

WELLDALE LIMITED PARTNERSHIP

PHASE TWO ENVIRONMENTAL SITE ASSESSMENT

1186-1196 Wellington Street West, Ottawa, Ontario

FINAL REPORT

June 23, 2021

Terrapex Environmental Ltd.

20 Gurdwara Road, Unit 1 Ottawa Ontario K2E 8B3 Website: www.terrapex.com

TABLE OF CONTENTS

1.0	EXE	CUTIVE SUMMARY	1
2.0	INTR	ODUCTION	3
	2.1	SITE DESCRIPTION	3
	2.2	PROPERTY OWNERSHIP	
	2.3	CURRENT AND PROPOSED FUTURE USES	4
	2.4	APPLICABLE SITE CONDITION STANDARDS	5
3.0	BAC	KGROUND INFORMATION	7
	3.1	PHYSICAL SETTING	7
		3.1.1 WATER BODIES & AREAS OF NATURAL SIGNIFICANCE	7
		3.1.2 TOPOGRAPHY & SURFACE WATER DRAINAGE	7
	3.2	PAST INVESTIGATIONS	8
4.0	sco	PE OF INVESTIGATION	11
	4.1	OVERVIEW OF SITE INVESTIGATION	11
	4.2	MEDIA INVESTIGATED	12
	4.3	PHASE ONE CONCEPTUAL SITE MODEL	12
	4.4	DEVIATIONS FROM THE SAMPLING AND ANALYSIS PLAN	14
	4.5	IMPEDIMENTS	15
5.0	INVE	STIGATION METHOD	16
	5.1	GENERAL	
	5.2	DRILLING	16
	5.3	SOIL	17
		5.3.1 SOIL SAMPLING	17
		5.3.2 FIELD SCREENING MEASUREMENTS	17
	5.4	GROUNDWATER	
		5.4.1 MONITORING WELL INSTALLATION	
		5.4.2 MONITORING WELL DEVELOPMENT METHOD	18
		5.4.3 FIELD MEASUREMENTS OF WATER QUALITY PARAMETERS	
		5.4.4 GROUNDWATER SAMPLING	
	5.5	SEDIMENT	
		5.5.1 SEDIMENT SAMPLING	
	5.6	ANALYTICAL TESTING	
	5.7	RESIDUE MANAGEMENT PROCEDURES	
	5.8	ELEVATION SURVEYING	
	5.9	QUALITY ASSURANCE AND QUALITY CONTROL MEASURES	21
6.0	REVIEW AND EVALUATION		
	6.1	GEOLOGY	
	6.2	GROUNDWATER ELEVATIONS AND FLOW DIRECTION	
	6.3	GROUNDWATER HYDRAULIC GRADIENTS	23

TABLE OF CONTENTS (CONTINUED)

	6.4	FINE-MEDIUM SOIL TEXTURE	_
	6.5	SOIL FIELD SCREENING	23
	6.6	SOIL QUALITY	24
	6.7	GROUNDWATER QUALITY	24
	6.8	SEDIMENT QUALITY	25
	6.9	QUALITY ASSURANCE AND QUALITY CONTROL RESULTS	25
	6.10	PHASE TWO CONCEPTUAL SITE MODEL	26
7.0	CON	CLUSIONS	33
	7.1	SIGNATURES	33
8.0	REFERENCES		35

LIST OF FIGURES

Figure 1	Site Location
Figure 2A	General Site Layout
Figure 2B	General Site Layout – Conceptual Site Plan
Figure 3	Phase One Study Area and Surrounding Land Use
Figure 4A	Phase One CSM – Areas of Potential Environmental Concern
Figure 4B	Areas of Potential Environmental Concern – Phase Two Sampling Locations
Figure 5	Interpreted Groundwater Flow Direction – June 7, 2021
Figure 6A	Summary of Soil Results – pH
Figure 6B	Summary of Soil Results – Metals
Figure 6C	Summary of Soil Results – Hydride-Forming Metals
Figure 6D	Summary of Soil Results – Other Regulated Parameters
Figure 6E	Summary of Soil Results – Electrical Conductivity & Sodium Adsorption Ratio
Figure 6F	Summary of Soil Results – PAHs
Figure 6G	Summary of Soil Results – BTEX and PHCs
Figure 6H	Summary of Soil Results – VOCs excluding BTEX
Figure 7A	Summary of Groundwater Results – Metals
Figure 7B	Summary of Groundwater Results – Hydride-Forming Metals
Figure 7C	Summary of Groundwater Results – Other Regulated Parameters
Figure 7D	Summary of Groundwater Results – Chloride and Sodium
Figure 7E	Summary of Groundwater Results – BTEX and PHCs
Figure 7F	Summary of Groundwater Results – VOCs excluding BTEX
Figure 8	Cross-Sections
Figure 9A	Cross-Sections – Summary of Soil Analytical Results – pH
Figure 9B	Cross-Sections – Summary of Soil Analytical Results – Metals
Figure 9C	Cross-Sections – Summary of Soil Analytical Results – Hydride-Forming Metals
Figure 9D	Cross-Sections - Summary of Soil Analytical Results - Other Regulated
	Parameters

LIST OF FIGURES (CONTINUED)

Figure 9E	Cross-Sections – Summary of Soil Analytical Results – Electrical Conductivity & Sodium Absorption Ration
	·
Figure 9F	Cross-Sections – Summary of Soil Analytical Results – PAHs
Figure 9G	Cross-Sections – Summary of Soil Analytical Results – BTEX and PHCs
Figure 9H	Cross-Sections – Summary of Soil Analytical Results – VOCs excluding BTEX
Figure 10A	Cross-Sections – Summary of Groundwater Results – Metals
Figure 10B	Cross-Sections – Summary of Groundwater Results – Hydride-Forming Metals
Figure 10C	Cross-Sections - Summary of Groundwater Results - Other Regulated
	Parameters
Figure 10D	Cross-Sections – Summary of Groundwater Results – Chloride & Sodium
Figure 10E	Cross-Sections – Summary of Groundwater Results – BTEX and PHCs
Figure 10F	Cross-Sections – Summary of Groundwater Results – VOCs excluding BTEX
Figure 11A	Conceptual Model for Human Health Exposure
Figure 11B	Conceptual Model for Ecological Exposure

LIST OF TABLES

Table 1	Groundwater Monitoring Data
Table 2A	Soil Analytical Results – Metals and Inorganics
Table 2B	Soil Analytical Results – PAHs
Table 2C	Soil Analytical Results – BTEX and PHCs
Table 2D	Soil Analytical Results – VOCs excluding BTEX
Table 3A	Groundwater Analytical Results – Metals and Inorganics
Table 3B	Groundwater Analytical Results – BTEX and PHCs
Table 3C	Groundwater Analytical Results – VOCs excluding BTEX

APPENDICES

Appendix I	Plan of Survey, Proposed Development Plan
Appendix II	Non-Potable Groundwater Notification
Appendix III	Sampling and Analysis Plan
Appendix IV	Borehole Logs
Appendix V	Waste Manifests
Appendix VI	Grain Size Analyses
Appendix VII	Laboratory Certificates of Analysis

LIST OF ACRONYMS

amsl Above mean sea level

ANSI: Area of Natural or Scientific Interest
APEC: Area of Potential Environmental Concern

AST: Aboveground Storage Tank

BH: Borehole

BTEX: Benzene, Toluene, Ethylbenzene, and Xylenes
CALA: Canadian Analytical Laboratories Association

COC: Contaminant of Concern

COPC: Contaminant of Potential Concern
CSA: Canadian Standards Association

CSM: Conceptual Site Model
CV: Combustible Vapour
DO: Dissolved Oxygen

DNAPL: Dense Non-aqueous Phase Liquid

EC: Electrical Conductivity

ERIS: Environmental Risk Information Service Ltd.

EPA: Environmental Protection Act
ESA: Environmental Site Assessment

F1-F4 Petroleum hydrocarbon fractions 1 through 4 of the CCME Canada Wide Standards

HDPE: High density polyethylene
LDPE: Low density polyethylene
LEL: Lower Explosive Limit

LNAPL: Light Non-aqueous Phase Liquid

LPH: Liquid-Phase Petroleum Hydrocarbons (free-product) **MECP:** Ministry of Environment, Conservation and Parks

mg/kg: milligrams per kilogram
m bg metres below grade
mg/L: milligrams per litre

MGRA: Modified Generic Risk Assessment (under O. Reg. 153/04)

MNR: Ontario Ministry of Natural Resources
MOE: Ontario Ministry of Environment

MOECC: Ontario Ministry of Environment and Climate Change

MW: Monitoring well

NAPL: Non-aqueous Phase Liquid

NHIC: Natural Heritage Information Centre

ORP: oxidation-reduction potential

OSHA: Occupational Safety and Health Act
PAHs: Polycyclic Aromatic Hydrocarbons

PCA: Potentially Contaminating Activity (from O. Reg. 153/04)

PCBs: Polychlorinated Biphenyls
PHC: Petroleum Hydrocarbon
PID: Photo Ionization Detector

ppm: Parts Per Million
PVC: Polyvinyl chloride
QA: Quality Assurance
QC: Quality Control

LIST OF ACRONYMS (CONTINUED)

QP: Qualified Person under O. Reg. 143/04

RA: Risk Assessment
RAP: Remedial Action Plan
RDL: Reportable Detection Limit

RSC: Record of Site Condition (under O. Reg. 153/04)

R.R.O. 1990: Revised Regulations of Ontario, 1990.

SAR: Sodium Adsorption Ratio
SCC: Standards Council of Canada

SCS: Site Condition Standards (from O. Reg. 153/04)

SOP: Standard Operating Procedure

SV: Soil Vapour

SVOCs: Semi-Volatile Organic Compounds

TCLP Toxicity Characteristic Leaching Procedure (Reg. 558/00)

TOC: Total Organic Carbon

TP: Test Pit

TPH: Total Petroleum Hydrocarbons
UST: Underground Storage Tank
VOCs: Volatile Organic Compounds
WWIS: Water Well Information System

1.0 EXECUTIVE SUMMARY

Terrapex Environmental Ltd. (Terrapex) was retained by Welldale Limited Partnership (Welldale or the Client) to conduct a Phase Two Environmental Site Assessment (ESA) of the properties located at 1186-1196 Wellington Street West, Ottawa, Ontario (referenced variously as the "Phase Two Property" or the "Site").

It is understood that the study documented herein is being undertaken by Welldale for the purpose of filing a Record of Site Condition per Ontario Regulation 153/04, *Records of Site Condition - Part XV.1 of the Act* for the Site as part of the proposed re-development of the Site for future mixed-use including residential.

The overall objective of the investigation was to assess Areas of Potential Environmental Concern (APECs) identified during a previous Phase One ESA work program at the Site. Secondary objectives were to identify the location and concentration of contaminants in the land or water on, in, or under the Phase Two Property.

The Site is located on the south side of Wellington Street West, to the southwest of the intersection with Parkdale Ave. The Site comprises three adjacent properties and is rectangular in shape, with a total area of approximately 2,495 m². The Site is relatively flat other than a downward slope towards a loading dock at the back of the building on the 1188-1190 Wellington Street West property.

There are buildings on the 1188-1190 and 1194-1196 Wellington Street West properties with footprints of approximately 400 m² and 865 m², respectively. The 1186 Wellington Street West property is a parking lot with an area of approximately 978 m²

A Phase One ESA identified seven APECs for the Site. Based on the Phase One Conceptual Site Model (CSM), a sampling and analysis plan (SAAP) was developed to assess each of the APECs for contaminants of potential concern (COPCs) in any potentially impacted media.

Eleven boreholes were drilled as part of this Phase Two ESA, five of which were completed as monitoring wells. Representative soil and groundwater samples were submitted for laboratory analysis of COPCs.

Full Depth Generic Site Condition Standards (SCS) applicable to residential, parkland, or institutional property use listed in Table 3 of the April 15, 2011 Ministry of the Environment, Conservation and Parks (MECP) *Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act* document (hereafter referenced as the MECP Table 3 SCS) were considered appropriate for evaluating laboratory analytical results.

1

The Phase Two ESA investigation of the Site, as documented in this report, determined that:

- a COPC was identified within soil at the Site (barium concentration in soil sample MW111-1, located in APECs 3, 4, and 7, at a depth 0.0 – 0.6 m below grade (bg) was greater than the MECP Table 3 SCS);
- groundwater impacts were not identified (concentrations of all COPCs were below MECP Table 3 SCS); and,
- sediment was not present at the Site.

As delineated soil impacts remain on-Site, additional investigative, remedial, and/or risk assessment work will be required to file a Record of Site Condition (RSC). However, it is understood that all soil at the Site will be excavated as part of the proposed re-development.

2.0 INTRODUCTION

Terrapex Environmental Ltd. (Terrapex) was retained by Welldale Limited Partnership (Welldale or the Client) to conduct a Phase Two Environmental Site Assessment (ESA) of the properties located at 1186-1196 Wellington Street West, Ottawa, Ontario (referenced variously as the "Phase Two Property" or the "Site").

It is understood that the study documented herein is being undertaken by Welldale for the purpose of filing a Record of Site Condition (RSC) per Ontario Regulation 153/04 (O. Reg. 153/04), Records of Site Condition - Part XV.1 of the Act for the Site as part of the proposed redevelopment of the Site for future mixed-use including residential.

The overall objective of the investigation was to assess Areas of Potential Environmental Concern (APECs) identified during a previous Phase One ESA work program at the Site. Secondary objectives were to identify the location and concentration of contaminants in the land or water on, in, or under the Phase Two Property.

The findings of the Phase One ESA are documented in Terrapex's report entitled *Phase One Environmental Site Assessment, 1186-1196 Wellington Street West, Ottawa, Ontario, Final Report,* dated June 23, 2021.

2.1 SITE DESCRIPTION

The Site is located on the south side of Wellington Street West between Parkdale Avenue and Hamilton Avenue North. The Site comprises three adjacent properties with civic addresses 1186, 1188-1190 and 1194-1196 Wellington Street West. The Site is rectangular in shape with a total area of approximately 2,495 m². The Site is relatively flat other than a downward slope towards a loading dock at the back of the building on the 1188-1190 Wellington Street West property.

There are buildings on the 1188-1190 and 1194-1196 Wellington Street West properties with footprints of approximately 400 m² and 865 m², respectively. The 1186 Wellington Street West property is a parking lot with an area of approximately 978 m².

Information regarding the location and identification of the Phase One property is provided in the table below. Refer to Figure 1 for the location of the Site, and to Figure 2 for the general layout of the Site at the time of the site reconnaissance.

SUMMARY OF PHASE ONE PROPERTY INFORMATION

Address:	1186-1196 Wellington Street West, Ottawa, Ontario
Property Identification Number:	1186 Wellington Street West 04094-0217 (LT)
	1188-1190 Wellington Street West 04094-0154 (LT)
	1194-1196 Wellington Street West 04094-0155 (LT)
Legal Description:	1186 Wellington Street West Part of Lots A and B, Plan 58, South Wellington St., Ottawa, as in CR181530, Except Parts 1 and 2 Plan 4R18253
	1188-1190 Wellington Street West Part Lot B, Plan 58, South of Wellington St, as in CR437155; Ottawa
	1194-1196 Wellington Street West Lot C, Plan 58, South of Wellington St.; Part Lot D, Plan 58, South of Wellington St, as in N704521; Ottawa
UTM Coordinates (centre of site):	18T East: 442,910 m North: 5,027,685 m
Site Area:	2,495 m ²
Structures:	Buildings (on the 1188-1190 and 1194-1196 Wellington Street West properties)
Occupants (current):	1186 Wellington Street West – vacant (parking lot) 1188-1190 Wellington Street West – Rexall Drugstore (main floor), unoccupied (2 nd floor) 1194-1196 Wellington Street West – Cornerstone House of Refuge Apostolic Church
Other facilities of note:	None

Welldale provided a Surveyor's Real Property Report, entitled *Part 1 – Plan of Survey, Part of Lots A, B, C & D, Registered Plan 58 (Geographic Township of Nepean), City of Ottawa* prepared by Stantec Geomatic Ltd., dated July 2, 2020. A copy of the plan of survey is included in Appendix I.

2.2 PROPERTY OWNERSHIP

The registered owner of the Site is Welldale Limited Partnership. Authorization to proceed with the study was provided by Mr. Kevin A. Harper, Infill Development Director at Welldale, located at 200-180 Kent Street in Ottawa, Ontario.

2.3 CURRENT AND PROPOSED FUTURE USES

Current Site usage includes:

- An asphalt-covered parking lot at 1186 Wellington Street West;
- A Rexall Pharmacy and office space (currently unoccupied) at 1188-1190 Wellington Street West; and,
- The Cornerstone House of Refuge Apostolic Church at 1194-1196 Wellington Street West.

The existing ground surface at the Site is relatively flat with no significant slopes. The elevation ranged between 65.2 to 65.8 m above mean sea level (amsl).

Our understanding of the proposed future Site uses are based on the information and files provided by Welldale. It is our understanding that Welldale has purchased the Site (i.e. all three properties) with the intent to demolish all of the existing structures and construct a single mixed-use (residential and commercial) building ranging between one and eighteen storeys in height with a maximum three levels of underground parking.

Terrapex also understands that the Client has completed their pre-purchase due diligence and now requires a detailed assessment to support the planned re-development of the Site.

2.4 APPLICABLE SITE CONDITION STANDARDS

Generic Ministry of the Environment, Conservation and Parks (MECP) Site Condition Standards (SCS) for evaluating laboratory analytical results were selected from the April 15, 2011 *Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act* (MOE, 2011) document on the basis of the criteria specified in O. Reg. 153/04.

The Site specific details which influenced the soil and groundwater standards selection are summarized below:

- the Site is not within or adjacent to an area of natural significance as defined within Section 1 (1) of O. Reg. 153/04, does not include any land within 30 m of an area of natural significance, and is not otherwise considered "potentially sensitive";
- the soil pH was between the prescribed values for the application of generic SCS;
- more than 2 m of overburden was observed over at least two-thirds of the area of the Site;
- the Site does not include a waterbody and is not located within 30 m of a waterbody;
- stratified site conditions will not be used when evaluating laboratory analytical results;
- current use of the Site is considered to be commercial/institutional;
- proposed future use of the Site is expected to be commercial and residential and the proposed grading is anticipated not to vary significantly from the existing grade;
- potable water at the Site, and all other properties located (in whole or in part) within 250 m
 of the Site, is supplied by a municipal drinking water system (as defined in the Safe
 Drinking Water Act, 2002);
- neither the Site nor any property located (in whole or in part) within 250 m of the Site has
 a well that is used or intended for use as a source of water for human consumption or for
 agriculture;
- the Site is not located in an area designated in a municipal Official Plan as a well-head protection area, or another designation by the municipality intended for the protection of groundwater; and,
- soil texture at the Site has been classified as "coarse textured" based on the result of grain size analysis conducted for two representative soil samples.

TERRAPEX ENVIRONMENTAL LTD.

Based on the above, Full Depth Generic SCS applicable to residential, parkland, or institutional property use that are listed in Table 3 of the April 15, 2011 MECP Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act document (hereafter referenced as the MECP Table 3 SCS) are considered appropriate for evaluating laboratory analytical results.

In accordance with the requirements of Section 35 of O. Reg. 153/04, notification of the intent to use standards corresponding to a non-potable groundwater condition was provided to the Clerk of the City of Ottawa on May 21, 2021. In a letter dated June 14, 2021, the municipality indicated its concurrence with the proposed use of non-potable standards at the Site. A copy of the notification correspondence is provided in Appendix II.

3.0 BACKGROUND INFORMATION

3.1 PHYSICAL SETTING

3.1.1 WATER BODIES & AREAS OF NATURAL SIGNIFICANCE

Water Bodies: The nearest mapped water body is the Ottawa River, located approximately 1.2 km north of the Site.

Areas of Natural Significance: Terrapex conducted a search of the information provided on the Ministry of Natural Resources and Forestry (MNRF) Land Information Ontario (LIO) on-line map of Natural Heritage Areas to identify any environmentally sensitive areas or areas of natural significance within the Phase One Study Area. Search results indicated that there are no Provincial Parks, Conservation Reserves, Areas of Natural or Scientific Interest, or Wetlands in the Phase One Study Area.

3.1.2 TOPOGRAPHY & SURFACE WATER DRAINAGE

Topography: Based on contour information obtained from the geoOttawa mapping application, the land in the vicinity of the Site slopes down generally to the northwest towards the Ottawa River.

The existing ground surface at the Site is relatively flat with no slopes with elevations near 65.2 to 65.8 m amsl.

Surface Water Drainage: Mapping available on the Rideau Valley Conservation Authority (RVCA) website indicates that the Site is within the Ottawa River West sub-watershed. Accordingly, surface water drainage from the Site (other than what is captured into the municipal storm water sewer system) may ultimately flow to this water body.

Interpreted Direction of Groundwater Flow: Based on topography, the general regional groundwater flow is assumed to be northwest towards the Ottawa River. It should be recognized that groundwater flow at the Site might also be influenced by local subsurface structures and utilities.

3.2 PAST INVESTIGATIONS

Terrapex was provided with three previous environmental reports by the client to review as summarized below.

Phase I Environmental Site Assessment (Revised), 1194 and 1196 Wellington Street West, Ottawa, Ontario, prepared by Pinchin for Cornerstone House of Refuge, August 23, 2018

Pinchin conducted a Phase I ESA for the 1194-1196 Wellington Street West property. The relevant findings of the report are as follows:

- At the time of the assessment, the property was developed with building used as a church. Previously the building was used as a theatre with some commercial space.
- Pinchin indicated that the building was constructed at some time between 1947 and 1949.
- The building was previously heated by heating oil stored in an aboveground storage tank (AST) that was located in the southwest portion of the basement (the date of removal was not provided). Vent and fill pipes were observed by Pinchin in the southwest corner of the property.
- The following other potential environmental concerns were identified:
 - o Patton's Cleaners and Dyers (i.e. a former dry cleaner) (located approximately 10 m west of the Site); and,
 - A retail fuel outlet was formerly located at 1186 Wellington Street West (i.e. on-Site) that operated between approximately 1930 and 1984. Further, records indicated that 3,000 L of furnace oil spilled at the property in 1992, and an unknown quantity of gasoline spilled in 1993.

Based on the findings of the Phase I ESA, Pinchin recommended that a Phase II ESA be conducted.

Phase I-Environmental Site Assessment, 1186, 1188, 1194 and 1196 Wellington Street, Ottawa, Ontario, prepared by Paterson for Minto Communities, July 16, 2020

Paterson conducted a Phase I ESA that included all three properties that comprise the Site. Although referred to as a Phase I ESA, Paterson indicated that the assessment was conducted in accordance with the requirements of O. Reg. 153/04 (i.e. a Phase One ESA). The relevant findings of the report are as follows:

 The Site layout and occupants are the same as current (i.e. Rexall pharmacy and church).

- Paterson reported that the Site was first developed in 1902 for institutional purposes. Previous occupants of the Site have included the Evangelist Church, Elmdale Theatre, Imperial Oil (gas station), a retail furniture store, pharmacy and Cornerstone House of Apostolic Church.
- A former dry cleaner was located at 1200 Wellington Street West (located approximately 10 m west of the Site). Paterson indicated that they had conducted a previous investigation that included two boreholes along the eastern boundary of that property (i.e. towards the Site) that included sampling of volatile organic compounds (VOCs). Based on the results of the investigation, Paterson concluded that they did not consider the former dry cleaner as an APEC for the Site.
- Paterson provided a review of three remediation reports for the 1186 Wellington Street West property. These reports were not available to Terrapex for review. The Paterson summary indicated that remediation of the former gas station/automotive service garage was conducted between 1996 and 2001 and included the removal of the majority of the soil and upper bedrock at the property to a depth of approximately 3.5 m below grade (bg). Paterson indicated that it was possible that some limited impacted soil remained around the perimeter of the property.
- The buildings on the 1188-1190 and 1194-1196 Wellington Street West properties were heated by natural gas fired equipment. Evidence of a former heating oil AST was observed in the southwest corner of the basement of the church.
- Paterson identified the following APECs:
 - APEC 1 former UST nest and identified furnace oil and gasoline releases in the northeastern portion of the Site;
 - APEC 2 former pump island located in the eastern portion of the Site;
 - APEC 3 former automotive service garage located on eastern portion of the Site:
 - APEC 4 importation of fill material of unknown quality across the eastern and southern portions of the Site;
 - APEC 5 former furnace oil ASTs reportedly located in the southwest corner of the church building; and,
 - APEC 6 Operating retail fuel outlet at 390 Parkdale Avenue, located at the northwest corner of Wellington Street and Parkdale Avenue (north of the eastern portion of the Site).
- Potential contaminants of concern (PCOC) were identified as petroleum hydrocarbons (PHCs), benzene, toluene, ethylbenzene and xylenes (collectively BTEX), polycyclic aromatic hydrocarbons (PAHs), and metals and inorganics.

Paterson recommended that a Phase Two ESA be conducted to address the identified APECs. Paterson also recommended that a designated substance survey (DSS) be conducted on each building prior to their demolition.

Phase II Environmental Site Assessment, 1186, 1188, 1194 and 1196 Wellington Street, Ottawa, Ontario, prepared by Paterson for Minto Communities, July 29, 2020

Paterson conducted a Phase Two ESA to assess the APECs identified in the Phase One ESA. The assessment work included the drilling of six boreholes (BH1 to BH6) to a maximum depth of 7.57 m bg, five of which were completed as monitoring wells (all with the exception of BH4). The relevant findings of the report are as follows:

- Analytical results were compared to the MECP Table 3 Site Condition Standards (SCS) applicable in a non-potable groundwater situation for residential / parkland / institutional property use and coarse-textured soil.
- The stratigraphy at the Site was described as asphalt, silty sand to silty clay fill
 material underlain by limestone bedrock. Sandy silt till was noted above the
 bedrock at boreholes BH1 and BH6. Bedrock was encountered at depths that
 ranged between approximately 2.13 and 3.50 m bg.
- Each of the monitoring wells was installed and screened within the bedrock.
- Groundwater flow was determined to be to the north.
- The soil analytical results indicated concentrations of electrical conductivity (EC) and/or sodium adsorption ration (SAR) that exceeded the MECP Table 3 SCS within the fill layer at boreholes BH1, BH2, BH4 and BH6. Concentrations of PHC F3 also exceeded the MECP Table 3 SCS in sample BH6-AU1.
- The concentrations of PHCs, BTEX and volatile organic compounds (VOCs) in the groundwater samples were less than the MECP Table 3 SCS.

Paterson indicated that soil that does not meet the MECP Table 3 SCS and would need to be remediated prior to obtaining the RSC.

Based on a review of the Paterson results, Terrapex makes the following comments:

- The exceedance of EC and SAR are likely related to de-icing of the parking lot in the winter and therefore may not be considered as an exceedance of the Table 3 SCS based on recent amendments to O. Reg. 153/04.
- The PHC F3 exceedance and elevated PHC F4 fraction in sample BH6-AU1 appears anomalous. It was noted that the sample was collected directly beneath the asphalt layer and the result may have been influenced by asphalt residue in the sample.
- Based on the location of the boreholes/monitoring wells, it appears that APEC 5 (related to the former AST in the basement of the church) was not assessed.

4.0 SCOPE OF INVESTIGATION

4.1 OVERVIEW OF SITE INVESTIGATION

Terrapex has reviewed the previous Phase II ESA work undertaken by Paterson in 2020 and is satisfied that the field and analytical work was undertaken in accordance with the protocols of O. Reg. 153/04. Data from that investigation was used in developing the sampling and analysis plan (SAAP).

The scope of Terrapex's assessment comprised the following:

- preparing a SAAP which identified target sampling locations and associated rationale, a
 proposed laboratory analytical program, sample containers and preservation methods,
 and the number and type of quality control (QC) samples;
- advancing eleven boreholes on-Site (BH101 to MW111) to depths between approximately 5.3 m and 20.0 m bg using a CME 55 drill rig with standard hollow-stem augers and splitspoon sampling equipment, followed by HQ bedrock coring (for all exterior location), or Geoprobe 420M portable drill rig with dual-tube sampling equipment, followed by downhole air hammer (for MW109 drilled within the building);
- additional soil sampling was conducted at borehole MW111 on May 20, 2021 to address a data gap from the initial drilling;
- collecting soil samples during drilling, and logging visual, olfactory and tactile soil characteristics, including evidence of chemical impacts, if any;
- measuring combustible soil vapour (CSV) concentrations in soil samples;
- submitting selected soil samples for laboratory analyses of COPCs based on the SAAP and field observations;
- installing groundwater monitoring wells at five of the borehole locations;
- developing the newly-installed groundwater monitoring wells;
- monitoring the existing (Paterson 2020) and newly-installed wells for depth to water, combustible vapour (CV) concentrations, and light or dense non-aqueous phase liquid (LNAPL and DNAPL), if any;
- collecting and submitting groundwater samples from the new monitoring wells for laboratory analyses of COPCs based on the SAAP;
- surveying the elevation of each of the existing and newly installed wells relative to a geodetic benchmark;
- evaluating laboratory analytical results with respect to the selected SCS; and,
- refining the existing Conceptual Site Model (CSM) (developed during the Terrapex Phase One ESA work program) in light of the information collected during the Phase Two ESA activities.

Note that the Phase Two ESA was conducted concurrently with a geotechnical investigation (reported under a separate cover). The depth of certain boreholes was determined based on geotechnical requirements.

The sampling and analysis plan is attached in Appendix III. The sampling procedures are documented in detail in Section 5.0.

4.2 MEDIA INVESTIGATED

Based on the findings of the Phase One ESA work program and detailed in the SAAP, the Phase Two ESA work program investigated the environmental quality of soil and groundwater at the Site. Sediment was not present.

4.3 PHASE ONE CONCEPTUAL SITE MODEL

The Phase One ESA CSM showing the surrounding land use (with water bodies, areas of natural significance, drinking water wells, roads and adjacent property uses), PCAs, and APECs is presented in Figures 3 and 4. A summary of the CSM is provided below.

Site Features: The Site is located on the south side of Wellington Street West, to the southwest of the intersection with Parkdale Avenue. The Site comprises three adjacent properties and is rectangular in shape, measuring approximately 2,495 m². There are buildings on the 1188-1190 and 1194-1196 Wellington Street West properties; the 1186 Wellington Street West property is a parking lot with an area of approximately 978 m². The Site is relatively flat other than a downward slope towards a loading dock at the back of the building on the 1188-1190 Wellington Street West property.

Site History: The properties were previously owned by different individuals/companies. The 1186 Wellington Street West property operated as a gas station and automotive service garage between approximately 1925 and 2002. Following decommissioning and remediation, the property has been used as a parking lot. The 1188-1190 Wellington Street West property was used for institutional property use (Parkdale Evangel Tabernacle / Salvation Army Hall) between at least 1910 to 1961, at which point it was converted to commercial property use (Saslove Furniture and Appliances, Pharma Plus / Rexall Drugstore). The 1194-1196 Wellington Street West property was used as the Elmdale Theatre between approximately 1928 and 2004, and the Cornerstone House of Refuge Apostolic Church since 2004.

Uses of Adjacent Properties: There are commercial businesses to the east and west of the Site along Wellington Street West, including a gas station located approximately 20 m north of the Site, and an automotive service garage located approximately 40 m northwest of the Site. Residential properties are generally located to the south of the Site.

Existing Buildings and Structures: There are buildings with basements (or partial basements) on the 1188-1190 and 1194-1196 Wellington Street West properties with footprints of approximately 400 m² and 865 m², respectively. The main floor of the 1188-1190 Wellington Street West building was occupied by a Rexall Drugstore; the upstairs unit was vacant. The 1194-1196 Wellington Street West building was occupied by the Cornerstone House of Refuge Apostolic Church. The buildings were observed to be constructed of finished concrete blocks with stucco and flat tar and gravel roofs.

Water Bodies: The Site does not include and is not adjacent to or within 30 m of a water body, as defined in O. Reg. 153/04. The nearest water body to the Site is the Ottawa River located approximately 1.2 km north of the Site.

Areas of Natural Significance: The Site does not include, and is not within, adjacent to, or within 30 m of an area of natural significance, as defined in O. Reg. 153/04, and no areas of natural significance were identified as being located in whole or in part in the Phase One Study Area.

Drinking Water Wells: No drinking water wells are present at the Site, nor was any evidence identified to suggest drinking water wells have previously been present at the Site. No records of drinking water wells were located within the Phase One Study Area.

Geology/Hydrogeology: The Site is situated within an area characterized by till with local relief. The underlying bedrock in the region is limestone with some shaly parting of the Ottawa formation. Paterson previously described the native soils at the Site as glacial till comprising sandy silt and gravel. Bedrock was described as grey limestone and was encountered at depths that ranged between approximately 2.13 and 3.50 m bg.

Potentially Contaminating Activities: Three PCAs, as listed in Table 2 of Schedule D of O. Reg. 153/04, and another potential concern were identified at the Site:

- PCA 28 Gasoline and Associated Products Storage in Fixed Tanks related to the former tank nest and pump islands from the former gas station on the 1186 Wellington Street West property, and former heating oil ASTs on the 1194-1196 Wellington Street West property;
- PCA 52 Storage, Maintenance, Fueling and Repair of Equipment, Vehicles and Materials
 Used to Maintain Transportation Systems related to the former automotive service garage
 on the 1186 Wellington Street West property;
- PCA 30 Importation of Fill Material of Unknown Quality; and,
- Other The current and historical use of substances for the removal of snow and ice (deicing activities).

Thirty-two PCAs were identified within the Phase One Study Area, but only one is considered to result in an APEC at the Site (see APEC 6 below).

Areas of Potential Environmental Concern: As a result of the PCAs and other considerations, seven APECs were identified at the Site:

- APEC 1 In the northeastern portion of the Site in the vicinity of the former UST nest (fuel storage and reported leaks/spills);
- APEC 2 In the eastern portion of the Site in the vicinity of the former pump islands (former fuel distribution);
- APEC 3 In the eastern portion of the Site in the vicinity of the former automotive service garage (vehicle maintenance and repair);
- APEC 4 In the eastern and southern portion of the Site in the parking lot and loading dock area (importation of fill material of unknown quality);
- APEC 5 In the southwest corner of the Site in the vicinity of two former ASTs (fuel storage);
- APEC 6 In the northeastern portion of the Site related to the off-site gas station located approximately 20 m from the Site; and,
- APEC 7 All paved areas (de-icing activities in winter).

Contaminants of Potential Concern: The COPCs associated with the on-Site APECs comprise BTEX, PHC F1–F4, VOCs, PAHs, metals, hydride-forming metal, mercury, hot water soluble boron, hexavalent chromium, cyanide, EC, SAR, sodium and chloride. The COPCs associated with the off-site PCA comprise BTEX, PHC F1-F4.

Migration Pathways: In general, potential migration pathways for subsurface contaminants at the Site would consist of buried services, remnants of former buried services or previously excavated area(s).

Uncertainty: The main uncertainty associated with the CSM developed for the Site relates to the limited information regarding the former gas station and automotive service garage, in addition to the remediation conducted of the 1188 Wellington Street West property following decommissioning.

4.4 DEVIATIONS FROM THE SAMPLING AND ANALYSIS PLAN

A SAAP dated April 15, 2021 was developed to investigate each of the media of concern in each APEC at the Site. Deviations from the proposed sampling and analysis plan are as follows:

- Borehole BH108 (proposed borehole BH-D) was drilled to 20 m bg (instead of the proposed 16 m bg) for geotechnical purposes.
- For boreholes BH107 and BH110 (proposed boreholes BH-L and BH-J, drilled primarily for geotechnical reasons), soil samples were submitted for laboratory analysis to provide coverage of APEC 4 and APEC 7.

- No soil sample was submitted for laboratory of metals and inorganics from borehole BH101.
- An additional soil sample was submitted for laboratory analysis of metals and inorganics from borehole MW111 (sample MW111-3) for vertical delineation purposes.
- Based on field observation (indicating no apparent concern), less samples of the fill
 material were submitted for analysis of PAHs. Specifically, samples for PAH analysis were
 not submitted from boreholes BH102, MW104, and BH107.
- Two soil samples were submitted from borehole MW111 for laboratory analysis of BTEX and PHC F1-F4.
- Since no impacts were identified in the soil samples, groundwater was not assessed for PAHs.
- No field duplicates were submitted for analysis of PAHs and metals and inorganics.
- No methanol blank was submitted for analysis with the soil samples.

These deviations are not considered to have significantly affected the data or the conclusions of the ESA.

4.5 IMPEDIMENTS

Access to the Site was not impeded at any time during the Phase Two ESA work program.

5.0 INVESTIGATION METHOD

5.1 GENERAL

Prior to drilling at the Site, local utility companies were contacted in order to obtain stake-outs and clearance with respect to buried services. A private locating company was also retained to provide clearance with respect to buried services in the work areas. All intrusive sampling locations were greater than the required distance from all located underground utilities, and were therefore given clearance. The approximate locations of the on-Site underground utility locations are provided in Figure 2.

A Site-specific health and safety plan (HASP) and a daily safe work permit were prepared by Terrapex prior to commencing all field work. All team members, including sub-contractors, read and signed the HASP before working at the Site.

All methods used during the investigation were completed as per Terrapex's standard operating procedures (SOPs).

5.2 DRILLING

Exterior borehole drilling and monitoring well installation services were provided by George Downing Estate Drilling Ltd. of Hawkesbury, Ontario; and interior borehole drilling and monitoring well installation services were provided by Strata Drilling Group of Stouffville, Ontario, both MECP-licensed well drilling contractors. Borehole drilling and monitoring well installation for the Phase Two ESA were completed under the full-time supervision of Terrapex staff.

Between April 19 and 22, 2021, exterior borehole drilling (all boreholes with the exception of MW109) and monitoring well installation were completed using a CME 55 drill rig equipped with standard hollow-stem augers/spilt-spoon sampling equipment and bedrock coring equipment. On April 21, 2021, interior borehole drilling and monitoring well installation (i.e. borehole MW109) was completed with a Geoprobe 420M portable drill rig with dual-tube sampling equipment, followed by downhole air hammer (soil was generally not encountered at this location).

Boreholes were advanced to a maximum depth of approximately 20 m bg. However, the Phase Two ESA was completed concurrently with a geotechnical investigation for the proposed redevelopment. The environmental work program outlined in the SAAP ended in the overburden for soil at depths of approximately 3 m bg. Monitoring wells were installed within bedrock, generally as shallow as possible. However, one monitoring well (MW105) was installed deeper in the bedrock at depths between 13.1 and 16.1 m bg.

The borehole locations are shown in Figure 2.

5.3 **SOIL**

5.3.1 SOIL SAMPLING

Soil samples were collected on a continuous basis. To mitigate cross-contamination, clean drilling augers/core barrels were used at each borehole and the split-spoon samplers were washed using Alconox detergent and rinsed with distilled water prior to each use.

Each recovered sample was divided into two portions, with one portion placed in a clear sampling bag for field screening/logging, and the second portion placed in an unpreserved laboratory supplied sampling container, brought to the laboratory and extracted at the laboratory within the required 7 days of sampling. Soil descriptions were recorded based on the Unified Soil Classification System (USCS).

Samples for analyses were placed in a cooler with ice packs and delivered under signed chain of custody to the project laboratory for analysis.

Graphic borehole logs illustrating the stratigraphy encountered, chemical analysis and measured combustible soil vapour concentrations are included in Appendix IV.

5.3.2 FIELD SCREENING MEASUREMENTS

CSV concentrations were measured in each soil sample, using a RKI Eagle portable gas detector calibrated to n-hexane and operated in methane elimination mode. The Eagle gas detector can measure total combustible organic compounds to a nominal detection level of 10 parts per million by volume (ppm), with an accuracy of approximately ±5%.

The gas detector was calibrated according to the manufacturer's instructions before the field investigation.

"Worst-case" soil samples were selected on the basis of vapour screening, visual and olfactory evidence of contamination, and sample location in relation to potential point sources of impact.

5.4 GROUNDWATER

5.4.1 MONITORING WELL INSTALLATION

Monitoring wells were installed in five of the newly drilled boreholes (MW104, MW105, MW106, MW109 and MW111). Four of the new monitoring wells (all with the exception of MW109) were installed outside the building using new 50 mm inside-diameter schedule 40 PVC well pipe and #10 slot screen. Monitoring well MW109 was installed in the partial basement of the 1194-1196 Wellington Street West building using 32 mm inside diameter schedule 40 PVC well pipe and #10 slot screen.

The annulus of each well was backfilled with washed silica sand to a depth of approximately 0.3 m above the screened interval. A hydrated bentonite seal was placed above the sand pack to prevent infiltration of surface water into the monitoring well. A steel flushmount casing, cemented in place, was installed at each of the five well locations.

To mitigate cross-contamination, new materials were used for the installation of each monitoring well. Fresh nitrile gloves were donned for the handling of the well material at each well location.

Well installation details are provided on the borehole logs in Appendix IV.

5.4.2 MONITORING WELL DEVELOPMENT METHOD

The monitoring wells installed as part of the current work program were developed on May 13, 2021 (minimum 21 days following drilling) to remove drilling debris that may have been introduced during well installation and to minimize any potential sampling and analytical bias that may result from excessive particulate capture within groundwater samples recovered from these wells.

Prior to development, the wells were monitored for combustible vapours in the well headspace. Depth to water and depth to the bottom of the well were also measured prior to well development. The volume of water in the well and its annulus were calculated based on the depth measurements, diameter of the well standpipe and annulus, and assumed annulus porosity of 30%.

The monitoring wells were developed using a surge block and a dedicated inertial sampler comprising low density polyethylene (LDPE) tubing and a LDPE foot valve. Each well was surged and purged until water free of visible particulate was yielded. A total of 375 L of groundwater was removed during well development.

5.4.3 FIELD MEASUREMENTS OF WATER QUALITY PARAMETERS

Water quality parameters consisting of temperature, pH, specific conductivity, dissolved oxygen (DO), and oxidation reduction potential (ORP), were measured during sampling of groundwater using a peristaltic pump and a YSI 556 MPS water quality meter. Prior to sampling, Terrapex recorded the water quality parameters over 3 minute intervals. When the parameters stabilized to within requirements as outlined in the Groundwater Sampling, Low Volume Purging, Using Peristaltic Pump SOP, the well was deemed appropriate for sampling.

5.4.4 GROUNDWATER SAMPLING

Groundwater samples were collected from the monitoring wells on May 25, 2021. Prior to sampling, monitoring activities included the measurement of combustible vapours within the headspace of the well immediately upon removal of the well standpipe cap, using a RKI Eagle portable gas detector calibrated to n-hexane and operated in "methane elimination" mode. The depth to water in the well was measured using a Heron interface probe. The presence, and apparent thickness (if applicable), of any LNAPL or DNAPL in the well was also assessed using the interface probe.

To mitigate cross-contamination, the interface probe was washed with a liquid solution of Alconox detergent and rinsed with fresh water between each monitoring well. A fresh pair of latex or nitrile gloves was donned at each well location.

Sampling was conducted using "low-flow" methodology with a peristaltic pump (Spectra) as per Terrapex's SOP. Samples for metals analyses were filtered in the field using in-line 45 micron filters.

Groundwater samples were collected directly into pre-cleaned, laboratory-supplied bottles, placed in a cooler with ice, and shipped within four days of collection under chain of custody to the project laboratory for analysis.

5.5 SEDIMENT

5.5.1 SEDIMENT SAMPLING

Sediment was not present at the Site.

5.6 ANALYTICAL TESTING

Laboratory analytical services for this work program were provided by AGAT Laboratories Ltd. (AGAT) in Mississauga, Ontario under contract with Terrapex. AGAT was accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) in accordance with the International Standard ISO/IEC17025-2005 – General Requirements for the Competence of Testing and Calibration Laboratories

Soil samples were analyzed as follows:

 Samples of fill material (APEC 4 and APEC 7) and at the location of the former automotive service garage (APEC 3) were collected and submitted for laboratory analysis of metals and inorganics (M&I) including pH, metals, hydride-forming metals, and other regulated parameters and PAHs. A total of eight samples were submitted for analysis of M&I, and six samples were submitted for laboratory analysis of PAHs. One addition sample of fill material was submitted for analysis of M&I for vertical delineation purposes;

- Samples of underlying native soil were collected and submitted for laboratory analysis of PHC related parameters (BTEX and PHC F1-F4) from the locations of historical fuel tank nest (APEC 1), distribution equipment (APEC 2), former automotive service garage (APEC 3), former heating oil tanks (APEC 5), and an off-site retail fuel outlet (APEC 6). A total of 11 soil samples (including two blind field duplicates) were submitted for laboratory analysis of BTEX and PHC F1-F4 analysis; and,
- One sample of underlying native soil, collected within APEC 3 (former automotive service garage), was also submitted for laboratory analysis of VOCs.

Groundwater samples were analyzed as follows:

- Four shallow bedrock groundwater samples (including one blind field duplicate) and one deep bedrock groundwater sample, collected in APECs 1, 2, 3, 4, 6, and 7, were submitted for laboratory analysis of M&I, BTEX and PHC F1-F4;
- One shallow bedrock groundwater sample, collected in APEC 5, was submitted for laboratory analysis of BTEX and PHC F1-F4; and,
- One shallow bedrock groundwater sample, collected in APEC 3 was submitted for laboratory analysis of VOCs.

The specific sample locations and parameters analyzed at each location are shown in Figures 6 (A to H) and Figures 7 (A to F)

5.7 RESIDUE MANAGEMENT PROCEDURES

Waste material (soil cuttings and groundwater purge water) produced during borehole drilling, well development and well purging were contained at the Site in 205 L drums, and later removed from the site for disposal by Clean Water Works Inc. (CWW) at their facility in Ottawa, Ontario.

A copy of the waste manifest is provided in Appendix V.

5.8 ELEVATION SURVEYING

The location, top of pipe and ground surface elevation at each existing and newly installed monitoring well was surveyed by Terrapex on June 3, 2021 (with the exception of MW109) using a Trimble R12 global navigation satellite system.

The survey was conducted using a geodetic benchmark (top of the spindle of the hydrant to the south of the west property line with an elevation of 66.59 m amsl). The location of monitoring well MW109 was measured in the field and the elevations of the top of the pipe and ground surface were surveyed with a standard rod and level and tied into the Site benchmark.

5.9 QUALITY ASSURANCE AND QUALITY CONTROL MEASURES

To mitigate cross-contamination, clean drilling augers/core barrels were used at each borehole and the split-spoon sampler was washed using Alconox detergent and rinsed with distilled water prior to each use.

During groundwater sampling, dedicated sampling tubing was used at each monitoring well location. To mitigate cross-contamination, the interface probe was washed with a liquid solution of Alconox detergent and rinsed with fresh municipal water between each monitoring well. A fresh pair of nitrile gloves was donned at each well location.

Pre-cleaned soil and groundwater sample containers for the Site's specific parameters were provided by AGAT and used at each borehole and monitoring well location for the collection of soil and groundwater samples.

The sample containers and preservation methods for soil and groundwater samples collected for this investigation are provided in the Sampling and Analysis Plan in Appendix III.

Samples for analyses were placed in an enclosed cooler with loose ice and shipped with a signed chain of custody and custody seals to AGAT for analysis. Soil samples for analysis of volatile organic parameters were received at the laboratory, and immediately extracted.

AGAT's Quality Assurance/Quality Control (QA/QC) program consisted of the analysis of laboratory replicates, matrix spikes, matrix blanks, method blanks and surrogate percent recoveries, as appropriate for the particular analysis protocol.

Three "blind" field duplicates were submitted to the laboratory for chemical analysis for QA/QC purposes during the Phase Two ESA work program:

- one blind duplicate soil sample of BH101-3 (identified as BH101-13) was submitted for laboratory analysis of BTEX and PHC F1-F4;
- one blind duplicate soil sample of BH108-3 (identified as BH108-13) was submitted for laboratory analysis of BTEX and PHC F1-F4; and,
- one blind duplicate groundwater sample of MW104 (identified as MW114) was submitted for laboratory analysis of M&I, BTEX and PHC F1-F4.

One trip blank water sample (identified as "Trip Blank"), and one trip spike water sample (identified as "Trip Spike") were also submitted for analysis as additional QA/QC measures. The trip blank and trip spike samples were prepared by the laboratory, and the sampling container remained within the bottle order package from the time of the delivery, sampling and submission to the laboratory.

With the exception of the trip blank and trip spike samples that were prepared by AGAT itself, the laboratory was not informed of the nature or number of field QA/QC samples.

6.0 REVIEW AND EVALUATION

6.1 GEOLOGY

The Site is situated within an area characterized by till, plain with local relief. The underlying bedrock in the region is limestone with some shaly parting of the Ottawa formation.

Finished surfaces at the Site were generally observed to be topsoil, asphalt, or concrete-covered. The stratigraphy encountered consisted generally of approximately 0.6 to 1.0 m of fill material overlying silty sand/sandy silt. Based on auger refusal, the apparent bedrock surface ranged between approximately 3.1 and 3.8 m bg. From the recovered rock cores, limestone was observed to be weathered and strong to fair quality near the surface, improving with depth.

Saturated conditions (i.e., the apparent water table) were not observed in the overburden and coring prevented the observation of saturated conditions during drilling. However, the water table was measured in existing monitoring wells.

A copy of the borehole logs is included in Appendix IV.

6.2 GROUNDWATER ELEVATIONS AND FLOW DIRECTION

The monitoring wells were generally screened in bedrock in the 4.0 to 7.0 m bg interval, although 1.5 m long screens were used in two monitoring wells (MW106 and MW109). One deeper monitoring well was installed in the bedrock in the 13.0 to 16.0 m bg interval (MW105). Installation details of the monitoring wells are shown in Table 1 and in the borehole logs in Appendix IV.

Newly-installed monitoring wells were monitored on May 25, 2021, and existing and newly installed monitoring wells (except monitoring well MW109 which was in the basement and not accessible at that time) were also monitored on June 7, 2021.

The depth to groundwater in the shallow bedrock monitoring wells on June 7, 2021 ranged between 3.92 m bg (61.35 m amsl at monitoring well BH3) and 4.09 m bg (61.48 m amsl and 61.41 m amsl at monitoring wells MW111 and BH2, respectively). The depth to water in the adjacent deep and shallow bedrock monitoring wells MW105 and MW106 was 3.78 m bg and 3.94 m bg, respectively.

No evidence of either LNAPL or DNAPL was observed during monitoring, purging, or sampling of the monitoring wells during this work program.

Groundwater monitoring data is provided in Table 1.

Groundwater contours were electronically generated using Surfer[™] Surface Mapping System with the Point Kriging geostatistical gridding method to interpolate between data points. Interpreted groundwater contours based on these calculations are shown in Figure 5. As shown, the water table is relatively flat, with flow to the north. Cross-sections are provided in Figure 8. As shown, the water table appears to lie just beneath the apparent bedrock surface at the Site.

As the water table is relatively shallow, the direction of groundwater flow may be somewhat influenced by seasonal factors and may also be influenced by deeper utilities (e.g., water and sewer lines).

6.3 GROUNDWATER HYDRAULIC GRADIENTS

As shown in Figure 5 and Figure 8, the water table was relatively flat on June 7, 2021, lying just beneath the apparent bedrock surface, which also appears to be relatively flat. Based on the measured groundwater elevations, the greatest horizontal hydraulic gradient at the Site (between 61.57 m amsl at monitoring well BH5 and 61.26 m amsl at monitoring well MW104) was 1% to the north (0.014 m/m) on June 7, 2021.

As shown in Table 1 and Figure 8, groundwater elevations in the deeper bedrock monitoring well MW105, screened between 13.1 and 16.1 m bg and the adjacent shallower monitoring well MW106, screened between 4.0 and 5.5 m bg (both fully wetted) were relatively similar, which is indicative of being in the same hydrostratigraphic unit. The vertical gradient between these two adjacent monitoring wells was 2% up (0.018 m/m) on May 25, 2021 and 2% up (0.017 m/m) on June 7, 2021.

6.4 COARSE SOIL TEXTURE

Grain size distribution analyses were conducted on two samples of fill material collected from borehole MW105 from an area previously excavated at the Site. Shallow fill sample MW105-1 was described as sand and gravel fill; whereas, deeper sample MW105-3 was described as sand fill. Both of the samples were identified as coarse textured as defined by O. Reg. 153/04. Based on the prevalence of the fill material across the Site, soil at the Site is considered to be coarse textured.

Copies of the grain size distribution reports are provided in Appendix VI.

6.5 SOIL FIELD SCREENING

Visual (staining) or olfactory (odour) evidence of impacted soil was generally not observed in the recovered soil samples and CSV concentrations measured in recovered soil samples were generally less than 10 ppm. However, some black staining was observed in soil sample BH108-3, collected between 1.2 and 1.8 m bg; and CSV concentrations of 20 ppm and 60 ppm were measured in soil samples BH101-3 and MW111-6, respectively.

All of the above noted soil samples were submitted for laboratory analysis.

6.6 SOIL QUALITY

Soil analytical results are provided in Table 2A (M&I), Table 2B (PAHs), Table 2C (BTEX and PHCs), and Table 2D (VOCs excluding BTEX). Soil analytical results are shown in plan view in Figures 6A to 6H and in cross-section view in Figures 9A to 9H. Copies of the Laboratory certificates of analyses are provided in Appendix VII.

As shown, concentrations of COPCs in soil were all less than the applicable Table 3 SCS in all soil samples submitted for laboratory analysis except for barium in soil sample MW111-1 collected between 0.0 and 0.6 m bg; EC in soil samples BH103-1, MW104-1, MW105-1, BH108-1, BH110-1, MW111-1, and MW111-3; and, SAR in soil samples BH108-1 and BH110-1.

The QP_{ESA} has determined that the levels of EC and SAR in soil exceeded the applicable SCS solely due to the application of road salt for the purposes of ensuring the safety of vehicular or pedestrian traffic under snowy and/or icy conditions.

As a result, per Paragraph 1 of Section 49.1 of O. Reg. 153/04, the applicable Site Condition Standards for EC and SAR in soil have not been deemed to be exceeded for the purpose of the Environmental Protection Act, and as a result, have not been considered contaminants of concern (COCs). Notwithstanding, exceedances have been noted on Table 2A.

The barium exceedance in soil sample MW111-1 is delineated aerially based on the results at boreholes BH102, BH103, MW104, MW105, BH107, BH108 and BH110, and vertically based on the results from soil sample MW111-3 (collected between 1.2 and 1.8 m bg)

Prior to filing a Record of Site Condition for the Phase Two Property, barium-impacts in soil in the vicinity of borehole MW111 will require remediation or risk assessment. It is understood that remediation is being considered during Site re-development works.

6.7 GROUNDWATER QUALITY

Groundwater analytical results are provided in Table 3A (M&I), Table 3B (BTEX and PHCs), and Table 3C (VOCs excluding BTEX). Groundwater analytical results are shown in plan view in Figures 7A to 7F and in cross-section view in Figures 10A to 10F. Copies of the laboratory certificates of analyses are provided in Appendix VII.

As shown, concentrations of COPCs in groundwater were less than the applicable Table 3 SCS in all groundwater samples submitted for laboratory analysis except for chloride in groundwater samples collected at monitoring wells MW104 (and blind field duplicate MW114) and MW106.

The QP_{ESA} has determined that the levels of chloride in groundwater exceeded the applicable SCS solely due to the application of road salt for the purposes of ensuring the safety of vehicular or pedestrian traffic under snowy and/or icy conditions.

As a result, per Paragraph 1 of Section 49.1 of O. Reg. 153/04, the applicable Site Condition Standard for chloride in groundwater has not been deemed to be exceeded for the purpose of the Environmental Protection Act, and as a result, has not been considered a COC. Notwithstanding, exceedances have been noted on Table 3A.

6.8 SEDIMENT QUALITY

Sediment was not present at the Site.

6.9 QUALITY ASSURANCE AND QUALITY CONTROL RESULTS

QA/QC Control Limits: A review of the quality assurance reports attached to the laboratory certificates of analyses indicate that the laboratory QA/QC samples were generally within the quality control limits, with the following exception noted: reference material percent recoveries for selenium and mercury in soil samples BH102-1 and MW111-3 were outside AGAT's internal acceptable limit of ±30% as identified in laboratory reports 21Z737993 and 21T742988, respectively.

Based on additional information provided by AGAT, for a multi-element scan for laboratory control standards, up to 10% of analytes may exceed the quoted limits by an additional 10% and it is considered by AGAT to be acceptable. The lower limit can go to 60% and upper limit is acceptable up to 140%. AGAT commented that these analyses were for internal laboratory quality control check and the results provided in these two reports were considered acceptable.

Based on the additional information provided by AGAT, the QP does not see a concern with the laboratory results for the QA/QC control limits.

Matrix Spike Recoveries: No issues regarding matrix spike recoveries were outlined in any of the laboratory certificates of analysis.

Detection Limits: No sample dilution was required by the laboratory, and reporting detection limits were not adjusted.

Travel Spike Samples: Travel spike recoveries reported by the laboratory are summarized in Table 3B. The recoveries of all analysed parameters within the travel spike sample were within acceptance limits.

Travel Blank Samples: Laboratory results for the travel blank sample are presented in Table 3B. Detectable concentrations of the tested parameters were not reported in the travel blank sample.

Field Duplicate Samples: Field duplicate sample results are presented in the soil and groundwater analytical results tables (Table 2C, Table 3A, and Table 3B). Relative percent difference (RPD) for field duplicate sample results is calculated as follows:

$$RPD = \left| \frac{result_1 - result_2}{\frac{1}{2} x (result_1 + result_2)} \right| x 100\%$$

RPD is not calculated where reported concentrations are less than five times the method detection limit (MDL). Increased RPD values may be encountered whenever duplicate analyses are completed on samples representing heterogeneous fill materials, however significant concerns regarding the validity of analytical results would generally not be suspected if calculated RPD do not exceed the specified alert criteria by more than a factor of 2.(i.e., an RPD of >60%).

Quantitative correlation was not calculable for the blind field duplicate soil samples or for many of the groundwater parameters as concentrations were less than five times the MDL. However, calculated RPDs between the blind field duplicate groundwater samples were less than the alert criteria of 30% for all parameters where the RPD was calculated.

Sample Holding Times: Sample holding times were met for all samples.

6.10 PHASE TWO CONCEPTUAL SITE MODEL

A preliminary CSM was developed as part of the Phase One ESA, which is discussed in Section 4.3. Following the completion of the Phase Two ESA field program, the CSM has been updated to present the current Site characteristics and identify actual or potential sources of contamination, pathways, release mechanisms, receptors, and exposure routes. Additional inputs to the CSM include:

- stratigraphy observed during this Phase Two ESA work program;
- results of chemical testing for the current soil and groundwater conditions; and,
- groundwater levels and interpreted groundwater flow direction.

A narrative summary of the phase two CSM is provided below. Figures illustrating the phase two CSM are attached, and referenced in the appropriate sections below.

OVERVIEW

Site Description (Figures 1 and 2): The Site is located on the south side of Wellington Street West, to the southwest of the intersection with Parkdale Ave. The Site comprises three adjacent properties and is rectangular in shape with a total area of approximately 2,495 m². The Site is relatively flat other than a downward slope towards a loading dock at the back of the building on the 1188-1190 Wellington Street West property.

There are buildings on the 1188-1190 and 1194-1196 Wellington Street West properties with footprints of approximately 400 m² and 865 m², respectively. The 1186 Wellington Street West property is a parking lot with an area of approximately 978 m²

Past and Present Uses: Currently 1186 Wellington Street West is an asphalt-covered parking lot; 1188-1190 Wellington Street West property includes a Rexall Pharmacy and offices (currently unoccupied); and, 1194-1196 Wellington Street West property is the Cornerstone House of Refuge Apostolic Church.

The properties were previously owned by different individual/companies. The 1186 Wellington Street West property operated as a gas station and automotive service garage between approximately 1925 and 2002. Following decommissioning and remediation, the property has been used as a parking lot.

The 1188-1190 Wellington Street West property was used as institutional property use (Parkdale Evangel Tabernacle / Salvation Army Hall) between at least 1910 to 1961, at which point it was converted to commercial property use (Saslove Furniture and Appliances, Pharma Plus / Rexall Drugstore).

The 1194-1196 Wellington Street West property was used as the Elmdale Theatre between approximately 1928 and 2004, and the Cornerstone House of Refuge Apostolic Church since 2004.

Adjacent Land Uses (Figure 3): There are commercial businesses to the east and west of the Site along Wellington Street West, including a gas station located approximately 20 m north of the Site, and an automotive service garage located approximately 40 m northwest of the Site. Residential properties are generally located to the south of the Site.

Assessment Criteria: Full Depth Generic SCS applicable to residential, parkland, or institutional property use listed in Table 3 of the April 15, 2011 MECP Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act document (hereafter referenced as the MECP Table 3 SCS) were considered appropriate for evaluating laboratory analytical results.

PCAs AND APECs

Areas Where Potential Contaminating Activity (PCA) Has Occurred (Figure 3): Three PCAs, as listed in Table 2 of Schedule D of O. Reg. 153/04, and another potential concern were identified at the Site:

- PCA 28 Gasoline and Associated Products Storage in Fixed Tanks related to the former tank nest and pump islands from the former gas station on the 1186 Wellington Street West property, and former heating oil ASTs on the 1194-1196 Wellington Street West property (i.e. three separate PCAs);
- PCA 52 Storage, Maintenance, Fueling and Repair of Equipment, Vehicles and Materials
 Used to Maintain Transportation Systems related to the former automotive service garage
 on the 1186 Wellington Street West property;
- PCA 30 Importation of Fill Material of Unknown Quality; and,
- Other The current and historical use of substances for the removal of snow and ice (deicing activities).

Thirty-two PCAs were identified within the Phase One Study Area, but only one is considered to result in an APEC at the Site (see APEC 6 below).

Areas of Potential Environmental Concern (APEC) (Figures 4A and 4B): Seven APECs associated with the PCAs were identified on the Phase Two Property:

- APEC 1 In the northeastern portion of the Site in the vicinity of the former UST nest (fuel storage and reported leaks/spills);
- APEC 2 In the eastern portion of the Site in the vicinity of the former pump islands (former fuel distribution);
- APEC 3 In the eastern portion of the Site in the vicinity of the former automotive service garage (vehicle maintenance and repair);
- APEC 4 In the eastern and southern portion of the Site in the parking lot and loading dock area (importation of fill material of unknown quality);
- APEC 5 In the southwest corner of the Site in the vicinity of two former ASTs (fuel storage);
- APEC 6 In the northeastern portion of the Site related to the off-site gas station located approximately 20 m from the Site; and,
- APEC 7 All paved areas (de-icing activities in winter).

Subsurface Structures and Utilities That May Affect Contaminant Distribution and Transport (Figures 2, 4A, and 4B): In general, potential migration pathways for subsurface contaminants at the Site would consist of buried services, remnants of former buried services or previously excavated areas.

PHYSICAL SETTING OF THE PHASE TWO ESA PROPERTY

Stratigraphy (**Figure 8**): Finished surfaces at the Site were generally observed to be topsoil, asphalt, or concrete-covered. The stratigraphy encountered consisted generally of approximately 0.6 to 1.0 m of fill material overlying silty sand/sandy silt. Based on auger refusal, the apparent bedrock surface ranged between 3.1 and 3.8 m bg. From the recovered rock cores, limestone was observed to be weathered and strong to fair quality near the surface, improving with depth.

Hydrogeological Characteristics (Figures 5 and 8): The water table was relatively flat, lying just beneath the apparent bedrock surface, which similarly appears to be relatively flat. Based on the measured groundwater elevations, the greatest horizontal hydraulic gradient at the Site (between 61.57 m amsl at monitoring well BH5 and 61.26 m amsl at monitoring well MW104) was 1% to the north (0.014 m/m) on June 7, 2021.

Groundwater elevations in the deeper bedrock monitoring well MW105, screened between 13.1 and 16.1 m bg and the adjacent shallower monitoring well MW106, screened between 4.0 and 5.5 m bg (both fully wetted) were relatively similar, which is indicative of being in the same hydrostratigraphic unit. The vertical gradient between these two adjacent monitoring wells was 2% up (0.018 m/m) on May 25, 2021 and 2% up (0.017 m/m) on June 7, 2021.

Depth to Bedrock (Figure 8): Based on auger refusal, the apparent bedrock surface ranged between 3.1 and 3.8 m bg.

Depth to Water Table (Figures 5 and 8): The depth to groundwater in the shallow bedrock monitoring wells on June 7, 2021 ranged between 3.92 m bg (61.35 m amsl at monitoring well BH3) and 4.09 m bg (61.48 m amsl and 61.41 m amsl at monitoring wells MW111 and BH2, respectively). The depth to water in the adjacent deep and shallow bedrock monitoring wells MW105 and MW106 was 3.78 m bg and 3.94 m bg, respectively.

Applicability of Section 41 or 43.1 of O. Reg. 153/04:

The Site is not located within an area of natural significance (such as wetlands, provincial parks, nature reserves and valuable animal habitats), does not include and is not adjacent to an area of natural significance or part of such an area, and does not include land that is within 30 m of an area of natural significance or part of such an area.

Soil pH values were within the required ranges.

Areas Where Soil has been Brought to the Property: A soil remediation was conducted at the Site previously where impacted soil was removed and undocumented fill was brought to the Site, generally anticipated to be located in APEC 1, APEC 2, and APEC 3. Minor amounts of general construction fill were observed across the Site.

Locations of Proposed Buildings and Structures (Figure 2B): Our understanding of the proposed future uses are based on the information and files presented by Welldale. It is our understanding that Welldale has purchased the Site (i.e. all three properties) with the intent to demolish all of the existing structures and construct a single mixed-use (residential and commercial) building ranging between one and eighteen storeys in height with a maximum three levels of underground parking.

CONTAMINATION

Media of Concern: Media of concern included soil and groundwater. Sediment is not present at the Site.

Contaminants of Concern (Figures 6B and 9B): Concentrations of contaminants of potential concern in soil were all less than the applicable Table 3 SCS in all soil samples submitted for laboratory analysis except for barium in soil sample MW111-1 collected between 0.0 and 0.6 m bg, which was fully delineated; EC in soil samples BH103-1, MW104-1, MW105-1, BH108-1, BH110-1, MW111-1, and MW111-3; and, SAR in soil samples BH108-1 and BH110-1.

Concentrations of contaminants of potential concern in groundwater were all less than the applicable Table 3 SCS in all groundwater samples submitted for laboratory analysis except for chloride in groundwater samples MW104 (and blind field duplicate MW114) and MW106.

The QP_{ESA} has determined that the levels of EC and SAR in soil, and chloride in groundwater exceeded the applicable Site Condition Standards solely due to the application of road salt for the purposes of ensuring the safety of vehicular or pedestrian traffic under snowy and/or icy conditions.

As a result, per Paragraph 1 of Section 49.1 of O. Reg. 153/04, the applicable Site Condition Standard for EC and SAR in soil and chloride in groundwater have not been deemed to be exceeded for the purpose of the Environmental Protection Act, and as a result, has not been considered a COC.

Areas, Origin, Extent, Distribution and Delineation of Contamination: The barium concentration in soil sample MW111-1, located in APECs 3 and 4, at a depth 0.0 - 0.6 m bg was greater than the MECP Table 3 SCS. PCAs that contributed to these APECs included a former automotive service garage and the importation of untested fill.

It is unclear which PCA may have caused the barium impacts in soil. However, barium concentrations in soil in the underlying soil sample MW111-3 at a depth of 1.2 - 1.8 m bg; and, lateral soil samples BH103, BH107, BH108, and BH111 were less than the Table 3 SCS. Therefore, the impacts appear to be localized.

Migration of Contaminants: As the ground surface is finished asphalt, limiting infiltration; and, since the underlying groundwater is not barium-impacted with respect to the Table 3 SCS, it is unlikely contaminant migration has occurred.

Climatic or Meteorological Impacts on Contaminant Migration: Permeable surfaces at the Site are limited and therefore, surface infiltration from seasonal precipitation is anticipated to be limited. Since soil impacts are limited to surficial fill less than 1.2 m bg, seasonal fluctuation in the water table (at or near the bedrock surface, approximately 3.0 m bg) are not anticipated to contribute to barium migration.

Soil Vapour Intrusion of Contaminants into Buildings: As volatile contaminants have not been identified at the Site, there are no concerns related to the intrusion of vapours into the existing or future buildings at the Site.

CROSS-SECTIONS

Lateral and Vertical Distribution of Contaminants (Figures 6B and 9B): The barium concentration in soil sample MW111-1, located in APECs 3 and 4, at a depth 0.0 – 0.6 m bg was greater than the MECP Table 3 SCS. The barium concentrations in soil in the underlying soil sample MW111-3 at a depth of 1.2 – 1.8 m bg; and, lateral soil samples BH103, BH107, BH108, and BH111 were less than the Table 3 SCS.

Depth to Water in Contaminated Areas (Figure 9B): The depth to groundwater in the shallow bedrock monitoring well MW111 was 4.09 m bg (61.48 m amsl).

Stratigraphy in Contaminated Areas (Figure 9B): As the fill material and underlying native soil are relatively shallow overlying bedrock at approximately 3.6 m bg, they have not been differentiated in Figure 9B. However, the stratigraphy encountered at borehole MW111 was surficial asphaltic concrete, overlying 0.6 m of sand and gravel fill, overlying 1.2 m of sand fill, overlying 1.8 m of silt fill, overlying excellent quality limestone bedrock.

Subsurface Structures and Utilities in Contaminated Areas: No sub-surface structures or utilities are present within the impacted area.

RISK ANALYSIS

Release Mechanisms: The release mechanism for the barium is unknown. However, it is assumed to be related to the fill material that was imported as backfill material following the remediation of the 1186 Wellington Street West property between 1996 and 2001. However, barium concentrations in soil in the underlying soil sample MW111-3 at a depth of 1.2 – 1.8 m bg; and, lateral soil samples BH103, BH107, BH108, and BH111 were less than the Table 3 SCS. Therefore, the impacts appear to be localized. EC and SAR (soil), and chloride (groundwater) are associated with use of salt for de-icing. No other COPCs were identified at the Site.

