

247 Parkdale Avenue Mixed-Use Development Ottawa, Ontario

 COMMUNITY TRANSPORTATION STUDY / TRANSPORTATION IMPACT STUDY •

June 20, 2013

OUR REF: TO1170TOP00

CTS/TIS Check List

prepared for: Richraft Group of Companies

2280 St. Laurent Boulevard Ottawa, ON K1G 4K1

Report Context

√	Municipal address;
	No inclusion rational:
V	Location relative to major elements of the existing transportation system (e.g., the
	site is located in the southwest quadrant of the intersection of Main Street/ First
	Street, 600metres from the Maple Street Rapid Transit Station);
	No inclusion rational:
V	Existing land uses or permitted use provisions in the Official Plan, Zoning By-law,
	etc.;
	No inclusion rational:
V	Proposed land uses and relevant planning regulations to be used in the analysis;
	No inclusion rational:
V	Proposed development size (building size, number of residential units, etc.) and
	location on site;
	No inclusion rational:
V	Estimated date of occupancy;
	No inclusion rational:
V	Planned phasing of development;
	No inclusion rational:
V	Proposed number of parking spaces (not relevant for Draft Plans of Subdivision);
	No inclusion rational:
V	Proposed access points and type of access (full turns, right-in/ right-out, turning
	restrictions, etc.
	No inclusion rational:
V	Study area;
	No inclusion rational:

Existing Conditions

V	Existing roads and ramps in the study area, including jurisdiction, classification,							
	number of lanes, and posted speed limit;							
	No inclusion rational:							
V	Existing intersections, indicating type of control, lane configurations, turning							
	restrictions, and any other relevant data (e.g., extraordinary lane widths, grades,							
	etc.);							
	No inclusion rational:							
V	Existing access points to adjacent developments (both sides of all roads bordering							
	the site);							
	No inclusion rational:							
V	Existing transit system, including stations and stops;							
	No inclusion rational:							
/	Existing on- and off-road bicycle facilities and pedestrian sidewalks and pathway							
	networks;							
	No inclusion rational:							
V	Existing system operations (V/C, LOS);							
	No inclusion rational:							
/	Major trip generators/ attractors within the Study Area should be indicated.							
	No inclusion rational:							
Dem	and Forecasting							
V	General background growth;							
	No inclusion rational:							
V	Other study area developments;							
	No inclusion rational:							
V	Changes to the study area road network;							
	No inclusion rational:							
✓	Future background system operations (V/C, LOS, queue lengths):							
	No inclusion rational:							
V	Trip generation rates;							
	No inclusion rational:							
V	Trip distribution and assignment.							
	No inclusion rational:							

Impact Analysis

V	Total future system operations (V/C, LOS, queue lengths);	
	No inclusion rational:	
V	Signal and auxiliary lane (device) warrants;	
	No inclusion rational:	
	Operational/ safety assessment (e.g., sight line assessment where grades are	an
	issue);	
	No inclusion rational:	
V	Storage analysis for closely spaced intersections;	
	No inclusion rational:	
V	Pedestrian and bicycle network connections and continuity;	
	No inclusion rational:	
V	On-site circulation and design;	
	No inclusion rational:	
V	Potential for neighbourhood impacts; and TDM.	
	No inclusion rational:	
V	Synchro Files	
	No inclusion rational:	
CTS		
Impa	act Analysis	
V	Network Capacity Analysis;	
	No inclusion rational:	
V	Non-auto network connections and continuity;	
	No inclusion rational:	
V	Potential for community impacts, and TDM.	
	No inclusion rational:	
/	Synchro Files	
	No inclusion rational:	
/	Screenline Analysis	
	No inclusion rational:	

274 Parkdale Avenue Mixed-Use Development

Community Transportation Study/ Transportation Impact Study

prepared for: Richcraft Group of Companies 2280 St. Laurent Boulevard Ottawa, ON K1G 4K1

prepared by:

Delcan

1223 Michael Street

Suite 100

Ottawa, ON K1J 7T2

June 20, 2013

TO1170TOP00

Table of Contents

	roductionsting Conditions	
2.1 2.2 2.3 2.4 2.5 2.6	Area Road Network Pedestrian/Cycling Network Transit Network Existing Study Area Intersections Existing Intersection Operations Existing Road Safety Conditions 1	3 4 4 5 7
3. Der	mand Forecasting1	1
3.1 3.2 3.3 3.4 3.5 3.6	Planned Study Area Transportation Network Changes. 1 Other Area Development. 1 Background Traffic Growth 1 Screenline Analysis 1 Site Trip Generation 1 Vehicle Traffic Distribution and Assignment 1	1 3 5
4. Fut	ure Traffic Operations 1	8
4.1 4.2	Projected Conditions at Full Site Development	
6. Tra 7. Find	e Plan Review	22
List of	Figures	
Figure 2 Figure 3 Figure 4 Figure 5	1: Local Context	2 5 8 4 8

List of Tables

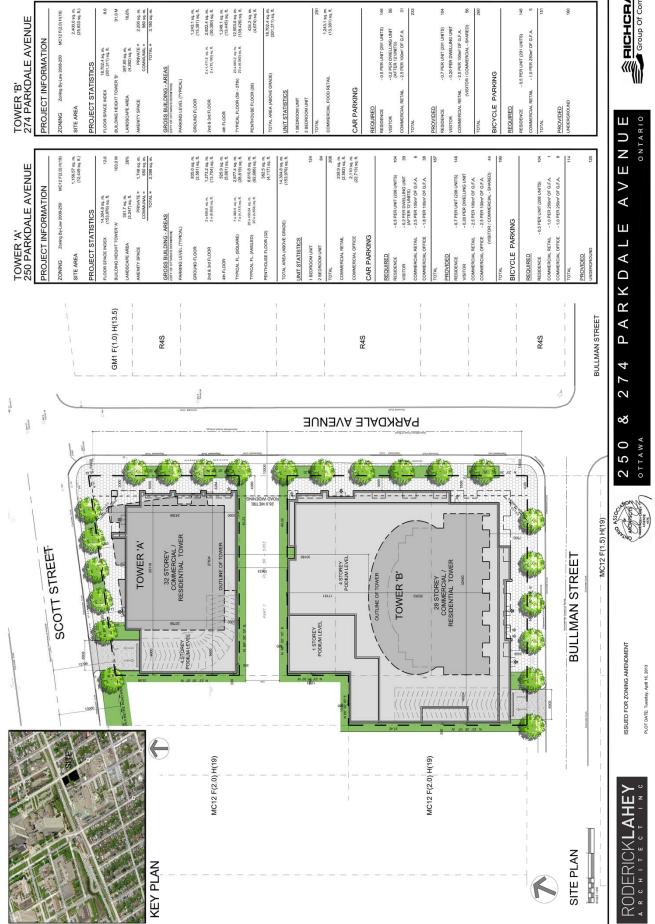
Table 1:	Existing Performance at Study Area Intersections	7
Table 2:	Parkdale/Scott Historical Background Growth (2003 – 2011)	13
Table 3:	Existing Screenline Performance	13
Table 4:	ITE Trip Generation Rates	15
Table 5:	Modified Person Trip Generation	15
Table 6:	Site Trip Generation	. 16
Table 7:	Projected Performance of Study Area Intersections	20

Appendices

- Appendix A Current Peak Hour Volumes
- Appendix B SYNCHRO Capacity Analysis: Existing Conditions
- Appendix C Collision Data and Analysis
- Appendix D Background Traffic Growth Analysis
- Appendix E SYNCHRO Capacity Analysis: 2015 Projected Conditions

1. Introduction

From the information provided, a mixed-use development consisting of two towers of 32 and 28 storeys in height, containing approximately 500 residential dwelling units, 15,963 ft² of retail and 22,712 ft² of office type land uses is being proposed on the properties municipally known as 250 to 274 Parkdale Avenue and 9 to 13 Bullman Street. The proposed site is located within the southwest quadrant of the Scott/Parkdale intersection, which is currently occupied by residential and restaurant land uses. The local context of the site is provided as Figure 1 and the proposed Preliminary Site Plan is provided as Figure 2.


Figure 1: Local Context

As part of the Site Plan Approval process, the City of Ottawa requires a submission of a formal Transportation Impact Assessment (TIA) consistent with their guidelines dated October 2006. With respect to these guidelines and for this level of development, a joint Community Transportation Study/Transportation Impact Study (CTS/TIS) is considered the appropriate type of study.

At the pre-consultation meeting, it was agreed with City Staff that the signalized and unsignalized intersections of Scott/Parkdale, Scott/Holland, Parkdale/Bullman, Parkdale/Armstrong, and Parkdale/Wellington should be assessed. Each site will be accessed by a full-movement driveway connection, one to Scott Street and one to Bullman Street (depicted in Figure 2), and both will be assessed in the subsequent analysis.

ISSUED FOR ZONING AMENDMENT PLOT DATE: Tuesday, April 16, 2013

RODERICK**lahey**

For the purpose of this assessment, full build-out/full occupancy is assumed to be the year 2015. With respect to the City's TIA guidelines, analysing future conditions 5-years beyond full build-out is not included herein, given the following:

- The proposed development is located within an area with an established transportation network;
- The immediate study area road network has experienced negative overall growth in traffic volumes in recent years (see Section 3.3);
- With the planned opening of the LRT system (and the adjacent Tunney's Pasture Station) in 2018, there will be changes in transit modal splits for the existing study area:
- There is significant redevelopment growth planned for the immediate area, which has no current time table and therefore, projecting traffic volumes beyond 2015 is somewhat arbitrary. This planned growth includes; the doubling of Tunney's Pasture employment from 10,000 to 20,000 employees, the planned development of residential condo projects at 233 Armstrong (Attika), 12 Stirling and one or two new developments on the east side of Parkdale Avenue (north of Scott Street), and other redevelopment opportunities that will arise out of the ongoing Scott Street Community Design Plan study.

Given the foregoing, and as key study area intersections are already at or close to capacity, the approach used herein is to assume a 10% growth in background traffic to the build-out horizon year 2015 only.

2. Existing Conditions

2.1 Area Road Network

Scott Street is an east-west arterial, which extends from Churchill Avenue in the west to Bayview Road in the east, where it continues as Albert Street. Within the study area, the cross section of Scott Street consists of two travel lanes in each direction and auxiliary turn lanes are provided at major intersections. The posted speed limit within the study area is 50 km/h.

Parkdale Avenue is a north-south arterial, which extends from Carling Avenue in the south to Sir John A. Macdonald Parkway in the north. Within the study area, the cross section of Parkdale Avenue consists of a single travel lane in each direction with on-street parking provided along the west side of the road. Auxiliary turn lanes are provided at major intersections and the posted speed limit is 50 km/h.

Wellington Street West is an east-west arterial, which extends from Breezehill Avenue in the east to Island Park Drive in the west, where it continues as Richmond Road. Within the study area, the cross section of Wellington Street consists of a single travel lane in each direction with on-street parking provided along both sides of the road. Auxiliary turn lanes are provided at major intersections and the unposted speed limit is understood to be 50 km/h.

Holland Avenue is a major collector roadway. The cross section of Holland Avenue consists of a single travel lane in each direction with on-street parking provided along both sides of the road. Auxiliary turn lanes are provided at major intersections and the unposted speed limit is understood to be 50 km/h.

Armstrong Avenue and Bullman Street are local roadways with unposted speed limits of 50 km/h. Within the study area, the cross section of Armstrong Avenue and Bullman Street consist of a single travel lane in each direction.

2.2 Pedestrian/Cycling Network

Sidewalk facilities in the vicinity of the site are provided along both sides of all study area roads. An off-road multi-use pathway is currently provided along the north side of Scott Street.

According to the City's 2008 Official Cycling Plan (OCP), Scott Street, Holland Avenue, and Wellington Street are classified as "spine or City-wide" cycling routes and Armstrong Avenue is classified as a community cycling route. Bicycle lanes are proposed along Scott Street by 2018-2028 with shared-use lanes proposed along Holland Avenue, Wellington Street and Armstrong Avenue by 2018.

2.3 Transit Network

Transit service within the vicinity of the site is currently provided by OC Transpo Regular Routes #2, 16, 86, 159 and 176, which provide frequent all-day service, and by Peak Hour Route #102. Bus stops for Routes #16 and 159 are located along Scott Street adjacent to the proposed development. Bus stops for Routes #86, 102 and 176 are located along Holland Avenue approximately 250 metres west of the proposed development. Bus stops for Route #2 are located along Wellington Street approximately 350 m south of the proposed development.

Rapid transit service is also provided within the vicinity of the site via the Tunney's Pasture Transitway Station. Located approximately 300 metres west of the proposed development, the Tunney's Pasture Transitway Station provides convenient access to rapid transit routes along the Transitway.

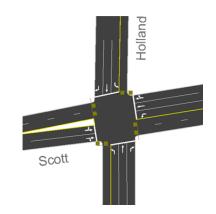



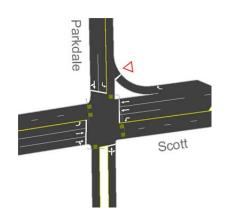
Figure 3: Area Transit Network

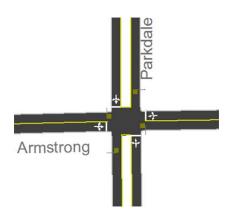
2.4 Existing Study Area Intersections

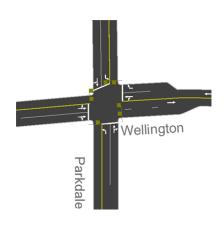
Scott/Holland

The Scott/Holland intersection is an signalized four-legged intersection. The westbound approach consists of a left-turn lane, a through lane and a shared through/right-turn lane. The eastbound approach consists of a shared through/leftturn lane and a shared through/right-turn lane. The north and southbound approaches consist of single left-turn lanes, single through lanes and single right-turn lanes. All movements are permitted at this location.

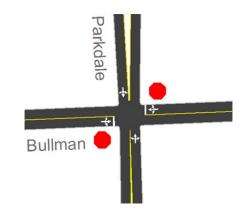
Parkdale/Scott


The Parkdale/Scott intersection signalized four-legged intersection. The westbound approach consists of a single left-turn lane, two through lanes and a single channelized right-turn lane. eastbound approach consists of a single leftturn lane, a through lane and a shared through/right-turn lane. The southbound approach consists of a single left-turn lane and a shared through/right-turn lane. The northbound approach consists of a single full-movement lane. All movements are permitted at this location.


Parkdale/Armstrong


The Parkdale/Armstrong intersection is a signalized four-legged intersection. All four approaches consist of a single full-movement lane and all movements are permitted at this location.

The Parkdale/Wellington intersection is a signalized four-legged intersection. westbound approach consists of shared through/left-turn lane and a single rightturn lane. The eastbound approach consists of a shared through/left-turn lane and a shared through/right-turn lane. The north and southbound approaches consist of single left-turn lanes and shared through/right-turn lanes. All movements are permitted at this location, however, at all four approaches right-turns-on-red are not permitted between 7AM - 7PM, Monday - Friday.



Parkdale/Bullman

The Parkdale/Bullman intersection is an unsignalized four-legged intersection with STOP control on the minor approach (Bullman Street) only. All four approaches consist of a single full movement lane and all movements are permitted at this location.

2.5 Existing Intersection Operations

Illustrated as Figure 4, are the most recent weekday morning and afternoon peak hour traffic volumes obtained from the City of Ottawa for the Scott/Parkdale, Scott/Holland, Parkdale/Armstrong, and Parkdale/Wellington intersections. Existing weekday morning and afternoon peak hour traffic volumes, also illustrated in Figure 4, were collected by Delcan at the Parkdale/Bullman intersection. These peak hour traffic volumes are included as Appendix A.

The following Table 1 provides a summary of existing traffic operations at study area intersections based on the SYNCHRO (V8) traffic analysis software. The subject intersections were assessed in terms of the volume-to-capacity (v/c) ratio and the corresponding Level of Service (LoS) for the critical movement(s). The subject intersections 'as a whole' were assessed based on a weighted v/c ratio and the Synchro model output of existing conditions is provided within Appendix B.

Table 1: Existing Performance at Study Area Intersections

	Weekday AM Peak (PM Peak)								
		'Critical Move	ment'	'Intersection as a Whole'					
Intersection	LoS	max. v/c or avg. delay (s)	Movement	Delay (s)	LoS	v/c			
Scott/Parkdale	F(F)	1.15(1.39)	NBT(NBT)	44.2(77.0)	C(E)	0.72(0.95)			
Scott/Holland	B(D)	0.69(0.88)	NBT(NBL)	18.6(21.0)	A(A)	0.40(0.50)			
Parkdale/Bullman	B(C)	14.9(17.4)	WBT(EBT)	0.7(0.7)	-	-			
Parkdale/Armstrong	A(B)	0.41(0.66)	NBT(NBT)	9.8(17.0)	A(A)	0.35(0.51)			
Parkdale/Wellington	D(D)	0.86(0.88)	SBT(SBT)	31.8(28.8)	B(B)	0.63(0.70)			
Note: Analysis of signali	zed inter	sections assumes	a PHF of 0.95 a	nd a saturation	flow rate of	f 1800			

As shown in Table 1, with the exception of the Scott/Parkdale intersection during the afternoon peak hour, the signalized study area intersections, 'as a whole', are currently operating at an acceptable LoS 'C' or better during both peak hours, with respect to the City of Ottawa operating standards of LoS 'D' or better (0.90 > v/c > 0.00). The Scott/Parkdale intersection is currently operating at capacity (LoS 'E') during the afternoon peak hour.

veh/h/lane.

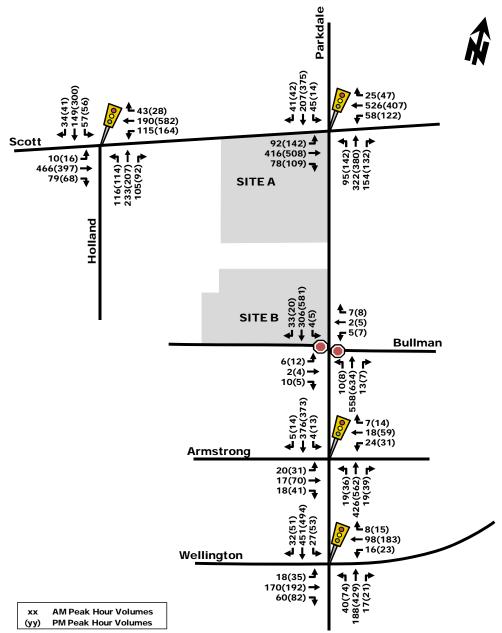


Figure 4: Existing Peak Hour Traffic Volumes

With regard to 'critical movements' at study area intersections, the northbound through movement at the Scott/Parkdale intersection is currently failing with a LoS 'F' during both weekday morning and afternoon peak hours. All other 'critical movements' at study area intersections are currently operating at an acceptable LoS 'D' or better during peak hours.

Peak hour field observations at study area intersections confirm these findings. However, based on 6 independent peak hour observations, notable queues were observed on (or approaching) Parkdale Avenue at (or through) the signalized Scott/Parkdale and Parkdale/Wellington intersections. The following is a summary of key observations.

Observation 1

May 14, 2013 - afternoon peak period

Scott/Parkdale

- The northbound through movement generated an approximate 60 m queue that was processed every signal cycle.
- The westbound left-turn movement generated an approximate 70 m queue that was processed every one or two cycles.

The northbound through queue was often caused by one or two northbound left-turning vehicles waiting for an acceptable gap to complete their left-turn. Given there is currently no auxiliary northbound left-turn lane, through traffic can occasionally be blocked by these left-turning vehicles.

Parkdale/Wellington

• A queue in the southbound direction extended from HWY 417 to Wellington Street.

Observation 2

May 15, 2013 - morning peak period

Scott/Parkdale

• The northbound through movement generated an approximate 60 m queue that was processed every signal cycle.

Same as with Observation 1, the northbound through queue was often caused by one or two northbound left-turning vehicles.

Parkdale/Wellington

A queue in the southbound direction extended from HWY 417 to approximately 80 m north of Wellington Street. This queue typically cleared on its respective green phase at the Parkdale/Wellington intersection.

Observation 3

May 27, 2013 - morning peak period

The same was observed as Observation 2.

Observation 4

May 27, 2013 - afternoon peak period

Scott/Parkdale

 A queue in the northbound direction from Scott Street extended to approximately Gladstone Avenue.

Parkdale/Wellington

A queue in the southbound direction extended from HWY 417 to approximately 180
m north of Wellington Street (just past Armstrong Street). This queue typically
required one or two signal cycles to clear.

Observation 5

May 28, 2013 - morning peak period

Scott/Parkdale

• The northbound through movement generated an approximate 300 m queue (just past Spencer Street) that required one or two signal cycles to be processed.

Parkdale/Wellington

A queue in the southbound direction extended from HWY 417 to approximately 180
m north of Wellington Street (just past Armstrong Street). This queue typically
required one or two signal cycles to clear.

Observation 6

May 28, 2013 - afternoon peak period

Scott/Parkdale

• A queue in the northbound direction extended through the Scott/Parkdale intersection from approximately Burnside Avenue in the north to HWY 417.

Parkdale/Wellington

A queue in the southbound direction extended from HWY 417 to approximately 180
m north of Wellington Street (just past Armstrong Street). This queue typically
required one or two signal cycles to clear Wellington Street.

Based on these 6 independent observations, the amount of traffic congestion on Parkdale Avenue can fluctuate significantly day-by-day. There are days where Parkdale Avenue experiences very little queuing and operates very well (within the study area) and there are days where it experiences heavy queues for hours. It was also observed that traffic congestion on Parkdale Avenue can rapidly transition (within the study area) from no queues, to significant queues and back to no queues, in a span of 30 minutes.

