#### Geotechnical Engineering

Environmental Engineering

Hydrogeology

Geological Engineering

**Materials Testing** 

**Building Science** 

Archaeological Services

#### Paterson Group Inc.

Consulting Engineers 154 Colonnade Road South Ottawa (Nepean), Ontario Canada K2E 7J5

Tel: (613) 226-7381 Fax: (613) 226-6344 www.patersongroup.ca

# patersongroup

## **Phase II Environmental Site Assessment**

3252 Navan Road Ottawa, Ontario

## **Prepared For**

Claridge Homes (Gladstone) Inc.

February 21, 2020

Report: PE4588-2

## **TABLE OF CONTENTS**

| EXEC | UTIV | E SUMMARY                                                      | iii |
|------|------|----------------------------------------------------------------|-----|
| 1.0  | INTR | ODUCTION                                                       | 1   |
|      | 1.1  | Site Description                                               | 1   |
|      | 1.2  | Property Ownership                                             | 1   |
|      | 1.3  | Current and Proposed Future Uses                               | 1   |
|      | 1.4  | Applicable Site Condition Standard                             | 2   |
| 2.0  | BAC  | GROUND INFORMATION                                             | 2   |
|      | 2.1  | Physical Setting                                               | 2   |
|      | 2.2  | Past Investigations                                            | 2   |
| 3.0  | SCO  | PE OF INVESTIGATION                                            | 3   |
|      | 3.1  | Overview of Site Investigation                                 | 3   |
|      | 3.2  | Media Investigated                                             | 4   |
|      | 3.3  | Phase I Conceptual Site Model                                  | 4   |
|      | 3.4  | Deviations from Sampling and Analysis Plan                     | 5   |
|      | 3.5  | Impediments                                                    | 5   |
| 4.0  | INVE | STIGATION METHOD                                               | 6   |
|      | 4.1  | Subsurface Investigation                                       | 6   |
|      | 4.2  | Soil Sampling                                                  | 6   |
|      | 4.3  | Field Screening Measurements                                   | 6   |
|      | 4.4  | Groundwater Monitoring Well Installation                       | 7   |
|      | 4.5  | Field Measurement of Water Quality Parameters                  | 7   |
|      | 4.6  | Groundwater Sampling                                           | 7   |
|      | 4.7  | Analytical Testing                                             | 8   |
|      | 4.8  | Residue Management                                             | 9   |
|      | 4.9  | Elevation Surveying                                            | 10  |
|      | 4.10 | Quality Assurance and Quality Control Measures                 | 10  |
| 5.0  | REVI | EW AND EVALUATION                                              | 10  |
|      | 5.1  | Geology                                                        |     |
|      | 5.2  | Groundwater Elevations, Flow Direction, and Hydraulic Gradient | 10  |
|      | 5.3  | Fine-Coarse Soil Texture                                       | 11  |
|      | 5.4  | Soil: Field Screening                                          | 11  |
|      | 5.5  | Soil Quality                                                   | 11  |
|      | 5.6  | Groundwater Quality                                            | 15  |
|      | 5.7  | Quality Assurance and Quality Control Results                  | 19  |
|      | 5.8  | Phase II Conceptual Site Model                                 | 20  |
| 6.0  | CON  | CLUSIONS                                                       | 25  |
| 7.0  | STAT | EMENT OF LIMITATIONS                                           | 26  |

#### List of Figures

Figure 1 - Key Plan Drawing PE4588-1 – Site Plan Drawing PE4588-2 – Surrounding Land Use Plan Drawing PE4588-3 – Test Hole Location Plan Drawing PE4588-4 – Analytical Testing Plan - Soil Drawing PE4588-4A – Cross Section A-A' – Soil Drawing PE4588-4B – Cross Section B-B' – Soil Drawing PE4588-5 – Analytical Testing Plan - Groundwater Drawing PE4588-5A – Cross Section A-A - Groundwater Drawing PE4588-5B – Cross Section B-B' – Groundwater

#### List of Appendices

Appendix 1 Sampling and Analysis Plan Soil Profile and Test Data Sheets Symbols and Terms Laboratory Certificates of Analysis

## **EXECUTIVE SUMMARY**

## Assessment

A Phase II ESA was conducted for 3252 Navan Road, in the City of Ottawa, Ontario. The purpose of the Phase II ESA was to address potentially contaminating activities (PCAs) that were identified during the Phase I ESA and considered to result in areas of potential environmental concern (APECs) on the Phase II Property. The subsurface investigation was carried out in conjunction with a Geotechnical Investigation and consisted of drilling thirteen boreholes all of which were instrumented with groundwater monitoring wells.

Soil samples were obtained from the boreholes and screened using visual observations and organic vapour measurements. Soil samples from each borehole were submitted for analysis of BTEX, VOC, PHC, Metals, and/or PAHs. All BTEX, PHC, and PAH samples are in compliance with the applicable MECP Standards. Marginal exceedances of the MECP Standards for Bromomethane and Chloroform were identified in BH7. All other VOC samples were in compliance with the applicable Standards. Naturally occurring metals (Cobalt, Vanadium) concentrations exceeding the applicable standards were identified in BH7, BH8, and BH9. These metals concentrations are considered to be naturally occurring and are not considered to be a concern.

Groundwater samples analysed are in compliance with the applicable standards for BTEX, PHC, Metals and/or PAHs in all boreholes. Exceedances of the appliable standard for Tetrachloroethylene was identified in BH1. All other VOC groundwater samples are in compliance with the applicable standard.

## Conclusion

Impacted groundwater was identified in BH1, however with the additional investigative work, the groundwater appears to have been horizontally and vertically delineated. The impacted soil in BH7 requires further delineation. Following the closure of the existing site operations additional testing will be required to sufficiently investigate the fill remaining on site.

It is expected that groundwater monitoring wells will be abandoned in accordance with O.Reg.903, at the time of construction excavation. It is recommended that the integrity of the monitoring wells be maintained, prior to future construction, for possible further groundwater monitoring purposes.

## 1.0 INTRODUCTION

At the request of Claridge Homes (Gladstone) Inc., Paterson Group (Paterson) conducted a Phase II Environmental Site Assessment for 3252 Navan Road, in the City of Ottawa, Ontario. The purpose of this Phase II ESA has been to address areas of potential environmental concern (APECs) identified on the Phase II Property, during the Phase I ESA conducted by Paterson in April and December, 2019.

## 1.1 Site Description

| Address:                           | 3252 Navan Road, Ottawa, Ontario.                                                                                                                                                      |
|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Property Identification<br>Number: | 04352-0307                                                                                                                                                                             |
| Location:                          | The subject site is located on the south side of Navan<br>Road, east of Spring Valley Drive. The subject site is<br>shown on Figure 1 - Key Plan following the body of<br>this report. |
| Latitude and Longitude:            | 45° 25' 34" N, 75° 30' 31" W                                                                                                                                                           |
| Configuration:                     | Trapezoidal.                                                                                                                                                                           |
| Site Area:                         | 78,500 m <sup>2</sup> (approximate).                                                                                                                                                   |

## **1.2 Property Ownership**

The property is currently occupied by André Taillefer Ltd. topsoil and landscaping. Paterson was engaged to conduct this Phase I-ESA by Mr. Vincent Denomme of Claridge Homes. Mr. Denomme can be contacted by telephone at Claridge Homes' office on 613-233-6030.

## **1.3 Current and Proposed Future Uses**

The subject site is currently occupied by André Taillefer Ltd., a landscaping materials contractor. Near Navan Road, adjacent to an office building the site is used for stockpiling landscaping materials. Further south, large imported fill piles are present. The southern half of the site is vacant treed land. It is our understanding that the subject site will be redeveloped for residential purposes.

## **1.4 Applicable Site Condition Standard**

The site condition standards for the property were obtained from Table 3 of the document entitled "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act", prepared by the Ministry of the Environment, Conservation and Parks (MECP), April 2011. The MECP selected Table 3 Standards are based on the following considerations:

- Coarse-grained soil conditions
- **Full depth generic site conditions**
- □ Non-potable groundwater conditions
- Residential land use

The Residential standards were selected based on the proposed future use of the subject site. Coarse-grained soil standards were chosen as a conservative approach. Grain size analysis was not completed.

## 2.0 BACKGROUND INFORMATION

## 2.1 Physical Setting

The Phase II Study Area is residential to the north and west, with a landfill to the east and Mer Bleue conservation area to the south. The regional topography generally slopes down towards the south towards Mer Bleue conservation area. Site drainage consists primarily of infiltration and runoff to a ditch along the eastern boundary of the site.

#### 2.2 Past Investigations

Paterson completed a Phase I ESA in December 2019 for the subject site. The presence of 1 historical and 2 current ASTs, together with the importation and stockpiling of materials, were considered on-site PCAs resulting in APECs. Within the Phase I Study Area, the Navan Road landfill was considered to be a PCA resulting in an APEC. The PCAs that represent APECs on the Phase I Property as well as Contaminants of Potential Concern (CPCs) are presented in Table 1.

| Table 1; Areas                                                                              | of Potential Env                                                   | vironmental Con                                                                    | cern                           |                                         |                                            |
|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------------|--------------------------------|-----------------------------------------|--------------------------------------------|
| Area of<br>Potential<br>Environmental                                                       | Location of<br>Area of<br>Potential                                | Potentially<br>Contaminating<br>Activity                                           | Location<br>of PCA<br>(on-site | Contaminants<br>of Potential<br>Concern | Media<br>Potentially<br>Impacted           |
| Concern                                                                                     | Environmental<br>Concern with<br>respect to<br>Phase I<br>Property |                                                                                    | or off-<br>site)               |                                         | (Groundwater,<br>Soil, and/or<br>Sediment) |
| APEC 1<br>(resulting from<br>the grading,<br>excavation and<br>stockpiling of<br>materials) | The northern half<br>of the Phase I<br>property                    | PCA 30 –<br>Importation of Fill<br>Material of<br>Unknown Quality                  | On-site                        | PHCs (F1-F4),<br>Metals, PAH            | Soil and groundwater                       |
| APEC 2<br>(resulting from<br>the historical<br>presence of an<br>AST)                       | The northern<br>portion of the<br>Phase I property                 | PCA 28 –<br>Gasoline and<br>Associated<br>Products<br>Storage in Fixed<br>Tanks    | On-site                        | BTEX<br>PHCs (F1-F4)                    | Soil and<br>groundwater                    |
| APEC 3<br>(resulting from<br>the presence of<br>two ASTs)                                   | The northern<br>portion of the<br>Phase I property                 | PCA 28 –<br>Gasoline and<br>Associated<br>Products<br>Storage in Fixed<br>Tanks    | On-site                        | BTEX<br>PHCs (F1-F4)                    | Soil and<br>groundwater                    |
| APEC 4<br>(resulting from<br>the presence of<br>Navan landfill)                             | Eastern portion<br>of the Phase I<br>property                      | PCA 58 –<br>Waste Disposal<br>and Waste<br>Management,<br>including<br>landfilling | Off-site                       | BTEX<br>PHCs (F1-F4),<br>VOC, metals    | Soil and<br>groundwater                    |

A Phase II ESA was recommended to address the aforementioned APECs.

## 3.0 SCOPE OF INVESTIGATION

## 3.1 Overview of Site Investigation

The subsurface investigation was conducted in two phases. The first phase was completed on May 16, 17 and 22, 2019 in conjunction with a Geotechnical Investigation. The field program consisted of drilling nine (9) boreholes, all of which were completed as groundwater monitoring wells. Boreholes were drilled to depths ranging from 1.83 to 10.67 m below the existing grade.

The second phase was completed on September 5, 2019 and consisted of drilling four (4) additional boreholes, all of which were completed as groundwater monitoring wells. Boreholes were drilled to depths ranging from 5.18 to 11.28 m below the existing grade.

## 3.2 Media Investigated

During the subsurface investigation, soil and groundwater samples were obtained and submitted for laboratory analysis. The rationale for sampling and analyzing these samples is based on the Contaminants of Potential Concern identified in the Phase I ESA.

## 3.3 Phase I Conceptual Site Model

#### Geological and Hydrogeological Setting

Based on the information from NRCAN, bedrock in the area of the site consists of shale, limestone, dolostone and siltstone of the Billings Formation, overlain by deposits of various composition and depth. Site soils are anticipated to comprise granular glaciomarine sediments, colluvial deposits and fine-grained glaciomarine sediments between 30 and 50 m thick.

Groundwater flow is considered to be in a southerly direction, toward the Mer Bleue conservation area.

#### **Buildings and Structures**

The Phase I Property is occupied by a 2-storey office/reception building (formerly a single-family dwelling). The building was likely constructed around 1950-1960. Other structures include two semi-permanent trailers used for storage.

#### Water Bodies

The topographic map shows a ditch running from Navan Road at the northern boundary of the site, along the eastern boundary to the southern portion of the site before turning to the west and leading to the Mer Bleue conservation area.

#### Areas of Natural Significance

The Mer Bleue conservation area lies 30m south of the Phase I ESA Study Area.

#### **Drinking Water Wells**

A search of the MECP's well records identified two (2) records in the subject area, dating from 1977 to 2015. One record details a domestic water supply well drilled in 1977 to a depth of 45.7 m. The other record details the abandonment of a 4-inch diameter well located at 3225 Navan Road in 2015.

Given the municipally supplied area and age of the domestic supply well record, all private water wells are assumed to be obsolete.

#### Monitoring Well Records

No monitoring wells were identified for the Phase I Property or for any properties within the Phase I Study Area.

#### Neighbouring Land Use

Neighbouring land use in the Phase I Study Area is primarily residential to the north and west, with a landfill to the east and Mer Bleue conservation area to the south.

# Potentially Contaminating Activities (PCAs) and Areas of Potential Environmental Concern (APECs)

As presented in Table 1 in the previous section, on-site PCAs resulting in APECs on the Phase I Property include the storage of fuel (3 ASTs), as well as the importation of fill material of unknown quality and the neighbouring landfill.

PCAs resulting in APECs are presented on Drawing PE4588-1 – Site Plan.

#### Contaminants of Potential Concern (CPCs)

CPCs identified with the aforementioned APECs include benzene, toluene, ethylbenzene and xylenes (BTEX), petroleum hydrocarbons (PHCs, F<sub>1</sub>-F<sub>4</sub>), volatile organic compounds (VOCs), metals and polycyclic aromatic hydrocarbons (PAH) in the soil and groundwater.

#### Assessment of Uncertainty and/or Absence of Information

The information available for review as part of the preparation of this Phase I-ESA is considered to be sufficient to conclude that there are PCAs on the Phase I Property which may have impacted the subject land. The presence of PCAs was confirmed by a variety of independent sources, and as such, the conclusions of this report are not affected by uncertainty which may be present with respect to the individual sources.

## 3.4 Deviations from Sampling and Analysis Plan

The Sampling and Analysis Plan for this project is included in Appendix 1 of this report.

## 3.5 Impediments

Fill piles and dense brush/vegetation represent physical impediments encountered during the Phase II ESA program on the southern portion of the site.

## 4.0 INVESTIGATION METHOD

## 4.1 Subsurface Investigation

The subsurface investigation was conducted in two phases. The first phase was completed on May 16, 17 and 22, 2019 in conjunction with a Geotechnical Investigation. The field program consisted of drilling nine (9) boreholes, all of which were completed as groundwater monitoring wells. Boreholes were drilled to depths ranging from 1.83 to 10.67 m below the existing grade.

The second phase was completed on September 5, 2019 and consisted of drilling four (4) additional boreholes, all of which were completed as groundwater monitoring wells. Boreholes were drilled to depths ranging from 5.18 to 11.28 m below the existing grade.

The boreholes were placed to address the aforementioned areas of potential environmental concern (APECs). The boreholes were drilled with a track-mounted power auger drill rig. The track-mounted drill rig was provided by George Downing Estate Drilling of Hawkesbury, Ontario. Borehole locations are shown on Drawing PE4588-3 – Test Hole Location Plan appended to this report.

## 4.2 Soil Sampling

A total of 99 soil samples were obtained from the boreholes by means of sampling from shallow auger flights and split spoon sampling. The depths at which auger samples and split spoon samples were obtained from the boreholes are shown as "**AU**" and "**SS**" on the Soil Profile and Test Data Sheets, appended to this report.

Large stockpiles of fill material are present on the northern portion of the site, underlain by native silty clay. The southern portion of the site consists of topsoil underlain by native silty clay.

## 4.3 Field Screening Measurements

All soil samples collected were subjected to a preliminary screening procedure, which included visual screening for colour and evidence of metals, followed by soils vapour screening with a MiniRAE 2000 Portable VOC Monitor.

The soil vapours were measured by inserting the analyzer probe into the nominal headspace above the soil sample. Samples were then agitated/manipulated gently as the measurements were taken. The peak reading registered within the first 15 seconds was recorded as the vapour measurement.

The vapour readings were found to range from 0 to 10 ppm in all locations except for BH5. These readings are not considered to be indicative of concentrations of volatile compounds. The vapour readings were found in BH5 to range from 1.8 to 113.8 ppm.

Vapour readings are noted on the Soil Profile and Test Data Sheets in Appendix 1.

## 4.4 Groundwater Monitoring Well Installation

Thirteen (13) groundwater monitoring wells were installed on the Phase II Property as part of the current subsurface investigation. The monitoring wells consisted of 50 mm diameter Schedule 40 threaded PVC risers and screens. Monitoring well construction details are listed below in Table 2 and are also presented on the Soil Profile and Test Data Sheets provided in Appendix 1.

| TABLE   | 2: Monitoring          | Well Constru                    | ction Details                 |                              |             |
|---------|------------------------|---------------------------------|-------------------------------|------------------------------|-------------|
| Well ID | Total Depth<br>(m BGS) | Screened<br>Interval<br>(m BGS) | Sand Pack<br>up to<br>(m BGS) | Bentonite<br>Seal<br>(m BGS) | Casing Type |
| BH1     | 6.10                   | 6.10-3.05                       | 2.84                          | 0.10                         | Flushmount  |
| BH2     | 6.10                   | 6.10-3.05                       | 2.92                          | 0.13                         | Flushmount  |
| BH3     | 4.57                   | 4.57-1.52                       | 1.27                          | 0.10                         | Stick-up    |
| BH4     | 8.38                   | 8.38-5.33                       | 5.08                          | 0.13                         | Flushmount  |
| BH5     | 10.67                  | 10.67-7.62                      | 7.26                          | 0.00                         | Stick-up    |
| BH6     | 10.67                  | 10.67-7.62                      | 7.11                          | 0.13                         | Stick-up    |
| BH7     | 3.05                   | 3.05-1.53                       | 0.91                          | 0.00                         | Stick-up    |
| BH8     | 1.83                   | 1.83-0.31                       | 2.44                          | 0.00                         | Stick-up    |
| BH9     | 3.05                   | 3.05-1.53                       | 2.44                          | 0.00                         | Stick-up    |
| BH10    | 5.18                   | 5.18-2.13                       | 1.12                          | 0.00                         | Stick-up    |
| BH11    | 11.28                  | 11.28-9.76                      | 8.53                          | 7.92                         | Stick-up    |
| BH12    | 5.18                   | 5.18-2.13                       | 0.91                          | 0.00                         | Stick-up    |
| BH13    | 5.18                   | 5.18-2.13                       | 0.91                          | 0.00                         | Stick-up    |

## 4.5 Field Measurement of Water Quality Parameters

Groundwater sampling was conducted at BH1 to BH6 on 30 and 31 of May, 2019, at BH7 to BH9 on June 3, 2019 and at BH10 to BH13 on September 9, 2019. No water quality parameters were measured in the field at that time.

## 4.6 Groundwater Sampling

Groundwater sampling protocols were followed using the MECP document entitled "Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario", dated May 1996. Groundwater samples were obtained from each monitoring well, using dedicated sampling equipment. Standing water was purged from each well prior to sampling. Samples were stored in coolers to reduce analyte volatilization during transportation. Details of our standard operating procedure for groundwater sampling are provided in the Sampling and Analysis Plan in Appendix 1.

## 4.7 Analytical Testing

Based on the guidelines outlined in the Sampling and Analysis Plan, appended to this report, the following soil and groundwater samples were submitted for analysis:

| TABLE 3      | : Soil Sample                    | s Sub                                               | mitte | d      |       |     |   |                                                                              |
|--------------|----------------------------------|-----------------------------------------------------|-------|--------|-------|-----|---|------------------------------------------------------------------------------|
|              | Sample                           | Р                                                   | arame | ters / | Analy | zed |   | Rationale                                                                    |
| Sample<br>ID | Depth/<br>Stratigraphic<br>Unit  | Depth/<br>tratigraphicAHCAMetalsPAHSCCFaNutPAHSCCFa |       | Metals |       |     |   |                                                                              |
| BH1-SS4      | 2.29 - 2.90 m<br>Fill/Silty Clay | Х                                                   |       | Х      |       |     |   | Assess any potential impacts from the two ASTs.                              |
| BH2-SS3      | 1.52 - 2.13 m<br>Fill            | х                                                   |       | Х      |       |     |   | Assess any potential impacts from the historical AST.                        |
| BH3-AU1      | 0.00 - 0.61 m<br>Fill            |                                                     |       |        |       | х   | х | Assess any potential impacts from the fill piles and Navan landfill.         |
| BH4-SS2      | 0.76 - 1.37 m<br>Fill            |                                                     |       |        |       |     | х | Assess any potential impacts from the fill piles.                            |
| BH5-SS2      | 0.76 - 1.37 m<br>Fill            |                                                     |       |        | х     | х   |   | Assess any potential impacts from the fill piles and Navan landfill.         |
| BH5-SS6      | 3.81 - 4.42 m<br>Fill            | х                                                   |       | Х      |       |     | х | Assess any potential impacts from the fill piles and Navan landfill.         |
| BH6-SS8      | 5.33 - 5.94 m<br>Fill            |                                                     |       |        |       | х   | х | Assess any potential impacts from the fill piles.                            |
| BH7-SS5      | 2.44 - 3.05 m<br>Silty Clay      | х                                                   |       |        | х     |     | х | Assess any potential impacts from the Navan landfill.                        |
| BH8-SS3      | 1.22 - 1.83 m<br>Silty Clay      | х                                                   |       |        | х     |     | х | Assess any potential impacts from the Navan landfill.                        |
| BH9-SS3      | 1.22 - 1.83 m<br>Silty Clay      | х                                                   |       |        | х     |     | х | Assess any potential impacts from the Navan landfill.                        |
| BH10-SS2     | 1.52 - 2.13 m<br>Silty Sand      |                                                     |       |        | х     |     |   | Assess any potential impacts from<br>the two ASTs and the historical<br>AST. |
| BH11-SS1     | 6.10 - 6.71 m<br>Silty Clay      |                                                     |       |        | х     |     |   | Assess any potential impacts from the two ASTs and the historical AST.       |
| BH12-SS2     | 1.52 - 2.13 m<br>Silty Sand      |                                                     |       |        | х     |     |   | Assess any potential impacts from<br>the two ASTs and the historical<br>AST. |
| BH13-SS1     | 0.76 - 1.37 m<br>Fill            |                                                     | Х     |        |       | х   |   | Assess any potential impacts from<br>the two ASTs and the historical<br>AST. |
| BH13-SS2     | 1.52 - 2.13 m<br>Silty Sand      |                                                     |       |        | х     |     |   | Assess any potential impacts from<br>the two ASTs and the historical<br>AST. |

| TABLE 4:  | Groundwater                                | Samp            | les Su | bmitte  | ed     |                                                                            |
|-----------|--------------------------------------------|-----------------|--------|---------|--------|----------------------------------------------------------------------------|
|           | Sample Depth                               | Par             | ameter | s Analy | zed    |                                                                            |
| Sample ID | Stratigraphic<br>Unit                      | PHCs<br>(F₁-F₄) | VOC    | SVOC    | Metals | Rationale                                                                  |
| BH1-GW1   | 3.00 - 6.10 m<br>Silty Clay                | Х               | Х      |         | Х      | Assess any potential impacts from the two ASTs.                            |
| BH1-GW2   | 3.00 - 6.10 m<br>Silty Clay                |                 | Х      |         |        | Assess any potential impacts from the two ASTs.                            |
| BH2-GW1   | 3.00 - 6.10 m<br>Silty Clay                | х               | Х      |         |        | Assess any potential impacts from the historical AST.                      |
| BH4-GW1   | 5.40 – 8.38 m<br>Silty Clay                |                 |        | х       | х      | Assess any potential impacts from the fill piles.                          |
| BH5-GW1   | 7.60 – 10.67 m<br>Silty Clay               | х               | х      | х       | x      | Assess any potential impacts<br>from the fill piles and Navan<br>landfill. |
| BH6-GW1   | 7.60 – 10.67 m<br>Silty Clay               |                 |        | Х       | х      | Assess any potential impacts from the fill piles.                          |
| BH7-GW1   | 1.20 – 2.80 m<br>Silty Clay                |                 | Х      |         |        | Assess any potential impacts from the Navan landfill.                      |
| BH8-GW1   | 0.30 – 1.83 m<br>Silty Sand/<br>Silty Clay | х               | Х      |         | x      | Assess any potential impacts from the Navan landfill.                      |
| BH9-GW1   | 1.50 – 3.05 m<br>Silty Clay                |                 | Х      |         |        | Assess any potential impacts from the Navan landfill.                      |
| BH10-GW1  | 1.92 – 5.18 m<br>Silty Sand/<br>Silty Clay |                 | х      |         |        | Delineate impacted groundwater identified in BH1.                          |
| BH11-GW1  | 9.00 – 10.50 m<br>Silty Clay               |                 | Х      |         |        | Delineate impacted groundwater identified in BH1.                          |
| BH12-GW1  | 3.66 – 4.60 m<br>Silty Sand/<br>Silty Clay |                 | Х      |         |        | Delineate impacted groundwater identified in BH1.                          |
| BH13-GW1  | 2.28 – 4.60 m<br>Silty Sand/<br>Silty Clay |                 | х      |         |        | Delineate impacted groundwater identified in BH1.                          |

Paracel Laboratories (Paracel), of Ottawa, Ontario, performed the laboratory analysis on the samples submitted for analytical testing. Paracel is a member of the Standards Council of Canada/Canadian Association for Laboratory Accreditation (SCC/CALA). Paracel is accredited and certified by SCC/CALA for specific tests registered with the association.

## 4.8 Residue Management

All purge water and fluids from equipment cleaning were retained on-site.

## 4.9 Elevation Surveying

An elevation survey of all borehole locations was completed by Annis, O'Sullivan, Vollebekk Ltd. on 23 January 2020. The borehole elevations are presented on Drawing PE4588-3 – Test Hole Location Plan.

## 4.10 Quality Assurance and Quality Control Measures

A summary of quality assurance and quality control (QA/QC) measures, including sampling containers, preservation, labelling, handling, and custody, equipment cleaning procedures, and field quality control measurements is provided in the Sampling and Analysis Plan in Appendix 1.

## 5.0 REVIEW AND EVALUATION

#### 5.1 Geology

The soil profile consists of fill material, followed by native silty sand on the northern portion of the site overlying silty clay. The site stratigraphy is shown on Drawing PE4588-4A– Cross-Section A-A'.

## 5.2 Groundwater Elevations, Flow Direction, and Hydraulic Gradient

Groundwater levels were measured during the groundwater sampling events, using an electronic water level meter. Groundwater levels are summarized below in Table 5.

| TABLE 5              | Groundwater                        | Level Measureme                      | nts                                 |                        |
|----------------------|------------------------------------|--------------------------------------|-------------------------------------|------------------------|
| Borehole<br>Location | Ground<br>Surface<br>Elevation (m) | Water Level Depth<br>(m below grade) | Water Level<br>Elevation<br>(m ASL) | Date of<br>Measurement |
| BH1                  | 85.78                              | 1.60                                 | 84.18                               | May 31, 2019           |
| BH2                  | 85.67                              | 1.70                                 | 81.48                               | May 30, 2019           |
| BH3                  | Well destroyed – I                 | no sample was possible               | Э                                   |                        |
| BH4                  | 79.10                              | 3.40                                 | 75.70                               | May 30, 2019           |
| BH5                  | 82.34                              | 5.95                                 | 76.39                               | May 30, 2019           |
| BH6                  | 75.47                              | 5.20                                 | 70.27                               | May 30, 2019           |
| BH7                  | 72.90                              | 0.60                                 | 72.30                               | June 3, 2019           |
| BH8                  | 70.50                              | 0.05                                 | 70.45                               | June 3, 2019           |
| BH9                  | 69.49                              | 0.49                                 | 69.00                               | June 3, 2019           |
| BH10                 | 86.03                              | 1.92                                 | 84.11                               | September 9, 2019      |
| BH11                 | 85.53                              | 2.84                                 | 82.69                               | September 9, 2019      |
| BH12                 | 85.14                              | 3.66                                 | 81.48                               | September 9, 2019      |
| BH13                 | 85.37                              | 2.28                                 | 83.09                               | September 9, 2019      |

Based on the groundwater elevations, the groundwater is expected to flow in a southerly direction, towards the Mer Bleue Bog.

## 5.3 Fine-Coarse Soil Texture

No grain size analysis was completed for the subject site. Coarse-grained standards were chosen as a conservative approach.

## 5.4 Soil: Field Screening

The vapour readings were found to range from 0 to 10 ppm in all locations except for BH5. The vapour readings were found in BH5 to range from 1.8 to 113.8 ppm. No visual or olfactory indications of potential contamination were identified in the soil samples at the time of the field program. The field screening results of each individual soil sample are provided on the Soil Profile and Test Data Sheets appended to this report.

## 5.5 Soil Quality

Fifteen (15) soil samples were submitted for analysis of PHCs (F1-F4), BTEX, VOCs, PAHs and/or metals. The results of the analytical testing are presented below in Tables 6-9. The laboratory certificates of analysis are provided in Appendix 1.

| TABLE 6: An                  | TABLE 6: Analytical Test Results – Soil – BTEX and PHCs (F1-<br>Soil Samples (µg/g) |              |             |             |              |             |             |                |                                          |  |
|------------------------------|-------------------------------------------------------------------------------------|--------------|-------------|-------------|--------------|-------------|-------------|----------------|------------------------------------------|--|
|                              |                                                                                     |              |             |             |              |             |             |                |                                          |  |
| Parameter                    | MDL<br>(µg/g)                                                                       | May 16, 2019 |             |             | May 22, 2019 |             |             | Sept 5,<br>'19 | MECP Table 3<br>Residential<br>Standards |  |
|                              | (#9,9)                                                                              | BH1-<br>SS4  | BH2-<br>SS3 | BH5-<br>SS6 | BH7-<br>SS5  | BH8-<br>SS3 | BH9-<br>SS3 | BH13-<br>SS1   | (µg/g)                                   |  |
| Benzene                      | 0.02                                                                                | nd           | nd          | nd          | nd           | nd          | nd          | na             | 0.21                                     |  |
| Ethylbenzene                 | 0.05                                                                                | nd           | nd          | nd          | nd           | nd          | nd          | na             | 2.0                                      |  |
| Toluene                      | 0.05                                                                                | nd           | nd          | nd          | nd           | nd          | nd          | na             | 2.3                                      |  |
| Xylenes (Total)              | 0.05                                                                                | nd           | nd          | nd          | nd           | nd          | nd          | na             | 3.1                                      |  |
| PHC F1                       | 7                                                                                   | nd           | nd          | nd          | nd           | nd          | nd          | na             | 55                                       |  |
| PHC F2                       | 4                                                                                   | nd           | nd          | nd          | nd           | nd          | nd          | nd             | 98                                       |  |
| PHC F3                       | 8                                                                                   | nd           | nd          | 19          | nd           | nd          | nd          | 33             | 300                                      |  |
| PHC F4                       | 6                                                                                   | nd           | nd          | 21          | nd           | nd          | nd          | nd             | 2800                                     |  |
| <ul> <li>nd – not</li> </ul> | lethod De<br>detected<br>Analyzec                                                   | above th     | • • • •     |             |              |             |             |                |                                          |  |

The BTEX and PHC concentrations identified in the soil samples are in compliance with MECP Table 3 Standards. Analytical results of soil sampled with respect to borehole locations is shown on Drawing PE4588-4.

|                            |               |                 | Soil Samp | oles (µg/g) |                          | MECP Table 3 |
|----------------------------|---------------|-----------------|-----------|-------------|--------------------------|--------------|
| Parameter                  | MDL<br>(ug/g) | May 17,<br>2019 |           | )           | Residential<br>Standards |              |
|                            |               | BH5-SS2         | BH7-SS5   | BH8-SS3     | BH9-SS3                  | (µg/g)       |
| Acetone                    | 0.50          | nd              | nd        | nd          | nd                       | 16           |
| Benzene                    | 0.02          | nd              | nd        | nd          | nd                       | 0.21         |
| Bromodichloromethane       | 0.05          | nd              | 0.12      | nd          | nd                       | 13           |
| Bromoform                  | 0.05          | nd              | nd        | nd          | nd                       | 0.27         |
| Bromomethane               | 0.05          | nd              | 0.06      | nd          | nd                       | 0.05         |
| Carbon Tetrachloride       | 0.05          | nd              | nd        | nd          | nd                       | 0.05         |
| Chlorobenzene              | 0.05          | nd              | nd        | nd          | nd                       | 2.4          |
| Chloroform                 | 0.05          | nd              | 0.06      | nd          | nd                       | 0.05         |
| Dibromochloromethane       | 0.05          | nd              | nd        | nd          | nd                       | 9.4          |
| Dichlorodifluoromethane    | 0.05          | nd              | nd        | nd          | nd                       | 16           |
| 1,2-Dichlorobenzene        | 0.05          | nd              | nd        | nd          | nd                       | 3.4          |
| 1,3-Dichlorobenzene        | 0.05          | nd              | nd        | nd          | nd                       | 4.8          |
| 1,4-Dichlorobenzene        | 0.05          | nd              | nd        | nd          | nd                       | 0.083        |
| 1,1-Dichloroethane         | 0.05          | nd              | nd        | nd          | nd                       | 3.5          |
| 1,2-Dichloroethane         | 0.05          | nd              | nd        | nd          | nd                       | 0.05         |
| 1,1-Dichloroethylene       | 0.05          | nd              | nd        | nd          | nd                       | 0.05         |
| cis-1,2-Dichloroethylene   | 0.05          | nd              | nd        | nd          | nd                       | 3.4          |
| trans-1,2-Dichloroethylene | 0.05          | nd              | nd        | nd          | nd                       | 0.084        |
| 1,2-Dichloropropane        | 0.05          | nd              | nd        | nd          | nd                       | 0.05         |
| 1,3-Dichloropropene, total | 0.05          | nd              | nd        | nd          | nd                       | 0.05         |
| Ethylbenzene               | 0.05          | nd              | nd        | nd          | nd                       | 2            |
| Ethylene dibromide         | 0.05          | nd              | nd        | nd          | nd                       | 0.05         |
| Hexane                     | 0.05          | nd              | nd        | nd          | nd                       | 2.8          |
| Methyl Ethyl Ketone        | 0.50          | nd              | nd        | nd          | nd                       | 16           |
| Methyl Isobutyl Ketone     | 0.50          | nd              | nd        | nd          | nd                       | 1.7          |
| Methyl tert-butyl ether    | 0.05          | nd              | nd        | nd          | nd                       | 0.75         |
| Methylene Chloride         | 0.05          | nd              | nd        | nd          | nd                       | 0.1          |
| Styrene                    | 0.05          | nd              | nd        | nd          | nd                       | 0.7          |
| 1,1,1,2-Tetrachloroethane  | 0.05          | nd              | nd        | nd          | nd                       | 0.058        |
| 1,1,2,2-Tetrachloroethane  | 0.05          | nd              | nd        | nd          | nd                       | 0.05         |
| Tetrachloroethylene        | 0.05          | nd              | nd        | nd          | nd                       | 0.28         |
| Toluene                    | 0.05          | nd              | nd        | nd          | nd                       | 2.3          |
| 1,1,1-Trichloroethane      | 0.05          | nd              | nd        | nd          | nd                       | 0.38         |
| 1,1,2-Trichloroethane      | 0.05          | nd              | nd        | nd          | nd                       | 0.05         |
| Trichloroethylene          | 0.05          | nd              | nd        | nd          | nd                       | 0.061        |
| Trichlorofluoromethane     | 0.05          | nd              | nd        | nd          | nd                       | 4            |
| Vinyl Chloride             | 0.02          | nd              | nd        | nd          | nd                       | 0.02         |
| Xylenes, total             | 0.05          | nd              | nd        | nd          | nd                       | 3.1          |

nd - Not Detected (< MDL)</li>
 Bold and underlined – Exceeds MECP Table 3 Standard

|                            |        |          | Soil Samp | oles (µg/g)<br>er 5, 2019 |          | MECP Table 3        |
|----------------------------|--------|----------|-----------|---------------------------|----------|---------------------|
| Parameter                  | MDL    |          |           | Residential               |          |                     |
|                            | (ug/g) | BH10-SS2 | BH11-SS1  | BH12-SS2                  | BH13-SS2 | Standards<br>(µg/g) |
| Acetone                    | 0.5    | nd       | nd        | nd                        | nd       | 16                  |
| Benzene                    | 0.02   | nd       | nd        | nd                        | nd       | 0.32                |
| Bromodichloromethane       | 0.05   | nd       | nd        | nd                        | nd       | 18                  |
| Bromoform                  | 0.05   | nd       | nd        | nd                        | nd       | 0.61                |
| Bromomethane               | 0.05   | nd       | nd        | nd                        | nd       | 0.05                |
| Carbon Tetrachloride       | 0.05   | nd       | nd        | nd                        | nd       | 0.21                |
| Chlorobenzene              | 0.05   | nd       | nd        | nd                        | nd       | 2.4                 |
| Chloroform                 | 0.05   | nd       | nd        | nd                        | nd       | 0.47                |
| Dibromochloromethane       | 0.05   | nd       | nd        | nd                        | nd       | 13                  |
| Dichlorodifluoromethane    | 0.05   | nd       | nd        | nd                        | nd       | 16                  |
| 1,2-Dichlorobenzene        | 0.05   | nd       | nd        | nd                        | nd       | 6.8                 |
| 1,3-Dichlorobenzene        | 0.05   | nd       | nd        | nd                        | nd       | 9.6                 |
| 1,4-Dichlorobenzene        | 0.05   | nd       | nd        | nd                        | nd       | 0.2                 |
| 1,1-Dichloroethane         | 0.05   | nd       | nd        | nd                        | nd       | 17                  |
| 1,2-Dichloroethane         | 0.05   | nd       | nd        | nd                        | nd       | 0.05                |
| 1,1-Dichloroethylene       | 0.05   | nd       | nd        | nd                        | nd       | 0.064               |
| cis-1,2-Dichloroethylene   | 0.05   | nd       | nd        | nd                        | nd       | 55                  |
| trans-1,2-Dichloroethylene | 0.05   | nd       | nd        | nd                        | nd       | 1.3                 |
| 1,2-Dichloropropane        | 0.05   | nd       | nd        | nd                        | nd       | 0.16                |
| 1,3-Dichloropropene        | 0.05   | nd       | nd        | nd                        | nd       | 0.18                |
| Ethyl benzene              | 0.05   | nd       | nd        | nd                        | nd       | 9.5                 |
| Ethylene dibromide         | 0.05   | nd       | nd        | nd                        | nd       | 0.05                |
| Hexane                     | 0.05   | nd       | nd        | nd                        | nd       | 46                  |
| Methyl Ethyl Ketone        | 0.5    | nd       | nd        | nd                        | nd       | 70                  |
| Methyl Isobutyl Ketone     | 0.5    | nd       | nd        | nd                        | nd       | 31                  |
| Methyl tert-butyl ether    | 0.05   | nd       | nd        | nd                        | nd       | 11                  |
| Methylene Chloride         | 0.05   | nd       | nd        | nd                        | nd       | 1.6                 |
| Styrene                    | 0.05   | nd       | nd        | nd                        | nd       | 34                  |
| 1,1,1,2-Tetrachloroethane  | 0.05   | nd       | nd        | nd                        | nd       | 0.087               |
| 1,1,2,2-Tetrachloroethane  | 0.05   | nd       | nd        | nd                        | nd       | 0.05                |
| Tetrachloroethylene        | 0.05   | nd       | nd        | nd                        | nd       | 4.5                 |
| Toluene                    | 0.05   | nd       | nd        | nd                        | nd       | 68                  |
| 1,1,1-Trichloroethane      | 0.05   | nd       | nd        | nd                        | nd       | 6.1                 |
| 1,1,2-Trichloroethane      | 0.05   | nd       | nd        | nd                        | nd       | 0.05                |
| Trichloroethylene          | 0.05   | nd       | nd        | nd                        | nd       | 0.91                |
| Trichlorofluoromethane     | 0.05   | nd       | nd        | nd                        | nd       | 4                   |
| Vinyl Chloride             | 0.02   | nd       | nd        | nd                        | nd       | 0.032               |
| Xylenes                    | 0.05   | nd       | nd        | nd                        | nd       | 26                  |

The VOC concentrations identified in the soil samples are all in compliance with MECP Table 3 Standards apart from Bromomethane and Chloroform which marginally exceed the MECP standard in BH7-SS5. Analytical results of soil sampled with respect to borehole locations is shown on Drawing PE4588-4.

| TABLE 8: Analytica                             |        |                 | MECP Table 3              |                 |              |                     |
|------------------------------------------------|--------|-----------------|---------------------------|-----------------|--------------|---------------------|
| Parameter                                      | MDL    | м               | Soil Samp<br>ay 16-17, 20 | Sept 5,<br>2019 | Residential  |                     |
|                                                | (µg/g) | BH3-AU1 BH5-SS2 |                           | BH6-SS8         | BH13-<br>SS1 | Standards<br>(µg/g) |
| Acenaphthene                                   | 0.02   | nd              | nd                        | nd              | nd           | 7.9                 |
| Acenaphthylene                                 | 0.02   | nd              | nd                        | nd              | nd           | 0.15                |
| Anthracene                                     | 0.02   | nd              | 0.04                      | nd              | nd           | 0.67                |
| Benzo[a]anthracene                             | 0.02   | nd              | 0.10                      | 0.04            | nd           | 0.5                 |
| Benzo[a]pyrene                                 | 0.02   | nd              | 0.08                      | 0.03            | nd           | 0.3                 |
| Benzo[b]fluoranthene                           | 0.02   | 0.03            | 0.12                      | 0.05            | nd           | 0.78                |
| Benzo[g,h,i]perylene                           | 0.02   | nd              | 0.05                      | 0.04            | nd           | 6.6                 |
| Benzo[k]fluoranthene                           | 0.02   | nd              | 0.06                      | 0.05            | nd           | 0.78                |
| Chrysene                                       | 0.02   | nd              | 0.12                      | 0.04            | nd           | 7                   |
| Dibenzo[a,h]anthracene                         | 0.02   | nd              | nd                        | nd              | nd           | 0.1                 |
| Fluoranthene                                   | 0.02   | 0.04            | 0.23                      | 0.08            | nd           | 0.69                |
| Fluorene                                       | 0.02   | nd              | nd                        | nd              | nd           | 62                  |
| Indeno[1,2,3-cd]pyrene                         | 0.02   | nd              | 0.06                      | 0.04            | nd           | 0.38                |
| 1-Methylnaphthalene                            | 0.02   | nd              | nd                        | nd              | nd           | 0.99                |
| 2-Methylnaphthalene                            | 0.02   | 0.02            | nd                        | nd              | nd           | 0.99                |
| Methylnaphthalene (1&2)                        | 0.04   | nd              | nd                        | nd              | nd           | 0.99                |
| Naphthalene                                    | 0.01   | nd              | nd                        | nd              | nd           | 0.6                 |
| Phenanthrene                                   | 0.02   | 0.03            | 0.14                      | 0.04            | nd           | 6.2                 |
| Pyrene                                         | 0.02   | 0.04            | 0.19                      | 0.06            | 0.02         | 78                  |
| Notes:<br>MDL – Method De<br>nd – not detected |        |                 |                           |                 |              |                     |

The PAH concentrations identified in the soil samples are all in compliance with MECP Table 3 Standards. Analytical results of soil sampled with respect to borehole locations is shown on Drawing PE4588-4.

| TABLE 9: A    | TABLE 9: Analytical Test Results – Soil – Metals |             |             |              |             |             |             |             |                          |  |  |
|---------------|--------------------------------------------------|-------------|-------------|--------------|-------------|-------------|-------------|-------------|--------------------------|--|--|
|               |                                                  |             |             | MECP Table 3 |             |             |             |             |                          |  |  |
| Parameter     | MDL<br>(µg/g)                                    |             | May 16      | 6, 2019      | , 2019 Ma   |             | iy 22, 20   | )19         | Residential<br>Standards |  |  |
|               |                                                  | BH3-<br>AU1 | BH4-<br>SS2 | BH5-<br>SS6  | BH6-<br>SS8 | BH7-<br>SS5 | BH8-<br>SS3 | BH9-<br>SS3 | (µg/g)                   |  |  |
| Chromium (VI) | 0.2                                              | nd          | nd          | nd           | nd          | nd          | nd          | nd          | 10                       |  |  |
| Mercury       | 0.1                                              | nd          | nd          | nd           | nd          | nd          | nd          | nd          | 1.8                      |  |  |
| Antimony      | 1.0                                              | nd          | nd          | nd           | nd          | nd          | nd          | nd          | 7.5                      |  |  |
| Arsenic       | 1.0                                              | 5.3         | 2.9         | 3.1          | 2.9         | 2.6         | 2.9         | 3.1         | 18                       |  |  |
| Barium        | 1.0                                              | 99.9        | 98.7        | 78.9         | 136         | 260         | 311         | 315         | 390                      |  |  |
| Beryllium     | 0.5                                              | 0.9         | nd          | nd           | nd          | 0.8         | 0.8         | 0.9         | 5                        |  |  |
| Boron         | 5.0                                              | 9.7         | 7.5         | 6.5          | 6.0         | 9.1         | 9.7         | 8.9         | 120                      |  |  |
| Cadmium       | 0.5                                              | nd          | nd          | nd           | nd          | nd          | nd          | nd          | 1.2                      |  |  |
| Chromium      | 5.0                                              | 38.9        | 27.5        | 31.1         | 55.3        | 109         | 117         | 112         | 160                      |  |  |
| Cobalt        | 1.0                                              | 12.2        | 6.4         | 6.3          | 11.5        | 20.5        | <u>22.7</u> | 22.6        | 22                       |  |  |
| Copper        | 5.0                                              | 27.1        | 19.5        | 16.0         | 25.7        | 59.6        | 45.2        | 55.4        | 180                      |  |  |
| Lead          | 1.0                                              | 10.5        | 13.2        | 31.3         | 11.5        | 6.5         | 7.1         | 6.9         | 120                      |  |  |
| Molybdenum    | 1.0                                              | nd          | nd          | nd           | nd          | nd          | nd          | nd          | 6.9                      |  |  |
| Nickel        | 5.0                                              | 30.3        | 17.2        | 16.3         | 28.5        | 59.2        | 61.9        | 62.6        | 130                      |  |  |

|                             |                          |                         |             | Soil S      | amples      | (µg/g)       |             |        | MECP Table 3             |
|-----------------------------|--------------------------|-------------------------|-------------|-------------|-------------|--------------|-------------|--------|--------------------------|
| Parameter                   | MDL<br>(µa/a)            | MDL May 16, 2019 (μg/g) |             |             |             | May 22, 2019 |             |        | Residential<br>Standards |
|                             | BH3-<br>AU1              | BH4-<br>SS2             | BH5-<br>SS6 | BH6-<br>SS8 | BH7-<br>SS5 | BH8-<br>SS3  | BH9-<br>SS3 | (µg/g) |                          |
| Selenium                    | 1.0                      | nd                      | nd          | nd          | nd          | nd           | nd          | nd     | 2.4                      |
| Silver                      | 0.3                      | nd                      | nd          | nd          | nd          | nd           | nd          | nd     | 25                       |
| Thallium                    | 1.0                      | nd                      | nd          | nd          | nd          | nd           | nd          | nd     | 1                        |
| Uranium                     | 1.0                      | nd                      | nd          | nd          | 1.7         | nd           | 1.0         | nd     | 23                       |
| Vanadium                    | 10.0                     | 44.1                    | 28.3        | 32.0        | 53.8        | <u>91.5</u>  | 103         | 105    | 86                       |
| Zinc                        | 20.0                     | 67.8                    | 65.3        | 62.9        | 68.0        | 124          | 133         | 137    | 340                      |
| <ul> <li>nd – nd</li> </ul> | Method De<br>ot detected | above th                | e MDL       | Table 3 S   | tandard     |              |             |        |                          |

The metals concentrations identified in the soil samples are in compliance with MECP Table 3 Standards except for cobalt in two samples (BH8-SS3 and BH9-SS3) and vanadium in three samples (BH7-SS5, BH8-SS3 and BH9-SS3). Cobalt and vanadium are both considered to occur naturally at concentrations in excess of the Table 3 standards and do not represent impacted soil. Analytical results of soil sampled with respect to borehole locations is shown on Drawing PE4588-4.

## 5.6 Groundwater Quality

Fifteen (15) groundwater samples collected from monitoring wells, were submitted for analysis of PHCs (F1-F4), BTEX, VOCs, PAHs and/or metals. The results of the analytical testing are presented below in Tables 10-13. The laboratory certificates of analysis are provided in Appendix 1.

| TABLE 10: A     | TABLE 10: Analytical Test Results – Groundwater – BTEX and PHCs (F1-F4) |                 |              |              |         |                            |  |  |  |
|-----------------|-------------------------------------------------------------------------|-----------------|--------------|--------------|---------|----------------------------|--|--|--|
|                 |                                                                         |                 | MECP Table 3 |              |         |                            |  |  |  |
| Parameter       | MDL<br>(µg/l)                                                           | May 31,<br>2019 | May 3        | May 30, 2019 |         | Non-Potable<br>Groundwater |  |  |  |
|                 |                                                                         | BH1-GW1         | BH2-GW1      | BH5-GW1      | BH8-GW1 | (µg/l)                     |  |  |  |
| Benzene         | 0.5                                                                     | nd              | nd           | nd           | nd      | 44                         |  |  |  |
| Ethylbenzene    | 0.5                                                                     | nd              | nd           | nd           | nd      | 2300                       |  |  |  |
| Toluene         | 0.5                                                                     | nd              | nd           | nd           | nd      | 18000                      |  |  |  |
| Xylenes (Total) | 0.5                                                                     | nd              | nd           | nd           | nd      | 4200                       |  |  |  |
| PHC F1          | 25                                                                      | nd              | nd           | nd           | nd      | 750                        |  |  |  |
| PHC F2          | 100                                                                     | nd              | nd           | nd           | nd      | 150                        |  |  |  |
| PHC F3          | 100                                                                     | nd              | nd           | nd           | nd      | 500                        |  |  |  |
| PHC F4          | 100                                                                     | nd              | nd           | nd           | nd      | 500                        |  |  |  |
|                 | Notes:<br>MDL – Method Detection Limit                                  |                 |              |              |         |                            |  |  |  |

The BTEX and PHC concentrations identified in the groundwater samples are in compliance with MECP Table 3 Standards. Analytical results with respect to borehole locations are shown on Drawing PE4588-5.

|                            |        |                | Grou            | ndwater     | Samples     | (µg/l)      |             | MECP Table 3               |
|----------------------------|--------|----------------|-----------------|-------------|-------------|-------------|-------------|----------------------------|
| Parameter                  |        | May<br>31, '19 | July<br>15, '19 | May 30      | ), 2019     | June 3      | 8, 2019     | Non-Potable<br>Groundwater |
|                            | (ug/l) | BH1-<br>GW1    | BH1-<br>GW2     | BH2-<br>GW1 | BH5-<br>GW1 | BH7-<br>GW1 | BH8-<br>GW1 | (µg/l)                     |
| Acetone                    | 5.0    | nd             | nd              | nd          | nd          | nd          | nd          | 130000                     |
| Benzene                    | 0.5    | nd             | nd              | nd          | nd          | nd          | nd          | 44                         |
| Bromodichloromethane       | 0.5    | nd             | nd              | nd          | nd          | nd          | nd          | 85000                      |
| Bromoform                  | 0.5    | nd             | nd              | nd          | nd          | nd          | nd          | 380                        |
| Bromomethane               | 0.5    | nd             | nd              | nd          | nd          | nd          | nd          | 5.6                        |
| Carbon Tetrachloride       | 0.2    | nd             | nd              | nd          | nd          | nd          | nd          | 0.79                       |
| Chlorobenzene              | 0.5    | nd             | nd              | nd          | nd          | nd          | nd          | 630                        |
| Chloroform                 | 0.5    | nd             | nd              | nd          | nd          | nd          | nd          | 2.4                        |
| Dibromochloromethane       | 0.5    | nd             | nd              | nd          | nd          | nd          | nd          | 82000                      |
| Dichlorodifluoromethane    | 1.0    | nd             | nd              | nd          | nd          | nd          | nd          | 4400                       |
| 1.2-Dichlorobenzene        | 0.5    | nd             | nd              | nd          | nd          | nd          | nd          | 4600                       |
| 1,3-Dichlorobenzene        | 0.5    | nd             | nd              | nd          | nd          | nd          | nd          | 9600                       |
| 1,4-Dichlorobenzene        | 0.5    | nd             | nd              | nd          | nd          | nd          | nd          | 8                          |
| 1,1-Dichloroethane         | 0.5    | nd             | nd              | nd          | nd          | nd          | nd          | 320                        |
| 1,2-Dichloroethane         | 0.5    | nd             | nd              | nd          | nd          | nd          | nd          | 1.6                        |
| 1,1-Dichloroethylene       | 0.5    | nd             | nd              | nd          | nd          | nd          | nd          | 1.6                        |
| cis-1,2-Dichloroethylene   | 0.5    | nd             | nd              | nd          | nd          | nd          | nd          | 1.6                        |
| trans-1,2-Dichloroethylene | 0.5    | nd             | nd              | nd          | nd          | nd          | nd          | 1.6                        |
| 1,2-Dichloropropane        | 0.5    | nd             | nd              | nd          | nd          | nd          | nd          | 16                         |
| 1,3-Dichloropropene, total | 0.5    | nd             | nd              | nd          | nd          | nd          | nd          | 5.2                        |
| Ethylbenzene               | 0.5    | nd             | nd              | nd          | nd          | nd          | nd          | 2300                       |
| Ethylene dibromide         | 0.2    | nd             | nd              | nd          | nd          | nd          | nd          | 0.25                       |
| Hexane                     | 1.0    | nd             | nd              | nd          | nd          | nd          | nd          | 51                         |
| Methyl Ethyl Ketone        | 5.0    | nd             | nd              | nd          | nd          | nd          | nd          | 470000                     |
| Methyl Isobutyl Ketone     | 5.0    | nd             | nd              | nd          | nd          | nd          | nd          | 140000                     |
| Methyl tert-butyl ether    | 2.0    | nd             | nd              | nd          | nd          | nd          | nd          | 190                        |
| Methylene Chloride         | 5.0    | nd             | nd              | nd          | nd          | nd          | nd          | 610                        |
| Styrene                    | 0.5    | nd             | nd              | nd          | nd          | nd          | nd          | 1300                       |
| 1,1,1,2-Tetrachloroethane  | 0.5    | nd             | nd              | nd          | nd          | nd          | nd          | 3.3                        |
| 1,1,2,2-Tetrachloroethane  | 0.5    | nd             | nd              | nd          | nd          | nd          | nd          | 3.2                        |
| Tetrachloroethylene        | 0.5    | 286            | <u>43.1</u>     | nd          | nd          | nd          | nd          | 1.6                        |
| Toluene                    | 0.5    | nd             | nd              | nd          | nd          | nd          | nd          | 18000                      |
| 1,1,1-Trichloroethane      | 0.5    | nd             | nd              | nd          | nd          | nd          | nd          | 640                        |
| 1,1,2-Trichloroethane      | 0.5    | nd             | nd              | nd          | nd          | nd          | nd          | 4.7                        |
| Trichloroethylene          | 0.5    | nd             | nd              | nd          | nd          | nd          | nd          | 1.6                        |
| Trichlorofluoromethane     | 1.0    | nd             | nd              | nd          | nd          | nd          | nd          | 2500                       |
| Vinyl Chloride             | 0.5    | nd             | nd              | nd          | nd          | nd          | nd          | 0.5                        |
| Xylenes, total             | 0.5    | nd             | nd              | nd          | nd          | nd          | nd          | 4200                       |

nd - Not Detected (< MDL)</li>

Bold and underlined – Exceeds MECP Table 3 Standard

|                                            |               |                 | Groundw      | vater Samp   | les (µg/l)                 |              | MECP Table 3 |
|--------------------------------------------|---------------|-----------------|--------------|--------------|----------------------------|--------------|--------------|
| Parameter                                  | MDL<br>(ug/l) | June 3,<br>2019 |              |              | Non-Potable<br>Groundwater |              |              |
|                                            | (ug/i)        | BH9-<br>GW1     | BH10-<br>GW1 | BH11-<br>GW1 | BH12-<br>GW1               | BH13-<br>GW1 | (µg/l)       |
| Acetone                                    | 5.0           | nd              | nd           | nd           | nd                         | nd           | 130000       |
| Benzene                                    | 0.5           | nd              | nd           | nd           | nd                         | nd           | 44           |
| Bromodichloromethane                       | 0.5           | nd              | nd           | nd           | nd                         | nd           | 85000        |
| Bromoform                                  | 0.5           | nd              | nd           | nd           | nd                         | nd           | 380          |
| Bromomethane                               | 0.5           | nd              | nd           | nd           | nd                         | nd           | 5.6          |
| Carbon Tetrachloride                       | 0.2           | nd              | nd           | nd           | nd                         | nd           | 0.79         |
| Chlorobenzene                              | 0.5           | nd              | nd           | nd           | nd                         | nd           | 630          |
| Chloroform                                 | 0.5           | nd              | nd           | 15           | nd                         | nd           | 2.4          |
| Dibromochloromethane                       | 0.5           | nd              | nd           | nd           | nd                         | nd           | 82000        |
| Dichlorodifluoromethane                    | 1.0           | nd              | nd           | nd           | nd                         | nd           | 4400         |
| 1,2-Dichlorobenzene                        | 0.5           | nd              | nd           | nd           | nd                         | nd           | 4600         |
| 1,3-Dichlorobenzene                        | 0.5           | nd              | nd           | nd           | nd                         | nd           | 9600         |
| 1,4-Dichlorobenzene                        | 0.5           | nd              | nd           | nd           | nd                         | nd           | 8            |
| 1,1-Dichloroethane                         | 0.5           | nd              | nd           | nd           | nd                         | nd           | 320          |
| 1,2-Dichloroethane                         | 0.5           | nd              | nd           | nd           | nd                         | nd           | 1.6          |
| 1,1-Dichloroethylene                       | 0.5           | nd              | nd           | nd           | nd                         | nd           | 1.6          |
| cis-1,2-Dichloroethylene                   | 0.5           | nd              | nd           | nd           | nd                         | nd           | 1.6          |
| trans-1,2-Dichloroethylene                 | 0.5           | nd              | nd           | nd           | nd                         | nd           | 1.6          |
| 1,2-Dichloropropane                        | 0.5           | nd              | nd           | nd           | nd                         | nd           | 16           |
| 1,3-Dichloropropene, total                 | 0.5           | nd              | nd           | nd           | nd                         | nd           | 5.2          |
| Ethylbenzene                               | 0.5           | nd              | nd           | nd           | nd                         | nd           | 2300         |
| Ethylene dibromide                         | 0.2           | nd              | nd           | nd           | nd                         | nd           | 0.25         |
| Hexane                                     | 1.0           | nd              | nd           | nd           | nd                         | nd           | 51           |
| Methyl Ethyl Ketone                        | 5.0           | nd              | nd           | nd           | nd                         | nd           | 470000       |
| Methyl Isobutyl Ketone                     | 5.0           | nd              | nd           | nd           | nd                         | nd           | 140000       |
| Methyl tert-butyl ether                    | 2.0           | nd              | nd           | nd           | nd                         | nd           | 190          |
| Methylene Chloride                         | 5.0           | nd              | nd           | nd           | nd                         | nd           | 610          |
| Styrene                                    | 0.5           | nd              | nd           | nd           | nd                         | nd           | 1300         |
| 1,1,1,2-Tetrachloroethane                  | 0.5           | nd              | nd           | nd           | nd                         | nd           | 3.3          |
| 1,1,2,2-Tetrachloroethane                  | 0.5           | nd              | nd           | nd           | nd                         | nd           | 3.2          |
| Tetrachloroethylene                        | 0.5           | nd              | nd           | nd           | nd                         | nd           | 1.6          |
|                                            | 0.5           |                 |              | in al        | in al                      | in al        | 18000        |
| Toluene                                    | 0.5           | nd              | nd           | na           | na                         | nd           | 640          |
| 1,1,1-Trichloroethane                      |               | nd              | nd           | nd           | nd                         | nd           | 4.7          |
| 1,1,2-Trichloroethane<br>Trichloroethylene | 0.5<br>0.5    | nd              | nd           | nd           | nd<br>nd                   | nd           | 4.7          |
| Trichlorofluoromethane                     | 1.0           | nd              | nd           | nd           | nd                         | nd           | 2500         |
| Vinyl Chloride                             | 0.5           | nd              | nd           | nd           | nd                         | nd           | 0.5          |
|                                            |               | nd              | nd           | nd           |                            | nd           |              |
| Xylenes, total<br>Notes:                   | 0.5           | nd              | nd           | nd           | nd                         | nd           | 4200         |

nd - Not Detected (< MDL)</li>

The VOC concentrations identified in the groundwater samples are all in compliance with MECP Table 3 Standards apart from Tetrachloroethylene which exceed the MECP standard in two samples from BH1. Analytical results with respect to borehole locations are shown on Drawing PE4588-5.

| TABLE 12: Analytic                             | TABLE 12: Analytical Test Results – Groundwater – PAHs |         |              |         |                       |  |  |  |
|------------------------------------------------|--------------------------------------------------------|---------|--------------|---------|-----------------------|--|--|--|
|                                                |                                                        | Groui   | MECP Table 3 |         |                       |  |  |  |
| Parameter                                      | MDL                                                    |         | Non-Potable  |         |                       |  |  |  |
|                                                | (µg/l)                                                 | BH4-GW1 | BH5-GW1      | BH6-GW1 | Groundwater<br>(µg/l) |  |  |  |
| Acenaphthene                                   | 0.05                                                   | nd      | nd           | nd      | 600                   |  |  |  |
| Acenaphthylene                                 | 0.05                                                   | nd      | nd           | nd      | 1.8                   |  |  |  |
| Anthracene                                     | 0.01                                                   | nd      | nd           | nd      | 2.4                   |  |  |  |
| Benzo[a]anthracene                             | 0.01                                                   | nd      | nd           | nd      | 4.7                   |  |  |  |
| Benzo[a]pyrene                                 | 0.01                                                   | nd      | nd           | nd      | 0.81                  |  |  |  |
| Benzo[b]fluoranthene                           | 0.05                                                   | nd      | nd           | nd      | 0.75                  |  |  |  |
| Benzo[g,h,i]perylene                           | 0.05                                                   | nd      | nd           | nd      | 0.2                   |  |  |  |
| Benzo[k]fluoranthene                           | 0.05                                                   | nd      | nd           | nd      | 0.4                   |  |  |  |
| Chrysene                                       | 0.05                                                   | nd      | nd           | nd      | 1                     |  |  |  |
| Dibenzo[a,h]anthracene                         | 0.05                                                   | nd      | nd           | nd      | 0.52                  |  |  |  |
| Fluoranthene                                   | 0.01                                                   | nd      | nd           | nd      | 130                   |  |  |  |
| Fluorene                                       | 0.05                                                   | nd      | nd           | nd      | 400                   |  |  |  |
| Indeno[1,2,3-cd]pyrene                         | 0.05                                                   | nd      | nd           | nd      | 0.2                   |  |  |  |
| 1-Methylnaphthalene                            | 0.05                                                   | nd      | nd           | nd      | 1800                  |  |  |  |
| 2-Methylnaphthalene                            | 0.05                                                   | nd      | nd           | nd      | 1800                  |  |  |  |
| Methylnaphthalene (1&2)                        | 0.10                                                   | nd      | nd           | nd      | 1800                  |  |  |  |
| Naphthalene                                    | 0.05                                                   | nd      | nd           | nd      | 1400                  |  |  |  |
| Phenanthrene                                   | 0.05                                                   | nd      | nd           | nd      | 580                   |  |  |  |
| Pyrene                                         | 0.01                                                   | nd      | nd           | nd      | 68                    |  |  |  |
| Notes:<br>MDL – Method De<br>nd – not detected |                                                        |         |              |         |                       |  |  |  |

The PAH concentrations identified in the groundwater samples are all in compliance with MECP Table 3 Standards. Analytical results with respect to borehole locations are shown on Drawing PE4588-5.

|               |               |                 | MECP Table 3 |                 |                            |             |         |  |
|---------------|---------------|-----------------|--------------|-----------------|----------------------------|-------------|---------|--|
| Parameter     | MDL<br>(µg/l) | May 31,<br>2019 | I            | June 3,<br>2019 | Non-Potable<br>Groundwater |             |         |  |
|               |               | BH1-<br>GW1     | BH4-<br>GW1  | BH5-<br>GW1     | BH6-<br>GW1                | BH8-<br>GW1 | (µg/l)  |  |
| Mercury       | 0.1           | nd              | na           | nd              | nd                         | nd          | 0.29    |  |
| Antimony      | 0.5           | nd              | nd           | 0.6             | nd                         | nd          | 20000   |  |
| Arsenic       | 1             | 1               | 1            | 2               | 2                          | nd          | 1900    |  |
| Barium        | 1             | 145             | 122          | 145             | 201                        | 90          | 29000   |  |
| Beryllium     | 0.5           | nd              | nd           | nd              | nd                         | nd          | 67      |  |
| Boron         | 10            | 52              | 97           | 186             | 382                        | 645         | 45000   |  |
| Cadmium       | 0.1           | nd              | nd           | 0.1             | nd                         | nd          | 2.7     |  |
| Chromium      | 1             | nd              | nd           | nd 12 i         |                            | nd          | 810     |  |
| Chromium (VI) | 10            | nd              | na           | nd              | nd                         | nd          | 140     |  |
| Cobalt        | 0.5           | 0.9             | nd           | 4.5             | 0.7                        | 1.1         | 66      |  |
| Copper        | 0.5           | 3.3             | 6.3          | 5.5             | 6.1                        | 2.8         | 87      |  |
| Lead          | 0.1           | nd              | 0.2          | 0.3             | 0.3                        | 0.2         | 25      |  |
| Molybdenum    | 0.5           | 4.3             | 6.7          | 5.4             | 4.8                        | 2.7         | 9200    |  |
| Nickel        | 1             | 2               | 2            | 13              | 3                          | 2           | 490     |  |
| Selenium      | 1             | nd              | nd           | 1               | nd                         | nd          | 63      |  |
| Silver        | 0.1           | nd              | nd           | nd              | nd                         | nd          | 1.5     |  |
| Sodium        | 200           | 91400           | 149000       | 793000          | 722000                     | 307000      | 2300000 |  |
| Thallium      | 0.1           | nd              | nd           | nd              | nd                         | nd          | 510     |  |
| Uranium       | 0.1           | 3.2             | 3.2          | 14.5            | 3.6                        | 3.3         | 420     |  |
| Vanadium      | 0.5           | 1.6             | 1.9          | 4.2             | 4.1                        | 1.0         | 250     |  |
| Zinc          | 5             | nd              | 8            | 7               | 6                          | 5           | 1100    |  |

nd – not detected above the MDL
 na – Not Analyzed

The metals concentrations identified in the groundwater samples are in compliance with MECP Table 3 Standards. Analytical results with respect to borehole locations are shown on Drawing PE4588-5.

## 5.7 Quality Assurance and Quality Control Results

All samples submitted as part of the sampling events were handled in accordance with the Analytical Protocol with respect to preservation method, storage requirement, and container type.

As per Subsection 47(3) of O.Reg. 153/04 as amended by the Environmental Protection Act, a Certificate of Analysis has been received for each sample submitted for analysis and all Certificates of Analysis are appended to this report.

Overall, the quality of the field data collected during this Phase II ESA is considered to be sufficient to meet the overall objectives of this assessment.

## 5.8 Phase II Conceptual Site Model

The following section has been prepared in accordance with the requirements of O.Reg. 269/11 amended by the Environmental Protection Act. Conclusions and recommendations are discussed in a subsequent section.

## Site Description

# Potentially Contaminating Activity and Areas of Potential Environmental Concern

As indicated in the Phase I-ESA report and Section 2.2 of this report, the following PCAs are considered to result in APECs on the Phase I/Phase II Property:

- Importation of fill material of unknown quality resulting from the grading, excavation and stockpiling of materials in the northern half of the phase I property;
- Gasoline and associated products storage in fixed tanks resulting from the historical presence of an AST in the northern portion of the phase I property;
- Gasoline and associated products storage in fixed tanks resulting from the presence of two ASTs, in the northern portion of the phase I property;
- □ Waste disposal and waste management, including landfilling resulting from the presence of Navan landfill in the eastern portion of the phase I property.

Contaminants of potential concern associated with the aforementioned PCAs include benzene, toluene, ethylbenzene and xylenes (BTEX), petroleum hydrocarbons (PHCs, F<sub>1</sub>-F<sub>4</sub>), volatile organic compounds (VOCs), metals and polycyclic aromatic hydrocarbons (PAH) in the groundwater and/or soil.

#### Subsurface Structures and Utilities

Underground service locates were completed prior to the subsurface investigation. Underground utilities on the Phase II Property include electrical, and sewerage services.

Two records were found regarding water supply well drilling, dating from 1977 and 2015. One record details a domestic water supply well drilled in 1977 to a depth of 45.7 m located around 220 m east of the subject site. The other record details the abandonment of a 4-inch diameter well located at 3225 Navan Road in 2015, located 30 m north of the subject site.

Given the municipally supplied area and age of the domestic supply well record, any private water wells are assumed to be obsolete.

## **Physical Setting**

#### Site Stratigraphy

The site stratigraphy, from the ground surface to the deepest aquifer or aquitard investigated, is illustrated on Drawing PE4588-4A. The stratigraphy consists of:

- □ In BH1 to BH6 and BH10 to BH13, fill was encountered. This generally consisted of brown silty sand with gravel, some clay, trace brick and topsoil and extended to depths ranging between 1.27 m and 6.86 m below the existing grade.
- □ In BH7 to BH9 topsoil was encountered to a maximum depth of 0.3 m below the existing grade.
- □ Native silty sand was identified on the north portion of the site in several boreholes, beneath the fill and above the silty clay material.
- Silty clay was identified beneath the fill material and extending to the maximum depth investigated.

#### Hydrogeological Characteristics

Groundwater at the Phase II Property was encountered within the overburden soil. This unit is interpreted to function as a local aquifer at the subject site.

Water levels were measured at the subject site at depths ranging from 0.05 m to 3.66 m below grade. Based on groundwater elevations, the groundwater flow is considered to be in a southerly direction, toward the Mer Bleue conservation area.

#### Approximate Depth to Bedrock

Bedrock was not encountered during the investigation. Bedrock is expected to be present between 30 and 50 m below the existing ground surface.

#### Approximate Depth to Water Table

Depth to the water table at the subject site varies between approximately 0.05 and 3.66 m below the existing grade.

#### Sections 41 and 43.1 of the Regulation

Section 41 of the Regulation (Site Condition Standards, Environmentally Sensitive Areas) does not apply to the subject site.

Section 43.1 of the Regulation does not apply to the subject site in that the subject site is not a Shallow Soil Property.

#### Fill Placement

Fill material was identified across the northern portion of the Phase II Property and extending to depths between 1.27 m and 6.86 m below grade.

#### **Proposed Buildings and Other Structures**

It is our understanding that the subject site will be redeveloped for housing.

#### Areas of Natural Significance and Water Bodies

The Mer Bleue conservation area lies 30m south of the Phase I ESA Study Area.

The topographic map shows a ditch running from Navan Road at the northern boundary of the site, along the eastern boundary to the southern portion of the site before turning to the west and leading to the Mer Bleue conservation area.

During the site visit, a ditch was noted running from a stormwater pond located to the east of the subject site, along the eastern boundary of the site.

## Environmental Condition

#### Areas Where Contaminants are Present

Based on the results of the Phase II ESA, no contaminant concentrations were found in excess of the MECP Table 3 standards with the exception of chloroform, bromomethane and tetrachloroethylene.

Both chloroform and bromomethane were recorded in a single soil sample and minimally exceeded the MECP Table 3 standard.

Tetrachloroethylene (PCE) was recorded in groundwater samples from BH1, collected on May 31, and July 15, 2019. Though the concentration of PCE was lower in the second sampling event, the concentration remained in excess of the MECP Table 3 standard.

Cobalt and vanadium were both encountered in multiple samples in excess of the MECP Table 3 standard however both cobalt and vanadium occur naturally at concentrations in excess of the Table 3 standards and are not considered to represent contamination.

#### Types of Contaminants

Based on the findings of the Phase II ESA, chloroform, bromomethane and tetrachloroethylene (PCE) are contaminants on the Phase II Property.

#### **Contaminated Media**

Based on the Phase II ESA, soil surrounding BH7 is marginally impacted by chloroform and bromomethane while groundwater in the area of BH1 is impacted by Tetrachloroethylene (PCE).

#### What is Known About Areas where Contaminants are Present

The impacted soil was identified near the eastern property line, adjacent to the nearby landfill. The impacted groundwater was identified near storage areas and ASTs.

#### **Distribution and Migration of Contaminants**

Based on the results of the analytical testing the migration and distribution of the contaminants present above the applicable site standards appears to the limited to the immediate areas of the impacts.

#### **Discharge of Contaminants**

The source of the contaminants is not known and no discharge locations which are considered to be associated with the impacted soil and groundwater were identified.

#### **Climatic and Meteorological Conditions**

In general, climatic and meteorological conditions have the potential to affect contaminant distribution. Two (2) ways by which climatic and meteorological conditions may affect contaminant distribution include the downward leaching of contaminants by means of the infiltration of precipitation, and the migration of contaminants via groundwater levels and/or flow, which may fluctuate seasonally.

Based on the findings of the Phase II ESA, climatic and meteorological conditions are not considered to have affected contaminant transport.

#### Potential for Vapour Intrusion

Based on the findings of the Phase II ESA, there is no potential for chloroform, bromomethane and tetrachloroethylene (PCE) vapour intrusion on the Phase II Property.

## 6.0 CONCLUSIONS

#### Assessment

A Phase II ESA was conducted for 3252 Navan Road, in the City of Ottawa, Ontario. The purpose of the Phase II ESA was to address potentially contaminating activities (PCAs) that were identified during the Phase I ESA and considered to result in areas of potential environmental concern (APECs) on the Phase II Property. The subsurface investigation was carried out in conjunction with a Geotechnical Investigation and consisted of drilling thirteen boreholes all of which were instrumented with groundwater monitoring wells.

Soil samples were obtained from the boreholes and screened using visual observations and organic vapour measurements. Soil samples from each borehole were submitted for analysis of BTEX, VOC, PHC, Metals, and/or PAHs. All BTEX, PHC, and PAH samples are in compliance with the applicable MECP Standards. Marginal exceedances of the MECP Standards for Bromomethane and Chloroform were identified in BH7. All other VOC samples were in compliance with the applicable Standards. Naturally occurring metals (Cobalt, Vanadium) concentrations exceeding the applicable standards were identified in BH7, BH8, and BH9. These metals concentrations are considered to be naturally occurring and are not considered to be a concern.