Contaminant Transport Pathways (Figures 11A and 11B): Contaminant transport pathways include leaching from soil to groundwater, transport into outdoor air by wind and erosion action, and transport into vegetation by root uptake.

However, the ground surface is finished asphalt, limiting exposure to wind, plants and/or infiltration. Since the underlying groundwater is not barium-impacted with respect to the Table 3 SCS, it is unlikely contaminant migration has occurred.

Receptors and Exposure Analysis: Potential human receptors for contaminants at the Site for the current commercial/institutional land use would be limited to outdoor workers. Potential ecological receptors are plants and soil invertebrates. Potential exposure routes for humans to the contaminants consist of ingestion and skin contact for outdoor workers. Potential exposure routes for ecological receptors consist of ingestion, skin contact and consumption of vegetation and prey. Groundwater is not used for potable purposes at the Site, and will not be, given its location in the City of Ottawa. Due to the location and nature of the contaminants, and the proposed development plans, the exposure route of most concern is direct contact with the soil during construction/excavation.

It is anticipated that all soil at the Site will be excavated as part of the proposed re-development of the Site. Therefore, the barium impacted soil will be remediated prior to the change in land use. Soil management may be required at the time of the remediation but the identified barium in the soil will not pose a risk to future residents or workers following the re-development of the Site.

7.0 CONCLUSIONS

The Phase Two ESA investigation of the Site, as documented in this report, indicated that contaminants of concern were identified within soil at the Site; groundwater impacts were not identified; and, sediment was not present at the Site.

As delineated soil impacts remain on-Site, additional investigative, remedial, and/or risk assessment work will be required to file a Record of Site Condition.

7.1 SIGNATURES

The environmental assessment described herein was conducted in accordance with the terms of reference for this project, agreed upon by Welldale Limited Partnership and Terrapex Environmental Ltd.

The Phase Two Environmental Site Assessment of the property located at 1186 – 1196 Wellington Street West in Ottawa, Ontario was conducted in general accordance with O. Reg. 153/04 by, or under the supervision of a Qualified Person as required by the regulation.

Terrapex Environmental Ltd. has exercised due care, diligence, and judgement in the performance of this Phase Two ESA; however, studies of this nature have inherent limitations. The reported information is believed to provide a reasonable representation of the general environmental conditions at the Site, at the time the assessment was conducted. However, the data were collected at discrete locations and conditions may vary at other locations or with the passage of time. The assessment was also limited to a study of those chemical parameters specifically addressed in this report.

In addition, our comments, conclusions, and recommendations are based in part on the observations and data documented by third parties. By necessity, except where explicitly noted, we have relied upon the accuracy and completeness of information presented by said third parties, regardless of any disclaimers regarding reliance provided in the documentation subjected to peer review. Terrapex Environmental Ltd. does not assume any responsibility for errors, omissions, or other limitations pertaining to third party work programs.

This report has been prepared for the sole use of Welldale Limited Partnership. Terrapex Environmental Ltd. accepts no liability for claims arising from the use of this report, or from actions taken or decisions made as a result of this report, by parties other than Welldale Limited Partnership.

Jason O'Bright, P.Eng. Project Engineer Qualified Person per O. Reg. 153/04

Keith Brown, P.Eng. Senior Project Manager Qualified Person per O. Reg. 153/04

Mike Grinnell, P.Eng. Senior Reviewer

Qualified Person per O. Reg. 153/04

8.0 REFERENCES

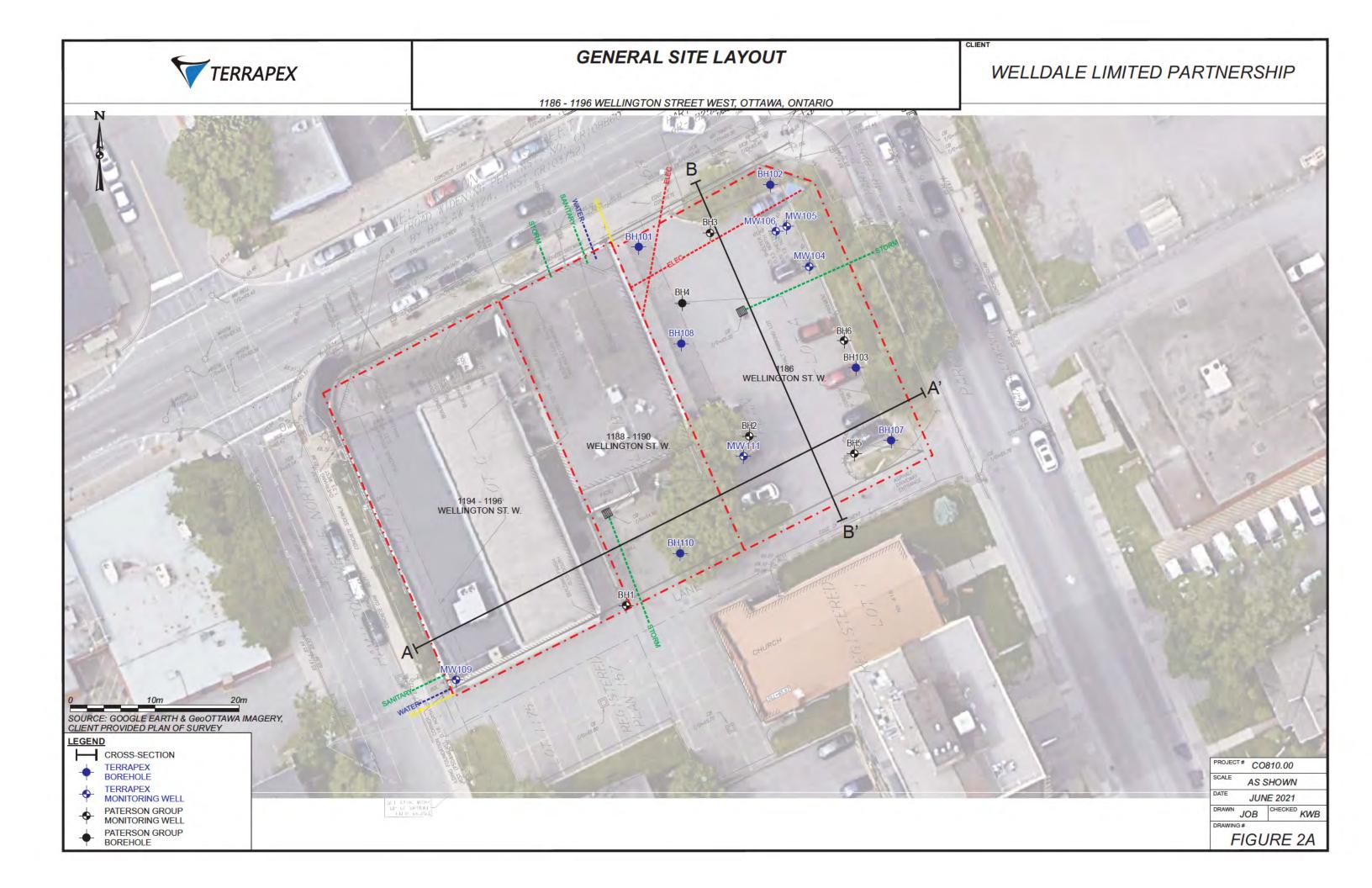
Ontario Regulation 153/04, *Records of Site Condition – Part XV.1 of the Environmental Protection Act*.

Ministry of the Environment (MOE), Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, April 15, 2011.

Surveyor's Real Property Report, *Part 1 - Plan of Lots A, B, C & D, Registered Plan 58, Geographic Township and Nepean, City of Ottawa,* Surveyed by Stantec Geomatics Ltd., dated July 2, 2020.

Interactive mapping tool available through the Rideau Valley Conservation Authority.

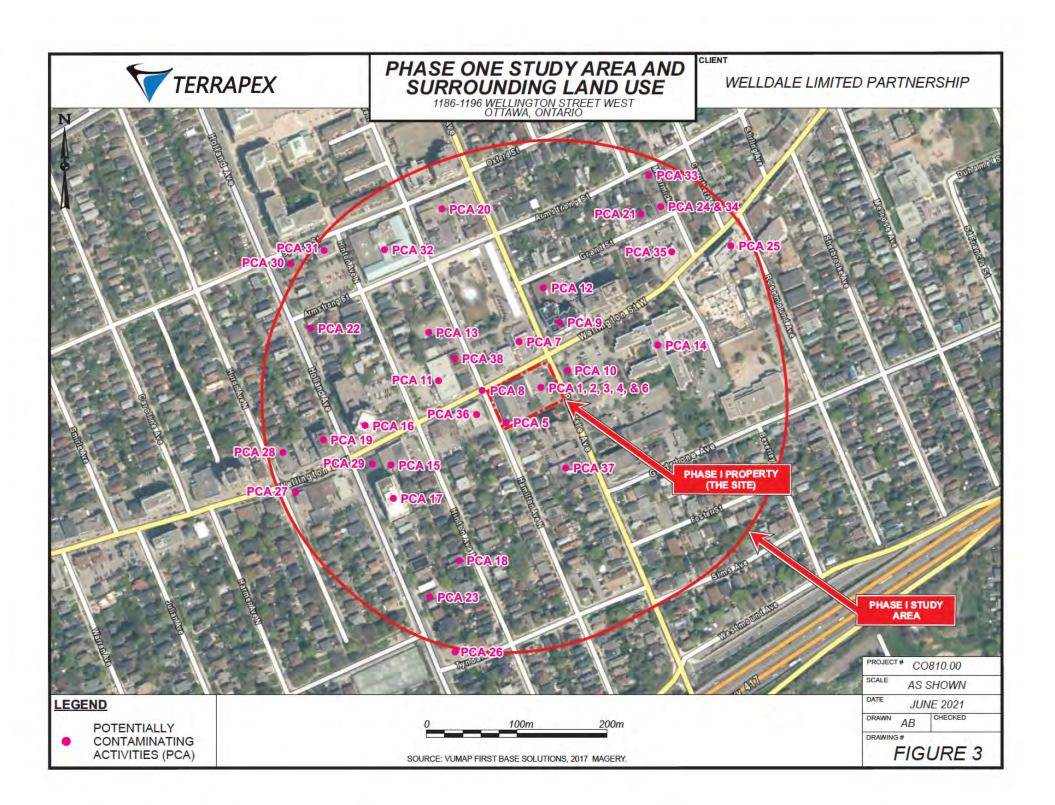
Phase I Environmental Site Assessment, 1194 and 1196 Wellington Street West, Ottawa, Ontario prepared by Pinchin Ltd. for Cornerstone House of Refuge, dated August 23, 2018.

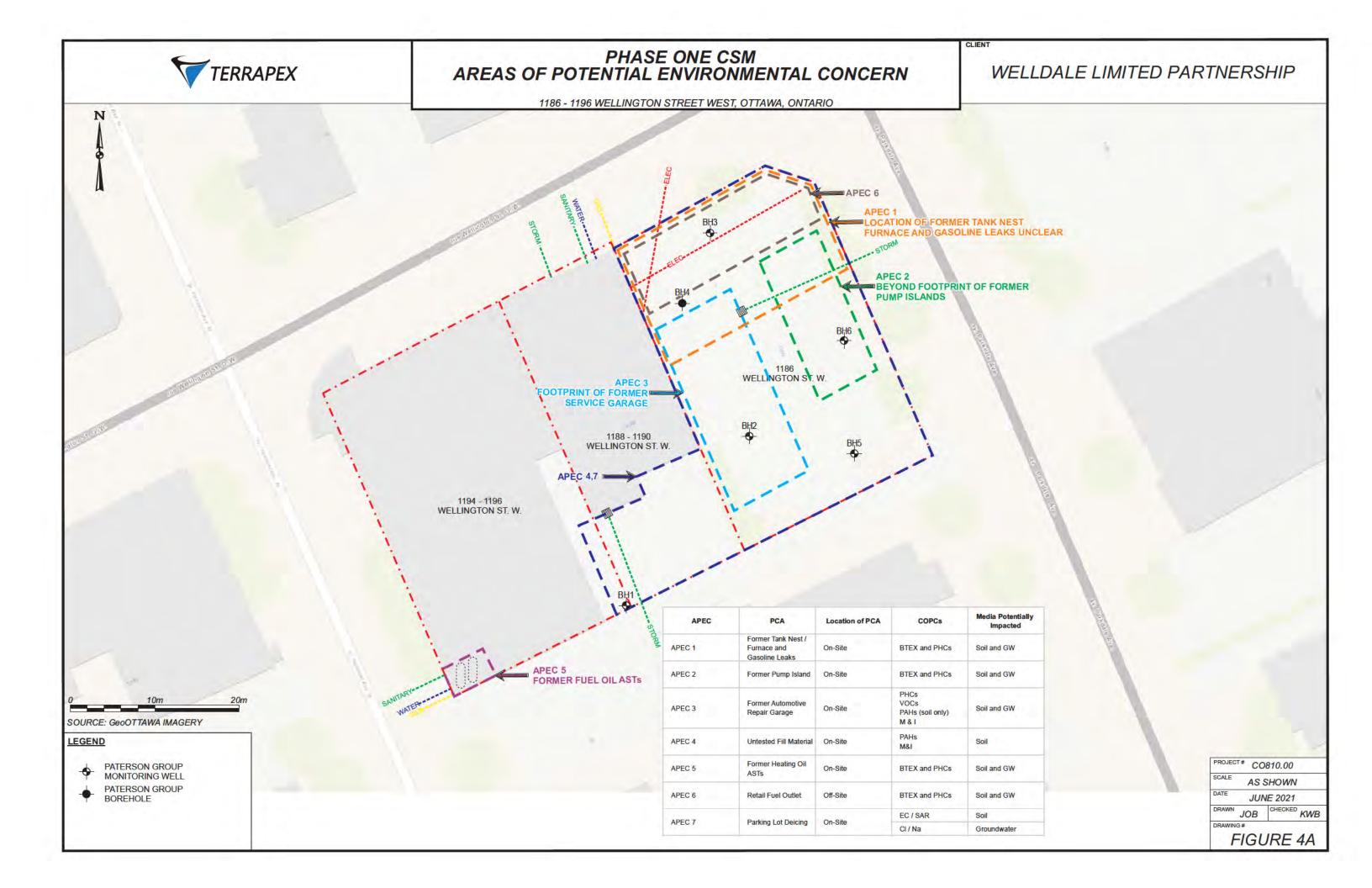

Phase I-Environmental Site Assessment, 1186, 1188, 1194 and 1196 Wellington Street, Ottawa, Ontario prepared by Paterson Group Inc. for Minto Communities, dated July 16, 2020.

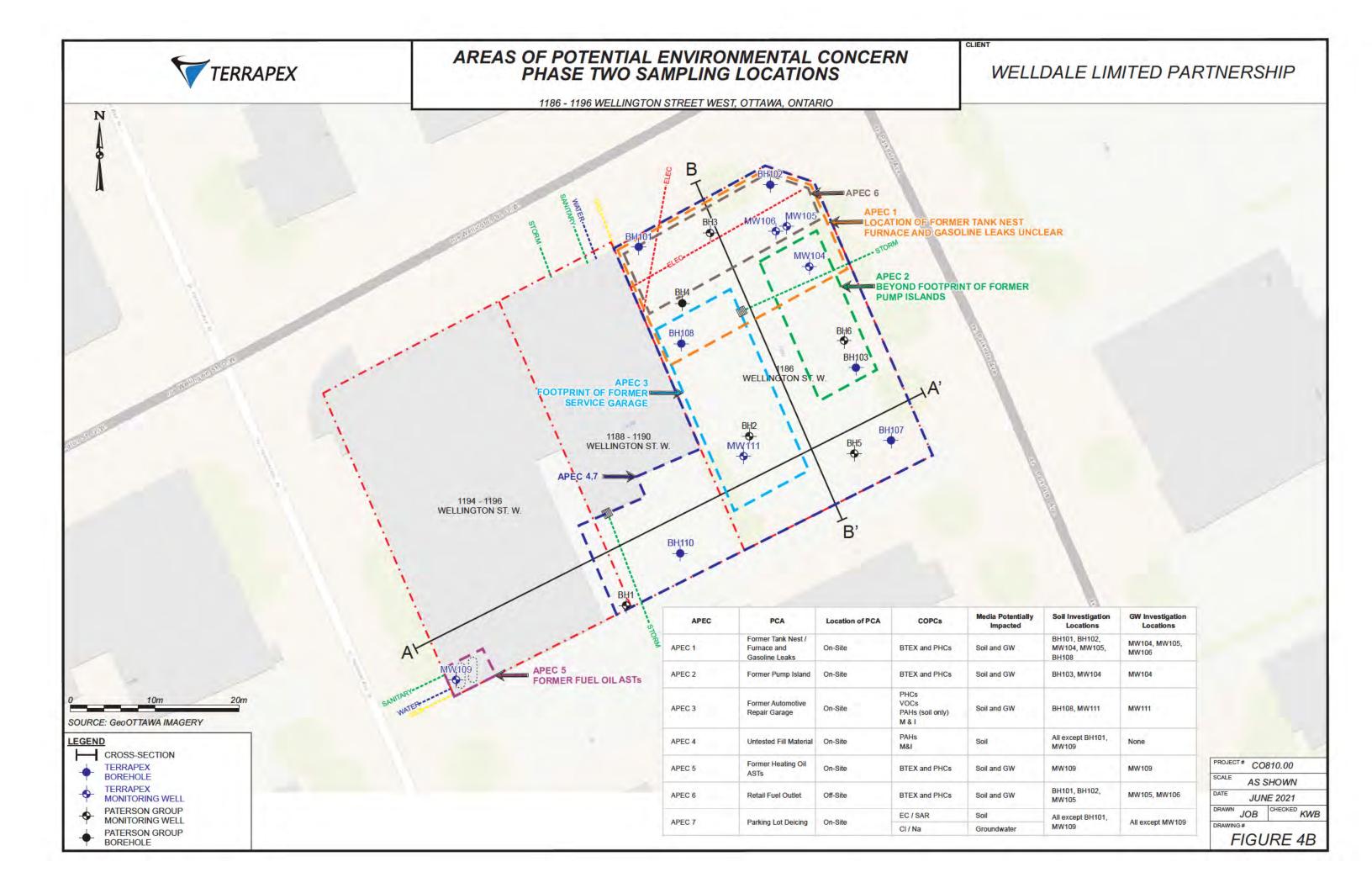
Phase II Environmental Site Assessment, 1186, 1188, 1194 and 1196 Wellington Street, Ottawa, Ontario prepared by Paterson Group Inc. for Minto Communities, dated July 29, 2020.

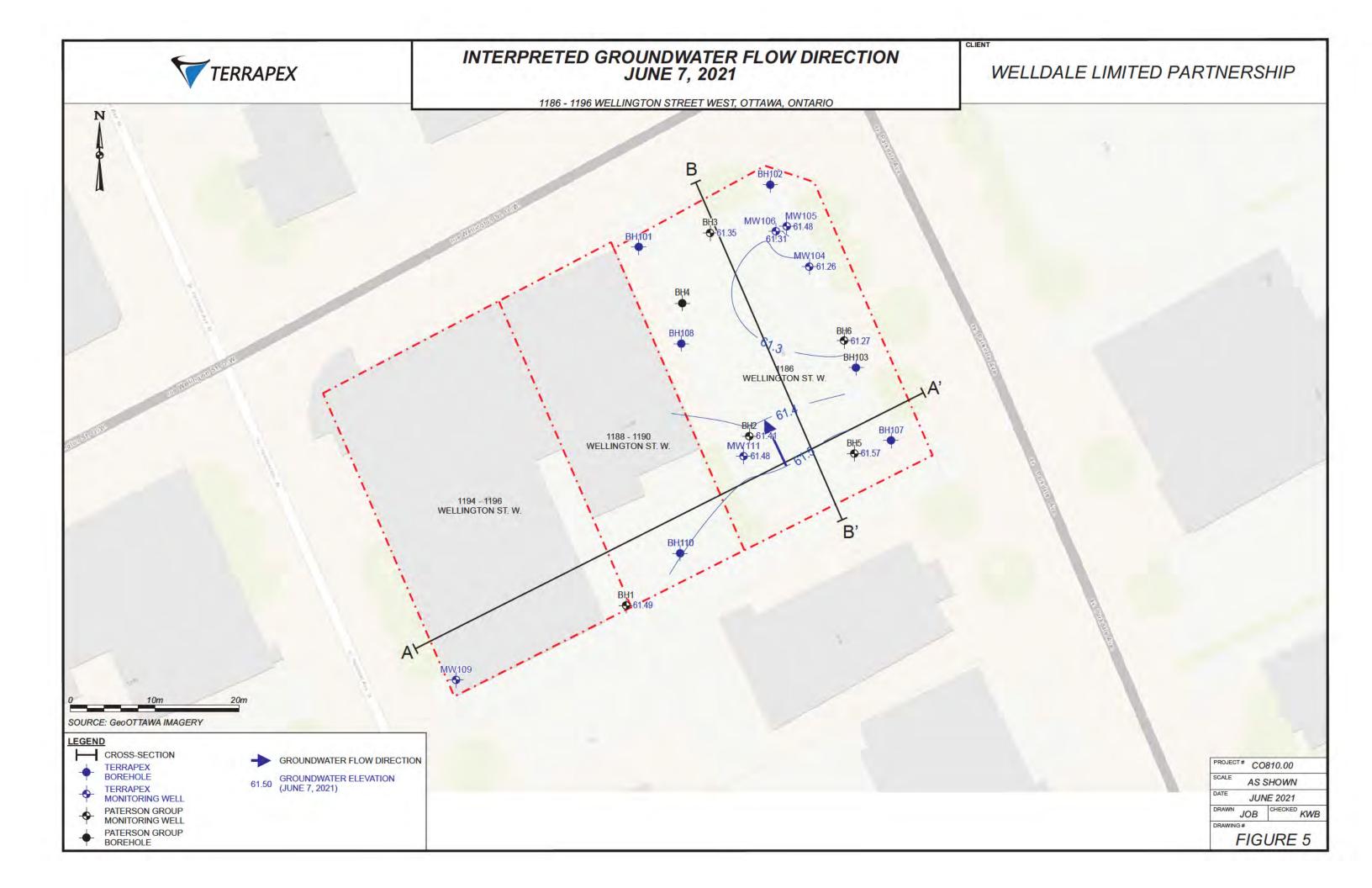
Phase One Environmental Site Assessment, 1186-1196 Wellington Street West, Ottawa, Ontario prepared by Terrapex Environmental Ltd. for Welldale Limited Partnership, dated June 23, 2021.

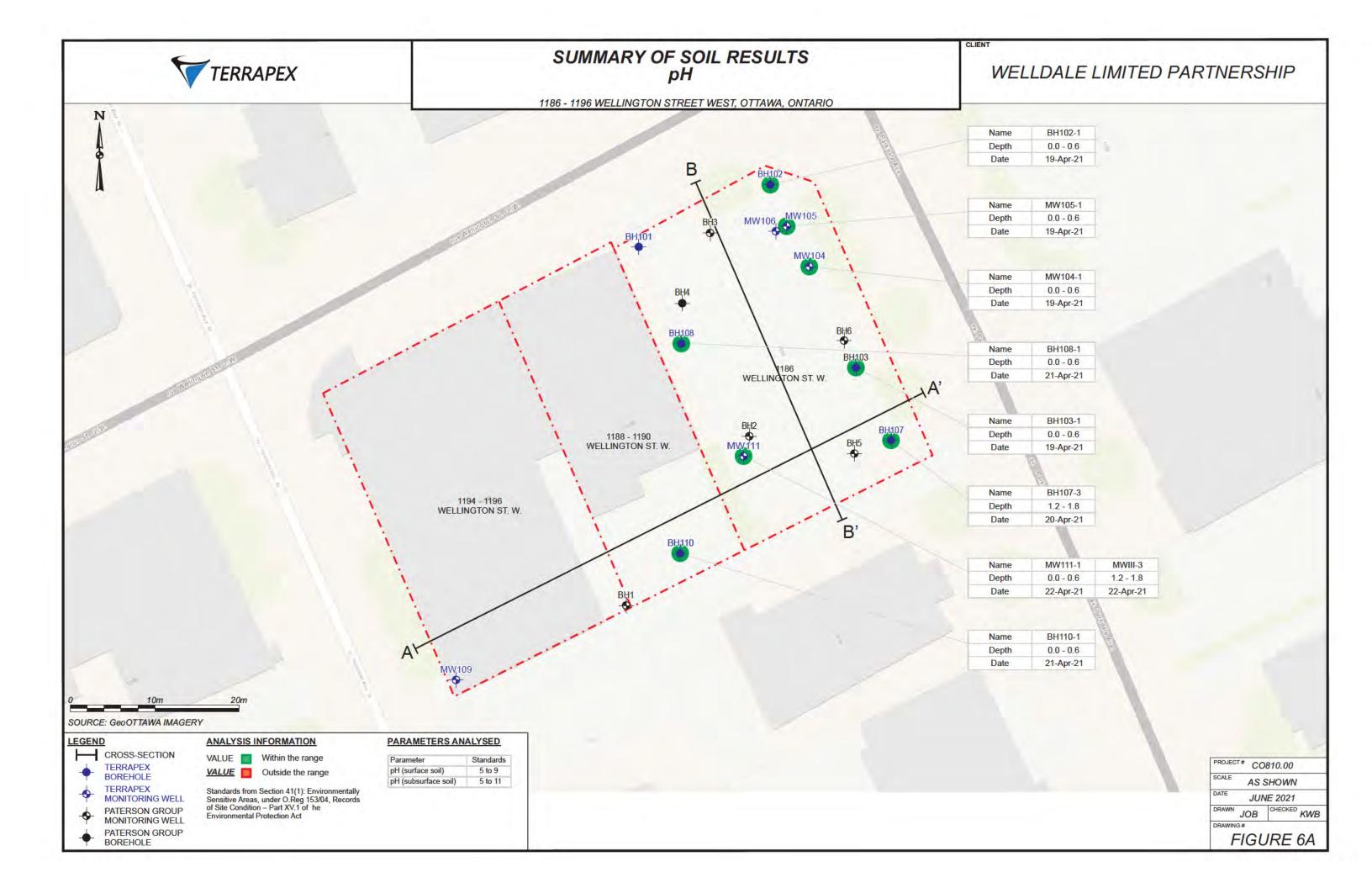
CLIENT SITE LOCATION TERRAPEX WELLDALE LIMITED PARTNERSHIP 1186-1196 WELLINGTON STREET WEST OTTAWA, ONTARIO TN-out Gtxpress Department store Family Services Ottawa The Magee House McCrank's Cycles & Skis Canada Bicycle repair shop Armstrong 51 Drip House Takeout RBC Royal Bank Stella Luna G spences st Cafe Hintonbi Sapacon Drywall Takeout Grant ST 1140 Wellington Parkdale Market Petro-Canada The Soca Kitchen Takeout · Delivery World of Maps Salvation Army Map store Grace Manor Connaugh West Park Lanes The Cake St 36 Takeout A Gladstone Ave The Urban Element & Again 🕡 Morris Home Hardware · Delivery Home improvement store LM Stays - Sin 69 Avenue Guest Hou Heartbreakers Pizza Takeout High Definition Nails & Spa Parkdale Baptist Church 🕡 B Tyndall St Elm Fisher Park Playground Byron Ave CO810.00 Ottawa Blooms SCALE AS SHOWN Delivery DATE MAY 2021 DRAWN EM/AB 50m 100m DRAWING # FIGURE 1 SOURCE: GOOGLE MAPS, 2020


GENERAL SITE LAYOUT CONCEPTUAL SITE PLAN TERRAPEX WELLDALE LIMITED PARTNERSHIP 1186 - 1196 WELLINGTON STREET WEST, OTTAWA, ONTARIO WELLINGTON ST. W. 1188 - 1190 WELLINGTON ST. W. 1194 - 1196 WELLINGTON ST. W. SOURCE: GOOGLE EARTH & GeoOTTAWA IMAGERY, CLIENT PROVIDED PLAN LEGEND CROSS-SECTION PROJECT# CO810.00 **TERRAPEX** BOREHOLE AS SHOWN TERRAPEX JUNE 2021 MONITORING WELL

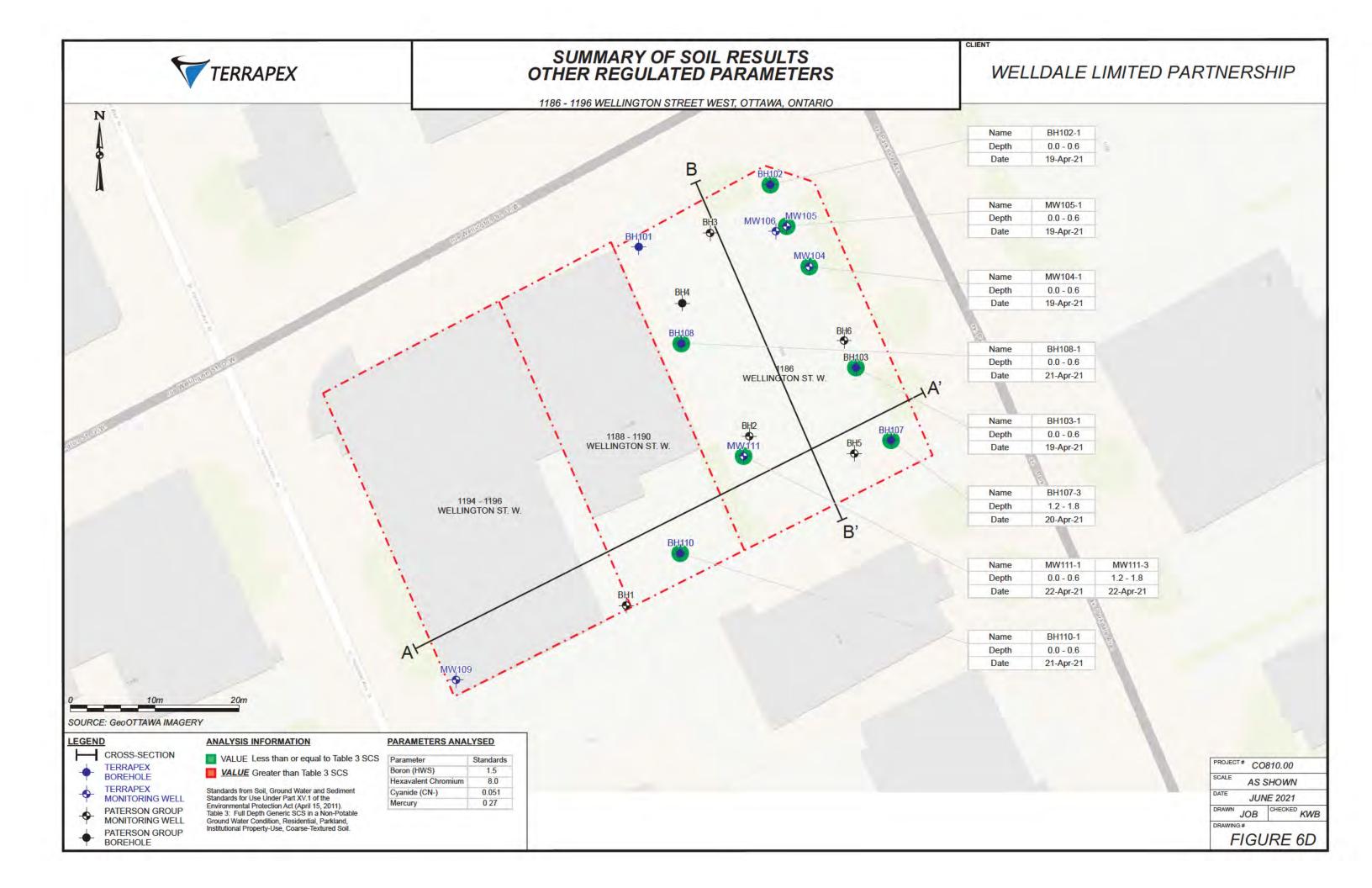

DRAWN JOB CHECKED KWB

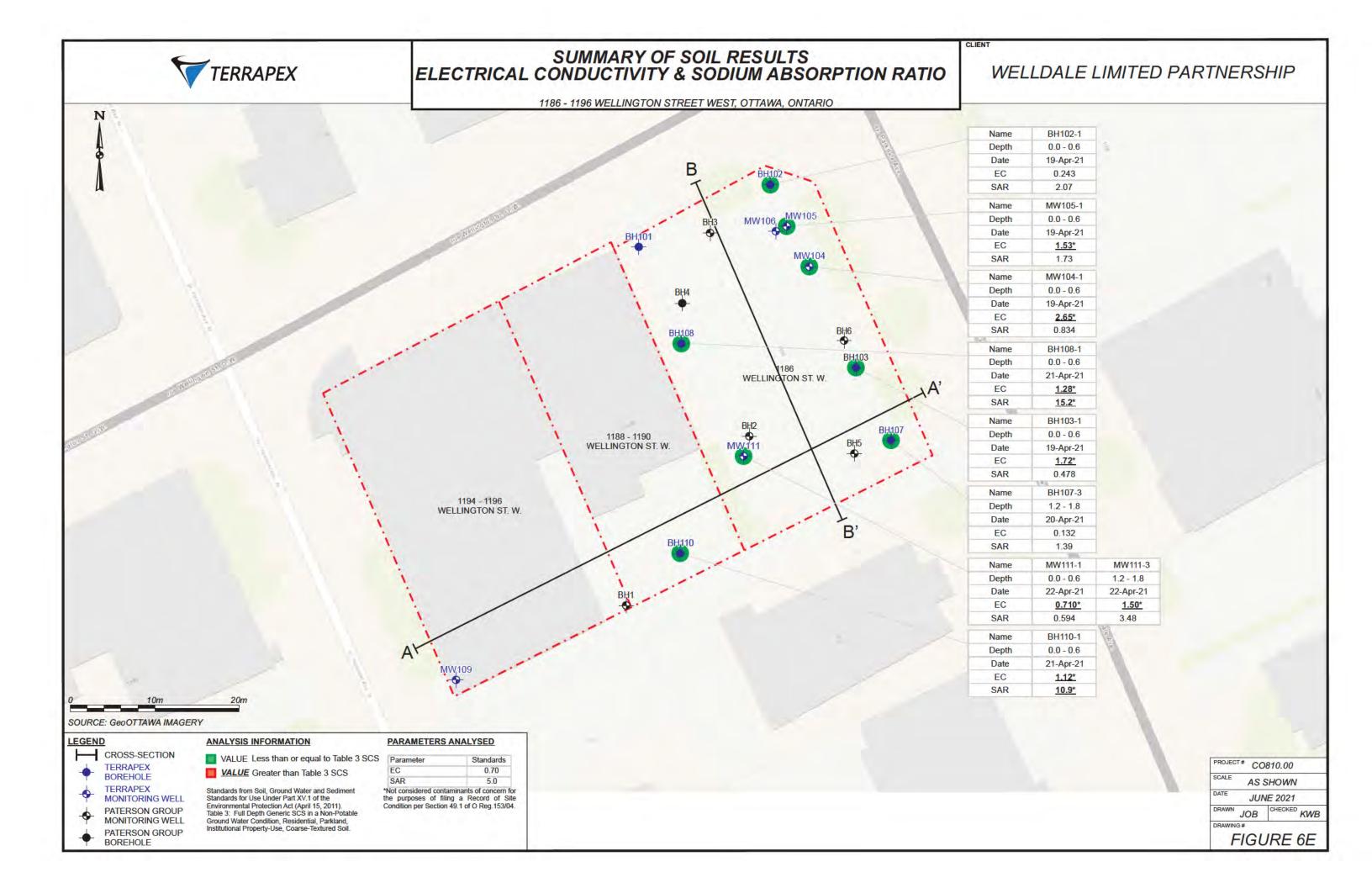

FIGURE 2B

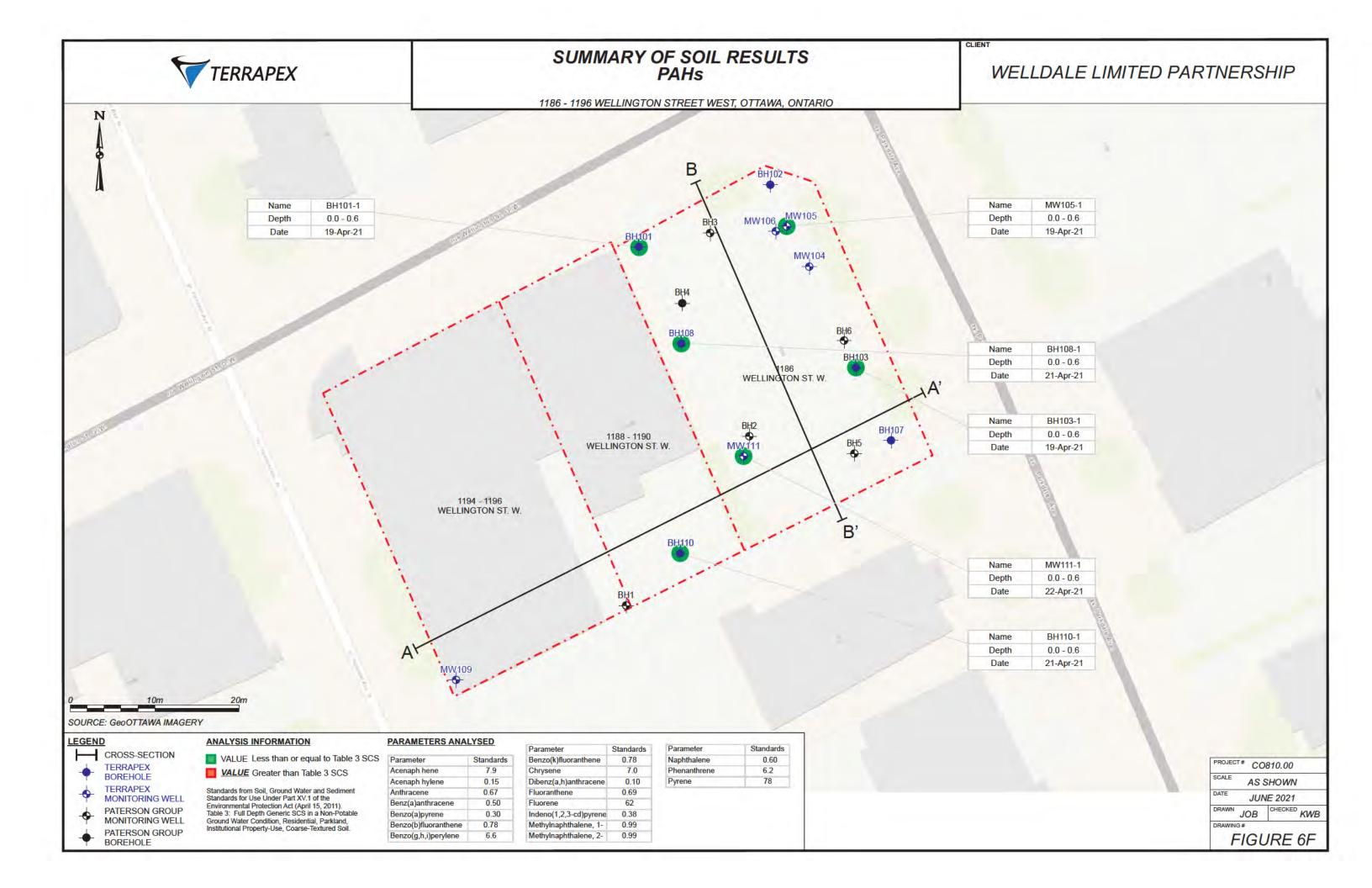

PATERSON GROUP

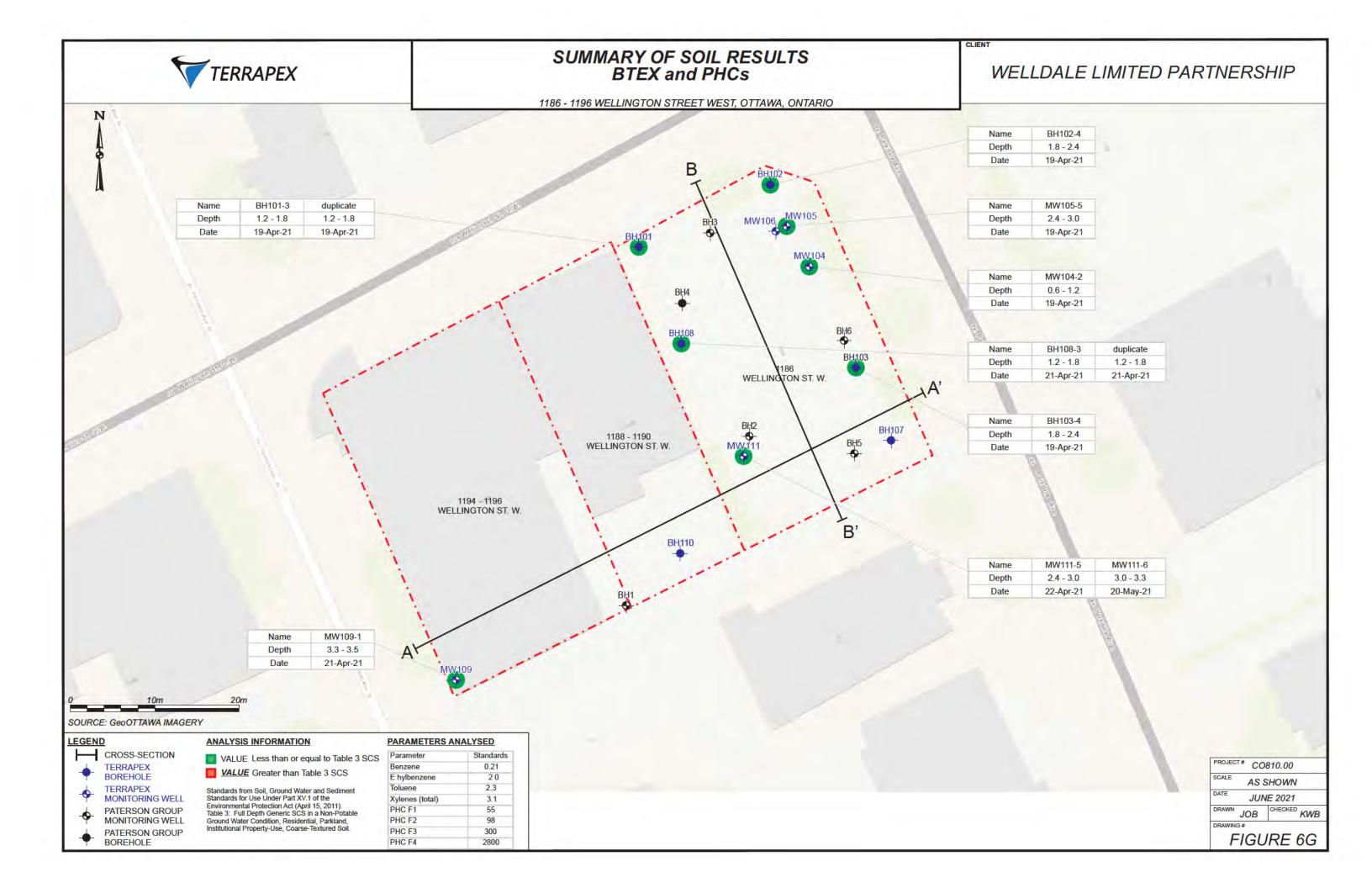

MONITORING WELL PATERSON GROUP BOREHOLE

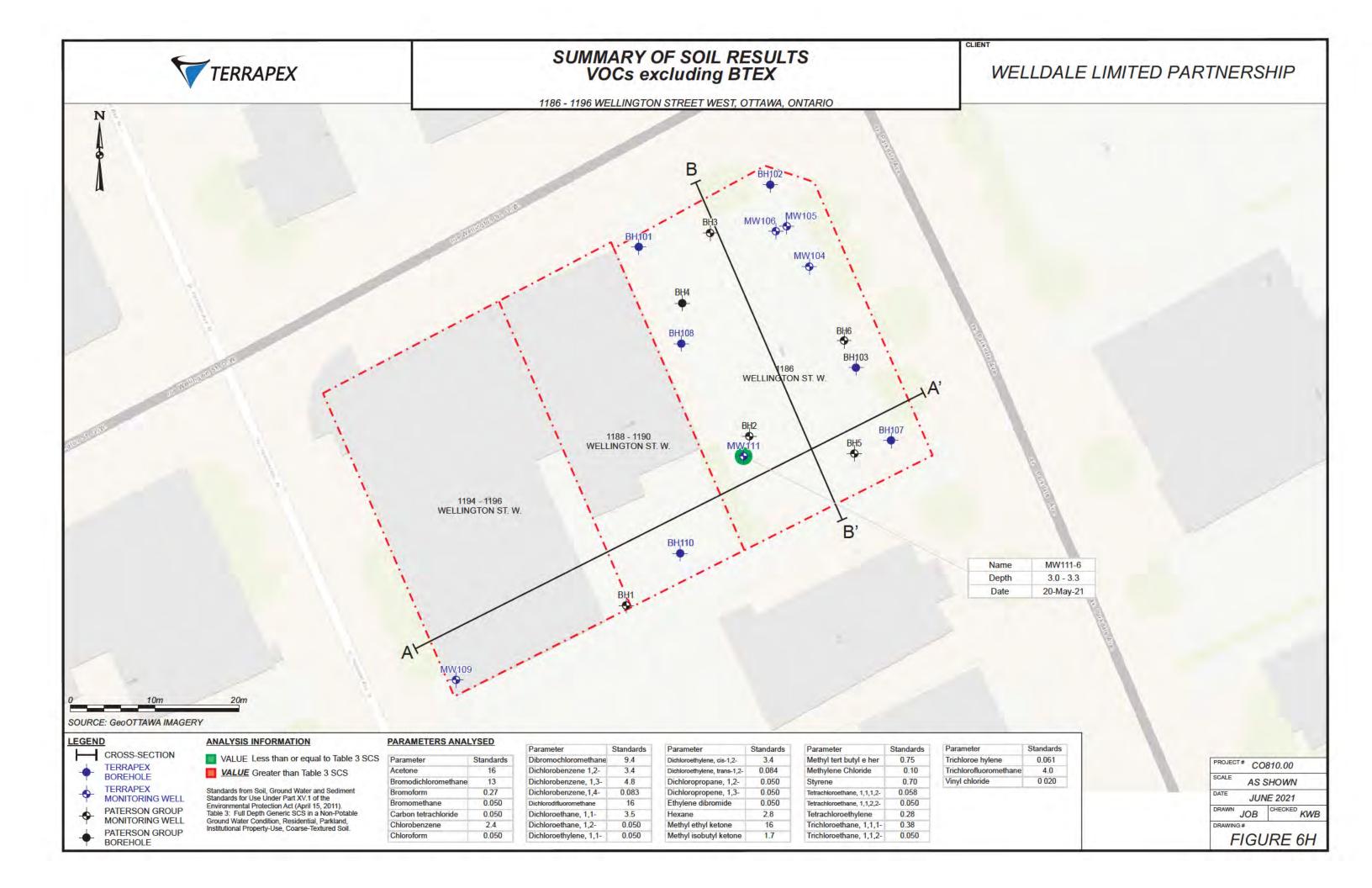


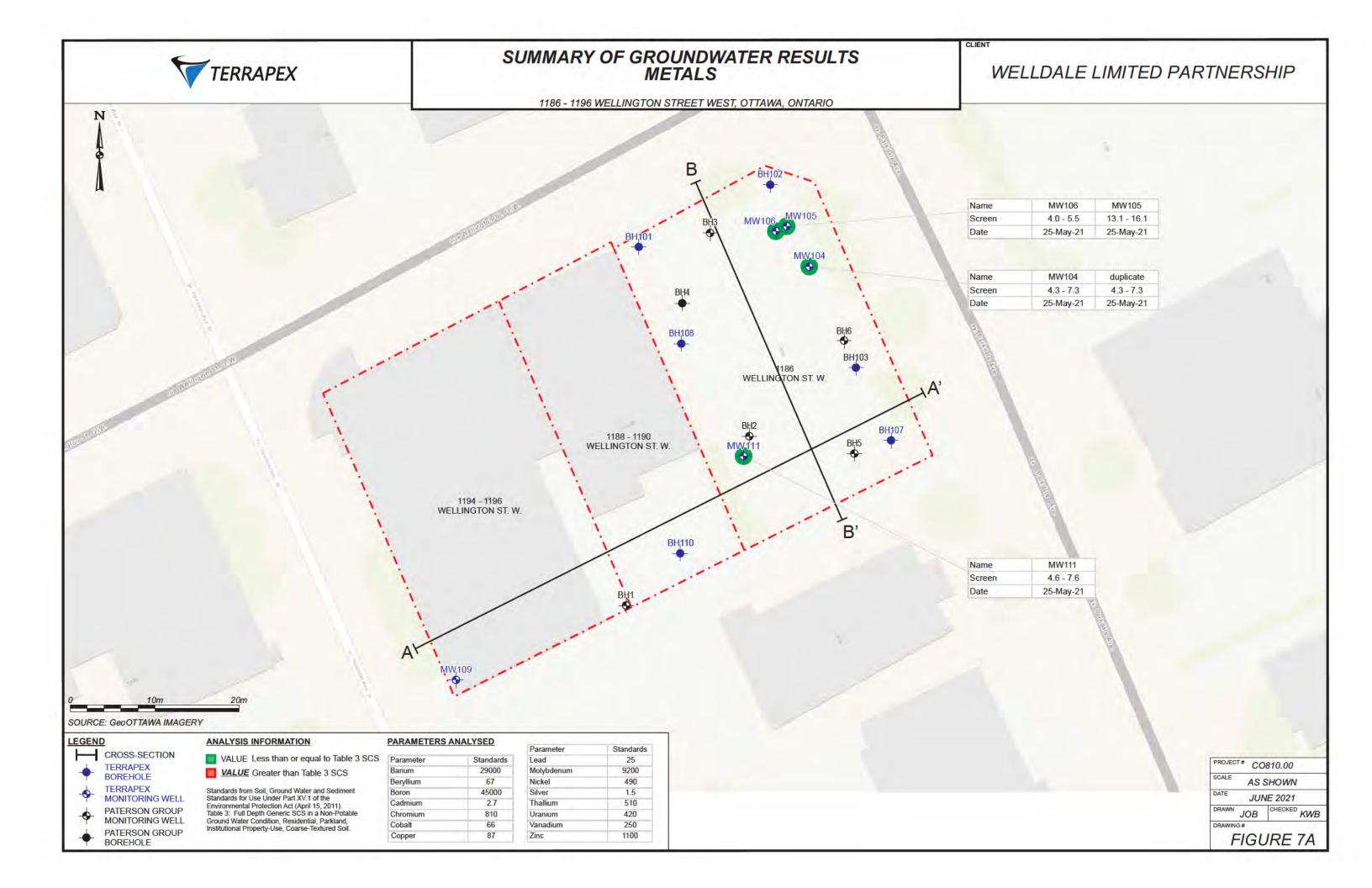


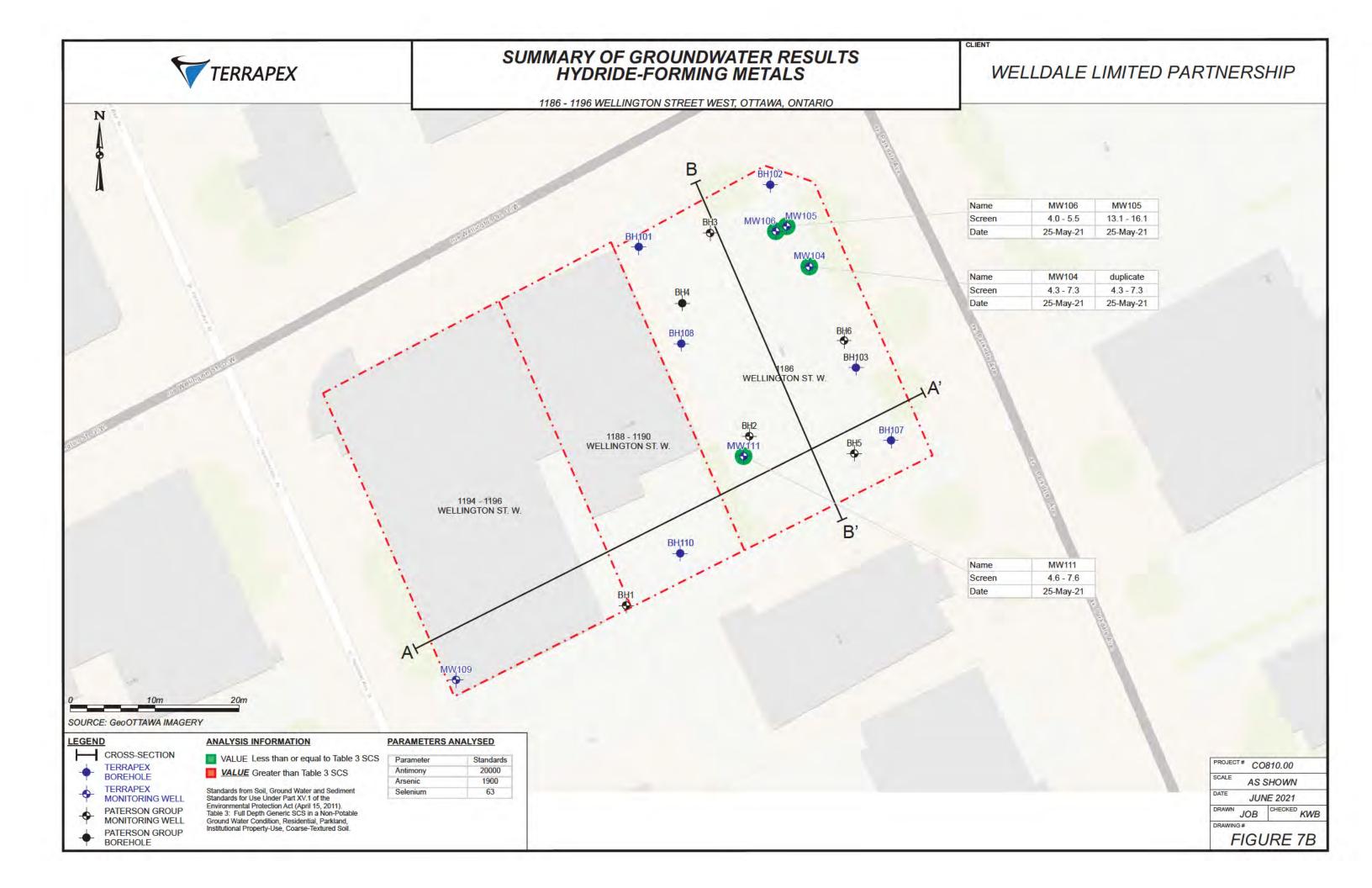


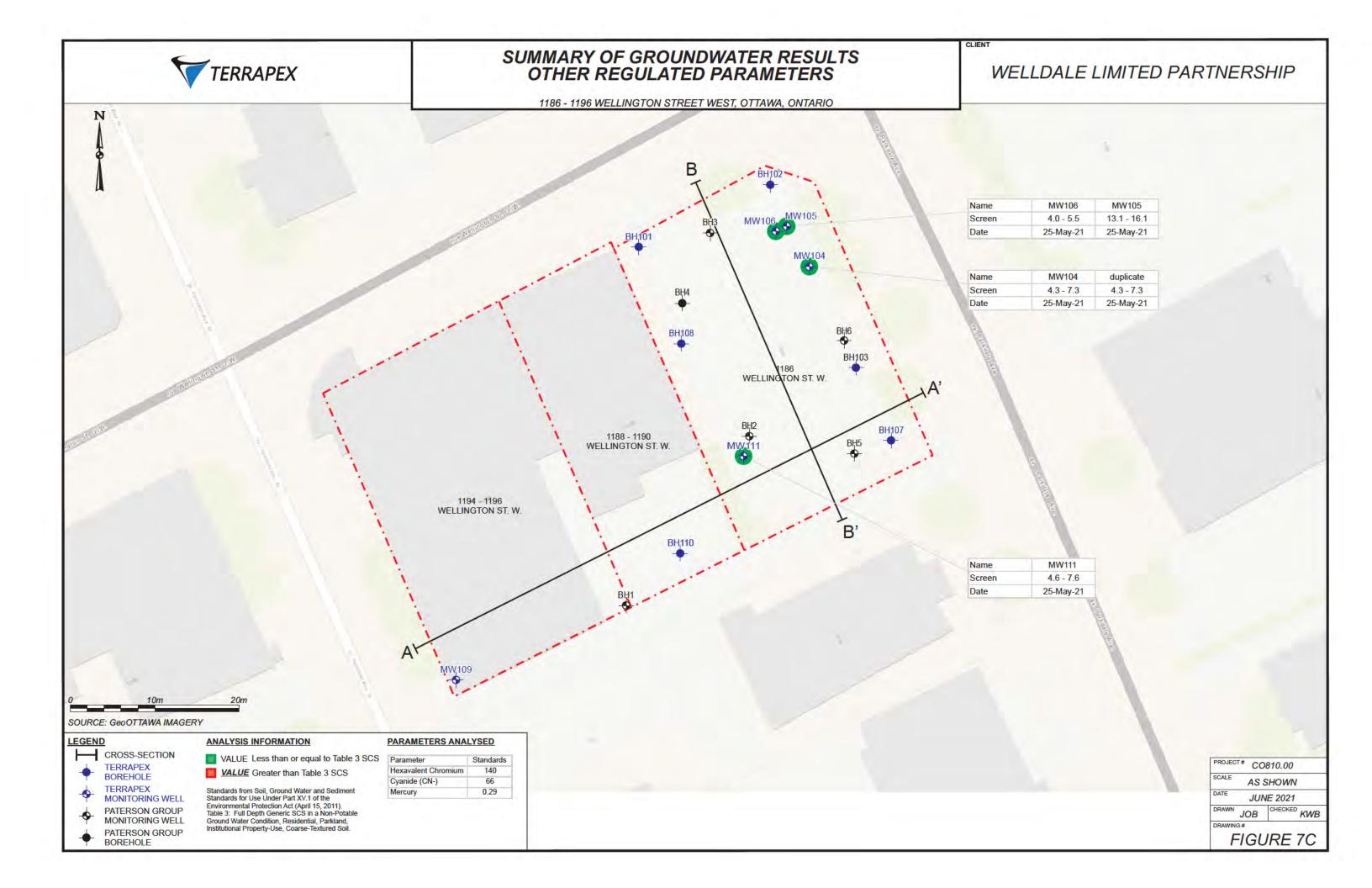


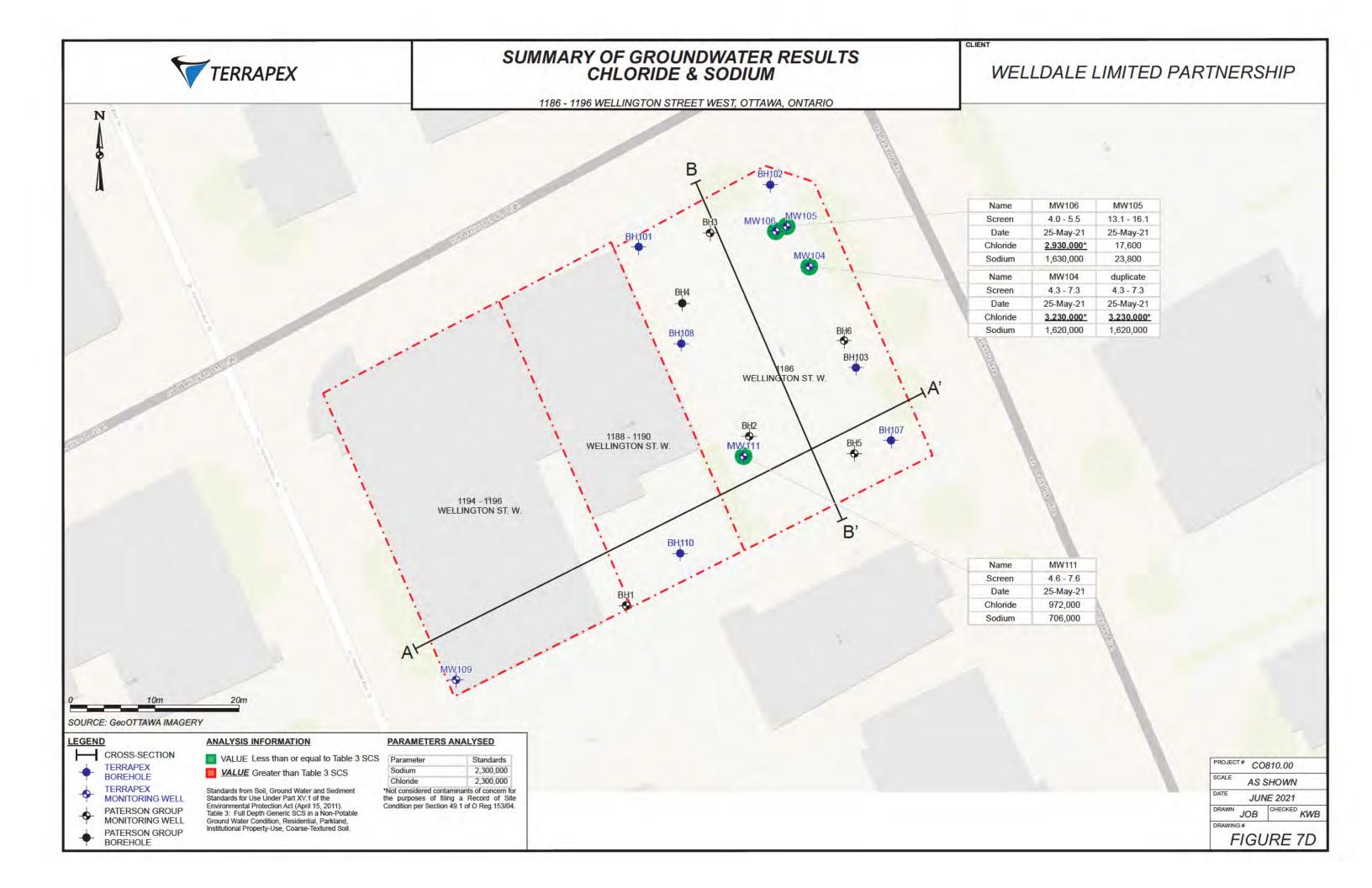


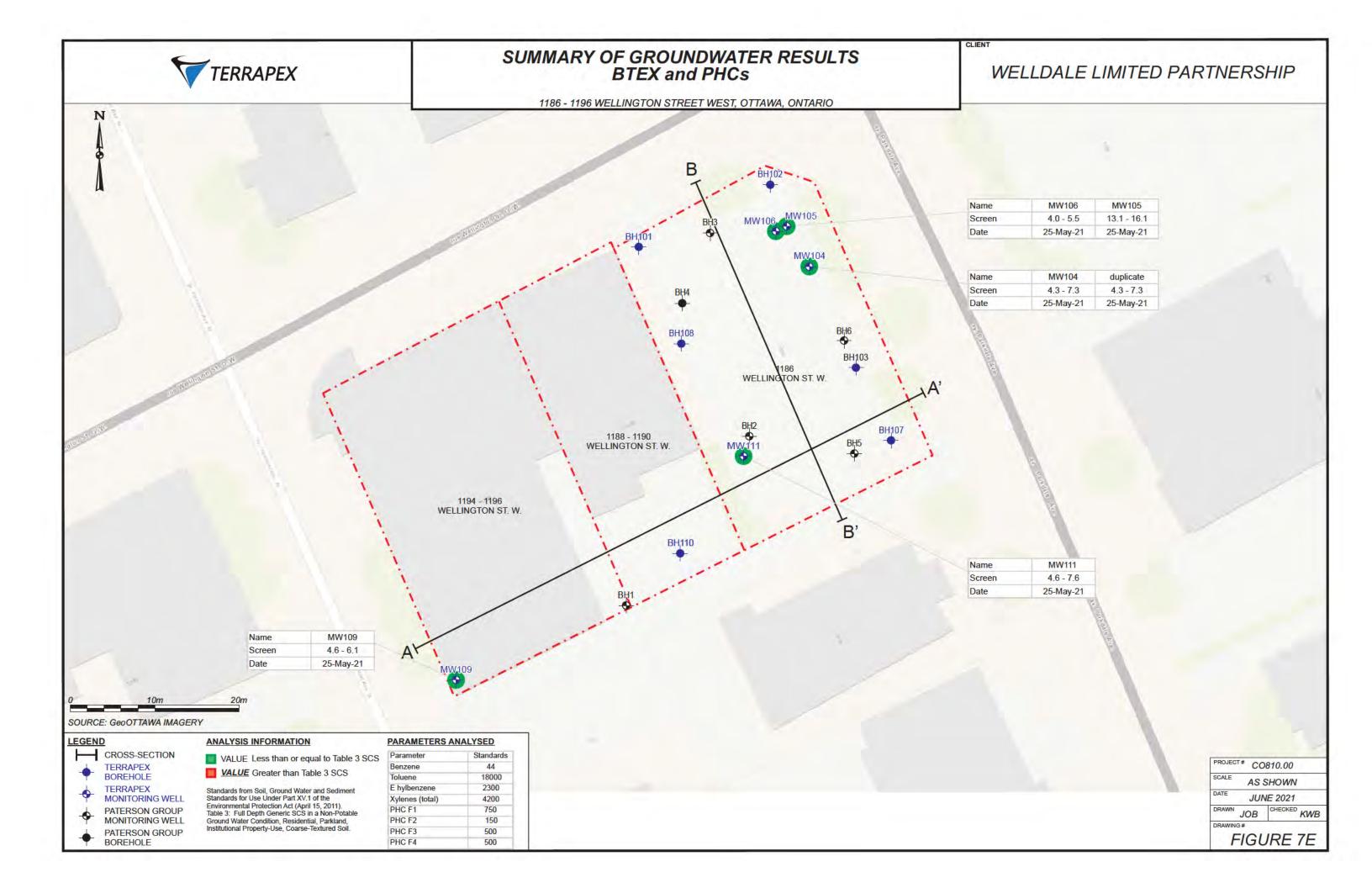


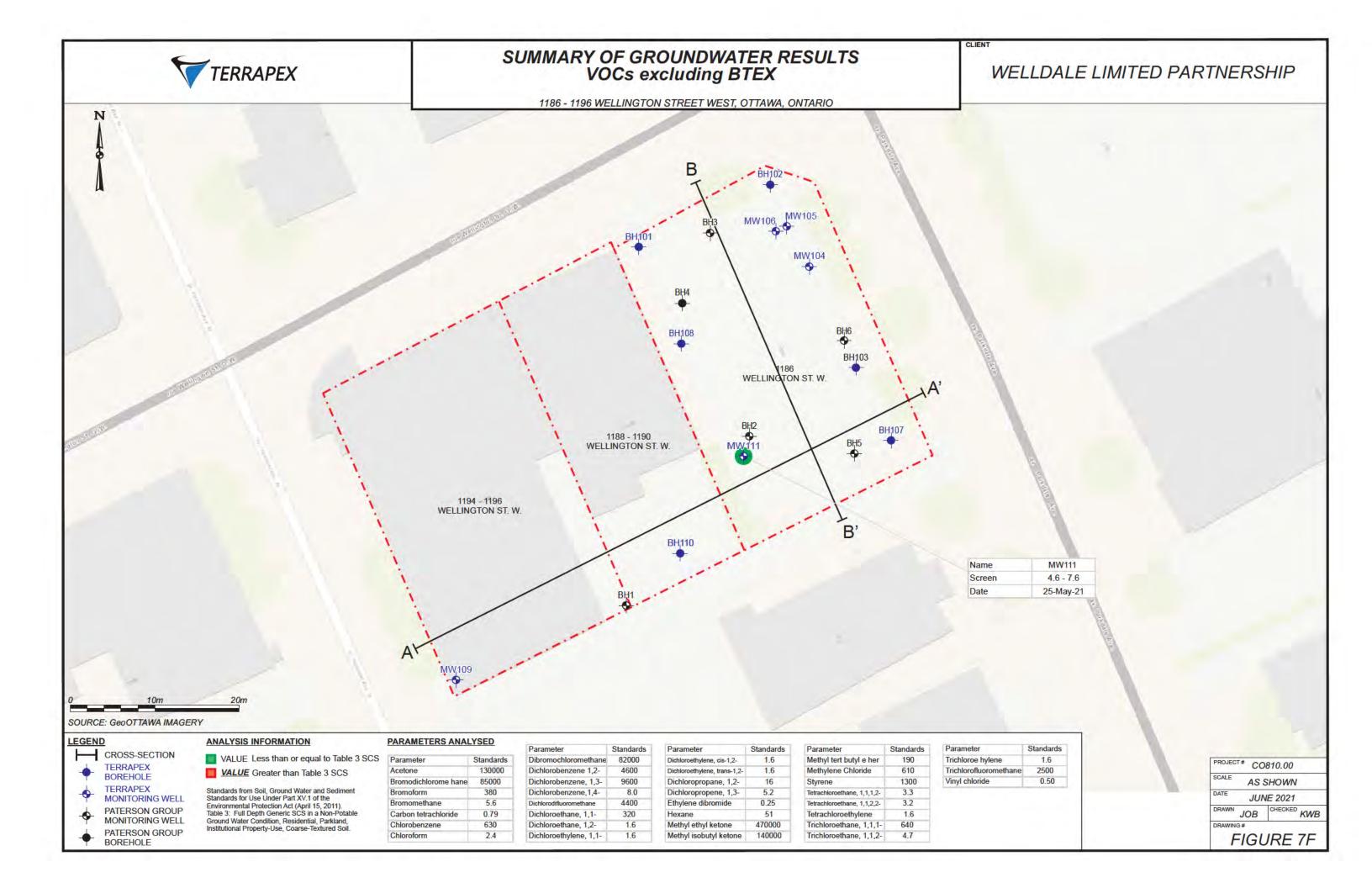


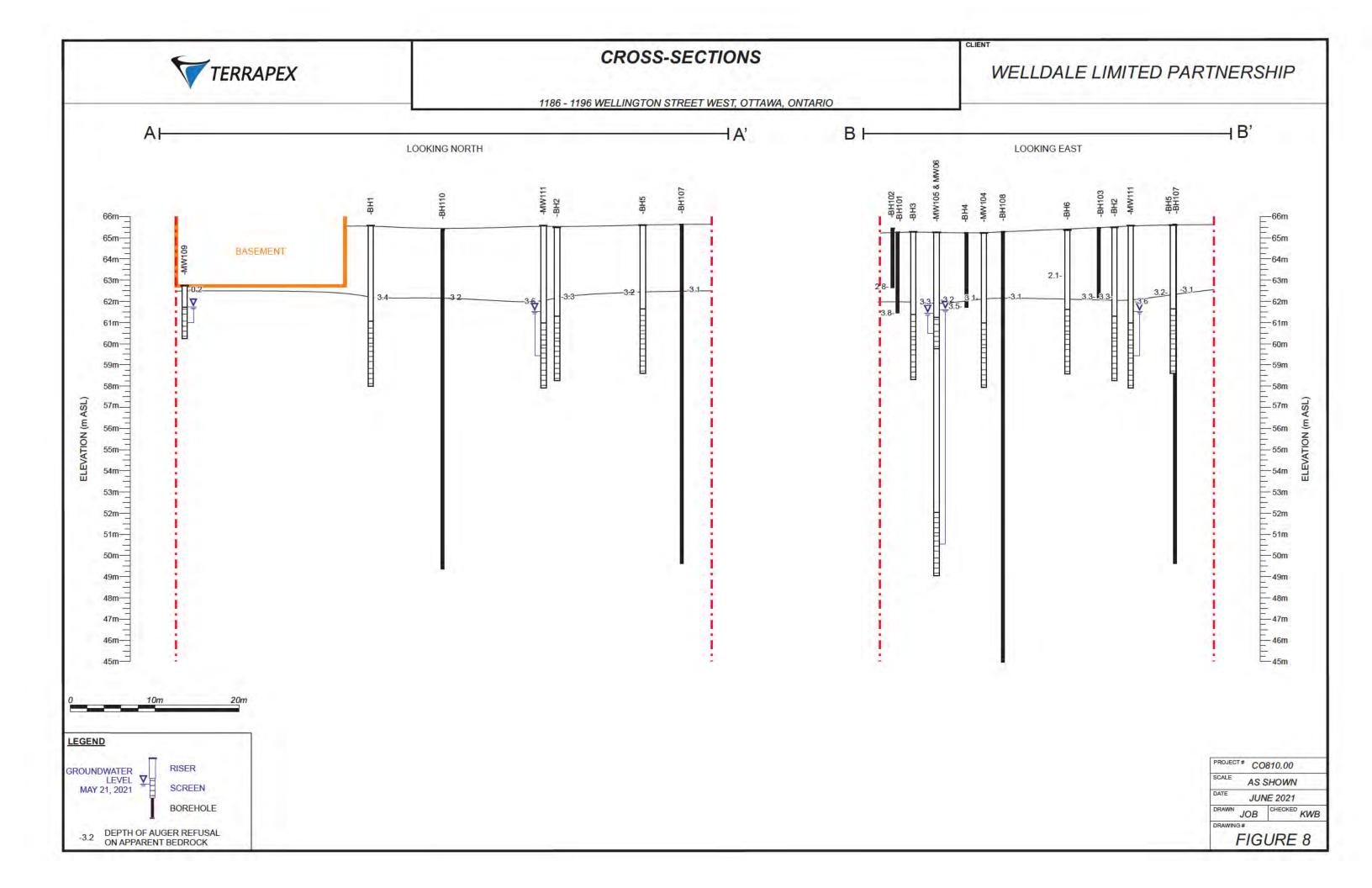












CROSS-SECTIONS- SUMMARY OF SOIL RESULTS TERRAPEX WELLDALE LIMITED PARTNERSHIP pΗ 1186 - 1196 WELLINGTON STREET WEST, OTTAWA, ONTARIO HB' AH BH LOOKING NORTH LOOKING EAST -BH5 -BH107 ___66m 65m--65m BASEMENT 64m--64m 63m--63m -62m -61m 60m--60m 59m--59m 58m--58m 56m-—56m 53m-— 53m -52m 52m-___ 51m 51m-50m--50m -49m -48m 47m-__47m 46m--46m ___45m LEGEND PARAMETERS ANALYSED **ANALYSIS INFORMATION** VALUE Within the range Parameter Standards PROJECT# CO810.00 RISER GROUNDWATER LEVEL ▼ F MAY 21, 2021 pH (surface soil) 5 to 9 VALUE Outside the range pH (subsurface soil) 5 to 11 AS SHOWN SCREEN Standards from Section 41(1): Environmentally JUNE 2021 Sensitive Areas, under O.Reg 153/04, Records of Site Condition – Part XV.1 of he BOREHOLE DRAWN JOB CHECKED KWB Environmental Protection Act DEPTH OF AUGER REFUSAL ON APPARENT BEDROCK FIGURE 9A

