Geotechnical Engineering

Environmental Engineering

Hydrogeology

Geological Engineering

Materials Testing

Building Science

Archaeological Services

patersongroup

Phase II Environmental Site Assessment

7000 Campeau Drive Ottawa, Ontario

Prepared For ClubLink Corporation ULC

Paterson Group Inc.

Consulting Engineers 154 Colonnade Road South Ottawa (Nepean), Ontario Canada K2E 7J5

Tel: (613) 226-7381 Fax: (613) 226-6344 www.patersongroup.ca May 23, 2019 Report: PE4321-2

TABLE OF CONTENTS

EXEC	UTIVE	E SUMMARY	iii
1.0	INTRO	ODUCTION	1
	1.1	Site Description	1
	1.2	Property Ownership	1
	1.3	Current and Proposed Future Uses	1
	1.4	Applicable Site Condition Standard	2
2.0	BACK	GROUND INFORMATION	3
	2.1	Physical Setting	3
	2.2	Past Investigations	3
3.0	SCOF	PE OF INVESTIGATION	6
	3.1	Overview of Site Investigation	6
	3.2	Media Investigated	6
	3.3	Phase I Conceptual Site Model	6
	3.4	Deviations from Sampling and Analysis Plan	9
	3.5	Impediments	9
4.0	INVE	STIGATION METHOD	9
	4.1	Subsurface Investigation	9
	4.2	Soil Sampling	10
	4.3	Field Screening Measurements	10
	4.4	Groundwater Monitoring Well Installation	11
	4.5	Field Measurement of Water Quality Parameters	12
	4.6	Groundwater Sampling	12
	4.7	Analytical Testing	12
	4.8	Residue Management	15
	4.9	Elevation Surveying	15
	4.10	Quality Assurance and Quality Control Measures	15
5.0	REVII	EW AND EVALUATION	15
	5.1	Geology	15
	5.2	Groundwater Elevations, Flow Direction, and Hydraulic Gradient	16
	5.3	Fine-Coarse Soil Texture	16
	5.4	Soil: Field Screening	17
	5.5	Soil Quality	17
	5.5.1	Parcel 1 (MECP Table 3 Standards)	18
	5.5.2	Parcel 2 (MECP Table 3 Standards)	23
	5.5.3	Parcel 3 (MECP Table 7 Standards)	25
		Parcel 4 (MECP Table 7 Standards)	
		Maximum Concentrations	
	5.6	Groundwater Quality	29

	5.6.1 Parcel 1 (MECP Table 3 Standards)	30
	5.6.2 Parcel 2 (MECP Table 3 Standards)	32
	5.6.3 Parcel 3 (MECP Table 7 Standards)	33
	5.6.4 Parcel 4 (MECP Table 7 Standards)	34
	5.7 Quality Assurance and Quality Control Results	
	5.8 Phase II Conceptual Site Model	36
6.0	CONCLUSIONS	
	STATEMENT OF LIMITATIONS	

List of Figures

Figure 1 - Key Plan

Drawing PE4321-3 - Test Hole Location Plan

Drawing PE4321-4 – Analytical Testing Plan

Drawing PE4321-5 - Cross-Section A-A'

Drawing PE4321-6 - Cross-Section B-B'

List of Appendices

Appendix 1 Sampling and Analysis Plan

Soil Profile and Test Data Sheets

Symbols and Terms

Laboratory Certificates of Analysis

EXECUTIVE SUMMARY

Assessment

A Phase II ESA was conducted for the property addressed 7000 Campeau Drive, herein referred to as the Phase II Property, in the City of Ottawa, Ontario. It should be noted that the Phase II Property is comprised of four (4) parcels of land identified as Parcels 1 through 4 for the purposes of this report.

The purpose of the Phase II ESA was to assess the soil and groundwater quality on or beneath the Phase II Property, within potential areas of environmental concern (APECs) identified during the Phase I ESA carried out by Paterson and dated December 2018.

The Phase II ESA was carried out in conjunction with a Geotechnical Investigation and consisted of drilling 20 boreholes across the Phase II Property, 13 of which were constructed with groundwater monitoring well installations, and the placement of 20 shallow hand auger holes. Approximately 190 probeholes were also completed as part of the Geotechnical Investigation, in order to confirm bedrock depth in areas of deep overburden.

Soil samples were obtained from the boreholes and auger holes, and screened primarily using visual observations. Samples collected from within the vicinity of the Turf Building and aboveground storage tanks (ASTs) were also screened using combustible vapour measurements. Based on the screening results in combination with sample depth and location, a total of 27 soil samples, including a duplicate sample, were submitted for laboratory analysis of benzene, toluene, ethylbenzene and xylenes (BTEX), petroleum hydrocarbons (PHCs, F1-F4), metals and/or organochlorine pesticides (OCPs). Based on the analytical test results, no BTEX parameters or PHC (F1) were identified in the soil samples submitted for testing. Petroleum hydrocarbon F2, F3 and/or F4 fractions were identified in shallow auger flight samples recovered from BH2, BH3 and BH5, within the vicinity of the ASTs and Turf Building on the southeastern portion of the Phase I Property (Parcel 1). Metals parameters were also identified in the fill material on this portion of the Phase II Property, while no OCPs were detected in the sample recovered from BH3. The PHC and metal parameters identified were in compliance with the MECP Table 3 standards, selected based on the site conditions within Parcel 1.

Report: PE4321-2

May 23, 2019 Page iii

Metal and OCP analyses were conducted on shallow soil samples collected from the greens, fairways and/or roughs across the Phase II Property. Concentrations of δ -BHC ranging from 0.01 to 0.03 μ g/g were identified in shallow soil Samples HA3-G1, HA11-G1 and HA15-G1. No standard value is provided by the MECP for this parameter. Otherwise, no OCP pesticides were identified in any of the samples analysed.

Metal parameters were identified in all samples analysed. Concentrations of mercury identified in the soil recovered from HA14 and HA15 on the northeastern portion of the Phase II Property (Parcel 3) exceeded the MECP Table 7 standards selected for this portion of the site. The remaining metal parameters identified across the Phase II ESA Property were in compliance with the MECP Table 3 or MECP Table 7 standards.

Groundwater samples from monitoring wells installed in BH2, BH3, BH8, BH11, BH13, BH17 and BH20 were recovered and analysed for BTEX, PHCs, OCPs and/or mercury. No free-phase product was observed on the groundwater at any of the monitoring well locations during the February, April and May 2019 sampling events. Based on analytical test results, no BTEX, PHC or mercury concentrations were identified above the laboratory method detection limits in the groundwater samples analysed. No OCP parameters were detected above the laboratory method detection limits, with the exception of hexachlorobutadiene concentrations in groundwater samples recovered from BH8 and BH11 on Parcels 1 and 2 of the Phase II Property. The identified concentrations were in compliance with the MECP Table 3 standards.

Conclusion

Based on the findings of the Phase II ESA, shallow soil present on the northeastern portion of the Phase II Property (Parcel 3) is impacted with mercury concentrations exceeding the applicable MECP Table 7 standards. Otherwise the soil on and beneath the Phase II Property is in compliance with the MECP Table 3 or MECP Table 7 standards. Groundwater beneath the Phase II Property is in compliance with the applicable MECP standards.

It is recommended that additional surface sampling be conducted on Parcel 3 of the Phase II Property in order to delineate the vertical and lateral extent of the mercury impacted soil.

It is expected that the groundwater monitoring wells will be abandoned in accordance with Ontario Regulation 903 at the time of construction excavation, however it is recommended that they remain in place for possible future groundwater monitoring events.

Report: PE4321-2

1.0 INTRODUCTION

At the request of ClubLink Corporation ULC (ClubLink), Paterson Group (Paterson) conducted a Phase II Environmental Site Assessment (ESA) for the property addressed 7000 Campeau Drive in the City of Ottawa, Ontario. The purpose of this Phase II ESA was to address areas of potential environmental concern (APECs) identified in the Phase I ESA conducted by Paterson, dated December 2018.

1.1 Site Description

Address: 7000 Campeau Drive, Ottawa, Ontario.

Legal Description: Part of Lots 5 and 6, Concession 3, in the City of

Ottawa.

Property Identification

Numbers: 04511-0214, 04512-1126 and 04513-0489

Location: The subject site is located on the north side of

Campeau Drive, east of Kanata Avenue. The subject site is shown on Figure 1 - Key Plan following the

body of this report.

Latitude and Longitude: 45° 19' 17" N, 75° 34' 39" W

Configuration: Irregular

Site Area: 71 ha (approximate)

1.2 Property Ownership

The subject property is currently owned by ClubLink. Paterson was retained to complete this Phase II ESA by Mr. Robert Visentin of ClubLink. Mr. Visentin can be contacted by telephone at 416-220-2157.

1.3 Current and Proposed Future Uses

The Phase II Property is currently occupied by the Kanata Golf and Country Club. It is our understanding that the Phase II Property will be developed with a residential subdivision consisting of residential dwellings, storm water management ponds, open space and parkland.

Report: PE4321-2

A record of site condition is required for the more sensitive land use change from commercial to residential. As the Phase II Property is non-contiguous, an RSC will be required for each of the 4 parcels of land.

1.4 Applicable Site Condition Standard

The site condition standards for the property were obtained from Table 3 and Table 7 of the document entitled "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act", prepared by the Ontario Ministry of the Environment, Conservation and Parks (MECP), April 2011.

As noted in the previous section, the Phase II Property is comprised of 4 non-contiguous parcels of land; each parcel of land is therefore subject to its own site standards given the specific site conditions. The selected MECP Table 3 Standards for Parcels 1 and 2 are based on the following considerations:

Coarse-grained soil conditions;
Non-potable groundwater conditions; and
Residential land use.
MECP Table 7 standards selected for Parcels 3 and 4 are based on the ing considerations:
Shallow soil (less than 2m of soil cover is present over more than one third of the site);
Coarse-grained soil conditions;
Non-potable groundwater conditions; and
Residential land use.

Non-potable groundwater conditions were selected as the Phase II Property is situated in a municipally serviced area and residential land use standards were selected based on the proposed development.

Grain size-analyses were conducted at four (4) different locations across the Phase II Property, identifying the soil as fine-grained. However, due to the size of the Phase II Property, additional grain-size analysis would be recommended to confirm that fine-grained standards are applicable. The more stringent coarse-grained standards have therefore been selected at this time.

Section 41 of O.Reg. 153/04 does not apply to the Phase II Property, as the property is not within 30m of an environmentally sensitive area and the pH of the soil is between 5 and 9.

Report: PE4321-2

Section 43.1 of O.Reg. 153/04 does apply to Blocks 3 and 4 of the Phase II Property as these parcels of land are shallow soil properties.

2.0 BACKGROUND INFORMATION

2.1 Physical Setting

The Phase II Property is situated in an urban setting, surrounded by residential subdivisions and/or apartment buildings, with some treed land to the south. The golf cart storage, Clubhouse and associated parking lot are present on the southwestern portion of the site while the southeastern portion of the site is developed with a maintenance building (the Turf Building). The remainder of the site is occupied by paved walking paths, grassed fairways, landscaped roughs and sand pits. Two man-made ponds are present on the south-central portion of the Phase II Property.

Site topography is generally undulating, with an overall gentle downward slope to the north. Site drainage consists primarily of sheet flow to catch basins in the paved areas, with surficial infiltration and some sheet flow to the aforementioned ponds in the landscaped areas.

The Phase II Property and surrounding properties are currently provided with municipal services and do not have private potable wells or septic systems.

2.2 Past Investigations

Phase I Environmental Site Assessment, 2018

Paterson was retained by ClubLink to carry out a Phase I-Environmental Site Assessment (ESA) for the property addressed 7000 Campeau Drive in the City of Ottawa, Ontario. The purpose of the Phase I-ESA was to research the past and current use of the site and study area and to identify environmental concerns with the potential to have impacted the subject property.

Based on the available historical information sources, the Phase I Property was originally vacant, undeveloped land, possibly used for agricultural purposes, until developed with a 9-hole golf course and Clubhouse during the interim of 1965 through 1968. Nine (9) additional fairways were added to the course at some time between 1976 and 1990. The existing Clubhouse, golf-cart charging station/storage building and maintenance building were reportedly constructed in the early 1990's.

Report: PE4321-2

The adjacent and neighbouring properties were historically vacant, undeveloped or agricultural lands. Residential subdivisions were developed around and immediately east of the golf course from the 1970's through the 1990's. No historical off-site PCAs were identified within the Phase I Study Area.

Following the historical review, a site visit was conducted. Based on the findings of the site visit, on-site PCAs include fuel stored in 2 aboveground storage tanks (ASTs) and the storage and application of pesticides and herbicides. These PCAs have resulted in areas of potential environmental concern (APECs) on the Phase I Property as presented in Table 1 below. At the time of the site visit, the current uses of the adjacent and neighbouring properties within the Phase I ESA Study Area were observed from publicly accessible areas. No off-site PCAs were identified within the Phase I Study Area at the time of the site visit.

Table 1: Area	as of Potentia	l Environment	al Concer	n	
Area of Potential Environmental Concern	Location of Area of Potential Environmental Concern with respect to Phase I Property	Potentially Contaminating Activity	Location of PCA (on-site or off- site)	Contaminants of Potential Concern	Media Potentially Impacted (Groundwater, Soil, and/or Sediment)
APEC 1 (resulting from the presence of two ASTs)	Southeastern portion of the Phase I Property	PCA 28 – Gasoline and Associated Products Storage in Fixed Tanks	On-site	BTEX PHCs (F ₁ -F ₄)	Soil and Groundwater
APEC 2 (resulting from the storage of pesticides and herbicides)	Southeastern portion of the Phase I Property	PCA 40 – Pesticides (including Herbicides, Fungicides and Anti-Fouling Agents) Manufacturing, Processing, Bulk Storage and Large- Scale Applications	On-site	OC Pesticides ¹ Metals Hg CrVI	Soil and/or Groundwater

Report: PE4321-2

Table 1 Continued: Areas of Potential Environmental Concern									
Area of Potential Environmental Concern	Location of Area of Potential Environmental Concern with respect to Phase I Property	Potentially Contaminating Activity	Location of PCA (on-site or off- site)	Contaminants of Potential Concern	Media Potentially Impacted (Groundwater, Soil, and/or Sediment)				
APEC 3 (resulting from application of pesticides and herbicides)	Across the Phase I Property (fairways and landscaped areas)	PCA 40 – Pesticides (including Herbicides, Fungicides and Anti-Fouling Agents) Manufacturing, Processing, Bulk Storage and Large- Scale Applications.	On-site	OC Pesticides ¹ Metals Hg CrVI	Soil and/or Groundwater				
APEC 4 ² (resulting from importation of fill material of unknown quality)	Southeastern portion of Phase II Property	PCA 30 – Importation of Fill material of Unknown Quality	On-site	Metals Hg CrVI	Soil				

^{□ 1 –} Organo-chlorine Pesticides

Based on the findings of the Phase I-ESA, a Phase II-ESA was recommended for the Phase I Property.

Geotechnical Investigations, 2018 and 2019

Based on the findings of the Geotechnical Investigations, the site is suitable for a residential development from a geotechnical perspective. The site stratigraphy was observed to generally consist of a thin layer of topsoil over a native silty clay deposit, generally underlain by glacial till.

 ^{2 –} APEC identified based on observations made during Phase II ESA

Where fill was identified at the borehole locations, the material consisted of reworked native material. Bedrock outcrops and shallow bedrock was observed at several locations over the site. The overburden thickness was anticipated to vary between 0 and 20m.

3.0 SCOPE OF INVESTIGATION

3.1 Overview of Site Investigation

The subsurface investigation was conducted during the interim of February 27 through April 30, 2019, in conjunction with a Geotechnical Investigation. The field program consisted of drilling 20 boreholes to depths ranging from approximately 0.99 to 9.78m below grade. Boreholes BH2-19, BH3-19, BH8-19, BH10-19, BH11-19, BH12-19, BH13-19, BH15-19, BH16-19, BH17-19, BH18-19, BH19-19 and BH20-19 were completed with monitoring well installations. Bedrock was cored at BH2-19, BH3-19 and BH17-19 through BH20-19 for the purpose of intercepting the groundwater table. The field program also consisted of the placement of 20 hand auger holes across the Phase II Property, to obtain near surface soil samples.

3.2 Media Investigated

During the subsurface investigation, soil samples and groundwater samples were obtained and submitted for laboratory analysis. The rationale for sampling and analyzing these media is based on the Contaminants of Potential Concern (CPCs) identified in the Phase I ESA. As noted in the Table 1 in Section 2.2 CPCs for soil and groundwater include petroleum hydrocarbons (PHCs, fractions F1-F4) and benzene, toluene, ethylbenzene and xylenes (BTEX), organochlorine pesticides and/or metals, mercury (Hg) and hexavalent chromium (CrVI).

3.3 Phase I Conceptual Site Model

Geological and Hydrogeological Setting

The Geological Survey of Canada website on the Urban Geology of the National Capital Area was consulted as part of this assessment. Based on this information, the bedrock in the area of the subject site is reported to consist of diorite of the Gabbro Formation and magmatic rocks of the Paragneiss Formation.

Report: PE4321-2

Overburden soils are reported to consist primarily of Precambrian bedrock. Small areas of till and marine deposits of clay and silt, with a drift thickness on the order of 3 to 5m, were reported to exist on the southern portion of the Phase I Property. Drift thickness over the remainder of the site was reported as 0 to 1m.

It should be noted that based on the findings of the Phase II ESA as well as the previous and concurrent Geotechnical Investigations, drift thickness over the site ranges from 0 to up to 20m below grade.

Groundwater flow is in a northerly direction.

Buildings and Structures

The Phase I Property is occupied by a 2-storey Clubhouse and restaurant, a 1-story golf cart storage structure, a pump house and a 1-storey maintenance building referred to as the Turf Building. Other structures include a wash pad and concrete stalls for the storage of bunker sand. All buildings and structures were reportedly constructed in the early 1990's and are present on the southern portion of the Phase I Property.

Water Bodies

There are no water bodies on the Phase I Property. No bodies of water are present within the Phase I Property. The closest bodies of water are the Carp River and Watt's Creek, situated approximately 1.4km southwest and 1.5km east of the Phase I Property, respectively.

Areas of Natural Significance

No areas of natural significance were identified on the Phase I Property or within the Phase I ESA Study Area.

Drinking Water Wells

The online interactive well record mapping system was accessed on May 22, 2018. Potable well records were not identified for the Phase I Property although it has been reported that the aesthetic and irrigation water is provided to the Phase I Property by a drilled well.

Report: PE4321-2

Ten (10) records for domestic wells were identified within the Phase I Study Area. The wells were installed between 1961 and 1987, with one well installed in 2007. One record for a potable well abandonment was also identified. All of the wells were installed within bedrock which was reported to consist of a combination of limestone, sandstone, quartzite and/or granite.

It should be noted that the Phase I Property and properties within the Phase I Study Area are currently provided with municipal drinking water. It is considered likely that the well installed in 2007 is part of a ground source heat pump system.

Monitoring Well Records

No monitoring wells were identified for the Phase I Property or for any properties within the Phase I Study Area.

Neighbouring Land Use

Neighbouring land use in the Phase I Study Area is primarily residential with some parkland and institutional properties (schools).

Potentially Contaminating Activities (PCAs) and Areas of Potential Environmental Concern (APECs)

As presented in Table 1 in the previous section, on-site PCAs resulting in APECs on the Phase I Property include the storage of fuel (2 ASTs) as well as the storage and application of pesticides. Since the time of the Phase I ESA, imported fill material has also been identified as an on-site PCA resulting in an APEC.

No historical or existing off-site PCAs were identified for properties within the Phase I Study Area. PCAs and resulting APECs are presented on Drawing PE4321-1 – Site Plan and Drawing PE4321-1A – Site Plan (Enlargement) appended to the Phase I ESA.

Contaminants of Potential Concern (CPCs)

CPCs identified with the aforementioned APECs include benzene, toluene, ethylbenzene and xylenes (BTEX), petroleum hydrocarbons (PHCs, F1-F4) and organo-chlorine pesticides in the soil and groundwater. Note that since the time of the Phase I ESA, metals (including mercury and hexavalent chromium) have been identified as CPCs.

Report: PE4321-2

Assessment of Uncertainty and/or Absence of Information

The information available for review as part of the preparation of this Phase I-ESA is considered to be sufficient to conclude that there are PCAs on the Phase I Property which may have impacted the subject land. The presence of PCAs was confirmed by a variety of independent sources, and as such, the conclusions of this report are not affected by uncertainty which may be present with respect to the individual sources.

3.4 Deviations from Sampling and Analysis Plan

The Sampling and Analysis Plan for this project is included in Appendix 1 of this report. There were no deviations from the Sampling and Analysis Plan.

3.5 Impediments

Physical impediments encountered during the Phase II ESA field program include the location of buried services and the fenced storage area adjacent the Turf Building which limited the selection of borehole locations on the southeastern portion of the site. Otherwise no physical impediments were encountered.

4.0 INVESTIGATION METHOD

4.1 Subsurface Investigation

The subsurface investigation was conducted during the interim of February 27 through April 30, 2019. The field program consisted of drilling 20 boreholes to depths ranging from approximately 0.99 to 9.78m below grade. Boreholes BH2, BH3, BH8, BH10, BH11, BH12, BH13, BH15, BH16, BH17, BH18, BH19 and BH20 were completed with monitoring well installations. Bedrock was cored at BH2, BH3 and BH17 through BH20 for the purpose of intercepting the groundwater table. The field program also consisted of the placement of 20 hand auger holes across the Phase II Property, to obtain shallow soil samples.

All boreholes were drilled with a track-mounted CME 55 power auger drill rig, provided by George Downing Estate Drilling of Hawkesbury, Ontario, under the full-time supervision of Paterson personnel. As noted above, near surface soil samples were collected by Paterson personnel using a hand auger provided by ClubLink. Borehole and hand auger locations are shown on Drawing PE4321-3 – Test Hole Location Plan, appended to this report.

Report: PE4321-2

4.2 Soil Sampling

A total of 110 soil samples were obtained from the boreholes by means of sampling directly from auger flights and split spoon sampling, a total of 21 rock core samples were collected by means of bedrock coring, and 20 shallow grab samples were collected from the hand auger holes. The depths at which auger samples, split spoon samples and rock core samples were obtained from the boreholes are shown as "AU", "SS" and "RC" on the Soil Profile and Test Data Sheets, appended to this report. Grab samples collected from the hand auger holes were retrieved from approximately 0.05 to 0.25m below grade.

Site soils at the borehole locations generally consist of topsoil or a pavement structure over fill (primarily engineered fill or reworked native material), underlain by silty clay, glacial till and gneiss bedrock. Depth to bedrock varies across the site, and was confirmed at boreholes BH2, BH3 and BH17 through BH20 at depths ranging from approximately 0.59 to 3.12m below ground.

It should be noted that approximately 190 probeholes were placed across the Phase II Property, as part of the concurrent Geotechnical Investigation, to confirm bedrock depths. Bedrock across the Phase II Property generally ranges from approximately 0 to 20m below grade. Probehole locations have been shown on Drawing PE4321-3 — Test Hole Location Plan, for informative purposes.

4.3 Field Screening Measurements

All soil samples collected were subjected to a preliminary screening procedure, which included visual screening for colour/staining and evidence of fill material/ metal impacts. Soil vapour screening with an RKI Eagle gas detector with methane elimination and calibrated to hexane was conducted on samples recovered from boreholes on the southeastern portion of the Phase II Property (Parcel 1; in the vicinity of the ASTs and Turf Building) where the potential for petroleum hydrocarbon impacts was identified in the Phase I ESA.

The combustible vapours for soil samples collected from BH1 through BH5 were measured by inserting the analyzer probe into the nominal headspace above the soil sample. Samples were then agitated/manipulated gently as the measurements were taken. The peak reading registered within the first 15 seconds was recorded as the vapour measurement.

Report: PE4321-2

The parts per million (ppm) scale is used to measure concentrations of hydrocarbon vapours that are too low to register on the Lower Explosive Limit (LEL) scale. The explosive point, 100% LEL, represents the leanest mixture which will burn (or explode) if ignited.

The combustible vapour readings ranged from less than 5ppm to 45ppm and were not considered to be indicative of lighter fraction petroleum hydrocarbon compounds. Vapour readings are noted on the Soil Profile and Test Data Sheets in Appendix 1.

No visual or olfactory indications of potential hydrocarbons, or visual indications of deleterious fill material or metal impacts, were identified in the soil samples. Soil samples were selected based on a combination of the results of the vapour screening, visual screening, sample depth and/or sample location.

4.4 Groundwater Monitoring Well Installation

Thirteen (13) groundwater monitoring wells were installed on the Phase II Property, at boreholes BH2, BH3, BH8, BH10, BH11, BH12, BH13, BH15, BH16, BH17, BH18, BH19 and BH20. The monitoring wells consisted of 32mm or 51mm diameter Schedule 40 threaded PVC risers and screens. Monitoring well construction details are listed below in Table 2 and are also presented on the Soil Profile and Test Data Sheets provided in Appendix 1.

Table 2:	Monitorin	g Well Cor	nstruction De	etails		
Well ID	Ground Surface Elevation	Total Depth (m BGS)	Screened Interval (m BGS)	Sand Pack (m BGS)	Bentonite Seal (m BGS)	Casing Type
BH2	105.20	6.40	3.40-6.40	3.05-6.40	0.03-3.05	Flush-mount
BH3	105.72	6.83	3.83-6.83	3.51-6.83	0.03-3.51	Flush-mount
BH8	98.21	6.91	3.91-6.91	3.35-6.91	0.05-3.35	Stick-up
BH10	100.61	5.74	2.74-5.74	2.13-5.74	0.03-2.13	Stick-up
BH11	94.64	7.57	4.57-7.57	4.01-7.57	0.03-4.01	Stick-up
BH12	95.64	8.23	5.23-8.23	4.17-8.23	0.03-4.17	Stick-up
BH13	102.84	7.72	4.72-7.72	4.27-7.72	0.03-4.27	Stick-up
BH15	99.08	8.15	5.18-8.15	4.27-8.15	0.03-4.27	Stick-up
BH16	97.31	5.84	2.84-5.82	2.49-5.82	0.03-2.49	Stick-up
BH17	97.15	5.51	2.51-5.51	2.20-5.51	0.03-2.20	Stick-up
BH18	99.05	5.51	2.51-5.51	2.10-5.51	0.03-2.10	Stick-up
BH19	96.57	6.83	3.83-6.83	3.56-6.83	0.03-3.56	Stick-up
BH20	97.58	5.82	2.82-5.82	2.44-5.82	0.03-2.44	Stick-up

Report: PE4321-2

4.5 Field Measurement of Water Quality Parameters

Groundwater sampling was conducted at BH2, BH3, BH8, BH11, BH13, BH17 and BH20 on March 22, 2019, April 29, April 30 and May 17, 2019. During these sampling events, water quality parameters were measured in the field using a multi-parameter analyzer. Parameters measured in the field included temperature, pH, and electrical conductivity.

Field parameters were measured after each well volume purged. Wells were purged prior to sampling until at least three well volumes had been removed or the field parameters were relatively stable. Stabilized field parameter values are summarized in Table 3.

Table 3: Field Measurement of Water Quality Parameters – Feb.11, 2019										
Parameter	BH2	ВН3	ВН8	BH11	BH13	BH17	BH20			
Temperature (°C)	6.9	5.7	12.5	10.7	10.9	15.8	14.3			
рН	6.73	7.56	8.14	7.58	6.65	7.01	7.60			
Electrical Conductivity (μS/cm)	520	1,576	592	401	873	528	621			

4.6 Groundwater Sampling

Groundwater sampling protocols were followed using the MECP document entitled "Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario", dated May 1996. Groundwater samples were obtained from monitoring wells installed in BH2, BH3, BH8, BH11, BH13, BH17 and BH20, using dedicated sampling equipment. Standing water was purged from each well prior to sampling. Samples were stored in coolers to reduce analyte volatilization during transportation. Details of our standard operating procedure for groundwater sampling are provided in the Sampling and Analysis Plan in Appendix 1.

4.7 Analytical Testing

Based on the guidelines outlined in the Sampling and Analysis Plan appended to this report, the soil and groundwater samples submitted for analytical testing are outlined in Tables 4 and 5.

Report: PE4321-2

Table 4: Soil Samples Submitted										
				eters <i>A</i>	Analyz	ed				
Sample ID	Sample Depth/ Stratigraphic Unit	ВТЕХ	PHCs (F ₁ -F ₄)	Metals, Hg and CrVI	Organochlori ne Pesticides	Hd	Rationale			
BH1-AU1	0-0.60m; Sand/gravel Fill			Х			Assessment of fill material.			
BH2-AU1	0-0.60m; Sand/gravel Fill	X	X	Х			Assessment of fill material and potential surficial impacts from ASTs.			
BH3-AU1	0-0.60m; Sand/gravel Fill	Х	Х	Х	Х		Assessment of fill material and potential impacts			
BH4-AU1	0-0.60m; Sand/gravel Fill			Х			associated with Turf Building.			
BH5- AU1/SS2	0.1-0.99m; Sand/gravel Fill	Х	Х							
BH6-AU1	0-0.15m; Silty Clay				Χ		Assessment of potential			
BH8-AU1	0-0.60m; Reworked Native				Χ		near surface impacts resulting from the use of			
BH9-AU1	0-0.10m; Silty Clay				Χ		pesticides/herbicides.			
BH10-AU1	0-0.25m; Reworked Native				Х					
BH12-AU1	0-0.15m; Reworked Native				Х					
BH13-AU1	0-0.20m; Sandy fill				Χ					
BH13-SS3	0.76-1.37m; Sand fill material			Х						
BH15-AU1	0-0.20m; Silty Clay				Χ					
BH16-SS4	1.52-2.13m; Silty Clay					X	To confirm pH between 5 and 11.			
BH17-AU1	0-0.20m; Reworked Native				X		Assessment of potential near surface impacts resulting from the use of pesticides/herbicides.			
BH17-SS3	0.6-1.2m; Reworked Native					X	To confirm pH between 5 and 9.			
BH20-AU1	0-0.20m; Reworked Native				Х		Assessment of potential near surface impacts			
HA1-G1	0.05-0.25m; Silty Clay			Χ			resulting from the use of			
HA3-G1	0.05-0.25m; Silty Clay				Χ		pesticides/herbicides.			
HA5-G1	0.05-0.25m; Silty Clay			Χ						
HA7-G1	0.05-0.25m; Silty Clay			Χ	Χ					
HA11-G1	0.05-0.25m; Silty Clay				Χ					
HA13-G1	0.05-0.25m; Silty Clay			Χ						
HA15-G1	0.05-0.25m; Silty Clay			Χ	Χ					
HA14-G1	0.05-0.25m; Silty Clay					Х	To confirm pH between 5 and 9.			

Report: PE4321-2 May 23, 2019

Table 4 Co	Table 4 Continued: Soil Samples Submitted									
		Pa	rame	eters A	nalyz	ed	Rationale			
Sample ID	Sample Depth/ Stratigraphic Unit	ВТЕХ	PHCs (F ₁ -F ₄)	Metals, Hg and CrVI	Organochlorine Pesticides	Нф				
HA16-G1	0.05-0.25m; Silty Clay				Х		Assessment of potential near surface impacts resulting from the use of pesticides/herbicides.			
DUP	0.05-0.25m; Silty Clay			Χ	_		QA/QC			

Table 5: Groundwater Samples Submitted										
				meters lyzed						
Sample ID	Sample Depth/ Stratigraphic Unit	втех	PHCs (F ₁ -F ₄)	Organochlorine Pesticides	Mercury	Rationale				
BH2-GW1	3.40-6.40m; Bedrock	Х	Х			To investigate potential groundwater impacts resulting from the ASTs.				
BH3-GW1	3.83-6.83m; Bedrock	X	Х	Х		To investigate potential groundwater impacts in the vicinity of the Turf Building and pesticide storage.				
BH8-GW1	3.91-6.91m; Silty Clay			Χ		To confirm that groundwater				
BH11-GW1	4.57-7.57m; Glacial Till			Χ		has not been impacted				
BH13-GW1	4.72-7.72m; Silty Clay			Χ		although no evidence of soil				
BH17-GW1	2.51-5.51m; Bedrock			Χ		impacts based on available data.				
BH20-GW1	2.82-5.82m; Bedrock			Х	Х	To confirm that groundwater has not been impacted by pesticide/herbicide use based on mercury exceedance in surface soils.				
DUP-GW	3.40-6.40m; Bedrock	Χ	Χ			QA/QC				

Paracel Laboratories (Paracel), of Ottawa, Ontario, performed the laboratory analysis on the samples submitted for analytical testing. Paracel is a member of the Standards Council of Canada/Canadian Association for Laboratory Accreditation (SCC/CALA). Paracel is accredited and certified by SCC/CALA for specific tests registered with the association.

4.8 Residue Management

All excavated soil, purge water and fluids from equipment cleaning were retained on-site.

4.9 Elevation Surveying

The monitoring well locations were selected by Paterson, and located and surveyed in the field by Stantec. The ground surface elevations at the monitoring well locations are referenced to a geodetic datum and are presented on Drawing PE4321-3 - Test Hole Location Plan appended to this report.

4.10 Quality Assurance and Quality Control Measures

A summary of quality assurance and quality control (QA/QC) measures, including sampling containers, preservation, labelling, handling, custody, equipment cleaning procedures, and field quality control measurements is provided in the Sampling and Analysis Plan in Appendix 1.

5.0 REVIEW AND EVALUATION

5.1 Geology

Based on the information obtained during the current subsurface investigation, in combination with information obtained during previous and concurrent Geotechnical Investigations, site soils generally consist of topsoil over silty clay, underlain by glacial till, followed by bedrock.

Fill material was identified in the vicinity of the Turf Building (southeast portion of Parcel 1), consisting of engineered fill primarily associated with the pavement structure. Imported sand fill was identified in BH13 (southwest portion of Parcel 1), otherwise fill material identified across the Phase II Property consisted of reworked native material. Several bedrock outcrops were identified across the site; bedrock generally ranged in depth from approximately 0 to 20m below grade.

Report: PE4321-2

Groundwater was encountered within both the overburden and bedrock at depths ranging from approximately 0.10 to 3.35m below ground surface.

5.2 Groundwater Elevations, Flow Direction, and Hydraulic Gradient

Groundwater levels were measured during the groundwater sampling events on April 29 and April 30, 2019, using an electronic water level meter. Groundwater levels are summarized below in Table 6. Based on the groundwater elevations, contour mapping was completed. Groundwater contours as shown on Drawing PE4321-3 – Test Hole Location Plan, indicate that the groundwater beneath the Phase II Property flows in a northerly direction. A hydraulic gradient of approximately 0.012m/m was calculated.

Table 6: 0	Table 6: Groundwater Level Measurements										
Borehole Location	Ground Surface Elevation (m)	Water Level Depth (m below grade)	Water Level Elevation (m ASL)	Date of Measurement							
BH2	105.20	2.38	102.82	April 29, 2019							
BH3	105.72	3.35	102.37	April 29, 2019							
BH8	98.21	1.21	97.00	April 29, 2019							
BH10	100.61	1.75	98.86	April 29, 2019							
BH11	94.64	0.15	94.49	April 30, 2019							
BH12	95.64	1.46	94.18	April 30, 2019							
BH13	102.84	1.38	101.46	April 29, 2019							
BH15	99.08	0.12	98.96	April 29, 2019							
BH16	97.31	0.11	97.20	April 30, 2019							
BH17	97.15	0.10	97.05	April 29, 2019							
BH18	99.05	2.90	96.15	April 30, 2019							
BH19	96.57	0.39	96.18	April 30, 2019							
BH20	97.58	1.21	96.37	April 30, 2019							

5.3 Fine-Coarse Soil Texture

Based on field soil observations and grain size analysis previously completed as part of the concurrent Geotechnical Investigation conducted by Paterson, fine-grained soil conditions are applicable to the Phase II-ESA Property. The results of the analyses are presented below.