Groundwater samples analysed are in compliance with the applicable standards for BTEX, PHC, Metals and/or PAHs in all boreholes. Exceedances of the appliable standard for Tetrachloroethylene was identified in BH1. All other VOC groundwater samples are in compliance with the applicable standard.

## Conclusion

Impacted groundwater was identified in BH1, however with the additional investigative work, the groundwater appears to have been horizontally and vertically delineated. The impacted soil in BH7 requires further delineation. Following the closure of the existing site operations additional testing will be required to sufficiently investigate the fill remaining on site.

It is expected that groundwater monitoring wells will be abandoned in accordance with O.Reg.903, at the time of construction excavation. It is recommended that the integrity of the monitoring wells be maintained, prior to future construction, for possible further groundwater monitoring purposes.

## 7.0 STATEMENT OF LIMITATIONS

This Phase II - Environmental Site Assessment report has been prepared in general accordance with O.Reg. 153/04 as amended and meets the requirements of CSA Z769-00. The conclusions presented herein are based on information gathered from a limited sampling and testing program. The test results represent conditions at specific test locations at the time of the field program.

The client should be aware that any information pertaining to soils and all test hole logs are furnished as a matter of general information only and test hole descriptions or logs are not to be interpreted as descriptive of conditions at locations other than those of the test holes themselves.

Should any conditions be encountered at the subject site and/or historical information that differ from our findings, we request that we be notified immediately in order to allow for a reassessment.

This report was prepared for the sole use of Claridge Homes (Gladstone) Inc. Notification from Claridge Homes (Gladstone) Inc and Paterson Group will be required to release this report to any other party.

#### Paterson Group Inc.

Michael Beaudoin, P.Eng., QPESA



Mark S. D'Arcy, P.Eng., QP<sub>ESA</sub>



#### **Report Distribution:**

- Claridge Homes (Gladstone) Inc
- Paterson Group

## **FIGURES**

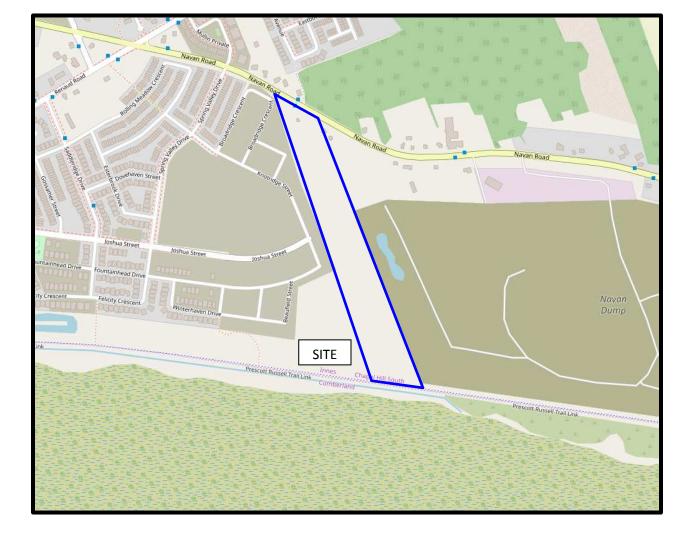
FIGURE 1 – KEY PLAN

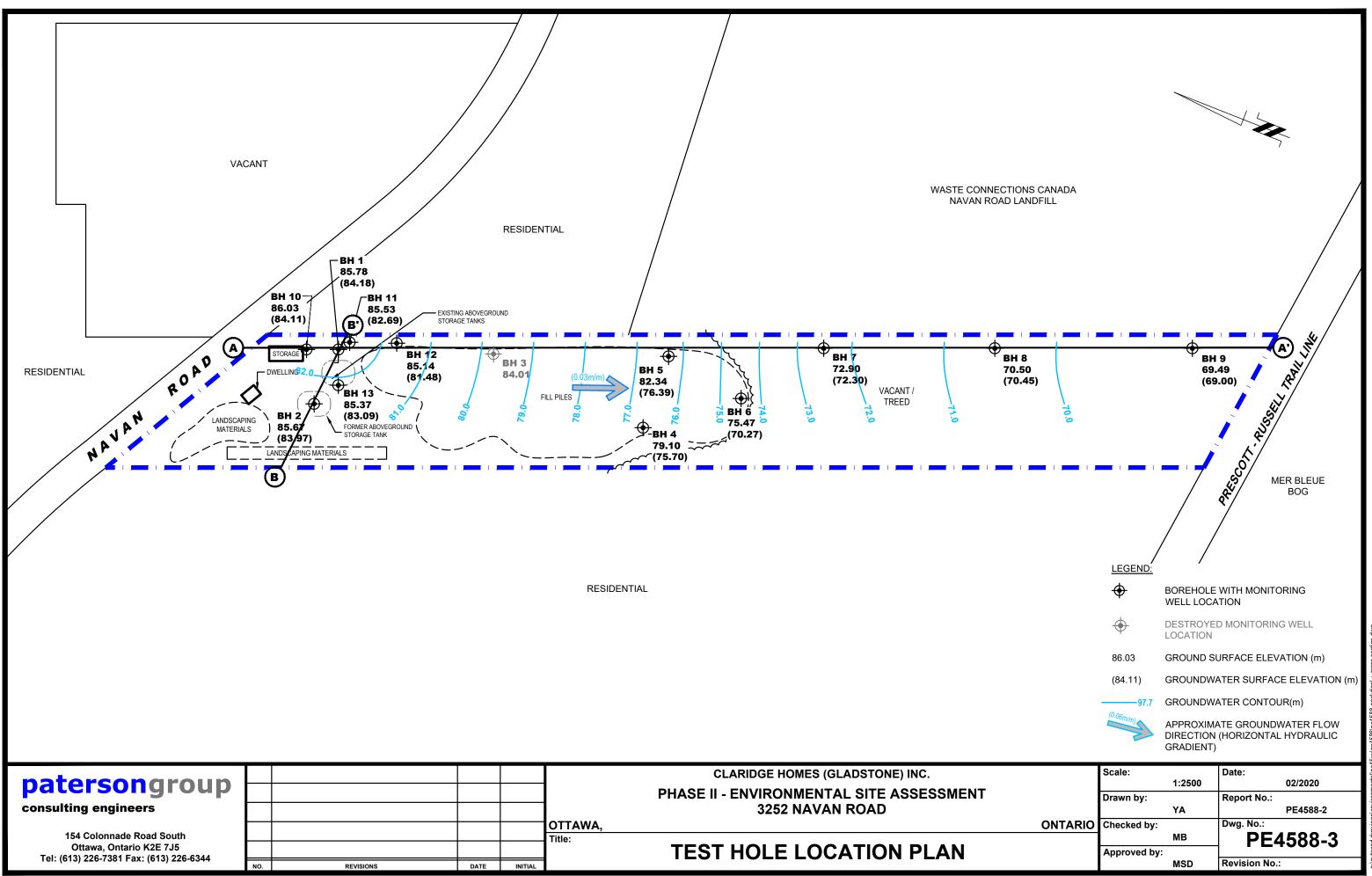
**DRAWING PE4588-3 – TEST HOLE LOCATION PLAN** 

DRAWING PE4588-4 – ANALYTICAL TESTING PLAN - SOIL

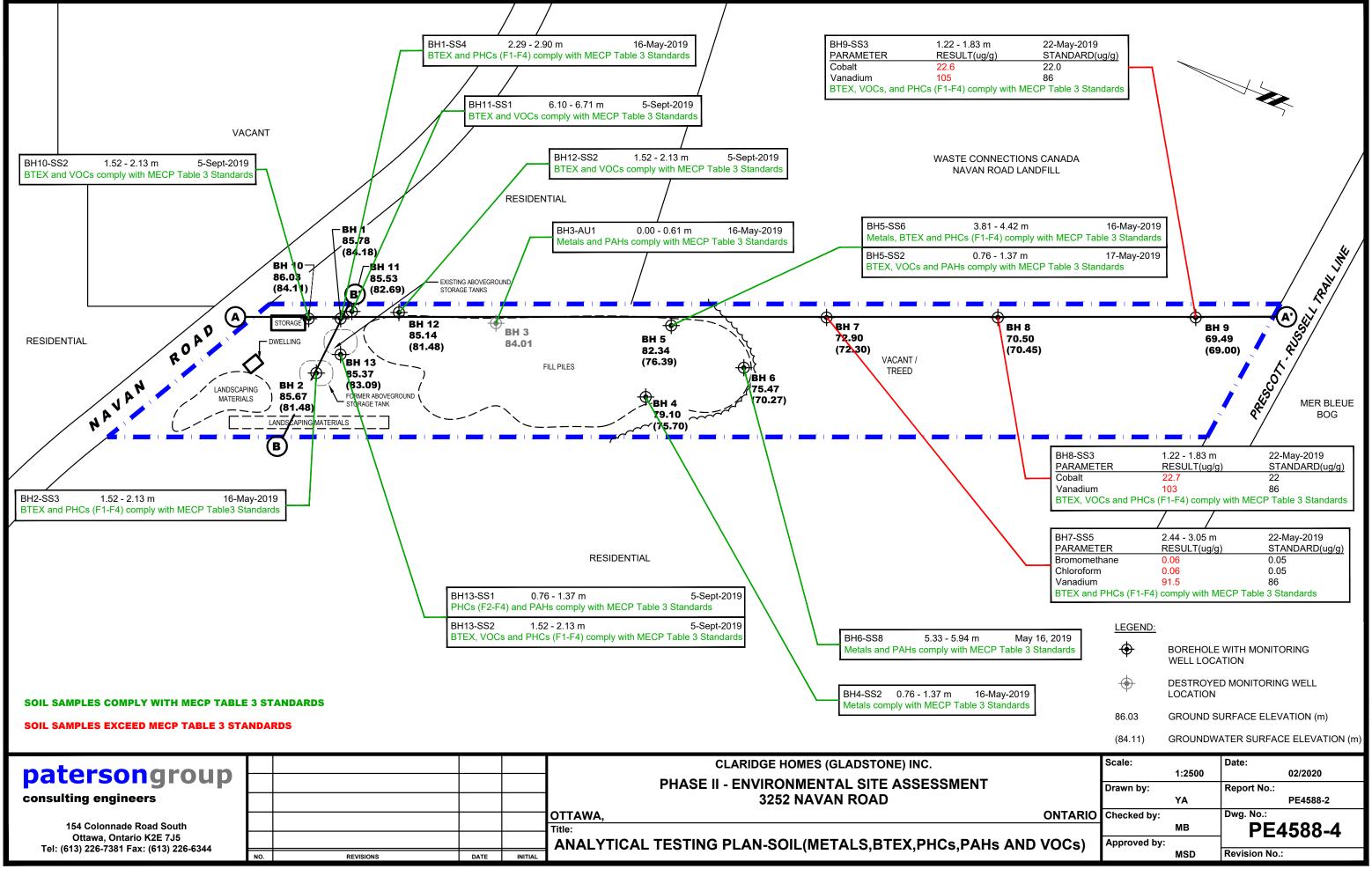
DRAWING PE4588-4A – CROSS-SECTION A-A' - SOIL

DRAWING PE4588-4B – CROSS-SECTION B-B' - SOIL


**DRAWING PE4588-5 – ANALYTICAL TESTING PLAN - GROUNDWATER** 

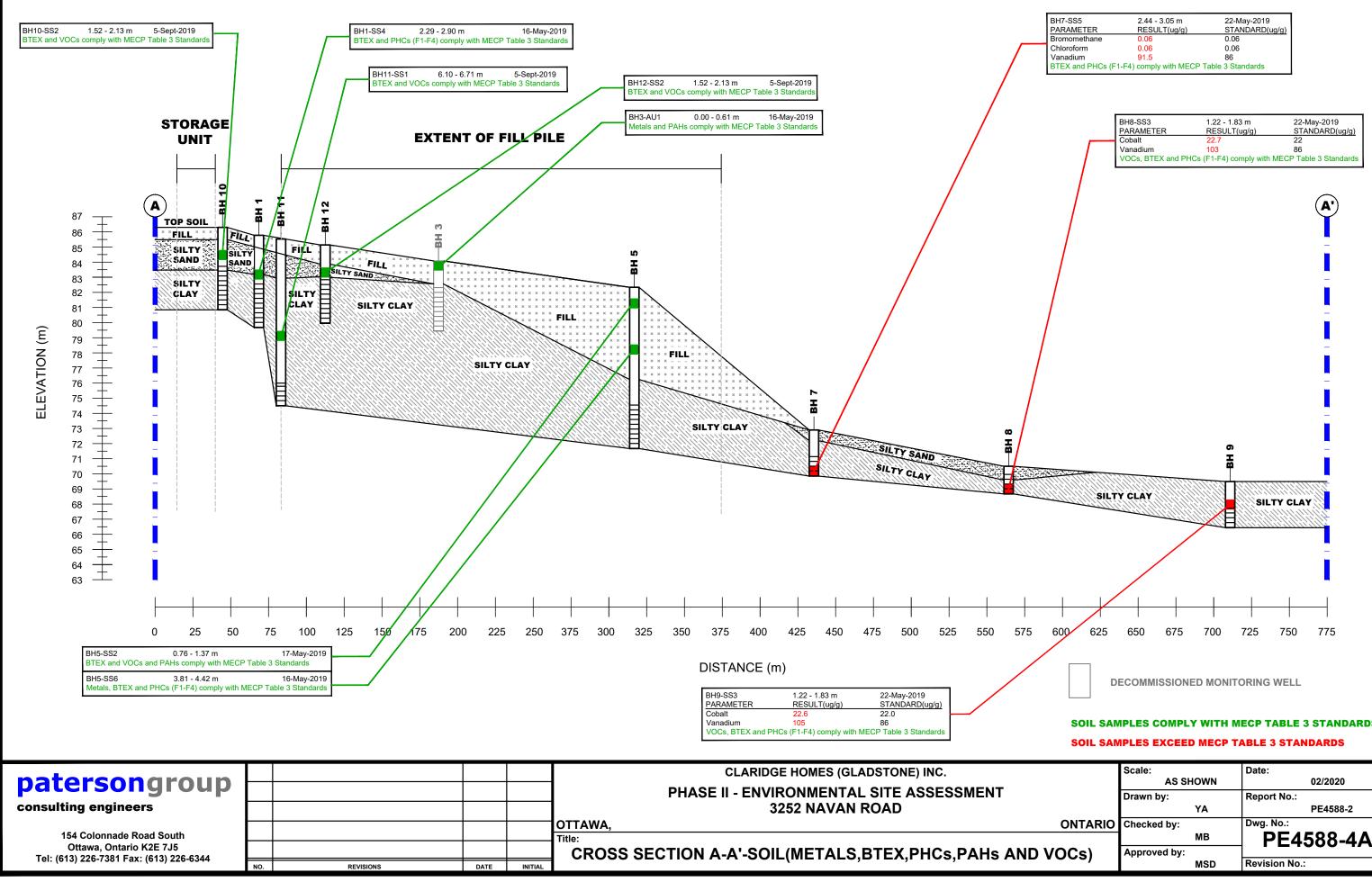

DRAWING PE4588-5A – CROSS-SECTION A-A'- GROUNDWATER

DRAWING PE4588-5B – CROSS-SECTION B-B'- GROUNDWATER


# patersongroup

## FIGURE 1 KEY PLAN

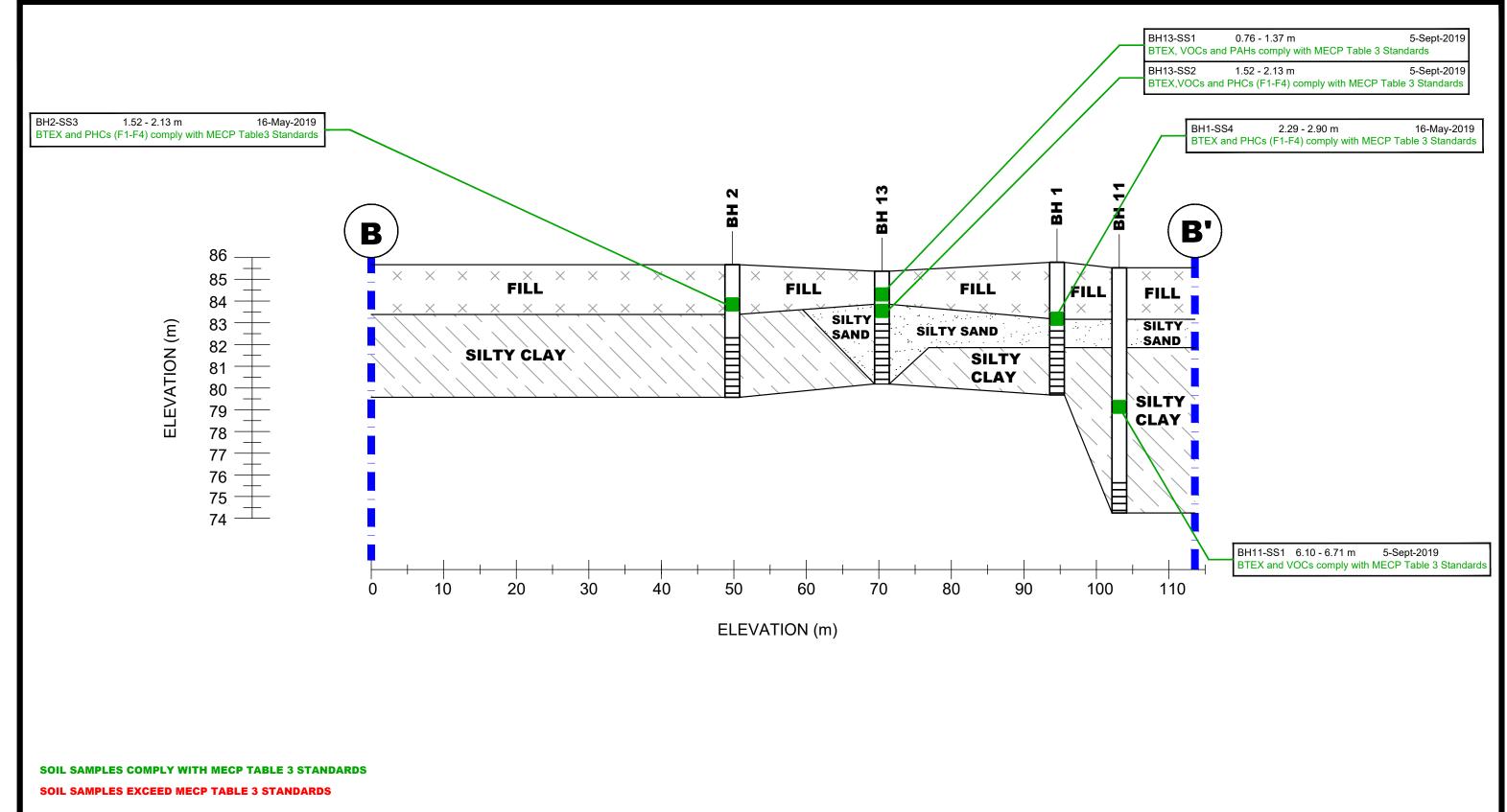





ocad drawings/environmental\pe45xx\pe4588\pe4588\pe4588-analytical + cross section.dwg

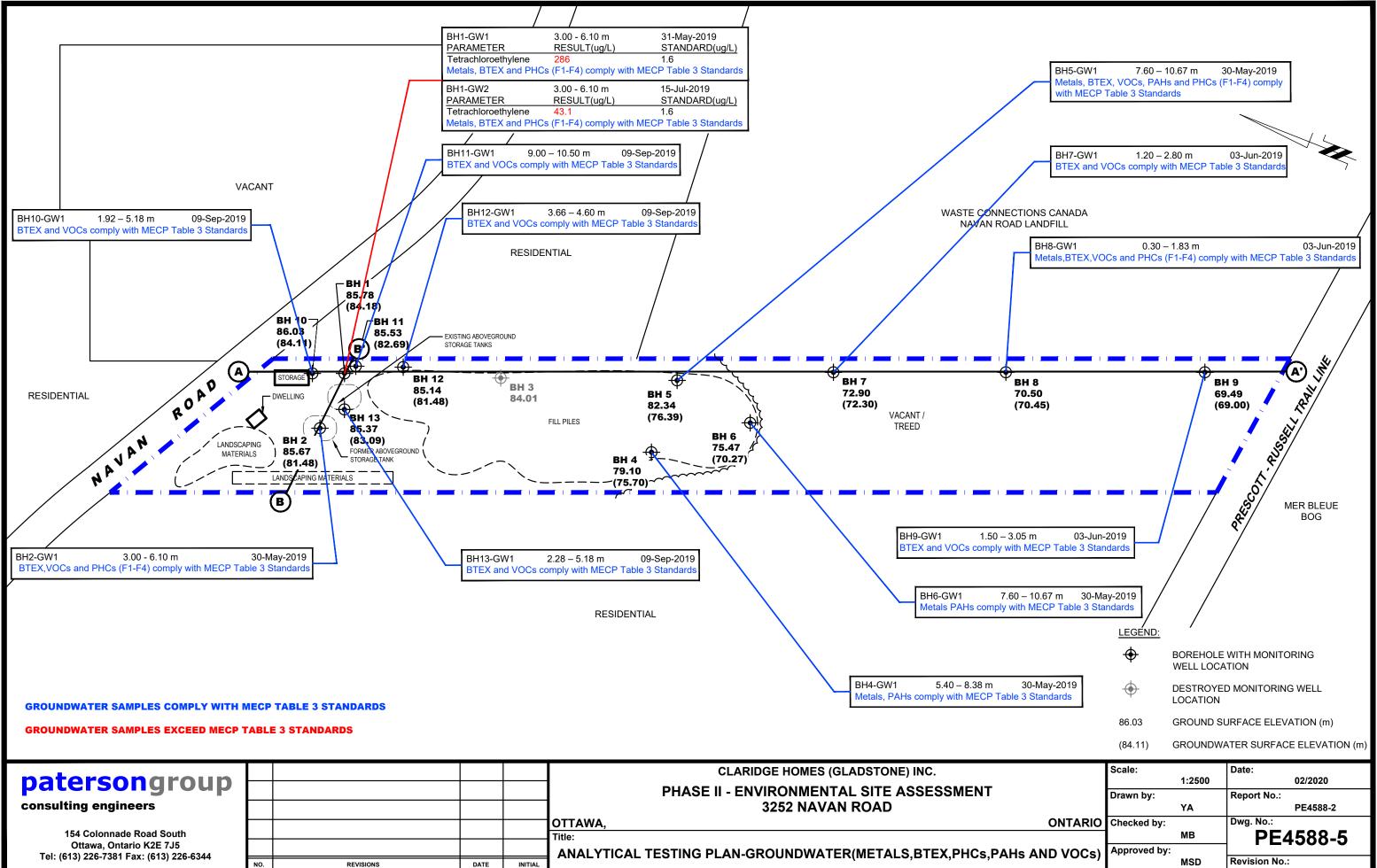


| 154 Colonnade Road South                |  |  |  |  |  |  |
|-----------------------------------------|--|--|--|--|--|--|
| Ottawa, Ontario K2E 7J5                 |  |  |  |  |  |  |
| Tel: (613) 226-7381 Fax: (613) 226-6344 |  |  |  |  |  |  |

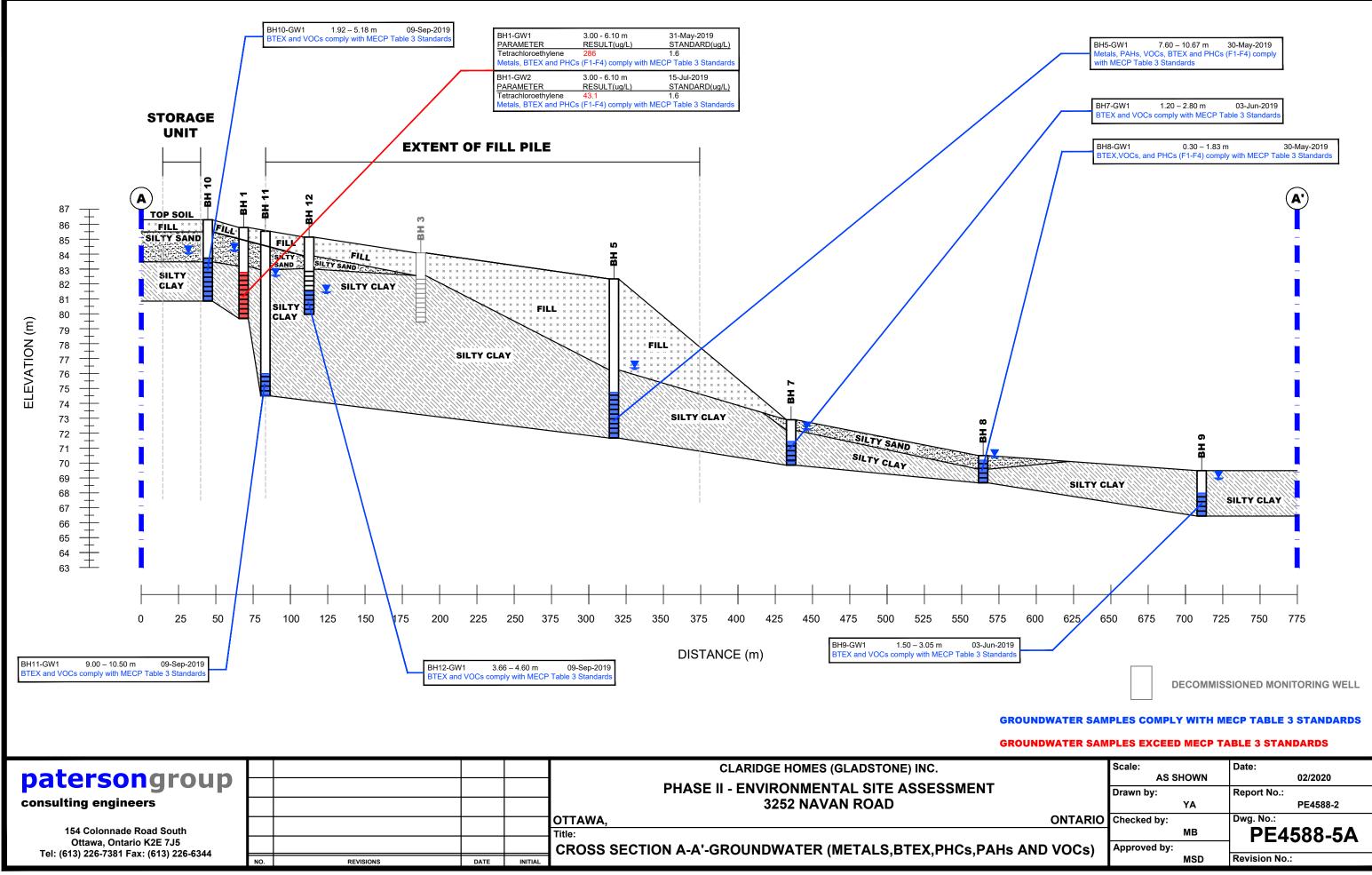

|         | OTTAWA,                                                     |
|---------|-------------------------------------------------------------|
|         | Title:                                                      |
|         | ANALYTICAL TESTING PLAN-SOIL(METALS, BTEX, PHCs, PAHs AND \ |
| INITIAL |                                                             |



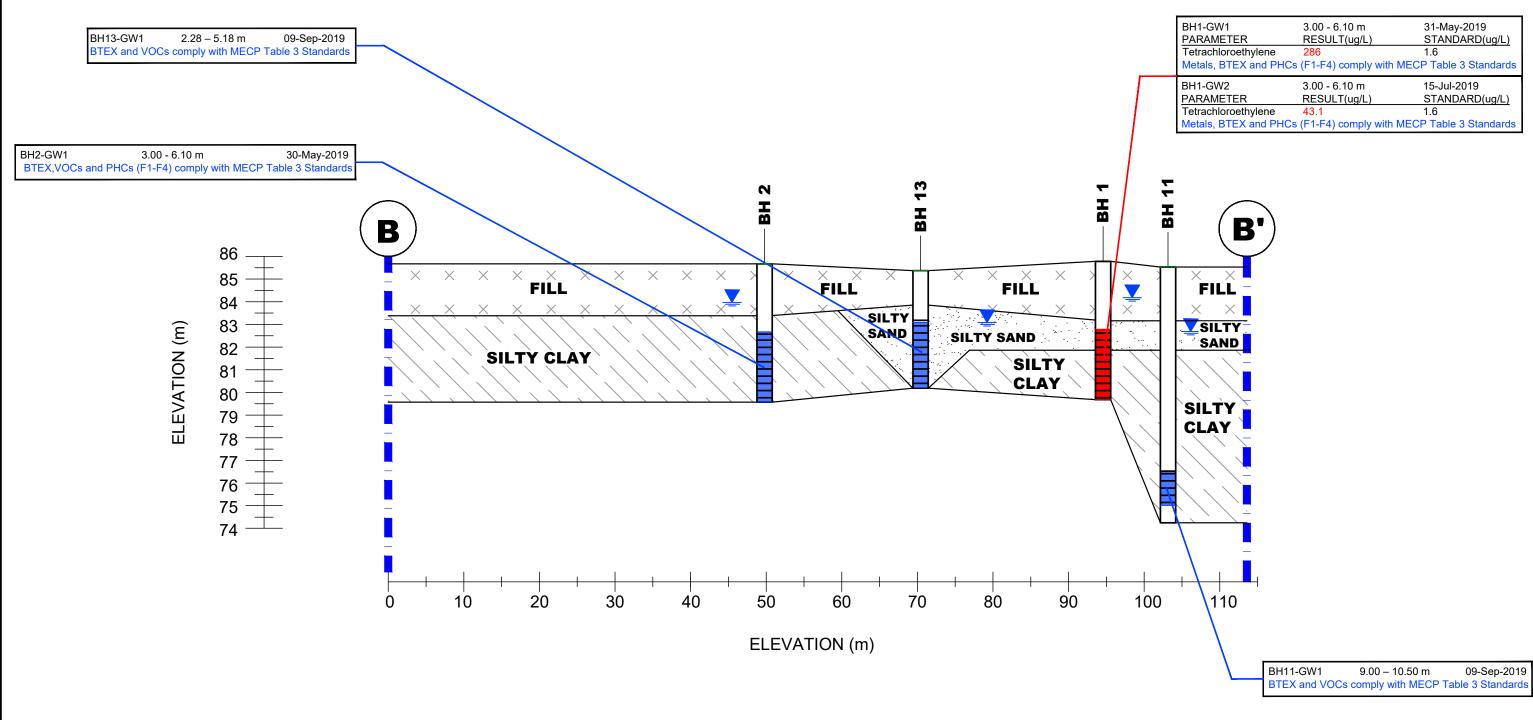
| BH7-SS5<br>PARAMETER | 2.44 - 3.05 m<br>RESULT(ug/g)                            | 22-May-2019<br>STANDARD(ug/g) |  |  |  |  |  |
|----------------------|----------------------------------------------------------|-------------------------------|--|--|--|--|--|
| Bromomethane         | 0.06                                                     | 0.06                          |  |  |  |  |  |
| Chloroform           | 0.06                                                     | 0.06                          |  |  |  |  |  |
| Vanadium             | 91.5                                                     | 86                            |  |  |  |  |  |
| BTEX and PHCs (F     | BTEX and PHCs (F1-F4) comply with MECP Table 3 Standards |                               |  |  |  |  |  |


# SOIL SAMPLES COMPLY WITH MECP TABLE 3 STANDARDS

|         | Scale:       |     | Date:         |
|---------|--------------|-----|---------------|
|         | AS SH        | OWN | 02/2020       |
|         | Drawn by:    |     | Report No.:   |
|         |              | YA  | PE4588-2      |
| ONTARIO | Checked by:  |     | Dwg. No.:     |
|         |              | MB  | PE4588-4A     |
| VOCs)   | Approved by: |     |               |
|         |              | MSD | Revision No.: |




| natorcongroup                                                      |     |           |      |         | CLARIDGE HOMES (GLADSTONE) INC.                       |
|--------------------------------------------------------------------|-----|-----------|------|---------|-------------------------------------------------------|
| patersongroup                                                      |     |           |      |         | PHASE II - ENVIRONMENTAL SITE ASSESSMENT              |
| consulting engineers                                               |     |           |      |         | 3252 NAVAN ROAD                                       |
|                                                                    |     |           |      |         | OTTAWA,                                               |
| 154 Colonnade Road South                                           |     |           |      |         | Title:                                                |
| Ottawa, Ontario K2E 7J5<br>Tel: (613) 226-7381 Fax: (613) 226-6344 |     |           |      |         | CROSS SECTION B-B'-SOIL (METALS, BTEX, PHCs, PAHs AND |
| 161. (015) 220-7501 Fax. (015) 220-0544                            | NO. | REVISIONS | DATE | INITIAL |                                                       |


|         | Scale:       | SHOWN | Date:<br>02/2020 |
|---------|--------------|-------|------------------|
|         | A5 3         |       | 02/2020          |
|         | Drawn by:    |       | Report No.:      |
|         |              | YA    | PE4588-2         |
| ONTARIO | Checked by:  |       | Dwg. No.:        |
|         |              | MB    | PE4588-4B        |
| VOCs)   | Approved by: |       |                  |
| 1000,   |              | MSD   | Revision No.:    |



| Ottawa, Ontario K2E 7J5                |
|----------------------------------------|
| Tel: (613) 226-7381 Fax: (613) 226-634 |



|          | Scale:       |      | Date:         |
|----------|--------------|------|---------------|
|          | AS SH        | IOWN | 02/2020       |
|          | Drawn by:    |      | Report No.:   |
|          |              | YA   | PE4588-2      |
| ONTARIO  | Checked by:  |      | Dwg. No.:     |
|          |              | MB   | PE4588-5A     |
| ND VOCs) | Approved by: |      |               |
|          |              | MSD  | Revision No.: |



#### GROUNDWATER SAMPLES COMPLY WITH MECP TABLE 3 STANDARDS

**GROUNDWATER SAMPLES EXCEED MECP TABLE 3 STANDARDS** 

| patersongroup<br>consulting engineers                              |     |           |      |         | CLARIDGE HOMES (GLADSTONE) INC.                             |
|--------------------------------------------------------------------|-----|-----------|------|---------|-------------------------------------------------------------|
|                                                                    |     |           |      |         | PHASE II - ENVIRONMENTAL SITE ASSESSMENT                    |
|                                                                    |     |           |      |         | 3252 NAVAN ROAD                                             |
|                                                                    |     |           |      |         | ΟΤΤΑΨΑ,                                                     |
| 154 Colonnade Road South                                           |     |           |      |         | Title:                                                      |
| Ottawa, Ontario K2E 7J5<br>Tel: (613) 226-7381 Fax: (613) 226-6344 |     |           |      |         | CROSS SECTION B-B'-GROUNDWATER (METALS, BTEX, PHCs, PAHs AN |
| 161. (013) 220-7301 Pax. (013) 220-0344                            | NO. | REVISIONS | DATE | INITIAL |                                                             |

| BH1-GW1             | 3.00 - 6.10 m          | 31-May-2019            |
|---------------------|------------------------|------------------------|
| PARAMETER           | RESULT(ug/L)           | STANDARD(ug/L)         |
| Tetrachloroethylene | 286                    | 1.6                    |
| Metals, BTEX and PH | Cs (F1-F4) comply with | MECP Table 3 Standards |
| BH1-GW2             | 3.00 - 6.10 m          | 15-Jul-2019            |
| PARAMETER           | RESULT(ug/L)           | STANDARD(ug/L)         |
| Tetrachloroethylene | 43.1                   | 1.6                    |
| Metals, BTEX and PH | Cs (F1-F4) comply with | MECP Table 3 Standards |

|          | Scale:       |            | Date:         |  |  |  |  |
|----------|--------------|------------|---------------|--|--|--|--|
|          | AS SHOV      | VN         | 02/2020       |  |  |  |  |
|          | Drawn by:    |            | Report No.:   |  |  |  |  |
|          | YA           |            | PE4588-2      |  |  |  |  |
| ONTARIO  | Checked by:  |            | Dwg. No.:     |  |  |  |  |
|          | MB           |            | PE4588-5B     |  |  |  |  |
| ND VOCs) | Approved by: |            | . = .000 02   |  |  |  |  |
|          | MSI          | <b>b</b> [ | Revision No.: |  |  |  |  |

## **APPENDIX 1**

## SAMPLING AND ANALYSIS PLAN

### SOIL PROFILE AND TEST DATA SHEETS

## SYMBOLS AND TERMS

### LABORATORY CERTIFICATES OF ANALYSIS

Geotechnical Engineering

Environmental Engineering

Hydrogeology

Geological Engineering

**Materials Testing** 

**Building Science** 

Archaeological Services

## Sampling & Analysis Plan

Phase II Environmental Site Assessment

3252 Navan Road Ottawa, Ontario

**Prepared For** 

Claridge Homes (Gladstone) Inc.

#### Paterson Group Inc.

Consulting Engineers 154 Colonnade Road South Ottawa (Nepean), Ontario Canada K2E 7J5

Tel: (613) 226-7381 Fax: (613) 226-6344 www.patersongroup.ca April, 2019

Report: PE4588-SAP

### TABLE OF CONTENTS

| 1.0 | SAMPLING PROGRAM                                 | 1 |
|-----|--------------------------------------------------|---|
| 2.0 | ANALYTICAL TESTING PROGRAM                       | 2 |
| 3.0 | STANDARD OPERATING PROCEDURES                    | 3 |
|     | 3.1 Environmental Drilling Procedure             | 3 |
|     | 3.2 Monitoring Well Installation Procedure       | 6 |
|     | 3.3 Monitoring Well Sampling Procedure           | 7 |
| 4.0 | QUALITY ASSURANCE/QUALITY CONTROL (QA/QC)        | 8 |
| 5.0 | DATA QUALITY OBJECTIVES                          | 9 |
| 6.0 | PHYSICAL IMPEDIMENTS TO SAMPLING & ANALYSIS PLAN |   |

### 1.0 SAMPLING PROGRAM

Paterson Group Inc. (Paterson) was commissioned by Claridge Homes (Gladstone) Inc. to conduct a Phase II Environmental Site Assessment (ESA) of 3252 Navan Road, Ottawa, Ontario. Based on our Phase I ESA completed for the subject property, a subsurface investigation program, consisting of borehole drilling, was developed.

| Borehole                   | Location & Rationale                                                                                                                    | Proposed Depth & Rationale                                                                                                          |
|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| BH1                        | Place borehole on the northern<br>portion of the subject site, to assess<br>any potential impacts from APEC 3;<br>Two existing ASTs.    | Borehole to be advanced to approximately 2 m below the expected long-term groundwater table and install a monitoring well.          |
| BH2                        | Place borehole on the northern<br>portion of the subject site, to assess<br>any potential impacts from APEC 2;<br>Historical AST.       | Borehole to be advanced to approximately 2 m below the expected long-term groundwater table and install a monitoring well.          |
| BH3 - 6                    | Place boreholes towards the central<br>portion of the subject site, to assess<br>any potential impacts from APEC 1;<br>Fill piles.      | Borehole to be advanced to approximately 2 m below the expected long-term groundwater table and install a monitoring well.          |
| BH3,<br>BH5, BH7<br>to BH9 | Place boreholes towards the eastern<br>boundary of the subject site, to<br>assess any potential impacts from<br>APEC 4; Navan landfill. | Borehole to be advanced to approximately<br>2 m below the expected long-term<br>groundwater table and install a monitoring<br>well. |
| BH10,<br>BH12,<br>BH13     | Near BH1 for horizontal delineation purposes                                                                                            | Near BH1 for horizontal delineation purposes                                                                                        |
| BH11                       | Near BH1 for vertical delineation purposes                                                                                              | Near BH1 for vertical delineation purposes                                                                                          |

At each borehole, split-spoon samples of overburden soils will be obtained at 0.76 m (2'6") intervals until practical refusal to augering. All soil samples will be retained, and samples will be selected for submission following a preliminary screening analysis.

Upon refusal, rock coring shall be undertaken to the required depth. Approximately every metre the well shall be purged by inertial pumping and the water level recorded to determine if groundwater water is entering the borehole.

Following borehole drilling, monitoring wells will be installed in selected boreholes (as above) for the measurement of water levels and the collection of groundwater samples. Borehole locations are shown on the Test Hole Location Plan appended to the main report.

### 2.0 ANALYTICAL TESTING PROGRAM

The analytical testing program for soil at the subject site is based on the following general considerations:

- □ At least one sample from each borehole should be submitted, in order to delineate the horizontal extent of contamination across the site.
- □ At least one sample from each stratigraphic unit should be submitted, in order to delineate the vertical extent of contamination at the site.
- In boreholes where there is visual or olfactory evidence of contamination, or where organic vapour meter or photoionization detector readings indicate the presence of contamination, the 'worst-case' sample from each borehole should be submitted for comparison with MECP Site Condition Standards.
- □ In boreholes with evidence of contamination as described above, a sample should be submitted from the stratigraphic unit below the 'worst-case' sample to determine whether the contaminant(s) have migrated downward.
- Parameters analyzed should be consistent with the Contaminants of Potential Concern identified in the Phase I ESA.

The analytical testing program for groundwater at the subject site is based on the following general considerations:

- Groundwater monitoring wells should be installed in all boreholes with visual or olfactory evidence of soil contamination, in stratigraphic units where soil contamination was encountered, where those stratigraphic units are at or below the water table (i.e. a water sample can be obtained).
- Groundwater monitoring well screens should straddle the water table at sites where the contaminants of concern are suspected to be LNAPLs.
- At least one groundwater monitoring well should be installed in a stratigraphic unit below the suspected contamination, where said stratigraphic unit is waterbearing.
- Parameters analyzed should be consistent with the Contaminants of Concern identified in the Phase I ESA and with the contaminants identified in the soil samples.

### 3.0 STANDARD OPERATING PROCEDURES

#### 3.1 Environmental Drilling Procedure

#### Purpose

The purpose of environmental boreholes is to identify and/or delineate contamination within the soil and/or to install groundwater monitoring wells in order to identify contamination within the groundwater.

### Equipment

The following is a list of equipment that is in addition to regular drilling equipment stated in the geotechnical drilling SOP:

- **g**lass soil sample jars
- □ two buckets
- □ cleaning brush (toilet brush works well)
- dish detergent
- methyl hydrate
- □ water (if not available on-site water jugs available in the trailer)
- □ latex or nitrile gloves (depending on suspected contaminant)
- RKI Eagle organic vapour meter or MiniRae photoionization detector (depending on contamination suspected)

### **Determining Borehole Locations**

If conditions on-site are not as suspected, and planned borehole locations cannot be drilled, **call the office to discuss**. Alternative borehole locations will be determined in conversation with the field technician and supervising engineer.

After drilling is completed a plan with the borehole locations must be provided. Distances and orientations of boreholes with respect to site features (buildings, roadways, etc.) must be provided. Distances should be measured using a measuring tape or wheel rather than paced off. Ground surface elevations at each borehole should be surveyed relative to a catch basin of known geodetic elevation.

### Drilling Procedure

The actual drilling procedure for environmental boreholes is the same as geotechnical boreholes (see SOP for drilling and sampling) with a few exceptions as follows:

- Continuous split spoon samples (every 0.6 m or 2') or semi-continuous (every 0.76 m or 2'6") are required.
- □ Make sure samples are well sealed in plastic bags with no holes prior to screening and are kept cool but unfrozen.
- If sampling for VOCs, BTEX, or PHCs F1, a soil core from each soil sample which may be analyzed must be taken and placed in the laboratory-provided methanol vial.
- □ Note all and any odours or discolouration of samples.
- □ Split spoon samplers must be washed between samples.
- □ If obvious contamination is encountered, continue sampling until the vertical extent of contamination is delineated.
- As a general rule, environmental boreholes should be deep enough to intercept the groundwater table (unless this is impossible/impractical - call project manager to discuss).
- If at all possible, soil samples should be submitted to a preliminary screening procedure on-site, either using an RKI Eagle, PID, etc. depending on the type of suspected contamination.

### Spoon Washing Procedure

All sampling equipment (spilt spoons, etc.) must be washed between samples in order to prevent cross-contamination of soil samples.

- □ Obtain two buckets of water (preferably hot if available)
- □ Add a small amount of dish soap to one bucket
- □ Scrub spoons with a brush in soapy water, inside and out, including the tip
- **Rinse in clean water**
- □ Apply a small amount of methyl hydrate to the inside of the spoon. (A spray bottle or water bottle with a small hole in the cap works well)
- □ Allow to dry (takes seconds)
- □ Rinse with distilled water, a spray bottle works well.

The methyl hydrate eliminates any soap residue that may be on the spoon and is especially important when dealing with suspected VOCs.

#### Screening Procedure

The RKI Eagle is used to screen most soil samples, particularly where petroleum hydrocarbon contamination is suspected. The MiniRae is used when VOCs are suspected, however it also can be useful for detecting petroleum. These tools are for screening purposes only and cannot be used in place of laboratory testing. Vapour results obtained from the RKI Eagle and the PID are relative and must be interpreted.

Screening equipment should be calibrated on an approximately monthly basis, more frequently if heavily used.

- □ Samples should be brought to room temperature; this is specifically important in colder weather. The soil must not be frozen.
- **T** Turn the instrument on and allow to come to zero calibrate if necessary
- □ If using RKI Eagle, ensure the instrument is in methane elimination mode unless otherwise directed.
- Ensure measurement units are ppm (parts per million) initially. RKI Eagle will automatically switch to %LEL (lower explosive limit) if higher concentrations are encountered.
- Break up large lumps of soil in the sample bag, taking care not to puncture the bag.
- Insert the probe into the soil bag, creating a seal with your hand around the opening.
- Gently manipulate soil in the bag while observing instrument readings.
- Record the highest value obtained in the first 15 to 25 seconds
- Make sure to indicate scale (ppm or LEL); also note which instrument was used (RKI Eagle 1 or 2, or MiniRae).
- □ Jar samples and refrigerate as per the Sampling and Analysis Plan.

#### 3.2 Monitoring Well Installation Procedure

#### Equipment

- □ 5' x 2" [1.52 m x 50 mm] threaded sections of Schedule 40 PVC slotted well screen (5' x 1 ¼" [1.52 m x 32 mm] if installing in a cored hole in bedrock)
- □ 5' x 2" [1.52 m x 50 mm] threaded sections of Schedule 40 PVC riser pipe (5' x 1 ¼" [1.52 m x 32 mm] if installing in a cored hole in bedrock)
- □ Threaded end-cap
- □ Slip-cap or J-plug
- □ Asphalt cold patch or concrete
- Silica Sand
- □ Bentonite chips (Holeplug)
- □ Steel flushmount casing

#### Procedure

- Drill borehole to the required depth, using drilling and sampling procedures described above.
- □ If the borehole is deeper than required monitoring well, backfill with bentonite chips to the required depth. This should only be done on wells where contamination is not suspected, in order to prevent downward migration of contamination.
- □ Only one monitoring well should be installed per borehole.
- Monitoring wells should not be screened across more than one stratigraphic unit to prevent potential migration of contaminants between units.
- Where LNAPLs are the suspected contaminants of concern, monitoring wells should be screened straddling the water table in order to capture any free product floating on top of the water table.
- Thread the end cap onto a section of the screen. Thread the second section of the screen if required. Thread risers onto the screen. Lower into the borehole to the required depth. Ensure a slip-cap or J-plug is inserted to prevent backfill materials from entering the well.
- □ As drillers remove augers, backfill borehole annulus with silica sand until the level of sand is approximately 0.3 m above the top of the screen.
- Backfill with holeplug until at least 0.3 m of holeplug is present above the top of the silica sand.
- Backfill remainder of the borehole with holeplug or with auger cuttings (if contamination is not suspected).

□ Install a flushmount casing. Seal space between flushmount and borehole annulus with concrete, cold patch, or holeplug to match the surrounding ground surface.

### 3.3 Monitoring Well Sampling Procedure

#### Equipment

- □ Water level metre or interface probe on hydrocarbon/LNAPL sites
- □ Spray bottles containing water and methanol to clean water level tape or interface probe
- Peristaltic pump
- D Polyethylene tubing for peristaltic pump
- □ Flexible tubing for peristaltic pump
- □ Latex or nitrile gloves (depending on suspected contaminant)
- □ Allen keys and/or 9/16" socket wrench to remove well caps
- Graduated bucket with volume measurements
- D pH/Temperature/Conductivity combo pen
- Laboratory-supplied sample bottles

### Sampling Procedure

- Locate well and use a socket wrench or Allan key to open metal flushmount protector cap. Remove plastic well cap.
- Measure water level, with respect to the existing ground surface, using water level meter or interface probe. If using an interface probe on suspected NAPL site, measure the thickness of the free product.
- □ Measure the total depth of well.
- Clean water level tape or interface probe using methanol and water. Change gloves between wells.
- □ Calculate the volume of standing water within well and record.
- Insert polyethylene tubing into well and attach it to the peristaltic pump. Turn on the peristaltic pump and purge into the graduated bucket. Purge at least three well volumes of water from the well. Measure and record field chemistry. Continue to purge, measuring field chemistry after every well volume until appearance or field chemistry stabilizes.
- Note the appearance of purge water, including colour, opacity (clear, cloudy, silty), sheen, presence of LNAPL, and odour. Note any other unusual features (particulate matter, effervescence (bubbling) of dissolved gas, etc.).

- □ Fill the required sample bottles. If sampling for metals, attach 75-micron filter to discharge tube and filter metals sample. If sampling for VOCs, use a low flow rate to ensure a continuous stream of non-turbulent flow into sample bottles. Ensure no headspace is present in VOC vials.
- □ Replace well cap and flushmount casing cap.

### 4.0 QUALITY ASSURANCE/QUALITY CONTROL (QA/QC)

The QA/QC program for this Phase II ESA is as follows:

- □ All non-dedicated sampling equipment (split spoons) will be decontaminated according to the SOPs listed above.
- □ All groundwater sampling equipment is dedicated (polyethylene and flexible peristaltic tubing is replaced for each well).
- Where groundwater samples are to be analyzed for VOCs, one laboratoryprovided trip blank will be submitted for analysis with every laboratory submission.
- Approximately one (1) field duplicate will be submitted for every ten (10) samples submitted for laboratory analysis. A minimum of one (1) field duplicate per project will be submitted. Field duplicates will be submitted for soil and groundwater samples.
- Where combo pens are used to measure field chemistry, they will be calibrated on an approximately monthly basis, according to the frequency of use.

## 5.0 DATA QUALITY OBJECTIVES

The purpose of setting data quality objectives (DQOs) is to ensure that the level of uncertainty in data collected during the Phase II ESA is low enough that decision-making is not affected, and that the overall objectives of the investigation are met.

The quality of data is assessed by comparing field duplicates with original samples. If the relative percent difference (RPD) between the duplicate and the sample is within 20%, the data are considered to be of sufficient quality so as not to affect decision-making. The RPD is calculated as follows:

$$RPD = \left| \frac{x_1 - x_2}{(x_1 + x_2)/2} \right| \times 100\%$$

Where  $x_1$  is the concentration of a given parameter in an original sample and  $x_2$  is the concentration of that same parameter in the field duplicate sample.

For the purpose of calculating the RPD, it is desirable to select field duplicates from samples for which parameters are present in concentrations above laboratory detection limits, i.e. samples which are expected to be contaminated. If parameters are below laboratory detection limits for selected samples or duplicates, the RPD may be calculated using a concentration equal to one half (0.5 x) of the laboratory detection limit.

It is also important to consider data quality in the overall context of the project. For example, if the DQOs are not met for a given sample, yet the concentrations of contaminants in both the sample and the duplicate exceed the MOE site remediation standards by a large margin, the decision-making usefulness of the sample may not be considered to be impaired. The proximity of other samples that meet the DQOs must also be considered in developing the Phase II Conceptual Site Model; often there are enough data available to produce a reliable Phase II Conceptual Site Model even if DQOs are not met for certain individual samples.

These considerations are discussed in the body of the report.

Ditawa Kingston North Bay

### 6.0 PHYSICAL IMPEDIMENTS TO SAMPLING & ANALYSIS PLAN

Physical impediments to the Sampling and Analysis plan may include:

- □ The location of underground utilities
- D Poor recovery of split-spoon soil samples
- □ Insufficient groundwater volume for groundwater samples
- Breakage of sampling containers following sampling or while in transit to the laboratory
- Elevated detection limits due to matrix interference (generally related to soil colour or presence of organic material)
- Elevated detection limits due to high concentrations of certain parameters, necessitating dilution of samples in the laboratory
- Drill rig breakdowns
- Winter conditions
- □ Other site-specific impediments

Site-specific impediments to the Sampling and Analysis Plan are discussed in the body of the Phase II ESA report.

## SOIL PROFILE AND TEST DATA

Phase II - Environmental Site Assessment 3252 Navan Road Ottawa, Ontario

DATUMGeodetic, provided by Annis O'Sullivan Vollebekk

| DATUM Geodetic, provided by Annis O'Sullivan Vollebekk |        |      |        |               |                |          |        |           |                                                                               | PE4588       | 3                                           |
|--------------------------------------------------------|--------|------|--------|---------------|----------------|----------|--------|-----------|-------------------------------------------------------------------------------|--------------|---------------------------------------------|
| REMARKS                                                |        |      |        | _             |                | 2019 May | . 10   |           | HOLE NO.                                                                      | BH 1         |                                             |
| BORINGS BY CME 55 Power Auger                          | PLOT   |      |        |               | Dhata I        |          |        | =         |                                                                               |              |                                             |
| SOIL DESCRIPTION                                       |        |      | SAN    | /IPLE         |                | DEPTH    |        |           | <ul> <li>Photo Ionization Detec</li> <li>Volatile Organic Rdg. (p)</li> </ul> |              |                                             |
|                                                        |        | E    | BER    | *<br>RECOVERY | VALUE<br>r RQD | (m)      | (m)    |           |                                                                               | oring        |                                             |
|                                                        | STRATA | ТУРЕ | NUMBER | ECO %         | N VA<br>of 1   |          |        |           | r Explosive                                                                   |              | Monitoring Well<br>Construction             |
| UNDERSIDE OF FOOTING<br>FILL: Brown silty sand with    |        | 8    |        | <u></u>       | -              | 0-       | 85.78  | 20        | 40 60                                                                         | 80           |                                             |
| crushed stone and gravel 0.51                          |        | AU   | 1      |               |                |          |        | •         |                                                                               |              | <u>իրիկիկիկի</u>                            |
|                                                        |        | ss   | 2      | 33            | 14             | 1-       | -84.78 | •         |                                                                               |              | <u>                                    </u> |
| Brown SILTY SAND                                       |        |      |        |               |                |          |        |           |                                                                               |              | <u>lılılı</u><br>TIII                       |
|                                                        |        | ss   | 3      | 75            | 6              | 2-       | 83.78  | •         |                                                                               |              | լրիրիրի<br>Արիրիրի                          |
| 2.59                                                   |        | ss   | 4      | 100           | 6              |          |        |           |                                                                               |              | յիրի                                        |
|                                                        |        |      |        |               |                | 3-       | 82.78  |           |                                                                               |              |                                             |
| Brown SILTY CLAY                                       |        | ss   | 5      | 100           | 4              |          |        | •         |                                                                               |              |                                             |
|                                                        |        |      |        | 100           |                | 4-       | -81.78 |           |                                                                               |              |                                             |
| - grey by 3.8m depth                                   |        | ss   | 6      | 100           | 4              |          |        | •         |                                                                               |              |                                             |
|                                                        |        | ss   | 7      | 100           | 1              | 5-       | -80.78 | •         |                                                                               |              |                                             |
|                                                        |        |      |        |               |                |          | 00.70  |           |                                                                               | •••••        |                                             |
| <u>6.10</u>                                            |        | ss   | 8      | 100           | W              | 6.       | -79.78 |           |                                                                               |              |                                             |
| End of Borehole                                        |        | 1    |        |               |                | 0        | /9./0  |           |                                                                               |              |                                             |
| (GWL @ 1.60m - May 31, 2019)                           |        |      |        |               |                |          |        |           |                                                                               |              |                                             |
|                                                        |        |      |        |               |                |          |        |           |                                                                               |              |                                             |
|                                                        |        |      |        |               |                |          |        |           |                                                                               |              |                                             |
|                                                        |        |      |        |               |                |          |        |           |                                                                               |              |                                             |
|                                                        |        |      |        |               |                |          |        |           |                                                                               |              |                                             |
|                                                        |        |      |        |               |                |          |        |           |                                                                               |              |                                             |
|                                                        |        |      |        |               |                |          |        |           |                                                                               |              |                                             |
|                                                        |        |      |        |               |                |          |        |           |                                                                               |              |                                             |
|                                                        |        |      |        |               |                |          |        |           |                                                                               |              |                                             |
|                                                        |        |      |        |               |                |          |        |           |                                                                               |              |                                             |
|                                                        |        |      |        |               |                |          |        |           |                                                                               |              |                                             |
|                                                        |        |      |        |               |                |          |        |           |                                                                               |              |                                             |
|                                                        |        |      |        |               |                |          |        |           |                                                                               |              |                                             |
|                                                        |        |      |        |               |                |          |        |           |                                                                               | 400          |                                             |
|                                                        |        |      |        |               |                |          |        |           | 200 300<br>Eagle Rdg. (                                                       |              | JU                                          |
|                                                        |        |      |        |               |                |          |        | ▲ Full Ga | as Resp. 🛆 M                                                                  | ethane Elim. |                                             |

## SOIL PROFILE AND TEST DATA

Phase II - Environmental Site Assessment 3252 Navan Road

154 Colonnade Road South, Ottawa, Ontario K2E 7J5 Ottawa, Ontario DATUM Geodetic, provided by Annis O'Sullivan Vollebekk FILE NO. **PE4588** REMARKS HOLE NO. **BH 2** BORINGS BY CME 55 Power Auger DATE 2019 May 16 Monitoring Well Construction SAMPLE **Photo Ionization Detector** STRATA PLOT DEPTH ELEV. SOIL DESCRIPTION Volatile Organic Rdg. (ppm) • (m) (m) N VALUE or RQD RECOVERY NUMBER TYPE o/0 Lower Explosive Limit %  $\bigcirc$ **UNDERSIDE OF FOOTING** 80 20 40 60 0 + 85.67AU 1 FILL: Brown silty sand, some 1+84.67 2 SS 21 15 gravel, trace clay SS 3 79 13 2 + 83.672.29 SS 4 46 7 3+82.67 Brown SILTY CLAY SS 5 100 5 - grey by 3.8m depth 4+81.67 SS 6 100 4 7 SS 100 W 5+80.67 SS 8 100 W 6.10 6+79.67 End of Borehole (GWL @ 1.70m - May 30, 2019) 100 200 300 400 500 RKI Eagle Rdg. (ppm) ▲ Full Gas Resp. △ Methane Elim.

## SOIL PROFILE AND TEST DATA

Phase II - Environmental Site Assessment 3252 Navan Road Ottawa, Ontario

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

| 154 Colonnade Road South, Ottawa, Oh |         |           | 5      |               | O                 | tawa, Or     | ntario       |                                                           |                                       |                                     |                                 |
|--------------------------------------|---------|-----------|--------|---------------|-------------------|--------------|--------------|-----------------------------------------------------------|---------------------------------------|-------------------------------------|---------------------------------|
| DATUM Geodetic, provided by An       | nis O'S | Sulliva   | ın Vo  | llebek        | k                 |              |              |                                                           | FILE NO.                              | PE4588                              | 3                               |
| REMARKS                              |         |           |        |               |                   |              |              | HOLE NO.                                                  |                                       |                                     |                                 |
| BORINGS BY CME 55 Power Auger        |         |           |        | D             | ATE               | 2019 May     | 1            |                                                           | BH 3                                  | 1                                   |                                 |
| SOIL DESCRIPTION                     | PLOT    |           | SAN    |               |                   | DEPTH<br>(m) | ELEV.<br>(m) | Photo Ionization Detector     Volatile Organic Rdg. (ppm) |                                       |                                     |                                 |
|                                      | STRATA  | Ы         | BER    | VERY          | ROD               |              | (,           |                                                           |                                       |                                     | torin                           |
| UNDERSIDE OF FOOTING                 | STR     | TYPE      | NUMBER | %<br>RECOVERY | N VALUE<br>or RQD |              | 04.01        | C Lowe                                                    | 40 60                                 | e Limit %                           | Monitoring Well<br>Construction |
|                                      |         | aU        | 1      |               |                   | - 0-         | -84.01       | •                                                         |                                       |                                     |                                 |
| FILL: Brown silty sand with gravel   |         | ∝<br>∛ ss | 2      | 71            | 18                | 1-           | -83.01       | •                                                         |                                       |                                     |                                 |
| 1.52                                 | 2       | Δ         |        |               |                   |              |              |                                                           |                                       |                                     |                                 |
| Brown SILTY CLAY                     |         | ss        | 3      | 83            | 7                 | 2-           | -82.01       | •                                                         | · · · · · · · · · · · · · · · · · · · |                                     |                                 |
|                                      |         | ss        | 4      | 100           | 3                 |              |              | •                                                         |                                       |                                     |                                 |
| - grey by 2.3m depth                 |         | ss        | 5      | 100           | 3                 | 3-           | -81.01       |                                                           |                                       | • • • • • • • • • • • • • • • • • • |                                 |
|                                      |         |           | 5      | 100           | 3                 |              |              |                                                           |                                       |                                     |                                 |
| 4.57                                 | ,       | ss        | 6      | 100           | 1                 | 4-           | -80.01       | •                                                         |                                       |                                     |                                 |
| End of Borehole                      |         | -         |        |               |                   |              |              |                                                           |                                       |                                     |                                 |
| (MW damaged - May 30, 2019)          |         |           |        |               |                   |              |              |                                                           |                                       |                                     |                                 |
|                                      |         |           |        |               |                   |              |              |                                                           |                                       |                                     |                                 |
|                                      |         |           |        |               |                   |              |              |                                                           |                                       |                                     |                                 |
|                                      |         |           |        |               |                   |              |              |                                                           |                                       |                                     |                                 |
|                                      |         |           |        |               |                   |              |              |                                                           |                                       |                                     |                                 |
|                                      |         |           |        |               |                   |              |              |                                                           |                                       |                                     |                                 |
|                                      |         |           |        |               |                   |              |              |                                                           |                                       |                                     |                                 |
|                                      |         |           |        |               |                   |              |              |                                                           |                                       |                                     |                                 |
|                                      |         |           |        |               |                   |              |              |                                                           |                                       |                                     |                                 |
|                                      |         |           |        |               |                   |              |              |                                                           |                                       |                                     |                                 |
|                                      |         |           |        |               |                   |              |              |                                                           |                                       |                                     |                                 |
|                                      |         |           |        |               |                   |              |              |                                                           |                                       |                                     |                                 |
|                                      |         |           |        |               |                   |              |              |                                                           |                                       |                                     |                                 |
|                                      |         |           |        |               |                   |              |              |                                                           |                                       |                                     |                                 |
|                                      |         |           |        |               |                   |              |              |                                                           |                                       |                                     |                                 |
|                                      |         |           |        |               |                   |              |              |                                                           |                                       |                                     |                                 |
|                                      |         |           |        |               |                   |              |              |                                                           |                                       |                                     |                                 |
|                                      |         |           |        |               |                   |              |              | 100                                                       | 200 30                                |                                     | <br>DO                          |
|                                      |         |           |        |               |                   |              |              |                                                           | Eagle Rdg                             | . (ppm)<br>Methane Elim.            |                                 |

## SOIL PROFILE AND TEST DATA

Phase II - Environmental Site Assessment 3252 Navan Road Ottawa, Ontario

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

| 154 Colonnade Road Sodin, Ottawa, On                                             |        |              | 5      |                       | Ot             | tawa, Or     | ntario       |        |                                          |                                 |                                                                                                  |
|----------------------------------------------------------------------------------|--------|--------------|--------|-----------------------|----------------|--------------|--------------|--------|------------------------------------------|---------------------------------|--------------------------------------------------------------------------------------------------|
| DATUM Geodetic, provided by Ann                                                  | is O'S | Sulliva      | ın Vol | lebek                 | k              |              |              |        | FILE NO.                                 | PE4588                          | 3                                                                                                |
| REMARKS                                                                          |        |              |        |                       |                |              |              |        | HOLE NO.                                 |                                 |                                                                                                  |
| BORINGS BY CME 55 Power Auger                                                    |        |              |        | D                     | ATE 2          | 2019 May     | / 16         |        |                                          | BH 4                            |                                                                                                  |
| SOIL DESCRIPTION                                                                 | РГОТ   |              | SAN    |                       |                | DEPTH<br>(m) | ELEV.<br>(m) |        | onization De<br>tile Organic Rd          | Monitoring Well<br>Construction |                                                                                                  |
|                                                                                  |        | ТҮРЕ         | NUMBER | °<br>≈<br>©<br>©<br>© | VALUE<br>r rod | (,           | (11)         | • Lowe | r Explosive                              | Limit %                         | onitorin<br>Sonstru                                                                              |
| UNDERSIDE OF FOOTING                                                             | STRATA | -            | IN     | RE                    | N<br>OH U      | 0            | -79.10       | 20     | 40 60                                    | 80                              | ž                                                                                                |
| FILL: Brown silty sand with gravel                                               |        | S AU         | 1      |                       |                |              | -79.10       | •      |                                          |                                 |                                                                                                  |
| FILL: Brow nsilty sand with clay,<br>gravel and sandstone, trace<br>organics1.37 |        | ss           | 2      | 33                    | 27             | 1-           | -78.10       | •      |                                          |                                 | ներերերերերի ուրերերերերերի հետերերերերեր<br>***<br>1. ուրեներերերերերերերերերերերերերերերերերեր |
|                                                                                  |        | ss           | 3      | 58                    | 9              | 2-           | -77.10       | •      |                                          |                                 | ։<br>Դերեներերերեր<br>Դերեներերեր                                                                |
|                                                                                  |        | ∦ss<br>⊽ss   | 4      | 88                    | 7              | 3-           | -76.10       | •      |                                          |                                 |                                                                                                  |
| Brown SILTY CLAY                                                                 |        | ∦ ss<br>∛ ss | 5<br>6 | 100                   | 7              | 4-           | -75.10       |        |                                          |                                 |                                                                                                  |
|                                                                                  |        | ss           | 7      | 100                   | 7              | 5-           | -74.10       | •      |                                          |                                 |                                                                                                  |
|                                                                                  |        | ss           | 8      | 100                   | 4              |              | 74.10        |        |                                          |                                 |                                                                                                  |
| - grey by 6.1m depth                                                             |        | ∑ ss         | 9      | 100                   | 2              | 6-           | -73.10       |        |                                          |                                 |                                                                                                  |
|                                                                                  |        | ∑ ss         | 10     | 100                   | 2              | 7-           | -72.10       |        |                                          |                                 |                                                                                                  |
|                                                                                  |        | ss           | 11     | 100                   |                | 8-           | -71.10       |        |                                          |                                 |                                                                                                  |
| 8.38<br>End of Borehole                                                          |        | -            |        |                       |                | 0            | 71.10        |        |                                          |                                 |                                                                                                  |
| (GWL @ 3.40m - May 30, 2019)                                                     |        |              |        |                       |                |              |              |        |                                          |                                 |                                                                                                  |
|                                                                                  |        |              |        |                       |                |              |              |        |                                          |                                 |                                                                                                  |
|                                                                                  |        |              |        |                       |                |              |              |        | 200 300<br>Eagle Rdg. (<br>as Resp. △ Me | ppm)                            | 00                                                                                               |

## patersongroup Consulting SOIL PROFILE AND TEST Phase II - Environmental Site Assessment

## SOIL PROFILE AND TEST DATA

| 154 Colonnade Road South, Ottawa, On          | 32    | 3252 Navan Road<br>Ottawa, Ontario |        |               |                   |              |              |        |                                |        |                                 |
|-----------------------------------------------|-------|------------------------------------|--------|---------------|-------------------|--------------|--------------|--------|--------------------------------|--------|---------------------------------|
| DATUM Geodetic, provided by Ann               | is O' | Sulliva                            | ın Vol | lebekl        |                   |              |              |        | FILE NO.                       | PE4588 | }                               |
| REMARKS                                       |       |                                    |        |               |                   |              |              |        | HOLE NO.                       | BH 5   |                                 |
| BORINGS BY CME 55 Power Auger                 |       |                                    |        | D             | ATE 2             | 2019 May     | y 17         |        |                                | БПЭ    |                                 |
| SOIL DESCRIPTION                              |       |                                    | SAN    | MPLE          | _                 | DEPTH<br>(m) | ELEV.<br>(m) |        | onization D<br>tile Organic Ro |        | ig Well                         |
|                                               |       | ТҮРЕ                               | NUMBER | %<br>RECOVERY | N VALUE<br>or RQD | (,           |              | • Lowe | er Explosive                   |        | Monitoring Well<br>Construction |
| UNDERSIDE OF FOOTING                          |       | ×                                  |        | 8             | 2                 | 0-           | -82.34       | 20     | 40 60                          | 80     | 2<br>====                       |
|                                               |       | i ss                               | 1      | 33            | 8                 |              | -81.34       | •      |                                | 11     |                                 |
|                                               |       |                                    | -      |               |                   |              |              |        |                                |        |                                 |
|                                               |       | ss                                 | 3      | 54            | 9                 | 2-           | -80.34       |        | •                              |        | <u>իրիկիի</u>                   |
| FILL: Brown silty sand, some gravel and brick |       | ∦ ss                               | 4      | 29            | 14                |              |              |        | )                              |        |                                 |
| gravel and brick                              |       | ss                                 | 5      | 58            | 5                 | 3-           | -79.34       |        |                                |        | <u>իդիրիի</u>                   |
|                                               |       | ss                                 | 6      | 42            | 15                | 4-           | -78.34       |        | •                              |        | <u>երիրերի</u>                  |
|                                               |       | ss                                 | 7      | 38            | 6                 | 5-           | -77.34       | •      |                                |        | <u>լիրիկիկ</u>                  |
| 6.10                                          |       | ss                                 | 8      | 12            | 5                 | 6-           | -76.34       | •      |                                |        | <u>IIIIIIIIII</u><br>IIIIIIIII  |
|                                               |       | ss                                 | 9      | 79            | 21                |              |              |        |                                |        | <u>իկկկկ</u>                    |
|                                               |       | ss                                 | 10     | 100           | 15                | 7-           | -75.34       |        |                                |        |                                 |
| Brown SILTY CLAY                              |       | ss                                 | 11     | 100           | 8                 | 8-           | -74.34       | •      |                                |        |                                 |
| - grey by 8.4m depth                          |       | ss                                 | 12     | 88            | 4                 | 9-           | -73.34       | •      |                                |        |                                 |
|                                               |       | ss                                 | 13     | 100           | 2                 |              |              | •      |                                |        |                                 |
| 10.67                                         |       | ss                                 | 14     | 100           | 1                 | 10-          | -72.34       | •      |                                |        |                                 |
| End of Borehole                               |       |                                    |        |               |                   |              |              |        |                                |        |                                 |
| (GWL @ 5.95m - May 30, 2019)                  |       |                                    |        |               |                   |              |              |        |                                |        |                                 |

300

400

500

200

100

....