CROSS-SECTIONS- SUMMARY OF SOIL RESULTS METALS TERRAPEX WELLDALE LIMITED PARTNERSHIP 1186 - 1196 WELLINGTON STREET WEST, OTTAWA, ONTARIO HB' AH BH LOOKING NORTH LOOKING EAST -BH5 -BH107 ___66m 65m--65m BASEMENT 64m--64m 63m--63m -62m -61m 60m--60m 59m--59m 58m--58m ELEVATION (m ASL) E 56m-—56m 53m-- 53m 52m-___52m ___ 51m 51m--50m 50m--49m -48m __47m 46m-—46m ___45m LEGEND PARAMETERS ANALYSED ANALYSIS INFORMATION Parameter Standards VALUE Less than or equal to Table 3 SCS Parameter 120 Standards Lead PROJECT# CO810.00 RISER GROUNDWATER LEVEL ▼ F MAY 21, 2021 390 Molybdenum 6.9 Barium VALUE Greater than Table 3 SCS Beryllium 4.0 Nickel 100 AS SHOWN SCREEN Standards from Soil, Ground Water and Sediment 120 Silver 20 Boron Standards for Use Under Part XV.1 of the Environmental Protection Act (April 15, 2011). Table 3: Full Depth Generic SCS in a Non-Potable Ground Water Condition, Residential, Parkland, Institutional Property-Use, Coarse-Textured Soil. JUNE 2021 Cadmium 1.2 Thallium 10 **BOREHOLE** JOB CHECKED KWB

23

86

340

FIGURE 9B

Chromium

Cobalt

Copper

DEPTH OF AUGER REFUSAL

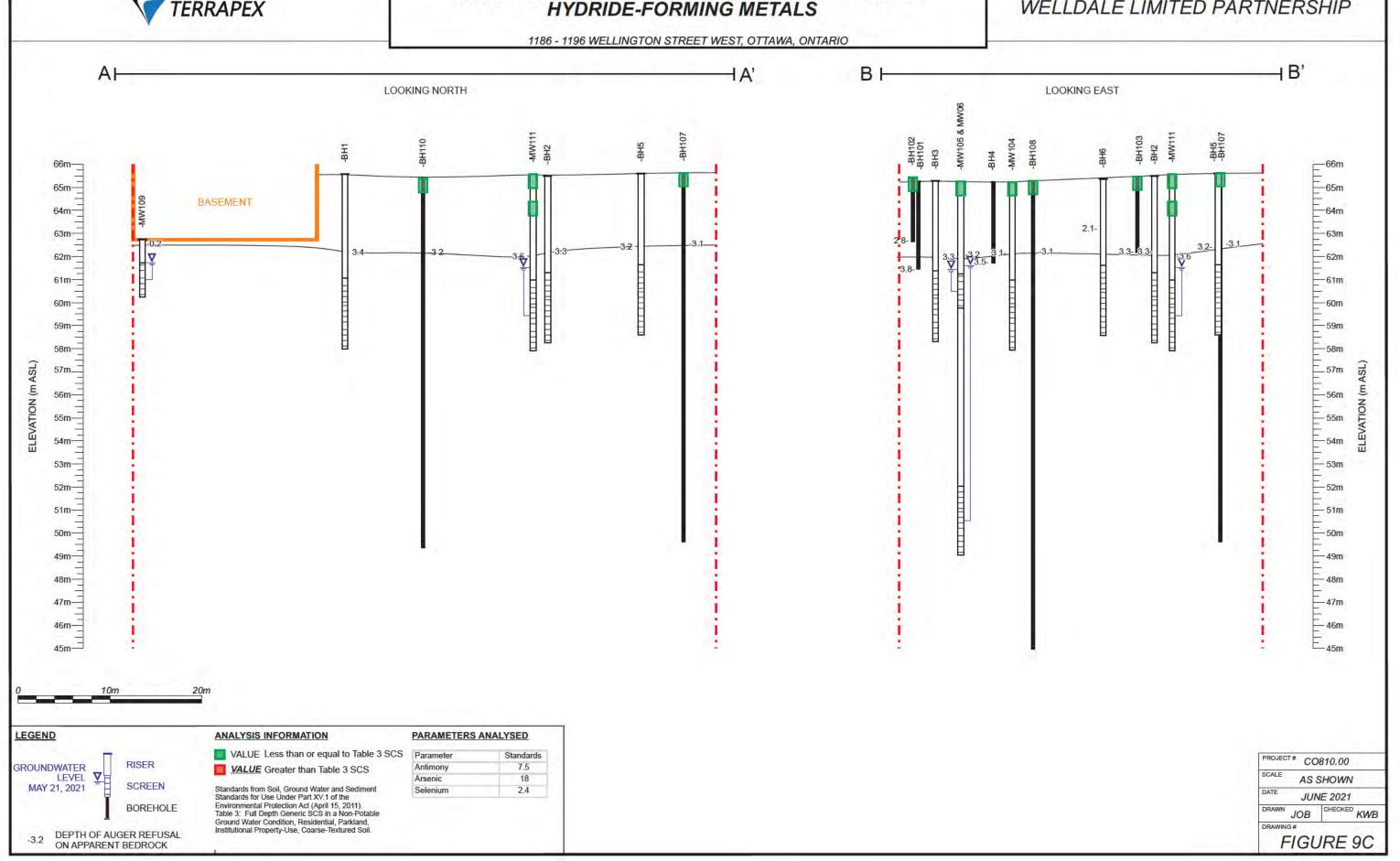
ON APPARENT BEDROCK

160

22

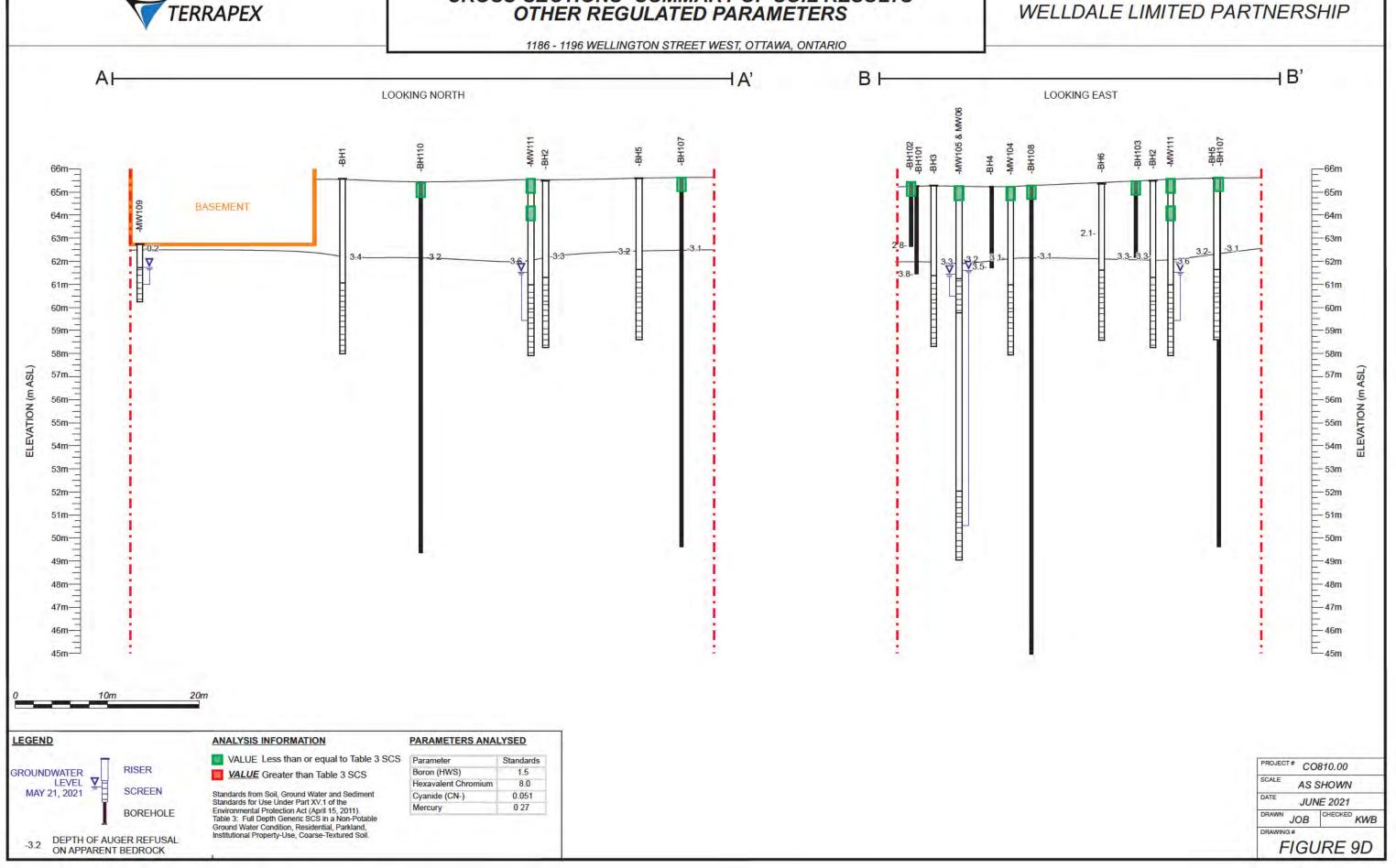
140

Uranium


Zinc

Vanadium

TERRAPEX


CROSS-SECTIONS- SUMMARY OF SOIL RESULTS HYDRIDE-FORMING METALS

WELLDALE LIMITED PARTNERSHIP

TERRAPEX

CROSS-SECTIONS- SUMMARY OF SOIL RESULTS OTHER REGULATED PARAMETERS

CROSS-SECTIONS- SUMMARY OF SOIL RESULTS ELECTRICAL CONDUCTIVITY & SODIUM ABSORPTION RATIO TERRAPEX WELLDALE LIMITED PARTNERSHIP 1186 - 1196 WELLINGTON STREET WEST, OTTAWA, ONTARIO HB' AH BH HA' LOOKING NORTH LOOKING EAST -BH5 -BH107 -BH5 ___66m -65m 65m-BASEMENT 64m--64m 63m--63m -62m -61m 60m--60m 59m--59m 58m--58m ELEVATION (m ASL) E 56m--56m - 55m - 53m 53m-52m--52m — 51m 51m--50m 50m--49m -48m __47m 46m-—46m ___45m LEGEND PARAMETERS ANALYSED ANALYSIS INFORMATION VALUE Less than or equal to Table 3 SCS Parameter Standards PROJECT# CO810.00 RISER GROUNDWATER LEVEL MAY 21, 2021 EC* 0.70 VALUE Greater than Table 3 SCS SAR* 5.0 AS SHOWN SCREEN Standards from Soil, Ground Water and Sediment *Not considered contaminants of concern for JUNE 2021 Standards for Use Under Part XV.1 of the Environmental Protection Act (April 15, 2011). the purposes of filing a Record of Site Condition per Section 49.1 of O Reg.153/04. CHECKED KWB **BOREHOLE** Table 3: Full Depth Generic SCS in a Non-Potable Ground Water Condition, Residential, Parkland, Institutional Property-Use, Coarse-Textured Soil. JOB DEPTH OF AUGER REFUSAL FIGURE 9E ON APPARENT BEDROCK

CROSS-SECTIONS- SUMMARY OF SOIL RESULTS TERRAPEX WELLDALE LIMITED PARTNERSHIP PAHS 1186 - 1196 WELLINGTON STREET WEST, OTTAWA, ONTARIO HB' AH BH LOOKING NORTH LOOKING EAST -BH5 -BH107 ___66m 65m--65m BASEMENT 64m--64m 63m--63m -62m -61m 60m--60m 59m--59m 58m--58m ELEVATION (m ASL) 56m--56m - 53m 53m--52m 51m-- 51m -50m 50m--49m -48m __47m —46m 46m-___45m LEGEND PARAMETERS ANALYSED ANALYSIS INFORMATION Parameter Standards Standards VALUE Less than or equal to Table 3 SCS 0.78 0.60 Parameter Standards Benzo(k)fluoranthene Naphthalene PROJECT# CO810.00 RISER GROUNDWATER LEVEL 7.9 7.0 6.2 Acenaphthene Chrysene Phenanthrene VALUE Greater than Table 3 SCS Acenaphthylene 0.15 Dibenz(a,h)anthracene 0.10 Pyrene 78 AS SHOWN MAY 21, 2021 SCREEN Standards from Soil, Ground Water and Sediment 0.67 0.69 Anthracene Fluoranthene JUNE 2021 Standards for Use Under Part XV.1 of the Environmental Protection Act (April 15, 2011). Benz(a)anthracene 0.50 Fluorene 62 CHECKED KWB **BOREHOLE** Table 3: Full Depth Generic SCS in a Non-Potable Ground Water Condition, Residential, Parkland, Institutional Property-Use, Coarse-Textured Soil. JOB 0.30 Indeno(1,2,3-cd)pyrene 0.38 Benzo(a)pyrene 0.99 0.78 Methylnaphthalene, 1-Benzo(b)fluoranthene

6.6

Benzo(g,h,i)perylene

Methylnaphthalene, 2-

0.99

FIGURE 9F

DEPTH OF AUGER REFUSAL

ON APPARENT BEDROCK

CROSS-SECTIONS- SUMMARY OF SOIL RESULTS BTEX and PHCs TERRAPEX WELLDALE LIMITED PARTNERSHIP 1186 - 1196 WELLINGTON STREET WEST, OTTAWA, ONTARIO HB' AH BH LOOKING NORTH LOOKING EAST -BH5 -BH107 ___66m 65m--65m BASEMENT 64m--64m 63m--63m -62m -61m 60m--60m 59m--59m 58m--58m ELEVATION (m ASL) 56m-—56m 53m-__ 53m 52m-___52m ___ 51m 51m--50m 50m--49m -48m __47m 46m-—46m ___45m LEGEND ANALYSIS INFORMATION PARAMETERS ANALYSED Standards VALUE Less than or equal to Table 3 SCS Parameter PROJECT# CO810.00 0.21 Benzene RISER GROUNDWATER LEVEL ▼ F MAY 21, 2021 VALUE Greater than Table 3 SCS 20 E hylbenzene AS SHOWN SCREEN Toluene 2.3 Standards from Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act (April 15, 2011). Table 3: Full Depth Generic SCS in a Non-Potable Ground Water Condition, Residential, Parkland, Institutional Property-Use, Coarse-Textured Soil. JUNE 2021 3.1 Xylenes (total) BOREHOLE PHC F1 55 JOB CHECKED KWB

FIGURE 9G

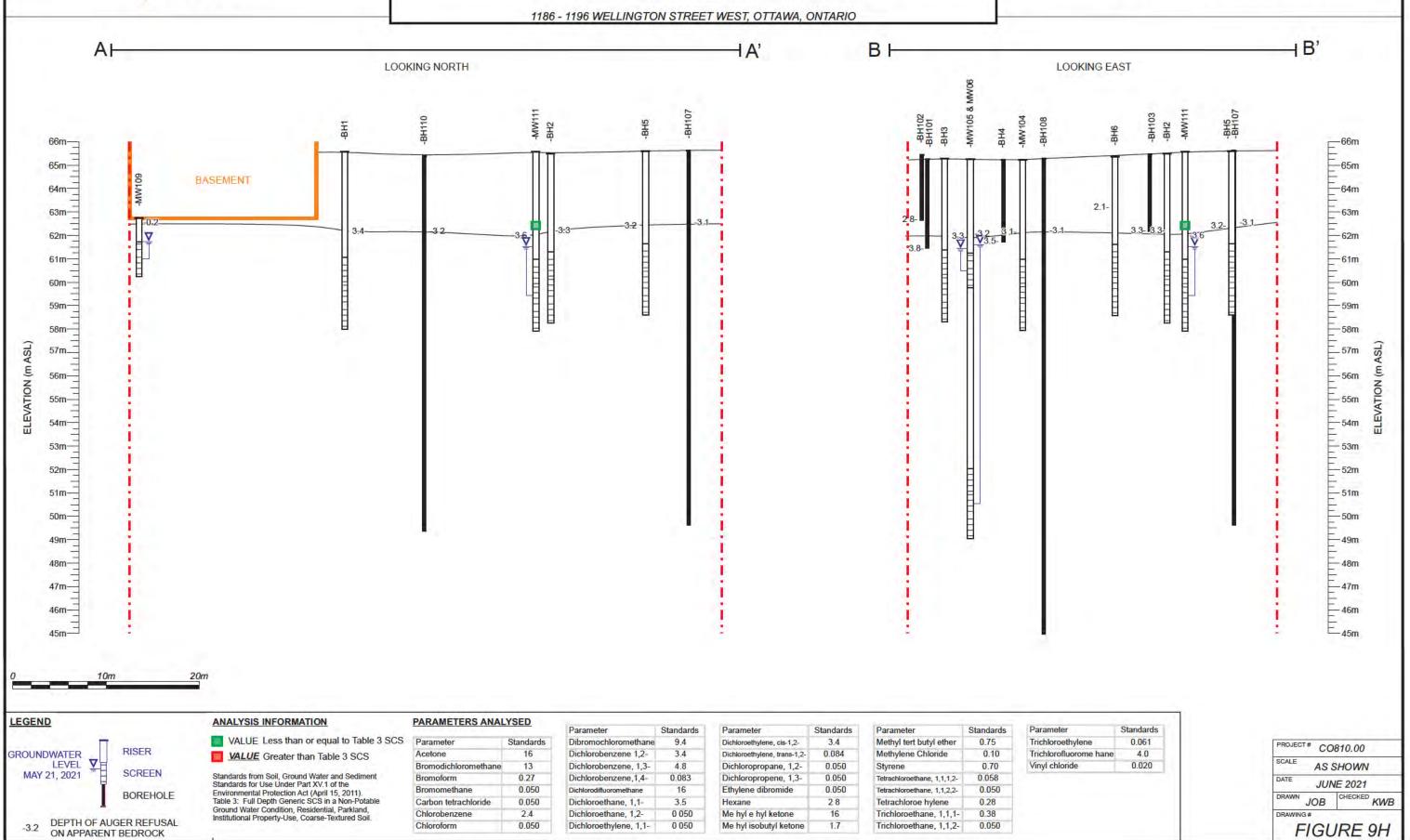
PHC F2

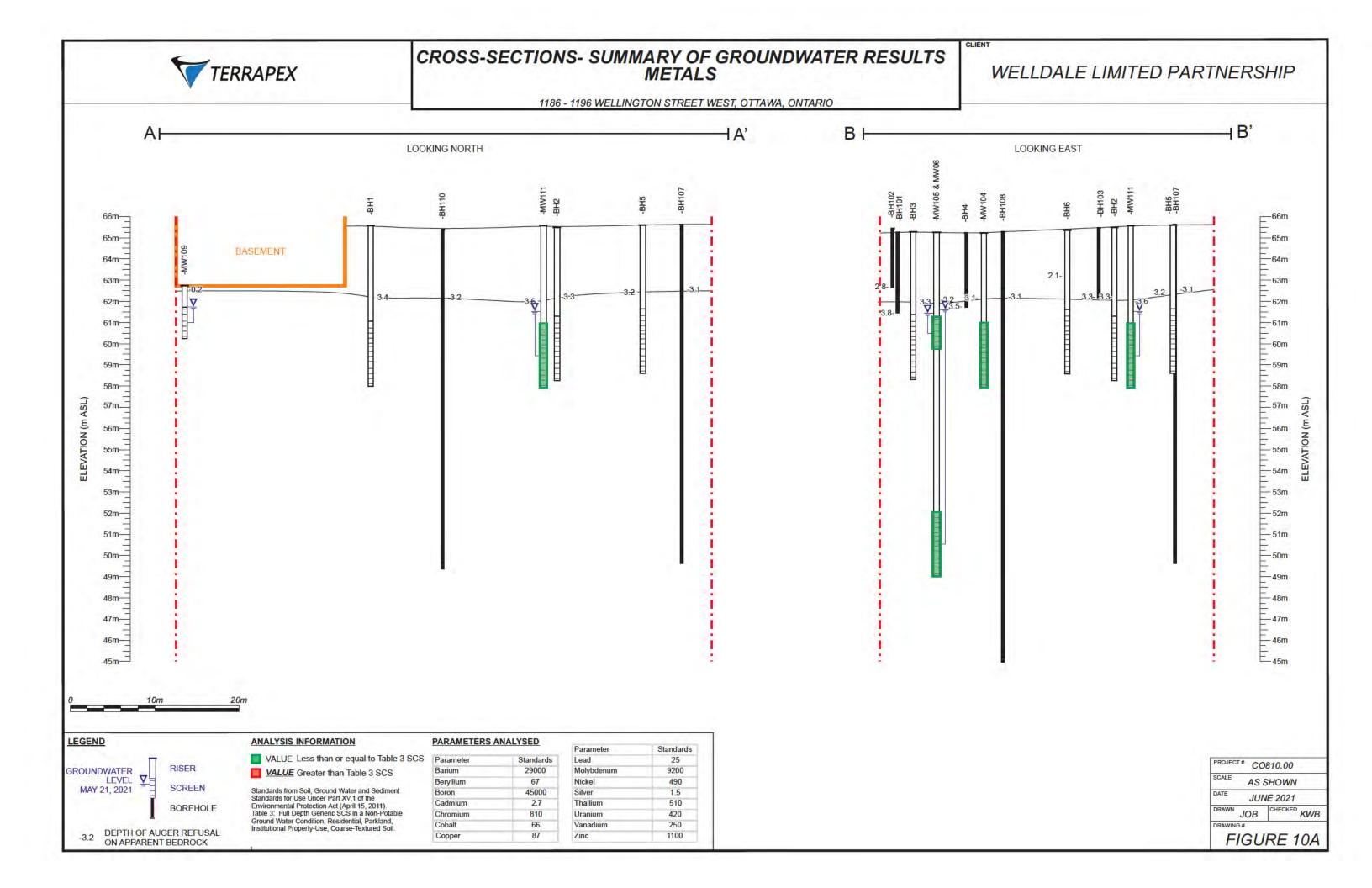
PHC F3

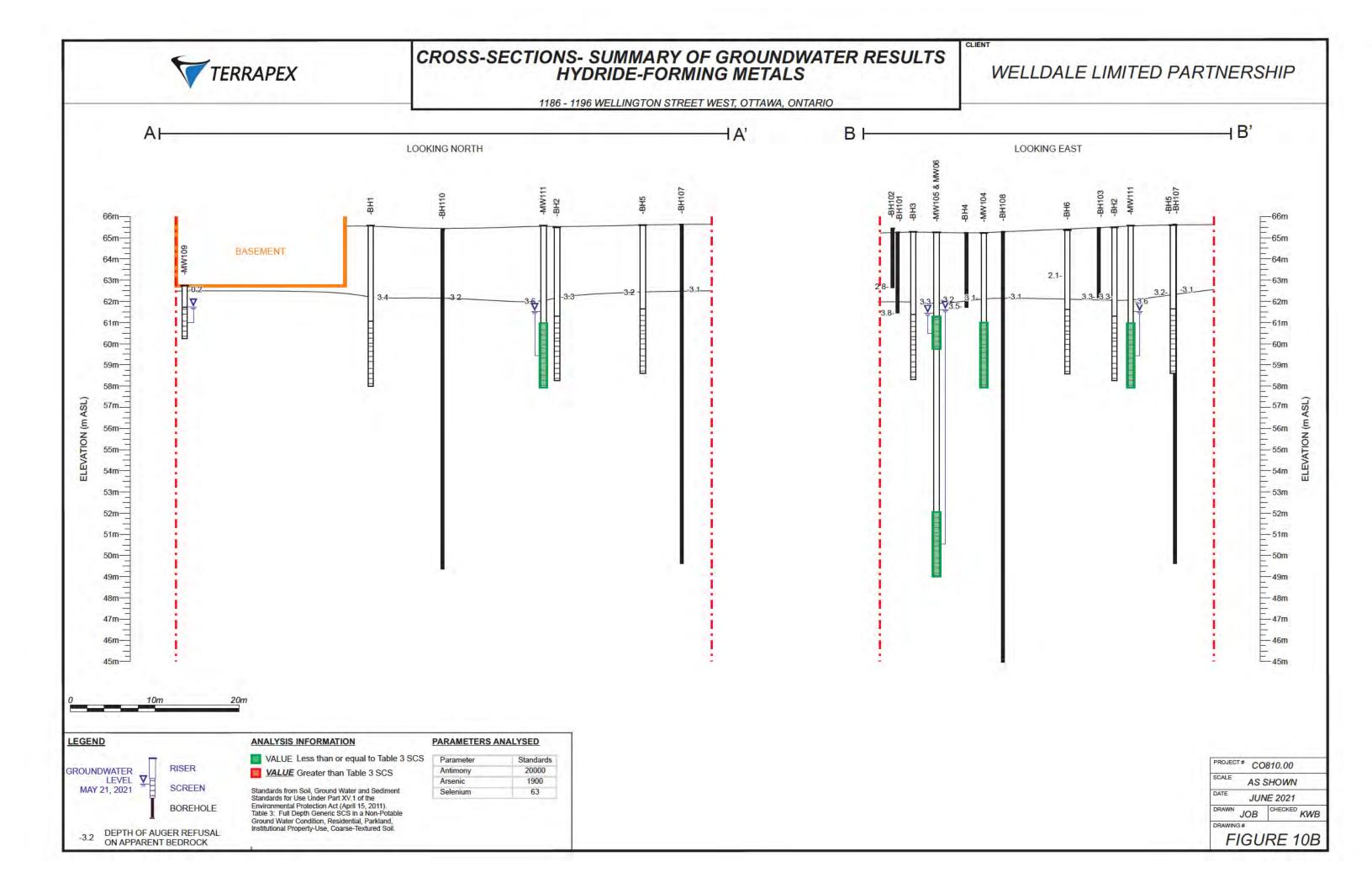
PHC F4

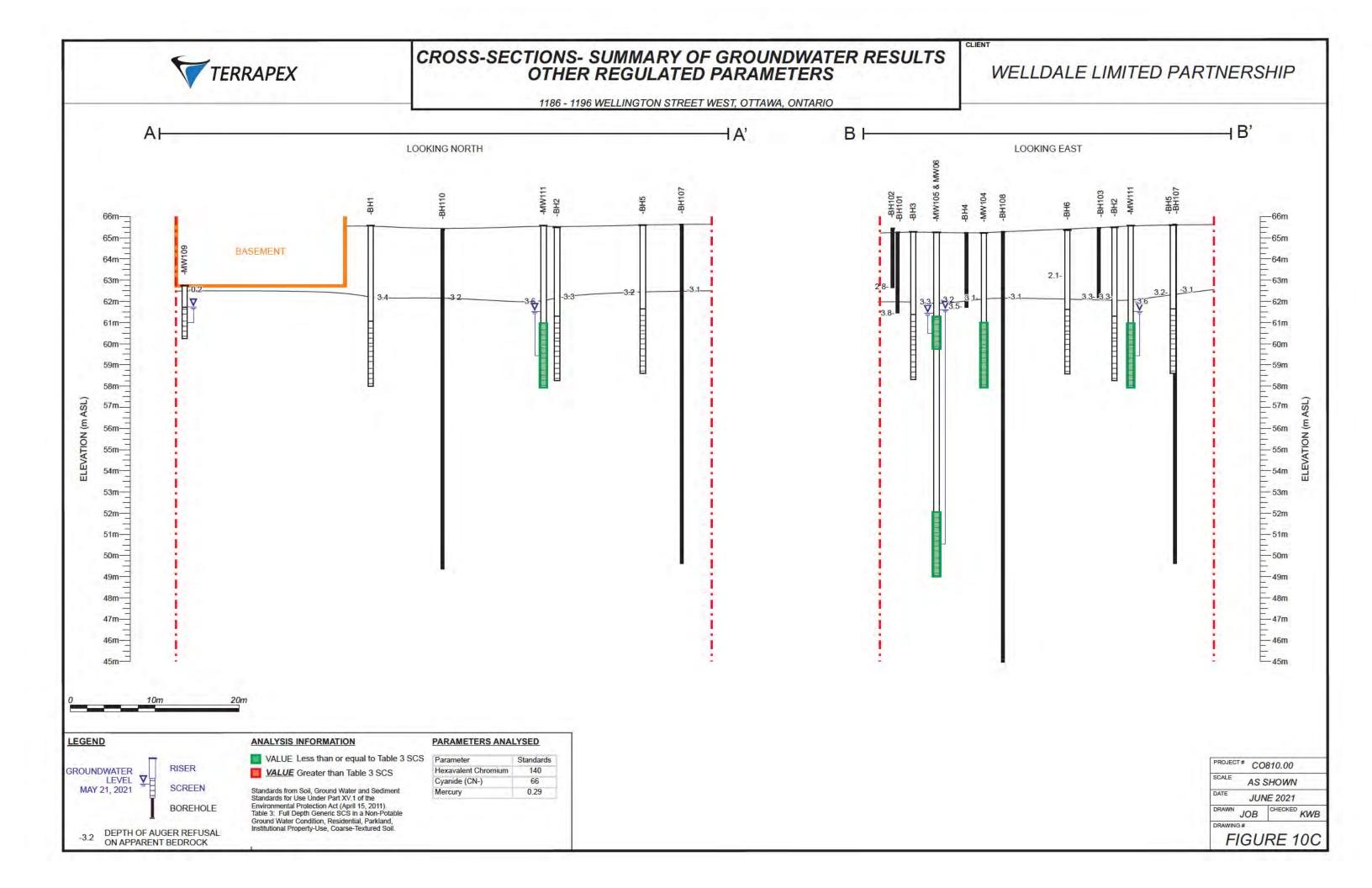
DEPTH OF AUGER REFUSAL ON APPARENT BEDROCK

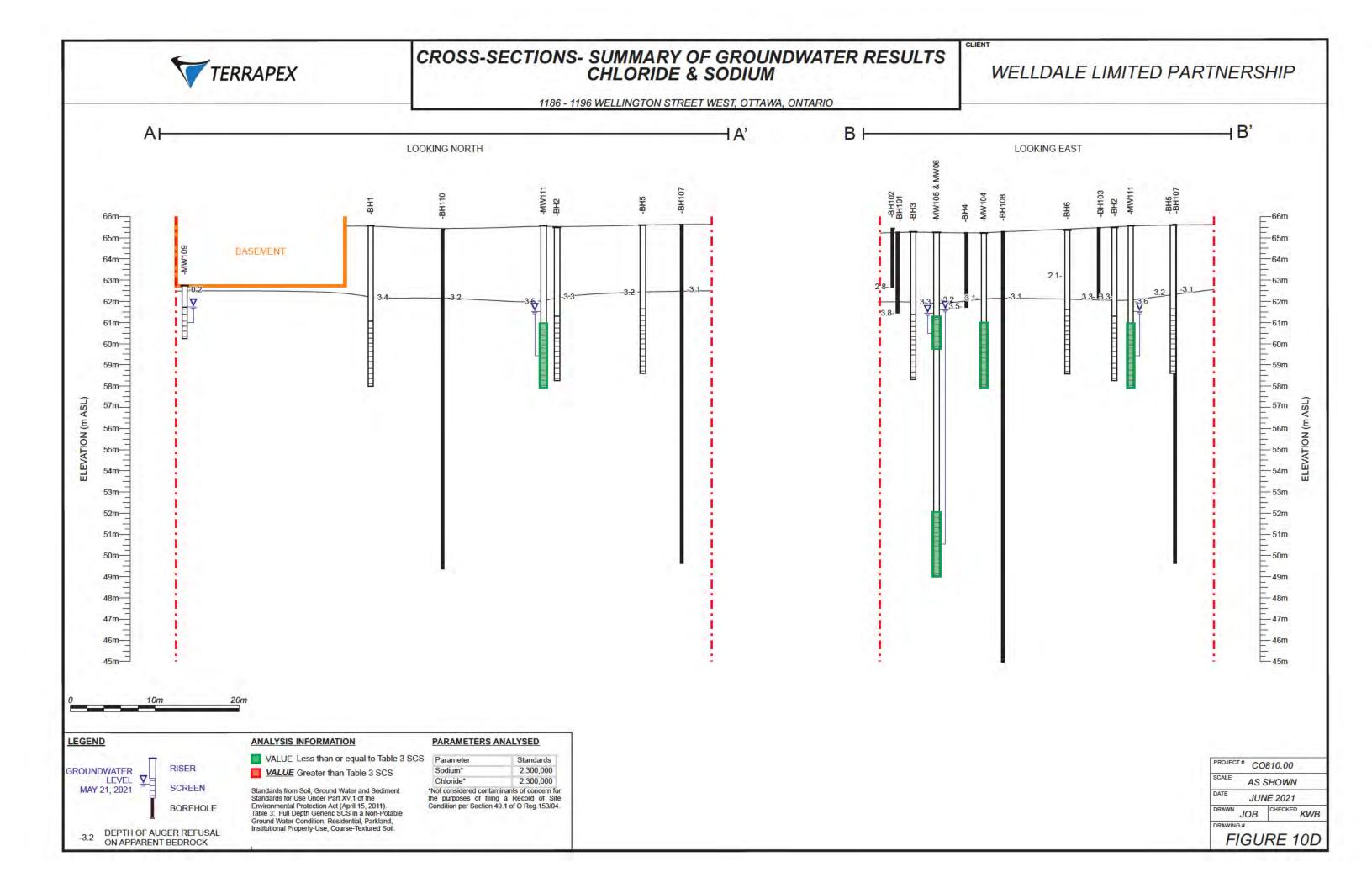
98

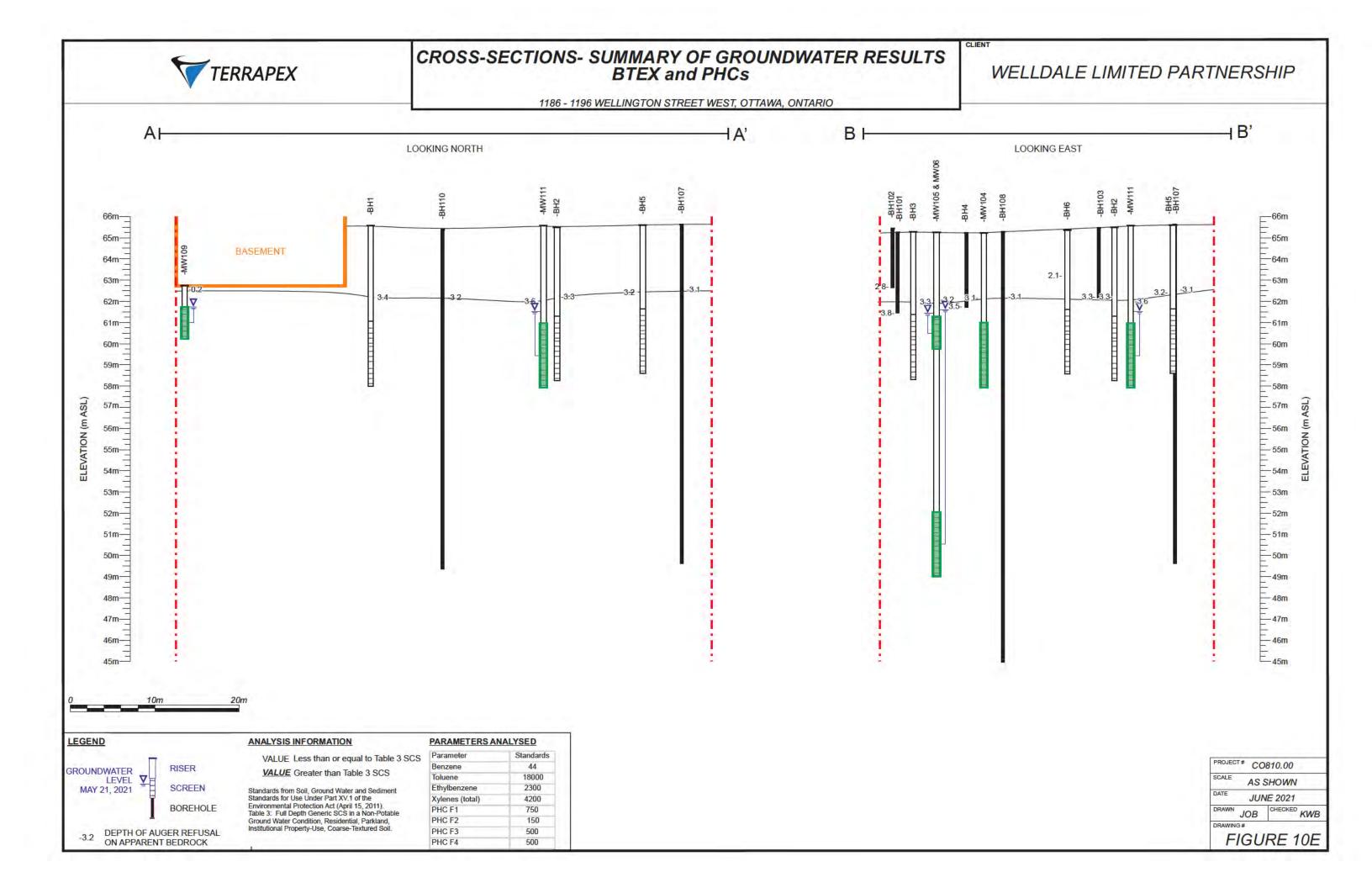

300


2800


TERRAPEX


CROSS-SECTIONS- SUMMARY OF SOIL RESULTS VOCs excluding BTEX


WELLDALE LIMITED PARTNERSHIP



CROSS-SECTIONS- SUMMARY OF GROUNDWATER RESULTS VOCs excluding BTEX TERRAPEX WELLDALE LIMITED PARTNERSHIP 1186 - 1196 WELLINGTON STREET WEST, OTTAWA, ONTARIO B' AH BH HA' LOOKING NORTH LOOKING EAST BH5 BH107 ___66m -65m 65m-BASEMENT 64m--64m 63m--63m -62m -61m 60m--60m 59m--59m 58m--58m ELEVATION (m ASL) Ε 56m--56m - 53m 53m--52m 51m-- 51m 50m--50m -49m 48m -47m 46m--46m ___45m LEGEND **ANALYSIS INFORMATION** PARAMETERS ANALYSED Parameter Standards Standards Standards Standards Parameter Parameter VALUE Less than or equal to Table 3 SCS 1.6 Parameter Standards Dibromochloromethane 82000 Dichloroethylene, cis-1,2-1.6 Methyl tert butyl e her 190 Trichloroe hylene PROJECT# CO810.00 RISER 130000 610 2500 GROUNDWATER Dichlorobenzene 1,2-4600 1.6 Methylene Chloride Trichlorofluoromethane Acetone Dichloroethylene, trans-1.2-VALUE Greater than Table 3 SCS LEVEL Bromodichloromethane 85000 Dichlorobenzene, 1,3-9600 Dichloropropane, 1,2-16 1300 Vinyl chloride 0.50 AS SHOWN MAY 21, 2021 SCREEN Standards from Soil, Ground Water and Sediment 380 8.0 5.2 3.3 Bromoform Dichloropropene, 1,3-JUNE 2021 Standards for Use Under Part XV.1 of the Environmental Protection Act (April 15, 2011). Bromomethane 5.6 4400 Ethylene dibromide 0.25 3.2 Tetrachloroethane, 1,1,2,2-CHECKED KWB **BOREHOLE** Table 3: Full Depth Generic SCS in a Non-Potable Ground Water Condition, Residential, Parkland, JOB Carbon tetrachloride 0.79 Dichloroethane, 1,1-320 51 1.6 Hexane Tetrachloroe hylene

1.6

1.6

Dichloroethane, 1,2-

Dichloroethylene, 1,1-

Methyl ethyl ketone

Methyl isobutyl ketone

470000

140000

Trichloroethane, 1,1,1-

Trichloroethane, 1,1,2-

640

4.7

FIGURE 10F

Chlorobenzene

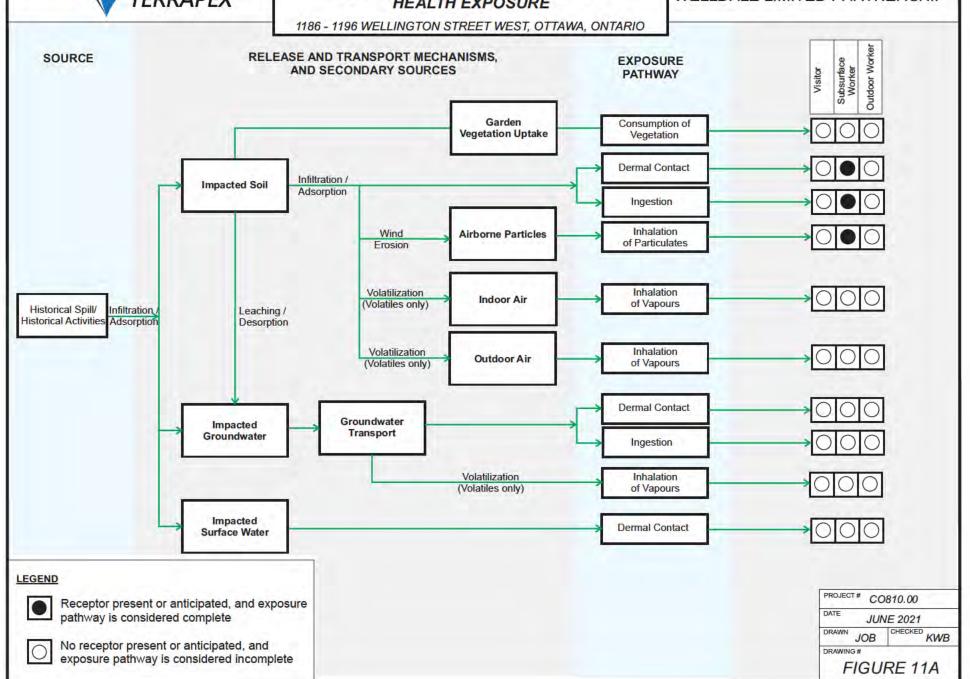
Chloroform

Institutional Property-Use, Coarse-Textured Soil

DEPTH OF AUGER REFUSAL

ON APPARENT BEDROCK

630


2.4

TERRAPEX

CONCEPTUAL MODEL FOR HUMAN HEALTH EXPOSURE

WELLDALE LIMITED PARTNERSHIP

CLIENT

CONCEPTUAL MODEL FOR ECOLOGICAL EXPOSURE

WELLDALE LIMITED PARTNERSHIP

CLIENT

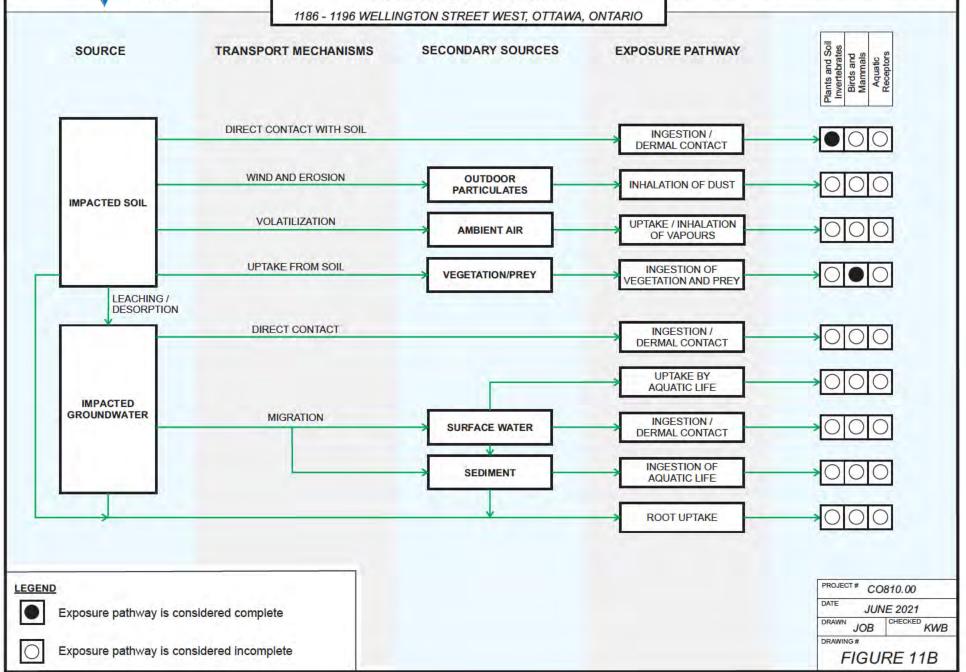


TABLE 1 GROUNDWATER MONITORING DATA

1186, 1188, 1194, and 1196 Wellington St. West, Ottawa, ON

	,,	5-1, and 1100 Wei	3	-,							
Well ID	Ground Elevation	TOP Elevation	Bottom of Borehole	Screen Length	Date	CV	Depth to NAPL	Depth to Water	Corrected Groundwater Elevation	Corrected Depth to Water	NAPL Thickness
	m amsl	m amsl	m bg	m	dd-mmm-yy	see note	m bTOP	m bTOP	m amsl	m bg	m
BH1	65.57	65.44	7.6	3 0	7-Jun-21	<10 ppm	-	3 95	61.49	4.08	None
BH2	65.50	65.41	7.3	3 0	7-Jun-21	<10 ppm	-	4 00	61.41	4.09	None
BH3	65.27	65.13	7.0	3 0	7-Jun-21	<10 ppm	-	3.78	61 35	3.92	None
BH5	65.60	65 53	7.0	3 0	7-Jun-21	30 ppm	-	3 97	61 57	4.04	None
BH6	65.35	65 30	6.8	3 0	7-Jun-21	15 ppm	-	4 03	61 27	4.08	None
MW104	65.23	65.11	7.3	3 0	25-May-21	80 ppm	-	3.73	61 39	3.85	None
MW104	65.23	65.11	7.3	3 0	7-Jun-21	10 ppm	-	3 86	61 26	3.98	None
MW105	65.25	65.15	16.1	3 0	25-May-21	<10 ppm	-	3 54	61 61	3.65	None
MW105	65.25	65.15	16.1	3 0	7-Jun-21	10 ppm	-	3 67	61.48	3.78	None
MW106	65.25	65.14	5.5	1 5	25-May-21	<10 ppm	-	3.71	61.43	3.81	None
MW106	65.25	65.14	5.5	1 5	7-Jun-21	45 ppm	-	3 84	61 31	3.94	None
MW109	62.73	62 60	6.1	1 5	25-May-21	<10 ppm	-	0 87	61.73	1.00	None
MW109	62.73	62 60	6.1	1 5	7-Jun-21	-	-	-	-	-	-
MW111	65.57	65.47	7.6	3 0	25-May-21	<10 ppm	-	3 95	61 52	4.05	None
MW111	65.57	65.47	7.6	3 0	7-Jun-21	<10 ppm	-	3 99	61.48	4.09	None

Note:

TOP Top of well standpipe

CV Combustible vapour concentration in well headspace in parts per million (ppm) or percent of the lower explosive limit (% LEL)

NAPL Non-aqueous phase liquid with an assumed specific gravity of: 0.80

amsl Above mean sea level

bg Below grade

- Not measured / not applicable

TABLE 2A SOIL ANALYTICAL RESULTS - INORGANICS
1186, 1188, 1194, and 1196 Wellington St. West, Ottawa, ON

Sample Name	Units	STANDARDS	BH102-1	BH103-1	MW104-1	MW105-1	BH107-3	BH108-1	BH110-1	MW111-1	MW111-3
·		Table 3									
		R/P/I									
		coarse									
Sample Depth	m bg	-	0.0 - 0.6	0.0 - 0.6	00-06	0.0 - 0.6	1.2 - 1.8	00-06	0.0 - 0.6	0 0 - 0.6	1.2 - 1.8
Sampling Date	dd-mmm-yy	-	19-Apr-21	19-Apr-21	19-Apr-21	19-Apr-21	20-Apr-21	21-Apr-21	21-Apr-21	22-Apr-21	22-Apr-21
Analysis Date (on or before)	dd-mmm-yy	-	3-May-21	3-May-21	3-May-21	3-May-21	3-May-21	3-May-21	3-May-21	3-May-21	13-May-21
Certificate of Analysis No.	-	-	21Z737993	21Z737993	21Z737993	21Z737993	21Z737993	21Z737993	21Z737993	21Z737993	21T742988
pH	pH Units	NV	7.74	7 67	7.76	7.95	7 88	8.22	7.90	7.87	7.65
Antimony	ug/g	7 5	< 0 8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8
Arsenic	ug/g	18	1	3	3	3	3	4	3	3	1
Barium	ug/g	390	47 3	153	256	190	41.5	162	193	<u>403</u>	83 2
Beryllium	ug/g	4 0	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4
Boron (total)	ug/g	120	<5	8	11	7	7	11	12	14	<5
Boron (Hot Water Soluble) ¹	ug/g	15	0.24	0 38	0.56	0.31	0.13	0.33	0.38	0.61	0.36
Cadmium	ug/g	12	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Chromium Total	ug/g	160	13	10	10	10	11	17	23	11	15
Chromium VI	ug/g	8 0	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Cobalt	ug/g	22	3.5	5.1	5.1	4.6	5.4	7.1	7.8	4 5	5.7
Copper	ug/g	140	6.5	9.7	7.4	9.3	14.0	11.9	14 2	5.1	12.7
Cyanide (CN-)	ug/g	0.051	< 0.040	<0 040	<0.040	<0.040	<0 040	<0.040	<0.040	<0.040	<0.040
Lead	ug/g	120	8	8	10	7	5	13	43	9	10
Mercury	ug/g	0.27	0.12	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Methyl Mercury ²	ug/g	0.0084	-	-	-	-	-	-	-	-	-
Molybdenum	ug/g	6 9	<0.5	1.2	1.7	0.9	0.5	3 2	1.7	10	0.5
Nickel	ug/g	100	6	11	11	9	11	14	18	10	10
Selenium	ug/g	2.4	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0 8
Silver	ug/g	20	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Thallium	ug/g	10	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Uranium	ug/g	23	0.54	<0.50	<0 50	<0.50	0 55	0.61	<0.50	<0 50	<0.50
Vanadium	ug/g	86	24 3	13.5	10.1	17 0	19.0	23.9	34 5	10.3	21 8
Zinc	ug/g	340	33	18	14	23	25	33	52	11	32
Electrical Conductivity (mS /cm)	mS/cm	0.70	0 243	<u>1.72</u>	<u>2.65</u>	<u>1.53</u>	0.132	<u>1.28</u>	<u>1.12</u>	<u>0.710</u>	<u>1.50</u>
Sodium Adsorption Ratio Standards from Soil, Ground Water and Sediment Stan	N/A	50	2.07	0.478	0.834	1.73	1 39	<u>15.2</u>	<u>10.9</u>	0.594	3.48

of the Environmental Protection Act (April 15, 2011 and as amended)

Table 3: Full Depth Generic SCS in a Non-Potable Ground Water Condition

Residential/Parkland/Institutional Property-Use, Coarse-Textured Soil

- Not analyzed

m bg meters below grade

RPD Relative percent difference

Value Exceeds standard

<u>Value</u> Detection limit exceeds standard

Hot water soluble boron applies to surface soils (<1.5 m bg).

Analysis for methyl mercury only applies when mercury

standard is exceeded.

TABLE 2B SOIL ANALYTICAL RESULTS - PAHS
1186, 1188, 1194, and 1196 Wellington St. West, Ottawa, ON

Sample Name	Units	STANDARDS	BH101-1	BH103-1	MW105-1	BH108-1	BH110-1	MW111-1
Sample Name	Office	Table 3	Billoll	B11100 1	100	Dirico i	Billio	
		R/P/I						
		coarse						
Sample Depth	m bg	-	0.0 - 0.6	0.0 - 0.6	00-06	0.0 - 0.6	0.0 - 0.6	00-06
Sampling Date	dd-mmm-yy	-	19-Apr-21	19-Apr-21	19-Apr-21	21-Apr-21	21-Apr-21	22-Apr-21
Analysis Date (on or before)	dd-mmm-yy	-	4-May-21	4-May-21	4-May-21	4-May-21	4-May-21	4-May-21
Certificate of Analysis No.	-	-	21Z737993	21Z737993	21Z737993	21Z737993	21Z737993	21Z737993
Acenaphthene	ug/g	79	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Acenaphthylene	ug/g	0.15	<0.05	<0.05	<0 05	<0.05	<0.05	<0 05
Anthracene	ug/g	0.67	<0.05	<0.05	<0 05	<0.05	<0.05	<0 05
Benz[a]anthracene	ug/g	0.50	<0.05	<0.05	<0 05	<0.05	<0.05	<0 05
Benzo[a]pyrene	ug/g	0.30	<0.05	<0.05	<0 05	<0.05	<0.05	<0 05
Benzo[b]fluoranthene	ug/g	0.78	<0.05	<0.05	<0 05	<0.05	<0.05	<0 05
Benzo[ghi]perylene	ug/g	6 6	<0.05	<0.05	<0 05	<0.05	<0.05	<0 05
Benzo[k]fluoranthene	ug/g	0.78	< 0.05	< 0.05	<0.05	<0.05	< 0.05	<0.05
Chrysene	ug/g	7 0	< 0.05	< 0.05	<0.05	<0.05	<0.05	<0.05
Dibenz[a h]anthracene	ug/g	0.10	< 0.05	< 0.05	<0.05	<0.05	< 0.05	<0.05
Fluoranthene	ug/g	0.69	<0.05	<0.05	<0 05	<0.05	<0.05	<0 05
Fluorene	ug/g	62	<0.05	<0.05	<0 05	<0.05	<0.05	<0 05
Indeno[1 2 3-cd]pyrene	ug/g	0.38	< 0.05	< 0.05	<0.05	<0.05	<0.05	<0.05
Methlynaphthalene, 2-(1-) ¹	ug/g	0.99	<0.05	<0.05	<0 05	<0.05	<0.05	<0 05
Naphthalene	ug/g	0.60	<0.05	<0.05	<0 05	<0.05	<0.05	<0.05
Phenanthrene	ug/g	62	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Pyrene	ug/g	78	<0.05	<0.05	<0 05	<0.05	<0.05	<0 05

of the Environmental Protection Act (April 15, 2011 and as amended)

Table 3: Full Depth Generic SCS in a Non-Potable Ground Water Condition

Residential/Parkland/Institutional Property-Use, Coarse-Textured Soil

- Not analyzed
m bg meters below grade
RPD Relative percent difference

<u>Value</u> Exceeds standard

<u>Value</u> Detection limit exceeds standard

the sum of 1-methylnaphthalene and 2- methylnaphthalene.

TABLE 2C SOIL ANALYTICAL RESULTS - BTEX and PHCs
1186, 1188, 1194, and 1196 Wellington St. West, Ottawa, ON

1100, 1100, 1104, und 1100 Weinington e	,											
Sample Name	Units	STANDARDS	BH101-3	BH101-13	RPD	BH102-4	BH103-4	MW104-2	MW105-5	BH108-3	BH108-13	RPD
		Table 3		duplicate of							duplicate of	
		R/P/I		BH101-3							BH108-3	
		coarse										
Sample Depth	m bg	-	1.2 - 1.8	12-18		1.8 - 2.4	18-2.4	0.6 - 1.2	2.4 - 3.0	12-18	1.2 - 1.8	
Sampling Date	dd-mmm-yy	-	19-Apr-21	19-Apr-21		19-Apr-21	19-Apr-21	19-Apr-21	19-Apr-21	21-Apr-21	21-Apr-21	
Analysis Date (on or before)	dd-mmm-yy	-	30-Apr-21	30-Apr-21		30-Apr-21	30-Apr-21	30-Apr-21	30-Apr-21	30-Apr-21	30-Apr-21	
Certificate of Analysis No.	-	-	21Z737993	21Z737993		21Z737993	21Z737993	21Z737993	21Z737993	21Z737993	21Z737993	
Benzene	ug/g	0.21	0.03	<0.02	-	<0.02	<0 02	<0.02	<0.02	<0 02	<0 02	-
Toluene	ug/g	23	<0.05	<0.05	-	<0.05	<0 05	<0.05	<0.05	<0 05	<0 05	-
Ethylbenzene	ug/g	20	0.06	<0.05	-	<0.05	<0 05	<0.05	<0.05	<0 05	<0 05	-
Xylene Mixture	ug/g	3.1	0.13	<0.05	-	<0.05	<0 05	<0.05	<0.05	<0 05	<0 05	-
Petroleum Hydrocarbons F1 ¹	ug/g	55	<5	<5	-	<5	<5	<5	<5	<5	<5	-
Petroleum Hydrocarbons F2	ug/g	98	<10	<10	-	<10	<10	<10	<10	<10	<10	-
Petroleum Hydrocarbons F3	ug/g	300	<50	<50	-	<50	<50	88	<50	<50	<50	-
Petroleum Hydrocarbons F4	ug/g	2,800	<50	<50	-	<50	103	122	<50	222	198	-

of the Environmental Protection Act (April 15, 2011 and as amended)

Table 3: Full Depth Generic SCS in a Non-Potable Ground Water Condition

Residential/Parkland/Institutional Property-Use, Coarse-Textured Soil

Not analyzed

m bg meters below grade
RPD Relative percent difference

Value Exceeds standard

<u>Value</u> Detection limit exceeds standard

F1 fraction does not include BTEX.

TABLE 2C SOIL ANALYTICAL RESULTS - BTEX and PHCs (CONT'D)
1186, 1188, 1194, and 1196 Wellington St. West, Ottawa, ON

Sample Name	Units	STANDARDS	MW 109-1	MW111-5	MW111-6
		Table 3			
		R/P/I			
		coarse			
Sample Depth	m bg	-	3.3 - 3.5	2.4 - 3.0	30-33
Sampling Date	dd-mmm-yy	-	21-Apr-21	22-Apr-21	20-May-21
Analysis Date (on or before)	dd-mmm-yy	-	30-Apr-21	30-Apr-21	31-May-21
Certificate of Analysis No.	-	-	21Z737993	21Z737993	21Z750733
Benzene	ug/g	0.21	<0.02	<0.02	<0 02
Toluene	ug/g	23	<0.05	<0.05	<0 05
Ethylbenzene	ug/g	20	<0.05	<0.05	<0 05
Xylene Mixture	ug/g	3.1	<0.05	<0.05	<0 05
Petroleum Hydrocarbons F1 ¹	ug/g	55	<5	<5	<5
Petroleum Hydrocarbons F2	ug/g	98	<10	<10	<10
Petroleum Hydrocarbons F3	ug/g	300	64	<50	<50
Petroleum Hydrocarbons F4	ug/g	2,800	155	<50	<50

of the Environmental Protection Act (April 15, 2011 and as amended)

Table 3: Full Depth Generic SCS in a Non-Potable Ground Water Condition

Residential/Parkland/Institutional Property-Use, Coarse-Textured Soil

- Not analyzed

m bg meters below grade
RPD Relative percent difference

Value Exceeds standard

<u>Value</u> Detection limit exceeds standard

F1 fraction does not include BTEX.

TABLE 2D SOIL ANALYTICAL RESULTS - VOCS excluding BTEX 1186, 1188, 1194, and 1196 Wellington St. West, Ottawa, ON

Communication of the state of t			MANAAA C
Sample Name	Units	STANDARDS	MW111-6
		Table 3 R/P/I	
		coarse	
County Double		554.55	20.00
Sample Depth	m bg	-	3.0 - 3.3
Sampling Date	dd-mmm-yy	-	20-May-21
Analysis Date (on or before)	dd-mmm-yy	-	31-May-21
Certificate of Analysis No.	-	-	21Z750733
Acetone	ug/g	16	<0.50
Bromodichloromethane	ug/g	13	<0.05
Bromoform	ug/g	0.27	<0.05
Bromomethane	ug/g	0.050	<0.05
Carbon Tetrachloride	ug/g	0.050	<0.05
Chlorobenzene	ug/g	2.4	<0.05
Chloroform	ug/g	0.050	<0.04
Dibromochloromethane	ug/g	9.4	<0.05
Dichlorobenzene, 1,2-	ug/g	3.4	<0.05
Dichlorobenzene, 1,3-	ug/g	4 8	<0.05
Dichlorobenzene, 1,4-	ug/g	0.083	<0.05
Dichlorodifluoromethane	ug/g	16	<0.05
Dichloroethane, 1,1-	ug/g	3 5	<0.02
Dichloroethane, 1,2-	ug/g	0.050	< 0.03
Dichloroethylene, 1,1-	ug/g	0.050	<0.05
Dichloroethylene, 1,2-cis-	ug/g	3.4	<0.02
Dichloroethylene, 1,2-trans-	ug/g	0.084	<0.05
Dichloropropane, 1,2-	ug/g	0.050	< 0.03
Dichloropropene,1,3-	ug/g	0.050	<0.04
Ethylene dibromide	ug/g	0.050	<0.04
Hexane (n)	ug/g	28	<0.05
Methyl Ethyl Ketone	ug/g	16	<0.50
Methyl Isobutyl Ketone	ug/g	1.7	<0.50
Methyl tert-Butyl Ether (MTBE)	ug/g	0.75	< 0.05
Methylene Chloride	ug/g	0.10	<0.05
Styrene	ug/g	0.70	<0.05
Tetrachloroethane, 1,1,1,2-	ug/g	0.058	<0.04
Tetrachloroethane, 1,1,2,2-	ug/g	0.050	<0.05
Tetrachloroethylene	ug/g	0.28	<0.05
Trichloroethane, 1,1,1-	ug/g	0.38	<0.05
Trichloroethane, 1,1,2-	ug/g	0.050	<0.04
Trichloroethylene	ug/g	0.061	< 0.03
Trichlorofluoromethane	ug/g	4 0	<0.05
Vinyl Chloride	ug/g	0.020	<0.02
Standards from Soil Ground Water and Sediment Standard		Dort VI/ 1	

of the Environmental Protection Act (April 15, 2011 and as amended)

Table 3: Full Depth Generic SCS in a Non-Potable Ground Water Condition

Residential/Parkland/Institutional Property-Use, Coarse-Textured Soil

- Not analyzed m bg meters below grade RPD Relative percent difference

Value Exceeds standard

TABLE 3A **GROUNDWATER ANALYTICAL RESULTS - METALS AND INORGANICS** 4406 4400 4404 and 4406 Wallington St West Offaus ON

Sample Name	Units	STANDARDS Table 3 coarse	MW104	MW114 duplicate of MW104	RPD	MW105	MW106	MW111
Screened Interval	m bg	(F)	43-7.3	43-7.3	7	13.1 - 16.1	4.0 - 5.5	4.6 - 7.6
Sampling Date	dd-mmm-yy		25-May-21	25-May-21		25-May-21	25-May-21	25-May-21
Analysis Date (on or before)	dd-mmm-yy		3-Jun-21	3-Jun-21		3-Jun-21	3-Jun-21	3-Jun-21
Certificate of Analysis No.	15 6	(5)	21Z752731	21Z752731		21Z752731	21Z752731	21Z752731
pH	pH Units	NV	7.53	7.50	3	7.43	7.53	7.56
Antimony	ug/L	20,000	<10	<1.0	3	<1.0	<1.0	<10
Arsenic	ug/L	1,900	5.5	16	-	<1.0	3.9	4.5
Barium	ug/L	29,000	140	133	5%	13.0	140	138
Beryllium	ug/L	67	< 0.50	<0.50	-	<0.50	<0.50	< 0.50
Boron (total)	ug/L	45,000	128	118	8%	20.6	144	95.1
Cadmium	ug/L	2.7	<0.20	<0 20	14	<0.20	<0.20	<0.20
Chromium Total	ug/L	810	<20	<2.0	-	<2.0	<2.0	<20
Chromium VI	ug/L	140	<2.000	<2.000	1.4	<2 000	<2.000	<2.000
Cobalt	ug/L	66	1.00	0.80	-	<0.50	0.98	0.54
Copper	ug/L	87	<10	2.4	-	2.7	1.2	<10
Cyanide (CN-)	ug/L	66	<2	<2	3	<2	<2	<2
Lead	ug/L	25	< 0.50	<0.50	1.5	<0.50	<0.50	< 0.50
Mercury	ug/L	0.29	< 0.02	<0 02	13	<0.02	<0.02	< 0.02
Methyl Mercury ¹	ug/L	0.15	-	0.90	G-	10-4	40	-
Molybdenum	ug/L	9,200	3.64	4.87	29%	2 07	11.2	3.68
Nickel	ug/L	490	3.7	<3.0	-	<3.0	4.4	<30
Selenium	ug/L	63	<10	<1.0	3	<1.0	<1.0	<10
Silver	ug/L	1.5	<0.20	<0 20	3	<0.20	<0.20	<0.20
Thallium	ug/L	510	< 0.30	<0 30	(C+)	< 0.30	<0.30	<0.30
Uranium	ug/L	420	2.33	2.19	-	<0.50	2.45	1.10
Vanadium	ug/L	250	0.52	<0.40	-	<0.40	0.40	<0.40
Zinc	ug/L	1,100	66	89	18	46.5	<5.0	<50
Chloride	ug/L	2,300,000	3,230,000	3,230,000	0%	17,600	2,930,000	972,000
Sodium	ug/L	2,300,000	1,620,000	1,620,000	0%	23,800	1,630,000	706,000

of the Environmental Protection Act (April 15, 2011 and as amended)

Table 3: Full Depth Generic SCS in a Non-Potable Ground Water Condition

All Types of Property-Use, Coarse-Textured Soil

Not analyzed

m bg meters below grade

RPD Relative percent difference

Exceeds standard Value

Detection limit exceeds standard Value

Analysis for methyl mercury only applies when mercury

standard is exceeded.

