TOT	LT	ST	RT	SB TOT	STR TOT	LT	ST	RT	EB TOT	LT	ST	RT	WB TOT	STR TOT	Grand Tota
07:00 08:00	43	1	148	192	1	21	162	184	376	0	378	21	399	4	191	0	195	594	970
08:00 09:00	85	0	184	269	3	31	176	210	479	2	361	67	430	4	224	0	228	658	1137
09:00 10:00	46	0	88	134	2	27	117	146	280	3	241	42	286	14	108	0	122	408	688
11:30 12:30	37	0	69	106	4	47	67	118	224	1	286	58	345	8	75	0	83	428	652
12:30 13:30	34	1	69	104	6	51	77	134	238	1	203	51	255	6	99	0	105	360	598
15:00 16:00	50	2	56	108	7	90	183	280	388	1	472	110	583	19	127	0	146	729	1117
16:00 17:00	33	0	66	99	10	236	270	516	615	3	439	142	584	16	104	0	120	704	1319
17:00 18:00	38	0	78	116	2	211	194	407	523	2	396	102	500	18	112	0	130	630	1153
Sub Total	366	4	758	1128	35	714	1246	1995	3123	13	2776	593	3382	89	1040	0	1129	4511	7634
U Turns				1				0	1				34				0	34	35
Total	366	4	758	1129	35	714	1246	1995	3124	13	2776	593	3416	89	1040	0	1129	4545	7669
EQ 12Hr	509	6	1054	1569	49	992	1732	2773	4342	18	3859	824	4748	124	1446	0	1569	6317	10659
Note: These v	alues are	e calcu	lated by	/ multiply	ing the	totals b	y the a	opropriat	e expansi	on fact	tor.		1	.39					
AVG 12Hr	509	6	1054	1569	49	992	1732	2773	4342	18	3859	824	4748	124	1446	0	1569	6317	10659
Note: These v	olumes a	are calo	culated	by multip	lying th	ne Equi	/alent 1	2 hr. tota	ls by the	AADT	factor.		1	.00					
AVG 24Hr	666	7	1380	2056	64	1300	2269	3633	5689	24	5055	1080	6220	162	1894	0	2056	8276	13965
Note: These v	olumes a	are calo	culated	by multip	lying th	ne Aver	age Dai	ly 12 hr. 1	totals by	12 to 2	4 expan	sion fac	tor. 1	.31					

Comments:

Note: U-Turns provided for approach totals. Refer to 'U-Turn' Report for specific breakdown.

Turning Movement Count - Full Study Peak Hour Diagram

AIRPORT PKWY/BROOKFIELD RD @ FLANNERY DR/AIRPORT PKWY RAMPS 52A/53

Comments

Turning Movement Count - Full Study Peak Hour Diagram

AIRPORT PKWY/BROOKFIELD RD @ FLANNERY DR/AIRPORT PKWY RAMPS 52A/53

Comments

Turning Movement Count - Full Study Peak Hour Diagram

AIRPORT PKWY/BROOKFIELD RD @ FLANNERY DR/AIRPORT PKWY RAMPS 52A/53

Comments

Turning Movement Count - Full Study Peak Hour Diagram

AIRPORT PKWY/BROOKFIELD RD @ FLANNERY DR/AIRPORT PKWY RAMPS 52A/53

Comments

Turning Movement Count - 15 Min U-Turn Total Report

AIRPORT PKWY/BROOKFIELD RD @ FLANNERY DR/AIRPORT PKWY RAMPS 52A/53

Survey Date: Thursday, September 22, 2016

_		-				
Time F	Period	Northbound U-Turn Total	Southbound U-Turn Total	Eastbound U-Turn Total	Westbound U-Turn Total	Total
07:00	07:15	0	0	0	0	0
07:15	07:30	0	0	2	0	2
07:30	07:45	0	0	0	0	0
07:45	08:00	0	0	0	0	0
08:00	08:15	0	0	1	0	1
08:15	08:30	0	0	2	0	2
08:30	08:45	0	0	0	0	0
08:45	09:00	0	0	1	0	1
09:00	09:15	0	0	1	0	1
09:15	09:30	0	0	0	0	0
09:30	09:45	0	0	2	0	2
09:45	10:00	0	0	1	0	1
11:30	11:45	1	0	1	0	2
11:45	12:00	0	0	3	0	3
12:00	12:15	0	0	0	0	0
12:15	12:30	0	0	2	0	2
12:30	12:45	0	0	0	0	0
12:45	13:00	0	0	1	0	1
13:00	13:15	0	0	0	0	0
13:15	13:30	0	0	2	0	2
15:00	15:15	0	0	1	0	1
15:15	15:30	0	0	0	0	0
15:30	15:45	0	0	2	0	2
15:45	16:00	0	0	2	0	2
16:00	16:15	0	0	0	0	0
16:15	16:30	0	0	3	0	3
16:30	16:45	0	0	0	0	0
16:45	17:00	0	0	3	0	3
17:00	17:15	0	0	1	0	1
17:15	17:30	0	0	1	0	1
17:30	17:45	0	0	0	0	0
17:45	18:00	0	0	2	0	2
To	otal	1	0	34	0	35

Turning Movement Count - Study Results

RIDGEWOOD AVE @ RIVERSIDE DR

June 25, 2020 Page 1 of 8

Turning Movement Count - Study Results

RIDGEWOOD AVE @ RIVERSIDE DR

Survey Date: Wednesday, March 06, 2019 WO No: 38313

Start Time: 07:00 Device: Miovision

Full Study Peak Hour Diagram

June 25, 2020 Page 2 of 8

Turning Movement Count - Peak Hour Diagram

RIDGEWOOD AVE @ RIVERSIDE DR

Comments

2020-Jun-25 Page 1 of 3

Turning Movement Count - Peak Hour Diagram

RIDGEWOOD AVE @ RIVERSIDE DR

Comments

2020-Jun-25 Page 2 of 3

867

*

1667

800

Turning Movement Count - Peak Hour Diagram

RIDGEWOOD AVE @ RIVERSIDE DR

0

3

2673

15

1744

Heavy

Vehicles

Total

3

29

13

896

929

#

2020-Jun-25 Page 3 of 3

Turning Movement Count - Study Results

RIDGEWOOD AVE @ RIVERSIDE DR

Survey Date: Wednesday, March 06, 2019 WO No: 38313

Start Time: 07:00 **Device:** Miovision

Full Study Summary (8 HR Standard)

Survey Date: Wednesday, March 06, 2019 **Total Observed U-Turns AADT Factor**

> Southbound: Northbound: 26 Eastbound: Westbound: 0 0

1.00

RIVERSIDE DR RIDGEWOOD AVE

			1 (1 / 1		_ DIX							INDO		,D ,	-				
	No	orthbou	nd		Sc	uthbou	ınd			E	astbou	nd		W	estbou	und			
Period	LT	ST	RT	NB TOT	LT	ST	RT	SB TOT	STR TOT	LT	ST	RT	EB TOT	LT	ST	RT	WB TOT	STR TOT	Grand Total
07:00 08:00	0	1930	48	1978	25	624	2	651	2629	2	0	1	3	20	1	88	109	112	2741
08:00 09:00	1	2019	68	2088	42	730	7	779	2867	2	0	1	3	23	0	89	112	115	2982
09:00 10:00	3	1223	69	1295	68	609	2	679	1974	0	0	0	0	30	3	92	125	125	2099
11:30 12:30	7	811	25	843	59	765	6	830	1673	8	1	4	13	28	2	80	110	123	1796
12:30 13:30	1	828	29	858	49	727	12	788	1646	6	0	4	10	30	0	72	102	112	1758
15:00 16:00	5	798	32	835	51	1591	9	1651	2486	7	1	4	12	33	0	51	84	96	2582
16:00 17:00	3	896	29	928	45	1694	8	1747	2675	7	0	5	12	44	1	43	88	100	2775
17:00 18:00	6	877	18	901	46	1332	9	1387	2288	12	1	7	20	30	2	51	83	103	2391
Sub Total	26	9382	318	9726	385	8072	55	8512	18238	44	3	26	73	238	9	566	813	886	19124
U Turns				4				26	30				0				0	0	30
Total	26	9382	318	9730	385	8072	55	8538	18268	44	3	26	73	238	9	566	813	886	19154
EQ 12Hr	36	13041	442	13525	535	11220	76	11868	25393	61	4	36	101	331	13	787	1130	1232	26624
Note: These	values a	are calcu	lated b	y multiply	ying the	e totals b	y the a	ppropriat	te expans	ion facto	or.			1.39					
AVG 12Hr	34	12290		12746	504	10574		11185	25393	58	4	34	96	312	12	741	1065	1232	26624
Note: These	volume	s are cal	culated	by multi	plying t	he Equiv	alent 1	12 hr. tota	als by the	AADT f	actor.			1					
AVG 24Hr	45	16100	546	16698	661	13852	94	14652	31350	76	5	45	125	408	15	971	1395	1520	32870
Note: These	volume	s are cal	culated	by multi	plying t	he Avera	age Da	ily 12 hr.	totals by	12 to 24	1 expans	sion fac	tor.	1.31					

Note: U-Turns provided for approach totals. Refer to 'U-Turn' Report for specific breakdown.

June 25, 2020 Page 3 of 8

RIVERSIDE DR

Transportation Services - Traffic Services

Turning Movement Count - Study Results

RIDGEWOOD AVE @ RIVERSIDE DR

Survey Date: Wednesday, March 06, 2019 WO No: 38313

Start Time: 07:00 Device: Miovision

Full Study 15 Minute Increments RIDGEWOOD AVE

Southbound Northbound Eastbound Westbound S STR W **STR** Grand Ν Ε **Time Period** LT ST LT ST RT LT ST RT LT ST RT TOT TOT TOT TOT TOT TOT **Total** 07:00 07:15 O n 07:15 07:30 07:30 07:45 07:45 08:00 08:00 08:15 08:15 08:30 n 08:45 08:30 08:45 09:00 09:15 09:00 09:15 09:30 09:30 09:45 09:45 10:00 11:30 11:45 11:45 12:00 12:00 12:15 12:15 12:30 12:30 12:45 12:45 13:00 13:00 13:15 13:15 13:30 15:00 15:15 15:15 15:30 15:30 15:45 15:45 16:00 16:00 16:15 16:15 16:30 16:30 16:45 16:45 17:00 17:00 17:15 17:30 17:15 17:30 17:45 n 17:45 18:00 19,154 Total:

Note: U-Turns are included in Totals.

June 25, 2020 Page 4 of 8

Turning Movement Count - Study Results

RIDGEWOOD AVE @ RIVERSIDE DR

Survey Date: Wednesday, March 06, 2019 WO No: 38313

Start Time: 07:00 Device: Miovision

Full Study Cyclist Volume

RIVERSIDE DR RIDGEWOOD AVE

07:00 07:15 0 0 0 0 0 0 0 0 0			INIVERSIBL DIV			MDGEWGGD F	\V_	<u>_</u>
07:15 07:30 0	Time Period	Northbound	Southbound	Street Total	Eastbound	Westbound	Street Total	Grand Total
07:30 07:45 0	07:00 07:15	0	0	0	0	0	0	0
07:45 08:00 2 0 2 0 0 2 08:00 08:15 1 0 1 0 0 0 0 1 08:30 08:35 0 <td>07:15 07:30</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td>	07:15 07:30	0	0	0	0	0	0	0
08:00 08:15	07:30 07:45	0	0	0	0	0	0	0
08:15 08:30 0	07:45 08:00	2	0	2	0	0	0	2
08:30 08:45 0	08:00 08:15	1	0	1	0	0	0	1
08:45 09:00 0	08:15 08:30	0	0	0	0	0	0	0
09:00 09:15 0	08:30 08:45	0	0	0	0	0	0	0
09:15 09:30 0	08:45 09:00	0	0	0	0	0	0	0
09:30 09:45 0	09:00 09:15	0	0	0	0	0	0	0
09:45 10:00 0	09:15 09:30	0	0	0	0	0	0	0
11:30 11:45 0	09:30 09:45	0	0	0	0	0	0	0
11:45 12:00 0	09:45 10:00	0	0	0	0	0	0	0
12:00 12:15 0	11:30 11:45	0	0	0	0	0	0	0
12:15 12:30 0	11:45 12:00	0	0	0	0	0	0	0
12:30 12:45 0	12:00 12:15	0	0	0	0	0	0	0
12:45 13:00 0	12:15 12:30	0	0	0	0	0	0	0
13:00 13:15 0	12:30 12:45	0	0	0	0	0	0	0
13:15 13:30 0	12:45 13:00	0	0	0	0	0	0	0
15:00 15:15 0	13:00 13:15	0	0	0	0	0	0	0
15:15 15:30 0	13:15 13:30	0	0	0	0	0	0	0
15:30 15:45 0	15:00 15:15	0	0	0	0	0	0	0
15:45 16:00 0	15:15 15:30	0	0	0	0	0	0	0
16:00 16:15 0	15:30 15:45	0	0	0	0	0	0	0
16:15 16:30 0	15:45 16:00	0	0	0	0	0	0	0
16:30 16:45 0	16:00 16:15	0	0	0	0	0	0	0
16:45 17:00 0	16:15 16:30	0	0	0	0	0	0	0
17:00 17:15 0	16:30 16:45	0	0	0	0	0	0	0
17:15 17:30 0	16:45 17:00	0	0	0	0	0	0	0
17:30 17:45 0 0 0 0 0 0 17:45 18:00 0 0 0 0 0	17:00 17:15	0	0	0	0	0	0	0
17:45 18:00 0 0 0 0 0 0	17:15 17:30	0	0	0	0	0	0	0
	17:30 17:45	0	0	0	0	0	0	0
Total 3 0 3 0 0 0 3	17:45 18:00	0	0	0	0	0	0	0
	Total	3	0	3	0	0	0	3

June 25, 2020 Page 5 of 8

Turning Movement Count - Study Results

RIDGEWOOD AVE @ RIVERSIDE DR

Survey Date: Wednesday, March 06, 2019 WO No: 38313

Start Time: 07:00 Device: Miovision

Full Study Pedestrian Volume

RIVERSIDE DR RIDGEWOOD AVE

Time Period	NB Approach (E or W Crossing)	SB Approach (E or W Crossing)	Total	EB Approach (N or S Crossing)	WB Approach (N or S Crossing)	Total	Grand Total
07:00 07:15	1	0	1	0	0	0	1
07:15 07:30	0	0	0	0	0	0	0
07:30 07:45	0	0	0	0	0	0	0
07:45 08:00	0	0	0	0	1	1	1
08:00 08:15	0	0	0	0	1	1	1
08:15 08:30	0	0	0	0	0	0	0
08:30 08:45	1	1	2	0	0	0	2
08:45 09:00	1	0	1	1	1	2	3
09:00 09:15	0	1	1	0	0	0	1
09:15 09:30	0	0	0	1	0	1	1
09:30 09:45	1	1	2	0	0	0	2
09:45 10:00	0	1	1	0	1	1	2
11:30 11:45	0	0	0	1	0	1	1
11:45 12:00	0	3	3	0	0	0	3
12:00 12:15	0	0	0	2	4	6	6
12:15 12:30	1	2	3	0	3	3	6
12:30 12:45	0	0	0	0	1	1	1
12:45 13:00	1	1	2	3	0	3	5
13:00 13:15	0	0	0	0	1	1	1
13:15 13:30	0	0	0	0	1	1	1
15:00 15:15	1	1	2	0	3	3	5
15:15 15:30	0	0	0	1	1	2	2
15:30 15:45	0	1	1	1	0	1	2
15:45 16:00	0	1	1	0	2	2	3
16:00 16:15	0	2	2	2	1	3	5
16:15 16:30	1	0	1	0	0	0	1
16:30 16:45	1	0	1	2	1	3	4
16:45 17:00	0	0	0	1	0	1	1
17:00 17:15	0	4	4	0	4	4	8
17:15 17:30	1	0	1	1	1	2	3
17:30 17:45	1	3	4	1	2	3	7
17:45 18:00	0	0	0	2	0	2	2
Total	11	22	33	19	29	48	81

June 25, 2020 Page 6 of 8

Turning Movement Count - Study Results

RIDGEWOOD AVE @ RIVERSIDE DR

Survey Date: Wednesday, March 06, 2019 WO No: 38313

Start Time: 07:00 Device: Miovision

Full Study Heavy Vehicles

RIVERSIDE DR RIDGEWOOD AVE

	N	Iorthbou	und		Sc	uthbou	nd			Е	astbour	nd		We	estbour	nd			
Time Period	i LT	ST	RT	N TOT	LT	ST	RT	S TOT	STR TOT	LT	ST	RT	E TOT	LT	ST	RT	W TOT	STR TOT	Grand Total
07:00 07:1	5 0	5	1	6	0	5	0	5	11	0	0	0	0	1	0	0	1	1	12
07:15 07:3	0 0	4	0	4	1	1	0	2	6	0	0	0	0	0	0	0	0	0	6
07:30 07:4	5 0	5	2	7	1	5	0	6	13	0	0	0	0	1	0	0	1	1	14
07:45 08:0	0 0	5	3	8	0	8	0	8	16	0	0	0	0	1	0	1	2	2	18
08:00 08:1	5 0	11	3	14	0	5	0	5	19	0	0	0	0	1	0	0	1	1	20
08:15 08:3	0 0	7	2	9	0	5	0	5	14	0	0	0	0	1	0	0	1	1	15
08:30 08:4	5 0	8	1	9	2	7	0	9	18	0	0	0	0	0	0	0	0	0	18
08:45 09:0	0 0	5	1	6	0	5	0	5	11	0	0	0	0	2	0	1	3	3	14
09:00 09:1	5 1	8	5	14	0	5	0	5	19	0	0	0	0	2	0	2	4	4	23
09:15 09:3	0 0	5	2	7	0	3	0	3	10	0	0	0	0	1	0	0	1	1	11
09:30 09:4	5 0	11	0	11	0	1	0	1	12	0	0	0	0	2	0	2	4	4	16
09:45 10:0	0 0	6	1	7	0	1	0	1	8	0	0	0	0	1	0	0	1	1	9
11:30 11:4	5 0	3	1	4	1	5	0	6	10	0	0	0	0	1	0	0	1	1	11
11:45 12:0	0 0	6	2	8	0	4	1	5	13	1	0	0	1	1	0	0	1	2	15
12:00 12:1	5 0	3	0	3	0	7	0	7	10	0	0	0	0	1	0	0	1	1	11
12:15 12:3	0 0	1	3	4	0	5	0	5	9	0	0	0	0	1	0	0	1	1	10
12:30 12:4	5 0	0	2	2	0	8	0	8	10	0	0	0	0	2	0	1	3	3	13
12:45 13:0	0 0	8	1	9	0	3	0	3	12	0	0	0	0	2	0	1	3	3	15
13:00 13:1	5 0	3	1	4	0	4	0	4	8	0	0	0	0	1	0	0	1	1	9
13:15 13:3	_	7	2	9	0	1	0	1	10	0	0	0	0	2	0	0	2	2	12
15:00 15:1	_	2	1	3	1	6	0	7	10	0	0	0	0	1	0	1	2	2	12
15:15 15:3	_	6	0	6	0	3	0	3	9	0	0	0	0	0	0	2	2	2	11
15:30 15:4		5	2	7	0	3	0	3	10	0	0	0	0	1	0	0	1	1	11
15:45 16:0	_	1	2	3	0	1	0	1	4	0	0	0	0	1	0	1	2	2	6
16:00 16:1	_	4	1	5	0	1	1	2	7	0	0	0	0	1	0	0	1	1	8
16:15 16:3		5	1	6	0	5	0	5	11	0	0	0	0	2	0	0	2	2	13
16:30 16:4		2	1	3	0	2	0	2	5	0	0	0	0	1	0	0	1	1	6
16:45 17:0		2	0	2	0	2	0	2	4	0	0	0	0	1	0	0	1	1	5
17:00 17:1	_	5	2	7	0	1	0	1	8	0	0	0	0	2	0	0	2	2	10
17:15 17:3	_	2	1	3	0	1	0	1	4	0	0	0	0	1	0	0	1	1	5
17:30 17:4		4	0	4	0	3	0	3	7	0	0	0	0	1	0	0	1	1	8
17:45 18:0		0	1	1	0	2	0	2	3	0	0	0	0	4	0	0	4	4	7
Total: Non	e 1	149	45	195	6	118	2	126	321	1	0	0	1	40	0	12	52	53	374

June 25, 2020 Page 7 of 8

Turning Movement Count - Study Results

RIDGEWOOD AVE @ RIVERSIDE DR

Survey Date: Wednesday, March 06, 2019 WO No: 38313

Start Time: 07:00 Device: Miovision

Full Study 15 Minute U-Turn Total RIVERSIDE DR RIDGEWOOD AVE

Time F	Period	Northbound U-Turn Total	Southbound U-Turn Total	Eastbound U-Turn Total	Westbound U-Turn Total	Total
07:00	07:15	0	2	0	0	2
07:15	07:30	0	0	0	0	0
07:30	07:45	0	0	0	0	0
07:45	08:00	0	0	0	0	0
08:00	08:15	0	0	0	0	0
08:15	08:30	0	4	0	0	4
08:30	08:45	1	1	0	0	2
08:45	09:00	0	0	0	0	0
09:00	09:15	0	0	0	0	0
09:15	09:30	0	3	0	0	3
09:30	09:45	0	0	0	0	0
09:45	10:00	0	3	0	0	3
11:30	11:45	0	1	0	0	1
11:45	12:00	0	1	0	0	1
12:00	12:15	0	1	0	0	1
12:15	12:30	0	1	0	0	1
12:30	12:45	0	0	0	0	0
12:45	13:00	0	0	0	0	0
13:00	13:15	0	0	0	0	0
13:15	13:30	0	0	0	0	0
15:00	15:15	0	1	0	0	1
15:15	15:30	0	0	0	0	0
15:30	15:45	0	0	0	0	0
15:45	16:00	1	1	0	0	2
16:00	16:15	1	1	0	0	2
16:15	16:30	0	0	0	0	0
16:30	16:45	0	1	0	0	1
16:45	17:00	0	0	0	0	0
17:00	17:15	0	0	0	0	0
17:15	17:30	0	3	0	0	3
17:30	17:45	0	2	0	0	2
17:45	18:00	1	0	0	0	1
To	tal	4	26	0	0	30

June 25, 2020 Page 8 of 8

Turning Movement Count - Study Results

RIDGEWOOD AVE @ SPRINGLAND DR

Survey Date: Thursday, December 05, 2019 WO No: 39196

Start Time: 07:00 Device: Miovision

Full Study Diagram

June 25, 2020 Page 1 of 8

Turning Movement Count - Study Results

RIDGEWOOD AVE @ SPRINGLAND DR

Survey Date: Thursday, December 05, 2019 WO No: 39196

Start Time: 07:00 Device: Miovision

Full Study Peak Hour Diagram

June 25, 2020 Page 2 of 8

Turning Movement Count - Peak Hour Diagram

RIDGEWOOD AVE @ SPRINGLAND DR

Comments

2020-Jun-25 Page 1 of 3

Turning Movement Count - Peak Hour Diagram

RIDGEWOOD AVE @ SPRINGLAND DR

Comments

2020-Jun-25 Page 2 of 3

Turning Movement Count - Peak Hour Diagram

RIDGEWOOD AVE @ SPRINGLAND DR

Comments

2020-Jun-25 Page 3 of 3

Turning Movement Count - Study Results

RIDGEWOOD AVE @ SPRINGLAND DR

Survey Date: Thursday, December 05, 2019 WO No: 39196

Start Time: 07:00 **Device:** Miovision

Full Study Summary (8 HR Standard)

Survey Date: Thursday, December 05, 2019 **Total Observed U-Turns AADT Factor**

> Southbound: Northbound: 1.00

Eastbound: Westbound: 2

68 94 65 35	68 94	0 0	NB TOT 116 142	LT 0	ST 32	RT 40	SB TOT	STR TOT	LT	ST	RT	EB		от		WB	STR	Grand
94 65 35	94			0	32	40				01	ΚI	TOT	LT	ST	RT	TOT	TOT	Tota
65 35		0	142			40	72	188	28	0	13	41	0	0	0	0	41	229
35	65		172	0	52	37	89	231	49	0	33	82	0	0	0	0	82	313
		0	137	0	39	26	65	202	34	0	20	54	0	0	0	0	54	256
	35	0	81	0	39	34	73	154	23	0	25	48	0	0	0	0	48	202
42	42	0	82	0	42	41	83	165	18	0	24	42	0	0	0	0	42	207
61	61	0	97	0	95	45	140	237	24	0	38	62	0	0	0	0	62	299
45	45	0	78	0	239	37	276	354	27	0	46	73	0	0	0	0	73	427
65	65	0	105	0	151	38	189	294	25	0	36	61	0	0	0	0	61	355
475	475	0	838	0	689	298	987	1825	228	0	235	463	0	0	0	0	463	2288
			0				1	1				2				0	2	3
475	475	0	838	0	689	298	988	1826	228	0	235	465	0	0	0	0	465	2291
660	660	0	1165	0	958	414	1373	2538	317	0	327	646	0	0	0	0	646	3184
calculated	e calculate	d by r	multiplyi	ng the	totals b	y the ap	propriate	expans	ion facto	or.		•	1.39					
	622	•	1098	0	903	390	1294	2538	299	0	308	609	0	0	0	0	646	3184
e calculat	are calcula	ted by	y multipl	lying th	ne Equiv	alent 1	2 hr. total	s by the	AADT fa	actor.		•	1					
815	815	0	1438	0	1182	511	1696	3134	391	0	403	798	0	0	0	0	798	3932
6 6	6 fe ca 6 are	60 alculate 22 calcula	60 0 alculated by 22 0 calculated b	75 0 838 60 0 1165 alculated by multiplyi 22 0 1098 calculated by multipl 15 0 1438	75 0 838 0 60 0 1165 0 alculated by multiplying the 22 0 1098 0 calculated by multiplying the	75 0 838 0 689 60 0 1165 0 958 alculated by multiplying the totals b 22 0 1098 0 903 calculated by multiplying the Equiv	75 0 838 0 689 298 60 0 1165 0 958 414 alculated by multiplying the totals by the application of the second of t	75 0 838 0 689 298 988 60 0 1165 0 958 414 1373 alculated by multiplying the totals by the appropriate 22 0 1098 0 903 390 1294 calculated by multiplying the Equivalent 12 hr. total	75 0 838 0 689 298 988 1826 60 0 1165 0 958 414 1373 2538 alculated by multiplying the totals by the appropriate expans 22 0 1098 0 903 390 1294 2538 calculated by multiplying the Equivalent 12 hr. totals by the 15 0 1438 0 1182 511 1696 3134	75 0 838 0 689 298 988 1826 228 60 0 1165 0 958 414 1373 2538 317 alculated by multiplying the totals by the appropriate expansion factor 22 0 1098 0 903 390 1294 2538 299 calculated by multiplying the Equivalent 12 hr. totals by the AADT factor 15 0 1438 0 1182 511 1696 3134 391	75	75	75	75	75	75	75	75

Note: U-Turns provided for approach totals. Refer to 'U-Turn' Report for specific breakdown.

June 25, 2020 Page 3 of 8

Turning Movement Count - Study Results

RIDGEWOOD AVE @ SPRINGLAND DR

Survey Date: Thursday, December 05, 2019 WO No: 39196

Start Time: 07:00 Device: Miovision

Full Study 15 Minute Increments

	Ν	Northbound Southbound East							astbound Westbound										
Time Period	LT	ST	RT	N TOT	LT	ST	RT	S TOT	STR TOT	LT	ST	RT	E TOT	LT	ST	RT	W TOT	STR TOT	Grand Total
07:00 07:15	8	12	0	20	0	6	8	14	2	3	0	2	5	0	0	0	0	2	39
07:15 07:30	6	13	0	19	0	8	10	18	2	9	0	1	10	0	0	0	0	2	47
07:30 07:45	18	22	0	40	0	10	7	17	4	10	0	3	13	0	0	0	0	4	70
07:45 08:00	16	21	0	37	0	8	15	23	3	6	0	7	13	0	0	0	0	3	73
08:00 08:15	10	32	0	42	0	11	12	23	4	11	0	7	18	0	0	0	0	4	83
08:15 08:30	19	19	0	38	0	12	11	23	5	13	0	8	21	0	0	0	0	5	82
08:30 08:45	10	22	0	32	0	12	4	16	2	12	0	8	20	0	0	0	0	2	68
08:45 09:00	9	21	0	30	0	17	10	27	4	13	0	10	23	0	0	0	0	4	80
09:00 09:15	24	24	0	48	0	18	7	26	3	7	0	3	10	0	0	0	0	3	84
09:15 09:30	13	17	0	30	0	4	9	13	1	9	0	4	13	0	0	0	0	1	56
09:30 09:45	21	14	0	35	0	10	6	16	1	10	0	5	15	0	0	0	0	1	66
09:45 10:00	14	10	0	24	0	7	4	11	1	8	0	8	16	0	0	0	0	1	51
11:30 11:45	13	12	0	25	0	6	11	17	3	5	0	6	11	0	0	0	0	3	53
11:45 12:00	10	9	0	19	0	14	5	19	2	6	0	6	12	0	0	0	0	2	50
12:00 12:15	10	12	0	22	0	9	12	21	1	5	0	5	10	0	0	0	0	1	53
12:15 12:30	13	2	0	15	0	10	6	16	1	7	0	8	15	0	0	0	0	1	46
12:30 12:45	7	14	0	21	0	15	11	26	3	4	0	9	14	0	0	0	0	3	61
12:45 13:00	15	11	0	26	0	9	11	20	4	6	0	7	14	0	0	0	0	4	60
13:00 13:15	6	10	0	16	0	7	7	14	2	2	0	6	8	0	0	0	0	2	38
13:15 13:30	12	7	0	19	0	11	12	23	3	6	0	2	8	0	0	0	0	3	50
15:00 15:15	7	18	0	25	0	24	15	39	4	6	0	6	12	0	0	0	0	4	76
15:15 15:30	6	11	0	17	0	25	10	35	6	5	0	12	17	0	0	0	0	6	69
15:30 15:45	12	11	0	23	0	18	10	28	2	3	0	9	12	0	0	0	0	2	63
15:45 16:00	11	21	0	32	0	28	10	38	3	10	0	11	21	0	0	0	0	3	91
16:00 16:15	9	13	0	22	0	41	11	52	4	7	0	9	16	0	0	0	0	4	90
16:15 16:30	7	16	0	23	0	60	7	67	4	8	0	12	20	0	0	0	0	4	110
16:30 16:45	9	8	0	17	0	72	12	84	1	5	0	13	18	0	0	0	0	1	119
16:45 17:00	8	8	0	16	0	66	7	73	2	7	0	12	19	0	0	0	0	2	108
17:00 17:15	9	13	0	22	0	45	6	51	2	5	0	10	15	0	0	0	0	2	88
17:15 17:30	13	17	0	30	0	56	8	64	1	8	0	10	18	0	0	0	0	1	112
17:30 17:45	6	20	0	26	0	33	15	48	2	4	0	12	16	0	0	0	0	2	90
17:45 18:00	12	15	0	27	0	17	9	26	2	8	0	4	12	0	0	0	0	2	65
Total:	363	475	0	838	0	689	298	988	84	228	0	235	465	0	0	0	0	84	2,291

Note: U-Turns are included in Totals.

