

Phase Two Environmental Site Assessment 770 and 774 Bronson Avenue and 557 Cambridge Street, Ottawa, Ontario

Client:

Katasa Groupe

Type of Document:

Final

Project Number:

OTT-22019409-A0

Prepared By:

Leah Wells, P.Eng.

Reviewed By:

Mark McCalla, P.Geo.

EXP Services Inc. 100-2650 Queensview Drive Ottawa, Ontario K2B 8H6 t: +1.613.688.1899 f: +1.613.225.7337

Date Submitted:

2022-10-06

Legal Notification

This report was prepared by EXP Services Inc. for the account of Katasa Groupe.

Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. EXP Services Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this project.

Executive Summary

EXP Services Inc. (EXP) was retained by Katasa Group to conduct a Phase Two Environmental Site Assessment (ESA) of the property located at 770 and 774 Bronson Avenue and 557 Cambridge Street in Ottawa, Ontario (hereinafter referred to as the 'Phase Two property'). At the time of the investigation, the Phase Two property was occupied by a vacant former gas station and parking lot.

The objective of the Phase Two ESA investigation was to assess the conditions within the areas of potential environmental concern (APEC) identified in a Phase One ESA prepared by EXP. The most recent use of the property was for commercial, and the proposed future property use will be residential and commercial. Consequently, in accordance with Regulation 153/04, as amended, a Record of Site Condition (RSC) must be filed

The Phase Two property has the municipal addresses of 770 Bronson Avenue, 774 Bronson Avenue, and 557 Cambridge Street in Ottawa, Ontario. The Phase Two property is irregular is shape and has a total area of approximately 0.45 hectares.

The property at 770 Bronson Avenue is occupied by a vacant gas station. It is legally described as Part Lots 1 and 2, Registered Plan 28, City of Ottawa. The property identification number (PIN) is 04103-0205. The property at 774 Bronson Avenue is vacant and currently used as a parking lot. It is legally described as Lots 3 and 4, Registered Plan 28, City of Ottawa. The PIN is 04103-0125. The property at 557 Cambridge Street is vacant and currently used as a parking lot. It is legally described as Lot 37 and Part Lot 38, Registered Plan 28, Part 4 Registered Plan 5R14360, City of Ottawa. The PIN is 04103-0215.

The most recent use of the property was commercial. The proposed future use of the property is residential and commercial. A new building will be constructed at the Phase Two property. The building will have one or two levels of underground parking, ground level commercial space, and upper-level residential units. Since the past use of the property was commercial land use, an RSC must be filed, per Ontario Regulation 153/04.

The Phase Two property, and all other properties located, in whole or in part, within 250 metres of the boundaries of the Phase Two property, are supplied by a municipal drinking water system provided by the City of Ottawa. Further, the Phase Two property is not located in an area designated in the municipal official plan as a well-head protection area and no properties within the Phase Two study area has a well that is being used or is intended for use as a source of potable water. Thus, in accordance with Section 35 of Ontario Regulation 153/04, non-potable water standards apply to the Phase Two property.

In accordance with Section 41 of Ontario Regulation 153/04, the Phase Two property is not an environmentally sensitive area. In addition, the Phase Two property is not located within an area of natural significance, and it does not include land that is within 30 metres of an area of natural significance.

Based on the Phase Two ESA investigation, the Phase Two property is a shallow soil property as defined in Section 43.1 of the regulation. There are no waterbodies on the Phase Two property, and the Phase Two is not located within 30 m of a waterbody.

Beneath any fill, the surficial geology of the subject site is characterised by Champlain Sea deposits of plain till. The bedrock geology underlying the site consists of limestone with some shaley partings of the Ottawa Formation. The depth to rock in the area is typically 5 m below surface grade or less. Based on previous investigation, bedrock was identified between 0.8 and 3.1 metres below ground surface the Phase Two property. Topographically, the Phase Two study area slopes towards the southwest.

The groundwater flow direction is anticipated to be to the southeast towards Dow's Lake on the south part of the Phase Two property and towards the north on the north part of the Phase Two property.

The Phase Two property, and surrounding area are serviced by municipal water, storm and sanitary sewers, natural gas, hydro and telecommunication. There were no utilities present on the south part of the Phase Two property.

Since the water table is within the bedrock, the presence of utilities is not expected to affect possible migration of contaminants once buildings are constructed on the Phase Two property.

The following on-site potentially contaminating activities (PCA) were identified:

- PCA 2 770 Bronson Avenue (Phase Two property) Former gas station with three USTs, former garage (PCA #28 –
 Gasoline and Associated Products Storage in Fixed Tanks, PCA 10 Commercial Autobody Shops);
- PCA 7 774 Bronson Avenue (Phase Two property) Former heating oil AST in the north residential building (PCA #28 Gasoline and Associated Products Storage in Fixed Tanks);
- **PCA 8** 774 Bronson Avenue (Phase Two property) Former heating oil AST in the south residential building (PCA #28 Gasoline and Associated Products Storage in Fixed Tanks);
- PCA 9 774 Bronson Avenue (Phase Two property) Former heating oil AST in the commercial building (PCA #28 –
 Gasoline and Associated Products Storage in Fixed Tanks);
- **PCA 10** 770 Bronson Avenue (Phase Two property) Former heating oil AST in the west side of the garage building (PCA #28 Gasoline and Associated Products Storage in Fixed Tanks);
- PCA 11 557 Cambridge Street (Phase Two property) Former heating oil AST in the north office building (PCA #28 Gasoline and Associated Products Storage in Fixed Tanks);
- PCA 12 557 Cambridge Street (Phase Two property) Former heating oil AST in the middle office building (PCA #28 Gasoline and Associated Products Storage in Fixed Tanks);
- PCA 13 557 Cambridge Street (Phase Two property) Former heating oil AST in the south office building (PCA #28 Gasoline and Associated Products Storage in Fixed Tanks);
- **PCA 15** 770 Bronson Avenue (Phase Two property) Former motor oil AST along the west interior wall of the garage building (PCA #28 Gasoline and Associated Products Storage in Fixed Tanks);
- **PCA 16** 770 Bronson Avenue (Phase Two property) Former waste oil AST along the south exterior wall of the garage building (PCA #28 Gasoline and Associated Products Storage in Fixed Tanks);
- PCA 17 Entire Phase Two property Impacted fill material identified in previous investigations (PCA #30 –
 Importation of Fill Material of Unknown Quantity);
- PCA 18 557 Cambridge Avenue (Phase Two property) Western part of the site was historically used for wood treating (PCA #59 – Wood Treating and Preservative Facility and Bulk Storage of Treated and Preserved Wood Products).
- **PCA 20** 557 Cambridge Street (Phase Two property) Former contractor's yard (PCA #Other Registered waste generator).

By definition, all of the above PCA have resulted in APEC on the Phase Two property.

The following PCA have been identified in the Phase Two study area:

- PCA 1 Between Cambridge Street and Dows Lake (150 m southwest) Rail spur lines at the Fraserfield Lumber Yard in 1912 and 1922 (PCA #46 – Rail Yards, Tracks and Spurs; PCA #59 – Wood Treating and Preservative Facility and Bulk Storage of Treated and Preserved Wood Products);
- PCA 3 735 Carling Avenue (225 m west) Former gas station with three USTs (PCA #28 Gasoline and Associated Products Storage in Fixed Tanks);
- PCA 4 400 Bell Street (125 m west) Former garage with UST (PCA 10 Commercial Autobody Shops, PCA #28 –
 Gasoline and Associated Products Storage in Fixed Tanks);

- PCA 5 277 Carling Avenue (40 m northeast) Hydro sub station (PCA #55 Transformer Manufacturing, Processing and Use);
- PCA 6 786-788 Bronson Street (20 m south) Former dry cleaner (PCA #37 Operation of Dry Cleaning Equipment (where chemicals are used);
- **PCA 14** 784 Bronson Avenue (15 m south) Former commercial printing operation (PCA #Other Commercial printing operation).
- **PCA 19** 748 Bronson Avenue (now 265 Carling Avenue) (60 m north) Former gas station (PCA #28 Gasoline and Associated Products Storage in Fixed Tanks).

The former gas station at 735 Carling Avenue, the former lumber yard and rail spur lines at Fraserfield Lumber yard, and the former garage at 400 Bell Street were all located over 150 m from the Phase Two property. Due to the separation distance from the Phase Two property, these operations were not considered to result in APECs.

The former dry-cleaning operation and commercial printing operation were located approximately 20 m and 40 m south of the Phase Two property respectively. Previous investigations at the Phase Two property have identified the groundwater flow on the south part of the Phase Two property to be to the southwest. Therefor, these operations were located cross-gradient of the Phase Two property and was determined not to result in APECs.

The former gas station at 265 Carling Avenue and the hydro substation at 277 Carling Avenue are located approximately 60 m north and 40 m northeast respectively. Previous investigations at the Phase Two property have identified the groundwater flow on the north part of the Phase Two property to be to the north. Therefor, these operations were located cross/downgradient of the Phase Two property and was determined not to result in APECs.

Therefore, none of the off-site APEC were determined to result in APECs.

Ontario Regulation 153/04 defines an APEC as an area on a property where one or more contaminants are potentially present. The following APEC were identified on the Phase Two property, as shown in Table EX-1:

Table EX-1: Areas of Potential Environmental Concern

Area of Potential Environmental Concern (APEC)	Location of APEC on Phase One Property Potentially Contaminating Activity (PCA)		Location of PCA (On-Site or Off-Site)	Contaminants of Potential Concern	Media Potentially Impacted (Groundwater, Soil and/or Sediment)
1. Former gas station at 770 Bronson Avenue	Northeast part of the Phase One property	PCA #28 – Gasoline and Associated Products Storage in Fixed Tanks	On-site	BTEX, PHC, VOC	Soil and groundwater
2. Former automotive garage at 770 Bronson Avenue			On-Site	BTEX, PHC, VOC	Soil and groundwater
3. Former heating oil AST at 770 Bronson Avenue	t 770 Bronson exterior Products Storage in		On-site	BTEX, PHC, VOC, PAH	Soil and groundwater
4. Former waste oil AST at 770 Bronson Avenue Along south exterior building wall PCA #28 – Gasoline and Associated Products Storage in Fixed Tanks		On-site	BTEX, PHC, VOC, PAH, metals	Soil and groundwater	

Area of Potential Environmental Concern (APEC)	Location of APEC on Phase One Property	Potentially Contaminating Activity (PCA)	Location of PCA (On- Site or Off- Site)	Contaminants of Potential Concern	Media Potentially Impacted (Groundwater, Soil and/or Sediment)
5. Former motor oil AST at 770 Bronson Avenue	Along west interior building wall	PCA #28 – Gasoline and Associated Products Storage in Fixed Tanks	On-site	BTEX, PHC, VOC	Soil and groundwater
AST in the north residential building at residential building at residential building at		PCA #28 – Gasoline and Associated Products Storage in Fixed Tanks	On-site	BTEX, PHC, VOC, PAH	Soil and groundwater
7. Former heating oil AST in the south residential building at 774 Bronson Avenue	Former building PCA #28 – Gasoline footprint on and Associated		BTEX, PHC, VOC, PAH	Soil and groundwater	
8. Former heating oil AST in the commercial building at 774 Bronson Avenue	Former building footprint at southeast corner of Phase One property	Former building botprint at southeast corner of Phase One PCA #28 – Gasoline and Associated Products Storage in Fixed Tanks		BTEX, PHC, VOC, PAH	Soil and groundwater
9. Former heating oil AST in the south commercial building at 557 Cambridge Street	9. Former heating oil AST in the south commercial building at Former building footprint at southwest commercial building at		On-site	BTEX, PHC, VOC, PAH	Soil and groundwater
10. Former heating oil AST in the centre commercial building at 557 Cambridge Street	Former building footprint on the west side of Former PCA #28 – Gasoline and Associated Products Storage in		On-site	BTEX, PHC, VOC, PAH	Soil and groundwater
11. Former heating oil AST in the north commercial building at 557 Cambridge Street	Former building footprint at northwest corner of Phase One property	PCA #28 – Gasoline and Associated Products Storage in Fixed Tanks	On-site	BTEX, PHC, VOC, PAH	Soil and groundwater
12. Poor quality fill at 557 Cambridge Street and 774 Bronson Avenue	lity fill at ge Street One Onson One property Onesite Onesite One One One One One One One One One On		BTEX, PHC, PAH, metals	Soil	

Area of Potential Environmental Concern (APEC) Location of APEC on Phase One Property		Potentially Contaminating Activity (PCA)	Location of PCA (On-Site or Off-Site)	Contaminants of Potential Concern	Media Potentially Impacted (Groundwater, Soil and/or Sediment)
yard at 557 Cambridge the Phase One Register		PCA #Other – Registered waste generator	On-site	BTEX, PHC	Soil and groundwater
14. Former treated lumber storage at 557 Cambridge Street West part of the Phase One property		PCA #59 – Wood Treating and Preservative Facility and Bulk Storage of Treated and Preserved Wood Products	On-site	РАН	Soil

In 2015, five boreholes were advanced at 770 Bronson Avenue, all of which were completed as monitoring wells. All of the wells were installed in the bedrock, which was present between 2.4 and 3.1 metres below ground surface (m bgs). Surficial soil generally consisted of sand and gravel fill material. No native soil was identified on the site. Groundwater was not present in the overburden. The groundwater flow direction was observed to be to the north towards Carling Avenue. It was inferred that utilities along Carling Avenue were influencing the direction of local groundwater flow.

Soil and groundwater samples were submitted for analysis of volatile organic compounds (VOC), petroleum hydrocarbons (PHC), and polycyclic aromatic hydrocarbons (PAH). Soil and groundwater samples were compared to the Table 3 site condition standards (SCS) for non-potable groundwater and residential land use.

One of the soil samples exceeded Table 3 SCS for PHC F3. The remainder of the soil samples and all of the groundwater samples were within the Table 3 SCS. Approximately 150 m³ of PHC impacted soil was identified in the northeast corner of the site. No impact was identified below 1.5 m bgs, and no groundwater contamination was identified. It was recommended that the impacted soil be excavated and sent to a landfill.

In 2016, six boreholes were advanced at 557 Cambridge Street and 774 Bronson Avenue, four of which were completed as monitoring wells. All of the wells were installed as nested wells. Surficial geology generally consisted of 1 to 2 metres of fill material overlying limestone bedrock. Bedrock was encountered in all boreholes between 0.8 and 2.2 m bgs. Two hydrogeologic units were identified at the site, the shallow overburden/weather bedrock aquifer, and the deeper bedrock aquifer. Groundwater flow direction was determined to be to the southwest in both the shallow and deep aquifer.

Soil and groundwater were submitted for analysis of VOC, PHC, PAH, and/or metals. Soil and groundwater results were compared to the Table 7 SCS for shallow bedrock and non-potable groundwater and residential land use.

Four of the soil samples exceeded the Table 7 SCS for metals (lead, nickel, and mercury), cyanide, and/or select PAH. One of the groundwater samples slightly exceeded the Table 7 SCS for benzene. However, this location was subsequently re-sampled twice, and benzene was below the detection limits in both samples. Chloroform exceedances were detected in all five of the monitoring wells installed in the bedrock.

To facilitate bedrock drilling municipal water was likely used to cool the drill bits. Chloroform is generated at municipal water treatment plants when chlorine is used to kill bacteria in the water. Its is likely that the source of the chloroform was the municipal water used for drilling.

On August 11, 2022, EXP conducted an additional round of groundwater sampling of the monitoring wells at 770 Bronson Avenue. None of the monitoring wells installed at 774 Bronson Avenue or 557 Cambridge Street were still present. Four groundwater samples, plus a field duplicate, were submitted for analysis of PHC, VOC, and PAH. BH15-4 could not be sampled due to insufficient sample volume. All of the samples were within the Tables 7 SCS for all parameters analysed.

During the Golder March 2015 investigation, eight soil samples were submitted for analysis of PHC, VOC and PAH. All of the samples met the Table 7 SCS for all parameters analysed, with the exception of one sample from BH15-4 which exceeded the SCS for PHC F3. The sample which exceeded the Table 7 SCS was taken from 0.3 to 0.8 m bgs. A sample taken from the same borehole, but deeper (1.5 to 2.1 m bgs) met the Table 7 SCS. It was inferred that the source of the exceedance was likely a surface spill.

During the WSP January 2016 investigation, three soil samples and a duplicate were submitted for analysis of PHC and VOC, PAH, and metals. Two samples (BH15-4 and BH15-6) exceeded the SCS for lead, one sample (BH15-5) exceeded the SCS for nickel, and one sample (BH15-4) exceeded the SCS for mercury and cyanide. One sample (BH15-1) exceeded the SCS for multiple PAHs. The remaining samples met the Table 7 SCS for all parameters analysed.

All groundwater samples were collected via a low flow sampling technique. Water quality parameters (such as water level, temperature, dissolved oxygen, conductivity, salinity, pH, oxygen reduction potential and turbidity) were monitored in order to ensure that the samples collected were representative of actual groundwater conditions.

In March 2015, groundwater sampling was conducted at 770 Bronson Avenue by Golder. Four groundwater samples (BH15-1 to BH15-4), and a duplicate were collected and submitted for analysis of PHC, VOC, and PAH. A groundwater sample was not collected from BH15-5, as that well was installed for geotechnical/hydrogeological purposes. One of the groundwater samples (BH15-2) exceeded the Table 7 SCS for benzene, and three groundwater samples (BH15-1, BH15-2, BH15-3) and the duplicate exceeded the Table 7 SCS for chloroform.

An additional round of groundwater sampling was conducted at these wells in August 2022 by EXP. Four groundwater samples (BH15-1, BH15-2, BH15-3, and BH15-5) and a duplicate were submitted for analysis of PHC, VOC and PAH. All of the samples were within the Tables 7 SCS for all parameters analysed.

In January, February and March 2016, groundwater sampling was conducted by WSP at 557 Cambridge Street and 774 Bronson Avenue. Groundwater sampling was conducted over multiple days due to limited sampled volume. Groundwater samples were submitted for analysis of BTEX, PHC, VOC, PAH, and/or metals. Additional samples were submitted for analysis of VOC to address chloroform exceedances present in the first round of groundwater sampling.

Benzene was detected in the initial groundwater sample from BH15-3A. As the exceedance was very close to the Table 7 SCS criteria for benzene (0.83 ug/L vs 0.5 ug/L), and additional two rounds of samples were conducted at this location. Neither of the subsequent groundwater samples from BH15-3A had

All of the chloroform exceedances were detected in monitoring wells installed in the bedrock. To facilitate drilling in the bedrock, municipal water was used to cool the drill bits. Chloroform is generated at municipal water treatment plants when chlorine is used to kill bacteria in the water. In accordance with Regulation 153/04 it is the opinion of the Qualified Person that the source of chloroform in these monitoring wells. In addition, subsequent groundwater sampling events at all of the wells with chloroform exceedances were within the Table 7 SCS.

Therefore, in accordance with Section 49.1 of Regulation 153/04, chloroform is not considered to exceed the SCS. Analytical results are included in Tables 4 to 6 in Appendix E and are shown in plan view on Figures 13 to 15 and on cross-sections on Figures 16 to 18 in Appendix A.

PAH and metals impacted soil has been identified on the south part of the Phase Two property. As there were no groundwater exceedances identified on the Phase Twp property, the contamination does not appear to be migrating.

It is recommended that the impacted soil be removed from the Phase Two property when the property is re-developed.

The Qualified Person can confirm that the Phase Two Environmental Site Assessment was conducted per the requirements of Ontario Regulation 153/04, as amended, and in accordance with generally accepted professional practices.

This executive summary is a brief synopsis of the report and should not be read in lieu of reading the report in its entirety.

Table of Contents

Legal N	Notification	
Execut	tive Summary	i
List of	Figures	x
List of	Appendices	xi
1.0	Introduction	1
1.1	Site Description	
1.2	Property Ownership	
1.3	Current and Proposed Future Use	
1.4	Applicable Site Condition Standards	2
2.0	Background Information	4
2.1	Physical Setting	
2.2	Past Investigations	
3.0	Scope of the Investigation	
3.1	Overview of Site Investigation	
3.2	Scope of Work	
3.3	Media Investigated	8
3.4	Phase One Conceptual Site Model	8
3.4.1	1 Buildings and Structures	9
3.4.2	2 Water Bodies and Groundwater Flow Direction	9
3.4.3	3 Areas of Natural Significance	9
3.4.4	4 Water Wells	<u>G</u>
3.4.5	5 Potentially Contaminating Activity	<u> </u>
3.4.6	6 Areas of Potential Environmental Concern	10
3.4.7	7 Underground Utilities	12
3.4.8	8 Subsurface Stratigraphy	12

	3.4.9	Uncertainty Analysis	13
	3.5	Deviations from Sampling and Analysis Plan	13
	3.6	Impediments	13
4.0)	Investigation Method	14
	4.1	General	14
	4.2	Drilling	14
	4.3	Soil Sampling	14
	4.4	Field Screening Measurements	14
	4.5	Groundwater: Monitoring Well Installation	14
	4.6	Groundwater: Field Measurement and Water Quality Parameters	15
	4.7	Groundwater: Sampling	15
	4.8	Sediment: Sampling	16
	4.9	Analytical Testing	16
	4.10	Residue Management	16
	4.11	Elevation Surveying	16
	4.12	Quality Assurance and Quality Control Measures	16
5.0)	Review and Evaluation	18
	5.1	Geology	18
	5.2	Groundwater: Elevations and Flow Direction	18
	5.3	Groundwater: Hydraulic Gradients	2
	5.4	Soil: Field Screening	21
	5.5	Soil: Quality	21
	5.6	Groundwater: Quality	21
	5.6.1	Chemical Transformation and Contaminant Sources	22
	5.6.2	Evidence of Non-Aqueous Phase Liquid	22
	5.6.3	Maximum Concentrations	22
	5.7	Sediment: Quality	22
	5.8	Quality Assurance and Quality Control Results	23

5.9	Phase Two Conceptual Site Model	23
5.9.1	Introduction	23
5.9.2	Physical Site Description	23
5.9.3	Geological and Hydrogeological	24
5.9.4	Utilities and Impediments	25
5.9.5	Potentially Contaminating Activities	25
5.9.6	Areas of Potential Environmental Concern/Potential Contaminates of Concern	27
5.9.7	Investigation	28
5.9.8	Soil Sampling	29
5.9.9	Groundwater Sampling	30
5.9.10	Contaminant Fate and Transport	30
5.0 C	Conclusion	32
7.0 R	References	33
3.0	General Limitations	34

List of Figures

- Figure 1 Site Location Plan
- Figure 2 Site Plan
- Figure 3 Conceptual Site Model Phase Two Study Area
- Figure 4 Groundwater Contour Plan Spring 2021
- Figure 5 Cross Section Plan
- Figure 6 Cross Sections A-A' and B-B'
- Figure 7 Soil Analytical Results PHC & VOC
- Figure 8 Soil Analytical Results PAH
- Figure 9 Soil Analytical Results Inorganics
- Figure 10 Soil Cross Sections A-A' and B-B' PHC & VOC
- Figure 11 Soil Cross Sections A-A' and B-B' PAH
- Figure 12 Soil Cross Sections A-A' and B-B' Inorganics
- Figure 13 Groundwater Analytical Results PHC & VOC
- Figure 14 Groundwater Analytical Results PAH
- Figure 15 Groundwater Analytical Results Inorganics
- Figure 16 Groundwater Cross Sections A-A' and B-B' PHC & VOC
- Figure 17 Groundwater Cross Sections A-A' and B-B' PAH
- Figure 18 Groundwater Cross Sections A-A' and B-B' Inorganics

List of Appendices

Appendix A: Figures
Appendix B: Survey Plan

Appendix C: Sampling and Analysis Plan

Appendix D: Borehole Logs

Appendix E: Analytical Summary Tables

Appendix F: Laboratory Certificates of Analysis

1.0 Introduction

EXP Services Inc. (EXP) was retained by Katasa Group to conduct a Phase Two Environmental Site Assessment (ESA) of the property located at 770 and 774 Bronson Avenue and 557 Cambridge Street in Ottawa, Ontario (hereinafter referred to as the 'Phase Two property'). At the time of the investigation, the Phase Two property was occupied by a vacant former gas station and parking lot.

The objective of the Phase Two ESA investigation was to assess the conditions within the areas of potential environmental concern (APEC) identified in a Phase One ESA prepared by EXP. The most recent use of the property was for commercial, and the proposed future property use will be residential and commercial. Consequently, in accordance with Regulation 153/04, as amended, a Record of Site Condition (RSC) must be filed.

This report has been prepared in accordance with the Phase Two ESA standard as defined by Ontario Regulation 153/04 (as amended), and in accordance with generally accepted professional practices. Subject to this standard of care, EXP makes no express or implied warranties regarding its services and no third-party beneficiaries are intended. Limitation of liability, scope of report and third-party reliance are outlined in Section 8 of this report.

1.1 Site Description

The Phase Two property has the municipal addresses of 770 Bronson Avenue, 774 Bronson Avenue, and 557 Cambridge Street in Ottawa, Ontario. The Phase Two property is irregular is shape and has a total area of approximately 0.45 hectares. A Site Location Plan is provided as Figure 1 in Appendix A.

The property at 770 Bronson Avenue is occupied by a vacant gas station. It is legally described as Part Lots 1 and 2, Registered Plan 28, City of Ottawa. The property identification number (PIN) is 04103-0205.

The property at 774 Bronson Avenue is vacant and currently used as a parking lot. It is legally described as Lots 3 and 4, Registered Plan 28, City of Ottawa. The PIN is 04103-0125.

The property at 557 Cambridge Street is vacant and currently used as a parking lot. It is legally described as Lot 37 and Part Lot 38, Registered Plan 28, Part 4 Registered Plan 5R14360, City of Ottawa. The PIN is 04103-0215.

Table 1.1: Site Identification Details

Civic Address	770 and 774 Bronson Avenue, 557 Cambridge Street, Ottawa, Ontario			
Current Land Use	Commercial			
Proposed Future Land Use	Commercial and Residential			
Property Identification Number	04103-0205, 04103-0125, 04103-0215			
UTM Coordinates	NAD83 18T 445213 m E and 5027661 m N			
Site Area	0.45 hectares			
Property Owner	10467855 Canada Inc.			

A survey plan of the Phase Two property was completed by Annis, O'Sullivan, and Vollebekk Ltd. in November 2015. A copy of the survey plan is provided in Appendix B.

1.2 Property Ownership

The registered owner of the Phase One property is 10467855 Canada Inc. Authorization to proceed with this investigation on behalf of the property owner was provided by Ms. Tanya Chowieri, Acquisition and Project Development for Katasa Groupe. Contact information is 301-69 rue Jean-Proulx, Gatineau, Quebec, J8Z 1W2.

1.3 Current and Proposed Future Use

The most recent use of the property was commercial. The proposed future use of the property is residential and commercial. A new building will be constructed at the Phase Two property. The building will have one or two levels of underground parking, ground level commercial space, and upper-level residential units. Since the past use of the property was commercial land use, an RSC must be filed, per Ontario Regulation 153/04.

1.4 Applicable Site Condition Standards

Analytical results obtained for soil and groundwater samples were compared to Site Condition Standards (SCS) established under subsection 169.4(1) of the Environmental Protection Act, and presented in the document entitled *Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act*, 2011. This document provides tabulated background SCS (Table 1) applicable to environmentally sensitive sites and effects-based generic SCS (Tables 2 to 9) applicable to non-environmentally sensitive sites. The effects-based SCS (Tables 2 to 9) are protective of human health and the environment for different groundwater conditions (potable and non-potable), land use scenarios (residential, parkland, institutional, commercial, industrial, community and agricultural/other), soil texture (coarse or medium/fine) and restoration depth (full or stratified).

Table 1 to 9 SCS are summarized as follows:

- Table 1 applicable to sites where background concentrations must be met (full depth), such as sensitive sites where site-specific criteria have not been derived
- Table 2 applicable to sites with potable groundwater and full depth restoration
- Table 3 applicable to sites with non-potable groundwater and full depth restoration
- Table 4 applicable to sites with potable groundwater and stratified restoration
- Table 5 applicable to sites with non-potable groundwater and stratified restoration
- Table 6 applicable to sites with potable groundwater and shallow soils (bedrock encountered at depths of 2 metres or less across one-third or more of the site)
- Table 7 applicable to sites with non-potable groundwater and shallow soils (bedrock encountered at depths of 2 metres or less across one-third or more of the site)
- Table 8 applicable to sites with potable groundwater and that are within 30 m of a water body
- Table 9 applicable to sites with non-potable groundwater and that are within 30 m of a water body

Application of the generic or background SCS to a specific site is based on a consideration of site conditions related to soil pH, thickness and extent of overburden material, and proximity to an area of environmental sensitivity or of natural significance. For some chemical parameters, consideration is also given to soil textural classification with SCS having been derived for both coarse and medium-fine textured soil conditions.

For assessment purposes, EXP selected the 2011 Table 7 SCS in a non-potable groundwater condition for residential/parkland/institutional property use.

The selection of these categories was based on the following factors:

- Bedrock is less than 2 metres below grade across the subject property;
- The Phase Two property is not located within 30 m of a waterbody;
- The Phase Two property is not located within an area of natural significance, does not include nor is adjacent to an area of natural significance, and does not include land that is within 30 metres of an area of natural significance;
- Potable water for the Phase Two property is provided by the City of Ottawa through its water distribution system;
- The Phase Two property is not located in an area designated in a municipal official plan as a well-head protection area;
- The proposed building is planned for residential and commercial use; and
- It is the opinion of the Qualified Person who oversaw this work that the Phase Two property is not a sensitive site.

2.0 Background Information

2.1 Physical Setting

The Phase Two property has the municipal addresses 770 and 774 Bronson Avenue, and 557 Cambridge Street in Ottawa, Ontario. The Phase Two property is located in a residential/commercial area near the intersection of Carling Avenue and Bronson Avenue. The Phase Two property is irregular in shape has an area of approximately 0.45 hectares. At the time of the current investigation, the north part of the property was occupied by a vacant former garage, and the south part of the property was a parking lot. A site plan showing the Phase Two property is presented as Figure 2 in Appendix A.

The Phase Two property, and all other properties located, in whole or in part, within 250 metres of the boundaries of the Phase Two property, are supplied by a municipal drinking water system provided by the City of Ottawa. Further, the Phase Two property is not located in an area designated in the municipal official plan as a well-head protection area and no properties within the Phase Two study area have a well that is being used or is intended for use as a source of potable water. Thus, in accordance with Section 35 of Ontario Regulation 153/04, non-potable water standards apply to the Phase Two property.

In accordance with Section 41 of Ontario Regulation 153/04, the Phase Two property is not an environmentally sensitive area. In addition, the Phase Two property is not located within an area of natural significance, and it does not include land that is within 30 metres of an area of natural significance.

Based on the Phase Two ESA investigation, the Phase Two property is a shallow soil property as defined in Section 43.1 of the regulation. There are no waterbodies on the Phase Two property, and the Phase Two is not located within 30 m of a waterbody.

Beneath any fill, the surficial geology of the subject site is characterised by Champlain Sea deposits of plain till. The bedrock geology underlying the site consists of limestone with some shaley partings of the Ottawa Formation. The depth to rock in the area is typically 5 m below surface grade or less. Based on previous investigation, bedrock was identified between 0.8 and 3.1 metres below ground surface the Phase Two property. Topographically, the Phase Two study area slopes towards the southwest.

The groundwater flow direction is anticipated to be to the southeast towards Dow's Lake on the south part of the Phase Two property and towards the north on the north part of the Phase Two property.

2.2 Past Investigations

EXP prepared a report entitled *Phase One Environmental Site Assessment, 770 and 774 Bronson Avenue and 557 Cambridge Street, Ottawa, Ontario,* dated September 22, 2022. Based on the results of the Phase One ESA, EXP identified fourteen areas of potential environmental concern (APEC) within the Phase One study area. A summary is provided in Table 2.1.

Table 2.1: Findings of Phase One ESA

Area of Potential Environmental Concern (APEC)	Location of APEC on Phase One Property	Potentially Contaminating Activity (PCA)	Location of PCA (On-Site or Off-Site)	Contaminants of Potential Concern	Media Potentially Impacted (Groundwater, Soil and/or Sediment)
Northeast PCA #28 – Ga 1. Former gas station at 770 Bronson Avenue Phase One Products Stor		PCA #28 – Gasoline and Associated Products Storage in Fixed Tanks	On-site	BTEX, PHC, VOC	Soil and groundwater
2. Former automotive garage at 770 Bronson Avenue	Garage building footprint	PCA #10 – Commercial autobody shop	On-Site	BTEX, PHC, VOC	Soil and groundwater
3. Former heating oil AST at 770 Bronson Avenue	Along south exterior building wall	PCA #28 – Gasoline and Associated Products Storage in Fixed Tanks	On-site	BTEX, PHC, VOC, PAH	Soil and groundwater
4. Former waste oil AST at 770 Bronson Avenue	Along south exterior building wall	PCA #28 – Gasoline and Associated Products Storage in Fixed Tanks	On-site	BTEX, PHC, VOC, PAH, metals	Soil and groundwater
5. Former motor oil AST at 770 Bronson Avenue	ST at 770 Bronson interior and Associated Products Storage in		On-site	BTEX, PHC, VOC	Soil and groundwater
6. Former heating oil AST in the north residential building at 774 Bronson Avenue Former building footprint at northeast corner of Phase One Fixed Ti		PCA #28 – Gasoline and Associated Products Storage in Fixed Tanks	On-site	BTEX, PHC, VOC, PAH	Soil and groundwater
7. Former heating oil AST in the south residential building at 774 Bronson Avenue	AST in the south footprint on and Associated east side of Products Storage in		On-site	BTEX, PHC, VOC, PAH	Soil and groundwater
8. Former heating oil AST in the commercial building at 774 Bronson Avenue	Former building footprint at southeast building at 774 Former building footprint at southeast corner of products Storage in		On-site	BTEX, PHC, VOC, PAH	Soil and groundwater
9. Former heating oil AST in the south commercial building at Former building footprint at southwest rorner of		PCA #28 – Gasoline and Associated Products Storage in Fixed Tanks	On-site	BTEX, PHC, VOC, PAH	Soil and groundwater

Area of Potential Environmental Concern (APEC)	Location of APEC on Phase One Property	Potentially Contaminating Activity (PCA)	Location of PCA (On- Site or Off- Site)	Contaminants of Potential Concern	Media Potentially Impacted (Groundwater, Soil and/or Sediment)
10. Former heating oil AST in the centre commercial building at 557 Cambridge Street	Former building footprint on the west side of Phase One property	PCA #28 – Gasoline and Associated Products Storage in Fixed Tanks	On-site	BTEX, PHC, VOC, PAH	Soil and groundwater
11. Former heating oil AST in the north commercial building at 557 Cambridge Street	Former building footprint at northwest corner of Phase One property	PCA #28 – Gasoline and Associated Products Storage in Fixed Tanks	On-site	BTEX, PHC, VOC, PAH	Soil and groundwater
12. Poor quality fill at 557 Cambridge Street and 774 Bronson Avenue	Entire Phase One property	PCA #30 – Importation of Fill Material of Unknown Quality	On-site	BTEX, PHC, PAH, metals	Soil
13. Former contractors' yard at 557 Cambridge Street	West part of the Phase One property	PCA #Other – Registered waste generator	On-site	BTEX, PHC	Soil and groundwater
14. Former treated lumber storage at 557 Cambridge Street West part of the Phase One property One property PCA #59 – Wood Treating and Preservative Facility and Bulk Storage of Treated and Preserved Wood Products		On-site	РАН	Soil	

The locations of the APEC are shown on Figures 2 and 3 in Appendix A.

The Phase One ESA was conducted per the requirements of Ontario Regulation 153/04, as amended, and in accordance with generally accepted professional practices. A copy of the Phase One conceptual site model is provided as Figure 3 in Appendix A.

In 2015, five boreholes were advanced at 770 Bronson Avenue, all of which were completed as monitoring wells. All of the wells were installed in the bedrock, which was present between 2.4 and 3.1 metres below ground surface (m bgs). Surficial soil generally consisted of sand and gravel fill material. No native soil was identified on the site. Groundwater was not present in the overburden. The groundwater flow direction was observed to be to the north towards Carling Avenue. It was inferred that utilities along Carling Avenue were influencing the direction of local groundwater flow.

Eight soil samples and four groundwater samples were submitted for analysis of volatile organic compounds (VOC), petroleum hydrocarbons (PHC), and polycyclic aromatic hydrocarbons (PAH). Soil and groundwater samples were compared to the Table 3 site condition standards (SCS) for non-potable groundwater and residential land use.

One of the soil samples exceeded Table 3 SCS for PHC F3. The remainder of the soil samples and all of the groundwater samples were within the Table 3 SCS. Approximately 150 m³ of PHC impacted soil was identified in the northeast corner of the site. No impact was identified below 1.5 m bgs, and no groundwater contamination was identified. It was recommended that the impacted soil be excavated and sent to a landfill.

In 2016, six boreholes were advanced at 557 Cambridge Street and 774 Bronson Avenue, four of which were completed as monitoring wells. All of the wells were installed as nested wells. Surficial geology generally consisted of 1 to 2 metres of fill material overlying limestone bedrock. Bedrock was encountered in all boreholes between 0.8 and 2.2 m bgs. Two hydrogeologic units were identified at the site, the shallow overburden/weather bedrock aquifer, and the deeper bedrock aquifer. Groundwater flow direction was determined to be to the southwest in both the shallow and deep aquifer.

Six soil samples and eight groundwater samples were submitted for analysis of VOC, PHC, PAH, and/or metals. Soil and groundwater results were compared to the Table 7 SCS for shallow bedrock and non-potable groundwater and residential land use.

Four of the soil samples exceeded the Table 7 SCS for metals (lead, nickel, and mercury), cyanide, and/or select PAH. One of the groundwater samples slightly exceeded the Table 7 SCS for benzene. However, this location was subsequently re-sampled twice, and benzene was below the detection limits in both samples. Chloroform exceedances were detected in all five of the monitoring wells installed in the bedrock.

To facilitate bedrock drilling municipal water was likely used to cool the drill bits. Chloroform is generated at municipal water treatment plants when chlorine is used to kill bacteria in the water. Its is likely that the source of the chloroform was the municipal water used for drilling.

3.0 Scope of the Investigation

3.1 Overview of Site Investigation

The objective of the Phase Two ESA was to assess the quality of soil and groundwater on the Phase Two property.

The most recent use of the property was commercial. The proposed future use of the property is residential and commercial. Since the past use of the property was commercial land use, a Record of Site Condition (RSC) must be filed, per Ontario Regulation 153/04.

Previous investigations consisted of drilling programs to evaluate soil and groundwater conditions at the subject property. EXP's investigation consisted of groundwater sampling of the existing wells at 770 Bronson Avenue. No monitoring wells were present at the 557 Cambridge Street and 774 Bronson Avenue parts of the Phase Two property.

3.2 Scope of Work

The scope of work for the Phase Two ESA was as follows:

- Review previous Reports for Phase II ESA investigations conducted at the Phase Two property;
- Sample the five existing monitoring wells are 770 Bronson Avenue;
- Submit groundwater samples for laboratory analysis of benzene, toluene, ethylbenzene, xylenes (BTEX), petroleum hydrocarbon (PHC) fractions F1 to F4, volatile organic compounds (VOC), and polycyclic aromatic hydrocarbons (PAH);
- Comparing the results of the soil and groundwater chemical analyses to applicable criteria, as set out by the Ontario Ministry of the Environment, Conservation and Parks (MECP);
- Preparing a report summarizing the results of the assessment activities.

This report has been prepared in accordance with the Phase Two ESA standard as defined by Ontario Regulation 153/04 (as amended), and in accordance with generally accepted professional practices. Subject to this standard of care, EXP makes no express or implied warranties regarding its services and no third-party beneficiaries are intended. Limitation of liability, scope of report and third-party reliance are outlined in Section 8 of this report.

3.3 Media Investigated

The Phase Two ESA included the investigation of soil and groundwater on the Phase Two property. There are no waterbodies on the Phase Two property, therefore sediment sampling was not required.

The contaminants of potential concern (COPC) identified in the Phase One ESA were identified as target parameters for this Phase Two ESA. The APEC and COPC identified in the Phase One ESA are outlined in Section 2.2.

3.4 Phase One Conceptual Site Model

The Phase One conceptual site model (CSM) was developed by considering the following physical characteristics and pathways. The CSM showing the topography of the site, inferred groundwater flow, general site features, APEC, and PCA is shown in Figures 2 and 3 in Appendix A.

3.4.1 Buildings and Structures

The Phase Two property is occupied by a single-storey, slab on grade building that formerly operated as a gas station, then a garage. The building was vacant at the time of the investigation. No other buildings were present on the Phase Two property.

3.4.2 Water Bodies and Groundwater Flow Direction

There are no water bodies on the subject site. The closest waster body is Dow's Like, located approximately 370 m southwest of the Phase Two property.

Topographically, the Phase Two property is relatively flat. The surrounding area slopes down towards Dow's Lake. The groundwater flow at the Phase Two property is anticipated to be southwest due to the proximity to Dow's Lake.

3.4.3 Areas of Natural Significance

There are no ANSI within the Phase Two study area.

3.4.4 Water Wells

There are no potable water wells within the Phase Two study area.

3.4.5 Potentially Contaminating Activity

The following on-site potentially contaminating activities (PCA) were identified:

- PCA 2 770 Bronson Avenue (Phase Two property) Former gas station with three USTs, former garage (PCA #28 –
 Gasoline and Associated Products Storage in Fixed Tanks, PCA 10 Commercial Autobody Shops);
- PCA 7 774 Bronson Avenue (Phase Two property) Former heating oil AST in the north residential building (PCA #28 Gasoline and Associated Products Storage in Fixed Tanks);
- PCA 8 774 Bronson Avenue (Phase Two property) Former heating oil AST in the south residential building (PCA #28 Gasoline and Associated Products Storage in Fixed Tanks);
- PCA 9 774 Bronson Avenue (Phase Two property) Former heating oil AST in the commercial building (PCA #28 –
 Gasoline and Associated Products Storage in Fixed Tanks);
- **PCA 10** 770 Bronson Avenue (Phase Two property) Former heating oil AST in the west side of the garage building (PCA #28 Gasoline and Associated Products Storage in Fixed Tanks);
- PCA 11 557 Cambridge Street (Phase Two property) Former heating oil AST in the north office building (PCA #28 Gasoline and Associated Products Storage in Fixed Tanks);
- PCA 12 557 Cambridge Street (Phase Two property) Former heating oil AST in the middle office building (PCA #28 Gasoline and Associated Products Storage in Fixed Tanks);
- PCA 13 557 Cambridge Street (Phase Two property) Former heating oil AST in the south office building (PCA #28 Gasoline and Associated Products Storage in Fixed Tanks);
- PCA 15 770 Bronson Avenue (Phase Two property) Former motor oil AST along the west interior wall of the garage building (PCA #28 – Gasoline and Associated Products Storage in Fixed Tanks);
- PCA 16 770 Bronson Avenue (Phase Two property) Former waste oil AST along the south exterior wall of the garage building (PCA #28 – Gasoline and Associated Products Storage in Fixed Tanks);

- PCA 17 Entire Phase Two property Impacted fill material identified in previous investigations (PCA #30 –
 Importation of Fill Material of Unknown Quantity);
- PCA 18 557 Cambridge Avenue (Phase Two property) Western part of the site was historically used for wood treating (PCA #59 – Wood Treating and Preservative Facility and Bulk Storage of Treated and Preserved Wood Products).
- **PCA 20** 557 Cambridge Street (Phase Two property) Former contractor's yard (PCA #Other Registered waste generator).

By definition, all of the above PCA have resulted in APEC on the Phase Two property.

The following PCA have been identified in the Phase Two study area:

- PCA 1 Between Cambridge Street and Dows Lake (150 m southwest) Rail spur lines at the Fraserfield Lumber Yard in 1912 and 1922 (PCA #46 – Rail Yards, Tracks and Spurs; PCA #59 – Wood Treating and Preservative Facility and Bulk Storage of Treated and Preserved Wood Products);
- PCA 3 735 Carling Avenue (225 m west) Former gas station with three USTs (PCA #28 Gasoline and Associated Products Storage in Fixed Tanks);
- PCA 4 400 Bell Street (125 m west) Former garage with UST (PCA 10 Commercial Autobody Shops, PCA #28 –
 Gasoline and Associated Products Storage in Fixed Tanks);
- PCA 5 277 Carling Avenue (40 m northeast) Hydro sub station (PCA #55 Transformer Manufacturing, Processing and Use);
- PCA 6 786-788 Bronson Street (20 m south) Former dry cleaner (PCA #37 Operation of Dry Cleaning Equipment (where chemicals are used);
- **PCA 14** 784 Bronson Avenue (15 m south) Former commercial printing operation (PCA #Other Commercial printing operation).
- PCA 19 748 Bronson Avenue (now 265 Carling Avenue) (60 m north) Former gas station (PCA #28 Gasoline and Associated Products Storage in Fixed Tanks).

The former gas station at 735 Carling Avenue, the former lumber yard and rail spur lines at Fraserfield Lumber yard, and the former garage at 400 Bell Street were all located over 150 m from the Phase Two property. Due to the separation distance from the Phase Two property, these operations were not considered to result in APECs.

The former dry-cleaning operation and commercial printing operation were located approximately 20 m and 40 m south of the Phase Two property respectively. Previous investigations at the Phase Two property have identified the groundwater flow on the south part of the Phase Two property to be to the southwest. Therefor, these operations were located cross-gradient of the Phase Two property and was determined not to result in APECs.

The former gas station at 265 Carling Avenue and the hydro substation at 277 Carling Avenue are located approximately 60 m north and 40 m northeast respectively. Previous investigations at the Phase Two property have identified the groundwater flow on the north part of the Phase Two property to be to the north. Therefor, these operations were located cross/downgradient of the Phase Two property and was determined not to result in APECs.

Therefore, none of the off-site APEC were determined to result in APECs.

3.4.6 Areas of Potential Environmental Concern

The APEC identified are summarized in Table 3.1.

Table 3.1: Areas of Potential Environmental Concern

Table 3.1: Areas of Pote		ientai Concern	1		
Area of Potential Environmental Concern (APEC)	Location of APEC on Phase One Property	Potentially Contaminating Activity (PCA)	Location of PCA (On- Site or Off- Site)	Contaminants of Potential Concern	Media Potentially Impacted (Groundwater, Soil and/or Sediment)
1. Former gas station part of the and As at 770 Bronson Avenue Phase Two Products		PCA #28 – Gasoline and Associated Products Storage in Fixed Tanks	On-site	BTEX, PHC, VOC	Soil and groundwater
2. Former automotive garage at 770 Bronson Avenue	Garage building footprint	PCA #10 – Commercial autobody shop	On-Site	BTEX, PHC, VOC	Soil and groundwater
3. Former heating oil AST at 770 Bronson Avenue	Along south exterior building wall	PCA #28 – Gasoline and Associated Products Storage in Fixed Tanks	On-site	BTEX, PHC, VOC, PAH	Soil and groundwater
4. Former waste oil AST at 770 Bronson Avenue	Along south exterior building wall	PCA #28 – Gasoline and Associated Products Storage in Fixed Tanks	On-site	BTEX, PHC, VOC, PAH, metals	Soil and groundwater
5. Former motor oil AST at 770 Bronson Avenue	AST at 770 Bronson interior and Associated Products Storage in		On-site	BTEX, PHC, VOC	Soil and groundwater
residential building at reside		PCA #28 – Gasoline and Associated Products Storage in Fixed Tanks	On-site	BTEX, PHC, VOC, PAH	Soil and groundwater
7. Former heating oil AST in the south residential building at 774 Bronson Avenue	7. Former heating oil AST in the south residential building at Former building FOCA #28 – Gasoline footprint on east side of Products Storage in		On-site	BTEX, PHC, VOC, PAH	Soil and groundwater
8. Former heating oil AST in the commercial building at 774 Bronson Avenue	Former building footprint at southeast building at 774 Former building footprint at southeast corner of		On-site	BTEX, PHC, VOC, PAH	Soil and groundwater
9. Former heating oil AST in the south commercial building at		PCA #28 – Gasoline and Associated Products Storage in Fixed Tanks	On-site	BTEX, PHC, VOC, PAH	Soil and groundwater

Area of Potential Environmental Concern (APEC)	Location of APEC on Phase One Property	Potentially Contaminating Activity (PCA)	Location of PCA (On- Site or Off- Site)	Contaminants of Potential Concern	Media Potentially Impacted (Groundwater, Soil and/or Sediment)
10. Former heating oil AST in the centre commercial building at 557 Cambridge Street	Former building footprint on the west side of Phase Two property	PCA #28 – Gasoline and Associated Products Storage in Fixed Tanks	On-site	BTEX, PHC, VOC, PAH	Soil and groundwater
11. Former heating oil AST in the north commercial building at 557 Cambridge Street	Former building footprint at northwest corner of Phase Two property	PCA #28 – Gasoline and Associated Products Storage in Fixed Tanks	On-site	BTEX, PHC, VOC, PAH	Soil and groundwater
12. Poor quality fill at 557 Cambridge Street and 774 Bronson Avenue	Entire Phase Two property	PCA #30 – Importation of Fill Material of Unknown Quality	On-site	BTEX, PHC, PAH, metals	Soil
13. Former contractors' yard at 557 Cambridge Street	West part of the Phase Two property	PCA #Other – Registered waste generator	On-site	BTEX, PHC	Soil and groundwater
14. Former treated lumber storage at 557 Cambridge Street West part of the Phase Two property		PCA #59 – Wood Treating and Preservative Facility and Bulk Storage of Treated and Preserved Wood Products	On-site	РАН	Soil

3.4.7 Underground Utilities

The Phase Two property, and surrounding area are serviced by municipal water, storm and sanitary sewers, natural gas, hydro and telecommunication. There were no utilities present on the south part of the Phase Two property.

Since the water table is within the bedrock, the presence of utilities is not expected to affect possible migration of contaminants once buildings are constructed on the Phase Two property.

3.4.8 Subsurface Stratigraphy

Beneath any fill, the surficial geology of the subject site is characterised by Champlain Sea deposits of plain till. The bedrock geology underlying the site consists of limestone with some shaley partings of the Ottawa Formation. The depth to rock in the area is typically 5 m below surface grade or less. Based on previous investigation, bedrock was identified between 0.8 and 3.1 metres below ground surface the Phase Two property. Topographically, the Phase Two study area slopes towards the southwest.

3.4.9 Uncertainty Analysis

The CSM is a simplification of reality, which aims to provide a description and assessment of any areas where potentially contaminating activity that occurred within the Phase Two study area may have adversely affected the Phase Two property. All information collected during this investigation, including records, interviews, and site reconnaissance, has contributed to the formulation of the CSM.

Information was assessed for consistency, however EXP has confirmed neither the completeness nor the accuracy of any of the records that were obtained or of any of the statements made by others. All reasonable inquiries to obtain accessible information were made, as required by Schedule D, Table 1, Mandatory Requirements for Phase Two Environmental Site Assessment Reports. The CSM reflects our best interpretation of the information that was available during this investigation.

3.5 Deviations from Sampling and Analysis Plan

The field investigative and sampling program was carried out following the requirements of the Phase Two property, as described in Section 4.

The SAAPs for the EXP, Golder and WSP work programs are provided in Appendix C.

No significant deviations from the SAAP, as provided in Appendix C, were reported that affected the sampling and data quality objectives for the Phase Two property. During the August 2022 groundwater sampling event conducted by EXP, BH15-4 could not be sampled due to insufficient sample volume.

3.6 Impediments

No impediments were encountered during this investigation.

4.0 Investigation Method

4.1 General

The current investigation was performed following requirements given under Ontario Regulation 153/04 and in accordance with generally accepted professional practices.

4.2 Drilling

Previous site investigative activities consisted of the drilling of boreholes to facilitate the collection of soil samples for visual inspection and chemical analysis. The boreholes were instrumented with monitoring wells to facilitate the collection of groundwater samples. EXP did into oversee any drilling activities at the Phase Two property.

Prior to the commencement of drilling, the locations of underground public utilities including telephone, natural gas and electrical lines were marked at the subject property by public locating companies. A private utility locating contractor was also retained to clear the individual borehole locations.

A drilling program was conducted at 770 Bronson Avenue in March 2015 under the supervision of Golder Associates. The drilling program was completed on March 24 and 25, 2015 by Marathon Drilling Ltd. (Marathon), a licensed well contractor. Marathon advanced four boreholes (BH15-1 to BH15-4) across the site, using a CCME track mounted drill. Boreholes were augured to refusal, then cored to depth. All of the boreholes were completed as monitoring wells. Bedrock was encountered between 2.4 and 3.1 metres below ground surface (m bgs) in all boreholes. On June 19, 2015, Golder installed and additional well (BH15-5) at 770 Bronson Avenue for geotechnical and hydrogeological site assessment.

A drilling program was conducted at 774 Bronson Avenue and 557 Cambridge Avenue in January 2016 under the supervision of WSP. The drilling program was completed January 11 to 13, 2016 by George Downing Estate Drilling (Downing), a licensed well contractor. Downing advanced six boreholes (BH15-1 to BH15-6) across the site using a CME 55 track mounted drill. Two of the boreholes were augured to refusal (BH15-1 and BH15-5). Four boreholes (BH15-2, BH15-3B, BH15-4, and BH-6) were augured to refusal, then cored to depth. Nested monitoring wells were installed in BH15-2, BH15-3, BH15-4, and BH15-6.

Field observations are documented on the borehole logs provided in Appendix D. The locations of the boreholes are shown on Figure 2 in Appendix A.

4.3 Soil Sampling

Soil samples identified for possible laboratory analysis were placed directly into pre-cleaned, laboratory-supplied glass sample jars/vials. Samples to be analysed for PHC fraction F1 and BTEX were collected using a soil core sampler and placed into vials containing methanol as a preservative. The jars and vials were sealed with Teflon-lined lids to minimize headspace and reduce the potential for induced volatilization during storage/transport prior to analysis. All soil samples were placed in clean coolers containing ice prior to and during transportation to the subcontract laboratory.

4.4 Field Screening Measurements

In March 2015, Golder completed soil sample field screening for VOCs using a MiniRae photo-ionization detector (PID). No significant measurable organic vapours were detected during screening.

In January 2016, WSP completed soil sample field screening for VOCs using an UltraRae 3000 PID.

4.5 Groundwater: Monitoring Well Installation

Monitoring wells were installed in general accordance with the Ontario Water Resources Act - R.R.O. 1990, Regulation 903 (as amended). EXP did not supervise the installation of any monitoring wells on the Phase Two property.

All five of the boreholes installed at 770 Bronson Avenue were completed as bedrock monitoring wells. The monitoring wells consisted of a 32- or 52-mm diameter Schedule 40 PVC screen and a 32- or 52-mm diameter Schedule 40 PVC riser. The annular space around the wells was backfilled with sand to an average height of 0.3 m above the top of the screen. All wells were completed with flushmount casings.

Four of the boreholes at 774 Bronson Avenue and 557 Cambridge Street were completed as nested monitoring wells. The shallow wells were identified as BH15-2A, BH15-3A, BH15-4A, and BH15-6A. The deeper monitoring wells were identified as BH15-2B, BH15-3B, BH15-4B, and BH15-6B. The monitoring wells consisted of a 32- or 52-mm diameter Schedule 40 PVC screen and a 32- or 52-mm diameter Schedule 40 PVC riser. The annular space around the wells was backfilled with sand to an average height of 0.3 m above the top of the screen. All wells were completed with stickup casings.

Following installation, all of the monitoring wells were developed by removing between three and ten well volumes using Waterra tubing and a foot valve.

Monitoring wells details are shown on the borehole logs provided in Appendix D.

4.6 Groundwater: Field Measurement and Water Quality Parameters

Field measurement of water quality parameters is described in Section 4.7.

4.7 Groundwater: Sampling

All groundwater samples were collected via a low flow sampling technique using a multi probe water quality meter. Prior to collecting the groundwater samples, water quality field parameters (turbidity, dissolved oxygen, conductivity, temperature, pH, and oxidation reduction potential) were monitored until stable readings were achieved to ensure that the samples collected were representative of actual groundwater conditions. These parameters are considered to be stable when three consecutive readings meet the following conditions:

- Turbidity: within 10% for values greater than 5 nephelometric turbidity units (NTU), or three values less than 5 NTU;
- Dissolved oxygen: within 10% for values greater than 0.5 mg/L, or three values less than 0.5 mg/L;
- Conductivity: within 3%;
- Temperature: ± 1°C;
- pH: ± 0.1 unit; and,
- Oxidation reduction potential: ±10 millivolts.

When stabilization occurs, equilibrium between groundwater within a monitor and the surrounding formation water is attained. As such, samples collected when stabilization occurs are considered to be representative of formation water.

The groundwater sampling during the completion of this Phase Two ESA was undertaken in general accordance with the SAAPs presented in Appendix C. The groundwater samples were placed in clean coolers containing ice packs prior to and during transportation to the laboratory. The samples were transported to the laboratory within 24 hours of collection with a chain of custody.

On March 27, 2015, Golder collected groundwater samples from the monitoring wells at 770 Bronson Avenue. Four groundwater samples, and a duplicate sample, were submitted for analysis of PHC, VOC, and PAH.

On January 19 and 21, February 15 and 23, and March 1, 2016, WSP collected groundwater samples from the monitoring wells at 774 Bronson Avenue and 557 Cambridge Street. A total of 20 samples and three supplicates were submitted for analysis of BTEX; seven samples and one duplicate were submitted for analysis of PHC; 19 samples and three duplicates were

submitted for analysis of VOC, seven samples and one duplicate were submitted for analysis of PAH, and eight samples and one duplicate were submitted for analysis of metals and inorganics.

On August 11, 2022, EXP conducted an additional round of groundwater sampling of the monitoring wells at 770 Bronson Avenue. None of the monitoring wells installed at 774 Bronson Avenue or 557 Cambridge Street were still present. Four groundwater samples, plus a field duplicate, were submitted for analysis of PHC, VOC, and PAH. BH15-4 could not be sampled due to insufficient sample volume.

4.8 Sediment: Sampling

There are no waterbodies present on the Phase Two property, therefore sediment sampling was not required.

4.9 Analytical Testing

The contracted laboratory selected to perform chemical analysis on all soil and groundwater samples collected by Golder Associates was AGAT.

The contracted laboratory selected to perform chemical analysis on all soil and groundwater samples collected by WSP was Maxxam Analytics Inc. (now Bureau Veritas Laboratories).

The contracted laboratory selected to perform chemical analysis on all groundwater samples collected by EXP was Caduceon Environmental Laboratories (Caduceon).

All contracted laboratories are accredited laboratories under the Standards Council of Canada/Canadian Association for Laboratory Accreditation in accordance with ISO/IEC 17025:1999- General Requirements for the Competence of Testing and Calibration Laboratories.

4.10 Residue Management

Soil cuttings and purge water from the Golder investigation were collected in sealed drums and stored on site for disposal by the property owner.

Soil cuttings and purge water from the WSP investigation were left on the subject site.

4.11 Elevation Surveying

The monitoring wells at 770 Bronson Avenue were surveyed by Golder on March 27, 2015, and July 6, 2015, relative to a geodetic reference. The monitoring wells at 774 Bronson Avenue and 557 Cambridge Street were surveyed by WSP relative to the northeast corner of the site.

4.12 Quality Assurance and Quality Control Measures

All soil and groundwater samples were placed in coolers containing ice packs prior to and during transportation to the contract laboratory, AGAT (Golder), Maxxam (WSP) and Caduceon (EXP). All laboratories are accredited to the ISO/IEC 17025:2005 standard - General Requirements for the Competence of Testing and Calibration Laboratories.

A QA/QC program was also implemented to ensure that the analytical results received are accurate and dependable. A QA/QC program is a system of documented checks that validate the reliability of the data. Quality Assurance is a system that ensures that quality control procedures are correctly performed and documented. Quality Control refers to the established procedures observed both in the field and in the laboratory, designed to ensure that the resulting end data meet intended quality objectives. The QA/QC program implemented by EXP incorporated the following components:

Collecting and analysing field duplicate samples to ensure analytical precision;

- Using dedicated and/or disposable sampling equipment;
- Following proper decontamination protocols to minimize cross-contamination;
- Maintaining field notes and completing field forms to document field activities; and
- Using only laboratory-supplied sample containers and following prescribed sample protocols, including using proper
 preservation techniques, meeting sample hold times, and documenting sample transmission on chains of custody,
 to ensure the integrity of the samples is maintained.

The laboratories' QA/QC program involved the systematic analysis of control standards for the purpose of optimizing the measuring system as well as establishing system precision and accuracy and included calibration standards, method blanks, reference standards, spiked samples, surrogates and duplicates.

Review and Evaluation 5.0

5.1 Geology

A layer of asphalt approximately 100 mm thick was present at surface in all of the boreholes at 770 Bronson Avenue. In general, surficial geology at the site underlying the asphalt consisted of sand and gravel fill material overlying bedrock. Silty clay with trace gravel was encountered in one of the boreholes underlying the fill (BH15-3). Bedrock was encountered between 2.4 and 3.1 m bgs.

