Geotechnical Engineering

Environmental Engineering

Hydrogeology

Geological Engineering

Materials Testing

Building Science

Archaeological Services

Paterson Group Inc.

Consulting Engineers 154 Colonnade Road South Ottawa (Nepean), Ontario Canada K2E 7J5

Tel: (613) 226-7381 Fax: (613) 226-6344 www.patersongroup.ca

patersongroup

Phase II - Environmental Site Assessment

178, 180, 182 and 200 Isabella Street and 205 Pretoria Avenue Ottawa, Ontario

Prepared For

Minto Communities Inc.

October 10, 2019

Report: PE4710-2

Ottawa, Ontario

TABLE OF CONTENTS

EXE	CUTIV	'E SUMMARY	iii
1.0	INTF	RODUCTION	1
	1.1	Site Description	1
	1.2	Property Ownership	1
	1.3	Current and Proposed Future Uses	1
	1.4	Applicable Site Condition Standard	2
2.0	BAC	KGROUND INFORMATION	3
	2.1	Physical Setting	3
	2.2	Past Investigations	3
3.0	SCO	PE OF INVESTIGATION	4
	3.1	Overview of Site Investigation	4
	3.2	Media Investigated	4
	3.3	Phase I Conceptual Site Model	
	3.4	Deviations from Sampling and Analysis Plan	7
	3.5	Impediments	7
4.0	INVE	STIGATION METHOD	8
	4.1	Subsurface Investigation	8
	4.2	Soil Sampling	8
	4.3	Field Screening Measurements	8
	4.4	Groundwater Monitoring Well Installation	9
	4.5	Field Measurement of Water Quality Parameters	9
	4.6	Groundwater Sampling	9
	4.7	Analytical Testing	10
	4.8	Residue Management	11
	4.9	Elevation Surveying	11
	4.10	Quality Assurance and Quality Control Measures	12
5.0	REV	IEW AND EVALUATION	12
	5.1	Geology	12
	5.2	Groundwater Elevations, Flow Direction, and Hydraulic Gradient	12
	5.3	Fine-Medium Soil Texture	13
	5.4	Soil: Field Screening	13
	5.5	Soil Quality	13
	5.6	Groundwater Quality	16
	5.7	Quality Assurance and Quality Control Results	20
	5.8	Phase II Conceptual Site Model	20
6.0	CON	ICLUSIONS	26
7.0	STA	TEMENT OF LIMITATIONS	28

Ottawa Kingston North Bay

178, 180, 182, and 200 Isabella Street and 205 Pretoria Avenue Ottawa, Ontario

List of Figures

Figure 1 - Key Plan

Drawing PE4710-3 - Test Hole Location Plan

Drawing PE4710-4 – Groundwater Contour Plan

Drawing PE4710-5 – Analytical Testing Plan – Soil

Drawing PE4710-6 - Analytical Testing Plan - Groundwater

Drawing PE4710-7 - Cross-Section A-A'

Drawing PE4710-8 - Cross Section B-B'

List of Appendices

Appendix 1 Sampling and Analysis Plan

Soil Profile and Test Data Sheets

Symbols and Terms

Laboratory Certificates of Analysis

EXECUTIVE SUMMARY

Assessment

A Phase II-Environmental Site Assessment (ESA) was conducted for the properties at 178, 180, 182 and 200 Isabella Street and 205 Pretoria Avenue, in the City of Ottawa, Ontario. The purpose of the Phase II ESA was to address the Areas of Potential Environmental Concern identified during the Phase I ESA. The Phase II-ESA consisted of the drilling of five (5) boreholes and installation of two groundwater monitoring wells to assess the soil and groundwater quality at the subject site.

Soil samples obtained from the boreholes were screened using visual observations and vapour measurements. Site soils consist of a layer of fill material, including demolition debris in former building locations, which is underlain by native silty clay. Based on the screening results, samples were selected for testing of BTEX/PHC, metals, PAHs, sodium absorption ratio, electrical conductivity, and pH parameters. Based on the analytical results, some of the soil on the subject site is not in compliance with the MECP Table 3 standards. Exceedances of lead and multiple PAH parameters were identified in BH3-19, and SAR and electrical conductivity were in excess at BH1-19.

Groundwater samples were collected from the monitoring wells installed in BH2-19 and BH3-19, as well as BH1 and BH2 installed during the previous Phase II ESA, and analyzed for various parameters including BTEX/PHCs, PAHs, metals, sodium, and chloride. Based on the analytical groundwater results the groundwater on the subject site has not been impacted by the past activities of the subject site.

178, 180, 182, and 200 Isabella Street and 205 Pretoria Avenue Ottawa, Ontario

Recommendations

Fill and Building Demolition Debris

Based on the results of the Phase II ESA, contaminated material is considered to be confined to the upper fill layer. It is our understanding that the impacted fill and building demolition debris identified during the field program will be removed as part of the site redevelopment. This fill material should be disposed of at an approved waste disposal facility. The removal of this material should be monitored to ensure that proper segregation occurs, and that the removal of this material is effective in remediating the property.

Monitoring Wells

If the monitoring wells installed on the subject site are not going to be used in the future, or will be destroyed during site redevelopment, they should be abandoned according to Ontario Regulation 903. Otherwise, the wells will be registered with the MECP under this regulation.

Ottawa, Ontario

1.0 INTRODUCTION

At the request of Minto Communities Inc. (Minto), Paterson Group (Paterson) conducted a Phase II-Environmental Site Assessment (ESA) of the properties addressed 178, 180, 182 and 200 Isabella Street and 205 Pretoria Avenue, in the City of Ottawa, Ontario. The purpose of this Phase II-ESA was to address concerns identified during the Phase I-ESA.

1.1 Site Description

Address: 178, 180, 182 and 200 Isabella Street and 205 Pretoria

Avenue, City of Ottawa, Ontario

Legal Description: Lots 11 to 17, Plan 34325 and Lot 3, Plan 44376 City

of Ottawa.

Property Identification

Numbers: 04123-0098, 04123-0100, 04123-0101, 04123-0102,

04123-0108

Location: The Phase I Property is located on the south side of

Isabella Street and the north side of Pretoria Avenue, between Bank Street and O'Connor Street, in Ottawa, Ontario. The subject site is shown on Figure 1 - Key

Plan following the body of this report.

Latitude and Longitude: 45°24'32" N, 75°41'26" W

Configuration: Irregular

Site Area: 0.28 ha (approximate)

1.2 Property Ownership

Paterson was engaged to conduct this Phase II – ESA by Mr. Kevin Harper of Minto Communities Inc. (Minto). Minto's offices are located at 180 Kent Street, Ottawa, Ontario. Mr. Harper can be reached by telephone at (613) 751-2857.

1.3 Current and Proposed Future Uses

The subject site is currently vacant at the Isabella Street properties and occupied by a residential dwelling (used as an office space) at 205 Pretoria Avenue. It is our

178, 180, 182, and 200 Isabella Street and 205 Pretoria Avenue Ottawa, Ontario

understanding that the subject site will be redeveloped with a residential high-rise structure.

1.4 Applicable Site Condition Standard

The site condition standards for the property were obtained from Table 3 of the document entitled "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act", prepared by the Ontario Ministry of the Environment (MECP), April 2011. The MECP Table 3 Standards are based on the following considerations:

Coarse-grained soil conditions
Surface soil and groundwater conditions
Non-potable groundwater conditions
Residential land use

2.0 BACKGROUND INFORMATION

2.1 Physical Setting

The subject site is located on the south side of Isabella Street, approximately 50 m east of Bank Street, in the City of Ottawa, Ontario. The ground surface on the subject site consists of asphaltic concrete, landscaped/grass areas at 205 Pretoria Avenue and vegetated areas (where the former buildings were located on Isabella Street).

2.2 Past Investigations

A Phase I Environmental Site Assessment was originally completed for the Isabella Street properties in 2016. The report identified the tinsmith, railway line to the north, former heating contractor, and former oil and coal business as APECs, and recommended a Phase II ESA. The Phase II ESA, also completed in 2016, included the placement of three (3) boreholes instrumented with groundwater monitoring wells (BH1, BH2, and BH3). PHC F1-4, BTEX, and metals parameters in the soil were found to be in compliance with the MECP Table 3 standards, and PAHs, PHCs and BTEX were in compliance with the standards in the groundwater samples analysed.

Fill material including building debris in the footprint of the former structure on the property was identified during the Phase II ESA. This fill material is considered to be an Area of Potential Environmental Concern.

A Phase I ESA Update was completed by Paterson in 2019 for the subject property, including the addition of 205 Pretoria Avenue. PCAs and APECs were identified in the Phase I Update that were not addressed by the previous Phase II ESA in 2016.

Based on a review of historical uses of the subject site and adjacent properties, Paterson identified five (5) Areas of Potential Environmental Concern (APECs) for the subject property. The APECs are discussed further below in Section 3.3 Phase I Conceptual Site Model.

3.0 SCOPE OF INVESTIGATION

3.1 Overview of Site Investigation

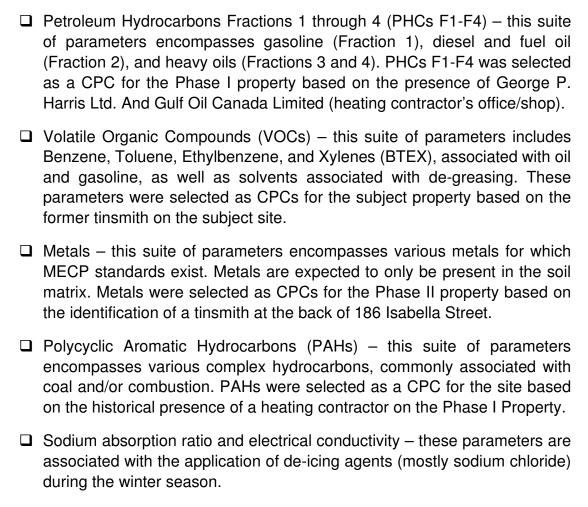
The subsurface investigation conducted as a component of this Phase II ESA consisted of drilling five (5) boreholes at the subject site. Boreholes were drilled into overburden soils to a maximum depth of 5.18 m below ground surface (bgs). Groundwater monitoring wells were installed in two of the five boreholes. Monitoring wells placed during the previous Phase II ESA investigation were observed to still be present during the Phase I Update site visit, and several of these wells were also sampled as part of the current Phase II ESA.

3.2 Media Investigated

During the subsurface investigation, soil samples and groundwater samples were obtained and submitted for laboratory analysis. The rationale for sampling and analyzing these media is based on the Contaminants of Potential Concern identified with regards to the historic land use of the subject site and adjacent properties. Contaminants of concern for soil and/or groundwater are polycyclic aromatic hydrocarbons (PAHs), petroleum hydrocarbons, fractions 1 through 4 (PHCs F1-F4), benzene, toluene, ethylbenzene and xylenes (BTEX), and metals, and the physical parameters of concern include the sodium absorption ratio (SAR), pH, and electrical conductivity.

3.3 Phase I Conceptual Site Model

Geological and Hydrogeological Setting


The Geological Survey of Canada website on the Urban Geology of the National Capital Area was consulted as part of this assessment. Based on this information, bedrock in the area of the site consists of shale of the Billings Formation. Overburden soils are shown as offshore marine sediments with a drift thickness of 15 to 25 meters.

Subsurface conditions encountered during the Phase II-ESA are discussed in greater detail in Section 5.1.

Contaminants of Potential Concern

Based on the past and current uses of the subject site, the following Contaminants of Potential Concern (CPCs) have been identified:

Buildings and Structures

The subject site is currently vacant, with the exception of an office space (former residential dwelling) at 205 Pretoria Avenue. The site layout is shown on Drawing PE4710-3 – Test Hole Location Plan.

Water Bodies

There are no water bodies on the subject site or within the Phase I study area. The closest water body is Patterson Creek, located approximately 300 m to the southeast of the site.

Areas of Natural Significance

No areas of natural significance were observed on the site or in the Phase I study area.

Drinking Water Wells

No drinking water wells are currently located on the subject site. Any water well records identified within the Phase I study area were for monitoring wells.

Neighbouring Land Use

Neighbouring land use in the Phase I study area is currently commercial and residential.

Potentially Contaminating Activities and Areas of Potential Environmental Concern

The historical presence of a tinsmith, the former George P. Harris Limited and Gulf Oil Canada Limited commercial operations, fill material of unknown quality, and the potential use of de-icing agents on the subject site represent Areas of Potential Environmental Concern (APECs) on the subject site. Other off-site Potentially Contaminating Activities (PCAs) identified within the Phase I study area are not considered to represent APECs with respect to the subject site.

Potentially contaminating activities (PCAs) and resulting areas of potential environmental concern (APECs) on the Phase I Property are presented in Table 1.

Table 1: Areas of	Potential E	nvironmental Con	cern		
Area of Potential Environmental Concern	Location of APEC on Phase I Property	Potentially Contaminating Activity	Location of PCA (on-site or off-site)	Contaminants of Potential Concern	Media potentially impacted (Groundwater, soil and/or sediment)
APEC 1: resulting from former tinsmith at rear of #186 Isabella Street (part of #200 Isabella Street)	Central portion of Phase I Property	Item 34, Table 2, O.Reg. 153/04: Metal fabrication	On-site	Metals	Soil
APEC 2: resulting from former coal and oil business and heating contractor	Central and east portion of Phase I Property	No item: Distribution of fuel oil, coal, and fuel oil burners; Contractors Office	On-Site	PHCs (F ₁ -F ₄), BTEX, PAHs	Soil, Groundwater
APEC 3: Resulting from the importation of fill material across the site	North side of the Phase I Property	Item 30, Table 2, O.Reg. 153/04: Importation of fill material of unknown quality	On-Site	BTEX, PAHs, metals	Soil, Groundwater

Table 1: Areas of	Potential E	nvironmental Con	cern		
Area of Potential Environmental Concern	Location of APEC on Phase I Property	Potentially Contaminating Activity	Location of PCA (on-site or off-site)	Contaminants of Potential Concern	Media potentially impacted (Groundwater, soil and/or sediment)
APEC 4: Resulting from potential de-icing of parking lot at #200 Isabella Street	Western portion of 200 Isabella St.	No item: application of salt for de-icing purposes.	On-Site	Sodium, chloride, sodium absorption ratio, electrical conductivity	Soil, Groundwater
APEC 5: Resulting from potential de-icing of parking lot at #178 Isabella Street	Eastern portion of Phase I Property at 178 and 180 Isabella St.	No item: application of salt for de-icing purposes.	On-Site	Sodium, chloride, sodium absorption ratio, electrical conductivity	Soil, Groundwater

Assessment of Uncertainty and/or Absence of Information

The information available for review as part of the preparation of the Phase I ESA is considered to be sufficient to conclude that there are APECs on the subject site. This was confirmed by a variety of independent sources, and as such, the conclusions of the report are not affected by uncertainty which may be present with respect to the individual sources.

3.4 Deviations from Sampling and Analysis Plan

The Sampling and Analysis Plan for this project is included in Appendix 1 of this report. Two deviations from the sampling and analysis plan were noted and are as follows:

Duplicate	soil	and	groundwater	samples	were	not	submitted	for	analytica
testing.									

☐ Field water quality parameters were not taken.

3.5 Impediments

No physical impediments or denial of access were encountered during the Phase II ESA.

4.0 INVESTIGATION METHOD

4.1 Subsurface Investigation

The subsurface investigation was conducted on September 13, 2019 and consisted five boreholes (BH1-19 to BH5-19). The boreholes were placed to provide general coverage of the property and to address the aforementioned APECs. The boreholes were advanced using a track-mounted CME 55 power auger drill rig. The drilling contractor was George Downing Estate Drilling of Hawkesbury, Ontario. Drilling occurred under full-time supervision of Paterson personnel. The borehole locations are indicated on the attached Drawing PE4710-3 - Test Hole Location Plan.

4.2 Soil Sampling

A total of 35 soil samples were obtained from the boreholes by means of split spoon sampling and grab sampling from auger flights. Split spoon samples were taken at approximate 0.6 m intervals. The depths at which split spoon, and grab samples were obtained from the boreholes are shown as "SS" and "AU" respectively on the Soil Profile and Test Data Sheets, appended to this report.

Site soils consist of a layer of asphalt or topsoil material, followed by fill material, which is underlain by a native silty clay. Bedrock surface depth was not determined during the subsurface drilling program. The fill material consisted of crushed stone at BH1-19, silty sand with some gravel at BH2-19, BH3-19 and BH5-19. Some concrete and brick fragments were noted in the fill material at BH5-19.

4.3 Field Screening Measurements

All soil samples collected were submitted to a preliminary screening procedure, which included visual screening for colour and evidence of metals, as well as screening with an RKI Eagle gas detector. The detection limit of the gastech is 5 ppm, with a precision of +/- 0.1 ppm.

The soil vapours were measured by inserting the analyzer probe into the nominal headspace above the soil sample. Samples were then agitated/manipulated gently as the measurements were taken. The peak reading registered within the first 15 seconds was recorded as the vapour measurement. The vapour readings were found to range from 0 to 15 ppm. These readings are not indicative of volatile

substances such as gasoline. It should be noted however that combustible vapours cannot be used to identify heavier products such as waste oil.

Please refer to the Soil Profile and Test Data sheets attached for soil sample headspace results. Vapour readings are noted on the Soil Profile and Test Data Sheets in Appendix 1.

Soil samples were selected for analysis based on visual appearance, location, and vapour readings.

4.4 Groundwater Monitoring Well Installation

Two (2) groundwater monitoring wells were installed by George Downing Estate Drilling of Hawkesbury, Ontario, under the full-time supervision of Paterson personnel. The monitoring wells consisted of 51 mm diameter Schedule 40 threaded PVC risers and screens. A sand pack consisting of silica sand was placed around the screen, and a bentonite seal was placed above the screen to minimize cross-contamination. Monitoring well construction details are provided on the Soil Profile and Test Data Sheets in Appendix 1. A summary of monitoring well construction details, including the three wells from the previous Phase II ESA which were sampled, is provided below in Table 2.

Table 2: N	Table 2: Monitoring Well Construction Details										
Well ID	Ground Surface Elevation	Total Depth (m BGS)	Screened Interval (m BGS)	Sand Pack (m BGS)	Bentonite Seal (m BGS)	Casing Type					
BH1	100.88	9.45	4.62-7.62	4.42-7.62	0.61-4.42	Flushmount					
BH2	101.33	6.09	3.09-6.09	2.44-6.09	0.61-2.44	Stickup					
BH3	101.37	8.66	4.57-7.62	4.29-7.62	0.00-4.29	Stickup					
BH2-19	101.35	4.57	1.52-4.57	1.37-4.57	0.30-1.37	Stickup					
BH3-19	100.86	4.57	1.52-4.57	1.37-4.57	0.30-1.37	Stickup					

4.5 Field Measurement of Water Quality Parameters

Field water quality parameters were not taken during the sampling program.

4.6 Groundwater Sampling

Groundwater sampling protocols were followed using the MECP document entitled "Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario", dated May 1996. Groundwater samples were obtained from each monitoring well, as well as two of the monitoring wells placed during the previous Phase II-ESA, using dedicated sampling equipment. Standing water was purged

from each well prior to sampling. Samples were stored in coolers to reduce analyte volatilization during transportation. Details of our standard operating procedure for sampling are provided in the Sampling and Analysis Plan in Appendix 1.

4.7 Analytical Testing

Based on the guidelines outlined in the Sampling and Analysis Plan, the following groundwater and soil samples were submitted for analysis:

Table 3: S	Table 3: Soil Samples Submitted										
		Parameters Analyzed									
Sample ID	Sample Depth/ Stratigraphic Unit	PHCs (F1 –F4)	ВТЕХ	PAHs	Metals	Mercury	Chromium (VI)	Electrical Conductivity	SAR	Hd	Rationale
Septembe	September 17, 2019										
BH1-19- SS2	0.76-1.37 m bgs; silty clay							Х	Х		Assess potential impacts from de-icing
BH2-19- AU1	0.00 - 0.61 m bgs; fill			Х	X	Х	Х	Х	Х		Assess potential impacts from heating
BH2-19- SS4	2.29-2.90 m bgs; silty clay	X								Х	contractor and coal and oil business
BH3-19- AU1	0.00 – 0.61 m bgs; fill			X	X	X	X	X	Х		Assess potential impacts from de-icing and coal and oil business
BH5-19- SS1	0.00 – 0.61 m bgs; fill				Х	Х	Х				Assess quality of fill/soil in area of former tinsmith

Table 4: 0	Table 4: Groundwater Samples Submitted										
		Parameters Analyzed									
Sample ID	Sample Depth/ Stratigraphic Unit	PHC (F ₁ -F ₄)	ВТЕХ	PAHs	Metals	Mercury	Chromium (VI)	Sodium	Chloride	Rationale	
Septembe	September 12, 2019										
BH1- GW1	4.62 - 7.62 m bgs; silty clay	Х	Х		Χ	Χ	Х	X	Х	Assess potential impacts from de-icing product application.	
BH2- GW1	3.09 – 6.09 m bgs; silty clay			Х						Assess potential impacts from former coal and oil business.	
Septembe	er 17, 2019	ı	ı						ı		
BH2-19- GW1	1.52-4.57 m bgs, silty clay							Х	Х	Assess potential impacts from de-icing.	
BH3-19- GW1	1.52-4.57 m bgs, silty clay	Х	Х							Assess potential impacts from former coal and oil business and heating contractor.	
Septembe	er 24, 2019										
BH1- GW2	4.62 – 7.62 m bgs; silty clay	X ¹								Re-assess initial results of testing from BH1	
¹ PHCs (F	2-F4) – Fraction 1	omi	tted								

Paracel Laboratories (Paracel), of Ottawa, Ontario, performed the laboratory analysis on the samples submitted for analytical testing. Paracel is a member of the Standards Council of Canada/Canadian Association for Laboratory Accreditation (SCC/CALA). Paracel is accredited and certified by SCC/CALA for specific tests registered with the association.

4.8 Residue Management

All soil cuttings, purge water and fluids from equipment cleaning were retained onsite.