## SOIL PROFILE AND TEST DATA

Phase II - Environmental Site Assessment 3252 Navan Road

| 154 Colonnade Road South, Ottawa, Ont                                         |        | tawa, Or                        |        |               |                   |              |              |        |                                          |         |                                 |
|-------------------------------------------------------------------------------|--------|---------------------------------|--------|---------------|-------------------|--------------|--------------|--------|------------------------------------------|---------|---------------------------------|
| DATUM Geodetic, provided by Ann                                               | is O'S | Sulliva                         | ın Vol | lebekl        | <                 |              |              |        | FILE NO.                                 | PE4588  | 3                               |
|                                                                               |        |                                 |        |               |                   | 2010 Ma      | . 17         |        | HOLE NO.                                 | BH 6    |                                 |
| BORINGS BY CME 55 Power Auger                                                 | ы      | DATE 2019 May 17<br>SAMPLE Phot |        |               |                   |              |              |        | onization D                              |         | =                               |
| SOIL DESCRIPTION                                                              | РГОТ   |                                 |        |               | M .               | DEPTH<br>(m) | ELEV.<br>(m) |        | tile Organic Rd                          |         | ng We<br>uction                 |
|                                                                               | STRATA | ТҮРЕ                            | NUMBER | %<br>RECOVERY | N VALUE<br>or RQD |              |              | • Lowe | er Explosive                             | Limit % | Monitoring Well<br>Construction |
| UNDERSIDE OF FOOTING                                                          |        | <del>x</del>                    | -      | R             | zř                | 0-           | -75.47       | 20     | 40 60                                    | 80      | ≥<br>GEC                        |
|                                                                               |        | AU                              | 1      |               |                   |              |              |        |                                          |         |                                 |
|                                                                               |        | ss                              | 2      | 58            | 16                | 1-           | -74.47       |        |                                          |         |                                 |
| <b>FILL:</b> Brown silty sand with gravel, some clay, trace brick and topsoil |        | ss                              | 3      | 33            | 7                 | 2-           | -73.47       |        | · · · · · · · · · · · · · · · · · · ·    |         |                                 |
|                                                                               |        | ss                              | 4      | 71            | 7                 |              |              |        | · · · · · · · · · · · · · · · · · · ·    |         |                                 |
|                                                                               |        | ss                              | 5      | 62            | 8                 | 3-           | -72.47       |        |                                          |         |                                 |
|                                                                               |        | ss                              | 6      | 75            | 22                | 4-           | -71.47       |        |                                          |         |                                 |
|                                                                               |        | ss                              | 7      | 71            | 8                 | 5-           | -70.47       |        |                                          |         | <u>IIIIIIIIII</u><br>T          |
|                                                                               |        | ss                              | 8      | 67            | 20                | 6-           | -69.47       |        |                                          |         |                                 |
| 6.86                                                                          |        | ss                              | 9      | 46            | 8                 |              |              |        |                                          |         |                                 |
|                                                                               |        | ss                              | 10     | 88            | 15                | 7-           | -68.47       |        |                                          |         |                                 |
| Brown SILTY CLAY                                                              |        | ss                              | 11     | 100           | 7                 | 8-           | -67.47       |        |                                          |         |                                 |
| - grey by 8.4m depth                                                          |        | ss                              | 12     | 100           | 5                 | 9-           | -66.47       |        |                                          |         |                                 |
|                                                                               |        | ss                              | 13     | 100           | 2                 |              |              |        |                                          |         |                                 |
| <u>10.67</u>                                                                  |        | ss                              | 14     | 100           | W                 | 10-          | -65.47       |        | ······································   |         |                                 |
| End of Borehole                                                               |        |                                 |        |               |                   |              |              |        |                                          |         |                                 |
| (GWL @ 5.20m - May 30, 2019)                                                  |        |                                 |        |               |                   |              |              |        |                                          |         |                                 |
|                                                                               |        |                                 |        |               |                   |              |              |        |                                          |         |                                 |
|                                                                               |        |                                 |        |               |                   |              |              |        |                                          |         |                                 |
|                                                                               |        |                                 |        |               |                   |              |              |        | 200 300<br>Eagle Rdg. (<br>as Resp. △ Me |         | 0                               |

## SOIL PROFILE AND TEST DATA

Phase II - Environmental Site Assessment 3252 Navan Road

| 154 Colonnade Road South, Ottawa, Ont                      | ario M | 2E 7J             | 5      |               | Ot                | tawa, Or     | ntario       |        |                               |                                 |                                 |
|------------------------------------------------------------|--------|-------------------|--------|---------------|-------------------|--------------|--------------|--------|-------------------------------|---------------------------------|---------------------------------|
| <b>DATUM</b> Geodetic, provided by Annis O'Sullivan Volleb |        |                   |        |               |                   |              |              |        | FILE NO.                      | PE4588                          | 3                               |
| REMARKS                                                    |        |                   |        |               |                   |              |              |        | HOLE NO                       |                                 |                                 |
| BORINGS BY Portable Drill                                  |        |                   |        | D             | ATE 2             | 2019 May     | / 22         |        |                               | BH 7                            |                                 |
| SOIL DESCRIPTION                                           | РГОТ   |                   | SAN    | IPLE          |                   | DEPTH<br>(m) | ELEV.<br>(m) |        | onization<br>tile Organic     |                                 | g Well<br>ction                 |
|                                                            | STRATA | ТҮРЕ              | NUMBER | %<br>RECOVERY | N VALUE<br>or RQD | (11)         | (11)         | ○ Lowe | r Explosiv                    | ve Limit %                      | Monitoring Well<br>Construction |
| UNDERSIDE OF FOOTING                                       | S      |                   | Z      | RE            | z <sup>o</sup>    | 0            | 70.00        | 20     | 40 60                         | 0 80                            | ΣŬ                              |
| TOPSOIL0.30                                                |        | ss                | 1      | 100           |                   | 0-           | -72.90       |        |                               |                                 |                                 |
| Brown SILTY CLAY0.71                                       |        | $\leftrightarrow$ |        |               |                   |              |              |        |                               |                                 | <u>              </u><br>₩<br>  |
|                                                            |        | ss                | 2      | 100           |                   | 1-           | -71.90       |        |                               |                                 |                                 |
| Brown SILTY CLAY                                           |        | ss                | 3      | 100           |                   |              |              | •      |                               |                                 |                                 |
| - grey by 1.8m depth                                       |        | ss                | 4      | 100           |                   | 2-           | -70.90       | •      |                               |                                 |                                 |
| 3.05                                                       |        | ss                | 5      | 100           |                   | 0            | -69.90       | •      |                               |                                 |                                 |
| End of Borehole                                            |        |                   |        |               |                   | 3-           | -09.90       |        |                               |                                 |                                 |
| (GWL @ 0.60m - June 3, 2019)                               |        |                   |        |               |                   |              |              |        |                               |                                 |                                 |
|                                                            |        |                   |        |               |                   |              |              |        |                               |                                 |                                 |
|                                                            |        |                   |        |               |                   |              |              |        |                               |                                 |                                 |
|                                                            |        |                   |        |               |                   |              |              |        |                               |                                 |                                 |
|                                                            |        |                   |        |               |                   |              |              |        |                               |                                 |                                 |
|                                                            |        |                   |        |               |                   |              |              |        |                               |                                 |                                 |
|                                                            |        |                   |        |               |                   |              |              |        |                               |                                 |                                 |
|                                                            |        |                   |        |               |                   |              |              |        |                               |                                 |                                 |
|                                                            |        |                   |        |               |                   |              |              |        |                               |                                 |                                 |
|                                                            |        |                   |        |               |                   |              |              |        |                               |                                 |                                 |
|                                                            |        |                   |        |               |                   |              |              |        |                               |                                 |                                 |
|                                                            |        |                   |        |               |                   |              |              |        |                               |                                 |                                 |
|                                                            |        |                   |        |               |                   |              |              |        |                               |                                 |                                 |
|                                                            |        |                   |        |               |                   |              |              |        |                               |                                 |                                 |
|                                                            |        |                   |        |               |                   |              |              |        |                               |                                 |                                 |
|                                                            |        |                   |        |               |                   |              |              |        |                               |                                 |                                 |
|                                                            |        |                   |        |               |                   |              |              |        |                               |                                 |                                 |
|                                                            |        |                   |        |               |                   |              |              |        |                               |                                 |                                 |
|                                                            |        |                   |        |               |                   |              |              |        |                               |                                 |                                 |
|                                                            |        |                   |        |               |                   |              |              |        |                               |                                 |                                 |
|                                                            |        |                   |        |               |                   |              |              |        |                               |                                 |                                 |
|                                                            |        |                   |        |               |                   |              |              |        |                               |                                 |                                 |
|                                                            |        |                   |        |               |                   |              |              |        |                               |                                 |                                 |
|                                                            |        |                   |        |               |                   |              |              | 100    | 200 30                        |                                 | bo                              |
|                                                            |        |                   |        |               |                   |              |              |        | <b>agle Rdg</b><br>as Resp. △ | <b>. (ppm)</b><br>Methane Elim. |                                 |

## SOIL PROFILE AND TEST DATA

Phase II - Environmental Site Assessment 3252 Navan Road

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

| 104 Obionnade noad South, Ottawa                | a, Onta |        |            | 5      |                  | Ot              | tawa, Or     | ntario       |        |                                       |                                              |                                 |
|-------------------------------------------------|---------|--------|------------|--------|------------------|-----------------|--------------|--------------|--------|---------------------------------------|----------------------------------------------|---------------------------------|
| DATUM Geodetic, provided by                     | / Annis | s O'S  | Sulliva    | n Vol  | lebekl           | ĸ               |              |              |        | FILE NO.                              | PE4588                                       | B                               |
| REMARKS                                         |         |        |            |        |                  |                 |              |              |        | HOLE NO                               | <b>,</b>                                     | -                               |
| BORINGS BY Portable Drill                       |         |        |            |        | D                | ATE 2           | 2019 May     | / 22         |        |                                       | <sup>2</sup> BH 8                            |                                 |
| SOIL DESCRIPTION                                |         | PLOT   |            | SAN    |                  |                 | DEPTH<br>(m) | ELEV.<br>(m) |        |                                       | <b>Detector</b><br>Rdg. (ppm)                | Monitoring Well<br>Construction |
|                                                 |         | STRATA | ТҮРЕ       | NUMBER | °<br>≈<br>©<br>© | VALUE<br>Pr ROD | (,           | (,           | ○ Lowe | r Explosi                             | ive Limit %                                  | onitorin                        |
| UNDERSIDE OF FOOTING                            |         | ້      | <b>L</b> . | IJ     | REC              | N<br>O H        |              | 70 50        | 20     | 40 6                                  | 60 80                                        | Σ<br>Σ                          |
| TOPSOIL                                         | 0.28    | н÷     | ss         | 1      | 12               |                 | 0-           | -70.50       | •      |                                       |                                              |                                 |
| Grey SILTY SAND                                 | 0.91    |        | ss         | 2      | 58               |                 |              | CO EO .      |        |                                       |                                              |                                 |
| Brown <b>SILTY CLAY</b><br>- grey by 1.5m depth | 1.83    |        | ss         | 3      | 100              |                 | -            | -69.50       | •      |                                       |                                              |                                 |
| End of Borehole                                 | 1.05    | 1283   |            |        |                  |                 |              |              |        | · · · · · · · · · · · · · · · · · · · |                                              |                                 |
| (GWL @ 0.05m - June 3, 2019)                    |         |        |            |        |                  |                 |              |              |        |                                       |                                              |                                 |
|                                                 |         |        |            |        |                  |                 |              |              |        |                                       |                                              |                                 |
|                                                 |         |        |            |        |                  |                 |              |              |        |                                       |                                              |                                 |
|                                                 |         |        |            |        |                  |                 |              |              |        |                                       |                                              |                                 |
|                                                 |         |        |            |        |                  |                 |              |              |        |                                       |                                              |                                 |
|                                                 |         |        |            |        |                  |                 |              |              |        |                                       |                                              |                                 |
|                                                 |         |        |            |        |                  |                 |              |              |        |                                       |                                              |                                 |
|                                                 |         |        |            |        |                  |                 |              |              |        |                                       |                                              |                                 |
|                                                 |         |        |            |        |                  |                 |              |              |        |                                       |                                              |                                 |
|                                                 |         |        |            |        |                  |                 |              |              |        |                                       |                                              |                                 |
|                                                 |         |        |            |        |                  |                 |              |              |        |                                       |                                              |                                 |
|                                                 |         |        |            |        |                  |                 |              |              |        |                                       |                                              |                                 |
|                                                 |         |        |            |        |                  |                 |              |              |        |                                       |                                              |                                 |
|                                                 |         |        |            |        |                  |                 |              |              |        |                                       |                                              |                                 |
|                                                 |         |        |            |        |                  |                 |              |              |        |                                       |                                              |                                 |
|                                                 |         |        |            |        |                  |                 |              |              |        |                                       |                                              |                                 |
|                                                 |         |        |            |        |                  |                 |              |              |        |                                       |                                              |                                 |
|                                                 |         |        |            |        |                  |                 |              |              |        |                                       |                                              |                                 |
|                                                 |         |        |            |        |                  |                 |              |              |        |                                       |                                              |                                 |
|                                                 |         |        |            |        |                  |                 |              |              |        |                                       |                                              |                                 |
|                                                 |         |        |            |        |                  |                 |              |              |        |                                       |                                              |                                 |
|                                                 |         |        |            |        |                  |                 |              |              |        |                                       |                                              |                                 |
|                                                 |         |        |            |        |                  |                 |              |              |        | agle Rd                               | 00 400 5<br><b>g. (ppm)</b><br>Methane Elim. | 00                              |

## SOIL PROFILE AND TEST DATA

Phase II - Environmental Site Assessment 3252 Navan Road

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

| 154 Colonnade Moad Sodth, Ottaw | a, Ontario i |               | 5      |               | 0                 | ttawa, Or    | ntario       |           |            |                        |                                 |
|---------------------------------|--------------|---------------|--------|---------------|-------------------|--------------|--------------|-----------|------------|------------------------|---------------------------------|
| DATUM Geodetic, provided by     | y Annis O'   | Sulliva       | an Vo  | llebekl       | k                 |              |              |           | FILE NO.   | PE4588                 | 3                               |
| REMARKS                         |              |               |        |               |                   |              |              |           | HOLE NO    |                        | -                               |
| BORINGS BY Portable Drill       |              | 1             |        | D             | ATE               | 2019 May     | / 22         |           |            | BH 9                   |                                 |
| SOIL DESCRIPTION                | РГОТ         |               | SAN    | <b>IPLE</b>   |                   | DEPTH<br>(m) | ELEV.<br>(m) |           |            | Detector<br>Rdg. (ppm) | Monitoring Well<br>Construction |
|                                 | STRATA       | ТҮРЕ          | NUMBER | %<br>RECOVERY | N VALUE<br>or RQD | (11)         |              | ○ Lowe    | - Evolooi  | ve Limit %             | itorin<br>nstru                 |
| UNDERSIDE OF FOOTING            | STF          | Τ.            | NUN    | RECC          | N<br>OL           |              |              | 20        | 40 60      |                        | Mo<br>CO<br>Mo                  |
| TOPSOIL                         | 0.15         | ss            | 1      | 62            |                   | - 0-         | -69.49       |           |            |                        |                                 |
|                                 |              | ss            | 2      | 71            |                   |              |              |           |            |                        |                                 |
|                                 |              | $\mathcal{H}$ |        |               |                   | 1-           | -68.49       |           |            |                        |                                 |
| Brown SILTY CLAY                |              | ss            | 3      | 100           |                   | 0            | 07.40        |           |            |                        |                                 |
|                                 |              | ss            | 4      | 100           |                   | 2-           | -67.49       |           |            |                        |                                 |
|                                 | 3.05         | ss            | 5      | 100           |                   | 2.           | -66.49       |           |            |                        |                                 |
| End of Borehole                 |              |               |        |               |                   | 5            | 00.49        |           |            |                        |                                 |
| (GWL @ 0.49m - June 3, 2019)    |              |               |        |               |                   |              |              |           |            |                        |                                 |
|                                 |              |               |        |               |                   |              |              |           |            |                        |                                 |
|                                 |              |               |        |               |                   |              |              |           |            |                        |                                 |
|                                 |              |               |        |               |                   |              |              |           |            |                        |                                 |
|                                 |              |               |        |               |                   |              |              |           |            |                        |                                 |
|                                 |              |               |        |               |                   |              |              |           |            |                        |                                 |
|                                 |              |               |        |               |                   |              |              |           |            |                        |                                 |
|                                 |              |               |        |               |                   |              |              |           |            |                        |                                 |
|                                 |              |               |        |               |                   |              |              |           |            |                        |                                 |
|                                 |              |               |        |               |                   |              |              |           |            |                        |                                 |
|                                 |              |               |        |               |                   |              |              |           |            |                        |                                 |
|                                 |              |               |        |               |                   |              |              |           |            |                        |                                 |
|                                 |              |               |        |               |                   |              |              |           |            |                        |                                 |
|                                 |              |               |        |               |                   |              |              |           |            |                        |                                 |
|                                 |              |               |        |               |                   |              |              |           |            |                        |                                 |
|                                 |              |               |        |               |                   |              |              |           |            |                        |                                 |
|                                 |              |               |        |               |                   |              |              |           |            |                        |                                 |
|                                 |              |               |        |               |                   |              |              |           |            |                        |                                 |
|                                 |              |               |        |               |                   |              |              |           |            |                        |                                 |
|                                 |              |               |        |               |                   |              |              |           |            |                        |                                 |
|                                 |              |               |        |               |                   |              |              | 100       | 200 30     | 0 400 50               | 00                              |
|                                 |              |               |        |               |                   |              |              | RKI E     | agle Rdg   | . (ppm)                | -                               |
|                                 |              |               |        |               |                   |              |              | ▲ Full Ga | is Hesp. ∆ | Methane Elim.          |                                 |

## natarcondrollnConsulting

## SOIL PROFILE AND TEST DATA

100

200

300

**RKI Eagle Rdg. (ppm)** ▲ Full Gas Resp. △ Methane Elim.

400

500

| 154 Colonnade Road South, Ottawa                     |         | -            |         | 32     | nase II - E<br>52 Navar<br>tawa, Or | n Road            | ental Site | Assessm   | ent |          |                                        |                                 |
|------------------------------------------------------|---------|--------------|---------|--------|-------------------------------------|-------------------|------------|-----------|-----|----------|----------------------------------------|---------------------------------|
| DATUM Geodetic, provided by                          | / Annis | s O'8        | Sulliva | ın Vol | lebekł                              | <b>(</b>          |            |           |     | FILE NO. | PE4588                                 | 3                               |
| REMARKS                                              |         |              |         |        |                                     |                   |            |           |     | HOLE NO  | )                                      | -                               |
| BORINGS BY CME 55 Power Auge                         | er      |              |         |        | D                                   | ATE 2             | 2019 Sep   | otember 8 | 5   |          | <sup><sup>°</sup> BH10</sup>           |                                 |
| SOIL DESCRIPTION                                     |         | PLOT         |         | SAN    | IPLE                                |                   | DEPTH      | ELEV.     |     |          | <b>Detector</b><br>Rdg. (ppm)          | tion                            |
|                                                      |         | STRATA F     | ТҮРЕ    | NUMBER | %<br>RECOVERY                       | N VALUE<br>or RQD | (m)        | (m)       |     |          | ve Limit %                             | Monitoring Well<br>Construction |
| UNDERSIDE OF FOOTING                                 |         | $\sim$       |         | -      | R                                   | 2                 | 0-         | 86.03     | 20  | 40 6     | 0 80                                   |                                 |
| <b>FILL:</b> Brown silty clay, trace sand and gravel | Ŕ       | $\bigotimes$ |         |        |                                     |                   |            |           |     |          | · · · · · · · · · · · · · · · · · · ·  |                                 |
|                                                      | 0.81    |              | ₹       |        |                                     |                   | -          | -85.03    |     |          |                                        |                                 |
|                                                      |         |              | ss      | 1      | 75                                  | 10                | 1-         | -05.03    | •   |          |                                        |                                 |
| Compact to loose, brown <b>SILTY SAND</b>            | · .     |              | ss      | 2      | 88                                  | 24                |            |           | •   |          |                                        | T                               |
| SAND                                                 |         |              |         |        |                                     |                   | 2-         | -84.03    |     |          |                                        |                                 |
|                                                      | 2.82    |              | ss      | 3      | 88                                  | 9                 |            |           | •   |          |                                        |                                 |
| Brown SILTY CLAY                                     | Ē       |              | ss      | 4      | 100                                 | 0                 | 3-         | -83.03    |     |          | ······································ |                                 |
|                                                      | ľ       |              | 1 22    | 4      | 100                                 | 2                 |            |           | T   |          |                                        |                                 |
| - grey by 3.3m depth                                 | E       | H            | ss      | 5      | 100                                 | W                 | 4-         | -82.03    | •   |          |                                        |                                 |
|                                                      |         | H            | $\Box$  |        |                                     |                   |            |           |     |          | · · · · · · · · · · · · · · · · · · ·  |                                 |
|                                                      | 5.18    |              | ss      | 6      | 100                                 | W                 | 5-         | 81.03     | •   |          |                                        |                                 |
| End of Borehole                                      |         |              |         |        |                                     |                   |            |           |     |          |                                        |                                 |
| End of Borenole<br>(GWL @ 1.92m - Sept. 9, 2019)     |         |              |         |        |                                     |                   |            |           |     |          |                                        |                                 |

### SOIL PROFILE AND TEST DATA

HOLE NO.

**PE4588** 

**BH11** 

Phase II - Environmental Site Assessment

154 Colonnade Road South, Ottawa, Ontario K2

| ade Road South, Ottawa, Ontario K2E 7J5          | 3252 Navan Road<br>Ottawa, Ontario |          |
|--------------------------------------------------|------------------------------------|----------|
| Geodetic, provided by Annis O'Sullivan Vollebekk |                                    | FILE NO. |

DATUM

| BORINGS BY | CME 55 Power Auger |  |
|------------|--------------------|--|

| BORINGS BY CME 55 Power Auger |          |            |        | D             | ATE 2             | 2019 Sep | tember 5 | 5     |                                   | BHII                   |                                 |
|-------------------------------|----------|------------|--------|---------------|-------------------|----------|----------|-------|-----------------------------------|------------------------|---------------------------------|
| SOIL DESCRIPTION              | PLOT     |            | SAM    | IPLE          |                   | DEPTH    | ELEV.    |       |                                   | Detector<br>Rdg. (ppm) | y Well                          |
|                               | STRATA I | ТҮРЕ       | NUMBER | %<br>RECOVERY | N VALUE<br>of RQD | (m)      | (m)      |       |                                   | ve Limit %             | Monitoring Well<br>Construction |
| UNDERSIDE OF FOOTING          | ST       | Ĥ          | INN    | REC           | N<br>O K          |          |          | 20    | 40 60                             |                        | PO<br>PO<br>PO                  |
|                               |          |            |        |               |                   | 0-       | -85.53   |       |                                   | ,                      |                                 |
|                               |          |            |        |               |                   | 1-       | -84.53   |       |                                   |                        |                                 |
|                               |          |            |        |               |                   | 2-       | -83.53   |       |                                   |                        |                                 |
| OVERBURDEN                    |          |            |        |               |                   | 3-       | -82.53   |       |                                   |                        | ¥                               |
|                               |          |            |        |               |                   | 4-       | -81.53   |       |                                   |                        |                                 |
|                               |          |            |        |               |                   | 5-       | -80.53   |       |                                   |                        |                                 |
| 6.10                          | XX       | ⊽ ∝⊂       |        | 100           |                   | 6-       | -79.53   |       |                                   |                        |                                 |
|                               |          | ∦ss<br>∦ss | 1<br>2 | 100<br>100    | 1                 | 7-       | -78.53   |       |                                   |                        |                                 |
|                               |          | ss         | 3      | 100           |                   | 8-       | -77.53   |       |                                   |                        |                                 |
|                               |          | ss         | 4      | 100           |                   | 9-       | -76.53   |       |                                   |                        |                                 |
| Grey SILTY CLAY               |          | ss         | 5      | 100           |                   | 10-      | -75.53   |       |                                   |                        |                                 |
|                               |          | ∦ss<br>∦ss | 6<br>7 | 100<br>100    |                   |          | -74.53   |       |                                   |                        |                                 |
| 11.28                         |          | <u> </u>   | 1      | 100           |                   |          | -74.53   | ····· |                                   |                        |                                 |
| (GWL @ 2.84m - Sept. 9, 2019) |          |            |        |               |                   |          |          |       |                                   |                        |                                 |
|                               |          |            |        |               |                   |          |          |       |                                   |                        |                                 |
|                               |          |            |        |               |                   |          |          |       | 200 30<br>Eagle Rdg<br>as Resp. △ |                        | 00                              |

## SOIL PROFILE AND TEST DATA

Phase II - Environmental Site Assessment

154 Colonnade Road South, Ottawa, Ontario K2E 7

DATUM

| ade Road South, Ottawa, Ontario K2E 7J5          | 3252 Navan Road<br>Ottawa, Ontario |         |
|--------------------------------------------------|------------------------------------|---------|
| Geodetic, provided by Annis O'Sullivan Vollebekk |                                    | FILE NO |

|                                               |          |              |        |                  |                |          |          |         |          | PI                              | E4588 |                 |
|-----------------------------------------------|----------|--------------|--------|------------------|----------------|----------|----------|---------|----------|---------------------------------|-------|-----------------|
| REMARKS<br>BORINGS BY CME 55 Power Auger      |          |              |        | П                | ATE 2          | 2019 Sep | tember 5 | 5       | HOLE N   | ю.<br>В                         | H12   |                 |
| SOIL DESCRIPTION                              | PLOT     |              | SAN    | IPLE             |                | DEPTH    | ELEV.    | Photo I |          | o <b>n Detec</b><br>iic Rdg. (p |       | Well            |
|                                               | STRATA F | ТҮРЕ         | NUMBER | °<br>≈<br>©<br>© | VALUE<br>r RQD | (m)      | (m)      |         |          | sive Lim                        |       | Monitoring Well |
| UNDERSIDE OF FOOTING                          | 2        |              | NC     | REO              | N<br>OF        | 0        | -85.14   | 20      | 40       | 60 8                            | 0     | ž               |
| <b>ILL:</b> Brown silty sand with gravel      | _        | ∦ss          | 1      | 79               | 30             |          | -84.14   |         |          |                                 |       | 1111111111      |
| 1.2<br>Compact, grey <b>SILTY SAND</b><br>2.1 |          | ss           | 2      | 75               | 12             |          | -83.14   |         |          |                                 |       |                 |
|                                               |          | ss           | 3      | 100              | 1              |          | -82.14   |         |          |                                 |       |                 |
| Brown to grey SILTY CLAY                      |          | ss           | 4      | 100              | W              |          |          |         |          |                                 |       |                 |
|                                               |          | ∦ ss<br>∦ ss | 5<br>6 | 100              | w<br>w         |          | -81.14   |         |          |                                 |       |                 |
| 5.1<br>End of Borehole                        | 8///     | V            | 0      |                  | ••             | 5-       | -80.14   |         |          |                                 |       |                 |
| GWL @ 3.66m - Sept. 9, 2019)                  |          |              |        |                  |                |          |          |         |          |                                 |       |                 |
|                                               |          |              |        |                  |                |          |          |         | Eagle Ro | 300 40<br>dg. (ppn<br>∆ Methar  | ו)    | 0               |

## SOIL PROFILE AND TEST DATA

100 200 300 400 50 **RKI Eagle Rdg. (ppm)** ▲ Full Gas Resp. △ Methane Elim.

500

| DATUMGeodetic, provided by Ann                                            |        |      |        | llebek        |                   | tawa, Or     | ntario       |                                      | FILE NO.       | PE4588                                | 3                               |
|---------------------------------------------------------------------------|--------|------|--------|---------------|-------------------|--------------|--------------|--------------------------------------|----------------|---------------------------------------|---------------------------------|
| <b>BORINGS BY</b> CME 55 Power Auger                                      |        |      |        |               | DATE 2            | 2019 Sep     | tember l     | 5                                    | HOLE NO.       | BH13                                  |                                 |
|                                                                           | Ę      |      | SAN    | /IPLE         |                   |              |              |                                      | onization [    | Detector                              | lel<br>n                        |
| SOIL DESCRIPTION                                                          | A PLOT |      | œ      | RY            | Що                | DEPTH<br>(m) | ELEV.<br>(m) | Vola                                 | tile Organic R | dg. (ppm)                             | ing V<br>ructio                 |
| UNDERSIDE OF FOOTING                                                      | STRATA | ТҮРЕ | NUMBER | *<br>RECOVERY | N VALUE<br>or RQD |              |              | <ul> <li>Lowe</li> <li>20</li> </ul> | r Explosive    | e Limit %<br>80                       | Monitoring Well<br>Construction |
|                                                                           |        |      |        |               |                   | 0-           | -85.37       |                                      |                |                                       |                                 |
| FILL: Brown silty sand with gravel,<br>trace cobbles and boulders<br>1.52 |        | ss   | 1      | 58            | 24                | 1-           | -84.37       | •                                    |                |                                       |                                 |
|                                                                           |        | ss   | 2      | 58            | 18                | 2-           | -83.37       | •                                    |                |                                       |                                 |
| Compact, brown <b>SILTY SAND</b><br>3.05                                  |        | ss   | 3      | 17            | 42                | 2            | -82.37       | •                                    |                |                                       |                                 |
| Brown SILTY SAND                                                          |        | ss   | 4      | 100           | 4                 | 5            | -02.37       | •                                    |                |                                       |                                 |
| - grey by 3.8m depth                                                      |        | ss   | 5      | 100           | 3                 | 4-           | -81.37       | •                                    |                | · · · · · · · · · · · · · · · · · · · |                                 |
| 5.18                                                                      |        | ss   | 6      | 100           | w                 | 5-           | -80.37       | •                                    |                |                                       |                                 |
| End of Borehole                                                           |        |      |        |               |                   |              |              |                                      |                |                                       |                                 |
| (GWL @ 2.28m - Sept. 9, 2019)                                             |        |      |        |               |                   |              |              |                                      |                |                                       |                                 |

### SYMBOLS AND TERMS

#### SOIL DESCRIPTION

Behavioural properties, such as structure and strength, take precedence over particle gradation in describing soils. Terminology describing soil structure are as follows:

| Desiccated       | - | having visible signs of weathering by oxidation of clay minerals, shrinkage cracks, etc.                                   |
|------------------|---|----------------------------------------------------------------------------------------------------------------------------|
| Fissured         | - | having cracks, and hence a blocky structure.                                                                               |
| Varved           | - | composed of regular alternating layers of silt and clay.                                                                   |
| Stratified       | - | composed of alternating layers of different soil types, e.g. silt and sand or silt and clay.                               |
| Well-Graded      | - | Having wide range in grain sizes and substantial amounts of all intermediate particle sizes (see Grain Size Distribution). |
| Uniformly-Graded | - | Predominantly of one grain size (see Grain Size Distribution).                                                             |

The standard terminology to describe the strength of cohesionless soils is the relative density, usually inferred from the results of the Standard Penetration Test (SPT) 'N' value. The SPT N value is the number of blows of a 63.5 kg hammer, falling 760 mm, required to drive a 51 mm O.D. split spoon sampler 300 mm into the soil after an initial penetration of 150 mm.

| Relative Density | 'N' Value | Relative Density % |  |
|------------------|-----------|--------------------|--|
| Very Loose       | <4        | <15                |  |
| Loose            | 4-10      | 15-35              |  |
| Compact          | 10-30     | 35-65              |  |
| Dense            | 30-50     | 65-85              |  |
| Very Dense       | >50       | >85                |  |

The standard terminology to describe the strength of cohesive soils is the consistency, which is based on the undisturbed undrained shear strength as measured by the in situ or laboratory vane tests, penetrometer tests, unconfined compression tests, or occasionally by Standard Penetration Tests.

| Consistency | Undrained Shear Strength (kPa) | 'N' Value |  |
|-------------|--------------------------------|-----------|--|
| Very Soft   | <12                            | <2        |  |
| Soft        | 12-25                          | 2-4       |  |
| Firm        | 25-50                          | 4-8       |  |
| Stiff       | 50-100                         | 8-15      |  |
| Very Stiff  | 100-200                        | 15-30     |  |
| Hard        | >200                           | >30       |  |

### SYMBOLS AND TERMS (continued)

#### **SOIL DESCRIPTION (continued)**

Cohesive soils can also be classified according to their "sensitivity". The sensitivity is the ratio between the undisturbed undrained shear strength and the remoulded undrained shear strength of the soil.

Terminology used for describing soil strata based upon texture, or the proportion of individual particle sizes present is provided on the Textural Soil Classification Chart at the end of this information package.

#### **ROCK DESCRIPTION**

The structural description of the bedrock mass is based on the Rock Quality Designation (RQD).

The RQD classification is based on a modified core recovery percentage in which all pieces of sound core over 100 mm long are counted as recovery. The smaller pieces are considered to be a result of closely-spaced discontinuities (resulting from shearing, jointing, faulting, or weathering) in the rock mass and are not counted. RQD is ideally determined from NXL size core. However, it can be used on smaller core sizes, such as BX, if the bulk of the fractures caused by drilling stresses (called "mechanical breaks") are easily distinguishable from the normal in situ fractures.

#### RQD % ROCK QUALITY

| 90-100 | Excellent, intact, very sound                                |
|--------|--------------------------------------------------------------|
| 75-90  | Good, massive, moderately jointed or sound                   |
| 50-75  | Fair, blocky and seamy, fractured                            |
| 25-50  | Poor, shattered and very seamy or blocky, severely fractured |
| 0-25   | Very poor, crushed, very severely fractured                  |

#### SAMPLE TYPES

| SS | - | Split spoon sample (obtained in conjunction with the performing of the Standard |
|----|---|---------------------------------------------------------------------------------|
|    |   | Penetration Test (SPT))                                                         |

- TW Thin wall tube or Shelby tube
- PS Piston sample
- AU Auger sample or bulk sample
- WS Wash sample
- RC Rock core sample (Core bit size AXT, BXL, etc.). Rock core samples are obtained with the use of standard diamond drilling bits.

### SYMBOLS AND TERMS (continued)

#### **GRAIN SIZE DISTRIBUTION**

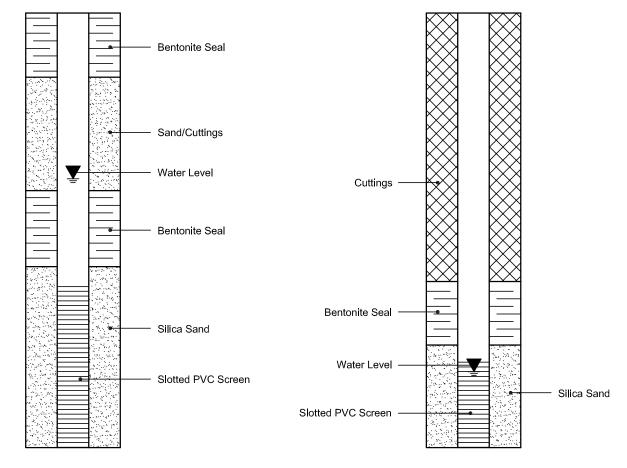
| MC%<br>LL<br>PL<br>PI                                          | -<br>-<br>- | Natural moisture content or water content of sample, %<br>Liquid Limit, % (water content above which soil behaves as a liquid)<br>Plastic limit, % (water content above which soil behaves plastically)<br>Plasticity index, % (difference between LL and PL) |  |  |  |  |
|----------------------------------------------------------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Dxx                                                            | -           | Grain size which xx% of the soil, by weight, is of finer grain sizes<br>These grain size descriptions are not used below 0.075 mm grain size                                                                                                                  |  |  |  |  |
| D10                                                            | -           | Grain size at which 10% of the soil is finer (effective grain size)                                                                                                                                                                                           |  |  |  |  |
| D60                                                            | -           | Grain size at which 60% of the soil is finer                                                                                                                                                                                                                  |  |  |  |  |
| Сс                                                             | -           | Concavity coefficient = $(D30)^2 / (D10 \times D60)$                                                                                                                                                                                                          |  |  |  |  |
| Cu                                                             | -           | Uniformity coefficient = D60 / D10                                                                                                                                                                                                                            |  |  |  |  |
| Cc and Cu are used to assess the grading of sands and gravels: |             |                                                                                                                                                                                                                                                               |  |  |  |  |

Well-graded gravels have: 1 < Cc < 3 and Cu > 4Well-graded sands have: 1 < Cc < 3 and Cu > 4Well-graded sands have: 1 < Cc < 3 and Cu > 6Sands and gravels not meeting the above requirements are poorly-graded or uniformly-graded. Cc and Cu are not applicable for the description of soils with more than 10% silt and clay (more than 10% finer than 0.075 mm or the #200 sieve)

### **CONSOLIDATION TEST**

| p'o        | - | Present effective overburden pressure at sample depth          |
|------------|---|----------------------------------------------------------------|
| p'c        | - | Preconsolidation pressure of (maximum past pressure on) sample |
| Ccr        | - | Recompression index (in effect at pressures below p'c)         |
| Сс         | - | Compression index (in effect at pressures above p'c)           |
| OC Ratio   | ) | Overconsolidaton ratio = $p'_c / p'_o$                         |
| Void Ratio |   | Initial sample void ratio = volume of voids / volume of solids |
| Wo         | - | Initial water content (at start of consolidation test)         |

#### PERMEABILITY TEST


k - Coefficient of permeability or hydraulic conductivity is a measure of the ability of water to flow through the sample. The value of k is measured at a specified unit weight for (remoulded) cohesionless soil samples, because its value will vary with the unit weight or density of the sample during the test.

### SYMBOLS AND TERMS (continued) STRATA PLOT Topsoil Asphalt Peat Sand Silty Sand Fill $\nabla$ Sandy Silt Clay Silty Clay Clayey Silty Sand Glacial Till Shale Bedrock

### MONITORING WELL AND PIEZOMETER CONSTRUCTION



PIEZOMETER CONSTRUCTION





RELIABLE.

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

## Certificate of Analysis

Paterson Group Consulting Engineers

154 Colonnade Road South Nepean, ON K2E 7J5 Attn: Mark D'Arcy

Client PO: 26839 Project: PE4588 Custody: 122169

Report Date: 7-Jun-2019 Order Date: 31-May-2019

Order #: 1923072

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

| Paracel ID | Client ID |
|------------|-----------|
| 1923072-01 | BH1-GW1   |
| 1923072-02 | BH2-GW1   |
| 1923072-03 | BH4-GW1   |
| 1923072-04 | BH5-GW1   |
| 1923072-05 | BH6-GW1   |

Approved By:

Mark Foto

Mark Foto, M.Sc. Lab Supervisor

Any use of these results implies your agreement that our total liability in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.



Certificate of Analysis Client: Paterson Group Consulting Engineers Client PO: 26839

#### **Analysis Summary Table**

| Analysis                     | Method Reference/Description    | Extraction Date | Analysis Date |
|------------------------------|---------------------------------|-----------------|---------------|
| Chromium, hexavalent - water | MOE E3056 - colourimetric       | 6-Jun-19        | 7-Jun-19      |
| Mercury by CVAA              | EPA 245.2 - Cold Vapour AA      | 4-Jun-19        | 4-Jun-19      |
| Metals, ICP-MS               | EPA 200.8 - ICP-MS              | 4-Jun-19        | 4-Jun-19      |
| PHC F1                       | CWS Tier 1 - P&T GC-FID         | 4-Jun-19        | 5-Jun-19      |
| PHCs F2 to F4                | CWS Tier 1 - GC-FID, extraction | 5-Jun-19        | 6-Jun-19      |
| REG 153: PAHs by GC-MS       | EPA 625 - GC-MS, extraction     | 7-Jun-19        | 7-Jun-19      |
| REG 153: VOCs by P&T GC/MS   | EPA 624 - P&T GC-MS             | 4-Jun-19        | 5-Jun-19      |

Order #: 1923072

Report Date: 07-Jun-2019 Order Date: 31-May-2019

Project Description: PE4588



#### Certificate of Analysis Client: Paterson Group Consulting Engineers Client PO: 26839

Report Date: 07-Jun-2019 Order Date: 31-May-2019

Project Description: PE4588

|                         | Client ID:<br>Sample Date:<br>Sample ID:<br>MDL/Units | BH1-GW1<br>31-May-19 09:00<br>1923072-01<br>Water | BH2-GW1<br>30-May-19 12:00<br>1923072-02<br>Water | BH4-GW1<br>30-May-19 12:00<br>1923072-03<br>Water | BH5-GW1<br>30-May-19 09:00<br>1923072-04<br>Water |
|-------------------------|-------------------------------------------------------|---------------------------------------------------|---------------------------------------------------|---------------------------------------------------|---------------------------------------------------|
| Metals                  | MDL/OIIItS                                            | Water                                             | Water                                             | Water                                             | Water                                             |
| Mercury                 | 0.1 ug/L                                              | <0.1                                              | -                                                 | -                                                 | <0.1                                              |
| Antimony                | 0.5 ug/L                                              | <0.5                                              | -                                                 | <0.5                                              | 0.6                                               |
| Arsenic                 | 1 ug/L                                                | 1                                                 | -                                                 | 1                                                 | 2                                                 |
| Barium                  | 1 ug/L                                                | 145                                               | -                                                 | 122                                               | 145                                               |
| Beryllium               | 0.5 ug/L                                              | <0.5                                              | -                                                 | <0.5                                              | <0.5                                              |
| Boron                   | 10 ug/L                                               | 52                                                | -                                                 | 97                                                | 186                                               |
| Cadmium                 | 0.1 ug/L                                              | <0.1                                              | -                                                 | <0.1                                              | 0.1                                               |
| Chromium                | 1 ug/L                                                | <1                                                | -                                                 | <1                                                | 12                                                |
| Chromium (VI)           | 10 ug/L                                               | <10                                               | -                                                 | _                                                 | <10                                               |
| Cobalt                  | 0.5 ug/L                                              | 0.9                                               | -                                                 | <0.5                                              | 4.5                                               |
| Copper                  | 0.5 ug/L                                              | 3.3                                               | -                                                 | 6.3                                               | 5.5                                               |
| Lead                    | 0.1 ug/L                                              | <0.1                                              | -                                                 | 0.2                                               | 0.3                                               |
| Molybdenum              | 0.5 ug/L                                              | 4.3                                               | -                                                 | 6.7                                               | 5.4                                               |
| Nickel                  | 1 ug/L                                                | 2                                                 | -                                                 | 2                                                 | 13                                                |
| Selenium                | 1 ug/L                                                | <1                                                | -                                                 | <1                                                | 1                                                 |
| Silver                  | 0.1 ug/L                                              | <0.1                                              | -                                                 | <0.1                                              | <0.1                                              |
| Sodium                  | 200 ug/L                                              | 91400                                             | -                                                 | 149000                                            | 793000                                            |
| Thallium                | 0.1 ug/L                                              | <0.1                                              | -                                                 | <0.1                                              | <0.1                                              |
| Uranium                 | 0.1 ug/L                                              | 3.2                                               | -                                                 | 3.2                                               | 14.5                                              |
| Vanadium                | 0.5 ug/L                                              | 1.6                                               | -                                                 | 1.9                                               | 4.2                                               |
| Zinc                    | 5 ug/L                                                | <5                                                | -                                                 | 8                                                 | 7                                                 |
| Volatiles               |                                                       |                                                   |                                                   | 4                                                 |                                                   |
| Acetone                 | 5.0 ug/L                                              | <5.0                                              | <5.0                                              | -                                                 | <5.0                                              |
| Benzene                 | 0.5 ug/L                                              | <0.5                                              | <0.5                                              | -                                                 | <0.5                                              |
| Bromodichloromethane    | 0.5 ug/L                                              | <0.5                                              | <0.5                                              | -                                                 | <0.5                                              |
| Bromoform               | 0.5 ug/L                                              | <0.5                                              | <0.5                                              | -                                                 | <0.5                                              |
| Bromomethane            | 0.5 ug/L                                              | <0.5                                              | <0.5                                              | -                                                 | <0.5                                              |
| Carbon Tetrachloride    | 0.2 ug/L                                              | <0.2                                              | <0.2                                              | -                                                 | <0.2                                              |
| Chlorobenzene           | 0.5 ug/L                                              | <0.5                                              | <0.5                                              | -                                                 | <0.5                                              |
| Chloroform              | 0.5 ug/L                                              | <0.5                                              | <0.5                                              | -                                                 | <0.5                                              |
| Dibromochloromethane    | 0.5 ug/L                                              | <0.5                                              | <0.5                                              | -                                                 | <0.5                                              |
| Dichlorodifluoromethane | 1.0 ug/L                                              | <1.0                                              | <1.0                                              | -                                                 | <1.0                                              |
| 1,2-Dichlorobenzene     | 0.5 ug/L                                              | <0.5                                              | <0.5                                              | -                                                 | <0.5                                              |
| 1,3-Dichlorobenzene     | 0.5 ug/L                                              | <0.5                                              | <0.5                                              | -                                                 | <0.5                                              |
| 1,4-Dichlorobenzene     | 0.5 ug/L                                              | <0.5                                              | <0.5                                              | -                                                 | <0.5                                              |



Order #: 1923072

Report Date: 07-Jun-2019 Order Date: 31-May-2019

| Г                                      | Client ID:<br>Sample Date:<br>Sample ID:<br>MDL/Units | BH1-GW1<br>31-May-19 09:00<br>1923072-01<br>Water | BH2-GW1<br>30-May-19 12:00<br>1923072-02<br>Water | BH4-GW1<br>30-May-19 12:00<br>1923072-03<br>Water | BH5-GW1<br>30-May-19 09:00<br>1923072-04<br>Water |
|----------------------------------------|-------------------------------------------------------|---------------------------------------------------|---------------------------------------------------|---------------------------------------------------|---------------------------------------------------|
| 1,1-Dichloroethane                     | 0.5 ug/L                                              | <0.5                                              | <0.5                                              | -                                                 | <0.5                                              |
| 1,2-Dichloroethane                     | 0.5 ug/L                                              | <0.5                                              | <0.5                                              | -                                                 | <0.5                                              |
| 1,1-Dichloroethylene                   | 0.5 ug/L                                              | <0.5                                              | <0.5                                              | -                                                 | <0.5                                              |
| cis-1,2-Dichloroethylene               | 0.5 ug/L                                              | <0.5                                              | <0.5                                              | -                                                 | <0.5                                              |
| trans-1,2-Dichloroethylene             | 0.5 ug/L                                              | <0.5                                              | <0.5                                              | -                                                 | <0.5                                              |
| 1,2-Dichloropropane                    | 0.5 ug/L                                              | <0.5                                              | <0.5                                              | -                                                 | <0.5                                              |
| cis-1,3-Dichloropropylene              | 0.5 ug/L                                              | <0.5                                              | <0.5                                              | -                                                 | <0.5                                              |
| trans-1,3-Dichloropropylene            | 0.5 ug/L                                              | <0.5                                              | <0.5                                              | -                                                 | <0.5                                              |
| 1,3-Dichloropropene, total             | 0.5 ug/L                                              | <0.5                                              | <0.5                                              | -                                                 | <0.5                                              |
| Ethylbenzene                           | 0.5 ug/L                                              | <0.5                                              | <0.5                                              | -                                                 | <0.5                                              |
| Ethylene dibromide (dibromoethar       | 0.2 ug/L                                              | <0.2                                              | <0.2                                              | -                                                 | <0.2                                              |
| Hexane                                 | 1.0 ug/L                                              | <1.0                                              | <1.0                                              | -                                                 | <1.0                                              |
| Methyl Ethyl Ketone (2-Butanone)       | 5.0 ug/L                                              | <5.0                                              | <5.0                                              | -                                                 | <5.0                                              |
| Methyl Isobutyl Ketone                 | 5.0 ug/L                                              | <5.0                                              | <5.0                                              | -                                                 | <5.0                                              |
| Methyl tert-butyl ether                | 2.0 ug/L                                              | <2.0                                              | <2.0                                              | -                                                 | <2.0                                              |
| Methylene Chloride                     | 5.0 ug/L                                              | <5.0                                              | <5.0                                              | -                                                 | <5.0                                              |
| Styrene                                | 0.5 ug/L                                              | <0.5                                              | <0.5                                              |                                                   | <0.5                                              |
| 1,1,1,2-Tetrachloroethane              | 0.5 ug/L                                              | <0.5                                              | <0.5                                              |                                                   | <0.5                                              |
| 1,1,2,2-Tetrachloroethane              | 0.5 ug/L                                              | <0.5                                              | <0.5                                              |                                                   | <0.5                                              |
| Tetrachloroethylene                    | 0.5 ug/L                                              | 286                                               | <0.5                                              |                                                   | <0.5                                              |
| Toluene                                | 0.5 ug/L                                              | <0.5                                              | <0.5                                              | -                                                 | <0.5                                              |
| 1,1,1-Trichloroethane                  | 0.5 ug/L                                              | <0.5                                              | <0.5                                              |                                                   | <0.5                                              |
| 1,1,2-Trichloroethane                  | 0.5 ug/L                                              | <0.5                                              | <0.5                                              |                                                   | <0.5                                              |
| Trichloroethylene                      | 0.5 ug/L                                              | <0.5                                              | <0.5                                              | -                                                 | <0.5                                              |
| Trichlorofluoromethane                 | 1.0 ug/L                                              | <0.5                                              | <0.5                                              | -                                                 | <0.5                                              |
| Vinyl chloride                         | 0.5 ug/L                                              |                                                   |                                                   | -                                                 |                                                   |
| m,p-Xylenes                            | 0.5 ug/L                                              | <0.5<br><0.5                                      | <0.5<br><0.5                                      | -                                                 | <0.5<br><0.5                                      |
|                                        | 0.5 ug/L                                              |                                                   |                                                   | -                                                 |                                                   |
| o-Xylene                               | 0.5 ug/L                                              | <0.5                                              | <0.5                                              | -                                                 | <0.5                                              |
| Xylenes, total<br>4-Bromofluorobenzene | Surrogate                                             | <0.5<br>89.2%                                     | <0.5<br>91.5%                                     | -                                                 | <0.5<br>87.9%                                     |
| Dibromofluoromethane                   | Surrogate                                             | 112%                                              | 110%                                              | -                                                 | 113%                                              |
| Toluene-d8                             | Surrogate                                             | 92.0%                                             | 88.2%                                             | -                                                 | 101%                                              |
| Hydrocarbons                           |                                                       |                                                   |                                                   |                                                   |                                                   |
| F1 PHCs (C6-C10)                       | 25 ug/L                                               | <25                                               | <25                                               | -                                                 | <25                                               |
| F2 PHCs (C10-C16)                      | 100 ug/L                                              | <100                                              | <100                                              | -                                                 | <100                                              |
| F3 PHCs (C16-C34)                      | 100 ug/L                                              | <100                                              | <100                                              | -                                                 | <100                                              |



Order #: 1923072

Report Date: 07-Jun-2019 Order Date: 31-May-2019

|                          | Client ID:<br>Sample Date:<br>Sample ID:<br>MDL/Units | BH1-GW1<br>31-May-19 09:00<br>1923072-01<br>Water | BH2-GW1<br>30-May-19 12:00<br>1923072-02<br>Water | BH4-GW1<br>30-May-19 12:00<br>1923072-03<br>Water | BH5-GW1<br>30-May-19 09:00<br>1923072-04<br>Water |
|--------------------------|-------------------------------------------------------|---------------------------------------------------|---------------------------------------------------|---------------------------------------------------|---------------------------------------------------|
| F4 PHCs (C34-C50)        | 100 ug/L                                              | <100                                              | <100                                              | -                                                 | <100                                              |
| Semi-Volatiles           |                                                       |                                                   |                                                   |                                                   |                                                   |
| Acenaphthene             | 0.05 ug/L                                             | -                                                 | -                                                 | <0.05                                             | <0.05                                             |
| Acenaphthylene           | 0.05 ug/L                                             | -                                                 | -                                                 | <0.05                                             | <0.05                                             |
| Anthracene               | 0.01 ug/L                                             | -                                                 | -                                                 | <0.01                                             | <0.01                                             |
| Benzo [a] anthracene     | 0.01 ug/L                                             | -                                                 | -                                                 | <0.01                                             | <0.01                                             |
| Benzo [a] pyrene         | 0.01 ug/L                                             | -                                                 | -                                                 | <0.01                                             | <0.01                                             |
| Benzo [b] fluoranthene   | 0.05 ug/L                                             | -                                                 | -                                                 | <0.05                                             | <0.05                                             |
| Benzo [g,h,i] perylene   | 0.05 ug/L                                             | -                                                 | -                                                 | <0.05                                             | <0.05                                             |
| Benzo [k] fluoranthene   | 0.05 ug/L                                             | -                                                 | -                                                 | <0.05                                             | <0.05                                             |
| Chrysene                 | 0.05 ug/L                                             | -                                                 | -                                                 | <0.05                                             | <0.05                                             |
| Dibenzo [a,h] anthracene | 0.05 ug/L                                             | -                                                 | -                                                 | <0.05                                             | <0.05                                             |
| Fluoranthene             | 0.01 ug/L                                             | -                                                 | -                                                 | <0.01                                             | <0.01                                             |
| Fluorene                 | 0.05 ug/L                                             | -                                                 | -                                                 | <0.05                                             | <0.05                                             |
| Indeno [1,2,3-cd] pyrene | 0.05 ug/L                                             | -                                                 | -                                                 | <0.05                                             | <0.05                                             |
| 1-Methylnaphthalene      | 0.05 ug/L                                             | -                                                 | -                                                 | <0.05                                             | <0.05                                             |
| 2-Methylnaphthalene      | 0.05 ug/L                                             | -                                                 | -                                                 | <0.05                                             | <0.05                                             |
| Methylnaphthalene (1&2)  | 0.10 ug/L                                             | -                                                 | -                                                 | <0.10                                             | <0.10                                             |
| Naphthalene              | 0.05 ug/L                                             | -                                                 | -                                                 | <0.05                                             | <0.05                                             |
| Phenanthrene             | 0.05 ug/L                                             | -                                                 | -                                                 | <0.05                                             | <0.05                                             |
| Pyrene                   | 0.01 ug/L                                             | -                                                 | -                                                 | <0.01                                             | <0.01                                             |
| 2-Fluorobiphenyl         | Surrogate                                             | -                                                 | -                                                 | 103%                                              | 79.7%                                             |
| Terphenyl-d14            | Surrogate                                             | -                                                 | -                                                 | 118%                                              | 110%                                              |



Report Date: 07-Jun-2019

Order Date: 31-May-2019

|                          | Client ID:<br>Sample Date:<br>Sample ID:<br>MDL/Units | BH6-GW1<br>30-May-19 09:00<br>1923072-05<br>Water |   | -<br>-<br>-<br>- |          |
|--------------------------|-------------------------------------------------------|---------------------------------------------------|---|------------------|----------|
| Metals                   | WDL/OIIIts                                            | Tratol                                            |   |                  | <u> </u> |
| Mercury                  | 0.1 ug/L                                              | <0.1                                              | - | -                | -        |
| Antimony                 | 0.5 ug/L                                              | <0.5                                              | - | -                | -        |
| Arsenic                  | 1 ug/L                                                | 2                                                 | - | -                | -        |
| Barium                   | 1 ug/L                                                | 201                                               | - | -                | -        |
| Beryllium                | 0.5 ug/L                                              | <0.5                                              | - | -                | -        |
| Boron                    | 10 ug/L                                               | 382                                               | - | -                | -        |
| Cadmium                  | 0.1 ug/L                                              | <0.1                                              | - | -                | -        |
| Chromium                 | 1 ug/L                                                | <1                                                | - | -                | -        |
| Chromium (VI)            | 10 ug/L                                               | <10                                               | - | -                | -        |
| Cobalt                   | 0.5 ug/L                                              | 0.7                                               | - | -                | -        |
| Copper                   | 0.5 ug/L                                              | 6.1                                               | - | -                | -        |
| Lead                     | 0.1 ug/L                                              | 0.3                                               | - | -                | -        |
| Molybdenum               | 0.5 ug/L                                              | 4.8                                               | - | -                | -        |
| Nickel                   | 1 ug/L                                                | 3                                                 | - | -                | -        |
| Selenium                 | 1 ug/L                                                | <1                                                | - | -                | -        |
| Silver                   | 0.1 ug/L                                              | <0.1                                              | - | -                | -        |
| Sodium                   | 200 ug/L                                              | 722000                                            | - | -                | -        |
| Thallium                 | 0.1 ug/L                                              | <0.1                                              | - | -                | -        |
| Uranium                  | 0.1 ug/L                                              | 3.6                                               | - | -                | -        |
| Vanadium                 | 0.5 ug/L                                              | 4.1                                               | - | -                | -        |
| Zinc                     | 5 ug/L                                                | 6                                                 | - | -                | -        |
| Semi-Volatiles           |                                                       |                                                   |   |                  |          |
| Acenaphthene             | 0.05 ug/L                                             | <0.05                                             | - | -                | -        |
| Acenaphthylene           | 0.05 ug/L                                             | <0.05                                             | - | -                | -        |
| Anthracene               | 0.01 ug/L                                             | <0.01                                             | - | -                | -        |
| Benzo [a] anthracene     | 0.01 ug/L                                             | <0.01                                             | - | -                | -        |
| Benzo [a] pyrene         | 0.01 ug/L                                             | <0.01                                             | - | -                | -        |
| Benzo [b] fluoranthene   | 0.05 ug/L                                             | <0.05                                             | - | -                | -        |
| Benzo [g,h,i] perylene   | 0.05 ug/L                                             | <0.05                                             | - | -                | -        |
| Benzo [k] fluoranthene   | 0.05 ug/L                                             | <0.05                                             | - | -                | -        |
| Chrysene                 | 0.05 ug/L                                             | <0.05                                             | - | -                | -        |
| Dibenzo [a,h] anthracene | 0.05 ug/L                                             | <0.05                                             | - | -                | -        |
| Fluoranthene             | 0.01 ug/L                                             | <0.01                                             | - | -                | -        |
| Fluorene                 | 0.05 ug/L                                             | <0.05                                             | - | -                | -        |



Report Date: 07-Jun-2019 Order Date: 31-May-2019

|                          | -            |                 |   |   |   |
|--------------------------|--------------|-----------------|---|---|---|
|                          | Client ID:   |                 | - | - | - |
|                          | Sample Date: | 30-May-19 09:00 | - | - | - |
|                          | Sample ID:   | 1923072-05      | - | - | - |
|                          | MDL/Units    | Water           | - | - | - |
| Indeno [1,2,3-cd] pyrene | 0.05 ug/L    | <0.05           | - | - | - |
| 1-Methylnaphthalene      | 0.05 ug/L    | <0.05           | - | - | - |
| 2-Methylnaphthalene      | 0.05 ug/L    | <0.05           | - | - | - |
| Methylnaphthalene (1&2)  | 0.10 ug/L    | <0.10           | - | - | - |
| Naphthalene              | 0.05 ug/L    | <0.05           | - | - | - |
| Phenanthrene             | 0.05 ug/L    | <0.05           | - | - | - |
| Pyrene                   | 0.01 ug/L    | <0.01           | - | - | - |
| 2-Fluorobiphenyl         | Surrogate    | 106%            | - | - | - |
| Terphenyl-d14            | Surrogate    | 119%            | - | - | - |



Order #: 1923072

Report Date: 07-Jun-2019 Order Date: 31-May-2019

Project Description: PE4588

# Method Quality Control: Blank

| Analyte                              | Result   | Reporting<br>Limit | Units        | Source<br>Result | %REC | %REC<br>Limit | RPD | RPD<br>Limit | Notes |
|--------------------------------------|----------|--------------------|--------------|------------------|------|---------------|-----|--------------|-------|
| Hydrocarbons                         |          |                    |              |                  |      |               |     |              |       |
| F1 PHCs (C6-C10)                     | ND       | 25                 | ug/L         |                  |      |               |     |              |       |
| F2 PHCs (C10-C16)                    | ND       | 100                | ug/L         |                  |      |               |     |              |       |
| F3 PHCs (C16-C34)                    | ND       | 100                | ug/L         |                  |      |               |     |              |       |
| F4 PHCs (C34-C50)                    | ND       | 100                | ug/L         |                  |      |               |     |              |       |
| Metals                               |          |                    |              |                  |      |               |     |              |       |
| Mercury                              | ND       | 0.1                | ug/L         |                  |      |               |     |              |       |
| Antimony                             | ND       | 0.5                | ug/L         |                  |      |               |     |              |       |
| Arsenic                              | ND       | 1                  | ug/L         |                  |      |               |     |              |       |
| Barium                               | ND       | 1                  | ug/L         |                  |      |               |     |              |       |
| Beryllium                            | ND       | 0.5                | ug/L         |                  |      |               |     |              |       |
| Boron                                | ND       | 10                 | ug/L         |                  |      |               |     |              |       |
| Cadmium<br>Chromium (VI)             | ND<br>ND | 0.1<br>10          | ug/L         |                  |      |               |     |              |       |
| Chromium                             | ND       | 1                  | ug/L<br>ug/L |                  |      |               |     |              |       |
| Cobalt                               | ND       | 0.5                | ug/L         |                  |      |               |     |              |       |
| Copper                               | ND       | 0.5                | ug/L         |                  |      |               |     |              |       |
| Lead                                 | ND       | 0.0                | ug/L         |                  |      |               |     |              |       |
| Molybdenum                           | ND       | 0.5                | ug/L         |                  |      |               |     |              |       |
| Nickel                               | ND       | 1                  | ug/L         |                  |      |               |     |              |       |
| Selenium                             | ND       | 1                  | ug/L         |                  |      |               |     |              |       |
| Silver                               | ND       | 0.1                | ug/L         |                  |      |               |     |              |       |
| Sodium                               | ND       | 200                | ug/L         |                  |      |               |     |              |       |
| Thallium                             | ND       | 0.1                | ug/L         |                  |      |               |     |              |       |
| Uranium                              | ND       | 0.1                | ug/L         |                  |      |               |     |              |       |
| Vanadium                             | ND       | 0.5                | ug/L         |                  |      |               |     |              |       |
| Zinc                                 | ND       | 5                  | ug/L         |                  |      |               |     |              |       |
| Semi-Volatiles                       |          |                    |              |                  |      |               |     |              |       |
| Acenaphthene                         | ND       | 0.05               | ug/L         |                  |      |               |     |              |       |
| Acenaphthylene                       | ND       | 0.05               | ug/L         |                  |      |               |     |              |       |
| Anthracene                           | ND       | 0.01               | ug/L         |                  |      |               |     |              |       |
| Benzo [a] anthracene                 | ND       | 0.01               | ug/L         |                  |      |               |     |              |       |
| Benzo [a] pyrene                     | ND       | 0.01               | ug/L         |                  |      |               |     |              |       |
| Benzo [b] fluoranthene               | ND       | 0.05               | ug/L         |                  |      |               |     |              |       |
| Benzo [g,h,i] perylene               | ND       | 0.05               | ug/L         |                  |      |               |     |              |       |
| Benzo [k] fluoranthene               | ND<br>ND | 0.05<br>0.05       | ug/L         |                  |      |               |     |              |       |
| Chrysene<br>Dibenzo [a,h] anthracene | ND       | 0.05               | ug/L         |                  |      |               |     |              |       |
| Fluoranthene                         | ND       | 0.05               | ug/L<br>ug/L |                  |      |               |     |              |       |
| Fluorene                             | ND       | 0.05               | ug/L         |                  |      |               |     |              |       |
| Indeno [1,2,3-cd] pyrene             | ND       | 0.05               | ug/L         |                  |      |               |     |              |       |
| 1-Methylnaphthalene                  | ND       | 0.05               | ug/L         |                  |      |               |     |              |       |
| 2-Methylnaphthalene                  | ND       | 0.05               | ug/L         |                  |      |               |     |              |       |
| Methylnaphthalene (1&2)              | ND       | 0.10               | ug/L         |                  |      |               |     |              |       |
| Naphthalene                          | ND       | 0.05               | ug/L         |                  |      |               |     |              |       |
| Phenanthrene                         | ND       | 0.05               | ug/L         |                  |      |               |     |              |       |
| Pyrene                               | ND       | 0.01               | ug/L         |                  |      |               |     |              |       |
| Surrogate: 2-Fluorobiphenyl          | 19.3     |                    | ug/L         |                  | 96.3 | 50-140        |     |              |       |
| Surrogate: Terphenyl-d14             | 24.1     |                    | ug/L         |                  | 120  | 50-140        |     |              |       |
| Volatiles                            |          |                    |              |                  |      |               |     |              |       |
| Acetone                              | ND       | 5.0                | ug/L         |                  |      |               |     |              |       |
| Benzene                              | ND       | 0.5                | ug/L         |                  |      |               |     |              |       |
| Bromodichloromethane                 | ND       | 0.5                | ug/L         |                  |      |               |     |              |       |
| Bromoform                            | ND       | 0.5                | ug/L         |                  |      |               |     |              |       |
| Bromomethane                         | ND       | 0.5                | ug/L         |                  |      |               |     |              |       |
| Carbon Tetrachloride                 | ND       | 0.2                | ug/L         |                  |      |               |     |              |       |
| Chlorobenzene                        | ND       | 0.5                | ug/L         |                  |      |               |     |              |       |
| Chloroform<br>Dibromochloromethane   | ND<br>ND | 0.5<br>0.5         | ug/L         |                  |      |               |     |              |       |
| Choromochioromethane                 | ND       | 0.5                | ug/L         |                  |      |               |     |              |       |



# Order #: 1923072

Report Date: 07-Jun-2019 Order Date: 31-May-2019

Project Description: PE4588

# Method Quality Control: Blank

| Analyte                           | Result       | Reporting<br>Limit | Units | Source<br>Result | %REC | %REC<br>Limit    | RPD | RPD<br>Limit | Notes |
|-----------------------------------|--------------|--------------------|-------|------------------|------|------------------|-----|--------------|-------|
| Dichlorodifluoromethane           | ND           | 1.0                | ug/L  |                  |      |                  |     |              |       |
| 1,2-Dichlorobenzene               | ND           | 0.5                | ug/L  |                  |      |                  |     |              |       |
| 1,3-Dichlorobenzene               | ND           | 0.5                | ug/L  |                  |      |                  |     |              |       |
| 1,4-Dichlorobenzene               | ND           | 0.5                | ug/L  |                  |      |                  |     |              |       |
| 1,1-Dichloroethane                | ND           | 0.5                | ug/L  |                  |      |                  |     |              |       |
| 1,2-Dichloroethane                | ND           | 0.5                | ug/L  |                  |      |                  |     |              |       |
| 1,1-Dichloroethylene              | ND           | 0.5                | ug/L  |                  |      |                  |     |              |       |
| cis-1,2-Dichloroethylene          | ND           | 0.5                | ug/L  |                  |      |                  |     |              |       |
| trans-1,2-Dichloroethylene        | ND           | 0.5                | ug/L  |                  |      |                  |     |              |       |
| 1,2-Dichloropropane               | ND           | 0.5                | ug/L  |                  |      |                  |     |              |       |
| cis-1,3-Dichloropropylene         | ND           | 0.5                | ug/L  |                  |      |                  |     |              |       |
| trans-1,3-Dichloropropylene       | ND           | 0.5                | ug/L  |                  |      |                  |     |              |       |
| 1,3-Dichloropropene, total        | ND           | 0.5                | ug/L  |                  |      |                  |     |              |       |
| Ethylbenzene                      | ND           | 0.5                | ug/L  |                  |      |                  |     |              |       |
| Ethylene dibromide (dibromoethane | ND           | 0.2                | ug/L  |                  |      |                  |     |              |       |
| Hexane                            | ND           | 1.0                | ug/L  |                  |      |                  |     |              |       |
| Methyl Ethyl Ketone (2-Butanone)  | ND           | 5.0                | ug/L  |                  |      |                  |     |              |       |
| Methyl Isobutyl Ketone            | ND           | 5.0                | ug/L  |                  |      |                  |     |              |       |
| Methyl tert-butyl ether           | ND           | 2.0                | ug/L  |                  |      |                  |     |              |       |
| Methylene Chloride                | ND           | 5.0                | ug/L  |                  |      |                  |     |              |       |
| Styrene                           | ND           | 0.5                | ug/L  |                  |      |                  |     |              |       |
| 1,1,1,2-Tetrachloroethane         | ND           | 0.5                | ug/L  |                  |      |                  |     |              |       |
| 1,1,2,2-Tetrachloroethane         | ND           | 0.5                | ug/L  |                  |      |                  |     |              |       |
| Tetrachloroethylene               | ND           | 0.5                | ug/L  |                  |      |                  |     |              |       |
| Toluene                           | ND           | 0.5                | ug/L  |                  |      |                  |     |              |       |
| 1,1,1-Trichloroethane             | ND           | 0.5                | ug/L  |                  |      |                  |     |              |       |
| 1,1,2-Trichloroethane             | ND           | 0.5                | ug/L  |                  |      |                  |     |              |       |
| Trichloroethylene                 | ND           | 0.5                | ug/L  |                  |      |                  |     |              |       |
| Trichlorofluoromethane            | ND           | 1.0                | ug/L  |                  |      |                  |     |              |       |
| Vinyl chloride                    | ND           | 0.5                | ug/L  |                  |      |                  |     |              |       |
| m,p-Xylenes                       | ND           | 0.5                | ug/L  |                  |      |                  |     |              |       |
| o-Xylene                          | ND           | 0.5                | ug/L  |                  |      |                  |     |              |       |
| Xylenes, total                    | ND           | 0.5                | ug/L  |                  |      |                  |     |              |       |
| Surrogate: 4-Bromofluorobenzene   | 27.3         | 0.0                | ug/L  |                  | 85.4 | 50-140           |     |              |       |
| Surrogate: Dibromofluoromethane   | 43.0         |                    | ug/L  |                  | 134  | 50-140           |     |              |       |
| Surrogate: Toluene-d8             | 43.0<br>38.3 |                    |       |                  | 120  | 50-140<br>50-140 |     |              |       |
| Surroyate. Toluene-uo             | 30.3         |                    | ug/L  |                  | 120  | 50-140           |     |              |       |



Order #: 1923072

Report Date: 07-Jun-2019

Order Date: 31-May-2019

Project Description: PE4588

# Method Quality Control: Duplicate

|                                                | •          | Reporting  |              | Source     |      | %REC  |            | RPD      |       |
|------------------------------------------------|------------|------------|--------------|------------|------|-------|------------|----------|-------|
| Analyte                                        | Result     | Limit      | Units        | Result     | %REC | Limit | RPD        | Limit    | Notes |
| Hydrocarbons                                   |            |            |              |            |      |       |            |          |       |
| F1 PHCs (C6-C10)                               | ND         | 25         | ug/L         | ND         |      |       |            | 30       |       |
| Metals                                         |            | -          | - 3          |            |      |       |            |          |       |
| Mercury                                        | ND         | 0.1        | ug/L         | ND         |      |       | 0.0        | 20       |       |
| Antimony                                       | 0.62       | 0.5        | ug/L         | ND         |      |       | 0.0        | 20       |       |
| Arsenic                                        | ND         | 1          | ug/L         | ND         |      |       | 0.0        | 20       |       |
| Barium                                         | 23.1       | 1          | ug/L         | 24.4       |      |       | 5.4        | 20       |       |
| Beryllium                                      | ND         | 0.5        | ug/L         | ND         |      |       | 0.0        | 20       |       |
| Boron                                          | 19         | 10         | ug/L         | 19         |      |       | 0.3        | 20       |       |
| Cadmium                                        | ND         | 0.1        | ug/L         | ND         |      |       | 0.0        | 20       |       |
| Chromium (VI)                                  | ND         | 10         | ug/L         | ND         |      |       |            | 20       |       |
| Chromium                                       | ND         | 1          | ug/L         | ND         |      |       | 0.0        | 20       |       |
| Cobalt                                         | ND         | 0.5        | ug/L         | ND         |      |       | 0.0        | 20       |       |
| Copper                                         | 0.94<br>ND | 0.5        | ug/L         | 1.14       |      |       | 19.2       | 20       |       |
| Lead<br>Molybdenum                             | 1.02       | 0.1<br>0.5 | ug/L<br>ug/L | ND<br>0.98 |      |       | 0.0<br>3.9 | 20<br>20 |       |
| Nickel                                         | ND         | 1          | ug/L         | 0.98<br>ND |      |       | 0.0        | 20       |       |
| Selenium                                       | ND         | 1          | ug/L         | ND         |      |       | 0.0        | 20       |       |
| Silver                                         | ND         | 0.1        | ug/L         | ND         |      |       | 0.0        | 20       |       |
| Sodium                                         | 15900      | 200        | ug/L         | 16500      |      |       | 3.5        | 20       |       |
| Thallium                                       | ND         | 0.1        | ug/L         | ND         |      |       | 0.0        | 20       |       |
| Uranium                                        | ND         | 0.1        | ug/L         | ND         |      |       | 0.0        | 20       |       |
| Vanadium                                       | ND         | 0.5        | ug/L         | ND         |      |       | 0.0        | 20       |       |
| Zinc                                           | 8          | 5          | ug/L         | 9          |      |       | 8.6        | 20       |       |
| Volatiles                                      |            |            |              |            |      |       |            |          |       |
| Acetone                                        | ND         | 5.0        | ug/L         | ND         |      |       |            | 30       |       |
| Benzene                                        | ND         | 0.5        | ug/L         | ND         |      |       | 0.0        | 30       |       |
| Bromodichloromethane                           | ND         | 0.5        | ug/L         | ND         |      |       |            | 30       |       |
| Bromoform                                      | ND         | 0.5        | ug/L         | ND         |      |       |            | 30       |       |
| Bromomethane                                   | ND         | 0.5        | ug/L         | ND         |      |       |            | 30       |       |
| Carbon Tetrachloride                           | ND         | 0.2        | ug/L         | ND         |      |       | 0.0        | 30       |       |
| Chlorobenzene                                  | ND         | 0.5        | ug/L         | ND         |      |       |            | 30       |       |
| Chloroform                                     | ND         | 0.5        | ug/L         | ND         |      |       | 0.0        | 30       |       |
| Dibromochloromethane                           | ND         | 0.5        | ug/L         | ND         |      |       | 0.0        | 30       |       |
| Dichlorodifluoromethane<br>1,2-Dichlorobenzene | ND<br>ND   | 1.0<br>0.5 | ug/L         | ND<br>ND   |      |       | 0.0<br>0.0 | 30<br>30 |       |
| 1,3-Dichlorobenzene                            | ND         | 0.5        | ug/L<br>ug/L | ND         |      |       | 0.0        | 30       |       |
| 1,4-Dichlorobenzene                            | ND         | 0.5        | ug/L         | ND         |      |       | 0.0        | 30       |       |
| 1,1-Dichloroethane                             | ND         | 0.5        | ug/L         | ND         |      |       | 0.0        | 30       |       |
| 1,2-Dichloroethane                             | ND         | 0.5        | ug/L         | ND         |      |       | 0.0        | 30       |       |
| 1,1-Dichloroethylene                           | ND         | 0.5        | ug/L         | ND         |      |       | 0.0        | 30       |       |
| cis-1,2-Dichloroethylene                       | ND         | 0.5        | ug/L         | ND         |      |       |            | 30       |       |
| trans-1,2-Dichloroethylene                     | ND         | 0.5        | ug/L         | ND         |      |       |            | 30       |       |
| 1,2-Dichloropropane                            | ND         | 0.5        | ug/L         | ND         |      |       |            | 30       |       |
| cis-1,3-Dichloropropylene                      | ND         | 0.5        | ug/L         | ND         |      |       |            | 30       |       |
| trans-1,3-Dichloropropylene                    | ND         | 0.5        | ug/L         | ND         |      |       |            | 30       |       |
| Ethylbenzene                                   | ND         | 0.5        | ug/L         | ND         |      |       | 0.0        | 30       |       |
| Ethylene dibromide (dibromoethane<br>Hexane    | ND         | 0.2        | ug/L         | ND         |      |       | 0.0        | 30       |       |
| Methyl Ethyl Ketone (2-Butanone)               | ND<br>ND   | 1.0<br>5.0 | ug/L         | ND<br>ND   |      |       |            | 30<br>30 |       |
| Methyl Isobutyl Ketone                         | ND         | 5.0        | ug/L<br>ug/L | ND         |      |       | 0.0        | 30       |       |
| Methyl tert-butyl ether                        | ND         | 2.0        | ug/L         | ND         |      |       | 0.0        | 30       |       |
| Methylene Chloride                             | ND         | 5.0        | ug/L         | ND         |      |       | 0.0        | 30       |       |
| Styrene                                        | ND         | 0.5        | ug/L         | ND         |      |       |            | 30       |       |
| 1,1,1,2-Tetrachloroethane                      | ND         | 0.5        | ug/L         | ND         |      |       | 0.0        | 30       |       |
| 1,1,2,2-Tetrachloroethane                      | ND         | 0.5        | ug/L         | ND         |      |       |            | 30       |       |
| Tetrachloroethylene                            | ND         | 0.5        | ug/L         | ND         |      |       |            | 30       |       |
| Toluene                                        | ND         | 0.5        | ug/L         | ND         |      |       | 0.0        | 30       |       |
|                                                |            |            |              |            |      |       |            |          |       |



# Order #: 1923072

Report Date: 07-Jun-2019 Order Date: 31-May-2019

Page 11 of 14

Project Description: PE4588

# Method Quality Control: Duplicate

| Analyte                         | Result | Reporting<br>Limit | Units | Source<br>Result | %REC | %REC<br>Limit | RPD | RPD<br>Limit | Notes |
|---------------------------------|--------|--------------------|-------|------------------|------|---------------|-----|--------------|-------|
| 1,1,1-Trichloroethane           | ND     | 0.5                | ug/L  | ND               |      |               |     | 30           |       |
| 1,1,2-Trichloroethane           | ND     | 0.5                | ug/L  | ND               |      |               |     | 30           |       |
| Trichloroethylene               | ND     | 0.5                | ug/L  | ND               |      |               |     | 30           |       |
| Trichlorofluoromethane          | ND     | 1.0                | ug/L  | ND               |      |               |     | 30           |       |
| Vinyl chloride                  | ND     | 0.5                | ug/L  | ND               |      |               | 0.0 | 30           |       |
| m,p-Xylenes                     | ND     | 0.5                | ug/L  | ND               |      |               |     | 30           |       |
| o-Xylene                        | ND     | 0.5                | ug/L  | ND               |      |               | 0.0 | 30           |       |
| Surrogate: 4-Bromofluorobenzene | 31.6   |                    | ug/L  |                  | 98.7 | 50-140        |     |              |       |
| Surrogate: Dibromofluoromethane | 36.0   |                    | ug/L  |                  | 112  | 50-140        |     |              |       |
| Surrogate: Toluene-d8           | 38.3   |                    | ug/L  |                  | 120  | 50-140        |     |              |       |



