

Hydrogeological Assessment for 1740-1760 St Laurent Blvd., Ottawa, Ontario site

Client:

11421247 Canada Inc. 100-768 Boulevard St. Joseph Gatineau, Quebec J8Y 4B8 **Attention:** Mr. Carmine Zayoun

Type of Document: Final Report

Project Number: OTT-00260579-B0

Prepared By:

EXP Services Inc. 2650 Queensview Drive, Suite 100 Ottawa, ON, K2B 8H6 t: 613.688.1899 f: 613 225-7337

Date Submitted: 2023-10-19

i

1740-1760 St Laurent Blvd., Ottawa, Ontario Hydrogeological Investigation OTT-00260579-B0 October 19, 2023

1 Table of Contents

1	Introduction.		1
	1.1	Project Description	1
	1.2	Project Objectives	1
	1.3	Scope of Work	1
	1.4	Review of Previous Reports	2
2	Regional Geo	logical Setting	3
	2.1	Regional Setting	
		2.1.1 Regional Physiography	3
		2.1.2 Surficial and Bedrock Geology	3
		2.1.3 Hydrogeology	3
		2.1.4 MECP Water Well Records	
	2.2	Site Setting	4
		2.2.1 Site Topography	4
		2.2.2 Local Surface Water Features	4
		2.2.3 Local Geology and Hydrogeology	4
3	Groundwater	Conditions	6
4	Hydraulic Cor	nductivity Test	7
5	Preliminary C	Construction Plan and Potential Groundwater Issues	8
6	Dewatering A	Assessment	9
	6.1	Dewatering Flow Rate Estimate and Zone of Influence	9
	6.2	Cooper-Jacob's Radius of Influence	
	6.3	Stormwater	
	6.4	Results of Dewatering Rate Estimates	11
		6.4.1 Construction Dewatering Rate Estimate	
7	Potential Lon	g-term Foundation Drainage	13
8	Dewatering P	Permit	14
9	Groundwater	Quality	15
10	Groundwater	[•] Discharge Management Plan	16
11	Potential of I	mpact from Anticipated Dewatering	18
	11.1	Short-Term Construction Dewatering	
	11.2	Long-Term Construction Dewatering	
	11.3	Contaminant Migration	

	11.4	Well Decommissioning
12	Conclusions a	nd Recommendations20
13	Limitations	
14	References	23

List of Figures

- Figure 1 Site Location Plan Figure 2 – Surficial Geology Figure 3 – Bedrock Geology Figure 4 – MECP Water Well Records Map Figure 5 – Borehole Location Plan Figure 6 – Geological Cross-Sections
- Figure 7 Proposed Site Development Plan
- Figure 8 Underground Parking Plan

List of Tables

Table 2-1 Summary of MECP Water Well Record Search	. 4
Table 2-2 Site Stratigraphy	
Table 3-1 Summary of Groundwater Elevations	. 6
Table 4-1 Summary of Estimated Hydraulic Conductivity	. 7
Table 6-1 Dimensions for Dewatering Assessment	. 9
Table 6-2 Summary of Construction Dewatering Rates	11
Table 7-1 Summary of Long-Term Foundation Drainage Rates	13
Table 10-1 Groundwater Discharge Management Plan	16

List of Appendices

- Appendix A MECP WWR Summary Table
- Appendix B Borehole Logs
- Appendix C SWRT Results
- Appendix D Laboratory Certificates of Analysis
- Appendix E Dewatering and Drainage Flow Rate Calculations

1 Introduction

1.1 **Project Description**

EXP Services Inc. (EXP) was retained by 11421247 Canada Inc. (the client) to prepare a Hydrogeological Assessment for 1740-1760 St Laurent Blvd., Ottawa, Ontario site Report associated with the proposed development located at 1740-1760 Saint Laurent Boulevard, Ottawa, Ontario (hereinafter referred to as the 'Site'). EXP understands that 11421247 Canada Inc. is completing this work in support of site re-development at 1740-1760 St. Lauret Boulevard in Ottawa, Ontario. EXP understands that a hydrogeological study is required to address comment B15 of the City of Ottawa's 1st Round of Technical Comments on the Site Plan Application (SPA).

It is our understanding that the Site is currently occupied by four (4) structures (St. Hubert Restaurant, 168 Sushi and Petro-Canada service station (two buildings) which will be demolished as part of the proposed development. The proposed development will consist of four (4) towers that will include two (2) 20 storey (Towers 1 and 3) and two (2) 13 storey (Towers 2 and 4) high-rise residential towers. The Towers 1 and 2 will include three-levels of shared underground parking garage with the lowest slab at approximately 9.75 m [(3 m x 3 levels) + 0.75 m for foundation subgrade) depth below the ground floor level based on preliminary design plan communicated to EXP. Towers 3 and 4 include two (2) levels (P2 level) of shared underground parking structure with lowest slab at approximately 6.75 mbgs. The Site location plan is shown in Figure 1. The four (4) towers will be constructed in two (2) phases, Towers 1 and 2 will be constructed first then Towers 3 and 4.

EXP conducted a Preliminary Geotechnical Investigation and Environmental Site Assessments (ESA) and this investigation is required to address City of Ottawa planning department comments. The pertinent information gathered from the noted investigations are utilized for this report.

1.2 Project Objectives

The main objectives of this Hydrogeological Assessment for 1740-1760 St Laurent Blvd., Ottawa, Ontario site are as follows:

- Establish the local hydrogeological setting within the Site;
- Assess preliminary construction dewatering flow rates and potential impacts; and
- Prepare a Hydrogeological Investigation report to support a SPA and construction dewatering permitting requirement.

1.3 Scope of Work

To achieve the investigation objectives, EXP has completed the following scope of work:

- Reviewed available geological and hydrogeological information for the Site;
- Conducted Single Well Response Tests (SWRT) at accessible and functioning monitoring wells to evaluate hydraulic properties of the saturated stratigraphic units at the Site.
- Collected one (1) groundwater sample for laboratory testing for comparison to the City of Ottawa sanitary and storm Sewer By-Law discharge limits;
- Completed one (1) round of groundwater level measurements;
- Evaluated the information collected during the field investigation program, including borehole geological information, SWRT results, Water Well Records, groundwater level measurements and groundwater water quality;
- Estimated construction dewatering flow rates and long-term foundation drainage rates.
- Assessed potential impacts and recommend mitigation measures; and
- Prepared a Hydrogeological Assessment for 1740-1760 St Laurent Blvd., Ottawa, Ontario site

*ехр.

*ехр.

This Hydrogeological Assessment for 1740-1760 St Laurent Blvd., Ottawa, Ontario site report was prepared in accordance with the Ontario Water Resources Act, Ontario Regulation 387/04 and the City of Ottawa Hydrogeological and Terrain Analysis guidelines (March 2021).

1.4 Review of Previous Reports

The following reports were reviewed as part of this Hydrogeological Assessment for 1740-1760 St Laurent Blvd., Ottawa, Ontario site:

2001 and 2002 - Phase I and Phase II ESA reports completed by AMEC Earth & Environmental Ltd. (AMEC).

- Phase I ESAs were conducted for the 1740 and 1760 St Laurent site & 1757 Russell Road, Ottawa, in November 2001 by AMEC for M.R. Denison Associates Ltd.
- In January 2002, a Phase II ESA was completed by AMEC for the 1740 and 1760 St Laurent site and 1757 Russell St. Ottawa. Nine boreholes were drilled at the gas station property and three monitoring wells were installed. As part of the work, groundwater samples were collected for analysis of benzene, toluene, ethylbenzene, xylenes (BTEX), total petroleum hydrocarbons (TPH) (gas/diesel), TPH (heavy oil, volatile organic compounds (VOC), and metals.
- Low level PHC concentrations were identified in the groundwater from the monitoring wells near the gas station, however all concentrations were less than their respective Table B criteria at the time.

2009 – Phase II ESA by Terrapex Inc.

- Ten boreholes were advanced five of which were completed as monitoring wells. One soil sample was collected at each borehole and one groundwater sample was collected from each monitoring well. All collected soil and groundwater samples were analyzed for BTEX and PHC and had concentrations of the analyzed parameters that were less than the Ontario Ministry of Environment, Conservation and Parks (MECP) Table 3 site condition standards (SCS) for commercial land use and fine-grained soil.
- No liquid phase petroleum product or free product was observed during drilling program.

2020 – Phase II by Terrapex Inc.

- Terrapex drilled eight boreholes in the vicinity of the gas station infrastructure for investigation of site soil conditions at 1740 St. Laurent Boulevard site. Soil samples were analyzed for BTEX and PHC.
- Collected groundwater samples from all the existing monitoring wells for analysis of BTEX and PHC.
- Based on the analysis of soil and groundwater samples, Terrapex concluded that concentrations of any of the analyzed parameters did not exceed any of the then MECP (2011) Table 3 SCS for the submitted samples.

2020 – Phase One ESA and Phase Two ESA by EXP

- A Phase One ESA was completed by EXP in December 2020 to update previous studies.
- A Phase Two ESA completed by EXP in October 2020 during which four boreholes were drilled
- Three soil samples and three groundwater samples were submitted for analysis of BTEX and PHC, metals and VOC.
- It was concluded in the report that the areas of the Site south and west of the gas station did not show any impacts from the operation of the gas station.

2 Regional Geological Setting

2.1 Regional Setting

2.1.1 Regional Physiography

The Site is located within the physiographic region identified as Ottawa Valley Clay Plains. Another physiographic region identified as Till Plains (drumlinized) borders just the west of the Site.

2.1.2 Surficial and Bedrock Geology

The regional scale surficial geology which are identified as glacial till at the Site and glaciomarine and marine deposits (Ontario Geological Survey, 2011) south of the Site as mapped. The till is composed of undifferentiated, predominantly sandy silt to silt matrix, commonly rich in clasts, often high in total matrix carbonate content. The marine deposit is composed of silt and clay, originating as basin and quiet water deposits most likely in a glacial lake environment.

Regional bedrock geology, as identified, is composed of shale, limestone, dolostone and siltstone from Carlsbad Formation from middle to upper Ordovician time, which at depth is underlain by granite and metamorphic rocks of the Precambrian-aged Canadian Shield.

Surficial Geology and Bedrock Geology are shown in Figures 2 and 3, respectively.

2.1.3 Hydrogeology

On a very large-scale hydrogeological region mapping by Natural Resources Canada (2007) the area is located within the Saint Lawrence Lowlands area. The bedrock in the area forms the major water supply aquifer. The bedrock in the area is considered the major aquifer and there is potential of good hydraulic connectivity with the Ottawa River.

2.1.4 MECP Water Well Records

Water Well Records (WWRs) from the database maintained by the MECP were reviewed to determine the number of water wells within a 500 m search distance from the Site perimeter. The locations of the MECP WWR are shown in Figure 4. A summary of the WWR is included in Appendix A.

The MECP WWR database search indicated that a total of twenty-three (23) water wells are located within a distance of 500 m from the Site perimeter. This included five (5) wells recorded as drinking water supply wells. The remaining (18) records are for non-water supply wells that includes test, monitoring, observation and abandoned wells, and wells of unidentified usage and of unknown use.

The reported depth to groundwater for all well recorded as water supply wells vary between (12.2) and (44.2) meters below ground surface (mbgs). The noted groundwater or potentiometric surface based on recorded information from (56.8) and (36.2) ranges between (69.0) masl to (80.4) masl which after urbanization may be higher as the use of private water supply wells stopped over the years when municipal services became available.

Well Usage (as recorded)	Number of Wells	Well Construction Period	Ground Elevation (masl)	Groundwater Elevation (masl)	Water Found Depth (mbgs)	Water Found Elevation (masl)	Well Completion Material	
Water Supply	5	1948-1961	Min – 69.0 Max – 80.4	Min – 68.1 Max – 76.8	Min – 12.2 Max – 44.2	Min –36.2 Max –56.8	All the wells are completed in bedrock	
Non-water supply wells (test wells, observation wells, monitoring wells, abandoned wells and unspecified wells)	18	2006-2016	No groundwater elevation information available	No groundwater elevation information available	No information available	No information available	No information available	

Table 2-1 Summary of MECP Water Well Record Search

The pumping test rates for the water supply wells varied between 9.1 liters/minute (LPM) to 36.4 LPM sustainable through 0.5-hour to 1-hour duration.

Some of the location information as recorded in the database are not correct or accurate (reliability code of 9 or higher identified as UTM RC in the water well report, lower the value higher the accuracy of the recorded well locations), however the reviewed MECP water well information provides a general understanding of the hydrogeological conditions within the searched area.

Since the area is municipally serviced and these water wells were installed in the between 1940s to 1960s, it is unlikely that the noted water supply wells are still active.

2.2 Site Setting

2.2.1 Site Topography

The Site is in an urbanized land use setting. The topography of the site gradually slopes down in a south to north direction and in an easterly direction towards St. Laurent Boulevard. Based on 2020 borehole ground surface elevations, the ground surface in the west end of the site slopes down from south to north from 72.37 masl to 71.07 masl and slopes down towards the east to St. Laurent Boulevard to 69.35 masl.

2.2.2 Local Surface Water Features

The Site is located within the Ottawa River West sub watershed. No surface water features exist on the Site. The nearest surface water feature is Green Creek, located approximately 1.7 km northeast of the Site boundary. Based on the MECP Website, the Site is not within the flood plain or within a regulated area.

2.2.3 Local Geology and Hydrogeology

A geotechnical investigation was completed at the site in August of 2020 and ten (10) boreholes were drilled. The following is a summary of site geology and hydrogeology based on review of geological mapping information and MECP water well records and borehole logs of wells drilled during site investigations. Figure 5 shows the borehole location plan and Figure 6 shows generalized cross-sections showing the stratigraphy of the Site.

Table 2-2 Site Stratigraphy

Geological Material	Soil Material	Top and Bottom Surface Elevation (masl)
Anthropogenic Material	Fill – overlain by pavement, silty sand with gravel to a mixture of silty sand, clayey silt and silty clay with gravel	66.1 to 70.6
	Sand Layer contains some silt and clay	68.3 to 68.9
Native	Silty Clay	64.9 to 70.6
Overburden	Sand, silt and clay	66.9 to 67.7
	Glacial Till contains varying amounts of gravel, sand, silt and clay	63.4 to 69.8
Bedrock	Shale of Carlsbad or Billings Formation	Top of bedrock encountered between 63.4 masl to 65.5 masl

2.2.3.1 Fill

Fill is encountered at the surface and extends to depths of 0.8 m to 4.5 mbgs (70.6 masl to 66.1 masl) and it is composed of silty sand with gravel to a mixture of silty sand, clayey silt and silty clay with gravel.

2.2.3.2 Sand Layer

A native sand layer was encountered at two borehole locations between 1.4 mbgs to 2.0 mbgs (68.9 masl to 68.3 mal). The sand contains some silt and clay and is loose.

2.2.3.3 Silty Clay

Native silty clay soil was encountered at seven (7) borehole locations. This soil type was encountered at 0.2 mbgs and extended to 4.5 mbgs (70.6 masl to 64.9 masl). This soil layer is brown moist to wet and very stiff to stiff and does not have any staining or odour.