June 25, 2020 Page 4 of 8

Turning Movement Count - Study Results

RIDGEWOOD AVE @ SPRINGLAND DR

Survey Date: Thursday, December 05, 2019 WO No: 39196

Start Time: 07:00 Device: Miovision

Full Study Cyclist Volume

Time Period	Northbound	Southbound	Street Total	Eastbound	Westbound	Street Total	_ Grand Total
07:00 07:15	0	0	0	0	0	0	0
07:15 07:30	0	0	0	0	0	0	0
07:30 07:45	0	1	1	0	0	0	1
07:45 08:00	0	0	0	0	0	0	0
08:00 08:15	0	0	0	0	0	0	0
08:15 08:30	2	0	2	0	0	0	2
08:30 08:45	1	0	1	0	0	0	1
08:45 09:00	0	0	0	0	0	0	0
09:00 09:15	0	0	0	0	0	0	0
09:15 09:30	0	0	0	0	0	0	0
09:30 09:45	0	0	0	0	0	0	0
09:45 10:00	1	0	1	0	0	0	1
11:30 11:45	0	0	0	0	0	0	0
11:45 12:00	0	0	0	0	0	0	0
12:00 12:15	0	0	0	0	0	0	0
12:15 12:30	0	0	0	0	0	0	0
12:30 12:45	0	0	0	0	0	0	0
12:45 13:00	0	0	0	0	0	0	0
13:00 13:15	0	0	0	0	0	0	0
13:15 13:30	0	0	0	0	0	0	0
15:00 15:15	0	1	1	0	0	0	1
15:15 15:30	0	0	0	0	0	0	0
15:30 15:45	0	0	0	0	0	0	0
15:45 16:00	0	0	0	0	0	0	0
16:00 16:15	0	0	0	1	0	1	1
16:15 16:30	0	0	0	0	0	0	0
16:30 16:45	0	0	0	0	0	0	0
16:45 17:00	0	1	1	0	0	0	1
17:00 17:15	0	0	0	0	0	0	0
17:15 17:30	0	1	1	0	0	0	1
17:30 17:45	0	0	0	0	0	0	0
17:45 18:00	0	0	0	0	0	0	0
Total	4	4	8	1	0	1	9

June 25, 2020 Page 5 of 8

Turning Movement Count - Study Results

RIDGEWOOD AVE @ SPRINGLAND DR

Survey Date: Thursday, December 05, 2019 WO No: 39196

Start Time: 07:00 Device: Miovision

Full Study Pedestrian Volume

Time Period	NB Approach (E or W Crossing)	SB Approach (E or W Crossing)	Total	EB Approach (N or S Crossing)	WB Approach (N or S Crossing)	Total	Grand Total
07:00 07:15	1	0	1	1	0	1	2
07:15 07:30	1	1	2	0	0	0	2
07:30 07:45	3	5	8	5	0	5	13
07:45 08:00	2	0	2	3	0	3	5
08:00 08:15	1	1	2	1	0	1	3
08:15 08:30	0	4	4	1	0	1	5
08:30 08:45	7	2	9	3	0	3	12
08:45 09:00	2	1	3	3	0	3	6
09:00 09:15	0	0	0	3	0	3	3
09:15 09:30	4	1	5	0	0	0	5
09:30 09:45	1	1	2	0	0	0	2
09:45 10:00	0	0	0	0	0	0	0
11:30 11:45	1	0	1	0	0	0	1
11:45 12:00	2	2	4	0	0	0	4
12:00 12:15	1	7	8	1	0	1	9
12:15 12:30	0	3	3	6	0	6	9
12:30 12:45	3	3	6	1	0	1	7
12:45 13:00	2	0	2	2	0	2	4
13:00 13:15	0	1	1	0	0	0	1
13:15 13:30	1	2	3	0	0	0	3
15:00 15:15	1	7	8	3	0	3	11
15:15 15:30	2	6	8	12	0	12	20
15:30 15:45	1	3	4	4	0	4	8
15:45 16:00	1	7	8	5	0	5	13
16:00 16:15	0	8	8	3	0	3	11
16:15 16:30	1	6	7	1	0	1	8
16:30 16:45	0	3	3	2	0	2	5
16:45 17:00	0	4	4	4	0	4	8
17:00 17:15	0	1	1	2	0	2	3
17:15 17:30	0	3	3	1	0	1	4
17:30 17:45	1	4	5	4	0	4	9
17:45 18:00	0	7	7	2	0	2	9
Total	39	93	132	73	0	73	205

June 25, 2020 Page 6 of 8

Turning Movement Count - Study Results

RIDGEWOOD AVE @ SPRINGLAND DR

Survey Date: Thursday, December 05, 2019 WO No: 39196

Start Time: 07:00 Device: Miovision

Full Study Heavy Vehicles

	N	orthbou	und		Sc	uthbou	ınd		Eastbound			Westbound							
Time Period	LT	ST	RT	N TOT	LT	ST	RT	S TOT	STR TOT	LT	ST	RT	E TOT	LT	ST	RT	W TOT	STR TOT	Grand Total
07:00 07:15	0	1	0	1	0	0	1	1	2	0	0	0	0	0	0	0	0	0	2
07:15 07:30	0	1	0	1	0	0	1	1	2	1	0	1	2	0	0	0	0	2	4
07:30 07:45	1	2	0	3	0	0	1	1	4	2	0	0	2	0	0	0	0	2	6
07:45 08:00	0	1	0	1	0	1	1	2	3	1	0	0	1	0	0	0	0	1	4
08:00 08:15	0	3	0	3	0	0	1	1	4	2	0	0	2	0	0	0	0	2	6
08:15 08:30	1	1	0	2	0	0	3	3	5	2	0	0	2	0	0	0	0	2	7
08:30 08:45	0	2	0	2	0	0	0	0	2	1	0	2	3	0	0	0	0	3	5
08:45 09:00	0	2	0	2	0	0	2	2	4	1	0	1	2	0	0	0	0	2	6
09:00 09:15	0	1	0	1	0	1	1	2	3	2	0	0	2	0	0	0	0	2	5
09:15 09:30	0	0	0	0	0	0	1	1	1	2	0	0	2	0	0	0	0	2	3
09:30 09:45	0	0	0	0	0	0	1	1	1	2	0	0	2	0	0	0	0	2	3
09:45 10:00	0	0	0	0	0	0	1	1	1	1	0	0	1	0	0	0	0	1	2
11:30 11:45	0	0	0	0	0	1	2	3	3	1	0	0	1	0	0	0	0	1	4
11:45 12:00	0	0	0	0	0	0	2	2	2	1	0	0	1	0	0	0	0	1	3
12:00 12:15	0	0	0	0	0	0	1	1	1	1	0	0	1	0	0	0	0	1	2
12:15 12:30	0	0	0	0	0	0	1	1	1	2	0	0	2	0	0	0	0	2	3
12:30 12:45	0	1	0	1	0	0	2	2	3	1	0	1	2	0	0	0	0	2	5
12:45 13:00	2	0	0	2	0	0	2	2	4	2	0	0	2	0	0	0	0	2	6
13:00 13:15	0	0	0	0	0	0	2	2	2	0	0	0	0	0	0	0	0	0	2
13:15 13:30	1	0	0	1	0	1	1	2	3	2	0	0	2	0	0	0	0	2	5
15:00 15:15	0	2	0	2	0	1	1	2	4	0	0	0	0	0	0	0	0	0	4
15:15 15:30	0	1	0	1	0	2	3	5	6	2	0	0	2	0	0	0	0	2	8
15:30 15:45	0	1	0	1	0	0	1	1	2	1	0	0	1	0	0	0	0	1	3
15:45 16:00	1	0	0	1	0	1	1	2	3	2	0	0	2	0	0	0	0	2	5
16:00 16:15	1	1	0	2	0	1	1	2	4	2	0	0	2	0	0	0	0	2	6
16:15 16:30	0	1	0	1	0	2	1	3	4	1	0	1	2	0	0	0	0	2	6
16:30 16:45	0	0	0	0	0	0	1	1	1	0	0	0	0	0	0	0	0	0	1
16:45 17:00	0	0	0	0	0	1	1	2	2	2	0	1	3	0	0	0	0	3	5
17:00 17:15	0	0	0	0	0	0	2	2	2	1	0	0	1	0	0	0	0	1	3
17:15 17:30	0	0	0	0	0	0	1	1	1	1	0	0	1	0	0	0	0	1	2
17:30 17:45	0	0	0	0	0	1	1	2	2	1	0	0	1	0	0	0	0	1	3
17:45 18:00	0	0	0	0	0	1	1	2	2	1	0	0	1	0	0	0	0	1	3
Total: None	7	21	0	28	0	14	42	56	84	41	0	7	48	0	0	0	0	48	132

June 25, 2020 Page 7 of 8

Turning Movement Count - Study Results

RIDGEWOOD AVE @ SPRINGLAND DR

Survey Date: Thursday, December 05, 2019 WO No: 39196

Start Time: 07:00 Device: Miovision

Full Study 15 Minute U-Turn Total

Time F	eriod	Northbound U-Turn Total	Southbound U-Turn Total	Eastbound U-Turn Total	Westbound U-Turn Total	Total
07:00	07:15	0	0	0	0	0
07:15	07:30	0	0	0	0	0
07:30	07:45	0	0	0	0	0
07:45	08:00	0	0	0	0	0
08:00	08:15	0	0	0	0	0
08:15	08:30	0	0	0	0	0
08:30	08:45	0	0	0	0	0
08:45	09:00	0	0	0	0	0
09:00	09:15	0	1	0	0	1
09:15	09:30	0	0	0	0	0
09:30	09:45	0	0	0	0	0
09:45	10:00	0	0	0	0	0
11:30	11:45	0	0	0	0	0
11:45	12:00	0	0	0	0	0
12:00	12:15	0	0	0	0	0
12:15	12:30	0	0	0	0	0
12:30	12:45	0	0	1	0	1
12:45	13:00	0	0	1	0	1
13:00	13:15	0	0	0	0	0
13:15	13:30	0	0	0	0	0
15:00	15:15	0	0	0	0	0
15:15	15:30	0	0	0	0	0
15:30	15:45	0	0	0	0	0
15:45	16:00	0	0	0	0	0
16:00	16:15	0	0	0	0	0
16:15	16:30	0	0	0	0	0
16:30	16:45	0	0	0	0	0
16:45	17:00	0	0	0	0	0
17:00	17:15	0	0	0	0	0
17:15	17:30	0	0	0	0	0
17:30	17:45	0	0	0	0	0
17:45	18:00	0	0	0	0	0
То	tal	0	1	2	0	3

June 25, 2020 Page 8 of 8

Turning Movement Count - Study Results

RIVERSIDE DR @ BROOKFIELD RD/HOG'S BACK RD

June 25, 2020 Page 1 of 8

Turning Movement Count - Study Results

RIVERSIDE DR @ BROOKFIELD RD/HOG'S BACK RD

Survey Date: Tuesday, March 03, 2020 WO No: 39649
Start Time: 07:00 Device: Miovision

Full Study Peak Hour Diagram

June 25, 2020 Page 2 of 8

Turning Movement Count - Peak Hour Diagram

RIVERSIDE DR @ BROOKFIELD RD/HOG'S BACK RD

Comments

2020-Jun-25 Page 1 of 3

Turning Movement Count - Peak Hour Diagram

RIVERSIDE DR @ BROOKFIELD RD/HOG'S BACK RD

Comments

2020-Jun-25 Page 2 of 3

Turning Movement Count - Peak Hour Diagram

RIVERSIDE DR @ BROOKFIELD RD/HOG'S BACK RD

Comments

2020-Jun-25 Page 3 of 3

Turning Movement Count - Study Results

RIVERSIDE DR @ BROOKFIELD RD/HOG'S BACK RD

Survey Date: Tuesday, March 03, 2020 WO No: 39649

Start Time: 07:00 Device: Miovision

Full Study Summary (8 HR Standard)

Survey Date: Tuesday, March 03, 2020 Total Observed U-Turns AADT Factor

Northbound: 57 Southbound: 305

1.00

Eastbound: 1 Westbound: 0

			RIVI	ERSIDI	E DR					BI	ROOK	FIELD	RD/H	OG'S I	BACK	RD			
	No	rthbou	ınd		So	uthbo	und			Е	astbo	und		V	/estbo	und			
Period	LT	ST	RT	NB TOT	LT	ST	RT	SB TOT	STR TOT	LT	ST	RT	EB TOT	LT	ST	RT	WB TOT	STR TOT	Grand Total
07:00 08:00	382	1342	397	2121	193	631	169	993	3114	22	4	83	109	64	22	111	197	306	3420
08:00 09:00	472	1279	416	2167	279	654	384	1317	3484	68	25	123	216	97	28	167	292	508	3992
09:00 10:00	261	1034	210	1505	167	634	186	987	2492	47	13	95	155	76	15	73	164	319	2811
11:30 12:30	108	756	114	978	155	714	99	968	1946	118	23	168	309	107	13	118	238	547	2493
12:30 13:30	136	736	110	982	204	719	116	1039	2021	76	29	177	282	98	20	101	219	501	2522
15:00 16:00	142	713	129	984	253	1245	102	1600	2584	110	18	323	451	310	14	296	620	1071	3655
16:00 17:00	111	624	117	852	197	1244	141	1582	2434	171	38	383	592	306	20	260	586	1178	3612
17:00 18:00	225	754	81	1060	201	1094	215	1510	2570	180	29	377	586	248	26	178	452	1038	3608
Sub Total	1837	7238	1574	10649	1649	6935	1412	9996	20645	792	179	1729	2700	1306	158	1304	2768	5468	26113
U Turns				57				305	362				1				0	1	363
Total	1837	7238	1574	10706	1649	6935	1412	10301	21007	792	179	1729	2701	1306	158	1304	2768	5469	26476
EQ 12Hr	2553	10061	2188	14881	2292	9640	1963	14318	29200	1101	249	2403	3754	1815	220	1813	3848	7602	36802
Note: These	values a	are calcu	ılated b	y multipl	lying the	totals b	y the a	ppropriat	te expans	ion fact	tor.			1.39					
AVG 12Hr	2406	9482	2062	14025	2160	9085	1850	13494	29200	1038	234	2265	3538	1711	207	1708	3626	7602	36802
Note: These	volumes	s are cal	culated	by multi	iplying t	he Equi	valent 1	2 hr. tota	als by the	AADT	factor.			1					
AVG 24Hr	3152	12421	2701	18373	2830	11901	2423	17678	36051	1359	307	2967	4635	2241	271	2238	4750	9385	45436
Note: These	volumes	s are cal	culated	by multi	iplying t	he Aver	age Da	ily 12 hr.	totals by	12 to 2	4 expan	sion fac	ctor.	1.31					

Note: U-Turns provided for approach totals. Refer to 'U-Turn' Report for specific breakdown.

June 25, 2020 Page 3 of 8

Turning Movement Count - Study Results

RIVERSIDE DR @ BROOKFIELD RD/HOG'S BACK RD

Survey Date: Tuesday, March 03, 2020 WO No: 39649

Start Time: 07:00 Device: Miovision

Full Study 15 Minute Increments

RIVERSIDE DR

BROOKFIELD RD/HOG'S BACK RD

		No	orthbou	ınd		Sc	uthbou	nd			E	astbour	nd		We	estbour	nd			
Time	Period	LT	ST	RT	N TOT	LT	ST	RT	S TOT	STR TOT	LT	ST	RT	E TOT	LT	ST	RT	W TOT	STR TOT	Grand Total
07:00	07:15	56	308	86	450	36	135	19	196	12	2	1	19	22	12	3	24	39	12	707
07:15	07:30	89	364	93	546	52	149	33	243	8	2	0	21	23	17	3	29	49	8	861
07:30	07:45	100	303	104	507	47	205	57	319	13	11	3	23	37	16	7	29	52	13	915
07:45	08:00	137	367	114	620	58	142	60	268	8	7	0	20	27	19	9	29	57	8	972
08:00	08:15	130	306	94	530	74	162	112	353	16	12	3	29	44	19	7	40	66	16	993
08:15	08:30	131	307	106	544	63	163	117	352	24	19	8	30	57	24	14	31	69	24	1022
08:30	08:45	109	304	108	521	69	166	92	335	14	16	9	24	49	21	2	42	65	14	970
08:45	09:00	102	362	108	573	73	163	63	306	15	21	5	40	66	33	5	54	92	15	1037
09:00	09:15	66	251	76	393	52	175	35	265	20	10	3	36	49	21	5	22	48	20	755
09:15	09:30	73	302	55	431	49	166	48	272	19	8	4	23	35	16	3	22	41	19	779
09:30	09:45	57	234	44	336	31	139	48	232	11	13	4	22	39	22	3	16	41	11	648
09:45	10:00	65	247	35	347	35	154	55	251	18	16	2	14	32	17	4	13	34	18	664
11:30	11:45	38	185	31	255	33	182	30	251	16	46	8	58	112	26	4	32	62	16	680
11:45	12:00	30	186	27	243	39	192	23	258	11	46	5	55	106	28	2	35	65	11	672
12:00	12:15	20	188	22	233	35	170	18	227	10	17	6	30	54	23	1	25	49	10	563
12:15	12:30	20	197	34	254	48	170	28	255	15	9	4	25	38	30	6	26	62	15	609
12:30	12:45	28	195	28	254	49	178	34	266	10	14	4	37	55	22	6	25	53	10	628
12:45	13:00	38	175	30	245	53	201	33	292	17	15	8	45	68	29	4	24	57	17	662
13:00	13:15	36	191	26	255	54	169	24	256	13	30	13	56	99	22	6	24	52	13	662
13:15	13:30	34	175	26	237	48	171	25	250	17	17	4	39	60	25	4	28	57	17	604
15:00	15:15	35	206	40	286	84	282	23	400	12	19	2	69	90	86	1	84	171	12	947
15:15	15:30	32	158	34	227	66	346	20	442	9	22	5	83	110	81	4	70	155	9	934
15:30	15:45	39	176	29	244	51	334	23	415	10	26	7	90	123	71	4	77	152	10	934
15:45	16:00	36	173	26	238	52	283	36	377	11	43	4	81	128	72	5	65	142	11	885
16:00	16:15	29	176	30	239	59	286	31	393	9	41	13	110	164	85	3	85	173	9	969
16:15	16:30	25	145	33	204	40	367	39	460	6	49	10	85	144	81	2	74	157	6	965
16:30	16:45	32	163	24	226	56	288	40	404	6	47	10	107	164	68	4	52	124	6	918
16:45	17:00	25	140	30	198	42	303	31	384	1	34	5	81	120	72	11	49	132	1	834
17:00	17:15	45	204	20	273	39	254	40	355	6	45	1	105	151	79	6	62	147	6	926
17:15	17:30	50	206	18	277	45	293	52	411	4	44	10	83	137	64	6	56	126	4	951
17:30	17:45	76	209	25	313	50	257	52	372	5	44	9	119	172	58	2	36	96	5	953
17:45	18:00	54	135	18	207	67	290	71	441	2	47	9	70	126	47	12	24	83	2	857
Total:		1837	7238	1574	1070	1649	6935	1412	10301	368	792	179	1729	2701	1306	158	1304	2768	368	26,476

Note: U-Turns are included in Totals.

June 25, 2020 Page 4 of 8

Turning Movement Count - Study Results

RIVERSIDE DR @ BROOKFIELD RD/HOG'S BACK RD

Survey Date: Tuesday, March 03, 2020 WO No: 39649

Start Time: 07:00 Device: Miovision

Full Study Cyclist Volume

RIVERSIDE DR BROOKFIELD RD/HOG'S BACK RD

		KIVE KOIDE DI	-	2.100.1	ILLD RD/1100	0 27 (0.1 . 1.2	
Time Period	Northbound	Southbound	Street Total	Eastbound	Westbound	Street Total	Grand Total
07:00 07:15	0	0	0	0	1	1	1
07:15 07:30	0	0	0	0	0	0	0
07:30 07:45	0	0	0	0	0	0	0
07:45 08:00	0	0	0	0	1	1	1
08:00 08:15	0	0	0	1	0	1	1
8:15 08:30	1	0	1	1	0	1	2
08:30 08:45	1	0	1	2	0	2	3
09:00	0	0	0	0	1	1	1
9:00 09:15	0	0	0	0	1	1	1
9:15 09:30	0	0	0	0	0	0	0
9:30 09:45	0	0	0	1	0	1	1
9:45 10:00	0	0	0	0	0	0	0
1:30 11:45	0	0	0	0	0	0	0
1:45 12:00	0	0	0	0	0	0	0
2:00 12:15	0	1	1	0	0	0	1
2:15 12:30	0	0	0	0	0	0	0
2:30 12:45	0	0	0	0	0	0	0
2:45 13:00	0	0	0	0	0	0	0
3:00 13:15	0	0	0	0	0	0	0
3:15 13:30	0	0	0	0	0	0	0
5:00 15:15	1	1	2	0	0	0	2
5:15 15:30	0	0	0	0	0	0	0
5:30 15:45	0	0	0	0	0	0	0
5:45 16:00	0	0	0	1	0	1	1
6:00 16:15	0	0	0	1	0	1	1
6:15 16:30	0	1	1	2	1	3	4
6:30 16:45	0	1	1	0	1	1	2
6:45 17:00	0	2	2	2	1	3	5
7:00 17:15	0	1	1	0	0	0	1
7:15 17:30	0	0	0	0	0	0	0
7:30 17:45	0	1	1	0	0	0	1
7:45 18:00	0	0	0	0	0	0	0
Total	3	8	11	11	7	18	29

June 25, 2020 Page 5 of 8

Turning Movement Count - Study Results

RIVERSIDE DR @ BROOKFIELD RD/HOG'S BACK RD

Survey Date: Tuesday, March 03, 2020 WO No: 39649

Start Time: 07:00 Device: Miovision

Full Study Pedestrian Volume

RIVERSIDE DR

BROOKFIELD RD/HOG'S BACK RD

Time Period	NB Approach (E or W Crossing)	SB Approach (E or W Crossing)	Total	EB Approach (N or S Crossing)	WB Approach (N or S Crossing)	Total	Grand Total
07:00 07:15	0	2	2	0	2	2	4
07:15 07:30	0	1	1	2	3	5	6
07:30 07:45	2	2	4	1	4	5	9
07:45 08:00	1	1	2	1	3	4	6
08:00 08:15	1	2	3	4	4	8	11
08:15 08:30	1	2	3	4	3	7	10
08:30 08:45	3	0	3	0	5	5	8
08:45 09:00	1	1	2	0	4	4	6
09:00 09:15	3	2	5	3	6	9	14
09:15 09:30	2	1	3	0	3	3	6
09:30 09:45	1	1	2	1	4	5	7
09:45 10:00	0	1	1	0	4	4	5
11:30 11:45	7	3	10	8	0	8	18
11:45 12:00	5	2	7	1	2	3	10
12:00 12:15	2	6	8	1	5	6	14
12:15 12:30	5	5	10	4	13	17	27
12:30 12:45	0	1	1	0	6	6	7
12:45 13:00	3	3	6	0	5	5	11
13:00 13:15	2	1	3	1	1	2	5
13:15 13:30	2	1	3	1	5	6	9
15:00 15:15	2	0	2	0	7	7	9
15:15 15:30	7	0	7	1	2	3	10
15:30 15:45	3	0	3	3	4	7	10
15:45 16:00	1	0	1	1	1	2	3
16:00 16:15	3	1	4	5	4	9	13
16:15 16:30	2	0	2	5	4	9	11
16:30 16:45	2	1	3	2	6	8	11
16:45 17:00	0	3	3	2	4	6	9
17:00 17:15	2	0	2	2	11	13	15
17:15 17:30	2	1	3	1	5	6	9
17:30 17:45	4	0	4	2	1	3	7
17:45 18:00	1	0	1	0	0	0	1
Total	70	44	114	56	131	187	301

June 25, 2020 Page 6 of 8

Turning Movement Count - Study Results

RIVERSIDE DR @ BROOKFIELD RD/HOG'S BACK RD

Survey Date: Tuesday, March 03, 2020 WO No: 39649

Start Time: 07:00 Device: Miovision

Full Study Heavy Vehicles

RIVERSIDE DR

BROOKFIELD RD/HOG'S BACK RD

		No	orthbou	ınd		Sc	uthbou	ınd			Е	astbour	nd		We	estbour	nd			
Time Per	eriod	LT	ST	RT	N TOT	LT	ST	RT	S TOT	STR TOT	LT	ST	RT	E TOT	LT	ST	RT	W TOT	STR TOT	Grand Total
07:00 0	7:15	1	1	2	4	0	7	1	8	12	0	0	1	1	1	0	0	1	2	14
07:15 0	7:30	0	4	0	4	2	2	0	4	8	0	0	0	0	5	1	1	7	7	15
07:30 0	7:45	0	2	5	7	4	2	0	6	13	4	0	1	5	1	0	0	1	6	19
07:45 08	00:80	0	4	3	7	0	1	0	1	8	0	0	0	0	4	0	1	5	5	13
08:00	8:15	0	7	1	8	0	8	0	8	16	1	0	0	1	2	0	2	4	5	21
08:15 08	08:30	1	11	2	14	3	7	0	10	24	0	0	0	0	2	0	1	3	3	27
08:30 08	8:45	0	5	3	8	1	5	0	6	14	0	0	0	0	2	0	0	2	2	16
08:45 09	9:00	0	7	2	9	4	2	0	6	15	0	0	0	0	3	0	2	5	5	20
09:00	9:15	0	4	5	9	3	6	2	11	20	1	0	1	2	2	0	1	3	5	25
09:15 09	9:30	0	7	3	10	0	3	6	9	19	2	0	0	2	2	0	1	3	5	24
09:30 09	9:45	0	5	2	7	1	3	0	4	11	2	0	0	2	2	0	3	5	7	18
09:45 10	0:00	0	7	3	10	2	6	0	8	18	0	0	0	0	1	0	0	1	1	19
11:30 1	1:45	1	6	3	10	0	6	0	6	16	0	0	0	0	2	0	3	5	5	21
11:45 12	2:00	0	4	4	8	0	1	2	3	11	0	0	1	1	2	0	0	2	3	14
12:00 12	2:15	0	4	2	6	0	4	0	4	10	2	0	0	2	3	0	1	4	6	16
12:15 12	2:30	0	6	1	7	2	5	1	8	15	0	0	0	0	4	0	1	5	5	20
12:30 12	2:45	0	2	2	4	1	3	2	6	10	2	0	0	2	3	0	0	3	5	15
12:45 13	3:00	0	3	3	6	6	4	1	11	17	0	0	0	0	2	0	0	2	2	19
13:00 13	3:15	0	5	3	8	2	3	0	5	13	1	0	0	1	4	0	4	8	9	22
13:15 13	3:30	0	3	4	7	2	7	1	10	17	0	0	0	0	3	0	2	5	5	22
15:00 1	5:15	0	2	4	6	4	2	0	6	12	1	1	1	3	3	0	2	5	8	20
15:15 1	5:30	0	4	2	6	0	2	1	3	9	1	0	0	1	2	0	1	3	4	13
15:30 1	5:45	0	5	2	7	3	0	0	3	10	0	0	0	0	3	0	1	4	4	14
15:45 10	6:00	1	1	2	4	2	4	1	7	11	0	0	0	0	3	0	1	4	4	15
	6:15	0	3	0	3	1	4	1	6	9	0	0	0	0	1	0	1	2	2	11
16:15 10	6:30	0	4	0	4	0	2	0	2	6	0	0	0	0	0	0	1	1	1	7
	6:45	0	3	0	3	0	2	1	3	6	0	0	0	0	0	0	2	2	2	8
16:45 1	7:00	0	1	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1
17:00 1	7:15	0	0	1	1	0	5	0	5	6	0	0	0	0	0	0	1	1	1	7
	7:30	1	1	0	2	1	1	0	2	4	0	0	1	1	0	0	1	1	2	6
	7:45	0	3	0	3	0	2	0	2	5	0	0	0	0	0	0	0	0	0	5
17:45 18	8:00	0	1	0	1	0	1	0	1	2	0	0	0	0	0	0	0	0	0	2
Total: N	None	5	125	64	194	44	110	20	174	368	17	1	6	24	62	1	34	97	121	489

June 25, 2020 Page 7 of 8

Turning Movement Count - Study Results

RIVERSIDE DR @ BROOKFIELD RD/HOG'S BACK RD

Survey Date: Tuesday, March 03, 2020 WO No: 39649

Start Time: 07:00 Device: Miovision

Full Study 15 Minute U-Turn Total

RIVERSIDE DR BROOKFIELD RD/HOG'S BACK RD

Time P	eriod	Northbound U-Turn Total	Southbound U-Turn Total	Eastbound U-Turn Total	Westbound U-Turn Total	Total
07:00	07:15	0	6	0	0	6
07:15	07:30	0	9	0	0	9
07:30	07:45	0	10	0	0	10
07:45	08:00	2	8	0	0	10
08:00	08:15	0	5	0	0	5
08:15	08:30	0	9	0	0	9
08:30	08:45	0	8	0	0	8
08:45	09:00	1	7	0	0	8
09:00	09:15	0	3	0	0	3
09:15	09:30	1	9	0	0	10
09:30	09:45	1	14	0	0	15
09:45	10:00	0	7	0	0	7
11:30	11:45	1	6	0	0	7
11:45	12:00	0	4	0	0	4
12:00	12:15	3	4	1	0	8
12:15	12:30	3	9	0	0	12
12:30	12:45	3	5	0	0	8
12:45	13:00	2	5	0	0	7
13:00	13:15	2	9	0	0	11
13:15	13:30	2	6	0	0	8
15:00	15:15	5	11	0	0	16
15:15	15:30	3	10	0	0	13
15:30	15:45	0	7	0	0	7
15:45	16:00	3	6	0	0	9
16:00	16:15	4	17	0	0	21
16:15	16:30	1	14	0	0	15
16:30	16:45	7	20	0	0	27
16:45	17:00	3	8	0	0	11
17:00	17:15	4	22	0	0	26
17:15	17:30	3	21	0	0	24
17:30	17:45	3	13	0	0	16
17:45	18:00	0	13	0	0	13
	tal	57	305	1	0	363

June 25, 2020 Page 8 of 8

Turning Movement Count - Study Results

SPRINGLAND DR N @ FLANNERY DR N

Survey Date: Tuesday, November 26, 2019 WO No: 39107

Start Time: 07:00 **Device:** Miovision

Full Study Diagram

September 16, 2020 Page 1 of 8

Turning Movement Count - Study Results

SPRINGLAND DR N @ FLANNERY DR N

Survey Date: Tuesday, November 26, 2019 WO No: 39107

Start Time: 07:00 Device: Miovision

Full Study Peak Hour Diagram

September 16, 2020 Page 2 of 8

Turning Movement Count - Peak Hour Diagram

SPRINGLAND DR N @ FLANNERY DR N

Survey Date: Tuesday, November 26, 2019 WO No: 39107
Start Time: 07:00 Device: Miovision

Comments

2020-Sep-16 Page 1 of 3

Turning Movement Count - Peak Hour Diagram

SPRINGLAND DR N @ FLANNERY DR N

Survey Date: Tuesday, November 26, 2019 WO No: 39107
Start Time: 07:00 Device: Miovision

Comments

2020-Sep-16 Page 2 of 3

Turning Movement Count - Peak Hour Diagram

SPRINGLAND DR N @ FLANNERY DR N

Survey Date: Tuesday, November 26, 2019 WO No: 39107
Start Time: 07:00 Device: Miovision

Comments

2020-Sep-16 Page 3 of 3

Turning Movement Count - Study Results

SPRINGLAND DR N @ FLANNERY DR N

Survey Date: Tuesday, November 26, 2019 WO No: 39107

Start Time: 07:00 Device: Miovision

Full Study Summary (8 HR Standard)

Survey Date: Tuesday, November 26, 2019 Total Observed U-Turns AADT Factor

Northbound: 0 Southbound: 0 1.00

Eastbound: 1 Westbound: 0

	Nor	thbou	nd		Soi	uthbou	ınd			E	astbou	nd		W	estbou	ınd			
Period	LT	ST	RT	NB TOT	LT	ST	RT	SB TOT	STR TOT	LT	ST	RT	EB TOT	LT	ST	RT	WB TOT	STR TOT	Grand Total
07:00 08:00	2	36	0	38	1	10	35	46	84	143	0	3	146	0	0	6	6	152	236
08:00 09:00	4	45	0	49	2	17	68	87	136	178	3	1	182	0	3	11	14	196	332
09:00 10:00	1	34	0	35	3	16	52	71	106	100	5	4	109	1	2	4	7	116	222
11:30 12:30	4	17	2	23	5	32	81	118	141	58	1	4	63	0	1	1	2	65	206
12:30 13:30	1	14	0	15	1	30	75	106	121	66	3	1	70	0	4	3	7	77	198
15:00 16:00	5	20	0	25	1	58	142	201	226	72	2	3	77	0	3	3	6	83	309
16:00 17:00	1	23	0	24	8	80	263	351	375	79	2	7	88	0	4	4	8	96	471
17:00 18:00	1	23	0	24	3	60	191	254	278	70	1	1	72	0	2	6	8	80	358
Sub Total	19	212	2	233	24	303	907	1234	1467	766	17	24	807	1	19	38	58	865	2332
U Turns				0				0	0				1				0	1	1
Total	19	212	2	233	24	303	907	1234	1467	766	17	24	808	1	19	38	58	866	2333
EQ 12Hr	26	295	3	324	33	421	1261	1715	2039	1065	24	33	1123	1	26	53	81	1204	3243
Note: These v	alues ar	e calcul	ated by	/ multiply	ing the	totals b	y the a	opropriate	e expans	sion facto	or.			1.39					
AVG 12Hr	25	278	3	305	31	397	1188	1617	2039	1003	22	31	1058	1	25	50	76	1204	3243
Note: These v	olumes	are calc	ulated	by multip	olying th	e Equiv	/alent 1	2 hr. total	ls by the	AADT f	actor.			1					
AVG 24Hr	33	364	3	400	41	520	1557	2118	2518	1315	29	41	1387	2	33	65	100	1487	4005
Note: These v	olumes	are calc	ulated	by multip	olying th	e Avera	age Dai	y 12 hr. t	otals by	12 to 24	l expans	sion fac	tor.	1.31					

Note: U-Turns provided for approach totals. Refer to 'U-Turn' Report for specific breakdown.

September 16, 2020 Page 3 of 8

Turning Movement Count - Study Results

SPRINGLAND DR N @ FLANNERY DR N

Survey Date: Tuesday, November 26, 2019 WO No: 39107

Start Time: 07:00 Device: Miovision

Full Study 15 Minute Increments

	N	orthbou	und		Sc	uthbou	ınd			Е	astbour	nd		W	estbour	nd			
Time Period	LT	ST	RT	N TOT	LT	ST	RT	S TOT	STR TOT	LT	ST	RT	E TOT	LT	ST	RT	W TOT	STR TOT	Grand Total
07:00 07:15	0	6	0	6	0	2	6	8	1	28	0	0	28	0	0	1	1	1	43
07:15 07:30	1	7	0	8	0	2	9	11	1	32	0	0	32	0	0	0	0	1	51
07:30 07:45	1	11	0	12	0	2	7	9	1	39	0	3	42	0	0	4	4	1	67
07:45 08:00	0	12	0	12	1	4	13	18	1	44	0	0	44	0	0	1	1	1	75
08:00 08:15	1	9	0	10	1	1	13	15	1	52	0	1	53	0	1	4	5	1	83
08:15 08:30	0	16	0	16	0	3	14	17	1	41	0	0	41	0	0	1	1	1	75
08:30 08:45	1	9	0	10	1	4	15	20	1	44	3	0	47	0	0	5	5	1	82
08:45 09:00	2	11	0	13	0	9	26	35	3	41	0	0	41	0	2	1	3	3	92
09:00 09:15	0	11	0	11	1	2	8	11	1	31	3	3	37	0	1	0	1	1	60
09:15 09:30	0	11	0	11	2	5	9	16	1	30	0	0	30	0	0	0	0	1	57
09:30 09:45	1	6	0	7	0	5	13	18	3	18	1	1	20	0	1	3	4	3	49
09:45 10:00	0	6	0	6	0	4	22	26	0	21	1	0	22	1	0	1	2	0	56
11:30 11:45	2	3	0	5	0	9	20	29	3	16	0	2	18	0	0	0	0	3	52
11:45 12:00	1	4	0	5	0	7	16	23	2	9	1	1	11	0	1	1	2	2	41
12:00 12:15	1	4	1	6	2	11	22	35	1	14	0	0	14	0	0	0	0	1	55
12:15 12:30	0	6	1	7	3	5	23	31	1	19	0	1	20	0	0	0	0	1	58
12:30 12:45	0	3	0	3	0	7	18	25	1	14	2	0	16	0	2	1	3	1	47
12:45 13:00	1	1	0	2	0	6	16	22	2	13	0	0	13	0	0	0	0	2	37
13:00 13:15	0	5	0	5	0	4	21	25	1	17	0	0	17	0	0	1	1	1	48
13:15 13:30	0	5	0	5	1	13	20	34	4	22	1	1	24	0	2	1	3	4	66
15:00 15:15	0	9	0	9	0	11	35	46	1	14	0	0	14	0	1	1	2	1	71
15:15 15:30	1	3	0	4	0	20	31	51	5	18	0	2	20	0	0	0	0	5	75
15:30 15:45	1	4	0	5	0	14	35	49	2	22	2	0	25	0	1	1	2	2	81
15:45 16:00	3	4	0	7	1	13	41	55	1	18	0	1	19	0	1	1	2	1	83
16:00 16:15	1	10	0	11	1	12	60	73	4	19	2	4	25	0	2	3	5	4	114
16:15 16:30	0	5	0	5	1	22	65	88	2	24	0	1	25	0	1	0	1	2	119
16:30 16:45	0	4	0	4	3	28	79	110	1	21	0	2	23	0	0	1	1	1	138
16:45 17:00	0	4	0	4	3	18	59	80	3	15	0	0	15	0	1	0	1	3	100
17:00 17:15	1	5	0	6	1	13	62	76	2	14	0	0	14	0	2	1	3	2	99
17:15 17:30	0	7	0	7	1	15	51	67	2	21	1	0	22	0	0	1	1	2	97
17:30 17:45	0	4	0	4	1	18	36	55	1	20	0	1	21	0	0	3	3	1	83
17:45 18:00	0	7	0	7	0	14	42	56	4	15	0	0	15	0	0	1	1	4	79
Total:	19	212	2	233	24	303	907	1234	58	766	17	24	808	1	19	38	58	58	2,333

Note: U-Turns are included in Totals.