In conclusion, the amount of traffic congestion on Parkdale Avenue (within the study area) is greatly dependant on how HWY 417 and the Sir John A. Macdonald Parkway are operating. If HWY 417 is heavily congested, drivers will exit at Parkdale Avenue, travel north to the Sir John A. Macdonald Parkway as an alternate east/west route, and similarly vice versa, if the Sir John A. Macdonald Parkway is heavily congested.

2.6 Existing Road Safety Conditions

Collision history for study area roads (2009 to 2011, inclusive) was obtained from the City of Ottawa, which reveal that most collisions (72%) involved only property damage, indicating low impact speeds and 26% involved personal injuries. The remaining 1% were identified as "non-reportable", indicating the total damage to a vehicle was less than \$1,000.

The primary causes of collisions cited by police include rear end (29%), angle (22%), turning movement (20%), and sideswipe (14%) type collisions.

A standard unit of measure for assessing collisions at an intersection is based on the number of collisions per million entering vehicles (MEV). At intersections within the study area, reported collisions have historically taken place at a rate of:

- 0.88/MEV at the Scott/Parkdale intersection;
- 0.85/MEV at the Scott/Holland intersection;
- 0.91/MEV at the Parkdale/Armstrong intersection; and
- 0.76/MEV at the Parkdale/Wellington intersection.

Based on the available data, there does not appear to be any prevailing safety issues. The roadways within the study area are noted as being relatively straight and level, resulting in good sight-lines/visibility and vehicle traction. The source collision data as provided by the City of Ottawa and related analysis is included as Appendix C.

3. DEMAND FORECASTING

3.1 Planned Study Area Transportation Network Changes

Within the study area, a notable transportation network change includes the implementation of Light Rail Transit (LRT) in place of the existing Bus Rapid Transit (BRT). According to the City's Transportation Master Plan (TMP), to be completed as a Phase 1 City Project, the existing Transitway will be converted to LRT with a station located within the vicinity of the site at the existing Tunney's Pasture Transit Station. The expected completion date for the conversion is 2018.

3.2 Other Area Development

With respect to other area development, the following development applications have been submitted to the City of Ottawa in the vicinity of the proposed site:

99-107 Parkdale Avenue

Urbandale Construction is proposing the construction of a 28 storey condominium building at the above noted address, which is located approximately 450 m north of the subject site. The Transportation Study (prepared by J.L. Richards & Associates) reported a projected increase in two-way traffic of 42 and 48 veh/h during the weekday morning and afternoon peak hours, respectively.

159 – 167 Parkdale Avenue

Richcraft is proposing to redevelop the property at the above noted address, which is currently occupied by low density housing. The proposed new development will consist of high-rise condominiums and is located approximately 200 m north of the subject site. The Transportation Study (prepared by Delcan) reported a projected increase in two-way traffic of 46 and 44 veh/h during the weekday morning and afternoon peak hours, respectively.

111 – 121 Parkdale Avenue

A high-rise condominium building is being proposed at the above noted address which is located approximately 450 m north of the subject site. The Transportation Study (prepared by Stantec) reported a projected increase in two-way traffic of 122 and 81 veh/h during the weekday morning and afternoon peak hours, respectively.

1000 Wellington Street West

Windmill Development Group is proposing the construction of a high-rise condominium building with ground floor retail at the above noted address, which is located approximately 700 m southeast of the subject site. The Transportation Study (prepared by Delcan) reported a projected increase in two-way traffic of 41 and 42 veh/h during the weekday morning and afternoon peak hours, respectively.

233 Armstrong Avenue – "Attika" at Parkdale Market

TEGA Developments is proposing the construction of a mixed-use development at the above noted address, which is located approximately 350 m south of the subject site. The most recent addendum to the transportation study (prepared by Delcan) projected 108 veh/h and 124 veh/h in the morning and afternoon peak hours, respectively.

12 Stirling Avenue

A high-rise condominium building with ground floor retail is being proposed at the above noted address, which is located approximately 250 m east of the subject site. The Transportation Study (prepared by Delcan) reported a projected increase in two-way traffic of 61 and 79 veh/h during the weekday morning and afternoon peak hours, respectively.

1451 – 1445 Wellington Street West

A high-rise condominium building is being proposed at the above noted address which is located approximately 1 km west of the subject site. The Transportation Study (prepared by Delcan) reported a projected increase in two-way traffic of 46 and 41 veh/h during the weekday morning and afternoon peak hours, respectively.

Tunney's Pasture Master Plan

Recommended in the Tunney's Pasture Master Plan Transportation Overview (prepared by Delcan) are signalized intersections at the Scott/Ross and Parkdale/Columbine intersections, which are located approximately 700 m west and 500 m north of the subject site, respectively. In addition, it is recommended that Parkdale Avenue be widened to a four lane divided roadway north of the Parkdale/Columbine intersection.

3.3 Background Traffic Growth

The following background traffic growth through the immediate study area (summarized in Table 2) was calculated based on historical traffic count data (years 2003, 2007, 2008 and 2011) provided by the City of Ottawa at the Scott/Parkdale intersection. Detailed analysis is included as Appendix D.

Table 2: Parkdale/Scott Historical Background Growth (2003 - 2011)

Time		ange			
Period	North Leg	South Leg	East Leg	West Leg	Overall
8 hrs	-2.06%	2.49%	-0.19%	-0.59%	-0.07%
AM Peak	-3.64%	1.55%	-0.62%	-0.22%	-0.60%
PM Peak	-4.76%	1.53%	-1.25%	-1.88%	-1.54%

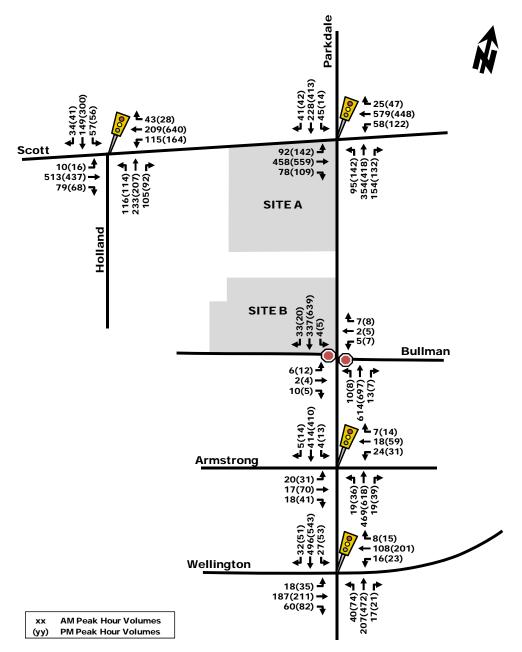
As show in Table 2, the Scott/Parkdale intersection has experienced no overall growth (calculated as a weighted average) within recent years. However, to account for the traffic generated by the previously identified area development in the vicinity of the site, a 10% growth factor was applied to existing traffic volumes along Scott Street, Parkdale Avenue and Wellington Street West. The resultant 2015 background traffic is depicted as Figure 5.

3.4 Screenline Analysis

The most relevant screenlines (SL) that surround the study area include SL 2, 24, 25, 27 and 29. The existing performance of each screenline is summarized below in Table 3.

Table 3: Existing Screenline Performance

Screenline	Peak Directional Demand ¹ (PCU) ²	Directional Capacity ³ (PCU)	v/c
2 (Champlain Bridge)	2,500	1,500	1.67
24/25 (Western Parkway)	13,300	16,300	0.82
27/29 (CPR Line)	9,800	9,000	1.09


- 1. 2010 volumes obtained from the City of Ottawa
- 2. PCU (Passenger Car Units) were assumed to be the sum of autos and 2 x heavy vehicles
- 3. Directional capacities were obtained from the City's 2008 Transportation Master Plan Road Infrastructure needs Study

As shown in Table 3, SL 24/25 is currently operating acceptably (LoS 'D'), while SL 2 and SL 27/29 are currently failing (LoS 'F') during peak hours. With the construction of the new interprovincial crossing over the Ottawa River and the City's east-west Light Rail Transit (LRT) will have the potential to relieve the existing congestion along SL 2 and SL 27/29.

Based on the foregoing SL assessment, the proposed development does not require any major road network improvements beyond those already identified with the City's TMP.

Figure 5: Projected 2015 Background Traffic Volumes

3.5 Site Trip Generation

Appropriate trip generation rates for the proposed development consisting of approximately 500 residential dwelling units, 15,963 ft² of retail and 22,713 ft² of office land uses were obtained from the 9th Edition of the Institute of Transportation Engineers (ITE) Trip Generation Manual, which are summarized in Table 3.

Table 4: ITE Trip Generation Rates

Land Use	Data	Trip Rates				
Land Use	Source	AM Peak	PM Peak			
Condominiums	ITE 232	T = 0.34(du); T = 0.29(du) + 28.86	T = 0.38(du); T = 0.34(du) + 15.47			
Specialty Retail Centre ¹	ITE 826	T = 1.36(X); T = 1.20(X) + 10.74	T = 2.71(X); T = 2.40(X) + 21.48			
Office	ITE 720	T = 0.53(X);	T = 1.06(X);			

Notes: T = Average Vehicle Trip Ends

 $X = 1,000 \text{ ft}^2 \text{ Gross Floor Area}$

du = dwelling units

1. Specialty Retail AM Peak is assumed to be 50% of the PM Peak

As ITE trip generation surveys only record vehicle trips and typically reflect highly suburban locations (with little to no access by travel modes other than private automobiles), adjustment factors appropriate to the more urban study area context were applied to attain estimates of person trips for the proposed development. This approach is considered appropriate within the industry for urban infill developments.

To convert ITE vehicle trip rates to person trips, an auto occupancy factor and a non-auto trip factor were applied to the ITE vehicle trip rates. Our review of available literature suggests that a combined factor of approximately 1.3 is considered reasonable to account for typical North American auto occupancy values of approximately 1.15 and combined transit and non-motorized modal shares of less than 10%. As such, the person trip generation for the proposed site is summarized in Table 5.

Table 5: Modified Person Trip Generation

Land Use	Aroo	AM Pe	ak (perso	ons/h)	PM Peak (persons/h)			
Land Use	Area	In	Out	Total	In	Out	Total	
Condominiums	500 du	42	184	226	149	92	241	
Specialty Retail Centre	15,963 ft ²	21	18	39	34	44	78	
Office	22,712 ft ²	12	4	16	10	21	31	
Total P	75	206	281	193	157	350		

Note: 1.3 factor to account for typical North American auto occupancy values of approximately 1.15 and combined transit and non-motorized modal shares of less than 10%

The person trips shown in Table 5 for the proposed site were then reduced by modal share values, including a reduction for 'pass-by' trips based on the site's location and proximity to adjacent communities, employment, other shopping uses and transit availability. Modal share and 'pass-by' values for the proposed development are summarized in Table 6.

Table 6: Site Trip Generation

Travel Mode	Mode	AM Po	eak (perso	ns/h)	PM Peak (persons/h)		
Traver Wode	Share	In	Out	Total	In	Out	Total
Auto Driver	45%	34	93	127	87	71	158
Auto Passenger	10%	7	20	27	19	15	34
Transit	30%	23	62	85	58	48	106
Non-motorized	15%	11	31	42	29	23	52
Total Person Trips	100%	75	206	281	193	157	350
Less Retail 30% Pass-By		-3	-3	-6	-5	-5	-10
Total 'New' Auto Trips		31	90	121	82	66	148

As shown in Table 6, the resulting number of potential 'new' two-way vehicle trips for the proposed development is 121 and 148 veh/h during the weekday morning and afternoon peak hours, respectively. This amounts to an approximate 1% to 6% increase in traffic volumes at the study area intersections when appropriately distributed.

3.6 Vehicle Traffic Distribution and Assignment

Traffic distribution was based on the different types of land uses, existing volume splits at study area intersections and our knowledge of the surrounding area. The resultant distribution is outlined as follows:

Residential

- 35% to/from the east via Scott Street and Wellington Street;
- 35% to/from the south via Parkdale Avenue towards HWY 417;
- 15% to/from the north via Parkdale Avenue towards Sir John A. Macdonald Parkway; and
- 15% to/from the west via Scott Street and Wellington Street;
 100%

Retail

- 40% to/from the east via Scott Street and Wellington Street;
- 40% to/from the west via Scott Street and Wellington Street;
- 10% to/from the north via Parkdale Avenue; and
- 10% to/from the south via Parkdale Avenue; 100%

Office

- 50% to/from the south via Parkdale Avenue towards HWY 417;
- 15% to/from the north via Parkdale Avenue towards Sir John A. Macdonald Parkway;
- 20% to/from the east Scott Street and Wellington Street; and
- <u>15%</u> to/from the west via Scott Street and Wellington Street; 100%

The site driveway connections identified on the attached Site Plan are located along Scott Street and Bullman Street. Based on Scott Street's existing volumes, five lane cross-section, and the existing queues at the Scott/Parkdale intersection, it has been recommended to Richcraft that the Scott Street driveway be relocated to Parkdale Avenue. The proponent has indicated that for the next phase of applications, the Site Plan will be updated to reflect a driveway connection to Parkdale Avenue, as opposed to the currently shown driveway connection to Scott Street. As such, the following analysis assumes a single driveway connection to Parkdale Avenue and a single driveway connection to Bullman Street.

Based on this assumption and the above-noted distributions, 'new' and 'pass-by' site-generated trips are assigned to study area intersections and are illustrated as Figure 6.

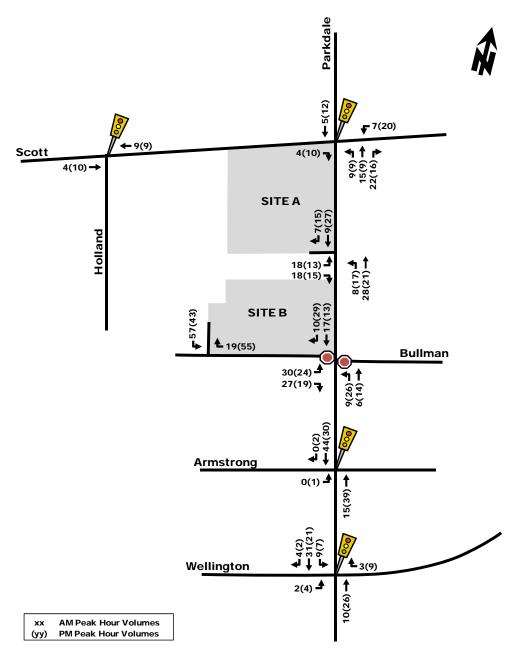


Figure 6: 'New' and 'Pass-by' Site-Generated Traffic Volumes

4. FUTURE TRAFFIC OPERATIONS

4.1 Projected Conditions at Full Site Development

The total projected volumes associated with the proposed development were derived by superimposing 'new' and 'pass-by' site-generated volumes (Figure 6) onto projected baseline traffic volumes (Figure 5). Total projected volumes are illustrated as Figure 7.

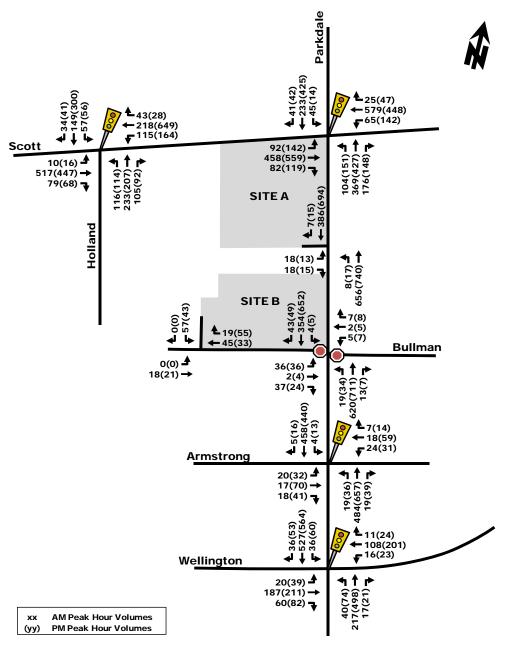


Figure 7: Total Projected Peak Hour Traffic Volumes

The following Table 7 provides a summary of projected performances of study area intersections at full site occupancy. The SYNCHRO model output of projected conditions is provided within Appendix E.

Table 7: Projected Performance of Study Area Intersections

		Weekday AM Peak (PM Peak)									
		'Critical Move	ment′	'Intersection as a Whole'							
Intersection		max. v/c or									
	LoS	avg. delay	Movement	Delay (s)	LoS	v/c					
		(s)									
Parkdale/Scott	F(F)	1.38(1.69)	NBT(NBT)	71.8(114.9)	D(F)	0.86(1.14)					
Holland/Scott	B(D)	0.69(0.88)	NBT(NBL)	18.3(20.5)	A(A)	0.42(0.51)					
Parkdale/Site	B(C)	14.4(16.0)	EBL(EBL)	0.6(0.6)	-	-					
Parkdale/Bullman	C(C)	17.6(23.1)	EBT(EBT)	1.7(1.9)	-	-					
Bullman/Site	A(A)	9.2(9.1)	SBL(SBL)	3.8(2.6)	=	-					
Parkdale/Armstrong	A(C)	0.46(0.75)	NBT(NBT)	10.3(20.0)	A(A)	0.41(0.58)					
Parkdale/Wellington	D(D)	0.88(0.89)	SBT(SBT)	34.5(27.7)	B(C)	0.65(0.71)					
Note: Analysis of signalize veh/h/lane.	zed interse	ections assumes a	PHF of 0.95 and	d a saturation flow	v rate of	1800					

As shown in Table 7, with no signal timing plan modifications, the signalized study area intersections, 'as a whole', are projected to operate at an acceptable LoS 'D' or better during both peak hours, with the exception of the Scott/Parkdale intersection during the weekday afternoon peak hour, which is projected to fail (LoS 'F'). The 'critical movements' are projected to operate similar to existing conditions summarized in Table 1.

With regards to the proposed site driveway connections (one to Parkdale Avenue and one to Bullman Street), they are projected to operate with acceptable delays of 10 to 16 seconds during peak hours with 95th percentile queues in the order of 2 meters (no more than 1 vehicle in queue) on site. No queues or delays are projected for vehicles entering the site.

Mitigative measures to improve the operations at the Parkdale/Scott intersection include an auxiliary northbound left-turn lane and an afternoon peak hour advanced protected/permitted westbound left-turn signal phase. However, these mitigative measures may not be feasible due to right-of-way constraints, geometric constraints or signal timing coordination and therefore, require further investigation by/with the City of Ottawa. It is noteworthy that the City's right-of-way protection policy for this section of Parkdale Avenue is 26 m. If this full right-of-way is achieved, there may be sufficient room to introduce a northbound left-turn lane at Scott Street.

4.2 Neighbourhood Impacts

With respect to "cut-through" traffic, drivers may elect to use local community roadways if Parkdale Avenue is experiencing heavy traffic congestion (e.g. Spencer Street, Armstrong Street, Hamilton Avenue, etc.). However, when Parkdale Avenue is operating acceptably, the majority of site-generated traffic will use Parkdale Avenue. It should be noted that if 100% of the projected site-generated traffic were to only use local community roadways, the projected impact of the new 121 and 148 veh/h, distributed to 4 or 5 local roadways, equates to less than 1 new vehicle per minute per roadway. If this were to occur, the impact to local roadways would not be significant.

With respect to neighbourhood transit, the site is projected to generate an approximate total of 85 and 106 'new' two-way transit person trips during the weekday morning and afternoon peak hours, respectively. This amount of additional transit ridership can be easily accommodated by the nearby local and rapid transit system.

5. SITE PLAN REVIEW

This section provides an overview of site access, parking requirements, pedestrian circulation and transit accessibility. The Preliminary Site Plan was previously illustrated as Figure 2.

Parking

A total of 350 residential parking spaces are proposed to serve the 500 dwelling units, which is sufficient with respect to the City's Zoning By-Law requirements for Area B, identified in Schedule 1 of the City's Zoning By-Law. With regard to visitor, retail and office parking, a total of 100 parking spaces are proposed to serve the site. According to the City's Zoning By-Law requirements, a minimum of 95 visitor parking spaces, 37 retail parking spaces and 38 office parking spaces should be provided, for a total of 170 parking spaces. Therefore, the proposed amount of visitor, retail and office parking is deficient with respect to the City's By-Law requirements. The proponent may wish to seek a By-Law variance to provide a reduced amount of parking. It should be noted however, that the total amount of proposed residential parking is greater than the City's minimum By-Law requirement by 100 spaces (i.e. the site as a whole will provide sufficient parking with respect to the City's By-Law requirements).

Site Circulation

With regard to on-site circulation, the proposed parking garage is laid out effectively, such that two-way traffic can be efficiently accommodated. The proposed drive aisle widths are noted as 6.7 m, which meets the City's By-Law requirements for two-way traffic.

The ramp grades are not identified on the attached Site Plan, however, efforts should be made to provide ramp grades less than 12% with appropriate transitions to/from the proposed ramps. If exposed to weather, a subsurface melting device sufficient to keep the access ramp free of ice at all times would be of benefit in terms of safety.

Access Requirements

As previously mentioned, for the next phase of applications, the Site Plan will be updated to reflect a site (Tower A) driveway connection to Parkdale Avenue, as opposed to the currently shown driveway connection to Scott Street. As such, the driveway connection to Parkdale Avenue should comply with the City's Zoning and Private Approach By-Laws in terms of dimensioning and location (i.e. 6.7 m in width, a minimum 30 m from Scott Street and a minimum of 3 m from the adjacent property line, if possible).