# Method Quality Control: Spike

Report Date: 07-Jun-2019

Order Date: 31-May-2019

| F1       PL (Co.C10)       170       25       upL       84.4       60.140         F2       PLCS (C16-C34)       220       100       upL       81.8       60.140         F3       PLGS (C34-C50)       200       100       upL       81.8       60.140         Mercury       3.19       0.1       upL       ND       106       70.150         Arsenic       51.3       upL       ND       102       80.120         Baryllinn       60.8       upL       ND       102       80.120         Corronium       50.8       upL       ND       102       80.120         Baryllinn       50.8       upL       ND       102       80.120         Coronium(VI)       198       10       upL       ND       96.8       80.120         Cadmium       48.7       upL       ND       97.8       80.120         Copper       49.9       upL       ND       97.8       80.120         Copper       49.7       upL       ND       97.8       80.120         Steinum       48.7       upL       ND       97.8       80.120         Copper       49.9       upL       ND                                                                                                                                                                                                                                                                                                                                                      | Analyte                  | Result | Reporting<br>Limit | Units | Source<br>Result | %REC | %REC<br>Limit | RPD | RPD<br>Limit | Notes |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--------|--------------------|-------|------------------|------|---------------|-----|--------------|-------|
| F1       PL       84.9       84.9       86-117         P2 PLOS (C10-C16)       120       100       upL       81.8       80-140         P3 PLOS (C16-C34)       2200       100       upL       81.8       80-140         P4 PLOS (C16-C34)       2200       100       upL       81.8       80-140         Matcury       3.19       0.1       upL       ND       101       80-120         Arismic       51.3       upL       ND       102       80-120         Baryium       60.8       upL       ND       102       80-120         Beryllium       50.8       upL       ND       102       80-120         Coronium (V1)       198       10       upL       ND       96.8       80-120         Chromium (V1)       198       10       upL       ND       96.8       80-120         Cobalt       48.7       upL       ND       97.3       80-120         Cobalt       48.7       upL       ND       97.3       80-120         Cobalt       48.7       upL       ND       96.8       80-120         Chromium (V1)       198       10       upL       ND       96.8                                                                                                                                                                                                                                                                                                                                            | Hydrocarbons             |        |                    |       |                  |      |               |     |              |       |
| F2 PH26 (C10-C16)       1280       100       up/L       80.4       80.44         F3 PH26 (C16-C34)       3210       100       ug/L       88.9       60.140         Metals          88.9       60.140         Metals       ug/L       ND       106       70.130         Antimory       50.8       ug/L       ND       101       80.120         Artimory       50.8       ug/L       ND       102       80.120         Barium       60.8       ug/L       ND       80.120       QM-07         Cadmium       48.4       ug/L       ND       90.8       80.120       QM-07         Cadmium       48.7       ug/L       ND       90.8       80.120       QM-07         Cadmium       48.7       ug/L       ND       90.8       80.120       QM-07         Cadmium       48.7       ug/L       ND       97.8       80.120       QM-07         Cadmium       48.7       ug/L       ND       97.8       80.120       QM-07         Selentum       48.7       ug/L       ND       97.8       80.120       QM-07         Selentum       48.7       ug/L                                                                                                                                                                                                                                                                                                                                                             |                          | 1700   | 25                 | ug/L  |                  | 84.9 | 68-117        |     |              |       |
| F3 PHCs (C16-C34)       3210       100       up/L       81.8       60-140         Her (C164-C50)       2000       100       up/L       88.9       60-140         Marcury       3.19       0.1       up/L       ND       108       60-140         Antimory       50.8       up/L       ND       101       60-130         Artsenic       51.3       up/L       ND       102       80-120         Baryim       60.8       up/L       ND       102       80-120         Beryillum       50.8       up/L       ND       102       80-120         Chromium (V1)       198       10       up/L       ND       96.0       77-130         Chromium (V1)       198       10       up/L       ND       96.0       70-130         Cobalt       48.7       up/L       ND       96.0       70-130         Cobalt       48.7       up/L       ND       97.3       80-120         Cobalt       48.7       up/L       ND       96.9       80-120         Selenium       48.7       up/L       ND       96.9       80-120         Soldum       24800       up/L       ND       97.8 <td>F2 PHCs (C10-C16)</td> <td>1290</td> <td></td> <td>-</td> <td></td> <td>80.4</td> <td>60-140</td> <td></td> <td></td> <td></td>                                                                                                                                                                                                     | F2 PHCs (C10-C16)        | 1290   |                    | -     |                  | 80.4 | 60-140        |     |              |       |
| Metals         Notes         Notes <t< td=""><td>F3 PHCs (C16-C34)</td><td></td><td></td><td></td><td></td><td></td><td>60-140</td><td></td><td></td><td></td></t<> | F3 PHCs (C16-C34)        |        |                    |       |                  |      | 60-140        |     |              |       |
| Metals         Notes         Notes <t< td=""><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                       |                          |        |                    | -     |                  |      |               |     |              |       |
| Mercury         3.19         0.1         up/L         ND         106         70-130           Arsenic         51.3         up/L         ND         101         80-120           Barium         50.8         up/L         ND         102         80-120           Beryllium         50.8         up/L         ND         102         80-120           Codmium         48.4         up/L         ND         96.8         80-120           Codmium (VI)         198         10         up/L         ND         90.7         73.3           Cobati         48.7         up/L         ND         90.8         80-120           Cobati         48.7         up/L         ND         91.8         80-120           Cobati         48.7         up/L         ND         95.5         80-120           Lead         48.7         up/L         ND         96.8         80-120           Silver         48.6         up/L         ND         97.3         80-120           Silver         48.7         up/L         ND         97.4         80-120           Soduim         24600         up/L         ND         97.4         80-120                                                                                                                                                                                                                                                                                | Metals                   |        |                    | -     |                  |      |               |     |              |       |
| Arsenic         51.3         ug/L         ND         102         80-120           Beryllum         69.8         ug/L         24.4         90.7         80-120           Boron         57         ug/L         19         75.3         80-120         OM-07           Catamium         48.4         ug/L         ND         98.8         80-120         OM-07           Coball         48.7         ug/L         ND         99.8         80-120         OM-07           Coball         48.7         ug/L         ND         97.3         80-120         OM-07           Cobalt         48.7         ug/L         ND         97.3         80-120         OM-07           Cobalt         48.7         ug/L         ND         97.3         80-120         OM-07           Nokel         49.7         ug/L         ND         97.3         80-120         OM-07           Solum         48.6         ug/L         ND         97.8         80-120         OM-07           Solum         24800         ug/L         ND         97.4         80-120         OM-07           Solum         241         ND         97.4         80-120         OM-07 <td< td=""><td></td><td>3.19</td><td>0.1</td><td>ug/L</td><td>ND</td><td>106</td><td>70-130</td><td></td><td></td><td></td></td<>                                                                                                                             |                          | 3.19   | 0.1                | ug/L  | ND               | 106  | 70-130        |     |              |       |
| Arsenic       51.3       ug/L       ND       102       80-120         Beryllium       60.8       ug/L       ND       102       80-120         Boron       57       ug/L       19       75.3       80-120       OM-07         Cadmium       48.4       ug/L       ND       108       86.8       80-120         Chromium (Vi)       198       10       ug/L       ND       93.8       80-120         Coball       48.7       ug/L       ND       97.3       80-120         Coball       48.7       ug/L       ND       97.3       80-120         Coball       48.7       ug/L       ND       97.3       80-120         Lead       45.7       ug/L       ND       97.8       80-120         Nickel       49.4       ug/L       ND       97.8       80-120         Selenium       48.6       ug/L       ND       97.8       80-120         Sodium       24800       ug/L       ND       97.8       80-120         Thallum       49.2       ug/L       ND       97.4       80-120         Zinc       53       ug/L       ND       97.4       80-120 <td></td> <td>50.8</td> <td></td> <td></td> <td>ND</td> <td>101</td> <td>80-120</td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                         |                          | 50.8   |                    |       | ND               | 101  | 80-120        |     |              |       |
| Beryllium         50.8         ug/L         ND         ND         80-120         QM-07           Cadmium         48.4         ug/L         ND         96.8         80-120         QM-07           Cadmium         48.4         ug/L         ND         96.8         80-120         QM-07           Chromium (VI)         138         10         ug/L         ND         93.0         70-130           Cobalt         48.7         ug/L         ND         133         80-120         S0-120           Cobalt         48.7         ug/L         ND         97.8         80-120         S0-120           Lead         45.7         ug/L         ND         97.8         80-120         S0-120           Selenium         48.7         ug/L         ND         97.8         80-120         S0-120           Sodium         24800         ug/L         ND         97.4         80-120         S0-120           Thallum         49.7         ug/L         ND         97.4         80-120         S0-120           Vanadium         51.1         ug/L         ND         97.4         80-120         S0-140           Canaphthylone         4.77         0.05                                                                                                                                                                                                                                                   | Arsenic                  | 51.3   |                    | -     | ND               | 102  | 80-120        |     |              |       |
| Beryllium         50.8         ug/L         ND         ND         80-120         QM-07           Cadmium         48.4         ug/L         ND         96.8         80-120         QM-07           Cadmium         48.4         ug/L         ND         96.8         80-120         QM-07           Chromium (VI)         138         10         ug/L         ND         93.0         70-130           Cobalt         48.7         ug/L         ND         133         80-120         S0-120           Cobalt         48.7         ug/L         ND         97.8         80-120         S0-120           Lead         45.7         ug/L         ND         97.8         80-120         S0-120           Selenium         48.7         ug/L         ND         97.8         80-120         S0-120           Sodium         24800         ug/L         ND         97.4         80-120         S0-120           Thallum         49.7         ug/L         ND         97.4         80-120         S0-120           Vanadium         51.1         ug/L         ND         97.4         80-120         S0-140           Canaphthylone         4.77         0.05                                                                                                                                                                                                                                                   | Barium                   | 69.8   |                    |       | 24.4             | 90.7 | 80-120        |     |              |       |
| Cadmium       48.4       ug/L       ND       98.8       80-120         Chromium (Vi)       19.8       10       ug/L       ND       103       80-120         Cobalt       48.7       ug/L       ND       97.3       80-120         Cobalt       48.7       ug/L       ND       97.3       80-120         Lead       45.7       ug/L       ND       97.3       80-120         Molydenum       48.7       ug/L       ND       97.8       80-120         Nickel       49.4       ug/L       ND       97.8       80-120         Selenium       48.6       ug/L       ND       97.8       80-120         Sodium       24800       ug/L       ND       97.3       80-120         Varadium       48.7       ug/L       ND       97.4       80-120         Uranium       48.7       ug/L       ND       97.4       80-120         Varadium       51.1       ug/L       ND       97.4       80-120         Varadium       51.1       ug/L       98.3       80-120         Varadium       61.1       ug/L       ND       97.4       80-120         Acenaphthene                                                                                                                                                                                                                                                                                                                                                      | Beryllium                | 50.8   |                    | ug/L  | ND               | 102  | 80-120        |     |              |       |
| Cadmium       48.4       ug/L       ND       98.8       80-120         Chromium (VI)       198       10       ug/L       ND       133       80-120         Cobalt       48.7       ug/L       ND       97.3       80-120         Cobalt       48.7       ug/L       ND       97.3       80-120         Lead       45.7       ug/L       ND       97.3       80-120         Nickel       49.4       ug/L       ND       97.8       80-120         Nickel       49.4       ug/L       ND       97.8       80-120         Selenium       48.6       ug/L       ND       97.8       80-120         Sodium       24800       ug/L       ND       97.8       80-120         Sodium       48.7       ug/L       ND       97.4       80-120         Uranium       49.7       ug/L       ND       97.4       80-120         Vanadium       51.1       ug/L       ND       98.3       80-120         Zinc       53       ug/L       ND       97.4       80-120         Acenaphthene       4.67       0.05       ug/L       80.120       100         Benzo [a,]                                                                                                                                                                                                                                                                                                                                                      |                          |        |                    |       |                  |      | 80-120        |     |              | QM-07 |
| Chromium         51.6         ug/L         ND         103         80-120           Cobalt         48.7         ug/L         ND         97.3         80-120           Copper         49.9         ug/L         ND         97.3         80-120           Lead         45.7         ug/L         ND         97.3         80-120           Nickel         49.4         ug/L         ND         96.9         80-120           Selenium         48.6         ug/L         ND         96.9         80-120           Sodium         24800         ug/L         ND         97.3         80-120           Yanadum         48.7         ug/L         ND         97.3         80-120           Vanadum         51         ug/L         ND         97.3         80-120           Zinc         53         ug/L         ND         97.4         80-120           Zinc         53         ug/L         ND         102         80-120           Zinc         53         ug/L         9         87.7         80-120           Zinc         53         ug/L         ND         102         80-120           Zinc         53         ug/L                                                                                                                                                                                                                                                                                     | Cadmium                  | 48.4   |                    | -     | ND               | 96.8 | 80-120        |     |              |       |
| Chromium         51.6         ug/L         ND         103         80-120           Cobait         48.7         ug/L         ND         97.3         80-120           Copper         49.9         ug/L         ND         97.3         80-120           Lead         45.7         ug/L         ND         97.3         80-120           Nickel         49.4         ug/L         ND         96.9         80-120           Selenium         48.6         ug/L         ND         96.9         80-120           Silver         48.7         ug/L         ND         97.3         80-120           Sodium         24800         ug/L         ND         97.3         80-120           Yanadum         41.7         ug/L         ND         97.3         80-120           Zinc         53         ug/L         ND         97.4         80-120           Zinc         53         ug/L         ND         90.120         80-120           Zinc         53         ug/L         ND         90.120         80-120           Accmaphthere         4.70         0.01         ug/L         ND         90.120           Accmaphthere         4.7                                                                                                                                                                                                                                                                       | Chromium (VI)            | 198    | 10                 | -     | ND               |      | 70-130        |     |              |       |
| Cobalt         48.7         ug/L         ND         97.3         80-120           Copper         49.9         ug/L         ND         97.3         80-120           Molydenum         48.7         ug/L         ND         97.3         80-120           Molydenum         48.7         ug/L         ND         97.3         80-120           Silver         48.6         ug/L         ND         97.3         80-120           Sodium         24800         ug/L         ND         97.3         80-120           Sodium         24800         ug/L         ND         97.3         80-120           Vanadium         49.2         ug/L         ND         97.3         80-120           Vanadium         51.1         ug/L         ND         97.4         80-120           Zinc         53         0.12         80.120         20         20           Acenaphthene         4.47         0.05         ug/L         ND         97.4         80-120           Acenaphthene         4.22         0.05         ug/L         80.5         50-140           Acenaphthene         4.22         0.05         ug/L         80.4         50-140      <                                                                                                                                                                                                                                                           |                          | 51.6   |                    |       | ND               | 103  | 80-120        |     |              |       |
| Copper         49.9         ug/L         1.14         97.5         80-120           Lead         45.7         ug/L         0.98         95.5         80-120           Nickel         49.4         ug/L         0.98         95.5         80-120           Nickel         49.4         ug/L         ND         97.8         80-120           Silver         48.7         ug/L         ND         97.3         80-120           Sodium         24800         ug/L         ND         97.3         80-120           Vanadium         49.2         ug/L         ND         97.4         80-120           Vanadium         51.1         ug/L         ND         97.4         80-120           Zinc         53         ug/L         9         88.7         80-120           Acenaphthene         4.70         0.05         ug/L         9         8.5         50-140           Anthracene         4.70         0.01         ug/L         93.9         50-140           Benzo [a] anthracene         4.61         0.01         ug/L         75.4         50-140           Benzo [b] huoranthene         5.83         0.05         ug/L         124         50-140 <td>Cobalt</td> <td>48.7</td> <td></td> <td>-</td> <td></td> <td></td> <td>80-120</td> <td></td> <td></td> <td></td>                                                                                                                           | Cobalt                   | 48.7   |                    | -     |                  |      | 80-120        |     |              |       |
| Lead       45.7       ug/L       ND       91.3       80-120         Molybdenum       48.7       ug/L       ND       97.8       80-120         Sickel       49.4       ug/L       ND       97.8       80-120         Selenium       48.6       ug/L       ND       96.9       80-120         Sodium       24800       ug/L       ND       97.3       80-120         Vanadum       48.7       ug/L       ND       98.3       80-120         Vanadum       48.7       ug/L       ND       98.3       80-120         Vanadum       51.1       ug/L       ND       97.4       80-120         Zinc       53       ug/L       ND       97.4       80-120         Semi-Volatiles       -       ug/L       ND       91.4       80-120         Acenaphthene       4.47       0.05       ug/L       89.5       50-140         Acthracene       4.61       0.01       ug/L       92.1       50-140         Benzo [a] anthracene       4.61       0.01       ug/L       76.9       50-140         Benzo [a] (huoranthene       5.18       0.05       ug/L       102       50-140                                                                                                                                                                                                                                                                                                                                       | Copper                   | 49.9   |                    | -     |                  |      | 80-120        |     |              |       |
| Motyodenum         48.7         ug/L         0.88         95.5         80-120           Nickel         49.4         ug/L         ND         97.8         80-120           Silver         48.6         ug/L         ND         97.3         80-120           Silver         48.7         ug/L         ND         97.3         80-120           Sodium         24800         ug/L         ND         97.3         80-120           Vanadium         48.7         ug/L         ND         97.4         80-120           Vanadium         48.7         ug/L         ND         97.4         80-120           Vanadium         51.1         ug/L         ND         97.4         80-120           Zinc         53         ug/L         9         88.7         80-120           Acenaphthene         4.47         0.05         ug/L         89.5         50-140           Acenaphthylene         4.22         0.05         ug/L         98.5         50-140           Benzo [a] anthracene         4.61         0.01         ug/L         92.1         50-140           Benzo [b] fluoranthene         6.18         0.05         ug/L         117         50-140 </td <td></td> <td>45.7</td> <td></td> <td></td> <td>ND</td> <td></td> <td>80-120</td> <td></td> <td></td> <td></td>                                                                                                                           |                          | 45.7   |                    |       | ND               |      | 80-120        |     |              |       |
| Nickel         49.4         ug/L         ND         97.8         80-120           Selenium         48.6         ug/L         ND         96.9         80-120           Solium         24800         ug/L         ND         97.3         80-120           Sodium         24800         ug/L         16500         83.3         80-120           Uranium         49.2         ug/L         ND         97.4         80-120           Vanadium         61.1         ug/L         ND         97.4         80-120           Zinc         53         ug/L         9         80-120           Semi-Volatiles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Molybdenum               | 48.7   |                    |       |                  |      | 80-120        |     |              |       |
| Selenium       48.6       ug/L       ND       96.9       80-120         Silver       48.7       ug/L       ND       97.3       80-120         Sodium       24800       ug/L       16500       83.3       80-120         Thallum       49.2       ug/L       ND       98.3       80-120         Uranium       48.7       ug/L       ND       92.4       80-120         Zinc       53       ug/L       ND       92.4       80-120         Zinc       53       ug/L       9       88.7       80-120         Acenaphthylene       4.47       0.05       ug/L       9       88.7       80-120         Acenaphthylene       4.422       0.05       ug/L       84.4       50-140         Acenaphthylene       4.422       0.05       ug/L       76.9       50-140         Benzo [a] anthracene       4.61       0.01       ug/L       76.9       50-140         Benzo [a] pyrene       3.85       0.01       ug/L       75.4       50-140         Benzo [a] anthracene       5.12       0.05       ug/L       117       50-140         Benzo [a] anthracene       5.12       0.05       ug/L                                                                                                                                                                                                                                                                                                                     |                          | 49.4   |                    |       | ND               |      |               |     |              |       |
| Silver       48.7       ug/L       ND       97.3       80-120         Sodium       24800       ug/L       ND       98.3       80-120         Uranium       49.2       ug/L       ND       97.4       80-120         Uranium       48.7       ug/L       ND       97.4       80-120         Vanadium       51.1       ug/L       ND       102       80-120         Zinc       53       ug/L       9       88.7       80-120         Acenaphthene       4.47       0.05       ug/L       9.5       50-140         Acenaphthylene       4.22       0.05       ug/L       9.3       50-140         Anthracene       4.61       0.01       ug/L       9.3       50-140         Benzo [a] prvene       3.85       0.01       ug/L       76.9       50-140         Benzo [g/h,i] perylene       3.77       0.05       ug/L       124       50-140         Benzo [g/h,i] perylene       3.77       0.05       ug/L       102       50-140         Benzo [g/h,i] perylene       5.12       0.05       ug/L       102       50-140         Benzo [g/h,i] anthracene       4.01       0.05       ug/L <td< td=""><td>Selenium</td><td>48.6</td><td></td><td>-</td><td></td><td></td><td>80-120</td><td></td><td></td><td></td></td<>                                                                                                                                                                                 | Selenium                 | 48.6   |                    | -     |                  |      | 80-120        |     |              |       |
| Sodium         24800         ug/L         16500         83.3         80-120           Thallum         49.2         ug/L         ND         98.3         80-120           Vanadium         51.1         ug/L         ND         97.4         80.120           Zinc         53         ug/L         9         88.7         80-120           Semi-Volatiles         .ug/L         9         88.7         80-120           Acenaphthene         4.47         0.05         ug/L         9         88.7         80-120           Acenaphthene         4.22         0.05         ug/L         89.5         50-140           Acenaphthene         4.61         0.01         ug/L         76.9         50-140           Benzo [a] anthracene         4.61         0.01         ug/L         76.9         50-140           Benzo [gh, prene         3.85         0.01         ug/L         76.4         50-140           Benzo [gh, flouranthene         6.18         0.05         ug/L         117         50-140           Benzo [gh, flouranthene         5.12         0.05         ug/L         117         50-140           Dibenzo [a,h] anthracene         4.01         0.05         ug/L </td <td>Silver</td> <td></td> <td></td> <td>-</td> <td>ND</td> <td></td> <td>80-120</td> <td></td> <td></td> <td></td>                                                                                            | Silver                   |        |                    | -     | ND               |      | 80-120        |     |              |       |
| Thallium       49.2       ug/L       ND       98.3       80-120         Uranium       48.7       ug/L       ND       97.4       80-120         Zinc       53       ug/L       9       88.7       80-120         Zinc       53       ug/L       9       88.7       80-120         Semi-Volatiles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                          |        |                    |       |                  |      | 80-120        |     |              |       |
| Uranium       48.7       ug/L       ND       97.4       80-120         Vanadium       51.1       ug/L       ND       102       80-120         Zinc       53       ug/L       9       88.7       80-120         Semi-Volatiles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Thallium                 | 49.2   |                    | -     |                  |      | 80-120        |     |              |       |
| Vanadium         51.1         ug/L         ND         102         80-120           Zinc         53         ug/L         9         88.7         80-120           Semi-Volatiles         ug/L         9         88.7         80-120           Acenaphthene         4.47         0.05         ug/L         89.5         50-140           Acenaphthylene         4.22         0.05         ug/L         93.9         50-140           Acenaphthylene         4.61         0.01         ug/L         92.1         50-140           Benzo [a] anthracene         4.61         0.01         ug/L         92.1         50-140           Benzo [g],hi] perylene         3.85         0.01         ug/L         75.4         50-140           Benzo [g,h,i] perylene         3.77         0.05         ug/L         117         50-140           Benzo [g,h,i] perylene         5.83         0.05         ug/L         102         50-140           Benzo [g,h] anthracene         4.01         0.05         ug/L         80.2         50-140           Dibenzo [a,h] anthracene         4.03         0.05         ug/L         80.16         50-140           Fluorente         4.36         0.05                                                                                                                                                                                                                  | Uranium                  | 48.7   |                    | -     |                  |      | 80-120        |     |              |       |
| Zinc       53       ug/L       9       88.7       80-120         Semi-Volatiles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Vanadium                 | 51.1   |                    | -     | ND               |      | 80-120        |     |              |       |
| Acenaphthene       4.47       0.05       ug/L       89.5       50-140         Acenaphthylene       4.22       0.05       ug/L       84.4       50-140         Anthracene       4.70       0.01       ug/L       93.9       50-140         Benzo [a] anthracene       4.61       0.01       ug/L       92.1       50-140         Benzo [a] pyrene       3.85       0.01       ug/L       76.9       50-140         Benzo [g,h,i] perylene       3.77       0.05       ug/L       124       50-140         Benzo [g,h,i] perylene       5.83       0.05       ug/L       117       50-140         Benzo [g,h] anthracene       5.12       0.05       ug/L       102       50-140         Chrysene       5.12       0.05       ug/L       102       50-140         Piborzo [a,h] anthracene       4.01       0.05       ug/L       80.2       50-140         Fluoranthene       4.53       0.05       ug/L       80.2       50-140         Indeno [1,2,3-cd] pyrene       4.08       0.05       ug/L       81.6       50-140         Indeno [1,2,3-cd] pyrene       4.08       0.05       ug/L       94.1       50-140         Pyrene </td <td></td>                                                                                                                                                               |                          |        |                    |       |                  |      |               |     |              |       |
| Acenaphthene       4.47       0.05       ug/L       89.5       50-140         Acenaphthylene       4.22       0.05       ug/L       84.4       50-140         Anthracene       4.70       0.01       ug/L       93.9       50-140         Benzo [a] anthracene       4.61       0.01       ug/L       92.1       50-140         Benzo [a] pyrene       3.85       0.01       ug/L       76.9       50-140         Benzo [g,h,i] perylene       3.77       0.05       ug/L       124       50-140         Benzo [g,h,i] perylene       5.83       0.05       ug/L       117       50-140         Benzo [g,h] anthracene       5.12       0.05       ug/L       102       50-140         Chrysene       5.12       0.05       ug/L       102       50-140         Piborzo [a,h] anthracene       4.01       0.05       ug/L       80.2       50-140         Fluoranthene       4.53       0.05       ug/L       80.2       50-140         Indeno [1,2,3-cd] pyrene       4.08       0.05       ug/L       81.6       50-140         Indeno [1,2,3-cd] pyrene       4.08       0.05       ug/L       94.1       50-140         Pyrene </td <td>Semi-Volatiles</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                 | Semi-Volatiles           |        |                    |       |                  |      |               |     |              |       |
| Acenaphthylene       4.22       0.05       ug/L       84.4       50-140         Anthracene       4.70       0.01       ug/L       93.9       50-140         Benzo [a] anthracene       4.61       0.01       ug/L       92.1       50-140         Benzo [a] pyrene       3.85       0.01       ug/L       76.9       50-140         Benzo [g,h,i] perylene       3.77       0.05       ug/L       124       50-140         Benzo [g,h,i] perylene       3.77       0.05       ug/L       75.4       50-140         Benzo [g,h,i] perylene       5.12       0.05       ug/L       102       50-140         Benzo [a,h] anthracene       5.12       0.05       ug/L       102       50-140         Dibenzo [a,h] anthracene       4.01       0.05       ug/L       80.2       50-140         Fluoranthene       4.53       0.01       ug/L       90.7       50-140         Fluoranthene       4.36       0.05       ug/L       81.6       50-140         Indeno [1,2,3-cd] pyrene       4.36       0.05       ug/L       81.6       50-140         Portene       4.33       0.05       ug/L       94.6       50-140         Naphthalen                                                                                                                                                                                                                                                                      |                          | 4.47   | 0.05               | ug/L  |                  | 89.5 | 50-140        |     |              |       |
| Anthracene       4.70       0.01       ug/L       93.9       50-140         Benzo [a] anthracene       4.61       0.01       ug/L       92.1       50-140         Benzo [a] pyrene       3.85       0.01       ug/L       76.9       50-140         Benzo [b] fluoranthene       6.18       0.05       ug/L       124       50-140         Benzo [g,h.i] perylene       3.77       0.05       ug/L       117       50-140         Benzo [g,h.i] perylene       5.83       0.05       ug/L       102       50-140         Chrysene       5.12       0.05       ug/L       102       50-140         Dibenzo [a,h] anthracene       4.01       0.05       ug/L       80.2       50-140         Fluoranthene       4.53       0.01       ug/L       90.7       50-140         Fluoranthene       4.53       0.01       ug/L       90.7       50-140         Fluoranthene       4.53       0.01       ug/L       90.7       50-140         Indeno [1,2,3-cd] pyrene       4.08       0.05       ug/L       81.6       50-140         1-Methylnaphthalene       4.71       0.05       ug/L       94.1       50-140         Pyrene                                                                                                                                                                                                                                                                               |                          | 4.22   |                    |       |                  |      | 50-140        |     |              |       |
| Benzo [a] anthracene       4.61       0.01       ug/L       92.1       50-140         Benzo [b] pyrene       3.85       0.01       ug/L       76.9       50-140         Benzo [b, i] perylene       3.77       0.05       ug/L       124       50-140         Benzo [k] fluoranthene       5.83       0.05       ug/L       75.4       50-140         Chrysene       5.12       0.05       ug/L       102       50-140         Dibenzo [a, h] anthracene       4.01       0.05       ug/L       102       50-140         Fluoranthene       4.53       0.01       ug/L       80.2       50-140         Dibenzo [a, h] anthracene       4.01       0.05       ug/L       80.2       50-140         Fluoranthene       4.03       0.05       ug/L       87.1       50-140         Indeno [1,2,3-cd] pyrene       4.08       0.05       ug/L       87.1       50-140         I-Methylnaphthalene       4.71       0.05       ug/L       94.1       50-140         2-Methylnaphthalene       5.17       0.05       ug/L       94.6       50-140         Naphthalene       4.73       0.05       ug/L       94.6       50-140         Pyr                                                                                                                                                                                                                                                                      |                          | 4.70   |                    |       |                  |      | 50-140        |     |              |       |
| Benzo [a] pyrene       3.85       0.01       ug/L       76.9       50-140         Benzo [b] fluoranthene       6.18       0.05       ug/L       124       50-140         Benzo [g, h, i] perylene       3.77       0.05       ug/L       75.4       50-140         Benzo [k] fluoranthene       5.83       0.05       ug/L       117       50-140         Chrysene       5.12       0.05       ug/L       102       50-140         Dibenzo [a,h] anthracene       4.01       0.05       ug/L       80.2       50-140         Fluoranthene       4.53       0.01       ug/L       90.7       50-140         Fluorene       4.36       0.05       ug/L       81.6       50-140         Indeno [1,2,3-cd] pyrene       4.08       0.05       ug/L       81.6       50-140         1-Methylnaphthalene       4.71       0.05       ug/L       94.1       50-140         Phenanthrene       4.73       0.05       ug/L       103       50-140         Pyrene       4.33       0.05       ug/L       94.6       50-140         Pyrene       4.33       0.05       ug/L       91.2       50-140         Pyrene       4.56                                                                                                                                                                                                                                                                                        | Benzo [a] anthracene     | 4.61   | 0.01               | -     |                  | 92.1 | 50-140        |     |              |       |
| Benzo [g,h,i] perylene       3.77       0.05       ug/L       75.4       50-140         Benzo [k] fluoranthene       5.83       0.05       ug/L       117       50-140         Chrysene       5.12       0.05       ug/L       102       50-140         Dibenzo [a,h] anthracene       4.01       0.05       ug/L       80.2       50-140         Fluoranthene       4.53       0.01       ug/L       90.7       50-140         Fluoranthene       4.36       0.05       ug/L       87.1       50-140         Indeno [1,2,3-cd] pyrene       4.08       0.05       ug/L       81.6       50-140         1-Methylnaphthalene       4.71       0.05       ug/L       94.1       50-140         2-Methylnaphthalene       5.17       0.05       ug/L       103       50-140         Naphthalene       4.73       0.05       ug/L       94.6       50-140         Phenanthrene       4.33       0.05       ug/L       91.2       50-140         Pyrene       4.56       0.01       ug/L       107       50-140         Surrogate: 2-Fluorobiphenyl       21.5       ug/L       107       50-140         Surrogate: 2-Fluorobiphenyl <t< td=""><td></td><td>3.85</td><td></td><td></td><td></td><td></td><td>50-140</td><td></td><td></td><td></td></t<>                                                                                                                                                       |                          | 3.85   |                    |       |                  |      | 50-140        |     |              |       |
| Benzo [g,h,i] perylene       3.77       0.05       ug/L       75.4       50-140         Benzo [k] fluoranthene       5.83       0.05       ug/L       102       50-140         Chrysene       5.12       0.05       ug/L       102       50-140         Dibenzo [a,h] anthracene       4.01       0.05       ug/L       80.2       50-140         Fluoranthene       4.53       0.01       ug/L       90.7       50-140         Fluorene       4.36       0.05       ug/L       87.1       50-140         Indeno [1,2,3-cd] pyrene       4.36       0.05       ug/L       81.6       50-140         1-Methylnaphthalene       4.71       0.05       ug/L       81.6       50-140         2-Methylnaphthalene       5.17       0.05       ug/L       94.1       50-140         Naphthalene       4.73       0.05       ug/L       103       50-140         Phenanthrene       4.33       0.05       ug/L       94.6       50-140         Pyrene       4.56       0.01       ug/L       91.2       50-140         Surrogate: 2-Fluorobiphenyl       21.5       ug/L       107       50-140         Surrogate: 2-Fluorobiphenyl       2                                                                                                                                                                                                                                                                      | Benzo [b] fluoranthene   | 6.18   | 0.05               | ug/L  |                  | 124  | 50-140        |     |              |       |
| Benzo [k] fluoranthene5.830.05ug/L11750-140Chrysene5.120.05ug/L10250-140Dibenzo [a,h] anthracene4.010.05ug/L80.250-140Fluoranthene4.530.01ug/L90.750-140Fluorene4.360.05ug/L87.150-140Indeno [1,2,3-cd] pyrene4.080.05ug/L81.650-1401-Methylnaphthalene4.710.05ug/L94.150-1402-Methylnaphthalene5.170.05ug/L10350-140Naphthalene4.730.05ug/L94.650-140Phenanthrene4.330.05ug/L94.650-140Phenanthrene4.560.01ug/L91.250-140Surrogate: 2-Fluorobiphenyl21.5ug/L10750-140VolatilesAcetone1245.0ug/L12450-140Benzene45.60.5ug/L11460-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                          | 3.77   |                    |       |                  | 75.4 | 50-140        |     |              |       |
| Chrysene       5.12       0.05       ug/L       102       50-140         Dibenzo [a,h] anthracene       4.01       0.05       ug/L       80.2       50-140         Fluoranthene       4.53       0.01       ug/L       90.7       50-140         Fluorene       4.36       0.05       ug/L       87.1       50-140         Indeno [1,2,3-cd] pyrene       4.08       0.05       ug/L       81.6       50-140         1-Methylnaphthalene       4.71       0.05       ug/L       94.1       50-140         2-Methylnaphthalene       5.17       0.05       ug/L       94.1       50-140         Naphthalene       4.73       0.05       ug/L       94.6       50-140         Phenanthrene       4.33       0.05       ug/L       94.6       50-140         Pyrene       4.56       0.01       ug/L       91.2       50-140         Pyrene       4.56       0.01       ug/L       91.2       50-140         Surrogate: 2-Fluorobiphenyl       21.5       ug/L       107       50-140         Volatiles       107       50-140       50-140       50-140         Benzene       124       5.0       ug/L       107 <td></td> <td>5.83</td> <td>0.05</td> <td>ug/L</td> <td></td> <td>117</td> <td>50-140</td> <td></td> <td></td> <td></td>                                                                                                                                                                   |                          | 5.83   | 0.05               | ug/L  |                  | 117  | 50-140        |     |              |       |
| Fluoranthene4.530.01ug/L90.750-140Fluorene4.360.05ug/L87.150-140Indeno [1,2,3-cd] pyrene4.080.05ug/L81.650-1401-Methylnaphthalene4.710.05ug/L94.150-1402-Methylnaphthalene5.170.05ug/L10350-140Naphthalene4.730.05ug/L94.650-140Naphthalene4.330.05ug/L94.650-140Phenanthrene4.330.05ug/L86.550-140Pyrene4.560.01ug/L91.250-140Surrogate: 2-Fluorobiphenyl21.5ug/L10750-140VOlatilesAcetone1245.0ug/L12450-140Benzene45.60.5ug/L11460-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                          | 5.12   | 0.05               |       |                  | 102  | 50-140        |     |              |       |
| Fluoranthene4.530.01ug/L90.750-140Fluorene4.360.05ug/L87.150-140Indeno [1,2,3-cd] pyrene4.080.05ug/L81.650-1401-Methylnaphthalene4.710.05ug/L94.150-1402-Methylnaphthalene5.170.05ug/L10350-140Naphthalene4.730.05ug/L94.650-140Naphthalene4.330.05ug/L94.650-140Phenanthrene4.330.05ug/L86.550-140Pyrene4.560.01ug/L91.250-140Surrogate: 2-Fluorobiphenyl21.5ug/L10750-140VolatilesAcetone1245.0ug/L12450-140Benzene45.60.5ug/L11460-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                          | 4.01   |                    | -     |                  | 80.2 | 50-140        |     |              |       |
| Fluorene4.360.05ug/L87.150-140Indeno [1,2,3-cd] pyrene4.080.05ug/L81.650-1401-Methylnaphthalene4.710.05ug/L94.150-1402-Methylnaphthalene5.170.05ug/L10350-140Naphthalene4.730.05ug/L94.650-140Naphthalene4.330.05ug/L86.550-140Phenanthrene4.330.05ug/L91.250-140Pyrene4.560.01ug/L91.250-140Surrogate: 2-Fluorobiphenyl21.5ug/L10750-140VolatilesAcetone1245.0ug/L12450-140Benzene45.60.5ug/L11460-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Fluoranthene             | 4.53   | 0.01               |       |                  | 90.7 | 50-140        |     |              |       |
| Indeno [1,2,3-cd] pyrene       4.08       0.05       ug/L       81.6       50-140         1-Methylnaphthalene       4.71       0.05       ug/L       94.1       50-140         2-Methylnaphthalene       5.17       0.05       ug/L       103       50-140         Naphthalene       4.73       0.05       ug/L       94.6       50-140         Naphthalene       4.33       0.05       ug/L       86.5       50-140         Phenanthrene       4.33       0.05       ug/L       91.2       50-140         Pyrene       4.56       0.01       ug/L       91.2       50-140         Surrogate: 2-Fluorobiphenyl       21.5       ug/L       107       50-140         Volatiles       Acetone       124       5.0       ug/L       107       50-140         Benzene       45.6       0.5       ug/L       107       50-140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Fluorene                 | 4.36   | 0.05               |       |                  | 87.1 | 50-140        |     |              |       |
| 2-Methylnaphthalene       5.17       0.05       ug/L       103       50-140         Naphthalene       4.73       0.05       ug/L       94.6       50-140         Phenanthrene       4.33       0.05       ug/L       86.5       50-140         Pyrene       4.56       0.01       ug/L       91.2       50-140         Surrogate: 2-Fluorobiphenyl       21.5       ug/L       107       50-140         Volatiles         Acetone       124       5.0       ug/L       124       50-140         Benzene       45.6       0.5       ug/L       107       50-140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Indeno [1,2,3-cd] pyrene | 4.08   |                    |       |                  | 81.6 | 50-140        |     |              |       |
| 2-Methylnaphthalene       5.17       0.05       ug/L       103       50-140         Naphthalene       4.73       0.05       ug/L       94.6       50-140         Phenanthrene       4.33       0.05       ug/L       86.5       50-140         Pyrene       4.56       0.01       ug/L       91.2       50-140         Surrogate: 2-Fluorobiphenyl       21.5       ug/L       107       50-140         Volatiles         Acetone       124       5.0       ug/L       124       50-140         Benzene       45.6       0.5       ug/L       107       50-140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                          | 4.71   |                    |       |                  | 94.1 | 50-140        |     |              |       |
| Phenanthrene         4.33         0.05         ug/L         86.5         50-140           Pyrene         4.56         0.01         ug/L         91.2         50-140           Surrogate: 2-Fluorobiphenyl         21.5         ug/L         107         50-140           Volatiles         Volatiles         Value         124         5.0         ug/L         124         50-140           Benzene         45.6         0.5         ug/L         124         50-140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2-Methylnaphthalene      | 5.17   |                    |       |                  | 103  | 50-140        |     |              |       |
| Phenanthrene         4.33         0.05         ug/L         86.5         50-140           Pyrene         4.56         0.01         ug/L         91.2         50-140           Surrogate: 2-Fluorobiphenyl         21.5         ug/L         107         50-140           Volatiles         Volatiles         Volatiles         Volatiles         Volatiles         Volatiles         Volatiles         124         5.0         ug/L         124         50-140           Benzene         45.6         0.5         ug/L         124         50-140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Naphthalene              | 4.73   | 0.05               | ug/L  |                  | 94.6 | 50-140        |     |              |       |
| Surrogate: 2-Fluorobiphenyl         21.5         ug/L         107         50-140           Volatiles         Acetone         124         5.0         ug/L         124         50-140           Benzene         45.6         0.5         ug/L         114         60-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                          | 4.33   | 0.05               |       |                  | 86.5 | 50-140        |     |              |       |
| Surrogate: 2-Fluorobiphenyl         21.5         ug/L         107         50-140           Volatiles         Acetone         124         5.0         ug/L         124         50-140           Benzene         45.6         0.5         ug/L         114         60-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Pyrene                   | 4.56   |                    | -     |                  | 91.2 | 50-140        |     |              |       |
| Acetone1245.0ug/L12450-140Benzene45.60.5ug/L11460-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                          |        |                    |       |                  |      |               |     |              |       |
| Benzene 45.6 0.5 ug/L 114 60-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Volatiles                |        |                    |       |                  |      |               |     |              |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Acetone                  |        |                    | ug/L  |                  | 124  | 50-140        |     |              |       |
| Bromodichloromethane 49.6 0.5 ug/L 124 60-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                          |        |                    | -     |                  |      |               |     |              |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Bromodichloromethane     | 49.6   | 0.5                | ug/L  |                  | 124  | 60-130        |     |              |       |



# 3

# Order #: 1923072

Report Date: 07-Jun-2019 Order Date: 31-May-2019

Project Description: PE4588

# Method Quality Control: Spike

| Analyte                           | Result | Reporting<br>Limit | Units | Source<br>Result | %REC | %REC<br>Limit | RPD | RPD<br>Limit | Notes |
|-----------------------------------|--------|--------------------|-------|------------------|------|---------------|-----|--------------|-------|
| Bromoform                         | 47.1   | 0.5                | ug/L  |                  | 118  | 60-130        |     |              |       |
| Bromomethane                      | 38.4   | 0.5                | ug/L  |                  | 96.0 | 50-140        |     |              |       |
| Carbon Tetrachloride              | 48.1   | 0.2                | ug/L  |                  | 120  | 60-130        |     |              |       |
| Chlorobenzene                     | 40.8   | 0.5                | ug/L  |                  | 102  | 60-130        |     |              |       |
| Chloroform                        | 49.4   | 0.5                | ug/L  |                  | 123  | 60-130        |     |              |       |
| Dibromochloromethane              | 45.8   | 0.5                | ug/L  |                  | 115  | 60-130        |     |              |       |
| Dichlorodifluoromethane           | 47.1   | 1.0                | ug/L  |                  | 118  | 50-140        |     |              |       |
| 1,2-Dichlorobenzene               | 34.9   | 0.5                | ug/L  |                  | 87.2 | 60-130        |     |              |       |
| 1,3-Dichlorobenzene               | 33.7   | 0.5                | ug/L  |                  | 84.3 | 60-130        |     |              |       |
| 1,4-Dichlorobenzene               | 32.4   | 0.5                | ug/L  |                  | 81.0 | 60-130        |     |              |       |
| 1,1-Dichloroethane                | 46.0   | 0.5                | ug/L  |                  | 115  | 60-130        |     |              |       |
| 1,2-Dichloroethane                | 44.9   | 0.5                | ug/L  |                  | 112  | 60-130        |     |              |       |
| 1,1-Dichloroethylene              | 49.8   | 0.5                | ug/L  |                  | 124  | 60-130        |     |              |       |
| cis-1,2-Dichloroethylene          | 41.2   | 0.5                | ug/L  |                  | 103  | 60-130        |     |              |       |
| trans-1,2-Dichloroethylene        | 39.2   | 0.5                | ug/L  |                  | 98.0 | 60-130        |     |              |       |
| 1,2-Dichloropropane               | 44.8   | 0.5                | ug/L  |                  | 112  | 60-130        |     |              |       |
| cis-1,3-Dichloropropylene         | 31.9   | 0.5                | ug/L  |                  | 79.8 | 60-130        |     |              |       |
| trans-1,3-Dichloropropylene       | 40.5   | 0.5                | ug/L  |                  | 101  | 60-130        |     |              |       |
| Ethylbenzene                      | 30.8   | 0.5                | ug/L  |                  | 77.1 | 60-130        |     |              |       |
| Ethylene dibromide (dibromoethane | 48.7   | 0.2                | ug/L  |                  | 122  | 60-130        |     |              |       |
| Hexane                            | 37.3   | 1.0                | ug/L  |                  | 93.3 | 60-130        |     |              |       |
| Methyl Ethyl Ketone (2-Butanone)  | 115    | 5.0                | ug/L  |                  | 115  | 50-140        |     |              |       |
| Methyl Isobutyl Ketone            | 124    | 5.0                | ug/L  |                  | 124  | 50-140        |     |              |       |
| Methyl tert-butyl ether           | 128    | 2.0                | ug/L  |                  | 128  | 50-140        |     |              |       |
| Methylene Chloride                | 43.4   | 5.0                | ug/L  |                  | 109  | 60-130        |     |              |       |
| Styrene                           | 30.1   | 0.5                | ug/L  |                  | 75.2 | 60-130        |     |              |       |
| 1,1,1,2-Tetrachloroethane         | 40.4   | 0.5                | ug/L  |                  | 101  | 60-130        |     |              |       |
| 1,1,2,2-Tetrachloroethane         | 48.2   | 0.5                | ug/L  |                  | 120  | 60-130        |     |              |       |
| Tetrachloroethylene               | 46.2   | 0.5                | ug/L  |                  | 115  | 60-130        |     |              |       |
| Toluene                           | 42.7   | 0.5                | ug/L  |                  | 107  | 60-130        |     |              |       |
| 1,1,1-Trichloroethane             | 48.2   | 0.5                | ug/L  |                  | 121  | 60-130        |     |              |       |
| 1,1,2-Trichloroethane             | 42.7   | 0.5                | ug/L  |                  | 107  | 60-130        |     |              |       |
| Trichloroethylene                 | 41.9   | 0.5                | ug/L  |                  | 105  | 60-130        |     |              |       |
| Trichlorofluoromethane            | 44.5   | 1.0                | ug/L  |                  | 111  | 60-130        |     |              |       |
| Vinyl chloride                    | 40.7   | 0.5                | ug/L  |                  | 102  | 50-140        |     |              |       |
| m,p-Xylenes                       | 85.6   | 0.5                | ug/L  |                  | 107  | 60-130        |     |              |       |
| o-Xylene                          | 37.1   | 0.5                | ug/L  |                  | 92.8 | 60-130        |     |              |       |



#### Login Qualifiers :

Sample - Not preserved - Metals Applies to samples: BH5-GW1

#### **QC** Qualifiers :

QM-07 : The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on other acceptable QC.

#### Sample Data Revisions

None

#### Work Order Revisions / Comments:

None

# **Other Report Notes:**

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference.

#### CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.

- F1 range corrected for BTEX.

- F2 to F3 ranges corrected for appropriate PAHs where available.

- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.
- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.
- When reported, data for F4G has been processed using a silica gel cleanup.

| G                                                                                                                                                                                                                                                          | PARACEL                                                                                                                      | RE           | JSTE<br>SPOI<br>LIAB | NS                        | ARACEL                                           | WO: 1    | 9230       | 72       | 30<br>0<br>p      | tlawa<br>1-80   | 19 St. L<br>Ontar<br>0-749-1 | aurent Bivd.<br>o K1G 4J8<br>947<br>racellabs.com |           | (L    | ab Use    | Custody<br>Ouly)<br>2169 | 12 and |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|--------------|----------------------|---------------------------|--------------------------------------------------|----------|------------|----------|-------------------|-----------------|------------------------------|---------------------------------------------------|-----------|-------|-----------|--------------------------|--------|
|                                                                                                                                                                                                                                                            | LABORATORIES LTD                                                                                                             |              |                      |                           |                                                  |          |            |          |                   | para            |                              |                                                   |           | Pag   | sc (      | of                       |        |
| Tient Na                                                                                                                                                                                                                                                   | ume: Paterson                                                                                                                |              |                      |                           | Project Reference:                               | PE45     | 588        |          |                   |                 |                              |                                                   |           | Turns | aroun     | d Time                   | :      |
| Contact                                                                                                                                                                                                                                                    | Name: Mark D'Arcy                                                                                                            |              |                      |                           | Quote #                                          |          |            |          |                   |                 |                              | _                                                 | 011       | lay   |           | 03 D                     | Day    |
| Address;                                                                                                                                                                                                                                                   |                                                                                                                              |              |                      |                           | PO # 260                                         | 39       |            |          | _                 |                 |                              |                                                   | 021       | Jav   |           | Rep                      | oular  |
| 1                                                                                                                                                                                                                                                          | 154 Colonnode St. S                                                                                                          | -            | -                    |                           | Email Address:                                   |          |            | 100      |                   |                 |                              |                                                   | 1000      | 11    |           | C B R C                  | guiai  |
| Tekphone:     (6/3) 2.26 - 7381     mokurcy@pattersongroup.cc,     Date Required:       Orteria:     ZO     Res. 153/04 (As Ansended) Table     Image: S58/00     IPWQ0     OCCME     ISUB (Storm)     ISUB (Sanitary)     Municipality:     Image: Dotter |                                                                                                                              |              |                      |                           |                                                  |          |            |          | LANESED           |                 |                              |                                                   |           |       |           |                          |        |
| Criteri                                                                                                                                                                                                                                                    | at 20 Reg. 153/04 (As Amended) Table @RSC/                                                                                   | iling O      | O. Reg               | 558/00                    | D DPWQO D C                                      | CME D SU | B (Storn   | n) Ц ;   | SUB               | Sann            | ary) M                       | unicipatity:                                      |           |       | Anen _    | 13                       |        |
| Matrix 7                                                                                                                                                                                                                                                   | Type: S (Soil/Seil.) GW (Ground Water) SW (Surface Water) S                                                                  | \$ (Storme'S | anitary S            | ewer) P                   | (Paint) A (Air) O (O                             | (ther)   | Requ       | ired /   | Analy             | ses             |                              |                                                   |           |       |           |                          |        |
| 1<br>2<br>3<br>4<br>5<br>6<br>7                                                                                                                                                                                                                            | elOrder/Number:<br>(9,230,7-2<br>Sample ID/Location Name<br>BH1-GW1<br>BH2-GW1<br>BH4 - GW1<br>BH5-GW1<br>BH5-GW1<br>BH5-GW1 | A Matrix     | Air Volume           | + + 2 C 0 # of Containers | Sample<br>Date<br>Date<br>May 31/19<br>May 30/FI | Time     |            | < < PAHS | A C Metals by ICP | 11 <sup>c</sup> | Crvi Pitros                  |                                                   |           |       |           |                          |        |
| 8                                                                                                                                                                                                                                                          |                                                                                                                              |              |                      |                           |                                                  |          |            |          |                   |                 |                              |                                                   |           |       |           |                          |        |
| 9                                                                                                                                                                                                                                                          |                                                                                                                              |              |                      |                           |                                                  |          |            |          |                   |                 |                              |                                                   |           | _     | 1         |                          |        |
| 10                                                                                                                                                                                                                                                         |                                                                                                                              |              |                      |                           |                                                  |          |            |          |                   |                 |                              |                                                   |           |       |           |                          |        |
| Comn                                                                                                                                                                                                                                                       | nents:<br>COC Y                                                                                                              | eci          | 1                    | hur                       | u 3/19                                           | . 8C     |            |          |                   | ~               |                              | 0.0                                               |           | JU    | d of Deli | tery:                    |        |
| Relinqu                                                                                                                                                                                                                                                    | uished By (Sign):                                                                                                            | Receive      | al by Dri            | ver Dep                   | N. A Statistical                                 | Recd     | wed at Lat | arm      |                   | Ko              | Im                           | ai (                                              | ied By:   | 211   | 2         | 1                        |        |
| Relinq                                                                                                                                                                                                                                                     | uished By (Print)                                                                                                            | Date/T       | ne                   | Mig-Wild                  | an de antes estas                                | Datc/    | Time:      | Ma       | 131               | 301             | 1 and                        | 04,10 Data                                        | line.     | 51    | in/       | 71                       | 400    |
| Date/1                                                                                                                                                                                                                                                     | ime:                                                                                                                         | Temper       | วามาตะ               | 14 91                     | °C                                               | Temp     | cuture:    | 17.6     | T                 | 2               | and a                        | plty                                              | crified H | By:   | 5         | 1.2.1.2.                 |        |

Chain of Custody (Env) - Rev 0.7 Feb. 2016



RELIABLE.

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

# Certificate of Analysis

Paterson Group Consulting Engineers

154 Colonnade Road South Nepean, ON K2E 7J5 Attn: Mike Beaudoin

Client PO: 26803 Project: PE4588 Custody: 122360

Report Date: 12-Jun-2019 Order Date: 6-Jun-2019

Order #: 1923526

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

| Paracel ID | Client ID |
|------------|-----------|
| 1923526-01 | BH7-GW1   |
| 1923526-02 | BH8-GW1   |
| 1923526-03 | BH9-GW1   |

Approved By:

Mark Frata

Mark Foto, M.Sc. Lab Supervisor

Any use of these results implies your agreement that our total liability in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.



# **Analysis Summary Table**

| Analysis                     | Method Reference/Description    | Extraction Date | Analysis Date |
|------------------------------|---------------------------------|-----------------|---------------|
| Chromium, hexavalent - water | MOE E3056 - colourimetric       | 6-Jun-19        | 7-Jun-19      |
| Mercury by CVAA              | EPA 245.2 - Cold Vapour AA      | 7-Jun-19        | 7-Jun-19      |
| Metals, ICP-MS               | EPA 200.8 - ICP-MS              | 7-Jun-19        | 7-Jun-19      |
| PHC F1                       | CWS Tier 1 - P&T GC-FID         | 7-Jun-19        | 8-Jun-19      |
| PHCs F2 to F4                | CWS Tier 1 - GC-FID, extraction | 10-Jun-19       | 11-Jun-19     |
| REG 153: VOCs by P&T GC/MS   | EPA 624 - P&T GC-MS             | 7-Jun-19        | 8-Jun-19      |

Report Date: 12-Jun-2019 Order Date: 6-Jun-2019

Order #: 1923526



Report Date: 12-Jun-2019 Order Date: 6-Jun-2019

|                         | Client ID:<br>Sample Date:<br>Sample ID:<br>MDL/Units | BH7-GW1<br>03-Jun-19 00:00<br>1923526-01<br>Water | BH8-GW1<br>03-Jun-19 00:00<br>1923526-02<br>Water | BH9-GW1<br>03-Jun-19 09:00<br>1923526-03<br>Water | -<br>-<br>-<br>- |
|-------------------------|-------------------------------------------------------|---------------------------------------------------|---------------------------------------------------|---------------------------------------------------|------------------|
| Metals                  |                                                       |                                                   |                                                   |                                                   |                  |
| Mercury                 | 0.1 ug/L                                              | -                                                 | <0.1                                              | -                                                 | -                |
| Antimony                | 0.5 ug/L                                              | -                                                 | <0.5                                              | -                                                 | -                |
| Arsenic                 | 1 ug/L                                                | -                                                 | <1                                                | -                                                 | -                |
| Barium                  | 1 ug/L                                                | -                                                 | 90                                                | -                                                 | -                |
| Beryllium               | 0.5 ug/L                                              | -                                                 | <0.5                                              | -                                                 | -                |
| Boron                   | 10 ug/L                                               | -                                                 | 645                                               | -                                                 | -                |
| Cadmium                 | 0.1 ug/L                                              | -                                                 | <0.1                                              | -                                                 | -                |
| Chromium                | 1 ug/L                                                | -                                                 | <1                                                | -                                                 | -                |
| Chromium (VI)           | 10 ug/L                                               | -                                                 | <10                                               | -                                                 | -                |
| Cobalt                  | 0.5 ug/L                                              | -                                                 | 1.1                                               | -                                                 | -                |
| Copper                  | 0.5 ug/L                                              | -                                                 | 2.8                                               | -                                                 | -                |
| Lead                    | 0.1 ug/L                                              | -                                                 | 0.2                                               | -                                                 | -                |
| Molybdenum              | 0.5 ug/L                                              | -                                                 | 2.7                                               | -                                                 | -                |
| Nickel                  | 1 ug/L                                                | -                                                 | 2                                                 | -                                                 | -                |
| Selenium                | 1 ug/L                                                | -                                                 | <1                                                | -                                                 | -                |
| Silver                  | 0.1 ug/L                                              | -                                                 | <0.1                                              | -                                                 | -                |
| Sodium                  | 200 ug/L                                              | -                                                 | 307000                                            | -                                                 | -                |
| Thallium                | 0.1 ug/L                                              | -                                                 | <0.1                                              | -                                                 | -                |
| Uranium                 | 0.1 ug/L                                              | -                                                 | 3.3                                               | -                                                 | -                |
| Vanadium                | 0.5 ug/L                                              | -                                                 | 1.0                                               | -                                                 | -                |
| Zinc                    | 5 ug/L                                                | -                                                 | 5                                                 | -                                                 | -                |
| Volatiles               |                                                       |                                                   |                                                   |                                                   |                  |
| Acetone                 | 5.0 ug/L                                              | <5.0                                              | <5.0                                              | <5.0                                              | -                |
| Benzene                 | 0.5 ug/L                                              | <0.5                                              | <0.5                                              | <0.5                                              | -                |
| Bromodichloromethane    | 0.5 ug/L                                              | <0.5                                              | <0.5                                              | <0.5                                              | -                |
| Bromoform               | 0.5 ug/L                                              | <0.5                                              | <0.5                                              | <0.5                                              | -                |
| Bromomethane            | 0.5 ug/L                                              | <0.5                                              | <0.5                                              | <0.5                                              | -                |
| Carbon Tetrachloride    | 0.2 ug/L                                              | <0.2                                              | <0.2                                              | <0.2                                              | -                |
| Chlorobenzene           | 0.5 ug/L                                              | <0.5                                              | <0.5                                              | <0.5                                              | -                |
| Chloroform              | 0.5 ug/L                                              | <0.5                                              | <0.5                                              | <0.5                                              | -                |
| Dibromochloromethane    | 0.5 ug/L                                              | <0.5                                              | <0.5                                              | <0.5                                              | -                |
| Dichlorodifluoromethane | 1.0 ug/L                                              | <1.0                                              | <1.0 <1.0                                         |                                                   | -                |
| 1,2-Dichlorobenzene     | 0.5 ug/L                                              | <0.5                                              | <0.5                                              | <0.5                                              | -                |
| 1,3-Dichlorobenzene     | 0.5 ug/L                                              | <0.5                                              | <0.5                                              | <0.5 <0.5                                         |                  |
| 1,4-Dichlorobenzene     | 0.5 ug/L                                              | <0.5                                              | <0.5                                              | <0.5                                              | -                |



Order #: 1923526

Report Date: 12-Jun-2019 Order Date: 6-Jun-2019

|                                  | Client ID:   | BH7-GW1         | BH8-GW1         | BH9-GW1         |   |
|----------------------------------|--------------|-----------------|-----------------|-----------------|---|
|                                  | Sample Date: | 03-Jun-19 00:00 | 03-Jun-19 00:00 | 03-Jun-19 09:00 | - |
|                                  | Sample ID:   | 1923526-01      | 1923526-02      | 1923526-03      | - |
|                                  | MDL/Units    | Water           | Water           | Water           | - |
| 1,1-Dichloroethane               | 0.5 ug/L     | <0.5            | <0.5            | <0.5            | - |
| 1,2-Dichloroethane               | 0.5 ug/L     | <0.5            | <0.5            | <0.5            | - |
| 1,1-Dichloroethylene             | 0.5 ug/L     | <0.5            | <0.5            | <0.5            | - |
| cis-1,2-Dichloroethylene         | 0.5 ug/L     | <0.5            | <0.5            | <0.5            | - |
| trans-1,2-Dichloroethylene       | 0.5 ug/L     | <0.5            | <0.5            | <0.5            | - |
| 1,2-Dichloropropane              | 0.5 ug/L     | <0.5            | <0.5            | <0.5            | - |
| cis-1,3-Dichloropropylene        | 0.5 ug/L     | <0.5            | <0.5            | <0.5            | - |
| trans-1,3-Dichloropropylene      | 0.5 ug/L     | <0.5            | <0.5            | <0.5            | - |
| 1,3-Dichloropropene, total       | 0.5 ug/L     | <0.5            | <0.5            | <0.5            | - |
| Ethylbenzene                     | 0.5 ug/L     | <0.5            | <0.5            | <0.5            | - |
| Ethylene dibromide (dibromoethar | 0.2 ug/L     | <0.2            | <0.2            | <0.2            | - |
| Hexane                           | 1.0 ug/L     | <1.0            | <1.0            | <1.0            | - |
| Methyl Ethyl Ketone (2-Butanone) | 5.0 ug/L     | <5.0            | <5.0            | <5.0            | - |
| Methyl Isobutyl Ketone           | 5.0 ug/L     | <5.0            | <5.0            | <5.0            | - |
| Methyl tert-butyl ether          | 2.0 ug/L     | <2.0            | <2.0            | <2.0            | - |
| Methylene Chloride               | 5.0 ug/L     | <5.0            | <5.0            | <5.0            | - |
| Styrene                          | 0.5 ug/L     | <0.5            | <0.5            | <0.5            | - |
| 1,1,1,2-Tetrachloroethane        | 0.5 ug/L     | <0.5            | <0.5            | <0.5            | - |
| 1,1,2,2-Tetrachloroethane        | 0.5 ug/L     | <0.5            | <0.5            | <0.5            | - |
| Tetrachloroethylene              | 0.5 ug/L     | <0.5            | <0.5            | <0.5            | - |
| Toluene                          | 0.5 ug/L     | <0.5            | <0.5            | <0.5            | - |
| 1,1,1-Trichloroethane            | 0.5 ug/L     | <0.5            | <0.5            | <0.5            | - |
| 1,1,2-Trichloroethane            | 0.5 ug/L     | <0.5            | <0.5            | <0.5            | - |
| Trichloroethylene                | 0.5 ug/L     | <0.5            | <0.5            | <0.5            | - |
| Trichlorofluoromethane           | 1.0 ug/L     | <1.0            | <1.0            | <1.0            | - |
| Vinyl chloride                   | 0.5 ug/L     | <0.5            | <0.5            | <0.5            | - |
| m,p-Xylenes                      | 0.5 ug/L     | <0.5            | <0.5            | <0.5            | - |
| o-Xylene                         | 0.5 ug/L     | <0.5            | <0.5            | <0.5            | - |
| Xylenes, total                   | 0.5 ug/L     | <0.5            | <0.5            | <0.5            | - |
| 4-Bromofluorobenzene             | Surrogate    | 117%            | 117%            | 116%            | - |
| Dibromofluoromethane             | Surrogate    | 101%            | 100%            | 101%            | - |
| Toluene-d8                       | Surrogate    | 112%            | 111%            | 111%            | - |
| Hydrocarbons                     |              |                 | T               |                 |   |
| F1 PHCs (C6-C10)                 | 25 ug/L      | -               | <25             | -               | - |
| F2 PHCs (C10-C16)                | 100 ug/L     | -               | <100            | -               | - |
| F3 PHCs (C16-C34)                | 100 ug/L     | -               | <100            | -               | - |



Report Date: 12-Jun-2019 Order Date: 6-Jun-2019

|                   |              |                    |                 | _               |   |
|-------------------|--------------|--------------------|-----------------|-----------------|---|
|                   | Client ID:   | Client ID: BH7-GW1 |                 | BH9-GW1         | - |
|                   | Sample Date: | 03-Jun-19 00:00    | 03-Jun-19 00:00 | 03-Jun-19 09:00 | - |
|                   | Sample ID:   | 1923526-01         | 1923526-02      | 1923526-03      | - |
|                   | MDL/Units    | Water              | Water           | Water           | - |
| F4 PHCs (C34-C50) | 100 ug/L     | -                  | <100            | -               | - |



Order #: 1923526

Report Date: 12-Jun-2019

Order Date: 6-Jun-2019

Project Description: PE4588

# Method Quality Control: Blank

| Analyte                                          | Result   | Reporting<br>Limit | Units        | Source<br>Result | %REC  | %REC<br>Limit | RPD | RPD<br>Limit | Notes  |
|--------------------------------------------------|----------|--------------------|--------------|------------------|-------|---------------|-----|--------------|--------|
| -                                                | ricouit  | Liniit             | UTIIIS       | nesuit           | /oneu |               |     |              | 110163 |
| Hydrocarbons                                     |          |                    |              |                  |       |               |     |              |        |
| F1 PHCs (C6-C10)                                 | ND       | 25                 | ug/L         |                  |       |               |     |              |        |
| F2 PHCs (C10-C16)                                | ND       | 100                | ug/L         |                  |       |               |     |              |        |
| F3 PHCs (C16-C34)                                | ND       | 100                | ug/L         |                  |       |               |     |              |        |
| F4 PHCs (C34-C50)                                | ND       | 100                | ug/L         |                  |       |               |     |              |        |
| Metals                                           |          |                    |              |                  |       |               |     |              |        |
| Mercury                                          | ND       | 0.1                | ug/L         |                  |       |               |     |              |        |
| Antimony                                         | ND       | 0.5                | ug/L         |                  |       |               |     |              |        |
| Arsenic                                          | ND       | 1                  | ug/L         |                  |       |               |     |              |        |
| Barium                                           | ND       | 1                  | ug/L         |                  |       |               |     |              |        |
| Beryllium                                        | ND<br>ND | 0.5                | ug/L         |                  |       |               |     |              |        |
| Boron<br>Cadmium                                 | ND       | 10<br>0.1          | ug/L<br>ug/L |                  |       |               |     |              |        |
| Chromium (VI)                                    | ND       | 10                 | ug/L         |                  |       |               |     |              |        |
| Chromium                                         | ND       | 1                  | ug/L         |                  |       |               |     |              |        |
| Cobalt                                           | ND       | 0.5                | ug/L         |                  |       |               |     |              |        |
| Copper                                           | ND       | 0.5                | ug/L         |                  |       |               |     |              |        |
| Lead                                             | ND       | 0.1                | ug/L         |                  |       |               |     |              |        |
| Molybdenum                                       | ND       | 0.5                | ug/L         |                  |       |               |     |              |        |
| Nickel                                           | ND       | 1                  | ug/L         |                  |       |               |     |              |        |
| Selenium                                         | ND       | 1                  | ug/L         |                  |       |               |     |              |        |
| Silver                                           | ND       | 0.1                | ug/L         |                  |       |               |     |              |        |
| Sodium                                           | ND       | 200                | ug/L         |                  |       |               |     |              |        |
| Thallium                                         | ND       | 0.1                | ug/L         |                  |       |               |     |              |        |
| Uranium                                          | ND       | 0.1                | ug/L         |                  |       |               |     |              |        |
| Vanadium<br>Zinc                                 | ND<br>ND | 0.5                | ug/L         |                  |       |               |     |              |        |
|                                                  | ND       | 5                  | ug/L         |                  |       |               |     |              |        |
| Volatiles                                        |          |                    |              |                  |       |               |     |              |        |
| Acetone                                          | ND       | 5.0                | ug/L         |                  |       |               |     |              |        |
| Benzene                                          | ND       | 0.5                | ug/L         |                  |       |               |     |              |        |
| Bromodichloromethane                             | ND       | 0.5                | ug/L         |                  |       |               |     |              |        |
| Bromoform                                        | ND<br>ND | 0.5                | ug/L         |                  |       |               |     |              |        |
| Bromomethane<br>Carbon Tetrachloride             | ND       | 0.5<br>0.2         | ug/L<br>ug/L |                  |       |               |     |              |        |
| Chlorobenzene                                    | ND       | 0.5                | ug/L         |                  |       |               |     |              |        |
| Chloroform                                       | ND       | 0.5                | ug/L         |                  |       |               |     |              |        |
| Dibromochloromethane                             | ND       | 0.5                | ug/L         |                  |       |               |     |              |        |
| Dichlorodifluoromethane                          | ND       | 1.0                | ug/L         |                  |       |               |     |              |        |
| 1,2-Dichlorobenzene                              | ND       | 0.5                | ug/L         |                  |       |               |     |              |        |
| 1,3-Dichlorobenzene                              | ND       | 0.5                | ug/L         |                  |       |               |     |              |        |
| 1,4-Dichlorobenzene                              | ND       | 0.5                | ug/L         |                  |       |               |     |              |        |
| 1,1-Dichloroethane                               | ND       | 0.5                | ug/L         |                  |       |               |     |              |        |
| 1,2-Dichloroethane                               | ND       | 0.5                | ug/L         |                  |       |               |     |              |        |
| 1,1-Dichloroethylene                             | ND       | 0.5                | ug/L         |                  |       |               |     |              |        |
| cis-1,2-Dichloroethylene                         | ND       | 0.5                | ug/L         |                  |       |               |     |              |        |
| trans-1,2-Dichloroethylene                       | ND<br>ND | 0.5                | ug/L         |                  |       |               |     |              |        |
| 1,2-Dichloropropane<br>cis-1,3-Dichloropropylene | ND       | 0.5<br>0.5         | ug/L<br>ug/L |                  |       |               |     |              |        |
| trans-1,3-Dichloropropylene                      | ND       | 0.5                | ug/L         |                  |       |               |     |              |        |
| 1,3-Dichloropropene, total                       | ND       | 0.5                | ug/L         |                  |       |               |     |              |        |
| Ethylbenzene                                     | ND       | 0.5                | ug/L         |                  |       |               |     |              |        |
| Ethylene dibromide (dibromoethane                | ND       | 0.2                | ug/L         |                  |       |               |     |              |        |
| Hexane                                           | ND       | 1.0                | ug/L         |                  |       |               |     |              |        |
| Methyl Ethyl Ketone (2-Butanone)                 | ND       | 5.0                | ug/L         |                  |       |               |     |              |        |
| Methyl Isobutyl Ketone                           | ND       | 5.0                | ug/L         |                  |       |               |     |              |        |
| Methyl tert-butyl ether                          | ND       | 2.0                | ug/L         |                  |       |               |     |              |        |
| Methylene Chloride                               | ND       | 5.0                | ug/L         |                  |       |               |     |              |        |
| Styrene                                          | ND       | 0.5                | ug/L         |                  |       |               |     |              |        |
| 1,1,1,2-Tetrachloroethane                        | ND<br>ND | 0.5<br>0.5         | ug/L<br>ug/L |                  |       |               |     |              |        |
| 1,1,2,2-Tetrachloroethane                        |          |                    |              |                  |       |               |     |              |        |



Report Date: 12-Jun-2019

Order Date: 6-Jun-2019

Project Description: PE4588

# Method Quality Control: Blank

| Analyte                         | Result | Reporting<br>Limit | Units | Source<br>Result | %REC | %REC<br>Limit | RPD | RPD<br>Limit | Notes |
|---------------------------------|--------|--------------------|-------|------------------|------|---------------|-----|--------------|-------|
| Tetrachloroethylene             | ND     | 0.5                | ug/L  |                  |      |               |     |              |       |
| Toluene                         | ND     | 0.5                | ug/L  |                  |      |               |     |              |       |
| 1,1,1-Trichloroethane           | ND     | 0.5                | ug/L  |                  |      |               |     |              |       |
| 1,1,2-Trichloroethane           | ND     | 0.5                | ug/L  |                  |      |               |     |              |       |
| Trichloroethylene               | ND     | 0.5                | ug/L  |                  |      |               |     |              |       |
| Trichlorofluoromethane          | ND     | 1.0                | ug/L  |                  |      |               |     |              |       |
| Vinyl chloride                  | ND     | 0.5                | ug/L  |                  |      |               |     |              |       |
| m,p-Xylenes                     | ND     | 0.5                | ug/L  |                  |      |               |     |              |       |
| o-Xylene                        | ND     | 0.5                | ug/L  |                  |      |               |     |              |       |
| Xylenes, total                  | ND     | 0.5                | ug/L  |                  |      |               |     |              |       |
| Surrogate: 4-Bromofluorobenzene | 99.8   |                    | ug/L  |                  | 125  | 50-140        |     |              |       |
| Surrogate: Dibromofluoromethane | 72.3   |                    | ug/L  |                  | 90.4 | 50-140        |     |              |       |
| Surrogate: Toluene-d8           | 84.5   |                    | ug/L  |                  | 106  | 50-140        |     |              |       |



Order #: 1923526

Report Date: 12-Jun-2019

Order Date: 6-Jun-2019

Project Description: PE4588

# Method Quality Control: Duplicate

|                                                          | Reporting |            |              | Source   |      | %REC  | C RPD      |          |       |  |
|----------------------------------------------------------|-----------|------------|--------------|----------|------|-------|------------|----------|-------|--|
| Analyte                                                  | Result    | Limit      | Units        | Result   | %REC | Limit | RPD        | Limit    | Notes |  |
| Ludrooorbana                                             |           |            |              |          |      |       |            |          |       |  |
| Hydrocarbons<br>F1 PHCs (C6-C10)                         | ND        | 25         | ug/L         | ND       |      |       |            | 30       |       |  |
|                                                          | ND        | 25         | ug/L         | ND       |      |       |            | 50       |       |  |
| Metals<br>Mercury                                        | ND        | 0.1        | ug/I         | ND       |      |       | 0.0        | 20       |       |  |
| Antimony                                                 | ND        | 0.1        | ug/L<br>ug/L | ND       |      |       | 0.0        | 20       |       |  |
| Arsenic                                                  | ND        | 1          | ug/L         | ND       |      |       | 0.0        | 20       |       |  |
| Barium                                                   | ND        | 1          | ug/L         | ND       |      |       | 0.0        | 20       |       |  |
| Beryllium                                                | ND        | 0.5        | ug/L         | ND       |      |       | 0.0        | 20       |       |  |
| Boron                                                    | ND        | 10         | ug/L         | ND       |      |       | 0.0        | 20       |       |  |
| Cadmium                                                  | ND        | 0.1        | ug/L         | ND       |      |       | 0.0        | 20       |       |  |
| Chromium (VI)                                            | ND        | 10         | ug/L         | ND       |      |       | 0.0        | 20       |       |  |
| Chromium<br>Cobalt                                       | ND<br>ND  | 1<br>0.5   | ug/L         | ND<br>ND |      |       | 0.0<br>0.0 | 20<br>20 |       |  |
| Copper                                                   | ND        | 0.5        | ug/L<br>ug/L | ND       |      |       | 0.0        | 20       |       |  |
| Lead                                                     | ND        | 0.0        | ug/L         | ND       |      |       | 0.0        | 20       |       |  |
| Molybdenum                                               | ND        | 0.5        | ug/L         | ND       |      |       | 0.0        | 20       |       |  |
| Nickel                                                   | ND        | 1          | ug/L         | ND       |      |       | 0.0        | 20       |       |  |
| Selenium                                                 | ND        | 1          | ug/L         | ND       |      |       | 0.0        | 20       |       |  |
| Silver                                                   | ND        | 0.1        | ug/L         | ND       |      |       | 0.0        | 20       |       |  |
| Sodium                                                   | ND        | 200        | ug/L         | ND       |      |       | 0.0        | 20       |       |  |
| Thallium<br>Uranium                                      | ND<br>ND  | 0.1<br>0.1 | ug/L         | ND       |      |       | 0.0<br>0.0 | 20<br>20 |       |  |
| Vanadium                                                 | ND        | 0.1        | ug/L<br>ug/L | ND<br>ND |      |       | 0.0        | 20<br>20 |       |  |
| Zinc                                                     | ND        | 5          | ug/L         | ND       |      |       | 0.0        | 20       |       |  |
|                                                          | ND        | Ũ          | ug/L         |          |      |       | 0.0        | 20       |       |  |
| Volatiles                                                |           | F 0        |              |          |      |       |            | 00       |       |  |
| Acetone<br>Benzene                                       | ND<br>ND  | 5.0<br>0.5 | ug/L         | ND<br>ND |      |       |            | 30<br>30 |       |  |
| Bromodichloromethane                                     | ND        | 0.5        | ug/L<br>ug/L | ND       |      |       |            | 30       |       |  |
| Bromoform                                                | ND        | 0.5        | ug/L         | ND       |      |       |            | 30       |       |  |
| Bromomethane                                             | ND        | 0.5        | ug/L         | ND       |      |       |            | 30       |       |  |
| Carbon Tetrachloride                                     | ND        | 0.2        | ug/L         | ND       |      |       |            | 30       |       |  |
| Chlorobenzene                                            | ND        | 0.5        | ug/L         | ND       |      |       |            | 30       |       |  |
| Chloroform                                               | ND        | 0.5        | ug/L         | ND       |      |       |            | 30       |       |  |
| Dibromochloromethane                                     | ND        | 0.5        | ug/L         | ND       |      |       |            | 30       |       |  |
| Dichlorodifluoromethane                                  | ND<br>ND  | 1.0        | ug/L         | ND       |      |       |            | 30<br>30 |       |  |
| 1,2-Dichlorobenzene<br>1,3-Dichlorobenzene               | ND        | 0.5<br>0.5 | ug/L<br>ug/L | ND<br>ND |      |       |            | 30<br>30 |       |  |
| 1,4-Dichlorobenzene                                      | ND        | 0.5        | ug/L         | ND       |      |       |            | 30       |       |  |
| 1,1-Dichloroethane                                       | ND        | 0.5        | ug/L         | ND       |      |       |            | 30       |       |  |
| 1,2-Dichloroethane                                       | ND        | 0.5        | ug/L         | ND       |      |       |            | 30       |       |  |
| 1,1-Dichloroethylene                                     | ND        | 0.5        | ug/L         | ND       |      |       |            | 30       |       |  |
| cis-1,2-Dichloroethylene                                 | ND        | 0.5        | ug/L         | ND       |      |       |            | 30       |       |  |
| trans-1,2-Dichloroethylene                               | ND        | 0.5        | ug/L         | ND       |      |       |            | 30       |       |  |
| 1,2-Dichloropropane                                      | ND        | 0.5        | ug/L         | ND       |      |       |            | 30       |       |  |
| cis-1,3-Dichloropropylene<br>trans-1,3-Dichloropropylene | ND<br>ND  | 0.5<br>0.5 | ug/L         | ND<br>ND |      |       |            | 30<br>30 |       |  |
| Ethylbenzene                                             | ND        | 0.5        | ug/L<br>ug/L | ND       |      |       |            | 30       |       |  |
| Ethylene dibromide (dibromoethane                        | ND        | 0.2        | ug/L         | ND       |      |       |            | 30       |       |  |
| Hexane                                                   | ND        | 1.0        | ug/L         | ND       |      |       |            | 30       |       |  |
| Methyl Ethyl Ketone (2-Butanone)                         | ND        | 5.0        | ug/L         | ND       |      |       |            | 30       |       |  |
| Methyl Isobutyl Ketone                                   | ND        | 5.0        | ug/L         | ND       |      |       |            | 30       |       |  |
| Methyl tert-butyl ether                                  | ND        | 2.0        | ug/L         | ND       |      |       |            | 30       |       |  |
| Methylene Chloride                                       | ND        | 5.0        | ug/L         | ND       |      |       |            | 30       |       |  |
| Styrene<br>1,1,1,2-Tetrachloroethane                     | ND        | 0.5        | ug/L         |          |      |       |            | 30<br>20 |       |  |
| 1,1,2,2-Tetrachloroethane                                | ND<br>ND  | 0.5<br>0.5 | ug/L<br>ug/L | ND<br>ND |      |       |            | 30<br>30 |       |  |
| Tetrachloroethylene                                      | ND        | 0.5        | ug/L         | ND       |      |       |            | 30       |       |  |
| Toluene                                                  | ND        | 0.5        | ug/L         | ND       |      |       |            | 30       |       |  |
|                                                          |           |            |              |          |      |       |            |          |       |  |