September 16, 2020 Page 4 of 8

Turning Movement Count - Study Results

SPRINGLAND DR N @ FLANNERY DR N

Survey Date: Tuesday, November 26, 2019 WO No: 39107

Start Time: 07:00 Device: Miovision

Full Study Cyclist Volume

Time Period	Northbound	Southbound	Street Total	Eastbound	Westbound	Street Total	- Grand Total
07:00 07:15	1	1	2	0	2	2	4
07:15 07:30	0	0	0	0	1	1	1
07:30 07:45	1	0	1	0	1	1	2
07:45 08:00	0	0	0	0	0	0	0
08:00 08:15	0	0	0	1	1	2	2
08:15 08:30	1	0	1	1	1	2	3
08:30 08:45	0	0	0	0	1	1	1
08:45 09:00	0	0	0	0	0	0	0
09:00 09:15	0	0	0	0	1	1	1
09:15 09:30	0	0	0	0	0	0	0
09:30 09:45	0	0	0	0	0	0	0
09:45 10:00	0	0	0	0	0	0	0
11:30 11:45	0	0	0	0	0	0	0
11:45 12:00	0	0	0	0	1	1	1
12:00 12:15	0	0	0	0	0	0	0
12:15 12:30	0	0	0	0	0	0	0
12:30 12:45	0	0	0	0	1	1	1
12:45 13:00	0	0	0	0	0	0	0
13:00 13:15	1	0	1	0	0	0	1
13:15 13:30	0	0	0	1	0	1	1
15:00 15:15	0	2	2	0	0	0	2
15:15 15:30	0	0	0	0	0	0	0
15:30 15:45	0	0	0	0	0	0	0
15:45 16:00	0	3	3	0	0	0	3
16:00 16:15	0	2	2	0	0	0	2
16:15 16:30	0	2	2	0	0	0	2
16:30 16:45	0	0	0	0	0	0	0
16:45 17:00	0	0	0	0	0	0	0
17:00 17:15	0	0	0	0	0	0	0
17:15 17:30	0	0	0	0	0	0	0
17:30 17:45	0	1	1	1	0	1	2
17:45 18:00	0	0	0	0	0	0	0
Total	4	11	15	4	10	14	29

September 16, 2020 Page 5 of 8

Turning Movement Count - Study Results

SPRINGLAND DR N @ FLANNERY DR N

Survey Date: Tuesday, November 26, 2019 WO No: 39107

Start Time: 07:00 Device: Miovision

Full Study Pedestrian Volume

Time Period	NB Approach (E or W Crossing)	SB Approach (E or W Crossing)	Total	EB Approach (N or S Crossing)	WB Approach (N or S Crossing)	Total	Grand Total
07:00 07:15	5	0	5	0	6	6	11
07:15 07:30	1	0	1	0	1	1	2
07:30 07:45	4	1	5	1	2	3	8
07:45 08:00	0	4	4	2	5	7	11
08:00 08:15	3	0	3	4	3	7	10
08:15 08:30	1	2	3	3	1	4	7
08:30 08:45	7	1	8	3	1	4	12
08:45 09:00	4	4	8	0	6	6	14
09:00 09:15	2	2	4	1	2	3	7
09:15 09:30	2	1	3	0	2	2	5
09:30 09:45	0	0	0	0	0	0	0
09:45 10:00	1	0	1	0	0	0	1
11:30 11:45	4	1	5	2	4	6	11
11:45 12:00	1	0	1	0	2	2	3
12:00 12:15	1	0	1	3	3	6	7
12:15 12:30	2	1	3	2	1	3	6
12:30 12:45	3	0	3	5	7	12	15
12:45 13:00	2	0	2	8	1	9	11
13:00 13:15	1	0	1	2	5	7	8
13:15 13:30	2	0	2	3	4	7	9
15:00 15:15	3	2	5	6	1	7	12
15:15 15:30	4	17	21	12	16	28	49
15:30 15:45	5	1	6	7	2	9	15
15:45 16:00	1	3	4	2	11	13	17
16:00 16:15	8	4	12	8	11	19	31
16:15 16:30	3	3	6	5	4	9	15
16:30 16:45	2	2	4	9	1	10	14
16:45 17:00	4	4	8	9	5	14	22
17:00 17:15	0	0	0	2	1	3	3
17:15 17:30	3	3	6	12	5	17	23
17:30 17:45	5	3	8	4	7	11	19
17:45 18:00	2	3	5	8	9	17	22
Total	86	62	148	123	129	252	400

September 16, 2020 Page 6 of 8

Turning Movement Count - Study Results

SPRINGLAND DR N @ FLANNERY DR N

Survey Date: Tuesday, November 26, 2019 WO No: 39107

Start Time: 07:00 Device: Miovision

Full Study Heavy Vehicles

	N	orthboı	und		Sc	uthbou	ınd			Е	astbour	nd		W	estbour	nd			
Time Period	LT	ST	RT	N TOT	LT	ST	RT	S TOT	STR TOT	LT	ST	RT	E TOT	LT	ST	RT	W TOT	STR TOT	Grand Total
07:00 07:15	0	0	0	0	0	0	1	1	1	3	0	0	3	0	0	0	0	3	4
07:15 07:30	0	0	0	0	0	0	1	1	1	0	0	0	0	0	0	0	0	0	1
07:30 07:45	0	0	0	0	0	0	1	1	1	3	0	2	5	0	0	0	0	5	6
07:45 08:00	0	0	0	0	0	0	1	1	1	3	0	0	3	0	0	0	0	3	4
08:00 08:15	0	0	0	0	0	0	1	1	1	4	0	1	5	0	0	0	0	5	6
08:15 08:30	0	0	0	0	0	0	1	1	1	0	0	0	0	0	0	0	0	0	1
08:30 08:45	0	0	0	0	0	0	1	1	1	3	0	0	3	0	0	0	0	3	4
08:45 09:00	1	1	0	2	0	0	1	1	3	2	0	0	2	0	0	0	0	2	5
09:00 09:15	0	0	0	0	0	0	1	1	1	4	0	2	6	0	0	0	0	6	7
09:15 09:30	0	0	0	0	0	0	1	1	1	1	0	0	1	0	0	0	0	1	2
09:30 09:45	0	0	0	0	0	0	3	3	3	1	0	0	1	0	0	0	0	1	4
09:45 10:00	0	0	0	0	0	0	0	0	0	2	0	0	2	0	0	0	0	2	2
11:30 11:45	0	0	0	0	0	0	3	3	3	1	0	0	1	0	0	0	0	1	4
11:45 12:00	0	0	0	0	0	0	2	2	2	2	0	0	2	0	0	0	0	2	4
12:00 12:15	0	0	0	0	0	0	1	1	1	0	0	0	0	0	0	0	0	0	1
12:15 12:30	0	0	0	0	0	0	1	1	1	2	0	0	2	0	0	0	0	2	3
12:30 12:45	0	0	0	0	0	0	1	1	1	0	0	0	0	0	0	0	0	0	1
12:45 13:00	0	0	0	0	0	0	2	2	2	1	0	0	1	0	0	0	0	1	3
13:00 13:15	0	0	0	0	0	0	1	1	1	2	0	0	2	0	0	0	0	2	3
13:15 13:30	0	1	0	1	0	2	1	3	4	0	0	0	0	0	0	0	0	0	4
15:00 15:15	0	0	0	0	0	0	1	1	1	4	0	0	4	0	0	0	0	4	5
15:15 15:30	0	0	0	0	0	1	4	5	5	1	0	1	2	0	0	0	0	2	7
15:30 15:45	0	0	0	0	0	0	2	2	2	1	0	0	1	0	1	0	1	2	4
15:45 16:00	0	0	0	0	0	0	1	1	1	1	0	1	2	0	0	0	0	2	3
16:00 16:15	1	0	0	1	0	0	3	3	4	1	0	1	2	0	0	0	0	2	6
16:15 16:30	0	0	0	0	0	0	2	2	2	1	0	0	1	0	0	0	0	1	3
16:30 16:45	0	0	0	0	0	0	1	1	1	2	0	0	2	0	0	0	0	2	3
16:45 17:00	0	1	0	1	0	0	2	2	3	0	0	0	0	0	0	0	0	0	3
17:00 17:15	0	0	0	0	0	0	2	2	2	2	0	0	2	0	0	0	0	2	4
17:15 17:30	0	0	0	0	0	0	2	2	2	0	0	0	0	0	0	0	0	0	2
17:30 17:45	0	0	0	0	0	0	1	1	1	0	0	0	0	0	0	0	0	0	1
17:45 18:00	0	0	0	0	0	0	4	4	4	1	0	0	1	0	0	0	0	1	5
Total: None	2	3	0	5	0	3	50	53	58	48	0	8	56	0	1	0	1	57	115

September 16, 2020 Page 7 of 8

Turning Movement Count - Study Results

SPRINGLAND DR N @ FLANNERY DR N

Survey Date: Tuesday, November 26, 2019 WO No: 39107

Start Time: 07:00 Device: Miovision

Full Study 15 Minute U-Turn Total

Time P	eriod	Northbound U-Turn Total	Southbound U-Turn Total	Eastbound U-Turn Total	Westbound U-Turn Total	Total
07:00	07:15	0	0	0	0	0
07:15	07:30	0	0	0	0	0
07:30	07:45	0	0	0	0	0
07:45	08:00	0	0	0	0	0
08:00	08:15	0	0	0	0	0
08:15	08:30	0	0	0	0	0
08:30	08:45	0	0	0	0	0
08:45	09:00	0	0	0	0	0
09:00	09:15	0	0	0	0	0
09:15	09:30	0	0	0	0	0
09:30	09:45	0	0	0	0	0
09:45	10:00	0	0	0	0	0
11:30	11:45	0	0	0	0	0
11:45	12:00	0	0	0	0	0
12:00	12:15	0	0	0	0	0
12:15	12:30	0	0	0	0	0
12:30	12:45	0	0	0	0	0
12:45	13:00	0	0	0	0	0
13:00	13:15	0	0	0	0	0
13:15	13:30	0	0	0	0	0
15:00	15:15	0	0	0	0	0
15:15	15:30	0	0	0	0	0
15:30	15:45	0	0	1	0	1
15:45	16:00	0	0	0	0	0
16:00	16:15	0	0	0	0	0
16:15	16:30	0	0	0	0	0
16:30	16:45	0	0	0	0	0
16:45	17:00	0	0	0	0	0
17:00	17:15	0	0	0	0	0
17:15	17:30	0	0	0	0	0
17:30	17:45	0	0	0	0	0
17:45	18:00	0	0	0	0	0
To	tal	0	0	1	0	1

September 16, 2020 Page 8 of 8

Appendix D COLLISION DATA

Total	Area	

Non-fatal injury 18 5 1 0 0 0 0 0 24 2 Non reportable 0 0 0 0 0 0 0 0 0 0	TOTAL ALCA										_
Non-fatal injury 18 5 1 0 0 0 0 24 2 Non reportable 0 0 0 0 0 0 0 0 0 Total 82 14 18 4 0 0 0 2 120 10		Rear End		Sideswipe	Angle	Approaching		(Unattended	Other	Total	
Non reportable 0 0 0 0 0 0 0 0 0 Total 82 14 18 4 0 0 0 2 120 10	P.D. only	64	9	17	4	0	0	0	2	96	80%
Total 82 14 18 4 0 0 0 2 120 10	Non-fatal injury	18	5	1	0	0	0	0	0	24	20%
	Non reportable	0	0	0	0	0	0	0	0	0	0%
#1 or 68% #3 or 12% #2 or 15% #4 or 3% #6 or 0% #6 or 0% #6 or 0% #5 or 2%	Total	82	14	18	4	0	0	0	2	120	1009
		#1 or 68%	#3 or 12%	#2 or 15%	#4 or 3%	#6 or 0%	#6 or 0%	#6 or 0%	#5 or 2%		_

Moone	v's	Bay	, PI	/Rive	rside	Dr

Years	Total # Collisions	24 Hr AADT Veh Volume	Davs Colli		
2015-2019	13	28 825	1825	0.25	

Classification of Accident	Rear End	Turning Movement	Sideswipe	Angle	Approaching	Single Vehicle (other)	Single vehicle (Unattended vehicle)	Other	Total
P.D. only	7	1	1	0	0	0	0	0	9
Non-fatal injury	4	0	0	0	0	0	0	0	4
Non reportable	0	0	0	0	0	0	0	0	0
Total	11	1	1	0	0	0	0	0	13

69% 31% 0% 100%

Pidgewood Ave/Piverside Dr

Klugewood A	Riugewood Ave/ Riverside Di										
Years	Total # Collisions	24 Hr AADT Veh Volume	Days	Collisions/MEV							
2015-2019	17	32.870	1825	0.28							

Classification of Accident	Rear End	Turning Movement	Sideswipe	Angle	Approaching	Single Vehicle (other)	Single vehicle (Unattended vehicle)	Other	Total	
P.D. only	13	0	3	0	0	0	0	0	16	ĺ
Non-fatal injury	1	0	0	0	0	0	0	0	1	i
Non reportable	0	0	0	0	0	0	0	0	0	İ
Total	14	0	3	0	0	0	0	0	17	ı
	930/	00/	1.00/	00/	00/	00/	00/	00/		

94% 6% 0% 100%

Ridgewood Ave, Riverside Dr to Dupont St

Years	Total # Collisions	24 Hr AADT Veh Volume	Days	Collisions/MEV	
2015-2019	2	n/a	1825	n/a	

Classification of Accident	Rear End	Turning Movement	Sideswipe	Angle	Approaching	Single Vehicle (other)	Single vehicle (Unattended vehicle)	Other	Total
P.D. only	0	0	0	1	0	0	0	1	2
Non-fatal injury	0	0	0	0	0	0	0	0	0
Non reportable	0	0	0	0	0	0	0	0	0
Total	0	0	0	1	0	0	0	1	2
	0%	0%	0%	50%	0%	0%	0%	50%	

100% 0% 0% 100%

Riverside Dr/Brookfield Rd/Hog's Back Rd

Years	Total # Collisions	24 Hr AADT Veh Volume	Days	Collisions/MEV
2015-2019	68	45,436	1825	0.82

Classification of Accident	Rear End	Turning Movement	Sideswipe	Angle	Approaching	Single Vehicle (other)	(Unattended vehicle)	Other	Total	
P.D. only	36	8	6	2	0	0	0	1	53	78
Non-fatal injury	9	5	1	0	0	0	0	0	15	22
Non reportable	0	0	0	0	0	0	0	0	0	0
Total	45	13	7	2	0	0	0	1	68	10
	66%	19%	10%	3%	0%	0%	0%	1%		-

78% 22% 0% 100%

Riverside Dr, Bayport Priv to Mooney's Bay Pl

Years	Total # Collisions	24 Hr AADT Veh Volume	Days	Collisions/MEV
2015-2019	2	n/a	1825	n/a

Classification of Accident	Rear End	Turning Movement	Sideswipe	Angle	Approaching	Single Vehicle (other)	Single vehicle (Unattended vehicle)	Other	Total	
P.D. only	2	0	0	0	0	0	0	0	2	100%
Non-fatal injury	0	0	0	0	0	0	0	0	0	0%
Non reportable	0	0	0	0	0	0	0	0	0	0%
Total	2	0	0	0	0	0	0	0	2	100%
	100%	0%	0%	0%	0%	0%	0%	0%		•

Riverside Dr, Hog's Back Rd to Ridgewood Ave

Years	Collisions	Veh Volume	Days	Collisions/MEV
2015-2019	16	n/a	1825	n/a

Classification of Accident	Rear End	Turning Movement	Sideswipe	Angle	Approaching	Single Vehicle (other)	Single vehicle (Unattended vehicle)	Other	Total	
P.D. only	6	0	6	1	0	0	0	0	13	8
Non-fatal injury	3	0	0	0	0	0	0	0	3	19
Non reportable	0	0	0	0	0	0	0	0	0	(
Total	9	0	6	1	0	0	0	0	16	10
	56%	0%	38%	6%	0%	0%	0%	0%		-

81% 19% 0% 100%

Riverside Dr, Ridgewood Ave to Bayport Priv

Years	Total # Collisions	24 Hr AADT Veh Volume	Days	Collisions/MEV
2015-2019	2	n/a	1825	n/a

Classification of Accident	Rear End	Turning Movement	Sideswipe	Angle	Approaching	Single Vehicle (other)	Single vehicle (Unattended vehicle)	Other	Total
P.D. only	0	0	1	0	0	0	0	0	1
Non-fatal injury	1	0	0	0	0	0	0	0	1
Non reportable	0	0	0	0	0	0	0	0	0
Total	1	0	1	0	0	0	0	0	2
	50%	0%	50%	0%	0%	0%	0%	0%	

50% 50% 0% 100%

Collision Details Report - Public Version

From: January 1, 2014 **To:** December 31, 2018

Location: MOONEY'S BAY PL @ RIVERSIDE DR

Traffic Control: Traffic signal Total Collisions: 9

Trainic Control: Trainic Signal	i Otal Collisions: 9								
Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuver	Vehicle type	First Event	No. Ped
									0
2015-May-01, Fri,15:58	Clear	Rear end	P.D. only	Dry	South	Going ahead	Passenger van	Other motor vehicle	e
					South	Stopped	Automobile, station wagon	Other motor vehicle	e
Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuver	Vehicle type	First Event	No. Ped
									0
2015-Aug-08, Sat,12:30	Clear	Rear end	Non-fatal injury	Dry	North	Slowing or stopping	Pick-up truck	Other motor vehicle	2
					North	Slowing or stopping	Automobile, station wagon	Other motor vehicle	2
					North	Going ahead	Passenger van	Other motor vehicle	e
					North	Changing lanes	Automobile, station wagon	Other motor vehicle	e
Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuver	Vehicle type	First Event	No. Ped
									0
2015-Aug-20, Thu,10:08	Clear	Sideswipe	P.D. only	Dry	North	Going ahead	Truck - closed	Other motor vehicle	e
					North	Slowing or stopping	Passenger van	Other motor vehicle	e
					North	Slowing or stopping	Automobile, station wagon	Other motor vehicle	2
Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuver	Vehicle type	First Event	No. Ped
									0
2016-Aug-23, Tue,16:46	Clear	Rear end	P.D. only	Dry	South	Going ahead	Automobile, station wagon	Other motor vehicle	e
					South	Going ahead	Automobile, station wagon	Other motor vehicle	e
					South	Going ahead	Automobile, station wagon	Other motor vehicle	2

June 26, 2020 Page 1 of 26

Collision Details Report - Public Version

From: January 1, 2014 **To:** December 31, 2018

Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuver	Vehicle type	First Event	No. Ped
									0
2016-Dec-07, Wed,16:52	Clear	Rear end	P.D. only	Wet	North	Going ahead	Automobile, station wagon	Other motor vehicle	2
					North	Stopped	Automobile, station wagon	Other motor vehicle	:
Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuver	Vehicle type	First Event	No. Ped
									0
2016-Dec-31, Sat,16:56	Snow	Turning movement	P.D. only	Loose snow	North	Slowing or stopping	Automobile, station wagon	Other motor vehicle	•
					North	Making "U" turn	Truck - tractor	Other motor vehicle	•
Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuver	Vehicle type	First Event	No. Ped
									0
2017-Apr-21, Fri,09:44	Clear	Rear end	Non-fatal injury	Dry	North	Going ahead	Automobile, station wagon	Other motor vehicle	•
					North	Going ahead	Automobile, station wagon	Other motor vehicle	e
Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuver	Vehicle type	First Event	No. Ped
									0
2018-Feb-23, Fri,19:26	Freezing Rain	Rear end	P.D. only	Ice	North	Slowing or stopping	Automobile, station wagon	Other motor vehicle	•
					North	Stopped	Automobile, station wagon	Other motor vehicle	•
Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuver	_	First Event	No. Ped
									0
2018-Jul-16, Mon,18:02	Clear	Rear end	Non-fatal injury	Dry	North	Stopped	Pick-up truck	Other motor vehicle	•
					North	Going ahead	Automobile, station wagon	Other motor vehicle	:

Location: RIDGEWOOD AVE @ RIVERSIDE DR

Traffic Control: Traffic signal Total Collisions: 19

June 26, 2020 Page 2 of 26

Collision Details Report - Public Version

From: January 1, 2014 **To:** December 31, 2018

Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuve	r Vehicle type	First Event	No. Ped
									0
2014-Jan-26, Sun,10:44	Clear	Rear end	P.D. only	Slush	South	Slowing or stopping	Automobile, station wagon	Other motor vehicle	
					South	Stopped	Automobile, station wagon	Other motor vehicle	
Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuve	r Vehicle type	First Event	No. Ped
									0
2014-Mar-06, Thu,13:00	Clear	Rear end	P.D. only	Dry	North	Going ahead	Automobile, station wagon	Other motor vehicle	
					North	Stopped	Automobile, station wagon	Other motor vehicle	
Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuve	r Vehicle type	First Event	No. Ped
									0
2014-Apr-06, Sun,22:35	Clear	Turning movement	P.D. only	Dry	North	Going ahead	Automobile, station wagon	Other motor vehicle	
					South	Turning left	Automobile, station wagon	Other motor vehicle	
Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuve	r Vehicle type	First Event	No. Ped
									0
2014-Dec-01, Mon,10:20	Clear	Rear end	P.D. only	Dry	South	Going ahead	Automobile, station wagon	Other motor vehicle	
					South	Stopped	Automobile, station wagon	Other motor vehicle	
					South	Stopped	Automobile, station wagon	Other motor vehicle	
Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuve	r Vehicle type	First Event	No. Ped
									0
2015-Jan-28, Wed,19:05	Clear	Sideswipe	P.D. only	Wet	South	Changing lanes	Automobile, station wagon	Other motor vehicle	
					South	Going ahead	Automobile, station wagon	Other motor vehicle	

June 26, 2020 Page 3 of 26

Collision Details Report - Public Version

From: January 1, 2014 **To:** December 31, 2018

Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuver	Vehicle type	First Event	No. Ped
									0
2015-Jul-11, Sat,17:02	Clear	Rear end	Non-fatal injury	Dry	South	Turning left	Unknown	Cyclist	
					South	Turning left	Bicycle	Other motor vehicle	e
Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuver	Vehicle type	First Event	No. Ped
									0
2015-Aug-28, Fri,12:32	Clear	Rear end	P.D. only	Dry	North	Slowing or stopping	Automobile, station wagon	Other motor vehicle	e
					North	Stopped	Pick-up truck	Other motor vehicle	e
Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuver	Vehicle type	First Event	No. Ped
									0
2015-Sep-08, Tue,14:55	Clear	Sideswipe	P.D. only	Dry	North	Changing lanes	Pick-up truck	Other motor vehicle	e
					North	Slowing or stopping	Automobile, station wagon	Other motor vehicle	e
					North	Slowing or stopping	Truck - closed	Other motor vehicle	e
Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuver	Vehicle type	First Event	No. Ped
									0
2015-Oct-20, Tue,12:44	Clear	Rear end	P.D. only	Dry	North	Going ahead	Automobile, station wagon	Other motor vehicle	e
					North	Slowing or stopping	Automobile, station wagon	Other motor vehicle	e
Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuver	Vehicle type	First Event	No. Ped
									0
2016-May-25, Wed,18:13	Clear	Sideswipe	P.D. only	Dry	West	Turning left	Pick-up truck	Other motor vehicle	e
					West	Turning left	Automobile, station wagon	Other motor vehicle	e

June 26, 2020 Page 4 of 26

Collision Details Report - Public Version

From: January 1, 2014 **To:** December 31, 2018

Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuver	Vehicle type	First Event	No. Ped
									0
2016-Aug-20, Sat,17:10	Clear	SMV other	P.D. only	Dry	South	Going ahead	Pick-up truck	Curb	
Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuver	Vehicle type	First Event	No. Ped
									0
2016-Oct-01, Sat,13:37	Clear	Rear end	P.D. only	Dry	South	Going ahead	Automobile, station wagon	Other motor vehicl	e
					South	Slowing or stopping	Automobile, station wagon	Other motor vehicl	e
Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuver	Vehicle type	First Event	No. Ped
									0
2017-Feb-16, Thu,14:52	Clear	Rear end	P.D. only	Loose snow	North	Changing lanes	Automobile, station wagon	Other motor vehicl	e
					North	Going ahead	Pick-up truck	Other motor vehicl	e
Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuver	Vehicle type	First Event	No. Ped
									0
2017-Jun-27, Tue,19:31	Clear	Rear end	P.D. only	Dry	South	Going ahead	Passenger van	Other motor vehicl	e
					South	Stopped	Pick-up truck	Other motor vehicl	e
Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuver	Vehicle type	First Event	No. Ped
									0
2017-Jul-15, Sat,14:55	Clear	Rear end	P.D. only	Dry	North	Going ahead	Automobile, station wagon	Other motor vehicl	e
					North	Stopped	Automobile, station wagon	Other motor vehicl	e

June 26, 2020 Page 5 of 26

Collision Details Report - Public Version

From: January 1, 2014 **To:** December 31, 2018

Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuver	Vehicle type	First Event	No. Ped
									0
2018-Jan-28, Sun,14:57	Clear	Rear end	P.D. only	Dry	North	Slowing or stopping	Automobile, station wagon	Other motor vehicle	e
					North	Stopped	Automobile, station wagon	Other motor vehicle	e
Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuver	Vehicle type	First Event	No. Ped
									0
2018-Aug-14, Tue,08:16	Clear	Rear end	P.D. only	Dry	North	Going ahead	Passenger van	Other motor vehicle	е
					North	Stopped	Automobile, station wagon	Other motor vehicle	e
					North	Stopped	Pick-up truck	Other motor vehicle	e
Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuver	Vehicle type	First Event	No. Ped
									0
2018-Nov-19, Mon,11:20	Clear	Rear end	P.D. only	Slush	West	Turning right	Passenger van	Other motor vehicle	e
					West	Turning right	Automobile, station wagon	Other motor vehicle	е
Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuver	Vehicle type	First Event	No. Ped
									0
2018-Nov-23, Fri,14:51	Clear	Rear end	P.D. only	Dry	North	Going ahead	Automobile, station wagon	Other motor vehicle	e
					North	Stopped	Automobile, station wagon	Other motor vehicle	e
Location: RIDGEWOOD AV	/E btwn RIVERS	SIDE DR & DUPON	IT ST				-		
Traffic Control: No control						Total C	Collisions: 3		
Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuver	Vehicle type	First Event	No. Ped
									0
2016-Oct-06, Thu,00:00	Clear	SMV unattended vehicle	P.D. only	Dry	North	Reversing	Automobile, station wagon	Unattended vehicle	

June 26, 2020 Page 6 of 26

Collision Details Report - Public Version

From: January 1, 2014 **To:** December 31, 2018

Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuver	Vehicle type	First Event	No. Ped
									0
2018-Jul-19, Thu,18:02	Clear	Angle	P.D. only	Dry	North	Turning right	Automobile, station wagon	Other motor vehicl	e
					East	Going ahead	Automobile, station wagon	Other motor vehicl	e
Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuver	Vehicle type	First Event	No. Ped
									0
2018-Sep-06, Thu,09:20	Clear	Other	P.D. only	Dry	South	Reversing	Unknown	Other motor vehicl	e
					North	Stopped	Automobile, station wagon	Other motor vehicl	e

Location: RIVERSIDE DR @ BROOKFIELD RD/HOG'S BACK RD

Traffic Control: Traffic signal Total Collisions: 72

Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuver	Vehicle type	First Event	No. Ped
									0
2014-Jan-11, Sat,07:17	Freezing Rain	Rear end	P.D. only	Ice	South	Going ahead	Automobile, station wagon	Skidding/sliding	
					South	Stopped	Automobile, station wagon	Other motor vehicle	;
Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuver	Vehicle type	First Event	No. Ped
									0
2014-Feb-12, Wed,09:32	Clear	Turning movement	P.D. only	Dry	East	Turning left	Passenger van	Other motor vehicle	;
					West	Going ahead	Pick-up truck	Other motor vehicle	;
Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuver	Vehicle type	First Event	No. Ped
									0
2014-Jul-02, Wed,15:40	Clear	Rear end	P.D. only	Dry	East	Turning right	Automobile, station wagon	Other motor vehicle	;
					East	Turning right	Automobile, station wagon	Other motor vehicle	;

June 26, 2020 Page 7 of 26

Collision Details Report - Public Version

From: January 1, 2014 **To:** December 31, 2018

Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuver	Vehicle type	First Event	No. Ped
									0
2014-Jul-28, Mon,21:00	Clear	Other	P.D. only	Dry	North	Reversing	Passenger van	Other motor vehicle	e
					South	Stopped	Motorcycle	Other motor vehicle	e
Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuver	Vehicle type	First Event	No. Ped
									0
2014-Aug-01, Fri,16:00	Clear	Rear end	P.D. only	Dry	West	Going ahead	Pick-up truck	Other motor vehicle	e
					West	Stopped	Automobile, station wagon	Other motor vehicle	e
Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuver	Vehicle type	First Event	No. Ped
									0
2014-Sep-01, Mon,15:30	Clear	Other	P.D. only	Dry	West	Reversing	Automobile, station wagon	Other motor vehicle	e
					East	Stopped	Automobile, station wagon	Other motor vehicle	e
Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuver	Vehicle type	First Event	No. Ped
									0
2014-Sep-03, Wed,15:51	Clear	Rear end	P.D. only	Dry	West	Turning right	Automobile, station wagon	Other motor vehicle	e
					West	Turning right	Truck and trailer	Other motor vehicle	e
Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuver	Vehicle type	First Event	No. Ped
									0
2014-Sep-07, Sun,12:24	Clear	Rear end	P.D. only	Dry	North	Going ahead	Automobile, station wagon	Other motor vehicle	e
					North	Stopped	Automobile, station wagon	Other motor vehicle	e
					North	Stopped	Automobile, station wagon	Other motor vehicle	e

June 26, 2020 Page 8 of 26

Collision Details Report - Public Version

From: January 1, 2014 **To:** December 31, 2018

Data /Day /Times	Fundament and	lusus a st. Trum a	Olasaidia akia m	Conford	Vala Dir	Mahiala Managara	. Valaiala tuus	Final Frent	Na Dari
Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuve	venicie typė	First Event	No. Ped
									0
2014-Nov-04, Tue,17:30	Rain	Sideswipe	P.D. only	Wet	North	Changing lanes	Automobile, station wagon	Other motor vehicl	e
					North	Turning left	Automobile, station wagon	Other motor vehicl	e
Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuve	Vehicle type	First Event	No. Ped
									0
2014-Nov-25, Tue,00:08	Clear	Angle	Non-fatal injury	Dry	South	Going ahead	Automobile, station wagon	Other motor vehicl	e
					East	Going ahead	Pick-up truck	Other motor vehicl	e
Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuve	Vehicle type	First Event	No. Ped
									0
2014-Dec-01, Mon,17:35	Clear	Rear end	P.D. only	Dry	East	Turning right	Automobile, station wagon	Other motor vehicl	e
					East	Turning right	Automobile, station wagon	Other motor vehicl	e
Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuve	Vehicle type	First Event	No. Ped
									0
2014-Dec-05, Fri,17:00	Clear	Rear end	P.D. only	Ice	East	Slowing or stopping	Pick-up truck	Other motor vehicl	e
					East	Stopped	Pick-up truck	Other motor vehicl	e
Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuve	Vehicle type	First Event	No. Ped
									0
2014-Dec-12, Fri,16:35	Clear	Rear end	P.D. only	Wet	West	Going ahead	Pick-up truck	Other motor vehicl	e
			·		West	Stopped	Automobile, station wagon	Other motor vehicl	e

June 26, 2020 Page 9 of 26

Collision Details Report - Public Version

From: January 1, 2014 **To:** December 31, 2018

Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuver	Vehicle type	First Event	No. Ped
									0
2014-Dec-16, Tue,20:29	Freezing Rain	Turning movement	P.D. only	Ice	South	Turning right	Automobile, station wagon	Other motor vehicle	e
					South	Turning right	Automobile, station wagon	Other motor vehicle	2
Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuver	Vehicle type	First Event	No. Ped
									0
2015-Jan-18, Sun,00:42	Clear	Turning movement	P.D. only	Dry	East	Turning left	Automobile, station wagon	Other motor vehicle	2
					West	Going ahead	Automobile, station wagon	Other motor vehicle	2
Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuver	Vehicle type	First Event	No. Ped
									0
2015-Jan-22, Thu,08:00	Clear	Rear end	P.D. only	Ice	East	Going ahead	Automobile, station wagon	Other motor vehicle	2
					East	Stopped	Passenger van	Other motor vehicle	e
					East	Stopped	Automobile, station wagon	Other motor vehicle	e
Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuver	Vehicle type	First Event	No. Ped
									0
2015-Jan-30, Fri,20:20	Clear	Turning movement	P.D. only	Dry	East	Turning left	Unknown	Other motor vehicle	2
					West	Going ahead	Automobile, station wagon	Other motor vehicle	2
Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuver	Vehicle type	First Event	No. Ped
									0
2015-Feb-04, Wed,13:47	Snow	Rear end	P.D. only	Ice	North	Turning left	Automobile, station wagon	Other motor vehicle	e
					North	Turning left	Passenger van	Other motor vehicle	e

June 26, 2020 Page 10 of 26

Collision Details Report - Public Version

From: January 1, 2014 **To:** December 31, 2018

Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuver	Vehicle type	First Event	No. Ped
				Condit					0
2015-Feb-05, Thu,07:20	Clear	Rear end	P.D. only	Wet	North	Going ahead	Automobile, station wagon	Other motor vehicle	e
					North	Stopped	Delivery van	Other motor vehicle	e
Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuver	Vehicle type	First Event	No. Ped
									0
2015-Feb-19, Thu,08:49	Clear	Rear end	P.D. only	Wet	South	Slowing or stopping	Automobile, station wagon	Other motor vehicle	e
					South	Stopped	Automobile, station wagon	Other motor vehicle	e
Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuver	Vehicle type	First Event	No. Ped
									0
2015-Mar-22, Sun,15:35	Clear	Rear end	P.D. only	Dry	South	Turning right	Pick-up truck	Other motor vehicle	e
					South	Turning right	Automobile, station wagon	Other motor vehicle	е
Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuver	Vehicle type	First Event	No. Ped
									0
2015-Mar-23, Mon,19:06	Clear	SMV other	P.D. only	Dry	West	Turning right	Automobile, station wagon	Pole (sign, parking meter)	
Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuver	Vehicle type	First Event	No. Ped
									0
2015-Apr-21, Tue,16:16	Clear	Rear end	Non-fatal injury	Dry	West	Going ahead	Automobile, station wagon	Other motor vehicle	e
					West	Stopped	Automobile, station wagon	Other motor vehicle	e

June 26, 2020 Page 11 of 26

Collision Details Report - Public Version

From: January 1, 2014 **To:** December 31, 2018

Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuve	r Vehicle type	First Event	No. Ped
									0
2015-May-01, Fri,16:11	Clear	Rear end	P.D. only	Dry	North	Turning right	Automobile, station wagon	Other motor vehicl	e
					North	Turning right	Delivery van	Other motor vehicl	e
Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuve	r Vehicle type	First Event	No. Ped
									0
2015-Oct-09, Fri,07:28	Rain	Sideswipe	Non-fatal injury	Wet	North	Going ahead	Pick-up truck	Other motor vehicl	e
					North	Turning left	Pick-up truck	Other motor vehicl	e
					North	Turning left	Automobile, station wagon	Other motor vehicl	e
Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuve	r Vehicle type	First Event	No. Ped
									0
2015-Oct-14, Wed,14:37	Clear	Rear end	P.D. only	Dry	South	Turning right	Automobile, station wagon	Other motor vehicl	e
					South	Turning right	Pick-up truck	Other motor vehicl	e
Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuve	r Vehicle type	First Event	No. Ped
									0
2015-Dec-12, Sat,14:30	Clear	Rear end	Non-fatal injury	Dry	East	Turning right	Passenger van	Other motor vehicl	e
					East	Turning right	Automobile, station wagon	Other motor vehicl	e
Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuve	-	First Event	No. Ped
									0
2016-Jan-02, Sat,16:24	Clear	Rear end	P.D. only	Wet	South	Going ahead	Automobile, station wagon	Other motor vehicl	e
					South	Stopped	_	Other motor vehicl	e

June 26, 2020 Page 12 of 26

Collision Details Report - Public Version

From: January 1, 2014 **To:** December 31, 2018

Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuver	Vehicle type	First Event	No. Ped
									0
2016-Jan-06, Wed,21:48	Clear	Turning movement	P.D. only	Dry	East	Turning left	Automobile, station wagon	Other motor vehicle	e
					West	Going ahead	Automobile, station wagon	Other motor vehicle	e
Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuver	Vehicle type	First Event	No. Ped
									0
2016-Mar-27, Sun,20:55	Clear	Rear end	P.D. only	Dry	East	Turning right	Pick-up truck	Other motor vehicle	е
					East	Turning right	Automobile, station wagon	Other motor vehicle	e
Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuver	Vehicle type	First Event	No. Ped
									0
2016-Mar-30, Wed,15:30	Clear	Rear end	P.D. only	Dry	South	Turning right	Pick-up truck	Other motor vehicle	e
					South	Turning right	Pick-up truck	Other motor vehicle	e
Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuver	Vehicle type	First Event	No. Ped
									0
2016-Mar-30, Wed,21:16	Clear	Turning movement	P.D. only	Dry	North	Going ahead	Automobile, station wagon	Other motor vehicle	e
					South	Turning left	Automobile, station wagon	Other motor vehicle	e
Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuver	Vehicle type	First Event	No. Ped
									0
2016-May-20, Fri,08:00	Clear	Rear end	P.D. only	Dry	South	Going ahead	Automobile, station wagon	Other motor vehicle	e
					South	Stopped	Pick-up truck	Other motor vehicle	e

June 26, 2020 Page 13 of 26

Collision Details Report - Public Version

From: January 1, 2014 **To:** December 31, 2018

Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuve	r Vehicle type	First Event	No. Ped
									0
2016-Jun-07, Tue,17:15	Clear	Sideswipe	P.D. only	Dry	East	Changing lanes	Pick-up truck	Other motor vehicle	e
					East	Changing lanes	Automobile, station wagon	Other motor vehicle	e
Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuve	r Vehicle type	First Event	No. Ped
									0
2016-Jun-17, Fri,21:28	Clear	Turning movement	Non-fatal injury	Dry	East	Turning left	Automobile, station wagon	Cyclist	
					West	Going ahead	Bicycle	Other motor vehicle	e
Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuve	r Vehicle type	First Event	No. Ped
									0
2016-Jul-19, Tue,16:58	Clear	Rear end	Non-fatal injury	Dry	East	Turning right	Automobile, station wagon	Other motor vehicle	e
					East	Turning right	Automobile, station wagon	Other motor vehicle	e
Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuve	r Vehicle type	First Event	No. Ped
									0
2016-Aug-02, Tue,17:44	Clear	Rear end	P.D. only	Dry	South	Turning right	Automobile, station wagon	Other motor vehicle	e
					South	Turning right	Automobile, station wagon	Other motor vehicle	e
Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuve	r Vehicle type	First Event	No. Ped
									0
2016-Sep-09, Fri,22:37	Clear	Turning movement	P.D. only	Dry	East	Turning left	Automobile, station wagon	Other motor vehicle	e
					West	Going ahead	Automobile, station wagon	Other motor vehicle	e