With respect to the proposed driveway connection to Bullman Street (Tower 'B'), its width is noted as approximately 6 m and its location is approximately 1.5 m from the western property line and 50 m from the nearest intersection street line (Parkdale Avenue).

With respect to the City's Zoning By-Law, the proposed 6 m driveway width does not satisfy Section 107 (1) (a) (ii), which requires a driveway that provides access to a parking lot or parking garage be 6.7 m for two-way traffic. Consideration should be given to providing a 6.7 m driveway connection to Bullman Street for two-way vehicle traffic, or alternatively, a variance will be required.

According to the City's Private Approach By-Law, the offset from Parkdale Avenue is sufficient. However, the proximity of the proposed driveway to the western property line is less than 3 m, which does not satisfy Section 25 (o) of the Private Approach By-Law. Section 25 (o) of the Private Approach By-Law does state, however, the General Manager may reduce the off-set to a minimum of 0.3 metres provided that the proposed access is:

- i. located a safe distance from the access serving the adjacent property;
- ii. in such a manner that there are adequate sight lines for vehicles exiting from the property; and
- iii. in such a manner that it does not create a traffic hazard.

Given the adjacent property's driveway is approximately 3 m from the shared property line and there is currently a hydro pole located within the sight triangle for the Tower 'B' driveway, consideration should be given to relocating the proposed Bullman Street driveway connection, such that its location is greater than 3 m from the adjacent western property line and greater than 45 m from Parkdale Avenue.

Pedestrians/Transit

Connecting pedestrians to local/rapid transit service, other nearby employment, shopping and recreational opportunities, sidewalks are currently provided along the site's frontages to Bullman Street, Parkdale Avenue and Scott Street, which are all connected to the established pedestrian network previously described in Section 2 – Existing Conditions.

Bicycles

A total of 280 bicycle parking spaces are proposed to serve the development, which is sufficient with respect to the City's By-Law requirements. The location of the bicycle parking is noted as 'underground' on the attached Site Plan, which is suitable assuming the retail and office patrons have access to these spaces as well as the residential patrons.

6. Transportation Demand Management

Depending on the nature of a development, Transportation Demand Management (TDM) strategies have the potential to be an integral part of a planned development in order to address and support the City's policies with regard to TDM. For this particular site, its proximity to the existing local and rapid transit service is considered very advantageous in lessening the reliance on the private automobile. However, a number of other TDM measures could also be considered, including:

- improving the quality and safety of pedestrian facilities, such as enhanced sidewalks/lighting;
- carpool/ride-sharing programs;

- discounted transit passes (i.e. OC Transpo's ECOPASS); and
- provide change area/shower facilities for any on-site staff to encourage cycling.

TDM strategies are important in encouraging active modes of transportation to/from the site, further lessening the reliance on the private automobile.

7. FINDINGS AND RECOMMENDATIONS

EXISTING CONDITIONS

- The study area intersections adjacent to the site are (according to SYNCHRO) currently operating 'as a whole' with an overall LoS 'D' or better during the weekday morning and afternoon peak hours, with the exception on the Scott/Parkdale intersection during the afternoon peak hour;
- With regard to 'critical movements' at study area intersections, they are noted (according to SYNCHRO) as operating at an acceptable LoS 'D' or better during the peak hours, with the exception of the northbound through movements at the Scott/Parkdale intersection during the morning and afternoon peak hours;
- In contrast, the 6 independent observations revealed that the degree of traffic congestion on Parkdale Avenue can fluctuate significantly between failing and acceptable conditions day-by-day, which is greatly dependent on how HWY 417 and the Sir John A. Macdonald Parkway are operating;
- Based on the available data, there does not appear to be any safety issues at the study area intersections adjacent to the proposed site;

PROJECTED CONDITIONS

- The traffic generated by local area developments in the vicinity of the site was accounted for by applying a 10% growth factor to the existing traffic volumes along Scott Street, Parkdale Avenue and Wellington Street West;
- The proposed development is projected to generate 'new' two-way vehicle volumes of approximately 121 and 148 veh/h during the weekday morning and afternoon peak hours, respectively;
- The signalized study area intersections, 'as a whole', are projected to operate (according to SYNCHRO) at an acceptable LoS 'D' or better during both peak hours, with the exception of the Scott/Parkdale intersection during the weekday afternoon peak hour, which is projected to fail (LoS 'F');
- The 'critical movements' at study area intersections are projected to operate (according to SYNCHRO) similar to existing conditions;

- Based on current field observations, the additional site-generated traffic will somewhat add to existing queues and delays along Parkdale Avenue. As Parkdale Avenue can be very congested today, and without future plans to increase road capacity, the proposed site's close proximity to current rapid transit and future LRT will generate a high non-auto modal share;
- Possible mitigative measures to improve the operations at the Parkdale/Scott intersection include an auxiliary northbound left-turn lane (if right-of-way is available) and an afternoon peak hour advanced protected/permitted westbound left-turn signal phase;

SITE PLAN

- The proposed site's parking layout is well arranged and meets By-Law requirements;
- The proposed driveway connection to Scott Street should be relocated to Parkdale Avenue and its location and dimensioning should comply with the City's respective By-Laws;
- The proposed driveway connection to Bullman Street should be relocated such that its location is greater than 3 m from the adjacent western property line and greater than 45 m from Parkdale Avenue. Its width should also be ideally to 6.7 m to satisfy the City's Zoning By-Law requirement for two-way traffic.
- Appropriate sight-triangles should be provided at the proposed driveway connection to Bullman Street (i.e. consideration should be given to the location of existing hydro poles along the north side of Bullman Street); and
- The proposed vehicle/bicycle parking supply and dimensioning is noted as being sufficient with respect to the City's By-Law requirements.

8. Conclusions

Based on the foregoing analysis of the proposed development, the following transportation-related conclusions are offered:

- The proposed development is projected to add traffic to some study area intersections that are already/projected failing intersections;
- The proposed development is projected to generate some neighbourhood "cutthrough" traffic due to the location of their garage connections and the periodic existing congestion on Parkdale Avenue; and
- The close proximity to City-wide bike/walk systems and future LRT will result in the development having a high non-auto modal share.

G. R. SCOOL STATE

100135384

POVINCE OF ONTE

In summary, while there will be some adverse traffic impacts, the proposed 274 Parkdale Avenue Mixed-Use development fits well into the context of the surrounding area, and its location relative to rapid transit and design serves to promote use of walking, cycling, and transit modes, thus supporting City of Ottawa policies, goals and objectives with respect to redevelopment, intensification and modal share.

Prepared By:

André Jane Sponder, B.A.Sc. Analyst, Transportation

Ottawa Operations

Reviewed By:

Gordon R. Scobie, P.Eng.

Project Engineer, Transportation

Ottawa Operations

Appendix A Current Peak Hour Volumes

ARMSTRONG ST and PARKDALE AVE

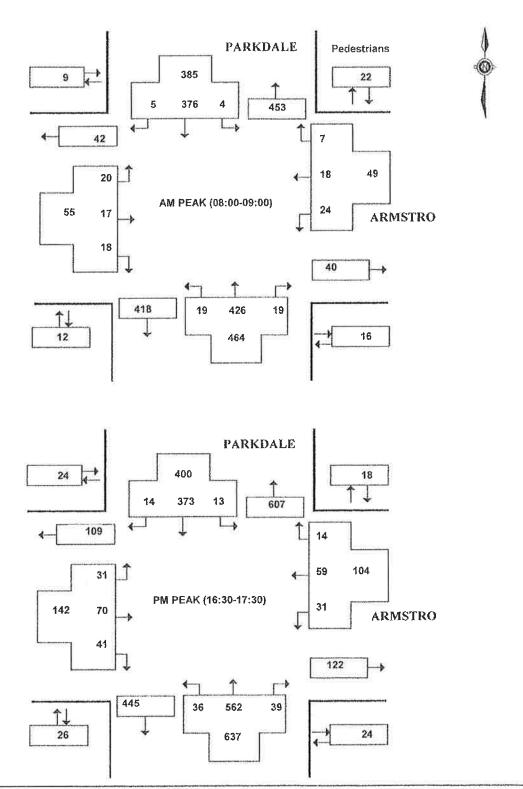
(ULRS Listing ARMSTRO & PARKDALE)

Total Observed U-Turns

Conditions:

Start Time:

Survey Date: Wednesday 1 August 2012


dry 0700

Northbound: Eastbound:

0 Southbound:

0 Westbound:

AADT Factor Wednesday in Augus

Public Works and Services Department

Count ID 2866

HOLLAND AVE and SCOTT ST

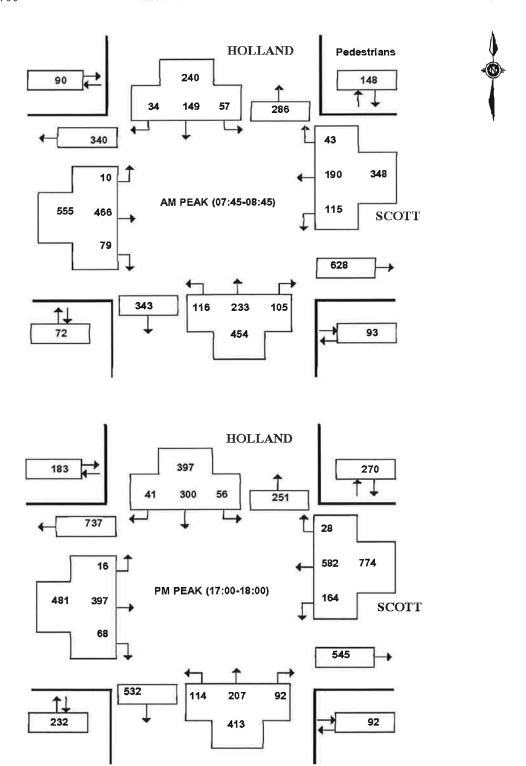
(ULRS Listing HOLLAND & SCOTT)

Conditions: Start Time:

Survey Date: Wednesday 15 June 2011

dry

0700


Total Observed U-Turns

Northbound: Eastbound:

O Southbound:

0 0 Westbound:

AADT Factor Wednesday in June is

Public Works and Services Department

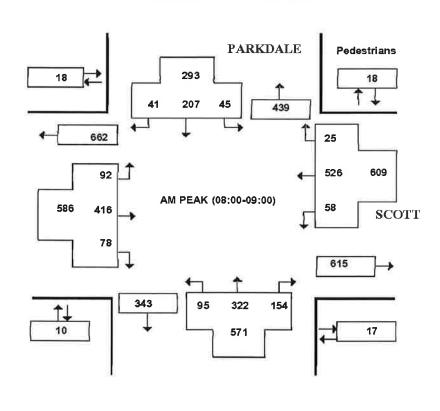
Count ID 2866

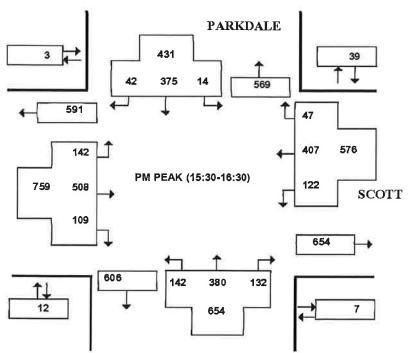
PARKDALE AVE and SCOTT ST

(ULRS Listing PARKDALE & SCOTT)

Survey Date: Tuesday 14 June 2011

Conditions: Start Time:


dгу 0700 **Total Observed U-Turns**


Northbound: Eastbound:

O Southbound: 0 Westbound:

0

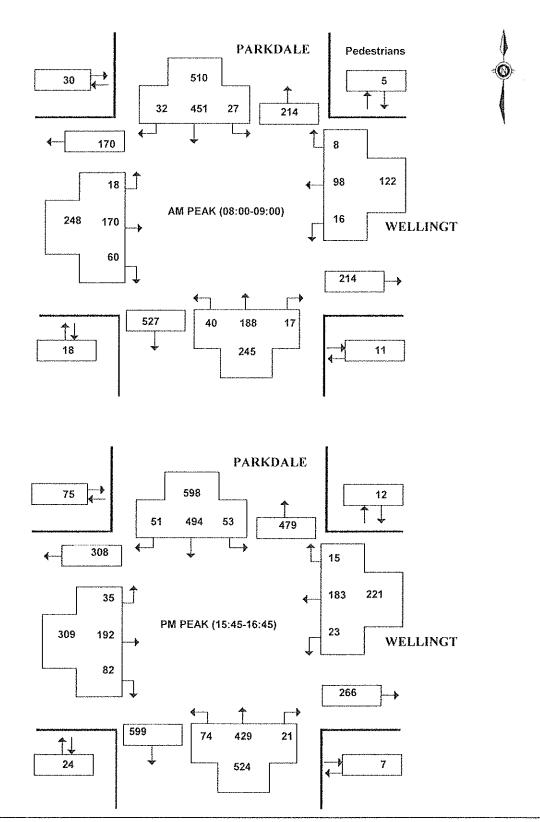
AADT Factor Tuesday in June is

Approved by: DT

Printed on: 09/08/2011

PARKDALE AVE and WELLINGTON ST

(ULRS Listing PARKDALE & WELLINGT)


Survey Date: Thursday 2 August 2012

Conditions: dry Start Time: 0700 **Total Observed U-Turns**

Northbound: O Southbound: Eastbound:

0 Westbound: 0 AADT Factor

Thursday in August i

DIRECTIONAL TRAFFIC FLOW

Intersection:	Parkdale	at _Bullr	nan		
DATE: Day: <u>7</u>	Month: May	Year: 2013	Day of Week: _	Tuesday	
Observer: Alex	z Buck				
		Chkd by:	Date:		
TIME PERIOD: Instructio	From: 8:00 ons: 1) Use tally marks to indi 2) Use one sheet for each	cate vehicles.	: 00	N M	
	33	4	ss. Vehicles Trks Bus Street Name: Parkdale		_
Street Name: Bullman			- Ba		
Bus Trks Pass. Vehicles		5 L	7 C	7	
6					$\left[\right]$
	→ Ø		∞ ←		
				5	
10	۲ <u>۲</u>	s 1	Pass.	Vehicles Trks B Street Name:	us
ي ا	Pass, Vehicles		13	Bullman	
Delcan	Bus Trks				

DIRECTIONAL TRAFFIC FLOW

Intersection: Parkdale	at Bullman
DATE: Day: 7 Month: May	Year: 2013 Day of Week: <u>Tuesday</u>
Observer: Alex Buck	Weather:
	Chkd by: Date:
TIME PERIOD: From: 4:00 Instructions: 1) Use tally marks to indicate 2) Use one sheet for each 15	
20	Street Name: Parkdale Parkdale
Street Name: Bullman	
Bus Trks Pass, Vehicles R	
12	
→ •	∞ ← 5
	Pass. Vehicles Trks Bus Street Name:
	<u>Bullman</u>
Street Name: Bus Trks Pass, Vehicles 8	7

Appendix B SYNCHRO Capacity Analysis: Existing Conditions

	•	→	•	+	•	•	†	/	
Lane Group	EBL	EBT	WBL	WBT	WBR	NBL	NBT	SBL	SBT
Lane Configurations	*	∳ ሴ	*	44	7		₽.	7	î,
Volume (vph)	92	416	58	526	25	95	322	45	207
Lane Group Flow (vph)	97	520	61	554	26	0	601	47	261
Turn Type	Perm	NA	Perm	NA	Perm	Perm	NA	Perm	NA
Protected Phases		2		6			8		4
Permitted Phases	2		6		6	8		4	
Detector Phase	2	2	6	6	6	8	8	4	4
Switch Phase									
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
Minimum Split (s)	27.4	27.4	27.4	27.4	27.4	32.7	32.7	32.7	32.7
Total Split (s)	52.0	52.0	52.0	52.0	52.0	43.0	43.0	43.0	43.0
Total Split (%)	54.7%	54.7%	54.7%	54.7%	54.7%	45.3%	45.3%	45.3%	45.3%
Yellow Time (s)	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3
All-Red Time (s)	2.1	2.1	2.1	2.1	2.1	2.4	2.4	2.4	2.4
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0
Total Lost Time (s)	5.4	5.4	5.4	5.4	5.4		5.7	5.7	5.7
Lead/Lag									
Lead-Lag Optimize?									
Recall Mode	C-Max	C-Max	C-Max	C-Max	C-Max	Max	Max	Max	Max
Act Effct Green (s)	46.6	46.6	46.6	46.6	46.6		37.3	37.3	37.3
Actuated g/C Ratio	0.49	0.49	0.49	0.49	0.49		0.39	0.39	0.39
v/c Ratio	0.30	0.35	0.18	0.37	0.04		1.15	0.23	0.42
Control Delay	14.5	11.6	15.4	16.0	4.1		116.6	23.1	22.5
Queue Delay	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0
Total Delay	14.5	11.6	15.4	16.0	4.1		116.6	23.1	22.5
LOS	В	В	В	В	А		F	С	С
Approach Delay		12.1		15.4			116.6		22.6
Approach LOS		В		В			F		С
Queue Length 50th (m)	11.2	30.4	6.0	31.9	0.0		~128.4	5.7	32.5
Queue Length 95th (m)	21.4	23.8	13.8	43.8	3.6		#192.4	14.2	53.4
Internal Link Dist (m)		225.1		242.5			96.9		79.4
Turn Bay Length (m)	65.0		40.0		50.0			45.0	
Base Capacity (vph)	320	1477	336	1496	685		522	204	622
Starvation Cap Reductn	0	0	0	0	0		0	0	0
Spillback Cap Reductn	0	0	0	0	0		0	0	0
Storage Cap Reductn	0	0	0	0	0		0	0	0
Reduced v/c Ratio	0.30	0.35	0.18	0.37	0.04		1.15	0.23	0.42

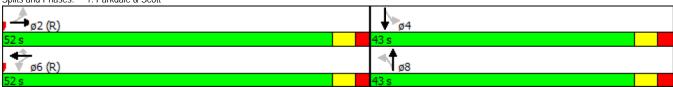
Cycle Length: 95

Actuated Cycle Length: 95
Offset: 91 (96%), Referenced to phase 2:EBTL and 6:WBTL, Start of Green

Natural Cycle: 65

Control Type: Actuated-Coordinated Maximum v/c Ratio: 1.15 Intersection Signal Delay: 43.5 Intersection Capacity Utilization 96.6%

Intersection LOS: D ICU Level of Service F


Analysis Period (min) 15

 Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

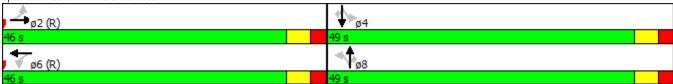
Queue shown is maximum after two cycles.

Lane Group Lane Configurations Volume (vph)	EBL 10	EBT	WBL	LUDT							
Volume (vph)		ፈተሴ		WBT	NBL	NBT	NBR	SBL	SBT	SBR	
			*	♠ Ъ	*	*	#	*	*	1	
	_	466	115	190	116	233	105	57	149	34	
Lane Group Flow (vph)	0	585	121	245	122	245	111	60	157	36	
Turn Type	Perm	NA	Perm	NA	Perm	NA	Perm	Perm	NA	Perm	
Protected Phases		2		6		8			4		
Permitted Phases	2		6		8		8	4		4	
Detector Phase	2	2	6	6	8	8	8	4	4	4	
Switch Phase											
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	
Minimum Split (s)	36.8	36.8	36.8	36.8	23.6	23.6	23.6	23.6	23.6	23.6	
Total Split (s)	46.0	46.0	46.0	46.0	49.0	49.0	49.0	49.0	49.0	49.0	
Total Split (%)	48.4%	48.4%	48.4%	48.4%	51.6%	51.6%	51.6%	51.6%	51.6%	51.6%	
Yellow Time (s)	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	
All-Red Time (s)	2.5	2.5	2.5	2.5	2.3	2.3	2.3	2.3	2.3	2.3	
Lost Time Adjust (s)		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)		5.8	5.8	5.8	5.6	5.6	5.6	5.6	5.6	5.6	
Lead/Lag											
Lead-Lag Optimize?											
Recall Mode	C-Max	C-Max	C-Max	C-Max	None	None	None	None	None	None	
Act Effct Green (s)		62.7	62.7	62.7	20.9	20.9	20.9	20.9	20.9	20.9	
Actuated g/C Ratio		0.66	0.66	0.66	0.22	0.22	0.22	0.22	0.22	0.22	
v/c Ratio		0.31	0.27	0.12	0.57	0.69	0.29	0.39	0.44	0.11	
Control Delay		8.0	7.4	4.5	41.9	43.7	7.1	37.2	34.5	9.1	
Queue Delay		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay		8.0	7.4	4.5	41.9	43.7	7.1	37.2	34.5	9.1	
LOS		Α	Α	Α	D	D	Α	D	С	Α	
Approach Delay		8.0		5.5		34.7			31.5		
Approach LOS		Α		Α		С			С		
Queue Length 50th (m)		20.6	6.3	4.6	20.0	41.5	0.0	9.4	25.0	0.0	
Queue Length 95th (m)		37.8	m11.8	m7.1	33.8	59.1	11.4	19.0	38.3	6.7	
Internal Link Dist (m)		225.9		225.1		214.6			104.7		
Turn Bay Length (m)			120.0		50.0		35.0	45.0		45.0	
Base Capacity (vph)		1878	449	1968	448	733	683	315	733	643	
Starvation Cap Reductn		0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn		0	0	0	0	0	0	0	0	0	
Storage Cap Reductn		0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio		0.31	0.27	0.12	0.27	0.33	0.16	0.19	0.21	0.06	

Cycle Length: 95

Actuated Cycle Length: 95
Offset: 85 (89%), Referenced to phase 2:EBTL and 6:WBTL, Start of Green

Natural Cycle: 65


Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.69 Intersection Signal Delay: 18.6 Intersection Capacity Utilization 68.5%

Intersection LOS: B ICU Level of Service C

Analysis Period (min) 15

m Volume for 95th percentile queue is metered by upstream signal.