Order #: 1923526

Report Date: 12-Jun-2019 Order Date: 6-Jun-2019

Project Description: PE4588

# Method Quality Control: Duplicate

| Analyte                         | Result | Reporting<br>Limit | Units | Source<br>Result | %REC | %REC<br>Limit | RPD | RPD<br>Limit | Notes |
|---------------------------------|--------|--------------------|-------|------------------|------|---------------|-----|--------------|-------|
| 1,1,1-Trichloroethane           | ND     | 0.5                | ug/L  | ND               |      |               |     | 30           |       |
| 1,1,2-Trichloroethane           | ND     | 0.5                | ug/L  | ND               |      |               |     | 30           |       |
| Trichloroethylene               | ND     | 0.5                | ug/L  | ND               |      |               |     | 30           |       |
| Trichlorofluoromethane          | ND     | 1.0                | ug/L  | ND               |      |               |     | 30           |       |
| Vinyl chloride                  | ND     | 0.5                | ug/L  | ND               |      |               |     | 30           |       |
| m,p-Xylenes                     | ND     | 0.5                | ug/L  | ND               |      |               |     | 30           |       |
| o-Xylene                        | ND     | 0.5                | ug/L  | ND               |      |               |     | 30           |       |
| Surrogate: 4-Bromofluorobenzene | 96.3   |                    | ug/L  |                  | 120  | 50-140        |     |              |       |
| Surrogate: Dibromofluoromethane | 84.8   |                    | ug/L  |                  | 106  | 50-140        |     |              |       |
| Surrogate: Toluene-d8           | 84.5   |                    | ug/L  |                  | 106  | 50-140        |     |              |       |



# Method Quality Control: Spike

Report Date: 12-Jun-2019

Order Date: 6-Jun-2019

| Analyte                           | Result | Reporting<br>Limit | Units | Source<br>Result | %REC | %REC<br>Limit | RPD | RPD<br>Limit | Notes |
|-----------------------------------|--------|--------------------|-------|------------------|------|---------------|-----|--------------|-------|
| Hydrocarbons                      |        |                    |       |                  |      |               |     |              |       |
| F1 PHCs (C6-C10)                  | 1960   | 25                 | ug/L  |                  | 98.1 | 68-117        |     |              |       |
| F2 PHCs (C10-C16)                 | 1520   | 100                | ug/L  |                  | 95.0 | 60-140        |     |              |       |
| F3 PHCs (C16-C34)                 | 3580   | 100                | ug/L  |                  | 91.3 | 60-140        |     |              |       |
| F4 PHCs (C34-C50)                 | 2660   | 100                | ug/L  |                  | 107  | 60-140        |     |              |       |
| Metals                            |        |                    |       |                  |      |               |     |              |       |
| Mercury                           | 2.97   | 0.1                | ug/L  | ND               | 99.1 | 70-130        |     |              |       |
| Antimony                          | 38.6   |                    | ug/L  | ND               | 76.9 | 80-120        |     | (            | QM-07 |
| Arsenic                           | 44.7   |                    | ug/L  | ND               | 89.3 | 80-120        |     |              |       |
| Barium                            | 48.6   |                    | ug/L  | ND               | 96.0 | 80-120        |     |              |       |
| Beryllium                         | 46.0   |                    | ug/L  | ND               | 92.0 | 80-120        |     |              |       |
| Boron                             | 42     |                    | ug/L  | ND               | 82.2 | 80-120        |     |              |       |
| Cadmium                           | 44.5   |                    | ug/L  | ND               | 88.9 | 80-120        |     |              |       |
| Chromium (VI)                     | 198    | 10                 | ug/L  | ND               | 99.0 | 70-130        |     |              |       |
| Chromium                          | 46.6   |                    | ug/L  | ND               | 93.2 | 80-120        |     |              |       |
| Cobalt                            | 45.0   |                    | ug/L  | ND               | 89.9 | 80-120        |     |              |       |
| Copper                            | 43.9   |                    | ug/L  | ND               | 87.7 | 80-120        |     |              |       |
| Lead                              | 44.3   |                    | ug/L  | ND               | 88.5 | 80-120        |     |              |       |
| Molybdenum                        | 41.9   |                    | ug/L  | ND               | 83.7 | 80-120        |     |              |       |
| Nickel                            | 44.8   |                    | ug/L  | ND               | 89.6 | 80-120        |     |              |       |
| Selenium                          | 46.4   |                    | ug/L  | ND               | 92.6 | 80-120        |     |              |       |
| Silver                            | 47.1   |                    | ug/L  | ND               | 94.1 | 80-120        |     |              |       |
| Sodium                            | 9340   |                    | ug/L  | ND               | 92.0 | 80-120        |     |              |       |
| Thallium                          | 42.0   |                    | ug/L  | ND               | 84.0 | 80-120        |     |              |       |
| Uranium                           | 42.8   |                    | ug/L  | ND               | 85.5 | 80-120        |     |              |       |
| Vanadium                          | 46.1   |                    | ug/L  | ND               | 92.1 | 80-120        |     |              |       |
| Zinc                              | 48     |                    | ug/L  |                  | 96.1 | 80-120        |     |              |       |
| Volatiles                         |        |                    |       |                  |      |               |     |              |       |
| Acetone                           | 75.7   | 5.0                | ug/L  |                  | 75.7 | 50-140        |     |              |       |
| Benzene                           | 43.5   | 0.5                | ug/L  |                  | 109  | 60-130        |     |              |       |
| Bromodichloromethane              | 41.1   | 0.5                | ug/L  |                  | 103  | 60-130        |     |              |       |
| Bromoform                         | 51.8   | 0.5                | ug/L  |                  | 130  | 60-130        |     |              |       |
| Bromomethane                      | 45.6   | 0.5                | ug/L  |                  | 114  | 50-140        |     |              |       |
| Carbon Tetrachloride              | 44.5   | 0.2                | ug/L  |                  | 111  | 60-130        |     |              |       |
| Chlorobenzene                     | 42.2   | 0.5                | ug/L  |                  | 105  | 60-130        |     |              |       |
| Chloroform                        | 41.6   | 0.5                | ug/L  |                  | 104  | 60-130        |     |              |       |
| Dibromochloromethane              | 44.5   | 0.5                | ug/L  |                  | 111  | 60-130        |     |              |       |
| Dichlorodifluoromethane           | 40.8   | 1.0                | ug/L  |                  | 102  | 50-140        |     |              |       |
| 1,2-Dichlorobenzene               | 47.1   | 0.5                | ug/L  |                  | 118  | 60-130        |     |              |       |
| 1,3-Dichlorobenzene               | 42.6   | 0.5                | ug/L  |                  | 107  | 60-130        |     |              |       |
| 1,4-Dichlorobenzene               | 42.6   | 0.5                | ug/L  |                  | 106  | 60-130        |     |              |       |
| 1,1-Dichloroethane                | 37.0   | 0.5                | ug/L  |                  | 92.6 | 60-130        |     |              |       |
| 1,2-Dichloroethane                | 37.4   | 0.5                | ug/L  |                  | 93.4 | 60-130        |     |              |       |
| 1,1-Dichloroethylene              | 39.6   | 0.5                | ug/L  |                  | 99.1 | 60-130        |     |              |       |
| cis-1,2-Dichloroethylene          | 41.7   | 0.5                | ug/L  |                  | 104  | 60-130        |     |              |       |
| trans-1,2-Dichloroethylene        | 40.3   | 0.5                | ug/L  |                  | 101  | 60-130        |     |              |       |
| 1,2-Dichloropropane               | 39.0   | 0.5                | ug/L  |                  | 97.4 | 60-130        |     |              |       |
| cis-1,3-Dichloropropylene         | 33.4   | 0.5                | ug/L  |                  | 83.6 | 60-130        |     |              |       |
| trans-1,3-Dichloropropylene       | 30.8   | 0.5                | ug/L  |                  | 76.9 | 60-130        |     |              |       |
| Ethylbenzene                      | 43.2   | 0.5                | ug/L  |                  | 108  | 60-130        |     |              |       |
| Ethylene dibromide (dibromoethane | 44.5   | 0.2                | ug/L  |                  | 111  | 60-130        |     |              |       |



# Order #: 1923526

Report Date: 12-Jun-2019

Order Date: 6-Jun-2019

Project Description: PE4588

# Method Quality Control: Spike

| Analyte                          | Result | Reporting<br>Limit | Units | Source<br>Result | %REC | %REC<br>Limit | RPD | RPD<br>Limit | Notes |
|----------------------------------|--------|--------------------|-------|------------------|------|---------------|-----|--------------|-------|
| Hexane                           | 41.7   | 1.0                | ug/L  |                  | 104  | 60-130        |     |              |       |
| Methyl Ethyl Ketone (2-Butanone) | 95.1   | 5.0                | ug/L  |                  | 95.1 | 50-140        |     |              |       |
| Methyl Isobutyl Ketone           | 60.8   | 5.0                | ug/L  |                  | 60.8 | 50-140        |     |              |       |
| Methyl tert-butyl ether          | 113    | 2.0                | ug/L  |                  | 113  | 50-140        |     |              |       |
| Methylene Chloride               | 36.5   | 5.0                | ug/L  |                  | 91.3 | 60-130        |     |              |       |
| Styrene                          | 44.3   | 0.5                | ug/L  |                  | 111  | 60-130        |     |              |       |
| 1,1,1,2-Tetrachloroethane        | 41.2   | 0.5                | ug/L  |                  | 103  | 60-130        |     |              |       |
| 1,1,2,2-Tetrachloroethane        | 34.5   | 0.5                | ug/L  |                  | 86.2 | 60-130        |     |              |       |
| Tetrachloroethylene              | 50.8   | 0.5                | ug/L  |                  | 127  | 60-130        |     |              |       |
| Toluene                          | 43.3   | 0.5                | ug/L  |                  | 108  | 60-130        |     |              |       |
| 1,1,1-Trichloroethane            | 43.6   | 0.5                | ug/L  |                  | 109  | 60-130        |     |              |       |
| 1,1,2-Trichloroethane            | 38.8   | 0.5                | ug/L  |                  | 96.9 | 60-130        |     |              |       |
| Trichloroethylene                | 43.6   | 0.5                | ug/L  |                  | 109  | 60-130        |     |              |       |
| Trichlorofluoromethane           | 37.6   | 1.0                | ug/L  |                  | 93.9 | 60-130        |     |              |       |
| Vinyl chloride                   | 39.0   | 0.5                | ug/L  |                  | 97.6 | 50-140        |     |              |       |
| m,p-Xylenes                      | 86.4   | 0.5                | ug/L  |                  | 108  | 60-130        |     |              |       |
| o-Xylene                         | 41.4   | 0.5                | ug/L  |                  | 103  | 60-130        |     |              |       |
| Surrogate: 4-Bromofluorobenzene  | 81.5   |                    | ug/L  |                  | 102  | 50-140        |     |              |       |



#### Login Qualifiers :

Sample - Not preserved - Mercury Applies to samples: BH8-GW1

#### **QC Qualifiers :**

QM-07 : The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on other acceptable QC.

#### Sample Data Revisions

None

#### Work Order Revisions / Comments:

None

# **Other Report Notes:**

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference.

#### CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.

- F1 range corrected for BTEX.
- F2 to F3 ranges corrected for appropriate PAHs where available.
- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.
- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.
- When reported, data for F4G has been processed using a silica gel cleanup.

| G         | SPARACEL                                                | PA          | RAC        |               | WO: 192             | 3526      |                 |      |      | 30<br>Ot<br>p: | tawa,<br>1-800 | 19 St<br>Onta<br>)-749 | Laurent Bivd.<br>trio K1G 4J8<br>-1947<br>paracellabs.com |          |          | n of Cu<br>ib Use O<br>122 | nly)  |       |
|-----------|---------------------------------------------------------|-------------|------------|---------------|---------------------|-----------|-----------------|------|------|----------------|----------------|------------------------|-----------------------------------------------------------|----------|----------|----------------------------|-------|-------|
|           | LABORATORIES LTI                                        | ).          |            |               |                     |           |                 |      |      |                | paras          |                        |                                                           |          | Page     | e L ot                     | 1     |       |
| Client Na | ma Hurchard                                             | ATOR        | (Len)      |               | Project Reference:  | PE4S      | 68              |      |      |                |                |                        |                                                           |          | Turna    | round                      | Time  | :     |
| Contact N | The your born                                           | AIKE B      | EAUX       | DOIN          | Quote #             | 1-1-      |                 |      |      |                |                |                        |                                                           | 011      | Jay      |                            | 03D   | ay    |
| Address:  |                                                         |             |            |               | PO# 268             | 03        |                 |      |      |                |                | _                      |                                                           | - 21     | Dav      |                            | -BReg | gular |
|           | 54 COLOMNADE RD S.                                      |             |            |               | Email Address:      | 1.0       |                 | f    |      |                |                |                        |                                                           |          | Requir   |                            |       |       |
| Telephon  | 1 2-1 0261                                              |             | _          | -             | inbeau              | lon (a    | pa              | lor  | 500  | ng             | re<br>Canit    | P                      | Municipality:                                             | Duit     | -        | Other:                     | •     |       |
| Criteria  | r: 🗖 O. Reg. 153/04 (As Amended) Table _ 🗆 RSG          | CFiling O   | O. Reg.    | 558/00        |                     | CME II SU | R (210)         | rm)  | 13   | ) au           | Sann           | ary)                   | muneipany.                                                |          |          |                            |       |       |
| Matrix T  | ype: S (Soil/Sed.) GW (Ground Water) SW (Surface Water) | SS (Storm'S | unitary Se | wet) P (      | Paint) A (Air) O (C | Mher)     | Req             | uire | d A  | naly           | ses            | _                      |                                                           |          |          |                            | -     |       |
| Parace    | 923526                                                  |             | Air Volume | of Containers | Sample              |           | PHCs F1-F4+BTEX | 3    | Is   | als by ICP     |                | -                      | (HWS)                                                     |          |          |                            |       |       |
|           | Sample ID/Location Name                                 | Matrix      | Air '      | # of          | Date                | Time      | PHIC            | vocs | PAHs | Metals         | 14             | CrVI                   | 8.0                                                       | _        | _        | -                          | -     | +     |
| -         | BHT-GWI                                                 | 264         | ,          | 2             | Ine 3/19            |           |                 | X    |      |                |                | _                      |                                                           | -        | -        | -                          | -     | +     |
| 2         | AHB-GWI                                                 | ou          | 8          | 1             | June 3/19           |           | X               | X    |      | K              | x              | ×                      |                                                           | -        | -        | -                          | +     | +-    |
| 3         | DH9-GW                                                  | on          |            | 2             | June 3/19           |           | -               | x    |      | -              |                | -                      |                                                           | +        | +        | +-                         | +     | -     |
| 4         |                                                         |             |            |               |                     |           | -               | _    | -    | -              |                | _                      |                                                           | +        | +        | +-                         | +     | +     |
| 5         |                                                         |             |            |               |                     |           | +               |      | -    | -              |                | -                      |                                                           | -        | +-       | +                          | +     | +     |
| 6         |                                                         |             |            | _             |                     |           | +               | -    | -    | $\vdash$       |                |                        | -                                                         | -        | +        | +                          | +     | -     |
| 7         |                                                         |             |            | -             |                     |           | +               | -    | -    | -              | $\vdash$       | -                      |                                                           | +        | +        | +                          | -     | 1     |
| 8         |                                                         |             |            | -             |                     |           | +               | -    | -    | $\vdash$       | -              | -                      |                                                           | -        | -        | 1                          | -     | -     |
| 9         |                                                         |             | -          | _             |                     |           | +               | +    | +    | $\vdash$       | -              | -                      |                                                           | -        | +        | -                          | 1     | 1     |
| 10        |                                                         |             |            |               | 1                   | C = 10    | _               |      |      |                |                |                        |                                                           |          | Meth     | d of Deli                  | very: | -     |
| Com       | nents: * EXtrativo                                      | 16C V       | 1915       | 01            | 171013              | Shelt     |                 |      |      |                |                |                        |                                                           |          | 12       | inal                       | el    |       |
| Reling    | uished By (Sign)                                        |             | al by Dr   | 1             | 1 ROUSE             | 5         | ived at         | )D   | m    | An.            | 0              |                        | mai                                                       | ified By | AN       | 1-06                       | -12   | 17.   |
| 1.1.1     | uished By (Print): Nich Sullivar                        |             |            | 6/            | 06/19 1             | FH. Tem   | perature        | 15   | 1    | °C             | 1000           |                        | A a la                                                    | Verified | By:      | M                          | . ''  |       |
| Date?     | ime: Sume 6/19                                          | Tempo       | rature:    |               | <i>T</i>            | 1 Icm     | perature        | 10   | -    |                |                |                        | - Pro-                                                    | 1        | <b>\</b> | - K                        |       |       |

Chain of Custody (Env) - Rev 0.7 Feb. 2016



RELIABLE.

# Certificate of Analysis

Paterson Group Consulting Engineers

154 Colonnade Road South Nepean, ON K2E 7J5 Attn: Mark D'Arcy

Client PO: 26975 Project: PE4588 Custody: 48725

Report Date: 16-Jul-2019 Order Date: 15-Jul-2019

Order #: 1929208

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID **Client ID** 1929208-01 BH1-GW2

Approved By:

Mark Frata

Mark Foto, M.Sc. Lab Supervisor

Any use of these results implies your agreement that our total liability in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.



Order #: 1929208

Report Date: 16-Jul-2019 Order Date: 15-Jul-2019 Project Description: PE4588

**Analysis Summary Table** 

| Analysis                   | Method Reference/Description | Extraction Date | Analysis Date |
|----------------------------|------------------------------|-----------------|---------------|
| REG 153: VOCs by P&T GC/MS | EPA 624 - P&T GC-MS          | 16-Jul-19       | 16-Jul-19     |



Report Date: 16-Jul-2019

Order Date: 15-Jul-2019

|                                  | Client ID:<br>Sample Date: | BH1-GW2<br>15-Jul-19 09:00 | -        | - | - |
|----------------------------------|----------------------------|----------------------------|----------|---|---|
| -                                | Sample ID:                 | 1929208-01                 | -        | - | - |
|                                  | MDL/Units                  | Water                      | -        | - | - |
| Volatiles                        | ۲. O                       |                            | <u>г</u> |   | ] |
| Acetone                          | 5.0 ug/L                   | <5.0                       | -        | - | - |
| Benzene                          | 0.5 ug/L                   | <0.5                       | -        | - | - |
| Bromodichloromethane             | 0.5 ug/L                   | <0.5                       | -        | - | - |
| Bromoform                        | 0.5 ug/L                   | <0.5                       | -        | - | - |
| Bromomethane                     | 0.5 ug/L                   | <0.5                       | -        | - | - |
| Carbon Tetrachloride             | 0.2 ug/L                   | <0.2                       | -        | - | - |
| Chlorobenzene                    | 0.5 ug/L                   | <0.5                       | -        | - | - |
| Chloroform                       | 0.5 ug/L                   | <0.5                       | -        | - | - |
| Dibromochloromethane             | 0.5 ug/L                   | <0.5                       | -        | - | - |
| Dichlorodifluoromethane          | 1.0 ug/L                   | <1.0                       | -        | - | - |
| 1,2-Dichlorobenzene              | 0.5 ug/L                   | <0.5                       | -        | - | - |
| 1,3-Dichlorobenzene              | 0.5 ug/L                   | <0.5                       | -        | - | - |
| 1,4-Dichlorobenzene              | 0.5 ug/L                   | <0.5                       | -        | - | - |
| 1,1-Dichloroethane               | 0.5 ug/L                   | <0.5                       | -        | - | - |
| 1,2-Dichloroethane               | 0.5 ug/L                   | <0.5                       | -        | - | - |
| 1,1-Dichloroethylene             | 0.5 ug/L                   | <0.5                       | -        | - | - |
| cis-1,2-Dichloroethylene         | 0.5 ug/L                   | <0.5                       | -        | - | - |
| trans-1,2-Dichloroethylene       | 0.5 ug/L                   | <0.5                       | -        | - | - |
| 1,2-Dichloropropane              | 0.5 ug/L                   | <0.5                       | -        | - | - |
| cis-1,3-Dichloropropylene        | 0.5 ug/L                   | <0.5                       | -        | - | - |
| trans-1,3-Dichloropropylene      | 0.5 ug/L                   | <0.5                       | -        | - | - |
| 1,3-Dichloropropene, total       | 0.5 ug/L                   | <0.5                       | -        | - | - |
| Ethylbenzene                     | 0.5 ug/L                   | <0.5                       | -        | - | - |
| Ethylene dibromide (dibromoethar | 0.2 ug/L                   | <0.2                       | -        | - | - |
| Hexane                           | 1.0 ug/L                   | <1.0                       | -        | - | - |
| Methyl Ethyl Ketone (2-Butanone) | 5.0 ug/L                   | <5.0                       | -        | - | - |
| Methyl Isobutyl Ketone           | 5.0 ug/L                   | <5.0                       | -        | - | - |
| Methyl tert-butyl ether          | 2.0 ug/L                   | <2.0                       | -        | - | - |
| Methylene Chloride               | 5.0 ug/L                   | <5.0                       | -        | - | - |
| Styrene                          | 0.5 ug/L                   | <0.5                       | -        | - | - |
| 1,1,1,2-Tetrachloroethane        | 0.5 ug/L                   | <0.5                       | -        | - | - |
| 1,1,2,2-Tetrachloroethane        | 0.5 ug/L                   | <0.5                       | -        | - | - |
| Tetrachloroethylene              | 0.5 ug/L                   | 43.1                       | -        | - | - |
| Toluene                          | 0.5 ug/L                   | <0.5                       | -        | - | - |
| 1,1,1-Trichloroethane            | 0.5 ug/L                   | <0.5                       | -        | - | - |



# Order #: 1929208

Report Date: 16-Jul-2019 Order Date: 15-Jul-2019

|                        | Client ID:<br>Sample Date: |            |   | - | - |
|------------------------|----------------------------|------------|---|---|---|
|                        | Sample ID:                 | 1929208-01 | - | - | - |
|                        | MDL/Units                  | Water      | - | - | - |
| 1,1,2-Trichloroethane  | 0.5 ug/L                   | <0.5       | - | - | - |
| Trichloroethylene      | 0.5 ug/L                   | <0.5       | - | - | - |
| Trichlorofluoromethane | 1.0 ug/L                   | <1.0       | - | - | - |
| Vinyl chloride         | 0.5 ug/L                   | <0.5       | - | - | - |
| m,p-Xylenes            | 0.5 ug/L                   | <0.5       | - | - | - |
| o-Xylene               | 0.5 ug/L                   | <0.5       | - | - | - |
| Xylenes, total         | 0.5 ug/L                   | <0.5       | - | - | - |
| 4-Bromofluorobenzene   | Surrogate                  | 120%       | - | - | - |
| Dibromofluoromethane   | Surrogate                  | 94.2%      | - | - | - |
| Toluene-d8             | Surrogate                  | 104%       | - | - | - |



Order #: 1929208

Report Date: 16-Jul-2019 Order Date: 15-Jul-2019

Project Description: PE4588

# Method Quality Control: Blank

| Analyte                           | Result | Reporting<br>Limit | Units | Source<br>Result | %REC | %REC<br>Limit | RPD | RPD<br>Limit | Notes |
|-----------------------------------|--------|--------------------|-------|------------------|------|---------------|-----|--------------|-------|
| Volatiles                         |        |                    |       |                  |      |               |     |              |       |
| Acetone                           | ND     | 5.0                | ug/L  |                  |      |               |     |              |       |
| Benzene                           | ND     | 0.5                | ug/L  |                  |      |               |     |              |       |
| Bromodichloromethane              | ND     | 0.5                | ug/L  |                  |      |               |     |              |       |
| Bromoform                         | ND     | 0.5                | ug/L  |                  |      |               |     |              |       |
| Bromomethane                      | ND     | 0.5                | ug/L  |                  |      |               |     |              |       |
| Carbon Tetrachloride              | ND     | 0.2                | ug/L  |                  |      |               |     |              |       |
| Chlorobenzene                     | ND     | 0.5                | ug/L  |                  |      |               |     |              |       |
| Chloroform                        | ND     | 0.5                | ug/L  |                  |      |               |     |              |       |
| Dibromochloromethane              | ND     | 0.5                | ug/L  |                  |      |               |     |              |       |
| Dichlorodifluoromethane           | ND     | 1.0                | ug/L  |                  |      |               |     |              |       |
| 1,2-Dichlorobenzene               | ND     | 0.5                | ug/L  |                  |      |               |     |              |       |
| 1,3-Dichlorobenzene               | ND     | 0.5                | ug/L  |                  |      |               |     |              |       |
| 1,4-Dichlorobenzene               | ND     | 0.5                | ug/L  |                  |      |               |     |              |       |
| 1,1-Dichloroethane                | ND     | 0.5                | ug/L  |                  |      |               |     |              |       |
| 1,2-Dichloroethane                | ND     | 0.5                | ug/L  |                  |      |               |     |              |       |
| 1,1-Dichloroethylene              | ND     | 0.5                | ug/L  |                  |      |               |     |              |       |
| cis-1,2-Dichloroethylene          | ND     | 0.5                | ug/L  |                  |      |               |     |              |       |
| trans-1,2-Dichloroethylene        | ND     | 0.5                | ug/L  |                  |      |               |     |              |       |
| 1,2-Dichloropropane               | ND     | 0.5                | ug/L  |                  |      |               |     |              |       |
| cis-1,3-Dichloropropylene         | ND     | 0.5                | ug/L  |                  |      |               |     |              |       |
| trans-1,3-Dichloropropylene       | ND     | 0.5                | ug/L  |                  |      |               |     |              |       |
| 1,3-Dichloropropene, total        | ND     | 0.5                | ug/L  |                  |      |               |     |              |       |
| Ethylbenzene                      | ND     | 0.5                | ug/L  |                  |      |               |     |              |       |
| Ethylene dibromide (dibromoethane | ND     | 0.2                | ug/L  |                  |      |               |     |              |       |
| Hexane                            | ND     | 1.0                | ug/L  |                  |      |               |     |              |       |
| Methyl Ethyl Ketone (2-Butanone)  | ND     | 5.0                | ug/L  |                  |      |               |     |              |       |
| Methyl Isobutyl Ketone            | ND     | 5.0                | ug/L  |                  |      |               |     |              |       |
| Methyl tert-butyl ether           | ND     | 2.0                | ug/L  |                  |      |               |     |              |       |
| Methylene Chloride                | ND     | 5.0                | ug/L  |                  |      |               |     |              |       |
| Styrene                           | ND     | 0.5                | ug/L  |                  |      |               |     |              |       |
| 1,1,1,2-Tetrachloroethane         | ND     | 0.5                | ug/L  |                  |      |               |     |              |       |
| 1,1,2,2-Tetrachloroethane         | ND     | 0.5                | ug/L  |                  |      |               |     |              |       |
| Tetrachloroethylene               | ND     | 0.5                | ug/L  |                  |      |               |     |              |       |
| Toluene                           | ND     | 0.5                | ug/L  |                  |      |               |     |              |       |
| 1,1,1-Trichloroethane             | ND     | 0.5                | ug/L  |                  |      |               |     |              |       |
| 1,1,2-Trichloroethane             | ND     | 0.5                | ug/L  |                  |      |               |     |              |       |
| Trichloroethylene                 | ND     | 0.5                | ug/L  |                  |      |               |     |              |       |
| Trichlorofluoromethane            | ND     | 1.0                | ug/L  |                  |      |               |     |              |       |
| Vinyl chloride                    | ND     | 0.5                | ug/L  |                  |      |               |     |              |       |
| m,p-Xylenes                       | ND     | 0.5                | ug/L  |                  |      |               |     |              |       |
| o-Xylene                          | ND     | 0.5                | ug/L  |                  |      |               |     |              |       |
| Xylenes, total                    | ND     | 0.5                | ug/L  |                  |      |               |     |              |       |
| Surrogate: 4-Bromofluorobenzene   | 92.2   |                    | ug/L  |                  | 115  | 50-140        |     |              |       |
| Surrogate: Dibromofluoromethane   | 74.1   |                    | ug/L  |                  | 92.6 | 50-140        |     |              |       |
| Surrogate: Toluene-d8             | 81.4   |                    | ug/L  |                  | 102  | 50-140        |     |              |       |
| Ű,                                |        |                    | 0     |                  | -    | -             |     |              |       |



Order #: 1929208

Report Date: 16-Jul-2019 Order Date: 15-Jul-2019

Project Description: PE4588

# Method Quality Control: Duplicate

|                                   |        | Reporting |       | Source |      | %REC   |     | RPD   |       |  |
|-----------------------------------|--------|-----------|-------|--------|------|--------|-----|-------|-------|--|
| Analyte                           | Result | Limit     | Units | Result | %REC | Limit  | RPD | Limit | Notes |  |
| Volatiles                         |        |           |       |        |      |        |     |       |       |  |
| Acetone                           | ND     | 5.0       | ug/L  | ND     |      |        |     | 30    |       |  |
| Benzene                           | ND     | 0.5       | ug/L  | ND     |      |        |     | 30    |       |  |
| Bromodichloromethane              | ND     | 0.5       | ug/L  | ND     |      |        |     | 30    |       |  |
| Bromoform                         | ND     | 0.5       | ug/L  | ND     |      |        |     | 30    |       |  |
| Bromomethane                      | ND     | 0.5       | ug/L  | ND     |      |        |     | 30    |       |  |
| Carbon Tetrachloride              | ND     | 0.2       | ug/L  | ND     |      |        |     | 30    |       |  |
| Chlorobenzene                     | ND     | 0.5       | ug/L  | ND     |      |        |     | 30    |       |  |
| Chloroform                        | ND     | 0.5       | ug/L  | ND     |      |        |     | 30    |       |  |
| Dibromochloromethane              | ND     | 0.5       | ug/L  | ND     |      |        |     | 30    |       |  |
| Dichlorodifluoromethane           | ND     | 1.0       | ug/L  | ND     |      |        |     | 30    |       |  |
| 1.2-Dichlorobenzene               | ND     | 0.5       | ug/L  | ND     |      |        |     | 30    |       |  |
| 1,3-Dichlorobenzene               | ND     | 0.5       | ug/L  | ND     |      |        |     | 30    |       |  |
| 1,4-Dichlorobenzene               | ND     | 0.5       | ug/L  | ND     |      |        |     | 30    |       |  |
| 1,1-Dichloroethane                | ND     | 0.5       | ug/L  | ND     |      |        |     | 30    |       |  |
| 1,2-Dichloroethane                | ND     | 0.5       | ug/L  | ND     |      |        |     | 30    |       |  |
| 1,1-Dichloroethylene              | ND     | 0.5       | ug/L  | ND     |      |        |     | 30    |       |  |
| cis-1,2-Dichloroethylene          | ND     | 0.5       | ug/L  | ND     |      |        |     | 30    |       |  |
| trans-1,2-Dichloroethylene        | ND     | 0.5       | ug/L  | ND     |      |        |     | 30    |       |  |
| 1,2-Dichloropropane               | ND     | 0.5       | ug/L  | ND     |      |        |     | 30    |       |  |
| cis-1,3-Dichloropropylene         | ND     | 0.5       | ug/L  | ND     |      |        |     | 30    |       |  |
| trans-1,3-Dichloropropylene       | ND     | 0.5       | ug/L  | ND     |      |        |     | 30    |       |  |
| Ethylbenzene                      | ND     | 0.5       | ug/L  | ND     |      |        |     | 30    |       |  |
| Ethylene dibromide (dibromoethane | ND     | 0.2       | ug/L  | ND     |      |        |     | 30    |       |  |
| Hexane                            | ND     | 1.0       | ug/L  | ND     |      |        |     | 30    |       |  |
| Methyl Ethyl Ketone (2-Butanone)  | ND     | 5.0       | ug/L  | ND     |      |        |     | 30    |       |  |
| Methyl Isobutyl Ketone            | ND     | 5.0       | ug/L  | ND     |      |        |     | 30    |       |  |
| Methyl tert-butyl ether           | ND     | 2.0       | ug/L  | ND     |      |        |     | 30    |       |  |
| Methylene Chloride                | ND     | 5.0       | ug/L  | ND     |      |        |     | 30    |       |  |
| Styrene                           | ND     | 0.5       | ug/L  | ND     |      |        |     | 30    |       |  |
| 1,1,1,2-Tetrachloroethane         | ND     | 0.5       | ug/L  | ND     |      |        |     | 30    |       |  |
| 1,1,2,2-Tetrachloroethane         | ND     | 0.5       | ug/L  | ND     |      |        |     | 30    |       |  |
| Tetrachloroethylene               | ND     | 0.5       | ug/L  | ND     |      |        |     | 30    |       |  |
| Toluene                           | ND     | 0.5       | ug/L  | ND     |      |        |     | 30    |       |  |
| 1,1,1-Trichloroethane             | ND     | 0.5       | ug/L  | ND     |      |        |     | 30    |       |  |
| 1,1,2-Trichloroethane             | ND     | 0.5       | ug/L  | ND     |      |        |     | 30    |       |  |
| Trichloroethylene                 | ND     | 0.5       | ug/L  | ND     |      |        |     | 30    |       |  |
| Trichlorofluoromethane            | ND     | 1.0       | ug/L  | ND     |      |        |     | 30    |       |  |
| Vinyl chloride                    | ND     | 0.5       | ug/L  | ND     |      |        |     | 30    |       |  |
| m,p-Xylenes                       | ND     | 0.5       | ug/L  | ND     |      |        |     | 30    |       |  |
| o-Xylene                          | ND     | 0.5       | ug/L  | ND     |      |        |     | 30    |       |  |
| Surrogate: 4-Bromofluorobenzene   | 93.0   |           | ug/L  |        | 116  | 50-140 |     |       |       |  |
| Surrogate: Dibromofluoromethane   | 78.0   |           | ug/L  |        | 97.5 | 50-140 |     |       |       |  |
| Surrogate: Toluene-d8             | 81.6   |           | ug/L  |        | 102  | 50-140 |     |       |       |  |
| Surroyale. Toluene-00             | 01.0   |           | ug/L  |        | 102  | 50-140 |     |       |       |  |



# Method Quality Control: Spike

Report Date: 16-Jul-2019 Order Date: 15-Jul-2019

| Analyte                           | Result | Reporting<br>Limit | Units | Source<br>Result | %REC | %REC<br>Limit | RPD | RPD<br>Limit | Notes |
|-----------------------------------|--------|--------------------|-------|------------------|------|---------------|-----|--------------|-------|
| Volatiles                         |        |                    |       |                  |      |               |     |              |       |
| Acetone                           | 89.1   | 5.0                | ug/L  |                  | 89.1 | 50-140        |     |              |       |
| Benzene                           | 31.9   | 0.5                | ug/L  |                  | 79.7 | 60-130        |     |              |       |
| Bromodichloromethane              | 33.3   | 0.5                | ug/L  |                  | 83.2 | 60-130        |     |              |       |
| Bromoform                         | 48.4   | 0.5                | ug/L  |                  | 121  | 60-130        |     |              |       |
| Bromomethane                      | 32.6   | 0.5                | ug/L  |                  | 81.6 | 50-140        |     |              |       |
| Carbon Tetrachloride              | 33.5   | 0.2                | ug/L  |                  | 83.8 | 60-130        |     |              |       |
| Chlorobenzene                     | 41.6   | 0.5                | ug/L  |                  | 104  | 60-130        |     |              |       |
| Chloroform                        | 30.2   | 0.5                | ug/L  |                  | 75.4 | 60-130        |     |              |       |
| Dibromochloromethane              | 45.6   | 0.5                | ug/L  |                  | 114  | 60-130        |     |              |       |
| Dichlorodifluoromethane           | 27.1   | 1.0                | ug/L  |                  | 67.6 | 50-140        |     |              |       |
| 1,2-Dichlorobenzene               | 43.4   | 0.5                | ug/L  |                  | 109  | 60-130        |     |              |       |
| 1,3-Dichlorobenzene               | 49.2   | 0.5                | ug/L  |                  | 123  | 60-130        |     |              |       |
| 1,4-Dichlorobenzene               | 38.4   | 0.5                | ug/L  |                  | 96.0 | 60-130        |     |              |       |
| 1,1-Dichloroethane                | 31.1   | 0.5                | ug/L  |                  | 77.8 | 60-130        |     |              |       |
| 1,2-Dichloroethane                | 32.6   | 0.5                | ug/L  |                  | 81.5 | 60-130        |     |              |       |
| 1,1-Dichloroethylene              | 31.3   | 0.5                | ug/L  |                  | 78.3 | 60-130        |     |              |       |
| cis-1,2-Dichloroethylene          | 38.2   | 0.5                | ug/L  |                  | 95.4 | 60-130        |     |              |       |
| trans-1,2-Dichloroethylene        | 31.8   | 0.5                | ug/L  |                  | 79.6 | 60-130        |     |              |       |
| 1,2-Dichloropropane               | 31.3   | 0.5                | ug/L  |                  | 78.2 | 60-130        |     |              |       |
| cis-1,3-Dichloropropylene         | 35.3   | 0.5                | ug/L  |                  | 88.2 | 60-130        |     |              |       |
| trans-1,3-Dichloropropylene       | 37.3   | 0.5                | ug/L  |                  | 93.4 | 60-130        |     |              |       |
| Ethylbenzene                      | 47.8   | 0.5                | ug/L  |                  | 120  | 60-130        |     |              |       |
| Ethylene dibromide (dibromoethane | 44.5   | 0.2                | ug/L  |                  | 111  | 60-130        |     |              |       |
| Hexane                            | 37.0   | 1.0                | ug/L  |                  | 92.4 | 60-130        |     |              |       |
| Methyl Ethyl Ketone (2-Butanone)  | 89.4   | 5.0                | ug/L  |                  | 89.4 | 50-140        |     |              |       |
| Methyl Isobutyl Ketone            | 90.2   | 5.0                | ug/L  |                  | 90.2 | 50-140        |     |              |       |
| Methyl tert-butyl ether           | 90.2   | 2.0                | ug/L  |                  | 90.2 | 50-140        |     |              |       |
| Methylene Chloride                | 33.4   | 5.0                | ug/L  |                  | 83.6 | 60-130        |     |              |       |
| Styrene                           | 42.6   | 0.5                | ug/L  |                  | 107  | 60-130        |     |              |       |
| 1,1,1,2-Tetrachloroethane         | 42.6   | 0.5                | ug/L  |                  | 106  | 60-130        |     |              |       |
| 1,1,2,2-Tetrachloroethane         | 49.6   | 0.5                | ug/L  |                  | 124  | 60-130        |     |              |       |
| Tetrachloroethylene               | 40.1   | 0.5                | ug/L  |                  | 100  | 60-130        |     |              |       |
| Toluene                           | 38.8   | 0.5                | ug/L  |                  | 96.9 | 60-130        |     |              |       |
| 1,1,1-Trichloroethane             | 32.2   | 0.5                | ug/L  |                  | 80.6 | 60-130        |     |              |       |
| 1,1,2-Trichloroethane             | 30.3   | 0.5                | ug/L  |                  | 75.7 | 60-130        |     |              |       |
| Trichloroethylene                 | 31.4   | 0.5                | ug/L  |                  | 78.6 | 60-130        |     |              |       |
| Trichlorofluoromethane            | 32.5   | 1.0                | ug/L  |                  | 81.2 | 60-130        |     |              |       |
| Vinyl chloride                    | 50.0   | 0.5                | ug/L  |                  | 125  | 50-140        |     |              |       |
| m,p-Xylenes                       | 91.6   | 0.5                | ug/L  |                  | 114  | 60-130        |     |              |       |
| o-Xylene                          | 49.8   | 0.5                | ug/L  |                  | 124  | 60-130        |     |              |       |
| Surrogate: 4-Bromofluorobenzene   | 55.7   |                    | ug/L  |                  | 69.6 | 50-140        |     |              |       |



# **Qualifier Notes:**

None

Sample Data Revisions None

## Work Order Revisions / Comments:

None

#### **Other Report Notes:**

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference.

| <b>PARACEL</b>                                                  |              | P          | arac              | el ID: 192          | 9208    |             | ttawa,<br>: 1-800 | 19 St. Lau<br>Ontario<br>)-749-194 | irent Blvd.<br>K1G 4J8<br>7<br>cellabs.com |          | (La)        | of Custody<br>Use Only)<br>4872 |                |
|-----------------------------------------------------------------|--------------|------------|-------------------|---------------------|---------|-------------|-------------------|------------------------------------|--------------------------------------------|----------|-------------|---------------------------------|----------------|
|                                                                 |              |            |                   |                     |         |             |                   |                                    |                                            |          | Page        | of                              |                |
| ient Name: Paterson Group                                       |              |            | Project           | Reference: PE 1     | 1588    |             |                   |                                    |                                            |          | Turnar      | ound Time:                      | :              |
| Hact Name: Mark D'Arc-1                                         |              |            | Quote #           |                     |         |             |                   |                                    |                                            | ØID      | ay          | 🗆 3 D                           | )ay            |
| Atact Name: Mark D'Arcy<br>Atess: 154 Colonnade Rd. S.          |              |            |                   | Z6975               |         |             |                   |                                    |                                            | 2 D      | av          | 🗆 Reg                           | gular          |
|                                                                 |              | _          | Email A           | mdarcy              | @ pater | songe       | DUP.CO            | ~                                  |                                            |          | Required:   |                                 | 0              |
| ephone: 613-726-7381                                            |              | -          |                   |                     |         |             |                   |                                    | nitare) Muni                               |          |             | [] Other:                       |                |
| Criteria: QO. Reg. 153404 (As Amended) Table _ DR               |              |            |                   |                     |         | 508 (50     | orm) Lu           | 50D (54                            |                                            |          |             |                                 |                |
| trix Type: S (Soil Sed.) GW (Ground Water) SW (Surface Water) S | SS (Storm S: | mitary Se  | wer) P (          | Paint) A (Air) O (C | )ther)  |             |                   |                                    | Req                                        | uired Ar | alyses      |                                 |                |
| racel Order Number:<br>1929 Dest                                | ix           | Air Volume | Sample Taken 5707 |                     |         |             |                   |                                    |                                            |          |             |                                 |                |
| Sample ID/Location Name                                         | Matrix       | Air '      | 10 #              | Date                | Time    | ~           |                   |                                    |                                            |          |             |                                 |                |
| 1 BHI-GWZ                                                       | GW           |            | Z                 | July 15/19          |         | Х           |                   |                                    |                                            |          |             |                                 |                |
| 2                                                               |              |            |                   | 1                   |         |             |                   |                                    |                                            |          |             |                                 | _              |
| 3                                                               |              |            |                   |                     |         |             |                   |                                    |                                            | _        |             |                                 | _              |
| 4                                                               |              |            |                   |                     |         |             |                   |                                    |                                            |          |             |                                 | _              |
| 5                                                               |              |            |                   |                     |         |             |                   |                                    |                                            |          |             |                                 | _              |
| 6                                                               |              |            |                   |                     |         |             |                   |                                    |                                            | _        |             |                                 | _              |
| 7                                                               |              |            |                   |                     |         |             |                   |                                    |                                            |          |             |                                 | $ \rightarrow$ |
| 8                                                               |              |            |                   |                     |         |             |                   |                                    |                                            | _        |             |                                 | _              |
| 9                                                               |              |            |                   |                     |         |             |                   |                                    |                                            | _        |             |                                 | _              |
| 10                                                              |              |            |                   |                     |         |             |                   |                                    |                                            |          |             | 1.00.5                          |                |
| onunents:                                                       |              |            |                   |                     |         |             |                   |                                    |                                            |          | U           | and of Delivery                 | in             |
| elinquished By (Sign). Walts                                    | Receive      | ed by Dr   | iver/Dep          | DE .                |         | ivediat Lab | 1/                | Stu                                | Doit                                       | Verifico | how.        | M                               | 1              |
| inquished By (Print) Derck Latt.                                | Date T       | A          |                   |                     |         | 411         | 12:00             | Date/It                            | ified [ ] By:                              | 16-11 1  | 5           |                                 |                |
| ate Time: July 15 ZOIA 3:30pm                                   | Tempe        | rature :   |                   | °C                  | 1¢m     | befarme .   | 4V.9              | · ·                                |                                            | Put cut  | ound 1 mil- | and the state                   | -              |



RELIABLE.

# Certificate of Analysis

# **Paterson Group Consulting Engineers**

154 Colonnade Road South Nepean, ON K2E 7J5 Attn: Mark D'Arcy

Client PO: 27691 Project: PE4588 Custody: 123156

Report Date: 10-Sep-2019 Order Date: 9-Sep-2019

Order #: 1937092

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

| Paracel ID | Client ID |
|------------|-----------|
| 1937092-01 | BH10-GW1  |
| 1937092-02 | BH12-GW1  |
| 1937092-03 | BH13-GW1  |

Approved By:

Dale Robertson, BSc Laboratory Director

Any use of these results implies your agreement that our total liability in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.



Order #: 1937092

Report Date: 10-Sep-2019 Order Date: 9-Sep-2019

Project Description: PE4588

# **Analysis Summary Table**

| Analysis                   | Method Reference/Description | Extraction Date | Analysis Date |
|----------------------------|------------------------------|-----------------|---------------|
| REG 153: VOCs by P&T GC/MS | EPA 624 - P&T GC-MS          | 9-Sep-19        | 9-Sep-19      |



Order #: 1937092

Report Date: 10-Sep-2019 Order Date: 9-Sep-2019

|                                  | Client ID:<br>Sample Date:<br>Sample ID: | BH10-GW1<br>09-Sep-19 09:00<br>1937092-01 | BH12-GW1<br>09-Sep-19 09:00<br>1937092-02 | BH13-GW1<br>09-Sep-19 09:00<br>1937092-03 | - |
|----------------------------------|------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|---|
| Г                                | MDL/Units                                | Water                                     | Water                                     | Water                                     | - |
| Volatiles                        |                                          |                                           | •                                         |                                           |   |
| Acetone                          | 5.0 ug/L                                 | <5.0                                      | <5.0                                      | <5.0                                      | - |
| Benzene                          | 0.5 ug/L                                 | <0.5                                      | <0.5                                      | <0.5                                      | - |
| Bromodichloromethane             | 0.5 ug/L                                 | <0.5                                      | <0.5                                      | <0.5                                      | - |
| Bromoform                        | 0.5 ug/L                                 | <0.5                                      | <0.5                                      | <0.5                                      | - |
| Bromomethane                     | 0.5 ug/L                                 | <0.5                                      | <0.5                                      | <0.5                                      | - |
| Carbon Tetrachloride             | 0.2 ug/L                                 | <0.2                                      | <0.2                                      | <0.2                                      | - |
| Chlorobenzene                    | 0.5 ug/L                                 | <0.5                                      | <0.5                                      | <0.5                                      | - |
| Chloroform                       | 0.5 ug/L                                 | <0.5                                      | <0.5                                      | <0.5                                      | - |
| Dibromochloromethane             | 0.5 ug/L                                 | <0.5                                      | <0.5                                      | <0.5                                      | - |
| Dichlorodifluoromethane          | 1.0 ug/L                                 | <1.0                                      | <1.0                                      | <1.0                                      | - |
| 1,2-Dichlorobenzene              | 0.5 ug/L                                 | <0.5                                      | <0.5                                      | <0.5                                      | - |
| 1,3-Dichlorobenzene              | 0.5 ug/L                                 | <0.5                                      | <0.5                                      | <0.5                                      | - |
| 1,4-Dichlorobenzene              | 0.5 ug/L                                 | <0.5                                      | <0.5                                      | <0.5                                      | - |
| 1,1-Dichloroethane               | 0.5 ug/L                                 | <0.5                                      | <0.5                                      | <0.5                                      | - |
| 1,2-Dichloroethane               | 0.5 ug/L                                 | <0.5                                      | <0.5                                      | <0.5                                      | - |
| 1,1-Dichloroethylene             | 0.5 ug/L                                 | <0.5                                      | <0.5                                      | <0.5                                      | - |
| cis-1,2-Dichloroethylene         | 0.5 ug/L                                 | <0.5                                      | <0.5                                      | <0.5                                      | - |
| trans-1,2-Dichloroethylene       | 0.5 ug/L                                 | <0.5                                      | <0.5                                      | <0.5                                      | - |
| 1,2-Dichloropropane              | 0.5 ug/L                                 | <0.5                                      | <0.5                                      | <0.5                                      | - |
| cis-1,3-Dichloropropylene        | 0.5 ug/L                                 | <0.5                                      | <0.5                                      | <0.5                                      | - |
| trans-1,3-Dichloropropylene      | 0.5 ug/L                                 | <0.5                                      | <0.5                                      | <0.5                                      | - |
| 1,3-Dichloropropene, total       | 0.5 ug/L                                 | <0.5                                      | <0.5                                      | <0.5                                      | - |
| Ethylbenzene                     | 0.5 ug/L                                 | <0.5                                      | <0.5                                      | <0.5                                      | - |
| Ethylene dibromide (dibromoethan | 0.2 ug/L                                 | <0.2                                      | <0.2                                      | <0.2                                      | - |
| Hexane                           | 1.0 ug/L                                 | <1.0                                      | <1.0                                      | <1.0                                      | - |
| Methyl Ethyl Ketone (2-Butanone) | 5.0 ug/L                                 | <5.0                                      | <5.0                                      | <5.0                                      | - |
| Methyl Isobutyl Ketone           | 5.0 ug/L                                 | <5.0                                      | <5.0                                      | <5.0                                      | - |
| Methyl tert-butyl ether          | 2.0 ug/L                                 | <2.0                                      | <2.0                                      | <2.0                                      | - |
| Methylene Chloride               | 5.0 ug/L                                 | <5.0                                      | <5.0                                      | <5.0                                      | - |
| Styrene                          | 0.5 ug/L                                 | <0.5                                      | <0.5                                      | <0.5                                      | - |
| 1,1,1,2-Tetrachloroethane        | 0.5 ug/L                                 | <0.5                                      | <0.5                                      | <0.5                                      | - |
| 1,1,2,2-Tetrachloroethane        | 0.5 ug/L                                 | <0.5                                      | <0.5                                      | <0.5                                      | - |
| Tetrachloroethylene              | 0.5 ug/L                                 | <0.5                                      | <0.5                                      | <0.5                                      | - |
| Toluene                          | 0.5 ug/L                                 | <0.5                                      | <0.5                                      | <0.5                                      | - |
| 1,1,1-Trichloroethane            | 0.5 ug/L                                 | <0.5                                      | <0.5                                      | <0.5                                      | - |



Order #: 1937092

Report Date: 10-Sep-2019 Order Date: 9-Sep-2019

|                        |              |                 | BH12-GW1        |                 |   |
|------------------------|--------------|-----------------|-----------------|-----------------|---|
|                        | Client ID:   |                 | -               | BH13-GW1        | - |
|                        | Sample Date: | 09-Sep-19 09:00 | 09-Sep-19 09:00 | 09-Sep-19 09:00 | - |
|                        | Sample ID:   | 1937092-01      | 1937092-02      | 1937092-03      | - |
|                        | MDL/Units    | Water           | Water           | Water           | - |
| 1,1,2-Trichloroethane  | 0.5 ug/L     | <0.5            | <0.5            | <0.5            | - |
| Trichloroethylene      | 0.5 ug/L     | <0.5            | <0.5            | <0.5            | - |
| Trichlorofluoromethane | 1.0 ug/L     | <1.0            | <1.0            | <1.0            | - |
| Vinyl chloride         | 0.5 ug/L     | <0.5            | <0.5            | <0.5            | - |
| m,p-Xylenes            | 0.5 ug/L     | <0.5            | <0.5            | <0.5            | - |
| o-Xylene               | 0.5 ug/L     | <0.5            | <0.5            | <0.5            | - |
| Xylenes, total         | 0.5 ug/L     | <0.5            | <0.5            | <0.5            | - |
| 4-Bromofluorobenzene   | Surrogate    | 89.8%           | 90.1%           | 88.8%           | - |
| Dibromofluoromethane   | Surrogate    | 110%            | 106%            | 109%            | - |
| Toluene-d8             | Surrogate    | 102%            | 103%            | 102%            | - |



Order #: 1937092

Report Date: 10-Sep-2019 Order Date: 9-Sep-2019

Project Description: PE4588

# Method Quality Control: Blank

| Analyte                           | Result | Reporting<br>Limit | Units | Source<br>Result | %REC | %REC<br>Limit | RPD | RPD<br>Limit | Notes |
|-----------------------------------|--------|--------------------|-------|------------------|------|---------------|-----|--------------|-------|
| Volatiles                         |        |                    |       |                  |      |               |     |              |       |
| Acetone                           | ND     | 5.0                | ug/L  |                  |      |               |     |              |       |
| Benzene                           | ND     | 0.5                | ug/L  |                  |      |               |     |              |       |
| Bromodichloromethane              | ND     | 0.5                | ug/L  |                  |      |               |     |              |       |
| Bromoform                         | ND     | 0.5                | ug/L  |                  |      |               |     |              |       |
| Bromomethane                      | ND     | 0.5                | ug/L  |                  |      |               |     |              |       |
| Carbon Tetrachloride              | ND     | 0.2                | ug/L  |                  |      |               |     |              |       |
| Chlorobenzene                     | ND     | 0.5                | ug/L  |                  |      |               |     |              |       |
| Chloroform                        | ND     | 0.5                | ug/L  |                  |      |               |     |              |       |
| Dibromochloromethane              | ND     | 0.5                | ug/L  |                  |      |               |     |              |       |
| Dichlorodifluoromethane           | ND     | 1.0                | ug/L  |                  |      |               |     |              |       |
| 1.2-Dichlorobenzene               | ND     | 0.5                | ug/L  |                  |      |               |     |              |       |
| 1,3-Dichlorobenzene               | ND     | 0.5                | ug/L  |                  |      |               |     |              |       |
| 1,4-Dichlorobenzene               | ND     | 0.5                | ug/L  |                  |      |               |     |              |       |
| 1,1-Dichloroethane                | ND     | 0.5                | ug/L  |                  |      |               |     |              |       |
| 1.2-Dichloroethane                | ND     | 0.5                | ug/L  |                  |      |               |     |              |       |
| 1,1-Dichloroethylene              | ND     | 0.5                | ug/L  |                  |      |               |     |              |       |
| cis-1,2-Dichloroethylene          | ND     | 0.5                | ug/L  |                  |      |               |     |              |       |
| trans-1,2-Dichloroethylene        | ND     | 0.5                | ug/L  |                  |      |               |     |              |       |
| 1,2-Dichloropropane               | ND     | 0.5                | ug/L  |                  |      |               |     |              |       |
| cis-1,3-Dichloropropylene         | ND     | 0.5                | ug/L  |                  |      |               |     |              |       |
| trans-1,3-Dichloropropylene       | ND     | 0.5                | ug/L  |                  |      |               |     |              |       |
| 1,3-Dichloropropene, total        | ND     | 0.5                | ug/L  |                  |      |               |     |              |       |
| Ethylbenzene                      | ND     | 0.5                | ug/L  |                  |      |               |     |              |       |
| Ethylene dibromide (dibromoethane | ND     | 0.2                | ug/L  |                  |      |               |     |              |       |
| Hexane                            | ND     | 1.0                | ug/L  |                  |      |               |     |              |       |
| Methyl Ethyl Ketone (2-Butanone)  | ND     | 5.0                | ug/L  |                  |      |               |     |              |       |
| Methyl Isobutyl Ketone            | ND     | 5.0                | ug/L  |                  |      |               |     |              |       |
| Methyl tert-butyl ether           | ND     | 2.0                | ug/L  |                  |      |               |     |              |       |
| Methylene Chloride                | ND     | 5.0                | ug/L  |                  |      |               |     |              |       |
| Styrene                           | ND     | 0.5                | ug/L  |                  |      |               |     |              |       |
| 1,1,1,2-Tetrachloroethane         | ND     | 0.5                | ug/L  |                  |      |               |     |              |       |
| 1,1,2,2-Tetrachloroethane         | ND     | 0.5                | ug/L  |                  |      |               |     |              |       |
| Tetrachloroethylene               | ND     | 0.5                | ug/L  |                  |      |               |     |              |       |
| Toluene                           | ND     | 0.5                | ug/L  |                  |      |               |     |              |       |
| 1,1,1-Trichloroethane             | ND     | 0.5                | ug/L  |                  |      |               |     |              |       |
| 1,1,2-Trichloroethane             | ND     | 0.5                | ug/L  |                  |      |               |     |              |       |
| Trichloroethylene                 | ND     | 0.5                | ug/L  |                  |      |               |     |              |       |
| Trichlorofluoromethane            | ND     | 1.0                | ug/L  |                  |      |               |     |              |       |
| Vinyl chloride                    | ND     | 0.5                | ug/L  |                  |      |               |     |              |       |
| m,p-Xylenes                       | ND     | 0.5                | ug/L  |                  |      |               |     |              |       |
| o-Xylene                          | ND     | 0.5                | ug/L  |                  |      |               |     |              |       |
| Xylenes, total                    | ND     | 0.5                | ug/L  |                  |      |               |     |              |       |
| Surrogate: 4-Bromofluorobenzene   | 82.8   |                    | ug/L  |                  | 104  | 50-140        |     |              |       |
| Surrogate: Dibromofluoromethane   | 80.9   |                    | ug/L  |                  | 101  | 50-140        |     |              |       |
| Surrogate: Toluene-d8             | 92.6   |                    | ug/L  |                  | 116  | 50-140        |     |              |       |
| Currogato. Toldene-do             | 32.0   |                    | uy/L  |                  | 110  | 50-140        |     |              |       |



Order #: 1937092

Report Date: 10-Sep-2019 Order Date: 9-Sep-2019

Project Description: PE4588

# Method Quality Control: Duplicate

|                                   |        | Reporting |       | Source |      | %REC   |     | RPD   |       |
|-----------------------------------|--------|-----------|-------|--------|------|--------|-----|-------|-------|
| Analyte                           | Result | Limit     | Units | Result | %REC | Limit  | RPD | Limit | Notes |
| Volatiles                         |        |           |       |        |      |        |     |       |       |
| Acetone                           | ND     | 5.0       | ug/L  | ND     |      |        |     | 30    |       |
| Benzene                           | ND     | 0.5       | ug/L  | ND     |      |        |     | 30    |       |
| Bromodichloromethane              | ND     | 0.5       | ug/L  | ND     |      |        |     | 30    |       |
| Bromoform                         | ND     | 0.5       | ug/L  | ND     |      |        |     | 30    |       |
| Bromomethane                      | ND     | 0.5       | ug/L  | ND     |      |        |     | 30    |       |
| Carbon Tetrachloride              | ND     | 0.2       | ug/L  | ND     |      |        |     | 30    |       |
| Chlorobenzene                     | ND     | 0.5       | ug/L  | ND     |      |        |     | 30    |       |
| Chloroform                        | ND     | 0.5       | ug/L  | ND     |      |        |     | 30    |       |
| Dibromochloromethane              | ND     | 0.5       | ug/L  | ND     |      |        |     | 30    |       |
| Dichlorodifluoromethane           | ND     | 1.0       | ug/L  | ND     |      |        |     | 30    |       |
| 1,2-Dichlorobenzene               | ND     | 0.5       | ug/L  | ND     |      |        |     | 30    |       |
| 1,3-Dichlorobenzene               | ND     | 0.5       | ug/L  | ND     |      |        |     | 30    |       |
| 1,4-Dichlorobenzene               | ND     | 0.5       | ug/L  | ND     |      |        |     | 30    |       |
| 1,1-Dichloroethane                | ND     | 0.5       | ug/L  | ND     |      |        |     | 30    |       |
| 1,2-Dichloroethane                | ND     | 0.5       | ug/L  | ND     |      |        |     | 30    |       |
| 1,1-Dichloroethylene              | ND     | 0.5       | ug/L  | ND     |      |        |     | 30    |       |
| cis-1,2-Dichloroethylene          | ND     | 0.5       | ug/L  | ND     |      |        |     | 30    |       |
| trans-1,2-Dichloroethylene        | ND     | 0.5       | ug/L  | ND     |      |        |     | 30    |       |
| 1,2-Dichloropropane               | ND     | 0.5       | ug/L  | ND     |      |        |     | 30    |       |
| cis-1,3-Dichloropropylene         | ND     | 0.5       | ug/L  | ND     |      |        |     | 30    |       |
| trans-1,3-Dichloropropylene       | ND     | 0.5       | ug/L  | ND     |      |        |     | 30    |       |
| Ethylbenzene                      | ND     | 0.5       | ug/L  | ND     |      |        |     | 30    |       |
| Ethylene dibromide (dibromoethane | ND     | 0.2       | ug/L  | ND     |      |        |     | 30    |       |
| Hexane                            | ND     | 1.0       | ug/L  | ND     |      |        |     | 30    |       |
| Methyl Ethyl Ketone (2-Butanone)  | ND     | 5.0       | ug/L  | ND     |      |        |     | 30    |       |
| Methyl Isobutyl Ketone            | ND     | 5.0       | ug/L  | ND     |      |        |     | 30    |       |
| Methyl tert-butyl ether           | ND     | 2.0       | ug/L  | ND     |      |        |     | 30    |       |
| Methylene Chloride                | ND     | 5.0       | ug/L  | ND     |      |        |     | 30    |       |
| Styrene                           | ND     | 0.5       | ug/L  | ND     |      |        |     | 30    |       |
| 1,1,1,2-Tetrachloroethane         | ND     | 0.5       | ug/L  | ND     |      |        |     | 30    |       |
| 1,1,2,2-Tetrachloroethane         | ND     | 0.5       | ug/L  | ND     |      |        |     | 30    |       |
| Tetrachloroethylene               | ND     | 0.5       | ug/L  | ND     |      |        |     | 30    |       |
| Toluene                           | ND     | 0.5       | ug/L  | ND     |      |        |     | 30    |       |
| 1,1,1-Trichloroethane             | ND     | 0.5       | ug/L  | ND     |      |        |     | 30    |       |
| 1,1,2-Trichloroethane             | ND     | 0.5       | ug/L  | ND     |      |        |     | 30    |       |
| Trichloroethylene                 | ND     | 0.5       | ug/L  | ND     |      |        |     | 30    |       |
| Trichlorofluoromethane            | ND     | 1.0       | ug/L  | ND     |      |        |     | 30    |       |
| Vinyl chloride                    | ND     | 0.5       | ug/L  | ND     |      |        |     | 30    |       |
| m,p-Xylenes                       | ND     | 0.5       | ug/L  | ND     |      |        |     | 30    |       |
| o-Xylene                          | ND     | 0.5       | ug/L  | ND     |      |        |     | 30    |       |
| Surrogate: 4-Bromofluorobenzene   | 81.0   |           | ug/L  |        | 101  | 50-140 |     |       |       |
| Surrogate: Dibromofluoromethane   | 87.9   |           | ug/L  |        | 110  | 50-140 |     |       |       |
| Surrogate: Toluene-d8             | 78.4   |           | ug/L  |        | 98.1 | 50-140 |     |       |       |



# Method Quality Control: Spike

Report Date: 10-Sep-2019 Order Date: 9-Sep-2019

| Analyte                           | Result | Reporting<br>Limit | Units | Source<br>Result | %REC | %REC<br>Limit | RPD | RPD<br>Limit | Notes |
|-----------------------------------|--------|--------------------|-------|------------------|------|---------------|-----|--------------|-------|
| Volatiles                         |        |                    |       |                  |      |               |     |              |       |
| Acetone                           | 66.8   | 5.0                | ug/L  |                  | 66.8 | 50-140        |     |              |       |
| Benzene                           | 33.5   | 0.5                | ug/L  |                  | 83.8 | 60-130        |     |              |       |
| Bromodichloromethane              | 34.5   | 0.5                | ug/L  |                  | 86.2 | 60-130        |     |              |       |
| Bromoform                         | 36.6   | 0.5                | ug/L  |                  | 91.4 | 60-130        |     |              |       |
| Bromomethane                      | 33.9   | 0.5                | ug/L  |                  | 84.7 | 50-140        |     |              |       |
| Carbon Tetrachloride              | 35.3   | 0.2                | ug/L  |                  | 88.3 | 60-130        |     |              |       |
| Chlorobenzene                     | 33.5   | 0.5                | ug/L  |                  | 83.7 | 60-130        |     |              |       |
| Chloroform                        | 34.4   | 0.5                | ug/L  |                  | 85.9 | 60-130        |     |              |       |
| Dibromochloromethane              | 35.0   | 0.5                | ug/L  |                  | 87.5 | 60-130        |     |              |       |
| Dichlorodifluoromethane           | 34.4   | 1.0                | ug/L  |                  | 86.0 | 50-140        |     |              |       |
| 1,2-Dichlorobenzene               | 33.0   | 0.5                | ug/L  |                  | 82.5 | 60-130        |     |              |       |
| 1,3-Dichlorobenzene               | 33.4   | 0.5                | ug/L  |                  | 83.4 | 60-130        |     |              |       |
| 1.4-Dichlorobenzene               | 33.3   | 0.5                | ug/L  |                  | 83.3 | 60-130        |     |              |       |
| 1,1-Dichloroethane                | 34.2   | 0.5                | ug/L  |                  | 85.6 | 60-130        |     |              |       |
| 1,2-Dichloroethane                | 35.4   | 0.5                | ug/L  |                  | 88.4 | 60-130        |     |              |       |
| 1,1-Dichloroethylene              | 36.3   | 0.5                | ug/L  |                  | 90.8 | 60-130        |     |              |       |
| cis-1,2-Dichloroethylene          | 35.0   | 0.5                | ug/L  |                  | 87.6 | 60-130        |     |              |       |
| trans-1,2-Dichloroethylene        | 35.8   | 0.5                | ug/L  |                  | 89.6 | 60-130        |     |              |       |
| 1,2-Dichloropropane               | 33.6   | 0.5                | ug/L  |                  | 84.0 | 60-130        |     |              |       |
| cis-1,3-Dichloropropylene         | 36.0   | 0.5                | ug/L  |                  | 89.9 | 60-130        |     |              |       |
| trans-1,3-Dichloropropylene       | 37.3   | 0.5                | ug/L  |                  | 93.2 | 60-130        |     |              |       |
| Ethylbenzene                      | 33.7   | 0.5                | ug/L  |                  | 84.2 | 60-130        |     |              |       |
| Ethylene dibromide (dibromoethane | 35.1   | 0.2                | ug/L  |                  | 87.8 | 60-130        |     |              |       |
| Hexane                            | 40.5   | 1.0                | ug/L  |                  | 101  | 60-130        |     |              |       |
| Methyl Ethyl Ketone (2-Butanone)  | 90.6   | 5.0                | ug/L  |                  | 90.6 | 50-140        |     |              |       |
| Methyl Isobutyl Ketone            | 83.4   | 5.0                | ug/L  |                  | 83.4 | 50-140        |     |              |       |
| Methyl tert-butyl ether           | 85.9   | 2.0                | ug/L  |                  | 85.9 | 50-140        |     |              |       |
| Methylene Chloride                | 32.7   | 5.0                | ug/L  |                  | 81.7 | 60-130        |     |              |       |
| Styrene                           | 34.7   | 0.5                | ug/L  |                  | 86.8 | 60-130        |     |              |       |
| 1,1,1,2-Tetrachloroethane         | 34.7   | 0.5                | ug/L  |                  | 86.8 | 60-130        |     |              |       |
| 1,1,2,2-Tetrachloroethane         | 37.5   | 0.5                | ug/L  |                  | 93.8 | 60-130        |     |              |       |
| Tetrachloroethylene               | 35.0   | 0.5                | ug/L  |                  | 87.5 | 60-130        |     |              |       |
| Toluene                           | 32.4   | 0.5                | ug/L  |                  | 81.0 | 60-130        |     |              |       |
| 1,1,1-Trichloroethane             | 34.4   | 0.5                | ug/L  |                  | 86.1 | 60-130        |     |              |       |
| 1,1,2-Trichloroethane             | 34.9   | 0.5                | ug/L  |                  | 87.3 | 60-130        |     |              |       |
| Trichloroethylene                 | 33.5   | 0.5                | ug/L  |                  | 83.8 | 60-130        |     |              |       |
| Trichlorofluoromethane            | 29.8   | 1.0                | ug/L  |                  | 74.4 | 60-130        |     |              |       |
| Vinyl chloride                    | 35.4   | 0.5                | ug/L  |                  | 88.4 | 50-140        |     |              |       |
| m,p-Xylenes                       | 67.3   | 0.5                | ug/L  |                  | 84.1 | 60-130        |     |              |       |
| o-Xylene                          | 33.8   | 0.5                | ug/L  |                  | 84.4 | 60-130        |     |              |       |
| Surrogate: 4-Bromofluorobenzene   | 82.3   |                    | ug/L  |                  | 103  | 50-140        |     |              |       |



#### **Qualifier Notes:**

None

Sample Data Revisions None

#### Work Order Revisions / Comments:

None

#### **Other Report Notes:**

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference.

| <b>C</b> PARACE<br>LABORATORIES                                           | BORATORIES LTD.                    |            |               |                   |                              |          |       |               | 3 ()<br>P | Ottawa,<br>p: 1-800 | 19 St.<br>Onta<br>)-749- | Laurent Blvd.<br>rio K1G 4J8<br>1947<br>aracellabs.com |     | (L                                       | n of Cus<br>ab Use On<br>123: | ly) É  |
|---------------------------------------------------------------------------|------------------------------------|------------|---------------|-------------------|------------------------------|----------|-------|---------------|-----------|---------------------|--------------------------|--------------------------------------------------------|-----|------------------------------------------|-------------------------------|--------|
| Chient Name: Paterson Group                                               |                                    |            |               | Project Referen   | ce: Prin                     |          |       | _             |           |                     | _                        |                                                        |     | Pag                                      | e ] of                        | 1      |
| Connact Name: Mark D'Arry                                                 |                                    |            |               | Quote #           | TEAL                         | 88       |       | -             | _         | _                   | _                        |                                                        |     |                                          | round 7                       | lime:  |
| Address 154 Colonnade Rd. 5.                                              |                                    |            |               | PO# 276           | 11                           | -        | -     |               |           | -                   | -                        |                                                        | X11 | Day                                      | C 3 L                         |        |
| Telenhouse ( >                                                            |                                    |            |               | Email Address:    |                              | 7        |       | -             | -         | _                   |                          |                                                        | 021 | Dav                                      | 16                            | Regula |
| Telephone: 613-226-738                                                    |                                    |            |               | md                | arcy@                        | Pater    | sch   | 900           | pup       | .ca                 |                          |                                                        | 1   | Require                                  |                               | Regula |
| Criteria: O. Reg. 153/04 (As Amended) Table                               | DRSC Filing                        | 10. Re     | g. 558/0      | 0 DPWQO D         | CCME II S                    | UB (St   | (mo   | D S           | UB (S     | Sanitar             | y) M                     | unicipality:                                           | 1   |                                          |                               |        |
| Matrix Type: S (Soil/Sed.) GW (Ground Water) SW (Surface V                | Water) SS (Storm?                  | Sanitary 3 | Sewer) P      | (Paint) A (Air) O | (Other)                      |          | quire |               |           |                     | 14                       |                                                        |     | anna an |                               |        |
| Paracel Order Number:                                                     |                                    | 1          | 1 27          | 1                 |                              |          |       |               | 1         | 1.0                 | 1                        | 1 1                                                    |     |                                          |                               |        |
| 1937292                                                                   | Xi.                                | Air Volume | of Containers | Sampl             | PHCs F1-F4+BTEX              |          |       | Metals by ICP |           | (S                  |                          |                                                        |     |                                          |                               |        |
| Sample ID/Location Name                                                   | Matrix                             | Air '      | Jo #          | Date              | Time                         | HCs      | VOCS  | PAHs          | details.  | Fig                 | B (HWS)                  |                                                        |     |                                          |                               |        |
| 1 BHIO-GWI                                                                | GW                                 |            | Z             | Sept 9 Zord       | THIL                         | 4        | X     | 4             | 2         | E O                 | 3                        |                                                        | -   |                                          |                               |        |
| -2 BHII-GWI                                                               |                                    |            |               | 4                 |                              |          | V     | _             | +         | +                   | $\vdash$                 |                                                        | -   |                                          | _                             | _      |
| 3 BHIZ- GWI                                                               |                                    |            | H             |                   |                              | +        | V     | -             | +         | -                   | H                        |                                                        | -   |                                          |                               |        |
| 4 BH13-GW1                                                                | 4                                  |            | 6             | 6                 |                              | +        | 1     | +             | +         | -                   | $\vdash$                 |                                                        |     |                                          |                               |        |
| 5                                                                         |                                    |            |               |                   |                              | +        | X     | +             | +         | +                   | Н                        |                                                        | -   |                                          |                               |        |
| 6                                                                         |                                    |            |               |                   |                              | +        | +     | ╉             | +         | +                   | $\square$                |                                                        |     |                                          |                               |        |
| 7                                                                         |                                    |            |               |                   |                              | +        | +     | +             | +         | +                   |                          |                                                        | _   |                                          |                               |        |
| 8                                                                         |                                    |            |               |                   |                              | +        | +     | +             | +         | +                   |                          |                                                        |     |                                          |                               |        |
| 9                                                                         |                                    |            |               |                   |                              | ++       | +     | ╉             | +         | -                   |                          | _                                                      |     |                                          |                               |        |
| 10                                                                        |                                    |            |               |                   |                              | +        | +     | +             | +         | -                   | _                        | _                                                      |     |                                          |                               |        |
| omments:                                                                  |                                    |            |               |                   |                              |          | 1     |               |           |                     |                          |                                                        |     |                                          |                               |        |
| linquished By (Sign): AMDaucatt<br>Inquished By (Print): Nicholas Ducette | Received<br>Date/Tins<br>Temperatu | 09         |               | Trave<br>19 4     | Receive<br>Date/Ti<br>Temper | M.<br>mc | 4     | 6/9.          | 19        | BA                  | V                        | Verified                                               | Mat | Method of I                              |                               | 1      |



RELIABLE.