June 26, 2020 Page 14 of 26

Collision Details Report - Public Version

From: January 1, 2014 **To:** December 31, 2018

Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuve	Vehicle type	First Event	No. Ped
									0
2016-Sep-15, Thu,17:58	Clear	Sideswipe	P.D. only	Dry	West	Changing lanes	Pick-up truck	Other motor vehicl	e
					West	Going ahead	Pick-up truck	Other motor vehicl	e
Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuve	Vehicle type	First Event	No. Ped
									0
2016-Sep-24, Sat,12:55	Clear	Rear end	Non-fatal injury	Dry	East	Going ahead	Automobile, station wagon	Other motor vehicl	e
					East	Stopped	Automobile, station wagon	Other motor vehicl	e
Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuve	Vehicle type	First Event	No. Ped
									0
2016-Sep-29, Thu,16:30	Clear	Rear end	Non-fatal injury	Dry	South	Slowing or stopping	Automobile, station wagon	Other motor vehicl	e
					South	Slowing or stopping	Automobile, station wagon	Other motor vehicl	e
					West	Going ahead	Fire vehicle	Other	
Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuve	Vehicle type	First Event	No. Ped
									0
2016-Oct-18, Tue,08:56	Clear	Rear end	P.D. only	Dry	South	Going ahead	Tow truck	Other motor vehicl	e
					South	Slowing or stopping	Automobile, station wagon	Other motor vehicl	e
Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuve	Vehicle type	First Event	No. Ped
									0
2016-Dec-05, Mon,08:52	Clear	SMV other	P.D. only	Packed snow	East	Turning right	Automobile, station wagon	Skidding/sliding	

June 26, 2020 Page 15 of 26

Collision Details Report - Public Version

From: January 1, 2014 **To:** December 31, 2018

Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuve	r Vehicle type	First Event	No. Ped
									0
2016-Dec-23, Fri,12:40	Clear	Sideswipe	P.D. only	Dry	South	Changing lanes	Pick-up truck	Other motor vehicle	e
					South	Going ahead	Automobile, station wagon	Other motor vehicle	e
Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuve	r Vehicle type	First Event	No. Ped
									0
2017-Jan-16, Mon,09:00	Clear	Rear end	P.D. only	Dry	South	Turning left	Unknown	Other motor vehicle	e
					South	Turning left	Automobile, station wagon	Other motor vehicle	e
Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuve	r Vehicle type	First Event	No. Ped
									0
2017-Feb-08, Wed,13:19	Freezing Rain	Rear end	P.D. only	Ice	West	Slowing or stopping	Automobile, station wagon	Other motor vehicle	e
					West	Stopped	Automobile, station wagon	Other motor vehicle	e
Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuve	r Vehicle type	First Event	No. Ped
									0
2017-Feb-09, Thu,09:52	Clear	Rear end	P.D. only	Dry	East	Going ahead	Automobile, station wagon	Other motor vehicle	e
					East	Stopped	Automobile, station wagon	Other motor vehicle	e
Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuve	r Vehicle type	First Event	No. Ped
									0
2017-Feb-12, Sun,20:50	Snow	Rear end	P.D. only	Packed snow	North	Slowing or stopping	Automobile, station wagon	Other motor vehicle	e
					North	Stopped	Automobile, station wagon	Other motor vehicle	e

June 26, 2020 Page 16 of 26

Collision Details Report - Public Version

From: January 1, 2014 **To:** December 31, 2018

Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuver	Vehicle type	First Event	No. Ped
									0
2017-Mar-08, Wed,19:01	Clear	Rear end	P.D. only	Dry	East	Unknown	Unknown	Other motor vehicle	•
					East	Stopped	Automobile, station wagon	Other motor vehicle	;
Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuver	Vehicle type	First Event	No. Ped
									0
2017-Mar-14, Tue,17:23	Snow	Rear end	P.D. only	Loose snow	North	Turning left	Automobile, station wagon	Other motor vehicle	:
					North	Turning left	Automobile, station wagon	Other motor vehicle	;
Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuver	Vehicle type	First Event	No. Ped
									0
2017-Apr-10, Mon,17:00	Clear	Rear end	Non-fatal injury	Dry	North	Slowing or stopping	Pick-up truck	Other motor vehicle	:
					North	Stopped	Pick-up truck	Other motor vehicle	;
Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuver	Vehicle type	First Event	No. Ped
									0
2017-Jun-13, Tue,12:16	Clear	Rear end	P.D. only	Dry	North	Slowing or stopping	Passenger van	Other motor vehicle	;
					North	Stopped	Passenger van	Other motor vehicle	;
Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuver	Vehicle type	First Event	No. Ped
									0
2017-Jun-23, Fri,09:50	Rain	Rear end	P.D. only	Wet	North	Slowing or stopping	Automobile, station wagon	Other motor vehicle	;
					North	Stopped	Automobile, station wagon	Other motor vehicle	;

June 26, 2020 Page 17 of 26

Collision Details Report - Public Version

From: January 1, 2014 **To:** December 31, 2018

Data/Day/Time		Impact Tune	Classification	Curfoss	Vab Dir	Vahiala Mana	. Vahiala tuna	First Event	No Dod
Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuve	r venicie type	FIRST Event	No. Ped
									0
2017-Jul-13, Thu,08:55	Clear	Turning movement	P.D. only	Dry	East	Turning right	Automobile, station wagon	Other motor vehicle	
					East	Going ahead	Pick-up truck	Other motor vehicle	
Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuver	Vehicle type	First Event	No. Ped
									0
2017-Jul-14, Fri,12:31	Clear	Other	P.D. only	Dry	South	Reversing	Pick-up truck	Other motor vehicle	
					North	Stopped	Motorcycle	Other motor vehicle	
Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuver	Vehicle type	First Event	No. Ped
									0
2017-Aug-14, Mon,09:20	Clear	Angle	P.D. only	Dry	South	Turning left	Automobile, station wagon	Other motor vehicle	
					West	Going ahead	Automobile, station wagon	Other motor vehicle	
Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuver	Vehicle type	First Event	No. Ped
									0
2017-Sep-18, Mon,20:21	Clear	Rear end	Non-fatal injury	Dry	South	Going ahead	Automobile, station wagon	Other motor vehicle	
					South	Stopped	Automobile, station wagon	Other motor vehicle	
Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuver	_	First Event	No. Ped
									0
2017-Sep-23, Sat,20:00	Clear	Sideswipe	P.D. only	Dry	East	Changing lanes	Automobile, station wagon	Other motor vehicle	
					East	Going ahead	Automobile, station wagon	Other motor vehicle	

June 26, 2020 Page 18 of 26

Collision Details Report - Public Version

From: January 1, 2014 **To:** December 31, 2018

Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuver	Vehicle type	First Event	No. Ped
									0
2017-Sep-27, Wed,14:34	Rain	Rear end	P.D. only	Wet	West	Turning right	Pick-up truck	Other motor vehicle	e
					West	Turning right	Passenger van	Other motor vehicle	e
Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuver	Vehicle type	First Event	No. Ped
									0
2017-Oct-25, Wed,08:45	Clear	Rear end	P.D. only	Dry	West	Turning right	Automobile, station wagon	Other motor vehicle	e
					West	Turning right	Automobile, station wagon	Other motor vehicle	e
Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuver	Vehicle type	First Event	No. Ped
									0
2017-Dec-16, Sat,15:32	Clear	Sideswipe	P.D. only	Dry	South	Changing lanes	Automobile, station wagon	Other motor vehicle	e
					South	Going ahead	Automobile, station wagon	Other motor vehicle	e
Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuver	Vehicle type	First Event	No. Ped
									0
2018-Jan-20, Sat,15:15	Clear	Rear end	P.D. only	Loose snow	North	Going ahead	Automobile, station wagon	Other motor vehicle	e
					North	Stopped	Automobile, station wagon	Other motor vehicle	e
Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuver	Vehicle type	First Event	No. Ped
									0
2018-Mar-05, Mon,01:12	Clear	SMV other	P.D. only	Dry	North	Going ahead	Automobile, station wagon	Pole (utility, power)
Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuver	_	First Event	No. Ped
									0
2018-Mar-17, Sat,02:33	Clear	SMV other	P.D. only	Dry	East	Turning left	Automobile, station wagon	Ran off road	

June 26, 2020 Page 19 of 26

Collision Details Report - Public Version

From: January 1, 2014 **To:** December 31, 2018

Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuver	Vehicle type	First Event	No. Ped
									0
2018-Sep-23, Sun,17:30	Clear	Rear end	P.D. only	Dry	East	Going ahead	Automobile, station wagon	Other motor vehicle	;
					East	Stopped	Automobile, station wagon	Other motor vehicle	;
Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuver	Vehicle type	First Event	No. Ped
									0
2018-Oct-05, Fri,17:14	Clear	Turning movement	Non-fatal injury	Dry	North	Turning left	Automobile, station wagon	Other motor vehicle	:
					South	Going ahead	Motorcycle	Other motor vehicle	:
					South	Stopped	Automobile, station wagon	Other motor vehicle	;
Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuver	Vehicle type	First Event	No. Ped
									0
2018-Oct-09, Tue,10:00	Clear	Rear end	P.D. only	Dry	South	Going ahead	Automobile, station wagon	Other motor vehicle	;
					South	Stopped	Automobile, station wagon	Other motor vehicle	•
Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuver	Vehicle type	First Event	No. Ped
									0
2018-Nov-02, Fri,18:02	Rain	Rear end	P.D. only	Wet	West	Slowing or stopping	Automobile, station wagon	Other motor vehicle	;
					West	Slowing or stopping	Automobile, station wagon	Other motor vehicle	;
Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuver	Vehicle type	First Event	No. Ped
									0
2018-Dec-08, Sat,21:03	Clear	Turning movement	Non-fatal injury	Packed snow	East	Turning left	Automobile, station wagon	Other motor vehicle	;
					West	Going ahead	Automobile, station wagon	Other motor vehicle	;

June 26, 2020 Page 20 of 26

Collision Details Report - Public Version

From: January 1, 2014 **To:** December 31, 2018

Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuver	Vehicle type	First Event	No. Ped
									0
2018-Dec-11, Tue,11:10	Snow	Rear end	P.D. only	Loose snow	South	Turning right	Automobile, station wagon	Other motor vehicle	e
					South	Turning right	Automobile, station wagon	Other motor vehicle	e
Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuver	Vehicle type	First Event	No. Ped
									0
2018-Dec-21, Fri,15:18	Rain	Turning movement	Non-fatal injury	Wet	West	Turning left	Automobile, station wagon	Cyclist	
					East	Going ahead	Bicycle	Other motor vehicle	e
Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuver	Vehicle type	First Event	No. Ped
									0
2018-Dec-29, Sat,19:21	Clear	Turning movement	Non-fatal injury	Dry	East	Turning left	Automobile, station wagon	Other motor vehicle	e
					West	Going ahead	Automobile, station wagon	Other motor vehicle	e

Location: RIVERSIDE DR btwn BAYPORT PRIV & MOONEY'S BAY PL

Traffic Control: No control

Total Collisions: 3

Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuver Ve	ehicle type	First Event	No. Ped
									0
2014-May-26, Mon,19:15	Clear	Rear end	P.D. only	Dry	South	Changing lanes Pa	assenger van	Other motor vehicle	e
					South	. Č	utomobile, ation wagon	Other motor vehicle	e

June 26, 2020 Page 21 of 26

Collision Details Report - Public Version

From: January 1, 2014 **To:** December 31, 2018

Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuver	Vehicle type	First Event	No. Ped
									0
2014-Jun-11, Wed,07:58	Clear	Rear end	Non-fatal injury	Dry	North	Going ahead	Automobile, station wagon	Other motor vehicle	e
					North	Stopped	Automobile, station wagon	Other motor vehicle	e
					North	Going ahead	Automobile, station wagon	Other motor vehicle	e
Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuver	Vehicle type	First Event	No. Ped
									0
2016-Jul-22, Fri,14:36	Clear	Rear end	P.D. only	Dry	South	Slowing or stopping	Automobile, station wagon	Other motor vehicle	e
					South	Going ahead	Pick-up truck	Other motor vehicle	e

Location: RIVERSIDE DR btwn HOG'S BACK RD & RIDGEWOOD AVE

Traffic Control: No control

Total Collisions: 17

Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuver	Vehicle type	First Event	No. Ped
									0
2014-Jan-16, Thu,18:30	Clear	Rear end	P.D. only	Wet	East	Going ahead	Automobile, station wagon	Other motor vehicl	e
					East	Stopped	Automobile, station wagon	Other motor vehicl	e
Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuver	Vehicle type	First Event	No. Ped
									0
2014-Oct-30, Thu,15:20	Clear	Rear end	P.D. only	Dry	North	Going ahead	Automobile, station wagon	Other motor vehicl	e
					North	Stopped	Automobile, station wagon	Other motor vehicl	e

June 26, 2020 Page 22 of 26

Collision Details Report - Public Version

From: January 1, 2014 **To:** December 31, 2018

Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuve	Vehicle type	First Event	No. Ped
									0
2014-Dec-11, Thu,07:17	Clear	Turning movement	P.D. only	Slush	North	Turning right	Tow truck	Other motor vehicle	e
					North	Going ahead	Pick-up truck	Other motor vehicle	e
Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuve	Vehicle type	First Event	No. Ped
									0
2015-May-17, Sun,21:22	Clear	Rear end	Non-fatal injury	Dry	South	Going ahead	Automobile, station wagon	Other motor vehicle	e
					South	Stopped	Pick-up truck	Other motor vehicle	e
Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuve	Vehicle type	First Event	No. Ped
									0
2015-Dec-13, Sun,00:15	Clear	SMV other	P.D. only	Dry	South	Changing lanes	Automobile, station wagon	Ran off road	
Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuve	Vehicle type	First Event	No. Ped
									0
2015-Dec-15, Tue,08:16	Rain	Rear end	P.D. only	Wet	North	Going ahead	Pick-up truck	Other motor vehicle	e
					North	Stopped	Pick-up truck	Other motor vehicle	e
Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuve	Vehicle type	First Event	No. Ped
									0
2015-Dec-16, Wed,11:30	Clear	Rear end	Non-fatal injury	Dry	North	Going ahead	Automobile, station wagon	Other motor vehicle	e
					North	Turning right	Automobile, station wagon	Other motor vehicle	е
					North	Going ahead	Unknown	Other motor vehicle	e
Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuve	Vehicle type	First Event	No. Ped
									0
2015-Dec-16, Wed,11:40	Clear	Rear end	P.D. only	Dry	North	Going ahead	Pick-up truck	Other motor vehicle	e
					North	Stopped	Automobile, station wagon	Other motor vehicle	е

June 26, 2020 Page 23 of 26

Collision Details Report - Public Version

From: January 1, 2014 **To:** December 31, 2018

Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuve	Vehicle type	First Event	No. Ped
									0
2016-Jan-22, Fri,14:41	Clear	Sideswipe	P.D. only	Dry	South	Changing lanes	Truck - closed	Other motor vehicle	e
					South	Going ahead	Automobile, station wagon	Other motor vehicle	e
Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuve	Vehicle type	First Event	No. Ped
									0
2016-May-13, Fri,15:33	Clear	Rear end	P.D. only	Dry	North	Going ahead	Passenger van	Other motor vehicle	e
					North	Stopped	Automobile, station wagon	Other motor vehicle	e
Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuve	Vehicle type	First Event	No. Ped
									0
2016-Jun-24, Fri,21:25	Clear	Rear end	Non-fatal injury	Dry	South	Going ahead	Automobile, station wagon	Other motor vehicle	e
					South	Slowing or stopping	Pick-up truck	Other motor vehicle	e
Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuve	Vehicle type	First Event	No. Ped
									0
2016-Sep-03, Sat,07:58	Clear	Sideswipe	P.D. only	Dry	North	Going ahead	Automobile, station wagon	Other motor vehicle	e
					North	Changing lanes	Pick-up truck	Other motor vehicle	e
Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuve	Vehicle type	First Event	No. Ped
									0
2016-Oct-04, Tue,15:07	Clear	Angle	P.D. only	Dry	West	Turning left	Automobile, station wagon	Other motor vehicle	e
					South	Going ahead	Pick-up truck	Other motor vehicle	e

June 26, 2020 Page 24 of 26

Collision Details Report - Public Version

From: January 1, 2014 **To:** December 31, 2018

Cond'n 2017-Feb-14, Tue,10:17 Clear Sideswipe P.D. only Dry South Changing lanes station wagon South Going ahead Passenger van Other motor vehicle station wagon Other motor vehicle South Going ahead Passenger van Other motor vehicle South Going ahead Passenger van Other motor vehicle South Going ahead South Going ahead Passenger van Other motor vehicle South Going ahead Automobile, station wagon South Going ahead South Going ahead Automobile, station wagon South Going ahead South South Going ahead South South Going ahead South South Going ahead South South South Going ahead South										
2017-Feb-14, Tue,10:17 Clear Sideswipe P.D. only Dry South Changing lanes Automobile, station wagon Other motor vehicle	Date/Day/Time	Environment	Impact Type	Classification		Veh. Dir	Vehicle Manoeuver	Vehicle type	First Event	No. Ped
Date/Day/Time Environment Impact Type Classification Condr C										0
Date/Day/Time Environment Impact Type Classification Surface Cond'n Veh. Dir Vehicle Manoeuver Vehicle type First Event No. 2017-Aug-22, Tue,12:13 Clear Sideswipe P.D. only Wet South Going ahead Automobile, station wagon South Web. Dir Vehicle Manoeuver Vehicle type First Event No. 2018-Jul-25, Wed,14:25 Clear Sideswipe P.D. only Dry North Going ahead Automobile, station wagon North Changing lanes Automobile, station wagon North Changing lanes Automobile, station wagon South North South Station wagon South North South Station wagon South North South Station wagon Station wagon Station wagon South North South Station wagon Station wagon Station wagon South Station wagon South Station wagon South Station wagon Station wagon South Station wagon Station wagon South Station wagon South Station wagon Station wagon South South Station Wagon South South Station Wagon South Station Wago	2017-Feb-14, Tue,10:17	Clear	Sideswipe	P.D. only	Dry	South	Changing lanes		Other motor vehicle	e
2017-Aug-22, Tue,12:13 Clear Sideswipe P.D. only Wet South Going ahead Automobile, station wagon Date/Day/Time Environment Impact Type Classification 2018-Jul-25, Wed,14:25 Clear Sideswipe P.D. only Dry North Going ahead Surface Cond'n Date/Day/Time Environment Impact Type Classification Surface Cond'n Date/Day/Time Environment Impact Type Classification Surface Cond'n North Changing lanes Automobile, station wagon North Changing lanes						South	Going ahead	Passenger van	Other motor vehicle	e
2017-Aug-22, Tue,12:13 Clear Sideswipe P.D. only Wet South Going ahead Automobile, station wagon Other motor vehicle show Other motor ve	Date/Day/Time	Environment	Impact Type	Classification		Veh. Dir	Vehicle Manoeuver	Vehicle type	First Event	No. Ped
Date/Day/Time Environment Impact Type Classification Surface Cond'n Surface Cond'n Surface Veh. Dir Vehicle Manoeuver Vehicle type First Event No.										0
Date/Day/Time Environment Impact Type Classification Surface Cond'n Veh. Dir Vehicle Manoeuver Vehicle type First Event No. 2018-Jul-25, Wed,14:25 Clear Sideswipe P.D. only Dry North Going ahead Automobile, station wagon North Changing lanes Automobile, station wagon Station wagon P.D. only Dry North Changing lanes Automobile, station wagon Surface Cond'n Veh. Dir Vehicle Manoeuver Vehicle type First Event No. 2018-Dec-22, Sat,07:20 Snow Rear end P.D. only Packed Snow North Going ahead Pick-up truck Other motor vehicle Snow North Merging Automobile, station wagon Other motor vehicle Snow North Merging Automobile, station wagon Other motor vehicle Snow North Merging Automobile, Station wagon Station wagon Other motor vehicle Snow North Merging Automobile, Station wagon Station wagon Station wagon North Merging Automobile, Station wagon Station	2017-Aug-22, Tue,12:13	Clear	Sideswipe	P.D. only	Wet	South	Going ahead		Other motor vehicle	e
2018-Jul-25, Wed,14:25 Clear Sideswipe P.D. only Dry North Going ahead Automobile, station wagon North Changing lanes Automobile, station wagon Station Weh. Dir Vehicle Manoeuver Vehicle type First Event No. 2018-Dec-22, Sat,07:20 Snow Rear end P.D. only Packed Snow North Going ahead Pick-up truck Other motor vehicle Snow North Merging Automobile, station wagon						South	Going ahead	·	Other motor vehicle	e
2018-Jul-25, Wed,14:25 Clear Sideswipe P.D. only Dry North Going ahead Automobile, station wagon North Changing lanes Automobile, station wagon Sufface Cond'n Other motor vehicle Surface Cond'n Other motor vehicle Surface Cond'n Other motor vehicle No. No. Other motor vehicle Sideswipe P.D. only Packed Snow North Merging Automobile, station wagon Other motor vehicle No. Other motor vehicle No. Other motor vehicle No. Other motor vehicle Snow North Merging Automobile, station wagon Other motor vehicle Snow North Merging Automobile, station wagon Other motor vehicle	Date/Day/Time	Environment	Impact Type	Classification		Veh. Dir	Vehicle Manoeuver	Vehicle type	First Event	No. Ped
North Changing lanes Station wagon Other motor vehicle										0
Date/Day/Time Environment Impact Type Classification Surface Cond'n Veh. Dir Vehicle Manoeuver Vehicle type First Event No. 2018-Dec-22, Sat,07:20 Snow Rear end P.D. only Packed snow North Merging Automobile, station wagon North Merging Automobile, station wagon Other motor vehicle station wagon Other motor vehicle station wagon	2018-Jul-25, Wed,14:25	Clear	Sideswipe	P.D. only	Dry	North	Going ahead		Other motor vehicle	e
Cond'n Cond'n Cond'n 0 2018-Dec-22, Sat,07:20 Snow Rear end P.D. only Packed snow North Merging Automobile, station wagon Other motor vehicle station wagon						North	Changing lanes		Other motor vehicle	e
2018-Dec-22, Sat,07:20 Snow Rear end P.D. only Packed snow North Going ahead Pick-up truck Other motor vehicle station wagon Other motor vehicle station wagon	Date/Day/Time	Environment	Impact Type	Classification		Veh. Dir	Vehicle Manoeuver	Vehicle type	First Event	No. Ped
snow North Merging Automobile, Other motor vehicle station wagon										0
station wagon	2018-Dec-22, Sat,07:20	Snow	Rear end	P.D. only		North	Going ahead	Pick-up truck	Other motor vehicle	e
Location: RIVERSIDE DR htmp RIDGEWOOD AVE & RAYPORT PRIV						North	Merging		Other motor vehicle	e
Location. Average by stwittiboewood ave a barrown file	Location: RIVERSIDE DR btv	vn RIDGEWOC	D AVE & BAYPO	RT PRIV						
Traffic Control: No control Total Collisions: 3	Traffic Control: No control						Total C	Collisions: 3		

June 26, 2020 Page 25 of 26

Collision Details Report - Public Version

From: January 1, 2014 **To:** December 31, 2018

Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuver	Vehicle type	First Event	No. Ped
									0
2014-Jul-12, Sat,13:11	Clear	Rear end	P.D. only	Dry	South	Changing lanes	Automobile, station wagon	Other motor vehicle	e
					South	Slowing or stopping	Automobile, station wagon	Other motor vehicle	e
					South	Going ahead	Automobile, station wagon	Other motor vehicle	e
Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuver	Vehicle type	First Event	No. Ped
									0
2015-Sep-11, Fri,16:12	Clear	Rear end	Non-fatal injury	Dry	South	Going ahead	Pick-up truck	Other motor vehicle	e
					South	Slowing or stopping	Pick-up truck	Other motor vehicle	e
Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuver	Vehicle type	First Event	No. Ped
									0
2016-Aug-23, Tue,17:02	Clear	Sideswipe	P.D. only	Dry	South	Changing lanes	Pick-up truck	Other motor vehicle	e
					South	Going ahead	Automobile, station wagon	Other motor vehicle	e

June 26, 2020 Page 26 of 26

Collision Details Report - Public Version

From: January 1, 2019 **To:** December 31, 2019

Location: MOONEY'S BAY PL @ RIVERSIDE DR

Traffic Control: Traffic signal Total Collisions: 4

Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuve	r Vehicle type	First Event	No. Ped
2019-Jul-01, Mon,12:23	Clear	Rear end	P.D. only	Dry	South	Slowing or stopping	g Automobile, station wagon	Other motor vehicle	0
					South	Stopped	Automobile, station wagon	Other motor vehicle	
2019-Jul-10, Wed,08:41	Clear	Rear end	P.D. only	Dry	North	Slowing or stopping	g Delivery van	Other motor vehicle	0
					North	Stopped	Automobile, station wagon	Other motor vehicle	
2019-Sep-18, Wed,11:57	Clear	Rear end	P.D. only	Dry	North	Going ahead	Automobile, station wagon	Other motor vehicle	0
					North	Slowing or stopping	g Automobile, station wagon	Other motor vehicle	
					North	Stopped	Automobile, station wagon	Other motor vehicle	
2019-Dec-05, Thu,07:20	Snow	Rear end	Non-fatal injury	Loose snow	South	Slowing or stopping	g Automobile, station wagon	Other motor vehicle	0
					South	Stopped	Automobile, station wagon	Other motor vehicle	

Location: RIDGEWOOD AVE @ RIVERSIDE DR

Traffic Control: Traffic signal Total Collisions: 4

Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuve	r Vehicle type	First Event	No. Ped
2019-Jan-17, Thu,11:15	Clear	Rear end	P.D. only	Dry	West	Turning right	Automobile, station wagon	Other motor vehicle	0
					West	Turning right	Automobile, station wagon	Other motor vehicle	
2019-Jan-27, Sun,11:30	Clear	SMV other	P.D. only	Packed snow	North	Going ahead	Automobile, station wagon	Snowbank/drift	0
2019-Apr-03, Wed,23:00	Clear	Rear end	P.D. only	Wet	North	Changing lanes	Automobile, station wagon	Other motor vehicle	0
					North	Going ahead	Automobile, station wagon	Other motor vehicle	
2019-May-12, Sun,20:00	Clear	Rear end	P.D. only	Dry	North	Going ahead	Automobile, station wagon	Other motor vehicle	0
					North	Stopped	Automobile, station wagon	Other motor vehicle	

Location: RIDGEWOOD AVE btwn RIVERSIDE DR & DUPONT ST

Traffic Control: No control

Total Collisions: 2

Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuver Vehicle type	First Event	No. Ped

May 05, 2021 Page 1 of 4

Collision Details Report - Public Version

From: January 1, 2019 **To:** December 31, 2019

Location: RIDGEWOOD AVE btwn RIVERSIDE DR & DUPONT ST

Traffic Control: No control

Total Collisions: 2

Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuve	r Vehicle type	First Event	No. Ped
2019-Jun-13, Thu,13:53	Clear	SMV unattended vehicle	Non-fatal injury	Dry	East	Going ahead	Automobile, station wagon	Unattended vehicle	0
2019-Jul-19, Fri,23:00	Clear	SMV other	P.D. only	Dry	East	Going ahead	Automobile, station wagon	Pedestrian	1

Location: RIVERSIDE DR @ BROOKFIELD RD/HOG'S BACK RD

Traffic Control: Traffic signal Total Collisions: 14

Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuve	r Vehicle type	First Event	No. Ped
2019-Apr-19, Fri,19:10	Rain	Rear end	Non-fatal injury	Wet	North	Going ahead	Automobile, station wagon	Other motor vehicle	0
					North	Going ahead	Automobile, station wagon	Other motor vehicle	
2019-May-25, Sat,19:13	Rain	Angle	P.D. only	Wet	South	Going ahead	Automobile, station wagon	Other motor vehicle	0
					East	Turning left	Automobile, station wagon	Other motor vehicle	
2019-May-31, Fri,22:14	Clear	Turning movement	P.D. only	Dry	East	Turning left	Automobile, station wagon	Other motor vehicle	0
					West	Going ahead	Automobile, station wagon	Other motor vehicle	
2019-Jun-23, Sun,20:45	Clear	Rear end	P.D. only	Dry	North	Going ahead	Automobile, station wagon	Other motor vehicle	0
					North	Changing lanes	Automobile, station wagon	Other motor vehicle	
2019-Jun-28, Fri,10:10	Clear	Turning movement	P.D. only	Dry	West	Turning left	Automobile, station wagon	Other motor vehicle	0
					East	Going ahead	Automobile, station wagon	Other motor vehicle	
2019-Jun-28, Fri,15:30	Clear	Rear end	P.D. only	Dry	North	Going ahead	Automobile, station wagon	Other motor vehicle	0
					North	Stopped	Automobile, station wagon	Other motor vehicle	
2019-Jul-17, Wed,19:41	Clear	Rear end	P.D. only	Dry	South	Turning right	Automobile, station wagon	Other motor vehicle	0
					South	Turning right	Automobile, station wagon	Other motor vehicle	
2019-Jul-31, Wed,12:05	Clear	Sideswipe	P.D. only	Dry	North	Changing lanes	Automobile, station wagon	Other motor vehicle	0
					North	Turning left	Automobile, station wagon	Other motor vehicle	
2019-Aug-28, Wed,22:30	Clear	Rear end	P.D. only	Dry	East	Turning right	Pick-up truck	Other motor vehicle	0
					East	Turning right	Automobile, station wagon	Other motor vehicle	

May 05, 2021 Page 2 of 4

Collision Details Report - Public Version

From: January 1, 2019 **To:** December 31, 2019

Location: RIVERSIDE DR @ BROOKFIELD RD/HOG'S BACK RD

Traffic Control: Traffic signal Total Collisions: 14

Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuve	r Vehicle type	First Event	No. Ped
2019-Oct-03, Thu,16:12	Clear	Rear end	P.D. only	Dry	North	Turning right	Automobile, station wagon	Other motor vehicle	0
					North	Turning right	Automobile, station wagon	Other motor vehicle	
2019-Oct-07, Mon,15:35	Clear	Rear end	Non-fatal injury	Dry	East	Turning right	Automobile, station wagon	Other motor vehicle	0
					East	Turning right	Automobile, station wagon	Other motor vehicle	
2019-Oct-24, Thu,17:55	Clear	Rear end	P.D. only	Dry	East	Turning right	Automobile, station wagon	Other motor vehicle	0
					East	Turning right	Automobile, station wagon	Other motor vehicle	
2019-Dec-11, Wed,17:36	Freezing Rain	Rear end	P.D. only	Ice	North	Going ahead	Automobile, station wagon	Other motor vehicle	0
					North	Slowing or stoppin	g Automobile, station wagon	Other motor vehicle	
2019-Dec-13, Fri,16:30	Clear	Rear end	P.D. only	Dry	East	Turning right	Automobile, station wagon	Other motor vehicle	0
					East	Stopped	Automobile, station wagon	Other motor vehicle	

Location: RIVERSIDE DR btwn BAYPORT PRIV & MOONEY'S BAY PL

Traffic Control: No control

Total Collisions: 1

Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuver Vehicle type	First Event	No. Ped
2019-Jul-13, Sat,14:30	Clear	Rear end	P.D. only	Dry	South	Slowing or stopping Automobile, station wa	gon Other motor vehicle	0
					South	Stopped Passenger van	Other motor vehicle	
					South	Stopped Passenger van	Other motor vehicle	

Location: RIVERSIDE DR btwn HOG'S BACK RD & RIDGEWOOD AVE

Traffic Control: No control

Total Collisions: 4

Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuv	er Vehicle type	First Event	No. Ped
2019-Feb-19, Tue,14:51	Clear	Rear end	P.D. only	Loose snow	North	Slowing or stopping	ng Automobile, station wagon	Other motor vehicle	0
					North	Stopped	Automobile, station wagon	Other motor vehicle	
					North	Stopped	Automobile, station wagon	Other motor vehicle	

May 05, 2021 Page 3 of 4

Collision Details Report - Public Version

From: January 1, 2019 **To:** December 31, 2019

Location: RIVERSIDE DR btwn HOG'S BACK RD & RIDGEWOOD AVE

Traffic Control: No control

Total Collisions: 4

Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuve	r Vehicle type	First Event	No. Ped
2019-Jul-19, Fri,06:59	Clear	Sideswipe	P.D. only	Dry	North	Changing lanes	Truck - closed	Other motor vehicle	0
					North	Turning right	Automobile, station wagon	Other motor vehicle	
2019-Jul-26, Fri,09:31	Clear	Rear end	P.D. only	Dry	North	Going ahead	Automobile, station wagon	Other motor vehicle	0
					North	Stopped	Automobile, station wagon	Other motor vehicle	
2019-Nov-16, Sat,03:46	Clear	SMV other	P.D. only	Dry	South	Going ahead	Automobile, station wagon	Ran off road	0

May 05, 2021 Page 4 of 4

Appendix E

TDM-Supportive Development Design and Infrastructure Checklist:

Residential Developments (multi-family or condominium)

Legend The Official Plan or Zoning By-law provides related guidance that must be followed The measure is generally feasible and effective, and in most cases would benefit the development and its users The measure could maximize support for users of sustainable modes, and optimize development performance

	TDM-s	supportive design & infrastructure measures: Residential developments	Check if completed & add descriptions, explanations or plan/drawing references
	1.	WALKING & CYCLING: ROUTES	
	1.1	Building location & access points	
BASIC	1.1.1	Locate building close to the street, and do not locate parking areas between the street and building entrances	
BASIC	1.1.2	Locate building entrances in order to minimize walking distances to sidewalks and transit stops/stations	
BASIC	1.1.3	Locate building doors and windows to ensure visibility of pedestrians from the building, for their security and comfort	
	1.2	Facilities for walking & cycling	_
REQUIRED	1.2.1	Provide convenient, direct access to stations or major stops along rapid transit routes within 600 metres; minimize walking distances from buildings to rapid transit; provide pedestrian-friendly, weather-protected (where possible) environment between rapid transit accesses and building entrances; ensure quality linkages from sidewalks through building entrances to integrated stops/stations (see Official Plan policy 4.3.3)	
REQUIRED	1.2.2	Provide safe, direct and attractive pedestrian access from public sidewalks to building entrances through such measures as: reducing distances between public sidewalks and major building entrances; providing walkways from public streets to major building entrances; within a site, providing walkways along the front of adjoining buildings, between adjacent buildings, and connecting areas where people may congregate, such as courtyards and transit stops; and providing weather protection through canopies, colonnades, and other design elements wherever possible (see Official Plan policy 4.3.12)	

	TDM-s	supportive design & infrastructure measures: **Residential developments**	Check if completed & add descriptions, explanations or plan/drawing references
REQUIRED	1.2.3	Provide sidewalks of smooth, well-drained walking surfaces of contrasting materials or treatments to differentiate pedestrian areas from vehicle areas, and provide marked pedestrian crosswalks at intersection sidewalks (see Official Plan policy 4.3.10)	
REQUIRED	1.2.4	Make sidewalks and open space areas easily accessible through features such as gradual grade transition, depressed curbs at street corners and convenient access to extra-wide parking spaces and ramps (see Official Plan policy 4.3.10)	◀
REQUIRED	1.2.5	Include adequately spaced inter-block/street cycling and pedestrian connections to facilitate travel by active transportation. Provide links to the existing or planned network of public sidewalks, multi-use pathways and onroad cycle routes. Where public sidewalks and multi-use pathways intersect with roads, consider providing traffic control devices to give priority to cyclists and pedestrians (see Official Plan policy 4.3.11)	
BASIC	1.2.6	Provide safe, direct and attractive walking routes from building entrances to nearby transit stops	
BASIC	1.2.7	Ensure that walking routes to transit stops are secure, visible, lighted, shaded and wind-protected wherever possible	
BASIC	1.2.8	Design roads used for access or circulation by cyclists using a target operating speed of no more than 30 km/h, or provide a separated cycling facility	
	1.3	Amenities for walking & cycling	
BASIC	1.3.1	Provide lighting, landscaping and benches along walking and cycling routes between building entrances and streets, sidewalks and trails	
BASIC	1.3.2	Provide wayfinding signage for site access (where required, e.g. when multiple buildings or entrances exist) and egress (where warranted, such as when directions to reach transit stops/stations, trails or other common destinations are not obvious)	

	TDM-s	supportive design & infrastructure measures: Residential developments	Check if completed & add descriptions, explanations or plan/drawing references
	2.	WALKING & CYCLING: END-OF-TRIP FACILI	TIES
	2.1	Bicycle parking	
REQUIRED	2.1.1	Provide bicycle parking in highly visible and lighted areas, sheltered from the weather wherever possible (see Official Plan policy 4.3.6)	⊴
REQUIRED	2.1.2	Provide the number of bicycle parking spaces specified for various land uses in different parts of Ottawa; provide convenient access to main entrances or well-used areas (see Zoning By-law Section 111)	✓
REQUIRED	2.1.3	Ensure that bicycle parking spaces and access aisles meet minimum dimensions; that no more than 50% of spaces are vertical spaces; and that parking racks are securely anchored (see Zoning By-law Section 111)	☑
BASIC	2.1.4	Provide bicycle parking spaces equivalent to the expected number of resident-owned bicycles, plus the expected peak number of visitor cyclists	
	2.2	Secure bicycle parking	
REQUIRED	2.2.1	Where more than 50 bicycle parking spaces are provided for a single residential building, locate at least 25% of spaces within a building/structure, a secure area (e.g. supervised parking lot or enclosure) or bicycle lockers (see Zoning By-law Section 111)	
BETTER	2.2.2	Provide secure bicycle parking spaces equivalent to at least the number of units at condominiums or multifamily residential developments	
	2.3	Bicycle repair station	
BETTER	2.3.1	Provide a permanent bike repair station, with commonly used tools and an air pump, adjacent to the main bicycle parking area (or secure bicycle parking area, if provided)	
	3.	TRANSIT	
	3.1	Customer amenities	
BASIC	3.1.1	Provide shelters, lighting and benches at any on-site transit stops	
BASIC	3.1.2	Where the site abuts an off-site transit stop and insufficient space exists for a transit shelter in the public right-of-way, protect land for a shelter and/or install a shelter	
BETTER	3.1.3	Provide a secure and comfortable interior waiting area by integrating any on-site transit stops into the building	

