Geotechnical Engineering

Environmental Engineering

Hydrogeology

Geological Engineering

Materials Testing

Building Science

Archaeological Services

Paterson Group Inc.

Consulting Engineers 154 Colonnade Road South Ottawa (Nepean), Ontario Canada K2E 7J5

Tel: (613) 226-7381 Fax: (613) 226-6344 www.patersongroup.ca

patersongroup

Phase II Environmental Site Assessment

7000 Campeau Drive Ottawa, Ontario

Prepared For ClubLink Corporation ULC

> May 20, 2020 Report: PE4321-2R

TABLE OF CONTENTS

EXEC	UTIVI	E SUMMARY	iv
1.0	INTRODUCTION		
	1.1	Site Description	1
	1.2	Property Ownership	1
	1.3	Current and Proposed Future Uses	1
	1.4	Applicable Site Condition Standard	2
2.0	BACKGROUND INFORMATION		3
	2.1	Physical Setting	3
	2.2	Past Investigations	
3.0	SCOPE OF INVESTIGATION		
	3.1	Overview of Site Investigation	4
	3.2	Media Investigated	
	3.3	Phase I Conceptual Site Model	
	3.4	Deviations from Sampling and Analysis Plan	7
	3.5	Impediments	
4.0	INVESTIGATION METHOD		
	4.1	Subsurface Investigation	8
	4.2	Soil Sampling	9
	4.3	Field Screening Measurements	10
	4.4	Groundwater Monitoring Well Installation	10
	4.5	Field Measurement of Water Quality Parameters	
	4.6	Groundwater Sampling	11
	4.7	Analytical Testing	11
	4.8	Residue Management	
	4.9	Elevation Surveying	12
		Quality Assurance and Quality Control Measures	
5.0	REVI	EW AND EVALUATION	
	5.1	Geology	
	5.2	Groundwater Elevations, Flow Direction, and Hydraulic Gradient	13
	5.3	Fine-Coarse Soil Texture	
	5.4	Soil: Field Screening	
	5.5	Soil Quality	
		Parcel 1 (MECP Table 3 Standards)	
		Parcel 2 (MECP Table 3 Standards)	
		Parcel 3 (MECP Table 7 Standards)	
		Parcel 4 (MECP Table 7 Standards)	
	5.5.4	Maximum Concentrations	
	5.6	Groundwater Quality	17

	5.6.1 Parcel 1 (MECP Table 3 Standards)	17
	5.6.2 Parcel 2 (MECP Table 3 Standards)	
	5.6.3 Parcel 3 (MECP Table 7 Standards)	
	5.6.4 Parcel 4 (MECP Table 7 Standards)	
	5.6.5 Maximum Concentrations	
	5.7 Quality Assurance and Quality Control Results	
	5.8 Phase II Conceptual Site Model	
6.0	CONCLUSIONS	
7.0	STATEMENT OF LIMITATIONS	

List of Figures

Figure 1 - Key Plan Drawing PE4321-3R - Test Hole Location Plan Drawing PE4321-4 R– Analytical Testing Plan Drawing PE4321-5– Cross-Section A-A' Drawing PE4321-6 – Cross-Section B-B' Drawing PE4321-7 – Cross-Section C-C'

List of Tables

Table 1: Areas of Potential Environmental Concern Table 2: Monitoring Well Construction Details Table 3: Field Measurement of Water Quality Parameters Table 4: Soil Samples Submitted for Analysis Table 5: Groundwater Samples Submitted for Analysis Table 6: Groundwater Level Measurements Table 7: Grain Size Analysis Table 8: Parcel 1 – 2019 Analytical Test Results, Soil – BTEX and PHCs (F₁-F₄) Table 9A: Parcel 1 – 2019 Analytical Test Results, Soil – Metals (including As, Sb, Se) Hq, CrVI Table 9B: Parcel 1 – 2020 Analytical Test Results, Soil – Mercury (Hg) Table 10A: Parcel 1 – 2019 Analytical Test Results, Soil – Organochlorine Pesticides Table 10B: Parcel 1 – 2020 Analytical Test Results, Soil – Organochlorine Pesticides Table 11A: Parcel 2 – 2019 Analytical Test Results, Soil – Metals (including As, Sb, Se), Hg and CrVI Table 11B: Parcel 2 – 2020 Analytical Test Results, Soil – Mercury (Hg) Table 12: Parcel 2 – 2019/2020 Analytical Test Results, Soil – Organochlorine Pesticides Table 13A: Parcel 3 – 2019 Analytical Test Results, Soil – Metals (including As, Sb, Se), Hg and CrVI Table 13B: Parcel 3 – 2020 Analytical Test Results, Soil – Mercury (Hg) Table 14: Parcel 3 – 2019/2020 Analytical Test Results, Soil – Organochlorine Pesticides

Table 15A: Parcel 4 – 2019 Analytical Test Results, Soil - Metals (including As, Sb, Se), Hg and CrVI Table 15B: Parcel 4 – 2020 Analytical Test Results, Soil – Mercury (Hg) Table 16: Parcel 4 – 2019/2020 Analytical Test Results, Soil – Organochlorine Pesticides Table 17: Maximum Soil Concentrations Table 18: Parcel 1 – Analytical Test Results, Groundwater – BTEX and PHCs (F1-F4) Table 19: Parcel 1 – Analytical Test Results, Groundwater – Metals (including As, Sb, Se) and Hg Table 20: Parcel 1 – Analytical Test Results, Groundwater – Organochlorine Pesticides Table 21: Parcel 2 – Analytical Test Results, Groundwater – Organochlorine Pesticides Table 22: Parcel 3 – Analytical Test Results, Groundwater – Metals (including As, Sb, Se) and Hg Table 23: Parcel 3 – Analytical Test Results, Groundwater – Organochlorine Pesticides Table 24: Parcel 4 – Analytical Test Results, Groundwater – Metals (including As, Sb, Se) and Hg Table 25: Parcel 4 – Analytical Test Results, Groundwater – Organochlorine Pesticides Table 26: Maximum Groundwater Concentrations Table 27: QA/QC Calculations - Soil

List of Appendices

patersongroup

North Bay

Kingston

Ōttawa

Appendix 1 Sampling and Analysis Plan Grain Size Analyses Soil Profile and Test Data Sheets Symbols and Terms Laboratory Certificates of Analysis

EXECUTIVE SUMMARY

Assessment

A Phase II ESA was conducted for the property addressed 7000 Campeau Drive, herein referred to as the Phase II Property, in the City of Ottawa, Ontario. It should be noted that the Phase II Property is comprised of four (4) parcels of land identified as Parcels 1 through 4 for the purposes of this report.

The purpose of the Phase II ESA was to assess the soil and groundwater quality on or beneath the Phase II Property, within areas of potential environmental concern (APECs) identified during the Phase I ESA carried out by Paterson and dated December 2018. An initial Phase II ESA field program was carried out in 2019, with a supplemental field program carried out in 2020. The findings of both field programs constitute the Phase II ESA and are presented in this updated Phase II ESA report.

2019 Investigation

The 2019 Phase II ESA field program was carried out in conjunction with a Geotechnical Investigation and consisted of drilling 20 boreholes across the Phase II Property, 13 of which were constructed with groundwater monitoring well installations, and the placement of 20 shallow hand auger holes. Approximately 190 probeholes were also completed as part of the Geotechnical Investigation, in order to confirm bedrock depth in areas of deep overburden.

Soil samples obtained from the boreholes and auger holes were screened primarily using visual observations. Samples collected from within the vicinity of the Turf Building and aboveground storage tanks (ASTs) were also screened using combustible vapour measurements. Based on the screening results in combination with sample depth and location, a total of 27 soil samples, including a duplicate sample, were submitted for laboratory analysis of benzene, toluene, ethylbenzene and xylenes (BTEX), petroleum hydrocarbons (PHCs, F1-F4), metals and/or organochlorine pesticides (OCPs).

Based on the analytical test results, no BTEX parameters or PHC (F1) were identified in the soil samples submitted for testing. Petroleum hydrocarbon F2, F3 and/or F4 fractions were identified in shallow auger flight samples recovered from BH2, BH3 and BH5, within the vicinity of the ASTs and Turf Building on the southeastern portion of the Phase II Property (Parcel 1). Metals parameters were also identified in the fill material on this portion of the Phase II Property, while no OCPs were detected in the sample recovered from BH3. The PHC and metal parameters identified were in compliance with the MECP Table 3 standards, selected based on the site conditions within Parcel 1.

Metal and OCP analyses were conducted on shallow soil samples collected from the greens, fairways and/or roughs across the Phase II Property. Concentrations of δ -BHC ranging from 0.01 to 0.03µg/g were identified in shallow soil Samples HA3-G1, HA11-G1 and HA15-G1. Otherwise, no OCP pesticides were identified in any of the samples analysed.

Metal parameters were identified in all samples analysed. Concentrations of mercury identified in the soil recovered from HA14 and HA15 on the northeastern portion of the Phase II Property (Parcel 3) exceeded the MECP Table 7 standards selected for this portion of the site. The remaining metal parameters identified on the Phase II Property at the time of the 2019 field program, were in compliance with the MECP Table 3 or MECP Table 7 standards.

Groundwater samples from monitoring wells installed in BH2, BH3, BH8, BH11, BH13, BH17 and BH20 were recovered and analysed for BTEX, PHCs, OCPs and/or mercury. No free-phase product was observed on the groundwater at any of the monitoring well locations during the February, April and May 2019 sampling events. Based on analytical test results, no BTEX, PHC or mercury concentrations were identified above the laboratory method detection limits in the groundwater samples analysed. No OCP parameters were detected above the laboratory method detection limits, with the exception of hexachlorobutadiene concentrations in groundwater samples recovered from BH8 and BH11 on Parcels 1 and 2 of the Phase II Property. The identified concentrations were in compliance with the MECP Table 3 standards.

2020 Supplemental Investigation

In May of 2020, 34 additional shallow hand auger holes were placed across the Phase II Property to provide additional coverage of the greens, tees and/or fairways, and to delineate previously identified mercury impacts on Parcel 3. A total of 65 shallow soil samples were collected from depths of 0.05 to 0.15m and 0.15m to 0.30m with deeper samples (0.30 to 0.60m) collected at the locations of the original (2019) mercury exceedances.

Soil samples were submitted for analytical testing of mercury and/or organochlorine pesticides. Concentrations of δ -BHC ranging from 0.021µg/g to 0.097µ/g, were identified in each of the samples analysed. Otherwise, no OCP pesticides were identified in any of the samples analysed.

Based on the findings of the analytical testing, mercury concentrations exceeding the selected MECP standards were identified on each Parcel of land comprising the golf course. The mercury concentrations are considered to be present in pockets across the course and are considered to be confined to the upper 0.3 to 0.6m of soil.

On May 5, 2020, groundwater samples from monitoring wells installed in BH8, BH15, BH16, BH18, BH19 and BH20 were recovered and submitted for analytical testing of metals (including As, Sb, Se) and mercury or OCPs. No visual or olfactory indications of potential contamination were observed on the groundwater at any of the monitoring well locations. Based on analytical test results, no OCP or mercury concentrations were identified above the laboratory method detection limits in the groundwater samples analysed. Metal parameters identified in the groundwater samples were in compliance with the selected MECP standards.

Conclusion

Based on the findings of the Phase II ESA, mercury concentrations exceeding the MECP Table 7 and Table 3 standard of 0.27 μ g/g were identified in shallow soil samples collected from various locations across the Phase II Property. The mercury is considered to be present in pockets across the site, within the shallow soils, to a maximum depth of approximately 0.6m below grade. Otherwise the soil on and beneath the Phase II Property is in compliance with the selected MECP standards. Groundwater beneath the Phase II Property is in compliance with the applicable MECP standards.

The presence of impacted shallow soils is not considered to represent a concern to the continued use of the site as a golf course. It is recommended that a soil remediation program be carried out at the Phase II Property in conjunction with the redevelopment of the site.

It is expected that the groundwater monitoring wells will be abandoned in accordance with Ontario Regulation 903 at the time of construction excavation. Until this time, it is recommended that they remain in place for possible future groundwater monitoring events.

1.0 INTRODUCTION

At the request of ClubLink Corporation ULC (ClubLink), Paterson Group (Paterson) conducted a Phase II Environmental Site Assessment (ESA) for the property addressed 7000 Campeau Drive in the City of Ottawa, Ontario. The purpose of this Phase II ESA was to address areas of potential environmental concern (APECs) identified in the Phase I ESA conducted by Paterson, dated December 2018.

1.1 Site Description

Address:	7000 Campeau Drive, Ottawa, Ontario.			
Legal Description:	Part of Lots 5 and 6, Concession 3, in the City of Ottawa.			
Property Identification				
Numbers:	04511-0214, 04512-1126 and 04513-0489			
Location:	The subject site is located on the north side of Campeau Drive, east of Kanata Avenue. The subject site is shown on Figure 1 - Key Plan following the body of this report.			
Latitude and Longitude:	45° 19' 17" N, 75° 34' 39" W			
Configuration:	Irregular			
Site Area:	71 ha (approximate)			

1.2 Property Ownership

The subject property is currently owned by ClubLink. Paterson was retained to complete this Phase II ESA by Mr. Andrew Tamlin, CFO of ClubLink. Mr. Tamlin can be contacted by telephone at 905-841-5372.

1.3 Current and Proposed Future Uses

The Phase II Property is currently occupied by the Kanata Golf and Country Club. It is our understanding that the Phase II Property is proposed to be developed with a residential subdivision consisting of residential dwellings, storm water management ponds, open space and parkland.

A record of site condition is required for the more sensitive land use change from commercial to residential. As the Phase II Property is non-contiguous, an RSC will be required for each of the 4 parcels of land.

1.4 Applicable Site Condition Standard

The site condition standards for the property were obtained from Table 3 and Table 7 of the document entitled "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act", prepared by the Ontario Ministry of the Environment, Conservation and Parks (MECP), April 2011.

As noted in the previous section, the Phase II Property is comprised of 4 noncontiguous parcels of land; each parcel of land is therefore subject to its own site standards given the specific site conditions. The selected MECP Table 3 Standards for Parcels 1 and 2 are based on the following considerations:

- □ Coarse-grained soil conditions;
- □ Non-potable groundwater conditions; and
- Residential land use.

The MECP Table 7 standards selected for Parcels 3 and 4 are based on the following considerations:

- □ Shallow soil (less than 2m of soil cover is present over more than one third of the site);
- Coarse-grained soil conditions;
- □ Non-potable groundwater conditions; and
- Residential land use.

Non-potable groundwater conditions were selected as the Phase II Property is situated in a municipally serviced area and residential land use standards were selected based on the proposed development.

Grain size-analyses were conducted at four (4) different locations across the Phase II Property, identifying the soil as fine-grained. However, due to the size of the Phase II Property, additional grain-size analysis would be recommended to confirm that fine-grained standards are applicable. The more stringent coarse-grained standards have therefore been selected at this time.

Section 41 of O.Reg. 153/04 does not apply to the Phase II Property, as the property is not within 30m of an environmentally sensitive area and the pH of the soil is between 5 and 9.

Section 43.1 of O.Reg. 153/04 does apply to Blocks 3 and 4 of the Phase II Property as these parcels of land are shallow soil properties.

2.0 BACKGROUND INFORMATION

2.1 Physical Setting

The Phase II Property is situated in an urban setting, surrounded by residential subdivisions and/or apartment buildings, with some treed land to the south. The golf cart storage, Clubhouse and associated parking lot are present on the southwestern portion of the site while the southeastern portion of the site is developed with a maintenance building (the Turf Building). The remainder of the site is occupied by paved walking paths, grassed fairways, landscaped roughs and sand pits. Two man-made ponds are present on the south-central portion of the Phase II Property.

Site topography is generally undulating, with an overall gentle downward slope to the north. Site drainage consists primarily of sheet flow to catch basins in the paved areas, with surficial infiltration and some sheet flow to the aforementioned ponds in the landscaped areas.

The Phase II Property and surrounding properties are currently provided with municipal services and do not have private potable wells or septic systems.

2.2 Past Investigations

Phase I Environmental Site Assessment, 2018

Paterson was retained by ClubLink to carry out a Phase I-Environmental Site Assessment (ESA) for the property addressed 7000 Campeau Drive in the City of Ottawa, Ontario. The purpose of the Phase I-ESA was to research the past and current use of the site and study area and to identify environmental concerns with the potential to have impacted the subject property.

Based on the available historical information sources, the Phase I Property was originally vacant, undeveloped land, possibly used for agricultural purposes, until developed with a 9-hole golf course and Clubhouse during the interim of 1965 through 1968. Nine (9) additional fairways were added to the course at some time between 1976 and 1990. The existing Clubhouse, golf-cart charging station/storage building and maintenance building were reportedly constructed in the early 1990's.

The adjacent and neighbouring properties were historically vacant, undeveloped or agricultural lands. Residential subdivisions were developed around and immediately east of the golf course from the 1970's through the 1990's. No historical off-site PCAs were identified within the Phase I Study Area.

Following the historical review, a site visit was conducted. Based on the findings of the site visit, on-site PCAs include fuel stored in 2 aboveground storage tanks (ASTs) and the storage and application of pesticides and herbicides. These PCAs have resulted in areas of potential environmental concern (APECs) on the Phase I Property as presented in Table 1: Areas of Potential Environmental Concern in the Tables Section following the body of the report. At the time of the site visit, the current uses of the adjacent and neighbouring properties within the Phase I ESA Study Area were observed from publicly accessible areas. No off-site PCAs were identified within the Phase I Study Area at the time of the site visit.

Based on the findings of the Phase I-ESA, a Phase II-ESA was recommended for the Phase I Property.

Geotechnical Investigations, 2018 and 2019

Based on the findings of the Geotechnical Investigations, the site is suitable for a residential development from a geotechnical perspective. The site stratigraphy was observed to generally consist of a thin layer of topsoil over a native silty clay deposit, generally underlain by glacial till.

Where fill was identified at the borehole locations, the material consisted of reworked native material. Bedrock outcrops and shallow bedrock was observed at several locations over the site. The overburden thickness was anticipated to vary between 0 and 20m.

3.0 SCOPE OF INVESTIGATION

3.1 Overview of Site Investigation

The subsurface investigation was conducted during the interim of February 27 through April 30, 2019, in conjunction with a Geotechnical Investigation. The field program consisted of drilling 20 boreholes to depths ranging from approximately 0.99 to 9.78m below grade. Boreholes BH2-19, BH3-19, BH8-19, BH10-19, BH11-19, BH12-19, BH13-19, BH15-19, BH16-19, BH17-19, BH18-19, BH19-19 and BH20-19 were completed with monitoring well installations.

Bedrock was cored at BH2-19, BH3-19 and BH17-19 through BH20-19 for the purpose of intercepting the groundwater table. The field program also consisted of the placement of 20 hand auger holes across the Phase II Property, to obtain near surface soil samples.

A supplemental field investigation was carried out on May 4, 2020, at which time an additional 34 hand auger holes were placed across the Phase II Property. The purpose of the supplemental sampling was to delineate mercury exceedances previously identified in the shallow soils on Parcel 3, and to provide additional coverage of the greens and fairways.

3.2 Media Investigated

During the subsurface investigation, soil samples and groundwater samples were obtained and submitted for laboratory analysis. The rationale for sampling and analyzing these media is based on the Contaminants of Potential Concern (CPCs) identified in the Phase I ESA. The CPCs for soil and groundwater include petroleum hydrocarbons (PHCs, fractions F1-F4) and benzene, toluene, ethylbenzene and xylenes (BTEX), organo-chlorine pesticides and/or metals, mercury (Hg) and hexavalent chromium (CrVI).

3.3 Phase I Conceptual Site Model

Geological and Hydrogeological Setting

The Geological Survey of Canada website on the Urban Geology of the National Capital Area was consulted as part of this assessment. Based on this information, the bedrock in the area of the subject site is reported to consist of diorite of the Gabbro Formation and magmatic rocks of the Paragneiss Formation.

Overburden soils are reported to consist primarily of Precambrian bedrock. Small areas of till and marine deposits of clay and silt, with a drift thickness on the order of 3 to 5m, were reported to exist on the southern portion of the Phase I Property. Drift thickness over the remainder of the site was reported as 0 to 1m.

It should be noted that based on the findings of the Phase II ESA as well as the previous and concurrent Geotechnical Investigations, drift thickness over the site ranges from 0 to up to 20m below grade.

Groundwater flow is in a northerly direction.

Buildings and Structures

The Phase I Property is occupied by a 2-storey Clubhouse and restaurant, a 1storey golf cart storage structure, a pump house and a 1-storey maintenance building referred to as the Turf Building. Other structures include a wash pad and concrete stalls for the storage of bunker sand. All buildings and structures were reportedly constructed in the early 1990's and are present on the southern portion of the Phase I Property.

Water Bodies

There are no water bodies on the Phase I Property. No bodies of water are present within the Phase I Property. The closest bodies of water are the Carp River and Watt's Creek, situated approximately 1.4km southwest and 1.5km east of the Phase I Property, respectively.

Areas of Natural Significance

No areas of natural significance were identified on the Phase I Property or within the Phase I ESA Study Area.

Drinking Water Wells

The online interactive well record mapping system was accessed on May 22, 2018. Potable well records were not identified for the Phase I Property although it has been reported that the aesthetic and irrigation water is provided to the Phase I Property by a drilled well.

Ten (10) records for domestic wells were identified within the Phase I Study Area. The wells were installed between 1961 and 1987, with one well installed in 2007. One record for a potable well abandonment was also identified. All of the wells were installed within bedrock which was reported to consist of a combination of limestone, sandstone, quartzite and/or granite.

It should be noted that the Phase I Property and properties within the Phase I Study Area are currently provided with municipal drinking water. It is considered likely that the well installed in 2007 is part of a ground source heat pump system.

Monitoring Well Records

No monitoring wells were identified for the Phase I Property or for any properties within the Phase I Study Area.

Neighbouring Land Use

Neighbouring land use in the Phase I Study Area is primarily residential with some parkland and institutional properties (schools).

Potentially Contaminating Activities (PCAs) and Areas of Potential Environmental Concern (APECs)

As presented in Table 1 in the previous section, on-site PCAs resulting in APECs on the Phase I Property include the storage of fuel (2 ASTs) as well as the storage and application of pesticides. Since the time of the Phase I ESA, imported fill material has also been identified as an on-site PCA resulting in an APEC.

No historical or existing off-site PCAs were identified for properties within the Phase I Study Area. PCAs and resulting APECs are presented on Drawing PE4321-1 – Site Plan and Drawing PE4321-1A – Site Plan (Enlargement) appended to the Phase I ESA.

Contaminants of Potential Concern (CPCs)

CPCs identified with the aforementioned APECs include benzene, toluene, ethylbenzene and xylenes (BTEX), petroleum hydrocarbons (PHCs, F1-F4) and organo-chlorine pesticides in the soil and groundwater. Note that since the time of the Phase I ESA, metals (including mercury and hexavalent chromium) have been identified as CPCs.

Assessment of Uncertainty and/or Absence of Information

The information available for review as part of the preparation of this Phase I-ESA is considered to be sufficient to conclude that there are PCAs on the Phase I Property which may have impacted the subject land. The presence of PCAs was confirmed by a variety of independent sources, and as such, the conclusions of this report are not affected by uncertainty which may be present with respect to the individual sources.

3.4 Deviations from Sampling and Analysis Plan

The Sampling and Analysis Plan for this project is included in Appendix 1 of this report. There were no deviations from the Sampling and Analysis Plan.

3.5 Impediments

Physical impediments encountered during the Phase II ESA field program include the location of buried services and the fenced storage area adjacent to the Turf Building which limited the selection of borehole locations on the southeastern portion of the site.

As the Phase II Property is occupied by an operational golf course, borehole locations were limited to the roughs, off the edges of the fairways. To minimize damage to the golf course, near surface samples were collected using sampling equipment provided by ClubLink and where samples were required on the greens, they were taken from the fringe at the request of ClubLink. Otherwise no physical impediments were encountered.

4.0 INVESTIGATION METHOD

4.1 Subsurface Investigation

The subsurface investigation was conducted during the interim of February 27 through April 30, 2019. The field program consisted of drilling 20 boreholes to depths ranging from approximately 0.99 to 9.78m below grade. Boreholes BH2, BH3, BH8, BH10, BH11, BH12, BH13, BH15, BH16, BH17, BH18, BH19 and BH20 were completed with monitoring well installations. Bedrock was cored at BH2, BH3 and BH17 through BH20 for the purpose of intercepting the groundwater table. The field program also consisted of the placement of 20 hand auger holes across the Phase II Property, to obtain shallow soil samples.

A supplemental field investigation was carried out on May 4, 2020, at which time an additional 34 hand auger holes were placed across the Phase II Property. The purpose of the supplemental sampling was to delineate mercury exceedances previously identified in the shallow soils on Parcel 3, and to provide additional coverage of the greens and fairways.

All boreholes were drilled with a track-mounted CME 55 power auger drill rig, provided by George Downing Estate Drilling of Hawkesbury, Ontario, under the full-time supervision of Paterson personnel. As noted above, near surface soil samples were collected by Paterson personnel using a hand auger provided by ClubLink.

A 1-inch diameter hand auger was used to collect vertical delineation samples on Parcel 3. Borehole and hand auger locations are shown on Drawing PE4321-3R – Test Hole Location Plan, appended to this report.

4.2 Soil Sampling

A total of 110 soil samples were obtained from the boreholes by means of sampling directly from auger flights and split spoon sampling, a total of 21 rock core samples were collected by means of bedrock coring, and 87 shallow grab samples were collected from the hand auger holes. The depths at which auger samples, split spoon samples and rock core samples were obtained from the boreholes are shown as "**AU**", "**SS**" and "**RC**" on the Soil Profile and Test Data Sheets, appended to this report. During the 2019 field program, grab samples collected from the hand auger holes were retrieved from approximately 0.05 to 0.25m below grade.

A total of 65 shallow grab samples were collected from the hand auger holes placed during the 2020 field program and were retrieved from depth intervals of 0.05 to 0.15m, 0.15m to 0.30m and/or 0.30 to 0.60m below grade (Parcel 3 only).

Site soils at the borehole locations generally consist of topsoil or a pavement structure over fill (primarily engineered fill or reworked native material), underlain by silty clay, glacial till and gneiss bedrock. Depth to bedrock varies across the site, and was confirmed at boreholes BH2, BH3 and BH17 through BH20 at depths ranging from approximately 0.59 to 3.12m below ground.

It should be noted that approximately 190 probeholes were placed across the Phase II Property, as part of the concurrent Geotechnical Investigation, to confirm bedrock depths. Bedrock across the Phase II Property generally ranges from approximately 0 to 20m below grade. Probehole locations have been shown on Drawing PE4321-3R – Test Hole Location Plan, for informative purposes.

4.3 Field Screening Measurements

All soil samples collected were subjected to a preliminary screening procedure, which included visual screening for colour/staining and evidence of fill material/ metal impacts. Soil vapour screening with an RKI Eagle gas detector with methane elimination and calibrated to hexane was conducted on samples recovered from boreholes on the southeastern portion of the Phase II Property (Parcel 1; in the vicinity of the ASTs and Turf Building) where the potential for petroleum hydrocarbon impacts was identified in the Phase I ESA.

The combustible vapours for soil samples collected from BH1 through BH5 were measured by inserting the analyzer probe into the nominal headspace above the soil sample. Samples were then agitated/manipulated gently as the measurements were taken. The peak reading registered within the first 15 seconds was recorded as the vapour measurement.

The parts per million (ppm) scale is used to measure concentrations of hydrocarbon vapours that are too low to register on the Lower Explosive Limit (LEL) scale. The explosive point, 100% LEL, represents the leanest mixture which will burn (or explode) if ignited.

The combustible vapour readings ranged from less than 5ppm to 45ppm and were not considered to be indicative of lighter fraction petroleum hydrocarbon compounds. Vapour readings are noted on the Soil Profile and Test Data Sheets in Appendix 1.

No visual or olfactory indications of potential hydrocarbons, or visual indications of deleterious fill material or metal impacts, were identified in the soil samples. Soil samples were selected based on a combination of the results of the vapour screening, visual screening, sample depth and/or sample location.

4.4 Groundwater Monitoring Well Installation

Thirteen (13) groundwater monitoring wells were installed on the Phase II Property, at boreholes BH2, BH3, BH8, BH10, BH11, BH12, BH13, BH15, BH16, BH17, BH18, BH19 and BH20. The monitoring wells consisted of 32mm or 51mm diameter Schedule 40 threaded PVC risers and screens. Monitoring well construction details are listed below in Table 2: Monitoring Well Construction Details provided in the Tables Section following the body of the report and are also presented on the Soil Profile and Test Data Sheets provided in Appendix 1.

4.5 Field Measurement of Water Quality Parameters

Groundwater sampling was conducted at BH2, BH3, BH8, BH11, BH13, BH17 and BH20 on March 22, 2019, April 29, April 30 and May 17, 2019. During these sampling events, water quality parameters were measured in the field using a multi-parameter analyzer. Parameters measured in the field included temperature, pH, and electrical conductivity.

Field parameters were measured after each well volume purged. Wells were purged prior to sampling until at least three well volumes had been removed or the field parameters were relatively stable. Stabilized field parameter values are summarized in Table 3: Field Measurement of Water Quality Parameters appended to this report.

4.6 Groundwater Sampling

Groundwater sampling protocols were followed using the MECP document entitled "Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario", dated May 1996. During the 2019 groundwater sampling event, samples were obtained from monitoring wells installed in BH2, BH3, BH8, BH11, BH13, BH17 and BH20, using dedicated sampling equipment. Additional groundwater samples were recovered from BH15, BH16, BH18, BH19 and BH20 during the 2020 field program. Standing water was purged from each well prior to sampling. Samples were stored in coolers to reduce analyte volatilization during transportation. Details of our standard operating procedure for groundwater sampling are provided in the Sampling and Analysis Plan in Appendix 1.

4.7 Analytical Testing

Based on the guidelines outlined in the Sampling and Analysis Plan appended to this report, the soil and groundwater samples submitted for analytical testing are outlined in Table 4: Soil Samples Submitted for Analysis and Table 5: Groundwater Samples Submitted for Analysis, provided in the Tables Section of this report.

Paracel Laboratories (Paracel), of Ottawa, Ontario, performed the laboratory analysis on the samples submitted for analytical testing. Paracel is a member of the Standards Council of Canada/Canadian Association for Laboratory Accreditation (SCC/CALA). Paracel is accredited and certified by SCC/CALA for specific tests registered with the association.

4.8 Residue Management

All excavated soil, purge water and fluids from equipment cleaning were retained on-site.

4.9 Elevation Surveying

The monitoring well locations were selected by Paterson and located and surveyed in the field by Stantec. The ground surface elevations at the monitoring well locations are referenced to a geodetic datum and are presented on Drawing PE4321-3R - Test Hole Location Plan appended to this report.

4.10 Quality Assurance and Quality Control Measures

A summary of quality assurance and quality control (QA/QC) measures, including sampling containers, preservation, labelling, handling, custody, equipment cleaning procedures, and field quality control measurements is provided in the Sampling and Analysis Plan in Appendix 1.

5.0 REVIEW AND EVALUATION

5.1 Geology

Based on the information obtained during the current subsurface investigation, in combination with information obtained during previous and concurrent Geotechnical Investigations, site soils generally consist of topsoil over silty clay, underlain by glacial till, followed by bedrock.

Fill material was identified in the vicinity of the Turf Building (southeast portion of Parcel 1), consisting of engineered fill primarily associated with the pavement structure. Imported sand fill was identified in BH13 (southwest portion of Parcel 1), otherwise fill material identified across the Phase II Property consisted of reworked native material. Several bedrock outcrops were identified across the site; bedrock generally ranged in depth from approximately 0 to 20m below grade.

Groundwater was encountered within both the overburden and bedrock at depths ranging from approximately 0.10 to 3.35m below ground surface.

5.2 Groundwater Elevations, Flow Direction, and Hydraulic Gradient

Groundwater levels were measured during the groundwater sampling events on April 29 and April 30, 2019 and on May 5, 2020, using an electronic water level meter. Borehole BH12-19 was not found at the time of the 2020 field program. Groundwater levels are summarized in Table 6: Groundwater Level Measurements, provided in the Tables Section of this report.

Based on the 2019 groundwater elevations, contour mapping was completed. Groundwater contours as shown on Drawing PE4321-3R – Test Hole Location Plan, indicate that the groundwater beneath the Phase II Property flows in a northerly direction. A hydraulic gradient of approximately 0.012m/m was calculated.

5.3 Fine-Coarse Soil Texture

Based on field soil observations and grain size analysis previously completed as part of the concurrent Geotechnical Investigation conducted by Paterson, the clay soils on the Phase II Property are considered to be fine-grained. The results of the analyses are presented in Table 7: Grain Size Analysis in the Tables Section of this report.

Further grain-size analyses may allow the future use of fine-grained standards, however the more stringent coarse-grained standards have been selected for each parcel of land comprising the Phase II Property.

5.4 Soil: Field Screening

Field screening of the soil samples collected during drilling within the vicinity of the Turf Building, resulted in combustible vapour readings generally ranging from less than 5 to 45ppm. Field screening results of individual soil samples from BH1 through BH5 are provided on the Soil Profile and Test Data Sheets appended to this report.

5.5 Soil Quality

A total of 27 soil samples were submitted for analysis of BTEX, PHCs (F₁-F₄), metals, mercury and chromium VI, organochlorine pesticides (OCP), and/or pH. As previously noted, the selected soil standards vary according to the site conditions on each Parcel of the Phase II Property. The soil results have therefore been tabulated according to the parcel of land.

The parcels of land are identified on Drawing PE4321-4R – Analytical Testing Plan, along with the analytical test results.

5.5.1 Parcel 1 (MECP Table 3 Standards)

Analytical test results for soil samples recovered from Parcel 1 are presented in the following Tables:

- Table 8: Parcel 1 2019 Analytical Test Results, Soil BTEX and PHCs (F₁-F₄);
- □ Table 9A: Parcel 1 2019 Analytical Test Results, Soil Metals (including As, Sb, Se), Hg and CrVI;
- □ Table 9B: Parcel 1 2020 Analytical Test Results, Soil Mercury (Hg);
- □ Table 10A: Parcel 1 2019 Analytical Test Results, Soil Organochlorine Pesticides (OCPs); and
- □ Table 10B: Parcel 1 2020 Analytical Test Results, Soil Organochlorine Pesticides (OCPs).

Based on the analytical test results, BTEX parameters were not identified above the laboratory method detection limits, in any of the soil samples submitted for analytical testing. Petroleum hydrocarbon fractions identified in each sample were in compliance with the MECP Table 3 standards.

Mercury parameters identified in the 2020 hand auger samples HA3A-20 ($2.5\mu g/g$), HA7A-20 ($0.5 \mu g/g$), HA9A-20 ($2.7\mu g/g$), HA12A-20 ($1.7\mu g/g$), HA13A-20 ($0.9\mu g/g$) and HA17A-20 ($0.8\mu g/g$) were above the MECP Table 3 standard of $0.27\mu g/g$. Mercury concentrations identified in Samples BH2-AU1 and BH4-AU1 were in compliance with the MECP Table 3 standards. Otherwise mercury was not identified in the remaining soil samples analysed.

Hexavalent chromium was not identified in any of the samples analysed. Metals parameters (including As, Sb and Se) identified in the soil samples analysed were in compliance with the MECP Table 3 standards.

Concentrations of δ -BHC were identified in each of the soil samples analysed. No other OCP concentrations were identified in any of the soil samples submitted for analytical testing. The test results comply with the MECP Table 3 standards.

5.5.2 Parcel 2 (MECP Table 3 Standards)

Analytical test results for soil samples recovered from Parcel 2 are presented in the following Tables:

- Table 11A: Parcel 2 2019 Analytical Test Results, Soil Metals (including As, Sb, Se), Hg and CrVI;
- □ Table 11B: Parcel 2– 2020 Analytical Test Results, Soil Mercury (Hg); and
- □ Table 12: Parcel 2 2019/2020 Analytical Test Results, Soil Organochlorine Pesticides (OCPs).

Hexavalent chromium and mercury were not identified in Sample HA1-G1. Metals (including As, Sb and Se) identified in Sample HA1-G1 comply with the MECP Table 3 standards.

Mercury concentrations exceeding the MECP Table 3 standard of 0.27µg/g were identified in Samples HA5B-20 (0.4µg/g) and HA6A-20 (1.9µg/g). A mercury concentration of 0.1µg/g identified in Sample HA4A-20 complies with the MECP Table 3 standard.

No OCP concentrations were identified in any of the analysed samples, with the exception of δ -BHC concentrations in Samples HA5B-20 (0.044µ/g) and HA6A-20 (0.056µ/g). The soil samples comply with the MECP Table 3 standards.

5.5.3 Parcel 3 (MECP Table 7 Standards)

Analytical test results for soil samples recovered from Parcel 3 are presented in the following Tables:

- Table 13A: Parcel 3 2019 Analytical Test Results, Soil Metals (including As, Sb, Se), Hg and CrVI;
- □ Table 13B: Parcel 3 2020 Analytical Test Results, Soil Mercury (Hg); and
- □ Table 14: Parcel 3 2019/2020 Analytical Test Results, Soil Organochlorine Pesticides (OCPs).

Metal parameters identified in Sample HA15-G1 are in compliance with the MECP Table 7 standards, with the exception of mercury, identified at a concentration of 2.3 μ g/g. Sample HA14-G1 was subsequently submitted for mercury for horizontal delineation purposes; the concentration of mercury (0.6 μ g/g) at this location was also determined to exceed the MECP Table 7 standard value.

Additional samples were submitted during the 2020 field program, to delineate the 2019 mercury exceedances identified. Mercury concentrations exceeding the MECP Table 7 standard were identified in Samples HA25A-20 (1.7 μ g/g) and HA28B-20 (1.0 μ g/g). Mercury concentrations of 0.2 μ g/g, below the MECP Table 7 standard, were identified in Samples HA27-20 and HA29A-20. Mercury concentrations were not identified in the remaining samples analysed.

Concentrations of δ -BHC were identified in Samples HA15-G1 (0.02µg/g) and HA25A-20 (0.067µg/g). No other OCP parameters were identified in the analysed samples, above the laboratory method detection limits. The test results are in compliance with the MECP Table 7 standards.

5.5.4 Parcel 4 (MECP Table 7 Standards)

Analytical test results for soil samples recovered from Parcel 4 are presented in the following Tables:

- Table 15A: Parcel 4– 2019 Analytical Test Results, Soil Metals (including As, Sb, Se), Hg and CrVI;
- □ Table 15B: Parcel 4 2020 Analytical Test Results, Soil Mercury (Hg); and
- □ Table 16: Parcel 4 2019/2020 Analytical Test Results, Soil Organochlorine Pesticides (OCPs).

Concentrations of Hg and CrVI were not identified in Sample HA13-G1, while other metals parameters (including As, Sb and Se) were identified at concentrations below the MECP Table 7 standards.

Concentrations of mercury exceeding the MECP Table 7 standard were identified in Samples HA18A-20 ($0.5\mu g/g$), HA19A-20 ($2.0\mu g/g$) and HA32A-20 ($2.6\mu g/g$). Mercury concentrations below the MECP Table 7 standard were identified in Samples HA20A-20 and HA33B-20 and were not identified above the method detection limit in Sample HA34A-20.

Concentrations of δ -BHC were identified in Samples HA15-G1 (0.02µg/g), HA11-20 (0.03µg/g), HA19A-20 (0.047µg/g), HA32A-20 (0.082µg/g) and HA34A-20 (0.077µg/g). No other OCP parameters were identified in the analysed samples, above the laboratory method detection limits. The test results are in compliance with the MECP Table 7 standards.

5.5.4 Maximum Concentrations

The maximum soil concentrations present on the Phase II Property are presented in Table 17: Maximum Soil Concentrations. The remaining soil samples are in compliance with the selected MECP standards. Remaining parameters were not detected above the laboratory method detection limits.

5.6 Groundwater Quality

Groundwater samples from monitoring wells installed in BH2, BH3, BH8, BH11, BH13, BH15, BH16, BH17, BH18, BH19 and BH20 were submitted for laboratory analysis of BTEX and PHC (F_1 - F_4), OCP parameters, metals (including As, Sb, Se) and/or mercury. The groundwater samples were obtained from the screened intervals noted on Table 2. No visual or olfactory evidence of petroleum hydrocarbons was noted on the groundwater at any of the borehole locations.

5.6.1 Parcel 1 (MECP Table 3 Standards)

The results of the analytical testing are presented tables, with laboratory certificates of analyses provided in Appendix 1:

- Table 18: Parcel 1 Analytical Test Results, Groundwater BTEX and PHCs (F₁-F₄);
- Table 19: Parcel 1 Analytical Test Results, Groundwater Organochlorine Pesticides (OCPs); and
- Table 20: Parcel 1 Analytical Test Results, Groundwater Metals (including As, Sb, Se) and Hg.

No BTEX or PHC parameters were detected above the laboratory method detection limits in any of the groundwater samples submitted for analytical testing. The results are in compliance with the MECP Table 3 standards.

It is our interpretation that the analyzed parameter concentrations do not indicate the potential presence of light non-aqueous phase liquids (LNAPLs). As previously noted, no free phase hydrocarbons were noted in the wells at the time of groundwater sampling event.

With the exception of hexachlorobutadiene identified in groundwater Sample BH8-GW1 (0.20 μ g/L), no OC Pesticide concentrations were identified in the groundwater samples analysed. The detected concentration of hexachlorobutadiene is in compliance with the MECP Table 3 standard value of 0.44 μ g/L.

Metal parameters identified in groundwater Sample BH8-GW2 comply with MECP Table 3 standards. It should be noted that mercury was not identified above the method detection limit.

5.6.2 Parcel 2 (MECP Table 3 Standards)

The results of the analytical testing are presented in the following Table:

□ Table 21: Parcel 2 – Analytical Test Results, Groundwater – Organochlorine Pesticides (OCPs).

With the exception of hexachlorobutadiene identified in groundwater Sample BH11-GW1 (0.08 μ g/L), no OC Pesticide concentrations were identified in the groundwater samples analysed. The detected concentration of hexachlorobutadiene is in compliance with the MECP Table 3 standard value of 0.44 μ g/L. The laboratory certificates of analysis are provided in Appendix 1.

5.6.3 Parcel 3 (MECP Table 7 Standards)

The results of the analytical testing are presented in the following Tables:

- Table 22: Parcel 3 Analytical Test Results, Groundwater Metals (including As, Sb, Se) and Hg; and
- Table 23: Parcel 3 Analytical Test Results, Groundwater Organochlorine Pesticides (OCPs).

Metal parameters identified in the groundwater samples analysed comply with the MECP Table 7 standards. Mercury was not identified in any of the groundwater samples above the laboratory method detection limit.

No OCP concentrations were detected above the laboratory method detection limits in the groundwater sample analysed. The analytical test results comply with the MECP Table 7 standards. The laboratory certificates of analysis are provided in Appendix 1.

5.6.4 Parcel 4 (MECP Table 7 Standards)

The results of the analytical testing are presented the following Tables:

Table 24: Parcel 4 – Analytical Test Results, Groundwater – Metals (including As, Sb, Se) and Hg; and □ Table 25: Parcel 4 – Analytical Test Results, Groundwater – Organochlorine Pesticides.

Metal parameters identified in the groundwater samples analysed comply with the MECP Table 7 standards. Mercury was not identified in any of the groundwater samples above the laboratory method detection limit.

No OCP parameter concentrations were detected above the laboratory method detection limits in the groundwater sample analysed. The analytical test results are in compliance with the MECP Table 7 standards. The laboratory certificates of analysis are provided in Appendix 1.

5.6.5 Maximum Concentrations

The maximum groundwater concentrations present on the Phase II Property are presented in Table 26: Maximum Groundwater Concentrations. All groundwater parameters identified are in compliance with the selected MECP standards. Remaining parameters were not detected above the laboratory method detection limits.

5.7 Quality Assurance and Quality Control Results

As per the Sampling and Analysis Plan, a duplicate soil sample was obtained at BH8. The RPD calculations for the original and duplicate sample are provided in Table 27: QA/QC Calculations – Soil appended to this report.

Although the RPDs calculated are outside of the acceptable range of 20% for two parameters, the remaining RPDs (78%) are within the acceptable range. The findings of the Phase II ESA are not considered to have been affected by the difference between these two samples.

A duplicate groundwater sample (DUP-GW) was obtained from BH2 during the May 17, 2019 groundwater sampling event. Both the original and duplicate sample were analysed for BTEX and PHC parameters. No parameter concentrations were detected in either sample.

All soil and groundwater samples were handled in accordance with the Analytical Protocol with respect to holding time, preservation method, storage requirement, and container type.

As per Subsection 47(3) of O.Reg. 153/04 as amended, a Certificate of Analysis has been received for each sample submitted for analysis and all Certificates of Analysis are appended to this report.

Overall, the quality of the field data collected during this Phase II ESA is considered to be sufficient to meet the overall objectives of this assessment.

5.8 Phase II Conceptual Site Model

The following section has been prepared in general accordance with the requirements of the MECP Record of Site Condition Regulation, O.Reg. 153/04, as amended, made under the Environmental Protection Act. Conclusions and recommendations are discussed in a subsequent section.

Site Description

The Phase II Property is located on the north side of Campeau Drive, between Kanata Avenue and Knudson Drive, in the City of Ottawa, Ontario. The Phase II Property is comprised of 4 parcels of land (identified as Parcel 1 through Parcel 4 on Drawing PE4321-3 - Test Hole Location Plan) and has an approximate total area of 71 hectares. The golf cart storage, Clubhouse and associated parking lot are present on the southwestern portion of the site while the southeastern portion of the site is developed with a maintenance building (the Turf Building). The remainder of the site is occupied by paved walking paths, grassed fairways, landscaped roughs and sand pits. Two man-made ponds are present on the south-central portion of the Phase II Property.

Site topography is generally undulating, with an overall gentle downward slope to the north. Site drainage consists primarily of sheet flow to catch basins in the paved areas, with surficial infiltration and some sheet flow to the aforementioned ponds in the landscaped areas.

The Phase II Property and surrounding properties are currently provided with municipal services and do not have private wells or septic systems.

Potentially Contaminating Activities and Areas of Potential Environmental Concern

As per Table 1 in Section 2.2, the following on-site potentially contaminating activities (PCAs) were considered to result in four (4) areas of potential environmental concern (APECs):

- Item 28, Table 2, O.Reg.153/04 as amended ("Gasoline and Associated Products Storage in Fixed Tanks"); based on the presence of two (2) aboveground storage tanks (ASTs), resulting in APEC 1;
- Item 30, Table 2, O.Reg.153/04 as amended ("Importation of Fill Material of Unknown Quality"); based on fill material identified during the Phase II ESA, resulting in APEC 4; and
- Item 40, Table 2, O.Reg.153/04 as amended ("Pesticides (including Herbicides, Fungicides and Anti-Fouling Agents) Manufacturing, Processing, Bulk Storage and Large-Scale Applications"); based on the storage and use of pesticides and herbicides, resulting in APECs 2 and 3.

No other historical or existing on-site PCAs were identified. No existing or historical off-site PCAs were identified within the 250m Phase I Study Area.

The rationale for identifying the above PCAs is based on a review of aerial photographs as well as field observations and personal interviews.

Contaminants of Potential Concern and Impacted Media

Based on the findings of the Phase I and Phase II ESA, the following Contaminants of Potential Concern (CPC) were identified with respect to the soil and/or groundwater beneath the Phase II Property:

- □ Benzene, Toluene, Ethylbenzene, and Xylenes (BTEX);
- Petroleum Hydrocarbons fractions 1 through 4 (PHCs F₁-F₄);
- □ Organochlorine Pesticides; and
- □ Metals (including As, Sb and Se, Hg and CrVI).

Subsurface Structures and Utilities

On-site buried services consist of municipal water, sanitary and storm sewers, natural gas, electricity and telephone. An irrigation system is also present on the Phase II Property.

Underground service locates were completed prior to the subsurface investigation, however specific borehole locations were cleared as opposed to the entire Phase II Property. Therefore exact locations of the buried services are unknown. It should be noted that utility plans were not available for review.

Physical Setting

Site Stratigraphy

The site stratigraphy, as presented on Drawings PE4321-5, 6 and 7 – Cross-Sections A-A', B-B' and C-C', generally consists of the following

- Pavement structure consisting of approximately 0.08m of asphalt over 0.8 to 1.34m of engineered fill was identified at BH2-19 through BH5-19 in the vicinity of the Turf Building (Parcel 1) while granular material existed from surface at BH1. A similar pavement structure was also encountered at BH18 on the northeastern portion of the Phase II Property (Parcel 3).
- Topsoil or silty clay with topsoil and/or fill material consisting of reworked native silty clay, was identified at ground surface at BH6-19 through BH20-19. This layer ranged in depth from approximately 0.15 to 2.21m below grade.
- Native silty clay was identified beneath the topsoil or reworked native material at BH6-19 through BH1619 and BH20-19, to depths ranging from approximately 1.75 to 9.2m below grade.
- Glacial till was encountered below the fill layer or native silty clay at BH4-19, BH6-19, BH9-19, BH10-19, BH11-19, BH12-19, BH14-19 and BH16-19, to depths ranging from approximately 1.22 to 9.78m below grade.
- Metamorphic gneiss bedrock was confirmed at BH2-19, BH3-19, and BH5-19 and BH17-19 through BH20-19, at depths ranging from approximately 0.59 to 3.12m below grade. Inferred bedrock was encountered on practical refusal to augering at the remaining boreholes, at depths ranging from approximately 0.99 to 9.2m below grade. Refusal was not encountered at BH6-19 and BH12-19.

Hydrogeological Characteristics

Groundwater was encountered in silty clay or glacial till overburden layer and within the shallow bedrock beneath the Phase II Property. Based on water levels measured on April 29 and April 30, 2019, groundwater contour mapping was completed.

Based on the contours, groundwater beneath the Phase II Property is interpreted to flow in a northerly direction, with a hydraulic gradient of approximately 0.012m/m. Groundwater contours are shown on Drawing PE4321-3R – Test Hole Location Plan.

Approximate Depth to Bedrock

Based on the recovery of the bedrock during the coring operations, field observations and available geological mapping, the local bedrock consists of Precambrian mafic and ultramafic intrusive rocks (diorite, gabbro) and migmatic rocks (paragneiss, granitic origin). The overburden thickness is anticipated to vary between 0 and 20 m.

Approximate Depth to Water Table

Depth to the water table at the subject site varies between approximately 0.10m and 3.35m below existing grade. Long-term groundwater conditions can also be estimated based on the observed colour and consistency of the recovered soil samples. Based on these observations, it is estimated that long-term groundwater levels can be expected between 2 to 3 m depth. Groundwater levels are subject to seasonal fluctuations.

Sections 41 and 43.1 of the Regulation

Section 41 of the Regulation does not apply to the Phase II Property, in that the Phase II Property is not within 30m of an environmentally sensitive area, and the pH of surface soil is between 5 and 9, while the pH of subsurface soil is between 5 and 11.

Section 43.1 of the Regulation applies to Parcels 3 and 4 of the Phase II Property, where bedrock is located less than 2m below ground surface across more than one third of the site.

Fill Placement

Sand and gravel fill material was identified in the vicinity of the Turf Building on the southeastern portion of the site and along a pathway on the northeastern portion of the site. The fill material was considered to be associated with the pavement structures. Due to the proximity of the Turf Building and the depth of the fill material in this vicinity, the fill was assessed as part of the Phase II ESA.

Fill material was also identified at BH13 to a depth of approximately 2.29m below grade. The material consisted of brown silty sand with no signs of deleterious materials or potential contamination. As this fill was notably different from the reworked native material across the remainder of the site, it was analysed for potential contaminants. Fill assessment is further discussed in the Environmental Condition Section of the CSM.

Otherwise, fill material encountered during the Phase II ESA consisted of reworked native silty clay and was not considered to represent a concern to the Phase II Property.

Proposed Buildings and Other Structures

The Phase II Property is proposed to be developed with a residential subdivision comprised of residential dwellings, storm water management ponds, open space and parkland.

Existing Buildings and Structures

The Phase II Property is occupied by a 2-storey Clubhouse and restaurant, a 1storey golf cart storage structure, a pump house and a 1-storey maintenance building referred to as the Turf Building. Other structures include a wash pad and concrete stalls for the storage of bunker sand. All buildings and structures were reportedly constructed in the early 1990's and are present on the southern portion of the Phase II Property. Other structures onsite include a wash pad and concrete stalls for the storage of clean sand fill, situated to the southwest of the Turf Building.

Water Bodies

There are no natural water bodies on the Phase II Property. The closest bodies of water are the Carp River and Watt's Creek, situated approximately 1.4km southwest and 1.5km east of the Phase II Property, respectively.