# Certificate of Analysis

# **Paterson Group Consulting Engineers**

154 Colonnade Road South Nepean, ON K2E 7J5 Attn: Mark D'Arcy

Client PO: 27694 Project: PE4588 Custody: 123209

Report Date: 12-Sep-2019 Order Date: 11-Sep-2019

Revised Report

Order #: 1937355

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID **Client ID** 1937355-01 BH11-GW1

Approved By:

Mark Fix

Mark Foto, M.Sc. Lab Supervisor

Any use of these results implies your agreement that our total liability in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.



Order #: 1937355

Report Date: 12-Sep-2019 Order Date: 11-Sep-2019

Project Description: PE4588

## **Analysis Summary Table**

| Analysis                   | Method Reference/Description | Extraction Date | Analysis Date |
|----------------------------|------------------------------|-----------------|---------------|
| REG 153: VOCs by P&T GC/MS | EPA 624 - P&T GC-MS          | 12-Sep-19       | 12-Sep-19     |



Report Date: 12-Sep-2019

Order Date: 11-Sep-2019

| r                                     | Client ID:<br>Sample Date:<br>Sample ID: | BH11-GW1<br>09-Sep-19 09:00<br>1937355-01 | -<br>-<br>- |   | -<br>-<br>- |
|---------------------------------------|------------------------------------------|-------------------------------------------|-------------|---|-------------|
| Volatiles                             | MDL/Units                                | Water                                     | -           | - | -           |
| Acetone                               | 5.0 ug/L                                 | <5.0                                      | -           |   | _           |
| Benzene                               | 0.5 ug/L                                 | <0.5                                      |             |   |             |
| Bromodichloromethane                  | 0.5 ug/L                                 | <0.5                                      | -           | - |             |
| Bromoform                             | 0.5 ug/L                                 | <0.5                                      | -           | - | -           |
| Bromomethane                          | 0.5 ug/L                                 | <0.5                                      |             | - |             |
| Carbon Tetrachloride                  | 0.2 ug/L                                 | <0.2                                      |             | - |             |
| Chlorobenzene                         | 0.5 ug/L                                 | <0.2                                      | -           |   |             |
| Chloroform                            | 0.5 ug/L                                 | 15.0                                      | -           |   |             |
| Dibromochloromethane                  | 0.5 ug/L                                 | <0.5                                      |             | - |             |
| Dichlorodifluoromethane               | 1.0 ug/L                                 | <1.0                                      | -           | - | -           |
| 1,2-Dichlorobenzene                   | 0.5 ug/L                                 | <0.5                                      | -           | - |             |
| 1,3-Dichlorobenzene                   | 0.5 ug/L                                 | <0.5                                      | -           |   |             |
| 1,4-Dichlorobenzene                   | 0.5 ug/L                                 | <0.5                                      |             | - |             |
| 1,1-Dichloroethane                    | 0.5 ug/L                                 | <0.5                                      | -           | - | -           |
| 1,2-Dichloroethane                    | 0.5 ug/L                                 |                                           | -           | - | -           |
| · · · · · · · · · · · · · · · · · · · | 0.5 ug/L                                 | <0.5                                      | -           |   | -           |
| 1,1-Dichloroethylene                  | 0.5 ug/L                                 | <0.5                                      | -           | - | -           |
| cis-1,2-Dichloroethylene              | 0.5 ug/L                                 | <0.5                                      | -           | - | -           |
| trans-1,2-Dichloroethylene            | 0.5 ug/L                                 | <0.5                                      | -           | - | -           |
| 1,2-Dichloropropane                   | 0.5 ug/L                                 | <0.5                                      | -           | - | -           |
| cis-1,3-Dichloropropylene             | 0.5 ug/L                                 | <0.5                                      | -           | - | -           |
| trans-1,3-Dichloropropylene           | 0.5 ug/L                                 | <0.5                                      | -           | - | -           |
| 1,3-Dichloropropene, total            | 0.5 ug/L                                 | <0.5                                      | -           | - | -           |
| Ethylbenzene                          | -                                        | <0.5                                      | -           | - | -           |
| Ethylene dibromide (dibromoethan      | 0.2 ug/L<br>1.0 ug/L                     | <0.2                                      | -           | - | -           |
| Hexane                                | -                                        | <1.0                                      | -           | - | -           |
| Methyl Ethyl Ketone (2-Butanone)      | 5.0 ug/L                                 | <5.0                                      | -           | - | -           |
| Methyl Isobutyl Ketone                | 5.0 ug/L                                 | <5.0                                      | -           | - | -           |
| Methyl tert-butyl ether               | 2.0 ug/L                                 | <2.0                                      | -           | - | -           |
| Methylene Chloride                    | 5.0 ug/L                                 | <5.0                                      | -           | - | -           |
| Styrene                               | 0.5 ug/L                                 | <0.5                                      | -           | - | -           |
| 1,1,1,2-Tetrachloroethane             | 0.5 ug/L                                 | <0.5                                      | -           | - | -           |
| 1,1,2,2-Tetrachloroethane             | 0.5 ug/L                                 | <0.5                                      | -           | - | -           |
| Tetrachloroethylene                   | 0.5 ug/L                                 | <0.5                                      | -           | - | -           |
| Toluene                               | 0.5 ug/L                                 | <0.5                                      | -           | - | -           |
| 1,1,1-Trichloroethane                 | 0.5 ug/L                                 | <0.5                                      | -           | - | -           |



## Order #: 1937355

Report Date: 12-Sep-2019 Order Date: 11-Sep-2019

|                        |              | <b>B</b>        | 1 |   |   |
|------------------------|--------------|-----------------|---|---|---|
|                        | Client ID:   |                 | - | - | - |
|                        | Sample Date: | 09-Sep-19 09:00 | - | - | - |
|                        | Sample ID:   | 1937355-01      | - | - | - |
|                        | MDL/Units    | Water           | - | - | - |
| 1,1,2-Trichloroethane  | 0.5 ug/L     | <0.5            | - | - | - |
| Trichloroethylene      | 0.5 ug/L     | <0.5            | - | - | - |
| Trichlorofluoromethane | 1.0 ug/L     | <1.0            | - | - | - |
| Vinyl chloride         | 0.5 ug/L     | <0.5            | - | - | - |
| m,p-Xylenes            | 0.5 ug/L     | <0.5            | - | - | - |
| o-Xylene               | 0.5 ug/L     | <0.5            | - | - | - |
| Xylenes, total         | 0.5 ug/L     | <0.5            | - | - | - |
| 4-Bromofluorobenzene   | Surrogate    | 99.2%           | - | - | - |
| Dibromofluoromethane   | Surrogate    | 109%            | - | - | - |
| Toluene-d8             | Surrogate    | 98.6%           | - | - | - |



Order #: 1937355

Report Date: 12-Sep-2019 Order Date: 11-Sep-2019

Project Description: PE4588

# Method Quality Control: Blank

| Analyte                           | Result | Reporting<br>Limit | Units | Source<br>Result | %REC | %REC<br>Limit | RPD | RPD<br>Limit | Notes |
|-----------------------------------|--------|--------------------|-------|------------------|------|---------------|-----|--------------|-------|
| Volatiles                         |        |                    |       |                  |      |               |     |              |       |
| Acetone                           | ND     | 5.0                | ug/L  |                  |      |               |     |              |       |
| Benzene                           | ND     | 0.5                | ug/L  |                  |      |               |     |              |       |
| Bromodichloromethane              | ND     | 0.5                | ug/L  |                  |      |               |     |              |       |
| Bromoform                         | ND     | 0.5                | ug/L  |                  |      |               |     |              |       |
| Bromomethane                      | ND     | 0.5                | ug/L  |                  |      |               |     |              |       |
| Carbon Tetrachloride              | ND     | 0.2                | ug/L  |                  |      |               |     |              |       |
| Chlorobenzene                     | ND     | 0.5                | ug/L  |                  |      |               |     |              |       |
| Chloroform                        | ND     | 0.5                | ug/L  |                  |      |               |     |              |       |
| Dibromochloromethane              | ND     | 0.5                | ug/L  |                  |      |               |     |              |       |
| Dichlorodifluoromethane           | ND     | 1.0                | ug/L  |                  |      |               |     |              |       |
| 1.2-Dichlorobenzene               | ND     | 0.5                | ug/L  |                  |      |               |     |              |       |
| 1.3-Dichlorobenzene               | ND     | 0.5                | ug/L  |                  |      |               |     |              |       |
| 1,4-Dichlorobenzene               | ND     | 0.5                | ug/L  |                  |      |               |     |              |       |
| 1,1-Dichloroethane                | ND     | 0.5                | ug/L  |                  |      |               |     |              |       |
| 1,2-Dichloroethane                | ND     | 0.5                | ug/L  |                  |      |               |     |              |       |
| 1,1-Dichloroethylene              | ND     | 0.5                | ug/L  |                  |      |               |     |              |       |
|                                   | ND     | 0.5                |       |                  |      |               |     |              |       |
| cis-1,2-Dichloroethylene          | ND     |                    | ug/L  |                  |      |               |     |              |       |
| trans-1,2-Dichloroethylene        |        | 0.5                | ug/L  |                  |      |               |     |              |       |
| 1,2-Dichloropropane               | ND     | 0.5                | ug/L  |                  |      |               |     |              |       |
| cis-1,3-Dichloropropylene         | ND     | 0.5                | ug/L  |                  |      |               |     |              |       |
| trans-1,3-Dichloropropylene       | ND     | 0.5                | ug/L  |                  |      |               |     |              |       |
| 1,3-Dichloropropene, total        | ND     | 0.5                | ug/L  |                  |      |               |     |              |       |
| Ethylbenzene                      | ND     | 0.5                | ug/L  |                  |      |               |     |              |       |
| Ethylene dibromide (dibromoethane | ND     | 0.2                | ug/L  |                  |      |               |     |              |       |
| Hexane                            | ND     | 1.0                | ug/L  |                  |      |               |     |              |       |
| Methyl Ethyl Ketone (2-Butanone)  | ND     | 5.0                | ug/L  |                  |      |               |     |              |       |
| Methyl Isobutyl Ketone            | ND     | 5.0                | ug/L  |                  |      |               |     |              |       |
| Methyl tert-butyl ether           | ND     | 2.0                | ug/L  |                  |      |               |     |              |       |
| Methylene Chloride                | ND     | 5.0                | ug/L  |                  |      |               |     |              |       |
| Styrene                           | ND     | 0.5                | ug/L  |                  |      |               |     |              |       |
| 1,1,1,2-Tetrachloroethane         | ND     | 0.5                | ug/L  |                  |      |               |     |              |       |
| 1,1,2,2-Tetrachloroethane         | ND     | 0.5                | ug/L  |                  |      |               |     |              |       |
| Tetrachloroethylene               | ND     | 0.5                | ug/L  |                  |      |               |     |              |       |
| Toluene                           | ND     | 0.5                | ug/L  |                  |      |               |     |              |       |
| 1,1,1-Trichloroethane             | ND     | 0.5                | ug/L  |                  |      |               |     |              |       |
| 1,1,2-Trichloroethane             | ND     | 0.5                | ug/L  |                  |      |               |     |              |       |
| Trichloroethylene                 | ND     | 0.5                | ug/L  |                  |      |               |     |              |       |
| Trichlorofluoromethane            | ND     | 1.0                | ug/L  |                  |      |               |     |              |       |
| Vinyl chloride                    | ND     | 0.5                | ug/L  |                  |      |               |     |              |       |
| m,p-Xylenes                       | ND     | 0.5                | ug/L  |                  |      |               |     |              |       |
| o-Xylene                          | ND     | 0.5                | ug/L  |                  |      |               |     |              |       |
| Xylenes, total                    | ND     | 0.5                | ug/L  |                  |      |               |     |              |       |
| Surrogate: 4-Bromofluorobenzene   | 81.2   |                    | ug/L  |                  | 102  | 50-140        |     |              |       |
| Surrogate: Dibromofluoromethane   | 73.4   |                    | ug/L  |                  | 91.7 | 50-140        |     |              |       |
| Surrogate: Toluene-d8             | 75.9   |                    | ug/L  |                  | 94.9 | 50-140        |     |              |       |
| <b>5</b>                          |        |                    | 5     |                  | -    | -             |     |              |       |



Order #: 1937355

Report Date: 12-Sep-2019 Order Date: 11-Sep-2019

Sider Date: 11-Sep-2019

Project Description: PE4588

# Method Quality Control: Duplicate

| -                                        |          | Reporting  |              | Source   |      | %REC             |      | RPD      |       |
|------------------------------------------|----------|------------|--------------|----------|------|------------------|------|----------|-------|
| Analyte                                  | Result   | Limit      | Units        | Result   | %REC | Limit            | RPD  | Limit    | Notes |
| Volatiles                                |          |            |              |          |      |                  |      |          |       |
| Acetone                                  | ND       | 5.0        | ug/L         | ND       |      |                  |      | 30       |       |
| Benzene                                  | ND       | 0.5        | ug/L         | ND       |      |                  |      | 30       |       |
| Bromodichloromethane                     | ND       | 0.5        | ug/L         | ND       |      |                  |      | 30       |       |
| Bromoform                                | ND       | 0.5        | ug/L         | ND       |      |                  |      | 30       |       |
| Bromomethane                             | ND       | 0.5        | ug/L         | ND       |      |                  |      | 30       |       |
| Carbon Tetrachloride                     | ND       | 0.2        | ug/L         | ND       |      |                  |      | 30       |       |
| Chlorobenzene                            | ND       | 0.5        | ug/L         | ND       |      |                  |      | 30       |       |
| Chloroform                               | ND       | 0.5        | ug/L         | ND       |      |                  |      | 30       |       |
| Dibromochloromethane                     | ND       | 0.5        | ug/L         | ND       |      |                  |      | 30       |       |
| Dichlorodifluoromethane                  | ND       | 1.0        | ug/L         | ND       |      |                  |      | 30       |       |
| 1,2-Dichlorobenzene                      | ND       | 0.5        | ug/L         | ND       |      |                  |      | 30       |       |
| 1,3-Dichlorobenzene                      | ND       | 0.5        | ug/L         | ND       |      |                  |      | 30       |       |
| 1,4-Dichlorobenzene                      | ND       | 0.5        | ug/L         | ND       |      |                  |      | 30       |       |
| 1,1-Dichloroethane<br>1.2-Dichloroethane | ND<br>ND | 0.5<br>0.5 | ug/L         | ND<br>ND |      |                  |      | 30<br>30 |       |
| 1,2-Dichloroethane                       | ND       | 0.5<br>0.5 | ug/L<br>ug/L | ND       |      |                  |      | 30<br>30 |       |
| cis-1,2-Dichloroethylene                 | ND       | 0.5        | ug/L<br>ug/L | ND       |      |                  |      | 30       |       |
| trans-1,2-Dichloroethylene               | ND       | 0.5        | ug/L         | ND       |      |                  |      | 30       |       |
| 1,2-Dichloropropane                      | ND       | 0.5        | ug/L         | ND       |      |                  |      | 30       |       |
| cis-1,3-Dichloropropylene                | ND       | 0.5        | ug/L         | ND       |      |                  |      | 30       |       |
| trans-1,3-Dichloropropylene              | ND       | 0.5        | ug/L         | ND       |      |                  |      | 30       |       |
| Ethylbenzene                             | ND       | 0.5        | ug/L         | ND       |      |                  |      | 30       |       |
| Ethylene dibromide (dibromoethane        | ND       | 0.2        | ug/L         | ND       |      |                  |      | 30       |       |
| Hexane                                   | ND       | 1.0        | ug/L         | ND       |      |                  |      | 30       |       |
| Methyl Ethyl Ketone (2-Butanone)         | ND       | 5.0        | ug/L         | ND       |      |                  |      | 30       |       |
| Methyl Isobutyl Ketone                   | ND       | 5.0        | ug/L         | ND       |      |                  |      | 30       |       |
| Methyl tert-butyl ether                  | ND       | 2.0        | ug/L         | ND       |      |                  |      | 30       |       |
| Methylene Chloride                       | 6.69     | 5.0        | ug/L         | 8.16     |      |                  | 19.8 | 30       |       |
| Styrene                                  | ND       | 0.5        | ug/L         | ND       |      |                  |      | 30       |       |
| 1,1,1,2-Tetrachloroethane                | ND       | 0.5        | ug/L         | ND       |      |                  |      | 30       |       |
| 1,1,2,2-Tetrachloroethane                | ND       | 0.5        | ug/L         | ND       |      |                  |      | 30       |       |
| Tetrachloroethylene                      | ND       | 0.5        | ug/L         | ND       |      |                  |      | 30       |       |
| Toluene                                  | ND       | 0.5        | ug/L         | ND       |      |                  |      | 30       |       |
| 1,1,1-Trichloroethane                    | ND       | 0.5        | ug/L         | ND       |      |                  |      | 30       |       |
| 1,1,2-Trichloroethane                    | ND       | 0.5        | ug/L         | ND       |      |                  |      | 30       |       |
| Trichloroethylene                        | ND<br>ND | 0.5<br>1.0 | ug/L         | ND<br>ND |      |                  |      | 30<br>30 |       |
| Trichlorofluoromethane<br>Vinyl chloride | ND       | 1.0<br>0.5 | ug/L         | ND       |      |                  |      | 30<br>30 |       |
| m,p-Xylenes                              | ND       | 0.5<br>0.5 | ug/L<br>ug/L | ND       |      |                  |      | 30       |       |
| o-Xylene                                 | ND       | 0.5<br>0.5 | ug/L<br>ug/L | ND       |      |                  |      | 30       |       |
| Surrogate: 4-Bromofluorobenzene          | 80.8     | 0.0        | ug/L<br>ug/L |          | 101  | 50-140           |      | 00       |       |
| Surrogate: Dibromofluoromethane          | 80.1     |            | ug/L<br>ug/L |          | 100  | 50-140<br>50-140 |      |          |       |
| Surrogate: Toluene-d8                    | 77.5     |            |              |          | 96.9 | 50-140<br>50-140 |      |          |       |
| Sunogale. Toluene-uo                     | 77.5     |            | ug/L         |          | 30.3 | 50-140           |      |          |       |



# Method Quality Control: Spike

Report Date: 12-Sep-2019

Order Date: 11-Sep-2019

| Analyte                           | Result | Reporting<br>Limit | Units        | Source<br>Result | %REC                | %REC<br>Limit    | RPD | RPD<br>Limit | Notes |
|-----------------------------------|--------|--------------------|--------------|------------------|---------------------|------------------|-----|--------------|-------|
| Volatiles                         |        |                    |              |                  |                     |                  |     |              |       |
| Acetone                           | 87.3   | 5.0                | ug/L         |                  | 87.3                | 50-140           |     |              |       |
| Benzene                           | 29.5   | 0.5                | ug/L         |                  | 73.7                | 60-130           |     |              |       |
| Bromodichloromethane              | 28.7   | 0.5                | ug/L         |                  | 71.8                | 60-130           |     |              |       |
| Bromoform                         | 37.1   | 0.5                | ug/L         |                  | 92.8                | 60-130           |     |              |       |
| Bromomethane                      | 34.1   | 0.5                | ug/L         |                  | 85.4                | 50-140           |     |              |       |
| Carbon Tetrachloride              | 27.6   | 0.2                | ug/L         |                  | 68.9                | 60-130           |     |              |       |
| Chlorobenzene                     | 35.1   | 0.5                | ug/L         |                  | 87.7                | 60-130           |     |              |       |
| Chloroform                        | 43.6   | 0.5                | ug/L         |                  | 109                 | 60-130           |     |              |       |
| Dibromochloromethane              | 34.6   | 0.5                | ug/L         |                  | 86.6                | 60-130           |     |              |       |
| Dichlorodifluoromethane           | 43.8   | 1.0                | ug/L         |                  | 110                 | 50-140           |     |              |       |
| 1,2-Dichlorobenzene               | 31.2   | 0.5                | ug/L         |                  | 78.1                | 60-130           |     |              |       |
| 1,3-Dichlorobenzene               | 30.4   | 0.5                | ug/L         |                  | 76.0                | 60-130           |     |              |       |
| 1,4-Dichlorobenzene               | 31.1   | 0.5                | ug/L         |                  | 77.8                | 60-130           |     |              |       |
| 1.1-Dichloroethane                | 48.7   | 0.5                | ug/L         |                  | 122                 | 60-130           |     |              |       |
| 1.2-Dichloroethane                | 40.3   | 0.5                | ug/L         |                  | 101                 | 60-130           |     |              |       |
| 1,1-Dichloroethylene              | 45.0   | 0.5                | ug/L         |                  | 113                 | 60-130           |     |              |       |
| cis-1,2-Dichloroethylene          | 39.3   | 0.5                | ug/L         |                  | 98.2                | 60-130           |     |              |       |
| trans-1,2-Dichloroethylene        | 44.2   | 0.5                | ug/L         |                  | 110                 | 60-130           |     |              |       |
| 1,2-Dichloropropane               | 38.2   | 0.5                | ug/L         |                  | 95.4                | 60-130           |     |              |       |
| cis-1,3-Dichloropropylene         | 48.8   | 0.5                | ug/L         |                  | 122                 | 60-130           |     |              |       |
| trans-1,3-Dichloropropylene       | 30.5   | 0.5                | ug/L         |                  | 76.3                | 60-130           |     |              |       |
| Ethylbenzene                      | 35.4   | 0.5                | ug/L         |                  | 88.6                | 60-130           |     |              |       |
| Ethylene dibromide (dibromoethane | 36.0   | 0.2                | ug/L         |                  | 90.0                | 60-130           |     |              |       |
| Hexane                            | 42.9   | 1.0                | ug/L         |                  | 107                 | 60-130           |     |              |       |
| Methyl Ethyl Ketone (2-Butanone)  | 130    | 5.0                | ug/L         |                  | 130                 | 50-140           |     |              |       |
| Methyl Isobutyl Ketone            | 67.2   | 5.0                | ug/L         |                  | 67.2                | 50-140           |     |              |       |
| Methyl tert-butyl ether           | 97.4   | 2.0                | ug/L         |                  | 97.4                | 50-140           |     |              |       |
| Methylene Chloride                | 44.1   | 5.0                | ug/L         |                  | 110                 | 60-130           |     |              |       |
| Styrene                           | 36.1   | 0.5                | ug/L         |                  | 90.4                | 60-130           |     |              |       |
| 1,1,1,2-Tetrachloroethane         | 35.7   | 0.5                | ug/L         |                  | 89.2                | 60-130           |     |              |       |
| 1,1,2,2-Tetrachloroethane         | 48.6   | 0.5                | ug/L         |                  | 121                 | 60-130           |     |              |       |
| Tetrachloroethylene               | 34.2   | 0.5                | ug/L         |                  | 85.4                | 60-130           |     |              |       |
| Toluene                           | 34.7   | 0.5                | ug/L         |                  | 86.7                | 60-130           |     |              |       |
| 1,1,1-Trichloroethane             | 26.3   | 0.5                | ug/L         |                  | 65.7                | 60-130           |     |              |       |
| 1,1,2-Trichloroethane             | 27.6   | 0.5                | ug/L         |                  | 69.1                | 60-130           |     |              |       |
| Trichloroethylene                 | 33.8   | 0.5                | ug/L         |                  | 84.5                | 60-130           |     |              |       |
| Trichlorofluoromethane            | 40.7   | 1.0                | ug/L         |                  | 102                 | 60-130           |     |              |       |
| Vinyl chloride                    | 40.7   | 0.5                | ug/L         |                  | 101                 | 50-140           |     |              |       |
| m,p-Xylenes                       | 71.7   | 0.5                | ug/L         |                  | 89.6                | 60-140           |     |              |       |
| o-Xylene                          | 37.6   | 0.5                | ug/L<br>ug/L |                  | 94.0                | 60-130<br>60-130 |     |              |       |
| Surrogate: 4-Bromofluorobenzene   | 71.4   | 0.5                | ug/L<br>ug/L |                  | 94.0<br><i>89.2</i> | 50-130<br>50-140 |     |              |       |
| Sanogale. 4-Diomonuorobenzene     | 71.4   |                    | uy/L         |                  | 03.2                | 50-140           |     |              |       |



#### **Qualifier Notes:**

None

Sample Data Revisions None

#### Work Order Revisions / Comments:

only one VOC received

#### **Other Report Notes:**

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference. Report Date: 12-Sep-2019 Order Date: 11-Sep-2019 Project Description: PE4588

| 6                      | PARACEL                                                 | BE         |            |                                         | Paracel I                    |            |                 |        |      |               | -2<br>iw/ | a, On<br>00-74 | e<br>it. Laurent Blvd.<br>tario K1G 4J8<br>9-1947<br>Paracellabs.com |            |       | Lab Use  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------------------|---------------------------------------------------------|------------|------------|-----------------------------------------|------------------------------|------------|-----------------|--------|------|---------------|-----------|----------------|----------------------------------------------------------------------|------------|-------|----------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                        |                                                         | <i>D</i> , |            |                                         | 10 1 N 1                     | <u> </u>   |                 |        |      |               | 1         |                |                                                                      |            | Pa    | ge       | of          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Client Na<br>Contact 1 | Faterson Grup                                           |            |            |                                         | Project Reference<br>Quote # | PE 44      | \$88            | _      |      |               |           |                |                                                                      | _          | Turn  | aroun    | d Time      | e:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Address:               | FLACK 11 Horas                                          |            |            |                                         |                              | A. /       |                 |        |      |               |           |                |                                                                      |            | Day   |          | <b>D</b> 3I | Day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| nuuress.               | 154 Colonade Red, 1                                     | Lepean.    | , Un       | faric                                   | Emil Addeses                 | 94         |                 | ~      |      |               |           |                |                                                                      | - 12       | Day   |          | n Pe        | gular                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| l'elephon              | 617-226-7381                                            | /          |            |                                         | Linuii Audress.              | mean       | 56              | 2 P    | out  | en            | 5         | 500            | up.ca                                                                |            | Requi | red      | LI KC       | guiai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Criteria               | : 🖬 0. Reg. 153/04 (As Amended) Table 🔄 🗆 RS            | C Filing C | O. Reg     | s. 558/00                               | D DPWQO D                    | CCME I SU  | JB (Sto         | om)    | D S  | UB            | (Sanit    | lary)          | Municipality:                                                        | Duit       |       |          |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                        | ype: \$ (Soil/Sed.) GW (Ground Water) SW (Surface Water |            |            |                                         |                              | -          | 1               |        | ed A |               |           |                |                                                                      |            |       | -        |             | and the local division of the local division |
|                        | l Order Number:                                         |            |            | 1                                       | T                            |            | -               | -<br>I |      |               |           |                |                                                                      |            | -     |          | T           | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                        | 1937355                                                 | rix        | Air Volume | of Containers                           | Sample                       | Taken      | PHCs F1-F4+BTEX | 8      |      | Metals by ICP |           |                | (SX)                                                                 |            |       |          |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                        | Sample ID/Location Name                                 | Matrix     | Air        | # of                                    | Date                         | Time       | PHC             | VOCS   | PAHs | Metal         | Hg        | CrVI           | B (HWS)                                                              |            |       |          |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1                      | 8H11 - Gwi                                              | GW         |            | 1                                       | Syp+9/19                     |            |                 | V      |      |               |           |                |                                                                      |            |       |          | -           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2                      |                                                         |            |            |                                         |                              |            |                 |        |      |               |           |                |                                                                      |            |       |          |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3                      |                                                         |            |            |                                         |                              |            |                 |        |      |               |           |                |                                                                      |            |       |          |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4                      |                                                         |            |            |                                         |                              |            |                 |        |      |               |           |                |                                                                      |            |       |          |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5                      |                                                         |            |            |                                         |                              |            |                 |        |      |               |           |                |                                                                      |            |       |          |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 6                      |                                                         |            |            |                                         |                              |            |                 |        |      |               |           |                |                                                                      |            |       |          |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 7                      |                                                         | _          |            |                                         |                              |            | -               |        |      |               |           | _              |                                                                      |            |       |          |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 8                      |                                                         | _          |            |                                         |                              |            |                 |        |      |               | _         | _              |                                                                      | _          |       |          |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 9                      |                                                         |            |            |                                         |                              |            |                 |        |      |               | _         | _              | _                                                                    | -          |       |          |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10<br>Comme<br>Only    | NOC COLEINED                                            |            |            |                                         |                              |            |                 |        |      |               |           |                |                                                                      |            |       | of Deliv | 1           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                        | hed By (Sign): Maceuatte                                | Received   | l by Driv  |                                         | Trout                        | Roceiv     | ed at L         | ab:    | ivn  | ١             |           | Dol            | (mai Verili                                                          | ed By:     | Bla   | M        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                        | hed By (Print): Nicholas Doueotte                       | Date/Tin   |            | 1/0                                     | 9/19 4                       | 100 Date/T | ime;            | SEP    | -    | 201           | 9         | 0              | 9.50 Date                                                            | Fime: 0    | sTill | 19       | 17:4        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| )ate/Tim               | ¢:                                                      | Tempera    | ture: /    | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |                              | ZT. Tempe  | rature:         | 88.    | .61  | °C            |           |                | pH Ve                                                                | rified [ ] | By:   | NA       |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

Chain of Custody (Env) - Rev 0.7 Feb. 2016



RELIABLE.

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

# Certificate of Analysis

Paterson Group Consulting Engineers

154 Colonnade Road South Nepean, ON K2E 7J5 Attn: Mike Beaudoin

Client PO: 26440 Project: PE4588 Custody: 122132

Report Date: 28-May-2019 Order Date: 22-May-2019

Order #: 1921256

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

| Paracel ID | Client ID |
|------------|-----------|
| 1921256-01 | BH1-SS4   |
| 1921256-02 | BH2-SS3   |
| 1921256-03 | BH3-AU1   |
| 1921256-04 | BH4-SS2   |
| 1921256-05 | BH5-SS2   |
| 1921256-06 | BH5-SS6   |
| 1921256-07 | BH6-SS8   |

Approved By:

Mark Foto

Mark Foto, M.Sc. Lab Supervisor

Any use of these results implies your agreement that our total liability in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.



## **Analysis Summary Table**

| Analysis                        | Method Reference/Description          | Extraction Date | Analysis Date |
|---------------------------------|---------------------------------------|-----------------|---------------|
| BTEX by P&T GC-MS               | EPA 8260 - P&T GC-MS                  | 27-May-19       | 28-May-19     |
| Chromium, hexavalent - soil     | MOE E3056 - Extraction, colourimetric | 23-May-19       | 27-May-19     |
| Mercury by CVAA                 | EPA 7471B - CVAA, digestion           | 27-May-19       | 27-May-19     |
| PHC F1                          | CWS Tier 1 - P&T GC-FID               | 27-May-19       | 28-May-19     |
| PHCs F2 to F4                   | CWS Tier 1 - GC-FID, extraction       | 23-May-19       | 24-May-19     |
| REG 153: Metals by ICP/MS, soil | EPA 6020 - Digestion - ICP-MS         | 27-May-19       | 27-May-19     |
| REG 153: PAHs by GC-MS          | EPA 8270 - GC-MS, extraction          | 23-May-19       | 24-May-19     |
| REG 153: VOCs by P&T GC/MS      | EPA 8260 - P&T GC-MS                  | 27-May-19       | 28-May-19     |
| Solids, %                       | Gravimetric, calculation              | 24-May-19       | 24-May-19     |

Order #: 1921256 Report Date: 28-May-2019

Order Date: 22-May-2019 Project Description: PE4588



Report Date: 28-May-2019 Order Date: 22-May-2019

|                          | Client ID:    | BH1-SS4         | BH2-SS3         | BH3-AU1         | BH4-SS2         |
|--------------------------|---------------|-----------------|-----------------|-----------------|-----------------|
|                          | Sample Date:  | 16-May-19 09:00 | 16-May-19 09:00 | 16-May-19 09:00 | 16-May-19 09:00 |
|                          | Sample ID:    | 1921256-01      | 1921256-02      | 1921256-03      | 1921256-04      |
|                          | MDL/Units     | Soil            | Soil            | Soil            | Soil            |
| Physical Characteristics |               |                 | 1               | [               | r               |
| % Solids                 | 0.1 % by Wt.  | 79.9            | 80.8            | 86.8            | 78.9            |
| Metals                   |               |                 | 1               | r               | r               |
| Antimony                 | 1.0 ug/g dry  | -               | -               | <1.0            | <1.0            |
| Arsenic                  | 1.0 ug/g dry  | -               | -               | 5.3             | 2.9             |
| Barium                   | 1.0 ug/g dry  | -               | -               | 99.9            | 98.7            |
| Beryllium                | 0.5 ug/g dry  | -               | -               | 0.9             | <0.5            |
| Boron                    | 5.0 ug/g dry  | -               | -               | 9.7             | 7.5             |
| Cadmium                  | 0.5 ug/g dry  | -               | -               | <0.5            | <0.5            |
| Chromium                 | 5.0 ug/g dry  | -               | -               | 38.9            | 27.5            |
| Chromium (VI)            | 0.2 ug/g dry  | -               | -               | <0.2            | <0.2            |
| Cobalt                   | 1.0 ug/g dry  | -               | -               | 12.2            | 6.4             |
| Copper                   | 5.0 ug/g dry  | -               | -               | 27.1            | 19.5            |
| Lead                     | 1.0 ug/g dry  | -               | -               | 10.5            | 13.2            |
| Mercury                  | 0.1 ug/g dry  | -               | -               | <0.1            | <0.1            |
| Molybdenum               | 1.0 ug/g dry  | -               | -               | <1.0            | <1.0            |
| Nickel                   | 5.0 ug/g dry  | -               | -               | 30.3            | 17.2            |
| Selenium                 | 1.0 ug/g dry  | -               | -               | <1.0            | <1.0            |
| Silver                   | 0.3 ug/g dry  | -               | -               | <0.3            | <0.3            |
| Thallium                 | 1.0 ug/g dry  | -               | -               | <1.0            | <1.0            |
| Uranium                  | 1.0 ug/g dry  | -               | -               | <1.0            | <1.0            |
| Vanadium                 | 10.0 ug/g dry | -               | -               | 44.1            | 28.3            |
| Zinc                     | 20.0 ug/g dry | -               | -               | 67.8            | 65.3            |
| Volatiles                |               |                 |                 |                 |                 |
| Benzene                  | 0.02 ug/g dry | <0.02           | <0.02           | -               | -               |
| Ethylbenzene             | 0.05 ug/g dry | <0.05           | <0.05           | -               | -               |
| Toluene                  | 0.05 ug/g dry | <0.05           | <0.05           | -               | -               |
| m,p-Xylenes              | 0.05 ug/g dry | <0.05           | <0.05           | -               | -               |
| o-Xylene                 | 0.05 ug/g dry | <0.05           | <0.05           | -               | -               |
| Xylenes, total           | 0.05 ug/g dry | <0.05           | <0.05           | -               | -               |
| Toluene-d8               | Surrogate     | 94.6%           | 101%            | -               | -               |
| Hydrocarbons             |               |                 |                 |                 |                 |
| F1 PHCs (C6-C10)         | 7 ug/g dry    | <7              | <7              | -               | -               |
| F2 PHCs (C10-C16)        | 4 ug/g dry    | <4              | <4              | -               | -               |
| F3 PHCs (C16-C34)        | 8 ug/g dry    | <8              | <8              | -               | -               |
| F4 PHCs (C34-C50)        | 6 ug/g dry    | <6              | <6              | -               | -               |



Report Date: 28-May-2019 Order Date: 22-May-2019

|                          | Client ID:                 | BH1-SS4                       | BH2-SS3                       | BH3-AU1                       | BH4-SS2                       |
|--------------------------|----------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|
|                          | Sample Date:<br>Sample ID: | 16-May-19 09:00<br>1921256-01 | 16-May-19 09:00<br>1921256-02 | 16-May-19 09:00<br>1921256-03 | 16-May-19 09:00<br>1921256-04 |
|                          | MDL/Units                  | Soil                          | Soil                          | Soil                          | Soil                          |
| Semi-Volatiles           | MDE/Onits                  |                               |                               |                               |                               |
| Acenaphthene             | 0.02 ug/g dry              | -                             | -                             | <0.02                         | -                             |
| Acenaphthylene           | 0.02 ug/g dry              | -                             | -                             | <0.02                         | -                             |
| Anthracene               | 0.02 ug/g dry              | -                             | -                             | <0.02                         | -                             |
| Benzo [a] anthracene     | 0.02 ug/g dry              | -                             | -                             | <0.02                         | -                             |
| Benzo [a] pyrene         | 0.02 ug/g dry              | -                             | -                             | <0.02                         | -                             |
| Benzo [b] fluoranthene   | 0.02 ug/g dry              | -                             | -                             | 0.03                          | -                             |
| Benzo [g,h,i] perylene   | 0.02 ug/g dry              | -                             | -                             | <0.02                         | -                             |
| Benzo [k] fluoranthene   | 0.02 ug/g dry              | -                             | -                             | <0.02                         | -                             |
| Chrysene                 | 0.02 ug/g dry              | -                             | -                             | <0.02                         | -                             |
| Dibenzo [a,h] anthracene | 0.02 ug/g dry              | -                             | -                             | <0.02                         | -                             |
| Fluoranthene             | 0.02 ug/g dry              | -                             | -                             | 0.04                          | -                             |
| Fluorene                 | 0.02 ug/g dry              | -                             | -                             | <0.02                         | -                             |
| Indeno [1,2,3-cd] pyrene | 0.02 ug/g dry              | -                             | -                             | <0.02                         | -                             |
| 1-Methylnaphthalene      | 0.02 ug/g dry              | -                             | -                             | <0.02                         | -                             |
| 2-Methylnaphthalene      | 0.02 ug/g dry              | -                             | -                             | 0.02                          | -                             |
| Methylnaphthalene (1&2)  | 0.04 ug/g dry              | -                             | -                             | <0.04                         | -                             |
| Naphthalene              | 0.01 ug/g dry              | -                             | -                             | <0.01                         | -                             |
| Phenanthrene             | 0.02 ug/g dry              | -                             | -                             | 0.03                          | -                             |
| Pyrene                   | 0.02 ug/g dry              | -                             | -                             | 0.04                          | -                             |
| 2-Fluorobiphenyl         | Surrogate                  | -                             | -                             | 75.8%                         | -                             |
| Terphenyl-d14            | Surrogate                  | -                             | -                             | 92.0%                         | -                             |



Order #: 1921256

Report Date: 28-May-2019 Order Date: 22-May-2019

|                          | Client ID:<br>Sample Date:<br>Sample ID:<br>MDL/Units | BH5-SS2<br>17-May-19 09:00<br>1921256-05<br>Soil | BH5-SS6<br>17-May-19 09:00<br>1921256-06<br>Soil | BH6-SS8<br>17-May-19 09:00<br>1921256-07<br>Soil | -<br>-<br>-<br>- |
|--------------------------|-------------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|------------------|
| Physical Characteristics |                                                       |                                                  | -                                                |                                                  |                  |
| % Solids                 | 0.1 % by Wt.                                          | 78.2                                             | 78.3                                             | 80.6                                             | -                |
| Metals                   | 1.0.ug/g.dm/                                          |                                                  |                                                  |                                                  | T                |
| Antimony                 | 1.0 ug/g dry                                          | -                                                | <1.0                                             | <1.0                                             | -                |
| Arsenic                  | 1.0 ug/g dry                                          | -                                                | 3.1                                              | 2.9                                              | -                |
| Barium                   | 1.0 ug/g dry                                          | -                                                | 78.9                                             | 136                                              | -                |
| Beryllium                | 0.5 ug/g dry                                          | -                                                | <0.5                                             | <0.5                                             | -                |
| Boron                    | 5.0 ug/g dry                                          | -                                                | 6.5                                              | 6.0                                              | -                |
| Cadmium                  | 0.5 ug/g dry                                          | -                                                | <0.5                                             | <0.5                                             | -                |
| Chromium                 | 5.0 ug/g dry                                          | -                                                | 31.1                                             | 55.3                                             | -                |
| Chromium (VI)            | 0.2 ug/g dry                                          | -                                                | <0.2                                             | <0.2                                             | -                |
| Cobalt                   | 1.0 ug/g dry                                          | -                                                | 6.3                                              | 11.5                                             | -                |
| Copper                   | 5.0 ug/g dry                                          | -                                                | 16.0                                             | 25.7                                             | -                |
| Lead                     | 1.0 ug/g dry                                          | -                                                | 31.3                                             | 11.5                                             | -                |
| Mercury                  | 0.1 ug/g dry                                          | -                                                | <0.1                                             | <0.1                                             | -                |
| Molybdenum               | 1.0 ug/g dry                                          | -                                                | <1.0                                             | <1.0                                             | -                |
| Nickel                   | 5.0 ug/g dry                                          | -                                                | 16.3                                             | 28.5                                             | -                |
| Selenium                 | 1.0 ug/g dry                                          | -                                                | <1.0                                             | <1.0                                             | -                |
| Silver                   | 0.3 ug/g dry                                          | -                                                | <0.3                                             | <0.3                                             | -                |
| Thallium                 | 1.0 ug/g dry                                          | -                                                | <1.0                                             | <1.0                                             | -                |
| Uranium                  | 1.0 ug/g dry                                          | -                                                | <1.0                                             | 1.7                                              | -                |
| Vanadium                 | 10.0 ug/g dry                                         | -                                                | 32.0                                             | 53.8                                             | -                |
| Zinc                     | 20.0 ug/g dry                                         | -                                                | 62.9                                             | 68.0                                             | -                |
| Volatiles                | · · ·                                                 |                                                  |                                                  |                                                  | ·                |
| Acetone                  | 0.50 ug/g dry                                         | <0.50                                            | -                                                | -                                                | -                |
| Benzene                  | 0.02 ug/g dry                                         | <0.02                                            | -                                                | -                                                | -                |
| Bromodichloromethane     | 0.05 ug/g dry                                         | <0.05                                            | -                                                | -                                                | -                |
| Bromoform                | 0.05 ug/g dry                                         | <0.05                                            | -                                                | -                                                | -                |
| Bromomethane             | 0.05 ug/g dry                                         | <0.05                                            | -                                                | -                                                | -                |
| Carbon Tetrachloride     | 0.05 ug/g dry                                         | <0.05                                            | -                                                | -                                                | -                |
| Chlorobenzene            | 0.05 ug/g dry                                         | <0.05                                            | -                                                | -                                                | -                |
| Chloroform               | 0.05 ug/g dry                                         | <0.05                                            | -                                                | -                                                | -                |
| Dibromochloromethane     | 0.05 ug/g dry                                         | <0.05                                            | -                                                | -                                                | -                |
| Dichlorodifluoromethane  | 0.05 ug/g dry                                         | <0.05                                            | -                                                | -                                                | -                |
| 1,2-Dichlorobenzene      | 0.05 ug/g dry                                         | <0.05                                            | -                                                | -                                                | -                |
| 1,3-Dichlorobenzene      | 0.05 ug/g dry                                         | <0.05                                            | -                                                | -                                                | -                |



Report Date: 28-May-2019 Order Date: 22-May-2019

| Γ                                | Client ID:<br>Sample Date:<br>Sample ID:<br>MDL/Units | BH5-SS2<br>17-May-19 09:00<br>1921256-05<br>Soil | BH5-SS6<br>17-May-19 09:00<br>1921256-06<br>Soil | BH6-SS8<br>17-May-19 09:00<br>1921256-07<br>Soil | -<br>-<br>-<br>- |
|----------------------------------|-------------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|------------------|
| 1,4-Dichlorobenzene              | 0.05 ug/g dry                                         | <0.05                                            | -                                                | -                                                | -                |
| 1,1-Dichloroethane               | 0.05 ug/g dry                                         | <0.05                                            | -                                                | -                                                | -                |
| 1,2-Dichloroethane               | 0.05 ug/g dry                                         | <0.05                                            | -                                                | -                                                | -                |
| 1,1-Dichloroethylene             | 0.05 ug/g dry                                         | <0.05                                            | -                                                | -                                                | -                |
| cis-1,2-Dichloroethylene         | 0.05 ug/g dry                                         | <0.05                                            | -                                                | -                                                | -                |
| trans-1,2-Dichloroethylene       | 0.05 ug/g dry                                         | <0.05                                            | -                                                | -                                                | -                |
| 1,2-Dichloropropane              | 0.05 ug/g dry                                         | <0.05                                            | -                                                | -                                                | -                |
| cis-1,3-Dichloropropylene        | 0.05 ug/g dry                                         | <0.05                                            | -                                                | -                                                | -                |
| trans-1,3-Dichloropropylene      | 0.05 ug/g dry                                         | <0.05                                            | -                                                | -                                                | -                |
| 1,3-Dichloropropene, total       | 0.05 ug/g dry                                         | <0.05                                            | -                                                | -                                                | -                |
| Ethylbenzene                     | 0.05 ug/g dry                                         | <0.05                                            | -                                                | -                                                | -                |
| Ethylene dibromide (dibromoethar | 0.05 ug/g dry                                         | <0.05                                            | -                                                | -                                                | -                |
| Hexane                           | 0.05 ug/g dry                                         | <0.05                                            | -                                                | -                                                | -                |
| Methyl Ethyl Ketone (2-Butanone) | 0.50 ug/g dry                                         | <0.50                                            | -                                                | -                                                | -                |
| Methyl Isobutyl Ketone           | 0.50 ug/g dry                                         | <0.50                                            | -                                                | -                                                | -                |
| Methyl tert-butyl ether          | 0.05 ug/g dry                                         | <0.05                                            | -                                                | -                                                | -                |
| Methylene Chloride               | 0.05 ug/g dry                                         | <0.05                                            | -                                                | -                                                | -                |
| Styrene                          | 0.05 ug/g dry                                         | <0.05                                            | -                                                | -                                                | -                |
| 1,1,1,2-Tetrachloroethane        | 0.05 ug/g dry                                         | <0.05                                            | -                                                | -                                                | -                |
| 1,1,2,2-Tetrachloroethane        | 0.05 ug/g dry                                         | <0.05                                            | -                                                | -                                                | -                |
| Tetrachloroethylene              | 0.05 ug/g dry                                         | <0.05                                            | -                                                | -                                                | -                |
| Toluene                          | 0.05 ug/g dry                                         | <0.05                                            | -                                                | -                                                | -                |
| 1,1,1-Trichloroethane            | 0.05 ug/g dry                                         | <0.05                                            | -                                                | -                                                | -                |
| 1,1,2-Trichloroethane            | 0.05 ug/g dry                                         | <0.05                                            | -                                                | -                                                | -                |
| Trichloroethylene                | 0.05 ug/g dry                                         | <0.05                                            | -                                                | -                                                | -                |
| Trichlorofluoromethane           | 0.05 ug/g dry                                         | <0.05                                            | -                                                | -                                                | -                |
| Vinyl chloride                   | 0.02 ug/g dry                                         | <0.02                                            | -                                                | -                                                | -                |
| m,p-Xylenes                      | 0.05 ug/g dry                                         | <0.05                                            | -                                                | -                                                | -                |
| o-Xylene                         | 0.05 ug/g dry                                         | <0.05                                            | -                                                | -                                                | -                |
| Xylenes, total                   | 0.05 ug/g dry                                         | <0.05                                            | -                                                | -                                                | -                |
| 4-Bromofluorobenzene             | Surrogate                                             | 102%                                             | -                                                | -                                                | -                |
| Dibromofluoromethane             | Surrogate                                             | 96.8%                                            | -                                                | -                                                | -                |
| Toluene-d8                       | Surrogate                                             | 101%                                             | -                                                | -                                                | -                |
| Benzene                          | 0.02 ug/g dry                                         | -                                                | <0.02                                            | -                                                | -                |
| Ethylbenzene                     | 0.05 ug/g dry                                         | -                                                | <0.05                                            | -                                                | -                |



Order #: 1921256

Report Date: 28-May-2019 Order Date: 22-May-2019

|                          | Client ID:<br>Sample Date:<br>Sample ID: | BH5-SS2<br>17-May-19 09:00<br>1921256-05 | BH5-SS6<br>17-May-19 09:00<br>1921256-06 | BH6-SS8<br>17-May-19 09:00<br>1921256-07 | -<br>-<br>-                           |
|--------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|---------------------------------------|
|                          | MDL/Units<br>0.05 ug/g dry               | Soil                                     | Soil                                     | Soil                                     | -                                     |
| Toluene                  |                                          | -                                        | <0.05                                    | -                                        | -                                     |
| m,p-Xylenes              | 0.05 ug/g dry                            | -                                        | <0.05                                    | -                                        | -                                     |
| o-Xylene                 | 0.05 ug/g dry                            | -                                        | <0.05                                    | -                                        | -                                     |
| Xylenes, total           | 0.05 ug/g dry                            | -                                        | <0.05                                    | -                                        | -                                     |
| Toluene-d8               | Surrogate                                | -                                        | 93.4%                                    | -                                        | -                                     |
| Hydrocarbons             |                                          |                                          | Ĩ                                        | 1                                        | · · · · · · · · · · · · · · · · · · · |
| F1 PHCs (C6-C10)         | 7 ug/g dry                               | -                                        | <7                                       | -                                        | -                                     |
| F2 PHCs (C10-C16)        | 4 ug/g dry                               | -                                        | <4                                       | -                                        | -                                     |
| F3 PHCs (C16-C34)        | 8 ug/g dry                               | -                                        | 19                                       | -                                        | -                                     |
| F4 PHCs (C34-C50)        | 6 ug/g dry                               | -                                        | 21                                       | -                                        | -                                     |
| Semi-Volatiles           |                                          |                                          |                                          |                                          |                                       |
| Acenaphthene             | 0.02 ug/g dry                            | <0.02                                    | -                                        | <0.02                                    | -                                     |
| Acenaphthylene           | 0.02 ug/g dry                            | <0.02                                    | -                                        | <0.02                                    | -                                     |
| Anthracene               | 0.02 ug/g dry                            | 0.04                                     | -                                        | <0.02                                    | -                                     |
| Benzo [a] anthracene     | 0.02 ug/g dry                            | 0.10                                     | -                                        | 0.04                                     | -                                     |
| Benzo [a] pyrene         | 0.02 ug/g dry                            | 0.08                                     | -                                        | 0.03                                     | -                                     |
| Benzo [b] fluoranthene   | 0.02 ug/g dry                            | 0.12                                     | -                                        | 0.05                                     | -                                     |
| Benzo [g,h,i] perylene   | 0.02 ug/g dry                            | 0.05                                     | -                                        | 0.04                                     | -                                     |
| Benzo [k] fluoranthene   | 0.02 ug/g dry                            | 0.06                                     | -                                        | 0.05                                     | -                                     |
| Chrysene                 | 0.02 ug/g dry                            | 0.12                                     | -                                        | 0.04                                     | -                                     |
| Dibenzo [a,h] anthracene | 0.02 ug/g dry                            | <0.02                                    | -                                        | <0.02                                    | -                                     |
| Fluoranthene             | 0.02 ug/g dry                            | 0.23                                     | -                                        | 0.08                                     | -                                     |
| Fluorene                 | 0.02 ug/g dry                            | <0.02                                    | -                                        | <0.02                                    | -                                     |
| Indeno [1,2,3-cd] pyrene | 0.02 ug/g dry                            | 0.06                                     | -                                        | 0.04                                     | -                                     |
| 1-Methylnaphthalene      | 0.02 ug/g dry                            | <0.02                                    | -                                        | <0.02                                    | -                                     |
| 2-Methylnaphthalene      | 0.02 ug/g dry                            | <0.02                                    | -                                        | <0.02                                    | -                                     |
| Methylnaphthalene (1&2)  | 0.04 ug/g dry                            | <0.04                                    | -                                        | <0.04                                    | -                                     |
| Naphthalene              | 0.01 ug/g dry                            | <0.01                                    | -                                        | <0.01                                    | -                                     |
| Phenanthrene             | 0.02 ug/g dry                            | 0.14                                     | -                                        | 0.04                                     | -                                     |
| Pyrene                   | 0.02 ug/g dry                            | 0.19                                     | -                                        | 0.06                                     | -                                     |
| 2-Fluorobiphenyl         | Surrogate                                | 80.2%                                    | -                                        | 79.4%                                    | -                                     |
| Terphenyl-d14            | Surrogate                                | 100%                                     | -                                        | 103%                                     | -                                     |



Order #: 1921256

Report Date: 28-May-2019

Order Date: 22-May-2019

Project Description: PE4588

# Method Quality Control: Blank

| Analyte                                                 | Result        | Reporting<br>Limit | Units        | Source<br>Result | %REC         | %REC<br>Limit    | RPD | RPD<br>Limit | Notes |
|---------------------------------------------------------|---------------|--------------------|--------------|------------------|--------------|------------------|-----|--------------|-------|
| Hydrocarbons                                            |               |                    |              |                  |              |                  |     |              |       |
| F1 PHCs (C6-C10)                                        | ND            | 7                  | ug/g         |                  |              |                  |     |              |       |
| F2 PHCs (C10-C16)                                       | ND            | 4                  | ug/g         |                  |              |                  |     |              |       |
| F3 PHCs (C16-C34)                                       | ND            | 8                  | ug/g         |                  |              |                  |     |              |       |
| F4 PHCs (C34-C50)                                       | ND            | 6                  | ug/g         |                  |              |                  |     |              |       |
| Metals                                                  |               |                    |              |                  |              |                  |     |              |       |
| Antimony                                                | ND            | 1.0                | ug/g         |                  |              |                  |     |              |       |
| Arsenic                                                 | ND            | 1.0                | ug/g         |                  |              |                  |     |              |       |
| Barium                                                  | ND            | 1.0                | ug/g         |                  |              |                  |     |              |       |
| Beryllium                                               | ND            | 0.5                | ug/g         |                  |              |                  |     |              |       |
| Boron                                                   | ND            | 5.0                | ug/g         |                  |              |                  |     |              |       |
| Cadmium                                                 | ND            | 0.5                | ug/g         |                  |              |                  |     |              |       |
| Chromium (VI)                                           | ND            | 0.2                | ug/g         |                  |              |                  |     |              |       |
| Chromium                                                | ND            | 5.0                | ug/g         |                  |              |                  |     |              |       |
| Cobalt                                                  | ND            | 1.0                | ug/g         |                  |              |                  |     |              |       |
| Copper                                                  | ND            | 5.0                | ug/g         |                  |              |                  |     |              |       |
| Lead                                                    | ND            | 1.0                | ug/g         |                  |              |                  |     |              |       |
| Mercury                                                 |               | 0.1                | ug/g         |                  |              |                  |     |              |       |
| Molybdenum                                              |               | 1.0                | ug/g         |                  |              |                  |     |              |       |
| Nickel                                                  |               | 5.0                | ug/g         |                  |              |                  |     |              |       |
| Selenium<br>Silver                                      | ND<br>ND      | 1.0                | ug/g         |                  |              |                  |     |              |       |
| Silver<br>Thallium                                      | ND<br>ND      | 0.3<br>1.0         | ug/g         |                  |              |                  |     |              |       |
| Thailium<br>Uranium                                     | ND<br>ND      | 1.0<br>1.0         | ug/g<br>ug/g |                  |              |                  |     |              |       |
| Vanadium                                                | ND            | 10.0               | ug/g<br>ug/g |                  |              |                  |     |              |       |
| Zinc                                                    | ND            | 20.0               | ug/g<br>ug/g |                  |              |                  |     |              |       |
| Semi-Volatiles                                          |               | 20.0               | ~9, 9        |                  |              |                  |     |              |       |
| Acenaphthene                                            | ND            | 0.02               | ug/g         |                  |              |                  |     |              |       |
| Acenaphthylene                                          | ND            | 0.02               | ug/g<br>ug/g |                  |              |                  |     |              |       |
| Acenaphinylene                                          | ND            | 0.02               | ug/g<br>ug/g |                  |              |                  |     |              |       |
| Benzo [a] anthracene                                    | ND            | 0.02               | ug/g<br>ug/g |                  |              |                  |     |              |       |
| Benzo [a] pyrene                                        | ND            | 0.02               | ug/g<br>ug/g |                  |              |                  |     |              |       |
| Benzo [b] fluoranthene                                  | ND            | 0.02               | ug/g         |                  |              |                  |     |              |       |
| Benzo [g,h,i] perylene                                  | ND            | 0.02               | ug/g         |                  |              |                  |     |              |       |
| Benzo [k] fluoranthene                                  | ND            | 0.02               | ug/g         |                  |              |                  |     |              |       |
| Chrysene                                                | ND            | 0.02               | ug/g         |                  |              |                  |     |              |       |
| Dibenzo [a,h] anthracene                                | ND            | 0.02               | ug/g         |                  |              |                  |     |              |       |
| Fluoranthene                                            | ND            | 0.02               | ug/g         |                  |              |                  |     |              |       |
| Fluorene                                                | ND            | 0.02               | ug/g         |                  |              |                  |     |              |       |
| Indeno [1,2,3-cd] pyrene                                | ND            | 0.02               | ug/g         |                  |              |                  |     |              |       |
| 1-Methylnaphthalene                                     | ND            | 0.02               | ug/g         |                  |              |                  |     |              |       |
| 2-Methylnaphthalene                                     | ND            | 0.02               | ug/g         |                  |              |                  |     |              |       |
| Methylnaphthalene (1&2)                                 |               | 0.04               | ug/g         |                  |              |                  |     |              |       |
| Naphthalene                                             |               | 0.01               | ug/g         |                  |              |                  |     |              |       |
| Phenanthrene                                            | ND<br>ND      | 0.02               | ug/g         |                  |              |                  |     |              |       |
| Pyrene <i>Surrogate: 2-Fluorobiphenyl</i>               | ND<br>0.942   | 0.02               | ug/g         |                  | 70.7         | 50-140           |     |              |       |
| Surrogate: 2-Fluorobiphenyi<br>Surrogate: Terphenyl-d14 | 0.942<br>1.23 |                    | ug/g<br>ug/a |                  | 70.7<br>92.6 | 50-140<br>50-140 |     |              |       |
|                                                         | 1.20          |                    | ug/g         |                  | 32.0         | 50-140           |     |              |       |
| Volatiles                                               |               | o = o              |              |                  |              |                  |     |              |       |
| Acetone                                                 | ND            | 0.50               | ug/g         |                  |              |                  |     |              |       |
| Benzene                                                 | ND            | 0.02               | ug/g         |                  |              |                  |     |              |       |
| Bromodichloromethane                                    | ND            | 0.05               | ug/g         |                  |              |                  |     |              |       |
| Bromoform                                               | ND            | 0.05               | ug/g         |                  |              |                  |     |              |       |
| Bromomethane                                            | ND            | 0.05               | ug/g         |                  |              |                  |     |              |       |
| Carbon Tetrachloride                                    |               | 0.05               | ug/g         |                  |              |                  |     |              |       |
| Chlorobenzene                                           |               | 0.05               | ug/g         |                  |              |                  |     |              |       |
| Chloroform<br>Dibromochloromethane                      | ND<br>ND      | 0.05<br>0.05       | ug/g         |                  |              |                  |     |              |       |
| Dibromocniorometnane<br>Dichlorodifluoromethane         | ND<br>ND      | 0.05               | ug/g<br>ug/g |                  |              |                  |     |              |       |
|                                                         | שאי           | 0.00               | uy/y         |                  |              |                  |     |              |       |



#### Order #: 1921256

Report Date: 28-May-2019 Order Date: 22-May-2019

Project Description: PE4588

# Method Quality Control: Blank

| Analyte                           | Result | Reporting<br>Limit | Units | Source<br>Result | %REC | %REC<br>Limit | RPD | RPD<br>Limit | Notes |
|-----------------------------------|--------|--------------------|-------|------------------|------|---------------|-----|--------------|-------|
| 1.2-Dichlorobenzene               | ND     | 0.05               | ug/g  |                  |      |               |     |              |       |
| 1.3-Dichlorobenzene               | ND     | 0.05               | ug/g  |                  |      |               |     |              |       |
| 1.4-Dichlorobenzene               | ND     | 0.05               | ug/g  |                  |      |               |     |              |       |
| 1,1-Dichloroethane                | ND     | 0.05               | ug/g  |                  |      |               |     |              |       |
| 1,2-Dichloroethane                | ND     | 0.05               | ug/g  |                  |      |               |     |              |       |
| 1,1-Dichloroethylene              | ND     | 0.05               | ug/g  |                  |      |               |     |              |       |
| cis-1,2-Dichloroethylene          | ND     | 0.05               | ug/g  |                  |      |               |     |              |       |
| trans-1,2-Dichloroethylene        | ND     | 0.05               | ug/g  |                  |      |               |     |              |       |
| 1,2-Dichloropropane               | ND     | 0.05               | ug/g  |                  |      |               |     |              |       |
| cis-1,3-Dichloropropylene         | ND     | 0.05               | ug/g  |                  |      |               |     |              |       |
| trans-1,3-Dichloropropylene       | ND     | 0.05               | ug/g  |                  |      |               |     |              |       |
| 1,3-Dichloropropene, total        | ND     | 0.05               | ug/g  |                  |      |               |     |              |       |
| Ethylbenzene                      | ND     | 0.05               | ug/g  |                  |      |               |     |              |       |
| Ethylene dibromide (dibromoethane | ND     | 0.05               | ug/g  |                  |      |               |     |              |       |
| Hexane                            | ND     | 0.05               | ug/g  |                  |      |               |     |              |       |
| Methyl Ethyl Ketone (2-Butanone)  | ND     | 0.50               | ug/g  |                  |      |               |     |              |       |
| Methyl Isobutyl Ketone            | ND     | 0.50               | ug/g  |                  |      |               |     |              |       |
| Methyl tert-butyl ether           | ND     | 0.05               | ug/g  |                  |      |               |     |              |       |
| Methylene Chloride                | ND     | 0.05               | ug/g  |                  |      |               |     |              |       |
| Styrene                           | ND     | 0.05               | ug/g  |                  |      |               |     |              |       |
| 1,1,1,2-Tetrachloroethane         | ND     | 0.05               | ug/g  |                  |      |               |     |              |       |
| 1,1,2,2-Tetrachloroethane         | ND     | 0.05               | ug/g  |                  |      |               |     |              |       |
| Tetrachloroethylene               | ND     | 0.05               | ug/g  |                  |      |               |     |              |       |
| Toluene                           | ND     | 0.05               | ug/g  |                  |      |               |     |              |       |
| 1,1,1-Trichloroethane             | ND     | 0.05               | ug/g  |                  |      |               |     |              |       |
| 1,1,2-Trichloroethane             | ND     | 0.05               | ug/g  |                  |      |               |     |              |       |
| Trichloroethylene                 | ND     | 0.05               | ug/g  |                  |      |               |     |              |       |
| Trichlorofluoromethane            | ND     | 0.05               | ug/g  |                  |      |               |     |              |       |
| Vinyl chloride                    | ND     | 0.02               | ug/g  |                  |      |               |     |              |       |
| m,p-Xylenes                       | ND     | 0.05               | ug/g  |                  |      |               |     |              |       |
| o-Xylene                          | ND     | 0.05               | ug/g  |                  |      |               |     |              |       |
| Xylenes, total                    | ND     | 0.05               | ug/g  |                  |      |               |     |              |       |
| Surrogate: 4-Bromofluorobenzene   | 8.64   |                    | ug/g  |                  | 108  | 50-140        |     |              |       |
| Surrogate: Dibromofluoromethane   | 8.25   |                    | ug/g  |                  | 103  | 50-140        |     |              |       |
| Surrogate: Toluene-d8             | 7.94   |                    | ug/g  |                  | 99.2 | 50-140        |     |              |       |
| Benzene                           | ND     | 0.02               | ug/g  |                  |      |               |     |              |       |
| Ethylbenzene                      | ND     | 0.05               | ug/g  |                  |      |               |     |              |       |
| Toluene                           | ND     | 0.05               | ug/g  |                  |      |               |     |              |       |
| m,p-Xylenes                       | ND     | 0.05               | ug/g  |                  |      |               |     |              |       |
| o-Xylene                          | ND     | 0.05               | ug/g  |                  |      |               |     |              |       |
| Xylenes, total                    | ND     | 0.05               | ug/g  |                  |      |               |     |              |       |
| Surrogate: Toluene-d8             | 7.94   |                    | ug/g  |                  | 99.2 | 50-140        |     |              |       |
|                                   |        |                    |       |                  |      |               |     |              |       |



Order #: 1921256

Report Date: 28-May-2019

Order Date: 22-May-2019

Project Description: PE4588

# Method Quality Control: Duplicate

| Analyte                                               | Result         | Reporting<br>Limit   | Units                            | Source<br>Result | %REC | %REC<br>Limit | RPD  | RPD<br>Limit   | Notes |
|-------------------------------------------------------|----------------|----------------------|----------------------------------|------------------|------|---------------|------|----------------|-------|
| Hydrocarbons                                          |                |                      |                                  |                  |      |               |      |                |       |
| F1 PHCs (C6-C10)                                      | ND             | 7                    | ug/g dry                         | ND               |      |               |      | 40             |       |
| F2 PHCs (C10-C16)                                     | 65             | 4                    | ug/g dry                         | 111              |      |               | 51.9 | 30             | QR-04 |
| F3 PHCs (C16-C34)                                     | 50             | 8                    | ug/g dry                         | 56               |      |               | 10.2 | 30             |       |
| F4 PHCs (C34-C50)                                     | ND             | 6                    | ug/g dry                         | ND               |      |               | -    | 30             |       |
| Metals                                                |                |                      |                                  |                  |      |               |      |                |       |
| Antimony                                              | ND             | 1.0                  | ug/g dry                         | ND               |      |               | 0.0  | 30             |       |
| Arsenic                                               | 1.9            | 1.0                  | ug/g dry                         | 1.9              |      |               | 1.5  | 30             |       |
| Barium                                                | 79.1           | 1.0                  | ug/g dry                         | 85.9             |      |               | 8.3  | 30             |       |
| Beryllium                                             | ND             | 0.5                  | ug/g dry                         | ND               |      |               | 0.0  | 30             |       |
| Boron                                                 | 6.6            | 5.0                  | ug/g dry                         | 5.9              |      |               | 11.8 | 30             |       |
| Cadmium                                               | ND             | 0.5                  | ug/g dry                         | ND               |      |               | 0.0  | 30             |       |
| Chromium (VI)                                         | ND             | 0.2                  | ug/g dry                         | ND               |      |               |      | 35             |       |
| Chromium                                              | 19.7           | 5.0                  | ug/g dry                         | 20.4             |      |               | 3.7  | 30             |       |
| Cobalt                                                | 8.3            | 1.0                  | ug/g dry                         | 8.1              |      |               | 2.7  | 30             |       |
| Copper                                                | 11.9           | 5.0                  | ug/g dry                         | 11.9             |      |               | 0.1  | 30             |       |
| Lead                                                  | 17.7           | 1.0                  | ug/g dry                         | 14.7             |      |               | 18.3 | 30             |       |
| Mercury                                               | ND             | 0.1                  | ug/g dry                         | ND               |      |               | 0.0  | 30             |       |
| Molybdenum                                            | ND             | 1.0                  | ug/g dry                         | ND               |      |               | 0.0  | 30             |       |
| Nickel                                                | 18.1           | 5.0                  | ug/g dry                         | 18.1             |      |               | 0.1  | 30             |       |
| Selenium                                              | ND             | 1.0                  | ug/g dry                         | ND               |      |               | 0.0  | 30             |       |
| Silver                                                | ND             | 0.3                  | ug/g dry                         | ND               |      |               | 0.0  | 30             |       |
| Thallium                                              | ND             | 1.0                  | ug/g dry                         | ND               |      |               | 0.0  | 30             |       |
| Uranium                                               | ND             | 1.0                  | ug/g dry                         | ND               |      |               | 0.0  | 30             |       |
| Vanadium                                              | 30.4           | 10.0                 | ug/g dry                         | 31.6             |      |               | 4.2  | 30             |       |
| Zinc                                                  | 35.4           | 20.0                 | ug/g dry                         | 36.1             |      |               | 1.9  | 30             |       |
| Physical Characteristics                              |                |                      |                                  |                  |      |               |      |                |       |
| % Šolids                                              | 88.2           | 0.1                  | % by Wt.                         | 88.7             |      |               | 0.5  | 25             |       |
| Semi-Volatiles                                        |                |                      |                                  |                  |      |               |      |                |       |
| Acenaphthene                                          | ND             | 0.02                 | ug/g dry                         | ND               |      |               | 0.0  | 40             |       |
| Acenaphthylene                                        | 0.057          | 0.02                 | ug/g dry                         | 0.060            |      |               | 5.3  | 40             |       |
| Anthracene                                            | 0.050          | 0.02                 | ug/g dry                         | 0.051            |      |               | 2.7  | 40             |       |
| Benzo [a] anthracene                                  | 0.126          | 0.02                 | ug/g dry                         | 0.121            |      |               | 4.2  | 40             |       |
| Benzo [a] pyrene                                      | 0.116          | 0.02                 | ug/g dry                         | 0.115            |      |               | 1.1  | 40             |       |
| Benzo [b] fluoranthene                                | 0.159          | 0.02                 | ug/g dry                         | 0.156            |      |               | 1.8  | 40             |       |
| Benzo [g,h,i] perylene                                | 0.077          | 0.02                 | ug/g dry                         | 0.075            |      |               | 2.6  | 40             |       |
| Benzo [k] fluoranthene                                | 0.084          | 0.02                 | ug/g dry                         | 0.084            |      |               | 0.2  | 40             |       |
| Chrysene                                              | 0.143          | 0.02                 | ug/g dry                         | 0.139            |      |               | 2.4  | 40             |       |
| Dibenzo [a,h] anthracene                              | 0.022          | 0.02                 | ug/g dry                         | 0.022            |      |               | 0.4  | 40             |       |
| Fluoranthene                                          | 0.268          | 0.02                 | ug/g dry                         | 0.264            |      |               | 1.6  | 40             |       |
|                                                       | ND             | 0.02                 | ug/g dry                         | ND               |      |               | 0.0  | 40             |       |
| Indeno [1,2,3-cd] pyrene                              | 0.072          | 0.02                 | ug/g dry                         | 0.073            |      |               | 1.0  | 40             |       |
| 1-Methylnaphthalene                                   | ND             | 0.02                 | ug/g dry                         | ND               |      |               | 0.0  | 40             |       |
| 2-Methylnaphthalene                                   | ND             | 0.02                 | ug/g dry                         | ND               |      |               | 0.0  | 40             |       |
| Naphthalene                                           | ND<br>0.122    | 0.01                 | ug/g dry                         | ND<br>0.125      |      |               | 0.0  | 40             |       |
| Phenanthrene                                          | 0.132          | 0.02                 | ug/g dry                         | 0.135            |      |               | 2.6  | 40             |       |
| Pyrene                                                | 0.222          | 0.02                 | ug/g dry                         | 0.219            | 017  | 50 140        | 1.0  | 40             |       |
| Surrogate: 2-Fluorobiphenyl                           | 1.36           |                      | ug/g dry                         |                  | 84.7 | 50-140        |      |                |       |
| Surrogate: Terphenyl-d14                              | 1.68           |                      | ug/g dry                         |                  | 104  | 50-140        |      |                |       |
| Volatiles                                             |                |                      |                                  |                  |      |               |      |                |       |
| Acetone                                               | ND             | 0.50                 | ug/g dry                         | ND               |      |               |      | 50             |       |
| Benzene                                               | ND             | 0.02                 | ug/g dry                         | ND               |      |               |      | 50             |       |
| Bromodichloromethane                                  | ND             | 0.05                 | ug/g dry                         | ND               |      |               |      | 50             |       |
| Bromoform                                             | ND             | 0.05                 | ug/g dry                         | ND               |      |               |      | 50             |       |
| Due as a state as a                                   | ND             | 0.05                 | ug/g dry                         | ND               |      |               |      | 50             |       |
| Bromomethane                                          |                |                      |                                  |                  |      |               |      |                |       |
| Bromometnane<br>Carbon Tetrachloride<br>Chlorobenzene | ND<br>ND<br>ND | 0.05<br>0.05<br>0.05 | ug/g dry<br>ug/g dry<br>ug/g dry | ND<br>ND         |      |               |      | 50<br>50<br>50 |       |