4.9 Elevation Surveying

Monitoring well/borehole locations were surveyed using a laser level. Elevations were surveyed relative to a temporary benchmark (top spindle of fire hydrant on south side of Isabella Street). The elevation of the temporary benchmark was assumed to be 100.00 metres above sea level (m ASL). The location of the site benchmark is shown on Drawing PE4710-3 – Test Hole Location Plan.

4.10 Quality Assurance and Quality Control Measures

A summary of quality assurance and quality control (QA/QC) measures, including sampling containers, preservation, labelling, handling, chain of custody, equipment cleaning procedures, and field quality control measurements are provided in the Sampling and Analysis Plan in Appendix 1.

5.0 REVIEW AND EVALUATION

5.1 Geology

Site geology details are provided in the Soil Profile and Test Data Sheets provided in Appendix 1. Site soils consist of a layer of fill material, which is underlain by a native silty clay. Refusal to a dynamic cone penetration test was encountered at a depth of approximately 17.9 m bgs (determined during the previous Phase II ESA in October 2016). The fill material consisted of brown silt/sand with gravel in BH2-19 and BH3-19, and with some concrete and brick fragments in BH5-19 which was located within the former building footprint. Groundwater was encountered in the silty clay at BH2-19 and BH3-19 at depths of 3.59 m and 4.27 m below existing grade.

5.2 Groundwater Elevations, Flow Direction, and Hydraulic Gradient

Groundwater levels were measured using an electronic water level meter. Groundwater levels are summarized below in Table 5. All elevations are relative to the temporary benchmark. It should be noted that groundwater levels are expected to fluctuate throughout the year with seasonal variations.

Table 5: Groundwater Level Measurements								
Borehole Location	Ground Surface Elevation (m)	Water Level Depth (m below grade)	Water Level Elevation (m)	Date of Measurement				
BH1	100.88	2.33	98.55	September 12, 2019				
BH2	101.33	2.51	98.82	September 12, 2019				
BH3	101.37	3.70	97.67	September 12, 2019				
BH2-19	101.34	3.59	97.75	September 17, 2019				
BH3-19	100.86	4.27	96.59	September 17, 2019				
BH1	100.88	2.11	98.77	September 24, 2019				
BH2	101.33	2.56	98.77	September 24, 2019				
BH3	101.37	2.77	98.60	September 24, 2019				
BH2-19	101.34	2.51	98.83	September 24, 2019				
BH3-19	100.86	3.50	97.36	September 24, 2019				

Report: PE4710-2

Based on the groundwater elevations from the September 24, 2019 monitoring event, groundwater contour mapping was completed. Groundwater contours are shown on Drawing PE4710-4 - Groundwater Contour Plan. Based on the contour mapping, groundwater flow at the subject site appears to be in a southerly direction. A horizontal hydraulic gradient of approximately 0.07 m/m was calculated.

5.3 Fine-Medium Soil Texture

Coarse-grained soil standards have been used for the subject site. Grain size analysis was not completed.

5.4 Soil: Field Screening

Field screening of the soil samples collected during drilling resulted in soil vapour readings of 0 ppm to 15 ppm. Field screening results of each individual soil sample are provided on the Soil Profile and Test Data Sheets appended to this report.

5.5 Soil Quality

Five soil samples were submitted to Paracel Laboratories for analysis of a combination of PHC, BTEX, PAH, metal, electrical conductivity, and/or sodium absorption ratio parameters. The results of the soil analysis are presented in Table 6 and 7. The laboratory certificates of analysis are provided in Appendix 1.

Parameter	MDL	Soil Sample (µg/g) September 13, 2019	MECP Table 3
raramotor	(µg/g)	BH2-19-SS4	Residential, Coarse (µg/g)
Benzene	0.02	nd	0.21
Toluene	0.05	nd	2.3
Ethylbenzene	0.05	nd	2
Xylene	0.05	nd	3.1
PHC F1	7	nd	55
PHC F2	4	nd	98
PHC F3	8	nd	300
PHC F3	6	nd	2800
рН	-	7.70	-
□ nd -	- Method Detection not detected above		,

No BTEX or PHC parameters were identified in any of the soil samples above the method detection limits of the laboratory.

D	MDL	Soil Samples (µg/g) MDL September 13, 2019						
Parameter	(µg/g)	BH3-19-AU1	BH2-19-AU1	BH5-19-SS1	Residential Coarse (µg/g)			
Antimony	1.0	nd	nd	nd	7.5			
Arsenic	1.0	4.8	2.2	2.0	18			
Barium	1.0	148	360	179	390			
Beryllium	1.0	nd	nd	nd	4			
Boron	1.0	nd	6.0	nd	120			
Cadmium	0.5	nd	nd	nd	1.2			
Chromium	1.0	17.1	16.7	53.3	160			
Chromium (VI)	0.2	nd	nd	nd	8			
Cobalt	1.0	4.2	4.4	10.8	22			
Copper	1.0	24.9	14.3	31.3	140			
Lead	1.0	<u>199</u>	62.8	67.1	120			
Mercury	0.1	0.2	nd	nd	0.27			
Molybdenum	1.0	nd	nd	nd	6.9			
Nickel	1.0	10.6	12.2	30.1	100			
Selenium	1.0	nd	nd	nd	2.4			
Silver	0.5	nd	nd	nd	20			
Thallium	1.0	nd	nd	nd	1			
Uranium	1.0	nd	nd	nd	23			
Vanadium	1.0	18.1	15.3	49.2	86			
Zinc	1.0	120	57.3	96.8	340			

☐ Bold – Value exceeds selected MECP Standard

Lead was determined to be present at BH2-19 at a concentration in excess of the applicable MECP standard. All other metals parameters are in compliance with the MECP Table 3 Standards.

Table 8: Analytical Test Results – Soil PAHs								
Soil Samples (μg/g) September 13, 2019 MECP Table 3								
T dramotor	(µg/g)	BH3-19-AU1	BH2-19-AU1	Residential, Coarse (µg/g)				
Acenaphthene	0.02	0.03	nd	7.9				
Acenaphthylene	0.02	<u>0.42</u>	0.04	0.15				
Anthracene	0.02	0.28	0.04	0.67				

Kingston

Parameter	MDL	Soil Samples (μg/g) September 13, 2019		MECP Table 3
. u.uo.o.	(µg/g)	BH3-19-AU1	BH2-19-AU1	Residential, Coarse (μg/g)
Benzo[a]anthracene	0.02	<u>1.04</u>	0.16	0.5
Benzo[a]pyrene	0.02	<u>1.05</u>	0.15	0.3
Benzo[b]fluoranthene	0.02	<u>1.41</u>	0.20	0.78
Benzo[g,h,i]perylene	0.02	0.71	0.11	6.6
Benzo[k]fluoranthene	0.02	0.79	0.09	0.78
Chrysene	0.02	1.16	0.17	7.0
Dibenzo[a,h]anthracene	0.02	<u>0.18</u>	0.02	0.1
Fluoranthene	0.02	1.24	0.26	0.69
Fluorene	0.02	0.03	nd	62
Indeno[1,2,3-cd]pyrene	0.02	0.67	0.08	0.38
Methylnaphthalene (1&2)	0.04	0.30	0.06	0.99
Naphthalene	0.01	0.12	0.02	0.6
Phenanthrene	0.02	0.42	0.13	6.2
Pyrene	0.02	1.20	0.23	78
Notes: MDL – Method nd – not detect Bold – Value	ted above		andard	

Multiple PAH parameters in the sample collected from BH2-19 are not in compliance with the applicable MECP standard. The PAH concentrations identified in the sample from BH3-19 are in compliance with the MECP Table 3 standards.

		S	MECP Table 3 Residential,		
		BH1-19-SS2	BH3-19-AU1	BH2-19-AU1	Coarse
SAR (no unit)	0.01	<u>15.7</u>	3.12	1.32	5
Conductivity (uS/cm)	5	<u>3650</u>	593	302	700

The sodium absorption ratio and the conductivity of the sample from BH1-19 are in excess of the MECP Table 3 standards. The parameters measured for the samples from BH2-19 and BH3-19 are in compliance with the standards.

Kingston

178, 180, 182, and 200 Isabella Street and 205 Pretoria Avenue Ottawa, Ontario

Table 10: Maximum Cor	Maximum Concentration		Т
Parameter	(μg/g unless indicated otherwise)	Borehole/ Test Pit	Depth Interval (m BGS)
Metals			
Arsenic	4.8	BH3-19-AU1	0.00 – 0.61; fill
Barium	360	BH2-19-AU1	0.00 – 0.61; fill
Boron	6.0	BH2-19-AU1	0.00 – 0.61; fill
Chromium	53.3	BH5-19-SS1	0.00 – 0.61; fill
Cobalt	10.8	BH5-19-SS1	0.00 – 0.61; fill
Copper	31.3	BH5-19-SS1	0.00 – 0.61; fill
Lead	<u>199</u>	BH3-19-AU1	0.00 – 0.61; fill
Mercury	0.2	BH3-19-AU1	0.00 – 0.61; fill
Nickel	30.1	BH5-19-SS1	0.00 – 0.61; fill
Vanadium	49.2	BH5-19-SS1	0.00 – 0.61; fill
Zinc	120	BH3-19-AU1	0.00 – 0.61; fill
PAHs			
Acenaphthene	0.03	BH3-19-AU1	0.00 – 0.61; fill
Acenaphthylene	<u>0.42</u>	BH3-19-AU1	0.00 – 0.61; fill
Anthracene	0.28	BH3-19-AU1	0.00 – 0.61; fill
Benzo[a]anthracene	<u>1.04</u>	BH3-19-AU1	0.00 – 0.61; fill
Benzo[a]pyrene	<u>1.05</u>	BH3-19-AU1	0.00 – 0.61; fill
Benzo[b]fluoranthene	<u>1.41</u>	BH3-19-AU1	0.00 – 0.61; fill
Benzo[g,h,i]perylene	0.71	BH3-19-AU1	0.00 – 0.61; fill
Benzo[k]fluoranthene	<u>0.79</u>	BH3-19-AU1	0.00 – 0.61; fill
Chrysene	1.16	BH3-19-AU1	0.00 – 0.61; fill
Dibenzo[a,h]anthracene	<u>0.18</u>	BH3-19-AU1	0.00 – 0.61; fill
Fluoranthene	1.24	BH3-19-AU1	0.00 – 0.61; fill
Fluorene	0.03	BH3-19-AU1	0.00 – 0.61; fill
Indeno[1,2,3-cd]pyrene	<u>0.67</u>	BH3-19-AU1	0.00 – 0.61; fill
Methylnaphthalene (1&2)	0.30	BH3-19-AU1	0.00 – 0.61; fill
Naphthalene	0.12	BH3-19-AU1	0.00 - 0.61; fill
Phenanthrene	0.42	BH3-19-AU1	0.00 – 0.61; fill
Pyrene	1.20	BH3-19-AU1	0.00 – 0.61; fill
Physical			
SAR (no unit)	<u>15.7</u>	BH1-19-SS2	0.76-1.37; silty clay
Conductivity (uS/cm)	3650	BH1-19-SS2	0.76-1.37; silty cla

- MDL Method Detection Limit
- □ nd not detected above the MDL
- **Bold** Value exceeds selected MECP Standard

All other parameter concentrations were below laboratory detection limits.

5.6 **Groundwater Quality**

Groundwater samples from the monitoring wells installed in BH1, BH2, BH2-19, and BH3-19 were submitted for laboratory analysis of a combination of BTEX, PHC (F₁-F₄), PAH and sodium and chloride parameters. The groundwater samples were

obtained from the screened intervals noted on Table 2. The results of the analytical testing are presented below in Tables 9, and 10. The laboratory certificates of analysis are provided in Appendix 1.

		Grour	dwater Sample	MECP Table 3		
Parameter	MDL (µg/L)	BH1-GW1	BH1-GW1 BH1-GW2		Standards, Residentia	
raiailletei		September 12, 2019	September 24, 2019	September 17, 2019	Coarse (µg/L)	
Benzene	0.5	nd	-	nd	44	
Toluene	0.5	nd	-	nd	18000	
Ethylbenzene	0.5	nd	-	nd	2300	
Xylene	0.5	nd	-	nd	4200	
PHC F ₁	25	nd	-	nd	750	
PHC F ₂	100	<u>2400</u>	nd	nd	150	
PHC F₃	100	nd	nd	nd	500	
PHC F ₄	100	nd	nd	nd	500	
□ nd – nd	t detected	tection Limit above the MDL eeds selected M	ECP Standard			

There were no detected concentrations of BTEX or PHC (F_1 - F_4) in the sample from BH3-19. The concentration of PHC F2 in BH1-GW1 was in excess of the Table 3 Standard. The concentration of PHC F2 was suspected to be in error due to a high level of sediment in the groundwater sample. A second sample from this well was collected and analysed for PHCs (F_2 - F_4) to confirm the error. The concentrations of PHCs (F_2) are in compliance with the MECP Table 3 Standard.

		Groundwater	MEOD Table 0 Otas danda		
Parameter	MDL	BH1-GW1	BH2-19-GW1	 MECP Table 3 Standards, Residential Coarse (μg/L) 	
		September 12, 2019	September 17, 2019	- nesidential Coarse (μg/L)	
Sodium (ug/L)	200	617000	260000	2300000	
Chloride (mg/L)	1	1530	426	2300	

The concentrations of sodium and chloride in the analyzed groundwater samples were in compliance with the selected MECP Table 3 standards.

Ottawa, Ontario

Kingston

Parameter	MDL (µg/L)	Groundwater Sample (μg/L) September 12, 2019	MECP Table 3 Residential Coarse (μg/L)	
	(μg/L)	BH1-GW1		
Antimony	0.5	nd	7.5	
Arsenic	1.0	nd	18	
Barium	1.0	147	29000	
Beryllium	0.5	nd	67	
Boron	10	132	45000	
Cadmium	0.2	nd	2.7	
Chromium	1.0	nd	810	
Chromium (VI)	10	nd	140	
Cobalt	0.5	nd	66	
Copper	0.5	0.649	87	
Lead	0.2	nd	25	
Mercury	0.1	nd	0.29	
Molybdenum	0.5	3.52	9200	
Nickel	1.0	2.80	490	
Selenium	1.0	nd	63	
Silver	0.2	nd	1.5	
Thallium	0.5	nd	510	
Uranium	0.2	2.85	420	
Vanadium	0.5	1.93	250	
Zinc	5.0	nd	1100	

Notes:

MDL – Method Detection Limit

nd - not detected above the MDL

Bold – Value exceeds selected MECP Standard

The concentrations of metals parameters in the analyzed groundwater sample were in compliance with the selected MECP Table 3 standards.

Table 14: Analytical Test Results – Groundwater PAHs					
Parameter	MDL	Groundwater Sample (µg/L) September 12, 2019	MECP Table 3		
	(µg/L)	BH2-GW1	Residential, Coarse (µg/L)		
Acenaphthene	0.05	nd	600		
Acenaphthylene	0.05	nd	1.8		
Anthracene	0.01	nd	2.4		
Benzo[a]anthracene	0.02	nd	4.7		
Benzo[a]pyrene	0.02	nd	0.81		
Benzo[b]fluoranthene	0.02	nd	0.75		
Benzo[g,h,i]perylene	0.02	nd	0.2		
Benzo[k]fluoranthene	0.02	nd	0.4		

Kingston

Parameter	MDL (μg/L)	Groundwater Sample (μg/L) September 12, 2019	MECP Table 3	
	(µg/L)	BH2-GW1	Residential, Coarse (μg/L)	
Chrysene	0.02	nd	1	
Dibenzo[a,h]anthracene	0.02	nd	0.52	
Fluoranthene	0.02	nd	130	
Fluorene	0.02	nd	400	
Indeno[1,2,3-cd]pyrene	0.02	nd	0.2	
Methylnaphthalene (1&2)	0.04	nd	1800	
Naphthalene	0.01	nd	1400	
Phenanthrene	0.02	nd	580	
Pyrene	0.02	nd	68	
Notes: MDL – Method nd – not detect	ted above t			

No PAH concentrations were detected in the analyzed groundwater sample. The parameters analysed were in compliance with the selected MECP Table 3 standards.

Table 15: Maxii	mum Concentrations –	Groundwater	
Parameter	Maximum Concentration (μg/L)	Borehole/Sample Location	Depth Interval (m BGS)
PHC F2	2400¹		
Sodium	617000		
Chloride (mg/L)	1530		
Barium	147		4.62 – 7.62 m bgs; silty clay
Boron	132	BH1-GW1	
Copper	0.649	BHI-GWI	
Molybdenum	3.52		
Nickel	2.80		
Uranium	2.85		
Vanadium	1.93		

¹ This PHC Fraction 2 concentration was considered to be the result of a high level of sediment in the groundwater sample; subsequent re-sampling did not identify any PHCs above the method detection

All other parameters analysed were not detected above the method detection limits.

5.7 Quality Assurance and Quality Control Results

All samples submitted as part of this Phase II ESA were handled in accordance with the Analytical Protocol with respect to holding time, preservation method, storage requirement, and container type.

As per Subsection 47(3) of O.Reg. 153/04 as amended by O.Reg. 269/11, a Certificate of Analysis has been received for each sample submitted for analysis, and all Certificates of Analysis are appended to this report.

Overall, the quality of the field data collected during this Phase II ESA is considered to be sufficient to meet the overall objectives of this assessment.

5.8 Phase II Conceptual Site Model

The following section has been prepared in accordance with the requirements of O.Reg. 153/04 as amended by O.Reg. 269/11 - Record of Site Condition regulation, made under the Environmental Protection Act. Conclusions and recommendations are discussed in a subsequent section.

Site Description

The Phase II Property is located on the south side of Isabella Street and north of Pretoria Avenue, between Bank Street and O'Connor Street, in the City of Ottawa. The Phase II Property has an area of approximately 0.28 hectares. At the time of the Phase II Environmental Site Assessment (ESA), the Phase II Property was vacant. The ground surface on the eastern and western side were asphalt, while the central portion of the site (a former building footprint) was overgrown with vegetation.

Potentially Contaminating Activities

Potentially Contaminating Activities on the subject site include the historical uses of the site as a tinsmith, coal and oil business and heating contractor, fill material, and the potential use of de-icing products on the parking surfaces. Additional off-site PCAs identified in the Phase I study area were not considered to result in Areas of Potential Environmental Concern on the subject site.

Areas of Potential Environmental Concern

Based on the results of the Phase I ESA completed for the subject site, Areas of Potential Environmental Concern were identified. As per Column A of Table 2

outlined in Ontario Regulation 153/04 and amended by O.Reg. 269/11, potentially contaminating activities (PCAs) identified on the subject property or within the Phase I study area that were considered to result in APECs on the subject land are summarized in Table 16 below.

Table 16: Areas of	Potential Enviro	nmental Concern			
Area of Potential Environmental Concern	Location of Area of Potential Environmental Concern with respect to Phase I Property	Potentially Contaminating Activity	Location of PCA (on-site or off- site)	Contaminants of Potential Concern	Media Potentially Impacted (Groundwater, Soil, and/or Sediment)
APEC 1: resulting from former tinsmith at rear of #186 Isabella Street (part of #200 Isabella Street)	Central portion of Phase I Property	Item 34, Table 2, O.Reg. 153/04: Metal fabrication	On-site	Metals	Soil and Groundwater
APEC 2: resulting from former coal and oil business and heating contractor	Central and east portion of Phase I Property	No item: Distribution of fuel oil, coal, and fuel oil burners; Contractor business	On-site	PHCs (F ₁ -F ₄), BTEX, PAHs	Groundwater
APEC 3: Resulting from the importation of fill material across the site	Entire Phase I Property	Item 30, Table 2, O.Reg. 153/04: Importation of fill material of unknown quality	On-site	BTEX, PAHs, metals	Soil and Groundwater
APEC 4: Resulting from potential de-icing of parking lot at #200 Isabella Street	Western portion of 200 Isabella St.	No item: application of salt for de-icing purposes.	On-site	Sodium, chloride, sodium absorption ratio, electrical conductivity	Soil and Groundwater
APEC 5: Resulting from potential de-icing of parking lot at #178 Isabella Street	Eastern portion of Phase I Property at 178 and 180 Isabella St.	No item: application of salt for de-icing purposes.	On-site	Sodium, chloride, sodium absorption ratio, electrical conductivity	Soil Groundwater

PCAs within the Phase I study area were not considered to represent APECs on the subject site due to their separation distance and/or location downgradient or cross-gradient with respect to the Phase II Property.

Contaminants of Potential Concern

Based on the findings of the Phase II ESA, contaminants of concern include sodium and chloride, sodium absorption ratio, electrical conductivity, metals (lead), and PAHs (acenaphthylene, benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, dibenzo(a,h)anthracene, fluoranthene, and indeno(1,2,3-cd)pyrene) in the fill material. Detailed descriptions of these contaminant groups are provided in Section 3.3 of this report.

Subsurface Structures and Utilities

The subject site is located in a municipally serviced area. The site is currently vacant, with the exception of a residential dwelling used as office space at 205 Pretoria Avenue. A catch basin was observed on the subject site, near Isabella Street in the paved portion of 200 Isabella Street.

Physical Setting

Site Stratigraphy

Site stratigraphy is provided in the Soil Profile and Test Data Sheets provided in Appendix 1 and illustrated on Drawing PE4710-6 - Cross-Section A-A'. Stratigraphy consists of:

Pavement Structure at BH1-19 consisting of 0.1 m of asphaltic concrete over
crushed stone, to a depth of approximately 0.6 m below ground surface.
Pavement was also present at the surface at BH3-19 but was underlain by a layer of sandy fill material instead of crushed stone.
$\textbf{Topsoil} \ \text{at BH3-19, BH4-19 and BH5-19 consisting of } \ 0.03 \ \text{to } 0.1 \ \text{m of soil with some brown silty sand.}$
Fill Material was encountered beneath the pavement structure in BH2-19 and below the topsoil layer in BH3-19 and BH5-19 and ranged in thickness from approximately 0.1-0.6 m; the fill in BH5-19 extended much deeper, to 2.80 m below ground surface. The fill generally consisted of brown silty sand with gravel. Occasional concrete and brick fragments were identified in the fill recovered from BH5-19.
Native silty clay was encountered in all boreholes beneath the fill material,

preceded in several boreholes by a layer of silty sand. This is the deepest unit

Report: PE4710-2 October 10, 2019

investigated.