Areas of Natural Significance

No areas of natural significance were identified on the Phase II Property or within the Phase I ESA Study Area.

Environmental Condition

Areas Where Contaminants are Present

Based on the findings of the Phase II ESA, mercury concentrations exceeding the selected MECP standards selected were identified in the shallow soil (approximately 0.05 to 0.30m below ground surface) across the Phase II Property, as shown in red on Drawing PE4321-4R – Analytical Testing Plan. No other soil exceedances were identified. Groundwater is in compliance with the selected MECP standards as presented in blue on Drawing PE4321-4R.

Types of Contaminants

The contaminants of concern identified at the Phase II Property include mercury. No other contaminants were identified in the soil beneath the Phase II Property. No contaminants are present in the groundwater beneath the Phase II Property.

Contaminated Media

Based on the findings of the Phase II ESA, contaminated media includes areas of the near surface soil across the Phase II Property. Groundwater is in compliance with the selected MECP site standards.

What Is Known About Areas Where Contaminants Are Present

Mercury concentrations exceeding the MECP Table 3 and MECP Table 7 standards are present on each parcel comprising the Phase II Property. The mercury concentrations may be associated with the historical application of mercurial fungicides and/or heavy-metal based pesticides and herbicides on the golf course.

Groundwater concentrations were determined to be in compliance with the MECP Table 3 or Table 7 standards.

Distribution of Contaminants

Mercury concentrations were not detected in any of the groundwater samples analysed. The mercury impacts are considered to be contained to the overburden.

Discharge of Contaminants

As noted previously, mercury is considered to have been released directly to the ground surface through the historical application of mercurial fungicides and/or heavy-metal based pesticides and herbicides on the golf course.

Migration of Contaminants

A potential contaminant transport pathway is the physical transport from one location to another of contaminated soil, either intentionally or unintentionally, by earth moving equipment, vehicle traffic, or pedestrian traffic. Based on observations made during the Phase I and Phase II ESA, physical transport of contaminants on the Phase II Property is considered to be negligible.

Based on the low solubility nature of heavy metals and clean groundwater results across the Phase II ESA Property, significant contaminant migration is not considered to have occurred on the Phase II Property.

Climatic and Meteorological Conditions

In general, climatic and meteorological conditions have the potential to affect contaminant distribution. Two ways by which climatic and meteorological conditions may affect contaminant distribution include the downward leaching of contaminants by means of the infiltration of precipitation, and the migration of contaminants via groundwater levels and/or flow, which may fluctuate seasonally. Given the low solubility of mercury and clean groundwater results in the vicinity of the identified soil exceedances, downward leaching by means of infiltration of precipitation is not considered to have occurred on the Phase II Property. As such, groundwater levels and/or flow are also not considered to have had the potential to affect contaminant distribution.

Potential for Vapour Intrusion

There is no potential for vapour intrusion to occur within existing building structures based on the location and non-volatile nature of the contaminants.

Contaminant Transport

Human health receptors would include golf club staff and members. Due to the nature and location of the contaminants in the shallow soils on the Phase II Property, and the nature of the activities carried out onsite, the potential for human health risk is considered to be low.

During the Phase II ESA field program, potential human health receptors included the drillers and Paterson field staff. Potential receptor exposure points included any excavations into contaminated soil, including boreholes and hand auger holes. Routes of exposure would include dermal contact, accidental ingestion, and inhalation of contaminated soil as particulate dust.

Potential ecological receptors include plants whose root structures intercept contaminated soil, burrowing wildlife, and groundwater/surface water receptors downgradient of the Phase II Property at groundwater discharge points. Based on the findings of the Phase II ESA in combination with the dense urban landscape surrounding the Phase II Property, no significant receptors are expected to be present downgradient of the Phase II Property.

6.0 CONCLUSIONS

Assessment

A Phase II ESA was conducted for the property addressed 7000 Campeau Drive, herein referred to as the Phase II Property, in the City of Ottawa, Ontario. It should be noted that the Phase II Property is comprised of four (4) parcels of land identified as Parcels 1 through 4 for the purposes of this report.

The purpose of the Phase II ESA was to assess the soil and groundwater quality on or beneath the Phase II Property, within areas of potential environmental concern (APECs) identified during the Phase I ESA carried out by Paterson and dated December 2018. An initial Phase II ESA field program was carried out in 2019, with a supplemental field program carried out in 2020. The findings of both field programs constitute the Phase II ESA and are presented in this updated Phase II ESA report.

2019 Investigation

The 2019 Phase II ESA field program was carried out in conjunction with a Geotechnical Investigation and consisted of drilling 20 boreholes across the Phase II Property, 13 of which were constructed with groundwater monitoring well installations, and the placement of 20 shallow hand auger holes. Approximately 190 probeholes were also completed as part of the Geotechnical Investigation, in order to confirm bedrock depth in areas of deep overburden.

Soil samples obtained from the boreholes and auger holes were screened primarily using visual observations. Samples collected from within the vicinity of the Turf Building and aboveground storage tanks (ASTs) were also screened using combustible vapour measurements. Based on the screening results in combination with sample depth and location, a total of 27 soil samples, including a duplicate sample, were submitted for laboratory analysis of benzene, toluene, ethylbenzene and xylenes (BTEX), petroleum hydrocarbons (PHCs, F1-F4), metals and/or organochlorine pesticides (OCPs).

Based on the analytical test results, no BTEX parameters or PHC (F1) were identified in the soil samples submitted for testing. Petroleum hydrocarbon F2, F3 and/or F4 fractions were identified in shallow auger flight samples recovered from BH2, BH3 and BH5, within the vicinity of the ASTs and Turf Building on the southeastern portion of the Phase II Property (Parcel 1).

Metals parameters were also identified in the fill material on this portion of the Phase II Property, while no OCPs were detected in the sample recovered from BH3. The PHC and metal parameters identified were in compliance with the MECP Table 3 standards, selected based on the site conditions within Parcel 1.

Metal and OCP analyses were conducted on shallow soil samples collected from the greens, fairways and/or roughs across the Phase II Property. Concentrations of δ -BHC ranging from 0.01 to 0.03µg/g were identified in shallow soil Samples HA3-G1, HA11-G1 and HA15-G1. Otherwise, no OCP pesticides were identified in any of the samples analysed.

Metal parameters were identified in all samples analysed. Concentrations of mercury identified in the soil recovered from HA14 and HA15 on the northeastern portion of the Phase II Property (Parcel 3) exceeded the MECP Table 7 standards selected for this portion of the site. The remaining metal parameters identified on the Phase II Property at the time of the 2019 field program, were in compliance with the MECP Table 3 or MECP Table 7 standards.

Groundwater samples from monitoring wells installed in BH2, BH3, BH8, BH11, BH13, BH17 and BH20 were recovered and analysed for BTEX, PHCs, OCPs and/or mercury. No free-phase product was observed on the groundwater at any of the monitoring well locations during the February, April and May 2019 sampling events. Based on analytical test results, no BTEX, PHC or mercury concentrations were identified above the laboratory method detection limits in the groundwater samples analysed. No OCP parameters were detected above the laboratory method detection limits, with the exception of hexachlorobutadiene concentrations in groundwater samples recovered from BH8 and BH11 on Parcels 1 and 2 of the Phase II Property. The identified concentrations were in compliance with the MECP Table 3 standards.

2020 Supplemental Investigation

In May of 2020, 34 additional shallow hand auger holes were placed across the Phase II Property to provide additional coverage of the greens, tees and/or fairways, and to delineate previously identified mercury impacts on Parcel 3. A total of 65 shallow soil samples were collected from depths of 0.05 to 0.15m and 0.15m to 0.30m with deeper samples (0.30 to 0.60m) collected at the locations of the original (2019) mercury exceedances.

Soil samples were submitted for analytical testing of mercury and/or organochlorine pesticides. Concentrations of δ -BHC ranging from 0.021µg/g to 0.097µ/g, were identified in each of the samples analysed. Otherwise, no OCP pesticides were identified in any of the samples analysed.

Based on the findings of the analytical testing, mercury concentrations exceeding the selected MECP standards were identified on each Parcel of land comprising the golf course. The mercury concentrations are considered to be present in pockets across the course and are considered to be confined to the upper 0.3 to 0.6m of soil.

On May 5, 2020, groundwater samples from monitoring wells installed in BH8, BH15, BH16, BH18, BH19 and BH20 were recovered and submitted for analytical testing of metals (including As, Sb, Se) and mercury or OCPs. No visual or olfactory indications of potential contamination were observed on the groundwater at any of the monitoring well locations. Based on analytical test results, no OCP or mercury concentrations were identified above the laboratory method detection limits in the groundwater samples analysed. Metal parameters identified in the groundwater samples were in compliance with the selected MECP standards.

Conclusion

Based on the findings of the Phase II ESA, mercury concentrations exceeding the MECP Table 7 and Table 3 standard of $0.27 \mu g/g$ were identified in shallow soil samples collected from various locations across the Phase II Property. The mercury is considered to be present in pockets across the site, within the shallow soils, to a maximum depth of approximately 0.6m below grade. Otherwise the soil on and beneath the Phase II Property is in compliance with the selected MECP standards. Groundwater beneath the Phase II Property is in compliance with the applicable MECP standards.

The presence of impacted shallow soils is not considered to represent a concern to the continued use of the site as a golf course. It is recommended that a soil remediation program be carried out at the Phase II Property in conjunction with the redevelopment of the site.

It is expected that the groundwater monitoring wells will be abandoned in accordance with Ontario Regulation 903 at the time of construction excavation. Until this time, it is recommended that they remain in place for possible future groundwater monitoring events.

7.0 STATEMENT OF LIMITATIONS

This Phase II - Environmental Site Assessment report has been prepared in general accordance with O.Reg. 153/04 as amended and meets the requirements of CSA Z769-00. The conclusions presented herein are based on information gathered from a limited sampling and testing program. The test results represent conditions at specific test locations at the time of the field program.

The client should be aware that any information pertaining to soils and all test hole logs are furnished as a matter of general information only and test hole descriptions or logs are not to be interpreted as descriptive of conditions at locations other than those of the test holes themselves.

Should any conditions be encountered at the subject site and/or historical information that differ from our findings, we request that we be notified immediately in order to allow for a reassessment.

This report was prepared for the sole use of ClubLink Corporation ULC. Notification from ClubLink Corporation ULC and Paterson Group will be required to release this report to any other party.

Paterson Group Inc.

Kaup Munch

Karyn Munch, P.Eng., QPESA

Mark S. D'Arcy, P.Eng., QPESA

Report Distribution:

- □ ClubLink Corporation ULC
- D Paterson Group

FIGURES

FIGURE 1 – KEY PLAN

DRAWING PE4321-3R – TEST HOLE LOCATION PLAN

DRAWING PE4321-4R – ANALYTICAL TESTING PLAN

DRAWING PE4321-5 - CROSS-SECTION A-A'

DRAWING PE4321-6 - CROSS-SECTION B-B'

DRAWING PE4321-7 – CROSS-SECTION C-C'

unrobin WESTBORD ONTARIO CARL BAYSHORE CENTREPOINTE SITE STITTSVILLE GOULBOURN RICHMOND

FIGURE 1 KEY PLAN

patersongroup

154 Colonnade Road South Ottawa, Ontario K2E 7J5 Tel: (613) 226-7381 Fax: (613) 226-6344

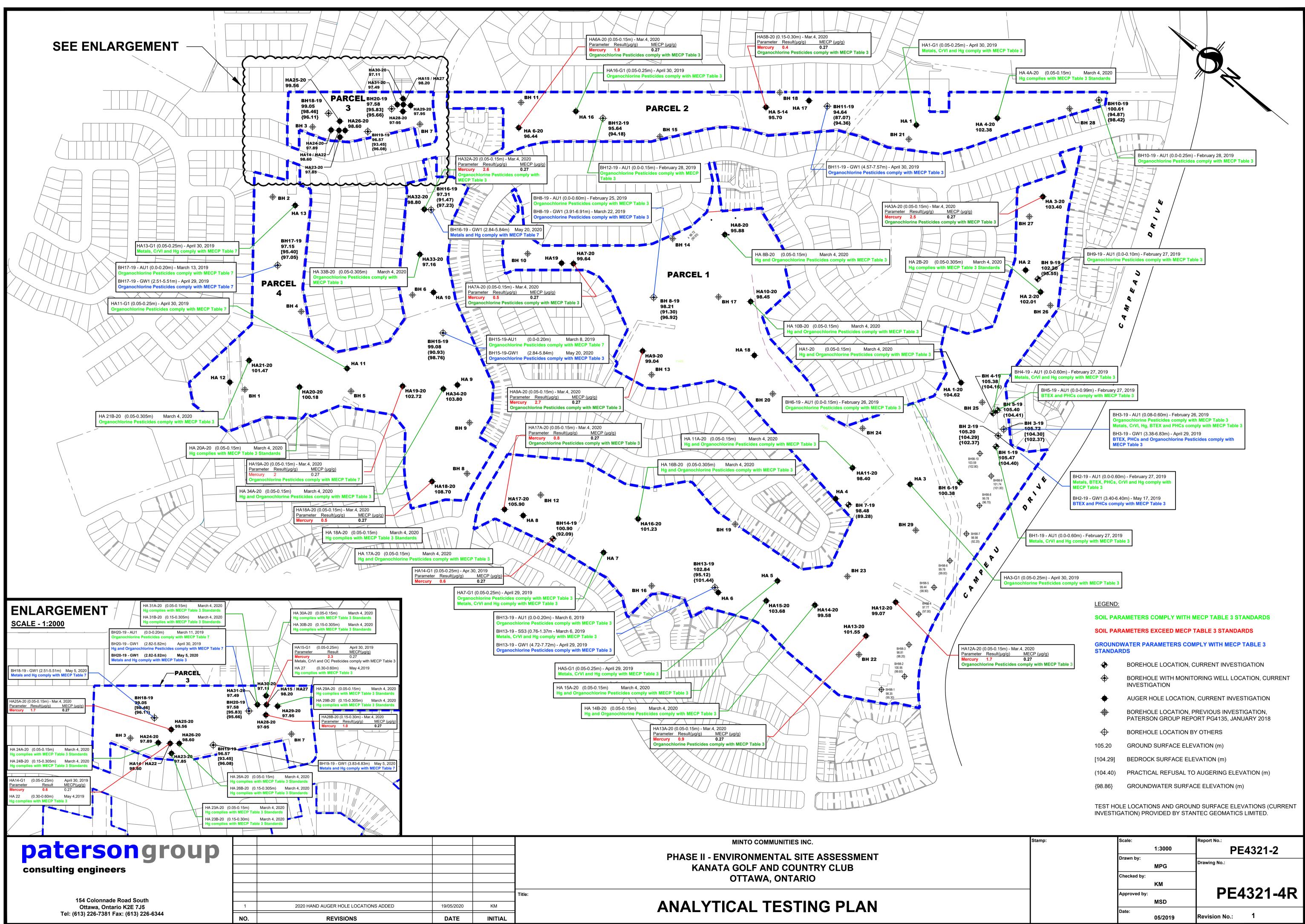
2020 HAND AUGER HOLE LOCATIONS ADDED REVISIONS

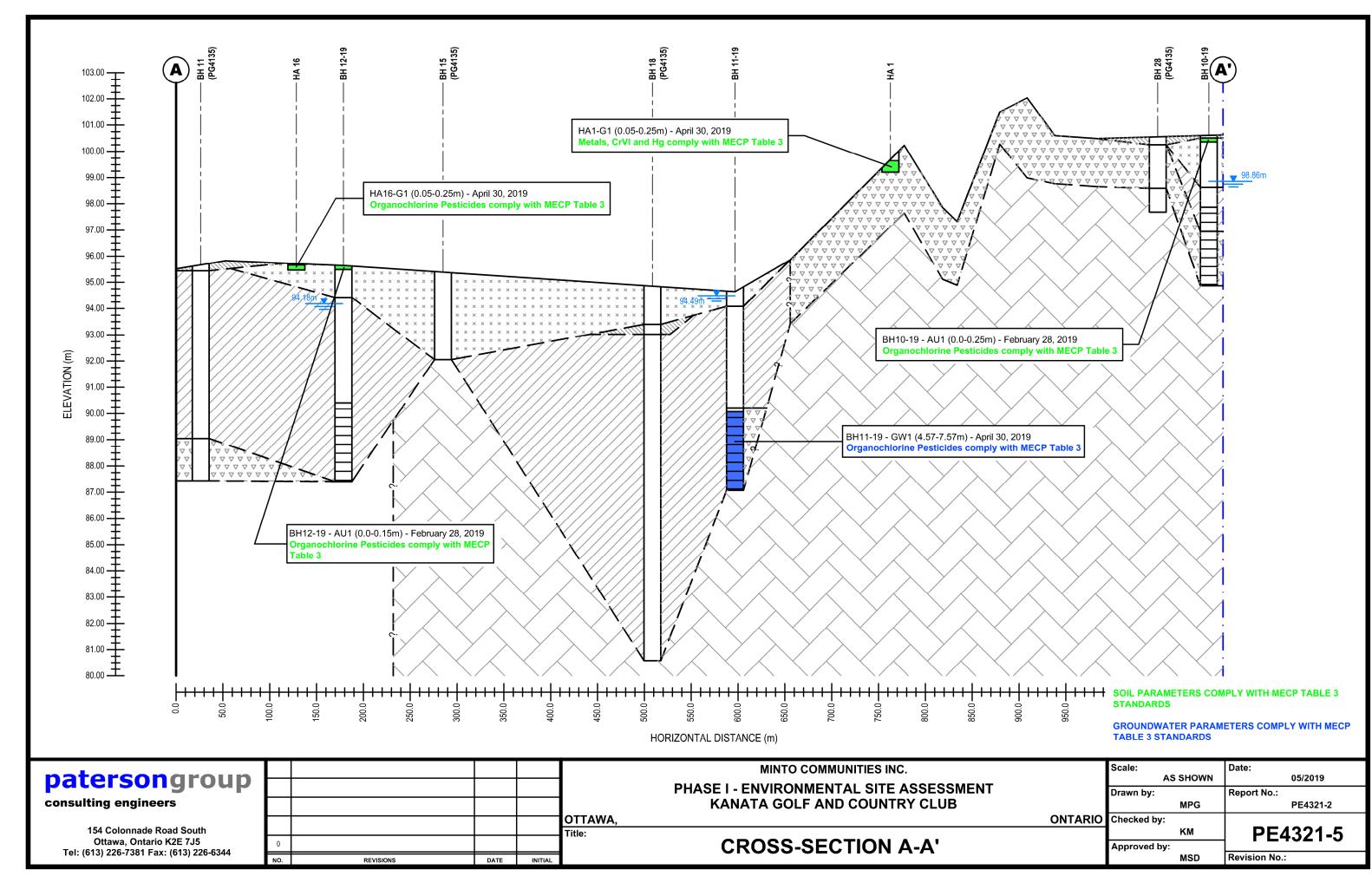
1

NO.

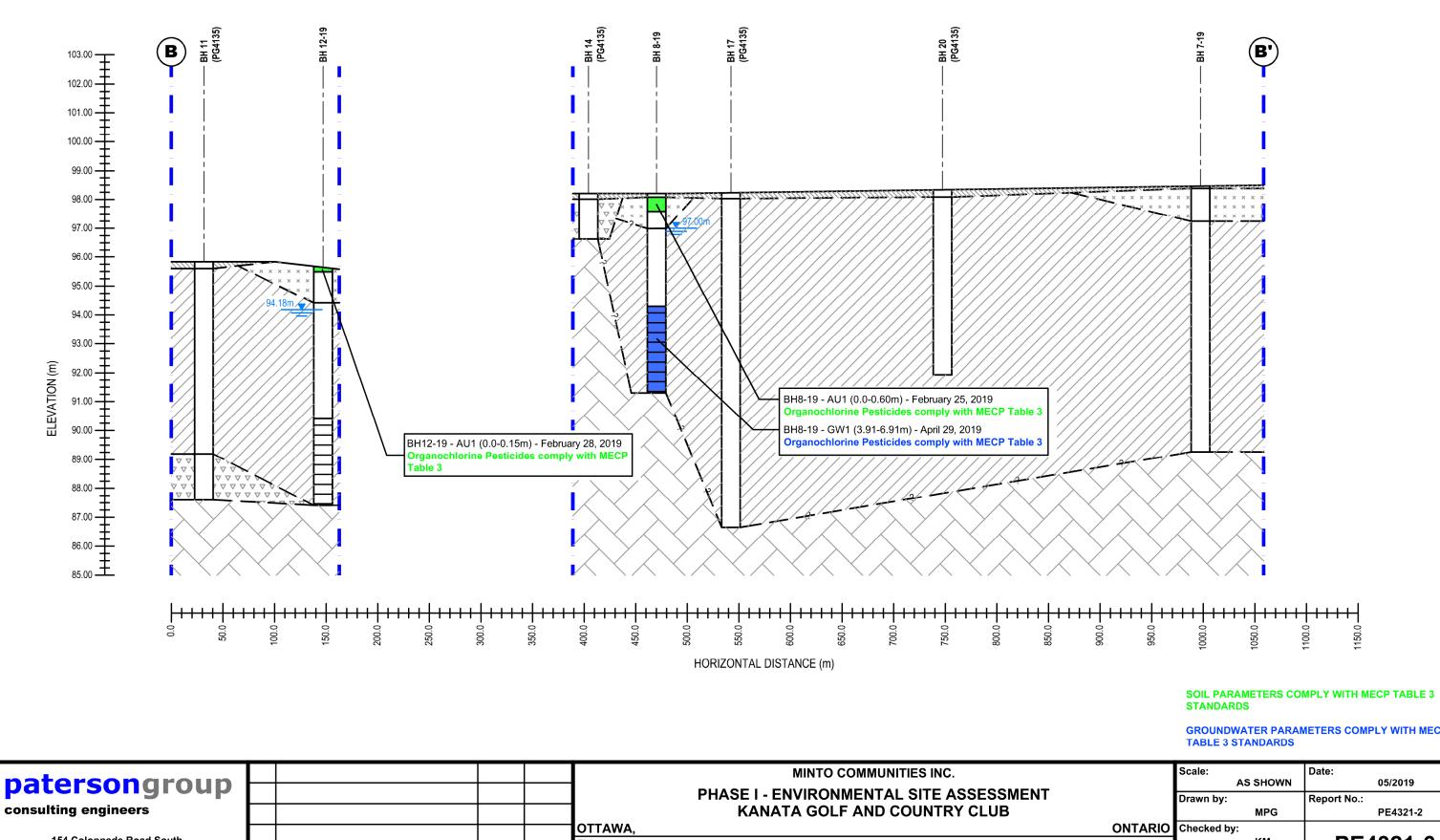
DATE

KM


INITIAL


19/05/2020

TEST HOLE LOCATION PLAN


	BOREHOLE LOCATION, CURRENT INVESTIGATION
	BOREHOLE WITH MONITORING WELL LOCATION, CURRENT INVESTIGATION
	AUGER HOLE LOCATION, CURRENT INVESTIGATION
	BOREHOLE LOCATION, PREVIOUS INVESTIGATION, PATERSON GROUP REPORT PG4135, JANUARY 2018
	BOREHOLE LOCATION BY OTHERS
D	GROUND SURFACE ELEVATION (m)
9]	BEDROCK SURFACE ELEVATION (m)
10)	PRACTICAL REFUSAL TO AUGERING ELEVATION (m)
6}	GROUNDWATER SURFACE ELEVATION (m)
(A')	CROSS-SECTION LOCATION
-102.0	GROUNDWATER CONTOUR
.012m/m)	APPROX. GROUNDWATER FLOW DIRECTION (HORIZONTAL HYDRAULIC GRADIENT)

· · · · · · · · · · · · · · · · · · ·			
Stamp:	Scale:		Report No.:
		1:3000	PE4321-2
	Drawn by:		
		MPG	Drawing No.:
	Checked by:		
		KM	
	Approved by:		PE4321-3
		MSD	
	Date:		
		05/2019	Revision No.: 1

utocad drawings\environmertal\pe43xx\pe4321\pe4321-5 sec a.dw

CROSS-SECTION B-B'

154 Colonnade Road South Ottawa, Ontario K2E 7J5 Tel: (613) 226-7381 Fax: (613) 226-6344

				OTTAWA
				Title:
) .	REVISIONS	DATE	INITIAL	

GROUNDWATER PARAMETERS COMPLY WITH MECP

	Scale:		Date:
	AS	SHOWN	05/2019
	Drawn by:		Report No.:
		MPG	PE4321-2
ONTARIO	Checked by:		
		KM	PE4321-6
	Approved by:		. =
		MSD	Revision No.:

	Scale:		Date:		
	AS	SHOWN		05/2020	
	Drawn by:		Report No.:		
		MPG		PE4321-2	
ONTARIO	Checked by:		Dwg. No.:		
		KM	PE4321-7		
	Approved by:				
		MSD	Revision No.:		

TABLES

TABLE 1: ARES OF POTENTIAL ENVIRONMENTAL CONCERN

TABLE 2: MONITORING WELL CONSTRUCTION DETAILS

TABLE 3: FIELD MEASUREMENT OF WATER QUALITY PARAMETERS

TABLE 4: SOIL SAMPLES SUBMITTED FOR ANALYSIS

TABLE 5: GROUNDWATER SAMPLES SUBMITTED FOR ANALYSIS

TABLE 6: GROUNDWATER LEVEL MEASUREMENTS

TABLE 7: GRAIN SIZE ANALYSIS

TABLE 8: PARCEL 1 – 2019 ANALYTICAL TEST RESULTS, SOIL – BTEX AND PHCs (F1-F4)

TABLE 9A: PARCEL 1 – 2019 ANALYTICAL TEST RESULTS, SOIL – METALS (INCLUDING As, Sb, Se) Hg, CrVI

TABLE 9B: PARCEL 1 – 2020 ANALYTICAL TEST RESULST, SOIL – MERCURY (Hg)

TABLE 10A: PARCEL 1 – 2019 ANALYTICAL TEST RESULTS, SOIL – ORGANOCHLORINE PESTICIDES TABLE 10B: PARCEL 1 – 2020 ANALYTICAL TEST RESULTS, SOIL – ORGANOCHLORINE PESTICIDES

TABLE 11A: PARCEL 2 – 2019 ANALYTICAL TEST RESULTS, SOIL – METALS(INCLUDING As, Sb, Se) Hg, CrVI

TABLE 11B: PARCEL 2 – 2020 ANALYTICAL TEST RESULST, SOIL – MERCURY (Hg)

TABLE 12: PARCEL 2 – 2019/2020 ANALYTICAL TEST RESULTS, SOIL – ORGANOCHLORINE PESTICIDES

TABLE 13A: PARCEL 3 – 2019 ANALYTICAL TEST RESULTS, SOIL – METALS (INCLUDING As, Sb, Se) Hg, CrVI

TABLE 13B: PARCEL 3 – 2020 ANALYTICAL TEST RESULST, SOIL – MERCURY (Hg) TABLE 14: PARCEL 3 – 2019/2020 ANALYTICAL TEST RESULTS, SOIL – ORGANOCHLORINE PESTICIDES

TABLE 15A: PARCEL 4 – 2019 ANALYTICAL TEST RESULTS, SOIL – METALS (INCLUDING As, Sb, Se) Hg, CrVI

TABLE 15B: PARCEL 4 – 2020 ANALYTICAL TEST RESULST, SOIL – MERCURY (Hg)

TABLE 16: PARCEL 4 – 2019/2020 ANALYTICAL TEST RESULTS, SOIL – ORGANOCHLORINE PESTICIDES

TABLE 17: MAXIMUM SOIL CONCENTRATIONS

TABLE 18: PARCEL 1 – 2019 ANALYTICAL TEST RESULTS, GROUNDWATER – BTEXAND PHCs (F1-F4)

TABLE 19: PARCEL 1 –ANALYTICAL TEST RESULTS, GROUNDWATER – METALS (INCLUDING As, Sb, Se) Hg, CrVI

TABLE 20: PARCEL 1 –ANALYTICAL TEST RESULTS, GROUNDWATER – ORGANOCHLORINE PESTICIDES TABLE 21: PARCEL 2 –ANALYTICAL TEST RESULTS, GROUNDWATER – ORGANOCHLORINE PESTICIDES

TABLE 22: PARCEL 3 –ANALYTICAL TEST RESULTS, GROUNDWATER – METALS (INCLUDING As, Sb, Se) Hg, CrVI

TABLE 23: PARCEL 3 –ANALYTICAL TEST RESULTS, GROUNDWATER – ORGANOCHLORINE PESTICIDES

TABLE 24: PARCEL 4 –ANALYTICAL TEST RESULTS, GROUNDWATER – METALS (INCLUDING As, Sb, Se) Hg, CrVI

TABLE 25: PARCEL 4 –ANALYTICAL TEST RESULTS, GROUNDWATER – ORGANOCHLORINE PESTICIDES

TABLE 26: MAXIMUM GROUNDWATER CONCENTRATIONS

TABLE 27: QA/QC CALCULATIONS - SOIL

Environmental Concern respect to Phase I PropertyActivity(on-site or off-site)Concern (Groundwater, Soil, and/or Sediment)APEC 1 (resulting from the presence of two ASTs)Southeastern portion of the Phase I PropertyPCA 28 – Gasoline and Associated Products Storage in Fixed TanksOn-siteBTEX PHCs (FF.4)Soil and GroundwaterAPEC 2 (resulting from the storage of pesticides and herbicides)Southeastern portion of the Phase I PropertyPCA 40 – Pesticides (including Anti-Fouling Agents) Manufacturing, Processing, Bulk Storage and Large-Scale ApplicationsOn-siteOC Pesticides' MetalsSoil and/or GroundwaterAPEC 3 (resulting from application of pesticides and herbicides)Across the Phase I PropertyPCA 40 – Pesticides (including Herbicides, Fungicides and Anti-Fouling Agents) Manufacturing, Processing, Bulk Storage and Large-Scale ApplicationsOn-siteOC Pesticides' MetalsSoil and/or GroundwaterAPEC 3 (resulting from application of pesticides and herbicides)Across the Phase I PropertyPCA 40 – Pesticides (including Herbicides, Fungicides and Anti-Fouling Agents) Manufacturing, Processing, Bulk Storage and Large-Scale Applications.On-siteOC Pesticides' MetalsSoil and/or GroundwaterAPEC 42 (resulting from importation of fill material of unknown quality)Southeastern portion of PhasePCA 30 – Importation of Fill material of Unknown QualityOn-siteMetals Hg HgAPEC 42 (resulting from importation of fill material of unknown quality)Southeastern portion of Phase HgPCA 30 – Importation of Fill Man	Area of Potential	Location of Area of Potential	Potentially Contaminating	Location of PCA	Contaminants of Potential	Media Potentially Impacted
APEC 1 (resulting from the presence of two ASTs) Southeastern portion of the Phase I Property PCA 28 – Gasoline and Associated Products Storage in Fixed Tanks On-site BTEX PHCs (F ₁ -F ₄) Soil and Groundwater APEC 2 (resulting from the storage of pesticides and herbicides) Southeastern portion of the Phase I Property PCA 40 – Pesticides (including Herbicides, Fungicides and Anti-Fouling Agents) Bulk Storage and Large-Scale Applications On-site OC Pesticides' Soil and/or Groundwater APEC 3 (resulting from application of pesticides and herbicides) Across the Phase I Property PCA 40 – Pesticides (including Anufacturing, Processing, Bulk Storage and Large-Scale Applications On-site OC Pesticides' Soil and/or Groundwater APEC 3 (resulting from application of pesticides and herbicides) Across the Phase I Property (fairways and landscaped areas) PCA 40 – Pesticides (including Herbicides, Fungicides and Anti-Fouling Agents) On-site OC Pesticides' Metals Soil and/or Groundwater APEC 4 ² (resulting from importation of fill material of unknown quality) Southeastern portion of Phase II Property PCA 30 – Importation of Fill material of Unknown Quality On-site Metals Soil	Environmental Concern	Environmental Concern with	Activity	(on-site or off-site)	Concern	(Groundwater, Soil, and/or
(resulting from the presence of two ASTs)Phase I PropertyAssociated Products Storage in Fixed TanksPHCs (F1-F4)APEC 2 (resulting from the storage of pesticides)Southeastern portion of the Phase I PropertyPCA 40 – Pesticides (including Herbicides, Fungicides and Anti-Fouling Agents) Bulk Storage and Large-Scale ApplicationsOn-siteOC Pesticides' Manufacturing, Processing, Bulk Storage and Large-Scale ApplicationsSoil and/or GroundwaterAPEC 3 (resulting from application of pesticides and herbicides)Across the Phase I PropertyPCA 40 – Pesticides (including Herbicides, Fungicides and Anti-Fouling Agents) Manufacturing, Processing, Bulk Storage and Large-Scale ApplicationsOn-siteOC Pesticides' MetalsSoil and/or GroundwaterAPEC 3 (resulting from application of pesticides and herbicides)Across the Phase I Property (fairways and landscaped areas)PCA 40 – Pesticides (including Herbicides, Fungicides and Anti-Fouling Agents) Manufacturing, Processing, Bulk Storage and Large-Scale Applications.On-siteOC Pesticides' MetalsSoil and/or GroundwaterAPEC 42² (resulting from importation of fill material of unknown quality)Southeastern portion of Phase II PropertyPCA 30 – Importation of Fill material of Unknown QualityOn-siteMetals MetalsSoil		respect to Phase I Property				Sediment)
two ASTs)Fixed TanksAPEC 2 (resulting from the storage of pesticides and herbicides)Southeastern portion of the Phase I PropertyPCA 40 – Pesticides (including Herbicides, Fungicides and Anti-Fouling Agents) Bulk Storage and Large-Scale ApplicationsOn-siteOC Pesticides¹ Metals Hg CrVISoil and/or GroundwaterAPEC 3 (resulting from application of pesticides and herbicides)Across the Phase I PropertyPCA 40 – Pesticides (including Herbicides, Fungicides and Anti-Fouling Agents) Bulk Storage and Large-Scale ApplicationsOn-siteOC Pesticides¹ Metals BradeSoil and/or GroundwaterAPEC 3 (resulting from application of pesticides and herbicides)Across the Phase I Property (fairways and landscaped areas)PCA 40 – Pesticides (including Herbicides, Fungicides and Anti-Fouling Agents) Manufacturing, Processing, Bulk Storage and Large-Scale ApplicationsOn-siteOC Pesticides¹ Metals Hg CrVISoil and/or GroundwaterAPEC 42² (resulting from importation of fill material of unknown quality)Southeastern portion of Phase II PropertyPCA 30 – Importation of Fill material of Unknown QualityOn-siteMetals Hg CrVISoil	APEC 1	Southeastern portion of the	PCA 28 – Gasoline and	On-site	BTEX	Soil and Groundwater
APEC 2 (resulting from the storage of pesticides and herbicides) Southeastern portion of the Phase I Property PCA 40 – Pesticides (including Herbicides, Fungicides and Anti-Fouling Agents) On-site OC Pesticides! Soil and/or Groundwater APEC 3 (resulting from application of pesticides and herbicides) Across the Phase I Property (fairways and landscaped areas) Across the Phase I Property (fairways and landscaped areas) PCA 40 – Pesticides (including Herbicides, Fungicides and Anti-Fouling Agents) Manufacturing, Processing, Bulk Storage and Large-Scale Applications On-site OC Pesticides! Soil and/or Groundwater APEC 42 Southeastern portion of Phase Iresulting from importation of fill material of unknown quality) Southeastern portion of Phase II Property PCA 30 – Importation of Fill material of Unknown Quality On-site Metals Metals Soil	(resulting from the presence of	Phase I Property	Associated Products Storage in		PHCs (F ₁ -F ₄)	
(resulting from the storage of pesticides and herbicides)Phase I PropertyHerbicides, Fungicides and Anti-Fouling Agents) Manufacturing, Processing, Bulk Storage and Large-Scale ApplicationsMetals Hg CrVIAPEC 3 (resulting from application of pesticides and herbicides)Across the Phase I Property (fairways and landscaped areas)PCA 40 – Pesticides (including Herbicides, Fungicides and Anti-Fouling Agents) Manufacturing, Processing, Bulk Storage and Large-Scale ApplicationsOn-siteOC Pesticides' Metals Hg CrVISoil and/or GroundwaterAPEC 42 resulting from importation of fill material of unknown qualitySoutheastern portion of Phase I PropertyPCA 30 – Importation of Fill material of Unknown QualityOn-siteMetals MetalsSoil	two ASTs)		Fixed Tanks			
pesticides and herbicides)Anti-Fouling Agents) Manufacturing, Processing, Bulk Storage and Large-Scale ApplicationsHg CrVIAPEC 3 (resulting from application of pesticides and herbicides)Across the Phase I Property (fairways and landscaped areas)PCA 40 – Pesticides (including Herbicides, Fungicides and Anti-Fouling Agents) Manufacturing, Processing, Bulk Storage and Large-Scale Anti-Fouling Agents) Manufacturing, Processing, Bulk Storage and Large-Scale Applications.On-siteOC Pesticides' MetalsSoil and/or GroundwaterAPEC 42 (resulting from importation of fill material of unknown quality)Southeastern portion of Phase II PropertyPCA 30 – Importation of Fill material of Unknown QualityOn-siteMetals MetalsSoil	APEC 2	Southeastern portion of the	PCA 40 – Pesticides (including	On-site	OC Pesticides ¹	Soil and/or Groundwater
APEC 3 (resulting from application of pesticides and herbicides)Across the Phase I Property (fairways and landscaped areas)PCA 40 – Pesticides (including Herbicides, Fungicides and Anti-Fouling Agents) Manufacturing, Processing, Bulk Storage and Large-Scale ApplicationsOn-siteOC Pesticides1 Metals Hg CrVISoil and/or GroundwaterAPEC 42 resulting from importation of fill material of unknown qualitySoutheastern portion of Phase II PropertyPCA 30 – Importation of Fill material of Unknown QualityOn-siteMetals MetalsSoilAPEC 42 resulting from importation of fill material of unknown qualitySoutheastern portion of Phase II PropertyPCA 30 – Importation of Fill material of Unknown QualityOn-siteMetals MetalsSoil	(resulting from the storage of	Phase I Property	Herbicides, Fungicides and		Metals	
APEC 3 (resulting from application of pesticides and herbicides)Across the Phase I Property (fairways and landscaped areas)PCA 40 – Pesticides (including Herbicides, Fungicides and Anti-Fouling Agents) Manufacturing, Processing, Bulk Storage and Large-Scale Applications.On-siteOC Pesticides' Metals Hg CrVISoil and/or GroundwaterAPEC 42 resulting from importation of fill material of unknown quality)Southeastern portion of Phase II PropertyPCA 30 – Importation of Fill material of Unknown QualityOn-siteMetals Hg CrVISouth	pesticides and herbicides)		Anti-Fouling Agents)		Hg	
APEC 3 (resulting from application of pesticides and herbicides)Across the Phase I Property (fairways and landscaped areas)PCA 40 – Pesticides (including Herbicides, Fungicides and Anti-Fouling Agents) Manufacturing, Processing, Bulk Storage and Large-Scale Applications.On-siteOC Pesticides1 Metals Hg CrVISoil and/or GroundwaterAPEC 42 resulting from importation of fill material of unknown quality)Southeastern portion of Phase II PropertyPCA 30 – Importation of Fill material of Unknown QualityOn-siteMetals Metals Hg CrVISoil			Manufacturing, Processing,		CrVI	
APEC 3 (resulting from application of pesticides and herbicides) Across the Phase I Property (fairways and landscaped areas) PCA 40 – Pesticides (including Herbicides, Fungicides and Anti-Fouling Agents) On-site OC Pesticides ¹ Soil and/or Groundwater Manufacturing, Processing, Bulk Storage and Large-Scale Applications. Manufacturing, Processing, Bulk Storage and Large-Scale Applications. Metals Metals <td></td> <td></td> <td>Bulk Storage and Large-Scale</td> <td></td> <td></td> <td></td>			Bulk Storage and Large-Scale			
(resulting from application of pesticides and herbicides)(fairways and landscaped areas)Herbicides, Fungicides and Anti-Fouling Agents) Manufacturing, Processing, Bulk Storage and Large-Scale Applications.Metals HgAPEC 42Southeastern portion of Phase (resulting from importation of fill material of unknown quality)PCA 30 – Importation of Fill material of Unknown QualityOn-siteMetalsManufacturing, Processing, Bulk Storage and Large-Scale Applications.On-siteMetalsSoilAPEC 42Southeastern portion of Phase II PropertyPCA 30 – Importation of Fill material of Unknown QualityOn-siteMetalsSoilMaterial of Unknown QualityII PropertyII PropertyII PropertyHerial of Unknown QualityHg CrVIHg CrVI			Applications			
pesticides and herbicides) pesticides and herbicides)areas)Anti-Fouling Agents) Manufacturing, Processing, Bulk Storage and Large-Scale Applications.HgAPEC 42 (resulting from importation of fill material of unknown quality)Southeastern portion of Phase material of Unknown QualityPCA 30 – Importation of Fill material of Unknown QualityOn-siteMetals HgSoilFree Substance (resulting from importation of fill material of unknown quality)II PropertyPCA 30 – Importation of Fill material of Unknown QualityOn-siteMetals Hg CrVISoil	APEC 3	Across the Phase I Property		On-site	OC Pesticides ¹	Soil and/or Groundwater
APEC 42 (resulting from importation of fill material of unknown quality)Southeastern portion of Phase H PCA 30 - Importation of Fill material of Unknown QualityOn-siteMetals Hg CrVISoil	(resulting from application of	(fairways and landscaped	Herbicides, Fungicides and		Metals	
APEC 42Southeastern portion of Phase resulting from importation of fill material of unknown qualityPCA 30 - Importation of Fill material of Unknown QualityOn-siteMetalsSoilI PropertyI Propertymaterial of Unknown QualityII PropertyHg CrVIHg Cr	pesticides and herbicides)	areas)			-	
APEC 42Southeastern portion of PhasePCA 30 – Importation of Fill material of Unknown QualityOn-siteMetalsSoilII Propertymaterial of Unknown QualityThe control of Unknown QualityThe control of Unknown QualityThe control of Unknown QualityThe control of Unknown Quality					CrVI	
APEC 42Southeastern portion of Phase (resulting from importation of fill material of unknown quality)PCA 30 – Importation of Fill material of Unknown QualityOn-siteMetalsSoilII PropertyII Propertymaterial of Unknown QualityIIOn-siteHgIICrVIIICrVIIIIIIIIIIIIIIIIIIIMetalsII			· · · ·			
(resulting from importation of fill II Property material of Unknown Quality Hg CrVI						
material of unknown quality)	-	•		On-site		Soil
	. .	II Property	material of Unknown Quality		e e	
	1 37				CrVI	
	□ 1 – Organochlorine Pesticides	bservations made during Phase II ESA				

Well ID	Ground Surface Elevation	Total Depth (m BGS)	Screened Interval (m BGS)	Sand Pack (m BGS)	Bentonite Seal (m BGS)	Casing Type
BH2	105.20	6.40	3.40-6.40	3.05-6.40	0.03-3.05	Flush-mount
BH3	105.72	6.83	3.83-6.83	3.51-6.83	0.03-3.51	Flush-mount
BH8	98.21	6.91	3.91-6.91	3.35-6.91	0.05-3.35	Stick-up
BH10	100.61	5.74	2.74-5.74	2.13-5.74	0.03-2.13	Stick-up
BH11	94.64	7.57	4.57-7.57	4.01-7.57	0.03-4.01	Stick-up
BH12	95.64	8.23	5.23-8.23	4.17-8.23	0.03-4.17	Stick-up
BH13	102.84	7.72	4.72-7.72	4.27-7.72	0.03-4.27	Stick-up
BH15	99.08	8.15	5.18-8.15	4.27-8.15	0.03-4.27	Stick-up
BH16	97.31	5.84	2.84-5.82	2.49-5.82	0.03-2.49	Stick-up
BH17	97.15	5.51	2.51-5.51	2.20-5.51	0.03-2.20	Stick-up
BH18	99.05	5.51	2.51-5.51	2.10-5.51	0.03-2.10	Stick-up
BH19	96.57	6.83	3.83-6.83	3.56-6.83	0.03-3.56	Stick-up
BH20	97.58	5.82	2.82-5.82	2.44-5.82	0.03-2.44	Stick-up

Table 3: Field Measurement of	Table 3: Field Measurement of Water Quality Parameters - Feb.11, 2019											
Parameter	BH2	BH3	BH3 BH8 BH11		BH13	BH17	BH20					
Temperature (°C)	6.9	5.7	12.5	10.7	10.9	15.8	14.3					
рН	6.73	7.56	8.14	7.58	6.65	7.01	7.60					
Electrical Conductivity (µS/cm)	520	1,576	592	401	873	528	621					

Phase II - Environmental Site Assessment

Patersongroup Ottawa Kingston North Bay

BH2-AU1 BH3-AU1 BH4-AU1 BH5-AU1/SS2 BH6-AU1 BH8-AU1 BH9-AU1 BH10-AU1 BH12-AU1 BH13-AU1 BH13-SS3 BH15-AU1 BH15-AU1 BH16-SS4	Sample Depth/ Stratigraphic Unit	BTEX	PHCs (F1-F4)	Metals	OC Pesticides	Hg	CrVI	рН	
BH1-AU1 BH2-AU1 BH3-AU1 BH4-AU1 BH5-AU1/SS2 BH6-AU1 BH8-AU1 BH9-AU1 BH10-AU1 BH13-AU1 BH15-AU1 BH15-AU1	0-0.60m; Sand/gravel Fill 0-0.60m; Sand/gravel Fill 0-0.60m; Sand/gravel Fill 0.1-0.99m; Sand/gravel Fill								
BH3-AU1 BH4-AU1 BH5-AU1/SS2 BH6-AU1 BH8-AU1 BH9-AU1 BH10-AU1 BH12-AU1 BH13-AU1 BH13-SS3 BH16-SS4	0-0.60m; Sand/gravel Fill 0-0.60m; Sand/gravel Fill 0.1-0.99m; Sand/gravel Fill		v	Х	X	Х	Х		A
BH4-AU1 BH5-AU1/SS2 BH6-AU1 BH8-AU1 BH9-AU1 BH10-AU1 BH12-AU1 BH13-AU1 BH13-SS3 BH15-AU1 BH16-SS4	0-0.60m; Sand/gravel Fill 0.1-0.99m; Sand/gravel Fill	Х	^	Х		Х	Х		Assessment of fill mate
BH5-AU1/SS2 BH6-AU1 BH8-AU1 BH9-AU1 BH10-AU1 BH12-AU1 BH13-AU1 BH13-SS3 BH15-AU1 BH16-SS4	0.1-0.99m; Sand/gravel Fill		Х	Х		Х	Х		Assessment of fill mate
BH6-AU1 BH8-AU1 BH9-AU1 BH10-AU1 BH12-AU1 BH13-AU1 BH13-SS3 BH15-AU1 BH16-SS4				Х	Х	Х	Х		
BH8-AU1 BH9-AU1 BH10-AU1 BH12-AU1 BH13-AU1 BH13-SS3 BH15-AU1 BH16-SS4		Х	Х		Х				Assessment of potentia
BH9-AU1 BH10-AU1 BH12-AU1 BH13-AU1 BH13-SS3 BH15-AU1 BH16-SS4	0-0.15m; Silty Clay				Х				
BH10-AU1 BH12-AU1 BH13-AU1 BH13-SS3 BH15-AU1 BH16-SS4	0-0.60m; Reworked Native				Х				
BH12-AU1 BH13-AU1 BH13-SS3 BH15-AU1 BH16-SS4	0-0.10m; Silty Clay				Х				
BH13-AU1 BH13-SS3 BH15-AU1 BH16-SS4	0-0.25m; Reworked Native				Х				
BH13-SS3 BH15-AU1 BH16-SS4	0-0.15m; Reworked Native								
BH13-SS3 BH15-AU1 BH16-SS4	0-0.20m; Sandy fill				Х				
BH15-AU1 BH16-SS4	0.76-1.37m; Sand fill material			Х	1	Х	Х		
BH16-SS4	0-0.20m; Silty Clay				Х				
	1.52-2.13m; Silty Clay							Х	То со
DUIT-AUI	0-0.20m; Reworked Native				Х				Assessment of potentia
BH17-SS3	0.6-1.2m; Reworked Native							Х	То с
BH20-AU1	0-0.20m; Reworked Native				Х				Assessment of potentia
HA1-G1	0.05-0.25m; Silty Clay			Х	1	Х	Х		
HA3-G1	0.05-0.25m; Silty Clay				1				
HA5-G1	0.05-0.25m; Silty Clay			Х		Х	Х		
HA7-G1	0.05-0.25m; Silty Clay			Х	Х	Х	Х		
HA11-G1	0.05-0.25m; Silty Clay				X				
HA13-G1	0.05-0.25m; Silty Clay			Х		Х	Х		
HA14-G1	0.05-0.25m; Silty Clay					X			
HA15-G1	0.05-0.25m; Silty Clay			Х	Х	X	Х		
HA16-G1	0.05-0.25m; Silty Clay				X				Assessment of potentia
DUP	0.05-0.25m; Silty Clay				Х				
HA1-20	0.05-0.15m; Silty Clay					Х			Assessment of potentia
HA2B-20	0.15-0.30m; Silty Clay				Х	Х			
HA3A-20	0.05-0.15m; Silty Clay					Х			
	0.05-0.15m; Silty Clay with Sand				1				
	0.15-0.30m; Silty Clay with Sand				Х	Х			
	0.05-0.15m; Silty Clay with Sand				X	X			
HA7A-20			I						

Phase II - Environmental Site Assessment

Rationale
nationale
Assessment of fill material.
material and potential surficial impacts from ASTs.
material and potential impacts associated with Turf Building.
tential near surface impacts resulting from the use of pesticides/herbicides.
To confirm pH between 5 and 11.
tential near surface impacts resulting from the use of pesticides/herbicides.
To confirm pH between 5 and 9.
tential near surface impacts resulting from the use of pesticides/herbicides.
tential near surface impacts resulting from the use of pesticides/herbicides.
QA/QC
rential near surface impacts resulting from the use of pesticides/herbicides.

		Parameters Analyzed						, 	
Sample ID	Sample Depth/ Stratigraphic Unit	BTEX	PHCs (F1-F4)	Metals	OC Pesticides	Hg	CrVI	рН	
HA8B-20	0.15-0.30m; Silty Clay				x	X			Assessment of potent
HA9A-20	0.05-0.15m; Silty Clay				Х	Х			
HA10B-20	0.15-0.30m; Silty Clay				Х	Х			
HA11A-20	0.05-0.15m; Silty Clay				Х	Х			
HA12A-20	0.05-0.15m; Silty Clay				Х	Х			
HA13A-20	0.05-0.15m; Silty Clay				Х	Х			
HA14B-20	0.15-0.30m; Silty Clay				Х	Х			
HA15A-20	0.05-0.15m; Silty Clay				Х	Х			
HA16B-20	0.15-0.30m; Silty Clay				Х	Х			
HA17A-20	0.05-0.15m; Silty Clay				Х	Х			
HA18A-20	0.05-0.15m; Silty Clay					Х			
HA19A-20	0.05-0.15m; Silty Clay				Х	Х			
HA20A-20	0.05-0.15m; Silty Clay					Х			
HA21B-20	0.15-0.30m; Silty Clay				Х				
HA22	0.30-0.60m; Silty Clay				Х				Delineation of H
HA23A-20	0.05-0.15m; Silty Clay				Х				
HA23B-20	0.15-0.30m; Silty Clay				Х				
HA24A-20	0.05-0.15m; Silty Clay				Х				
HA24B-20	0.15-0.30m; Silty Clay				Х				
HA24A-20	0.05-0.15m; Silty Clay				Х				
HA24B-20	0.15-0.30m; Silty Clay				Х				
HA25A-20	0.05-0.15m; Silty Clay				Х	Х			
HA25B-20	0.15-0.30m; Silty Clay				Х				
HA26A-20	0.05-0.15m; Silty Clay				Х				
HA26B-20	0.15-0.30m; Silty Clay				Х				
HA27-20	0.30-0.60m; Silty Clay				Х	Х			
HA28A-20	0.05-0.15m; Silty Clay					Х			
HA28B-20	0.15-0.30m; Silty Clay					Х			
HA29A-20	0.05-0.15m; Silty Clay					Х			
HA30A-20	0.05-0.15m; Silty Clay					Х			
HA30B-20	0.15-0.30m; Silty Clay					Х			
HA31A-20	0.05-0.15m; Silty Clay					Х			Assessment of potent
HA32A-20	0.05-0.15m; Silty Clay				Х	Х			
HA33B-20	0.15-0.30m; Silty Clay					Х			
HA34A-20	0.15-0.30m; Silty Clay				Х	Х			

Phase II - Environmental Site Assessment

7000 Campeau Drive - Ottawa

ential near surface impacts resulting from the use of pesticides/herbicides.

f Hg impacts identified during 2019 field program.

ential near surface impacts resulting from the use of pesticides/herbicides.