2.2.3.4 Sand, Silt and Clay

Beneath the silty clay layer at BH MW19-04, a thin layer of sand, silt and clay was encountered between 2.3 mbgs to 3.1 mbgs (67.7 masl to 66.9 masl). This mixed soil layer brown, wet and loose and wet and does not show staining or have an odour.

2.2.3.5 Glacial Till

The glacial till was encountered at all borehole locations between depths of 1.6 mbgs to 4.5 mbgs (69.8 masl to 64.9 masl) and extends to 5.3 mbgs to 7.0 mbgs (65.5 masl to 63.4 masl). The till is composed of various amounts of gravel, sand, silt and clay with soil cementing matrix ranging from silty sand with gravel to clayey sand to silty clay. The SPT-N values of the till ranged between 2 to 51 indicating a very loose to very dense, soft to hard consistency, moist to wet.

2.2.3.6 Shale Bedrock

The shale bedrock identified as Carlsbad Formation was inferred based on auger and soil sampler refusal encountered at all the borehole locations. The top of the inferred bedrock was confirmed by coring (0.1 m to 1.4 m length) into the bedrock at all locations.

3 Groundwater Conditions

Groundwater as recorded at the Site is summarized below.

BH ID	Ground Surface Elevation (masl)	Groundwater Elevation 03-Sep-20	Groundwater Elevation 26-Sep-23
MW 19-01	70.4	68.9	NA
MW 19-02	70.3	68.2	67.7
MW 19-03	70.3	67.9	67.9
MW 19-04	70.0	68.8	NA
BH 20-05(shallow)	72.4	69.3	NA
BH 20-05(Deep)	72.4	69.4	NA
BH 20-10	69.9	68.1	NA
BH 20-11	70.9	69.0	NA
BH 20-13	71.1	68.5	NA
BH 20-14	71.9	70.3	NA

Table 3-1 Summary of Groundwater Elevations

Note: NA – Not Accessible or Not Available.

Elevations are rounded off to the nearest decimal digits.

The above is a summary of two snapshots (3-year interval) of groundwater levels measured at the Site, however they appear to be consistent. The minimum as recorded was 68.2 masl and maximum is 70.3 masl. During a recent site visit on September 26, 2023, only two monitoring wells were accessible. The remaining wells were not accessible or could not be located.

4 Hydraulic Conductivity Test

Hydraulic conductivity or single well response testing (SWRT) was conducted at MW19-02, MW19-03 and in a well without Well ID. The well is located near the vicinity of previously drilled BH20-10. Since the geology and well construction detail were not available for the well without any ID, the results of the test performed at this well will not be used.

Falling head and rising head tests were performed. In falling head test a solid slug of known volume is inserted or a known volume of distilled water is poured into the well to raise the water level temporarily. The well recovery was monitored using electronic dataloggers and manual water level measurements. In the rising head test a known volume of water is removed from the well and the well recovery is monitored.

Collected data was analyzed using AqteSolve Pro V 4.5 and Hvorslev (1951) solution for confined aquifer condition. The results are included in Appendix – C.

The following is a summary of the results of the SWRT performed.

Table 4-1 Summary of Estimated Hydraulic Conductivity

Test Well ID	Rising Head Test Estimated Hydraulic Conductivity (K) in m/sec, Hvorslev	Falling Head Test Estimated Hydraulic Conductivity (K) in m/sec, Hvorslev
MW19-02	2.98 x 10 ⁻⁶	4.95 x 10 ⁻⁶
MW19-03	6.25 x 10 ⁻⁶	6.25 x 10⁻ ⁶
Geometric Mean K =	4.90 x 10 ⁻⁶	

The estimated hydraulic conductivity values are within the range of values estimated for the fractured bedrock material. Based on the estimated range of K values, three dewatering scenarios will be evaluated considering low-end, high-end and geometric mean K values for the Site.

5 Preliminary Construction Plan and Potential Groundwater Issues

It is our understanding that Towers 1 and 2 will have 3 levels and Towers 3 and 4 will have 2 levels of underground parking. The excavation will extend to the underside of foundations for the underground parking structures. The elevations will be 9.75 mbgs for the P3 level and 6.75 mbgs for the P2 level, including 0.75 m under the underside for placement of subbase grade. Considering the lowest ground surface elevation of 69.8 masl on the Site was measured at BH20-10, the excavations for P3 and P2 will extend to 63.1 masl and 60.1 masl, respectively. The maximum groundwater elevation as measured on September 26, 2023 at accessible monitoring wells was 67.8 masl. Considering the groundwater and required excavation elevations, drawdown in the range of 5 to 8 m from initial water levels will be required and construction dewatering and long-term foundation drainage may be required. Preliminary site plan is shown in Figures 7 and 8.

6 Dewatering Assessment

The dimensions of the proposed structure to support the dewatering assessment are summarized in Table 4-1 below. The foundation of the P3 and P2 parking structures will extend into the groundwater and into the fractured bedrock aquifer which is identified as confined at the site.

Input Parameter	Input Parameters	Units	Notes
Perimeter of excavations	295 m – Towers 1 &2 355 m – Towers 3&4	-	Total areas of excavations – 4,580 sq m – Towers 1 & 2 7,450 sq m – Towers 3 & 4
Ground Elevation	69.86	masl	Lowest ground elevation (BH20-10) based on the ground surface elevations surveyed at drilled borehole locations
Deepest Foundation Excavation Elevation	P3 – 60.1 masl P2 – 63.1 masl	masl	Based on the lowest ground surface elevation 69.86 masl and includes 0.75 below the assumed underside of the foundation for placement of foundation subbase material
Groundwater Elevation Considered	67.8	masl	September 26, 2023, measured at MW19-03

Table 6-1 Dimensions for Dewatering Assessment

It should be noted that the water level in September 2023 is from early fall season when water levels are usually at low levels. Spring and melting season water levels will be higher than this level and this shall be considered when scheduling construction as the assessed pumping volume will be different and higher.

6.1 Dewatering Flow Rate Estimate and Zone of Influence

The dewatering flow rates are estimated based on some key parameters such as groundwater levels, hydraulic conductivity value, size and depth of the excavations. It is expected that the initial dewatering rate will be higher to remove groundwater from within the formation. The dewatering rates are expected to decrease once the target water level is achieved in the excavation footprint area as groundwater will have been removed, primarily from storage, resulting in lower seepage rates into the excavation and the pumping volume reaches an equilibrium state. For the dewatering assessment at a location, careful review of water level information, the highest inferred water level was used in the calculations. The required hydraulic conductivity (K) values used in the calculations is estimated from the results of SWRT data analysis.

The dewatering flow equation is based on the following general hydrogeological and construction considerations and assumptions:

- Aquifer top, bottom and initial ground water levels and aquifer type were established based on borehole logs and monitoring well information;
- The bottom of the aquifer is the limit of dewatering;
- In situations where the aquifer bottom was not encountered within the borehole depths, the aquifer was assumed to continue a few metres below the foundation elevation;
- The hydraulic conductivity 'K' for the aquifer is estimated by analyzing the SWRT data. Other aquifer parameter such as storage coefficient 'S' were estimated based on field evidence and aquifer type;
- The aquifer is assumed to be isotropic and homogenous in both the horizontal and vertical directions. In reality, the aquifers are anisotropic and heterogeneous in all directions;

- The aquifer is assumed to be infinite in extent. In reality, the extent of the aquifer is limited by high horizontal variability fracture zones and the variations in the overburden sediments;
- It was assumed that dewatering occurs across the full vertical extent of the aquifer (i.e., assumes fully penetrating wells). In practice, dewatering will occur only a limited thickness within the upper portion of the aquifer; and,
- Excavations will extend to 0.75 m below the underside of the foundations for placement of subgrade or bedding material and that is the target groundwater lowering elevation.

Dewatering in a source area will create a zone within which the groundwater will be lowered from its initial water level. Each zone of influence (ZOI) is dependent on the anticipated pumping duration, continuity of the aquifer, aquifer parameters (hydraulic conductivity, storativity) and required drawdown. For the purposes of this report, the limit of the ZOI is considered the distance beyond which the predicted drawdown will be 0.5 m or less. This drawdown cut-off criterion is considered reasonable and appropriate considering 0.5 m of drawdown is within the range of natural groundwater variation range. The estimated ZOIs are based on reasonable worst-case scenarios assumed for the dewatering evaluation. The dewatering equations are shown in Figure DW-1 in Appendix E.

For dewatering flow volume calculations, usually a Factor of Safety (FoS) approach is used and a sensitivity analysis is performed. In this approach, the flow volume requested for permit or EASR application will be 1.25 times of what is estimated by the modified non-equilibrium flow equation by Cooper and Jacob (Powers et al., 2007). The FoS approach provides a higher than calculated volume of flow and provides the dewatering contractor flexibility to compensate for unforeseen groundwater conditions that they may encounter during construction. For sensitivity analysis the flow rates will be assessed by applying a range of K values and the most reasonable rate will be used for permitting purposes.

6.2 Cooper-Jacob's Radius of Influence

The radius of influence (Rcj) for the construction dewatering was calculated based on Cooper-Jacob's equation. This equation is used to predict the distance at which the drawdown resulting from pumping is negligible.

The estimated radius of influence due to pumping is based on Cooper-Jacob's formula as follows:

$$R_{cj} = \sqrt{2.25KDt/s}$$

Where:

- Ro = Estimated radius of influence (m)
- D = Aquifer thickness (original saturated thickness) (m)
- K = Hydraulic conductivity (m/s)
- S = Storage coefficient
- t = Duration of pumping (s)

6.3 Stormwater

Additional pumping capacity may be required to maintain dry conditions within the excavation during and following significant precipitation events. Therefore, the dewatering rates at the Site should also include removing stormwater from the excavation. To estimate stormwater volume data available online IDF Curve Look-up - Ministry of Transportation (gov.on.ca) was reviewed. To estimate the additional stormwater volume a reasonable storm recurrence period and rain fall amount was used. For this site a rainfall of 17.8 mm over a 10-minute interval resulting from a once in ten-year storm event was used. This modelling approach resulted in 81,560 Litres of stormwater over excavations for Towers 1 and 2 and 132,610 litres of stormwater over excavations for Towers 3 and 4.

Since these are relatively large and deep excavations and considering the frequency of weather events, it is reasonable to include an estimate of stormwater volume resulting from direct precipitation over the excavated areas in the pumping scenario.

6.4 Results of Dewatering Rate Estimates

6.4.1 Construction Dewatering Rate Estimate

For this assessment, it was assumed that the proposed construction plans include an excavation with shoring extending to the Site boundaries. EXP should be retained to review the assumptions outlined in this section, should the assumed shoring design change. Estimated dewatering rates are presented in Appendix E

Based on the assumptions provided in this report, and the sensitivity analysis performed the dewatering rate using the higher K value is reasonable. The results of the dewatering rate estimate are summarized as follows:

Description	Dewatering Source Towers 1 and 2 P3 Level UG parking structure	Dewatering Source Towers 3 and 4 P2 Level UG parking structure	
Total Volume (L/day) Discharge of Groundwater (Construction dewatering) (excluding precipitation)	246,690 LPD	126,470 LPD	
Grand Total Pumping Rate (excluding precipitation)	373,160 LPD		
Peak Volume (L/day) of Dewatering Discharge of Groundwater + Stormwater (Construction dewatering)	328,250 LPD 259,080 LPD		
Dewatering Rate to be registered for the EASR	400,000 LPD		
Predicted ZOI (in m) due to short-term construction dewatering pumping	58 m	56 m	

Table 6-2 Summary of Construction Dewatering Rates

Three dewatering pumping scenarios were evaluated using minimum, geometric mean, and maximum hydraulic conductivity values estimated from single well response tests. Most reasonable pumping volume estimate is considered the one using the high-end K value (6.25 x 10-6 m/sec) of the four estimated hydraulic conductivity values. It is our understanding that the construction of the towers will occur in phases. The initial pumping rate will be high which over time will gradually reduce to a lower volume to a steady state rate. The above rate is for initial drawdown and lowering of water level to the target levels for each of the structures in around 3 day's timeframe. Over the longer time during construction the required pumping rates will be reduced. As soon as the target water level is reached the pumping rate can be decreased to maintain the water table. Using a sequential or phased construction approach dewatered ground condition could be achieved and maintained below EASR limit of 400,000 LPD.

The estimated pumping rate in the above table considers potential stormwater volume and that concurrent or pumping simultaneously from both the excavations are not possible. Pumping from only one area will be allowed. However, if dryer weather prevails during construction, pumping concurrently from both of the excavations is potentially possible provided the maximum rate of 400,000 LPD is not exceeded or the works shall be adjusted or limited so that the allowed rate is not exceeded at any time.

These rates were estimated based on the highest fall season water level. The spring season water levels are generally higher than this fall season. These rate estimates need to be re-evaluated when spring season water levels are available.

exp

The pumping rates provided in Table 4-2 above are the result of using high end hydraulic conductivity value. The detail of the dewatering rate calculations and the results are provided Table DW-1 in Appendix E.

In terms of permitting requirements, it should be noted that with an estimated maximum pumping rate of 400,000 LPD, each of the underground parking structures can be dewatered separately but not simultaneously as in that case the total pumping rate from the Site will exceed the EASR limit and a Category 3 permit to take water (PTTW) will be required.

All gradings around the perimeter of the excavation should be graded away from the excavations. The contractor is responsible for the design of the dewatering systems (depth of wells, screen length, number of wells, spacing, sand pack around screens, prevent soil loss etc.) to ensure that dry conditions are always maintained within the excavation at all costs.

Discharge rates should be monitored using calibrated flow meters and records of dewatering progress, and daily precipitation as per MECP requirements. Discharge flow rates must be recorded via a totalizing flow meter and also manually by measuring the instantaneous flow during the day the pump is operational.

Dewatering should be monitored using dedicated monitoring wells within and around the perimeter of the excavation, and these wells should be monitored by manual measurements. Records of pumping, groundwater level monitoring and EASR registration should be maintained on site to track dewatering progress.

7 Potential Long-term Foundation Drainage

It is anticipated that dewatering pumping during construction will be required in the short-term, however foundation drainage in the long-term will be required for the proposed construction. Because the foundation of the proposed structures will be extending into the local groundwater table, it will be subjected to hydrostatic buoyancy pressure in the long-term. To reduce this pressure the groundwater will need to be removed using foundation drainage collection (FDC) subdrain system under the foundations. The groundwater will be collected in a sump pit and then pumped out to the city sewers if allowed. The following table summarizes the long-term foundation drainage rates for each of the towers.

Drainage Source ID	Long-Term Drainage Rate (LPD)	
Towers 1 and 2 P3 parking	162,815	
Towers 3 and 4 P2 parking	83,470	

Table 7-1 Summary of Long-Term Foundation Drainage Rates

Unfortunately, we do not have long-term (at least for1-year) seasonal groundwater level information. These rates were estimated based on the highest of the fall season water level. The spring season water levels are generally higher than fall season. These rate estimates need to be re-evaluated when spring season water levels are available.

If the City does not approve long-term discharge (due to under-capacity of the services or any other reasons) into the City sewers, then alternative foundation design (watertight bathtub) may have to be considered.

The long-term foundation drainage rates in Table 7-1 are estimated rates which will be confirmed and updated based on actual pumping data from the site which will be available after construction dewatering commences.