Soil conditions at 774 Bronson Avenue and 557 Cambridge Street generally consisted of sand and gravel fil with some silt and clay overlying bedrock. The fill material was noted to contain debris, including wood, ash, asphalt, and brick fragments. Bedrock was encountered between 1.2 and 2.2 m bgs.

A plan view showing cross-sections is provided as Figure 5 in Appendix A, while the Phase Two property geology is depicted in cross-sections on Figure 6 in Appendix A.

Groundwater: Elevations and Flow Direction 5.2

On March 27, 2015, Golder collected groundwater levels from the monitoring wells at 770 Bronson Avenue. The groundwater elevations ranged between 2.40 and 3.32 m bgs.

Groundwater monitoring and elevation data are provided below.

Table 5.1: Monitoring and Elevation Data - Golder 770 Bronson Avenue

Monitoring Well ID	Grade Elevation (masl)	Top of Casing Elevation (masl)	Screen Depth (mbgs)	Depth to LNAPL (mbgs)	Depth to Groundwater (mbTOC)	Groundwater Elevation (masl)
BH15-01	75.86	75.76	4.1 to 5.6	N/A	2.40	73.36
BH15-02	75.70	75.65	4.4 to 5.9	N/A	2.86	72.79
BH15-03	75.75	75.70	4.4 to 5.9	N/A	3.32	72.38
BH15-04	75.62	75.57	4.4 to 6.0	N/A	2.70	72.87
BH15-05	75.49	75.42	7.8 to 15.3	N/A	N/A	N/A

Notes: Elevations were measured to a geodetic datum

LNAPL - light non-aqueous phase liquid ppmv – parts per million by volume

mbgs - metres below ground surface

masl - metres above sea level

mbTOC - metres below top of monitor casing

ND - non-detectable

N/A - not applicable

On March 1, 2016, WSP collected groundwater levels from the monitoring wells at 774 Bronson Avenue and 557 Cambridge Street. The groundwater elevations at ranged between 1.91 and 2.51 m bgs in the shallow wells, and between 2.98 and 7.63 in the deeper wells.

Groundwater monitoring and elevation data are provided below.

Table 5.2: Monitoring and Elevation Data – WSP 557 Cambridge Street and 774 Bronson Avenue

Monitoring Well ID	Grade Elevation (masl)	Top of Casing Elevation (masl)	Screen Depth (mbgs)	Depth to LNAPL (mbgs)	Depth to Groundwater (mbTOC)	Groundwater Elevation (masl)
Shallow Wells						
BH15-2A	75.60	N/A	2.1 to 4.0	N/A	2.46	73.14
BH15-3A	75.50	N/A	1.0 to 2.6	N/A	2.34	73.16
BH15-4A	74.50	N/A	2.2 to 3.7	N/A	1.91	72.59
BH15-6A	73.70	N/A	21. to 3.7	N/A	2.51	71.19
Deep Wells						
BH15-2B	75.60	N/A	6.3 to 7.8	N/A	2.98	72.62
BH15-3B	75.50	N/A	6.3 to 7.8	N/A	4.77	70.73
BH15-4B	74.50	N/A	5.9 to 7.4	N/A	6.94	67.56
BH15-6B	73.70	N/A	6.4 to 8.0	N/A	7.63	66.07

Notes: Elevations were measured to a geodetic datum

LNAPL – light non-aqueous phase liquid ppmv – parts per million by volume mbgs – metres below ground surface masl – metres above sea level mbTOC – metres below top of monitor casing

N/A - not applicable

Based on the groundwater elevations, a groundwater contour plan was prepared by EXP. The groundwater flow direction at 770 Bronson Avenue was determined to be to the north. The groundwater flow direction at 774 Bronson and 557 Cambridge Street was determined to be to the southwest. The groundwater contour plan is provided as Figure 4 in Appendix A.

EXP notes that groundwater levels depend on the size of the fractures that are intercepted as drilling progresses. Groundwater levels can also be influenced by seasonal changes, the presence of subsurface structures, or fill, however based on the presence of the water table within the bedrock, it is unlikely that any of these factors significantly impact the groundwater flow direction.

5.3 Groundwater: Hydraulic Gradients

Horizontal hydraulic gradients were estimated for the groundwater flow components identified in the bedrock aquifer.

The horizontal hydraulic gradient is calculated across the using the following equation:

 $i = \Delta h/\Delta s$

Where,

i = horizontal hydraulic gradient;

 Δh (m) = groundwater elevation difference; and,

 Δs (m) = separation distance.

Based on the March 2015 groundwater elevations, the horizontal hydraulic gradient at 770 Bronson Avenue was calculated to be 0.03 m/m. Vertical hydraulic gradients were not calculated by Golder for 770 Bronson Avenue.

Based on the March 2016 groundwater elevations, the horizontal hydraulic gradient at 774 Bronson Avenue and 557 Cambridge Street was calculated to be 0.03 m/m in the overburden/weather bedrock, and 0.07 in the deeper bedrock wells. Nested monitoring wells were installed in four locations at 774 Bronson Avenue and 557 Cambridge Avenue. There a was a

downward vertical gradient identified at all four locations, with the largest vertical gradient present along the south property line.

5.4 Soil: Field Screening

The methodology for the collection of soil vapour concentration measurements is described in Section 4.4.

During the March 2015 investigation, organic vapours ranged from non-detectable to 3.0 ppm in samples collected from 770 Bronson Avenue.

During the January 2016 investigation, organic vapours ranged from 1.0 and 21.3 ppm. No notable odours or staining were observed by WSP.

Field screening data is presented in the borehole logs in Appendix D.

5.5 Soil: Quality

Chemical analyses were performed on selected soil samples recovered from the boreholes on the Phase Two property.

During the Golder March 2015 investigation, eight soil samples were submitted for analysis of PHC, VOC and PAH. All of the samples met the Table 7 SCS for all parameters analysed, with the exception of one sample from BH15-4 which exceeded the SCS for PHC F3. The sample which exceeded the Table 7 SCS was taken from 0.3 to 0.8 m bgs. A sample taken from the same borehole, but deeper (1.5 to 2.1 m bgs) met the Table 7 SCS. It was inferred that the source of the exceedance was likely a surface spill.

During the WSP January 2016 investigation, three soil samples and a duplicate were submitted for analysis of PHC and VOC, PAH, and metals. Two samples (BH15-4 and BH15-6) exceeded the SCS for lead, one sample (BH15-5) exceeded the SCS for nickel, and one sample (BH15-4) exceeded the SCS for mercury and cyanide. One sample (BH15-1) exceeded the SCS for multiple PAHs. The remaining samples met the Table 7 SCS for all parameters analysed.

The soil results are summarized in Tables 1 to 3 in Appendix E and are shown in plan view on Figures 7 to 9 and on cross-sections on Figures 10 to 12 in Appendix A.

Copies of the laboratory Certificates of Analysis are provided in Appendix F.

5.6 Groundwater: Quality

All groundwater samples were collected via a low flow sampling technique. Water quality parameters (such as water level, temperature, dissolved oxygen, conductivity, salinity, pH, oxygen reduction potential and turbidity) were monitored in order to ensure that the samples collected were representative of actual groundwater conditions.

In March 2015, groundwater sampling was conducted at 770 Bronson Avenue by Golder. Four groundwater samples (BH15-1 to BH15-4), and a duplicate were collected and submitted for analysis of PHC, VOC, and PAH. A groundwater sample was not collected from BH15-5, as that well was installed for geotechnical/hydrogeological purposes. One of the groundwater samples (BH15-2) exceeded the Table 7 SCS for benzene, and three groundwater samples (BH15-1, BH15-2, BH15-3) and the duplicate exceeded the Table 7 SCS for chloroform.

An additional round of groundwater sampling was conducted at these wells in August 2022 by EXP. Four groundwater samples (BH15-1, BH15-2, BH15-3, and BH15-5) and a duplicate were submitted for analysis of PHC, VOC and PAH. All of the samples were within the Tables 7 SCS for all parameters analysed.

In January, February and March 2016, groundwater sampling was conducted by WSP at 557 Cambridge Street and 774 Bronson Avenue. Groundwater sampling was conducted over multiple days due to limited sampled volume. Groundwater

samples were submitted for analysis of BTEX, PHC, VOC, PAH, and/or metals. Additional samples were submitted for analysis of VOC to address chloroform exceedances present in the first round of groundwater sampling.

Benzene was detected in the initial groundwater sample from BH15-3A. As the exceedance was very close to the Table 7 SCS criteria for benzene (0.83 ug/L vs 0.5 ug/L), and additional two rounds of samples were conducted at this location. Neither of the subsequent groundwater samples from BH15-3A had

All of the chloroform exceedances were detected in monitoring wells installed in the bedrock. To facilitate drilling in the bedrock, municipal water was used to cool the drill bits. Chloroform is generated at municipal water treatment plants when chlorine is used to kill bacteria in the water. In accordance with Regulation 153/04 it is the opinion of the Qualified Person that the source of chloroform in these monitoring wells. In addition, subsequent groundwater sampling events at all of the wells with chloroform exceedances were within the Table 7 SCS.

Therefore, in accordance with Section 49.1 of Regulation 153/04, chloroform is not considered to exceed the SCS. Analytical results are included in Tables 4 to 6 in Appendix E and are shown in plan view on Figures 13 to 15 and on cross-sections on Figures 16 to 18 in Appendix A.

Copies of the laboratory Certificates of Analysis are provided in Appendix F.

5.6.1 Chemical Transformation and Contaminant Sources

A variety of physical, chemical and biochemical mechanisms affect the fate and transport of the potential COC in soil and groundwater, the contribution of which is dependent on the soil and groundwater conditions at the Phase Two property, as well as the chemical/physical properties of the COC. Relevant fate and transport mechanisms are natural attenuation mechanisms, including advection mixing, mechanical dispersion/molecular diffusion, phase partitions (i.e. sorption and volatilization), and possibly abiotic or biotic chemical reactions, which effectively reduce COC concentrations.

PAH and metals impacted soil has been identified on the south part of the Phase Two property. As there were no groundwater exceedances identified on the Phase Tw property, the contamination does not appear to be migrating.

It is recommended that the impacted soil be removed from the Phase Two property when the property is re-developed.

5.6.2 Evidence of Non-Aqueous Phase Liquid

Inspection of the groundwater monitoring wells did not indicate the presence of non-aqueous phase liquid (NAPL).

5.6.3 Maximum Concentrations

Contaminants that exceeded the applicable standards included:

Soil: PHC fraction F3, benzo[a]anthracene, benzo[a]pyrene, benzo[b]fluoranthene, benzo[b]fluoranthene, dibenzo[a,h]anthracene, fluoranthene, indeno[1,2,3-cd]pyrene, cyanide, lead, mercury, nickel, and uranium.

Groundwater: None.

Maximum soil and groundwater concentrations are provided in Tables 7 and 8 in Appendix E.

5.7 Sediment: Quality

There are no water bodies on the Phase Two property, therefore sediment sampling was not required.

5.8 Quality Assurance and Quality Control Results

Quality assurance and quality control measures were taken during the field activities to meet the objectives of the sampling and quality assurance plan to collect unbiased and representative samples to characterize existing conditions in the fill materials and groundwater at the site. QA/QC measures, included:

- Collection and analysis of blind duplicate soil and groundwater samples to ensure sample collection precision;
- Analysis of a groundwater field blank for all parameters that were analysed to assess potential impact during sampling;
- Using dedicated and/or disposable sampling equipment;
- Following proper decontamination protocols to minimize cross-contamination;
- Maintaining field notes and completing field forms to document on-site activities; and
- Using only laboratory supplied sample containers and following prescribed sample protocols, including proper
 preservation, meeting sample hold times, proper chain of custody documentation, to ensure integrity of the
 samples.

5.9 Phase Two Conceptual Site Model

A Conceptual Site Model (CSM) provides a narrative, graphical and tabulated description integrating information related to the Phase Two property's geologic and hydrogeological conditions, areas of potential environmental concern/potential contaminating activities, the presence and distribution of contaminants of concern, contaminant fate and transport, and potential exposure pathways.

5.9.1 Introduction

EXP Services Inc. (EXP) was retained by Katasa Group to conduct a Phase Two Environmental Site Assessment (ESA) of the property located at 770 and 774 Bronson Avenue and 557 Cambridge Street in Ottawa, Ontario (hereinafter referred to as the 'Phase Two property'). At the time of the investigation, the Phase Two property was occupied by a vacant former gas station and parking lot.

The objective of the Phase Two ESA investigation was to assess the conditions within the areas of potential environmental concern (APEC) identified in a Phase One ESA prepared by EXP. The most recent use of the property was for commercial, and the proposed future property use will be residential and commercial. Consequently, in accordance with Regulation 153/04, as amended, a Record of Site Condition (RSC) must be filed.

The most recent use of the property was commercial. The proposed future use of the property is residential and commercial. A new building will be constructed at the Phase Two property. The building will have one or two levels of underground parking, ground level commercial space, and upper-level residential units. Since the past use of the property was commercial land use, an RSC must be filed, per Ontario Regulation 153/04.

5.9.2 Physical Site Description

The Phase Two property has the municipal addresses 770 and 774 Bronson Avenue, and 557 Cambridge Street in Ottawa, Ontario. The Phase Two property is located in a residential/commercial area near the intersection of Carling Avenue and Bronson Avenue. The Phase Two property is irregular in shape has an area of approximately 0.45 hectares. At the time of the current investigation, the north part of the property was occupied by a vacant former garage, and the south part of the property was a parking lot. A site plan showing the Phase Two property is presented as Figure 2 in Appendix A.

The Phase Two property, and all other properties located, in whole or in part, within 250 metres of the boundaries of the Phase Two property, are supplied by a municipal drinking water system provided by the City of Ottawa. Further, the Phase Two property is not located in an area designated in the municipal official plan as a well-head protection area and no properties within the Phase Two study area have a well that is being used or is intended for use as a source of potable water. Thus, in accordance with Section 35 of Ontario Regulation 153/04, non-potable water standards apply to the Phase Two property.

In accordance with Section 41 of Ontario Regulation 153/04, the Phase Two property is not an environmentally sensitive area. In addition, the Phase Two property is not located within an area of natural significance, and it does not include land that is within 30 metres of an area of natural significance.

Based on the Phase Two ESA investigation, the Phase Two property is a shallow soil property as defined in Section 43.1 of the regulation. There are no waterbodies on the Phase Two property, and the Phase Two is not located within 30 m of a waterbody.

Refer to Table 5.3 for the Site identification information.

Table 5.3: Site Identification Details

Civic Address	770 and 774 Bronson Avenue, 557 Cambridge Street, Ottawa, Ontario		
Current Land Use	Commercial		
Proposed Future Land Use	Commercial and Residential		
Property Identification Number	04103-0205, 04103-0125, 04103-0215		
UTM Coordinates	NAD83 18T 445213 m E and 5027661 m N		
Site Area	0.45 hectares		
Property Owner	10467855 Canada Inc.		

The Phase One Conceptual Site Model is provided as Figure 3.

5.9.3 Geological and Hydrogeological

Beneath any fill, the surficial geology of the subject site is characterised by Champlain Sea deposits of plain till. The bedrock geology underlying the site consists of limestone with some shaley partings of the Ottawa Formation. The depth to rock in the area is typically 5 m below surface grade or less. Based on previous investigation, bedrock was identified between 0.8 and 3.1 metres below ground surface the Phase Two property. Topographically, the Phase Two study area slopes towards the southwest.

The groundwater flow direction is anticipated to be to the southeast towards Dow's Lake on the south part of the Phase Two property and towards the north on the north part of the Phase Two property. The groundwater flow direction was is shown in Figure 4.

EXP notes that groundwater levels depend on the size of the fractures that are intercepted as drilling progresses. Groundwater levels can also be influenced by seasonal changes, the presence of subsurface structures, or fill.

A plan view showing cross-sections is provided as Figure 5, while the Phase Two property geology is depicted in cross-sections on Figure 6.

A summary of factors that apply to the Phase Two property is provided in Table 5.4.

Table 5.4: Site Characteristics

Characteristic	Description
Minimum Depth to Bedrock	0.8 metres below ground surface
Minimum Depth to Groundwater	1.91 m bgs (March 1, 2016)
Shallow Soil Property	Yes, bedrock is less than 2.0 mbgs
Proximity to water body or ANSI	Dow's Lake – 370 m southwest
Soil pH	8.22 to 8.25
Soil Texture	Coarse
Current Property Use	Commercial
Future Property Use	Residential and Commercial
Proposed Future Building	Multi-storey residential, commercial on ground level, one basement level
Areas Containing Suspected Fill	All soil that was on the property was ill

5.9.4 Utilities and Impediments

The Phase Two property, and surrounding area are serviced by municipal water, storm and sanitary sewers, natural gas, hydro and telecommunication. There were no utilities present on the south part of the Phase Two property.

Since the water table is within the bedrock, the presence of utilities is not expected to affect possible migration of contaminants once buildings are constructed on the Phase Two property.

5.9.5 Potentially Contaminating Activities

The following on-site potentially contaminating activities (PCA) were identified:

- PCA 2 770 Bronson Avenue (Phase Two property) Former gas station with three USTs, former garage (PCA #28 –
 Gasoline and Associated Products Storage in Fixed Tanks, PCA 10 Commercial Autobody Shops);
- PCA 7 774 Bronson Avenue (Phase Two property) Former heating oil AST in the north residential building (PCA #28 Gasoline and Associated Products Storage in Fixed Tanks);
- PCA 8 774 Bronson Avenue (Phase Two property) Former heating oil AST in the south residential building (PCA #28 Gasoline and Associated Products Storage in Fixed Tanks);
- PCA 9 774 Bronson Avenue (Phase Two property) Former heating oil AST in the commercial building (PCA #28 –
 Gasoline and Associated Products Storage in Fixed Tanks);
- **PCA 10** 770 Bronson Avenue (Phase Two property) Former heating oil AST in the west side of the garage building (PCA #28 Gasoline and Associated Products Storage in Fixed Tanks);
- PCA 11 557 Cambridge Street (Phase Two property) Former heating oil AST in the north office building (PCA #28 Gasoline and Associated Products Storage in Fixed Tanks);
- PCA 12 557 Cambridge Street (Phase Two property) Former heating oil AST in the middle office building (PCA #28 Gasoline and Associated Products Storage in Fixed Tanks);

- PCA 13 557 Cambridge Street (Phase Two property) Former heating oil AST in the south office building (PCA #28 Gasoline and Associated Products Storage in Fixed Tanks);
- **PCA 15** 770 Bronson Avenue (Phase Two property) Former motor oil AST along the west interior wall of the garage building (PCA #28 Gasoline and Associated Products Storage in Fixed Tanks);
- PCA 16 770 Bronson Avenue (Phase Two property) Former waste oil AST along the south exterior wall of the garage building (PCA #28 – Gasoline and Associated Products Storage in Fixed Tanks);
- PCA 17 Entire Phase Two property Impacted fill material identified in previous investigations (PCA #30 –
 Importation of Fill Material of Unknown Quantity);
- PCA 18 557 Cambridge Avenue (Phase Two property) Western part of the site was historically used for wood treating (PCA #59 – Wood Treating and Preservative Facility and Bulk Storage of Treated and Preserved Wood Products).
- **PCA 20** 557 Cambridge Street (Phase Two property) Former contractor's yard (PCA #Other Registered waste generator).

By definition, all of the above PCA have resulted in APEC on the Phase Two property.

The following PCA have been identified in the Phase Two study area:

- **PCA 1** Between Cambridge Street and Dows Lake (150 m southwest) Rail spur lines at the Fraserfield Lumber Yard in 1912 and 1922 (PCA #46 Rail Yards, Tracks and Spurs; PCA #59 Wood Treating and Preservative Facility and Bulk Storage of Treated and Preserved Wood Products);
- PCA 3 735 Carling Avenue (225 m west) Former gas station with three USTs (PCA #28 Gasoline and Associated Products Storage in Fixed Tanks);
- PCA 4 400 Bell Street (125 m west) Former garage with UST (PCA 10 Commercial Autobody Shops, PCA #28 –
 Gasoline and Associated Products Storage in Fixed Tanks);
- PCA 5 277 Carling Avenue (40 m northeast) Hydro sub station (PCA #55 Transformer Manufacturing, Processing and Use);
- PCA 6 786-788 Bronson Street (20 m south) Former dry cleaner (PCA #37 Operation of Dry Cleaning Equipment (where chemicals are used);
- PCA 14 784 Bronson Avenue (15 m south) Former commercial printing operation (PCA #Other Commercial printing operation).
- PCA 19 748 Bronson Avenue (now 265 Carling Avenue) (60 m north) Former gas station (PCA #28 Gasoline and Associated Products Storage in Fixed Tanks).

The former gas station at 735 Carling Avenue, the former lumber yard and rail spur lines at Fraserfield Lumber yard, and the former garage at 400 Bell Street were all located over 150 m from the Phase Two property. Due to the separation distance from the Phase Two property, these operations were not considered to result in APECs.

The former dry-cleaning operation and commercial printing operation were located approximately 20 m and 40 m south of the Phase Two property respectively. Previous investigations at the Phase Two property have identified the groundwater flow on the south part of the Phase Two property to be to the southwest. Therefor, these operations were located cross-gradient of the Phase Two property and was determined not to result in APECs.

The former gas station at 265 Carling Avenue and the hydro substation at 277 Carling Avenue are located approximately 60 m north and 40 m northeast respectively. Previous investigations at the Phase Two property have identified the groundwater

flow on the north part of the Phase Two property to be to the north. Therefor, these operations were located cross/down-gradient of the Phase Two property and was determined not to result in APECs.

Therefore, none of the off-site APEC were determined to result in APECs.

5.9.6 Areas of Potential Environmental Concern/Potential Contaminates of Concern

Ontario Regulation 153/04 defines an APEC as an area on a property where one or more contaminants are potentially present. The following APEC were identified on the Phase Two property, as shown on Figure 2 and Table 5.9 below:

Table 5.9: Areas of Potential Environmental Concern

Location of Locati							
Area of Potential Environmental Concern (APEC)	APEC on Phase One Property	Potentially Contaminating Activity (PCA)	PCA (On- Site or Off- Site)	Contaminants of Potential Concern	Media Potentially Impacted (Groundwater, Soil and/or Sediment)		
1. Former gas station at 770 Bronson Avenue	Northeast part of the Phase Two property	PCA #28 – Gasoline and Associated Products Storage in Fixed Tanks	On-site	BTEX, PHC, VOC	Soil and groundwater		
2. Former automotive garage at 770 Bronson Avenue	Garage building footprint	PCA #10 – Commercial autobody shop	On-Site	BTEX, PHC, VOC	Soil and groundwater		
3. Former heating oil AST at 770 Bronson Avenue	Along south exterior building wall	PCA #28 – Gasoline and Associated Products Storage in Fixed Tanks	On-site	BTEX, PHC, VOC, PAH	Soil and groundwater		
4. Former waste oil AST at 770 Bronson Avenue	Along south exterior building wall	PCA #28 – Gasoline and Associated Products Storage in Fixed Tanks	On-site	BTEX, PHC, VOC, PAH, metals	Soil and groundwater		
5. Former motor oil AST at 770 Bronson Avenue	Along west interior building wall	PCA #28 – Gasoline and Associated Products Storage in Fixed Tanks	On-site	BTEX, PHC, VOC	Soil and groundwater		
6. Former heating oil AST in the north residential building at 774 Bronson Avenue	Former building footprint at northeast corner of Phase Two property	PCA #28 – Gasoline and Associated Products Storage in Fixed Tanks	On-site	BTEX, PHC, VOC, PAH	Soil and groundwater		
7. Former heating oil AST in the south residential building at 774 Bronson Avenue	Former building footprint on east side of Phase Two property	PCA #28 – Gasoline and Associated Products Storage in Fixed Tanks	On-site	BTEX, PHC, VOC, PAH	Soil and groundwater		

Area of Potential Environmental Concern (APEC)	Location of APEC on Phase One Property	Potentially Contaminating Activity (PCA)	Location of PCA (On- Site or Off- Site)	Contaminants of Potential Concern	Media Potentially Impacted (Groundwater, Soil and/or Sediment)	
8. Former heating oil AST in the commercial building at 774 Bronson Avenue	Former building footprint at southeast corner of Phase Two property	PCA #28 – Gasoline and Associated Products Storage in Fixed Tanks	On-site	BTEX, PHC, VOC, PAH	Soil and groundwater	
9. Former heating oil AST in the south commercial building at 557 Cambridge Street	Former building footprint at southwest corner of Phase Two property	PCA #28 – Gasoline and Associated Products Storage in Fixed Tanks	On-site	BTEX, PHC, VOC, PAH	Soil and groundwater	
10. Former heating oil AST in the centre commercial building at 557 Cambridge Street	Former building footprint on the west side of Phase Two property	PCA #28 – Gasoline and Associated Products Storage in Fixed Tanks	On-site	BTEX, PHC, VOC, PAH	Soil and groundwater	
11. Former heating oil AST in the north commercial building at 557 Cambridge Street	Former building footprint at northwest corner of Phase Two property	PCA #28 – Gasoline and Associated Products Storage in Fixed Tanks	On-site	BTEX, PHC, VOC, PAH	Soil and groundwater	
12. Poor quality fill at 557 Cambridge Street and 774 Bronson Avenue	Entire Phase Two property	PCA #30 – Importation of Fill Material of Unknown Quality	On-site	BTEX, PHC, PAH, metals	Soil	
13. Former contractors' yard at 557 Cambridge Street	West part of the Phase Two property	PCA #Other – Registered waste generator	On-site	BTEX, PHC	Soil and groundwater	
14. Former treated lumber storage at 557 Cambridge Street	West part of the Phase Two property	PCA #59 – Wood Treating and Preservative Facility and Bulk Storage of Treated and Preserved Wood Products	On-site	РАН	Soil	

5.9.7 Investigation

Previous site investigative activities consisted of the drilling of boreholes to facilitate the collection of soil samples for visual inspection and chemical analysis. The boreholes were instrumented with monitoring wells to facilitate the collection of groundwater samples. EXP did into oversee any drilling activities at the Phase Two property.

Prior to the commencement of drilling, the locations of underground public utilities including telephone, natural gas and electrical lines were marked at the subject property by public locating companies. A private utility locating contractor was also retained to clear the individual borehole locations.

A drilling program was conducted at 770 Bronson Avenue in March 2015 under the supervision of Golder Associates. The drilling program was completed on March 24 and 25, 2015 by Marathon Drilling Ltd. (Marathon), a licensed well contractor. Marathon advanced four boreholes (BH15-1 to BH15-4) across the site, using a CCME track mounted drill. Boreholes were augured to refusal, then cored to depth. All of the boreholes were completed as monitoring wells. Bedrock was encountered between 2.4 and 3.1 metres below ground surface (m bgs) in all boreholes. On June 19, 2015, Golder installed and additional well (BH15-5) at 770 Bronson Avenue for geotechnical and hydrogeological site assessment.

A drilling program was conducted at 774 Bronson Avenue and 557 Cambridge Avenue in January 2016 under the supervision of WSP. The drilling program was completed January 11 to 13, 2016 by George Downing Estate Drilling (Downing), a licensed well contractor. Downing advanced six boreholes (BH15-1 to BH15-6) across the site using a CME 55 track mounted drill. Two of the boreholes were augured to refusal (BH15-1 and BH15-5). Four boreholes (BH15-2, BH15-3B, BH15-4, and BH-6) were augured to refusal, then cored to depth. Nested monitoring wells were installed in BH15-2, BH15-3, BH15-4, and BH15-6.

On March 27, 2015, Golder collected groundwater samples from the monitoring wells at 770 Bronson Avenue. Four groundwater samples, and a duplicate sample, were submitted for analysis of PHC, VOC, and PAH.

On January 19 and 21, February 15 and 23, and March 1, 2016, WSP collected groundwater samples from the monitoring wells at 774 Bronson Avenue and 557 Cambridge Street. A total of 20 samples and three supplicates were submitted for analysis of BTEX; seven samples and one duplicate were submitted for analysis of PHC; 19 samples and three duplicates were submitted for analysis of VOC, seven samples and one duplicate were submitted for analysis of PAH, and eight samples and one duplicate were submitted for analysis of metals and inorganics.

On August 11, 2022, EXP conducted an additional round of groundwater sampling of the monitoring wells at 770 Bronson Avenue. None of the monitoring wells installed at 774 Bronson Avenue or 557 Cambridge Street were still present. Four groundwater samples, plus a field duplicate, were submitted for analysis of PHC, VOC, and PAH. BH15-4 could not be sampled due to insufficient sample volume.

5.9.8 Soil Sampling

Chemical analyses were performed on selected soil samples recovered from the boreholes on the Phase Two property.

During the Golder March 2015 investigation, eight soil samples were submitted for analysis of PHC, VOC and PAH. All of the samples met the Table 7 SCS for all parameters analysed, with the exception of one sample from BH15-4 which exceeded the SCS for PHC F3. The sample which exceeded the Table 7 SCS was taken from 0.3 to 0.8 m bgs. A sample taken from the same borehole, but deeper (1.5 to 2.1 m bgs) met the Table 7 SCS. It was inferred that the source of the exceedance was likely a surface spill.

During the WSP January 2016 investigation, three soil samples and a duplicate were submitted for analysis of PHC and VOC, PAH, and metals. Two samples (BH15-4 and BH15-6) exceeded the SCS for lead, one sample (BH15-5) exceeded the SCS for nickel, and one sample (BH15-4) exceeded the SCS for mercury and cyanide. One sample (BH15-1) exceeded the SCS for multiple PAHs. The remaining samples met the Table 7 SCS for all parameters analysed.

The soil results are summarized in Tables 1 to 3 in Appendix E and are shown in plan view on Figures 7 to 9 and on cross-sections on Figures 10 to 12 in Appendix A.

Copies of the laboratory Certificates of Analysis are provided in Appendix F.

5.9.9 Groundwater Sampling

All groundwater samples were collected via a low flow sampling technique. Water quality parameters (such as water level, temperature, dissolved oxygen, conductivity, salinity, pH, oxygen reduction potential and turbidity) were monitored in order to ensure that the samples collected were representative of actual groundwater conditions.

In March 2015, groundwater sampling was conducted at 770 Bronson Avenue by Golder. Four groundwater samples (BH15-1 to BH15-4), and a duplicate were collected and submitted for analysis of PHC, VOC, and PAH. A groundwater sample was not collected from BH15-5, as that well was installed for geotechnical/hydrogeological purposes. One of the groundwater samples (BH15-2) exceeded the Table 7 SCS for benzene, and three groundwater samples (BH15-1, BH15-2, BH15-3) and the duplicate exceeded the Table 7 SCS for chloroform.

An additional round of groundwater sampling was conducted at these wells in August 2022 by EXP. Four groundwater samples (BH15-1, BH15-2, BH15-3, and BH15-5) and a duplicate were submitted for analysis of PHC, VOC and PAH. All of the samples were within the Tables 7 SCS for all parameters analysed.

In January, February and March 2016, groundwater sampling was conducted by WSP at 557 Cambridge Street and 774 Bronson Avenue. Groundwater sampling was conducted over multiple days due to limited sampled volume. Groundwater samples were submitted for analysis of BTEX, PHC, VOC, PAH, and/or metals. Additional samples were submitted for analysis of VOC to address chloroform exceedances present in the first round of groundwater sampling.

Benzene was detected in the initial groundwater sample from BH15-3A. As the exceedance was very close to the Table 7 SCS criteria for benzene (0.83 ug/L vs 0.5 ug/L), and additional two rounds of samples were conducted at this location. Neither of the subsequent groundwater samples from BH15-3A had

All of the chloroform exceedances were detected in monitoring wells installed in the bedrock. To facilitate drilling in the bedrock, municipal water was used to cool the drill bits. Chloroform is generated at municipal water treatment plants when chlorine is used to kill bacteria in the water. In accordance with Regulation 153/04 it is the opinion of the Qualified Person that the source of chloroform in these monitoring wells. In addition, subsequent groundwater sampling events at all of the wells with chloroform exceedances were within the Table 7 SCS.

Therefore, in accordance with Section 49.1 of Regulation 153/04, chloroform is not considered to exceed the SCS. Analytical results are included in Tables 4 to 6 in Appendix E and are shown in plan view on Figures 13 to 15 and on cross-sections on Figures 16 to 18 in Appendix A.

Copies of the laboratory Certificates of Analysis are provided in Appendix F.

Contaminants that exceeded the applicable standards included:

Soil: PHC fraction F3, benzo[a]anthracene, benzo[a]pyrene, benzo[b]fluoranthene, benzo[b]fluoranthene, dibenzo[a,h]anthracene, fluoranthene, indeno[1,2,3-cd]pyrene, cyanide, lead, mercury, nickel, and uranium.

Groundwater: None.

Maximum soil and groundwater concentrations are provided in Tables 7 and 8 in Appendix E.

5.9.10 Contaminant Fate and Transport

A variety of physical, chemical and biochemical mechanisms affect the fate and transport of the potential COC in soil and groundwater, the contribution of which is dependent on the soil and groundwater conditions at the Phase Two property, as well as the chemical/physical properties of the COC. Relevant fate and transport mechanisms are natural attenuation mechanisms, including advection mixing, mechanical dispersion/molecular diffusion, phase partitions (i.e. sorption and volatilization), and possibly abiotic or biotic chemical reactions, which effectively reduce COC concentrations.

PAH and metals impacted soil has been identified on the south part of the Phase Two property. As there were no groundwater exceedances identified on the Phase Twp property, the contamination does not appear to be migrating.

It is recommended that the impacted soil be removed from the Phase Two property when the property is re-developed.

6.0 Conclusion

PAH and metals impacted soil has been identified on the south part of the Phase Two property. As there were no groundwater exceedances identified on the Phase Twp property, the contamination does not appear to be migrating.

It is recommended that the impacted soil be removed from the Phase Two property when the property is re-developed.

The Qualified Person can confirm that the Phase Two Environmental Site Assessment was conducted per the requirements of Ontario Regulation 153/04, as amended, and in accordance with generally accepted professional practices.

Leah Wells, P.Eng. Environmental Engineer Earth and Environment Mark McCalla, P.Geo. Senior Project Manager Earth and Environment

Ma myall-

7.0 References

This study was conducted in accordance with the applicable Regulations, Guidelines, Policies, Standards, Protocols and Objectives. Specific reference is made to the following documents.

- Freeze and Cherry, *Groundwater*, Prentice Hall, 1979.
- Golder Associates, Phase One Environmental Site Assessment, 770 Bronson Avenue, Ottawa, Ontario, August 2015.
- Golder Associates, Phase Two Environmental Site Assessment, 770 Bronson Avenue, Ottawa, Ontario, August 2015.
- Golder Associates, Technical Memorandum, Remedial Action Plan, August 2016.
- Exp Services Inc., Phase One Environmental Site Assessment, 770 and 774 Bronson Avenue and 557 Cambridge Street, Ottawa, Ontario, September 2022.
- Ontario Ministry of the Environment, Conservation and Parks, Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario, December 1996.
- Ontario Ministry of the Environment, Conservation and Parks, Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, April 15, 2011.
- Ontario Ministry of the Environment, Conservation and Parks, *Guide for Completing Phase Two Environmental Site Assessments under Ontario Regulation 153/04*, June 2011.
- Ontario Ministry of the Environment, Conservation and Parks, Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act, July 1, 2011.
- Ontario Ministry of the Environment, Conservation and Parks, Management of Excess Soil A Guide for Best Management Practices, January 2014.
- Ontario Regulation 153/04, made under the Environmental Protection Act, as amended.
- Ontario R.R.O. 1990, Regulation 347, made under the Environmental Protection Act, as amended.
- Ontario R.R.O. 1990, Regulation 903, made under the Water Resources Act, as amended.
- Paterson Group Inc., Phase I Environmental Site Assessment, 770-774 Bronson Avenue, Ottawa, Ontario, April 2020.
- WSP Canada Inc., Phase 1 Environmental Site Assessment, 774 Bronson Avenue and 557 Cambridge Street South, Ottawa, Ontario, December 2015
- WSP Canada Inc., Phase Two Environmental Site Assessment, 774 Bronson Avenue and 557 Cambridge Street, Ottawa, Ontario, March 2016.

8.0 General Limitations

Basis of Report

This report ("Report") is based on site conditions known or inferred by the investigation undertaken as of the date of the Report. Should changes occur which potentially impact the condition of the site the recommendations of EXP may require reevaluation. Where special concerns exist, or Katasa Groupe ("the Client") has special considerations or requirements, these should be disclosed to EXP to allow for additional or special investigations to be undertaken not otherwise within the scope of investigation conducted for the purpose of the Report.

Reliance on Information Provided

The evaluation and conclusions contained in the Report are based on conditions in evidence at the time of site inspections and information provided to EXP by the Client and others. The Report has been prepared for the specific site, development, building, design or building assessment objectives and purpose as communicated by the Client. EXP has relied in good faith upon such representations, information and instructions and accepts no responsibility for any deficiency, misstatement or inaccuracy contained in the Report as a result of any misstatements, omissions, misrepresentation or fraudulent acts of persons providing information. Unless specifically stated otherwise, the applicability and reliability of the findings, recommendations, suggestions or opinions expressed in the Report are only valid to the extent that there has been no material alteration to or variation from any of the information provided to exp. If new information about the environmental conditions at the Site is found, the information should be provided to EXP so that it can be reviewed and revisions to the conclusions and/or recommendations can be made, if warranted.

Standard of Care

The Report has been prepared in a manner consistent with the degree of care and skill exercised by engineering consultants currently practicing under similar circumstances and locale. No other warranty, expressed or implied, is made. Unless specifically stated otherwise, the Report does not contain environmental consulting advice.

Complete Report

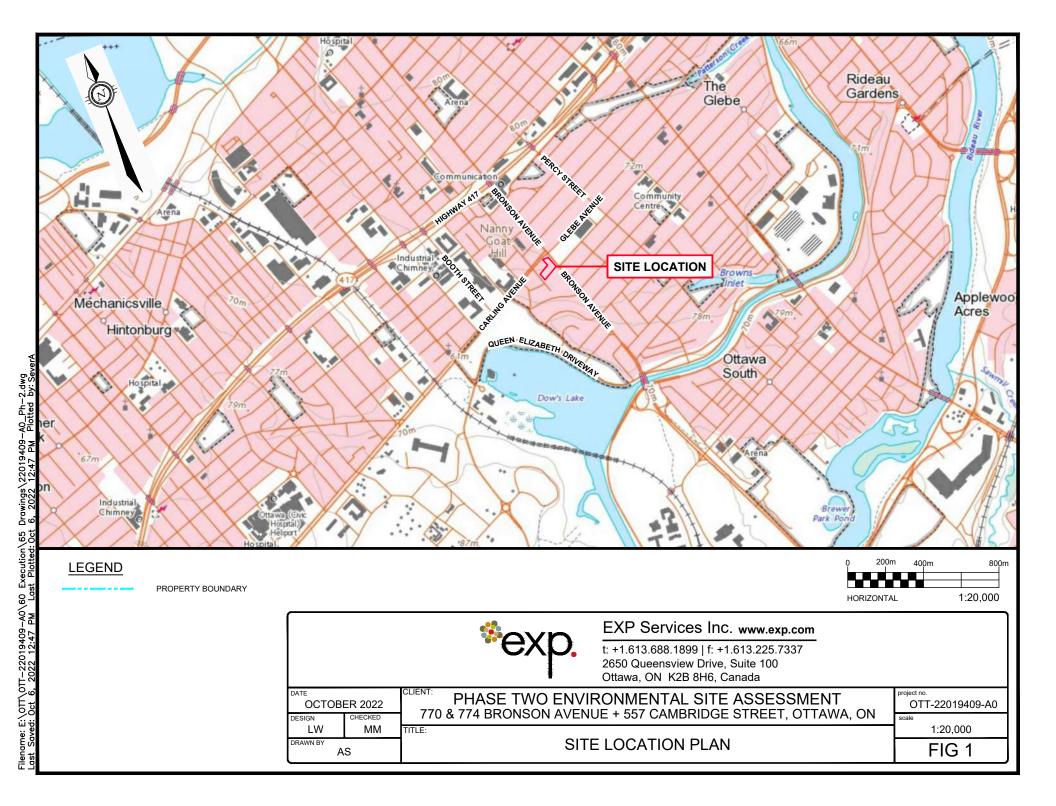
All documents, records, data and files, whether electronic or otherwise, generated as part of this assignment form part of the Report. This material includes, but is not limited to, the terms of reference given to EXP by the Client, communications between EXP and the Client, other reports, proposals or documents prepared by EXP for the Client in connection with the site described in the Report. In order to properly understand the suggestions, recommendations and opinions expressed in the Report, reference must be made to the Report in its entirety. EXP is not responsible for use by any party of portions of the Report.

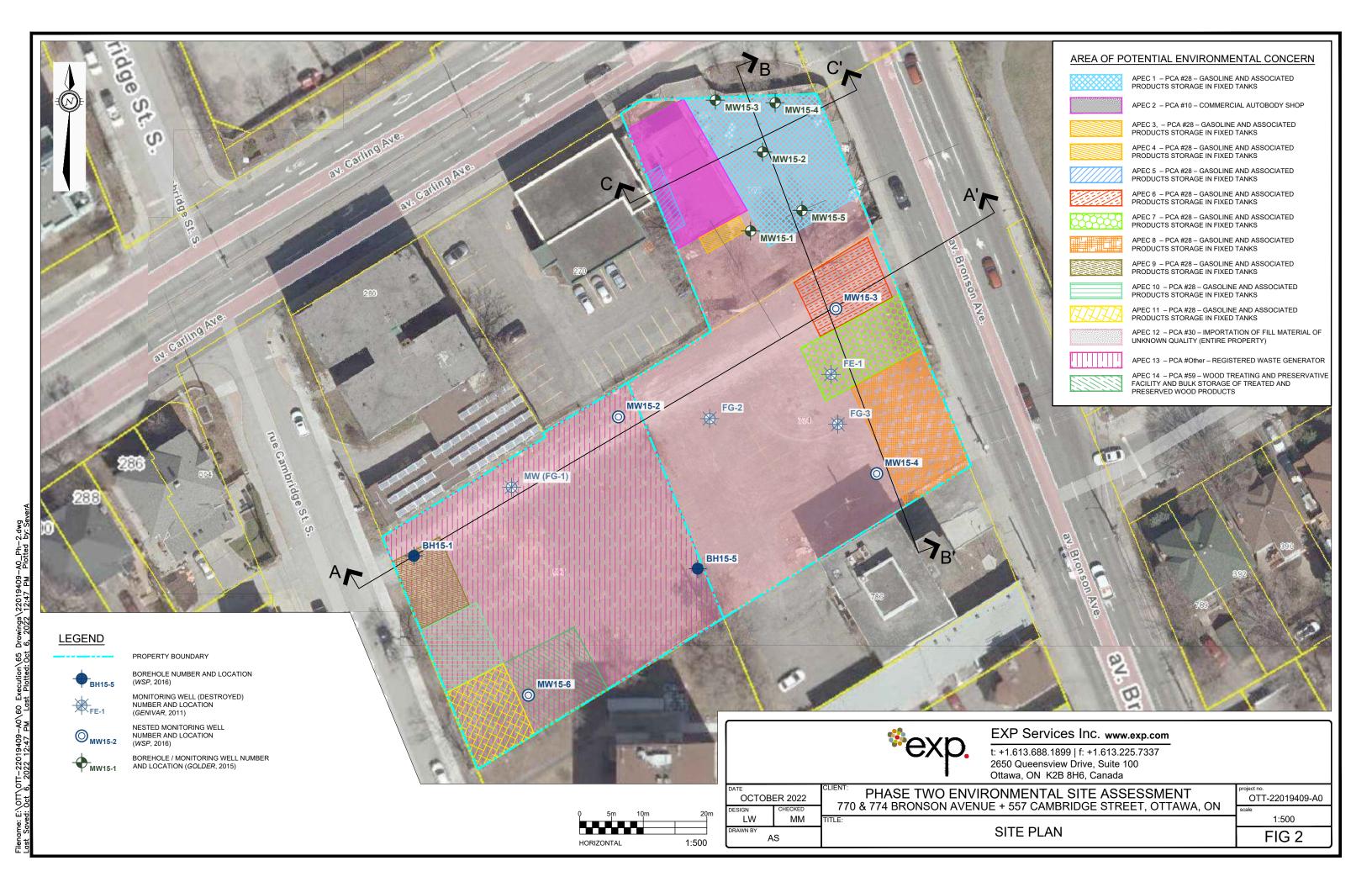
Use of Report

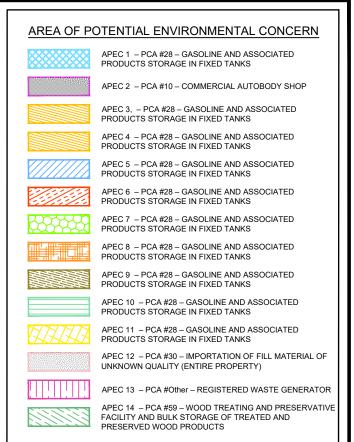
The information and opinions expressed in the Report, or any document forming part of the Report, are for the sole benefit of the Client. No other party may use or rely upon the Report in whole or in part without the written consent of EXP. Any use of the Report, or any portion of the Report, by a third party are the sole responsibility of such third party. EXP is not responsible for damages suffered by any third party resulting from unauthorised use of the Report.

Report Format

Where EXP has submitted both electronic file and a hard copy of the Report, or any document forming part of the Report, only the signed and sealed hard copy shall be the original documents for record and working purposes. In the event of a dispute or discrepancy, the hard copy shall govern. Electronic files transmitted by EXP utilize specific software and hardware systems. EXP makes no representation about the compatibility of these files with the Client's current or future software and hardware systems. Regardless of format, the documents described herein are EXP's instruments of professional service and shall not be altered without the written consent of EXP.




EXP Services Inc.


Katasa Groupe Phase Two Environmental Site Assessment 770 and 774 Bronson Avenue and 557 Cambridge Street, Ottawa, Ontario OTT-22019409-A0 October 6, 2022

Appendix A: Figures

LEGEND

PROPERTY BOUNDARY

PHASE ONE STUDY AREA (250m)

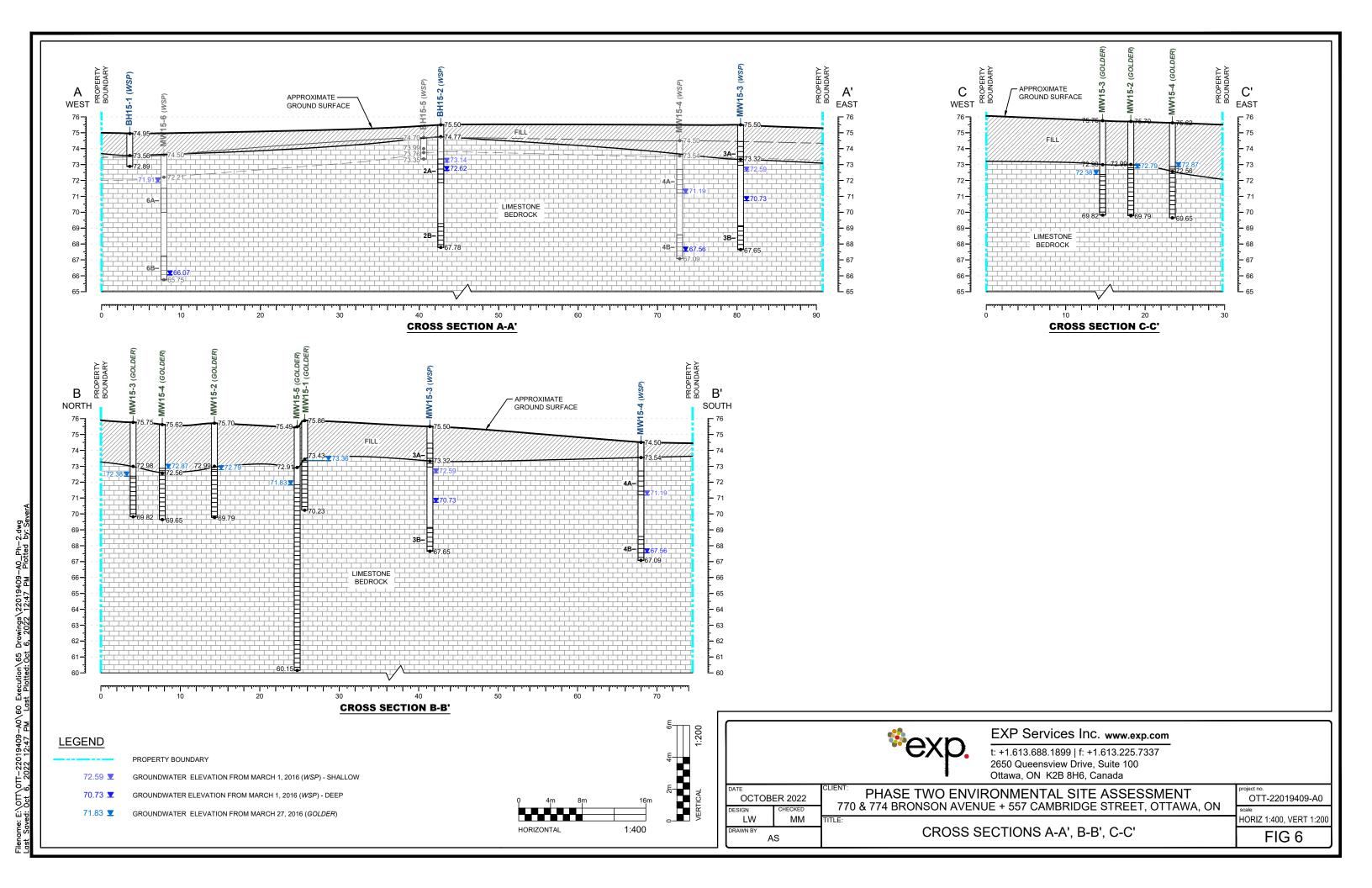
POTENTIALLY CONTAMINATING PCA #1 🛑

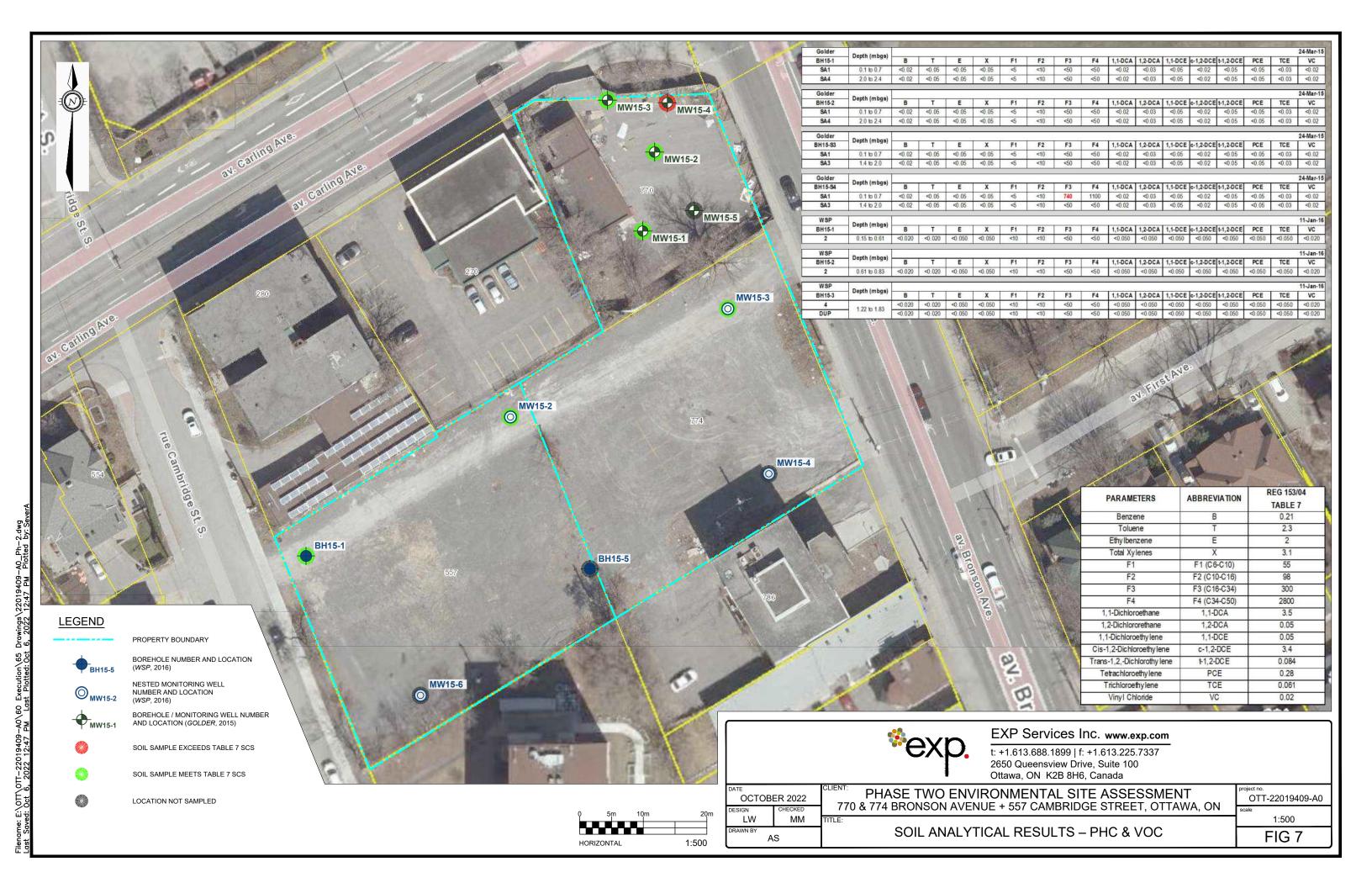
HORIZONTAL 1:2500

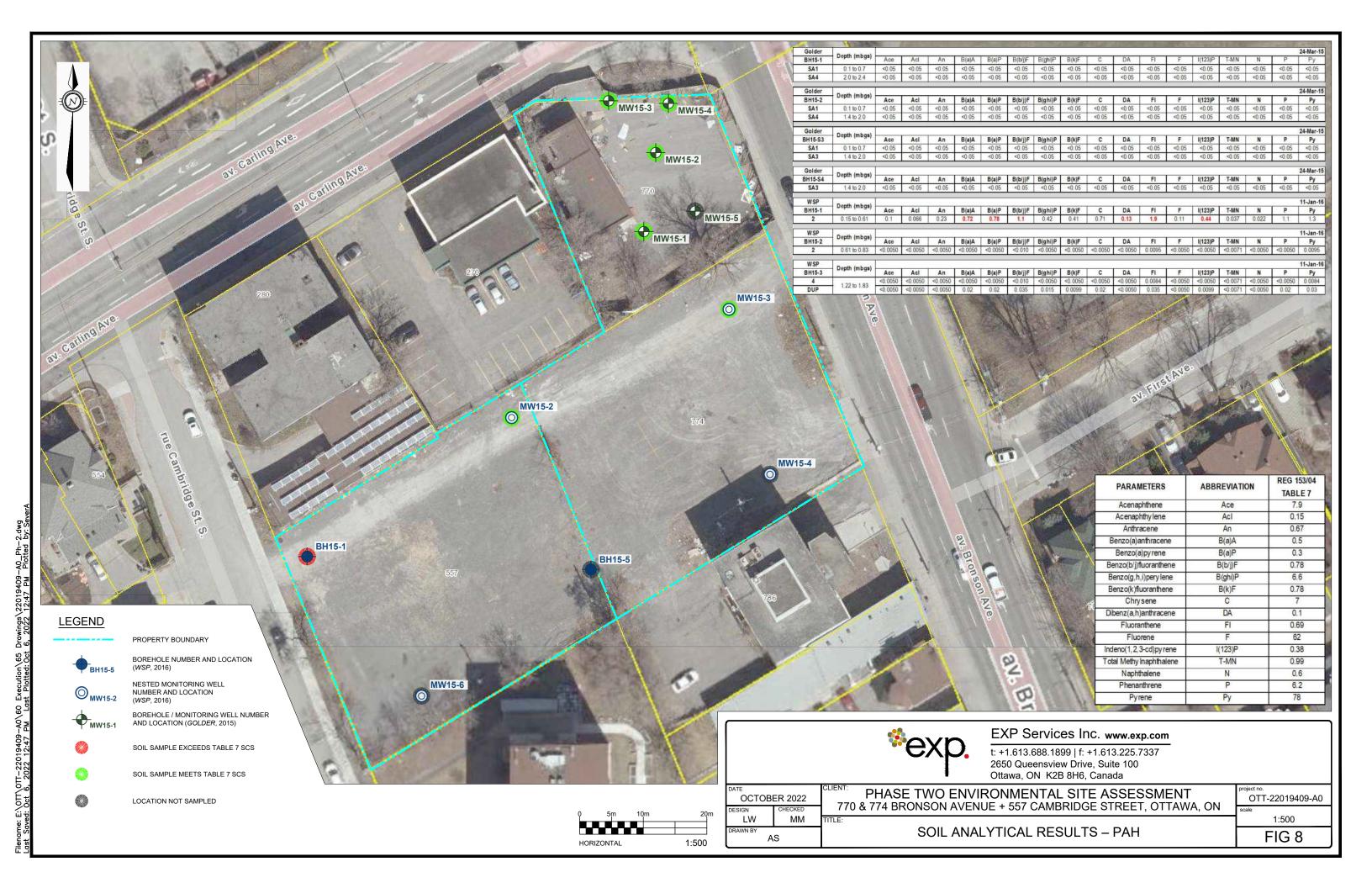
EXP Services Inc. www.exp.com

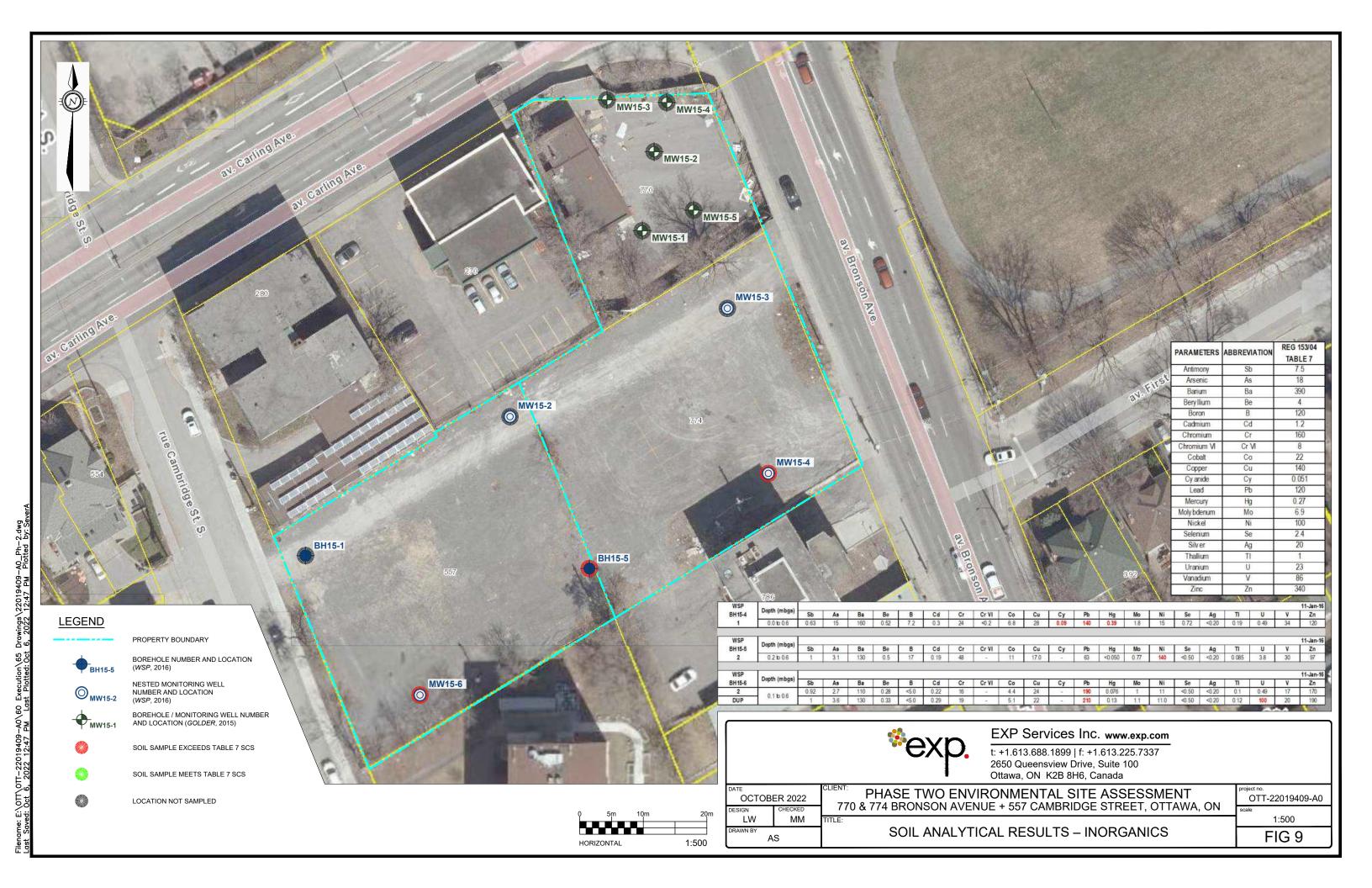
t: +1.613.688.1899 | f: +1.613.225.7337 2650 Queensview Drive, Suite 100 Ottawa, ON K2B 8H6, Canada