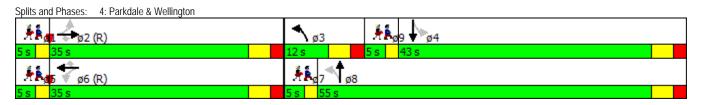
ᄼ	-	•	←	1	†	-	ļ
EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT
	43-		43-		43-		43-
20	17	24	18	19	426	4	376
0	58	0	51	0	488	0	405
Perm	NA	Perm	NA	Perm	NA	Perm	NA
	4		8		2		6
4		8		2		6	
4	4	8	8	2	2	6	6
10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
22.2	22.2	22.2	22.2	25.0	25.0	25.0	25.0
27.0	27.0	27.0	27.0	73.0	73.0	73.0	73.0
27.0%				73.0%	73.0%		73.0%
3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3
1.9	1.9	1.9	1.9	1.7	1.7	1.7	1.7
	0.0		0.0		0.0		0.0
	5.2		5.2		5.0		5.0
Max	Max	Max	Max	C-Max	C-Max	C-Max	C-Max
	21.8		21.8		68.0		68.0
	0.22		0.22		0.68		0.68
	0.17		0.15		0.41		0.34
	24.7		29.6		7.6		7.5
	0.1		0.1		0.5		0.0
	24.8		29.6		8.2		7.6
	С		С		Α		Α
	24.8		29.6		8.2		7.6
	С		С		Α		Α
	6.1		6.9		32.6		28.8
	16.5		16.7		46.6		43.1
	132.6		119.5		122.5		204.7
	350		335		1181		1207
	0		0		334		0
	26		25		0		47
	0		0		0		0
	0.18		0.16		0.58		0.35
2:NBTL and	6:SBTL, St	art of Greer	1				
			In	tersection Lo	OS: A		
%			IC	U Level of S	Service A		
	20 0 Perm 4 4 10.0 22.2 27.0 27.0% 3.3 1.9	EBL EBT 20 17 0 58 Perm NA 4 4 4 4 4 10.0 10.0 22.2 22.2 27.0 27.0 27.0% 27.0% 3.3 3.3 1.9 1.9 0.0 5.2 Max Max 21.8 0.22 0.17 24.7 0.1 24.8 C 24.8 C 6.1 16.5 132.6 350 0 26 0 0.18	EBL EBT WBL 20 17 24 0 58 0 Perm NA Perm 4 4 8 4 4 8 10.0 10.0 10.0 10.0 22.2 22.2 22.2 27.0 27.0 27.0 27.0 27.0% 27.0% 27.0% 3.3 3.3 3.3 1.9 1.9 1.9 1.9 0.0 5.2 Max Max Max Max 21.8 0.22 0.17 24.7 0.1 24.8 C 24.8 C 24.8 C 6.1 16.5 132.6 350 0 26 0 0.18	EBL EBT WBL WBT 20 17 24 18 0 58 0 51 Perm NA Perm NA 4 8 4 8 4 4 8 8 10.0 10.0 10.0 10.0 10.0 22.2 22.2 22.2 22.2 22.2 27.0 27.0 27.0 27.0 27.0 27.0% 27.0% 27.0% 27.0% 27.0% 3.3 3.3 3.3 3.3 1.9 1.9 1.9 1.9 1.9 0.0 0.0 5.2 5.2 Max Max Max Max Max 21.8 0.22 0.22 0.17 0.15 24.7 29.6 0.1 0.1 24.8 29.6 C C C 24.8 29.6 C C C 24.8 29.6 C C C 6.1 6.9 16.5 16.7 132.6 119.5 350 335 0 0 0 0.18 2:NBTL and 6:SBTL, Start of Green	EBL EBT WBL WBT NBL 20 17 24 18 19 0 58 0 51 0 Perm NA Perm NA Perm 4 8 4 8 2 4 4 4 8 8 2 10.0 10.0 10.0 10.0 10.0 10.0 22.2 22.2 22.2 22.2 22.2 25.0 27.0 27.0 27.0 27.0 73.0 27.0% 27.0% 27.0% 27.0% 73.0% 3.3 3.3 3.3 3.3 3.3 1.9 1.9 1.9 1.9 1.9 1.9 1.7 0.0 0.0 5.2 5.2 Max Max Max Max Max C-Max 21.8 21.8 0.22 0.22 0.17 0.15 24.7 29.6 0.1 0.1 24.8 29.6 C C C 24.8 29.6 C C C 6.1 6.9 16.5 16.7 132.6 119.5 350 335 0 0 0 26 25 0 0 0 0.18 0.16	EBL EBT WBL WBT NBL NBT 20 17 24 18 19 426 0 58 0 51 0 488 Perm NA Perm NA Perm NA 4 8 2 4 4 8 2 4 4 8 8 2 2 10.0 10.0 10.0 10.0 10.0 10.0 10.0 22.2 22.2 22.2 22.2 25.0 25.0 27.0 27.0 27.0 27.0 73.0 73.0 73.0 27.0% 27.0% 27.0% 27.0% 73.0% 73.0% 3.3 3.3 3.3 3.3 3.3 3.3 3.3 1.9 1.9 1.9 1.9 1.9 1.7 1.7 0.0 0.0 0.0 0.0 5.2 5.2 5.0 Max Max Max Max Max C-Max C-Max 21.8 21.8 68.0 0.22 0.22 0.22 0.68 0.17 0.15 0.41 24.7 29.6 7.6 0.1 0.1 0.1 0.5 24.8 29.6 8.2 C C C A 6.1 6.9 32.6 16.5 16.7 46.6 132.6 119.5 122.5	EBL EBT WBL WBT NBL NBT SBL 20 17 24 18 19 426 4 0 58 0 51 0 488 0 Perm NA Perm NA Perm NA Perm NA Perm 4 8 2 2 6 4 4 8 8 2 2 6 4 4 4 8 8 8 2 2 2 6 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0

	•	-	*	•	+	•	•	†	/	+		
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	SBL	SBT	ø1	ø5
Lane Configurations		4	7		4	7	*	ĵ.	*	ĵ.		
Volume (vph)	18	170	60	16	98	8	40	188	27	451		
Lane Group Flow (vph)	0	198	63	0	120	8	42	216	28	509		
Turn Type	Perm	NA	Perm	Perm	NA	Perm	pm+pt	NA	Perm	NA		
Protected Phases		2			6		3	8		4	1	5
Permitted Phases	2		2	6		6	8		4			
Detector Phase	2	2	2	6	6	6	3	8	4	4		
Switch Phase												
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	10.0	5.0	10.0	10.0	10.0	3.0	3.0
Minimum Split (s)	18.4	18.4	18.4	18.4	18.4	18.4	10.4	15.4	15.4	15.4	5.0	5.0
Total Split (s)	35.0	35.0	35.0	35.0	35.0	35.0	12.0	55.0	43.0	43.0	5.0	5.0
Total Split (%)	35.0%	35.0%	35.0%	35.0%	35.0%	35.0%	12.0%	55.0%	43.0%	43.0%	5%	5%
Yellow Time (s)	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	2.0	2.0
All-Red Time (s)	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	0.0	0.0
Lost Time Adjust (s)		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0		
Total Lost Time (s)		5.4	5.4		5.4	5.4	5.4	5.4	5.4	5.4		
Lead/Lag	Lag	Lag	Lag	Lag	Lag	Lag	Lead	Lag			Lead	Lead
Lead-Lag Optimize?	Yes			Yes	Yes							
Recall Mode	C-Max	C-Max	C-Max	C-Max	C-Max	C-Max	None	Max	Max	Max	None	None
Act Effct Green (s)		34.6	34.6		34.6	34.6	54.6	54.6	37.6	37.6		
Actuated g/C Ratio		0.35	0.35		0.35	0.35	0.55	0.55	0.38	0.38		
v/c Ratio		0.37	0.14		0.23	0.02	0.19	0.25	0.08	0.86		
Control Delay		27.1	23.7		24.7	21.9	12.6	12.9	20.9	45.9		
Queue Delay		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.8		
Total Delay		27.1	23.7		24.7	21.9	12.6	12.9	20.9	46.7		
LOS		С	С		С	С	В	В	С	D		
Approach Delay		26.3			24.5			12.9		45.3		
Approach LOS		С			С			В		D		
Queue Length 50th (m)		28.5	8.3		16.4	1.0	3.6	20.8	3.7	95.5		
Queue Length 95th (m)		47.3	17.7		29.8	4.1	8.4	34.1	10.0	#147.2		
Internal Link Dist (m)		37.0			13.5			115.8		122.5		
Turn Bay Length (m)			20.0			20.0	50.0		40.0			
Base Capacity (vph)		533	443		524	409	228	862	369	593		
Starvation Cap Reductn		0	0		0	0	0	0	0	12		
Spillback Cap Reductn		0	0		0	0	0	0	0	0		
Storage Cap Reductn		0	0		0	0	0	0	0	0		
Reduced v/c Ratio		0.37	0.14		0.23	0.02	0.18	0.25	0.08	0.88		

Cycle Length: 100

Actuated Cycle Length: 100
Offset: 0 (0%), Referenced to phase 2:EBTL and 6:WBTL, Start of Green

Natural Cycle: 70


Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.86
Intersection Signal Delay: 31.8
Intersection Capacity Utilization 69.9%

Intersection LOS: C ICU Level of Service C

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Lane Configurations Volume (vph) Lane Group Flow (vph) Turn Type Protected Phases Permitted Phases Detector Phase Switch Phase			
Volume (vph) Lane Group Flow (vph) Turn Type Protected Phases Permitted Phases Detector Phase Switch Phase Minimum Initial (s) 3.0 3.0 Minimum Split (s) 5.0 5.0 Total Split (s) 5.0 5.0 Total Split (%) 5% 5% Yellow Time (s) 2.0 2.0 All-Red Time (s) 0.0 0.0 Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead Lag Lead-Lag Optimize? Yes Yes Recall Mode None Max Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 95th (m) Internal Link Dist (m) Turn Bay Length (m) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio	Lane Group	ø7	ø9
Lane Group Flow (vph) Turn Type Protected Phases 7 9 Permitted Phases Detector Phase Switch Phase Minimum Initial (s) 3.0 3.0 Minimum Split (s) 5.0 5.0 Total Split (s) 5.0 5.0 Total Split (%) 5% 5% Yellow Time (s) 2.0 2.0 All-Red Time (s) 0.0 0.0 Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead Lag Lead-Lag Optimize? Yes Yes Recall Mode None Max Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 95th (m) Internal Link Dist (m) Turn Bay Length (m) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio			
Turn Type Protected Phases 7 9 Permitted Phases Detector Phase Switch Phase Minimum Initial (s) 3.0 3.0 Minimum Split (s) 5.0 5.0 Total Split (s) 5.0 5.0 Total Split (%) 5% 5% Yellow Time (s) 2.0 2.0 All-Red Time (s) 0.0 0.0 Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead Lag Lead-Lag Optimize? Yes Yes Recall Mode None Max Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach LOS Queue Length 50th (m) Queue Length 95th (m) Internal Link Dist (m) Turn Bay Length (m) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio			
Protected Phases Permitted Phases Detector Phase Switch Phase Switch Phase Minimum Initial (s) 3.0 3.0 Minimum Split (s) 5.0 5.0 Total Split (s) 5.0 5.0 Total Split (s) 5.0 5.0 All-Red Time (s) 2.0 2.0 All-Red Time (s) 0.0 0.0 Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead Lag Lead-Lag Optimize? Yes Yes Recall Mode None Max Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach LOS Queue Length 50th (m) Queue Length 95th (m) Internal Link Dist (m) Turn Bay Length (m) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio	Lane Group Flow (vph)		
Permitted Phases Detector Phase Switch Phase Minimum Initial (s) 3.0 3.0 Minimum Split (s) 5.0 5.0 Total Split (s) 5.0 0.0 0.0 Lost Time (s) 0.0 0.0 Lost Time Adjust (s) Total Lost Time (s) Lead-Lag Optimize? Yes Yes Recall Mode None Max Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (m) Queue Length 95th (m) Internal Link Dist (m) Turn Bay Length (m) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio	Turn Type		
Detector Phase Switch Phase Minimum Initial (s) 3.0 3.0 Minimum Split (s) 5.0 5.0 Total Split (s) 5.0 5.0 Total Split (s) 5.0 5.0 Total Split (%) 5% 5% Yellow Time (s) 2.0 2.0 All-Red Time (s) 0.0 0.0 Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead Lag Lead-Lag Optimize? Yes Yes Recall Mode None Max Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 95th (m) Internal Link Dist (m) Turn Bay Length (m) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio	Protected Phases	7	9
Switch Phase Minimum Initial (s) 3.0 3.0 Minimum Split (s) 5.0 5.0 Total Split (s) 5.0 5.0 Total Split (s) 5.0 5.0 Total Split (w) 5% 5% Yellow Time (s) 2.0 2.0 All-Red Time (s) 0.0 0.0 Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead Lag Lead Lag Lead-Lag Optimize? Yes Yes Recall Mode None Max Act Effct Green (s) Actuated g/C Ratio v/c Ratio V/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 95th (m) Internal Link Dist (m) Turn Bay Length (m) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio	Permitted Phases		
Minimum Initial (s) 3.0 3.0 Minimum Split (s) 5.0 5.0 Total Split (s) 5.0 5.0 Total Split (%) 5% 5% Yellow Time (s) 2.0 2.0 All-Red Time (s) 0.0 0.0 Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead Lag Lead-Lag Optimize? Yes Yes Recall Mode None Max Act Effct Green (s) Actuated g/C Ratio VC Ratio Control Delay Queue Delay Total Delay LOS Approach LOS Queue Length 50th (m) Queue Length 95th (m) Internal Link Dist (m) Turn Bay Length (m) Base Capacity (vph) Starvation Cap Reductn Storage Cap Reductn Reduced v/c Ratio	Detector Phase		
Minimum Split (s) 5.0 5.0 Total Split (s) 5.0 5.0 Total Split (%) 5% 5% Yellow Time (s) 2.0 2.0 All-Red Time (s) 0.0 0.0 Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead Lag Lead-Lag Optimize? Yes Yes Recall Mode None Max Act Effct Green (s) Actuated g/C Ratio V/C Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 95th (m) Internal Link Dist (m) Turn Bay Length (m) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio	Switch Phase		
Total Split (s) 5.0 5.0 Total Split (%) 5% 5% Yellow Time (s) 2.0 2.0 All-Red Time (s) 0.0 0.0 Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead Lag Lead-Lag Optimize? Yes Yes Recall Mode None Max Act Effct Green (s) Actuated g/C Ratio V/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (m) Queue Length 95th (m) Internal Link Dist (m) Turn Bay Length (m) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Reduced v/c Ratio	Minimum Initial (s)	3.0	3.0
Total Split (s) 5.0 5.0 Total Split (%) 5% 5% Yellow Time (s) 2.0 2.0 All-Red Time (s) 0.0 0.0 Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead Lag Lead-Lag Optimize? Yes Yes Recall Mode None Max Act Effct Green (s) Actuated g/C Ratio V/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 95th (m) Internal Link Dist (m) Turn Bay Length (m) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Reduced v/c Ratio	Minimum Split (s)	5.0	5.0
Total Split (%) 5% 5% Yellow Time (s) 2.0 2.0 All-Red Time (s) 0.0 0.0 Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead Lag Lead-Lag Optimize? Yes Yes Recall Mode None Max Act Effct Green (s) Actuated g/C Ratio V/C Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (m) Queue Length 95th (m) Internal Link Dist (m) Turn Bay Length (m) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Reduced v/c Ratio			5.0
Yellow Time (s) 2.0 2.0 All-Red Time (s) 0.0 0.0 Lost Time Adjust (s) Total Lost Time (s) Lead Lag Lead-Lag Optimize? Yes Yes Yes Recall Mode None Max Act Effct Green (s) Act Effct Green (s) Actuated g/C Ratio V/C Ratio V/C Ratio Control Delay Queue Delay Total Delay Approach Delay Approach LOS Queue Length 50th (m) Queue Length 95th (m) Internal Link Dist (m) Turn Bay Length (m) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio		5%	5%
All-Red Time (s) 0.0 0.0 Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead Lag Lead-Lag Optimize? Yes Yes Recall Mode None Max Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (m) Queue Length 95th (m) Internal Link Dist (m) Turn Bay Length (m) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Reduced v/c Ratio			
Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead Lag Lead-Lag Optimize? Yes Yes Recall Mode None Max Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (m) Queue Length 95th (m) Internal Link Dist (m) Turn Bay Length (m) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Reduced v/c Ratio			
Total Lost Time (s) Lead/Lag Lead Lag Lead-Lag Optimize? Yes Yes Recall Mode None Max Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (m) Queue Length 95th (m) Internal Link Dist (m) Turn Bay Length (m) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Reduced v/c Ratio			
Lead/Lag Lead Lag Lead-Lag Optimize? Yes Yes Recall Mode None Max Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (m) Queue Length 95th (m) Internal Link Dist (m) Turn Bay Length (m) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Reduced v/c Ratio			
Lead-Lag Optimize? Yes Yes Recall Mode None Max Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (m) Queue Length 95th (m) Internal Link Dist (m) Turn Bay Length (m) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Reduced v/c Ratio		Lead	Lag
Recall Mode None Max Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (m) Queue Length 95th (m) Internal Link Dist (m) Turn Bay Length (m) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio			
Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (m) Queue Length 95th (m) Internal Link Dist (m) Turn Bay Length (m) Base Capacity (vph) Starvation Cap Reducth Spillback Cap Reductn Reduced v/c Ratio			
Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (m) Queue Length 95th (m) Internal Link Dist (m) Turn Bay Length (m) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Reduced v/c Ratio			a.t
v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (m) Queue Length 95th (m) Internal Link Dist (m) Turn Bay Length (m) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio			
Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (m) Queue Length 95th (m) Internal Link Dist (m) Turn Bay Length (m) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio			
Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (m) Queue Length 95th (m) Internal Link Dist (m) Turn Bay Length (m) Base Capacity (vph) Starvation Cap Reducth Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio			
Total Delay LOS Approach Delay Approach LOS Queue Length 50th (m) Queue Length 95th (m) Internal Link Dist (m) Turn Bay Length (m) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio			
LOS Approach Delay Approach LOS Queue Length 50th (m) Queue Length 95th (m) Internal Link Dist (m) Turn Bay Length (m) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio			
Approach Delay Approach LOS Queue Length 50th (m) Queue Length 95th (m) Internal Link Dist (m) Turn Bay Length (m) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio	LOS		
Approach LOS Queue Length 50th (m) Queue Length 95th (m) Internal Link Dist (m) Turn Bay Length (m) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio			
Queue Length 50th (m) Queue Length 95th (m) Internal Link Dist (m) Turn Bay Length (m) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio			
Queue Length 95th (m) Internal Link Dist (m) Turn Bay Length (m) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio	Oueue Length 50th (m)		
Internal Link Dist (m) Turn Bay Length (m) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio			
Turn Bay Length (m) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio			
Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio			
Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio			
Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio	Stanuation Can Roducts		
Storage Cap Reductn Reduced v/c Ratio			
Reduced v/c Ratio			
Intersection Summary	Reduced WC Rallo		
	Intersection Summary		

Existing AM 6: Parkdale & Bullman

	•	→	*	•	+	1	1	†	/	\	↓	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		₽.			43-			43-			4	
Volume (veh/h)	6	2	10	5	2	7	10	558	13	4	306	33
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Hourly flow rate (vph)	6	2	11	5	2	7	11	587	14	4	322	35
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (m)								229			121	
pX, platoon unblocked	0.94	0.94	0.92	0.94	0.94	0.91	0.92			0.91		
vC, conflicting volume	972	970	339	975	981	594	357			601		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	755	753	241	758	764	499	260			507		
tC, single (s)	7.1	6.5	6.2	7.1	6.5	6.2	4.1			4.1		
tC, 2 stage (s)												
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	98	99	99	98	99	99	99			100		
cM capacity (veh/h)	298	316	735	297	311	517	1203			958		
Direction, Lane #	EB 1	WB 1	NB 1	SB 1						, , ,		
Volume Total	19	15	612	361								
Volume Left												
	6 11	5 7	11 14	4 35								
Volume Right cSH	449	380	1203	958								
Volume to Capacity	0.04	0.04	0.01	0.00								
Queue Length 95th (m)	1.0	0.9	0.2	0.1								
Control Delay (s)	13.4	14.9	0.2	0.2								
Lane LOS	B	B	A	A								
Approach Delay (s)	13.4	14.9	0.2	0.2								
Approach LOS	В	В										
Intersection Summary												
Average Delay			0.7									
Intersection Capacity Utilization			48.1%	ICI	J Level of S	ervice			Α			
Analysis Period (min)			15									