TABLE 3B **GROUNDWATER ANALYTICAL RESULTS - BTEX and PHCs** 1186, 1188, 1194, and 1196 Wellington St. West, Ottawa, ON

Sample Name	Units	STANDARDS Table 3 coarse	MW104	MW114 duplicate of MW104	RPD	MW105	MW106	MW109	MW111	Trip Spike % recovery	Trip Blank
Screened Interval	m bg	(5)	43-7.3	43-7.3		13.1 - 16.1	4.0 - 5.5	4.6 - 6.1	4.6 - 7.6	1 1 6 1 1	-
Sampling Date	dd-mmm-yy		25-May-21	25-May-21		25-May-21	25-May-21	25-May-21	25-May-21		-
Analysis Date (on or before)	dd-mmm-yy	200	3-Jun-21	3-Jun-21		3-Jun-21	3-Jun-21	3-Jun-21	3-Jun-21	3-Jun-21	3-Jun-21
Certificate of Analysis No.	4		21Z752731	21Z752731		21Z752731	21Z752731	21Z752731	21Z752731	21Z752731	21Z752731
Benzene	ug/L	44	0.33	0.26	3	<0.20	<0.20	<0.20	<0.40	105	<0 20
Toluene	ug/L	18,000	< 0.20	<0 20	52.4	< 0.20	<0.20	<0.20	< 0.40	95	<0 20
Ethylbenzene	ug/L	2,300	1.26	0.97	26%	< 0.10	<0.10	<0.10	<0.20	96	< 0.10
Xylene Mixture	ug/L	4,200	< 0.20	<0.20	191	< 0.20	<0.20	<0.20	< 0.40	105	<0 20
Petroleum Hydrocarbons F1 ¹	ug/L	750	48	51	304	<25	<25	<25	84	121	<25
Petroleum Hydrocarbons F2	ug/L	150	<100	<100	-2	<100	<100	<100	<100	- 58	250
Petroleum Hydrocarbons F3	ug/L	500	<100	<100	1.9	<100	<100	<100	<100	1.8	-
Petroleum Hydrocarbons F4	ug/L	500	<100	<100	445	<100	<100	<100	<100	100	-

of the Environmental Protection Act (April 15, 2011 and as amended)

Table 3: Full Depth Generic SCS in a Non-Potable Ground Water Condition

All Types of Property-Use, Coarse-Textured Soil

Not analyzed

m bg meters below grade RPD Relative percent difference

Value Exceeds standard

Value Detection limit exceeds standard

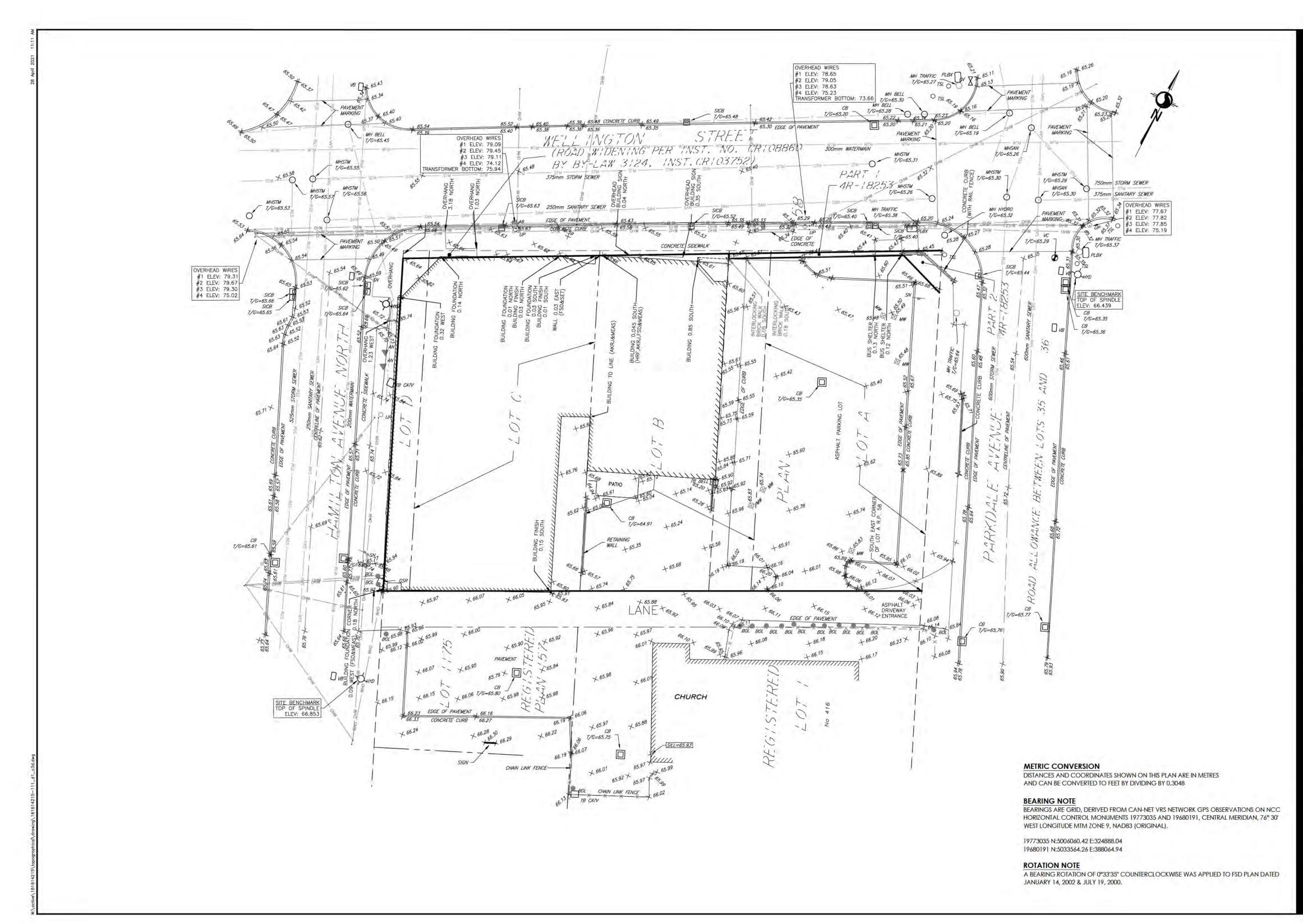
F1 fraction does not include BTEX.

TABLE 3C GROUNDWATER ANALYTICAL RESULTS - VOCs excluding BTEX 1186, 1188, 1194, and 1196 Wellington St. West, Ottawa, ON

Sample Name	Units	STANDARDS Table 3 coarse	MW111
Screened Interval	m bg	-	46-7.6
Sampling Date	dd-mmm-yy	1 1	25-May-21
Analysis Date (on or before)	dd-mmm-yy	n (= 25 a f)	3-Jun-21
Certificate of Analysis No.	12	4.0	21Z752731
Acetone	ug/L	130,000	<20
Bromodichloromethane	ug/L	85,000	< 0.40
Bromoform	ug/L	380	<0.20
Bromomethane	ug/L	5.6	< 0.40
Carbon Tetrachloride	ug/L	0.79	< 0.40
Chlorobenzene	ug/L	630	<0.20
Chloroform	ug/L	2.4	< 0.40
Dibromochloromethane	ug/L	82,000	< 0.20
Dichlorobenzene, 1,2-	ug/L	4,600	<0.20
Dichlorobenzene, 1,3-	ug/L	9,600	< 0.20
Dichlorobenzene, 1,4-	ug/L	8.0	<0.20
Dichlorodifluoromethane	ug/L	4,400	< 0.40
Dichloroethane, 1,1-	ug/L	320	< 0.60
Dichloroethane, 1,2-	ug/L	1.6	< 0.40
Dichloroethylene, 1,1-	ug/L	1.6	< 0.60
Dichloroethylene, 1,2-cis-	ug/L	1.6	< 0.40
Dichloroethylene, 1,2-trans-	ug/L	1.6	< 0.40
Dichloropropane, 1,2-	ug/L	16	< 0.40
Dichloropropene, 1,3-	ug/L	5.2	< 0.60
Ethylene dibromide	ug/L	0.25	< 0.20
Hexane (n)	ug/L	51	< 0.40
Methyl Ethyl Ketone	ug/L	470,000	<20
Methyl Isobutyl Ketone	ug/L	140,000	<20
Methyl tert-Butyl Ether (MTBE)	ug/L	190	< 0.40
Methylene Chloride	ug/L	610	< 0.60
Styrene	ug/L	1,300	< 0.20
Tetrachloroethane, 1,1,1,2-	ug/L	3.3	< 0.20
Tetrachloroethane, 1,1,2,2-	ug/L	3.2	<0.20
Tetrachloroethylene	ug/L	1.6	< 0.40
Trichloroethane, 1,1,1-	ug/L	640	< 0.60
Trichloroethane, 1,1,2-	ug/L	4.7	< 0.40
Trichloroethylene	ug/L	1.6	< 0.40
Trichlorofluoromethane	ug/L	2,500	<0.80
Vinyl Chloride	ug/L	0.50	< 0.34

of the Environmental Protection Act (April 15, 2011 and as amended)

Table 3: Full Depth Generic SCS in a Non-Potable Ground Water Condition


All Types of Property-Use, Coarse-Textured Soil

Not analyzed

m bg meters below grade
RPD Relative percent difference
Value Exceeds standard

Value Detection limit exceeds standard

APPENDIX I PLAN OF SURVEY, PROPOSED DEVELOPMENT PLAN

Stantec Geomatics Ltd. 400-1331 Clyde Avenue Ottawa ON Tel. 613.722.4420 www.stantec.com

TOPOGRAPHIC SKETCH OF PART OF LOTS A, B, C, & D REGISTERED PLAN 58

(GEOGRAPHIC TOWNSHIP OF NEPEAN)

CITY OF OTTAWA

0 5 10 15 MET

Stantec Geomatics Ltd.

© Copyright 2021 Stantec Geomatics Ltd. The reproduction, alteration or use of this REPORT in whole or in part without the express permission of Stantec Geomatics Ltd. is STRICTLY PROHIBITED.

BOUNDARY NOTE

BOUNDARY LINEWORK AND INFORMATION IS COMPILED FROM REGISTERED PLAN 58 AND IS NOT BASED ON ACTUAL SURVEY.

VERTICAL DATUM NOTE

ELEVATIONS SHOWN HEREON ARE GEODETIC (CGVD-1928:1978) AND ARE DERIVED FROM THE CAN-NET VRS NETWORK MONUMENT: OTTAWA ELEVATION=95.230.

UTILITY NOTE

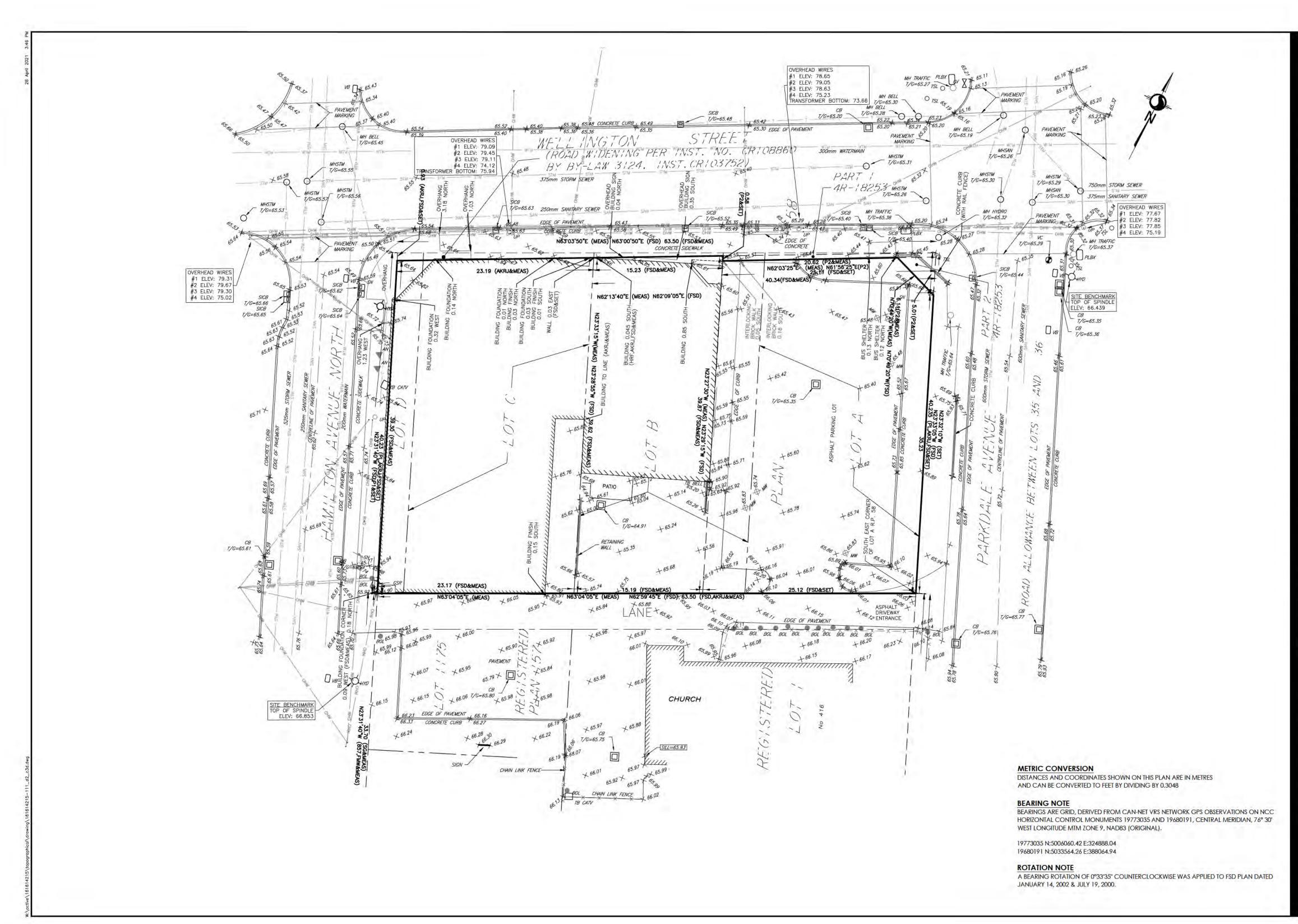
LOCATION OF UNDERGROUND SERVICES ARE APPROXIMATE AND PER THE CITY OF OTTAWA SHEETS, AND MUST BE VERIFIED PRIOR TO CONSTRUCTION.

LEGEND

-												
		DENOT	ES			MENTS						
	•	"			DNUMEN	VIS						
IE		71		IRON E								
	3ø				D IRON E							
	IB.				ARD IRC							
100	SIB			SHORT STANDARD IRON BAR								
	C			CUT C								
100	P	***		CONC								
	WIT "			WITNE								
	PIN "			PROPERTY IDENTIFICATION NUMBER								
N	I/MEAS	31		MEASI	JRED							
P	ROP			PROPO	ORTIONE	D						
0	U			ORIGI	N UNKNO	NWC						
S	TANTEC			STANT	EC GEO	MATICS LT	D.					
0	BOL	0.		BOLLA	RD							
	CB	10		CATC	H BASIN							
	SICB	0		SIDEIN	LET CB							
	GSR	16		GAS SI	ERVICE F	REGULATO	R					
\times	GV	0		GAS V	ALVE							
0-	HYD	**		FIRE H	DRANT							
0	MH			MAINT	ENANCE	HOLE UN	IDENTIFIED					
0	MHB	16-		MAINT	ENANCE	HOLE BE	LL.					
0	MHH	11		MAINT	ENANCE	HOLE HY	DRO					
0	MHSA	ir .		MAINT	ENANCE	HOLE SA	NITARY					
0	MHST	16		MAINT	ENANCE	HOLE STO	ORM					
0	MHT	16				HOLE TRA						
0	MW	15			ORING							
	PLBX	n		PULL B		4.47						
•	5N	0.		SIGN	200							
	TB CATV	9:		00000000000	IAI BOX	- CABLE						
0	TSL	10.			C SIGNA							
0	UP	16		UTILITY		L LIOIII						
	VB	11		VALVE								
					bon							
_	OHW.	- OHW -	- DHW -	— 11-18 —	OHW -	OHM -	-					
0	VERHEAD W	IRE										
15	SAN	— SAN —	SAN-	SAN-	SAN-	SAN-	_					
SA	ANITARY SEV	/ER										
0.7	STN -	— STM ———	STM	STM-	STM -	STM-	_					
21	ORM SEWER											
	T—T	T ———	DU OU	т	1-							
U	NDERGROU	NO IELE	PHONE									
_	wiM-	- WIM-	- WIN-	WIM-	WD4	- WIM-	_					

SURVEYOR'S CERTIFICATE

I CERTIFY THAT :


WATERMAIN

1. THE SURVEY WAS COMPLETED ON THE 26th DAY OF APRIL, 2021.

D

FRANCIS LAU ONTARIO LAND SURVEYOR

DRAWN: TMT CHECKED; CT PM: CT FIELD: AW PROJECT No.: 161614215-111

Stantec Geomatics Ltd. 400-1331 Clyde Avenue Ottawa ON Tel. 613.722.4420 www.stantec.com

TOPOGRAPHIC SKETCH OF

PART OF LOTS A, B, C, & D REGISTERED PLAN 58

(GEOGRAPHIC TOWNSHIP OF NEPEAN)

CITY OF OTTAWA

Stantec Geomatics Ltd.

© Copyright 2021 Stantec Geomatics Ltd. The reproduction, alteration or use of this REPORT in whole or in part without the express permission of Stantec Geomatics Ltd. is STRICTLY PROHIBITED.

BOUNDARY NOT

BOUNDARY LINEWORK AND INFORMATION IS COMPILED FROM REGISTERED PLAN 58 AND IS NOT BASED ON ACTUAL SURVEY.

VERTICAL DATUM NOTE

ELEVATIONS SHOWN HEREON ARE GEODETIC (CGVD-1928:1978) AND ARE DERIVED FROM THE CAN-NET VRS NETWORK MONUMENT: OTTAWA ELEVATION=95.230.

TILITY NOTE

LOCATION OF UNDERGROUND SERVICES ARE APPROXIMATE AND PER THE CITY OF OTTAWA SHEETS, AND MUST BE VERIFIED PRIOR TO CONSTRUCTION.

LEGEND

		55,0055	E of preparation of the control of t
		DENOTES	FOUND MONUMENTS
		11	SET MONUMENTS
IB		a.	IRON BAR
IB			ROUND IRON BAR
S	В		STANDARD IRON BAR
	SIB	n,	SHORT STANDARD IRON BAR
C		H.	CUT CROSS
CI	P	10	CONCRETE PIN
W	TI.	11	WITNESS
P	IN	- 11	PROPERTY IDENTIFICATION NUMBER
M	/MEAS	11	MEASURED
	ROP	an or	PROPORTIONED
O	U	n.	ORIGIN UNKNOWN
ST	ANTEC		STANTEC GEOMATICS LTD.
0	BOL		BOLLARD
	CB	u.	CATCH BASIN
	SICB	n	SIDE INLET CB
	GSR	0	GAS SERVICE REGULATOR
\bowtie	GV	ti.	GAS VALVE
♦0000000⊕□	HYD		FIRE HYDRANT
0	MH	**	MAINTENANCE HOLE UNIDENTIFIED
0	MHB	u(MAINTENANCE HOLE BELL
0	MHH	tt.	MAINTENANCE HOLE HYDRO
0	MHSA	ii.	MAINTENANCE HOLE SANITARY
0	MHST		MAINTENANCE HOLE STORM
0	MHT	· ·	MAINTENANCE HOLE TRAFFIC
0	MW	11	MONITORING WELL
	PLBX	ц	PULL BOX
-	SN	30.	SIGN
	TB CATV	95	TERMINAL BOX - CABLE
0	TSL	0.	TRAFFIC SIGNAL LIGHT
0	UP		UTILITY POLE
0	VB	**	VALVEBOX

OVERHEAD WIRE

SANITARY SEWER

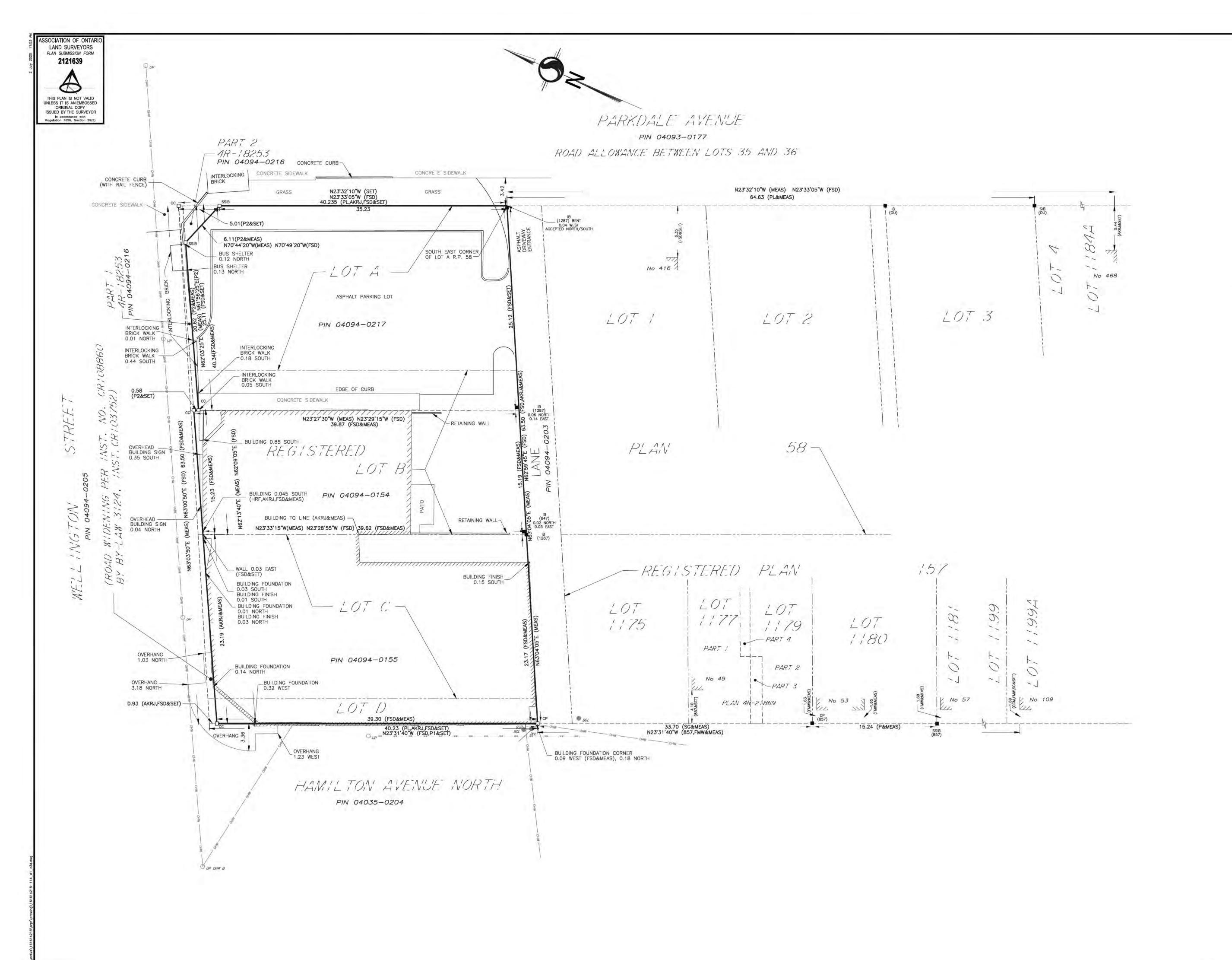
GHW -- OHW -- OHW -- OHW -- OHW --

UNDERGROUND TELEPHONE

WATERMAIN

STORM SEWER

SURVEYOR'S CERTIFICATE


I CERTIFY THAT:

1. THE SURVEY WAS COMPLETED ON THE 26th DAY OF APRIL, 2021.

DA

FRANCIS LAU ONTARIO LAND SURVEYOR

DRAWN: TMT CHECKED; CT PM: CT FIELD; AW PROJECT No.: 161614215-111

SURVEYOR'S REAL PROPERTY REPORT

PART 1 - PLAN OF SURVEY

PART OF LOTS A, B, C & D **REGISTERED PLAN 58**

(GEOGRAPHIC TOWNSHIP OF NEPEAN) CITY OF OTTAWA

© Copyright 2020 Stantec Geomatics Ltd. The reproduction alteration or use of this REPORT in whole or in part without the express permission of Stantec Geomatics Ltd. is STRICTLY PROHIBITED.

METRIC CONVERSION

DISTANCES AND COORDINATES SHOWN ON THIS PLAN ARE IN METRES AND CAN BE CONVERTED TO FEET BY DIVIDING BY 0 3048

BEARING NOTE

BEARINGS ARE GRID DERIVED FROM CAN-NET VRS NETWORK GPS OBSERVATIONS ON NCC HORIZONTAL CONTROL MONUMENTS 19773035 AND 19680191 CENTRAL MERIDIAN 76° 30' WEST LONGITUDE MTM ZONE 9 NAD83 (ORIGINAL).

19773035 N:5006060.42 E:324888 04 19680191 N:5033564 26 E:388064.94

A BEARING ROTATION OF 0°33'35" COUNTERCLOCKWISE WAS APPLIED TO FSD PLAN DATED JANUARY 14 2002 & JULY 19 2000.

THIS PLAN OF SURVEY IS TO BE READ IN CONJUNCTION WITH THE REPORT SUMMARY NOTED AS PART 2 HEREON.

THIS REPORT CAN ONLY BE UPDATED BY THIS OFFICE. NO ADDITIONAL PRINTS OF THIS ORIGINAL REPORT WILL BE ISSUED SUBSEQUENT TO THE DATE OF CERTIFICATION.

ALL TIES ARE MINIMUM UNLESS OTHERWISE NOTED. ALL TIES TO CURVED BOUNDARY ARE RADIAL TO ARC.

RISK OF UNDERGROUND SERVICES, MONUMENTATION PLANTED ACCORDINGLY.

This Report was prepared for Minto Commun ties Inc. and the undersigned accepts no esponsibility for the use by other parties.

REGISTERED RIGHTS-OF-WAY/EASEMENTS No rights-of-way or easements were found to be registered against the subject

PROPERTY IMPROVEMENTS

This is a foundat on survey only. . COMPLIANCE WITH MUNICIPAL ZONING BYLAWS

Compliance is not certified by this report.

ADDITIONAL REMARKS

The building ties are to the unpargeted concrete foundation walls.

	DENOTES	FOUND MONUMENTS
	11	SET MONUMENTS
IB	n n	IRON BAR
IBØ	-91	ROUND IRON BAR
SIB	30	STANDARD IRON BAR
SSIB	46	SHORT STANDARD IRON BAR
CC	100	CUT CROSS
CP	70	CONCRETE PIN
WIT	- 10	WITNESS
PIN	30	PROPERTY IDENTIFICATION NUMBER
MEAS	40	MEASURED
PROP	11.0	PROPORTIONED
OU	70	ORIGIN UNKNOWN
SG	10	STANTEC GEOMATICS LTD.
GCM	40-7	G.C MCROSTIE OLS
(857)FMW	46	FAIRHALL MOFFATT & WOODLAND LTD.
PL	11	REGISTERED PLAN 58
P1	. 10	REGISTERED PLAN 157
UP	dr.	UTILITY POLE
HYD	40	FIRE HYDRANT
AKRJ		ARNETT KENNEDY RIDDELL & JASON LTD.
FSD	40	FARLEY SMITH & DENIS
P2		PLAN 4R-18253

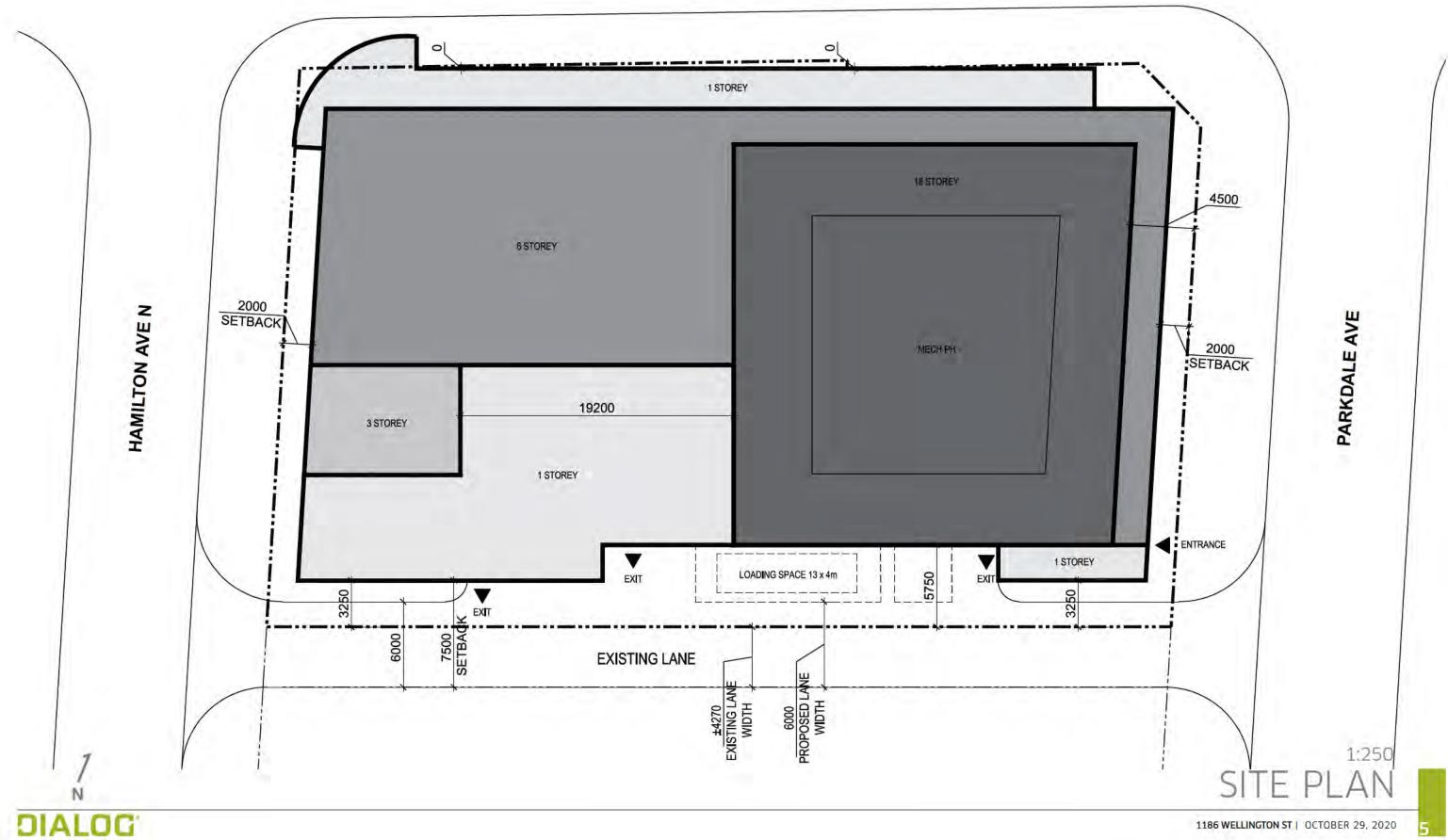
SURVEYOR'S CERTIFICATE

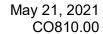
I CERTIFY THAT : 1. THIS SURVEY AND PLAN ARE CORRECT AND IN ACCORDANCE WITH THE SURVEYS ACT,

THE SURVEYORS ACT AND THE REGULATIONS MADE UNDER THEM. 2. THE SURVEY WAS COMPLETED ON THE DAY OF , 2020.

July 2, 2020

BRIAN J. WEBSTER ONTARIO LAND SURVEYOR


SRO MAP COORD.= 365125.5 5029228.2


Stantec Geomatics Ltd. CANADA LANDS SURVEYORS ONTARIO LAND SURVEYORS 1331 CLYDE AVENUE, SUITE 400 OTTAWA, ONTARIO, K2C 3G4 TEL. 613.722.4420

DRAWN: TMT CHECKED: AB PM: CT FIELD; CK PROJECT No.: 161614215-114 This plan was signed with a scanned signature as a result of the Emergency Order related to the COVID-19 pander

WELLINGTON ST W

APPENDIX II NON-POTABLE GROUNDWATER NOTIFICATION

City of Ottawa Planning, Infrastructure and Economic Development 110 Laurier Avenue West Ottawa, ON K1P 1J1

Attention: Michel Kearney, P.Geo.

Senior Hydrogeologist

Via Email: Michel.Kearney@ottawa.ca

Re: Notification of Environmental Standards

1186-1196 Wellington Street West, Ottawa, ON

Dear Mr. Kearney:

Terrapex Environmental Ltd. (Terrapex) is conducting a Phase Two Environmental Site Assessment (ESA) per Ontario Regulation (O. Reg.) 153/04 (*Records of Site Condition – Part XV.1 of the Act*) at 1186-1196 Wellington Street West, Ottawa, Ontario (the site) for the purpose of obtaining a Record of Site Condition (RSC).

Terrapex has determined that the site meets the technical requirements outlined in Section 35 of O. Reg. 153/04. Consequently, the Qualified Person per Section 6 of O. Reg. 153/04 intends to submit the RSC with the assumption that groundwater under the site does not and will not serve as a raw water supply for a drinking water system. In accordance with the requirements of O. Reg. 153/04, Terrapex hereby requests that the City of Ottawa respond to this notice and indicate whether the municipality objects to the assumption outlined above, and if there is an objection the reasons for it.

If you have any questions or concerns regarding this matter, please do not hesitate to contact the undersigned.

Sincerely,

TERRAPEX ENVIRONMENTAL LTD.

Keith Brown, PEng Senior Project Manager

14 June 2021

Mr. Keith Brown, P.Eng. Terrapex Environmental Ltd. 20 Gurdwara Road, Unit 1 Ottawa, Ontario K2E 8B3

Dear Mr. Brown,

Re: Record of Site Condition – 1186-1196 Wellington Street West

As per your letter of May 21, 2021 requesting to use non-potable standards, this is to advise that the City of Ottawa does not object to the use of non-potable groundwater standards for the properties identified as 1186-1196 Wellington Street West, Ottawa, ON, as part the filing of a Record of Site Condition.

Best Regards,

Michel Kearney, P.Geo.

Senior Hydrogeologist Asset Management

Planning, Infrastructure and Economic Development Department

Hydrogéologue principal
Gestion des actifs
Services de la planification, de l'infrastructure et du développement économique
City of Ottawa | Ville d'Ottawa

613.580.2424 ext./poste 22872 ottawa.ca/planning / ottawa.ca/urbanisme

APPENDIX III SAMPLING AND ANALYSIS PLAN

SAMPLING AND ANALYSIS PLAN PHASE TWO ENVIRONMENTAL SITE ASSESSMENT

Site: 1186-1196 Wellington Street West, Ottawa, Ontario

Project No: CO810.00 **Date:** April 15, 2021

OBJECTIVES

On behalf of Welldale Limited Partnership, Terrapex Environmental Ltd. (Terrapex) has prepared this sampling and analysis plan for a Phase Two Environmental Site Assessment (ESA) at 1186-1194 Wellington Street West, Ottawa, Ontario, the "Phase Two Property". The Phase Two ESA is to be conducted for the purposes of filing a Record of Site Condition per Ontario Regulation (O. Reg.) 153/04, *Records of Site Condition - Part XV.1 of the Act* on the basis of future development for residential use. The objective of this ESA is to determine the location and concentration of contaminants in the land or water on, in or under the Phase Two Property.

The Phase Two ESA will investigate all Areas of Potential Environmental Concern (APECs) which were identified in a Phase One ESA of the property conducted by Paterson Group Inc., dated July 16, 2020, and updated by Terrapex. The APECs are shown on Figure 1 and listed in Table 1.

SAMPLING PROGRAM

The media to be investigated and the contaminants of concern have been determined based on findings from previous investigations and potential environmental concerns identified from on-site and off-site activities. The media, contaminants, investigation and sampling methods are summarized on Table 2. The rationale for each sampling location, and the proposed laboratory analytical program for each location, is shown on Table 3. Modifications may be made to the program during the course of implementation, based on field observations, and will be documented in the Phase Two ESA report.

STANDARD OPERATING PROCEDURES

The following Terrapex Standard Operating Procedures (SOPs) will be used:

SOP E01.00 - Field Meter Calibration

SOP E03.00 - Borehole Advancement Using Rotary Auger

SOP E03.03 – Borehole Advancement Using Direct Push Methodology

SOP E03.05 - Borehole Advancement into Bedrock using Diamond Drilling

SOP E04.00 – Monitoring Well Installation

SOP E05.00 – Monitoring Well Development

SOP E06.00 – Groundwater Monitoring

SOP E07.01 – Groundwater Sampling, Low Volume Purge, Using Peristaltic Pump

SOP E09.00 - Soil Sample Handling

SOP E10.00 - Soil Classification

SOP E11.00 – Measuring and Surveying Using Rod and Level

SOP E12.00 – Field Program Quality Assurance & Quality Control

SOP E14.00 – Hydraulic Conductivity Slug Testing

DATA QUALITY OBJECTIVES

The investigation will be completed following Terrapex SOP E12.00 - Field Program Quality Assurance & Quality Control, which specifies requirements for minimizing cross-contamination, record-keeping, sample storage, sample submission, field QA/QC samples and data quality objectives. If the data quality objectives are not met, the Qualified Person for the project will review the results and determine whether the deviation affects decision-making or the overall objectives of the investigation.

LABORATORY PROGRAM

Project Laboratory: AGAT Laboratories Ltd.

Accreditation: Canadian Association for Laboratory Accreditation Inc. (CALA) in

> accordance with the International Standard ISO/IEC17025-2005 - General Requirements for the Competence of Testing and Calibration Laboratories

Proposed Analytical Program: See Table 3, attached.

Analytical Methods: The laboratory will use the methods specified in the *Protocol for Analytical*

Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act, March 9, 2004, amended as of July 1, 2011

(Analytical Protocol).

Sample Containers and Preservatives: See Table 4, attached.

AGAT's Quality Assurance/Quality Control (QA/QC) program will consist of the analysis of method blanks, laboratory control samples, matrix spikes, sample duplicates, and surrogates, as appropriate for the particular analysis protocol and as specified in the Analytical Protocol.

SUB-CONTRACTORS

All sub-contractors used in the Phase Two ESA will be approved suppliers according to Terrapex's ISO 9001:2008 system. The following sub-contractors will be retained for this project:

Private utility locates: USL-1

Borehole drilling and well installation: George Downing Drilling Ltd. and Strata Soil Sampling

Laboratory analyses: AGAT Laboratories Ltd. Waste disposal: Clean Water Works Inc.

ATTACHMENTS

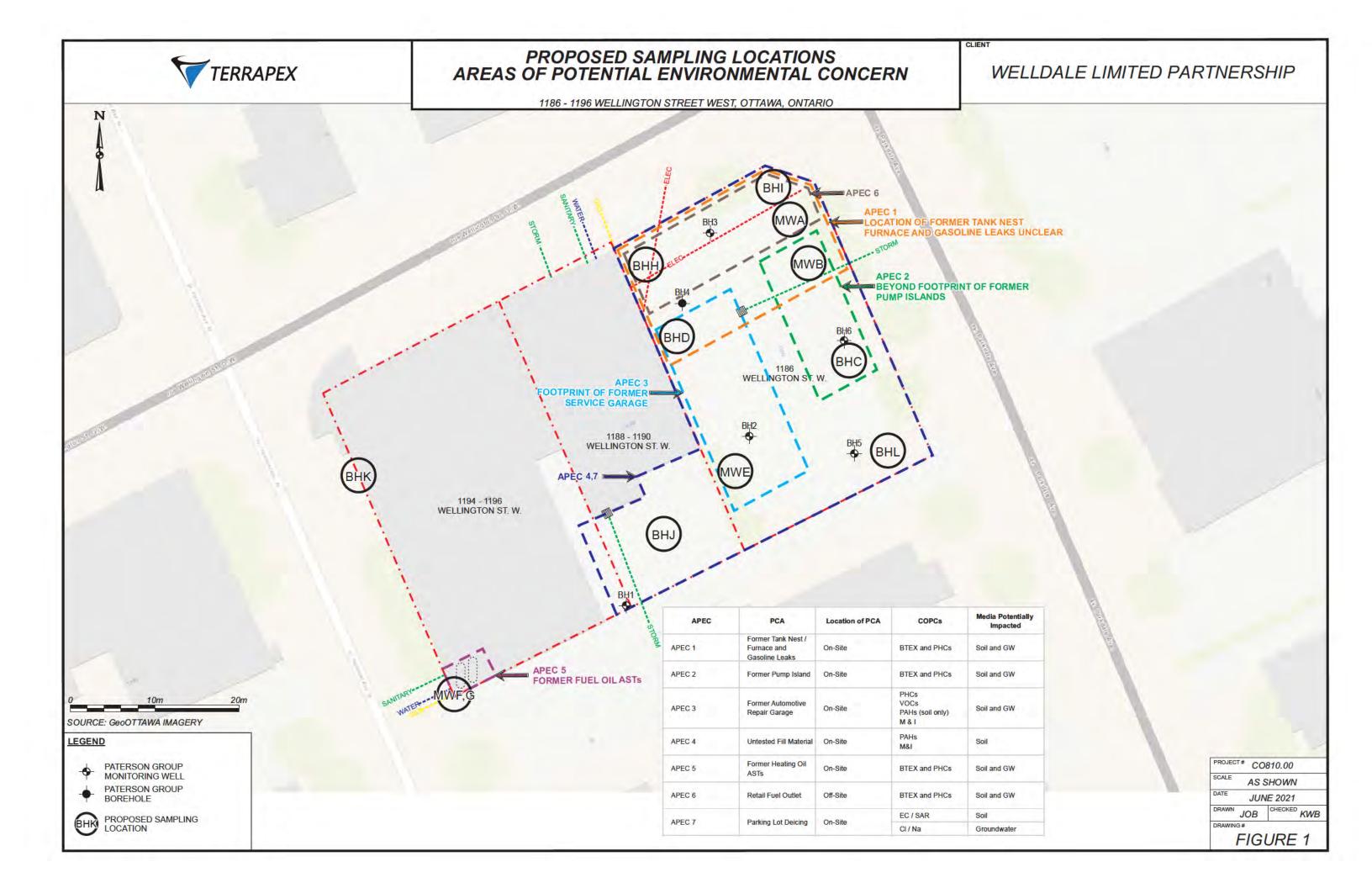

Figure 1 – Areas of Potential Environmental Concern and Proposed Sampling Locations

Table 1 – Areas of Potential Environmental Concern

Table 2 – Media to be Investigated and Chemicals of Concern

Table 3 – Proposed Sampling Plan

Table 4 – Sample Containers and Preservation Plan

AREAS OF POTENTIAL ENVIRONMENTAL CONCERN

Area of Potential Environment al Concern ¹	Location Of Area of Potential Environmental Concern On Phase One Property	Potentially Contaminating Activity ²	Location of PCA (On-Site Or Off-Site)	Contaminants Of Potential Concern ³	Media Potentially Impacted (Ground water, Soil, and/or Sediment)	
APEC 1	Northeastern Portion of the Site Former Tank Nest / Furnace and Gasoline Leaks	28 – Gasoline and Associated Products Storage in Fixed Tanks	On-Site	- BTEX - PHCs	- Soil - Groundwater	
APEC 2	Eastern Portion of the Site Former Pump Island	28 – Gasoline and Associated Products Storage in Fixed Tanks	On-Site	- BTEX - PHCs	- Soil - Groundwater	
APEC 3	Eastern Portion of the Site Former Automotive Repair Garage	52 – Storage, Maintenance, Fuelling and Repair of Equipment, Vehicles, and Material Used To Maintain Transportation Systems	On-Site	- BTEX - PHCs - VOCs - PAHs (soil only unless impacts found) - Metals - AS, SB, Se - Boron HWS - CN Cr (VI) & Hg	- Soil - Groundwater	
APEC 4	Eastern and Southern Portions of the Site	30 – Importation of Fill Material of Unknown Quality	On-Site	- PAHs (soil only unless impacts found) - Metals - EC & SAR - AS, SB, Se - Boron HWS - CN Cr (VI) & Hg	- Soil	
APEC 5	Southwestern Portion of the Site Former Heating Oil ASTs	28 – Gasoline and Associated Products Storage in Fixed Tanks	On-Site	- BTEX - PHCs	- Soil - Groundwater	
APEC 6	Northeastern Portion of the Site Off-Site Retail Fuel Outlet	28 – Gasoline and Associated Products Storage in Fixed Tanks	Off-Site	- BTEX - PHCs	- Soil - Groundwater	
APEC 7	Eastern and Southern Portions of the Site Parking Lots	Other – The current and historical use of substances for the removal of snow and ice (de-icing activities).	On-Site	- EC/SAR (Soil only) - Cl/Na (Groundwater only)	- Soil - Groundwater	

Areas of potential environmental concern means the area on, in or under a Phase One property where one or more contaminants are potentially present, as determined through the Phase One environmental site assessment, including through,

BTEX: benzene, toluene, ethylbenzene, xylenes PHCs: petroleum hydrocarbons (F1-F4) VOCs: volatile organic compounds

PAHs: polycyclic aromatic hydrocarbons CN-: cyanide

Hg: mercury As: arsenic B (hws): boron, hot water soluble Cr (VI): chromium (hexavalent)

Sb: antimony Se: selenium Na: sodium

EC: electrical conductivity SAR: sodium adsorption ratio PCBs: polychlorinated biphenyls

CI: chloride

⁽a) identification of past or present uses on, in or under the Phase One property, and

⁽b) identification of potentially contaminating activity.

Potentially contaminating activity means a use or activity set out in Column A of Table 2 of Schedule D that is occurring or has occurred in a Phase One study area.

Contaminants of potential concern according to the Method Groups as identified in the "Protocol for in the Assessment of Properties under Part XV.1 of the Environmental Protection Act", March 9, 2004, amended as of July 1, 2011:

TABLE 2 - MEDIA INVESTIGATED, CONTAMINANTS OF CONCERN AND METHODS

Media	Contaminants of Concern	Investigation Method	Equipment	Sample Collection Method
Soil	Petroleum hydrocarbons Polycyclic aromatic hydrocarbons Volatile organic compounds Benzene, toluene, ethylbenzene, xylenes Metals, metal hydrides Mercury Cyanide Chromium VI Hot water soluble boron Electrical conductivity Sodium absorption ratio (SAR)	Boreholes	GeoProbe 420M portable drill rig CME 55 rotary auger rig	Dedicated PVC dual tube sampling method, continuous sampling Split spoon sampler, sample every 0.75 m
Groundwater	Petroleum hydrocarbons Polycyclic aromatic hydrocarbons Volatile organic compounds Benzene, toluene, ethylbenzene, xylenes Metals, metal hydrides Mercury Cyanide Chromium VI Sodium, chloride Nitrite, nitrate	Monitoring wells	GeoProbe 420M portable drill rig CME 55 rotary auger rig	Low-flow sampling using peristaltic pump, target top 0.5 m of water column

TABLE 3 PROPOSED SAMPLING PLAN AND RATIONALE 1186-1196 Wellington Street West, Ottawa, ON

	1186-1196 Wellington Street West	, onawa, v					Lab Analyses							
Borehole			Donth	Screened	Soil Sampling	Rationale		Soil				Groundwater		
No.	Location	APEC	Depth (m)	Interval (m)	Interval			VOCs	Inorg.	PAHs	BTEX, F1-F4	VOCs	PAHs	lnorg.
MWA (shallow and deep)	Northeast corner of parking lot	APEC 1 APEC 4 APEC 6	16	2 0-5.0 (shallow) 12.0-15 0 (deep)	Fill Worst-Case	- Assess fill quality - Assess soil and groundwater conditions in the former UST nest - Deep (geotechnical) drilling location			1	1	2		2	2
and deep)		APEC 7		(deep)	Fill	- Assess fill quality	1							
MWB	East-central portion of parking lot	APEC 2 APEC 4 APEC 7	7 5	4.5-7 5	Worst-Case	Assess soil and groundwater conditions in the vicinity of former pump sland			1	1	1		1	1
		APEC 2			Fill	- Assess fill quality			1	1				
BHC	East-central portion of parking lot	APEC 4 APEC 7	3 5	N/A	Worst-Case	Assess soil and groundwater conditions in the former UST nest								
BHD	West-central portion of parking lot	APEC 3 APEC 4	20	N/A	Fill	- Assess fill quality - Assess soil and groundwater conditions in the vicinity of former automotive repair garage			1	1				
5/15	West contra person of parking lot	APEC 7	20	14/7.	Worst-Case									
MWE	Southwest corner of parking lot	APEC 3 APEC 4	75	4.5-7 5	Fill	Assess fill quality Assess soil and groundwater conditions in the vicinity of former automotive repair garage			1	1	1	1	1	1
		APEC 7			Worst-Case			1						
MWF	Southwest corner of church	N/A	16	12.0-15 0	N/A	- Geotechnical								
MWG	Church basement	APEC 5	5	2.0-5 0	Worst-Case	- Assess soil and groundwater conditions in the vicinity of former ASTs	1				1			
ВНН	Northern property limit	APEC 4 APEC 6	3 5	N/A	Fill	- Assess fill quality			1	1				
Dilli	Northern property limit	APEC 7	33	IN/A	Worst-Case	- Assess soil conditions in the vicinity of active retail fuel outlet	1							
BJI	Northern property limit	APEC 4 APEC 6	3 5	N/A	Fill	- Assess fill quality - Assess soil conditions in the vicinity of active retail fuel outlet			1	1				
	, , ,	APEC 7			Worst-Case									
BHJ	South parkling lot	APEC 4 APEC 7	16	12.0-15 0	Fill	- Assess fill quality			1	1				
MWK	Northwest corner of church	N/A	16	12.0-15 0	N/A	- Geotechnical								
BHL	Southeast corner of parking lot	APEC 4 APEC 7	16	N/A	Fill	- Assess fill quality			1	1				
	QA/QC Samples					0	8	1	8	8	5	1	4	4
QA/QC field duplicate				One duplicate per 10 samples	2		1	2	1	1				
, ,				One per sampling round (volatiles only)	1	1			1	1				
·				One per sampling round (volatiles in groundwater only)					1	1		 		
					One per sampling round (volatiles in groundwater only)					1	1			
Total Laboratory Analyses					11	2	9	10	9	5	4	4		

APEC = Area of Potential Concern, refer to phase one ESA VOCs = volatile organic compounds (O. Reg. 153/04)
BTEX/F1-F4 = benzene, toluene, ethy benzene, xylenes and petroleum hydrocarbons in the F1 to F4 fractions lnorg. = metals and general inorganic parameters (O. Reg. 153/04)
PAHs = polycyclic aromatic hydrocarbons (O. Reg. 153/04)
PCBs = polychlorinated biphenyls

TABLE 4 - SAMPLE CONTAINERS AND PRESERVATION

Media Analytical Parameter		Field Filtered	Sample Container	Preservation	Holding Time (preserved)		
Soil	Metals, metal hydrides, hot water soluble boron, chromium VI, SAR, EC, pH	Not applicable	250 mL glass jar	5±3°C	180 days		
	Cyanide	Not applicable	250 mL glass jar, teflon lined lid	5 ± 3 °C	14 days		
	BTEX, PHC F1	Not applicable	40 mL glass vial and 60 mL glass jar, no headspace	10 mL methanol, 5 ± 3 °C	14 days		
	BTEX, PHC F1	Not applicable	Hermetic sampler (Encore [™])	5 ± 3 oC	Extract within 48 hrs		
	PHCs F2-F4	Not applicable	120 mL glass jar, teflon lined lid	5 ± 3 °C	14 days		
	VOCs	Not applicable	40 mL glass vial and 60 mL glass jar, no headspace	10 mL methanol, 5 ± 3 °C	14 days		
	PAHs	Not applicable	120 mL glass jar, teflon lined lid	5 ± 3 °C	60 days		
Groundwater	Metals, metal hydrides, sodium	Yes	250 mL HDPE bottle	HNO ₃ to pH < 2 5 ± 3 oC	60 days		
	Mercury	Yes	125 mL clear glass bottle	HCl to pH < 2 5 ± 3 oC	28 days		
	Chromium VI	Yes	250 mL HDPE bottle	(NH ₄) ₂ SO ₄ /HN ₄ OH 5 ± 3 oC	28 days		
	Cyanide	No	250 mL HDPE bottle	NaOH to pH > 12 5 ± 3 °C	14 days		
	BTEX, PHC F1	No	3 x 40 mL clear glass septum vial, no headspace	NaHSO ₄ to pH < 2 5 ± 3 _o C	14 days		
	PHCs F2-F4	No	2 x 500 mL amber glass bottle	NaHSO ₄ to pH < 2 5 ± 3 _o C	40 days		
	VOCs	No	3 x 40 mL clear glass septum vial, no headspace	NaHSO ₄ to pH < 2 5 ± 3 _o C	14 days		

SAR = sodium absorption ratio

EC = electrical conductivity

BTEX = benzene, toluene, e hylbenzene, xylenes

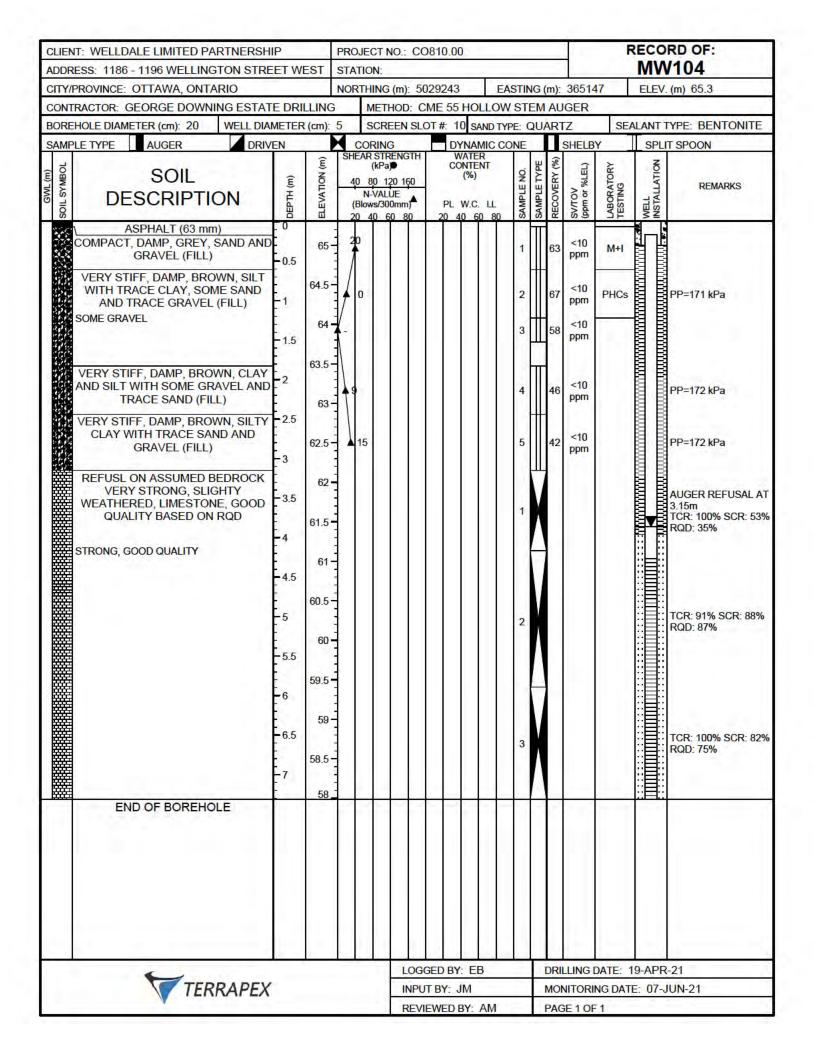
PHC F1 - F4 = petroleum hydrocarbons F1 to F4 fractions

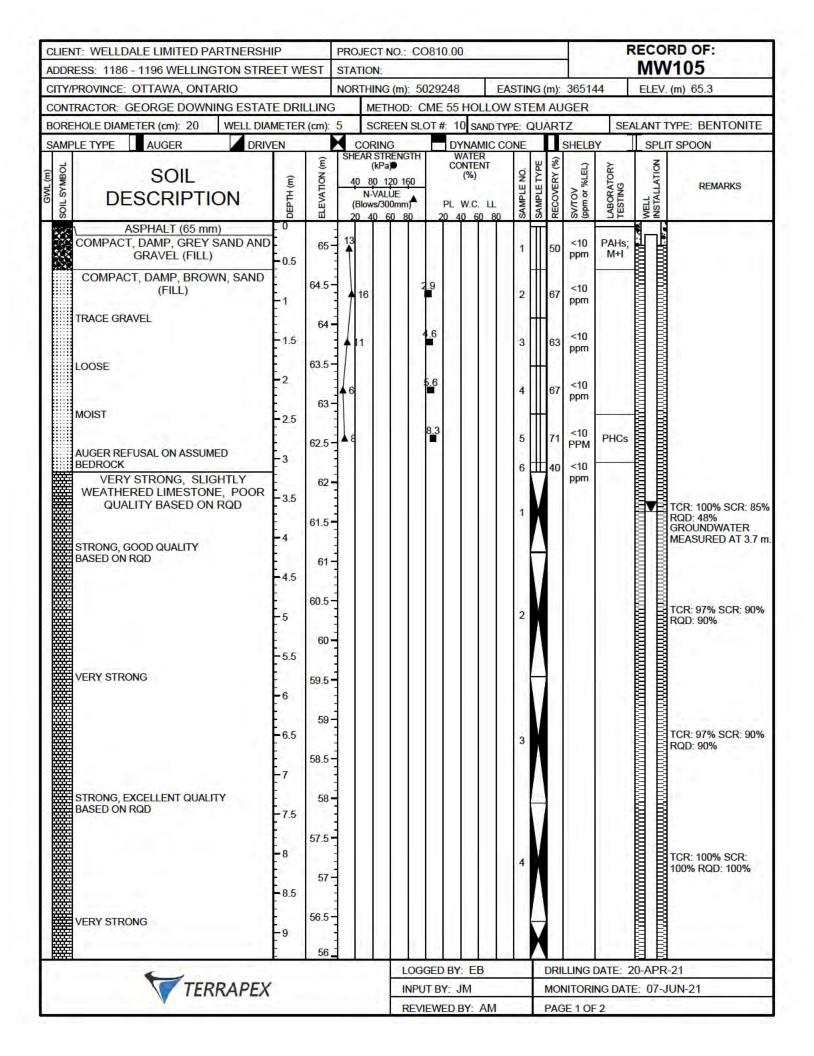
VOCs = volatile organic compounds

PAHs = polycyclic aromatic hydrocarbons (O. Reg. 153/04)

PCBs = polychlorinated biphenyls

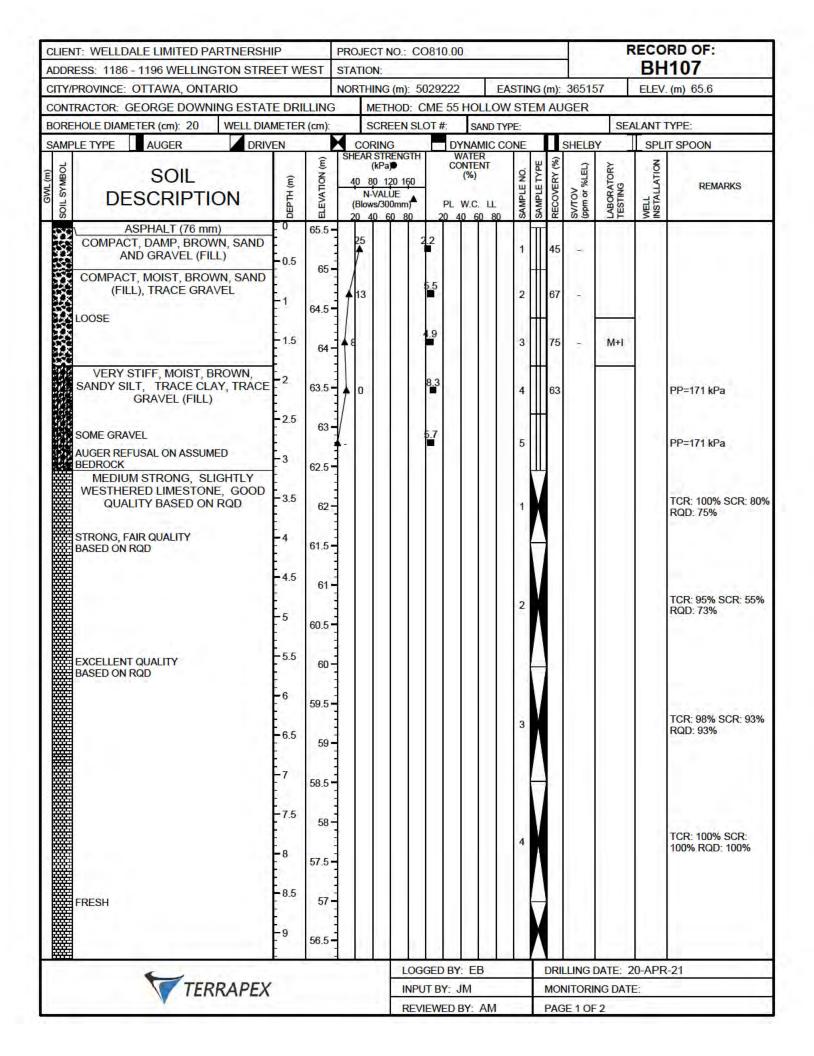
TCLP = toxicity characteriza ion leachate procedure

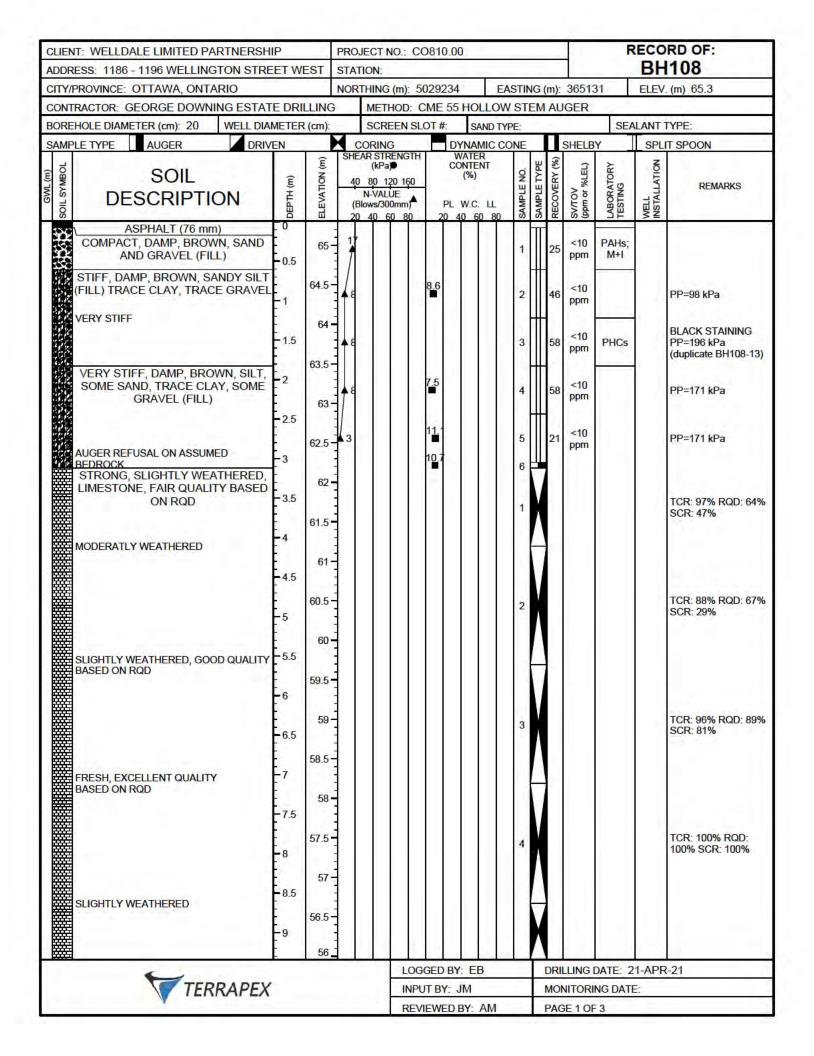

HDPE = high density polyethylene


APPENDIX IV BOREHOLE LOGS

CONTRA BOREHO SAMPLE TOBWAS TIOS	OVINCE: OTTAWA, ONTARIO ACTOR: George Downing Estate Drillin DLE DIAMETER (cm): 20 WELL DIAMETER ETYPE AUGER DRIV SOIL DESCRIPTION ASPHALTIC (50 mm)	METER EN	R (cm):	A	ME"	G (m): 50 THOD: G		S - 5 1 - 5 - 6				36512	27	ELEV.	(m) 65.3
SAMPLE TORWAY TO SAMPLE	SOIL DESCRIPTION	METER EN	R (cm):		SCI		EORG	F DOWN	IINIC						
AMPLE SOIL SYMBOL	SOIL DESCRIPTION	EN			_			LBOIII	MING	ES	TAT	E DRI	LLING I	LTD.	
SOIL SYMBOL	SOIL DESCRIPTION		1			REEN SLO	OT #:	SAND T	YPE:					LANT	TYPE:
	DESCRIPTION	(m)	Œ	OH	CORIN	NG RENGTH	D'	YNAMIC (ONE			SHELB	Υ		T SPOON
	ASPHALTIC (50 mm)	DEPTH (m)	ELEVATION (m)	((kP 0 80 N-VA Blows/3	a)● 120 160	PL CC	W.C. LL	SAMPLE NO.	SAMPLE TYPE	RECOVERY (%)	SV/TOV (ppm or %LEL)	LABORATORY TESTING	WELL	REMARKS
	COMPACT, DAMP, BROWN, SAND AND GRAVEL (FILL)	0.5	65 -	- 40	0 40	0 00	20 -	0 60 60	1	Ī	33	15 ppm	PAHs		
nun	STIFF TO VERY STIFF, DAMP, BROWN/GREY SILTY CLAY WITH TRACE SAND	-1	64.5	•	11				2		83	<10 ppm			pp=196 kPa
		1.5	64 -	<u>}</u>	13				3		75	20 ppm	PHCs		(Duplicate BH101-
	ENSE, DAMP, BROWN SILTY SAND WITH SOME GRAVEL		63 -	1	- 2				4		54	<10 ppm			
	ERY DENSE, DAMP, BROWN, SILTY SAND WITH SOME GRAVEL RACE CLAY	-2.5 -3	62.5		36				5		75	<10 ppm			
	WOL OLAT	3.5	62 -	1	15				6		42	<10 ppm			
	TERRAPEX			GED BY			1	_		DATE: 1		-21			