# Method Quality Control: Duplicate

Report Date: 28-May-2019 Order Date: 22-May-2019

| Analyte                           | Result | Reporting<br>Limit | Units                | Source<br>Result | %REC | %REC<br>Limit | RPD | RPD<br>Limit | Notes |
|-----------------------------------|--------|--------------------|----------------------|------------------|------|---------------|-----|--------------|-------|
| Chloroform                        | ND     | 0.05               | ug/g dry             | ND               |      |               |     | 50           |       |
| Dibromochloromethane              | ND     | 0.05               | ug/g dry             | ND               |      |               |     | 50           |       |
| Dichlorodifluoromethane           | ND     | 0.05               | ug/g dry             | ND               |      |               |     | 50           |       |
| 1,2-Dichlorobenzene               | ND     | 0.05               | ug/g dry             | ND               |      |               |     | 50           |       |
| 1,3-Dichlorobenzene               | ND     | 0.05               | ug/g dry             | ND               |      |               |     | 50           |       |
| 1,4-Dichlorobenzene               | ND     | 0.05               | ug/g dry             | ND               |      |               |     | 50           |       |
| 1,1-Dichloroethane                | ND     | 0.05               | ug/g dry             | ND               |      |               |     | 50           |       |
| 1,2-Dichloroethane                | ND     | 0.05               | ug/g dry             | ND               |      |               |     | 50           |       |
| 1,1-Dichloroethylene              | ND     | 0.05               | ug/g dry             | ND               |      |               |     | 50           |       |
| cis-1,2-Dichloroethylene          | ND     | 0.05               | ug/g dry             | ND               |      |               |     | 50           |       |
| trans-1,2-Dichloroethylene        | ND     | 0.05               | ug/g dry             | ND               |      |               |     | 50           |       |
| 1,2-Dichloropropane               | ND     | 0.05               | ug/g dry             | ND               |      |               |     | 50           |       |
| cis-1,3-Dichloropropylene         | ND     | 0.05               | ug/g dry             | ND               |      |               |     | 50           |       |
| trans-1,3-Dichloropropylene       | ND     | 0.05               | ug/g dry             | ND               |      |               |     | 50           |       |
| Ethylbenzene                      | ND     | 0.05               | ug/g dry             | ND               |      |               |     | 50           |       |
| Ethylene dibromide (dibromoethane | ND     | 0.05               | ug/g dry             | ND               |      |               |     | 50           |       |
| Hexane                            | ND     | 0.05               | ug/g dry             | ND               |      |               |     | 50           |       |
| Methyl Ethyl Ketone (2-Butanone)  | ND     | 0.50               | ug/g dry             | ND               |      |               |     | 50           |       |
| Methyl Isobutyl Ketone            | ND     | 0.50               | ug/g dry             | ND               |      |               |     | 50           |       |
| Methyl tert-butyl ether           | ND     | 0.05               | ug/g dry             | ND               |      |               |     | 50           |       |
| Methylene Chloride                | ND     | 0.05               | ug/g dry             | ND               |      |               |     | 50           |       |
| Styrene                           | ND     | 0.05               | ug/g dry             | ND               |      |               |     | 50           |       |
| 1,1,1,2-Tetrachloroethane         | ND     | 0.05               | ug/g dry             | ND               |      |               |     | 50           |       |
| 1,1,2,2-Tetrachloroethane         | ND     | 0.05               | ug/g dry             | ND               |      |               |     | 50           |       |
| Tetrachloroethylene               | ND     | 0.05               | ug/g dry             | ND               |      |               |     | 50           |       |
| Toluene                           | ND     | 0.05               | ug/g dry             | ND               |      |               |     | 50           |       |
| 1,1,1-Trichloroethane             | ND     | 0.05               | ug/g dry             | ND               |      |               |     | 50           |       |
| 1.1.2-Trichloroethane             | ND     | 0.05               | ug/g dry             | ND               |      |               |     | 50           |       |
| Trichloroethylene                 | ND     | 0.05               | ug/g dry             | ND               |      |               |     | 50           |       |
| Trichlorofluoromethane            | ND     | 0.05               | ug/g dry             | ND               |      |               |     | 50           |       |
| Vinyl chloride                    | ND     | 0.02               | ug/g dry             | ND               |      |               |     | 50           |       |
| m,p-Xylenes                       | ND     | 0.05               | ug/g dry             | ND               |      |               |     | 50           |       |
| o-Xylene                          | ND     | 0.05               | ug/g dry             | ND               |      |               |     | 50           |       |
| Surrogate: 4-Bromofluorobenzene   | 12.9   |                    | ug/g dry             |                  | 122  | 50-140        |     |              |       |
| Surrogate: Dibromofluoromethane   | 10.6   |                    | ug/g dry             |                  | 100  | 50-140        |     |              |       |
| Surrogate: Toluene-d8             | 10.0   |                    | ug/g dry             |                  | 95.1 | 50-140        |     |              |       |
| Benzene                           | ND     | 0.02               | ug/g dry<br>ug/g dry | ND               | 00.1 | 00 140        |     | 50           |       |
| Ethylbenzene                      | ND     | 0.02               | ug/g dry             | ND               |      |               |     | 50<br>50     |       |
| Toluene                           | ND     | 0.05               | ug/g dry             | ND               |      |               |     | 50<br>50     |       |
| m,p-Xylenes                       | ND     | 0.05               | ug/g dry<br>ug/g dry | ND               |      |               |     | 50<br>50     |       |
| o-Xylene                          | ND     | 0.05               | ug/g dry<br>ug/g dry | ND               |      |               |     | 50<br>50     |       |
| Surrogate: Toluene-d8             | 10.0   | 0.00               | ug/g dry<br>ug/g dry |                  | 95.1 | 50-140        |     | 00           |       |
| Carrogato. Toldono do             | 10.0   |                    | ag/g ary             |                  | 55.1 | 50 140        |     |              |       |



# Method Quality Control: Spike

Report Date: 28-May-2019

Order Date: 22-May-2019

| Analyte                     | Result         | Reporting<br>Limit | Units               | Source<br>Result | %REC         | %REC<br>Limit    | RPD | RPD<br>Limit | Notes |
|-----------------------------|----------------|--------------------|---------------------|------------------|--------------|------------------|-----|--------------|-------|
| Hydrocarbons                |                |                    |                     |                  |              |                  |     |              |       |
| F1 PHCs (C6-C10)            | 201            | 7                  | ug/g                |                  | 100          | 80-120           |     |              |       |
| F2 PHCs (C10-C16)           | 141            | 4                  | ug/g                | 111              | 28.6         | 60-140           |     | C            | QM-06 |
| F3 PHCs (C16-C34)           | 283            | 8                  | ug/g                | 56               | 90.0         | 60-140           |     |              |       |
| F4 PHCs (C34-C50)           | 177            | 6                  | ug/g                | ND               | 111          | 60-140           |     |              |       |
| Metals                      |                |                    | 00                  |                  |              |                  |     |              |       |
| Antimony                    | 42.2           |                    | ug/L                |                  | 84.4         | 70-130           |     |              |       |
| Arsenic                     | 47.4           |                    | ug/L                |                  | 94.8         | 70-130           |     |              |       |
| Barium                      | 45.2           |                    | ug/L                |                  | 90.5         | 70-130           |     |              |       |
| Beryllium                   | 46.9           |                    | ug/L                |                  | 93.8         | 70-130           |     |              |       |
| Boron                       | 41.2           |                    | ug/L                |                  | 82.4         | 70-130           |     |              |       |
| Cadmium                     | 44.6           |                    | ug/L                |                  | 89.2         | 70-130           |     |              |       |
| Chromium (VI)               | 0.1            |                    | mg/L                | ND               | 48.5         | 70-130           |     | C            | QM-01 |
| Chromium                    | 49.1           |                    | ug/L                |                  | 98.2         | 70-130           |     |              |       |
| Cobalt                      | 47.9           |                    | ug/L                |                  | 95.8         | 70-130           |     |              |       |
| Copper                      | 48.0           |                    | ug/L                |                  | 96.1         | 70-130           |     |              |       |
| Lead                        | 45.7           |                    | ug/L                |                  | 91.4         | 70-130           |     |              |       |
| Mercury                     | 1.56           | 0.1                | ug/g                | ND               | 104          | 70-130           |     |              |       |
| Molybdenum                  | 46.0           |                    | ug/L                |                  | 92.1         | 70-130           |     |              |       |
| Nickel                      | 47.8           |                    | ug/L                |                  | 95.6         | 70-130           |     |              |       |
| Selenium                    | 47.0           |                    | ug/L                |                  | 93.9         | 70-130           |     |              |       |
| Silver                      | 47.9           |                    | ug/L                |                  | 95.8         | 70-130           |     |              |       |
| Thallium                    | 48.0           |                    | ug/L                |                  | 96.0         | 70-130           |     |              |       |
| Uranium                     | 49.2           |                    | ug/L                |                  | 98.3         | 70-130           |     |              |       |
| Vanadium                    | 48.1           |                    | ug/L                |                  | 96.2         | 70-130           |     |              |       |
| Zinc                        | 46.8           |                    | ug/L                |                  | 93.5         | 70-130           |     |              |       |
| Semi-Volatiles              |                |                    |                     |                  |              |                  |     |              |       |
| Acenaphthene                | 0.174          | 0.02               | ug/g                | ND               | 86.4         | 50-140           |     |              |       |
| Acenaphthylene              | 0.242          | 0.02               | ug/g                | 0.060            | 90.6         | 50-140           |     |              |       |
| Anthracene                  | 0.233          | 0.02               | ug/g                | 0.051            | 90.2         | 50-140           |     |              |       |
| Benzo [a] anthracene        | 0.332          | 0.02               | ug/g                | 0.121            | 105          | 50-140           |     |              |       |
| Benzo [a] pyrene            | 0.303          | 0.02               | ug/g                | 0.115            | 93.1         | 50-140           |     |              |       |
| Benzo [b] fluoranthene      | 0.433          | 0.02               | ug/g                | 0.156            | 137          | 50-140           |     |              |       |
| Benzo [g,h,i] perylene      | 0.246          | 0.02               | ug/g                | 0.075            | 84.9         | 50-140           |     |              |       |
| Benzo [k] fluoranthene      | 0.323          | 0.02               | ug/g                | 0.084            | 119          | 50-140           |     |              |       |
| Chrysene                    | 0.419          | 0.02               | ug/g                | 0.139            | 139          | 50-140           |     |              |       |
| Dibenzo [a,h] anthracene    | 0.174          | 0.02               | ug/g                | 0.022            | 75.6         | 50-140           |     |              |       |
| Fluoranthene                | 0.509          | 0.02               | ug/g                | 0.264            | 122          | 50-140           |     |              |       |
| Fluorene                    | 0.185          | 0.02               | ug/g                | ND               | 91.9         | 50-140           |     |              |       |
| Indeno [1,2,3-cd] pyrene    | 0.245          | 0.02               | ug/g                | 0.073            | 85.4         | 50-140           |     |              |       |
| 1-Methylnaphthalene         | 0.181          | 0.02               | ug/g                | ND               | 90.1<br>07.5 | 50-140           |     |              |       |
| 2-Methylnaphthalene         | 0.196<br>0.185 | 0.02<br>0.01       | ug/g                | ND<br>ND         | 97.5<br>91.9 | 50-140<br>50-140 |     |              |       |
| Naphthalene<br>Phenanthrene |                | 0.01               | ug/g                |                  |              |                  |     |              |       |
| Prienanthrene<br>Pyrene     | 0.344<br>0.452 | 0.02               | ug/g                | 0.135<br>0.219   | 104<br>115   | 50-140<br>50-140 |     |              |       |
| Surrogate: 2-Fluorobiphenyl | 1.36           | 0.02               | ug/g<br><i>ug/g</i> | 0.213            | 84.6         | 50-140<br>50-140 |     |              |       |
| Volatiles                   | 1.50           |                    | uy/y                |                  | 04.0         | 50-140           |     |              |       |
| Acetone                     | 10.4           | 0.50               | ug/g                |                  | 104          | 50-140           |     |              |       |
| Benzene                     | 2.91           | 0.02               | ug/g<br>ug/g        |                  | 72.7         | 60-140           |     |              |       |
| Bromodichloromethane        | 2.63           | 0.02               | ug/g<br>ug/g        |                  | 65.8         | 60-130           |     |              |       |
| Bromoform                   | 4.90           | 0.05               | ug/g<br>ug/g        |                  | 122          | 60-130           |     |              |       |
|                             |                |                    |                     |                  |              |                  |     |              |       |



# Method Quality Control: Spike

Report Date: 28-May-2019 Order Date: 22-May-2019

| Analyte                           | Result | Reporting<br>Limit | Units | Source<br>Result | %REC | %REC<br>Limit | RPD | RPD<br>Limit | Notes |
|-----------------------------------|--------|--------------------|-------|------------------|------|---------------|-----|--------------|-------|
| Bromomethane                      | 4.40   | 0.05               | ug/g  |                  | 110  | 50-140        |     |              |       |
| Carbon Tetrachloride              | 3.43   | 0.05               | ug/g  |                  | 85.7 | 60-130        |     |              |       |
| Chlorobenzene                     | 3.80   | 0.05               | ug/g  |                  | 94.9 | 60-130        |     |              |       |
| Chloroform                        | 2.91   | 0.05               | ug/g  |                  | 72.8 | 60-130        |     |              |       |
| Dibromochloromethane              | 4.24   | 0.05               | ug/g  |                  | 106  | 60-130        |     |              |       |
| Dichlorodifluoromethane           | 3.38   | 0.05               | ug/g  |                  | 84.4 | 50-140        |     |              |       |
| 1,2-Dichlorobenzene               | 4.30   | 0.05               | ug/g  |                  | 107  | 60-130        |     |              |       |
| 1,3-Dichlorobenzene               | 3.84   | 0.05               | ug/g  |                  | 96.1 | 60-130        |     |              |       |
| 1,4-Dichlorobenzene               | 3.87   | 0.05               | ug/g  |                  | 96.7 | 60-130        |     |              |       |
| 1,1-Dichloroethane                | 3.12   | 0.05               | ug/g  |                  | 78.1 | 60-130        |     |              |       |
| 1,2-Dichloroethane                | 2.99   | 0.05               | ug/g  |                  | 74.6 | 60-130        |     |              |       |
| 1,1-Dichloroethylene              | 2.72   | 0.05               | ug/g  |                  | 68.0 | 60-130        |     |              |       |
| cis-1,2-Dichloroethylene          | 3.15   | 0.05               | ug/g  |                  | 78.6 | 60-130        |     |              |       |
| trans-1,2-Dichloroethylene        | 2.98   | 0.05               | ug/g  |                  | 74.5 | 60-130        |     |              |       |
| 1,2-Dichloropropane               | 3.39   | 0.05               | ug/g  |                  | 84.8 | 60-130        |     |              |       |
| cis-1,3-Dichloropropylene         | 2.70   | 0.05               | ug/g  |                  | 67.6 | 60-130        |     |              |       |
| trans-1,3-Dichloropropylene       | 4.57   | 0.05               | ug/g  |                  | 114  | 60-130        |     |              |       |
| Ethylbenzene                      | 3.73   | 0.05               | ug/g  |                  | 93.4 | 60-130        |     |              |       |
| Ethylene dibromide (dibromoethane | 4.15   | 0.05               | ug/g  |                  | 104  | 60-130        |     |              |       |
| Hexane                            | 2.43   | 0.05               | ug/g  |                  | 60.8 | 60-130        |     |              |       |
| Methyl Ethyl Ketone (2-Butanone)  | 6.82   | 0.50               | ug/g  |                  | 68.2 | 50-140        |     |              |       |
| Methyl Isobutyl Ketone            | 7.95   | 0.50               | ug/g  |                  | 79.5 | 50-140        |     |              |       |
| Methyl tert-butyl ether           | 7.38   | 0.05               | ug/g  |                  | 73.8 | 50-140        |     |              |       |
| Methylene Chloride                | 3.60   | 0.05               | ug/g  |                  | 90.1 | 60-130        |     |              |       |
| Styrene                           | 3.96   | 0.05               | ug/g  |                  | 98.9 | 60-130        |     |              |       |
| 1,1,1,2-Tetrachloroethane         | 4.11   | 0.05               | ug/g  |                  | 103  | 60-130        |     |              |       |
| 1,1,2,2-Tetrachloroethane         | 3.44   | 0.05               | ug/g  |                  | 86.0 | 60-130        |     |              |       |
| Tetrachloroethylene               | 5.13   | 0.05               | ug/g  |                  | 128  | 60-130        |     |              |       |
| Toluene                           | 3.70   | 0.05               | ug/g  |                  | 92.6 | 60-130        |     |              |       |
| 1,1,1-Trichloroethane             | 3.11   | 0.05               | ug/g  |                  | 77.6 | 60-130        |     |              |       |
| 1,1,2-Trichloroethane             | 2.61   | 0.05               | ug/g  |                  | 65.3 | 60-130        |     |              |       |
| Trichloroethylene                 | 3.54   | 0.05               | ug/g  |                  | 88.5 | 60-130        |     |              |       |
| Trichlorofluoromethane            | 2.76   | 0.05               | ug/g  |                  | 68.9 | 50-140        |     |              |       |
| Vinyl chloride                    | 5.16   | 0.02               | ug/g  |                  | 129  | 50-140        |     |              |       |
| m,p-Xylenes                       | 7.83   | 0.05               | ug/g  |                  | 97.8 | 60-130        |     |              |       |
| o-Xylene                          | 3.64   | 0.05               | ug/g  |                  | 91.0 | 60-130        |     |              |       |
| Benzene                           | 2.91   | 0.02               | ug/g  |                  | 72.7 | 60-130        |     |              |       |
| Ethylbenzene                      | 3.73   | 0.05               | ug/g  |                  | 93.4 | 60-130        |     |              |       |
| Toluene                           | 3.70   | 0.05               | ug/g  |                  | 92.6 | 60-130        |     |              |       |
| m,p-Xylenes                       | 7.83   | 0.05               | ug/g  |                  | 97.8 | 60-130        |     |              |       |
| o-Xylene                          | 3.64   | 0.05               | ug/g  |                  | 91.0 | 60-130        |     |              |       |
|                                   |        |                    |       |                  |      |               |     |              |       |



#### **Qualifier Notes:**

Page 14 of 14

#### **QC** Qualifiers :

- QM-01 : The spike recovery for this QC sample is outside of established control limits due to sample matrix interference.
- QM-06 : Due to noted non-homogeneity of the QC sample matrix, the spike recoveries were out side the accepted range. Batch data accepted based on other QC.
- QR-04 : Duplicate results exceeds RPD limits due to non-homogeneous matrix.

#### Sample Data Revisions

None

#### Work Order Revisions / Comments:

None

#### **Other Report Notes:**

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference.

Soil results are reported on a dry weight basis when the units are denoted with 'dry'. Where %Solids is reported, moisture loss includes the loss of volatile hydrocarbons.

#### CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.

- F1 range corrected for BTEX.
- F2 to F3 ranges corrected for appropriate PAHs where available.
- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.
- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.
- When reported, data for F4G has been processed using a silica gel cleanup.

| G                         | )<br>PARACEL                                          |           |            |               | el ID: 1921        |          |                 |       |      |            | 3<br>wa<br>1-80 | Onta<br>0-749 | ario K<br>1947 | ent Blvd.<br>1G 4J8<br>ellabs.com |        |        | (Lab Us     | Custody<br>c Only)<br>2132 |
|---------------------------|-------------------------------------------------------|-----------|------------|---------------|--------------------|----------|-----------------|-------|------|------------|-----------------|---------------|----------------|-----------------------------------|--------|--------|-------------|----------------------------|
|                           | LABORATORIES LT                                       | D.        |            |               |                    |          |                 |       |      | е.         | para            | UCI III       | Variasi        | 11400.0011                        | F      |        | Page _      | of                         |
| Tient Na                  | A                                                     |           |            | -             | Project Reference: | PE4.     | 588             | 5     | -    | _          | -               | _             | -              |                                   |        | Tı     | irnarou     | nd Time:                   |
| lontact )                 | 1 BISION                                              |           |            |               | Quote #            | /        |                 |       | -    |            |                 |               |                |                                   |        | 1 Day  |             | 🗆 3 Day                    |
| Address:                  |                                                       |           |            |               | PO# 264            | 40       |                 | -     |      |            |                 |               |                |                                   |        |        |             | 1 martin                   |
| tuur a.                   | 154 COLONNADE                                         | RD .      | 5.         |               | Email Address:     |          | ~               | 1     |      |            |                 |               |                |                                   |        | 2 Day  |             | Regula                     |
| Telephor                  | 11- 271-7351                                          |           |            |               | mbeau              | on 6     | 1/h             | Ter   | se   | 191        | or              | pi            | 19             |                                   |        | ate Re | quired:     | 4                          |
| Criteri                   | a: 0.0. Reg. 153/04 (As Amended) Table _ 0 R          | SC Filing | O. Reg     | . 558/00      | D PWQO CC          | CME D SU | B (Sto          | au)   |      | JB (S      | sanit           | ary}          | Muni           | cipality: _                       | -      |        | D Other     |                            |
|                           | Type: S (Soil/Sed.) GW (Ground Water) SW (Surface Wat |           |            |               |                    |          |                 | laire |      |            |                 |               |                |                                   |        |        |             |                            |
| Рагас                     | el Order Number:                                      | rix       | Air Volume | of Containers | Sample 7           | Faken    | PHCs F1-F4+BTEN | 0     | ls   | als by ICP |                 | 1             | B (HWS)        |                                   |        |        |             |                            |
|                           | Sample ID/Location Name                               | Matrix    | Air        | # of          | Date               | Time     |                 | VOCS  | PAHS | Metals     | Hg.             | CEVI          | B              | _                                 | +      |        | _           | _                          |
| 1                         | BH1-554                                               | 5         |            | 2             | Man 16/19          |          | X               |       |      |            | _               | _             | _              |                                   | _      | _      |             |                            |
| 2                         | BH2-553                                               | 5         |            | 2             | 1.                 |          | K               |       |      |            | _               | -             | +              |                                   | -      | -      |             |                            |
| 3                         | BH3-AUI                                               | 2         |            | 1             | 1                  |          | -               |       | X    | -          | x               | -             | -              | -                                 | +      | -      |             |                            |
| 4                         | BH4-552                                               | S         |            | 1             | 1                  |          | -               |       |      | x          | x               | ×             | +              |                                   | +      | -      |             |                            |
| 5                         | BH5-552                                               | 5         |            | 2             | May 17/19          |          | -               | X     | X    | _          | _               |               | +              |                                   | +      | -      |             |                            |
| 6                         | BH 5- 556                                             | Š         |            | 2             | 1'                 |          | X               | -     |      | -          | X               | X             | +              | _                                 | -      | _      |             |                            |
| 7                         | BH6 - 558                                             | 2         |            | 1             | L                  |          | _               | -     | X    | ×          | ×               | ^             | _              |                                   | +      |        |             |                            |
| 8                         |                                                       |           |            |               |                    |          | -               | -     | _    | -          | _               | -             | +              |                                   | +      |        |             |                            |
| 9                         |                                                       |           |            | _             |                    |          | _               |       | _    | -          | _               | _             | -              |                                   | -      |        |             | _                          |
| 10                        |                                                       |           |            |               |                    |          |                 |       |      |            | _               |               |                |                                   |        | Ň      | Acting of T | clipery:                   |
| Com                       | nents:                                                |           |            |               |                    |          |                 |       |      |            |                 |               |                |                                   |        |        | Ju          | iff                        |
| Received by Driver Deport |                                                       |           |            |               |                    |          | ified U         |       |      |            |                 |               |                |                                   |        |        |             |                            |
| Reline                    | juished By (Print):                                   | Date/T    | lme:       |               |                    |          | /Time           | - 10  | 12   |            | 019             |               | 04             | .50 Dat                           |        |        |             |                            |
| Date/1                    |                                                       | Tempe     | rature.    |               | °C                 | Tem      | perature        |       | 10   | e          | _               | -             |                | [pii                              | A GUIN | ed[]B; | 1+          | da human meneri a          |

Chain of Custody (Env) - Rev 0.7 Feb. 2016



RELIABLE.

# Certificate of Analysis

# **Paterson Group Consulting Engineers**

154 Colonnade Road South Nepean, ON K2E 7J5 Attn: Mike Beaudoin

Client PO: 26441 Project: PE4588 Custody: 122140

Report Date: 29-May-2019 Order Date: 23-May-2019

Order #: 1921390

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

| Paracel ID | Client ID |
|------------|-----------|
| 1921390-01 | BH7-SS5   |
| 1921390-02 | BH8-SS3   |
| 1921390-03 | BH9-SS3   |

Approved By:

Dale Robertson, BSc Laboratory Director

Any use of these results implies your agreement that our total liability in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.



## **Analysis Summary Table**

| Analysis                        | Method Reference/Description          | Extraction Date | Analysis Date |
|---------------------------------|---------------------------------------|-----------------|---------------|
| Chromium, hexavalent - soil     | MOE E3056 - Extraction, colourimetric | 24-May-19       | 28-May-19     |
| Mercury by CVAA                 | EPA 7471B - CVAA, digestion           | 28-May-19       | 28-May-19     |
| PHC F1                          | CWS Tier 1 - P&T GC-FID               | 28-May-19       | 29-May-19     |
| PHCs F2 to F4                   | CWS Tier 1 - GC-FID, extraction       | 24-May-19       | 27-May-19     |
| REG 153: Metals by ICP/MS, soil | EPA 6020 - Digestion - ICP-MS         | 28-May-19       | 28-May-19     |
| REG 153: VOCs by P&T GC/MS      | EPA 8260 - P&T GC-MS                  | 28-May-19       | 29-May-19     |
| Solids, %                       | Gravimetric, calculation              | 28-May-19       | 28-May-19     |

Order #: 1921390

Report Date: 29-May-2019 Order Date: 23-May-2019



Order #: 1921390

Report Date: 29-May-2019 Order Date: 23-May-2019

|                                   | Client ID: BH7-SS5 BH8-SS3 BH9-SS3 |                 |                 |                 |   |  |
|-----------------------------------|------------------------------------|-----------------|-----------------|-----------------|---|--|
|                                   | Sample Date:                       | 22-May-19 09:00 | 22-May-19 09:00 | 22-May-19 09:00 | - |  |
|                                   | Sample ID:                         | 1921390-01      | 1921390-02      | 1921390-03      | - |  |
| Dhysical Characteristics          | MDL/Units                          | Soil            | Soil            | Soil            | - |  |
| Physical Characteristics % Solids | 0.1 % by Wt.                       | 00.4            | 70.0            | <u> </u>        |   |  |
| Metals                            | 0.1 /0 by Wt.                      | 66.1            | 72.8            | 60.9            | - |  |
| Antimony                          | 1.0 ug/g dry                       | <1.0            | <1.0            | <1.0            | - |  |
| Arsenic                           | 1.0 ug/g dry                       | 2.6             | 2.9             | 3.1             |   |  |
| Barium                            | 1.0 ug/g dry                       | 260             | 311             | 315             |   |  |
| Beryllium                         | 0.5 ug/g dry                       | 0.8             | 0.8             | 0.9             |   |  |
| Boron                             | 5.0 ug/g dry                       | 9.1             | 9.7             | 8.9             |   |  |
| Cadmium                           | 0.5 ug/g dry                       | <0.5            | <0.5            | <0.5            | - |  |
| Chromium                          | 5.0 ug/g dry                       | 109             | 117             | 112             | - |  |
|                                   | 0.2 ug/g dry                       | <0.2            | <0.2            | <0.2            | - |  |
| Chromium (VI)                     | 1.0 ug/g dry                       |                 |                 | 22.6            | - |  |
| Cobalt                            | 5.0 ug/g dry                       | 20.5            | 22.7            |                 | - |  |
| Copper                            | 1.0 ug/g dry                       | 59.6            | 45.2            | 55.4            | - |  |
| Lead                              | 0.1 ug/g dry                       | 6.5             | 7.1             | 6.9             | - |  |
| Mercury                           | 1.0 ug/g dry                       | <0.1            | <0.1            | <0.1            | - |  |
| Molybdenum                        |                                    | <1.0            | <1.0            | <1.0            | - |  |
| Nickel                            | 5.0 ug/g dry                       | 59.2            | 61.9            | 62.6            | - |  |
| Selenium                          | 1.0 ug/g dry                       | <1.0            | <1.0            | <1.0            | - |  |
| Silver                            | 0.3 ug/g dry                       | <0.3            | <0.3            | <0.3            | - |  |
| Thallium                          | 1.0 ug/g dry                       | <1.0            | <1.0            | <1.0            | - |  |
| Uranium                           | 1.0 ug/g dry                       | <1.0            | 1.0             | <1.0            | - |  |
| Vanadium                          | 10.0 ug/g dry                      | 91.5            | 103             | 105             | - |  |
| Zinc                              | 20.0 ug/g dry                      | 124             | 133             | 137             | - |  |
| Volatiles                         | 0.50                               |                 |                 |                 |   |  |
| Acetone                           | 0.50 ug/g dry                      | <0.50           | <0.50           | <0.50           | - |  |
| Benzene                           | 0.02 ug/g dry                      | <0.02           | <0.02           | <0.02           | - |  |
| Bromodichloromethane              | 0.05 ug/g dry                      | 0.12            | <0.05           | <0.05           | - |  |
| Bromoform                         | 0.05 ug/g dry                      | <0.05           | <0.05           | <0.05           | - |  |
| Bromomethane                      | 0.05 ug/g dry                      | 0.06            | <0.05           | <0.05           | - |  |
| Carbon Tetrachloride              | 0.05 ug/g dry                      | <0.05           | <0.05           | <0.05           | - |  |
| Chlorobenzene                     | 0.05 ug/g dry                      | <0.05           | <0.05           | <0.05           | - |  |
| Chloroform                        | 0.05 ug/g dry                      | 0.06            | <0.05           | <0.05           | - |  |
| Dibromochloromethane              | 0.05 ug/g dry                      | <0.05           | <0.05           | <0.05           | - |  |
| Dichlorodifluoromethane           | 0.05 ug/g dry                      | <0.05           | <0.05           | <0.05           | - |  |
| 1,2-Dichlorobenzene               | 0.05 ug/g dry                      | <0.05           | <0.05           | <0.05           | - |  |
| 1,3-Dichlorobenzene               | 0.05 ug/g dry                      | <0.05           | <0.05           | <0.05           | - |  |



Order #: 1921390

Report Date: 29-May-2019 Order Date: 23-May-2019

|                                  | Client ID:<br>Sample Date: | BH7-SS5<br>22-May-19 09:00 | BH8-SS3<br>22-May-19 09:00 | BH9-SS3<br>22-May-19 09:00 | - |
|----------------------------------|----------------------------|----------------------------|----------------------------|----------------------------|---|
|                                  | Sample ID:                 | 1921390-01                 | 1921390-02                 | 1921390-03                 | - |
|                                  | MDL/Units                  | Soil                       | Soil                       | Soil                       | - |
| 1,4-Dichlorobenzene              | 0.05 ug/g dry              | <0.05                      | <0.05                      | <0.05                      | - |
| 1,1-Dichloroethane               | 0.05 ug/g dry              | <0.05                      | <0.05                      | <0.05                      | - |
| 1,2-Dichloroethane               | 0.05 ug/g dry              | <0.05                      | <0.05                      | <0.05                      | - |
| 1,1-Dichloroethylene             | 0.05 ug/g dry              | <0.05                      | <0.05                      | <0.05                      | - |
| cis-1,2-Dichloroethylene         | 0.05 ug/g dry              | <0.05                      | <0.05                      | <0.05                      | - |
| trans-1,2-Dichloroethylene       | 0.05 ug/g dry              | <0.05                      | <0.05                      | <0.05                      | - |
| 1,2-Dichloropropane              | 0.05 ug/g dry              | <0.05                      | <0.05                      | <0.05                      | - |
| cis-1,3-Dichloropropylene        | 0.05 ug/g dry              | <0.05                      | <0.05                      | <0.05                      | - |
| trans-1,3-Dichloropropylene      | 0.05 ug/g dry              | <0.05                      | <0.05                      | <0.05                      | - |
| 1,3-Dichloropropene, total       | 0.05 ug/g dry              | <0.05                      | <0.05                      | <0.05                      | - |
| Ethylbenzene                     | 0.05 ug/g dry              | <0.05                      | <0.05                      | <0.05                      | - |
| Ethylene dibromide (dibromoethan | 0.05 ug/g dry              | <0.05                      | <0.05                      | <0.05                      | - |
| Hexane                           | 0.05 ug/g dry              | <0.05                      | <0.05                      | <0.05                      | - |
| Methyl Ethyl Ketone (2-Butanone) | 0.50 ug/g dry              | <0.50                      | <0.50                      | <0.50                      | - |
| Methyl Isobutyl Ketone           | 0.50 ug/g dry              | <0.50                      | <0.50                      | <0.50                      | - |
| Methyl tert-butyl ether          | 0.05 ug/g dry              | <0.05                      | <0.05                      | <0.05                      | - |
| Methylene Chloride               | 0.05 ug/g dry              | <0.05                      | <0.05                      | <0.05                      | - |
| Styrene                          | 0.05 ug/g dry              | <0.05                      | <0.05                      | <0.05                      | - |
| 1,1,1,2-Tetrachloroethane        | 0.05 ug/g dry              | <0.05                      | <0.05                      | <0.05                      | - |
| 1,1,2,2-Tetrachloroethane        | 0.05 ug/g dry              | <0.05                      | <0.05                      | <0.05                      | - |
| Tetrachloroethylene              | 0.05 ug/g dry              | <0.05                      | <0.05                      | <0.05                      | - |
| Toluene                          | 0.05 ug/g dry              | <0.05                      | <0.05                      | <0.05                      | - |
| 1,1,1-Trichloroethane            | 0.05 ug/g dry              | <0.05                      | <0.05                      | <0.05                      | - |
| 1,1,2-Trichloroethane            | 0.05 ug/g dry              | <0.05                      | <0.05                      | <0.05                      | - |
| Trichloroethylene                | 0.05 ug/g dry              | <0.05                      | <0.05                      | <0.05                      | - |
| Trichlorofluoromethane           | 0.05 ug/g dry              | <0.05                      | <0.05                      | <0.05                      | - |
| Vinyl chloride                   | 0.02 ug/g dry              | <0.02                      | <0.02                      | <0.02                      | - |
| m,p-Xylenes                      | 0.05 ug/g dry              | <0.05                      | <0.05                      | <0.05                      | - |
| o-Xylene                         | 0.05 ug/g dry              | <0.05                      | <0.05                      | <0.05                      | - |
| Xylenes, total                   | 0.05 ug/g dry              | <0.05                      | <0.05                      | <0.05                      | - |
| 4-Bromofluorobenzene             | Surrogate                  | 114%                       | 74.1%                      | 85.2%                      | - |
| Dibromofluoromethane             | Surrogate                  | 67.7%                      | 120%                       | 112%                       | - |
| Toluene-d8                       | Surrogate                  | 79.0%                      | 94.2%                      | 107%                       | - |
| Hydrocarbons                     |                            |                            |                            |                            |   |
| F1 PHCs (C6-C10)                 | 7 ug/g dry                 | <7                         | <7                         | <7                         | - |
| F2 PHCs (C10-C16)                | 4 ug/g dry                 | <4                         | <4                         | <4                         | - |



Report Date: 29-May-2019 Order Date: 23-May-2019

|                   | Client ID:   | BH7-SS5    | BH8-SS3         | BH9-SS3         | - |
|-------------------|--------------|------------|-----------------|-----------------|---|
|                   | Sample Date: |            | 22-May-19 09:00 | 22-May-19 09:00 | - |
|                   | Sample ID:   | 1921390-01 | 1921390-02      | 1921390-03      | - |
|                   | MDL/Units    | Soil       | Soil            | Soil            | - |
| F3 PHCs (C16-C34) | 8 ug/g dry   | <8         | <8              | <8              | - |
| F4 PHCs (C34-C50) | 6 ug/g dry   | <6         | <6              | <6              | - |



Order #: 1921390

Report Date: 29-May-2019 Order Date: 23-May-2019

Page 6 of 12

Project Description: PE4588

### Method Quality Control: Blank

| Hydrocarbons                                             |          |              |              |  |  | <br> |
|----------------------------------------------------------|----------|--------------|--------------|--|--|------|
|                                                          |          |              |              |  |  |      |
| F1 PHCs (C6-C10)                                         | ND       | 7            | ug/g         |  |  |      |
| F2 PHCs (C10-C16)                                        | ND       | 4            | ug/g<br>ug/g |  |  |      |
| F3 PHCs (C16-C34)                                        | ND       | 8            | ug/g<br>ug/g |  |  |      |
| F4 PHCs (C34-C50)                                        | ND       | 6            | ug/g<br>ug/g |  |  |      |
| Metals                                                   |          |              |              |  |  |      |
| Antimony                                                 | ND       | 1.0          | ug/g         |  |  |      |
| Arsenic                                                  | ND       | 1.0          | ug/g         |  |  |      |
| Barium                                                   | ND       | 1.0          | ug/g         |  |  |      |
| Beryllium                                                | ND       | 0.5          | ug/g         |  |  |      |
| Boron                                                    | ND       | 5.0          | ug/g         |  |  |      |
| Cadmium                                                  | ND       | 0.5          | ug/g         |  |  |      |
| Chromium (VI)                                            | ND       | 0.2          | ug/g         |  |  |      |
| Chromium                                                 | ND       | 5.0          | ug/g         |  |  |      |
| Cobalt                                                   | ND       | 1.0          | ug/g         |  |  |      |
| Copper                                                   | ND       | 5.0          | ug/g         |  |  |      |
| Lead                                                     | ND       | 1.0          | ug/g         |  |  |      |
| Mercury                                                  | ND       | 0.1          | ug/g         |  |  |      |
| Molybdenum                                               | ND       | 1.0          | ug/g         |  |  |      |
| Nickel                                                   | ND       | 5.0          | ug/g         |  |  |      |
| Selenium                                                 | ND       | 1.0          | ug/g         |  |  |      |
| Silver                                                   | ND       | 0.3          | ug/g         |  |  |      |
| Thallium                                                 | ND       | 1.0          | ug/g         |  |  |      |
| Uranium                                                  | ND       | 1.0          | ug/g         |  |  |      |
| Vanadium                                                 | ND       | 10.0         | ug/g         |  |  |      |
| Zinc                                                     | ND       | 20.0         | ug/g         |  |  |      |
| Volatiles                                                |          |              |              |  |  |      |
| Acetone                                                  | ND       | 0.50         | ug/g         |  |  |      |
| Benzene                                                  | ND       | 0.02         | ug/g         |  |  |      |
| Bromodichloromethane                                     | ND       | 0.05         | ug/g         |  |  |      |
| Bromoform                                                | ND       | 0.05         | ug/g         |  |  |      |
| Bromomethane                                             | ND       | 0.05         | ug/g         |  |  |      |
| Carbon Tetrachloride                                     | ND       | 0.05         | ug/g         |  |  |      |
| Chlorobenzene                                            | ND       | 0.05         | ug/g         |  |  |      |
| Chloroform                                               | ND       | 0.05         | ug/g         |  |  |      |
| Dibromochloromethane                                     | ND       | 0.05         | ug/g         |  |  |      |
| Dichlorodifluoromethane                                  | ND       | 0.05         | ug/g         |  |  |      |
| 1,2-Dichlorobenzene                                      | ND       | 0.05         | ug/g         |  |  |      |
| 1,3-Dichlorobenzene                                      | ND       | 0.05         | ug/g         |  |  |      |
| 1,4-Dichlorobenzene                                      | ND       | 0.05         | ug/g         |  |  |      |
| 1,1-Dichloroethane                                       | ND       | 0.05         | ug/g         |  |  |      |
| 1,2-Dichloroethane                                       | ND       | 0.05         | ug/g         |  |  |      |
| 1,1-Dichloroethylene                                     | ND       | 0.05         | ug/g         |  |  |      |
| cis-1,2-Dichloroethylene                                 | ND       | 0.05         | ug/g         |  |  |      |
| trans-1,2-Dichloroethylene                               | ND       | 0.05         | ug/g         |  |  |      |
| 1,2-Dichloropropane                                      | ND       | 0.05         | ug/g         |  |  |      |
| cis-1,3-Dichloropropylene<br>trans-1,3-Dichloropropylene | ND       | 0.05         | ug/g         |  |  |      |
| 1,3-Dichloropropene, total                               | ND<br>ND | 0.05<br>0.05 | ug/g         |  |  |      |
| Ethylbenzene                                             | ND<br>ND | 0.05         | ug/g         |  |  |      |
| Ethylene dibromide (dibromoethane.                       | ND       | 0.05         | ug/g         |  |  |      |
| Hexane                                                   | ND       | 0.05         | ug/g         |  |  |      |
| Methyl Ethyl Ketone (2-Butanone)                         | ND       | 0.05         | ug/g         |  |  |      |
| Methyl Isobutyl Ketone                                   | ND       | 0.50         | ug/g         |  |  |      |
| Methyl tert-butyl ether                                  | ND       | 0.50         | ug/g         |  |  |      |
| Methylene Chloride                                       | ND       | 0.05         | ug/g         |  |  |      |
| Styrene                                                  | ND       | 0.05         | ug/g<br>ug/g |  |  |      |
| 1,1,1,2-Tetrachloroethane                                | ND       | 0.05         | ug/g<br>ug/g |  |  |      |
| 1,1,2,2-Tetrachloroethane                                | ND       | 0.05         | ug/g<br>ug/g |  |  |      |
| Tetrachloroethylene                                      | ND       | 0.05         | ug/g<br>ug/g |  |  |      |
|                                                          |          | 0.00         | ~9,8         |  |  |      |



Report Date: 29-May-2019 Order Date: 23-May-2019

Page 7 of 12

Project Description: PE4588

# Method Quality Control: Blank

| Analyte                         | Result | Reporting<br>Limit | Units | Source<br>Result | %REC | %REC<br>Limit | RPD | RPD<br>Limit | Notes |
|---------------------------------|--------|--------------------|-------|------------------|------|---------------|-----|--------------|-------|
| Toluene                         | ND     | 0.05               | ug/g  |                  |      |               |     |              |       |
| 1,1,1-Trichloroethane           | ND     | 0.05               | ug/g  |                  |      |               |     |              |       |
| 1,1,2-Trichloroethane           | ND     | 0.05               | ug/g  |                  |      |               |     |              |       |
| Trichloroethylene               | ND     | 0.05               | ug/g  |                  |      |               |     |              |       |
| Trichlorofluoromethane          | ND     | 0.05               | ug/g  |                  |      |               |     |              |       |
| Vinyl chloride                  | ND     | 0.02               | ug/g  |                  |      |               |     |              |       |
| m,p-Xylenes                     | ND     | 0.05               | ug/g  |                  |      |               |     |              |       |
| o-Xylene                        | ND     | 0.05               | ug/g  |                  |      |               |     |              |       |
| Xylenes, total                  | ND     | 0.05               | ug/g  |                  |      |               |     |              |       |
| Surrogate: 4-Bromofluorobenzene | 3.50   |                    | ug/g  |                  | 109  | 50-140        |     |              |       |
| Surrogate: Dibromofluoromethane | 2.65   |                    | ug/g  |                  | 82.9 | 50-140        |     |              |       |
| Surrogate: Toluene-d8           | 3.61   |                    | ug/g  |                  | 113  | 50-140        |     |              |       |



Report Date: 29-May-2019 Order Date: 23-May-2019

Project Description: PE4588

# Method Quality Control: Duplicate

| Analyte                                    | Result       | Reporting<br>Limit | Units                | Source<br>Result | %REC | %REC<br>Limit | RPD         | RPD<br>Limit | Notes |
|--------------------------------------------|--------------|--------------------|----------------------|------------------|------|---------------|-------------|--------------|-------|
| Hydrocarbons                               |              |                    |                      |                  |      |               |             |              |       |
| F1 PHCs (C6-C10)                           | ND           | 7                  | ug/g dry             | ND               |      |               |             | 40           |       |
| F2 PHCs (C10-C16)                          | ND           | 4                  | ug/g dry<br>ug/g dry | ND               |      |               |             | 40<br>30     |       |
| F3 PHCs (C10-C16)                          | ND           | 4                  | ug/g dry<br>ug/g dry | ND               |      |               |             | 30<br>30     |       |
| F4 PHCs (C34-C50)                          | ND           | о<br>6             | ug/g dry<br>ug/g dry | ND               |      |               |             | 30<br>30     |       |
| Metals                                     |              | 5                  | 49,9 41 y            |                  |      |               |             |              |       |
| Antimony                                   | ND           | 1.0                | ug/g dry             | ND               |      |               | 0.0         | 30           |       |
| Arsenic                                    | 4.2          | 1.0                | ug/g dry<br>ug/g dry | 4.1              |      |               | 1.8         | 30           |       |
| Barium                                     | 4.2<br>70.3  | 1.0                | ug/g dry<br>ug/g dry | 67.1             |      |               | 4.6         | 30           |       |
| Beryllium                                  | 0.5          | 0.5                | ug/g dry<br>ug/g dry | 0.7              |      |               | 4.0<br>5.8  | 30           |       |
| Boron                                      | 0.7<br>6.8   | 0.5<br>5.0         | ug/g dry<br>ug/g dry | 0.7<br>6.0       |      |               | 5.6<br>11.4 | 30<br>30     |       |
| Cadmium                                    | 0.0<br>ND    | 5.0<br>0.5         |                      | 0.0<br>ND        |      |               | 0.0         | 30<br>30     |       |
| Cadmium<br>Chromium (VI)                   | ND<br>ND     | 0.5                | ug/g dry<br>ug/g dry | ND<br>ND         |      |               | 0.0         | 30<br>35     |       |
| Chromium                                   | 26.4         | 0.2<br>5.0         | ug/g dry<br>ug/g dry | 24.8             |      |               | 6.1         | 35<br>30     |       |
| Cobalt                                     | 26.4<br>7.3  | 5.0<br>1.0         | ug/g ary<br>ug/g dry | 24.8<br>6.7      |      |               | 6.1<br>8.0  | 30<br>30     |       |
| Copper                                     | 7.3<br>14.5  | 5.0                |                      | 13.6             |      |               | 6.7         | 30<br>30     |       |
| Lead                                       | 14.5         | 5.0<br>1.0         | ug/g dry<br>ug/g dry | 13.0             |      |               | 0.7<br>10.2 | 30<br>30     |       |
| Mercury                                    | 12.9<br>ND   | 0.1                | ug/g ary<br>ug/g dry | ND               |      |               | 0.0         | 30<br>30     |       |
| Molybdenum                                 | ND           | 0.1<br>1.0         | ug/g dry<br>ug/g dry | ND               |      |               | 0.0         | 30<br>30     |       |
| Nickel                                     | 15.8         | 5.0                | ug/g dry<br>ug/g dry | 14.5             |      |               | 0.0<br>8.6  | 30<br>30     |       |
| Selenium                                   | 15.8<br>ND   | 5.0<br>1.0         | ug/g ary<br>ug/g dry | 14.5<br>ND       |      |               | 8.6<br>0.0  | 30<br>30     |       |
| Selenium<br>Silver                         | ND<br>ND     | 0.3                |                      | ND<br>ND         |      |               | 0.0         | 30<br>30     |       |
| Silver<br>Thallium                         | ND<br>ND     | 0.3<br>1.0         | ug/g dry<br>ug/g dry | ND<br>ND         |      |               | 0.0         | 30<br>30     |       |
|                                            |              |                    | ug/g dry             |                  |      |               | 0.0         |              |       |
| Uranium<br>Vanadium                        | ND<br>32.8   | 1.0<br>10.0        | ug/g dry<br>ug/g dry | ND<br>31.0       |      |               | 0.0<br>5.9  | 30<br>30     |       |
| Zinc                                       | 32.8<br>79.6 | 20.0               |                      | 31.0<br>75.3     |      |               | 5.9<br>5.6  | 30<br>30     |       |
|                                            | 19.0         | 20.0               | ug/g dry             | 10.5             |      |               | 0.0         | 30           |       |
| Physical Characteristics<br>% Solids       | 97.4         | 0.1                | % by Wt.             | 97.2             |      |               | 0.3         | 25           |       |
| Volatiles                                  | 51.4         | 0.1                | 70 DY VVI.           | 31.Z             |      |               | 0.3         | 20           |       |
|                                            | ND           | 0 50               | under alter          |                  |      |               |             | FO           |       |
| Acetone                                    | ND           | 0.50               | ug/g dry             | ND               |      |               |             | 50           |       |
| Benzene<br>Bromodichloromothano            | ND           | 0.02               | ug/g dry             | ND               |      |               |             | 50           |       |
| Bromodichloromethane                       | ND           | 0.05               | ug/g dry             |                  |      |               |             | 50<br>50     |       |
| Bromonethane                               | ND           | 0.05               | ug/g dry<br>ug/g dry |                  |      |               |             | 50<br>50     |       |
| Bromomethane<br>Carbon Tetrachloride       |              | 0.05               | ug/g dry<br>ug/g dry |                  |      |               |             | 50<br>50     |       |
| Carbon Tetrachloride                       | ND           | 0.05               | ug/g dry             |                  |      |               |             | 50<br>50     |       |
| Chlorobenzene<br>Chloroform                | ND<br>ND     | 0.05               | ug/g dry<br>ug/g dry |                  |      |               |             | 50<br>50     |       |
| Chloroform<br>Dibromochloromethane         | ND<br>ND     | 0.05<br>0.05       | ug/g dry<br>ug/g dry | ND<br>ND         |      |               |             | 50<br>50     |       |
| Dibromocnioromethane                       | ND<br>ND     | 0.05               | ug/g dry<br>ug/g dry | ND<br>ND         |      |               |             | 50<br>50     |       |
| 1.2-Dichlorobenzene                        | ND<br>ND     | 0.05               | ug/g dry<br>ug/g dry | ND<br>ND         |      |               |             | 50<br>50     |       |
| 1,2-Dichlorobenzene<br>1,3-Dichlorobenzene | ND<br>ND     | 0.05               | ug/g ary<br>ug/g dry | ND<br>ND         |      |               |             | 50<br>50     |       |
| 1,3-Dichlorobenzene<br>1.4-Dichlorobenzene | ND<br>ND     | 0.05               |                      | ND<br>ND         |      |               |             | 50<br>50     |       |
| 1,4-Dichlorobenzene<br>1,1-Dichloroethane  | ND<br>ND     | 0.05               | ug/g dry<br>ug/g dry | ND<br>ND         |      |               |             | 50<br>50     |       |
| 1,1-Dichloroethane                         | ND<br>ND     | 0.05               | ug/g dry<br>ug/g dry | ND<br>ND         |      |               |             | 50<br>50     |       |
| 1,2-Dichloroethane<br>1,1-Dichloroethylene | ND<br>ND     | 0.05               | ug/g dry<br>ug/g dry | ND<br>ND         |      |               |             | 50<br>50     |       |
| cis-1,2-Dichloroethylene                   | ND<br>ND     | 0.05               | ug/g ary<br>ug/g dry | ND<br>ND         |      |               |             | 50<br>50     |       |
| trans-1,2-Dichloroethylene                 | ND<br>ND     | 0.05               | ug/g ary<br>ug/g dry | ND<br>ND         |      |               |             | 50<br>50     |       |
| 1,2-Dichloropropane                        | ND           | 0.05               | ug/g dry<br>ug/g dry | ND               |      |               |             | 50<br>50     |       |
| cis-1,3-Dichloropropylene                  | ND           | 0.05               | ug/g dry<br>ug/g dry | ND               |      |               |             | 50<br>50     |       |
| trans-1,3-Dichloropropylene                | ND           | 0.05               | ug/g dry<br>ug/g dry | ND               |      |               |             | 50<br>50     |       |
| Ethylbenzene                               | ND           | 0.05               | ug/g dry<br>ug/g dry | ND               |      |               |             | 50<br>50     |       |
| Ethylene dibromide (dibromoethane          | ND           | 0.05               | ug/g dry<br>ug/g dry | ND               |      |               |             | 50<br>50     |       |
| Hexane                                     | ND           | 0.05               | ug/g dry<br>ug/g dry | ND               |      |               |             | 50<br>50     |       |
| Methyl Ethyl Ketone (2-Butanone)           | ND           | 0.05               | ug/g dry<br>ug/g dry | ND               |      |               |             | 50<br>50     |       |
| Methyl Isobutyl Ketone                     | ND           | 0.50               | ug/g dry<br>ug/g dry | ND               |      |               |             | 50<br>50     |       |
| Methyl tert-butyl ether                    | ND           | 0.50               | ug/g dry<br>ug/g dry | ND               |      |               |             | 50<br>50     |       |
| Methylene Chloride                         | ND           | 0.05               | ug/g dry<br>ug/g dry | ND               |      |               |             | 50<br>50     |       |
| Styrene                                    | ND           | 0.05               | ug/g dry<br>ug/g dry | ND               |      |               |             | 50<br>50     |       |
|                                            |              | 0.00               | - 3, 3 <b>-</b> 1    |                  |      |               |             |              |       |



### Order #: 1921390

Report Date: 29-May-2019 Order Date: 23-May-2019

Page 9 of 12

Project Description: PE4588

# Method Quality Control: Duplicate

| Analyte                         | Result | Reporting<br>Limit | Units    | Source<br>Result | %REC | %REC<br>Limit | RPD | RPD<br>Limit | Notes |
|---------------------------------|--------|--------------------|----------|------------------|------|---------------|-----|--------------|-------|
| 1,1,1,2-Tetrachloroethane       | ND     | 0.05               | ug/g dry | ND               |      |               |     | 50           |       |
| 1,1,2,2-Tetrachloroethane       | ND     | 0.05               | ug/g dry | ND               |      |               |     | 50           |       |
| Tetrachloroethylene             | ND     | 0.05               | ug/g dry | ND               |      |               |     | 50           |       |
| Toluene                         | ND     | 0.05               | ug/g dry | ND               |      |               |     | 50           |       |
| 1,1,1-Trichloroethane           | ND     | 0.05               | ug/g dry | ND               |      |               |     | 50           |       |
| 1,1,2-Trichloroethane           | ND     | 0.05               | ug/g dry | ND               |      |               |     | 50           |       |
| Trichloroethylene               | ND     | 0.05               | ug/g dry | ND               |      |               |     | 50           |       |
| Trichlorofluoromethane          | ND     | 0.05               | ug/g dry | ND               |      |               |     | 50           |       |
| Vinyl chloride                  | ND     | 0.02               | ug/g dry | ND               |      |               |     | 50           |       |
| m,p-Xylenes                     | ND     | 0.05               | ug/g dry | ND               |      |               |     | 50           |       |
| o-Xylene                        | ND     | 0.05               | ug/g dry | ND               |      |               |     | 50           |       |
| Surrogate: 4-Bromofluorobenzene | 3.04   |                    | ug/g dry |                  | 92.2 | 50-140        |     |              |       |
| Surrogate: Dibromofluoromethane | 3.10   |                    | ug/g dry |                  | 94.2 | 50-140        |     |              |       |
| Surrogate: Toluene-d8           | 3.03   |                    | ug/g dry |                  | 92.0 | 50-140        |     |              |       |



# Method Quality Control: Spike

Report Date: 29-May-2019 Order Date: 23-May-2019

| Hybe (Crocho)2077ug/g10380-120F1 PHGa (ChoChi)854ug/gND73.860-140F3 PHGa (ChoChi)2598ug/gND87.360-140F4 PHGa (ChoChi)1336ug/gND87.360-140Harbas (ChoChi)52.2ug/LND89.370-130Arsenia52.2ug/L1.610170-130Beryllinin50.7ug/LND87.670-130Beryllinin50.7ug/LND87.670-130Cadmium46.1ug/LND87.670-130Cadmium60.0ug/L9.910070-130Cobalt52.7ug/LND87.670-130Coper55.8ug/L9.910070-130Cobalt52.7ug/L1.770-130Cobalt52.7ug/L1.070-130Cobalt53.8ug/L1.070-130Nickel54.2ug/L1.070-130Nickel54.2ug/LND87.670-130Nickel54.2ug/LND87.670-130Nickel54.2ug/LND10770-130Nickel54.2ug/LND10770-130Nickel54.2ug/LND10770-130Nickel54.2ug/LND10770-130Sileenium53.7ug                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Analyte                           | Result | Reporting<br>Limit | Units | Source<br>Result | %REC | %REC<br>Limit | RPD | RPD<br>Limit | Notes |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|--------|--------------------|-------|------------------|------|---------------|-----|--------------|-------|
| F2 PHCs (C10-C16)         95         4         ug/g         ND         78.8         60-140           F3 PHCs (C16-C34)         153         6         ug/g         ND         81.4         60-140           Metals          ug/l         ND         81.4         60-140           Arsenic         52.2         ug/l         1.8         101         70-130           Beryllinin         50.7         ug/l         ND         80.8         70-130           Beryllinin         50.7         ug/l         ND         101         70-130           Cadmiun         46.2         ug/l         ND         92.0         70-130           Cadmiun         60.0         ug/l         9.9         100         70-130           Chromlum (V1)         4.3         0.2         ug/l         8.7         70-130           Cobal         52.7         ug/l         8.7         70-130           Cabal         52.8         ug/l         ND         107         70-130           Mecury         1.61         0.1         ug/l         ND         8.7         70-130           Sterior         52.3         ug/l         ND         8.7         70-130                                                                                                                                                           | Hydrocarbons                      |        |                    |       |                  |      |               |     |              |       |
| F3 PHCs (C16-C34)       259       8       ug/g       ND       87.3       60-140         H PHCs (C34-C50)       153       6       ug/g       ND       87.4       60-140         Metals       ug/g       ND       87.3       70-130         Antimony       44.8       ug/g       ND       87.3       70-130         Barian       72.2       ug/g       ND       87.6       90.8       70-130         Barian       72.2       ug/g       ND       74.0       70-130         Cadmium       46.1       ug/g       ND       87.6       70-130         Cadmium       46.1       ug/g       ND       74.0       70-130         Cobati       52.7       ug/g       ND       74.0       70-130         Cobati       52.7       ug/g       ND       74.0       70-130         Mercury       1.81       0.1       ug/g       ND       97.1       70-130         Mercury       53.8       ug/g       ND       97.1       70-130         Nickel       54.2       ug/g       ND       97.1       70-130         Selenium       53.7       ug/g       ND       97.1       70                                                                                                                                                                                                                                     | F1 PHCs (C6-C10)                  | 207    | 7                  | ug/g  |                  | 103  | 80-120        |     |              |       |
| F4 PHCs (C34-C50)       153       6       ugl       ND       81.4       60-140         Attameny       44.8       ugl       ND       89.3       70-130         Arsenic       52.2       ugl       1.8       101       70-130         Barylinin       50.7       ugl       ND       101       70-130         Berylinin       60.7       ugl       ND       92.0       70-130         Cadmiun       46.2       ugl       ND       92.0       70-130         Cadmiun       60.0       ugl       9.7       100       70-130         Chromium (VI)       4.3       0.2       ugl       9.7       100       70-130         Coper       53.8       ugl       4.7       101       70-130         Coper       53.8       ugl       ND       97.4       70-130         Nickel       54.9       ugl       ND       107       70-130         Nickel       54.9       ugl       ND       107       70-130         Star       ugl       ND       107       70-130         Nickel       54.9       ugl       ND       107       70-130         Star       u                                                                                                                                                                                                                                                      | F2 PHCs (C10-C16)                 | 95     | 4                  | ug/g  | ND               | 78.8 | 60-140        |     |              |       |
| Metals         ug/L         ND         89.3         70-130           Antimony         44.8         ug/L         ND         89.3         70-130           Arsenic         52.2         ug/L         1.6         101         70-130           Barium         72.2         ug/L         ND         87.6         101         70-130           Boron         46.2         ug/L         ND         87.6         70-130           Chromium (Vi)         4.3         0.2         ug/g         ND         74.7         70-130           Chromium (Vi)         4.3         0.2         ug/L         9.0         70-130         70-130           Coper         55.8         ug/L         5.4         101         70-130         70-130           Mercury         1.6         1.4         ug/L         ND         97.4         70-130           Mercury         1.6         0.1         ug/L         ND         97.7         70-130           Silver         44.9         ug/L         ND         97.7         70-130           Silver         44.9         ug/L         ND         97.7         70-130           Thallum         48.9         ug/L                                                                                                                                                          | F3 PHCs (C16-C34)                 | 259    | 8                  | ug/g  | ND               | 87.3 | 60-140        |     |              |       |
| Antimony         44.8         ug/L         ND         89.8         70-130           Barum         52.2         ug/L         26.8         00.8         70-130           Baryllium         50.7         ug/L         ND         87.6         70-130           Beryllium         66.1         ug/L         ND         87.6         70-130           Cadmilum         46.2         ug/L         ND         87.6         70-130           Chromium(VI)         4.3         0.2         ug/L         9.9         100         70-130           Cobat         52.7         ug/L         5.4         101         70-130           Cobat         52.7         ug/L         5.4         101         70-130           Cobat         53.8         ug/L         5.4         101         70-130           Mecury         16.1         0.1         ug/L         ND         105         70-130           Nickel         53.7         ug/L         ND         105         70-130           Selenium         53.7         ug/L         ND         105         70-130           Silver         ug/L         ND         105         70-130           Sil                                                                                                                                                              | F4 PHCs (C34-C50)                 | 153    | 6                  | ug/g  | ND               | 81.4 | 60-140        |     |              |       |
| Assencio         52.2         ug/L         1.6         101         70-130           Barlum         72.2         ug/L         ND         101         70-130           Berylinn         60.7         ug/L         ND         807         70-130           Boron         46.1         ug/L         ND         87.6         70-130           Chromium (Vi)         4.3         0.2         ug/L         9.9         100         70-130           Cobalt         52.7         ug/L         5.4         101         70-130           Cobalt         52.7         ug/L         5.4         101         70-130           Cobalt         53.8         ug/L         5.4         101         70-130           Mercury         16.1         0.1         ug/L         ND         97.7         70-130           Molydenum         48.9         ug/L         ND         97.6         70-130           Silver         ug/L         ND         97.6         70-130           Silver         ug/L         ND         97.6         70-130           Vandum         61.2         ug/L         ND         97.6         70-130           Vandum         6                                                                                                                                                              | Metals                            |        |                    |       |                  |      |               |     |              |       |
| Barlum72.2ug/LND26.890.870-130Boron46.2ug/LND87.670-130Cadmium46.1ug/LND87.670-130Chromium (VI)4.30.2ug/L9.910070-130Chromium (VI)52.710070-13070-130Cobalt52.7ug/L5.410170-130Coper55.8ug/L5.470-130Lead53.8ug/L5.870-130Mercury16.10.1ug/LND97.4Nickel54.2ug/L5.870-130Silver44.9ug/LND97.470-130Silver44.9ug/LND89.770-130Thallum63.7ug/LND89.770-130Varation77.7ug/LND97.670-130Silver77.7ug/LND97.670-130Thallum63.7ug/LND97.670-130Varation77.7ug/LND97.670-130Silver77.7ug/LND97.670-130Thallum63.7ug/LND97.670-130Silver77.7ug/LND97.670-130Thallum63.7ug/LND97.770-130Silver77.7ug/LND97.770-130Silver77.7ug/LND97.770-130<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Antimony                          | 44.8   |                    | ug/L  | ND               | 89.3 | 70-130        |     |              |       |
| Berglium         50.7         ug/L         ND         101         70-130           Boron         46.1         ug/L         ND         87.6         70-130           Chromium (V)         4.3         0.2         ug/L         9.9         100         70-130           Chromium (V)         60.0         ug/L         2.7         100         70-130           Cobalt         52.7         ug/L         2.4         101         70-130           Cobalt         53.8         ug/L         4.7         98.3         70-130           Mercury         161         0.1         ug/L         5.8         96.9         70-130           Molybdenum         48.9         ug/L         ND         106         70-130           Silver         44.9         ug/L         ND         87.6         70-130           Silver         44.9         ug/L         ND         87.6         70-130           Vanadium         61.2         ug/L         ND         87.6         70-130           Vanadium         61.2         ug/L         ND         87.6         70-130           Vanadium         61.2         ug/L         ND         87.6         70-130                                                                                                                                                    | Arsenic                           | 52.2   |                    | ug/L  | 1.6              | 101  | 70-130        |     |              |       |
| Boron         46.2         ugL         ND         87.6         70-130           Cadmium         46.1         ugL         ND         92.0         70-130           Chromium         60.0         ugL         9.9         100         70-130           Chromium         60.0         ugL         2.7         100         70-130           Copper         55.8         ugL         5.4         101         70-130           Mercury         16.1         0.1         ugL         5.4         70-130           Mickel         54.2         ugL         5.8         96.9         70-130           Mickel         54.2         ugL         ND         97.4         70-130           Nickel         54.2         ugL         ND         97.4         70-130           Nickel         54.2         ugL         ND         97.6         70-130           Silver         44.9         ugL         ND         97.6         70-130           Vanadium         61.2         ugL         ND         97.6         70-130           Vanadium         61.2         ugL         12.4         97.6         70-130           Silver         ugL                                                                                                                                                                      | Barium                            |        |                    | ug/L  | 26.8             | 90.8 |               |     |              |       |
| Cadmum       46.1       ug/g       ND       70.2       70-130         Chromium (VI)       4.3       0.2       ug/g       ND       74.0       70-130         Cobalt       52.7       ug/L       2.7       100       70-130         Cobalt       52.7       ug/L       4.7       98.3       70-130         Lead       53.8       ug/L       4.7       98.3       70-130         Melydenum       48.9       ug/L       ND       97.4       70-130         Nickel       54.2       ug/L       ND       97.4       70-130         Nickel       54.2       ug/L       ND       97.6       70-130         Sternium       53.3       ug/L       ND       97.6       70-130         Sternium       44.9       ug/L       ND       97.6       70-130         Sternium       44.9       ug/L       ND       97.6       70-130         Vanadium       61.2       ug/L       ND       97.6       70-130         Vanadium       61.2       ug/L       80.1       70-130         Vanadium       61.2       ug/L       97.6       70-130         Sternium       53.7                                                                                                                                                                                                                                             | Beryllium                         |        |                    | ug/L  | ND               | 101  |               |     |              |       |
| Chromium (VI)       4.3       0.2       ug/q       ND       70.40       70.430         Chromium       60.0       ug/L       9.9       100       70-130         Cobalt       5.7       ug/L       5.4       ug/L       5.4       101       70-130         Copper       5.8       ug/L       5.4       98.3       70-130         Mercury       1.61       0.1       ug/q       ND       97.4       70-130         Nickel       54.2       ug/L       ND       97.4       70-130         Nickel       54.2       ug/L       ND       97.6       70-130         Selenium       53.3       ug/L       ND       89.7       70-130         Vanddum       61.2       ug/L       ND       89.7       70-130         Vanadum       61.2       ug/L       ND       97.6       70-130         Zinc       77.7       ug/L       ND       97.6       70-130         Zinc       10.1       0.50       ug/q       91.3       60-130         Bromodichloromethane       3.73       0.05       ug/q       91.3       60-130         Bromodichloromethane       2.74       0.05       ug                                                                                                                                                                                                                            | Boron                             |        |                    |       |                  | 87.6 |               |     |              |       |
| Chromium         60.0         ug/L         9.9         100         70-130           Cobalt         52.7         ug/L         2.7         100         70-130           Copper         55.8         ug/L         5.4         101         70-130           Lead         53.8         ug/L         4.7         98.3         70-130           Mercury         161         0.1         ug/L         98.9         70-130           Nickel         54.2         ug/L         58         96.9         70-130           Nickel         53.3         ug/L         ND         97.6         70-130           Silver         44.9         ug/L         ND         97.6         70-130           Vanadium         45.7         ug/L         ND         97.6         70-130           Vanadium         61.2         ug/L         ND         97.6         70-130           Zinc         77.7         ug/L         12.4         97.6         70-130           Bromodichloromethane         3.65         0.02         ug/g         91.3         60-130           Bromodichloromethane         2.74         0.05         ug/g         93.3         60-130                                                                                                                                                            |                                   |        |                    |       |                  |      |               |     |              |       |
| Cobalt         52.7         ug/L         5.4         100         70-130           Copper         55.8         ug/L         5.4         101         70-130           Lead         53.8         ug/L         4.7         98.3         70-130           Mercury         1.61         0.1         ug/g         ND         107         70-130           Nickel         54.2         ug/L         ND         96.9         70-130           Silver         44.9         ug/L         ND         89.7         70-130           Silver         44.9         ug/L         ND         97.6         70-130           Uranium         53.7         ug/L         ND         97.6         70-130           Vanadum         61.2         ug/L         ND         97.7         70-130           Vanadum         37.3         0.5         ug/g         93.3         60-130           Berzene         3.66         0.05         ug/g         93.3         60-130           Bromodichloromethane         3.74         0.05         ug/g         98.5         50-140           Carbon         10.1         0.50         ug/g         68.5         50-140                                                                                                                                                              | Chromium (VI)                     |        | 0.2                | ug/g  | ND               | 74.0 |               |     |              |       |
| Copper         55.8         ug/L         4.7         101         70-130           Lead         53.8         ug/L         4.7         98.3         70-130           Metyodenum         48.9         ug/L         ND         97.4         70-130           Molydenum         48.9         ug/L         ND         97.4         70-130           Silver         14.9         ug/L         5.8         96.9         70-130           Silver         44.9         ug/L         ND         97.6         70-130           Uranium         48.9         ug/L         ND         97.6         70-130           Vanadium         61.2         ug/L         ND         97.6         70-130           Vanadum         61.2         ug/L         12.4         97.6         70-130           Zinc         77.7         ug/L         30.1         95.1         70-130           Bromodichioromethane         3.65         0.02         ug/g         91.3         60-130           Bromodichioromethane         2.74         0.05         ug/g         91.1         60-130           Bromodorm         3.66         0.05         ug/g         91.4         60-130      <                                                                                                                                         |                                   |        |                    | ug/L  |                  | 100  | 70-130        |     |              |       |
| Lead         53.8         ug/L         4.7         98.3         70-130           Mercury         1.61         0.1         ug/g         ND         107         70-130           Nickel         54.2         ug/L         ND         97.4         70-130           Nickel         53.3         ug/L         ND         97.4         70-130           Selenium         53.3         ug/L         ND         97.6         70-130           Uranium         48.9         ug/L         ND         97.6         70-130           Vanadium         61.2         ug/L         ND         97.6         70-130           Vanadium         61.2         ug/L         ND         10.7         70-130           Vanadium         61.2         ug/L         10.1         50-140         70-130           Store         70-730         Ug/L         97.6         70-130         70-130           Vanadium         61.2         ug/L         10.1         50-140         60-130           Store         10.1         0.50         ug/g         91.3         60-130           Bromodorhoromethane         3.65         0.05         ug/g         91.4         60-130     <                                                                                                                                         | Cobalt                            |        |                    | -     |                  | 100  |               |     |              |       |
| Mercury         1.61         0.1         ug/g         ND         107         70-130           Molydenum         48.9         ug/L         ND         97.4         70-130           Selenlum         53.3         ug/L         ND         106         70-130           Silver         44.9         ug/L         ND         80.7         70-130           Thallum         48.9         ug/L         ND         97.6         70-130           Vanadium         53.7         ug/L         ND         97.6         70-130           Vanadium         53.7         ug/L         12.4         97.6         70-130           Vanadium         61.2         ug/L         12.4         97.6         70-130           Zinc         77.7         ug/L         30.1         95.1         70-130           Bromodichloromethane         3.73         0.05         ug/g         91.3         60-130           Bromodichloromethane         2.74         0.05         ug/g         88.5         50-140           Carbon Tetrachloride         3.55         0.05         ug/g         88.7         60-130           Dichorodifuoromethane         2.96         0.05         ug/g <t< td=""><td>Copper</td><td></td><td></td><td>ug/L</td><td>5.4</td><td>101</td><td></td><td></td><td></td><td></td></t<>        | Copper                            |        |                    | ug/L  | 5.4              | 101  |               |     |              |       |
| Molybernum         48.9         ug/L         ND         97.4         70-130           Nickel         54.2         ug/L         5.8         96.9         70-130           Silver         44.9         ug/L         ND         89.7         70-130           Silver         44.9         ug/L         ND         89.7         70-130           Uranium         53.7         ug/L         ND         97.6         70-130           Vanadium         61.2         ug/L         ND         95.1         70-130           Vanadium         61.2         ug/L         12.4         97.6         70-130           Vanadium         61.2         ug/L         12.4         97.6         70-130           Vartice         7.7         ug/L         0.05         ug/g         61.1         50-140           Benzene         3.65         0.05         ug/g         93.3         60-130           Bromodichloromethane         3.73         0.05         ug/g         88.7         60-130           Chlorobenzene         2.74         0.05         ug/g         98.1         60-130           Dibromodiluromethane         3.96         0.05         ug/g         91.6                                                                                                                                      | Lead                              |        |                    | ug/L  | 4.7              | 98.3 |               |     |              |       |
| Nickel         54.2         ug/L         5.8         96.9         70-130           Selenium         53.3         ug/L         ND         106         70-130           Silver         44.9         ug/L         ND         97.6         70-130           Uranium         63.7         ug/L         ND         97.6         70-130           Vanadium         61.2         ug/L         12.4         97.6         70-130           Zinc         77.7         ug/L         30.1         95.1         70-130           Vanadium         61.2         ug/L         12.4         97.6         70-130           Koetone         10.1         0.50         ug/g         91.3         60-130           Bromodichiormethane         3.65         0.02         ug/g         93.3         60-130           Bromodichiormethane         2.74         0.05         ug/g         68.5         50-140           Carbon Tetrachloride         3.66         0.05         ug/g         91.6         60-130           Dibromochloromethane         2.86         0.05         ug/g         91.6         60-130           Dibromochloromethane         3.96         0.05         ug/g         91.6 <td>Mercury</td> <td></td> <td>0.1</td> <td>ug/g</td> <td>ND</td> <td></td> <td></td> <td></td> <td></td> <td></td> | Mercury                           |        | 0.1                | ug/g  | ND               |      |               |     |              |       |
| Selenium         53.3         ug/L         ND         106         70-130           Silver         44.9         ug/L         ND         89.7         70-130           Uranium         53.7         ug/L         ND         97.6         70-130           Vanadium         61.2         ug/L         12.4         97.6         70-130           Zinc         07.7         ug/L         30.1         95.1         70-130           Sectone         10.1         0.50         ug/g         10.1         50-140           Berazene         3.65         0.02         ug/g         93.3         60-130           Bromodichloromethane         3.73         0.05         ug/g         85.5         50-140           Carbon Tetrachloride         3.55         0.05         ug/g         88.7         60-130           Bromodichloromethane         2.74         0.05         ug/g         91.6         60-130           Chloroform         3.66         0.05         ug/g         91.6         60-130           Dichlorodifluoromethane         2.88         0.05         ug/g         91.6         60-130           Jabichlorobenzene         4.09         0.05         ug/g                                                                                                                           |                                   |        |                    |       | ND               | 97.4 |               |     |              |       |
| Silver         44.9         ug/L         ND         89.7         70-130           Thallum         48.9         ug/L         ND         97.6         70-130           Vanadium         61.2         ug/L         ND         107         70-130           Vanadium         61.2         ug/L         12.4         97.6         70-130           Zinc         7.7         ug/L         30.1         95.1         70-130           Acetone         10.1         0.50         ug/g         91.3         60-130           Branceh         3.65         0.02         ug/g         93.3         60-130           Bromoform         3.60         0.05         ug/g         85.7         60-130           Bromoform         3.60         0.05         ug/g         86.7         60-130           Chlorobenzene         2.74         0.05         ug/g         91.6         60-130           Chlorobenzene         2.74         0.05         ug/g         91.6         60-130           Dichorodifluoromethane         2.88         0.05         ug/g         91.6         60-130           1,2-Dichlorobenzene         4.09         0.5         ug/g         91.6         60-130                                                                                                                           |                                   |        |                    | ug/L  | 5.8              | 96.9 |               |     |              |       |
| Thallium       48.9       ug/L       ND       97.6       70-130         Uranium       53.7       ug/L       ND       107       70-130         Vanadium       61.2       ug/L       12.4       97.6       70-130         Zinc       77.7       ug/L       30.1       95.1       70-130         Velatiles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Selenium                          | 53.3   |                    | ug/L  | ND               | 106  | 70-130        |     |              |       |
| Uranium53.7ug/LND10770-130Vanadium61.2ug/L12.497.670-130Zinc77.7ug/L30.195.170-130VolatilesAcetone10.10.50ug/g91.360-130Branodichloromethane3.730.05ug/g90.160-130Bromodichloromethane2.740.05ug/g88.760-130Bromomethane2.740.05ug/g91.660-130Chlorobenzene2.740.05ug/g91.660-130Chlorobenzene2.740.05ug/g91.660-130Dichorodifluoromethane3.660.05ug/g91.660-130Chlorobenzene2.740.05ug/g91.660-130Dichorodifluoromethane3.860.05ug/g91.660-130Dichorodifluoromethane3.960.05ug/g91.660-1301,3-Dichlorobenzene4.130.05ug/g83.760-1301,4-Dichlorobenzene3.370.05ug/g83.560-1301,1-Dichloroethane3.670.05ug/g83.360-1301,2-Dichloroethane3.670.05ug/g84.260-1301,2-Dichloroethylene3.670.05ug/g84.260-1301,2-Dichloroethylene3.670.05ug/g84.260-1301,2-Dichloroethylene3.660.05ug/g84.460-130 </td <td>Silver</td> <td>44.9</td> <td></td> <td>ug/L</td> <td>ND</td> <td>89.7</td> <td>70-130</td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                   | Silver                            | 44.9   |                    | ug/L  | ND               | 89.7 | 70-130        |     |              |       |
| Vanadium         61.2         ug/L         12.4         97.6         70-130           Zinc         77.7         ug/L         30.1         95.1         70-130           Volatiles         setone         setone         setone         setone           Benzene         3.65         0.02         ug/g         91.3         60-130           Bromodichloromethane         3.73         0.05         ug/g         90.1         60-130           Bromodrom         3.60         0.05         ug/g         68.5         50-140           Carbon Tetrachloride         3.55         0.05         ug/g         90.1         60-130           Bromoform         2.74         0.05         ug/g         91.6         60-130           Chlorobenzene         2.74         0.05         ug/g         91.6         60-130           Dibromochloromethane         3.66         0.05         ug/g         91.6         60-130           Dichlorodiflucomethane         3.66         0.05         ug/g         10.2         60-130           1,2-Dichlorobenzene         4.13         0.05         ug/g         10.3         60-130           1,2-Dichlorobenzene         3.57         0.05         ug/g                                                                                                      | Thallium                          | 48.9   |                    | ug/L  | ND               | 97.6 | 70-130        |     |              |       |
| Zinc         77.7         ug/L         30.1         95.1         70-130           Volatiles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Uranium                           |        |                    | ug/L  | ND               | 107  | 70-130        |     |              |       |
| Volatiles           Acetone         10.1         0.50         ug/g         101         50-140           Benzene         3.65         0.02         ug/g         91.3         60-130           Bromodichloromethane         3.73         0.05         ug/g         93.3         60-130           Bromoform         3.60         0.05         ug/g         68.5         50-140           Carbon Tetrachloride         3.55         0.05         ug/g         68.6         60-130           Chlorobenzene         2.74         0.05         ug/g         91.6         60-130           Chlorobenzene         2.74         0.05         ug/g         91.6         60-130           Dibromochloromethane         3.96         0.05         ug/g         71.9         50-140           1.2-Dichlorobenzene         4.09         0.05         ug/g         10.2         60-130           1.3-Dichlorobenzene         3.35         0.05         ug/g         10.3         60-130           1.4-Dichlorobenzene         3.35         0.05         ug/g         10.3         60-130           1.4-Dichlorobenzene         3.37         0.05         ug/g         83.7         60-130           1.4-D                                                                                                        | Vanadium                          |        |                    | ug/L  | 12.4             | 97.6 | 70-130        |     |              |       |
| Acetone10.10.50ug/g10150-140Benzene3.650.02ug/g91.360-130Bromodichloromethane3.730.05ug/g93.360-130Bromoform3.600.05ug/g68.550-140Bromomethane2.740.05ug/g68.550-140Carbon Tetrachloride3.550.05ug/g68.660-130Chlorobenzene2.740.05ug/g91.160-130Chlorobenzene2.740.05ug/g91.660-130Dibromochloromethane3.960.05ug/g91.160-130Dichlorodifluoromethane2.880.05ug/g10260-1301,2-Dichlorobenzene4.130.05ug/g10360-1301,3-Dichlorobenzene3.350.05ug/g83.760-1301,4-Dichlorobenzene3.580.05ug/g83.760-1301,2-Dichlorobenzene3.770.05ug/g84.260-1301,1-Dichloroethane3.760.05ug/g94.160-1301,2-Dichloroethylene3.670.05ug/g94.160-1301,2-Dichloroethylene3.670.05ug/g85.360-1301,2-Dichloroethylene3.670.05ug/g94.160-1301,2-Dichloroethylene3.670.05ug/g94.160-1301,2-Dichloroethylene3.670.05ug/g85.360-130 <tr< td=""><td>Zinc</td><td>77.7</td><td></td><td>ug/L</td><td>30.1</td><td>95.1</td><td>70-130</td><td></td><td></td><td></td></tr<>                                                                                                                                                                                                                                                                                                                                                    | Zinc                              | 77.7   |                    | ug/L  | 30.1             | 95.1 | 70-130        |     |              |       |
| Benzene         3.65         0.02         ug/g         91.3         60-130           Bromodichloromethane         3.73         0.05         ug/g         93.3         60-130           Bromoform         3.60         0.05         ug/g         90.1         60-130           Bromoethane         2.74         0.05         ug/g         88.7         60-130           Chlorobenzene         2.74         0.05         ug/g         91.6         60-130           Chloroform         3.66         0.05         ug/g         91.6         60-130           Dibromochloromethane         3.96         0.05         ug/g         91.6         60-130           Dichlorodifluoromethane         3.96         0.05         ug/g         102         60-130           1,2-Dichlorobenzene         4.09         0.05         ug/g         103         60-130           1,4-Dichlorobenzene         3.35         0.05         ug/g         83.7         60-130           1,1-Dichlorobenzene         3.37         0.05         ug/g         84.2         60-130           1,1-Dichlorobenzene         3.37         0.05         ug/g         94.1         60-130           1,2-Dichloroethylene         3.67                                                                                             | Volatiles                         |        |                    |       |                  |      |               |     |              |       |
| Bromodichloromethane         3.73         0.05         ug'g         93.3         60-130           Bromoform         3.60         0.05         ug/g         90.1         60-130           Bromomethane         2.74         0.05         ug/g         68.5         50-140           Carbon Tetrachloride         3.55         0.05         ug/g         68.6         60-130           Chlorobenzene         2.74         0.05         ug/g         91.6         60-130           Dibromochloromethane         3.96         0.05         ug/g         91.6         60-130           Dibromochloromethane         2.88         0.05         ug/g         102         60-130           1,2-Dichlorobenzene         4.09         0.05         ug/g         102         60-130           1,3-Dichlorobenzene         4.13         0.05         ug/g         83.7         60-130           1,4-Dichlorobenzene         3.35         0.05         ug/g         80.6         60-130           1,2-Dichloroethane         3.56         0.05         ug/g         80.7         60-130           1,2-Dichloroethylene         3.76         0.05         ug/g         81.7         60-130           1,2-Dichloroethylene                                                                                      | Acetone                           | 10.1   | 0.50               | ug/g  |                  | 101  | 50-140        |     |              |       |
| Bromoform         3.60         0.05         ug/g         90.1         60-130           Bromomethane         2.74         0.05         ug/g         68.5         50-140           Carbon Tetrachloride         3.55         0.05         ug/g         88.7         60-130           Chlorobenzene         2.74         0.05         ug/g         91.6         60-130           Chloroform         3.66         0.05         ug/g         91.6         60-130           Dibromochloromethane         3.96         0.05         ug/g         91.6         60-130           J.2-Dichlorobenzene         4.09         0.05         ug/g         102         60-130           1,3-Dichlorobenzene         4.09         0.05         ug/g         103         60-130           1,4-Dichlorobenzene         3.35         0.05         ug/g         83.7         60-130           1,4-Dichlorobenzene         3.35         0.05         ug/g         83.7         60-130           1,4-Dichlorobenzene         3.37         0.05         ug/g         83.7         60-130           1,4-Dichloroethane         3.67         0.05         ug/g         83.7         60-130           1,1-Dichloroethylene         3.                                                                                       | Benzene                           | 3.65   | 0.02               | ug/g  |                  | 91.3 | 60-130        |     |              |       |
| Bromomethane2.740.05ug/g68.550-140Carbon Tetrachloride3.550.05ug/g88.760-130Chlorobenzene2.740.05ug/g68.660-130Chloroform3.660.05ug/g91.660-130Dibromochloromethane3.960.05ug/g71.950-1401,2-Dichlorobenzene4.090.05ug/g10260-1301,3-Dichlorobenzene4.130.05ug/g10360-1301,4-Dichlorobenzene3.350.05ug/g83.760-1301,4-Dichlorobenzene3.350.05ug/g89.560-1301,1-Dichloroethane3.580.05ug/g89.560-1301,2-Dichloroethylene3.670.05ug/g84.260-1301,1-Dichloroethylene3.670.05ug/g91.760-130cis-1,2-Dichloroethylene3.670.05ug/g85.360-1301,2-Dichloroethylene3.670.05ug/g85.360-1301,2-Dichloroethylene3.670.05ug/g85.360-1301,2-Dichloroethylene3.530.05ug/g85.460-1301,2-Dichloroethylene3.660.05ug/g86.460-1301,3-Dichloropropylene3.530.05ug/g86.460-1301,3-Dichloropropylene3.560.05ug/g91.660-1301,2-Dichloropropylene3.660.05ug/g </td <td>Bromodichloromethane</td> <td>3.73</td> <td>0.05</td> <td>ug/g</td> <td></td> <td>93.3</td> <td>60-130</td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                          | Bromodichloromethane              | 3.73   | 0.05               | ug/g  |                  | 93.3 | 60-130        |     |              |       |
| Carbon Tetrachloride3.550.05ug/g88.760-130Chlorobenzene2.740.05ug/g91.660-130Chloroform3.660.05ug/g91.660-130Dibromochloromethane3.960.05ug/g99.160-130Dichlorodifluoromethane2.880.05ug/g10260-1301,2-Dichlorobenzene4.090.05ug/g10360-1301,3-Dichlorobenzene4.130.05ug/g83.760-1301,4-Dichlorobenzene3.350.05ug/g83.760-1301,1-Dichloroethane3.580.05ug/g89.560-1301,2-Dichloroethane3.370.05ug/g84.260-1301,2-Dichloroethylene3.760.05ug/g91.760-1301,2-Dichloroethylene3.660.05ug/g85.360-1301,2-Dichloroethylene3.660.05ug/g85.360-1301,2-Dichloroethylene3.660.05ug/g85.360-1301,2-Dichloroethylene3.660.05ug/g85.360-1301,2-Dichloroptylene3.530.05ug/g86.460-130cis-1,2-Dichloroptylene3.530.05ug/g86.460-130trans-1,3-Dichloropropylene3.660.05ug/g96.460-130trans-1,3-Dichloropropylene3.660.05ug/g98.960-130trans-1,3-Dichloropropylene3.66 </td <td>Bromoform</td> <td>3.60</td> <td>0.05</td> <td>ug/g</td> <td></td> <td>90.1</td> <td>60-130</td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                   | Bromoform                         | 3.60   | 0.05               | ug/g  |                  | 90.1 | 60-130        |     |              |       |
| Chlorobenzene2.740.05ug/g68.660-130Chloroform3.660.05ug/g91.660-130Dibromochloromethane3.960.05ug/g99.160-130Dichlorodifluoromethane2.880.05ug/g71.950-1401,2-Dichlorobenzene4.090.05ug/g10260-1301,3-Dichlorobenzene4.130.05ug/g83.760-1301,4-Dichlorobenzene3.350.05ug/g83.760-1301,4-Dichlorobenzene3.370.05ug/g89.560-1301,1-Dichloroethane3.580.05ug/g84.260-1301,2-Dichloroethane3.670.05ug/g94.160-1301,2-Dichloroethylene3.670.05ug/g94.160-1301,2-Dichloroethylene3.670.05ug/g91.760-1301,2-Dichloroethylene3.670.05ug/g91.760-1301,2-Dichloropthylene3.670.05ug/g85.360-1301,2-Dichloropthylene3.660.05ug/g85.360-1301,2-Dichloropropane3.680.05ug/g86.460-130trans-1,3-Dichloropropylene3.530.05ug/g86.760-130trans-1,3-Dichloropropylene3.660.05ug/g65.760-130trans-1,3-Dichloropropylene3.660.05ug/g91.660-130trans-1,3-Dichloropropylene3.                                                                                                                                                                                                                                                                                                                                                                                                                                         | Bromomethane                      | 2.74   | 0.05               | ug/g  |                  | 68.5 | 50-140        |     |              |       |
| Chloroform3.660.05ug/g91.660-130Dibromochloromethane3.960.05ug/g99.160-130Dichlorodifluoromethane2.880.05ug/g71.950-1401,2-Dichlorobenzene4.090.05ug/g10260-1301,3-Dichlorobenzene4.130.05ug/g10360-1301,4-Dichlorobenzene3.350.05ug/g83.760-1301,1-Dichloroethane3.580.05ug/g84.260-1301,2-Dichloroethylene3.760.05ug/g94.160-1301,2-Dichloroethylene3.670.05ug/g91.760-1301,2-Dichloroethylene3.670.05ug/g91.760-1301,2-Dichloroethylene3.670.05ug/g96.460-130cis-1,2-Dichloroethylene3.860.05ug/g96.460-130trans-1,2-Dichloropropane3.960.05ug/g98.960-130trans-1,3-Dichloropropylene3.960.05ug/g98.960-130trans-1,3-Dichloropropylene3.960.05ug/g91.660-130Ethylene dibromide (dibromoethane3.660.05ug/g91.660-130Hexane3.900.05ug/g91.660-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Carbon Tetrachloride              | 3.55   | 0.05               | ug/g  |                  | 88.7 | 60-130        |     |              |       |
| Dibromochloromethane3.960.05ug/g99.160-130Dichlorodifluoromethane2.880.05ug/g71.950-1401,2-Dichlorobenzene4.090.05ug/g10260-1301,3-Dichlorobenzene4.130.05ug/g10360-1301,4-Dichlorobenzene3.350.05ug/g83.760-1301,1-Dichloroethane3.580.05ug/g89.560-1301,2-Dichloroethane3.370.05ug/g84.260-1301,2-Dichloroethylene3.760.05ug/g94.160-130cis-1,2-Dichloroethylene3.670.05ug/g91.760-130trans-1,2-Dichloroptylene3.670.05ug/g85.360-130trans-1,2-Dichloroptylene3.860.05ug/g96.460-130cis-1,3-Dichloroptylene3.960.05ug/g88.460-130trans-1,3-Dichloroptylene3.960.05ug/g98.960-130Ethylbenzene2.630.05ug/g98.960-130Ethylene dibromide (dibromoethane.3.660.05ug/g91.660-130Ethylene dibromide (dibromoethane.3.660.05ug/g91.660-130Ethylene dibromide (dibromoethane.3.660.05ug/g91.660-130Hexane3.900.05ug/g91.660-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Chlorobenzene                     | 2.74   | 0.05               | ug/g  |                  | 68.6 | 60-130        |     |              |       |
| Dichlorodifluoromethane2.880.05ug/g71.950-1401,2-Dichlorobenzene4.090.05ug/g10260-1301,3-Dichlorobenzene4.130.05ug/g10360-1301,4-Dichlorobenzene3.350.05ug/g83.760-1301,1-Dichloroethane3.580.05ug/g89.560-1301,2-Dichloroethane3.370.05ug/g84.260-1301,2-Dichloroethylene3.760.05ug/g94.160-1301,1-Dichloroethylene3.670.05ug/g91.760-1301,2-Dichloroethylene3.670.05ug/g85.360-1301,2-Dichloroethylene3.670.05ug/g91.760-1301,3-Dichloropropylene3.860.05ug/g88.460-1301,2-Dichloropropylene3.530.05ug/g96.460-1301,2-Dichloropropylene3.660.05ug/g98.960-1301,2-Dichloropropylene3.960.05ug/g98.960-130trans-1,3-Dichloropropylene3.660.05ug/g98.960-130Ethylbenzene2.630.05ug/g91.660-130Ethylene dibromide (dibromoethane3.660.05ug/g91.660-130Hexane3.900.05ug/g91.660-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Chloroform                        | 3.66   | 0.05               | ug/g  |                  | 91.6 | 60-130        |     |              |       |
| 1,2-Dichlorobenzene4.090.05ug/g10260-1301,3-Dichlorobenzene4.130.05ug/g10360-1301,4-Dichlorobenzene3.350.05ug/g83.760-1301,1-Dichloroethane3.580.05ug/g89.560-1301,2-Dichloroethane3.370.05ug/g84.260-1301,1-Dichloroethylene3.760.05ug/g94.160-1301,1-Dichloroethylene3.670.05ug/g91.760-130trans-1,2-Dichloroethylene3.410.05ug/g85.360-1301,2-Dichloroethylene3.860.05ug/g96.460-130trans-1,3-Dichloropropane3.900.05ug/g98.960-130trans-1,3-Dichloropropylene3.960.05ug/g98.960-130Ethylbenzene2.630.05ug/g91.660-130Ethylene dibromide (dibromoethane3.660.05ug/g91.660-130Hexane3.900.05ug/g97.460-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Dibromochloromethane              |        |                    | ug/g  |                  |      | 60-130        |     |              |       |
| 1,3-Dichlorobenzene4.130.05ug/g10360-1301,4-Dichlorobenzene3.350.05ug/g83.760-1301,1-Dichloroethane3.580.05ug/g89.560-1301,2-Dichloroethane3.370.05ug/g84.260-1301,1-Dichloroethylene3.760.05ug/g94.160-1301,1-Dichloroethylene3.670.05ug/g91.760-130cis-1,2-Dichloroethylene3.670.05ug/g85.360-130trans-1,2-Dichloroethylene3.860.05ug/g85.360-1301,2-Dichloropropane3.860.05ug/g88.460-130cis-1,3-Dichloropropylene3.960.05ug/g98.960-130trans-1,3-Dichloropropylene3.660.05ug/g98.960-130Ethylbenzene2.630.05ug/g91.660-130Ethylene dibromide (dibromoethane3.660.05ug/g91.660-130Hexane3.900.05ug/g97.460-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Dichlorodifluoromethane           | 2.88   | 0.05               | ug/g  |                  | 71.9 | 50-140        |     |              |       |
| 1,4-Dichlorobenzene3.350.05ug/g83.760-1301,1-Dichloroethane3.580.05ug/g89.560-1301,2-Dichloroethane3.370.05ug/g94.160-1301,1-Dichloroethylene3.670.05ug/g91.760-130cis-1,2-Dichloroethylene3.670.05ug/g91.760-130trans-1,2-Dichloroethylene3.410.05ug/g85.360-1301,2-Dichloropropane3.860.05ug/g85.360-130cis-1,3-Dichloropropylene3.530.05ug/g88.460-130trans-1,3-Dichloropropylene3.960.05ug/g98.960-130Ethylbenzene2.630.05ug/g91.660-130Ethylene dibromide (dibromoethane3.660.05ug/g91.660-130Hexane3.900.05ug/g97.460-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ,                                 |        |                    | ug/g  |                  |      |               |     |              |       |
| 1,1-Dichloroethane3.580.05ug/g89.560-1301,2-Dichloroethane3.370.05ug/g84.260-1301,1-Dichloroethylene3.760.05ug/g94.160-130cis-1,2-Dichloroethylene3.670.05ug/g91.760-130trans-1,2-Dichloroethylene3.410.05ug/g85.360-1301,2-Dichloroethylene3.860.05ug/g96.460-130cis-1,3-Dichloropropane3.860.05ug/g88.460-130trans-1,3-Dichloropropylene3.960.05ug/g88.460-130Ethylbenzene2.630.05ug/g96.760-130Ethylene dibromide (dibromoethane3.660.05ug/g91.660-130Hexane3.900.05ug/g97.460-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1,3-Dichlorobenzene               | 4.13   | 0.05               | ug/g  |                  | 103  | 60-130        |     |              |       |
| 1,2-Dichloroethane3.370.05ug/g84.260-1301,1-Dichloroethylene3.760.05ug/g94.160-130cis-1,2-Dichloroethylene3.670.05ug/g91.760-130trans-1,2-Dichloroethylene3.410.05ug/g85.360-1301,2-Dichloropropane3.860.05ug/g96.460-130cis-1,3-Dichloropropylene3.530.05ug/g88.460-130trans-1,3-Dichloropropylene3.960.05ug/g98.960-130Ethylbenzene2.630.05ug/g91.660-130Ethylene dibromide (dibromoethane3.660.05ug/g91.660-130Hexane3.900.05ug/g97.460-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1,4-Dichlorobenzene               |        | 0.05               | ug/g  |                  |      | 60-130        |     |              |       |
| 1,1-Dichloroethylene3.760.05ug/g94.160-130cis-1,2-Dichloroethylene3.670.05ug/g91.760-130trans-1,2-Dichloroethylene3.410.05ug/g85.360-1301,2-Dichloropropane3.860.05ug/g96.460-130cis-1,3-Dichloropropylene3.530.05ug/g88.460-130trans-1,3-Dichloropropylene3.960.05ug/g98.960-130Ethylbenzene2.630.05ug/g98.960-130Ethylene dibromide (dibromoethane3.660.05ug/g91.660-130Hexane3.900.05ug/g97.460-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1,1-Dichloroethane                | 3.58   | 0.05               | ug/g  |                  | 89.5 | 60-130        |     |              |       |
| cis-1,2-Dichloroethylene3.670.05ug/g91.760-130trans-1,2-Dichloroethylene3.410.05ug/g85.360-1301,2-Dichloropropane3.860.05ug/g96.460-130cis-1,3-Dichloropropylene3.530.05ug/g88.460-130trans-1,3-Dichloropropylene3.960.05ug/g98.960-130Ethylbenzene2.630.05ug/g98.960-130Ethylene dibromide (dibromoethane3.660.05ug/g91.660-130Hexane3.900.05ug/g97.460-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                 |        |                    |       |                  |      |               |     |              |       |
| trans-1,2-Dichloroethylene3.410.05ug/g85.360-1301,2-Dichloropropane3.860.05ug/g96.460-130cis-1,3-Dichloropropylene3.530.05ug/g88.460-130trans-1,3-Dichloropropylene3.960.05ug/g98.960-130Ethylbenzene2.630.05ug/g65.760-130Ethylene dibromide (dibromoethane3.660.05ug/g91.660-130Hexane3.900.05ug/g97.460-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                 |        | 0.05               | ug/g  |                  | 94.1 | 60-130        |     |              |       |
| 1,2-Dichloropropane3.860.05ug/g96.460-130cis-1,3-Dichloropropylene3.530.05ug/g88.460-130trans-1,3-Dichloropropylene3.960.05ug/g98.960-130Ethylbenzene2.630.05ug/g65.760-130Ethylene dibromide (dibromoethane3.660.05ug/g91.660-130Hexane3.900.05ug/g97.460-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | , <u>,</u>                        |        |                    | ug/g  |                  |      |               |     |              |       |
| cis-1,3-Dichloropropylene3.530.05ug/g88.460-130trans-1,3-Dichloropropylene3.960.05ug/g98.960-130Ethylbenzene2.630.05ug/g65.760-130Ethylene dibromide (dibromoethane3.660.05ug/g91.660-130Hexane3.900.05ug/g97.460-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                 | 3.41   | 0.05               | ug/g  |                  |      | 60-130        |     |              |       |
| trans-1,3-Dichloropropylene3.960.05ug/g98.960-130Ethylbenzene2.630.05ug/g65.760-130Ethylene dibromide (dibromoethane3.660.05ug/g91.660-130Hexane3.900.05ug/g97.460-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | · · · · ·                         |        |                    |       |                  |      |               |     |              |       |
| Ethylbenzene2.630.05ug/g65.760-130Ethylene dibromide (dibromoethane3.660.05ug/g91.660-130Hexane3.900.05ug/g97.460-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   |        |                    |       |                  | 88.4 |               |     |              |       |
| Ethylene dibromide (dibromoethane)         3.66         0.05         ug/g         91.6         60-130           Hexane         3.90         0.05         ug/g         97.4         60-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                   |        |                    | ug/g  |                  |      |               |     |              |       |
| Hexane 3.90 0.05 ug/g 97.4 60-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ethylbenzene                      |        |                    | ug/g  |                  |      |               |     |              |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ethylene dibromide (dibromoethane |        |                    | ug/g  |                  |      |               |     |              |       |
| Methyl Ethyl Ketone (2-Butanone) 9.51 0.50 ug/g 95.1 50-140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Hexane                            | 3.90   | 0.05               | ug/g  |                  | 97.4 | 60-130        |     |              |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Methyl Ethyl Ketone (2-Butanone)  | 9.51   | 0.50               | ug/g  |                  | 95.1 | 50-140        |     |              |       |