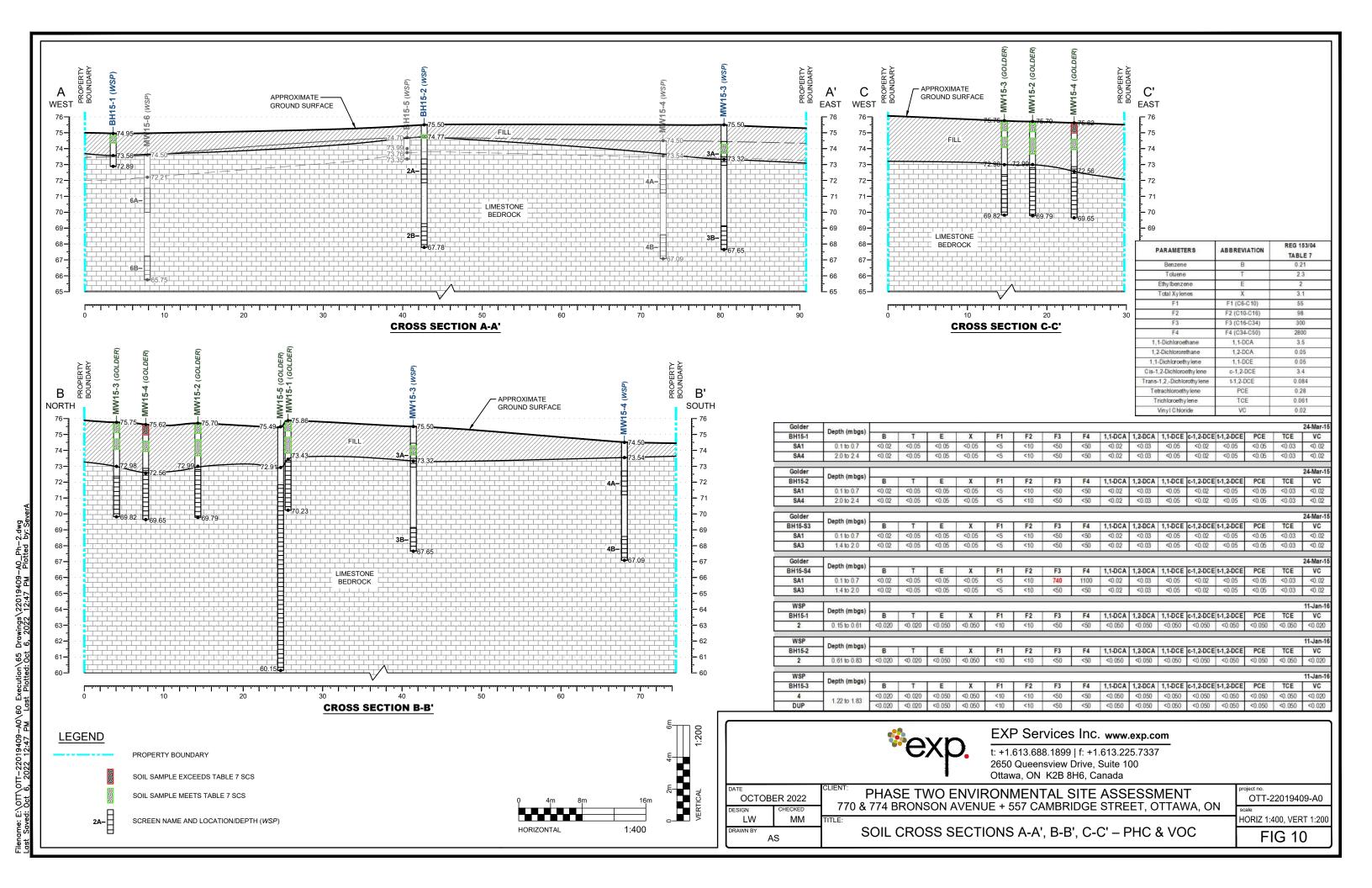
PHASE TWO ENVIRONMENTAL SITE ASSESSMENT 770 & 774 BRONSON AVENUE + 557 CAMBRIDGE STREET, OTTAWA, ON

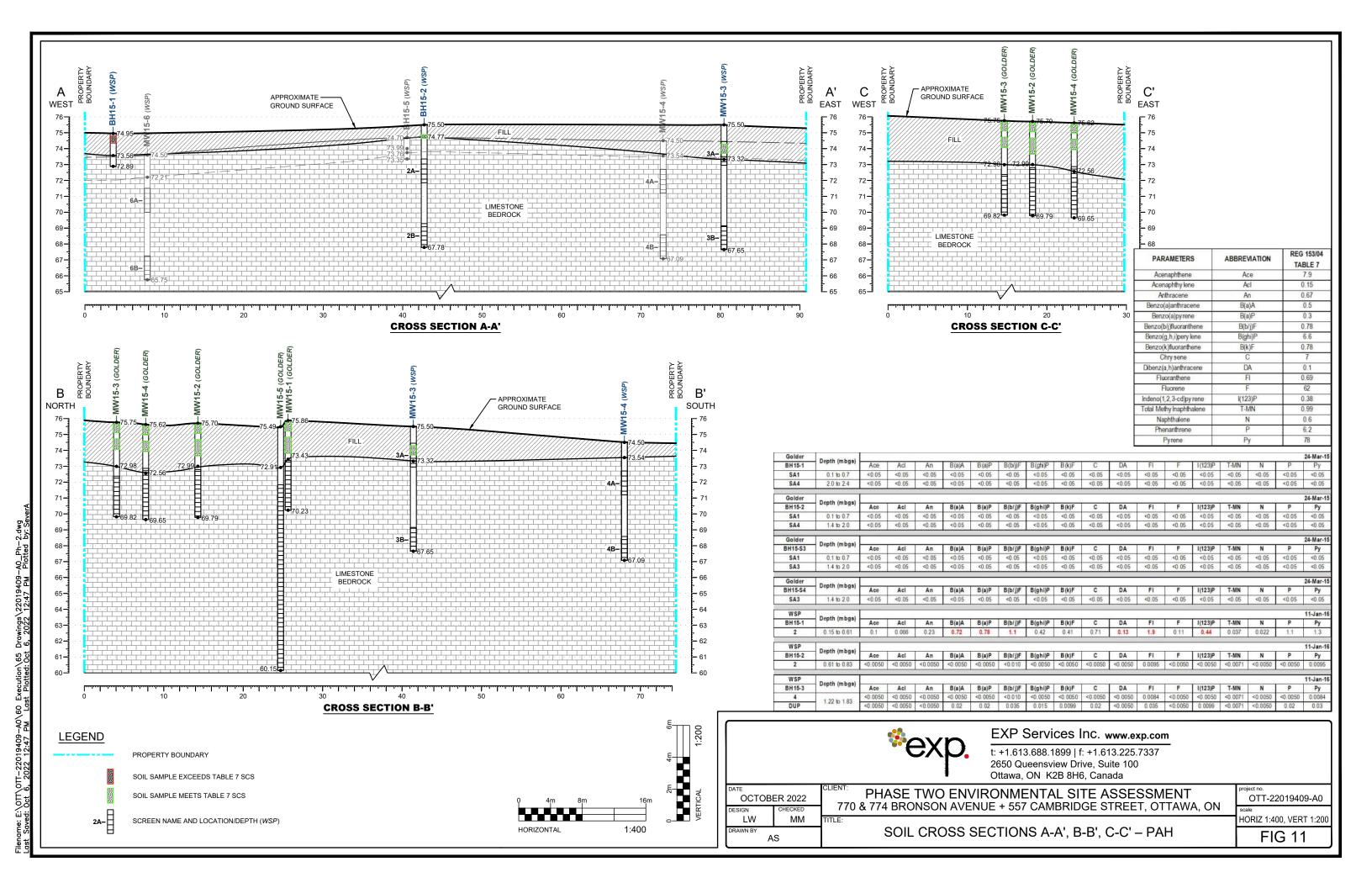

1:2,500

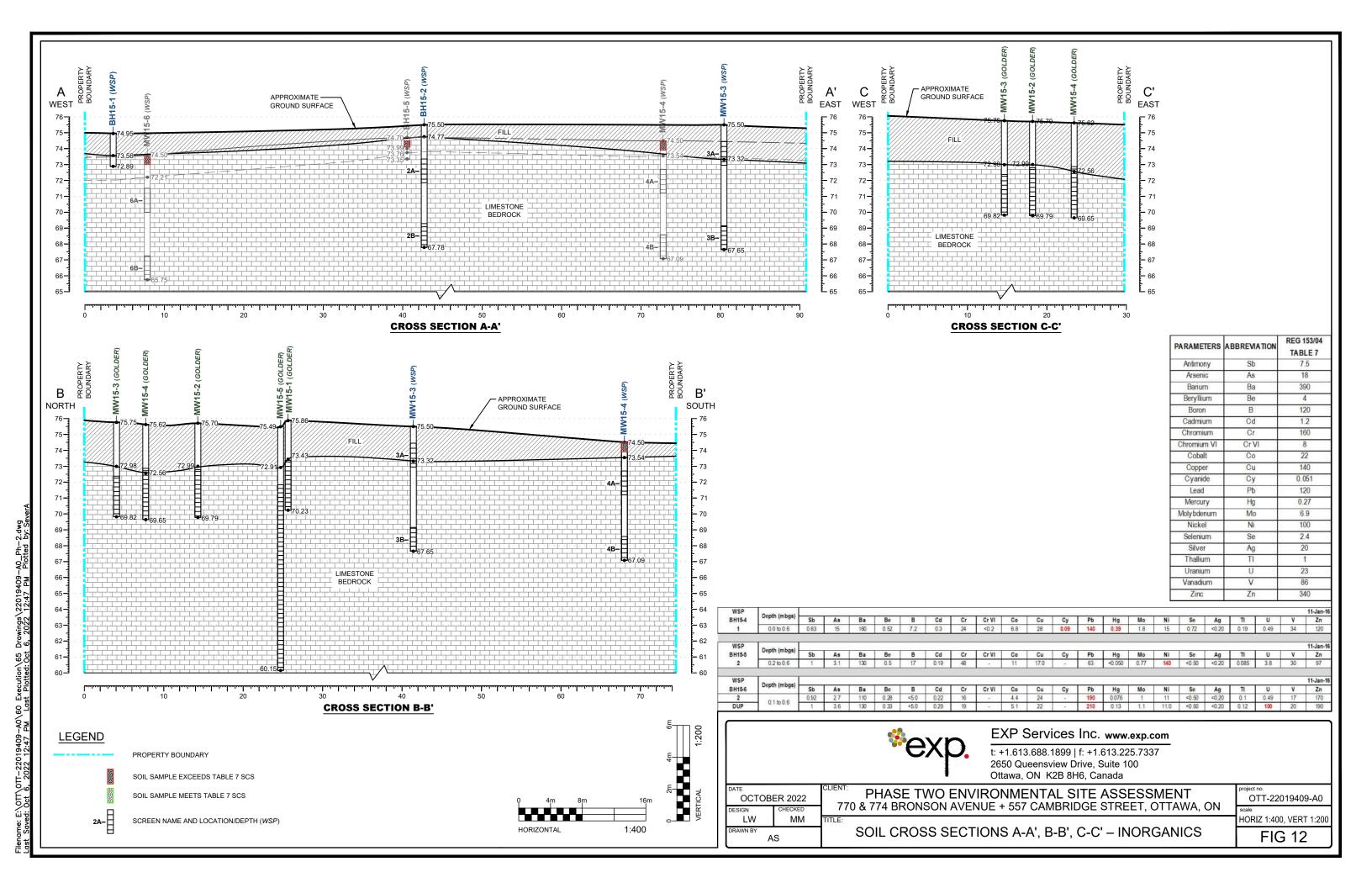

OTT-22019409-A0

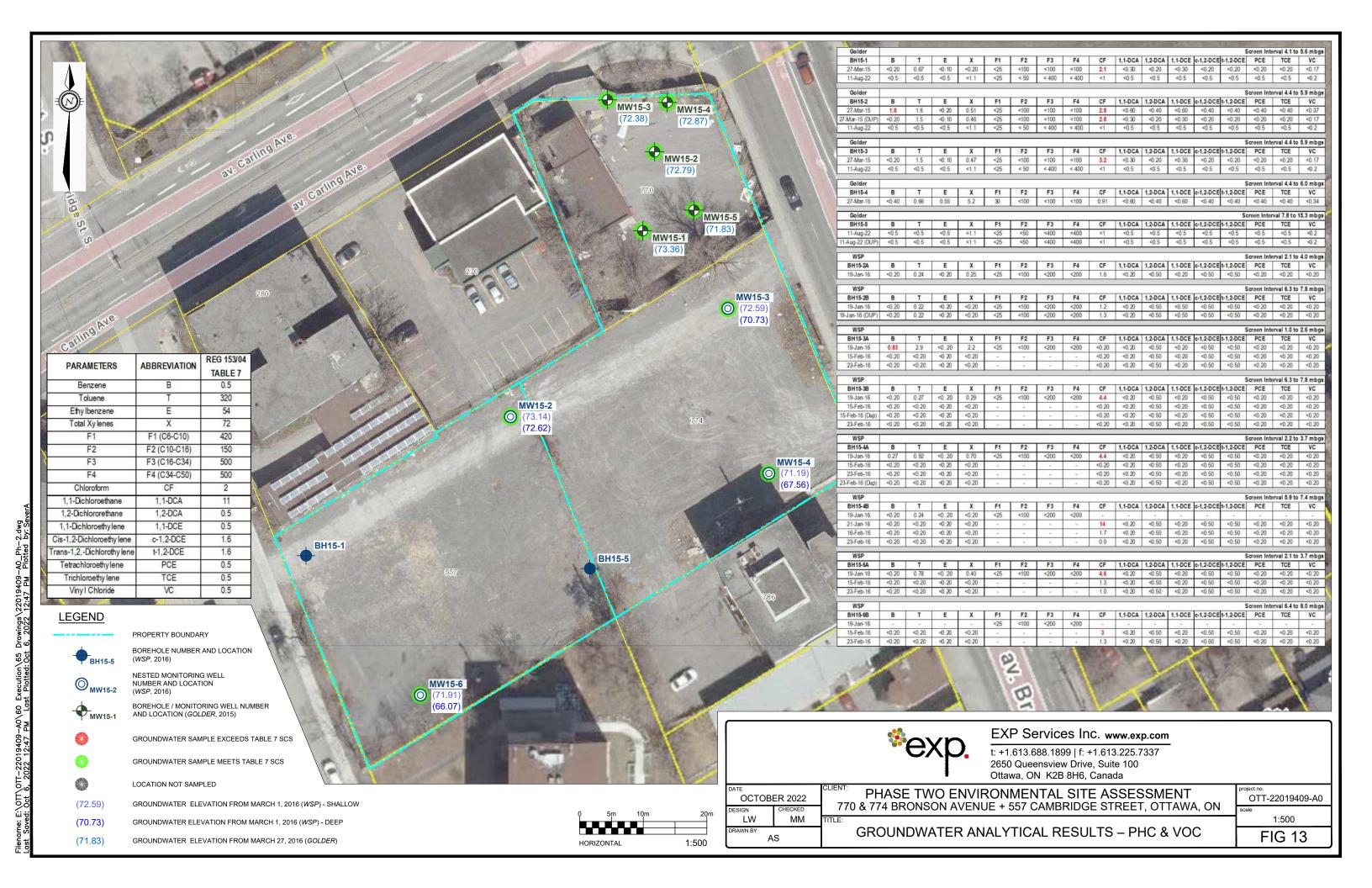

CONCEPTUAL SITE MODEL - PHASE TWO STUDY AREA

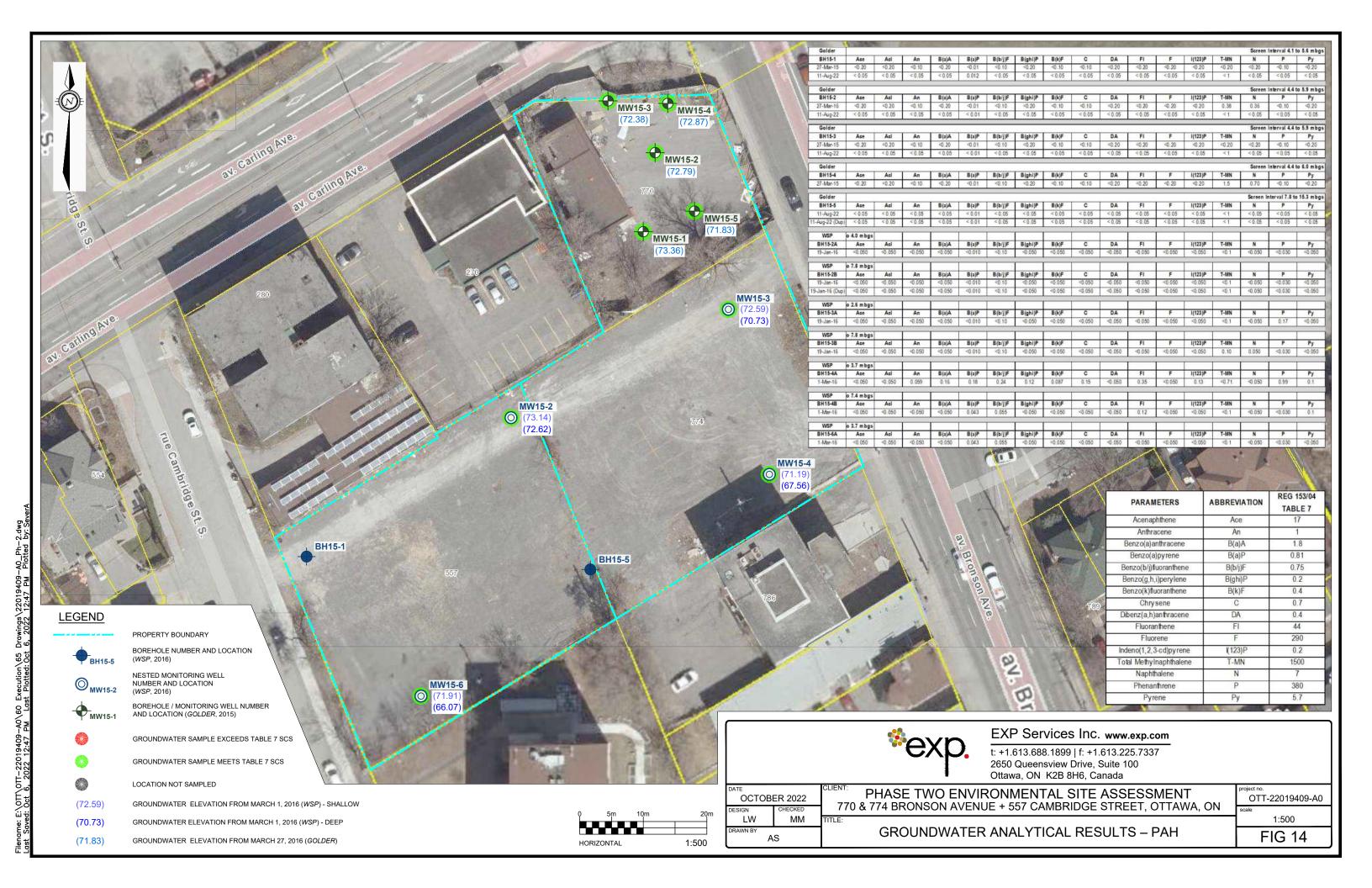

FIG 3

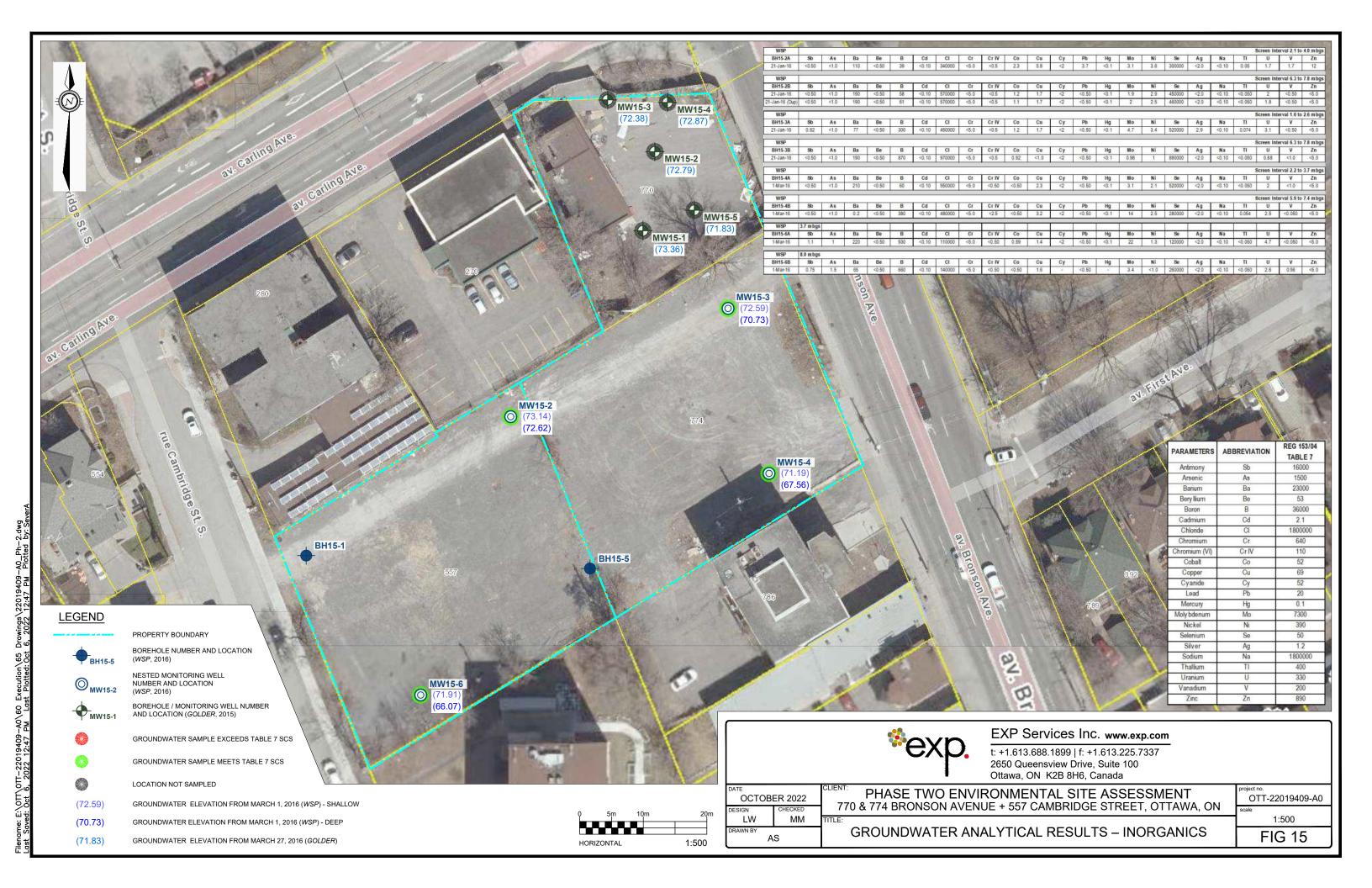

E:\0T\\0T-22019409-A0\\60 Execution\\65 ad: Oct 6, 2022 12:47 PM Last Plotted: Oct

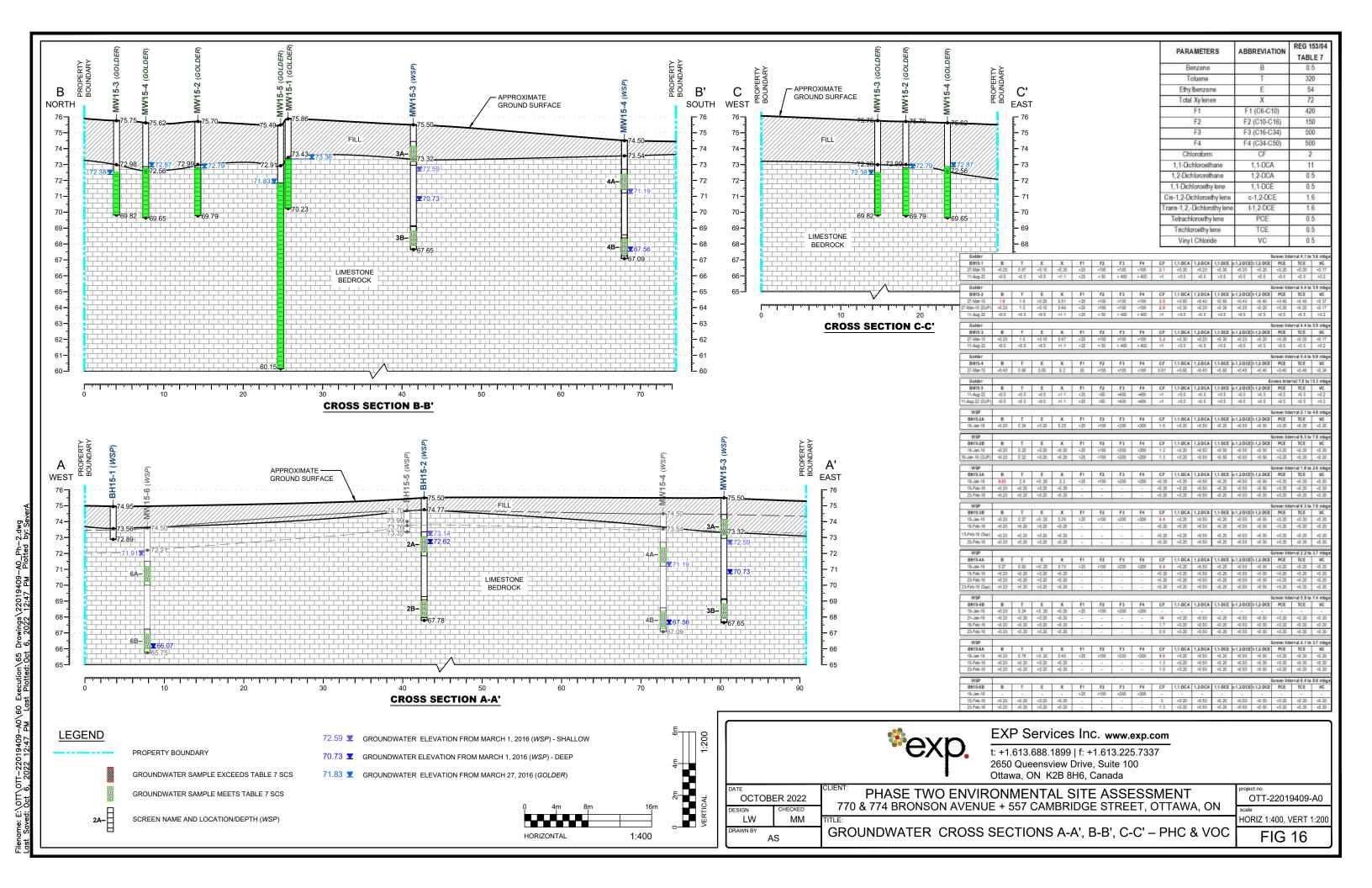


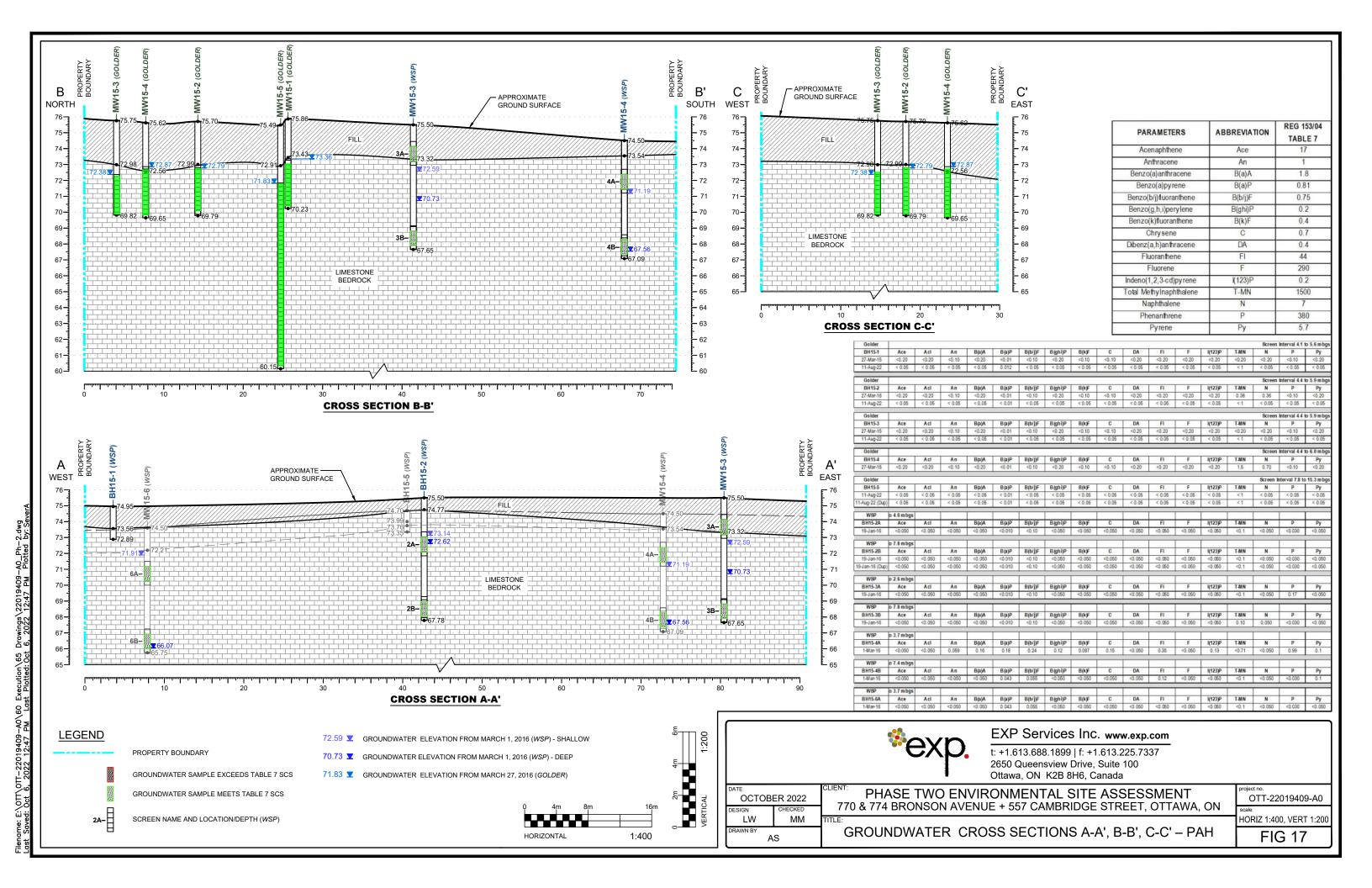


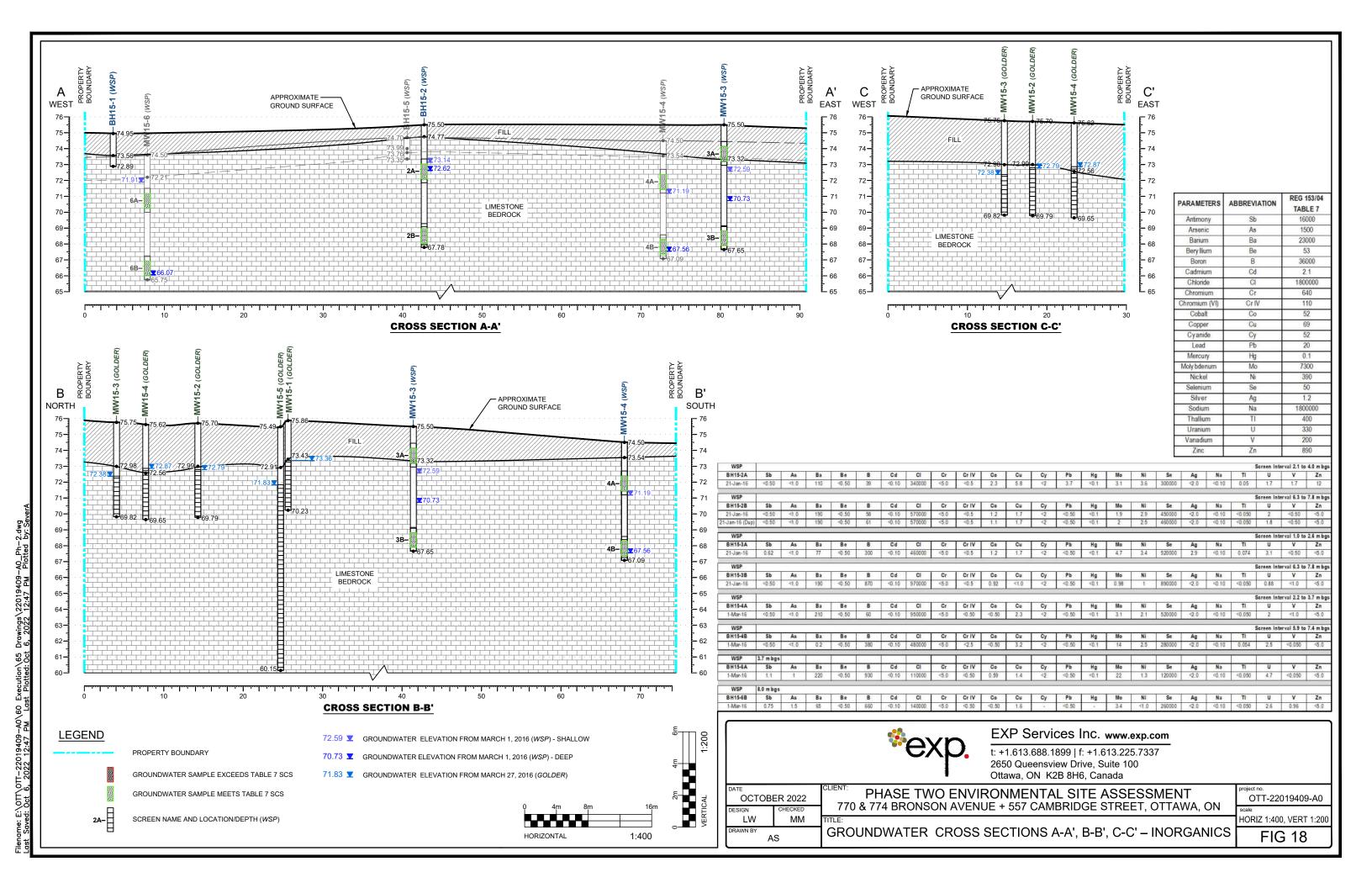


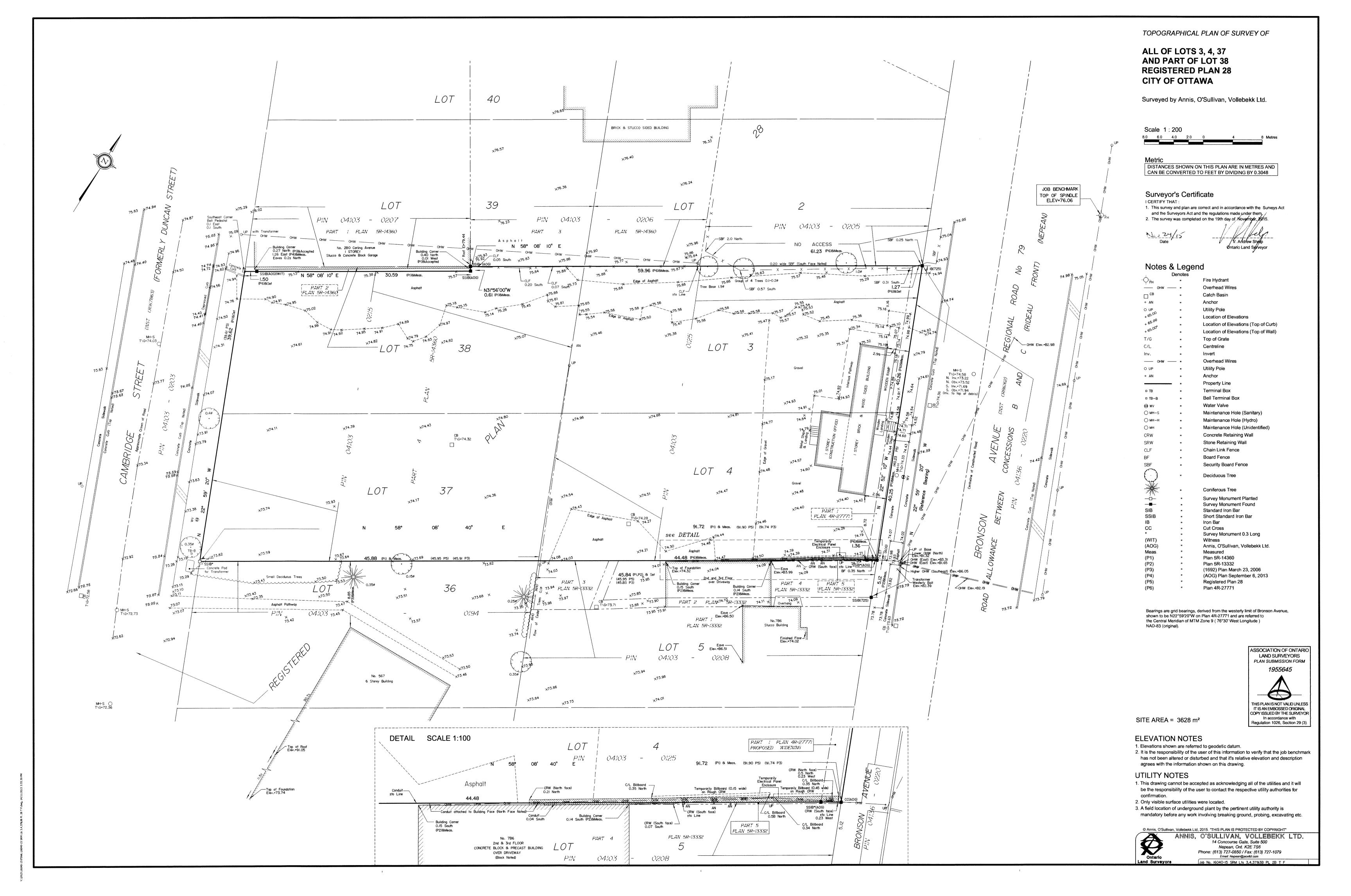












EXP Services Inc.

Katasa Groupe Phase Two Environmental Site Assessment 770 and 774 Bronson Avenue and 557 Cambridge Street, Ottawa, Ontario OTT-22019409-A0 October 6, 2022

Appendix B: Survey Plan

EXP Services Inc.

Katasa Groupe Phase Two Environmental Site Assessment 770 and 774 Bronson Avenue and 557 Cambridge Street, Ottawa, Ontario OTT-22019409-A0 October 6, 2022

Appendix C: Sampling and Analysis Plan

TABLE A-1 SAMPLING AND ANALYSIS PLAN 770 Bronson Avenue

Area of Potential Environmental Concern	Rationale	Location	Borehole Location ID	Well Installed (Y/N)	Depth	Soil Samples	Groundwater Samples
APEC 1 (a)- Automotive Service Garage, roil water seperator and hydraulic hoist a roil water separator and hydraulic hoist a roil water seperator and hydraulic hoist a roil water seperator and hydraulic hoist a roil water seperator and hydraulic hoist a roil water separator and hydraulic hoist a roil water seperator and hydraulic hoist a roil water separator and hydraulic hy	Borehole completed with a monitoring well to assess potential soil and groundwater impacts related to the service garage	To be located south of the garage building (depending on the results of the utility locates)	BH15-1	Y	All soil samples will be analyzed for petroleum hydrocarbons F1-F4, VOCs and PAHs. Provided the soil recovery allows, two soil samples from each borehole will be submitted for analysis. One soil sample will be will be submitted for analysis on field screening. The second soil sample will be selected to represent "worst case" concentrations based on field screening. The second soil sample will be selected to verically delineate the extent of contamination. One duplicate soil sample will be submitted for quality assurance purposes.	analyzed for petroleum hydrocarbons F1-F4, VOCs and PAHs. Provided the soil recovery allows, two soil samples from each borehole will be submitted for analysis. One soil sample will be	All groundwater samples will be analyzed for petroleum hydrocarbons F1-F4, VOCs and PAHs. One groundwater
	Borehole completed with a monitoring well to assess potential soil and groundwater impacts related to the service garage	To be located east of the garage service bays (depending on the results of the utility locates)	BH15-2	Υ			
	Borehole completed with a monitoring well to assess potential soil and groundwater impacts related to the USTs	To be located south of the former USTs and/or within the USTs reported by the Site owner	BH15-2	Y			
	Borehole completed with a monitoring well to assess potential soil and groundwater impacts related to the USTs	Located to the east of the former USTs as identiifed on the FIPs	BH15-3	Y		sample from each well will be submitted for analysis and one duplicate groundwater sample will be submitted for quality assurance purposes.	
	Borehole completed with a monitoring well to assess potential soil and groundwater impacts related to the USTs	Located to the within/west of the former USTs as reported by the FIPs	BH15-4	Y		submitted for quality	
	Borehole completed for geotechnical investigation.	Located west of former USTs as reproted by the Site owner.	BH15-5	Y	Borehole to be drilled to base of proposed building and well to be installed to evaluate deeper bedrock permeability	Sample soil and bedrock for geotechnical purposes, document any environmental impacts.	None proposed uniless required for subsequent vertical delineation.

Notes:

All drilling and sampling to be compelted in accordance with Golder Standard Operating Procedures.

December 23, 2015

Fraser Smith
Assistant Vice President
Textbook Student Suites
51-A Caldari Road, Unit 1 M
Vaughan, Ontario L4K 4G3

Confidential

Sent via email: fraser@textbooksuites.com

Subject: Phase One and Phase Two Environmental Site Assessments

and Record of Site Condition (Rev2)

744 Bronson Avenue Ottawa, Ontario

Dear Mr. Fraser Smith,

WSP Canada Inc. (WSP) is pleased to provide our work program and cost estimate to complete a Phase One Environmental Site Assessment (ESA) and a Phase Two ESA for the above noted site.

We understand that a Record of Site Condition (RSC) for the Site may be filed at a later date, and, as such, the Phase Two ESA will be completed to the *Ontario Regulation 153/04* standards to support the filling of a RSC.

The Phase Two ESA cost is an estimate based on our experience with similar facilities in a commercial/industrial setting with fractured bedrock less than 2 m below ground surface (mbgs). If required, a more detailed cost estimate can be prepared after the background review and site visit have been conducted as part of the Phase One ESAs.

During a site visit early in November 2015, it was determined that only one (i.e., FG-1) of the three historical monitoring wells installed on the subject Site had survive the demolition activities. The historical borehole locations are shown on the attached **Figure 1**. As a result groundwater monitoring and sampling of this single monitoring well will be included in the proposed Phase Two ESA.

1.1 PHASE ONE ENVIRONMENTAL SITE ASSESSMENTS

A Phase One ESA will be carried out to assess if current and/or former activities/operations at the site and/or adjacent properties have adversely affected the site from an environmental perspective. The purpose of the records review, inspection and interviews is to establish the development history of the site and identify issues of actual and/or potential environmental concerns, if any, related to historical and current land use.

WSP Canada Inc. 294 Rink Street, Suite 103 Peterborough, ON K9J 2K2

Phone: 705-743-6850 Fax: 705-743-6854 www.wspgroup.com

The Phase One ESA will include the following tasks:

- → Project initiation and communications. Discussions will be held with the property owner to obtain background information for the site. This will include review of site plans, drawings, surveys, previous reports and other information which may be available. In addition, arrangements will be made for the Site inspection visit. We understand that the work being completed is confidential in nature. Our team has conducted ESAs for various clients in a similar situation. WSP will work with the client to ensure that the confidential nature of our investigations is maintained during any on-site activities. This will be accomplished by establishing a designated on-site contact and developing a communications plan for interacting with staff at the site.
- → Review of background and historical information. A records review will be conducted to obtain background and historical information for the site. This will include a review of the EcoLog ERIS System. The review will generally include the following items:
 - Aerial photographs of the Site and surrounding areas for several different eras
 typically from the 1950s, 1960s and 1980s. Newer aerial photography and satellite
 imagery will also be obtained from on-line sources, as available.
 - Local topographic and drainage maps.
 - Ontario Ministry of the Environment and Climate Change well records.
 - Geological and hydrogeological mapping available for the area.
 - City directories and other information sources to assess past and present occupants of the site and surrounding areas.
 - Fire insurance plans, if any.
 - Registries with respect to underground storage tanks, waste disposal sites, waste generator information for the site and surrounding areas.
 - Information regarding Municipal and Provincial compliance issues on the site and surrounding areas. This will include a search of the Ontario Ministry of the Environment and Climate Change Brownfield site registry (Records of Site Condition).
 - Any internal documentation available from the owner regarding previous site history and site operations.
- → Site inspection. A detailed site inspection will be conducted. The inspection will include portions of the Site where access is permitted and can be safely conducted. The site will be inspected for evidence of activities which may result in potential impact to soil and ground water. These include evidence of historical storage tanks, industrial operations, and materials handling and storage. A cursory evaluation of adjacent properties will also be completed.

Confidential

- → Interviews. Person(s) knowledgeable of the development history at the site and surrounding areas will be interviewed, if available. Interviews also verify the information collected as part of the records review and the site visit.
- → Development of a Conceptual Site Model (CSM). The work program will document the Potential Contaminating Activities on the site and on properties that fall within a 250 m radius of the site. This will include the determination of the likelihood that one or more contaminants have affected any land or water on, in, or under the Phase One site.
- → Report preparation. A Phase One ESA report will be prepared following completion of the above-noted work. The report will provide a summary of the information gathered during the study. The report will identify Areas of Potential Environmental Concern with respect to the site.

1.2 PHASE TWO ENVIRONMENTAL SITE ASSESSMENTS

A Phase Two ESA work plan has been prepared based on the typical drilling and laboratory requirements for similar properties in an industrial/commercial setting and based on our past experience. The assumptions used in the cost estimate are included in the described work plan below. The environmental concerns identified during the Phase One ESA may indicate that additional or less drilling/laboratory analysis is required. As such, WSP would need to make modifications to the work plan and cost estimate. The Phase Two ESA will include the following:

- → Preparation of a site-specific health and safety plan to be used by WSP's field staff during the proposed field activities.
- → Clearance of public and private underground utilities and services prior to commencement of drilling activities.
- > The advancement of two boreholes to refusal on bedrock and four nested boreholes across each site to a termination depth of approximately 3 mbgs (10') for the shallow boreholes and 7.6 mbgs (25') for the deeper boreholes. The currently proposed borehole locations are presented on the attached Figure 1 and the proposed potential work to be completed at each proposed borehole location has been summarized on the attached Table 1.
- → The soil profile of each borehole will be logged in the field and screened for total organic vapours with a photoionization detector (PID) and/or a combustible gas detector (CGD).
- → The installation of groundwater monitoring wells in all of the boreholes at the site to assess groundwater quality, assess groundwater flow direction, and vertical gradients.
- → The wells will be surveyed to a local benchmark to determine groundwater flow direction.
- → Submission of worst-case soil samples, based on field screening and visual/olfactory observations, to an accredited laboratory for testing of potential contaminants of concern (PCOCs) related to each of the APECs identified in the Phase One ESA. We have assumed that the PCOCs will include metals and inorganics (M&I), petroleum hydrocarbons (PHCs F1-F4), volatile organic compounds (VOCs), and polycyclic aromatic hydrocarbons (PAHs). Six borehole locations with soil samples to be submitted for each of four parameter sets resulting in a total of 24 soil analytical results.

Page 3 of 8 December 23, 2015

WSP

Confidential

- → The groundwater wells will be developed to remove drilling fluid from the bedrock coring process. Prior to collecting the groundwater samples these wells will purged and then sampled. A groundwater sample from each of the 8 new wells plus one existing well for a total of 9 groundwater sample locations submitted to the laboratory for analysis of the all four PCOCs for a total of 36 groundwater analytical results.
- → A second round of groundwater sampling will be conducted approximately 3 months after the first round, if required.
- → In situ permeability testing of three of the shallow wells and three of the deeper wells will be completed as soon as possible after installation of the monitoring wells.
- → For quality assurance/quality control (QA/QC) purposes, one blind duplicate sample per medium sampled (i.e., soil and groundwater) will be submitted for laboratory analysis of the full suite of parameters noted above for each site (i.e., one blind field duplicate for each set of parameter so four blind field soil duplicates and eight blind field groundwater duplicates). In addition two trip blanks (i.e., one per event) tested for VOCs in groundwater will also be submitted for QA/QC purposes.
- → Completion of a Phase Two ESA report. The report will present the results of the investigation and provide recommendations regarding the extent of environmental impact to the soil and groundwater at each site. It is proposed to complete a standalone report for each of the five sites.

Standard field procedures and protocols will be followed to prevent cross-contamination during drilling and sampling. The groundwater samples for metals will be field-filtered using a disposable inline 0.45 micron filter.

Excess soil from the drilling and purge water from the wells will be placed into drums and left at the Site following the completion of the Phase Two ESA. Upon receipt of the analytical results, WSP can arrange for the appropriate disposal of these materials on a time and materials basis to be billed to the project. At this time, costs have not been included in this proposal for waste characterization analyses or off-Site disposal activities. Typical waste disposal cost is approximately \$450 to \$550 per drum of non-hazardous waste in addition to waste characterization and field monitoring costs.

Also, this cost estimate does not include the cost to decommission the monitoring wells, which is required to be completed by a licenced well drilling contractor when the wells are no longer in use or required. Costs for completing a formal site survey, if required, are not included in this proposal at this time.

The Phase Two ESA cost estimate does not include any cost for a ground penetrating radar or electromagnetic survey, which may be required if there are suspected underground storage tanks which have not been removed from the Site.

The soil and groundwater chemical results will be compared to the applicable standards set out in Soil, *Ground Water and Sediment Standards for Use under Part XV.1* of the Environmental Protection Act (MOECC, 2011). Of note, the investigation will confirm the presence/absence of contaminants in the subsurface materials at the samples locations of the site. Detailed

Confidential

contamination delineation, waste characterization testing and disposal, repair of damaged underground utilities and site restorations are not included in the scope of work. Evaluation of environmental concerns beyond the areas of concern or the site boundaries is outside the scope of work.

RECORD OF SITE CONDITION 1.3

Upon the completion of the Phase 1 and Phase 2 ESAs, if Site remediation work is practicable then approximately six months after the remediation work has been completed and the two quarterly post-remediation groundwater sampling event have been completed, then WSP can prepare and submit Record of Site Condition (RSC) documentation to the Ministry of the Environment and Climate Change (MOECC) in accordance with the O. Reg. 153/04 (as amended). This includes submission of reports and tabular electronic test data and related Site documentation for the subject property.

Prepared responses to address requests for additional information from MOECC to approve the RSC will be discussed with the Client before we proceed. Costs for any additional work, if necessary, are not included and required lawyer documents subject to advisement. It should be noted that a RSC can take several months to receive final MOECC approval.

It is assumed that the Client will provide the following documentation:

- certificate of status for the current property owner (within 30 days of submission),
- copy of the deed, transfer or parcel register.
- letter from you lawyer confirming the legal description of the RSC property,
- legal survey signed and dated by an OLS, and
- owner's declaration.

1.4 **TEAM MEMBERS**

WSP will provide an experienced team for completion of this assignment. The team will be comprised of senior and intermediate environmental engineers and scientists who have completed similar assignments. The work will be overseen by Mr. Philip Romeril, a senior environmental engineer and QPESA with WSP with over 30 years of experience. Project management, fieldwork coordination and reporting will be completed by Ms. Lisa Gardiner. Both Mr. Romeril and Ms. Gardiner are situated in WSP's Peterborough office. The site investigation work will be completed by Kathryn Maton from WSP's Ottawa office.

EXP Services Inc.

Katasa Groupe Phase Two Environmental Site Assessment 770 and 774 Bronson Avenue and 557 Cambridge Street, Ottawa, Ontario OTT-22019409-A0 October 6, 2022

Appendix D: Borehole Logs

Prepared by: Kathryn Maton Reviewed by: Phil Romeril

Date (Start): 1/11/2016 Date (End): 1/11/2016

Project Name: Phase Two Environmental Site Assessment

CME 55

Auger

Downing Estate Drilling Ltd.

Drilling Company:

Drilling Equipment:

Drilling Method:

774 Bronson Avenue and 557 Cambridge Street South, Ottawa, Ontario

ODOUR

VISUAL

F - Light M - Medium P - Persistent

Sector:

Projet: PHASE II ESA - 774 BRONSON AVE.GPJ Type rapport: WSP_EN_WELL-ENVIRONMENTAL Data Template: WSP_TEMPLATE_GEOTECH.GDT 2/9/2016

Textbook Student Suites Client:

Project Number:

151-13503-00

Geographic Coordinates:

X = 445171 mEY = 5027646 mN

Surface Elevation:

75 m (Approximate)

PAH

Top of PVC Elevation:

CHEMICAL ANALYSIS

SAMPLE TYPE

DC - Diamond Corer

Poly-Chlorinated Biphenyls PCB

BTEX Benzene, Toluene, Ethylbenzene, Xylene

Inorg. C. Phenol. C. VOC

PH C₁₀-C₅₀ PH F1-F4 Inorganic Compounds
Phenolic Compounds
Volatil Organic Compounds (MAH Metals

Polycyclic Aromatic Hydrocarbons Petroleum Hydrocarbons C₁₀-C₅₀ Petroleum Hydrocarbons F1-F4 (C₁₀-C₅₀) Arsenic, Barium, Cadmium, Chromium, Cobalt, Copper, Lead, Manganese, Molybdenum, Nickel, Silver, Tin, Zinc. Leacheate Tests (Haz. Waste Reg.)

Monocyclic Aromatic Hydrocarbons

SS - Split Spoon MA - Manual Auger TR - Trowel ST - Shelby Tube TU - DT32 Liner 200 mm Borehole Diameter: D - Disseminated Product S - Saturated with Product Drilling Fluid: & CAH) None Dioxins & Furans
Chlorinated Aliphatic Hydrocarbons HWR Diox & Fur CAH Sampling Method: Split Spoon ▼ Free Phase OBSERVATIONS MONITORING WELL GEOLOGY / LITHOLOGY SAMPLES % RECUPERATION VAPOR CONC. (ppm OR % LIE) DEPTH ODOUR VISUAL DUPLICATE LITHOLOGY DESCRIPTION DESCRIPTION " (Blow/6" DIAGRAM REMARKS ELEVATION FMPD Ground surface. 0.05 74.95 **ASPHALT** 1.6 BH15-1 0.15 FILL, crushed limestone gravel and sand PHCs F1-F4 BTEX PAH VOC 1.2 SS 40 BH15-1 12 14 FILL, sand and crushed limestone gravel, 2 with some asphalt and pieces of brick, compact, dry, grey 0.5 0.5 5 25 30 SS 50 1.3 BH15-1 3 1.0 1.0 73.78 BH15-1 GRAVEL, shale fragments SS 2.1 37 4 73.56 BEDROCK, shale 6.1 BH15-1 1.5 5 BEDROCK, limestone with black shale partings 0 50-1 ss 2.0 2.0 2.11 72.89 Auger Refusal at 2.11 mbgs End of borehole at 2.11 m. 2.5 2.5 Page 79 of 207

Page 1 of 1

Prepared by: Kathryn Maton Reviewed by: Phil Romeril

Date (Start): 1/11/2016 Date (End): 1/13/2016

Project Name: Phase Two Environmental Site Assessment

Site:

774 Bronson Avenue and 557 Cambridge Street South, Ottawa, Ontario

Sector:

Projet: PHASE II ESA - 774 BRONSON AVE.GPJ 1ype rapport: WSP_EN_WELL-ENVIRONMENTAL Data Template: WSP_TEMPLATE_GEOTECH.GDT 29/2016

Client:

Textbook Student Suites

Project Number:

Geographic Coordinates:

151-13503-00 X = 445204 mEY = 5027668 mN

Surface Elevation: Top of PVC Elevation: 75.6 m (Approximate) 76.62 m (Approximate)

Drilling Company: Drilling Method:

Drilling Equipment:

CME 55

Auger / HQ Casing 200 mm / 06 mm

Downing Estate Drilling Ltd.

ODOUR F - Light M - Medium P - Persisten

SAMPLE TYPE CHEMICAL ANALYSIS DC - Diamond Corer SS - Split Spoon MA - Manual Auger TR - Trowel ST - Shelby Tube

PCB Poly-Chlorinated Biphenyls
BTEX Benzene, Toluene, Ethylbenzene,
Xylene
Inorg. C. Inorganic Compounds
Phenol. C. Phenolic Compounds

MAH Monocyclic Aromatic Hydrocarbons
PAH C₁₀-C₅₀ Petroleum Hydrocarbons C₁₀-C₅₀
PH F1-F4 Petroleum Hydrocarbons F1-F4 (C₁₀-C₅₀)
Metals Arsenic, Barium, Cadmium, Chromium.

Drilling	, Flui)iameter id: //ethod:	200 mm / 96 mm Municipal Water Split Spoon	VISUAL D - Disser S - Satura	ited with P	roduct	S	U - DT3	by Tube 2 Liner		Phenol. C. F VOC V Diox. & Fur. [norganic Compounds Phenolic Compounds Jofatil Organic Compounds & CAH) Dioxins & Furans Chlorinated Allphatic I	ounds (M	Metals IAH HWR	Cobalt, Copper, Li Molybdenum, Nick	admium, Chromit ead. Manganese, el. Silver, Tin, Zino
	T	victi jou.	GEOLOGY / LITHOLOGY	À	Water Le			Т	e Phas	е	SAMPLES	Jisonated Alphane I	tyutocai		ITORING WELL	I
DEPTH LEVATIO (m)		ГІТНОСОБУ	DESCRIPTION	-	/APOR CONC.	E ODOUR	VISUAL	SAMPLE	% RECUPERATION	N (Blow/6")	NUMBER	ANALYSIS	DUPLICATE	DIAGRAM	DESCRIPTION	REMARKS
			Ground surface.													
- U.	45		ASPHALT					ss	18	7						
5 -	8		FILL, crushed limestone gravel and s	and	8.5					7 11 12 14	BH15-2	2				
0.8			FILL, sandy silt and crushed limestor gravel with trace clay, compact, satu brown, black crystal material observed BEDROCK, limestone with black shat partings Auger Refusal at 1.14 mbgs, HQ Coris begins	rated, ded	13.8	The second secon		DC DC	12 100 100	6 50-3	1	PHCs F1-F4 VOC PAHs BTEX			SCREEN Diam:: 31 mm Open:: 0,25 mm Length: 1,52 m WATER Depth: m Elev:: 74.12 m Date: 1/19/2016	RQD = 36 1
								DC	100							RQ0 = 49
								DC	100						- Bentonite	RQD = 87
	-														SCREEN	5
								DC	100	ang wat with a distribution of the second					Diam.: 31 mm Open.: 0.25 mm Length: 1.52 m WATER Depth: m Elev.: 73.63 m Date: 1/19/2016	RQD = 87
					Account to the second s		The state of the s	DC	100	••••••					PVC Slotted Pipe	7 RQD = 54
7.8 - 67.			End of borehole at 7.82 m.	***************************************												;

Prepared by: Kathryn Maton Reviewed by: Phil Romeril

Date (Start): 1/11/2016 Date (End): 1/12/2016

Project Name: Phase Two Environmental Site Assessment

Site:

774 Bronson Avenue and 557 Cambridge Street South, Ottawa, Ontario

Sector:

Client: **Textbook Student Suites** Project Number:

Geographic Coordinates:

X = 445240 mEY = 5027685 mN

Page 81 of 207

Surface Elevation:

75.5 m (Approximate)

151-13503-00

Top of PVC Elevation: 76.53 m (Approximate) ODOUR CHEMICAL ANALYSIS **Drilling Company:** Downing Estate Drilling Ltd. SAMPLE TYPE PCB BTEX F - Light M - Medium P - Persistent DC - Diamond Corer SS - Split Spoon MA - Manual Auger Poly-Chlorinated Biphenyls Monocyclic Aromatic Hydrocarbons **Drilling Equipment: CME 55** Benzene, Toluene, Ethylbenzene, Xylene Polycyclic Aromatic Hydrocarbons Petroleum Hydrocarbons C₁₀-C₅₀ Petroleum Hydrocarbons F1-F4 (C₁₀-C₅₀) PAH **Drilling Method:** Auger / HQ Casing Inorganic Compounds
Phenolic Compounds
Volatil Organic Compounds (MAH Inorg. C. Phenol. C. VOC TR - Trowel ST - Shelby Tube TU - DT32 Liner VISUAL Arsenic, Barium, Cadmium, Chromium, Cobalt, Copper, Lead, Manganese, Molybdenum, Nickel, Silver, Tin, Zinc. Leacheate Tests (Haz. Waste Reg.) Borehole Diameter: 200 mm Metals D - Disseminated Product S - Saturated with Product Drilling Fluid: Municipal Water & CAH) Diox. & Fur. Dioxins & Furans HWR CAH Chlorinated Aliphatic Hydrocarbons Sampling Method: Split Spoon ▼ Free Phase GEOLOGY / LITHOLOGY OBSERVATIONS SAMPLES MONITORING WELL % RECUPERATION VAPOR CONC. (ppm OR % LIE) DEPTH LITHOLOGY ODOUR VISUAL DUPLICATE DESCRIPTION N (Blow/6" DESCRIPTION DIAGRAM REMARKS ELEVATION SAMPLE (m) FMPDS Ground surface. 75.50 **TOPSOIL** 15.2 SS 37 BH15-3A 75.37 FILL, Black carbon ashes 12 BH15-3A PHASE II ESA - 774 BRONSON AVE.GPJ Type rapport: WSP_EN_WELL-ENVIRONMENTAL Data Template: WSP_TEMPLATE_GEOTECH.GDT 2/9/2016 2 SCREEN FILL, silty sand, dry to moist, compact, Diam.: 51 mm brown Open.: 0,25 mm Length: 1.52 m WATER 0.5 Depth: 2.35 m Elev.: 74.18 m 0.5 Date: 1/19/2016 2 14 50-3" 12 SS 12 BH15-3A 3 Bentonite 1.0 becoming saturated PHCs F1-F4 BTEX VOC PAH 13.1 7 14 22 31 BH15-3A SS 64 4 Duplicate 1.5 1.5 1.82 FILL, crushed limestone gravel and sand PVC Slotted Pipe 21.3 SS 29 BH15-3A FILL, silty sand and crushed limestone 5 gravel, saturated, compact, brown 2.0 2.0 73.32 BEDROCK, limestone with black shale partings ∇ 2.5 2.5 2.56 Auger Refusal at 2.56 mbgs 72.94 End of borehole at 2.56 m.