Patersongroup Ottawa Kingston North Bay

	-		Pa	arameters Analyzed	b	1	
Sample ID	Sample Depth/ Stratigraphic Unit	втех	PHCs (F1-F4)	OC Pesticides	Metals	Mercury	
BH2-GW1	3.40-6.40m; Bedrock	Х	X				To investigate pote
BH3-GW1	3.83-6.83m; Bedrock	Х	x	X			To investigate poter Turf I
BH8-GW1	3.91-6.91m; Silty Clay			X			To confirm that grou
BH8-GW2					Х	Х	evidence of
BH11-GW1	4.57-7.57m; Glacial Till			X			
BH13-GW1	4.72-7.72m; Silty Clay			X			
BH15-GW1	5.15-8.15; Silty Clay			X			
BH16-GW1	2.84-5.82; Silty Clay				Х	Х	
BH17-GW1	2.51-5.51m; Bedrock			X			
BH18-GW1	2.51-5.51m; Bedrock				Х	Х	To confirm that
BH19-GW1	3.83-6.83m; Bedrock				Х	Х	pesticide/herbicide ι
BH20-GW1	2.82-5.82m; Bedrock			X		Х	
BH20-GW2					Х	Х	
DUP-GW	3.40-6.40m; Bedrock	Х	Х				

Phase II - Environmental Site Assessment

7000 Campeau Drive - Ottawa

Rationale

otential groundwater impacts resulting from the ASTs.

tential groundwater impacts in the vicinity of the rf Building and pesticide storage.

roundwater has not been impacted although no of soil impacts based on available data.

nat groundwater has not been impacted by e use based on mercury exceedance in surface soils.

QA/QC

Borehole Location	Ground Surface Elevation (m)	Water Level Depth (m below grade)	Water Level Elevation (m ASL)	Date of Measurement
BH2	105.20	2.38	102.82	April 29, 2019
BH3	105.72	3.35	102.37	April 29, 2019
BH8	98.21	1.21	97.00	April 29, 2019
BH10	100.61	1.75	98.86	April 29, 2019
BH11	94.64	0.15	94.49	April 30, 2019
BH12	95.64	1.46	94.18	April 30, 2019
BH13	102.84	1.38	101.46	April 29, 2019
BH15	99.08	0.12	98.96	April 29, 2019
BH16	97.31	0.11	97.20	April 30, 2019
BH17	97.15	0.10	97.05	April 29, 2019
BH18	99.05	2.90	96.15	April 30, 2019
BH19	96.57	0.39	96.18	April 30, 2019
BH20	97.58	1.21	96.37	April 30, 2019
BH2	105.20	2.83	102.37	May 5, 2019
BH8	98.21	1.29	96.92	May 5, 2019
BH10	100.61	2.19	98.42	May 5, 2019
BH11	94.64	0.28	94.36	May 5, 2019
BH13	102.84	1.40	101.44	May 5, 2019
BH15	99.08	0.32	98.76	May 5, 2019
BH16	97.31	0.08	97.23	May 5, 2019
BH18	99.05	2.94	96.11	May 5, 2019
BH19	96.57	0.49	96.08	May 5, 2019
BH20	97.58	1.92	95.66	May 5, 2019

Sample ID	Depth (m BGS)	%Gravel	%Sand	%Silt and Clay	Soil Type
BH6-19-SS4	1.52-2.13	0.0	6.6	93.4	Clay
BH11-19-SS4	1.52-2.13	0.0	1.7	98.3	Silt
BH14-19-SS4	1.52-2.13	0.0	11.2	88.8	Clay
BH15-19-SS4	1.52-2.13	0.0	1.8	98.2	Clay

			Soil Samples (µg/g)		MECP Table 3 Residential
Parameter	MDL (µg/g)	Feb.27/19 BH2-AU1 (0-0.6m)	Feb.26/19 BH3-AU1 (0-0.6m)	Feb.27/19 BH5-AU1/SS2 (0-0.99m)	- Standards (µg/g)
Benzene	0.02	nd	nd	nd	0.21
Ethylbenzene	0.05	nd	nd	nd	2
Toluene	0.05	nd	nd	nd	2.3
Xylenes (Total)	0.05	nd	nd	nd	3.1
PHC F1	7	nd	nd	nd	55
PHC F2	4	14	nd	nd	98
PHC F3	8	47	47	nd	300
PHC F4	6	26	149	nd	2,800
PHC F4G	50	nt	443 ¹	nt	2,000

 \square 1 – GC-FID signal did not return to baseline by C50

Phase II - Environmental Site Assessment

Table 9A: Parcel 1 – 2019 Analytical Test Results

					Soi	l Samples (µg/g)				
		Feb. 2	7, 2019	Feb. 26, 2019	Feb. 27, 2019	Mar. 6, 2019		Apr.29, 2019		MECP
Parameter	MDL (µg/g)	BH1-AU1 (0-0.6m)	BH2-AU1 (0-0.6m)	BH3-AU1 (0-0.6m)	BH4-AU1 (0-0.6m)	BH13-SS3 (0.76-1.37)	HA5-G1 (0.05-0.25m)	HA7-G1 (0.05-0.25m)	DUP (0.05-0.25m)	Table 3 Residentia Standards (µg/g)
Antimony	1.0	nd	nd	nd	nd	nd	nd	nd	nd	7.5
Arsenic	1.0	2.4	1.2	1.1	2.4	1.2	1.1	1.9	1.4	18
Barium	1.0	126	156	107	260	36.4	45.9	85.7	92.7	390
Beryllium	0.5	0.8	nd	nd	0.6	nd	nd	nd	nd	4
Boron	5.0	6.2	9.1	8.0	7.3	nd	nd	nd	nd	120
Cadmium	0.5	nd	nd	nd	nd	nd	nd	nd	nd	1.2
Chromium	5.0	97.2	23.2	20.6	47.1	12.2	14.5	22.3	23.8	160
Chromium (VI)	0.2	nd	nd	nd	nd	nd	nd	nd	nt	8
Cobalt	1.0	10.4	4.4	3.4	9.7	3.9	3.9	5.9	5.8	22
Copper	5.0	11.2	6.4	6.0	18.1	9.7	9.3	13.6	12.7	140
Lead	1.0	4.1	5.2	3.9	7.9	1.9	3.3	5.1	3.5	120
Mercury	0.1	nd	0.2	nd	0.1	nd	nd	nd	nt	0.27
Molybdenum	1.0	nd	nd	nd	nd	nd	nd	nd	nd	6.9
Nickel	5.0	30.9	11.4	8.6	21.5	6.6	7.5	13.0	12.3	100
Selenium	1.0	nd	nd	nd	nd	nd	nd	nd	nd	2.4
Silver	0.3	nd	nd	nd	nd	nd	nd	nd	nd	20
Thallium	1.0	nd	nd	nd	nd	nd	nd	nd	nd	1
Uranium	1.0	nd	nd	nd	nd	nd	nd	nd	nd	23
Vanadium	10.0	49.0	19.5	12.2	45.6	24.2	26.6	30.5	34.5	86
Zinc	20.0	52.4	20.3	nd	69.9	nd	25.3	39.4	37.4	340

□ nd – not detected above the MDL

nv- no MECP standard value for this parameter

Phase II - Environmental Site Assessment

						nples (µg/g) _4, 2020)			
Parameter	MDL (µg/g)	HA2B-20 (0.15-0.30m)	HA3A-20 (0.05-0.15m)	HA7A-20 (0.05-0.15m)	HA8B-20 (0.15-0.30m)	HA9A-20 (0.05-0.15m)	HA10B-20 (0.15-0.30m)	HA11A-20 (0.05-0.15m)	MECP Table 3 Residential Standards (µg/g)
Mercury	0.1	nd	<u>2.5</u>	<u>0.5</u>	nd	<u>2.7</u>	nd	nd	0.27

bold – exceeds MECP Table 3 standard

			-		Soil Samples (µg/g) (May 4, 2020)			
Parameter		HA12A-20 (0.05-0.15m)	HA13A-20 (0.05-0.15m)	HA14B-20 (0.15-0.30m)	HA15A-20 (0.05-0.150m)	HA16B-20 (0.15-0.30m)	HA17A-20 (0.05-0.150m)	MECP Table 3 Residential Standards (μg/g)
Mercury	0.1	<u>1.7</u>	<u>0.9</u>	nd	nd	nd	<u>0.8</u>	0.27

Phase II - Environmental Site Assessment

Table 10A: Parcel 1 - 2019 Analytical Test Results Soil Organophlaring Pasticidae (OCPa)

					1		Sc	oil Samples	s (µg/g)		T				1
		Feb.	26/19		Feb.	25/19	Feb.2	27/19	Mar.	6/19	Apr.	30/19	Apr.:	29/19	MECP
Devenatev	BH3	-AU1	BH6	-AU1	BH9	-AU1	BH9-	AU1	BH13	-AU1	HA	3-G1	HA7	7-G1	Table 3
Parameter	(0-0	.6m)	(0-0.	15m)	(0-0	.1m)	(0-0.	1m)	(0-0.	2m)	(0.05-	0.25m)	(0.05-0	0.25m)	Residential
	MDL	Result	MDL	MDL	MDL	Result	MDL	Result		Result	MDL	Result	MDL	Result	Standards
	(µg/g)	(ug/g)	(µg/g)	(µg/g)	(µg/g)	(ug/g)	(µg/g)	(ug/g)	MDL (µg/g)	(ug/g)	(µg/g)	(ug/g)	(µg/g)	(ug/g)	(µg/g)
2-4'-DDD	0.01	nd	0.009	nd	0.009	nd	0.01	nd	0.009	nd	0.01	nd	0.01	nd	nv
2-4'-DDE	0.01	nd	0.009	nd	0.009	nd	0.01	nd	0.009	nd	0.01	nd	0.01	nd	nv
2-4'-DDT	0.01	nd	0.009	nd	0.009	nd	0.01	nd	0.009	nd	0.01	nd	0.01	nd	nv
4,4'-DDE	0.01	nd	0.009	nd	0.009	nd	0.01	nd	0.009	nd	0.01	nd	0.01	nd	nv
4,4'-DDT	0.01	nd	0.009	nd	0.009	nd	0.01	nd	0.009	nd	0.01	nd	0.01	nd	nv
Aldrin	0.01	nd	0.009	nd	0.009	nd	0.01	nd	0.009	nd	0.01	nd	0.01	nd	0.05
DDD (total)	0.01	nd	0.009	nd	0.009	nd	0.01	nd	0.009	nd	0.01	nd	0.01	nd	3.3
DDE (total)	0.01	nd	0.009	nd	0.009	nd	0.01	nd	0.009	nd	0.01	nd	0.01	nd	0.26
DDT (total)	0.01	nd	0.009	nd	0.009	nd	0.01	nd	0.009	nd	0.01	nd	0.01	nd	1.4
Dieldrin	0.01	nd	0.009	nd	0.009	nd	0.01	nd	0.009	nd	0.01	nd	0.01	nd	0.05
Endosulfan I	0.01	nd	0.009	nd	0.009	nd	0.01	nd	0.009	nd	0.01	nd	0.01	nd	nv
Endosulfan I + II	0.01	nd	0.009	nd	0.009	nd	0.01	nd	0.009	nd	0.01	nd	0.01	nd	0.04
Endosulfan II	0.01	nd	0.009	nd	0.009	nd	0.01	nd	0.009	nd	0.01	nd	0.01	nd	nv
Endosulfan sulfate	0.01	nd	0.009	nd	0.009	nd	0.01	nd	0.009	nd	0.01	nd	0.01	nd	nv
Endrin	0.01	nd	0.009	nd	0.009	nd	0.01	nd	0.009	nd	0.01	nd	0.01	nd	0.04
Endrin aldehyde	0.01	nd	0.009	nd	0.009	nd	0.01	nd	0.009	nd	0.01	nd	0.01	nd	nv
Heptachlor	0.01	nd	0.009	nd	0.009	nd	0.01	nd	0.009	nd	0.01	nd	0.01	nd	0.15
Heptachlor epoxide	0.01	nd	0.009	nd	0.009	nd	0.01	nd	0.009	nd	0.01	nd	0.01	nd	0.05
Hexachlorobenzene	0.01	nd	0.009	nd	0.009	nd	0.01	nd	0.009	nd	0.01	nd	0.01	nd	0.52
Hexachlorobutadiene	0.01	nd	0.009	nd	0.009	nd	0.01	nd	0.009	nd	0.01	nd	0.01	nd	0.012
Hexachloroethane	0.01	nd	0.009	nd	0.009	nd	0.01	nd	0.009	nd	0.01	nd	0.01	nd	0.089
Methoxychlor	0.01	nd	0.009	nd	0.009	nd	0.01	nd	0.009	nd	0.01	nd	0.01	nd	0.13
Mirex	0.01	nd	0.009	nd	0.009	nd	0.01	nd	0.009	nd	0.01	nd	0.01	nd	nv
Oxychlordane	0.01	nd	0.009	nd	0.009	nd	0.01	nd	0.009	nd	0.01	nd	0.01	nd	nv
β-ΒΗϹ	0.01	nd	0.009	nd	0.009	nd	0.01	nd	0.009	nd	0.01	nd	0.01	nd	nv
α-Chlordane	0.01	nd	0.009	nd	0.009	nd	0.01	nd	0.009	nd	0.01	nd	0.01	nd	nv
α + γ-Chlordane	0.01	nd	0.009	nd	0.009	nd	0.01	nd	0.009	nd	0.01	nd	0.01	nd	0.05
α-BHC	0.01	nd	0.009	nd	0.009	nd	0.01	nd	0.009	nd	0.01	nd	0.01	nd	nv
γ-Chlordane	0.01	nd	0.009	nd	0.009	nd	0.01	nd	0.009	nd	0.01	nd	0.01	nd	nv
γ-BHC (Lindane)	0.01	nd	0.009	nd	0.009	nd	0.01	nd	0.009	nd	0.01	nd	0.01	nd	0.056
δ-ΒΗϹ	0.01	nd	0.009	nd	0.009	nd	0.01	nd	0.009	nd	0.01	0.01	0.01	nd	nv

Notes:

MDL – Method Detection Limit

nd – not detected above the MDL

nv- no MECP standard value for this parameter

Phase II - Environmental Site Assessment

Table 10B: Parcel 1 - 2020 Analytical Test Results Soil - Organochloring Pesticides (OCPs)

							Soil Sam	oles (µg/g) –	Mar. 4. 202	20					
Parameter		1-20 0.15m)		A-20 0.15m)		A-20 0.15m)	HA8	B-20 0.30m)	HA9	A-20 0.15m))B-20 0.30m)		A-20 0.15m)	MECP Table 3
i ulullotoi	MDL (µg/g)	Result (ug/g)	MDL (µg/g)	MDL (µg/g)	MDL (µg/g)	Result (ug/g)	Residentia Standards (µg/g)								
2-4'-DDD	0.008	nd	0.009	nd	0.007	nd	0.009	nd	0.007	nd	0.009	nd	0.008	nd	nv
2-4'-DDE	0.008	nd	0.009	nd	0.007	nd	0.009	nd	0.007	nd	0.009	nd	0.008	nd	nv
2-4'-DDT	0.008	nd	0.009	nd	0.007	nd	0.009	nd	0.007	nd	0.009	nd	0.008	nd	nv
4,4'-DDE	0.008	nd	0.009	nd	0.007	nd	0.009	nd	0.007	nd	0.009	nd	0.008	nd	nv
4,4'-DDT	0.008	nd	0.009	nd	0.007	nd	0.009	nd	0.007	nd	0.009	nd	0.008	nd	nv
Aldrin	0.008	nd	0.009	nd	0.007	nd	0.009	nd	0.007	nd	0.009	nd	0.008	nd	0.05
DDD (total)	0.008	nd	0.009	nd	0.007	nd	0.009	nd	0.007	nd	0.009	nd	0.008	nd	3.3
DDE (total)	0.008	nd	0.009	nd	0.007	nd	0.009	nd	0.007	nd	0.009	nd	0.008	nd	0.26
DDT (total)	0.008	nd	0.009	nd	0.007	nd	0.009	nd	0.007	nd	0.009	nd	0.008	nd	1.4
Dieldrin	0.008	nd	0.009	nd	0.007	nd	0.009	nd	0.007	nd	0.009	nd	0.008	nd	0.05
Endosulfan I	0.008	nd	0.009	nd	0.007	nd	0.009	nd	0.007	nd	0.009	nd	0.008	nd	nv
Endosulfan I + II	0.008	nd	0.009	nd	0.007	nd	0.009	nd	0.007	nd	0.009	nd	0.008	nd	0.04
Endosulfan II	0.008	nd	0.009	nd	0.007	nd	0.009	nd	0.007	nd	0.009	nd	0.008	nd	nv
Endosulfan sulfate	0.008	nd	0.009	nd	0.007	nd	0.009	nd	0.007	nd	0.009	nd	0.008	nd	nv
Endrin	0.008	nd	0.009	nd	0.007	nd	0.009	nd	0.007	nd	0.009	nd	0.008	nd	0.04
Endrin aldehyde	0.008	nd	0.009	nd	0.007	nd	0.009	nd	0.007	nd	0.009	nd	0.008	nd	nv
Heptachlor	0.008	nd	0.009	nd	0.007	nd	0.009	nd	0.007	nd	0.009	nd	0.008	nd	0.15
Heptachlor epoxide	0.008	nd	0.009	nd	0.007	nd	0.009	nd	0.007	nd	0.009	nd	0.008	nd	0.05
Hexachlorobenzene	0.008	nd	0.009	nd	0.007	nd	0.009	nd	0.007	nd	0.009	nd	0.008	nd	0.52
Hexachlorobutadiene	0.008	nd	0.009	nd	0.007	nd	0.009	nd	0.007	nd	0.009	nd	0.008	nd	0.012
Hexachloroethane	0.008	nd	0.009	nd	0.007	nd	0.009	nd	0.007	nd	0.009	nd	0.008	nd	0.089
Methoxychlor	0.008	nd	0.009	nd	0.007	nd	0.009	nd	0.007	nd	0.009	nd	0.008	nd	0.13
Mirex	0.008	nd	0.009	nd	0.007	nd	0.009	nd	0.007	nd	0.009	nd	0.008	nd	nv
Oxychlordane	0.008	nd	0.009	nd	0.007	nd	0.009	nd	0.007	nd	0.009	nd	0.008	nd	nv
β-BHC	0.008	nd	0.009	nd	0.007	nd	0.009	nd	0.007	nd	0.009	nd	0.008	nd	nv
α-Chlordane	0.008	nd	0.009	nd	0.007	nd	0.009	nd	0.007	nd	0.009	nd	0.008	nd	nv
$\alpha + \gamma$ -Chlordane	0.008	nd	0.009	nd	0.007	nd	0.009	nd	0.007	nd	0.009	nd	0.008	nd	0.05
α-BHC	0.008	nd	0.009	nd	0.007	nd	0.009	nd	0.007	nd	0.009	nd	0.008	nd	nv
y-Chlordane	0.008	nd	0.009	nd	0.007	nd	0.009	nd	0.007	nd	0.009	nd	0.008	nd	nv
y-BHC (Lindane)	0.008	nd	0.009	nd	0.007	nd	0.009	nd	0.007	nd	0.009	nd	0.008	nd	0.056
δ-BHC	0.008	0.053	0.009	0.057	0.007	0.052	0.009	0.051	0.007	0.055	0.009	0.011	0.008	0.040	nv

Notes:

MDL – Method Detection Limit

nd – not detected above the MDL

nv– no MECP standard value for this parameter

Phase II - Environmental Site Assessment

Table 10B Continued: Parcel 1 - 2020 Analytical Test Results

						Soil Sam	ples (µg/g) – N	lay 4, 2020					
	HA1	2A-20	HA13	A-20	HA14	B-20	HA15	5A-20	HA16	B-20	HA17	A-20	MECP
Parameter	(0.05-	<u>0.15m)</u>	(0.05-0	.15m)	(0.15-0).30m)	(0.05-0	.150m)	(0.15-0).30m)	(0.05-0.	.150m)	Table 3
	MDL (µg/g)	Result (ug/g)	MDL (µg/g)	Result (ug/g)	MDL (µg/g)	Result (ug/g)	MDL (µg/g)	Result (ug/g)	MDL (µg/g)	Result (ug/g)	MDL (µg/g)	Result (ug/g)	Residential Standards (µg/g)
2-4'-DDD	0.008	nd	0.009	nd	0.007	nd	0.007	nd	0.007	nd	0.008	nd	nv
2-4'-DDE	0.008	nd	0.009	nd	0.007	nd	0.007	nd	0.007	nd	0.008	nd	nv
2-4'-DDT	0.008	nd	0.009	nd	0.007	nd	0.007	nd	0.007	nd	0.008	nd	nv
4,4'-DDE	0.008	nd	0.009	nd	0.007	nd	0.007	nd	0.007	nd	0.008	nd	nv
4,4'-DDT	0.008	nd	0.009	nd	0.007	nd	0.007	nd	0.007	nd	0.008	nd	nv
Aldrin	0.008	nd	0.009	nd	0.007	nd	0.007	nd	0.007	nd	0.008	nd	0.05
DDD (total)	0.008	nd	0.009	nd	0.007	nd	0.007	nd	0.007	nd	0.008	nd	3.3
DDE (total)	0.008	nd	0.009	nd	0.007	nd	0.007	nd	0.007	nd	0.008	nd	0.26
DDT (total)	0.008	nd	0.009	nd	0.007	nd	0.007	nd	0.007	nd	0.008	nd	1.4
Dieldrin	0.008	nd	0.009	nd	0.007	nd	0.007	nd	0.007	nd	0.008	nd	0.05
Endosulfan I	0.008	nd	0.009	nd	0.007	nd	0.007	nd	0.007	nd	0.008	nd	nv
Endosulfan I + II	0.008	nd	0.009	nd	0.007	nd	0.007	nd	0.007	nd	0.008	nd	0.04
Endosulfan II	0.008	nd	0.009	nd	0.007	nd	0.007	nd	0.007	nd	0.008	nd	nv
Endosulfan sulfate	0.008	nd	0.009	nd	0.007	nd	0.007	nd	0.007	nd	0.008	nd	nv
Endrin	0.008	nd	0.009	nd	0.007	nd	0.007	nd	0.007	nd	0.008	nd	0.04
Endrin aldehyde	0.008	nd	0.009	nd	0.007	nd	0.007	nd	0.007	nd	0.008	nd	nv
Heptachlor	0.008	nd	0.009	nd	0.007	nd	0.007	nd	0.007	nd	0.008	nd	0.15
Heptachlor epoxide	0.008	nd	0.009	nd	0.007	nd	0.007	nd	0.007	nd	0.008	nd	0.05
Hexachlorobenzene	0.008	nd	0.009	nd	0.007	nd	0.007	nd	0.007	nd	0.008	nd	0.52
Hexachlorobutadiene	0.008	nd	0.009	nd	0.007	nd	0.007	nd	0.007	nd	0.008	nd	0.012
Hexachloroethane	0.008	nd	0.009	nd	0.007	nd	0.007	nd	0.007	nd	0.008	nd	0.089
Methoxychlor	0.008	nd	0.009	nd	0.007	nd	0.007	nd	0.007	nd	0.008	nd	0.13
Mirex	0.008	nd	0.009	nd	0.007	nd	0.007	nd	0.007	nd	0.008	nd	nv
Oxychlordane	0.008	nd	0.009	nd	0.007	nd	0.007	nd	0.007	nd	0.008	nd	nv
β-BHC	0.008	nd	0.009	nd	0.007	nd	0.007	nd	0.007	nd	0.008	nd	nv
α-Chlordane	0.008	nd	0.009	nd	0.007	nd	0.007	nd	0.007	nd	0.008	nd	nv
$\alpha + \gamma$ -Chlordane	0.008	nd	0.009	nd	0.007	nd	0.007	nd	0.007	nd	0.008	nd	0.05
α-BHC	0.008	nd	0.009	nd	0.007	nd	0.007	nd	0.007	nd	0.008	nd	nv
y-Chlordane	0.008	nd	0.009	nd	0.007	nd	0.007	nd	0.007	nd	0.008	nd	nv
y-BHC (Lindane)	0.008	nd	0.009	nd	0.007	nd	0.007	nd	0.007	nd	0.008	nd	0.056
δ-BHC	0.008	0.086	0.009	0.033	0.007	0.021	0.007	0.053	0.007	0.043	0.008	0.046	nv

Notes:

MDL – Method Detection Limit

□ nd – not detected above the MDL

nv– no MECP standard value for this parameter

Phase II - Environmental Site Assessment

Parameter	MDL (µg/g)	Soil Samples (µg/g) - Apr.30/19	MECP Table 3 Residential
		HA1-G1 (0.05-0.25m)	Standards (µg/g)
Antimony	1.0	nd	7.5
Arsenic	1.0	2.2	18
Barium	1.0	129	390
Beryllium	0.5	nd	4
Boron	5.0	nd	120
Cadmium	0.5	nd	1.2
Chromium	5.0	37.7	160
Chromium (VI)	0.2	nd	8
Cobalt	1.0	8.6	22
Copper	5.0	14.2	140
Lead	1.0	9.2	120
Mercury	0.1	nd	0.27
Molybdenum	1.0	nd	6.9
Nickel	5.0	19.1	100
Selenium	1.0	nd	2.4
Silver	0.3	nd	20
Thallium	1.0	nd	1
Jranium	1.0	nd	23
Vanadium	10.0	46.1	86
Zinc	20.0	76.4	340

		Soil Samples (µg/g) – May 4, 2019								
Parameter	MDL (µg/g)	HA4A-20 (0.05-0.15m)	HA5B-20 (0.15-0.30m)	HA6A-20 (0.05-0.15m)	MECP Table 3 Residential Standards (μg/g)					
Mercury	0.1	0.1	<u>0.4</u>	<u>1.9</u>	0.27					

Phase II - Environmental Site Assessment 7000 Campeau Drive - Ottawa

Patersongroup Ottawa Kingston North Bay

Table 12: Parcel 2 – 2019/2020 Analytical Test Results

					Soi	il Samples (µg/	g)				
			Feb.28, 2019					May 4, 2020			MECP
Devenuetev	BH10	-AU1	BH12	2-AU1	HA1	6-G1	HA5E	3-20	HA6	A-20	Table 3
Parameter	(0-0.2	25m)	(0-0.	15m)	(0.05-0).25m)	(0.15-0	.30m)	(0.05-0).15m)	Residentia
	MDL (µg/g)	Result (ug/g)	MDL (µg/g)	MDL (µg/g)	MDL (µg/g)	Result (ug/g)	MDL (µg/g)	Result (ug/g)	MDL (µg/g)	Result (ug/g)	Standards (µg/g)
2-4'-DDD	0.01	nd	0.009	nd	0.009	nd	0.009	nd	0.009	nd	nv
2-4'-DDE	0.01	nd	0.009	nd	0.009	nd	0.009	nd	0.009	nd	nv
2-4'-DDT	0.01	nd	0.009	nd	0.009	nd	0.009	nd	0.009	nd	nv
4,4'-DDE	0.01	nd	0.009	nd	0.009	nd	0.009	nd	0.009	nd	nv
4,4'-DDT	0.01	nd	0.009	nd	0.009	nd	0.009	nd	0.009	nd	nv
Aldrin	0.01	nd	0.009	nd	0.009	nd	0.009	nd	0.009	nd	0.05
DDD (total)	0.01	nd	0.009	nd	0.009	nd	0.009	nd	0.009	nd	3.3
DDE (total)	0.01	nd	0.009	nd	0.009	nd	0.009	nd	0.009	nd	0.26
DDT (total)	0.01	nd	0.009	nd	0.009	nd	0.009	nd	0.009	nd	1.4
Dieldrin	0.01	nd	0.009	nd	0.009	nd	0.009	nd	0.009	nd	0.05
Endosulfan I	0.01	nd	0.009	nd	0.009	nd	0.009	nd	0.009	nd	nv
Endosulfan I + II	0.01	nd	0.009	nd	0.009	nd	0.009	nd	0.009	nd	0.04
Endosulfan II	0.01	nd	0.009	nd	0.009	nd	0.009	nd	0.009	nd	nv
Endosulfan sulfate	0.01	nd	0.009	nd	0.009	nd	0.009	nd	0.009	nd	nv
Endrin	0.01	nd	0.009	nd	0.009	nd	0.009	nd	0.009	nd	0.04
Endrin aldehyde	0.01	nd	0.009	nd	0.009	nd	0.009	nd	0.009	nd	nv
Heptachlor	0.01	nd	0.009	nd	0.009	nd	0.009	nd	0.009	nd	0.15
Heptachlor epoxide	0.01	nd	0.009	nd	0.009	nd	0.009	nd	0.009	nd	0.05
Hexachlorobenzene	0.01	nd	0.009	nd	0.009	nd	0.009	nd	0.009	nd	0.52
Hexachlorobutadiene	0.01	nd	0.009	nd	0.009	nd	0.009	nd	0.009	nd	0.012
Hexachloroethane	0.01	nd	0.009	nd	0.009	nd	0.009	nd	0.009	nd	0.089
Methoxychlor	0.01	nd	0.009	nd	0.009	nd	0.009	nd	0.009	nd	0.13
Mirex	0.01	nd	0.009	nd	0.009	nd	0.009	nd	0.009	nd	nv
Oxychlordane	0.01	nd	0.009	nd	0.009	nd	0.009	nd	0.009	nd	nv
β-BHC	0.01	nd	0.009	nd	0.009	nd	0.009	nd	0.009	nd	nv
α-Chlordane	0.01	nd	0.009	nd	0.009	nd	0.009	nd	0.009	nd	nv
α + γ-Chlordane	0.01	nd	0.009	nd	0.009	nd	0.009	nd	0.009	nd	0.05
α-BHC	0.01	nd	0.009	nd	0.009	nd	0.009	nd	0.009	nd	nv
v-Chlordane	0.01	nd	0.009	nd	0.009	nd	0.009	nd	0.009	nd	nv
γ-BHC (Lindane)	0.01	nd	0.009	nd	0.009	nd	0.009	nd	0.009	nd	0.056
δ-BHC	0.01	nd	0.009	nd	0.009	nd	0.009	0.044	0.009	0.056	nv

Notes:

□ MDL – Method Detection Limit

□ nd – not detected above the MDL

nv- no MECP standard value for this parameter

Phase II - Environmental Site Assessment

Patersongroup Ottawa Kingston North Bay

Table 13A: Parcel 3 – 2019 Analytical Test Results Soil – Metals (including As, Sb, Se), Hg and CrVI

Parameter		Soil Samples (Jg/g) - Apr.30/19	
Faiametei	MDL (µg/g)	HA14-G1 (0.05-0.25m)	HA15-G1 (0.05-0.25m)	
Antimony	1.0	nt	nd	
Arsenic	1.0	nt	nd	
Barium	1.0	nt	25.7	
Beryllium	0.5	nt	nd	
Boron	5.0	nt	nd	
Cadmium	0.5	nt	nd	
Chromium	5.0	nt	12.3	
Chromium (VI)	0.2	nt	nd	
Cobalt	1.0	nt	2.7	
Copper	5.0	nt	5.6	
Lead	1.0	nt	1.2	
Mercury	0.1	<u>0.6</u>	2.3	
Molybdenum	1.0	nt	nd	
Nickel	5.0	nt	6.6	
Selenium	1.0	nt	nd	
Silver	0.3	nt	nd	
Thallium	1.0	nt	nd	
Uranium	1.0	nt	nd	
Vanadium	10.0	nt	12.0	
Zinc	20.0	nt	25.1	

Notes:

□ MDL – Method Detection Limit

□ nd – not detected above the MDL

□ nt – not tested for this parameter

<u>bold</u> – exceeds MECP Table 7 standard

Phase II - Environmental Site Assessment

7000 Campeau Drive - Ottawa

MECP Table 7 Residential Standards	
<u>μg/g)</u> 7.5	
18	
390	
4	
120	
1.2	
160	
8	
22	
140	
120	
0.27	
6.9	
100	
2.4	
20	
1	
23	
86	
340	

		Soil Samples (µg/g) – May 4, 2019									
Parameter	MDL (µg/g)	HA22-20* (0.30-0.60m)	HA23A-20 (0.05-0.15m)	HA23B-20 (0.15-0.30m)	HA24A-20 (0.05-0.15m)	HA24B-20 (0.15-0.30m)	HA25A-20 (0.05-0.15m)	HA25B-20 (0.15-0.30m)	HA26A-20 (0.05-0.15m)	HA26B-20 (0.15-0.30m)	MECP Table 7 Residential Standards (μg/g)
Mercury	0.1	nd	nd	nd	nd	nd	<u>1.7</u>	nd	nd	nd	0.27

□ **bold** – exceeds MECP Table 7 standard

HA27-20*	HA28A-20			•	es (µg/g) – May 4 ∣	Í			
(0.30-0.60m)	(0.05-0.15m)	HA28B-20 (0.15-0.30m)	HA29A-20 (0.05-0.15m)	HA29B-20 (0.15-0.30m)	HA30A-20 (0.05-0.15m)	HA30B-20 (0.15-0.30m)	HA31A-20 (0.05-0.15m)	HA31B-20 (0.15-0.30m)	MECP Table 7 Residential Standards (μg/g)
0.2	nd	<u>1.0</u>	0.2	nd	nd	nd	nd	nd	0.27
	, ,	0.2 nd	0.2 nd <u>1.0</u>	0.2 nd 1.0 0.2	0.2 nd 1.0 0.2 nd mit	0.2 nd 1.0 0.2 nd nd mit	0.2 nd 1.0 0.2 nd nd nd mit	0.2 nd 1.0 0.2 nd nd nd nd mit	O.2 nd <u>1.0</u> O.2 nd nd <t< td=""></t<>

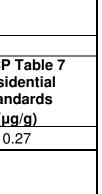
			So	il Samples (µg/g)			
	March 1			0, 2019	May 4		MECP
Parameter	BH20-			5-G1	HA		Table 7
	(0-0.2		•	0.25m)	(0.05-0	/	Residentia
	MDL (µg/g)	Result (ug/g)	MDL (µg/g)	MDL (µg/g)	MDL (µg/g)	Result (ug/g)	Standards (µg/g)
2-4'-DDD	0.01	nd	0.01	nd	0.008	nd	nv
2-4'-DDE	0.01	nd	0.01	nd	0.008	nd	nv
2-4'-DDT	0.01	nd	0.01	nd	0.008	nd	nv
4,4'-DDE	0.01	nd	0.01	nd	0.008	nd	nv
4,4'-DDT	0.01	nd	0.01	nd	0.008	nd	nv
Aldrin	0.01	nd	0.01	nd	0.008	nd	0.05
DDD (total)	0.01	nd	0.01	nd	0.008	nd	3.3
DDE (total)	0.01	nd	0.01	nd	0.008	nd	0.26
DDT (total)	0.01	nd	0.01	nd	0.008	nd	1.4
Dieldrin	0.01	nd	0.01	nd	0.008	nd	0.05
Endosulfan I	0.01	nd	0.01	nd	0.008	nd	nv
Endosulfan I + II	0.01	nd	0.01	nd	0.008	nd	0.04
Endosulfan II	0.01	nd	0.01	nd	0.008	nd	nv
Endosulfan sulfate	0.01	nd	0.01	nd	0.008	nd	nv
Endrin	0.01	nd	0.01	nd	0.008	nd	0.04
Endrin aldehyde	0.01	nd	0.01	nd	0.008	nd	nv
Heptachlor	0.01	nd	0.01	nd	0.008	nd	0.15
Heptachlor epoxide	0.01	nd	0.01	nd	0.008	nd	0.05
Hexachlorobenzene	0.01	nd	0.01	nd	0.008	nd	0.52
Hexachlorobutadiene	0.01	nd	0.01	nd	0.008	nd	0.012
Hexachloroethane	0.01	nd	0.01	nd	0.008	nd	0.089
Methoxychlor	0.01	nd	0.01	nd	0.008	nd	0.13
Mirex	0.01	nd	0.01	nd	0.008	nd	nv
Oxychlordane	0.01	nd	0.01	nd	0.008	nd	nv
β-ВНС	0.01	nd	0.01	nd	0.008	nd	nv
α-Chlordane	0.01	nd	0.01	nd	0.008	nd	nv
α + γ-Chlordane	0.01	nd	0.01	nd	0.008	nd	0.05
α-BHC	0.01	nd	0.01	nd	0.008	nd	nv
γ-Chlordane	0.01	nd	0.01	nd	0.008	nd	nv
γ-BHC (Lindane)	0.01	nd	0.01	nd	0.008	nd	0.056
δ-BHC	0.01	nd	0.01	0.02	0.008	0.067	nv

Notes:

MDL – Method Detection Limit

□ nd – not detected above the MDL

nv- no MECP standard value for this parameter


Phase II - Environmental Site Assessment

Parameter		Soil Samples (µg/g) - Apr.30/19	MECP Table 7 Residential
Parameter	MDL (µg/g)	HA13-G1 (0.05-0.25m)	Standards (µg/g)
Antimony	1.0	nd	nv
Arsenic	1.0	2.3	nv
Barium	1.0	232	nv
Beryllium	0.5	0.7	nv
Boron	5.0	nd	nv
Cadmium	0.5	nd	0.05
Chromium	5.0	48.0	3.3
Chromium (VI)	0.2	nd	0.26
Cobalt	1.0	10.7	1.4
Copper	5.0	20.9	0.05
Lead	1.0	7.7	nv
Mercury	0.1	nd	0.04
Molybdenum	1.0	nd	nv
Nickel	5.0	24.4	nv
Selenium	1.0	nd	0.04
Silver	0.3	nd	nv
Thallium	1.0	nd	0.15
Uranium	1.0	nd	0.05
Vanadium	10.0	58.2	0.52
Zinc	20.0	86.2	0.012

				Soil S	Samples (µg/g) – M	ay 4, 2019		
Parameter	MDL (µg/g)	HA18A-20* (0.05-0.15m)	HA19A-20 (0.05-0.15m)	HA20A-20 (0.05-0.15m)	HA32A-20 (0.05-0.15m)	HA33B-20 (0.15-0.30m)	HA34A-20 (0.05-0.15m)	MECP 1 Reside Stand (µg
Mercury	0.1	<u>0.5</u>	<u>2.0</u>	0.1	2.6	0.1	nd	0.2

nd – not detected above the MDL

Phase II - Environmental Site Assessment 7000 Campeau Drive - Ottawa

Table 16: Parcel 4 – 2019/2020 Analytical Test Results

						S	oil Samples (µ	g/g)					
		Mar.8/19			Mar.13/19			Apr.30/19			May 4, 2020		MECP
Parameter	BH15	-AU1	BH17	'-AU1	HA1	1-G1	HA19	9A-20	HA32	A-20	HA34	A-20	Table 7
Parameter	(0-0.2	20m)	(0-0.	20m)	(0.05-0).25m)	(0.05-0	0.15m)	(0.05-0).15m)	(0.05-0).15m)	Residentia
	MDL (µg/g)	Result (ug/g)	MDL (µg/g)	MDL (µg/g)	MDL (µg/g)	Result (ug/g)	MDL (µg/g)	Result (ug/g)	MDL (µg/g)	Result (ug/g)	MDL (µg/g)	Result (ug/g)	Standards (µg/g)
2-4'-DDD	0.008	nd	0.01	nd	0.01	nd	0.007	nd	0.008	nd	0.09	nd	nv
2-4'-DDE	0.008	nd	0.01	nd	0.01	nd	0.007	nd	0.008	nd	0.09	nd	nv
2-4'-DDT	0.008	nd	0.01	nd	0.01	nd	0.007	nd	0.008	nd	0.09	nd	nv
4,4'-DDE	0.008	nd	0.01	nd	0.01	nd	0.007	nd	0.008	nd	0.09	nd	nv
4,4'-DDT	0.008	nd	0.01	nd	0.01	nd	0.007	nd	0.008	nd	0.09	nd	nv
Aldrin	0.008	nd	0.01	nd	0.01	nd	0.007	nd	0.008	nd	0.09	nd	0.05
DDD (total)	0.008	nd	0.01	nd	0.01	nd	0.007	nd	0.008	nd	0.09	nd	3.3
DDE (total)	0.008	nd	0.01	nd	0.01	nd	0.007	nd	0.008	nd	0.09	nd	0.26
DDT (total)	0.008	nd	0.01	nd	0.01	nd	0.007	nd	0.008	nd	0.09	nd	1.4
Dieldrin	0.008	nd	0.01	nd	0.01	nd	0.007	nd	0.008	nd	0.09	nd	0.05
Endosulfan I	0.008	nd	0.01	nd	0.01	nd	0.007	nd	0.008	nd	0.09	nd	nv
Endosulfan I + II	0.008	nd	0.01	nd	0.01	nd	0.007	nd	0.008	nd	0.09	nd	0.04
Endosulfan II	0.008	nd	0.01	nd	0.01	nd	0.007	nd	0.008	nd	0.09	nd	nv
Endosulfan sulfate	0.008	nd	0.01	nd	0.01	nd	0.007	nd	0.008	nd	0.09	nd	nv
Endrin	0.008	nd	0.01	nd	0.01	nd	0.007	nd	0.008	nd	0.09	nd	0.04
Endrin aldehyde	0.008	nd	0.01	nd	0.01	nd	0.007	nd	0.008	nd	0.09	nd	nv
Heptachlor	0.008	nd	0.01	nd	0.01	nd	0.007	nd	0.008	nd	0.09	nd	0.15
Heptachlor epoxide	0.008	nd	0.01	nd	0.01	nd	0.007	nd	0.008	nd	0.09	nd	0.05
Hexachlorobenzene	0.008	nd	0.01	nd	0.01	nd	0.007	nd	0.008	nd	0.09	nd	0.52
Hexachlorobutadiene	0.008	nd	0.01	nd	0.01	nd	0.007	nd	0.008	nd	0.09	nd	0.012
Hexachloroethane	0.008	nd	0.01	nd	0.01	nd	0.007	nd	0.008	nd	0.09	nd	0.089
Methoxychlor	0.008	nd	0.01	nd	0.01	nd	0.007	nd	0.008	nd	0.09	nd	0.13
Mirex	0.008	nd	0.01	nd	0.01	nd	0.007	nd	0.008	nd	0.09	nd	nv
Oxychlordane	0.008	nd	0.01	nd	0.01	nd	0.007	nd	0.008	nd	0.09	nd	nv
β-BHC	0.008	nd	0.01	nd	0.01	nd	0.007	nd	0.008	nd	0.09	nd	nv
α-Chlordane	0.008	nd	0.01	nd	0.01	nd	0.007	nd	0.008	nd	0.09	nd	nv
α + γ-Chlordane	0.008	nd	0.01	nd	0.01	nd	0.007	nd	0.008	nd	0.09	nd	0.05
α-BHC	0.008	nd	0.01	nd	0.01	nd	0.007	nd	0.008	nd	0.09	nd	nv
γ-Chlordane	0.008	nd	0.01	nd	0.01	nd	0.007	nd	0.008	nd	0.09	nd	nv
γ-BHC (Lindane)	0.008	nd	0.01	nd	0.01	nd	0.007	nd	0.008	nd	0.09	nd	0.056
δ-ΒΗϹ	0.008	nd	0.01	nd	0.01	0.03	0.007	0.047	0.008	0.082	0.09	0.097	nv

Notes:

□ MDL – Method Detection Limit

□ nd – not detected above the MDL

nv- no MECP standard value for this parameter

Phase II - Environmental Site Assessment

Patersongroup Ottawa Kingston North Bay

Parameter	Maximum Concentration (μg/g)	Borehole	Depth Interval (m BGS)
Petroleum Hydrocarbons			
PHC F ₂	14	BH2-AU1	0-0.6
PHC F₃	47	BH2-AU1 BH3-AU1	0-0.6
PHC F ₄	443	BH3-AU1	0-0.6
Metals			1
Arsenic	2.4	BH1-AU1 BH4-AU1	0-0.6
Barium	260	BH4-AU1	0-0.6
Beryllium	0.8	BH1-AU1	0-0.6
Boron	9.1	BH2-AU1	0-0.6
Chromium	97.2	BH1-AU1	0-0.6
Cobalt	10.7	HA13-G1	0.05-0.25
Copper	20.9	HA13-G1	0.05-0.25
Lead	9.2	HA1-G1	0.05-0.25
Mercury	2.6	HA32A-20	0.05-0.15
Nickel	30.9	BH1-AU1	0-0.6
Vanadium	58.2	HA13-G1	0.05-0.25
Zinc	86.2	HA13-G1	0.05-0.25
Organochlorine Pesticides			•
δ-ΒΗϹ	0.097	HA34A-20	0.05-0.15

Phase II - Environmental Site Assessment

Parameter	MDL	Gr	oundwater Samples (µg/L)		MECP Table 3
	(µg/L)	May 17/19	Mar.22/19	May 17/19	Standards (µg/L)
		BH2-GW1 (3.40-6.40m)	BH3-GW1 (3.83-6.83m)	DUP-GW	
Benzene	0.5	nd	nd	nd	5
Ethylbenzene	0.5	nd	nd	nd	2.4
Toluene	0.5	nd	nd	nd	22
Xylenes (Total)	0.5	nd	nd	nd	300
PHC F1	25	nd	nd	nd	420
PHC F2	100	nd	nd	nd	150
PHC F3	100	nd	nd	nd	500
PHC F4	100	nd	nd	nd	500

MDL – Method Detection Limit
 nd – not detected above the MDL

Parameter	MDL (µg/L)	Groundwater Sample (μg/L) - May 5, 2020 BH8-GW2	MECP Table 3 Residential Standards
		(3.91-6.91m)	(μg/L)
Mercury	0.1	nd	0.29
Antimony	0.5	nd	20,000
Arsenic	1	nd	1,900
Barium	1	75	29,000
Beryllium	0.5	nd	67
Boron	10	26	45,000
Cadmium	0.1	nd	2.7
Chromium	1	nd	810
Cobalt	0.5	nd	87
Copper	0.5	4.9	66
Lead	0.1	nd	25
Molybdenum	0.5	1.8	9,200
Nickel	1	nd	490
Selenium	1	nd	63
Silver	0.1	nd	1.5
Sodium	200	25,100	2,300,300
Thallium	0.1	nd	510
Uranium	0.1	0.7	420
Vanadium	0.5	1.2	250
Zinc	5	nd	1,100

nd – not detected above the MDL

Groundwater - Organochlorine					
Parameter	MDL (µg/L)	Mar.22, 2019	Groundwater Samples (µg/L	Apr.29, 2019	MECP Table 3 Residential Standards (μg/L)
		BH3-GW1 (3.83-6.83m)	BH8-GW1 (3.91-6.91m)	BH13-GW1 (4.72-7.72m)	
Aldrin	0.01	nd	nd	nd	8.5
Alpha-Chlordane	0.01	nd	nd	nd	nv
Gamma-Chlordane	0.01	nd	nd	nd	nv
Chlordane	0.01	nd	nd	nd	28
p,p'-DDD	0.01	nd	nd	nd	nv
o,p'-DDD	0.01	nd	nd	nd	nv
DDD	0.01	nd	nd	nd	45
p,p'-DDE	0.01	nd	nd	nd	nv
o,p'-DDE	0.01	nd	nd	nd	nv
DDE	0.01	nd	nd	nd	20
o,p'-DDT	0.01	nd	nd	nd	nv
o,p'-DDT	0.01	nd	nd	nd	nv
DDT	0.01	nd	nd	nd	2.8
Dieldrin	0.01	nd	nd	nd	0.75
Endosulfan I	0.01	nd	nd	nd	nv
Endosulfan II	0.01	nd	nd	nd	nv
Endosulfan I/II	0.01	nd	nd	nd	1.5
Endrin	0.01	nd	nd	nd	0.48
Heptachlor	0.01	nd	nd	nd	2.5
Heptachlor Epoxide	0.01	nd	nd	nd	0.048
Hexachlorobenzene	0.01	nd	nd	nd	3.1
Hexachlorobutadiene	0.01	nd	0.20	nd	0.44
Hexachlorocyclohexane, gamma	0.01	nd	nd	nd	1.2
Hexachloroethane	0.01	nd	nd	nd	94
Vethoxychlor	0.01	nd	nd	nd	6.5
Decachlorobiphenyl	0.01	nd	nd	nd	nv

MDL – Method Detection Limit

nd – not detected above the MDL
 nv– no MECP standard value for this parameter

	llorine Pesticides (C	Groundwater Samples (µg/L) – April 30, 2019	MECP Table 3 Residential Standards (µg/L) 8.5
Parameter	MDL (µg/L)	BH11-GW1 (4.57-7.57m)	
Aldrin	0.01	nd	
Alpha-Chlordane	0.01	nd	nv
Gamma-Chlordane	0.01	nd	nv
Chlordane	0.01	nd	28
o,p'-DDD	0.01	nd	nv
p,p'-DDD	0.01	nd	nv
DDD	0.01	nd	45
o,p'-DDE	0.01	nd	nv
p,p'-DDE	0.01	nd	nv
DDE	0.01	nd	20
o,p'-DDT	0.01	nd	nv
p,p'-DDT	0.01	nd	nv
DDT	0.01	nd	2.8
Dieldrin	0.01	nd	0.75
Endosulfan I	0.01	nd	nv
Endosulfan II	0.01	nd	nv
Endosulfan I/II	0.01	nd	1.5
Endrin	0.01	nd	0.48
Heptachlor	0.01	nd	2.5
Heptachlor Epoxide	0.01	nd	0.048
Hexachlorobenzene	0.01	nd	3.1
Hexachlorobutadiene	0.01	0.08	0.44
Hexachlorocyclohexane, gamma	0.01	nd	1.2
Hexachloroethane	0.01	nd	94
Methoxychlor	0.01	nd	6.5
Decachlorobiphenyl	0.01	nd	nv

Notes: MDL – Method Detection Limit

nd – not detected above the MDL
 nv– no MECP standard value for this parameter

Phase II - Environmental Site Assessment 7000 Campeau Drive - Ottawa

Table 22: Parcel 3 - Analytical Test Results

Parameter I		Groundwater Sample (µg/L)				
		May 5, 2020		April 29, 2019	May 5, 2020	MECP Table 7 Residential Standards
	MDL (µg/L)	BH18-GW1 (2.51-5.51m)	BH19-GW1 (3.83-6.83m)	BH20-GW1 (2.82-5.82m)	BH20-GW2 (2.82-5.82m)	(μg/L)
Mercury	0.1	nd	nd	nd	nd	0.1
Antimony	0.5	nd	nd	nt	nd	16,000
Arsenic	1	nd	nd	nt	nd	1,500
Barium	1	50	131	nt	141	23,000
Beryllium	0.5	nd	nd	nt	nd	53
Boron	10	17	nd	nt	79	36,000
Cadmium	0.1	nd	nd	nt	nd	2.1
Chromium	1	nd	nd	nt	nd	640
Cobalt	0.5	1.0	nd	nt	nd	52
Copper	0.5	13.7	nd	nt	4.0	69
Lead	0.1	nd	nd	nt	nd	20
Molybdenum	0.5	10.8	nd	nt	2.6	7,300
Nickel	1	4	nd	nt	nd	390
Selenium	1	nd	nd	nt	nd	50
Silver	0.1	nd	nd	nt	nd	1.2
Sodium	200	54,500	25,600	nt	80,000	1,800,000
Thallium	0.1	nd	nd	nt	nd	400
Uranium	0.1	0.9	nd	nt	0.6	330
Vanadium	0.5	0.5	0.9	nt	nd	200
Zinc	5	13	nd	nt	6	890

nd – not detected above the MDL
 nt – not tested for this parameter

		Groundwater Samples (µg/L) – April 30, 2019	MECP Table 7	
Parameter	MDL (µg/L)	BH20-GW1 (2.82-5.82m)	Residential Standards (µg/L)	
Aldrin	0.01	nd	8.5	
Alpha-Chlordane	0.01	nd	nv	
Gamma-Chlordane	0.01	nd	nv	
Chlordane	0.01	nd	28	
o,p'-DDD	0.01	nd	nv	
p,p'-DDD	0.01	nd	nv	
DDD	0.01	nd	45	
o,p'-DDE	0.01	nd	nv	
p,p'-DDE	0.01	nd	nv	
DDE	0.01	nd	20	
o,p'-DDT	0.01	nd	nv	
p,p'-DDT	0.01	nd	nv	
DDT	0.01	nd	2.8	
Dieldrin	0.01	nd	0.75	
Endosulfan I	0.01	nd	nv	
Endosulfan II	0.01	nd	nv	
Endosulfan I/II	0.01	nd	1.5	
Endrin	0.01	nd	0.48	
Heptachlor	0.01	nd	2.5	
Heptachlor Epoxide	0.01	nd	0.048	
Hexachlorobenzene	0.01	nd	3.1	
Hexachlorobutadiene	0.01	nd	0.44	
Hexachlorocyclohexane, gamma	0.01	nd	1.2	
Hexachloroethane	0.01	nd	94	
Methoxychlor	0.01	nd	6.5	
Decachlorobiphenyl	0.01	nd	nv	

Notes:

MDL – Method Detection Limit

nd – not detected above the MDL
 nv– no MECP standard value for this parameter

Phase II - Environmental Site Assessment 7000 Campeau Drive - Ottawa

Parameter	MDL (µg/L)	Groundwater Sample (μg/L) - May 5, 2020 BH16-GW1 (2.84-5.82m)	MECP Table 7 Residential Standards (μg/L)
Mercury	0.1	nd	0.1
Antimony	0.5	nd	16,000
Arsenic	1	nd	1,500
Barium	1	47	23,000
Beryllium	0.5	nd	53
Boron	10	nd	36,000
Cadmium	0.1	nd	2.1
Chromium	1	nd	640
Cobalt	0.5	0.6	52
Copper	0.5	0.8	69
Lead	0.1	nd	20
Molybdenum	0.5	0.6	7,300
Nickel	1	nd	390
Selenium	1	nd	50
Silver	0.1	nd	1.2
Sodium	200	6,920	1,800,000
Thallium	0.1	nd	400
Uranium	0.1	0.4	330
Vanadium	0.5	0.6	200
Zinc	5	7	890

Phase II - Environmental Site Assessment 7000 Campeau Drive - Ottawa

		MECP Table 7			
Parameter	April 29, 2	019	May 5, 20	20	Residential Standards
	MDL (µg/L)	BH17-GW1 (2.51-5.51m)	MDL (µg/L)	BH15-GW1 (5.18-8.15m)	(μg/L)
Aldrin	0.01	nd	0.006	nd	8.5
Alpha-Chlordane	0.01	nd	0.006	nd	nv
Gamma-Chlordane	0.01	nd	0.004	nd	nv
Chlordane	0.01	nd	0.007	nd	28
o,p'-DDD	0.01	nd	0.002	nd	nv
p,p'-DDD	0.01	nd	0.005	nd	nv
DDD	0.01	nd	0.006	nd	45
o,p'-DDE	0.01	nd	0.01	nd	nv
p,p'-DDE	0.01	nd	0.005	nd	nv
DDE	0.01	nd	0.008	nd	20
o,p'-DDT	0.01	nd	0.008	nd	nv
p,p'-DDT	0.01	nd	0.008	nd	nv
DDT	0.01	nd	0.01	nd	2.8
Dieldrin	0.01	nd	0.004	nd	0.75
Endosulfan I	0.01	nd	0.005	nd	nv
Endosulfan II	0.01	nd	0.004	nd	nv
Endosulfan I/II	0.01	nd	0.009	nd	1.5
Endrin	0.01	nd	0.006	nd	0.48
Heptachlor	0.01	nd	0.006	nd	2.5
Heptachlor Epoxide	0.01	nd	0.007	nd	0.048
Hexachlorobenzene	0.01	nd	0.005	nd	3.1
Hexachlorobutadiene	0.01	nd	0.01	nd	0.44
Hexachlorocyclohexane, gamma	0.01	nd	nt	nt	1.2
Hexachloroethane	0.01	nd	0.009	nd	94
Methoxychlor	0.01	nd	0.02	nd	6.5
Decachlorobiphenyl	0.01	nd	nt	nt	nv

nv- no MECP standard value for this parameter
 nt - not tested for this parameter

Phase II - Environmental Site Assessment

7000 Campeau Drive - Ottawa

Table 26: Maximum Groundw	vater Concentrations		
Parameter	Maximum Concentration (µg/L)	Borehole	Depth Interval (m BGS)
Metals			
Barium	141	BH20-GW2	2.82-5.82
Boron	79	BH20-GW2	2.82-5.82
Cobalt	1.0	BH18-GW1	2.51-5.51
Copper	13.7	BH18-GW1	2.51-5.51
Molybdenum	10.8	BH18-GW1	2.51-5.51
Nickel	4	BH18-GW1	2.51-5.51
Sodium	80,000	BH20-GW2	2.82-5.82
Uranium	0.9	BH18-GW1	2.51-5.51
Vanadium	1.2	BH8-GW2	3.91-6.91
Zinc	13	BH18-GW1	2.51-5.51
Organochlorine Pesticides			
Hexachlorobutadiene	0.20	BH8-GW1	3.91-6.91

Parameter	MDL (μg/g)	HA7-G1	DUP	RPD (%)	QA/C
Arsenic	1.0	1.9	1.4	30	Outside the
Barium	1.0	85.7	92.7	7.8	Aco
Chromium	5.0	22.3	23.8	2.1	Aco
Cobalt	1.0	5.9	5.8	1.7	Aco
Copper	5.0	13.6	12.7	6.8	Aco
Lead	1.0	5.1	3.5	37	Outside the
Nickel	5.0	13.0	12.3	10.3	Aco
Vanadium	10.0	30.5	34.5	12.3	Aco
Zinc	20.0	39.4	37.4	5.2	Aco

Phase II - Environmental Site Assessment

7000 Campeau Drive - Ottawa

A/QC Result

ne acceptable range

Acceptable

Acceptable

Acceptable

Acceptable

ne acceptable range

Acceptable

Acceptable

Acceptable

APPENDIX 1

SAMPLING AND ANALYSIS PLAN

GRAIN SIZE ANALYSES

SOIL PROFILE AND TEST DATA SHEETS

SYMBOLS AND TERMS

LABORATORY CERTIFICATES OF ANALYSIS

Geotechnical Engineering

Environmental Engineering

Hydrogeology

Geological Engineering

Materials Testing

Building Science

Archaeological Services

patersongroup

Sampling & Analysis Plan

Phase II ESA 7000 Campeau Drive Ottawa, Ontario

Prepared For

ClubLink Corporation ULC

Paterson Group Inc.