8 Dewatering Permit

Considering the size (Towers 1 and 2 - 4,580 m², Towers 3 and 4 – 7,450 m²) and depth of proposed excavations (6.8 to 9.8 mbgs), the estimated maximum pumping rates including allowance for stormwater volume during construction, and pumping from only one portion of the site (either Towers 1 and 2 or Towers 3 and 4 areas), an EASR registration is deemed adequate. Simultaneous pumping will exceed the EASR permit threshold limit of 400,000 LPD allowance and a Category 3 Permit to Take Water (PTTW) will be required which will allow pumping at rates higher than 400,000 LPD. However, for our study, we assumed that the construction will occur in phases and an EASR registration will be adequate to address groundwater issues during each phase of construction. For pumping rates between 50,000 and 400,000 LPD registration on the Environmental Activity and Sector Registration (EASR) with the MECP will be required. This type of permit is registered online and issued instantaneously for a fee of CAD \$ 1,190.

Pumping at rates higher than 50,000 LPD for long-term drainage during the life of the building will require a permit issued by the MECP and will also need a Private Water Discharge Agreement (PWDA) with the City of Ottawa. If the City does not allow discharge into their sewers over the long-term, then alternative foundation design (raise the foundation, bathtub or water-tight foundation) shall be explored.

9 Groundwater Quality

One groundwater sample was collected from the Site during fieldwork in September 2023 for analysis by a Canadian Association of Laboratory Accreditation (CALA). The water sample was tested for comparison to City of Ottawa Sewer Use By-Law (2003-514) Schedule A, Table 1 and Table 2 parameters. The results indicate that the groundwater is fit to discharge into the sanitary sewers but not suitable to discharge to the storm sewers without treatment for manganese as the concentration (0.057 mg/L) was slightly elevated compared to the storm sewer use limit of 0.05 mg/L. The discharge needs to be treated to reduce the concentration of manganese before it can be discharged into the storm sewer. The results of the analysis are included in Appendix-D.

Manganese is a naturally occurring metal that is found in many types of rocks. It also is considered a background element in the groundwater in the region. In water, manganese tends to attach to particles in the water or settle into the sediment. It is likely that the noted slight exceedance may be treated effectively by utilizing best management practice measures (settling tanks, fine mesh filter bags, adding polymer agents or flocculants) for removal of total suspended solids (TSS).

Based on the review of available data (City of Ottawa Water Quality - Baseline Surface Water Monitoring Program data 1998-2017) for the region <u>Water Quality – Baseline Surface Water Monitoring Program | Open Ottawa</u>, the average concentration of dissolved manganese in surface water for the period is 1.99 mg/L.

A resampling and analysis of groundwater from the site is recommended to confirm the detection of manganese. The sample shall be filtered before the analysis for metals to determine treatment options.

10 Groundwater Discharge Management Plan

The groundwater quality analysis indicates that the discharge from the Site is suitable to discharge into the sanitary sewers but not suitable to discharge into the storm sewers without treatment for manganese, however it is worth noting that manganese is detected in the groundwater as background element in the region as the underlying rock is considered the source of manganese and other background metals detected in the groundwater in the region.

A private water discharge agreement will be required with the city to direct groundwater from the Site during both the shortand long-term dewatering operation into the City sewers provided the water quality complies to the applicable discharge guideline standards. Discharge water quality must comply with either Table 1 or Table 2 standards of the City of Ottawa Sewer use By-Law (2003-514) depending on the discharge location (storm or sanitary sewers).

Pre-construction and during construction groundwater sampling and analysis will be required to comply with the sewer use guidelines. If the water quality complies with the City of Ottawa Sewer Use By-Law guidelines (By-Law No. 2003-514) and the City issues a private water discharge agreement, then the discharge can be routed towards the city services. A discharge water quality management plan will need to be developed. This plan will be adaptive and will be effective during the dewatering period. Anytime any exceedances are identified the discharge to the city services will be suspended until corrective action is implemented and water quality indicates compliance.

Potential Issue	Monitoring Aspect	Sampling and Suggested Frequency	Potential Mitigation Approach					
Discharge Water Quality M	Discharge Water Quality Management Plan							
TSS in discharge TSS was 5 mg/L which is below the City of Ottawa sewer by-law standards however the method of excavation, low level rock blasting, has the potential to generate a large volume of particulates which when wet has the potential to exceed the limit.	Due to the nature of work (low level rock blasting and hauling using large and heavy construction equipment) TSS will be a potential issue during construction period specially during post- storm events.	The dewatering discharge – should be routed through a fine mesh filter bag as best management practice (BMP) approach. The discharge shall be sampled every day for the first week of pumping and in the post- storm time at the outlet location to monitor compliance. If the discharge is compliant than the sampling frequency could be expanded to two-times a week. If it indicates compliance then sampling frequency can be expanded to once-a-week. A field turbidity probe can also be used to calibrate with the laboratory measured TSS concentrations for frequent site discharge turbidity measurements.	As a basic BMP approach, the discharge must be routed through fine mesh filter bags. If the discharge is non-compliant with the applicable receptor guidelines, then additional treatment options such as a settling tank, on-site settling basin or envirotank [™] , floclog [™] should be utilized to enhance the mitigation process.					
Manganese in discharge Manganese was detected at slightly elevated (0.057 mg/L) concentrations which is higher than the storm sewer standard of 0.05 mg/L.	Manganese is an earth element and is found naturally in groundwater in low concentrations. The presence of this element does not impart any health-related issues on the environment other than aesthetic issues.	Visual inspection of the discharge area and downslope area of outlet location every week for signs of impact from manganese (black particles). Note: No sensitive aquatic habitat has been identified within 100 m of the site.	Additional treatment may be required to reduce the concentration of manganese.					

Table 10-1 Groundwater Discharge Management Plan

Potential Issue	Monitoring Aspect	Sampling and Suggested Frequency	Potential Mitigation Approach					
Erosion and Sediment Control Plan								
Erosion and Sediment Control Erosion is not anticipated to be an issue from the proposed dewatering operation. However, due to the nature of the work there is potential for high levels of particulates to be generated and transported from the site.	Sediment Control Adaptive sediment control measures must be in place to reduce transport of sediments offsite (through vehicular traffic to and from the site and storm runoff).	Basic sediment control measures such as installing silt fences around the work area and the site perimeter shall be applied. Siltsox [™] or woodchip logs maybe used instead of silt fences at the perimeter to prevent sediment transport offsite. After every storm event, the site must be inspected for sediment control measures. The sediment control measures shall be in place before construction commences and shall be inspected prior to the beginning of construction. Thereafter, the measures shall be inspected every week or within 24 to 48 hours of a storm event and be maintained or upgraded or modified as necessary.	If there is excessive particulates/sediments generated from the site, that have the potential to be transported offsite via construction vehicular traffic, then a portable vehicle wheel wash system and a street sweeper may be employed for cleaning operations.					

A discharge sampling and monitoring plan as recommended in Table 10-1 shall be in place during the anticipated short-term dewatering operation to ensure compliance of discharge water quality to the receptor standards. Erosion will not be an issue at the Site given the proposed dewatering operation, however the sediments that will be generated due to excavation has the potential to be an issue. An adaptive sediment control plan shall be developed and be implemented at the site during construction to control impacts from sediments as best management practice (BMP). So therefore, sediment control measures as outlined in the Table 10-1) will need to be installed at the site that will be inspected on regular intervals and within 24 to 48 hours after storm events.

11 Potential of Impact from Anticipated Dewatering

Any dewatering pumping operation will generate a zone within which the groundwater is lowered with the maximum drawdown at the pumping location even during short-term operation. The further the distance away from the pumping location the drawdown is less and eventually at a certain distance from the pumping location the zone of influence (ZOI) diminishes because of reaching equilibrium condition.

The lowering of groundwater has the potential to impact sensitive features such as utilities, environmental habitats, water wells and engineered structures that are located within the predicted ZOI and are founded on compressible soils. Most of the construction dewatering operations will occur only for short-term (1 month to 12 months duration) and the impacts will be temporary.

The proposed construction and related dewatering activities will be occurring in a highly urbanized area and there is less potential to impact water wells since municipal services are available and there are no active or in use private water wells in the area. Our preliminary assessment indicates that there are no sensitive environmental features within 500 m distance of the site.

A geotechnical assessment of consolidation and settlement of soils due to short-term groundwater lowering will be required to assess the potential of settlement of utilities.

11.1 Short-Term Construction Dewatering

For the short-term dewatering (construction phase), it is anticipated that total suspended solids (TSS) levels and some other parameters (for example, Total Metals) in the pumped groundwater may become elevated and exceed both, Sanitary and Storm Sewer Use By-Law limits. To control the concentration of TSS and associated metals, it is recommended that a suitable and a basic best management practice (BMP) treatment method (source control and outlet control) be implemented (fine mesh filter bags settlement tank and/ or any other applicable treatment system) during construction dewatering activities to discharge to the applicable sewer system. The specifications of the treatment system will need to be adjusted to the reported water quality results by the treatment contractor/process engineer.

11.2 Long-Term Construction Dewatering

For the long-term dewatering discharge into the city of Ottawa sewer services in the post-development phase Since the foundation will be extending into the local groundwater table, there is potential for development of hydrostatic buoyancy pressure (uplift pressure). To counterbalance the uplift pressure a system of foundation drainage collection subdrains will be required to collect the groundwater and pump it out to reduce the buildup of uplift pressure.

Alternatively, if the City does not allow long-term discharge into their sewers, the building foundation may be designed as a water-tight bathtub like foundation to counterbalance the uplifting hydrostatic pressure.

11.3 Contaminant Migration

Dewatering (short and long-term) may induce migration of contaminants within the zone of influence and beyond due to changing hydraulic gradients, hydrogeological conditions beyond Site boundaries and preferential pathways in utility beddings etc. The water quality sampling conducted as part of this assessment was performed under static conditions. As a result, monitoring may be required during dewatering activities (short and long-term) to monitor potential migration, and this should be performed more frequently during early dewatering stages.

For the long-term dewatering discharge to the city sewer system (post-development phase) and based on the water quality results, it is recommended to implement a suitable pre-treatment, as required.

The water quality results presented in this report may not be representative of the long-term condition of groundwater quality onsite. As such, regular water quality monitoring is recommended for the post-construction phase as required by the City. An agreement to discharge into the sewers owned by the City of Ottawa will be required prior to releasing dewatering effluent.

[%]ехр.

11.4 Well Decommissioning

In conformance with Regulation 903 of the Ontario Water Resources Act, the installation and eventual decommissioning of any dewatering system wells or monitoring wells must be completed by a licensed well contractor. This will be required for all wells that are no longer in use.

12 Conclusions and Recommendations

Based on the findings of this Hydrogeological Assessment for 1740-1760 St Laurent Blvd., Ottawa, Ontario site, the following conclusions and recommendations are provided:

- Based on anticipated phasing of construction activities, an EASR is deemed adequate to pump only from one excavation area at a time considering stormwater volume. A Category 3 PTTW will be required for simultaneous or concurrent pumping from both the excavation areas. Alternatively concurrent pumping may be possible during dry weather days however pumping volume shall be limited to 400,000 LPD rate;
- The estimated pumping rates are based on low water season or fall (month of September) water levels. Water levels are usually high in the spring and snow melting season. So, if the construction is scheduled during spring season the estimated rates will need to be re-evaluated;
- As per Schedule A, Table 1 and 2 standards of the City of Ottawa Sewer use By-Law 2003-514 standards, the discharge from the site may be directed to the city sanitary sewers without treatment. However basic BMP measures must be in place to address potentially high levels of particulates (TSS) generated at the site due to the very nature of the construction activities. Before discharging pumped water into the city sewers, the tested parameters shall comply with the applicable standards;
- A recommended discharge management plan is provided in Section 10 and a detail of the recommended plan is provided in Table 10-1. This plan is adaptive and will be evaluated at regular intervals for its effectiveness;
- Since there are no sensitive environmental features nearby (private water well user, natural significant habitat) there would be no concern or issues;
- There is potential for shallow buried utilities and building foundations adjacent to the site which may be vulnerable to impacts (settlement or subsidence) due to temporary lowering of groundwater. A geotechnical assessment of consolidation and settlement may be required to assess the potential impact;
- In the absence of suitable groundwater monitoring wells new wells may have to be drilled for monitoring of water levels during construction; and
- The daily dewatering rates must be recorded by the dewatering contractor and provided to the hydrogeologist which will be used to update the foundation drainage volume estimates and to reassess and determine the long-term foundation drainage volume for the site.

The followings are recommended:

- A resampling and analysis of groundwater is recommended to confirm the exceedance of manganese. The sample shall be filtered prior to analysis for dissolved metals. Based on the results of the analysis a treatment specialist may be consulted for suggestions about potential treatment system that may be required for treatment of manganese;
- Determination of dewatering method is the responsibility of the specialist dewatering contractor however a dewatering plan must be prepared by the contractor and reviewed by the hydrogeologist on record before dewatering operation commences;
- The estimated rates (provided in (Table 7-1) for long-term foundation drainage will need to be updated based on pumping data from the site after construction dewatering commences; and
- Long-term (over 1-year period) groundwater monitoring is recommended to measure the seasonal variability of groundwater at the site. This information will allow a better estimation of dewatering pumping rates for construction scheduling. The estimated rates would be higher in the spring season and higher volume shall be anticipated from the site if the construction is scheduled during spring season.

The conclusions and recommendations provided above should be reviewed in conjunction with the entirety of the report. We assume that the present design concept described throughout the report will proceed to construction. This preliminary report

'exp

is solely intended for the site plan approval application. Any changes to the design concept may result in a modification to the recommendations provided in this report.

13 Limitations

This report is based on a limited investigation designed to provide information to support an assessment of the current hydrogeological conditions within the study area. The conclusions and recommendations presented within this report reflect Site conditions existing at the time of the assessment. EXP must be contacted immediately if any unforeseen Site conditions are experienced during construction activities. This will allow EXP to review the new findings and provide appropriate recommendations to allow the construction to proceed in a timely and cost-effective manner.

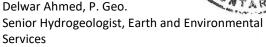
Our undertaking at EXP, therefore, is to perform our work within limits prescribed by our clients, with the usual thoroughness and competence of the geoscience/engineering profession. No other warranty or representation, either expressed or implied, is included or intended in this report.

This report was prepared for the exclusive use of 11421247 Canada Inc.. This report may not be reproduced in whole or in part, without the prior written consent of EXP, or used or relied upon in whole or in part by other parties for any purposes whatsoever. Any use which a third party makes of this report, or any part thereof, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. EXP Services Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

We trust that this information is satisfactory for your purposes. Should you have any questions or comments, please do not hesitate to contact this office.

Sincerely,

EXP Services Inc.


Blond.