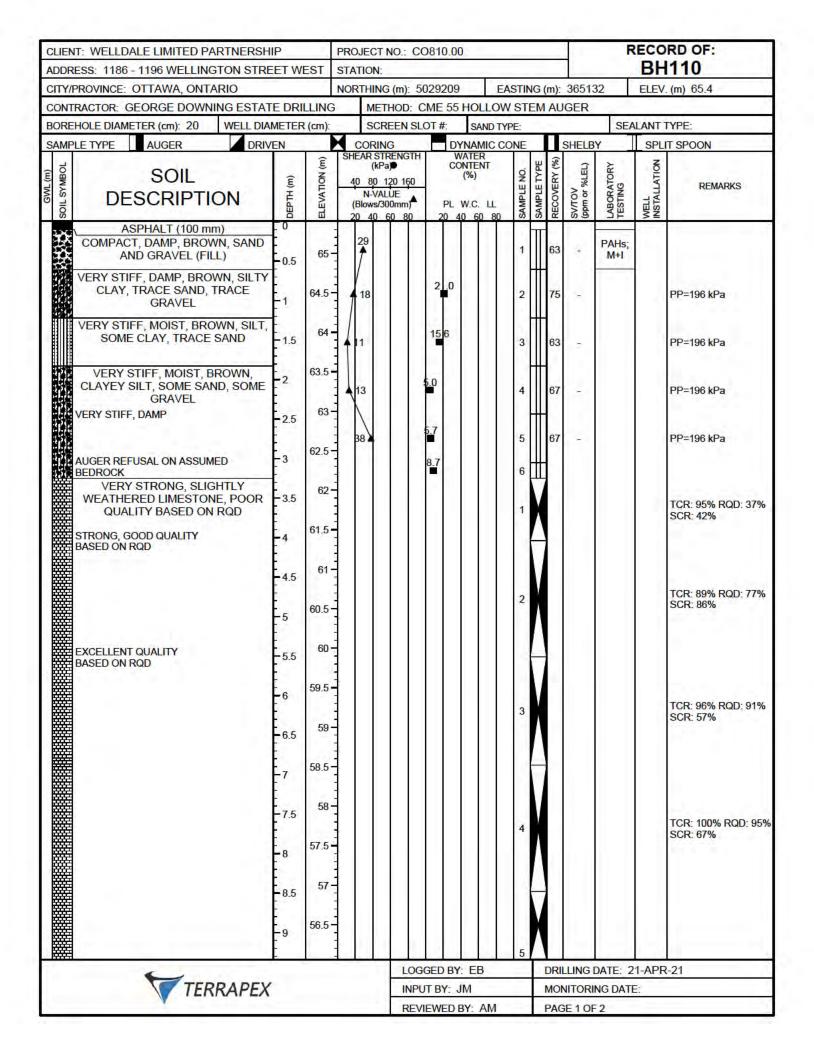
CLIENT: WELLDALE LIMITED PARTNERSHIP ADDRESS: 1186 - 1196 WELLINGTON STREET	WEST	PROJECT STATION:	NO.: CO810.	00				R		RD OF: 102
CITY/PROVINCE: OTTAWA, ONTARIO	WEST	100000000000000000000000000000000000000	(m): 502925	3 F	ASTING	(m)-	36514	12		(m) 65.4
CONTRACTOR: GEORGE DOWNING ESTATE D	DRILLING		HOD: CME	- DE C17 10	7 10 7 10 7		A 2 2 7	-	LLLY	(iii) co. i
BOREHOLE DIAMETER (cm): 20 WELL DIAMETER		1112 3	EEN SLOT #:	SAND TY				SEA	LANT	TYPE:
SAMPLE TYPE AUGER DRIVEN		CORIN		DYNAMIC C	ONE		SHELB	Υ	SPLI	T SPOON
SOIL DESCRIPTION	DEPTH (m) ELEVATION (m)	SHEAR STI (kPa 40 80 1 N-VAL (Blows/30 20 40	20 160 UE 00mm) P	WATER CONTENT (%) W.C. LL 40 60 80	SAMPLE NO.	RECOVERY (%)	SV/TOV (ppm or %LEL)	LABORATORY TESTING	WELL	REMARKS
VERY LOOSE, DAMP, BROWN, TOPSOIL (FILL) WITH TRACE SAND AND GRAVEL	GE -	3			1	63	<10 ppm	M+I		
VERY STIFF, DAMP, BROWN, SILTY CLAY, TRACE SAND	64.5	12			2	58	<10 ppm			PP=209 kPa
-1	64 -	↑ 0			3	100	<10 ppm		h	PP=232 kPa
-2	63	12			4	33	<10 ppm	PHCs		PP=232 kPa
VERY STIFF, DAMP, BROWN, CLAYEY SILT WITH TRACE GRAVEL	2.5	k -			5	66	<10 ppm		11.6	PP=196 kPa
AND SOME SAND END OF BOREHOLE					++1		ppin			AUGER REFUSAL

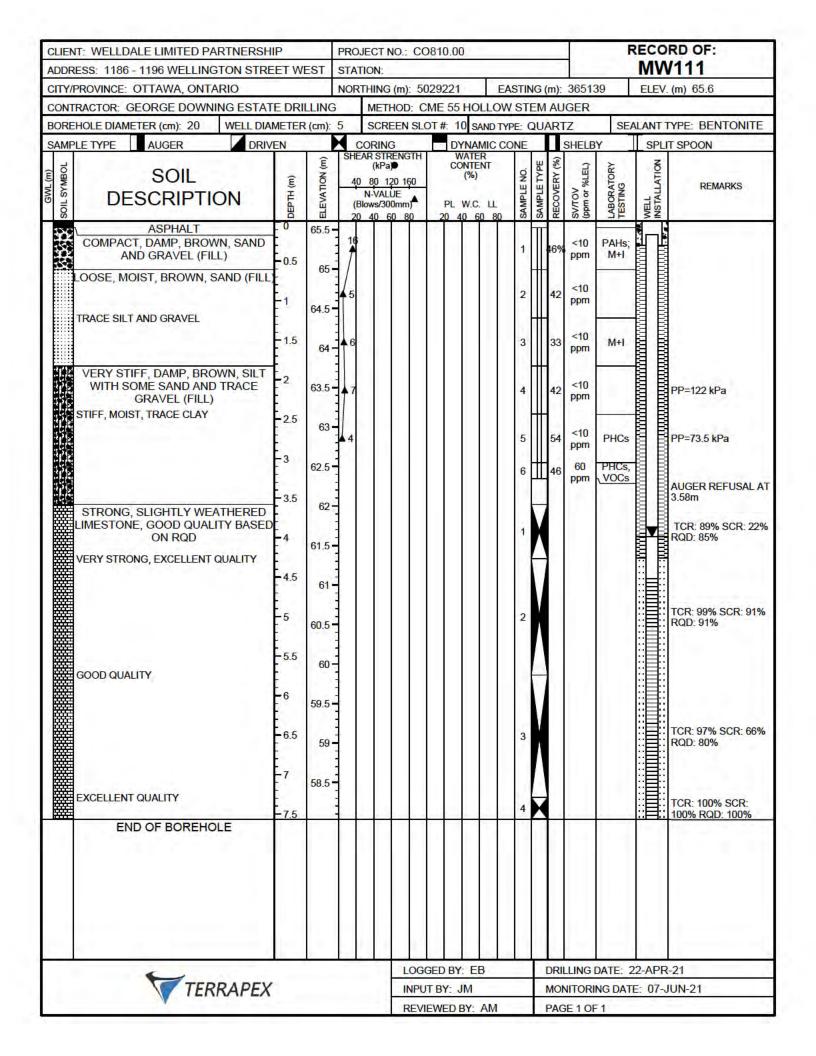

CITY/PR	SS: 1186 - 1196 WELLINGTON STREET	Mary Mary and the		O810.00			400			RD OF:
		WEST	STATION:		Mazal C	- 8.5		2 1	5.5	103
CONTRA	ROVINCE: OTTAWA, ONTARIO	DILLING	NORTHING (m):		100		36515	03	ELEV.	(m) 65.5
DODELL	ACTOR: GEORGE DOWNING ESTATE DI		SCREEN S	CME 55 HOLLO		M AL	JGER	I CEA	LANT	DVDC.
SAMPLE	OLE DIAMETER (cm): 20 WELL DIAMETER E TYPE AUGER DRIVEN		CORING	DYNAMIC (П	SHELB			
	ETTPE AUGER DRIVEN	1	SHEAR STRENGTH			110				T SPOON
SOIL SYMBOL	SOIL DESCRIPTION	ELEVATION (m)	(kPa) 40 80 120 160 N-VALUE (Blows/300mm) 20 40 60 80	PL W.C. LL 20 40 60 80	SAMPLE NO.	SAMPLE TYPE RECOVERY (%)	SV/TOV (ppm or %LEL)	LABORATORY TESTING	WELL INSTALLATION	REMARKS
*	ASPHALT (130mm) 0 0 COMPACT, DAMP, BROWN, SAND AND GRAVEL (FILL) 0.5	65.5	23		1	58	<10 ppm	PAHs; M+I		
	ERY STIFF, DAMP, BROWN, SANDY- SILT, TRACE GRAVEL AND TRACE CLAY	64.5	23		2	67	<10 ppm			
	COMPACT, DAMP, BROWN, SANDY	63.5			3	889	ppm			PP=147 kPa
	VERY STIFF, DAMP, BROWN, 2.5				4	63	ppm	PHCs		PP=196 kPa
	AND TRACE GRAVEL	62.5	8		5 6	83	<10 ppm <10 ppm			AUGER REFUSAL A
	TERRAPEX			GGED BY: EB UT BY: JM			100	DATE: 1		-21



5	: WELLDALE LIMITED PARTNERS	The State of the S	PROJECT	NO.: CO	310.00					F	A CONTRACTOR	RD OF:
200	SS: 1186 - 1196 WELLINGTON ST	REET WEST	STATION:			1 32			0054	. T		V105
1000	ROVINCE: OTTAWA, ONTARIO	ATE DOWN	NORTHING		A 7 T - 144 7	7 / 100	Control of	1000	36514	14	ELEV	'. (m) 65.3
	ACTOR: GEORGE DOWNING EST, OLE DIAMETER (cm): 20 WELL D	DIAMETER (cm)			/IE 55 HC T#: 10 s					CE	AL ANIT	TYPE: BENTONIT
		RIVEN	CORIN			MIC CO			SHELB	_		IT SPOON
	LITTE AUGEN		T CHEAD OT	RENGTH	WATE CONTE	R			1			T SI OON
SOIL SYMBOL	SOIL	DEPTH (m)	40 80 1		(%)		S Y	RECOVERY (%)	SV/TOV (ppm or %LEL)	LABORATORY TESTING	WELL	REMARKS
LSY	DESCRIPTION	DEPTH (m)	N-VAL (Blows/30	ÜE	PL W.C	11	SAMPLE NO.	NOC	TOV	SORA	TALL	REWARKS
S	The state of the s	DEF	20 40		20 40 6		SA SA	RE	SV/	3,5	N S	
		9.5	3 1 1				5					TCR: 100% SCR:
		55.5	5-				3					100% RQD: 100%
		10	3									
	3.50	- 55	5-					1				
S	TRONG	10.5	3					1				
		54.5	5-					1				
		-11	3									TCR: 100% SCR:
		- 54	44				6					100% RQD: 100%
		-11.5	3					1				
₩ F	AIR QUALITY	53.5	5-					1				
В	ASED ON RQD	12	3					7				TCR: 100% SCR: 100% RQD: 100% UCS = 63.7 MPa
		53	3					1				
		12.5	1				7					TCR: 66% SCR: 66 RQD: 66%
		52.5	5-									RQD: 66%
		13	3					1				
	XCELLENT QUALITY ASSED ON RQD	52	2-				-	1				
		-13.5	3					ı				
		51.5	5-					1				TCR: 98% SCR: 98
		14					8					RQD: 98%
		51	4					1				UCS = 67.0 MPa
		14.5	4					1				
		50.5	5					1				
		-15	3				Ш	1				
		50	4									TOD: 4000/ COD:
		- 15.5					9					TCR: 100% SCR: 100% RQD: 100%
		49.5	5-					1				
		16	3					1	П			
	END OF BOREHOLE					-	H	╁				
	2,10 0, 00,12,1022											
								ı				
								L				
-								ļ,				
	TERRARE				ED BY: E	В		7		DATE: 2		1000 TO 17
	TERRAPE	X			BY: JM	7.00					E: 07-	JUN-21
				REVIE	WED BY:	AM		PAC	E 2 OF	2		

20.00	IT: WELLDALE LIMITED PARTNERSHI			NO.: CO	810.00					F		RD OF:
	ESS: 1186 - 1196 WELLINGTON STRE	ET WEST	STATION		AND TO	Terran						/106
	PROVINCE: OTTAWA, ONTARIO			IG (m): 50					36514	13	ELEV.	(m) 65.3
	RACTOR: GEORGE DOWNING ESTAT				ME 55 HC		_	_		Lon	7.10.20	DELITABLE
_		METER (cm)			T#: 10 s.					_	1	TYPE: BENTONIT
SAMP	LE TYPE AUGER DRIV		SHEARS	TRENGTH	WATE				SHELB			T SPOON
SOIL SYMBOL	SOIL DESCRIPTION	O DEPTH (m) ELEVATION (m)	40 80 N-V/ (Blows/	Pa) 120 160 ALUE 300mm) 60 80	PL W.C	ш	SAMPLE NO.	RECOVERY (%)	SV/TOV (ppm or %LEL)	LABORATORY TESTING	WELL	REMARKS
	STRONG, SLIGHTLY WEATHERED LIMESTONE, FAIR QUALITY BASED ON RQD STRONG, GOOD QUALITY	65 -0.5 -0					1					AUGER REFUSAL 2.90m TCR: 97% SCR: 5: RQD: 67% TCR: 98% SCR: 8 RQD: 98%
				LOGO	ED BY: E	В		DRI	LLING [DATE: 2	20-APR	-21
	TERRAPEX			INPU	BY: JM			MOI	NITORII	NG DAT	E: 07-J	IUN-21
	V			DEVO	WED BY:	A B 4	-	DAC	E 1 OF	4		


5 7 7 4	NT: WELLDALE LIMITED PARTNERS	TO ST VALUE OF THE ST	1.50	T NO.: CC	810.00						F		RD OF:
	RESS: 1186 - 1196 WELLINGTON ST	REET WEST	STATION		20000	1			-	22515	- 1		1107
	/PROVINCE: OTTAWA, ONTARIO	ATE DOWN IN		NG (m): 50	0.5			7.1		36515	0/	ELEV	. (m) 65.6
V. 1 2	TRACTOR: GEORGE DOWNING EST	OIAMETER (cm)		CREEN SLO	ME 55 HO	23.50	_	LIVI	AU	GER	CE/	LANT	TVDE-
					0.00000	AND TYP				SHELB'			
	PLE TYPE AUGER DE	RIVEN	CHEAD	STRENGTH	WATE	MIC CO		111					IT SPOON
GWL (m)	SOIL DESCRIPTION	DEPTH (m)	40 80 N-V (Blows	(Pa) 120 160 (ALUE /300mm)	A CONTE	ш	SAMPLE NO.	SAMPLETYPE	RECOVERY (SV/TOV (ppm or %LEL)	LABORATORY TESTING	WELL	REMARKS
		9.5	111	60 80	20 40 6	0 80	5	Ž	1	w 9	35	>=	TCR: 100% SCR: 100% RQD: 100% UCS = 81.6 MPa
	STRONG, SLIGHTLY WEATHERED	10 55.5	<u>, </u>				1	ð					
		- 10.5 - 55 - 11 - 54.5	1				6	H					TCR: 100% SCR: 98 RQD: 98%
	VERY STRONG, GOOD QUALITY BASED ON RQD	11.5							į.				
		12 53.5	;-				7	V					UCS = 103.4 MPa TCR: 100% SCR: 95
		- 12.5 53	,-										RQD: 90%
	EXCELLENT QUALITY BASED ON RQD	13.5											
		14 51.5					8	K				1	TCR: 100% SCR: 100% RQD: 95%
	GOOD QUALITY BASED ON RQD	14.5							4				
		- 15 50.5 - 15.5	<u> </u>				9	W				ł	TCR: 91% SCR: 899 RQD: 83%
	END OF BOREHOLE	50)			.							
Ы				LOGG	SED BY: EI	В			DRII	LING I	DATE: 2	0-APF	2-21
	TERRAPE	X			FBY: JM			-			NG DAT		
	7 Elifoti E				EWED BY:	AM			-	E 2 OF			


	T NO.: CO810.00	RECORD OF:
ADDRESS: 1186 - 1196 WELLINGTON STREET WEST STATIO	Control of the Contro	BH108
	NG (m): 5029234 EASTING (m):	
	ETHOD: CME 55 HOLLOW STEM AL	The state of the s
	CREEN SLOT #: SAND TYPE:	SEALANT TYPE:
SAMPLE TYPE AUGER DRIVEN COF	STRENGTH WATER	SHELBY SPLIT SPOON
SOIL (E) NOTE OF SOIL (B) NOTE OF SOIL (120 160 (%) ON ALUE // ALUE // 300mm) PL W.C. LL WW S S S S S S S S S S S S S S S S S	
-9.5 55.5 -10 55-		TCR: 100% RQD: 100% SCR: 100%
54.5 – -11 54 – -11.5	6	TCR: 97% RQD: 97 SCR: 97%
- 12 - 12.5 - 12.5 - 13.5 - 13.5	7	TCR: 100% RQD: 100% SCR: 100%
VERY STRONG, GOOD QUALITY BASED ON RQD 51.5 -14.5 50.5 -15	8	TCR: 98% RQD: 94' SCR: 98%
50 - - 15.5 - 49.5 -	9	TCR: 88% RQD: 88' SCR: 88%
STRONG, EXCELLENT QUALITY BASED ON RQD 49		UCS=52.3 MPa
48.5 – 17 – 17.5 – 18 – 47.5 –	10	TCR: 98% RQD: 98' SCR: 98%
18.5	11	UCS=73.0 MPa TCR: 100% RQD: 95 SCR: 92%
	LOGGED BY: EB DRI	LLING DATE: 21-APR-21
TERRAPEX	INPUT BY: JM MO	NITORING DATE:

ADDRESS: 1186-1199 WELLINGTON STREET WEST STATION. CONTRACTOR GEORGE DOWNING ESTATE DRILLING CONTRACTOR GEORGE DOWNING STATE DRILLING BOREHOLE DIAMETER (cm): 20 WELL DIAMETER (cm): 3658-1 SCAREN SLOTZ SAMPLE TYPE ALAGER DESCRIPTION SOUL DES	ř.	RD OF:		R								0	10.0	COE	0.:	CT N			- 10 - 10 - 10	Year.		X	PARTI			200		200
CONTRACTOR: GEORGE DOWNING ESTATE DRILLING BOREHOLE DIAMETER (cm): 20 WELL DIAMETER (cm): SCREEN SLOT #: SAND TYPE: SEALANT TYPE: SAMPLE TYPE AUGER ORIVEN SOIL OBJECT OB		7 A - 17		-	2200		50.5		رقدتره	1. 2	1			252		_			ST	WE	ET		2000	A		- T	20.00	T. A. I
BOREHOLE DIAMETER (cm): 20 WELL DIAMETER (cm): SCREEN SLOT #: SAND TYPE: SEALANT TYPE: SAMPLE TYPE AUGER DRIVEN CORING DYNAMIC CONE SHELBY SPLIT SPOON SOIL SOIL SEALANT TYPE: SEALA		(m) 65.3	ELEV.										_	-	_	_		_		D.//					J. J.	5 T T T		
SAMPLE TYPE AUGER DRIVEN CORING DYNAMIC CONE SHELBY SPLIT SPOON SOIL (E) YOU AND THE (KPa) (KPa		DVDE.	LANT	I OF A	ER	UGI	AU	=M	_				-					,		_		_				777		_
SOIL DESCRIPTION (E) N-VALUE (Blows/300mm) 20 40 60 80 20 40 60 8				_	IE (BV	011	п		_			_		SLO.		_	_	4	_	ER (-	VVI					
VERY STRONG, GOOD QUALITY BASED ON RQD 46.5 19 46.5 12 TCR: 92% F SCR: 59%		SPOON			100			V./			R	WATE	- 11	н	ENGT	STR	HEAR			T	EN	DRIV		EK	AUG		TYPE	
VERY STRONG, GOOD QUALITY BASED ON RQD 12 TCR: 92% F SCR: 59%	MARKS	REM	WELL	LABORATORY TESTING	(ppm or %LEL)	SVITOV	RECOVERY (9	SAMPLETYPE	SAMPLE NO.	30	: ц	(%) W.C	PL		0 160 JE Jmm)	0 12 VALU vs/300	40 (Blov		ELEVATION (n	(1)	DEPTH (m)					ES	Ĺ	SOIL SYMBOL
END OF BOREHOLE								X V	12]	46 •	9.5	- - 19		JALITY	ood qu	g, go ND	TRON ON RO	ERY S ASED	
																							TIOLE.	BOKE		LIND		
											La.										la con							
LOGGED BY: EB DRILLING DATE: 21-APR-21		1-21	1-APR	ATE: 2	NG D	ILLI	DRI	ı			В	γ: E	D B	GGE	LC	T	_											
TERRAPEX INPUT BY: JM MONITORING DATE: MONITORING DATE:			ŝ.	G DATE	ORIN	NIT	MOI	1	= :			JM	3Y:	PUT	IN							PEX	ERRA	TI	1			

CLIENT: WELLDALE LIMITED PARTNERSHIP		PROJECT	NO.: CO	810.00				ķ	R		RD OF:
ADDRESS: 1186 - 1196 WELLINGTON STREET	WEST	STATION:									V109
CITY/PROVINCE: OTTAWA, ONTARIO		NORTHING				STING	(m):			ELEV	. (m)
CONTRACTOR: STRATA DRILLING GROUP				DRTABLE					- Ilian	0.000	N. S. C. Services
BOREHOLE DIAMETER (cm): 7 WELL DIAME				T#: 10 SA							TYPE: BENTONITE
SAMPLE TYPE AUGER DRIVEN		CORIN SHEAR ST		DYNAM WATE	AIC CO			SHELB			IT SPOON
	DEPTH (m) ELEVATION (m)	40 80 1 N-VAI (Blows/3) 20 40	120 160 LUE 00mm)	CONTE (%) PL W.C. 20 40 6	IT.	SAMPLE NO.	RECOVERY (%)	SV/TOV (ppm or %LEL)	LABORATORY TESTING	WELL	REMARKS
).5							-10	DUO		
-2	2.5					1		<10	PHCs		CORED THROUGH APPARENT BOULDERS/ COBBLES NO ADDITIONAL SOIL SAMPLING
END OF BOREHOLE	2.5				90				-	::=::	
TERRAPEX			ED BY: JM	1			100	DATE: 2	23.3	R-21 MAY-21	
TERRAPEX				BY: JM EWED BY:	AM			IITORI E 1 OF		≘: 25-l	MAY-21

CLIENT: WELLDALE LIMITED PARTNERS		PROJECT NO.: C	0810.00			-				RD OF:
ADDRESS: 1186 - 1196 WELLINGTON STI	REET WEST	STATION:		leave.	7.75					1110
CITY/PROVINCE: OTTAWA, ONTARIO		NORTHING (m): 5		7 7 7 7 7 7		_	36513	32	ELEV	. (m) 65.4
CONTRACTOR: GEORGE DOWNING ESTA			CME 55 HOL	1000	EM	AU	GER	l or		
	IAMETER (cm)		10.000	ND TYPE:			oue(e		LANT	
	IVEN	CUEAD CTDENCTU	WATER	IC CONE			SHELB			IT SPOON
SOIL DESCRIPTION	DEPTH (m)	(kPa) 40 80 120 160 N-VALUE (Blows/300mm) 20 40 60 80	▲ CONTEN (%) PL W.C. 20 40 60	T AMPLE NO	SAMPLETYPE	RECOVERY (9	SV/TOV (ppm or %LEL)	LABORATORY TESTING	WELL	REMARKS
	-9.5 -10 55.5)			X					TCR: 100% RQD: 100% SCR: 30% UCS=77.1 MPa
	-10.5 54.5 -11 54.5	1		6	K					TCR: 100% RQD: 95 SCR: 100%
	-11.5 54 -12 53.5			7	V					TCR: 100% RQD: 100% SCR: 100%
	-12.5 -13 -13.5	5-								
	51.5	4		8	X				i	TCR: 100% RQD: 100% SCR: 100%
VERY STRONG	- 14.5 51 - 15 50.5					S				
	- 15.5 - 49.5	1		9						TCR: 97% RQD: 91' SCR: 100%
END OF BOREHOLE	73.0									
			P. L. L.							
TERRAPE			GED BY: EB		I	DRIL	LING [DATE: 2	1-APF	R-21
			JT BY: JM			-		NG DAT	_	

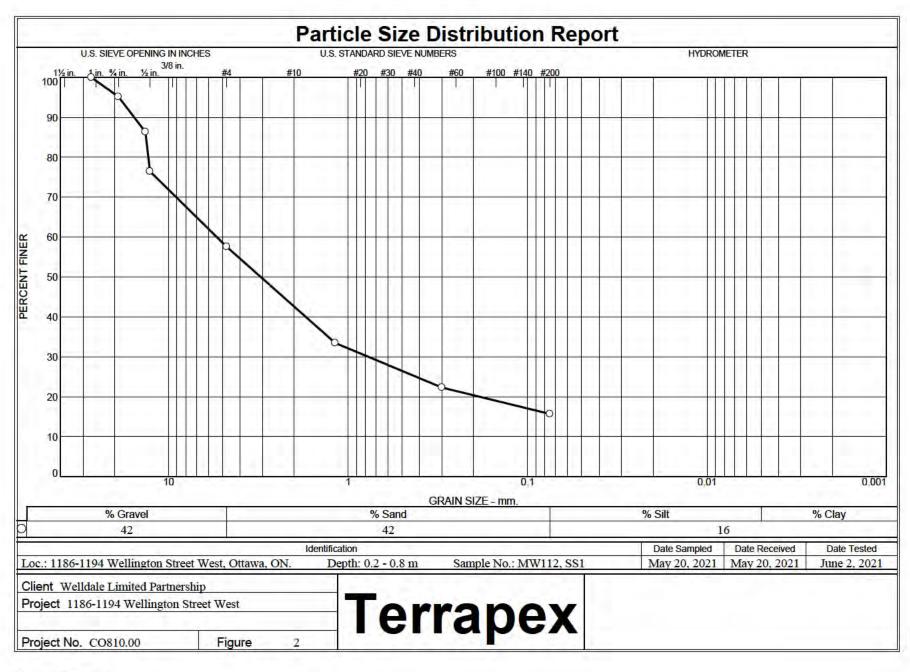
APPENDIX V WASTE MANIFESTS

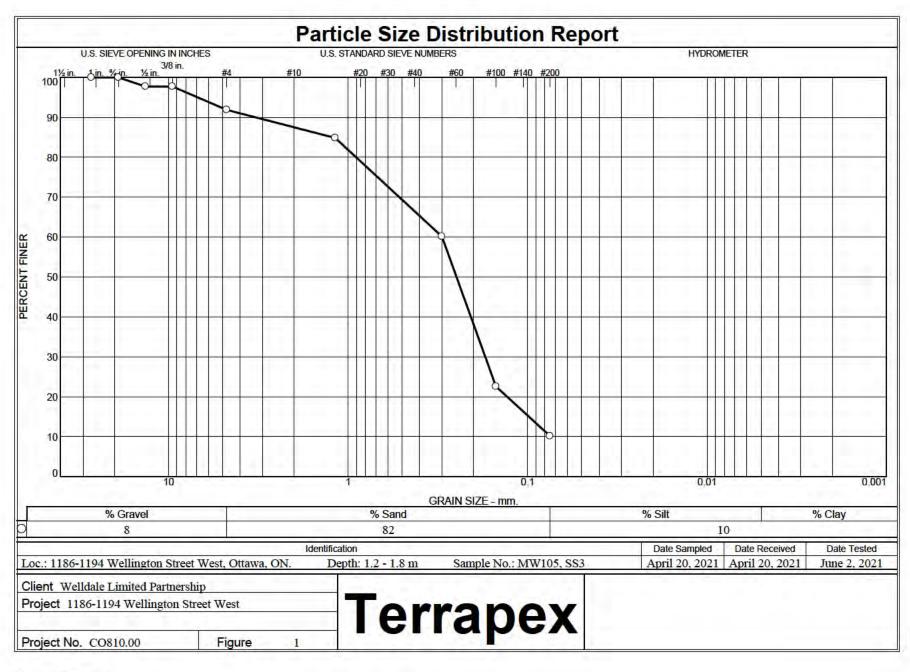
MOVEMENT DOCUMENT / MANIFEST DOCUMENT DE MOUVEMENT / MANIFESTE

This Movement document/manifest conforms to all federal

and provincial environmental legislation.
Ce document de mouvement/manifeste est conforme aux législations fédérale et provinciale sur l'environnement.

TRRAPEUTOR


MX111571-0


Copy / Copie 2 (green / verte)

Movement Document / Manifest Reference No. Nº de référence du document de mouvement/manifeste

·				CAAZ	116	<u>- X</u>	100			1 -												
A Generator / con Producteur / ex			Reg N° d	ristration No. / Provin d'immatriculation - d'id	ciał ID No. d. provincial	' 1 E	Carrier Transpor	teur		on No. / Provinc atriculation - d					23	Reference Nos. of a N° de référence des	ther movement of autres documen	locument(s)/manifest(s) us ts de mouvement/manifes	ed / es utilisés			27
				ONST	1.133								366	4-666	學解析		r / consign		Registration N	lo. / Provincial	ID No.	28
Company name / Nom de l'ei		menta	t,e				ompany name / N			核线						Récepti	onnaire / de	estinataire	N° d'immatri	culation - d'id	. provincial	
Mailing address / Adresse po			Province		l code / Cod		ailing address / Ad	lresse po	stale	City / Ville		Provinc	9	Postal code / C				information same as in				
1186 115		ENCH:	人具有海	wa ON	(TY)		iano h			l Obl	tawi	£ \$ (2)	¥	机造物	5 1 S		nseignements Yes / Oui	du réceptionnaire / desti No, complete				
E-mail / Courrier électronique	•			Tel. No. / N° (de tél.	'E-1	mail / Courrier éle	ctronique)					. No / N° de tél.	2AAA	Company nam				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
Shipping site address / Adre	sse du lieu de l'expéd	lition					Vehicle / Véhicul			Registra	ation No. /	/ N° d'imma	3		Prov. 2	Company nam	e / Nom de rei	reprise				
	d Westing	gtrore S				1 ^{ro}	ailer - Rail car No. remorque - wago			AL	-84	6 <i>80</i>)/		Ott	Mailing addres	s / Adresse pos	tale				
City/Ville Otalia vyer			Provinc		l code / Co	110	ailer - Rail car No. remorque - wago			1 1	~ 1,	4,,,	•			011 (1511						···
						Po	ort of entry				Port	of exit			25	City / Ville			Province	Pos	stal code / Co	de postal
Intended Receiver / consi Réceptionnaire / destinate			2	Registration No. / Pi N° d'immatriculation	rovincial ID on - d'id. pr	No. Po ovincial	oint d'entrée		ational use	-	Poin	it de sortie		ional use only		E-mail / Courrie	er électronique			Tel. No. /	N° de tél.	
Clean Wat				1037-62		de de	elivery to the recei	ver/cons	signee as se	et out in Part A a	and that the	e informatior	contained i	enerator / consigno in Part B is comple	ete and correct.					()		
Mailing address / Adresse p	•		Provin		al code / Co	, I de	leur livraison au n	éceptionr	r : J'atteste a naire / destir	avoir reçu les dé nataire, tels qu'il:	échets ou r Is figurent é	matières rec à la partie A	rclables du et que les re	producteur / expé enseignements ins	diteur en vue crits à la partie	Receiving site a	address / Adres	se du lieu de destinatior	ı			
E-mail / Courrier électroniqu	.31,63 5-37 µe	Otha	WB J	Tel. No. / N° de	tél.	Bs Na	sont exacts et corr ame of authorized		(print):				Tel A	No. / N° de tél.			Date received /	Date de réception	Tie	ne / Heure		29
			(4	64 (84)7 30	70	A A No	om ge l'agent auto	oriré (cara	actères d'im	primerie):	, 1	_				Year / Année		h / Mois Day /	Jour "	lle / Fleure	∃П ∧и	□ Р.М.
Receiving site address / Add	4	nation	*				10111	710	<i>CP</i>	XCG pr			633	0745-2	A A A	function or regular	able meterial	to be transferred, spec	if v intended 3	Registration		_
City / Ville	AT THE SAME SAME	Province ()[N			code / Code	e postal	Year / Année N	fonth/Mo	ois Da	ay/Jour	Signature	affect of	/ 711	1491 E	· ·	company name/ s transférés, précis	Si les dechets	ou matières recyclab	es doivent être	N° d'immat		
Prov. code 3		Sh	nipping name		4	Class / Classe Sub. class(es)		6 Pad	king / risk gr d'emballage	7 Quantiy s	shipped	Units Lor/ou Kg	Packa	ging/Contenant Codes	9 10 Phys. state	Quantity received	Units 31	Comments	32 Handling 3: Code / Code		nt / Envoi 34 Refused	
Code prov.		Appella	tion réglemer	ntaire		Classe(s) sub.	N°NU		de risque	Quántité ex	xpédiée	Unités	140.714	Int ext.	État phys.	duantitie regati	Unités	Commentaires	de manutention	Accepté	Refusé	Pack. Veh. Cont. Véh
· 杂类主题	William W.	difference of the state of the	diffyli	A Pareck		M/R	N/R) #	4/1	700		1	B	OI	9.							
(ii)		_								-												
(iii)	Mari Birskya Trekadarana		\$43 \$ \$ + \$ }	/d 1.443 to 4 (±1).	jî jî jî	NA	Will	*	460	750		Kış	*		40.6							
	1,154,523,535																					
(iv)																		7				
	11		12	1 13	T	4 1	15.)	16	17						L							
	Notice Line No		ı			Basel Annex OECD Co				Nation country of /	nal code in Code du j				19	If handling code * Si code de manu						
Notice No. N° de notification	N° de ligne de la notification		Of / De	D or R code Code D ou R	C code	Anneye VIII	de Bâle Ho	ode de H	Y code Code Y	Export Exportation	Impor	port rtattion	C	Customs code(s) Code(s) de douane		Receiver / cons information contain	ignee certifica ned in Part C is	tion : I certify that the correct and complete. I	Name of auth Nom de l'age	norized person		imorio)
0																Attestation du ré que tous les rense complets.	ceptionnaire / ignements à la	destinataire : J'atteste partie C sont exacts et	, nomuerage	in autorise (ca	ractere d'imp	ппане)
(ii)														·	<u> </u>	Signature				Tel. No. / N	de tél.	
(iii)		6		ati	0	hа			15	6		01		y		Signalure				()		
(iv)														*			oint: 🔲 /	péciale As follows/ Ci-contre : 後春後年度高温線点線電影	v ibi	.al74	5-14	22
Generator / consignor cen the contents of this consigne marked and labelled/placard national governmental regul Attestation du producteur	ment are fully and a ded, and are in all re lations. / expéditeur: J'atte	ccurately desc spects in prop este que tous l	cribed above per condition les renseigne	by the proper ship for transport accor ements à la partie A	ping name ding to ap A sont exac	, and are classi plicable interna cts et complets.	ified, packaged, tional and Je déclare que	No		orized person (p nt autorisé (cara		primerie)		l, No. / N° de tél.	20	Year / Année M		dition Time Day/Jour	PM Year	duled arrival da Année Mor		nivée prévue Day / Jour
le contenu de ce chargemer convenablement classé, em conformément aux réglemer	ballé, marqué, étiqu	eté, muni de p	olaques-étiqi	uettes et à tous éga							,			etained l ardée pa	•	•		Co	pv / Cop	ie 2 (a	reen	/ verte

APPENDIX VI GRAIN SIZE ANALYSES

APPENDIX VII LABORATORY CERTIFICATES OF ANALYSIS

CLIENT NAME: TERRAPEX ENVIRONMENTAL LTD 20 GURDWARA ROAD, UNIT 1 OTTAWA, ON K2E 8B3 (613) 745-6471

(613) 745-647 (): Keith Brown

ATTENTION TO: Keith Brown PROJECT: CO810.00

AGAT WORK ORDER: 21T742988

SOIL ANALYSIS REVIEWED BY: Jacky Zhu, Spectroscopy Technician

DATE REPORTED: May 13, 2021

PAGES (INCLUDING COVER): 9
VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

Notes	

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days after receipt unless a Long Term Storage Agreement is signed and returned. Some specialty analysis may
 be exempt, please contact your Client Project Manager for details.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other
 third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the
 services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
 contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.

AGAT Laboratories (V1)

Page 1 of 9

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)

Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in his report may not necessarily be included in the scope of accredita ion. Measurement Uncertainty is not taken into consideration when sta ing conformity with a specified requirement.

Certificate of Analysis

AGAT WORK ORDER: 21T742988

PROJECT: CO810.00

ATTENTION TO: Keith Brown

SAMPLED BY:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aga labs.com

SAMPLING SITE: SAMPL

O. Reg. 153(511) - Metals & Inorganics (Soil)

			<u> </u>	11 0 g. 133(31	r) - Metals & morganics (5011)
DATE RECEIVED: 2021-05-06					DATE REPORTED: 2021-05-13
	S		CRIPTION: PLE TYPE: SAMPLED:	MWIII-3 Soil 2021-04-22 08:10	
Parameter	Unit	G/S	RDL	2432337	
Antimony	μg/g	7.5	8.0	<0.8	
Arsenic	μg/g	18	1	1	
Barium	μg/g	390	2.0	83.2	
Beryllium	μg/g	5	0.4	<0.4	
Boron	μg/g	120	5	<5	
Boron (Hot Water Soluble)	μg/g	1.5	0.10	0.36	
Cadmium	μg/g	1.2	0.5	<0.5	
Chromium	μg/g	160	5	15	
Cobalt	μg/g	22	0.5	5.7	
Copper	μg/g	180	1.0	12.7	
ead	μg/g	120	1	10	
Nolybdenum	μg/g	6.9	0.5	0.5	
lickel	μg/g	130	1	10	
Selenium	μg/g	2.4	8.0	<0.8	
Silver	μg/g	25	0.5	<0.5	
Thallium	μg/g	1	0.5	<0.5	
Uranium	μg/g	23	0.50	<0.50	
Vanadium	μg/g	86	0.4	21.8	
Zinc	μg/g	340	5	32	
Chromium, Hexavalent	μg/g	10	0.2	<0.2	
Cyanide, Free	μg/g	0.051	0.040	< 0.040	
Mercury	μg/g	1.8	0.10	<0.10	
Electrical Conductivity (2:1)	mS/cm	0.7	0.005	1.50	
Sodium Adsorption Ratio (2:1) (Calc.)	N/A	5	N/A	3.48	
pH, 2:1 CaCl2 Extraction	pH Units	5.0-9.0	NA	7.65	

Certificate of Analysis

AGAT WORK ORDER: 21T742988

PROJECT: CO810.00

ATTENTION TO: Keith Brown

SAMPLED BY:

ATTENTION TO, Reith Blown

O. Reg. 153(511) - Metals & Inorganics (Soil)

DATE RECEIVED: 2021-05-06 DATE REPORTED: 2021-05-13

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Soil - Residential/Parkland/Institutional Property Use - Medium and Fine Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

EC was determined on the DI water extract obtained from the 2:1 leaching procedure (2 parts DI water:1 part soil). pH was determined on the 0.01M CaCl2 extract prepared at 2:1 ratio. SAR is a calculated

parameter.

SAMPLING SITE:

2432337

Analysis perfored at AGAT Toronto (unless marked by *)

CHARTERED S CHEMIST

Certified By:

5835 COOPERS AVENUE

MISSISSAUGA, ONTARIO CANADA L4Z 1Y2

http://www.aga labs.com

TEL (905)712-5100 FAX (905)712-5122

Exceedance Summary

AGAT WORK ORDER: 21T742988

PROJECT: CO810.00

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aga labs.com

CLIENT NAME: TERRAPEX ENVIRONMENTAL LTD

ATTENTION TO: Keith Brown

SAMPLEID	SAMPLE TITLE	GUIDELINE	ANALYSIS PACKAGE	PARAMETER	UNIT	GUIDEVALUE	RESULT
2432337	MWIII-3	ON T3 S RPI MFT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Electrical Conductivity (2:1)	mS/cm	0.7	1.50

AGAT WORK ORDER: 21T742988

Quality Assurance

CLIENT NAME: TERRAPEX ENVIRONMENTAL LTD

PROJECT: CO810.00 ATTENTION TO: Keith Brown

SAMPLING SITE: SAMPLED BY:

				Soi	l Ana	alysis	3								
RPT Date: May 13, 2021			С	UPLICAT	E		REFERE	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable nits	Recovery		ptable nits	Recovery		ptable nits
		Id	·	·			Value	Lower	Upper		Lower	Upper		Lower	Upper
O. Reg. 153(511) - Metals & Inor	ganics (Soil)														
Antimony	2435052		<0.8	<0.8	NA	< 0.8	124%	70%	130%	105%	80%	120%	100%	70%	130%
Arsenic	2435052		<1	<1	NA	< 1	113%	70%	130%	102%	80%	120%	105%	70%	130%
Barium	2435052		21.4	20.7	3.3%	< 2.0	107%	70%	130%	100%	80%	120%	104%	70%	130%
Beryllium	2435052		< 0.4	< 0.4	NA	< 0.4	78%	70%	130%	103%	80%	120%	98%	70%	130%
Boron	2435052		<5	<5	NA	< 5	92%	70%	130%	97%	80%	120%	90%	70%	130%
Boron (Hot Water Soluble)	2437654		0.65	0.65	0.0%	< 0.10	99%	60%	140%	97%	70%	130%	105%	60%	140%
Cadmium	2435052		< 0.5	< 0.5	NA	< 0.5	97%	70%	130%	103%	80%	120%	107%	70%	130%
Chromium	2435052		20	23	NA	< 5	101%	70%	130%	110%	80%	120%	113%	70%	130%
Cobalt	2435052		6.8	7.3	7.1%	< 0.5	98%	70%	130%	104%	80%	120%	104%	70%	130%
Copper	2435052		25.0	24.1	3.7%	< 1.0	92%	70%	130%	114%	80%	120%	110%	70%	130%
Lead	2435052		6	6	0.0%	< 1	104%	70%	130%	96%	80%	120%	98%	70%	130%
Molybdenum	2435052		1.7	1.7	NA	< 0.5	111%	70%	130%	112%	80%	120%	114%	70%	130%
Nickel	2435052		10	11	9.5%	< 1	99%	70%	130%	108%	80%	120%	106%	70%	130%
Selenium	2435052		<0.8	<0.8	NA	< 0.8	97%	70%	130%	104%	80%	120%	108%	70%	130%
Silver	2435052		<0.5	<0.5	NA	< 0.5	96%	70%	130%	107%	80%	120%	106%	70%	130%
Thallium	2435052		<0.5	<0.5	NA	< 0.5	104%	70%	130%	103%	80%	120%	104%	70%	130%
Uranium	2435052		< 0.50	< 0.50	NA	< 0.50	106%	70%	130%	101%	80%	120%	105%	70%	130%
Vanadium	2435052		12.2	12.3	0.8%	< 0.4	103%	70%	130%	100%	80%	120%	105%	70%	130%
Zinc	2435052		70	69	1.4%	< 5	101%	70%	130%	112%	80%	120%	112%	70%	130%
Chromium, Hexavalent	2281014		<0.2	<0.2	NA	< 0.2	105%	70%	130%	96%	80%	120%	90%	70%	130%
Cyanide, Free	2433317		<0.040	<0.040	NA	< 0.040	98%	70%	130%	93%	80%	120%	87%	70%	130%
Mercury	2435052		<0.10	< 0.10	NA	< 0.10	133%	70%	130%	100%	80%	120%	99%	70%	130%
Electrical Conductivity (2:1)	2437654		0.851	0.856	0.6%	< 0.005	97%	80%	120%						
Sodium Adsorption Ratio (2:1) (Calc.)	2437654		2.00	1.96	2.0%	NA									
pH, 2:1 CaCl2 Extraction	2443482		7.77	7.75	0.3%	NA	100%	80%	120%						

Comments: NA signifies Not Applicable.

pH duplicates QA acceptance criteria was met relative as stated in Table 5-15 of Analytical Protocol document.

Duplicate NA: results are under 5X the RDL and will not be calculated.

For a mul i-element scan for lab control standards and matrix spikes, up to 10% of analytes may exceed the quoted limits by up to 10% absolute and it is considered acceptable.

QA Violation

CLIENT NAME: TERRAPEX ENVIRONMENTAL LTD

AGAT WORK ORDER: 21T742988
PROJECT: CO810.00

ATTENTION TO: Keith Brown

RPT Date: May 13, 2021			REFEREN	ICE MA	ΓERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Sample Id	Sample Description	Measured		otable iits	Recovery	Lin	ptable nits	Recovery	Lin	ptable nits
			Value	Lower	Upper	,	Lower	Upper	,	Lower	Upper

O. Reg. 153(511) - Metals & Inorganics (Soil)

Mercury MWIII-3 133% 70% 130% 100% 80% 120% 99% 70% 130%

Comments: NA signifies Not Applicable.

pH duplicates QA acceptance criteria was met relative as stated in Table 5-15 of Analytical Protocol document.

Duplicate NA: results are under 5X the RDL and will not be calculated.

For a mul i-element scan for lab control standards and matrix spikes, up to 10% of analytes may exceed the quoted limits by up to 10% absolute and it is considered acceptable.

Time Markers

AGAT WORK ORDER: 21T742988

PROJECT: CO810.00

ATTENTION TO: Keith Brown

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aga labs.com

CLIENT NAME: TERRAPEX ENVIRONMENTAL LTD

Sample ID	Sample Description	Sample Type	Date Sampled	Date Received
2432337	MWIII-3	Soil	22-APR-2021	06-MAY-2021

O. Reg. 153(511) - Metals & Inorganics (Soil)

orriogreeo(err) metale a mergames (een)			
Parameter	Date Prepared	Date Analyzed	Initials
Antimony	10-MAY-2021	10-MAY-2021	SE
Arsenic	10-MAY-2021	10-MAY-2021	SE
Barium	10-MAY-2021	10-MAY-2021	SE
Beryllium	10-MAY-2021	10-MAY-2021	SE
Boron	10-MAY-2021	10-MAY-2021	SE
Boron (Hot Water Soluble)	10-MAY-2021	10-MAY-2021	ZK
Cadmium	10-MAY-2021	10-MAY-2021	SE
Chromium	10-MAY-2021	10-MAY-2021	SE
Cobalt	10-MAY-2021	10-MAY-2021	SE
Copper	10-MAY-2021	10-MAY-2021	SE
Lead	10-MAY-2021	10-MAY-2021	SE
Molybdenum	10-MAY-2021	10-MAY-2021	SE
Nickel	10-MAY-2021	10-MAY-2021	SE
Selenium	10-MAY-2021	10-MAY-2021	SE
Silver	10-MAY-2021	10-MAY-2021	SE
Thallium	10-MAY-2021	10-MAY-2021	SE
Uranium	10-MAY-2021	10-MAY-2021	SE
Vanadium	10-MAY-2021	10-MAY-2021	SE
Zinc	10-MAY-2021	10-MAY-2021	SE
Chromium, Hexavalent	07-MAY-2021	07-MAY-2021	XL
Cyanide, Free	13-MAY-2021	13-MAY-2021	BG
Mercury	10-MAY-2021	10-MAY-2021	SE
Electrical Conductivity (2:1)	10-MAY-2021	10-MAY-2021	MM
Sodium Adsorption Ratio (2:1) (Calc.)	10-MAY-2021	10-MAY-2021	XH
pH, 2:1 CaCl2 Extraction	12-MAY-2021	12-MAY-2021	MM

Method Summary

CLIENT NAME: TERRAPEX ENVIRONMENTAL LTD AGAT WORK ORDER: 21T742988 PROJECT: CO810.00 ATTENTION TO: Keith Brown

SAMPLING SITE: SAMPLED BY:

SAMPLING SITE.		SAMPLED BT.	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Soil Analysis			
Antimony	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Arsenic	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Barium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Beryllium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Boron	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Boron (Hot Water Soluble)	MET-93-6104	modified from EPA 6010D and MSA PART 3, CH 21	ICP/OES
Cadmium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Chromium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Cobalt	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Copper	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Lead	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Molybdenum	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Nickel	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Selenium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Silver	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Thallium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Uranium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Vanadium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Zinc	MET 93 -6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Chromium, Hexavalent	INOR-93-6068	modified from EPA 3060 and EPA 7196	SPECTROPHOTOMETER
Cyanide, Free	INOR-93-6052	modified from ON MOECC E3015, SM 4500-CN- I, G-387 $$	TECHNICON AUTO ANALYZER
Mercury	MET-93-6103	modified from EPA 7471B and SM 3112 B	ICP-MS
Electrical Conductivity (2:1)	INOR-93-6036	modified from MSA PART 3, CH 14 and SM 2510 B	EC METER
Sodium Adsorption Ratio (2:1) (Calc.)	INOR-93-6007	modified from EPA 6010D & Analytical Protocol	ICP/OES
pH, 2:1 CaCl2 Extraction	INOR-93-6031	modified from EPA 9045D and MCKEAGUE 3.11	PH METER

(ACT Laboratories

5835 Coopers Avenue

Laboratory Use Only

Cooler Quantity:

Work Order #: 217742988 -

Mississauga, Ontario L4Z 1Y2 Ph: 905.712.5100 Fax: 905.712.5122 webearth.agatlabs.com

Chain of Custody Record If this is a D	rinking Water sample, please t	use Drinking Water Chain of Custody Form (po	otable water intended for human consumption)	Arrival Temperatures:	3,53.43.4
Report Information: Company: Terrapex Environmental Ltd.		(Please check all applicable boxes)	☐ No Regulatory Requirement	Custody Seal Intact:	DINES ONO ON/A
Contact: Crack Beaton Kerth Oraul	745-0796	Regulation 153/04 Sewer Table Supplement One Sewer Ind/Com Sees/Park Storm Agriculture Soil Texture (check one) Coarse Prine	Prov. Water Quality Objectives (PWQO)	Regular TAT Rush TAT (Rush Surchar) 3 Business Days	2 Business Days 1 Business Day
Project Information: Project: COSTO	t, ortows, on	is this submission for a Record of Site Condition? Yes No	Report Guideline on Certificate of Analysis Yes No	Please prov	ired (Rush Surcharges May Apply): Ide prior notification for rush TAT e of weekends and statutory holidays
Please note: If quotation number is not provided, client will be	I To Same: Yes □ No □	Activity Assessement (circle one) DA1 [1] A2 DAR DAV Remediation (circle one) DRE DRAD RID RA Contaminant Management (circle one) DM DMW DMV	Field Filtered - Metals, Hg, CrVI Metals and Inorganics All Metals and Inorganics All Metals 153 Metals (Inct. Hydrides) 20	1MO ₂ LNO ₃ +NO ₃ : ELVOC DETEX DTHIM - F4 Total DAroclors	Organochlorine Pesticides TCLP: ☐ M&I ☐ VOCS ☐ ABNS ☐ Biejp ☐ PCBs Sewer Lise Potentially Hazardous or Hign Concentration (Y/N)
Sample Identification Date Sampled	Time # of Sam Sampled Containers Mat		Metals and Metals and All wetals Close Corol Eco Corol Corol Corol Eco Del Close Full Metals Regulation/	UNO3, □NO3, UNO3,	Organoc TCLP: Ch. Sewer Us
mw111-3 Perzz 8	3:10 P1 s		NX	3	
Samples Heinquished By Chat Name and Sign);	Date Time	Samples Heatined by (Print Name and Sign):	Date	Time	
Samples Relinquished By (Print Name and Sign): Samples Relinquished By (Print Name and Sign):	Date V Inne	Samples Macrowd B. Perul Name and Signi- Samulas Sepanari Me (App Samo and Signi- Samples (increwel H. Levie Name and Signi-	8 May 6 121	1915 an	Page of

CLIENT NAME: TERRAPEX ENVIRONMENTAL LTD 20 GURDWARA ROAD, UNIT 1 OTTAWA, ON K2E 8B3 (613) 745-6471

ATTENTION TO: Keith Brown

PROJECT: CO810.00 AGAT WORK ORDER: 21Z737993

SOIL ANALYSIS REVIEWED BY: Jacky Zhu, Spectroscopy Technician TRACE ORGANICS REVIEWED BY: Neli Popnikolova, Senior Chemist

DATE REPORTED: May 28, 2021

PAGES (INCLUDING COVER): 33 VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

Notes	

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days after receipt unless a Long Term Storage Agreement is signed and returned. Some specialty analysis may
 be exempt, please contact your Client Project Manager for details.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other
 third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the
 services.
- This Certificate shall not be reproduced except in full, wi hout the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
 contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.

AGAT Laboratories (V1)

Page 1 of 33

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)

Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in his report may not necessarily be included in the scope of accredita ion. Measurement Uncertainty is not taken into consideration when sta ing conformity with a specified requirement.

SAMPLING SITE:

Certificate of Analysis

AGAT WORK ORDER: 21Z737993

PROJECT: CO810.00

ATTENTION TO: Keith Brown

SAMPLED BY:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aga labs.com

O. Reg. 153(511) - Metals & Inorganics (Soil)

DATE RECEIVED: 2021-04-23								Γ	DATE REPORTI	ED: 2021-05-28	
			PLE TYPE:	BH102-1 Soil	BH103-1 Soil	MW104-1 Soil	MW105-1 Soil	BH107-3 Soil	BH108-1 Soil	BH110-1 Soil	MW111-1 Soil
_			SAMPLED:	2021-04-19 08:45	2021-04-19 11:00	2021-04-19 12:15	2021-04-19 14:00	2021-04-20 15:00	2021-04-21 08:00	2021-04-21 14:00	2021-04-22 08:00
Parameter	Unit	G/S	RDL	2386583	2386585	2386589	2386590	2386593	2386594	2386598	2386599
Antimony	μg/g	7.5	0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8
Arsenic	μg/g	18	1	1	3	3	3	3	4	3	3
Barium	μg/g	390	2.0	47.3	153	256	190	41.5	162	193	403
Beryllium	μg/g	5	0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4
Boron	μg/g	120	5	<5	8	11	7	7	11	12	14
Boron (Hot Water Soluble)	μg/g	1.5	0.10	0.24	0.38	0.56	0.31	0.13	0.33	0.38	0.61
Cadmium	μg/g	1.2	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Chromium	μg/g	160	5	13	10	10	10	11	17	23	11
Cobalt	μg/g	22	0.5	3.5	5.1	5.1	4.6	5.4	7.1	7.8	4.5
Copper	μg/g	180	1.0	6.5	9.7	7.4	9.3	14.0	11.9	14.2	5.1
Lead	μg/g	120	1	8	8	10	7	5	13	43	9
Molybdenum	μg/g	6.9	0.5	<0.5	1.2	1.7	0.9	0.5	3.2	1.7	1.0
Nickel	μg/g	130	1	6	11	11	9	11	14	18	10
Selenium	μg/g	2.4	0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8
Silver	μg/g	25	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Thallium	μg/g	1	0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	< 0.5
Uranium	μg/g	23	0.50	0.54	< 0.50	< 0.50	< 0.50	0.55	0.61	< 0.50	< 0.50
Vanadium	μg/g	86	0.4	24.3	13.5	10.1	17.0	19.0	23.9	34.5	10.3
Zinc	μg/g	340	5	33	18	14	23	25	33	52	11
Chromium, Hexavalent	μg/g	10	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Cyanide, Free	μg/g	0.051	0.040	< 0.040	< 0.040	< 0.040	< 0.040	<0.040	< 0.040	< 0.040	< 0.040
Mercury	μg/g	1.8	0.10	0.12	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Electrical Conductivity (2:1)	mS/cm	0.7	0.005	0.243	1.72	2.65	1.53	0.132	1.28	1.12	0.710
Sodium Adsorption Ratio (2:1) (Calc.)	N/A	5	N/A	2.07	0.478	0.834	1.73	1.39	15.2	10.9	0.594
pH, 2:1 CaCl2 Extraction	pH Units	5.0-9.0	NA	7.74	7.67	7.76	7.95	7.88	8.22	7.90	7.87

Certificate of Analysis

AGAT WORK ORDER: 21Z737993

PROJECT: CO810.00

ATTENTION TO: Keith Brown

SAMPLED BY:

O. Reg. 153(511) - Metals & Inorganics (Soil)

DATE RECEIVED: 2021-04-23 **DATE REPORTED: 2021-05-28**

RDL - Reported Detection Limit: G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Soil -Comments: Residential/Parkland/Institutional Property Use - Medium and Fine Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

2386583-2386599 EC was determined on the DI water extract obtained from the 2:1 leaching procedure (2 parts DI water:1 part soil). pH was determined on the 0.01M CaCl2 extract prepared at 2:1 ratio. SAR is a calculated

parameter.

SAMPLING SITE:

Analysis perfored at AGAT Toronto (unless marked by *)

Certified By:

5835 COOPERS AVENUE

MISSISSAUGA, ONTARIO CANADA L4Z 1Y2

http://www.aga labs.com

TEL (905)712-5100 FAX (905)712-5122

Certificate of Analysis

AGAT WORK ORDER: 21Z737993

PROJECT: CO810.00

MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aga labs.com

5835 COOPERS AVENUE

ATTENTION TO: Keith Brown

SAMPLING SITE:	NG SITE: SAMPLED BY:											
					Moistu	ire						
DATE RECEIVED: 2021-04-23		DATE REPORTED: 2021-0										
		SAMPLE DESC	CRIPTION:	BH101-3	BH101-13	BH102-4	BH103-4	MW104-2	MW105-5	BH108-3	BH108-13	
		SAMF	PLE TYPE:	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	
		DATE S	SAMPLED:	2021-04-19 08:00	2021-04-19 08:00	2021-04-19 09:00	2021-04-19 11:30	2021-04-19 12:30	2021-04-19 14:30	2021-04-21 08:30	2021-04-21 08:30	
Parameter	Unit	G/S	RDL	2386581	2386582	2386584	2386587	2386588	2386591	2386595	2386596	
% Moisture	%		1	19	23	23	11	14	8	9	12	
Parameter	Unit	_	CRIPTION: PLE TYPE: SAMPLED:	MW109-1 Soil 2021-04-21 13:10 2386597	MW111-5 Soil 2021-04-22 08:15 2386600							
Parameter % Moisture	Unit %	G/S	1 HDL	18	13							
/o Iviolaturo	/0			10	10							

RDL - Reported Detection Limit; G / S - Guideline / Standard Comments:

Analysis perfomed at AGAT Halifax (unless marked by *)

Certificate of Analysis

AGAT WORK ORDER: 21Z737993

PROJECT: CO810.00

ATTENTION TO: Keith Brown

SAMPLED BY:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aga labs.com

SAMPLING SITE:

				O. Re	g. 153(511)	- PAHs (So	il)			
DATE RECEIVED: 2021-04-23]	DATE REPORTED	D: 2021-05-28
		SAMPLE DESC	CRIPTION:	BH101-1	BH103-1	MW105-1	BH108-1	BH110-1	MW111-1	
		SAMF	PLE TYPE:	Soil	Soil	Soil	Soil	Soil	Soil	
		DATE S	SAMPLED:	2021-04-19 07:30	2021-04-19 11:00	2021-04-19 14:00	2021-04-21 08:00	2021-04-21 14:00	2021-04-22 08:00	
Parameter	Unit	G/S	RDL	2386578	2386585	2386590	2386594	2386598	2386599	
Naphthalene	μg/g	0.75	0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Acenaphthylene	μg/g	0.17	0.05	< 0.05	<0.05	< 0.05	< 0.05	<0.05	<0.05	
Acenaphthene	μg/g	58	0.05	< 0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	
Fluorene	μg/g	69	0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Phenanthrene	μg/g	7.8	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	
Anthracene	μg/g	0.74	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	
Fluoranthene	μg/g	0.69	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	
Pyrene	μg/g	78	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	
Benz(a)anthracene	μg/g	0.63	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	
Chrysene	μg/g	7.8	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	
Benzo(b)fluoranthene	μg/g	0.78	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	
Benzo(k)fluoranthene	μg/g	0.78	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	
Benzo(a)pyrene	μg/g	0.3	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	
Indeno(1,2,3-cd)pyrene	μg/g	0.48	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	
Dibenz(a,h)anthracene	μg/g	0.1	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	
Benzo(g,h,i)perylene	μg/g	7.8	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	
1 and 2 Methlynaphthalene	μg/g	3.4	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	
Moisture Content	%		0.1	2.4	8.6	4.1	2.8	26.8	3.7	
Surrogate	Unit	Acceptabl	e Limits							
Naphthalene-d8	%	50-1	40	109	89	86	80	92	75	
Acenaphthene-d10	%	50-1	40	102	83	80	82	88	75	
Chrysene-d12	%	50-1	40	118	76	74	87	99	81	

Comments:

RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Soil -

Residential/Parkland/Institutional Property Use - Medium and Fine Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

2386578-2386599 Results are based on the dry weight of the soil.

Note: The result for Benzo(b)Fluoranthene is the total of the Benzo(b)&j)Fluoranthene isomers because the isomers co-elute on the GC column.

2- and 1-Methyl Naphthalene is a calculated parameter. The calculated value is the sum of 2-Methyl Naphthalene and 1-Methyl Naphthalene.

Analysis perfomed at AGAT Toronto (unless marked by *)

SAMPLING SITE:

Certificate of Analysis

AGAT WORK ORDER: 21Z737993

PROJECT: CO810.00

ATTENTION TO: Keith Brown

SAMPLED BY:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aga labs.com

O. Reg. 153(511) - PHCs F1 - F4 (Soil) (Toronto)

						[DATE REPORT	ED: 2021-05-28	
	SAMPLE DESCRIPTION:	BH101-3	BH101-13	BH102-4	BH103-4	MW104-2	MW105-5	BH108-3	BH108-13
	SAMPLE TYPE:	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
	DATE SAMPLED:	2021-04-19 08:00	2021-04-19 08:00	2021-04-19 09:00	2021-04-19 11:30	2021-04-19 12:30	2021-04-19 14:30	2021-04-21 08:30	2021-04-21 08:30
Unit	G/S RDL	2386581	2386582	2386584	2386587	2386588	2386591	2386595	2386596
μg/g	0.02	0.03	< 0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
μg/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
μg/g	0.05	0.06	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
μg/g	0.05	0.13	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
μg/g	5	<5	<5	<5	<5	<5	<5	<5	<5
μg/g	5	<5	<5	<5	<5	<5	<5	<5	<5
μg/g	10	<10	<10	<10	<10	<10	<10	<10	<10
μg/g	50	<50	<50	<50	<50	88	<50	<50	<50
μg/g	50	<50	<50	<50	103	122	<50	222	198
μg/g	50	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
		Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ
Unit	Acceptable Limits								
%	50-140	103	100	106	100	92	109	98	98
	на/а на/а на/а на/а на/а на/а на/а на/а	SAMPLE TYPE: DATE SAMPLED: Unit G / S RDL μg/g 0.02 μg/g 0.05 μg/g 0.05 μg/g 5 μg/g 5 μg/g 5 μg/g 50 μg/g 50 μg/g 50 μg/g 50 μg/g 50 μg/g 50 Unit Acceptable Limits	SAMPLE TYPE: Soil DATE SAMPLED: 2021-04-19 08:00 Unit G / S RDL 2386581 µg/g 0.02 0.03 µg/g 0.05 <0.05	SAMPLE TYPE: Soil Soil DATE SAMPLED: 2021-04-19 08:00 2021-04-19 08:00 Unit G / S RDL 2386581 2386582 µg/g 0.02 0.03 <0.02	SAMPLE TYPE: Soil Soil Soil DATE SAMPLED: 2021-04-19 08:00 2021-04-19 08:00 2021-04-19 09:00 Unit G / S RDL 2386581 2386582 2386584 µg/g 0.02 0.03 <0.02	SAMPLE TYPE: Soil Soil Soil Soil DATE SAMPLED: 2021-04-19 08:00 2021-04-19 09:00 2021-04-19 2021-04-19 09:00 2021-04-19 2021-04-19 08:00 Unit G / S RDL 2386581 2386582 2386584 2386587 µg/g 0.02 0.03 <0.02	SAMPLE DESCRIPTION: BH101-3 BH101-13 BH102-4 BH103-4 MW104-2 SAMPLE TYPE: Soil Soil Soil Soil Soil Soil DATE SAMPLED: 2021-04-19 2021-04-19 2021-04-19 2021-04-19 2021-04-19 08:00 08:00 09:00 01:30 11:30 12:30 Unit G / S RDL 2386581 2386582 2386584 2386587 2386588 µg/g 0.02 0.03 <0.02 <0.02 <0.02 <0.02 <0.02 µg/g 0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 µg/g 0.05 0.06 <0.05 <0.05 <0.05 <0.05 <0.05 µg/g 0.05 0.13 <0.05 <0.05 <0.05 <0.05 µg/g 5 <5 <5 <5 <5 µg/g 5 <5 <5 <5 <5 µg/g 50 <50 <50 <50 <50 <50 µg/g 50 <50 <50 <50 <50 <50 µg/g 50 <50 <50 <50 <50 µg/g <50 <50 <50 <50 <50	SAMPLE DESCRIPTION: BH101-3 BH101-13 BH102-4 BH103-4 MW104-2 MW105-5 SAMPLE TYPE: Soil Soil Soil Soil Soil Soil Soil DATE SAMPLED: 2021-04-19 2021-04-19 2021-04-19 2021-04-19 2021-04-19 08:00 08:00 09:00 11:30 12:30 14:30 Unit G / S RDL 2386581 2386582 2386584 2386587 2386588 2386591 µg/g 0.02 0.03 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 µg/g 0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 µg/g 0.05 0.06 <0.05 <0.05 <0.05 <0.05 <0.05 µg/g 0.05 0.13 <0.05 <0.05 <0.05 <0.05 <0.05 µg/g 5 <5 <5 <5 <5 <5 µg/g 5 <5 <5 <5 <5 µg/g 50 <50 <50 <50 <50 <50 <50 µg/g 50 <50 <50 <50 <50 <50 <50 <50 µg/g 50 <50 <50 <50 <50 <50 <50 <50 µg/g 50 <50 <50 <50 <50 <50 <50 <50 µg/g 50 <50 <50 <50 <50 <50 <50 <50 µg/g 50 <50 <50 <50 <50 <50 <50 <50 <50 µg/g 50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 µg/g 50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <	SAMPLE TYPE: Soil Soil

Certified By:

NPoprukolof

SAMPLING SITE:

Certificate of Analysis

AGAT WORK ORDER: 21Z737993

PROJECT: CO810.00

ATTENTION TO: Keith Brown

SAMPLED BY:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aga labs.com

0 Re	a 153(51°) - PHCs F	-1 - F4 (S	oil) (Toron	ıto)
O. 110	- u. 100101	, - i i iOs i	1-14(0		1101

			•	,	
DATE RECEIVED: 2021-04-23					DATE REPORTED: 2021-05-28
	;	SAMPLE DESCRIPTION:	MW109-1	MW111-5	
		SAMPLE TYPE:	Soil	Soil	
		DATE SAMPLED:	2021-04-21 13:10	2021-04-22 08:15	
Parameter	Unit	G/S RDL	2386597	2386600	
Benzene	μg/g	0.02	< 0.02	<0.02	
Toluene	μg/g	0.05	< 0.05	< 0.05	
Ethylbenzene	μg/g	0.05	< 0.05	< 0.05	
Xylenes (Total)	μg/g	0.05	< 0.05	< 0.05	
C6 - C10 (F1)	μg/g	5	<5	<5	
C6 - C10 (F1 minus BTEX)	μg/g	5	<5	<5	
>C10 - C16 (F2)	μg/g	10	<10	<10	
>C16 - C34 (F3)	μg/g	50	64	<50	
>C34 - C50 (F4)	μg/g	50	155	<50	
Gravimetric Heavy Hydrocarbons (F4G)	μg/g	50	N/A	N/A	
Reporting TO - NS			Υ	Υ	
Surrogate	Unit	Acceptable Limits			
o-terphenyl	%	50-140	112	115	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

2386581-2386600 Results are based on sample dry weight.

Xylene(Total)and C6-C10(F1 minus BTEX) are calculated parameters. The calculated parameter is non-accredited. The component parameters of the calculation are accredited.

The C6-C10 fraction is calculated using toluene response factor.

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons > C50 are present.

Total C6 - C50 results are corrected for BTEX contributions.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Fractions 1-4 are quantified with the contribution of PAHs. Under Ontario Regulation 153, results are considered valid without determining the PAH contribution if not requested by the client.