	TDM-s	supportive design & infrastructure measures: Residential developments	Check if completed & add descriptions, explanations or plan/drawing references
	4.	RIDESHARING	
	4.1	Pick-up & drop-off facilities	
BASIC	4.1.1	Provide a designated area for carpool drivers (plus taxis and ride-hailing services) to drop off or pick up passengers without using fire lanes or other no-stopping zones	
	5.	CARSHARING & BIKESHARING	
	5.1	Carshare parking spaces	
BETTER	5.1.1	Provide up to three carshare parking spaces in an R3, R4 or R5 Zone for specified residential uses <i>(see Zoning By-law Section 94)</i>	
	5.2	Bikeshare station location	
BETTER	5.2.1	Provide a designated bikeshare station area near a major building entrance, preferably lighted and sheltered with a direct walkway connection	
	6.	PARKING	
	6.1	Number of parking spaces	
REQUIRED	6.1.1	Do not provide more parking than permitted by zoning, nor less than required by zoning, unless a variance is being applied for	☑
BASIC	6.1.2	Provide parking for long-term and short-term users that is consistent with mode share targets, considering the potential for visitors to use off-site public parking	
BASIC	6.1.3	Where a site features more than one use, provide shared parking and reduce the cumulative number of parking spaces accordingly (see Zoning By-law Section 104)	
BETTER	6.1.4	Reduce the minimum number of parking spaces required by zoning by one space for each 13 square metres of gross floor area provided as shower rooms, change rooms, locker rooms and other facilities for cyclists in conjunction with bicycle parking (see Zoning By-law Section 111)	
	6.2	Separate long-term & short-term parking areas	: _
BETTER	6.2.1	Provide separate areas for short-term and long-term parking (using signage or physical barriers) to permit access controls and simplify enforcement (i.e. to discourage residents from parking in visitor spaces, and vice versa)	

TDM Measures Checklist:

Residential Developments (multi-family, condominium or subdivision)

The measure is generally feasible and effective, and in most cases would benefit the development and its users The measure could maximize support for users of sustainable modes, and optimize development performance The measure is one of the most dependably effective tools to encourage the use of sustainable modes

	TDM	measures: Residential developments	Check if proposed & add descriptions
	1.	TDM PROGRAM MANAGEMENT	
	1.1	Program coordinator	
BASIC	★ 1.1.1	Designate an internal coordinator, or contract with an external coordinator	
	1.2	Travel surveys	
BETTER	1.2.1	behaviours, attitudes, challenges and solutions,	☑
		and to track progress	
	2.	and to track progress WALKING AND CYCLING	
	2. 2.1	· •	tinations
BASIC		WALKING AND CYCLING	stinations
BASIC	2.1	WALKING AND CYCLING Information on walking/cycling routes & des Display local area maps with walking/cycling access routes and key destinations at major	

	TDM	measures: Residential developments	Check if proposed & add descriptions
	3.	TRANSIT	
	3.1	Transit information	
BASIC	3.1.1	Display relevant transit schedules and route maps at entrances (multi-family, condominium)	√
BETTER	3.1.2	Provide real-time arrival information display at entrances (multi-family, condominium)	
	3.2	Transit fare incentives	
BASIC *	3.2.1	Offer PRESTO cards preloaded with one monthly transit pass on residence purchase/move-in, to encourage residents to use transit	₫
BETTER	3.2.2	Offer at least one year of free monthly transit passes on residence purchase/move-in	
	3.3	Enhanced public transit service	<u>, </u>
BETTER ★	3.3.1	Contract with OC Transpo to provide early transit services until regular services are warranted by occupancy levels (subdivision)	☑
	3.4	Private transit service	
BETTER	3.4.1	Provide shuttle service for seniors homes or lifestyle communities (e.g. scheduled mall or supermarket runs)	
	4.	CARSHARING & BIKESHARING	
	4.1	Bikeshare stations & memberships	
BETTER	4.1.1	Contract with provider to install on-site bikeshare station (<i>multi-family</i>)	₫
BETTER	4.1.2	Provide residents with bikeshare memberships, either free or subsidized <i>(multi-family)</i>	₫
	4.2	Carshare vehicles & memberships	
BETTER	4.2.1	Contract with provider to install on-site carshare vehicles and promote their use by residents	₫
BETTER	4.2.2	Provide residents with carshare memberships, either free or subsidized	₫
	5.	PARKING	
	5.1	Priced parking	
BASIC ★	5.1.1	Unbundle parking cost from purchase price (condominium)	₫
BASIC ★	5.1.2	Unbundle parking cost from monthly rent (multi-family)	lacksquare

Version 1.0 (30 June 2017)

	TDM	measures: Residential developments	Check if proposed & add descriptions
	6.	TDM MARKETING & COMMUNICATION	S
	6.1	Multimodal travel information	•
BASIC *	6.1.1	Provide a multimodal travel option information package to new residents	▼
	6.2	Personalized trip planning	
BETTER 🖈	6.2.1	Offer personalized trip planning to new residents	$oldsymbol{arDelta}$

Appendix F SYNCHRO AND SIDRA ANALYSIS REPORTS

Analysis Period (min) 15

	•	→	•	+	4	†	\		
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Configurations	ሻ	1	ኝ	1	ሻ	ተተጉ	ሻ	ተተኈ	_
Traffic Volume (vph)	68	25	97	28	472	1279	279	654	
Future Volume (vph)	68	25	97	28	472	1279	279	654	
Lane Group Flow (vph)	76	165	108	217	524	1883	310	1154	
Turn Type	pm+pt	NA	Perm	NA	Prot	NA	Prot	NA	
Protected Phases	7	4	1 01111	8	5	2	1	6	
Permitted Phases	4	•	8		J	_	•		
Detector Phase	7	4	8	8	5	2	1	6	
Switch Phase	•	•				_	•		
Minimum Initial (s)	5.0	10.0	10.0	10.0	5.0	10.0	5.0	10.0	
Minimum Split (s)	11.2	36.7	36.7	36.7	11.1	25.6	11.1	25.6	
Total Split (s)	15.0	52.0	37.0	37.0	32.0	48.0	20.0	36.0	
Total Split (%)	12.5%	43.3%	30.8%	30.8%	26.7%	40.0%	16.7%	30.0%	
Yellow Time (s)	3.3	3.3	3.3	3.3	3.7	3.7	3.7	3.7	
All-Red Time (s)	2.9	3.4	3.4	3.4	2.4	1.9	2.4	1.9	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.2	6.7	6.7	6.7	6.1	5.6	6.1	5.6	
Lead/Lag	Lead	<u> </u>	Lag	Lag	Lead	Lag	Lead	Lag	
Lead-Lag Optimize?	Yes		Yes	Yes	Yes	Yes	Yes	Yes	
Recall Mode	None	None	None	None	None	C-Max	None	C-Max	
Act Effct Green (s)	29.3	28.8	16.8	16.8	42.4	42.4	30.4	30.4	
Actuated g/C Ratio	0.24	0.24	0.14	0.14	0.35	0.35	0.25	0.25	
v/c Ratio	0.39	0.35	0.66	0.58	0.88	1.10	0.72	0.92	
Control Delay	38.2	9.8	67.1	15.7	35.7	97.1	54.4	51.9	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	38.2	9.8	67.1	15.7	35.7	97.1	54.4	51.9	
LOS	D	Α	Е	В	D	F	D	D	
Approach Delay		18.7		32.8		83.7		52.4	
Approach LOS		В		С		F		D	
Queue Length 50th (m)	13.8	5.0	24.5	6.5	112.3	~186.5	69.1	88.6	
Queue Length 95th (m)	23.8	19.7	40.7		n#168.8 r		#139.3	#115.4	
Internal Link Dist (m)		228.4		515.1		121.4		276.2	
Turn Bay Length (m)	15.0				135.0		160.0		
Base Capacity (vph)	201	674	294	531	598	1705	429	1252	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.38	0.24	0.37	0.41	0.88	1.10	0.72	0.92	
ntersection Summary									
Cycle Length: 120									
Actuated Cycle Length: 120									
Offset: 91 (76%), Reference		e 2:NBT a	and 6:SB1	Γ, Start of	Green				
Natural Cycle: 145	,								
Control Type: Actuated-Coo	rdinated								
Maximum v/c Ratio: 1.10									
Intersection Signal Delay: 66	3.1			lı	ntersectio	n LOS: E			
Intersection Capacity Utilizat		,)				of Servic			

Parsons Synchro 10 Report

- Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles.
- # 95th percentile volume exceeds capacity, queue may be longer.
 - Queue shown is maximum after two cycles.
- Volume for 95th percentile queue is metered by upstream signal.

Synchro 10 Report Parsons

	۶	-	•	←	•	†	/	-	ţ	4		
Lane Group	EBL	EBT	WBL	WBT	WBR	NBT	NBR	SBL	SBT	SBR	Ø5	
Lane Configurations	7	£		ર્ન	7	^	7	7	^	7		
Traffic Volume (vph)	4	0	21	0	91	2081	72	32	699	7		
Future Volume (vph)	4	0	21	0	91	2081	72	32	699	7		
Lane Group Flow (vph)	4	1	0	23	101	2312	80	36	777	8		
Turn Type	Perm	NA	Perm	NA	Perm	NA	Perm	Prot	NA	Perm		
Protected Phases		4		8		2		1	6		5	
Permitted Phases	4		8		8		2			6		
Detector Phase	4	4	8	8	8	2	2	1	6	6		
Switch Phase												
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	5.0	10.0	10.0	5.0	
Minimum Split (s)	30.8	30.8	30.8	30.8	30.8	26.6	26.6	10.8	26.6	26.6	10.8	
Total Split (s)	31.0	31.0	31.0	31.0	31.0	75.0	75.0	14.0	75.0	75.0	14.0	
Total Split (%)	25.8%	25.8%	25.8%	25.8%	25.8%	62.5%	62.5%	11.7%	62.5%	62.5%	12%	
Yellow Time (s)	3.3	3.3	3.3	3.3	3.3	3.7	3.7	3.7	3.7	3.7	3.7	
All-Red Time (s)	3.5	3.5	3.5	3.5	3.5	1.9	1.9	2.1	1.9	1.9	2.1	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0		
Total Lost Time (s)	6.8	6.8		6.8	6.8	5.6	5.6	5.8	5.6	5.6		
Lead/Lag						Lag	Lag	Lead	Lag	Lag	Lead	
Lead-Lag Optimize?						Yes	Yes	Yes	Yes	Yes	Yes	
Recall Mode	None	None	None	None	None	C-Max	C-Max	None	C-Max	C-Max	None	
Act Effct Green (s)	10.3	10.3		10.3	10.3	88.3	88.3	8.0	97.3	97.3		
Actuated g/C Ratio	0.09	0.09		0.09	0.09	0.74	0.74	0.07	0.81	0.81		
v/c Ratio	0.04	0.00		0.20	0.45	0.93	0.07	0.32	0.28	0.01		
Control Delay	50.8	0.0		55.2	16.8	23.2	1.4	50.9	1.6	0.0		
Queue Delay	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0		
Total Delay	50.8	0.0		55.2	16.8	23.2	1.4	50.9	1.6	0.0		
LOS	D	Α		E	В	С	Α	D	Α	Α		
Approach Delay		40.6		23.9		22.5			3.8			
Approach LOS		D		С		С			Α			
Queue Length 50th (m)	0.9	0.0		5.2	0.0	243.6	0.0	8.7	14.8	0.0		
Queue Length 95th (m)	4.4	0.0		13.4	16.4	#347.3	4.4	m11.6	m13.7	m0.0		
Internal Link Dist (m)		58.8		118.5		110.2			196.4			
Turn Bay Length (m)		_		_	35.0		50.0	90.0		55.0		
Base Capacity (vph)	267	531		272	386	2494	1139	125	2749	1247		
Starvation Cap Reductn	0	0		0	0	0	0	0	0	0		
Spillback Cap Reductn	0	0		0	0	0	0	0	0	0		
Storage Cap Reductn	0	0		0	0	0	0	0	0	0		
Reduced v/c Ratio	0.01	0.00		0.08	0.26	0.93	0.07	0.29	0.28	0.01		

Intersection Summary

Cycle Length: 120

Actuated Cycle Length: 120

Offset: 100 (83%), Referenced to phase 2:NBT and 6:SBT, Start of Green

Natural Cycle: 150

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.93 Intersection Signal Delay: 18.0 Intersection Capacity Utilization 93.4%

Intersection LOS: B
ICU Level of Service F

Analysis Period (min) 15

Parsons Synchro 10 Report

- # 95th percentile volume exceeds capacity, queue may be longer.

 Queue shown is maximum after two cycles.
- m Volume for 95th percentile queue is metered by upstream signal.

Synchro 10 Report Parsons

	٠	†	ţ	
Lane Group	EBL	NBT	SBT	
Lane Configurations	W	ર્ન	ħ	
Traffic Volume (vph)	45	86	59	
Future Volume (vph)	45	86	59	
Lane Group Flow (vph)	82	165	102	
Sign Control	Stop	Stop	Stop	
Intersection Summary				
Control Type: Unsignalized	d			
Intersection Capacity Utiliz				ICU Level of Service A

Analysis Period (min) 15

Parsons Synchro 10 Report

	•	•	4	†	ļ	4
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	¥			ર્ન	ĵ»	
Sign Control	Stop			Stop	Stop	
Traffic Volume (vph)	45	29	62	86	59	32
Future Volume (vph)	45	29	62	86	59	32
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	50	32	69	96	66	36
Direction, Lane #	EB 1	NB 1	SB 1			
Volume Total (vph)	82	165	102			
Volume Left (vph)	50	69	0			
Volume Right (vph)	32	0	36			
Hadj (s)	-0.08	0.12	-0.18			
Departure Headway (s)	4.4	4.3	4.1			
Degree Utilization, x	0.10	0.20	0.12			
Capacity (veh/h)	760	810	855			
Control Delay (s)	7.9	8.4	7.6			
Approach Delay (s)	7.9	8.4	7.6			
Approach LOS	Α	Α	Α			
Intersection Summary						
Delay			8.0			
Level of Service			Α			
Intersection Capacity Utiliz	zation		26.2%	IC	U Level o	of Service
Analysis Period (min)			15			

Parsons Synchro 10 Report

	→	←	†	ļ
Lane Group	EBT	WBT	NBT	SBT
Lane Configurations	4	4	4	4
Traffic Volume (vph)	3	3	45	17
Future Volume (vph)	3	3	45	17
Lane Group Flow (vph)	202	15	54	97
Sign Control	Stop	Stop	Stop	Stop
Intersection Summary				
Control Type: Unsignalized				

Intersection Capacity Utilization 29.9% ICU Level of Service A

Analysis Period (min) 15

Synchro 10 Report Parsons

	۶	→	•	•	←	•	4	†	/	>	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Sign Control		Stop			Stop			Stop			Stop	
Traffic Volume (vph)	178	3	1	0	3	11	4	45	0	2	17	68
Future Volume (vph)	178	3	1	0	3	11	4	45	0	2	17	68
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	198	3	1	0	3	12	4	50	0	2	19	76
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total (vph)	202	15	54	97								
Volume Left (vph)	198	0	4	2								
Volume Right (vph)	1	12	0	76								
Hadj (s)	0.23	-0.45	0.05	-0.43								
Departure Headway (s)	4.5	4.0	4.6	4.0								
Degree Utilization, x	0.25	0.02	0.07	0.11								
Capacity (veh/h)	780	837	742	832								
Control Delay (s)	9.0	7.1	7.9	7.5								
Approach Delay (s)	9.0	7.1	7.9	7.5								
Approach LOS	Α	Α	Α	Α								
Intersection Summary												
Delay			8.4									
Level of Service			Α									
Intersection Capacity Utilizati	on		29.9%	IC	U Level	of Service			Α			
Analysis Period (min)			15									

	۶	→	•	←	•	†	/	+	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Configurations	ሻ	4î	ሻ	f)	ሻ	ተተኈ	ሻ	ተተኈ	
Traffic Volume (vph)	159	34	309	14	129	670	202	1270	
Future Volume (vph)	159	34	309	14	129	670	202	1270	
Lane Group Flow (vph)	177	445	343	350	143	875	224	1554	
Turn Type	pm+pt	NA	pm+pt	NA	Prot	NA	Prot	NA	
Protected Phases	7	4	3	8	5	2	1	6	
Permitted Phases	4		8						
Detector Phase	7	4	3	8	5	2	1	6	
Switch Phase									
Minimum Initial (s)	5.0	10.0	5.0	10.0	5.0	10.0	5.0	10.0	
Minimum Split (s)	11.2	36.7	9.5	36.7	11.1	25.6	11.1	25.6	
Total Split (s)	17.0	37.0	17.0	37.0	20.0	46.0	20.0	46.0	
Total Split (%)	14.2%	30.8%	14.2%	30.8%	16.7%	38.3%	16.7%	38.3%	
Yellow Time (s)	3.3	3.3	3.5	3.3	3.7	3.7	3.7	3.7	
All-Red Time (s)	2.9	3.4	1.0	3.4	2.4	1.9	2.4	1.9	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.2	6.7	4.5	6.7	6.1	5.6	6.1	5.6	
Lead/Lag	Lead	Lag	Lead	Lag	Lead	Lag	Lead	Lag	
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Recall Mode	None	None	None	None	None	C-Max	None	C-Max	
Act Effct Green (s)	34.2	23.0	37.8	23.1	13.5	41.3	20.3	48.1	
Actuated g/C Ratio	0.28	0.19	0.32	0.19	0.11	0.34	0.17	0.40	
v/c Ratio	0.84	0.90	1.42	0.65	0.75	0.53	0.78	0.80	
Control Delay	61.0	43.0	238.8	13.3	66.6	43.4	68.7	37.0	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	61.0	43.0	238.8	13.3	66.6	43.4	68.7	37.0	
LOS	Е	D	F	В	Е	D	Е	D	
Approach Delay		48.1		124.9		46.7		41.0	
Approach LOS		D		F		D		D	
Queue Length 50th (m)	30.0	49.1	~91.4	9.6	32.5	78.4	51.4	122.8	
Queue Length 95th (m)	#53.7	#87.7	#141.6	36.8	#63.0	91.8	#110.2	#161.7	
Internal Link Dist (m)	, = -	228.4		515.1	10=-	121.4		276.2	
Turn Bay Length (m)	15.0				135.0	10-5	160.0	100	
Base Capacity (vph)	213	571	242	611	202	1658	287	1934	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.83	0.78	1.42	0.57	0.71	0.53	0.78	0.80	
Intersection Summary									
Cycle Length: 120									
Actuated Cycle Length: 120					_				
Offset: 84 (70%), Reference	d to phase	e 2:NBT a	and 6:SB1	, Start of	Green				
Natural Cycle: 125									

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 1.42 Intersection Signal Delay: 57.6 Intersection Capacity Utilization 99.4%

Intersection LOS: E ICU Level of Service F

Analysis Period (min) 15

- Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles.
- # 95th percentile volume exceeds capacity, queue may be longer.

 Queue shown is maximum after two cycles.

1: Riverside Dr & Hog's Back Rd/Brookfield Rd Splits and Phases:

	۶	→	•	←	•	4	†	/	-	ļ	4	
Lane Group	EBL	EBT	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	, T	ĵ»		ર્ન	7	¥	^	7	J.	^	7	
Traffic Volume (vph)	7	0	44	1	43	3	896	29	45	1694	8	
Future Volume (vph)	7	0	44	1	43	3	896	29	45	1694	8	
Lane Group Flow (vph)	8	6	0	50	48	3	996	32	50	1882	9	
Turn Type	Perm	NA	Perm	NA	Perm	Prot	NA	Perm	Prot	NA	Perm	
Protected Phases		4		8		5	2		1	6		
Permitted Phases	4		8		8			2			6	
Detector Phase	4	4	8	8	8	5	2	2	1	6	6	
Switch Phase												
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	5.0	10.0	10.0	5.0	10.0	10.0	
Minimum Split (s)	30.8	30.8	30.8	30.8	30.8	10.8	26.6	26.6	10.8	26.6	26.6	
Total Split (s)	31.0	31.0	31.0	31.0	31.0	14.0	75.0	75.0	14.0	75.0	75.0	
Total Split (%)	25.8%	25.8%	25.8%	25.8%	25.8%	11.7%	62.5%	62.5%	11.7%	62.5%	62.5%	
Yellow Time (s)	3.3	3.3	3.3	3.3	3.3	3.7	3.7	3.7	3.7	3.7	3.7	
All-Red Time (s)	3.5	3.5	3.5	3.5	3.5	2.1	1.9	1.9	2.1	1.9	1.9	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.8	6.8		6.8	6.8	5.8	5.6	5.6	5.8	5.6	5.6	
Lead/Lag						Lead	Lag	Lag	Lead	Lag	Lag	
Lead-Lag Optimize?						Yes	Yes	Yes	Yes	Yes	Yes	
Recall Mode	None	None	None	None	None	None	C-Max	C-Max	None	C-Max	C-Max	
Act Effct Green (s)	11.2	11.2		11.2	11.2	5.8	88.4	88.4	8.9	98.4	98.4	
Actuated g/C Ratio	0.09	0.09		0.09	0.09	0.05	0.74	0.74	0.07	0.82	0.82	
v/c Ratio	0.07	0.02		0.41	0.23	0.04	0.40	0.03	0.40	0.68	0.01	
Control Delay	49.6	0.2		61.4	6.6	55.0	8.8	0.0	60.2	6.0	0.0	
Queue Delay	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	49.6	0.2		61.4	6.6	55.0	8.8	0.0	60.2	6.0	0.0	
LOS	D	Α		Е	Α	D	Α	Α	Е	A	Α	
Approach Delay		28.4		34.6			8.6			7.4		
Approach LOS		С		С			A			Α		
Queue Length 50th (m)	1.8	0.0		11.4	0.0	0.7	48.7	0.0	12.2	37.1	0.0	
Queue Length 95th (m)	6.5	0.0		23.5	4.9	3.9	75.4	0.0	m14.1	m49.5	m0.0	
Internal Link Dist (m)		58.8		118.5	0= 0		110.2		00.5	196.4		
Turn Bay Length (m)	000	40=		00.1	35.0	50.0	0.40=	50.0	90.0	0700	55.0	
Base Capacity (vph)	260	407		261	366	115	2497	1140	135	2780	1259	
Starvation Cap Reductn	0	0		0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0		0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0		0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.03	0.01		0.19	0.13	0.03	0.40	0.03	0.37	0.68	0.01	

Intersection Summary

Cycle Length: 120

Actuated Cycle Length: 120

Offset: 112 (93%), Referenced to phase 2:NBT and 6:SBT, Start of Green

Natural Cycle: 100

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.68 Intersection Signal Delay: 8.8 Intersection Capacity Utilization 69.1%

Intersection LOS: A ICU Level of Service C

Analysis Period (min) 15

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 2: Riverside Dr & Ridgewood Ave

	٠	†	↓	
Lane Group	EBL	NBT	SBT	
Lane Configurations	¥	ર્ન	1₃	
Traffic Volume (vph)	25	46	239	
Future Volume (vph)	25	46	239	
Lane Group Flow (vph)	78	94	303	
Sign Control	Stop	Stop	Stop	
Intersection Summary				
Control Type: Unsignalized	1			
Intersection Capacity Utiliza				ICU Level of Service A

Analysis Period (min) 15

	•	•	4	†	ļ	4
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	¥			ર્ન	ĵ»	
Sign Control	Stop			Stop	Stop	
Traffic Volume (vph)	25	45	39	46	239	33
Future Volume (vph)	25	45	39	46	239	33
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	28	50	43	51	266	37
Direction, Lane #	EB 1	NB 1	SB 1			
Volume Total (vph)	78	94	303			
Volume Left (vph)	28	43	0			
Volume Right (vph)	50	0	37			
Hadj (s)	-0.28	0.13	-0.04			
Departure Headway (s)	4.5	4.5	4.2			
Degree Utilization, x	0.10	0.12	0.35			
Capacity (veh/h)	733	766	841			
Control Delay (s)	8.0	8.1	9.4			
Approach Delay (s)	8.0	8.1	9.4			
Approach LOS	Α	Α	Α			
Intersection Summary						
Delay			8.9			
Level of Service			Α			
Intersection Capacity Utiliz	zation		34.6%	IC	U Level o	of Service
Analysis Period (min)			15			

	-	←	†	↓
Lane Group	EBT	WBT	NBT	SBT
Lane Configurations	4	4	4	4
Traffic Volume (vph)	2	4	23	80
Future Volume (vph)	2	4	23	80
Lane Group Flow (vph)	98	8	27	390
Sign Control	Stop	Stop	Stop	Stop
Intersection Summary				

Control Type: Unsignalized Intersection Capacity Utilization 43.4% Analysis Period (min) 15

ICU Level of Service A

	•	→	•	•	←	•	4	†	/	\	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Sign Control		Stop			Stop			Stop			Stop	
Traffic Volume (vph)	79	2	7	0	4	4	1	23	0	8	80	263
Future Volume (vph)	79	2	7	0	4	4	1	23	0	8	80	263
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	88	2	8	0	4	4	1	26	0	9	89	292
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total (vph)	98	8	27	390								
Volume Left (vph)	88	0	1	9								
Volume Right (vph)	8	4	0	292								
Hadj (s)	0.16	-0.27	0.04	-0.41								
Departure Headway (s)	4.9	4.6	4.6	3.8								
Degree Utilization, x	0.13	0.01	0.03	0.41								
Capacity (veh/h)	672	697	744	929								
Control Delay (s)	8.7	7.7	7.7	9.4								
Approach Delay (s)	8.7	7.7	7.7	9.4								
Approach LOS	Α	Α	Α	Α								
Intersection Summary												
Delay			9.2									
Level of Service			Α									
Intersection Capacity Utilizat	ion		43.4%	IC	U Level o	of Service			Α			
Analysis Period (min)			15									

1: Riverside Dr & Hog's Back Rd/Brookfield Rd

	٠	→	•	←	4	†	\	ļ	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Configurations	ሻ	₽	ሻ	f)	ሻ	↑ ↑	ሻ	ተተኈ	
Traffic Volume (vph)	70	34	101	45	486	1389	295	715	
Future Volume (vph)	70	34	101	45	486	1389	295	715	
Lane Group Flow (vph)	70	161	101	233	486	1818	295	1111	
Turn Type	pm+pt	NA	Perm	NA	Prot	NA	Prot	NA	
Protected Phases	7	4		8	5	2	1	6	
Permitted Phases	4		8						
Detector Phase	7	4	8	8	5	2	1	6	
Switch Phase									
Minimum Initial (s)	5.0	10.0	10.0	10.0	5.0	10.0	5.0	10.0	
Minimum Split (s)	11.2	36.7	36.7	36.7	11.1	25.6	11.1	25.6	
Total Split (s)	15.0	52.0	37.0	37.0	32.0	48.0	20.0	36.0	
Total Split (%)	12.5%	43.3%	30.8%	30.8%	26.7%	40.0%	16.7%	30.0%	
Yellow Time (s)	3.3	3.3	3.3	3.3	3.7	3.7	3.7	3.7	
All-Red Time (s)	2.9	3.4	3.4	3.4	2.4	1.9	2.4	1.9	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.2	6.7	6.7	6.7	6.1	5.6	6.1	5.6	
Lead/Lag	Lead		Lag	Lag	Lead	Lag	Lead	Lag	
Lead-Lag Optimize?	Yes		Yes	Yes	Yes	Yes	Yes	Yes	
Recall Mode	None	None	None	None	None	C-Max	None	C-Max	
Act Effct Green (s)	28.6	28.1	16.2	16.2	43.1	42.4	31.1	30.4	
Actuated g/C Ratio	0.24	0.23	0.14	0.14	0.36	0.35	0.26	0.25	
v/c Ratio	0.40	0.35	0.64	0.65	0.80	1.07	0.67	0.89	
Control Delay	39.2	10.9	66.7	23.4	31.8	83.5	51.3	48.6	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	39.2	10.9	66.7	23.4	31.8	83.5	51.3	48.6	
LOS	D	В	Е	С	С	F	D	D	
Approach Delay		19.5		36.5		72.6		49.2	
Approach LOS		В		D		E		D	
Queue Length 50th (m)	12.8	6.1	22.9	14.1	104.9	~174.4	64.5	84.4	
Queue Length 95th (m)	22.4	21.0	38.7		n#157.9	#204.7	#127.5	#105.1	
Internal Link Dist (m)		228.4		515.1		121.4		276.2	
Turn Bay Length (m)	15.0				135.0		160.0		
Base Capacity (vph)	184	673	295	521	608	1707	439	1251	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.38	0.24	0.34	0.45	0.80	1.07	0.67	0.89	
Intersection Summary									
Cycle Length, 100									

Cycle Length: 120

Actuated Cycle Length: 120

Offset: 91 (76%), Referenced to phase 2:NBT and 6:SBT, Start of Green

Natural Cycle: 135

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 1.07 Intersection Signal Delay: 59.2 Intersection Capacity Utilization 95.1%

Intersection LOS: E
ICU Level of Service F

Analysis Period (min) 15

- ~ Volume exceeds capacity, queue is theoretically infinite.
 - Queue shown is maximum after two cycles.
- # 95th percentile volume exceeds capacity, queue may be longer.
 - Queue shown is maximum after two cycles.
- m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 1: Riverside Dr & Hog's Back Rd/Brookfield Rd

Came Configurations		•	→	•	←	•	†	<i>></i>	>	ļ	4		
Treaffic Volume (vph)	Lane Group	EBL	EBT	WBL	WBT	WBR	NBT	NBR	SBL	SBT	SBR	Ø5	
Treaffic Volume (vph)	Lane Configurations	*	f)		र्स	7	^	7	ሻ	^	7		
Lane Group Flow (vph)	Traffic Volume (vph)	4		24	0	103	2204	76	33	761	7		
Trum Type	Future Volume (vph)		0	24	0	103				761			
Protected Phases	Lane Group Flow (vph)	4	1	0	24	103	2204	76	33	761	7		
Defector Phase 4	Turn Type	Perm	NA	Perm	NA	Perm	NA	Perm	Prot	NA	Perm		
Detector Phase 4	Protected Phases		4		8		2		1	6		5	
Switch Phase Winimum Initial (s)	Permitted Phases	4		8		8		2			6		
Minimum Initial (s) 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 5.0 10.0 10.0 5.0 Minimum Split (s) 30.8 30.8 30.8 30.8 30.8 30.8 26.6 26.6 10.8 26.6 26.6 10.8 Total Split (s) 25.8% 25.8% 25.8% 25.8% 25.8% 62.5% 62.5% 11.7% 62.5% 62.5% 12.8% 73.7 3.7 <td>Detector Phase</td> <td>4</td> <td>4</td> <td>8</td> <td>8</td> <td>8</td> <td>2</td> <td>2</td> <td>1</td> <td>6</td> <td>6</td> <td></td> <td></td>	Detector Phase	4	4	8	8	8	2	2	1	6	6		
Minimum Split (s) 30.8 30.8 30.8 30.8 30.8 30.8 26.6 26.6 10.8 26.6 26.6 10.8 Total Split (s) 31.0 31.0 31.0 31.0 31.0 31.0 75.0 75.0 14.0 75.0 75.0 14.0 Total Split (%) 25.8% 25.8% 25.8% 25.8% 62.5% 62.5% 62.5% 62.5% 62.5% 62.5% 62.5% 62.5% 12% Yellow Time (s) 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 5.6 5.6 5.8 5.6 5.6 5.8 5.6 5.6 5.8 5.6 <td< td=""><td>Switch Phase</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	Switch Phase												
Total Split (s) 31.0 31.0 31.0 31.0 31.0 31.0 75.0 75.0 14.0 75.0 75.0 14.0	Minimum Initial (s)												
Total Split (%) 25.8% 25.8% 25.8% 25.8% 25.8% 25.8% 62.5% 62	Minimum Split (s)												
All-Red Time (s) 3.3 3.3 3.3 3.3 3.3 3.7	Total Split (s)												
All-Red Time (s) 3.5 3.5 3.5 3.5 3.5 3.5 1.9 1.9 1.9 2.1 1.9 1.9 2.1 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Total Split (%)												
Cost Time Adjust (s) 0.0	Yellow Time (s)	3.3	3.3		3.3	3.3	3.7	3.7	3.7	3.7	3.7	3.7	
Total Lost Time (s) 6.8 6.8 6.8 6.8 5.6 5.6 5.6 5.8 5.6 5.6 Lead/Lag	All-Red Time (s)	3.5	3.5	3.5	3.5	3.5	1.9	1.9	2.1	1.9	1.9	2.1	
Lead/Lag Lag La	Lost Time Adjust (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0		
Capacit Capa	Total Lost Time (s)	6.8	6.8		6.8	6.8	5.6	5.6	5.8	5.6	5.6		
Recall Mode	Lead/Lag						Lag	Lag	Lead	Lag	Lag	Lead	
Act Effet Green (s) 10.3 10.3 10.3 10.3 88.4 88.4 7.8 97.3 97.3 Actuated g/C Ratio 0.09 0.09 0.09 0.09 0.74 0.74 0.06 0.81 0.81 0.81 0.75 CRAtio 0.04 0.00 0.21 0.46 0.88 0.07 0.30 0.28 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.0	Lead-Lag Optimize?							Yes	Yes	Yes	Yes	Yes	
Actuated g/C Ratio 0.09 0.09 0.09 0.09 0.74 0.74 0.06 0.81 0.81 v/c Ratio 0.04 0.00 0.21 0.46 0.88 0.07 0.30 0.28 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.0	Recall Mode			None		None				C-Max		None	
A/C Ratio 0.04 0.00 0.21 0.46 0.88 0.07 0.30 0.28 0.01 Control Delay 50.8 0.0 55.5 16.7 19.4 1.2 50.8 1.6 0.0 Queue Delay 0.0	Act Effct Green (s)	10.3	10.3		10.3	10.3	88.4	88.4	7.8	97.3	97.3		
Control Delay 50.8 0.0 55.5 16.7 19.4 1.2 50.8 1.6 0.0 Queue Delay 0.0 <td>Actuated g/C Ratio</td> <td></td> <td></td> <td></td> <td></td> <td>0.09</td> <td></td> <td>0.74</td> <td></td> <td>0.81</td> <td></td> <td></td> <td></td>	Actuated g/C Ratio					0.09		0.74		0.81			
Queue Delay 0.0 <th< td=""><td>v/c Ratio</td><td></td><td>0.00</td><td></td><td>0.21</td><td>0.46</td><td></td><td></td><td></td><td>0.28</td><td>0.01</td><td></td><td></td></th<>	v/c Ratio		0.00		0.21	0.46				0.28	0.01		
Total Delay 50.8 0.0 55.5 16.7 19.4 1.2 50.8 1.6 0.0 LOS D A E B B A D A A Approach Delay 40.6 24.1 18.8 3.6 3.6 3.6 A </td <td>Control Delay</td> <td></td> <td>0.0</td> <td></td> <td></td> <td></td> <td>19.4</td> <td></td> <td>50.8</td> <td>1.6</td> <td></td> <td></td> <td></td>	Control Delay		0.0				19.4		50.8	1.6			
D A E B B A D A A A	Queue Delay	0.0	0.0		0.0	0.0	0.0		0.0	0.0	0.0		
Approach Delay 40.6 24.1 18.8 3.6 Approach LOS D C B A Queue Length 50th (m) 0.9 0.0 5.4 0.0 209.7 0.0 8.2 14.0 0.0 Queue Length 95th (m) 4.4 0.0 13.8 16.4 #318.6 4.0 m10.9 m14.1 m0.0 Internal Link Dist (m) 58.8 118.5 110.2 196.4 Turn Bay Length (m) 35.0 50.0 90.0 55.0 Base Capacity (vph) 267 536 272 388 2497 1140 124 2749 1247 Starvation Cap Reductn 0 0 0 0 0 0 0 0 0 Spillback Cap Reductn 0 0 0 0 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 0 0 0 0	Total Delay	50.8	0.0		55.5	16.7	19.4	1.2	50.8	1.6			
Approach LOS D C B A Queue Length 50th (m) 0.9 0.0 5.4 0.0 209.7 0.0 8.2 14.0 0.0 Queue Length 95th (m) 4.4 0.0 13.8 16.4 #318.6 4.0 m10.9 m14.1 m0.0 Internal Link Dist (m) 58.8 118.5 110.2 196.4 Turn Bay Length (m) 35.0 50.0 90.0 55.0 Base Capacity (vph) 267 536 272 388 2497 1140 124 2749 1247 Starvation Cap Reductn 0 0 0 0 0 0 0 0 0 Spillback Cap Reductn 0 0 0 0 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 0 0 0 0	LOS	D				В		Α	D		Α		
Queue Length 50th (m) 0.9 0.0 5.4 0.0 209.7 0.0 8.2 14.0 0.0 Queue Length 95th (m) 4.4 0.0 13.8 16.4 #318.6 4.0 m10.9 m14.1 m0.0 Internal Link Dist (m) 58.8 118.5 110.2 196.4 Turn Bay Length (m) 35.0 50.0 90.0 55.0 Base Capacity (vph) 267 536 272 388 2497 1140 124 2749 1247 Starvation Cap Reductn 0 0 0 0 0 0 0 0 Spillback Cap Reductn 0 0 0 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 0 0 0	Approach Delay		40.6		24.1		18.8			3.6			
Queue Length 95th (m) 4.4 0.0 13.8 16.4 #318.6 4.0 m10.9 m14.1 m0.0 Internal Link Dist (m) 58.8 118.5 110.2 196.4 Furn Bay Length (m) 35.0 50.0 90.0 55.0 Base Capacity (vph) 267 536 272 388 2497 1140 124 2749 1247 Starvation Cap Reductn 0 0 0 0 0 0 0 0 Spillback Cap Reductn 0 0 0 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 0 0 0	Approach LOS												
Internal Link Dist (m) 58.8 118.5 110.2 196.4 Turn Bay Length (m) 35.0 50.0 90.0 55.0 Base Capacity (vph) 267 536 272 388 2497 1140 124 2749 1247 Starvation Cap Reductn 0 0 0 0 0 0 0 0 Spillback Cap Reductn 0 0 0 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 0 0 0													
Turn Bay Length (m) 35.0 50.0 90.0 55.0 Base Capacity (vph) 267 536 272 388 2497 1140 124 2749 1247 Starvation Cap Reductn 0 0 0 0 0 0 0 0 0 Spillback Cap Reductn 0 0 0 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 0 0 0	Queue Length 95th (m)	4.4				16.4		4.0	m10.9		m0.0		
Base Capacity (vph) 267 536 272 388 2497 1140 124 2749 1247 Starvation Cap Reductn 0 0 0 0 0 0 0 0 0 0 Spillback Cap Reductn 0	Internal Link Dist (m)		58.8		118.5		110.2			196.4			
Starvation Cap Reductn 0 0 0 0 0 0 0 0 Spillback Cap Reductn 0	Turn Bay Length (m)												
Spillback Cap Reductn 0	Base Capacity (vph)	267	536			388	2497	1140	124	2749	1247		
Storage Cap Reductn 0 0 0 0 0 0 0	Starvation Cap Reductn												
	Spillback Cap Reductn	0	0		0	0	0	0	0	0	0		
Reduced v/c Ratio 0.01 0.00 0.09 0.27 0.88 0.07 0.27 0.28 0.01	Storage Cap Reductn		0		0					0	0		
	Reduced v/c Ratio	0.01	0.00		0.09	0.27	0.88	0.07	0.27	0.28	0.01		

Intersection Summary

Cycle Length: 120

Actuated Cycle Length: 120

Offset: 100 (83%), Referenced to phase 2:NBT and 6:SBT, Start of Green

Natural Cycle: 130

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.88 Intersection Signal Delay: 15.2 Intersection Capacity Utilization 97.0%

Intersection LOS: B
ICU Level of Service F

Analysis Period (min) 15

- # 95th percentile volume exceeds capacity, queue may be longer.