Hydrogeological Characteristics

The water table at the subject site was encountered in the silty clay at the subject site. Groundwater levels were measured at the subject site on September 24, 2019. Groundwater was encountered at depths of 3.59 m and 4.27 m below existing grade. It is noted that water levels fluctuate with seasonal variations.

Based on the groundwater elevations from the September 24, 2019 monitoring event, groundwater contour mapping was completed. Groundwater contours are shown on Drawing PE4710-4 - Groundwater Contour Plan. Based on the contour mapping, groundwater flow at the subject site appears to be in a southerly direction. A horizontal hydraulic gradient of approximately 0.07 m/m was calculated.

Approximate Depth to Bedrock

Based on a DCPT performed during the field drilling program in 2016 the approximate depth to bedrock at the subject site is 17.9 m bgs.

Approximate Depth to Water Table

Depth to water table at the subject site varies between approximately 2.52 and 6.79 m below existing grade.

Sections 41 and 43.1 of the Regulation

Section 41 of the Regulation (Site Condition Standards, Environmentally Sensitive Areas) does not apply to the subject site.

Section 43.1 of the Regulation does not apply to the subject site in that the subject site is not a Shallow Soil Property and is not within 30 m of a water body.

Fill Placement

Fill placement has occurred at the subject site. The fill material consists of crushed stone in areas of former pavement except within the former building footprints, where building demolition debris has been left in place. The soil sample from the fill material with building debris did not exceed the MECP Table 3 Standards for metals; the soil sample from the fill material on the eastern side of the Phase II Property exceeded the MECP Table 3 Standards for lead and some PAH parameters. It is understood that the fill material will be removed in conjunction with the redevelopment of the subject site.

Proposed Buildings and Other Structures

It is our understanding that the subject site will be redeveloped with a residential building with a footprint covering the majority of the subject land.

Existing Buildings and Structures

A residential dwelling, used as office space by a marketing company, is present at 205 Pretoria Avenue. There are no existing buildings or structures on the Isabella Street portion of the Phase II Property.

Water Bodies

There are no water bodies on the subject site or within the Phase I study area. The nearest water body is Patterson Creek which is located approximately 300 m south of the site.

Areas of Natural Significance

No areas of natural significance were observed on the site or in the Phase I study area.

Environmental Condition

Areas Where Contaminants are Present

Based on the screening and analytical results, the groundwater on the subject site is not impacted above the MECP Table 3 Standards. The soil on the eastern side of the Phase II Property contains lead and some PAH contaminants in excess of the applicable MECP Table 3 Standards. The soil on the western side of the Phase II Property has a sodium absorption ratio and electrical conductivity in excess of the Table 3 Standards. Analytical test results and areas where contaminants are present, are shown on Drawings PE4710-4— Analytical Testing Plan for soil and groundwater.

Distribution of Contaminants

The approximate horizontal distribution of contaminants on the Phase II Property is shown on Drawing PE4710-5 – Analytical Testing Plan – Soil and PE4710-6 – Analytical Testing Plan - Groundwater.

The approximate vertical distribution of contaminants in soil is shown on Drawing PE4710– Cross-Section A-A' and Drawing PE4710-8 – Cross-Section B-B'.

Discharge of Contaminants

The PAH and lead impacted soil identified at BH3-19 is expected to have been a result of spillage directly to the ground surface or the presence of coal in the fill material. The impacts may also be associated with use of this portion of the Phase II Property for parking; contaminants may have been released directly to the ground surface as a result of a small automobile leak.

Migration of Contaminants

Physical transport of contaminated soil at the subject site does not appear to have occurred. Since the groundwater is in compliance with the MECP Table 3 standards for both PAHs and metals, the contamination is considered to be limited to the fill overburden.

Climatic and Meteorological Conditions

In general, climatic and meteorological conditions have the potential to affect contaminant distribution. Two ways by which climatic and meteorological conditions may affect contaminant distribution include the downward leaching of contaminants by means of the infiltration of precipitation, and the migration of contaminants via groundwater levels and/or flow, which may fluctuate seasonally. Downward leaching is not considered to have affected contaminant distribution at the Phase II Property as the site is partly paved and based on analytical test results the groundwater is in compliance with MECP Table 3. Fluctuations in the groundwater level and groundwater flow are not considered to have affected contaminant distribution based on the depth of the water table within the native silty clay, well below the shallow fill material.

Potential for Vapour Intrusion

During redevelopment of the site, all soil exceeding the MECP Table 3 Standards will be removed and disposed off-site. As such, there is no anticipated potential for future vapour intrusion at the Phase II Property.

6.0 CONCLUSIONS

Assessment

A Phase II-Environmental Site Assessment (ESA) was conducted for the properties at 178, 180, 182 and 200 Isabella Street and 205 Pretoria Avenue, in the City of Ottawa, Ontario. The purpose of the Phase II ESA was to address the Areas of Potential Environmental Concern identified during the Phase I ESA. The Phase II-ESA consisted of the drilling of five (5) boreholes and installation of two groundwater monitoring wells to assess the soil and groundwater quality at the subject site.

Soil samples obtained from the boreholes were screened using visual observations and vapour measurements. Site soils consist of a layer of fill material, including demolition debris in former building locations, which is underlain by native silty clay. Based on the screening results, samples were selected for testing of BTEX/PHC, metals, PAHs, sodium absorption ratio, electrical conductivity, and pH parameters. Based on the analytical results, some of the soil on the subject site is not in compliance with the MECP Table 3 standards. Exceedances of lead and multiple PAH parameters were identified in BH3-19, and SAR and electrical conductivity were in excess at BH1-19.

Groundwater samples were collected from the monitoring wells installed in BH2-19 and BH3-19, as well as BH1 and BH2 installed during the previous Phase II ESA, and analyzed for various parameters including BTEX/PHCs, PAHs, metals, sodium, and chloride. Based on the analytical groundwater results the groundwater on the subject site has not been impacted by the past activities of the subject site.

Recommendations

Fill and Building Demolition Debris

Based on the results of the Phase II ESA, contaminated material is considered to be confined to the upper fill layer. It is our understanding that the impacted fill and building demolition debris identified during the field program will be removed as part of the site redevelopment. This fill material should be disposed of at an approved waste disposal facility. The removal of this material should be monitored to ensure that proper segregation occurs, and that the removal of this material is effective in remediating the property.

178, 180, 182, and 200 Isabella Street and 205 Pretoria Avenue Ottawa, Ontario

Monitoring Wells

If the monitoring wells installed on the subject site are not going to be used in the future, or will be destroyed during site redevelopment, they should be abandoned according to Ontario Regulation 903. Otherwise, the wells will be registered with the MECP under this regulation.

7.0 STATEMENT OF LIMITATIONS

This Phase II - Environmental Site Assessment report has been prepared in general accordance with O.Reg. 153/04 as amended by O.Reg. 269/11 and meets the requirements of CSA Z769-00. The conclusions presented herein are based on information gathered from a limited sampling and testing program. The test results represent conditions at specific test locations at the time of the field program.

The client should be aware that any information pertaining to soils and all test hole logs are furnished as a matter of general information only and test hole descriptions or logs are not to be interpreted as descriptive of conditions at locations other than those of the test holes themselves.

Should any conditions be encountered at the subject site and/or historical information that differ from our findings, we request that we be notified immediately in order to allow for a reassessment.

This report was prepared for the sole use of Minto Communities Inc. Permission and notification from Minto and Paterson will be required to release this report to any other party.

Paterson Group Inc.

Anna Graham, M.E.S.

Mark D'Arcy, P.Eng.

M.S. D'ARCY. 90377839

Report Distribution:

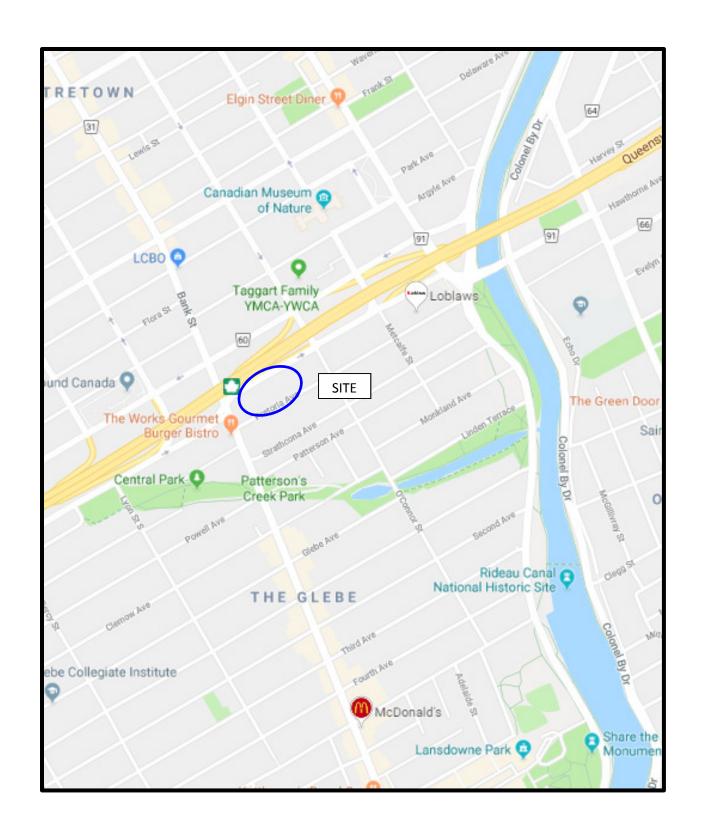
■ Minto Communities Inc.

□ Paterson Group

FIGURES

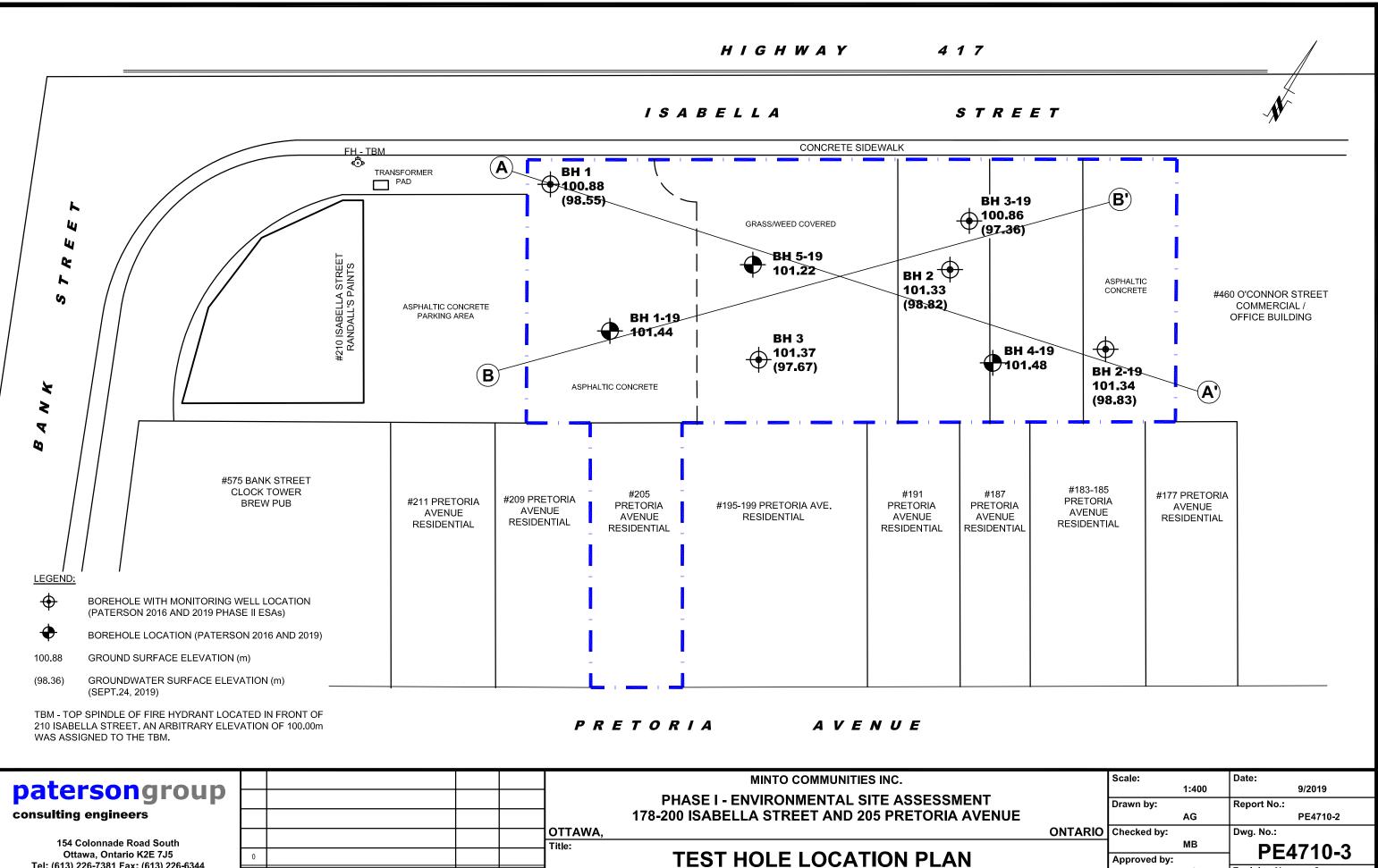
FIGURE 1 – KEY PLAN

DRAWING PE4710-3 – TEST HOLE LOCATION PLAN


DRAWING PE4710-4 - GROUNDWATER CONTOUR PLAN

DRAWING PE4710-5 – ANALYTICAL TESTING PLAN – SOIL

DRAWING PE4710-6 – ANALYTICAL TESTING PLAN – GROUNDWATER


DRAWING PE4710-7 - CROSS-SECTION A-A'

DRAWING PE4710-8 - CROSS-SECTION B-B'

FIGURE 1 KEY PLAN

patersongroup -

INITIAL

DATE

REVISIONS

Tel: (613) 226-7381 Fax: (613) 226-6344

Revision No.: 0

OTTAWA,

Title:

DATE INITIAL

consulting engineers

154 Colonnade Road South

Ottawa, Ontario K2E 7J5

Tel: (613) 226-7381 Fax: (613) 226-6344

NO.

REVISIONS

PHASE II - ENVIRONMENTAL SITE ASSESSMENT

178, 180, 182 & 200 ISABELLA STREET

GROUNDWATER CONTOUR PLAN

Drawn by:

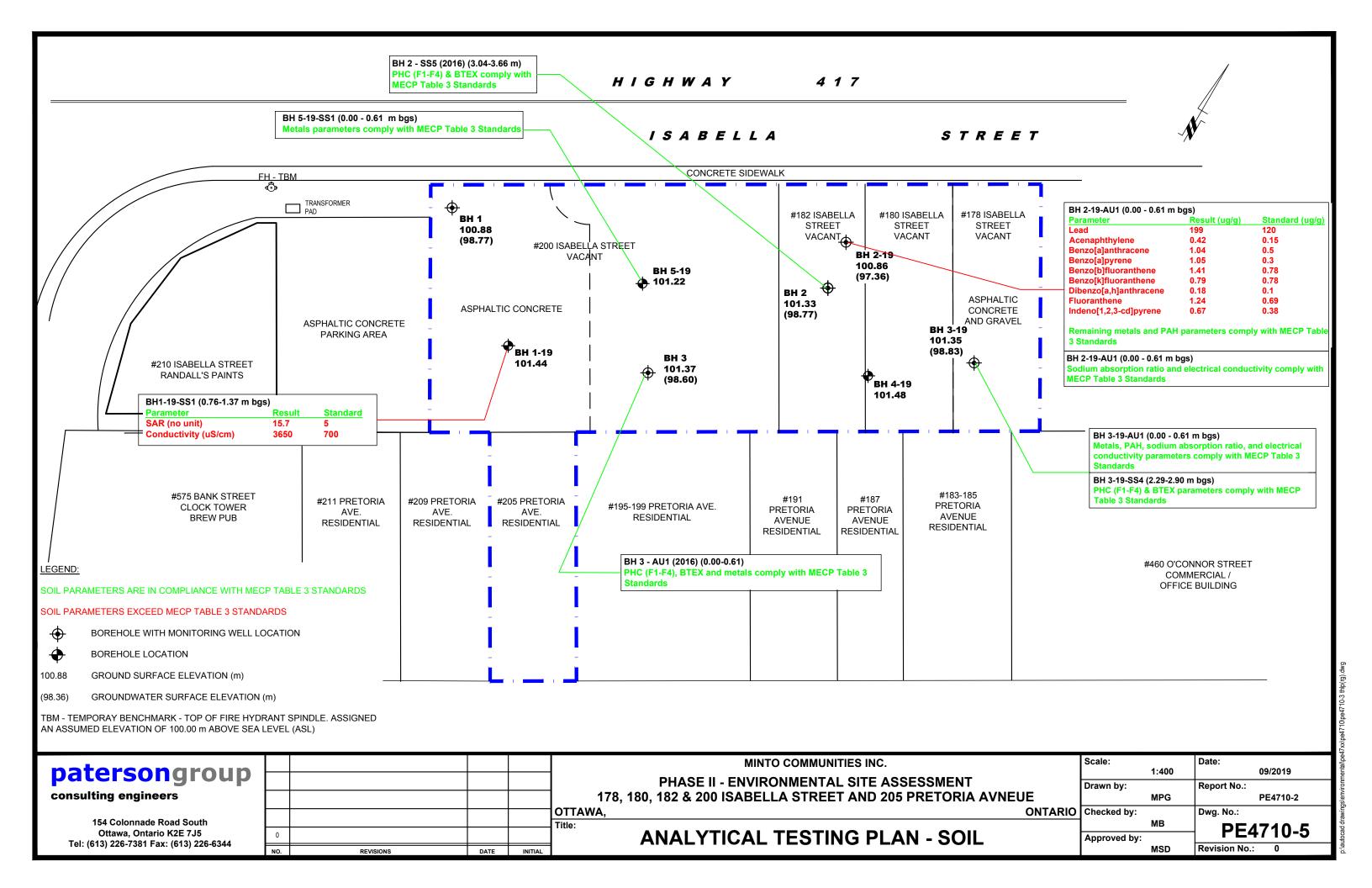
Approved by:

ONTARIO Checked by:

RCG

MB

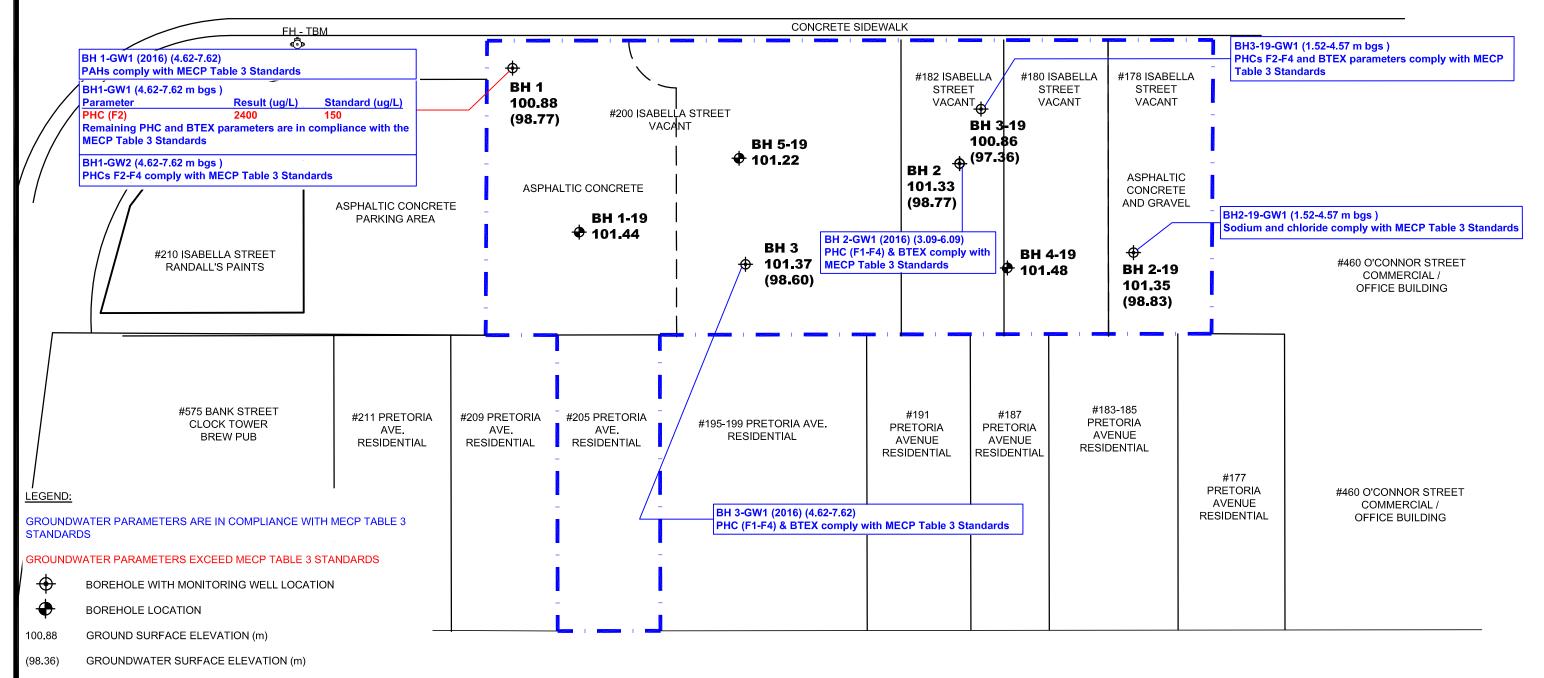
MSD


Report No.:

Dwg. No.:

Revision No.: 0

PE4710-2


PE4710-4

ISABELLA

STREET

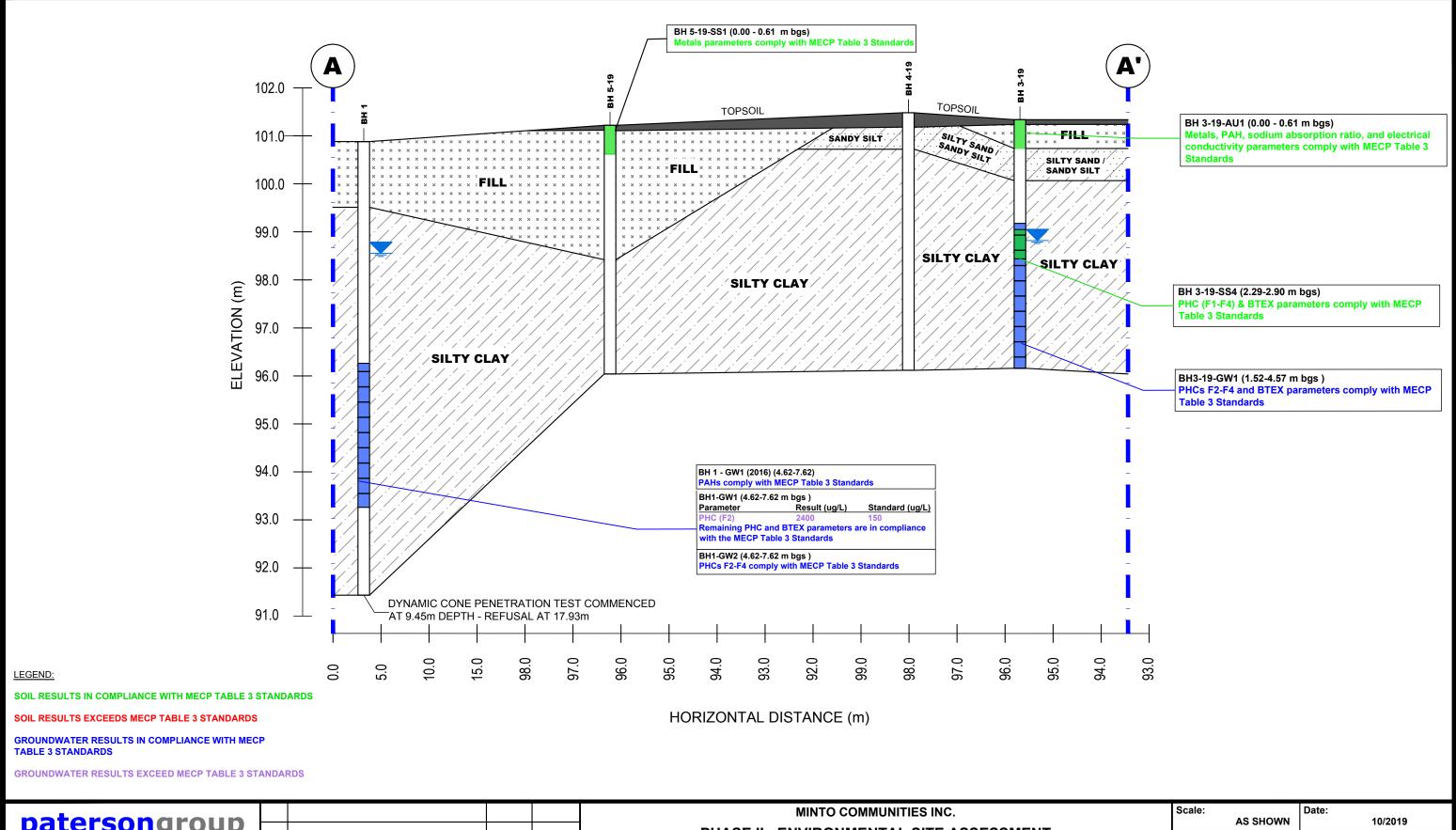
TBM - TEMPORAY BENCHMARK - TOP OF FIRE HYDRANT SPINDLE. ASSIGNED AN ASSUMED ELEVATION OF 100.00 m ABOVE SEA LEVEL (ASL)

patersongroup

consulting engineers

154 Colonnade Road South Ottawa, Ontario K2E 7J5 Tel: (613) 226-7381 Fax: (613) 226-6344

NO. REVISIONS DATE INITIAL					O ⁻
NO. REVISIONS DATE INITIAL	0				Tit
	NO.	REVISIONS	DATE	INITIAL	


MINTO COMMUNITIES INC.

PHASE II - ENVIRONMENTAL SITE ASSESSMENT 178, 180, 182 & 200 ISABELLA STREET AND 205 PRETORIA AVNEUE TTAWA,

ANALYTICAL TESTING PLAN - GROUNDWATER

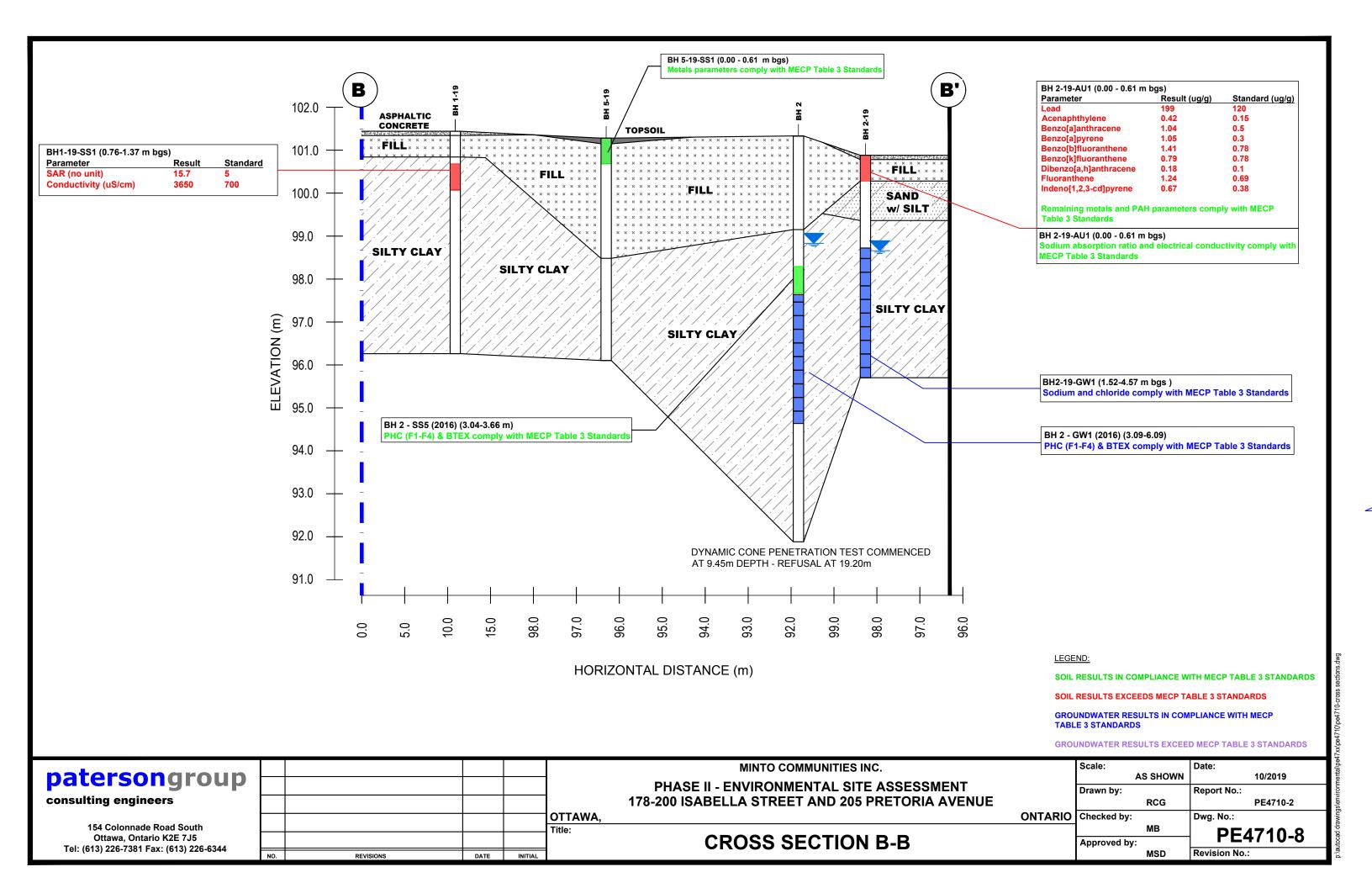
ONTARIO

	Scale:		Date:
		1:400	09/2019
	Drawn by:		Report No.:
		MPG	PE4710-2
)	Checked by:		Dwg. No.:
		MB	PE4710-6
	Approved by:		F L47 10-0
		MSD	Revision No.: 0

patersongroup

consulting engineers

154 Colonnade Road South Ottawa, Ontario K2E 7J5 Tel: (613) 226-7381 Fax: (613) 226-6344


				OTTAWA, Title:
NO.	REVISIONS	DATE	INITIAL	

PHASE II - ENVIRONMENTAL SITE ASSESSMENT 178-200 ISABELLA STREET AND 205 PRETORIA AVENUE

CROSS SECTION A-A

	Scale:		Date:
	AS	S SHOWN	10/2019
	Drawn by:		Report No.:
		RCG	PE4710-2
ONTARIO	Checked by:		Dwg. No.:
		MB	PE4710-7
	Annroyed by:	_	

Revision No.:

APPENDIX 1

SAMPLING AND ANALYSIS PLAN
SOIL PROFILE AND TEST DATA SHEETS
SYMBOLS AND TERMS
LABORATORY CERTIFICATES OF ANALYSIS

Geotechnical Engineering

Environmental Engineering

Hydrogeology

Geological Engineering

Materials Testing

Building Science

Archaeological Services

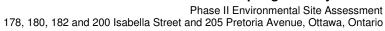
patersongroup

Sampling & Analysis Plan

Phase II Environmental Site Assessment

178, 180, 182 and 200 Isabella Street and 205 Pretoria Avenue Ottawa, Ontario

Prepared For


Minto Communities Inc.

Paterson Group Inc.

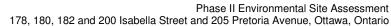
Consulting Engineers 154 Colonnade Road South Ottawa (Nepean), Ontario Canada K2E 7J5

Tel: (613) 226-7381 Fax: (613) 226-6344 www.patersongroup.ca September 10, 2019

Report: PE4710-SAP

TABLE OF CONTENTS

1.0 SAMPLING PROGRAM	1
2.0 ANALYTICAL TESTING PROGRAM	2
3.0 STANDARD OPERATING PROCEDURES	3
3.1 Environmental Drilling Procedure	3
3.2 Monitoring Well Installation Procedure	6
3.3 Monitoring Well Sampling Procedure	7
4.0 QUALITY ASSURANCE/QUALITY CONTROL (QA/QC)	8
5.0 DATA QUALITY OBJECTIVES	9
6.0 PHYSICAL IMPEDIMENTS TO SAMPLING & ANALYSIS PLAN	. 10


1.0 SAMPLING PROGRAM

Paterson Group Inc. (Paterson) was commissioned by Minto Communities Inc. to conduct a Phase II Environmental Site Assessment (ESA) at the properties addressed 178, 180, 182 and 200 Isabella Street and 205 Pretoria Avenue, in the City of Ottawa, Ontario. Based on our September 2019 Phase I ESA completed for the subject property, a subsurface investigation program, consisting of borehole drilling and re-sampling of previously placed monitoring wells, was developed.

Borehole	Location & Rationale	Proposed Depth & Rationale	
BH1-19	Place borehole on the western side of the Phase I Property (200 Isabella Street), to assess any potential impacts from de-icing the parking lot.	Intercept the fill and native material to obtain soil samples for analytical testing.	
BH2-19	Place borehole on the eastern side of the Phase I Property (178 Isabella Street) to assess any potential impacts from de-icing the parking lot and from the former coal and oil business on-site.	Boreholes to be advanced approximately 2 m below the expected long-term groundwater table and install a monitoring	
BH3-19	Place borehole in central portion of the Phase I Property (182 Isabella Street) to assess any potential impacts from the former coal and oil business on site.	well.	
BH4-19	Place borehole in the eastern portion of the Phase I Property (180 Isabella Street) to assess any potential impacts from the former coal and oil and heating contractor businesses on site.	Intercept the fill and native material to obtain soil samples for analytical testing.	
BH5-19	Place borehole in central portion of the Phase I Property (200 Isabella Street) to assess any potential impacts from fill material on site.	Intercept the fill and native material to obtain soil samples for analytical testing.	

At each borehole, split-spoon samples of overburden soils will be obtained at 0.76 m (2'6") intervals until practical refusal to augering. All soil samples will be retained, and samples will be selected for submission following a preliminary screening analysis.

Upon refusal, rock coring shall be undertaken to the required depth, if necessary. Approximately every metre the well shall be purged by inertial pumping and the water level recorded to determine if groundwater water is entering the borehole.

Following borehole drilling, monitoring wells will be installed in selected boreholes (as above) for the measurement of water levels and the collection of groundwater samples. Borehole locations are shown on the Test Hole Location Plan appended to the main report.

2.0 ANALYTICAL TESTING PROGRAM

The analytical testing program for soil at the subject site is based on the following general considerations:

At least one sample from each borehole should be submitted, in order to delineate the horizontal extent of contamination across the site.
At least one sample from each stratigraphic unit should be submitted, in order to delineate the vertical extent of contamination at the site.
In boreholes where there is visual or olfactory evidence of contamination, or where organic vapour meter or photoionization detector readings indicate the presence of contamination, the 'worst-case' sample from each borehole should be submitted for comparison with MECP Site Condition Standards.
In boreholes with evidence of contamination as described above, a sample should be submitted from the stratigraphic unit below the 'worst-case' sample to determine whether the contaminant(s) have migrated downward.
Parameters analyzed should be consistent with the Contaminants of Potential Concern identified in the Phase I ESA.
e analytical testing program for groundwater at the subject site is based on the lowing general considerations:
Groundwater monitoring wells should be installed in all boreholes with visual or olfactory evidence of soil contamination, in stratigraphic units where soil contamination was encountered, where those stratigraphic units are at or below the water table (i.e. a water sample can be obtained).
Groundwater monitoring well screens should straddle the water table at sites where the contaminants of concern are suspected to be LNAPLs.
At least one groundwater monitoring well should be installed in a stratigraphic unit below the suspected contamination, where said stratigraphic unit is water-bearing.

Parameters analyzed should be consistent with the Contaminants of Concern
identified in the Phase I ESA and with the contaminants identified in the soil
samples.

3.0 STANDARD OPERATING PROCEDURES

3.1 Environmental Drilling Procedure

Purpose

The purpose of environmental boreholes is to identify and/or delineate contamination within the soil and/or to install groundwater monitoring wells in order to identify contamination within the groundwater.

Equipment

The following is a list of equipment that is in addition to regular drilling equipment stated in the geotechnical drilling SOP:

glass soil sample jars
two buckets
cleaning brush (toilet brush works well)
dish detergent
methyl hydrate
water (if not available on site - water jugs available in the trailer)
latex or nitrile gloves (depending on suspected contaminant)
RKI Eagle organic vapour meter or MiniRae photoionization detector
(depending on contamination suspected)

Determining Borehole Locations

If conditions on site are not as suspected, and planned borehole locations cannot be drilled, **call the office to discuss**. Alternative borehole locations will be determined in conversation with the field technician and supervising engineer.

After drilling is completed a plan with the borehole locations must be provided. Distances and orientations of boreholes with respect to site features (buildings, roadways, etc.) must be provided. Distances should be measured using a measuring tape or wheel rather than paced off. Ground surface elevations at each borehole should be surveyed relative to a catch basin of known geodetic elevation.

Drilling Procedure

geotechnical boreholes (see SOP for drilling and sampling) with a few exceptions as follows: ☐ Continuous split spoon samples (every 0.6 m or 2') or semi-continuous (every 0.76 m or 2'6") are required. ☐ Make sure samples are well sealed in plastic bags with no holes prior to screening and are kept cool but unfrozen. ☐ If sampling for VOCs, BTEX, or PHCs F1, a soil core from each soil sample which may be analysed must be taken and placed in the laboratory-provided methanol vial. ■ Note all and any odours or discolouration of samples. Split spoon samplers must be washed between samples. If obvious contamination is encountered, continue sampling until the vertical extent of contamination is delineated. As a general rule, environmental boreholes should be deep enough to intercept the groundwater table (unless this is impossible/impractical - call project manager to discuss). ☐ If at all possible, soil samples should be submitted to a preliminary screening procedure on site, either using an RKI Eagle, PID, etc. depending on the type of suspected contamination. **Spoon Washing Procedure** All sampling equipment (spilt spoons, etc.) must be washed between samples in order to prevent cross-contamination of soil samples. Obtain two buckets of water (preferably hot if available) ☐ Add a small amount of dish soap to one bucket ☐ Scrub spoons with a brush in soapy water, inside and out, including the tip ☐ Rinse in clean water Apply a small amount of methyl hydrate to the inside of the spoon. (A spray bottle or water bottle with a small hole in the cap works well) ☐ Allow to dry (takes seconds) ☐ Rinse with distilled water, a spray bottle works well.

The methyl hydrate eliminates any soap residue that may be on the spoon and is

especially important when dealing with suspected VOCs.

The actual drilling procedure for environmental boreholes is the same as

Screening Procedure

The RKI Eagle is used to screen most soil samples, particularly where petroleum hydrocarbon contamination is suspected. The MiniRae is used when VOCs are suspected, however it also can be useful for detecting petroleum. These tools are for screening purposes only and cannot be used in place of laboratory testing. Vapour results obtained from the RKI Eagle and the PID are relative and must be interpreted.

Screening equipment should be calibrated on an approximately monthly basis, more frequently if heavily used.

Samples should be brought to room temperature; this is specifically important
in colder weather. Soil must not be frozen.
Turn instrument on and allow to come to zero - calibrate if necessary
If using RKI Eagle, ensure the instrument is in methane elimination mode
unless otherwise directed.
Ensure measurement units are ppm (parts per million) initially. RKI Eagle will
automatically switch to %LEL (lower explosive limit) if higher concentrations
are encountered.
Break up large lumps of soil in the sample bag, taking care not to puncture the
bag.
Insert the probe into soil bag, creating a seal with your hand around the
opening.
Gently manipulate soil in the bag while observing instrument readings.
Record the highest value obtained in the first 15 to 25 seconds
Make sure to indicate scale (ppm or LEL); also note which instrument was used
(RKI Eagle 1 or 2, or MiniRae).
Jar samples and refrigerate as per the Sampling and Analysis Plan.

Report: PE4710-SAP

September 10, 2019 Page 5

3.2 Monitoring Well Installation Procedure

Equipment ☐ 5' x 2" [1.52 m x 50 mm] threaded sections of Schedule 40 PVC slotted well screen (5' x 1 1/4" [1.52 m x 32 mm] if installing in a cored hole in bedrock) 5' x 2" [1.52 m x 50 mm] threaded sections of Schedule 40 PVC riser pipe (5' x 1 1/4" [1.52 m x 32 mm] if installing in a cored hole in bedrock) ☐ Threaded end-cap ☐ Slip-cap or J-plug Asphalt cold patch or concrete ☐ Silica Sand ☐ Bentonite chips (Holeplug) ☐ Steel flushmount casing **Procedure** ☐ Drill borehole to the required depth, using drilling and sampling procedures described above. If the borehole is deeper than required monitoring well, backfill with bentonite chips to the required depth. This should only be done on wells where contamination is not suspected, in order to prevent downward migration of contamination. Only one monitoring well should be installed per borehole. ☐ Monitoring wells should not be screened across more than one stratigraphic unit to prevent potential migration of contaminants between units. ☐ Where LNAPLs are the suspected contaminants of concern, monitoring wells should be screened straddling the water table in order to capture any free product floating on top of the water table. ☐ Thread the end cap onto a section of the screen. Thread the second section of the screen if required. Thread risers onto the screen. Lower into the borehole to the required depth. Ensure slip-cap or J-plug is inserted to prevent backfill materials from entering the well. As drillers remove augers, backfill borehole annulus with silica sand until the level of sand is approximately 0.3 m above the top of the screen. ☐ Backfill with holeplug until at least 0.3 m of holeplug is present above the top of the silica sand.

☐ Backfill remainder of the borehole with holeplug or with auger cuttings (if

Report: PE4710-SAP September 10, 2019

contamination is not suspected).

☐ Install flushmount casing. Seal space between flushmount and borehole annulus with concrete, cold patch, or holeplug to match the surrounding ground surface.

3.3

protector cap. Remove plastic well cap.

Mc	Monitoring Well Sampling Procedure				
Εq	Equipment				
	Water level metre or interface probe on hydrocarbon/LNAPL sites Spray bottles containing water and methanol to clean water level tape or interface probe				
	Peristaltic pump				
	Polyethylene tubing for peristaltic pump				
	Flexible tubing for peristaltic pump				
	Latex or nitrile gloves (depending on suspected contaminant)				
	Allen keys and/or 9/16" socket wrench to remove well caps				
	Graduated bucket with volume measurements				
	pH/Temperature/Conductivity combo pen				
	Laboratory-supplied sample bottles				
Sa	Sampling Procedure				
	Locate well and use a socket wrench or Allan key to open metal flush mount				

Measure water level, with respect to the existing ground surface, using water
level meter or interface probe. If using an interface probe on suspected NAPL
site, measure the thickness of the free product.
Measure the total depth of well.
Clean water level tape or interface probe using methanol and water. Change
gloves between wells.
Calculate the volume of standing water within well and record.
Insert polyethylene tubing into well and attach to the peristaltic pump. Turn on
the peristaltic pump and purge into the graduated bucket. Purge at least three
well volumes of water from the well. Measure and record field chemistry.
Continue to purge, measuring field chemistry after every well volume purged,
until appearance or field chemistry stabilizes.
Note the appearance of purge water, including colour, opacity (clear, cloudy,

silty), sheen, presence of LNAPL, and odour. Note any other unusual features

Report: PE4710-SAP

September 10, 2019 Page 7

(particulate matter, effervescence (bubbling) of dissolved gas, etc.).