Analysis perfored at AGAT Halifax (unless marked by *)

Certified By:

Exceedance Summary

AGAT WORK ORDER: 21Z737993

PROJECT: CO810.00

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aga labs.com

CLIENT NAME: TERRAPEX ENVIRONMENTAL LTD

ATTENTION TO: Keith Brown

SAMPLEID	SAMPLE TITLE	GUIDELINE	ANALYSIS PACKAGE	PARAMETER	UNIT	GUIDEVALUE	RESULT
2386585	BH103-1	ON T3 S RPI MFT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Electrical Conductivity (2:1)	mS/cm	0.7	1.72
2386589	MW104-1	ON T3 S RPI MFT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Electrical Conductivity (2:1)	mS/cm	0.7	2.65
2386590	MW105-1	ON T3 S RPI MFT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Electrical Conductivity (2:1)	mS/cm	0.7	1.53
2386594	BH108-1	ON T3 S RPI MFT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Electrical Conductivity (2:1)	mS/cm	0.7	1.28
2386594	BH108-1	ON T3 S RPI MFT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Sodium Adsorption Ratio (2:1) (Calc.)	N/A	5	15.2
2386598	BH110-1	ON T3 S RPI MFT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Electrical Conductivity (2:1)	mS/cm	0.7	1.12
2386598	BH110-1	ON T3 S RPI MFT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Sodium Adsorption Ratio (2:1) (Calc.)	N/A	5	10.9
2386599	MW111-1	ON T3 S RPI MFT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Barium	µg/g	390	403
2386599	MW111-1	ON T3 S RPI MFT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Electrical Conductivity (2:1)	mS/cm	0.7	0.710

Quality Assurance

CLIENT NAME: TERRAPEX ENVIRONMENTAL LTD AGAT WORK ORDER: 21Z737993

PROJECT: CO810.00 ATTENTION TO: Keith Brown

SAMPLING SITE: SAMPLED BY:

			Soi	l Ana	alysis	3								
RPT Date: May 28, 2021			DUPLICATI	<u> </u>		REFERE	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable nits	Recovery	Lir	eptable mits	Recovery		ptable nits
	ld ld		'			Value	Lower	Upper	,	Lower	Upper		Lower	Upper
O. Reg. 153(511) - Metals & Inor	rganics (Soil)													
Antimony	2406419	<0.8	<0.8	NA	< 0.8	123%	70%	130%	103%	80%	120%	85%	70%	130%
Arsenic	2406419	2	2	NA	< 1	118%	70%	130%	100%	80%	120%	104%	70%	130%
Barium	2406419	84.1	85.5	1.7%	< 2.0	91%	70%	130%	100%	80%	120%	90%	70%	130%
Beryllium	2406419	<0.4	< 0.4	NA	< 0.4	102%	70%	130%	96%	80%	120%	93%	70%	130%
Boron	2406419	8	8	NA	< 5	88%	70%	130%	108%	80%	120%	98%	70%	130%
Boron (Hot Water Soluble)	2386583 2386583	0.24	0.25	NA	< 0.10	101%	60%	140%	101%	70%	130%	109%	60%	140%
Cadmium	2406419	< 0.5	< 0.5	NA	< 0.5	111%	70%	130%	104%	80%	120%	99%	70%	130%
Chromium	2406419	14	13	NA	< 5	97%	70%	130%	93%	80%	120%	87%	70%	130%
Cobalt	2406419	5.4	5.3	1.9%	< 0.5	103%	70%	130%	94%	80%	120%	93%	70%	130%
Copper	2406419	11.1	11.9	7.0%	< 1.0	87%	70%	130%	94%	80%	120%	83%	70%	130%
Lead	2406419	5	5	0.0%	< 1	100%	70%	130%	95%	80%	120%	85%	70%	130%
Molybdenum	2406419	< 0.5	< 0.5	NA	< 0.5	116%	70%	130%	105%	80%	120%	108%	70%	130%
Nickel	2406419	10	10	0.0%	< 1	105%	70%	130%	98%	80%	120%	93%	70%	130%
Selenium	2406419	<0.8	<0.8	NA	< 0.8	136%	70%	130%	105%	80%	120%	107%	70%	130%
Silver	2406419	<0.5	<0.5	NA	< 0.5	110%	70%	130%	102%	80%	120%	94%	70%	130%
Thallium	2406419	<0.5	<0.5	NA	< 0.5	99%	70%	130%	108%	80%	120%	101%	70%	130%
Uranium	2406419	0.51	< 0.50	NA	< 0.50	101%	70%	130%	96%	80%	120%	92%	70%	130%
Vanadium	2406419	24.4	23.5	3.8%	< 0.4	113%	70%	130%	96%	80%	120%	94%	70%	130%
Zinc	2406419	33	33	0.0%	< 5	105%	70%	130%	104%	80%	120%	95%	70%	130%
Chromium, Hexavalent	2393475	<0.2	<0.2	NA	< 0.2	98%	70%	130%	98%	80%	120%	86%	70%	130%
Cyanide, Free	2386598 2386598	<0.040	<0.040	NA	< 0.040	105%	70%	130%	104%	80%	120%	108%	70%	130%
Mercury	2406419	< 0.10	< 0.10	NA	< 0.10	108%	70%	130%	96%	80%	120%	93%	70%	130%
Electrical Conductivity (2:1)	2386583 2386583	0.243	0.260	6.8%	< 0.005	99%	80%	120%						
Sodium Adsorption Ratio (2:1) (Calc.)	2386583 2386583	2.07	2.02	2.4%	NA									
pH, 2:1 CaCl2 Extraction	2399618	7.47	7.58	1.5%	NA	100%	80%	120%						

Comments: NA signifies Not Applicable.

pH duplicates QA acceptance criteria was met relative as stated in Table 5-15 of Analytical Protocol document.

Duplicate NA: results are under 5X the RDL and will not be calculated.

For a mul i-element scan for lab control standards and matrix spikes, up to 10% of analytes may exceed the quoted limits by up to 10% absolute and it is considered acceptable.

Certified By:

Quality Assurance

CLIENT NAME: TERRAPEX ENVIRONMENTAL LTD AGAT WORK ORDER: 21Z737993 PROJECT: CO810.00 ATTENTION TO: Keith Brown

SAMPLING SITE: SAMPLED BY:

			Trac	e Or	gani	cs Ar	nalys	is							
RPT Date: May 28, 2021				UPLICAT	E		REFERE	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable nits	Recovery	1 :	ptable nits	Recovery		ptable nits
		ld					Value	Lower	Upper	,	Lower	Upper	,	Lower	Upper
O. Reg. 153(511) - PAHs (Soil)		,													
Naphthalene	2387904		< 0.05	< 0.05	NA	< 0.05	115%	50%	140%	105%	50%	140%	78%	50%	140%
Acenaphthylene	2387904		< 0.05	< 0.05	NA	< 0.05	113%	50%	140%	117%	50%	140%	84%	50%	140%
Acenaphthene	2387904		< 0.05	< 0.05	NA	< 0.05	110%	50%	140%	109%	50%	140%	76%	50%	140%
Fluorene	2387904		< 0.05	< 0.05	NA	< 0.05	113%	50%	140%	117%	50%	140%	85%	50%	140%
Phenanthrene	2387904		< 0.05	< 0.05	NA	< 0.05	95%	50%	140%	90%	50%	140%	84%	50%	140%
Anthracene	2387904		< 0.05	< 0.05	NA	< 0.05	108%	50%	140%	106%	50%	140%	75%	50%	140%
Fluoranthene	2387904		< 0.05	< 0.05	NA	< 0.05	80%	50%	140%	75%	50%	140%	89%	50%	140%
Pyrene	2387904		< 0.05	< 0.05	NA	< 0.05	73%	50%	140%	69%	50%	140%	86%	50%	140%
Benz(a)anthracene	2387904		< 0.05	< 0.05	NA	< 0.05	93%	50%	140%	91%	50%	140%	85%	50%	140%
Chrysene	2387904		< 0.05	< 0.05	NA	< 0.05	90%	50%	140%	85%	50%	140%	84%	50%	140%
Benzo(b)fluoranthene	2387904		< 0.05	< 0.05	NA	< 0.05	96%	50%	140%	113%	50%	140%	86%	50%	140%
Benzo(k)fluoranthene	2387904		< 0.05	< 0.05	NA	< 0.05	82%	50%	140%	98%	50%	140%	85%	50%	140%
Benzo(a)pyrene	2387904		< 0.05	< 0.05	NA	< 0.05	85%	50%	140%	105%	50%	140%	84%	50%	140%
Indeno(1,2,3-cd)pyrene	2387904		< 0.05	< 0.05	NA	< 0.05	64%	50%	140%	75%	50%	140%	78%	50%	140%
Dibenz(a,h)anthracene	2387904		< 0.05	< 0.05	NA	< 0.05	64%	50%	140%	80%	50%	140%	89%	50%	140%
Benzo(g,h,i)perylene	2387904		< 0.05	< 0.05	NA	< 0.05	72%	50%	140%	87%	50%	140%	86%	50%	140%

Comments: When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

O. Reg. 153(511) - PHCs F1 - F4 (Sc	oil) (To	ronto)
Renzene	1	2389

	()(-	,													
Benzene	1	2389990	< 0.02	< 0.02	NA	< 0.02	104%	60%	140%	97%	60%	140%			
Toluene	1	2389990	< 0.05	< 0.05	NA	< 0.05	103%	60%	140%	85%	60%	140%			
Ethylbenzene	1	2389990	< 0.05	< 0.05	NA	< 0.05	107%	60%	140%	88%	60%	140%			
Xylenes (Total)	1	2389990	< 0.05	< 0.05	NA	< 0.05	108%	60%	140%	96%	60%	140%			
C6 - C10 (F1 minus BTEX)	1	2389990	< 5	< 5	NA	< 5	109%	60%	140%	113%	60%	140%	93%	60%	140%
>C10 - C16 (F2)	1	2392444	< 10	< 10	NA	< 10	98%	60%	140%	103%	60%	140%	106%	60%	140%
>C16 - C34 (F3)	1	2392444	< 50	< 50	NA	< 50	95%	60%	140%	103%	60%	140%	106%	60%	140%
>C34 - C50 (F4)	1	2392444	< 50	< 50	NA	< 50	91%	60%	140%	103%	60%	140%	106%	60%	140%

Comments: If Matrix spike value is NA, the spiked analyte concentration was lower than that of the matrix contribution. If RPD value is NA, the results of the duplicates are less than 5x the RDL and the RPD will not be calculated.

O. Reg. 153(511	- PHCs F1 - F4	(Soil) (Toronto)
-----------------	----------------	------------------

Benzene	1	2392379	< 0.02	< 0.02	0	< 0.02	87%	60%	140%	134%	60%	140%				
Toluene	1	2392379	<0.08	<0.08	0	< 0.05	88%	60%	140%	104%	60%	140%				
Ethylbenzene	1	2392379	< 0.05	< 0.05	0	< 0.05	97%	60%	140%	105%	60%	140%				
Xylenes (Total)	1	2392379	< 0.05	< 0.05	0	< 0.05	96%	60%	140%	112%	60%	140%				
C6 - C10 (F1)	1	2392379	<5	<5	0	< 5		60%	140%		60%	140%		60%	140%	
C6 - C10 (F1 minus BTEX)	1	2392379	<5	<5	0	< 5	93%	60%	140%	126%	60%	140%	77%	60%	140%	

AGAT QUALITY ASSURANCE REPORT (V1)

Page 10 of 33

Quality Assurance

CLIENT NAME: TERRAPEX ENVIRONMENTAL LTD

AGAT WORK ORDER: 21Z737993

PROJECT: CO810.00

ATTENTION TO: Keith Brown

SAMPLING SITE: SAMPLED BY:

Trace Organics Analysis (Continued)														
RPT Date: May 28, 2021			С	UPLICAT	E		REFEREN	NCE MATERIA	L METHOD	BLANK	SPIKE	MAT	RIX SPII	KE
PARAMETER	Batch Sample		Dup #1 Dup		RPD	Method Blank	Measured	Acceptable Limits	Recovery	Acceptabl Limits		Recovery	Acceptable Limits	
		ld	- 1	- 1			Value	Lower Uppe	r	Lower	Upper	,	Lower	Upper

Comments: If Matrix spike value is NA, the spiked analyte concentration was lower than that of the matrix contribution. If RPD value is NA, the results of the duplicates are less than 5x the RDL and the RPD will not be calculated.

Certified By:

QA Violation

CLIENT NAME: TERRAPEX ENVIRONMENTAL LTD

AGAT WORK ORDER: 21Z737993

PROJECT: CO810.00

ATTENTION TO: Keith Brown

RPT Date: May 28, 2021			REFEREN	ICE MAT	ERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Sample Id	Sample Description	Measured	Accep Limi	ite	Recovery	Lin	ptable nits	Recovery	Lin	ptable nits
			Value	Lower		,		Upper	,		Upper

O. Reg. 153(511) - Metals & Inorganics (Soil)

Selenium BH102-1 136% 70% 130% 105% 80% 120% 107% 70% 130%

Comments: NA signifies Not Applicable.

pH duplicates QA acceptance criteria was met relative as stated in Table 5-15 of Analytical Protocol document.

Duplicate NA: results are under 5X the RDL and will not be calculated.

For a mul i-element scan for lab control standards and matrix spikes, up to 10% of analytes may exceed the quoted limits by up to 10% absolute and it is considered acceptable.

AGAT WORK ORDER: 21Z737993

PROJECT: CO810.00

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aga labs.com

CLIENT NAM	ME: TERRAPEX ENVIRONMENTAL LTD				
Sample ID	Sample Description	Sample Type	Date	Sampled	Date Received
2386578	BH101-1	Soil	19-A	PR-2021	23-APR-2021
	O. Reg. 153(511) - PAHs (Soil)				
	Parameter	Date Pre	pared	Date Analyze	d Initials
	Naphthalene	01-MAY	-2021	01-MAY-202	l NS
	Acenaphthylene	01-MAY		01-MAY-202	
	Acenaphthene	01-MAY		01-MAY-202	
	Fluorene	01-MAY	-2021	01-MAY-202	
	Phenanthrene	01-MAY		01-MAY-202	
	Anthracene	01-MAY		01-MAY-202	
	Fluoranthene	01-MAY	-2021	01-MAY-202	l NS
	Pyrene	01-MAY		01-MAY-202	
	Benz(a)anthracene	01-MAY		01-MAY-202	
	Chrysene	01-MAY		01-MAY-202	
	Benzo(b)fluoranthene	01-MAY		01-MAY-202	
	Benzo(k)fluoranthene	01-MAY		01-MAY-202	
	Benzo(a)pyrene	01-MAY		01-MAY-202	
	Indeno(1,2,3-cd)pyrene	01-MAY		01-MAY-202	
	Dibenz(a,h)anthracene	01-MAY	-2021	01-MAY-202	l NS
	Benzo(g,h,i)perylene	01-MAY		01-MAY-202	
	1 and 2 Methlynaphthalene	01-MAY		01-MAY-202	
	Naphthalene-d8	01-MAY		01-MAY-202	
	Acenaphthene-d10	01-MAY		01-MAY-202	
	Chrysene-d12	01-MAY		01-MAY-202	
	Moisture Content	28-APR-		28-APR-2021	
2386581	BH101-3	Soil	19-A	PR-2021	23-APR-2021
2300301	B11101-3	3011	13-A	111-2021	25-AT 11-2021
	Moisture				
	Parameter	Date Pre	pared	Date Analyze	d Initials
	% Moisture	28-APR-	-2021	28-APR-2021	DM
	O. Reg. 153(511) - PHCs F1 - F4 (Soil) (Toronto	0)			
	Parameter	Date Pre	pared	Date Analyze	d Initials
	Benzene	29-APR-	-2021	30-APR-2021	Al
	Toluene	29-APR-	-2021	30-APR-2021	Al
	Ethylbenzene	29-APR-	-2021	30-APR-2021	
	Xylenes (Total)	29-APR-		30-APR-2021	
	C6 - C10 (F1)	29-APR-		30-APR-2021	
	C6 - C10 (F1 minus BTEX)	29-APR-		30-APR-2021	
	>C10 - C16 (F2)	29-APR-		29-APR-2021	
	010 004 (F0)	00 ADD		00 ADD 0001	WD

>C16 - C34 (F3)

>C34 - C50 (F4)

WR

WR

29-APR-2021

29-APR-2021

29-APR-2021

29-APR-2021

AGAT WORK ORDER: 21Z737993

PROJECT: CO810.00

ATTENTION TO: Keith Brown

CLIENT NAM	ME: TERRAPEX ENVIRONMENTAL LTD		- 11100201.0		ATTENTIO			
Sample ID	Sample Description	Sample Type	Date Sampled	Date Received				
2386581	BH101-3	Soil	19-APR-2021	23-APR-2021				
	O. Reg. 153(511) - PHCs F1 - F4 (Soil) (Toron	•						
	Parameter	Date Pre						
	Gravimetric Heavy Hydrocarbons (F4G)	29-APR-						
	o-terphenyl	29-APR-						
	Reporting TO - NS	03-MAY	-2021	AH				
2386582	BH101-13	Soil	19-APR-2021	23-APR-2021				
	Moisture							
	Parameter	Date Pre	pared Date Analy	zed Initials				
	% Moisture	28-APR-	2021 28-APR-2	D21 DM				
	O. Reg. 153(511) - PHCs F1 - F4 (Soil) (Toror Parameter	nto) Date Pre	pared Date Analy	zed Initials				
	Benzene	29-APR-	2021 30-APR-2	021 AI				
	Toluene	29-APR-	2021 30-APR-2	021 AI				
	Ethylbenzene	29-APR-	2021 30-APR-2	021 AI				
	Xylenes (Total)	29-APR-	2021 30-APR-2	021 AI				
	C6 - C10 (F1)	29-APR-	2021 30-APR-2	021 AI				
	C6 - C10 (F1 minus BTEX)	29-APR-	2021 30-APR-2	021 AI				
	>C10 - C16 (F2)	29-APR-	2021 29-APR-2	021 WR				
	>C16 - C34 (F3)	29-APR-	2021 29-APR-2	021 WR				
	>C34 - C50 (F4)	29-APR-	2021 29-APR-2	021 WR				
	Gravimetric Heavy Hydrocarbons (F4G)	29-APR-	2021 29-APR-2	021 WR				
	o-terphenyl	29-APR-	2021 29-APR-2	021 WR				
	Reporting TO - NS	03-MAY	-2021	AH				
2386583	BH102-1	Soil	19-APR-2021	23-APR-2021				
	O. Reg. 153(511) - Metals & Inorganics (Soil)							
	Parameter	Date Pre						
	Antimony	03-MAY						
	Arsenic	03-MAY						
	Barium	03-MAY						
	Beryllium	03-MAY						
	Boron	03-MAY						
	Boron (Hot Water Soluble)	03-MAY						
	Cadmium	03-MAY						
	Chromium	03-MAY						
	Cobalt	03-MAY	-2021 03-MAY-2	021 SE				

Time Markers

AGAT WORK ORDER: 21Z737993

PROJECT: CO810.00

ATTENTION TO: Keith Brown

Sample ID	Sample Description	Sample Type	Date	Sampled	Date Received
2386583	BH102-1	Soil	19- <i>F</i>	APR-2021	23-APR-2021
	O. Reg. 153(511) - Metals & Inorganics (Soil)				
	Parameter	Date Pre	pared	Date Analyze	d Initials
	Copper	03-MAY-		03-MAY-202	
	Lead	03-MAY-	-	03-MAY-202	_
	Molybdenum	03-MAY-		03-MAY-202	
	Nickel	03-MAY-		03-MAY-202	
	Selenium	03-MAY-		03-MAY-202	
	Silver	03-MAY-		03-MAY-202	
	Thallium	03-MAY-		03-MAY-202	
	Uranium	03-MAY-		03-MAY-202	
	Vanadium	03-MAY-		03-MAY-202	
	Zinc	03-MAY-	2021	03-MAY-202	1 SE
	Chromium, Hexavalent				
	Cyanide, Free	03-MAY-	2021	03-MAY-202	1 BG
	Mercury	03-MAY-	2021	03-MAY-202	1 SE
	Electrical Conductivity (2:1)	03-MAY-	2021	03-MAY-202	1 MM
	Sodium Adsorption Ratio (2:1) (Calc.)	03-MAY-	2021	03-MAY-202	1 XH
	pH, 2:1 CaCl2 Extraction	03-MAY-	2021	03-MAY-202	1 MM
2386584	BH102-4	Soil	19- <i>A</i>	APR-2021	23-APR-2021
	Moisture				
	Parameter	Date Pre	nared	Date Analyze	d Initials
	% Moisture	28-APR-		28-APR-2021	
	O. Reg. 153(511) - PHCs F1 - F4 (Soil) (Toronto	١			
	Parameter	Date Pre	pared	Date Analyze	d Initials
	Benzene	29-APR-	2021	30-APR-2021	Al
	Toluene	29-APR-	2021	30-APR-2021	l Al
	Ethylbenzene	29-APR-	2021	30-APR-2021	Al
	Xylenes (Total)	29-APR-	2021	30-APR-2021	l Al
	C6 - C10 (F1)	29-APR-	2021	30-APR-2021	Al
	C6 - C10 (F1 minus BTEX)	29-APR-	2021	30-APR-2021	l Al
	>C10 - C16 (F2)	29-APR-	2021	29-APR-2021	WR
	>C16 - C34 (F3)	29-APR-	2021	29-APR-2021	l WR
	>C34 - C50 (F4)	29-APR-	2021	29-APR-2021	WR
	Gravimetric Heavy Hydrocarbons (F4G)	29-APR-	2021	29-APR-2021	l WR
	o-terphenyl	29-APR-	2021	29-APR-2021	WR
	Reporting TO - NS	03-MAY-	2021		AH

Time Markers

AGAT WORK ORDER: 21Z737993

PROJECT: CO810.00

ATTENTION TO: Keith Brown

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aga labs.com

Sample ID	Sample Description	Sample Type	Date Sampled	Date Receive
2386585	BH103-1	Soil	19-APR-2021	23-APR-202
	O. Reg. 153(511) - Metals & Inorganics (Soil)			
	Parameter	Date Prepai	red Date Analyz	ed Initials
	Antimony	03-MAY-20	21 03-MAY-202	21 SE
	Arsenic	03-MAY-20	21 03-MAY-202	21 SE
	Barium	03-MAY-20	21 03-MAY-202	21 SE
	Beryllium	03-MAY-20	21 03-MAY-202	21 SE
	Boron	03-MAY-20	21 03-MAY-202	21 SE
	Boron (Hot Water Soluble)	03-MAY-20	21 03-MAY-202	21 ZK
	Cadmium	03-MAY-20	21 03-MAY-202	21 SE
	Chromium	03-MAY-20	21 03-MAY-202	21 SE
	Cobalt	03-MAY-20	21 03-MAY-202	21 SE
	Copper	03-MAY-20	21 03-MAY-202	21 SE
	Lead	03-MAY-20	21 03-MAY-202	21 SE
	Molybdenum	03-MAY-20	21 03-MAY-202	21 SE
	Nickel	03-MAY-20	21 03-MAY-202	21 SE
	Selenium	03-MAY-20	21 03-MAY-202	21 SE
	Silver	03-MAY-20	21 03-MAY-202	21 SE
	Thallium	03-MAY-20	21 03-MAY-202	21 SE
	Uranium	03-MAY-20	21 03-MAY-202	21 SE
	Vanadium	03-MAY-20	21 03-MAY-202	21 SE
	Zinc	03-MAY-20	21 03-MAY-202	21 SE
	Chromium, Hexavalent			
	Cyanide, Free	03-MAY-20	21 03-MAY-202	21 BG
	Mercury	03-MAY-20	21 03-MAY-202	21 SE
	Electrical Conductivity (2:1)	03-MAY-20	21 03-MAY-202	21 MM
	Sodium Adsorption Ratio (2:1) (Calc.)	03-MAY-20	21 03-MAY-202	21 XH
	pH, 2:1 CaCl2 Extraction	03-MAY-20	21 03-MAY-202	21 MM
	O. Reg. 153(511) - PAHs (Soil)			
	Parameter	Date Prepai	red Date Analyz	ed Initials
	Naphthalene	01-MAY-20	21 01-MAY-202	21 NS
	Acenaphthylene	01-MAY-20	21 01-MAY-202	21 NS
	Acenaphthene	01-MAY-20	21 01-MAY-202	21 NS
	Fluorene	01-MAY-20	21 01-MAY-202	21 NS
	Phenanthrene	01-MAY-20	21 01-MAY-202	21 NS
	Anthracene	01-MAY-20	21 01-MAY-202	21 NS
	Fluoranthene	01-MAY-20	21 01-MAY-202	21 NS
	Pyrene	01-MAY-20	21 01-MAY-202	21 NS
	Benz(a)anthracene	01-MAY-20	21 01-MAY-202	21 NS

Chrysene

Benzo(b)fluoranthene

NS

NS

01-MAY-2021

01-MAY-2021

01-MAY-2021

01-MAY-2021

Time Markers

AGAT WORK ORDER: 21Z737993

PROJECT: CO810.00

ATTENTION TO: Keith Brown

Sample ID	Sample Description	Sample Type	Date Sampled	Date Received
2386585	BH103-1	Soil	19-APR-2021	23-APR-2021
	O. Reg. 153(511) - PAHs (Soil)			
	Parameter	Date Prepa	red Date Analyze	ed Initials
	Benzo(k)fluoranthene	01-MAY-20	01-MAY-202	1 NS
	Benzo(a)pyrene	01-MAY-20	01-MAY-202	1 NS
	Indeno(1,2,3-cd)pyrene	01-MAY-20	01-MAY-202	1 NS
	Dibenz(a,h)anthracene	01-MAY-20	01-MAY-202	1 NS
	Benzo(g,h,i)perylene	01-MAY-20	01-MAY-202	1 NS
	1 and 2 Methlynaphthalene	01-MAY-20	01-MAY-202	1 SYS
	Naphthalene-d8	01-MAY-20	01-MAY-202	1 NS
	Acenaphthene-d10	01-MAY-20	01-MAY-202	1 NS
	Chrysene-d12	01-MAY-20	01-MAY-202	1 NS
	Moisture Content	28-APR-20)21 28-APR-202	1 VB
2386587	BH103-4	Soil	19-APR-2021	23-APR-2021
	2		10 711 11 2021	20 711 11 2021
	Moisture			
	Parameter	Date Prepa	ared Date Analyze	ed Initials
	% Moisture	28-APR-20)21 28-APR-202	1 DM
	O. Reg. 153(511) - PHCs F1 - F4 (Soil) (Toronto	•		
	Parameter	Date Prepa	•	
	Benzene	29-APR-20		
	Toluene	29-APR-20)21 30-APR-202	1 Al
	Ethylbenzene	29-APR-20)21 30-APR-202	1 Al
	Xylenes (Total)	29-APR-20		
	C6 - C10 (F1)	29-APR-20)21 30-APR-202	1 Al
	C6 - C10 (F1 minus BTEX)	29-APR-20)21 30-APR-202	
	>C10 - C16 (F2)	29-APR-20)21 29-APR-202	1 WR
	>C16 - C34 (F3)	29-APR-20)21 29-APR-202	1 WR
	>C34 - C50 (F4)	29-APR-20)21 29-APR-202	1 WR
	Gravimetric Heavy Hydrocarbons (F4G)	29-APR-20)21 29-APR-202	1 WR
	o-terphenyl	29-APR-20	29-APR-202	1 WR
	Reporting TO - NS	03-MAY-20	021	AH
2386588	MW104-2	Soil	19-APR-2021	23-APR-2021
	Moisture	5 . 5		
	Parameter	Date Prepa		
	% Moisture	28-APR-20)21 28-APR-202	1 DM

Time Markers

AGAT WORK ORDER: 21Z737993

PROJECT: CO810.00

ATTENTION TO: Keith Brown

Sample ID	Sample Description	Sample Type	Date S	ampled	Date Received
2386588	MW104-2	Soil	19-AP	R-2021	23-APR-2021
	O. Reg. 153(511) - PHCs F1 - F4 (Soil) (Toron	to)			
	Parameter	Date Pre	pared	Date Analyzed	d Initials
	Benzene	29-APR-	2021	30-APR-2021	Al
	Toluene	29-APR-	2021	30-APR-2021	Al
	Ethylbenzene	29-APR-	2021	30-APR-2021	Al
	Xylenes (Total)	29-APR-	2021	30-APR-2021	Al
	C6 - C10 (F1)	29-APR-	2021	30-APR-2021	Al
	C6 - C10 (F1 minus BTEX)	29-APR-	2021	30-APR-2021	Al
	>C10 - C16 (F2)	29-APR-	2021	29-APR-2021	WR
	>C16 - C34 (F3)	29-APR-	2021	29-APR-2021	WR
	>C34 - C50 (F4)	29-APR-	2021	29-APR-2021	WR
	Gravimetric Heavy Hydrocarbons (F4G)	29-APR-	2021	29-APR-2021	WR
	o-terphenyl	29-APR-	2021	29-APR-2021	WR
	Reporting TO - NS	03-MAY-	-2021		AH
2386589	MW104-1	Soil	19-AP	R-2021	23-APR-2021

O. Reg. 153(511) - Metals & Inorganics (Soil)

Parameter	Date Prepared	Date Analyzed	Initials
Antimony	03-MAY-2021	03-MAY-2021	SE
Arsenic	03-MAY-2021	03-MAY-2021	SE
Barium	03-MAY-2021	03-MAY-2021	SE
Beryllium	03-MAY-2021	03-MAY-2021	SE
Boron	03-MAY-2021	03-MAY-2021	SE
Boron (Hot Water Soluble)	03-MAY-2021	03-MAY-2021	ZK
Cadmium	03-MAY-2021	03-MAY-2021	SE
Chromium	03-MAY-2021	03-MAY-2021	SE
Cobalt	03-MAY-2021	03-MAY-2021	SE
Copper	03-MAY-2021	03-MAY-2021	SE
Lead	03-MAY-2021	03-MAY-2021	SE
Molybdenum	03-MAY-2021	03-MAY-2021	SE
Nickel	03-MAY-2021	03-MAY-2021	SE
Selenium	03-MAY-2021	03-MAY-2021	SE
Silver	03-MAY-2021	03-MAY-2021	SE
Thallium	03-MAY-2021	03-MAY-2021	SE
Uranium	03-MAY-2021	03-MAY-2021	SE
Vanadium	03-MAY-2021	03-MAY-2021	SE
Zinc	03-MAY-2021	03-MAY-2021	SE
Chromium, Hexavalent			
Cyanide, Free	03-MAY-2021	03-MAY-2021	BG
Mercury	03-MAY-2021	03-MAY-2021	SE

AGAT WORK ORDER: 21Z737993

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122

	V V		PROJECT: CO810.00			FAX (905)/12-5122 http://www.aga labs.com	
CLIENT NAM	ME: TERRAPEX ENVIRONMENTAL LTD				ATTENTION TO: Keith Brown		
ample ID	Sample Description	Sample Type	Date Sampled	Date Received			
386589	MW104-1	Soil	19-APR-2021	23-APR-2021			
	O. Reg. 153(511) - Metals & Inorganics (Soil)						
	Parameter	Date Prep	ared Date Ana	lyzed Initials			
	Electrical Conductivity (2:1)	03-MAY-2					
	Sodium Adsorption Ratio (2:1) (Calc.)	03-MAY-2					
	pH, 2:1 CaCl2 Extraction	03-MAY-2					
2386590	MW105-1	Soil	19-APR-2021	23-APR-2021			
	O Dec 159/511) Metals 9 Increasing (Sail)						
	O. Reg. 153(511) - Metals & Inorganics (Soil) Parameter	Date Prep	ared Date Ana	lyzed Initials			
	Antimony	03-MAY-2					
	Arsenic	03-MAY-2					
	Barium	03-MAY-2					
	Beryllium	03-MAY-2					
	Boron	03-MAY-2					
	Boron (Hot Water Soluble)	03-MAY-2					
	Cadmium	03-MAY-2					
	Chromium	03-MAY-2					
	Cobalt	03-MAY-2					
	Copper	03-MAY-2					
	Lead	03-MAY-2					
	Molybdenum	03-MAY-2					
	Nickel	03-MAY-2					
	Selenium	03-MAY-2					
	Silver	03-MAY-2					
	Thallium	03-MAY-2					
	Uranium	03-MAY-2					
	Vanadium	03-MAY-2					
	Zinc	03-MAY-2					
	Chromium, Hexavalent						
	Cyanide, Free	03-MAY-2	021 03-MAY-	2021 BG			
	Mercury	03-MAY-2	021 03-MAY-				
	Electrical Conductivity (2:1)	03-MAY-2	021 03-MAY-	2021 MM			
	Sodium Adsorption Ratio (2:1) (Calc.)	03-MAY-2	021 03-MAY-	2021 XH			
	pH, 2:1 CaCl2 Extraction	03-MAY-2	021 03-MAY-	2021 MM			
	O. Reg. 153(511) - PAHs (Soil)						
	Parameter	Date Prep	ared Date Ana	lyzed Initials			
	Naphthalene	01-MAY-2	021 01-MAY-	2021 NS			

Acenaphthylene

Acenaphthene

NS

NS

01-MAY-2021

01-MAY-2021

01-MAY-2021

01-MAY-2021

AGAT WORK ORDER: 21Z737993

PROJECT: CO810.00

wn

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aga labs.com

CLIENT NAM	ME: TERRAPEX ENVIRONMENTAL LTD				ATTENTION TO: Keith
Sample ID	Sample Description	Sample Type	Date Sampled	Date Received	
2386590	MW105-1	Soil	19-APR-2021	23-APR-2021	
	O. Reg. 153(511) - PAHs (Soil)				
	Parameter	Date Prepar	ed Date Analyz	ed Initials	
	Fluorene	01-MAY-20			
	Phenanthrene	01-MAY-20			
	Anthracene	01-MAY-20			
	Fluoranthene	01-MAY-20			
	Pyrene	01-MAY-20			
	Benz(a)anthracene	01-MAY-20			
	Chrysene	01-MAY-20			
	Benzo(b)fluoranthene	01-MAY-20			
	Benzo(k)fluoranthene	01-MAY-20			
	Benzo(a)pyrene	01-MAY-20			
	Indeno(1,2,3-cd)pyrene	01-MAY-20			
	Dibenz(a,h)anthracene	01-MAY-20			
	Benzo(g,h,i)perylene	01-MAY-20			
	1 and 2 Methlynaphthalene	01-MAY-20			
	Naphthalene-d8	01-MAY-20			
	Acenaphthene-d10	01-MAY-20			
	Chrysene-d12	01-MAY-20			
	Moisture Content	28-APR-202			
2386591	MW105-5	Soil	19-APR-2021	23-APR-2021	
	Moisture				
	Parameter	Date Prepar	ed Date Analyz	ed Initials	
	% Moisture	28-APR-202	21 28-APR-202	21 DM	
	O. Reg. 153(511) - PHCs F1 - F4 (Soil) (Toronto				
	Parameter	Date Prepar	ed Date Analyz	ed Initials	
	Benzene	29-APR-202	21 30-APR-202	21 AI	
	Toluene	29-APR-202			
	Ethylbenzene	29-APR-202			
·	Xylenes (Total)	29-APR-202			
	C6 - C10 (F1)	29-APR-202			
	C6 - C10 (F1 minus BTEX)	29-APR-202			
	>C10 - C16 (F2)	29-APR-202			
	>C16 - C34 (F3)	29-APR-202			
	>C34 - C50 (F4)	29-APR-202			
	Gravimetric Heavy Hydrocarbons (F4G)	29-APR-202			
	o-terphenyl	29-APR-202			
	Demonths TO NO	20 / 11 20		*****	

03-MAY-2021

Reporting TO - NS

AΗ

AGAT WORK ORDER: 21Z737993

PROJECT: CO810.00

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aga labs.com

	ME: TERRAPEX ENVIRONMENTAL LTD	Comple Trees	D - :	Commission of	Data Danitiral	ATTENTION TO: Keith B
Sample ID	Sample Description	Sample Type	Date	Sampled	Date Received	
2386593	BH107-3	Soil	20-/	APR-2021	23-APR-2021	
	O. Barr 450/544). Matala 6 la avenaria (O.:1)					
	O. Reg. 153(511) - Metals & Inorganics (Soil) Parameter	Date Pre	narod	Date Analyzed	d Initials	
		03-MAY		03-MAY-2021		
	Antimony Arsenic	03-MAY		03-MAY-2021		
	Barium	03-MAY		03-MAY-2021		
	Beryllium	03-MAY		03-MAY-2021		
	Boron	03-MAY		03-MAY-2021		
	Boron (Hot Water Soluble)	03-MAY		03-MAY-2021		
	Cadmium	03-MAY		03-MAY-2021		
	Chromium	03-MAY		03-MAY-2021		
	Cobalt	03-MAY		03-MAY-2021		
	Copper	03-MAY		03-MAY-2021		
	Lead	03-MAY		03-MAY-2021		
	Molybdenum	03-MAY		03-MAY-2021		
	Nickel	03-MAY		03-MAY-2021		
	Selenium	03-MAY		03-MAY-2021		
	Silver	03-MAY		03-MAY-2021		
	Thallium	03-MAY		03-MAY-2021		
	Uranium	03-MAY		03-MAY-2021		
	Vanadium	03-MAY		03-MAY-2021		
	Zinc	03-MAY		03-MAY-2021		
	Chromium, Hexavalent					
	Cyanide, Free	03-MAY	-2021	03-MAY-2021	BG	
	Mercury	03-MAY	-2021	03-MAY-2021		
	Electrical Conductivity (2:1)	03-MAY		03-MAY-2021		
	Sodium Adsorption Ratio (2:1) (Calc.)	03-MAY		03-MAY-2021		
	pH, 2:1 CaCl2 Extraction	03-MAY	'-2021	03-MAY-2021	MM	
2386594	BH108-1	Soil	21-/	APR-2021	23-APR-2021	
	O Dec 450/544) Matela a leave 1 (0.10)					
	O. Reg. 153(511) - Metals & Inorganics (Soil)	D-1- D		Data Amala	d (m:sat - 1 -	
	Parameter	Date Pre		Date Analyzed		
	Antimony	03-MAY		03-MAY-2021		
	Arsenic	03-MAY		03-MAY-2021		
	Barium	03-MAY		03-MAY-2021		
	Beryllium	03-MAY		03-MAY-2021		
	Boron	03-MAY		03-MAY-2021		
	Boron (Hot Water Soluble)	03-MAY		03-MAY-2021		
	Cadmium	03-MAY	-2021	03-MAY-2021	SE	

03-MAY-2021

Chromium

SE

03-MAY-2021

Time Markers

AGAT WORK ORDER: 21Z737993

PROJECT: CO810.00

ATTENTION TO: Keith Brown

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aga labs.com

Sample ID	Sample Description	Sample Type	Date Sampled	Date Received
2386594	BH108-1	Soil	21-APR-2021	23-APR-2021

O. Reg. 153(511) - Metals & Inorganics (Soil)			
Parameter	Date Prepared	Date Analyzed	Initials
Cobalt	03-MAY-2021	03-MAY-2021	SE
Copper	03-MAY-2021	03-MAY-2021	SE
Lead	03-MAY-2021	03-MAY-2021	SE
Molybdenum	03-MAY-2021	03-MAY-2021	SE
Nickel	03-MAY-2021	03-MAY-2021	SE
Selenium	03-MAY-2021	03-MAY-2021	SE
Silver	03-MAY-2021	03-MAY-2021	SE
Thallium	03-MAY-2021	03-MAY-2021	SE
Uranium	03-MAY-2021	03-MAY-2021	SE
Vanadium	03-MAY-2021	03-MAY-2021	SE
Zinc	03-MAY-2021	03-MAY-2021	SE
Chromium, Hexavalent			
Cyanide, Free	03-MAY-2021	03-MAY-2021	BG
Mercury	03-MAY-2021	03-MAY-2021	SE
Electrical Conductivity (2:1)	03-MAY-2021	03-MAY-2021	MM
Sodium Adsorption Ratio (2:1) (Calc.)	03-MAY-2021	03-MAY-2021	XH
pH, 2:1 CaCl2 Extraction	03-MAY-2021	03-MAY-2021	MM

O. Reg. 153(511) - PAHs (Soil)

Parameter	Date Prepared	Date Analyzed	Initials
Naphthalene	26-MAY-2021	26-MAY-2021	NS
Acenaphthylene	26-MAY-2021	26-MAY-2021	NS
Acenaphthene	26-MAY-2021	26-MAY-2021	NS
Fluorene	26-MAY-2021	26-MAY-2021	NS
Phenanthrene	26-MAY-2021	26-MAY-2021	NS
Anthracene	26-MAY-2021	26-MAY-2021	NS
Fluoranthene	26-MAY-2021	26-MAY-2021	NS
Pyrene	26-MAY-2021	26-MAY-2021	NS
Benz(a)anthracene	26-MAY-2021	26-MAY-2021	NS
Chrysene	26-MAY-2021	26-MAY-2021	NS
Benzo(b)fluoranthene	26-MAY-2021	26-MAY-2021	NS
Benzo(k)fluoranthene	26-MAY-2021	26-MAY-2021	NS
Benzo(a)pyrene	26-MAY-2021	26-MAY-2021	NS
Indeno(1,2,3-cd)pyrene	26-MAY-2021	26-MAY-2021	NS
Dibenz(a,h)anthracene	26-MAY-2021	26-MAY-2021	NS
Benzo(g,h,i)perylene	26-MAY-2021	26-MAY-2021	NS
1 and 2 Methlynaphthalene	26-MAY-2021	26-MAY-2021	SYS
Naphthalene-d8	26-MAY-2021	26-MAY-2021	NS
Acenaphthene-d10	26-MAY-2021	26-MAY-2021	NS

Time Markers

AGAT WORK ORDER: 21Z737993

PROJECT: CO810.00

ATTENTION TO: Keith Brown

CLILINI INAI	IE. TENNAPEA EINVINONIVIENTAL LID				
Sample ID	Sample Description	Sample Type	Dat	e Sampled	Date Received
2386594	BH108-1	Soil	21-	APR-2021	23-APR-2021
	O. Reg. 153(511) - PAHs (Soil)				
	Parameter	Date Pre	pared	Date Analyze	d Initials
	Chrysene-d12	26-MAY	-2021	26-MAY-202	1 NS
	Moisture Content	21-MAY	-2021	21-MAY-202	1 VB
2386595	BH108-3	Soil	21-	APR-2021	23-APR-2021
	Moisture				
	Parameter	Date Pre	nared	Date Analyze	d Initials
	% Moisture	28-APR	•	28-APR-2021	
	76 INIOISTUTE	20-Ai 11	-2021	20-AI 11-2021	DIVI
	O. Reg. 153(511) - PHCs F1 - F4 (Soil) (Toronto))			
	Parameter	Date Pre	pared	Date Analyze	d Initials
	Benzene	29-APR		30-APR-2021	
	Toluene	29-APR		30-APR-2021	
	Ethylbenzene	29-APR		30-APR-2021	
	Xylenes (Total)	29-APR		30-APR-2021	
	C6 - C10 (F1)	29-APR		30-APR-2021	
	C6 - C10 (F1 minus BTEX)	29-APR		30-APR-2021	
	>C10 - C16 (F2)	29-APR		29-APR-2021	
	>C16 - C34 (F3)	29-APR		29-APR-2021	
	>C34 - C50 (F4)	29-APR		29-APR-2021	
	Gravimetric Heavy Hydrocarbons (F4G)	29-APR		29-APR-2021	
	o-terphenyl	29-APR		29-APR-2021	
	Reporting TO - NS	03-MAY			AH
2386596	BH108-13	Soil	21-	-APR-2021	23-APR-2021
	Moisture	Data Bar		Data Assalassa	al 1-98-1-
	Parameter	Date Pre	•	Date Analyze	-
	% Moisture	28-APR	-2021	28-APR-2021	I DM
	O. Reg. 153(511) - PHCs F1 - F4 (Soil) (Toronto)			
	Parameter	Date Pre	pared	Date Analyze	d Initials
	Benzene	29-APR	-2021	30-APR-2021	l Al
	Toluene	29-APR	-2021	30-APR-2021	
	Ethylbenzene	29-APR		30-APR-2021	
	Xylenes (Total)	29-APR		30-APR-2021	
	C6 - C10 (F1)	29-APR		30-APR-2021	
	C6 - C10 (F1 minus BTEX)	29-APR		30-APR-2021	
	,			_	

Time Markers

AGAT WORK ORDER: 21Z737993

PROJECT: CO810.00

ATTENTION TO: Keith Brown

CLILINI INAIN	VIE. TENNAPEA ENVINONIVIENTAL LID					ATTENTION TO. Reitin B
Sample ID	Sample Description	Sample Type	Date	Sampled	Date Received	
2386596	BH108-13	Soil	21-A	PR-2021	23-APR-2021	
	O. Reg. 153(511) - PHCs F1 - F4 (Soil) (Toronto)					
	Parameter	Date Pre	pared	Date Analyzed	d Initials	
	>C10 - C16 (F2)	29-APR-	2021	29-APR-2021	WR	
	>C16 - C34 (F3)	29-APR-	2021	29-APR-2021	WR	
	>C34 - C50 (F4)	29-APR-	-2021	29-APR-2021	WR	
	Gravimetric Heavy Hydrocarbons (F4G)	29-APR-	2021	29-APR-2021	WR	
	o-terphenyl	29-APR-	2021	29-APR-2021	WR	
	Reporting TO - NS	03-MAY	-2021		АН	
2386597	MW109-1	Soil	21-A	APR-2021	23-APR-2021	
	Moisture					
	Parameter	Date Pre	pared	Date Analyzed	d Initials	
	% Moisture	28-APR-	2021	28-APR-2021	DM	
	O. Reg. 153(511) - PHCs F1 - F4 (Soil) (Toronto)					
	Parameter	Date Pre	pared	Date Analyzed	d Initials	
	Benzene	29-APR-	·2021	30-APR-2021	Al	
	Toluene	29-APR-	2021	30-APR-2021	Al	
	Ethylbenzene	29-APR-	·2021	30-APR-2021	Al	
	Xylenes (Total)	29-APR-	-2021	30-APR-2021	Al	
	C6 - C10 (F1)	29-APR-	·2021	30-APR-2021	Al	
	C6 - C10 (F1 minus BTEX)	29-APR-	2021	30-APR-2021	Al	
	>C10 - C16 (F2)	29-APR-	2021	29-APR-2021	WR	
	>C16 - C34 (F3)	29-APR-		29-APR-2021	WR	
	>C34 - C50 (F4)	29-APR-	2021	29-APR-2021	WR	
	Gravimetric Heavy Hydrocarbons (F4G)	29-APR-	2021	29-APR-2021	WR	
	o-terphenyl	29-APR-		29-APR-2021	WR	
	Reporting TO - NS	03-MAY			AH	
2386598	BH110-1	Soil	21-A	NPR-2021	23-APR-2021	
	O. Reg. 153(511) - Metals & Inorganics (Soil)					
	Parameter	Date Pre	pared	Date Analyzed	d Initials	
	Antimony	03-MAY		03-MAY-2021	_	
	Arsenic	03-MAY		03-MAY-2021		
	Barium	03-MAY		03-MAY-2021		
	Beryllium	03-MAY-		03-MAY-2021		
	Boron	03-MAY		03-MAY-2021		
	Boron (Hot Water Soluble)	03-MAY-		03-MAY-2021		
	25/011 (110t Trator Goldbio)	OU WIAT	_0_1	00 11/11 2021	- 1\	

Time Markers

AGAT WORK ORDER: 21Z737993

PROJECT: CO810.00

ATTENTION TO: Keith Brown

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aga labs.com

Sample ID	Sample Description	Sample Type	Date Sampled	Date Received
2386598	BH110-1	Soil	21-APR-2021	23-APR-2021

O. Reg. 153(511) - Metals & Inorganics (Soil)			
Parameter	Date Prepared	Date Analyzed	Initials
Cadmium	03-MAY-2021	03-MAY-2021	SE
Chromium	03-MAY-2021	03-MAY-2021	SE
Cobalt	03-MAY-2021	03-MAY-2021	SE
Copper	03-MAY-2021	03-MAY-2021	SE
Lead	03-MAY-2021	03-MAY-2021	SE
Molybdenum	03-MAY-2021	03-MAY-2021	SE
Nickel	03-MAY-2021	03-MAY-2021	SE
Selenium	03-MAY-2021	03-MAY-2021	SE
Silver	03-MAY-2021	03-MAY-2021	SE
Thallium	03-MAY-2021	03-MAY-2021	SE
Uranium	03-MAY-2021	03-MAY-2021	SE
Vanadium	03-MAY-2021	03-MAY-2021	SE
Zinc	03-MAY-2021	03-MAY-2021	SE
Chromium, Hexavalent			
Cyanide, Free	03-MAY-2021	03-MAY-2021	BG
Mercury	03-MAY-2021	03-MAY-2021	SE
Electrical Conductivity (2:1)	03-MAY-2021	03-MAY-2021	MM
Sodium Adsorption Ratio (2:1) (Calc.)	03-MAY-2021	03-MAY-2021	XH
pH, 2:1 CaCl2 Extraction	03-MAY-2021	03-MAY-2021	MM

O. Reg. 153(511) - PAHs (Soil)

Parameter	Date Prepared	Date Analyzed	Initials
Naphthalene	01-MAY-2021	01-MAY-2021	NS
Acenaphthylene	01-MAY-2021	01-MAY-2021	NS
Acenaphthene	01-MAY-2021	01-MAY-2021	NS
Fluorene	01-MAY-2021	01-MAY-2021	NS
Phenanthrene	01-MAY-2021	01-MAY-2021	NS
Anthracene	01-MAY-2021	01-MAY-2021	NS
Fluoranthene	01-MAY-2021	01-MAY-2021	NS
Pyrene	01-MAY-2021	01-MAY-2021	NS
Benz(a)anthracene	01-MAY-2021	01-MAY-2021	NS
Chrysene	01-MAY-2021	01-MAY-2021	NS
Benzo(b)fluoranthene	01-MAY-2021	01-MAY-2021	NS
Benzo(k)fluoranthene	01-MAY-2021	01-MAY-2021	NS
Benzo(a)pyrene	01-MAY-2021	01-MAY-2021	NS
Indeno(1,2,3-cd)pyrene	01-MAY-2021	01-MAY-2021	NS
Dibenz(a,h)anthracene	01-MAY-2021	01-MAY-2021	NS
Benzo(g,h,i)perylene	01-MAY-2021	01-MAY-2021	NS
1 and 2 Methlynaphthalene	01-MAY-2021	01-MAY-2021	SYS

AGAT WORK ORDER: 21Z737993

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122

CLIENT NAM	PROJECT: CO810.00		ATTENTION TO: Keith Brown	http://www.aga lab		
Sample ID	Sample Description	Sample Type	Date Sampled	Date Received	ATTENTION TO MERCH BIOWII	
<u> </u>	<u> </u>					
2386598	BH110-1	Soil	21-APR-2021	23-APR-2021		
	O. Reg. 153(511) - PAHs (Soil)					
	Parameter	Date Prepare	ed Date Analyze	ed Initials		
	Naphthalene-d8	01-MAY-202				
	Acenaphthene-d10	01-MAY-202				
	Chrysene-d12	01-MAY-202				
	Moisture Content	28-APR-202				
2386599	MW111-1	Soil	22-APR-2021	23-APR-2021		
	O. Reg. 153(511) - Metals & Inorganics (Soil)				
	Parameter	Date Prepare	ed Date Analyze			
	Antimony	03-MAY-202	1 03-MAY-202	1 SE		
	Arsenic	03-MAY-202	1 03-MAY-202	1 SE		
	Barium	03-MAY-202	1 03-MAY-202	1 SE		
	Beryllium	03-MAY-202	1 03-MAY-202	1 SE		
	Boron	03-MAY-202	1 03-MAY-202	1 SE		
	Boron (Hot Water Soluble)	03-MAY-202	1 03-MAY-202	1 ZK		
	Cadmium	03-MAY-202	1 03-MAY-202	1 SE		
	Chromium	03-MAY-202	1 03-MAY-202	1 SE		
	Cobalt	03-MAY-202	1 03-MAY-202			
	Copper	03-MAY-202	1 03-MAY-202	1 SE		
	Lead	03-MAY-202	1 03-MAY-202	1 SE		
	Molybdenum	03-MAY-202	1 03-MAY-202			
	Nickel	03-MAY-202	1 03-MAY-202			
	Selenium	03-MAY-202				
	Silver	03-MAY-202				
	Thallium	03-MAY-202	1 03-MAY-202	1 SE		
	Uranium	03-MAY-202	1 03-MAY-202			
	Vanadium	03-MAY-202	1 03-MAY-202			
	Zinc	03-MAY-202	1 03-MAY-202			
	Chromium, Hexavalent					
	Cyanide, Free	03-MAY-202	1 03-MAY-202	1 BG		
	Mercury	03-MAY-202	1 03-MAY-202	1 SE		
	Electrical Conductivity (2:1)	03-MAY-202	1 03-MAY-202			
	Sodium Adsorption Ratio (2:1) (Calc.)	03-MAY-202	1 03-MAY-202	1 XH		
	pH, 2:1 CaCl2 Extraction	03-MAY-202				
	O. Reg. 153(511) - PAHs (Soil)					
	Parameter	Date Prepare	ed Date Analyze	ed Initials		

Naphthalene

Acenaphthylene

NS NS

26-MAY-2021

26-MAY-2021

26-MAY-2021

26-MAY-2021

AGAT WORK ORDER: 21Z737993

PROJECT: CO810.00

CLIENT NAME	E: TERRAPEX ENVIRONMENTAL LTD		_ ''	1100201.00	010.00
		Samuela Tura		to O amanda d	Data Bassis, I
Sample ID	Sample Description	Sample Type	Dat	te Sampled	Date Received
2386599	MW111-1	Soil	22-	-APR-2021	23-APR-2021
	O. Reg. 153(511) - PAHs (Soil)				
	Parameter	Date Pre	pared	Date Analyze	
	Acenaphthene	26-MAY-	-2021	26-MAY-2021	NS
	Fluorene	26-MAY-	-2021	26-MAY-2021	NS
	Phenanthrene	26-MAY-	-2021	26-MAY-2021	NS
	Anthracene	26-MAY-	-2021	26-MAY-2021	NS
	Fluoranthene	26-MAY-	-2021	26-MAY-2021	NS
	Pyrene	26-MAY-	-2021	26-MAY-2021	NS
	Benz(a)anthracene	26-MAY-	-2021	26-MAY-2021	NS
	Chrysene	26-MAY-	-2021	26-MAY-2021	
	Benzo(b)fluoranthene	26-MAY-	-2021	26-MAY-2021	NS
	Benzo(k)fluoranthene	26-MAY-	-2021	26-MAY-2021	
	Benzo(a)pyrene	26-MAY-		26-MAY-2021	
	Indeno(1,2,3-cd)pyrene	26-MAY-		26-MAY-2021	
	Dibenz(a,h)anthracene	26-MAY-		26-MAY-2021	
	Benzo(g,h,i)perylene	26-MAY-		26-MAY-2021	
	1 and 2 Methlynaphthalene	26-MAY-		26-MAY-2021	
	Naphthalene-d8	26-MAY-		26-MAY-2021	
	Acenaphthene-d10	26-MAY-		26-MAY-2021	
	Chrysene-d12	26-MAY-		26-MAY-2021	
	Moisture Content	21-MAY-		21-MAY-2021	
	Molecular Content	21 100 11	2021	21 10071 2021	,,,
2386600	MW111-5	Soil	22-	-APR-2021	23-APR-2021
	Moisture				
	Parameter	Date Pre	pared	Date Analyze	d Initials
	% Moisture	28-APR-	•	28-APR-2021	
	76 Molecus	207		207112021	2
	O. Reg. 153(511) - PHCs F1 - F4 (Soil) (Toronto))			
	Parameter	Date Pre	pared	Date Analyze	d Initials
	Benzene				
	Toluene				
	Ethylbenzene				
	Xylenes (Total)				
	C6 - C10 (F1)				
	C6 - C10 (F1 minus BTEX)				
	>C10 - C16 (F2)	29-APR-	2021	29-APR-2021	WR
	>C16 - C34 (F3)	29-APR-		29-APR-2021	
	>C34 - C50 (F4)	29-APR-		29-APR-2021	
	Gravimetric Heavy Hydrocarbons (F4G)	29-APR-		29-APR-2021	
	o-terphenyl	29-APR-	2021	29-APR-2021	VVI

AGAT WORK ORDER: 21Z737993

PROJECT: CO810.00

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aga labs.com

CLIENT NAME: TERRAPEX ENVIRONMENTAL LTD

ATTENTION TO: Keith Brown

Sample ID	Sample Description	Sample Type	Date Sampled	Date Received
2386600	MW111-5	Soil	22-APR-2021	23-APR-2021

O. Reg. 153(511) - PHCs F1 - F4 (Soil) (Toronto)

Parameter	Date Prepared	Date Analyzed	Initials
Reporting TO - NS	03-MAY-2021		AH

Method Summary

CLIENT NAME: TERRAPEX ENVIRONMENTAL LTD AGAT WORK ORDER: 21Z737993
PROJECT: CO810.00 ATTENTION TO: Keith Brown

SAMPLING SITE: SAMPLED BY:

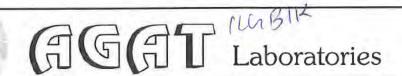
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Soil Analysis			
Antimony	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Arsenic	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Barium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Beryllium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Boron	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Boron (Hot Water Soluble)	MET-93-6104	modified from EPA 6010D and MSA PART 3, CH 21	ICP/OES
Cadmium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Chromium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Cobalt	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Copper	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Lead	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Molybdenum	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Nickel	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Selenium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Silver	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Thallium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Uranium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Vanadium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Zinc	MET 93 -6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Chromium, Hexavalent	INOR-93-6068	modified from EPA 3060 and EPA 7196	SPECTROPHOTOMETER
Cyanide, Free	INOR-93-6052	modified from ON MOECC E3015, SM 4500-CN- I, G-387 $$	TECHNICON AUTO ANALYZER
Mercury	MET-93-6103	modified from EPA 7471B and SM 3112 B	ICP-MS
Electrical Conductivity (2:1)	INOR-93-6036	modified from MSA PART 3, CH 14 and SM 2510 B	EC METER
Sodium Adsorption Ratio (2:1) (Calc.)	INOR-93-6007	modified from EPA 6010D & Analytical Protocol	ICP/OES
pH, 2:1 CaCl2 Extraction	INOR-93-6031	modified from EPA 9045D and MCKEAGUE 3.11	PH METER

Method Summary

CLIENT NAME: TERRAPEX ENVIRONMENTAL LTD AGAT WORK ORDER: 21Z737993
PROJECT: CO810.00 ATTENTION TO: Keith Brown

SAMPLING SITE: SAMPLED BY:

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Trace Organics Analysis % Moisture	LAD 101 4004	CSSS 70.2	CDAV/METDIC
Naphthalene	LAB-131-4024 ORG-91-5106	modified from EPA 3570 and EPA 8270E	GRAVIMETRIC GC/MS
Acenaphthylene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Acenaphthene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Fluorene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Phenanthrene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Anthracene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Fluoranthene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Pyrene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Benz(a)anthracene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Chrysene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Benzo(b)fluoranthene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Benzo(k)fluoranthene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Benzo(a)pyrene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Indeno(1,2,3-cd)pyrene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Dibenz(a,h)anthracene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Benzo(g,h,i)perylene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
1 and 2 Methlynaphthalene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Naphthalene-d8	ORG-91-5106	modified from EPA 3541 and EPA 8270E	GC/MS
Acenaphthene-d10	ORG-91-5106	modified from EPA 3541 and EPA 8270E	GC/MS
Chrysene-d12	ORG-91-5106	modified from EPA 3541 and EPA 8270E	GC/MS
Moisture Content	ORG-91-5009	CCME Tier 1 Method	BALANCE
Benzene	VOL-120-5015	Atlantic RBCA Guidelines for Laboratories Tier 1	(P&T)GC/MS
Toluene	VOL-120-5015	Atlantic RBCA Guidelines for Laboratories Tier 1	(P&T)GC/MS
Ethylbenzene	VOL-120-5015	Atlantic RBCA Guidelines for Laboratories Tier 1	(P&T)GC/MS
Xylenes (Total)	VOL-120-5015	Atlantic RBCA Guidelines for Laboratories Tier 1	(P&T)GC/MS
C6 - C10 (F1)	VOL-120-5015	CCME CWS Tier 1	GC/MS/FID
C6 - C10 (F1 minus BTEX)	VOL-120-5015	CCME CWS Tier 1	GC/MS/FID
>C10 - C16 (F2)	ORG-120-5102	Based on CCME CWS Tier 1	GC/FID
>C16 - C34 (F3)	ORG-120-5102	Based on CCME CWS Tier 1	GC/FID



Method Summary

CLIENT NAME: TERRAPEX ENVIRONMENTAL LTD AGAT WORK ORDER: 21Z737993
PROJECT: CO810.00 ATTENTION TO: Keith Brown

SAMPLING SITE: SAMPLED BY:

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
>C34 - C50 (F4)	ORG-120-5102	Based on CCME CWS Tier 1	GC/FID
Gravimetric Heavy Hydrocarbons (F4G)	ORG-120-5102	Based on CCME CWS Tier 1	GRAVIMETRIC
o-terphenyl	ORG-120-5102	CCME	GC/FID
Reporting TO - NS			N/A

5835 Coopers Avenue Mississauga, Ontario L4Z 1Y2 Ph: 905.712.5100 Fax: 905.712.5122 webearth.agatlabs.com

Laboratory Use Only Work Order #: 212737993

Cooler Quantity:	, Ce	2-	
Arrival Temperatures:	63	15916	2.0
LT(free ice)	2-4	12171	2.6
Custody Seal Intact:	□Yes	□No	□N/A

PCBs	VOC	Landfill Disposal Characterization TO TO.P. DARA DVOCS DABNS B(8)PE	Excess Soils SPLP Rainwater Lea	Excess Soils Characterization Pac ph. ICPMS Metals, BTEX, F1-F4	Salt - EC/SAR					Potentially Hazardous or High Concentra
										=
										=
										_
Date			Lime							=
Jaco	1/2	3	16	one	V	-	a'n	1	7	

Company:	Table 1 to 1 t						uirements:						Custody Seal Intact: Yes No Notes:									
Contact:	Keith Brown				DX Re	gulation 153/04	Excess Soils R406	6	Sew													
Address:	1-20 Gurdwara Road,				-	23	F-1/1-		Sa	initary	Storn	n		Turn	arou	ind 1	Гime	(TAT)	Requ	ired:		
	Ottawa, ON K2E 8B3					Ind/Com	Table Indicate One		-	Region	_			Regu	lar T	AT		1 5 to	o 7 Busi	ness Day	is	
Phone:	613 745 6471 ext 230	Fax:				Res/Park Agriculture	Regulation 558	1	Prov	. Water Q	uality			Rush	TAT	(Ruch St						
Reports to be sent to: 1. Email:	kbrown@terrapex.com				Soil Te	exture (Check One) Coarse	CCME	I	Othe						Day			☐ Day			Next Bus Day	siness
2. Email:						Fine	1			Indicate Uni				ш	OR	Date	Require	ed (Rush	Surcha	irges May	Apply):	
Project:	CO810.00 1180, 1188, 1194 and 119	ne Wellington Stre	est Wast Ottav	n ON	Red	this submission of Site Co	3.00 ACACO 2.0	Cer		Guideli te of A		ls								ion for rus d statuto	sh TAT ry holiday	s
Site Location: Sampled By:	F-13	of tremingion stre	et west, Ottav	a, OI	-	les 🗆	140	P	165		7 13	_			'Sam	e Day	' analy	/sls, plea	ise cont	tact your	AGAT CP	M
AGAT Quote #:		PO:						90	0.	Reg 153				O. Reg 558	O. Re	g 406						2
AGAI QUOLE #.	Please note: If quotation number		be billed full price for a	nalysis.	Sam	ple Matrix Le	gend	VI, D			2			PDPCBs		age						ion (Y
Invoice Information Company: Contact: Address: Email:	nation: Terrapex Environmental Accounts Payable		II To Same: Ye	s No 🗆	GW O P S SD SW	Ground Water Oil Paint Soil Sediment Surface Water		Field Filtered - Metals, Hg, CrVI, DOC	& Inorganics	□ crvi, □ Hg, □ HWSB .F4 PHCs	P F4G if required □ Yes □			Landfill Disposal Characterization To.P. To.P. DIMB. Divos DABNS DBajp DPGBs	Excess Solls SPLP Rainwater Leach SPLP: Metals Vocs SVocs	Excess Soils Characterization Package on ICPMS Metals, BTEX, F1-F4	EC/SAR					Ily Hazardous or High Concent
Samp	le Identification	Date Sampled	Time Sampled	# of Containers	Sample Matrix	1	ments/ Instructions	Y/N	Metals	Metals - BTEX, F1	Analyze F4G PAHs	PCBs	VOC	Landfill Dispo	SPLP:	Excess oH. ICP	Salt - E					Potentia
Ru	101-1	Apre/21	7:30 AM	1	S			N			X		Q.E.				1-15					2
RH	101-3	A0 19/21	8:00 AM	2	5			N		X			Y I									
	101-13	Apr 19/21	8:00 AM		5			N		X			6									
	102-1	Apr 19/21	8:45 AM	1	5			A 1	X													
	102-4	A0-19/21		2	5			2		×							()					
RHI	03-1	AD 19/21	II:00 AM	Š	5			N	×		X				-11							
	03-4	A0-19/21	11:30 AM	a	5			N		X	7											
	2-104-2	Apr 19/21	12:30AM	2	5			N		V	10											
		Apr 19/21	12:15 AM	ī	5			2	V		•											
	2104-1	A00-19/21	TO	7	5			2	7		V	-	1						1			
			14.30 PM		5			N I	-		- 1								11			
Samples Palinquished By (Pri	int Name and Sign)	Agr 19/21	Dito	/ Time		Samples Received by (F	rist Name and Sign	V	4	1,4		Date			Timer							_
Eric Bo	orate /		Apr 23	21	16:00		theight				2	11	1/2	3	10	SCH	20			1	1	
Sample's Helmquabed by (Pri	int Name and Gisti	115	77141	23"11	Conte	5/100	And Name and Toute			A	he	Tinte	4	1.	Time /	0	51	00	Page _	of	1	
The state of the s	int Name and Jien!		500	Time		Samples Perceived By (Post Marine and Friend	_		-1	1	Con	2-1	6	Time	-	_	No:				

Ph: 905.712.5100 Fax: 905.712.5122

Laboratory Use Only 5835 Coopers Avenue Mississauga, Ontario L4Z 1Y2 Work Order #:

hain of C	ustody Recor	'd If this is a D	rinking Water	sample, plea	se use Drink	ing Water Chain	of Custody Form (pot	table water o	consum	ed by hu	mans)			Arriva	I Tempe	rature	es:	Sea	PS	1	
Report Inform	nation: Terrapex Environmental	Ltd.			Reg (Please	ulatory Req	uirements:							Custody Seal Intact: Yes No No Notes:							
Contact:	Keith Brown				DX Re	gulation 153/04	Excess Soils	R406 [Sev	ver Use			1								
Address:	1-20 Gurdwara Road,				1		72			anitary		rm	- 11	Turnaround Time (TAT) Required:							
Address.	Ottawa, ON K2E 8B3				Tab	nd/care One	Table	One	-	Region	_			Regu	lar TA	r	F	5 to 7 Busi	ness Davs		
	613 745 6471 ext 230	4.7) Del	Res/Park	Regulation 5	58	Pro	v. Water		v	- 11		TAT (R				1030 00,0		
Phone: Reports to be sent to:		Fax:			- 0	Agriculture		1		ectives			111	Itusii	a to a line	BII GUIC	nargos	-ppit/			
1. Email:	kbrown@terrapex.com					exture (Check One) Coarse	CCME	[Oth	er					3 Bus Days	iness	I	2 Business Days	□ Ne	ext Busines: av	
2. Email:						Fine				indicate	One					ate Re	quire	d (Rush Surcha			
Project Infor	mation:				1	this submissi ord of Site C	F-6.2 V45.0 V6-18 V			Gulde ite of					Ple	ease p	rovide	prior notificati	ion for rush	TAT	
Project:	CO810.00		. Miles Otto	one OM	- 1													f weekends an			
Site Location:	1186, 1188, 1194 and 119	6 Wellington Stre	et West, Otta	wa, ON	_ N	Yes [] No	M	Yes	3		NO		For	'Same	Day' a	nalys	ls, please cont	act your AG	AT CPM	
Sampled By:	-CD					745.00 m	1374	7 0	0.	Reg 15	3			0. Reg 558	O. Reg	106				W/W	
AGAT Quoto #:	Please note: If quotation number	PO:PO:	se what full price for	analysis.	Sam	ple Matrix Le	gend	Metals, Hg, CrVI, DOC			2			aracterization TCLP. ☐ ABNs ☐ B(a)P☐ PCBs		20				ع ا	
Address: Email:		Date	Time	# of	S SD SW	Soil Sediment Surface Water	nments/	Fleid Filtered -	Metals & Inorganics	Metals - □ CrVI, □ Hg, □ HWSB		Ss ss	0	Disposal Cha	SPLP: Chetais Chocs Covocs	pH, ICPMS Metals, BTEX, F1-F4	EC/SAR	るになった		so such a suppose	
Samp	ple Identification	Sampled	Sampled	Containers	Matrix		Instructions	Y/N		Metals	Analyz	PCBs	Voc	를 달	S S	표	Salt			Pot	
	HI07-3	A0-20/21	15:00PM		S			N	×												
BI	H108-21	Apr 21/21	8:00		5			2	X		9										
81	4108-3	Apr 21/21	8:30 A	2	5			N			X										
	H108-13	Apr 21/24	8:30A	2	5			N			X	X.									
	w109-1	A0721/21	13:10		5			N			X										
	1110-1	Apraha	14:00A		5				X			×									
	win-)	Aproph	-		5			N	X												
	W111-5	Apr 22/21	8:15 A		5			N			×										
M	W111-6	Apr 22/21			5													X			
	01110	THE LETT	An		-																
			At Pt																		
amples Ratinguished By (P	that Name and Stool	1/2	Date	Time		Samples Received By	Priol Name and Sign)	1				Date		1	Tigner					-	
	Boomstig	11)	Apr 23	3/21/10	5:00		UD				1	-(1	4	133	all	Sh	1		7		
			Date	C Timb		Semnles Pennised Ry	Print Name and Strint				11.00	Date			Time		-0	(None	do of o	\	
amples Relinquished By (P	rint Neme and Sign)	-	7/14/	731	50	1	(//				4163	10	1	21	15	110	5 U	Page _	V - 01 V		

CLIENT NAME: TERRAPEX ENVIRONMENTAL LTD 20 GURDWARA ROAD, UNIT 1 OTTAWA, ON K2E 8B3 (613) 745-6471

ATTENTION TO: Keith Brown PROJECT: CO810.00

AGAT WORK ORDER: 21Z750733

TRACE ORGANICS REVIEWED BY: Neli Popnikolova, Senior Chemist

DATE REPORTED: Jun 01, 2021

PAGES (INCLUDING COVER): 11 VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

Notes	

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days after receipt unless a Long Term Storage Agreement is signed and returned. Some specialty analysis may
 be exempt, please contact your Client Project Manager for details.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other
 third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the
 services.
- This Certificate shall not be reproduced except in full, wi hout the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
 contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.

AGAT Laboratories (V1)

Page 1 of 11

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)

Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in his report may not necessarily be included in the scope of accredita ion. Measurement Uncertainty is not taken into consideration when sta ing conformity with a specified requirement.