 Queue shown is maximum after two cycles.
- m Volume for 95th percentile queue is metered by upstream signal.

	٠	†	ļ	
Lane Group	EBL	NBT	SBT	
Lane Configurations	¥	ર્ન	ĵ»	
Traffic Volume (vph)	46	88	61	
Future Volume (vph)	46	88	61	
Lane Group Flow (vph)	79	163	95	
Sign Control	Stop	Stop	Stop	
Intersection Summary				
Control Type: Unsignalized	1			
Intersection Capacity Utiliz	ation 27.4%			ICU Level of Service A

Analysis Period (min) 15

	•	•	•	†	ļ	4
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	¥			ર્ન	ĥ	
Sign Control	Stop			Stop	Stop	
Traffic Volume (vph)	46	33	75	88	61	34
Future Volume (vph)	46	33	75	88	61	34
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	46	33	75	88	61	34
Direction, Lane #	EB 1	NB 1	SB 1			
Volume Total (vph)	79	163	95			
Volume Left (vph)	46	75	0			
Volume Right (vph)	33	0	34			
Hadj (s)	-0.10	0.13	-0.18			
Departure Headway (s)	4.4	4.3	4.1			
Degree Utilization, x	0.10	0.20	0.11			
Capacity (veh/h)	778	812	858			
Control Delay (s)	7.8	8.3	7.6			
Approach Delay (s)	7.8	8.3	7.6			
Approach LOS	Α	Α	Α			
Intersection Summary						
Delay			8.0			
Level of Service			Α			
Intersection Capacity Utiliz	zation		27.4%	IC	U Level o	of Service
Analysis Period (min)			15			

	→	←	†	ţ	
Lane Group	EBT	WBT	NBT	SBT	
Lane Configurations	4	4	4	4	
Traffic Volume (vph)	3	3	45	17	
Future Volume (vph)	3	3	45	17	
Lane Group Flow (vph)	207	14	49	98	
Sign Control	Stop	Stop	Stop	Stop	
Intersection Summary					
Control Type: Unsignalized		·			
Intersection Canacity Litiliza	ation 32 1%			IC	III evel of Service A

Intersection Capacity Utilization 32.1%

Analysis Period (min) 15

Total Future Background 2024 AM 05/06/2021

	۶	→	•	•	•	•	4	†	<i>></i>	\	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	_
Sign Control		Stop			Stop			Stop			Stop	
Traffic Volume (vph)	203	3	1	0	3	11	4	45	0	2	17	79
Future Volume (vph)	203	3	1	0	3	11	4	45	0	2	17	79
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	203	3	1	0	3	11	4	45	0	2	17	79
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total (vph)	207	14	49	98								
Volume Left (vph)	203	0	4	2								
Volume Right (vph)	1	11	0	79								
Hadj (s)	0.23	-0.44	0.05	-0.45								
Departure Headway (s)	4.5	4.0	4.6	4.0								
Degree Utilization, x	0.26	0.02	0.06	0.11								
Capacity (veh/h)	782	837	740	834								
Control Delay (s)	9.0	7.1	7.9	7.5								
Approach Delay (s)	9.0	7.1	7.9	7.5								
Approach LOS	Α	Α	Α	Α								
Intersection Summary												
Delay			8.4									
Level of Service			Α									
Intersection Capacity Utilizat	tion		32.1%	IC	U Level	of Service			Α			
Analysis Period (min)			15									

	•	→	•	•	4	†	>	↓	
_ane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
ane Configurations	ሻ	f	ች	f)	ች	ተ ተ ኈ	*	ተተኈ	
Fraffic Volume (vph)	164	51	321	28	133	754	224	1380	
-uture Volume (vph)	164	51	321	28	133	754	224	1380	
ane Group Flow (vph)	164	428	321	352	133	878	224	1513	
Turn Type	pm+pt	NA	pm+pt	NA	Prot	NA	Prot	NA	
Protected Phases	7	4	3	8	5	2	1	6	
Permitted Phases	4	•	8			_			
Detector Phase	7	4	3	8	5	2	1	6	
Switch Phase	•	•				_			
Minimum Initial (s)	5.0	10.0	5.0	10.0	5.0	10.0	5.0	10.0	
Minimum Split (s)	11.2	36.7	9.5	36.7	11.1	25.6	11.1	25.6	
Total Split (s)	17.0	37.0	17.0	37.0	20.0	46.0	20.0	46.0	
Total Split (%)	14.2%	30.8%	14.2%	30.8%	16.7%	38.3%	16.7%	38.3%	
Yellow Time (s)	3.3	3.3	3.5	3.3	3.7	3.7	3.7	3.7	
All-Red Time (s)	2.9	3.4	1.0	3.4	2.4	1.9	2.4	1.9	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Fotal Lost Time (s)	6.2	6.7	4.5	6.7	6.1	5.6	6.1	5.6	
_ead/Lag	Lead	Lag	Lead	Lag	Lead	Lag	Lead	Lag	
_ead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Recall Mode	None	None	None	None	None	C-Max	None	C-Max	
Act Effct Green (s)	32.5	21.4	36.4	21.7	13.4	41.8	21.4	49.8	
Actuated g/C Ratio	0.27	0.18	0.30	0.18	0.11	0.35	0.18	0.42	
//c Ratio	0.27	0.10	1.33	0.10	0.70	0.53	0.74	0.76	
Control Delay	54.8	40.9	203.5	13.8	61.8	43.1	64.0	34.4	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	54.8	40.9	203.5	13.8	61.8	43.1	64.0	34.4	
-OS	54.6 D	40.9 D	203.5 F	13.0 B	01.0 E	43.1 D	04.0 E	34.4 C	
	U	44.8	Г	104.2		45.6		38.3	
Approach Delay		44.0 D		104.Z F		45.6 D		30.3 D	
Approach LOS	20.6	44.2	~80.6	9.2	30.2	78.9	50.1	112.3	
Queue Length 50th (m)	28.6		*126.5						
Queue Length 95th (m)	#43.2	79.3	#120.5	35.9	#56.4	92.4	#110.2	#154.1	
nternal Link Dist (m)	4E 0	228.4		515.1	125.0	121.4	160.0	276.2	
Turn Bay Length (m)	15.0	FZF	044	647	135.0	1670	160.0	2004	
Base Capacity (vph)	213	575	241	617	205	1678	302	2001	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	
Storage Cap Reductn Reduced v/c Ratio	0.77	0.74	1.33	0 0.57	0.65	0.52	0.74	0.76	
ntersection Summary									
Cycle Length: 120									
Actuated Cycle Length: 120									
Offset: 84 (70%), Reference		2:NRT :	and 6:SRI	. Start of	Green				
Natural Cycle: 115	o to pridoc	, 2.1401 (, otali ol	310011				
Control Type: Actuated-Coo	rdinated								
Maximum v/c Ratio: 1.33	n amateu								
ntersection Signal Delay: 52	2 1			Ir	ntersectio	n I OS· F)		
		0/				of Service			
ntersection Capacity Utiliza	יצ ולווני מחוזו								

05/06/2021

- Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles.
- # 95th percentile volume exceeds capacity, queue may be longer.
 - Queue shown is maximum after two cycles.

	۶	→	•	←	•	•	†	/	>	ļ	1	
Lane Group	EBL	EBT	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	ሻ	₽		र्स	7	ሻ	^	7	ሻ		7	
Traffic Volume (vph)	7	0	49	1	47	3	985	34	53	1812	8	
Future Volume (vph)	7	0	49	1	47	3	985	34	53	1812	8	
Lane Group Flow (vph)	7	5	0	50	47	3	985	34	53	1812	8	
Turn Type	Perm	NA	Perm	NA	Perm	Prot	NA	Perm	Prot	NA	Perm	
Protected Phases		4		8		5	2		1	6		
Permitted Phases	4		8		8			2			6	
Detector Phase	4	4	8	8	8	5	2	2	1	6	6	
Switch Phase												
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	5.0	10.0	10.0	5.0	10.0	10.0	
Minimum Split (s)	30.8	30.8	30.8	30.8	30.8	10.8	26.6	26.6	10.8	26.6	26.6	
Total Split (s)	31.0	31.0	31.0	31.0	31.0	14.0	75.0	75.0	14.0	75.0	75.0	
Total Split (%)	25.8%	25.8%	25.8%	25.8%	25.8%	11.7%	62.5%	62.5%	11.7%	62.5%	62.5%	
Yellow Time (s)	3.3	3.3	3.3	3.3	3.3	3.7	3.7	3.7	3.7	3.7	3.7	
All-Red Time (s)	3.5	3.5	3.5	3.5	3.5	2.1	1.9	1.9	2.1	1.9	1.9	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.8	6.8		6.8	6.8	5.8	5.6	5.6	5.8	5.6	5.6	
Lead/Lag						Lead	Lag	Lag	Lead	Lag	Lag	
Lead-Lag Optimize?						Yes	Yes	Yes	Yes	Yes	Yes	
Recall Mode	None	None	None	None	None	None	C-Max	C-Max	None	C-Max	C-Max	
Act Effct Green (s)	11.2	11.2		11.2	11.2	5.8	88.2	88.2	9.1	98.4	98.4	
Actuated g/C Ratio	0.09	0.09		0.09	0.09	0.05	0.74	0.74	0.08	0.82	0.82	
v/c Ratio	0.06	0.02		0.41	0.22	0.04	0.40	0.03	0.41	0.65	0.01	
Control Delay	49.4	0.2		61.4	6.2	55.0	8.8	0.1	62.6	5.4	0.0	
Queue Delay	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	49.4	0.2		61.4	6.2	55.0	8.8	0.1	62.6	5.4	0.0	
LOS	D	Α		Е	Α	D	Α	Α	Е	Α	Α	
Approach Delay		28.9		34.6			8.7			7.0		
Approach LOS		С		С			Α			Α		
Queue Length 50th (m)	1.5	0.0		11.4	0.0	0.7	48.3	0.0	13.1	33.7	0.0	
Queue Length 95th (m)	6.0	0.0		23.5	4.7	3.9	75.0	0.0	m15.8	m46.8	m0.0	
Internal Link Dist (m)		58.8		118.5			110.2			196.4		
Turn Bay Length (m)					35.0	50.0		50.0	90.0		55.0	
Base Capacity (vph)	260	408		261	366	115	2492	1138	137	2780	1259	
Starvation Cap Reductn	0	0		0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0		0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0		0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.03	0.01		0.19	0.13	0.03	0.40	0.03	0.39	0.65	0.01	

Intersection Summary

Cycle Length: 120

Actuated Cycle Length: 120

Offset: 112 (93%), Referenced to phase 2:NBT and 6:SBT, Start of Green

Natural Cycle: 100

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.65 Intersection Signal Delay: 8.6 Intersection Capacity Utilization 72.8%

Intersection LOS: A ICU Level of Service C

Analysis Period (min) 15

m Volume for 95th percentile queue is metered by upstream signal.

	٠	†	ţ	
Lane Group	EBL	NBT	SBT	
Lane Configurations	W	ર્ન	ĥ	
Traffic Volume (vph)	27	49	243	
Future Volume (vph)	27	49	243	
Lane Group Flow (vph)	83	95	278	
Sign Control	Stop	Stop	Stop	
Intersection Summary				
Control Type: Unsignalize	d			
Intersection Capacity Utiliz				ICU Level of Service A

Analysis Period (min) 15

	•	•	4	†	↓	4
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	¥			ર્ન	ĵ»	
Sign Control	Stop			Stop	Stop	
Traffic Volume (vph)	27	56	46	49	243	35
Future Volume (vph)	27	56	46	49	243	35
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	27	56	46	49	243	35
Direction, Lane #	EB 1	NB 1	SB 1			
Volume Total (vph)	83	95	278			
Volume Left (vph)	27	46	0			
Volume Right (vph)	56	0	35			
Hadj (s)	-0.31	0.13	-0.04			
Departure Headway (s)	4.4	4.5	4.2			
Degree Utilization, x	0.10	0.12	0.32			
Capacity (veh/h)	748	769	838			
Control Delay (s)	7.9	8.1	9.1			
Approach Delay (s)	7.9	8.1	9.1			
Approach LOS	Α	Α	Α			
Intersection Summary						
Delay			8.7			
Level of Service			Α			
Intersection Capacity Utiliz	zation		36.4%	IC	U Level c	of Service
Analysis Period (min)			15			

	→	←	†	ļ
Lane Group	EBT	WBT	NBT	SBT
Lane Configurations	4	4	4	4
Traffic Volume (vph)	2	4	23	80
Future Volume (vph)	2	4	23	80
Lane Group Flow (vph)	104	8	24	376
Sign Control	Stop	Stop	Stop	Stop
Intersection Summary				
Control Type: Unsignalized				

Intersection Capacity Utilization 46.0%
Analysis Period (min) 15 ICU Level of Service A

Total Future Background 2024 PM 05/06/2021

	۶	→	*	•	←	•	•	†	/	\	↓	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Sign Control		Stop			Stop			Stop			Stop	
Traffic Volume (vph)	95	2	7	0	4	4	1	23	0	8	80	288
Future Volume (vph)	95	2	7	0	4	4	1	23	0	8	80	288
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	95	2	7	0	4	4	1	23	0	8	80	288
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total (vph)	104	8	24	376								
Volume Left (vph)	95	0	1	8								
Volume Right (vph)	7	4	0	288								
Hadj (s)	0.18	-0.27	0.04	-0.42								
Departure Headway (s)	4.9	4.6	4.6	3.8								
Degree Utilization, x	0.14	0.01	0.03	0.40								
Capacity (veh/h)	677	705	743	928								
Control Delay (s)	8.7	7.6	7.7	9.3								
Approach Delay (s)	8.7	7.6	7.7	9.3								
Approach LOS	Α	Α	Α	Α								
Intersection Summary												
Delay			9.1									
Level of Service			Α									
Intersection Capacity Utilization	on		46.0%	IC	U Level	of Service			Α			
Analysis Period (min)			15									

	•	→	•	←	1	†	\	ļ	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Configurations	ች	ĵ.	ች	1	ሻ	ተ ተኈ	*	ተተኈ	
Traffic Volume (vph)	73	35	106	46	510	1453	309	747	
Future Volume (vph)	73	35	106	46	510	1453	309	747	
Lane Group Flow (vph)	73	168	106	242	510	1903	309	1162	
Turn Type	pm+pt	NA	Perm	NA	Prot	NA	Prot	NA	
Protected Phases	7	4		8	5	2	1	6	
Permitted Phases	4	•	8			_	•		
Detector Phase	7	4	8	8	5	2	1	6	
Switch Phase			_	_	_				
Minimum Initial (s)	5.0	10.0	10.0	10.0	5.0	10.0	5.0	10.0	
Minimum Split (s)	11.2	36.7	36.7	36.7	11.1	25.6	11.1	25.6	
Total Split (s)	15.0	52.0	37.0	37.0	32.0	48.0	20.0	36.0	
Total Split (%)	12.5%	43.3%	30.8%	30.8%	26.7%	40.0%	16.7%	30.0%	
Yellow Time (s)	3.3	3.3	3.3	3.3	3.7	3.7	3.7	3.7	
All-Red Time (s)	2.9	3.4	3.4	3.4	2.4	1.9	2.4	1.9	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.2	6.7	6.7	6.7	6.1	5.6	6.1	5.6	
Lead/Lag	Lead	0.7	Lag	Lag	Lead	Lag	Lead	Lag	
Lead-Lag Optimize?	Yes		Yes	Yes	Yes	Yes	Yes	Yes	
Recall Mode	None	None	None	None	None	C-Max	None	C-Max	
Act Effct Green (s)	29.1	28.6	16.6	16.6	42.6	42.4	30.6	30.4	
Actuated g/C Ratio	0.24	0.24	0.14	0.14	0.36	0.35	0.26	0.25	
v/c Ratio	0.41	0.24	0.66	0.14	0.85	1.11	0.72	0.23	
Control Delay	39.5	10.7	67.2	24.0	33.8	101.3	53.8	53.1	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	39.5	10.7	67.2	24.0	33.8	101.3	53.8	53.1	
LOS	D	В	67.2 E	24.0 C	C	F	D	D	
Approach Delay		19.4		37.1	U	87.0		53.3	
Approach LOS		В		D		67.0		D	
Queue Length 50th (m)	13.2	6.3	24.1	15.4	107.5	~190.0	68.7	90.1	
Queue Length 95th (m)	23.0	21.4	40.0		n#161.0 r		#137.3	#117.4	
Internal Link Dist (m)	20.0	228.4	70.0	515.1	1117 10 1.01	121.4	π 101.0	276.2	
Turn Bay Length (m)	15.0	220.4		010.1	135.0	121.4	160.0	210.2	
Base Capacity (vph)	182	676	293	523	601	1707	432	1250	
Starvation Cap Reductn	0	070	293	0	001	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.40	0.25	0.36	0.46	0.85	1.11	0.72	0.93	
Intersection Summary					3,00		72	3.03	
Cycle Length: 120									
Actuated Cycle Length: 120	0								
Offset: 91 (76%), Reference		2:NRT a	and 6:SB1	Γ. Start of	Green				
Natural Cycle: 145	ou to pridoc	2.1101	0.00	i, otali ol	310011				
Control Type: Actuated-Co	ordinated								
Maximum v/c Ratio: 1.11	o. amatou								
Intersection Signal Delay: 6	38 4			lr	ntersectio	n LOS: E			
Intersection Capacity Utilization						of Service			
Analysis Period (min) 15	G.1011 00.7 /			1	C LOVGI	J. JOI VIC			
tharyona i Griod (Illill) 13									

- Volume exceeds capacity, queue is theoretically infinite.
 - Queue shown is maximum after two cycles.
- # 95th percentile volume exceeds capacity, queue may be longer.
 - Queue shown is maximum after two cycles.
- m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 1: Riverside Dr & Hog's Back Rd/Brookfield Rd

	ᄼ	→	•	←	•	†	<i>></i>	>	ļ	1		
Lane Group	EBL	EBT	WBL	WBT	WBR	NBT	NBR	SBL	SBT	SBR	Ø5	
Lane Configurations	ሻ	₽		ની	7	^	7	ሻ	^	7		
Traffic Volume (vph)	4	0	24	0	103	2308	76	33	796	7		
Future Volume (vph)	4	0	24	0	103	2308	76	33	796	7		
Lane Group Flow (vph)	4	1	0	24	103	2308	76	33	796	7		
Turn Type	Perm	NA	Perm	NA	Perm	NA	Perm	Prot	NA	Perm		
Protected Phases		4		8		2		1	6		5	
Permitted Phases	4		8		8		2			6		
Detector Phase	4	4	8	8	8	2	2	1	6	6		
Switch Phase												
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	5.0	10.0	10.0	5.0	
Minimum Split (s)	30.8	30.8	30.8	30.8	30.8	26.6	26.6	10.8	26.6	26.6	10.8	
Total Split (s)	31.0	31.0	31.0	31.0	31.0	75.0	75.0	14.0	75.0	75.0	14.0	
Total Split (%)	25.8%	25.8%	25.8%	25.8%	25.8%	62.5%	62.5%	11.7%	62.5%	62.5%	12%	
Yellow Time (s)	3.3	3.3	3.3	3.3	3.3	3.7	3.7	3.7	3.7	3.7	3.7	
All-Red Time (s)	3.5	3.5	3.5	3.5	3.5	1.9	1.9	2.1	1.9	1.9	2.1	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0		
Total Lost Time (s)	6.8	6.8		6.8	6.8	5.6	5.6	5.8	5.6	5.6		
Lead/Lag						Lag	Lag	Lead	Lag	Lag	Lead	
Lead-Lag Optimize?						Yes	Yes	Yes	Yes	Yes	Yes	
Recall Mode	None	None	None	None	None	C-Max	C-Max	None	C-Max	C-Max	None	
Act Effct Green (s)	10.3	10.3		10.3	10.3	88.4	88.4	7.8	97.3	97.3		
Actuated g/C Ratio	0.09	0.09		0.09	0.09	0.74	0.74	0.06	0.81	0.81		
v/c Ratio	0.04	0.00		0.21	0.46	0.92	0.07	0.30	0.29	0.01		
Control Delay	50.8	0.0		55.5	16.7	22.8	1.2	50.4	1.6	0.0		
Queue Delay	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0		
Total Delay	50.8	0.0		55.5	16.7	22.8	1.2	50.4	1.6	0.0		
LOS	D	Α		Е	В	С	Α	D	Α	Α		
Approach Delay		40.6		24.1		22.1			3.5			
Approach LOS		D		С		С			Α			
Queue Length 50th (m)	0.9	0.0		5.4	0.0	240.4	0.0	8.0	14.7	0.0		
Queue Length 95th (m)	4.4	0.0		13.8	16.4	#345.1	4.0	m10.7	m14.0	m0.0		
Internal Link Dist (m)		58.8		118.5		110.2			196.4			
Turn Bay Length (m)					35.0		50.0	90.0		55.0		
Base Capacity (vph)	267	526		272	388	2497	1140	124	2749	1247		
Starvation Cap Reductn	0	0		0	0	0	0	0	0	0		
Spillback Cap Reductn	0	0		0	0	0	0	0	0	0		
Storage Cap Reductn	0	0		0	0	0	0	0	0	0		
Reduced v/c Ratio	0.01	0.00		0.09	0.27	0.92	0.07	0.27	0.29	0.01		

Intersection Summary

Cycle Length: 120

Actuated Cycle Length: 120

Offset: 100 (83%), Referenced to phase 2:NBT and 6:SBT, Start of Green

Natural Cycle: 150

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.92 Intersection Signal Delay: 17.6 Intersection Capacity Utilization 100.0%

Intersection LOS: B
ICU Level of Service G

Analysis Period (min) 15

- # 95th percentile volume exceeds capacity, queue may be longer.

 Queue shown is maximum after two cycles.
- m Volume for 95th percentile queue is metered by upstream signal.

	•	†	ļ	
Lane Group	EBL	NBT	SBT	
Lane Configurations	W	ર્ન	ĥ	
Traffic Volume (vph)	46	88	61	
Future Volume (vph)	46	88	61	
Lane Group Flow (vph)	79	163	95	
Sign Control	Stop	Stop	Stop	
Intersection Summary				
Control Type: Unsignalized	t			
Intersection Capacity Utiliz				ICU Level of Service A

Analysis Period (min) 15

	•	•	4	†	↓	4
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	¥			ર્ન	ĵ»	
Sign Control	Stop			Stop	Stop	
Traffic Volume (vph)	46	33	75	88	61	34
Future Volume (vph)	46	33	75	88	61	34
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	46	33	75	88	61	34
Direction, Lane #	EB 1	NB 1	SB 1			
Volume Total (vph)	79	163	95			
Volume Left (vph)	46	75	0			
Volume Right (vph)	33	0	34			
Hadj (s)	-0.10	0.13	-0.18			
Departure Headway (s)	4.4	4.3	4.1			
Degree Utilization, x	0.10	0.20	0.11			
Capacity (veh/h)	778	812	858			
Control Delay (s)	7.8	8.3	7.6			
Approach Delay (s)	7.8	8.3	7.6			
Approach LOS	Α	Α	Α			
Intersection Summary						
Delay			8.0			
Level of Service			Α			
Intersection Capacity Utiliz	zation		27.4%	IC	U Level o	of Service
Analysis Period (min)			15			

	-	←	†	ţ	
Lane Group	EBT	WBT	NBT	SBT	
Lane Configurations	4	₩	4	4	
Traffic Volume (vph)	3	3	45	17	
Future Volume (vph)	3	3	45	17	
Lane Group Flow (vph)	207	14	49	98	
Sign Control	Stop	Stop	Stop	Stop	
Intersection Summary					
Control Type: Unsignalized	t				
Intersection Capacity Utiliz				IC	CU Level of Service A

Analysis Period (min) 15

Allalysis i Ciloa (ililii) is

	٠	→	•	•	←	•	4	†	/	/	ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Sign Control		Stop			Stop			Stop			Stop	
Traffic Volume (vph)	203	3	1	0	3	11	4	45	0	2	17	79
Future Volume (vph)	203	3	1	0	3	11	4	45	0	2	17	79
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	203	3	1	0	3	11	4	45	0	2	17	79
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total (vph)	207	14	49	98								
Volume Left (vph)	203	0	4	2								
Volume Right (vph)	1	11	0	79								
Hadj (s)	0.23	-0.44	0.05	-0.45								
Departure Headway (s)	4.5	4.0	4.6	4.0								
Degree Utilization, x	0.26	0.02	0.06	0.11								
Capacity (veh/h)	782	837	740	834								
Control Delay (s)	9.0	7.1	7.9	7.5								
Approach Delay (s)	9.0	7.1	7.9	7.5								
Approach LOS	Α	Α	Α	Α								
Intersection Summary												
Delay			8.4									
Level of Service			Α									
Intersection Capacity Utilizat	ion		32.1%	IC	U Level	of Service			Α			
Analysis Period (min)			15									

	•	→	•	←	•	†	/	↓	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Configurations	ች	1	ች	ĵ.	ች	ተተኈ	ሻ	ተተኈ	
Traffic Volume (vph)	172	53	337	29	139	788	234	1444	
Future Volume (vph)	172	53	337	29	139	788	234	1444	
Lane Group Flow (vph)	172	448	337	368	139	917	234	1583	
Turn Type	pm+pt	NA	pm+pt	NA	Prot	NA	Prot	NA	
Protected Phases	7	4	3	8	5	2	1	6	
Permitted Phases	4	•	8			_			
Detector Phase	7	4	3	8	5	2	1	6	
Switch Phase			_	-					
Minimum Initial (s)	5.0	10.0	5.0	10.0	5.0	10.0	5.0	10.0	
Minimum Split (s)	11.2	36.7	9.5	36.7	11.1	25.6	11.1	25.6	
Total Split (s)	17.0	37.0	17.0	37.0	20.0	46.0	20.0	46.0	
Total Split (%)	14.2%	30.8%	14.2%	30.8%	16.7%	38.3%	16.7%	38.3%	
Yellow Time (s)	3.3	3.3	3.5	3.3	3.7	3.7	3.7	3.7	
All-Red Time (s)	2.9	3.4	1.0	3.4	2.4	1.9	2.4	1.9	
ost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
otal Lost Time (s)	6.2	6.7	4.5	6.7	6.1	5.6	6.1	5.6	
_ead/Lag	Lead	Lag	Lead	Lag	Lead	Lag	Lead	Lag	
_ead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Recall Mode	None	None	None	None	None	C-Max	None	C-Max	
Act Effct Green (s)	34.3	23.1	38.0	23.3	13.3	40.5	20.9	48.2	
Actuated g/C Ratio	0.29	0.19	0.32	0.19	0.11	0.34	0.17	0.40	
/c Ratio	0.82	0.91	1.40	0.68	0.74	0.56	0.79	0.82	
Control Delay	58.0	43.2	229.5	15.9	65.5	44.5	69.0	37.5	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	58.0	43.2	229.5	15.9	65.5	44.5	69.0	37.5	
.OS	E	D	F	В	E	D	E	D	
Approach Delay	_	47.3	•	118.0	_	47.2	_	41.5	
Approach LOS		D		F		D		D	
Queue Length 50th (m)	29.0	49.8	~88.3	14.0	31.5	82.5	54.2	125.8	
Queue Length 95th (m)	#50.9	#88.7	#138.4	43.6	#60.4	96.2	#116.0	#166.9	
nternal Link Dist (m)	,, 50.0	228.4	,, 100. 1	515.1	,, 50. 1	121.4	,,	276.2	
Furn Bay Length (m)	15.0			0.10.1	135.0	, <u>-</u> 1. f	160.0	210.2	
Base Capacity (vph)	213	573	241	610	200	1629	295	1939	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.81	0.78	1.40	0.60	0.69	0.56	0.79	0.82	
ntersection Summary									_
Cycle Length: 120									
Actuated Cycle Length: 120									
Offset: 84 (70%), Reference		2·NRT	and 6:SRI	Start of	Green				
Natural Cycle: 125	a to pridat	, Z.NDT (u U.UD	, otari or	510011				
Control Type: Actuated-Coo	rdinated								
Maximum v/c Ratio: 1.40	i dili idiled								
ntersection Signal Delay: 56	3.7			lr	ntersectio	n I OS: E			
ntersection Capacity Utiliza	•								
Analysis Period (min) 15									
anarysis i Gnou (IIIII) 13									

Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Synchro 10 Report Parsons

	۶	→	•	•	•	4	†	/	>	ţ	4	
Lane Group	EBL	EBT	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	ሻ	f.		र्स	7	ሻ	^	7	ሻ	^	7	
Traffic Volume (vph)	7	0	49	1	47	3	1030	34	53	1897	8	
Future Volume (vph)	7	0	49	1	47	3	1030	34	53	1897	8	
Lane Group Flow (vph)	7	5	0	50	47	3	1030	34	53	1897	8	
Turn Type	Perm	NA	Perm	NA	Perm	Prot	NA	Perm	Prot	NA	Perm	
Protected Phases		4		8		5	2		1	6		
Permitted Phases	4		8		8			2			6	
Detector Phase	4	4	8	8	8	5	2	2	1	6	6	
Switch Phase												
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	5.0	10.0	10.0	5.0	10.0	10.0	
Minimum Split (s)	30.8	30.8	30.8	30.8	30.8	10.8	26.6	26.6	10.8	26.6	26.6	
Total Split (s)	31.0	31.0	31.0	31.0	31.0	14.0	75.0	75.0	14.0	75.0	75.0	
Total Split (%)	25.8%	25.8%	25.8%	25.8%	25.8%	11.7%	62.5%	62.5%	11.7%	62.5%	62.5%	
Yellow Time (s)	3.3	3.3	3.3	3.3	3.3	3.7	3.7	3.7	3.7	3.7	3.7	
All-Red Time (s)	3.5	3.5	3.5	3.5	3.5	2.1	1.9	1.9	2.1	1.9	1.9	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.8	6.8		6.8	6.8	5.8	5.6	5.6	5.8	5.6	5.6	
Lead/Lag						Lead	Lag	Lag	Lead	Lag	Lag	
Lead-Lag Optimize?						Yes	Yes	Yes	Yes	Yes	Yes	
Recall Mode	None	None	None	None	None	None	C-Max	C-Max	None	C-Max	C-Max	
Act Effct Green (s)	11.2	11.2		11.2	11.2	5.8	88.2	88.2	9.1	98.4	98.4	
Actuated g/C Ratio	0.09	0.09		0.09	0.09	0.05	0.74	0.74	0.08	0.82	0.82	
v/c Ratio	0.06	0.02		0.41	0.22	0.04	0.41	0.03	0.41	0.68	0.01	
Control Delay	49.4	0.2		61.4	6.2	55.0	9.0	0.1	60.8	6.4	0.0	
Queue Delay	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	49.4	0.2		61.4	6.2	55.0	9.0	0.1	60.8	6.4	0.0	
LOS	D	Α		Е	Α	D	Α	Α	Е	Α	Α	
Approach Delay		28.9		34.6			8.9			7.8		
Approach LOS		С		С			Α			Α		
Queue Length 50th (m)	1.5	0.0		11.4	0.0	0.7	51.4	0.0	12.9	35.9	0.0	
Queue Length 95th (m)	6.0	0.0		23.5	4.7	3.9	79.5	0.0	m14.7	m48.3	m0.0	
Internal Link Dist (m)		58.8		118.5			110.2			196.4		
Turn Bay Length (m)					35.0	50.0		50.0	90.0		55.0	
Base Capacity (vph)	260	406		261	366	115	2492	1138	137	2780	1259	
Starvation Cap Reductn	0	0		0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0		0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0		0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.03	0.01		0.19	0.13	0.03	0.41	0.03	0.39	0.68	0.01	

Intersection Summary

Cycle Length: 120

Actuated Cycle Length: 120

Offset: 112 (93%), Referenced to phase 2:NBT and 6:SBT, Start of Green

Natural Cycle: 100

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.68 Intersection Signal Delay: 9.1 Intersection Capacity Utilization 75.3%

Intersection LOS: A ICU Level of Service D

Analysis Period (min) 15

m Volume for 95th percentile queue is metered by upstream signal.