Report: PE4321-2

Table 7: Grain Size Analysis											
Sample ID	Depth (m BGS)	%Gravel	%Sand	%Silt and Clay	Soil Type						
BH6-19-SS4	1.52-2.13	0.0	6.6	93.4	Clay						
BH11-19-SS4	1.52-2.13	0.0	1.7	98.3	Silt						
BH14-19-SS4	1.52-2.13	0.0	11.2	88.8	Clay						
BH15-19-SS4	1.52-2.13	0.0	1.8	98.2	Clay						

However, due to the size of the Phase II Property, additional grain-size analyses would be recommended to confirm that fine-grained standards are applicable. The more stringent coarse-grained standards have therefore been selected for each parcel of land comprising the Phase II Property.

5.4 Soil: Field Screening

Field screening of the soil samples collected during drilling within the vicinity of the Turf Building, resulted in combustible vapour readings generally ranging from less than 5 to 45ppm. Field screening results of individual soil samples from BH1 through BH5 are provided on the Soil Profile and Test Data Sheets appended to this report.

5.5 Soil Quality

A total of 27 soil samples were submitted for analysis of BTEX, PHCs (F₁-F₄), metals, mercury and chromium VI, organochlorine pesticides (OCP), and/or pH. The results of the analytical testing are presented below in Tables 8 through 16. The laboratory certificates of analysis are provided in Appendix 1.

As previously noted, the selected soil standards vary according to the site conditions on each Parcel of the Phase II Property. The soil results have therefore been tabulated according to the parcel of land. The parcels of land are identified on Drawing PE4321-4 — Analytical Testing Plan, along with the analytical test results.

5.5.1 Parcel 1 (MECP Table 3 Standards)

Analytical test results for soil samples recovered from Parcel 1 are presented in Table 8, Table 9 and Table 10.

	Table 8: Analytical Test Results – Soil BTEX and PHCs (F ₁ -F ₄)							
	MDL		MECP Table 3 Residential					
Parameter		Feb.27/19	Feb.26/19	Feb.27/19	Standards			
	(µg/g)	BH2-AU1 (0-0.6m)	BH3-AU1 (0-0.6m)	BH5-AU1/SS2 (0-0.99m)	(µg/g)			
Benzene	0.02	nd	nd	nd	0.21			
Ethylbenzene	0.05	nd	nd	nd	2			
Toluene	0.05	nd	nd	nd	2.3			
Xylenes (Total)	0.05	nd	nd	nd	3.1			
PHC F1	7	nd	nd	nd	55			
PHC F2	4	14	nd	nd	98			
PHC F3	8	47	47	nd	300			
PHC F4	6	26	149	nd	2,800			
PHC F4G	50	nt	443¹	nt	2,000			

Notes:

- ☐ MDL Method Detection Limit
- □ nd not detected above the MDL
- □ nt not tested for this parameter
- ☐ 1 GC-FID signal did not return to baseline by C50

Based on the analytical test results, BTEX parameters were not identified above the laboratory method detection limits, in any of the soil samples submitted for analytical testing. Petroleum hydrocarbon fractions identified in each sample were in compliance with the MECP Table 3 standards.

Report: PE4321-2

Table 9: Analy Metals (include	•))				
,	, ,			MECP Table 3				
D	MDL	Feb.		les (µg/g) Feb.26/19	Feb.27/19	Residential		
Parameter	(µg/g)	BH1-AU1 (0-0.6m)	BH2-AU1 (0-0.6m)	BH3-AU1 (0-0.6m)	BH4-AU1 (0-0.6m)	Standards (µg/g)		
Antimony	1.0	nd	nd	nd	nd	7.5		
Arsenic	1.0	2.4	1.2	1.1	2.4	18		
Barium	1.0	126	156	107	260	390		
Beryllium	0.5	8.0	nd	nd	0.6	4		
Boron	5.0	6.2	9.1	8.0	7.3	120		
Cadmium	0.5	nd	nd	nd	nd	1.2		
Chromium	5.0	97.2	23.2	20.6	47.1	160		
Chromium (VI)	0.2	nd	nd	nd	nd	8		
Cobalt	1.0	10.4	4.4	3.4	9.7	22		
Copper	5.0	11.2	6.4	6.0	18.1	140		
Lead	1.0	4.1	5.2	3.9	7.9	120		
Mercury	0.1	nd	0.2	nd	0.1	0.27		
Molybdenum	1.0	nd	nd	nd	nd	6.9		
Nickel	5.0	30.9	11.4	8.6	21.5	100		
Selenium	1.0	nd	nd	nd	nd	2.4		
Silver	0.3	nd	nd	nd	nd	20		
Thallium	1.0	nd	nd	nd	nd	1		
Uranium	1.0	nd	nd	nd	nd	23		
Vanadium	10.0	49.0	19.5	12.2	45.6	86		
Zinc	20.0	52.4	20.3	nd	69.9	340		
Notes: MDL – Method Detection Limit nd – not detected above the MDL								

Metal parameters identified in each of the soil samples analysed comply with the MECP Table 3 standards.

☐ nt – not tested for this parameter

Report: PE4321-2 May 23, 2019

				MECP Table		
_	MDL	Mar.6/19		Apr.29/19		3
Parameter	ter (µg/g)	BH13-SS3 (0.76-1.37)	HA5-G1 (0.05-0.25m)	HA7-G1 (0.05-0.25m)	DUP (0.05-0.25m)	Residential Standards (µg/g)
Antimony	1.0	nd	nd	nd	nd	7.5
Arsenic	1.0	1.2	1.1	1.9	1.4	18
Barium	1.0	36.4	45.9	85.7	92.7	390
Beryllium	0.5	nd	nd	nd	nd	4
Boron	5.0	nd	nd	nd	nd	120
Cadmium	0.5	nd	nd	nd	nd	1.2
Chromium	5.0	12.2	14.5	22.3	23.8	160
Chromium (VI)	0.2	nd	nd	nd	nt	8
Cobalt	1.0	3.9	3.9	5.9	5.8	22
Copper	5.0	9.7	9.3	13.6	12.7	140
Lead	1.0	1.9	3.3	5.1	3.5	120
Mercury	0.1	nd	nd	nd	nt	0.27
Molybdenum	1.0	nd	nd	nd	nd	6.9
Nickel	5.0	6.6	7.5	13.0	12.3	100
Selenium	1.0	nd	nd	nd	nd	2.4
Silver	0.3	nd	nd	nd	nd	20
Thallium	1.0	nd	nd	nd	nd	1
Uranium	1.0	nd	nd	nd	nd	23
Vanadium	10.0	24.2	26.6	30.5	34.5	86
Zinc	20.0	nd	25.3	39.4	37.4	340

Metal parameters identified in each of the soil samples analysed comply with the MECP Table 3 standards.

☐ nt – not tested for this parameter

Report: PE4321-2 May 23, 2019

		MECP					
Parameter	Feb.26 BH3-AU1 (0-0.6m)		BH6-	BH6-AU1 (0-0.15m)		Feb.25/19 BH8-AU1 (0-0.6m)	
	MDL (μg/g)	Result (ug/g)	MDL (µg/g)	Result (ug/g)	MDL (µg/g)	Result (ug/g)	Standards (µg/g)
2-4'-DDD	0.01	nd	0.009	nd	0.009	nd	nv
2-4'-DDE	0.01	nd	0.009	nd	0.009	nd	nv
2-4'-DDT	0.01	nd	0.009	nd	0.009	nd	nv
4,4'-DDE	0.01	nd	0.009	nd	0.009	nd	nv
4,4'-DDT	0.01	nd	0.009	nd	0.009	nd	nv
Aldrin	0.01	nd	0.009	nd	0.009	nd	0.05
DDD (total)	0.01	nd	0.009	nd	0.009	nd	3.3
DDE (total)	0.01	nd	0.009	nd	0.009	nd	0.26
DDT (total)	0.01	nd	0.009	nd	0.009	nd	1.4
Dieldrin	0.01	nd	0.009	nd	0.009	nd	0.05
Endosulfan I	0.01	nd	0.009	nd	0.009	nd	nv
Endosulfan I + II	0.01	nd	0.009	nd	0.009	nd	0.04
Endosulfan II	0.01	nd	0.009	nd	0.009	nd	nv
Endosulfan sulfate	0.01	nd	0.009	nd	0.009	nd	nv
Endrin	0.01	nd	0.009	nd	0.009	nd	0.04
Endrin aldehyde	0.01	nd	0.009	nd	0.009	nd	nv
Heptachlor	0.01	nd	0.009	nd	0.009	nd	0.15
Heptachlor epoxide	0.01	nd	0.009	nd	0.009	nd	0.05
Hexachlorobenzene	0.01	nd	0.009	nd	0.009	nd	0.52
Hexachlorobutadiene	0.01	nd	0.009	nd	0.009	nd	0.012
Hexachloroethane	0.01	nd	0.009	nd	0.009	nd	0.089
Methoxychlor	0.01	nd	0.009	nd	0.009	nd	0.13
Mirex	0.01	nd	0.009	nd	0.009	nd	nv
Oxychlordane	0.01	nd	0.009	nd	0.009	nd	nv
β-BHC	0.01	nd	0.009	nd	0.009	nd	nv
α-Chlordane	0.01	nd	0.009	nd	0.009	nd	nv
α + γ-Chlordane	0.01	nd	0.009	nd	0.009	nd	0.05
α-BHC	0.01	nd	0.009	nd	0.009	nd	nv
γ-Chlordane	0.01	nd	0.009	nd	0.009	nd	nv
γ-BHC (Lindane)	0.01	nd	0.009	nd	0.009	nd	0.056
δ-BHC	0.01	nd	0.009	nd	0.009	nd	nv

- □ MDL Method Detection Limit□ nd not detected above the MDL
- nv- no MECP standard value for this parameter

No OCP concentrations were identified in any of the analysed samples.

Report: PE4321-2

Organochlorine	1 0311	olucs (· /	oil Samp	des (un/	~\			
	Feb '	27/10		.6/19			Anr '	29/19	MECP
	Feb.27/19 BH9-AU1			BH13-AU1		Apr.30/19 HA3-G1		'-G1	Table 3
Parameter		.1m)		.2m)		0.25m)	(0.05-0		Residential
	,	· ·	,	•	`		,		Standards
	MDL (µg/g)	Result (ug/g)	MDL (μg/g)	Result (ug/g)	MDL (µg/g)	Result (ug/g)	MDL (µg/g)	Result (ug/g)	(µg/g)
2-4'-DDD	0.01	nd	0.009	nd	0.01	nd	0.01	nd	nv
2-4'-DDE	0.01	nd	0.009	nd	0.01	nd	0.01	nd	
2-4'-DDT	0.01		0.009		0.01		0.01		nv
4,4'-DDE	0.01	nd	0.009	nd	0.01	nd		nd	nv
4,4'-DDT	0.01	nd	0.009	nd nd		nd nd	0.01	nd nd	nv
Aldrin		nd			0.01		0.01		nv
	0.01	nd	0.009	nd	0.01	nd	0.01	nd	0.05
DDD (total)	0.01	nd	0.009	nd	0.01	nd	0.01	nd	3.3
DDE (total)	0.01	nd	0.009	nd	0.01	nd	0.01	nd	0.26
DDT (total)	0.01	nd	0.009	nd	0.01	nd	0.01	nd	1.4
Dieldrin	0.01	nd	0.009	nd	0.01	nd	0.01	nd	0.05
Endosulfan I	0.01	nd	0.009	nd	0.01	nd	0.01	nd	nv
Endosulfan I + II	0.01	nd	0.009	nd	0.01	nd	0.01	nd	0.04
Endosulfan II	0.01	nd	0.009	nd	0.01	nd	0.01	nd	nv
Endosulfan sulfate	0.01	nd	0.009	nd	0.01	nd	0.01	nd	nv
Endrin	0.01	nd	0.009	nd	0.01	nd	0.01	nd	0.04
Endrin aldehyde	0.01	nd	0.009	nd	0.01	nd	0.01	nd	nv
Heptachlor	0.01	nd	0.009	nd	0.01	nd	0.01	nd	0.15
Heptachlor epoxide	0.01	nd	0.009	nd	0.01	nd	0.01	nd	0.05
Hexachlorobenzene	0.01	nd	0.009	nd	0.01	nd	0.01	nd	0.52
Hexachlorobutadiene	0.01	nd	0.009	nd	0.01	nd	0.01	nd	0.012
Hexachloroethane	0.01	nd	0.009	nd	0.01	nd	0.01	nd	0.089
Methoxychlor	0.01	nd	0.009	nd	0.01	nd	0.01	nd	0.13
Mirex	0.01	nd	0.009	nd	0.01	nd	0.01	nd	nv
Oxychlordane	0.01	nd	0.009	nd	0.01	nd	0.01	nd	nv
β-BHC	0.01	nd	0.009	nd	0.01	nd	0.01	nd	nv
α-Chlordane	0.01	nd	0.009	nd	0.01	nd	0.01	nd	nv
α + γ-Chlordane	0.01	nd	0.009	nd	0.01	nd	0.01	nd	0.05
α-BHC	0.01	nd	0.009	nd	0.01	nd	0.01	nd	nv
γ-Chlordane	0.01	nd	0.009	nd	0.01	nd	0.01	nd	nv
γ-BHC (Lindane)	0.01	nd	0.009	nd	0.01	nd	0.01	nd	0.056
δ-BHC	0.01	nd	0.009	nd	0.01	0.01	0.01	nd	nv
Notes:									

Notes:

- MDL Method Detection Limit
- □ nd not detected above the MDL
- nv- no MECP standard value for this parameter

Table 10 Continued: Analytical Test Results - Soil

No OCP concentrations were identified in any of the analysed samples, with the exception of $0.01\mu g/g$ of δ -BHC in Sample HA3-G1. The MECP standards do not provide a standard value for this parameter, however the concentration identified was identified at the detection limit. The test results are in compliance with the MECP Table 3 standards.

Report: PE4321-2

5.5.2 Parcel 2 (MECP Table 3 Standards)

Analytical test results for soil samples recovered from Parcel 2 are presented in Table 11 and Table 12.

Parameter	MDL (µg/g)	Soil Samples (µg/g) Apr.30/19 HA1-G1	MECP Table 3 Residential Standards (μg/g)
Antimony	1.0	(0.05-0.25m) nd	7.5
Antimony	1.0	2.2	18
Barium	1.0	129	390
Beryllium	0.5	nd	5
Boron	5.0	nd	120
Cadmium	0.5	nd	1.2
Chromium	5.0	37.7	160
Chromium (VI)	0.2	nd	8
Cobalt	1.0	8.6	22
Copper	5.0	14.2	140
Lead	1.0	9.2	120
Mercury	0.1	nd	0.27
Molybdenum	1.0	nd	6.9
Nickel	5.0	19.1	100
Selenium	1.0	nd	2.4
Silver	0.3	nd	20
Thallium	1.0	nd	1
Uranium	1.0	nd	23
Vanadium	10.0	46.1	86
Zinc	20.0	76.4	340

Metal parameters identified in Sample HA1-G1 are in compliance with the MECP Table 3 standards.

Report: PE4321-2 May 23, 2019

		MECD					
	BH10-	.Δ111	Feb.2 BH12-		HA16	i-G1	MECP Table 3
Parameter	(0-0.2		(0-0.1		(0.05-0.25m)		Residential
	MDL (µg/g)	Result (ug/g)	MDL (µg/g)	Result (ug/g)	MDL (µg/g)	Result (ug/g)	Standards (µg/g)
2-4'-DDD	0.01	nd	0.009	nd	0.01	nd	nv
2-4'-DDE	0.01	nd	0.009	nd	0.01	nd	nv
2-4'-DDT	0.01	nd	0.009	nd	0.01	nd	nv
4,4'-DDE	0.01	nd	0.009	nd	0.01	nd	nv
4,4'-DDT	0.01	nd	0.009	nd	0.01	nd	nv
Aldrin	0.01	nd	0.009	nd	0.01	nd	0.05
DDD (total)	0.01	nd	0.009	nd	0.01	nd	3.3
DDE (total)	0.01	nd	0.009	nd	0.01	nd	0.26
DDT (total)	0.01	nd	0.009	nd	0.01	nd	1.4
Dieldrin	0.01	nd	0.009	nd	0.01	nd	0.05
Endosulfan I	0.01	nd	0.009	nd	0.01	nd	nv
Endosulfan I + II	0.01	nd	0.009	nd	0.01	nd	0.04
Endosulfan II	0.01	nd	0.009	nd	0.01	nd	nv
Endosulfan sulfate	0.01	nd	0.009	nd	0.01	nd	nv
Endrin	0.01	nd	0.009	nd	0.01	nd	0.04
Endrin aldehyde	0.01	nd	0.009	nd	0.01	nd	nv
Heptachlor	0.01	nd	0.009	nd	0.01	nd	0.15
Heptachlor epoxide	0.01	nd	0.009	nd	0.01	nd	0.05
Hexachlorobenzene	0.01	nd	0.009	nd	0.01	nd	0.52
Hexachlorobutadiene	0.01	nd	0.009	nd	0.01	nd	0.012
Hexachloroethane	0.01	nd	0.009	nd	0.01	nd	0.089
Methoxychlor	0.01	nd	0.009	nd	0.01	nd	0.13
Mirex	0.01	nd	0.009	nd	0.01	nd	nv
Oxychlordane	0.01	nd	0.009	nd	0.01	nd	nv
β-BHC	0.01	nd	0.009	nd	0.01	nd	nv
α-Chlordane	0.01	nd	0.009	nd	0.01	nd	nv
α + γ-Chlordane	0.01	nd	0.009	nd	0.01	nd	0.05
α-BHC	0.01	nd	0.009	nd	0.01	nd	nv
γ-Chlordane	0.01	nd	0.009	nd	0.01	nd	nv
γ-BHC (Lindane)	0.01	nd	0.009	nd	0.01	nd	0.056
δ-BHC	0.01	nd	0.009	nd	0.01	nd	nv

Notes:

- MDL Method Detection Limit nd not detected above the MDL
- nv- no MECP standard value for this parameter

No concentrations of OCPs were identified in any of the samples submitted for analysis.

5.5.3 Parcel 3 (MECP Table 7 Standards)

Analytical test results for soil samples recovered from Parcel 3 are presented in Table 13 and Table 14.

Table 13: An	Table 13: Analytical Test Results – Soil						
Metals (inclu	ding As, Sb	, Se, Hg and CrVI)					
Devementer	MDI (va/a)		ples (μg/g) I 30/19	MECP Table 7 Residential			
Parameter	MDL (µg/g)	HA14-G1 (0.05-0.25m)	HA15-G1 (0.05-0.25m)	Standards (µg/g)			
Antimony	1.0	nt	nd	7.5			
Arsenic	1.0	nt	nd	18			
Barium	1.0	nt	25.7	390			
Beryllium	0.5	nt	nd	4			
Boron	5.0	nt	nd	120			
Cadmium	0.5	nt	nd	1.2			
Chromium	5.0	nt	12.3	160			
Chromium (VI)	0.2	nt	nd	8			
Cobalt	1.0	nt	2.7	22			
Copper	5.0	nt	5.6	140			
Lead	1.0	nt	1.2	120			
Mercury	0.1	<u>0.6</u>	2.3	0.27			
Molybdenum	1.0	nt	nd	6.9			
Nickel	5.0	nt	6.6	100			
Selenium	1.0	nt	nd	2.4			
Silver	0.3	nt	nd	20			
Thallium	1.0	nt	nd	1			
Uranium	1.0	nt	nd	23			
Vanadium	10.0	nt	12.0	86			
Zinc	20.0	nt	25.1	340			

Notes:

- ☐ MDL Method Detection Limit
- $\ \square$ nd not detected above the MDL
- ☐ nt not tested for this parameter
- □ <u>bold</u> exceeds MECP Table 7 standard value

Metal parameters identified in Sample HA15-G1 are in compliance with the MECP Table 7 standards, with the exception of mercury, identified at a concentration of 2.3 $\mu g/g$. Sample HA14-G1 was subsequently submitted for mercury for horizontal delineation purposes; the concentration of mercury (0.6 $\mu g/g$) at this location was also determined to exceed the MECP Table 7 standard value.

Report: PE4321-2

		Soil Sam	ples (µg/g)	MECP Table 7	
	MDL	Mar.11/19	Apr.30/19	Residential	
Parameter	(µg/g)	BH20-AU1	HA15-G1	Standards	
	•	(0-0.2m)	(0.05-0.25m)	(µg/g)	
2-4'-DDD	0.01	nd	nd	nv	
2-4'-DDE	0.01	nd	nd	nv	
2-4'-DDT	0.01	nd	nd	nv	
4,4'-DDE	0.01	nd	nd	nv	
4,4'-DDT	0.01	nd	nd	nv	
Aldrin	0.01	nd	nd	0.05	
DDD (total)	0.01	nd	nd	3.3	
DDE (total)	0.01	nd	nd	0.26	
DDT (total)	0.01	nd	nd	1.4	
Dieldrin	0.01	nd	nd	0.05	
Endosulfan I	0.01	nd	nd	nv	
Endosulfan I + II	0.01	nd	nd	0.04	
Endosulfan II	0.01	nd	nd	nv	
Endosulfan sulfate	0.01	nd	nd	nv	
Endrin	0.01	nd	nd	0.04	
Endrin aldehyde	0.01	nd	nd	nv	
Heptachlor	0.01	nd	nd	0.15	
Heptachlor epoxide	0.01	nd	nd	0.05	
Hexachlorobenzene	0.01	nd	nd	0.52	
Hexachlorobutadiene	0.01	nd	nd	0.012	
Hexachloroethane	0.01	nd	nd	0.089	
Methoxychlor	0.01	nd	nd	0.13	
Mirex	0.01	nd	nd	nv	
Oxychlordane	0.01	nd	nd	nv	
β-BHC	0.01	nd	nd	nv	
α-Chlordane	0.01	nd	nd	nv	
α + γ-Chlordane	0.01	nd	nd	0.05	
α-BHC	0.01	nd	nd	nv	
γ-Chlordane	0.01	nd	nd	nv	
γ-BHC (Lindane)	0.01	nd	nd	0.056	
δ-BHC	0.01	nd	0.02	nv	
Notes:				•	

- ☐ MDL Method Detection Limit
- □ nd not detected above the MDL
- □ nv− no MECP standard value for this parameter

No OCP concentrations were identified in any of the analysed samples, with the exception of $0.02\mu g/g$ of δ -BHC in Sample HA15-G1. The MECP standards do not provide a standard value for this parameter, however the concentration identified was identified just above the detection limit. The test results are in compliance with the MECP Table 3 standards.

5.5.4 Parcel 4 (MECP Table 7 Standards)

Analytical test results for soil samples recovered from Parcel 4 are presented in Table 15 and Table 16.

Parameter	MDL (ug/g)	Soil Samples (μg/g) April 30/19	MECP Table 7 Residential	
Parameter	MDL (µg/g)	HA13-G1 (0.05-0.25m)	Standards (µg/g)	
Antimony	1.0	nd	7.5	
Arsenic	1.0	2.3	18	
Barium	1.0	232	390	
Beryllium	0.5	0.7	5 (4)	
Boron	5.0	nd	120	
Cadmium	0.5	nd	1.2	
Chromium	5.0	48.0	160	
Chromium (VI)	0.2	nd	10 (8)	
Cobalt	1.0	10.7	22	
Copper	5.0	20.9	180 (140)	
Lead	1.0	7.7	120	
Mercury	0.1	nd	1.8 (0.27)	
Molybdenum	1.0	nd	6.9	
Nickel	5.0	24.4	130 (100)	
Selenium	1.0	nd	2.4	
Silver	0.3	nd	25 (20)	
Thallium	1.0	nd	1	
Uranium	1.0	nd	23	
Vanadium	10.0	58.2	86	
Zinc	20.0	86.2	340	

[□] nd – not detected above the MDL

Metal parameters identified in Sample HA13-G1 are in compliance with the MECP Table 7 standards.

Report: PE4321-2 May 23, 2019

nt – not tested for this parameter

Table 16: Analytical Test Results - Soil

		S	oil Samp	les (µg/g)			
	Mar.8/19 BH15-AU1		Mar.13/19		Apr.30/19		MECP Tabl
_			BH17	'-AU1	HA11-G1		7
Parameter	(0-0.2	(0m)	(0-0.	20m)	(0.05-0.25m)		Residential
	MDL	Result	MDL	Result	MDL	Result	Standards
	(µg/g)	(ug/g)	(µg/g)	(ug/g)	(µg/g)	(ug/g)	(µg/g)
2-4'-DDD	0.008	nd	0.01	nd	0.01	nd	nv
2-4'-DDE	0.008	nd	0.01	nd	0.01	nd	nv
2-4'-DDT	0.008	nd	0.01	nd	0.01	nd	nv
4,4'-DDE	0.008	nd	0.01	nd	0.01	nd	nv
4,4'-DDT	0.008	nd	0.01	nd	0.01	nd	nv
Aldrin	0.008	nd	0.01	nd	0.01	nd	0.05
DDD (total)	0.008	nd	0.01	nd	0.01	nd	3.3
DDE (total)	0.008	nd	0.01	nd	0.01	nd	0.26
DDT (total)	0.008	nd	0.01	nd	0.01	nd	1.4
Dieldrin	0.008	nd	0.01	nd	0.01	nd	0.05
Endosulfan I	0.008	nd	0.01	nd	0.01	nd	nv
Endosulfan I + II	0.008	nd	0.01	nd	0.01	nd	0.04
Endosulfan II	0.008	nd	0.01	nd	0.01	nd	nv
Endosulfan sulfate	0.008	nd	0.01	nd	0.01	nd	nv
Endrin	0.008	nd	0.01	nd	0.01	nd	0.04
Endrin aldehyde	0.008	nd	0.01	nd	0.01	nd	nv
Heptachlor	0.008	nd	0.01	nd	0.01	nd	0.15
Heptachlor epoxide	0.008	nd	0.01	nd	0.01	nd	0.05
Hexachlorobenzene	0.008	nd	0.01	nd	0.01	nd	0.52
Hexachlorobutadiene	0.008	nd	0.01	nd	0.01	nd	0.012
Hexachloroethane	0.008	nd	0.01	nd	0.01	nd	0.089
Methoxychlor	0.008	nd	0.01	nd	0.01	nd	0.13
Mirex	0.008	nd	0.01	nd	0.01	nd	nv
Oxychlordane	0.008	nd	0.01	nd	0.01	nd	nv
β-BHC	0.008	nd	0.01	nd	0.01	nd	nv
α-Chlordane	0.008	nd	0.01	nd	0.01	nd	nv
α + γ-Chlordane	0.008	nd	0.01	nd	0.01	nd	0.05
α-BHC	0.008	nd	0.01	nd	0.01	nd	nv
γ-Chlordane	0.008	nd	0.01	nd	0.01	nd	nv
γ-BHC (Lindane)	0.008	nd	0.01	nd	0.01	nd	0.056
δ-BHC	0.008	nd	0.01	nd	0.01	0.03	nv

Notes:

- ☐ MDL Method Detection Limit
- □ nd not detected above the MDL
- □ nv− no MECP standard value for this parameter

No OCP concentrations were identified in any of the analysed samples, with the exception of $0.03\mu g/g$ of δ -BHC in Sample HA11-G1. The MECP standards do not provide a standard value for this parameter. The test results are in compliance with the MECP Table 3 standards.

5.5.4 Maximum Concentrations

Table 17 : Ma	aximum Soil Conce	ntrations	
Parameter	Maximum	Borehole	Depth Interval
	Concentration		(m BGS)
	(μg/g)		
Petroleum Hydi	rocarbons		
PHC F ₂	14	BH2-AU1	0-0.6
PHC F₃	47	BH2-AU1	0-0.6
		BH3-AU1	
PHC F ₄	443	BH3-AU1	0-0.6
Metals			
Arsenic	2.4	BH1-AU1	0-0.6
		BH4-AU1	
Barium	260	BH4-AU1	0-0.6
Beryllium	0.8	BH1-AU1	0-0.6
Boron	9.1	BH2-AU1	0-0.6
Chromium	97.2	BH1-AU1	0-0.6
Cobalt	10.7	HA13-G1	0.05-0.25
Copper	20.9	HA13-G1	0.05-0.25
Lead	9.2	HA1-G1	0.05-0.25
Mercury	<u>2.3</u>	HA15-G1	0.05-0.25
Nickel	30.9	BH1-AU1	0-0.6
Vanadium	58.2	HA13-G1	0.05-0.25
Zinc	86.2	HA13-G1	0.05-0.25
Organochlorine	Pesticides	· ·	
δ-BHC	0.03	HA11-G1	0.05-0.25
Notes: bold - ex	ceeds applicable MECP s	tandard	

The remaining soil samples are in compliance with the selected MECP standards. Remaining parameters were not detected above the laboratory method detection limits.

5.6 Groundwater Quality

Groundwater samples from monitoring wells installed in BH2, BH3, BH8, BH11, BH13, BH17 and BH20 were submitted for laboratory analysis of BTEX and PHC (F₁-F₄), OCP parameters and/or mercury. The groundwater samples were obtained from the screened intervals noted on Table 2. No visual or olfactory evidence of petroleum hydrocarbons was noted on the groundwater at any of the borehole locations.

Report: PE4321-2

5.6.1 Parcel 1 (MECP Table 3 Standards)

The results of the analytical testing are presented below in Tables 18 and 19. The laboratory certificates of analysis are provided in Appendix 1.

Parameter	MDL (μg/L)	Ground	MECP Table 3 Standards		
""		May 17/19	Mar.22/19	May 17/19	(µg/L)
		BH2-GW1 (3.40-6.40m)	BH3-GW1 (3.83-6.83m)	DUP-GW	
Benzene	0.5	nd	nd	nd	5
Ethylbenzene	0.5	nd	nd	nd	2.4
Toluene	0.5	nd	nd	nd	22
Xylenes (Total)	0.5	nd	nd	nd	300
PHC F1	25	nd	nd	nd	420
PHC F2	100	nd	nd	nd	150
PHC F3	100	nd	nd	nd	500
PHC F4	100	nd	nd	nd	500

No BTEX or PHC parameters were detected above the laboratory method detection limits in any of the groundwater samples submitted for analytical testing. The results are in compliance with the MECP Table 3 standards.

It is our interpretation that the analyzed parameter concentrations do not indicate the potential presence of light non-aqueous phase liquids (LNAPLs). As previously noted, no free phase hydrocarbons were noted in the wells at the time of groundwater sampling event.

		Groundwater Samples (µg/L)			
	MDL (µg/L)	Mar.22 2019	Apr.29 2019	Apr.29 2019	MECP Table 3 Residential Standards (μg/L)
Parameter		BH3-GW1 (3.83-6.83m)	BH8-GW1 (3.91-6.91m)	BH13-GW1 (4.72-7.72m)	
Aldrin	0.01	nd	nd	nd	8.5
Alpha-Chlordane	0.01	nd	nd	nd	nv
Gamma-Chlordane	0.01	nd	nd	nd	nv
Chlordane	0.01	nd	nd	nd	28
o,p'-DDD	0.01	nd	nd	nd	nv
p,p'-DDD	0.01	nd	nd	nd	nv
DDD	0.01	nd	nd	nd	45
o,p'-DDE	0.01	nd	nd	nd	nv
p,p'-DDE	0.01	nd	nd	nd	nv
DDE	0.01	nd	nd	nd	20
o,p'-DDT	0.01	nd	nd	nd	nv
p,p'-DDT	0.01	nd	nd	nd	nv
DDT	0.01	nd	nd	nd	2.8
Dieldrin	0.01	nd	nd	nd	0.75
Endosulfan I	0.01	nd	nd	nd	nv
Endosulfan II	0.01	nd	nd	nd	nv
Endosulfan I/II	0.01	nd	nd	nd	1.5
Endrin	0.01	nd	nd	nd	0.48
Heptachlor	0.01	nd	nd	nd	2.5
Heptachlor Epoxide	0.01	nd	nd	nd	0.048
Hexachlorobenzene	0.01	nd	nd	nd	3.1
Hexachlorobutadiene	0.01	nd	0.20	nd	0.44
Hexachlorocyclohexane, gamma	0.01	nd	nd	nd	1.2
Hexachloroethane	0.01	nd	nd	nd	94
Methoxychlor	0.01	nd	nd	nd	6.5
Decachlorobiphenyl	0.01	nd	nd	nd	nv

Notes:

- ☐ MDL Method Detection Limit
- □ nd not detected above the MDL
- nv- no MECP standard value for this parameter

With the exception of hexachlorobutadiene identified in groundwater Sample BH8-GW1 (0.20 $\mu g/L),$ no OC Pesticide concentrations were identified in the groundwater samples analysed. The detected concentration of hexachlorobutadiene is in compliance with the MECP Table 3 standard value of 0.44 $\mu g/L.$

5.6.2 Parcel 2 (MECP Table 3 Standards)

The results of the analytical testing are presented below in Table 20. The laboratory certificates of analysis are provided in Appendix 1.

Parameter	MDL	Groundwater Samples (μg/L) Apr.30, 2019	MECP Table 3 Residential	
. u.u.noto	(µg/L)	BH11-GW1 (4.57-7.57m)	Standards (µg/L)	
Aldrin	0.01	nd	8.5	
Alpha-Chlordane	0.01	nd	nv	
Gamma-Chlordane	0.01	nd	nv	
Chlordane	0.01	nd	28	
o,p'-DDD	0.01	nd	nv	
p,p'-DDD	0.01	nd	nv	
DDD	0.01	nd	45	
o,p'-DDE	0.01	nd	nv	
p,p'-DDE	0.01	nd	nv	
DDE	0.01	nd	20	
o,p'-DDT	0.01	nd	nv	
p,p'-DDT	0.01	nd	nv	
DDT	0.01	nd	2.8	
Dieldrin	0.01	nd	0.75	
Endosulfan I	0.01	nd	nv	
Endosulfan II	0.01	nd	nv	
Endosulfan I/II	0.01	nd	1.5	
Endrin	0.01	nd	0.48	
Heptachlor	0.01	nd	2.5	
Heptachlor Epoxide	0.01	nd	0.048	
Hexachlorobenzene	0.01	nd	3.1	
Hexachlorobutadiene	0.01	0.08	0.44	
Hexachlorocyclohexane, gamma	0.01	nd	1.2	
Hexachloroethane	0.01	nd	94	
Methoxychlor	0.01	nd	6.5	
Decachlorobiphenyl	0.01	nd	nv	

Notes:

■ MDL – Method Detection Limit

□ nd – not detected above the MDL

□ nv – no MECP standard value for this parameter

With the exception of hexachlorobutadiene identified in groundwater Sample BH11-GW1 (0.08 μ g/L), no OC Pesticide concentrations were identified in the groundwater samples analysed. The detected concentration of hexachlorobutadiene is in compliance with the MECP Table 3 standard value of 0.44 μ g/L.

Report: PE4321-2

5.6.3 Parcel 3 (MECP Table 7 Standards)

The results of the analytical testing are presented below in Table 21. The laboratory certificates of analysis are provided in Appendix 1.

		Groundwater Samples (µg/L) Apr.30/19	MECP Table 7	
Parameter	MDL (µg/L)	BH20-GW1 (2.82-5.82m)	Residential Standards (μg/L)	
Mercury	0.1	nd	0.1	
Aldrin	0.01	nd	8.5	
Alpha-Chlordane	0.01	nd	nv	
Gamma-Chlordane	0.01	nd	nv	
Chlordane	0.01	nd	28	
o,p'-DDD	0.01	nd	nv	
p,p'-DDD	0.01	nd	nv	
DDD	0.01	nd	45	
o,p'-DDE	0.01	nd	nv	
p,p'-DDE	0.01	nd	nv	
DDE	0.01	nd	20	
o,p'-DDT	0.01	nd	nv	
p,p'-DDT	0.01	nd	nv	
DDT	0.01	nd	2.8	
Dieldrin	0.01	nd	0.75	
Endosulfan I	0.01	nd	nv	
Endosulfan II	0.01	nd	nv	
Endosulfan I/II	0.01	nd	1.5	
Endrin	0.01	nd	0.48	
Heptachlor	0.01	nd	2.5	
Heptachlor Epoxide	0.01	nd	0.048	
Hexachlorobenzene	0.01	nd	3.1	
Hexachlorobutadiene	0.01	nd	0.44	
Hexachlorocyclohexane, gamma	0.01	nd	1.2	
Hexachloroethane	0.01	nd	94	
Methoxychlor	0.01	nd	6.5	
Decachlorobiphenyl	0.01	nd	nv	

□ nd – not detected above the MDL

□ nv− no MECP standard value for this parameter

No parameter concentrations were detected above the laboratory method detection limits in the groundwater sample analysed. The analytical test results are in compliance with the MECP Table 7 standards.