Page 1 of 1

Prepared by: Kathryn Maton Reviewed by: Phil Romeril

Date (Start): 1/11/2016 Date (End): 1/12/2016

Project Name: Phase Two Environmental Site Assessment

Site:

774 Bronson Avenue and 557 Cambridge Street South, Ottawa, Ontario

Sector:

Client:

Projet: PHASE II ESA - 774 BRONSON AVE.GPJ Type rapport: WSP_EN_WELL-ENVIRONMENTAL Data Template : WSP TEMPLATE_GEOTECH.GDT 29/2016

Textbook Student Suites

Project Number:

Geographic Coordinates:

Top of PVC Elevation:

151-13503-00 X = 445240 mE

Y = 5027685 mN Surface Elevation:

MAH PAH

75.5 m (Approximate) 77.468 m (Approximate)

Drilling Company: Drilling Equipment:

Drilling Method:

Borehole Diameter:

Downing Estate Drilling Ltd. **CME 55**

Auger / HQ Casing 200 mm / 96 mm

ODOUR F - Light M - Medium P - Persistent

VISUAL D - Disseminated Product SAMPLE TYPE

DC - Diamond Corer SS - Split Spoon MA - Manual Auger TR - Trowel ST - Shelby Tube TU - DT32 Liner

CHEMICAL ANALYSIS

Poly-Chlorinated Biphenyls Benzene, Toluene, Ethylbenzene, Xylene Inorganic Compounds Inorg. C.
Phenolic Compounds

Phenolic Compounds

VOC

VOC

Volatii Organic Compounds (MAH

Monocyclic Aromatic Hydrocarbons worted the property of the pro

Drilling Flo		Municipal Water	S - Satura	ninated Pi ited with P	roduc	ı T	U - DT	32 Liner		& Diox & Fur. Di	olatii Organic Com CAH) oxins & Furans		HWR	Cobalt, Copper, L Molybdenum, Nicl Leacheate Tests (ead, Manganese, kel, Silver, Tin, Zind Haz. Waste Reg.)
Sampling	Method:		Ż	Water Le			_	ee Phas	е	CAH CI	nlorinated Aliphatic	c Hydrocarb	ons		
		GEOLOGY / LITHOLOGY		OBSE	RVAT	IONS	_	_	Τ	SAMPLES			MONI	TORING WELL	
DEPTH ELEVATION (m)	LITHOLOGY	DESCRIPTION		VAPOR CONC. (ppm OR % LIE)	NO ODOUR	D VISUAL	SAMPLE	% RECUPERATION	N (Blow/6")	NUMBER	ANALYSIS	DUPLICATE	DIAGRAM	DESCRIPTION	REMARKS
		Ground surface.				T	T								
75.50		FILL, see soil description on BH15-3/	Α												0
		Casing refusal at 1.8 mbgs, HQ coring	,												1.
0 - 2 18		begins	'				DC	100							RQD = 55 2
2.18 73.32 5 –		BEDROCK, limestone with black sha partings	le												2
0							DC	100							RQD = 92
															3
5 -															3
1															
)—															4
; =							DC	100							R O D = 98
1															
-															
														Serienie	
							DC	100	***************************************					Diam.: 51 mm Open.: 0.25 mm Length: 1.52 m	R O D = 94
-														WATER Depth: 7.11 m	6
-														Date: 1/19/2016 Sand	6
-														Washing Will Company	
													至	PVC Slotted Pipe	7
							DC	100							RQD = 98
7.85															7
67.65		End of borehole at 7.85 m.											<u> </u>		8
3.5													Pa	ge 82 of 207	

Prepared by: Kathryn Maton Reviewed by: Phil Romeril

Date (Start): 1/11/2016 Date (End): 1/13/2016

Project Name: Phase Two Environmental Site Assessment

Site:

774 Bronson Avenue and 557 Cambridge Street South, Ottawa, Ontario

Sector:

Client:

Textbook Student Suites

Project Number:

151-13503-00 Geographic Coordinates:

X = 445246 mE

Y = 5027658 mN

Surface Elevation: Top of PVC Elevation:

74.5 m (Approximate) 75.53 m (Approximate)

Drilling Company: Drilling Equipment:

Downing Estate Drilling Ltd.

Auger / HQ Casing 200 mm / 96 mm

F - Light M - Medium P - Persistent VISUAL

D - Disseminated Product

ODOUR

DC - Diamond Corer SS - Split Spoon MA - Manual Auger TR - Trowel ST - Shelby Tube TU - DT32 Liner

SAMPLE TYPE

Poly-Chlorinated Biphenyls Benzene, Toluene, Ethylbenzene, Xylene PCB BTEX Inorg. C. Inorganic Compounds
Phenol. C. Phenolic Compounds
VOC Volatil Organic Compounds (MAH

CHEMICAL ANALYSIS

MAH PAH

PAH Polycyclic Arometic Hydrocarbons
PH C₁₀-C₅₀ Petroleum Hydrocarbons C₁₀-C₅₀
PH F1-F4 Petroleum Hydrocarbons F1-F4 (C₁₀-C₅₀) Arsenic, Barium, Cadmium, Chromium, Cobalt, Copper, Lead, Manganese, Mohtstenum, Nickel, Silver, Tin, Zinc

Monocyclic Aromatic Hydrocarbons

Drilling Method: Borehole Diameter:

			GEOLOGY / LITHOLOGY		OBSE	RVAT	IONS				SAMPLES	4	T	MON	ITORING WELL	
ELEV	PTH ATION m)	LITHOLOGY	DESCRIPTION		VAPOR CONC. (ppm OR % LIE)	E ODOUR	D VISUAL	S	% RECUPERATION	N (Blow/6")	NUMBER	ANALYSIS	DUPLICATE	DIAGRAM	DESCRIPTION	REMARKS
			Ground surface.			П	11	1								
-	0.12 74.38		↑ FILL, crushed limestone gravel		11.9			ss	37	8	BH15-4	Metals and				
0.5 -			FILL, silty sand and crushed limesto gravel	ne						8886	1	Inorganics				o
.0-	0.96 73.54			***************************************	13			SS	46	4 6 50-2"	BH15-4					
-	73.04		BEDROCK, limestone with black sha partings	ale											SCREEN	
.5 -			Auger Refusal at 1.29 mbgs, HQ con- begins	ng				DC	100						Diam.: 31 mm Open.: 0.25 mm Length: 1.52 m	RQD = 92
2.0-															WATER Depth: m Elev.: 72.08 m	:
.5												of different control of the control			Dete: 1/19/2016	:
- - - - 0.																RQD = 96
-								DC	100			Mr. o by de la contraction de				KGD - 30
1.5												desirably for the second				
.0													Annual Control of the			,
.5 -					ŀ			DC	100				-			RQD = 78 '
															- Benlonite	
i.0 —															SCREEN Diam.: 31 mm	
5.5															Open.: 0.25 mm Length: 1.52 m	
1															WATER Depth: m Elev.: 68.67 m Date: 1/19/2016	
.0-								DC	100						Date. 17572010	RQD = 93 ⁶
.5 —															Sand PVC Slotted Pipe	1
.0-																
.5 —	7.39 67.09												Man o a particular de la company			
., _	01.00		End of borehole at 7.41 m.				400000000000000000000000000000000000000									
.0-																
_ =																

Page 1 of 1

Prepared by: Kathryn Matori Reviewed by: Phil Romeril

Date (Start): 1/11/2016 1/11/2016 Date (End):

Project Name: Phase Two Environmental Site Assessment

Site:

EN_WELL-ENVIRONMENTAL

Type rapport: WSP

PHASE II ESA - 774 BRONSON AVE.GPJ

774 Bronson Avenue and 557 Cambridge Street South, Ottawa, Ontario

Sector:

Client:

Textbook Student Suites

Project Number:

Geographic Coordinates:

151-13503-00 X = 445217 mE

Y = 5027643 mN

MAH PAH

Metals

Surface Elevation: Top of PVC Elevation: 74.7 m (Approximate)

Drilling Company:

Drilling Equipment:

Drilling Method:

Borehole Diameter: Drilling Fluid:

Downing Estate Drilling Ltd. **CME 55**

Auger 200 mm None

ODOUR F - Light M - Medium P - Persister

VISUAL D - Disseminated Product S - Saturated with Product SAMPLE TYPE CHEMICAL ANALYSIS PCB BTEX

DC - Diamond Core SS - Split Spoon MA - Manual Auger TR - Trowel ST - Shelby Tube TU - DT32 Liner

Inorg. C. Phenol. C. VOC

Poly-Chlorinated Biphenyls Benzene, Toluene, Ethylhenzene, Xylene Inorganic Compounds Phenolic Compounds Volatil Organic Compounds (MAH & CAH)

Dioxins & Furans

Polycyclic Aromatic Hydrocarbons PH C₁₀-C₅₀ Petroleum Hydrocarbons C₁₀-C₅₀ PH F1-F4 Petroleum Hydrocarbons F1-F4 (C₁₀-C₅₀) Arsenic. Barium, Cadmium. Chromium, Cobalt, Copper, Lead, Menganese, Molybdenum, Nickel, Silver, Tin, Zinc. Leacheate Tests (Haz. Waste Reg.)

Diox& CAH Sampling Method: Split Spoon Chlorinated Aliphatic Hydrocarbons Free Phase GEOLOGY / LITHOLOGY OBSERVATIONS SAMPLES MONITORING WELL % RECUPERATION VAPOR CONC. (ppm OR % LIE) DEPTH LITHOLOGY ODOUR VISUAL DUPLICATE N (Blow/6") ELEVATION DESCRIPTION ANALYSIS SAMPLE DESCRIPTION REMARKS (m) FMPDS Ground surface. 74.70 TOP SOIL 8 SS 50 BH15-5-1 2 10 0.15 74.53 FILL, pieces of asphalt 1.3 BH15-5-2 Metals and 2/9/2016 1.2 (0.15-0.17) FILL, sand and crushed limestone gravel BH15-5-3 with trace pieces of brick 2 WSP_TEMPLATE_GEOTECH.GDT 0.5 -0.5 0,61 74,09 FILL, topsoil with some pieces of wood, 1.3 SS 41 BH15-5-4 0.71 73.99 compact, moist, dark brown 1 BH15-5-5 GRAVEL and sand 4 0.94 73.76 BEDROCK, limestone with black shale 1,0 Oata Template partings 1.35 73.35 Auger Refusal at 1.35 mbgs End of borehole at 1.35 m. 1.5 1.5 2.0 2.0 2.5 2.5 Page 84 of 207

Page 1 of 1

Prepared by: Kathryn Maton Reviewed by: Phil Romen!

Date (Start): 1/11/2016 Date (End): 1/13/2016

Project Name: Phase Two Environmental Site Assessment

Downing Estate Drilling Ltd.

Site:

774 Bronson Avenue and 557 Cambridge Street South, Ottawa, Ontario

Sector:

Client:

Textbook Student Suites

Project Number:

Geographic Coordinates:

X = 445189 mE

Y = 5027623 mN

Surface Elevation: Top of PVC Elevation: 73.7 m (Approximate) 74.705 m (Approximate)

151-13503-00

Drilling Company: Drilling Method:

Borehole Diameter:

Sampling Method:

Drilling Fluid:

Drilling Equipment:

CME 55

Split Spoon

Auger / HQ Casing 200 mm / 96 mm Municipal Water

F - Light M - Medium P - Persistent VISUAL D - Disseminated Product S - Saturated with Product

ODOUR

Poly-Chlorinated Biphenyls Benzene, Toluene, Ethylbenzene, Xylene Inorganic Compounds PCB BTEX Inorg. C. Phenol. C. VOC

MAH PAH

Monocyclic Aromatic Hydrocarbons MAH Monocyclic Aromatic Hydrocarbons
PHC₁₉-C₅₂ Petroleum Hydrocarbons C₁₉-C₅₃
PH F1-F4 Petroleum Hydrocarbons F1-F4 (C₁₉-C₅₉)
Metals Arsenic, Barium, Cadmium, Chromium, Cobalt, Copper, Lead, Manganese, Molydenum, Nickel, Silver, Tin, Zinc.
HWR Leacheate Tests (Haz, Waste Reg.)

5.0

6.0

6.5

7.0

7.5

8.0

RQD = 90

RQD = 75

SCREEN Diam,: 31 mm Open.: 0.25 mm Length: 1.52 m

WATER Depth: m Elev.: 67.05 m Date: 1/19/2016

PVC Slotted Pipe

Sand

Page 85 of 207

Phenolic Compounds
Volatil Organic Compounds (MAH & CAH)
Dioxins & Furans

Diox. & Fur. Chlorinated Aliphatic Hydrocarbons

CHEMICAL ANALYSIS

▼ Free Phase

SAMPLE TYPE

DC - Diamond Corer SS - Split Spoon MA - Manual Auger

TR - Trowel ST - Shelby Tube

TU - DT32 Liner

			GEOLOGY / LITHOLOGY		OBSE	RVA	ATIC	ONS				SAMPLES			MOI	NTORING WELL	
	DEPTH ELEVATION (m)	ПТНОСОСУ	DESCRIPTION		(ppm OR % LIE)	Ļ	M P	NISUAL S	S.	% RECUPERATION	N (Blow/6")	NUMBER	ANALYSIS	DUPLICATE	DIAGRAM	DESCRIPTION	REMARKS
			Ground surface.			П											
	0.11 - 73.59 0.5 -		FILL, top soil, with some pieces of brick, dry, compact, dark brown		11.1 13.8				ss	39	3 14 13 8	BH15-6 1 BH15-6	Metals and Inorganics Duplicate				0.5
0107/077	73.09		FILL, crushed limestone gravel and sand, dry, compact, brown-grey becoming silty with trace pieces of brick,		12.1				SS	25	14 50-2"	2 BH1 <i>5-</i> 6 3		CONTRACTOR DESCRIPTION OF THE PROPERTY OF THE			1.0
20101	1.5 - 1.49 - 72.21		saturated, brown -Auger Refusal at 1.52 mbgs, HQ Coring begins	<u> </u>	11.9				DC SS DC		11 50-1"	BH15-6				SCREEN Diam.: 31 mm Open.: 0.25 mm Length: 1.52 m	RQD = 63 1.5
	2.0		BEDROCK, limestone and black shale partings													WATER Depth: m Elev.: 71.67 m Date: 1/19/2016	2.0
	2.5 —																2.5 –
	3.0			The state of the s					DC	104							RQD = 100 3.0
	3.5																3.5
	4.0																4.0
	4.5								DC	95							RQD = 76 4.5 -

DC 105

DC 100

Projet: PHASE II ESA - 774 BRONSON AVE.GPJ Type rapport: WSP_EN_WELL-ENVIRONMENTAL Data Template; WSP_TEMPLATE_GEOTECH.GDT 2/9/2016 5.5 6.0 6.5 7.5

7.95 65.75

End of borehole at 7.95 m.

LOCATION: N 5027695.2 ;E 445226.2

MIS-RCK 004 1525987.GPJ GAL-MISS.GDT 08/21/15 JM

RECORD OF DRILLHOLE: 15-1

SHEET 2 OF 2

DATUM: Geodetic

DRILLING DATE: March 25, 2015 DRILL RIG:

INCLINATION: -90° AZIMUTH: ---DRILLING CONTRACTOR: Marathon Drilling BD - Bedding FO - Foliation CO - Contact OR - Orthogonal CL - Cleavage PL - Planar CU- Curved UN- Undulating ST - Stepped IR - Irregular JN - Joint FLT - Fault SHR- Shear VN - Vein CJ - Conjugat PO- Polished
K - Slickensided
SM- Smooth
Ro- Rough
MB- Mechanical Break

BR - Broken Rock
NOTE: For additional abbreviations refer to lis of abbreviations & symbols. DRILLING RECORD DEPTH SCALE METRES SYMBOLIC LOG ELEV. DESCRIPTION R.Q.D. INDEX PER 0.25 m HYDRAULIC CONDUCTIVITY K, cm/sec DEPTH RECOVERY DISCONTINUITY DATA Diametra Point Loa Index (MPa) DIP w.r.t. CORE AXIS (m) TOTAL CORE % SOLID CORE % 0000 8848 BEDROCK SURFACE 73.43 Fresh, thinly to medium bedded, grey, fine grained, non-porous LIMESTONE BEDROCK, with partings to thin 2.43 interbeds of black shale Silica Sand Rotary Drill 38 mm Diam. PVC #10 Slot Screen 70.23 5.63 End of Drillhole W.L. in Screen at Elev. 73.36 m on March 27, 2015 9 10 11 12 Golder DEPTH SCALE LOGGED: JD 1:50 CHECKED: TMS

MIS-RCK 004 1525987.GPJ GAL-MISS.GDT 08/21/15

LOCATION: N 5027707.7 ;E 445228.3

RECORD OF DRILLHOLE: 15-2

DRILLING DATE: March 24, 2015

SHEET 2 OF 2

DATUM: Geodetic

DRILL RIG: INCLINATION: -90° AZIMUTH: ---DRILLING CONTRACTOR: Marathon Drilling BD - Bedding FO - Foliation CO - Contact OR - Orthogonal CL - Cleavage PL - Planar CU- Curved UN- Undulating ST - Stepped IR - Irregular PO- Polished
K - Slickensided
SM- Smooth
Ro - Rough
MB- Mechanical Break

BR - Broken Rock
NOTE: For additional abbreviations refer to list of abbreviations & symbols. JN - Joint FLT - Fault SHR- Shear VN - Vein CJ - Conjugat DRILLING RECORD DEPTH SCALE METRES SYMBOLIC LOG ELEV. DESCRIPTION R.Q.D. INDEX PER 0.25 m HYDRAULIC CONDUCTIVITY K, cm/sec DEPTH RECOVERY DISCONTINUITY DATA Diametra Joint Loa Index (MPa) DIP w.r.t. CORE AXIS (m) TOTAL CORE % SOLID CORE % 0000 80 90 20 80 80 80 BEDROCK SURFACE 72.99 Fresh, thinly to medium bedded, grey, fine grained, non-porous LIMESTONE BEDROCK, with partings to thin 2.71 interbeds of black shale Bentonite Seal Rotary Drill Silica Sand 38 mm Diam. PVC #10 Slot Screen 69.79 5.91 End of Drillhole W.L. in Screen at Elev. 72.79 m on March 27, 2015 9 10 11 12 Golder DEPTH SCALE LOGGED: JD 1:50 CHECKED: TMS

LOCATION: N 5027716.1 ;E 445220.9

MIS-RCK 004 1525987.GPJ GAL-MISS.GDT 08/21/15

RECORD OF DRILLHOLE: 15-3

DRILLING DATE: March 24, 2015

SHEET 2 OF 2

DATUM: Geodetic

DRILL RIG: INCLINATION: -90° AZIMUTH: ---DRILLING CONTRACTOR: Marathon Drilling PL - Planar CU- Curved UN- Undulating ST - Stepped IR - Irregular BD - Bedding FO - Foliation CO - Contact OR - Orthogonal CL - Cleavage PO- Polished
K - Slickensided
SM- Smooth
Ro - Rough
MB- Mechanical Break

BR - Broken Rock
NOTE: For additional abbreviations refer to list of abbreviations & symbols. JN - Joint FLT - Fault SHR- Shear VN - Vein CJ - Conjugat DRILLING RECORD DEPTH SCALE METRES SYMBOLIC LOG ELEV. DESCRIPTION R.Q.D. | FRACT. | INDEX | PER | 0.25 m | 86848 | 4.248 HYDRAULIC CONDUCTIVITY K, cm/sec DEPTH RECOVERY DISCONTINUITY DATA Diametra Joint Loa Index (MPa) DIP w.r.t. CORE AXIS (m) TOTAL CORE % SOLID CORE % 0000 8848 BEDROCK SURFACE 72.98 Fresh, thinly to medium bedded, grey, fine grained, non-porous LIMESTONE BEDROCK, with partings to thin 2.77 interbeds of black shale Bentonite Seal Silica Sand Rotary Drill NQ Core 38 mm Diam. PVC #10 Slot Screen 69.82 End of Drillhole W.L. in Screen at Elev. 72.38 m on March 27, 2015 10 11 12 Golder DEPTH SCALE LOGGED: JD 1:50 CHECKED: TMS

LOCATION: N 5027715.5 ;E 445230.4

RECORD OF DRILLHOLE: 15-4

DRILLING DATE: March 24, 2015

DRILL RIG: INCLINATION: -90° AZIMUTH: ---DRILLING CONTRACTOR: Marathon Drilling PL - Planar CU- Curved UN- Undulating ST - Stepped IR - Irregular BD - Bedding FO - Foliation CO - Contact OR - Orthogonal CL - Cleavage PO- Polished
K - Slickensided
SM- Smooth
Ro - Rough
MB- Mechanical Break

BR - Broken Rock
NOTE: For additional abbreviations refer to list of abbreviations & symbols. JN - Joint FLT - Fault SHR- Shear VN - Vein CJ - Conjugat DRILLING RECORD DEPTH SCALE METRES SYMBOLIC LOG ELEV. DESCRIPTION R.Q.D. INDEX PER 0.25 m HYDRAULIC CONDUCTIVITY K, cm/sec DEPTH RECOVERY DISCONTINUITY DATA Diametra Joint Loa Index (MPa) DIP w.r.t. CORE AXIS (m) TOTAL CORE % SOLID CORE % 0000 80 90 20 80 80 80 BEDROCK SURFACE 72.56 Fresh, thinly to medium bedded, grey, fine grained, non-porous LIMESTONE BEDROCK, with partings and thin 3.06 interbeds of black shale Bentonite Seal Silica Sand Rotary Drill 38 mm Diam. PVC #10 Slot Screen 2 69.65 5.97 End of Drillhole W.L. in Screen at Elev. 72.87 m on March 27, 2015 10 11 12 13 Golder DEPTH SCALE LOGGED: JD

1:50

MIS-RCK 004 1525987.GPJ GAL-MISS.GDT 08/21/15 JM

CHECKED: TMS

SHEET 2 OF 2

DATUM: Geodetic

RECORD OF DRILLHOLE: 15-5

LOCATION: N 5027698.4 ;E 445234.4 DRILLING DATE: June 19, 2015 DATUM: Geodetic DRILL RIG: CME 55 INCLINATION: -90° AZIMUTH: ---DRILLING CONTRACTOR: Marathon Drilling PL - Planar CU- Curved UN- Undulating ST - Stepped IR - Irregular JN - Joint FLT - Fault SHR- Shear VN - Vein CJ - Conjugat BD- Bedding FO- Foliation CO- Contact OR- Orthogonal CL - Cleavage PO- Polished
K - Slickensided
SM- Smooth
Ro- Rough
MB- Mechanical Break

BR - Broken Rock
NOTE: For additional abbreviations refer to lis of abbreviations & symbols. DRILLING RECORD DEPTH SCALE METRES SYMBOLIC LOG ELEV. DESCRIPTION FRACT. INDEX PER 0.25 m DEPTH RECOVERY DISCONTINUITY DATA Diametra Point Loa Index (MPa) R.Q.D. % DIP w.r.t. CORE AXIS (m) 0 0 0 0 8948 BEDROCK SURFACE 72.91 Fresh, thinly to medium bedded, grey, fine grained, non-porous LIMESTONE BEDROCK, with partings to thin 2.58 interbeds of black shale ,BD,PL,RO ,BD,PL,RO ,BD,PL,RO ,BD,PL,RO Rotary Drill Peltonite and NQ Core Cement Grout ,BD,CU,RO ,BD,IR,RO ,BD,PL,RO ,BD,PL,RO ,BD,PL,SM 10 ,BD,PL,SM ,BD,PL,RO - Broken core from 10.85 m to 10.90 m 11 - Broken core from 11.35 m to 11.38 m ,BD,PL,RO 12 ,BD,IR,RO 8 CONTINUED NEXT PAGE

DEPTH SCALE 1:50

MIS-RCK 004 1525987.GPJ GAL-MISS.GDT 08/21/15

Golder

LOGGED: HEC

CHECKED: TMS

SHEET 2 OF 3

INCLINATION: -90°

RECORD OF DRILLHOLE: 15-5

LE: 15-5SHEET 3 OF 3
e 19, 2015
DATUM: Geodetic

LOCATION: N 5027698.4 ;E 445234.4

AZIMUTH: ---

DRILLING DATE: June 19, 2015

DRILL RIG: CME 55

DRILLING CONTRACTOR: Marathon Drilling

DEPTH SCALE METRES	RECORD	DESCRIPTION	SYMBOLIC LOG	ELEV.	RUN No.	COLOUR RETURN	SHF VN CJ	ear in njugat	CO- (OR- (CL - (Bedding Foliation Contact Orthogo Cleava	t	ST IR	- Ste - Irre	anar PO-F irved K - S indulating SM- S epped Ro - F egular MB- N	lickor	neida	l Brea	NOT abbi of al k sym	reviati bbrev bols.		Rock ional er to lis &	1		
DEPTH	DRILLING RECORD	DESCRIPTION	SYMBOL	DEPTH (m)	RUN	FLUSH	TOT CORI	SOLID SORE %	0		B Angle	DIP	w.r.t. RE IS	ONTINUITY DATA TYPE AND SURFACE DESCRIPTION	Joon J	lr Ja	HYDI COND K, c	RAULI UCTIV m/sec	ITYP	liamet	ral pad _{RM} (-Q) AV(
- 13	NQ Core	CONTINUED FROM PREVIOUS PAGE Fresh, thinly to medium bedded, grey, fine grained, non-porous LIMESTONE BEDROCK, with partings to thin interbeds of black shale			8	100																Silica S	and	
. 15	N N			00.45	9	100								,BD,PL,RO ,BD,PL,RO ,BD,PL,RO ,BD,PL,RO								50 mm #10 Slo	Diam. PVC t Screen	
- 16		End of Drillhole		60.1 <u>5</u> 15.34																		W.L. in Elev. 7 August	Screen at 1.83 m on 20, 2015	
17																								
18																								
19																								
20																								
- 22																								
DE5	OT L C	CCALE								er ate												0005	D: HEC	

RECORD OF BOREHOLE: 15-1

SHEET 1 OF 2

LOCATION: N 5027695.2 ;E 445226.2

BORING DATE: March 25, 2015

DATUM: Geodetic

u	9	SOIL PROFILE			SA	MPLE	s	DYNAMIC PENETR RESISTANCE, BLC	ATION WS/0 3m	``	HYDRAULI	C CONDUC m/s	TIVITY,	(0	
METRES	BORING METHOD		OT		~			20 40	60	80	10 ⁻⁶		Q ⁻⁴ 1Q ⁻³	ADDITIONAL LAB. TESTING	PIEZOMETER OR
	Ω	DESCRIPTION	STRATA PLOT	ELEV.	NUMBER	TYPE	BLOWS/0.30m	SHEAR STRENGTI Cu, kPa					Γ PERCENT		STANDPIPE INSTALLATION
 	ORIN	DECOM HOW	RAT	DEPTH (m)	N N	-	ő l	Cu, kPa	rem V	⊕ U- O		→W		ADI	INSTALLATION
	ă		ST	(111)			₽ 	20 40	60	80	20	40	60 80		
0		GROUND SURFACE		75.86			_								.
		ASPHALTIC CONCRETE FILL - (GW/SW) SAND and GRAVEL;		0.0 <u>0</u> 0.10											Flush Mount Casing
		grey brown; non-cohesive, moist,	\otimes		1	SS :	26								Cusing
		compact to very dense			'	33	30								
	em)	- Black staining from 0.25 m to 0.46 m	\otimes												
1	ow St		\otimes												
'	Auge (Holk		\otimes		2	SS 2	21								
	wer iam.		\otimes												
	Power Auger 200 mm Diam. (Hollow Stem)		\otimes												
	200 m		\otimes		3	ss	13								
	"														Bentonite Seal
2															
					4	SS >	50								abla
ł		Borehole continued on RECORD OF	- XXX	73.43 2.43											<u> </u>
		DRILLHOLE 15-1													
3															
4															
5															
6															
7															
8															
9															
10															
			1	ı							1				I

RECORD OF BOREHOLE: 15-2

SHEET 1 OF 2 DATUM: Geodetic

SAMPLER HAMMER, 64kg; DROP, 760mm

LOCATION: N 5027707.7 ;E 445228.3

BORING DATE: March 24, 2015

PENETRATION TEST HAMMER, 64kg; DROP, 760mm

오나	SOIL PROFILE	1.		SA	MPLE		IAMIC PENETRATION SISTANCE, BLOWS/0.3	m (k, cm/s	CTIVITY,	무일	PIEZOMETER
BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	SH Cu	20 40 60 AR STRENGTH nat rem 20 40 60	80 V. + Q - ● V. ⊕ U - ○	10° 10° WATER CONTEI WP I 0' 20 40	10 ⁻⁴ 10 ⁻³ NT PERCENT W W 60 80	ADDITIONA LAB. TESTIN	OR STANDPIPE INSTALLATION
	GROUND SURFACE		75.70									
	ASPHALTIC CONCRETE FILL - (GW/SW) SAND and GRAVEL; grey brown; non-cohesive, moist, compact to very dense		0.00 0.10	1	SS	8						Flush Mount Casing
mm Diam. (Hollow St				3								
200				4	SS :	5						Bentonite Seal
	Borehole continued on RECORD OF DRILLHOLE 15-2		72.99 2.71	5	SS >	50						L
	w Stem)	GROUND SURFACE ASPHALTIC CONCRETE FILL - (GW/SW) SAND and GRAVEL; grey brown; non-cohesive, moist, compact to very dense	GROUND SURFACE ASPHALTIC CONCRETE FILL - (GW/SW) SAND and GRAVEL; grey brown; non-cohesive, moist, compact to very dense	GROUND SURFACE ASPHALTIC CONCRETE FILL - (GW/SW) SAND and GRAVEL; grey brown; non-cohesive, moist, compact to very dense Output	GROUND SURFACE ASPHALTIC CONCRETE FILL - (GW/SW) SAND and GRAVEL; grey brown; non-cohesive, moist, compact to very dense 1 2 Borehole continued on RECORD OF 75.70 0.00 0.10 1	GROUND SURFACE ASPHALTIC CONCRETE FILL - (GW/SW) SAND and GRAVEL; grey brown; non-cohesive, moist, compact to very dense 1 SS 5 2 SS 6 3 SS 7	DESCRIPTION DESCRIPTION	DESCRIPTION Comparison of the property of t	DESCRIPTION DESCRIPTION D	DESCRIPTION DESCR	DESCRIPTION LEV DEPTH M) LEV DEPTH M)	DESCRIPTION DESCR

RECORD OF BOREHOLE: 15-3

SHEET 1 OF 2

LOCATION: N 5027716.1 ;E 445220.9

BORING DATE: March 24, 2015

DATUM: Geodetic

SAMPLER HAMMER, 64kg; DROP, 760mm PENETRATION TEST HAMMER, 64kg; DROP, 760mm HYDRAULIC CONDUCTIVITY, k, cm/s DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m SOIL PROFILE SAMPLES BORING METHOD DEPTH SCALE METRES ADDITIONAL LAB. TESTING PIEZOMETER STRATA PLOT BLOWS/0.30m NUMBER STANDPIPE INSTALLATION ELEV. TYPE SHEAR STRENGTH nat V. + Q - ● rem V. ⊕ U - ○ WATER CONTENT PERCENT DESCRIPTION DEPTH −OW Wp H (m) GROUND SURFACE 75.75 ASPHALTIC CONCRETE Flush Mount Casing FILL - (GW/SW) SAND and GRAVEL; grey brown; non-cohesive, moist, compact to very dense SS 69 2 SS 93 SS 11 3 Bentonite Seal SS 13 5 SS >50 Borehole continued on RECORD OF DRILLHOLE 15-3 MIS-BHS 001 1525987.GPJ GAL-MIS.GDT 08/21/15 JM 9 10 LOGGED: JD

Golder

RECORD OF BOREHOLE: 15-4

SHEET 1 OF 2

DATUM: Geodetic

LOCATION: N 5027715.5 ;E 445230.4

BORING DATE: March 24, 2015

ųΙ	ğΙ	SOIL PROFILE			5/	MPLI		DYNAMIC PENETRATION RESISTANCE, BLOWS/0	.3m 🔍	k, cm/s	ں ا	PIEZOMETER
METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.30m	20 40 60 SHEAR STRENGTH na Cu, kPa rei	80 t V. + Q - ● n V. ⊕ U - ○	10° 10° 10⁴ 10³ WATER CONTENT PERCENT Wp	ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION
0		GROUND SURFACE		75.62								
	tem)	ASPHALTIC CONCRETE FILL - (SW) gravelly SAND; grey with dark grey staining, non-cohesive, moist, very dense FILL - (GW/SW) SAND and GRAVEL, trace silt; grey brown; non-cohesive, moist, compact to very dense		0.00 0.10 0.25	1	SS	>50					Flush Mount Casing
	Power Auger 200 mm Diam. (Hollow Stem)				2	SS	25					
2	Po 200 mm Di				3	SS	17					Bentonite Seal
					4	SS	10					Ā
3		Borehole continued on RECORD OF		72.56 3.06	5	ss	>50					
		DRILLHOLE 15-4										
4												
5												
6												
7												
8												
9												
10												

RECORD OF BOREHOLE: 15-5

BORING DATE: June 19, 2015

SHEET 1 OF 3 DATUM: Geodetic

SAMPLER HAMMER, 64kg; DROP, 760mm

LOCATION: N 5027698.4 ;E 445234.4

PENETRATION TEST HAMMER, 64kg; DROP, 760mm

, F	ДОН.	SOIL PROFILE	1.		SA	MPLE		DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m	HYDRAULIC CONDUCTIVITY, k, cm/s	AL NG	PIEZOMETER
METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.30m	20 40 60 80 SHEAR STRENGTH nat V. + Q - ● Cu, kPa rem V. ⊕ U - ○ 20 40 60 80	10 ⁻⁶ 10 ⁻⁵ 10 ⁻⁴ 10 ⁻³ WATER CONTENT PERCENT Wp	ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION
0		GROUND SURFACE		75.49							
	Power Auger 200 mm Diam. (Hollow Stem)	ASPHALTIC CONCRETE FILL - (SW) gravelly SAND, angular; grey (PAVEMENT STRUCTURE) FILL - (SW) gravelly SAND; brown, contains cobbles; non-cohesive, moist, dense to very dense		0.00 0.10 75.18 0.31	1 2	SS					Cement Grout
2	Powe 200 mm Diam				3	SS	32				Peltonite and Cement Grout
3		(SM) SILTY SAND, trace gravel; brown, contains organic matter; non-cohesive, wet, very dense Borehole continued on RECORD OF DRILLHOLE 15-5		73.20 2.29 72.91 2.58	4	SS	>50				I
4											
5											
6											
7											
8											
9											
10											
DE	PTH S	SCALE						Golder		LC	OGGED: HEC

EXP Services Inc.

Katasa Groupe Phase Two Environmental Site Assessment 770 and 774 Bronson Avenue and 557 Cambridge Street, Ottawa, Ontario OTT-22019409-A0 October 6, 2022

Appendix E: Analytical Summary Tables

Page 1 c

Table 1 - Analytical Results in Soil - PHC and VOC 770 and 775 Bronson Avenue, 557 Cambridge Street, Ottawa, ON

OTT-22019409-A0		,				770 Brons	on Avenue				557	Cambridge Streat a	and 774 Bronson Av	/enue
														BH-15-3-104
Parameter		MECP Table 7 1	BH15-1 SA1	BH15-1 SA4	BH15-2 SA1	BH15-2 SA4	BH15-3 SA1	BH-3 SA3	BH15-4 SA1	BH15-4 SA3	BH15-1-2	BH15-2-2	BH15-3-4	(Duplicate BH15-3-4)
Sampling Date	Units		24-Mar-2015	11-Jan-2016	11-Jan-2016	11-Jan-2016	11-Jan-2016							
Sample Depth (mbgs)	1		0.1 to 0.7	2.0 to 2.4	0.1 to 0.7	2.0 to 2.4	0.1 to 0.7	1.4 t o2.0	0.1 to 0.7	1.4 to 2.0	0.15 to 0.61	0.61 to 0.83	1.22 to 1.83	1.22 to 1.83
Lab	1	Orange	AGAT	Maxxam	Maxxam	Maxxam	Maxxam							
Certificate of Analysis	1		15T957961	B605611	B605611	B605611	B605611							
Volatile Organic Compounds														
Acetone	ug/g dry	16	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Benzene	ug/g dry	0.21	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.020	<0.020	<0.020	<0.020
Bromodichloromethane	ug/g dry	13	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.050	<0.050	< 0.050	<0.050
Bromoform	ug/g dry	0.27	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.050	<0.050	<0.050	<0.050
Bromomethane	ug/g dry	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.050	<0.050	<0.050	<0.050
Carbon Tetrachloride	ug/g dry	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.050	<0.050	<0.050	<0.050
Chlorobenzene	ug/g dry	2.4	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.050	<0.050	<0.050	<0.050
Chloroform	ug/g dry	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.050	<0.050	<0.050	<0.050
Dibromochloromethane	ug/g dry	9.4	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.050	<0.050	<0.050	<0.050
Dichlorodifluoromethane	ug/g dry	16	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.050	<0.050	<0.050	<0.050
1,2-Dichlorobenzene	ug/g dry	3.4	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.050	<0.050	<0.050	<0.050
1,3-Dichlorobenzene	ug/g dry	4.8	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.050	<0.050	<0.050	<0.050
1,4-Dichlorobenzene	ug/g dry	0.083	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.050	<0.050	<0.050	<0.050
1,1-Dichloroethane	ug/g dry	3.5	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.050	<0.050	<0.050	<0.050
1,2-Dichloroethane	ug/g dry	0.05	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.050	<0.050	<0.050	<0.050
1,1-Dichloroethylene	ug/g dry	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.050	<0.050	<0.050	<0.050
cis-1,2-Dichloroethylene	ug/g dry	3.4	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.050	<0.050	<0.050	<0.050
trans-1,2-Dichloroethylene	ug/g dry	0.084	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.050	<0.050	<0.050	<0.050
1,2-Dichloropropane	ug/g dry	0.05	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.050	<0.050	<0.050	<0.050
cis-1,3-Dichloropropylene	ug/g dry	NV NV	-	-	-	-	-	-	-	-	<0.030	<0.030	<0.030	<0.030
trans-1,3-Dichloropropylene	ug/g dry	NV 0.05	0.04	0.04	0.04	-	0.04	0.04	0.04	0.04	<0.040	<0.040	<0.040	<0.040
1,3-Dichloropropene, total	ug/g dry	0.05	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.050	<0.050	<0.050	<0.050
Ethylbenzene	ug/g dry	0.05	<0.05 <0.04	<0.050	<0.050 <0.050	<0.050 <0.050	<0.050 <0.050							
Ethylene dibromide Hexane	ug/g dry ug/g dry	2.8	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.050 <0.050	<0.050	<0.050	<0.050
Methyl Ethyl Ketone (2-Butanone)	ug/g dry	16	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Methyl Isobutyl Ketone	ug/g dry	1.7	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Methyl tert-butyl ether	ug/g dry	0.75	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.050	<0.050	<0.050	<0.050
Methylene Chloride	ug/g dry	0.1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.050	<0.050	<0.050	<0.050
Styrene	ug/g dry	0.7	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.050	<0.050	<0.050	<0.050
1,1,1,2-Tetrachloroethane	ug/g dry	0.058	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.050	<0.050	<0.050	<0.050
1,1,2,2-Tetrachloroethane	ug/g dry	0.5	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.050	<0.050	<0.050	<0.050
Tetrachloroethylene	ug/g dry	0.28	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.050	<0.050	<0.050	<0.050
Toluene	ug/g dry	2.3	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.020	<0.020	<0.020	<0.020
1,1,1-Trichloroethane	ug/g dry	0.38	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.050	<0.050	<0.050	<0.050
1,1,2-Trichloroethane	ug/g dry	0.05	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.050	<0.050	<0.050	<0.050
Trichloroethylene	ug/g dry	0.061	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.050	<0.050	<0.050	<0.050
Trichlorofluoromethane	ug/g dry	4	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.050	<0.050	<0.050	<0.050
Vinyl Chloride	ug/g dry	0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.020	<0.020	<0.020	<0.020
m/p-Xylene	ug/g dry	NV	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.020	<0.020	<0.020	<0.020
o-Xylene	ug/g dry	NV	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.020	<0.020	<0.020	<0.020
Xylenes, total	ug/g dry	3.1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.050	<0.050	<0.050	<0.050
Petroleum Hydrocarbons														
F1 PHC (C6 - C10) - BTEX*	ug/g dry	55	<5	<5	<5	<5	<5	<5	<5	<5	<10	<10	<10	<10
F2 PHC (C10-C16)	ug/g dry	98	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
F3 PHC (C16-C34)	ug/g dry	300	<50	<50	<50	<50	<50	<50	740	<50	<50	<50	<50	<50
F4 PHC (C34-C50)**	ug/g dry	2800	<50	<50	<50	<50	<50	<50	1100	<50	<50	<50	<50	140
NOTES:	,	-	-		•								•	-

NOTES:

Ontario Ministry of Environment, Conservation and Parks (MECP), Soil, Groundwater and Sediment Standards for use under Part XV.1 of the Environmental Protection Act, April 2011, Table 7 Generic Site Condition Standards for Shallow Soils in a Non-Potable

Ground Water Condition for Residential/Parkland/Institutional Property Use (coarse textured soils)

F1 fraction does not include BTEX.

** In instances where the PHC F2 to F4 chromatogram did not reach baseline, the F4 fraction result shown is the highest value obtained via the gas chromatograph/flame ionization detection method or the gravimetric method.

ND Non-detectable results are shown as "< (RDL)" where RDL represents the reporting detection limit.

NV No Value
N/A Not Applicable
- Parameter not analyzed
m bgs Metres below ground surface

indicates soil exceedance of MECP Table 7 generic site condition standard for coarse textured soil and residential/parkland/institutional property use

Table 2 - Analytical Results in Soil - PAH

770 and 775 Bronson Avenue, 557 Cambridge Street, Ottawa, ON

OTT-22019409-A0					7	770 Bronson Avenu	e			557 (Cambridge Street a	nd 774 Bronson A	venue
Parameter	Units	MECP Table 7 ¹	BH15-1 SA1	BH15-1 SA4	BH15-2 SA1	BH15-2 SA3	BH-3 SA1	BH-3 SA3	BH15-4 SA3	BH15-1-2	BH15-2-2	BH15-3-4	BH-15-3-104 (Duplicate BH15- 3-4)
Sampling Date	Units		24-Mar-2015	24-Mar-2015	24-Mar-2015	24-Mar-2015	24-Mar-2015	24-Mar-2015	24-Mar-2015	11-Jan-2016	11-Jan-2016	11-Jan-2016	11-Jan-2016
Sample Depth (mbgs)	1		0.1 to 0.7	2.0 to 2.4	0.1 to 0.7	1.4 to 2.0	0.1 to 0.7	1.4 t o2.0	1.4 to 2.0	0.15 to 0.61	0.61 to 0.83	1.22 to 1.83	122 to 1.83
Lab	1	Orange	AGAT	AGAT	AGAT	AGAT	AGAT	AGAT	AGAT	Maxxam	Maxxam	Maxxam	Maxxam
Paracel Certificate of Analysis	1		15T957961	15T957961	15T957961	15T957961	15T957961	15T957961	15T957961	B605611	B605611	B605611	B605611
Semi-Volatiles													
Acenaphthene	ug/g dry	7.9	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.1	<0.0050	< 0.0050	<0.0050
Acenaphthylene	ug/g dry	0.15	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.066	<0.0050	<0.0050	< 0.0050
Anthracene	ug/g dry	0.67	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.23	<0.0050	<0.0050	<0.0050
Benzo[a]anthracene	ug/g dry	0.5	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.72	<0.0050	<0.0050	0.02
Benzo[a]pyrene	ug/g dry	0.3	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.78	<0.0050	<0.0050	0.02
Benzo[b]fluoranthene	ug/g dry	0.78	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	1.1	<0.010	<0.010	0.035
Benzo[g,h,i]perylene	ug/g dry	6.6	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.42	<0.0050	<0.0050	0.015
Benzo[k]fluoranthene	ug/g dry	0.78	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.41	<0.0050	<0.0050	0.0099
Chrysene	ug/g dry	7	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.71	<0.0050	<0.0050	0.02
Dibenzo[a,h]anthracene	ug/g dry	0.1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.13	<0.0050	<0.0050	<0.0050
Fluoranthene	ug/g dry	0.69	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	1.9	0.0095	0.0084	0.035
Fluorene	ug/g dry	62	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.11	<0.0050	<0.0050	<0.0050
Indeno[1,2,3-cd]pyrene	ug/g dry	0.38	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.44	<0.0050	<0.0050	0.0099
Methylnaphthalene (1&2)	ug/g dry	0.99	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.037	<0.0071	<0.0071	< 0.0071
Naphthalene	ug/g dry	0.6	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.022	<0.0050	<0.0050	<0.0050
Phenanthrene	ug/g dry	6.2	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	1.1	<0.0050	<0.0050	0.02
Pyrene	ug/g dry	78	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	1.3	0.0095	0.0084	0.03

NOTES:

1

Ontario Ministry of Environment, Conservation and Parks (MECP), Soil, Groundwater and Sediment Standards for use under Part XV.1 of the Environmental Protection Act, April 2011, Table 7 Generic Site Condition Standards for Shallow Soils

in a Non-Potable Ground Water Condition for Residential/Parkland/Institutional Property Use (coarse textured soils)

ND Non-detectable results are shown as "< (RDL)" where RDL represents the reporting detection limit.

NV No Value
N/A Not Applicable
- Parameter not analyzed
m bgs Metres below ground surface

Indicates soil exceedance of MECP Table 7 generic site condition standard for coarse textured soil and residential/parkland/institutional property use

Table 3 - Analytical Results in Soil - Inorganic Parameters 770 and 775 Bronson Avenue, 557 Cambridge Street, Ottawa, ON

Drange D	11-Jan-2016 0.2 to 0.6 Maxxam B605611	BH15-6-2 11-Jan-2016 0.1 to 0.6 Maxxam	BH-6-102 (Duplicate of BH- 6-2) 11-Jan-2016
Sampling Date 11-Jan-2016 Sample Depth (mbgs) 0.0 to 0.6 Lab Maxxam Certificate of Analysis B605611 Metals Arsenic ug/g dry 18 15 Barium ug/g dry 18 15 Barium ug/g dry 390 160 Beryllium ug/g dry 4 0.52 Boron ug/g dry 120 7.2 Cadmium ug/g dry 1.2 0.3 Chromium (VI) ug/g dry 160 24 Chromium (VI) ug/g dry 8 <0.2 Cobalt ug/g dry 22 6.8 Copper ug/g dry 140 28 Lead ug/g dry 120 140 Mercury ug/g dry 0.27 0.39 Molybdenum ug/g dry 0.9 1.8 Nickel ug/g dry 2.4 0.72 <th>0.2 to 0.6 Maxxam</th> <th>0.1 to 0.6</th> <th>11-Jan-2016</th>	0.2 to 0.6 Maxxam	0.1 to 0.6	11-Jan-2016
Lab Orange Maxxam B605611 Metals Metals Antimony ug/g dry 7.5 0.63 Arsenic ug/g dry 18 15 Barium ug/g dry 390 160 Beryllium ug/g dry 4 0.52 Boron ug/g dry 120 7.2 Cadmium ug/g dry 1.2 0.3 Chromium ug/g dry 160 24 Chromium (VI) ug/g dry 8 <0.2 Cobalt ug/g dry 22 6.8 Copper ug/g dry 140 28 Lead ug/g dry 120 140 Mercury ug/g dry 0.27 0.39 Molybdenum ug/g dry 6.9 1.8 Nickel ug/g dry 2.4 0.72 Selenium ug/g dry 2.4 0.72 Silver ug/g dry 1 0.19 Uranium ug/g dry 23	Maxxam		
Certificate of Analysis B605611 Metals Antimony ug/g dry 7.5 0.63 Arsenic ug/g dry 18 15 Barium ug/g dry 390 160 Beryllium ug/g dry 4 0.52 Boron ug/g dry 120 7.2 Cadmium ug/g dry 1.2 0.3 Chromium ug/g dry 160 24 Chromium (VI) ug/g dry 8 <0.2 Cobalt ug/g dry 22 6.8 Copper ug/g dry 140 28 Lead ug/g dry 120 140 Mercury ug/g dry 0.27 0.39 Molybdenum ug/g dry 6.9 1.8 Nickel ug/g dry 2.4 0.72 Selenium ug/g dry 2.4 0.72 Silver ug/g dry 20 <0.20 Thallium ug/g dry 23 0.49		Mayyam	0.1 to 0.6
Metals Antimony ug/g dry 7.5 0.63 Arsenic ug/g dry 18 15 Barium ug/g dry 390 160 Beryllium ug/g dry 4 0.52 Boron ug/g dry 120 7.2 Cadmium ug/g dry 1.2 0.3 Chromium ug/g dry 160 24 Chromium (VI) ug/g dry 8 <0.2	B605611	IVIUAAUIII	Maxxam
Antimony ug/g dry 7.5 0.63 Arsenic ug/g dry 18 15 Barium ug/g dry 390 160 Beryllium ug/g dry 4 0.52 Boron ug/g dry 120 7.2 Cadmium ug/g dry 1.2 0.3 Chromium ug/g dry 160 24 Chromium (VI) ug/g dry 8 <0.2		B605611	B605611
Arsenic ug/g dry 18 15 Barium ug/g dry 390 160 Beryllium ug/g dry 4 0.52 Boron ug/g dry 120 7.2 Cadmium ug/g dry 1.2 0.3 Chromium ug/g dry 160 24 Chromium (VI) ug/g dry 8 <0.2			
Barium ug/g dry 390 160 Beryllium ug/g dry 4 0.52 Boron ug/g dry 120 7.2 Cadmium ug/g dry 1.2 0.3 Chromium ug/g dry 160 24 Chromium (VI) ug/g dry 8 <0.2	1	0.92	1
Barium ug/g dry 390 160 Beryllium ug/g dry 4 0.52 Boron ug/g dry 120 7.2 Cadmium ug/g dry 1.2 0.3 Chromium ug/g dry 160 24 Chromium (VI) ug/g dry 8 <0.2	3.1	2.7	3.6
Beryllium ug/g dry 4 0.52 Boron ug/g dry 120 7.2 Cadmium ug/g dry 1.2 0.3 Chromium ug/g dry 160 24 Chromium (VI) ug/g dry 8 <0.2	130	110	130
Cadmium ug/g dry 1.2 0.3 Chromium ug/g dry 160 24 Chromium (VI) ug/g dry 8 <0.2	0.5	0.28	0.33
Chromium ug/g dry 160 24 Chromium (VI) ug/g dry 8 <0.2	17	<5.0	<5.0
Chromium (VI) ug/g dry 8 <0.2 Cobalt ug/g dry 22 6.8 Copper ug/g dry 140 28 Lead ug/g dry 120 140 Mercury ug/g dry 0.27 0.39 Molybdenum ug/g dry 6.9 1.8 Nickel ug/g dry 100 15 Selenium ug/g dry 2.4 0.72 Silver ug/g dry 20 <0.20	0.19	0.22	0.29
Cobalt ug/g dry 22 6.8 Copper ug/g dry 140 28 Lead ug/g dry 120 140 Mercury ug/g dry 0.27 0.39 Molybdenum ug/g dry 6.9 1.8 Nickel ug/g dry 100 15 Selenium ug/g dry 2.4 0.72 Silver ug/g dry 20 <0.20	48	16	19
Copper ug/g dry 140 28 Lead ug/g dry 120 140 Mercury ug/g dry 0.27 0.39 Molybdenum ug/g dry 6.9 1.8 Nickel ug/g dry 100 15 Selenium ug/g dry 2.4 0.72 Silver ug/g dry 20 <0.20	-	-	-
Lead ug/g dry 120 140 Mercury ug/g dry 0.27 0.39 Molybdenum ug/g dry 6.9 1.8 Nickel ug/g dry 100 15 Selenium ug/g dry 2.4 0.72 Silver ug/g dry 20 <0.20	11	4.4	5.1
Mercury ug/g dry 0.27 0.39 Molybdenum ug/g dry 6.9 1.8 Nickel ug/g dry 100 15 Selenium ug/g dry 2.4 0.72 Silver ug/g dry 20 <0.20	17.0	24	22
Molybdenum ug/g dry 6.9 1.8 Nickel ug/g dry 100 15 Selenium ug/g dry 2.4 0.72 Silver ug/g dry 20 <0.20	63	190	210
Nickel ug/g dry 100 15 Selenium ug/g dry 2.4 0.72 Silver ug/g dry 20 <0.20	<0.050	0.076	0.13
Selenium ug/g dry 2.4 0.72 Silver ug/g dry 20 <0.20	0.77	1	1.1
Silver ug/g dry 20 <0.20 Thallium ug/g dry 1 0.19 Uranium ug/g dry 23 0.49	140	11	11.0
Thallium ug/g dry 1 0.19 Uranium ug/g dry 23 0.49	<0.50	<0.50	<0.50
Uranium ug/g dry 23 0.49	<0.20	<0.20	<0.20
G, G ,	0.085	0.1	0.12
1 1 20	3.8	0.49	100
Vanadium ug/g dry 86 34	30	17	20
Zinc ug/g dry 340 120	97	170	190
General Inorganics		•	-
Cyanide, free ug/g dry 0.051 0.09	-	-	-
Conductivity mS/cm 0.7 0.38	0.48	0.54	0.46
SAR - 5 0.67	0.7	0.16	0.16
pH pH Units 5 to 9 8.25		_	_

NOTES:

1

Ontario Ministry of Environment, Conservation and Parks (MECP), Soil, Groundwater and Sediment Standards for use under Part XV.1 of the Environmental

Protection Act, April 2011, Table 7 Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition for

ND Non-detectable results are shown as "< (RDL)" where RDL represents the reporting detection limit.