	•	→	•	←	•	•	†	-	Ţ
Lane Group	EBL	EBT	WBL	WBT	WBR	NBL	NBT	SBL	SBT
Lane Configurations	75	∳ ሴ	¥	44	7		43-	¥	î₃
Volume (vph)	142	508	122	407	47	142	380	14	375
Lane Group Flow (vph)	149	650	128	428	49	0	688	15	439
Turn Type	pm+pt	NA	Perm	NA	Perm	Perm	NA	Perm	NA
Protected Phases	5	2		6			8		4
Permitted Phases	2		6		6	8		4	
Detector Phase	5	2	6	6	6	8	8	4	4
Switch Phase									
Minimum Initial (s)	5.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
Minimum Split (s)	11.0	27.4	27.4	27.4	27.4	32.7	32.7	32.7	32.7
Total Split (s)	15.0	45.0	30.0	30.0	30.0	55.0	55.0	55.0	55.0
Total Split (%)	15.0%	45.0%	30.0%	30.0%	30.0%	55.0%	55.0%	55.0%	55.0%
Yellow Time (s)	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3
All-Red Time (s)	2.1	2.1	2.1	2.1	2.1	2.4	2.4	2.4	2.4
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0
Total Lost Time (s)	5.4	5.4	5.4	5.4	5.4		5.7	5.7	5.7
Lead/Lag	Lead		Lag	Lag	Lag				
Lead-Lag Optimize?	Yes		Yes	Yes	Yes				
Recall Mode	None	C-Max	C-Max	C-Max	C-Max	Max	Max	Max	Max
Act Effct Green (s)	39.6	39.6	25.0	25.0	25.0		49.3	49.3	49.3
Actuated g/C Ratio	0.40	0.40	0.25	0.25	0.25		0.49	0.49	0.49
v/c Ratio	0.50	0.54	0.79	0.56	0.12		1.39	0.05	0.56
Control Delay	23.5	20.3	69.8	36.2	2.3		203.6	14.1	20.9
Queue Delay	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0
Total Delay	23.5	20.3	69.8	36.2	2.3		203.6	14.1	20.9
LOS	С	С	Е	D	Α		F	В	С
Approach Delay		20.9		40.6			203.6		20.6
Approach LOS		С		D			F		С
Queue Length 50th (m)	15.2	34.9	23.3	38.4	0.0		~180.6	1.5	56.2
Queue Length 95th (m)	25.9	46.4	#55.2	53.8	2.7		#248.8	5.0	85.4
Internal Link Dist (m)		225.1		242.5			89.2		79.4
Turn Bay Length (m)	65.0		40.0		50.0			45.0	
Base Capacity (vph)	303	1193	162	762	407		496	276	783
Starvation Cap Reductn	0	0	0	0	0		0	0	0
Spillback Cap Reductn	0	0	0	0	0		0	0	0
Storage Cap Reductn	0	0	0	0	0		0	0	0
Reduced v/c Ratio	0.49	0.54	0.79	0.56	0.12		1.39	0.05	0.56

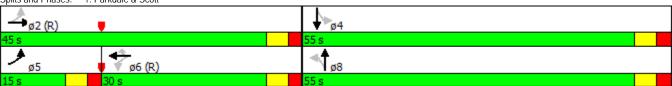
Cycle Length: 100

Actuated Cycle Length: 100
Offset: 18 (18%), Referenced to phase 2:EBTL and 6:WBTL, Start of Green

Natural Cycle: 110

Control Type: Actuated-Coordinated Maximum v/c Ratio: 1.39 Intersection Signal Delay: 74.9
Intersection Capacity Utilization 115.6%

Intersection LOS: E ICU Level of Service H


Analysis Period (min) 15

 Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 1: Parkdale & Scott

	٠	→	•	←	1	†	~	/	↓	4	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		4Tb	*	∳ ሴ	¥	*	7	¥	*	7	
Volume (vph)	16	397	164	582	114	207	92	56	300	41	
Lane Group Flow (vph)	0	507	173	642	120	218	97	59	316	43	
Turn Type	Perm	NA	Perm	NA	Perm	NA	Perm	Perm	NA	Perm	
Protected Phases		2		6		8			4		
Permitted Phases	2		6		8		8	4		4	
Detector Phase	2	2	6	6	8	8	8	4	4	4	
Switch Phase											
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	
Minimum Split (s)	36.8	36.8	36.8	36.8	23.6	23.6	23.6	23.6	23.6	23.6	
Total Split (s)	60.0	60.0	60.0	60.0	40.0	40.0	40.0	40.0	40.0	40.0	
Total Split (%)	60.0%	60.0%	60.0%	60.0%	40.0%	40.0%	40.0%	40.0%	40.0%	40.0%	
Yellow Time (s)	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	
All-Red Time (s)	2.5	2.5	2.5	2.5	2.3	2.3	2.3	2.3	2.3	2.3	
Lost Time Adjust (s)		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)		5.8	5.8	5.8	5.6	5.6	5.6	5.6	5.6	5.6	
Lead/Lag											
Lead-Lag Optimize?											
Recall Mode	C-Max	C-Max	C-Max	C-Max	None	None	None	None	None	None	
Act Effct Green (s)		63.2	63.2	63.2	25.4	25.4	25.4	25.4	25.4	25.4	
Actuated g/C Ratio		0.63	0.63	0.63	0.25	0.25	0.25	0.25	0.25	0.25	
v/c Ratio		0.29	0.37	0.33	0.88	0.54	0.23	0.29	0.78	0.11	
Control Delay		9.3	8.6	6.1	84.3	35.9	6.5	31.2	47.2	8.0	
Queue Delay		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay		9.3	8.6	6.1	84.3	35.9	6.5	31.2	47.2	8.0	
LOS		А	А	А	F	D	А	С	D	Α	
Approach Delay		9.3		6.6		42.7			40.9		
Approach LOS		А		А		D			D		
Queue Length 50th (m)		19.6	9.0	17.0	22.4	36.7	0.0	9.2	57.2	0.0	
Queue Length 95th (m)		36.1	m18.1	m26.2	#45.3	51.9	10.4	18.1	76.8	7.1	
Internal Link Dist (m)		225.9		225.1		214.6			104.7		
Turn Bay Length (m)			120.0		50.0		35.0	45.0		45.0	
Base Capacity (vph)		1758	467	1917	186	552	533	280	552	497	
Starvation Cap Reductn		0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn		0	0	0	0	0	0	0	0	0	
Storage Cap Reductn		0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio		0.29	0.37	0.33	0.65	0.39	0.18	0.21	0.57	0.09	
Interception Comments											

Cycle Length: 100

Actuated Cycle Length: 100

Offset: 2 (2%), Referenced to phase 2:EBTL and 6:WBTL, Start of Green

Natural Cycle: 65

Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.88 Intersection Signal Delay: 21.0

Intersection LOS: C ICU Level of Service D

Intersection Capacity Utilization 81.7%

Analysis Period (min) 15 # 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

	ၨ	→	•	←	4	†	-	ļ
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT
Lane Configurations		♣ 70		412		43-		4
Volume (vph)	31	70	31	59	36	562	13	373
Lane Group Flow (vph)	0	150	0	110	0	671	0	422
Turn Type	Perm	NA	Perm	NA	Perm	NA	Perm	NA
Protected Phases		4		8		2		6
Permitted Phases	4		8		2		6	
Detector Phase	4	4	8	8	2	2	6	6
Switch Phase								
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
Minimum Split (s)	22.2	22.2	22.2	22.2	25.0	25.0	25.0	25.0
Total Split (s)	35.0	35.0	35.0	35.0	65.0	65.0	65.0	65.0
Total Split (%)	35.0%	35.0%	35.0%	35.0%	65.0%	65.0%	65.0%	65.0%
Yellow Time (s)	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3
All-Red Time (s)	1.9	1.9	1.9	1.9	1.7	1.7	1.7	1.7
Lost Time Adjust (s)		0.0		0.0		0.0		0.0
Total Lost Time (s)		5.2		5.2		5.0		5.0
Lead/Lag								
Lead-Lag Optimize?								
Recall Mode	Max	Max	Max	Max	C-Max	C-Max	C-Max	C-Max
Act Effct Green (s)		29.8		29.8		60.0		60.0
Actuated g/C Ratio		0.30		0.30		0.60		0.60
v/c Ratio		0.31		0.24		0.66		0.41
Control Delay		25.3		26.2		15.0		15.2
Queue Delay		0.0		0.0		0.9		0.1
Total Delay		25.3		26.2		16.0		15.3
LOS		С		С		В		В
Approach Delay		25.3		26.2		16.0		15.3
Approach LOS		С		С		В		В
Queue Length 50th (m)		19.1		14.8		94.1		41.3
Queue Length 95th (m)		35.5		28.5		137.7		m61.6
Internal Link Dist (m)		122.7		110.8		122.0		212.8
Turn Bay Length (m)		,						2.2.0
Base Capacity (vph)		485		468		1021		1039
Starvation Cap Reductn		0		0		143		0
Spillback Cap Reductn		0		0		0		72
Storage Cap Reductn		0		0		0		0
Reduced v/c Ratio		0.31		0.24		0.76		0.44
Intersection Summary								
Cycle Length: 100								
Actuated Cycle Length: 100								
Offset: 20 (20%), Referenced to phas	e 2·NRTI a	nd 6.SRTI	Start of Gra	en				
Natural Cycle: 60	~ Z.INDIL (I	114 U.JD1L,	Start Of Off					
Control Type: Actuated-Coordinated								
Maximum v/c Ratio: 0.66								
Intersection Signal Delay: 17.6				Int	ersection L	⊃S· B		
Intersection Signal Delay: 17.0 Intersection Capacity Utilization 68.69	%				U Level of S			
Analysis Period (min) 15	U			10	o revein 3	CI VICE C		
m Volume for 95th percentile queue	is metered	hy unetrope	n cianal					
iii volume for 35th percentile queue	is metered	by upstream	ii siyildi.					

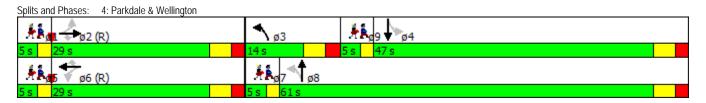
Splits and Phases: 3: Parkdale & Armstrong

	۶	→	*	•	+	4	1	†	\	 		
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	SBL	SBT	ø1	ø5
Lane Configurations		4	7		4	7	*	Î.	*	ĵ.		
Volume (vph)	35	192	82	23	183	15	74	429	53	494		
Lane Group Flow (vph)	0	239	86	0	217	16	78	474	56	574		
Turn Type	Perm	NA	Perm	Perm	NA	Perm	pm+pt	NA	Perm	NA		
Protected Phases		2			6		3	8		4	1	5
Permitted Phases	2		2	6		6	8		4			
Detector Phase	2	2	2	6	6	6	3	8	4	4		
Switch Phase												
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	10.0	5.0	10.0	10.0	10.0	3.0	3.0
Minimum Split (s)	18.4	18.4	18.4	18.4	18.4	18.4	10.4	15.4	15.4	15.4	5.0	5.0
Total Split (s)	29.0	29.0	29.0	29.0	29.0	29.0	14.0	61.0	47.0	47.0	5.0	5.0
Total Split (%)	29.0%	29.0%	29.0%	29.0%	29.0%	29.0%	14.0%	61.0%	47.0%	47.0%	5%	5%
Yellow Time (s)	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	2.0	2.0
All-Red Time (s)	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	0.0	0.0
Lost Time Adjust (s)		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0		
Total Lost Time (s)		5.4	5.4		5.4	5.4	5.4	5.4	5.4	5.4		
Lead/Lag	Lag	Lag	Lag	Lag	Lag	Lag	Lead	Lag			Lead	Lead
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes			Yes	Yes
Recall Mode	C-Max	C-Max	C-Max	C-Max	C-Max	C-Max	None	Max	Max	Max	None	None
Act Effct Green (s)		28.6	28.6		28.6	28.6	60.6	60.6	41.6	41.6		
Actuated g/C Ratio		0.29	0.29		0.29	0.29	0.61	0.61	0.42	0.42		
v/c Ratio		0.58	0.23		0.50	0.06	0.31	0.49	0.18	0.88		
Control Delay		37.3	29.4		34.5	26.9	11.6	13.3	17.3	38.5		
Queue Delay		0.0	0.0		0.0	0.0	0.0	0.2	0.0	8.0		
Total Delay		37.3	29.4		34.5	26.9	11.6	13.4	17.3	39.3		
LOS		D	С		С	С	В	В	В	D		
Approach Delay		35.2			34.0			13.2		37.3		
Approach LOS		D			С			В		D		
Queue Length 50th (m)		39.6	12.7		35.0	2.3	5.8	47.7	5.3	103.4		
Queue Length 95th (m)		64.6	25.2		57.4	7.3	11.7	71.8	11.5	#164.1		
Internal Link Dist (m)		24.3			20.7			115.8		122.0		
Turn Bay Length (m)							50.0		40.0			
Base Capacity (vph)		411	372		434	272	263	962	318	650		
Starvation Cap Reductn		0	0		0	0	0	0	0	10		
Spillback Cap Reductn		0	0		0	0	0	76	0	0		
Storage Cap Reductn		0	0		0	0	0	0	0	0		
Reduced v/c Ratio		0.58	0.23		0.50	0.06	0.30	0.53	0.18	0.90		

Cycle Length: 100

Actuated Cycle Length: 100
Offset: 70 (70%), Referenced to phase 2:EBTL and 6:WBTL, Start of Green

Natural Cycle: 90


Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.88
Intersection Signal Delay: 28.8
Intersection Capacity Utilization 84.0%

Intersection LOS: C ICU Level of Service E

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Lane Group	ø7	ø9
Lane Configurations		
Volume (vph)		
Lane Group Flow (vph)		
Turn Type		
Protected Phases	7	9
Permitted Phases		
Detector Phase		
Switch Phase		
Minimum Initial (s)	3.0	3.0
Minimum Split (s)	5.0	5.0
Total Split (s)	5.0	5.0
Total Split (%)	5%	5%
Yellow Time (s)	2.0	2.0
All-Red Time (s)	0.0	0.0
Lost Time Adjust (s)		
Total Lost Time (s)		
Lead/Lag	Lead	Lag
Lead-Lag Optimize?	Yes	Yes
Recall Mode	None	Max
Act Effct Green (s)		max
Actuated g/C Ratio		
v/c Ratio		
Control Delay		
Queue Delay		
Total Delay		
LOS		
Approach Delay		
Approach LOS		
Queue Length 50th (m)		
Queue Length 95th (m)		
Internal Link Dist (m)		
Turn Bay Length (m)		
Base Capacity (vph)		
Starvation Cap Reductn		
Spillback Cap Reductin		
Storage Cap Reductn		
Reduced v/c Ratio		
Neudega V/C Natio		
Intersection Summary		
-		

Existing PM 6: Parkdale & Bullman

	۶	→	•	•	+	1	1	†	<i>></i>	\	 	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		43-			43-			43-			43-	
Volume (veh/h)	12	4	5	7	5	8	8	634	7	5	581	20
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Hourly flow rate (vph)	13	4	5	7	5	8	8	667	7	5	612	21
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (m)								237			113	
pX, platoon unblocked	0.88	0.88	0.79	0.88	0.88	0.77	0.79			0.77		
vC, conflicting volume	1332	1324	622	1328	1331	671	633			675		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	755	747	382	751	755	421	395			425		
tC, single (s)	7.1	6.5	6.2	7.1	6.5	6.2	4.1			4.1		
tC, 2 stage (s)												
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	95	99	99	97	98	98	99			99		
cM capacity (veh/h)	272	294	522	277	291	486	913			871		
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total	22	21	683	638								
Volume Left												
	13 5	7 8	8 7	5 21								
Volume Right cSH	312	340	913	871								
Volume to Capacity	0.07	0.06	0.01	0.01								
Queue Length 95th (m)	1.7	1.5	0.2	0.1								
Control Delay (s)	17.4	16.3	0.2	0.2								
Lane LOS	C	C	A	A								
Approach Delay (s)	17.4	16.3	0.2	0.2								
Approach LOS	С	С										
Intersection Summary												
Average Delay			0.7									
Intersection Capacity Utilization			51.1%	IC	U Level of S	ervice			А			
Analysis Period (min)			15									

Appendix C Collision Data and Analysis

OnTRAC Reporting System FROM: 2009/01/01 TO: 2012/01/01

ARMSTRONG ST & PARKDALE AVE

Traffic Control: Traffic signal Number of Collisions: 13 Former Municipality: Ottawa COLLISION IMPACT TYPE **SURFACE** VEHICLE **DRIVER** No. ID DATE DAY TIME ENV LIGHT CLASS DIR COND'N MANOEUVRE VEHICLE TYPE FIRST EVENT ACTION **PED** 2009/03/27 Frid 14:57 Clear Daylight Single vehicle Non-fatal V1 W Going ahead Pedestrian 1 Dry Automobile, station 1 2 2009/12/16 We 10:40 Clear Daylight Rear end P.D. only V1 S Dry Going ahead Pick-up truck Other motor vehicle 0 V2 S Slowing or Passenger van Other motor vehicle Dry 3 2009/12/31 Thu 19:45 Snow Dark Single vehicle P.D. only V1 S Loose snow Going ahead Automobile, station Skidding/Sliding 0 4 2010/02/04 Thu 07:05 Clear Non-fatal V1 S Slush Slowing or Pick-up truck Other motor vehicle 0 Dawn Rear end V2 S Slush Stopped Passenger van Other motor vehicle Slush Stopped Passenger van Other motor vehicle V3 N 2010/04/28 We 23:15 Clear Non-fatal V1 E Pick-up truck 5 Dark Angle Dry Going ahead Other motor vehicle 0 V2 S Drv Going ahead Automobile, station Other motor vehicle 6 Turning left 2010/08/28 Sat 13:17 Clear Davlight Single vehicle Non-fatal V1 N Drv Pick-up truck Pedestrian 1 7 2010/09/19 Sun 13:31 Clear Daylight Rear end Non V1 N Dry Going ahead Automobile, station Other motor vehicle 0 V2 N Dry Stopped Automobile, station Other motor vehicle 8 2010/12/19 Sun 10:56 Clear Daylight Angle P.D. only V1 S Wet Going ahead Pick-up truck Other motor vehicle 0 V2 W Wet Going ahead Automobile, station Other motor vehicle 9 2011/02/09 We 06:30 Clear Dawn Rear end Non-fatal V1 S Wet Going ahead Pick-up truck Other motor vehicle 0 V2 S Stopped Automobile, station Other motor vehicle Wet 10 2011/02/09 We 07:40 Clear Daylight Angle Non-fatal V1 W Wet Going ahead Automobile, station Other motor vehicle 0 V2 S Wet Going ahead Pick-up truck Other motor vehicle Other motor vehicle 11 2011/02/12 Sat 09:58 Snow Daylight Angle Non-fatal V1 S Wet Going ahead Automobile, station 0 V2 W Going ahead Automobile, station Other motor vehicle Wet 12 2011/10/05 We 23:32 Clear Dark Single vehicle P.D. only V1 U Drv Unknown Unknown Unattended vehicle 0

(Note: Time of Day = "00:00" represents unknown collision time

May 1, 2013 Page 1 of 2

OnTRAC Reporting System FROM: 2009/01/01 TO: 2012/01/01

2011/11/18 Frid 11:36 Clear Daylight Rear end P.D. only V1 S Dry Going ahead Automobile, station Other motor vehicle 0 V2 S Dry Stopped Pick-up truck Other motor vehicle

(Note: Time of Day = "00:00" represents unknown collision time

OnTRAC Reporting System

PARKDALE AVE & WELLINGTON ST

Former Municipality: Ottawa Traffic Control: Traffic signal Number of Collisions: 15

		,						5							
	COLLISION ID	DATE	DAY	TIME	ENV	LIGHT	IMPACT TYPE	CLASS	DIR	SURFACE COND'N	VEHICLE MANOEUVRE	VEHICLE TYPE	FIRST EVENT	DRIVER ACTION	No. PED
1		2009/05/14	Thu	13:30	Rain	Daylight	Turning	P.D. only	V1 N V2 S	Wet Wet	Going ahead Turning left	Automobile, station Automobile, station	Other motor vehicle Other motor vehicle		0
2		2009/10/10	Sat	10:58	Clear	Daylight	Single vehicle	Non-fatal	V1 S	Dry	Turning left	Delivery van	Pedestrian		1
3		2010/01/29	Frid	19:00	Clear	Dark	Angle	P.D. only	V1 N V2 W	Dry Dry	Turning right Stopped	Truck - closed Automobile, station	Other motor vehicle Other motor vehicle		0
4		2010/04/16	Frid	16:15	Clear	Daylight	Sideswipe	P.D. only	V1 E V2 E	Dry Dry	Going ahead Turning right	Passenger van Automobile, station	Other motor vehicle Other motor vehicle		0
5		2010/04/18	Sun	17:49	Clear	Daylight	Rear end	P.D. only	V1 S V2 S	Dry Dry	Going ahead Slowing or	Pick-up truck Automobile, station	Other motor vehicle Other motor vehicle		0
6		2010/05/01	Sat	12:15	Clear	Daylight	Rear end	P.D. only	V1 S V2 S	Dry Dry	Unknown Stopped	Unknown Automobile, station	Other motor vehicle Other motor vehicle		0
7		2010/05/11	Tue	15:40	Clear	Daylight	Sideswipe	P.D. only	V1 S V2 S	Dry Dry	Changing lanes Stopped	Automobile, station Pick-up truck	Other motor vehicle Other motor vehicle		0
8		2010/08/27	Frid	18:45	Clear	Daylight	Single vehicle	Non-fatal	V1 S	Dry	Turning right	Unknown	Pedestrian		1
9		2010/11/10) We	09:50	Clear	Daylight	Angle	P.D. only	V1 N V2 W	Dry Dry	Turning left Going ahead	Automobile, station Automobile, station	Other motor vehicle Other motor vehicle		0
1	0	2010/11/30) Tue	15:20	Rain	Daylight	Sideswipe	P.D. only		Wet Wet	Turning right Turning left	School bus Automobile, station	Other motor vehicle Other motor vehicle		0
1	1	2010/12/09	Thu	18:28	Clear	Dark	Sideswipe	P.D. only	V1 S V2 S	Dry Dry	Going ahead Going ahead	Automobile, station Automobile, station	Other motor vehicle Other motor vehicle		0
13	2	2011/04/14	Thu	23:56	Clear	Dark	Turning	P.D. only	V1 E V2 W	Dry Dry	Going ahead Turning left	Automobile, station Automobile, station	Other motor vehicle Other motor vehicle		0
1	3	2011/05/08	Sun	10:40	Clear	Daylight	Rear end	Non-fatal	V1 S V2 S	Dry Dry	Going ahead Stopped	Automobile, station Automobile, station	Other motor vehicle Other motor vehicle		0
1	4	2011/10/18	3 Tue	12:00	Clear	Daylight	Sideswipe	P.D. only	_	Dry Dry	Going ahead Stopped	Pick-up truck Automobile, station	Other motor vehicle Other motor vehicle		0
1	5	2011/11/15	Tue	06:54	Clear	Dawn	Single vehicle	Non-fatal		Wet	Turning left	Automobile, station	Pedestrian		1