Report: PE4321-2

5.6.4 Parcel 4 (MECP Table 7 Standards)

The results of the analytical testing are presented below in Table 22. The laboratory certificates of analysis are provided in Appendix 1.

		Groundwater Samples (µg/L) Apr.29/19	MECP Table 7	
Parameter	MDL (μg/L)	BH17-GW1 (2.51-5.51m)	Residential Standards (μg/L)	
Aldrin	0.01	nd	8.5	
Alpha-Chlordane	0.01	nd	nv	
Gamma-Chlordane	0.01	nd	nv	
Chlordane	0.01	nd	28	
o,p'-DDD	0.01	nd	nv	
p,p'-DDD	0.01	nd	nv	
DDD	0.01	nd	45	
o,p'-DDE	0.01	nd	nv	
o,p'-DDE	0.01	nd	nv	
DDE	0.01	nd	20	
o,p'-DDT	0.01	nd	nv	
p,p'-DDT	0.01	nd	nv	
DDT	0.01	nd	2.8	
Dieldrin	0.01	nd	0.75	
Endosulfan I	0.01	nd	nv	
Endosulfan II	0.01	nd	nv	
Endosulfan I/II	0.01	nd	1.5	
Endrin	0.01	nd	0.48	
Heptachlor	0.01	nd	2.5	
Heptachlor Epoxide	0.01	nd	0.048	
Hexachlorobenzene	0.01	nd	3.1	
Hexachlorobutadiene	0.01	nd	0.44	
Hexachlorocyclohexane, gamma	0.01	nd	1.2	
Hexachloroethane	0.01	nd	94	
Methoxychlor	0.01	nd	6.5	
Decachlorobiphenyl	0.01	nd	nv	

□ nd – not detected above the MDL

□ nv− no MECP standard value for this parameter

No parameter concentrations were detected above the laboratory method detection limits in the groundwater sample analysed. The analytical test results are in compliance with the MECP Table 7 standards.

Report: PE4321-2

5.7 Quality Assurance and Quality Control Results

As per the Sampling and Analysis Plan, a duplicate soil sample was obtained at BH8. The RPD calculations for the original and duplicate sample are provided below in Table 21.

Parameter MDL (μg/g) HA7-G1 (%) DUP (%) RPD (%) QA/QC Result Arsenic 1.0 1.9 1.4 30 Outside the accepta Barium 1.0 85.7 92.7 7.8 Acceptable Chromium 5.0 22.3 23.8 2.1 Acceptable Cobalt 1.0 5.9 5.8 1.7 Acceptable Copper 5.0 13.6 12.7 6.8 Acceptable Lead 1.0 5.1 3.5 37 Outside the accepta Nickel 5.0 13.0 12.3 10.3 Acceptable	Table 21 QA/QC Calculations – Soil						
Barium 1.0 85.7 92.7 7.8 Acceptable Chromium 5.0 22.3 23.8 2.1 Acceptable Cobalt 1.0 5.9 5.8 1.7 Acceptable Copper 5.0 13.6 12.7 6.8 Acceptable Lead 1.0 5.1 3.5 37 Outside the accepta Nickel 5.0 13.0 12.3 10.3 Acceptable	sult						
Chromium 5.0 22.3 23.8 2.1 Acceptable Cobalt 1.0 5.9 5.8 1.7 Acceptable Copper 5.0 13.6 12.7 6.8 Acceptable Lead 1.0 5.1 3.5 37 Outside the accepta Nickel 5.0 13.0 12.3 10.3 Acceptable	table range						
Cobalt 1.0 5.9 5.8 1.7 Acceptable Copper 5.0 13.6 12.7 6.8 Acceptable Lead 1.0 5.1 3.5 37 Outside the accepta Nickel 5.0 13.0 12.3 10.3 Acceptable	le						
Copper 5.0 13.6 12.7 6.8 Acceptable Lead 1.0 5.1 3.5 37 Outside the accepta Nickel 5.0 13.0 12.3 10.3 Acceptable	le						
Lead 1.0 5.1 3.5 37 Outside the accepta Nickel 5.0 13.0 12.3 10.3 Acceptable	le						
Nickel 5.0 13.0 12.3 10.3 Acceptable	le						
	table range						
V " 100 005 015 100 A 111							
Vanadium 10.0 30.5 34.5 12.3 Acceptable	ole						
Zinc 20.0 39.4 37.4 5.2 Acceptable	ole						

Notes:

Although the RPDs calculated are outside of the acceptable range of 20% for two parameters, the remaining RPDs (78%) are within the acceptable range. The findings of the Phase II ESA are not considered to have been affected by the difference between these two samples.

A duplicate groundwater sample (DUP-GW) was obtained from BH2 during the May 17, 2019 groundwater sampling event. Both the original and duplicate sample were analysed for BTEX and PHC parameters. No parameter concentrations were detected in either sample.

All soil and groundwater samples were handled in accordance with the Analytical Protocol with respect to holding time, preservation method, storage requirement, and container type.

As per Subsection 47(3) of O.Reg. 153/04 as amended by O.Reg. 269/11, a Certificate of Analysis has been received for each sample submitted for analysis and all Certificates of Analysis are appended to this report.

Overall, the quality of the field data collected during this Phase II ESA is considered to be sufficient to meet the overall objectives of this assessment.

Report: PE4321-2

[☐] All other parameter concentrations were below laboratory detection limits for both BH8-SS5 and DUP1, and as such, are within acceptable QA/QC parameters.

5.8 Phase II Conceptual Site Model

The following section has been prepared in general accordance with the requirements of the MECP Record of Site Condition Regulation, O.Reg. 153/04, as amended, made under the Environmental Protection Act. Conclusions and recommendations are discussed in a subsequent section.

Site Description

The Phase II Property is located on the north side of Campeau Drive, between Kanata Avenue and Knudson Drive, in the City of Ottawa, Ontario. The Phase II Property is comprised of 4 parcels of land (identified as Parcel 1 through Parcel 4 on Drawing PE4321-3 - Test Hole Location Plan) and has an approximate total area of 71 hectares. The golf cart storage, Clubhouse and associated parking lot are present on the southwestern portion of the site while the southeastern portion of the site is developed with a maintenance building (the Turf Building). The remainder of the site is occupied by paved walking paths, grassed fairways, landscaped roughs and sand pits. Two man-made ponds are present on the south-central portion of the Phase II Property.

Site topography is generally undulating, with an overall gentle downward slope to the north. Site drainage consists primarily of sheet flow to catch basins in the paved areas, with surficial infiltration and some sheet flow to the aforementioned ponds in the landscaped areas.

The Phase II Property and surrounding properties are currently provided with municipal services and do not have private wells or septic systems.

Potentially Contaminating Activities and Areas of Potential Environmental Concern

As per Table 1 in Section 2.2, the following on-site potentially contaminating activities (PCAs) were considered to result in three (3) areas of potential environmental concern (APECs):

Item 28, Table 2, O.Reg.153/04 as amended ("Gasoline and Associated
Products Storage in Fixed Tanks"); based on the presence of two (2
aboveground storage tanks (ASTs), resulting in APEC 1;

Item 30, Table 2, O.Reg.153/04 as amended ("Importation of Fill Material
of Unknown Quality"); based on fill material identified during the Phase II
ESA, resulting in APEC 4; and

Report: PE4321-2

☐ Item 40, Table 2, O.Reg.153/04 as amended ("Pesticides (including Herbicides, Fungicides and Anti-Fouling Agents) Manufacturing, Processing, Bulk Storage and Large-Scale Applications"); based on the storage and use of pesticides and herbicides, resulting in APECs 2 and 3.

No other historical or existing on-site PCAs were identified. No existing or historical off-site PCAs were identified within the 250m Phase I Study Area.

The rationale for identifying the above PCAs is based on a review of aerial photographs as well as field observations and personal interviews.

Contaminants of Potential Concern and Impacted Media

Based on the findings of the Phase I and Phase II ESA, the following Contaminants of Potential Concern (CPC) were identified with respect to the soil and/or groundwater beneath the Phase II Property:

Benzene, Toluene, Ethylbenzene, and Xylenes (BTEX);
Petroleum Hydrocarbons fractions 1 through 4 (PHCs F ₁ -F ₄);
Organochlorine Pesticides; and
Metals (including As, Sb and Se, Hg and CrVI).

Subsurface Structures and Utilities

On-site buried services consist of municipal water, sanitary and storm sewers, natural gas, electricity and telephone. An irrigation system is also present on the Phase II Property. Underground service locates were completed prior to the subsurface investigation, however specific borehole locations were cleared as opposed to the entire Phase II Property. Therefore exact locations of the buried services are unknown. It should be noted that utility plans were not available for review.


Physical Setting

Site Stratigraphy

The site stratigraphy, as presented on Drawings PE4321-5 and 6 – Cross-Sections A-A' and B-B', generally consists of the following:

Report: PE4321-2

Hydrogeological Characteristics

Groundwater was encountered in silty clay or glacial till overburden layer and within the shallow bedrock beneath the Phase II Property. Based on water levels measured on April 29 and April 30, 2019, groundwater contour mapping was completed. Based on the contours, groundwater beneath the Phase II Property is interpreted to flow in a northerly direction, with a hydraulic gradient of approximately 0.012m/m. Groundwater contours are shown on Drawing PE4321-3 – Test Hole Location Plan.

Approximate Depth to Bedrock

Based on the recovery of the bedrock during the coring operations, field observations and available geological mapping, the local bedrock consists of Precambrian mafic and ultramafic intrusive rocks (diorite, gabbro) and migmatic rocks (paragneiss, granitic origin). The overburden thickness is anticipated to vary between 0 and 20 m.

Report: PE4321-2

Approximate Depth to Water Table

Depth to the water table at the subject site varies between approximately 0.10m and 3.35m below existing grade. Long-term groundwater conditions can also be estimated based on the observed colour and consistency of the recovered soil samples. Based on these observations, it is estimated that long-term groundwater levels can be expected between 2 to 3 m depth. Groundwater levels are subject to seasonal fluctuations.

Sections 41 and 43.1 of the Regulation

Section 41 of the Regulation does not apply to the Phase II Property, in that the Phase II Property is not within 30m of an environmentally sensitive area, and the pH of surface soil is between 5 and 9, while the pH of subsurface soil is between 5 and 11.

Section 43.1 of the Regulation applies to Parcels 3 and 4 of the Phase II Property, where bedrock is located less than 2m below ground surface across more than one third of the site.

Fill Placement

Sand and gravel fill material was identified in the vicinity of the Turf Building on the southeastern portion of the site and along a pathway on the northeastern portion of the site. The fill material was considered to be associated with the pavement structures. Due to the proximity of the Turf Building and the depth of the fill material in this vicinity, the fill was assessed as part of the Phase II ESA. Fill material was also identified at BH13 to a depth of approximately 2.29m below grade. The material consisted of brown silty sand with no signs of deleterious materials or potential contamination. As this fill was notably different from the reworked native material across the remainder of the site, it was analysed for potential contaminants. Fill assessment is further discussed in the Environmental Condition Section of the CSM.

Otherwise, fill material encountered during the Phase II ESA consisted of reworked native silty clay and was not considered to represent a concern to the Phase II Property.

Proposed Buildings and Other Structures

The Phase II Property will be developed with a residential subdivision comprised of residential dwellings, storm water management ponds, open space and parkland.

Report: PE4321-2

Existing Buildings and Structures

The Phase II Property is occupied by a 2-storey Clubhouse and restaurant, a 1-storey golf cart storage structure, a pump house and a 1-storey maintenance building referred to as the Turf Building. Other structures include a wash pad and concrete stalls for the storage of bunker sand. All buildings and structures were reportedly constructed in the early 1990's and are present on the southern portion of the Phase II Property. Other structures onsite include a wash pad and concrete stalls for the storage of clean sand fill, situated to the southwest of the Turf Building.

Water Bodies

There are no natural water bodies on the Phase II Property. The closest bodies of water are the Carp River and Watt's Creek, situated approximately 1.4km southwest and 1.5km east of the Phase I Property, respectively.

Areas of Natural Significance

No areas of natural significance were identified on the Phase II Property or within the Phase I ESA Study Area.

Environmental Condition

Areas Where Contaminants are Present

Based on the findings of the Phase II ESA, mercury concentrations exceeding the MECP Table 7 standards selected were identified in the shallow soil (approximately 0.05 to 0.25m below ground surface) on the northeastern portion of the Phase II Property (Parcel 3). No other soil exceedances were identified.

Groundwater is in compliance with the MECP Table 3 and/or Table 7 standards. Analytical test results are presented on Drawing PE4321-4 – Analytical Testing Plan.

Types of Contaminants

The contaminants of concern identified at the Phase II Property include mercury. No other contaminants were identified in the soil on or beneath the Phase II Property. No contaminants are present in the groundwater on or beneath the Phase II Property.

Contaminated Media

Based on the findings of the Phase II ESA, contaminated media includes the shallow soil on the northeastern portion of the Phase II Property (Parcel 3). Groundwater is in compliance with the selected MECP site standards.

What Is Known About Areas Where Contaminants Are Present

Mercury concentrations exceeding the MECP Table 7 standards are present on the northeastern portion of the Phase II Property (Parcel 3). The mercury concentrations may be associated with the historical application of mercurial fungicides and/or heavy-metal based pesticides and herbicides on the golf course.

Groundwater concentrations were determined to be in compliance with the MECP Table 3 or Table 7 standards.

Distribution of Contaminants

Mercury concentrations were not detected in the groundwater in the vicinity of the soil exceedances on Parcel 3 of the Phase II Property. The mercury impacts are therefore considered to be contained to overburden.

Discharge of Contaminants

As noted previously, mercury is considered to have been released directly to the ground surface through the historical application of mercurial fungicides and/or heavy-metal based pesticides and herbicides on the golf course.

Migration of Contaminants

A potential contaminant transport pathway is the physical transport from one location to another of contaminated soil, either intentionally or unintentionally, by earth moving equipment, vehicle traffic, or pedestrian traffic. Based on observations made during the Phase I and Phase II ESA, physical transport of contaminants on the Phase II Property is considered to be negligible.

Based on the low solubility nature of heavy metals and clean groundwater results in the vicinity of the mercury impacted soil, significant contaminant migration is not considered to have occurred on the Phase II Property.

May 23, 2019

Climatic and Meteorological Conditions

In general, climatic and meteorological conditions have the potential to affect contaminant distribution. Two ways by which climatic and meteorological conditions may affect contaminant distribution include the downward leaching of contaminants by means of the infiltration of precipitation, and the migration of contaminants via groundwater levels and/or flow, which may fluctuate seasonally. Given the low solubility of mercury and clean groundwater results in the vicinity of the identified soil exceedances, downward leaching by means of infiltration of precipitation is not considered to have occurred on the Phase II Property. As such, groundwater levels and/or flow are also not considered to have had the potential to affect contaminant distribution.

Potential for Vapour Intrusion

There is no potential for vapour intrusion to have occurred within existing building structures based on the location and non-volatile nature of the contaminants.

Contaminant Transport

Human health receptors would include golf club staff and members. Due to the nature and location of the contaminants in the shallow soil on the fairways or greens on Parcel 3 of the Phase II Property, and the nature of the activities carried out onsite, the potential for human health risk is considered to be low.

During the Phase II ESA field program, potential human health receptors included the drillers and Paterson field staff. Potential receptor exposure points included any excavations into contaminated soil, including boreholes and hand auger holes. Routes of exposure would include dermal contact, accidental ingestion, and inhalation of contaminated soil as particulate dust.

Potential ecological receptors include plants whose root structures intercept contaminated soil, burrowing wildlife, and groundwater/surface water receptors downgradient of the Phase II Property at groundwater discharge points. Based on the findings of the Phase II ESA in combination with the dense urban landscape surrounding the Phase II Property, no significant receptors are expected to be present downgradient of the Phase II Property.

6.0 CONCLUSIONS

Assessment

A Phase II ESA was conducted for the property addressed 7000 Campeau Drive, herein referred to as the Phase II Property, in the City of Ottawa, Ontario. It should be noted that the Phase II Property is comprised of four (4) parcels of land identified as Parcels 1 through 4 for the purposes of this report.

The purpose of the Phase II ESA was to assess the soil and groundwater quality on or beneath the Phase II Property, within potential areas of environmental concern (APECs) identified during the Phase I ESA carried out by Paterson and dated December 2018.

The Phase II ESA was carried out in conjunction with a Geotechnical Investigation and consisted of drilling 20 boreholes across the Phase II Property, 13 of which were constructed with groundwater monitoring well installations, and the placement of 20 shallow hand auger holes. Approximately 190 probeholes were also completed as part of the Geotechnical Investigation, in order to confirm bedrock depth in areas of deep overburden.

Soil samples were obtained from the boreholes and auger holes, and screened primarily using visual observations. Samples collected from within the vicinity of the Turf Building and aboveground storage tanks (ASTs) were also screened using combustible vapour measurements. Based on the screening results in combination with sample depth and location, a total of 27 soil samples, including a duplicate sample, were submitted for laboratory analysis of benzene, toluene, ethylbenzene and xylenes (BTEX), petroleum hydrocarbons (PHCs, F1-F4), metals and/or organochlorine pesticides (OCPs). Based on the analytical test results, no BTEX parameters or PHC (F1) were identified in the soil samples submitted for testing. Petroleum hydrocarbon F2, F3 and/or F4 fractions were identified in shallow auger flight samples recovered from BH2, BH3 and BH5, within the vicinity of the ASTs and Turf Building on the southeastern portion of the Phase II Property (Parcel 1). Metals parameters were also identified in the fill material on this portion of the Phase II Property, while no OCPs were detected in the sample recovered from BH3. The PHC and metal parameters identified were in compliance with the MECP Table 3 standards, selected based on the site conditions within Parcel 1.

Report: PE4321-2

Metal and OCP analyses were conducted on shallow soil samples collected from the greens, fairways and/or roughs across the Phase II Property. Concentrations of δ -BHC ranging from 0.01 to 0.03 μ g/g were identified in shallow soil Samples HA3-G1, HA11-G1 and HA15-G1. No standard value is provided by the MECP for this parameter. Otherwise, no OCP pesticides were identified in any of the samples analysed.

Metal parameters were identified in all samples analysed. Concentrations of mercury identified in the soil recovered from HA14 and HA15 on the northeastern portion of the Phase II Property (Parcel 3) exceeded the MECP Table 7 standards selected for this portion of the site. The remaining metal parameters identified across the Phase II Property were in compliance with the MECP Table 3 or MECP Table 7 standards.

Groundwater samples from monitoring wells installed in BH2, BH3, BH8, BH11, BH13, BH17 and BH20 were recovered and analysed for BTEX, PHCs, OCPs and/or mercury. No free-phase product was observed on the groundwater at any of the monitoring well locations during the February, April and May 2019 sampling events. Based on analytical test results, no BTEX, PHC or mercury concentrations were identified above the laboratory method detection limits in the groundwater samples analysed. No OCP parameters were detected above the laboratory method detection limits, with the exception of hexachlorobutadiene concentrations in groundwater samples recovered from BH8 and BH11 on Parcels 1 and 2 of the Phase II Property. The identified concentrations were in compliance with the MECP Table 3 standards.

Conclusion

Based on the findings of the Phase II ESA, shallow soil present on the northeastern portion of the Phase II Property (Parcel 3) is impacted with mercury concentrations exceeding the applicable MECP Table 7 standards. Otherwise the soil on and beneath the Phase II Property is in compliance with the MECP Table 3 or MECP Table 7 standards. Groundwater beneath the Phase II Property is in compliance with the applicable MECP standards.

It is recommended that additional surface sampling be conducted on Parcel 3 of the Phase II Property in order to delineate the vertical and lateral extent of the mercury impacted soil.

Report: PE4321-2

It is expected that the groundwater monitoring wells will be abandoned in accordance with Ontario Regulation 903 at the time of construction excavation, however it is recommended that they remain in place for possible future groundwater monitoring events.

Report: PE4321-2 May 23, 2019

7.0 STATEMENT OF LIMITATIONS

This Phase II - Environmental Site Assessment report has been prepared in general accordance with O.Reg. 153/04 as amended, and meets the requirements of CSA Z769-00. The conclusions presented herein are based on information gathered from a limited sampling and testing program. The test results represent conditions at specific test locations at the time of the field program.

The client should be aware that any information pertaining to soils and all test hole logs are furnished as a matter of general information only and test hole descriptions or logs are not to be interpreted as descriptive of conditions at locations other than those of the test holes themselves.

Should any conditions be encountered at the subject site and/or historical information that differ from our findings, we request that we be notified immediately in order to allow for a reassessment.

This report was prepared for the sole use of ClubLink Corporation ULC. Notification from ClubLink Corporation ULC and Paterson Group will be required to release this report to any other party.

Paterson Group Inc.

Karyn Munch, P.Eng., QPESA

Kaugn Munch:

Mark S. D'Arcy, P.Eng., QPESA

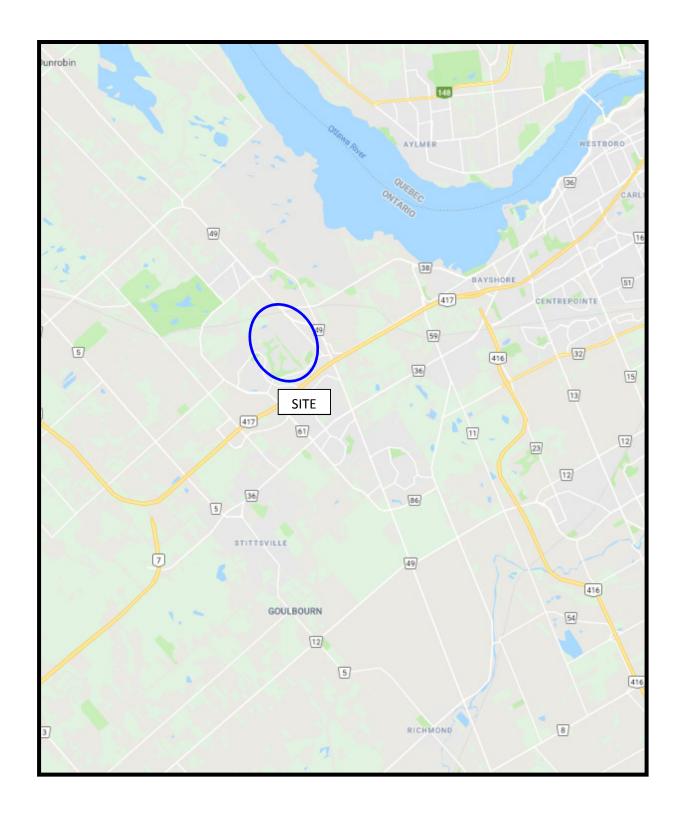
M. S. D'ARCY
90377839

ADVINCE OF ONTARD

Report Distribution:

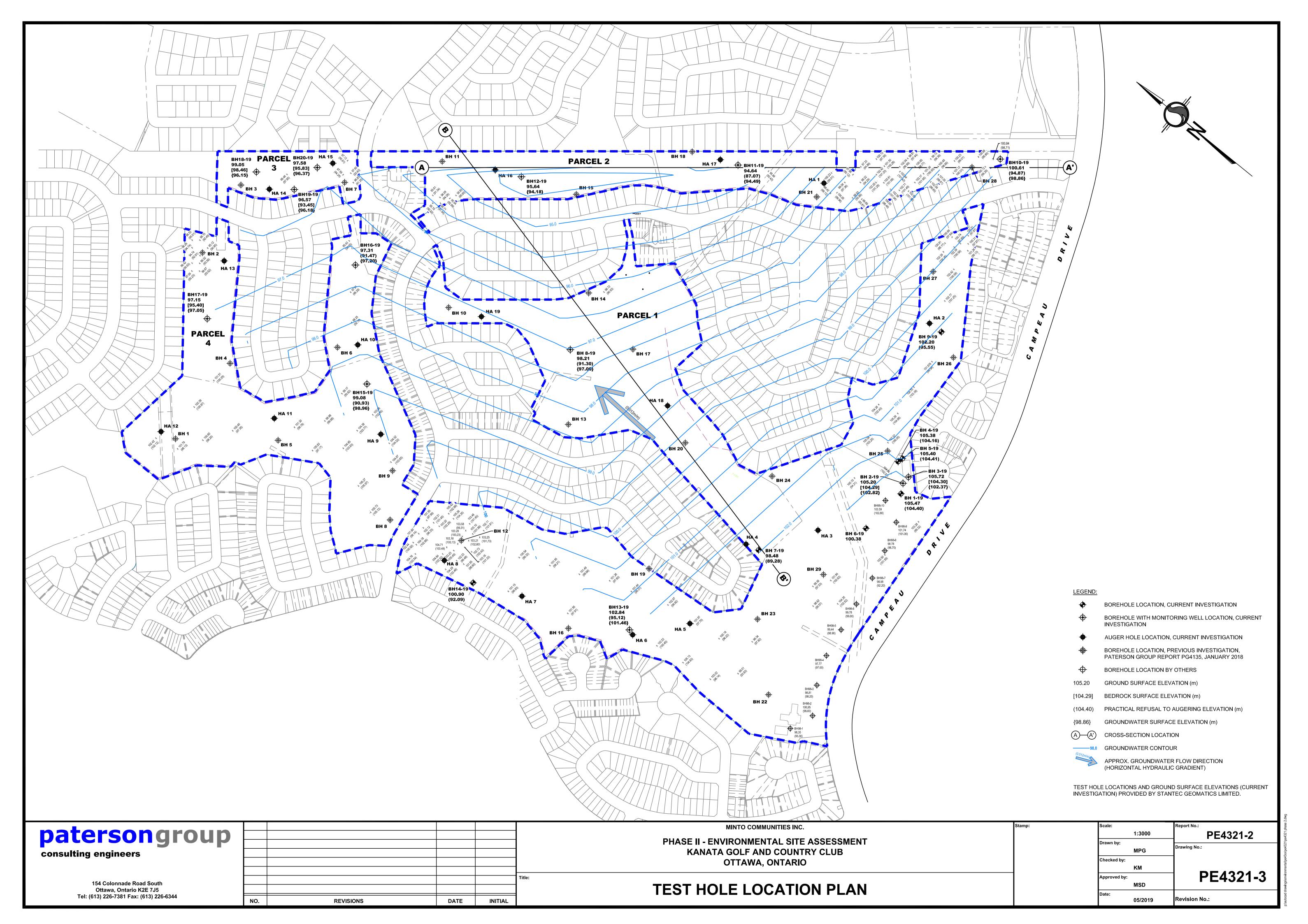
- ClubLink Corporation ULC
- Paterson Group

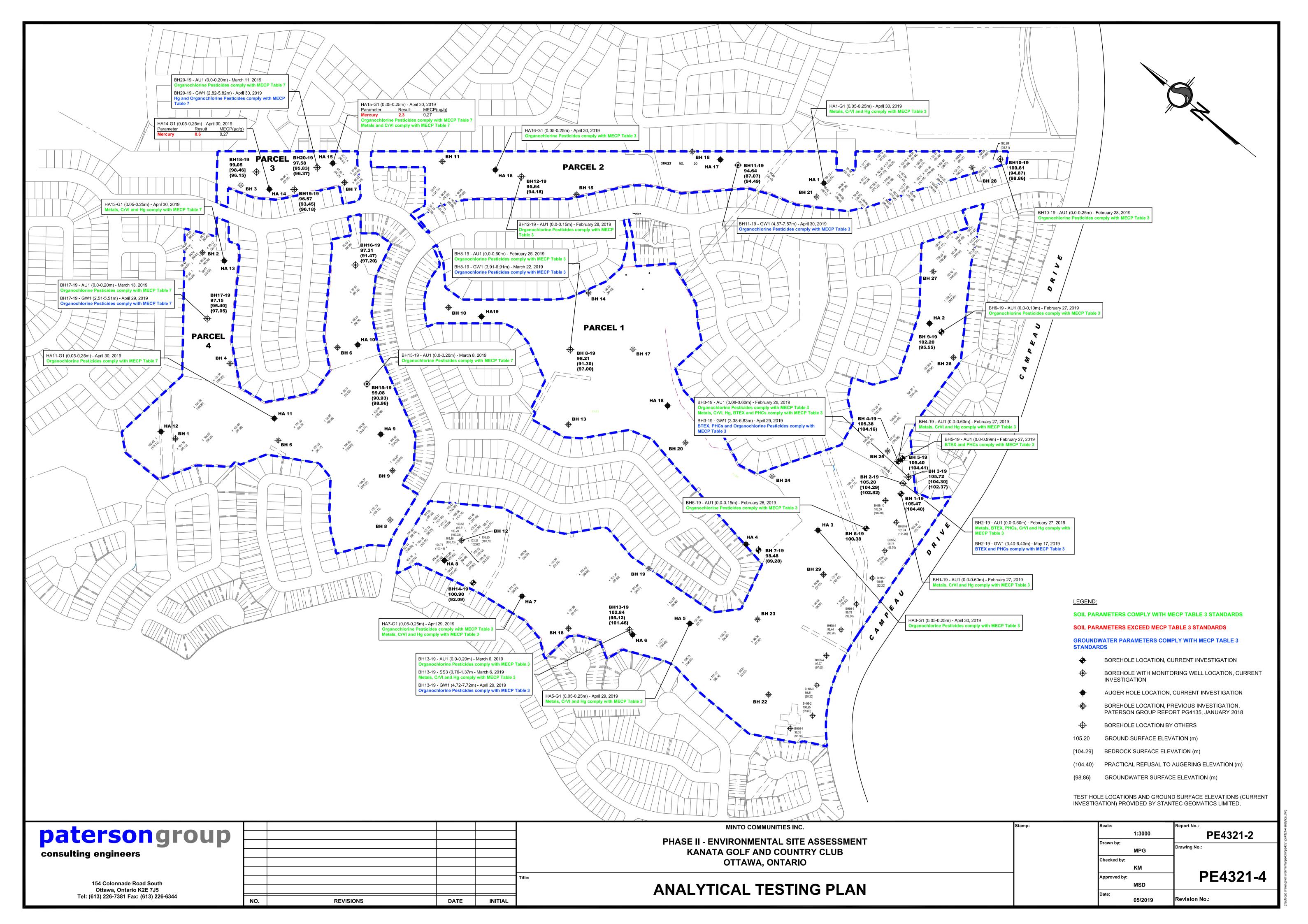
FIGURES

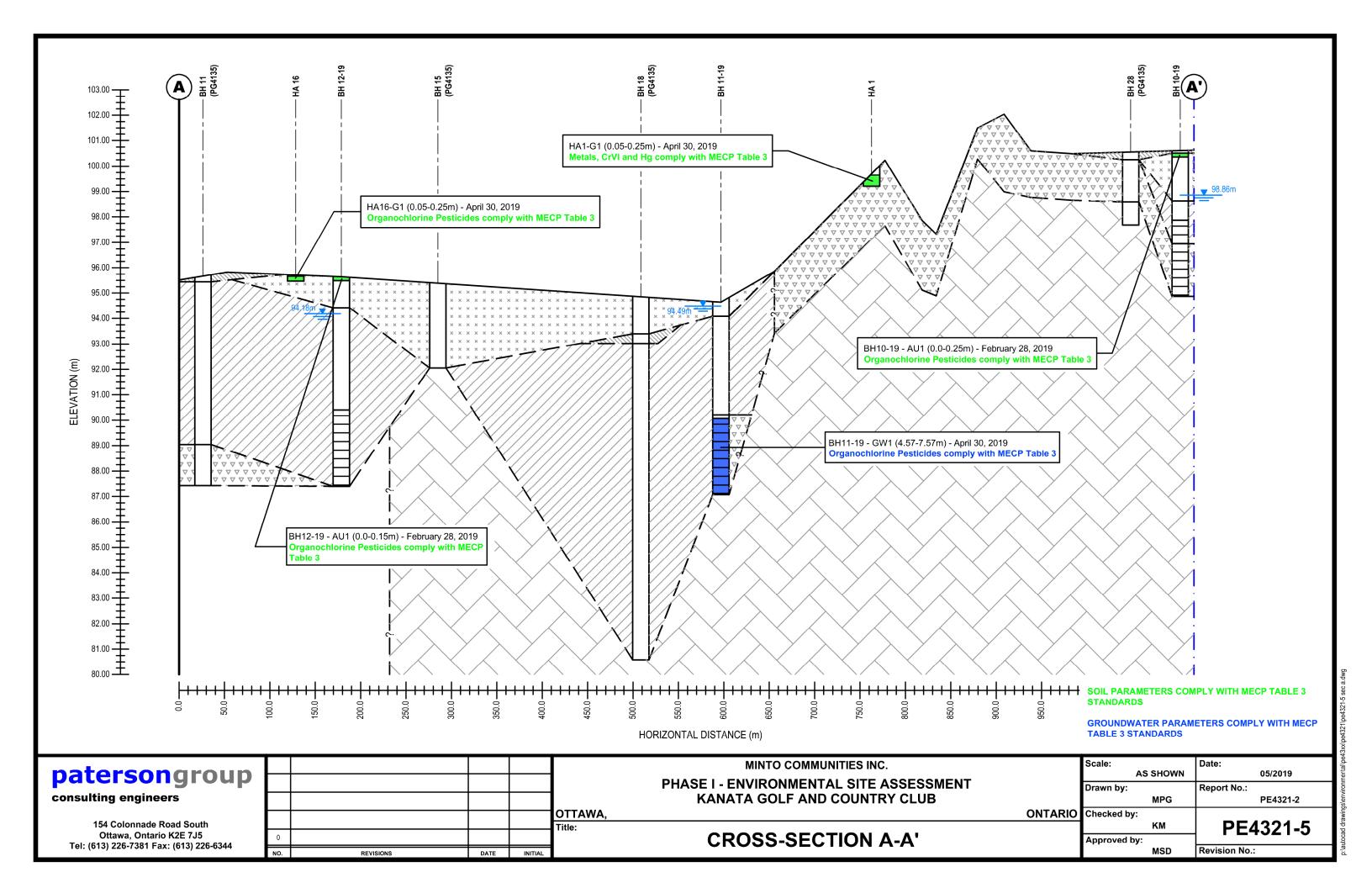

FIGURE 1 – KEY PLAN

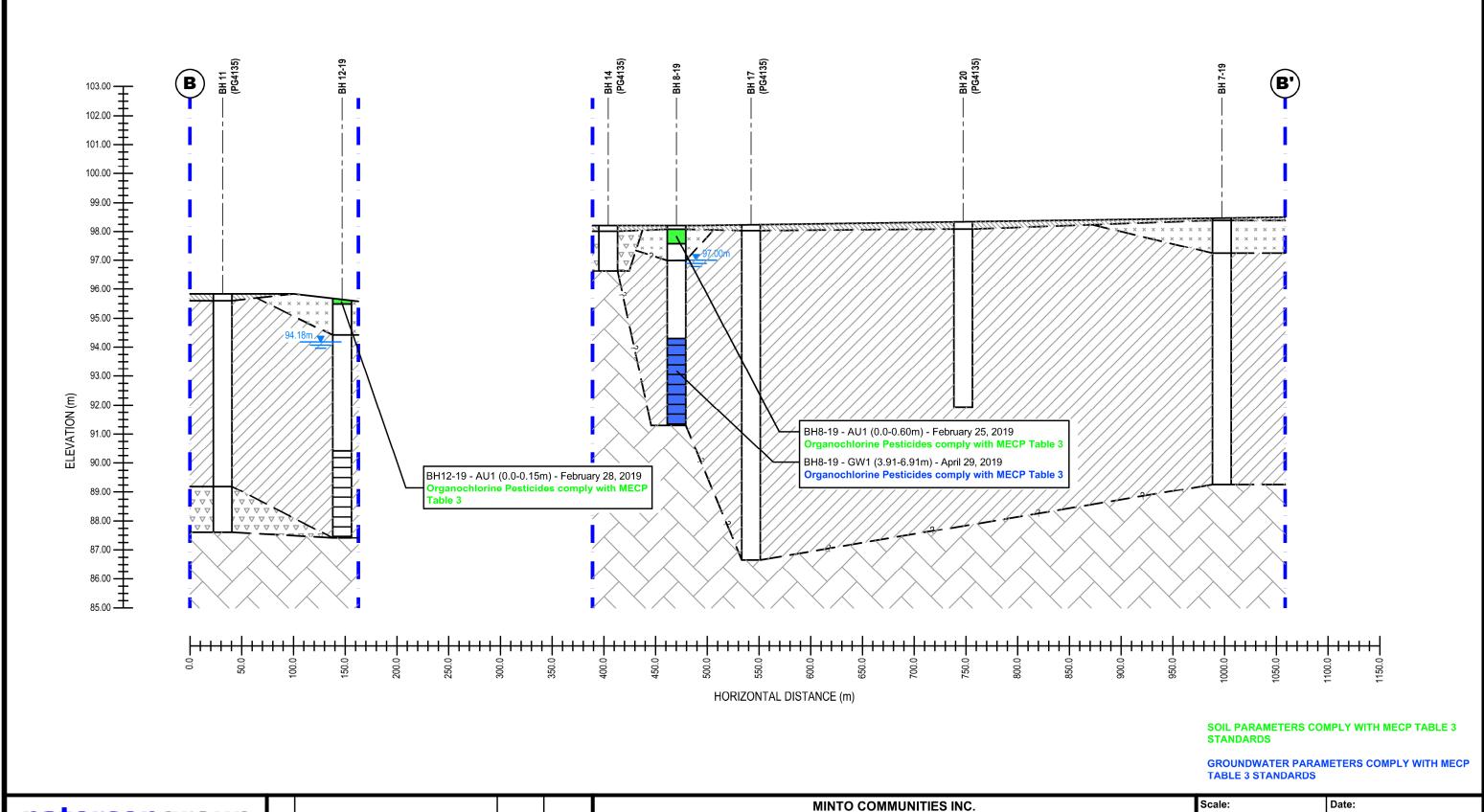
DRAWING PE4321-3 – TEST HOLE LOCATION PLAN

DRAWING PE4321-4 – ANALYTICAL TESTING PLAN


DRAWING PE4321-5 - CROSS-SECTION A-A'


DRAWING PE4321-6 - CROSS-SECTION B-B'




FIGURE 1 KEY PLAN

patersongroup

patersongroup

consulting engineers

154 Colonnade Road South Ottawa, Ontario K2E 7J5 Tel: (613) 226-7381 Fax: (613) 226-6344

0	DEVISIONS	DATE		OTTAWA, Title:
NO.	REVISIONS	DATE	INITIAL	

PHASE I - ENVIRONMENTAL SITE ASSESSMENT KANATA GOLF AND COUNTRY CLUB

CROSS-SECTION B-B'

Scale:		Date:	
	AS SHOWN		05/2019
Drawn by:		Report No.:	
	MPG		PE4321-2
Checked by:			

ONTARIO PE4321-6 Approved by:

Revision No.:

APPENDIX 1

SAMPLING AND ANALYSIS PLAN
SOIL PROFILE AND TEST DATA SHEETS
SYMBOLS AND TERMS
LABORATORY CERTIFICATES OF ANALYSIS

Geotechnical Engineering

Environmental Engineering

Hydrogeology

Geological Engineering

Materials Testing

Building Science

Archaeological Services

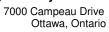
Paterson Group Inc.