4.0

Phase II Environmental Site Assessment 178, 180, 182 and 200 Isabella Street and 205 Pretoria Avenue, Ottawa, Ontario

	Fill the required sample bottles. If sampling for metals, attach 75-micron filter to discharge tube and filter metals sample. If sampling for VOCs, use low flow rate to ensure a continuous stream of non-turbulent flow into sample bottles. Ensure no headspace is present in VOC vials. Replace well cap and flushmount casing cap.
QI	UALITY ASSURANCE/QUALITY CONTROL (QA/QC)
Th	e QA/QC program for this Phase II ESA is as follows:
	All non-dedicated sampling equipment (split spoons) will be decontaminated according to the SOPs listed above.
	All groundwater sampling equipment is dedicated (polyethylene and flexible peristaltic tubing is replaced for each well).
	Where groundwater samples are to be analyzed for VOCs, one laboratory-provided trip blank will be submitted for analysis with every laboratory submission.
	Approximately one (1) field duplicate will be submitted for every ten (10) samples submitted for laboratory analysis. A minimum of one (1) field duplicate per project will be submitted. Field duplicates will be submitted for soil and groundwater samples.
	Where combo pens are used to measure field chemistry, they will be calibrated on an approximately monthly basis, according to the frequency of use.

Page 8

5.0 DATA QUALITY OBJECTIVES

The purpose of setting data quality objectives (DQOs) is to ensure that the level of uncertainty in data collected during the Phase II ESA is low enough that decision-making is not affected, and that the overall objectives of the investigation are met.

The quality of data is assessed by comparing field duplicates with original samples. If the relative percent difference (RPD) between the duplicate and the sample is within 20%, the data are considered to be of sufficient quality so as not to affect decision-making. The RPD is calculated as follows:

$$RPD = \left| \frac{x_1 - x_2}{(x_1 + x_2)/2} \right| \times 100\%$$

Where x_1 is the concentration of a given parameter in an original sample and x_2 is the concentration of that same parameter in the field duplicate sample.

For the purpose of calculating the RPD, it is desirable to select field duplicates from samples for which parameters are present in concentrations above laboratory detection limits, i.e. samples which are expected to be contaminated. If parameters are below laboratory detection limits for selected samples or duplicates, the RPD may be calculated using a concentration equal to one half (0.5 x) the laboratory detection limit.

It is also important to consider data quality in the overall context of the project. For example, if the DQOs are not met for a given sample, yet the concentrations of contaminants in both the sample and the duplicate exceed the MOE site remediation standards by a large margin, the decision-making usefulness of the sample may not be considered to be impaired. The proximity of other samples which meet the DQOs must also be considered in developing the Phase II Conceptual Site Model; often there are enough data available to produce a reliable Phase II Conceptual Site Model even if DQOs are not met for certain individual samples.

These considerations are discussed in the body of the report.

6.0 PHYSICAL IMPEDIMENTS TO SAMPLING & ANALYSIS PLAN

Ph	ysical impediments to the Sampling and Analysis plan may include:
	The location of underground utilities
	Poor recovery of split-spoon soil samples
	Insufficient groundwater volume for groundwater samples
	Breakage of sampling containers following sampling or while in transit to the
	laboratory
	Elevated detection limits due to matrix interference (generally related to soil
	colour or presence of organic material)
	Elevated detection limits due to high concentrations of certain parameters,
	necessitating dilution of samples in the laboratory
	Drill rig breakdowns
	Winter conditions
	Other site-specific impediments
	e-specific impediments to the Sampling and Analysis plan are discussed in the dy of the Phase II ESA report.

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

SOIL PROFILE AND TEST DATA

Phase II - Environmental Site Assessment 178-200 Isabella Street and 205 Pretoria Avenue Ottawa, Ontario

DATUM

REMARKS

TBM - Top spindle of fire hydrant located at the intersection of Bank Street and Isabella Street. An arbitrary elevation of 100.00m was assigned to the TBM.

FILE NO.

PE4710

HOLE NO.

BH 1-19 BORINGS BY CME 55 Power Auger DATE 2019 September 13 Monitoring Well Construction **SAMPLE Photo Ionization Detector** STRATA PLOT DEPTH ELEV. **SOIL DESCRIPTION** Volatile Organic Rdg. (ppm) (m) (m) RECOVERY N VALUE or RQD NUMBER Lower Explosive Limit % **GROUND SURFACE** 80 0+101.44Asphaltic concrete 0.10 1 FILL: Crushed stone 0.60 1 + 100.44SS 2 100 10 SS 3 100 6 2 + 99.44Brown SILTY CLAY, trace sand SS 4 100 3 3+98.445 SS 100 1 - grey by 3.6m depth 4 + 97.44SS 6 4 2 SS 7 100 W 5+96.44<u>5</u>.<u>1</u>8 End of Borehole 200 300 400 500 RKI Eagle Rdg. (ppm) ▲ Full Gas Resp. △ Methane Elim.

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

SOIL PROFILE AND TEST DATA

Phase II - Environmental Site Assessment 178-200 Isabella Street and 205 Pretoria Avenue Ottawa, Ontario

DATUM

TBM - Top spindle of fire hydrant located at the intersection of Bank Street and Isabella Street. An arbitrary elevation of 100.00m was assigned to the TBM.

FILE NO.

PE4710

HOLE NO.

REMARKS

BORINGS BY CME 55 Power Auger DATE 2019 September 13 **BH 2-19**

SOIL DESCRIPTION	PLOT		SAN	IPLE		DEPTH	ELEV.		Ionization Detector atile Organic Rdg. (ppm)			
GROUND SURFACE		TYPE	NUMBER	% RECOVERY	N VALUE or RQD	(m)	(m)			osive Limit %	Monitoring Well	
Asphaltic concrete 0.10	·.^.^.^	*				0-	101.35					
FILL: Dark brown sand with silt and gravel0.60		AU	1					△: : : : : : : : : : : : : : : : : : :				
Loose, brown SAND with silt		SS	2	79	9	1-	-100.35	Δ				
1.52		ss	3	100	8	2-	-99.35	Δ				
Brown SILTY CLAY		SS	4	100	4	3-	-98.35	Δ				
grey by 3.2m depth		SS	5	100	1		30.00	Δ				
		SS	6	100	w	4-	-97.35	Δ				
5.18 End of Borehole		SS	7	100	w	5-	-96.35	Δ				
(GWL @ 3.50m - Sept. 24, 2019)												
										300 400 Rdg. (ppm) b. △ Methane El	500	

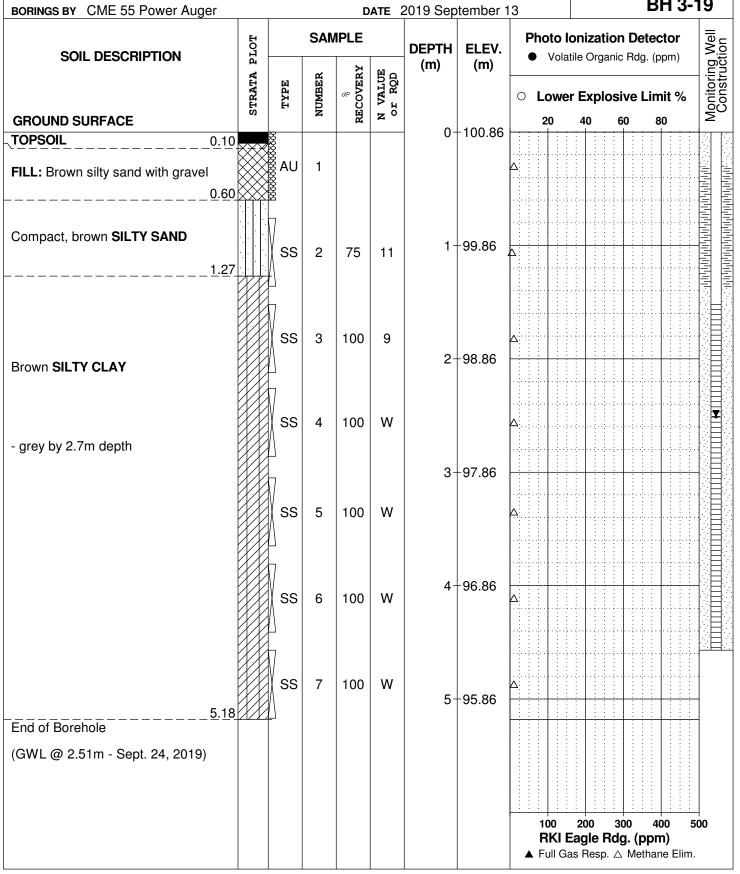
154 Colonnade Road South, Ottawa, Ontario K2E 7J5

SOIL PROFILE AND TEST DATA

Phase II - Environmental Site Assessment 178-200 Isabella Street and 205 Pretoria Avenue Ottawa, Ontario

DATUM

REMARKS


TBM - Top spindle of fire hydrant located at the intersection of Bank Street and Isabella Street. An arbitrary elevation of 100.00m was assigned to the TBM.

FILE NO.

HOLE NO.

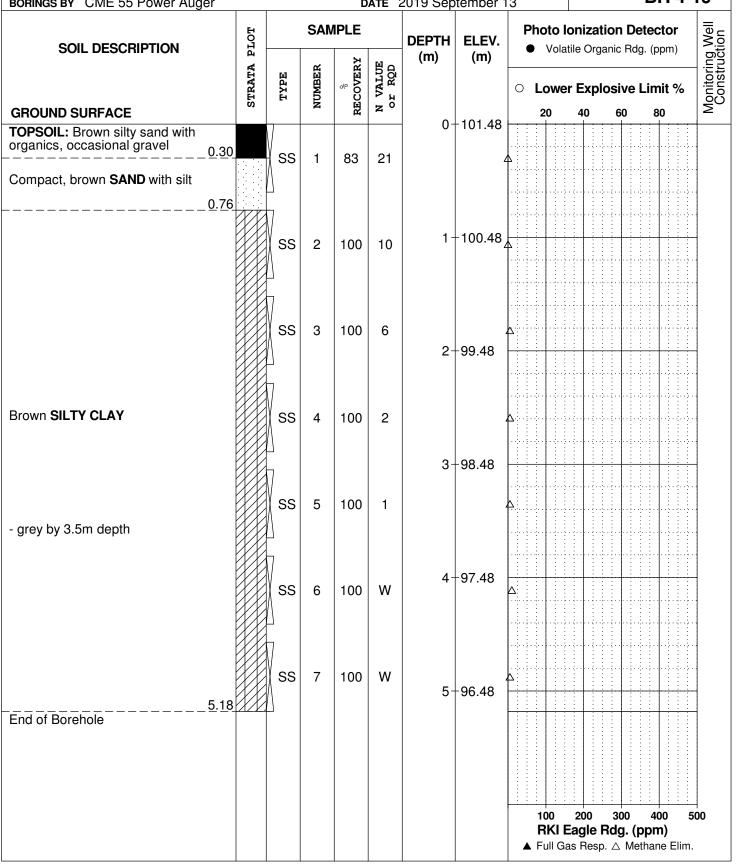
PE4710

BH 3-19

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

SOIL PROFILE AND TEST DATA

Phase II - Environmental Site Assessment 178-200 Isabella Street and 205 Pretoria Avenue Ottawa, Ontario


DATUM

TBM - Top spindle of fire hydrant located at the intersection of Bank Street and Isabella Street. An arbitrary elevation of 100.00m was assigned to the TBM.

FILE NO. PE4710

REMARKS

BORINGS BY CME 55 Power Auger DATE 2019 September 13 BH 4-19

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

SOIL PROFILE AND TEST DATA

Phase II - Environmental Site Assessment 178-200 Isabella Street and 205 Pretoria Avenue Ottawa, Ontario

DATUM

REMARKS

TBM - Top spindle of fire hydrant located at the intersection of Bank Street and Isabella Street. An arbitrary elevation of 100.00m was assigned to the TBM.

FILE NO.

PE4710

HOLE NO.

Auger DATE 2019 September 1

BH 5-19

SOIL DESCRIPTION			SAMPLE SAMPLE									
SOIL DESCRIPTION GROUND SURFACE		TYPE	NUMBER	% RECOVERY	N VALUE or RQD	DEPTH (m)	(m)	VolaLowe20		osive L		Monitoring Well
TOPSOIL 0.08		-				0-	101.22					
		ss	1	33	4		2	A				
FILL: Brown silty sand with gravel, occasional concrete and brick ragments		SS	2	18	26	1-	100.22	Δ				
		SS	3	71	6	2-	-99.22	A: :::::::::::::::::::::::::::::::::::				
2.54 FILL: Brown sand, trace gravel2.80	\bowtie	SS	4	54	11		-98.22	Δ				
		SS	5	100	1	3-	90.22	Δ.				
Grey SILTY CLAY		ss	6	100	W	4-	-97.22	Δ				
5.1		SS	7	100	1	5-	96.22	Δ:				
End of Borehole												

SYMBOLS AND TERMS

SOIL DESCRIPTION

Behavioural properties, such as structure and strength, take precedence over particle gradation in describing soils. Terminology describing soil structure are as follows:

Desiccated	-	having visible signs of weathering by oxidation of clay minerals, shrinkage cracks, etc.
Fissured	-	having cracks, and hence a blocky structure.
Varved	-	composed of regular alternating layers of silt and clay.
Stratified	-	composed of alternating layers of different soil types, e.g. silt and sand or silt and clay.
Well-Graded	-	Having wide range in grain sizes and substantial amounts of all intermediate particle sizes (see Grain Size Distribution).
Uniformly-Graded	-	Predominantly of one grain size (see Grain Size Distribution).

The standard terminology to describe the relative strength of cohesionless soils is the compactness condition, usually inferred from the results of the Standard Penetration Test (SPT) 'N' value. The SPT N value is the number of blows of a 63.5 kg hammer, falling 760 mm, required to drive a 51 mm O.D. split spoon sampler 300 mm into the soil after an initial penetration of 150 mm. An SPT N value of "P" denotes that the split-spoon sampler was pushed 300 mm into the soil without the use of a falling hammer.

Compactness Condition	'N' Value	Relative Density %
Very Loose	<4	<15
Loose	4-10	15-35
Compact	10-30	35-65
Dense	30-50	65-85
Very Dense	>50	>85

The standard terminology to describe the strength of cohesive soils is the consistency, which is based on the undisturbed undrained shear strength as measured by the in situ or laboratory shear vane tests, unconfined compression tests, or occasionally by the Standard Penetration Test (SPT). Note that the typical correlations of undrained shear strength to SPT N value (tabulated below) tend to underestimate the consistency for sensitive silty clays, so Paterson reviews the applicable split spoon samples in the laboratory to provide a more representative consistency value based on tactile examination.

Consistency	Undrained Shear Strength (kPa)	'N' Value
Very Soft Soft Firm Stiff Very Stiff Hard	<12 12-25 25-50 50-100 100-200 >200	<2 2-4 4-8 8-15 15-30 >30

SYMBOLS AND TERMS (continued)

SOIL DESCRIPTION (continued)

Cohesive soils can also be classified according to their "sensitivity". The sensitivity, S_t , is the ratio between the undisturbed undrained shear strength and the remoulded undrained shear strength of the soil. The classes of sensitivity may be defined as follows:

ROCK DESCRIPTION

The structural description of the bedrock mass is based on the Rock Quality Designation (RQD).

The RQD classification is based on a modified core recovery percentage in which all pieces of sound core over 100 mm long are counted as recovery. The smaller pieces are considered to be a result of closely-spaced discontinuities (resulting from shearing, jointing, faulting, or weathering) in the rock mass and are not counted. RQD is ideally determined from NQ or larger size core. However, it can be used on smaller core sizes, such as BQ, if the bulk of the fractures caused by drilling stresses (called "mechanical breaks") are easily distinguishable from the normal in situ fractures.

RQD %	ROCK QUALITY
90-100	Excellent, intact, very sound
75-90	Good, massive, moderately jointed or sound
50-75	Fair, blocky and seamy, fractured
25-50	Poor, shattered and very seamy or blocky, severely fractured
0-25	Very poor, crushed, very severely fractured

SAMPLE TYPES

SS	-	Split spoon sample (obtained in conjunction with the performing of the Standard Penetration Test (SPT))
TW	-	Thin wall tube or Shelby tube, generally recovered using a piston sampler
G	-	"Grab" sample from test pit or surface materials
AU	-	Auger sample or bulk sample
WS	-	Wash sample
RC	-	Rock core sample (Core bit size BQ, NQ, HQ, etc.). Rock core samples are obtained with the use of standard diamond drilling bits

SYMBOLS AND TERMS (continued)

PLASTICITY LIMITS AND GRAIN SIZE DISTRIBUTION

WC% - Natural water content or water content of sample, %

LL - Liquid Limit, % (water content above which soil behaves as a liquid)

PL - Plastic Limit, % (water content above which soil behaves plastically)

PI - Plasticity Index, % (difference between LL and PL)

Dxx - Grain size at which xx% of the soil, by weight, is of finer grain sizes

These grain size descriptions are not used below 0.075 mm grain size

D10 - Grain size at which 10% of the soil is finer (effective grain size)

D60 - Grain size at which 60% of the soil is finer

Cc - Concavity coefficient = $(D30)^2 / (D10 \times D60)$

Cu - Uniformity coefficient = D60 / D10

Cc and Cu are used to assess the grading of sands and gravels:

Well-graded gravels have: 1 < Cc < 3 and Cu > 4 Well-graded sands have: 1 < Cc < 3 and Cu > 6

Sands and gravels not meeting the above requirements are poorly-graded or uniformly-graded.

Cc and Cu are not applicable for the description of soils with more than 10% silt and clay

(more than 10% finer than 0.075 mm or the #200 sieve)

CONSOLIDATION TEST

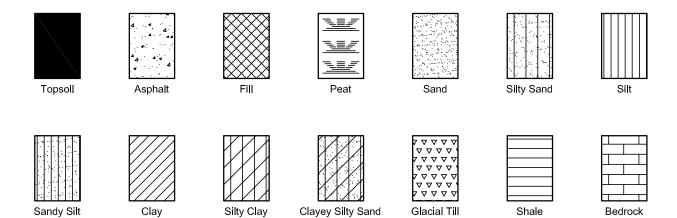
p'o - Present effective overburden pressure at sample depth

p'c - Preconsolidation pressure of (maximum past pressure on) sample

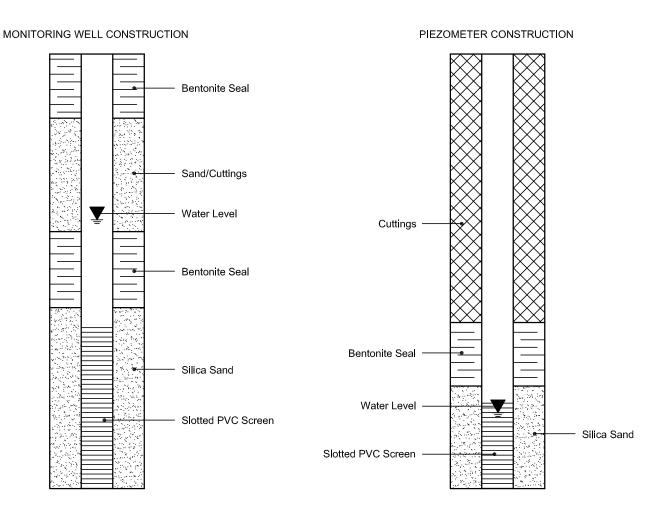
Ccr - Recompression index (in effect at pressures below p'c)
 Cc - Compression index (in effect at pressures above p'c)

OC Ratio Overconsolidaton ratio = p'c / p'o

Void Ratio Initial sample void ratio = volume of voids / volume of solids


Wo - Initial water content (at start of consolidation test)

PERMEABILITY TEST


Coefficient of permeability or hydraulic conductivity is a measure of the ability of water to flow through the sample. The value of k is measured at a specified unit weight for (remoulded) cohesionless soil samples, because its value will vary with the unit weight or density of the sample during the test.