## Order #: 1921390

Report Date: 29-May-2019 Order Date: 23-May-2019

Page 11 of 12

Project Description: PE4588

# Method Quality Control: Spike

| Analyte                         | Result | Reporting<br>Limit | Units | Source<br>Result | %REC | %REC<br>Limit | RPD | RPD<br>Limit | Notes |
|---------------------------------|--------|--------------------|-------|------------------|------|---------------|-----|--------------|-------|
| Methyl Isobutyl Ketone          | 10.5   | 0.50               | ug/g  |                  | 105  | 50-140        |     |              |       |
| Methyl tert-butyl ether         | 8.48   | 0.05               | ug/g  |                  | 84.8 | 50-140        |     |              |       |
| Methylene Chloride              | 3.63   | 0.05               | ug/g  |                  | 90.6 | 60-130        |     |              |       |
| Styrene                         | 2.97   | 0.05               | ug/g  |                  | 74.4 | 60-130        |     |              |       |
| 1,1,1,2-Tetrachloroethane       | 3.58   | 0.05               | ug/g  |                  | 89.5 | 60-130        |     |              |       |
| 1,1,2,2-Tetrachloroethane       | 4.16   | 0.05               | ug/g  |                  | 104  | 60-130        |     |              |       |
| Tetrachloroethylene             | 3.18   | 0.05               | ug/g  |                  | 79.6 | 60-130        |     |              |       |
| Toluene                         | 3.09   | 0.05               | ug/g  |                  | 77.3 | 60-130        |     |              |       |
| 1,1,1-Trichloroethane           | 3.55   | 0.05               | ug/g  |                  | 88.9 | 60-130        |     |              |       |
| 1,1,2-Trichloroethane           | 4.32   | 0.05               | ug/g  |                  | 108  | 60-130        |     |              |       |
| Trichloroethylene               | 4.39   | 0.05               | ug/g  |                  | 110  | 60-130        |     |              |       |
| Trichlorofluoromethane          | 2.73   | 0.05               | ug/g  |                  | 68.2 | 50-140        |     |              |       |
| Vinyl chloride                  | 2.59   | 0.02               | ug/g  |                  | 64.7 | 50-140        |     |              |       |
| m,p-Xylenes                     | 8.02   | 0.05               | ug/g  |                  | 100  | 60-130        |     |              |       |
| o-Xylene                        | 3.32   | 0.05               | ug/g  |                  | 83.0 | 60-130        |     |              |       |
| Surrogate: 4-Bromofluorobenzene | 3.21   |                    | ug/g  |                  | 100  | 50-140        |     |              |       |



Page 12 of 12

#### **Qualifier Notes:**

Login Qualifiers :

Container(s) - Bottle and COC sample ID don't match -Applies to samples: BH9-SS3

#### Sample Data Revisions

None

#### Work Order Revisions / Comments:

None

#### **Other Report Notes:**

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference.

Soil results are reported on a dry weight basis when the units are denoted with 'dry'. Where %Solids is reported, moisture loss includes the loss of volatile hydrocarbons.

#### CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.

- F1 range corrected for BTEX.
- F2 to F3 ranges corrected for appropriate PAHs where available.
- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.
- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.
- When reported, data for F4G has been processed using a silica gel cleanup.

| GPARACEL                                                                                                       | PI         | RUST<br>ESPC<br>ELIAL |                 | RACEL WO                                                                            | D: 192            | 139               |        | ļ    | 3<br>0<br>p | ttawa<br>1-80 | 19 St<br>, Onti<br>0-749 | Laurent E<br>ario K1G 4<br>3-1947<br>paracellab | 4,18                 |      | (1               | ab Use | Custody<br>Ouly)<br>2140 |     |
|----------------------------------------------------------------------------------------------------------------|------------|-----------------------|-----------------|-------------------------------------------------------------------------------------|-------------------|-------------------|--------|------|-------------|---------------|--------------------------|-------------------------------------------------|----------------------|------|------------------|--------|--------------------------|-----|
| [ar. a) 0                                                                                                      | <i>.</i>   |                       |                 | Desire D. C.                                                                        |                   |                   | _      |      |             |               | _                        |                                                 |                      |      | Pag              | ge 🔶 ( | or <u>L</u>              |     |
| Chent Name: HATEKSON<br>Contact Name: MIKE BEAUDON<br>Address:<br>154 Colonnade Red<br>Telephone: 613-226-736/ | S.         |                       |                 | Project Reference<br>Quote #<br>PO # <b>A 6 G</b><br>Email Address:<br><b>M b c</b> | PET               |                   |        | Cerr | c           | 10            |                          | 0.5                                             |                      |      | Day              |        | d Time<br>03 D<br>19 Rej | Day |
| Criteria: 70. Reg. 153/04 (As Amended) Table _ CRS                                                             | C Filing ( |                       |                 | D D PWQO D                                                                          | CCME II SU        | /B (St            | arm)   | D.S  | UB (!       | Sanita        | iry) )                   | Municipali                                      | ity:                 | Part |                  | Ther:  |                          | _   |
| Matrix Type: S (Soll/Sed.) GW (Ground Water) SW (Surface Water)<br>Paracel Order Number:<br>/12/390            | SS (Storm  |                       | 1               | (Paint) A (Air) O (                                                                 |                   | F1-F4+BTEN        | quir   | ed A | naly<br>5   | ses           |                          |                                                 |                      |      |                  |        |                          |     |
| Sample ID/Location Name                                                                                        | Matrix     | Air Volume            | # of Containers | Date                                                                                | Time              | PHCs F1-F4        | VOCS   | PAHs | uts by      | Hg            | Renwsa                   | for which are                                   |                      |      |                  |        |                          |     |
| 1 BH7-555<br>2 BH7-553                                                                                         | 5          |                       | 2               | May 22/19                                                                           |                   | X                 | K      |      | -           | -             | X                        | _                                               |                      |      | 120              | mi-    | +1vi6                    | 1-  |
| 2 BHO-553<br>3 BH 9-555 V<br>4                                                                                 | 5          |                       | 2               |                                                                                     |                   |                   | x<br>x |      | -           | X X<br>X X    | _                        |                                                 |                      |      |                  | J      |                          |     |
| 5                                                                                                              |            |                       |                 |                                                                                     |                   |                   |        |      |             |               |                          |                                                 |                      |      |                  |        |                          |     |
| 7 8                                                                                                            |            |                       |                 |                                                                                     |                   |                   |        | _    | _           |               |                          |                                                 |                      |      |                  |        |                          |     |
| o<br>Comments: - NO.3 Somple DO m                                                                              | Reil       | 70.0                  |                 | and - Bu                                                                            | 0 - 0             | 2                 |        |      |             | 0             |                          |                                                 |                      | 00   | Marked           | 18.1   |                          |     |
| Relinquished By (Sign):                                                                                        | _          | Jey Driv              |                 |                                                                                     | Kopi              | ed at L           | ab:    | m    |             | 50            | r                        | mik                                             | Verified             |      | Mathod c         | ft     | d:                       |     |
| Relinquished By (Print MIKE B.<br>Date Time:                                                                   | Date/Tit   | 1                     | 'n,             |                                                                                     | Date/T<br>Teniper | 100 C 100 C 100 C | 1      | M    | ya          | pr 2p         | n9                       | 04.0                                            | SterTim<br>pH Verifi |      | y<br>S-21,<br>M4 | 1-19   | 10;                      | 26  |

Chain of Custody (Env) - Rev 0.7 Feb. 2016



RELIABLE.

# Certificate of Analysis

### **Paterson Group Consulting Engineers**

154 Colonnade Road South Nepean, ON K2E 7J5 Attn: Mark D'Arcy

Client PO: 27622 Project: PE4588 Custody: 123188

Report Date: 10-Sep-2019 Order Date: 6-Sep-2019

Order #: 1936482

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

| Paracel ID | Client ID |
|------------|-----------|
| 1936482-01 | BH10-SS2  |
| 1936482-02 | BH11-SS1  |
| 1936482-03 | BH12-SS2  |
| 1936482-04 | BH13-SS2  |

Approved By:

Dale Robertson, BSc Laboratory Director

Any use of these results implies your agreement that our total liability in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.



Report Date: 10-Sep-2019

Order #: 1936482

Order Date: 6-Sep-2019

Project Description: PE4588

### **Analysis Summary Table**

| Analysis                   | Method Reference/Description | Extraction Date | Analysis Date |
|----------------------------|------------------------------|-----------------|---------------|
| REG 153: VOCs by P&T GC/MS | EPA 8260 - P&T GC-MS         | 6-Sep-19        | 9-Sep-19      |
| Solids, %                  | Gravimetric, calculation     | 9-Sep-19        | 9-Sep-19      |



Report Date: 10-Sep-2019 Order Date: 6-Sep-2019

|                                  | Client ID:    | BH10-SS2           | BH11-SS1           | BH12-SS2           | BH13-SS2           |
|----------------------------------|---------------|--------------------|--------------------|--------------------|--------------------|
|                                  | Sample Date:  | 05-Sep-19 10:00    | 05-Sep-19 10:00    | 05-Sep-19 13:00    | 05-Sep-19 15:00    |
| г                                | Sample ID:    | 1936482-01<br>Soil | 1936482-02<br>Soil | 1936482-03<br>Soil | 1936482-04<br>Soil |
| Physical Characteristics         | MDL/Units     | 3011               | 3011               | 3011               | 301                |
| % Solids                         | 0.1 % by Wt.  | 81.7               | 59.1               | 81.7               | 83.7               |
| Volatiles                        | -             | 01.7               | 00.1               | 0117               | 00.7               |
| Acetone                          | 0.50 ug/g dry | <0.50              | <0.50              | <0.50              | <0.50              |
| Benzene                          | 0.02 ug/g dry | <0.02              | <0.02              | <0.02              | <0.02              |
| Bromodichloromethane             | 0.05 ug/g dry | <0.05              | <0.05              | <0.05              | <0.05              |
| Bromoform                        | 0.05 ug/g dry | <0.05              | <0.05              | <0.05              | <0.05              |
| Bromomethane                     | 0.05 ug/g dry | <0.05              | <0.05              | <0.05              | <0.05              |
| Carbon Tetrachloride             | 0.05 ug/g dry | <0.05              | <0.05              | <0.05              | <0.05              |
| Chlorobenzene                    | 0.05 ug/g dry | <0.05              | <0.05              | <0.05              | <0.05              |
| Chloroform                       | 0.05 ug/g dry | <0.05              | <0.05              | <0.05              | <0.05              |
| Dibromochloromethane             | 0.05 ug/g dry | <0.05              | <0.05              | <0.05              | <0.05              |
| Dichlorodifluoromethane          | 0.05 ug/g dry | <0.05              | <0.05              | <0.05              | <0.05              |
| 1,2-Dichlorobenzene              | 0.05 ug/g dry | <0.05              | <0.05              | <0.05              | <0.05              |
| 1,3-Dichlorobenzene              | 0.05 ug/g dry | <0.05              | <0.05              | <0.05              | <0.05              |
| 1,4-Dichlorobenzene              | 0.05 ug/g dry | <0.05              | <0.05              | <0.05              | <0.05              |
| 1,1-Dichloroethane               | 0.05 ug/g dry | <0.05              | <0.05              | <0.05              | <0.05              |
| 1,2-Dichloroethane               | 0.05 ug/g dry | <0.05              | <0.05              | <0.05              | <0.05              |
| 1,1-Dichloroethylene             | 0.05 ug/g dry | <0.05              | <0.05              | <0.05              | <0.05              |
| cis-1,2-Dichloroethylene         | 0.05 ug/g dry | <0.05              | <0.05              | <0.05              | <0.05              |
| trans-1,2-Dichloroethylene       | 0.05 ug/g dry | <0.05              | <0.05              | <0.05              | <0.05              |
| 1,2-Dichloropropane              | 0.05 ug/g dry | <0.05              | <0.05              | <0.05              | <0.05              |
| cis-1,3-Dichloropropylene        | 0.05 ug/g dry | <0.05              | <0.05              | <0.05              | <0.05              |
| trans-1,3-Dichloropropylene      | 0.05 ug/g dry | <0.05              | <0.05              | <0.05              | <0.05              |
| 1,3-Dichloropropene, total       | 0.05 ug/g dry | <0.05              | <0.05              | <0.05              | <0.05              |
| Ethylbenzene                     | 0.05 ug/g dry | <0.05              | <0.05              | <0.05              | <0.05              |
| Ethylene dibromide (dibromoethan | 0.05 ug/g dry | <0.05              | <0.05              | <0.05              | <0.05              |
| Hexane                           | 0.05 ug/g dry | <0.05              | <0.05              | <0.05              | <0.05              |
| Methyl Ethyl Ketone (2-Butanone) | 0.50 ug/g dry | <0.50              | <0.50              | <0.50              | <0.50              |
| Methyl Isobutyl Ketone           | 0.50 ug/g dry | <0.50              | <0.50              | <0.50              | <0.50              |
| Methyl tert-butyl ether          | 0.05 ug/g dry | <0.05              | <0.05              | <0.05              | <0.05              |
| Methylene Chloride               | 0.05 ug/g dry | <0.05              | <0.05              | <0.05              | <0.05              |
| Styrene                          | 0.05 ug/g dry | <0.05              | <0.05              | <0.05              | <0.05              |
| 1,1,1,2-Tetrachloroethane        | 0.05 ug/g dry | <0.05              | <0.05              | <0.05              | <0.05              |
| 1,1,2,2-Tetrachloroethane        | 0.05 ug/g dry | <0.05              | <0.05              | <0.05              | <0.05              |
| Tetrachloroethylene              | 0.05 ug/g dry | <0.05              | <0.05              | <0.05              | <0.05              |



Order #: 1936482

Report Date: 10-Sep-2019 Order Date: 6-Sep-2019

|                        | Client ID:    | BH10-SS2        | BH11-SS1        | BH12-SS2        | BH13-SS2        |
|------------------------|---------------|-----------------|-----------------|-----------------|-----------------|
|                        | Sample Date:  | 05-Sep-19 10:00 | 05-Sep-19 10:00 | 05-Sep-19 13:00 | 05-Sep-19 15:00 |
|                        | Sample ID:    | 1936482-01      | 1936482-02      | 1936482-03      | 1936482-04      |
|                        | MDL/Units     | Soil            | Soil            | Soil            | Soil            |
| Toluene                | 0.05 ug/g dry | <0.05           | <0.05           | <0.05           | <0.05           |
| 1,1,1-Trichloroethane  | 0.05 ug/g dry | <0.05           | <0.05           | <0.05           | <0.05           |
| 1,1,2-Trichloroethane  | 0.05 ug/g dry | <0.05           | <0.05           | <0.05           | <0.05           |
| Trichloroethylene      | 0.05 ug/g dry | <0.05           | <0.05           | <0.05           | <0.05           |
| Trichlorofluoromethane | 0.05 ug/g dry | <0.05           | <0.05           | <0.05           | <0.05           |
| Vinyl chloride         | 0.02 ug/g dry | <0.02           | <0.02           | <0.02           | <0.02           |
| m,p-Xylenes            | 0.05 ug/g dry | <0.05           | <0.05           | <0.05           | <0.05           |
| o-Xylene               | 0.05 ug/g dry | <0.05           | <0.05           | <0.05           | <0.05           |
| Xylenes, total         | 0.05 ug/g dry | <0.05           | <0.05           | <0.05           | <0.05           |
| 4-Bromofluorobenzene   | Surrogate     | 101%            | 101%            | 101%            | 100%            |
| Dibromofluoromethane   | Surrogate     | 113%            | 135%            | 129%            | 128%            |
| Toluene-d8             | Surrogate     | 63.9%           | 63.7%           | 64.3%           | 63.7%           |



### Order #: 1936482

Report Date: 10-Sep-2019 Order Date: 6-Sep-2019

Project Description: PE4588

# Method Quality Control: Blank

| Analyte                           | Result | Reporting<br>Limit | Units        | Source<br>Result | %REC         | %REC<br>Limit    | RPD | RPD<br>Limit | Notes |
|-----------------------------------|--------|--------------------|--------------|------------------|--------------|------------------|-----|--------------|-------|
| Volatiles                         |        |                    |              |                  |              |                  |     |              |       |
| Acetone                           | ND     | 0.50               | ug/g         |                  |              |                  |     |              |       |
| Benzene                           | ND     | 0.02               | ug/g         |                  |              |                  |     |              |       |
| Bromodichloromethane              | ND     | 0.05               | ug/g         |                  |              |                  |     |              |       |
| Bromoform                         | ND     | 0.05               | ug/g         |                  |              |                  |     |              |       |
| Bromomethane                      | ND     | 0.05               | ug/g         |                  |              |                  |     |              |       |
| Carbon Tetrachloride              | ND     | 0.05               | ug/g         |                  |              |                  |     |              |       |
| Chlorobenzene                     | ND     | 0.05               | ug/g         |                  |              |                  |     |              |       |
| Chloroform                        | ND     | 0.05               | ug/g         |                  |              |                  |     |              |       |
| Dibromochloromethane              | ND     | 0.05               | ug/g         |                  |              |                  |     |              |       |
| Dichlorodifluoromethane           | ND     | 0.05               | ug/g         |                  |              |                  |     |              |       |
| 1.2-Dichlorobenzene               | ND     | 0.05               | ug/g         |                  |              |                  |     |              |       |
| 1,3-Dichlorobenzene               | ND     | 0.05               | ug/g         |                  |              |                  |     |              |       |
| 1.4-Dichlorobenzene               | ND     | 0.05               | ug/g         |                  |              |                  |     |              |       |
| 1,1-Dichloroethane                | ND     | 0.05               | ug/g         |                  |              |                  |     |              |       |
| 1.2-Dichloroethane                | ND     | 0.05               | ug/g         |                  |              |                  |     |              |       |
| 1,1-Dichloroethylene              | ND     | 0.05               | ug/g         |                  |              |                  |     |              |       |
| cis-1,2-Dichloroethylene          | ND     | 0.05               | ug/g         |                  |              |                  |     |              |       |
| trans-1,2-Dichloroethylene        | ND     | 0.05               | ug/g         |                  |              |                  |     |              |       |
| 1,2-Dichloropropane               | ND     | 0.05               | ug/g         |                  |              |                  |     |              |       |
| cis-1,3-Dichloropropylene         | ND     | 0.05               | ug/g         |                  |              |                  |     |              |       |
| trans-1,3-Dichloropropylene       | ND     | 0.05               | ug/g         |                  |              |                  |     |              |       |
| 1,3-Dichloropropene, total        | ND     | 0.05               | ug/g         |                  |              |                  |     |              |       |
| Ethylbenzene                      | ND     | 0.05               | ug/g         |                  |              |                  |     |              |       |
| Ethylene dibromide (dibromoethane | ND     | 0.05               | ug/g         |                  |              |                  |     |              |       |
| Hexane                            | ND     | 0.05               | ug/g         |                  |              |                  |     |              |       |
| Methyl Ethyl Ketone (2-Butanone)  | ND     | 0.50               | ug/g         |                  |              |                  |     |              |       |
| Methyl Isobutyl Ketone            | ND     | 0.50               | ug/g         |                  |              |                  |     |              |       |
| Methyl tert-butyl ether           | ND     | 0.05               | ug/g         |                  |              |                  |     |              |       |
| Methylene Chloride                | ND     | 0.05               | ug/g         |                  |              |                  |     |              |       |
| Styrene                           | ND     | 0.05               | ug/g         |                  |              |                  |     |              |       |
| 1,1,1,2-Tetrachloroethane         | ND     | 0.05               | ug/g         |                  |              |                  |     |              |       |
| 1,1,2,2-Tetrachloroethane         | ND     | 0.05               | ug/g         |                  |              |                  |     |              |       |
| Tetrachloroethylene               | ND     | 0.05               | ug/g         |                  |              |                  |     |              |       |
| Toluene                           | ND     | 0.05               | ug/g         |                  |              |                  |     |              |       |
| 1,1,1-Trichloroethane             | ND     | 0.05               | ug/g         |                  |              |                  |     |              |       |
| 1,1,2-Trichloroethane             | ND     | 0.05               | ug/g         |                  |              |                  |     |              |       |
| Trichloroethylene                 | ND     | 0.05               | ug/g         |                  |              |                  |     |              |       |
| Trichlorofluoromethane            | ND     | 0.05               | ug/g         |                  |              |                  |     |              |       |
| Vinyl chloride                    | ND     | 0.02               | ug/g         |                  |              |                  |     |              |       |
| m,p-Xylenes                       | ND     | 0.05               | ug/g         |                  |              |                  |     |              |       |
| o-Xylene                          | ND     | 0.05               | ug/g         |                  |              |                  |     |              |       |
| Xylenes, total                    | ND     | 0.05               | ug/g         |                  |              |                  |     |              |       |
| Surrogate: 4-Bromofluorobenzene   | 3.34   | 0.00               | ug/g         |                  | 104          | 50-140           |     |              |       |
| Surrogate: Dibromofluoromethane   | 3.02   |                    | ug/g<br>ug/g |                  | 94.4         | 50-140<br>50-140 |     |              |       |
| Surrogate: Toluene-d8             | 2.59   |                    | ug/g<br>ug/g |                  | 34.4<br>80.8 | 50-140<br>50-140 |     |              |       |
| Surroyale. Ioluene-uo             | 2.09   |                    | uy/y         |                  | 00.0         | 50-140           |     |              |       |



### Order #: 1936482

Report Date: 10-Sep-2019

Order Date: 6-Sep-2019

Project Description: PE4588

# Method Quality Control: Duplicate

| Analyte                                     | Result   | Reporting<br>Limit | Units                | Source<br>Result | %REC | %REC<br>Limit | RPD | RPD<br>Limit | Notes |
|---------------------------------------------|----------|--------------------|----------------------|------------------|------|---------------|-----|--------------|-------|
| Physical Characteristics                    |          |                    |                      |                  |      |               |     |              |       |
| % Solids                                    | 92.7     | 0.1                | % by Wt.             | 93.2             |      |               | 0.6 | 25           |       |
|                                             | 52.1     | 0.1                | 70 Dy VVI.           | 55.2             |      |               | 0.0 | 20           |       |
| Volatiles                                   |          |                    |                      |                  |      |               |     |              |       |
| Acetone                                     | ND       | 0.50               | ug/g dry             | ND               |      |               |     | 50           |       |
| Benzene                                     | ND       | 0.02               | ug/g dry             | ND               |      |               |     | 50           |       |
| Bromodichloromethane                        | ND       | 0.05               | ug/g dry             | ND               |      |               |     | 50           |       |
| Bromoform                                   | ND       | 0.05               | ug/g dry             | ND               |      |               |     | 50           |       |
| Bromomethane                                | ND       | 0.05               | ug/g dry             | ND               |      |               |     | 50           |       |
| Carbon Tetrachloride                        | ND       | 0.05               | ug/g dry             | ND               |      |               |     | 50           |       |
| Chlorobenzene                               | ND       | 0.05               | ug/g dry             | ND               |      |               |     | 50           |       |
| Chloroform                                  | ND       | 0.05               | ug/g dry             | ND               |      |               |     | 50           |       |
| Dibromochloromethane                        | ND       | 0.05               | ug/g dry             | ND               |      |               |     | 50           |       |
| Dichlorodifluoromethane                     | ND       | 0.05               | ug/g dry             | ND               |      |               |     | 50           |       |
| 1,2-Dichlorobenzene                         | ND       | 0.05               | ug/g dry             | ND               |      |               |     | 50           |       |
| 1,3-Dichlorobenzene                         | ND       | 0.05               | ug/g dry             | ND               |      |               |     | 50           |       |
| 1,4-Dichlorobenzene                         | ND       | 0.05               | ug/g dry             | ND               |      |               |     | 50           |       |
| 1,1-Dichloroethane                          | ND       | 0.05               | ug/g dry             | ND               |      |               |     | 50<br>50     |       |
| 1,2-Dichloroethane                          | ND       | 0.05               | ug/g dry             | ND               |      |               |     |              |       |
| 1,1-Dichloroethylene                        | ND       | 0.05               | ug/g dry             | ND               |      |               |     | 50           |       |
| cis-1,2-Dichloroethylene                    | ND       | 0.05<br>0.05       | ug/g dry             | ND<br>ND         |      |               |     | 50<br>50     |       |
| trans-1,2-Dichloroethylene                  | ND<br>ND | 0.05               | ug/g dry             | ND               |      |               |     | 50<br>50     |       |
| 1,2-Dichloropropane                         | ND       | 0.05               | ug/g dry             | ND               |      |               |     | 50<br>50     |       |
| cis-1,3-Dichloropropylene                   | ND       | 0.05               | ug/g dry             | ND               |      |               |     | 50<br>50     |       |
| trans-1,3-Dichloropropylene<br>Ethylbenzene | ND       | 0.05               | ug/g dry<br>ug/g dry | ND               |      |               |     | 50<br>50     |       |
| Ethylene dibromide (dibromoethane           | ND       | 0.05               | ug/g dry<br>ug/g dry | ND               |      |               |     | 50<br>50     |       |
| Hexane                                      | ND       | 0.05               | ug/g dry<br>ug/g dry | ND               |      |               |     | 50<br>50     |       |
| Methyl Ethyl Ketone (2-Butanone)            | ND       | 0.00               | ug/g dry<br>ug/g dry | ND               |      |               |     | 50<br>50     |       |
| Methyl Isobutyl Ketone                      | ND       | 0.50               | ug/g dry<br>ug/g dry | ND               |      |               |     | 50           |       |
| Methyl tert-butyl ether                     | ND       | 0.05               | ug/g dry             | ND               |      |               |     | 50           |       |
| Methylene Chloride                          | ND       | 0.05               | ug/g dry             | ND               |      |               |     | 50           |       |
| Styrene                                     | ND       | 0.05               | ug/g dry             | ND               |      |               |     | 50           |       |
| 1,1,1,2-Tetrachloroethane                   | ND       | 0.05               | ug/g dry             | ND               |      |               |     | 50           |       |
| 1,1,2,2-Tetrachloroethane                   | ND       | 0.05               | ug/g dry             | ND               |      |               |     | 50           |       |
| Tetrachloroethylene                         | ND       | 0.05               | ug/g dry             | ND               |      |               |     | 50           |       |
| Toluene                                     | ND       | 0.05               | ug/g dry             | ND               |      |               |     | 50           |       |
| 1,1,1-Trichloroethane                       | ND       | 0.05               | ug/g dry             | ND               |      |               |     | 50           |       |
| 1,1,2-Trichloroethane                       | ND       | 0.05               | ug/g dry             | ND               |      |               |     | 50           |       |
| Trichloroethylene                           | ND       | 0.05               | ug/g dry             | ND               |      |               |     | 50           |       |
| Trichlorofluoromethane                      | ND       | 0.05               | ug/g dry             | ND               |      |               |     | 50           |       |
| Vinyl chloride                              | ND       | 0.02               | ug/g dry             | ND               |      |               |     | 50           |       |
| m,p-Xylenes                                 | ND       | 0.05               | ug/g dry             | ND               |      |               |     | 50           |       |
| o-Xylene                                    | ND       | 0.05               | ug/g dry             | ND               |      |               |     | 50           |       |
| Surrogate: 4-Bromofluorobenzene             | 4.36     |                    | ug/g dry             |                  | 119  | 50-140        |     |              |       |
| Surrogate: Dibromofluoromethane             | 2.68     |                    | ug/g dry             |                  | 73.3 | 50-140        |     |              |       |
| Surrogate: Toluene-d8                       | 3.04     |                    | ug/g dry             |                  | 83.2 | 50-140        |     |              |       |
| -                                           |          |                    | ,                    |                  |      |               |     |              |       |



# Method Quality Control: Spike

Report Date: 10-Sep-2019 Order Date: 6-Sep-2019

| Analyte                           | Result | Reporting<br>Limit | Units | Source<br>Result | %REC | %REC<br>Limit | RPD | RPD<br>Limit | Notes |
|-----------------------------------|--------|--------------------|-------|------------------|------|---------------|-----|--------------|-------|
| Volatiles                         |        |                    |       |                  |      |               |     |              |       |
| Acetone                           | 12.4   | 0.50               | ug/g  |                  | 124  | 50-140        |     |              |       |
| Benzene                           | 4.47   | 0.02               | ug/g  |                  | 112  | 60-130        |     |              |       |
| Bromodichloromethane              | 5.15   | 0.05               | ug/g  |                  | 129  | 60-130        |     |              |       |
| Bromoform                         | 4.14   | 0.05               | ug/g  |                  | 104  | 60-130        |     |              |       |
| Bromomethane                      | 3.91   | 0.05               | ug/g  |                  | 97.8 | 50-140        |     |              |       |
| Carbon Tetrachloride              | 4.66   | 0.05               | ug/g  |                  | 116  | 60-130        |     |              |       |
| Chlorobenzene                     | 4.32   | 0.05               | ug/g  |                  | 108  | 60-130        |     |              |       |
| Chloroform                        | 5.13   | 0.05               | ug/g  |                  | 128  | 60-130        |     |              |       |
| Dibromochloromethane              | 4.21   | 0.05               | ug/g  |                  | 105  | 60-130        |     |              |       |
| Dichlorodifluoromethane           | 3.02   | 0.05               | ug/g  |                  | 75.5 | 50-140        |     |              |       |
| 1,2-Dichlorobenzene               | 3.83   | 0.05               | ug/g  |                  | 95.7 | 60-130        |     |              |       |
| 1,3-Dichlorobenzene               | 3.86   | 0.05               | ug/g  |                  | 96.4 | 60-130        |     |              |       |
| 1,4-Dichlorobenzene               | 3.88   | 0.05               | ug/g  |                  | 96.9 | 60-130        |     |              |       |
| 1,1-Dichloroethane                | 4.77   | 0.05               | ug/g  |                  | 119  | 60-130        |     |              |       |
| 1,2-Dichloroethane                | 4.98   | 0.05               | ug/g  |                  | 124  | 60-130        |     |              |       |
| 1,1-Dichloroethylene              | 4.11   | 0.05               | ug/g  |                  | 103  | 60-130        |     |              |       |
| cis-1,2-Dichloroethylene          | 4.57   | 0.05               | ug/g  |                  | 114  | 60-130        |     |              |       |
| trans-1,2-Dichloroethylene        | 4.33   | 0.05               | ug/g  |                  | 108  | 60-130        |     |              |       |
| 1,2-Dichloropropane               | 4.55   | 0.05               | ug/g  |                  | 114  | 60-130        |     |              |       |
| cis-1,3-Dichloropropylene         | 4.45   | 0.05               | ug/g  |                  | 111  | 60-130        |     |              |       |
| trans-1,3-Dichloropropylene       | 4.25   | 0.05               | ug/g  |                  | 106  | 60-130        |     |              |       |
| Ethylbenzene                      | 4.32   | 0.05               | ug/g  |                  | 108  | 60-130        |     |              |       |
| Ethylene dibromide (dibromoethane | 4.20   | 0.05               | ug/g  |                  | 105  | 60-130        |     |              |       |
| Hexane                            | 3.48   | 0.05               | ug/g  |                  | 87.1 | 60-130        |     |              |       |
| Methyl Ethyl Ketone (2-Butanone)  | 12.1   | 0.50               | ug/g  |                  | 121  | 50-140        |     |              |       |
| Methyl Isobutyl Ketone            | 12.0   | 0.50               | ug/g  |                  | 120  | 50-140        |     |              |       |
| Methyl tert-butyl ether           | 11.9   | 0.05               | ug/g  |                  | 119  | 50-140        |     |              |       |
| Methylene Chloride                | 3.55   | 0.05               | ug/g  |                  | 88.7 | 60-130        |     |              |       |
| Styrene                           | 4.17   | 0.05               | ug/g  |                  | 104  | 60-130        |     |              |       |
| 1,1,1,2-Tetrachloroethane         | 4.46   | 0.05               | ug/g  |                  | 112  | 60-130        |     |              |       |
| 1,1,2,2-Tetrachloroethane         | 4.15   | 0.05               | ug/g  |                  | 104  | 60-130        |     |              |       |
| Tetrachloroethylene               | 4.09   | 0.05               | ug/g  |                  | 102  | 60-130        |     |              |       |
| Toluene                           | 4.21   | 0.05               | ug/g  |                  | 105  | 60-130        |     |              |       |
| 1,1,1-Trichloroethane             | 4.64   | 0.05               | ug/g  |                  | 116  | 60-130        |     |              |       |
| 1,1,2-Trichloroethane             | 4.77   | 0.05               | ug/g  |                  | 119  | 60-130        |     |              |       |
| Trichloroethylene                 | 4.77   | 0.05               | ug/g  |                  | 119  | 60-130        |     |              |       |
| Trichlorofluoromethane            | 3.89   | 0.05               | ug/g  |                  | 97.2 | 50-140        |     |              |       |
| Vinyl chloride                    | 3.05   | 0.02               | ug/g  |                  | 76.3 | 50-140        |     |              |       |
| m,p-Xylenes                       | 8.60   | 0.05               | ug/g  |                  | 107  | 60-130        |     |              |       |
| o-Xylene                          | 4.35   | 0.05               | ug/g  |                  | 109  | 60-130        |     |              |       |
| Surrogate: 4-Bromofluorobenzene   | 2.77   | 0.00               | ug/g  |                  | 86.5 | 50-140        |     |              |       |
|                                   |        |                    |       |                  |      |               |     |              |       |



#### **Qualifier Notes:**

None

Sample Data Revisions None

#### Work Order Revisions / Comments:

None

#### **Other Report Notes:**

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference.

Soil results are reported on a dry weight basis when the units are denoted with 'dry'. Where %Solids is reported, moisture loss includes the loss of volatile hydrocarbons.

Report Date: 10-Sep-2019 Order Date: 6-Sep-2019 Project Description: PE4588

Order #: 1936482

| GPARACEL                                                                                                                   | 04,000            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | cel ID: 1936482 |           |    |                  |                            | Head Office<br>300-2319 St. Laurent Blvd.<br>Ottawa, Ontario K1G 4J8<br>p: 1-800-749-1947<br>e: paracel@paracellabs.com |      |         |           |                                              | Chain of Custody<br>(Lab Use Only)<br>Nº 123188 |            |       |  |
|----------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------|-----------|----|------------------|----------------------------|-------------------------------------------------------------------------------------------------------------------------|------|---------|-----------|----------------------------------------------|-------------------------------------------------|------------|-------|--|
| LABORATORIES LTL                                                                                                           |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                 |           |    |                  |                            |                                                                                                                         |      |         |           |                                              | Pa                                              | ge 🔶 o     | r_L   |  |
| Client Name: Poterson Group<br>Contact Name: Mark D'Arcy<br>Address: 154 Colonnade Rd., Nep<br>Telephone: 1613, 226 - 7381 | eom 1             | Project Reference: PE 4588<br>Quote #<br>1 Outario: PO# 27622<br>Email Address: Mdarry@pater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |                 |           |    |                  | vsar                       | rscnaroup. Ca                                                                                                           |      |         |           | Turnarou<br>1 Day<br>2 Day<br>Date Required: |                                                 |            |       |  |
| Telephone: (613) 226 - 7361<br>Criteria: BYO. Reg. 153/04 (As Amended) Table _ 🗆 RSC                                       | Eilina /          | 10 84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 558/0/   | n pwoo m        |           | 1  |                  |                            |                                                                                                                         |      |         |           | Da                                           |                                                 | Other:     |       |  |
| Criteria: EFO, Reg. 153/04 (As Amended) Table EKSC<br>Matrix Type: S (Soil/Sed.) GW (Ground Water) SW (Surface Water) S    |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                 |           |    | juired           |                            | 1                                                                                                                       |      | 1.116   | - quality |                                              |                                                 |            |       |  |
| Paracel Order Number:                                                                                                      |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | Sample Taken    |           |    |                  | F1-F4+BTEX<br>by ICP<br>S) |                                                                                                                         |      |         |           |                                              |                                                 |            |       |  |
| Sample ID/Location Name                                                                                                    | Matrix            | Air                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1        | Date            | Time      | -  | VOCS             | Metu                       | Ηġ                                                                                                                      | CrVI | B (HWS) |           |                                              | _                                               |            |       |  |
| 1 B1410 - 552                                                                                                              | 5                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2        | Sep 5/19        | 10 cm     |    | V                |                            |                                                                                                                         |      |         |           | 2                                            | Jam                                             | 11/1       | 1     |  |
| 2 B1411 - SS1                                                                                                              | S                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2        | Sep 5/19        | 11:30     |    | V                |                            |                                                                                                                         |      |         |           | -                                            | _                                               | 1          |       |  |
| 3 BH12-552                                                                                                                 | 5                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2        | Sep5/19         | lipm      |    | 4                |                            |                                                                                                                         |      |         | _         | -                                            | -                                               |            |       |  |
| 4 BH 13 - 552                                                                                                              | 5                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2        | Sep5/19         | 3pm       |    | V                |                            | -                                                                                                                       | _    |         | _         | _                                            | _                                               | Y          |       |  |
| 5                                                                                                                          | -                 | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -        |                 | 12        |    | $\left  \right $ | ╞                          | -                                                                                                                       | _    |         | _         | -                                            | -                                               |            |       |  |
| 6                                                                                                                          | -                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -        |                 |           | -  | $\vdash$         | ╀                          | -                                                                                                                       | _    |         |           | +                                            | +                                               |            |       |  |
| 7                                                                                                                          | -                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -        |                 |           | -  |                  | ╞                          | $\vdash$                                                                                                                | -    |         |           | -                                            | +-                                              | -          |       |  |
| <u>×</u>                                                                                                                   |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -        |                 |           | -  | $\vdash$         | +                          | $\vdash$                                                                                                                | -    | H       |           | -                                            |                                                 | -          |       |  |
| 10                                                                                                                         | -                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -        |                 |           | 1  | $\vdash$         | ┢                          | $\vdash$                                                                                                                | -    |         |           | -                                            |                                                 | -          |       |  |
| Comments:                                                                                                                  |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1        | I               |           |    |                  |                            |                                                                                                                         |      |         |           |                                              | Metha                                           | t of Deliv | ary:  |  |
| Relinquished By (Sign):                                                                                                    |                   | n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | veriDepo | FEARE           | Rective   | me | ab.<br>MOUY      | M                          | 1                                                                                                                       | 201  | 12      | 81        | fied By:                                     | R.                                              | He         | 1     |  |
| Relinquished By (Print): NITLEDIAS ( Durette                                                                               | Date/Ti<br>Temper |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 010      | 7/19 7          | Temper    | -  | DEP<br>IF.C      | V.B.                       | 24                                                                                                                      | 17   | (       | 4.5 pat.  | vTime:<br>Verified [                         | 9-(                                             | 5-         | 19 17 |  |
| Date/Tinte:                                                                                                                | Leading           | and the second s |          |                 | 1 4110 14 |    | 101              |                            |                                                                                                                         |      |         | Pre       | Managed I                                    |                                                 |            |       |  |

Chain of Custody (Env) - Rev 0.7 Feb. 2016



RELIABLE.

# Certificate of Analysis

# **Paterson Group Consulting Engineers**

154 Colonnade Road South Nepean, ON K2E 7J5 Attn: Mark D'Arcy

Client PO: 27622 Project: PE4588 Custody: 123205

Report Date: 10-Sep-2019 Order Date: 9-Sep-2019

Order #: 1937091

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID **Client ID** 1937091-01 BH13-SS1

Approved By:

Dale Robertson, BSc Laboratory Director

Any use of these results implies your agreement that our total liability in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.



## Report Date: 10-Sep-2019 Order Date: 9-Sep-2019

Order #: 1937091

Project Description: PE4588

## **Analysis Summary Table**

| Analysis               | Method Reference/Description    | Extraction Date Analysis Dat | te  |
|------------------------|---------------------------------|------------------------------|-----|
| PHCs F2 to F4          | CWS Tier 1 - GC-FID, extraction | 10-Sep-19 10-Sep-            | -19 |
| REG 153: PAHs by GC-MS | EPA 8270 - GC-MS, extraction    | 6-Sep-19 10-Sep-             | -19 |
| Solids, %              | Gravimetric, calculation        | 9-Sep-19 10-Sep              | -19 |



Report Date: 10-Sep-2019

Order Date: 9-Sep-2019

|                          | ан                         | <b>D</b> 1110 001           | · · · |   |   |
|--------------------------|----------------------------|-----------------------------|-------|---|---|
|                          | Client ID:                 | BH13-SS1<br>05-Sep-19 14:30 | -     | - | - |
|                          | Sample Date:<br>Sample ID: | 1937091-01                  | -     | - | - |
|                          | MDL/Units                  | Soil                        | -     | - | - |
| Physical Characteristics | MDE/Onits                  |                             |       |   |   |
| % Solids                 | 0.1 % by Wt.               | 85.8                        | -     | - | - |
| Hydrocarbons             |                            |                             | •     |   |   |
| F2 PHCs (C10-C16)        | 4 ug/g dry                 | <4                          | -     | - | - |
| F3 PHCs (C16-C34)        | 8 ug/g dry                 | 33                          | -     | - | - |
| F4 PHCs (C34-C50)        | 6 ug/g dry                 | <6                          | -     | - | - |
| Semi-Volatiles           |                            |                             |       |   |   |
| Acenaphthene             | 0.02 ug/g dry              | <0.02                       | -     | - | - |
| Acenaphthylene           | 0.02 ug/g dry              | <0.02                       | -     | - | - |
| Anthracene               | 0.02 ug/g dry              | <0.02                       | -     | - | - |
| Benzo [a] anthracene     | 0.02 ug/g dry              | <0.02                       | -     | - | - |
| Benzo [a] pyrene         | 0.02 ug/g dry              | <0.02                       | -     | - | - |
| Benzo [b] fluoranthene   | 0.02 ug/g dry              | <0.02                       | -     | - | - |
| Benzo [g,h,i] perylene   | 0.02 ug/g dry              | <0.02                       | -     | - | - |
| Benzo [k] fluoranthene   | 0.02 ug/g dry              | <0.02                       | -     | - | - |
| Chrysene                 | 0.02 ug/g dry              | <0.02                       | -     | - | - |
| Dibenzo [a,h] anthracene | 0.02 ug/g dry              | <0.02                       | -     | - | - |
| Fluoranthene             | 0.02 ug/g dry              | <0.02                       | -     | - | - |
| Fluorene                 | 0.02 ug/g dry              | <0.02                       | -     | - | - |
| Indeno [1,2,3-cd] pyrene | 0.02 ug/g dry              | <0.02                       | -     | - | - |
| 1-Methylnaphthalene      | 0.02 ug/g dry              | <0.02                       | -     | - | - |
| 2-Methylnaphthalene      | 0.02 ug/g dry              | <0.02                       | -     | - | - |
| Methylnaphthalene (1&2)  | 0.04 ug/g dry              | <0.04                       | -     | - | - |
| Naphthalene              | 0.01 ug/g dry              | <0.01                       | -     | - | - |
| Phenanthrene             | 0.02 ug/g dry              | <0.02                       | -     | - | - |
| Pyrene                   | 0.02 ug/g dry              | 0.02                        | -     | - | - |
| 2-Fluorobiphenyl         | Surrogate                  | 85.0%                       | -     | - | - |
| Terphenyl-d14            | Surrogate                  | 104%                        | -     | - | - |



Order #: 1937091

Report Date: 10-Sep-2019

Order Date: 9-Sep-2019

Project Description: PE4588

# Method Quality Control: Blank

| Analyte                     | Result | Reporting<br>Limit | Units | Source<br>Result | %REC | %REC<br>Limit | RPD | RPD<br>Limit | Notes |
|-----------------------------|--------|--------------------|-------|------------------|------|---------------|-----|--------------|-------|
| Hydrocarbons                |        |                    |       |                  |      |               |     |              |       |
| F2 PHCs (C10-C16)           | ND     | 4                  | ug/g  |                  |      |               |     |              |       |
| F3 PHCs (C16-C34)           | ND     | 8                  | ug/g  |                  |      |               |     |              |       |
| F4 PHCs (C34-C50)           | ND     | 6                  | ug/g  |                  |      |               |     |              |       |
| Semi-Volatiles              |        |                    |       |                  |      |               |     |              |       |
| Acenaphthene                | ND     | 0.02               | ug/g  |                  |      |               |     |              |       |
| Acenaphthylene              | ND     | 0.02               | ug/g  |                  |      |               |     |              |       |
| Anthracene                  | ND     | 0.02               | ug/g  |                  |      |               |     |              |       |
| Benzo [a] anthracene        | ND     | 0.02               | ug/g  |                  |      |               |     |              |       |
| Benzo [a] pyrene            | ND     | 0.02               | ug/g  |                  |      |               |     |              |       |
| Benzo [b] fluoranthene      | ND     | 0.02               | ug/g  |                  |      |               |     |              |       |
| Benzo [g,h,i] perylene      | ND     | 0.02               | ug/g  |                  |      |               |     |              |       |
| Benzo [k] fluoranthene      | ND     | 0.02               | ug/g  |                  |      |               |     |              |       |
| Chrysene                    | ND     | 0.02               | ug/g  |                  |      |               |     |              |       |
| Dibenzo [a,h] anthracene    | ND     | 0.02               | ug/g  |                  |      |               |     |              |       |
| Fluoranthene                | ND     | 0.02               | ug/g  |                  |      |               |     |              |       |
| Fluorene                    | ND     | 0.02               | ug/g  |                  |      |               |     |              |       |
| Indeno [1,2,3-cd] pyrene    | ND     | 0.02               | ug/g  |                  |      |               |     |              |       |
| 1-Methylnaphthalene         | ND     | 0.02               | ug/g  |                  |      |               |     |              |       |
| 2-Methylnaphthalene         | ND     | 0.02               | ug/g  |                  |      |               |     |              |       |
| Methylnaphthalene (1&2)     | ND     | 0.04               | ug/g  |                  |      |               |     |              |       |
| Naphthalene                 | ND     | 0.01               | ug/g  |                  |      |               |     |              |       |
| Phenanthrene                | ND     | 0.02               | ug/g  |                  |      |               |     |              |       |
| Pyrene                      | ND     | 0.02               | ug/g  |                  |      |               |     |              |       |
| Surrogate: 2-Fluorobiphenyl | 0.769  |                    | ug/g  |                  | 57.7 | 50-140        |     |              |       |
| Surrogate: Terphenyl-d14    | 1.58   |                    | ug/g  |                  | 119  | 50-140        |     |              |       |



Order #: 1937091

Report Date: 10-Sep-2019 Order Date: 9-Sep-2019

Project Description: PE4588

# Method Quality Control: Duplicate

| Analyte                              | F<br>Result | Reporting<br>Limit | Units    | Source<br>Result | %REC | %REC<br>Limit | RPD | RPD<br>Limit | Notes |
|--------------------------------------|-------------|--------------------|----------|------------------|------|---------------|-----|--------------|-------|
| Physical Characteristics<br>% Solids | 93.1        | 0.1                | % by Wt. | 92.3             |      |               | 0.9 | 25           |       |



# Method Quality Control: Spike

Report Date: 10-Sep-2019 Order Date: 9-Sep-2019

| Analyte                     | Result | Reporting<br>Limit | Units | Source<br>Result | %REC | %REC<br>Limit | RPD | RPD<br>Limit | Notes |
|-----------------------------|--------|--------------------|-------|------------------|------|---------------|-----|--------------|-------|
| Hydrocarbons                |        |                    |       |                  |      |               |     |              |       |
| F2 PHCs (C10-C16)           | 74     | 4                  | ug/g  |                  | 92.7 | 80-120        |     |              |       |
| F3 PHCs (C16-C34)           | 192    | 8                  | ug/g  |                  | 98.2 | 80-120        |     |              |       |
| F4 PHCs (C34-C50)           | 111    | 6                  | ug/g  |                  | 89.6 | 80-120        |     |              |       |
| Semi-Volatiles              |        |                    |       |                  |      |               |     |              |       |
| Acenaphthene                | 0.176  | 0.02               | ug/g  |                  | 106  | 50-140        |     |              |       |
| Acenaphthylene              | 0.151  | 0.02               | ug/g  |                  | 90.8 | 50-140        |     |              |       |
| Anthracene                  | 0.164  | 0.02               | ug/g  |                  | 98.2 | 50-140        |     |              |       |
| Benzo [a] anthracene        | 0.179  | 0.02               | ug/g  |                  | 107  | 50-140        |     |              |       |
| Benzo [a] pyrene            | 0.143  | 0.02               | ug/g  |                  | 85.7 | 50-140        |     |              |       |
| Benzo [b] fluoranthene      | 0.208  | 0.02               | ug/g  |                  | 125  | 50-140        |     |              |       |
| Benzo [g,h,i] perylene      | 0.171  | 0.02               | ug/g  |                  | 102  | 50-140        |     |              |       |
| Benzo [k] fluoranthene      | 0.214  | 0.02               | ug/g  |                  | 129  | 50-140        |     |              |       |
| Chrysene                    | 0.185  | 0.02               | ug/g  |                  | 111  | 50-140        |     |              |       |
| Dibenzo [a,h] anthracene    | 0.183  | 0.02               | ug/g  |                  | 110  | 50-140        |     |              |       |
| Fluoranthene                | 0.181  | 0.02               | ug/g  |                  | 108  | 50-140        |     |              |       |
| Fluorene                    | 0.166  | 0.02               | ug/g  |                  | 99.6 | 50-140        |     |              |       |
| Indeno [1,2,3-cd] pyrene    | 0.160  | 0.02               | ug/g  |                  | 96.0 | 50-140        |     |              |       |
| 1-Methylnaphthalene         | 0.118  | 0.02               | ug/g  |                  | 70.7 | 50-140        |     |              |       |
| 2-Methylnaphthalene         | 0.134  | 0.02               | ug/g  |                  | 80.3 | 50-140        |     |              |       |
| Naphthalene                 | 0.142  | 0.01               | ug/g  |                  | 85.2 | 50-140        |     |              |       |
| Phenanthrene                | 0.146  | 0.02               | ug/g  |                  | 87.7 | 50-140        |     |              |       |
| Pyrene                      | 0.178  | 0.02               | ug/g  |                  | 107  | 50-140        |     |              |       |
| Surrogate: 2-Fluorobiphenyl | 1.31   |                    | ug/g  |                  | 98.5 | 50-140        |     |              |       |



#### Qualifier Notes:

None

Sample Data Revisions

None

#### Work Order Revisions / Comments:

None

#### **Other Report Notes:**

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference.

Soil results are reported on a dry weight basis when the units are denoted with 'dry'. Where %Solids is reported, moisture loss includes the loss of volatile hydrocarbons.

#### CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.

- F1 range corrected for BTEX.
- F2 to F3 ranges corrected for appropriate PAHs where available.
- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.
- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.
- When reported, data for F4G has been processed using a silica gel cleanup.

| GPARACE I                                                                                              | OPARACEL                         |              |                 |                                                        | Head Office<br>300-2319 St. Laurent Blvd,<br>Ottawa, Ontario K1G 4J8<br>p: 1-800-749-1947<br>e: paracel@paracellabs.com |                 |      |               |    |       |               |                |    | Chain of Custody<br>(Lab Use Only)<br>. Nº 123205 |       |  |  |
|--------------------------------------------------------------------------------------------------------|----------------------------------|--------------|-----------------|--------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-----------------|------|---------------|----|-------|---------------|----------------|----|---------------------------------------------------|-------|--|--|
| Client Name: Poterson<br>Contact Name: Morle D'Arg<br>Address:<br>Telephone: 226-7381                  | /                                |              |                 | Project Reference<br>Quote #<br>PO #<br>Email Address: | 2762                                                                                                                    | 3               | 5 8  |               |    |       |               |                | -  | ٥١                                                |       |  |  |
| Criteria: O. Reg. 153/04 (As Amended) Table                                                            |                                  |              |                 |                                                        |                                                                                                                         | T               | m) D |               |    | tary) | dunicipality: |                | 0  | Ather:                                            |       |  |  |
| Paracel Order Number:<br>1937591<br>Sample ID/Location Name<br>1 187413 - 551<br>2<br>3<br>4<br>5<br>6 | S Matrix                         | * Air Volume | h of Containers | Sampl<br>Date<br>Syp <i>F5/19</i>                      | Time                                                                                                                    | PHCs F1-F4+BTEN | VOCS | Metals by ICP | Hg | CrVT  | 12-54         |                |    |                                                   |       |  |  |
| 7<br>8<br>9<br>10                                                                                      |                                  |              |                 |                                                        |                                                                                                                         |                 |      |               |    |       |               |                |    |                                                   |       |  |  |
| Comments:<br>Relinquished By (Sign):<br>Maclinquished By (Print: Nicholos Deusectte,<br>Jate Time:     | Received<br>Date Tim<br>Temperat | 09           | * Depre<br>/    | <i>Teane</i><br>9/19 4                                 | Receiver<br>30 Date: Tim<br>77 Tempera                                                                                  | a               | k.   | A             | 1  | 9     | Tip Date      | fied B<br>Time | 63 | (Delivery)<br>19Ce<br>119                         | 1 200 |  |  |

Chain of Custody (Env) - Rev 0.7 Feb. 2018