Consulting Engineers 154 Colonnade Road South Ottawa (Nepean), Ontario Canada K2E 7J5

Tel: (613) 226-7381 Fax: (613) 226-6344 www.patersongroup.ca

patersongroup

Sampling & Analysis Plan


Phase II ESA 7000 Campeau Drive Ottawa, Ontario

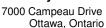
Prepared For

ClubLink Corporation ULC

January 2019

Report: PE4321-SAP

TABLE OF CONTENTS


1.0	SAM	PLING PROGRAM	2
2.0	ANA	LYTICAL TESTING PROGRAM	4
3.0	STAI	NDARD OPERATING PROCEDURES	5
	3.1	Environmental Drilling Procedure	5
	3.2	Monitoring Well Installation Procedure	8
	3.3	Monitoring Well Sampling Procedure	g
4.0	QUA	LITY ASSURANCE/QUALITY CONTROL (QA/QC)	10
5.0	DAT	A QUALITY OBJECTIVES	10
6.0	PHY	SICAL IMPEDIMENTS TO SAMPLING & ANALYSIS PLAN	11

1.0 SAMPLING PROGRAM

At the request of ClubLink Corporation ULC (ClubLink), Paterson Group conducted a Phase II Environmental Site Assessment of the property at 7000 Campeau Drive in the City of Ottawa, Ontario. The following table summarizes borehole location selection for all subsurface investigations at the subject site.

Borehole	Location & Rationale	Proposed Depth & Rationale
BH1-19	Place borehole within storage area for landscaping materials, to the southwest of the ASTs.	Drill to at least 1.5m below the water table or refusal.
BH2-19	Place borehole as close as possible to location of ASTs to assess potential for petroleum hydrocarbon impacts in the soil and groundwater.	Drill to at least 1.5m below the water table. If refusal encountered, core bedrock to intercept the groundwater table for monitoring well installation.
BH3-19	Place borehole as close as possible to the pesticide storage container adjacent the Turf Building, to assess potential for soil and groundwater impacts.	Drill to at least 1.5m below the water table. If refusal is encountered, core bedrock to intercept the groundwater table for monitoring well installation.
BH4-19 BH5-19	Place borehole on exterior of Turf Building to assess potential for impacted fill in the vicinity of the exterior storage area.	Drill to at least 1.5m below the water table or refusal.
DI 10 10	of the exterior eterage area.	Dill to see its seed to the of 00 se
BH6-19		Drill to maximum depth of 20m or refusal.
BH7-19		
BH8-19		Drill to maximum depth of 20m. Install monitoring well to obtain water level and to assess potential groundwater impacts resulting from pesticide use.
BH9-19	General coverage of the golf course for	Drill to maximum depth of 20m or refusal.
BH10-19	geotechnical purposes and to assess for pesticides and/or metal impacts.	Drill to maximum depth of 20m. Install monitoring well to obtain
BH11-19		water level and to assess potential groundwater impacts
BH12-19		resulting from pesticide use.
BH13-19		
BH14-19		Drill to maximum depth of 20m or refusal.
BH15-19		Drill to maximum depth of 20m. If refusal encountered, core bedrock to intercept groundwater table for monitoring well installation.

Borehole	Location & Rationale	Proposed Depth & Rationale
BH16-19	General coverage of the golf course for geotechnical purposes and to assess for	Drill to maximum depth of 20m. If refusal encountered, core
BH17-19	pesticides and/or metal impacts.	bedrock to intercept groundwater table for monitoring
BH18-19		well installation.
BH19-19		
BH20-19		
HA1 to HA20	General coverage of the greens, fairways and roughs to assess for potential shallow soil impacts resulting from the use of pesticides.	Collect sample from just beneath the topsoil, to a depth of approximately 0.25m below grade.

Borehole locations are shown on the Test Hole Location Plan appended to the main report.

At each borehole, initial auger samples will be followed by split-spoon samples of overburden soils will be obtained at 0.76 m (2'6") intervals. All soil samples will be retained, and samples will be selected for submission following a preliminary screening analysis.

Following borehole drilling, monitoring wells will be installed in 13 boreholes for the collection of groundwater samples and for the measurement of water levels across the site. Where coring is required, core samples will be retained for laboratory review.

Hand auger samples will be collected once weather conditions are suitable, for the purpose of collecting shallow soil samples. A composite sample of soil from just below the topsoil layer to approximately 0.25m below grade, will be collected at each sample location.

Soil quality at all boreholes will be screened using visual and olfactory screening methods. If contamination is suspected, soil samples will be submitted to vapour screening and soil samples may be analyzed.

Ottawa, Ontario

2.0 ANALYTICAL TESTING PROGRAM

general considerations: At least one sample from boreholes across the site should be submitted, in order to determine the extent of possible contamination caused by the former use of the subject site as a primary metals facility. ☐ In boreholes where there is visual or olfactory evidence of contamination, or where organic vapour meter or photoionization detector readings indicate the presence of contamination, the 'worst-case' sample from each borehole should be submitted for comparison with MOECC site condition standards. In boreholes with evidence of contamination as described above, a sample should be submitted from the stratigraphic unit below the 'worst-case' sample to determine whether the contaminant(s) have migrated downward. Parameters analyzed should be consistent with the Contaminants of Potential Concern identified in the Phase I-ESA. The analytical testing program for groundwater at the subject site is based on the following general considerations: Groundwater monitoring wells should be installed in boreholes located on the southern and northern portion of the property, with visual or olfactory evidence of soil contamination, within bedrock, at or below the water table (i.e. a water sample can be obtained).

☐ Groundwater monitoring well screens should straddle the water table at sites

☐ Parameters analyzed should be consistent with the Contaminants of Concern identified in the Phase I-ESA and with the contaminants identified in the soil

where the contaminants of concern are suspected to be LNAPLs.

The analytical testing program for soil at the subject site is based on the following

samples.

Ottawa, Ontario

3.0 STANDARD OPERATING PROCEDURES

3.1 Environmental Drilling Procedure

Purpose

The purpose of environmental boreholes is to identify and/or delineate contamination within the soil and/or to install groundwater monitoring wells in order to identify contamination within the groundwater.

Equipment

The following is a list of equipment that is in addition to regular drilling equipment stated in the geotechnical drilling SOP:

glass soil sample jars
two buckets
cleaning brush (toilet brush works well)
dish detergent
methyl hydrate
water (if not available on site - water jugs available in trailer)
latex or nitrile gloves (depending on suspected contaminant)
RKI Eagle organic vapour meter or MiniRae photoionization detecto
(depending on contamination suspected)

Determining Borehole Locations

If conditions on site are not as suspected, and planned borehole locations cannot be drilled, call the office to discuss. Alternative borehole locations will be determined in conversation with the field technician and supervising engineer.

After drilling is completed a plan with the borehole locations must be provided. Distances and orientations of boreholes with respect to site features (buildings, roadways, etc.) must be provided. Distances should be measured using a measuring tape or wheel rather than paced off. Ground surface elevations at each borehole should be surveyed relative to a geodetic benchmark, if one is available, or a temporary site benchmark which can be tied in at a later date if necessary.

Drilling Procedure

The actual drilling procedure for environmental boreholes is the same as geotechnical boreholes (see SOP for drilling and sampling) with a few exceptions as follows: ☐ Continuous split spoon samples (every 0.6 m or 2') or semi-continuous (every 0.76 m or 2'6") are required. Make sure samples are well sealed in plastic bags with no holes prior to screening and are kept cool but unfrozen. ☐ If sampling for VOCs, BTEX, or PHCs F1, a soil core from each soil sample which may be analyzed must be taken and placed in the laboratory-provided methanol vial. Note all and any odours or discolouration of samples. Split spoon samplers must be washed between samples. If obvious contamination is encountered, continue sampling until vertical extent of contamination is delineated. ☐ As a general rule, environmental boreholes should be deep enough to intercept the groundwater table (unless this is impossible/impractical - call project manager to discuss). If at all possible, soil samples should be submitted to a preliminary screening procedure on site, either using a RKI Eagle, PID, etc. depending on type of suspected contamination. **Spoon Washing Procedure** All sampling equipment (spilt spoons, etc.) must be washed between samples in order to prevent cross contamination of soil samples. ☐ Obtain two buckets of water (preferably hot if available) Add a small amount of dish soap to one bucket ☐ Scrub spoons with brush in soapy water, inside and out, including tip

The methyl hydrate eliminates any soap residue that may be on the spoon and is especially important when dealing with suspected VOCs.

Apply a small amount of methyl hydrate to the inside of the spoon. (A spray

bottle or water bottle with a small hole in the cap works well)

☐ Rinse with distilled water, a spray bottle works well.

☐ Rinse in clean water

☐ Allow to dry (takes seconds)

Screening Procedure

The RKI Eagle is used to screen most soil samples, particularly where petroleum hydrocarbon contamination is suspected. The MiniRae is used when VOCs are suspected, however it also can be useful for detecting petroleum. These tools are for screening purposes only and cannot be used in place of laboratory testing. Vapour results obtained from the RKI Eagle and the PID are relative and must be interpreted.

Screening equipment should be calibrated on an approximately monthly basis, more frequently if heavily used.

Samples should be brought to room temperature; this is specifically important
in colder weather. Soil must not be frozen.
Turn instrument on and allow to come to zero - calibrate if necessary
If using RKI Eagle, ensure instrument is in methane elimination mode unless
otherwise directed.
Ensure measurement units are ppm (parts per million) initially. RKI Eagle will
automatically switch to %LEL (lower explosive limit) if higher concentrations
are encountered.
Break up large lumps of soil in the sample bag, taking care not to puncture bag.
Insert probe into soil bag, creating a seal with your hand around the opening.
Gently manipulate soil in bag while observing instrument readings.
Record the highest value obtained in the first 15 to 25 seconds
Make sure to indicate scale (ppm or LEL); also note which instrument was used
(RKI Eagle 1 or 2, or MiniRae).
Jar samples and refrigerate as per Sampling and Analysis Plan

3.2 Monitoring Well Installation Procedure

Eq	uipment
	5' x 2" threaded sections of Schedule 40 PVC slotted well screen (5' x 1 1/4" if installing in cored hole in bedrock)
	5' x 2" threaded sections of Schedule 40 PVC riser pipe (5' x 1 1/4" if installing in cored hole in bedrock)
	Threaded end-cap Slip-cap or J-plug
	Asphalt cold patch or concrete
	Silica Sand Bentonite chips (Holeplug)
	Steel flushmount casing
Pr	ocedure
	Drill borehole to required depth, using drilling and sampling procedures described above.
	If borehole is deeper than required monitoring well, backfill with bentonite chips to required depth. This should only be done on wells where contamination is not suspected, in order to prevent downward migration of contamination.
	Only one monitoring well should be installed per borehole.
	Monitoring wells should not be screened across more than one stratigraphic unit to prevent potential migration of contaminants between units.
	Where LNAPLs are the suspected contaminants of concern, monitoring wells should be screened straddling the water table in order to capture any free product floating on top of the water table.
	Thread the end cap onto a section of screen. Thread second section of screen if required. Thread risers onto screen. Lower into borehole to required depth. Ensure slip-cap or J-plug is inserted to prevent backfill materials entering well.
	As drillers remove augers, backfill borehole annulus with silica sand until the
_	level of sand is approximately 0.3 m above the top of the screen.
	Backfill with holeplug until at least 0.3 m of holeplug is present above the top of the silica sand.
	Backfill remainder of borehole with holeplug or with auger cuttings (if
	contamination is not suspected).
	Install flushmount casing. Seal space between flushmount and borehole annulus with concrete, cold patch, or holeplug to match surrounding ground

surface.

3.3 Monitoring Well Sampling Procedure

Εq	uipment
	Water level metre or interface probe on hydrocarbon/LNAPL sites Spray bottles containing water and methanol to clean water level tape or interface probe Peristaltic pump Polyethylene tubing for peristaltic pump Flexible tubing for peristaltic pump Latex or nitrile gloves (depending on suspected contaminant) Allen keys and/or 9/16" socket wrench to remove well caps Graduated bucket with volume measurements pH/Temperature/Conductivity combo pen Laboratory-supplied sample bottles
Sa	mpling Procedure
	Locate well and use socket wrench or Allan key to open metal flush mount protector cap. Remove plastic well cap. Measure water level, with respect to existing ground surface, using water level
	meter or interface probe. If using interface probe on suspected NAPL site, measure the thickness of free product. Measure total depth of well.
	Clean water level tape or interface probe using methanol and water. Change gloves between wells.
	Calculate volume of standing water within well and record. Insert polyethylene tubing into well and attach to peristaltic pump. Turn on peristaltic pump and purge into graduated bucket. Purge at least three well volumes of water from the well. Measure and record field chemistry. Continue to purge, measuring field chemistry after every well volume purged, until appearance or field chemistry stabilizes.
	Note appearance of purge water, including colour, opacity (clear, cloudy, silty), sheen, presence of LNAPL, and odour. Note any other unusual features (particulate matter, effervescence (bubbling) of dissolved gas, etc.).
	Fill required sample bottles. If sampling for metals, attach 75-micron filter to discharge tube and filter metals sample. If sampling for VOCs, use low flow rate to ensure continuous stream of non-turbulent flow into sample bottles. Ensure no headspace is present in VOC vials.
	Replace well cap and flushmount casing cap.

Ottawa, Ontario

4.0 QUALITY ASSURANCE/QUALITY CONTROL (QA/QC)

The QA/QC program for this Phase II ESA is as follows:

All non-dedicated	sampling	equipment	(split	spoons)	will	be	decontamina	ted
according to the S	OPs listed	d above.						

- ☐ All groundwater sampling equipment is dedicated (polyethylene and flexible peristaltic tubing is replaced for each well).
- ☐ Where combo pens are used to measure field chemistry, they will be calibrated on an approximately monthly basis, according to frequency of use.

5.0 DATA QUALITY OBJECTIVES

The purpose of setting data quality objectives (DQOs) is to ensure that the level of uncertainty in data collected during the Phase II-ESA is low enough that decision-making is not affected, and that the overall objectives of the investigation are met.

The quality of data is assessed by comparing field duplicates with original samples. If the relative percent difference (RPD) between the duplicate and the sample is within 20%, the data are considered to be of sufficient quality so as not to affect decision-making. The RPD is calculated as follows:

$$RPD = \left| \frac{x_1 - x_2}{(x_1 + x_2)/2} \right| \times 100\%$$

Where x_1 is the concentration of a given parameter in an original sample and x_2 is the concentration of that same parameter in the field duplicate sample.

For the purpose of calculating the RPD, it is desirable to select field duplicates from samples for which parameters are present in concentrations above laboratory detection limits, i.e. samples which are expected to be contaminated. If parameters are below laboratory detection limits for selected samples or duplicates, the RPD may be calculated using a concentration equal to one half (0.5 x) the laboratory detection limit.

It is also important to consider data quality in the overall context of the project. For example, if the DQOs are not met for a given sample, yet the concentrations of contaminants in both the sample and the duplicate exceed the MECP site remediation standards by a large margin, the decision-making usefulness of the sample may not be considered to be impaired.

The proximity of other samples which meet the DQOs must also be considered in developing the Phase II Conceptual Site Model; often there are enough data available to produce a reliable Phase II Conceptual Site Model even if DQOs are not met for certain individual samples. These considerations are discussed in the body of the report.

6.0 PHYSICAL IMPEDIMENTS TO SAMPLING & ANALYSIS PLAN

Physical impediments to the Sampling and Analysis plan may include:

The location of underground utilities
Poor recovery of split-spoon soil samples
Insufficient groundwater volume for groundwater samples
Breakage of sampling containers following sampling or while in transit to the
laboratory
Elevated detection limits due to matrix interference (generally related to soil
colour or presence of organic material)
Elevated detection limits due to high concentrations of certain parameters,
necessitating dilution of samples in laboratory
Drill rig breakdowns
Winter conditions
Other site-specific impediments

Site-specific impediments to the Sampling and Analysis plan are discussed in the body of the Phase II-ESA report.

patersongroup Consulting Engineers

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

SOIL PROFILE AND TEST DATA

Phase II Environmental Site Assessment Kanata Lakes Golf & Country Club Campeau Drive, Ottawa, Ontario

DATUM Ground surface elevations provided by Stantec Geomatics Ltd. FILE NO. **PE4321 REMARKS** HOLE NO. BH 1-19 **BORINGS BY** CME 55 Power Auger DATE 2019 February 27 Monitoring Well Construction **Photo Ionization Detector SAMPLE** STRATA PLOT **DEPTH** ELEV. **SOIL DESCRIPTION** Volatile Organic Rdg. (ppm) (m) (m) N VALUE or RQD RECOVERY NUMBER **Lower Explosive Limit % GROUND SURFACE** 80 0+105.471 FILL: Brown silty sand with topsoil, some gravel, tráce clay SS 2 50+ 33 1+104.47End of Borehole Practical refusal to augering at 1.07m depth 200 300 500 RKI Eagle Rdg. (ppm) ▲ Full Gas Resp. △ Methane Elim.

patersongroup Consulting Engineers

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

SOIL PROFILE AND TEST DATA

▲ Full Gas Resp. △ Methane Elim.

Phase II Environmental Site Assessment Kanata Lakes Golf & Country Club Campeau Drive, Ottawa, Ontario

Campeau Drive, Ottawa, Ontario **DATUM** Ground surface elevations provided by Stantec Geomatics Ltd. FILE NO. PE4321 **REMARKS** HOLE NO. **BH 2-19 BORINGS BY** CME 55 Power Auger DATE 2019 February 27 **SAMPLE Photo Ionization Detector** STRATA PLOT **DEPTH** ELEV. **SOIL DESCRIPTION** Volatile Organic Rdg. (ppm) (m) (m) RECOVERY N VALUE or RQD NUMBER **Lower Explosive Limit % GROUND SURFACE** 80 0+105.20Asphaltic concrete 0.08 1 FILL: Brown silty sand with gravel and crushed stone 1 + 104.20RC 1 95 57 2+103.203+102.20**BEDROCK:** Sound to very sound RC 2 98 90 grey to red metamorphic gneiss 4+101.203 RC 100 97 5+100.20RC 4 94 88 6 + 99.20End of Borehole (GWL @ 2.38m - April 29, 2019) 200 300 500 RKI Eagle Rdg. (ppm)

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

SOIL PROFILE AND TEST DATA

Phase II Environmental Site Assessment Kanata Lakes Golf & Country Club Campeau Drive, Ottawa, Ontario

DATUM Ground surface elevations provided by Stantec Geomatics Ltd.

FILE NO. PE4321

REMARKS

BORINGS BY CME 55 Power Auger

BH 3-19

BORINGS BY CME 55 Power Auger DATE 2019 February 26 **SAMPLE Photo Ionization Detector** Monitoring Well Construction STRATA PLOT **DEPTH** ELEV. **SOIL DESCRIPTION** Volatile Organic Rdg. (ppm) (m) (m) RECOVERY N VALUE or RQD NUMBER Lower Explosive Limit % **GROUND SURFACE** 80 0+105.72Asphaltic concrete 0.08 1 FILL: Brown silty sand with gravel and crushed stone 1+104.72SS 2 79 42 RC 1 95 70 2 + 103.723+102.72RC2 100 65 **BEDROCK:** Fractured to very sound, grey to red metamorphic 4+101.72gneiss RC 3 100 100 5+100.726 + 99.72RC 4 100 84 6.83 End of Borehole (GWL @ 3.35m - April 29, 2019) 200 300 500 RKI Eagle Rdg. (ppm) ▲ Full Gas Resp. △ Methane Elim.

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

SOIL PROFILE AND TEST DATA

Phase II Environmental Site Assessment Kanata Lakes Golf & Country Club Campeau Drive, Ottawa, Ontario

DATUM Ground surface elevations provided by Stantec Geomatics Ltd. FILE NO. PE4321 **REMARKS** HOLE NO. **BH 4-19 BORINGS BY** CME 55 Power Auger DATE 2019 February 27 Monitoring Well Construction **SAMPLE Photo Ionization Detector** STRATA PLOT **DEPTH** ELEV. **SOIL DESCRIPTION** Volatile Organic Rdg. (ppm) (m) (m) RECOVERY N VALUE or RQD NUMBER **Lower Explosive Limit % GROUND SURFACE** 80 0+105.38Asphaltic concrete 0.08 1 FILL: Brown silty sand, some 0.20 crushed stone 0.60 SS 2 50 50 +FILL: Brown silty clay, trace topsoil 1 + 104.38GLACIAL TILL: Dense, brown silty1.22 sand with gravel End of Borehole Practical refusal to augering at 1.22m depth 200 300 500 RKI Eagle Rdg. (ppm) ▲ Full Gas Resp. △ Methane Elim.

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

SOIL PROFILE AND TEST DATA

Phase II Environmental Site Assessment Kanata Lakes Golf & Country Club Campeau Drive, Ottawa, Ontario

DATUM Ground surface elevations provided by Stantec Geomatics Ltd. FILE NO. PE4321 **REMARKS** HOLE NO. BH 5-19 **BORINGS BY** CME 55 Power Auger DATE 2019 February 27 Monitoring Well Construction **SAMPLE Photo Ionization Detector** STRATA PLOT **DEPTH** ELEV. **SOIL DESCRIPTION** Volatile Organic Rdg. (ppm) (m) (m) N VALUE or RQD RECOVERY NUMBER **Lower Explosive Limit % GROUND SURFACE** 80 0+105.40Asphaltic concrete 0.10 1 FILL: Brown silty sand with crushed stone and gravel SS 2 50+ 0.99 50 Δ End of Borehole Practical refusal to augering at 0.99m depth 200 300 500 RKI Eagle Rdg. (ppm) ▲ Full Gas Resp. △ Methane Elim.

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

SOIL PROFILE AND TEST DATA

Phase II Environmental Site Assessment Kanata Lakes Golf & Country Club Campeau Drive, Ottawa, Ontario

DATUM Ground surface elevations provided by Stantec Geomatics Ltd.

FILE NO. PE4321

REMARKS

HOLE NO. BORINGS BY CME 55 Power Auger DATE 2019 February 26

BH 6-19 Monitoring Well Construction **SAMPLE Photo Ionization Detector** STRATA PLOT DEPTH ELEV. **SOIL DESCRIPTION** Volatile Organic Rdg. (ppm) (m) (m) RECOVERY N VALUE or RQD NUMBER Lower Explosive Limit % **GROUND SURFACE** 80 0+100.38Brown **SILTY CLAY** with topsoil 0.15 2 1+99.38SS 3 0 10 SS 4 67 9 2 + 98.38SS 5 7 100 3+97.38Very stiff to stiff, brown SILTY CLAY 4+96.38 6 6 SS 100 - grey by 4.6m depth SS 7 100 1 5+95.386 + 94.387+93.38SS 8 100 8 + 92.38GLACIAL TILL: Stiff, grey silty clay SS 9 29 18 with sand, gravel and cobbles, occasional boulders 9+91.38- dense by 9.0m depth - clay content decreasing with depth SS 10 46 62 End of Borehole 200 300 500 RKI Eagle Rdg. (ppm) ▲ Full Gas Resp. △ Methane Elim.

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

SOIL PROFILE AND TEST DATA

Phase II Environmental Site Assessment Kanata Lakes Golf & Country Club Campeau Drive, Ottawa, Ontario

DATUM Ground surface elevations provided by Stantec Geomatics Ltd.

FILE NO.

PE4321

BORINGS BY CME 55 Power Auger DATE 2019 February 25 BH 7-19

BORINGS BY CME 55 Power Auger				D	ATE 2	2019 Feb	ruary 25	ВП /-1	J
SOIL DESCRIPTION	PLOT		SAN	IPLE		DEPTH	ELEV.	Photo Ionization Detector Volatile Organic Rdg. (ppm)	Well ction
	STRATA 1	TYPE	NUMBER	% RECOVERY	N VALUE or RQD	(m)	(m)	Lower Explosive Limit %	Monitoring Well Construction
GROUND SURFACE				α,	-	0-	-98.48	20 40 60 80	_
FILL: Brown silty clay with topsoil, organics, some sand and gravel		AU	1						
1.22		ss 7	2	58	6	1 -	-97.48		
		ss 7	3	75	6	2-	-96.48		
Very stiff to stiff, brown SILTY CLAY		SS	4	96	4	3-	-95.48		
- grey by 3.5m depth		ss	5	100	2	4-	-94.48		
						5-	-93.48		
		ss	6	100	2	6-	-92.48		
		ss	7	100	1	7-	-91.48		
- trace sand and gravel by 8.5m depth		ss	8	100	2	8-	-90.48		
9.20 End of Borehole		ss	9	100	5	9-	-89.48		
Practical refusal to augering at 9.20m depth									
								100 200 300 400 500 RKI Eagle Rdg. (ppm) ▲ Full Gas Resp. △ Methane Elim.)

Ground surface elevations provided by Stantec Geomatics Ltd.

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

DATUM

Phase II Environmental Site Assessment Kanata Lakes Golf & Country Club Campeau Drive, Ottawa, Ontario

SOIL PROFILE AND TEST DATA

FILE NO.

PE4321 **REMARKS** HOLE NO. **BH 8-19 BORINGS BY** CME 55 Power Auger DATE 2019 February 25 **SAMPLE Photo Ionization Detector** Monitoring Well Construction STRATA PLOT **DEPTH** ELEV. **SOIL DESCRIPTION** Volatile Organic Rdg. (ppm) (m) (m) RECOVERY N VALUE or RQD NUMBER **Lower Explosive Limit % GROUND SURFACE** 80 0+98.21TOPSOIL 0.13 1 FILL: Brown silty clay with sand, some gravel 1 + 97.21SS 2 54 11 SS 3 79 8 2 + 96.21SS 4 100 4 3+95.21Very stiff to stiff, brown SILTY CLAY - grey by 3.7m depth 4 + 94.21SS 5 100 11 5 + 93.216 + 92.21SS 6 100 W Grey CLAYEY SILT, trace sand 6.91 SS 7 100 50 +and gravel End of Borehole Practical refusal to augering at 6.91m depth (GWL @ 1.21m - April 29, 2019) 200 300 500 RKI Eagle Rdg. (ppm) ▲ Full Gas Resp. △ Methane Elim.

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

SOIL PROFILE AND TEST DATA

Phase II Environmental Site Assessment Kanata Lakes Golf & Country Club Campeau Drive, Ottawa, Ontario

DATUM Ground surface elevations provided by Stantec Geomatics Ltd.

FILE NO.

PE4321

REMARKS

BORINGS BY CME 55 Power Auger DATE 2019 February 27 BH 9-19

BORINGS BY CME 55 Power Auger				D	ATE 2	2019 Feb	ruary 27		BH 9-1	19
SOIL DESCRIPTION	PLOT		SAN	IPLE		DEPTH	ELEV.		onization Detector le Organic Rdg. (ppm)	Well
GROUND SURFACE	STRATA P	TYPE	NUMBER	» RECOVERY	N VALUE or RQD	(m)	(m)		Explosive Limit %	Monitoring Well Construction
Brown SILTY CLAY with topsoil & 0.10 organics		AU AU	1 2			0-	102.21			
FILL: Brown silty sand with clay, gravel and cobbles, occasional boulders		ss	3	71	19	1 -	101.21			
- grey by 1.4m depth		ss	4	58	28	2-	100.21			
		ss	5	42	8	3-	-99.21			
Very stiff, brown SILTY CLAY		ss	6	100	5	4-	-98.21			
- grey by 5.2m depth 5.61		∇				5-	97.21			
GLACIAL TILL: Stiff, grey silty clay with sand, trace gravel and cobbles,	*	ss ss ss	7 8		23 7	6-	-96.21			
End of Borehole Practical refusal to augering at	[^^^^^	Δ								
6.65m depth										
								RKI E	200 300 400 50 agle Rdg. (ppm) s Resp. △ Methane Elim.	00

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

SOIL PROFILE AND TEST DATA

▲ Full Gas Resp. △ Methane Elim.

Phase II Environmental Site Assessment Kanata Lakes Golf & Country Club Campeau Drive, Ottawa, Ontario

DATUM Ground surface elevations provided by Stantec Geomatics Ltd. FILE NO. PE4321 **REMARKS** HOLE NO. BH10-19 **BORINGS BY** CME 55 Power Auger DATE 2019 February 28 **SAMPLE Photo Ionization Detector** Monitoring Well Construction STRATA PLOT **DEPTH** ELEV. **SOIL DESCRIPTION** Volatile Organic Rdg. (ppm) (m) (m) RECOVERY N VALUE or RQD NUMBER TYPE**Lower Explosive Limit % GROUND SURFACE** 80 0+100.61TOPSOIL 0.10 ΑU 1 FILL: Brown silty clay, trace sand, 2 gravel and topsoil 1 + 99.61SS 3 42 6 FILL: Brown silty sand, some gravel, topsoil and organics SS 4 54 14 2 + 98.61SS 5 75 12 Very stiff, brown SILTY CLAY 3+97.61SS 6 83 10 3.66 4+96.61 7 20 SS 38 **GLACIAL TILL:** Compact to dense, brown silty clay with sand and SS 8 29 27 gravel, occasional cobbles and 5 + 95.61boulders SS 9 56 30 5.74 End of Borehole Practical refusal to augering at 5.74m depth (GWL @ 1.75m - April 29, 2019) 200 300 500 RKI Eagle Rdg. (ppm)

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

SOIL PROFILE AND TEST DATA

Phase II Environmental Site Assessment Kanata Lakes Golf & Country Club Campeau Drive, Ottawa, Ontario

DATUM Ground surface elevations provided by Stantec Geomatics Ltd.

FILE NO.

PE4321

HOLE NO.

BORINGS BY CME 55 Power Auger				D	ATE 2	2019 Feb	ruary 28	,	HOLE	INO.	BH1	1-19
SOIL DESCRIPTION	PLOT		SAN	IPLE		DEPTH	ELEV.	Photo Ic			dg. (ppm)] Well
GROUND SURFACE	STRATA	TYPE	NUMBER	% RECOVERY	N VALUE or RQD	(m)	(m)	O Lower	Expl	osive	Limit %	 Monitoring Well
FILL: Brown silty clay with topsoil,	3	⊠ AU ⊠ AU	1 2			0-	-94.64	20				¥
		ss	3	58	8	1-	-93.64					
Very stiff to stiff, brown SILTY		ss	4	83	3	2-	-92.64					
grey by 3.0m depth		ss	5	100	1	3-	-91.64					
firm by 4.0m depth	2					4-	-90.64					
GLACIAL TILL: Grey silty lay/clayey silt, some sand, trace ravel, occasional cobbles and		ss	6	46	2	5-	-89.64					
ravel, occasional cobbles and oulders sand and gravel increasing with epth	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	∑ ∑ss	7	0	9	6-	-88.64					
7.57	\^^^^ \^^^^ \^^^^	ss	8	38	20	7-	-87.64					
ind of Borehole Practical refusal to augering at .57m depth												
GWL @ 0.15m - April 30, 2019)												
								100 RKI E ▲ Full Ga				500

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

SOIL PROFILE AND TEST DATA

Phase II Environmental Site Assessment Kanata Lakes Golf & Country Club Campeau Drive, Ottawa, Ontario

DATUM Ground surface elevations provided by Stantec Geomatics Ltd.

FILE NO.

PE4321

INGS BY CME 55 Power Auger

DATE 2019 February 28

HOLE NO.

BH12-

BORINGS BY CME 55 Power Auger				D	ATE 2	2019 Feb	ruary 28	BH12-19
SOIL DESCRIPTION	PLOT		SAN	/IPLE	T	DEPTH	ELEV.	onization Detector ile Organic Rdg. (ppm)
GROUND SURFACE	STRATA E	TYPE	NUMBER	% RECOVERY	N VALUE or RQD	(m)	(m)	r Explosive Limit % 40 60 80
FILL: Brown silty clay with sand, trace gravel and topsoil		≱ AU ≱ AU	1 2			0-	-95.64	
1.2	2	ss	3	33	21	1-	94.64	
		ss	4	46	7	2-	-93.64	
		ss	5	96	10	3-	92.64	
Very stiff to stiff, brown SILTY CLAY with sand		SS	6	100	7	4-	-91.64	
- sand content decreasing with depth		ss	7		2	5-	-90.64	
- grey by 5.3m depth								
						6-	-89.64	
		ss	8	100	1	7-	88.64	
8.2 End of Borehole	3					8-	87.64	
(GWL @ 1.46m - April 30, 2019)								
								200 300 400 500 fagle Rdg. (ppm) s Resp. △ Methane Elim.

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

SOIL PROFILE AND TEST DATA

▲ Full Gas Resp. △ Methane Elim.

Phase II Environmental Site Assessment Kanata Lakes Golf & Country Club Campeau Drive, Ottawa, Ontario

DATUM Ground surface elevations provided by Stantec Geomatics Ltd.