FROM: 2009/01/01 TO: 2012/01/01

(Note: Time of Day = "00:00" represents unknown collision time

May 1, 2013 Page 1 of 1

OnTRAC Reporting System FROM: 2009/01/01 TO: 2012/01/01

HOLLAND AVE & SCOTT ST

Traffic Control: Traffic signal Number of Collisions: 16 Former Municipality: Ottawa COLLISION IMPACT TYPE **SURFACE** VEHICLE **DRIVER** No. ID DATE DAY TIME ENV LIGHT CLASS DIR COND'N MANOEUVRE VEHICLE TYPE FIRST EVENT ACTION **PED** 2009/05/19 Tue 11:27 Clear P.D. only V1 N 0 1 Daylight Sideswipe Dry Changing lanes Truck - closed Other motor vehicle V2 N Drv Going ahead Municipal transit bus Other motor vehicle 2 2009/06/12 Frid 07:21 Clear P.D. only V1 W Dry Turning left Automobile, station Other motor vehicle 0 Daylight Turning V2 E Dry Going ahead Automobile, station Other motor vehicle 3 P.D. only V1 E Turning right Automobile, station 2009/09/27 Sun 17:44 Rain Daylight Angle Wet Other motor vehicle 0 V2 N Wet Turning left Automobile, station Other motor vehicle 4 2010/03/23 Tue 17:32 Rain Daylight Rear end P.D. only V1 E Wet Going ahead Automobile, station Other motor vehicle 0 V2 E Wet Stopped Automobile, station Other motor vehicle Other motor vehicle 5 2010/07/05 Mo 08:28 Clear P.D. only V1 E Dry Going ahead Pick-up truck 0 Daylight Angle V2 N Dry Turning right Automobile, station Other motor vehicle V3 E Automobile, station Other motor vehicle Drv Going ahead 6 0 2010/10/15 Frid 09:15 Rain Daylight Sideswipe P.D. only V1 N Wet Changing lanes Passenger van Other motor vehicle V2 N Wet Turning left Passenger van Other motor vehicle 7 Turning right Automobile, station Other motor vehicle 2010/11/09 Tue 11:31 Clear Daylight Turning P.D. only V1 N Dry 0 V2 S Dry Turning left Passenger van Other motor vehicle 8 2010/11/29 Mo 17:10 Clear Dark Turning P.D. only V1 N Dry Turning right Automobile, station Other motor vehicle 0 V2 N Dry Turning right Automobile, station Other motor vehicle 9 Going ahead Automobile, station 0 2011/02/28 Mo 13:28 Snow Daylight Sideswipe P.D. only V1 N Loose snow Other motor vehicle V2 N Going ahead Delivery van Other motor vehicle Loose snow 10 2011/06/02 Thu 16:50 Clear Daylight Turning P.D. only V1 E Going ahead Automobile, station Other motor vehicle 0 Drv Turning left Automobile, station Other motor vehicle V2 W Dry 11 2011/06/13 Mo 08:45 Clear Daylight Sideswipe P.D. only V1 W Drv Changing lanes Pick-up truck Other motor vehicle 0 V2 W Changing lanes Automobile, station Drv Other motor vehicle 12 0 2011/07/22 Frid 08:55 Clear Daylight Rear end P.D. only V1 E Drv Going ahead Automobile, station Other motor vehicle V2 E Dry Stopped Passenger van Other motor vehicle

(Note: Time of Day = "00:00" represents unknown collision time

May 1, 2013 Page 1 of 2

OnTRAC Reporting System

13	2011/09/16 Frid 10:53 Clear	Daylight Turning	P.D. only V1 N	Dry	Turning right	Delivery van	Other motor vehicle	0
			V2 N	Dry	Turning right	Truck and trailer	Other motor vehicle	
14	2011/09/27 Tue 14:30 Clear	Daylight Rear end	P.D. only V1 N	Dry	Going ahead	Automobile, station	Other motor vehicle	0
			V2 N	Dry	Going ahead	Automobile, station	Other motor vehicle	
15	2011/11/03 Thu 09:50 Clear	Daylight Angle	P.D. only V1 W	Dry	Going ahead	Pick-up truck	Other motor vehicle	0
			V2 S	Dry	Going ahead	Automobile, station	Other motor vehicle	
16	2011/12/25 Sun 14:35 Rain	Daylight Angle	P.D. only V1 N	Slush	Turning right	Automobile, station	Skidding/Sliding	0
			V2 W	Wet	Going ahead	Pick-up truck	Other motor vehicle	

FROM: 2009/01/01 TO: 2012/01/01

(Note: Time of Day = "00:00" represents unknown collision time

OnTRAC Reporting System FROM: 2009/01/01 TO: 2012/01/01

PARKDALE AVE & SCOTT ST

Former Municipality: Ottawa Traffic Control: Traffic signal Number of Collisions: 26

COLLISION ID	N DATE DAY TIME ENV	IMPACT TYPE LIGHT	CLASS	DIR	SURFACE COND'N	VEHICLE MANOEUVRE	VEHICLE TYPE	FIRST EVENT	DRIVER ACTION	No. PED
1	2009/02/27 Frid 15:45 Freezi	ng Daylight Rear end	P.D. only	V1 W V2 W	Ice Ice	Going ahead Turning right	Automobile, station Automobile, station	Other motor vehicle Other motor vehicle		0
2	2009/02/27 Frid 08:19 Rain	Daylight Turning	,	V1 E V2 W V3 S	Wet Wet Wet	Turning left Going ahead Unknown	Pick-up truck Automobile, station Automobile, station	Other motor vehicle Other motor vehicle Other motor vehicle		0
3	2009/05/12 Tue 17:31 Clear	Daylight Turning	P.D. only	V1 E V2 W	Dry Dry	Going ahead Turning left	Automobile, station Automobile, station	Other motor vehicle Other motor vehicle		0
4	2009/05/21 Thu 07:42 Clear	Daylight Angle		V1 W V2 S	Dry Dry	Going ahead Going ahead	Automobile, station Automobile, station	Other motor vehicle Other motor vehicle		0
5	2009/05/21 Thu 10:15 Clear	Daylight Rear end	P.D. only	V1 W V2 W	Wet Wet	Slowing or Stopped	Automobile, station Automobile, station	Other motor vehicle Other motor vehicle		0
6	2009/06/11 Thu 07:02 Clear	Daylight Turning	P.D. only	V1 W V2 E	Dry Dry	Going ahead Turning left	Truck and trailer Automobile, station	Other motor vehicle Other motor vehicle		0
7	2009/06/24 We 16:30 Clear	Daylight Turning	P.D. only	V1 W V2 E	Dry Dry	Going ahead Turning left	Passenger van Automobile, station	Other motor vehicle Other motor vehicle		0
8	2009/07/07 Tue 17:30 Clear	Daylight Rear end	,	V1 S V2 S	Dry Dry	Going ahead Going ahead	Automobile, station Automobile, station	Other motor vehicle Other motor vehicle		0
9	2010/02/19 Frid 19:05 Clear	Dark Rear end		V1 N V2 N	Dry Dry	Going ahead Going ahead	Automobile, station Pick-up truck	Other motor vehicle Other motor vehicle		0
10	2010/02/24 We 03:35 Snow	Dark Angle	P.D. only	V1 S V2 E	Loose snow	Going ahead Slowing or	Automobile, station Automobile, station	Other motor vehicle Other motor vehicle		0
11	2010/05/01 Sat 16:40 Clear	Daylight Angle	Non-fatal		Dry Drv	Going ahead Going ahead	Automobile, station Automobile, station	Other motor vehicle Other motor vehicle		0
12	2010/05/04 Tue 08:56 Clear	Daylight Rear end	P.D. only	_	Dry Dry	Slowing or Stopped	Automobile, station Pick-up truck	Other motor vehicle Other motor vehicle		0

(Note: Time of Day = "00:00" represents unknown collision time

OnTRAC Reporting System

13	2010/07/03 Sat 09	:45 Clear	Daylight	Turning	P.D. only	V1	W	Dry	Turning left	Automobile, station	Other motor vehicle	0
						V2	E	Dry	Going ahead	Automobile, station	Other motor vehicle	
14	2010/08/12 Thu 06	:52 Clear	Daylight	Turning	Fatal	V1	Ε	Dry	Going ahead	Motorcycle	Other motor vehicle	0
				•		V2	W	Dry	Turning left	Pick-up truck	Other motor vehicle	
15	2011/01/05 We 17	:18 Clear	Dusk	Turning	P.D. only	V1	Ε	Dry	Turning left	Automobile, station	Other motor vehicle	0
				· ·	•	V2		Dry	Going ahead	Pick-up truck	Other motor vehicle	
16	2011/01/23 Sun 11:	:15 Clear	Daylight	Rear end	P.D. only	V1	N	Dry	Going ahead	Automobile, station	Other motor vehicle	0
			, 0		•	V2	N	Dry	Stopped	Automobile, station	Other motor vehicle	
17	2011/04/14 Thu 06	:45 Clear	Daylight	Sideswipe	P.D. only	V1	S	Dry	Turning right	Automobile, station	Other motor vehicle	0
			, 0	·	,	V2		Dry	Turning right	Pick-up truck	Other motor vehicle	
18	2011/04/14 Thu 13	:59 Clear	Daylight	Angle	P.D. only	V1	Ε	Dry	Going ahead	Automobile, station	Other motor vehicle	0
			, 0	Ü	,	V2		Dry	Going ahead	Automobile, station	Other motor vehicle	
19	2011/04/29 Frid 20	:15 Clear	Dusk	Rear end	P.D. only	V1	N	Dry	Going ahead	Automobile, station	Other motor vehicle	0
					,	V2		Dry	Stopped	Automobile, station	Other motor vehicle	
20	2011/06/02 Thu 19	:15 Clear	Daylight	Turning	Non-fatal	V1	Ε	Dry	Turning left	Automobile, station	Other motor vehicle	0
			, 0	Ü		V2	W	Dry	Going ahead	Automobile, station	Other motor vehicle	
21	2011/06/05 Sun 14	:00 Clear	Daylight	Single vehicle	Non-fatal	V1	N	Dry	Going ahead	Automobile, station	Pedestrian	1
			, 0	· ·				•	· ·	·		
22	2011/06/21 Tue 16	:03 Clear	Daylight	Single vehicle	P.D. only	V1	Е	Dry	Going ahead	Automobile, station	Building or wall	0
23	2011/07/05 Tue 19	:25 Clear	Daylight	Angle	Non-fatal	V1	N	Dry	Going ahead	Pick-up truck	Other motor vehicle	0
			, 0	Ü		V2		Dry	Going ahead	Automobile, station	Other motor vehicle	
24	2011/09/26 Mo 08	:15 Clear	Daylight	Single vehicle	Non-fatal	V1	S	Dry	Turning left	Automobile, station	Pedestrian	1
25	2011/10/18 Tue 18			Rear end	P.D. only	V1	Е	Dry	Going ahead	Pick-up truck	Other motor vehicle	0
					,	V2		Dry	Turning left	Automobile, station	Other motor vehicle	
26	2011/11/14 Mo 18	:16 Clear	Dark	Rear end	P.D. only			Drv	Going ahead	Automobile, station	Other motor vehicle	0
-	,,					V2		Dry	Slowing or	Automobile, station	Other motor vehicle	-
								,	U	-,		

FROM: 2009/01/01 TO: 2012/01/01

COMMENTS: V1 SUDDEN STOP

(Note: Time of Day = "00:00" represents unknown collision time

Total Area

Classification of Accident	Rear End	Turning Movement	Sideswipe	Angle	Approaching	Single Vehicle (other)	Single vehicle (Unattended vehicle)	Other	Total
P.D. only	15	13	10	9	0	2	1	0	50
Non-fatal injury	4	1	0	6	0	7	0	0	18
Non reportable	1	0	0	0	0	0	0	0	1
Total	20	14	10	15	0	9	1	0	69
	99%	20%	14%	2 22%	0 0%	13%	0 1%	0 0%	

72% 26% 1%

ARMSTRONG ST	@	PARKDALE AVE		
Years	Total # Collisions	24 Hr AADT Veh Volume	Days	Collisions/MEV
2009-2011	13	13,079	1095	0.91

Classification of Accident	Rear End	Turning Movement	Sideswipe	Angle	Approaching	Single Vehicle (other)	Single vehicle (Unattended vehicle)	Other	Total
P.D. only	2	0	0	1	0	1	1	0	5
Non-fatal injury	2	0	0	3	0	2	0	0	7
Non reportable	1	0	0	0	0	0	0	0	1
Total	5	0	0	4	0	3	1	0	13
	38%	0%	0%	31%	0%	23%	8%	0%	

38% 54% 8%

PARKDALE AVE	@	SCOTT ST		
Years	Total # Collisions	24 Hr AADT Veh Volume	Days	Collisions/MEV
2009-2011	25	25,954	1095	0.88

Classification of Accident	Rear End	Turning Movement	Sideswipe	Angle	Approaching	Single Vehicle (other)	Single vehicle (Unattended vehicle)	Other	Total
P.D. only	8	6	1	2	0	1	0	0	18
Non-fatal injury	1	1	0	3	0	2	0	0	7
Non reportable	0	0	0	0	0	0	0	0	0
Total	9	7	1	5	0	3	0	0	25
	36%	28%	4%	20%	0%	12%	0%	0%	

72% 28% 0%

PARKDALE AVE	@	WELLINGTON S	ST.	
Years	Total # Collisions	24 Hr AADT Veh Volume	Days	Collisions/MEV
2009-2011	15	18,140	1095	0.76

Classification of Accident	Rear End	Turning Movement	Sideswipe	Angle	Approaching	Single Vehicle (other)	Single vehicle (Unattended vehicle)	Other	Total	
P.D. only	2	2	5	2	0	0	0	0	11	1
Non-fatal injury	1	0	0	0	0	3	0	0	4	
Non reportable	0	0	0	0	0	0	0	0	0	1
Total	3	2	5	2	0	3	0	0	15	1
	20%	13%	33%	13%	0%	20%	0%	0%		_

73% 27% 0%

HOLLAND AVE	@	SCOTT ST			
Years	Total #	24 Hr AADT	Days	Collisions/MEV	
rears	Collisions	Veh Volume	Days		
2009-2011	16	17,287	1095	0.85	

Classification of Accident	Rear End	Turning Movement	Sideswipe	Angle	Approaching	Single Vehicle (other)	Single vehicle (Unattended vehicle)	Other	Total	
P.D. only	3	5	4	4	0	0	0	0	16	1
Non-fatal injury	0	0	0	0	0	0	0	0	0	1
Non reportable	0	0	0	0	0	0	0	0	0	1
Total	3	5	4	4	0	0	0	0	16	1
	19%	31%	25%	25%	0%	0%	0%	0%		-

100% 0% 0%

Appendix D Background Traffic Growth Analysis

Parkdale/Scott 8 hrs

Year	Date	Nortl	North Leg		South Leg		East Leg		West Leg	
rear	Date	SB	NB	NB	SB	WB	EB	EB	WB	Total
2003	Friday 7 November	3634	4178	3423	3097	4121	4289	4889	4503	32134
2007	Friday 13 July	3825	3694	3330	3312	3149	4028	4846	4116	30300
2008	Friday 9 May	3557	3723	3027	3164	3406	4543	5648	4208	31276
2011	Tuesday 14 June	2586	3986	4765	3285	3634	4653	4864	3925	31698

North Leg

Year		Cou	ınts		% Change				
real	NB	SB	NB+SB	INT	NB	SB	NB+SB	INT	
2003	4178	3634	7812	32134					
2007	3694	3825	7519	30300	-11.6%	5.3%	-3.8%	-5.7%	
2008	3723	3557	7280	31276	0.8%	-7.0%	-3.2%	3.2%	
2011	3986	2586	6572	31698	7.1%	-27.3%	-9.7%	1.3%	

Regression Estimate Regression Estimate Average Annual Change 2003 2011 4017 3924 3788 2938 7941 6726

-0.73%

-3.55% -2.06%

West Leg

Year		Cou	ınts		% Change				
Teal	EB	WB	EB+WB	INT	EB	WB	EB+WB	INT	
2003	4889	4503	9392	32134					
2007	4846	4116	8962	30300	-0.9%	-8.6%	-4.6%	-5.7%	
2008	5648	4208	9856	31276	16.5%	2.2%	10.0%	3.2%	
2011	4864	3925	8789	31698	-13.9%	-6.7%	-10.8%	1.3%	
								Ĭ	

Regression Estimate Regression Estimate 2003 2011 4999 5117

4485 9484 3926 9043 -1.65%

Average Annual Change

0.29%

1.14%

-0.59%

East Leg

Year		Cou	ınts		% Change				
real	EB	WB	EB+WB	INT	EB	WB	EB+WB	INT	
2003	4289	4121	8410	32134					
2007	4028	3149	7177	30300	-6.1%	-23.6%	-14.7%	-5.7%	
2008	4543	3406	7949	31276	12.8%	8.2%	10.8%	3.2%	
2011	4653	3634	8287	31698	2.4%	6.7%	4.3%	1.3%	

Regression Estimate

2003 2011 4168 3853 4564 3335

-1.79%

8020 7899

-0.19%

Regression Estimate
Average Annual Change

South Leg

Year		Cou	unts		% Change				
Year	NB	SB	NB+SB	INT	NB	SB	NB+SB	INT	
2003	3423	3097	6520	32134					
2007	3330	3312	6642	30300	-2.7%	6.9%	1.9%	-5.7%	
2008	3027	3164	6191	31276	-9.1%	-4.5%	-6.8%	3.2%	
2011	4765	3285	8050	31698	57.4%	3.8%	30.0%	1.3%	

Regression Estimate Regression Estimate Average Annual Change

2003 2011 3019 4181

4.16%

3123 3295

0.67%

6142 7476 2.49%

Parkdale/Scott AM Peak

Year	Date	Nort	h Leg	Sout	h Leg	East	Leg	West Leg		Total
rear	Date	SB	NB	NB	SB	WB	EB	EB	WB	Total
2003	Friday 7 November	587	413	374	431	511	770	716	574	4376
2007	Friday 13 July	512	359	338	412	326	635	672	442	3696
2008	Friday 9 May	523	360	345	439	375	771	825	498	4136
2011	Tuesday 14 June	293	439	571	343	609	615	586	662	4118

_				
N	or	tn	L	eg

Year		Cou	unts		% Change				
real	NB	SB	NB+SB	INT	NB	SB	NB+SB	INT	
2003	413	587	1000	4376					
2007	359	512	871	3696	-13.1%	-12.8%	-12.9%	-15.5%	
2008	360	523	883	4136	0.3%	2.1%	1.4%	11.9%	
2011	439	293	732	4118	21.9%	-44.0%	-17.1%	-0.4%	

Regression Estimate Regression Estimate

2003 2011

384 401

626 349

Average Annual Change

0.56%

-7.03%

-3.64%

1009

750

West Leg

Year		Cou	unts		% Change				
real	EB	WB	EB+WB	INT	EB	WB	EB+WB	INT	
2003	716	574	1290	4376					
2007	672	442	1114	3696	-6.1%	-23.0%	-13.6%	-15.5%	
2008	825	498	1323	4136	22.8%	12.7%	18.8%	11.9%	
2011	586	662	1248	4118	-29.0%	32.9%	-5.7%	-0.4%	

Regression Estimate Regression Estimate 2003 2011

751 655

769

1255 504 579 1234

Average Annual Change

-1.70%

1.74% -0.22%

East Leg

Year		Cou	unts			% Cł	nange	
real	EB	WB	EB+WB	INT	EB	WB	EB+WB	INT
2003	770	511	1281	4376				
2007	635	326	961	3696	-17.5%	-36.2%	-25.0%	-15.5%
2008	771	375	1146	4136	21.4%	15.0%	19.3%	11.9%
2011	615	609	1224	4118	-20.2%	62.4%	6.8%	-0.4%