Consulting Engineers 154 Colonnade Road South Ottawa (Nepean), Ontario Canada K2E 7J5

Tel: (613) 226-7381 Fax: (613) 226-6344 www.patersongroup.ca April 2019

Report: PE4321-SAP_Rev

TABLE OF CONTENTS

SAM	PLING PROGRAM	1
ANA	LYTICAL TESTING PROGRAM	4
STA	NDARD OPERATING PROCEDURES	5
3.1	Environmental Drilling Procedure	5
3.2	Monitoring Well Installation Procedure	8
3.3	Monitoring Well Sampling Procedure	9
QUA	LITY ASSURANCE/QUALITY CONTROL (QA/QC)	10
DAT	A QUALITY OBJECTIVES	10
PHY	SICAL IMPEDIMENTS TO SAMPLING & ANALYSIS PLAN	11
	ANA STAI 3.1 3.2 3.3 QUA DAT	SAMPLING PROGRAM ANALYTICAL TESTING PROGRAM. STANDARD OPERATING PROCEDURES 3.1 Environmental Drilling Procedure 3.2 Monitoring Well Installation Procedure 3.3 Monitoring Well Sampling Procedure QUALITY ASSURANCE/QUALITY CONTROL (QA/QC) DATA QUALITY OBJECTIVES PHYSICAL IMPEDIMENTS TO SAMPLING & ANALYSIS PLAN

1.0 SAMPLING PROGRAM

At the request of ClubLink Corporation ULC (ClubLink), Paterson Group conducted a Phase II Environmental Site Assessment of the property at 7000 Campeau Drive in the City of Ottawa, Ontario. The following table summarizes borehole location selection for all subsurface investigations at the subject site.

Borehole	Location & Rationale	Proposed Depth & Rationale			
BH1-19	Place borehole within storage area for landscaping materials, to the southwest of the ASTs.	Drill to at least 1.5m below the water table or refusal.			
BH2-19	Place borehole as close as possible to location of ASTs to assess potential for petroleum hydrocarbon impacts in the soil and groundwater.	Drill to at least 1.5m below the water table. If refusal encountered, core bedrock to intercept the groundwater table for monitoring well installation.			
BH3-19	Place borehole as close as possible to the pesticide storage container adjacent the Turf Building, to assess potential for soil and groundwater impacts.	Drill to at least 1.5m below the water table. If refusal is encountered, core bedrock to intercept the groundwater table for monitoring well installation.			
BH4-19 BH5-19	Place borehole on exterior of Turf Building to assess potential for impacted fill in the vicinity of the exterior storage area.	Drill to at least 1.5m below the water table or refusal.			
BH6-19		Drill to maximum depth of 20m or refusal.			
BH7-19					
BH8-19		Drill to maximum depth of 20m. Install monitoring well to obtain water level and to assess potential groundwater impacts resulting from pesticide use.			
BH9-19	General coverage of the golf course for geotechnical purposes and to assess for	Drill to maximum depth of 20n or refusal.			
BH10-19	pesticides and/or metal impacts.	Drill to maximum depth of 20m. Install monitoring well to obtain			
BH11-19		water level and to assess potential groundwater impacts			
BH12-19 BH13-19	-	resulting from pesticide use.			
BH14-19		Drill to maximum depth of 20m or refusal.			
BH15-19		Drill to maximum depth of 20m. If refusal encountered, core bedrock to intercept groundwater table for monitoring well installation.			

Borehole	Location & Rationale	Proposed Depth & Rationale
BH16-19	General coverage of the golf course for geotechnical purposes and to assess for	Drill to maximum depth of 20m. If refusal encountered, core
BH17-19	pesticides and/or metal impacts.	bedrock to intercept groundwater table for monitoring
BH18-19		well installation.
BH19-19		
BH20-19		
HA1 to HA20	General coverage of the greens, fairways and roughs to assess for potential shallow soil impacts resulting from the use of pesticides.	Collect sample from just beneath the topsoil, to a depth of approximately 0.25m below grade.
HA1-20 to HA21-20 and HA32-20 to HA34-20	Additional coverage of the greens, tees and/or fairways to assess for potential shallow soil impacts resulting from the use of pesticides. Collect samples along fringe of greens as requested by ClubLink, to prevent significant damage to playing surface.	Collect samples from just below root mass to depths of 0.30m below grade using sampling tool provided by ClubLink, to target areas where most significant contaminant concentrations resulting from the surficial application of pesticides would be expected.
HA22 to HA31	Place 10 to 15m from HA14 and HA15 (2019) in each direction to horizontally delineate previously identified mercury impacts. Place HA22-20 and HA27-20 at the location of the previous impacts for the purposes of vertical delineation.	Samples collected for horizontal delineation purposes should be collected from approximately 0.05 to 0.30m below grade. Vertical delineation samples should be collected from depths beneath the original exceedances (ie. deeper than 0.30m below grade). Ensure minimal damage to ground surface, as requested by ClubLink.

Borehole locations are shown on the Test Hole Location Plan appended to the main report.

At each borehole, initial auger samples will be followed by split-spoon samples of overburden soils will be obtained at 0.76 m (2'6") intervals. All soil samples will be retained, and samples will be selected for submission following a preliminary screening analysis.

Following borehole drilling, monitoring wells will be installed in 13 boreholes for the collection of groundwater samples and for the measurement of water levels across the site. Where coring is required, core samples will be retained for laboratory review.

Hand auger samples will be collected once weather conditions are suitable, for the purpose of collecting shallow soil samples. A composite sample of soil from just below the topsoil layer to approximately 0.25m below grade, was collected at each of the 2019 sample locations.

Composite hand auger samples will be split into two, over the recoverable length, during the 2020 sampling event. It is important note that samples will be collected using sampling tools provided by ClubLink to minimize disturbance to the playable areas of the golf course with the exception of a 1-inch auger provided by Paterson and used to obtain vertical delineation samples. As noted above, potential contaminants related to the surficial application of pesticides are expected to be present in near surface soils.

Soil quality at all boreholes will be screened using visual and olfactory screening methods. If contamination is suspected, soil samples will be submitted to vapour screening and soil samples may be analyzed.

2.0 ANALYTICAL TESTING PROGRAM

The analytical testing program for soil at the subject site is based on the following general considerations:

- At least one sample from boreholes across the site should be submitted, in order to determine the extent of possible contamination resulting from the APECs identified in the Phase I ESA.
- In boreholes where there is visual or olfactory evidence of contamination, or where organic vapour meter or photoionization detector readings indicate the presence of contamination, the 'worst-case' sample from each borehole should be submitted for comparison with MECP site condition standards.
- In boreholes with evidence of contamination as described above, a sample should be submitted from the stratigraphic unit below the 'worst-case' sample to determine whether the contaminant(s) have migrated downward.
- Parameters analyzed should be consistent with the Contaminants of Potential Concern identified in the Phase I-ESA.
- During the 2020 field program, all composite hand auger samples collected will be submitted for analytical testing, to supplement the testing conducted during the 2019 field program.

The analytical testing program for groundwater at the subject site is based on the following general considerations:

- Groundwater monitoring wells should be installed in boreholes located on the southern and northern portion of the property, with visual or olfactory evidence of soil contamination, within bedrock, at or below the water table (i.e. a water sample can be obtained).
- Groundwater monitoring well screens should straddle the water table at sites where the contaminants of concern are suspected to be LNAPLs.
- Parameters analyzed should be consistent with the Contaminants of Concern identified in the Phase I-ESA and with the contaminants identified in the soil samples.

3.0 STANDARD OPERATING PROCEDURES

3.1 Environmental Drilling Procedure

Purpose

The purpose of environmental boreholes is to identify and/or delineate contamination within the soil and/or to install groundwater monitoring wells in order to identify contamination within the groundwater.

Equipment

The following is a list of equipment that is in addition to regular drilling equipment stated in the geotechnical drilling SOP:

- **g**lass soil sample jars
- two buckets
- □ cleaning brush (toilet brush works well)
- □ dish detergent
- **d** methyl hydrate
- unitary water (if not available on site water jugs available in trailer)
- □ latex or nitrile gloves (depending on suspected contaminant)
- RKI Eagle organic vapour meter or MiniRae photoionization detector (depending on contamination suspected)

Determining Borehole Locations

If conditions on site are not as suspected, and planned borehole locations cannot be drilled, call the office to discuss. Alternative borehole locations will be determined in conversation with the field technician and supervising engineer.

After drilling is completed a plan with the borehole locations must be provided. Distances and orientations of boreholes with respect to site features (buildings, roadways, etc.) must be provided. Distances should be measured using a measuring tape or wheel rather than paced off. Ground surface elevations at each borehole should be surveyed relative to a geodetic benchmark, if one is available, or a temporary site benchmark which can be tied in at a later date if necessary.

Drilling Procedure

The actual drilling procedure for environmental boreholes is the same as geotechnical boreholes (see SOP for drilling and sampling) with a few exceptions as follows:

- Continuous split spoon samples (every 0.6 m or 2') or semi-continuous (every 0.76 m or 2'6") are required.
- □ Make sure samples are well sealed in plastic bags with no holes prior to screening and are kept cool but unfrozen.
- □ If sampling for VOCs, BTEX, or PHCs F1, a soil core from each soil sample which may be analyzed must be taken and placed in the laboratory-provided methanol vial.
- □ Note all and any odours or discolouration of samples.
- □ Split spoon samplers must be washed between samples.
- If obvious contamination is encountered, continue sampling until vertical extent of contamination is delineated.
- As a general rule, environmental boreholes should be deep enough to intercept the groundwater table (unless this is impossible/impractical - call project manager to discuss).
- If at all possible, soil samples should be submitted to a preliminary screening procedure on site, either using a RKI Eagle, PID, etc. depending on type of suspected contamination.

Spoon Washing Procedure

All sampling equipment (spilt spoons, etc.) must be washed between samples in order to prevent cross contamination of soil samples.

- □ Obtain two buckets of water (preferably hot if available)
- □ Add a small amount of dish soap to one bucket
- Scrub spoons with brush in soapy water, inside and out, including tip
- **D** Rinse in clean water
- □ Apply a small amount of methyl hydrate to the inside of the spoon. (A spray bottle or water bottle with a small hole in the cap works well)
- □ Allow to dry (takes seconds)
- □ Rinse with distilled water, a spray bottle works well.

The methyl hydrate eliminates any soap residue that may be on the spoon and is especially important when dealing with suspected VOCs.

Screening Procedure

The RKI Eagle is used to screen most soil samples, particularly where petroleum hydrocarbon contamination is suspected. The MiniRae is used when VOCs are suspected, however it also can be useful for detecting petroleum. These tools are for screening purposes only and cannot be used in place of laboratory testing. Vapour results obtained from the RKI Eagle and the PID are relative and must be interpreted.

Screening equipment should be calibrated on an approximately monthly basis, more frequently if heavily used.

- □ Samples should be brought to room temperature; this is specifically important in colder weather. Soil must not be frozen.
- □ Turn instrument on and allow to come to zero calibrate if necessary
- If using RKI Eagle, ensure instrument is in methane elimination mode unless otherwise directed.
- Ensure measurement units are ppm (parts per million) initially. RKI Eagle will automatically switch to %LEL (lower explosive limit) if higher concentrations are encountered.
- Break up large lumps of soil in the sample bag, taking care not to puncture bag.
- □ Insert probe into soil bag, creating a seal with your hand around the opening.
- Gently manipulate soil in bag while observing instrument readings.
- □ Record the highest value obtained in the first 15 to 25 seconds
- Make sure to indicate scale (ppm or LEL); also note which instrument was used (RKI Eagle 1 or 2, or MiniRae).
- □ Jar samples and refrigerate as per Sampling and Analysis Plan.

3.2 Monitoring Well Installation Procedure

Equipment

- □ 5' x 2" threaded sections of Schedule 40 PVC slotted well screen (5' x 1 ¼" if installing in cored hole in bedrock)
- □ 5' x 2" threaded sections of Schedule 40 PVC riser pipe (5' x 1 ¼" if installing in cored hole in bedrock)
- □ Threaded end-cap
- □ Slip-cap or J-plug
- □ Asphalt cold patch or concrete
- Silica Sand
- □ Bentonite chips (Holeplug)
- □ Steel flushmount casing

Procedure

- Drill borehole to required depth, using drilling and sampling procedures described above.
- If borehole is deeper than required monitoring well, backfill with bentonite chips to required depth. This should only be done on wells where contamination is not suspected, in order to prevent downward migration of contamination.
- □ Only one monitoring well should be installed per borehole.
- Monitoring wells should not be screened across more than one stratigraphic unit to prevent potential migration of contaminants between units.
- Where LNAPLs are the suspected contaminants of concern, monitoring wells should be screened straddling the water table in order to capture any free product floating on top of the water table.
- Thread the end cap onto a section of screen. Thread second section of screen if required. Thread risers onto screen. Lower into borehole to required depth. Ensure slip-cap or J-plug is inserted to prevent backfill materials entering well.
- □ As drillers remove augers, backfill borehole annulus with silica sand until the level of sand is approximately 0.3 m above the top of the screen.
- Backfill with holeplug until at least 0.3 m of holeplug is present above the top of the silica sand.
- Backfill remainder of borehole with holeplug or with auger cuttings (if contamination is not suspected).
- Install flushmount casing. Seal space between flushmount and borehole annulus with concrete, cold patch, or holeplug to match surrounding ground surface.

3.3 Monitoring Well Sampling Procedure

Equipment

- □ Water level metre or interface probe on hydrocarbon/LNAPL sites
- Spray bottles containing water and methanol to clean water level tape or interface probe
- Peristaltic pump
- D Polyethylene tubing for peristaltic pump
- □ Flexible tubing for peristaltic pump
- Latex or nitrile gloves (depending on suspected contaminant)
- □ Allen keys and/or 9/16" socket wrench to remove well caps
- Graduated bucket with volume measurements
- D pH/Temperature/Conductivity combo pen
- □ Laboratory-supplied sample bottles

Sampling Procedure

- □ Locate well and use socket wrench or Allan key to open metal flush mount protector cap. Remove plastic well cap.
- Measure water level, with respect to existing ground surface, using water level meter or interface probe. If using interface probe on suspected NAPL site, measure the thickness of free product.
- □ Measure total depth of well.
- Clean water level tape or interface probe using methanol and water. Change gloves between wells.
- □ Calculate volume of standing water within well and record.
- Insert polyethylene tubing into well and attach to peristaltic pump. Turn on peristaltic pump and purge into graduated bucket. Purge at least three well volumes of water from the well. Measure and record field chemistry. Continue to purge, measuring field chemistry after every well volume purged, until appearance or field chemistry stabilizes.
- Note appearance of purge water, including colour, opacity (clear, cloudy, silty), sheen, presence of LNAPL, and odour. Note any other unusual features (particulate matter, effervescence (bubbling) of dissolved gas, etc.).
- Fill required sample bottles. If sampling for metals, attach 75-micron filter to discharge tube and filter metals sample. If sampling for VOCs, use low flow rate to ensure continuous stream of non-turbulent flow into sample bottles. Ensure no headspace is present in VOC vials.
- □ Replace well cap and flushmount casing cap.

4.0 QUALITY ASSURANCE/QUALITY CONTROL (QA/QC)

The QA/QC program for this Phase II ESA is as follows:

- □ All non-dedicated sampling equipment (split spoons) will be decontaminated according to the SOPs listed above.
- □ All groundwater sampling equipment is dedicated (polyethylene and flexible peristaltic tubing is replaced for each well).
- □ Where combo pens are used to measure field chemistry, they will be calibrated on an approximately monthly basis, according to frequency of use.

5.0 DATA QUALITY OBJECTIVES

The purpose of setting data quality objectives (DQOs) is to ensure that the level of uncertainty in data collected during the Phase II-ESA is low enough that decision-making is not affected, and that the overall objectives of the investigation are met.

The quality of data is assessed by comparing field duplicates with original samples. If the relative percent difference (RPD) between the duplicate and the sample is within 20%, the data are considered to be of sufficient quality so as not to affect decision-making. The RPD is calculated as follows:

$$RPD = \left| \frac{x_1 - x_2}{(x_1 + x_2)/2} \right| \times 100\%$$

Where x_1 is the concentration of a given parameter in an original sample and x_2 is the concentration of that same parameter in the field duplicate sample.

For the purpose of calculating the RPD, it is desirable to select field duplicates from samples for which parameters are present in concentrations above laboratory detection limits, i.e. samples which are expected to be contaminated. If parameters are below laboratory detection limits for selected samples or duplicates, the RPD may be calculated using a concentration equal to one half (0.5 x) the laboratory detection limit.

It is also important to consider data quality in the overall context of the project. For example, if the DQOs are not met for a given sample, yet the concentrations of contaminants in both the sample and the duplicate exceed the MECP site remediation standards by a large margin, the decision-making usefulness of the sample may not be considered to be impaired.

The proximity of other samples which meet the DQOs must also be considered in developing the Phase II Conceptual Site Model; often there are enough data available to produce a reliable Phase II Conceptual Site Model even if DQOs are not met for certain individual samples. These considerations are discussed in the body of the report.

6.0 PHYSICAL IMPEDIMENTS TO SAMPLING & ANALYSIS PLAN

Physical impediments to the Sampling and Analysis plan may include:

- □ The location of underground utilities
- D Poor recovery of split-spoon soil samples
- □ Insufficient groundwater volume for groundwater samples
- Breakage of sampling containers following sampling or while in transit to the laboratory
- Elevated detection limits due to matrix interference (generally related to soil colour or presence of organic material)
- Elevated detection limits due to high concentrations of certain parameters, necessitating dilution of samples in laboratory
- Drill rig breakdowns
- Winter conditions
- □ Other site-specific impediments

Site-specific impediments to the Sampling and Analysis plan are discussed in the body of the Phase II-ESA report.

SOIL PROFILE AND TEST DATA patersongroup

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Phase II Environmental Site Assessment
Kanata Lakes Golf & Country Club
Campeau Drive, Ottawa, Ontario

DATUM Ground surface elevations	s prov	ided b	y Sta	ntec C	Geoma	atics Ltd.			FILE NO.	PE432 1	1
				_		-	07 0010	,	HOLE NO	D. BH 1-1	19
BORINGS BY CME 55 Power Auger			~ ~ ~		DATE	February	27, 2019				
SOIL DESCRIPTION	PLOT		SAN	/IPLE	1	DEPTH (m)	ELEV. (m)			Detector Rdg. (ppm)	Monitoring Well Construction
	STRATA	면	BER	°% RECOVERY	N VALUE or RQD	(11)	(11)				toring
	STR	ТҮРЕ	NUMBER	ECOV	N VP			C Lowe		ive Limit %	Mon
GROUND SURFACE		×		<u></u>		0-	105.47	20	40 0	60 80	
FILL: Brown silty sand with topsoil, some gravel, trace clay		× AU	1								
1.07 End of Borehole		ss	2	33	50+	1-	104.47				
Practical refusal to augering at 1.07m depth											
									Eagle Rdg	00 400 50 g. (ppm) Methane Elim.	00

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

SOIL PROFILE AND TEST DATA

DATUM Ground surface elevations	s provi	ded b	y Sta	ntec G	àeoma	atics Ltd.			FILE NO.	PE4321	
REMARKS									HOLE NO.	BH 2-1	
BORINGS BY CME 55 Power Auger					ATE	-ebruary	27, 2019				
SOIL DESCRIPTION	A PLOT				Ħо	DEPTH (m)	ELEV. (m)		onization D tile Organic Ro		Monitoring Well Construction
	STRATA	ТҮРЕ	NUMBER	% RECOVERY	N VALUE or ROD				r Explosive		Aonitor Const
GROUND SURFACE	<u></u>	×		<u></u>	~	0-	105.20	20	40 60	80	
Asphaltic concrete 0.08 FILL: Brown silty sand with gravel and crushed stone 0.91		ŠAU ≊	1			1-	-104.20				
		RC	1	95	57		-103.20				լիրիինիրինինինին ներդներին
BEDROCK: Sound to very sound		- RC	2	98	90	3-	-102.20				
grey to red metamorphic gneiss		-	L			4-	-101.20				
		RC	3	100	97	5-	-100.20				
6.40		RC	4	94	88	6-	-99.20				
(GWL @ 2.83m - May 5, 2020)								100	200 300 Eagle Rdg. (400 50	00

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

SOIL PROFILE AND TEST DATA

DATUM Ground surface elevations	s prov	ided b	y Sta	ntec C		-			FILE NO.	PE432 1	
REMARKS									HOLE NO.		
BORINGS BY CME 55 Power Auger				D	ATE	February	26, 2019			BH 3-1	
SOIL DESCRIPTION	PLOT		SAN			DEPTH (m)	ELEV. (m)		onization D tile Organic Re		Monitoring Well Construction
	STRATA	лурб	NUMBER	% RECOVERY	VALUE r RQD		()	○ Lowe	r Explosive	Limit %	onitorin Constru
GROUND SURFACE	ū		IN	REC	N V OF	0-	-105.72	20	40 60	80	Σ
Asphaltic concrete0.08	³ X	X AU	1				105.72	Δ			
FILL: Brown silty sand with gravel and crushed stone		≊ ∛ ss	2	79	42	1-	-104.72				
<u>1.42</u>	$\frac{2}{\frac{1}{1}}$										
		RC	1	95	70	2-	-103.72				
		-	0	100	05	3-	-102.72				11111111111111111111111111111111111111
BEDROCK: Fractured to very sound, grey to red metamorphic gneiss		RC	2	100	65	4 -	-101.72				
grieiss		RC	3	100	100						
						5-	-100.72				
		RC	4	100	84	6-	-99.72			· · · · · · · · · · · · · · · · · · ·	
6.83	3 										
End of Borehole											
(GWL @ 3.35m - April 29, 2019)											
									200 300 Eagle Rdg. (as Resp. △ M	(ppm)	00

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

SOIL	PROFIL	E AND	TEST	DATA
------	--------	-------	------	------

DATUM Ground surface elevations	prov	ided b	y Sta	ntec C	Geoma	-		,	FILE NO.	PE4321	
REMARKS	DATE February 27, 2019								HOLE NO.	BH 4-1	9
BORINGS BY CME 55 Power Auger SOIL DESCRIPTION	PLOT		SAN	IPLE		DEPTH	ELEV.	Photo I	onization D	etector	
SOIL DESCRIPTION	STRATA P	ТҮРЕ	NUMBER	% RECOVERY	VALUE r RQD	(m)	(m)		tile Organic Rd r Explosive		Monitoring Well Construction
GROUND SURFACE	L S	H	ŊŊ	REC	N OL			20	40 60	80	δΩ
Asphaltic concrete 0.08 FILL: Brown silty sand, some 0.20 crushed stone 0.60 FILL: Brown silty clay, trace topsoil		ÃU SS SS	1 2	50	50+		-105.38 -104.38				
GLACIAL TILL: Dense, brown silty ^{1.22} sand with gravel End of Borehole Practical refusal to augering at											
Practical refusal to augering at 1.22m depth											
									200 300 Eagle Rdg. (as Resp. △ Me		00

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

SOIL	PROFIL	.E AND	TEST	DATA
------	--------	--------	------	------

DATUM Ground surface elevations	FILE NO. PE4321										
REMARKS									HOLE NO.		
BORINGS BY CME 55 Power Auger				D	ATE	February	27, 2019)		BH 5-1	19
SOIL DESCRIPTION	PLOT			IPLE 거	M .	DEPTH (m)	ELEV. (m)		onization D tile Organic Ro		Monitoring Well Construction
	STRATA	ТҮРЕ	NUMBER	% RECOVERY	N VALUE or RQD			 Lowe 	r Explosive	Limit %	lonitori Constr
GROUND SURFACE		~		8	2 *	0-	105.40	20	40 60	80	2
Asphaltic concrete0.10		撥 段 AU	1			Ű					
FILL: Brown silty sand with crushed stone and gravel		l I SS	2	50	50+			Δ			
End of Borehole		-									
Practical refusal to augering at 0.99m depth								100	200 300	400 5	
									200 300 Eagle Rdg. (as Resp. △ Me		00

SOIL PROFILE AND TEST DATA

▲ Full Gas Resp. △ Methane Elim.

Phase II Environmental Site Assessment Kanata Lakes Golf & Country Club Campeau Drive, Ottawa, Ontario

154 Colonnade Road South, Ottawa, Ontario K2E 7J5 Campeau Drive, Ottawa, Ontario DATUM Ground surface elevations provided by Stantec Geomatics Ltd. FILE NO. **PE4321** REMARKS HOLE NO. **BH 6-19** BORINGS BY CME 55 Power Auger DATE February 26, 2019 Monitoring Well Construction SAMPLE **Photo Ionization Detector** STRATA PLOT DEPTH ELEV. SOIL DESCRIPTION Volatile Organic Rdg. (ppm) (m) (m) RECOVERY N VALUE or RQD NUMBER TYPE o/0 O Lower Explosive Limit % **GROUND SURFACE** 80 20 40 60 0+100.381 Brown SILTY CLAY with topsoil ¥ AU 0.15 2 ≩ AU 1+99.38 SS 3 0 10 SS 4 67 9 2 + 98.38SS 5 7 100 3+97.38 Very stiff to stiff, brown SILTY CLAY 4+96.38 6 6 SS 100 - grey by 4.6m depth SS 7 100 1 5+95.386+94.38 7+93.38 SS 8 100 1 8+92.38 8.38 GLACIAL TILL: Stiff, grey silty clay SS 9 29 18 with sand, gravel and cobbles, occasional boulders 9+91.38- dense by 9.0m depth - clay content decreasing with depth SS 10 46 62 9.78 End of Borehole 100 200 300 400 500 RKI Eagle Rdg. (ppm)

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

SOIL PROFILE AND TEST DATA

DATUM Ground surface elevations	prov	ided b	y Sta	ntec G	Geoma	•			FILE NO.	PE4321	
REMARKS	DATE February 25, 2019								HOLE NO.	BH 7-1	
BORINGS BY CME 55 Power Auger					ATE	February	25, 2019				
SOIL DESCRIPTION	PLOT		SAN	IPLE		DEPTH (m)	ELEV. (m)		onization D tile Organic Rd		Monitoring Well Construction
	STRATA	ТҮРЕ	NUMBER	% RECOVERY	VALUE r ROD		(11)	O Lowe	r Explosive	Limit %	nitorin onstru
GROUND SURFACE	L S	H	ŊΝ	REC	N N N			20	40 60	80	δQ
TOPSOIL and ORGANICS 0.08	\times	888				0-	-98.48				
FILL: Brown silty clay with topsoil, organics, some sand and gravel		X AU	1						· · · · · · · · · · · · · · · · · · ·		
<u>1.22</u>		ss	2	58	6	1-	-97.48				
		ss	3	75	6	2-	-96.48				
		ss	4	96	4	0	05 40				
Very stiff to stiff, brown SILTY CLAY						3-	-95.48				
- grey by 3.5m depth		ss	5	100	2	4-	-94.48				
						5-	-93.48				
		ss	6	100	2	6-	-92.48				
						7-	-91.48				
		∬ SS ∏ ∏	7	100	1						
- trace sand and gravel by 8.5m depth		ss	8	100	2	8-	-90.48				
		ss	9	100	5	9-	-89.48				
End of Borehole											
Practical refusal to augering at 9.20m depth											
									200 300 Eagle Rdg. (as Resp. △ Me		00

SOIL PROFILE AND TEST DATA

154 Colonnade Road South, Ottawa, Or	ntario H	<2E 7J	5					awa, Onta			
DATUM Ground surface elevation	s prov	ided b	y Sta	ntec C	Geoma	atics Ltd.			FILE NO.	PE432 1	1
REMARKS									HOLE NO.	рц о -	10
BORINGS BY CME 55 Power Auger		1		D	ATE	February	25, 2019	9		BH 8-1	19
SOIL DESCRIPTION	PLOT		SAN	IPLE	1	DEPTH (m)	ELEV. (m)		onization De tile Organic Rd		g Well ction
GROUND SURFACE	STRATA	ТҮРЕ	NUMBER	° ≈ © © ©	N VALUE or RQD			 Lowe 20 	r Explosive	Limit %	Monitoring Well Construction
	3 🗙 🗙 📈	×				0-	-98.21				
FILL: Brown silty clay with sand, some gravel		SS AU	1 2	54	11	1-	-97.21				
		ss	3	79	8	2-	-96.21				
		ss	4	100	4						<u>իկիկիկի</u> հղուրդիրի
Very stiff to stiff, brown SILTY CLAY						3-	-95.21				
- grey by 3.7m depth		ss	5	100	11	4-	-94.21				
						5-	-93.21				
6.70		ss	6	100	w	6-	-92.21				
Grey CLAYEY SILT , trace sand 6.9 and gravel End of Borehole		≠ SS	7	100	50+						
Practical refusal to augering at 6.91m depth											
(GWL @ 1.29m - May 5, 2020)								100	200 300	400 51	00
								RKIE	Eagle Rdg. (as Resp. △ Me	ppm)	

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

SOIL PROFILE AND TEST DATA

DATUM Ground surface elevations	provi	ded b	y Sta	ntec C	Geoma	atics Ltd.			FILE NO.	PE4321	1
REMARKS						Echrucru	27 2010		HOLE NO.	BH 9- 1	19
BORINGS BY CME 55 Power Auger	PLOT		SAN	IPLE		-ebruary DEPTH	ELEV.	Photo I	onization D	etector	
SOIL DESCRIPTION	STRATA PI	ТҮРЕ	NUMBER	°% RECOVERY	VALUE r RQD	(m)	(m)		tile Organic Ro		Monitoring Well
GROUND SURFACE	LS		NC	REC	N OR N	0-	-102.21	20	40 60	80	Ъ
Brown SILTY CLAY with topsoil & 0.10 lorganics0.56	ドメメガ	AU AU	1 2			0-	-102.21				-
FILL: Brown silty sand with clay, gravel and cobbles, occasional boulders		ss	3	71	19	1-	-101.21				
- grey by 1.4m depth 2.21		ss	4	58	28	2-	-100.21				
		ss	5	42	8	3-	-99.21				
Very stiff, brown SILTY CLAY		ss	6	100	5	4-	-98.21				
- grey by 5.2m depth <u>5.61</u>		ss	7		23	5-	-97.21				
GLACIAL TILL: Stiff, grey silty clay with sand, trace gravel and cobbles, occasional boulders 6.65		ss	, 8		7	6-	-96.21				
End of Borehole Practical refusal to augering at											
6.65m depth								100	200 300	400 50	00

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

SOIL PROFILE AND TEST DATA

DATUM Ground surface elevation	s prov	ided b	y Sta	ntec C	Geoma	atics Ltd.				FI	LE N	0.	Ρ	E432	1	
REMARKS	DATE February 28, 2019								ł	н	OLE	NO.	R	H10-	.19	
BORINGS BY CME 55 Power Auger	ы		SAN	D NPLE	DATE		28, 2019	Phot		ni	zati	on I				
SOIL DESCRIPTION	PLOT				61	DEPTH (m)	ELEV. (m)						ldg. (p		N S	učtior
	STRATA	ТҮРЕ	NUMBER	% RECOVERY	VALUE r RQD			0 Lov	ver	E	xplc	osiv	e Lin	nit %	Monitoring Well	onstr
GROUND SURFACE			IN	REC	N O N	0-	-100.61	20		40)	60	8	BO	ž	0
TOPSOIL0.10		₿ AU	1				100.01									1111
FILL: Brown silty clay, trace sand,		₿ AU	2													11111
gravel and topsoil		ss	3	42	6	1-	-99.61		<u>.</u>							111111
FILL: Brown silty sand, some																11111
gravel, topsoil and organics	3	∦ ss	4	54	14	2	-98.61									
						2-	-90.01			:					Ţ	<u>r</u> =
		ss	5	75	12											_
Very stiff, brown SILTY CLAY						3-	97.61								I E	
3.66		ss	6	83	10										E	
3.00															E	
		∬ ss	7	38	20	4-	-96.61								1 E	
GLACIAL TILL: Compact to dense,													· · · · · · · ·		E	
brown silty clay with sand and gravel, occasional cobbles and		ss	8	29	27	5-	-95.61								ĮĒ	
boulders						_				 					E	
	1	ss	9	56	30				:							
End of Borehole																
Practical refusal to augering at 5.74m depth																
(GWL @ 2.19m - May 5, 2020)																
								100	::)	20	0	300	4	00 5	- 00	
								RK	ΊE	ag	le R	ldg.	(ppr	n)		
								▲ Full	Ga	s R	esp.	\triangle N	/iethai	ne Elim.		

SOIL PROFILE AND TEST DATA

154 Colonnade Road South, Ottawa, Ont	ario K	2E 7J	5			ampeau D				D		
DATUM Ground surface elevations	ntec G	àeoma	atics Ltd.			FII	LE NO.	PE432 1	1			
REMARKS									но	DLE NO.	DU44	10
BORINGS BY CME 55 Power Auger				D	ATE	February	28, 2019				BH11-	19
SOIL DESCRIPTION	PLOT		SAN	IPLE		DEPTH	ELEV.				Detector Rdg. (ppm)	y Well
GROUND SURFACE	STRATA 1	ЭДҮТ	NUMBER	°% ©™ERY	N VALUE or RQD	(m)	(m)	0 Lo	wer Ex	cplosiv	e Limit %	Monitoring Well Construction
FILL: Brown silty clay with topsoil,	$\times\!\!\times\!\!\times$	≊ AU	1			0-	94.64	20	40) 60	80	
trace sand and organics0.56		≅ AU	2			-	-93.64					
		∬ ss V oo	3	58	8		-93.64					
Very stiff to stiff, brown SILTY CLAY		ss	4	83	3	2-	-92.64					նինընդինը Որիրիներ
- grey by 3.0m depth		ss	5	100	1	3-	-91.64					ներուներում է որուներություններություններություններություններում։ Գերանություններություններություններություններություններություններուներուներուներուներուներություններուներուներո
- firm by 4.0m depth		-				4-	-90.64					्रं दर्गने मिति
GLACIAL TILL: Grey silty		7				5-	-89.64					
clay/clayey silt, some sand, trace gravel, occasional cobbles and boulders		ss	6	46	2	6-	-88.64					
 sand and gravel increasing with depth 		ss 7	7	0	9	7-	-87.64					
7.57 End of Borehole		∬ SS	8	38	20							
Practical refusal to augering at 7.57m depth												
(GWL @ 0.28m - May 5, 2020)												
									(I Eag	le Rdg.		00

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

SOIL PROFILE AND TEST DATA

DATUM Ground surface elevations	prov	ided b	y Sta	ntec G	Geoma	atics Ltd.	, ett		FILE NO.	PE4321	
REMARKS									HOLE NO.	BH12-	
BORINGS BY CME 55 Power Auger					ATE	February	28, 2019				
SOIL DESCRIPTION	PLOT		SAN		1	DEPTH (m)	ELEV. (m)		onization D tile Organic Rd		Monitoring Well Construction
	STRATA	ТҮРЕ	NUMBER	° © © © © © © ©	VALUE r ROD		(11)			Limit 9/	itorin nstru
GROUND SURFACE	STR	Τ	NUM	RECO	N OF			C Lowe	r Explosive 40 60	80 EITIIL %	Mon
		≊ AU	1			0-	-95.64				
FILL: Brown silty clay with sand, trace gravel and topsoil		⊠ AU	2								
1.22		ss	3	33	21	1-	-94.64				
			4	10	-						IIII IIII IIIIIIII
		ss	4	46	7	2-	-93.64			·····	
		ss	5	96	10						
		$\overline{\Lambda}$				3-	-92.64				
Very stiff to stiff, brown SILTY		ss	6	100	7						
CLAY with sand						4-	-91.64				
 sand content decreasing with depth 											
		ss	7		2	5-	-90.64				
- grey by 5.3m depth									• • • • • • • • • • • • • • • • • • • •		
						6-	-89.64			·····	
		$\overline{\Lambda}$				7.	-88.64				
		ss	8	100	1	/	00.04				
							07.04				
8.23 End of Borehole	FX.	-				8-	-87.64				目
(GWL @ 1.46m - April 30, 2019)											
								100	200 300	400 50	00
								RKI E	agle Rdg. (ppm)	

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

SOIL PROFILE AND TEST DATA

DATUM Ground surface elevations	prov	ided b	y Sta	ntec C	Geoma	atics Ltd.			FILE NO.	PE4321	
REMARKS	DATE March 7, 2019								HOLE NO.	BH13-	19
BORINGS BY CME 55 Power Auger SOIL DESCRIPTION	РГОТ		SAN	IPLE		DEPTH	ELEV.		onization D	etector	
	STRATA P	TYPE	NUMBER	% RECOVERY	VALUE r RQD	(m)	(m)		r Explosive		Monitoring Well Construction
GROUND SURFACE	Ω.		IN	REC	N N			20	40 60	80	Σ
FILL: Brown silty sand with topsoil0.18		S AU	1			0-	-102.84				
FILL: Brown silty clay with sand 0.60 and topsoil, trace organics		S AU	2								<u>կիկիկ</u>
FILL: Brown silty sand	\bigotimes	ss	3	38	34	1-	-101.84				
- trace clay by 1.7m depth		Δ									<u>IIIIIII</u> ¥IIIIIII
- some gravel and cobbles by 2.0m depth		∦ ss	4	50	50+	2-	-100.84				
2.29	XX	$\overline{\mathbf{N}}$									
	X	∦ ss	5	79	8						
	X					3-	-99.84				
	X										
									• • • • • • • • • • • • • • • • • • • •		
Very stiff to stiff, brown SILTY		ss	6	88	5	4-	-98.84				
CLAY		Δ	Ū						• • • • • • • • • • • • • • • • • • • •		
	X										
	IV.					5-	-97.84				
	X										
						6-	-96.84				
- grey by 6.1m depth		ss	7	100	1						
	IX.	Δ •••			.						
trace could and everyal by 7 Cm	X					7-	-95.84				
 trace sand and gravel by 7.6m depth 											
End of Borehole 7.72	XX	≍ SS	8	100	50+						
Practical refusal to augering at 7.72m depth											
(GWL @ 1.40m - May 5, 2020)											
								100	200 300	400 50	00
									Eagle Rdg. (as Resp. △ Me		

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

SOIL PROFILE AND TEST DATA

DATUM Ground surface elevations	ided b	y Sta	ntec C	Geoma	atics Ltd.			FILE NO.	PE4321	1	
REMARKS									HOLE NO.	BH14-	
BORINGS BY CME 55 Power Auger					ATE I	March 7,	2019				
SOIL DESCRIPTION	PLOT		SAN	IPLE		DEPTH (m)	ELEV. (m)		onization D tile Organic Ro		Monitoring Well Construction
	STRATA	ТҮРЕ	NUMBER	% RECOVERY	VALUE r RQD	(11)	(11)	O Lowe	r Explosive	l imit %	nitorin
GROUND SURFACE	STI	Ĥ	NUN	RECO	и с И			20	40 60	80	
FILL: Brown silty clay with topsoil 0.20	XXX	au AU	1 2			0-	-100.90				
FILL: Brown silty clay with sand, 0.81 some topsoil, trace gravel 0.81		ss	3	88	11	1-	-99.90				
		∆ ∏ss	4	92	6						
Very stiff to stiff, brown SILTY CLAY		Δ				2-	-98.90				
		ss	5	100	4	3-	-97.90				•
									· · · · · · · · · · · · · · · · · · ·		
- firm and grey by 4.6m depth						4-	-96.90				-
- some sand, trace gravel by 5.2m depth		ss	6	100	1	5-	-95.90				-
GLACIAL TILL: Grey silty clay with			_			6-	-94.90		·····		
sand and gravel, occ cobbles and		x SS ∝ SS	7 8	33 100	6 50+	_	~~~~				-
End of Borehole		- 00	Ū			/-	-93.90				
Practical refusal to augering at 7.01m depth											
									200 300 Eagle Rdg. (as Resp. △ Me	ppm)	00

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

SOIL PROFILE AND TEST DATA

DATUM Ground surface elevations	prov	ided b	y Sta	ntec G		•		awa, Onta	FILE NO.	PE4321	
REMARKS					ATE	Marah 9	2010		HOLE NO.	BH15-	
BORINGS BY CME 55 Power Auger	РГОТ		SAN	IPLE		March 8,	ELEV.		onization D	etector	
SOIL DESCRIPTION	STRATA PI	ТҮРЕ	NUMBER	% RECOVERY	VALUE r RQD	(m)	(m)		tile Organic Ro r Explosive		Monitoring Well Construction
GROUND SURFACE	STI	Ĥ	NUN	RECO	N N N			20	40 60	80	P P S O
TOPSOIL and brown SILTY CLAY0.15 some gravel	XX	¥ AU ₩ AU	1 2			0-	-99.08				III X II
		× ∏					00.00				
		ss	3	54	13	1-	-98.08				
		ss	4	100	9	2-	-97.08				
		ss	5	100	4	3-	-96.08				
Very stiff, brown SILTY CLAY							00.00				
						4-	-95.08				
- firm to stiff and grey by 4.6m depth						5-	-94.08				
		$\overline{\nabla}$				6-	-93.08				
		ss	6	100	1						
- some sand and gravel by 7.6m depth						7-	-92.08				
8.15		ss	7		16	8-	-91.08				
End of Borehole							01.00				
Practical refusal to augering at 8.15m depth											
(GWL @ 0.32m - May 5, 2020)											
									200 300 Eagle Rdg. (as Resp. △ M	(ppm)	 00

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

SOIL PROFILE AND TEST DATA

DATUM Ground surface elevations provided by Stantec Geomatics Ltd.									FILE NO.	FILE NO. PE4321			
REMARKS									HOLE NO.	BH16-	10		
BORINGS BY CME 55 Power Auger		DATE March 8, 2019											
SOIL DESCRIPTION	РГОТ	SAMPLE			_		ELEV. (m)	 Photo Ionization Detector Volatile Organic Rdg. (ppm) 			g Wel		
	STRATA	ТҮРЕ	NUMBER	% RECOVERY	VALUE r ROD			• Lower Explosive Limit %			Monitoring Well Construction		
GROUND SURFACE	<u>v</u> .	5.	IN	REC	N V OF			20	40 60	80	Σ		
FILL: Brown silty clay, some 0.15		§ AU § AU	1 2			0-	-97.31				<u>₹</u>		
FILL: Brown silty sand, some gravel 1.22		ss	3	100	13	1-	-96.31						
1.22			Ū	100	10								
		ss	4	100	8	2-	-95.31						
Very stiff to stiff, brown SILTY													
CLÁY						3-	-94.31						
						A -	-93.31						
4.57							00.01						
GLACIAL TILL: Grey silty clay with sand and gravel, occasional		ss	5	42	18	5-	-92.31						
cobbles and boulders 5.84													
End of Borehole		-											
Practical refusal to augering at 5.84m depth													
(GWL @ 0.08m - May 5, 2020)													
									200 300 Eagle Rdg. (as Resp. △ Me		bo		

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

SOIL PROFILE AND TEST DATA

DATUM Ground surface elevations provided by Stantec Geomatics Ltd. FILE NO. PE4321											
REMARKS									HOLE NO.	BH17-	10
BORINGS BY CME 55 Power Auger	DATE March 13, 2019										
SOIL DESCRIPTION	PLOT	SAMPLE			DEPTH (m)	ELEV. (m)	Photo Ionization Detector Volatile Organic Rdg. (ppm)			ng Wel	
	STRATA	ТҮРЕ	NUMBER	% RECOVERY	VALUE r rod			○ Lower Explosive Limit %			Monitoring Well Construction
GROUND SURFACE	ß			RE	N OF OF	0-	-97.15	20	40 60	80	
FILL: Brown silty clay with topsoil		≩ AU	1 2			0	97.13				1111111111111 1 111111111111111
and organics		ss	3	75	9	1-	-96.15				<u>սիդի</u>
- some sand by 0.9m depth <u>1.75</u>		ss	4	100	13						րիրիրիր Անդիրին
		RC	1	100	100	2-	-95.15				<u>dudus s</u> dudus s
BEDROCK: Very sound, grey metamorphic gneiss		_				3-	-94.15				
		RC	2	100	100						
		_				4-	-93.15				
		RC	3	100	100	5-	-92.15				
5.51 End of Borehole									·····		
(GWL @ 0.10m - April 29, 2019)											
								100	200 300		00
	RKI Eagle Rdg. (ppm) ▲ Full Gas Resp. △ Methane Elim.										