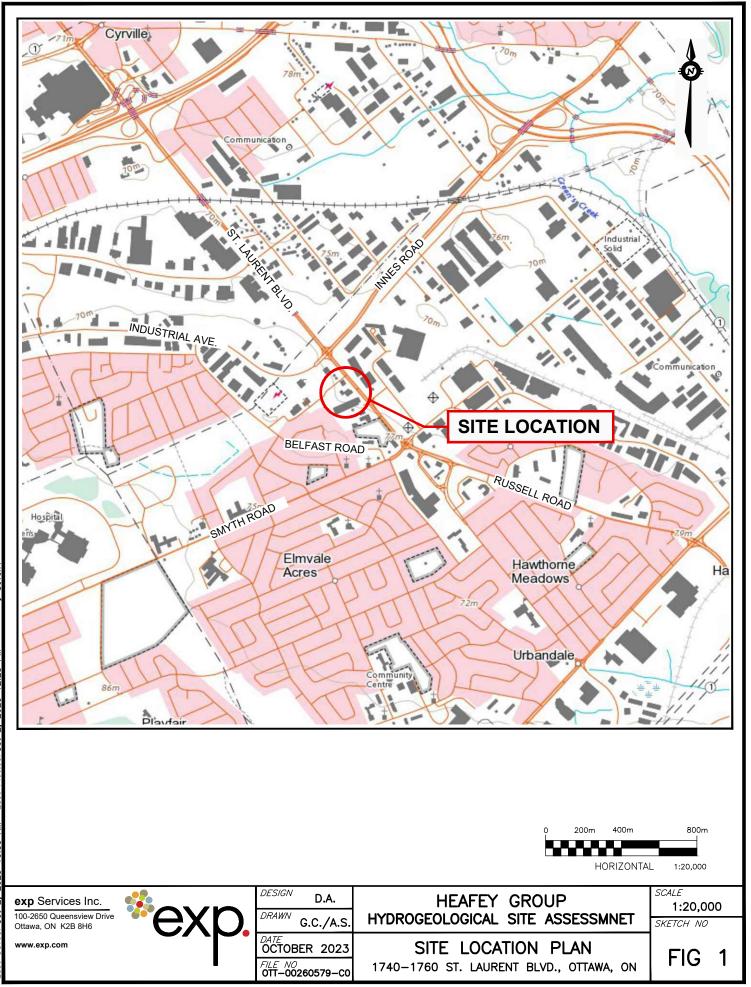
Shahynaz Abdelmohsen, Environmental Technician, Earth and Environmental Services

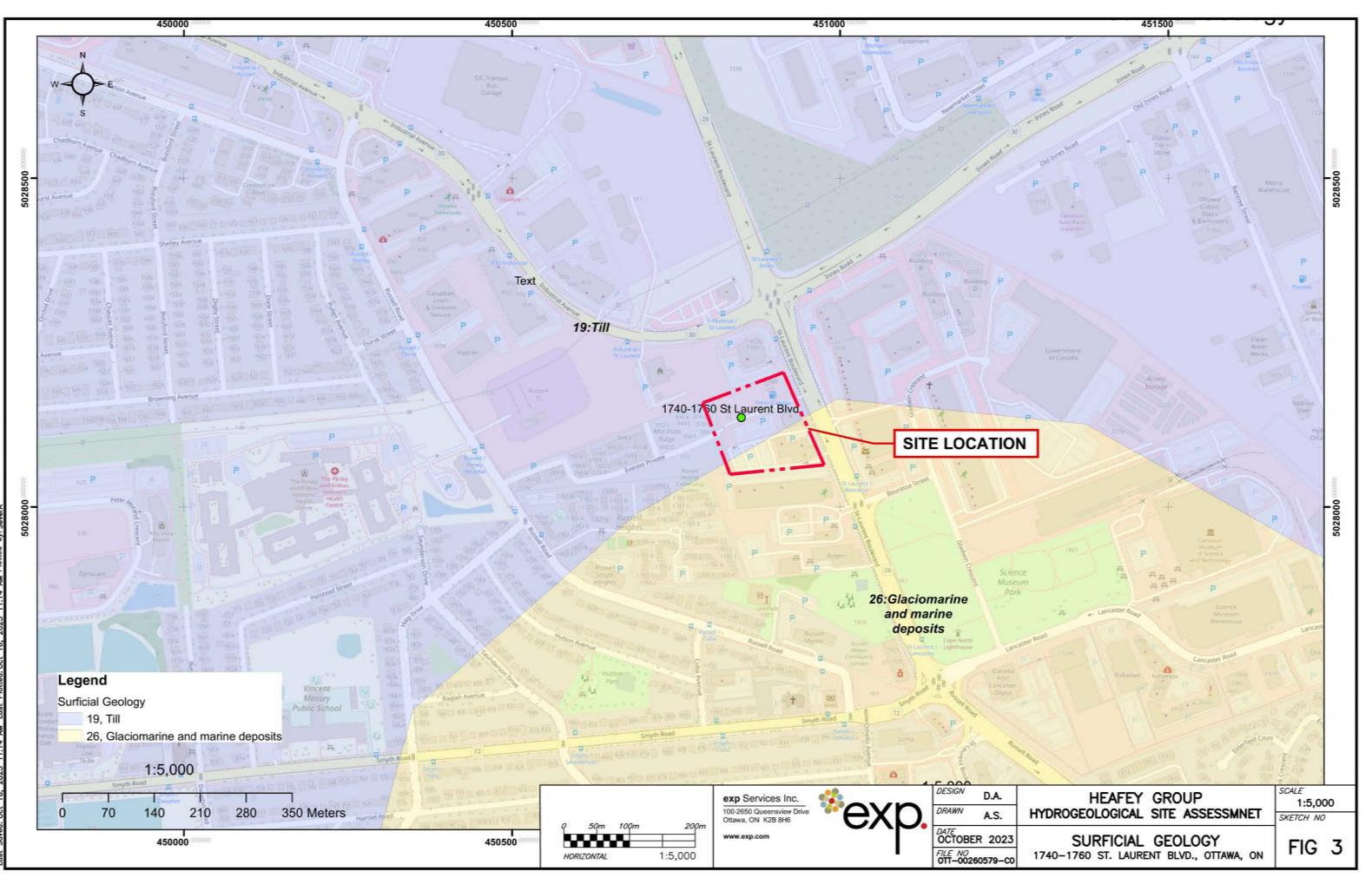
Mar myalla

Mark McCalla, P. Geo. Senior Geoscientist, Earth and Environmental Services

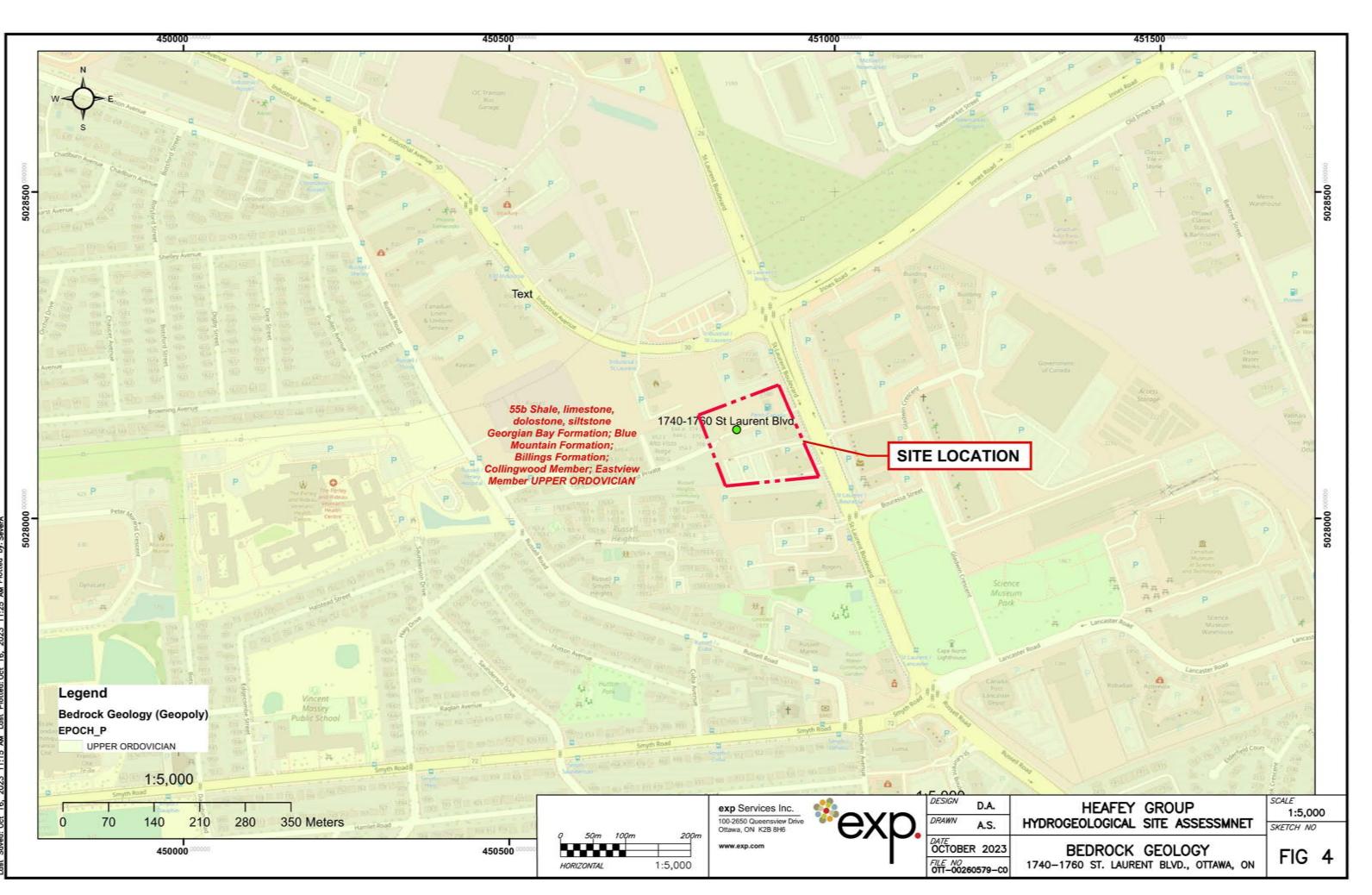
14 References

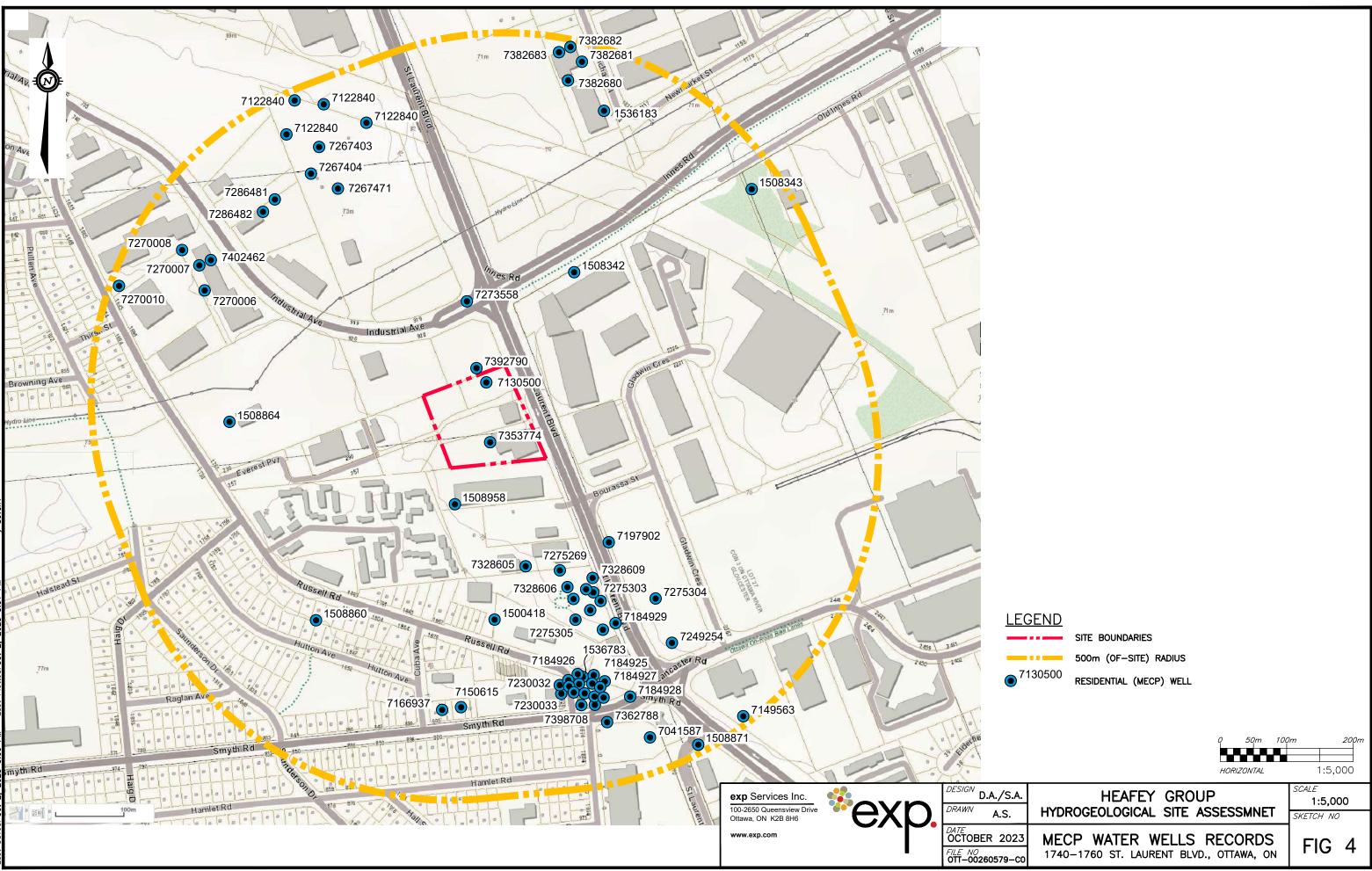
- Cashman and Preene (2013), Groundwater Lowering in Construction, 2nd Edition.
- Chapman, L.J. and Putnam, D.F. (2007), Physiography of Southern Ontario, 3rd Edition, Ontario Geological Survey.
- EXP Services Inc. (February 12, 2022), Preliminary Geotechnical Investigation, 450 Terminal Avenue, Ottawa, ON, prepared for Wal-Mart Canada Corp. (Walmart).
- J.P. Powers, A.B. Corwin, P.C. Schmall and W.E. Kaeck (2007). Construction Dewatering and Groundwater Control, Third Edition.
- Ministry of Northern Development, Mines, Natural Resources and Forestry, OGS Earth. Retrieved from: <u>https://www.geologyontario.mndm.gov.on.ca/ogsearth.html</u>
- Rideau Valley Conservation Authority, RVCA GIS Maps, Map of A Property, accessed to the website in March 2022: https://www.rvca.ca/regulations-planning/map-a-property
- AMEC (November 2001), Phase I Environmental Site Assessment 1740-1760 St. Laurent Boulevard and 1757 Russell Road, Ottawa, Ontario for M. R. Denison associates Ltd, 1750 St Laurent Boulevard, Ottawa, Ontario Ref: TZ97784)
- AMEC (January 2002), Phase II Environmental Site Assessment 1740-1760 St. Laurent Boulevard and 1757 Russell Road, Ottawa, Ontario for M. R. Denison associates Ltd, 1750 St Laurent Boulevard, Ottawa, Ontario (Ref: TZ97784.1)
- Terrapex Environmental Ltd (June 2009), Petro Canada, Phase II Environmental Site Assessment (ESA), 1740 St. Laurent Boulevard and 1757 Russell Road, Ottawa, Ontario
- EXP Services Inc. (October 2020), Phase I Environmental Site Assessment, 1740-1760 St. Laurent Boulevard, Ottawa, Ontario
- EXP Services Inc., (October 2020), So and Groundwater Sampling Program, Property Adjacent to 1740 St. Laurent Boulevard, Ottawa, Ontario