	٠	†	ţ	
Lane Group	EBL	NBT	SBT	
Lane Configurations	W	ર્ન	ĥ	
Traffic Volume (vph)	27	49	243	
Future Volume (vph)	27	49	243	
Lane Group Flow (vph)	83	95	278	
Sign Control	Stop	Stop	Stop	
Intersection Summary				
Control Type: Unsignalize	d			
Intersection Capacity Utiliz				ICU Level of Service A

	٠	•	4	†	↓	4
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	W			ર્ન	ĵ.	
Sign Control	Stop			Stop	Stop	
Traffic Volume (vph)	27	56	46	49	243	35
Future Volume (vph)	27	56	46	49	243	35
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	27	56	46	49	243	35
Direction, Lane #	EB 1	NB 1	SB 1			
Volume Total (vph)	83	95	278			
Volume Left (vph)	27	46	0			
Volume Right (vph)	56	0	35			
Hadj (s)	-0.31	0.13	-0.04			
Departure Headway (s)	4.4	4.5	4.2			
Degree Utilization, x	0.10	0.12	0.32			
Capacity (veh/h)	748	769	838			
Control Delay (s)	7.9	8.1	9.1			
Approach Delay (s)	7.9	8.1	9.1			
Approach LOS	Α	Α	Α			
Intersection Summary						
Delay			8.7			
Level of Service			Α			
Intersection Capacity Utiliz	zation		36.4%	IC	U Level o	of Service
Analysis Period (min)			15			

	→	←	†	↓
Lane Group	EBT	WBT	NBT	SBT
Lane Configurations	4	4	4	4
Traffic Volume (vph)	2	4	23	80
Future Volume (vph)	2	4	23	80
Lane Group Flow (vph)	104	8	24	376
Sign Control	Stop	Stop	Stop	Stop
Intersection Summary				
Control Type: Unsignalized				

Control Type: Unsignalized Intersection Capacity Utilization 46.0% ICU Level of Service A

Analysis Period (min) 15

Synchro 10 Report Parsons

Total Future Background 2029 PM 05/06/2021

	۶	→	•	•	←	•	•	†	<i>></i>	\	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		- ↔			4			↔			↔	
Sign Control		Stop			Stop			Stop			Stop	
Traffic Volume (vph)	95	2	7	0	4	4	1	23	0	8	80	288
Future Volume (vph)	95	2	7	0	4	4	1	23	0	8	80	288
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	95	2	7	0	4	4	1	23	0	8	80	288
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total (vph)	104	8	24	376								
Volume Left (vph)	95	0	1	8								
Volume Right (vph)	7	4	0	288								
Hadj (s)	0.18	-0.27	0.04	-0.42								
Departure Headway (s)	4.9	4.6	4.6	3.8								
Degree Utilization, x	0.14	0.01	0.03	0.40								
Capacity (veh/h)	677	705	743	928								
Control Delay (s)	8.7	7.6	7.7	9.3								
Approach Delay (s)	8.7	7.6	7.7	9.3								
Approach LOS	Α	Α	Α	Α								
Intersection Summary												
Delay			9.1									
Level of Service			Α									
Intersection Capacity Utilizat	tion		46.0%	IC	U Level	of Service			Α			
Analysis Period (min)			15									

	۶	→	•	•	4	†	>	ţ	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Configurations	ሻ	f)	ሻ	î»	ሻ	ተተ _ጉ	ሻ	ተተ _ጉ	
Traffic Volume (vph)	70	34	101	45	492	1407	295	723	
Future Volume (vph)	70	34	101	45	492	1407	295	723	
ane Group Flow (vph)	70	164	101	233	492	1836	295	1119	
Turn Type	pm+pt	NA	Perm	NA	Prot	NA	Prot	NA	
Protected Phases	7	4		8	5	2	1	6	
Permitted Phases	4		8						
Detector Phase	7	4	8	8	5	2	1	6	
Switch Phase									
Minimum Initial (s)	5.0	10.0	10.0	10.0	5.0	10.0	5.0	10.0	
Minimum Split (s)	11.2	36.7	36.7	36.7	11.1	25.6	11.1	25.6	
Total Split (s)	11.2	47.9	36.7	36.7	38.9	47.1	25.0	33.2	
Total Split (%)	9.3%	39.9%	30.6%	30.6%	32.4%	39.3%	20.8%	27.7%	
Yellow Time (s)	3.3	3.3	3.3	3.3	3.7	3.7	3.7	3.7	
All-Red Time (s)	2.9	3.4	3.4	3.4	2.4	1.9	2.4	1.9	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.2	6.7	6.7	6.7	6.1	5.6	6.1	5.6	
Lead/Lag	Lead	0.1	Lag	Lag	Lead	Lag	Lead	Lag	
_ead-Lag Optimize?	Yes		Yes	Yes	Yes	Yes	Yes	Yes	
Recall Mode	None	None	None	None	None	C-Max	None	C-Max	
Act Effct Green (s)	25.7	25.2	16.2	16.2	43.9	46.2	30.2	32.6	
Actuated g/C Ratio	0.21	0.21	0.14	0.14	0.37	0.38	0.25	0.27	
v/c Ratio	0.53	0.21	0.14	0.14	0.79	0.99	0.23	0.27	
Control Delay	50.1	12.1	66.6	23.6	26.9	56.3	51.1	45.1	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	50.1	12.1	66.6	23.6	26.9	56.3	51.1	45.1	
Total Delay _OS	50.1 D	12.1 B	00.0 E	23.0 C	20.9 C			45.1 D	
	U				U	E .	D		
Approach Delay		23.5		36.6		50.1		46.3	
Approach LOS	40.4	C	00.0	D	07.4	170 F	60.0	D	
Queue Length 50th (m)	13.4	6.4	23.0	14.3	87.4	~172.5	62.9	86.3	
Queue Length 95th (m)	23.5	22.1	38.7	37.8	m110.4ı		#111.6	#119.5	
Internal Link Dist (m)	45.0	228.4		515.1	405.0	121.4	400.0	276.2	
Turn Bay Length (m)	15.0	005	004	F.4=	135.0	4050	160.0	4000	
Base Capacity (vph)	133	625	291	517	619	1852	427	1329	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.53	0.26	0.35	0.45	0.79	0.99	0.69	0.84	
Intersection Summary									
Cycle Length: 120	`								
Actuated Cycle Length: 120		ONDT		- 01 1					
Offset: 91 (76%), Reference	ed to phase	2:NBT a	and 6:SBT	, Start o	f Green				
Natural Cycle: 135									

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.99 Intersection Signal Delay: 46.4 Intersection Capacity Utilization 95.6%

Intersection LOS: D ICU Level of Service F

Analysis Period (min) 15

Synchro 10 Report Parsons

- ~ Volume exceeds capacity, queue is theoretically infinite.
 - Queue shown is maximum after two cycles.
- # 95th percentile volume exceeds capacity, queue may be longer.
 - Queue shown is maximum after two cycles.
- m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 1: Riverside Dr & Hog's Back Rd/Brookfield Rd

	ၨ	→	•	←	•	†	<i>></i>	>	ļ	4	
Lane Group	EBL	EBT	WBL	WBT	WBR	NBT	NBR	SBL	SBT	SBR	Ø5
Lane Configurations	*	f)		ર્ન	7	^	7	7	^	7	
Traffic Volume (vph)	4	0	45	0	127	2204	86	44	761	7	
Future Volume (vph)	4	0	45	0	127	2204	86	44	761	7	
Lane Group Flow (vph)	4	1	0	45	127	2204	86	44	761	7	
Turn Type	Perm	NA	Perm	NA	Perm	NA	Perm	Prot	NA	Perm	
Protected Phases		4		8		2		1	6		5
Permitted Phases	4		8		8		2			6	
Detector Phase	4	4	8	8	8	2	2	1	6	6	
Switch Phase											
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	5.0	10.0	10.0	5.0
Minimum Split (s)	30.8	30.8	30.8	30.8	30.8	26.6	26.6	10.8	26.6	26.6	10.8
Total Split (s)	30.8	30.8	30.8	30.8	30.8	78.4	78.4	10.8	78.4	78.4	10.8
Total Split (%)	25.7%	25.7%	25.7%	25.7%	25.7%	65.3%	65.3%	9.0%	65.3%	65.3%	9%
Yellow Time (s)	3.3	3.3	3.3	3.3	3.3	3.7	3.7	3.7	3.7	3.7	3.7
All-Red Time (s)	3.5	3.5	3.5	3.5	3.5	1.9	1.9	2.1	1.9	1.9	2.1
Lost Time Adjust (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.8	6.8		6.8	6.8	5.6	5.6	5.8	5.6	5.6	
Lead/Lag						Lag	Lag	Lead	Lag	Lag	Lead
Lead-Lag Optimize?						Yes	Yes	Yes	Yes	Yes	Yes
Recall Mode	None	None	None	None	None	C-Max	C-Max	None	C-Max	C-Max	None
Act Effct Green (s)	11.6	11.6		11.6	11.6	83.7	83.7	8.8	96.0	96.0	
Actuated g/C Ratio	0.10	0.10		0.10	0.10	0.70	0.70	0.07	0.80	0.80	
v/c Ratio	0.03	0.00		0.34	0.59	0.93	0.08	0.35	0.28	0.01	
Control Delay	47.8	0.0		57.2	33.4	26.3	1.9	59.1	2.6	0.0	
Queue Delay	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	47.8	0.0		57.2	33.4	26.3	1.9	59.1	2.6	0.0	
LOS	D	Α		E	С	С	Α	Е	Α	Α	
Approach Delay		38.2		39.6		25.4			5.6		
Approach LOS		D		D		С			Α		
Queue Length 50th (m)	0.9	0.0		10.2	11.4	218.1	0.0	11.0	14.0	0.0	
Queue Length 95th (m)	4.2	0.0		21.2	29.8	#339.7	5.8	m15.6	m18.0	m0.0	
Internal Link Dist (m)		58.8		118.5		110.2			196.4		
Turn Bay Length (m)					35.0		50.0	90.0		55.0	
Base Capacity (vph)	259	517		270	365	2363	1084	124	2711	1230	
Starvation Cap Reductn	0	0		0	0	0	0	0	0	0	
Spillback Cap Reductn		_		0	0	0	0	0	0	0	
Chanana Can Dadicata	0	0									
Storage Cap Reductn Reduced v/c Ratio	0 0 0.02	0.00		0.17	0.35	0.93	0 0.08	0.35	0.28	0.01	

Intersection Summary

Cycle Length: 120

Actuated Cycle Length: 120

Offset: 100 (83%), Referenced to phase 2:NBT and 6:SBT, Start of Green

Natural Cycle: 130

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.93 Intersection Signal Delay: 21.3 Intersection Capacity Utilization 97.0%

Intersection LOS: C
ICU Level of Service F

Analysis Period (min) 15

- # 95th percentile volume exceeds capacity, queue may be longer.

 Queue shown is maximum after two cycles.
- m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 2: Riverside Dr & Ridgewood Ave

Synchro 10 Report **Parsons**

	→	←	\	
Lane Group	EBT	WBT	SBL	
Lane Configurations	4	Ą.	W	
Traffic Volume (vph)	109	127	15	
Future Volume (vph)	109	127	15	
Lane Group Flow (vph)	130	134	61	
Sign Control	Free	Free	Stop	
Intersection Summary				
Control Type: Unsignalized		·	·	
Intersection Capacity Utiliza				ICU Level of Service A

	•	→	•	•	\	4
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		ર્ન	1>		W	
Traffic Volume (veh/h)	21	109	127	7	15	46
Future Volume (Veh/h)	21	109	127	7	15	46
Sign Control		Free	Free		Stop	
Grade		0%	0%		0%	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	21	109	127	7	15	46
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type		None	None			
Median storage veh)						
Upstream signal (m)		143				
pX, platoon unblocked						
vC, conflicting volume	134				282	130
vC1, stage 1 conf vol						100
vC2, stage 2 conf vol						
vCu, unblocked vol	134				282	130
tC, single (s)	4.1				6.4	6.2
tC, 2 stage (s)					0.1	V.E
tF (s)	2.2				3.5	3.3
p0 queue free %	99				98	95
cM capacity (veh/h)	1451				698	919
		WD 4	OD 4			010
Direction, Lane #	EB 1	WB 1	SB 1			
Volume Total	130	134	61			
Volume Left	21	0	15			
Volume Right	0	7	46			
cSH	1451	1700	853			
Volume to Capacity	0.01	0.08	0.07			
Queue Length 95th (m)	0.3	0.0	1.8			
Control Delay (s)	1.3	0.0	9.5			
Lane LOS	Α		Α			
Approach Delay (s)	1.3	0.0	9.5			
Approach LOS			Α			
Intersection Summary						
Average Delay			2.3			
Intersection Capacity Utiliza	ation		28.7%	IC	U Level o	of Service
Analysis Period (min)			15			

	•	†	↓	
Lane Group	EBL	NBT	SBT	
Lane Configurations	W	ર્ન	1>	
Traffic Volume (vph)	61	88	61	
Future Volume (vph)	61	88	61	
Lane Group Flow (vph)	94	163	102	
Sign Control	Stop	Stop	Stop	
Intersection Summary				
Control Type: Unsignalized	t			
Intersection Capacity Utiliz				ICU Level of Service A

	•	•	4	†	↓	4
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	¥			ર્ન	ĵ»	
Sign Control	Stop			Stop	Stop	
Traffic Volume (vph)	61	33	75	88	61	41
Future Volume (vph)	61	33	75	88	61	41
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	61	33	75	88	61	41
Direction, Lane #	EB 1	NB 1	SB 1			
Volume Total (vph)	94	163	102			
Volume Left (vph)	61	75	0			
Volume Right (vph)	33	0	41			
Hadj (s)	-0.05	0.13	-0.21			
Departure Headway (s)	4.4	4.4	4.1			
Degree Utilization, x	0.12	0.20	0.12			
Capacity (veh/h)	756	801	853			
Control Delay (s)	8.0	8.4	7.6			
Approach Delay (s)	8.0	8.4	7.6			
Approach LOS	Α	Α	Α			
Intersection Summary						
Delay			8.1			
Level of Service			Α			
Intersection Capacity Utiliz	zation		28.3%	IC	U Level o	of Service
Analysis Period (min)			15			

	-	←	†	ţ	
Lane Group	EBT	WBT	NBT	SBT	
Lane Configurations	4	₩	4	- ↔	
Traffic Volume (vph)	3	3	45	17	
Future Volume (vph)	3	3	45	17	
Lane Group Flow (vph)	222	14	49	105	
Sign Control	Stop	Stop	Stop	Stop	
Intersection Summary					
Control Type: Unsignalized	d				
Intersection Capacity Utiliz				IC	U Level of Service A

	۶	→	•	•	←	•	•	†	/	/	↓	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			44			4			₩	
Sign Control		Stop			Stop			Stop			Stop	
Traffic Volume (vph)	218	3	1	0	3	11	4	45	0	2	17	86
Future Volume (vph)	218	3	1	0	3	11	4	45	0	2	17	86
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	218	3	1	0	3	11	4	45	0	2	17	86
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total (vph)	222	14	49	105								
Volume Left (vph)	218	0	4	2								
Volume Right (vph)	1	11	0	86								
Hadj (s)	0.23	-0.44	0.05	-0.45								
Departure Headway (s)	4.5	4.1	4.6	4.1								
Degree Utilization, x	0.28	0.02	0.06	0.12								
Capacity (veh/h)	779	828	730	826								
Control Delay (s)	9.2	7.1	7.9	7.6								
Approach Delay (s)	9.2	7.1	7.9	7.6								
Approach LOS	Α	Α	Α	Α								
Intersection Summary												
Delay			8.5									
Level of Service			Α									
Intersection Capacity Utilizat	tion		33.4%	IC	U Level	of Service			Α			
Analysis Period (min)			15									

	•	→	•	←	4	†	>	↓	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Configurations	ሻ	₽	ሻ	(î	ሻ	ተተ _ጉ	ሻ	ተተኈ	
Traffic Volume (vph)	164	51	321	28	137	765	224	1395	
Future Volume (vph)	164	51	321	28	137	765	224	1395	
Lane Group Flow (vph)	164	433	321	352	137	889	224	1528	
Turn Type	pm+pt	NA	pm+pt	NA	Prot	NA	Prot	NA	
Protected Phases	7	4	3	8	5	2	1	6	
Permitted Phases	4		8						
Detector Phase	7	4	3	8	5	2	1	6	
Switch Phase									
Minimum Initial (s)	5.0	10.0	5.0	10.0	5.0	10.0	5.0	10.0	
Minimum Split (s)	11.2	36.7	9.5	36.7	11.1	25.6	11.1	25.6	
Total Split (s)	18.9	36.8	23.0	40.9	16.8	33.6	26.6	43.4	
Total Split (%)	15.8%	30.7%	19.2%	34.1%	14.0%	28.0%	22.2%	36.2%	
Yellow Time (s)	3.3	3.3	3.5	3.3	3.7	3.7	3.7	3.7	
All-Red Time (s)	2.9	3.4	1.0	3.4	2.4	1.9	2.4	1.9	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.2	6.7	4.5	6.7	6.1	5.6	6.1	5.6	
Lead/Lag	Lead	Lag	Lead	Lag	Lead	Lag	Lead	Lag	
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Recall Mode	None	None	None	None	None	C-Max	None	C-Max	
Act Effct Green (s)	34.3	22.0	46.9	26.9	13.3	37.3	19.3	43.3	
Actuated g/C Ratio	0.29	0.18	0.39	0.22	0.11	0.31	0.16	0.36	
v/c Ratio	0.63	0.90	0.99	0.59	0.73	0.59	0.82	0.88	
Control Delay	36.2	41.9	80.1	9.6	65.0	38.6	72.2	43.4	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	36.2	41.9	80.1	9.6	65.0	38.6	72.2	43.4	
LOS	D	D	F	Α	Е	D	Е	D	
Approach Delay		40.3		43.2		42.1		47.1	
Approach LOS		D		D		D		D	
Queue Length 50th (m)	25.9	46.1	59.3	5.2	30.6	76.3	50.3	129.2	
Queue Length 95th (m)	37.6	82.0	#108.7	29.3	#70.0	92.8	#87.3	#166.5	
Internal Link Dist (m)		228.4		515.1		121.4		276.2	
Turn Bay Length (m)	15.0				135.0		160.0		
Base Capacity (vph)	271	571	324	669	187	1498	295	1745	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.61	0.76	0.99	0.53	0.73	0.59	0.76	0.88	
Intersection Summary									
intersection summary									

Cycle Length: 120

Actuated Cycle Length: 120

Offset: 84 (70%), Referenced to phase 2:NBT and 6:SBT, Start of Green

Natural Cycle: 125

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.99 Intersection Signal Delay: 44.2 Intersection Capacity Utilization 105.2%

Intersection LOS: D
ICU Level of Service G

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

	۶	→	•	•	•	4	†	/	-	ţ	4	
Lane Group	EBL	EBT	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	ሻ	f.		र्स	7	ሻ	^	7	"	^	7	
Traffic Volume (vph)	7	0	62	1	62	3	985	52	73	1812	8	
Future Volume (vph)	7	0	62	1	62	3	985	52	73	1812	8	
Lane Group Flow (vph)	7	5	0	63	62	3	985	52	73	1812	8	
Turn Type	Perm	NA	Perm	NA	Perm	Prot	NA	Perm	Prot	NA	Perm	
Protected Phases		4		8		5	2		1	6		
Permitted Phases	4		8		8			2			6	
Detector Phase	4	4	8	8	8	5	2	2	1	6	6	
Switch Phase												
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	5.0	10.0	10.0	5.0	10.0	10.0	
Minimum Split (s)	30.8	30.8	30.8	30.8	30.8	10.8	26.6	26.6	10.8	26.6	26.6	
Total Split (s)	31.0	31.0	31.0	31.0	31.0	14.0	75.0	75.0	14.0	75.0	75.0	
Total Split (%)	25.8%	25.8%	25.8%	25.8%	25.8%	11.7%	62.5%	62.5%	11.7%	62.5%	62.5%	
Yellow Time (s)	3.3	3.3	3.3	3.3	3.3	3.7	3.7	3.7	3.7	3.7	3.7	
All-Red Time (s)	3.5	3.5	3.5	3.5	3.5	2.1	1.9	1.9	2.1	1.9	1.9	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.8	6.8		6.8	6.8	5.8	5.6	5.6	5.8	5.6	5.6	
Lead/Lag						Lead	Lag	Lag	Lead	Lag	Lag	
Lead-Lag Optimize?						Yes	Yes	Yes	Yes	Yes	Yes	
Recall Mode	None	None	None	None	None	None	C-Max	C-Max	None	C-Max	C-Max	
Act Effct Green (s)	12.2	12.2		12.2	12.2	5.8	85.9	85.9	10.7	97.5	97.5	
Actuated g/C Ratio	0.10	0.10		0.10	0.10	0.05	0.72	0.72	0.09	0.81	0.81	
v/c Ratio	0.05	0.02		0.48	0.28	0.04	0.41	0.05	0.48	0.66	0.01	
Control Delay	47.9	0.2		62.6	10.6	55.0	10.2	0.7	72.5	6.4	0.0	
Queue Delay	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	47.9	0.2		62.6	10.6	55.0	10.2	0.7	72.5	6.4	0.0	
LOS	D	Α		E	В	D	В	Α	Е	Α	Α	
Approach Delay		28.0		36.8			9.9			8.9		
Approach LOS		С		D			Α			Α		
Queue Length 50th (m)	1.5	0.0		14.4	0.0	0.7	52.7	0.0	18.3	26.3	0.0	
Queue Length 95th (m)	5.9	0.0		27.8	9.4	3.9	82.4	1.7	m21.3	m220.6	m0.0	
Internal Link Dist (m)		58.8		118.5			110.2			196.4		
Turn Bay Length (m)					35.0	50.0		50.0	90.0		55.0	
Base Capacity (vph)	257	408		261	366	115	2426	1110	155	2753	1248	
Starvation Cap Reductn	0	0		0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0		0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0		0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.03	0.01		0.24	0.17	0.03	0.41	0.05	0.47	0.66	0.01	

Intersection Summary

Cycle Length: 120

Actuated Cycle Length: 120

Offset: 112 (93%), Referenced to phase 2:NBT and 6:SBT, Start of Green

Natural Cycle: 100

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.66 Intersection Signal Delay: 10.4 Intersection Capacity Utilization 82.6%

Intersection LOS: B
ICU Level of Service E

Analysis Period (min) 15

m Volume for 95th percentile queue is metered by upstream signal.

	→	←	\	
Lane Group	EBT	WBT	SBL	
Lane Configurations	ની	ĵ.	W	
Traffic Volume (vph)	87	97	9	
Future Volume (vph)	87	97	9	
Lane Group Flow (vph)	125	110	37	
Sign Control	Free	Free	Stop	
Intersection Summary				
Control Type: Unsignalized				
Intersection Capacity Utilizat	tion 23.7%			ICU Level of Service A

<i>≯</i> →	. ←	•	-	✓	
Movement EBL EBT	WBT	WBR	SBL	SBR	
Lane Configurations 4	'		W		
Traffic Volume (veh/h) 38 87		13	9	28	
Future Volume (Veh/h) 38 87	97	13	9	28	
Sign Control Free	Free		Stop		
Grade 0%	0%		0%		
Peak Hour Factor 1.00 1.00	1.00	1.00	1.00	1.00	
Hourly flow rate (vph) 38 87	97	13	9	28	
Pedestrians					
Lane Width (m)					
Walking Speed (m/s)					
Percent Blockage					
Right turn flare (veh)					
Median type None	None				
Median storage veh)					
Upstream signal (m) 143	}				
pX, platoon unblocked					
vC, conflicting volume 110			266	104	
vC1, stage 1 conf vol					
vC2, stage 2 conf vol					
vCu, unblocked vol 110			266	104	
tC, single (s) 4.1			6.4	6.2	
tC, 2 stage (s)					
tF (s) 2.2			3.5	3.3	
p0 queue free % 97			99	97	
cM capacity (veh/h) 1480			704	951	
Direction, Lane # EB 1 WB 1	SB 1				
Volume Total 125 110	37				
Volume Left 38 0					
Volume Right 0 13	28				
cSH 1480 1700	876				
Volume to Capacity 0.03 0.06	0.04				
Queue Length 95th (m) 0.6 0.0	1.0				
Control Delay (s) 2.4 0.0	9.3				
Lane LOS A	Α				
Approach Delay (s) 2.4 0.0	9.3				
Approach LOS	Α				
Intersection Summary					
Average Delay	2.4				
Intersection Capacity Utilization	23.7%	IC	U Level	of Service	
Analysis Period (min)	15				

	٠	†	↓	
Lane Group	EBL	NBT	SBT	
Lane Configurations	¥	ર્ન	ĥ	
Traffic Volume (vph)	36	49	243	
Future Volume (vph)	36	49	243	
Lane Group Flow (vph)	92	95	291	
Sign Control	Stop	Stop	Stop	
Intersection Summary				
Control Type: Unsignalized	1			
Intersection Capacity Utilization				ICU Level of Service A

	•	•	4	†	↓	4
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	¥			ર્ન	ĵ»	
Sign Control	Stop			Stop	Stop	
Traffic Volume (vph)	36	56	46	49	243	48
Future Volume (vph)	36	56	46	49	243	48
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	36	56	46	49	243	48
Direction, Lane #	EB 1	NB 1	SB 1			
Volume Total (vph)	92	95	291			
Volume Left (vph)	36	46	0			
Volume Right (vph)	56	0	48			
Hadj (s)	-0.25	0.13	-0.06			
Departure Headway (s)	4.5	4.6	4.2			
Degree Utilization, x	0.11	0.12	0.34			
Capacity (veh/h)	734	759	837			
Control Delay (s)	8.1	8.2	9.3			
Approach Delay (s)	8.1	8.2	9.3			
Approach LOS	Α	Α	Α			
Intersection Summary						
Delay			8.8			
Level of Service			Α			
Intersection Capacity Utiliz	zation		37.7%	IC	U Level o	of Service
Analysis Period (min)			15			

	→	←	†	ļ	
Lane Group	EBT	WBT	NBT	SBT	
Lane Configurations	4	4	4	- ↔	
Traffic Volume (vph)	2	4	23	80	
Future Volume (vph)	2	4	23	80	
Lane Group Flow (vph)	113	8	24	389	
Sign Control	Stop	Stop	Stop	Stop	
Intersection Summary					
Control Type: Unsignalized					
Intersection Capacity Utilizat	tion 47.4%			IC	U Level of Service A

	۶	→	\rightarrow	•	←	•	•	†	<i>></i>	\	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		- ↔			↔			↔			↔	
Sign Control		Stop			Stop			Stop			Stop	
Traffic Volume (vph)	104	2	7	0	4	4	1	23	0	8	80	301
Future Volume (vph)	104	2	7	0	4	4	1	23	0	8	80	301
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	104	2	7	0	4	4	1	23	0	8	80	301
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total (vph)	113	8	24	389								
Volume Left (vph)	104	0	1	8								
Volume Right (vph)	7	4	0	301								
Hadj (s)	0.18	-0.27	0.04	-0.43								
Departure Headway (s)	4.9	4.6	4.6	3.8								
Degree Utilization, x	0.16	0.01	0.03	0.41								
Capacity (veh/h)	672	695	734	912								
Control Delay (s)	8.8	7.7	7.8	9.5								
Approach Delay (s)	8.8	7.7	7.8	9.5								
Approach LOS	Α	Α	Α	Α								
Intersection Summary												
Delay			9.2									
Level of Service			Α									
Intersection Capacity Utilizati	on		47.4%	IC	U Level	of Service			Α			
Analysis Period (min)			15									

Intersection Signal Delay: 62.2

Analysis Period (min) 15

Intersection Capacity Utilization 98.7%

	•	→	•	←	4	†	>	↓	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Configurations	ች	1	ሻ	₽.	ሻ	ተ ተኈ	ሻ	ተተኈ	
Traffic Volume (vph)	73	35	106	46	516	1471	309	755	
Future Volume (vph)	73	35	106	46	516	1471	309	755	
Lane Group Flow (vph)	73	171	106	242	516	1921	309	1170	
Turn Type	pm+pt	NA	Perm	NA	Prot	NA	Prot	NA	
Protected Phases	7	4		8	5	2	1	6	
Permitted Phases	4	•	8			_	•		
Detector Phase	7	4	8	8	5	2	1	6	
Switch Phase	•	•				_	•		
Minimum Initial (s)	5.0	10.0	10.0	10.0	5.0	10.0	5.0	10.0	
Minimum Split (s)	11.2	36.7	36.7	36.7	11.1	25.6	11.1	25.6	
Total Split (s)	11.2	47.9	36.7	36.7	36.0	47.1	25.0	36.1	
Total Split (%)	9.3%	39.9%	30.6%	30.6%	30.0%	39.3%	20.8%	30.1%	
Yellow Time (s)	3.3	3.3	3.3	3.3	3.7	3.7	3.7	3.7	
All-Red Time (s)	2.9	3.4	3.4	3.4	2.4	1.9	2.4	1.9	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.2	6.7	6.7	6.7	6.1	5.6	6.1	5.6	
Lead/Lag	Lead	0.7	Lag	Lag	Lead	Lag	Lead	Lag	
Lead-Lag Optimize?	Yes		Yes	Yes	Yes	Yes	Yes	Yes	
Recall Mode	None	None	None	None	None	C-Max	None	C-Max	
Act Effct Green (s)	26.1	25.6	16.7	16.7	45.5	44.2	31.8	30.5	
Actuated g/C Ratio	0.22	0.21	0.14	0.14	0.38	0.37	0.26	0.25	
v/c Ratio	0.55	0.39	0.66	0.66	0.80	1.08	0.69	0.23	
Control Delay	51.5	11.8	67.1	24.1	26.4	88.5	50.2	53.4	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	51.5	11.8	67.1	24.1	26.4	88.5	50.2	53.4	
LOS	D	В	67.1	C C	20.4 C	F	D	55.4 D	
Approach Delay	U	23.7		37.2	U	75.4	U	52.7	
Approach LOS		23.7 C		D		7 J.4		52.7 D	
Queue Length 50th (m)	13.9	6.5	24.1	15.6	97.4	~197.0	64.9	90.9	
Queue Length 95th (m)	24.1	22.5	40.0		97.4 n#140.5 r		#121.4	#118.6	
Internal Link Dist (m)	24.1	228.4	40.0	515.1	140.31	121.4	#121.4	276.2	
Turn Bay Length (m)	15.0	220.4		J 13.1	135.0	121.4	160.0	210.2	
Base Capacity (vph)	132	629	289	519	642	1774	448	1255	
Starvation Cap Reductn	0	029	209	0	042	0	440	1200	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	
Storage Cap Reductin	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.55	0.27	0.37	0.47	0.80	1.08	0.69	0.93	
	0.55	0.27	0.37	0.47	0.00	1.00	0.09	0.93	
Intersection Summary									
Cycle Length: 120									
Actuated Cycle Length: 120									
Offset: 91 (76%), Reference	d to phase	e 2:NBT a	and 6:SB	Γ, Start of	Green				
Natural Cycle: 145									
Control Type: Actuated-Coor	rdinated								
Maximum v/c Ratio: 1.08									
(0 10 10 10									

Parsons Synchro 10 Report

Intersection LOS: E

ICU Level of Service F

- Volume exceeds capacity, queue is theoretically infinite.
- Queue shown is maximum after two cycles.
- # 95th percentile volume exceeds capacity, queue may be longer.
 - Queue shown is maximum after two cycles.
- m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 1: Riverside Dr & Hog's Back Rd/Brookfield Rd

	۶	→	•	←	•	†	<i>></i>	/	ļ	4	
Lane Group	EBL	EBT	WBL	WBT	WBR	NBT	NBR	SBL	SBT	SBR	Ø5
Lane Configurations	7	£		ર્ન	7	^	7	ሻ	44	7	
Traffic Volume (vph)	4	0	45	0	127	2308	86	44	796	7	
Future Volume (vph)	4	0	45	0	127	2308	86	44	796	7	
Lane Group Flow (vph)	4	1	0	45	127	2308	86	44	796	7	
Turn Type	Perm	NA	Perm	NA	Perm	NA	Perm	Prot	NA	Perm	
Protected Phases		4		8		2		1	6		5
Permitted Phases	4		8		8		2			6	
Detector Phase	4	4	8	8	8	2	2	1	6	6	
Switch Phase											
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	5.0	10.0	10.0	5.0
Minimum Split (s)	30.8	30.8	30.8	30.8	30.8	26.6	26.6	10.8	26.6	26.6	10.8
Total Split (s)	31.0	31.0	31.0	31.0	31.0	75.0	75.0	14.0	75.0	75.0	14.0
Total Split (%)	25.8%	25.8%	25.8%	25.8%	25.8%	62.5%	62.5%	11.7%	62.5%	62.5%	12%
Yellow Time (s)	3.3	3.3	3.3	3.3	3.3	3.7	3.7	3.7	3.7	3.7	3.7
All-Red Time (s)	3.5	3.5	3.5	3.5	3.5	1.9	1.9	2.1	1.9	1.9	2.1
Lost Time Adjust (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.8	6.8		6.8	6.8	5.6	5.6	5.8	5.6	5.6	
Lead/Lag						Lag	Lag	Lead	Lag	Lag	Lead
Lead-Lag Optimize?						Yes	Yes	Yes	Yes	Yes	Yes
Recall Mode	None	None	None	None	None	C-Max	C-Max	None	C-Max	C-Max	None
Act Effct Green (s)	10.9	10.9		10.9	10.9	84.6	84.6	8.5	96.7	96.7	
Actuated g/C Ratio	0.09	0.09		0.09	0.09	0.70	0.70	0.07	0.81	0.81	
v/c Ratio	0.03	0.00		0.37	0.52	0.97	0.08	0.37	0.29	0.01	
Control Delay	49.5	0.0		59.8	18.3	30.3	1.8	52.8	2.1	0.0	
Queue Delay	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	49.5	0.0		59.8	18.3	30.3	1.8	52.8	2.1	0.0	
LOS	D	Α		Е	В	С	Α	D	Α	Α	
Approach Delay		39.6		29.2		29.3			4.7		
Approach LOS		D		С		С			Α		
Queue Length 50th (m)	0.9	0.0		10.2	1.8	246.8	0.0	10.9	14.8	0.0	
Queue Length 95th (m)	4.3	0.0		21.7	19.6	#357.1	5.4	m14.6	m18.7	m0.0	
Internal Link Dist (m)		58.8		118.5		110.2			196.4		
Turn Bay Length (m)					35.0		50.0	90.0		55.0	
Base Capacity (vph)	261	526		272	400	2390	1095	131	2731	1239	
Starvation Cap Reductn	0	0		0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0		0	0	0	0	0	0	0	
Storage Cap Reductn	0	0		0	0	0	0	0	0	0	
Reduced v/c Ratio	0.02	0.00		0.17	0.32	0.97	0.08	0.34	0.29	0.01	

Intersection Summary

Cycle Length: 120

Actuated Cycle Length: 120

Offset: 100 (83%), Referenced to phase 2:NBT and 6:SBT, Start of Green

Natural Cycle: 150

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.97 Intersection Signal Delay: 23.2 Intersection Capacity Utilization 100.0%

Intersection LOS: C
ICU Level of Service G

Analysis Period (min) 15

- # 95th percentile volume exceeds capacity, queue may be longer.

 Queue shown is maximum after two cycles.
- m Volume for 95th percentile queue is metered by upstream signal.