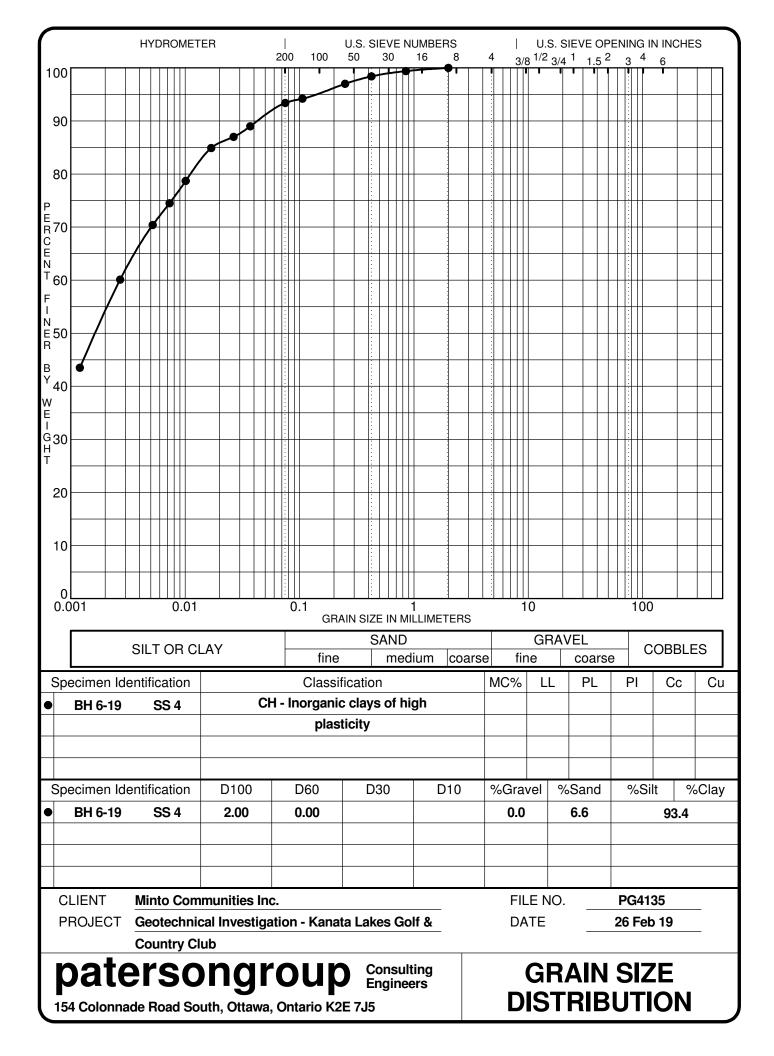
SOIL PROFILE AND TEST DATA

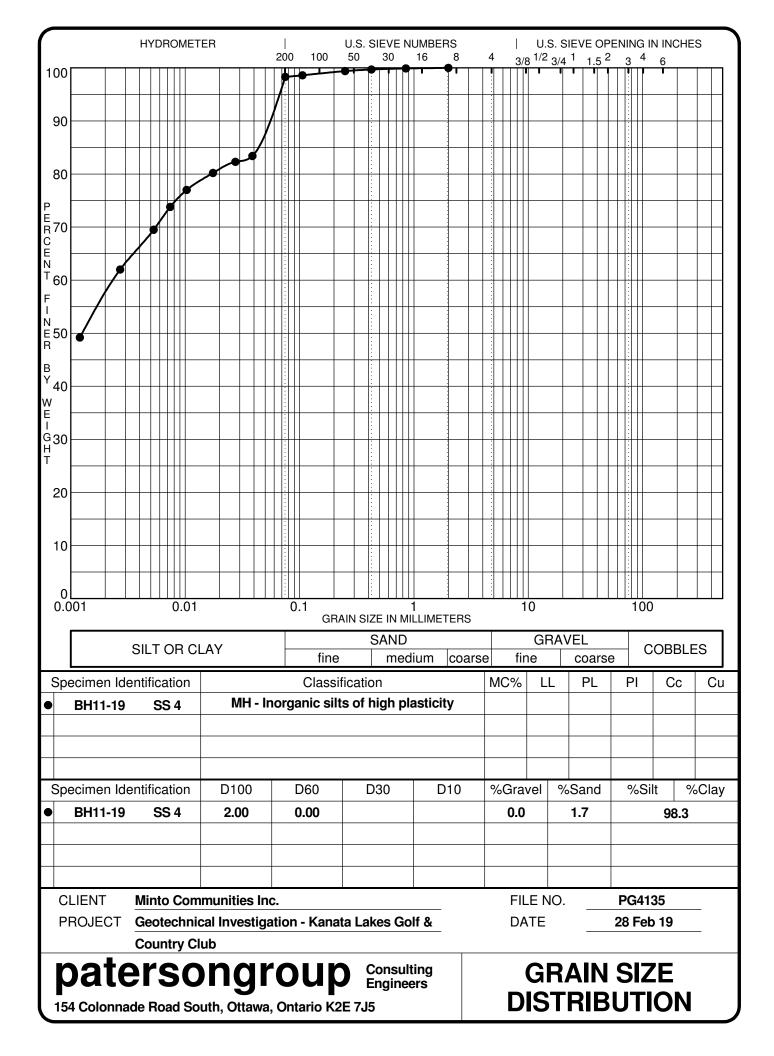
154 Colonnade Road South, Ottawa, Ont	ario k	(2E 7J	5					awa, Onta			
DATUM Ground surface elevations provided by Stantec Ge						atics Ltd.			FILE NO.	PE432 1	
REMARKS									HOLE NO.		
BORINGS BY CME 55 Power Auger				D	ATE	March 12	, 2019			BH18-	19
SOIL DESCRIPTION	РІОТ	SAMPLE				DEPTH (m)	ELEV.	 Photo Ionization Detector Volatile Organic Rdg. (ppm) 			Mell Stion
	STRATA	ТҮРЕ	NUMBER	° ≈ © © ©	N VALUE or RQD	(11)	(m)	○ Lowe	r Explosive	Limit %	Monitoring Well Construction
GROUND SURFACE	S			RE	z o	0-	-99.05	20	40 60	80	ΣŬ
Asphaltic concrete0.10		X AU X AU	1 2			0-	-99.05				
FILL: Brown silty sand with gravel 0.59 and crushed stone											
		RC	1	100	79	1-	-98.05				
		RC	2	100	95						
						2-	-97.05				
BEDROCK: Fractured to very sound, grey metamorphic gneiss		_									
- vertical seam from 2.5 to 3.0m depth		RC	3	100	58	3-	-96.05				
		_				4-	-95.05				
							00.00				
		RC	4	100	100						
		110	•			5-	-94.05				
5.51									· · · · · · · · · · · · · · · · · · ·		
End of Borehole											
(GWL @ 2.94m - May 5, 2020)											
									200 300 Eagle Rdg. (ppm)	00
									as Resp. $ riangle$ Me		

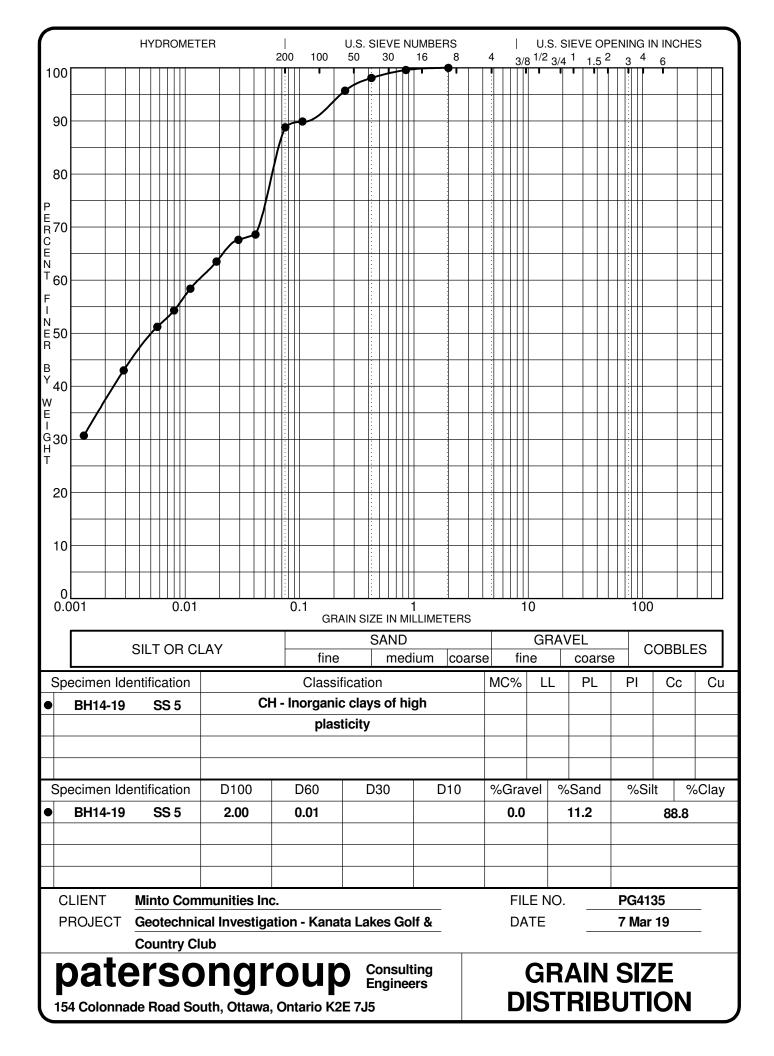
154 Colonnade Road South, Ottawa, Ontario K2E 7J5

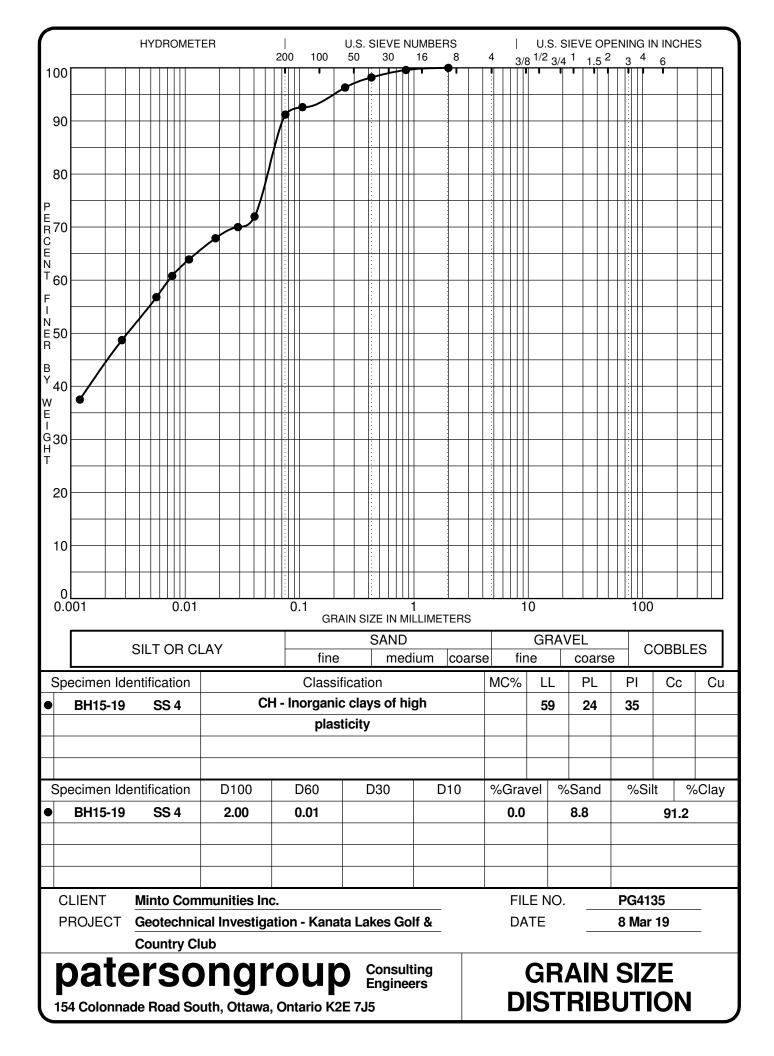
SOIL PROFILE AND TEST DATA

DATUM Ground surface elevations provided by Stantec Geomatics Ltd. FILE NO. PE4321											
REMARKS									HOLE NO. BH19-19		
BORINGS BY CME 55 Power Auger		DATE March 12, 2					, 2019 				
SOIL DESCRIPTION	РГОТ	SAMPLE					ELEV. (m)	Photo I Vola	etector lg. (ppm)	Monitoring Well Construction	
	STRATA	ТҮРЕ	NUMBER	° ≈ © ©	VALUE r RQD		(11)	O Lower Explosive Limit %			itorin nstru
GROUND SURFACE	STR	ΤΥ	NUM	RECO	N OL			C Lowe	40 60	80	ы Б С
		§ AU	1			0-	-96.57				
(S AU	2								III V
FILL: Brown to grey silty clay, some sand and gravel, trace topsoil		ss	3	62	12	1-	-95.57				
and organics		ss	4	12	20	0	-94.57		· · · · · · · · · · · · · · · · · · ·		
2.21		ss	5	100	50+	2-	-94.57		· · · · · · · · · · · · · · · · · · ·		
Peat, topsoil and wood3.12	<u></u> - <u></u>	≍ SS	6	67	50+	3-	-93.57				
		RC	1	100	88						
		-				1-	-92.57				
							52.57				
BEDROCK: Sound to very sound, grey to red metamorphic gneiss		RC	2	100	100						
						5-	-91.57		· · · · · · · · · · · · · · · · · · ·	·····	
		RC	3	100	98	6-	-90.57				
6.83 End of Borehole		-								······································	
(GWL @ 0.49m - May 5, 2020)											
(and g 0.10m may 0, 2020)											
									200 300 Eagle Rdg. (as Resp. △ Me		00 DO


patersongroup


154 Colonnade Road South, Ottawa, Ontario K2E 7J5


SOIL PROFILE AND TEST DATA


Phase II Environmental Site Assessment Kanata Lakes Golf & Country Club Campeau Drive, Ottawa, Ontario

DATUM Ground surface elevations	provi	ded b	y Sta	ntec C	Geoma	atics Ltd.			FILE NO.	PE4321	
				_	1	March 10	0010		HOLE NO.	BH20-	19
BORINGS BY CME 55 Power Auger	F		SAN			March 13	-	Photo I	onization D		
SOIL DESCRIPTION	PLOT				E .	DEPTH (m)	ELEV. (m)		tile Organic Rd		ng V uction
	STRATA	ТҮРЕ	NUMBER	% RECOVERY	VALUE r rod			○ Lowe	r Explosive	Limit %	Monitoring Well Construction
GROUND SURFACE	S		Z	RE	N OR			20	40 60	80	ž
FILL: Brown silty clay, some sand, gravel, topsoil and organics0.46		AU AU	1 2			- 0-	-97.58				
Very stiff, brown SILTY CLAY		ss	3	75	16	1-	-96.58				
- some gravel and trace sand by 0.9m depth1.75		∐ ∑ ss	4	62	50+						
		BC	1	100	98	2-	-95.58				<u>111111111111111111111111111111111111</u>
		_	·			3-	-91 58				
BEDROCK: Very sound, grey											
BEDROCK: Very sound, grey metamorphic gneiss		RC	2	100	95	4-93.58					
		_									
		RC	3	100	96	5-	-92.58				
5.82 End of Borehole											
(GWL @ 1.92m - May 5, 2020)											
									200 300 Eagle Rdg. (as Resp. △ Me		00

SYMBOLS AND TERMS

SOIL DESCRIPTION

Behavioural properties, such as structure and strength, take precedence over particle gradation in describing soils. Terminology describing soil structure are as follows:

Desiccated	-	having visible signs of weathering by oxidation of clay minerals, shrinkage cracks, etc.
Fissured	-	having cracks, and hence a blocky structure.
Varved	-	composed of regular alternating layers of silt and clay.
Stratified	-	composed of alternating layers of different soil types, e.g. silt and sand or silt and clay.
Well-Graded	-	Having wide range in grain sizes and substantial amounts of all intermediate particle sizes (see Grain Size Distribution).
Uniformly-Graded	-	Predominantly of one grain size (see Grain Size Distribution).

The standard terminology to describe the strength of cohesionless soils is the relative density, usually inferred from the results of the Standard Penetration Test (SPT) 'N' value. The SPT N value is the number of blows of a 63.5 kg hammer, falling 760 mm, required to drive a 51 mm O.D. split spoon sampler 300 mm into the soil after an initial penetration of 150 mm.

Relative Density	'N' Value	Relative Density %
Very Loose	<4	<15
Loose	4-10	15-35
Compact	10-30	35-65
Dense	30-50	65-85
Very Dense	>50	>85

The standard terminology to describe the strength of cohesive soils is the consistency, which is based on the undisturbed undrained shear strength as measured by the in situ or laboratory vane tests, penetrometer tests, unconfined compression tests, or occasionally by Standard Penetration Tests.

Consistency	Undrained Shear Strength (kPa)	'N' Value	
Very Soft	<12	<2	
Soft	12-25	2-4	
Firm	25-50	4-8	
Stiff	50-100	8-15	
Very Stiff	100-200	15-30	
Hard	>200	>30	

SYMBOLS AND TERMS (continued)

SOIL DESCRIPTION (continued)

Cohesive soils can also be classified according to their "sensitivity". The sensitivity is the ratio between the undisturbed undrained shear strength and the remoulded undrained shear strength of the soil.

Terminology used for describing soil strata based upon texture, or the proportion of individual particle sizes present is provided on the Textural Soil Classification Chart at the end of this information package.

ROCK DESCRIPTION

The structural description of the bedrock mass is based on the Rock Quality Designation (RQD).

The RQD classification is based on a modified core recovery percentage in which all pieces of sound core over 100 mm long are counted as recovery. The smaller pieces are considered to be a result of closely-spaced discontinuities (resulting from shearing, jointing, faulting, or weathering) in the rock mass and are not counted. RQD is ideally determined from NXL size core. However, it can be used on smaller core sizes, such as BX, if the bulk of the fractures caused by drilling stresses (called "mechanical breaks") are easily distinguishable from the normal in situ fractures.

RQD % ROCK QUALITY

90-100	Excellent, intact, very sound
75-90	Good, massive, moderately jointed or sound
50-75	Fair, blocky and seamy, fractured
25-50	Poor, shattered and very seamy or blocky, severely fractured
0-25	Very poor, crushed, very severely fractured

SAMPLE TYPES

SS	-	Split spoon sample (obtained in conjunction with the performing of the Standard
		Penetration Test (SPT))

- TW Thin wall tube or Shelby tube
- PS Piston sample
- AU Auger sample or bulk sample
- WS Wash sample
- RC Rock core sample (Core bit size AXT, BXL, etc.). Rock core samples are obtained with the use of standard diamond drilling bits.

SYMBOLS AND TERMS (continued)

GRAIN SIZE DISTRIBUTION

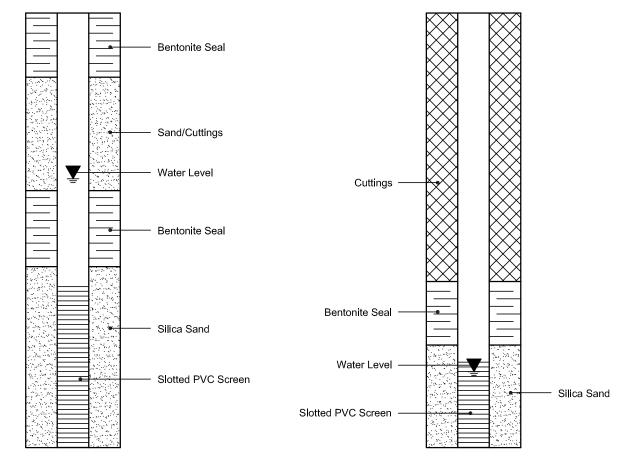
MC% LL PL PI	- - -	Natural moisture content or water content of sample, % Liquid Limit, % (water content above which soil behaves as a liquid) Plastic limit, % (water content above which soil behaves plastically) Plasticity index, % (difference between LL and PL)						
Dxx	-	Grain size which xx% of the soil, by weight, is of finer grain sizes These grain size descriptions are not used below 0.075 mm grain size						
D10	-	Grain size at which 10% of the soil is finer (effective grain size)						
D60	-	Grain size at which 60% of the soil is finer						
Cc	-	Concavity coefficient = $(D30)^2 / (D10 \times D60)$						
Cu	-	Uniformity coefficient = D60 / D10						
Cc and	Cc and Cu are used to assess the grading of sands and gravels:							

Well-graded gravels have: 1 < Cc < 3 and Cu > 4Well-graded sands have: 1 < Cc < 3 and Cu > 4Well-graded sands have: 1 < Cc < 3 and Cu > 6Sands and gravels not meeting the above requirements are poorly-graded or uniformly-graded. Cc and Cu are not applicable for the description of soils with more than 10% silt and clay (more than 10% finer than 0.075 mm or the #200 sieve)

CONSOLIDATION TEST

p'o	-	Present effective overburden pressure at sample depth
p'c	-	Preconsolidation pressure of (maximum past pressure on) sample
Ccr	-	Recompression index (in effect at pressures below p'c)
Сс	-	Compression index (in effect at pressures above p'c)
OC Ratio)	Overconsolidaton ratio = p'_c / p'_o
Void Rat	io	Initial sample void ratio = volume of voids / volume of solids
Wo	-	Initial water content (at start of consolidation test)

PERMEABILITY TEST


k - Coefficient of permeability or hydraulic conductivity is a measure of the ability of water to flow through the sample. The value of k is measured at a specified unit weight for (remoulded) cohesionless soil samples, because its value will vary with the unit weight or density of the sample during the test.

SYMBOLS AND TERMS (continued) STRATA PLOT Topsoil Asphalt Peat Sand Silty Sand Fill ∇ Sandy Silt Clay Silty Clay Clayey Silty Sand Glacial Till Shale Bedrock

MONITORING WELL AND PIEZOMETER CONSTRUCTION

PIEZOMETER CONSTRUCTION

RELIABLE.

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

Paterson Group Consulting Engineers

154 Colonnade Road South Nepean, ON K2E 7J5 Attn: Karyn Munch

Client PO: 26044 Project: PE4321 Custody: 121015

Report Date: 11-Mar-2019 Order Date: 5-Mar-2019

Order #: 1910254

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID	Client ID
1910254-01	BH1-AU1
1910254-02	BH2-AU1
1910254-03	BH3-AU1
1910254-04	BH4-AU1
1910254-05	BH5-AU1/SS2

Approved By:

Mark Foto

Mark Foto, M.Sc. Lab Supervisor

Any use of these results implies your agreement that our total liability in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
BTEX by P&T GC-MS	EPA 8260 - P&T GC-MS	6-Mar-19	7-Mar-19
Chromium, hexavalent - soil	MOE E3056 - Extraction, colourimetric	7-Mar-19	8-Mar-19
Mercury by CVAA	EPA 7471B - CVAA, digestion	8-Mar-19	8-Mar-19
PHC F1	CWS Tier 1 - P&T GC-FID	6-Mar-19	7-Mar-19
PHC F4G (gravimetric)	CWS Tier 1 - Extraction Gravimetric	7-Mar-19	7-Mar-19
PHCs F2 to F4	CWS Tier 1 - GC-FID, extraction	6-Mar-19	6-Mar-19
REG 153: Metals by ICP/MS, soil	EPA 6020 - Digestion - ICP-MS	7-Mar-19	7-Mar-19
Solids, %	Gravimetric, calculation	11-Mar-19	11-Mar-19

Report Date: 11-Mar-2019 Order Date: 5-Mar-2019

Order #: 1910254

Report Date: 11-Mar-2019 Order Date: 5-Mar-2019

	Client ID:	BH1-AU1	BH2-AU1	BH3-AU1	BH4-AU1
	Sample Date: Sample ID:	02/27/2019 09:00 1910254-01	02/27/2019 09:00 1910254-02	02/26/2019 09:00 1910254-03	02/27/2019 09:00 1910254-04
	MDL/Units	Soil	Soil	Soil	Soil
Physical Characteristics					
% Solids	0.1 % by Wt.	94.0	96.3	97.0	80.1
Metals				•	
Antimony	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0
Arsenic	1.0 ug/g dry	2.4	1.2	1.1	2.4
Barium	1.0 ug/g dry	126	156	107	260
Beryllium	0.5 ug/g dry	0.8	<0.5	<0.5	0.6
Boron	5.0 ug/g dry	6.2	9.1	8.0	7.3
Cadmium	0.5 ug/g dry	<0.5	<0.5	<0.5	<0.5
Chromium	5.0 ug/g dry	97.2	23.2	20.6	47.1
Chromium (VI)	0.2 ug/g dry	<0.2	<0.2	<0.2	<0.2
Cobalt	1.0 ug/g dry	10.4	4.4	3.4	9.7
Copper	5.0 ug/g dry	11.2	6.4	6.0	18.1
Lead	1.0 ug/g dry	4.1	5.2	3.9	7.9
Mercury	0.1 ug/g dry	<0.1	0.2	<0.1	0.1
Molybdenum	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0
Nickel	5.0 ug/g dry	30.9	11.4	8.6	21.5
Selenium	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0
Silver	0.3 ug/g dry	<0.3	<0.3	<0.3	<0.3
Thallium	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0
Uranium	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0
Vanadium	10.0 ug/g dry	49.0	19.5	12.2	45.6
Zinc	20.0 ug/g dry	52.4	20.3	<20.0	69.9
Volatiles				1	
Benzene	0.02 ug/g dry	-	<0.02	<0.02	-
Ethylbenzene	0.05 ug/g dry	-	<0.05	<0.05	-
Toluene	0.05 ug/g dry	-	<0.05	<0.05	-
m,p-Xylenes	0.05 ug/g dry	-	<0.05	<0.05	-
o-Xylene	0.05 ug/g dry	-	<0.05	<0.05	-
Xylenes, total	0.05 ug/g dry	-	<0.05	<0.05	-
Toluene-d8	Surrogate	-	107%	107%	-
Hydrocarbons					
F1 PHCs (C6-C10)	7 ug/g dry	-	<7	<7	-
F2 PHCs (C10-C16)	4 ug/g dry	-	14	<4	-
F3 PHCs (C16-C34)	8 ug/g dry	-	47	47	-
F4 PHCs (C34-C50)	6 ug/g dry	-	26	149 [1]	-

Order #: 1910254

Report Date: 11-Mar-2019 Order Date: 5-Mar-2019

	- · · · - · ·				
	Client ID:	BH1-AU1	BH2-AU1	BH3-AU1	BH4-AU1
	Sample Date:	02/27/2019 09:00	02/27/2019 09:00	02/26/2019 09:00	02/27/2019 09:00
	Sample ID:	1910254-01	1910254-02	1910254-03	1910254-04
	MDL/Units	Soil	Soil	Soil	Soil
F4G PHCs (gravimetric)	50 ug/g dry	-	-	443	-
	Client ID:	BH5-AU1/SS2	-	-	-
	Sample Date:	02/27/2019 09:00	-	-	-
	Sample ID:	1910254-05	-	-	-
	MDL/Units	Soil	-	-	-
Physical Characteristics			-		
% Solids	0.1 % by Wt.	93.5	-	-	-
Volatiles			-		
Benzene	0.02 ug/g dry	<0.02	-	-	-
Ethylbenzene	0.05 ug/g dry	<0.05	-	-	-
Toluene	0.05 ug/g dry	<0.05	-	-	-
m,p-Xylenes	0.05 ug/g dry	<0.05	-	-	-
o-Xylene	0.05 ug/g dry	<0.05	-	-	-
Xylenes, total	0.05 ug/g dry	<0.05	-	-	-
Toluene-d8	Surrogate	107%	-	-	-
Hydrocarbons					
F1 PHCs (C6-C10)	7 ug/g dry	<7	-	-	-
F2 PHCs (C10-C16)	4 ug/g dry	<4	-	-	-
F3 PHCs (C16-C34)	8 ug/g dry	<8	-	-	-
F4 PHCs (C34-C50)	6 ug/g dry	<6	-	-	-

Order #: 1910254

Report Date: 11-Mar-2019

Order Date: 5-Mar-2019

Project Description: PE4321

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	7	ug/g						
F2 PHCs (C10-C16)	ND	4	ug/g						
F3 PHCs (C16-C34)	ND	8	ug/g						
F4 PHCs (C34-C50)	ND	6	ug/g						
F4G PHCs (gravimetric)	ND	50	ug/g						
Metals									
Antimony	ND	1.0	ug/g						
Arsenic	ND	1.0	ug/g						
Barium	ND	1.0	ug/g						
Beryllium	ND	0.5	ug/g						
Boron	ND	5.0	ug/g						
Cadmium	ND	0.5	ug/g						
Chromium (VI)	ND	0.2	ug/g						
Chromium	ND	5.0	ug/g						
Cobalt	ND	1.0	ug/g						
Copper	ND	5.0	ug/g						
Lead	ND	1.0	ug/g						
Mercury	ND	0.1	ug/g						
Molybdenum	ND	1.0	ug/g						
Nickel	ND	5.0	ug/g						
Selenium	ND	1.0	ug/g						
Silver	ND	0.3	ug/g						
Thallium	ND	1.0	ug/g						
Uranium	ND	1.0	ug/g						
Vanadium	ND	10.0	ug/g						
Zinc	ND	20.0	ug/g						
Volatiles									
Benzene	ND	0.02	ug/g						
Ethylbenzene	ND	0.05	ug/g						
Toluene	ND	0.05	ug/g						
m,p-Xylenes	ND	0.05	ug/g						
o-Xylene	ND	0.05	ug/g						
Xylenes, total	ND	0.05	ug/g						
Surrogate: Toluene-d8	7.98		ug/g		99.7	50-140			

Order #: 1910254

Report Date: 11-Mar-2019

Order Date: 5-Mar-2019

Project Description: PE4321

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	7	ug/g dry	ND				40	
F2 PHCs (C10-C16)	14	4	ug/g dry	14			2.2	30	
F3 PHCs (C16-C34)	49	8	ug/g dry	47			5.3	30	
F4 PHCs (C34-C50)	31	6	ug/g dry	26			18.2	30	
Metals									
Antimony	ND	1.0	ug/g dry	ND			0.0	30	
Arsenic	2.8	1.0	ug/g dry	2.4			15.4	30	
Barium	141	1.0	ug/g dry	126			11.5	30	
Beryllium	1.4	0.5	ug/g dry	0.8			57.1	30	QR-01
Boron	8.7	5.0	ug/g dry	6.2			33.5	30	QR-01
Cadmium	ND	0.5	ug/g dry	ND			0.0	30	
Chromium (VI)	ND	0.2	ug/g dry	ND				35	
Chromium	116	5.0	ug/g dry	97.2			17.7	30	
Cobalt	12.2	1.0	ug/g dry	10.4			16.4	30	
Copper	13.3	5.0	ug/g dry	11.2			17.0	30	
Lead	5.0	1.0	ug/g dry	4.1			19.8	30	
Mercury	ND	0.1	ug/g dry	ND			0.0	30	
Molybdenum	ND	1.0	ug/g dry	ND			0.0	30	
Nickel	36.8	5.0	ug/g dry	30.9			17.7	30	
Selenium	ND	1.0	ug/g dry	ND			0.0	30	
Silver	ND	0.3	ug/g dry	ND			0.0	30	
Thallium	ND	1.0	ug/g dry	ND			0.0	30	
Uranium	ND	1.0	ug/g dry	ND			0.0	30	
Vanadium	58.3	10.0	ug/g dry	49.0			17.2	30	
Zinc	61.5	20.0	ug/g dry	52.4			16.1	30	
Physical Characteristics									
% Šolids	78.8	0.1	% by Wt.	78.4			0.4	25	
Volatiles									
Benzene	ND	0.02	ug/g dry	ND				50	
Ethylbenzene	ND	0.05	ug/g dry	ND				50	
Toluene	ND	0.05	ug/g dry	ND				50	
m,p-Xylenes	ND	0.05	ug/g dry	ND				50	
o-Xylene	ND	0.05	ug/g dry	ND				50	
Surrogate: Toluene-d8	9.73		ug/g dry		105	50-140			

Method Quality Control: Spike

Order	# •	101	0254
Order	#.	131	0234

Report Date: 11-Mar-2019

Order Date: 5-Mar-2019

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	173	7	ug/g		86.3	80-120			
F2 PHCs (C10-C16)	98	4	ug/g	14	101	60-140			
F3 PHCs (C16-C34)	273	8	ug/g	47	111	60-140			
F4 PHCs (C34-C50)	182	6	ug/g	26	121	60-140			
F4G PHCs (gravimetric)	960	50	ug/g		96.0	80-120			
Metals									
Antimony	43.9		ug/L	ND	87.6	70-130			
Arsenic	48.9		ug/L	1.0	95.8	70-130			
Barium	98.5		ug/L	50.2	96.6	70-130			
Beryllium	49.9		ug/L	ND	99.1	70-130			
Boron	48.5		ug/L	ND	92.0	70-130			
Cadmium	47.3		ug/L	ND	94.4	70-130			
Chromium (VI)	0.2		mg/L	ND	90.0	70-130			
Chromium	84.7		ug/L	38.9	91.5	70-130			
Cobalt	48.9		ug/L	4.2	89.5	70-130			
Copper	51.1		ug/L	ND	93.2	70-130			
Lead	45.9		ug/L	1.7	88.5	70-130			
Mercury	1.64	0.1	ug/g	ND	109	70-130			
Molybdenum	48.8		ug/L	ND	97.1	70-130			
Nickel	60.5		ug/L	12.3	96.3	70-130			
Selenium	46.1		ug/L	ND	91.9	70-130			
Silver	45.6		ug/L	ND	91.2	70-130			
Thallium	47.3		ug/L	ND	94.4	70-130			
Uranium	48.2		ug/L	ND	95.9	70-130			
Vanadium	69.4		ug/L	19.6	99.6	70-130			
Zinc	65.2		ug/L	20.9	88.5	70-130			
Volatiles									
Benzene	3.74	0.02	ug/g		93.6	60-130			
Ethylbenzene	3.61	0.05	ug/g		90.2	60-130			
Toluene	3.35	0.05	ug/g		83.6	60-130			
m,p-Xylenes	7.36	0.05	ug/g		92.0	60-130			
o-Xylene	3.63	0.05	ug/g		90.8	60-130			
Surrogate: Toluene-d8	8.92		ug/g		111	50-140			

Sample Qualifiers :

1: GC-FID signal did not return to baseline by C50

QC Qualifiers :

QR-01 : Duplicate RPD is high, however, the sample result is less than 10x the MDL.

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference.

Soil results are reported on a dry weight basis when the units are denoted with 'dry'. Where %Solids is reported, moisture loss includes the loss of volatile hydrocarbons.

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.

- F1 range corrected for BTEX.
- F2 to F3 ranges corrected for appropriate PAHs where available.
- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.
- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.

GPARACEL	RE	US SP LI/		Parace						Or -74	St. La Itario 19-19	urent Blv K1G 4Jl 47 acellabs.c	8			Use O	1 Month Martin
LABORATORIES LT	D.														Page	of	
Client Name: Paterson Group Inc.				Project Reference:	PE4	32))							Т	urnar	ound	Time:
Contact Name: Karun Munch				Quote #	151		-							🗆 l Day	y		🗆 3 Day
Address: 154 Lotonnado Roc	td S			PO # 260 Email Address:	44 Inch(an	240	3		100				D 2 Day		10 C	Regular
Telephone: 1012. 2210.7281														Date R			
Criteria: XO. Reg. 153/04 (As Amended) Table _ DRS	C Filing C	10. Reg	558/0	D D PWQO D C	CME IS	UB (Sto	orm) C	I SUE	3 (Sar	uitary)	Mu	nicipality):		_ 0 00	ner:	
Matrix Type: S (Soil/Sed.) GW (Ground Water) SW (Surface Water) SS (Storm?	Sanitary S	iewet) P	(Paint) A (Ait) O (O	(hcr)	Ree	quired	Ana	lyse	8		3					
Paracel Order Number: 1910254	ń	Air Volume	of Containers	Sample	Taken	PHCs F1-F4+BTEX	2	ls alc hor IC P	101 60 00	-	B (HWS)	HOE RESIGIO					
Sample ID/Location Name	Matrix	Air	10 #	Date	Time	PHC	vocs	PAHS Monate	He	CrV	B.0	3				_	
" BHI.AUL 120	S		1	Feb.27 19				V	1	V							
BHQ. AUI	S	d	12	Feb.27/19		V		1	10	V		,	_		_		
BH3-AUI	S		2	Feb.26/9		V		U	14	1V	1	V	_			_	
· A BHH - AUI	S		1	Feb. 27/19			/	1	1	<i>v</i>			-		_		
· · · BHS-AWI/SS2	S		2	Feb.27/19		V		+	+	-		7	7-	1.1.	0	1.1	0
· BHB - AUI	S			Feb.2619		-	\vdash	+	+	+	9	V,	_	M	20	1P	7.
" BH8-AUL 120	S	-	1	Feb.25/19			$\left \right $	+	+	+	-	Y	-	0	2 di	Gin	a B.G
· BHID-AUL 120	S	-		ED.78/19		+	\vdash	+	+	+	-	V		Fre	<u>Cd</u>	401	KCh Bis
9		-	-			+	+	+	+	+					-	-	
10						_		-	-	-				-	rigthod o	of Delive	ny:
Comments:															(Vr	101	Convie
Relinquished By (Sign):	Receiv	ed by Dr	1.	Deouse	. 1	cived at	1 to	ond	115				Verifie	the for	ad	11	17:12
Relinquished By (Print): MUNCA	Date/T		25/	103/19 4		s/Time: (1	2 1	19	2		17:12		inc. OS	x 1	14	17:12
Date/Time:	Tempo	nature:		<i>L</i> .	// I'ch	perature	1611	0		19200			Part 10	and to	6	-	

Chain of Custody (Env) - Rev 0.7 Feb. 2016

RELIABLE.

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Subcontracted Analysis

Paterson Group C 154 Colonnade Roa Nepean, ON K2E 7J Attn: Karyn Munch			13) 226-7381 13) 226-6344
Paracel Report No	1910254	Order Date:	05-Mar-19
Client Project(s):	PE4321	Report Date:	11-Mar-19
Client PO:	26044	-F	
Reference:	Standing Offer		
CoC Number:	121015		

Sample(s) from this project were subcontracted for the listed parameters. A copy of the subcontractor's report is attached

Paracel ID	Client ID	Analysis
1910254-03	BH3-AU1	Pesticides - Organochlorine in soil
1910254-06	BH6-AU1	Pesticides - Organochlorine in soil
1910254-07	BH8-AU1	Pesticides - Organochlorine in soil
1910254-08	BH10-AU1	Pesticides - Organochlorine in soil

Client: Company:	Dale Robertson Paracel Laboratories Ltd Ottawa	Work Order Number: PO #:	367262
Address:	300-2319 St. Laurent Blvd.	Regulation:	O.Reg 153 Table 1 Soil Res/Park/Inst/Ind/Commer/Comm
	Ottawa, ON, K1G 4J8	Project #:	1910254
Phone/Fax:	(613) 731-9577 / (613) 731-9064	DWS #:	
Email:	drobertson@paracellabs.com	Sampled By:	
Date Order Received:	3/12/2019	Analysis Started:	3/15/2019
Arrival Temperature:	7 °C	Analysis Completed:	3/19/2019

WORK ORDER SUMMARY

ANALYSES WERE PERFORMED ON THE FOLLOWING SAMPLES. THE RESULTS RELATE ONLY TO THE ITEMS TESTED.

Sample Description	Lab ID	Matrix	Туре	Comments	Date Collected	Time Collected
BH3-AU1	1421877	Soil	None		2/26/2019	
BH6-AU1	1421878	Soil	None		2/26/2019	
BH8-AU1	1421879	Soil	None		2/25/2019	
BH10-AU1	1421880	Soil	None		2/28/2019	

METHODS AND INSTRUMENTATION

THE FOLLOWING METHODS WERE USED FOR YOUR SAMPLE(S):

Method	Lab	Description	Reference
Moisture (A99)	Garson	Determination of Percent Moisture	In House
OCPs Soil (A19)	Garson	Determination of Organochlorine Pesticides in Soil by GC/ECD	Modified from SW846-8081B

Paracel Laboratories Ltd.- Ottawa

CERTIFICATE OF ANALYSIS

Work Order Number: 367262

This report has been approved by:

Khaled Omari, Ph.D. Laboratory Director

Paracel Laboratories Ltd.- Ottawa

Work Order Number: 367262

WORK ORDER RESULTS

Sample Description Lab ID	BH3 - 1421		BH6 - AU1 1421878			BH8 - AU1 BH10 - AU1 1421879 1421880				
General Chemistry	Result	MDL	Result	MDL	Result	MDL	Result	MDL	Units	Criteria: O.Reg 153 Table 1 Soil Res/Park/Inst/Ind/ Commer/Comm
% Moisture	2.8	0.1	35.4	0.1	25.8	0.1	15.9	0.1	%	~
Sample Description Lab ID	BH3 - AU1 1421877			BH6 - AU1 1421878		BH8 - AU1 1421879		- AU1 1880		
OC Pesticides	Result	MDL	Result	MDL	Result	MDL	Result	MDL	Units	Criteria: O.Reg 153 Table 1 Soil Res/Park/Inst/Ind/ Commer/Comm
2,4'-DDD	<0.01	0.01	<0.009	0.009	<0.009	0.009	<0.01	0.01	μg/g	~
2,4'-DDE	<0.01	0.01	<0.009	0.009	<0.009	0.009	<0.01	0.01	μg/g	~
2,4'-DDT	<0.01	0.01	<0.009	0.009	<0.009	0.009	<0.01	0.01	μg/g	~
4,4'-DDD	<0.01	0.01	<0.009	0.009	<0.009	0.009	<0.01	0.01	μg/g	~
4,4'-DDE	<0.01	0.01	<0.009	0.009	<0.009	0.009	<0.01	0.01	μg/g	~
4,4'-DDT	<0.01	0.01	<0.009	0.009	<0.009	0.009	<0.01	0.01	μg/g	~
Aldrin	<0.01	0.01	<0.009	0.009	<0.009	0.009	<0.01	0.01	μg/g	0.05
DDD (Total) (Calc.)	<0.01	0.01	<0.009	0.009	<0.009	0.009	<0.01	0.01	μg/g	0.05
DDE (Total) (Calc.)	<0.01	0.01	<0.009	0.009	<0.009	0.009	<0.01	0.01	μg/g	0.05
DDT (Total) (Calc.)	<0.01	0.01	<0.009	0.009	<0.009	0.009	<0.01	0.01	μg/g	1.4
Decachlorobiphenyl (Surr.)	74	N/A	76	N/A	73	N/A	93	N/A	% Rec	~
Dieldrin	<0.01	0.01	<0.009	0.009	<0.009	0.009	<0.01	0.01	μg/g	0.05
Endosulfan I	<0.01	0.01	<0.009	0.009	<0.009	0.009	< 0.01	0.01	μg/g	~
Endosulfan I + II (Calc.)	<0.01	0.01	<0.009	0.009	<0.009	0.009	< 0.01	0.01	μg/g	0.04
Endosulfan II	<0.01	0.01	<0.009	0.009	<0.009	0.009	< 0.01	0.01	µg/g	~
Endosulfan sulfate	<0.01	0.01	<0.009	0.009	<0.009	0.009	<0.01	0.01	µg/g	~

Paracel Laboratories Ltd.- Ottawa

Work Order Number: 367262

Sample Description Lab ID	BH3 - 1421		BH6 - 1421		BH8 - AU1 1421879			- AU1 1880		
OC Pesticides	Result	MDL	Result	MDL	Result	MDL	Result	MDL	Units	Criteria: O.Reg 153 Table 1 Soil Res/Park/Inst/Ind/ Commer/Comm
Endrin	<0.01	0.01	<0.009	0.009	<0.009	0.009	<0.01	0.01	μg/g	0.04
Endrin aldehyde	<0.01	0.01	<0.009	0.009	<0.009	0.009	<0.01	0.01	μg/g	~
Heptachlor	<0.01	0.01	<0.009	0.009	<0.009	0.009	<0.01	0.01	μg/g	0.05
Heptachlor epoxide	<0.01	0.01	<0.009	0.009	<0.009	0.009	<0.01	0.01	μg/g	0.05
Hexachlorobenzene	<0.01	0.01	<0.009	0.009	<0.009	0.009	<0.01	0.01	µg/g	0.01
Hexachlorobutadiene	<0.01	0.01	<0.009	0.009	<0.009	0.009	<0.01	0.01	μg/g	0.01
Hexachloroethane	<0.01	0.01	<0.009	0.009	<0.009	0.009	<0.01	0.01	μg/g	0.01
Methoxychlor	<0.01	0.01	<0.009	0.009	<0.009	0.009	<0.01	0.01	μg/g	0.05
Mirex	<0.01	0.01	<0.009	0.009	<0.009	0.009	<0.01	0.01	μg/g	~
Oxychlordane	<0.01	0.01	<0.009	0.009	<0.009	0.009	<0.01	0.01	µg/g	~
ß-BHC	<0.01	0.01	<0.009	0.009	<0.009	0.009	<0.01	0.01	μg/g	~
α - Chlordane	<0.01	0.01	<0.009	0.009	<0.009	0.009	<0.01	0.01	μg/g	~
α + γ -Chlordane (Calc.)	<0.01	0.01	<0.009	0.009	<0.009	0.009	<0.01	0.01	µg/g	0.05
α-BHC	<0.01	0.01	<0.009	0.009	<0.009	0.009	<0.01	0.01	µg/g	~
γ - Chlordane	<0.01	0.01	<0.009	0.009	<0.009	0.009	<0.01	0.01	µg/g	~
γ-BHC (Lindane)	<0.01	0.01	<0.009	0.009	<0.009	0.009	<0.01	0.01	µg/g	0.01
δ-ΒΗC	<0.01	0.01	<0.009	0.009	<0.04	0.04	<0.04	0.04	μg/g	~

Paracel Laboratories Ltd.- Ottawa

Work Order Number: 367262

LEGEND

Dates: Dates are formatted as mm/dd/year throughout this report.

[rr]: After a parameter name indicates a re-run of that parameter. Sample may not have been handled according to the recommended temperature, hold time and head space requirements of the method after the initial analysis. MDL: Method detection limit or minimum reporting limit.

~: In a criteria column indicates the criteria is not applicable for the parameter row.

Quality Control: All associated Quality Control data is available on request.

Exceedences: HIGHLIGHTED CELLS INDICATE THAT THE RESULT EXCEEDS A REGULATORY LIMIT. CALCULATED UNCERTAINTY ESTIMATIONS ARE NOT APPLIED FOR DETERMINING SAMPLE EXCEEDANCES. Benzo(b)fluoranthene: Results for benzo(b)fluoranthene may include contributions from benzo(j)fluoranthene.

RELIABLE.

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

Paterson Group Consulting Engineers

154 Colonnade Road South Nepean, ON K2E 7J5 Attn: Karyn Munch

Client PO: 26046 Project: PE4321 Custody: 121038

Report Date: 18-Mar-2019 Order Date: 12-Mar-2019

Order #: 1911240

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID **Client ID** 1911240-01 BH13-SS3

Approved By:

Mark Foto

Mark Foto, M.Sc. Lab Supervisor

Any use of these results implies your agreement that our total liability in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
Boron, available	MOE (HWE), EPA 200.7 - ICP-OES	15-Mar-19	15-Mar-19
Chromium, hexavalent - soil	MOE E3056 - Extraction, colourimetric	15-Mar-19	15-Mar-19
Mercury by CVAA	EPA 7471B - CVAA, digestion	15-Mar-19	15-Mar-19
REG 153: Metals by ICP/MS, soil	EPA 6020 - Digestion - ICP-MS	15-Mar-19	15-Mar-19
Solids, %	Gravimetric, calculation	14-Mar-19	14-Mar-19

Report Date: 18-Mar-2019 Order Date: 12-Mar-2019

Report Date: 18-Mar-2019

Order Date: 12-Mar-2019

	Client ID:	BH13-SS3	- 1	_	
	Sample Date:	03/06/2019 09:00	-	-	-
	Sample ID:	1911240-01	-	-	-
	MDL/Units	Soil	-	-	-
Physical Characteristics					
% Solids	0.1 % by Wt.	85.9	-	-	-
Metals			-		
Antimony	1.0 ug/g dry	<1.0	-	-	-
Arsenic	1.0 ug/g dry	1.2	-	-	-
Barium	1.0 ug/g dry	36.4	-	-	-
Beryllium	0.5 ug/g dry	<0.5	-	-	-
Boron	5.0 ug/g dry	<5.0	-	-	-
Boron, available	0.5 ug/g dry	<0.5	-	-	-
Cadmium	0.5 ug/g dry	<0.5	-	-	-
Chromium	5.0 ug/g dry	12.2	-	-	-
Chromium (VI)	0.2 ug/g dry	<0.2	-	-	-
Cobalt	1.0 ug/g dry	3.9	-	-	-
Copper	5.0 ug/g dry	9.7	-	-	-
Lead	1.0 ug/g dry	1.9	-	-	-
Mercury	0.1 ug/g dry	<0.1	-	-	-
Molybdenum	1.0 ug/g dry	<1.0	-	-	-
Nickel	5.0 ug/g dry	6.6	-	-	-
Selenium	1.0 ug/g dry	<1.0	-	-	-
Silver	0.3 ug/g dry	<0.3	-	-	-
Thallium	1.0 ug/g dry	<1.0	-	-	-
Uranium	1.0 ug/g dry	<1.0	-	-	-
Vanadium	10.0 ug/g dry	24.2	-	-	-
Zinc	20.0 ug/g dry	<20.0	-	-	-

Order #: 1911240

Report Date: 18-Mar-2019 Order Date: 12-Mar-2019

Project Description: PE4321

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Metals									
Antimony	ND	1.0	ug/g						
Arsenic	ND	1.0	ug/g						
Barium	ND	1.0	ug/g						
Beryllium	ND	0.5	ug/g						
Boron, available	ND	0.5	ug/g						
Boron	ND	5.0	ug/g						
Cadmium	ND	0.5	ug/g						
Chromium (VI)	ND	0.2	ug/g						
Chromium	ND	5.0	ug/g						
Cobalt	ND	1.0	ug/g						
Copper	ND	5.0	ug/g						
Lead	ND	1.0	ug/g						
Mercury	ND	0.1	ug/g						
Molybdenum	ND	1.0	ug/g						
Nickel	ND	5.0	ug/g						
Selenium	ND	1.0	ug/g						
Silver	ND	0.3	ug/g						
Thallium	ND	1.0	ug/g						
Uranium	ND	1.0	ug/g						
Vanadium	ND	10.0	ug/g						
Zinc	ND	20.0	ug/g						

Order #: 1911240

Report Date: 18-Mar-2019

Order Date: 12-Mar-2019

Project Description: PE4321

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Metals									
Antimony	ND	1.0	ug/g dry	ND			0.0	30	
Arsenic	2.6	1.0	ug/g dry	2.5			6.8	30	
Barium	167	1.0	ug/g dry	166			0.6	30	
Beryllium	1.0	0.5	ug/g dry	0.9			2.8	30	
Boron, available	7.03	0.5	ug/g dry	7.19			2.2	35	
Boron	7.5	5.0	ug/g dry	7.3			3.5	30	
Cadmium	ND	0.5	ug/g dry	ND			0.0	30	
Chromium (VI)	ND	0.2	ug/g dry	ND				35	
Chromium	40.8	5.0	ug/g dry	40.3			1.0	30	
Cobalt	11.5	1.0	ug/g dry	10.7			7.0	30	
Copper	14.9	5.0	ug/g dry	14.2			4.5	30	
Lead	7.2	1.0	ug/g dry	7.3			1.6	30	
Mercury	ND	0.1	ug/g dry	ND			0.0	30	
Molybdenum	ND	1.0	ug/g dry	ND			0.0	30	
Nickel	21.9	5.0	ug/g dry	21.3			2.8	30	
Selenium	ND	1.0	ug/g dry	ND			0.0	30	
Silver	0.3	0.3	ug/g dry	ND			0.0	30	
Thallium	ND	1.0	ug/g dry	ND			0.0	30	
Uranium	ND	1.0	ug/g dry	ND			0.0	30	
Vanadium	55.9	10.0	ug/g dry	55.3			1.1	30	
Zinc	66.4	20.0	ug/g dry	67.5			1.7	30	
Physical Characteristics			,						
% Solids	83.3	0.1	% by Wt.	83.8			0.6	25	

Order #: 1911240

Report Date: 18-Mar-2019

Order Date: 12-Mar-2019

Project Description: PE4321

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Metals									
Antimony	41.5		ug/L	ND	82.8	70-130			
Arsenic	44.9		ug/L	1.0	87.8	70-130			
Barium	118		ug/L	66.4	102	70-130			
Beryllium	46.0		ug/L	ND	91.2	70-130			
Boron, available	12.0	0.5	ug/g	7.19	97.1	70-122			
Boron	44.8		ug/L	ND	83.7	70-130			
Cadmium	44.2		ug/L	ND	88.3	70-130			
Chromium (VI)	0.2		mg/L	ND	89.5	70-130			
Chromium	59.9		ug/L	16.1	87.5	70-130			
Cobalt	45.8		ug/L	4.3	83.1	70-130			
Copper	50.4		ug/L	5.7	89.3	70-130			
Lead	45.9		ug/L	2.9	85.9	70-130			
Mercury	1.44	0.1	ug/g	ND	95.8	70-130			
Molybdenum	44.0		ug/L	ND	87.8	70-130			
Nickel	53.6		ug/L	8.5	90.1	70-130			
Selenium	43.5		ug/L	ND	86.5	70-130			
Silver	43.4		ug/L	ND	86.6	70-130			
Thallium	41.6		ug/L	ND	82.9	70-130			
Uranium	43.3		ug/L	ND	85.9	70-130			
Vanadium	70.1		ug/L	22.1	95.9	70-130			
Zinc	70.0		ug/L	27.0	86.1	70-130			

Qualifier Notes:

None

Sample Data Revisions None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference.

Soil results are reported on a dry weight basis when the units are denoted with 'dry'. Where %Solids is reported, moisture loss includes the loss of volatile hydrocarbons.

Report Date: 18-Mar-2019 Order Date: 12-Mar-2019 Project Description: PE4321

GPARACEL				racel ID: 19					3 0 p	00-23 ttawa	, Ont 10-74	Laure ario K1 9-1947 paracel				(Lab I Nº	of Custo Use Only) 121	038
Client Name: Paterson (mpup Inc. Contact Name: Kanzn Munch Address: 154 Lolonnade Rd S. Telephone: Lef3. 22.6.7381 Criteria: J. Reg. 153/04 (As Amended) Table _ IRSC	Filing C	1.1.1.1.1			unch(Me osu	Dp(B (Sto	rm)		UB (Sanit	_				Tu Day Day e Req	rnaro	ď	
Matrix Type: S (Soil Sed.) GW (Ground Water) SW (Surface Water) S Paracel Order Number:	Matrix Matrix	Air Volume	of Containers	Sample T	aken	PHCs F1-F4+BTEN	vocs	ed A sHVd	Metals by ICP		CrVI	B (HWS)		Ι				
Sample ID/Location Name 1 BH13-SS3 2 3 3 4 5 6 7 8	S	<		Date	Time	td	5	P2							12	Um 1		
9 10 Comments: For ON LTD z CRACK Relinquished By (Sign): Relinquished By (Print): March 55 Firence Date Time:	Receive		1.	Frank 3/19 4 a	Receiv Ol Date/T Tempe	IMP ime; [14 EVI	ORI KIP	V A 9	210	201	(MA	Verifie Date/1	SP	d'	Pool of T 2 V 2 V 2 V	Delivery: D(e) M	10

Chain of Custody (Env) - Rev 0.7 Feb. 2016

RELIABLE.