FILE NO.

PE4321

HOLE NO. BH13-19 **DATE** 2019 March 7 **BORINGS BY** CME 55 Power Auger **SAMPLE Photo Ionization Detector** Monitoring Wel Construction STRATA PLOT **DEPTH** ELEV. SOIL DESCRIPTION Volatile Organic Rdg. (ppm) (m) (m) RECOVERY VALUE r RQD NUMBER **Lower Explosive Limit %** N o v **GROUND SURFACE** 80 0+102.84FILL: Brown silty sand with topsoil0.18 2 FILL: Brown silty clay with sand and topsoil, trace organics FILL: Brown silty sand 1+101.84SS 3 34 38 - trace clay by 1.7m depth SS 4 50+ 50 - some gravel and cobbles by 2.0m 2 + 100.84depth 2.29 SS 5 79 8 3+99.844 + 98.84SS 6 5 Very stiff to stiff, brown SILTY 88 5+97.846 + 96.84- grey by 6.1m depth SS 7 100 1 7 + 95.84- trace sand and gravel by 7.6m depth 7.72 ////× SS 8 50+ 100 End of Borehole Practical refusal to augering at 7.72m depth (GWL @ 1.38m - April 30, 2019) 200 300 500 RKI Eagle Rdg. (ppm)

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

SOIL PROFILE AND TEST DATA

▲ Full Gas Resp. △ Methane Elim.

Phase II Environmental Site Assessment Kanata Lakes Golf & Country Club Campeau Drive, Ottawa, Ontario

DATUM Ground surface elevations provided by Stantec Geomatics Ltd. FILE NO. PE4321 **REMARKS** HOLE NO. BH14-19 **BORINGS BY** CME 55 Power Auger **DATE** 2019 March 7 Monitoring Well Construction **SAMPLE Photo Ionization Detector** STRATA PLOT **DEPTH** ELEV. SOIL DESCRIPTION Volatile Organic Rdg. (ppm) (m) (m) RECOVERY N VALUE or RQD NUMBER **Lower Explosive Limit % GROUND SURFACE** 80 0+100.90FILL: Brown silty clay with topsoil 0.20 & organics 2 FILL: Brown silty clay with sand, some topsoil, trace gravel 1 + 99.90SS 3 11 TOPSOIL 88 SS 4 92 6 2 + 98.90Very stiff to stiff, brown SILTY SS 5 100 4 3+97.904 + 96.90- firm and grey by 4.6m depth - some sand, trace gravel by 5.2m SS 6 100 1 depth 5+95.906 + 94.90GLACIAL TILL: Grey silty clay with SS 7 33 6 sand and gravel, occ cobbles and boulders ∕⊠ SS 7.01\\^\; 8 100 50 +7 + 93.90End of Borehole Practical refusal to augering at 7.01m depth 200 300 500 RKI Eagle Rdg. (ppm)

Kanata Lakes Golf & Country Club

SOIL PROFILE AND TEST DATA

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Phase II Environmental Site Assessment Campeau Drive, Ottawa, Ontario

DATUM Ground surface elevations provided by Stantec Geomatics Ltd. FILE NO. PE4321 **REMARKS** HOLE NO. BH15-19 **BORINGS BY** CME 55 Power Auger DATE 2019 March 8 **SAMPLE Photo Ionization Detector** Monitoring Wel Construction STRATA PLOT **DEPTH** ELEV. **SOIL DESCRIPTION** Volatile Organic Rdg. (ppm) (m) (m) RECOVERY N VALUE or RQD NUMBER **Lower Explosive Limit % GROUND SURFACE** 80 0+99.08TOPSOIL and brown SILTY CLAY0.15 some gravel 2 1+98.08SS 3 13 54 SS 4 100 9 2 + 97.08SS 5 100 4 3+96.08Very stiff, brown SILTY CLAY 4 + 95.08- firm to stiff and grey by 4.6m depth 5 + 94.086 + 93.08SS 6 100 1 7+92.08- some sand and gravel by 7.6m depth 7 16 8 + 91.088.15 End of Borehole Practical refusal to augering at 8.15m depth (GWL @ 0.12m - April 29, 2019) 200 300 500 RKI Eagle Rdg. (ppm) ▲ Full Gas Resp. △ Methane Elim.

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

SOIL PROFILE AND TEST DATA

Phase II Environmental Site Assessment Kanata Lakes Golf & Country Club Campeau Drive, Ottawa, Ontario

DATUM Ground surface elevations provided by Stantec Geomatics Ltd.

FILE NO. PE4321

REMARKS

BORINGS BY CME 55 Power Auger				0	ATE 2	2019 Mar	ch 8	HOLE NO. BH16-19
SOIL DESCRIPTION	PLOT		SAN	IPLE		DEPTH	ELEV.	Photo Ionization Detector Volatile Organic Rdg. (ppm)
GOIL BEGOTHI TION	STRATA P	TYPE	NUMBER	% RECOVERY	VALUE r RQD	(m)	(m)	Photo Ionization Detector ◆ Volatile Organic Rdg. (ppm) ○ Lower Explosive Limit %
GROUND SURFACE	SI	H	N	REC	N V		07.04	20 40 60 80
FILL: Brown silty clay, some 0.15 topsoil, gravel and organics		& AU	1 2			0-	-97.31	
FILL: Brown silty sand, some gravel 1.22		ss	3	100	13	1 -	-96.31	
		ss	4	100	8	2-	-95.31	
Very stiff to stiff, brown SILTY CLAY						3-	-94.31	
4.57						4-	-93.31	
GLACIAL TILL: Grey silty clay with sand and gravel, occasional cobbles and boulders 5.84		ss	5	42	18	5-	-92.31	
End of Borehole		-						
Practical refusal to augering at 5.84m depth								
(GWL @ 0.11m - April 30, 2019)								
								100 200 300 400 500 RKI Eagle Rdg. (ppm) ▲ Full Gas Resp. △ Methane Elim.

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

SOIL PROFILE AND TEST DATA

Phase II Environmental Site Assessment Kanata Lakes Golf & Country Club Campeau Drive, Ottawa, Ontario

DATUM Ground surface elevations provided by Stantec Geomatics Ltd.

FILE NO. PE4321

REMARKS

BORINGS BY CME 55 Power Auger				Б	ATE '	2019 Mar	ch 13	HOLE NO. BH17-19
	SOIL DESCRIPTION 법			/IPLE	AIL 4	DEPTH	ELEV.	
	STRATA F	TYPE	NUMBER	% RECOVERY	N VALUE or RQD	(m)	(m)	Photo Ionization Detector Volatile Organic Rdg. (ppm) Lower Explosive Limit %
GROUND SURFACE	S.	-	N	REC	z ö			20 40 60 80
FILL: Brown silty clay with topsoil and organics		ă AU ÃU	1 2			0-	-97.15	
- some sand by 0.9m depth		ss	3	75	9	1-	96.15	
1.75		SS RC	4	100	13	2-	-95.15	
		_				3-	-94.15	
BEDROCK: Very sound, grey metamorphic gneiss		RC	2	100	100			
otae.pe ge.ee		- RC	3	100	100	4-	-93.15	
		_	Ü		100	5-	92.15	
(GWL @ 0.10m - April 29, 2019)								
								100 200 300 400 500 RKI Eagle Rdg. (ppm) ▲ Full Gas Resp. △ Methane Elim.

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

SOIL PROFILE AND TEST DATA

Phase II Environmental Site Assessment Kanata Lakes Golf & Country Club Campeau Drive, Ottawa, Ontario

DATUM Ground surface elevations provided by Stantec Geomatics Ltd.

REMARKS

BORINGS BY CME 55 Power Auger

DATE 2019 March 12

FILE NO. PE4321

HOLE NO. BH18-19

DRINGS BY CME 55 Power Auger				D	ATE 2	2019 Mar	ch 12			[*] BH18-	-19
SOIL DESCRIPTION	PLOT		SAN	IPLE	Т	DEPTH	ELEV.			Detector Rdg. (ppm)	Well
GROUND SURFACE		TYPE	NUMBER	% RECOVERY	N VALUE or RQD	(m)	(m)		r Explosi	ve Limit %	Monitorina Well
sphaltic concrete 0.10	0 ****	ă AU	1			0-	-99.05	20	1 1 1 1 1		
LL: Brown silty sand with gravel 0.50 od crushed stone		AU	2 1	100	79						
						1-	-98.05				
EDROCK: Fractured to very		RC	2	100	95	2-	-97.05				
EDROCK: Fractured to very bund, grey metamorphic gneiss vertical seam from 2.5 to 3.0m		_				3-	-96.05				
epth		RC	3	100	58		00.00				
		_				4-	-95.05				
		RC	4	100	100	5-	-94.05				
nd of Borehole5.5	1	_									
GWL @ 2.90m - April 30, 2019)											
								100	200 30	00 400 5	500

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

SOIL PROFILE AND TEST DATA

▲ Full Gas Resp. △ Methane Elim.

Phase II Environmental Site Assessment Kanata Lakes Golf & Country Club Campeau Drive, Ottawa, Ontario

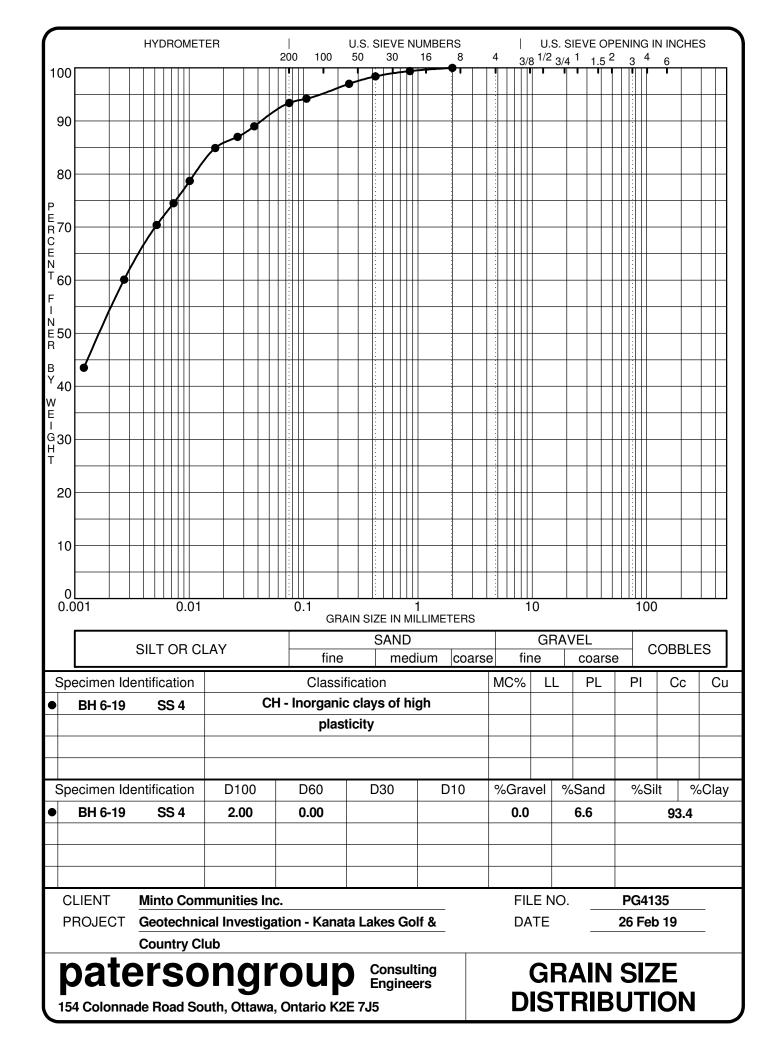
DATUM Ground surface elevations provided by Stantec Geomatics Ltd. FILE NO. PE4321 **REMARKS** HOLE NO. BH19-19 **BORINGS BY** CME 55 Power Auger **DATE** 2019 March 12 **SAMPLE Photo Ionization Detector** Monitoring Well Construction STRATA PLOT **DEPTH** ELEV. **SOIL DESCRIPTION** Volatile Organic Rdg. (ppm) (m) (m) RECOVERY N VALUE or RQD NUMBER **Lower Explosive Limit % GROUND SURFACE** 80 0+96.57**TOPSOIL** 0.15 2 FILL: Brown to grey silty clay, 1 + 95.57SS 3 12 62 some sand and gravel, trace topsoil and organics SS 4 12 20 2 + 94.57SS 5 100 50 +Peat, topsoil and wood 3+93.57SS 6 67 50+ RC 1 100 88 4 + 92.57**BEDROCK:** Sound to very sound, RC 2 100 100 grey to red metamorphic gneiss 5+91.576 + 90.57RC 3 100 98 End of Borehole (GWL @ 0.39m - April 30, 2019) 200 300 500 RKI Eagle Rdg. (ppm)

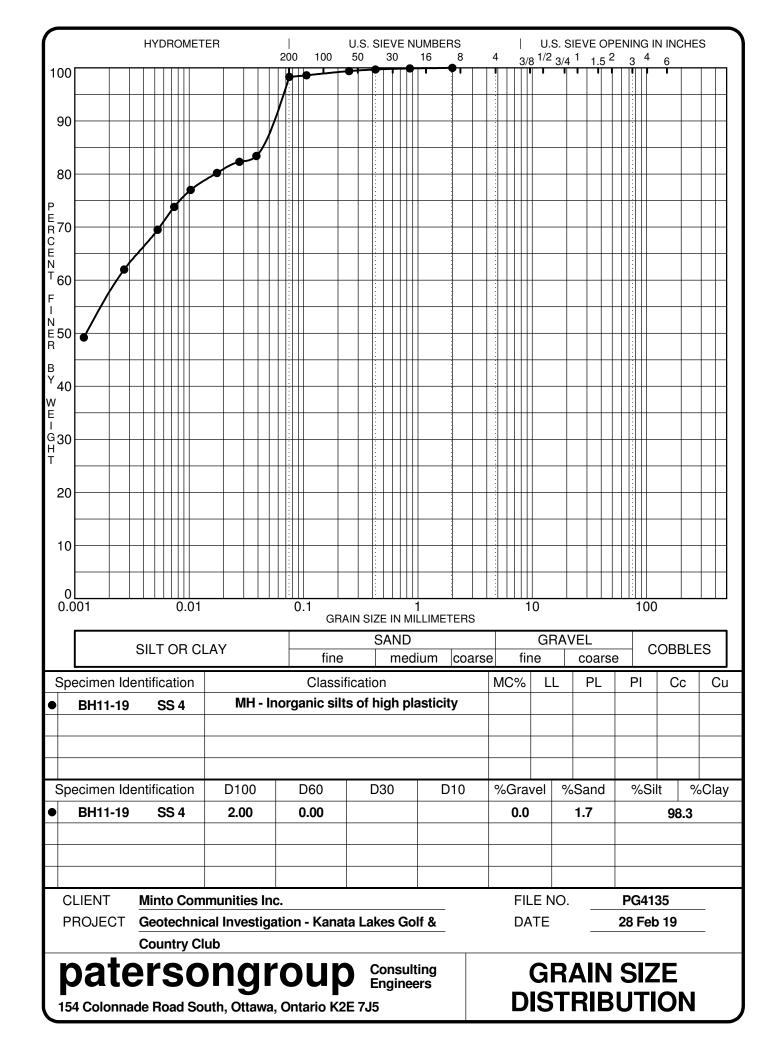
154 Colonnade Road South, Ottawa, Ontario K2E 7J5

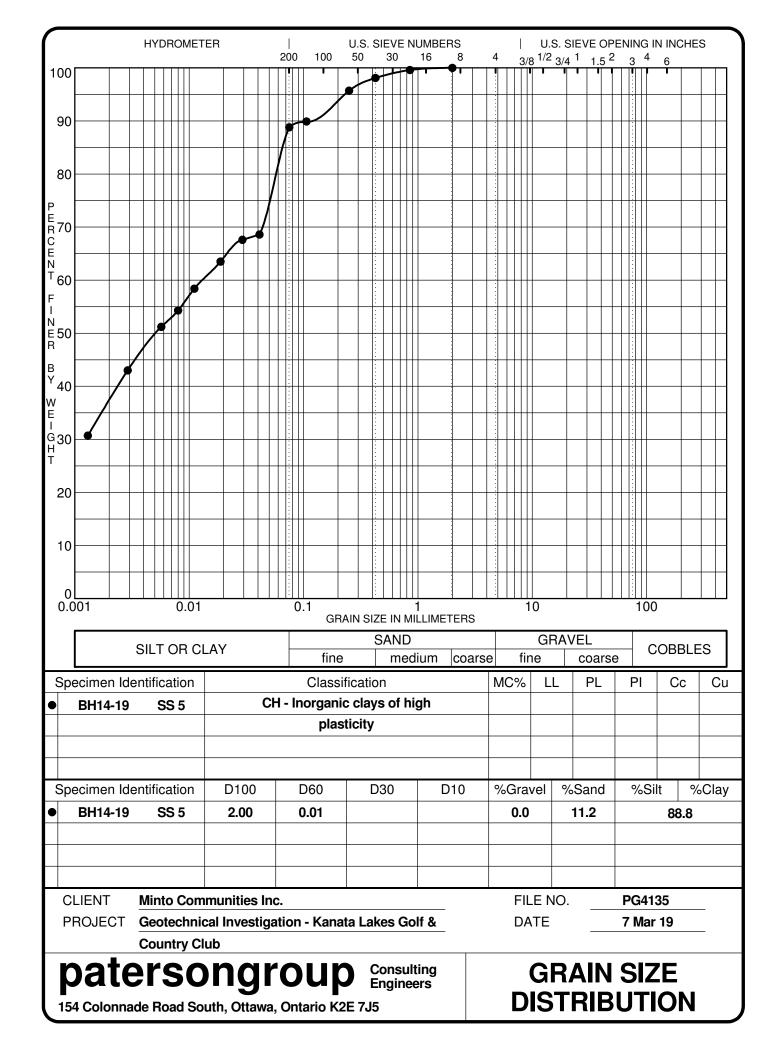
SOIL PROFILE AND TEST DATA

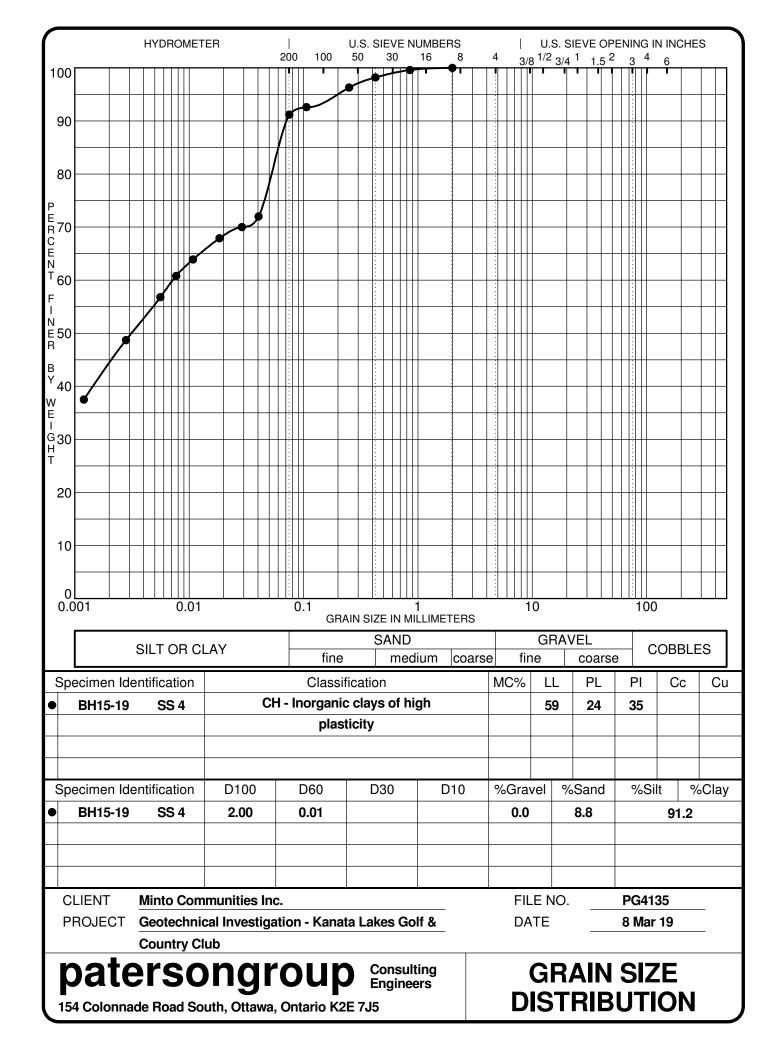
Phase II Environmental Site Assessment Kanata Lakes Golf & Country Club Campeau Drive, Ottawa, Ontario

DATUM Ground surface elevations provided by Stantec Geomatics Ltd.


FILE NO.


PE4321


HOLE NO.


BATE 2019 March 13

BORINGS BY CME 55 Power Auger				D	ATE	2019 Mar	ch 13	HOLE	BH20-	19
SOIL DESCRIPTION	PLOT		SAN	IPLE	1	DEPTH	ELEV.	Photo Ionizat Volatile Org		Mell
GROUND SURFACE	STRATA F	TYPE	NUMBER	% RECOVERY	N VALUE or RQD	(m)	(m)		osive Limit %	Monitoring Well
FILL: Brown silty clay, some sand, gravel, topsoil and organics 0.46	$\sim \sim \sim$	ă AU	1 2	Н.		0-	-97.58	20 40	60 80	
/ery stiff, brown SILTY CLAY		∝ √ ss	3	75	16	1-	-96.58			
some gravel and trace sand by .9m depth1.75		∐ ∑ss	4	62	50+					
		RC	1	100	98	2-	-95.58			
		_				3-	-94.58			
BEDROCK: Very sound, grey netamorphic gneiss		RC	2	100	95					
		_				4-	-93.58			
		RC	3	100	96	5-	-92.58			
		_								
GWL @ 1.21m - April 30, 2019)										
								100 200 RKI Eagle		000

SYMBOLS AND TERMS

SOIL DESCRIPTION

Behavioural properties, such as structure and strength, take precedence over particle gradation in describing soils. Terminology describing soil structure are as follows:

Desiccated	-	having visible signs of weathering by oxidation of clay minerals, shrinkage cracks, etc.
Fissured	-	having cracks, and hence a blocky structure.
Varved	-	composed of regular alternating layers of silt and clay.
Stratified	-	composed of alternating layers of different soil types, e.g. silt and sand or silt and clay.
Well-Graded	-	Having wide range in grain sizes and substantial amounts of all intermediate particle sizes (see Grain Size Distribution).
Uniformly-Graded	-	Predominantly of one grain size (see Grain Size Distribution).

The standard terminology to describe the strength of cohesionless soils is the relative density, usually inferred from the results of the Standard Penetration Test (SPT) 'N' value. The SPT N value is the number of blows of a 63.5 kg hammer, falling 760 mm, required to drive a 51 mm O.D. split spoon sampler 300 mm into the soil after an initial penetration of 150 mm.

Relative Density	'N' Value	Relative Density %
Very Loose	<4	<15
Loose	4-10	15-35
Compact	10-30	35-65
Dense	30-50	65-85
Very Dense	>50	>85

The standard terminology to describe the strength of cohesive soils is the consistency, which is based on the undisturbed undrained shear strength as measured by the in situ or laboratory vane tests, penetrometer tests, unconfined compression tests, or occasionally by Standard Penetration Tests.

Consistency	Undrained Shear Strength (kPa)	'N' Value
Very Soft Soft Firm	<12 12-25 25-50	<2 2-4 4-8
Stiff	50-100	8-15
Very Stiff	100-200	15-30
Hard	>200	>30

SYMBOLS AND TERMS (continued)

SOIL DESCRIPTION (continued)

Cohesive soils can also be classified according to their "sensitivity". The sensitivity is the ratio between the undisturbed undrained shear strength and the remoulded undrained shear strength of the soil.

Terminology used for describing soil strata based upon texture, or the proportion of individual particle sizes present is provided on the Textural Soil Classification Chart at the end of this information package.

ROCK DESCRIPTION

The structural description of the bedrock mass is based on the Rock Quality Designation (RQD).

The RQD classification is based on a modified core recovery percentage in which all pieces of sound core over 100 mm long are counted as recovery. The smaller pieces are considered to be a result of closely-spaced discontinuities (resulting from shearing, jointing, faulting, or weathering) in the rock mass and are not counted. RQD is ideally determined from NXL size core. However, it can be used on smaller core sizes, such as BX, if the bulk of the fractures caused by drilling stresses (called "mechanical breaks") are easily distinguishable from the normal in situ fractures.

RQD %	ROCK QUALITY
90-100	Excellent, intact, very sound
75-90	Good, massive, moderately jointed or sound
50-75	Fair, blocky and seamy, fractured
25-50	Poor, shattered and very seamy or blocky, severely fractured
0-25	Very poor, crushed, very severely fractured

SAMPLE TYPES

SS	-	Split spoon sample (obtained in conjunction with the performing of the Standard Penetration Test (SPT))
TW	-	Thin wall tube or Shelby tube
PS	-	Piston sample
AU	-	Auger sample or bulk sample
WS	-	Wash sample
RC	-	Rock core sample (Core bit size AXT, BXL, etc.). Rock core samples are obtained with the use of standard diamond drilling bits.

SYMBOLS AND TERMS (continued)

GRAIN SIZE DISTRIBUTION

MC% - Natural moisture content or water content of sample, %

Liquid Limit, % (water content above which soil behaves as a liquid)
 PL - Plastic limit, % (water content above which soil behaves plastically)

PI - Plasticity index, % (difference between LL and PL)

Dxx - Grain size which xx% of the soil, by weight, is of finer grain sizes

These grain size descriptions are not used below 0.075 mm grain size

D10 - Grain size at which 10% of the soil is finer (effective grain size)

D60 - Grain size at which 60% of the soil is finer

Cc - Concavity coefficient = $(D30)^2 / (D10 \times D60)$

Cu - Uniformity coefficient = D60 / D10

Cc and Cu are used to assess the grading of sands and gravels:

Well-graded gravels have: 1 < Cc < 3 and Cu > 4 Well-graded sands have: 1 < Cc < 3 and Cu > 6

Sands and gravels not meeting the above requirements are poorly-graded or uniformly-graded.

Cc and Cu are not applicable for the description of soils with more than 10% silt and clay

(more than 10% finer than 0.075 mm or the #200 sieve)

CONSOLIDATION TEST

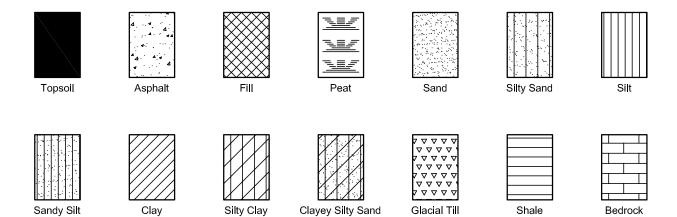
p'₀ - Present effective overburden pressure at sample depth

p'_c - Preconsolidation pressure of (maximum past pressure on) sample

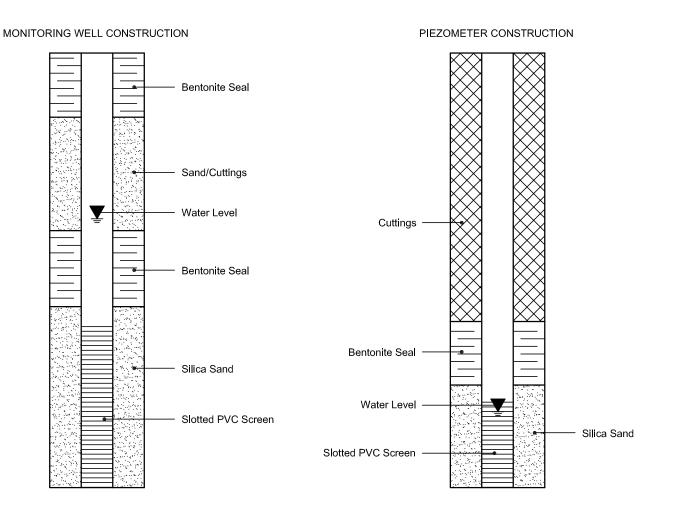
Ccr - Recompression index (in effect at pressures below p'c)
Cc - Compression index (in effect at pressures above p'c)

OC Ratio Overconsolidaton ratio = p'_c/p'_o

Void Ratio Initial sample void ratio = volume of voids / volume of solids


Wo - Initial water content (at start of consolidation test)

PERMEABILITY TEST


Coefficient of permeability or hydraulic conductivity is a measure of the ability of water to flow through the sample. The value of k is measured at a specified unit weight for (remoulded) cohesionless soil samples, because its value will vary with the unit weight or density of the sample during the test.

SYMBOLS AND TERMS (continued)

STRATA PLOT

MONITORING WELL AND PIEZOMETER CONSTRUCTION

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

Paterson Group Consulting Engineers

154 Colonnade Road South

Nepean, ON K2E 7J5 Attn: Karyn Munch

Client PO: 26044 Project: PE4321 Custody: 121015

Report Date: 11-Mar-2019 Order Date: 5-Mar-2019

Order #: 1910254

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID	Client ID
1910254-01	BH1-AU1
1910254-02	BH2-AU1
1910254-03	BH3-AU1
1910254-04	BH4-AU1
1910254-05	BH5-AU1/SS2

Approved By:

Mark Froto

Mark Foto, M.Sc. Lab Supervisor

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Order Date: 11-Mar-2019

Order Date: 5-Mar-2019

Client PO: 26044

Project Description: PE4321

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
BTEX by P&T GC-MS	EPA 8260 - P&T GC-MS	6-Mar-19	7-Mar-19
Chromium, hexavalent - soil	MOE E3056 - Extraction, colourimetric	7-Mar-19	8-Mar-19
Mercury by CVAA	EPA 7471B - CVAA, digestion	8-Mar-19	8-Mar-19
PHC F1	CWS Tier 1 - P&T GC-FID	6-Mar-19	7-Mar-19
PHC F4G (gravimetric)	CWS Tier 1 - Extraction Gravimetric	7-Mar-19	7-Mar-19
PHCs F2 to F4	CWS Tier 1 - GC-FID, extraction	6-Mar-19	6-Mar-19
REG 153: Metals by ICP/MS, soil	EPA 6020 - Digestion - ICP-MS	7-Mar-19	7-Mar-19
Solids, %	Gravimetric, calculation	11-Mar-19	11-Mar-19

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Client PO: 26044 Project Description: PE4321

	Client ID: Sample Date:	BH1-AU1 02/27/2019 09:00	BH2-AU1 02/27/2019 09:00	BH3-AU1 02/26/2019 09:00	BH4-AU1 02/27/2019 09:00
	Sample ID:	1910254-01	1910254-02	1910254-03	1910254-04
	MDL/Units	Soil	Soil	Soil	Soil
Physical Characteristics			1		
% Solids	0.1 % by Wt.	94.0	96.3	97.0	80.1
Metals	1		1		
Antimony	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0
Arsenic	1.0 ug/g dry	2.4	1.2	1.1	2.4
Barium	1.0 ug/g dry	126	156	107	260
Beryllium	0.5 ug/g dry	0.8	<0.5	<0.5	0.6
Boron	5.0 ug/g dry	6.2	9.1	8.0	7.3
Cadmium	0.5 ug/g dry	<0.5	<0.5	<0.5	<0.5
Chromium	5.0 ug/g dry	97.2	23.2	20.6	47.1
Chromium (VI)	0.2 ug/g dry	<0.2	<0.2	<0.2	<0.2
Cobalt	1.0 ug/g dry	10.4	4.4	3.4	9.7
Copper	5.0 ug/g dry	11.2	6.4	6.0	18.1
Lead	1.0 ug/g dry	4.1	5.2	3.9	7.9
Mercury	0.1 ug/g dry	<0.1	0.2	<0.1	0.1
Molybdenum	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0
Nickel	5.0 ug/g dry	30.9	11.4	8.6	21.5
Selenium	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0
Silver	0.3 ug/g dry	<0.3	<0.3	<0.3	<0.3
Thallium	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0
Uranium	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0
Vanadium	10.0 ug/g dry	49.0	19.5	12.2	45.6
Zinc	20.0 ug/g dry	52.4	20.3	<20.0	69.9
Volatiles					_
Benzene	0.02 ug/g dry	-	<0.02	<0.02	-
Ethylbenzene	0.05 ug/g dry	-	<0.05	<0.05	-
Toluene	0.05 ug/g dry	-	<0.05	<0.05	-
m,p-Xylenes	0.05 ug/g dry	-	<0.05	<0.05	-
o-Xylene	0.05 ug/g dry	-	<0.05	<0.05	-
Xylenes, total	0.05 ug/g dry	-	<0.05	<0.05	-
Toluene-d8	Surrogate	-	107%	107%	-
Hydrocarbons					-
F1 PHCs (C6-C10)	7 ug/g dry	-	<7	<7	-
F2 PHCs (C10-C16)	4 ug/g dry	-	14	<4	-
F3 PHCs (C16-C34)	8 ug/g dry	-	47	47	-
F4 PHCs (C34-C50)	6 ug/g dry	-	26	149 [1]	-

Report Date: 11-Mar-2019

Order Date: 5-Mar-2019

Report Date: 11-Mar-2019

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Order Date: 5-Mar-2019 Client PO: 26044 **Project Description: PE4321**

	-				
	Client ID:	BH1-AU1	BH2-AU1	BH3-AU1	BH4-AU1
	Sample Date:	02/27/2019 09:00	02/27/2019 09:00	02/26/2019 09:00	02/27/2019 09:00
	Sample ID:	1910254-01	1910254-02	1910254-03	1910254-04
	MDL/Units	Soil	Soil	Soil	Soil
F4G PHCs (gravimetric)	50 ug/g dry	-	-	443	-
	Client ID:	BH5-AU1/SS2	-	-	-
	Sample Date:	02/27/2019 09:00	-	-	-
	Sample ID:	1910254-05	-	-	-
	MDL/Units	Soil	-	-	-
Physical Characteristics					
% Solids	0.1 % by Wt.	93.5	-	-	-
Volatiles	•		•		-
Benzene	0.02 ug/g dry	< 0.02	-	-	-
Ethylbenzene	0.05 ug/g dry	< 0.05	-	-	-
Toluene	0.05 ug/g dry	< 0.05	-	-	-
m,p-Xylenes	0.05 ug/g dry	< 0.05	-	-	-
o-Xylene	0.05 ug/g dry	<0.05	-	-	-
Xylenes, total	0.05 ug/g dry	< 0.05	-	-	-
Toluene-d8	Surrogate	107%	-	-	-
Hydrocarbons			•		
F1 PHCs (C6-C10)	7 ug/g dry	<7	-	-	-
F2 PHCs (C10-C16)	4 ug/g dry	<4	-	-	-
F3 PHCs (C16-C34)	8 ug/g dry	<8	-	-	-
F4 PHCs (C34-C50)	6 ug/g dry	<6	-	-	-

Certificate of Analysis

Order #: 1910254

Report Date: 11-Mar-2019 Order Date: 5-Mar-2019

Client: Paterson Group Consulting EngineersOrder Date: 5-Mar-2019Client PO: 26044Project Description: PE4321

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	7	ug/g						
F2 PHCs (C10-C16)	ND	4	ug/g						
F3 PHCs (C16-C34)	ND	8	ug/g						
F4 PHCs (C34-C50)	ND	6	ug/g						
F4G PHCs (gravimetric)	ND	50	ug/g						
Metals									
Antimony	ND	1.0	ug/g						
Arsenic	ND	1.0	ug/g						
Barium	ND	1.0	ug/g						
Beryllium	ND	0.5	ug/g						
Boron	ND	5.0	ug/g						
Cadmium	ND	0.5	ug/g						
Chromium (VI)	ND	0.2	ug/g						
Chromium	ND	5.0	ug/g						
Cobalt	ND	1.0	ug/g						
Copper	ND	5.0	ug/g						
Lead	ND	1.0	ug/g						
Mercury	ND	0.1	ug/g						
Molybdenum	ND	1.0	ug/g						
Nickel	ND	5.0	ug/g						
Selenium	ND	1.0	ug/g						
Silver	ND	0.3	ug/g						
Thallium	ND	1.0	ug/g						
Uranium	ND	1.0	ug/g						
Vanadium	ND	10.0	ug/g						
Zinc	ND	20.0	ug/g						
Volatiles									
Benzene	ND	0.02	ug/g						
Ethylbenzene	ND	0.05	ug/g						
Toluene	ND	0.05	ug/g						
m,p-Xylenes	ND	0.05	ug/g						
o-Xylene	ND	0.05	ug/g						
Xylenes, total	ND	0.05	ug/g						
Surrogate: Toluene-d8	7.98		ug/g		99.7	50-140			