Certificate of Analysis

AGAT WORK ORDER: 21Z750733

PROJECT: CO810.00

ATTENTION TO: Keith Brown

SAMPLING SITE:1186,1188,1184 and 1196 Wellington street West, Ottawa, ON SAMPLED BY:EB

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aga labs.com

O Roa	153/511)	DHCc E1	- F4 (-BTEX	(Lio2) (
O. nea.	100(011)	- 6008 61	- F4 (-D EA	(3011)

				J ()	
DATE RECEIVED: 2021-05-21					DATE REPORTED: 2021-06-01
	SA	AMPLE DES	CRIPTION:	MW111-16	
		SAMI	PLE TYPE:	Soil	
		DATE S	SAMPLED:	2021-05-20 14:50	
Parameter	Unit	G/S	RDL	2501981	
F1 (C6 - C10)	μg/g	65	5	<5	
-1 (C6 to C10) minus BTEX	μg/g	65	5	<5	
F2 (C10 to C16)	μg/g	150	10	<10	
=3 (C16 to C34)	μg/g	1300	50	<50	
F4 (C34 to C50)	μg/g	5600	50	<50	
Gravimetric Heavy Hydrocarbons	μg/g	5600	50	NA	
Moisture Content	%		0.1	15.6	
Surrogate	Unit	Acceptab	le Limits		
Toluene-d8	% Recovery	50-1	40	77	
Terphenyl	%	60-1	40	97	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Soil -

Residential/Parkland/Institutional Property Use - Medium and Fine Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

2501981 Results are based on sample dry weight.

The C6-C10 fraction is calculated using toluene response factor.

C6–C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX. The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons > C50 are present.

The chromatogram has returned to baseline by the retention time of nC50.

Total C6 - C50 results are corrected for BTEX contribution.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor. nC10, nC16 and nC34 response factors are within 10% of their average. C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Fractions 1-4 are quantified without the contribution of PAHs. Under Ontario Regulation 153, results are considered valid without determining the PAH contribution if not requested by the client.

Analysis perfored at AGAT Toronto (unless marked by *)

Certified By:

SAMPLING SITE:1186,1188,1184 and 1196 Wellington street West, Ottawa, ON

0.17

0.085

0.52

13

4.3

0.05

6

9.4

0.05

2.3

0.05

2.7

15

ug/g

0.02

0.03

0.03

0.05

0.50

0.04

0.05

0.05

0.04

0.05

0.04

0.05

0.05

< 0.02

< 0.03

< 0.03

< 0.05

< 0.50

< 0.04

< 0.05

< 0.05

< 0.04

< 0.05

< 0.04

< 0.05

< 0.05

CLIENT NAME: TERRAPEX ENVIRONMENTAL LTD

Certificate of Analysis

AGAT WORK ORDER: 21Z750733

PROJECT: CO810.00

SAMPLED BY:EB

ATTENTION TO: Keith Brown

O. Reg. 153(511) - VOCs (Soil) DATE RECEIVED: 2021-05-21 **DATE REPORTED: 2021-06-01** MW111-16 SAMPLE DESCRIPTION: SAMPLE TYPE: Soil DATE SAMPLED: 2021-05-20 14:50 Parameter Unit G/S RDL 2501981 25 0.05 Dichlorodifluoromethane μg/g < 0.05 0.022 Vinyl Chloride ug/g 0.02 < 0.02 Bromomethane 0.05 0.05 < 0.05 ug/g Trichlorofluoromethane 5.8 0.05 < 0.05 ug/g Acetone 28 0.50 < 0.50 ug/g 1,1-Dichloroethylene 0.05 0.05 < 0.05 ug/g 0.96 Methylene Chloride ug/g 0.05 < 0.05 Trans- 1,2-Dichloroethylene 0.75 0.05 < 0.05 ug/g Methyl tert-butyl Ether ug/g 1.4 0.05 < 0.05 1.1-Dichloroethane ug/g 11 0.02 < 0.02 Methyl Ethyl Ketone ug/g 44 0.50 < 0.50 Cis- 1,2-Dichloroethylene 30 0.02 ug/g < 0.02 Chloroform 0.18 0.04 < 0.04 ug/g 1,2-Dichloroethane 0.05 0.03 < 0.03 ug/g 1.1.1-Trichloroethane ug/g 3.4 0.05 < 0.05 Carbon Tetrachloride 0.12 0.05 < 0.05 ug/g

Certified By:

Benzene

Toluene

1,2-Dichloropropane

Bromodichloromethane

Methyl Isobutyl Ketone

Dibromochloromethane

1,1,1,2-Tetrachloroethane

Ethylene Dibromide

Tetrachloroethylene

Chlorobenzene

Ethylbenzene

1.1.2-Trichloroethane

Trichloroethylene

5835 COOPERS AVENUE

MISSISSAUGA, ONTARIO CANADA L4Z 1Y2

http://www.aga labs.com

TEL (905)712-5100 FAX (905)712-5122

SAMPLING SITE:1186,1188,1184 and 1196 Wellington street West, Ottawa, ON

CLIENT NAME: TERRAPEX ENVIRONMENTAL LTD

Certificate of Analysis

AGAT WORK ORDER: 21Z750733

PROJECT: CO810.00

SAMPLED BY:EB

ATTENTION TO: Keith Brown

O. Reg. 153(511) - VOCs (Soil)

				009.	100(011)
DATE RECEIVED: 2021-05-21					DATE REPORTED: 2021-06-01
	SA	AMPLE DES	CRIPTION:	MW111-16	
		SAM	PLE TYPE:	Soil	
		DATE	SAMPLED:	2021-05-20 14:50	
Parameter	Unit	G/S	RDL	2501981	
m & p-Xylene	ug/g		0.05	< 0.05	
Bromoform	ug/g	0.26	0.05	< 0.05	
Styrene	ug/g	2.2	0.05	<0.05	
1,1,2,2-Tetrachloroethane	ug/g	0.05	0.05	< 0.05	
o-Xylene	ug/g		0.05	< 0.05	
1,3-Dichlorobenzene	ug/g	6	0.05	< 0.05	
1,4-Dichlorobenzene	ug/g	0.097	0.05	< 0.05	
1,2-Dichlorobenzene	ug/g	4.3	0.05	< 0.05	
Xylenes (Total)	ug/g	25	0.05	< 0.05	
1,3-Dichloropropene (Cis + Trans)	μg/g	0.083	0.04	<0.04	
n-Hexane	μg/g	34	0.05	< 0.05	
Moisture Content	%		0.1	15.6	
Surrogate	Unit	Acceptab	le Limits		
Toluene-d8	% Recovery	50-	140	92	
4-Bromofluorobenzene	% Recovery	50-	140	93	
1					

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Soil -

Residential/Parkland/Institutional Property Use - Medium and Fine Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

2501981 The sample was analyzed using the high level technique. The sample was extracted using methanol, a small amount of the methanol extract was diluted in water and the purge & trap GC/MS analysis was performed. Results are based on the dry weight of the soil.

Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene + o-Xylene.

1,3-Dichloropropene total is a calculated parameter. The calculated value is the sum of Cis-1,3-Dichloropropene and Trans-1,3-Dichloropropene.

The calculated parameters are non-accredited. The parameters that are components of the calculation are accredited.

Analysis perfomed at AGAT Toronto (unless marked by *)

Certified By:

NPoprukolof

5835 COOPERS AVENUE

MISSISSAUGA, ONTARIO CANADA L4Z 1Y2

http://www.aga labs.com

TEL (905)712-5100 FAX (905)712-5122

AGAT WORK ORDER: 21Z750733

Quality Assurance

CLIENT NAME: TERRAPEX ENVIRONMENTAL LTD

PROJECT: CO810.00 ATTENTION TO: Keith Brown

SAMPLING SITE:1186,1188,1184 and 1196 Wellington street West, Ottawa, ON SAMPLED BY:EB

			Trac	e Or	gani	cs Ar	nalys	is							
RPT Date: Jun 01, 2021			Г	UPLICAT	E		REFEREN	NCE MA	TERIAL	METHOD	BLAN	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD	Method Blank	Measured Value		ptable nits	Recovery	1 1 1 1 1	ptable nits	Recovery		ptable nits
							14.40	Lower	Upper		Lower	Upper		Lower	Upper
O. Reg. 153(511) - PHCs F1 - F	4 (-BTEX) (So	il)													
F2 (C10 to C16)	2381640		< 10	< 10	NA	< 10	90%	60%	140%	85%	60%	140%	73%	60%	140%
F3 (C16 to C34)	2381640		< 10	< 10	NA	< 10	111%	60%	140%	84%	60%	140%	73%	60%	140%
F4 (C34 to C50)	2381640		< 50	< 50	NA	< 50	101%	60%	140%	100%	60%	140%	118%	60%	140%
O. Reg. 153(511) - VOCs (Soil)															
Dichlorodifluoromethane	2502030		< 0.05	< 0.05	NA	< 0.05	88%	50%	140%	99%	50%	140%	101%	50%	140%
Vinyl Chloride	2502030		< 0.02	< 0.02	NA	< 0.02	104%	50%	140%	99%	50%	140%	86%	50%	140%
Bromomethane	2502030		< 0.05	< 0.05	NA	< 0.05	81%	50%	140%	73%	50%	140%	76%	50%	140%
Trichlorofluoromethane	2502030		< 0.05	< 0.05	NA	< 0.05	78%	50%	140%	79%	50%	140%	75%	50%	140%
Acetone	2502030		< 0.50	< 0.50	NA	< 0.50	75%	50%	140%	88%	50%	140%	89%	50%	140%
1,1-Dichloroethylene	2502030		<0.05	<0.05	NA	< 0.05	87%	50%	140%	116%	60%	130%	76%	50%	140%
Methylene Chloride	2502030		< 0.05	< 0.05	NA	< 0.05	94%	50%	140%	112%	60%	130%	99%	50%	140%
Trans- 1,2-Dichloroethylene	2502030		< 0.05	< 0.05	NA	< 0.05	88%	50%	140%	106%	60%	130%	76%	50%	140%
Methyl tert-butyl Ether	2502030		< 0.05	< 0.05	NA	< 0.05	82%	50%	140%	87%	60%	130%	83%	50%	140%
1,1-Dichloroethane	2502030		<0.02	<0.02	NA	< 0.02	92%	50%	140%	112%	60%	130%	86%	50%	140%
Methyl Ethyl Ketone	2502030		<0.50	<0.50	NA	< 0.50	99%	50%	140%	88%	50%	140%	81%	50%	140%
Cis- 1,2-Dichloroethylene	2502030		< 0.02	< 0.02	NA	< 0.02	77%	50%	140%	96%	60%	130%	79%	50%	140%
Chloroform	2502030		< 0.04	< 0.04	NA	< 0.04	80%	50%	140%	103%	60%	130%	82%	50%	140%
1,2-Dichloroethane	2502030		< 0.03	< 0.03	NA	< 0.03	106%	50%	140%	101%	60%	130%	101%	50%	140%
1,1,1-Trichloroethane	2502030		< 0.05	< 0.05	NA	< 0.05	73%	50%	140%	94%	60%	130%	102%	50%	140%
Carbon Tetrachloride	2502030		<0.05	<0.05	NA	< 0.05	90%	50%	140%	95%	60%	130%	81%	50%	140%
Benzene	2502030		< 0.02	< 0.02	NA	< 0.02	113%	50%	140%	95%	60%	130%	110%	50%	140%
1,2-Dichloropropane	2502030		< 0.03	< 0.03	NA	< 0.03	105%	50%	140%	85%	60%	130%	108%	50%	140%
Trichloroethylene	2502030		< 0.03	< 0.03	NA	< 0.03	107%	50%	140%	94%	60%	130%	106%	50%	140%
Bromodichloromethane	2502030		<0.05	<0.05	NA	< 0.05	76%	50%	140%	93%	60%	130%	80%	50%	140%
Methyl Isobutyl Ketone	2502030		<0.50	<0.50	NA	< 0.50	94%	50%	140%	97%	50%	140%	87%	50%	140%
1,1,2-Trichloroethane	2502030		< 0.04	< 0.04	NA	< 0.04	100%	50%	140%	93%	60%	130%	117%	50%	140%
Toluene	2502030		< 0.05	< 0.05	NA	< 0.05	96%	50%	140%	103%	60%	130%	111%	50%	140%
Dibromochloromethane	2502030		< 0.05	< 0.05	NA	< 0.05	79%	50%	140%	81%	60%	130%	76%	50%	140%
Ethylene Dibromide	2502030		<0.04	<0.04	NA	< 0.04	95%	50%	140%	85%	60%	130%	109%	50%	140%
Tetrachloroethylene	2502030		<0.05	<0.05	NA	< 0.05	89%	50%	140%	101%	60%	130%	104%	50%	140%
1,1,1,2-Tetrachloroethane	2502030		< 0.04	< 0.04	NA	< 0.04	100%	50%	140%	109%	60%	130%	84%	50%	140%
Chlorobenzene	2502030		< 0.05	< 0.05	NA	< 0.05	91%	50%	140%	97%	60%	130%	113%	50%	140%
Ethylbenzene	2502030		< 0.05	< 0.05	NA	< 0.05	91%	50%	140%	95%	60%	130%	108%	50%	140%
m & p-Xylene	2502030		<0.05	<0.05	NA	< 0.05	93%	50%	140%	109%		130%	114%	50%	140%
Bromoform	2502030		<0.05	<0.05	NA	< 0.05	78%	50%	140%	77%	60%	130%	70%	50%	140%
Styrene	2502030		< 0.05	< 0.05	NA	< 0.05	114%		140%	94%	60%	130%	105%	50%	140%
1,1,2,2-Tetrachloroethane	2502030		< 0.05	< 0.05	NA	< 0.05	100%	50%	140%	102%	60%	130%	98%	50%	140%
o-Xylene	2502030		< 0.05	< 0.05	NA	< 0.05	94%	50%	140%	98%	60%	130%	97%	50%	140%

AGAT QUALITY ASSURANCE REPORT (V1)

Page 5 of 11

AGAT Laboratories is accredited to ISO/IEC 17025 by he Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are loca ion and parameter specific. A complete lis ing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in his report may not necessarily be included in he scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Quality Assurance

CLIENT NAME: TERRAPEX ENVIRONMENTAL LTD

PROJECT: CO810.00

AGAT WORK ORDER: 21Z750733
ATTENTION TO: Keith Brown

SAMPLING SITE:1186,1188,1184 and 1196 Wellington street West, Ottawa, ON

SAMPLED BY:EB

OAMI LING OITE. 1100, 1100,	1 10+ and 1	130 VVCII	iligion 3	ticct vvc	ot, Otta	wa, Oiv		// TIVII L	ם טם.	1.60					
	7	Ггасе	Orga	anics	Ana	lysis	(Cor	ntinu	ued)					
RPT Date: Jun 01, 2021		E		REFEREN	NCE MAT	ΓERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE			
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD	Method Blank	Measured Value	Accep Lim		Recovery	Lin	ptable nits	Recovery	Lin	ptable nits
TANAMETEN		la la		·			value	Lower	Upper	•	Lower	Upper	·	Lower	Upper
1,3-Dichlorobenzene	2502030		<0.05	<0.05	NA	< 0.05	104%	50%	140%	109%	60%	130%	116%	50%	140%
1,4-Dichlorobenzene	2502030		< 0.05	< 0.05	NA	< 0.05	82%	50%	140%	90%	60%	130%	75%	50%	140%
1,2-Dichlorobenzene n-Hexane	2502030 2502030		<0.05 <0.05	<0.05 <0.05	NA NA	< 0.05 < 0.05	100% 94%	50% 50%	140% 140%	101% 78%	60% 60%	130% 130%	110% 107%	50% 50%	140% 140%

Comments: When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

Certified By:

Time Markers

AGAT WORK ORDER: 21Z750733

PROJECT: CO810.00

ATTENTION TO: Keith Brown

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aga labs.com

Date Prepared Date Analyzed Initials	Sample ID	Sample Description	Sample Type	Date Sampled	Date Received
Parameter	2501981	MW111-16	Soil	20-MAY-2021	21-MAY-2021
Parameter		O. Reg. 153(511) - PHCs F1 - F4 (-BTEX) (Soil)		
F1 (C6 to C10) minus BTEX Toluene-d8 28-MAY-2021 28-MAY-2021 SS F2 (C10 to C16) 28-MAY-2021 31-MAY-2021 SK F3 (C16 to C34) 28-MAY-2021 31-MAY-2021 SK F3 (C16 to C34) 28-MAY-2021 31-MAY-2021 SK F4 (C34 to C50) 28-MAY-2021 31-MAY-2021 SK Gravimetric Heavy Hydrocarbons 28-MAY-2021 31-MAY-2021 SK Moisture Content 27-MAY-2021 27-MAY-2021 VB Terphenyl 28-MAY-2021 31-MAY-2021 SK O. Reg. 153(511) - VOCs (Soil) Parameter Date Prepared Date Analyzed Initials Dichlorodifluoromethane 28-MAY-2021 28-MAY-2021 AG Vinyl Chloride 28-MAY-2021 28-MAY-2021 AG Trichlorofluoromethane 28-MAY-2021 28-MAY-2021 AG Trichlorofluoromethane 28-MAY-2021 28-MAY-2021 AG Acetone 28-MAY-2021 28-MAY-2021 AG Acetone 28-MAY-2021 28-MAY-2021 AG Methylene Chloride 28-MAY-2021 28-MAY-2021 AG Methylene Chloride 28-MAY-2021 28-MAY-2021 AG Trans- 1,2-Dichloroethylene 28-MAY-2021 28-MAY-2021 AG Methyl terl-butyl Ether 28-MAY-2021 28-MAY-2021 AG Methyl terl-butyl Ether 28-MAY-2021 28-MAY-2021 AG Methyl Ethyl Ketone 28-MAY-2021 28-MAY-2021 AG Methyl Ethyl Ketone 28-MAY-2021 28-MAY-2021 AG Chloroform 28-MAY-2021 28-MAY-2021 AG Carbon Tetrachloride 2		Parameter	Date Prepare	ed Date Analyze	d Initials
Toluene-d8 F2 (C10 to C16) 28-MAY-2021 31-MAY-2021 SK F3 (C16 to C34) 28-MAY-2021 31-MAY-2021 SK F3 (C16 to C34) 28-MAY-2021 31-MAY-2021 SK F4 (C34 to C50) 28-MAY-2021 31-MAY-2021 SK Gravimetric Heavy Hydrocarbons 28-MAY-2021 31-MAY-2021 SK Moisture Content 27-MAY-2021 27-MAY-2021 VB Terphenyl O. Reg. 153(511) - VOCs (Soil) Parameter Date Prepared Date Analyzed Initials Dichlorodifluoromethane 28-MAY-2021 28-MAY-2021 AG Vinyl Chloride 28-MAY-2021 28-MAY-2021 AG Trichlorofluoromethane 28-MAY-2021 AG Methylene Chloride 28-MAY-2021 AG Trans-1,2-Dichloroethylene 28-MAY-2021 AG Trans-1,2-Dichloroethylene 28-MAY-2021 AG Methyl Ethyl Ether 28-MAY-2021 AG Methyl Ethyl Ketone 28-MAY-2021 AG Methyl Ethyl Ketone 28-MAY-2021 AG Cis-1,2-Dichloroethylene 28-MAY-2021 AG Chloroform 28-MAY-2021 AG AG Ti,1-Trichloroethylene 28-MAY-2021 AG		F1 (C6 - C10)	28-MAY-202	28-MAY-202	1 SS
F2 (C10 to C16) 28-MAY-2021 31-MAY-2021 SK F3 (C16 to C34) 28-MAY-2021 31-MAY-2021 SK F4 (C34 to C50) 28-MAY-2021 31-MAY-2021 SK F4 (C34 to C50) 28-MAY-2021 31-MAY-2021 SK Moisture Content 27-MAY-2021 27-MAY-2021 SK Moisture Content 27-MAY-2021 27-MAY-2021 SK Moisture Content 27-MAY-2021 31-MAY-2021 SK CO. Reg. 153(511) - VOCs (Soil) Parameter Date Prepared Date Analyzed Initials Dichlorodifluoromethane 28-MAY-2021 28-MAY-2021 AG Vinyl Chloride 28-MAY-2021 28-MAY-2021 AG Winyl Chloride 28-MAY-2021 28-MAY-2021 AG Bromomethane 28-MAY-2021 28-MAY-2021 AG Trichlorofluoromethane 28-MAY-2021 28-MAY-2021 AG Acetone 28-MAY-2021 28-MAY-2021 AG Acetone 28-MAY-2021 28-MAY-2021 AG Methylene Chloride 28-MAY-2021 28-MAY-2021 AG Trans- 1,2-Dichloroethylene 28-MAY-2021 28-MAY-2021 AG Methylene Chloride 28-MAY-2021 28-MAY-2021 AG Methyle tert-butyl Ether 28-MAY-2021 28-MAY-2021 AG Methyl Ethyl Ketone 28-MAY-2021 28-MAY-2021 AG Methyl Ethyl Ketone 28-MAY-2021 28-MAY-2021 AG Cis- 1,2-Dichloroethylene 28-MAY-2021 28-MAY-2021 AG Chloroform 28-MAY-2021 28-MAY-2021 AG 28-MAY-2021 28-MAY-2021 A		F1 (C6 to C10) minus BTEX	28-MAY-202	28-MAY-202	1 SYS
F2 (C10 to C16) 28-MAY-2021 31-MAY-2021 SK F3 (C16 to C34) 28-MAY-2021 31-MAY-2021 SK F4 (C34 to C50) 28-MAY-2021 31-MAY-2021 SK F4 (C34 to C50) 28-MAY-2021 31-MAY-2021 SK Moisture Content 27-MAY-2021 27-MAY-2021 SK Moisture Content 27-MAY-2021 27-MAY-2021 SK Moisture Content 27-MAY-2021 31-MAY-2021 SK CO. Reg. 153(511) - VOCs (Soil) Parameter Date Prepared Date Analyzed Initials Dichlorodifluoromethane 28-MAY-2021 28-MAY-2021 AG Vinyl Chloride 28-MAY-2021 28-MAY-2021 AG Winyl Chloride 28-MAY-2021 28-MAY-2021 AG Bromomethane 28-MAY-2021 28-MAY-2021 AG Trichlorofluoromethane 28-MAY-2021 28-MAY-2021 AG Acetone 28-MAY-2021 28-MAY-2021 AG Acetone 28-MAY-2021 28-MAY-2021 AG Methylene Chloride 28-MAY-2021 28-MAY-2021 AG Trans- 1,2-Dichloroethylene 28-MAY-2021 28-MAY-2021 AG Methylene Chloride 28-MAY-2021 28-MAY-2021 AG Methyle tert-butyl Ether 28-MAY-2021 28-MAY-2021 AG Methyl Ethyl Ketone 28-MAY-2021 28-MAY-2021 AG Methyl Ethyl Ketone 28-MAY-2021 28-MAY-2021 AG Cis- 1,2-Dichloroethylene 28-MAY-2021 28-MAY-2021 AG Chloroform 28-MAY-2021 28-MAY-2021 AG 28-MAY-2021 28-MAY-2021 A		Toluene-d8	28-MAY-202	28-MAY-202	1 SS
F4 (C34 to C50) 28-MAY-2021 31-MAY-2021 SK Gravimetric Heavy Hydrocarbons 28-MAY-2021 31-MAY-2021 SK Moisture Content 27-MAY-2021 27-MAY-2021 VB Terphenyl 28-MAY-2021 31-MAY-2021 SK O. Reg. 153(511) - VOCs (Soil) Parameter Date Prepared Date Analyzed Initials Dichlorodifluoromethane 28-MAY-2021 28-MAY-2021 AG Vinyl Chloride 28-MAY-2021 28-MAY-2021 28-MAY-2021 AG Bromomethane 28-MAY-2021 28-MAY-2021 28-MAY-2021 AG Trichlorofluoromethane 28-MAY-2021 28-MAY-2021 AG Acetone 28-MAY-2021 28-MAY-2021 AG Acetone 28-MAY-2021 28-MAY-2021 AG Methylene Chloride 28-MAY-2021 28-MAY-2021 AG Trans- 1,2-Dichloroethylene 28-MAY-2021 28-MAY-2021 AG Methyl tert-butyl Ether 28-MAY-2021 28-MAY-2021 28-MAY-2021 AG Methyl Ethyl Ketone 28-MAY-2021 28-MAY-2021 28-MAY-2021 AG Cis- 1,2-Dichloroethylene 28-MAY-2021 28-MAY-2021 28-MAY-2021 AG Chloroform 28-MAY-2021 28-MAY-2021 28-MAY-2021 AG Chloroform 28-MAY-2021 28-MAY-2021 AG Carbon Tetrachloride 28-MAY-2021 28-MAY-2021 AG Carbon Tetrachloride 28-MAY-2021 28-MAY-2021 AG Benzene 28-MAY-2021 28-MAY-2021 28-MAY-2021 AG AG Trichloroethylene 28-MAY-2021 28-MAY-2021 AG		F2 (C10 to C16)	28-MAY-202	1 31-MAY-202	1 SK
Gravimetric Heavy Hydrocarbons 28-MAY-2021 31-MAY-2021 SK Moisture Content 27-MAY-2021 27-MAY-2021 VB Terphenyl 28-MAY-2021 31-MAY-2021 SK O. Reg. 153(511) - VOCs (Soil) Parameter Date Prepared Date Analyzed Initials Dichlorodifluoromethane 28-MAY-2021 28-MAY-2021 AG Vinyl Chloride 28-MAY-2021 28-MAY-2021 AG Bromomethane 28-MAY-2021 28-MAY-2021 AG Trichlorofluoromethane 28-MAY-2021 28-MAY-2021 AG Acetone 28-MAY-2021 28-MAY-2021 AG And Trans-1,2-Dichloroethylene 28-MAY-2021 28-MAY-2021 AG Methylene Chloride 28-MAY-2021 28-MAY-2021 AG Methylene Chlorotehylene 28-MAY-2021 28-MAY-2021 AG Methyl tert-butyl Ether 28-MAY-2021 28-MAY-2021 AG Methyl tert-butyl Ether 28-MAY-2021 28-MAY-2021 AG Methyl Ethyl Ketone 28-MAY-2021 28-MAY-2021		F3 (C16 to C34)	28-MAY-202	1 31-MAY-202	1 SK
Gravimetric Heavy Hydrocarbons 28-MAY-2021 31-MAY-2021 SK Moisture Content 27-MAY-2021 27-MAY-2021 VB Terphenyl 28-MAY-2021 31-MAY-2021 SK O. Reg. 153(511) - VOCs (Soil) Parameter Date Prepared Date Analyzed Initials Dichlorodifluoromethane 28-MAY-2021 28-MAY-2021 AG Vinyl Chloride 28-MAY-2021 28-MAY-2021 AG Bromomethane 28-MAY-2021 28-MAY-2021 AG Trichlorofluoromethane 28-MAY-2021 28-MAY-2021 AG Acetone 28-MAY-2021 28-MAY-2021 AG And Type Chloride 28-MAY-2021 28-MAY-2021 AG Methylene Chloride 28-MAY-2021 28-MAY-2021 AG Methylene Chloride 28-MAY-2021 28-MAY-2021 AG Methylene Chloride 28-MAY-2021 28-MAY-2021 AG Methyl tert-butyl Ether 28-MAY-2021 28-MAY-2021 AG Methyl tert-butyl Ether 28-MAY-2021 28-MAY-2021 AG		F4 (C34 to C50)	28-MAY-202	1 31-MAY-202	1 SK
Terphenyl 28-MAY-2021 31-MAY-2021 SK O. Reg. 153(511) - VOCs (Soil) Date Prepared Date Analyzed Initials Dichlorodifluoromethane 28-MAY-2021 28-MAY-2021 AG Vinyl Chloride 28-MAY-2021 28-MAY-2021 AG Bromomethane 28-MAY-2021 28-MAY-2021 AG Trichlorofluoromethane 28-MAY-2021 28-MAY-2021 AG Acetone 28-MAY-2021 28-MAY-2021 AG Methylene Chloride 28-MAY-2021 28-MAY-2021 AG Methylene Chloride 28-MAY-2021 28-MAY-2021 AG Methyl tert-butyl Ether 28-MAY-2021 28-MAY-2021 AG Methyl tert-butyl Ether 28-MAY-2021 28-MAY-2021 AG Methyl Ethyl Ketone 28-MAY-2021 28-MAY-2021 AG Methyl Ethyl Ketone 28-MAY-2021 28-MAY-2021 AG Cis- 1,2-Dichloroethylene 28-MAY-2021 28-MAY-2021 AG Chloroform 28-MAY-2021 28-MAY-2021 AG 1,2-Dichloroetha			28-MAY-202	1 31-MAY-202	1 SK
O. Reg. 153(511) - VOCs (Soil) Date Prepared Date Analyzed Initials Dichlorodifluoromethane 28-MAY-2021 28-MAY-2021 AG Vinyl Chloride 28-MAY-2021 28-MAY-2021 AG Bromomethane 28-MAY-2021 28-MAY-2021 AG Trichlorofluoromethane 28-MAY-2021 28-MAY-2021 AG Acetone 28-MAY-2021 28-MAY-2021 AG 1,1-Dichloroethylene 28-MAY-2021 28-MAY-2021 AG Methylene Chloride 28-MAY-2021 28-MAY-2021 AG Trans- 1,2-Dichloroethylene 28-MAY-2021 28-MAY-2021 AG Methyl tert-butyl Ether 28-MAY-2021 28-MAY-2021 AG 1,1-Dichloroethane 28-MAY-2021 28-MAY-2021 AG Methyl Ethyl Ketone 28-MAY-2021 28-MAY-2021 AG Cis- 1,2-Dichloroethylene 28-MAY-2021 28-MAY-2021 AG Chloroform 28-MAY-2021 28-MAY-2021 AG 1,2-Dichloroethane 28-MAY-2021 28-MAY-2021 AG Ca		Moisture Content	27-MAY-202	27-MAY-202	1 VB
Parameter Date Prepared Date Analyzed Initials Dichlorodifluoromethane 28-MAY-2021 28-MAY-2021 AG Vinyl Chloride 28-MAY-2021 28-MAY-2021 AG Bromomethane 28-MAY-2021 28-MAY-2021 AG Trichlorofluoromethane 28-MAY-2021 28-MAY-2021 AG Acetone 28-MAY-2021 28-MAY-2021 AG 1,1-Dichloroethylene 28-MAY-2021 28-MAY-2021 AG Methylene Chloride 28-MAY-2021 28-MAY-2021 AG Methyl tert-butyl Ether 28-MAY-2021 28-MAY-2021 AG Methyl tert-butyl Ether 28-MAY-2021 28-MAY-2021 AG Methyl Ethyl Ketone 28-MAY-2021 28-MAY-2021 AG Cis- 1,2-Dichloroethylene 28-MAY-2021 28-MAY-2021 AG Chloroform 28-MAY-2021 28-MAY-2021 AG 1,2-Dichloroethane 28-MAY-2021 28-MAY-2021 AG Carbon Tetrachloride 28-MAY-2021 28-MAY-2021 AG Benzene		Terphenyl	28-MAY-202	1 31-MAY-202	1 SK
Parameter Date Prepared Date Analyzed Initials Dichlorodifluoromethane 28-MAY-2021 28-MAY-2021 AG Vinyl Chloride 28-MAY-2021 28-MAY-2021 AG Bromomethane 28-MAY-2021 28-MAY-2021 AG Trichlorofluoromethane 28-MAY-2021 28-MAY-2021 AG Acetone 28-MAY-2021 28-MAY-2021 AG 1,1-Dichloroethylene 28-MAY-2021 28-MAY-2021 AG Methylene Chloride 28-MAY-2021 28-MAY-2021 AG Methyl tert-butyl Ether 28-MAY-2021 28-MAY-2021 AG Methyl tert-butyl Ether 28-MAY-2021 28-MAY-2021 AG Methyl Ethyl Ketone 28-MAY-2021 28-MAY-2021 AG Cis- 1,2-Dichloroethylene 28-MAY-2021 28-MAY-2021 AG Chloroform 28-MAY-2021 28-MAY-2021 AG 1,2-Dichloroethane 28-MAY-2021 28-MAY-2021 AG Carbon Tetrachloride 28-MAY-2021 28-MAY-2021 AG Benzene		O. Reg. 153(511) - VOCs (Soil)			
Vinyl Chloride 28-MAY-2021 28-MAY-2021 AG Bromomethane 28-MAY-2021 28-MAY-2021 AG Trichlorofluoromethane 28-MAY-2021 28-MAY-2021 AG Acetone 28-MAY-2021 28-MAY-2021 AG 1,1-Dichloroethylene 28-MAY-2021 28-MAY-2021 AG Methylene Chloride 28-MAY-2021 28-MAY-2021 AG Trans- 1,2-Dichloroethylene 28-MAY-2021 28-MAY-2021 AG Methyl tert-butyl Ether 28-MAY-2021 28-MAY-2021 AG Methyl Ethyl Ketone 28-MAY-2021 28-MAY-2021 AG Methyl Ethyl Ketone 28-MAY-2021 28-MAY-2021 AG Cis- 1,2-Dichloroethylene 28-MAY-2021 28-MAY-2021 AG Chloroform 28-MAY-2021 28-MAY-2021 AG 1,2-Dichloroethane 28-MAY-2021 28-MAY-2021 AG 1,1,1-Trichloroethane 28-MAY-2021 28-MAY-2021 AG Garbon Tetrachloride 28-MAY-2021 28-MAY-2021 AG Benzene <t< td=""><td></td><td>Parameter</td><td>Date Prepare</td><td>ed Date Analyze</td><td>d Initials</td></t<>		Parameter	Date Prepare	ed Date Analyze	d Initials
Bromomethane 28-MAY-2021 28-MAY-2021 AG Trichlorofluoromethane 28-MAY-2021 28-MAY-2021 AG Acetone 28-MAY-2021 28-MAY-2021 AG 1,1-Dichloroethylene 28-MAY-2021 28-MAY-2021 AG Methylene Chloride 28-MAY-2021 28-MAY-2021 AG Trans- 1,2-Dichloroethylene 28-MAY-2021 28-MAY-2021 AG Methyl tert-butyl Ether 28-MAY-2021 28-MAY-2021 AG Methyl Ethyl Ketone 28-MAY-2021 28-MAY-2021 AG Methyl Ethyl Ketone 28-MAY-2021 28-MAY-2021 AG Cis- 1,2-Dichloroethylene 28-MAY-2021 28-MAY-2021 AG Chloroform 28-MAY-2021 28-MAY-2021 AG 1,2-Dichloroethane 28-MAY-2021 28-MAY-2021 AG 1,1,1-Trichloroethane 28-MAY-2021 28-MAY-2021 AG Garbon Tetrachloride 28-MAY-2021 28-MAY-2021 AG Benzene 28-MAY-2021 28-MAY-2021 AG Trichloroethylene		Dichlorodifluoromethane	28-MAY-202	28-MAY-202	1 AG
Trichlorofluoromethane 28-MAY-2021 28-MAY-2021 AG Acetone 28-MAY-2021 28-MAY-2021 AG 1,1-Dichloroethylene 28-MAY-2021 28-MAY-2021 AG Methylene Chloride 28-MAY-2021 28-MAY-2021 AG Trans- 1,2-Dichloroethylene 28-MAY-2021 28-MAY-2021 AG Methyl tert-butyl Ether 28-MAY-2021 28-MAY-2021 AG 1,1-Dichloroethane 28-MAY-2021 28-MAY-2021 AG Methyl Ethyl Ketone 28-MAY-2021 28-MAY-2021 AG Gis- 1,2-Dichloroethylene 28-MAY-2021 28-MAY-2021 AG Chloroform 28-MAY-2021 28-MAY-2021 AG 1,2-Dichloroethane 28-MAY-2021 28-MAY-2021 AG 1,1,1-Trichloroethane 28-MAY-2021 28-MAY-2021 AG Garbon Tetrachloride 28-MAY-2021 28-MAY-2021 AG Benzene 28-MAY-2021 28-MAY-2021 AG Trichloroethylene 28-MAY-2021 28-MAY-2021 AG Trichloroethylene		Vinyl Chloride	28-MAY-202	28-MAY-202	1 AG
Acetone 28-MAY-2021 28-MAY-2021 28-MAY-2021 AG 1,1-Dichloroethylene 28-MAY-2021 28-MAY-2021 AG Methylene Chloride 28-MAY-2021 28-MAY-2021 AG Trans- 1,2-Dichloroethylene 28-MAY-2021 28-MAY-2021 AG Methyl tert-butyl Ether 28-MAY-2021 28-MAY-2021 AG 1,1-Dichloroethane 28-MAY-2021 28-MAY-2021 AG Methyl Ethyl Ketone 28-MAY-2021 28-MAY-2021 AG Cis- 1,2-Dichloroethylene 28-MAY-2021 28-MAY-2021 AG Chloroform 28-MAY-2021 28-MAY-2021 AG 1,2-Dichloroethane 28-MAY-2021 28-MAY-2021 AG 1,1,1-Trichloroethane 28-MAY-2021 28-MAY-2021 AG Carbon Tetrachloride 28-MAY-2021 28-MAY-2021 AG Benzene 28-MAY-2021 28-MAY-2021 AG 1,2-Dichloropropane 28-MAY-2021 28-MAY-2021 AG Trichloroethylene 28-MAY-2021 28-MAY-2021 AG Bromodichloromethane 28-MAY-2021 28-MAY-2021 AG <t< td=""><td></td><td>Bromomethane</td><td>28-MAY-202</td><td>28-MAY-202</td><td>1 AG</td></t<>		Bromomethane	28-MAY-202	28-MAY-202	1 AG
1,1-Dichloroethylene 28-MAY-2021 28-MAY-2021 AG Methylene Chloride 28-MAY-2021 28-MAY-2021 AG Trans- 1,2-Dichloroethylene 28-MAY-2021 28-MAY-2021 AG Methyl tert-butyl Ether 28-MAY-2021 28-MAY-2021 AG 1,1-Dichloroethane 28-MAY-2021 28-MAY-2021 AG Methyl Ethyl Ketone 28-MAY-2021 28-MAY-2021 AG Cis- 1,2-Dichloroethylene 28-MAY-2021 28-MAY-2021 AG Chloroform 28-MAY-2021 28-MAY-2021 AG 1,2-Dichloroethane 28-MAY-2021 28-MAY-2021 AG 2,1,1-Trichloroethane 28-MAY-2021 28-MAY-2021 AG Carbon Tetrachloride 28-MAY-2021 28-MAY-2021 AG Benzene 28-MAY-2021 28-MAY-2021 AG 1,2-Dichloropropane 28-MAY-2021 28-MAY-2021 AG Trichloroethylene 28-MAY-2021 28-MAY-2021 AG Bromodichloromethane 28-MAY-2021 28-MAY-2021 AG Methyl Isobutyl Ketone 28-MAY-2021 28-MAY-2021 AG <td></td> <td>Trichlorofluoromethane</td> <td>28-MAY-202</td> <td>28-MAY-202</td> <td>1 AG</td>		Trichlorofluoromethane	28-MAY-202	28-MAY-202	1 AG
Methylene Chloride 28-MAY-2021 28-MAY-2021 AG Trans- 1,2-Dichloroethylene 28-MAY-2021 28-MAY-2021 AG Methyl tert-butyl Ether 28-MAY-2021 28-MAY-2021 AG 1,1-Dichloroethane 28-MAY-2021 28-MAY-2021 AG Methyl Ethyl Ketone 28-MAY-2021 28-MAY-2021 AG Cis- 1,2-Dichloroethylene 28-MAY-2021 28-MAY-2021 AG Chloroform 28-MAY-2021 28-MAY-2021 AG 1,2-Dichloroethane 28-MAY-2021 28-MAY-2021 AG 1,1,1-Trichloroethane 28-MAY-2021 28-MAY-2021 AG Carbon Tetrachloride 28-MAY-2021 28-MAY-2021 AG Benzene 28-MAY-2021 28-MAY-2021 AG 1,2-Dichloropropane 28-MAY-2021 28-MAY-2021 AG Trichloroethylene 28-MAY-2021 28-MAY-2021 AG Bromodichloromethane 28-MAY-2021 28-MAY-2021 AG Methyl Isobutyl Ketone 28-MAY-2021 28-MAY-2021 AG		Acetone	28-MAY-202	28-MAY-202	1 AG
Trans- 1,2-Dichloroethylene 28-MAY-2021 28-MAY-2021 AG Methyl tert-butyl Ether 28-MAY-2021 28-MAY-2021 AG 1,1-Dichloroethane 28-MAY-2021 28-MAY-2021 AG Methyl Ethyl Ketone 28-MAY-2021 28-MAY-2021 AG Cis- 1,2-Dichloroethylene 28-MAY-2021 28-MAY-2021 AG Chloroform 28-MAY-2021 28-MAY-2021 AG 1,2-Dichloroethane 28-MAY-2021 28-MAY-2021 AG 1,1,1-Trichloroethane 28-MAY-2021 28-MAY-2021 AG Carbon Tetrachloride 28-MAY-2021 28-MAY-2021 AG Benzene 28-MAY-2021 28-MAY-2021 AG 1,2-Dichloropropane 28-MAY-2021 28-MAY-2021 AG Trichloroethylene 28-MAY-2021 28-MAY-2021 AG Bromodichloromethane 28-MAY-2021 28-MAY-2021 AG Methyl Isobutyl Ketone 28-MAY-2021 28-MAY-2021 AG		1,1-Dichloroethylene	28-MAY-202	28-MAY-202	1 AG
Methyl tert-butyl Ether 28-MAY-2021 28-MAY-2021 AG 1,1-Dichloroethane 28-MAY-2021 28-MAY-2021 AG Methyl Ethyl Ketone 28-MAY-2021 28-MAY-2021 AG Cis- 1,2-Dichloroethylene 28-MAY-2021 28-MAY-2021 AG Chloroform 28-MAY-2021 28-MAY-2021 AG 1,2-Dichloroethane 28-MAY-2021 28-MAY-2021 AG 1,1,1-Trichloroethane 28-MAY-2021 28-MAY-2021 AG Carbon Tetrachloride 28-MAY-2021 28-MAY-2021 AG Benzene 28-MAY-2021 28-MAY-2021 AG 1,2-Dichloropropane 28-MAY-2021 28-MAY-2021 AG Trichloroethylene 28-MAY-2021 28-MAY-2021 AG Bromodichloromethane 28-MAY-2021 28-MAY-2021 AG Methyl Isobutyl Ketone 28-MAY-2021 28-MAY-2021 AG		Methylene Chloride	28-MAY-202	28-MAY-202	1 AG
Methyl tert-butyl Ether 28-MAY-2021 28-MAY-2021 AG 1,1-Dichloroethane 28-MAY-2021 28-MAY-2021 AG Methyl Ethyl Ketone 28-MAY-2021 28-MAY-2021 AG Cis- 1,2-Dichloroethylene 28-MAY-2021 28-MAY-2021 AG Chloroform 28-MAY-2021 28-MAY-2021 AG 1,2-Dichloroethane 28-MAY-2021 28-MAY-2021 AG 1,1,1-Trichloroethane 28-MAY-2021 28-MAY-2021 AG Carbon Tetrachloride 28-MAY-2021 28-MAY-2021 AG Benzene 28-MAY-2021 28-MAY-2021 AG 1,2-Dichloropropane 28-MAY-2021 28-MAY-2021 AG Trichloroethylene 28-MAY-2021 28-MAY-2021 AG Bromodichloromethane 28-MAY-2021 28-MAY-2021 AG Methyl Isobutyl Ketone 28-MAY-2021 28-MAY-2021 AG		Trans- 1,2-Dichloroethylene	28-MAY-202	28-MAY-202	1 AG
Methyl Ethyl Ketone 28-MAY-2021 28-MAY-2021 AG Cis- 1,2-Dichloroethylene 28-MAY-2021 28-MAY-2021 AG Chloroform 28-MAY-2021 28-MAY-2021 AG 1,2-Dichloroethane 28-MAY-2021 28-MAY-2021 AG 1,1,1-Trichloroethane 28-MAY-2021 28-MAY-2021 AG Carbon Tetrachloride 28-MAY-2021 28-MAY-2021 AG Benzene 28-MAY-2021 28-MAY-2021 AG 1,2-Dichloropropane 28-MAY-2021 28-MAY-2021 AG Trichloroethylene 28-MAY-2021 28-MAY-2021 AG Bromodichloromethane 28-MAY-2021 28-MAY-2021 AG Methyl Isobutyl Ketone 28-MAY-2021 28-MAY-2021 AG			28-MAY-202	28-MAY-202	1 AG
Cis- 1,2-Dichloroethylene 28-MAY-2021 28-MAY-2021 AG Chloroform 28-MAY-2021 28-MAY-2021 AG 1,2-Dichloroethane 28-MAY-2021 28-MAY-2021 AG 1,1,1-Trichloroethane 28-MAY-2021 28-MAY-2021 AG Carbon Tetrachloride 28-MAY-2021 28-MAY-2021 AG Benzene 28-MAY-2021 28-MAY-2021 AG 1,2-Dichloropropane 28-MAY-2021 28-MAY-2021 AG Trichloroethylene 28-MAY-2021 28-MAY-2021 AG Bromodichloromethane 28-MAY-2021 28-MAY-2021 AG Methyl Isobutyl Ketone 28-MAY-2021 28-MAY-2021 AG		1,1-Dichloroethane	28-MAY-202	28-MAY-202	1 AG
Chloroform 28-MAY-2021 28-MAY-2021 28-MAY-2021 AG 1,2-Dichloroethane 28-MAY-2021 28-MAY-2021 AG 1,1,1-Trichloroethane 28-MAY-2021 28-MAY-2021 AG Carbon Tetrachloride 28-MAY-2021 28-MAY-2021 AG Benzene 28-MAY-2021 28-MAY-2021 AG 1,2-Dichloropropane 28-MAY-2021 28-MAY-2021 AG Trichloroethylene 28-MAY-2021 28-MAY-2021 AG Bromodichloromethane 28-MAY-2021 28-MAY-2021 AG Methyl Isobutyl Ketone 28-MAY-2021 28-MAY-2021 AG		Methyl Ethyl Ketone	28-MAY-202	28-MAY-202	1 AG
1,2-Dichloroethane 28-MAY-2021 28-MAY-2021 AG 1,1,1-Trichloroethane 28-MAY-2021 28-MAY-2021 AG Carbon Tetrachloride 28-MAY-2021 28-MAY-2021 AG Benzene 28-MAY-2021 28-MAY-2021 AG 1,2-Dichloropropane 28-MAY-2021 28-MAY-2021 AG Trichloroethylene 28-MAY-2021 28-MAY-2021 AG Bromodichloromethane 28-MAY-2021 28-MAY-2021 AG Methyl Isobutyl Ketone 28-MAY-2021 28-MAY-2021 AG		Cis- 1,2-Dichloroethylene	28-MAY-202	28-MAY-202	1 AG
1,1,1-Trichloroethane 28-MAY-2021 28-MAY-2021 AG Carbon Tetrachloride 28-MAY-2021 28-MAY-2021 AG Benzene 28-MAY-2021 28-MAY-2021 AG 1,2-Dichloropropane 28-MAY-2021 28-MAY-2021 AG Trichloroethylene 28-MAY-2021 28-MAY-2021 AG Bromodichloromethane 28-MAY-2021 28-MAY-2021 AG Methyl Isobutyl Ketone 28-MAY-2021 28-MAY-2021 AG		Chloroform	28-MAY-202	28-MAY-202	1 AG
Carbon Tetrachloride 28-MAY-2021 28-MAY-2021 AG Benzene 28-MAY-2021 28-MAY-2021 AG 1,2-Dichloropropane 28-MAY-2021 28-MAY-2021 AG Trichloroethylene 28-MAY-2021 28-MAY-2021 AG Bromodichloromethane 28-MAY-2021 28-MAY-2021 AG Methyl Isobutyl Ketone 28-MAY-2021 28-MAY-2021 AG		1,2-Dichloroethane	28-MAY-202	28-MAY-202	1 AG
Benzene 28-MAY-2021 28-MAY-2021 AG 1,2-Dichloropropane 28-MAY-2021 28-MAY-2021 AG Trichloroethylene 28-MAY-2021 28-MAY-2021 AG Bromodichloromethane 28-MAY-2021 28-MAY-2021 AG Methyl Isobutyl Ketone 28-MAY-2021 28-MAY-2021 AG		1,1,1-Trichloroethane	28-MAY-202	28-MAY-202	1 AG
1,2-Dichloropropane 28-MAY-2021 28-MAY-2021 AG Trichloroethylene 28-MAY-2021 28-MAY-2021 AG Bromodichloromethane 28-MAY-2021 28-MAY-2021 AG Methyl Isobutyl Ketone 28-MAY-2021 28-MAY-2021 AG		Carbon Tetrachloride	28-MAY-202	28-MAY-202	1 AG
Trichloroethylene 28-MAY-2021 28-MAY-2021 AG Bromodichloromethane 28-MAY-2021 28-MAY-2021 AG Methyl Isobutyl Ketone 28-MAY-2021 28-MAY-2021 AG		Benzene	28-MAY-202	28-MAY-202	1 AG
Bromodichloromethane 28-MAY-2021 28-MAY-2021 AG Methyl Isobutyl Ketone 28-MAY-2021 28-MAY-2021 AG		1,2-Dichloropropane	28-MAY-202	28-MAY-202	1 AG
Methyl Isobutyl Ketone 28-MAY-2021 28-MAY-2021 AG		Trichloroethylene	28-MAY-202	28-MAY-202	1 AG
		Bromodichloromethane	28-MAY-202	28-MAY-202	1 AG
		Methyl Isobutyl Ketone	28-MAY-202	28-MAY-202	1 AG
			28-MAY-202	28-MAY-202	1 AG

Toluene

Dibromochloromethane

1,1,1,2-Tetrachloroethane

Ethylene Dibromide

Tetrachloroethylene

28-MAY-2021

28-MAY-2021

28-MAY-2021

28-MAY-2021

28-MAY-2021

AG

AG

AG

AG

AG

28-MAY-2021

28-MAY-2021

28-MAY-2021

28-MAY-2021

28-MAY-2021

Time Markers

AGAT WORK ORDER: 21Z750733

PROJECT: CO810.00

ATTENTION TO: Keith Brown

Sample ID	Sample Description	Sample Type	Date Sampled	ı
2501981	MW111-16	Soil	20-MAY-2021	

Sample ID	Sample Description	Sample Type	Date Sampled	Date Received
501981	MW111-16	Soil	20-MAY-2021	21-MAY-2021

O. Reg. 153(511) - VOCs (Soil)			
Parameter	Date Prepared	Date Analyzed	Initials
Chlorobenzene	28-MAY-2021	28-MAY-2021	AG
Ethylbenzene	28-MAY-2021	28-MAY-2021	AG
m & p-Xylene	28-MAY-2021	28-MAY-2021	AG
Bromoform	28-MAY-2021	28-MAY-2021	AG
Styrene	28-MAY-2021	28-MAY-2021	AG
1,1,2,2-Tetrachloroethane	28-MAY-2021	28-MAY-2021	AG
o-Xylene	28-MAY-2021	28-MAY-2021	AG
1,3-Dichlorobenzene	28-MAY-2021	28-MAY-2021	AG
1,4-Dichlorobenzene	28-MAY-2021	28-MAY-2021	AG
1,2-Dichlorobenzene	28-MAY-2021	28-MAY-2021	AG
Xylenes (Total)	28-MAY-2021	28-MAY-2021	SYS
1,3-Dichloropropene (Cis + Trans)	28-MAY-2021	28-MAY-2021	SYS
n-Hexane	28-MAY-2021	28-MAY-2021	AG
Toluene-d8	28-MAY-2021	28-MAY-2021	AG
4-Bromofluorobenzene	28-MAY-2021	28-MAY-2021	AG
Moisture Content	27-MAY-2021	27-MAY-2021	VB

Method Summary

CLIENT NAME: TERRAPEX ENVIRONMENTAL LTD

AGAT WORK ORDER: 21Z750733

PROJECT: CO810.00

ATTENTION TO: Keith Brown

SAMPLING SITE:1186,1188,1184 and 1196 Wellington street West, Ottawa, ON SAMPLED BY:EB

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Trace Organics Analysis	I	1	
F1 (C6 - C10)	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/FID
F1 (C6 to C10) minus BTEX	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/FID
Toluene-d8	VOL-91-5009	modified from EPA SW-846 5030C & 8260D	(P&T)GC/MS
F2 (C10 to C16)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
F3 (C16 to C34)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
F4 (C34 to C50)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
Gravimetric Heavy Hydrocarbons	VOL-91-5009	modified from CCME Tier 1 Method	BALANCE
Moisture Content	ORG-91-5009	CCME Tier 1 Method	BALANCE
Terphenyl	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
Dichlorodifluoromethane	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
Vinyl Chloride	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
Bromomethane	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
Trichlorofluoromethane	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
Acetone	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
1,1-Dichloroethylene	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
Methylene Chloride	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
Trans- 1,2-Dichloroethylene	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
Methyl tert-butyl Ether	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
1,1-Dichloroethane	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
Methyl Ethyl Ketone	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
Cis- 1,2-Dichloroethylene	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
Chloroform	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
1,2-Dichloroethane	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
1,1,1-Trichloroethane	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
Carbon Tetrachloride	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
Benzene	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
1,2-Dichloropropane	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
Trichloroethylene	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
Bromodichloromethane	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
Methyl Isobutyl Ketone	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
1,1,2-Trichloroethane	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS

Method Summary

CLIENT NAME: TERRAPEX ENVIRONMENTAL LTD

AGAT WORK ORDER: 21Z750733 PROJECT: CO810.00 ATTENTION TO: Keith Brown SAMPLED BY:EB

SAMPLING SITE:1186,1188,1184 and 1196 Wellington street West, Ottawa, ON

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Toluene	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
Dibromochloromethane	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
Ethylene Dibromide	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
Tetrachloroethylene	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
1,1,1,2-Tetrachloroethane	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
Chlorobenzene	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
Ethylbenzene	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
m & p-Xylene	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
Bromoform	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
Styrene	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
1,1,2,2-Tetrachloroethane	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
o-Xylene	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
1,3-Dichlorobenzene	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
1,4-Dichlorobenzene	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
1,2-Dichlorobenzene	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
Xylenes (Total)	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
1,3-Dichloropropene (Cis + Trans)	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
n-Hexane	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
Toluene-d8	VOL-91-5002	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
4-Bromofluorobenzene	VOL-91-5002	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS

Mississauga, Ontario L4Z 1Y2 Ph: 905,712,5100 Fax: 905,712,5122 webearth.agatlabs.com

Laboratory Use Only 5835 Coopers Avenue

Cooler Quantity:	One	-100	11 1
Arrival Temperatures:	40	1 47	4.1
Custody Seal Intact; Notes:	□Yes	□No	<u> □N//</u>

Chain of C	custody Reco	ord If this is a D	Orinking Water s	sample, plea	se use Drin	king Water Chain o	of Custody Form (pe	otable water	consum	ned by h	numans	-					mporati EC		1	4.0	-1-	1-7	4-1
Report Inform	nation: Terrapex Environmen	tal Ltd.			Reg (Please	Regulatory Requirements: (Please check all applicable boxes)								stody S	eal Inta		/ -	Yes]No	ON		
Contact:	Keith Brown				- X R	egulation 153/04	Excess Soils	R406	☐ Se					Ì									
Address:	1-20 Gurdwara Road	d,			- Ta	ble	Table Indicate			Sanitar	y 🔲	storm		Turnaround Time (TAT) Required:									
	Ottawa, ON K2E 8B3				- 11	Ind/Com	Indicate	One		Regi	on			- 11	Reg	ular	TAT		A	5 to 7	Busines	s Days	
Phone: Reports to be sent to:	613 745 6471 ext 230 kbrown@terrapex.com	Fax:			- E	Res/Park Agriculture exture (Check One)	Regulation 8	558			ter Qua				Rus		(Rush Si						. 6.4
1. Email: 2. Email:		•				Coarse Fine	ССМЕ		Ott		te One					Da				2 Busin Days Jush Su			Next Busin Day Apoly):
Project Information Project: Site Location:	mation: CO810.00 1186, 1188, 1194 and	1196 Wellington Stre	et West, Ottay	wa. ON	Re	this submissi cord of Site Co	Autority to the contract of th		ertifica	Guld ate o	deline						Please	provi	de pri	ior notif	ication	for rush	
Sampled By:	ER	i i i i i i i i i i i i i i i i i i i	at most, otta			L ICS L	1 140		1 16.	3	ш	INO				or 'Sar	ne Day	anal	ysls, p	please	contac	your A	GAT CPM
AGAT Quote #:		PO:			1 6-	nple Matrix Le	See A	Hg, CrVI, DOC	C	Reg 1	53				J. neg 558	O.R	eg 406		-	1211			
Invoice Information: Company: Terrapex Environmental Ltd. Contact: Accounts Payable Address: Email:		B GW O P S SD SW	O Oil P Paint S Soil SD Sediment			& inorganics	No.	L-F4 PHCs F4G if require				Landfill Disposal Characterization TQLP:	Soils SPLP Rainwater Leach	Soils Characterizat MS Metals, BTEX.	Salt - EC/SAR								
Samp	ole Identification	Date Sampled	Time Sampled	# of Containers	Sample Matrix	A CONTRACTOR OF THE PARTY OF TH	nments/ Instructions	Y/N	Metals	Metals	BTEX, F3 Analyze	PAHS	PCBs	VOC	TCLP: DM&	Excess SPI P: T	Excess pH. ICP	Salt -					
ma	111-16	May 20/2	14:50 8		S			N			X			X									
			AM PM						-														
			AM							-				4				_			-	1-1	
			AM PM									3	=										- (
			AM PM																				
			AM PM																				1-1
			AM PM									HU											
			AM PM	1								110											
			AM PM																				
			AN PM																				* 1
			AM									100											

Company: Contact: Address: Email:	Accounts Payable	LIQ.			S SD	Paint Soil Sediment Surface Water	Fleid Filtered - Metals	& Inorganics	-□ crvi,□Hg,□H	1-F4 PHCs F4G if required []				Landfill Disposal Characteriza	and a	oils Characteri	MS Metals, BTEX, F.	- EC/SAR				y Hazardous or High Co
Sa	mple Identification	Date Sampled	Time Sampled	# of Containers	Sample Matrix	Comments/ Special Instructions	Y/N	Metals	Metals	BTEX, F1-F4 Analyze F4G	PAHS	PCBs	VOC	Landfill TCP-	Excess Soils	Excess	pH, ICP	Salt - E				Potential
mu	d1-111ce	May 20/2	14:50 8	1) 2	S	F 10 - F 5 - F 5	N			X			X									
			AN PN		1 = 1																	
			AN Ph							l v												8
			An Ph								4.3											10_
			An Ph		/																	
			AN PN																			
			AN								HI					-	4					
			AN PN														4	-				
			AN Ph														4					
			An Ph																			3
			An Ph	1			1						- 1									
umples Relinquistied Di propies Halinquistied by amples Relinquistied Br	(M)-	E OPVID	May 21	ZI They	1500	Semples Resolved by (Print Name and Sign): Source Resolved by (Print Name and Sign): Source Resolved by (Print Name and Sign):	_	,		ouy		Diate 2	21/2	510	Time		30	Oan Nº:	Y 0 m	of	1	
																		-		Page 1	1 of 11	

CLIENT NAME: TERRAPEX ENVIRONMENTAL LTD 20 GURDWARA ROAD, UNIT 1 OTTAWA, ON K2E 8B3 (613) 745-6471

ATTENTION TO: Keith Brown PROJECT: CO810.00

AGAT WORK ORDER: 21Z752731

TRACE ORGANICS REVIEWED BY: Neli Popnikolova, Senior Chemist WATER ANALYSIS REVIEWED BY: Jacky Zhu, Spectroscopy Technician

DATE REPORTED: Jun 03, 2021

PAGES (INCLUDING COVER): 28 VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

Notes	

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days after receipt unless a Long Term Storage Agreement is signed and returned. Some specialty analysis may
 be exempt, please contact your Client Project Manager for details.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other
 third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the
 services.
- This Certificate shall not be reproduced except in full, wi hout the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
 contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.

AGAT Laboratories (V1)

Page 1 of 28

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)

Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in his report may not necessarily be included in the scope of accredita ion. Measurement Uncertainty is not taken into consideration when sta ing conformity with a specified requirement.

SAMPLING SITE:

Certificate of Analysis

AGAT WORK ORDER: 21Z752731

PROJECT: CO810.00

ATTENTION TO: Keith Brown

SAMPLED BY:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aga labs.com

O Rea	153(511)	- RTFX	(Water)
O. HEU.	10000111	- ローム	(VVal c iii

			O. Heg.	133(311) - BTEX (Water)
DATE RECEIVED: 2021-05-2	6			DATE REPORTED: 2021-06-03
	SA	AMPLE DESCRIPTION:	Trip Spike	
		SAMPLE TYPE:	Water	
		DATE SAMPLED:		
Parameter	Unit	G/S RDL	2522675	
Benzene	%		105	
Toluene	%		95	
Ethylbenzene	%		96	
m & p-Xylene	%		109	
o-Xylene	%		101	
Xylenes (Total)	μg/L	0.20	210	
Surrogate	Unit	Acceptable Limits		
Toluene-d8	% Recovery	50-140	93	
4-Bromofluorobenzene	% Recovery	50-140	114	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

2522675 Results relate only to the items tested. Analysis perfored at AGAT Toronto (unless marked by *)

SAMPLING SITE:

Certificate of Analysis

AGAT WORK ORDER: 21Z752731

PROJECT: CO810.00

ATTENTION TO: Keith Brown

SAMPLED BY:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aga labs.com

O. Rea. 153(511) - PHCs F1 - F4 (-B	TC\/\ /\\/_+~"/
() Bea 153(511) - PHUS ET - E4 (-B	i E X i (VVateri

			• • • • • • • • • • • • • • • • • • • •	.egee(e	, 1116611 11 (D12x) (Water)
DATE RECEIVED: 2021-05-26					DATE REPORTED: 2021-06-03
	SA	AMPLE DES	CRIPTION:	MW111	
		SAMI	PLE TYPE:	Water	
		DATES	SAMPLED:	2021-05-25 13:15	
Parameter	Unit	G/S	RDL	2522627	
F1 (C6 - C10)	μg/L	750	25	84	
F1 (C6 to C10) minus BTEX	μg/L	750	25	84	
=2 (C10 to C16)	μg/L	150	100	<100	
=3 (C16 to C34)	μg/L	500	100	<100	
=4 (C34 to C50)	μg/L	500	100	<100	
Gravimetric Heavy Hydrocarbons	μg/L		500	NA	
Sediment				No	
Surrogate	Unit	Acceptab	le Limits		
Toluene-d8	% Recovery	50-1	40	81.8	
Terphenyl	%	60-1	40	82	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Non-Potable Ground Water - All Types of Property Uses - Medium and Fine Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

2522627 The C6-C10 fraction is calculated using Toluene response factor.

C6-C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX. The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and nC34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16 - C50 and are only determined if the chromatogram of the C34 - C50 Hydrocarbons indicated that hydrocarbons > C50 are present. The chromatogram has returned to baseline by the retention time of nC50.

Total C6-C50 results are corrected for BTEX contribution.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Fractions 1-4 are quantified with the contribution of PAHs. Under Ontario Regulation 153, results are considered valid without determining the PAH contribution if not requested by the client.

Sediment parameter is comment only based on visual inspection of the sample prior to extraction and is not an accredited test.

Analysis perfored at AGAT Toronto (unless marked by *)

Certificate of Analysis

AGAT WORK ORDER: 21Z752731

PROJECT: CO810.00

ATTENTION TO: Keith Brown

SAMPLED BY:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aga labs.com

SAMPLING SITE:

O Rog 153(511) - PHCs E1 - E4 (Water)

				O. neg. 13	3(511) - PH	US F1 - F4 (vvaler)		
DATE RECEIVED: 2021-05-26									DATE REPORTED: 2021-06-03
	S	SAMPLE DESCR		MW109	MW105	MW106	MW114	MW104	
		SAMPL DATE SA	E TYPE:	Water 2021-05-25 11:25	Water 2021-05-25 13:50	Water 2021-05-25 14:40	Water 2021-05-25 15:30	Water 2021-05-25 15:30	
Parameter	Unit	G/S	RDL	2522626	2522628	2522629	2522630	2522667	
Benzene	μg/L	430	0.20	<0.20	<0.20	<0.20	0.26	0.33	
Toluene	μg/L	18000	0.20	< 0.20	<0.20	<0.20	<0.20	<0.20	
Ethylbenzene	μg/L	2300	0.10	<0.10	<0.10	<0.10	0.97	1.26	
m & p-Xylene	μg/L		0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
o-Xylene	μg/L		0.10	<0.10	<0.10	<0.10	<0.10	< 0.10	
Xylenes (Total)	μg/L	4200	0.20	< 0.20	< 0.20	< 0.20	<0.20	< 0.20	
F1 (C6 - C10)	μg/L	750	25	<25	<25	<25	52	50	
F1 (C6 to C10) minus BTEX	μg/L	750	25	<25	<25	<25	51	48	
F2 (C10 to C16)	μg/L	150	100	<100	<100	<100	<100	<100	
F3 (C16 to C34)	μg/L	500	100	<100	<100	<100	<100	<100	
F4 (C34 to C50)	μg/L	500	100	<100	<100	<100	<100	<100	
Gravimetric Heavy Hydrocarbons	μg/L		500	NA	NA	NA	NA	NA	
Sediment				No	No	No	No	No	
Surrogate	Unit	Acceptable	Limits						
Toluene-d8	% Recovery	60-14	0	100	70.5	94.5	88.0	110	
Terphenyl	% Recovery	60-14	0	83	91	82	81	77	

Certificate of Analysis

AGAT WORK ORDER: 21Z752731

PROJECT: CO810.00

ATTENTION TO: Keith Brown

SAMPLED BY:

O. Reg. 153(511) - PHCs F1 - F4 (Water)

DATE RECEIVED: 2021-05-26 **DATE REPORTED: 2021-06-03**

Comments:

SAMPLING SITE:

RDL - Reported Detection Limit: G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Non-Potable Ground Water - All Types of Property Uses - Medium and Fine Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

2522626-2522667 The C6-C10 fraction is calculated using Toluene response factor.

Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene and o-Xylene.

C6-C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX.

The calculated parameters are non-accredited. The parameters that are components of the calculation are accredited.

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and nC34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16 - C50 and are only determined if the chromatogram of the C34 - C50 Hydrocarbons indicated that hydrocarbons > C50 are present.

The chromatogram has returned to baseline by the retention time of nC50.

Total C6-C50 results are corrected for BTEX contribution.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor. nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Fractions 1-4 are quantified with the contribution of PAHs. Under Ontario Regulation 153/04, results are considered valid without determining the PAH contribution if not requested by the client.

NA = Not Applicable

Sediment parameter is comment only based on visual inspection of the sample prior to extraction and is not an accredited test.

Analysis perfored at AGAT Toronto (unless marked by *)

Certified By:

NPopukoloj

5835 COOPERS AVENUE

MISSISSAUGA, ONTARIO CANADA L4Z 1Y2

http://www.aga labs.com

TEL (905)712-5100 FAX (905)712-5122

SAMPLING SITE:

Toluene-d8

Certificate of Analysis

AGAT WORK ORDER: 21Z752731

PROJECT: CO810.00

ATTENTION TO: Keith Brown

SAMPLED BY:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aga labs.com

O. Rea.	153(511)	- PHCs	F1/BTEX	(Water)
---------	----------	--------	---------	---------

				31 1 tog 1 1 oo (() () () () () () () () () ()
DATE RECEIVED: 2021-05-26					DATE REPORTED: 2021-06-03
	;	SAMPLE DES	CRIPTION:	Trip Blank	
		SAMI	PLE TYPE:	Water	
		DATE S	SAMPLED:		
Parameter	Unit	G/S	RDL	2522676	
Benzene	μg/L	430	0.20	<0.20	
Toluene	μg/L	18000	0.20	<0.20	
Ethylbenzene	μg/L	2300	0.10	<0.10	
m & p-Xylene	μg/L		0.20	<0.20	
o-Xylene	μg/L		0.10	<0.10	
Xylenes (Total)	μg/L	4200	0.20	<0.20	
F1 (C6-C10)	μg/L	750	25	<25	
F1 (C6 to C10) minus BTEX	μg/L	750	25	<25	
Surrogate	Unit	Acceptab	le Limits		

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Non-Potable Ground Water - All

Types of Property Uses - Medium and Fine Textured Soils

% Recovery

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

2522676 The C6-C10 fraction is calculated using Toluene response factor.

Total C6-C10 results are corrected for BTEX contributions.

Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene and o-Xylene.

C6-C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX.

60-140

The calculated parameters are non-accredited. The parameters that are components of the calculation are accredited.

102

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor.

Extraction and holding times were met for this sample.