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Subcontracted Analysis

Paterson Group C 154 Colonnade Roa Nepean, ON K2E 7J Attn: Karyn Munch		Tel: (613) 226-738 Fax: (613) 226-634				
Paracel Report No	1911246	Order Date:	12-Mar-19			
Client Project(s):	PE4321	Report Date:	19-Mar-19			
Client PO:	26046					
Reference:	Standing Offer					
CoC Number:						

Sample(s) from this project were subcontracted for the listed parameters. A copy of the subcontractor's report is attached

Paracel ID	Client ID	Analysis
1911246-01	BH9-AU1	Pesticides - Organochlorine in soil
1911246-02	BH12-AU1	Pesticides - Organochlorine in soil
1911246-03	BH13-AU1	Pesticides - Organochlorine in soil
1911246-04	BH15-AU1	Pesticides - Organochlorine in soil

Client:	Dale Robertson	Work Order Number:	367480
Company:	Paracel Laboratories Ltd Ottawa	PO #:	
Address:	300-2319 St. Laurent Blvd.	Regulation:	None
	Ottawa, ON, K1G 4J8	Project #:	1911246
Phone/Fax:	(613) 731-9577 / (613) 731-9064	DWS #:	
Email:	drobertson@paracellabs.com	Sampled By:	
Date Order Received:	3/14/2019	Analysis Started:	3/15/2019
Arrival Temperature:	10 °C	Analysis Completed:	3/19/2019

WORK ORDER SUMMARY

ANALYSES WERE PERFORMED ON THE FOLLOWING SAMPLES. THE RESULTS RELATE ONLY TO THE ITEMS TESTED.

Sample Description	Lab ID	Matrix	Туре	Comments	Date Collected	Time Collected
BH9-AU1	1422443	Soil	None		2/27/2019	
BH12-AU1	1422444	Soil	None		2/28/2019	
BH13-AU1	1422445	Soil	None		3/6/2019	
BH15-AU1	1422446	Soil	None		3/8/2019	

METHODS AND INSTRUMENTATION

THE FOLLOWING METHODS WERE USED FOR YOUR SAMPLE(S):

Method	Lab	Description	Reference
Moisture (A99)	Garson	Determination of Percent Moisture	In House
OCPs Soil (A19)	Garson	Determination of Organochlorine Pesticides in Soil by GC/ECD	Modified from SW846-8081B

Paracel Laboratories Ltd.- Ottawa

CERTIFICATE OF ANALYSIS

Work Order Number: 367480

This report has been approved by:

Khaled Omari, Ph.D. Laboratory Director

Paracel Laboratories Ltd.- Ottawa

Work Order Number: 367480

WORK ORDER RESULTS

Sample Description Lab ID	BH9 - 1422		BH12 1422		BH13 - AU1 1422445		BH15 1422			
General Chemistry	Result	MDL	Result	MDL	Result	MDL	Result	MDL	Units	Criteria: [No Reg - Always Include Reg Report]
% Moisture	22.4	0.1	21.7	0.1	36.9	0.1	38.4	0.1	%	~
Sample Description	BH9 -	AU1	BH12	- AU1	BH13	- AU1	BH15	- AU1		
Lab ID	1422	2443	1422	2444	1422	2445	1422	2446		
OC Pesticides	Result	MDL	Result	MDL	Result	MDL	Result	MDL	Units	Criteria: [No Reg - Always Include Reg Report]
2,4'-DDD	<0.01	0.01	<0.009	0.009	<0.009	0.009	<0.008	0.008	µg/g	~
2,4'-DDE	<0.01	0.01	<0.009	0.009	<0.009	0.009	<0.008	0.008	μg/g	~
2,4'-DDT	<0.01	0.01	<0.009	0.009	<0.009	0.009	<0.008	0.008	μg/g	~
4,4'-DDD	<0.01	0.01	<0.009	0.009	<0.009	0.009	<0.008	0.008	μg/g	~
4,4'-DDE	<0.01	0.01	<0.009	0.009	<0.009	0.009	<0.008	0.008	μg/g	~
4,4'-DDT	<0.01	0.01	<0.009	0.009	<0.009	0.009	<0.008	0.008	μg/g	~
Aldrin	<0.01	0.01	<0.009	0.009	<0.009	0.009	<0.008	0.008	μg/g	~
DDD (Total) (Calc.)	<0.01	0.01	<0.009	0.009	<0.009	0.009	<0.008	0.008	μg/g	~
DDE (Total) (Calc.)	<0.01	0.01	<0.009	0.009	<0.009	0.009	<0.008	0.008	μg/g	~
DDT (Total) (Calc.)	<0.01	0.01	<0.009	0.009	<0.009	0.009	<0.008	0.008	μg/g	~
Decachlorobiphenyl (Surr.)	94	N/A	91	N/A	91	N/A	81	N/A	% Rec	~
Dieldrin	<0.01	0.01	<0.009	0.009	<0.009	0.009	<0.008	0.008	μg/g	~
Endosulfan I	<0.01	0.01	<0.009	0.009	<0.009	0.009	<0.008	0.008	μg/g	~
Endosulfan I + II (Calc.)	<0.01	0.01	<0.009	0.009	<0.009	0.009	<0.008	0.008	μg/g	~
Endosulfan II	<0.01	0.01	<0.009	0.009	<0.009	0.009	<0.008	0.008	μg/g	~
Endosulfan sulfate	<0.01	0.01	<0.009	0.009	<0.009	0.009	<0.008	0.008	µg/g	~
Endrin	<0.01	0.01	<0.009	0.009	<0.009	0.009	<0.008	0.008	µg/g	~

Paracel Laboratories Ltd.- Ottawa

Work Order Number: 367480

Sample Description Lab ID	BH9 - 1422		BH12 1422		BH13 1422		BH15 1422			
OC Pesticides	Result	MDL	Result	MDL	Result	MDL	Result	MDL	Units	Criteria: [No Reg - Always Include Reg Report]
Endrin aldehyde	<0.01	0.01	<0.009	0.009	<0.009	0.009	<0.008	0.008	µg/g	~
Heptachlor	<0.01	0.01	<0.009	0.009	<0.009	0.009	<0.008	0.008	µg/g	~
Heptachlor epoxide	<0.01	0.01	<0.009	0.009	<0.009	0.009	<0.008	0.008	μg/g	~
Hexachlorobenzene	<0.01	0.01	<0.009	0.009	<0.009	0.009	<0.008	0.008	μg/g	~
Hexachlorobutadiene	< 0.01	0.01	<0.009	0.009	<0.009	0.009	<0.008	0.008	µg/g	~
Hexachloroethane	< 0.01	0.01	<0.009	0.009	<0.009	0.009	<0.008	0.008	µg/g	~
Methoxychlor	<0.01	0.01	<0.009	0.009	<0.009	0.009	<0.008	0.008	μg/g	~
Mirex	< 0.01	0.01	<0.009	0.009	<0.009	0.009	<0.008	0.008	µg/g	~
Oxychlordane	<0.01	0.01	<0.009	0.009	<0.009	0.009	<0.008	0.008	µg/g	~
ß-BHC	< 0.01	0.01	<0.009	0.009	<0.009	0.009	<0.008	0.008	µg/g	~
α - Chlordane	< 0.01	0.01	<0.009	0.009	<0.009	0.009	<0.008	0.008	µg/g	~
α + γ -Chlordane (Calc.)	< 0.01	0.01	<0.009	0.009	<0.009	0.009	<0.008	0.008	µg/g	~
α-ΒΗC	< 0.01	0.01	<0.009	0.009	<0.009	0.009	<0.008	0.008	µg/g	~
γ - Chlordane	<0.01	0.01	<0.009	0.009	<0.009	0.009	<0.008	0.008	µg/g	~
γ-BHC (Lindane)	<0.01	0.01	<0.009	0.009	<0.009	0.009	<0.008	0.008	µg/g	~
δ-ΒΗC	<0.04	0.04	<0.009	0.009	<0.09	0.09	<0.008	0.008	μg/g	~

Paracel Laboratories Ltd.- Ottawa

Work Order Number: 367480

LEGEND

Dates: Dates are formatted as mm/dd/year throughout this report.

[rr]: After a parameter name indicates a re-run of that parameter. Sample may not have been handled according to the recommended temperature, hold time and head space requirements of the method after the initial analysis. MDL: Method detection limit or minimum reporting limit.

~: In a criteria column indicates the criteria is not applicable for the parameter row.

Quality Control: All associated Quality Control data is available on request.

Exceedences: HIGHLIGHTED CELLS INDICATE THAT THE RESULT EXCEEDS A REGULATORY LIMIT. CALCULATED UNCERTAINTY ESTIMATIONS ARE NOT APPLIED FOR DETERMINING SAMPLE EXCEEDANCES. Benzo(b)fluoranthene: Results for benzo(b)fluoranthene may include contributions from benzo(j)fluoranthene.

RELIABLE.

Subcontracted Analysis

Paterson Group Consulting Engineers 154 Colonnade Road South Nepean, ON K2E 7J5 Attn: Karyn Munch Paracel Report No1912143 Client Project(s): PE4321 Client PO: 26047 Reference: Standing Offer

CoC Number: 121047

Tel: (613) 226-7381 Fax: (613) 226-6344

Order Date: 18-Mar-19 Report Date: 22-Mar-19

Sample(s) from this project were subcontracted for the listed parameters. A copy of the subcontractor's report is attached

Paracel I D	Client I D	
1912143-01	BH17-AU1	Pesticides - Organochlorine in soil
1912143-02	BH20-AU1	Pesticides - Organochlorine in soil

Client: Company:	Dale Robertson Paracel Laboratories Ltd Ottawa	Work Order Number: PO #:	367840
Address:	300-2319 St. Laurent Blvd.	Regulation:	O.Reg 153 Table 1 Soil Res/Park/Inst/Ind/Commer/Comm
	Ottawa, ON, K1G 4J8	Project #:	1912143
Phone/Fax:	(613) 731-9577 / (613) 731-9064	DWS #:	
Email:	drobertson@paracellabs.com	Sampled By:	
Date Order Received:	3/20/2019	Analysis Started:	3/21/2019
Arrival Temperature:	8 °C	Analysis Completed:	3/22/2019

WORK ORDER SUMMARY

ANALYSES WERE PERFORMED ON THE FOLLOWING SAMPLES. THE RESULTS RELATE ONLY TO THE ITEMS TESTED.

Sample Description	Lab ID	Matrix	Туре	Comments	Date Collected	Time Collected
BH17-AU1	1423878	Soil	None		3/13/2019	
BH20-AU1	1423879	Soil	None		3/11/2019	

METHODS AND INSTRUMENTATION

THE FOLLOWING METHODS WERE USED FOR YOUR SAMPLE(S):

Method	Lab	Description	Reference
Moisture (A99)	Garson	Determination of Percent Moisture	In House
OCPs Soil (A19)	Garson	Determination of Organochlorine Pesticides in Soil by GC/ECD	Modified from SW846-8081B

This report has been approved by:

Khaled Omari, Ph.D. Laboratory Director

Paracel Laboratories Ltd.- Ottawa

CERTIFICATE OF ANALYSIS

Work Order Number: 367840

Paracel Laboratories Ltd.- Ottawa

Work Order Number: 367840

WORK ORDER RESULTS

Sample Description Lab ID	BH17 - AU1 1423878		BH20 - AU1 1423879			
General Chemistry	Result	MDL	Result	MDL	Units	Criteria: O.Reg 153 Table 1 Soil Res/Park/Inst/Ind/ Commer/Comm
% Moisture	32.9	0.1	27.7	0.1	%	~
Sample Description Lab ID	BH17 1423			BH20 - AU1 1423879		
OC Pesticides	Result	MDL	Result	MDL	Units	Criteria: O.Reg 153 Table 1 Soil Res/Park/Inst/Ind/ Commer/Comm
2,4'-DDD	<0.01	0.01	<0.01	0.01	μg/g	~
2,4'-DDE	<0.01	0.01	<0.01	0.01	μg/g	~
2,4'-DDT	<0.01	0.01	<0.01	0.01	μg/g	~
4,4'-DDD	<0.01	0.01	<0.01	0.01	μg/g	~
4,4'-DDE	<0.01	0.01	<0.01	0.01	μg/g	~
4,4'-DDT	<0.01	0.01	<0.01	0.01	μg/g	~
Aldrin	<0.01	0.01	<0.01	0.01	μg/g	0.05
DDD (Total) (Calc.)	<0.01	0.01	<0.01	0.01	μg/g	0.05
DDE (Total) (Calc.)	<0.01	0.01	<0.01	0.01	μg/g	0.05
DDT (Total) (Calc.)	<0.01	0.01	<0.01	0.01	μg/g	1.4
Decachlorobiphenyl (Surr.)	56	N/A	63	N/A	% Rec	~
Dieldrin	<0.01	0.01	<0.01	0.01	μg/g	0.05
Endosulfan I	<0.01	0.01	<0.01	0.01	μg/g	~
Endosulfan I + II (Calc.)	<0.01	0.01	<0.01	0.01	μg/g	0.04
Endosulfan II	<0.01	0.01	<0.01	0.01	μg/g	~
Endosulfan sulfate	<0.01	0.01	<0.01	0.01	μg/g	~

Paracel Laboratories Ltd.- Ottawa

Work Order Number: 367840

Sample Description Lab ID	BH17 - AU1 1423878			- AU1 3879		
OC Pesticides	Result	MDL	Result	MDL	Units	Criteria: O.Reg 153 Table 1 Soil Res/Park/Inst/Ind/ Commer/Comm
Endrin	<0.01	0.01	< 0.01	0.01	μg/g	0.04
Endrin aldehyde	<0.01	0.01	<0.01	0.01	μg/g	~
Heptachlor	<0.01	0.01	< 0.01	0.01	μg/g	0.05
Heptachlor epoxide	<0.01	0.01	< 0.01	0.01	μg/g	0.05
Hexachlorobenzene	< 0.01	0.01	< 0.01	0.01	μg/g	0.01
Hexachlorobutadiene	<0.01	0.01	< 0.01	0.01	μg/g	0.01
Hexachloroethane	<0.01	0.01	< 0.01	0.01	μg/g	0.01
Methoxychlor	<0.01	0.01	< 0.01	0.01	μg/g	0.05
Mirex	<0.01	0.01	< 0.01	0.01	μg/g	~
Oxychlordane	<0.01	0.01	< 0.01	0.01	μg/g	~
ß-BHC	<0.01	0.01	< 0.01	0.01	μg/g	~
α - Chlordane	<0.01	0.01	<0.01	0.01	μg/g	~
α + γ -Chlordane (Calc.)	<0.01	0.01	< 0.01	0.01	μg/g	0.05
α-BHC	<0.01	0.01	<0.01	0.01	μg/g	~
γ - Chlordane	<0.01	0.01	<0.01	0.01	μg/g	~
γ-BHC (Lindane)	<0.01	0.01	<0.01	0.01	μg/g	0.01
δ-BHC	<0.05	0.05	< 0.03	0.03	μg/g	~

Paracel Laboratories Ltd.- Ottawa

Work Order Number: 367840

LEGEND

Dates: Dates are formatted as mm/dd/year throughout this report.

[rr]: After a parameter name indicates a re-run of that parameter. Sample may not have been handled according to the recommended temperature, hold time and head space requirements of the method after the initial analysis. MDL: Method detection limit or minimum reporting limit.

~: In a criteria column indicates the criteria is not applicable for the parameter row.

Quality Control: All associated Quality Control data is available on request.

Exceedences: HIGHLIGHTED CELLS INDICATE THAT THE RESULT EXCEEDS A REGULATORY LIMIT. CALCULATED UNCERTAINTY ESTIMATIONS ARE NOT APPLIED FOR DETERMINING SAMPLE EXCEEDANCES. Benzo(b)fluoranthene: Results for benzo(b)fluoranthene may include contributions from benzo(j)fluoranthene.

RELIABLE.

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

Paterson Group Consulting Engineers

154 Colonnade Road South Nepean, ON K2E 7J5 Attn: Karyn Munch

Client PO: 26504 Project: PE4321 Custody: 121681

Report Date: 7-May-2019 Order Date: 1-May-2019

Order #: 1918392

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID	Client ID
1918392-01	HA1-G1
1918392-03	HA5-G1
1918392-04	HA7-G1
1918392-06	HA13-G1
1918392-07	HA15-G1
1918392-09	DUP

Approved By:

Dale Robertson, BSc Laboratory Director

Any use of these results implies your agreement that our total liability in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.

Report Date: 07-May-2019 Order Date: 1-May-2019

Order #: 1918392

Project Description: PE4321

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
Chromium, hexavalent - soil	MOE E3056 - Extraction, colourimetric	2-May-19	7-May-19
Mercury by CVAA	EPA 7471B - CVAA, digestion	3-May-19	6-May-19
pH, soil	EPA 150.1 - pH probe @ 25 °C, CaCl buffered ext.	2-May-19	2-May-19
REG 153: Metals by ICP/MS, soil	EPA 6020 - Digestion - ICP-MS	3-May-19	3-May-19
Solids, %	Gravimetric, calculation	6-May-19	6-May-19

Order #: 1918392

Report Date: 07-May-2019 Order Date: 1-May-2019

Project Description: PE4321

	Client ID:	HA1-G1	HA5-G1	HA7-G1	HA13-G1
	Sample Date:	30-Apr-19 09:00	29-Apr-19 09:00	29-Apr-19 09:00	30-Apr-19 09:00
	Sample ID:	1918392-01	1918392-03	1918392-04	1918392-06
	MDL/Units	Soil	Soil	Soil	Soil
Physical Characteristics	- I				•
% Solids	0.1 % by Wt.	73.5	79.9	82.4	78.0
General Inorganics					
рН	0.05 pH Units	-	7.17	-	-
Metals			-	_	
Antimony	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0
Arsenic	1.0 ug/g dry	2.2	1.1	1.9	2.3
Barium	1.0 ug/g dry	129	45.9	85.7	232
Beryllium	0.5 ug/g dry	<0.5	<0.5	<0.5	0.7
Boron	5.0 ug/g dry	<5.0	<5.0	<5.0	<5.0
Cadmium	0.5 ug/g dry	<0.5	<0.5	<0.5	<0.5
Chromium	5.0 ug/g dry	37.7	14.5	22.3	48.0
Chromium (VI)	0.2 ug/g dry	<0.2	<0.2	<0.2	<0.2
Cobalt	1.0 ug/g dry	8.6	3.9	5.9	10.7
Copper	5.0 ug/g dry	14.2	9.3	13.6	20.9
Lead	1.0 ug/g dry	9.2	3.3	5.1	7.7
Mercury	0.1 ug/g dry	<0.1	<0.1	<0.1	<0.1
Molybdenum	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0
Nickel	5.0 ug/g dry	19.1	7.5	13.0	24.4
Selenium	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0
Silver	0.3 ug/g dry	<0.3	<0.3	<0.3	<0.3
Thallium	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0
Uranium	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0
Vanadium	10.0 ug/g dry	46.1	26.6	30.5	58.2
Zinc	20.0 ug/g dry	76.4	25.3	39.4	86.2

Order #: 1918392

Report Date: 07-May-2019

Order Date: 1-May-2019

Project Description: PE4321

	ан . н а Т				
	Client ID:	HA15-G1	DUP	-	-
	Sample Date:	30-Apr-19 09:00	30-Apr-19 09:00	-	-
	Sample ID:	1918392-07 Soil	1918392-09 Soil	-	-
	MDL/Units	5011	501	-	-
Physical Characteristics					
% Solids	0.1 % by Wt.	93.6	86.8	-	-
Metals					
Antimony	1.0 ug/g dry	<1.0	<1.0	-	-
Arsenic	1.0 ug/g dry	<1.0	1.4	-	-
Barium	1.0 ug/g dry	25.7	92.7	-	-
Beryllium	0.5 ug/g dry	<0.5	<0.5	-	-
Boron	5.0 ug/g dry	<5.0	<5.0	-	-
Cadmium	0.5 ug/g dry	<0.5	<0.5	-	-
Chromium	5.0 ug/g dry	12.3	23.8	-	-
Chromium (VI)	0.2 ug/g dry	<0.2	-	-	-
Cobalt	1.0 ug/g dry	2.7	5.8	-	-
Copper	5.0 ug/g dry	5.6	12.7	-	-
Lead	1.0 ug/g dry	1.2	3.5	-	-
Mercury	0.1 ug/g dry	2.3	-	-	-
Molybdenum	1.0 ug/g dry	<1.0	<1.0	-	-
Nickel	5.0 ug/g dry	6.6	12.3	-	-
Selenium	1.0 ug/g dry	<1.0	<1.0	-	-
Silver	0.3 ug/g dry	<0.3	<0.3	-	-
Thallium	1.0 ug/g dry	<1.0	<1.0	-	-
Uranium	1.0 ug/g dry	<1.0	<1.0	-	-
Vanadium	10.0 ug/g dry	12.0	34.5	-	-
Zinc	20.0 ug/g dry	25.1	37.4	-	-

Order #: 1918392

Report Date: 07-May-2019 Order Date: 1-May-2019

Project Description: PE4321

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Metals									
Antimony	ND	1.0	ug/g						
Arsenic	ND	1.0	ug/g						
Barium	ND	1.0	ug/g						
Beryllium	ND	0.5	ug/g						
Boron	ND	5.0	ug/g						
Cadmium	ND	0.5	ug/g						
Chromium (VI)	ND	0.2	ug/g						
Chromium	ND	5.0	ug/g						
Cobalt	ND	1.0	ug/g						
Copper	ND	5.0	ug/g						
Lead	ND	1.0	ug/g						
Mercury	ND	0.1	ug/g						
Molybdenum	ND	1.0	ug/g						
Nickel	ND	5.0	ug/g						
Selenium	ND	1.0	ug/g						
Silver	ND	0.3	ug/g						
Thallium	ND	1.0	ug/g						
Uranium	ND	1.0	ug/g						
Vanadium	ND	10.0	ug/g						
Zinc	ND	20.0	ug/g						

Order #: 1918392

Report Date: 07-May-2019

Order Date: 1-May-2019

Project Description: PE4321

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Conoral Inorganica									
General Inorganics									
рН	7.86	0.05	pH Units	7.75			1.4	10	
Metals									
Antimony	1.5	1.0	ug/g dry	ND			0.0	30	
Arsenic	3.7	1.0	ug/g dry	4.1			9.4	30	
Barium	41.1	1.0	ug/g dry	37.1			10.3	30	
Beryllium	ND	0.5	ug/g dry	ND			0.0	30	
Boron	7.3	5.0	ug/g dry	6.5			11.8	30	
Cadmium	ND	0.5	ug/g dry	ND			0.0	30	
Chromium (VI)	ND	0.2	ug/g dry	ND				35	
Chromium	11.4	5.0	ug/g dry	11.5			0.7	30	
Cobalt	4.0	1.0	ug/g dry	4.3			7.5	30	
Copper	14.1	5.0	ug/g dry	14.4			2.0	30	
Lead	10.9	1.0	ug/g dry	12.0			9.8	30	
Mercury	0.502	0.1	ug/g dry	0.525			4.4	30	
Molybdenum	ND	1.0	ug/g dry	ND			0.0	30	
Nickel	7.7	5.0	ug/g dry	7.9			3.3	30	
Selenium	ND	1.0	ug/g dry	ND			0.0	30	
Silver	ND	0.3	ug/g dry	ND			0.0	30	
Thallium	ND	1.0	ug/g dry	ND			0.0	30	
Uranium	ND	1.0	ug/g dry	ND			0.0	30	
Vanadium	20.5	10.0	ug/g dry	20.8			1.6	30	
Zinc	47.2	20.0	ug/g dry	47.9			1.4	30	
Physical Characteristics			55,						
	00.0	0.4	0/	00 7			0.0	05	
% Solids	86.0	0.1	% by Wt.	86.7			0.9	25	

Order #: 1918392

Report Date: 07-May-2019

Order Date: 1-May-2019

Project Description: PE4321

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Metals									
Antimony	42.5		ug/L	ND	83.6	70-130			
Arsenic	49.1		ug/L	2.3	93.5	70-130			
Barium	93.3		ug/L	47.2	92.3	70-130			
Beryllium	46.7		ug/L	ND	93.0	70-130			
Boron	45.8		ug/L	6.3	79.0	70-130			
Cadmium	46.4		ug/L	ND	92.7	70-130			
Chromium (VI)	0.01		mg/L	ND	5.00	70-130		G	QM-01
Chromium	52.9		ug/L	7.3	91.4	70-130			
Cobalt	48.4		ug/L	2.1	92.4	70-130			
Copper	54.3		ug/L	9.3	89.9	70-130			
Lead	83.9		ug/L	42.8	82.1	70-130			
Mercury	1.92	0.1	ug/g	0.525	92.9	70-130			
Molybdenum	44.8		ug/L	ND	89.0	70-130			
Nickel	48.4		ug/L	ND	87.2	70-130			
Selenium	47.7		ug/L	ND	94.9	70-130			
Silver	43.3		ug/L	ND	86.5	70-130			
Thallium	47.8		ug/L	ND	95.5	70-130			
Uranium	45.4		ug/L	ND	90.4	70-130			
Vanadium	57.2		ug/L	11.0	92.4	70-130			
Zinc	88.3		ug/L	46.0	84.5	70-130			

Qualifier Notes:

QC Qualifiers :

QM-01: The spike recovery for this QC sample is outside of established control limits due to sample matrix interference.

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference.

Soil results are reported on a dry weight basis when the units are denoted with 'dry'. Where %Solids is reported, moisture loss includes the loss of volatile hydrocarbons.

GPARACEL	I H			Paracel ID: 19183					Itawa 1-80	19 St. , Onta 0-749-	Laurent (rio K1G 1947 aracellab	4J8		(Lab Use	Custody Outy) 121681
		_		In the second second				_	_					Page	of
Client Name: Paterson Groupinc.				Project Reference: PE4	32								Tur	naroun	id Time:
Contact Name: Kauge Munch													🗆 l Day		🗆 3 Day
Address 191 Colonhade Rd S.				PO# 26504	_	_	_	_	_				D 2 Day		Regular
Telephone: 613-226-7381				kmuch@	Dom	n	1.	201	n				Date Requ	ured.	Ancguiar
Criteria: 0 O. Reg. 153/04 (As Amended) Table _ 0 R	SC Filing	I O. Rej	, 558/0							iry) N	funicipali	ity:	1		
Matrix Type: S (Soil/Sed.) GW (Ground Water) SW (Surface Water)	er) 88 (Storm3	ianitary S	icaet) P	(Paint) A (Air) O (Other)	Re	quir	ed A	naly	505						
Paracel Order Number:			Z				Γ		Т	T				<u> </u>	T T
1418392	rix	Air Volume	of Containers	Sample Taken	s F1-F4+BTEX	s		Metals by ICP		WS)	HOE date	Hd			
Sample ID/Location Name	Matrix	Air	10 #	Date Time	PHCs	VOCs	P.A.Hs	Meta	H	B (HWS)	Re	4			
1 HAI-GI	S		1	Apr. 30/19				V	V					-19	ml
2 HA3-G1	S		1	Apr. 30/19							V				
3 HAS-GI	S		1	Apr. 29/19				V	VI	1		V			V
· HA7-61	S		2	Apr.29/19				V	1	1	V			2×1	som.
5 HAII-GI	S			Apr.30/19							V			194	mhl.
· HA13-61	S			Apr. 30/9				V	Vu	1				V	
1 HAIS-61	S	_	2	Apr. 30/19				V	14	4	V			-2×	120mi
* HA16-6-1	S			Der13419		_		_	_	-	V	1		19	10m1-
				0.0.00	-	_	_	1	+	+		_			
Comments: FN0, 4, 1, Soi Jan Sa	S	ato	1	Hpr.30/19				V			20	10		1	form
No. 8. Somple date	myn c	SIIC				0	Y	9.	A	511	291	19.		d of Deliv	100
Relinquished By (Sign: Kmunch	Received		e ad	- Z Recei	n. ved ar Li		25	70	0	al	(MA)	Vertie	THE PARTY OF TAXABLE PARTY.	aval	0
Relinquished By (Print): K.Munch	Date/Tin		10		Time:	18.5		2	A		1 /11	Date To	taut	5	10-
DatoTime: APay1,2019	Tempera	ture.		the second se	crature:		And in Concession, Name		-11	4		17	fied [] By:	1.1	

Chain of Custody (Env) - Rev 0.7 Feb. 2016

RELIABLE.

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Subcontracted Analysis

Paterson Group C 154 Colonnade Roa Nepean, ON K2E 7J Attn: Karyn Munch			13) 226-7381 13) 226-6344
Paracel Report No	1918392	Order Date:	01-May-19
Client Project(s):	PE4321	Report Date:	7-May-19
Client PO:	26504		,
Reference:	Standing Offer		
CoC Number:	121681		

Sample(s) from this project were subcontracted for the listed parameters. A copy of the subcontractor's report is attached

Paracel ID	Client ID	Analysis
1918392-02	HA3-G1	Pesticides - Organochlorine in soil
1918392-04	HA7-G1	Pesticides - Organochlorine in soil
1918392-05	HA11-G1	Pesticides - Organochlorine in soil
1918392-07	HA15-G1	Pesticides - Organochlorine in soil
1918392-08	HA16-G1	Pesticides - Organochlorine in soil

Client: Company:	Dale Robertson Paracel Laboratories Ltd Ottawa	Work Order Number: PO #:	371016
Address:	300-2319 St. Laurent Blvd.	Regulation:	O.Reg 153 Table 1 Soil Res/Park/Inst/Ind/Commer/Comm
	Ottawa, ON, K1G 4J8	Project #:	1918392
Phone/Fax:	(613) 731-9577 / (613) 731-9064	DWS #:	
Email:	drobertson@paracellabs.com	Sampled By:	
Date Order Received:	5/3/2019	Analysis Started:	5/7/2019
Arrival Temperature:	13 °C	Analysis Completed:	5/7/2019

WORK ORDER SUMMARY

ANALYSES WERE PERFORMED ON THE FOLLOWING SAMPLES. THE RESULTS RELATE ONLY TO THE ITEMS TESTED.

Sample Description	Lab ID	Matrix	Туре	Comments	Date Collected	Time Collected
HA3-G1	1434178	Soil	None		4/30/2019	
HA7-G1	1434179	Soil	None		4/29/2019	
HA11-G1	1434180	Soil	None		4/30/2019	
HA15-G1	1434181	Soil	None		4/30/2019	
HA16-G1	1434182	Soil	None		4/30/2019	

METHODS AND INSTRUMENTATION

THE FOLLOWING METHODS WERE USED FOR YOUR SAMPLE(S):

Method	Lab	Description	Reference
Moisture (A99)	Garson	Determination of Percent Moisture	In House
OCPs Soil (A19)	Garson	Determination of Organochlorine Pesticides in Soil by GC/ECD	Modified from SW846-8081B

Paracel Laboratories Ltd.- Ottawa

CERTIFICATE OF ANALYSIS

Work Order Number: 371016

This report has been approved by:

Khaled Omari, Ph.D. Laboratory Director

Paracel Laboratories Ltd.- Ottawa

Work Order Number: 371016

WORK ORDER RESULTS

Sample Description Lab ID		HA3 - G1 1434178		7 - G1 4179	HA11 - G1 1434180		HA15 - G1 1434181			
General Chemistry	Result	MDL	Result	MDL	Result	MDL	Result	MDL	Units	Criteria: O.Reg 153 Table 1 Soil Res/Park/Inst/Ind/ Commer/Comm
% Moisture	22.2	0.1	19.8	0.1	24.2	0.1	4.2	0.1	%	~
Sample Description Lab ID	HA16 1434	- G1 1182								
General Chemistry	Result	MDL	Units	Criteria: O.Reg 153 Table 1 Soil Res/Park/Inst/Inc Commer/Comm	1/L					
% Moisture	23.9	0.1	%	~						
Sample Description	HA3	- G1	HA7	/ - G1	HA11	- G1	HA15	- G1		
Lab ID	1434	178	143	4179	1434	180	1434	181		
OC Pesticides	Result	MDL	Result	MDL	Result	MDL	Result	MDL	Units	Criteria: O.Reg 153 Table 1 Soil Res/Park/Inst/Ind/ Commer/Comm
2,4'-DDD	<0.01	0.01	<0.01	0.01	<0.01	0.01	<0.01	0.01	μg/g	~
2,4'-DDE	<0.01	0.01	<0.01	0.01	<0.01	0.01	<0.01	0.01	μg/g	~
2,4'-DDT	<0.01	0.01	< 0.01	0.01	<0.01	0.01	<0.01	0.01	μg/g	~
4,4'-DDD	<0.01	0.01	<0.01	0.01	<0.01	0.01	<0.01	0.01	μg/g	~
4,4'-DDE	<0.01	0.01	<0.01	0.01	<0.01	0.01	<0.01	0.01	μg/g	~
4,4'-DDT	<0.01	0.01	<0.01	0.01	<0.01	0.01	<0.01	0.01	μg/g	~
Aldrin	<0.01	0.01	<0.01	0.01	<0.01	0.01	<0.01	0.01	μg/g	0.05
DDD (Total) (Calc.)	<0.01	0.01	<0.01	0.01	<0.01	0.01	<0.01	0.01	μg/g	0.05
DDE (Total) (Calc.)	<0.01	0.01	<0.01	0.01	<0.01	0.01	<0.01	0.01	μg/g	0.05
DDT (Total) (Calc.)	<0.01	0.01	<0.01	0.01	<0.01	0.01	<0.01	0.01	μg/g	1.4

Paracel Laboratories Ltd.- Ottawa

Work Order Number: 371016

Sample Description Lab ID	HA3 1434		HA7 1434		HA11 1434		HA15 1434			
OC Pesticides	Result	MDL	Result	MDL	Result	MDL	Result	MDL	Units	Criteria: O.Reg 153 Table 1 Soil Res/Park/Inst/Ind/ Commer/Comm
Decachlorobiphenyl (Surr.)	98	N/A	99	N/A	99	N/A	100	N/A	% Rec	~
Dieldrin	< 0.01	0.01	<0.01	0.01	<0.01	0.01	<0.01	0.01	μg/g	0.05
Endosulfan I	< 0.01	0.01	<0.01	0.01	<0.01	0.01	<0.01	0.01	μg/g	~
Endosulfan I + II (Calc.)	<0.01	0.01	<0.01	0.01	<0.01	0.01	<0.01	0.01	μg/g	0.04
Endosulfan II	<0.01	0.01	<0.01	0.01	<0.01	0.01	<0.01	0.01	μg/g	~
Endosulfan sulfate	<0.01	0.01	<0.01	0.01	<0.01	0.01	<0.01	0.01	μg/g	~
Endrin	<0.01	0.01	<0.01	0.01	<0.01	0.01	<0.01	0.01	µg/g	0.04
Endrin aldehyde	<0.01	0.01	<0.01	0.01	<0.01	0.01	<0.01	0.01	μg/g	~
Heptachlor	<0.01	0.01	<0.01	0.01	<0.01	0.01	<0.01	0.01	µg/g	0.05
Heptachlor epoxide	<0.01	0.01	<0.01	0.01	<0.01	0.01	<0.01	0.01	µg/g	0.05
Hexachlorobenzene	<0.01	0.01	<0.01	0.01	<0.01	0.01	<0.01	0.01	µg/g	0.01
Hexachlorobutadiene	<0.01	0.01	<0.01	0.01	<0.01	0.01	<0.01	0.01	μg/g	0.01
Hexachloroethane	<0.01	0.01	<0.01	0.01	<0.01	0.01	<0.01	0.01	µg/g	0.01
Methoxychlor	<0.01	0.01	<0.01	0.01	<0.01	0.01	<0.01	0.01	µg/g	0.05
Mirex	<0.01	0.01	<0.01	0.01	<0.01	0.01	<0.01	0.01	μg/g	~
Oxychlordane	<0.01	0.01	<0.01	0.01	<0.01	0.01	<0.01	0.01	µg/g	~
ß-BHC	<0.01	0.01	<0.01	0.01	<0.01	0.01	<0.01	0.01	µg/g	~
α - Chlordane	<0.01	0.01	<0.01	0.01	<0.01	0.01	<0.01	0.01	μg/g	~
α + γ -Chlordane (Calc.)	<0.01	0.01	<0.01	0.01	<0.01	0.01	<0.01	0.01	μg/g	0.05
α-BHC	<0.01	0.01	<0.01	0.01	<0.01	0.01	<0.01	0.01	μg/g	~
γ - Chlordane	<0.01	0.01	<0.01	0.01	<0.01	0.01	<0.01	0.01	μg/g	~
γ-BHC (Lindane)	<0.01	0.01	<0.01	0.01	<0.01	0.01	<0.01	0.01	μg/g	0.01
δ-ΒΗϹ	0.01	0.01	<0.01	0.01	0.03	0.01	0.02	0.01	μg/g	~

Paracel Laboratories Ltd.- Ottawa

Work Order Number: 371016

Sample Description	HA16	6 - G1		
Lab ID	1434	182		
OC Pesticides	Result	MDL	Units	Criteria: O.Reg 153 Table 1 Soil Res/Park/Inst/Ind/ Commer/Comm
2,4'-DDD	<0.01	0.01	μg/g	~
2,4'-DDE	<0.01	0.01	μg/g	~
2,4'-DDT	<0.01	0.01	μg/g	~
4,4'-DDD	<0.01	0.01	μg/g	~
4,4'-DDE	< 0.01	0.01	μg/g	~
4,4'-DDT	< 0.01	0.01	μg/g	~
Aldrin	< 0.01	0.01	μg/g	0.05
DDD (Total) (Calc.)	<0.01	0.01	μg/g	0.05
DDE (Total) (Calc.)	< 0.01	0.01	μg/g	0.05
DDT (Total) (Calc.)	<0.01	0.01	μg/g	1.4
Decachlorobiphenyl (Surr.)	88	N/A	% Rec	~
Dieldrin	< 0.01	0.01	μg/g	0.05
Endosulfan I	<0.01	0.01	μg/g	~
Endosulfan I + II (Calc.)	< 0.01	0.01	μg/g	0.04
Endosulfan II	< 0.01	0.01	μg/g	~
Endosulfan sulfate	< 0.01	0.01	μg/g	~
Endrin	< 0.01	0.01	μg/g	0.04
Endrin aldehyde	<0.01	0.01	μg/g	~
Heptachlor	<0.01	0.01	μg/g	0.05
Heptachlor epoxide	<0.01	0.01	μg/g	0.05
Hexachlorobenzene	<0.01	0.01	μg/g	0.01
Hexachlorobutadiene	<0.01	0.01	μg/g	0.01
Hexachloroethane	<0.01	0.01	μg/g	0.01
Methoxychlor	<0.01	0.01	μg/g	0.05

Paracel Laboratories Ltd.- Ottawa

Sample Description

Work Order Number: 371016

Sample Description	na i	b-GI		
Lab ID	143	4182		
OC Pesticides	Result	MDL	Units	Criteria: O.Reg 153 Table 1 Soil Res/Park/Inst/Ind/ Commer/Comm
Mirex	<0.01	0.01	μg/g	~
Oxychlordane	<0.01	0.01	μg/g	~
ß-BHC	<0.01	0.01	μg/g	~
α - Chlordane	<0.01	0.01	μg/g	~
α + γ -Chlordane (Calc.)	<0.01	0.01	μg/g	0.05
α-BHC	<0.01	0.01	μg/g	~
γ - Chlordane	<0.01	0.01	μg/g	~
γ-BHC (Lindane)	<0.01	0.01	μg/g	0.01
δ-ΒΗC	<0.01	0.01	μg/g	~

HA16 - G1

LEGEND

Dates: Dates are formatted as mm/dd/year throughout this report.

[rr]: After a parameter name indicates a re-run of that parameter. Sample may not have been handled according to the recommended temperature, hold time and head space requirements of the method after the initial analysis. MDL: Method detection limit or minimum reporting limit.

~: In a criteria column indicates the criteria is not applicable for the parameter row.

Quality Control: All associated Quality Control data is available on request.

Exceedences: HIGHLIGHTED CELLS INDICATE THAT THE RESULT EXCEEDS A REGULATORY LIMIT. CALCULATED UNCERTAINTY ESTIMATIONS ARE NOT APPLIED FOR DETERMINING SAMPLE EXCEEDANCES. Benzo(b)fluoranthene: Results for benzo(b)fluoranthene may include contributions from benzo(j)fluoranthene.

RELIABLE.

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

Paterson Group Consulting Engineers

154 Colonnade Road South Nepean, ON K2E 7J5 Attn: Karyn Munch

Client PO: 26715 Project: PE4321 Custody: 122103

Report Date: 14-May-2019 Order Date: 8-May-2019

Order #: 1919380

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID **Client ID** 1919380-01 AH14-G1

Approved By:

Mark Foto

Mark Foto, M.Sc. Lab Supervisor

Any use of these results implies your agreement that our total liability in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.

Order #: 1919380

Report Date: 14-May-2019 Order Date: 8-May-2019 Project Description: PE4321

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
Mercury by CVAA	EPA 7471B - CVAA, digestion	13-May-19	14-May-19
Solids, %	Gravimetric, calculation	13-May-19	13-May-19

Report Date: 14-May-2019

Order Date: 8-May-2019

Project Description: PE4321

	Client ID:	AH14-G1	-		
	Sample Date:	30-Apr-19 14:55	-	-	-
	Sample ID:	1919380-01	-	-	-
	MDL/Units	Soil	-	-	-
Physical Characteristics					
% Solids	0.1 % by Wt.	84.1	-	-	-
Metals			-		
Mercury	0.1 ug/g dry	0.6	-	-	-

Report Date: 14-May-2019 Order Date: 8-May-2019

Project Description: PE4321

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Metals Mercury	ND	0.1	ug/g						

Order #: 1919380

Report Date: 14-May-2019 Order Date: 8-May-2019

Project Description: PE4321

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Metals Mercury	ND	0.1	ug/g dry	ND			0.0	30	
Physical Characteristics % Solids	86.9	0.1	% by Wt.	87.6			0.8	25	

Report Date: 14-May-2019

Order Date: 8-May-2019

Project Description: PE4321

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Metals Mercury	1.60	0.1	ug/g	ND	107	70-130			

Qualifier Notes:

None

Sample Data Revisions None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference.

Soil results are reported on a dry weight basis when the units are denoted with 'dry'. Where %Solids is reported, moisture loss includes the loss of volatile hydrocarbons.

Report Date: 14-May-2019 Order Date: 8-May-2019 Project Description: PE4321

GPARACEL	דו RI דח RE			Paracel ID:	919380				tawa, 1-800	9 St. L Ontari 749-1	aurent Blvd. 5 K1G 4J8 947 racellabs.com		(Lab U	f Custody se Ouly) 22103
LADURATURIES L	1			1		_	_	_					_	_ of
Client Name: Paterson Group				Project Reference: Quote #	264321	_	_	_	_	_		-		ind Time:
Address: Karyn Munch		_		PO# 01-1-		-	_					□ 1 Da	у	□ 3 Day
154 Colonnade Rd. S.				Email Address:	-		-	-	_			D 2 Da	y	Regula
Telephone: 613-226-7381				kmunch(2 Duter	SAC	150	011	0.6	2		Date R	equired:	// -
Criteria: O O. Reg. 153/04 (As Amended) Table _ 🗆	RSC Filing D	10. Reg	;. 558/0	D D PWQO D CCN	IE I SUB (S	Storm)	Bs	UB (S	Sanitar	y) Mi	nicipality:	and the	_ D Other	
Matrix Type: S (Soil:Sed.) GW (Ground Water) SW (Surface W	/ater) 88 (Storm?	Sanitary S	sewet) P	(Paint) A (Air) O (Other	R	equir	red A	naly	ses					
Paracel Order Number:			2		X	5	Π	Π	Т	Π				
1919320	vir	Air Volume	of Containers	Sample Ta	ken Harta Sta	5		Metals by ICP		WS)				
Sample ID/Location Name	Matrix	Air '	10 H	Date	Time	VOCs	PAHs	Metal	Hg CrVI	B (HWS)				
1 /4H14-G1	S		1	Apr 30/19 2:	55 PM				X				1201	nl
2														
3														
4								Ц						
5	_					-		Ц	_					
6			-			-		Ц	_					_
7		_				-		Н	_					
8		-	-			+		\square	_	\square				
9		-	-			+	\vdash	\vdash	+	\square				
10 Comments:													ternot of De	livery
Comments.													Pari	acel
Relinquished By (Sign:	Receive	al by Driv	er Depa	FROUSE	Received at	Lab: Nee(XIVA	1	lol	mi	, Verifie	hoh 1	#A	1011
Relinquisticed By (Print): A.c.H. Self year		me. <i>Oc</i>	8/0	5/19 4 0	Date/Time:		128	29	19	09	59 Date/T		2-10	17:54
Date/Time: May 8, 2019	Temper	alure:		rn	Temperature	r: D	1.2	r			pH Ver	rified [] By		

Chain of Custody (Env) - Rev 0.7 Feb. 2016

Report Date: 22-Dec-2017

Order Date: 18-Dec-2017

Project Description: PG4135

	Client ID:	BH17 SS3	-	-	-
	Sample Date:	07-Dec-17	-	-	-
	Sample ID:	1751084-01	-	-	-
	MDL/Units	Soil	-	-	-
Physical Characteristics					
% Solids	0.1 % by Wt.	68.5	-	-	-
General Inorganics					-
рН	0.05 pH Units	7.68	-	-	-
Resistivity	0.10 Ohm.m	39.6	-	-	-
Anions					
Chloride	5 ug/g dry	66	-	-	-
Sulphate	5 ug/g dry	35	-	-	-

Order #: 1911250

Report Date: 18-Mar-2019

Order Date: 12-Mar-2019

Project Description: PG4135

		DU 7 10 000	BH16-19-SS4		
	Client ID:	BH7-19-SS3		-	-
	Sample Date:	02/25/2019 09:00	03/08/2019 09:00	-	-
	Sample ID:	1911250-01	1911250-02	-	-
	MDL/Units	Soil	Soil	-	-
Physical Characteristics					
% Solids	0.1 % by Wt.	71.4	72.6	-	-
General Inorganics	-				
рН	0.05 pH Units	7.72	6.54	-	-
Resistivity	0.10 Ohm.m	44.9	96.8	-	-
Anions					
Chloride	5 ug/g dry	21	11	-	-
Sulphate	5 ug/g dry	55	12	-	-

RELIABLE.

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

Paterson Group Consulting Engineers

154 Colonnade Road South Nepean, ON K2E 7J5 Attn: Karyn Munch

Client PO: 26050 Project: PE4321 Custody: 121054

Report Date: 2-Apr-2019 Order Date: 25-Mar-2019

Order #: 1913159

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID **Client ID** 1913159-01 BH3-GW1

Approved By:

Mark Foto

Mark Foto, M.Sc. Lab Supervisor

Any use of these results implies your agreement that our total liability in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.

Report Date: 02-Apr-2019 Order Date: 25-Mar-2019

Order #: 1913159

Project Description: PE4321

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
BTEX by P&T GC-MS	EPA 624 - P&T GC-MS	27-Mar-19	27-Mar-19
PHC F1	CWS Tier 1 - P&T GC-FID	26-Mar-19	27-Mar-19
PHCs F2 to F4	CWS Tier 1 - GC-FID, extraction	27-Mar-19	27-Mar-19
REG 153: Pesticides, OC	EPA 8081B - GC-ECD	2-Apr-19	2-Apr-19

Report Date: 02-Apr-2019

Order Date: 25-Mar-2019

Project Description: PE4321

Client ID: Sample Date:	BH3-GW1 03/22/2019 09:00	-	-	-
Sample ID:	1913159-01	-	-	-
MDL/Units	Water	-	-	-
_	<0.5	-	-	-
-	<0.5	-	-	-
÷	<0.5	-	-	-
0.5 ug/L	<0.5	-	-	-
0.5 ug/L	<0.5	-	-	-
-	<0.5	-	-	-
Surrogate	111%	-	-	-
-	<25	-	-	-
_	<100	-	-	-
-	<100	-	-	-
100 ug/L	<100	-	-	-
	<0.01	-	-	-
	<0.01	-	-	-
	<0.01	-	-	-
0.01 ug/L	<0.01	-	-	-
-	<0.01	-	-	-
-	<0.01	-	-	-
-	<0.01	-	-	-
-	<0.01	-	-	-
-	<0.01	-	-	-
0.01 ug/L	<0.01	-	-	-
0.01 ug/L	<0.01	-	-	-
0.01 ug/L	<0.01	-	-	-
0.01 ug/L	<0.01	-	-	-
_	<0.01	-	-	-
	<0.01	-	-	-
0.01 ug/L	<0.01	-	-	-
0.01 ug/L	<0.01	-	-	-
0.01 ug/L	<0.01	-	-	-
0.01 ug/L	<0.01	-	-	-
0.01 ug/L	<0.01	-	-	-
0.01 ug/L	<0.01	-	-	-
0.01 ug/L	<0.01	-	-	-
	Sample Date: Sample ID: MDL/Units 0.5 ug/L 0.01 u	Sample Date: Sample ID: 03/22/2019 09:00 1913159-01 Water MDL/Units Water 0.5 ug/L <0.5	Sample Date: Sample ID: MDL/Units $03/22/2019 09:00$ 1913159-01 Water- $0.5 ug/L$ <0.5 - $0.01 ug/L$ <0.5 - $100 ug/L$ <100 - $001 ug/L$ <0.01 - $0.01 ug/L$ </td <td>Sample Date: Sample ID: '1913159-01' - - 0.5 ug/L <0.5</td> - - 0.5 ug/L <0.5	Sample Date: Sample ID: '1913159-01' - - 0.5 ug/L <0.5

Report Date: 02-Apr-2019 Order Date: 25-Mar-2019

Project Description: PE4321

	Client ID:		-	-	-
	Sample Date:	03/22/2019 09:00	-	-	-
	Sample ID:	1913159-01	-	-	-
	MDL/Units	Water	-	-	-
Hexachlorocyclohexane, gamma	0.01 ug/L	<0.01	-	-	-
Hexachloroethane	0.01 ug/L	<0.01	-	-	-
Methoxychlor	0.01 ug/L	<0.01	-	-	-
Decachlorobiphenyl	Surrogate	74.1%	-	-	-

Order #: 1913159

Report Date: 02-Apr-2019 Order Date: 25-Mar-2019

Project Description: PE4321

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	25	ug/L						
F2 PHCs (C10-C16)	ND	100	ug/L						
F3 PHCs (C16-C34)	ND	100	ug/L						
F4 PHCs (C34-C50)	ND	100	ug/L						
Pesticides, OC									
Aldrin	ND	0.01	ug/L						
alpha-Chlordane	ND	0.01	ug/L						
gamma-Chlordane	ND	0.01	ug/L						
Chlordane	ND	0.01	ug/L						
o,p'-DDD	ND	0.01	ug/L						
p,p'-DDD	ND	0.01	ug/L						
DDD	ND	0.01	ug/L						
o,p'-DDE	ND	0.01	ug/L						
p,p'-DDE	ND	0.01	ug/L						
DDE	ND	0.01	ug/L						
o,p'-DDT	ND	0.01	ug/L						
p,p'-DDT	ND	0.01	ug/L						
DDT	ND	0.01	ug/L						
Dieldrin	ND	0.01	ug/L						
Endosulfan I	ND	0.01	ug/L						
Endosulfan II	ND ND	0.01 0.01	ug/L						
Endosulfan I/II Endrin	ND	0.01	ug/L						
Heptachlor	ND	0.01	ug/L						
Heptachlor epoxide	ND	0.01	ug/L ug/L						
Hexachlorobenzene	ND	0.01	ug/L						
Hexachlorobutadiene	ND	0.01	ug/L						
Hexachlorocyclohexane, gamma	ND	0.01	ug/L						
Hexachloroethane	ND	0.01	ug/L						
Methoxychlor	ND	0.01	ug/L						
Surrogate: Decachlorobiphenyl	0.328	0.01	ug/L		65.5	50-140			
Volatiles	0.020		ug/L		00.0	00 1 10			
			4						
Benzene	ND	0.5	ug/L						
Ethylbenzene	ND	0.5	ug/L						
Toluene	ND	0.5	ug/L						
m,p-Xylenes	ND	0.5	ug/L						
o-Xylene	ND	0.5	ug/L						
Xylenes, total	ND 91.1	0.5	ug/L		114	50-140			
Surrogate: Toluene-d8	91.1		ug/L		114	50-140			

Order #: 1913159

Report Date: 02-Apr-2019 Order Date: 25-Mar-2019

Project Description: PE4321

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
		05		ND				20	
F1 PHCs (C6-C10) Volatiles	ND	25	ug/L	ND				30	
Benzene	ND	0.5	ug/L	ND				30	
Ethylbenzene	ND	0.5	ug/L	ND				30	
Toluene	ND	0.5	ug/L	ND				30	
m,p-Xylenes	ND	0.5	ug/L	ND				30	
o-Xylene	ND	0.5	ug/L	ND				30	
Surrogate: Toluene-d8	88.0		ug/L		110	50-140			

Method Quality Control: Spike

Report Date: 02-Apr-2019 Order Date: 25-Mar-2019

Project Description: PE4321

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	1730	25	ug/L		86.5	68-117			
F2 PHCs (C10-C16)	1420	100	ug/L		88.7	60-140			
F3 PHCs (C16-C34)	3700	100	ug/L		94.4	60-140			
F4 PHCs (C34-C50)	2120	100	ug/L		85.3	60-140			
Pesticides, OC									
Aldrin	0.59	0.01	ug/L		118	50-140			
alpha-Chlordane	0.55	0.01	ug/L		109	50-140			
gamma-Chlordane	0.55	0.01	ug/L		111	50-140			
o,p'-DDD	0.34	0.01	ug/L		67.7	50-140			
p,p'-DDD	0.66	0.01	ug/L		132	50-140			
o,p'-DDE	0.34	0.01	ug/L		67.9	50-140			
p,p'-DDE	0.51	0.01	ug/L		103	50-140			
Dieldrin	0.53	0.01	ug/L		107	50-140			
Endosulfan I	0.57	0.01	ug/L		114	50-140			
Endosulfan II	0.46	0.01	ug/L		91.0	50-140			
Endrin	0.15	0.01	ug/L		30.0	50-140		C	S-02
Heptachlor	0.52	0.01	ug/L		104	50-140			
Heptachlor epoxide	0.47	0.01	ug/L		94.0	50-140			
Hexachlorobenzene	0.48	0.01	ug/L		96.0	50-140			
Hexachlorobutadiene	0.56	0.01	ug/L		113	50-140			
Hexachloroethane	0.50	0.01	ug/L		99.1	50-140			
Methoxychlor	0.48	0.01	ug/L		95.0	50-140			
Surrogate: Decachlorobiphenyl	0.377		ug/L		75.4	50-140			
Volatiles									
Benzene	33.3	0.5	ug/L		83.2	60-130			
Ethylbenzene	33.4	0.5	ug/L		83.5	60-130			
Toluene	31.6	0.5	ug/L		79.1	60-130			
m,p-Xylenes	65.0	0.5	ug/L		81.3	60-130			
o-Xylene	32.3	0.5	ug/L		80.8	60-130			

Qualifier Notes:

QC Qualifiers :

QS-02 : Spike level outside of control limits. Analysis batch accepted based on other QC included in the batch.