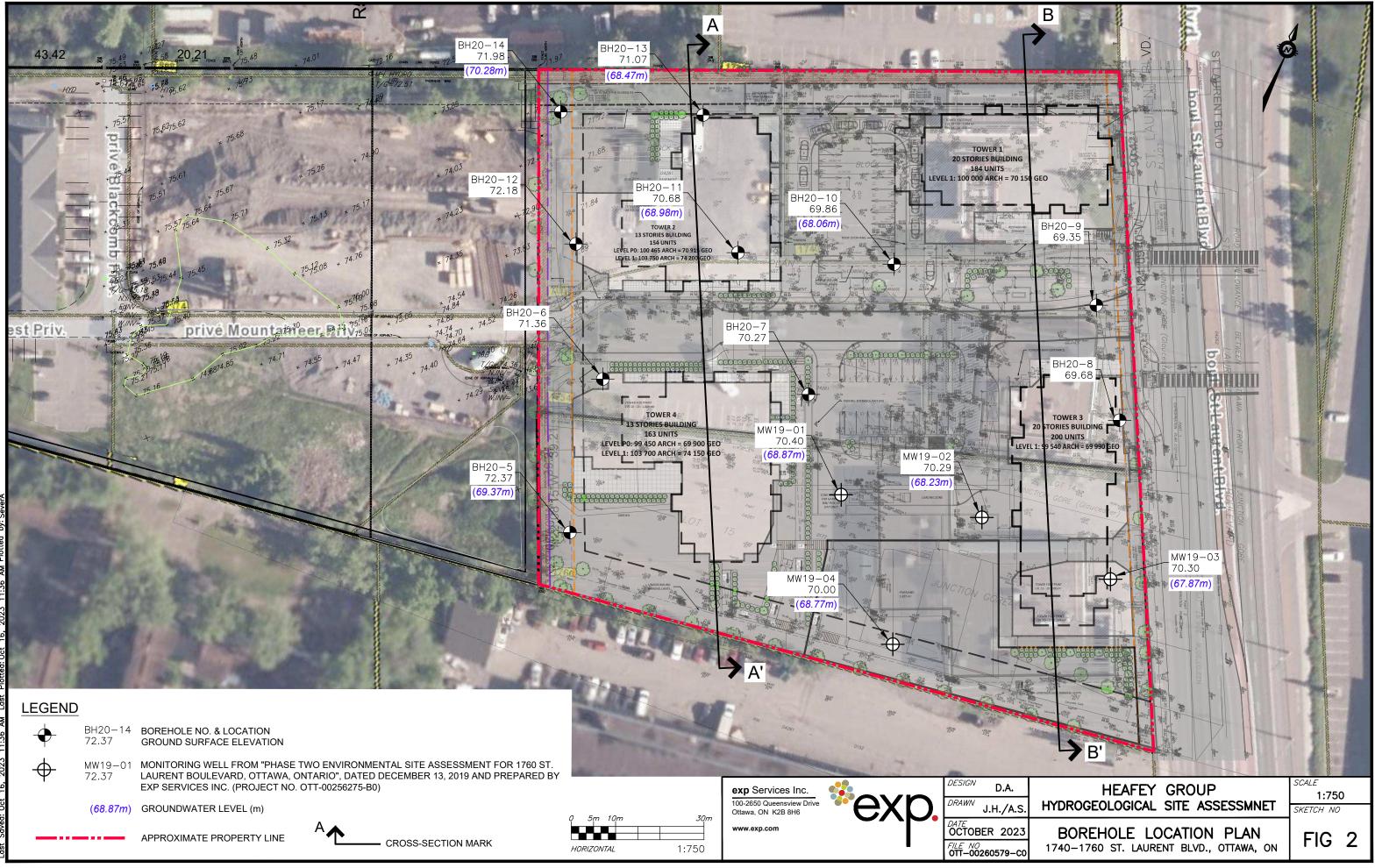


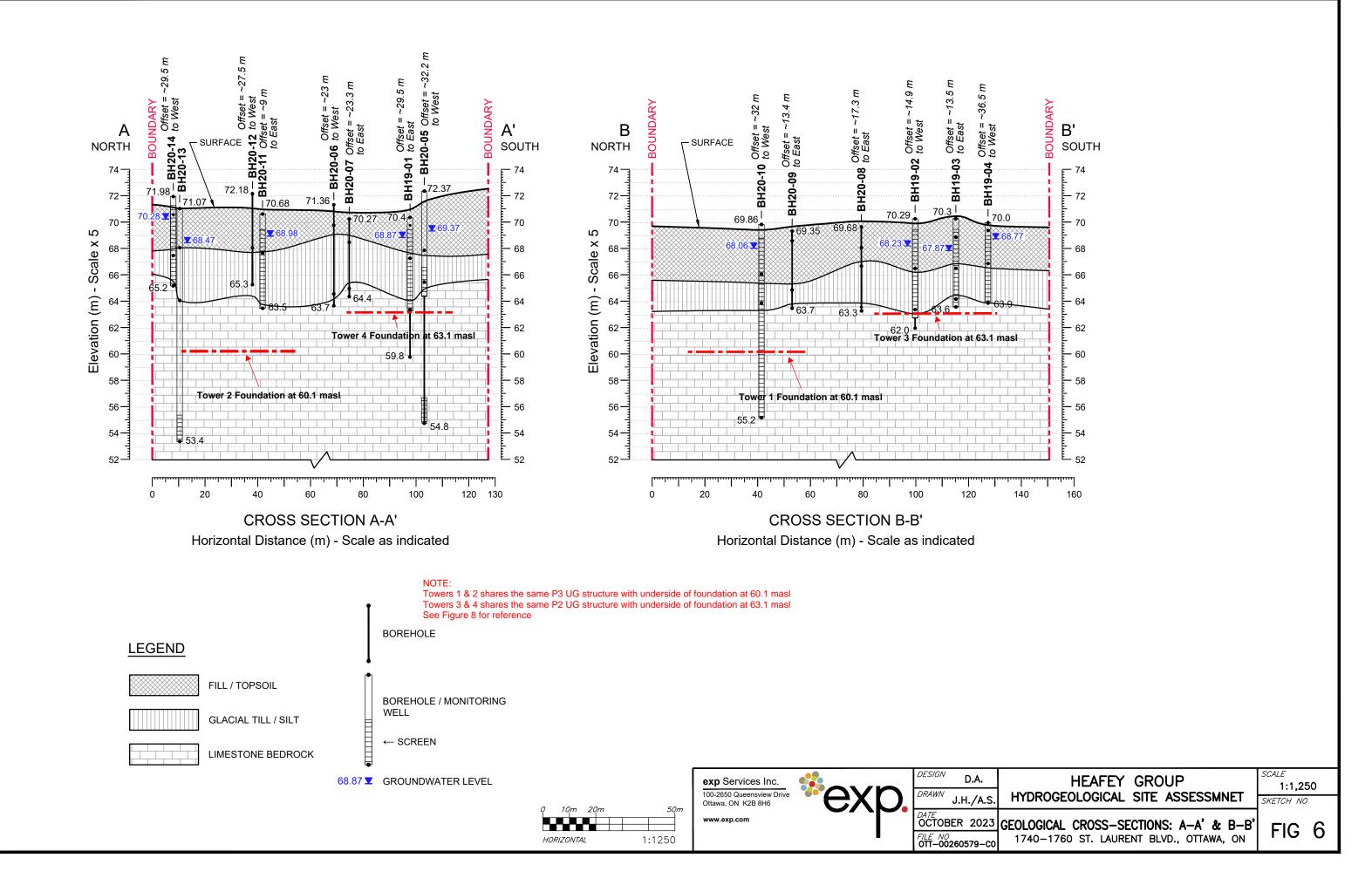

EXP Services Inc.

1740-1760 St Laurent Blvd., Ottawa, Ontario Hydrogeological Investigation OTT-00260579-B0 October 17, 2023


Figures







liename: E:\OTT\OTT-00260579-A0\60 Execution\65 Drawings\OTT-00260579-C0_HG\7260579-C0_HG-Fi ast Saved: Oct 16, 2023 11:14 AM Last Plotted: Oct 16, 2023 11:14 AM Plotted by: SeverA

SITE PLAN LEGEND
LOT LINE
SETBACKS
— — — — — TOWER FOOTPRINT
5m SETBACKS PER OLS0002 R4
10m TOWER SETBACKS
EASEMENT - HHW
EASEMENT EVEREST PROJECT
HYDRO LINES
GEODESIC ELEVATION
EXISTING TREE CUT DOWN
NEW TREE NEW PLANTATION
LANDSCAPE AREAS WASHED AGGREGATE
CONCRETE SIDE WALK ASPHALT ROADWAYS
SNOWMELT SYSTEM ZONE PLATBAND
TERRACE

(418) 651-8954 INFO@PMAARCHITECTES.COM — 3070, CHEMIN DES QUATRE-BOURGEOIS QUÉBEC (QC) G1W 2K4	
PMAARCHITECTES.COM	
LAPALME RHEAULT	
ARCHITECTESI +ASSOCIÉS 53, SAINT-RAYMOND BOULEVARD, GATINEAU, QC J8Y 1R8	
STRUCTURAL	-
	_
MECHANICAL	-
CIVIL	-
exp	-
■ 2650, QUEENSVIEW DRIVE, SUITE 100, OTTAWA, ON K2B 8H6 LANDSCAPE	-
JAMES B. LENNOX & ASSOCIATES INC. LANDSCAPE ARCHITECTS 3332 CARLING AVE. OTTAWA, ONTARIO K2H 5A8 Tel. (613) 722-5168 Fax. 1(866) 343-3942	
SURVEYOR ANNIS,	{
O'SULLIVAN, VOLLEBEKK LTD.	
14 CONCOURSE GATE, SUITE 500, NEPEAN, ON K2E 7S6	
GENERAL CONTRACTOR	
KEY PLAN	
ARCHITECT SEAL	-
	-
REVISIONS	
1 FOR CITY REVIEW 2023-10-03 NO DESCRIPTION DATE	-
NOTE IT IS THE RESPONSIBILITY OF THE APPROPRIATE CONTRACTOR TO CHECK AND VERIFY ALL DIMENSIONS ON THE SITE AND TO REPORT ALL ERRORS AND/OR	
OMISSIONS TO THE ARCHITECT. ALL CONTRACTORS MUST COMPLY WITH ALL PERTINENT CODES AND BY- LAWS. DO NOT SCALE DRAWINGS.	
THIS DOCUMENT AND ITS CONTENT IS COPYRIGHTED. ANY REPRODUCTION IS PROHIBITED UNLESS GRANTED BY THE ARCHITECT.	I
DO NOT USE FOR	
CONSTRUCTION	
DATE DESIGNED 2023-10-03 P.POMERLEAU	
DRAWN A.DUFOUF	
PROJECT No CHECKED 20005 P.MARTIN SHEET TITLE	
SITE PLAN	1177

PROJECT

ARCHITECTURAL

ST. LAURENT

DEVELOPMENT


1740-1760 St. Laurent boulevard Ontario, ON K1G 1A2

Heafey

100 - 768, BOUL SAINT-JOSEPH,

ARCHITECTES

GATINEAU, QC J8Y 4B8

TOWER 4 LEVEL P1

EXP Services Inc.

1740-1760 St Laurent Blvd., Ottawa, Ontario Hydrogeological Investigation OTT-00260579-B0 October 17, 2023