Report Date: 11-Mar-2019

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Client: Paterson Group Consulting Engineers
Order Date: 5-Mar-2019
Client PO: 26044
Project Description: PE4321

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	7	ug/g dry	ND				40	
F2 PHCs (C10-C16)	14	4	ug/g dry	14			2.2	30	
F3 PHCs (C16-C34)	49	8	ug/g dry	47			5.3	30	
F4 PHCs (C34-C50)	31	6	ug/g dry	26			18.2	30	
Metals									
Antimony	ND	1.0	ug/g dry	ND			0.0	30	
Arsenic	2.8	1.0	ug/g dry	2.4			15.4	30	
Barium	141	1.0	ug/g dry	126			11.5	30	
Beryllium	1.4	0.5	ug/g dry	0.8			57.1	30	QR-01
Boron	8.7	5.0	ug/g dry	6.2			33.5	30	QR-01
Cadmium	ND	0.5	ug/g dry	ND			0.0	30	
Chromium (VI)	ND	0.2	ug/g dry	ND				35	
Chromium	116	5.0	ug/g dry	97.2			17.7	30	
Cobalt	12.2	1.0	ug/g dry	10.4			16.4	30	
Copper	13.3	5.0	ug/g dry	11.2			17.0	30	
Lead	5.0	1.0	ug/g dry	4.1			19.8	30	
Mercury	ND	0.1	ug/g dry	ND			0.0	30	
Molybdenum	ND	1.0	ug/g dry	ND			0.0	30	
Nickel	36.8	5.0	ug/g dry	30.9			17.7	30	
Selenium	ND	1.0	ug/g dry	ND			0.0	30	
Silver	ND	0.3	ug/g dry	ND			0.0	30	
Thallium	ND	1.0	ug/g dry	ND			0.0	30	
Uranium	ND	1.0	ug/g dry	ND			0.0	30	
Vanadium	58.3	10.0	ug/g dry	49.0			17.2	30	
Zinc	61.5	20.0	ug/g dry	52.4			16.1	30	
Physical Characteristics									
% Solids	78.8	0.1	% by Wt.	78.4			0.4	25	
Volatiles									
Benzene	ND	0.02	ug/g dry	ND				50	
Ethylbenzene	ND	0.05	ug/g dry	ND				50	
Toluene	ND	0.05	ug/g dry	ND				50	
m,p-Xylenes	ND	0.05	ug/g dry	ND				50	
o-Xylene	ND	0.05	ug/g dry	ND				50	
Surrogate: Toluene-d8	<i>9.73</i>		ug/g dry		105	50-140			

Certificate of Analysis

Order #: 1910254

Report Date: 11-Mar-2019 Order Date: 5-Mar-2019

Client: Paterson Group Consulting EngineersOrder Date: 5-Mar-2019Client PO: 26044Project Description: PE4321

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	173	7	ug/g		86.3	80-120			
F2 PHCs (C10-C16)	98	4	ug/g	14	101	60-140			
F3 PHCs (C16-C34)	273	8	ug/g	47	111	60-140			
F4 PHCs (C34-C50)	182	6	ug/g	26	121	60-140			
F4G PHCs (gravimetric)	960	50	ug/g		96.0	80-120			
Metals									
Antimony	43.9		ug/L	ND	87.6	70-130			
Arsenic	48.9		ug/L	1.0	95.8	70-130			
Barium	98.5		ug/L	50.2	96.6	70-130			
Beryllium	49.9		ug/L	ND	99.1	70-130			
Boron	48.5		ug/L	ND	92.0	70-130			
Cadmium	47.3		ug/L	ND	94.4	70-130			
Chromium (VI)	0.2		mg/L	ND	90.0	70-130			
Chromium	84.7		ug/L	38.9	91.5	70-130			
Cobalt	48.9		ug/L	4.2	89.5	70-130			
Copper	51.1		ug/L	ND	93.2	70-130			
Lead	45.9		ug/L	1.7	88.5	70-130			
Mercury	1.64	0.1	ug/g	ND	109	70-130			
Molybdenum	48.8		ug/L	ND	97.1	70-130			
Nickel	60.5		ug/L	12.3	96.3	70-130			
Selenium	46.1		ug/L	ND	91.9	70-130			
Silver	45.6		ug/L	ND	91.2	70-130			
Thallium	47.3		ug/L	ND	94.4	70-130			
Uranium	48.2		ug/L	ND	95.9	70-130			
Vanadium	69.4		ug/L	19.6	99.6	70-130			
Zinc	65.2		ug/L	20.9	88.5	70-130			
Volatiles									
Benzene	3.74	0.02	ug/g		93.6	60-130			
Ethylbenzene	3.61	0.05	ug/g		90.2	60-130			
Toluene	3.35	0.05	ug/g		83.6	60-130			
m,p-Xylenes	7.36	0.05	ug/g		92.0	60-130			
o-Xylene	3.63	0.05	ug/g		90.8	60-130			
Surrogate: Toluene-d8	8.92		ug/g		111	50-140			

Certificate of Analysis

Order #: 1910254

Report Date: 11-Mar-2019 Order Date: 5-Mar-2019 **Project Description: PE4321**

Client: Paterson Group Consulting Engineers

Client PO: 26044

Project

Qualifier Notes:

Sample Qualifiers:

1: GC-FID signal did not return to baseline by C50

QC Qualifiers:

QR-01: Duplicate RPD is high, however, the sample result is less than 10x the MDL.

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected

MDL: Method Detection Limit

Source Result: Data used as source for matrix and duplicate samples

%REC: Percent recovery.

RPD: Relative percent difference.

Soil results are reported on a dry weight basis when the units are denoted with 'dry'. Where %Solids is reported, moisture loss includes the loss of volatile hydrocarbons.

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.
- F1 range corrected for BTEX.
- F2 to F3 ranges corrected for appropriate PAHs where available.
- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.
- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.

GPARACEL

LABORATORIES LTD.

TRUS RESP

fice 9 St. Laurent Blvd. Ontario K1G 4J8 -749-1947 el@paracellabs.com Chain of Custody
(Lab Use Only)
NO 121015

David		44.4	
Pag	15	-01	
2.77	,		

Client Name: Paterson Group ha				Project Reference:	PE4	32	1									Turna	rounc	Time	:
Contact Name: Karun Munch				Quote#											□ 1 Da	ay		□3 D	ay
Address: 154 Lotonnado Roc Telephone: (013: 226: 738)			550,000	W/ 1077 107	unch (-		_			□ 2 Date F	Requir	ed:	Reg	gular
Criteria: XO. Reg. 153/04 (As Amended) Table								ed A			777	100	0						
Matrix Type: S (Soil/Sed.) GW (Ground Water) SW (Surface Water	r) SS (Storius	anitary S	1000	Tanni) A(Ait) O(Others	- 0			- T	T	_		3						
Paracel Order Number:	ķi	Air Volume	Containers	Sample	Taken	SFI-F4+BTE	53	1s	als by ICP		T the second	Th. 1	HOE KENKIO						
Sample ID/Location Name	Matrix	Air	Jo #	Date	Time	PHCs	VOCS	PAHS	Metals	H.	5.5	-	7			_			
" BHI-AUI 120	S			Feb.27 19					V	V	/	+	+			_	_	-	-
BHQ. AUI	S	d	3	Feb. 27/19		V			V	M	4	+	1					-	-
3 BH3-AU1	S		2	Feb.26/19		V		Ц	V,	4	1	1	4			_			
· 4 BH4-AU	S			Feb. 27/19			1	Н	V	V	V	+	-	_	_		-	-	-
· 5 BH5-AUI/SSA	S		2	Feb. 27/19		V		Ц		4	-	1	7	1	1 1		, ,	0	-
· BHB - AUI	S	1		Feb. 26/19		_		Ц	Ц	4	+	(1	4	1	M	12	11	7.	
" BH8 - AU 120	S			Feb.25/19						4	4	1	4		2	Y .			-
· BHIO-AUI 20	S		1	Eb.78/19			_			4	+	1	4	_	Ve	Ca	Adv	MC	319
9						+	L		Н	+	+	+	+		_	_	-	-	-
10							L			_						Mathod	of Deliv	erv:	
Comments:																1		100	vi-es
Relinquished By (Sign): Murch	Receive	Elling.	iver Depo	Mends	1	ived at 1		don	8			5 13		Plo	WA	lad	/ 12	1711	,
Relinquished By (Print) (MUX)	Date/Ti	ime: 6	5/	03/19 9	1/5 Date	Time:	52	2	11	4	37	<u> </u>			ne. O			1711	
Date/Time:	Temper	nature:		(,	PH Ten	perature	6	10	40				11	17.141	men []	7	-	-	

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Subcontracted Analysis

Paterson Group Consulting Engineers

154 Colonnade Road South

Nepean, ON K2E 7J5

Tel: (613) 226-7381

Fax: (613) 226-6344

Attn: Karyn Munch

 Paracel Report No
 1910254
 Order Date:
 05-Mar-19

 Client Project(s):
 PE4321
 Report Date:
 11-Mar-19

Client PO: **26044**

Reference: Standing Offer

CoC Number: **121015**

Sample(s) from this project were subcontracted for the listed parameters. A copy of the subcontractor's report is attached

Paracel ID	Client ID	Analysis
1910254-03	BH3-AU1	Pesticides - Organochlorine in soil
1910254-06	BH6-AU1	Pesticides - Organochlorine in soil
1910254-07	BH8-AU1	Pesticides - Organochlorine in soil
1910254-08	BH10-AU1	Pesticides - Organochlorine in soil

Dale Robertson

CERTIFICATE OF ANALYSIS

 Company:
 Paracel Laboratories Ltd.- Ottawa
 PO #:

 Address:
 300-2319 St. Laurent Blvd.
 Regulation:
 O.Reg 153 Table 1 Soil Res/Park/Inst/Ind/Commer/Comm

 Ottawa, ON, K1G 4J8
 Project #:
 1910254

 Phone/Fax:
 (613) 731-9577 / (613) 731-9064
 DWS #:

Work Order Number:

367262

 Phone/Fax:
 (613) 731-9577 / (613) 731-9064
 DWS #:

 Email:
 drobertson@paracellabs.com
 Sampled By:

Date Order Received: 3/12/2019
Arrival Temperature: 7 °C
Analysis Started: 3/15/2019
Analysis Completed: 3/19/2019

WORK ORDER SUMMARY

Client:

ANALYSES WERE PERFORMED ON THE FOLLOWING SAMPLES. THE RESULTS RELATE ONLY TO THE ITEMS TESTED.

Sample Description	Lab ID	Matrix	Туре	Comments	Date Collected	Time Collected
BH3-AU1	1421877	Soil	None		2/26/2019	
BH6-AU1	1421878	Soil	None		2/26/2019	
BH8-AU1	1421879	Soil	None		2/25/2019	
BH10-AU1	1421880	Soil	None		2/28/2019	

METHODS AND INSTRUMENTATION

THE FOLLOWING METHODS WERE USED FOR YOUR SAMPLE(S):

Method	Lab	Description	Reference
Moisture (A99)	Garson	Determination of Percent Moisture	In House
OCPs Soil (A19)	Garson	Determination of Organochlorine Pesticides in Soil by GC/ECD	Modified from SW846-8081B

Paracel Laboratories Ltd.- Ottawa Work Order Number: 367262

This report has been approved by:

Khaled Omari, Ph.D. Laboratory Director

Paracel Laboratories Ltd.- Ottawa Work Order Number: 367262

WORK ORDER RESULTS

Sample Description Lab ID	BH3 -		BH6 -		BH8 -		BH10 1421			
General Chemistry	Result	MDL	Result	MDL	Result	MDL	Result	MDL	Units	Criteria: O.Reg 153 Table 1 Soil Res/Park/Inst/Ind/ Commer/Comm
% Moisture	2.8	0.1	35.4	0.1	25.8	0.1	15.9	0.1	%	~
Sample Description Lab ID	BH3 -		BH6 -		BH8 -		BH10 1421			
OC Pesticides	Result	MDL	Result	MDL	Result	MDL	Result	MDL	Units	Criteria: O.Reg 153 Table 1 Soil Res/Park/Inst/Ind/ Commer/Comm
2,4'-DDD	<0.01	0.01	<0.009	0.009	<0.009	0.009	<0.01	0.01	μg/g	~
2,4'-DDE	<0.01	0.01	<0.009	0.009	<0.009	0.009	<0.01	0.01	μg/g	~
2,4'-DDT	<0.01	0.01	<0.009	0.009	<0.009	0.009	<0.01	0.01	μg/g	~
4,4'-DDD	<0.01	0.01	<0.009	0.009	<0.009	0.009	<0.01	0.01	μg/g	~
4,4'-DDE	<0.01	0.01	<0.009	0.009	<0.009	0.009	<0.01	0.01	μg/g	~
4,4'-DDT	<0.01	0.01	<0.009	0.009	<0.009	0.009	<0.01	0.01	μg/g	~
Aldrin	<0.01	0.01	<0.009	0.009	<0.009	0.009	<0.01	0.01	μg/g	0.05
DDD (Total) (Calc.)	<0.01	0.01	<0.009	0.009	<0.009	0.009	<0.01	0.01	μg/g	0.05
DDE (Total) (Calc.)	<0.01	0.01	<0.009	0.009	<0.009	0.009	<0.01	0.01	μg/g	0.05
DDT (Total) (Calc.)	<0.01	0.01	<0.009	0.009	<0.009	0.009	<0.01	0.01	μg/g	1.4
Decachlorobiphenyl (Surr.)	74	N/A	76	N/A	73	N/A	93	N/A	% Rec	~
Dieldrin	<0.01	0.01	<0.009	0.009	<0.009	0.009	<0.01	0.01	μg/g	0.05
Endosulfan I	<0.01	0.01	<0.009	0.009	<0.009	0.009	<0.01	0.01	μg/g	~
Endosulfan I + II (Calc.)	<0.01	0.01	<0.009	0.009	<0.009	0.009	<0.01	0.01	μg/g	0.04
Endosulfan II	<0.01	0.01	<0.009	0.009	<0.009	0.009	<0.01	0.01	μg/g	~
Endosulfan sulfate	<0.01	0.01	<0.009	0.009	<0.009	0.009	<0.01	0.01	μg/g	~

Paracel Laboratories Ltd.- Ottawa Work Order Number: 367262

Sample Description	ion BH3 - AU1		BH6	- AU1	вня	- AU1	BH10	- AU1		
Lab ID	142	1877	142	1421878 1421		1879	142	1880		
OC Pesticides	Result	MDL	Result	MDL	Result	MDL	Result	MDL	Units	Criteria: O.Reg 153 Table 1 Soil Res/Park/Inst/Ind/ Commer/Comm
Endrin	<0.01	0.01	<0.009	0.009	<0.009	0.009	<0.01	0.01	μg/g	0.04
Endrin aldehyde	<0.01	0.01	<0.009	0.009	<0.009	0.009	<0.01	0.01	μg/g	~
Heptachlor	<0.01	0.01	<0.009	0.009	<0.009	0.009	<0.01	0.01	μg/g	0.05
Heptachlor epoxide	<0.01	0.01	<0.009	0.009	<0.009	0.009	<0.01	0.01	μg/g	0.05
Hexachlorobenzene	<0.01	0.01	<0.009	0.009	<0.009	0.009	<0.01	0.01	μg/g	0.01
Hexachlorobutadiene	<0.01	0.01	<0.009	0.009	<0.009	0.009	<0.01	0.01	μg/g	0.01
Hexachloroethane	<0.01	0.01	<0.009	0.009	<0.009	0.009	<0.01	0.01	μg/g	0.01
Methoxychlor	<0.01	0.01	<0.009	0.009	<0.009	0.009	<0.01	0.01	μg/g	0.05
Mirex	<0.01	0.01	<0.009	0.009	<0.009	0.009	<0.01	0.01	μg/g	~
Oxychlordane	<0.01	0.01	<0.009	0.009	<0.009	0.009	<0.01	0.01	μg/g	~
ß-BHC	<0.01	0.01	<0.009	0.009	<0.009	0.009	<0.01	0.01	μg/g	~
α - Chlordane	<0.01	0.01	<0.009	0.009	<0.009	0.009	<0.01	0.01	μg/g	~
α + γ -Chlordane (Calc.)	<0.01	0.01	<0.009	0.009	<0.009	0.009	<0.01	0.01	μg/g	0.05
α-BHC	<0.01	0.01	<0.009	0.009	<0.009	0.009	<0.01	0.01	μg/g	~
γ - Chlordane	<0.01	0.01	<0.009	0.009	<0.009	0.009	<0.01	0.01	μg/g	~
γ-BHC (Lindane)	<0.01	0.01	<0.009	0.009	<0.009	0.009	<0.01	0.01	μg/g	0.01
δ-BHC	<0.01	0.01	<0.009	0.009	<0.04	0.04	<0.04	0.04	μg/g	~

Paracel Laboratories Ltd.- Ottawa Work Order Number: 367262

LEGEND

Dates: Dates are formatted as mm/dd/year throughout this report.

[rr]: After a parameter name indicates a re-run of that parameter. Sample may not have been handled according to the recommended temperature, hold time and head space requirements of the method after the initial analysis.

MDL: Method detection limit or minimum reporting limit.

~: In a criteria column indicates the criteria is not applicable for the parameter row.

Quality Control: All associated Quality Control data is available on request.

Exceedences: HIGHLIGHTED CELLS INDICATE THAT THE RESULT EXCEEDS A REGULATORY LIMIT. CALCULATED UNCERTAINTY ESTIMATIONS ARE NOT APPLIED FOR DETERMINING SAMPLE EXCEEDANCES.

Benzo(b)fluoranthene: Results for benzo(b)fluoranthene may include contributions from benzo(j)fluoranthene.

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

Paterson Group Consulting Engineers

154 Colonnade Road South

Nepean, ON K2E 7J5 Attn: Karyn Munch

Client PO: 26046 Project: PE4321 Custody: 121038

Report Date: 18-Mar-2019 Order Date: 12-Mar-2019

Order #: 1911240

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID Client ID 1911240-01 BH13-SS3

Approved By:

Mark Foto

Mark Foto, M.Sc. Lab Supervisor

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Order Date: 18-Mar-2019

Order Date: 12-Mar-2019

Client PO: 26046

Project Description: PE4321

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
Boron, available	MOE (HWE), EPA 200.7 - ICP-OES	15-Mar-19	15-Mar-19
Chromium, hexavalent - soil	MOE E3056 - Extraction, colourimetric	15-Mar-19	15-Mar-19
Mercury by CVAA	EPA 7471B - CVAA, digestion	15-Mar-19	15-Mar-19
REG 153: Metals by ICP/MS, soil	EPA 6020 - Digestion - ICP-MS	15-Mar-19	15-Mar-19
Solids, %	Gravimetric, calculation	14-Mar-19	14-Mar-19

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Client PO: 26046

Report Date: 18-Mar-2019 Order Date: 12-Mar-2019

Project Description: PE4321

	Client ID:	BH13-SS3	- 1	_	_
	Sample Date:	03/06/2019 09:00	-	-	-
	Sample ID:	1911240-01	-	-	-
	MDL/Units	Soil	-	-	-
Physical Characteristics					
% Solids	0.1 % by Wt.	85.9	-	-	=
Metals	-		-		•
Antimony	1.0 ug/g dry	<1.0	-	-	-
Arsenic	1.0 ug/g dry	1.2	-	-	-
Barium	1.0 ug/g dry	36.4	-	-	-
Beryllium	0.5 ug/g dry	<0.5	-	-	-
Boron	5.0 ug/g dry	<5.0	-	-	-
Boron, available	0.5 ug/g dry	<0.5	-	-	-
Cadmium	0.5 ug/g dry	<0.5	-	-	-
Chromium	5.0 ug/g dry	12.2	-	-	-
Chromium (VI)	0.2 ug/g dry	<0.2	-	-	-
Cobalt	1.0 ug/g dry	3.9	-	-	-
Copper	5.0 ug/g dry	9.7	-	-	-
Lead	1.0 ug/g dry	1.9	-	-	-
Mercury	0.1 ug/g dry	<0.1	-	-	-
Molybdenum	1.0 ug/g dry	<1.0	-	-	-
Nickel	5.0 ug/g dry	6.6	-	-	-
Selenium	1.0 ug/g dry	<1.0	-	-	-
Silver	0.3 ug/g dry	<0.3	-	-	-
Thallium	1.0 ug/g dry	<1.0	-	-	-
Uranium	1.0 ug/g dry	<1.0	-	-	-
Vanadium	10.0 ug/g dry	24.2	-	-	-
Zinc	20.0 ug/g dry	<20.0	-	-	-

Certificate of Analysis

Order #: 1911240

Report Date: 18-Mar-2019 Order Date: 12-Mar-2019

Client: Paterson Group Consulting EngineersOrder Date: 12-Mar-2019Client PO: 26046Project Description: PE4321

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Metals									
Antimony	ND	1.0	ug/g						
Arsenic	ND	1.0	ug/g						
Barium	ND	1.0	ug/g						
Beryllium	ND	0.5	ug/g						
Boron, available	ND	0.5	ug/g						
Boron	ND	5.0	ug/g						
Cadmium	ND	0.5	ug/g						
Chromium (VI)	ND	0.2	ug/g						
Chromium `	ND	5.0	ug/g						
Cobalt	ND	1.0	ug/g						
Copper	ND	5.0	ug/g						
Lead	ND	1.0	ug/g						
Mercury	ND	0.1	ug/g						
Molybdenum	ND	1.0	ug/g						
Nickel	ND	5.0	ug/g						
Selenium	ND	1.0	ug/g						
Silver	ND	0.3	ug/g						
Thallium	ND	1.0	ug/g						
Uranium	ND	1.0	ug/g						
Vanadium	ND	10.0	ug/g						
Zinc	ND	20.0	ug/g						

Report Date: 18-Mar-2019

Certificate of Analysis **Client: Paterson Group Consulting Engineers**

Order Date: 12-Mar-2019 Client PO: 26046 **Project Description: PE4321**

Method Quality Control: Duplicate

		Reporting		Source		%REC		RPD	
Analyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes
Metals									
Antimony	ND	1.0	ug/g dry	ND			0.0	30	
Arsenic	2.6	1.0	ug/g dry	2.5			6.8	30	
Barium	167	1.0	ug/g dry	166			0.6	30	
Beryllium	1.0	0.5	ug/g dry	0.9			2.8	30	
Boron, available	7.03	0.5	ug/g dry	7.19			2.2	35	
Boron	7.5	5.0	ug/g dry	7.3			3.5	30	
Cadmium	ND	0.5	ug/g dry	ND			0.0	30	
Chromium (VI)	ND	0.2	ug/g dry	ND				35	
Chromium	40.8	5.0	ug/g dry	40.3			1.0	30	
Cobalt	11.5	1.0	ug/g dry	10.7			7.0	30	
Copper	14.9	5.0	ug/g dry	14.2			4.5	30	
Lead	7.2	1.0	ug/g dry	7.3			1.6	30	
Mercury	ND	0.1	ug/g dry	ND			0.0	30	
Molybdenum	ND	1.0	ug/g dry	ND			0.0	30	
Nickel	21.9	5.0	ug/g dry	21.3			2.8	30	
Selenium	ND	1.0	ug/g dry	ND			0.0	30	
Silver	0.3	0.3	ug/g dry	ND			0.0	30	
Thallium	ND	1.0	ug/g dry	ND			0.0	30	
Uranium	ND	1.0	ug/g dry	ND			0.0	30	
Vanadium	55.9	10.0	ug/g dry	55.3			1.1	30	
Zinc	66.4	20.0	ug/g dry	67.5			1.7	30	
Physical Characteristics									
% Solids	83.3	0.1	% by Wt.	83.8			0.6	25	
			•						

Certificate of Analysis

Order #: 1911240

Report Date: 18-Mar-2019 Order Date: 12-Mar-2019

Client: Paterson Group Consulting EngineersOrder Date: 12-Mar-2019Client PO: 26046Project Description: PE4321

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Metals									
Antimony	41.5		ug/L	ND	82.8	70-130			
Arsenic	44.9		ug/L	1.0	87.8	70-130			
Barium	118		ug/L	66.4	102	70-130			
Beryllium	46.0		ug/L	ND	91.2	70-130			
Boron, available	12.0	0.5	ug/g	7.19	97.1	70-122			
Boron	44.8		ug/L	ND	83.7	70-130			
Cadmium	44.2		ug/L	ND	88.3	70-130			
Chromium (VI)	0.2		mg/L	ND	89.5	70-130			
Chromium	59.9		ug/L	16.1	87.5	70-130			
Cobalt	45.8		ug/L	4.3	83.1	70-130			
Copper	50.4		ug/L	5.7	89.3	70-130			
Lead	45.9		ug/L	2.9	85.9	70-130			
Mercury	1.44	0.1	ug/g	ND	95.8	70-130			
Molybdenum	44.0		ug/L	ND	87.8	70-130			
Nickel	53.6		ug/L	8.5	90.1	70-130			
Selenium	43.5		ug/L	ND	86.5	70-130			
Silver	43.4		ug/L	ND	86.6	70-130			
Thallium	41.6		ug/L	ND	82.9	70-130			
Uranium	43.3		ug/L	ND	85.9	70-130			
Vanadium	70.1		ug/L	22.1	95.9	70-130			
Zinc	70.0		ug/L	27.0	86.1	70-130			

Certificate of Analysis

Order #: 1911240

Report Date: 18-Mar-2019 Order Date: 12-Mar-2019

Client: Paterson Group Consulting EngineersOrder Date: 12-Mar-2019Client PO: 26046Project Description: PE4321

Qualifier Notes:

None

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected

MDL: Method Detection Limit

Source Result: Data used as source for matrix and duplicate samples

%REC: Percent recovery.

RPD: Relative percent difference.

Soil results are reported on a dry weight basis when the units are denoted with 'dry'. Where %Solids is reported, moisture loss includes the loss of volatile hydrocarbons.

LABORATORIES LTD.

Temperature.

Head Office 300-2319 St. Laurent Blvd. Ottawa, Ontario K1G 4J8 p: 1-800-749-1947 e: paracel@paracellabs.com Chain of Custody (Lab Use Only) Nº 121038

pH Verified [] By

															rag	or		
Client Name: Paterson Corocop Inc	•			Project Reference	PE43	21									Turna	iround	l Time:	
Contact Name: Kanan Munch				Quote #										010)ay		□ 3 Da	ıy
Address: 154 Lolonnade RdS.				PO# 2(OO4)6 Email Address:									□ 2 Day			Regi	ular	
Telephone: 613 . 226 . 7381											Date	Requir	ed:					
Criteria: 40. Reg. 153/04 (As Amended) Table _ □ RSC Filing □ O. Reg. 558/00 □ PWQO					□ PWQO □ CCME □ SUB (Storm) □ SUB (Sanitary) Municipality: □ Other:													
Matrix Type: S (Soil/Sed.) GW (Ground Water) SW (Surfa	ace Water) SS (Storm:	Sanitary S	ewer) P	(Paint) A (Air) O (Other)	Re	quir	ed A	naly	ses								
Paracel Order Number:		Air Volume	of Containers	Sample	Taken	F1-F4+BTEX			s by ICP			vs)						
Sample ID/Location Name	Matrix	Air V	Jo #	Date	Time	PHCs	VOCS	PAHs	Metals	Hg	CrVI	B (HW			711			
1 BH13-SS3	S		1	Mar.6/19					V	V	V			1	200	nb		12
2						1												
3						_									_			_
4						-			_		_			-	-			
5			_			+					Н		_		-			_
6							_	_	-	_	-							_
7			_			+		_	_	_	_		_		-			_
8		_	-	-		+	_	H	-	_	_	-	_	-	-			
9		_	-			+	-	_		-	-				-	-		-
10										_			_		Method	of Delive	100	
Comments: For on UTO = C	RACK EO.															vac		
Relinquished By (Sign):			1.	/court		ved at 1						(MAI)	Verified J	884	00	am	15	0
Relinquished By (Print): Kich St Fier	P Date/Ti	me: //	210.	3/19 4	O Date/	Time;	MA	KI	1.9	SHO		05.05	Date/10	WK(N)	this	15	5	

Date Time:

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Subcontracted Analysis

Paterson Group Consulting Engineers

154 Colonnade Road South

Nepean, ON K2E 7J5

Tel: (613) 226-7381

Fax: (613) 226-6344

Attn: Karyn Munch

 Paracel Report No
 1911246
 Order Date:
 12-Mar-19

 Client Project(s):
 PE4321
 Report Date:
 19-Mar-19

Client PO: **26046**

Reference: Standing Offer

CoC Number:

Sample(s) from this project were subcontracted for the listed parameters. A copy of the subcontractor's report is attached

Paracel ID	Client ID	Analysis
1911246-01	BH9-AU1	Pesticides - Organochlorine in soil
1911246-02	BH12-AU1	Pesticides - Organochlorine in soil
1911246-03	BH13-AU1	Pesticides - Organochlorine in soil
1911246-04	BH15-AU1	Pesticides - Organochlorine in soil

Dale Robertson

CERTIFICATE OF ANALYSIS

Company: Paracel Laboratories Ltd.- Ottawa PO #:

Address: 300-2319 St. Laurent Blvd. Regulation: None
Ottawa, ON, K1G 4J8 Project #: 1911246

Work Order Number:

367480

 Phone/Fax:
 (613) 731-9577 / (613) 731-9064
 DWS #:

 Email:
 drobertson@paracellabs.com
 Sampled By:

Date Order Received: 3/14/2019 Analysis Started: 3/15/2019
Arrival Temperature: 10 °C Analysis Completed: 3/19/2019

WORK ORDER SUMMARY

Client:

ANALYSES WERE PERFORMED ON THE FOLLOWING SAMPLES. THE RESULTS RELATE ONLY TO THE ITEMS TESTED.

Sample Description	Lab ID	Matrix	Туре	Comments	Date Collected	Time Collected
BH9-AU1	1422443	Soil	None		2/27/2019	
BH12-AU1	1422444	Soil	None		2/28/2019	
BH13-AU1	1422445	Soil	None		3/6/2019	
BH15-AU1	1422446	Soil	None		3/8/2019	

METHODS AND INSTRUMENTATION

THE FOLLOWING METHODS WERE USED FOR YOUR SAMPLE(S):

Method	Lab	Description	Reference
Moisture (A99)	Garson	Determination of Percent Moisture	In House
OCPs Soil (A19)	Garson	Determination of Organochlorine Pesticides in Soil by GC/ECD	Modified from SW846-8081B

Paracel Laboratories Ltd.- Ottawa Work Order Number: 367480

This report has been approved by:

Khaled Omari, Ph.D. Laboratory Director

BH9 - AU1

CERTIFICATE OF ANALYSIS

Paracel Laboratories Ltd.- Ottawa Work Order Number: 367480

WORK ORDER RESULTS

Sample Description

Sample Description Lab ID		- AU1 2443	BH12 1422	- AU1 2444		- AU1 2445		- AU1 2446		
General Chemistry	Result	MDL	Result	MDL	Result	MDL	Result	MDL	Units	Criteria: [No Reg - Always Include Reg Report]
% Moisture	22.4	0.1	21.7	0.1	36.9	0.1	38.4	0.1	%	~

BH13 - AU1

BH15 - AU1

BH12 - AU1

Lab ID	1422	2443	1422	2444	1422	2445	1422	2446		
OC Pesticides	Result	MDL	Result	MDL	Result	MDL	Result	MDL	Units	Criteria: [No Reg - Always Include Reg Report]
2,4'-DDD	<0.01	0.01	<0.009	0.009	<0.009	0.009	<0.008	0.008	μg/g	~
2,4'-DDE	<0.01	0.01	<0.009	0.009	<0.009	0.009	<0.008	0.008	μg/g	~
2,4'-DDT	<0.01	0.01	<0.009	0.009	<0.009	0.009	<0.008	0.008	μg/g	~
4,4'-DDD	<0.01	0.01	<0.009	0.009	<0.009	0.009	<0.008	0.008	μg/g	~
4,4'-DDE	<0.01	0.01	<0.009	0.009	<0.009	0.009	<0.008	0.008	μg/g	~
4,4'-DDT	<0.01	0.01	<0.009	0.009	<0.009	0.009	<0.008	0.008	μg/g	~
Aldrin	<0.01	0.01	<0.009	0.009	<0.009	0.009	<0.008	0.008	μg/g	~
DDD (Total) (Calc.)	<0.01	0.01	<0.009	0.009	<0.009	0.009	<0.008	0.008	μg/g	~
DDE (Total) (Calc.)	<0.01	0.01	<0.009	0.009	<0.009	0.009	<0.008	0.008	μg/g	~
DDT (Total) (Calc.)	<0.01	0.01	<0.009	0.009	<0.009	0.009	<0.008	0.008	μg/g	~
Decachlorobiphenyl (Surr.)	94	N/A	91	N/A	91	N/A	81	N/A	% Rec	~
Dieldrin	<0.01	0.01	<0.009	0.009	<0.009	0.009	<0.008	0.008	μg/g	~
Endosulfan I	<0.01	0.01	<0.009	0.009	<0.009	0.009	<0.008	0.008	μg/g	~
Endosulfan I + II (Calc.)	<0.01	0.01	<0.009	0.009	<0.009	0.009	<0.008	0.008	μg/g	~
Endosulfan II	<0.01	0.01	<0.009	0.009	<0.009	0.009	<0.008	0.008	μg/g	~
Endosulfan sulfate	<0.01	0.01	<0.009	0.009	<0.009	0.009	<0.008	0.008	μg/g	~
Endrin	<0.01	0.01	<0.009	0.009	<0.009	0.009	<0.008	0.008	μg/g	~

Paracel Laboratories Ltd.- Ottawa Work Order Number: 367480

Sample Description	ВН9 -		BH12		BH13		BH15			
Lab ID	1422	2443	1422	2444	1422	2445	1422	2446		
OC Pesticides	Result	MDL	Result	MDL	Result	MDL	Result	MDL	Units	Criteria: [No Reg - Always Include Reg Report]
Endrin aldehyde	<0.01	0.01	<0.009	0.009	<0.009	0.009	<0.008	0.008	μg/g	~
Heptachlor	<0.01	0.01	<0.009	0.009	<0.009	0.009	<0.008	0.008	μg/g	~
Heptachlor epoxide	<0.01	0.01	<0.009	0.009	<0.009	0.009	<0.008	0.008	μg/g	~
Hexachlorobenzene	<0.01	0.01	<0.009	0.009	<0.009	0.009	<0.008	0.008	μg/g	~
Hexachlorobutadiene	<0.01	0.01	<0.009	0.009	<0.009	0.009	<0.008	0.008	μg/g	~
Hexachloroethane	<0.01	0.01	<0.009	0.009	<0.009	0.009	<0.008	0.008	μg/g	~
Methoxychlor	<0.01	0.01	<0.009	0.009	<0.009	0.009	<0.008	0.008	μg/g	~
Mirex	<0.01	0.01	<0.009	0.009	<0.009	0.009	<0.008	0.008	μg/g	~
Oxychlordane	<0.01	0.01	<0.009	0.009	<0.009	0.009	<0.008	0.008	μg/g	~
ß-BHC	<0.01	0.01	<0.009	0.009	<0.009	0.009	<0.008	0.008	μg/g	~
α - Chlordane	<0.01	0.01	<0.009	0.009	<0.009	0.009	<0.008	0.008	μg/g	~
α + γ -Chlordane (Calc.)	<0.01	0.01	<0.009	0.009	<0.009	0.009	<0.008	0.008	μg/g	~
α-BHC	<0.01	0.01	<0.009	0.009	<0.009	0.009	<0.008	0.008	μg/g	~
γ - Chlordane	<0.01	0.01	<0.009	0.009	<0.009	0.009	<0.008	0.008	μg/g	~
γ-BHC (Lindane)	<0.01	0.01	<0.009	0.009	<0.009	0.009	<0.008	0.008	μg/g	~
δ-BHC	<0.04	0.04	<0.009	0.009	<0.09	0.09	<0.008	0.008	μg/g	~

Paracel Laboratories Ltd.- Ottawa Work Order Number: 367480

LEGEND

Dates: Dates are formatted as mm/dd/year throughout this report.