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference.

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.

- F1 range corrected for BTEX.

- F2 to F3 ranges corrected for appropriate PAHs where available.

- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.

- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.

3 PARACEL	TRU RES	STE PON		Para	cel ID: 1						rio -19	urent Blvd. K1G 4J8 47 acellabs.cor	n		(Lab	of Custo Use Only) 121	
LABORATORIES LTI),	IND						_								_ of _	-
ent Name: Paterson (97011010c.				Project Reference:	PEUZ	32			_				_	1 Da		ound T	ime: 3 Day
ntact Name: Kauph Munch		_	_	Quote #	000		-		-		-				5		2 2 8
Int Name: Paterson Group Inc. Itact Name: Kauga munch Itess: 1521 Colonnade Rd	S.			Email Address:	050		1.1	2	201	-	~~	gray).(2 Da	y)	Regula
					emi	inc	M.	21	, u		501			Date R			
iteria: Ø O. Reg. 153/04 (As Amended) Table 7 🗆 RS	C Filing 🛛	O. Reg	, 558/00	DPWQ0 DC	CME I SU	B (Stor	an)	o su	B(S	anitary) MI	incipanty.					
trix Type: S (Soil/Sed.) GW (Ground Water) SW (Surface Water	SS (Storm/S	mitary S	iewer) P	Paint) A (Air) O (O	ther)	Rec	nire	d Ar	alys	es	1			-			
aracel Order Number: (913/59	rix	Air Volume	of Containers	Sample	Taken	PHCs F1-F4+BTEX	Nocs	PAHs	Metals by ICP	Hg CrVI	B (HWS)	HOF					
Sample ID/Location Name	Matrix	Air	3社	Date	Time	Hd	1	ЬA	W	Hg CrV	13	-9	-	-		-	-
BH3-GWI	Gu		4	Han.22/19		V	-	-	+	+	t	V	-				-
2		-	-			+	-		1		T						
3		-	-			1		Π									
4		-	-													_	_
5		-	1										_			-	-
7										_	-	\vdash	-	-		-	
8						-				-	+		-				+
9						+	-	-	-	+	+		-			-	-
10					-					_	_			-	Method	of Delivery	r.
Comments: 1-Somple IP M 4	Bottle	Sr	read	-1642-											Ka	VACE	31
telinquished By (Sign):	Receiv	ed by D	river/Dep		Rec	rived at	Lab:	A	1.1	(1014		erified I	By:	MAR.	AN	
What Cord Ve		/	1	Deant	20 000	SVI Time:	M	1 ALG	1N 25.	2010		MA)ate/Tim	IC. 3	125/1	19	7;10
Relinquished By (Print): Nick bumberen m) Date/T	ime: rature:	65/	03/197		iperatur		8	"C				H Verif	COLUMN TO A	By:		

Chain of Custody (Env) - Rev 0.7 Feb. 2016

RELIABLE.

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

Paterson Group Consulting Engineers

154 Colonnade Road South Nepean, ON K2E 7J5 Attn: Karyn Munch

Client PO: 26714 Project: PE4321 Custody: 122102

Report Date: 14-May-2019 Order Date: 8-May-2019

Order #: 1919376

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID	Client ID
1919376-01	BH8-GW1
1919376-02	BH11-GW1
1919376-03	BH13-GW1
1919376-04	BH17-GW1
1919376-05	BH20-GW1

Approved By:

Mark Foto

Mark Foto, M.Sc. Lab Supervisor

Any use of these results implies your agreement that our total liability in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.

Order #: 1919376

Report Date: 14-May-2019 Order Date: 8-May-2019 Project Description: PE4321

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
Mercury by CVAA	EPA 245.2 - Cold Vapour AA	8-May-19	9-May-19
REG 153: Pesticides, OC	EPA 8081B - GC-ECD	13-May-19	14-May-19

Order #: 1919376

Report Date: 14-May-2019 Order Date: 8-May-2019

Project Description: PE4321

	Client ID: Sample Date: Sample ID:	BH8-GW1 29-Apr-19 10:30 1919376-01	BH11-GW1 30-Apr-19 09:15 1919376-02	BH13-GW1 29-Apr-19 13:20 1919376-03	BH17-GW1 29-Apr-19 12:30 1919376-04
Pesticides, OC	MDL/Units	Water	Water	Water	Water
,	0.01 ug/L	0.01	0.04	0.01	0.01
Aldrin	0.01 ug/L	<0.01	<0.01	<0.01	<0.01
alpha-Chlordane	÷	<0.01	<0.01	<0.01	<0.01
gamma-Chlordane	0.01 ug/L	<0.01	<0.01	<0.01	<0.01
Chlordane	0.01 ug/L	<0.01	<0.01	<0.01	<0.01
o,p'-DDD	0.01 ug/L	<0.01	<0.01	<0.01	<0.01
p,p'-DDD	0.01 ug/L	<0.01	<0.01	<0.01	<0.01
DDD	0.01 ug/L	<0.01	<0.01	<0.01	<0.01
o,p'-DDE	0.01 ug/L	<0.01	<0.01	<0.01	<0.01
p,p'-DDE	0.01 ug/L	<0.01	<0.01	<0.01	<0.01
DDE	0.01 ug/L	<0.01	<0.01	<0.01	<0.01
o,p'-DDT	0.01 ug/L	<0.01	<0.01	<0.01	<0.01
p,p'-DDT	0.01 ug/L	<0.01	<0.01	<0.01	<0.01
DDT	0.01 ug/L	<0.01	<0.01	<0.01	<0.01
Dieldrin	0.01 ug/L	<0.01	<0.01	<0.01	<0.01
Endosulfan I	0.01 ug/L	<0.01	<0.01	<0.01	<0.01
Endosulfan II	0.01 ug/L	<0.01	<0.01	<0.01	<0.01
Endosulfan I/II	0.01 ug/L	<0.01	<0.01	<0.01	<0.01
Endrin	0.01 ug/L	<0.01	<0.01	<0.01	<0.01
Heptachlor	0.01 ug/L	<0.01	<0.01	<0.01	<0.01
Heptachlor epoxide	0.01 ug/L	<0.01	<0.01	<0.01	<0.01
Hexachlorobenzene	0.01 ug/L	<0.01	<0.01	<0.01	<0.01
Hexachlorobutadiene	0.01 ug/L	0.20	0.08	<0.01	<0.01
Hexachlorocyclohexane, gamma	0.01 ug/L	<0.01	<0.01	<0.01	<0.01
Hexachloroethane	0.01 ug/L	<0.01	<0.01	<0.01	<0.01
Methoxychlor	0.01 ug/L	<0.01	<0.01	<0.01	<0.01
Decachlorobiphenyl	Surrogate	88.9%	88.7%	88.7%	98.5%

Report Date: 14-May-2019

Order Date: 8-May-2019

Project Description: PE4321

	Client ID: Sample Date:	BH20-GW1 30-Apr-19 16:00 1919376-05	-	-	-
	Sample ID: MDL/Units	Water	-	-	-
Metals					
Mercury	0.1 ug/L	<0.1	-	-	-
Pesticides, OC					
Aldrin	0.01 ug/L	<0.01	-	-	-
alpha-Chlordane	0.01 ug/L	<0.01	-	-	-
gamma-Chlordane	0.01 ug/L	<0.01	-	-	-
Chlordane	0.01 ug/L	<0.01	-	-	-
o,p'-DDD	0.01 ug/L	<0.01	-	-	-
p,p'-DDD	0.01 ug/L	<0.01	-	-	-
DDD	0.01 ug/L	<0.01	-	-	-
o,p'-DDE	0.01 ug/L	<0.01	-	-	-
p,p'-DDE	0.01 ug/L	<0.01	-	-	-
DDE	0.01 ug/L	<0.01	-	-	-
o,p'-DDT	0.01 ug/L	<0.01	-	-	-
p,p'-DDT	0.01 ug/L	<0.01	-	-	-
DDT	0.01 ug/L	<0.01	-	-	-
Dieldrin	0.01 ug/L	<0.01	-	-	-
Endosulfan I	0.01 ug/L	<0.01	-	-	-
Endosulfan II	0.01 ug/L	<0.01	-	-	-
Endosulfan I/II	0.01 ug/L	<0.01	-	-	-
Endrin	0.01 ug/L	<0.01	-	-	-
Heptachlor	0.01 ug/L	<0.01	-	-	-
Heptachlor epoxide	0.01 ug/L	<0.01	-	-	-
Hexachlorobenzene	0.01 ug/L	<0.01	-	-	-
Hexachlorobutadiene	0.01 ug/L	<0.01	-	-	-
Hexachlorocyclohexane, gamma	0.01 ug/L	<0.01	-	-	-
Hexachloroethane	0.01 ug/L	<0.01	-	-	-
Methoxychlor	0.01 ug/L	<0.01	-	-	-
Decachlorobiphenyl	Surrogate	103%	-	-	-

Order #: 1919376

Report Date: 14-May-2019

Order Date: 8-May-2019

Project Description: PE4321

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Metals									
Mercury	ND	0.1	ug/L						
Pesticides, OC			-						
Aldrin	ND	0.01	ug/L						
alpha-Chlordane	ND	0.01	ug/L						
gamma-Chlordane	ND	0.01	ug/L						
Chlordane	ND	0.01	ug/L						
o,p'-DDD	ND	0.01	ug/L						
p,p'-DDD	ND	0.01	ug/L						
DDD	ND	0.01	ug/L						
o,p'-DDE	ND	0.01	ug/L						
p,p'-DDE	ND	0.01	ug/L						
DDE	ND	0.01	ug/L						
o,p'-DDT	ND	0.01	ug/L						
p,p'-DDT	ND	0.01	ug/L						
DDT	ND	0.01	ug/L						
Dieldrin	ND	0.01	ug/L						
Endosulfan I	ND	0.01	ug/L						
Endosulfan II	ND	0.01	ug/L						
Endosulfan I/II	ND	0.01	ug/L						
Endrin	ND	0.01	ug/L						
Heptachlor	ND	0.01	ug/L						
Heptachlor epoxide	ND	0.01	ug/L						
Hexachlorobenzene	ND	0.01	ug/L						
Hexachlorobutadiene	ND	0.01	ug/L						
Hexachlorocyclohexane, gamma	ND	0.01	ug/L						
Hexachloroethane	ND	0.01	ug/L						
Methoxychlor	ND	0.01	ug/L			50 4 40			
Surrogate: Decachlorobiphenyl	0.555		ug/L		111	50-140			

Order #: 1919376

Report Date: 14-May-2019 Order Date: 8-May-2019

Project Description: PE4321

Method Quality Control: Duplicate

Analyte	R Result	eporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Metals Mercury	0.25	0.1	ug/L	0.25			0.9	20	

Order #: 1919376

Report Date: 14-May-2019

Order Date: 8-May-2019

Project Description: PE4321

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Metals									
Mercury	3.04	0.1	ug/L	0.25	92.7	70-130			
Pesticides, OC									
Aldrin	0.77	0.01	ug/L			50-140			
alpha-Chlordane	0.73	0.01	ug/L			50-140			
gamma-Chlordane	0.75	0.01	ug/L			50-140			
o,p'-DDD	0.45	0.01	ug/L		89.8	50-140			
p,p'-DDD	0.69	0.01	ug/L			50-140			
o,p'-DDE	0.50	0.01	ug/L		100	50-140			
p,p'-DDE	0.73	0.01	ug/L			50-140			
o,p'-DDT	0.44	0.01	ug/L		88.5	50-140			
p,p'-DDT	0.61	0.01	ug/L			50-140			
Dieldrin	0.77	0.01	ug/L			50-140			
Endosulfan I	0.77	0.01	ug/L			50-140			
Endosulfan II	0.73	0.01	ug/L			50-140			
Endrin	0.79	0.01	ug/L			50-140			
Heptachlor	0.73	0.01	ug/L			50-140			
Heptachlor epoxide	0.75	0.01	ug/L			50-140			
Hexachlorobenzene	0.61	0.01	ug/L			50-140			
Hexachlorobutadiene	0.68	0.01	ug/L			50-140			
Hexachlorocyclohexane, gamma	0.69	0.01	ug/L			50-140			
Hexachloroethane	0.53	0.01	ug/L			50-140			
Methoxychlor	0.60	0.01	ug/L			50-140			
Surrogate: Decachlorobiphenyl	0.510		ug/L		102	50-140			

Qualifier Notes:

None

Sample Data Revisions None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference.

C	OPARACEL			arac	el ID: 191	9376			Head Office 300-2319 St. Laurent Blvd. Ottawa, Ontario K1G 4J8 p: 1-800-749-1947 e: paracel@paracellabs.com				Chain of Custody (Lab Use Oaly) .N. 122102						
											_					1	Page	of	
Client	Taterson Group				Project Reference Ouote #	« PE 432	21		_	_		_					naroui	nd Time	e:
Addres	Karyo Munch			_			_	_		-	_	_	_			Day		□ 3 I	Day
vuures	154 Colonnade Rd. S.				PO # 267) Email Address:	4	_	_	_	_		_			- 2	Day		Re	gular
l'elephi					-	inch@p	La	12.	2	See.	0	r	0			e Requ	uired:	7	Bana
Criter	a: 0 O. Reg. 153/04 (As Amended) Table _ CRSC	Filing C	1 O. Rej	, 558/0										icipality:	1		Other:		
	Type: S (Soil/Sed.) GW (Ground Water) SW (Surface Water) S						Γ			naly									
Parac	el Order Number:	-		Z			-	Ē	Γ				Τ		Т	Т	Т	T	1
	1919376 somple 10 cm	rix	Air Volume	# of Containers	Sample	e Taken	PHCs F1-F4+BTEX	×		Metals by ICP			(SM	NOE					
	Sample ID/Location Name hoteles	Matrix	Air	# of	Date	Time	PHC:	VOCs	PAHs	Metal	fig	CrVI	B (HWS)	200					
1	BH8-GWI - BH8 MA	G.W.		1	Acr 29/19	10:30 AM								X					
2	BH11-GW1 = 0H11	1		1	10, 30/R	9:15 AM								X					
3	BH13-GW1 = BH13			1	Apr 29/19	1:20 PM								X					
4	BH17-GW1 - BH17			-1	Apr 29/19	12:30 PM								X					2
5	BH 20 - GWI - BH 20 - For 16	V		2	Apr 30/19	HiDO PM					X			X					-
6	Ambe	rglass		_										_					
7										Ц		_							
8											_	_					_		
9				_							4	-		_	-	_	-		
10					L														
Comn	ients:			10	~ Au	-	r									Moth	at of Deli	ol	
N	ished By (Sign):	Receive	//	rer:Depo	FRANSE	Reveivo	MP	ePa	TRI	1	1	10	in		NA.	1A	3	1	
Relinqu Date/Ti	ished By (Print): Wick Sullivan	Date/Tir Temper		8/0	5/19 4	Date/Tir	100	17	70		219	(14,			<u>N-</u>	0Y-	191	132
7400 T	1-10y 5, 2017	Liender	as 61 6 1		. /	. Tranger	nulle;	191	1	1				pri ve	rified []	uy:	-		

RELIABLE.

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

Paterson Group Consulting Engineers

154 Colonnade Road South Nepean, ON K2E 7J5 Attn: Karyn Munch

Client PO: 26515 Project: PE4321 Custody: 122126

Report Date: 23-May-2019 Order Date: 17-May-2019

Order #: 1920828

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID Client ID 1920828-01 BH2-GW1 1920828-02 Dup-GW

Approved By:

Nack Foto

Mark Foto, M.Sc. Lab Supervisor

Any use of these results implies your agreement that our total liability in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8

Certificate of Analysis Client: Paterson Group Consulting Engineers Client PO: 26515 Order #: 1920828

Report Date: 23-May-2019 Order Date: 17-May-2019

Project Description: PE4321

Page 2 of 7

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date Analysis Date	<u>;</u>
BTEX by P&T GC-MS	EPA 624 - P&T GC-MS	20-May-19 20-May-1	19
PHC F1	CWS Tier 1 - P&T GC-FID	19-May-19 20-May-1	19
PHCs F2 to F4	CWS Tier 1 - GC-FID, extraction	22-May-19 22-May-1	19

PARACEL

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8

Certificate of Analysis Client: Paterson Group Consulting Engineers Client PO: 26515 Report Date: 23-May-2019 Order Date: 17-May-2019

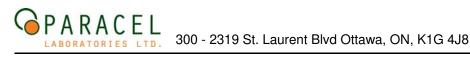
Project Description: PE4321

	-				r
	Client ID:	BH2-GW1	Dup-GW	-	-
	Sample Date:	17-May-19 09:00	17-May-19 09:00	-	-
	Sample ID:	1920828-01	1920828-02	-	-
	MDL/Units	Water	Water	-	-
Volatiles					
Benzene	0.5 ug/L	<0.5	<0.5	-	-
Ethylbenzene	0.5 ug/L	<0.5	<0.5	-	-
Toluene	0.5 ug/L	<0.5	<0.5	-	-
m,p-Xylenes	0.5 ug/L	<0.5	<0.5	-	-
o-Xylene	0.5 ug/L	<0.5	<0.5	-	-
Xylenes, total	0.5 ug/L	<0.5	<0.5	-	-
Toluene-d8	Surrogate	105%	106%	-	-
Hydrocarbons					
F1 PHCs (C6-C10)	25 ug/L	<25	<25	-	-
F2 PHCs (C10-C16)	100 ug/L	<100	<100	-	-
F3 PHCs (C16-C34)	100 ug/L	<100	<100	-	-
F4 PHCs (C34-C50)	100 ug/L	<100	<100	-	-

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8

Certificate of Analysis Client: Paterson Group Consulting Engineers Client PO: 26515 Order #: 1920828

Report Date: 23-May-2019


Order Date: 17-May-2019

Page 4 of 7

Project Description: PE4321

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	25	ug/L						
F2 PHCs (C10-C16)	ND	100	ug/L						
F3 PHCs (C16-C34)	ND	100	ug/L						
F4 PHCs (C34-C50)	ND	100	ug/L						
Volatiles									
Benzene	ND	0.5	ug/L						
Ethylbenzene	ND	0.5	ug/L						
Toluene	ND	0.5	ug/L						
m,p-Xylenes	ND	0.5	ug/L						
o-Xylene	ND	0.5	ug/L						
Xylenes, total	ND	0.5	ug/L						
Surrogate: Toluene-d8	82.1		ug/L		103	50-140			

Order #: 1920828

Report Date: 23-May-2019 Order Date: 17-May-2019

Project Description: PE4321

Page 5 of 7

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	25	ug/L	ND				30	
Volatiles									
Benzene	ND	0.5	ug/L	ND				30	
Ethylbenzene	ND	0.5	ug/L	ND				30	
Toluene	ND	0.5	ug/L	ND				30	
m,p-Xylenes	ND	0.5	ug/L	ND				30	
o-Xylene	ND	0.5	ug/L	ND				30	
Surrogate: Toluene-d8	84.8		ug/L		106	50-140			

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8

Certificate of Analysis Client: Paterson Group Consulting Engineers Client PO: 26515 Report Date: 23-May-2019

Order Date: 17-May-2019

Page 6 of 7

Project Description: PE4321

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	1810	25	ug/L		90.6	68-117			
F2 PHCs (C10-C16)	1370	100	ug/L		85.7	60-140			
F3 PHCs (C16-C34)	3700	100	ug/L		94.4	60-140			
F4 PHCs (C34-C50)	2070	100	ug/L		83.5	60-140			
Volatiles									
Benzene	41.3	0.5	ug/L		103	60-130			
Ethylbenzene	40.6	0.5	ug/L		102	60-130			
Toluene	38.0	0.5	ug/L		95.1	60-130			
m,p-Xylenes	86.6	0.5	ug/L		108	60-130			
o-Xylene	47.4	0.5	ug/L		118	60-130			
Surrogate: Toluene-d8	75.2		ug/L		94.0	50-140			

Qualifier Notes:

None

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference.

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.

- F1 range corrected for BTEX.
- F2 to F3 ranges corrected for appropriate PAHs where available.
- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.
- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.
- When reported, data for F4G has been processed using a silica gel cleanup.

GPARACE				Paracel ID:	: 19208;	28 			ead Office)0-2319 St. Laurent Blvd. ittawa, Ontario K1G 4J8 : 1-800-749-1947 : paracel@paracellabs.com		100	Chain of Custody (Lab Use Only) .NS 122126					
LABORATORIES	LTD.													Pag	c of	_	
Client Name: Paterson Group				Project Reference: Quote #	PEU	36	21			_	_		- 11	Turna Day	round	Time S D	
Address: 154 LOIONNOOLE RO	S.			PO # 20	esiz	pal	ov.	∞	nç	NOL.	40	a	1.1.5.6.5.8	Day Requir	ed: 14	□Reį IJZ	20110
Telephone: 03.220.738] Criteria: 0. Reg. 153/04 (As Amended) Table3	C RSC Filine	O. Reg	. 558/00	DPWQ0 DC	CME I SU	B (Sto	rm) C	SUE	(Sar	iitary)	Mu	nicipality: _		0 (Other:	5	
Criteria: O. Reg. 153/04 (As Amended) 1 auto						Req	uired	Ana	lyse	s							
Paracel Order Number:	Matrix	Air Volume	of Containers	Sample		PHCs F1-F4+BTEX	vocs	PAHs Meets building		CrVI	B (HWS)						
Sample ID/Location Name		<	#	Date 10017/19	Tune	V	>	a -	-	Ŭ	-						1
BHQ.GWI	JW		3	May 7/19		V											
2 DUP-JW	00		-	white													_
3									1				-	-	-	-	-
5						_		_	+	+				-	-	-	-
6						-		-	+	+	-		_	-	-	+	-
7			_			+	$\left \right $	+	+	+	+		-	-	+	+	-
8		_	-			+	\vdash	+	+	+	+		-	-	1	-	1
9		-	+			+		+	+	+	t		-	-			
10						-			-	-	-			Matho	d of Del	çery:	
Comments:				A		0		_				103		U	Nit	1	- 19
Relinquished By (Sign):	Receiv	ed by Dr	iver Dep	4/0	I G Reve	ited at	(116: 2001	Pay	m	Ro	k	mal	ified U	1		7-1	17
Relinquished By (Print):	DateT		M	Any 171		Time: perature	10 A 10	Å	c jo	101°	10	10.1	e/Time: Verified [By	-11	1	A.1-
Date/Time:	Tempe	rature:	1		Tem.	beneraria.	101	9		-	-	P					

Chain of Custody (Env) - Rev 0.7 Feb. 2016

RELIABLE.

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

Paterson Group Consulting Engineers

154 Colonnade Road South Nepean, ON K2E 7J5 Attn: Karyn Munch

Client PO: 29916 Project: PE4321 Custody: 126166, 165, 168, 169

Report Date: 12-May-2020 Order Date: 6-May-2020

Order #: 2019245

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

This Certificate of A	Analysis contains analytical data applicable to the	rollowing samples as submitted:
Paracel ID	Client ID	
2019245-02	HA2B-20	
2019245-03	HA3A-20	
2019245-04	HA4A-20	
2019245-05	HA5B-20	
2019245-06	HA6A-20	
2019245-07	HA7A-20	
2019245-08	HA8B-20	
2019245-09	HA9A-20	
2019245-10	HA10B-20	
2019245-11	HA11A-20	
2019245-12	HA12A-20	
2019245-13	HA13A-20	
2019245-14	HA14B-20	
2019245-15	HA15A-20	
2019245-16	HA16B-20	
2019245-17	HA17A-20	
2019245-18	HA18A-20	
2019245-19	HA19A-20	
2019245-20	HA20A-20	
2019245-22	HA22-20	
2019245-23	HA23A-20	
2019245-24	HA24B-20	
2019245-25	HA25A-20	
2019245-26	HA26A-20	
2019245-27	HA27-20	
2019245-28	HA28A-20	
2019245-29	HA29B-20	
2019245-30	HA30A-20	
2019245-31	HA31B-20	
2019245-32	HA32A-20	
Approved By:	Dasa	Dale Robertson, BSc Laboratory Director

Any use of these results implies your agreement that our total liability in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.

2019245-33 HA33B-20 2019245-34 HA34A-20 Report Date: 12-May-2020 Order Date: 6-May-2020 Project Description: PE4321

Order #: 2019245

Report Date: 12-May-2020 Order Date: 6-May-2020

Project Description: PE4321

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
Mercury by CVAA	EPA 7471B - CVAA, digestion	12-May-20	12-May-20
Solids, %	Gravimetric, calculation	8-May-20	8-May-20

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Client PO: 29916

Report Date: 12-May-2020 Order Date: 6-May-2020

Chent F O. 23310				•	Toject Description. T E452
	Client ID: Sample Date: Sample ID:	HA2B-20 04-May-20 09:00 2019245-02	HA3A-20 04-May-20 09:00 2019245-03	HA4A-20 04-May-20 09:00 2019245-04	HA5B-20 04-May-20 09:00 2019245-05
	MDL/Units	Soil	Soil	Soil	Soil
Physical Characteristics					
% Solids	0.1 % by Wt.	84.9	90.7	79.6	83.1
Metals	•		•	•	
Mercury	0.1 ug/g dry	<0.1	2.5	0.1	0.4
	Client ID: Sample Date: Sample ID: MDL/Units	HA6A-20 04-May-20 09:00 2019245-06 Soil	HA7A-20 04-May-20 09:00 2019245-07 Soil	HA8B-20 04-May-20 09:00 2019245-08 Soil	HA9A-20 04-May-20 09:00 2019245-09 Soil
Physical Characteristics					<u> </u>
% Solids	0.1 % by Wt.	93.3	92.5	73.4	94.7
Metals	++		•	ł	
Mercury	0.1 ug/g dry	1.9	0.5	<0.1	2.7
	Client ID: Sample Date: Sample ID: MDL/Units	HA10B-20 04-May-20 09:00 2019245-10 Soil	HA11A-20 04-May-20 09:00 2019245-11 Soil	HA12A-20 04-May-20 09:00 2019245-12 Soil	HA13A-20 04-May-20 09:00 2019245-13 Soil
Physical Characteristics					II
% Solids	0.1 % by Wt.	95.1	83.9	92.9	96.1
Metals	•				
Mercury	0.1 ug/g dry	<0.1	<0.1	1.7	0.9
	Client ID: Sample Date: Sample ID: MDL/Units	HA14B-20 04-May-20 09:00 2019245-14 Soil	HA15A-20 04-May-20 09:00 2019245-15 Soil	HA16B-20 04-May-20 09:00 2019245-16 Soil	HA17A-20 04-May-20 09:00 2019245-17 Soil
Physical Characteristics				-	
% Solids	0.1 % by Wt.	88.6	85.4	86.0	94.9
Metals					
Mercury	0.1 ug/g dry	<0.1	<0.1	<0.1	0.8
	Client ID: Sample Date: Sample ID: MDL/Units	HA18A-20 04-May-20 09:00 2019245-18 Soil	HA19A-20 04-May-20 09:00 2019245-19 Soil	HA20A-20 04-May-20 09:00 2019245-20 Soil	HA22-20 04-May-20 09:00 2019245-22 Soil
Physical Characteristics			1	1	<u> </u>
% Solids	0.1 % by Wt.	96.8	93.8	79.1	83.0
Metals	· · · · · · · · · · · · · · · · · · ·			ļ	
Mercury	0.1 ug/g dry	0.5	2.0	0.1	<0.1

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Client PO: 29916

Report Date: 12-May-2020 Order Date: 6-May-2020

Project Description: PE4321

	Client ID:	HA23A-20	HA24B-20	HA25A-20	HA26A-20
	Sample Date:	04-May-20 09:00	04-May-20 09:00	04-May-20 09:00	04-May-20 09:00
	Sample ID:	2019245-23	2019245-24	2019245-25	2019245-26
	MDL/Units	Soil	Soil	Soil	Soil
Physical Characteristics					
% Solids	0.1 % by Wt.	85.2	81.5	93.4	86.3
Metals			•		
Mercury	0.1 ug/g dry	<0.1	<0.1	1.7	<0.1
-	Client ID:	HA27-20	HA28A-20	HA29B-20	HA30A-20
	Sample Date:	04-May-20 09:00	04-May-20 09:00	04-May-20 09:00	04-May-20 09:00
	Sample ID:	2019245-27	2019245-28	2019245-29	2019245-30
Γ	MDL/Units	Soil	Soil	Soil	Soil
Physical Characteristics					
% Solids	0.1 % by Wt.	85.9	97.8	82.4	79.2
Metals	•		•		
Mercury	0.1 ug/g dry	0.2	<0.1	<0.1	<0.1
-	Client ID:	HA31B-20	HA32A-20	HA33B-20	HA34A-20
	Sample Date:	04-May-20 09:00	04-May-20 09:00	04-May-20 09:00	04-May-20 09:00
_	Sample ID:	2019245-31	2019245-32	2019245-33	2019245-34
	MDL/Units	Soil	Soil	Soil	Soil
Physical Characteristics					
% Solids	0.1 % by Wt.	81.4	88.6	77.4	79.2
Metals					
Mercury	0.1 ug/g dry	<0.1	2.6	0.1	<0.1

Report Date: 12-May-2020

Order Date: 6-May-2020

Project Description: PE4321

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Metals									
Mercury	ND	0.1	ug/g						

Report Date: 12-May-2020

Order Date: 6-May-2020

Project Description: PE4321

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Metals									
Mercury	ND	0.1	ug/g dry	ND			NC	30	
Physical Characteristics									
% Solids	88.5	0.1	% by Wt.	87.3			1.4	25	

Report Date: 12-May-2020

Order Date: 6-May-2020

Project Description: PE4321

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Metals Mercury	1.64	0.1	ug/g	ND	109	70-130			

None

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference. NC: Not Calculated

Soil results are reported on a dry weight basis when the units are denoted with 'dry'. Where %Solids is reported, moisture loss includes the loss of volatile hydrocarbons.

	E D N S B L											Chain Of Custody (Lab Use Only) N° 126166									
Client Name: PATERSON		del	-	Project	Ref:	PE4-	321	A STATE	S.							Pa	ge]	of	1		
Contact Name: KARYN MU	NICH			Quote						10	1		2	4	Ţ	urna	roun	d Tim	e		
Address: (64 Colonnade Reud Telephone: 613 - 226 - 7381					PO#: 29916 E-mail: Kurunch@patersongreenp.ca												1 day 1 day 2 day Date Required:				
Regulation 153/04 Other Regulation				1atrix T	ype: S	(Soil/Se	d.) GW (G	round Water)					R	- Required Analysis							
Table 1 Res/Park Med/Fine Table 2 Ind/Comm Coarse Table 3 Agri/Other Table For RSC: Yes No	REG 558 CCME SU - Sani Mun: Other:	PWQ0 MISA SU - Storm		Air Volume			Air) O (Ot	nitary Sewer) her) e Taken	5 F1-F4+BTEX		als by ICP			OF CHILIDES		e e e	r La ci Cisal	ж			
			Matrix	Air Vo	# of		Date	Time	PHCs	VOCS	Metals	ВH	2. C	B (HWS)	Ś	· · ·	-96J	i Rita i			
·1 (+A1-20	Sample ID/Location Name		5	s ¹	1	MAY	4/20		e h					X	1	:			_		
·2 HA28-20	at start	and Harden	ra pr	sy y		у л а 2 ₁ с. 93	-	1000	1917	4 M		X	pr c					ha ye	. 31.		
·3 (+A 3A-20)	a dha			- 15			3/2/19			de la	L	X		X			197				
· 4 HA4A-20	ageneral sectors	an adaptation in the second		an e	6 10	A	u shar is	and and the	i sini	Section 1	1	X	194 A	ri Âde	20	- 2	a e	la de la co			
.5 1+ASB-20				123	1.5	et i son	·	 south the 	(20)		L	4		- -	-			1.1			
·6 HAGA - 20											L	Щ		\parallel	-	_			- (
·7 HA7A-20		3							1.00		┢	\parallel		+	+						
18 HASB-20				1				L			-	\parallel		+	+						
·9 HA9A-20										_	╞			_ -	+	_			1		
10 HAIOB-20			t	11	ţ	V	1.693	da filina series				4		V			06.5		2		
Comments:				ć.		end) -	li ji na shi Shi ta	1. De	Sp. 1	0				d of De	livery	ja	C	2			
Relinquished By (Sign):		Received By Dr	iver/D	epot:				Received at Lab:													
Relinquished By (Print): Dempse	7	Date/Time:				1 1/14		Date/Time:		Verified: By: UN											
Date/Time: MAY S/2020		Temperature:				0	С	Temperature:	fil	°C			ph ve	rined:		ογ.	NI	A			

Alata da ante mante

GPARACE							ID: 20192					ber			(L	n Of C ab Use .261	Only)	Constraint, Addition
Client Name: PATERSON	1.1.1		Projec	t Ref:	₽E 432	1	100	1			in the second se	i.				Page 2	of	
Contact Name: KARYN MUNUH			Quote									1	1	1	Turi	naroun	d Tin	ne
Address: 194 Colonnade R	cad	1	PO#: 29916 E-mail: Kmunch@patensongroup. Ca											🗆 1 da 🗆 2 da		□ 3 day ⊠ Regular		
Telephone: 613 - 226 - 73 d 1			1.01	54	Kmu	inchie	a paterson	500	"ľ	ч	ØS.		Da	te Req	uired:	<u></u>		<u></u>
Regulation 153/04 C	1		· · ·	A 11 (11) /		round Water)						Red	quired	Analy	sis			
Table 1 Res/Park Med/Fine REG 5 Table 2 Ind/Comm Coarse COME			SW (Su	P (P	Vater) SS aint) A (A		nitary Sewer) ner)	X					1.5.	COES	and a	with		
Table 3 Agri/Other SU - S Table Mun: For RSC: Yes No	a sugar (rix	Air Volume	of Containers	at të k	Sample	Taken	S F1-F4+BTEX	् इ	s	als by ICP	ti ja	CrVI B (HWS)	1ts	ide v s	i to traj	br o	814 - E
Sample ID/Location Name		Matrix	Air V	}o #	D	ate	Time	PHCs	VOCs	PAHS	Metals	ĥ	B F	ő	11 - A	Sime!	0.0	
·1 HAILA-20	er tote data	5		d.	MAY	1/20	r Maria da A	a de rel	6.11			X		X				
·2 1+A12A-20	netekoren eralduraria Netekoren eralduraria		hoty		in mi		Reaction and the second	22	57		-			1	-	-	300	
·3 HAIZA-20			184			1.2	$p \in \{0,1\}$	Ĉ,					1		÷			
14 HA14B-Ze	alatic regions		ar heri	da ba	le abaix	y sin edit	6 Constantine and	e da ref	<u>1</u>				ni tra		and.	der s	. ¹	
.5 HAISA-20		<u>(</u> 1)	1.11	5.5	200	an esta	1.00		13								- 9	
·6 (+A16B-20														ł				
·7 HA 17A-20						1.1.1.1.1	a difference							Ą			R - 5	
.8 HAISA-20			10.3															
·9 HAIGA-20														X				
·10 1+ A 20 A - 20	Carl Carl	÷		ŧ	ť	a b	s		e.		1	ţ				24 3	e B	
Comments:			11.80	1.4	in tur	April.	Л					N	lethod	of Delive		20	e	l
Relinquished By (Sign):	Received By D	river/D	epot:				Received of Urb?	4	2	0		V	erified		Co	7	_	ang al ang
Relinquished by (Print): Joshua Dayon	Date/Time:			10.0			Date/Time:	2	0	3:	00	a	ate Tin	Tai	16	120) (4:400
Date/Time: MAY 5/ 2020	Temperature:				°C		Temperature:	21	f	°C		p	H Verif	led:	By	NI	4	/

OPARACEL TRUSTE LABORATORIES LTD. RELIAB				Paracel ID: 2019245										L	Chain Of Custody (Lab Use Only) N° 126168								
Client Name: PATERSON	1.1.1.1	90		Project	Ref:	PE 43	21	1	Å	Ŋ		ţ.			Page <u>3</u> of <u>4</u>								
Contact Name: KARYN MUN	ci4			Quote	#:	e reter			13	3ª 	1	<i>a</i> .	- 0			ay.	Turr	aroun	d Tin	ie			
Address: 154 Colonnade Read				PO#: 29916 E-mail: (CMUNCHON poterson group.ca										□ 1 day □ 2 day Date Required:					□ 3 day Ø Regular				
Telephone: 613 - 226 - 7	281	Bellinak		Side.	(h		C1	Jac	1			2012		1	Date	Requ	uired:			<u></u>			
Regulation 153/04	Regulation 153/04 Other Regulation							round Water)						R	Required Analysis								
Table 1 Res/Park Med/Fine Table 2 Ind/Comm Coarse	REG 558 COME	PWQ0 MISA		SW (Sur		/ater) SS aint) A(/	nitary Sewer) ner)	×							STICIDES	and and a							
Table 3 Agri/Other	SU - Sani Mun:	SU - Storm	Altrix Air Volume # of Containers are0				Taken	PHCs F1-F4+BTEX	s	s	Metals by ICP	-11-	n K	B (HWS)	PESTIC	ф11.с. ч	1.55	1 1					
Sample ID/Locatio	n Name		Matrix	Air V	to #	C)ate	Time	PHO	VOCS	PAHS	Met	Нg	2 C	B (F	õ	- 5 A	163 a	$\{\cdot,\cdot\}$				
·1 HA21 B-20	11		3		t,	MAY	+/20									×							
2 HA22 - 20	end of hispa	and the second		Trees		an in i	rian i	n an	2	-	1	295	X	919 A		i Maria							
·3 HA23A-20	2011 (1997) 2011 (1997)			27		7×07	di fo						1					1.1					
.4 HA24 B-20	an an an tha an tha An tha an tha	nd name wanning J	ser for	Z me		and the	Same -	Calm addition	a de	a.c.		e e geste		57 P		a de la		See.	le e				
·5 1+ A 25 A - 20	1.00	e	Υ. Y				1. Q.	55 - C.I.	1							X							
6 HA 26 P - 20	7										Ì												
•7 HA27-20	t in the	1																					
18 HAZSA-20	1.1.1			7							Ż									1			
·9 HA29B-20											1												
10 HA3CA-20	Sel de la		d-	1	Þ	Ą	1.15	de la composition de la compos					¢					9i. 5					
Comments:	$u_{ij}^{1} \in \mathbb{R}^{n}$	10							5 ²	5 ⁻ -				Metho	od of	Pelive	ery: M	ae	e	l			
Relinquished By (Sign):	THE REPORT OF THE SEC.	Received By Di	river/D	epot:				Received at 1767	1	R	_)		Verifie	erified By:								
Relinquished By (Print): Josen Ompo	/	Date/Time:				0	6	May 670 3.000-								te/Tipe: May le 20 4:40p							
Date/Time: May 5/2000		Temperature:					rision 3.0	Interpretationer	14		C			period				NI	7				

OPARACEL							ID: 20192					er		•	(La	of C ab Use 261	Only)	dy
Client Name: PATER SCV	-		Project	Ref:	PE432	1	1.0	j.	ł			8			F	age <mark>4</mark>	of	
	1		Quote		110				Å	- 0	1	10		. V.	Turr	arour	d Tim	e
Contact Name: KARYN MUMCH Address:		Ţ	PO #:		29916	-	100	{	ŝ.	<u>,</u>	b	3		🗆 1 da	y		(🗆 3 day
Address: 159 Colemnade Read		r attest	E-mail:			0				 				🗆 2 da	y		1	🛛 Regular
Telephone: 613-226-7381				K	Mune	hap	atersongre	P.	9				Da	te Req	uired:			
Regulation 153/04 Other Regul	ation	M	atrix T	voe: S	(Soil/Sed.) GW (Gr	round Water)						Re	quired	Analy	sis		
] pwqo	s	W (Sur	face W	/ater) SS (Storm/Sar	nitary Sewer)								1			
] misa			P (P	aint) A (Ai	r) O (Oth	ier)	×			22		E.	DE.	e îr	1.1.1		62.2
🛛 Table 3 🗌 Agri/Other 🗌 SU - Sani 🔤	3 SU - Storm			ners			-	PHCs F1-F4+BTEX			СP			2				
TableMun:			nme	of Containers		Sample	Taken	F1-F4			Metals by ICP	-	(S)	PEST	1000		lay est	
For RSC: Yes No Other:		Matrix	Air Volume		Da	ato	Time	HCs	vocs	PAHS	Meta	Нg	CrVI B (HWS)	00	e.e.e	ga biç d	- 3	
Sample ID/Location Name		S	4	22	MAY 4		, inte	1	ŕ		-	X	-		1			
•1 HA31B-20		>			1 1/4 4	10		t				X	+	X				
·2 HA32A-20							7	t	F		\vdash	X						
•3 HA33 B-20	an a			t	V		San San San				\vdash	X		X		in.		
•4 HA 34A - 20		¥		V	•				t		\square		-		\square			
5			-	-				+	┢		$\left \right $		-		\square			
6	-		-	-				1	1				-		\square		e	12
7			-	-				+	\vdash		$\left \right $		+		\vdash			
8			× .					+	t				+		\top	-		
9	-							t	1		H			\vdash	\vdash			
10 Comments:													Methoo	l of Deliv	very:		0.1	2
comments.							0							PC	m	24	U	
Relinquished By (Sign):			epot:				Received of Jab					Verified By: SCol						
Relinquished by (Print):	Date/Time:	a state and a state of the stat				Date/Time: 6/20 3:00p					Date/Time: may le 20 4:40p							
Date/Time: MAY S/2020	Temperature:				°C		Temperature:	7.0	ł	°C		1	pH Ver	ified: C] 6	N	IA	

RELIABLE.

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Subcontracted Analysis

Paterson Group C 154 Colonnade Roa Nepean, ON K2E 7J Attn: Karyn Munch			13) 226-7381 13) 226-6344
Paracel Report No.	2019245	Order Date:	06-May-20
Client Project(s):	PE4321	Report Date:	13-May-20
Client PO:	29916		
Reference:	Standing Offer		
CoC Number:	126166, 165, 168, 169		

Sample(s) from this project were subcontracted for the listed parameters. A copy of the subcontractor's report is attached

Paracel ID	Client ID	Analysis
2019245-01	HA1-20	Pesticides - Organochlorine in soil
2019245-03	HA3A-20	Pesticides - Organochlorine in soil
2019245-05	HA5B-20	Pesticides - Organochlorine in soil
2019245-06	HA6A-20	Pesticides - Organochlorine in soil
2019245-07	HA7A-20	Pesticides - Organochlorine in soil
2019245-08	HA8B-20	Pesticides - Organochlorine in soil
2019245-09	HA9A-20	Pesticides - Organochlorine in soil
2019245-10	HA10B-20	Pesticides - Organochlorine in soil
2019245-11	HA11A-20	Pesticides - Organochlorine in soil
2019245-12	HA12A-20	Pesticides - Organochlorine in soil
2019245-13	HA13A-20	Pesticides - Organochlorine in soil
2019245-14	HA14B-20	Pesticides - Organochlorine in soil
2019245-15	HA15A-20	Pesticides - Organochlorine in soil
2019245-16	HA16B-20	Pesticides - Organochlorine in soil
2019245-17	HA17A-20	Pesticides - Organochlorine in soil
2019245-19	HA19A-20	Pesticides - Organochlorine in soil
2019245-25	HA25A-20	Pesticides - Organochlorine in soil
2019245-32	HA32A-20	Pesticides - Organochlorine in soil
2019245-34	HA34A-20	Pesticides - Organochlorine in soil

Client:	Dale Robertson	Work Order Number:	399613
Company:	Paracel Laboratories Ltd Ottawa	PO #:	
Address:	300-2319 St. Laurent Blvd.	Regulation:	O.Reg 153 Table 3 Soil Stringent
	Ottawa, ON, K1G 4J8	Project #:	2019245
Phone/Fax:	(613) 731-9577 / (613) 731-9064	DWS #:	
Email:	drobertson@paracellabs.com	Sampled By:	
Date Order Received:	5/8/2020	Analysis Started:	5/11/2020
Arrival Temperature:	9 °C	Analysis Completed:	5/13/2020

WORK ORDER SUMMARY

ANALYSES WERE PERFORMED ON THE FOLLOWING SAMPLES. THE RESULTS RELATE ONLY TO THE ITEMS TESTED.