Appendix A – MECP WWR Summary Table

Wednesday, September 27, 2023 Record Count 4

Date	5/20/1948	Elev 80.	1 (masl)	Easting 450901	Northing	5027822				SWL		(mogs)		(masi)	
	DDMMYY	Well_Depth_m: 39.0144		UTM RC 9	unknown UTM					Pumping WL	22.9	(mbgs)	57.2	(masl)	
	2011111		00.021777	ormitte u						Pump Rate	22.7	(LPM)		0 / 30	
		/ Don	nestic	Water Supply			Depth (m)	Elev (masl)		Spec. Cap.	1.24	(LPM/m)	I	Hr / Min	
		Water Found 39.	.0 (mbgs)	41.1 (masl)	FRESH		0.0	80.1	Color			Soil Desc	rintione		
		Street Town/City					0.0	00.1	000			Son Dest	Inpuolis		
							1.8	78.3			TOPSOIL /			1	
							7.3	72.8			CLAY /			1	
							11.3	68.8		F	INE SAND /			1	
							39.0	41.1			ROCK /	SLA	TE	1	
15	08342	Lot Conc			OTTAWA		AWA-CARI	ETON		Flowing? N		(1111-111)	00.4	(
Date	12/30/1952	Elev 69.	0 (masl)	Easting 451021	Northing	5028347				SWL	0.9	(mbgs)	68.1	(masl)	
	DDMMYY	Well_Depth_m: 12.1920		UTM RC 5	margin of error : 10					Pumping WL	2.7	(mbgs)	66.3	(masl)	
										Pump Rate	36.4	(LPM)		1/0	
		Domestic / Live	estock	Water Supply			Depth (m)	Elev (masl)		Spec. Cap.	19.89	(LPM/m)	I	Hr / Min	
		Water Found 12.	.2 (mbgs)	56.8 (masl)	MINERIAL		0.0	69.0	Color			Soil Desc	rintione		
		Street Town/City					0.0	00.0	00101			Son Dest			
							0.6	68.4			TOPSOIL /	CL	Δγ	1	
							12.2	56.8	BLACK		SHALE /	01		,	
									DEAGN					,	
15	08860	Lot Conc			OTTAWA	CITY / OT	AWA-CARI	ETON		Flowing? N					
Date	6/30/1950	Elev 80.	4 (masl)	Easting 450631	Northing	5027822				SWL	3.7	(mbgs)	76.8	(masl)	
Jate	DDMMYY	Well_Depth_m: 44.1959	• •	UTM RC 5	margin of error : 10					Pumping WL	8.5	(mbgs)	71.9	(masl)	
		weil_beptil_iii. 44.1939	991433078	UTWIKC 5	margin of error . To	0 m - 300 m				Pump Rate	36.4	(LPM)		1 / 0	
		/ Don	nestic	Water Supply			Depth (m)	Elev (masl)		Spec. Cap.	7.46	(LPM/m)	I	Hr / Min	
		Water Found 44.	.2 (mbgs)	36.2 (masl)	FRESH		0.0	80.4	Color			Soil Desc	rintiono		
		04					0.0	00.4	0000			Soli Dest	Inpuolis		
		Street Town/City													
							1.8	78.6			TOPSOIL /	MEDIUN	I SAND	1	
								78.6 65.5	BLUE			MEDIUN	I SAND	 	
							1.8 14.9 16.5	78.6 65.5 64.0	BLUE BLACK	MEDI	TOPSOIL / CLAY / IUM SAND /	MEDIUN	I SAND	 	
							14.9	65.5		MED	CLAY /	MEDIUN	I SAND	1	
15	08864	Town/City			ΟΤΤΑΨΑ		14.9 16.5 44.2	65.5 64.0 36.2	BLACK		CLAY / IUM SAND / SLATE /	MEDIUN	I SAND	 	
15	08864				OTTAWA		14.9 16.5	65.5 64.0 36.2	BLACK	Flowing? N	CLAY / IUM SAND / SLATE /			 	
	08864 3/1/1954	Town/City Lot Conc	7 (masl)	Easting 450501	OTTAWA	CITY / OTT 5028122	14.9 16.5 44.2	65.5 64.0 36.2	BLACK	Flowing? N SWL	CLAY / IUM SAND / SLATE / 4.3	(mbgs)	71.4	 (masl)	
		Town/City Lot Conc	7 (masl)	Easting 450501 UTM RC 5		5028122	14.9 16.5 44.2	65.5 64.0 36.2	BLACK	Flowing? N SWL Pumping WL	CLAY / IUM SAND / SLATE / 4.3 8.5	(mbgs) (mbgs)		(masl) (masl)	
15 Date	3/1/1954	Town/City Lot Conc Elev 75. Well_Depth_m: 22.2504	7 (masl) 005432129	UTM RC 5	Northing	5028122	14.9 16.5 44.2	65.5 64.0 36.2	BLACK	Flowing? N SWL Pumping WL Pump Rate	CLAY / IUM SAND / SLATE / 4.3 8.5 36.4	(mbgs) (mbgs) (LPM)	71.4 67.2	/ / / (masl) (masl) 1 / 0	
	3/1/1954	Town/City Lot Conc Elev 75. Well_Depth_m 22.2504/	7 (masl) 005432129 nestic	UTM RC 5 Water Supply	Northing margin of error : 10	5028122 0 m - 300 m	14.9 16.5 44.2	65.5 64.0 36.2	BLACK	Flowing? N SWL Pumping WL	CLAY / IUM SAND / SLATE / 4.3 8.5	(mbgs) (mbgs)	71.4 67.2	(masl) (masl)	
	3/1/1954	Town/City Lot Conc Elev 75. Well_Depth_m: 22.2504	7 (masl) 005432129 nestic	UTM RC 5	Northing	5028122 0 m - 300 m	14.9 16.5 44.2	65.5 64.0 36.2 ETON	BLACK	Flowing? N SWL Pumping WL Pump Rate	CLAY / IUM SAND / SLATE / 4.3 8.5 36.4	(mbgs) (mbgs) (LPM)	71.4 67.2	/ / / (masl) (masl) 1 / 0	
	3/1/1954	Town/City Lot Conc Elev 75. Well_Depth_m: 22.2504 / Don Water Found 22. Street	7 (masl) 005432129 nestic	UTM RC 5 Water Supply	Northing margin of error : 10	5028122 0 m - 300 m	14.9 16.5 44.2 TAWA-CARI Depth (m) 0.0	65.5 64.0 36.2 ETON Elev (masl) 75.7	BLACK GREY	Flowing? N SWL Pumping WL Pump Rate	CLAY / IUM SAND / SLATE / 4.3 8.5 36.4 8.52	(mbgs) (mbgs) (LPM) (LPM/m) Soil Desc	71.4 67.2 Friptions	/ / (masl) (masl) 1 / 0 Hr / Min	
	3/1/1954	Town/City Lot Conc Elev 75. Well_Depth_m: 22.2504 / Don Water Found 22. Street	7 (masl) 005432129 nestic	UTM RC 5 Water Supply	Northing margin of error : 10	5028122 0 m - 300 m	14.9 16.5 44.2 TAWA-CARI Depth (m) 0.0	65.5 64.0 36.2 ETON Elev (masi) 75.7	BLACK GREY Color	Flowing?N SWL Pumping WL Pump Rate Spec. Cap.	CLAY / IUM SAND / SLATE / 4.3 8.5 36.4 8.52 TOPSOIL /	(mbgs) (mbgs) (LPM) (LPM/m)	71.4 67.2 Friptions	/ / (masl) (masl) 1 / 0 Hr / Min	
	3/1/1954	Town/City Lot Conc Elev 75. Well_Depth_m: 22.2504 / Don Water Found 22. Street	7 (masl) 005432129 nestic	UTM RC 5 Water Supply	Northing margin of error : 10	5028122 0 m - 300 m	14.9 16.5 44.2 TAWA-CARI Depth (m) 0.0 0.6 2.7	65.5 64.0 36.2 ETON Elev (masi) 75.7 75.1 73.0	BLACK GREY Color RED	Flowing?N SWL Pumping WL Pump Rate Spec. Cap.	CLAY / IUM SAND / SLATE / 4.3 8.5 36.4 8.52 TOPSOIL / IUM SAND /	(mbgs) (mbgs) (LPM) (LPM/m) Soil Desc	71.4 67.2 Friptions	/ / (masl) (masl) 1 / 0 Hr / Min	
	3/1/1954	Town/City Lot Conc Elev 75. Well_Depth_m: 22.2504 / Don Water Found 22. Street	7 (masl) 005432129 nestic	UTM RC 5 Water Supply	Northing margin of error : 10	5028122 0 m - 300 m	14.9 16.5 44.2 TAWA-CARI Depth (m) 0.0 0.6 2.7 7.0	65.5 64.0 36.2 ETON Elev (masi) 75.7 75.1 73.0 68.7	BLACK GREY Color	Flowing?N SWL Pumping WL Pump Rate Spec. Cap.	CLAY / IUM SAND / SLATE / 4.3 8.5 36.4 8.52 TOPSOIL / IUM SAND / CLAY /	(mbgs) (mbgs) (LPM) (LPM/m) Soil Desc MEDIUM	71.4 67.2 Friptions	/ / (masl) (masl) 1 / 0 Hr / Min	
	3/1/1954	Town/City Lot Conc Elev 75. Well_Depth_m: 22.2504 / Don Water Found 22. Street	7 (masl) 005432129 nestic	UTM RC 5 Water Supply	Northing margin of error : 10	5028122 0 m - 300 m	14.9 16.5 44.2 TAWA-CARI Depth (m) 0.0 0.6 2.7 7.0 9.1	65.5 64.0 36.2 ETON Elev (masi) 75.7 75.1 73.0 68.7 66.6	BLACK GREY Color RED BLUE	Flowing? N SWL Pumping WL Pump Rate Spec. Cap. MEDI	CLAY / IUM SAND / SLATE / 4.3 8.5 36.4 8.52 TOPSOIL / IUM SAND / CLAY / CLAY /	(mbgs) (mbgs) (LPM) (LPM/m) Soil Desc	71.4 67.2 Friptions	/ / (masl) (masl) 1 / 0 Hr / Min	
	3/1/1954	Town/City Lot Conc Elev 75. Well_Depth_m: 22.2504 / Don Water Found 22. Street	7 (masl) 005432129 nestic	UTM RC 5 Water Supply	Northing margin of error : 10	5028122 0 m - 300 m	14.9 16.5 44.2 TAWA-CARI Depth (m) 0.0 0.6 2.7 7.0	65.5 64.0 36.2 ETON Elev (masi) 75.7 75.1 73.0 68.7	BLACK GREY Color RED	Flowing? N SWL Pumping WL Pump Rate Spec. Cap. MEDI	CLAY / IUM SAND / SLATE / 4.3 8.5 36.4 8.52 TOPSOIL / IUM SAND / CLAY /	(mbgs) (mbgs) (LPM) (LPM/m) Soil Desc MEDIUM	71.4 67.2 Friptions	/ / (masl) (masl) 1 / 0 Hr / Min	

OTTAWA CITY (GLOUCESTER) / OTTAWA-CARLETON

Water Well Records

Lot 015 Conc

Well Record #

1500418

Based on Ministry of Environment Water Well Information Database June 30, 2022, available online.

Flowing? N

SWL 4.6

(mbgs)

75.5

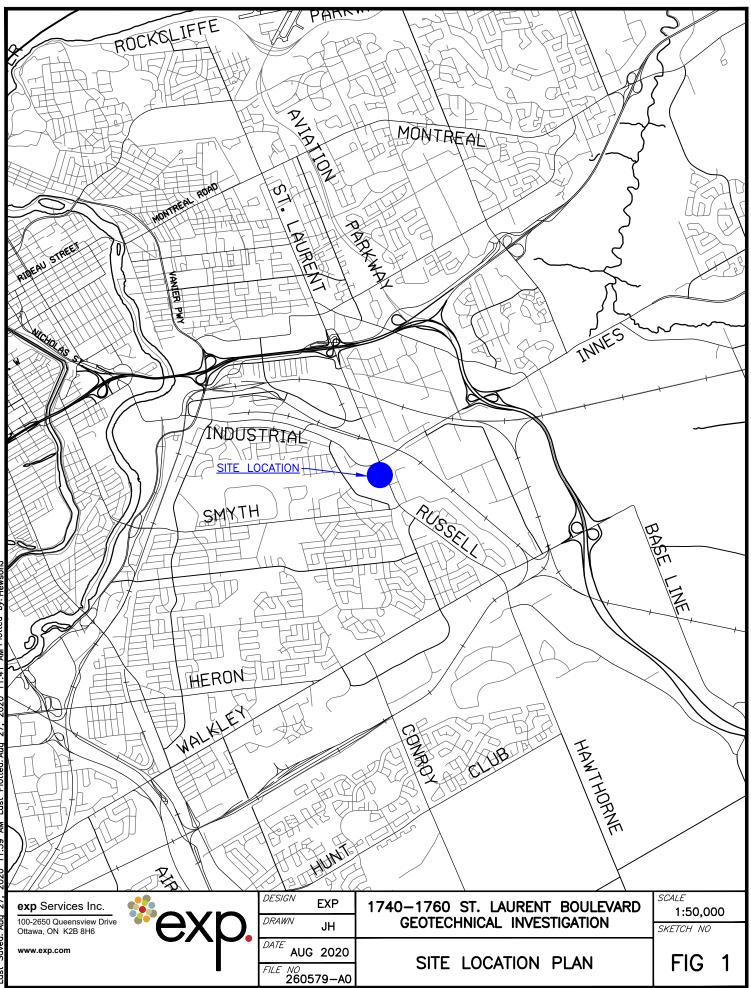
(masl)