Regression Estimate Regression Estimate
Average Annual Change 2003 2011

415 491

635 1126 -2.36% 2.13% -0.62%

South Leg

Year		Co	unts			% CI	nange	
Year	NB	SB	NB+SB	INT	NB	SB	NB+SB	INT
2003	374	431	805	4376				
2007	338	412	750	3696	-9.6%	-4.4%	-6.8%	-15.5%
2008	345	439	784	4136	2.1%	6.6%	4.5%	11.9%
2011	571	343	914	4118	65.5%	-21.9%	16.6%	-0.4%

Regression Estimate Regression Estimate
Average Annual Change 2003 2011 313 490

5.77%

448 370

-2.36%

760 860 1.55%

1183

Parkdale/Scott PM Peak

Year	Date	Nort	n Leg	Sout	h Leg	East	Leg	Wes	t Leg	Total
rear	Date	SB	NB	NB	SB	WB	EB	EB	WB	TOLAI
2003	Friday 7 November	515	960	668	408	751	620	840	786	5548
2007	Friday 13 July	503	749	588	407	568	590	801	714	4920
2008	Friday 9 May	495	676	431	379	673	635	889	798	4976
2011	Tuesday 14 June	431	569	654	606	576	654	759	591	4840

North Leg

Year		Cou	ınts			% Cł	nange	
Teal	NB	SB	NB+SB	INT	NB	SB	NB+SB	INT
2003	960	515	1475	5548				
2007	749	503	1252	4920	-22.0%	-2.3%	-15.1%	-11.3%
2008	676	495	1171	4976	-9.7%	-1.6%	-6.5%	1.1%
2011	569	431	1000	4840	-15.8%	-12.9%	-14.6%	-2.7%

Regression Estimate Regression Estimate 2003 2011

950 528 552 449

1001 -4.76%

1478

Average Annual Change

-6.55%

-2.03%

West Leg

Year		Cou	unts			% Ch	nange	
Teal	EB	WB	EB+WB	INT	EB	WB	EB+WB	INT
2003	840	786	1626	5548				
2007	801	714	1515	4920	-4.6%	-9.2%	-6.8%	-11.3%
2008	889	798	1687	4976	11.0%	11.8%	11.4%	1.1%
2011	759	591	1350	4840	-14.6%	-25.9%	-20.0%	-2.7%

Regression Estimate Regression Estimate 2003 2011

856 793

814 1669 642 1434

Average Annual Change

-0.95%

-2.93% -1.88%

East Leg

Year		Cou	unts			% Ch	nange	
real	EB	WB	EB+WB	INT	EB	WB	EB+WB	INT
2003	620	751	1371	5548				
2007	590	568	1158	4920	-4.8%	-24.4%	-15.5%	-11.3%
2008	635	673	1308	4976	7.6%	18.5%	13.0%	1.1%
2011	654	576	1230	4840	3.0%	-14.4%	-6.0%	-2.7%

Regression Estimate Regression Estimate
Average Annual Change 2003 606 2011 641

729 1335 565 1207

0.72%

-1.25% -3.12%

South Leg

Year		Cot	ınts			% Cr	nange	
real	NB	SB	NB+SB	INT	NB	SB	NB+SB	INT
2003	668	408	1076	5548				
2007	588	407	995	4920	-12.0%	-0.2%	-7.5%	-11.3%
2008	431	379	810	4976	-26.7%	-6.9%	-18.6%	1.1%
2011	654	606	1260	4840	51.7%	59.9%	55.6%	-2.7%

Regression Estimate Regression Estimate
Average Annual Change 2003 2011 613 561

-1.09%

356 533 5.15%

969 1094 1.53%

Appendix E SYNCHRO Capacity Analysis: 2015 Projected Conditions

1: Parkdale & Scott

Lane Group EBL EBT WBL WBT WBR NBL NBT SBL SB Lane Configurations 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Lane Configurations 5 4th 5 44 7 th
Volume (vph) 92 458 65 579 25 104 369 45 23
Lane Group Flow (vph) 97 568 68 609 26 0 682 47 28
Turn Type Perm NA Perm NA Perm NA Perm NA Perm NA
Protected Phases 2 6 8
Permitted Phases 2 6 6 8 4
Detector Phase 2 2 6 6 6 8 8 4
Switch Phase
Minimum Initial (s) 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.
Minimum Split (s) 27.4 27.4 27.4 27.4 27.4 32.7 32.7 32.7 32.
Total Split (s) 52.0 52.0 52.0 52.0 43.0 43.0 43.0 43.0
Total Split (%) 54.7% 54.7% 54.7% 54.7% 45.3% 45.3% 45.3% 45.3%
Yellow Time (s) 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.
All-Red Time (s) 2.1 2.1 2.1 2.1 2.4 2.4 2.4 2.5
Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Total Lost Time (s) 5.4 5.4 5.4 5.4 5.7 5.7 5.7
Lead/Lag
Lead-Lag Optimize?
Recall Mode C-Max C-Max C-Max C-Max Max Max Max Max Max Max Max Max Max
Act Effct Green (s) 46.6 46.6 46.6 46.6 37.3 37.3 37.
Actuated g/C Ratio 0.49 0.49 0.49 0.49 0.49 0.39 0.39 0.39
v/c Ratio 0.33 0.38 0.22 0.41 0.04 1.38 0.26 0.4
Control Delay 14.8 11.7 16.2 16.4 4.1 211.2 24.4 23.
Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
Total Delay 14.8 11.7 16.2 16.4 4.1 211.2 24.4 23.
LOS B B B B A F C
Approach Delay 12.1 16.0 211.2 23.0
Approach LOS B B F
Oueue Length 50th (m) 11.3 33.8 6.8 35.8 0.0 -166.0 5.7 36.
Queue Length 95th (m) 23.0 25.5 15.6 48.8 3.6 #232.4 14.7 59.
Internal Link Dist (m) 225.1 242.5 27.2 79.
Turn Bay Length (m) 65.0 40.0 50.0 45.0
Base Capacity (vph) 295 1477 314 1496 685 493 181 62:
Starvation Cap Reductn 0 0 0 0 0 0 0
Spillback Cap Reductn 0 0 0 0 0 0 0
Storage Cap Reductn 0 0 0 0 0 0 0 0
Reduced v/c Ratio 0.33 0.38 0.22 0.41 0.04 1.38 0.26 0.4

Intersection Summary

Cycle Length: 95

Actuated Cycle Length: 95
Offset: 91 (96%), Referenced to phase 2:EBTL and 6:WBTL, Start of Green

Natural Cycle: 75

Control Type: Actuated-Coordinated Maximum v/c Ratio: 1.38 Intersection Signal Delay: 71.8
Intersection Capacity Utilization 105.0%

Intersection LOS: E ICU Level of Service G


Analysis Period (min) 15

 Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

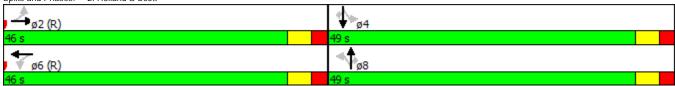
Queue shown is maximum after two cycles.

	۶	→	•	+	4	†	~	/	 	4	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		413	*	∳ ሴ	*	•	7	*	•	7	
Volume (vph)	10	517	115	218	116	233	105	57	149	34	
Lane Group Flow (vph)	0	638	121	274	122	245	111	60	157	36	
Turn Type	Perm	NA	Perm	NA	Perm	NA	Perm	Perm	NA	Perm	
Protected Phases		2		6		8			4		
Permitted Phases	2		6		8		8	4		4	
Detector Phase	2	2	6	6	8	8	8	4	4	4	
Switch Phase											
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	
Minimum Split (s)	36.8	36.8	36.8	36.8	23.6	23.6	23.6	23.6	23.6	23.6	
Total Split (s)	46.0	46.0	46.0	46.0	49.0	49.0	49.0	49.0	49.0	49.0	
Total Split (%)	48.4%	48.4%	48.4%	48.4%	51.6%	51.6%	51.6%	51.6%	51.6%	51.6%	
Yellow Time (s)	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	
All-Red Time (s)	2.5	2.5	2.5	2.5	2.3	2.3	2.3	2.3	2.3	2.3	
Lost Time Adjust (s)		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)		5.8	5.8	5.8	5.6	5.6	5.6	5.6	5.6	5.6	
Lead/Lag											
Lead-Lag Optimize?											
Recall Mode	C-Max	C-Max	C-Max	C-Max	None	None	None	None	None	None	
Act Effct Green (s)		62.7	62.7	62.7	20.9	20.9	20.9	20.9	20.9	20.9	
Actuated g/C Ratio		0.66	0.66	0.66	0.22	0.22	0.22	0.22	0.22	0.22	
v/c Ratio		0.34	0.29	0.14	0.57	0.69	0.29	0.39	0.44	0.11	
Control Delay		8.3	8.1	5.1	41.9	43.7	7.1	37.2	34.5	9.1	
Queue Delay		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay		8.3	8.1	5.1	41.9	43.7	7.1	37.2	34.5	9.1	
LOS		Α	Α	Α	D	D	Α	D	С	Α	
Approach Delay		8.3		6.0		34.7			31.5		
Approach LOS		Α		Α		С			С		
Queue Length 50th (m)		23.2	6.3	5.5	20.0	41.5	0.0	9.4	25.0	0.0	
Queue Length 95th (m)		42.2	m12.8	m9.0	33.8	59.1	11.4	19.0	38.3	6.7	
Internal Link Dist (m)		225.9		225.1		214.6			104.7		
Turn Bay Length (m)			120.0		50.0		35.0	45.0		45.0	
Base Capacity (vph)		1879	423	1973	448	733	683	315	733	643	
Starvation Cap Reductn		0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn		0	0	0	0	0	0	0	0	0	
Storage Cap Reductn		0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio		0.34	0.29	0.14	0.27	0.33	0.16	0.19	0.21	0.06	

Cycle Length: 95

Actuated Cycle Length: 95
Offset: 85 (89%), Referenced to phase 2:EBTL and 6:WBTL, Start of Green

Natural Cycle: 65


Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.69 Intersection Signal Delay: 18.3 Intersection Capacity Utilization 70.4%

Intersection LOS: B ICU Level of Service C

Analysis Period (min) 15

m Volume for 95th percentile queue is metered by upstream signal.

	•	-	•	•	4	†	-	ļ
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT
Lane Configurations		4 17		₽.		€\$		₽.
Volume (vph)	20	17	24	18	19	484	4	458
Lane Group Flow (vph)	0	58	0	51	0	549	0	491
Turn Type	Perm	NA	Perm	NA	Perm	NA	Perm	NA
Protected Phases		4		8		2		6
Permitted Phases	4		8		2		6	
Detector Phase	4	4	8	8	2	2	6	6
Switch Phase								
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
Minimum Split (s)	22.2	22.2	22.2	22.2	25.0	25.0	25.0	25.0
Total Split (s)	27.0	27.0	27.0	27.0	73.0	73.0	73.0	73.0
Total Split (%)	27.0%	27.0%	27.0%	27.0%	73.0%	73.0%	73.0%	73.0%
Yellow Time (s)	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3
All-Red Time (s)	1.9	1.9	1.9	1.9	1.7	1.7	1.7	1.7
Lost Time Adjust (s)		0.0		0.0		0.0		0.0
Total Lost Time (s)		5.2		5.2		5.0		5.0
Lead/Lag								
Lead-Lag Optimize?								
Recall Mode	Max	Max	Max	Max	C-Max	C-Max	C-Max	C-Max
Act Effct Green (s)		21.8		21.8		68.0		68.0
Actuated g/C Ratio		0.22		0.22		0.68		0.68
v/c Ratio		0.17		0.15		0.46		0.41
Control Delay		24.7		29.6		8.1		8.3
Queue Delay		0.0		0.0		0.6		0.1
Total Delay		24.7		29.6		8.7		8.4
LOS		С		С		А		Α
Approach Delay		24.7		29.6		8.7		8.4
Approach LOS		С		С		А		Α
Queue Length 50th (m)		6.1		6.9		37.3		37.1
Queue Length 95th (m)		16.5		16.7		54.5		54.8
Internal Link Dist (m)		132.6		119.5		122.5		204.7
Turn Bay Length (m)								
Base Capacity (vph)		350		335		1181		1208
Starvation Cap Reductn		0		0		300		0
Spillback Cap Reductn		1		0		0		120
Storage Cap Reductn		0		0		0		0
Reduced v/c Ratio		0.17		0.15		0.62		0.45
Intersection Summary								
Cycle Length: 100								
Actuated Cycle Length: 100								
Offset: 0 (0%), Referenced to phase	2:NBTL and	6:SBTL, St	art of Greer	1				
Natural Cycle: 50								
Control Type: Actuated-Coordinated								
Maximum v/c Ratio: 0.46								
ntersection Signal Delay: 10.3					tersection L			
Intersection Capacity Utilization 58.0	1%			IC	U Level of S	Service B		
Analysis Period (min) 15								

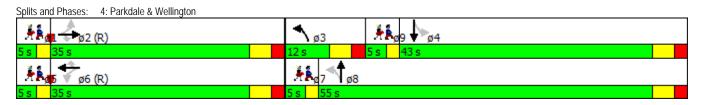
Splits and Phases: 3: Parkdale & Armstrong

	•	→	*	•	+	4	1	†	\	+		
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	SBL	SBT	ø1	ø5
Lane Configurations		4	7		4	7	¥	î,	×	ĵ.		
Volume (vph)	20	187	60	16	108	11	40	217	36	527		
Lane Group Flow (vph)	0	218	63	0	131	12	42	246	38	593		
Turn Type	Perm	NA	Perm	Perm	NA	Perm	pm+pt	NA	Perm	NA		
Protected Phases		2			6		3	8		4	1	5
Permitted Phases	2		2	6		6	8		4			
Detector Phase	2	2	2	6	6	6	3	8	4	4		
Switch Phase												
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	10.0	5.0	10.0	10.0	10.0	3.0	3.0
Minimum Split (s)	18.4	18.4	18.4	18.4	18.4	18.4	10.4	15.4	15.4	15.4	5.0	5.0
Total Split (s)	35.0	35.0	35.0	35.0	35.0	35.0	12.0	55.0	43.0	43.0	5.0	5.0
Total Split (%)	35.0%	35.0%	35.0%	35.0%	35.0%	35.0%	12.0%	55.0%	43.0%	43.0%	5%	5%
Yellow Time (s)	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	2.0	2.0
All-Red Time (s)	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	0.0	0.0
Lost Time Adjust (s)		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0		
Total Lost Time (s)		5.4	5.4		5.4	5.4	5.4	5.4	5.4	5.4		
Lead/Lag	Lag	Lag	Lag	Lag	Lag	Lag	Lead	Lag			Lead	Lead
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes			Yes	Yes
Recall Mode	C-Max	C-Max	C-Max	C-Max	C-Max	C-Max	None	None	None	None	None	None
Act Effct Green (s)		39.3	39.3		39.3	39.3	49.9	49.9	42.7	42.7		
Actuated g/C Ratio		0.39	0.39		0.39	0.39	0.50	0.50	0.43	0.43		
v/c Ratio		0.36	0.13		0.22	0.03	0.19	0.31	0.09	0.88		
Control Delay		25.3	22.7		23.2	21.9	13.2	15.2	17.1	41.7		
Queue Delay		0.0	0.0		0.0	0.0	0.0	0.0	0.0	10.9		
Total Delay		25.3	22.7		23.2	21.9	13.2	15.2	17.1	52.6		
LOS		С	С		С	С	В	В	В	D		
Approach Delay		24.7			23.1			14.9		50.4		
Approach LOS		С			С			В		D		
Queue Length 50th (m)		31.8	8.3		18.0	1.5	3.6	24.2	4.7	112.8		
Queue Length 95th (m)		52.3	17.7		32.3	5.3	8.4	39.0	12.0	#169.6		
Internal Link Dist (m)		37.0			13.5			115.8		122.5		
Turn Bay Length (m)			20.0			20.0	50.0		40.0			
Base Capacity (vph)		604	503		597	464	227	832	408	674		
Starvation Cap Reductn		0	0		0	0	0	0	0	70		
Spillback Cap Reductn		0	0		0	0	0	0	0	0		
Storage Cap Reductn		0	0		0	0	0	0	0	0		
Reduced v/c Ratio		0.36	0.13		0.22	0.03	0.19	0.30	0.09	0.98		

Cycle Length: 100

Actuated Cycle Length: 100
Offset: 0 (0%), Referenced to phase 2:EBTL and 6:WBTL, Start of Green

Natural Cycle: 80


Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.88
Intersection Signal Delay: 34.5
Intersection Capacity Utilization 70.5%

Intersection LOS: C ICU Level of Service C

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Lane Group	ø7	ø9
Lane Configurations		
Volume (vph)		
Lane Group Flow (vph)		
Turn Type		
Protected Phases	7	9
Permitted Phases		
Detector Phase		
Switch Phase		
Minimum Initial (s)	3.0	3.0
Minimum Split (s)	5.0	5.0
Total Split (s)	5.0	5.0
Total Split (%)	5%	5%
Yellow Time (s)	2.0	2.0
All-Red Time (s)	0.0	0.0
Lost Time Adjust (s)		
Total Lost Time (s)		
Lead/Lag	Lead	Lag
Lead-Lag Optimize?	Yes	Yes
Recall Mode	None	None
Act Effct Green (s)		
Actuated g/C Ratio		
v/c Ratio		
Control Delay		
Queue Delay		
Total Delay		
LOS		
Approach Delay		
Approach LOS		
Queue Length 50th (m)		
Queue Length 95th (m)		
Internal Link Dist (m)		
Turn Bay Length (m)		
Base Capacity (vph)		
Starvation Cap Reductn		
Spillback Cap Reductin		
Storage Cap Reductin		
Reduced v/c Ratio		
Neuded V/C Natio		
Intersection Summary		
·		

•	•	1	†	↓ .	∢_
EBL	EBR	NBL	NBT	SBT	SBR
W					
18	18	8	656	386	7
Stop			Free	Free	
0%			0%	0%	
0.95	0.95	0.95	0.95	0.95	0.95
19	19	8	691	406	7
			None	None	
			298	51	
0.93	0.88	0.88	2,0	01	
1117	110	717			
850	257	261			
0.7	0.2	7.1			
3.5	3 3	2.2			
		0.0			
		0.0			
	0.2	0.0			
В					
			ICI	J Level of Serv	rice
		15			
	18 Stop 0% 0.95	BL EBR 18 18 Stop 0% 0.95 0.95 19 19 0.93 0.88 1117 410 850 257 6.4 6.2 3.5 3.3 94 97 304 686 EB1 NB1 38 699 19 8 19 0 421 1143 0.09 0.01 2.2 0.2 14.4 0.2 B A 14.4 0.2	EBL EBR NBL 18 18 8 Stop 0% 0.95 0.95 0.95 19 19 8 0.93 0.88 0.88 1117 410 414 850 257 261 6.4 6.2 4.1 3.5 3.3 2.2 94 97 99 304 686 1143 EB1 NB1 SB1 38 699 414 19 8 0 19 0 7 421 1143 1700 0.09 0.01 0.24 2.2 0.2 0.0 14.4 0.2 0.0 B A 14.4 0.2 0.0	EBL EBR NBL NBT 18 18 8 656 Stop	BBL EBR NBL NBT SBT

EBL 36	EBT	EBR									
36	•	LDIN	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
36	€\$			4			43			43-	
	2	37	5		7	19	620	13	4	354	43
	Stop			Stop			Free			Free	
	0%			0%							
0.95	0.95		0.95	0.95	0.95	0.95	0.95		0.95		0.95
38	2	39	5	2	7	20	653	14	4	373	45
							None			None	
							229			121	
0.92	0.92	0.91	0.92	0.92	0.87	0.91			0.87		
1112	1110	395	1143	1126	659	418			666		
850	848	282	884	865	537	307			545		
7.1	6.5	6.2	7.1	6.5	6.2	4.1			4.1		
3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
85	99	94	98	99	98	98			100		
248	268	687	225	262	475	1137			894		
EB 1	WB 1	NB 1	SB 1								
	15		422								
38	5	20	4								
	7										
363	314	1137	894								
0.22	0.05	0.02	0.00								
6.2	1.1	0.4	0.1								
17.6	17.0	0.5	0.1								
С	С	Α	Α								
17.6	17.0	0.5	0.1								
С	С										
			ICI	J Level of S	ervice			В			
		15									
	0.92 1112 850 7.1 3.5 85 248 EB 1 79 38 39 363 0.22 6.2 17.6 C	0.95 0.95 38 2 0.92 0.92 1112 1110 850 848 7.1 6.5 3.5 4.0 85 99 248 268 EB1 WB1 79 15 38 5 39 7 363 314 0.22 0.05 6.2 1.1 17.6 17.0 C C 17.6 17.0	0.95 0.95 0.95 38 2 39 0.92 0.92 0.91 1112 1110 395 850 848 282 7.1 6.5 6.2 3.5 4.0 3.3 85 99 94 248 268 687 EB 1 WB 1 NB 1 79 15 686 38 5 20 39 7 14 363 314 1137 0.22 0.05 0.02 6.2 1.1 0.4 17.6 17.0 0.5 C C C A 17.6 17.0 0.5 C C C 1.7 61.3%	0.95	0% 0% 0.95 0.95 0.95 0.95 38 2 39 5 2 0.92 0.91 0.92 0.92 1112 1110 395 1143 1126 850 848 282 884 865 7.1 6.5 6.2 7.1 6.5 3.5 4.0 3.3 3.5 4.0 85 99 94 98 99 248 268 687 225 262 EB1 WB 1 NB 1 SB 1 79 15 686 422 38 5 20 4 39 7 14 45 363 314 1137 894 0.22 0.05 0.02 0.00 6.2 1.1 0.4 0.1 17.6 17.0 0.5 0.1 CC A A <	0% 0% 0.95 0.95 0.95 0.95 0.95 38 2 39 5 2 7 0.92 0.92 0.91 0.92 0.92 0.87 1112 1110 395 1143 1126 659 850 848 282 884 865 537 7.1 6.5 6.2 7.1 6.5 6.2 3.5 4.0 3.3 3.5 4.0 3.3 85 99 94 98 99 98 248 268 687 225 262 475 EB1 WB 1 NB 1 SB 1 79 15 686 422 38 5 20 4 39 7 14 45 363 314 1137 894 0.22 0.05 0.02 0.00 6.2 1.1 0.4 0.1 17.6 17.0 0.5 0.1 C C A A 17.6 17.0 0.5 0.1 C C C	0.95	0% 0% 0% 0% 0.95 0.91 0.95 0.91 1111	0% 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95	0% 0% 0% 0.95 0.97 0.91 0.87 0.91 0.87 10.87 11111 0.87 1111 0.87 1111 0.87 1111 0.87 141 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1	0%