NA = Not Applicable

Analysis perfored at AGAT Toronto (unless marked by *)

SAMPLING SITE:

Certificate of Analysis

AGAT WORK ORDER: 21Z752731

PROJECT: CO810.00

ATTENTION TO: Keith Brown

SAMPLED BY:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aga labs.com

O. Reg. 153(511) - VOCs (Water)

					33(311) 1333 (114.31)
DATE RECEIVED: 2021-05-26					DATE REPORTED: 2021-06-03
	;	SAMPLE DESC	RIPTION:	MW111	
		SAMF	LE TYPE:	Water	
		DATE S	AMPLED:	2021-05-25	
Parameter	Unit	G/S	RDL	13:15 2522627	
Dichlorodifluoromethane	μg/L	4400	0.40	<0.40	
Vinyl Chloride	μg/L	1.7	0.34	<0.34	
Bromomethane	μg/L	56	0.40	< 0.40	
Trichlorofluoromethane	μg/L	2500	0.80	<0.80	
Acetone	μg/L	130000	2.0	<2.0	
1,1-Dichloroethylene	μg/L	17	0.60	<0.60	
Methylene Chloride	μg/L	5500	0.60	<0.60	
trans- 1,2-Dichloroethylene	μg/L	17	0.40	<0.40	
Methyl tert-butyl ether	μg/L	1400	0.40	<0.40	
1,1-Dichloroethane	μg/L	3100	0.60	<0.60	
Methyl Ethyl Ketone	μg/L	1500000	2.0	<2.0	
cis- 1,2-Dichloroethylene	μg/L	17	0.40	< 0.40	
Chloroform	μg/L	22	0.40	< 0.40	
1,2-Dichloroethane	μg/L	12	0.40	< 0.40	
1,1,1-Trichloroethane	μg/L	6700	0.60	<0.60	
Carbon Tetrachloride	μg/L	8.4	0.40	< 0.40	
Benzene	μg/L	430	0.40	< 0.40	
1,2-Dichloropropane	μg/L	140	0.40	<0.40	
Trichloroethylene	μg/L	17	0.40	<0.40	
Bromodichloromethane	μg/L	85000	0.40	<0.40	
Methyl Isobutyl Ketone	μg/L	580000	2.0	<2.0	
1,1,2-Trichloroethane	μg/L	30	0.40	<0.40	
Toluene	μg/L	18000	0.40	<0.40	
Dibromochloromethane	μg/L	82000	0.20	<0.20	
Ethylene Dibromide	μg/L	0.83	0.20	<0.20	
Tetrachloroethylene	μg/L	17	0.40	<0.40	
1,1,1,2-Tetrachloroethane	μg/L	28	0.20	<0.20	
Chlorobenzene	μg/L	630	0.20	<0.20	
Ethylbenzene	μg/L	2300	0.20	<0.20	

SAMPLING SITE:

Certificate of Analysis

AGAT WORK ORDER: 21Z752731

PROJECT: CO810.00

ATTENTION TO: Keith Brown

SAMPLED BY:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aga labs.com

O. Reg. 153(511) - VOCs (Water)

				O. Reg.	153(511) - VOCs (Water)
DATE RECEIVED: 2021-05-2	26				DATE REPORTED: 2021-06-03
	SA	AMPLE DES	CRIPTION:	MW111	
		SAM	PLE TYPE:	Water	
		DATE	SAMPLED:	2021-05-25 13:15	
Parameter	Unit	G/S	RDL	2522627	
m & p-Xylene	μg/L		0.40	<0.40	
Bromoform	μg/L	770	0.20	<0.20	
Styrene	μg/L	9100	0.20	<0.20	
1,1,2,2-Tetrachloroethane	μg/L	15	0.20	<0.20	
o-Xylene	μg/L		0.20	<0.20	
1,3-Dichlorobenzene	μg/L	9600	0.20	<0.20	
1,4-Dichlorobenzene	μg/L	67	0.20	<0.20	
1,2-Dichlorobenzene	μg/L	9600	0.20	<0.20	
1,3-Dichloropropene	μg/L	45	0.60	<0.60	
Xylenes (Total)	μg/L	4200	0.40	< 0.40	
n-Hexane	μg/L	520	0.40	<0.40	
Surrogate	Unit	Acceptab	le Limits		
Toluene-d8	% Recovery	50-	140	114	
4-Bromofluorobenzene	% Recovery	50-	140	84	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Non-Potable Ground Water - All

Types of Property Uses - Medium and Fine Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

2522627 Dilution factor=2

The sample was diluted because it was foamy. The reporting detection limit has been corrected for the dilution factor used.

Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene and o-Xylene.

1,3-Dichloropropene total is a calculated parameter. The calculated value is the sum of Cis-1,3-Dichloropropene and Trans-1,3-Dichloropropene.

The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

Analysis perfomed at AGAT Toronto (unless marked by *)

Certificate of Analysis

AGAT WORK ORDER: 21Z752731

PROJECT: CO810.00

ATTENTION TO: Keith Brown

SAMPLED BY:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aga labs.com

CLIENT NAME: TERRAPEX ENVIRONMENTAL LTD SAMPLING SITE:

O. Reg. 153(511) - Metals & Inorganics (Water)

						o a morgamo	, ,				
DATE RECEIVED: 2021-05-26								Ι	DATE REPORTE	ED: 2021-06-03	
			CRIPTION: PLE TYPE: SAMPLED:	MW111 Water 2021-05-25 13:15		MW105 Water 2021-05-25 13:50		MW106 Water 2021-05-25 14:40	MW114 Water 2021-05-25 15:30	MW104 Water 2021-05-25 15:30	
Parameter	Unit	G/S	RDL	2522627	RDL	2522628	RDL	2522629	2522630	2522667	
Dissolved Antimony	μg/L	20000	1.0	<1.0	1.0	<1.0	1.0	<1.0	<1.0	<1.0	
Dissolved Arsenic	μg/L	1900	1.0	4.5	1.0	<1.0	1.0	3.9	1.6	5.5	
Dissolved Barium	μg/L	29000	2.0	138	2.0	13.0	2.0	140	133	140	
Dissolved Beryllium	μg/L	67	0.50	< 0.50	0.50	< 0.50	0.50	<0.50	< 0.50	< 0.50	
Dissolved Boron	μg/L	45000	10.0	95.1	10.0	20.6	10.0	144	118	128	
Dissolved Cadmium	μg/L	2.7	0.20	<0.20	0.20	<0.20	0.20	<0.20	<0.20	<0.20	
Dissolved Chromium	μg/L	810	2.0	<2.0	2.0	<2.0	2.0	<2.0	<2.0	<2.0	
Dissolved Cobalt	μg/L	66	0.50	0.54	0.50	< 0.50	0.50	0.98	0.80	1.00	
Dissolved Copper	μg/L	87	1.0	<1.0	1.0	2.7	1.0	1.2	2.4	<1.0	
Dissolved Lead	μg/L	25	0.50	< 0.50	0.50	< 0.50	0.50	<0.50	< 0.50	< 0.50	
Dissolved Molybdenum	μg/L	9200	0.50	3.68	0.50	2.07	0.50	11.2	4.87	3.64	
Dissolved Nickel	μg/L	490	3.0	<3.0	3.0	<3.0	3.0	4.4	<3.0	3.7	
Dissolved Selenium	μg/L	63	1.0	<1.0	1.0	<1.0	1.0	<1.0	<1.0	<1.0	
Dissolved Silver	μg/L	1.5	0.20	<0.20	0.20	<0.20	0.20	<0.20	<0.20	<0.20	
Dissolved Thallium	μg/L	510	0.30	< 0.30	0.30	< 0.30	0.30	< 0.30	< 0.30	<0.30	
Dissolved Uranium	μg/L	420	0.50	1.10	0.50	< 0.50	0.50	2.45	2.19	2.33	
Dissolved Vanadium	μg/L	250	0.40	< 0.40	0.40	< 0.40	0.40	0.40	< 0.40	0.52	
Dissolved Zinc	μg/L	1100	5.0	<5.0	5.0	46.5	5.0	< 5.0	8.9	6.6	
Mercury	μg/L	2.8	0.02	< 0.02	0.02	< 0.02	0.02	< 0.02	< 0.02	<0.02	
Chromium VI	μg/L	140	2.000	<2.000	2.000	<2.000	2.000	<2.000	<2.000	<2.000	
Cyanide, Free	μg/L	66	2	<2	2	<2	2	<2	<2	<2	
Dissolved Sodium	μg/L	2300000	500	706000	50	23800	1000	1630000	1620000	1620000	
Chloride	μg/L	2300000	100	972000	100	17600	244	2930000	3230000	3230000	
Electrical Conductivity	uS/cm	NA	2	4130	2	225	2	9760	10600	10600	
рН	pH Units		NA	7.56	NA	7.43	NA	7.53	7.50	7.53	
Electrical Conductivity pH	uS/cm	NA									

Certificate of Analysis

AGAT WORK ORDER: 21Z752731

PROJECT: CO810.00

ATTENTION TO: Keith Brown

SAMPLED BY:

O. Reg. 153(511) - Metals & Inorganics (Water)

DATE REPORTED: 2021-06-03 DATE RECEIVED: 2021-05-26

RDL - Reported Detection Limit: G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Non-Potable Ground Water - All Comments: Types of Property Uses - Medium and Fine Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

2522627-2522667 Metals analysis completed on a filtered sample.

CLIENT NAME: TERRAPEX ENVIRONMENTAL LTD

Dilution required, RDL has been increased accordingly.

Analysis perfored at AGAT Toronto (unless marked by *)

SAMPLING SITE:

Certified By:

5835 COOPERS AVENUE

MISSISSAUGA, ONTARIO CANADA L4Z 1Y2

http://www.aga labs.com

TEL (905)712-5100 FAX (905)712-5122

Exceedance Summary

AGAT WORK ORDER: 21Z752731

PROJECT: CO810.00

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aga labs.com

CLIENT NAME: TERRAPEX ENVIRONMENTAL LTD

ATTENTION TO: Keith Brown

SAMPLEID	SAMPLE TITLE	GUIDELINE	ANALYSIS PACKAGE	PARAMETER	UNIT	GUIDEVALUE	RESULT
2522629	MW106	ON T3 NPGW MFT	O. Reg. 153(511) - Metals & Inorganics (Water)	Chloride	μg/L	2300000	2930000
2522630	MW114	ON T3 NPGW MFT	O. Reg. 153(511) - Metals & Inorganics (Water)	Chloride	μg/L	2300000	3230000
2522667	MW104	ON T3 NPGW MFT	O. Reg. 153(511) - Metals & Inorganics (Water)	Chloride	μg/L	2300000	3230000

Quality Assurance

CLIENT NAME: TERRAPEX ENVIRONMENTAL LTD AGAT WORK ORDER: 21Z752731

PROJECT: CO810.00 ATTENTION TO: Keith Brown SAMPLING SITE: SAMPLED BY:

SAMPLING SITE.								JAIVIP	LED D	1.					
			Trac	e Or	gani	cs Ar	alys	is							
RPT Date: Jun 03, 2021			Г	UPLICAT	E		REFERE	NCE MA	TERIAL	METHOD	BLAN	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD	Method Blank	Measured Value	Lir	eptable mits	Recovery	Lir	eptable mits	Recovery	Lir	ptable nits
								Lower	Upper		Lower	Upper		Lower	Upper
O. Reg. 153(511) - BTEX (Water)															
Benzene	2520444		<0.20	<0.20	NA	< 0.20	82%	50%	140%	86%		130%	94%		140%
Toluene	2520444		<0.20	<0.20	NA	< 0.20	91%	50%		115%		130%	102%	50%	140%
Ethylbenzene	2520444		<0.10	<0.10	NA	< 0.10	95%	50%		112%		130%	110%	50%	
m & p-Xylene	2520444		<0.20	<0.20	NA	< 0.20	120%	50%	140%	117%		130%	99%		140%
o-Xylene	2520444		<0.10	<0.10	NA	< 0.10	92%	50%	140%	86%	60%	130%	95%	50%	140%
O. Reg. 153(511) - PHCs F1/BTEX	(Water)														
Benzene	2525660		<0.20	< 0.20	NA	< 0.20	119%	60%	140%	108%	60%	140%	114%	60%	140%
Toluene	2525660		<0.20	<0.20	NA	< 0.20	111%	60%	140%	103%	60%	140%	107%	60%	140%
Ethylbenzene	2525660		<0.10	< 0.10	NA	< 0.10	100%	60%	140%	99%	60%	140%	109%	60%	140%
m & p-Xylene	2525660		< 0.20	< 0.20	NA	< 0.20	99%	60%	140%	92%	60%	140%	114%	60%	140%
o-Xylene	2525660		<0.10	<0.10	NA	< 0.10	88%	60%	140%	104%	60%	140%	111%	60%	140%
F1 (C6-C10)	2525660		<25	<25	NA	< 25	93%	60%	140%	107%	60%	140%	92%	60%	140%
O. Reg. 153(511) - PHCs F1 - F4 (Water)														
Benzene	2525660		<0.20	< 0.20	NA	< 0.20	119%	60%	140%	108%	60%	140%	114%	60%	140%
Toluene	2525660		<0.20	<0.20	NA	< 0.20	111%	60%	140%	103%	60%	140%	107%	60%	140%
Ethylbenzene	2525660		<0.10	< 0.10	NA	< 0.10	100%	60%	140%	99%	60%	140%	109%	60%	140%
m & p-Xylene	2525660		<0.20	< 0.20	NA	< 0.20	99%	60%	140%	92%	60%	140%	114%	60%	140%
o-Xylene	2525660		<0.10	<0.10	NA	< 0.10	88%	60%	140%	104%	60%	140%	111%	60%	140%
F1 (C6 - C10)	2525660		<25	<25	NA	< 25	93%	60%	140%	107%	60%	140%	92%	60%	140%
F2 (C10 to C16)	2525654		< 100	< 100	NA	< 100	98%	60%	140%	88%	60%	140%	95%	60%	140%
F3 (C16 to C34)	2525654		< 100	< 100	NA	< 100	94%	60%	140%	89%	60%	140%	101%	60%	140%
F4 (C34 to C50)	2525654		< 100	< 100	NA	< 100	92%	60%	140%	80%	60%	140%	95%	60%	140%
O. Reg. 153(511) - PHCs F1 - F4 (-BTEX) (Wa	ter)													
F1 (C6 - C10)	2525660		<25	<25	NA	< 25	93%	60%	140%	107%	60%	140%	92%	60%	140%
O. Reg. 153(511) - VOCs (Water)															
Dichlorodifluoromethane	2520444		<0.20	< 0.20	NA	< 0.20	105%	50%	140%	97%	50%	140%	106%	50%	140%
Vinyl Chloride	2520444		< 0.17	< 0.17	NA	< 0.17	97%	50%	140%	108%	50%	140%	98%	50%	140%
Bromomethane	2520444		< 0.20	< 0.20	NA	< 0.20	100%	50%	140%	99%	50%	140%	87%	50%	140%
Trichlorofluoromethane	2520444		< 0.40	< 0.40	NA	< 0.40	99%	50%	140%	103%	50%	140%	101%	50%	140%
Acetone	2520444		<1.0	<1.0	NA	< 1.0	92%	50%	140%	108%	50%	140%	87%	50%	140%
1,1-Dichloroethylene	2520444		<0.30	< 0.30	NA	< 0.30	109%	50%	140%	109%	60%	130%	101%	50%	140%
Methylene Chloride	2520444		< 0.30	< 0.30	NA	< 0.30	111%	50%	140%	110%	60%	130%	90%		140%
trans- 1,2-Dichloroethylene	2520444		<0.20	<0.20	NA	< 0.20	97%	50%	140%	82%	60%	130%	94%	50%	140%
Methyl tert-butyl ether	2520444		<0.20	<0.20	NA	< 0.20	99%		140%	102%		130%	91%	50%	140%
1,1-Dichloroethane	2520444		<0.30	< 0.30	NA	< 0.30	94%	50%	140%	89%	60%	130%	89%	50%	140%
Methyl Ethyl Ketone	2520444		<1.0	<1.0	NA	< 1.0	99%	50%	140%	101%	50%	140%	98%	50%	140%
cis- 1,2-Dichloroethylene	2520444		<0.20	<0.20	NA	< 0.20	92%		140%	102%		130%	100%		140%
Chloroform	2520444		<0.20	<0.20	NA	< 0.20	111%		140%			130%	99%		140%
						_					_	-			

AGAT QUALITY ASSURANCE REPORT (V1)

Page 12 of 28

AGAT Laboratories is accredited to ISO/IEC 17025 by he Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are loca ion and parameter specific. A complete lis ing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in his report may not necessarily be included in he scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Quality Assurance

CLIENT NAME: TERRAPEX ENVIRONMENTAL LTD

AGAT WORK ORDER: 21Z752731

PROJECT: CO810.00

ATTENTION TO: Keith Brown

SAMPLING SITE: SAMPLED BY:

5/ titli Elita 5/12:								, (1011		••					
	7	race	Org	anics	Ana	alysis	(Cor	ntin	ued	l)					
RPT Date: Jun 03, 2021			[DUPLICAT	E		REFEREN	NCE MA	TERIAL	METHOD	BLAN	K SPIKE	MAT	RIX SPI	IKE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable nits	Recovery	1 1 1	eptable mits	Recovery		eptable mits
		ld	•	,			Value	Lower	Upper	ĺ	Lower	Upper		Lower	Upper
1,2-Dichloroethane	2520444		<0.20	<0.20	NA	< 0.20	115%	50%	140%	105%	60%	130%	110%	50%	140%
1,1,1-Trichloroethane	2520444		<0.30	<0.30	NA	< 0.30	99%	50%	140%	107%	60%	130%	104%	50%	140%
Carbon Tetrachloride	2520444		<0.20	<0.20	NA	< 0.20	97%	50%	140%	92%	60%	130%	106%	50%	140%
Benzene	2520444		<0.20	< 0.20	NA	< 0.20	82%	50%	140%	86%	60%	130%	94%	50%	140%
1,2-Dichloropropane	2520444		<0.20	< 0.20	NA	< 0.20	98%	50%	140%	111%	60%	130%	116%	50%	140%
Trichloroethylene	2520444		<0.20	< 0.20	NA	< 0.20	91%	50%	140%	93%	60%	130%	93%	50%	140%
Bromodichloromethane	2520444		<0.20	<0.20	NA	< 0.20	103%	50%	140%	94%	60%	130%	89%	50%	140%
Methyl Isobutyl Ketone	2520444		<1.0	<1.0	NA	< 1.0	96%	50%	140%	98%	50%	140%	104%	50%	140%
1,1,2-Trichloroethane	2520444		<0.20	< 0.20	NA	< 0.20	107%	50%	140%	98%	60%	130%	97%	50%	140%
Toluene	2520444		<0.20	< 0.20	NA	< 0.20	91%	50%	140%	115%	60%	130%	102%	50%	140%
Dibromochloromethane	2520444		<0.10	< 0.10	NA	< 0.10	97%	50%	140%	109%	60%	130%	83%	50%	140%
Ethylene Dibromide	2520444		<0.10	<0.10	NA	< 0.10	94%	50%	140%	84%	60%	130%	96%	50%	140%
Tetrachloroethylene	2520444		<0.20	<0.20	NA	< 0.20	106%	50%	140%	95%	60%	130%	113%	50%	140%
1,1,1,2-Tetrachloroethane	2520444		<0.10	< 0.10	NA	< 0.10	118%	50%	140%	96%	60%	130%	97%	50%	140%
Chlorobenzene	2520444		<0.10	< 0.10	NA	< 0.10	97%	50%	140%	97%	60%	130%	101%	50%	140%
Ethylbenzene	2520444		<0.10	< 0.10	NA	< 0.10	95%	50%	140%	112%	60%	130%	110%	50%	140%
m & p-Xylene	2520444		<0.20	<0.20	NA	< 0.20	120%	50%	140%	117%	60%	130%	99%	50%	140%
Bromoform	2520444		<0.10	<0.10	NA	< 0.10	93%	50%	140%	88%	60%	130%	79%	50%	140%
Styrene	2520444		<0.10	< 0.10	NA	< 0.10	89%	50%	140%	90%	60%	130%	99%	50%	140%
1,1,2,2-Tetrachloroethane	2520444		<0.10	< 0.10	NA	< 0.10	102%	50%	140%	85%	60%	130%	81%	50%	140%
o-Xylene	2520444		<0.10	< 0.10	NA	< 0.10	92%	50%	140%	86%	60%	130%	95%	50%	140%
1,3-Dichlorobenzene	2520444		<0.10	<0.10	NA	< 0.10	109%	50%	140%	85%	60%	130%	82%	50%	140%
1,4-Dichlorobenzene	2520444		<0.10	<0.10	NA	< 0.10	109%	50%	140%	100%	60%	130%	87%	50%	140%
1,2-Dichlorobenzene	2520444		<0.10	< 0.10	NA	< 0.10	103%	50%	140%	110%	60%	130%	90%	50%	140%
n-Hexane	2520444		<0.20	<0.20	NA	< 0.20	88%	50%	140%	85%	60%	130%	87%	50%	140%

Comments: When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

Quality Assurance

CLIENT NAME: TERRAPEX ENVIRONMENTAL LTD

AGAT WORK ORDER: 21Z752731

PROJECT: CO810.00

ATTENTION TO: Keith Brown

SAMPLING SITE: SAMPLED BY:

Water Analysis															
RPT Date: Jun 03, 2021				UPLICATI	E		REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable nits	Recovery		ptable nits	Recovery		ptable nits
		ld					Value	Lower	Upper	,	Lower	Upper	,	Lower	Upper
O. Reg. 153(511) - Metals & Inorg	anics (Wate	er)													
Dissolved Antimony	2525654		<1.0	<1.0	NA	< 1.0	100%	70%	130%	105%	80%	120%	100%	70%	130%
Dissolved Arsenic	2525654		6.0	5.5	8.7%	< 1.0	84%	70%	130%	105%	80%	120%	101%	70%	130%
Dissolved Barium	2525654		87.8	87.5	0.3%	< 2.0	99%	70%	130%	105%	80%	120%	100%	70%	130%
Dissolved Beryllium	2525654		< 0.50	< 0.50	NA	< 0.50	98%	70%	130%	107%	80%	120%	111%	70%	130%
Dissolved Boron	2525654		135	140	3.6%	< 10.0	99%	70%	130%	105%	80%	120%	112%	70%	130%
Dissolved Cadmium	2525654		<0.20	<0.20	NA	< 0.20	101%	70%	130%	103%	80%	120%	104%	70%	130%
Dissolved Chromium	2525654		<2.0	<2.0	NA	< 2.0	100%	70%	130%	102%	80%	120%	103%	70%	130%
Dissolved Cobalt	2525654		0.51	0.86	NA	< 0.50	95%	70%	130%	105%	80%	120%	100%	70%	130%
Dissolved Copper	2525654		3.4	4.1	NA	< 1.0	99%	70%	130%	104%	80%	120%	104%	70%	130%
Dissolved Lead	2525654		<0.50	< 0.50	NA	< 0.50	93%	70%	130%	101%	80%	120%	98%	70%	130%
Dissolved Molybdenum	2525654		8.91	9.23	3.5%	< 0.50	101%	70%	130%	110%	80%	120%	101%	70%	130%
Dissolved Nickel	2525654		<3.0	<3.0	NA	< 3.0	96%	70%	130%	108%	80%	120%	103%	70%	130%
Dissolved Selenium	2525654		3.4	<1.0	NA	< 1.0	94%	70%	130%	105%	80%	120%	100%	70%	130%
Dissolved Silver	2525654		< 0.20	< 0.20	NA	< 0.20	99%	70%	130%	105%	80%	120%	102%	70%	130%
Dissolved Thallium	2525654		<0.30	< 0.30	NA	< 0.30	94%	70%	130%	103%	80%	120%	104%	70%	130%
Dissolved Uranium	2525654		2.84	2.92	2.8%	< 0.50	96%	70%	130%	102%	80%	120%	104%	70%	130%
Dissolved Vanadium	2525654		0.49	0.50	NA	< 0.40	94%	70%	130%	101%	80%	120%	101%	70%	130%
Dissolved Zinc	2525654		< 5.0	< 5.0	NA	< 5.0	99%	70%	130%	102%	80%	120%	102%	70%	130%
Mercury	2523597		< 0.02	< 0.02	NA	< 0.02	99%	70%	130%	97%	80%	120%	83%	70%	130%
Chromium VI	2529824		<2.000	<2.000	NA	< 2	97%	70%	130%	107%	80%	120%	108%	70%	130%
Cyanide, Free	2507342		<2	<2	NA	< 2	107%	70%	130%	100%	80%	120%	101%	70%	130%
Dissolved Sodium	2518204		31400	31700	1.0%	< 50	94%	70%	130%	94%	80%	120%	97%	70%	130%
Chloride	2518211		110000	110000	0.0%	< 100	96%	70%	130%	105%	80%	120%	105%	70%	130%
Electrical Conductivity	2525086		824	829	0.6%	< 2	100%	90%	110%						
рН	2525086		7.16	7.17	0.1%	NA	101%	98%	103%						

Comments: NA Signifies Not Applicable.

Duplicate NA: results are under 5X the RDL and RPD will not be calculated.

Matrix spike: Spike level < native concentration. Matrix spike acceptance limits do not apply.

CHARTEMED CHEMIST

Time Markers

AGAT WORK ORDER: 21Z752731

PROJECT: CO810.00

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aga labs.com

CLIENT NAM				
Sample ID	Sample Description	Sample Type	Date Sampled	Date Received
2522626	MW109	Water	25-MAY-2021	26-MAY-2021
	O. Reg. 153(511) - PHCs F1 - F4 (Water)			
	Parameter	Date Prepar	ed Date Analy:	
	Benzene	03-JUN-202	21 03-JUN-20	
	Toluene	03-JUN-202	21 03-JUN-20	
	Ethylbenzene	03-JUN-202	21 03-JUN-20	
	m & p-Xylene	03-JUN-202	21 03-JUN-20	21 SS
	o-Xylene	03-JUN-202	21 03-JUN-20	21 SS
	Xylenes (Total)	03-JUN-202	21 03-JUN-20	21 SYS
	F1 (C6 - C10)	03-JUN-202	21 03-JUN-20	21 SS
	F1 (C6 to C10) minus BTEX	03-JUN-202	21 03-JUN-20	
	Toluene-d8	03-JUN-202	21 03-JUN-20	
	F2 (C10 to C16)	31-MAY-20	21 02-JUN-20	
	F3 (C16 to C34)	31-MAY-20		
	F4 (C34 to C50)	31-MAY-20		
	Gravimetric Heavy Hydrocarbons			
	Terphenyl	31-MAY-20	21 02-JUN-20	21 JKJ
	Sediment			
2522627	Sediment	Water		
2522627		Water	25-MAY-2021	26-MAY-2021
2522627	Sediment MW111			
2522627	Sediment MW111 O. Reg. 153(511) - Metals & Inorganics (Wa	iter)	25-MAY-2021	26-MAY-2021
2522627	Sediment MW111 O. Reg. 153(511) - Metals & Inorganics (Wa	iter) Date Prepar	25-MAY-2021 ed Date Analy	26-MAY-2021 zed Initials
2522627	MW111 O. Reg. 153(511) - Metals & Inorganics (Wa Parameter Dissolved Antimony	ter) Date Prepar 31-MAY-20:	25-MAY-2021 ed Date Analy. 21 31-MAY-20	26-MAY-2021 zed Initials 21 CC
2522627	MW111 O. Reg. 153(511) - Metals & Inorganics (Wa Parameter Dissolved Antimony Dissolved Arsenic	Date Prepar 31-MAY-20: 31-MAY-20:	25-MAY-2021 ed Date Analy. 21 31-MAY-20 21 31-MAY-20	26-MAY-2021 zed Initials 21 CC 21 CC
2522627	Sediment MW111 O. Reg. 153(511) - Metals & Inorganics (Wa Parameter Dissolved Antimony Dissolved Arsenic Dissolved Barium	Date Prepar 31-MAY-20: 31-MAY-20: 31-MAY-20:	25-MAY-2021 ed Date Analy. 21 31-MAY-20 21 31-MAY-20 21 31-MAY-20	26-MAY-2021 zed Initials 21 CC 21 CC 21 CC
2522627	Sediment MW111 O. Reg. 153(511) - Metals & Inorganics (Wa Parameter Dissolved Antimony Dissolved Arsenic Dissolved Barium Dissolved Beryllium	Date Prepar 31-MAY-20: 31-MAY-20: 31-MAY-20: 31-MAY-20:	25-MAY-2021 ed Date Analy. 21 31-MAY-20 21 31-MAY-20 21 31-MAY-20 21 31-MAY-20	26-MAY-2021 2ed Initials
2522627	Sediment MW111 O. Reg. 153(511) - Metals & Inorganics (Water Parameter Dissolved Antimony Dissolved Arsenic Dissolved Barium Dissolved Beryllium Dissolved Boron	Date Prepar 31-MAY-20: 31-MAY-20: 31-MAY-20: 31-MAY-20: 31-MAY-20:	25-MAY-2021 ed Date Analy. 21 31-MAY-20 21 31-MAY-20 21 31-MAY-20 21 31-MAY-20 21 31-MAY-20 21 31-MAY-20	26-MAY-2021 2ed Initials
2522627	Sediment MW111 O. Reg. 153(511) - Metals & Inorganics (Water Parameter Dissolved Antimony Dissolved Arsenic Dissolved Barium Dissolved Beryllium Dissolved Boron Dissolved Cadmium	Date Prepar 31-MAY-20: 31-MAY-20: 31-MAY-20: 31-MAY-20: 31-MAY-20: 31-MAY-20:	25-MAY-2021 ed Date Analy. 21 31-MAY-20	26-MAY-2021 2ed Initials
2522627	Sediment MW111 O. Reg. 153(511) - Metals & Inorganics (Water Parameter Dissolved Antimony Dissolved Arsenic Dissolved Barium Dissolved Beryllium Dissolved Boron Dissolved Cadmium Dissolved Chromium	Date Prepar 31-MAY-20: 31-MAY-20: 31-MAY-20: 31-MAY-20: 31-MAY-20: 31-MAY-20: 31-MAY-20:	25-MAY-2021 ed Date Analy. 21 31-MAY-20	26-MAY-2021 2ed Initials 21 CC
2522627	Sediment MW111 O. Reg. 153(511) - Metals & Inorganics (Water Parameter Dissolved Antimony Dissolved Arsenic Dissolved Barium Dissolved Beryllium Dissolved Boron Dissolved Cadmium Dissolved Chromium Dissolved Cobalt	Date Prepar 31-MAY-20: 31-MAY-20: 31-MAY-20: 31-MAY-20: 31-MAY-20: 31-MAY-20: 31-MAY-20: 31-MAY-20:	25-MAY-2021 ed Date Analy. 21 31-MAY-20	26-MAY-2021 2ed Initials 21 CC
2522627	Sediment MW111 O. Reg. 153(511) - Metals & Inorganics (Water Parameter Dissolved Antimony Dissolved Arsenic Dissolved Barium Dissolved Beryllium Dissolved Boron Dissolved Cadmium Dissolved Chromium Dissolved Cobalt Dissolved Copper	Date Prepar 31-MAY-20: 31-MAY-20: 31-MAY-20: 31-MAY-20: 31-MAY-20: 31-MAY-20: 31-MAY-20: 31-MAY-20: 31-MAY-20: 31-MAY-20:	25-MAY-2021 ed Date Analy. 21 31-MAY-20	26-MAY-2021 2ed Initials 21 CC
2522627	Sediment MW111 O. Reg. 153(511) - Metals & Inorganics (Water Parameter) Dissolved Antimony Dissolved Arsenic Dissolved Barium Dissolved Beryllium Dissolved Boron Dissolved Cadmium Dissolved Chromium Dissolved Cobalt Dissolved Copper Dissolved Lead	Date Prepar 31-MAY-20: 31-MAY-20: 31-MAY-20: 31-MAY-20: 31-MAY-20: 31-MAY-20: 31-MAY-20: 31-MAY-20: 31-MAY-20: 31-MAY-20: 31-MAY-20:	25-MAY-2021 ed Date Analy. 21 31-MAY-20	26-MAY-2021 2ed Initials 21 CC
2522627	MW111 O. Reg. 153(511) - Metals & Inorganics (Water Parameter Dissolved Antimony Dissolved Arsenic Dissolved Barium Dissolved Beryllium Dissolved Boron Dissolved Cadmium Dissolved Chromium Dissolved Cobalt Dissolved Copper Dissolved Molybdenum	Date Prepar 31-MAY-20: 31-MAY-20: 31-MAY-20: 31-MAY-20: 31-MAY-20: 31-MAY-20: 31-MAY-20: 31-MAY-20: 31-MAY-20: 31-MAY-20: 31-MAY-20: 31-MAY-20:	25-MAY-2021 ed Date Analy. 21 31-MAY-20	26-MAY-2021 2ed Initials 21 CC
2522627	Sediment MW111 O. Reg. 153(511) - Metals & Inorganics (Water Parameter) Dissolved Antimony Dissolved Arsenic Dissolved Barium Dissolved Beryllium Dissolved Cadmium Dissolved Chromium Dissolved Cobalt Dissolved Copper Dissolved Lead Dissolved Molybdenum Dissolved Nickel	Date Prepar 31-MAY-203 31-MAY-203 31-MAY-203 31-MAY-203 31-MAY-203 31-MAY-203 31-MAY-203 31-MAY-203 31-MAY-203 31-MAY-203 31-MAY-203 31-MAY-203	25-MAY-2021 ed Date Analy. 21 31-MAY-20	26-MAY-2021 2ed Initials 21 CC
2522627	Sediment MW111 O. Reg. 153(511) - Metals & Inorganics (Water Parameter) Dissolved Antimony Dissolved Arsenic Dissolved Barium Dissolved Beryllium Dissolved Cadmium Dissolved Chromium Dissolved Cobalt Dissolved Copper Dissolved Lead Dissolved Molybdenum Dissolved Nickel Dissolved Selenium	Date Prepar 31-MAY-203 31-MAY-203 31-MAY-203 31-MAY-203 31-MAY-203 31-MAY-203 31-MAY-203 31-MAY-203 31-MAY-203 31-MAY-203 31-MAY-203 31-MAY-203 31-MAY-203 31-MAY-203	25-MAY-2021 ed Date Analy. 21 31-MAY-20	26-MAY-2021 2ed Initials 21 CC
2522627	Sediment MW111 O. Reg. 153(511) - Metals & Inorganics (Water Parameter) Dissolved Antimony Dissolved Arsenic Dissolved Barium Dissolved Boron Dissolved Cadmium Dissolved Chromium Dissolved Cobalt Dissolved Copper Dissolved Molybdenum Dissolved Nickel Dissolved Selenium Dissolved Selenium	Date Prepar 31-MAY-203 31-MAY-203 31-MAY-203 31-MAY-203 31-MAY-203 31-MAY-203 31-MAY-203 31-MAY-203 31-MAY-203 31-MAY-203 31-MAY-203 31-MAY-203 31-MAY-203 31-MAY-203 31-MAY-203	25-MAY-2021 ed Date Analy. 21 31-MAY-20	26-MAY-2021 2ed Initials 21 CC
2522627	Sediment MW111 O. Reg. 153(511) - Metals & Inorganics (Water Parameter) Dissolved Antimony Dissolved Arsenic Dissolved Barium Dissolved Beryllium Dissolved Cadmium Dissolved Cadmium Dissolved Chromium Dissolved Copper Dissolved Copper Dissolved Molybdenum Dissolved Nickel Dissolved Selenium Dissolved Selenium Dissolved Silver Dissolved Thallium	Date Prepar 31-MAY-203 31-MAY-203 31-MAY-203 31-MAY-203 31-MAY-203 31-MAY-203 31-MAY-203 31-MAY-203 31-MAY-203 31-MAY-203 31-MAY-203 31-MAY-203 31-MAY-203 31-MAY-203 31-MAY-203 31-MAY-203 31-MAY-203 31-MAY-203	25-MAY-2021 ed Date Analy. 21 31-MAY-20	26-MAY-2021 2ed Initials 21 CC
2522627	Sediment MW111 O. Reg. 153(511) - Metals & Inorganics (Water Parameter) Dissolved Antimony Dissolved Arsenic Dissolved Barium Dissolved Boron Dissolved Cadmium Dissolved Chromium Dissolved Cobalt Dissolved Copper Dissolved Molybdenum Dissolved Nickel Dissolved Selenium Dissolved Selenium	Date Prepar 31-MAY-203 31-MAY-203 31-MAY-203 31-MAY-203 31-MAY-203 31-MAY-203 31-MAY-203 31-MAY-203 31-MAY-203 31-MAY-203 31-MAY-203 31-MAY-203 31-MAY-203 31-MAY-203 31-MAY-203	25-MAY-2021 ed Date Analy. 21 31-MAY-20	26-MAY-2021 2ed Initials 21 CC

Dissolved Zinc

Mercury

CC DL

31-MAY-2021

31-MAY-2021

31-MAY-2021

31-MAY-2021

Time Markers

AGAT WORK ORDER: 21Z752731

PROJECT: CO810.00

02-JUN-2021

02-JUN-2021

JKJ

JKJ

ATTENTION TO: Keith Brown

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aga labs.com

Sample ID	Sample Description	Sample Type	Date Sampled	Date Received
2522627	MW111	Water	25-MAY-2021	26-MAY-2021
	O. Reg. 153(511) - Metals & Inorganics (Water	·)		
	Parameter	Date Prepa	red Date Anal	yzed Initials
	Chromium VI	01-JUN-20	21 01-JUN-2	2021 NK
	Cyanide, Free	02-JUN-20	21 02-JUN-2	2021 BG
	Dissolved Sodium	02-JUN-20	21 02-JUN-2	2021 ZK
	Chloride	28-MAY-20)21 28-MAY-	2021 LC
	Electrical Conductivity	31-MAY-20)21 31-MAY-	2021 ND
	pH	31-MAY-20	021 31-MAY-	2021 ND
	O. Reg. 153(511) - PHCs F1 - F4 (-BTEX) (Wate	er)		
	Parameter	Date Prepa	red Date Anal	yzed Initials
	Toluene-d8	03-JUN-20	21 03-JUN-2	2021 SS
	F1 (C6 - C10)	03-JUN-20	21 03-JUN-2	2021 SS
	F1 (C6 to C10) minus BTEX	03-JUN-20	21 03-JUN-2	2021 SYS
	F2 (C10 to C16)	31-MAY-20)21 02-JUN-2	2021 JKJ
	F3 (C16 to C34)	31-MAY-20)21 02-JUN-2	2021 JKJ

31-MAY-2021

31-MAY-2021

O. Reg. 153(511) - VOCs (Water)

Gravimetric Heavy Hydrocarbons

F4 (C34 to C50)

Terphenyl

Sediment

Parameter	Date Prepared	Date Analyzed	Initials
Dichlorodifluoromethane	03-JUN-2021	03-JUN-2021	NS
Vinyl Chloride	03-JUN-2021	03-JUN-2021	NS
Bromomethane	03-JUN-2021	03-JUN-2021	NS
Trichlorofluoromethane	03-JUN-2021	03-JUN-2021	NS
Acetone	03-JUN-2021	03-JUN-2021	NS
1,1-Dichloroethylene	03-JUN-2021	03-JUN-2021	NS
Methylene Chloride	03-JUN-2021	03-JUN-2021	NS
trans- 1,2-Dichloroethylene	03-JUN-2021	03-JUN-2021	NS
Methyl tert-butyl ether	03-JUN-2021	03-JUN-2021	NS
1,1-Dichloroethane	03-JUN-2021	03-JUN-2021	NS
Methyl Ethyl Ketone	03-JUN-2021	03-JUN-2021	NS
cis- 1,2-Dichloroethylene	03-JUN-2021	03-JUN-2021	NS
Chloroform	03-JUN-2021	03-JUN-2021	NS
1,2-Dichloroethane	03-JUN-2021	03-JUN-2021	NS
1,1,1-Trichloroethane	03-JUN-2021	03-JUN-2021	NS
Carbon Tetrachloride	03-JUN-2021	03-JUN-2021	NS
Benzene	03-JUN-2021	03-JUN-2021	NS
1,2-Dichloropropane	03-JUN-2021	03-JUN-2021	NS

Time Markers

AGAT WORK ORDER: 21Z752731

PROJECT: CO810.00

own

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aga labs.com

	ME: TERRAPEX ENVIRONMENTAL LTD	O		0 1 1	D : D : :	ATTENTION TO: Keith
Sample ID	Sample Description	Sample Type	Date	Sampled	Date Received	
2522627	MW111	Water	25-1	MAY-2021	26-MAY-2021	
	O. Reg. 153(511) - VOCs (Water)					
	Parameter	Date Pre	pared	Date Analyze	d Initials	
	Trichloroethylene	03-JUN-	-2021	03-JUN-2021	NS	
	Bromodichloromethane	03-JUN-		03-JUN-2021		
	Methyl Isobutyl Ketone	03-JUN-	-2021	03-JUN-2021		
	1,1,2-Trichloroethane	03-JUN-	-2021	03-JUN-2021	NS	
	Toluene	03-JUN-		03-JUN-2021		
	Dibromochloromethane	03-JUN-	-2021	03-JUN-2021		
	Ethylene Dibromide	03-JUN-		03-JUN-2021		
	Tetrachloroethylene	03-JUN-		03-JUN-2021		
	1,1,1,2-Tetrachloroethane	03-JUN-		03-JUN-2021		
	Chlorobenzene	03-JUN-		03-JUN-2021		
	Ethylbenzene	03-JUN-		03-JUN-2021		
	m & p-Xylene	03-JUN-		03-JUN-2021		
	Bromoform	03-JUN-		03-JUN-2021		
	Styrene	03-JUN-		03-JUN-2021		
	1,1,2,2-Tetrachloroethane	03-JUN-		03-JUN-2021		
	o-Xylene	03-JUN-		03-JUN-2021		
	1.3-Dichlorobenzene	03-JUN-		03-JUN-2021		
	1,4-Dichlorobenzene	03-JUN-		03-JUN-2021		
	1,2-Dichlorobenzene	03-JUN-		03-JUN-2021		
	1,3-Dichloropropene	03-JUN-		03-JUN-2021		
	Xylenes (Total)	03-JUN-		03-JUN-2021		
	n-Hexane	03-JUN-		03-JUN-2021		
	Toluene-d8	03-JUN-		03-JUN-2021		
	4-Bromofluorobenzene	03-JUN-		03-JUN-2021		
2522628	MW105	Water	25-1	MAY-2021	26-MAY-2021	
	O. Reg. 153(511) - Metals & Inorganics (Water	١				
	Parameter Parameter	<i>)</i> Date Pre	nared	Date Analyze	d Initials	
	Dissolved Antimony	31-MAY		31-MAY-202	_	
	Dissolved Artimony Dissolved Arsenic	31-MAY		31-MAY-202		
	Dissolved Arsenic Dissolved Barium	31-MAY		31-MAY-202		
	Dissolved Beryllium Dissolved Boron	31-MAY 31-MAY		31-MAY-202 ⁻ 31-MAY-202 ⁻		
	Dissolved Boron Dissolved Cadmium	31-MAY 31-MAY		31-MAY-202		
	Dissolved Chromium	31-MAY		31-MAY-202		
	Dissolved Cobalt	31-MAY	-2021	31-MAY-202	1 CC	

31-MAY-2021

31-MAY-2021

Dissolved Copper

Dissolved Lead

CC

CC

31-MAY-2021

31-MAY-2021

Time Markers

AGAT WORK ORDER: 21Z752731

PROJECT: CO810.00

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aga labs.com

CLIENT NAM	E: TERRAPEX ENVIRONMENTAL LTD		-	1100201.00	
		Comple Tune	Г-	ata Cample d	Data Dannius I
Sample ID	Sample Description	Sample Type		· · · · · · · · · · · · · · · · · · ·	Date Received
522628	MW105	Water	25	5-MAY-2021	26-MAY-2021
	O. Reg. 153(511) - Metals & Inorganics (Wat	•			
	Parameter	Date Pre	epared	Date Analyzed	
	Dissolved Molybdenum	31-MAY	/-2021	31-MAY-2021	CC
	Dissolved Nickel	31-MAY	/-2021	31-MAY-2021	CC
	Dissolved Selenium	31-MAY	/-2021	31-MAY-2021	CC
	Dissolved Silver	31-MAY	/-2021	31-MAY-2021	CC
	Dissolved Thallium	31-MAY	/-2021	31-MAY-2021	CC
	Dissolved Uranium	31-MAY	/-2021	31-MAY-2021	CC
	Dissolved Vanadium	31-MAY	/-2021	31-MAY-2021	CC
	Dissolved Zinc	31-MAY	/-2021	31-MAY-2021	CC
	Mercury	31-MAY	/-2021	31-MAY-2021	DL
	Chromium VI	01-JUN	I-2021	01-JUN-2021	NK
	Cyanide, Free	02-JUN	I-2021	02-JUN-2021	BG
	Dissolved Sodium	02-JUN		02-JUN-2021	ZK
	Chloride	28-MAY		28-MAY-2021	LC
	Electrical Conductivity	31-MAY		31-MAY-2021	ND
	рН	31-MAY		31-MAY-2021	ND
	•				
	O. Reg. 153(511) - PHCs F1 - F4 (Water)				
	Parameter	Date Pre	epared	Date Analyzed	d Initials
	Benzene	03-JUN	I-2021	03-JUN-2021	SS
	Toluene	03-JUN	I-2021	03-JUN-2021	SS
	Ethylbenzene	03-JUN	I-2021	03-JUN-2021	SS
	m & p-Xylene	03-JUN	I-2021	03-JUN-2021	SS
	o-Xylene	03-JUN		03-JUN-2021	SS
	Xylenes (Total)	03-JUN		03-JUN-2021	SYS
	F1 (C6 - C10)	03-JUN		03-JUN-2021	SS
	F1 (C6 to C10) minus BTEX	03-JUN		03-JUN-2021	SYS
	Toluene-d8	03-JUN		03-JUN-2021	SS
	F2 (C10 to C16)	31-MAY		02-JUN-2021	JKJ
	F3 (C16 to C34)	31-MAY		02-JUN-2021	JKJ
	F4 (C34 to C50)	31-MAY		02-JUN-2021	JKJ
	Gravimetric Heavy Hydrocarbons	3. W/V		02 0011 2021	01.0
	Terphenyl	31-MAY	/-2021	02-JUN-2021	JKJ
	Sediment	J1-WA		02 00IN-2021	0110
	Comment				
0500600	MW106	Water	0.0	5 MAV 2021	26 MAY 2021
2522629	IVIVV I UO	vvaler	25	5-MAY-2021	26-MAY-2021
	O.B. 459/544) March 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
	O. Reg. 153(511) - Metals & Inorganics (Wat	•			
	Parameter	Date Pre	epared	Date Analyzed	
	Dissolved Antimony	31-MAY	/-2021	31-MAY-2021	CC

Time Markers

AGAT WORK ORDER: 21Z752731

PROJECT: CO810.00

ATTENTION TO: Keith Brown

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aga labs.com

Sample ID	Sample Description	Sample Type	Date Sampled	Date Received
2522629	MW106	Water	25-MAY-2021	26-MAY-2021
-				

Parameter	Date Prepared	Date Analyzed	Initials
Dissolved Arsenic	31-MAY-2021	31-MAY-2021	CC
Dissolved Barium	31-MAY-2021	31-MAY-2021	CC
Dissolved Beryllium	31-MAY-2021	31-MAY-2021	CC
Dissolved Boron	31-MAY-2021	31-MAY-2021	CC
Dissolved Cadmium	31-MAY-2021	31-MAY-2021	CC
Dissolved Chromium	31-MAY-2021	31-MAY-2021	CC
Dissolved Cobalt	31-MAY-2021	31-MAY-2021	CC
Dissolved Copper	31-MAY-2021	31-MAY-2021	CC
Dissolved Lead	31-MAY-2021	31-MAY-2021	CC
Dissolved Molybdenum	31-MAY-2021	31-MAY-2021	CC
Dissolved Nickel	31-MAY-2021	31-MAY-2021	CC
Dissolved Selenium	31-MAY-2021	31-MAY-2021	CC
Dissolved Silver	31-MAY-2021	31-MAY-2021	CC
Dissolved Thallium	31-MAY-2021	31-MAY-2021	CC
Dissolved Uranium	31-MAY-2021	31-MAY-2021	CC
Dissolved Vanadium	31-MAY-2021	31-MAY-2021	CC
Dissolved Zinc	31-MAY-2021	31-MAY-2021	CC
Mercury	31-MAY-2021	31-MAY-2021	DL
Chromium VI	01-JUN-2021	01-JUN-2021	NK
Cyanide, Free	02-JUN-2021	02-JUN-2021	BG
Dissolved Sodium	02-JUN-2021	02-JUN-2021	ZK
Chloride	28-MAY-2021	28-MAY-2021	LC
Electrical Conductivity	31-MAY-2021	31-MAY-2021	ND
рН	31-MAY-2021	31-MAY-2021	ND

O. Reg. 153(511) - PHCs F1 - F4 (Water)

Parameter	Date Prepared	Date Analyzed	Initials
Benzene	03-JUN-2021	03-JUN-2021	SS
Toluene	03-JUN-2021	03-JUN-2021	SS
Ethylbenzene	03-JUN-2021	03-JUN-2021	SS
m & p-Xylene	03-JUN-2021	03-JUN-2021	SS
o-Xylene	03-JUN-2021	03-JUN-2021	SS
Xylenes (Total)	03-JUN-2021	03-JUN-2021	SYS
F1 (C6 - C10)	03-JUN-2021	03-JUN-2021	SS
F1 (C6 to C10) minus BTEX	03-JUN-2021	03-JUN-2021	SYS
Toluene-d8	03-JUN-2021	03-JUN-2021	SS
F2 (C10 to C16)	31-MAY-2021	02-JUN-2021	JKJ
F3 (C16 to C34)	31-MAY-2021	02-JUN-2021	JKJ
F4 (C34 to C50)	31-MAY-2021	02-JUN-2021	JKJ

Time Markers

AGAT WORK ORDER: 21Z752731

PROJECT: CO810.00

ATTENTION TO: Keith Brown

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aga labs.com

CLIENT NAN	ME: TERRAPEX ENVIRONMENTAL LTD					ATTENTION TO: Keith Brov
Sample ID	Sample Description	Sample Type	Date Sample	d Da	ate Received	
2522629	MW106	Water	25-MAY-202	1 20	6-MAY-2021	
	O. Reg. 153(511) - PHCs F1 - F4 (Water) Parameter	Date Prep	ared Date /	Analyzed	Initials	
	Gravimetric Heavy Hydrocarbons					
	Terphenyl	31-MAY-2	.021 02-Jl	JN-2021	JKJ	
	Sediment					
2522630	MW114	Water	25-MAY-202	1 20	6-MAY-2021	
	O. Reg. 153(511) - Metals & Inorganics (Wa Parameter	iter) Date Prep	ared Date /	Analyzed	Initials	
	Dissolved Antimony	31-MAY-2		AY-2021	CC	
	Dissolved Arsenic	31-MAY-2		AY-2021	CC	
	Dissolved Barium	31-MAY-2		AY-2021	CC	
	Dissolved Beryllium	31-MAY-2	.021 31-M	AY-2021	CC	
	Dissolved Boron	31-MAY-2	.021 31-M	AY-2021	CC	
	Dissolved Cadmium	31-MAY-2	.021 31-M	AY-2021	CC	
	Dissolved Chromium	31-MAY-2	.021 31-M	AY-2021	CC	
	Dissolved Cobalt	31-MAY-2	.021 31-M	AY-2021	CC	
	Dissolved Copper	31-MAY-2	.021 31-M	AY-2021	CC	
	Dissolved Lead	31-MAY-2	.021 31-M	AY-2021	CC	
	Dissolved Molybdenum	31-MAY-2	.021 31-M	AY-2021	CC	
	Dissolved Nickel	31-MAY-2	.021 31-M	AY-2021	CC	
	Dissolved Selenium	31-MAY-2	.021 31-M	AY-2021	CC	
	Dissolved Silver	31-MAY-2	2021 31-M	AY-2021	CC	
	Dissolved Thallium	31-MAY-2	.021 31-M	AY-2021	CC	
	Dissolved Uranium	31-MAY-2	2021 31-M	AY-2021	CC	
	Dissolved Vanadium	31-MAY-2	.021 31-M	AY-2021	CC	
	Dissolved Zinc	31-MAY-2	2021 31-M	AY-2021	CC	
	Mercury	31-MAY-2	.021 31-M	AY-2021	DL	
	Chromium VI	01-JUN-2	021 01-Jl	JN-2021	NK	
	Cyanide, Free	02-JUN-2	021 02-Jl	JN-2021	BG	

02-JUN-2021

28-MAY-2021

31-MAY-2021

31-MAY-2021

O. Reg. 153(511) - PHCs F1 - F4 (Wate

Dissolved Sodium

Electrical Conductivity

Chloride

рΗ

Parameter	Date Prepared	Date Analyzed	Initials
Benzene	03-JUN-2021	03-JUN-2021	SS
Toluene	03-JUN-2021	03-JUN-2021	SS
Ethylbenzene	03-JUN-2021	03-JUN-2021	SS

02-JUN-2021

28-MAY-2021

31-MAY-2021

31-MAY-2021

ZK

LC

ND

ND

Time Markers

AGAT WORK ORDER: 21Z752731

PROJECT: CO810.00

ATTENTION TO: Keith Brown

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aga labs.com

CLIENT NAM	ME: TERRAPEX ENVIRONMENTAL LTD				
Sample ID	Sample Description	Sample Type	Date	Sampled	Date Received
2522630	MW114	Water	25-N	MAY-2021	26-MAY-2021
	O. Reg. 153(511) - PHCs F1 - F4 (Water) Parameter	Date Pre	nared	Date Analyzed	d Initials
	m & p-Xylene	03-JUN	•	03-JUN-2021	SS
	o-Xylene	03-JUN		03-JUN-2021	SS
	Xylenes (Total)	03-JUN	-2021	03-JUN-2021	SYS
	F1 (C6 - C10)	03-JUN	-2021	03-JUN-2021	SS
	F1 (C6 to C10) minus BTEX	03-JUN	-2021	03-JUN-2021	SYS
	Toluene-d8	03-JUN	-2021	03-JUN-2021	SS
	F2 (C10 to C16)	31-MAY	-2021	02-JUN-2021	JKJ
	F3 (C16 to C34)	31-MAY	-2021	02-JUN-2021	JKJ
	F4 (C34 to C50)	31-MAY	-2021	02-JUN-2021	JKJ
	Gravimetric Heavy Hydrocarbons				
	Terphenyl	31-MAY	-2021	02-JUN-2021	JKJ
	Sediment				
2522667	MW104	Water	25-N	MAY-2021	26-MAY-2021

O. Reg. 153(511) - Metals & Inorganics (Water)

Parameter	Date Prepared	Date Analyzed	Initials
Dissolved Antimony	31-MAY-2021	31-MAY-2021	CC
Dissolved Arsenic	31-MAY-2021	31-MAY-2021	CC
Dissolved Barium	31-MAY-2021	31-MAY-2021	CC
Dissolved Beryllium	31-MAY-2021	31-MAY-2021	CC
Dissolved Boron	31-MAY-2021	31-MAY-2021	CC
Dissolved Cadmium	31-MAY-2021	31-MAY-2021	CC
Dissolved Chromium	31-MAY-2021	31-MAY-2021	CC
Dissolved Cobalt	31-MAY-2021	31-MAY-2021	CC
Dissolved Copper	31-MAY-2021	31-MAY-2021	CC
Dissolved Lead	31-MAY-2021	31-MAY-2021	CC
Dissolved Molybdenum	31-MAY-2021	31-MAY-2021	CC
Dissolved Nickel	31-MAY-2021	31-MAY-2021	CC
Dissolved Selenium	31-MAY-2021	31-MAY-2021	CC
Dissolved Silver	31-MAY-2021	31-MAY-2021	CC
Dissolved Thallium	31-MAY-2021	31-MAY-2021	CC
Dissolved Uranium	31-MAY-2021	31-MAY-2021	CC
Dissolved Vanadium	31-MAY-2021	31-MAY-2021	CC
Dissolved Zinc	31-MAY-2021	31-MAY-2021	CC
Mercury	31-MAY-2021	31-MAY-2021	DL
Chromium VI	01-JUN-2021	01-JUN-2021	NK
Cyanide, Free	02-JUN-2021	02-JUN-2021	BG
Dissolved Sodium	02-JUN-2021	02-JUN-2021	ZK

Time Markers

AGAT WORK ORDER: 21Z752731

PROJECT: CO810.00

ATTENTION TO: Keith Brown

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aga labs.com

Sample ID	Sample Description	Sample Type	Date	Sampled	Date Receiv
2522667	MW104	Water	25-1	MAY-2021	26-MAY-202
	O. Reg. 153(511) - Metals & Inorganics (Wate	r)			
	Parameter	Date Pre	pared	Date Analyze	d Initials
	Chloride	28-MAY-	2021	28-MAY-2021	LC
	Electrical Conductivity	31-MAY-	2021	31-MAY-2021	ND
	pH	31-MAY-	2021	31-MAY-2021	ND
	O. Reg. 153(511) - PHCs F1 - F4 (Water)				
	Parameter	Date Pre	pared	Date Analyze	d Initials
	Benzene	03-JUN-	2021	03-JUN-2021	SS
	Toluene	03-JUN-	2021	03-JUN-2021	SS
	Ethylbenzene	03-JUN-	2021	03-JUN-2021	SS
	m & p-Xylene	03-JUN-	2021	03-JUN-2021	SS
	o-Xylene	03-JUN-	2021	03-JUN-2021	SS
	Xylenes (Total)	03-JUN-	2021	03-JUN-2021	SYS
	F1 (C6 - C10)	03-JUN-	2021	03-JUN-2021	SS
	F1 (C6 to C10) minus BTEX	03-JUN-	2021	03-JUN-2021	SYS
	Toluene-d8	03-JUN-	2021	03-JUN-2021	SS
	F2 (C10 to C16)	31-MAY-	2021	02-JUN-2021	JKJ
	F3 (C16 to C34)	31-MAY-	2021	02-JUN-2021	JKJ
	F4 (C34 to C50)	31-MAY-	2021	02-JUN-2021	JKJ
	Gravimetric Heavy Hydrocarbons				
	Terphenyl	31-MAY-	2021	02-JUN-2021	JKJ
	Sediment				
2522675	Trip Spike	Water			26-MAY-202
	O Dog 159/511) DTFV (Motor)				
	O. Reg. 153(511) - BTEX (Water) Parameter	Date Pre	pared	Date Analyze	d Initials
	Benzene	03-JUN-	2021	03-JUN-2021	NS
	Toluene	03-JUN-	2021	03-JUN-2021	NS
	Ethylbenzene	03-JUN-	2021	03-JUN-2021	NS
	m & p-Xylene	03-JUN-	2021	03-JUN-2021	NS
	o-Xylene	03-JUN-	2021	03-JUN-2021	NS
	Xylenes (Total)	03-JUN-	2021	03-JUN-2021	SYS
	Toluene-d8	03-JUN-		03-JUN-2021	NS
	4-Bromofluorobenzene	03-JUN-	2021	03-JUN-2021	NS

O. Reg. 153(511) - PHCs F1/BTEX (Water)

Time Markers

AGAT WORK ORDER: 21Z752731

PROJECT: CO810.00

ATTENTION TO: Keith Brown

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aga labs.com

CLIENT NAME: TERRAPEX ENVIRONMENTAL LTD

Sample ID	Sample Description	Sample Type	Date Sampled	Date Received
2522676	Trip Blank	Water		26-MAY-2021

O. Reg. 153(511) - PHCs F1/BTEX (Water)

Parameter	Date Prepared	Date Analyzed	Initials
Benzene	03-JUN-2021	03-JUN-2021	SS
Toluene	03-JUN-2021	03-JUN-2021	SS
Ethylbenzene	03-JUN-2021	03-JUN-2021	SS
m & p-Xylene	03-JUN-2021	03-JUN-2021	SS
o-Xylene	03-JUN-2021	03-JUN-2021	SS
Xylenes (Total)	03-JUN-2021	03-JUN-2021	SYS
F1 (C6-C10)	03-JUN-2021	03-JUN-2021	SS
F1 (C6 to C10) minus BTEX	03-JUN-2021	03-JUN-2021	SYS
Toluene-d8	03-JUN-2021	03-JUN-2021	SS

Method Summary

CLIENT NAME: TERRAPEX ENVIRONMENTAL LTD AGAT WORK ORDER: 21Z752731 PROJECT: CO810.00 ATTENTION TO: Keith Brown

SAMPLING SITE.		SAMPLED BY.						
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE					
Trace Organics Analysis	·							
Benzene	VOL-91-5001	modified from EPA SW-846 5030C & 8260D	(P&T)GC/MS					
Toluene	VOL-91-5001	modified from EPA SW-846 5030C & 8260D	(P&T)GC/MS					
Ethylbenzene	VOL-91-5001	8260D						
m & p-Xylene	VOL-91-5001	modified from EPA SW-846 5030C & 8260D	(P&T)GC/MS					
o-Xylene	VOL-91-5001	modified from EPA SW-846 5030C & 8260D	(P&T)GC/MS					
Xylenes (Total)	VOL-91-5001	modified from EPA SW-846 5030C & 8260D	(P&T)GC/MS					
Toluene-d8	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS					
4-Bromofluorobenzene	VOL-91- 5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS					
Toluene-d8	VOL-91-5009	modified from EPA SW-846 5030C & 8260D	(P&T)GC/MS					
F1 (C6 - C10)	VOL-91- 5010	modified from MOE PHC E3421	(P&T)GC/FID					
F1 (C6 to C10) minus BTEX	VOL-91-5010	modified from MOE PHC E3421	(P&T)GC/FID					
F2 (C10 to C16)	VOL-91-5010	modified from MOE PHC E3421	GC / FID					
F3 (C16 to C34)	VOL-91-5010	modified from MOE PHC E3421	GC / FID					
F4 (C34 to C50)	VOL-91-5010	modified from MOE PHC E3421	GC / FID					
Gravimetric Heavy Hydrocarbons	VOL-91-5010	modified from MOE PHC E3421	BALANCE					
Terphenyl	VOL-91-5009	modified from MOE PHC E3421	GC/FID					
Sediment								
Benzene	VOL-91-5010	modified from MOE PHC-E3421	(P&T)GC/MS					
Toluene	VOL-91-5010	modified from MOE PHC-E3421	(P&T)GC/MS					
Ethylbenzene	VOL-91-5010	modified from MOE PHC-E3421	(P&T)GC/MS					
m & p-Xylene	VOL-91-5010	modified from MOE PHC-E3421	(P&T)GC/MS					
o-Xylene	VOL-91-5010	modified from MOE PHC-E3421	(P&T)GC/MS					
Xylenes (Total)	VOL-91-5010	modified from MOE PHC-E3421	(P&T)GC/MS					
F1 (C6 - C10)	VOL-91-5010	modified from MOE PHC-E3421	(P&T)GC/FID					
F1 (C6 to C10) minus BTEX	VOL-91-5010	modified from MOE PHC-E3421	(P&T)GC/FID					
Toluene-d8	VOL-91-5010	modified from MOE PHC-E3421	(P&T)GC/MS					
F2 (C10 to C16)	VOL-91-5010	modified from MOE PHC-E3421	GC/FID					
F3 (C16 to C34)	VOL-91-5010	modified from MOE PHC-E3421	GC/FID					
F4 (C34 to C50)	VOL-91-5010	modified from MOE PHC-E3421	GC/FID					
Gravimetric Heavy Hydrocarbons	VOL-91-5010	modified from MOE PHC-E3421	BALANCE					
Terphenyl	VOL-91-5010	modified from MOE PHC-E3421	GC/FID					
Benzene	VOL-91-5010	modified from EPA SW-846 5030C & 8260D	(P&T)GC/MS					
Toluene	VOL-91-5010	modified from EPA SW-846 5030C & 8260D	(P&T)GC/MS					
Ethylbenzene	VOL-91-5010	modified from EPA SW-846 5030C & 8260D	(P&T)GC/MS					
m & p-Xylene	VOL-91-5010	modified from EPA SW-846 5030C & 8260D	(P&T)GC/MS					
o-Xylene	VOL-91-5010	modified from EPA SW-846 5030C & 8260D	(P&T)GC/MS					
Xylenes (Total)	VOL-91-5010	modified from EPA SW-846 5030C & 8260D	(P&T)GC/MS					

Method Summary

CLIENT NAME: TERRAPEX ENVIRONMENTAL LTD AGAT WORK ORDER: 21Z752731 PROJECT: CO810.00 ATTENTION TO: Keith Brown

	SAMPLED BY:							
AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE						
VOL-91-5010	modified from MOE E3421	(P&T)GC/FID						
VOL-91-5010	modified from MOE E3421	(P&T)GC/FID						
VOL-91-5010	modified from MOE PHC-E3421	(P&T)GC/MS						
VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
VOL-91-5001	8260D	(P&T)GC/MS						
VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
	VOL-91-5010 VOL-91-5010 VOL-91-5001	VOL-91-5010 modified from MOE E3421 VOL-91-5010 modified from MOE E3421 VOL-91-5010 modified from MOE PHC-E3421 VOL-91-5001 modified from EPA 5030B & EPA 8260D VOL-91-5001 modifi						

Method Summary

CLIENT NAME: TERRAPEX ENVIRONMENTAL LTD AGAT WORK ORDER: 21Z752731 PROJECT: CO810.00 ATTENTION TO: Keith Brown

SAMI LING SITE.		SAMI LLD DT.					
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE				
1,1,1,2-Tetrachloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				
Chlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				
Ethylbenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				
m & p-Xylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				
Bromoform	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				
Styrene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				
1,1,2,2-Tetrachloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				
o-Xylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				
1,3-Dichlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				
1,4-Dichlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				
1,2-Dichlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				
1,3-Dichloropropene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				
Xylenes (Total)	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				
n-Hexane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				
4-Bromofluorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				

Method Summary

CLIENT NAME: TERRAPEX ENVIRONMENTAL LTD AGAT WORK ORDER: 21Z752731 PROJECT: CO810.00 ATTENTION TO: Keith Brown

DADAMETED	ACATCOD	JAMIFLED BT.	ANALYTICAL TECHNIQUE					
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE					
Water Analysis		"" I (
Dissolved Antimony	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS					
Dissolved Arsenic	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS					
Dissolved Barium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS					
Dissolved Beryllium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS					
Dissolved Boron	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS					
Dissolved Cadmium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS					
Dissolved Chromium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS					
Dissolved Cobalt	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS					
Dissolved Copper	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS					
Dissolved Lead	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS					
Dissolved Molybdenum	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS					
Dissolved Nickel	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS					
Dissolved Selenium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS					
Dissolved Silver	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS					
Dissolved Thallium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS					
Dissolved Uranium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS					
Dissolved Vanadium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS					
Dissolved Zinc	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS					
Mercury	MET-93-6100	modified from EPA 245.2 and SM 3112 B	CVAAS					
Chromium VI	INOR-93-6034	modified from SM 3500-CR B	LACHAT FIA					
Cyanide, Free	INOR-93-6052	modified from ON MOECC E3015, SM 4500-CN- I, G-387	TECHNICON AUTO ANALYZER					
Dissolved Sodium	MET-93-6105	modified from EPA 6010D	ICP/OES					
Chloride	INOR-93-6004	modified from SM 4110 B	ION CHROMATOGRAPH					
Electrical Conductivity	INOR-93-6000	SM 2510 B	PC TITRATE					
pH	INOR-93-6000	modified from SM 4500-H+ B	PC TITRATE					

Laboratories 14 BIK

Chain of Custody Record If this is a Drinking Water sample, please use Drinking Water Chain of Custody Form (potable water consumed by humans)

5835 Coopers Avenue Mississauga, Ontario L4Z 1Y2 Ph: 905.712.5100 Fax: 905.712.5122

Laboratory Use Only Work Order #: 212752731 webearth.agatlabs.com

Cooler Quantity:	One	-1CE	
Arrival Temperatures:	2.5	192	12.+
	-	1	

Report Information: Company: Terrapex Gr	D) tatime	intal 1	<u>-td.</u>	(Please	gulatory Requirements check all applicable boxes)						Cust	tody Sea	al Intac	t:	□Yes	□No	I □N/A
Contact: Yell Arous Address: 1-20 Gundus Orthous ON	KZE	883		Tai	egulation 153/04 Excess S bleIndicate OneInd/ComInd/ComIndicate OneIndicate One		Sew Sa	er Use nitary :	Storm		11111	narou ular T				equired:	ness Days
Phone: Reports to be sent to: 1. Email: 2. Email:		pex.co	>VI-	Soil To	Res/Park Agriculture exture (Check One) [Coarse] Tine	on 558	Obje	Water Qua ctives (PWC r			Rush	Days	usiness s		2 Busi Days	ness	Next Busines Day ay Apply):
Project Information: Project: COSIO OCI Site Location: NSampled By:	1196 W	eth unto	2574	Rec	this submission for a cord of Site Condition? Yes No	Ce de	Yes	e of Ana			Fo O. Reg 558	*TAT	is exclu e Day' a	sive of	weekend	fication for rust and statuto	ory holidays
		III To Same: Ye	s,□ No.□	В	Biota Ground Water Oil Paint Soil Sediment Surface Water	Fleid Fittered - Metals, Hg. CrVI, DOC	Inorganics	Metals - □ CrVI, □ Hg, □ HWSB BTEX, F1-F4 PHCs Analyze F4G if required □ Yes □ No	3s 🖂 Aroclor		Landfill Disposal Characterization TCLP:	□ vocs □ svo	ss Soils Characterization Package ICPMS Metals, BTEX, F1-F4	SAR	14-X		Locadone or Hith Procentialing (V)
Sample Identification	Date Sampled	Time Sampled	# of Containers	Sample Matrix	Comments/ Special Instructions	Y/N	Metals &	BTEX, F1 Analyze F	PAHS Total PCBs	VOC	Landfill D	Excess Soils SF SPLP: Metals	Excess Soils pH, ICPMS N	Sait - EC/SAR	29		Vileitratio
Polwm	may 25/21	ルンろの	5	Gw		N		X									
mwill	1-1	13:15世	814	GW		1 10	X	X		X							
mulos mulos		13:50 8		600		Y	X	X									
musolas muios		14:40的	144	GW		Y	X	X									
MWII4		15:30AM	11	GW		4	X	X		-							
MWIOH		15:30AM	11	GW		Y	X	X		-					,		
Trip spike.	1	AM PM				N				-				2	1		
Trip Blank	V	AM PM				_ ^		-		-					X		
		PM AM PM								-				-			
		PM AM PM															
Samples Relinquished by (Print Name and Sign):	7	Date	Time		Samples Received by Print Hame and Sign	Dia Al			De	te		Time					
Samples Relinquished By (Print Name and Sign):		May 24	12 Time 6	:30	Samples Received By Print Name and Sign	TO L	W	May	Da Da	81	21	13	157		mpag	ge 🗘 or	1
Somples Pelliquished By (Pilin Name and Sign);	21	-\$-26	Tiene	000	Samples Received By (Print Name and Sign	1):		0	Da	tu (Time	4- 11	N	• T 1	192	13