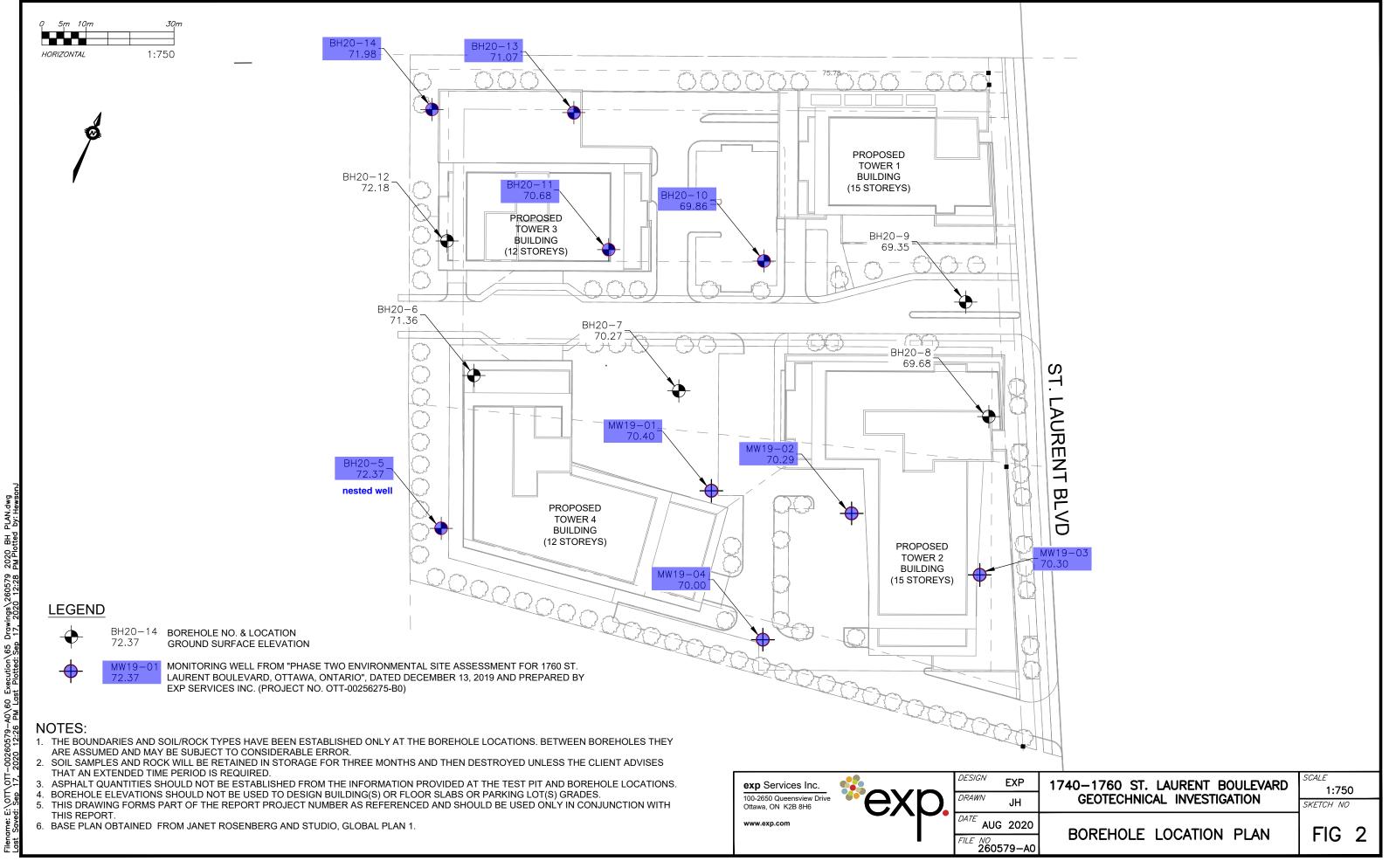
1508956 Lot Conc OTTAWA CTY / OTTAWA-CARLETON Proming? NL (a) (mop) 57.5 (max) (max) Date 8/8/1991 (Well_Depth_m: 0.4799951225) Easting 469441 (UTWA CTY / OTTAWA-CARLETON) Proming? NL (200) 53.0 (mop) 57.5 (LPM) (max) Proming? NL (200) 53.0 (mop) 65.5 (max) (max) Proming? NL (200) 53.0 (mop) 65.5 (max) (max) Proming? NL (200) 53.0 (max) (max) Proming? NL (200) 53.0 (max) 66.7 (200) Proming? NL (200) 53.0 (Coir Soil Descriptions 15356783 Lot Conc OTTAWA CITY / OTTAWA-CARLETON FESH 0.0 (max) Proming? NL (200) SNLE (201) / / 15356783 Lot Conc OTTAWA CITY / OTTAWA-CARLETON Flowing? SNLE (201) /	inne.	liable of	J, 2022, avai	une	abase su		er wen m	Jiment wa	inistry of Er	Saseu on						lecord #	WCII I
Date Bit? 191 Elev 74.3 (mas) Easting 469441 Northing 5027997 Pumping WL 22.0 (mag) 45.3 (mas) / Corrent/Cal Water Supply Special 0.0 74.3 Color Spec: Cap. 0.75 (LPM) H / Min / Corrent/Cal Water Supply Size (mas) Depth (m) Elev (mas) 0.0 74.3 Color Solid Descriptions Stread TownCity Size (mas) Size (mas) Size (mas) Clar Size (LPM) / 1536783 Lot Conc OTTAWACITY / OTTAWA-CARLETON Floating? Sixe (mbg) (mas) Date \$212000 Elev 78.5 Monthing Size (mas) Monthing Size (mas) Pumping WL (LPM) / Vieter Found (mbg) (mas) Monthing Size (mas) Monthing Size (mas) Sixe (mas) Pumping WL Sixe (mas) Sixe (mas) Sixe (mas) Multic (mbg) (mas) Monthing Size (mas) Northing Size (mas) Sixe (mas) <th></th> <th></th> <th></th> <th></th> <th></th> <th>-</th> <th></th> <th>N</th> <th>AWA-CARL</th> <th>сіту / от</th> <th>OTTAWA</th> <th></th> <th></th> <th>Conc</th> <th>Lot</th> <th>08958</th> <th>1</th>						-		N	AWA-CARL	сіту / от	OTTAWA			Conc	Lot	08958	1
Water Found 10.7 (mbg) FRESH Depth (m) Elve (mail) 74.3 Color Soil Descriptions Street Street 0.0 7.4 G6.7 BLUE CLAV / / 30.5 43.8 BLUE CLAV / / / / 1536783 Lot Conc OTTAWA CITY / OTTAWA-CARLETON Flowing? (mas) Date \$21206 Elve 78.5 66.7 BLUE CLAV / / 1536783 Lot Conc OTTAWA CITY / OTTAWA-CARLETON Flowing? (mas) Pumping WL Depth (m) Elve (mas) SWL (mbgs) (mas) VelL_Depth_m: 6.6 77.9 BROWN SAND / GRAVEL / / VelL_Depth_m: 6.6 77.9 GREY SUT / / / Date 1/1/3206 Elve GREY SUT / / / TownCity OTTAWA Street 1910 STLMENT NOA Soil Descriptions Soil Descriptions	(masl) 0	45.3 1 /	nbgs) 4 PM)	(29.0 9.1	Pumping WL Pump Rate					-	TMRC 5	UT	30.4799995422363			Date
BLUE CLVY / VI BLACK / / / / VI BLACK / / / / VI BLACK / / / / / / / VI BLACK / / / / / / / / / / / / / / / / / / /							Color	• •	• • •		FRESH		-		Street		
BLACK SHALE / / 1536783 Lot Conc OTTAWA CITY / OTTAWA-CARLETON Flowing? SWL (mbgs) (masi) Date 9/21/2006 Elev 78.5 (mssl) Easting 451034 Northing 5027736 Pumping WL (mbgs) (masi) // Observation Wells UTM RC 3 margin of error: 10 - 30 m Pumping WL (mbgs) (masi) // Observation Wells Depth (m) Elev (masi) 0.0 78.5 Color Soli Descriptions // Observation Wells 0.6 77.9 BROWN SAND / GRAVEL / IL // Observation Wells 0.6 77.9 BROWN SAND / GRAVEL / IL // Townricity OTTAWA GRAVEL / IL .		1 1						66.7	7.6								
Lott Lott Conc SWL (mbgs) (mas) 0.0 PUmping WL (mbgs) (mas) Pumping WL (mbgs) (mas) 1 Observation Wells Depth (m) Elev 78.5 (mas) Spec. Cap. (LPM/m) Hr/Mn Variable / Observation Wells Depth (m) Elev (mas) Spec. Cap. (LPM/m) Hr/Mn Water Found (mbgs) (mas) 0.0 78.5 Color Soil Descriptions 5treet 99 SMYTH ROAD Town/City OTTAWA 0.0 78.5 Color SAND / GRAVEL / FILL 7041587 Lot Conc GLOUCESTER TOWNSHIP / OTTAWA-CARLETON Flowing? (mbgs) (mbgs) <td< td=""><td></td><td> </td><td></td><td></td><td></td><td></td><td></td><td>43.8</td><td>30.5</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>		 						43.8	30.5								
Date 9/21/2006 Elev 78.5 (mas) Easting 451034 Northing 5027736 Pumping WL Pump Rate (mbgs) (mbgs) <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td>N</td> <td>AWA-CARL</td> <td>сіту / от</td> <td>OTTAWA</td> <td></td> <td></td> <td>Conc</td> <td>Lot</td> <td>36783</td> <td>1</td>						-		N	AWA-CARL	сіту / от	OTTAWA			Conc	Lot	36783	1
Water Found (mbgs) (mbgs) (mbgs) (mbgs) Solid Descriptions Street 969 SMYTH ROAD 5 Color Salid Descriptions Salid Descriptions Town/City OTTAWA 6.6 77.9 BROWN SAND / GRAVEL / Fill 4.2 74.3 GREY SLT / / / / 7041587 Lot Conc GLOUCESTER TOWNSHIP / OTTAWA-CARLETON Flowing? (mbgs) (mbgs) (mas) Date 11/13/2006 Elev 77.9 (mas) Easting 451137 Northing 5027644 SWL (mbgs) (mas) DDMMYY Weil_Depth_m: 4.4200007629395 UTM RC 3 margin of error : 10 - 30 m Sub concert Spec. Cap. (LPM) / / Test Hole Depth (m) Elev (masi) 0.0 77.9 Color Soil Descriptions Water Found (mbgs) (mas) 0.0 77.9 Color Soil Descriptions Town/City OTTAWA (mas)	(masl)	1	nbgs) PM)	(Pumping WL Pump Rate		ev (masl)	Depth (m)		-	TM RC 3 on Wells	דט	6	Well_Depth_m:		Date
4.2 74.3 GREY SILT / / 7041587 Lot Conc GLOUCESTER TOWNSHIP / OTTAWA-CARLETON Flowing? Date 11/13/2006 Elev 77.9 (masl) Easting 451137 Northing 5027644 SWL (mbgs) (masl) Date 11/1/13/2006 Elev 77.9 (masl) Easting 451137 Northing 5027644 SWL (mbgs) (masl) Pumping WL (mbgs) UTM RC 3 margin of error : 10 - 30 m Depth (m) Elev (masl) Spec. Cap. (LPM) / Vater Found (mbgs) (masl) (masl) 0.0 77.9 Color Soil Descriptions Street 1910 ST LAURENT BLVD 0.2 77.8 / / / Town/City OTTAWA 0.2 77.3 SAND / GREY / / 103500 Lot 014 Conc GLOUCESTER TOWNSHIP / OTTAWA-CARLETON Flowing? SWL / / Date 5/6/2009 Elev (masl) 502819 Morthing 5028181								78.5	0.0			(masl)		969 SMYTH ROAD	Street		
Total Tail OREV CLAV / SLEV / 6.0 72.5 GREY CLAV / SILTY / 7041587 Lot Conc GLOUCESTER TOWNSHIP / OTTAWA-CARLETON Flowing? SWL (mbgs) (mas) Date 11/13/2006 Elev 77.9 (mas) Easting 451137 Northing 5027644 Pumping WL (mbgs) (mas) Date 11/1/13/2006 Elev 77.9 (mas) UTM RC 3 margin of error : 10 - 30 m Pumping WL (mbgs) (mas) / Test Hole Depth (mbgs) (mas) 0.0 77.9 Color Soil Descriptions Street 1910 ST LAURENT BLVD Town/City OTTAWA 0.0 77.9 Color Soil Descriptions 0.8 77.2 BROWN SAND / GRAVEL / FILL / LOOSE 1 11/13/13/1000 Lot 014 Conc GLOUCESTER TOWNSHIP / OTTAWA-CARLETON Flowing? SWL (mbgs) (mas) 0.7 77.3<	FILL		GRAVEL														
T041587 Lot Conc GLOUCESTER TOWNSHIP / OTTAWA-CARLETON Flowing? Date 11/13/2006 Elev 77.9 (mas) Easting 451137 Northing 5027644 Pumping WL (mbgs) (mas) DDMMYY Well_Depth_m: 4.70.9 (mas) Easting 451137 Northing 5027644 Pumping WL (mbgs) (mas) DDMMYY Well_Depth_m: 4.70.9 (mas) Easting 451137 Northing 5027644 Pumping WL (mbgs) (mas) Vell_Depth_m: 4.451107 UTM RC 3 margin of error: 10 - 30 m Depth (m) Elev (mas1) Spec. Cap. (LPM/m) Hr / Min Vater Found (mbgs) (mas1) 0.0 77.9 Color Soil Descriptions Street 1910 ST LAURENT BLVD 0.2 77.8 / / / Town/City OTTAWA 0.2 77.8 / / / 1010 ST LAURENT BLVD 0.2 77.8 GREY / / 1010 ST LAURENT BLVD </td <td></td> <td>-</td> <td>SILTY</td> <td></td>		-	SILTY														
Date 11/13/2006 Elev 77.9 (mas) Easting 451137 Northing 5027644 Pumping WL (mbgs) (mas) DDMMYY Well_Depth_m:: 4.4200007629395 UTM RC 3 margin of error : 10 - 30 m Pumping WL (mbgs) (mas) / / Test Hole Depth (m) Elev (masi) 0.0 77.9 Color Soil Descriptions Street 1910 ST LAURENT BLVD (mas) (mas) 0.0 77.9 Color Soil Descriptions Street 1910 ST LAURENT BLVD 0.2 77.8 / / / 0.2 77.3 BROWN SAND / GRAVEL / / 0.8 77.2 BROWN SAND / FilL / / 7/130500 Lot 014 Conc GLOUCESTER TOWNSHIP / OTTAWA-CARLETON SWL (mbgs) (mas) Date 5/6/2009 Elev (mas) Easting 450889 Northing 5028181 Pumpn						-	-			SHIP / OT		GL		Conc	Lot	41587	7
Water Found (mbgs) (masl) 0.0 77.9 Color Soil Descriptions Street 1910 ST LAURENT BLVD 0.0 77.9 Color V V Town/City OTTAWA 0.2 77.8 / / 0.2 77.8 // // // 0.3 77.2 SAND / GRAVEL // 0.3 77.2 BROWN SAND / GRAVEL // 0.3 77.2 BROWN SAND / FILL / 0.3 77.2 BROWN SAND / FILL / LOSSE 1 0.3 77.2 BROWN SAND / FILL / LOSSE 1 0.3 77.2 BROWN SAND / FILL / LOSSE 1 0.3 77.2 BROWN SAND / FILL / LOSSE 1 0.3 77.2 BROWN SAND / FILL / LOSSE 1 0.3 75 GREY CLAY / / / /	(masl)	1	nbgs) PM)	(Pumping WL Pump Rate					-		-				Date
0.7 77.3 SAND / GRAVEL / FILL / FILL 0.8 77.2 BROWN SAND / FILL / LOOSE 4.4 73.5 GREY CLAY / / / 7130500 Lot 014 Conc GLOUCESTER TOWNSHIP / OTTAWA-CARLETON Flowing? SWL (mbgs) (masl) Date 5/6/2009 Elev (masl) Easting 450889 Northing 5028181 Pumping WL (mbgs) (masl) DDMMMYY Well_Depth_m: 5.19999980926514 UTM RC 2 margin of error : 3 - 10 m Pump Rate (LPM) /	Min					Spec. Cap.	Color	. ,				(masi)		1910 ST LAURENT	Street		
0.8 77.2 BROWN SAND / FILL / LOOSE 130500 Lot 014 Conc GLOUCESTER TOWNSHIP / OTTAWA-CARLETON Flowing: / Date 5/6/2009 DDMMYY Elev (mas) Easting 450889 Northing 5028181 SWL (mbgs) (masl) Vell_Depth_m: 5.19999980926514 UTM RC 2 margin of error: 3 - 10 m Spec. Cap. (LPM) /		1		1				77.8	0.2								
7130500 Lot 014 Conc GLOUCESTER TOWNSHIP / OTTAWA-CARLETON Flowing? (mas) (mas) </td <td></td>																	
Date 5/6/2009 Elev (masl) Easting 450889 Northing 5028181 Pumping WL (mbgs) (masl) DDMMYY Well_Depth_m: 5.19999980926514 UTM RC 2 margin of error : 3 - 10 m Pump Rate (LPM) / / Tost Holo Tost Holo Spec. Cap. (LPM/m) Hr / Min	LOOSE		FILL														
Date 5/6/2009 Elev (masl) Easting 450889 Northing 5028181 Pumping WL (mbgs) (masl) DDMMYY Well_Depth_m: 5.19999980926514 UTM RC 2 margin of error : 3 - 10 m Pump Rate (LPM) / / Tost Hole Tost Hole Tost Hole Spec. Cap. (LPM/m) Hr / Min						-		N	AWA-CARL	SHIP / OT		GL		Conc	Lot 014	30500	7
Denth (m) Elev (masi)	(masl)	1	nbgs) PM)	(Pumping WL Pump Rate					-		TU	5.19999980926514			Date
Water Found (mbgs) (masl) 0.0 Color Soil Descriptions Street 1740 ST. LAURENT BLVD. Town/City Ottawa		ons	ioil Descriptic				Color	ev (masi)	• • •			(masl)		id (mbgs) 1740 ST. LAURENT	Street		
0.1 OTHER / /		1		e /	OTHER				0.1								
0.9 BROWN SAND / SILTY / GRAVEL																	
1.7 BROWN SAND / SILTY /			SILTY														
2.4 BROWN CLAY / / SILTY																	
3.2 BROWN CLAY / / SILTY																	
4.1 GREY SAND / / CLAYEY 4.3 BLACK COARSE SAND / /	CLATEY					COAP											
				• •	USE OAND	COAR	DLAON		7.0								