SYMBOLS AND TERMS (continued)

STRATA PLOT

MONITORING WELL AND PIEZOMETER CONSTRUCTION

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

Paterson Group Consulting Engineers

154 Colonnade Road South Nepean, ON K2E 7J5 Attn: Mark D'Arcy

Client PO: 27119

Project: PE4710 Custody: 123221

Report Date: 24-Sep-2019 Order Date: 18-Sep-2019

Order #: 1938423

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID	Client ID
1938423-01	BH1-19-SS2
1938423-02	BH2-19-AU1
1938423-03	BH3-19-AU1
1938423-04	BH3-19-SS4
1938423-05	BH5-19-SS1

Approved By:

Dale Robertson, BSc Laboratory Director

Certificate of AnalysisReport Date: 24-Sep-2019Client: Paterson Group Consulting EngineersOrder Date: 18-Sep-2019Client PO: 27119Project Description: PE4710

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
BTEX by P&T GC-MS	EPA 8260 - P&T GC-MS	23-Sep-19	24-Sep-19
Chromium, hexavalent - soil	MOE E3056 - Extraction, colourimetric	20-Sep-19	24-Sep-19
Conductivity	MOE E3138 - probe @25 °C, water ext	24-Sep-19	24-Sep-19
Mercury by CVAA	EPA 7471B - CVAA, digestion	24-Sep-19	24-Sep-19
pH, soil	EPA 150.1 - pH probe @ 25 °C, CaCl buffered ext.	24-Sep-19	24-Sep-19
PHC F1	CWS Tier 1 - P&T GC-FID	23-Sep-19	24-Sep-19
PHCs F2 to F4	CWS Tier 1 - GC-FID, extraction	19-Sep-19	23-Sep-19
REG 153: Metals by ICP/MS, soil	EPA 6020 - Digestion - ICP-MS	24-Sep-19	24-Sep-19
REG 153: PAHs by GC-MS	EPA 8270 - GC-MS, extraction	19-Sep-19	24-Sep-19
SAR	Calculated	24-Sep-19	24-Sep-19
Solids, %	Gravimetric, calculation	23-Sep-19	24-Sep-19

Report Date: 24-Sep-2019

Order Date: 18-Sep-2019

Certificate of Analysis **Client: Paterson Group Consulting Engineers**

Client PO: 27119 **Project Description: PE4710**

	Client ID: Sample Date: Sample ID: MDL/Units	BH1-19-SS2 13-Sep-19 09:00 1938423-01 Soil	BH2-19-AU1 13-Sep-19 09:00 1938423-02 Soil	BH3-19-AU1 13-Sep-19 09:00 1938423-03 Soil	BH3-19-SS4 13-Sep-19 09:00 1938423-04 Soil
Physical Characteristics	WIDE/OTIES		1 00		1 00
% Solids	0.1 % by Wt.	70.9	91.4	93.0	64.5
General Inorganics		7 0.0	0		0 1.0
SAR	0.01 N/A	15.7	3.12	1.32	-
Conductivity	5 uS/cm	3650	593	302	-
рН	0.05 pH Units	-	-	-	7.70
Metals	!		!		
Antimony	1.0 ug/g dry	-	<1.0	<1.0	-
Arsenic	1.0 ug/g dry	-	4.8	2.2	-
Barium	1.0 ug/g dry	-	148	360	-
Beryllium	0.5 ug/g dry	-	<0.5	<0.5	-
Boron	5.0 ug/g dry	-	<5.0	6.0	-
Cadmium	0.5 ug/g dry	-	<0.5	<0.5	-
Chromium	5.0 ug/g dry	-	17.1	16.7	-
Chromium (VI)	0.2 ug/g dry	-	<0.2	<0.2	-
Cobalt	1.0 ug/g dry	-	4.2	4.4	-
Copper	5.0 ug/g dry	-	24.9	14.3	-
Lead	1.0 ug/g dry	-	199	62.8	-
Mercury	0.1 ug/g dry	-	0.2	<0.1	-
Molybdenum	1.0 ug/g dry	-	<1.0	<1.0	-
Nickel	5.0 ug/g dry	-	10.6	12.2	-
Selenium	1.0 ug/g dry	-	<1.0	<1.0	-
Silver	0.3 ug/g dry	-	<0.3	<0.3	-
Thallium	1.0 ug/g dry	-	<1.0	<1.0	-
Uranium	1.0 ug/g dry	-	<1.0	<1.0	-
Vanadium	10.0 ug/g dry	-	18.1	15.3	-
Zinc	20.0 ug/g dry	-	120	57.3	-
Volatiles					
Benzene	0.02 ug/g dry	-	-	-	<0.02
Ethylbenzene	0.05 ug/g dry	-	-	-	<0.05
Toluene	0.05 ug/g dry	-	-	-	<0.05
m,p-Xylenes	0.05 ug/g dry	-	-	-	<0.05
o-Xylene	0.05 ug/g dry	-	-	-	<0.05
Xylenes, total	0.05 ug/g dry	-	-	-	<0.05
Toluene-d8	Surrogate	-	-	-	109%

Hydrocarbons

Report Date: 24-Sep-2019

Certificate of Analysis **Client: Paterson Group Consulting Engineers**

Order Date: 18-Sep-2019 Client PO: 27119 **Project Description: PE4710**

	Client ID: Sample Date: Sample ID:	BH1-19-SS2 13-Sep-19 09:00 1938423-01	BH2-19-AU1 13-Sep-19 09:00 1938423-02	BH3-19-AU1 13-Sep-19 09:00 1938423-03	BH3-19-SS4 13-Sep-19 09:00 1938423-04
	MDL/Units	Soil	Soil	Soil	Soil
F1 PHCs (C6-C10)	7 ug/g dry	-	-	-	<7
F2 PHCs (C10-C16)	4 ug/g dry	-	-	-	<4
F3 PHCs (C16-C34)	8 ug/g dry	-	-	-	<8
F4 PHCs (C34-C50)	6 ug/g dry	-	-	-	<6
Semi-Volatiles			-		
Acenaphthene	0.02 ug/g dry	-	0.03	<0.02	-
Acenaphthylene	0.02 ug/g dry	-	0.42	0.04	-
Anthracene	0.02 ug/g dry	-	0.28	0.04	-
Benzo [a] anthracene	0.02 ug/g dry	-	1.04	0.16	-
Benzo [a] pyrene	0.02 ug/g dry	-	1.05	0.15	-
Benzo [b] fluoranthene	0.02 ug/g dry	-	1.41	0.20	-
Benzo [g,h,i] perylene	0.02 ug/g dry	-	0.71	0.11	-
Benzo [k] fluoranthene	0.02 ug/g dry	-	0.79	0.09	-
Chrysene	0.02 ug/g dry	-	1.16	0.17	-
Dibenzo [a,h] anthracene	0.02 ug/g dry	-	0.18	0.02	-
Fluoranthene	0.02 ug/g dry	-	1.24	0.26	-
Fluorene	0.02 ug/g dry	-	0.03	<0.02	-
Indeno [1,2,3-cd] pyrene	0.02 ug/g dry	-	0.67	0.08	-
1-Methylnaphthalene	0.02 ug/g dry	-	0.12	0.02	-
2-Methylnaphthalene	0.02 ug/g dry	-	0.18	0.03	-
Methylnaphthalene (1&2)	0.04 ug/g dry	-	0.30	0.06	-
Naphthalene	0.01 ug/g dry	-	0.12	0.02	-
Phenanthrene	0.02 ug/g dry	-	0.42	0.13	-
Pyrene	0.02 ug/g dry	-	1.20	0.23	-
2-Fluorobiphenyl	Surrogate	-	116%	97.9%	-
Terphenyl-d14	Surrogate	-	104%	89.1%	-

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Client PO: 27119

Report Date: 24-Sep-2019 Order Date: 18-Sep-2019

Project Description: PE4710

	Client ID:	BH5-19-SS1	-	_	_
	Sample Date:	13-Sep-19 09:00	-	-	-
	Sample ID:	1938423-05	-	-	-
	MDL/Units	Soil	-	-	-
Physical Characteristics					
% Solids	0.1 % by Wt.	87.7	-	-	-
Metals					
Antimony	1.0 ug/g dry	<1.0	-	-	-
Arsenic	1.0 ug/g dry	2.0	-	-	-
Barium	1.0 ug/g dry	179	-	-	-
Beryllium	0.5 ug/g dry	<0.5	-	-	-
Boron	5.0 ug/g dry	<5.0	-	-	-
Cadmium	0.5 ug/g dry	<0.5	-	-	-
Chromium	5.0 ug/g dry	53.3	-	-	-
Chromium (VI)	0.2 ug/g dry	<0.2	-	-	-
Cobalt	1.0 ug/g dry	10.8	-	-	-
Copper	5.0 ug/g dry	31.3	-	-	-
Lead	1.0 ug/g dry	67.1	-	-	-
Mercury	0.1 ug/g dry	<0.1	-	-	-
Molybdenum	1.0 ug/g dry	<1.0	-	-	-
Nickel	5.0 ug/g dry	30.1	-	-	-
Selenium	1.0 ug/g dry	<1.0	-	-	-
Silver	0.3 ug/g dry	<0.3	-	-	-
Thallium	1.0 ug/g dry	<1.0	-	-	-
Uranium	1.0 ug/g dry	<1.0	-	-	-
Vanadium	10.0 ug/g dry	49.2	-	-	-
Zinc	20.0 ug/g dry	96.8	-	-	-

Certificate of Analysis

Order #: 1938423

Report Date: 24-Sep-2019 Order Date: 18-Sep-2019

Client: Paterson Group Consulting EngineersOrder Date: 18-Sep-2019Client PO: 27119Project Description: PE4710

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
General Inorganics									
Conductivity	ND	5	uS/cm						
Hydrocarbons									
F1 PHCs (C6-C10)	ND	7	ug/g						
F2 PHCs (C10-C16)	ND	4	ug/g						
F3 PHCs (C16-C34)	ND	8	ug/g						
F4 PHCs (C34-C50)	ND	6	ug/g						
Metals									
Antimony	ND	1.0	ug/g						
Arsenic	ND	1.0	ug/g						
Barium	ND	1.0	ug/g						
Beryllium	ND	0.5	ug/g						
Boron	ND	5.0	ug/g						
Cadmium	ND	0.5	ug/g						
Chromium (VI)	ND	0.2	ug/g						
Chromium	ND	5.0	ug/g						
Cobalt	ND	1.0	ug/g						
Copper Lead	ND ND	5.0 1.0	ug/g						
Mercury	ND	0.1	ug/g ug/g						
Molybdenum	ND	1.0	ug/g ug/g						
Nickel	ND	5.0	ug/g						
Selenium	ND	1.0	ug/g						
Silver	ND	0.3	ug/g						
Thallium	ND	1.0	ug/g						
Uranium	ND	1.0	ug/g						
Vanadium	ND	10.0	ug/g						
Zinc	ND	20.0	ug/g						
Semi-Volatiles									
Acenaphthene	ND	0.02	ug/g						
Acenaphthylene	ND	0.02	ug/g						
Anthracene	ND	0.02	ug/g						
Benzo [a] anthracene	ND	0.02	ug/g						
Benzo [a] pyrene	ND ND	0.02 0.02	ug/g						
Benzo [b] fluoranthene Benzo [g,h,i] perylene	ND	0.02	ug/g ug/g						
Benzo [k] fluoranthene	ND	0.02	ug/g						
Chrysene	ND	0.02	ug/g						
Dibenzo [a,h] anthracene	ND	0.02	ug/g						
Fluoranthene	ND	0.02	ug/g						
Fluorene	ND	0.02	ug/g						
Indeno [1,2,3-cd] pyrene	ND	0.02	ug/g						
1-Methylnaphthalene	ND	0.02	ug/g						
2-Methylnaphthalene Methylnaphthalene (1&2)	ND ND	0.02 0.04	ug/g						
Naphthalene	ND	0.04	ug/g ug/g						
Phenanthrene	ND	0.02	ug/g						
Pyrene	ND	0.02	ug/g						
Surrogate: 2-Fluorobiphenyl	1.19		ug/g		88.9	50-140			
Surrogate: Terphenyl-d14	1.42		ug/g		106	50-140			
Volatiles			-						
Benzene	ND	0.02	ug/g						
Ethylbenzene	ND	0.05	ug/g						
Toluene	ND	0.05	ug/g						
m,p-Xylenes	ND	0.05	ug/g						
o-Xylene	ND	0.05	ug/g						
Xylenes, total	ND 2.58	0.05	ug/g		80.5	50-140			
Surrogate: Toluene-d8			ug/g						

Certificate of AnalysisReport Date: 24-Sep-2019Client: Paterson Group Consulting EngineersOrder Date: 18-Sep-2019Client PO: 27119Project Description: PE4710

Method Quality Control: Duplicate

		Reporting		Source		%REC		RPD		
Analyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes	
General Inorganics										
SAR	0.08	0.01	N/A	0.08			0.0	200		
Conductivity	1260	5	uS/cm	1300			3.8	5		
pH	8.63	0.05	pH Units	8.70			0.8	2.3		
'	0.00	0.00	pri onic	0.70			0.0	2.0		
Hydrocarbons	ND	7		ND				40		
F1 PHCs (C6-C10)	ND	7	ug/g dry	ND			04.7	40		
F2 PHCs (C10-C16)	14	4	ug/g dry	17			21.7	30	OD 04	
F3 PHCs (C16-C34)	49 57	8 6	ug/g dry	140 370			96.0 147.0	30 30	QR-04 QR-04	
F4 PHCs (C34-C50)	31	O	ug/g dry	370			147.0	30	QIV-04	
Metals										
Antimony	ND	1.0	ug/g dry	ND			0.0	30		
Arsenic	7.8	1.0	ug/g dry	8.0			2.3	30		
Barium	96.7	1.0	ug/g dry	96.2			0.5	30		
Beryllium	0.8	0.5	ug/g dry	0.8			7.2	30		
Boron	11.4	5.0	ug/g dry	9.5			18.1	30		
Cadmium	ND	0.5	ug/g dry	ND			0.0	30		
Chromium (VI)	ND	0.2	ug/g dry	ND			0.0	35		
Chromium	22.5	5.0	ug/g dry	22.7			0.8	30		
Conner	12.6	1.0	ug/g dry	12.8			1.4	30		
Copper	16.1	5.0	ug/g dry	16.4			1.8 0.4	30 30		
Lead	17.4 ND	1.0 0.1	ug/g dry	17.3 ND			0.4	30		
Mercury Molybdenum	3.1	1.0	ug/g dry	2.8			11.1	30		
Nickel	22.3	5.0	ug/g dry	22.5			1.1	30		
Selenium	ND	1.0	ug/g dry ug/g dry	ND			0.0	30		
Silver	0.3	0.3	ug/g dry ug/g dry	ND			0.0	30		
Thallium	ND	1.0	ug/g dry	ND			0.0	30		
Uranium	1.4	1.0	ug/g dry	1.4			2.3	30		
Vanadium	38.2	10.0	ug/g dry	38.9			1.8	30		
Zinc	72.0	20.0	ug/g dry	73.7			2.3	30		
		_0.0	~g, g ~. ,							
Physical Characteristics % Solids	91.7	0.1	% by Wt.	91.4			0.3	25		
Semi-Volatiles	01	0.1	70 Dy 111.	01.1			0.0			
Acenaphthene	ND	0.02	uala day	ND				40		
Acenaphthylene	ND	0.02	ug/g dry	ND			0.0	40		
Anthracene	ND	0.02	ug/g dry ug/g dry	ND			0.0	40		
Benzo [a] anthracene	ND ND	0.02	ug/g dry ug/g dry	ND			0.0	40		
Benzo [a] pyrene	ND	0.02	ug/g dry	ND			0.0	40		
Benzo [b] fluoranthene	0.022	0.02	ug/g dry	0.022			0.2	40		
Benzo [g,h,i] perylene	ND	0.02	ug/g dry	ND			0.0	40		
Benzo [k] fluoranthene	ND	0.02	ug/g dry	ND			0.0	40		
Chrysene	0.022	0.02	ug/g dry	0.022			1.9	40		
Dibenzo [a,h] anthracene	ND	0.02	ug/g dry	ND				40		
Fluoranthene	0.031	0.02	ug/g dry	0.033			8.3	40		
Fluorene	ND	0.02	ug/g dry	ND				40		
Indeno [1,2,3-cd] pyrene	ND	0.02	ug/g dry	ND			0.0	40		
1-Methylnaphthalene	ND	0.02	ug/g dry	ND			0.0	40		
2-Methylnaphthalene	ND	0.02	ug/g dry	ND			0.0	40		
Naphthalene	0.011	0.01	ug/g dry	ND			0.0	40		
Phenanthrene	0.022	0.02	ug/g dry	0.024			8.8	40		
Pyrene	0.030	0.02	ug/g dry	0.033			7.3	40		
Surrogate: 2-Fluorobiphenyl	1.24		ug/g dry		82.5	50-140				
Surrogate: Terphenyl-d14	1.29		ug/g dry		86.0	50-140				
<i>V</i> olatiles										
Benzene	ND	0.02	ug/g dry	ND				50		
Ethylbenzene	ND	0.05	ug/g dry	ND				50		

Report Date: 24-Sep-2019 Certificate of Analysis Order Date: 18-Sep-2019 **Client: Paterson Group Consulting Engineers** Client PO: 27119

Project Description: PE4710

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Toluene	ND	0.05	ug/g dry	ND				50	
m,p-Xylenes	ND	0.05	ug/g dry	ND				50	
o-Xylene	ND	0.05	ug/g dry	ND				50	
Surrogate: Toluene-d8	3.80		ug/g dry		106	50-140			

Certificate of Analysis

Order #: 1938423

Report Date: 24-Sep-2019 Order Date: 18-Sep-2019

Client: Paterson Group Consulting Engineers Client PO: 27119 **Project Description: PE4710**

Mothod Quality Control: Snike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	191	7	ug/g		95.5	80-120			
F2 PHCs (C10-C16)	84	4	ug/g		105	80-120			
F3 PHCs (C16-C34)	226	8	ug/g		115	80-120			
F4 PHCs (C34-C50)	148	6	ug/g		119	80-120			
Metals			3.3						
Antimony	100	1.0	ug/g	ND	80.3	70-130			
Arsenic	137	1.0	ug/g	8.0	103	70-130			
Barium	224	1.0	ug/g	96.2	102	70-130			
Beryllium	120	0.5	ug/g	0.8	95.3	70-130			
Boron	126	5.0	ug/g	9.5	93.2	70-130			
Cadmium	126	0.5	ug/g	ND	101	70-130			
Chromium (VI)	5.9	0.2	ug/g	ND	97.5	70-130			
Chromium	144	5.0	ug/g	22.7	96.8	70-130			
Cobalt	133	1.0	ug/g ug/g	12.8	96.2	70-130			
Copper	138	5.0		16.4	97.2	70-130			
Lead	141	1.0	ug/g	17.3	99.0	70-130			
	1.28	0.1	ug/g	ND	85.0	70-130			
Meluhdanum	128		ug/g			70-130			
Molybdenum		1.0	ug/g	2.8	100				
Nickel	146	5.0	ug/g	22.5	98.8	70-130			
Selenium	131	1.0	ug/g	ND	105	70-130			
Silver	111	0.3	ug/g	ND	89.0	70-130			
Thallium	122	1.0	ug/g	ND	97.8	70-130			
Uranium	131	1.0	ug/g	1.4	103	70-130			
Vanadium	160	10.0	ug/g	38.9	97.3	70-130			
Zinc	197	20.0	ug/g	73.7	98.7	70-130			
Semi-Volatiles									
Acenaphthene	0.151	0.02	ug/g	ND	80.3	50-140			
Acenaphthylene	0.160	0.02	ug/g	ND	85.3	50-140			
Anthracene	0.163	0.02	ug/g	ND	86.9	50-140			
Benzo [a] anthracene	0.186	0.02	ug/g	ND	99.1	50-140			
Benzo [a] pyrene	0.175	0.02	ug/g	ND	93.1	50-140			
Benzo [b] fluoranthene	0.210	0.02	ug/g	0.022	99.9	50-140			
Benzo [g,h,i] perylene	0.162	0.02	ug/g	ND	86.6	50-140			
Benzo [k] fluoranthene	0.215	0.02	ug/g	ND	115	50-140			
Chrysene	0.235	0.02	ug/g	0.022	114	50-140			
Dibenzo [a,h] anthracene	0.148	0.02	ug/g	ND	79.0	50-140			
Fluoranthene	0.189	0.02	ug/g	0.033	83.3	50-140			
Fluorene	0.167	0.02	ug/g	ND	89.1	50-140			
Indeno [1,2,3-cd] pyrene	0.118	0.02	ug/g	ND	63.1	50-140			
1-Methylnaphthalene	0.175	0.02	ug/g	ND	93.1	50-140			
2-Methylnaphthalene	0.188	0.02	ug/g	ND	100	50-140			
Naphthalene	0.166	0.01	ug/g	ND	88.4	50-140			
Phenanthrene	0.177	0.02	ug/g	0.024	81.5	50-140			
Pyrene	0.208	0.02	ug/g	0.033	93.3	50-140			
Surrogate: 2-Fluorobiphenyl	1.14		ug/g	2.000	76.2	50-140			
Volatiles									
Benzene	3.48	0.02	ug/g		87.1	60-130			
Ethylbenzene	4.48	0.05	ug/g		112	60-130			
Toluene	4.67	0.05	ug/g		117	60-130			
m,p-Xylenes	8.74	0.05	ug/g		109	60-130			

Report Date: 24-Sep-2019

Certificate of Analysis **Client: Paterson Group Consulting Engineers**

Order Date: 18-Sep-2019 Client PO: 27119 **Project Description: PE4710**

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
o-Xylene	4.37	0.05	ug/g		109	60-130			

Report Date: 24-Sep-2019

Certificate of Analysis **Client: Paterson Group Consulting Engineers**

Order Date: 18-Sep-2019 Client PO: 27119 **Project Description: PE4710**

Qualifier Notes:

Login Qualifiers:

Container(s) - Bottle and COC sample ID don't match -

Applies to samples: BH5-19-SS1

QC Qualifiers:

QR-04: Duplicate results exceeds RPD limits due to non-homogeneous matrix.

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected

MDL: Method Detection Limit

Source Result: Data used as source for matrix and duplicate samples

%REC: Percent recovery.

RPD: Relative percent difference.

Soil results are reported on a dry weight basis when the units are denoted with 'dry'.

Where %Solids is reported, moisture loss includes the loss of volatile hydrocarbons.

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.
- F1 range corrected for BTEX.
- F2 to F3 ranges corrected for appropriate PAHs where available.
- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.
- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.
- When reported, data for F4G has been processed using a silica gel cleanup.

GPARACEL |

LABORATORIES LTD.