[rr]: After a parameter name indicates a re-run of that parameter. Sample may not have been handled according to the recommended temperature, hold time and head space requirements of the method after the initial analysis.

MDL: Method detection limit or minimum reporting limit.

~: In a criteria column indicates the criteria is not applicable for the parameter row.

Quality Control: All associated Quality Control data is available on request.

Exceedences: HIGHLIGHTED CELLS INDICATE THAT THE RESULT EXCEEDS A REGULATORY LIMIT. CALCULATED UNCERTAINTY ESTIMATIONS ARE NOT APPLIED FOR DETERMINING SAMPLE EXCEEDANCES.

Benzo(b)fluoranthene: Results for benzo(b)fluoranthene may include contributions from benzo(j)fluoranthene.

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Tel: (613) 226-7381

Fax: (613) 226-6344

Order Date: 18-Mar-19

Report Date: 22-Mar-19

Subcontracted Analysis

Paterson Group Consulting Engineers 154 Colonnade Road South

Nepean, ON K2E 7J5

Attn: Karyn Munch

Paracel Report No1912143

Client Project(s): PE4321

Client PO:

26047

Reference:

Standing Offer

CoC Number:

121047

Sample(s) from this project were subcontracted for the listed parameters. A copy of the subcontractor's report is attached

Paracel ID Client ID

1912143-01 BH17-AU1

1912143-02 BH20-AU1

Pesticides - Organochlorine in soil Pesticides - Organochlorine in soil

Dale Robertson

CERTIFICATE OF ANALYSIS

Company: Paracel Laboratories Ltd.- Ottawa
Address: 300-2319 St. Laurent Blvd. Po#:

Ottawa, ON, K1G 4J8
Project #: 1912143

Phone/Fax: (613) 731 0577 (/613) 731 0064

Work Order Number:

367840

 Phone/Fax:
 (613) 731-9577 / (613) 731-9064
 DWS #:

 Email:
 drobertson@paracellabs.com
 Sampled By:

Date Order Received: 3/20/2019
Arrival Temperature: 8 °C
Analysis Started: 3/21/2019
Analysis Completed: 3/22/2019

WORK ORDER SUMMARY

Client:

ANALYSES WERE PERFORMED ON THE FOLLOWING SAMPLES. THE RESULTS RELATE ONLY TO THE ITEMS TESTED.

Sample Description	Lab ID	Matrix	Туре	Comments	Date Collected	Time Collected
BH17-AU1	1423878	Soil	None		3/13/2019	
BH20-AU1	1423879	Soil	None		3/11/2019	

METHODS AND INSTRUMENTATION

THE FOLLOWING METHODS WERE USED FOR YOUR SAMPLE(S):

Method	Lab	Description	Reference		
Moisture (A99)	Garson	Determination of Percent Moisture	In House		
OCPs Soil (A19)	Garson	Determination of Organochlorine Pesticides in Soil by GC/ECD	Modified from SW846-8081B		

This report has been approved by:

Khaled Omari, Ph.D. Laboratory Director

Paracel Laboratories Ltd.- Ottawa Work Order Number: 367840

Paracel Laboratories Ltd.- Ottawa Work Order Number: 367840

WORK ORDER RESULTS

Sample Description

Lab ID

Sample Description	BH17	- AU1	BH20	- AU1		
Lab ID	1423878		142	3879		
General Chemistry	Result	MDL	Result	MDL	Units	Criteria: O.Reg 153 Table 1 Soil Res/Park/Inst/Ind/ Commer/Comm
% Moisture	32.9	0.1	27.7	0.1	%	~

BH20 - AU1

1423879

BH17 - AU1

1423878

OC Pesticides	Result	MDL	Result	MDL	Units	Criteria: O.Reg 153 Table 1 Soil Res/Park/Inst/Ind/ Commer/Comm
2,4'-DDD	<0.01	0.01	<0.01	0.01	μg/g	~
2,4'-DDE	<0.01	0.01	<0.01	0.01	μg/g	~
2,4'-DDT	<0.01	0.01	<0.01	0.01	μg/g	~
4,4'-DDD	<0.01	0.01	<0.01	0.01	μg/g	~
4,4'-DDE	<0.01	0.01	<0.01	0.01	μg/g	~
4,4'-DDT	<0.01	0.01	<0.01	0.01	μg/g	~
Aldrin	<0.01	0.01	<0.01	0.01	μg/g	0.05
DDD (Total) (Calc.)	<0.01	0.01	<0.01	0.01	μg/g	0.05
DDE (Total) (Calc.)	<0.01	0.01	<0.01	0.01	μg/g	0.05
DDT (Total) (Calc.)	<0.01	0.01	<0.01	0.01	μg/g	1.4
Decachlorobiphenyl (Surr.)	56	N/A	63	N/A	% Rec	~
Dieldrin	<0.01	0.01	<0.01	0.01	μg/g	0.05
Endosulfan I	<0.01	0.01	<0.01	0.01	μg/g	~
Endosulfan I + II (Calc.)	<0.01	0.01	<0.01	0.01	μg/g	0.04
Endosulfan II	<0.01	0.01	<0.01	0.01	μg/g	~
Endosulfan sulfate	<0.01	0.01	<0.01	0.01	μg/g	~

Paracel Laboratories Ltd.- Ottawa Work Order Number: 367840

Sample Description Lab ID	BH17 - AU1 1423878			- AU1 3879		
OC Pesticides	Result	MDL	Result	MDL	Units	Criteria: O.Reg 153 Table 1 Soil Res/Park/Inst/Ind/ Commer/Comm
Endrin	<0.01	0.01	<0.01	0.01	μg/g	0.04
Endrin aldehyde	<0.01	0.01	<0.01	0.01	μg/g	~
Heptachlor	<0.01	0.01	<0.01	0.01	μg/g	0.05
Heptachlor epoxide	<0.01	0.01	<0.01	0.01	μg/g	0.05
Hexachlorobenzene	<0.01	0.01	<0.01	0.01	μg/g	0.01
Hexachlorobutadiene	<0.01	0.01	<0.01	0.01	μg/g	0.01
Hexachloroethane	<0.01	0.01	<0.01	0.01	μg/g	0.01
Methoxychlor	<0.01	0.01	<0.01	0.01	μg/g	0.05
Mirex	<0.01	0.01	<0.01	0.01	μg/g	~
Oxychlordane	<0.01	0.01	<0.01	0.01	μg/g	~
ß-BHC	<0.01	0.01	<0.01	0.01	μg/g	~
α - Chlordane	<0.01	0.01	<0.01	0.01	μg/g	~
α + γ -Chlordane (Calc.)	<0.01	0.01	<0.01	0.01	μg/g	0.05
α-BHC	<0.01	0.01	<0.01	0.01	μg/g	~
γ - Chlordane	<0.01	0.01	<0.01	0.01	μg/g	~
γ-BHC (Lindane)	<0.01	0.01	<0.01	0.01	μg/g	0.01
δ-ВНС	<0.05	0.05	<0.03	0.03	μg/g	~

Paracel Laboratories Ltd.- Ottawa Work Order Number: 367840

LEGEND

Dates: Dates are formatted as mm/dd/year throughout this report.

[rr]: After a parameter name indicates a re-run of that parameter. Sample may not have been handled according to the recommended temperature, hold time and head space requirements of the method after the initial analysis.

MDL: Method detection limit or minimum reporting limit.

~: In a criteria column indicates the criteria is not applicable for the parameter row.

Quality Control: All associated Quality Control data is available on request.

Exceedences: HIGHLIGHTED CELLS INDICATE THAT THE RESULT EXCEEDS A REGULATORY LIMIT. CALCULATED UNCERTAINTY ESTIMATIONS ARE NOT APPLIED FOR DETERMINING SAMPLE EXCEEDANCES.

Benzo(b)fluoranthene: Results for benzo(b)fluoranthene may include contributions from benzo(j)fluoranthene.

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

Paterson Group Consulting Engineers

154 Colonnade Road South Nepean, ON K2E 7J5

Attn: Karyn Munch

Client PO: 26504 Project: PE4321 Custody: 121681

Report Date: 7-May-2019 Order Date: 1-May-2019

Order #: 1918392

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID	Client ID
1918392-01	HA1-G1
1918392-03	HA5-G1
1918392-04	HA7-G1
1918392-06	HA13-G1
1918392-07	HA15-G1
1918392-09	DUP

Approved By:

Dale Robertson, BSc Laboratory Director

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Order Date: 1-May-2019

Client PO: 26504

Report Date: 07-May-2019

Order Date: 1-May-2019

Project Description: PE4321

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
Chromium, hexavalent - soil	MOE E3056 - Extraction, colourimetric	2-May-19	7-May-19
Mercury by CVAA	EPA 7471B - CVAA, digestion	3-May-19	6-May-19
pH, soil	EPA 150.1 - pH probe @ 25 °C, CaCl buffered ext.	2-May-19	2-May-19
REG 153: Metals by ICP/MS, soil	EPA 6020 - Digestion - ICP-MS	3-May-19	3-May-19
Solids, %	Gravimetric, calculation	6-May-19	6-May-19

Report Date: 07-May-2019

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Client PO: 26504

Report Date: 07-May-2019

Order Date: 1-May-2019

Project Description: PE4321

	Client ID:	HA1-G1	HA5-G1	HA7-G1	HA13-G1
	Sample Date:	30-Apr-19 09:00	29-Apr-19 09:00	29-Apr-19 09:00	30-Apr-19 09:00
	Sample ID:	1918392-01	1918392-03	1918392-04	1918392-06
	MDL/Units	Soil	Soil	Soil	Soil
Physical Characteristics					
% Solids	0.1 % by Wt.	73.5	79.9	82.4	78.0
General Inorganics					
рН	0.05 pH Units	-	7.17	-	-
Metals					
Antimony	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0
Arsenic	1.0 ug/g dry	2.2	1.1	1.9	2.3
Barium	1.0 ug/g dry	129	45.9	85.7	232
Beryllium	0.5 ug/g dry	<0.5	<0.5	<0.5	0.7
Boron	5.0 ug/g dry	<5.0	<5.0	<5.0	<5.0
Cadmium	0.5 ug/g dry	<0.5	<0.5	<0.5	<0.5
Chromium	5.0 ug/g dry	37.7	14.5	22.3	48.0
Chromium (VI)	0.2 ug/g dry	<0.2	<0.2	<0.2	<0.2
Cobalt	1.0 ug/g dry	8.6	3.9	5.9	10.7
Copper	5.0 ug/g dry	14.2	9.3	13.6	20.9
Lead	1.0 ug/g dry	9.2	3.3	5.1	7.7
Mercury	0.1 ug/g dry	<0.1	<0.1	<0.1	<0.1
Molybdenum	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0
Nickel	5.0 ug/g dry	19.1	7.5	13.0	24.4
Selenium	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0
Silver	0.3 ug/g dry	<0.3	<0.3	<0.3	<0.3
Thallium	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0
Uranium	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0
Vanadium	10.0 ug/g dry	46.1	26.6	30.5	58.2
Zinc	20.0 ug/g dry	76.4	25.3	39.4	86.2

Certificate of Analysis **Client: Paterson Group Consulting Engineers**

Report Date: 07-May-2019 Order Date: 1-May-2019 **Project Description: PE4321**

Client PO: 26504

	Client ID:	HA15-G1	DUP I	_	_
	Sample Date:	30-Apr-19 09:00	30-Apr-19 09:00	-	-
	Sample ID:	1918392-07	1918392-09	-	-
	MDL/Units	Soil	Soil	-	-
Physical Characteristics					
% Solids	0.1 % by Wt.	93.6	86.8	-	-
Metals					
Antimony	1.0 ug/g dry	<1.0	<1.0	-	-
Arsenic	1.0 ug/g dry	<1.0	1.4	-	-
Barium	1.0 ug/g dry	25.7	92.7	-	-
Beryllium	0.5 ug/g dry	<0.5	<0.5	-	-
Boron	5.0 ug/g dry	<5.0	<5.0	-	-
Cadmium	0.5 ug/g dry	<0.5	<0.5	-	-
Chromium	5.0 ug/g dry	12.3	23.8	-	-
Chromium (VI)	0.2 ug/g dry	<0.2	-	-	-
Cobalt	1.0 ug/g dry	2.7	5.8	-	-
Copper	5.0 ug/g dry	5.6	12.7	-	-
Lead	1.0 ug/g dry	1.2	3.5	-	-
Mercury	0.1 ug/g dry	2.3	-	-	-
Molybdenum	1.0 ug/g dry	<1.0	<1.0	-	-
Nickel	5.0 ug/g dry	6.6	12.3	-	-
Selenium	1.0 ug/g dry	<1.0	<1.0	-	-
Silver	0.3 ug/g dry	<0.3	<0.3	-	-
Thallium	1.0 ug/g dry	<1.0	<1.0	-	-
Uranium	1.0 ug/g dry	<1.0	<1.0	-	-
Vanadium	10.0 ug/g dry	12.0	34.5	-	-
Zinc	20.0 ug/g dry	25.1	37.4	-	-

Certificate of Analysis

Order #: 1918392

Report Date: 07-May-2019 Order Date: 1-May-2019

Client: Paterson Group Consulting Engineers Client PO: 26504 **Project Description: PE4321**

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Metals									
Antimony	ND	1.0	ug/g						
Arsenic	ND	1.0	ug/g						
Barium	ND	1.0	ug/g						
Beryllium	ND	0.5	ug/g						
Boron	ND	5.0	ug/g						
Cadmium	ND	0.5	ug/g						
Chromium (VI)	ND	0.2	ug/g						
Chromium ` ´	ND	5.0	ug/g						
Cobalt	ND	1.0	ug/g						
Copper	ND	5.0	ug/g						
Lead	ND	1.0	ug/g						
Mercury	ND	0.1	ug/g						
Molybdenum	ND	1.0	ug/g						
Nickel	ND	5.0	ug/g						
Selenium	ND	1.0	ug/g						
Silver	ND	0.3	ug/g						
Thallium	ND	1.0	ug/g						
Uranium	ND	1.0	ug/g						
Vanadium	ND	10.0	ug/g						
Zinc	ND	20.0	ug/g						

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Order Date: 1-May-2019

Client PO: 26504

Report Date: 07-May-2019

Order Date: 1-May-2019

Project Description: PE4321

Method Quality Control: Duplicate

		Reporting		Source		%REC		RPD	
Analyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes
General Inorganics									
pH	7.86	0.05	pH Units	7.75			1.4	10	
Vietals									
Antimony	1.5	1.0	ug/g dry	ND			0.0	30	
Arsenic	3.7	1.0	ug/g dry	4.1			9.4	30	
Barium	41.1	1.0	ug/g dry	37.1			10.3	30	
Beryllium	ND	0.5	ug/g dry	ND			0.0	30	
Boron	7.3	5.0	ug/g dry	6.5			11.8	30	
Cadmium	ND	0.5	ug/g dry	ND			0.0	30	
Chromium (VI)	ND	0.2	ug/g dry	ND				35	
Chromium	11.4	5.0	ug/g dry	11.5			0.7	30	
Cobalt	4.0	1.0	ug/g dry	4.3			7.5	30	
Copper	14.1	5.0	ug/g dry	14.4			2.0	30	
Lead	10.9	1.0	ug/g dry	12.0			9.8	30	
Mercury	0.502	0.1	ug/g dry	0.525			4.4	30	
Molybdenum	ND	1.0	ug/g dry	ND			0.0	30	
Nickel	7.7	5.0	ug/g dry	7.9			3.3	30	
Selenium	ND	1.0	ug/g dry	ND			0.0	30	
Silver	ND	0.3	ug/g dry	ND			0.0	30	
Thallium	ND	1.0	ug/g dry	ND			0.0	30	
Uranium	ND	1.0	ug/g dry	ND			0.0	30	
Vanadium	20.5	10.0	ug/g dry	20.8			1.6	30	
Zinc	47.2	20.0	ug/g dry	47.9			1.4	30	
Physical Characteristics			5 5 7						
% Solids	86.0	0.1	% by Wt.	86.7			0.9	25	

Report Date: 07-May-2019 Order Date: 1-May-2019 **Project Description: PE4321**

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Client PO: 26504 Pro

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Metals									
Antimony	42.5		ug/L	ND	83.6	70-130			
Arsenic	49.1		ug/L	2.3	93.5	70-130			
Barium	93.3		ug/L	47.2	92.3	70-130			
Beryllium	46.7		ug/L	ND	93.0	70-130			
Boron	45.8		ug/L	6.3	79.0	70-130			
Cadmium	46.4		ug/L	ND	92.7	70-130			
Chromium (VI)	0.01		mg/L	ND	5.00	70-130		Q	M-01
Chromium	52.9		ug/L	7.3	91.4	70-130			
Cobalt	48.4		ug/L	2.1	92.4	70-130			
Copper	54.3		ug/L	9.3	89.9	70-130			
Lead	83.9		ug/L	42.8	82.1	70-130			
Mercury	1.92	0.1	ug/g	0.525	92.9	70-130			
Molybdenum	44.8		ug/L	ND	89.0	70-130			
Nickel	48.4		ug/L	ND	87.2	70-130			
Selenium	47.7		ug/L	ND	94.9	70-130			
Silver	43.3		ug/L	ND	86.5	70-130			
Thallium	47.8		ug/L	ND	95.5	70-130			
Uranium	45.4		ug/L	ND	90.4	70-130			
Vanadium	57.2		ug/L	11.0	92.4	70-130			
Zinc	88.3		ug/L	46.0	84.5	70-130			

Client: Paterson Group Consulting Engineers

Certificate of Analysis

Order #: 1918392

Report Date: 07-May-2019 Order Date: 1-May-2019

Project Description: PE4321

Qualifier Notes:

Client PO: 26504

QC Qualifiers:

QM-01: The spike recovery for this QC sample is outside of established control limits due to sample matrix interference.

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected

MDL: Method Detection Limit

Source Result: Data used as source for matrix and duplicate samples

%REC: Percent recovery. RPD: Relative percent difference.

Soil results are reported on a dry weight basis when the units are denoted with 'dry'. Where %Solids is reported, moisture loss includes the loss of volatile hydrocarbons.

GPARACEL R

LABORATORIES LTD.

Paracel ID: 1918392

lead Office 00-2319 St. Laurent Blvd. Itawa, Ontario K1G 4J8 : 1-800-749-1947 : paracel@paracellabs.com Chain of Custody (Lab Use Only)

															Pag	22 0	f		
Client Name: Paterson Groupinc.				Project Reference: PE4321											Turnaround T				
Contact Name; Kauss Munch	Quote #										□ 1 Day			□3 Day					
Address 194 Colonhade Rd S.	PO# 26504									Date Required:									
	Hamill Address:	gmail·com											X Regular						
Telephone: 613-226-7381																			
Criteria: □ O. Reg. 153/64 (As Amended) Table □ R	SC Filing	O. Rej	, 558/0	0 DPWQO D	CCME II SU	JB (Sto	rm)	□ SU	B (S.	anitary) M	unicipali	ty:		0	Other:			
Matrix Type; S (Soil/Sed.) GW (Ground Water) SW (Surface Water	a) 88 (Storm 3	ianitary S	iener) P	(Paint) A (Air) O ((Mer)	Rec	mire	d Ar	alys	es									
Paracel Order Number:			20			EX			T	Т	T	Λ							
ldiva		all c	of Containers	Sample	Taken	F1-F4+BTEX			2			go				=			
1918392	×	Air Volume	Com						by by		(SA	E.C.	Ha						
Sample ID/Location Name	Matrix	Air,	# of	Date	Time	PHCs	VOCs	P.A.H.s	Metal	E N	B.(HWS	HOE Cida	۵						
1 HAI-GI	S		1	Ax.30/19					VI	V	T					-194	ml	. 3	
2 HA3-G1	S		1	A01-30/19		П						V				-	1	7	
3 HAS-GI	S		1	Anr. 29/19					VI	1	1		V					-	
1 HA7-G1	S		2	Apr. 29 19					VI	V		V				XV10	om	4 3	
5 HAII-GI	S		I	Agr. 30/19								V			-	1	ml.	7	
6 HA13-61	S		1	Apr. 30/9					V	V						V			
1 HAIS-61	S		2	Apr. 30/19					1	V		V				-2x	1200	nt.	
* HA16-6-1	S		1	Dovi 3	119							V				1.6	om	- ,	
" HOATOFXED				. //	M					П									
" OUP	S		1	Apr.30/19					1	Т						19	me	. /	
Comments: FNO, 4, 1 Soil Jan San	mple d	ate	m	Jav rea	d = A0	13	00	201	9.	AP	17	291	19.		deathyd o	of Deliver	y.		
MA A PAINAL COULT	on J	or y	bps	THE THE	30, 201	9. 7	=	25(+6	0 (N D	6430	71.0		Tal	MILL	1	- 1	
Relinquished By (Sign): Knunch	Received	by Driv	er Depoi	J	Z Receiv	ed at La	0		1/15		4	AVAIL .	of liest	50				~	
Relinquished By (Print): K. Munch	Data/Tie	_	110	FLOUSE FLOOR	S(MARK	10 ()	(A)	0.0	1/20	N(WA	10	101	321	1	10	0	
Date/Time: Alout 1019	Date/Tin Tempera			1773	O Date/T	rature:	34	47	19-21	10)	10	100000			11	7	0		

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Subcontracted Analysis

Paterson Group Consulting Engineers

154 Colonnade Road South

Nepean, ON K2E 7J5

Tel: (613) 226-7381

Fax: (613) 226-6344

Attn: Karyn Munch

Paracel Report No 1918392 Order Date: 01-May-19 Client Project(s): PE4321 Report Date: 7-May-19

Client PO: **26504**

Reference: Standing Offer

CoC Number: **121681**

Sample(s) from this project were subcontracted for the listed parameters. A copy of the subcontractor's report is attached

Paracel ID	Client ID	Analysis
1918392-02	HA3-G1	Pesticides - Organochlorine in soil
1918392-04	HA7-G1	Pesticides - Organochlorine in soil
1918392-05	HA11-G1	Pesticides - Organochlorine in soil
1918392-07	HA15-G1	Pesticides - Organochlorine in soil
1918392-08	HA16-G1	Pesticides - Organochlorine in soil

Client: Dale Robertson Work Order Number: 371016

Company: Paracel Laboratories Ltd.- Ottawa PO #:

Address: 300-2319 St. Laurent Blvd. Regulation: O.Reg 153 Table 1 Soil Res/Park/Inst/Ind/Commer/Comm

Ottawa, ON, K1G 4J8 Project #: 1918392

(613) 731-9577 / (613) 731-9064 DWS #:

Email: drobertson@paracellabs.com Sampled By:

Date Order Received: 5/3/2019
Arrival Temperature: 13 °C

Analysis Started: 5/7/2019
Analysis Completed: 5/7/2019

WORK ORDER SUMMARY

Phone/Fax:

ANALYSES WERE PERFORMED ON THE FOLLOWING SAMPLES. THE RESULTS RELATE ONLY TO THE ITEMS TESTED.

Sample Description	Lab ID	Matrix	Туре	Comments	Date Collected	Time Collected
HA3-G1	1434178	Soil	None		4/30/2019	
HA7-G1	1434179	Soil	None		4/29/2019	
HA11-G1	1434180	Soil	None		4/30/2019	
HA15-G1	1434181	Soil	None		4/30/2019	
HA16-G1	1434182	Soil	None		4/30/2019	

METHODS AND INSTRUMENTATION

THE FOLLOWING METHODS WERE USED FOR YOUR SAMPLE(S):

Method	Lab	Description	Reference
Moisture (A99)	Garson	Determination of Percent Moisture	In House
OCPs Soil (A19)	Garson	Determination of Organochlorine Pesticides in Soil by GC/ECD	Modified from SW846-8081B

Paracel Laboratories Ltd.- Ottawa Work Order Number: 371016

This report has been approved by:

Khaled Omari, Ph.D. Laboratory Director

HA3 - G1

CERTIFICATE OF ANALYSIS

Paracel Laboratories Ltd.- Ottawa Work Order Number: 371016

WORK ORDER RESULTS

Sample Description Lab ID		- G1 4178		- G1 4179	HA11 - G1 1434180		HA15 - G1 1434181			
General Chemistry	Result	MDL	Result	MDL	Result	MDL	Result	MDL	Units	Criteria: O.Reg 153 Table 1 Soil Res/Park/Inst/Ind/ Commer/Comm
% Moisture	22.2	0.1	19.8	0.1	24.2 0.1		4.2 0.1		%	~
Sample Description Lab ID		6 - G1 4182								
General Chemistry	Result	MDL	Units	Criteria: O.Re 153 Table 1 So Res/Park/Inst/li Commer/Com	oil nd/					
% Moisture	23.9	0.1	%	~						

HA11 - G1

HA15 - G1

HA7 - G1

Lab ID	1434	1178	1434	1179	1434	1180	1434	181		
OC Pesticides	Result	MDL	Result	MDL	Result	MDL	Result	MDL	Units	Criteria: O.Reg 153 Table 1 Soil Res/Park/Inst/Ind/ Commer/Comm
2,4'-DDD	<0.01	0.01	<0.01	0.01	<0.01	0.01	<0.01	0.01	μg/g	~
2,4'-DDE	<0.01	0.01	<0.01	0.01	<0.01	0.01	<0.01	0.01	μg/g	~
2,4'-DDT	<0.01	0.01	<0.01	0.01	<0.01	0.01	<0.01	0.01	μg/g	~
4,4'-DDD	<0.01	0.01	<0.01	0.01	<0.01	0.01	<0.01	0.01	μg/g	~
4,4'-DDE	<0.01	0.01	<0.01	0.01	<0.01	0.01	<0.01	0.01	μg/g	~
4,4'-DDT	<0.01	0.01	<0.01	0.01	<0.01	0.01	<0.01	0.01	μg/g	~
Aldrin	<0.01	0.01	<0.01	0.01	<0.01	0.01	<0.01	0.01	μg/g	0.05
DDD (Total) (Calc.)	<0.01	0.01	<0.01	0.01	<0.01	0.01	<0.01	0.01	μg/g	0.05
DDE (Total) (Calc.)	<0.01	0.01	<0.01	0.01	<0.01	0.01	<0.01	0.01	μg/g	0.05
DDT (Total) (Calc.)	<0.01	0.01	<0.01	0.01	<0.01	0.01	<0.01	0.01	μg/g	1.4

Sample Description

Paracel Laboratories Ltd.- Ottawa Work Order Number: 371016

Sample Description	HA3	- G1	HA7	- G1	HA11	- G1	HA15	5 - G1		
Lab ID	1434	1178	1434	1179	1434	1180	1434	4181		
OC Pesticides	Result	MDL	Result	MDL	Result	MDL	Result	MDL	Units	Criteria: O.Reg 153 Table 1 Soil Res/Park/Inst/Ind/ Commer/Comm
Decachlorobiphenyl (Surr.)	98	N/A	99	N/A	99	N/A	100	N/A	% Rec	~
Dieldrin	<0.01	0.01	<0.01	0.01	<0.01	0.01	<0.01	0.01	μg/g	0.05
Endosulfan I	<0.01	0.01	<0.01	0.01	<0.01	0.01	<0.01	0.01	μg/g	~
Endosulfan I + II (Calc.)	<0.01	0.01	<0.01	0.01	<0.01	0.01	<0.01	0.01	μg/g	0.04
Endosulfan II	<0.01	0.01	<0.01	0.01	<0.01	0.01	<0.01	0.01	μg/g	~
Endosulfan sulfate	<0.01	0.01	<0.01	0.01	<0.01	0.01	<0.01	0.01	μg/g	~
Endrin	<0.01	0.01	<0.01	0.01	<0.01	0.01	<0.01	0.01	μg/g	0.04
Endrin aldehyde	<0.01	0.01	<0.01	0.01	<0.01	0.01	<0.01	0.01	μg/g	~
Heptachlor	<0.01	0.01	<0.01	0.01	<0.01	0.01	<0.01	0.01	μg/g	0.05
Heptachlor epoxide	<0.01	0.01	<0.01	0.01	<0.01	0.01	<0.01	0.01	μg/g	0.05
Hexachlorobenzene	<0.01	0.01	<0.01	0.01	<0.01	0.01	<0.01	0.01	μg/g	0.01
Hexachlorobutadiene	<0.01	0.01	<0.01	0.01	<0.01	0.01	<0.01	0.01	μg/g	0.01
Hexachloroethane	<0.01	0.01	<0.01	0.01	<0.01	0.01	<0.01	0.01	μg/g	0.01
Methoxychlor	<0.01	0.01	<0.01	0.01	<0.01	0.01	<0.01	0.01	μg/g	0.05
Mirex	<0.01	0.01	<0.01	0.01	<0.01	0.01	<0.01	0.01	μg/g	~
Oxychlordane	<0.01	0.01	<0.01	0.01	<0.01	0.01	<0.01	0.01	μg/g	~
ß-BHC	<0.01	0.01	<0.01	0.01	<0.01	0.01	<0.01	0.01	μg/g	~
α - Chlordane	<0.01	0.01	<0.01	0.01	<0.01	0.01	<0.01	0.01	μg/g	~
α + γ -Chlordane (Calc.)	<0.01	0.01	<0.01	0.01	<0.01	0.01	<0.01	0.01	μg/g	0.05
α-ВНС	<0.01	0.01	<0.01	0.01	<0.01	0.01	<0.01	0.01	μg/g	~
γ - Chlordane	<0.01	0.01	<0.01	0.01	<0.01	0.01	<0.01	0.01	μg/g	~
γ-BHC (Lindane)	<0.01	0.01	<0.01	0.01	<0.01	0.01	<0.01	0.01	μg/g	0.01
δ-ВНС	0.01	0.01	<0.01	0.01	0.03	0.01	0.02	0.01	μg/g	~

Paracel Laboratories Ltd.- Ottawa Work Order Number: 371016

Sample Description Lab ID		3 - G1 4182		
OC Pesticides	Result	MDL	Units	Criteria: O.Reg 153 Table 1 Soil Res/Park/Inst/Ind/ Commer/Comm
2,4'-DDD	<0.01	0.01	μg/g	~
2,4'-DDE	<0.01	0.01	μg/g	~
2,4'-DDT	<0.01	0.01	μg/g	~
4,4'-DDD	<0.01	0.01	μg/g	~
4,4'-DDE	<0.01	0.01	μg/g	~
4,4'-DDT	<0.01	0.01	μg/g	~
Aldrin	<0.01	0.01	μg/g	0.05
DDD (Total) (Calc.)	<0.01	0.01	μg/g	0.05
DDE (Total) (Calc.)	<0.01	0.01	μg/g	0.05
DDT (Total) (Calc.)	<0.01	0.01	μg/g	1.4
Decachlorobiphenyl (Surr.)	88	N/A	% Rec	~
Dieldrin	<0.01	0.01	μg/g	0.05
Endosulfan I	<0.01	0.01	μg/g	~
Endosulfan I + II (Calc.)	<0.01	0.01	μg/g	0.04
Endosulfan II	<0.01	0.01	μg/g	~
Endosulfan sulfate	<0.01	0.01	μg/g	~
Endrin	<0.01	0.01	μg/g	0.04
Endrin aldehyde	<0.01	0.01	μg/g	~
Heptachlor	<0.01	0.01	μg/g	0.05
Heptachlor epoxide	<0.01	0.01	μg/g	0.05
Hexachlorobenzene	<0.01	0.01	μg/g	0.01
Hexachlorobutadiene	<0.01	0.01	μg/g	0.01
Hexachloroethane	<0.01	0.01	μg/g	0.01
Methoxychlor	<0.01	0.01	μg/g	0.05

Paracel Laboratories Ltd.- Ottawa Work Order Number: 371016

Sample Description Lab ID		3 - G1 4182		
OC Pesticides	Result	MDL	Units	Criteria: O.Reg 153 Table 1 Soil Res/Park/Inst/Ind/ Commer/Comm
Mirex	<0.01	0.01	μg/g	~
Oxychlordane	<0.01	0.01	μg/g	~
ß-BHC	<0.01	0.01	μg/g	~
α - Chlordane	<0.01	0.01	μg/g	~
α + γ -Chlordane (Calc.)	<0.01	0.01	μg/g	0.05
α-BHC	<0.01	0.01	μg/g	~
γ - Chlordane	<0.01	0.01	μg/g	~
γ-BHC (Lindane)	<0.01	0.01	μg/g	0.01
δ-ВНС	<0.01	0.01	μg/g	~

LEGEND

Dates: Dates are formatted as mm/dd/year throughout this report.

[rr]: After a parameter name indicates a re-run of that parameter. Sample may not have been handled according to the recommended temperature, hold time and head space requirements of the method after the initial analysis.

MDL: Method detection limit or minimum reporting limit.

Quality Control: All associated Quality Control data is available on request.

Exceedences: HIGHLIGHTED CELLS INDICATE THAT THE RESULT EXCEEDS A REGULATORY LIMIT. CALCULATED UNCERTAINTY ESTIMATIONS ARE NOT APPLIED FOR DETERMINING SAMPLE EXCEEDANCES.

Benzo(b)fluoranthene: Results for benzo(b)fluoranthene may include contributions from benzo(j)fluoranthene.

^{~:} In a criteria column indicates the criteria is not applicable for the parameter row.

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

Paterson Group Consulting Engineers

154 Colonnade Road South

Nepean, ON K2E 7J5 Attn: Karyn Munch

Client PO: 26715 Project: PE4321 Custody: 122103

Report Date: 14-May-2019 Order Date: 8-May-2019

Order #: 1919380

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID Client ID 1919380-01 AH14-G1

Approved By:

Mark Foto

Mark Foto, M.Sc. Lab Supervisor

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Order Date: 8-May-2019

Client PO: 26715

Project Description: PE4321

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date Analysis Date
Mercury by CVAA	EPA 7471B - CVAA, digestion	13-May-19 14-May-19
Solids, %	Gravimetric, calculation	13-May-19 13-May-19

Certificate of Analysis **Client: Paterson Group Consulting Engineers**

Order Date: 8-May-2019

Report Date: 14-May-2019

Client PO: 26715 **Project Description: PE4321**

	Client ID:	AH14-G1	-	-	-
	Sample Date:	30-Apr-19 14:55	-	-	-
	Sample ID:	1919380-01	-	-	-
	MDL/Units	Soil	-	-	-
Physical Characteristics					
% Solids	0.1 % by Wt.	84.1	-	-	-
Metals	-		•	-	
Mercury	0.1 ug/g dry	0.6	-	-	-

Report Date: 14-May-2019

Order Date: 8-May-2019
Project Description: PE4321

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Client PO: 26715

Method Quality Control: Blank

		Reporting		Source		%REC		RPD	
Analyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes

Metals

Mercury ND 0.1 ug/g

Order #: 1919380

Report Date: 14-May-2019 Order Date: 8-May-2019

Client: Paterson Group Consulting Engineers Client PO: 26715 **Project Description: PE4321**

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Metals Mercury	ND	0.1	ug/g dry	ND			0.0	30	
Physical Characteristics % Solids	86.9	0.1	% by Wt.	87.6			0.8	25	

Report Date: 14-May-2019 Order Date: 8-May-2019

Project Description: PE4321

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Client PO: 26715

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Metals Mercury	1.60	0.1	ug/g	ND	107	70-130			

Report Date: 14-May-2019 Order Date: 8-May-2019

Project Description: PE4321

Certificate of Analysis

Client: Paterson Group Consulting Engineers Client PO: 26715

Qualifier Notes:

None

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected

MDL: Method Detection Limit

Source Result: Data used as source for matrix and duplicate samples

%REC: Percent recovery.

RPD: Relative percent difference.