NV No Value N/A Not Applicable

- Parameter not analyzed m bgs Metres below ground surface

Indicates soil exceedance of MECP Table 7 generic site condition standard for coarse textured soil and residential/parkland/institutional property use

Table 4 - Analytical Results in Groundwater - PHC and VOC 770 and 775 Bronson Avenue, 557 Cambridge Street, Ottawa, 0

770 and 775 Bronson Avenue, 557 Cambridge Stree	et, Ottawa, ON																	
OTT-22019409-A0								770 Brons	on Avenue									
												Dup 1					BH15-102B	ĺ
Parameter		MECP Table 7 ²	15-1	MW15-1	15-2	Dup 1	MW15-2	15-3	MW15-3	15-4	MW15-5	(Field Duplicate MW15-5)	Field Blank	Trip Blank	BH15-2A	BH15-2B	(Field Duplicate BH15-2B)	BH15-3A
Sampling Date	Units		27-Mar-2015	11-Aug-2022	27-Mar-2015	27-Mar-2015	11-Aug-2022	27-Mar-2015	11-Aug-2022	27-Mar-2015	11-Aug-2022	11-Aug-2022	27-Mar-2015	27-Mar-2015	19-Jan-2016	19-Jan-2016	19-Jan-2016	19-Jan-2016
Screen Depth (mbgs)	1		4.1 to 5.6	4.1 to 5.6	4.4 to 5.9	4.4 to 6.0	7.82 to 15.34	7.82 to 15.34	NA	NA	2.1 to 4.0	6.3 to 7.8	6.3 to 7.8	1.0 to 2.6				
Lab	1	Dark Orange	AGAT	Caduceon	AGAT	AGAT	Caduceon	AGAT	Caduceon	AGAT	Caduceon	Caduceon	AGAT	AGAT	Maxxam	Maxxam	Maxxam	Maxxam
Certificate of Analysis			15T957963	B22-25709	15T957963	15T957963	B22-25709	15T957963	B22-25709	15T957963	B22-25709	B22-25709	15T957963	15T957963	B611447	B611447	B611447	B611447
Volatile Organic Compounds								•								•		
Acetone	ug/L	100000	<1.0	< 30	<2.0	<1.0	< 30	<1.0	< 30	<2.0	< 30	< 30	<1.0	<1.0	<19	<10	<10	20
Benzene	ug/L	0.5	<0.20	< 0.5	1.8	<0.20	< 0.5	<0.20	< 0.5	<0.40	< 0.5	< 0.5	<0.20	<0.20	<0.20	<0.20	<0.20	0.83
Bromodichloromethane	ug/L	67000	<0.20	< 2	<0.40	0.28	< 2	0.27	< 2	<0.40	< 2	< 2	<0.20	<0.20	<0.50	<0.50	<0.50	<0.50
Bromoform	ug/L	5	<0.10	< 5	<0.20	<0.10	< 5	<0.10	< 5	<0.20	< 5	< 5	<0.10	<0.10	<1.0	<1.0	<1.0	<1.0
Bromomethane	ug/L	0.89	<0.20	< 0.5	< 0.40	<0.20	< 0.5	<0.20	< 0.5	<0.40	< 0.5	< 0.5	<0.20	<0.20	<0.50	<0.50	<0.50	<0.50
Carbon Tetrachloride	ug/L	0.2	<0.20	< 0.2	<0.40	<0.20	< 0.2	<0.20	< 0.2	<0.40	< 0.2	< 0.2	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Chlorobenzene	ug/L	140	<0.10	< 0.5	<0.20	<0.10	< 0.5	<0.10	< 0.5	<0.20	< 0.5	< 0.5	<0.10	<0.10	<0.20	<0.20	<0.20	<0.20
Chloroform	ug/L	2	2.1	<1	2.8	2.8	<1	3.2	<1	0.91	<1	<1	<0.20	<0.20	1.6	1.2	1.3	<0.20
Dibromochloromethane	ug/L	65000	<0.10	< 2	<0.20	<0.10	< 2	<0.10	< 2	<0.20	< 2	< 2	<0.10	<0.10	<0.50	<0.50	<0.50	<0.50
Dichlorodifluoromethane	ug/L	3500	<0.20	< 2	<0.40	<0.20	< 2	<0.20	< 2	<0.40	< 2	< 2	<0.20	<0.20	<1.0	<1.0	<1.0	<1.0
1,2-Dichlorobenzene	ug/L	150	<0.10	< 0.5	<0.20	<0.10	< 0.5	<0.10	< 0.5	<0.20	< 0.5	< 0.5	<0.10	<0.10	<0.50	<0.50	<0.50	<0.50
1,3-Dichlorobenzene	ug/L	7600	<0.10	< 0.5	<0.20	<0.10	< 0.5	<0.10	< 0.5	<0.20	< 0.5	< 0.5	<0.10	<0.10	<0.50	<0.50	<0.50	<0.50
1,4-Dichlorobenzene	ug/L	0.5	<0.10	< 0.5	<0.20	<0.10	< 0.5	<0.10	< 0.5	<0.20	< 0.5	< 0.5	<0.10	<0.10	<0.50	<0.50	<0.50	<0.50
1,1-Dichloroethane	ug/L	11	<0.30	< 0.5	<0.60	<0.30	< 0.5	<0.30	< 0.5	<0.60	< 0.5	< 0.5	<0.30	<0.30	<0.20	<0.20	<0.20	<0.20
1,2-Dichloroethane	ug/L	0.5	<0.20	< 0.5	< 0.40	<0.20	< 0.5	<0.20	< 0.5	<0.40	< 0.5	< 0.5	<0.20	<0.20	<0.50	<0.50	<0.50	<0.50
1,1-Dichloroethylene	ug/L	0.5	<0.30	< 0.5	<0.60	<0.30	< 0.5	<0.30	< 0.5	<0.60	< 0.5	< 0.5	<0.30	<0.30	<0.20	<0.20	<0.20	<0.20
cis-1.2-Dichloroethylene	ug/L	1.6	<0.20	< 0.5	<0.40	<0.20	< 0.5	<0.20	< 0.5	<0.40	< 0.5	< 0.5	<0.20	<0.20	<0.50	<0.50	<0.50	<0.50
trans-1,2-Dichloroethylene	ug/L	1.6	<0.20	< 0.5	<0.40	<0.20	< 0.5	<0.20	< 0.5	<0.40	< 0.5	< 0.5	<0.20	<0.20	<0.50	<0.50	<0.50	<0.50
1,2-Dichloropropane	ug/L	0.58	<0.20	< 0.5	<0.40	<0.20	< 0.5	<0.20	< 0.5	<0.40	< 0.5	< 0.5	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
cis-1,3-Dichloropropylene	ug/L	NV	-	< 0.5	=	-	< 0.5	=	< 0.5	-	< 0.5	< 0.5	-	-	<0.30	<0.30	<0.30	<0.30
trans-1,3-Dichloropropylene	ug/L	NV	-	< 0.5	=	-	< 0.5	=	< 0.5	-	< 0.5	< 0.5	-	-	<0.40	<0.40	<0.40	<0.40
1.3-Dichloropropene, total	ug/L	0.5	<0.30	< 0.5	< 0.60	<0.30	< 0.5	<0.30	< 0.5	<0.60	< 0.5	< 0.5	<0.30	<0.30	<0.50	<0.50	<0.50	<0.50
Ethylbenzene	ug/L	54	<0.10	< 0.5	<0.20	<0.10	< 0.5	<0.10	< 0.5	0.55	< 0.5	< 0.5	<0.10	<0.10	<0.20	<0.20	<0.20	<0.20
Ethylene dibromide (dibromoethane, 1,2-)	ug/L	0.2	<0.10	< 0.2	<0.20	<0.10	< 0.2	<0.10	< 0.2	<0.20	< 0.2	< 0.2	<0.10	<0.10	<0.20	<0.20	<0.20	<0.20
Hexane	ug/L	5	<0.20	< 5	<0.40	<0.20	< 5	<0.20	< 5	<0.40	< 5	< 5	<0.20	<0.20	<1.0	<1.0	<1.0	<1.0
Methyl Ethyl Ketone (2-Butanone)	ug/L	21000	11	< 20	21	<1.0	< 20	<1.0	< 20	<2.0	< 20	< 20	<1.0	<1.0	<10	<10	<10	<10
Methyl Isobutyl Ketone	ug/L	5200	<1.0	< 20	<2.0	<1.0	< 20	<1.0	< 20	<2.0	< 20	< 20	<1.0	<1.0	<5.0	<5.0	<5.0	<5.0
Methyl tert-butyl ether	ug/L	15	<0.20	< 2	4.2	<0.20	< 2	<0.20	< 2	<0.40	< 2	< 2	<0.20	<0.20	< 0.50	<0.50	<0.50	<0.50
Methylene Chloride	ug/L	26	<0.30	< 5	<0.60	<0.30	< 5	<0.30	< 5	<0.60	< 5	< 5	<0.30	<0.30	<2.0	<2.0	<2.0	<2.0
Styrene	ug/L	43	<0.10	< 0.5	<0.20	<0.10	< 0.5	<0.10	< 0.5	<0.20	< 0.5	< 0.5	<0.10	<0.10	<0.50	<0.50	<0.50	<0.50
1,1,1,2-Tetrachloroethane	ug/L	1.1	<0.10	< 0.5	<0.20	<0.10	< 0.5	<0.10	< 0.5	<0.20	< 0.5	< 0.5	<0.10	<0.10	<0.50	<0.50	<0.50	<0.50
1,1,2,2-Tetrachloroethane	ug/L	0.5	<0.10	< 0.5	<0.20	<0.10	< 0.5	<0.10	< 0.5	<0.20	< 0.5	< 0.5	<0.10	<0.10	<0.50	<0.50	<0.50	<0.50
Tetrachloroethylene	ug/L	0.5	<0.20	< 0.5	<0.40	<0.20	< 0.5	<0.20	< 0.5	<0.40	< 0.5	< 0.5	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Toluene	ug/L	320	0.67	< 0.5	1.6	1.5	< 0.5	1.5	< 0.5	0.66	< 0.5	< 0.5	<0.20	<0.20	0.24	0.22	0.22	2.9
1,1,1-Trichloroethane	ug/L	23	<0.30	< 0.5	<0.60	<0.30	< 0.5	<0.30	< 0.5	<0.60	< 0.5	< 0.5	<0.30	<0.30	<0.20	<0.20	<0.20	<0.20
1,1,2-Trichloroethane	ug/L	0.5	<0.20	< 0.5	<0.40	<0.20	< 0.5	<0.20	< 0.5	<0.40	< 0.5	< 0.5	<0.20	<0.20	<0.50	<0.50	<0.50	<0.50
Trichloroethylene	ug/L	0.5	<0.20	< 0.5	<0.40	<0.20	< 0.5	<0.20	< 0.5	<0.40	< 0.5	< 0.5	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Trichlorofluoromethane	ug/L	2000	<0.40	< 5	<0.80	<0.40	< 5	<0.40	< 5	<0.80	< 5	< 5	<0.40	<0.40	<0.50	<0.50	<0.50	<0.50
Vinyl Chloride	ug/L	0.50	<0.17	< 0.2	<0.37	<0.17	< 0.2	<0.17	< 0.2	<0.34	< 0.2	< 0.2	<0.17	<0.17	<0.20	<0.20	<0.20	<0.20
m/p-Xylene	ug/L	NV	<0.20	< 1.0	0.51	0.36	< 1.0	0.37	< 1.0	2.8	< 1.0	< 1.0	<0.20	<0.20	0.25	<0.20	<0.20	1.6
o-Xylene	ug/L	NV	<0.10	< 0.5	<0.20	0.10	< 0.5	<0.10	< 0.5	<0.20	< 0.5	< 0.5	<0.10	<0.10	<0.20	<0.20	<0.20	0.61
Xylenes, total	ug/L	72	<0.20	< 1.1	0.51	0.46	< 1.1	0.47	< 1.1	5.2	< 1.1	< 1.1	<0.20	<0.20	0.25	<0.20	<0.20	2.2
Petroleum Hydrocarbons																		
F1 PHC (C6 - C10) - BTEX*	ug/L	420	<25	< 25	<25	<25	< 25	<25	< 25	30	< 25	< 25	-	-	<25	<25	<25	<25
F2 PHC (C10-C16)	ug/L	150	<100	< 50	<100	<100	< 50	<100	< 50	<100	< 50	< 50	-	-	<100	<100	<100	<100
F3 PHC (C16-C34)	ug/L	500	<100	< 400	<100	<100	< 400	<100	< 400	<100	< 400	< 400	-	-	<200	<200	<200	<200
F4 PHC (C34-C50)**	ug/L	500	<100	< 400	<100	<100	< 400	<100	< 400	<100	< 400	< 400	-	-	<200	<200	<200	<200
		•		•	•			•	•		•	•		•		•	•	

NOTES:

Ontario Ministry of Environment, Conservation and Parks (MECP), Soil, Groundwater and Sediment Standards for use under Part XV.1 of the Environmental Protection Act,
April 2011, Table 7 Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition for Residential/Parkland/Institutional Property Use (coarse textured soils)

* F1 fraction does not include BTEX.

In instances where the PHC F2 to F4 chromatogram did not reach baseline, the F4 fraction result shown is the highest value obtained via the gas chromatograph/flame ionization detection method or the gravimetric method.

Non-detectable results are shown as "< (RDL)" where RDL represents the reporting

ND detection limit.

NV No Value

I/A Not Applicable

- Parameter not analyzed

m bgs Metres below ground surface

Indicates groundwater exceedance of MECP Table 7 generic site condition standard for coarse textured soil and residential/parkland/institutional property use

Table 4 - Analytical Results in Groundwater - PHC and VOC 770 and 775 Bronson Avenue, 557 Cambridge Street, Ottawa, ON OTT-22019409-A0

557 Cambridge Street and 774 Bronson Avenue

OTT-22019409-A0										557 (Cambridge Street a	and 774 Bronson Ave	enue					
ĺ							BH15-103B					BH15-104A						
Parameter		MECP Table 7 2	BH15-3A	BH15-3A	BH15-3B	BH15-3B	(Field Duplicate	BH15-3B	BH15-4A	BH15-4A	BH15-4A	(Field Duplicate	BH15-4B	BH15-4B	BH15-4B	BH15-4B	BH15-6A	BH15-6A
		WILCE Table 7	BIII SA	51113 374	D1113 3B	51113 35	BH15-3B)	51113 35	51113 44	B1113 4A	D1113 4A	BH15-4A)	51113 45	51125 45	51125 45	51113 45	51113 07	BIII3 OA
Complian Date	I I miles		15-Feb-2016	23-Feb-2016	19-Jan-2016	15-Feb-2016	15-Feb-2016	23-Feb-2016	19-Jan-2016	16-Feb-2016	23-Feb-2016	23-Feb-2016	19-Jan-2016	21-Jan-2016	16-Feb-2016	23-Feb-2016	19-Jan-2016	16-Feb-2016
Sampling Date	Units																	
Screen Depth (mbgs)		Dark Orange	1.0 to 2.6	1.0 to 2.6	6.3 to 7.8	6.3 to 7.8	6.3 to 7.8	6.3 to 7.8	2.2 to 3.7	2.2 to 3.7	2.2 to 3.7	2.2 to 3.7	5.9 to 7.4	5.9 to 7.4	5.9 to 7.4	5.9 to 7.4	2.1 to 3.7	2.1 to 3.7
Lab			Maxxam	Maxxam	Maxxam	Maxxam	Maxxam	Maxxam	Maxxam	Maxxam	Maxxam	Maxxam	Maxxam	Maxxam	Maxxam	Maxxam	Maxxam	Maxxam
Certificate of Analysis			B631126	B636643	B611447	B631126	B631126	B636643	B611447	B631126	B614405	B636643	B614405	B611447	B631126	B636643	B611447	B631126
Volatile Organic Compounds																		
Acetone	ug/L	100000	<10	<10	<10	<10	<10	<10	19	<10	<10	<10	-	14	<10	<10	<10	<10
Benzene	ug/L	0.5	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	0.27	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Bromodichloromethane	ug/L	67000	<0.50	<0.50	0.59	< 0.50	<0.50	<0.50	1.5	<0.50	<0.50	<0.50	-	1.1	<0.50	<0.50	0.56	<0.50
Bromoform	ug/L	5	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Bromomethane	ug/L	0.89	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	-	<0.50	<0.50	<0.50	<0.50	<0.50
Carbon Tetrachloride	ug/L	0.2	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	-	<0.20	<0.20	<0.20	<0.20	<0.20
Chlorobenzene	ug/L	140	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	-	<0.20	<0.20	<0.20	<0.20	<0.20
	- 5																	
Chloroform	ug/L	2 65000	<0.20	<0.20	4.4	<0.20	<0.20	<0.20	11	0.76 <0.50	0.22	0.20	-	14 <0.50	1.7	0.9	4.6	1.3
Dibromochloromethane	ug/L		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50		<0.50	<0.50	-		<0.50	<0.50	<0.50	<0.50
Dichlorodifluoromethane	ug/L	3500	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	<1.0	<1.0	<1.0	<1.0	<1.0
1,2-Dichlorobenzene	ug/L	150	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	-	<0.50	<0.50	<0.50	<0.50	<0.50
1,3-Dichlorobenzene	ug/L	7600	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	-	<0.50	<0.50	<0.50	<0.50	<0.50
1,4-Dichlorobenzene	ug/L	0.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	-	<0.50	<0.50	<0.50	<0.50	<0.50
1,1-Dichloroethane	ug/L	11	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	-	<0.20	<0.20	<0.20	<0.20	<0.20
1,2-Dichloroethane	ug/L	0.5	< 0.50	<0.50	< 0.50	< 0.50	< 0.50	<0.50	<0.50	<0.50	<0.50	< 0.50	-	<0.50	< 0.50	<0.50	<0.50	< 0.50
1,1-Dichloroethylene	ug/L	0.5	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	-	<0.20	<0.20	<0.20	<0.20	<0.20
cis-1,2-Dichloroethylene	ug/L	1.6	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	-	<0.50	< 0.50	<0.50	<0.50	<0.50
trans-1,2-Dichloroethylene	ug/L	1.6	< 0.50	<0.50	<0.50	< 0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	-	<0.50	< 0.50	<0.50	<0.50	< 0.50
1,2-Dichloropropane	ug/L	0.58	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	-	<0.20	<0.20	<0.20	<0.20	<0.20
cis-1,3-Dichloropropylene	ug/L	NV	< 0.30	<0.30	< 0.30	< 0.30	< 0.30	<0.30	<0.30	<0.30	<0.30	<0.30	-	< 0.30	< 0.30	< 0.30	<0.30	< 0.30
trans-1,3-Dichloropropylene	ug/L	NV	< 0.40	<0.40	<0.40	< 0.40	< 0.40	<0.40	<0.40	<0.40	<0.40	<0.40	-	<0.40	< 0.40	< 0.40	<0.40	< 0.40
1,3-Dichloropropene, total	ug/L	0.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	-	<0.50	< 0.50	<0.50	<0.50	<0.50
Ethylbenzene	ug/L	54	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Ethylene dibromide (dibromoethane, 1,2-)	ug/L	0.2	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	-	<0.20	<0.20	<0.20	<0.20	<0.20
Hexane	ug/L	5	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	<1.0	<1.0	<1.0	<1.0	<1.0
Methyl Ethyl Ketone (2-Butanone)	ug/L	21000	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	-	<10	<10	<10	<10	<10
Methyl Isobutyl Ketone	ug/L	5200	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<u> </u>	<5.0	<5.0	<5.0	<5.0	<5.0
Methyl tert-butyl ether		15	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<u> </u>	<0.50	<0.50	<0.50	<0.50	<0.50
Methylene Chloride	ug/L	26	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<u> </u>	<2.0	<2.0	<2.0	<2.0	<2.0
,	ug/L																	
Styrene	ug/L	43	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	-	<0.50	<0.50	<0.50	<0.50	<0.50
1,1,1,2-Tetrachloroethane	ug/L	1.1	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	-	<0.50	<0.50	<0.50	<0.50	<0.50
1,1,2,2-Tetrachloroethane	ug/L	0.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	-	<0.50	<0.50	<0.50	<0.50	<0.50
Tetrachloroethylene	ug/L	0.5	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	-	<0.20	<0.20	<0.20	<0.20	<0.20
Toluene	ug/L	320	<0.20	<0.20	0.27	<0.20	<0.20	<0.20	0.92	<0.20	<0.20	<0.20	0.24	<0.20	<0.20	<0.20	0.78	<0.20
1,1,1-Trichloroethane	ug/L	23	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	-	<0.20	<0.20	<0.20	<0.20	<0.20
1,1,2-Trichloroethane	ug/L	0.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	-	<0.50	<0.50	<0.50	<0.50	<0.50
Trichloroethylene	ug/L	0.5	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	-	<0.20	<0.20	<0.20	<0.20	<0.20
Trichlorofluoromethane	ug/L	2000	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	-	<0.50	<0.50	<0.50	<0.50	<0.50
Vinyl Chloride	ug/L	0.50	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	-	<0.20	<0.20	<0.20	<0.20	<0.20
m/p-Xylene	ug/L	NV	<0.20	<0.20	0.29	<0.20	<0.20	<0.20	0.43	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	0.40	<0.20
o-Xylene	ug/L	NV	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	0.27	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Xylenes, total	ug/L	72	<0.20	<0.20	0.29	<0.20	<0.20	<0.20	0.70	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	0.40	<0.20
Petroleum Hydrocarbons	<u>.</u>	*				•									•			
F1 PHC (C6 - C10) - BTEX*	ug/L	420	-	-	<25	_	_	_	<u> </u>	_	-	_ 1	<25	-	_	_	<25	-
F2 PHC (C10-C16)	ug/L	150	-	_	<100	_	_	-	_	-	-	_	<100	-	-	_	<100	-
F3 PHC (C16-C34)	ug/L ug/L	500	-	-	<200		-	-	_	-	-	 	<200	-	-	-	<200	-
. ,	- 5	500	f -	-		-	-	-	· -	-	-	- -		-	 	-		
F4 PHC (C34-C50)**	ug/L	500	-	-	<200	-	-	-	-	-	-	-	<200	-	-	=	<200	-

F4 PHC (C34-C50 NOTES:

Ontario Ministry of Environment, Conservation and Parks (MECP), Soil, Groundwater and Sediment Standards for use under Part XV.1 of the Environmental Protection Act, April 2011, Table 7 Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition for Residential/Parkland/Institutional Property Use (coarse textured soils)

F1 fraction does not include BTEX.

In instances where the PHC F2 to F4 chromatogram did not reach baseline, the F4 fraction result shown is the highest value obtained via the gas chromatograph/flame ionization detection method or the gravimetric method.

Non-detectable results are shown as "< (RDL)" where RDL represents the reporting

ND detection limit.

No Value

Not Applicable

Parameter not analyzed Metres below ground surface

m bgs

Indicates groundwater exceedance of MECP Table 7 generic site condition standard for c

Table 4 - Analytical Results in Groundwater - PHC and VOC 770 and 775 Bronson Avenue, 557 Cambridge Street, Ottawa, ON

OTT-22019409-A0								
Parameter		MECP Table 7 ²	BH15-6A	BH15-6B	BH15-6B	BH15-6B	Trip Blank	Trip Blank
Sampling Date	Units		23-Feb-2016	21-Jan-2016	15-Feb-2016	23-Feb-2016	19-Jan-2016	23-Feb-2016
Screen Depth (mbgs)	1	5 1 6	2.1 to 3.7	6.4 to 8.0	6.4 to 8.0	6.4 to 8.0	N/A	N/A
Lab	1	Dark Orange	Maxxam	Maxxam	Maxxam	Maxxam	Maxxam	Maxxam
Certificate of Analysis	1		B636643	B614405	B631126	B636643	B614405	B636643
Volatile Organic Compounds								
Acetone	ug/L	100000	<10	-	<10	<10	<10	<10
Benzene	ug/L	0.5	<0.20	-	<0.20	<0.20	<0.20	<0.20
Bromodichloromethane	ug/L	67000	< 0.50	-	<0.50	<0.50	<0.50	<0.50
Bromoform	ug/L	5	<1.0	=	<1.0	<1.0	<1.0	<1.0
Bromomethane	ug/L	0.89	<0.50	=	<0.50	<0.50	<0.50	<0.50
Carbon Tetrachloride	ug/L	0.2	<0.20	=	<0.20	<0.20	<0.20	<0.20
Chlorobenzene	ug/L	140	<0.20	=	<0.20	<0.20	<0.20	<0.20
Chloroform	ug/L	2	1	-	3	1.3	<0.20	<0.20
Dibromochloromethane	ug/L	65000	<0.50	-	<0.50	<0.50	<0.50	<0.50
Dichlorodifluoromethane	ug/L	3500	<1.0	-	<1.0	<1.0	<1.0	<1.0
1,2-Dichlorobenzene	ug/L	150	<0.50	-	<0.50	<0.50	<0.50	<0.50
1,3-Dichlorobenzene	ug/L	7600	<0.50	-	<0.50	<0.50	<0.50	<0.50
1,4-Dichlorobenzene	ug/L	0.5	<0.50	-	<0.50	<0.50	<0.50	<0.50
1,1-Dichloroethane	ug/L	11	<0.20	-	<0.20	<0.20	<0.20	<0.20
1,2-Dichloroethane	ug/L	0.5	<0.50	-	<0.50	<0.50	<0.50	<0.50
1,1-Dichloroethylene	ug/L	0.5	<0.20	-	<0.20	<0.20	<0.20	<0.20
cis-1,2-Dichloroethylene	ug/L	1.6	<0.50	-	<0.50	<0.50	<0.50	<0.50
trans-1,2-Dichloroethylene	ug/L	1.6	<0.50	-	<0.50	<0.50	<0.50	<0.50
1,2-Dichloropropane	ug/L	0.58	<0.20	-	<0.20	<0.20	<0.20	<0.20
cis-1,3-Dichloropropylene	ug/L	NV	<0.30	-	<0.30	<0.30	<0.30	<0.30
trans-1,3-Dichloropropylene	ug/L	NV	<0.40	=	<0.40	<0.40	<0.40	<0.40
1,3-Dichloropropene, total	ug/L	0.5	<0.50	=	<0.50	<0.50	<0.50	<0.50
Ethylbenzene	ug/L	54	<0.20	=	<0.20	<0.20	<0.20	<0.20
Ethylene dibromide (dibromoethane, 1,2-)	ug/L	0.2	<0.20	-	<0.20	<0.20	<0.20	<0.20
Hexane	ug/L	5	<1.0	-	<1.0	<1.0	<1.0	<1.0
Methyl Ethyl Ketone (2-Butanone)	ug/L	21000	<10	-	<10	<10	<10	<10
Methyl Isobutyl Ketone	ug/L	5200	<5.0	-	<5.0	<5.0	<5.0	<5.0
Methyl tert-butyl ether	ug/L	15	<0.50	-	<0.50	<0.50	<0.50	<0.50
Methylene Chloride	ug/L	26	<2.0	-	<2.0	<2.0	-	<2.0
Styrene	ug/L	43	<0.50	-	<0.50	<0.50	<0.50	<0.50
1,1,1,2-Tetrachloroethane	ug/L	1.1	<0.50	-	<0.50	<0.50	<0.50	<0.50
1,1,2,2-Tetrachloroethane	ug/L	0.5	<0.50	-	<0.50	<0.50	<0.50	<0.50
Tetrachloroethylene	ug/L	0.5	<0.20	-	<0.20	<0.20	<0.20	<0.20
Toluene	ug/L	320	<0.20	-	<0.20	<0.20	<0.20	<0.20
1,1,1-Trichloroethane	ug/L	23	<0.20	-	<0.20	<0.20	<0.20	<0.20
1,1,2-Trichloroethane	ug/L	0.5	<0.50	-	<0.50	<0.50	<0.50	<0.50
Trichloroethylene	ug/L	0.5	<0.20	-	<0.20	<0.20	<0.20	<0.20
Trichlorofluoromethane	ug/L	2000	<0.50		<0.50	<0.50	<0.50	<0.50
Vinyl Chloride	ug/L	0.50 NV	<0.20 <0.20	-	<0.20 <0.20	<0.20 <0.20	<0.20 <0.20	<0.20 <0.20
m/p-Xylene	ug/L	NV NV	<0.20 <0.20		<0.20 <0.20	<0.20 <0.20		<0.20 <0.20
o-Xylene Yylenes total	ug/L	72	<0.20	-	<0.20	<0.20	<0.20 <0.20	<0.20
Xylenes, total	ug/L	12	<0.20	-	<0.20	<0.20	<0.20	<0.20
Petroleum Hydrocarbons	h	420		,oe				
F1 PHC (C6 - C10) - BTEX*	ug/L	420	-	<25	-	-	-	-
F2 PHC (C10-C16)	ug/L	150	-	<100	-	-	=	=
F3 PHC (C16-C34)	ug/L	500	-	<200	-	-	-	-
F4 PHC (C34-C50)** NOTES:	ug/L	500	-	<200	-	-	-	-

NOTES:

Ontario Ministry of Environment, Conservation and Parks (MECP), Soil, Groundwater and Sediment Standards for use under Part XV.1 of the Environmental Protection Act,
April 2011, Table 7 Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition for Residential/Parkland/Institutional Property Use (coarse textured soils)

* F1 fraction does not include BTEX.

In instances where the PHC F2 to F4 chromatogram did not reach baseline, the F4 fraction result shown is the highest value obtained via the gas chromatograph/flame ionization detection method or the gravimetric method.

Non-detectable results are shown as "< (RDL)" where RDL represents the reporting

ND detection limit.

NV No Value

N/A Not Applicable

- Parameter not analyzed

m bgs Metres below ground surface

Indicates groundwater exceedance of MECP Table 7 generic site condition standard for c

Table 5 - Analytical Results in Groundwater - PAH

770 and 775 Bronson Avenue, 557 Cambridge Street, Ottawa, ON

OTT-22019409-A0							770 Bronson Avenu	e				557 Cambridge Street and 774 Bronson Avenue							
Parameter		MECP Table 7 ²	15-1	MW15-1	15-2	MW15-2	15-3	MW15-3	15-4	MW15-5	Dup 1 (Field Duplicate MW15-5)	BH15-2A	BH15-2B	BH15-102B (Field Duplicate BH15-102B)	BH15-3A	BH15-3B	BH15-4A	BH15-4B	BH15-6A
Sampling Date	Units		27-Mar-2015	11-Aug-2022	27-Mar-2015	11-Aug-2022	27-Mar-2015	11-Aug-2022	27-Mar-2015	11-Aug-2022	11-Aug-2022	19-Jan-2016	19-Jan-2016	19-Jan-2016	Janury 21, 2016	19-Jan-2016	1-Mar-2016	1-Mar-2016	21-Jan-2016
Screen Depth (mbgs)		Dark Orange	4.1 to 5.6	4.1 to 5.6	4.4 to 5.9	4.4 to 5.9	4.4 to 5.9	4.4 to 5.9	4.4 to 6.0	7.82 to 15.34	7.82 to 15.34	2.1 to 4.0	6.3 to 7.8	6.3 to 7.8	1.0 to 2.6	6.3 to 7.85	2.2 to 3.7	5.9 to 7.4	2.1 to 3.7
Lab		Dark Oralige	AGAT	Caduceon	AGAT	Caduceon	AGAT	Caduceon	AGAT	Caduceon	Caduceon	Maxxam	Maxxam	Maxxam	Maxxam	Maxxam	Maxaam	Maxamm	Maxamm
Certificate of Analysis			15T957963	B22-25709	15T957963	B22-25709	15T957963	B22-25709	15T957963	B22-25709	B22-25709	B611447	B611447	B611447	B614405	B611447	B614405	B614405	B614405
Semi-Volatiles																			
Acenaphthene	ug/L	17	<0.20	< 0.05	<0.20	< 0.05	<0.20	< 0.05	<0.20	< 0.05	< 0.05	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	< 0.050
Acenaphthylene	ug/L	1	<0.20	< 0.05	<0.20	< 0.05	<0.20	< 0.05	<0.20	< 0.05	< 0.05	< 0.050	< 0.050	<0.050	<0.050	<0.050	<0.050	<0.050	< 0.050
Anthracene	ug/L	1	<0.10	< 0.05	<0.10	< 0.05	<0.10	< 0.05	<0.10	< 0.05	< 0.05	< 0.050	< 0.050	<0.050	<0.050	<0.050	0.059	<0.050	<0.050
Benzo[a]anthracene	ug/L	1.8	<0.20	< 0.05	<0.20	< 0.05	<0.20	< 0.05	<0.20	< 0.05	< 0.05	< 0.050	<0.050	<0.050	<0.050	<0.050	0.16	<0.050	<0.050
Benzo[a]pyrene	ug/L	0.81	< 0.01	0.012	< 0.01	< 0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.010	<0.010	<0.010	<0.010	<0.010	0.18	0.043	<0.010
Benzo[b]fluoranthene	ug/L	0.75	<0.10	< 0.05	<0.10	< 0.05	<0.10	< 0.05	<0.10	< 0.05	< 0.05	<0.10	<0.10	<0.10	<0.10	<0.10	0.24	0.055	<0.10
Benzo(b+k)fluoranthene	ug/L	NV	=	< 0.1	=	< 0.1	-	< 0.1	-	< 0.1	< 0.1	-	-	-	-	-	-	-	-
Benzo[g,h,i]perylene	ug/L	0.2	<0.20	< 0.05	<0.20	< 0.05	<0.20	< 0.05	<0.20	< 0.05	< 0.05	< 0.050	<0.050	<0.050	<0.050	<0.050	0.12	<0.050	<0.050
Benzo[k]fluoranthene	ug/L	0.4	<0.10	< 0.05	<0.10	< 0.05	<0.10	< 0.05	<0.10	< 0.05	< 0.05	< 0.050	<0.050	<0.050	<0.050	<0.050	0.087	< 0.050	< 0.050
Chrysene	ug/L	0.7	<0.10	< 0.05	<0.10	< 0.05	<0.10	< 0.05	<0.10	< 0.05	< 0.05	<0.050	<0.050	<0.050	<0.050	<0.050	0.15	<0.050	<0.050
Dibenzo[a,h]anthracene	ug/L	0.4	<0.20	< 0.05	<0.20	< 0.05	<0.20	< 0.05	<0.20	< 0.05	< 0.05	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050
Fluoranthene	ug/L	44	<0.20	< 0.05	<0.20	< 0.05	<0.20	< 0.05	<0.20	< 0.05	< 0.05	<0.050	<0.050	<0.050	<0.050	<0.050	0.35	0.12	<0.050
Fluorene	ug/L	290	<0.20	< 0.05	<0.20	< 0.05	<0.20	< 0.05	<0.20	< 0.05	< 0.05	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050
Indeno[1,2,3-cd]pyrene	ug/L	0.2	<0.20	< 0.05	<0.20	< 0.05	<0.20	< 0.05	<0.20	< 0.05	< 0.05	<0.050	<0.050	<0.050	<0.050	<0.050	0.13	<0.050	<0.050
1-Methylnaphthalene	ug/L	1500	-	< 0.05	-	< 0.05	-	< 0.05	1	< 0.05	< 0.05	<0.050	<0.050	<0.050	0.05	0.050	<0.050	<0.050	<0.050
2-Methylnaphthalene	ug/L	1500	-	< 0.05	-	< 0.05	-	< 0.05	-	< 0.05	< 0.05	<0.050	<0.050	<0.050	0.05	0.050	<0.050	<0.050	<0.050
Methylnaphthalene (1&2)	ug/L	1500	<0.20	< 1	0.38	< 1	<0.20	< 1	1.5	< 1	< 1	<0.1	<0.1	<0.1	<0.1	0.10	<0.71	<0.1	<0.1
Naphthalene	ug/L	7	<0.20	< 0.05	0.36	< 0.05	<0.20	< 0.05	0.70	< 0.05	< 0.05	<0.050	<0.050	<0.050	<0.050	0.050	<0.050	<0.050	<0.050
Phenanthrene	ug/L	380	<0.10	< 0.05	<0.10	< 0.05	<0.10	< 0.05	<0.10	< 0.05	< 0.05	<0.030	<0.030	<0.030	0.17	<0.030	0.99	<0.030	<0.030
Pyrene	ug/L	5.7	<0.20	< 0.05	<0.20	< 0.05	< 0.20	< 0.05	<0.20	< 0.05	< 0.05	< 0.050	< 0.050	<0.050	< 0.050	< 0.050	0.1	0.1	< 0.050

NOTES:

Ontario Ministry of Environment, Conservation and Parks (MECP),

ND Non-detectable results are shown as "< (RDL)" where RDL represents the reporting detection limit.

NV No Value

N/A Not Applicable

- Parameter not analyzed

m bgs Metres below ground surface

Indicates goundwater exceedance of MECP Table 7 generic site condition standard for coarse textured soil and residential/parkland/institutional property use

Table 6 - Analytical Results in Groundwater - Inorganics

770 and 775 Bronson Avenue, 557 Cambridge Street, Ottawa, ON

7/0 and 7/5 Bronson Avenue, 557 Cambri OTT-22019409-A0						557 Cambi	ridge Street and 774 Bror	son Avenue			
511 22015405-A0		1		1	BH15-102B	337 Callibi	Inage Juleet and 774 biol	ISON AVEILUE	-	1	
Parameter		MECP Table 7 ²	BH15-2A	BH15-2B	(Field Duplicate BH15- 102B)	BH15-3A	BH15-3B	BH15-4A	BH15-4B	BH15-6A	BH15-6B
Sampling Date	Units		21-Jan-2016	21-Jan-2016	21-Jan-2016	21-Jan-2016	21-Jan-2016	1-Mar-2016	1-Mar-2016	1-Mar-2016	1-Mar-2016
Screen Depth (mbgs)		Dark Orange	2.1 to 4.0	6.3 to 7.8	6.3 to 7.8	1.0 to 2.6	6.3 to 7.8	2.2 to 3.7	5.9 to 7.4	2.1 to 3.7	6.4 to 8.0
Lab		Dark Orange	Maxxam	Maxxam	Maxxam	Maxxam	Maxxam	Maxxam	Maxxam	Maxxam	Maxxam
Certificate of Analysis			B614405	B614405	B614405	B614405	B614405	B614405	B614405	B614405	B614405
Metals & Inorganics											
Antimony	ug/L	16000	<0.50	<0.50	<0.50	0.62	<0.50	<0.50	<0.50	1.1	0.75
Arsenic	ug/L	1500	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1	1.5
Barium	ug/L	23000	110	190	190	77	190	210	0.2	220	65
Beryllium	ug/L	53	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Boron	ug/L	36000	39	58	61	300	870	60	380	930	660
Cadmium	ug/L	2.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Chloride	ug/L	1800000	340000	570000	570000	460000	970000	950000	480000	110000	140000
Chromium	ug/L	640	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Chromium (VI)	ug/L	110	<0.5	<0.5	<0.5	<0.5	<0.5	<0.50	<2.5	<0.50	<0.50
Cobalt	ug/L	52	2.3	1.2	1.1	1.2	0.92	<0.50	<0.50	0.59	<0.50
Copper	ug/L	69	5.8	1.7	1.7	1.7	<1.0	2.3	3.2	1.4	1.6
Cyanide	ug/L	52	<2	<2	<2	<2	<2	<2	<2	<2	-
Lead	ug/L	20	3.7	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Mercury	ug/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-
Molybdenum	ug/L	7300	3.1	1.9	2	4.7	0.98	3.1	14	22	3.4
Nickel	ug/L	390	3.6	2.9	2.5	3.4	1	2.1	2.5	1.3	<1.0
Sodium	ug/L	1800000	300000	450000	460000	520000	890000	520000	280000	120000	260000
Selenium	ug/L	50	<2.0	<2.0	<2.0	2.9	<2.0	<2.0	<2.0	<2.0	<2.0
Silver	ug/L	1.2	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Thallium	ug/L	400	0.05	<0.050	<0.050	0.074	<0.050	<0.050	0.054	<0.050	<0.050
Uranium	ug/L	330	1.7	2	1.8	3.1	0.88	2	2.5	4.7	2.6
Vanadium	ug/L	200	1.7	<0.50	<0.50	<0.50	<1.0	<1.0	<0.050	<0.050	0.96
Zinc	ug/L	890	12	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0

NOTES:

Ontario Ministry of Environment, Conservation and Parks (MECP), Soil, Groundwater and Sediment Standards for use under Part XV.1 of the Environmental Protection Act, April 2011, Table 7 Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water $\stackrel{\cdot}{\text{Condition for Residential/Parkland/Institutional Property Use (coarse textured soils)}}$

Non-detectable results are shown as "ND (RDL)" where RDL represents the reporting detection limit. ND

NV No Value

N/A Not Applicable Parameter not analyzed

Metres below ground surface m bgs

Indicates goundwater exceedance of MECP Table 7 generic site condition standard for coarse textured soil and residential/parkland/institutional property use

Table 7 - Maximum Concentration - Soil 770 and 775 Bronson Avenue, 557 Cambridge Street, Ottawa, ON OTT-22019409-A0

Parameter	Sample Location	Sample Depth (mbgs)	Sampling Date	Maximum Concentration	MECP Table 7
Metals and Inorganics					
Mercury	BH15-4 (WSP)	0.0 to 0.6	11-Jan-2016	0	0.27
intimony	BH15-5 (WSP)	0.2 to 0.6	11-Jan-2016	1	8
rsenic	BH15-1 (WSP)	0.0 to 0.6	11-Jan-2016	15.00	18
arium	BH15-5 (WSP)	0.2 to 0.6	11-Jan-2016	17	390
eryllium	BH15-4 (WSP)	0.0 to 0.6	11-Jan-2016	0.52	4
oron (Total)	BH15-5 (WSP)	0.2 to 0.6	11-Jan-2016	17	120
admium	BH15-6 (WSP)	0.1 to 0.6	11-Jan-2016	0.29	1.2
hromium	BH15-5(WSP)	0.2 to 0.6	11-Jan-2016	48	160
hromium (VI)	BH15-4 (WSP)	0.0 to 0.6	11-Jan-2016	<0.2	8
obalt	BH15-5 (WSP)	0.2 to 0.6	11-Jan-2016	11	22
opper	BH15-4 (WSP)	0.0 to 0.6	11-Jan-2016	28	140
ead	BH15-6 (WSP)	0.1 to 0.6	11-Jan-2016	210	120
lolybdenum	BH15-4 (WSP)	0.0 to 0.6	11-Jan-2016	1.8	7
ickel	BH15-5 (WSP)	0.2 to 0.6	11-Jan-2016	140	100
elenium	BH15-4 (WSP)	0.0 to 0.6	11-Jan-2016	0.72	2
lver	All WSP Locations	0.0 to 0.6	11-Jan-2016	<0.20	20.0
nallium	BH15-4 (WSP)	0.0 to 0.6	11-Jan-2016	0.19	1
ranium	BH15-6 (WSP)	0.1 to 0.6	11-Jan-2016	100	23
anadium	BH15-4 (WSP)	0.0 to 0.6	11-Jan-2016	34	86
inc	BH15-6 (WSP)	0.1 to 0.6	11-Jan-2016	190	340
olycyclic Aromatic Hydrocarbons	, ,				
cenaphthene	BH15-1 (WSP)	0.15 to 0.61	11-Jan-2016	0	7.9
cenaphthylene	BH15-1 (WSP)	0.15 to 0.61	11-Jan-2016	0.1	0.15
nthracene	BH15-1 (WSP)	0.15 to 0.61	11-Jan-2016	0.23	0.67
enzo(a)anthracene	BH15-1 (WSP)	0.15 to 0.61	11-Jan-2016	0.72	0.5
enzo(a)pyrene	BH15-1 (WSP)	0.15 to 0.61	11-Jan-2016	0.78	0.3
	BH15-1 (WSP)	0.15 to 0.61	11-Jan-2016 11-Jan-2016	1.1	0.78
enzo(b/j)fluoranthene				0.42	
enzo(g,h,i)perylene	BH15-1 (WSP)	0.15 to 0.61	11-Jan-2016		6.6
enzo(k)fluoranthene	BH15-1 (WSP)	0.15 to 0.61	11-Jan-2016	0.41	0.78
nrysene	BH15-1 (WSP)	0.15 to 0.61	11-Jan-2016	0.71	7
benz(a,h)anthracene	BH15-1 (WSP)	0.15 to 0.61	11-Jan-2016	0.13	0.1
uoranthene	BH15-1 (WSP)	0.15 to 0.61	11-Jan-2016	1.9	0.69
uorene	BH15-1 (WSP)	0.15 to 0.61	11-Jan-2016	0.11	62
deno(1,2,3-cd)pyrene	BH15-1 (WSP)	0.15 to 0.61	11-Jan-2016	0.4	0.38
ethylnaphthalene, 2-(1-)	BH15-1 (WSP)	0.15 to 0.61	11-Jan-2016	0.037	0.99
aphthalene	BH15-1 (WSP)	0.15 to 0.61	11-Jan-2016	0.022	0.6
henanthrene	BH15-1 (WSP)	0.15 to 0.61	11-Jan-2016	1.1	6.2
yrene	BH15-1 (WSP)	0.15 to 0.61	11-Jan-2016	1	78
etroleum Hydrocarbons					
1 PHC (C6 - C10) - BTEX	All Locations	0.1 to 2.4	24-Mar-2015, 11-Jan-2016	<10	55
2 PHC (C10-C16)	All Locations	0.1 to 2.4	24-Mar-2015, 11-Jan-2016	<10	98
3 PHC (C16-C34)	BH15-4 (Golder)	0.1 to 0.7	24-Mar-2015	740	300
4 PHC (C34-C50)	BH15-4 (Golder)	0.1 to 0.7	24-Mar-2015	1100	2800
olatile Organic Compounds	•	•			•
cetone (2-Propanone)	All Locations	0.1 to 2.4	24-Mar-2015, 11-Jan-2016	<0.50	16
enzene	All Locations	0.1 to 2.4	24-Mar-2015, 11-Jan-2016	<0.02	0.21
romodichloromethane	All Locations	0.1 to 2.4	24-Mar-2015, 11-Jan-2016	<0.05	13
romoform	All Locations	0.1 to 2.4	24-Mar-2015, 11-Jan-2016	<0.05	0.27
romomethane	All Locations	0.1 to 2.4	24-Mar-2015, 11-Jan-2016	<0.05	0.05
arbon Tetrachloride	All Locations	0.1 to 2.4	24-Mar-2015, 11-Jan-2016	<0.05	0.05
hlorobenzene	All Locations	0.1 to 2.4	24-Mar-2015, 11-Jan-2016	<0.05	2.4
				<0.05	0.05
hloroform	All Locations	0.1 to 2.4	24-Mar-2015, 11-Jan-2016		
ibromochloromethane	All Locations	0.1 to 2.4	24-Mar-2015, 11-Jan-2016	<0.05	9.4
ichlorodifluoromethane (FREON 12)	All Locations	0.1 to 2.4	24-Mar-2015, 11-Jan-2016	<0.05	16
2-Dichlorobenzene	All Locations	0.1 to 2.4	24-Mar-2015, 11-Jan-2016	<0.05	3.4
3-Dichlorobenzene	All Locations	0.1 to 2.4	24-Mar-2015, 11-Jan-2016	<0.05	4.8
4-Dichlorobenzene	All Locations	0.1 to 2.4	24-Mar-2015, 11-Jan-2016	<0.05	0.083
1-Dichloroethane	All Locations	0.1 to 2.4	24-Mar-2015, 11-Jan-2016	<0.02	3.5
2-Dichloroethane	All Locations	0.1 to 2.4	24-Mar-2015, 11-Jan-2016	<0.03	0.05
1-Dichloroethylene	All Locations	0.1 to 2.4	24-Mar-2015, 11-Jan-2016	<0.05	0.05
s-1,2-Dichloroethylene	All Locations	0.1 to 2.4	24-Mar-2015, 11-Jan-2016	<0.02	3.4
ans-1,2-Dichloroethylene	All Locations	0.1 to 2.4	24-Mar-2015, 11-Jan-2016	<0.05	0.084
		044-24	24-Mar-2015, 11-Jan-2016	<0.03	0.05
2-Dichloropropane	All Locations	0.1 to 2.4	24-10101-2013, 11-3011-2010		NV
2-Dichloropropane	All Locations All Locations	0.1 to 2.4	24-Mar-2015, 11-Jan-2016	<0.030	
2-Dichloropropane s-1,3-Dichloropropylene			24-Mar-2015, 11-Jan-2016 24-Mar-2015, 11-Jan-2016	<0.030 <0.040	NV
2-Dichloropropane s-1,3-Dichloropropylene ans-1,3-Dichloropropylene	All Locations	0.1 to 2.4	24-Mar-2015, 11-Jan-2016		
2-Dichloropropane s-1,3-Dichloropropylene ans-1,3-Dichloropropylene 3-Dichloropropene (cis+trans)	All Locations All Locations	0.1 to 2.4 0.1 to 2.4	24-Mar-2015, 11-Jan-2016 24-Mar-2015, 11-Jan-2016	<0.040	NV
2-Dichloropropane -1,3-Dichloropropylene ans-1,3-Dichloropropylene 3-Dichloroproppene (cis+trans) hylbenzene	All Locations All Locations All Locations	0.1 to 2.4 0.1 to 2.4 0.1 to 2.4	24-Mar-2015, 11-Jan-2016 24-Mar-2015, 11-Jan-2016 24-Mar-2015, 11-Jan-2016	<0.040 <0.04	NV 0.05
2-Dichloropropane 5-1,3-Dichloropropylene ans-1,3-Dichloropropylene 3-Dichloropropene (cis+trans) hylbenzene chylene Dibromide	All Locations All Locations All Locations All Locations	0.1 to 2.4 0.1 to 2.4 0.1 to 2.4 0.1 to 2.4	24-Mar-2015, 11-Jan-2016 24-Mar-2015, 11-Jan-2016 24-Mar-2015, 11-Jan-2016 24-Mar-2015, 11-Jan-2016	<0.040 <0.04 <0.05	NV 0.05 2
2-Dichloropropane s-1,3-Dichloropropylene ans-1,3-Dichloropropylene 3-Dichloropropene (cis+trans) hylbenzene hylene Dibromide	All Locations All Locations All Locations All Locations All Locations All Locations	0.1 to 2.4 0.1 to 2.4 0.1 to 2.4 0.1 to 2.4 0.1 to 2.4 0.1 to 2.4	24-Mar-2015, 11-Jan-2016 24-Mar-2015, 11-Jan-2016 24-Mar-2015, 11-Jan-2016 24-Mar-2015, 11-Jan-2016 24-Mar-2015, 11-Jan-2016	<0.040 <0.04 <0.05 <0.04	NV 0.05 2 0.05
2-Dichloropropane: -1,3-Dichloropropylene -1,3-Dichloropropylene -3-Dichloropropene (cis+trans) hylbenzene hylene Dibromide exane ethyl Ethyl Ketone (2-Butanone)	All Locations	0.1 to 2.4 0.1 to 2.4	24-Mar-2015, 11-Jan-2016 24-Mar-2015, 11-Jan-2016 24-Mar-2015, 11-Jan-2016 24-Mar-2015, 11-Jan-2016 24-Mar-2015, 11-Jan-2016 24-Mar-2015, 11-Jan-2016 24-Mar-2015, 11-Jan-2016	<0.040 <0.04 <0.05 <0.04 <0.05 <0.05	NV 0.05 2 0.05 2.8
2-Dichloropropane s-1,3-Dichloropropylene ans-1,3-Dichloropropylene 3-Dichloropropene (cis+trans) hylbenzene hylene Dibromide exane lethyl Ethyl Ketone (2-Butanone) ethyl Isobutyl Ketone	All Locations	0.1 to 2.4 0.1 to 2.4 0.1 to 2.4 0.1 to 2.4 0.1 to 2.4 0.1 to 2.4 0.1 to 2.4	24-Mar-2015, 11-Jan-2016 24-Mar-2015, 11-Jan-2016 24-Mar-2015, 11-Jan-2016 24-Mar-2015, 11-Jan-2016 24-Mar-2015, 11-Jan-2016 24-Mar-2015, 11-Jan-2016 24-Mar-2015, 11-Jan-2016 24-Mar-2015, 11-Jan-2016	<0.040 <0.04 <0.05 <0.04 <0.05 <0.50 <0.50	NV 0.05 2 0.05 2.8 16
2-Dichloropropane 1-1,3-Dichloropropylene ans-1,3-Dichloropropylene 3-Dichloropropene (cis+trans) hylbenzene hylene Dibromide exane ethyl Ethyl Ketone (2-Butanone) ethyl Is-butyl Ketone ethyl Is-butyl ether (MTBE)	All Locations	0.1 to 2.4 0.1 to 2.4	24-Mar-2015, 11-Jan-2016 24-Mar-2015, 11-Jan-2016 24-Mar-2015, 11-Jan-2016 24-Mar-2015, 11-Jan-2016 24-Mar-2015, 11-Jan-2016 24-Mar-2015, 11-Jan-2016 24-Mar-2015, 11-Jan-2016 24-Mar-2015, 11-Jan-2016 24-Mar-2015, 11-Jan-2016	<0.040 <0.04 <0.05 <0.05 <0.05 <0.50 <0.50 <0.05	NV 0.05 2 0.05 2.8 16 1.7 0.75
2-Dichloropropane :-1,3-Dichloropropylene 3-Dichloropropylene 3-Dichloropropene (cis+trans) hylbenzene hylene Dibromide exane ethyl Ethyl Ketone (2-Butanone) ethyl Isobutyl Ketone ethyl Ethyl Ketone	All Locations	0.1 to 2.4 0.1 to 2.4	24-Mar-2015, 11-Jan-2016 24-Mar-2015, 11-Jan-2016 24-Mar-2015, 11-Jan-2016 24-Mar-2015, 11-Jan-2016 24-Mar-2015, 11-Jan-2016 24-Mar-2015, 11-Jan-2016 24-Mar-2015, 11-Jan-2016 24-Mar-2015, 11-Jan-2016 24-Mar-2015, 11-Jan-2016 24-Mar-2015, 11-Jan-2016	<0.040 <0.04 <0.05 <0.04 <0.05 <0.05 <0.05 <0.50 <0.50 <0.50 <0.05 <0.05	NV 0.05 2 0.05 2.8 16 1.7 0.75
2-Dichloropropane -1,3-Dichloropropylene ans-1,3-Dichloropropylene 3-Dichloropropylene 3-Dichloropropene (cis+trans) hylbenzene hylene Dibromide exane ethyl Ethyl Ketone (2-Butanone) ethyl Isobutyl Ketone ethyl Isobutyl Ketone ethyl thutyl ether (MTBE) ethylene Chloride(Dichloromethane) yrene	All Locations	0.1 to 2.4	24-Mar-2015, 11-Jan-2016	<0.040 <0.04 <0.05 <0.04 <0.05 <0.05 <0.05 <0.05 <0.50 <0.50 <0.50 <0.05 <0.05 <0.05 <0.05	NV 0.05 2 0.05 2.8 16 1.7 0.75 0.1 0.7
2-Dichloropropane :-1,3-Dichloropropylene 3-Dichloropropylene 3-Dichloropropylene 3-Dichloropropene (cis+trans) hylbenzene hylene Dibromide exane ethyl Ethyl Ketone (2-Butanone) ethyl Isobutyl Ketone ethyl t-butyl ether (MTBE) ethylene Chloride(Dichloromethane) yrene 1,1,2-Tetrachloroethane	All Locations	0.1 to 2.4 0.1 to 2.4	24-Mar-2015, 11-Jan-2016	<0.040 <0.04 <0.05 <0.05 <0.05 <0.05 <0.50 <0.50 <0.50 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05	NV 0.05 2 0.05 2.8 16 1.7 0.75 0.1 0.7
2-Dichloropropane 5-1,3-Dichloropropylene 3-Dichloropropylene 3-Dichloropropylene 3-Dichloropropylene 3-Dichloropropylene bylene Dibromide exane ethyl Ethyl Ketone (2-Butanone) ethyl Isobutyl Ketone ethyl Ethyl Ketone (HTBE) ethylene Dibroride(Dichloromethane) yrene tyl-1,1,2-Tetrachloroethane 1,2,2-Tetrachloroethane	All Locations	0.1 to 2.4	24-Mar-2015, 11-Jan-2016	<0.040 <0.04 <0.05 <0.05 <0.04 <0.05 <0.50 <0.50 <0.50 <0.50 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05	NV 0.05 2 0.05 2.8 16 1.7 0.75 0.1 0.7 0.058 0.05
2-Dichloropropane -1,3-Dichloropropylene ans-1,3-Dichloropropylene 3-Dichloropropylene 3-Dichloropropylene 3-Dichloropropene (cis+trans) hylbenzene hylene Dibromide exane ethyl Ethyl Ketone (2-Butanone) ethyl Isobutyl Ketone ethyl Isobutyl Ketone ethyl Isobutyl Ketone ethyl Loutyl ether (MTBE) ethylene Chloride(Dichloromethane) yrene 1,1,2-Tetrachloroethane trachloroethylene	All Locations	0.1 to 2.4	24-Mar-2015, 11-Jan-2016	<0.040 <0.04 <0.05 <0.05 <0.04 <0.05 <0.05 <0.05 <0.50 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05	NV 0.05 2 0.05 2.8 16 1.7 0.75 0.1 0.7 0.058 0.05 0.28
2-Dichloropropane :-1,3-Dichloropropylene 3-Dichloropropylene 3-Dichloropropylene 3-Dichloropropylene 3-Dichloropropene (cis+trans) hyblenzene hylene Dibromide exane ethyl Ethyl Ketone (2-Butanone) ethyl Isobutyl Ketone ethyl Ethyl Ketone ethyl t-butyl ether (MTBE) ethylene Chloride(Dichloromethane) yrene 1,1,2-Tetrachloroethane 1,2,2-Tetrachloroethane ethyl-loroethylene bluene	All Locations	0.1 to 2.4	24-Mar-2015, 11-Jan-2016	<0.040 <0.04 <0.05 <0.04 <0.05 <0.04 <0.05 <0.50 <0.50 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05	NV 0.05 2 2 0.05 2.8 16 1.7 0.75 0.1 0.7 0.058 0.05 2.2 2.3
2-Dichloropropane s-1,3-Dichloropropylene ans-1,3-Dichloropropylene 3-Dichloropropylene 3-Dichloropropylene 3-Dichloropropylene dichloropropene (cis+trans) hylbenzene hylene Dibromide exane lethyl Ethyl Ketone (2-Butanone) lethyl Isobutyl Ketone ethyl t-butyl ether (MTBE) lethylene Chloride(Dichloromethane) yrene 1,1,2-Tetrachloroethane 1,2,2-Tetrachloroethane bluene 1,1-Trichloroethane	All Locations	0.1 to 2.4	24-Mar-2015, 11-Jan-2016	<0.040 <0.04 <0.05 <0.04 <0.05 <0.05 <0.50 <0.50 <0.50 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05	NV 0.05 2 0.05 2.8 16 1.7 0.75 0.1 0.75 0.058 0.05 0.28 2.3 0.38
2-Dichloropropane s-1,3-Dichloropropylene ans-1,3-Dichloropropylene 3-Dichloropropylene 3-Dichloropropylene 3-Dichloropropylene dichloropropene (dis+trans) thyblenzene thylene Dibromide exane lethyl Ethyl Ketone (2-Butanone) lethyl Isobutyl Ketone lethyl Isobutyl lethyl Isobut	All Locations	0.1 to 2.4	24-Mar-2015, 11-Jan-2016	<0.040 <0.04 <0.05 <0.05 <0.05 <0.05 <0.50 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05	NV 0.05 2 2 0.05 2.8 16 1.7 0.75 0.1 0.7 0.058 0.05 0.28 2.3 0.38 0.05
2-Dichloropropane s-1,3-Dichloropropylene ans-1,3-Dichloropropylene 3-Dichloropropylene 3-Dichloropropene (cis+trans) hyblenzene hyblenzene exane etehyl Ethyl Ketone (2-Butanone) ethyl I sobutyl Ketone ethyl I-butyl ether (MTBE) ethylene hydrachlorofeloichloromethane) yrene 1,1,2-Tertachloroethane trachloroethylene bluene 1,1-Trichloroethane 1,2-Trichloroethane 1,2-Trichloroethane 1,2-Trichloroethane 1,2-Trichloroethane 1,2-Trichloroethane 1,2-Trichloroethane 1,2-Trichloroethane 1,2-Trichloroethane	All Locations	0.1 to 2.4	24-Mar-2015, 11-Jan-2016	<0.040 <0.040 <0.05 <0.040 <0.05 <0.04 <0.05 <0.50 <0.50 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.04 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05	NV 0.05 2 2 0.05 16 17 17 16 17 17 17 17 17 17 17 17 17 17 17 17 17
2-Dichloropropane 5-1,3-Dichloropropylene ans-1,3-Dichloropropylene 3-Dichloropropylene 3-Dichloropropylene 3-Dichloropropylene 3-Dichloropropene (dis+trans) thylbenzene thylene Dibromide exane lethyl Ethyl Ketone (2-Butanone) lethyl Stobutyl Ketone lethyl Ethyl Ketone (lethyl Ethyl Ketone lethyl Ethyl Ethyl Ketone lethyl - Divly ether (MTBE) lethylene Chloride(Dichloromethane) tyrene 1,1,2-Tetrachloroethane 1,1,2-Tetrachloroethane luene 1,1-Trichloroethane 1,2-Trichloroethane 1,2-Trichloroethane 1,2-Trichloroethylene	All Locations	0.1 to 2.4	24-Mar-2015, 11-Jan-2016	<0.040 <0.04 <0.05 <0.04 <0.05 <0.04 <0.05 <0.05 <0.50 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05	NV 0.05 2 0.05 2.8 16 1.7 0.75 0.1 0.058 0.05 0.28 2.3 0.38 0.05 0.061 4
2-Dichloropropane s-1,3-Dichloropropylene ans-1,3-Dichloropropylene 3-Dichloropropylene 3-Dichloropropylene 3-Dichloropropylene 3-Dichloropropene (dis+trans) thyblenzene thylene Dibromide exane lethyl Ethyl Ketone (2-Butanone) lethyl Isobutyl Ketone lethyl Ethyl Ketone lethyl Ethyl Ethyl Ketone lethyl Isobutyl Ketone lethyl Isobutyl Ketone lethyl-butyl ether (MTBE) lethylene Chloride(Dichloromethane) lyrene 1,1,2-Tertachloroethane ethachloroethylene bluene 1,1-Trichloroethane 1,1-Trichloroethane 1,1-Trichloroethane ichlorofluoromethane (FREON 11) myl Chloride	All Locations	0.1 to 2.4	24-Mar-2015, 11-Jan-2016	<0.040 <0.040 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.04 <0.05 <0.04 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05	NV 0.05 2 0.05 2.8 16 1.7 0.75 0.1 0.7 0.058 0.05 0.28 2.3 0.38 0.05 0.061 4 0.02
ans-1,2-Dichloropropane s-1,3-Dichloropropylene ans-1,3-Dichloropropylene 3-Dichloropropylene 3-Dichloropropylene 3-Dichloropropylene 3-Dichloropropylene 3-Dichloropropylene dichylene Dichoropropylene lethylene Dibromide exane lethyl Ethyl Ketone (2-Butanone) lethyl Isobutyl Ketone lethyl Isobutyl Ketone lethyl Isobutyl Ketone lethylene Chloride(Dichloromethane) lyrene 1,1,2-Tetrachloroethane 1,2-Trichloroethane 1,2-Trichloroethane 1,2-Trichloroethane ichlorofthylene dichlorofthylene dichloroftloromethane (FREON 11) myl Chloride //p-Xylene	All Locations	0.1 to 2.4	24-Mar-2015, 11-Jan-2016	<0.040 <0.04 <0.05 <0.04 <0.05 <0.04 <0.05 <0.05 <0.50 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05	NV 0.05 2 0.05 2.8 16 1.7 0.75 0.1 0.058 0.05 0.28 2.3 0.38 0.05 0.061 4
2-Dichloropropane s-1,3-Dichloropropylene ans-1,3-Dichloropropylene 3-Dichloropropylene 3-Dichloropropylene 3-Dichloropropylene 3-Dichloropropene (dis+trans) thyblenzene thylene Dibromide exane lethyl Ethyl Ketone (2-Butanone) lethyl Isobutyl Ketone lethyl Ethyl Ketone lethyl Ethyl Ethyl Ketone lethyl Isobutyl Ketone lethyl Isobutyl Ketone lethyl-butyl ether (MTBE) lethylene Chloride(Dichloromethane) lyrene 1,1,2-Tertachloroethane ethachloroethylene bluene 1,1-Trichloroethane 1,1-Trichloroethane 1,1-Trichloroethane ichlorofluoromethane (FREON 11) myl Chloride	All Locations	0.1 to 2.4	24-Mar-2015, 11-Jan-2016	<0.040 <0.040 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.04 <0.05 <0.04 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05	NV 0.05 2 0.05 2.8 16 1.7 0.75 0.1 0.7 0.058 0.05 0.28 2.3 0.38 0.05 0.061 4 0.02

NOIS:
All results are in ppm on dry weight basis
Non-detectable results are shown as "C (RDL)" where RDL represents the reporting detection limit.
Ontario Ministry of Environment, Conservation and Parks (MECP), Soil, Groundwater and Sediment Standards for use under Part XV.1 of the Environmental Protection Act, April 2011, Table 7
Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition for Residential/Parkland/Institutional Property Use (coarse textured soils)

Table 8 - Maximum Concentration - Groundwater 770 and 775 Bronson Avenue, 557 Cambridge Street, Ottawa, ON OTT-22019409-A0