Paracel ID: 1938423

Head Office 300-2319 St. Laurent Blvd. Ottawa, Ontario: K1G 4J8 p: 1-800-749-1947 e: paracel@paracellabs.com Chain of Custody (Lnb Use Only)

. Nº 123221

Page / of /

Client Name: Poterson Group	,			Project Reference:	PI	- 4	7	10							Turnaro	und Time:	Т
Contact Name: Paterson Group Contact Name: Mark D'Ary				Quote #										OID	ay	□ 3 Day	,
Address:				PO# 27	7119									1		/	2
154 Colonnade Rd. S.				Email Address:										102 D	ay	Kegu	lar
Telephone: 226-7381				modercy &	Pries	ing.	rou	e.	ca					Date	Required:		_
Criterias DO. Reg. 153/04 (As Amended) Table _ 🗆 RSC F	iling C	O. Reg	. 558/00	D PWQO D						anitar	y) Mi	micipal	ity:		D Othe	t	
Matria Type: S (Soil/Sed.) GW (Ground Water) SW (Surface Water) SS	(Storm/S	Sanitary S	ewer) P	(Paint) A (Air) O (Other)	Req	uire	d A	naly	ses		7	1				
Paracel Order Number:	rix	Air Volume	of Containers	Sample	Taken	SFI-F4+BIEX	,,	76	ds by ICP		B (HWS)	edrifes	AR	H			
Sample ID/Location Name	Matrix	Air	# 01	Date	Time	PHCs	VOCs	PAHs	Metalls	Hg Crys	B CH	M	V	2			
1 BH1-19-352	S		1	Asent								1	V				
2 BH1-19-553	5		1	13/19						Ţ		0,	N,I	40	LD		
3 BH2-19-AUI	5		2	t _f				\checkmark	$\sqrt{}$	//		1	1				
4 BH2-19-552	5		2	ч						T		or	V	10	D		
5 RHZ-19-AUI	S		2	t,				1	1	//	X	/	1				
6 BU3-19-853	5		2	41		П					П	01	VI	101	D		
7 R H3-19-554	5		2	II.		V		T	Ī		П		1	1			
(B) BHS-19-SS()	Š		1	4		Ť			1	1	\vdash						
, BH5-19-SSS)	5		7	(1		Ħ					П	01	1	OL	D		
10																	
Comments: To head = 554															Mothod of D	elivery:	
Relinquished By (Sign)	Receive	d by Driv	er Depo	Touse	Redi	nie	()OV	η		Dol	179	gi .	Verifies	Má	M	M	
Relinquished by (Print): Nick Suffician	DateTi		8/0	9/194	30 Date/T		JE	P	8,9	919	0	5.4	Date/Ti	No. of the last	9-1	-19 4	119
106/Time: Sept. 17.2019.	Temper.	Hurc		/	// Tempe	rature!	12	1	G1				pH Ver	Sed [1]	14. 14	2.000	

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

Paterson Group Consulting Engineers

154 Colonnade Road South Nepean, ON K2E 7J5 Attn: Mark D'Arcy

Client PO: 27624 Project: PE4710 Custody: 123190

Report Date: 19-Sep-2019 Order Date: 13-Sep-2019

Order #: 1937635

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

 Paracel ID
 Client ID

 1937635-01
 BH1-GW1

 1937635-02
 BH2-GW1

Approved By:

Dale Robertson, BSc Laboratory Director

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Order Date: 19-Sep-2019

Order Date: 13-Sep-2019

Client PO: 27624

Project Description: PE4710

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
Anions	EPA 300.1 - IC	14-Sep-19	15-Sep-19
BTEX by P&T GC-MS	EPA 624 - P&T GC-MS	15-Sep-19	17-Sep-19
Chromium, hexavalent - water	MOE E3056 - colourimetric	19-Sep-19	19-Sep-19
PHC F1	CWS Tier 1 - P&T GC-FID	15-Sep-19	17-Sep-19
PHCs F2 to F4	CWS Tier 1 - GC-FID, extraction	18-Sep-19	19-Sep-19
REG 153: Mercury by CVAA	EPA 245.2 - Cold Vapour AA	18-Sep-19	19-Sep-19
REG 153: Metals by ICP/MS, water	er EPA 200.8, ICP-MS	19-Sep-19	19-Sep-19
REG 153: PAHs by GC-MS	EPA 625 - GC-MS, extraction	18-Sep-19	18-Sep-19

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Client PO: 27624

Report Date: 19-Sep-2019 Order Date: 13-Sep-2019

Project Description: PE4710

	Client ID: Sample Date: Sample ID:	BH1-GW1 12-Sep-19 12:00 1937635-01	BH2-GW1 12-Sep-19 12:00 1937635-02	- - -	- - -
	MDL/Units	Water	Water	-	-
Anions					
Chloride	1 mg/L	1530	-	-	-
Metals					-
Mercury	0.1 ug/L	<0.1	-	-	-
Antimony	0.500 ug/L	<0.500	-	-	-
Arsenic	1.00 ug/L	<1.00	-	-	-
Barium	1.00 ug/L	147	-	-	-
Beryllium	0.500 ug/L	<0.500	-	-	-
Boron	10.0 ug/L	132	-	-	-
Cadmium	0.200 ug/L	<0.200	-	-	-
Chromium	1.00 ug/L	<1.00	-	-	-
Chromium (VI)	10 ug/L	<10	-	-	-
Cobalt	0.500 ug/L	<0.500	-	-	-
Copper	0.500 ug/L	0.649	-	-	-
Lead	0.200 ug/L	<0.200	-	-	-
Molybdenum	0.500 ug/L	3.52	-	-	-
Nickel	1.00 ug/L	2.80	-	-	-
Selenium	1.00 ug/L	<1.00	-	-	-
Silver	0.200 ug/L	<0.200	-	-	-
Sodium	200 ug/L	617000	-	-	-
Thallium	0.500 ug/L	<0.500	-	-	-
Uranium	0.200 ug/L	2.85	-	-	-
Vanadium	0.500 ug/L	1.93	-	-	-
Zinc	5.00 ug/L	<5.00	-	-	-
Volatiles	•				
Benzene	0.5 ug/L	<0.5	-	-	-
Ethylbenzene	0.5 ug/L	<0.5	-	-	-
Toluene	0.5 ug/L	<0.5	-	-	-
m,p-Xylenes	0.5 ug/L	<0.5	-	-	-
o-Xylene	0.5 ug/L	<0.5	-	-	-
Xylenes, total	0.5 ug/L	<0.5	-	-	-
Toluene-d8	Surrogate	114%	-	-	-
Hydrocarbons					
F1 PHCs (C6-C10)	25 ug/L	<25	-	-	-
F2 PHCs (C10-C16)	100 ug/L	2400	-	-	-
F3 PHCs (C16-C34)	100 ug/L	<100	-	<u>-</u>	-

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Client PO: 27624 P

Report Date: 19-Sep-2019 Order Date: 13-Sep-2019 **Project Description: PE4710**

	Client ID: Sample Date:	BH1-GW1 12-Sep-19 12:00	BH2-GW1 12-Sep-19 12:00	-	- -
	Sample ID:	1937635-01	1937635-02	-	-
	MDL/Units	Water	Water	-	-
F4 PHCs (C34-C50)	100 ug/L	<100	-	-	-
Semi-Volatiles					
Acenaphthene	0.05 ug/L	-	<0.05	-	-
Acenaphthylene	0.05 ug/L	-	<0.05	-	-
Anthracene	0.01 ug/L	-	<0.01	-	-
Benzo [a] anthracene	0.01 ug/L	-	<0.01	-	-
Benzo [a] pyrene	0.01 ug/L	-	<0.01	-	-
Benzo [b] fluoranthene	0.05 ug/L	-	<0.05	-	-
Benzo [g,h,i] perylene	0.05 ug/L	-	<0.05	-	-
Benzo [k] fluoranthene	0.05 ug/L	-	<0.05	-	-
Chrysene	0.05 ug/L	-	<0.05	-	-
Dibenzo [a,h] anthracene	0.05 ug/L	-	<0.05	-	-
Fluoranthene	0.01 ug/L	-	<0.01	-	-
Fluorene	0.05 ug/L	-	<0.05	-	-
Indeno [1,2,3-cd] pyrene	0.05 ug/L	-	<0.05	-	-
1-Methylnaphthalene	0.05 ug/L	-	<0.05	-	-
2-Methylnaphthalene	0.05 ug/L	-	<0.05	-	-
Methylnaphthalene (1&2)	0.10 ug/L	-	<0.10	-	-
Naphthalene	0.05 ug/L	-	<0.05	-	-
Phenanthrene	0.05 ug/L	-	<0.05	-	-
Pyrene	0.01 ug/L	-	<0.01	-	-
2-Fluorobiphenyl	Surrogate		69.7%	-	-
Terphenyl-d14	Surrogate	-	111%	-	-

Certificate of Analysis

Order #: 1937635

Report Date: 19-Sep-2019 Order Date: 13-Sep-2019

Client: Paterson Group Consulting Engineers Client PO: 27624 **Project Description: PE4710**

Anions Chlorida ND 1 mg/L Hydrocarbons FF PHCs (C6-C10) F	Analyto	Б	Reporting		Source	a. =	%REC		RPD	.
Piper Pipe	Analyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes
Hydrocarbons										
Fi PHCs (C6-C10) Fi PHCs (C7-C10) Fi PHCs (C7-C10) Fi PHCs (C7-C34) Fi PHC	Chloride	ND	1	mg/L						
Fi PHCs (C6-C10)	Hvdrocarbons									
F2 PHCs (C10-C16)		ND	25	ua/L						
F3 PHCs (C16-C34)				ug/L						
Mercury			100							
Mercury	F4 PHCs (C34-C50)	ND	100	ug/L						
Antimony Ansenic ND 1.00 ug/L Barium ND 1.00 ug/L Barium ND 1.00 ug/L Boron ND 1.00 ug/L Cadmilum ND 0.500 ug/L Cadmilum ND 0.200 ug/L Chromium (V) ND 1.00 ug/L Chromium ND 1.00 ug/L Chromium ND 1.00 ug/L Chromium ND 1.00 ug/L Cobat ND 0.500 ug/L Copper ND 0.500 ug/L Copper ND 0.500 ug/L Lead ND 0.500 ug/L Lead ND 0.500 ug/L Lead ND 0.500 ug/L Lead ND 0.500 ug/L Selenium ND 0.500 ug/L Silver ND 0.500 ug/L	Metals									
Arsenic	Mercury			ug/L						
Barlum	Antimony									
Beryllium										
Boron										
Cadmium (VI)										
Chromium (VI)										
Chromium										
Cobat										
Copper										
Lead ND										
Nicke ND										
Selenium			0.500							
Silver										
Sodium										
Thallium										
Uranium										
Vanadium										
Semi-Volatiles										
Semi-Volatiles										
Acenaphthylene				3/						
Acenaphthylene		ND	0.05	ua/l						
Anthracene	•									
Benzo [a] anthracene										
Benzo [a] pyrene ND 0.01 ug/L	Benzo [a] anthracene	ND								
Benzo [g,h,i] perylene										
Benzo [k] fluoranthene										
Chrysene ND 0.05 ug/L Dibenzo [a,h] anthracene ND 0.05 ug/L Fluoranthene ND 0.01 ug/L Fluorene ND 0.05 ug/L Indeno [1,2,3-cd] pyrene ND 0.05 ug/L 1-Methylnaphthalene ND 0.05 ug/L 2-Methylnaphthalene ND 0.05 ug/L Methylnaphthalene (1&2) ND 0.10 ug/L Naphthalene ND 0.05 ug/L Phenanthrene ND 0.05 ug/L Pyrene ND 0.01 ug/L Surrogate: 2-Fluorobiphenyl 17.6 ug/L 88.1 50-140 Volatiles Benzene ND 0.5 ug/L Ethylbenzene ND 0.5 ug/L Tolluene ND 0.5 ug/L m,p-Xylenes ND 0.5 ug/L										
Dibenzo [a,h] anthracene ND 0.05 ug/L Fluorene ND 0.01 ug/L Indeno [1,2,3-cd] pyrene ND 0.05 ug/L 1-Methylnaphthalene ND 0.05 ug/L 2-Methylnaphthalene ND 0.05 ug/L Methylnaphthalene (1&2) ND 0.10 ug/L Naphthalene ND 0.05 ug/L Phenanthrene ND 0.05 ug/L Pyrene ND 0.01 ug/L Surrogate: 2-Fluorobiphenyl 17.6 ug/L 88.1 50-140 Volatiles Benzene ND 0.5 ug/L Ethylbenzene ND 0.5 ug/L Toluene ND 0.5 ug/L m,p-Xylenes ND 0.5 ug/L o-Xylene ND 0.5 ug/L										
Fluoranthene										
Fluorene										
Indeno [1,2,3-cd] pyrene										
1-Methylnaphthalene ND 0.05 ug/L 2-Methylnaphthalene ND 0.05 ug/L Methylnaphthalene (1&2) ND 0.10 ug/L Naphthalene ND 0.05 ug/L Phenanthrene ND 0.05 ug/L Pyrene ND 0.01 ug/L Surrogate: 2-Fluorobiphenyl 17.6 ug/L 88.1 50-140 Surrogate: Terphenyl-d14 24.3 ug/L 122 50-140 Volatiles Benzene ND 0.5 ug/L Ethylbenzene ND 0.5 ug/L Toluene ND 0.5 ug/L m,p-Xylenes ND 0.5 ug/L o-Xylene ND 0.5 ug/L										
2-Methylnaphthalene (1&2) ND 0.05 ug/L ug/L ug/L Naphthalene (1&2) ND 0.05 ug/L ug/L Phenanthrene ND 0.05 ug/L ug/L Pyrene ND 0.01 ug/L Surrogate: 2-Fluorobiphenyl surrogate: 2-Fluorobiphenyl 24.3 ug/L 122 50-140 Surrogate: Terphenyl-d14 24.3 ug/L 122 50-140 Volatiles Benzene ND 0.5 ug/L Ug/L 122 50-140 Ethylbenzene ND 0.5 ug/L Ug/L 122 50-140 Toluene ND 0.5 ug/L Ug/L 122 50-140 m,p-Xylenes ND 0.5 ug/L Ug/L 122 50-140 o-Xylene ND 0.5 ug/L Ug/L 122 50-140	1-Methylnaphthalene			ug/L						
Methylnaphthalene (1&2) ND 0.10 ug/L Naphthalene ND 0.05 ug/L Phenanthrene ND 0.05 ug/L Pyrene ND 0.01 ug/L Surrogate: 2-Fluorobiphenyl 17.6 ug/L 88.1 50-140 Surrogate: Terphenyl-d14 24.3 ug/L 122 50-140 Volatiles Benzene ND 0.5 ug/L Ethylbenzene ND 0.5 ug/L Toluene ND 0.5 ug/L m,p-Xylenes ND 0.5 ug/L o-Xylene ND 0.5 ug/L		ND		ug/L						
Phenanthrene ND 0.05 ug/L Pyrene ND 0.01 ug/L Surrogate: 2-Fluorobiphenyl 17.6 ug/L 88.1 50-140 Surrogate: Terphenyl-d14 24.3 ug/L 122 50-140 Volatiles Benzene ND 0.5 ug/L Ethylbenzene ND 0.5 ug/L Toluene ND 0.5 ug/L m,p-Xylenes ND 0.5 ug/L o-Xylene ND 0.5 ug/L				ug/L						
Pyrene ND 0.01 ug/L 88.1 50-140 Surrogate: 2-Fluorobiphenyl 17.6 ug/L 88.1 50-140 Surrogate: Terphenyl-d14 24.3 ug/L 122 50-140 Volatiles Benzene ND 0.5 ug/L Ethylbenzene ND 0.5 ug/L Toluene ND 0.5 ug/L m,p-Xylenes ND 0.5 ug/L o-Xylene ND 0.5 ug/L										
Surrogate: 2-Fluorobiphenyl 17.6 ug/L 88.1 50-140 Surrogate: Terphenyl-d14 24.3 ug/L 122 50-140 Volatiles Benzene ND 0.5 ug/L Ethylbenzene ND 0.5 ug/L Toluene ND 0.5 ug/L m,p-Xylenes ND 0.5 ug/L o-Xylene ND 0.5 ug/L										
Surrogate: Terphenyl-d14 24.3 ug/L 122 50-140 Volatiles Benzene ND 0.5 ug/L Ethylbenzene ND 0.5 ug/L Toluene ND 0.5 ug/L m,p-Xylenes ND 0.5 ug/L o-Xylene ND 0.5 ug/L			0.01			00.1	50 / · ·			
Volatiles Benzene ND 0.5 ug/L Ethylbenzene ND 0.5 ug/L Toluene ND 0.5 ug/L m,p-Xylenes ND 0.5 ug/L o-Xylene ND 0.5 ug/L										
Benzene ND 0.5 ug/L Ethylbenzene ND 0.5 ug/L Toluene ND 0.5 ug/L m,p-Xylenes ND 0.5 ug/L o-Xylene ND 0.5 ug/L		24.3		ug/L		122	50-140			
Ethylbenzene ND 0.5 ug/L Toluene ND 0.5 ug/L m,p-Xylenes ND 0.5 ug/L o-Xylene ND 0.5 ug/L										
Toluene ND 0.5 ug/L m,p-Xylenes ND 0.5 ug/L o-Xylene ND 0.5 ug/L										
m,p-Xylenes										
o-Xylene ND 0.5 ug/L										
AVIEURS IDIAL IVID IVID IVID IVID IVID IVID IVID IVI	Xylenes, total	ND ND	0.5	ug/L ug/L						

Report Date: 19-Sep-2019

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Order Date: 13-Sep-2019 Client PO: 27624 **Project Description: PE4710**

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Surrogate: Toluene-d8	75.2		ug/L		94.0	50-140			

Certificate of Analysis

Order #: 1937635

Report Date: 19-Sep-2019 Order Date: 13-Sep-2019

Client: Paterson Group Consulting Engineers

Client PO: 27624 **Project Description: PE4710**

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Anions									
Chloride	265	5	mg/L	269			1.5	10	
Hydrocarbons									
F1 PHCs (C6-C10)	ND	25	ug/L	ND				30	
Metals			3						
Mercury	ND	0.1	ug/L	ND			0.0	20	
Antimony	ND	0.500	ug/L ug/L	ND			0.0	20	
Arsenic	ND	1.00	ug/L ug/L	ND			0.0	20	
Barium	146	2.00	ug/L	147			1.0	20	
Beryllium	ND	0.500	ug/L	ND			0.0	20	
Boron	131	20.0	ug/L	132			1.0	20	
Cadmium	ND	0.200	ug/L	ND			0.0	20	
Chromium (VI)	ND	10	ug/L	ND			0.0	20	
Chromium	ND	1.00	ug/L	ND			0.0	20	
Cobalt	ND	0.500	ug/L	ND			0.0	20	
Copper	0.8	0.500	ug/L	0.6			16.3	20	
Lead	ND	0.200	ug/L	ND				20	
Molybdenum	4.0	0.500	ug/L	3.5			13.2	20	
Nickel	2.8	1.00	ug/L	2.8			0.5	20	
Selenium	ND	1.00	ug/L	ND			0.0	20	
Silver	ND	0.200	ug/L	ND			0.0	20	
Sodium	618000	8000	ug/L	617000			0.1	20	
Thallium	ND	0.500	ug/L	ND			0.0	20	
Uranium	2.9	0.200	ug/L	2.8			3.1	20	
Vanadium	1.9	0.500	ug/L	1.9			0.7	20	
Zinc	ND	5.00	ug/L	ND			0.0	20	
Volatiles									
Benzene	ND	0.5	ug/L	ND				30	
Ethylbenzene	ND	0.5	ug/L	ND				30	
Toluene	ND	0.5	ug/L	ND				30	
m,p-Xylenes	ND	0.5	ug/L	ND				30	
o-Xylene	ND	0.5	ug/L	ND				30	
Surrogate: Toluene-d8	73.9		ug/L		92.4	50-140			

Certificate of Analysis

Order #: 1937635

Report Date: 19-Sep-2019 Order Date: 13-Sep-2019

Client: Paterson Group Consulting EngineersOrder Date: 13-Sep-2019Client PO: 27624Project Description: PE4710

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Anions									
Chloride	9.29	1	mg/L		92.9	85-115			
Hydrocarbons									
F1 PHCs (C6-C10)	1900	25	ug/L		95.2	68-117			
F2 PHCs (C10-C16)	1660	100	ug/L		103	60-140			
F3 PHCs (C16-C34)	4750	100	ug/L		121	60-140			
F4 PHCs (C34-C50)	2990	100	ug/L		120	60-140			
Vietals			•						
Mercury	3.05	0.1	ug/L	ND	102	70-130			
Antimony	42.6	0.500	ug/L	ND	85.2	70-130			
Arsenic	58.7	1.00	ug/L	ND	117	70-130			
Barium	194	1.00	ug/L	147	94.4	70-130			
Beryllium	56.8	0.500	ug/L	ND	114	70-130			
Boron	164	10.0	ug/L	132	62.4	70-130		C	QM-4X
Cadmium	51.3	0.200	ug/L	ND	103	70-130			170
Chromium (VI)	202	10	ug/L	ND	101	70-130			
Chromium	55.5	1.00	ug/L	ND	111	70-130			
Cobalt	52.5	0.500	ug/L	ND	105	70-130			
Copper	51.3	0.500	ug/L	0.6	101	70-130			
Lead	51.6	0.200	ug/L	ND	103	70-130			
Molybdenum	58.1	0.500	ug/L	3.5	109	70-130			
Nickel	53.4	1.00	ug/L	2.8	101	70-130			
Selenium	62.2	1.00	ug/L	ND	124	70-130			
Silver	47.2	0.200	ug/L	ND	94.3	70-130			
Sodium	1190	200	ug/L		119	80-120			
Thallium	52.2	0.500	ug/L	ND	104	70-130			
Uranium	58.2	0.200	ug/L	2.8	111	70-130			
Vanadium	59.2	0.500	ug/L	1.9	115	70-130			
Zinc	70.0	5.00	ug/L	ND	140	70-130		C	QS-02
Semi-Volatiles			Ū						
Acenaphthene	4.51	0.05	ug/L		90.2	50-140			
Acenaphthylene	3.95	0.05	ug/L ug/L		79.1	50-140			
Anthracene	3.88	0.03	ug/L ug/L		77.6	50-140			
Benzo [a] anthracene	3.95	0.01	ug/L ug/L		79.0	50-140			
Benzo [a] pyrene	3.42	0.01	ug/L ug/L		68.4	50-140			
Benzo [b] fluoranthene	6.02	0.01	ug/L ug/L		120	50-140			
Benzo [g,h,i] perylene	3.86	0.05	ug/L ug/L		77.2	50-140			
Benzo [k] fluoranthene	5.93	0.05	ug/L ug/L		119	50-140			
Chrysene	4.22	0.05	ug/L ug/L		84.4	50-140			
Dibenzo [a,h] anthracene	4.33	0.05	ug/L ug/L		86.7	50-140			
Fluoranthene	4.47	0.03	ug/L ug/L		89.5	50-140			
Fluorene	4.06	0.05	ug/L		81.2	50-140			
Indeno [1,2,3-cd] pyrene	4.19	0.05	ug/L		83.9	50-140			
1-Methylnaphthalene	3.10	0.05	ug/L		62.1	50-140			
2-Methylnaphthalene	3.43	0.05	ug/L ug/L		68.6	50-140			
Naphthalene	4.34	0.05	ug/L		86.7	50-140			
Phenanthrene	3.41	0.05	ug/L ug/L		68.2	50-140			
Pyrene	4.44	0.03	ug/L ug/L		88.8	50-140			
Surrogate: 2-Fluorobiphenyl	14.8	0.01	ug/L ug/L		73.9	50-140 50-140			
• • •	14.0		uy/L		10.3	00-1 4 0			
/olatiles									
Benzene	29.1	0.5	ug/L		72.7	60-130			

Report Date: 19-Sep-2019 Certificate of Analysis Order Date: 13-Sep-2019 **Client: Paterson Group Consulting Engineers** Client PO: 27624

Project Description: PE4710

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Ethylbenzene	36.1	0.5	ug/L		90.2	60-130			
Toluene	37.4	0.5	ug/L		93.5	60-130			
m,p-Xylenes	78.0	0.5	ug/L		97.6	60-130			
o-Xylene	40.0	0.5	ug/L		100	60-130			

Report Date: 19-Sep-2019

Certificate of Analysis
Client: Paterson Group Consulting Engineers

Client: Paterson Group Consulting EngineersOrder Date: 13-Sep-2019Client PO: 27624Project Description: PE4710

Qualifier Notes:

QC Qualifiers:

QM-4X: The spike recovery was outside of QC acceptance limits due to elevated analyte concentration.