Soil results are reported on a dry weight basis when the units are denoted with 'dry'. Where %Solids is reported, moisture loss includes the loss of volatile hydrocarbons.

Paracel ID: 1919380 LABORATORIES LTD.

ad Office 0-2319 St. Laurent Blvd. tawa, Ontario K1G 4J8 1-800-749-1947 paracel@paracellabs.com Chain of Custody (Lab Use Only)

Nº 122103

						_	_	_	_				_			
Client Name: Paterson Group				Project Reference	e PE432	1								Turna	roun	l Time:
Contact Name: Kacy of Munch				Quote #	1								01	Day		□3 Day
Address:				PO# 2(-	15								7			
154 Colonnade Rd. S.				Email Address:	10			_	_	_			- 2	Day		Regula
Telephone: 613-226-7381				Kmurch@ Paterson group, ca									Date Required:			/ \
Criteria: O. Reg. 153/04 (As Amended) Table	T Dec Ellina F	10 Par	. 550 In									Innisinality	15.11	-	Other:	7 (P. 1971)
Criteria: A O. Reg. 153/04 (As Americea) Table C	J Koc rining L	o. Rej	, 23010	и подели о	CCME LI 300	100	till)	n 3	OD	ann	ary) i	пинстранку			Aner:	
Matrix Type: S (Soil-Sed.) GW (Ground Water) SW (Surface)	Water) SS (Storm-S	Sanitary S	ewet) P	(Paint) A (Air) O	(Other)	Rec	quire	ed A	naly	ses						
Paracel Order Number:			2	T		EX	П		П	T	Т		T	T		
1919320	rix	Air Volume	of Containers	Sample	e Taken	FI-F4+BTEX			s by ICP		vic.					
Sample ID/Location Name	Matrix	Air,	Jo #	Date	Time	PHCs	VOCs	PAHs	Metals	Hg	CrVI					
1 AH14-G1	S		1	Apr 30/9	2:55 PM					X				-12	om (,
2											T					
3																
4																
5																
6									Ц	1	_		_			
7									Ц	1	\perp					
8												1000				
9																
10																
Comments:						74 28									of Delive	
Relinquished By (Sign):	Receive	1	1.	PROUSE	AND THE RESERVE AND THE PARTY OF THE PARTY O	M	200				lm	ବା	MAN/	AH		
Relinquished By (Print): A. Chr Suffy	Date/Tir	mc. 00	8/0	5/19 4	O Date/Tir	ne: P	194	28	29	19	0	4,59 Date	Time:	55	-19	17:54
11 TO TO TO THE TOTAL THE TOTAL TO THE TOTAL TOTAL TO THE	196	Acres and the second	The second second	F1	11.		4 100	100	100			47.41	100 4 9 9	The second second	CONTRACTOR OF THE PARTY OF THE	

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Client PO: 23311

Report Date: 22-Dec-2017 Order Date: 18-Dec-2017

Project Description: PG4135

	_				
	Client ID:	BH17 SS3	-	-	-
	Sample Date:	07-Dec-17	-	-	-
	Sample ID:	1751084-01	-	-	-
	MDL/Units	Soil	-	-	-
Physical Characteristics					_
% Solids	0.1 % by Wt.	68.5	-	-	-
General Inorganics	-		•		-
рН	0.05 pH Units	7.68	-	-	-
Resistivity	0.10 Ohm.m	39.6	-	-	-
Anions					
Chloride	5 ug/g dry	66	-	-	-
Sulphate	5 ug/g dry	35	-	-	-

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Client PO: 25823

Report Date: 18-Mar-2019 Order Date: 12-Mar-2019

Order Date: 12-Mar-2019

Project Description: PG4135

	Client ID: Sample Date: Sample ID:	BH7-19-SS3 02/25/2019 09:00 1911250-01	BH16-19-SS4 03/08/2019 09:00 1911250-02	- - -	- - -
	MDL/Units	Soil	Soil	-	-
Physical Characteristics					
% Solids	0.1 % by Wt.	71.4	72.6	-	-
General Inorganics			-		
рН	0.05 pH Units	7.72	6.54	-	-
Resistivity	0.10 Ohm.m	44.9	96.8	-	-
Anions					
Chloride	5 ug/g dry	21	11	-	-
Sulphate	5 ug/g dry	55	12	-	-

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

Paterson Group Consulting Engineers

154 Colonnade Road South

Nepean, ON K2E 7J5 Attn: Karyn Munch

Client PO: 26050 Project: PE4321 Custody: 121054

Report Date: 2-Apr-2019 Order Date: 25-Mar-2019

Order #: 1913159

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID Client ID 1913159-01 BH3-GW1

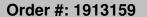
Approved By:

Mark Froto

Mark Foto, M.Sc. Lab Supervisor

Certificate of Analysis

Client: Paterson Group Consulting Engineers


Order Date: 25-Mar-2019

Client PO: 26050

Project Description: PE4321

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
BTEX by P&T GC-MS	EPA 624 - P&T GC-MS	27-Mar-19	27-Mar-19
PHC F1	CWS Tier 1 - P&T GC-FID	26-Mar-19	27-Mar-19
PHCs F2 to F4	CWS Tier 1 - GC-FID, extraction	27-Mar-19	27-Mar-19
REG 153: Pesticides, OC	EPA 8081B - GC-ECD	2-Apr-19	2-Apr-19

Client: Paterson Group Consulting Engineers

Client PO: 26050

Report Date: 02-Apr-2019 Order Date: 25-Mar-2019 **Project Description: PE4321**

BH3-GW1 Client ID: 03/22/2019 09:00 Sample Date: 1913159-01 Sample ID: Water MDL/Units Volatiles 0.5 ug/L Benzene < 0.5 0.5 ug/L Ethylbenzene < 0.5 0.5 ug/L Toluene < 0.5 0.5 ug/L m,p-Xylenes < 0.5 _ 0.5 ug/L o-Xylene < 0.5 _ 0.5 ug/L Xylenes, total < 0.5 _ _ _ Toluene-d8 Surrogate 111% Hydrocarbons 25 ug/L F1 PHCs (C6-C10) <25 100 ug/L F2 PHCs (C10-C16) <100 100 ug/L F3 PHCs (C16-C34) <100 100 ug/L F4 PHCs (C34-C50) <100 Pesticides, OC 0.01 ug/L Aldrin < 0.01 0.01 ug/L alpha-Chlordane < 0.01 0.01 ug/L gamma-Chlordane < 0.01 _ _ 0.01 ug/L Chlordane < 0.01 0.01 ug/L o,p'-DDD < 0.01 0.01 ug/L p,p'-DDD < 0.01 0.01 ug/L DDD < 0.01 0.01 ug/L o,p'-DDE < 0.01 0.01 ug/L p,p'-DDE < 0.01 0.01 ug/L DDE < 0.01 0.01 ug/L o,p'-DDT < 0.01 0.01 ug/L p,p'-DDT < 0.01 0.01 ug/L DDT < 0.01 0.01 ug/L Dieldrin < 0.01 0.01 ug/L Endosulfan I < 0.01 0.01 ug/L Endosulfan II < 0.01 _ _ 0.01 ug/L Endosulfan I/II < 0.01 0.01 ug/L Endrin < 0.01 0.01 ug/L Heptachlor < 0.01 0.01 ug/L Heptachlor epoxide < 0.01 0.01 ug/L Hexachlorobenzene < 0.01 0.01 ug/L Hexachlorobutadiene < 0.01

Report Date: 02-Apr-2019

Order Date: 25-Mar-2019

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Client PO: 26050 **Project Description: PE4321**

	Client ID:	BH3-GW1	-	-	-
	Sample Date:	03/22/2019 09:00	-	-	-
	Sample ID:	1913159-01	-	-	-
	MDL/Units	Water	-	-	-
Hexachlorocyclohexane, gamma	0.01 ug/L	<0.01	-	-	-
Hexachloroethane	0.01 ug/L	<0.01	-	-	-
Methoxychlor	0.01 ug/L	<0.01	-	-	-
Decachlorobiphenyl	Surrogate	74.1%	-	-	-

Client PO: 26050

Order #: 1913159

Report Date: 02-Apr-2019 Order Date: 25-Mar-2019

Client: Paterson Group Consulting Engineers Project Description: PE4321

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	25	ug/L						
F2 PHCs (C10-C16)	ND	100	ug/L						
F3 PHCs (C16-C34)	ND	100	ug/L						
F4 PHCs (C34-C50)	ND	100	ug/L						
Pesticides, OC									
Aldrin	ND	0.01	ug/L						
alpha-Chlordane	ND	0.01	ug/L						
gamma-Chlordane	ND	0.01	ug/L						
Chlordane	ND	0.01	ug/L						
o,p'-DDD	ND	0.01	ug/L						
p,p'-DDD	ND	0.01	ug/L						
DDD	ND	0.01	ug/L						
o,p'-DDE	ND	0.01	ug/L						
p,p'-DDE	ND	0.01	ug/L						
DDE	ND	0.01	ug/L						
o,p'-DDT	ND	0.01	ug/L						
p,p'-DDT	ND	0.01	ug/L						
DDT	ND	0.01	ug/L						
Dieldrin	ND	0.01	ug/L						
Endosulfan I	ND	0.01	ug/L						
Endosulfan II	ND	0.01	ug/L						
Endosulfan I/II	ND	0.01	ug/L						
Endrin	ND	0.01	ug/L						
Heptachlor	ND	0.01	ug/L						
Heptachlor epoxide	ND	0.01	ug/L						
Hexachlorobenzene	ND	0.01	ug/L						
Hexachlorobutadiene	ND	0.01	ug/L						
Hexachlorocyclohexane, gamma	ND	0.01	ug/L						
Hexachloroethane	ND	0.01	ug/L						
Methoxychlor	ND	0.01	ug/L						
Surrogate: Decachlorobiphenyl	0.328	0.0.	ug/L		65.5	50-140			
Volatiles			•						
Benzene	ND	0.5	ug/L						
Ethylbenzene	ND	0.5	ug/L						
Toluene	ND	0.5	ug/L ug/L						
m,p-Xylenes	ND	0.5	ug/L						
o-Xylene	ND ND	0.5	ug/L ug/L						
Xylenes, total	ND ND	0.5	ug/L ug/L						
	91.1	0.5			114	50-140			
Surrogate: Toluene-d8	91.1		ug/L		114	50-140			

Report Date: 02-Apr-2019

Order Date: 25-Mar-2019

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Client PO: 26050 Project Description: PE4321

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	25	ug/L	ND				30	
Volatiles									
Benzene	ND	0.5	ug/L	ND				30	
Ethylbenzene	ND	0.5	ug/L	ND				30	
Toluene	ND	0.5	ug/L	ND				30	
m,p-Xylenes	ND	0.5	ug/L	ND				30	
o-Xylene	ND	0.5	ug/L	ND				30	
Surrogate: Toluene-d8	88.0		ug/L		110	50-140			

Order #: 1913159

Report Date: 02-Apr-2019 Order Date: 25-Mar-2019

Client: Paterson Group Consulting Engineers Client PO: 26050 **Project Description: PE4321**

Method Quality Control: Snike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	1730	25	ug/L		86.5	68-117			
F2 PHCs (C10-C16)	1420	100	ug/L		88.7	60-140			
F3 PHCs (C16-C34)	3700	100	ug/L		94.4	60-140			
F4 PHCs (C34-C50)	2120	100	ug/L		85.3	60-140			
Pesticides, OC									
Aldrin	0.59	0.01	ug/L		118	50-140			
alpha-Chlordane	0.55	0.01	ug/L		109	50-140			
gamma-Chlordane	0.55	0.01	ug/L		111	50-140			
o,p'-DDD	0.34	0.01	ug/L		67.7	50-140			
p,p'-DDD	0.66	0.01	ug/L		132	50-140			
o,p'-DDE	0.34	0.01	ug/L		67.9	50-140			
p,p'-DDE	0.51	0.01	ug/L		103	50-140			
Dieldrin	0.53	0.01	ug/L		107	50-140			
Endosulfan I	0.57	0.01	ug/L		114	50-140			
Endosulfan II	0.46	0.01	ug/L		91.0	50-140			
Endrin	0.15	0.01	ug/L		30.0	50-140			QS-02
Heptachlor	0.52	0.01	ug/L		104	50-140			
Heptachlor epoxide	0.47	0.01	ug/L		94.0	50-140			
Hexachlorobenzene	0.48	0.01	ug/L		96.0	50-140			
Hexachlorobutadiene	0.56	0.01	ug/L		113	50-140			
Hexachloroethane	0.50	0.01	ug/L		99.1	50-140			
Methoxychlor	0.48	0.01	ug/L		95.0	50-140			
Surrogate: Decachlorobiphenyl	0.377		ug/L		75.4	50-140			
Volatiles									
Benzene	33.3	0.5	ug/L		83.2	60-130			
Ethylbenzene	33.4	0.5	ug/L		83.5	60-130			
Toluene	31.6	0.5	ug/L		79.1	60-130			
m,p-Xylenes	65.0	0.5	ug/L		81.3	60-130			
o-Xylene	32.3	0.5	ug/L		80.8	60-130			

Order #: 1913159

Report Date: 02-Apr-2019 Order Date: 25-Mar-2019 **Project Description: PE4321**

 Client: Paterson Group Consulting Engineers
 Order Date:

 Client PO: 26050
 Project Descript

Qualifier Notes:

QC Qualifiers:

QS-02: Spike level outside of control limits. Analysis batch accepted based on other QC included in the batch.

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected

MDL: Method Detection Limit

Source Result: Data used as source for matrix and duplicate samples

%REC: Percent recovery. RPD: Relative percent difference.

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.
- F1 range corrected for BTEX.
- F2 to F3 ranges corrected for appropriate PAHs where available.
- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.
- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.

GPARACEL | TRUSTE RESPON

RELIABI

Laurent Blvd. irio K1G 4J8 -1947

aracellabs.com

Chain of Custody (Lab Use Only)

LABORATORIES LT	D.													Page	of	-
				Project Reference:	PE43	32	1							Turna		
ient Name: Poterson Group Inc.				Quote#	1 - 1	and the same							01	Day		□ 3 Day
ontact Name: Kaus munch ddress: 154 Colonnade Ro	tS.			Email Address: Emurch@ patersorgran								~~~	02	Day	. ;	Regular
													Dai		On the control of	
riteria: ZO. Reg. 153/04 (As Amended) Table 🛨 🗆 R	RSC Filing [O. Reg	. 558/00	PWQO C	CME DSU	B (210	cm)	n ar	D (34	unary)	1 1480	incipanty)				
tatrix Type: S (Soil: Sed.) GW (Ground Water) SW (Surface Wat	ter) SS (Storm/Sa	mitary S	ewer) P	(Paint) A (Air) O (O	ther)	Rec	nire	d Ar	alyse	s						
Paracel Order Number:		Air Volume	of Containers	Sample '		s FI-F4+BTEX	99	5	Metals by ICP		B (HWS)	Pricides				
Sample ID/Location Name	Matrix	Air \	Jo#	Date	Time	PHCs	NOCS	PAHs	Meta	Orki	BU	38		+		
BH3-GWI	Gu		4	Han-2419		V			+	+	-	V				
2			-		_	+		Н	+	+			+	+		
3			-			+				+	T					
4	_		+			+		П	\top	T	T					
5	_	-	-			T		П		T						
6			+													
1																
8											1		_			
9														Marks	d of Deliv	SOV-
Comments: '-Somple ID M 4	Bottle	1 2	ead	-BH 3-										100	Sval	1
Relinquished By (Sign):		ed by D	river/Dep	ot:	Rec	nived at SU	Lab:	Ada	2 N	0	ONI	MA'	crified By	MAP	AN	1-10
Relinquished By (Print): Vick be more and	Date/T	ime:	15	103/19 4	30 Date	e/Time:	M	161	35,	2019	0	5,090	ite/Time:	3/25/	//9	17/10
Date-Time: Mach 25, 2019 4:30gn	_	rature:	/	6	71. Ten	iperatur	e: I	0	C			p	I Verified	[] by		

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

Paterson Group Consulting Engineers

154 Colonnade Road South

Nepean, ON K2E 7J5 Attn: Karyn Munch

Client PO: 26714 Project: PE4321 Custody: 122102

Report Date: 14-May-2019 Order Date: 8-May-2019

Order #: 1919376

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID	Client ID
1919376-01	BH8-GW1
1919376-02	BH11-GW1
1919376-03	BH13-GW1
1919376-04	BH17-GW1
1919376-05	BH20-GW1

Approved By:

Mark Foto

Mark Foto, M.Sc. Lab Supervisor

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Order Date: 8-May-2019

Client PO: 26714

Project Description: PE4321

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
Mercury by CVAA	EPA 245.2 - Cold Vapour AA	8-May-19	9-May-19
REG 153: Pesticides, OC	EPA 8081B - GC-ECD	13-May-19	14-May-19

Order #: 1919376

Report Date: 14-May-2019

Client: Paterson Group Consulting EngineersOrder Date: 8-May-2019Client PO: 26714Project Description: PE4321

	Client ID: Sample Date:	BH8-GW1 29-Apr-19 10:30	BH11-GW1 30-Apr-19 09:15	BH13-GW1 29-Apr-19 13:20	BH17-GW1 29-Apr-19 12:30
_	Sample ID:	1919376-01	1919376-02	1919376-03	1919376-04
	MDL/Units	Water	Water	Water	Water
Pesticides, OC			_	_	
Aldrin	0.01 ug/L	<0.01	<0.01	<0.01	<0.01
alpha-Chlordane	0.01 ug/L	<0.01	<0.01	<0.01	<0.01
gamma-Chlordane	0.01 ug/L	<0.01	<0.01	<0.01	<0.01
Chlordane	0.01 ug/L	<0.01	<0.01	<0.01	<0.01
o,p'-DDD	0.01 ug/L	<0.01	<0.01	<0.01	<0.01
p,p'-DDD	0.01 ug/L	<0.01	<0.01	<0.01	<0.01
DDD	0.01 ug/L	<0.01	<0.01	<0.01	<0.01
o,p'-DDE	0.01 ug/L	<0.01	<0.01	<0.01	<0.01
p,p'-DDE	0.01 ug/L	<0.01	<0.01	<0.01	<0.01
DDE	0.01 ug/L	<0.01	<0.01	<0.01	<0.01
o,p'-DDT	0.01 ug/L	<0.01	<0.01	<0.01	<0.01
p,p'-DDT	0.01 ug/L	<0.01	<0.01	<0.01	<0.01
DDT	0.01 ug/L	<0.01	<0.01	<0.01	<0.01
Dieldrin	0.01 ug/L	<0.01	<0.01	<0.01	<0.01
Endosulfan I	0.01 ug/L	<0.01	<0.01	<0.01	<0.01
Endosulfan II	0.01 ug/L	<0.01	<0.01	<0.01	<0.01
Endosulfan I/II	0.01 ug/L	<0.01	<0.01	<0.01	<0.01
Endrin	0.01 ug/L	<0.01	<0.01	<0.01	<0.01
Heptachlor	0.01 ug/L	<0.01	<0.01	<0.01	<0.01
Heptachlor epoxide	0.01 ug/L	<0.01	<0.01	<0.01	<0.01
Hexachlorobenzene	0.01 ug/L	<0.01	<0.01	<0.01	<0.01
Hexachlorobutadiene	0.01 ug/L	0.20	0.08	<0.01	<0.01
Hexachlorocyclohexane, gamma	0.01 ug/L	<0.01	<0.01	<0.01	<0.01
Hexachloroethane	0.01 ug/L	<0.01	<0.01	<0.01	<0.01
Methoxychlor	0.01 ug/L	<0.01	<0.01	<0.01	<0.01
Decachlorobiphenyl	Surrogate	88.9%	88.7%	88.7%	98.5%

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Client PO: 26714

Report Date: 14-May-2019 Order Date: 8-May-2019

Project Description: PE4321

	Client ID:	BH20-GW1	-	-	-
	Sample Date: Sample ID:	30-Apr-19 16:00 1919376-05	-	-	-
[MDL/Units	Water	-	-	-
Metals	22/011110		l.		<u></u>
Mercury	0.1 ug/L	<0.1	-	-	-
Pesticides, OC	1				
Aldrin	0.01 ug/L	<0.01	-	-	-
alpha-Chlordane	0.01 ug/L	<0.01	-	-	-
gamma-Chlordane	0.01 ug/L	<0.01	-	-	-
Chlordane	0.01 ug/L	<0.01	-	-	-
o,p'-DDD	0.01 ug/L	<0.01	-	-	-
p,p'-DDD	0.01 ug/L	<0.01	-	-	-
DDD	0.01 ug/L	<0.01	-	-	-
o,p'-DDE	0.01 ug/L	<0.01	-	-	-
p,p'-DDE	0.01 ug/L	<0.01	-	-	-
DDE	0.01 ug/L	<0.01	-	-	-
o,p'-DDT	0.01 ug/L	<0.01	-	-	-
p,p'-DDT	0.01 ug/L	<0.01	-	-	-
DDT	0.01 ug/L	<0.01	-	-	-
Dieldrin	0.01 ug/L	<0.01	-	-	-
Endosulfan I	0.01 ug/L	<0.01	-	-	-
Endosulfan II	0.01 ug/L	<0.01	-	-	-
Endosulfan I/II	0.01 ug/L	<0.01	-	-	-
Endrin	0.01 ug/L	<0.01	-	-	-
Heptachlor	0.01 ug/L	<0.01	-	-	-
Heptachlor epoxide	0.01 ug/L	<0.01	-	-	-
Hexachlorobenzene	0.01 ug/L	<0.01	-	-	-
Hexachlorobutadiene	0.01 ug/L	<0.01	-	-	-
Hexachlorocyclohexane, gamma	0.01 ug/L	<0.01	-	-	-
Hexachloroethane	0.01 ug/L	<0.01	-	-	-
Methoxychlor	0.01 ug/L	<0.01	-	-	-
Decachlorobiphenyl	Surrogate	103%	-	-	-

Order #: 1919376

Report Date: 14-May-2019 Order Date: 8-May-2019

 Client: Paterson Group Consulting Engineers
 Order Date: 8-May-2019

 Client PO: 26714
 Project Description: PE4321

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Metals									
Mercury	ND	0.1	ug/L						
Pesticides, OC									
Aldrin	ND	0.01	ug/L						
alpha-Chlordane	ND	0.01	ug/L						
gamma-Chlordane	ND	0.01	ug/L						
Chlordane	ND	0.01	ug/L						
o,p'-DDD	ND	0.01	ug/L						
p,p'-DDD	ND	0.01	ug/L						
DDD	ND	0.01	ug/L						
o,p'-DDE	ND	0.01	ug/L						
p,p'-DDE	ND	0.01	ug/L						
DDE	ND	0.01	ug/L						
o,p'-DDT	ND	0.01	ug/L						
p,p'-DDT	ND	0.01	ug/L						
DDT	ND	0.01	ug/L						
Dieldrin	ND	0.01	ug/L						
Endosulfan I	ND	0.01	ug/L						
Endosulfan II	ND	0.01	ug/L						
Endosulfan I/II	ND	0.01	ug/L						
Endrin	ND	0.01	ug/L						
Heptachlor	ND	0.01	ug/L						
Heptachlor epoxide	ND	0.01	ug/L						
Hexachlorobenzene	ND	0.01	ug/L						
Hexachlorobutadiene	ND ND	0.01 0.01	ug/L						
Hexachlorocyclohexane, gamma Hexachloroethane	ND ND	0.01	ug/L						
Methoxychlor	ND ND	0.01	ug/L						
Surrogate: Decachlorobiphenyl	0.555	0.01	ug/L <i>ug/L</i>		111	50-140			

Report Date: 14-May-2019

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Order Date: 8-May-2019 Client PO: 26714 **Project Description: PE4321**

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Metals Mercury	0.25	0.1	ug/L	0.25			0.9	20	

Order #: 1919376

Report Date: 14-May-2019 Order Date: 8-May-2019

Project Description: PE4321

Client PO: 26714

Client: Paterson Group Consulting Engineers

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Metals									
Mercury	3.04	0.1	ug/L	0.25	92.7	70-130			
Pesticides, OC									
Aldrin	0.77	0.01	ug/L			50-140			
alpha-Chlordane	0.73	0.01	ug/L			50-140			
gamma-Chlordane	0.75	0.01	ug/L			50-140			
o,p'-DDD	0.45	0.01	ug/L		89.8	50-140			
p,p'-DDD	0.69	0.01	ug/L			50-140			
o,p'-DDE	0.50	0.01	ug/L		100	50-140			
p,p'-DDE	0.73	0.01	ug/L			50-140			
o,p'-DDT	0.44	0.01	ug/L		88.5	50-140			
p,p'-DDT	0.61	0.01	ug/L			50-140			
Dieldrin	0.77	0.01	ug/L			50-140			
Endosulfan I	0.77	0.01	ug/L			50-140			
Endosulfan II	0.73	0.01	ug/L			50-140			
Endrin	0.79	0.01	ug/L			50-140			
Heptachlor	0.73	0.01	ug/L			50-140			
Heptachlor epoxide	0.75	0.01	ug/L			50-140			
Hexachlorobenzene	0.61	0.01	ug/L			50-140			
Hexachlorobutadiene	0.68	0.01	ug/L			50-140			
Hexachlorocyclohexane, gamma	0.69	0.01	ug/L			50-140			
Hexachloroethane	0.53	0.01	ug/L			50-140			
Methoxychlor	0.60	0.01	ug/L			50-140			
Surrogate: Decachlorobiphenyl	0.510		ug/L		102	50-140			

Report Date: 14-May-2019 Order Date: 8-May-2019

Project Description: PE4321

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Client PO: 26714

Qualifier Notes:

None

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected

MDL: Method Detection Limit

Source Result: Data used as source for matrix and duplicate samples

%REC: Percent recovery.

RPD: Relative percent difference.

GPARACEL

Head Office 300-2319 St. Laurent Blvd. Ottawa, Ontario K1G 4J8 p: 1-800-749-1947 e: paracel@paracellabs.com Chain of Custody (Lab Use Only)

N 122102

Page _	_ of	
TT.	1.00	

Client?	Name: Parterson Group				Project Reference	E PE 432	21								Turn	aroun	l Time:
Contac	Name: Krayo Munch				Quote #									011	Day		□ 3 Day
Addres					PO# 2671	4									100.E		. /
	154 Colonnade Rd. S.				Email Address:		1							- 2 I)ay		Regular
Telephi	one: 613-226-7381				Kmu	inch@p	iters	300	180	cu	0.1	a		Date	Requir	red:	
	ia: X O. Reg. 153/04 (As Amended) Table _ 🗆 RSC I	Filing C	O. Rej	, 558/0									cipality: _			Other:	
Matrix	Type: S (Soil/Sed.) GW (Ground Water) SW (Surface Water) S	S (Storm S	Sanitary S	iewet) P	(Paint) A (Air) O	(Other)	Requ	iirec	l An	alyso	25						
Parac	el Order Number:			2			EX	T	T	T	T	П		T	Т	Т	
	1919376 sample 10 an	rix	Air Volume	of Containers	Sampl	e Taken	s F1-F4+BTE3	s.	8	is by ICT		NS)	MOES				
	Sample ID/Location Name hoteles	Matrix	Air	# of	Date	Time	PHCs	NOC	PAHS	Plo	Crvi	B (HWS)	33				
1	BH8-GWI - BH8 MAD	G.W.			Lor 29 19	10:30 A/M							X				1
2	BH11-GW1 = 8411			1	Apr 30/ R	9:15 AM							X				1
3	BH13-GW1 = BH13			1	Apr 19/19	1:20 PM							X				1
4	BHIT-GWI - BH17				Apr 29/19	12:30 PM							X				1
5	BH 20-GWI - BH 20 - For 16	V		2	Apr 30/19)			X				-
6	100	glass															
7																	
8																	
9																	
10																	
Comn	nents:			(0,	astu	200	- (0	00								of Delive	
11	ished By (Sign):	Receive	d by Driv	er Depo	Rouse		STATE OF	AUGUST A	NAME OF			MM	The second	M	AS .		
-	ished By (Print): Nick Sullivan			8/0	5/194	Date/Tit		_	-		9	04,8	-		72-5	X-1	9 1732
Date/Tr	mc: Ma 8 20/9	Tempera	unic:			Pr. Temper	sture:	0,0	(1			pli V	erified []	By:		

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

Paterson Group Consulting Engineers

154 Colonnade Road South

Nepean, ON K2E 7J5 Attn: Karyn Munch

Client PO: 26515 Project: PE4321 Custody: 122126

Report Date: 23-May-2019 Order Date: 17-May-2019

Order #: 1920828

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

 Paracel ID
 Client ID

 1920828-01
 BH2-GW1

 1920828-02
 Dup-GW

Approved By:

Mark Froto

Mark Foto, M.Sc. Lab Supervisor

Report Date: 23-May-2019 Certificate of Analysis **Client: Paterson Group Consulting Engineers** Order Date: 17-May-2019 **Project Description: PE4321 Client PO: 26515**

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date Analysis Date
BTEX by P&T GC-MS	EPA 624 - P&T GC-MS	20-May-19 20-May-19
PHC F1	CWS Tier 1 - P&T GC-FID	19-May-19 20-May-19
PHCs F2 to F4	CWS Tier 1 - GC-FID, extraction	22-May-19 22-May-19

Client: Paterson Group Consulting Engineers

Client PO: 26515

Report Date: 23-May-2019 Order Date: 17-May-2019

Order #: 1920828

Project Description: PE4321

	Client ID:	BH2-GW1	Dup-GW		
			·	-	-
	Sample Date:	17-May-19 09:00	17-May-19 09:00	-	-
	Sample ID:	1920828-01	1920828-02	-	-
	MDL/Units	Water	Water	-	-
Volatiles					
Benzene	0.5 ug/L	<0.5	<0.5	-	-
Ethylbenzene	0.5 ug/L	<0.5	<0.5	-	-
Toluene	0.5 ug/L	<0.5	<0.5	-	-
m,p-Xylenes	0.5 ug/L	<0.5	<0.5	-	-
o-Xylene	0.5 ug/L	<0.5	<0.5	-	-
Xylenes, total	0.5 ug/L	<0.5	<0.5	-	-
Toluene-d8	Surrogate	105%	106%	-	-
Hydrocarbons					
F1 PHCs (C6-C10)	25 ug/L	<25	<25	-	-
F2 PHCs (C10-C16)	100 ug/L	<100	<100	-	-
F3 PHCs (C16-C34)	100 ug/L	<100	<100	-	-
F4 PHCs (C34-C50)	100 ug/L	<100	<100	-	

Client: Paterson Group Consulting Engineers

Client PO: 26515

Order #: 1920828

Report Date: 23-May-2019 Order Date: 17-May-2019 **Project Description: PE4321**

Method Quality Control: Blank

Method Quanty Control:	DIAIIK								
Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	25	ug/L						
F2 PHCs (C10-C16)	ND	100	ug/L						
F3 PHCs (C16-C34)	ND	100	ug/L						
F4 PHCs (C34-C50)	ND	100	ug/L						
Volatiles									
Benzene	ND	0.5	ug/L						
Ethylbenzene	ND	0.5	ug/L						
Toluene	ND	0.5	ug/L						
m,p-Xylenes	ND	0.5	ug/L						
o-Xylene	ND	0.5	ug/L						
Xylenes, total	ND	0.5	ug/L						
Surrogate: Toluene-d8	82.1		ug/L		103	50-140			

Client: Paterson Group Consulting Engineers

Client PO: 26515

Order #: 1920828

Report Date: 23-May-2019 Order Date: 17-May-2019 **Project Description: PE4321**

Method Quality Control: Duplicate

mount a diametry									
Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	25	ug/L	ND				30	
Volatiles									
Benzene	ND	0.5	ug/L	ND				30	
Ethylbenzene	ND	0.5	ug/L	ND				30	
Toluene	ND	0.5	ug/L	ND				30	
m,p-Xylenes	ND	0.5	ug/L	ND				30	
o-Xylene	ND	0.5	ug/L	ND				30	
Surrogate: Toluene-d8	84.8		ug/L		106	50-140			

Client: Paterson Group Consulting Engineers

Client PO: 26515

Order #: 1920828

Report Date: 23-May-2019 Order Date: 17-May-2019 **Project Description: PE4321**

Method Quality Control: Spike

Method Quanty Contro	on opino								
Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	1810	25	ug/L		90.6	68-117			
F2 PHCs (C10-C16)	1370	100	ug/L		85.7	60-140			
F3 PHCs (C16-C34)	3700	100	ug/L		94.4	60-140			
F4 PHCs (C34-C50)	2070	100	ug/L		83.5	60-140			
Volatiles									
Benzene	41.3	0.5	ug/L		103	60-130			
Ethylbenzene	40.6	0.5	ug/L		102	60-130			
Toluene	38.0	0.5	ug/L		95.1	60-130			
m,p-Xylenes	86.6	0.5	ug/L		108	60-130			
o-Xylene	47.4	0.5	ug/L		118	60-130			
Surrogate: Toluene-d8	75.2		ug/L		94.0	50-140			

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8

Order #: 1920828

Report Date: 23-May-2019

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Order Date: 17-May-2019 **Client PO: 26515 Project Description: PE4321**

Qualifier Notes:

None

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected

MDL: Method Detection Limit

Source Result: Data used as source for matrix and duplicate samples

%REC: Percent recovery. RPD: Relative percent difference.

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.
- F1 range corrected for BTEX.
- F2 to F3 ranges corrected for appropriate PAHs where available.
- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.
- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.
- When reported, data for F4G has been processed using a silica gel cleanup.

LABORATORIES LTD.

ead Office 00-2319 St. Laurent Blvd. ttawa, Ontario K1G 4J8 : 1-800-749-1947 r: paracel@paracellabs.com Chain of Custody (Lab Use Only)

.Nº 122126

	_	- 01	Page
1. P		111-	10000

lient Name: DOTAMOO (DOO 10 10	1			Project Reference:	PEI	150	VI							Turna	tround 1	inic.
PUMBADI I OFTICES II A	'			Quote #		00							01	Day	7	3 Day
ontact Name: Hauyn Munch				PO# 0/	NCIT									0.0470		
odress: 194 Colonnade Rais				al	6013	_		_	_					Day		□ Regular
				kmus	1ch@	pa	to	X	m	QR	U	p.a	Dat	te Requir	ed: HO	423
criteria: \$\int 0. Reg. 153/04 (As Amended) Table 3 R	ec elles El	O Pao	558/00	DPWOO DC	CME DSU	B (Sto	cm)	II S	UB (Sanit	ary)	Municipality:		0	Other:	,
Criteria: P.O. Reg. 153/04 (As Amended) Table U.R.	SC riling G	O. Reg	20000	Dings		T _D				ene.						
latrix Type: S (Soil-Sed.) GW (Ground Water) SW (Surface Wat	et) SS (Storm/S	anitary S	ewer) P	(Paint) A (Air) O (O	ther)	- 14	Juire	ed A	nary	ses	_		_		Т	
Paracel Order Number:			crs			BTES										
1920823	×	Air Volume	of Containers	Sample	Taken	s F1-F4+BTEX	м	20	ds by ICT			B (HWS)				
Sample ID/Location Name	Matrix	Air.	jo #	Date	Time	PHCs	VOCs	PAHs	Metals	Hg	CrvI	0 0				
	DW		3	Mau 17/19		V										
1 BH2.6WI	OW		3	May 7/19		V										
2 DUP-GW	UW			The state of the s												
3																
4			-					Г								
5			-			\top										
6		-	+			+										
1			-			+	t	\vdash						11/1/1		
8		-	-			+	+	+							\Box	
9		-	+			+	+	+	+			+				
10							_	_	_	_				Mptho	d of Deliver	ry:
Comments:				4		0							100 M 10	0	nit	
Relinquished By (Sign):	Receiv	ed by Dr	river Dep	ot/ U	60	- 4	26	pp)	lo	kmal	erified y	MA	1	- 197
Relinquished By (Print):	Date/T		m	Any 17/		s/Time: iperature				170	77	0 1 10 2	nte/Time:	L1 By:	-11	17/
Date/Time:	Тетро	rature:	1	'C /	Ten	peratur	10	10	U			IP.	A AMILIAN	11.7		