	ī				
Parameter	Sample Location	Sample Depth (mbgs)	Sampling Date	Maximum Concentration	MECP Table 7
Metals and Inorganics					
Mercury	All WSP sampling locations	1.0 to 8.0	All 2016 sampling dates	< 0.1	0.10
Antimony	BH15-6A (WSP)	2.1 to 3.7	1-Mar-2016	1.1	16000
Arsenic	BH15-6B (WSP)	6.4 to 8.0	1-Mar-2016	1.5	1500
Barium	BH15-6A (WSP)	2.1 to 3.7	1-Mar-2016	220	23000
Beryllium	All WSP sampling locations	1.0 to 8.0	All 2016 sampling dates	< 0.50	53
Boron (Total)	BH15-6A (WSP)	2.1 to 3.7	1-Mar-2016	930	36000
Cadmium	All WSP sampling locations	1.0 to 8.0	All 2016 sampling dates	< 0.50	2.1
Chloride	BH15-3B (WSP)	6.3 to 7.8	21-Jan-2016	970000	1800000
Chromium	All WSP sampling locations	1.0 to 8.0	All 2016 sampling dates	<5.0	640
Chromium (VI)	All WSP sampling locations	1.0 to 8.0	All 2016 sampling dates	<0.50	110
Cobalt	BH15-2A (WSP)	2.1 to 4.0	21-Jan-2016	2.3	52
Copper	BH15-2A (WSP)	2.1 to 4.0	21-Jan-2016	5.8	69
Lead	BH15-2A (WSP)	2.1 to 4.0	21-Jan-2016	3.7	20
Molybdenum	BH15-6A (WSP)	2.1 to 3.7	1-Mar-2016	22	7300
Nickel	BH15-2A (WSP)	2.1 to 4.0	21-Jan-2016	3.6	390
Selenium	BH15-3A (WSP)	1.0 to 2.6	21-Jan-2022	2.9	50
Silver	All WSP sampling locations	1.0 to 8.0	All 2016 sampling dates	<0.10	1.2
Sodium	BH15-3B (WSP)	6.3 to 7.8	21-Jan-2016	890000	1,800,000
Thallium	BH15-3A (WSP)	1.0 to 2.6	21-Jan-2022	0.074	400
Uranium	BH15-6A (WSP)	2.1 to 3.7	1-Mar-2016	4.7	330
Vanadium	BH15-2A (WSP)	2.1 to 4.0	21-Jan-2016	1.7	200
Zinc	BH15-2A (WSP)	2.1 to 4.0	21-Jan-2016	12	890
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	All sampling locations	1.0 to 15.3	All sampling dates	< 0.050	17
Acenaphthylene	All sampling locations	1.0 to 15.3	All sampling dates	< 0.050	1
Anthracene	BH15-4A (WSP)	2.2 to 3.7	1-Mar-2016	0.059	1
Benzo(a)anthracene	BH15-4A (WSP)	2.2 to 3.7	1-Mar-2016	0.16	1.8
Benzo(a)pyrene	BH15-4A (WSP)	2.2 to 3.7	1-Mar-2016	0.18	0.81
Benzo(b/j)fluoranthene	BH15-4A (WSP)	2.2 to 3.7	1-Mar-2016	0.24	0.75
Benzo(g,h,i)perylene	BH15-4A (WSP)	2.2 to 3.7	1-Mar-2016	0.12	0.2
Benzo(k)fluoranthene	BH15-4A (WSP)	2.2 to 3.7	1-Mar-2016	0.087	0.4
Chrysene	BH15-4A (WSP)	2.2 to 3.7	1-Mar-2016	0.15	0.7
Dibenz(a,h)anthracene	All sampling locations	1.0 to 15.3	All sampling dates	<0.050	0.4
Fluoranthene	BH15-4A (WSP)	2.2 to 3.7	1-Mar-2016	0.35	44
Fluorene	All sampling locations	1.0 to 15.3	All sampling dates	<0.050	290
Indeno(1,2,3-cd)pyrene	BH15-4A (WSP)	2.2 to 3.7	1-Mar-2016	0.13	0.2
1-Methylnaphthalene	All sampling locations	1.0 to 15.3	All sampling dates	<0.050	1500
2-Methylnaphthalene	All sampling locations	1.0 to 15.3	All sampling dates	<0.050	1500
Methylnaphthalene, 2-(1-)	BH15-4 (Golder)	4.4 to 6.0	27-Mar-2015	1.5	1500
Naphthalene	BH15-4 (Golder)	4.4 o 6.0	27-Mar-2015	0.7	7
Phenanthrene	BH15-4A (WSP)	2.2 to 3.7	1-Mar-2016	0.99	380
	BH15-4A (WSP)		1-Mar-2016	0.10	5.7
Pyrene Petroleum Hydrocarbons	BH15-4A (W3F)	2.2 to 3.7	1-10181-2010	0.10	3.7
F1 PHC (C6 - C10) - BTEX	All sampling locations	1.0 to 15.3	All sampling dates	<25	420
F2 PHC (C10-C16)	All sampling locations All sampling locations	1.0 to 15.3	All sampling dates	<100	150
F3 PHC (C16-C34)	All sampling locations	1.0 to 15.3	All sampling dates	<400	500
F4 PHC (C34-C50)	All sampling locations	1.0 to 15.3	All sampling dates	<400	500
Volatile Organic Compounds	All sampling locations	1.0 (0 13.3	All sallipillig dates	X400	300
Acetone (2-Propanone)	BH15-3A (WSP)	1.0 to 2.6	19-Jan-2016	20	100000
Benzene	BH15-2 (Golder)	4.4 to 5.9	27-Mar-2015	1.8	0.5
Bromodichloromethane	BH15-4A (WSP)	2.2 to 3.7	27-Mar-2015	1.5	67000
Bromoform	All sampling locations	1.0 to 15.3	All sampling dates	<0.10	5
Bromomethane	All sampling locations All sampling locations	1.0 to 15.3	All sampling dates	<0.10	0.89
Carbon Tetrachloride	All sampling locations All sampling locations		All sampling dates	<0.20	0.2
Chlorobenzene		1.0 to 15.3 1.0 to 15.3	All sampling dates	<0.10	140
Chloroform	All sampling locations	1.0 to 13.3	All sallipling dates	14	2
	All consider leastings	1.04- 15.3	All consoling dates		
Dibromochloromethane	All sampling locations	1.0 to 15.3	All sampling dates	<0.10	65000
Dichlorodifluoromethane (FREON 12) 1,2-Dichlorobenzene	All sampling locations	1.0 to 15.3 1.0 to 15.3	All sampling dates	<0.20 <0.10	3500 150
	All sampling locations		All sampling dates	<0.10	7600
1,3-Dichlorobenzene 1,4-Dichlorobenzene	All sampling locations	1.0 to 15.3	All sampling dates All sampling dates	<0.10	0.5
1,1-Dichloroethane	All sampling locations	1.0 to 15.3 1.0 to 15.3		<0.10	0.5
1,2-Dichloroethane	All sampling locations All sampling locations	1.0 to 15.3	All sampling dates All sampling dates	<0.20	0.5
1,2-Dichloroethylene	All sampling locations All sampling locations	1.0 to 15.3 1.0 to 15.3	All sampling dates All sampling dates	<0.20	0.5
cis-1,2-Dichloroethylene	All sampling locations All sampling locations	1.0 to 15.3	All sampling dates	<0.20	1.6
trans-1,2-Dichloroethylene	All sampling locations All sampling locations		All sampling dates		
	All Sampling locations	1.0 to 15.3	All Sampling dates	<0.20	1.6
		1.0+- 15.3		<0.20	
1,2-Dichloropropane	All sampling locations	1.0 to 15.3	All sampling dates	<0.20	0.58 NV
1,2-Dichloropropane cis-1,3-Dichloropropylene	All sampling locations All sampling locations	1.0 to 15.3	All sampling dates All sampling dates	< 0.5	NV
1,2-Dichloropropane cis-1,3-Dichloropropylene trans-1,3-Dichloropropylene	All sampling locations All sampling locations All sampling locations	1.0 to 15.3 1.0 to 15.3	All sampling dates All sampling dates All sampling dates	< 0.5 < 0.5	NV NV
1,2-Dichloropropane cis-1,3-Dichloropropylene trans-1,3-Dichloropropylene 1,3-Dichloropropene (cis+trans)	All sampling locations All sampling locations All sampling locations All sampling locations	1.0 to 15.3 1.0 to 15.3 1.0 to 15.3	All sampling dates	< 0.5 < 0.5 < 0.60	NV NV 0.5
1,2-Dichloropropane cis-1,3-Dichloropropylene trans-1,3-Dichloropropylene 1,3-Dichloropropene (cis+trans) Ethylbenzene	All sampling locations All sampling locations All sampling locations All sampling locations BH15-4 (Golder)	1.0 to 15.3 1.0 to 15.3 1.0 to 15.3 4.4 to 6.0	All sampling dates All sampling dates All sampling dates All sampling dates 27-Mar-2015	< 0.5 < 0.5 < 0.60 0.55	NV NV 0.5 54
1,2-Dichloropropane cis-1,3-Dichloropropylene trans-1,3-Dichloropropylene 1,3-Dichloropropene (cis+trans) Ethylbenzene Ethylbenzene	All sampling locations All sampling locations All sampling locations All sampling locations BH15-4 (Golder) All sampling locations	1.0 to 15.3 1.0 to 15.3 1.0 to 15.3 1.0 to 15.3 4.4 to 6.0 1.0 to 15.3	All sampling dates 27-Mar-2015 All sampling dates	< 0.5 < 0.5 <0.60 0.55 <0.20	NV NV 0.5 54 0.2
1,2-Dichloropropane cis-1,3-Dichloropropylene trans-1,3-Dichloropropylene 1,3-Dichloropropene (cis+trans) Ethylonezene Ethylene Dibromide Hexane	All sampling locations All sampling locations All sampling locations All sampling locations BH15-4 (Golder) All sampling locations All sampling locations All sampling locations	1.0 to 15.3 1.0 to 15.3 1.0 to 15.3 4.4 to 6.0 1.0 to 15.3 1.0 to 15.3	All sampling dates All sampling dates All sampling dates All sampling dates 27-Mar-2015 All sampling dates All sampling dates All sampling dates	< 0.5 < 0.5 < 0.60 0.55 < 0.20 < 5	NV NV 0.5 54 0.2
1,2-Dichloropropane cis-1,3-Dichloropropylene trans-1,3-Dichloropropylene 1,3-Dichloropropene (cis-trans) Ethylbenzene Ethylene Dibromide Hexane Methyl Ethyl Ketone (2-Butanone)	All sampling locations All sampling locations All sampling locations All sampling locations BH15-4 (colder) All sampling locations All sampling locations BH15-2 (Golder) BH15-2 (Golder)	1.0 to 15.3 1.0 to 15.3 1.0 to 15.3 4.4 to 6.0 1.0 to 15.3 1.0 to 15.3 4.4 to 5.9	All sampling dates 27-Mar-2015 All sampling dates All sampling dates 27-Mar-2015	< 0.5 < 0.5 < 0.60 0.55 < 0.20 < 5 21	NV NV 0.5 54 0.2 5 21000
1,2-Dichloropropane cis-1,3-Dichloropropylene trans-1,3-Dichloropropylene 1,3-Dichloropropene (cis+trans) Ethylbenzene Ethylbenzene Hexane Methyl Ethyl Ketone (2-Butanone) Methyl Istyl Ketone	All sampling locations All sampling locations All sampling locations All sampling locations BH15-4 (Golder) All sampling locations All sampling locations BH15-2 (Golder) All sampling locations BH15-2 (Golder) All sampling locations	1.0 to 15.3 1.0 to 15.3 1.0 to 15.3 4.4 to 6.0 1.0 to 15.3 1.0 to 15.3 1.0 to 15.3 4.4 to 5.9 1.0 to 15.3	All sampling dates 27-Mar-2015 All sampling dates All sampling dates 27-Mar-2015 All sampling dates	< 0.5 < 0.5 < 0.60 0.55 < 0.20 < 5 21 < 1.0	NV NV 0.5 54 0.2 5 21000 5200
1,2-Dichloropropane cis-1,3-Dichloropropylene trans-1,3-Dichloropropylene 1,3-Dichloropropylene 1,3-Dichloropropylene Ethylene Dibromide Hexane Methyl Ethyl Ketone (2-Butanone) Methyl Isobutyl Ketone	All sampling locations All sampling locations All sampling locations All sampling locations BH15-4 (Golder) All sampling locations All sampling locations BH15-2 (Golder) All sampling locations BH15-2 (Golder) BH15-2 (Golder)	1.0 to 15.3 1.0 to 15.3 1.0 to 15.3 4.4 to 6.0 1.0 to 15.3 1.0 to 15.3 4.4 to 5.9 1.0 to 15.3 4.4 to 5.9	All sampling dates 27-Mar-2015 All sampling dates 27-Mar-2015 All sampling dates 27-Mar-2015 All sampling dates 27-Mar-2015	< 0.5 < 0.5 < 0.60 0.55 < 0.20 < 5 21 < 1.0 4.2	NV NV 0.5 54 0.2 5 21000 5200
1,2-Dichloropropane cis-1,3-Dichloropropylene trans-1,3-Dichloropropylene 1,3-Dichloropropylene 1,3-Dichloropropene (cis-trans) Ethylbenzene Ethylene Dibromide Hexane Methyl Ethyl Ketone (2-Butanone) Methyl Isobutyl Ketone Methyl Loutyl Ketone Methyl Ethyl Ketone (MEB) Methylene Chloride(Dichloromethane)	All sampling locations All sampling locations All sampling locations All sampling locations BH15-4 (Golder) All sampling locations All sampling locations All sampling locations BH15-2 (Golder) All sampling locations BH15-2 (Golder) All sampling locations	1.0 to 15.3 1.0 to 15.3 1.0 to 15.3 4.4 to 6.0 1.0 to 15.3 1.0 to 15.3 4.4 to 5.9 1.0 to 15.3 4.4 to 5.9 1.0 to 15.3	All sampling dates 27-Mar-2015 All sampling dates All sampling dates 27-Mar-2015 All sampling dates 27-Mar-2015 All sampling dates 27-Mar-2015 All sampling dates	<0.5 <0.60 0.55 <0.20 <5 21 <1.0 4.2 <0.30	NV NV 0.5 54 0.2 5 21000 5200 15 26
1,2-Dichloropropane cis-1,3-Dichloropropylene trans-1,3-Dichloropropylene 1,3-Dichloropropene (cis+trans) Ethylbenzene Ethylene Dibromide Hexane Methyl Ethyl Ketone (2-Butanone) Methyl Isbyt Ketone Methyl Isbyt Getone Methyl Isbyt Getone Methyl Isbyt Getone Methyl Isbyt Syrvene Methylene Chloride(Dichloromethane) Styrene	All sampling locations All sampling locations All sampling locations All sampling locations BH15-4 (Golder) All sampling locations All sampling locations BH15-2 (Golder) All sampling locations BH15-2 (Golder) All sampling locations BH15-2 (Golder) All sampling locations All sampling locations	1.0 to 15.3 1.0 to 15.3 1.0 to 15.3 4.4 to 6.0 1.0 to 15.3 1.0 to 15.3 4.4 to 5.9 1.0 to 15.3 4.4 to 5.9 1.0 to 15.2 1.0 to 15.2	All sampling dates 27-Mar-2015 All sampling dates All sampling dates 27-Mar-2015 All sampling dates 27-Mar-2015 All sampling dates All sampling dates All sampling dates All sampling dates	<0.5 <0.60 0.55 <0.20 <5 21 <1.0 4.2 <0.30 <0.10	NV NV 0.5 54 0.2 5 21000 5200 15 26 43
1,2-Dichloropropane cis-1,3-Dichloropropylene trans-1,3-Dichloropropylene 1,3-Dichloropropylene 1,3-Dichloropropylene Ethylene Dibromide Hexane Methyl Ethyl Ketone (2-Butanone) Methyl Isobutyl Ketone Methyl Isobutyl Ketone Methyl Lorone Methylene Chloride(Dichloromethane)	All sampling locations All sampling locations All sampling locations All sampling locations BH15-4 (Golder) All sampling locations BH15-4 (Golder) All sampling locations BH15-2 (Golder) All sampling locations BH15-2 (Golder) All sampling locations All sampling locations All sampling locations All sampling locations	1.0 to 15.3 1.0 to 15.3 1.0 to 15.3 4.4 to 6.0 1.0 to 15.3 1.0 to 15.3 1.0 to 15.3 4.4 to 5.9 1.0 to 15.3 4.4 to 5.9 1.0 to 15.3 4.7 to 15.2 1.0 to 15.3	All sampling dates 27-Mar-2015 All sampling dates 27-Mar-2015 All sampling dates 27-Mar-2015 All sampling dates 48 sampling dates All sampling dates All sampling dates All sampling dates All sampling dates	<0.5 <0.5 <0.60 0.55 <0.20 <5 21 <1.0 4.2 <0.30 <0.10 <0.10	NV NV 0.5 54 0.2 5 21000 15 220 43 1.1
1,2-Dichloropropane cis-1,3-Dichloropropylene trans-1,3-Dichloropropylene 1,3-Dichloropropylene 1,3-Dichloropropylene Ethylenene Ethylenene Ethylenene Ethylenene Methyl Ethyl Ketone (2-Butanone) Methyl Isthyl Ketone Methyl I-butyl ether (NTTBE) Methylenene 1,1,1,2-Tetrachloroethane 1,1,1,2-Tetrachloroethane	All sampling locations All sampling locations All sampling locations All sampling locations BH15-4 (Golder) All sampling locations BH15-2 (Golder) All sampling locations BH15-2 (Golder) All sampling locations BH15-2 (Golder) All sampling locations	1.0 to 15.3 1.0 to 15.3 1.0 to 15.3 4.4 to 6.0 1.0 to 15.3 1.0 to 15.3 1.0 to 15.3 4.4 to 5.9 1.0 to 15.3 4.4 to 5.9 1.0 to 15.2 1.0 to 15.3 1.0 to 15.3 1.0 to 15.3	All sampling dates 27-Mar-2015 All sampling dates All sampling dates 27-Mar-2015 All sampling dates 27-Mar-2015 All sampling dates	<.0.5 <.0.5 <.0.60 0.55 <.0.20 <.5 21 <.1.0 4.2 <.0.30 <.0.10 <.0.10 <.0.10	NV NV 0.5 54 0.2 5 21000 5200 15 26 43 1.1 0.5
1,2-Dichloropropane cis-1,3-Dichloropropylene trans-1,3-Dichloropropylene trans-1,3-Dichloropropylene 1,3-Dichloropropylene Ethylene Dibromide Hexane Methyl Ethyl Ketone (2-Butanone) Methyl Isobutyl Ketone Methyl Isobutyl Ketone Methyl Heyne Methyl Heyne (AIDE) Methylene Chloride(Dichloromethane) Styrene 1,1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane Tetrachloroethylene	All sampling locations All sampling locations All sampling locations All sampling locations BH15-4 (Golder) All sampling locations All sampling locations All sampling locations BH15-2 (Golder) All sampling locations BH15-2 (Golder) All sampling locations	1.0 to 15.3 1.0 to 15.3 1.0 to 15.3 4.4 to 6.0 1.0 to 15.3 1.0 to 15.3 1.0 to 15.3 4.4 to 5.9 1.0 to 15.3 4.4 to 5.9 1.0 to 15.2 1.0 to 15.2 1.0 to 15.3 1.0 to 15.3 1.0 to 15.3 1.0 to 15.3	All sampling dates 27-Mar-2015 All sampling dates 27-Mar-2015 All sampling dates 27-Mar-2015 All sampling dates 27-Mar-2015 All sampling dates	<0.5 <0.6 0.60 0.55 <0.20 <5 21 <1.0 4.2 <0.30 <0.10 <0.10 <0.10 <0.20	NV NV 0.5 54 0.2 5 21000 15 220 15 26 43 1.1 0.5 0.5 0.5
1,2-Dichloropropane cis-1,3-Dichloropropylene trans-1,3-Dichloropropylene 1,3-Dichloropropylene 1,3-Dichloropropylene Ethylenene Ethylenene Ethylenene Ethylenene Hexane Methyl Ethyl Ketone (2-Butanone) Methyl Isobutyl Ketone Methyl Isobutyl Ketone Methyl Ethyl Ketone 1,1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane Tetrachloroethylene Toluene	All sampling locations All sampling locations All sampling locations All sampling locations BH15-4 (colder) All sampling locations BH15-4 (colder) All sampling locations BH15-2 (colder) All sampling locations BH15-2 (colder) All sampling locations BH15-34 (WSP)	1.0 to 15.3 1.0 to 15.3 1.0 to 15.3 4.4 to 6.0 1.0 to 15.3 1.0 to 15.3 1.0 to 15.3 4.4 to 5.9 1.0 to 15.3 4.4 to 5.9 1.0 to 15.3 1.0 to 15.3 1.0 to 15.3 1.0 to 15.3 1.0 to 15.3 1.0 to 15.3 1.0 to 15.3	All sampling dates 27-Mar-2015 All sampling dates 27-Mar-2015 All sampling dates 27-Mar-2015 All sampling dates 27-Mar-2015 All sampling dates	<0.5 <0.5 <0.60 0.55 <0.00 0.55 <0.20 <5 21 <1.0 4.2 0.30 <0.10 <0.10 <0.10 <0.20 <2.9	NV NV 0.5 54 0.2 5 21000 5200 15 26 43 1.1 0.5 0.5 320
1,2-Dichloropropane cis-1,3-Dichloropropylene trans-1,3-Dichloropropylene 1,3-Dichloropropylene 1,3-Dichloropropylene Ethlylene Dibromide Hexane Methyl Ethyl Ketone (2-Butanone) Methyl Sobutyl Ketone Methyl I-bulyl ether (MTBE) Methylene Chloride(Dichloromethane) Styrene 1,1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane Tetrachloroethylene Tolluene 1,1,1,1-Trichloroethane	All sampling locations All sampling locations All sampling locations All sampling locations BH15-4 (Golder) All sampling locations BH15-2 (Golder) All sampling locations BH15-2 (Golder) All sampling locations BH15-2 (Golder) All sampling locations BH15-3 (Golder) All sampling locations	1.0 to 15.3 1.0 to 15.3 1.0 to 15.3 4.4 to 6.0 1.0 to 15.3 1.0 to 15.3 1.0 to 15.3 4.4 to 5.9 1.0 to 15.3 4.4 to 5.9 1.0 to 15.3 1.0 to 15.3 1.0 to 15.3 1.0 to 15.3 1.0 to 15.3 1.0 to 15.4 1.0 to 15.4	All sampling dates 27-Mar-2015 All sampling dates 27-Mar-2015 All sampling dates 27-Mar-2015 All sampling dates 27-Mar-2015 All sampling dates	<0.5 <0.5 <0.60 0.55 <0.20 <<5 21 <1.0 4.2 <0.30 <0.10 <0.10 <0.10 <0.20 2.9 <0.30	NV NV 0.5 54 21000 5200 15 26 43 1.1 0.5 0.5 320 23 23
1,2-Dichloropropane cis-1,3-Dichloropropylene trans-1,3-Dichloropropylene 1,3-Dichloropropylene 1,3-Dichloropropylene Ethylenene Ethylenene Ethylenene Ethylenene Hexane Methyl Ethyl Ketone (2-Butanone) Methyl Isobutyl Ketone Methyl Isobutyl Ketone Methyl Ethyl Ketone 1,1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane Tetrachloroethylene Toluene	All sampling locations All sampling locations All sampling locations All sampling locations BH15-4 (Golder) All sampling locations BH15-4 (Golder) All sampling locations BH15-2 (Golder) All sampling locations BH15-2 (Golder) All sampling locations BH15-3A (WSP) All sampling locations	1.0 to 15.3 1.0 to 15.3 1.0 to 15.3 4.4 to 6.0 1.0 to 15.3 1.0 to 15.3 1.0 to 15.3 4.4 to 5.9 1.0 to 15.3 4.4 to 5.9 1.0 to 15.3 1.0 to 15.3 1.0 to 15.3 1.0 to 15.3 1.0 to 15.3 1.0 to 15.3 1.0 to 15.3	All sampling dates 27-Mar-2015 All sampling dates 27-Mar-2015 All sampling dates 27-Mar-2015 All sampling dates 27-Mar-2015 All sampling dates	<.0.5 <.0.5 <.0.60 0.55 <.0.20 <.5 21 <.1.0 4.2 <.0.30 <.0.10 <.0.10 <.0.10 <.0.20 2.9 <.0.30 <.0.20	NV NV 0.5 54 0.2 5 21000 15 220 15 0.5 0.5 320 23 0.5
1,2-Dichloropropane cis-1,3-Dichloropropylene trans-1,3-Dichloropropylene 1,3-Dichloropropylene 1,3-Dichloropropylene Ethlylene Dibromide Hexane Methyl Ethyl Ketone (2-Butanone) Methyl Sobutyl Ketone Methyl I-bulyl ether (MTBE) Methylene Chloride(Dichloromethane) Styrene 1,1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane Tetrachloroethylene Tolluene 1,1,1,1-Trichloroethane	All sampling locations All sampling locations All sampling locations All sampling locations BH15-4 (Golder) All sampling locations BH15-2 (Golder) All sampling locations BH15-2 (Golder) All sampling locations BH15-2 (Golder) All sampling locations BH15-3 (Golder) All sampling locations	1.0 to 15.3 1.0 to 15.3 1.0 to 15.3 4.4 to 6.0 1.0 to 15.3 1.0 to 15.3 1.0 to 15.3 4.4 to 5.9 1.0 to 15.3 4.4 to 5.9 1.0 to 15.3 1.0 to 15.3 1.0 to 15.3 1.0 to 15.3 1.0 to 15.3 1.0 to 15.4 1.0 to 15.4	All sampling dates 27-Mar-2015 All sampling dates 27-Mar-2015 All sampling dates 27-Mar-2015 All sampling dates 27-Mar-2015 All sampling dates	<0.5 <0.5 <0.60 0.55 <0.20 <<5 21 <1.0 4.2 <0.30 <0.10 <0.10 <0.10 <0.20 2.9 <0.30	NV NV 0.5 54 21000 5200 15 26 43 1.1 0.5 0.5 320 23 23
1,2-Dichloropropane cis-1,3-Dichloropropylene trans-1,3-Dichloropropylene 1,3-Dichloropropylene 1,3-Dichloropropylene Eithylene Dibromide Hexane Methyl Ethyl Ketone (2-Butanone) Methyl isobutyl Ketone Methyl isobutyl Ketone Methyl Hethyl Her (MTBE) Methylene Chloride(Dichloromethane) Styrene 1,1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane Tetrachloroethylene Toluene 1,1,1-Trichloroethane 1,1,2-Trichloroethane 1,1,1-Trichloroethane	All sampling locations All sampling locations All sampling locations All sampling locations BH15-4 (Golder) All sampling locations BH15-4 (Golder) All sampling locations BH15-2 (Golder) All sampling locations BH15-2 (Golder) All sampling locations BH15-3A (WSP) All sampling locations	1.0 to 15.3 1.0 to 15.3 1.0 to 15.3 4.4 to 6.0 1.0 to 15.3 1.0 to 15.3 1.0 to 15.3 4.4 to 5.9 1.0 to 15.3 4.4 to 5.9 1.0 to 15.2 1.0 to 15.2 1.0 to 15.3	All sampling dates 27-Mar-2015 All sampling dates 27-Mar-2015 All sampling dates 27-Mar-2015 All sampling dates 27-Mar-2015 All sampling dates	<0.5 <0.5 <0.60 0.55 <0.20 <5 21 <1.0 4.2 <0.30 <0.10 <0.10 <0.10 <0.20 2.9 <0.30 <0.20 <0.20 <0.20 <0.40	NV NV 0.5 54 0.2 5 21000 115 26 43 1.1 0.5 0.5 320 23 0.5
1,2-Dichloropropane cis-1,3-Dichloropropylene trans-1,3-Dichloropropylene 1,3-Dichloropropylene 1,3-Dichloropropylene 1,3-Dichloropropylene Ethylene Dibromide Hexane Methyl Ethyl Ketone (2-Butanone) Methyl Isobutyl Ketone Tichloroethylene Trichloroethane Trichloroethylene Trichlorofluoromethane (FREON 11) Vinyl Chloride	All sampling locations BH15-4 (Golder) All sampling locations BH15-2 (Golder) All sampling locations BH15-2 (Golder) All sampling locations BH15-2 (Golder) All sampling locations	1.0 to 15.3 1.0 to 15.3 1.0 to 15.3 4.4 to 6.0 1.0 to 15.3 1.0 to 15.3 4.4 to 5.9 1.0 to 15.3 4.4 to 5.9 1.0 to 15.3 1.0 to 15.4 1.0 to 2.6 1.0 to 15.3	All sampling dates 27-Mar-2015 All sampling dates 27-Mar-2015 All sampling dates 27-Mar-2015 All sampling dates 27-Mar-2015 All sampling dates	<.0.5 <0.6 <0.60 0.55 <0.020 <5 21 <1.0 <0.30 <0.10 <0.10 <0.10 <0.10 <0.20 <2.9 <0.30 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.17	NV NV 0.5 54 2000 2.5 521000 5200 15 26 43 1.1 0.5 0.5 320 23 30.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
1,2-Dichloropropane cis-1,3-Dichloropropylene trans-1,3-Dichloropropylene trans-1,3-Dichloropropylene 1,3-Dichloropropylene Ethylene Dibromide Hexane Methyl Ethyl Ketone (2-Butanone) Methyl Isobutyl Ketone Methyl Isobutyl Methyl	All sampling locations All sampling locations All sampling locations All sampling locations BH15-4 (Golder) All sampling locations BH15-4 (Golder) All sampling locations BH15-2 (Golder) All sampling locations BH15-2 (Golder) All sampling locations BH15-3 (Golder) All sampling locations BH15-4 (Golder)	1.0 to 15.3 1.0 to 15.3 1.0 to 15.3 4.4 to 6.0 1.0 to 15.3 4.4 to 5.0 1.0 to 15.3 4.4 to 5.9 1.0 to 15.3 4.4 to 5.9 1.0 to 15.3 1.0 to 15.4 1.0 to 2.6 1.0 to 15.3 1.0 to 15.3 1.0 to 15.3 1.0 to 15.4 1.0 to 15.3	All sampling dates 27-Mar-2015 All sampling dates 27-Mar-2015 All sampling dates 27-Mar-2015 All sampling dates 27-Mar-2015 All sampling dates 19-Jan-2016 All sampling dates	<.0.5 <.0.5 <.0.60 0.55 <.0.20 <.5 21 <.1.0 4.2 <.0.30 <.0.10 <.0.10 <.0.10 <.0.20 <.2.9 <.0.30 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.20 <.0.	NV NV 0.5 54 21000 22 5 5 2000 26 23 0.5 2000 0.5 2000 0.5 2000 0.5 2000 0.5 2000 0.5 0.5 2000 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
1,2-Dichloropropane cis-1,3-Dichloropropylene trans-1,3-Dichloropropylene 1,3-Dichloropropylene 1,3-Dichloropropylene 1,3-Dichloropropylene Ethylene Dibromide Hexane Methyl Ethyl Ketone (2-Butanone) Methyl Isobutyl Ketone Tichloroethylene Trichloroethane Trichloroethylene Trichlorofluoromethane (FREON 11) Vinyl Chloride	All sampling locations BH15-4 (Golder) All sampling locations BH15-2 (Golder) All sampling locations BH15-2 (Golder) All sampling locations BH15-2 (Golder) All sampling locations	1.0 to 15.3 1.0 to 15.3 1.0 to 15.3 4.4 to 6.0 1.0 to 15.3 1.0 to 15.3 4.4 to 5.9 1.0 to 15.3 4.4 to 5.9 1.0 to 15.3 1.0 to 15.4 1.0 to 2.6 1.0 to 15.3	All sampling dates 27-Mar-2015 All sampling dates 27-Mar-2015 All sampling dates 27-Mar-2015 All sampling dates 27-Mar-2015 All sampling dates	<.0.5 <0.6 <0.60 0.55 <0.020 <5 21 <1.0 <0.30 <0.10 <0.10 <0.10 <0.10 <0.20 <2.9 <0.30 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.17	NV NV 0.5 54 2000 2.5 521000 5200 15 26 43 1.1 0.5 0.5 320 23 30.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

NOTES:
NV - No value
Non-detectable results are shown as "< (RDL)" where RDL represents the reporting detection limit.
Ontario Ministry of Environment, Conservation and Parks (MECP), Soil, Groundwater and Sediment Standards for use under Part XV.1 of the Environmental Protection Act, April 2011, Table 7 Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition for Residential/Parkland/Institutional Property Use Property Use (coarse textured soils)

Table 9 - Relative Percent Differences - PHC and VOC in Soil 770 and 775 Bronson Avenue, 557 Cambridge Street, Ottawa, ON OTT-22019409-A0

Parameter	Units	RDL	BH15-3-4	BH-15-3-104	RPD (%)	Alert Limit (%)
			11-Jan-2016	11-Jan-2016		
Petroleum Hydrocarbons						
F1 PHC (C6 - C10) - BTEX	ug/g dry	7	<10	<10	nc	60
F2 PHC (C10-C16)	ug/g dry	4	<10	<10	nc	60
F3 PHC (C16-C34)	ug/g dry	8	<50	<50	nc	60
F4 PHC (C34-C50)	ug/g dry	6	<50	140	nc	60
Volatiles						
Acetone	ug/g dry	0.50	<0.50	<0.50	nc	100
Benzene	ug/g dry	0.02	<0.020	<0.020	nc	100
Bromodichloromethane	ug/g dry	0.05	<0.050	<0.050	nc	100
Bromoform	ug/g dry	0.05	<0.050	<0.050	nc	100
Bromomethane	ug/g dry	0.05	<0.050	<0.050	nc	100
Carbon Tetrachloride	ug/g dry	0.05	<0.050	<0.050	nc	100
Chlorobenzene	ug/g dry	0.05	<0.050	<0.050	nc	100
Chloroform	ug/g dry	0.05	<0.050	<0.050	nc	100
Dibromochloromethane	ug/g dry	0.05	<0.050	<0.050	nc	100
Dichlorodifluoromethane	ug/g dry	0.05	<0.050	<0.050	nc	100
1,2-Dichlorobenzene	ug/g dry	0.05	<0.050	<0.050	nc	100
1,3-Dichlorobenzene	ug/g dry	0.05	<0.050	<0.050	nc	100
1,4-Dichlorobenzene	ug/g dry	0.05	<0.050	<0.050	nc	100
1,1-Dichloroethane	ug/g dry	0.05	<0.050	<0.050	nc	100
1,2-Dichloroethane	ug/g dry	0.05	<0.050	<0.050	nc	100
1,1-Dichloroethylene	ug/g dry	0.05	<0.050	<0.050	nc	100
cis-1,2-Dichloroethylene	ug/g dry	0.05	<0.050	<0.050	nc	100
trans-1,2-Dichloroethylene	ug/g dry	0.05	<0.050	<0.050	nc	100
1,2-Dichloropropane	ug/g dry	0.05	<0.050	<0.050	nc	100
cis-1,3-Dichloropropylene	ug/g dry	0.05	<0.030	<0.030	nc	100
trans-1,3-Dichloropropylene	ug/g dry	0.05	<0.040	<0.040	nc	100
1,3-Dichloropropene, total	ug/g dry	0.05	<0.050	<0.050	nc	100
Ethylbenzene	ug/g dry	0.05	<0.050	<0.050	nc	100
Ethylene dibromide (dibromoethane, 1,2-	ug/g dry	0.05	<0.050	<0.050	nc	100
Hexane	ug/g dry	0.05	<0.050	<0.050	nc	100
Methyl Ethyl Ketone (2-Butanone)	ug/g dry	0.50	<0.50	<0.50	nc	100
Methyl Isobutyl Ketone	ug/g dry	0.50	<0.50	<0.50	nc	100
Methyl tert-butyl ether	ug/g dry	0.05	<0.050	<0.050	nc	100
Methylene Chloride	ug/g dry	0.05	<0.050	<0.050	nc	100
Styrene	ug/g dry	0.05	<0.050	<0.050	nc	100
1,1,1,2-Tetrachloroethane	ug/g dry	0.05	<0.050	<0.050	nc	100
1,1,2,2-Tetrachloroethane	ug/g dry	0.05	<0.050	<0.050	nc	100
Tetrachloroethylene	ug/g dry	0.05	<0.050	<0.050	nc	100
Toluene	ug/g dry	0.05	<0.020	<0.020	nc	100
1,1,1-Trichloroethane	ug/g dry	0.05	<0.050	<0.050	nc	100
1,1,2-Trichloroethane	ug/g dry	0.05	<0.050	<0.050	nc	100
Trichloroethylene	ug/g dry	0.05	<0.050	<0.050	nc	100
Trichlorofluoromethane	ug/g dry	0.05	<0.050	<0.050	nc	100
/inyl Chloride	ug/g dry	0.02	<0.020	<0.020	nc	100
n/p-Xylene	ug/g dry	0.05	<0.020	<0.020	nc	100
o-Xylene	ug/g dry	0.05	<0.020	<0.020	nc	100
(ylenes, total	ug/g dry	0.05	<0.050	<0.050	nc	100

NOTES:

 $All \ results \ on \ dry \ weight \ basis; \ Non-detectable \ results \ are \ shown \ as \ "<(RDL)" \ where \ RDL \ represents \ the \ reporting \ detection \ limit.$

- means "not analysed"

nc means "not calculable" - one (or both) of the results are <5x RDL

Exceedances of alert limits are shown in $\underline{\textbf{bold}}$

Table 10 - Relative Percent Differences - PAH in Soil 770 and 775 Bronson Avenue, 557 Cambridge Street, Ottawa, ON OTT-22019409-A0

Parameter	Units	RDL	BH15-3-4	BH-15-3-104	RPD (%)	Alert Limit (%)
			11-Jan-2016	11-Jan-2016		
Polycyclic Aromatic Hydrocarbons						
Acenaphthene	ug/g dry	0.02	<0.0050	<0.0050	nc	80
Acenaphthylene	ug/g dry	0.02	<0.0050	<0.0050	nc	80
Anthracene	ug/g dry	0.02	<0.0050	<0.0050	nc	80
Benzo[a]anthracene	ug/g dry	0.02	<0.0050	0.02	nc	80
Benzo[a]pyrene	ug/g dry	0.02	<0.0050	0.02	nc	80
Benzo[b]fluoranthene	ug/g dry	0.02	<0.010	0.035	nc	80
Benzo[g,h,i]perylene	ug/g dry	0.02	<0.0050	0.015	nc	80
Benzo[k]fluoranthene	ug/g dry	0.02	<0.0050	0.0099	nc	80
Chrysene	ug/g dry	0.02	<0.0050	0.02	nc	80
Dibenzo[a,h]anthracene	ug/g dry	0.02	<0.0050	<0.0050	nc	80
Fluoranthene	ug/g dry	0.02	0.0084	0.035	nc	80
Fluorene	ug/g dry	0.02	<0.0050	<0.0050	nc	80
Indeno[1,2,3-cd]pyrene	ug/g dry	0.02	<0.0050	0.0099	nc	80
Methylnaphthalene (1&2)	ug/g dry	0.04	<0.0071	<0.0071	nc	80
Naphthalene	ug/g dry	0.01	<0.0050	<0.0050	nc	80
Phenanthrene	ug/g dry	0.02	<0.0050	0.02	nc	80
Pyrene	ug/g dry	0.02	0.0084	0.03	nc	80

NOTES:

Analysis by Paracel Labratories Ltd.

All results on dry weight basis; Non-detectable results are shown as "ND (RDL)" where RDL represents the reporting detection limit.

- means "not analysed"

nc means "not calculable" - one (or both) of the results are <5x RDL

Exceedances of alert limits are shown in $\underline{\textbf{bold}}$

Table 11 - Relative Percent Differences - Inorganics in Soil 770 and 775 Bronson Avenue, 557 Cambridge Street, Ottawa, ON OTT-22019409-A0

Parameter	Units	RDL	BH15-6-2	BH-6-102	RPD (%)	Alert Limit (%)
			11-Jan-2016	11-Jan-2016		
Metals						
Antimony	ug/g dry	1.0	0.92	1	nc	60
Arsenic	ug/g dry	1.0	2.7	3.6	nc	60
Barium	ug/g dry	1.0	110	130	17	60
Beryllium	ug/g dry	0.5	0.28	0.33	nc	60
Boron	ug/g dry	5.0	<5.0	<5.0	nc	60
Cadmium	ug/g dry	0.5	0.22	0.29	nc	60
Chromium	ug/g dry	5.0	16	19	nc	60
Cobalt	ug/g dry	1.0	4.4	5.1	nc	60
Copper	ug/g dry	5.0	24	22	nc	60
Lead	ug/g dry	1.0	190	210	10	60
Mercury	ug/g dry	0.1	0.076	0.13	nc	60
Molybdenum	ug/g dry	1.0	1	1.1	nc	60
Nickel	ug/g dry	5.0	11	11	nc	60
Selenium	ug/g dry	1.0	<0.50	<0.50	nc	60
Silver	ug/g dry	0.3	<0.20	<0.20	nc	60
Thallium	ug/g dry	1.0	0.1	0.12	nc	60
Uranium	ug/g dry	1.0	0.49	100	nc	60
Vanadium	ug/g dry	10.0	17	20	nc	60
Zinc	ug/g dry	20.0	170	190	11	60

All results on dry weight basis; Non-detectable results are shown as "< (RDL)" where RDL represents the reporting detection limit.

nc means "not calculable" - one (or both) of the results are $<5x\ RDL$

Exceedances of alert limits are shown in **bold**

⁻ means "not analysed"

Table 12 - Relative Percent Differences - PHC and VOC in Groundwater 770 and 775 Bronson Avenue, 557 Cambridge Street, Ottawa, ON OTT-22019409-A0

Parameter	Units	RDL	MW15-5	DUP 1	RPD (%)	Alert Limit (%)
			11-Aug-2022	11-Aug-2022		
Petroleum Hydrocarbons		-	-	-		-
F1 PHC (C6 - C10) - BTEX	ug/L	25	< 25	< 25	nc	60
F2 PHC (C10-C16)	ug/L	100	< 50	< 50	nc	60
F3 PHC (C16-C34)	ug/L	100	< 400	< 400	nc	60
F4 PHC (C34-C50)	ug/L	100	< 400	< 400	nc	60
Volatiles						
Acetone	ug/L	5.0	< 30	< 30	nc	60
Benzene	ug/L	0.5	< 0.5	< 0.5	nc	60
Bromodichloromethane	ug/L	0.5	< 2	< 2	nc	60
Bromoform	ug/L	0.5	< 5	< 5	nc	60
Bromomethane	ug/L	0.5	< 0.5	< 0.5	nc	60
Carbon Tetrachloride	ug/L	0.2	< 0.2	< 0.2	nc	60
Chlorobenzene	ug/L	0.5	< 0.5	< 0.5	nc	60
Chloroform	ug/L	0.5	<1	<1	nc	60
Dibromochloromethane	ug/L	0.5	< 2	< 2	nc	60
Dichlorodifluoromethane	ug/L	1.0	< 2	< 2	nc	60
1,2-Dichlorobenzene	ug/L	0.5	< 0.5	< 0.5	nc	60
1,3-Dichlorobenzene	ug/L	0.5	< 0.5	< 0.5	nc	60
1,4-Dichlorobenzene	ug/L	0.5	< 0.5	< 0.5	nc	60
1,1-Dichloroethane	ug/L	0.5	< 0.5	< 0.5	nc	60
1,2-Dichloroethane	ug/L	0.5	< 0.5	< 0.5	nc	60
1,1-Dichloroethylene	ug/L	0.5	< 0.5	< 0.5	nc	60
cis-1,2-Dichloroethylene	ug/L	0.5	< 0.5	< 0.5	nc	60
trans-1,2-Dichloroethylene	ug/L	0.5	< 0.5	< 0.5	nc	60
1,2-Dichloropropane	ug/L	0.5	< 0.5	< 0.5	nc	60
cis-1,3-Dichloropropylene	ug/L	0.5	< 0.5	< 0.5	nc	60
trans-1,3-Dichloropropylene	ug/L	0.5	< 0.5	< 0.5	nc	60
1,3-Dichloropropene, total	ug/L	0.5	< 0.5	< 0.5	nc	60
Ethylbenzene	ug/L	0.5	< 0.5	< 0.5	nc	60
Ethylene dibromide (dibromoethane, 1,2-)	ug/L	0.2	< 0.2	< 0.2	nc	60
Hexane	ug/L	1.0	< 5	< 5	nc	60
Methyl Ethyl Ketone (2-Butanone)	ug/L	5.0	< 20	< 20	nc	60
Methyl Isobutyl Ketone	ug/L	5.0	< 20	< 20	nc	60
Methyl tert-butyl ether	ug/L	2.0	< 2	< 2	nc	60
Methylene Chloride	ug/L	5.0	< 5	< 5	nc	60
Styrene	ug/L	0.5	< 0.5	< 0.5	nc	60
1,1,1,2-Tetrachloroethane	ug/L	0.5	< 0.5	< 0.5	nc	60
1,1,2,2-Tetrachloroethane	ug/L	0.5	< 0.5	< 0.5	nc	60
Tetrachloroethylene	ug/L	0.5	< 0.5	< 0.5	nc	60
Toluene	ug/L	0.5	< 0.5	< 0.5	nc	60
1,1,1-Trichloroethane	ug/L	0.5	< 0.5	< 0.5	nc	60
1,1,2-Trichloroethane	ug/L	0.5	< 0.5	< 0.5	nc	60
Trichloroethylene	ug/L	0.5	< 0.5	< 0.5	nc	60
Trichlorofluoromethane	ug/L	1.0	< 5	< 5	nc	60
Vinyl Chloride	ug/L	0.5	< 0.2	< 0.2	nc	60
m/p-Xylene	ug/L	0.5	< 1.0	< 1.0	nc	60
o-Xylene	ug/L	0.5	< 0.5	< 0.5	nc	60
Xylenes, total	ug/L	0.5	< 1.1	< 1.1	nc	60

Non-detectable results are shown as "< (RDL)" where RDL represents the reporting detection limit.

- means "not analysed"

nc means "not calculable" - one (or both) of the results are <5x RDL

Exceedances of alert limits are shown in $\underline{\textbf{bold}}$

Table 12 - Relative Percent Differences - PHC and VOC in Groundwater 770 and 775 Bronson Avenue, 557 Cambridge Street, Ottawa, ON OTT-22019409-A0

Parameter	Units	RDL	BH15-2B	BH15-102B	RPD (%)	Alert Limit (%)
			19-Jan-2016	19-Jan-2016		
Petroleum Hydrocarbons						
F1 PHC (C6 - C10) - BTEX	ug/L	25	<25	<25	nc	60
F2 PHC (C10-C16)	ug/L	100	<100	<100	nc	60
F3 PHC (C16-C34)	ug/L	100	<200	<200	nc	60
F4 PHC (C34-C50)	ug/L	100	<200	<200	nc	60
Volatiles						
Acetone	ug/L	5.0	<10	<10	nc	60
Benzene	ug/L	0.5	<0.20	<0.20	nc	60
Bromodichloromethane	ug/L	0.5	<0.50	<0.50	nc	60
Bromoform	ug/L	0.5	<1.0	<1.0	nc	60
Bromomethane	ug/L	0.5	<0.50	<0.50	nc	60
Carbon Tetrachloride	ug/L	0.2	<0.20	<0.20	nc	60
Chlorobenzene	ug/L	0.5	<0.20	<0.20	nc	60
Chloroform	ug/L	0.5	1.2	1.3	nc	60
Dibromochloromethane	ug/L	0.5	<0.50	<0.50	nc	60
Dichlorodifluoromethane	ug/L	1.0	<1.0	<1.0	nc	60
1,2-Dichlorobenzene	ug/L	0.5	<0.50	<0.50	nc	60
1,3-Dichlorobenzene	ug/L	0.5	<0.50	<0.50	nc	60
1,4-Dichlorobenzene	ug/L	0.5	<0.50	<0.50	nc	60
1,1-Dichloroethane	ug/L	0.5	<0.20	<0.20	nc	60
1,2-Dichloroethane	ug/L	0.5	<0.50	<0.50	nc	60
1,1-Dichloroethylene	ug/L	0.5	<0.20	<0.20	nc	60
cis-1,2-Dichloroethylene	ug/L	0.5	<0.50	<0.50	nc	60
trans-1,2-Dichloroethylene	ug/L	0.5	<0.50	<0.50	nc	60
1,2-Dichloropropane	ug/L	0.5	<0.20	<0.20	nc	60
cis-1,3-Dichloropropylene	ug/L	0.5	<0.30	<0.30	nc	60
trans-1,3-Dichloropropylene	ug/L	0.5	<0.40	<0.40	nc	60
1,3-Dichloropropene, total	ug/L	0.5	<0.50	<0.50	nc	60
Ethylbenzene	ug/L	0.5	<0.20	<0.20	nc	60
Ethylene dibromide (dibromoethane, 1,2-)	ug/L	0.2	<0.20	<0.20	nc	60
Hexane	ug/L	1.0	<1.0	<1.0	nc	60
Methyl Ethyl Ketone (2-Butanone)	ug/L	5.0	<10	<10	nc	60
Methyl Isobutyl Ketone	ug/L	5.0	<5.0	<5.0	nc	60
Methyl tert-butyl ether	ug/L	2.0	<0.50	<0.50	nc	60
Methylene Chloride	ug/L	5.0	<2.0	<2.0	nc	60
Styrene	ug/L	0.5	<0.50	<0.50	nc	60
1,1,1,2-Tetrachloroethane	ug/L	0.5	<0.50	<0.50	nc	60
1,1,2,2-Tetrachloroethane	ug/L	0.5	<0.50	<0.50	nc	60
Tetrachloroethylene	ug/L	0.5	<0.20	<0.20	nc	60
Toluene	ug/L	0.5	0.22	0.22	nc	60
1,1,1-Trichloroethane	ug/L	0.5	<0.20	<0.20	nc	60
1,1,2-Trichloroethane	ug/L	0.5	<0.50	<0.50	nc	60
Trichloroethylene	ug/L	0.5	<0.20	<0.20	nc	60
Trichlorofluoromethane	ug/L	1.0	<0.50	<0.50	nc	60
Vinyl Chloride	ug/L	0.5	<0.20	<0.20	nc	60
n/p-Xylene	ug/L	0.5	<0.20	<0.20	nc	60
o-Xylene	ug/L	0.5	<0.20	<0.20	nc	60
Kylenes, total	ug/L	0.5	<0.20	<0.20	nc	60

Non-detectable results are shown as "< (RDL)" where RDL represents the reporting detection limit.

- means "not analysed"

nc means "not calculable" - one (or both) of the results are <5x RDL

Exceedances of alert limits are shown in $\underline{\text{\bf bold}}$

Table 12 - Relative Percent Differences - PHC and VOC in Groundwater 770 and 775 Bronson Avenue, 557 Cambridge Street, Ottawa, ON OTT-22019409-A0

Parameter	Units	RDL	BH15-3B	BH15-103B	RPD (%)	Alert Limit (%)
			15-Feb-2016	15-Feb-2016		
Volatiles						
Acetone	ug/L	5.0	<10	<10	nc	60
Benzene	ug/L	0.5	<0.20	<0.20	nc	60
Bromodichloromethane	ug/L	0.5	<0.50	<0.50	nc	60
Bromoform	ug/L	0.5	<1.0	<1.0	nc	60
Bromomethane	ug/L	0.5	<0.50	<0.50	nc	60
Carbon Tetrachloride	ug/L	0.2	<0.20	<0.20	nc	60
Chlorobenzene	ug/L	0.5	<0.20	<0.20	nc	60
Chloroform	ug/L	0.5	<0.20	<0.20	nc	60
Dibromochloromethane	ug/L	0.5	<0.50	<0.50	nc	60
Dichlorodifluoromethane	ug/L	1.0	<1.0	<1.0	nc	60
1,2-Dichlorobenzene	ug/L	0.5	<0.50	<0.50	nc	60
1,3-Dichlorobenzene	ug/L	0.5	<0.50	<0.50	nc	60
1,4-Dichlorobenzene	ug/L	0.5	<0.50	<0.50	nc	60
1,1-Dichloroethane	ug/L	0.5	<0.20	<0.20	nc	60
1,2-Dichloroethane	ug/L	0.5	<0.50	<0.50	nc	60
1,1-Dichloroethylene	ug/L	0.5	<0.20	<0.20	nc	60
cis-1,2-Dichloroethylene	ug/L	0.5	<0.50	<0.50	nc	60
trans-1,2-Dichloroethylene	ug/L	0.5	<0.50	<0.50	nc	60
1,2-Dichloropropane	ug/L	0.5	<0.20	<0.20	nc	60
cis-1,3-Dichloropropylene	ug/L	0.5	<0.30	<0.30	nc	60
trans-1,3-Dichloropropylene	ug/L	0.5	<0.40	<0.40	nc	60
1,3-Dichloropropene, total	ug/L	0.5	<0.50	<0.50	nc	60
Ethylbenzene	ug/L	0.5	<0.20	<0.20	nc	60
Ethylene dibromide (dibromoethane, 1,2-)	ug/L	0.2	<0.20	<0.20	nc	60
Hexane	ug/L	1.0	<1.0	<1.0	nc	60
Methyl Ethyl Ketone (2-Butanone)	ug/L	5.0	<10	<10	nc	60
Methyl Isobutyl Ketone	ug/L	5.0	<5.0	<5.0	nc	60
Methyl tert-butyl ether	ug/L	2.0	<0.50	<0.50	nc	60
Methylene Chloride	ug/L	5.0	<2.0	<2.0	nc	60
Styrene	ug/L	0.5	<0.50	<0.50	nc	60
1,1,1,2-Tetrachloroethane	ug/L	0.5	<0.50	<0.50	nc	60
1,1,2,2-Tetrachloroethane	ug/L	0.5	<0.50	<0.50	nc	60
Tetrachloroethylene	ug/L	0.5	<0.20	<0.20	nc	60
Toluene	ug/L	0.5	<0.20	<0.20	nc	60
1,1,1-Trichloroethane	ug/L	0.5	<0.20	<0.20	nc	60
1,1,2-Trichloroethane	ug/L	0.5	<0.50	<0.50	nc	60
Trichloroethylene	ug/L	0.5	<0.20	<0.20	nc	60
Trichlorofluoromethane	ug/L	1.0	<0.50	<0.50	nc	60
Vinyl Chloride	ug/L	0.5	<0.20	<0.20	nc	60
m/p-Xylene	ug/L	0.5	<0.20	<0.20	nc	60
o-Xylene	ug/L	0.5	<0.20	<0.20	nc	60
Xylenes, total	ug/L	0.5	<0.20	<0.20	nc	60

Non-detectable results are shown as "< (RDL)" where RDL represents the reporting detection limit.

nc means "not calculable" - one (or both) of the results are <5x RDL $\,$

Exceedances of alert limits are shown in $\underline{\textbf{bold}}$

⁻ means "not analysed

Table 12 - Relative Percent Differences - PHC and VOC in Groundwater 770 and 775 Bronson Avenue, 557 Cambridge Street, Ottawa, ON OTT-22019409-A0

Parameter	Units	RDL	BH15-4A	BH15-104A	RPD (%)	Alert Limit (%)
			23-Feb-2016	23-Feb-2016		
Petroleum Hydrocarbons						
-1 PHC (C6 - C10) - BTEX	ug/L	25	<25	<25	nc	60
F2 PHC (C10-C16)	ug/L	100	<100	<100	nc	60
F3 PHC (C16-C34)	ug/L	100	<200	<200	nc	60
F4 PHC (C34-C50)	ug/L	100	<200	<200	nc	60
/olatiles						
Acetone	ug/L	5.0	<10	<10	nc	60
Benzene	ug/L	0.5	<0.20	<0.20	nc	60
Bromodichloromethane	ug/L	0.5	<0.50	<0.50	nc	60
Bromoform	ug/L	0.5	<1.0	<1.0	nc	60
Bromomethane	ug/L	0.5	<0.50	<0.50	nc	60
Carbon Tetrachloride	ug/L	0.2	<0.20	<0.20	nc	60
Chlorobenzene	ug/L	0.5	<0.20	<0.20	nc	60
Chloroform	ug/L	0.5	1.2	1.3	nc	60
Dibromochloromethane	ug/L	0.5	<0.50	<0.50	nc	60
Dichlorodifluoromethane	ug/L	1.0	<1.0	<1.0	nc	60
1,2-Dichlorobenzene	ug/L	0.5	<0.50	<0.50	nc	60
1,3-Dichlorobenzene	ug/L	0.5	<0.50	<0.50	nc	60
1,4-Dichlorobenzene	ug/L	0.5	<0.50	<0.50	nc	60
1,1-Dichloroethane	ug/L	0.5	<0.20	<0.20	nc	60
1,2-Dichloroethane	ug/L	0.5	<0.50	<0.50	nc	60
I,1-Dichloroethylene	ug/L	0.5	<0.20	<0.20	nc	60
cis-1,2-Dichloroethylene	ug/L	0.5	<0.50	<0.50	nc	60
rans-1,2-Dichloroethylene	ug/L	0.5	<0.50	<0.50	nc	60
1,2-Dichloropropane	ug/L	0.5	<0.20	<0.20	nc	60
cis-1,3-Dichloropropylene	ug/L	0.5	<0.30	<0.30	nc	60
rans-1,3-Dichloropropylene	ug/L	0.5	<0.40	<0.40	nc	60
1,3-Dichloropropene, total	ug/L	0.5	<0.50	<0.50	nc	60
Ethylbenzene	ug/L	0.5	<0.20	<0.20	nc	60
Ethylene dibromide (dibromoethane, 1,2-)	ug/L	0.2	<0.20	<0.20	nc	60
Hexane	ug/L	1.0	<1.0	<1.0	nc	60
Methyl Ethyl Ketone (2-Butanone)	ug/L	5.0	<10	<10	nc	60
Methyl Isobutyl Ketone	ug/L	5.0	<5.0	<5.0	nc	60
Methyl tert-butyl ether	ug/L	2.0	<0.50	<0.50	nc	60
Methylene Chloride	ug/L	5.0	<2.0	<2.0	nc	60
Styrene	ug/L	0.5	<0.50	<0.50	nc	60
1,1,1,2-Tetrachloroethane	ug/L	0.5	<0.50	<0.50	nc	60
I,1,2,2-Tetrachloroethane	ug/L	0.5	<0.50	<0.50	nc	60
Tetrachloroethylene	ug/L	0.5	<0.20	<0.20	nc	60
oluene	ug/L	0.5	0.22	0.22	nc	60
,1,1-Trichloroethane	ug/L	0.5	<0.20	<0.20	nc	60
,1,2-Trichloroethane	ug/L	0.5	<0.50	<0.50	nc	60
richloroethylene	ug/L	0.5	<0.20	<0.20	nc	60
richlorofluoromethane	ug/L	1.0	<0.50	<0.50	nc	60
/inyl Chloride	ug/L	0.5	<0.20	<0.20	nc	60
n/p-Xylene	ug/L	0.5	<0.20	<0.20	nc	60
p-Xylene	ug/L	0.5	<0.20	<0.20	nc	60
(ylenes, total	ug/L	0.5	<0.20	<0.20	nc	60

Non-detectable results are shown as "< (RDL)" where RDL represents the reporting detection limit.