Synchro 10 Report **Parsons**

	→	•	\	
Lane Group	EBT	WBT	SBL	
Lane Configurations	ર્ન	ĵ∍	¥	
Traffic Volume (vph)	109	127	15	
Future Volume (vph)	109	127	15	
Lane Group Flow (vph)	130	134	61	
Sign Control	Free	Free	Stop	
Intersection Summary				
Control Type: Unsignalized	d			
Intersection Capacity Utiliz				ICU Level of Service A

	۶	→	←	•	/	4	
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations		र्स	ĵ.		W		
Traffic Volume (veh/h)	21	109	127	7	15	46	
Future Volume (Veh/h)	21	109	127	7	15	46	
Sign Control		Free	Free		Stop		
Grade		0%	0%		0%		
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Hourly flow rate (vph)	21	109	127	7	15	46	
Pedestrians							
Lane Width (m)							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)							
Median type		None	None				
Median storage veh)							
Upstream signal (m)		143					
pX, platoon unblocked							
vC, conflicting volume	134				282	130	
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol	134				282	130	
tC, single (s)	4.1				6.4	6.2	
tC, 2 stage (s)							
tF (s)	2.2				3.5	3.3	
p0 queue free %	99				98	95	
cM capacity (veh/h)	1451				698	919	
Direction, Lane #	EB 1	WB 1	SB 1				
Volume Total	130	134	61				
Volume Left	21	0	15				
Volume Right	0	7	46				
cSH	1451	1700	853				
Volume to Capacity	0.01	0.08	0.07				
Queue Length 95th (m)	0.3	0.0	1.8				
Control Delay (s)	1.3	0.0	9.5				
Lane LOS	Α		Α				
Approach Delay (s)	1.3	0.0	9.5				
Approach LOS			Α				
Intersection Summary							
Average Delay			2.3				
Intersection Capacity Utilization	on		28.7%	IC	U Level o	of Service	
Analysis Period (min)			15				

	۶	†	ţ	
Lane Group	EBL	NBT	SBT	
Lane Configurations	¥	ર્ન	f)	
Traffic Volume (vph)	61	88	61	
Future Volume (vph)	61	88	61	
Lane Group Flow (vph)	94	163	102	
Sign Control	Stop	Stop	Stop	
Intersection Summary				
Control Type: Unsignalized	d			
Intersection Capacity Utiliz	ation 28.3%			ICU Level of Service A
Analysis Period (min) 15				

	•	•	4	†	↓	1		
Movement	EBL	EBR	NBL	NBT	SBT	SBR		
Lane Configurations	W			4	f)		•	
Sign Control	Stop			Stop	Stop			
Traffic Volume (vph)	61	33	75	88	61	41		
Future Volume (vph)	61	33	75	88	61	41		
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00		
Hourly flow rate (vph)	61	33	75	88	61	41		
Direction, Lane #	EB 1	NB 1	SB 1					
Volume Total (vph)	94	163	102					
Volume Left (vph)	61	75	0					
Volume Right (vph)	33	0	41					
Hadj (s)	-0.05	0.13	-0.21					
Departure Headway (s)	4.4	4.4	4.1					
Degree Utilization, x	0.12	0.20	0.12					
Capacity (veh/h)	756	801	853					
Control Delay (s)	8.0	8.4	7.6					
Approach Delay (s)	8.0	8.4	7.6					
Approach LOS	Α	Α	Α					
Intersection Summary								
Delay			8.1					
Level of Service A								
			28.3%	IC	U Level o	of Service		
Analysis Period (min)			15					

	→	+	†	+	
Lane Group	EBT	WBT	NBT	SBT	
Lane Configurations	4	- 43+	4	4	
Traffic Volume (vph)	3	3	45	17	
Future Volume (vph)	3	3	45	17	
Lane Group Flow (vph)	222	14	49	105	
Sign Control	Stop	Stop	Stop	Stop	
Intersection Summary					
Control Type: Unsignalized					
Intersection Capacity Utiliza				IC	U Level of Service A

Synchro 10 Report Parsons

	•	→	•	•	+	•	4	†	/	\	↓	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Sign Control		Stop			Stop			Stop			Stop	
Traffic Volume (vph)	218	3	1	0	3	11	4	45	0	2	17	86
Future Volume (vph)	218	3	1	0	3	11	4	45	0	2	17	86
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	218	3	1	0	3	11	4	45	0	2	17	86
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total (vph)	222	14	49	105								
Volume Left (vph)	218	0	4	2								
Volume Right (vph)	1	11	0	86								
Hadj (s)	0.23	-0.44	0.05	-0.45								
Departure Headway (s)	4.5	4.1	4.6	4.1								
Degree Utilization, x	0.28	0.02	0.06	0.12								
Capacity (veh/h)	779	828	730	826								
Control Delay (s)	9.2	7.1	7.9	7.6								
Approach Delay (s)	9.2	7.1	7.9	7.6								
Approach LOS	Α	Α	Α	Α								
Intersection Summary												
Delay			8.5									
Level of Service			Α									
Intersection Capacity Utiliza	tion		33.4%	IC	U Level	of Service			Α			
Analysis Period (min)			15									

EBL	EBT	WBL	MOT					
		VVDL	WBT	NBL	NBT	SBL	SBT	
	₽	ሻ	1>	ሻ	ተተ _ጉ	ሻ	ተተ _ጉ	
172	53	337	29	143	799	234	1459	
172	53	337	29	143	799	234	1459	
172	453	337	368	143	928	234	1598	
pm+pt	NA	pm+pt	NA	Prot	NA	Prot	NA	
7	4	3	8	5	2	1	6	
4		8						
7	4	3	8	5	2	1	6	
5.0	10.0	5.0	10.0	5.0	10.0	5.0	10.0	
11.2	36.7	9.5	36.7	11.1	25.6	11.1	25.6	
19.6	36.7	23.0	40.1	16.7	33.9	26.4	43.6	
16.3%	30.6%	19.2%	33.4%	13.9%	28.3%	22.0%	36.3%	
3.3	3.3	3.5	3.3	3.7	3.7	3.7	3.7	
2.9	3.4	1.0	3.4	2.4	1.9	2.4	1.9	
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
6.2	6.7	4.5	6.7	6.1	5.6	6.1	5.6	
Lead	Lag	Lead	Lag	Lead	Lag	Lead	Lag	
Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
None	None	None	None	None	C-Max	None	C-Max	
36.8	23.9	48.4	28.3	13.2	35.0	19.7	41.5	
0.31	0.20	0.40	0.24	0.11	0.29	0.16	0.35	
0.64	0.91	1.04	0.59	0.77	0.66	0.84	0.96	
	45.5		9.4			74.6		
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
35.3	45.5							
D	D	F	Α	Е	D	Е	D	
	42.7		49.8		45.1		55.5	
	D		D		D		Е	
26.0	53.0	~68.0	5.3	32.8		52.3	~148.6	
39.4	#102.1	#121.2	30.6	#74.4	96.7	#93.9	#178.5	
	228.4		515.1		121.4		276.2	
15.0				135.0		160.0		
283	563	324	672	186	1408	293	1672	
0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	
0.61	0.80	1.04	0.55	0.77	0.66	0.80	0.96	
	172 pm+pt 7 4 7 5.0 11.2 19.6 16.3% 3.3 2.9 0.0 6.2 Lead Yes None 36.8 0.31 0.64 35.3 0.0 35.3 D	172 453 pm+pt NA 7 4 4 7 4 5.0 10.0 11.2 36.7 19.6 36.7 16.3% 30.6% 3.3 3.3 2.9 3.4 0.0 0.0 6.2 6.7 Lead Lag Yes Yes None None 36.8 23.9 0.31 0.20 0.64 0.91 35.3 45.5 0.0 0.0 35.3 45.5 D D 42.7 D 26.0 53.0 39.4 #102.1 228.4 15.0 283 563 0 0 0 0 0 0	172 453 337 pm+pt NA pm+pt 7 4 3 4 8 7 4 3 5.0 10.0 5.0 11.2 36.7 9.5 19.6 36.7 23.0 16.3% 30.6% 19.2% 3.3 3.3 3.5 2.9 3.4 1.0 0.0 0.0 0.0 0.0 6.2 6.7 4.5 Lead Lag Lead Yes Yes None None None None 36.8 23.9 48.4 0.31 0.20 0.40 0.40 0.64 0.91 1.04 35.3 45.5 93.8 0.0 0.0 35.3 45.5 93.8 D D F 42.7 D 5 26.0 39.4 #121.2 228.4 15.0 283 563 324 0 0 0 0	172 453 337 368 pm+pt NA pm+pt NA 7 4 3 8 4 8 7 4 3 8 5.0 10.0 5.0 10.0 11.2 36.7 9.5 36.7 19.6 36.7 23.0 40.1 16.3% 30.6% 19.2% 33.4% 3.3 3.3 3.5 3.3 2.9 3.4 1.0 3.4 0.0 0.0 0.0 0.0 0.0 6.7 Lead Lag Lead Lag Yes Yes Yes None None None None 36.8 23.9 48.4 28.3 0.31 0.20 0.40 0.24 0.64 0.91 1.04 0.59 35.3 45.5 93.8 9.4 0.0 0.0 35.3 45.5 93.8 9.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 <t< td=""><td>172 453 337 368 143 pm+pt NA pm+pt NA Prot 7 4 3 8 5 4 8 7 4 3 8 5 5.0 10.0 5.0 10.0 5.0 11.2 36.7 9.5 36.7 11.1 19.6 36.7 23.0 40.1 16.7 16.3% 30.6% 19.2% 33.4% 13.9% 3.3 3.3 3.5 3.3 3.7 2.9 3.4 1.0 3.4 2.4 0.0 0.0 0.0 0.0 0.0 6.2 6.7 4.5 6.7 6.1 Lead Lag Lead Lag Lead Yes Yes Yes Yes Yes None None None None None 36.8 23.9 48.4 28.3 13.2 <</td><td>172 453 337 368 143 928 pm+pt NA Prot NA 7 4 3 8 5 2 4 8 7 4 3 8 5 2 5.0 10.0 5.0 10.0 5.0 10.0 11.2 36.7 4 3 8 5 2 5.0 10.0 5.0 10.0 5.0 10.0 11.2 36.7 9.5 36.7 11.1 25.6 19.6 36.7 23.0 40.1 16.7 33.9 16.3% 30.6% 19.2% 33.4% 13.9% 28.3% 3.3 3.3 3.5 3.3 3.7 3.7 2.9 3.4 1.0 3.4 2.4 1.9 0.0 0.0 0.0 0.0 0.0 6.2 6.7 4.5 6.7 6.1 5.6 <td< td=""><td>172 453 337 368 143 928 234 pm+pt NA Prot NA Prot 7 4 3 8 5 2 1 4 8 7 4 3 8 5 2 1 5.0 10.0 5.0 10.0 5.0 10.0 5.0 11.2 36.7 9.5 36.7 11.1 25.6 11.1 19.6 36.7 23.0 40.1 16.7 33.9 26.4 16.3% 30.6% 19.2% 33.4% 13.9% 28.3% 22.0% 3.3 3.3 3.5 3.3 3.7 3.7 3.7 2.9 3.4 1.0 3.4 2.4 1.9 2.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.2 6.7 4.5 6.7 6.1 5.6 6.1 Lead</td><td>172 453 337 368 143 928 234 1598 pm+pt NA Prot NA Prot NA 7 4 3 8 5 2 1 6 4 8 7 4 3 8 5 2 1 6 5.0 10.0 5.0 10.0 5.0 10.0 5.0 10.0 11.2 36.7 9.5 36.7 11.1 25.6 11.1 25.6 19.6 36.7 23.0 40.1 16.7 33.9 26.4 43.6 16.3% 30.6% 19.2% 33.4% 13.9% 28.3% 22.0% 36.3% 3.3 3.3 3.5 3.3 3.7 3.7 3.7 2.9 3.4 1.0 3.4 2.4 1.9 2.4 1.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 <tr< td=""></tr<></td></td<></td></t<>	172 453 337 368 143 pm+pt NA pm+pt NA Prot 7 4 3 8 5 4 8 7 4 3 8 5 5.0 10.0 5.0 10.0 5.0 11.2 36.7 9.5 36.7 11.1 19.6 36.7 23.0 40.1 16.7 16.3% 30.6% 19.2% 33.4% 13.9% 3.3 3.3 3.5 3.3 3.7 2.9 3.4 1.0 3.4 2.4 0.0 0.0 0.0 0.0 0.0 6.2 6.7 4.5 6.7 6.1 Lead Lag Lead Lag Lead Yes Yes Yes Yes Yes None None None None None 36.8 23.9 48.4 28.3 13.2 <	172 453 337 368 143 928 pm+pt NA Prot NA 7 4 3 8 5 2 4 8 7 4 3 8 5 2 5.0 10.0 5.0 10.0 5.0 10.0 11.2 36.7 4 3 8 5 2 5.0 10.0 5.0 10.0 5.0 10.0 11.2 36.7 9.5 36.7 11.1 25.6 19.6 36.7 23.0 40.1 16.7 33.9 16.3% 30.6% 19.2% 33.4% 13.9% 28.3% 3.3 3.3 3.5 3.3 3.7 3.7 2.9 3.4 1.0 3.4 2.4 1.9 0.0 0.0 0.0 0.0 0.0 6.2 6.7 4.5 6.7 6.1 5.6 <td< td=""><td>172 453 337 368 143 928 234 pm+pt NA Prot NA Prot 7 4 3 8 5 2 1 4 8 7 4 3 8 5 2 1 5.0 10.0 5.0 10.0 5.0 10.0 5.0 11.2 36.7 9.5 36.7 11.1 25.6 11.1 19.6 36.7 23.0 40.1 16.7 33.9 26.4 16.3% 30.6% 19.2% 33.4% 13.9% 28.3% 22.0% 3.3 3.3 3.5 3.3 3.7 3.7 3.7 2.9 3.4 1.0 3.4 2.4 1.9 2.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.2 6.7 4.5 6.7 6.1 5.6 6.1 Lead</td><td>172 453 337 368 143 928 234 1598 pm+pt NA Prot NA Prot NA 7 4 3 8 5 2 1 6 4 8 7 4 3 8 5 2 1 6 5.0 10.0 5.0 10.0 5.0 10.0 5.0 10.0 11.2 36.7 9.5 36.7 11.1 25.6 11.1 25.6 19.6 36.7 23.0 40.1 16.7 33.9 26.4 43.6 16.3% 30.6% 19.2% 33.4% 13.9% 28.3% 22.0% 36.3% 3.3 3.3 3.5 3.3 3.7 3.7 3.7 2.9 3.4 1.0 3.4 2.4 1.9 2.4 1.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 <tr< td=""></tr<></td></td<>	172 453 337 368 143 928 234 pm+pt NA Prot NA Prot 7 4 3 8 5 2 1 4 8 7 4 3 8 5 2 1 5.0 10.0 5.0 10.0 5.0 10.0 5.0 11.2 36.7 9.5 36.7 11.1 25.6 11.1 19.6 36.7 23.0 40.1 16.7 33.9 26.4 16.3% 30.6% 19.2% 33.4% 13.9% 28.3% 22.0% 3.3 3.3 3.5 3.3 3.7 3.7 3.7 2.9 3.4 1.0 3.4 2.4 1.9 2.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.2 6.7 4.5 6.7 6.1 5.6 6.1 Lead	172 453 337 368 143 928 234 1598 pm+pt NA Prot NA Prot NA 7 4 3 8 5 2 1 6 4 8 7 4 3 8 5 2 1 6 5.0 10.0 5.0 10.0 5.0 10.0 5.0 10.0 11.2 36.7 9.5 36.7 11.1 25.6 11.1 25.6 19.6 36.7 23.0 40.1 16.7 33.9 26.4 43.6 16.3% 30.6% 19.2% 33.4% 13.9% 28.3% 22.0% 36.3% 3.3 3.3 3.5 3.3 3.7 3.7 3.7 2.9 3.4 1.0 3.4 2.4 1.9 2.4 1.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 <tr< td=""></tr<>

Intersection Summary

Cycle Length: 120

Actuated Cycle Length: 120

Offset: 84 (70%), Referenced to phase 2:NBT and 6:SBT, Start of Green

Natural Cycle: 125

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 1.04 Intersection Signal Delay: 50.0 Intersection Capacity Utilization 109.2%

Intersection LOS: D
ICU Level of Service H

Analysis Period (min) 15

06/02/2021

- Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles.
- # 95th percentile volume exceeds capacity, queue may be longer.
 - Queue shown is maximum after two cycles.

Synchro 10 Report **Parsons**

	۶	→	•	•	•	4	†	/	-	↓	4	
Lane Group	EBL	EBT	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	7	₽		ની	7	ሻ	^	7	ሻ	^	7	
Traffic Volume (vph)	7	0	62	1	62	3	1030	52	73	1897	8	
Future Volume (vph)	7	0	62	1	62	3	1030	52	73	1897	8	
Lane Group Flow (vph)	7	5	0	63	62	3	1030	52	73	1897	8	
Turn Type	Perm	NA	Perm	NA	Perm	Prot	NA	Perm	Prot	NA	Perm	
Protected Phases		4		8		5	2		1	6		
Permitted Phases	4		8		8			2			6	
Detector Phase	4	4	8	8	8	5	2	2	1	6	6	
Switch Phase												
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	5.0	10.0	10.0	5.0	10.0	10.0	
Minimum Split (s)	30.8	30.8	30.8	30.8	30.8	10.8	26.6	26.6	10.8	26.6	26.6	
Total Split (s)	31.0	31.0	31.0	31.0	31.0	14.0	75.0	75.0	14.0	75.0	75.0	
Total Split (%)	25.8%	25.8%	25.8%	25.8%	25.8%	11.7%	62.5%	62.5%	11.7%	62.5%	62.5%	
Yellow Time (s)	3.3	3.3	3.3	3.3	3.3	3.7	3.7	3.7	3.7	3.7	3.7	
All-Red Time (s)	3.5	3.5	3.5	3.5	3.5	2.1	1.9	1.9	2.1	1.9	1.9	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.8	6.8		6.8	6.8	5.8	5.6	5.6	5.8	5.6	5.6	
Lead/Lag						Lead	Lag	Lag	Lead	Lag	Lag	
Lead-Lag Optimize?						Yes	Yes	Yes	Yes	Yes	Yes	
Recall Mode	None	None	None	None	None	None	C-Max	C-Max	None	C-Max	C-Max	
Act Effct Green (s)	12.2	12.2		12.2	12.2	5.8	85.9	85.9	10.7	97.5	97.5	
Actuated g/C Ratio	0.10	0.10		0.10	0.10	0.05	0.72	0.72	0.09	0.81	0.81	
v/c Ratio	0.05	0.02		0.48	0.28	0.04	0.42	0.05	0.48	0.69	0.01	
Control Delay	47.9	0.2		62.6	10.6	55.0	10.4	0.7	70.0	7.1	0.0	
Queue Delay	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	47.9	0.2		62.6	10.6	55.0	10.4	0.7	70.0	7.1	0.0	
LOS	D	Α		Е	В	D	В	Α	E	Α	Α	
Approach Delay		28.0		36.8			10.1			9.4		
Approach LOS		С		D			В			Α		
Queue Length 50th (m)	1.5	0.0		14.4	0.0	0.7	56.2	0.0	18.3	32.4	0.0	
Queue Length 95th (m)	5.9	0.0		27.8	9.4	3.9	87.5	1.7	m19.8	m223.8	m0.0	
Internal Link Dist (m)		58.8		118.5			110.2			196.4		
Turn Bay Length (m)					35.0	50.0		50.0	90.0		55.0	
Base Capacity (vph)	257	406		261	366	115	2426	1110	155	2753	1248	
Starvation Cap Reductn	0	0		0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0		0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0		0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.03	0.01		0.24	0.17	0.03	0.42	0.05	0.47	0.69	0.01	

Intersection Summary

Cycle Length: 120

Actuated Cycle Length: 120

Offset: 112 (93%), Referenced to phase 2:NBT and 6:SBT, Start of Green

Natural Cycle: 100

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.69 Intersection Signal Delay: 10.8 Intersection Capacity Utilization 84.7%

Intersection LOS: B ICU Level of Service E

Analysis Period (min) 15

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 2: Riverside Dr & Ridgewood Ave

	→	←	\		
Lane Group	EBT	WBT	SBL		
Lane Configurations	4	ĵ.	W		
Traffic Volume (vph)	87	97	9		
Future Volume (vph)	87	97	9		
Lane Group Flow (vph)	125	110	37		
Sign Control	Free	Free	Stop		
Intersection Summary					
Control Type: Unsignalized					
Intersection Capacity Utiliza				ICU Level of Service A	

	•	→	+	•	/	4	
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations		4	1}•		¥		
Traffic Volume (veh/h)	38	87	97	13	9	28	
Future Volume (Veh/h)	38	87	97	13	9	28	
Sign Control		Free	Free		Stop		
Grade		0%	0%		0%		
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Hourly flow rate (vph)	38	87	97	13	9	28	
Pedestrians							
Lane Width (m)							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)							
Median type		None	None				
Median storage veh)							
Upstream signal (m)		143					
pX, platoon unblocked							
vC, conflicting volume	110				266	104	
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol	110				266	104	
tC, single (s)	4.1				6.4	6.2	
tC, 2 stage (s)							
tF (s)	2.2				3.5	3.3	
p0 queue free %	97				99	97	
cM capacity (veh/h)	1480				704	951	
Direction, Lane #	EB 1	WB 1	SB 1				
Volume Total	125	110	37				
Volume Left	38	0	9				
Volume Right	0	13	28				
cSH	1480	1700	876				
Volume to Capacity	0.03	0.06	0.04				
Queue Length 95th (m)	0.03	0.00	1.0				
Control Delay (s)	2.4	0.0	9.3				
Lane LOS	2.4 A	0.0	9.5 A				
Approach Delay (s)	2.4	0.0	9.3				
Approach LOS	2.4	0.0	9.3 A				
•			A				
Intersection Summary							
Average Delay			2.4				
Intersection Capacity Utiliza	ation		23.7%	IC	U Level o	of Service	
Analysis Period (min)			15				

	•	†	ļ	
Lane Group	EBL	NBT	SBT	
Lane Configurations	¥	ર્ન	f)	
Traffic Volume (vph)	36	49	243	
Future Volume (vph)	36	49	243	
Lane Group Flow (vph)	92	95	291	
Sign Control	Stop	Stop	Stop	
Intersection Summary				
Control Type: Unsignalized				
Intersection Capacity Utiliza				ICU Level of Service A

	•	•	•	†	↓	4
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	¥			ર્ન	ĵ»	
Sign Control	Stop			Stop	Stop	
Traffic Volume (vph)	36	56	46	49	243	48
Future Volume (vph)	36	56	46	49	243	48
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	36	56	46	49	243	48
Direction, Lane #	EB 1	NB 1	SB 1			
Volume Total (vph)	92	95	291			
Volume Left (vph)	36	46	0			
Volume Right (vph)	56	0	48			
Hadj (s)	-0.25	0.13	-0.06			
Departure Headway (s)	4.5	4.6	4.2			
Degree Utilization, x	0.11	0.12	0.34			
Capacity (veh/h)	734	759	837			
Control Delay (s)	8.1	8.2	9.3			
Approach Delay (s)	8.1	8.2	9.3			
Approach LOS	Α	Α	Α			
Intersection Summary						
Delay			8.8			
Level of Service			Α			
ntersection Capacity Utilization			37.7%	IC	U Level c	of Service
Analysis Period (min)			15			

	→	←	†	ļ	
Lane Group	EBT	WBT	NBT	SBT	
Lane Configurations	4	4	4	- ↔	
Traffic Volume (vph)	2	4	23	80	
Future Volume (vph)	2	4	23	80	
Lane Group Flow (vph)	113	8	24	389	
Sign Control	Stop	Stop	Stop	Stop	
Intersection Summary					
Control Type: Unsignalized					
Intersection Capacity Utilizat	ion 47.4%			IC	U Level of Service A

	•	→	•	•	+	•	•	†	/	\	↓	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Sign Control		Stop			Stop			Stop			Stop	
Traffic Volume (vph)	104	2	7	0	4	4	1	23	0	8	80	301
Future Volume (vph)	104	2	7	0	4	4	1	23	0	8	80	301
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	104	2	7	0	4	4	1	23	0	8	80	301
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total (vph)	113	8	24	389								
Volume Left (vph)	104	0	1	8								
Volume Right (vph)	7	4	0	301								
Hadj (s)	0.18	-0.27	0.04	-0.43								
Departure Headway (s)	4.9	4.6	4.6	3.8								
Degree Utilization, x	0.16	0.01	0.03	0.41								
Capacity (veh/h)	672	695	734	912								
Control Delay (s)	8.8	7.7	7.8	9.5								
Approach Delay (s)	8.8	7.7	7.8	9.5								
Approach LOS	Α	Α	Α	Α								
Intersection Summary												
Delay			9.2									
Level of Service			Α									
Intersection Capacity Utiliza	tion		47.4%	IC	U Level	of Service			Α			
Analysis Period (min)			15									

New Site
Site Category: (None)
Roundabout

Movement Performance - Vehicles													
Mov ID	Turn	Demand l Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate	Aver. No. Cycles		
South	South: Flannery Dr												
1	L2	94	2.0	0.295	9.1	LOS A	1.3	9.1	0.46	0.61	0.46	48.0	
3	R2	204	2.0	0.295	4.6	LOS A	1.3	9.1	0.46	0.61	0.46	46.5	
Appro	ach	299	2.0	0.295	6.0	LOSA	1.3	9.1	0.46	0.61	0.46	47.0	
East:	Airport Pk	wy NB On-0	Off / SB	On Ramp	S								
4	L2	4	2.0	0.198	7.8	LOSA	1.0	7.1	0.25	0.33	0.25	49.6	
5	T1	249	2.0	0.198	2.9	LOS A	1.0	7.1	0.25	0.33	0.25	49.3	
Appro	ach	253	2.0	0.198	3.0	LOSA	1.0	7.1	0.25	0.33	0.25	49.3	
North:	: Airport P	kwy SB Off	Ramp										
7	L2	3	2.0	0.197	9.1	LOSA	1.1	8.0	0.49	0.52	0.49	48.6	
8	T1	34	2.0	0.197	4.2	LOSA	1.1	8.0	0.49	0.52	0.49	48.3	
9	R2	196	2.0	0.197	4.6	LOS A	1.1	8.0	0.49	0.52	0.49	47.0	
Appro	ach	233	2.0	0.197	4.6	LOSA	1.1	8.0	0.49	0.52	0.49	47.2	
West:	Brookfiel	d Rd											
11	T1	401	2.0	0.153	2.7	LOSA	0.9	6.1	0.16	0.30	0.16	49.6	
12	R2	74	2.0	0.153	3.5	LOSA	0.9	6.1	0.16	0.31	0.16	48.2	
Appro	ach	476	2.0	0.153	2.8	LOSA	0.9	6.1	0.16	0.30	0.16	49.4	
All Ve	hicles	1261	2.0	0.295	3.9	LOSA	1.3	9.1	0.31	0.42	0.31	48.4	

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: PARSONS | Processed: Friday, April 23, 2021 12:08:37 PM

Site: 101 [Existing PM]

New Site
Site Category: (None)
Roundabout

Move	ment Pe	erformance	e - Vehi	icles								
Mov ID	Turn	Demand l Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate	Aver. No. Cycles	
South: Flannery Dr												
1	L2	37	2.0	0.117	9.1	LOS A	0.5	3.4	0.48	0.61	0.48	47.9
3	R2	73	2.0	0.117	4.6	LOS A	0.5	3.4	0.48	0.61	0.48	46.4
Appro	ach	110	2.0	0.117	6.1	LOSA	0.5	3.4	0.48	0.61	0.48	46.9
East:	Airport Pk	wy NB On-0	Off / SB	On Ramp	S							
4	L2	18	2.0	0.098	7.6	LOS A	0.5	3.3	0.13	0.34	0.13	49.7
5	T1	116	2.0	0.098	2.7	LOS A	0.5	3.3	0.13	0.34	0.13	49.4
Appro	ach	133	2.0	0.098	3.3	LOSA	0.5	3.3	0.13	0.34	0.13	49.4
North:	Airport F	kwy SB Off	Ramp									
7	L2	11	2.0	0.413	8.4	LOS A	2.8	20.0	0.42	0.43	0.42	48.9
8	T1	262	2.0	0.413	3.5	LOS A	2.8	20.0	0.42	0.43	0.42	48.5
9	R2	300	2.0	0.413	4.0	LOS A	2.8	20.0	0.42	0.43	0.42	47.3
Appro	ach	573	2.0	0.413	3.8	LOSA	2.8	20.0	0.42	0.43	0.42	47.9
West:	Brookfiel	ld Rd										
11	T1	488	2.0	0.239	3.8	LOS A	1.5	10.9	0.48	0.44	0.48	48.3
12	R2	158	2.0	0.239	4.3	LOS A	1.5	10.9	0.47	0.44	0.47	47.0
Appro	ach	646	2.0	0.239	3.9	LOSA	1.5	10.9	0.48	0.44	0.48	48.0
All Ve	hicles	1462	2.0	0.413	4.0	LOS A	2.8	20.0	0.42	0.44	0.42	48.0

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: PARSONS | Processed: Friday, April 23, 2021 12:11:24 PM

₩ Site: 101 [Total Background 2024 and 2029 AM]

Site Category: (None) Roundabout

Move	ment Po	erformance	e - Vehi	icles								
Mov ID	Turn	Demand Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate	Aver. No. Cycles	
South	: Flanner	y Dr										
1	L2	87	2.0	0.289	9.0	LOS A	1.2	8.9	0.46	0.60	0.46	48.1
3	R2	207	2.0	0.289	4.6	LOS A	1.2	8.9	0.46	0.60	0.46	46.6
Appro	ach	294	2.0	0.289	5.9	LOSA	1.2	8.9	0.46	0.60	0.46	47.0
East:	Airport Pl	wy NB On-0	Off / SB	On Ramp	S							
4	L2	13	2.0	0.184	7.8	LOS A	0.9	6.5	0.23	0.34	0.23	49.6
5	T1	224	2.0	0.184	2.9	LOSA	0.9	6.5	0.23	0.34	0.23	49.2
Appro	ach	237	2.0	0.184	3.2	LOSA	0.9	6.5	0.23	0.34	0.23	49.2
North:	: Airport F	kwy SB Off	Ramp									
7	L2	3	2.0	0.186	8.9	LOSA	1.0	7.4	0.47	0.51	0.47	48.7
8	T1	31	2.0	0.186	4.0	LOSA	1.0	7.4	0.47	0.51	0.47	48.3
9	R2	189	2.0	0.186	4.5	LOSA	1.0	7.4	0.47	0.51	0.47	47.1
Appro	ach	223	2.0	0.186	4.5	LOSA	1.0	7.4	0.47	0.51	0.47	47.3
West:	Brookfiel	d Rd										
11	T1	390	2.0	0.148	2.7	LOSA	0.8	5.7	0.17	0.30	0.17	49.6
12	R2	69	2.0	0.148	3.5	LOSA	0.8	5.7	0.16	0.31	0.16	48.2
Appro	ach	459	2.0	0.148	2.8	LOSA	0.8	5.7	0.17	0.30	0.17	49.4
All Ve	hicles	1213	2.0	0.289	3.9	LOSA	1.2	8.9	0.31	0.42	0.31	48.4

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: PARSONS | Processed: Thursday, May 6, 2021 3:43:20 PM

₩ Site: 101 [Total Background 2024 and 2029 PM]

Site Category: (None) Roundabout

Mov Turn ID South: Flannery 1 L2 3 R2 Approach East: Airport Pkt 4 L2 5 T1	Demand I Total veh/h / Dr 36 79 115	Flows HV % 2.0 2.0	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate	Aver. No. Cycles	
1 L2 3 R2 Approach East: Airport Pk	36 79		0.120								km/h
3 R2 Approach East: Airport Pkv 4 L2	79		0.120								
Approach East: Airport Pk		2.0		9.0	LOSA	0.5	3.5	0.47	0.60	0.47	48.0
East: Airport Pkv	115		0.120	4.5	LOSA	0.5	3.5	0.47	0.60	0.47	46.5
4 L2		2.0	0.120	5.9	LOSA	0.5	3.5	0.47	0.60	0.47	47.0
	wy NB On-C	Off / SB	On Ramp	S							
5 T1	37	2.0	0.104	7.6	LOSA	0.5	3.4	0.13	0.39	0.13	49.4
3 11	104	2.0	0.104	2.7	LOS A	0.5	3.4	0.13	0.39	0.13	49.0
Approach	141	2.0	0.104	4.0	LOSA	0.5	3.4	0.13	0.39	0.13	49.1
North: Airport Pl	kwy SB Off	Ramp									
7 L2	10	2.0	0.396	8.4	LOSA	2.6	18.8	0.42	0.44	0.42	48.9
8 T1	236	2.0	0.396	3.5	LOSA	2.6	18.8	0.42	0.44	0.42	48.5
9 R2	299	2.0	0.396	4.0	LOSA	2.6	18.8	0.42	0.44	0.42	47.3
Approach	545	2.0	0.396	3.9	LOS A	2.6	18.8	0.42	0.44	0.42	47.8
West: Brookfield	d Rd										
11 T1	460	2.0	0.223	3.7	LOSA	1.4	10.0	0.47	0.44	0.47	48.4
12 R2	146	2.0	0.223	4.3	LOSA	1.4	10.0	0.45	0.43	0.45	47.1
Approach	606	2.0	0.223	3.9	LOSA	1.4	10.0	0.46	0.43	0.46	48.0
All Vehicles		2.0									

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: PARSONS | Processed: Thursday, May 6, 2021 3:43:20 PM

Site: 101 [Total Projected 2024 and 2029 AM]

Site Category: (None) Roundabout

Move	ment P	erformance	e - Vehi	icles								
Mov ID	Turn	Demand l Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate	Aver. No. Cycles	
South: Flannery Dr												
1	L2	87	2.0	0.304	9.0	LOS A	1.3	9.5	0.46	0.60	0.46	48.1
3	R2	222	2.0	0.304	4.6	LOS A	1.3	9.5	0.46	0.60	0.46	46.6
Appro	ach	309	2.0	0.304	5.8	LOSA	1.3	9.5	0.46	0.60	0.46	47.0
East:	Airport Pl	wy NB On-0	Off / SB	On Ramp	S							
4	L2	20	2.0	0.189	7.8	LOSA	0.9	6.7	0.23	0.35	0.23	49.5
5	T1	224	2.0	0.189	2.9	LOS A	0.9	6.7	0.23	0.35	0.23	49.1
Appro	ach	244	2.0	0.189	3.3	LOSA	0.9	6.7	0.23	0.35	0.23	49.2
North:	Airport F	kwy SB Off	Ramp									
7	L2	3	2.0	0.186	9.0	LOSA	1.0	7.4	0.48	0.51	0.48	48.7
8	T1	31	2.0	0.186	4.1	LOSA	1.0	7.4	0.48	0.51	0.48	48.3
9	R2	189	2.0	0.186	4.5	LOS A	1.0	7.4	0.48	0.51	0.48	47.1
Appro	ach	223	2.0	0.186	4.5	LOSA	1.0	7.4	0.48	0.51	0.48	47.3
West:	Brookfiel	ld Rd										
11	T1	390	2.0	0.149	2.7	LOSA	0.8	5.6	0.18	0.31	0.18	49.5
12	R2	69	2.0	0.149	3.5	LOSA	0.8	5.6	0.17	0.32	0.17	48.1
Appro	ach	459	2.0	0.149	2.8	LOSA	0.8	5.6	0.18	0.31	0.18	49.3
All Ve	hicles	1235	2.0	0.304	4.0	LOSA	1.3	9.5	0.31	0.43	0.31	48.3

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: PARSONS | Processed: Wednesday, June 2, 2021 1:08:52 PM

Site: 101 [Total Projected 2024 and 2029 PM]

Site Category: (None) Roundabout

Movement Performance - Vehicles												
Mov ID	Turn	Demand l Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate	Aver. No. Cycles	Average Speed km/h
South	South: Flannery Dr											
1	L2	36	2.0	0.129	9.0	LOSA	0.5	3.9	0.47	0.60	0.47	48.1
3	R2	88	2.0	0.129	4.6	LOSA	0.5	3.9	0.47	0.60	0.47	46.5
Appro	ach	124	2.0	0.129	5.8	LOSA	0.5	3.9	0.47	0.60	0.47	47.0
East:	East: Airport Pkwy NB On-Off / SB On Ramps											
4	L2	50	2.0	0.113	7.6	LOSA	0.5	3.8	0.13	0.41	0.13	49.2
5	T1	104	2.0	0.113	2.7	LOSA	0.5	3.8	0.13	0.41	0.13	48.8
Appro	ach	154	2.0	0.113	4.3	LOSA	0.5	3.8	0.13	0.41	0.13	48.9
North:	Airport F	kwy SB Off	Ramp									
7	L2	10	2.0	0.400	8.5	LOS A	2.7	19.1	0.43	0.45	0.43	48.8
8	T1	236	2.0	0.400	3.6	LOS A	2.7	19.1	0.43	0.45	0.43	48.5
9	R2	299	2.0	0.400	4.1	LOS A	2.7	19.1	0.43	0.45	0.43	47.2
Appro	ach	545	2.0	0.400	3.9	LOS A	2.7	19.1	0.43	0.45	0.43	47.8
West:	Brookfiel	ld Rd										
11	T1	460	2.0	0.225	3.8	LOS A	1.4	10.1	0.48	0.44	0.48	48.3
12	R2	146	2.0	0.225	4.4	LOS A	1.4	10.1	0.46	0.44	0.46	47.0
Appro	ach	606	2.0	0.225	3.9	LOSA	1.4	10.1	0.47	0.44	0.47	48.0
All Ve	hicles	1429	2.0	0.400	4.1	LOS A	2.7	19.1	0.42	0.45	0.42	47.9

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: PARSONS | Processed: Wednesday, June 2, 2021 1:08:53 PM