QS-02: Spike level outside of control limits. Analysis batch accepted based on other QC included in the batch.

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected

MDL: Method Detection Limit

Source Result: Data used as source for matrix and duplicate samples

%REC: Percent recovery.

RPD: Relative percent difference.

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.
- F1 range corrected for BTEX.
- F2 to F3 ranges corrected for appropriate PAHs where available.
- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.
- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.
- When reported, data for F4G has been processed using a silica gel cleanup.

GPARACEL |

LABORATORIES LTD.

Paracel ID: 1937635

d Office 2319 St. Laurent Blvd. wa, Ontario K1G 4J8 800-749-1947 tracel@paracellabs.com Chain of Custody (Lab Use Only)

Nº 123190

Page 1 of _

Client	WILLIAM STATE			Project Reference: PE4710										Turnaround Time:					
Contac	Name: Mark D'Arm				Quote #										011)ay		□3 Day	1
Addres	Name: Mark D'Arry 8: 154 Colonale Row				PO# 27	624										150			
Talack			-		Email Address:	1 0	11	NEAN)							1 2 I)ay		A Regul	ar
Teleph	(19)				M	Darry @	por.	a-	10	J.	ca				Date	Requir	red:		
Criter	ria: 🖅 O. Reg. 153/04 (As Amended) Table _ 🗆	RSC Filing C	3 O. Re	558/00	D PWQO	CCME I SU	JB (St	orm)	D St	JB (S	Sanita	ry) l	Municipali	ty:		0(Other:	0 0=	
Matrix	Type: S (Soil/Sed.) GW (Ground Water) SW (Surface W	ater) SS (Storm'	Sanitary S	sewer) P	(Paint) A (Ait) O	(Other)	Re	quire	ed A	naly	ses								
Parac	tel Order Number: 1937635	irix	Air Volume	of Containers	Sampl	e Taken	s F1-F4+BTEX	8	W	ds by ICP.		nic)	loride						
	Sample ID/Location Name	Matrix	À.	*	Date	Time	PHCs	VOCs	PAHS	Metals	#	Great	0						
1	BH1-9W1	W		7	12 Sept	PM	V				/	1	/						
2	BHZ-9W1	W		1	12 Sept	12-00			V									\vdash	7
3																			
4							T	П		T	T	T							
5							Т			T		+							
6							T		1	1	1	†						\vdash	_
7							T	Н	1	1	\top	+							-
8							+		1	+	+	†						+	-
9							†		7	+	+	†							-
10							T		7	+	+	†							_
Com	nents:															Method o	of Deliv		
	ished By (Sign):	Receive	d by Driv	er Depot	Teuse	Recogn	ed in E	ab:	/ ₁ / ₁ / ₁		0	41	ngi	Verified	By:	Bla	-		
	ished By (Print): PHILLY PRICE	Date/Tir	nc. 75	1/0	9/19/1					30		_	1,201	Date/Tir	nc.	0911		180	9
Date/Ti	mo: 12 Sept 2019 2-30 mg	Temper	itud 3	1	1	FH. Tempe	rature!	10	181	C.				III Veri	Self W	in .		0.0	

Chain of Custody (Env) - Rev 0.7 Feb. 2016

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

Paterson Group Consulting Engineers

154 Colonnade Road South Nepean, ON K2E 7J5 Attn: Mark D'Arcy

Client PO: 27502 Project: PE4710 Custody: 123252

Report Date: 27-Sep-2019 Order Date: 25-Sep-2019

Order #: 1939396

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID Client ID 1939396-01 BH1-GW2

Approved By:

Dale Robertson, BSc Laboratory Director

Certificate of Analysis
Client: Paterson Group Consulting Engineers
Client PO: 27502

Order Date: 25-Sep-2019

Project Description: PE4710

Report Date: 27-Sep-2019

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
PHCs F2 to F4	CWS Tier 1 - GC-FID, extraction	26-Sep-19	27-Sep-19

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Order Date: 25-Sep-2019

Project Description: PE4710

Report Date: 27-Sep-2019

Client PO: 27502 Project Description: PE47

	Client ID:	BH1-GW2	-	_	_
	Sample Date:	24-Sep-19 12:40	-	-	-
	Sample ID:	1939396-01	-	-	-
	MDL/Units	Water	-	-	-
Hydrocarbons					
F2 PHCs (C10-C16)	100 ug/L	<100	-	-	-
F3 PHCs (C16-C34)	100 ug/L	<100	-	-	-
F4 PHCs (C34-C50)	100 ug/L	<100	-	-	-

Report Date: 27-Sep-2019

Certificate of Analysis

Client: Paterson Group Consulting Engineer

Client: Paterson Group Consulting EngineersOrder Date: 25-Sep-2019Client PO: 27502Project Description: PE4710

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons F2 PHCs (C10-C16) F3 PHCs (C16-C34) F4 PHCs (C34-C50)	ND ND ND	100 100 100	ug/L ug/L ug/L						

Report Date: 27-Sep-2019

Certificate of Analysis **Client: Paterson Group Consulting Engineers**

Order Date: 25-Sep-2019 Client PO: 27502 **Project Description: PE4710**

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons F2 PHCs (C10-C16)	1450	100	ug/L		90.4	60-140			
F3 PHCs (C16-C34) F4 PHCs (C34-C50)	4200 2490	100 100 100	ug/L ug/L		107 101	60-140 60-140			

Certificate of AnalysisReport Date: 27-Sep-2019Client: Paterson Group Consulting EngineersOrder Date: 25-Sep-2019Client PO: 27502Project Description: PE4710

Qualifier Notes:

None

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected

MDL: Method Detection Limit

Source Result: Data used as source for matrix and duplicate samples

%REC: Percent recovery.

RPD: Relative percent difference.

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.
- F1 range corrected for BTEX.
- F2 to F3 ranges corrected for appropriate PAHs where available.
- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.
- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.
- When reported, data for F4G has been processed using a silica gel cleanup.

GPARACEL

LABORATORIES LTD.

TRUS RESP RELIA

lice 9 St. Laurent Blvd. Ontario K1G 4J8 -749-1947 st@paracellabs.com Chain of Custody (Lab Use Only)

. Nº 123252

Page ___ of ___

Client Na	me: Paterion Group				Project Reference	PE 4	710	5							Turn	around	f Time:	
Contact !					Quote #									011	Day		□3 Da	y
	154 Colonno de Rd, N 15 613 - 226 - 7381 1: 136. Reg. 153/04 (As Amended) Table DF	RSC Filling	O. Reg		р приод по	mdary	(Stor	m) D	SUB	(San	itary)			Date	Requir	red:	n Kegu	ılar
Matrix T	ype: S (Soil/Sed.) GW (Ground Water) SW (Surface Wa	ter) SS (Storm/S	anitary S	ewer) P	(Paint) A (Air) O (t	Other)	Req	uired	Ana	lyses				_	,			
Parace	1 Order Number: 1939 396	ritx	Air Volume	# of Containers	Sample	Taken	12.F4+III		Is by ICP			WS)						
	Sample ID/Location Name	Matrix	Air	Jo#	Date	Time	PHCs	PAHS	Metalls	50	CrVI	B (HWS)						
1	BHI-GW2	GW		. 1	Sept 24/19	12.4694	V		L									,
2									L									
3							Ш		L		Ш							
4								1	L	L								
5							Ц		L	_								
6							Ц		L	L			_	_				
7							Ш		L									
8							Ш											
9									L									
10																		
Comm	900 <u>-</u>						4.700					10				of Delive		
1025/35/35	shed By (Print): A School By (Receive	by Driv	er Depo	Zouse 9/19 3	Receive	Me	o Ally	1	(E)	121	mai 14140	Verific		9/25/		16	.0
Reundar	TAISMAN POWER	Tempor	- K:	1	117 3	Temper	durer	2	10	M	(4170		ma C	100000	N.	A 10	-18

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

Paterson Group Consulting Engineers

154 Colonnade Road South Nepean, ON K2E 7J5 Attn: Mark D'Arcy

Client PO: 27701 Project: PE4710 Custody: 123240

Report Date: 25-Sep-2019 Order Date: 19-Sep-2019

Order #: 1938545

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID Client ID 1938545-01 BH3-19-GW1

Approved By:

Dale Robertson, BSc Laboratory Director

Report Date: 25-Sep-2019 Certificate of Analysis Order Date: 19-Sep-2019 **Client: Paterson Group Consulting Engineers** Client PO: 27701

Project Description: PE4710

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
PHCs F2 to F4	CWS Tier 1 - GC-FID, extraction	20-Sep-19	24-Sep-19

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Order Date: 19-Sep-2019 **Project Description: PE4710**

Report Date: 25-Sep-2019

Client PO: 27701

	_				
	Client ID:	BH3-19-GW1	-	-	-
	Sample Date:	19-Sep-19 00:00	-	-	-
	Sample ID:	1938545-01	-	-	-
	MDL/Units	Water	-	-	-
Hydrocarbons					
F2 PHCs (C10-C16)	100 ug/L	<100	-	-	-
F3 PHCs (C16-C34)	100 ug/L	<100	-	-	-
F4 PHCs (C34-C50)	100 ug/L	<100	-	-	-

Certificate of Analysis

Order #: 1938545

Report Date: 25-Sep-2019 Order Date: 19-Sep-2019

Client: Paterson Group Consulting Engineers Client PO: 27701 **Project Description: PE4710**

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons F2 PHCs (C10-C16) F3 PHCs (C16-C34) F4 PHCs (C34-C50)	ND ND ND	100 100 100	ug/L ug/L ug/L						

Report Date: 25-Sep-2019

Certificate of Analysis **Client: Paterson Group Consulting Engineers**

Order Date: 19-Sep-2019 Client PO: 27701 **Project Description: PE4710**

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons F2 PHCs (C10-C16)	1420	100	ug/L		88.8	60-140			
F3 PHCs (C16-C34) F4 PHCs (C34-C50)	4180 2320	100 100	ug/L ug/L		107 93.5	60-140 60-140			

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Client PO: 27701

Report Date: 25-Sep-2019
Order Date: 19-Sep-2019
Project Description: PE4710

Qualifier Notes:

None

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected

MDL: Method Detection Limit

Source Result: Data used as source for matrix and duplicate samples

%REC: Percent recovery.

RPD: Relative percent difference.

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.
- F1 range corrected for BTEX.
- F2 to F3 ranges corrected for appropriate PAHs where available.
- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.
- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.
- When reported, data for F4G has been processed using a silica gel cleanup.

OPARACEL | TE | III | II

LABORATORIES LTD.

Paracel ID: 1938545

iad Office 0-2319 St. Laurent Blvd. tawa, Ontario K1G 4J8 1-800-749-1947 paracel@paracellabs.com Chain of Custody (Lab Use Only)

Nº 123240

Page of f

Client?	iame: Puterian Goup				Project Reference	PE 4	710	Ÿ.						Tuer	incoun	Time:
Contact	Name: Mark D'Ary				Quote#		/							Day	iai vuu	
Address		140	11.		PO# 2	7701							- 0	Day		□ 3 Day
Telepho		1	07		Email Address:	17.000.00	(A		1029450	sury. co	D2	Day		Regular
1/2/	612 200- 174													te Requi	ired:	
Criter	a: 🗖 O. Reg. 153/04 (As Amended) Table _ 🗆 RSC	Filing C	10. Reg	. 558/0	D PWQO	CCME II SUB	(Stor	m) [SU	B (Sa	nitary) Municipality			Other:	
Matrix	Type: S (Soil/Sed.) GW (Ground Water) SW (Surface Water) S	S (Storm)	Sanitary S	ewer) P	(Paint) A (Air) O	(Other)	Req	nired	An	ilyse	s					
Parac	el Order Number:			2:			8	T	T	Т	Т	ПТ		T		
	1938545	nix	Air Volume	# of Containers	Sampl	e Taken	F1-F4+BTEX		the street			(S)				
	Sample ID/Location Name	Matrix	Air.	# of	Date	Time	PHCs	VOCS	PAHS	Hg	CrVI	B (BW				
1	BH3 - 19 - GWI	Gw		ï		10 . 30 Am				-	Ť	2		+	-	-
2					-			+	t	t	T				-	
3							Ħ	†	+	†				+		
4								+	t	†			_	+-		
5								+	+	†	Н		+	+		
6							\forall	†	\dagger	+			+	-		
7							\dagger	+	t	+	Н			-		-
8							\dagger	$^{+}$	t	+			+	+-		
9							+	+	t				+			
10							+	$^{+}$	t	+			+	+		_
Comm	tg-H	+ (on	4	as p	er n	10	W	C	. /	80				of Deliver	ÿ-
	thead By (Prignt: All 7) 1 5 0 1	Received	by Drivi	er Depot	Deans	46 Date/Tim	W66	Nor	n	(bk	Mai Vel	ified Dy:	Ce	7	2,
lote Tin	thed By (Print) Nicholas Daycette	Tennero	19	109	119 3	40 Date Tim	JEL,	19	191	1		04.30 Da	a/Tim	def	41	9/19
		241074111					ult.		11		-	[6]]	Verified []	Dy	NIB	200

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

Paterson Group Consulting Engineers

154 Colonnade Road South Nepean, ON K2E 7J5 Attn: Mark D'Arcy

Client PO: 27697 Project: PE4710 Custody: 123222

Report Date: 24-Sep-2019 Order Date: 18-Sep-2019

Order #: 1938425

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

 Paracel ID
 Client ID

 1938425-01
 BH2-19-GW1

 1938425-02
 BH3-19-GW1

Approved By:

Dale Robertson, BSc Laboratory Director

Certificate of AnalysisReport Date: 24-Sep-2019Client: Paterson Group Consulting EngineersOrder Date: 18-Sep-2019Client PO: 27697Project Description: PE4710

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date Analysis Date
Anions	EPA 300.1 - IC	20-Sep-19 20-Sep-19
BTEX by P&T GC-MS	EPA 624 - P&T GC-MS	21-Sep-19 21-Sep-19
Metals, ICP-MS	EPA 200.8 - ICP-MS	23-Sep-19 23-Sep-19
PHC F1	CWS Tier 1 - P&T GC-FID	20-Sep-19 21-Sep-19

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Client PO: 27697

Report Date: 24-Sep-2019 Order Date: 18-Sep-2019

Project Description: PE4710

	-				
	Client ID:	BH2-19-GW1	BH3-19-GW1	-	-
	Sample Date:	17-Sep-19 10:15	17-Sep-19 11:30	-	-
	Sample ID:	1938425-01	1938425-02	-	-
	MDL/Units	Water	Water	-	-
Anions					
Chloride	1 mg/L	426	-	-	-
Metals					
Sodium	200 ug/L	260000	-	-	-
Volatiles	•		•		
Benzene	0.5 ug/L	-	<0.5	-	-
Ethylbenzene	0.5 ug/L	-	<0.5	-	-
Toluene	0.5 ug/L	-	<0.5	-	-
m,p-Xylenes	0.5 ug/L	-	<0.5	-	-
o-Xylene	0.5 ug/L	-	<0.5	-	-
Xylenes, total	0.5 ug/L	-	<0.5	-	-
Toluene-d8	Surrogate	-	88.1%	-	-
Hydrocarbons			,		
F1 PHCs (C6-C10)	25 ug/L	-	<25	-	-

Certificate of Analysis

Order #: 1938425

Report Date: 24-Sep-2019 Order Date: 18-Sep-2019

Client: Paterson Group Consulting Engineers Client PO: 27697 **Project Description: PE4710**

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Anions									
Chloride	ND	1	mg/L						
Hydrocarbons									
F1 PHCs (C6-C10)	ND	25	ug/L						
Metals									
Sodium	ND	200	ug/L						
Volatiles			_						
Benzene	ND	0.5	ug/L						
Ethylbenzene	ND	0.5	ug/L						
Toluene	ND	0.5	ug/L						
m,p-Xylenes	ND	0.5	ug/L						
o-Xylene	ND	0.5	ug/L						
Xylenes, total	ND	0.5	ug/L						
Surrogate: Toluene-d8	75.1		ug/L		93.8	50-140			

Report Date: 24-Sep-2019

Certificate of Analysis **Client: Paterson Group Consulting Engineers**

Order Date: 18-Sep-2019 Client PO: 27697 **Project Description: PE4710**

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Anions			_						
Chloride	667	10	mg/L	668			0.2	10	
Hydrocarbons F1 PHCs (C6-C10)	ND	25	ug/L	ND				30	
Metals Sodium	76200	200		78500			3.0	20	
	70200	200	ug/L	76300			3.0	20	
Volatiles									
Benzene	ND	0.5	ug/L	ND				30	
Ethylbenzene	ND	0.5	ug/L	ND				30	
Toluene	ND	0.5	ug/L	ND				30	
m,p-Xylenes	ND	0.5	ug/L	ND				30	
o-Xylene	ND	0.5	ug/L	ND				30	
Surrogate: Toluene-d8	71.7		ug/L		89.7	50-140			

Report Date: 24-Sep-2019

Certificate of Analysis **Client: Paterson Group Consulting Engineers**

Order Date: 18-Sep-2019 Client PO: 27697 **Project Description: PE4710**

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Anions Chloride	9.22	1	mg/L		92.2	85-115			
Hydrocarbons F1 PHCs (C6-C10)	1550	25	ug/L		77.6	68-117			
Metals Sodium	84400		ug/L	78500	58.7	80-120		Q	M-07
Volatiles									
Benzene	35.1	0.5	ug/L		87.8	60-130			
Ethylbenzene	32.0	0.5	ug/L		80.0	60-130			
Toluene	33.6	0.5	ug/L		84.1	60-130			
m,p-Xylenes	70.7	0.5	ug/L		88.4	60-130			
o-Xylene	33.5	0.5	ug/L		83.8	60-130			
Surrogate: Toluene-d8	66.7		ug/L		83.3	50-140			

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Client PO: 27697

Report Date: 24-Sep-2019

Order Date: 18-Sep-2019

Project Description: PE4710

Qualifier Notes:

QC Qualifiers:

QM-07: The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on other acceptable QC.

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected

MDL: Method Detection Limit

Source Result: Data used as source for matrix and duplicate samples

%REC: Percent recovery.

RPD: Relative percent difference.

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.
- F1 range corrected for BTEX.
- F2 to F3 ranges corrected for appropriate PAHs where available.
- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.
- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.
- When reported, data for F4G has been processed using a silica gel cleanup.

Paracel ID: 1938425

ad Office 0-2319 St. Laurent Blvd. Chain of Custody (Lab Use Only)

Nº 123222

LABORATORIES LTD.

tawa, Ontario K1G 4J8 1-800-749-1947 . paracel@paracellabs.com

Page of

Client Name: Paterson Good Contact Name: Mark D'Arry Address: 154 Colomada Rd, Napen, on Telephone: 613-226-7381					Project Reference: PE 4710									Turnaround Time:					
					Quote # PO # 27697 Email Address: Md a rey @ professor gray - Ca										□ I Day			□ 3 Day	
															□ 2 Day			n Regular	
															Date Required:				
Criteri	a: BO. Reg. 153/04 (As Amended) Table _ D F	RSC Filling D	O. Reg	558/0	D PWQO D	CCME II SUI	3 (Stor	m) 🗆	SUB	(Sani	tary) Mu	nicipali	ty:	3.7	_ 00	Other:		
Matrix 7	ype: S (Soil/Sed.) GW (Ground Water) SW (Surface Wa	ter) SS (Storm:S	Sanitury S	sewer) P	(Paint) A (Air) O	(Other)	Req	uired	Ana	lyses									
Parace	el Order Number:			8.			EX	T	T	Т				100					
1	1938425		Air Volume	of Containers	Sample Taken		FP. **		Metals by ICP			WS)	the state	Pirty	Sodium				
	Sample ID/Location Name	Matrix	Air	to #	Date	Time	PHCs	VOCS	Meta	Hg	CrVI	B (HWS)	16	2	8				
1	BH2-19-6W1	GW		2	Sept 17/19	10.15 AM			Ú				m	V	V				
2	BH3-19-6WI	GW		2	Sept 17/19	11-36AM	V												
3																			
4																			
5																			
6																			
7																			
8																			
9																			
1.0																			
Comm	ents:		/						10-1	(10 11)					0	Method o	of Deliver	ys.	
Relinqui	shed By (Sign): 99	Receive	d by Driv	er Depor	Course	Refleive	neely	(Vn)		Od				Venilled	X	20	1	7	
	shed By (Print): Nicholas Couter	Date/Tir	18	10	9/19 4	30 Date/Ti	nc. U	NI	192	019	(15.	_	Date To		Lyo	J.	9/19	
Date/Tin	NC)	Tempera	nin:		· ·	M. Temper	mure:	14.8	1					pH Veri	ial	2 /	00		