- means "not analysed"

nc means "not calculable" - one (or both) of the results are <5x RDL

Exceedances of alert limits are shown in $\underline{\text{\bf bold}}$

Table 13 - Relative Percent Differences - PAH in Groundwater 770 and 775 Bronson Avenue, 557 Cambridge Street, Ottawa, ON OTT-22019409-A0

Parameter	Units	RDL	MW15-5	DUP 1	RPD (%)	Alert Limit (%)
			11-Aug-2022	11-Aug-2022		
Polycyclic Aromatic Hydrocarbons						
Acenaphthene	ug/L	0.05	< 0.05	< 0.05	nc	60
Acenaphthylene	ug/L	0.05	< 0.05	< 0.05	nc	60
Anthracene	ug/L	0.01	< 0.05	< 0.05	nc	60
Benzo[a]anthracene	ug/L	0.01	< 0.05	< 0.05	nc	60
Benzo[a]pyrene	ug/L	0.01	< 0.01	< 0.01	nc	60
Benzo[b]fluoranthene	ug/L	0.05	< 0.05	< 0.05	nc	60
Benzo[g,h,i]perylene	ug/L	0.05	< 0.05	< 0.05	nc	60
Benzo[k]fluoranthene	ug/L	0.05	< 0.05	< 0.05	nc	60
Chrysene	ug/L	0.05	< 0.05	< 0.05	nc	60
Dibenzo[a,h]anthracene	ug/L	0.05	< 0.05	< 0.05	nc	60
Fluoranthene	ug/L	0.01	< 0.05	< 0.05	nc	60
Fluorene	ug/L	0.05	< 0.05	< 0.05	nc	60
Indeno[1,2,3-cd]pyrene	ug/L	0.05	< 0.05	< 0.05	nc	60
1-Methylnaphthalene	ug/L	0.05	< 0.05	< 0.05	nc	60
2-Methylnaphthalene	ug/L	0.05	< 0.05	< 0.05	nc	60
Methylnaphthalene (1&2)	ug/L	0.10	< 1	< 1	nc	60
Naphthalene	ug/L	0.05	< 0.05	< 0.05	nc	60
Phenanthrene	ug/L	0.05	< 0.05	< 0.05	nc	60
Pyrene	ug/L	0.01	< 0.05	< 0.05	mc	60
Parameter	H-N-		BH15-2B	BH15-102B		
	Units	RDL		5.110 1015	RPD (%)	Alert Limit (%)
	Units	RDL	19-Jan-2016	19-Jan-2016	RPD (%)	Alert Limit (%)
Polycyclic Aromatic Hydrocarbons	Units	RDL	19-Jan-2016		RPD (%)	Alert Limit (%)
Polycyclic Aromatic Hydrocarbons Acenaphthene	ug/L	RDL 0.05	19-Jan-2016 <0.050		RPD (%)	60
Polycyclic Aromatic Hydrocarbons	ug/L ug/L		-	19-Jan-2016 <0.050 <0.050		60
Polycyclic Aromatic Hydrocarbons Acenaphthene	ug/L ug/L ug/L	0.05 0.05 0.01	<0.050 <0.050 <0.050	19-Jan-2016 <0.050 <0.050 <0.050	nc	60 60 60
Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benzo[a]anthracene	ug/L ug/L ug/L ug/L	0.05 0.05 0.01 0.01	<0.050 <0.050 <0.050 <0.050	19-Jan-2016 <0.050 <0.050 <0.050 <0.050	nc nc	60 60 60 60
Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benzo[a]anthracene Benzo[a]pyrene	ug/L ug/L ug/L ug/L ug/L	0.05 0.05 0.01 0.01 0.01	<0.050 <0.050 <0.050 <0.050 <0.050 <0.010	<pre>19-Jan-2016 <0.050 <0.050 <0.050 <0.050 <0.010</pre>	nc nc nc	60 60 60 60 60
Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benzo[a]anthracene	ug/L ug/L ug/L ug/L	0.05 0.05 0.01 0.01	<0.050 <0.050 <0.050 <0.050	19-Jan-2016 <0.050 <0.050 <0.050 <0.050 <0.010 <0.10	nc nc nc	60 60 60 60 60 60
Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benzo[a]anthracene Benzo[a]pyrene	ug/L ug/L ug/L ug/L ug/L	0.05 0.05 0.01 0.01 0.01	<0.050 <0.050 <0.050 <0.050 <0.050 <0.010	<pre>19-Jan-2016 <0.050 <0.050 <0.050 <0.050 <0.010</pre>	nc nc nc nc	60 60 60 60 60
Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.05 0.05 0.01 0.01 0.01 0.05	<0.050 <0.050 <0.050 <0.050 <0.050 <0.010	19-Jan-2016 <0.050 <0.050 <0.050 <0.050 <0.010 <0.10	nc nc nc nc	60 60 60 60 60 60 60
Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Benzo[g,h,i]perylene	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.05 0.05 0.01 0.01 0.01 0.05 0.05	<0.050 <0.050 <0.050 <0.050 <0.050 <0.010 <0.10 <0.050	19-Jan-2016 <0.050 <0.050 <0.050 <0.050 <0.010 <0.10 <0.050	nc nc nc nc nc	60 60 60 60 60 60 60
Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Benzo[g,h,i]perylene Benzo[k]fluoranthene Chrysene Dibenzo[a,h]anthracene	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.05 0.05 0.01 0.01 0.01 0.05 0.05 0.05	<0.050 <0.050 <0.050 <0.050 <0.010 <0.10 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	19-Jan-2016 <0.050 <0.050 <0.050 <0.050 <0.010 <0.10 <0.050 <0.050 <0.050 <0.050 <0.050	nc nc nc nc nc nc nc	60 60 60 60 60 60 60 60 60
Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Benzo[g,h,i]perylene Benzo[k]fluoranthene Chrysene Dibenzo[a,h]anthracene Fluoranthene	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.05 0.05 0.01 0.01 0.05 0.05 0.05 0.05	<0.050 <0.050 <0.050 <0.050 <0.010 <0.10 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	19-Jan-2016 <0.050 <0.050 <0.050 <0.050 <0.010 <0.10 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	nc nc nc nc nc nc nc	60 60 60 60 60 60 60 60 60
Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Benzo[g,h,i]perylene Benzo[k]fluoranthene Chrysene Dibenzo[a,h]anthracene Fluoranthene Fluorene	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.05 0.05 0.01 0.01 0.05 0.05 0.05 0.05	<0.050 <0.050 <0.050 <0.050 <0.010 <0.10 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	19-Jan-2016 <0.050 <0.050 <0.050 <0.050 <0.010 <0.10 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	nc nc nc nc nc nc nc	60 60 60 60 60 60 60 60 60 60
Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benzo[a]anthracene Benzo[a]pyrene Benzo[g,h,i]perylene Benzo[k]fluoranthene Chrysene Dibenzo[a,h]anthracene Fluoranthene Fluorene Indeno[1,2,3-cd]pyrene	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.05 0.05 0.01 0.01 0.05 0.05 0.05 0.05	<0.050 <0.050 <0.050 <0.050 <0.010 <0.10 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	19-Jan-2016 <0.050 <0.050 <0.050 <0.050 <0.010 <0.10 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	nc n	60 60 60 60 60 60 60 60 60 60
Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Benzo[g,h,i]perylene Benzo[k]fluoranthene Chrysene Dibenzo[a,h]anthracene Fluoranthene Fluorene	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.05 0.05 0.01 0.01 0.05 0.05 0.05 0.05	<0.050 <0.050 <0.050 <0.050 <0.010 <0.10 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	19-Jan-2016 <0.050 <0.050 <0.050 <0.050 <0.010 <0.10 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	nc n	60 60 60 60 60 60 60 60 60 60 60
Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benzo[a]anthracene Benzo[a]pyrene Benzo[g,h,i]perylene Benzo[k]fluoranthene Chrysene Dibenzo[a,h]anthracene Fluoranthene Fluorene Indeno[1,2,3-cd]pyrene 1-Methylnaphthalene 2-Methylnaphthalene	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.05 0.05 0.01 0.01 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	<0.050 <0.050 <0.050 <0.050 <0.010 <0.10 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	19-Jan-2016 <0.050 <0.050 <0.050 <0.050 <0.010 <0.10 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	nc n	60 60 60 60 60 60 60 60 60 60
Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benzo[a]anthracene Benzo[a]pyrene Benzo[g,h,i]perylene Benzo[k]filoranthene Chrysene Dibenzo[a,h]anthracene Fluoranthene Fluorene Indeno[1,2,3-cd]pyrene 1-Methylnaphthalene	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.05 0.05 0.01 0.01 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	<0.050 <0.050 <0.050 <0.050 <0.010 <0.10 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	19-Jan-2016 <0.050 <0.050 <0.050 <0.050 <0.010 <0.10 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	nc n	60 60 60 60 60 60 60 60 60 60 60
Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benzo[a]anthracene Benzo[a]pyrene Benzo[g,h,i]perylene Benzo[k]fluoranthene Chrysene Dibenzo[a,h]anthracene Fluoranthene Fluorene Indeno[1,2,3-cd]pyrene 1-Methylnaphthalene 2-Methylnaphthalene	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.05 0.05 0.01 0.01 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	<0.050 <0.050 <0.050 <0.050 <0.010 <0.10 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	19-Jan-2016 <0.050 <0.050 <0.050 <0.050 <0.010 <0.10 <0.10 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	nc n	60 60 60 60 60 60 60 60 60 60 60 60
Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benzo[a]anthracene Benzo[a]pyrene Benzo[g,h,i]perylene Benzo[k]fluoranthene Chrysene Dibenzo[a,h]anthracene Fluoranthene Fluoranthene Indeno[1,2,3-cd]pyrene 1-Methylnaphthalene Methylnaphthalene Methylnaphthalene (1&2)	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.05 0.05 0.01 0.01 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	<0.050 <0.050 <0.050 <0.050 <0.010 <0.10 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	19-Jan-2016 <0.050 <0.050 <0.050 <0.050 <0.010 <0.10 <0.10 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	nc n	60 60 60 60 60 60 60 60 60 60 60 60

Non-detectable results are shown as "< (RDL)" where RDL represents the reporting detection limit.

- means "not analysed"

nc means "not calculable" - one (or both) of the results are $<5x\ RDL$

Exceedances of alert limits are shown in $\underline{\textbf{bold}}$

Table 14 - Relative Percent Differences - Metals in Groundwater 770 and 775 Bronson Avenue, 557 Cambridge Street, Ottawa, ON OTT-22019409-A0

Parameter	Units	RDL	BH15-2B	BH15-102B	RPD (%)	Alert Limit (%)
			19-Jan-2016	19-Jan-2016		
Metals						
Mercury	ug/L	0.1	<0.1	<0.1	nc	40
Antimony	ug/L	0.5	<0.50	0.62	nc	40
Arsenic	ug/L	1	<1.0	<1.0	nc	40
Barium	ug/L	1	190	77	<u>85</u>	40
Beryllium	ug/L	0.5	<0.50	<0.50	nc	40
Boron	ug/L	10	61	300	<u>132</u>	40
Cadmium	ug/L	0.1	<0.10	<0.10	nc	40
Chromium	ug/L	1	<5.0	<5.0	nc	40
Chromium (VI)	ug/L	10	<0.5	<0.5	nc	40
Cobalt	ug/L	0.5	1.1	1.2	nc	40
Copper	ug/L	0.5	1.7	1.7	nc	40
Lead	ug/L	0.1	<0.50	<0.50	nc	40
Molybdenum	ug/L	0.5	2	4.7	nc	40
Nickel	ug/L	1	2.5	3.4	nc	40
Selenium	ug/L	1	460000	520000	12	40
Silver	ug/L	0.1	<2.0	2.9	nc	40
Sodium	ug/L	200	<0.10	<0.10	nc	40
Thallium	ug/L	0.1	<0.050	0.074	nc	40
Uranium	ug/L	0.1	1.8	3.1	<u>53</u>	40
Vanadium	ug/L	0.5	<0.50	<0.50	nc	40
Zinc	ug/L	5	<5.0	<5.0	nc	40

Non-detectable results are shown as "< (RDL)" where RDL represents the reporting detection limit.

nc means "not calculable" - one (or both) of the results are $<5x\ RDL$

Exceedances of alert limits are shown in $\underline{\text{\bf bold}}$

⁻ means "not analysed"

EXP Services Inc.

Katasa Groupe Phase Two Environmental Site Assessment 770 and 774 Bronson Avenue and 557 Cambridge Street, Ottawa, Ontario OTT-22019409-A0 October 6, 2022

Appendix F: Laboratory Certificates of Analysis

Final Report

C.O.C.: G105027 REPORT No. B22-25709

Report To:

EXP Services Inc

2650 Queensview Drive, Suite 100 Ottawa ON K2B 8H6 Canada **Attention:** Mark McCalla

DATE RECEIVED: 12-Aug-22

DATE REPORTED: 18-Aug-22

SAMPLE MATRIX: Groundwater

Caduceon Environmental Laboratories

2378 Holly Lane

Ottawa Ontario K1V 7P1 Tel: 613-526-0123 Fax: 613-526-1244

JOB/PROJECT NO.:

P.O. NUMBER:

OTT-22019409-AO

WATERWORKS NO.

Parameter	Qty	Site Analyzed	Analyst Initials	Date Analyzed	Lab Method	Reference Method	
Comment	5	Default Site K		15-Aug-22	C-comment	-	
Comment	5	Default Site	JE	17-Aug-22	C-comment purg RH	-	
SVOC	5	Kingston	law	16-Aug-22	C-NAB-S-001 (k)	EPA 8270	
SVOC	5	Kingston	law	16-Aug-22	C-NAB-W-001 (k)	EPA 8270	
PHC(F2-F4)	5	Kingston	KPR	15-Aug-22	C-PHC-W-001 (k)	MOE E3421	
VOC's	5	Richmond Hill	JE	16-Aug-22	C-VOC-02 (rh)	EPA 8260	
PHC(F1)	5	Richmond Hill	JE	17-Aug-22	C-VPHW-01 (rh)	MOE E3421	

μg/g = micrograms per gram (parts per million) and is equal to mg/Kg

F1 C6-C10 hydrocarbons in μg/g, (F1-btex if requested)

F2 C10-C16 hydrocarbons in $\mu g/g$, (F2-napth if requested)

F3 C16-C34 hydrocarbons in µg/g, (F3-pah if requested)

F4 C34-C50 hydrocarbons in µg/g

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

Any deviations from the method are noted and reported for any particular sample.

nC6 and nC10 response factor is within 30% of response factor for toluene:

nC10,nC16 and nC34 response factors within 10% of each other:

C50 response factors within 70% of nC10+nC16+nC34 average:

Linearity is within 15%:

All results expressed on a dry weight basis.

Unless otherwise noted all chromatograms returned to baseline by the retention

time of nC50.

Unless otherwise noted all extraction, analysis, QC requirements and limits for holding time were met. If analyzed for F4 and F4G they are not to be summed but the greater of the two numbers are to be used in application to the CWS PHC

QC will be made available upon request.

O. Reg. 153 - Soil, Ground Water and Sediment Standards Tbl. 1 - GW ($\mu g/L$) - Table 1 - Ground Water

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an * Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,R-Richmond Hill,B-Barrie

Tahir Yapici Ph.D Lab Manager - Ottawa District

The analytical results reported herein refer to the samples as received. Reproduction of this analytical report in full or in part is prohibited without prior consent from Caduceon Environmental Laboratories.

Final Report

C.O.C.: G105027 **REPORT No. B22-25709**

Report To:

EXP Services Inc

2650 Queensview Drive, Suite 100 Ottawa ON K2B 8H6 Canada Attention: Mark McCalla

DATE RECEIVED: 12-Aug-22

DATE REPORTED: 18-Aug-22

SAMPLE MATRIX: Groundwater

Caduceon Environmental Laboratories

2378 Holly Lane

Ottawa Ontario K1V 7P1 Tel: 613-526-0123 Fax: 613-526-1244

JOB/PROJECT NO .:

P.O. NUMBER: OTT-22019409-AO

WATERWORKS NO.

_	Client I.D. Sample I.I Date Colle).	MW15-1 B22-25709-1 11-Aug-22	MW15-5 B22-25709-2 11-Aug-22	MW15-2 B22-25709-3 11-Aug-22	MW15-3 B22-25709-4 11-Aug-22	O. Re Tbl. 1 - GW (μg/L)	g. 153
Parameter	Units	R.L.						
PHC F1 (C6-C10)	μg/L	25	< 25	< 25	< 25	< 25	420	
Comment-purgeable	-		-	-	-	-		
PHC F2 (>C10-C16)	μg/L	50	< 50	< 50	< 50	< 50	150	
PHC F3 (>C16-C34)	μg/L	400	< 400	< 400	< 400	< 400	500	
PHC F4 (>C34-C50)	μg/L	400	< 400	< 400	< 400	< 400	500	
Comment-extractable	-		-	-	-	-		
Acetone	μg/L	30	< 30	< 30	< 30	< 30	2700	
Benzene	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.5	
Bromodichloromethane	μg/L	2	< 2	< 2	< 2	< 2	2	
Bromoform	μg/L	5	< 5	< 5	< 5	< 5	5	
Bromomethane	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.89	
Carbon Tetrachloride	μg/L	0.2	< 0.2	< 0.2	< 0.2	< 0.2	0.2	
Monochlorobenzene (Chlorobenzene)	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.5	
Chloroform	μg/L	1	< 1	< 1	< 1	< 1	2	
Dibromochloromethane	μg/L	2	< 2	< 2	< 2	< 2	2	
Dichlorobenzene,1,2-	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.5	
Dichlorobenzene,1,3-	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.5	
Dichlorobenzene,1,4-	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.5	
Dichlorodifluoromethane	μg/L	2	< 2	< 2	< 2	< 2	590	
Dichloroethane,1,1-	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.5	
Dichloroethane,1,2-	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.5	
Dichloroethylene,1,1-	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.5	
Dichloroethene, cis-1,2-	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	1.6	
Dichloroethene, trans-1,2-	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	1.6	
Dichloropropane,1,2-	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.5	
Dichloropropene, cis-1,3-	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5		

O. Reg. 153 - Soil, Ground Water and Sediment Standards

Tbl. 1 - GW (µg/L) - Table 1 - Ground Water

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an * Site Analyzed=K-Kingston, W-Windsor, O-Ottawa, R-Richmond Hill, B-Barrie

Lab Manager - Ottawa District

Tahir Yapici Ph.D

Final Report

C.O.C.: G105027 REPORT No. B22-25709

Report To:

EXP Services Inc

2650 Queensview Drive, Suite 100 Ottawa ON K2B 8H6 Canada **Attention:** Mark McCalla

DATE RECEIVED: 12-Aug-22

DATE REPORTED: 18-Aug-22

SAMPLE MATRIX: Groundwater

Caduceon Environmental Laboratories

2378 Holly Lane

Ottawa Ontario K1V 7P1 Tel: 613-526-0123 Fax: 613-526-1244

JOB/PROJECT NO.:

P.O. NUMBER: OTT-22019409-AO

WATERWORKS NO.

	Client I.D.		MW15-1	MW15-5	MW15-2	MW15-3	O. Re	g. 153
	Sample I.I).	B22-25709-1	B22-25709-2	B22-25709-3	B22-25709-4	Tbl. 1 - GW	-
	Date Colle	ected	11-Aug-22	11-Aug-22	11-Aug-22	11-Aug-22	(µg/L)	
Parameter	Units	R.L.						
Dichloropropene, trans- 1,3-	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
Dichloropropene 1,3- cis+trans	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.5	
Ethylbenzene	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.5	
Dibromoethane,1,2- (Ethylene Dibromide)	μg/L	0.2	< 0.2	< 0.2	< 0.2	< 0.2	0.2	
Hexane	μg/L	5	< 5	< 5	< 5	< 5	5	
Methyl Ethyl Ketone	μg/L	20	< 20	< 20	< 20	< 20	400	
Methyl Isobutyl Ketone	μg/L	20	< 20	< 20	< 20	< 20	640	
Methyl-t-butyl Ether	μg/L	2	< 2	< 2	3	< 2	15	
Dichloromethane (Methylene Chloride)	μg/L	5	< 5	< 5	< 5	< 5	5	
Styrene	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.5	
Tetrachloroethane,1,1,1,2-	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	1.1	
Tetrachloroethane,1,1,2,2-	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.5	
Tetrachloroethylene	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.5	
Toluene	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.8	
Trichloroethane,1,1,1-	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.5	
Trichloroethane,1,1,2-	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.5	
Trichloroethylene	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.5	
Trichlorofluoromethane	μg/L	5	< 5	< 5	< 5	< 5	150	
Vinyl Chloride	μg/L	0.2	< 0.2	< 0.2	< 0.2	< 0.2	0.5	
Xylene, m,p-	μg/L	1.0	< 1.0	< 1.0	< 1.0	< 1.0		
Xylene, o-	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
Xylene, m,p,o-	μg/L	1.1	< 1.1	< 1.1	< 1.1	< 1.1	72	
Acenaphthene	μg/L	0.05	< 0.05	< 0.05	< 0.05	< 0.05	4.1	

O. Reg. 153 - Soil, Ground Water and Sediment Standards

Tbl. 1 - GW (µg/L) - Table 1 - Ground Water

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an * Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,R-Richmond Hill,B-Barrie

Tahir Yapici Ph.D

Lab Manager - Ottawa District

Final Report

C.O.C.: G105027 REPORT No. B22-25709

Report To:

EXP Services Inc

2650 Queensview Drive, Suite 100 Ottawa ON K2B 8H6 Canada **Attention:** Mark McCalla

DATE RECEIVED: 12-Aug-22

DATE REPORTED: 18-Aug-22

SAMPLE MATRIX: Groundwater

Caduceon Environmental Laboratories

2378 Holly Lane

Ottawa Ontario K1V 7P1 Tel: 613-526-0123 Fax: 613-526-1244

JOB/PROJECT NO.:

P.O. NUMBER: OTT-22019409-AO

WATERWORKS NO.

	Client I.D.		MW15-1	MW15-5	MW15-2	MW15-3	O. Re	g. 153
	Sample I.I).	B22-25709-1	B22-25709-2	B22-25709-3	B22-25709-4	-	
	Date Colle	cted	11-Aug-22	11-Aug-22	11-Aug-22	11-Aug-22	(µg/L)	
Parameter	Units	R.L.						
Acenaphthylene	μg/L	0.05	< 0.05	< 0.05	< 0.05	< 0.05	1	
Anthracene	μg/L	0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.1	
Benzo(a)anthracene	μg/L	0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.2	
Benzo(a)pyrene	μg/L	0.01	0.012	< 0.01	< 0.01	< 0.01	0.01	
Benzo(b)fluoranthene	μg/L	0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.1	
Benzo(b+k)fluoranthene	μg/L	0.1	< 0.1	< 0.1	< 0.1	< 0.1		
Benzo(g,h,i)perylene	μg/L	0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.2	
Benzo(k)fluoranthene	μg/L	0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.1	
Chrysene	μg/L	0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.1	
Dibenzo(a,h)anthracene	μg/L	0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.2	
Fluoranthene	μg/L	0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.4	
Fluorene	μg/L	0.05	< 0.05	< 0.05	< 0.05	< 0.05	120	
Indeno(1,2,3,-cd)pyrene	μg/L	0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.2	
Methylnaphthalene,1-	μg/L	0.05	< 0.05	< 0.05	< 0.05	< 0.05	2	
Methylnaphthalene,2-	μg/L	0.05	< 0.05	< 0.05	< 0.05	< 0.05	2	
Methylnaphthalene 2-(1-)	μg/L	1	< 1	< 1	< 1	< 1	2	
Naphthalene	μg/L	0.05	< 0.05	< 0.05	< 0.05	< 0.05	7	
Phenanthrene	μg/L	0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.1	
Pyrene	μg/L	0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.2	
2-Fluorobiphenyl (SS)	% rec.	10	86.0	95.0	92.0	86.0		
Terphenyl-d14 (SS)	% rec.	10	99.0	108	105	104		

O. Reg. 153 - Soil, Ground Water and Sediment Standards Tbl. 1 - GW ($\mu g/L$) - Table 1 - Ground Water

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an * Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,R-Richmond Hill,B-Barrie

Tahir Yapici Ph.D Lab Manager - Ottawa District

Client I.D.

CERTIFICATE OF ANALYSIS

Final Report

C.O.C.: G105027 REPORT No. B22-25709

Dup 1

Report To:

EXP Services Inc

2650 Queensview Drive, Suite 100 Ottawa ON K2B 8H6 Canada **Attention:** Mark McCalla

DATE RECEIVED: 12-Aug-22

DATE REPORTED: 18-Aug-22

SAMPLE MATRIX: Groundwater

Caduceon Environmental Laboratories

2378 Holly Lane

Ottawa Ontario K1V 7P1 Tel: 613-526-0123 Fax: 613-526-1244

JOB/PROJECT NO.:

P.O. NUMBER: OTT-22019409-AO

WATERWORKS NO.

O. Reg. 153

	Sample I.I	D .	B22-25709-5		Tbl. 1 - GW	
	Date Colle	ected	11-Aug-22		(µg/L)	
Parameter	Units	R.L.				
PHC F1 (C6-C10)	μg/L	25	< 25		420	
Comment-purgeable	-		-			
PHC F2 (>C10-C16)	μg/L	50	< 50		150	
PHC F3 (>C16-C34)	μg/L	400	< 400		500	
PHC F4 (>C34-C50)	μg/L	400	< 400		500	
Comment-extractable	-		-			
Acetone	μg/L	30	< 30		2700	
Benzene	μg/L	0.5	< 0.5		0.5	
Bromodichloromethane	μg/L	2	< 2		2	
Bromoform	μg/L	5	< 5		5	
Bromomethane	μg/L	0.5	< 0.5		0.89	
Carbon Tetrachloride	μg/L	0.2	< 0.2		0.2	
Monochlorobenzene (Chlorobenzene)	μg/L	0.5	< 0.5		0.5	
Chloroform	μg/L	1	< 1		2	
Dibromochloromethane	μg/L	2	< 2		2	
Dichlorobenzene,1,2-	μg/L	0.5	< 0.5		0.5	
Dichlorobenzene,1,3-	μg/L	0.5	< 0.5		0.5	
Dichlorobenzene,1,4-	μg/L	0.5	< 0.5		0.5	
Dichlorodifluoromethane	μg/L	2	< 2		590	
Dichloroethane,1,1-	μg/L	0.5	< 0.5		0.5	
Dichloroethane,1,2-	μg/L	0.5	< 0.5		0.5	
Dichloroethylene,1,1-	μg/L	0.5	< 0.5		0.5	
Dichloroethene, cis-1,2-	μg/L	0.5	< 0.5		1.6	
Dichloroethene, trans-1,2-	μg/L	0.5	< 0.5		1.6	
Dichloropropane,1,2-	μg/L	0.5	< 0.5		0.5	
Dichloropropene, cis-1,3-	μg/L	0.5	< 0.5			

O. Reg. 153 - Soil, Ground Water and Sediment Standards

Tbl. 1 - GW (µg/L) - Table 1 - Ground Water

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an *

Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,R-Richmond Hill,B-Barrie

Tahir Yapici Ph.D

Lab Manager - Ottawa District

Final Report

C.O.C.: G105027 REPORT No. B22-25709

Report To:

EXP Services Inc

2650 Queensview Drive, Suite 100 Ottawa ON K2B 8H6 Canada **Attention:** Mark McCalla

DATE RECEIVED: 12-Aug-22

DATE REPORTED: 18-Aug-22

SAMPLE MATRIX: Groundwater

Caduceon Environmental Laboratories

2378 Holly Lane

Ottawa Ontario K1V 7P1 Tel: 613-526-0123 Fax: 613-526-1244

JOB/PROJECT NO.:

P.O. NUMBER: OTT-22019409-AO

WATERWORKS NO.

	Client I.D. Sample I.D. Date Collected		Dup 1 B22-25709-5 11-Aug-22	O. Reg. 153 Tbl. 1 - GW (µg/L)
Parameter	Units	R.L.		
Dichloropropene, trans- 1,3-	μg/L	0.5	< 0.5	
Dichloropropene 1,3- cis+trans	μg/L	0.5	< 0.5	0.5
Ethylbenzene	μg/L	0.5	< 0.5	0.5
Dibromoethane,1,2- (Ethylene Dibromide)	μg/L	0.2	< 0.2	0.2
Hexane	μg/L	5	< 5	5
Methyl Ethyl Ketone	μg/L	20	< 20	400
Methyl Isobutyl Ketone	μg/L	20	< 20	640
Methyl-t-butyl Ether	μg/L	2	< 2	15
Dichloromethane (Methylene Chloride)	μg/L	5	< 5	5
Styrene	μg/L	0.5	< 0.5	0.5
Tetrachloroethane,1,1,1,2-	μg/L	0.5	< 0.5	1.1
Tetrachloroethane,1,1,2,2-	μg/L	0.5	< 0.5	0.5
Tetrachloroethylene	μg/L	0.5	< 0.5	0.5
Toluene	μg/L	0.5	< 0.5	0.8
Trichloroethane,1,1,1-	μg/L	0.5	< 0.5	0.5
Trichloroethane,1,1,2-	μg/L	0.5	< 0.5	0.5
Trichloroethylene	μg/L	0.5	< 0.5	0.5
Trichlorofluoromethane	μg/L	5	< 5	150
Vinyl Chloride	μg/L	0.2	< 0.2	0.5
Xylene, m,p-	μg/L	1.0	< 1.0	
Xylene, o-	μg/L	0.5	< 0.5	
Xylene, m,p,o-	μg/L	1.1	< 1.1	72
Acenaphthene	μg/L	0.05	< 0.05	4.1

O. Reg. 153 - Soil, Ground Water and Sediment Standards

Tbl. 1 - GW (µg/L) - Table 1 - Ground Water

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an *

Site Analyzed=K-Kingston, W-Windsor, O-Ottawa, R-Richmond Hill, B-Barrie

Tahir Yapici Ph.D Lab Manager - Ottawa District

Final Report

C.O.C.: G105027 **REPORT No. B22-25709**

Report To:

EXP Services Inc

2650 Queensview Drive, Suite 100 Ottawa ON K2B 8H6 Canada Attention: Mark McCalla

DATE RECEIVED: 12-Aug-22

DATE REPORTED: 18-Aug-22

SAMPLE MATRIX: Groundwater

Caduceon Environmental Laboratories

2378 Holly Lane

Ottawa Ontario K1V 7P1 Tel: 613-526-0123 Fax: 613-526-1244

JOB/PROJECT NO .:

P.O. NUMBER: OTT-22019409-AO

WATERWORKS NO.

	Client I.D.		Dup 1		. Reg. 153
	Sample I.I).	B22-25709-5	Tbl. 1 - 0	
	Date Colle	ected	11-Aug-22	(μg/L)
Parameter	Units	R.L.			
Acenaphthylene	μg/L	0.05	< 0.05	1	
Anthracene	μg/L	0.05	< 0.05	0.1	
Benzo(a)anthracene	μg/L	0.05	< 0.05	0.2	
Benzo(a)pyrene	μg/L	0.01	< 0.01	0.01	
Benzo(b)fluoranthene	μg/L	0.05	< 0.05	0.1	
Benzo(b+k)fluoranthene	μg/L	0.1	< 0.1		
Benzo(g,h,i)perylene	μg/L	0.05	< 0.05	0.2	
Benzo(k)fluoranthene	μg/L	0.05	< 0.05	0.1	
Chrysene	μg/L	0.05	< 0.05	0.1	
Dibenzo(a,h)anthracene	μg/L	0.05	< 0.05	0.2	
Fluoranthene	μg/L	0.05	< 0.05	0.4	
Fluorene	μg/L	0.05	< 0.05	120	
Indeno(1,2,3,-cd)pyrene	μg/L	0.05	< 0.05	0.2	
Methylnaphthalene,1-	μg/L	0.05	< 0.05	2	
Methylnaphthalene,2-	μg/L	0.05	< 0.05	2	
Methylnaphthalene 2-(1-)	μg/L	1	< 1	2	
Naphthalene	μg/L	0.05	< 0.05	7	
Phenanthrene	μg/L	0.05	< 0.05	0.1	
Pyrene	μg/L	0.05	< 0.05	0.2	
2-Fluorobiphenyl (SS)	% rec.	10	100		
Terphenyl-d14 (SS)	% rec.	10	110		

O. Reg. 153 - Soil, Ground Water and Sediment Standards Tbl. 1 - GW (µg/L) - Table 1 - Ground Water

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an * Site Analyzed=K-Kingston, W-Windsor, O-Ottawa, R-Richmond Hill, B-Barrie

Tahir Yapici Ph.D

Lab Manager - Ottawa District

Final Report

C.O.C.: G105027 REPORT No. B22-25709

Report To:

EXP Services Inc

2650 Queensview Drive, Suite 100 Ottawa ON K2B 8H6 Canada **Attention:** Mark McCalla

DATE RECEIVED: 12-Aug-22

DATE REPORTED: 18-Aug-22

SAMPLE MATRIX: Groundwater

Caduceon Environmental Laboratories

2378 Holly Lane

Ottawa Ontario K1V 7P1 Tel: 613-526-0123 Fax: 613-526-1244

JOB/PROJECT NO.:

P.O. NUMBER: OTT-22019409-AO

WATERWORKS NO.

Summary of Exceedances

Table 1 - Ground Water									
MW15-1	Found Value	Limit							
Benzo(a)pyrene (μg/L)	0.012	0.01							

O. Reg. 153 - Soil, Ground Water and Sediment Standards Tbl. 1 - GW ($\mu g/L$) - Table 1 - Ground Water

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an * Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,R-Richmond Hill,B-Barrie

Tahir Yapici Ph.D Lab Manager - Ottawa District

CLIENT NAME: GOLDER ASSOCIATES LTD 1931 ROBERTSON ROAD OTTAWA, ON K2H5B7 (613) 592-9600

ATTENTION TO: Keith Holmes

PROJECT: 1525987

AGAT WORK ORDER: 15T957961

TRACE ORGANICS REVIEWED BY: Oksana Gushyla, Trace Organics Lab Supervisor

DATE REPORTED: Apr 01, 2015

PAGES (INCLUDING COVER): 16

VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

NOTES

All samples will be disposed of within 30 days following analysis. Please contact the lab if you require additional sample storage time.

AGAT Laboratories (V1)

±NOTE O

Page 1 of 16

SAMPLING SITE:

Certificate of Analysis

AGAT WORK ORDER: 15T957961

PROJECT: 1525987

ATTENTION TO: Keith Holmes

SAMPLED BY:T L

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

O. Reg. 153(511) - PAHs (Soil)

					9 ,	`	,				
DATE RECEIVED: 2015-03-28								[DATE REPORTE	ED: 2015-04-01	
		SAMPLE DESC	RIPTION:	BH15-2 SA3	BH15-2 SA33	BH15-4 SA3	BH15-2 SA1	BH15-1 SA1	BH15-1 SA4	BH15-3 SA1	BH15-3 SA3
		SAMP	LE TYPE:	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
		DATE S	AMPLED:	3/24/2015	3/24/2015	3/24/2015	3/24/2015	3/24/2015	3/24/2015	3/24/2015	3/24/2015
Parameter	Unit	G/S	RDL	6410019	6410020	6410021	6410024	6410027	6410030	6410034	6410037
Naphthalene	μg/g	0.6	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Acenaphthylene	μg/g	0.15	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Acenaphthene	μg/g	7.9	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Fluorene	μg/g	62	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Phenanthrene	μg/g	6.2	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Anthracene	μg/g	0.67	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Fluoranthene	μg/g	0.69	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Pyrene	μg/g	78	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Benz(a)anthracene	μg/g	0.5	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Chrysene	μg/g	7	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Benzo(b)fluoranthene	μg/g	0.78	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Benzo(k)fluoranthene	μg/g	0.78	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Benzo(a)pyrene	μg/g	0.3	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-cd)pyrene	μg/g	0.38	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Dibenz(a,h)anthracene	μg/g	0.1	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Benzo(g,h,i)perylene	μg/g	6.6	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
2-and 1-methyl Naphthalene	μg/g	0.99	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Moisture Content	%		0.1	5.4	5.1	6.4	6.4	8.7	5.6	9.8	9.2
Surrogate	Unit	Acceptabl	e Limits								
Chrysene-d12	%	· · · · · · · · · · · · · · · · · · ·		76	74	77	134	117	118	133	133

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3 Site Condition Standards - Soil - Residential/Parkland/Institutional Property Use - Coarse Textured Soils

6410019-6410037 Results are based on the dry weight of the soil.

Note: The result for Benzo(b)Fluoranthene is the total of the Benzo(b)&(j)Fluoranthene isomers because the isomers co-elute on the GC column.

Certificate of Analysis

AGAT WORK ORDER: 15T957961

PROJECT: 1525987

ATTENTION TO: Keith Holmes

SAMPLED BY:T L

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

O Reg 153/511) - PHCs F1 - F4	(-RTEX) (Soil)
U.Reg. 133(311) - FNUS F1 - F4	(-D EA) (3011)

DATE RECEIVED: 2015-03-28						DATE REPORTED: 2015-04-01
		SAMPLE DESCR	RIPTION:	BH15-2 SA4	BH15-4 SA1	
		SAMPL	E TYPE:	Soil	Soil	
		DATE SA	MPLED:	3/24/2015	3/24/2015	
Parameter	Unit	G/S	RDL	6410018	6410040	
F1 (C6 to C10)	μg/g		5	<5	<5	
F1 (C6 to C10) minus BTEX	μg/g	55	5	<5	<5	
F2 (C10 to C16)	μg/g	98	10	<10	<10	
F3 (C16 to C34)	μg/g	300	50	<50	740	
F4 (C34 to C50)	μg/g	2800	50	<50	1100	
Gravimetric Heavy Hydrocarbons	μg/g	2800	50	NA	NA	
Moisture Content	%		0.1	7.3	2.9	
Surrogate	Unit	Acceptable	Acceptable Limits			
Terphenyl	%	60-140)	87	100	
1						

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3 Site Condition Standards - Soil - Residential/Parkland/Institutional Property Use - Coarse Textured Soils

6410018-6410040 Results are based on sample dry weight.

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

The C6-C10 fraction is calculated using toluene response factor.

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons > C50 are present.

The chromatogram has returned to baseline by the retention time of nC50.

Total C6 - C50 results are corrected for BTEX contributions.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Fractions 1-4 are quantified without the contribution of PAHs. Under Ontario Regulation 153, results are considered valid without determining the PAH contribution if not requested by the client.

SAMPLING SITE:

Certificate of Analysis

AGAT WORK ORDER: 15T957961

PROJECT: 1525987

ATTENTION TO: Keith Holmes

SAMPLED BY:T L

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

O.Reg.153(511) - PHCs F1 - F4 (with PAHs) (Soil)

				-9		(
DATE RECEIVED: 2015-03-28									DATE REPORTE	D: 2015-04-01	
		SAMPLE DESCI	RIPTION:	BH15-4 SA3	BH15-2 SA1	BH15-1 SA1	BH15-1 SA4	BH15-3 SA1	BH15-3 SA3		
		SAMPL	E TYPE:	Soil	Soil	Soil	Soil	Soil	Soil		
		DATE SA	AMPLED:	3/24/2015	3/24/2015	3/24/2015	3/24/2015	3/24/2015	3/24/2015		
Parameter	Unit	G/S	RDL	6410021	6410024	6410027	6410030	6410034	6410037		
F1 (C6 to C10)	μg/g		5	<5	<5	<5	<5	<5	<5		
F1 (C6 to C10) minus BTEX	μg/g	55	5	<5	<5	<5	<5	<5	<5		
F2 (C10 to C16)	μg/g	98	10	<10	<10	<10	<10	<10	<10		
F2 (C10 to C16) minus Naphthalene	μg/g	98	10	<10	<10	<10	<10	<10	<10		
F3 (C16 to C34)	μg/g	300	50	<50	<50	140	<50	<50	<50		
F3 (C16 to C34) minus PAHs	μg/g	300	50	<50	<50	140	<50	<50	<50		
F4 (C34 to C50)	μg/g	2800	50	<50	<50	55	<50	<50	<50		
Gravimetric Heavy Hydrocarbons	μg/g	2800	50	NA	NA	NA	NA	NA	NA		
Moisture Content	%		0.1	6.4	6.4	8.7	5.6	9.8	9.2		
Surrogate	Unit	Acceptable	Limits								
Terphenyl	%	60-14	0	97	81	110	109	94	101		

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3 Site Condition Standards - Soil - Residential/Parkland/Institutional Property Use - Coarse Textured Soils

6410021-6410037 Results are based on sample dry weight.

The C6-C10 fraction is calculated using toluene response factor.

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present.

The chromatogram has returned to baseline by the retention time of nC50.

Total C6 - C50 results are corrected for BTEX and PAH contributions.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

SAMPLING SITE:

Certificate of Analysis

AGAT WORK ORDER: 15T957961

PROJECT: 1525987

ATTENTION TO: Keith Holmes

SAMPLED BY:T L

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

O.Reg.153(511) - VOCs (Soil)

DATE RECEIVED: 2015-03-28								Ι	DATE REPORTI	ED: 2015-04-01	
		SAMPLE DESC	RIPTION:	BH15-2 SA4	BH15-4 SA3	BH15-2 SA1	BH15-1 SA1	BH15-1 SA4	BH15-3 SA1	BH15-3 SA3	BH15-4 SA1
		SAMPI	LE TYPE:	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
		DATE SA	AMPLED:	3/24/2015	3/24/2015	3/24/2015	3/24/2015	3/24/2015	3/24/2015	3/24/2015	3/24/2015
Parameter	Unit	G/S	RDL	6410018	6410021	6410024	6410027	6410030	6410034	6410037	6410040
Dichlorodifluoromethane	μg/g	16	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Vinyl Chloride	ug/g	0.02	0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Bromomethane	ug/g	0.05	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Trichlorofluoromethane	ug/g	4	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Acetone	ug/g	16	0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
1,1-Dichloroethylene	ug/g	0.05	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05
Methylene Chloride	ug/g	0.1	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Trans- 1,2-Dichloroethylene	ug/g	0.084	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Methyl tert-butyl Ether	ug/g	0.75	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
1,1-Dichloroethane	ug/g	3.5	0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Methyl Ethyl Ketone	ug/g	16	0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Cis- 1,2-Dichloroethylene	ug/g	3.4	0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Chloroform	ug/g	0.05	0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04
1,2-Dichloroethane	ug/g	0.05	0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03
1,1,1-Trichloroethane	ug/g	0.38	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Carbon Tetrachloride	ug/g	0.05	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Benzene	ug/g	0.21	0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
1,2-Dichloropropane	ug/g	0.05	0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03
Trichloroethylene	ug/g	0.061	0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03
Bromodichloromethane	ug/g	13	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Methyl Isobutyl Ketone	ug/g	1.7	0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
1,1,2-Trichloroethane	ug/g	0.05	0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04
Toluene	ug/g	2.3	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Dibromochloromethane	ug/g	9.4	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Ethylene Dibromide	ug/g	0.05	0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04
Tetrachloroethylene	ug/g	0.28	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
1,1,1,2-Tetrachloroethane	ug/g	0.058	0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04
Chlorobenzene	ug/g	2.4	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Ethylbenzene	ug/g	2	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
m & p-Xylene	ug/g		0.05	< 0.05	<0.05	< 0.05	< 0.05	<0.05	< 0.05	<0.05	< 0.05

Certificate of Analysis

AGAT WORK ORDER: 15T957961

PROJECT: 1525987

ATTENTION TO: Keith Holmes

SAMPLED BY:T L

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

O.Rea.153(511) - VOCs (Soil)

				0.110	9.100(011)	1000 (001	'/				
DATE RECEIVED: 2015-03-28								[DATE REPORTI	ED: 2015-04-01	
	S	SAMPLE DES	CRIPTION:	BH15-2 SA4	BH15-4 SA3	BH15-2 SA1	BH15-1 SA1	BH15-1 SA4	BH15-3 SA1	BH15-3 SA3	BH15-4 SA1
		SAMPLE TYPE:		Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
		DATES	SAMPLED:	3/24/2015	3/24/2015	3/24/2015	3/24/2015	3/24/2015	3/24/2015	3/24/2015	3/24/2015
Parameter	Unit	G/S	RDL	6410018	6410021	6410024	6410027	6410030	6410034	6410037	6410040
Bromoform	ug/g	0.27	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Styrene	ug/g	0.7	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
1,1,2,2-Tetrachloroethane	ug/g	0.05	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
o-Xylene	ug/g		0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05
1,3-Dichlorobenzene	ug/g	4.8	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
1,4-Dichlorobenzene	ug/g	0.083	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
1,2-Dichlorobenzene	ug/g	3.4	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Xylene Mixture	ug/g	3.1	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
1,3-Dichloropropene	μg/g	0.05	0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04
n-Hexane	μg/g	2.8	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Surrogate	Unit	Acceptab	Acceptable Limits								
Toluene-d8	% Recovery	50-	140	90	91	91	63	94	98	65	92
4-Bromofluorobenzene	% Recovery	50-	140	95	94	94	90	93	93	91	90

Comments:

SAMPLING SITE:

RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3 Site Condition Standards - Soil - Residential/Parkland/Institutional Property Use - Coarse Textured Soils

6410018-6410040 The sample was analysed using the high level technique. The sample was

extracted using methanol, a small amount of the methanol extract was diluted in water and the purge & trap GC/MS analysis was performed.

Results are based on the dry weight of the soil.

Certificate of Analysis

AGAT WORK ORDER: 15T957961

PROJECT: 1525987

ATTENTION TO: Keith Holmes

SAMPLED BY:T L

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

PHCs F1 - F4 (-BTEX) (Soil)

DATE RECEIVED: 2015-03-28					DATE REPORTED: 2015-04-01
		SAMPLE DES	CRIPTION:	BH15-2 SA44	
		SAMI	PLE TYPE:	Soil	
		DATE S	SAMPLED:	3/24/2015	
Parameter	Unit	G/S	RDL	6410006	
F1 (C6 to C10)	μg/g		5	<5	
F1 (C6 to C10) minus BTEX	μg/g	55	5	<5	
F2 (C10 to C16)	μg/g	98	10	<10	
F3 (C16 to C34)	μg/g	300	50	<50	
F4 (C34 to C50)	μg/g	2800	50	<50	
Gravimetric Heavy Hydrocarbons	μg/g	2800	50	NA	
Moisture Content	%		0.1	6.4	
Surrogate	Unit	Acceptab	le Limits		

Comments:

Terphenyl

SAMPLING SITE:

RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3 Site Condition Standards - Soil - Residential/Parkland/Institutional Property Use - Coarse Textured Soils

The soil sample was prepared in the lab using the Methanol extraction technique. The sample was not field preserved with methanol. Results are based on sample dry weight.

CLIENT NAME: GOLDER ASSOCIATES LTD

The C6-C10 fraction is calculated using toluene response factor.

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34.

83

Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present.

The chromatogram has returned to baseline by the retention time of nC50.

Total C6 - C50 results are corrected for BTEX contributions.

%

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

60-140

nC6 and nC10 response factors are within 30% of Toluene response factor.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Fractions 1-4 are quantified without the contribution of PAHs. Under Ontario Regulation 153, results are considered valid without determining the PAH contribution if not requested by the client.

SAMPLING SITE:

Certificate of Analysis

AGAT WORK ORDER: 15T957961

PROJECT: 1525987

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

ATTENTION TO: Keith Holmes

SAMPLED BY:T L

					VOCs (Soil)
DATE RECEIVED: 2015-03-28					DATE REPORTED: 2015-04-01
	5	SAMI	CRIPTION: PLE TYPE: SAMPLED:	BH15-2 SA44 Soil 3/24/2015	
Parameter	Unit	G/S	RDL	6410006	
Dichlorodifluoromethane	μg/g	16	0.05	<0.05	
Vinyl Chloride	ug/g	0.02	0.02	<0.02	
Bromomethane	ug/g	0.05	0.05	<0.05	
Trichlorofluoromethane	ug/g	4	0.05	<0.05	
Acetone	ug/g	16	0.50	<0.50	
1,1-Dichloroethylene	ug/g	0.05	0.05	<0.05	
Methylene Chloride	ug/g	0.1	0.05	<0.05	
Trans- 1,2-Dichloroethylene	ug/g	0.084	0.05	<0.05	
Methyl tert-butyl Ether	ug/g	0.75	0.05	<0.05	
1,1-Dichloroethane	ug/g	3.5	0.02	<0.02	
Methyl Ethyl Ketone	ug/g	16	0.50	<0.50	
Cis- 1,2-Dichloroethylene	ug/g	3.4	0.02	<0.02	
Chloroform	ug/g	0.05	0.04	<0.04	
1,2-Dichloroethane	ug/g	0.05	0.03	< 0.03	
1,1,1-Trichloroethane	ug/g	0.38	0.05	<0.05	
Carbon Tetrachloride	ug/g	0.05	0.05	<0.05	
Benzene	ug/g	0.21	0.02	<0.02	
1,2-Dichloropropane	ug/g	0.05	0.03	< 0.03	
Trichloroethylene	ug/g	0.061	0.03	< 0.03	
Bromodichloromethane	ug/g	13	0.05	<0.05	
Methyl Isobutyl Ketone	ug/g	1.7	0.50	<0.50	
1,1,2-Trichloroethane	ug/g	0.05	0.04	<0.04	
Toluene	ug/g	2.3	0.05	<0.05	
Dibromochloromethane	ug/g	9.4	0.05	<0.05	
Ethylene Dibromide	ug/g	0.05	0.04	<0.04	
Tetrachloroethylene	ug/g	0.28	0.05	<0.05	
1,1,1,2-Tetrachloroethane	ug/g	0.058	0.04	<0.04	
Chlorobenzene	ug/g	2.4	0.05	<0.05	
Ethylbenzene	ug/g	2	0.05	<0.05	
m & p-Xylene	ug/g		0.05	<0.05	

SAMPLING SITE:

Certificate of Analysis

AGAT WORK ORDER: 15T957961

PROJECT: 1525987

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

— PROJECT.

ATTENTION TO: Keith Holmes

SAMPLED BY:T L

SAMPLING SITE.					SAIMPLED BY. I L
					VOCs (Soil)
DATE RECEIVED: 2015-03-28					DATE REPORTED: 2015-04-01
	Si	AMPLE DES	CRIPTION:	BH15-2 SA44	
		SAMI	PLE TYPE:	Soil	
		DATES	SAMPLED:	3/24/2015	
Parameter	Unit	G/S	RDL	6410006	
Bromoform	ug/g	0.27	0.05	<0.05	
Styrene	ug/g	0.7	0.05	<0.05	
1,1,2,2-Tetrachloroethane	ug/g	0.05	0.05	<0.05	
o-Xylene	ug/g		0.05	<0.05	
1,3-Dichlorobenzene	ug/g	4.8	0.05	<0.05	
1,4-Dichlorobenzene	ug/g	0.083	0.05	<0.05	
1,2-Dichlorobenzene	ug/g	3.4	0.05	<0.05	
Xylene Mixture	ug/g	3.1	0.05	<0.05	
1,3-Dichloropropene	μg/g	0.05	0.04	<0.04	
n-Hexane	μg/g	2.8	0.05	<0.05	
Surrogate	Unit	Acceptab	le Limits		
Toluene-d8	% Recovery	50-1	40	114	
4-Bromofluorobenzene	% Recovery	50-1	140	92	

Comments: 6410006

RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3 Site Condition Standards - Soil - Residential/Parkland/Institutional Property Use - Coarse Textured Soils

The soil sample was prepared in the lab using the Methanol extraction technique. The sample was not field preserved with methanol.

The sample was analysed using the high level technique. The sample was

extracted using methanol, a small amount of the methanol extract was diluted in water and the purge & trap GC/MS analysis was performed.

Results are based on the dry weight of the soil.

Guideline Violation

AGAT WORK ORDER: 15T957961

PROJECT: 1525987

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

ATTENTION TO: Keith Holmes

SAMPLEID	SAMPLE TITLE	GUIDELINE	ANALYSIS PACKAGE	PARAMETER	GUIDEVALUE	RESULT
6410040	BH15-4 SA1	T3(RPI) - Current	O.Reg.153(511) - PHCs F1 - F4 (-BTEX) (Soil)	F3 (C16 to C34)	300	740

AGAT WORK ORDER: 15T957961

Quality Assurance

CLIENT NAME: GOLDER ASSOCIATES LTD

PROJECT: 1525987 ATTENTION TO: Keith Holmes

SAMPLING SITE: SAMPLED BY:T L

			Trac	e Orç	ganio	cs Ar	alysi	is							
RPT Date: Apr 01, 2015				UPLICATI			REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable nits	Recovery		ptable nits	Recovery	Lin	ptable nits
		ld		.,			Value	Lower	Upper	,	Lower	Upper	,	Lower	Upper
O. Reg. 153(511) - PAHs (Soil)															
Naphthalene	6412426		< 0.05	< 0.05	0.0%	< 0.05	110%	50%	140%	86%	50%	140%	82%	50%	140%
Acenaphthylene	6412426		< 0.05	< 0.05	0.0%	< 0.05	104%	50%	140%	86%	50%	140%	92%	50%	140%
Acenaphthene	6412426		< 0.05	< 0.05	0.0%	< 0.05	111%	50%	140%	89%	50%	140%	85%	50%	140%
Fluorene	6412426		< 0.05	< 0.05	0.0%	< 0.05	102%	50%	140%	86%	50%	140%	96%	50%	140%
Phenanthrene	6412426		< 0.05	< 0.05	0.0%	< 0.05	94%	50%	140%	86%	50%	140%	101%	50%	140%
Anthracene	6412426		< 0.05	< 0.05	0.0%	< 0.05	96%	50%	140%	82%	50%	140%	99%	50%	140%
Fluoranthene	6412426		< 0.05	< 0.05	0.0%	< 0.05	92%	50%	140%	81%	50%	140%	110%	50%	140%
Pyrene	6412426		< 0.05	< 0.05	0.0%	< 0.05	90%	50%	140%	81%	50%	140%	106%	50%	140%
Benz(a)anthracene	6412426		< 0.05	< 0.05	0.0%	< 0.05	61%	50%	140%	57%	50%	140%	105%	50%	140%
Chrysene	6412426		< 0.05	< 0.05	0.0%	< 0.05	102%	50%	140%	89%	50%	140%	102%	50%	140%
Benzo(b)fluoranthene	6412426		< 0.05	< 0.05	0.0%	< 0.05	80%	50%	140%	68%	50%	140%	85%	50%	140%
Benzo(k)fluoranthene	6412426		< 0.05	< 0.05	0.0%	< 0.05	120%	50%	140%	107%	50%	140%	101%	50%	140%
Benzo(a)pyrene	6412426		< 0.05	< 0.05	0.0%	< 0.05	93%	50%	140%	81%	50%	140%	102%	50%	140%
Indeno(1,2,3-cd)pyrene	6412426		< 0.05	< 0.05	0.0%	< 0.05	88%	50%	140%	71%	50%	140%	110%	50%	140%
Dibenz(a,h)anthracene	6412426		< 0.05	< 0.05	0.0%	< 0.05	86%	50%	140%	75%	50%	140%	103%	50%	140%
Benzo(g,h,i)perylene	6412426		< 0.05	< 0.05	0.0%	< 0.05	110%	50%	140%	87%	50%	140%	111%	50%	140%
2-and 1-methyl Naphthalene	6412426		< 0.05	< 0.05	0.0%	< 0.05	111%	50%	140%	88%	50%	140%	89%	50%	140%
VOCs (Soil)															
Dichlorodifluoromethane	6405189		< 0.05	< 0.05	0.0%	< 0.05	125%	50%	140%	125%	50%	140%	125%	50%	140%
Vinyl Chloride	6405189		< 0.02	< 0.02	0.0%	< 0.02	130%	50%	140%	107%	50%	140%	84%	50%	140%
Bromomethane	6405189		< 0.05	< 0.05	0.0%	< 0.05	75%	50%	140%	108%	50%	140%	109%	50%	140%
Trichlorofluoromethane	6405189		< 0.05	< 0.05	0.0%	< 0.05	79%	50%	140%	99%	50%	140%	93%	50%	140%
Acetone	6405189		< 0.50	< 0.50	0.0%	< 0.50	106%	50%	140%	104%	50%	140%	106%	50%	140%
1,1-Dichloroethylene	6405189		< 0.05	< 0.05	0.0%	< 0.05	78%	50%	140%	130%	60%	130%	119%	50%	140%
Methylene Chloride	6405189		< 0.05	< 0.05	0.0%	< 0.05	78%	50%	140%	120%	60%	130%	108%	50%	140%
Trans- 1,2-Dichloroethylene	6405189		< 0.05	< 0.05	0.0%	< 0.05	70%	50%	140%	82%	60%	130%	123%	50%	140%
Methyl tert-butyl Ether	6405189		< 0.05	< 0.05	0.0%	< 0.05	70%	50%	140%	95%	60%	130%	121%	50%	140%
1,1-Dichloroethane	6405189		< 0.02	< 0.02	0.0%	< 0.02	91%	50%	140%	111%	60%	130%	126%	50%	140%
Methyl Ethyl Ketone	6405189		< 0.50	< 0.50	0.0%	< 0.50	113%	50%	140%	112%	50%	140%	120%	50%	140%
Cis- 1,2-Dichloroethylene	6405189		< 0.02	< 0.02	0.0%	< 0.02	92%	50%	140%	112%	60%	130%	123%	50%	140%
Chloroform	6405189		< 0.04	< 0.04	0.0%	< 0.04	89%	50%	140%	100%	60%	130%	110%		140%
1,2-Dichloroethane	6405189		< 0.03	< 0.03	0.0%	< 0.03	91%	50%	140%	101%	60%	130%	110%		140%
1,1,1-Trichloroethane	6405189		< 0.05	< 0.05	0.0%	< 0.05	79%	50%	140%	82%	60%	130%	94%	50%	140%
Carbon Tetrachloride	6405189		< 0.05	< 0.05	0.0%	< 0.05	76%	50%	140%	80%	60%	130%	91%	50%	140%
Benzene	6405189		< 0.02	< 0.02	0.0%	< 0.02	89%		140%	92%	60%	130%	104%		140%
1,2-Dichloropropane	6405189		< 0.03	< 0.03	0.0%	< 0.03	79%		140%	93%	60%	130%	103%		140%
Trichloroethylene	6405189		< 0.03	< 0.03	0.0%	< 0.03	72%	50%	140%	87%	60%	130%	98%		140%
Bromodichloromethane	6405189		< 0.05	< 0.05	0.0%	< 0.05	73%		140%	86%		130%	94%		140%

AGAT QUALITY ASSURANCE REPORT (V1)

Page 11 of 16

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Quality Assurance

CLIENT NAME: GOLDER ASSOCIATES LTD

AGAT WORK ORDER: 15T957961

PROJECT: 1525987

ATTENTION TO: Keith Holmes

SAMPLING SITE: SAMPLED BY:T L

	Trace	e Orga	anics	Ana	lysis	(Cor	ntin	ued)					
RPT Date: Apr 01, 2015			UPLICATI	Ē		REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable nits	Recovery	Lie	ptable mits	Recovery		ptable nits
	la la	,	·			Value	Lower	Upper	,	Lower	Upper		Lower	Upper
Methyl Isobutyl Ketone	6405189	< 0.50	< 0.50	0.0%	< 0.50	92%	50%	140%	112%	50%	140%	114%	50%	140%
1,1,2-Trichloroethane	6405189	< 0.04	< 0.04	0.0%	< 0.04	95%	50%	140%	98%	60%	130%	108%	50%	140%
Toluene	6405189	< 0.05	< 0.05	0.0%	< 0.05	87%	50%	140%	89%	60%	130%	103%	50%	140%
Dibromochloromethane	6405189	< 0.05	< 0.05	0.0%	< 0.05	81%	50%	140%	92%	60%	130%	96%	50%	140%
Ethylene Dibromide	6405189	< 0.04	< 0.04	0.0%	< 0.04	89%	50%	140%	95%	60%	130%	106%	50%	140%
Tetrachloroethylene	6405189	< 0.05	< 0.05	0.0%	< 0.05	109%	50%	140%	87%	60%	130%	87%	50%	140%
1,1,1,2-Tetrachloroethane	6405189	< 0.04	< 0.04	0.0%	< 0.04	94%	50%	140%	87%	60%	130%	101%	50%	140%
Chlorobenzene	6405189	< 0.05	< 0.05	0.0%	< 0.05	89%	50%	140%	90%	60%	130%	104%	50%	140%
Ethylbenzene	6405189	< 0.05	< 0.05	0.0%	< 0.05	81%	50%	140%	82%	60%	130%	98%	50%	140%
m & p-Xylene	6405189	< 0.05	< 0.05	0.0%	< 0.05	83%	50%	140%	80%	60%	130%	98%	50%	140%
Bromoform	6405189	< 0.05	< 0.05	0.0%	< 0.05	102%	50%	140%	102%	60%	130%	116%	50%	140%
Styrene	6405189	< 0.05	< 0.05	0.0%	< 0.05	72%	50%	140%	86%	60%	130%	104%	50%	140%
1,1,2,2-Tetrachloroethane	6405189	< 0.05	< 0.05	0.0%	< 0.05	112%	50%	140%	105%	60%	130%	122%	50%	140%
o-Xylene	6405189	< 0.05	< 0.05	0.0%	< 0.05	88%	50%	140%	86%	60%	130%	105%	50%	140%
1,3-Dichlorobenzene	6405189	< 0.05	< 0.05	0.0%	< 0.05	100%	50%	140%	96%	60%	130%	99%	50%	140%
1,4-Dichlorobenzene	6405189	< 0.05	< 0.05	0.0%	< 0.05	100%	50%	140%	100%	60%	130%	128%	50%	140%
1,2-Dichlorobenzene	6405189	< 0.05	< 0.05	0.0%	< 0.05	92%	50%	140%	88%	60%	130%	111%	50%	140%
1,3-Dichloropropene	6405189	< 0.04	< 0.04	0.0%	< 0.04	76%	50%	140%	78%	60%	130%	86%	50%	140%
n-Hexane	6405189	< 0.05	< 0.05	0.0%	< 0.05	98%	50%	140%	95%	60%	130%	100%	50%	140%
PHCs F1 - F4 (-BTEX) (Soil)														
F1 (C6 to C10)	6398878	53	67	23.3%	< 5	79%	60%	140%	95%	80%	120%	104%	60%	140%
F2 (C10 to C16)	6410040 6410040	< 10	< 10	0.0%	< 10	112%	60%	140%	98%	80%	120%	61%	60%	140%
F3 (C16 to C34)	6410040 6410040	740	760	2.7%	< 50	114%	60%	140%	96%	80%	120%	64%	60%	140%
F4 (C34 to C50)	6410040 6410040	1100	1200	8.7%	< 50	104%	60%	140%	102%	80%	120%	74%	60%	140%