Sample Description	Lab ID	Matrix	Туре	Comments	Date Collected	Time Collected
HA1-20	1535065	Soil	None		5/4/2020	
HA3A-20	1535066	Soil	None		5/4/2020	
HA5B-20	1535067	Soil	None		5/4/2020	
HA6A-20	1535068	Soil	None		5/4/2020	
HA7A-20	1535069	Soil	None		5/4/2020	
HA8B-20	1535070	Soil	None		5/4/2020	
HA9A-20	1535071	Soil	None		5/4/2020	
HA10B-20	1535072	Soil	None		5/4/2020	
HA11A-20	1535073	Soil	None		5/4/2020	
HA12A-20	1535074	Soil	None		5/4/2020	
HA13A-20	1535075	Soil	None		5/4/2020	
HA14B-20	1535076	Soil	None		5/4/2020	
HA15A-20	1535077	Soil	None		5/4/2020	
HA16B-20	1535078	Soil	None		5/4/2020	
HA17A-20	1535079	Soil	None		5/4/2020	
HA19A-20	1535080	Soil	None		5/4/2020	
HA25A-20	1535081	Soil	None		5/4/2020	

Paracel Laboratories Ltd.- Ottawa

Work Order Number: 399613

Sample Description	Lab ID	Matrix	Туре	Comments	Date Collected	Time Collected
HA32A-20	1535082	Soil	None		5/4/2020	
HA34A-20	1535083	Soil	None		5/4/2020	

METHODS AND INSTRUMENTATION

THE FOLLOWING METHODS WERE USED FOR YOUR SAMPLE(S):

Method	Lab	Description	Reference
Moisture (A99)	Garson	Determination of Percent Moisture	In-House
OCPs Soil (A19)	Garson	Determination of Organochlorine Pesticides in Soil by GC/ECD	Modified from SW846-8081B

This report has been approved by:

Fal Holom

Brad Halvorson, B.Sc. Laboratory Director

Paracel Laboratories Ltd.- Ottawa

Work Order Number: 399613

WORK ORDER RESULTS

Sample Description	HA1	- 20	HA3/	A - 20	HA5E	3 - 20	HA6/	A - 20		
Sample Date	5/4/2020	12:00 AM	5/4/2020	12:00 AM	5/4/2020	12:00 AM	5/4/2020	12:00 AM		
Lab ID	1535	5065	153	5066	1535	5067	153	5068		
General Chemistry	Result	MDL	Result	MDL	Result	MDL	Result	MDL	Units	Criteria: O.Reg 153 Table 3 Soil Stringent
% Moisture	4.9	0.1	12.9	0.1	18.5	0.1	8.8	0.1	%	~
Sample Description	HA7/	HA7A - 20		3 - 20	HA9/	A - 20	HA10B - 20			
Sample Date	5/4/2020	12:00 AM	5/4/2020	12:00 AM	5/4/2020	12:00 AM	5/4/2020	12:00 AM		
Lab ID	1535	5069	153	5070	1535	5071	153	5072		
General Chemistry	Result	MDL	Result	MDL	Result	MDL	Result	MDL	Units	Criteria: O.Reg 153 Table 3 Soil Stringent
% Moisture	15.9	0.1	27.9	0.1	10.0	0.1	6.9	0.1	%	~
Sample Description	HA11	A - 20	HA12	HA12A - 20		A - 20	HA14	B - 20		
Sample Date	5/4/2020	12:00 AM	5/4/2020	12:00 AM	5/4/2020	12:00 AM	5/4/2020	12:00 AM		
Lab ID	1535	5073	153	5074	1535	5075	153	5076		
General Chemistry	Result	MDL	Result	MDL	Result	MDL	Result	MDL	Units	Criteria: O.Reg 153 Table 3 Soil Stringent
% Moisture	18.5	0.1	10.9	0.1	8.4	0.1	15.6	0.1	%	~
Sample Description	HA15	A - 20	HA16	B - 20	HA17	A - 20	HA19	A - 20		
Sample Date	5/4/2020	12:00 AM	5/4/2020	12:00 AM	5/4/2020	12:00 AM	5/4/2020	12:00 AM		
Lab ID	1535	5077	153	5078	1535	5079	153	5080		
General Chemistry	Result	MDL	Result	MDL	Result	MDL	Result	MDL	Units	Criteria: O.Reg 153 Table 3 Soil Stringent
% Moisture	15.6	0.1	14.7	0.1	9.9	0.1	9.3	0.1	%	~

Paracel Laboratories Ltd.- Ottawa

Sample Description	HA25	A - 20	HA32	A - 20	HA34	A - 20				
Sample Date	5/4/2020	12:00 AM	5/4/2020	12:00 AM	5/4/2020	12:00 AM				
Lab ID	1535	5081	1535	5082	1535	5083				
General Chemistry	Result	MDL	Result	MDL	Result	MDL	Units	Criteria: O.Reg 153 Table 3 Soil Stringent		
% Moisture	8.4	0.1	12.4	0.1	21.5	0.1	%	~		
Sample Description	HA1	- 20	HA3/	A - 20	HA5E	3 - 20	HA6/	4 - 20		
Sample Date	5/4/2020	12:00 AM	5/4/2020	12:00 AM	5/4/2020	12:00 AM	5/4/2020	12:00 AM		
Lab ID	1535	5065	1535	5066	1535	5067	153	5068		
OC Pesticides	Result	MDL	Result	MDL	Result	MDL	Result	MDL	Units	Criteria: O.Reg 153 Table 3 Soil Stringent
2,4'-DDD	<0.008 [<0.009]	0.008	<0.009	0.009	<0.009	0.009	<0.009	0.009	μg/g	~
2,4'-DDE	<0.008 [<0.009]	0.008	<0.009	0.009	<0.009	0.009	<0.009	0.009	μg/g	~
2,4'-DDT	<0.008 [<0.009]	0.008	<0.009	0.009	<0.009	0.009	<0.009	0.009	μg/g	~
4,4'-DDD	<0.008 [<0.009]	0.008	<0.009	0.009	<0.009	0.009	<0.009	0.009	μg/g	~
4,4'-DDE	<0.008 [<0.009]	0.008	<0.009	0.009	<0.009	0.009	<0.009	0.009	μg/g	~
4,4'-DDT	<0.008 [<0.009]	0.008	<0.009	0.009	<0.009	0.009	<0.009	0.009	μg/g	~
Aldrin	<0.008 [<0.009]	0.008	<0.009	0.009	<0.009	0.009	<0.009	0.009	μg/g	0.05
DDD (Total) (Calc.)	<0.008 [<0.009]	0.008	<0.009	0.009	<0.009	0.009	<0.009	0.009	µg/g	3.3
DDE (Total) (Calc.)	<0.008 [<0.009]	0.008	<0.009	0.009	<0.009	0.009	<0.009	0.009	µg/g	0.26
DDT (Total) (Calc.)	<0.008 [<0.009]	0.008	<0.009	0.009	<0.009	0.009	<0.009	0.009	μg/g	1.4
Decachlorobiphenyl (Surr.)	97 [69]	N/A	87	N/A	89	N/A	81	N/A	% Rec	~

Paracel Laboratories Ltd.- Ottawa

Sample Description	HA1	- 20	HA3/	A - 20	HA5E	3 - 20	HA6/	A - 20		
Sample Date	5/4/2020	12:00 AM	5/4/2020	12:00 AM	5/4/2020	12:00 AM	5/4/2020	12:00 AM		
Lab ID	1535	5065	1535	1535066		5067	1535	5068		
OC Pesticides	Result	MDL	Result	MDL	Result	MDL	Result	MDL	Units	Criteria: O.Reg 153 Table 3 Soil Stringent
Dieldrin	<0.008 [<0.009]	0.008	<0.009	0.009	<0.009	0.009	<0.009	0.009	μg/g	0.05
Endosulfan I	<0.008 [<0.009]	0.008	<0.009	0.009	<0.009	0.009	<0.009	0.009	μg/g	~
Endosulfan I + II (Calc.)	<0.008 [<0.009]	0.008	<0.009	0.009	<0.009	0.009	<0.009	0.009	μg/g	0.04
Endosulfan II	<0.008 [<0.009]	0.008	<0.009	0.009	<0.009	0.009	<0.009	0.009	μg/g	~
Endosulfan sulfate	<0.008 [<0.009]	0.008	<0.009	0.009	<0.009	0.009	<0.009	0.009	μg/g	~
Endrin	<0.008 [<0.009]	0.008	<0.009	0.009	<0.009	0.009	<0.009	0.009	μg/g	0.04
Endrin aldehyde	<0.008 [<0.009]	0.008	<0.009	0.009	<0.009	0.009	<0.009	0.009	μg/g	~
Heptachlor	<0.008 [<0.009]	0.008	<0.009	0.009	<0.009	0.009	<0.009	0.009	μg/g	0.15
Heptachlor epoxide	<0.008 [<0.009]	0.008	<0.009	0.009	<0.009	0.009	<0.009	0.009	μg/g	0.05
Hexachlorobenzene	<0.008 [<0.009]	0.008	<0.009	0.009	<0.009	0.009	<0.009	0.009	μg/g	0.52
Hexachlorobutadiene	<0.008 [<0.009]	0.008	<0.009	0.009	<0.009	0.009	<0.009	0.009	μg/g	0.012
Hexachloroethane	<0.008 [<0.009]	0.008	<0.009	0.009	<0.009	0.009	<0.009	0.009	μg/g	0.071
Methoxychlor	<0.008 [<0.009]	0.008	<0.009	0.009	<0.009	0.009	<0.009	0.009	μg/g	0.13
Mirex	<0.008 [<0.009]	0.008	<0.009	0.009	<0.009	0.009	<0.009	0.009	μg/g	~
Oxychlordane	<0.008 [<0.009]	0.008	<0.009	0.009	<0.009	0.009	<0.009	0.009	μg/g	~
ß-BHC	<0.008 [<0.009]	0.008	<0.009	0.009	<0.009	0.009	<0.009	0.009	μg/g	~

Paracel Laboratories Ltd.- Ottawa

Sample Description	HA1	- 20	HA3/	A - 20	HA5E	3 - 20	HA6/	A - 20		
Sample Date	5/4/2020	12:00 AM	5/4/2020	12:00 AM	5/4/2020	12:00 AM	5/4/2020	12:00 AM		
Lab ID	153	5065	153	1535066		5067	153	5068		
OC Pesticides	Result	MDL	Result	MDL	Result	MDL	Result	MDL	Units	Criteria: O.Reg 153 Table 3 Soil Stringent
α - Chlordane	<0.008 [<0.009]	0.008	<0.009	0.009	<0.009	0.009	<0.009	0.009	µg/g	~
α + γ -Chlordane (Calc.)	<0.008 [<0.009]	0.008	<0.009	0.009	<0.009	0.009	<0.009	0.009	μg/g	0.05
α-ΒΗC	<0.008 [<0.009]	0.008	<0.009	0.009	<0.009	0.009	<0.009	0.009	μg/g	~
γ - Chlordane	<0.008 [<0.009]	0.008	<0.009	0.009	<0.009	0.009	<0.009	0.009	µg/g	~
γ-BHC (Lindane)	<0.008 [<0.009]	0.008	<0.009	0.009	<0.009	0.009	<0.009	0.009	µg/g	0.056
δ-BHC	0.053 [0.050]	0.008	0.057	0.009	0.044	0.009	0.056	0.009	µg/g	~
Sample Description	HA7/	A - 20	HA8	B - 20	HA9/	A - 20	HA10	B - 20		
Sample Date	5/4/2020	12:00 AM	5/4/2020	12:00 AM	5/4/2020	12:00 AM	5/4/2020	12:00 AM		
Lab ID	153	5069	153	5070	1535	5071	153	5072		
OC Pesticides	Result	MDL	Result	MDL	Result	MDL	Result	MDL	Units	Criteria: O.Reg 153 Table 3 Soil Stringent
2,4'-DDD	<0.007	0.007	<0.009	0.009	<0.007	0.007	<0.009	0.009	μg/g	~
2,4'-DDE	<0.007	0.007	<0.009	0.009	<0.007	0.007	<0.009	0.009	μg/g	~
2,4'-DDT	< 0.007	0.007	<0.009	0.009	<0.007	0.007	< 0.009	0.009	μg/g	~
4,4'-DDD	< 0.007	0.007	< 0.009	0.009	<0.007	0.007	< 0.009	0.009	μg/g	~
4,4'-DDE	<0.007	0.007	<0.009	0.009	<0.007	0.007	<0.009	0.009	μg/g	~
4,4'-DDT	<0.007	0.007	<0.009	0.009	<0.007	0.007	<0.009	0.009	μg/g	~
Aldrin	<0.007	0.007	<0.009	0.009	<0.007	0.007	<0.009	0.009	μg/g	0.05
DDD (Total) (Calc.)	<0.007	0.007	<0.009	0.009	<0.007	0.007	<0.009	0.009	μg/g	3.3
DDE (Total) (Calc.)	<0.007	0.007	<0.009	0.009	<0.007	0.007	<0.009	0.009	μg/g	0.26

Paracel Laboratories Ltd.- Ottawa

Sample Description Sample Date	HA7A 5/4/2020		HA8E 5/4/2020		HA9/ 5/4/2020	A - 20 12:00 AM		B - 20 12:00 AM		
Lab ID	1535	069	1535	5070	153	5071	153	5072		
OC Pesticides	Result	MDL	Result	MDL	Result	MDL	Result	MDL	Units	Criteria: O.Reg 153 Table 3 Soil Stringent
DDT (Total) (Calc.)	<0.007	0.007	<0.009	0.009	<0.007	0.007	<0.009	0.009	μg/g	1.4
Decachlorobiphenyl (Surr.)	66	N/A	100	N/A	81	N/A	88	N/A	% Rec	~
Dieldrin	<0.007	0.007	<0.009	0.009	<0.007	0.007	< 0.009	0.009	μg/g	0.05
Endosulfan I	<0.007	0.007	<0.009	0.009	<0.007	0.007	< 0.009	0.009	μg/g	~
Endosulfan I + II (Calc.)	<0.007	0.007	<0.009	0.009	<0.007	0.007	< 0.009	0.009	μg/g	0.04
Endosulfan II	<0.007	0.007	<0.009	0.009	< 0.007	0.007	< 0.009	0.009	μg/g	~
Endosulfan sulfate	<0.007	0.007	<0.009	0.009	< 0.007	0.007	<0.009	0.009	μg/g	~
Endrin	<0.007	0.007	<0.009	0.009	< 0.007	0.007	< 0.009	0.009	μg/g	0.04
Endrin aldehyde	<0.007	0.007	<0.009	0.009	< 0.007	0.007	< 0.009	0.009	μg/g	~
Heptachlor	<0.007	0.007	<0.009	0.009	< 0.007	0.007	< 0.009	0.009	μg/g	0.15
Heptachlor epoxide	<0.007	0.007	<0.009	0.009	< 0.007	0.007	< 0.009	0.009	μg/g	0.05
Hexachlorobenzene	<0.007	0.007	<0.009	0.009	< 0.007	0.007	< 0.009	0.009	μg/g	0.52
Hexachlorobutadiene	<0.007	0.007	<0.009	0.009	< 0.007	0.007	< 0.009	0.009	μg/g	0.012
Hexachloroethane	<0.007	0.007	<0.009	0.009	<0.007	0.007	<0.009	0.009	μg/g	0.071
Methoxychlor	<0.007	0.007	<0.009	0.009	< 0.007	0.007	<0.009	0.009	μg/g	0.13
Mirex	<0.007	0.007	<0.009	0.009	< 0.007	0.007	< 0.009	0.009	μg/g	~
Oxychlordane	<0.007	0.007	<0.009	0.009	< 0.007	0.007	< 0.009	0.009	μg/g	~
ß-BHC	<0.007	0.007	<0.009	0.009	<0.007	0.007	<0.009	0.009	μg/g	~
α - Chlordane	<0.007	0.007	<0.009	0.009	<0.007	0.007	<0.009	0.009	μg/g	~
α + γ -Chlordane (Calc.)	<0.007	0.007	<0.009	0.009	<0.007	0.007	<0.009	0.009	μg/g	0.05
α-BHC	<0.007	0.007	<0.009	0.009	<0.007	0.007	<0.009	0.009	μg/g	~
γ - Chlordane	<0.007	0.007	<0.009	0.009	<0.007	0.007	<0.009	0.009	μg/g	~
γ-BHC (Lindane)	<0.007	0.007	<0.009	0.009	<0.007	0.007	<0.009	0.009	µg/g	0.056

Paracel Laboratories Ltd.- Ottawa

Sample Description	HA7/	A - 20	HA8	3 - 20	HA9/	- 20	HA10	B - 20		
Sample Date	5/4/2020	12:00 AM	5/4/2020	12:00 AM	5/4/2020	12:00 AM	5/4/2020	12:00 AM		
Lab ID	1535	5069	1535	5070	1535	5071	1535	5072		
OC Pesticides	Result	MDL	Result	MDL	Result	MDL	Result	MDL	Units	Criteria: O.Reg 153 Table 3 Soil Stringent
δ-ΒΗϹ	0.052	0.007	0.051	0.009	0.055	0.007	0.011	0.009	μg/g	~
Sample Description	HA11	HA11A - 20		A - 20	HA13	A - 20	HA14	B - 20		
Sample Date	5/4/2020 12:00 AM		5/4/2020	12:00 AM	5/4/2020	12:00 AM	5/4/2020	12:00 AM		
Lab ID	1535073		1535	5074	1535	5075	1535	5076		
OC Pesticides	Result	MDL	Result	MDL	Result	MDL	Result	MDL	Units	Criteria: O.Reg 153 Table 3 Soil Stringent
2,4'-DDD	<0.008	0.008	<0.008	0.008	<0.009	0.009	<0.007	0.007	μg/g	~
2,4'-DDE	<0.008	0.008	<0.008	0.008	<0.009	0.009	< 0.007	0.007	μg/g	~
2,4'-DDT	<0.008	0.008	<0.008	0.008	<0.009	0.009	<0.007	0.007	μg/g	~
4,4'-DDD	<0.008	0.008	<0.008	0.008	<0.009	0.009	< 0.007	0.007	μg/g	~
4,4'-DDE	<0.008	0.008	<0.008	0.008	<0.009	0.009	<0.007	0.007	μg/g	~
4,4'-DDT	<0.008	0.008	<0.008	0.008	<0.009	0.009	<0.007	0.007	μg/g	~
Aldrin	<0.008	0.008	<0.008	0.008	<0.009	0.009	<0.007	0.007	μg/g	0.05
DDD (Total) (Calc.)	<0.008	0.008	<0.008	0.008	<0.009	0.009	<0.007	0.007	μg/g	3.3
DDE (Total) (Calc.)	<0.008	0.008	<0.008	0.008	<0.009	0.009	< 0.007	0.007	μg/g	0.26
DDT (Total) (Calc.)	<0.008	0.008	<0.008	0.008	<0.009	0.009	<0.007	0.007	μg/g	1.4
Decachlorobiphenyl (Surr.)	69	N/A	94	N/A	76	N/A	79	N/A	% Rec	~
Dieldrin	<0.008	0.008	<0.008	0.008	<0.009	0.009	< 0.007	0.007	μg/g	0.05
Endosulfan I	<0.008	0.008	<0.008	0.008	<0.009	0.009	<0.007	0.007	μg/g	~
Endosulfan I + II (Calc.)	<0.008	0.008	<0.008	0.008	<0.009	0.009	<0.007	0.007	μg/g	0.04
Endosulfan II	<0.008	0.008	<0.008	0.008	<0.009	0.009	<0.007	0.007	μg/g	~
Endosulfan sulfate	<0.008	0.008	<0.008	0.008	<0.009	0.009	<0.007	0.007	μg/g	~

Paracel Laboratories Ltd.- Ottawa

Sample Description	HA11/	A - 20	HA12	A - 20	HA13	A - 20	HA14	B - 20		
Sample Date	5/4/2020	12:00 AM								
Lab ID	1535	073	1535	5074	1535	5075	1535076			
OC Pesticides	Result	MDL	Result	MDL	Result	MDL	Result	MDL	Units	Criteria: O.Reg 153 Table 3 Soil Stringent
Endrin	<0.008	0.008	<0.008	0.008	<0.009	0.009	<0.007	0.007	μg/g	0.04
Endrin aldehyde	<0.008	0.008	<0.008	0.008	<0.009	0.009	<0.007	0.007	μg/g	~
Heptachlor	<0.008	0.008	<0.008	0.008	<0.009	0.009	<0.007	0.007	μg/g	0.15
Heptachlor epoxide	<0.008	0.008	<0.008	0.008	<0.009	0.009	< 0.007	0.007	μg/g	0.05
Hexachlorobenzene	<0.008	0.008	<0.008	0.008	<0.009	0.009	<0.007	0.007	μg/g	0.52
Hexachlorobutadiene	<0.008	0.008	<0.008	0.008	<0.009	0.009	<0.007	0.007	μg/g	0.012
Hexachloroethane	<0.008	0.008	<0.008	0.008	<0.009	0.009	< 0.007	0.007	μg/g	0.071
Methoxychlor	<0.008	0.008	<0.008	0.008	<0.009	0.009	<0.007	0.007	μg/g	0.13
Mirex	<0.008	0.008	<0.008	0.008	<0.009	0.009	<0.007	0.007	μg/g	~
Oxychlordane	<0.008	0.008	<0.008	0.008	<0.009	0.009	<0.007	0.007	μg/g	~
ß-BHC	<0.008	0.008	<0.008	0.008	<0.009	0.009	<0.007	0.007	μg/g	~
α - Chlordane	<0.008	0.008	<0.008	0.008	<0.009	0.009	<0.007	0.007	μg/g	~
α + γ -Chlordane (Calc.)	<0.008	0.008	<0.008	0.008	<0.009	0.009	<0.007	0.007	μg/g	0.05
α-ΒΗC	<0.008	0.008	<0.008	0.008	<0.009	0.009	<0.007	0.007	μg/g	~
γ - Chlordane	<0.008	0.008	<0.008	0.008	<0.009	0.009	<0.007	0.007	μg/g	~
γ-BHC (Lindane)	<0.008	0.008	<0.008	0.008	<0.009	0.009	<0.007	0.007	μg/g	0.056
δ-BHC	0.040	0.008	0.086	0.008	0.033	0.009	0.021	0.007	μg/g	~

Paracel Laboratories Ltd.- Ottawa

Sample Description	HA15/	A - 20	HA16	B - 20	HA17	A - 20	HA19	A - 20		
Sample Date	5/4/2020	12:00 AM								
Lab ID	1535	5077	1535	5078	1535	5079	1535	5080		
OC Pesticides	Result	MDL	Result	MDL	Result	MDL	Result	MDL	Units	Criteria: O.Reg 153 Table 3 Soil Stringent
2,4'-DDD	<0.007	0.007	<0.007	0.007	<0.008	0.008	<0.007	0.007	μg/g	~
2,4'-DDE	<0.007	0.007	<0.007	0.007	<0.008	0.008	< 0.007	0.007	μg/g	~
2,4'-DDT	<0.007	0.007	<0.007	0.007	<0.008	0.008	<0.007	0.007	μg/g	~
4,4'-DDD	<0.007	0.007	<0.007	0.007	<0.008	0.008	<0.007	0.007	μg/g	~
4,4'-DDE	<0.007	0.007	<0.007	0.007	<0.008	0.008	< 0.007	0.007	μg/g	~
4,4'-DDT	<0.007	0.007	<0.007	0.007	<0.008	0.008	< 0.007	0.007	μg/g	~
Aldrin	<0.007	0.007	<0.007	0.007	<0.008	0.008	< 0.007	0.007	μg/g	0.05
DDD (Total) (Calc.)	<0.007	0.007	<0.007	0.007	<0.008	0.008	< 0.007	0.007	μg/g	3.3
DDE (Total) (Calc.)	<0.007	0.007	<0.007	0.007	<0.008	0.008	< 0.007	0.007	μg/g	0.26
DDT (Total) (Calc.)	<0.007	0.007	<0.007	0.007	<0.008	0.008	< 0.007	0.007	μg/g	1.4
Decachlorobiphenyl (Surr.)	78	N/A	59	N/A	60	N/A	66	N/A	% Rec	~
Dieldrin	<0.007	0.007	<0.007	0.007	<0.008	0.008	< 0.007	0.007	μg/g	0.05
Endosulfan I	<0.007	0.007	<0.007	0.007	<0.008	0.008	<0.007	0.007	μg/g	~
Endosulfan I + II (Calc.)	<0.007	0.007	<0.007	0.007	<0.008	0.008	< 0.007	0.007	μg/g	0.04
Endosulfan II	<0.007	0.007	<0.007	0.007	<0.008	0.008	< 0.007	0.007	μg/g	~
Endosulfan sulfate	<0.007	0.007	<0.007	0.007	<0.008	0.008	< 0.007	0.007	μg/g	~
Endrin	<0.007	0.007	<0.007	0.007	<0.008	0.008	< 0.007	0.007	μg/g	0.04
Endrin aldehyde	<0.007	0.007	<0.007	0.007	<0.008	0.008	<0.007	0.007	μg/g	~
Heptachlor	<0.007	0.007	<0.007	0.007	<0.008	0.008	<0.007	0.007	μg/g	0.15
Heptachlor epoxide	<0.007	0.007	<0.007	0.007	<0.008	0.008	<0.007	0.007	μg/g	0.05
Hexachlorobenzene	<0.007	0.007	<0.007	0.007	<0.008	0.008	<0.007	0.007	μg/g	0.52
Hexachlorobutadiene	<0.007	0.007	<0.007	0.007	<0.008	0.008	<0.007	0.007	μg/g	0.012
Hexachloroethane	<0.007	0.007	<0.007	0.007	<0.008	0.008	<0.007	0.007	μg/g	0.071

Paracel Laboratories Ltd.- Ottawa

Sample Description	HA15	5A - 20	HA16	B - 20	HA17	'A - 20	HA19)A - 20		
Sample Date	5/4/2020	12:00 AM								
Lab ID	153	5077	153	5078	153	5079	153	5080		
OC Pesticides	Result	MDL	Result	MDL	Result	MDL	Result	MDL	Units	Criteria: O.Reg 153 Table 3 Soil Stringent
Methoxychlor	<0.007	0.007	<0.007	0.007	<0.008	0.008	<0.007	0.007	μg/g	0.13
Mirex	<0.007	0.007	<0.007	0.007	<0.008	0.008	<0.007	0.007	μg/g	~
Oxychlordane	<0.007	0.007	<0.007	0.007	<0.008	0.008	<0.007	0.007	μg/g	~
ß-BHC	<0.007	0.007	<0.007	0.007	<0.008	0.008	<0.007	0.007	μg/g	~
α - Chlordane	<0.007	0.007	<0.007	0.007	<0.008	0.008	<0.007	0.007	μg/g	~
α + γ -Chlordane (Calc.)	<0.007	0.007	<0.007	0.007	<0.008	0.008	<0.007	0.007	μg/g	0.05
α-ΒΗC	<0.007	0.007	< 0.007	0.007	<0.008	0.008	<0.007	0.007	μg/g	~
γ - Chlordane	<0.007	0.007	<0.007	0.007	<0.008	0.008	<0.007	0.007	μg/g	~
γ-BHC (Lindane)	<0.007	0.007	< 0.007	0.007	<0.008	0.008	<0.007	0.007	μg/g	0.056
δ-ΒΗC	0.053	0.007	0.043	0.007	0.046	0.008	0.047	0.007	μg/g	~
Sample Description	HA25	5A - 20	HA32	A - 20	HA34	A - 20				
Sample Date	5/4/2020	12:00 AM	5/4/2020	12:00 AM	5/4/2020	12:00 AM				
Lab ID	153	5081	153	5082	153	5083				
OC Pesticides	Result	MDL	Result	MDL	Result	MDL	Units	Criteria: O.Reg 153 Table 3 Soil Stringent		
2,4'-DDD	<0.008	0.008	<0.008	0.008	<0.009	0.009	µg/g	~		
2,4'-DDE	<0.008	0.008	<0.008	0.008	<0.009	0.009	µg/g	~		
2,4'-DDT	<0.008	0.008	<0.008	0.008	<0.009	0.009	µg/g	~		
4,4'-DDD	<0.008	0.008	<0.008	0.008	<0.009	0.009	µg/g	~		
4,4'-DDE	<0.008	0.008	<0.008	0.008	<0.009	0.009	μg/g	~		
4,4'-DDT	<0.008	0.008	<0.008	0.008	<0.009	0.009	μg/g	~		
Aldrin	<0.008	0.008	<0.008	0.008	< 0.009	0.009	μg/g	0.05		

Paracel Laboratories Ltd.- Ottawa

Sample Description		A - 20		A - 20		A - 20		
Sample Date	5/4/2020	12:00 AM	5/4/2020	12:00 AM	5/4/2020	12:00 AM		
Lab ID	153	5081	153	5082	1535	5083		
OC Pesticides	Result	MDL	Result	MDL	Result	MDL	Units	Criteria: O.Reg 153 Table 3 Soil Stringent
DDD (Total) (Calc.)	<0.008	0.008	<0.008	0.008	<0.009	0.009	μg/g	3.3
DDE (Total) (Calc.)	<0.008	0.008	<0.008	0.008	<0.009	0.009	μg/g	0.26
DDT (Total) (Calc.)	<0.008	0.008	<0.008	0.008	<0.009	0.009	μg/g	1.4
Decachlorobiphenyl (Surr.)	84	N/A	79	N/A	96	N/A	% Rec	~
Dieldrin	<0.008	0.008	<0.008	0.008	<0.009	0.009	μg/g	0.05
Endosulfan I	<0.008	0.008	<0.008	0.008	< 0.009	0.009	μg/g	~
Endosulfan I + II (Calc.)	<0.008	0.008	<0.008	0.008	< 0.009	0.009	μg/g	0.04
Endosulfan II	<0.008	0.008	<0.008	0.008	< 0.009	0.009	μg/g	~
Endosulfan sulfate	<0.008	0.008	<0.008	0.008	<0.009	0.009	μg/g	~
Endrin	<0.008	0.008	<0.008	0.008	<0.009	0.009	μg/g	0.04
Endrin aldehyde	<0.008	0.008	<0.008	0.008	<0.009	0.009	μg/g	~
Heptachlor	<0.008	0.008	<0.008	0.008	<0.009	0.009	μg/g	0.15
Heptachlor epoxide	<0.008	0.008	<0.008	0.008	<0.009	0.009	μg/g	0.05
Hexachlorobenzene	<0.008	0.008	<0.008	0.008	<0.009	0.009	μg/g	0.52
Hexachlorobutadiene	<0.008	0.008	<0.008	0.008	<0.009	0.009	μg/g	0.012
Hexachloroethane	<0.008	0.008	<0.008	0.008	<0.009	0.009	μg/g	0.071
Methoxychlor	<0.008	0.008	<0.008	0.008	<0.009	0.009	μg/g	0.13
Mirex	<0.008	0.008	<0.008	0.008	<0.009	0.009	μg/g	~
Oxychlordane	<0.008	0.008	<0.008	0.008	<0.009	0.009	μg/g	~
ß-BHC	<0.008	0.008	<0.008	0.008	<0.009	0.009	μg/g	~
α - Chlordane	<0.008	0.008	<0.008	0.008	<0.009	0.009	μg/g	~
α + γ -Chlordane (Calc.)	<0.008	0.008	<0.008	0.008	<0.009	0.009	μg/g	0.05
α-BHC	<0.008	0.008	< 0.008	0.008	< 0.009	0.009	μg/g	~

Paracel Laboratories Ltd.- Ottawa

Work Order Number: 399613

Sample Description	HA25	A - 20	HA32	A - 20	HA34	A - 20		
Sample Date	5/4/2020 12:00 AM		5/4/2020 12:00 AM		5/4/2020	12:00 AM		
Lab ID	1535081		1535082		153	5083		
OC Pesticides	Result	MDL	Result	MDL	Result	MDL	Units	Criteria: O.Reg 153 Table 3 Soil Stringent
γ - Chlordane	<0.008	0.008	<0.008	0.008	<0.009	0.009	μg/g	~
γ-BHC (Lindane)	<0.008	0.008	<0.008	0.008	<0.009	0.009	μg/g	0.056
δ-ΒΗϹ	0.067	0.008	0.082	0.008	0.097 0.009		μg/g	~

LEGEND

Dates: Dates are formatted as mm/dd/year throughout this report.

[rr]: After a parameter name indicates a re-run of that parameter. If multiple re-runs exist they are suffixed by a number. Sample may not have been handled according to the recommended temperature, hold time and head space requirements of the method after the initial analysis.

MDL: Method detection limit or minimum reporting limit.

[]: Results for laboratory replicates are shown in square brackets immediately below the associated sample result for ease of comparison.

~: In a criteria column indicates the criteria is not applicable for the parameter row.

Quality Control: All associated Quality Control data is available on request.

Exceedences: HIGHLIGHTED CELLS INDICATE THAT THE RESULT EXCEEDS A REGULATORY LIMIT. CALCULATED UNCERTAINTY ESTIMATIONS ARE NOT APPLIED FOR DETERMINING SAMPLE EXCEEDANCES.

Benzo(b)fluoranthene: Results for benzo(b)fluoranthene may include contributions from benzo(j)fluoranthene.

Field Data: Reports containing Field Parameters represent data that has been collected and provided by the client. Testmark is not responsible for the validity of this data which may be used in subsequent calculations. Sample Condition Deviations: A noted sample condition deviation may affect the validity of the result. Results apply to the sample(s) as received.

RELIABLE.

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

Paterson Group Consulting Engineers

154 Colonnade Road South Nepean, ON K2E 7J5 Attn: Karyn Munch

Client PO: 29919 Project: PE4321 Custody: 126170

Report Date: 14-May-2020 Order Date: 11-May-2020

Order #: 2020017

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID	Client ID
2020017-01	HA23B-20
2020017-02	HA24A-20
2020017-03	HA25B-20
2020017-04	HA26A-20
2020017-05	HA28B-20
2020017-06	HA29A-20
2020017-07	HA30B-20
2020017-08	HA31A-20

Approved By:

Dale Robertson, BSc Laboratory Director

Any use of these results implies your agreement that our total liability in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.

Report Date: 14-May-2020

Order #: 2020017

Order Date: 11-May-2020

Project Description: PE4321

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
Mercury by CVAA	EPA 7471B - CVAA, digestion	14-May-20	14-May-20
Solids, %	Gravimetric, calculation	12-May-20	12-May-20

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Client PO: 29919

Order #: 2020017

Report Date: 14-May-2020 Order Date: 11-May-2020

Project Description: PE4321

	Client ID:	HA23B-20	HA24A-20	HA25B-20	HA26A-20
	Sample Date:	04-May-20 09:00	04-May-20 09:00	04-May-20 09:00	04-May-20 09:00
	Sample ID:	2020017-01	2020017-02	2020017-03	2020017-04
	MDL/Units	Soil	Soil	Soil	Soil
Physical Characteristics			-		
% Solids	0.1 % by Wt.	81.1	79.8	92.3	79.2
, Metals			•		
Mercury	0.1 ug/g dry	<0.1	<0.1	<0.1	<0.1
-	Client ID:	HA28B-20	HA29A-20	HA30B-20	HA31A-20
	Sample Date:	04-May-20 09:00	04-May-20 09:00	04-May-20 09:00	04-May-20 09:00
	Sample ID:	2020017-05	2020017-06	2020017-07	2020017-08
	MDL/Units	Soil	Soil	Soil	Soil
Physical Characteristics					
% Solids	0.1 % by Wt.	85.5	76.3	76.3	74.9
Metals					•
Mercury	0.1 ug/g dry	1.0	0.2	<0.1	<0.1

Report Date: 14-May-2020

Order Date: 11-May-2020

Project Description: PE4321

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Metals									
Mercury	ND	0.1	ug/g						

Report Date: 14-May-2020

Order Date: 11-May-2020

Project Description: PE4321

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Metals									
Mercury	ND	0.1	ug/g dry	ND			NC	30	
Physical Characteristics									
% Solids	77.8	0.1	% by Wt.	79.5			2.1	25	

Report Date: 14-May-2020

Order Date: 11-May-2020

Project Description: PE4321

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Metals Mercury	1.74	0.1	ug/g	ND	116	70-130			

None

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference. NC: Not Calculated

Soil results are reported on a dry weight basis when the units are denoted with 'dry'. Where %Solids is reported, moisture loss includes the loss of volatile hydrocarbons.

Report Date: 14-May-2020 Order Date: 11-May-2020 Project Description: PE4321

	Quote PO #: E-mail Matrix 1 SW (Su	#: 29 K Ype: S rface W P (P	PE 432 (919 Cmunc La 5 (Soil/Sed.) GW (C /ater) SS (Storm/Si aint) A (Air) O (Ot	iround Water) anitary Sewer)	y u	-р. с	q			□ 1 d □ 2 d Date Rec	Turr lay lay	Page (naround	and the state of t
KARYN MVNCH ddress: 154 Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2"Colsp	PO #: E-mail Matrix 1 SW (Su	29 K Type: S rface W P (P	S (Soil/Sed.) GW (C	iround Water) anitary Sewer)	y ni	-p. c	g			🗆 2 d	ay ay		🗆 3 day
I54 Colonnade Road elephone: 613 - 226 - 7381 Regulation 153/04 Other Regulation Table 1 Res/Park Med/Fine	E-mail Matrix 1 SW (Su	ype: S rface V P (P	S (Soil/Sed.) GW (C	iround Water) anitary Sewer)	y u	-p. c	R		(🗆 2 d	ay		
Regulation 153/04 Other Regulation Table 1 Res/Park Med/Fine REG 558 PWQO	SW (Su	Ype: S rface W P (P	S (Soil/Sed.) GW (G /ater) SS (Storm/Sa	iround Water) anitary Sewer)	y ni	-p. c	9				,		1401
Table 1 🗌 Res/Park 🗌 Med/Fine 🗌 REG 558 🗌 PWQO	SW (Su	rface V P (P	/ater) SS (Storm/Sa	anitary Sewer)									
Table 1 Res/Park Med/Fine REG 558 PWQO	SW (Su	rface V P (P	/ater) SS (Storm/Sa	anitary Sewer)					100		1		
Table 2 Ind/Comm Coarse CCME MISA			aint) A (Air) O (Ot	her)					R	equired	Analy	sis	
Table 3 🗌 Agri/Other 🗌 SU - Sani 🗌 SU - Storm		ers			BTEX								
Table	me	Itain	Sample	e Taken	-F4+		by ICP						
For RSC: Yes No Other:	Air Volume	of Containers			Cs F1	s s	N.		_	B (HWS)			
Sample ID/Location Name	Air	0 #	Date	Time	PHCs	VOCS	Ř	Я	2. C	8			
1 HA23B-20 5		1	MAY 4/20					X					
² HA24A-20		1	1					1					
3 HA25 B- 20													
4 HAZGA-20							┢						
5 HA28 B-20	-					-	┢		+	-			
6 HA29A-20					-		┢		+				
7 HA30B - 20	+				+		┢		+		-		
					+		╟─		+		+		
8 HA 31 A - 20 V		Ť	7		-		┢	V					
10						-	-				-		
omments:													
									Metho	d of Deliv	ery:	. 1	
linquished By (Store) Received By Driver/D	Depot:	8		Received at Lab:					Verifie	d By:	1al	e	2
linquished By (Print) Date/Time:		14. p.		Date/Time:	2	29		0	Date/1	ime	E.	112	101
te/Time: MAY 7 / 200 c Temperature:			°C	Temperature:		°C	.)		pH Ver	ified:	By:	11-2), ∨(<u> </u> /

RELIABLE.

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

Paterson Group Consulting Engineers

154 Colonnade Road South Nepean, ON K2E 7J5 Attn: Karyn Munch

Client PO: 29915 Project: PE4321 Custody: 126167

Report Date: 12-May-2020 Order Date: 6-May-2020

Order #: 2019231

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID	Client ID
2019231-01	BH8-19-GW
2019231-03	BH16-19-GW
2019231-04	BH18-19-GW
2019231-05	BH19-19-GW
2019231-06	BH20-19-GW

Approved By:

Dale Robertson, BSc Laboratory Director

Any use of these results implies your agreement that our total liability in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.

Order #: 2019231

Report Date: 12-May-2020 Order Date: 6-May-2020

Project Description: PE4321

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
Mercury by CVAA	EPA 245.2 - Cold Vapour AA EPA 200.8 - ICP-MS	9-May-20	12-May-20
Metals, ICP-MS	EPA 200.0 - ICP-INIS	12-May-20	12-May-20

Client PO: 29915

Order #: 2019231

Report Date: 12-May-2020 Order Date: 6-May-2020

Project Description: PE4321

-				
				BH19-19-GW
-	•			05-May-20 09:00 2019231-05
-				2019231-05 Water
MDL/Units	water	vvaler	vvaler	vvaler
0.1 ug/L	<0.1	<0.1	<0.1	<0.1
0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1 ug/L	<1	<1	<1	<1
1 ug/L	76	47	50	131
0.5 ug/L	<0.5	<0.5	<0.5	<0.5
10 ug/L	26	<10	17	<10
0.1 ug/L	<0.1	<0.1	<0.1	<0.1
1 ug/L	<1	<1	<1	<1
0.5 ug/L	<0.5	0.6	1.0	<0.5
0.5 ug/L	4.9	0.8	13.7	<0.5
0.1 ug/L	<0.1	<0.1	<0.1	<0.1
0.5 ug/L	1.8	0.6	10.8	<0.5
1 ug/L	<1	<1	4	<1
1 ug/L	<1	<1	<1	<1
0.1 ug/L	<0.1	<0.1	<0.1	<0.1
200 ug/L	25100	6920	54500	25600
0.1 ug/L	<0.1	<0.1	<0.1	<0.1
0.1 ug/L	0.7	0.4	0.9	<0.1
0.5 ug/L	1.2	0.6	0.5	0.9
5 ug/L	<5	7	13	<5
	1 ug/L 1 ug/L 0.5 ug/L 10 ug/L 0.1 ug/L 1 ug/L 0.5 ug/L 0.5 ug/L 0.1 ug/L 0.5 ug/L 1 ug/L 0.1 ug/L 0.1 ug/L 0.1 ug/L 0.1 ug/L 0.1 ug/L 0.5 ug/L	Sample Date: Sample ID: 05-May-20 09:00 2019231-01 Water 0.1 ug/L <0.1	Sample Date: 05-May-20 09:00 2019231-01 05-May-20 09:00 2019231-03 MDL/Units Water Water 0.1 ug/L <0.1	Sample Date: Sample Dt: $05-May-20 09:00$ $2019231-01$ Water $05-May-20 09:00$ $2019231-03$ Water $05-May-20 09:00$ $2019231-04$ Water $MDL/Units$ Water $05-May-20 09:00$ $2019231-03$ Water $05-May-20 09:00$ $2019231-04$ Water $0.1 ug/L$ <0.1 <0.1 <0.1 $0.5 ug/L$ <0.5 <0.5 <0.5 $1 ug/L$ <1 <1 <1 $1 ug/L$ <0.5 <0.5 <0.5 $10 ug/L$ 26 <10 17 $0.1 ug/L$ <0.1 <0.1 <0.1 $1 ug/L$ <1 <1 <1 $0.5 ug/L$ <0.5 0.6 1.0 $0.5 ug/L$ 4.9 0.8 13.7 $0.1 ug/L$ <0.1 <0.1 <0.1 $0.5 ug/L$ 1.8 0.6 10.8 $1 ug/L$ <1 <1 <1 $0.1 ug/L$ <0.1 <0.1 <0.1 $0.1 ug/L$ <0.1 <0.1 <0.1 $0.0 ug/L$ 25100 6920 54500 $0.1 ug/L$ 0.7 0.4 0.9 $0.5 ug/L$ 1.2 0.6 0.5

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Client PO: 29915

Report Date: 12-May-2020

Order Date: 6-May-2020

Project Description: PE4321

	Client ID:	BH20-19-GW	-	-	-
	Sample Date:	05-May-20 09:00	-	-	-
	Sample ID:	2019231-06	-	-	-
	MDL/Units	Water	-	-	-
Metals					
Mercury	0.1 ug/L	<0.1	-	-	-
Antimony	0.5 ug/L	<0.5	-	-	-
Arsenic	1 ug/L	<1	-	-	-
Barium	1 ug/L	141	-	-	-
Beryllium	0.5 ug/L	<0.5	-	-	-
Boron	10 ug/L	79	-	-	-
Cadmium	0.1 ug/L	<0.1	-	-	-
Chromium	1 ug/L	<1	-	-	-
Cobalt	0.5 ug/L	<0.5	-	-	-
Copper	0.5 ug/L	4.0	-	-	-
Lead	0.1 ug/L	<0.1	-	-	-
Molybdenum	0.5 ug/L	2.6	-	-	-
Nickel	1 ug/L	<1	-	-	-
Selenium	1 ug/L	<1	-	-	-
Silver	0.1 ug/L	<0.1	-	-	-
Sodium	200 ug/L	80000	-	-	-
Thallium	0.1 ug/L	<0.1	-	-	-
Uranium	0.1 ug/L	0.6	-	-	-
Vanadium	0.5 ug/L	<0.5	-	-	-
Zinc	5 ug/L	6	-	-	-

Order #: 2019231

Report Date: 12-May-2020

Order Date: 6-May-2020

Project Description: PE4321

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Metals									
Mercury	ND	0.1	ug/L						
Antimony	ND	0.5	ug/L						
Arsenic	ND	1	ug/L						
Barium	ND	1	ug/L						
Beryllium	ND	0.5	ug/L						
Boron	ND	10	ug/L						
Cadmium	ND	0.1	ug/L						
Chromium	ND	1	ug/L						
Cobalt	ND	0.5	ug/L						
Copper	ND	0.5	ug/L						
Lead	ND	0.1	ug/L						
Molybdenum	ND	0.5	ug/L						
Nickel	ND	1	ug/L						
Selenium	ND	1	ug/L						
Silver	ND	0.1	ug/L						
Sodium	ND	200	ug/L						
Thallium	ND	0.1	ug/L						
Uranium	ND	0.1	ug/L						
Vanadium	ND	0.5	ug/L						
Zinc	ND	5	ug/L						

Order #: 2019231

Report Date: 12-May-2020

Order Date: 6-May-2020

Project Description: PE4321

Method Quality Control: Duplicate

		Reporting		Source		%REC		RPD	
Analyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes
Metals									
Mercury	ND	0.1	ug/L	ND			NC	20	
Antimony	0.52	0.5	ug/L	ND			NC	20	
Arsenic	ND	1	ug/L	ND			NC	20	
Barium	78.6	1	ug/L	76.1			3.3	20	
Beryllium	ND	0.5	ug/L	ND			NC	20	
Boron	26	10	ug/L	26			0.2	20	
Cadmium	ND	0.1	ug/L	ND			NC	20	
Chromium	ND	1	ug/L	ND			NC	20	
Cobalt	ND	0.5	ug/L	ND			NC	20	
Copper	5.01	0.5	ug/L	4.93			1.8	20	
Lead	ND	0.1	ug/L	ND			NC	20	
Molybdenum	1.86	0.5	ug/L	1.78			4.3	20	
Nickel	ND	1	ug/L	ND			NC	20	
Selenium	ND	1	ug/L	ND			NC	20	
Silver	ND	0.1	ug/L	ND			NC	20	
Sodium	24900	200	ug/L	25100			1.0	20	
Thallium	ND	0.1	ug/L	ND			NC	20	
Uranium	0.7	0.1	ug/L	0.7			0.8	20	
Vanadium	1.20	0.5	ug/L	1.19			0.8	20	
Zinc	8	5	ug/L	ND			NC	20	

Order #: 2019231

Report Date: 12-May-2020

Order Date: 6-May-2020

Project Description: PE4321

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Metals									
Mercury	3.36	0.1	ug/L	ND	112	70-130			
Antimony	39.9	0.5	ug/L	ND	79.5	80-120		G	S-02
Arsenic	49.5	1	ug/L	ND	98.0	80-120			
Barium	120	1	ug/L	76.1	87.3	80-120			
Beryllium	45.3	0.5	ug/L	ND	90.6	80-120			
Boron	66	10	ug/L	26	79.7	80-120		Q	S-02
Cadmium	42.3	0.1	ug/L	ND	84.5	80-120			
Chromium	47.6	1	ug/L	ND	94.7	80-120			
Cobalt	44.2	0.5	ug/L	ND	88.2	80-120			
Copper	47.7	0.5	ug/L	4.93	85.6	80-120			
Lead	43.2	0.1	ug/L	ND	86.3	80-120			
Molybdenum	45.2	0.5	ug/L	1.78	86.9	80-120			
Nickel	43.8	1	ug/L	ND	85.9	80-120			
Selenium	49.1	1	ug/L	ND	98.0	80-120			
Silver	42.9	0.1	ug/L	ND	85.8	80-120			
Sodium	33100	200	ug/L	25100	79.5	80-120		G	S-02
Thallium	45.1	0.1	ug/L	ND	90.1	80-120			
Uranium	47.8	0.1	ug/L	0.7	94.2	80-120			
Vanadium	48.5	0.5	ug/L	1.19	94.7	80-120			
Zinc	45	5	ug/L	ND	82.9	80-120			

Qualifier Notes:

QC Qualifiers :

QS-02: Spike level outside of control limits. Analysis batch accepted based on other QC included in the batch.

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference. NC: Not Calculated

C PARAC LABORATORIES		17 ST 1						ID: 201923				ber	Sec. and	ľ		(La	Of C b Use	Only)	dy	
Client Name: PATERSON	1.5.2	E C		Project	Ref: (DE 432	21	12	1	1	P			1.1	1	Pa	age [of		
Contact Name: KARYN MUNCH	1. A.		1	Quote				100 - 100 -		я _с	4	Ŷ			43.	Turna	aroun	d Tim	е	
Address: 154 Colonna Le Read Telephone: 617 - 226 - 7381				PO#: 29915 E-mail: Kununch@putorsayreup.ca									02	l day 2 day Requ		in yys		⊐ 3 di ≹ Reg		
		villation	2. NG 19. AP			<u>(</u>		The second						-						
Regulation 153/04	Other Re	gulation						round Water) nitary Sewer)					R	equir	ed A	Analys	is			
Table 3 Agri/Other Table Mu	CCME SU - Sani In:	MISA				aint) A (A		ner)	F1-F4+BTEX	300	s by ICP	55 報	1.) - [1.)/ - [1.)/ - [3	l'ESTICIDES	ten e Sata al	ju H	a a	jū.	
	Other:		Matrix	Air Volume				Time	PHCs	VOCS	Metals	Нg	CrVI	Ē	υ.	er s	10 A 1	2 162		
Sample ID/Location N	ame	i T		Ä	# 2		ate	Ime	٩.	> •		× V		-	6					
1 BH8-19-GW			GW		6	MAYS	100			+ + 1	ĥ	Ê	+	┢						-
2	~				->		2		2	101	P				<					
3 BH15-19-6W	and a start of the second s	n indiring. Anna an an an a		a de la com	1		neral) Inc. St				x	×		ť	\ 					
4 BH16-19-CW					2						×	n 1		+	-			-		-
5 BH18-19-GW		-			2				$\left \right $	+	╟	H		╉	-					-
6 BH19-19-GW				-	6	T	-			+	╢	+	\vdash	╉	_			01 S	1.7	-
7 BH20-19-6W			4	<u> </u>	2		/		$\left \cdot \right $	-	4	*		╋						-
8	t				· · · ·	·		1		-	┢	-		╉	-				1	-
9		1							\square		-	-			_				1	-
10						$0 = \lambda$		6 70 a.						1 1 1 2	all		1771 ⁻	1	1	
Comments:				s pte		$_{i} = \theta^{i}$		0	9					od of D	M	ry: ac	el	1		
Relinquished 87 (Sign):	the period of the second	Received By Di	river/D	epot:		anino ano. Anina ang	1.2	Received at Urby	or	L	-	1.1	Verifi	ed By:	50	e	×	2	· • · · · · · ·	
Relinquished By (Brint)!	/	Date/Time:						Date/Time:	26	20 0	2:4	llep		Time: Protection	21	1 By:	elá	20	4:	40
Date/Time: MAY 5/2020		Temperature:				°C	sion 3.0	remperature.	.4	C			bu vi	ermeu	_	-1	N	A		181

RELIABLE.

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Subcontracted Analysis

Paterson Group C	onsulting Engineers	
154 Colonnade Roa	d South	Tel: (613) 226-7381
Nepean, ON K2E 7J	5	Fax: (613) 226-6344
Attn: Karyn Munch		
Paracel Report No.	2019231	Order Date: 06-May-20
Client Project(s):	PE4321	Report Date: 19-May-20
Client PO:	29915	
Reference:	Standing Offer	
CoC Number:	126167	

Sample(s) from this project were subcontracted for the listed parameters. A copy of the subcontractor's report is attached

Paracel ID **Client ID** 2019231-02 BH15-19-GW

Analysis REG 153: Pesticides, OC,

Client:	Dale Robertson	Work Order Number:	399612
Company:	Paracel Laboratories Ltd Ottawa	PO #:	
Address:	300-2319 St. Laurent Blvd.	Regulation:	O.Reg 153 Table 3 Ground Water Stringent
	Ottawa, ON, K1G 4J8	Project #:	2019231
Phone/Fax:	(613) 731-9577 / (613) 731-9064	DWS #:	
Email:	drobertson@paracellabs.com	Sampled By:	
Date Order Received:	5/8/2020	Analysis Started:	5/19/2020
Arrival Temperature:	9 °C	Analysis Completed:	5/19/2020

WORK ORDER SUMMARY

ANALYSES WERE PERFORMED ON THE FOLLOWING SAMPLES. THE RESULTS RELATE ONLY TO THE ITEMS TESTED.

Sample Description	Lab ID	Matrix	Туре	Comments	Date Collected	Time Collected
BH15-19-GW	1535063	Water	None		5/5/2020	

METHODS AND INSTRUMENTATION

THE FOLLOWING METHODS WERE USED FOR YOUR SAMPLE(S):

Method	Lab	Description	Reference
OCPs Water (A19)	Garson	Determination of Organochlorine Pesticides in Water by GC/ECD	Modified from SW846-8081B

This report has been approved by:

Fal Holom

Brad Halvorson, B.Sc. Laboratory Director

Paracel Laboratories Ltd.- Ottawa

Work Order Number: 399612

WORK ORDER RESULTS

Sample Description	BH15 - 19 - GW			
Sample Date	5/5/2020 12:00 AM			
Lab ID	1535063			
OC Pesticides	Result	MDL	Units	Criteria: O.Reg 153 Table 3 Ground Water Stringent
2,4'-DDD	<0.002	0.002	ug/L	~
2,4'-DDE	< 0.01	0.01	ug/L	~
2,4'-DDT	<0.008	0.008	ug/L	~
4,4'-DDD	<0.005	0.005	ug/L	~
4,4'-DDE	<0.005	0.005	ug/L	~
4,4'-DDT	<0.008	0.008	ug/L	~
Aldrin	<0.006	0.006	ug/L	8.5
DDD (Total) (Calc.)	<0.006	0.006	ug/L	45
DDE (Total) (Calc.)	<0.008	0.008	ug/L	20
DDT (Total) (Calc.)	<0.01	0.01	ug/L	2.8
Decachlorobiphenyl (Surr.)	132	N/A	% Rec	~
Dieldrin	<0.004	0.004	ug/L	0.75
Endosulfan I	<0.005	0.005	ug/L	~
Endosulfan I + II (Calc.)	<0.009	0.009	ug/L	1.5
Endosulfan II	<0.004	0.004	ug/L	~
Endosulfan sulfate	<0.004	0.004	ug/L	~
Endrin	<0.006	0.006	ug/L	0.48
Endrin aldehyde	<0.008	0.008	ug/L	~
Heptachlor	<0.006	0.006	ug/L	2.5
Heptachlor epoxide	<0.007	0.007	ug/L	0.048
Hexachlorobenzene	<0.005	0.005	ug/L	3.1

Paracel Laboratories Ltd.- Ottawa

Sample Description	BH15 - 19 - GW			
Sample Date	5/5/2020 12:00 AM			
Lab ID	1535063			
OC Pesticides	Result	MDL	Units	Criteria: O.Reg 153 Table 3 Ground Water Stringent
Hexachlorobutadiene	<0.01	0.01	ug/L	0.44
Hexachloroethane	<0.009	0.009	ug/L	94
Methoxychlor	<0.02	0.02	ug/L	6.5
Mirex	0.009	0.006	ug/L	~
Oxychlordane	<0.009	0.009	ug/L	~
ß-BHC	<0.004	0.004	ug/L	~
α - Chlordane	<0.006	0.006	ug/L	~
α + γ -Chlordane (Calc.)	<0.007	0.007	ug/L	28
α-ΒΗC	<0.006	0.006	ug/L	~
γ - Chlordane	<0.004	0.004	ug/L	~
γ-BHC (Lindane)	<0.005	0.005	ug/L	1.2
δ-ΒΗC	<0.007	0.007	ug/L	~

Paracel Laboratories Ltd.- Ottawa

Work Order Number: 399612

LEGEND

Dates: Dates are formatted as mm/dd/year throughout this report.

[rr]: After a parameter name indicates a re-run of that parameter. If multiple re-runs exist they are suffixed by a number. Sample may not have been handled according to the recommended temperature, hold time and head space requirements of the method after the initial analysis.

MDL: Method detection limit or minimum reporting limit.

~: In a criteria column indicates the criteria is not applicable for the parameter row.

Quality Control: All associated Quality Control data is available on request.

Exceedences: HIGHLIGHTED CELLS INDICATE THAT THE RESULT EXCEEDS A REGULATORY LIMIT. CALCULATED UNCERTAINTY ESTIMATIONS ARE NOT APPLIED FOR DETERMINING SAMPLE EXCEEDANCES.

Benzo(b)fluoranthene: Results for benzo(b)fluoranthene may include contributions from benzo(j)fluoranthene.

Field Data: Reports containing Field Parameters represent data that has been collected and provided by the client. Testmark is not responsible for the validity of this data which may be used in subsequent calculations.

Sample Condition Deviations: A noted sample condition deviation may affect the validity of the result. Results apply to the sample(s) as received.