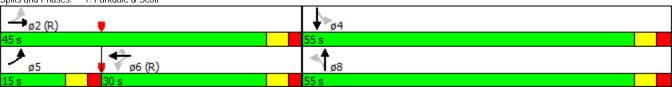
	ၨ	→	←	•	\	1	
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations		Ą	Ť.		W		
Volume (veh/h)	0	18	1 45	19	57	0	
Sign Control		Free	Free		Stop		
Grade		0%	0%		0%		
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	
Hourly flow rate (vph)	0	19	47	20	60	0	
Pedestrians							
Lane Width (m)							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)							
Median type		None	None				
Median storage veh)							
Upstream signal (m)							
pX, platoon unblocked							
vC, conflicting volume	67				76	57	
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol	67				76	57	
tC, single (s)	4.1				6.4	6.2	
tC, 2 stage (s)							
tF (s)	2.2				3.5	3.3	
p0 queue free %	100				94	100	
cM capacity (veh/h)	1534				927	1009	
Direction, Lane #	EB 1	WB 1	SB 1				
Volume Total	19	67	60				
Volume Left	0	0	60				
Volume Right	0	20	0				
cSH	1534	1700	927				
Volume to Capacity	0.00	0.04	0.06				
Queue Length 95th (m)	0.0	0.0	1.6				
Control Delay (s)	0.0	0.0	9.2				
Lane LOS			Α				
Approach Delay (s)	0.0	0.0	9.2				
Approach LOS			Α				
Intersection Summary							
Average Delay			3.8				
Intersection Capacity Utilization			13.7%	ICI	U Level of S	ervice	
Analysis Period (min)			15				

	•	→	•	+	•	•	†	/	
Lane Group	EBL	EBT	WBL	WBT	WBR	NBL	NBT	SBL	SBT
Lane Configurations	*	ት ጌ	*	44	7		- €	*	î,
Volume (vph)	142	559	142	448	47	151	427	14	425
Lane Group Flow (vph)	149	713	149	472	49	0	764	15	491
Turn Type	pm+pt	NA	Perm	NA	Perm	Perm	NA	Perm	NA
Protected Phases	5	2		6			8		4
Permitted Phases	2		6		6	8		4	
Detector Phase	5	2	6	6	6	8	8	4	4
Switch Phase									
Minimum Initial (s)	5.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
Minimum Split (s)	11.0	27.4	27.4	27.4	27.4	32.7	32.7	32.7	32.7
Total Split (s)	15.0	45.0	30.0	30.0	30.0	55.0	55.0	55.0	55.0
Total Split (%)	15.0%	45.0%	30.0%	30.0%	30.0%	55.0%	55.0%	55.0%	55.0%
Yellow Time (s)	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3
All-Red Time (s)	2.1	2.1	2.1	2.1	2.1	2.4	2.4	2.4	2.4
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0
Total Lost Time (s)	5.4	5.4	5.4	5.4	5.4		5.7	5.7	5.7
Lead/Lag	Lead		Lag	Lag	Lag				
Lead-Lag Optimize?	Yes		Yes	Yes	Yes				
Recall Mode	None	C-Max	C-Max	C-Max	C-Max	Max	Max	Max	Max
Act Effct Green (s)	39.6	39.6	25.0	25.0	25.0		49.3	49.3	49.3
Actuated g/C Ratio	0.40	0.40	0.25	0.25	0.25		0.49	0.49	0.49
v/c Ratio	0.53	0.60	0.98	0.62	0.12		1.69	0.06	0.63
Control Delay	24.7	20.9	107.7	37.6	2.3		337.2	14.2	22.7
Queue Delay	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0
Total Delay	24.7	20.9	107.7	37.6	2.3		337.2	14.2	22.7
LOS	С	С	F	D	Α		F	В	С
Approach Delay		21.6		50.6			337.2		22.5
Approach LOS		С		D			F		С
Queue Length 50th (m)	15.0	37.8	28.9	43.0	0.0		~156.6	1.5	66.2
Queue Length 95th (m)	25.4	49.5	#67.6	59.6	2.7		#198.2	5.0	99.8
Internal Link Dist (m)		225.1		242.5			32.2		79.4
Turn Bay Length (m)	65.0		40.0		50.0			45.0	
Base Capacity (vph)	286	1195	152	762	407		452	253	784
Starvation Cap Reductn	0	0	0	0	0		0	0	0
Spillback Cap Reductn	0	0	0	0	0		0	0	0
Storage Cap Reductn	0	0	0	0	0		0	0	0
Reduced v/c Ratio	0.52	0.60	0.98	0.62	0.12		1.69	0.06	0.63

Cycle Length: 100

Actuated Cycle Length: 100
Offset: 18 (18%), Referenced to phase 2:EBTL and 6:WBTL, Start of Green

Natural Cycle: 110


Control Type: Actuated-Coordinated Maximum v/c Ratio: 1.69 Intersection Signal Delay: 114.7 Intersection Capacity Utilization 126.2%

Intersection LOS: F ICU Level of Service H

Analysis Period (min) 15

- Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles.
- # 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

Splits and Phases: 1: Parkdale & Scott

	•	→	•	←	1	†	/	-	↓	4	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		4Tb	7	∳ ሴ	¥	*	7	¥	*	7	
Volume (vph)	16	447	164	649	114	207	92	56	300	41	
Lane Group Flow (vph)	0	560	173	712	120	218	97	59	316	43	
Turn Type	Perm	NA	Perm	NA	Perm	NA	Perm	Perm	NA	Perm	
Protected Phases		2		6		8			4		
Permitted Phases	2		6		8		8	4		4	
Detector Phase	2	2	6	6	8	8	8	4	4	4	
Switch Phase											
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	
Minimum Split (s)	36.8	36.8	36.8	36.8	23.6	23.6	23.6	23.6	23.6	23.6	
Total Split (s)	60.0	60.0	60.0	60.0	40.0	40.0	40.0	40.0	40.0	40.0	
Total Split (%)	60.0%	60.0%	60.0%	60.0%	40.0%	40.0%	40.0%	40.0%	40.0%	40.0%	
Yellow Time (s)	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	
All-Red Time (s)	2.5	2.5	2.5	2.5	2.3	2.3	2.3	2.3	2.3	2.3	
Lost Time Adjust (s)		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)		5.8	5.8	5.8	5.6	5.6	5.6	5.6	5.6	5.6	
Lead/Lag											
Lead-Lag Optimize?											
Recall Mode	C-Max	C-Max	C-Max	C-Max	None	None	None	None	None	None	
Act Effct Green (s)		63.2	63.2	63.2	25.4	25.4	25.4	25.4	25.4	25.4	
Actuated g/C Ratio		0.63	0.63	0.63	0.25	0.25	0.25	0.25	0.25	0.25	
v/c Ratio		0.32	0.39	0.37	0.88	0.54	0.23	0.29	0.78	0.11	
Control Delay		9.6	9.5	6.0	84.3	35.9	6.5	31.2	47.2	8.0	
Queue Delay		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay		9.6	9.5	6.0	84.3	35.9	6.5	31.2	47.2	8.0	
LOS		А	А	А	F	D	А	С	D	А	
Approach Delay		9.6		6.7		42.7			40.9		
Approach LOS		А		А		D			D		
Queue Length 50th (m)		22.5	9.0	18.8	22.4	36.7	0.0	9.2	57.2	0.0	
Queue Length 95th (m)		40.8	m17.7	m27.8	#45.3	51.9	10.4	18.1	76.8	7.1	
Internal Link Dist (m)		225.9		225.1		214.6			104.7		
Turn Bay Length (m)			120.0		50.0		35.0	45.0		45.0	
Base Capacity (vph)		1759	438	1919	186	552	533	280	552	497	
Starvation Cap Reductn		0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn		0	0	0	0	0	0	0	0	0	
Storage Cap Reductn		0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio		0.32	0.39	0.37	0.65	0.39	0.18	0.21	0.57	0.09	
Interconting Commence											

Cycle Length: 100

Actuated Cycle Length: 100

Offset: 2 (2%), Referenced to phase 2:EBTL and 6:WBTL, Start of Green

Natural Cycle: 65

Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.88 Intersection Signal Delay: 20.5 Intersection Capacity Utilization 85.5%

Intersection LOS: C ICU Level of Service E

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

	ၨ	→	•	←	4	†	-	ļ
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT
Lane Configurations		43-		43-		43-		43-
Volume (vph)	32	70	31	59	36	657	13	440
Lane Group Flow (vph)	0	151	0	110	0	771	0	494
Turn Type	Perm	NA	Perm	NA	Perm	NA	Perm	NA
Protected Phases		4		8		2		6
Permitted Phases	4		8		2		6	
Detector Phase	4	4	8	8	2	2	6	6
Switch Phase								
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
Minimum Split (s)	22.2	22.2	22.2	22.2	25.0	25.0	25.0	25.0
Total Split (s)	35.0	35.0	35.0	35.0	65.0	65.0	65.0	65.0
Total Split (%)	35.0%	35.0%	35.0%	35.0%	65.0%	65.0%	65.0%	65.0%
Yellow Time (s)	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3
All-Red Time (s)	1.9	1.9	1.9	1.9	1.7	1.7	1.7	1.7
Lost Time Adjust (s)		0.0		0.0		0.0		0.0
Total Lost Time (s)		5.2		5.2		5.0		5.0
Lead/Lag								
Lead-Lag Optimize?								
Recall Mode	Max	Max	Max	Max	C-Max	C-Max	C-Max	C-Max
Act Effct Green (s)		29.8		29.8		60.0		60.0
Actuated g/C Ratio		0.30		0.30		0.60		0.60
v/c Ratio		0.31		0.24		0.75		0.48
Control Delay		25.6		26.2		18.3		16.1
Queue Delay		0.0		0.0		2.1		0.1
Total Delay		25.6		26.2		20.4		16.2
LOS		С		С		С		В
Approach Delay		25.6		26.2		20.4		16.2
Approach LOS		С		С		С		В
Queue Length 50th (m)		19.4		14.8		117.9		49.9
Queue Length 95th (m)		35.8		28.5		173.3		m70.8
Internal Link Dist (m)		122.7		110.8		122.0		212.8
Turn Bay Length (m)								
Base Capacity (vph)		483		468		1022		1039
Starvation Cap Reductn		0		0		132		0
Spillback Cap Reductn		0		0		0		69
Storage Cap Reductn		0		0		0		0
Reduced v/c Ratio		0.31		0.24		0.87		0.51
Intersection Summary								
Cycle Length: 100								
Actuated Cycle Length: 100								
Offset: 20 (20%), Referenced to phase	se 2:NBTL a	ind 6:SBTL,	Start of Gre	en				
Natural Cycle: 60								
Control Type: Actuated-Coordinated								
Maximum v/c Ratio: 0.75								
Intersection Signal Delay: 20.0				Int	tersection L	OS: B		
Intersection Capacity Utilization 75.19	%			IC	U Level of S	Service D		

Intersection Capacity Utilization 75.1%

Analysis Period (min) 15

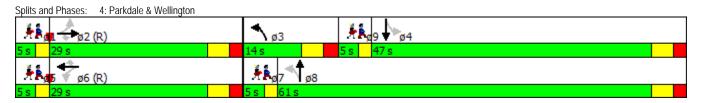
m Volume for 95th percentile queue is metered by upstream signal.

	•	→	•	•	+	•	1	<u></u>	\	 		
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	SBL	SBT	ø1	ø5
Lane Configurations		4	7		4	7	*	ĵ.	*	ĵ.		
Volume (vph)	39	211	82	23	201	24	74	498	60	564		
Lane Group Flow (vph)	0	263	86	0	236	25	78	546	63	650		
Turn Type	Perm	NA	Perm	Perm	NA	Perm	pm+pt	NA	Perm	NA		
Protected Phases		2			6		3	8		4	1	5
Permitted Phases	2		2	6		6	8		4			
Detector Phase	2	2	2	6	6	6	3	8	4	4		
Switch Phase												
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	10.0	5.0	10.0	10.0	10.0	3.0	3.0
Minimum Split (s)	18.4	18.4	18.4	18.4	18.4	18.4	10.4	15.4	15.4	15.4	5.0	5.0
Total Split (s)	29.0	29.0	29.0	29.0	29.0	29.0	14.0	61.0	47.0	47.0	5.0	5.0
Total Split (%)	29.0%	29.0%	29.0%	29.0%	29.0%	29.0%	14.0%	61.0%	47.0%	47.0%	5%	5%
Yellow Time (s)	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	2.0	2.0
All-Red Time (s)	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	0.0	0.0
Lost Time Adjust (s)		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0		
Total Lost Time (s)		5.4	5.4		5.4	5.4	5.4	5.4	5.4	5.4		
Lead/Lag	Lag	Lag	Lag	Lag	Lag	Lag	Lead	Lag			Lead	Lead
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes			Yes	Yes
Recall Mode	C-Max	C-Max	C-Max	C-Max	C-Max	C-Max	None	None	None	None	None	None
Act Effct Green (s)		31.7	31.7		31.7	31.7	57.5	57.5	46.9	46.9		
Actuated g/C Ratio		0.32	0.32		0.32	0.32	0.58	0.58	0.47	0.47		
v/c Ratio		0.58	0.21		0.49	0.08	0.30	0.60	0.19	0.89		
Control Delay		36.2	28.7		33.4	27.3	11.6	16.4	14.9	34.3		
Queue Delay		0.0	0.0		0.0	0.0	0.0	0.6	0.0	0.0		
Total Delay		36.2	28.7		33.4	27.3	11.6	17.0	14.9	34.3		
LOS		D	С		С	С	В	В	В	С		
Approach Delay		34.4			32.8			16.4		32.6		
Approach LOS		С			С			В		С		
Queue Length 50th (m)		44.5	12.7		38.6	3.6	5.8	58.6	5.6	65.6		
Queue Length 95th (m)		71.6	25.2		62.5	10.0	11.7	88.0	11.7	#182.1		
Internal Link Dist (m)		24.3			20.7			115.8		122.0		
Turn Bay Length (m)							50.0		40.0			
Base Capacity (vph)		455	412		482	301	270	948	330	734		
Starvation Cap Reductn		0	0		0	0	0	0	0	0		
Spillback Cap Reductn		0	0		0	0	0	140	0	0		
Storage Cap Reductn		0	0		0	0	0	0	0	0		
Reduced v/c Ratio		0.58	0.21		0.49	0.08	0.29	0.68	0.19	0.89		

Cycle Length: 100

Actuated Cycle Length: 100
Offset: 70 (70%), Referenced to phase 2:EBTL and 6:WBTL, Start of Green

Natural Cycle: 90


Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.89 Intersection Signal Delay: 27.7 Intersection Capacity Utilization 91.0%

Intersection LOS: C ICU Level of Service F

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Lane Group	ø7	ø9
Lane Configurations		
Volume (vph)		
Lane Group Flow (vph)		
Turn Type		
Protected Phases	7	9
Permitted Phases	,	7
Detector Phases		
Switch Phase		
	2.0	2.0
Minimum Initial (s)	3.0	3.0
Minimum Split (s)	5.0	5.0
Total Split (s)	5.0	5.0
Total Split (%)	5%	5%
Yellow Time (s)	2.0	2.0
All-Red Time (s)	0.0	0.0
Lost Time Adjust (s)		
Total Lost Time (s)		
Lead/Lag	Lead	Lag
Lead-Lag Optimize?	Yes	Yes
Recall Mode	None	None
Act Effct Green (s)		
Actuated g/C Ratio		
v/c Ratio		
Control Delay		
Queue Delay		
Total Delay		
LOS		
Approach Delay		
Approach LOS		
Queue Length 50th (m)		
Queue Length 95th (m)		
Internal Link Dist (m)		
Turn Bay Length (m)		
Base Capacity (vph)		
Starvation Cap Reductn		
Spillback Cap Reductn		
Storage Cap Reductn		
Reduced v/c Ratio		
Intersection Summary		

Movement EBL EBR NBL NBT SBR Lane Configurations
Volume (veh/h) 13 15 17 740 694 15
Sign Control Stop Free Free
Grade 0% 0% 0%
Peak Hour Factor 0.95 0.95 0.95 0.95 0.95
Hourly flow rate (vph) 14 16 18 779 731 16
Pedestrians
Lane Width (m)
Walking Speed (m/s)
Percent Blockage
Right turn flare (veh)
Median type None None
Median storage veh)
Upstream signal (m) 294 56
pX, platoon unblocked 0.85 0.71 0.71
vC, conflicting volume 1553 738 746
vC1, stage 1 conf vol
vC2, stage 2 conf vol
vCu, unblocked vol 807 433 444
tC, single (s) 6.4 6.2 4.1
tc, 3 figle (s) 6.4 6.2 4.1 tc, 2 stage (s)
tF (s) 3.5 3.3 2.2
p0 queue free % 95 96 98
cM capacity (veh/h) 293 445 797
Direction, Lane # EB 1 NB 1 SB 1
Volume Total 29 797 746
Volume Left 14 18 0
Volume Right 16 0 16
cSH 358 797 1700
Volume to Capacity 0.08 0.02 0.44
Queue Length 95th (m) 2.0 0.5 0.0
Control Delay (s) 16.0 0.6 0.0
Lane LOS C A
Approach Delay (s) 16.0 0.6 0.0
Approach LOS C
Intersection Summary
Average Delay 0.6
Intersection Capacity Utilization 65.5% ICU Level of Service
Analysis Period (min) 15

	•	→	•	•	+	•	•	†	~	/		1
Movement	EBL	EBT	EBR	• WBL	WBT	WBR	NBL	NBT	• NBR	SBL	SBT	SBR
Lane Configurations		43-			43-			43-			43-	
Volume (veh/h)	36	4	24	7	5	8	34	711	7	5	652	49
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Hourly flow rate (vph)	38	4	25	7	5	8	36	748	7	5	686	52
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (m)								237			113	
pX, platoon unblocked	0.82	0.82	0.74	0.82	0.82	0.69	0.74			0.69		
vC, conflicting volume	1557	1550	712	1574	1572	752	738			756		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	856	847	436	876	874	411	471			417		
tC, single (s)	7.1	6.5	6.2	7.1	6.5	6.2	4.1			4.1		
tC, 2 stage (s)												
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	82	98	94	96	98	98	96			99		
cM capacity (veh/h)	210	232	459	197	223	440	808			785		
Direction, Lane #	EB1	WB 1	NB 1	SB 1								
Volume Total	67	21	792	743								
Volume Left	38	7	36	5								
Volume Right	25	8	7	52								
cSH	266	263	808	785								
Volume to Capacity	0.25	0.08	0.04	0.01								
Queue Length 95th (m)	7.5	2.0	1.1	0.2								
Control Delay (s)	23.1	19.9	1.2	0.2								
Lane LOS	С	С	Α	Α								
Approach Delay (s)	23.1	19.9	1.2	0.2								
Approach LOS	С	С										
Intersection Summary												
Average Delay			1.9									
Intersection Capacity Utilization			77.3%	ICI	J Level of S	ervice			D			
Analysis Period (min)			15									

	۶	→	+	•	/	4
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations					14	
Volume (veh/h)	0	4 21	1 . 33	55	43	0
Sign Control		Free	Free		Stop	
Grade		0%	0%		0%	
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95
Hourly flow rate (vph)	0.73	22	35	58	45	0.75
Pedestrians	- 0		- 33	- 50	70	J
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type		None	None			
Median storage veh)		None	None			
Upstream signal (m)						
pX, platoon unblocked						
	02				0/	
vC, conflicting volume	93				86	64
vC1, stage 1 conf vol						
vC2, stage 2 conf vol	02				0/	/ /
vCu, unblocked vol	93				86	64
tC, single (s)	4.1				6.4	6.2
tC, 2 stage (s)	0.5					
tF (s)	2.2				3.5	3.3
p0 queue free %	100				95	100
cM capacity (veh/h)	1502				915	1001
Direction, Lane #	EB 1	WB 1	SB 1			
Volume Total	22	93	45			
Volume Left	0	0	45			
Volume Right	0	58	0			
cSH	1502	1700	915			
Volume to Capacity	0.00	0.05	0.05			
Queue Length 95th (m)	0.0	0.0	1.2			
Control Delay (s)	0.0	0.0	9.1			
Lane LOS			А			
Approach Delay (s)	0.0	0.0	9.1			
Approach LOS			А			
Intersection Summary						
Average Delay			2.6			
Intersection Capacity Utilization			15.4%	ICI	U Level of S	ervice
Analysis Period (min)			15.476	101	O LOVOI OI J	CIVICC
Alialysis I GIIVU (IIIIII)			IJ			