Method Summary

CLIENT NAME: GOLDER ASSOCIATES LTD AGAT WORK ORDER: 15T957961
PROJECT: 1525987 ATTENTION TO: Keith Holmes

SAMPLING SITE: SAMPLED BY:T L

SAMPLING SITE:		SAMPLED BY:T	L
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Trace Organics Analysis			
Naphthalene	ORG-91-5106	EPA SW846 3541 & 8270	GC/MS
Acenaphthylene	ORG-91-5106	EPA SW846 3541 & 8270	GC/MS
Acenaphthene	ORG-91-5106	EPA SW846 3541 & 8270	GC/MS
Fluorene	ORG-91-5106	EPA SW846 3541 & 8270	GC/MS
Phenanthrene	ORG-91-5106	EPA SW846 3541 & 8270	GC/MS
Anthracene	ORG-91-5106	EPA SW846 3541 & 8270	GC/MS
Fluoranthene	ORG-91-5106	EPA SW846 3541 & 8270	GC/MS
Pyrene	ORG-91-5106	EPA SW846 3541 & 8270	GC/MS
Benz(a)anthracene	ORG-91-5106	EPA SW846 3541 & 8270	GC/MS
Chrysene	ORG-91-5106	EPA SW846 3541 & 8270	GC/MS
Benzo(b)fluoranthene	ORG-91-5106	EPA SW846 3541 & 8270	GC/MS
Benzo(k)fluoranthene	ORG-91-5106	EPA SW846 3541 & 8270	GC/MS
Benzo(a)pyrene	ORG-91-5106	EPA SW846 3541 & 8270	GC/MS
Indeno(1,2,3-cd)pyrene	ORG-91-5106	EPA SW846 3541 & 8270	GC/MS
Dibenz(a,h)anthracene	ORG-91-5106	EPA SW846 3541 & 8270	GC/MS
Benzo(g,h,i)perylene	ORG-91-5106	EPA SW846 3541 & 8270	GC/MS
2-and 1-methyl Naphthalene	ORG-91-5106	EPA SW846 3541 & 8270	GC/MS
Moisture Content	ORG-91-5106	EPA SW-846 3541 & 8270	BALANCE
Chrysene-d12	ORG-91-5106	EPA SW846 3541 & 8270	GC/MS
F1 (C6 to C10)	VOL-91-5009	CCME Tier 1 Method, SW846 5035	P &T GC / FID
F1 (C6 to C10) minus BTEX	VOL-91-5009	CCME Tier 1 Method, SW846 5035	P & T GC / FID
F2 (C10 to C16)	VOL-91-5009	CCME Tier 1 Method	GC / FID
F3 (C16 to C34)	VOL-91-5009	CCME Tier 1 Method	GC / FID
F4 (C34 to C50)	VOL-91-5009	CCME Tier 1 Method	GC / FID
Gravimetric Heavy Hydrocarbons	VOL-91-5009	CCME Tier 1 Method	GRAVIMETRIC ANALYSIS
Moisture Content	VOL-91-5009	CCME Tier 1 Method, SW846 5035,8015	BALANCE
Terphenyl	VOL-91-5009	·	GC/FID
F1 (C6 to C10)	VOL-91-5009	CCME Tier 1 Method	GC / FID
F1 (C6 to C10) minus BTEX	VOL-91-5009	CCME Tier 1 Method	GC / FID
F2 (C10 to C16)	VOL-91-5009	CCME Tier 1 Method	GC / FID
F2 (C10 to C16) minus Naphthalene	VOL-91-5009	CCME Tier 1 Method	GC / FID
F3 (C16 to C34)	VOL-91-5009	CCME Tier 1 Method	GC / FID
F3 (C16 to C34) minus PAHs	VOL-91-5009	CCME Tier 1 Method	GC / FID
F4 (C34 to C50)	VOL-91-5009	CCME Tier 1 Method	GC / FID
Gravimetric Heavy Hydrocarbons	VOL-91-5009	CCME Tier 1 Method	GRAVIMETRIC ANALYSIS
Moisture Content	VOL-91-5009	CCME Tier 1 Method	BALANCE
Terphenyl	VOL-91-5009		GC/FID
Dichlorodifluoromethane	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
Vinyl Chloride	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
Bromomethane	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
Trichlorofluoromethane	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
Acetone	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
1,1-Dichloroethylene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
Methylene Chloride	VOL-91-5002 VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
Trans- 1,2-Dichloroethylene	VOL-91-5002 VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
Methyl tert-butyl Ether	VOL-91-5002 VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
1,1-Dichloroethane	VOL-91-5002 VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
Methyl Ethyl Ketone	VOL-91-5002 VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
INIGUISI LUISI NGIONG	VOL-81-000Z	LITA 377-040 3033 & 0200	(1 & 1)GC/IVIO

Method Summary

CLIENT NAME: GOLDER ASSOCIATES LTD

PROJECT: 1525987

AGAT WORK ORDER: 15T957961

ATTENTION TO: Keith Holmes

SAMPLING SITE: SAMPLED BY:T L

AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
		(P&T)GC/MS
		(P&T)GC/MS
		(P&T)GC/MS
VOL-91-5002		(P&T)GC/MS
		P &T GC / FID
	·	P&TGC/FID
	•	GC / FID
		GC / FID
		GC / FID
		GRAVIMETRIC ANALYSIS
VOL-91-5009	CCME Tier 1 Method, SW846	BALANCE
VOL-91-5009		GC/FID
	EPA SW-846 5035 & 8260	(P&T)GC/MS
		(P&T)GC/MS
		(P&T)GC/MS
	EPA SW-846 5035 & 8260	(P&T)GC/MS
		(P&T)GC/MS
	VOL-91-5002 VOL-91-5009 VOL-91-5009 VOL-91-5009 VOL-91-5009 VOL-91-5009 VOL-91-5009	VOL-91-5002 EPA SW-846 5035 & 8260 VOL-91-5009 CCME Tier 1 Method VOL-91-5009 CPA SW-846 5035 & 8260 VOL-91-5000 EPA SW-846 5035 & 8260 VOL-91-5000 EPA SW-846 5035 & 8260 VOL-91-5002 EPA SW-846 5035 & 8260 VOL-91-5002 EPA SW-846 5035 & 8260 V

Method Summary

CLIENT NAME: GOLDER ASSOCIATES LTD

AGAT WORK ORDER: 15T957961

PROJECT: 1525987

ATTENTION TO: Keith Holmes

SAMPLING SITE: SAMPLED BY:T L

SAMPLING SITE:		SAMPLED BY: I	L
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Methyl Ethyl Ketone	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
Cis- 1,2-Dichloroethylene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
Chloroform	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
1,2-Dichloroethane	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
1,1,1-Trichloroethane	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
Carbon Tetrachloride	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
Benzene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
1,2-Dichloropropane	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
Trichloroethylene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
Bromodichloromethane	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
Methyl Isobutyl Ketone	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
1,1,2-Trichloroethane	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
Toluene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
Dibromochloromethane	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
Ethylene Dibromide	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
Tetrachloroethylene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
1,1,1,2-Tetrachloroethane	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
Chlorobenzene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
Ethylbenzene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
m & p-Xylene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
Bromoform	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
Styrene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
1,1,2,2-Tetrachloroethane	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
o-Xylene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
1,3-Dichlorobenzene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
1,4-Dichlorobenzene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
1,2-Dichlorobenzene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
Xylene Mixture	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
1,3-Dichloropropene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
n-Hexane	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
Toluene-d8	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
4-Bromofluorobenzene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS

Samples Relinquished by (Print Nume and Sign): Date Nur 27, 115 Ime	BH15-4 SA1 24/03/15 2 5	SA3 24/03/15	BH15-3 SAI 24/02/15 3 5	BHIS-1 547 25/03/15 3 5	1 SA1 25/63/15 3	BH 15-2 SA1 24/03/15 3 5	BH15-4 SA3 24/03/15 3 S	BH 15-2 SA33 24/03/15 1 5	BH 15-2 SA3 24/03/15 1 5	BH15-2 SA-1 24/03/15 2 S	<u>**</u> S	Sample Identification Date Time # of Sample Sampled Sampled containers Matrix	Email: Othawa - Accountyny 5 goldeccom	Contact: Account N	Invoice Information: Bill To Same: Yes No Company:	Please note: If quotation number is not provided, client will de billed full price for analysis.	#:	Site Location: Sampled By: Sampled By:	Project Information: 5 2 5 9 8 7	2. Email:	1. Email: Kholmes & golder.com		613-592-9600 Eav.	Keith Holms	Report Information:	Chain of Custody Record If this is a Drinking Water sample, please	Laboratories	
16 Springles Reschool by (Print) Name and Sign				< < <	~ ~ ~		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		~	-	extract FI+VOCs Appendie	Metal Hydrid Client ORPs: □ Cr ⁶⁺ □ Tota Nutrie □ NO ₃ Volati	D Sediment W Surface Water and Inorga	ganics Metals letals O D PH NNO,/NO	☐ CN NO ₂ /NO ₂ ☐ SAR ☐ TKN O ₂	Legend (Check Applicab	Sample Matrix	ves □ No □ Yes vo	Is this submission for a Report Guideline on Record of Site Condition? Certificate of Analysis	☐Fine Indicate One	Soil Texture (check One) Region	☐ Storm ☐ Prov. Water Quality ☐ Agriculture ☐ Storm ☐ Objectives (PWQO)		Regulation 153/04 Sewer Use Regulation 558	Regulatory Requirements: No Regulatory Requirement (Please theck all applicable boxes)	use Drinking Water Chain of Custody Form (potable water intended for human consumption)	Mississauga, Ontario L4Z 1Y2 Ph: 905.712.5100 Fax: 905.712.5122 www.agatlabs.com webearth.agatlabs.com	
7315 bh/3 Page of \$1			2									PCBs Organo	phenois ochlorine F Metals/Ind Use	_				*TAT is exclusive of weekends and statutory holidays	OR Date Required (Rush Surcharges May Apply):		3 Business 2 Business 1 Business Days Days	Rush TAT (Rush Surcharges Apply)	Regular TAT 5 to 7 Business Days	Turnaround Time (TAT) Required:	Custody Seal Intact:	Arrival Temperatures: $U \mid Z \mid Y$	Work Order #: 15 T 9 57 96	Laboratory Use Only

Samples Relinquished By (Print Name and Sign):

10:19 Sizz 19

Pink Copy - Client | Yellow Copy - AGAT | White Copy - AGAT

000648

Lyon

CLIENT NAME: GOLDER ASSOCIATES LTD 1931 ROBERTSON ROAD OTTAWA, ON K2H5B7 (613) 592-9600

(613) 592-9600

ATTENTION TO: Keith Holmes

PROJECT: 1525987

AGAT WORK ORDER: 15T957963

TRACE ORGANICS REVIEWED BY: Oksana Gushyla, Trace Organics Lab Supervisor

DATE REPORTED: Apr 01, 2015

PAGES (INCLUDING COVER): 16

VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

*NOTES	ı
	ı
	ı
	ı
	ı
	ı

All samples will be disposed of within 30 days following analysis. Please contact the lab if you require additional sample storage time.

AGAT Laboratories (V1)

Page 1 of 16

SAMPLING SITE:

Certificate of Analysis

AGAT WORK ORDER: 15T957963

PROJECT: 1525987

ATTENTION TO: Keith Holmes

SAMPLED BY:T L

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

O. Reg. 153(511) - PAHs (Water)

				009	00(0)	(J. /			
DATE RECEIVED: 2015-03-28									DATE REPORTED: 20)15-04-01
Parameter	Unit		CRIPTION: PLE TYPE: SAMPLED: RDL	15-1 Water 3/27/2015 6409917	15-2 Water 3/27/2015 6409918	15-3 Water 3/27/2015 6409926	15-4 Water 3/27/2015 6409934	RDL	Dup1 Water 3/27/2015 6409944	
Naphthalene	μg/L	1400	0.20	<0.20	0.36	<0.20	0.70	0.60	<0.60	
Acenaphthylene	μg/L	1.8	0.20	<0.20	<0.20	<0.20	<0.20	0.60	<0.60	
Acenaphthene	μg/L	600	0.20	<0.20	<0.20	<0.20	<0.20	0.60	<0.60	
Fluorene	μg/L	400	0.20	<0.20	<0.20	<0.20	<0.20	0.60	<0.60	
Phenanthrene	μg/L	580	0.10	<0.10	<0.10	<0.10	<0.10	0.30	<0.30	
Anthracene	μg/L	2.4	0.10	<0.10	<0.10	<0.10	<0.10	0.30	<0.30	
Fluoranthene	μg/L	130	0.20	<0.20	<0.20	<0.20	<0.20	0.60	<0.60	
Pyrene	μg/L	68	0.20	<0.20	<0.20	<0.20	<0.20	0.60	<0.60	
Benz(a)anthracene	μg/L	4.7	0.20	<0.20	<0.20	<0.20	<0.20	0.60	<0.60	
Chrysene	μg/L	1	0.10	<0.10	<0.10	<0.10	<0.10	0.30	<0.30	
Benzo(b)fluoranthene	μg/L	0.75	0.10	<0.10	<0.10	<0.10	<0.10	0.30	<0.30	
Benzo(k)fluoranthene	μg/L	0.4	0.10	<0.10	<0.10	<0.10	<0.10	0.30	<0.30	
Benzo(a)pyrene	μg/L	0.81	0.01	<0.01	<0.01	<0.01	<0.01	0.03	<0.03	
Indeno(1,2,3-cd)pyrene	μg/L	0.2	0.20	<0.20	<0.20	<0.20	<0.20	0.60	<0.60	
Dibenz(a,h)anthracene	μg/L	0.52	0.20	<0.20	<0.20	<0.20	<0.20	0.60	<0.60	
Benzo(g,h,i)perylene	μg/L	0.2	0.20	<0.20	<0.20	<0.20	<0.20	0.60	<0.60	
2-and 1-methyl Naphthalene	μg/L	1800	0.20	<0.20	0.38	<0.20	1.5	0.60	<0.60	
Surrogate	Unit	Acceptab	le Limits							
Chrysene-d12	%	50 -1	140	70	74	72	69		82	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3 Site Condition Standards - Non Potable Ground Water - All Types of Property Use - Coarse Textured Soils

6409917-6409934 Note: The result for Benzo(b)Flouranthene is the total of the Benzo(b)&(j)Flouranthene isomers because the isomers co-elute on the GC column.

Note: The result for Benzo(b)Flouranthene is the total of the Benzo(b)&(j)Flouranthene isomers because the isomers co-elute on the GC column.

The sample was diluted because there was limited water available to perform the analysis. The reporting detection limit has been corrected for the dilution factor used.

Certificate of Analysis

AGAT WORK ORDER: 15T957963

PROJECT: 1525987

ATTENTION TO: Keith Holmes

SAMPLED BY:T L

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

O. Reg. 153(511) - PHCs F1 - F4 (with PAHs) (Water)

DATE RECEIVED: 2015-03-28									DATE REPORTED: 2015-04-01
		SAMPLE DES	CRIPTION:	15-1	15-2	15-3	15-4	Dup1	
		SAMI	PLE TYPE:	Water	Water	Water	Water	Water	
		DATES	SAMPLED:	3/27/2015	3/27/2015	3/27/2015	3/27/2015	3/27/2015	
Parameter	Unit	G/S	RDL	6409917	6409918	6409926	6409934	6409944	
F1 (C6 to C10)	μg/L		25	<25	<25	<25	36	<25	
F1 (C6 to C10) minus BTEX	μg/L	750	25	<25	<25	<25	30	<25	
F2 (C10 to C16)	μg/L	150	100	<100	<100	<100	<100	<100	
F2 (C10 to C16) minus Naphthalene	μg/L	150	100	<100	<100	<100	<100	<100	
F3 (C16 to C34)	μg/L	500	100	<100	<100	<100	<100	<100	
F3 (C16 to C34) minus PAHs	μg/L	500	100	<100	<100	<100	<100	<100	
F4 (C34 to C50)	μg/L	500	100	<100	<100	<100	<100	<100	
Gravimetric Heavy Hydrocarbons	μg/L	500	500	NA	NA	NAS	NA	NA	
Surrogate	Unit	Acceptab	le Limits						
Terphenyl	%	60-1	140	91	86	78	78	80	

Comments:

RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3 Site Condition Standards - Non Potable Ground Water - All Types of Property Use - Coarse Textured Soils

6409917-6409944 The C6-C10 fraction is calculated using Toluene response factor.

SAMPLING SITE:

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and nC34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16 - C50 and are only determined if the chromatogram of the C34 - C50 Hydrocarbons indicated that hydrocarbons > C50 are present.

The chromatogram has returned to baseline by the retention time of nC50.

Total C6-C50 results are corrected for BTEX and PAH contributions.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

SAMPLING SITE:

Certificate of Analysis

AGAT WORK ORDER: 15T957963

PROJECT: 1525987

ATTENTION TO: Keith Holmes

SAMPLED BY:T L

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

O. Reg. 153(511) - VOCs (Water)

				O. Reg.	153(511) -	- vocs (wate	#I)				
DATE RECEIVED: 2015-03-28								D.	ATE REPORT	TED: 2015-04-01	
	;	DATE S	PLE TYPE: SAMPLED:	15-1 Water 3/27/2015		15-2 Water 3/27/2015		15-3 Water 3/27/2015		15-4 Water 3/27/2015	
Parameter	Unit	G/S	RDL	6409917	RDL	6409918	RDL	6409926	RDL	6409934	
Dichlorodifluoromethane	μg/L	4400	0.20	<0.20	0.40	<0.40	0.20	<0.20	0.40	<0.40	
Vinyl Chloride	μg/L	0.5	0.17	<0.17	0.34	<0.34	0.17	<0.17	0.34	<0.34	
Bromomethane	μg/L	5.6	0.20	<0.20	0.40	<0.40	0.20	<0.20	0.40	<0.40	
Trichlorofluoromethane	μg/L	2500	0.40	<0.40	0.80	<0.80	0.40	<0.40	0.80	<0.80	
Acetone	μg/L	130000	1.0	<1.0	2.0	<2.0	1.0	<1.0	2.0	<2.0	
1,1-Dichloroethylene	μg/L	1.6	0.30	<0.30	0.60	<0.60	0.30	<0.30	0.60	<0.60	
Methylene Chloride	μg/L	610	0.30	<0.30	0.60	<0.60	0.30	<0.30	0.60	<0.60	
trans- 1,2-Dichloroethylene	μg/L	1.6	0.20	<0.20	0.40	<0.40	0.20	<0.20	0.40	<0.40	
Methyl tert-butyl ether	μg/L	190	0.20	<0.20	0.40	4.2	0.20	<0.20	0.40	<0.40	
1,1-Dichloroethane	μg/L	320	0.30	<0.30	0.60	<0.60	0.30	<0.30	0.60	<0.60	
Methyl Ethyl Ketone	μg/L	470000	1.0	11	2.0	21	1.0	<1.0	2.0	<2.0	
cis- 1,2-Dichloroethylene	μg/L	1.6	0.20	<0.20	0.40	<0.40	0.20	<0.20	0.40	<0.40	
Chloroform	μg/L	2.4	0.20	2.1	0.40	2.8	0.20	3.2	0.40	0.91	
1,2-Dichloroethane	μg/L	1.6	0.20	<0.20	0.40	<0.40	0.20	<0.20	0.40	<0.40	
1,1,1-Trichloroethane	μg/L	640	0.30	<0.30	0.60	<0.60	0.30	<0.30	0.60	<0.60	
Carbon Tetrachloride	μg/L	0.79	0.20	<0.20	0.40	<0.40	0.20	<0.20	0.40	<0.40	
Benzene	μg/L	44	0.20	<0.20	0.40	1.8	0.20	<0.20	0.40	<0.40	
1,2-Dichloropropane	μg/L	16	0.20	<0.20	0.40	<0.40	0.20	<0.20	0.40	<0.40	
Trichloroethylene	μg/L	1.6	0.20	<0.20	0.40	<0.40	0.20	<0.20	0.40	<0.40	
Bromodichloromethane	μg/L	85000	0.20	<0.20	0.40	<0.40	0.20	0.27	0.40	<0.40	
Methyl Isobutyl Ketone	μg/L	140000	1.0	<1.0	2.0	<2.0	1.0	<1.0	2.0	<2.0	
1,1,2-Trichloroethane	μg/L	4.7	0.20	<0.20	0.40	<0.40	0.20	<0.20	0.40	<0.40	
Toluene	μg/L	18000	0.20	0.67	0.40	1.6	0.20	1.5	0.40	0.66	
Dibromochloromethane	μg/L	82000	0.10	<0.10	0.20	<0.20	0.10	<0.10	0.20	<0.20	
Ethylene Dibromide	μg/L	0.25	0.10	<0.10	0.20	<0.20	0.10	<0.10	0.20	<0.20	
Tetrachloroethylene	μg/L	1.6	0.20	<0.20	0.40	<0.40	0.20	<0.20	0.40	<0.40	
1,1,1,2-Tetrachloroethane	μg/L	3.3	0.10	<0.10	0.20	<0.20	0.10	<0.10	0.20	<0.20	
Chlorobenzene	μg/L	630	0.10	<0.10	0.20	<0.20	0.10	<0.10	0.20	<0.20	
Ethylbenzene	μg/L	2300	0.10	<0.10	0.20	<0.20	0.10	<0.10	0.20	0.55	
m & p-Xylene	μg/L		0.20	<0.20	0.40	0.51	0.20	0.37	0.40	2.8	

Certificate of Analysis

AGAT WORK ORDER: 15T957963

PROJECT: 1525987

ATTENTION TO: Keith Holmes

SAMPLED BY:T L

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

O. Reg. 153(511) - VOCs (Water)

DATE RECEIVED: 2015-03-28								D.	ATE REPORT	ED: 2015-04-01	
	SA	AMPLE DES	CRIPTION:	15-1		15-2		15-3		15-4	
		SAMI	PLE TYPE:	Water		Water		Water		Water	
		DATE SAMPLED:		3/27/2015		3/27/2015		3/27/2015		3/27/2015	
Parameter	Unit	G/S	RDL	6409917	RDL	6409918	RDL	6409926	RDL	6409934	
Bromoform	μg/L	380	0.10	<0.10	0.20	<0.20	0.10	<0.10	0.20	<0.20	
Styrene	μg/L	1300	0.10	<0.10	0.20	<0.20	0.10	<0.10	0.20	<0.20	
1,1,2,2-Tetrachloroethane	μg/L	3.2	0.10	<0.10	0.20	<0.20	0.10	<0.10	0.20	<0.20	
o-Xylene	μg/L		0.10	<0.10	0.20	<0.20	0.10	0.10	0.20	2.4	
1,3-Dichlorobenzene	μg/L	9600	0.10	<0.10	0.20	<0.20	0.10	<0.10	0.20	<0.20	
1,4-Dichlorobenzene	μg/L	8	0.10	<0.10	0.20	<0.20	0.10	<0.10	0.20	<0.20	
1,2-Dichlorobenzene	μg/L	4600	0.10	<0.10	0.20	<0.20	0.10	<0.10	0.20	<0.20	
1,3-Dichloropropene	μg/L	5.2	0.30	< 0.30	0.60	<0.60	0.30	<0.30	0.60	<0.60	
Xylene Mixture	μg/L	4200	0.20	<0.20	0.40	0.51	0.20	0.47	0.40	5.2	
n-Hexane	μg/L	51	0.20	<0.20	0.40	<0.40	0.20	<0.20	0.40	<0.40	
Surrogate	Unit	Acceptab	le Limits								
Toluene-d8	% Recovery	50-1	40	89		91	·	94		91	
4-Bromofluorobenzene	% Recovery	50-1	40	76		81		79		98	

SAMPLING SITE:

Certificate of Analysis

AGAT WORK ORDER: 15T957963

PROJECT: 1525987

ATTENTION TO: Keith Holmes

SAMPLED BY:T L

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

O. Reg. 153(511) - VOCs (Water)

					, ,	,	
DATE RECEIVED: 2015-03-28							DATE REPORTED: 2015-04-01
		SAMPLE DESCR	RIPTION:	Dup1	Field Blank	Trip Blank	
		SAMPL	E TYPE:	Water	Water	Water	
		DATE SA	MPLED:	3/27/2015	3/27/2015	3/27/2015	
Parameter	Unit	G/S	RDL	6409944	6409952	6409955	
Dichlorodifluoromethane	μg/L	4400	0.20	<0.20	<0.20	<0.20	
Vinyl Chloride	μg/L	0.5	0.17	<0.17	<0.17	<0.17	
Bromomethane	μg/L	5.6	0.20	<0.20	<0.20	<0.20	
Trichlorofluoromethane	μg/L	2500	0.40	<0.40	<0.40	<0.40	
Acetone	μg/L	130000	1.0	<1.0	<1.0	<1.0	
1,1-Dichloroethylene	μg/L	1.6	0.30	<0.30	< 0.30	<0.30	
Methylene Chloride	μg/L	610	0.30	<0.30	<0.30	<0.30	
trans- 1,2-Dichloroethylene	μg/L	1.6	0.20	<0.20	<0.20	<0.20	
Methyl tert-butyl ether	μg/L	190	0.20	<0.20	<0.20	<0.20	
1,1-Dichloroethane	μg/L	320	0.30	<0.30	< 0.30	<0.30	
Methyl Ethyl Ketone	μg/L	470000	1.0	<1.0	<1.0	<1.0	
cis- 1,2-Dichloroethylene	μg/L	1.6	0.20	<0.20	<0.20	<0.20	
Chloroform	μg/L	2.4	0.20	2.8	<0.20	<0.20	
1,2-Dichloroethane	μg/L	1.6	0.20	<0.20	<0.20	<0.20	
1,1,1-Trichloroethane	μg/L	640	0.30	<0.30	< 0.30	<0.30	
Carbon Tetrachloride	μg/L	0.79	0.20	<0.20	<0.20	<0.20	
Benzene	μg/L	44	0.20	<0.20	<0.20	<0.20	
1,2-Dichloropropane	μg/L	16	0.20	<0.20	<0.20	<0.20	
Trichloroethylene	μg/L	1.6	0.20	<0.20	<0.20	<0.20	
Bromodichloromethane	μg/L	85000	0.20	0.25	<0.20	<0.20	
Methyl Isobutyl Ketone	μg/L	140000	1.0	<1.0	<1.0	<1.0	
1,1,2-Trichloroethane	μg/L	4.7	0.20	<0.20	<0.20	<0.20	
Toluene	μg/L	18000	0.20	1.5	<0.20	<0.20	
Dibromochloromethane	μg/L	82000	0.10	<0.10	<0.10	<0.10	
Ethylene Dibromide	μg/L	0.25	0.10	<0.10	<0.10	<0.10	
Tetrachloroethylene	μg/L	1.6	0.20	<0.20	<0.20	<0.20	
1,1,1,2-Tetrachloroethane	μg/L	3.3	0.10	<0.10	<0.10	<0.10	
Chlorobenzene	μg/L	630	0.10	<0.10	<0.10	<0.10	
Ethylbenzene	μg/L	2300	0.10	<0.10	<0.10	<0.10	
m & p-Xylene	μg/L		0.20	0.36	<0.20	<0.20	

Certificate of Analysis

AGAT WORK ORDER: 15T957963

PROJECT: 1525987

ATTENTION TO: Keith Holmes

SAMPLED BY:T L

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

SAMPLING SITE:

O Reg 153(511) - VOCs (Water)

				O. Neg	j. 100(011) -	VOCS (VVal	GI <i>)</i>
DATE RECEIVED: 2015-03-28							DATE REPORTED: 2015-04-01
	S	AMPLE DES	CRIPTION:	Dup1	Field Blank	Trip Blank	
		SAM	PLE TYPE:	Water	Water	Water	
		DATE	SAMPLED:	3/27/2015	3/27/2015	3/27/2015	
Parameter	Unit	G/S	RDL	6409944	6409952	6409955	
Bromoform	μg/L	380	0.10	<0.10	<0.10	<0.10	
Styrene	μg/L	1300	0.10	<0.10	<0.10	<0.10	
1,1,2,2-Tetrachloroethane	μg/L	3.2	0.10	<0.10	<0.10	<0.10	
o-Xylene	μg/L		0.10	0.10	<0.10	<0.10	
1,3-Dichlorobenzene	μg/L	9600	0.10	<0.10	<0.10	<0.10	
1,4-Dichlorobenzene	μg/L	8	0.10	<0.10	<0.10	<0.10	
1,2-Dichlorobenzene	μg/L	4600	0.10	<0.10	<0.10	<0.10	
1,3-Dichloropropene	μg/L	5.2	0.30	<0.30	<0.30	<0.30	
Xylene Mixture	μg/L	4200	0.20	0.46	<0.20	<0.20	
n-Hexane	μg/L	51	0.20	<0.20	<0.20	<0.20	
Surrogate	Unit	Acceptab	le Limits				
Toluene-d8	% Recovery	50-	140	95	94	89	
4-Bromofluorobenzene	% Recovery	50-	140	80	76	75	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3 Site Condition Standards - Non Potable Ground Water - All Types of Property Use - Coarse Textured Soils

6409918 Dilution factor=2

The sample was diluted because it was foamy. The reporting detection limit has been corrected for the dilution factor used.

6409934 Dilution factor=2

The sample was diluted because it was foamy. The reporting detection limit has been corrected for the dilution factor used.

SAMPLING SITE:

Certificate of Analysis

AGAT WORK ORDER: 15T957963

PROJECT: 1525987

MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

5835 COOPERS AVENUE

ATTENTION TO: Keith Holmes

SAMPLED BY:T L

SAMPLING SITE:				SAMPLED BY: I L
			O. Reg. 1	153(511) - VOCs (Water).
DATE RECEIVED: 2015-03-28				DATE REPORTED: 2015-04-01
		SAMPLE DESCRIPTION: SAMPLE TYPE: DATE SAMPLED:	Trip Spike Water 3/27/2015	
Parameter	Unit	G/S RDL	6409958	
Dichlorodifluoromethane	%		115	
Vinyl Chloride	%		119	
Bromomethane	%		118	
Trichlorofluoromethane	%		120	
Acetone	%		107	
1,1-Dichloroethylene	%		104	
Methylene Chloride	%		118	
trans- 1,2-Dichloroethylene	%		95	
Methyl tert-butyl ether	%		94	
1,1-Dichloroethane	%		100	
Methyl Ethyl Ketone	%		103	
cis- 1,2-Dichloroethylene	%		92	
Chloroform	%		106	
1,2-Dichloroethane	%		90	
1,1,1-Trichloroethane	%		95	
Carbon Tetrachloride	%		97	
Benzene	%		82	
1,2-Dichloropropane	%		84	
Trichloroethylene	%		79	
Bromodichloromethane	%		91	
Methyl Isobutyl Ketone	%		83	
1,1,2-Trichloroethane	%		102	
Toluene	%		96	
Dibromochloromethane	%		102	
Ethylene Dibromide	%		98	
Tetrachloroethylene	%		88	
1,1,1,2-Tetrachloroethane	%		100	
Chlorobenzene	%		96	
Ethylbenzene	%		80	
m & p-Xylene	%		89	

SAMPLING SITE:

4-Bromofluorobenzene

Certificate of Analysis

AGAT WORK ORDER: 15T957963

PROJECT: 1525987

MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

5835 COOPERS AVENUE

ATTENTION TO: Keith Holmes

SAMPLED BY:T L

			O. Reg	. 153(511) - VOCs (Water).
DATE RECEIVED: 2015-03-28				DATE REPORTED: 2015-04-01
	SA	AMPLE DESCRIPTION: SAMPLE TYPE:	Trip Spike Water	
Parameter	Unit	DATE SAMPLED: G / S RDL	3/27/2015 6409958	
Bromoform	%		98	
Styrene	%		85	
1,1,2,2-Tetrachloroethane	%		107	
o-Xylene	%		99	
1,3-Dichlorobenzene	%		79	
1,4-Dichlorobenzene	%		93	
1,2-Dichlorobenzene	%		83	
1,3-Dichloropropene	%		72	
Xylene Mixture	%		94	
n-Hexane	%		96	
Surrogate	Unit	Acceptable Limits		
Toluene-d8	% Recovery	50-140	101	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

% Recovery

50-140

100

Guideline Violation

AGAT WORK ORDER: 15T957963

PROJECT: 1525987

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

ATTENTION TO: Keith Holmes

SAMPLEID	SAMPLE TITLE	GUIDELINE	ANALYSIS PACKAGE	PARAMETER	GUIDEVALUE	RESULT
6409918	15-2	T3(NPGW) - Current	O. Reg. 153(511) - VOCs (Water)	Chloroform	2.4	2.8
6409926	15-3	T3(NPGW) - Current	O. Reg. 153(511) - VOCs (Water)	Chloroform	2.4	3.2
6409944	Dup1	T3(NPGW) - Current	O. Reg. 153(511) - VOCs (Water)	Chloroform	2.4	2.8

AGAT WORK ORDER: 15T957963

Quality Assurance

CLIENT NAME: GOLDER ASSOCIATES LTD

PROJECT: 1525987 ATTENTION TO: Keith Holmes

SAMPLING SITE: SAMPLED BY:T L

Trace Organics Analysis															
RPT Date: Apr 01, 2015				UPLICATI	E		REFEREN	NCE MA	TERIAL	METHOD BLANK SPIKE			MATRIX SPIKE		KE
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD	Method Blank	Measured Value	Lir	eptable mits	Recovery	Lir	eptable mits	Recovery	Lir	ptable nits
								Lower	Upper		Lower	Upper		Lower	Upper
O. Reg. 153(511) - VOCs (Water)															
Dichlorodifluoromethane	6410005		< 0.20	< 0.20	0.0%	< 0.20	83%	50%	140%	110%	50%	140%	102%	50%	140%
Vinyl Chloride	6410005		< 0.17	< 0.17	0.0%	< 0.17	96%	50%	140%	102%	50%	140%	112%	50%	140%
Bromomethane	6410005		< 0.20	< 0.20	0.0%	< 0.20	105%	50%	140%	104%	50%	140%	112%	50%	140%
Trichlorofluoromethane	6410005		< 0.40	< 0.40	0.0%	< 0.40	118%	50%	140%	107%	50%	140%	104%	50%	140%
Acetone	6410005		< 1.0	< 1.0	0.0%	< 1.0	103%	50%	140%	100%	50%	140%	110%	50%	140%
1,1-Dichloroethylene	6410005		< 0.30	< 0.30	0.0%	< 0.30	110%	50%	140%	114%	60%	130%	104%	50%	140%
Methylene Chloride	6410005		< 0.30	< 0.30	0.0%	< 0.30	111%	50%	140%	108%	60%	130%	117%	50%	140%
trans- 1,2-Dichloroethylene	6410005		< 0.20	< 0.20	0.0%	< 0.20	111%	50%	140%	110%	60%	130%	109%	50%	140%
Methyl tert-butyl ether	6410005		< 0.20	< 0.20	0.0%	< 0.20	102%	50%	140%	110%	60%	130%	107%	50%	140%
1,1-Dichloroethane	6410005		< 0.30	< 0.30	0.0%	< 0.30	122%	50%	140%	120%	60%	130%	121%	50%	140%
Mathyd Ethyd Katana	0440005		-10	- 4.0	0.00/	- 1.0	000/	F00/	4.400/	4000/	F00/	4.400/	4050/	500 /	140%
Methyl Ethyl Ketone	6410005		< 1.0	< 1.0	0.0%	< 1.0	98%	50%	140%	100%	50%	140%	105%	50%	
cis- 1,2-Dichloroethylene	6410005		< 0.20	< 0.20	0.0%	< 0.20	107%	50%	140%	98%	60%	130%	106%	50%	140%
Chloroform	6410005		< 0.20	< 0.20	0.0%	< 0.20	117%	50%	140%	109%	60%	130%	111%	50%	140%
1,2-Dichloroethane	6410005		< 0.20	< 0.20	0.0%	< 0.20	106%	50%	140%	100%	60%	130%	103%	50%	140%
1,1,1-Trichloroethane	6410005		< 0.30	< 0.30	0.0%	< 0.30	108%	50%	140%	101%	60%	130%	98%	50%	140%
Carbon Tetrachloride	6410005		< 0.20	< 0.20	0.0%	< 0.20	107%	50%	140%	101%	60%	130%	99%	50%	140%
Benzene	6410005		< 0.20	< 0.20	0.0%	< 0.20	114%	50%	140%	90%	60%	130%	96%	50%	140%
1,2-Dichloropropane	6410005		< 0.20	< 0.20	0.0%	< 0.20	98%	50%	140%	100%	60%	130%	94%	50%	140%
Trichloroethylene	6410005		< 0.20	< 0.20	0.0%	< 0.20	103%	50%	140%	95%	60%	130%	90%	50%	140%
Bromodichloromethane	6410005		< 0.20	< 0.20	0.0%	< 0.20	109%	50%	140%	105%	60%	130%	100%	50%	140%
Methyl Isobutyl Ketone	6410005		< 1.0	< 1.0	0.0%	< 1.0	106%	50%	140%	93%	50%	140%	90%	50%	140%
1,1,2-Trichloroethane	6410005		< 0.20	< 0.20	0.0%	< 0.20	114%	50%	140%	120%	60%	130%	121%	50%	140%
Toluene	6410005		< 0.20	< 0.20	0.0%	< 0.20	126%	50%	140%	113%	60%	130%	113%	50%	140%
Dibromochloromethane	6410005		< 0.20	< 0.20	0.0%	< 0.20	120%	50%	140%	117%	60%	130%	120%	50%	140%
Ethylene Dibromide	6410005		< 0.10	< 0.10	0.0%	< 0.10	127 %	50%	140%	117%	60%	130%	115%	50%	140%
Early forte Dibroffiae	0410000		- 0.10	10.10	0.070	10.10	12070	00 /0	14070	11070	00 /0	10070	11070	00 /0	14070
Tetrachloroethylene	6410005		< 0.20	< 0.20	0.0%	< 0.20	119%	50%	140%	108%	60%	130%	119%	50%	140%
1,1,1,2-Tetrachloroethane	6410005		< 0.10	< 0.10	0.0%	< 0.10	115%	50%	140%	110%	60%	130%	117%	50%	140%
Chlorobenzene	6410005		< 0.10	< 0.10	0.0%	< 0.10	126%	50%	140%	109%	60%	130%	116%	50%	140%
Ethylbenzene	6410005		< 0.10	< 0.10	0.0%	< 0.10	109%	50%	140%	97%	60%	130%	99%	50%	140%
m & p-Xylene	6410005		< 0.20	< 0.20	0.0%	< 0.20	125%	50%	140%	112%	60%	130%	111%	50%	140%
Bromoform	6410005		< 0.10	< 0.10	0.0%	< 0.10	121%	50%	140%	114%	60%	130%	126%	50%	140%
Styrene	6410005		< 0.10	< 0.10	0.0%	< 0.10	90%	50%		96%		130%	97%	50%	
1,1,2,2-Tetrachloroethane	6410005		< 0.10	< 0.10	0.0%	< 0.10	129%	50%	140%	121%	60%		121%	50%	140%
o-Xylene	6410005		< 0.10	< 0.10	0.0%	< 0.10	119%	50%		118%		130%	123%	50%	
1,3-Dichlorobenzene	6410005		< 0.10	< 0.10	0.0%	< 0.10	116%		140%	95%		130%	102%	50%	
, 						2			2.0			0			2.0
1,4-Dichlorobenzene	6410005		< 0.10	< 0.10	0.0%	< 0.10	113%		140%	112%	60%	130%	118%	50%	
1,2-Dichlorobenzene	6410005		< 0.10	< 0.10	0.0%	< 0.10	121%	50%		98%		130%	102%	50%	140%
1,3-Dichloropropene	6410005		< 0.30	< 0.30	0.0%	< 0.30	98%	50%		90%	60%	130%	84%	50%	
n-Hexane	6410005		< 0.20	< 0.20	0.0%	< 0.20	73%	50%	140%	115%	60%	130%	93%	50%	140%

AGAT QUALITY ASSURANCE REPORT (V1)

Page 11 of 16

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

ATTENTION TO: Keith Holmes

Quality Assurance

CLIENT NAME: GOLDER ASSOCIATES LTD AGAT WORK ORDER: 15T957963 PROJECT: 1525987

SAMPLING SITE: SAMPLED BY:T L

Trace Organics Analysis (Continued)															
RPT Date: Apr 01, 2015			С	UPLICATE	Ē		REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER		imple Dup #		Dup #1 Dup #2	RPD	Method Blank	Measured	Acceptable Limits		Recovery	Acceptable Limits		Recovery		ptable
TATO WILLIAM	Jacon	ld	- Sup	3 up 112			Value	Lower	Upper	. 1.000 1 0.1 9	Lower	Upper	1.000.00.7	Lower	Upper
O. Reg. 153(511) - PAHs (Water)															
Naphthalene	6413486		1.8	1.8	0.0%	< 0.20	98%	50%	140%	88%	50%	140%	77%	50%	140%
Acenaphthylene	6413486		< 0.20	< 0.20	0.0%	< 0.20	103%	50%	140%	81%	50%	140%	78%	50%	140%
Acenaphthene	6413486		< 0.20	< 0.20	0.0%	< 0.20	104%	50%	140%	84%	50%	140%	80%	50%	140%
Fluorene	6413486		< 0.20	< 0.20	0.0%	< 0.20	101%	50%	140%	78%	50%	140%	76%	50%	140%
Phenanthrene	6413486		0.19	0.19	0.0%	< 0.10	87%	50%	140%	75%	50%	140%	76%	50%	140%
Anthracene	6413486		< 0.10	< 0.10	0.0%	< 0.10	99%	50%	140%	82%	50%	140%	79%	50%	140%
Fluoranthene	6413486		< 0.20	< 0.20	0.0%	< 0.20	103%	50%	140%	78%	50%	140%	84%	50%	140%
Pyrene	6413486		< 0.20	< 0.20	0.0%	< 0.20	105%	50%	140%	80%	50%	140%	87%	50%	140%
Benz(a)anthracene	6413486		< 0.20	< 0.20	0.0%	< 0.20	85%	50%	140%	68%	50%	140%	77%	50%	140%
Chrysene	6413486		< 0.10	< 0.10	0.0%	< 0.10	106%	50%	140%	95%	50%	140%	82%	50%	140%
Benzo(b)fluoranthene	6413486		< 0.10	< 0.10	0.0%	< 0.10	92%	50%	140%	60%	50%	140%	72%	50%	140%
Benzo(k)fluoranthene	6413486		< 0.10	< 0.10	0.0%	< 0.10	104%	50%	140%	90%	50%	140%	71%	50%	140%
Benzo(a)pyrene	6413486		< 0.01	< 0.01	0.0%	< 0.01	100%	50%	140%	82%	50%	140%	77%	50%	140%
Indeno(1,2,3-cd)pyrene	6413486		< 0.20	< 0.20	0.0%	< 0.20	110%	50%	140%	70%	50%	140%	77%	50%	140%
Dibenz(a,h)anthracene	6413486		< 0.20	< 0.20	0.0%	< 0.20	126%	50%	140%	62%	50%	140%	73%	50%	140%
Benzo(g,h,i)perylene	6413486		< 0.20	< 0.20	0.0%	< 0.20	126%	50%	140%	78%	50%	140%	83%	50%	140%
2-and 1-methyl Naphthalene	6413486		6.8	7.0	2.9%	< 0.20	102%	50%	140%	85%	50%	140%	78%	50%	140%
O. Reg. 153(511) - PHCs F1 - F4 (with PAHs) (Wat	ter)													
F1 (C6 to C10)	6398077	•	< 25	< 25	0.0%	< 25	106%	60%	140%	81%	60%	140%	81%	60%	140%
F2 (C10 to C16)	6409934 64099	934	< 100	< 100	0.0%	< 100	94%	60%	140%	73%	60%	140%	67%	60%	140%
F3 (C16 to C34)	6409934 64099	934	< 100	< 100	0.0%	< 100	96%	60%	140%	82%	60%	140%	92%	60%	140%
F4 (C34 to C50)	6409934 64099	934	< 100	< 100	0.0%	< 100	84%	60%	140%	76%	60%	140%	78%	60%	140%

Method Summary

CLIENT NAME: GOLDER ASSOCIATES LTD

AGAT WORK ORDER: 15T957963

PROJECT: 1525987

ATTENTION TO: Keith Holmes

SAMPLING SITE: SAMPLED BY:T L

SAMPLING SITE:		SAMPLED BY: I	L
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Trace Organics Analysis	·		•
Naphthalene	ORG-91-5105	EPA SW-846 3510 & 8270	GC/MS
Acenaphthylene	ORG-91-5105	EPA SW-846 3510 & 8270	GC/MS
Acenaphthene	ORG-91-5105	EPA SW-846 3510 & 8270	GC/MS
Fluorene	ORG-91-5105	EPA SW-846 3510 & 8270	GC/MS
Phenanthrene	ORG-91-5105	EPA SW-846 3510 & 8270	GC/MS
Anthracene	ORG-91-5105	EPA SW-846 3510 & 8270	GC/MS
Fluoranthene	ORG-91-5105	EPA SW-846 3510 & 8270	GC/MS
Pyrene	ORG-91-5105	EPA SW-846 3510 & 8270	GC/MS
Benz(a)anthracene	ORG-91-5105	EPA SW-846 3510 & 8270	GC/MS
Chrysene	ORG-91-5105	EPA SW-846 3510 & 8270	GC/MS
Benzo(b)fluoranthene	ORG-91-5105	EPA SW-846 3510 & 8270	GC/MS
Benzo(k)fluoranthene	ORG-91-5105	EPA SW-846 3510 & 8270	GC/MS
Benzo(a)pyrene	ORG-91-5105	EPA SW-846 3510 & 8270	GC/MS
Indeno(1,2,3-cd)pyrene	ORG-91-5105	EPA SW-846 3510 & 8270	GC/MS
Dibenz(a,h)anthracene	ORG-91-5105	EPA SW-846 3510 & 8270	GC/MS
Benzo(g,h,i)perylene	ORG-91-5105	EPA SW-846 3510 & 8270	GC/MS
2-and 1-methyl Naphthalene	ORG-91-5105	EPA SW-846 3510 & 8270	GC/MS
Chrysene-d12	ORG-91-5105	EPA SW-846 3510 & 8270	GC/MS
F1 (C6 to C10)	VOL-91-5010	MOE PHC E3421	(P&T)GC/FID
F1 (C6 to C10) minus BTEX	VOL-91-5010	MOE PHC E3421	(P&T)GC/FID
F2 (C10 to C16)	VOL-91-5010	MOE PHC E3421	GC/FID
F2 (C10 to C16) minus Naphthalene	VOL-91-5010	MOE PHC E3421	GC/FID
F3 (C16 to C34)	VOL-91-5010	MOE PHC E3421	GC/FID
F3 (C16 to C34) minus PAHs	VOL-91-5010	MOE PHC E3421	GC/FID
F4 (C34 to C50)	VOL -91- 5010	MOE PHC- E3421	GC/FID
Gravimetric Heavy Hydrocarbons	VOL-91-5010	MOE PHC E3421	BALANCE
Terphenyl	VOL-91-5010		GC/FID
Dichlorodifluoromethane	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Vinyl Chloride	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Bromomethane	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Trichlorofluoromethane	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Acetone	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
1,1-Dichloroethylene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Methylene Chloride	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
trans- 1,2-Dichloroethylene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Methyl tert-butyl ether	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
1,1-Dichloroethane	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Methyl Ethyl Ketone	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
cis- 1,2-Dichloroethylene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Chloroform	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
1,2-Dichloroethane	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
1,1,1-Trichloroethane	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Carbon Tetrachloride	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Benzene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
1,2-Dichloropropane	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Trichloroethylene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Bromodichloromethane	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Methyl Isobutyl Ketone	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
1,1,2-Trichloroethane	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
			• •

Method Summary

CLIENT NAME: GOLDER ASSOCIATES LTD AGAT WORK ORDER: 15T957963
PROJECT: 1525987 ATTENTION TO: Keith Holmes

SAMPLING SITE: SAMPLED BY:T L

PARAMETER	
Dibromochloromethane	≀UE
Ethylene Dibromide	
Tetrachloroethylene VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS 1,1,1,2-Tetrachloroethane VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Chlorobenzene VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Ethylbenzene VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Ethylbenzene VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS m & p-Xylene VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Styrene VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS VXylene Mixture VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS VXylene Mixture VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS VXylene Mixture VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS VXylene Mixture VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS VXylene Mixture VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS VXylene Mixture VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS VXylene Mixture VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS VXylene Mixture VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS VXylene Mixture VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS VXylene Mixture VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS VXylene Mixture VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS VXylene Mixture VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS VXylene Mixture VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS VXylene Mixture VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS VXylene Mixture VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS VXylene Mixture VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS VXylene Mixture VOL-91-5001 EPA	
1,1,1,2-Tetrachloroethane VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Chlorobenzene VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Ethylbenzene VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS m & p-Xylene VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Bromoform VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Styrene VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS 1,1,2,2-Tetrachloroethane VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS o-Xylene VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS 1,3-Dichlorobenzene VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS 1,2-Dichlorobenzene VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS 1,2-Dichlorobenzene VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS 1,3-Dichlorobenzene VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS 1,3-Dichlorobenzene VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Nylene Mixture VOL-91-5001 EPA SW-846 503	
Chlorobenzene VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Ethylbenzene VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS m & p-Xylene VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Bromoform VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Styrene VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Styrene VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Styrene VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS VOL-91-5001 EPA SW-846 5030 & 8260 (P&T	
Ethylbenzene VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS m & pXylene VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Bromoform VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Styrene VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS 1,1,2,2-Tetrachloroethane VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS 0-Xylene VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS 1,3-Dichlorobenzene VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS 1,4-Dichlorobenzene VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS 1,2-Dichlorobenzene VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS 1,2-Dichloropropene VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Xylene Mixture VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Xylene Mixture VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS N-Hexane VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Toluene-d8 VOL-91-5001 EPA SW-846 5030 & 8260 <t< td=""><td></td></t<>	
m & p-Xylene VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Bromnform VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Styrene VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS 1,1,2,2-Tetrachloroethane VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS 0-Xylene VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS 1,3-Dichlorobenzene VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS 1,2-Dichlorobenzene VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS 1,2-Dichlorobenzene VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS 1,3-Dichloropropene VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Xylene Mixture VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Toluene-d8 VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS 1-Bromofluorobenzene VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS 1-Clorodifluoromethane VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Vinyl Chloride VOL-91-5001 EPA SW-846 5030 &	
Bromoform	
Styrene VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS 1,1,2,2-Tetrachloroethane VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS o-Xylene VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS 1,3-Dichlorobenzene VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS 1,4-Dichlorobenzene VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS 1,2-Dichlorobenzene VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS 1,3-Dichloropropene VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Nylene Mixture VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS n-Hexane VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Toluene-d8 VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS 4-Bromofluorobenzene VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Dichlorodifluoromethane VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Bromomethane VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Bromomethane VOL-91-5001 EPA SW-846 5030 & 8	
1,1,2,2-Tetrachloroethane VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS o-Xylene VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS 1,3-Dichlorobenzene VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS 1,4-Dichlorobenzene VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS 1,2-Dichloropropene VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS 1,3-Dichloropropene VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Xylene Mixture VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Toluene-d8 VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Toluene-d8 VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS 4-Bromofluorobenzene VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Dichlorodifluoromethane VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Bromomethane VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Brinchlorofluoromethane VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Trichlorofluoromethane VOL-91-5001	
o-Xylene VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS 1,3-Dichlorobenzene VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS 1,4-Dichlorobenzene VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS 1,2-Dichlorobenzene VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS 1,3-Dichloropropene VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Xylene Mixture VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS N-Hexane VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Toluene-d8 VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Heronfluorobenzene VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Dichlorodfluoromethane VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Vinyl Chloride VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Bromomethane VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Trichlorofluoromethane VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Acetone VOL-91-5001 EPA SW-846 5030 & 8260<	
1,3-Dichlorobenzene VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS 1,4-Dichlorobenzene VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS 1,2-Dichlorobenzene VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS 1,3-Dichloropropene VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Xylene Mixture VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS n-Hexane VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Toluene-d8 VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS 4-Bromofluorobenzene VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Dichlorodifluoromethane VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Vinyl Chloride VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Bromomethane VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Trichlorofluoromethane VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Acetone VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Acetone VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Methylene Chloride VOL-	
1,4-Dichlorobenzene VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS 1,2-Dichlorobenzene VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS 1,3-Dichloropropene VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Xylene Mixture VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS n-Hexane VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Toluene-d8 VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS 4-Bromofluorobenzene VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Dichlorodifluoromethane VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Vinyl Chloride VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Bromomethane VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Trichlorofluoromethane VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Acetone VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Acetone VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Methylene Chloride VOL-91-5001 EPA SW-846 5030 & 8260	
1,2-Dichlorobenzene VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS 1,3-Dichloropropene VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Xylene Mixture VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS n-Hexane VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Toluene-d8 VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS 4-Bromofluorobenzene VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Dichlorodifluoromethane VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Vinyl Chloride VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Bromomethane VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Trichlorofluoromethane VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Acetone VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS 1,1-Dichloroethylene VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Methylene Chloride VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Methyl tert-butyl ether VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS 1,1-Dichloroethane <td></td>	
1,3-Dichloropropene VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Xylene Mixture VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS n-Hexane VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Toluene-d8 VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS 4-Bromofluorobenzene VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Dichlorodifluoromethane VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Vinyl Chloride VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Bromomethane VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Bromomethane VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Acetone VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Acetone VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS 1,1-Dichloroethylene VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Methylene Chloride VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Methyl tert-butyl ether VOL-91-5001 EPA SW-846 5030 & 8260	
Xylene Mixture VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS n-Hexane VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Toluene-d8 VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS 4-Bromofluorobenzene VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Dichlorodifluoromethane VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Vinyl Chloride VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Bromomethane VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Bromomethane VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Acetone VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS 1,1-Dichloroethylene VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Methylene Chloride VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Methyl tert-butyl ether VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS 1,1-Dichloroethane VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS 1,1-Dichloroethane VOL-91-5001 EPA SW-846 5030 &	
n-Hexane VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Toluene-d8 VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS 4-Bromofluorobenzene VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Dichlorodifluoromethane VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Vinyl Chloride VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Bromomethane VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Trichlorofluoromethane VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Acetone VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS 1,1-Dichloroethylene VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Methylene Chloride VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Methyl tert-butyl ether VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Methyl tert-butyl ether VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Methyl tert-butyl ether VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Methyl Ethyl Ketone VOL-91-5001	
n-Hexane VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Toluene-d8 VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS 4-Bromofluorobenzene VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Dichlorodifluoromethane VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Vinyl Chloride VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Bromomethane VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Trichlorofluoromethane VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Acetone VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS 1,1-Dichloroethylene VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Methylene Chloride VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Methyl tert-butyl ether VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS 1,1-Dichloroethylene VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Methyl tert-butyl ether VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS 1,1-Dichloroethylene VOL-91-5001	
4-Bromofluorobenzene VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Dichlorodifluoromethane VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Vinyl Chloride VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Bromomethane VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Trichlorofluoromethane VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Acetone VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS 1,1-Dichloroethylene VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Methylene Chloride VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS trans- 1,2-Dichloroethylene VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Methyl tert-butyl ether VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS 1,1-Dichloroethane VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Methyl Ethyl Ketone VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS cis- 1,2-Dichloroethylene VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Chloroform VOL-9	
Dichlorodiffluoromethane VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Vinyl Chloride VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Bromomethane VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Trichlorofluoromethane VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Acetone VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS 1,1-Dichloroethylene VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Methylene Chloride VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Methyl ert-butyl ether VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Methyl tert-butyl ether VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS 1,1-Dichloroethane VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Methyl Ethyl Ketone VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS cis- 1,2-Dichloroethylene VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Chloroform VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS 1,1,1-Trichloroethane VOL-91-5	
Vinyl Chloride VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Bromomethane VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Trichlorofluoromethane VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Acetone VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS 1,1-Dichloroethylene VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Methylene Chloride VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Methylene Chloride VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Methyl tert-butyl ether VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS 1,1-Dichloroethane VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Methyl Ethyl Ketone VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Cis- 1,2-Dichloroethylene VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Chloroform VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Chlorotethane VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS 1,1-Trichloroethane VOL-91-5001	
Bromomethane VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Trichlorofluoromethane VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Acetone VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS 1,1-Dichloroethylene VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Methylene Chloride VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Methylene Chloroethylene VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Methyl tert-butyl ether VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS 1,1-Dichloroethane VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Methyl Ethyl Ketone VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Cis- 1,2-Dichloroethylene VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Chloroform VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS 1,2-Dichloroethane VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS 1,1,1-Trichloroethane VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Carbon Tetrachloride VOL-91	
Trichlorofluoromethane VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Acetone VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS 1,1-Dichloroethylene VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Methylene Chloride VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS trans- 1,2-Dichloroethylene VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Methyl tert-butyl ether VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS 1,1-Dichloroethane VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Methyl Ethyl Ketone VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS cis- 1,2-Dichloroethylene VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Chloroform VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS 1,2-Dichloroethane VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS 1,1,1-Trichloroethane VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Carbon Tetrachloride VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS	
Acetone VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS 1,1-Dichloroethylene VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Methylene Chloride VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS trans- 1,2-Dichloroethylene VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Methyl tert-butyl ether VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS 1,1-Dichloroethane VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Methyl Ethyl Ketone VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS cis- 1,2-Dichloroethylene VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Chloroform VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS 1,2-Dichloroethane VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS 1,1,1-Trichloroethane VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Carbon Tetrachloride VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS	
1,1-Dichloroethylene VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Methylene Chloride VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS trans- 1,2-Dichloroethylene VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Methyl tert-butyl ether VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS 1,1-Dichloroethane VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Methyl Ethyl Ketone VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS cis- 1,2-Dichloroethylene VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Chloroform VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS 1,2-Dichloroethane VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS 1,1,1-Trichloroethane VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Carbon Tetrachloride VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS	
Methylene Chloride VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS trans- 1,2-Dichloroethylene VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Methyl tert-butyl ether VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS 1,1-Dichloroethane VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Methyl Ethyl Ketone VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS cis- 1,2-Dichloroethylene VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Chloroform VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS 1,2-Dichloroethane VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS 1,1,1-Trichloroethane VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Carbon Tetrachloride VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS	
Methylene Chloride VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS trans- 1,2-Dichloroethylene VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Methyl tert-butyl ether VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS 1,1-Dichloroethane VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Methyl Ethyl Ketone VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS cis- 1,2-Dichloroethylene VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Chloroform VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS 1,2-Dichloroethane VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS 1,1,1-Trichloroethane VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Carbon Tetrachloride VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS	
trans- 1,2-Dichloroethylene VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Methyl tert-butyl ether VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS 1,1-Dichloroethane VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Methyl Ethyl Ketone VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS cis- 1,2-Dichloroethylene VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Chloroform VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS 1,2-Dichloroethane VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS 1,1,1-Trichloroethane VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Carbon Tetrachloride VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS	
Methyl tert-butyl ether VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS 1,1-Dichloroethane VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Methyl Ethyl Ketone VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS cis- 1,2-Dichloroethylene VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Chloroform VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS 1,2-Dichloroethane VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS 1,1,1-Trichloroethane VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Carbon Tetrachloride VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS	
1,1-Dichloroethane VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Methyl Ethyl Ketone VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS cis- 1,2-Dichloroethylene VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Chloroform VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS 1,2-Dichloroethane VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS 1,1,1-Trichloroethane VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Carbon Tetrachloride VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS	
cis- 1,2-Dichloroethylene VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Chloroform VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS 1,2-Dichloroethane VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS 1,1,1-Trichloroethane VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Carbon Tetrachloride VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS	
cis- 1,2-Dichloroethylene VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Chloroform VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS 1,2-Dichloroethane VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS 1,1,1-Trichloroethane VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Carbon Tetrachloride VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS	
1,2-Dichloroethane VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS 1,1,1-Trichloroethane VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Carbon Tetrachloride VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS	
1,2-Dichloroethane VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS 1,1,1-Trichloroethane VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS Carbon Tetrachloride VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS	
Carbon Tetrachloride VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS	
Carbon Tetrachloride VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS	
1,2-Dichloropropane VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS	
Trichloroethylene VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS	
Bromodichloromethane VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS	
Methyl Isobutyl Ketone VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS	
1,1,2-Trichloroethane VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS	
Toluene VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS	
Dibromochloromethane VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS	
Ethylene Dibromide VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS	
Tetrachloroethylene VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS	
1,1,1,2-Tetrachloroethane VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS	
Chlorobenzene VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS	
Ethylbenzene VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS	
m & p-Xylene VOL-91-5001 EPA SW-846 5030 & 8260 (P&T)GC/MS	

Method Summary

CLIENT NAME: GOLDER ASSOCIATES LTD

AGAT WORK ORDER: 15T957963

PROJECT: 1525987

ATTENTION TO: Keith Holmes

SAMPLING SITE: SAMPLED BY:T L

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Bromoform	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Styrene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
1,1,2,2-Tetrachloroethane	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
o-Xylene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
1,3-Dichlorobenzene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
1,4-Dichlorobenzene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
1,2-Dichlorobenzene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
1,3-Dichloropropene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Xylene Mixture	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
n-Hexane	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Toluene-d8	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
4-Bromofluorobenzene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS

Date 77.15 Time	A Section	Two bland 3	-		15-1 27/03/15 S GW	Sample Identification Sampled Sampled Sampled Sampled Containers Matrix	#: Please note: If quotation numb formation: Account	Project Information: 1525 987 Project: 1525 987 Site Location: 1500 Lyon	Chain of Custody Record If this is a Drinking water sample, please use Drinking v Report Information: Company: Contact: Address: Phone: Reports to be sent to: 1. Email: Laboratories Regula Regula Pax: Fax: Fax: Fax: Contact: Contact: Soil Textur Coors Contact: Contact: Fax: Fax: Contact: Co	
16:16 Service of the state of t	Samples Received By (Print June and Sign)	(not having)	an serato	correct date	76/27, 15	Metal Hydrid Client ORPs: Cre Tota Nutrie No ₃ Volati	Sample Matrix Legend B Biota GW Ground Water O Oil P Paint S Soil SD Sediment SW Surface Water and Inorganics	Is this submission for a Report Guideline on Record of Site Condition? Certificate of Analysis Yes No Yes No	Laboratories Sa35 Coopers Avenue Mississauga, Ontario L4Z 1Y2 Ph: 905.712.5100 Fax: 905.712.5100 Fax: 905.712.5100 Fax: 905.712.5102 www.agatlabs.com webearth.agatlabs.com webearth.aga	
7/5 No. 1000649						PCBs Organ	phenols pochlorine Pesticides Metals/Inorganics Use	Please provide prior notification for rush TAT *TAT is exclusive of weekends and statutory holidays	Work Order #: 15 T 95 T	Laboratory Use Only

Pink Copy - Client | Yellow Copy - AGAT | White Copy - AGAT