	Record #				Based on	-	nvironment wa			ie 30, 2022, availa	
		_				5.2		GREY	COARSE SAND /		/ CLAYEY
71	50615	Lot Conc		ΟΤΤΑΨΑ	CITY / OT	TAWA-CARI	ETON	1	Flowing?		
Date	6/3/2010	Elev 79.2 (masl)	Easting 450850	Northing	5027692				SWL	(mbgs)	(masl)
Date	DDMMYY	Well_Depth_m: 5.59999990463257	UTM RC 4	margin of error : 30					iping WL	(mbgs)	(masl)
	DDIVINIT	weii_Deptii_iii. 5.59999990403257	UTWIRG 4	margin or error . 30	m - 100 m				Imp Rate	(LPM)	1
		/ Test Hole	Test Hole			Depth (m)	Elev (masl)	SI	bec. Cap.	(LPM/m)	Hr / Min
		Water Found (mbgs)	(masl)			0.0	79.2	Color		Soil Description	
		Street 907 SMYTH RD. Town/City OTTAWA				0.0	79.2	Color		Son Description	15
						0.2	79.0	BROWN	TOPSOIL /		1
						0.6	78.6	BROWN	CLAY /		
						0.8	78.5	BROWN	SAND /		,
						5.0	74.2	GREY	CLAY /		1
						5.6	73.6	UNE I	CLAY /		, / GRAVEL
	00070			0774144					Flowing?	0121	, ORATEL
1	66373	Lot Conc		UTTAWA		TAWA-CARI	EION		SWL	(mbgs)	(masl)
Date	7/12/2011	Elev (masl)	Easting 450822	Northing	5027689			D	ow∟ ping WL	(mbgs) (mbgs)	(masi) (masi)
	DDMMYY	Well_Depth_m: 3.70000004768372	UTM RC 3	margin of error : 10	- 30 m				imp Rate	(Indgs) (LPM)	(masi)
				-					pec. Cap.	(LPM/m)	, Hr / Min
		1	Abandoned-Other			Depth (m)	Elev (masl)	5	. oap.	(= 10011)	
		Water Found 1.5 (mbgs)	(masl)			0.0		Color		Soil Description	IS
		Street SMYTH RD 905/90	7								
		Town/City Ottawa									
						3.7		BROWN	SAND /	FILL	1
71	66937	Lot Conc		OTTAWA	CITY / OT	TAWA-CARI	ETON	I	Flowing?		
Date	4/12/2011	Elev (masi)	Easting 450822	Northing	5027689				SWL	(mbgs)	(masl)
Date	DDMMYY	Well_Depth_m: 3.7000004768372	UTM RC 3	margin of error : 10					iping WL	(mbgs)	(masl)
	DDIVINIT	weii_Deptii_iii. 5.70000004708372	UTWIRG 5	margin or error : 10	- 30 m				Imp Rate	(LPM)	1
		/ Test Hole	Test Hole			Depth (m)	Elev (masl)	SI	bec. Cap.	(LPM/m)	Hr / Min
		Water Found 1.5 (mbgs)	(masl)			0.0	Elev (masi)	Color		Soil Description	
		Street 905 SMYTH RD				0.0		COIDI		Soli Description	15
		Town/City									
						3.7		BROWN	SAND /	FILL	1
	84925	Lot Conc	GL	OUCESTER TOWN	ISHIP / OT	TAWA-CARL	ETON	I	lowing?		
71		L		Northing	5027738				SWL	(mbgs)	(masl)
	6/18/2012	Eloy (mo-h	Eacting 454054						iping WL	(mbgs)	(masl)
	6/18/2012	Elev (masl) Well Depth m: 7.32000017166139	Easting 451051	-				PL	Imp Rate	(LPM)	1
	6/18/2012 DDMMYY	Elev (masl) Well_Depth_m: 7.32000017166138	Easting 451051 UTM RC 4	margin of error : 30	m - 100 m						
		Well_Depth_m: 7.32000017166138	-	margin of error : 30	m - 100 m	Donth (m)	Eloy (mool)		bec. Cap.	(LPM/m)	Hr / Min
		Well_Depth_m: 7.32000017166138	UTM RC 4	margin of error : 30	m - 100 m	Depth (m)	Elev (masl)	SI	bec. Cap.	, ,	
		Well_Depth_m: 7.32000017166138 / Monitoring and T Water Found (mbgs) Street 1929 RUSSELL RO	UTM RC 4 e Monitoring and Test Ho (masl)	margin of error : 30	m - 100 m	Depth (m) 0.0	Elev (masl)		bec. Cap.	(LPM/m) Soil Descriptior	
		Well_Depth_m: 7.32000017166138 / Monitoring and T Water Found (mbgs)	UTM RC 4 e Monitoring and Test Ho (masl)	margin of error : 30	m - 100 m	0.0	Elev (masi)	S i Color	·	Soil Description	IS
71 Date		Well_Depth_m: 7.32000017166138 / Monitoring and T Water Found (mbgs) Street 1929 RUSSELL RO	UTM RC 4 e Monitoring and Test Ho (masl)	margin of error : 30	m - 100 m	0.0	Elev (masl)	Sı Color BLACK	TOPSOIL /	Soil Description	is / LOOSE
		Well_Depth_m: 7.32000017166138 / Monitoring and T Water Found (mbgs) Street 1929 RUSSELL RO	UTM RC 4 e Monitoring and Test Ho (masl)	margin of error : 30	m - 100 m	0.0 0.6 2.1	Elev (masi)	Si Color BLACK BROWN	TOPSOIL / CLAY /	Soil Description	is / LOOSE / HARD
		Well_Depth_m: 7.32000017166138 / Monitoring and T Water Found (mbgs) Street 1929 RUSSELL RO	UTM RC 4 e Monitoring and Test Ho (masl)	margin of error : 30	m - 100 m	0.0	Elev (masi)	Sı Color BLACK	TOPSOIL /	Soil Description	is / LOOSE

Well Record #	Base	ed on Ministry of Enviror	ment Water Well Information Da	itabase June 30, 2022, avai	lable online.
7184926	Lot Conc GLOUCESTER TOWNSHIP	P / OTTAWA-CARLETON	Flowing?		
Date 6/18/2012 DDMMYY	Elev (masl) Easting 451027 Northing 502 Well_Depth_m: 6.09999990463257 UTM RC 4 margin of error : 30 m - 1	27739 100 m	SWL Pumping WL Pump Rate Spec. Cap.	(mbgs) (mbgs) (LPM) (LPM/m)	(masl) (masl) / Hr / Min
	/ Monitoring and Te Monitoring and Test Hole Water Found (mbgs) (masl) Street 1929 RUSSEL ROAD Town/City Ottawa	Depth (m) Elev 0.0	r (masl) Color	Soil Descriptio	
		0.6 2.1 4.0 6.1	BLACK BROWN GREY GREY	TOPSOIL / CLAY / CLAY / CLAY /	/ LOOSE / SOFT / HARD / HARD
7184927	Lot Conc GLOUCESTER TOWNSHIF	-			
Date 6/18/2012 DDMMYY		27728 100 m	SWL Pumping WL Pump Rate Spec. Cap. (masl) Color	(mbgs) (mbgs) (LPM) (LPM/m) Soil Descriptio	(masi) (masi) / Hr / Min
		0.6 2.1 4.0 7.3	BLACK BROWN GREY GREY	/ TOPSOIL / CLAY / CLAY / CLAY /	/ / LOOSE / HARD / HARD /
7184928	Lot Conc GLOUCESTER TOWNSHIP	P / OTTAWA-CARLETON	Flowing?		
Date 6/18/2012 DDMMYY			SWL Pumping WL Pump Rate Spec. Cap. r (masl) Color	(mbgs) (mbgs) (LPM) (LPM/m) Soil Descriptio	(masl) (masl) / Hr / Min
		0.6 7.9	BLACK BROWN ME	TOPSOIL / DIUM SAND / SAND	/ / LOOSE
7184929 Date 6/16/2012 DDMMYY	Lot Conc GLOUCESTER TOWNSHIF Elev (masl) Easting 451083 Northing 502 Well_Depth_m: 7.32000017166138 UTM RC 4 margin of error : 30 m - 1 / Monitoring and Te Monitoring and Test Hole Water Found (mbgs) (masl) Street 1929 RUSSEL ROAD Town/City Ottawa	27817 100 m	l Flowing? SWL Pumping WL Pump Rate Spec. Cap. (masl) Color	(mbgs) (mbgs) (LPM) (LPM/m) Soil Descriptio	(masi) (masi) / Hr / Min ons
		0.6 2.1 4.0 7.3	BLACK BROWN GREY GREY	TOPSOIL / CLAY / CLAY / CLAY /	/ LOOSE / HARD / HARD /

	Record #				В	ased on Ministry of E	invironment Wa	iter weil informatio	n Database Jun	e 50, 2022, avail	
71	97902	Lot Co	onc	GL	OUCESTER TOWNS	HIP / OTTAWA-CARL	ETON	Flow	-		
Date	DDMMYY	Elev Well_Depth_m: 3.6		Easting 451073 UTM RC 4 Observation Wells	Northing margin of error : 30 n		- , <i>i</i> , i,	Pumping Pump Spec.	Rate	(mbgs) (mbgs) (LPM) (LPM/m)	(masl) (masl) / Hr / Min
		Water Found	(mbgs)	(masl)		Depth (m) 0.0	Elev (masl)	Calar			
		Street C Town/City OT	CORNER OF ST. LA	AURANT BLVD. & BOUI	RASSA S	0.0		Color	,	Soil Description	
						0.1			TOPSOIL /		/ / FILL
						0.6		BROWN	CLAY /	SAND	/ FILL
						1.2		BROWN	SILT /	GRAVEL	/ FILL
						1.8		BROWN	CLAY /	GRAVEL	/ FILL
						2.4		BROWN	CLAY /	SAND	/ FILL
						3.7		BROWN	CLAY /		1
72	230032	Lot Co	onc	GL	OUCESTER TOWNS	HIP / OTTAWA-CARL	ETON	Flow	ng?		
									SWL	(mbgs)	(masl)
Date	9/16/2014 DDMMYY	Elev Well_Depth_m: 7.6	(masl) 51999988555908	Easting 450999 UTM RC 4	Northing margin of error : 30 m	5027723 n - 100 m		Pumping Pump		(mbgs) (LPM)	(masl) /
		1	Monitoring and Te	Monitoring and Test Ho	ole	Depth (m)	Elev (masl)	Spec.	Cap.	(LPM/m)	Hr / Min
		Water Found	(mbgs)	(masl)		0.0	Elev (masi)	Color		Soil Description	ns
		Street 94 Town/City Ot	45 SMYTH RD ttawa			0.0		000		Son Description	
						1.5		BROWN	SAND /		/ SOFT
						4.6		GREY	SILT /	CLAY	/ SOFT
						7.6		GREY	CLAY /		/ SOFT
	230033		onc			HIP / OTTAWA-CARL	ETON	Flow	ng? SWL	(mbgs)	(masl)
Date	9/16/2014	Elev	(masl)	Easting 451002	Northing	5027711		Pumping	WL	(mbgs)	(masl)
	DDMMYY	Well_Depth_m: 7.6	1999988555908	UTM RC 4	margin of error : 30 m	n - 100 m		Pump	Rate	(LPM)	1
		1	Monitoring and Te	Monitoring and Test Ho	ole	Depth (m)	Elev (masl)	Spec.	Cap.	(LPM/m)	Hr / Min
		Water Found	(mbgs) 45 SMYTH RD	(masl)		0.0	Elev (masi)	Color		Soil Description	ns
		Street 94 Town/City Ot									
						1.5		BROWN	FINE SAND /		/ SOFT
						4.6		GREY	SILT /	CLAY	/ SOFT
										CLAY	
72	249254	Town/City Ot		GL	OUCESTER TOWNS	4.6	ETON	GREY GREY Flow	SILT / CLAY /		/ SOFT / SOFT
		Town/City Ot	ttawa			4.6 7.6 HIP / OTTAWA-CARL	ETON	GREY GREY Flow	SILT / CLAY / ng? SWL	(mbgs)	/ SOFT / SOFT (masl)
	249254 9/8/2015 DDMMYY	Town/City Ot	ttawa ONC (masi)	GL Easting 451169 UTM RC 4	OUCESTER TOWNS Northing margin of error : 30 n	4.6 7.6 HIP / OTTAWA-CARL 5027787	ETON	GREY GREY Flow Pumping Pump	SILT / CLAY / ng? SWL WL Rate	(mbgs) (mbgs) (LPM)	/ SOFT / SOFT (masl) (masl) /
	9/8/2015	Town/City Ot Lot Co Elev	ttawa ONC (masl) 199999990463257	Easting 451169	Northing	4.6 7.6 HIP / OTTAWA-CARL 5027787 a - 100 m		GREY GREY Flow Pumping	SILT / CLAY / ng? SWL WL Rate	(mbgs) (mbgs)	/ SOFT / SOFT (masl) (masl)
	9/8/2015	Town/City Ot Lot Co Elev Well_Depth_m: 6.0 Monitoring / Water Found	ttawa ONC (masl))9999990463257 / Test Hole (mbgs) 290 GLADWIN GRE	Easting 451169 UTM RC 4 Test Hole (masl)	Northing	4.6 7.6 HIP / OTTAWA-CARL 5027787	ETON Elev (masi)	GREY GREY Flow Pumping Pump	SILT / CLAY / ng? SWL WL Rate	(mbgs) (mbgs) (LPM)	/ SOFT / SOFT (masl) (masl) / Hr / Min
	9/8/2015	Town/City Ot Lot Co Elev Well_Depth_m: 6.0 Monitoring / Water Found Street 22	ttawa ONC (masl))9999990463257 / Test Hole (mbgs) 290 GLADWIN GRE	Easting 451169 UTM RC 4 Test Hole (masl)	Northing	4.6 7.6 HIP / OTTAWA-CARL 5027787 a - 100 m Depth (m) 0.0		GREY GREY Flow Pumping Pump Spec. Color	SILT / CLAY / ng? SWL WL Rate	(mbgs) (mbgs) (LPM) (LPM/m) Soil Description	/ SOFT / SOFT (masl) (masl) / Hr / Min ns
72 Date	9/8/2015	Town/City Ot Lot Co Elev Well_Depth_m: 6.0 Monitoring / Water Found Street 22	ttawa ONC (masl))9999990463257 / Test Hole (mbgs) 290 GLADWIN GRE	Easting 451169 UTM RC 4 Test Hole (masl)	Northing	4.6 7.6 HIP / OTTAWA-CARL 5027787 n - 100 m Depth (m)		GREY GREY Flow Pumping Pump Spec.	SILT / CLAY / ng? SWL WL Rate Cap.	(mbgs) (mbgs) (LPM) (LPM/m)	/ SOFT / SOFT (masl) (masl) / Hr / Min


	Record #							invironment Wa					
72 Date	2 67404 6/15/2016 DDMMYY	Monito Water For Stree	Conc (masl) i: 3.9600003814697 ring / Test Hole und (mbgs) t 911 INDUSTRIAL AV y OTTAWA	Easting 4506 UTM RC Monitoring and Tes (masi) /E	24 Nort 4 margin of e	TAWA CITY / (hing 502845 rror : 30 m - 100 r	5	LETON Elev (masl)		Flowing? SWL Pumping WL Pump Rate Spec. Cap.		(mbgs) (mbgs) (LPM) (LPM/m) Soil Description	(masl) (masl) / Hr / Min ns
							0.3 2.1 3.0 4.0		BLACK GREY GREY GREY		OTHER / CLAY / CLAY / SAND /	GRAVEL GRAVEL SILT SILT	/ HARD / LOOSE / SOFT / SOFT
72 Date	267471 6/15/2016 DDMMYY	Monito Water For Stree	Conc (masl) h: 4.88000011444092 ring / Test Hole und (mbgs) t 911 INDUSTRIAL AV y OTTAWA	Easting 4506 UTM RC Monitoring and Tes (masl) /E	64 Nort 4 margin of e	TAWA CITY / (hing 502847 rror : 30 m - 100 r	'4	LETON Elev (masi)	P Color	Flowing? SWL Pumping WL Pump Rate Spec. Cap.		(mbgs) (mbgs) (LPM) (LPM/m) Soil Description	(masl) (masl) / Hr / Min ns
							0.9 2.4 3.3 4.9		BROWN GREY GREY GREY		GRAVEL / SILT / SILT / SAND /	SAND CLAY CLAY SILT	/ SOFT / SOFT / SOFT / SOFT
72 Date	270006 8/9/2016 DDMMYY	Monito Water For Stree	t 740 INDUSTRIAL AV	Easting 4504 UTM RC Monitoring and Tes (masi)	63 Nort 4 margin of e	TOWNSHIP / (hing 502832 rror : 30 m - 100 n	1	LETON Elev (masi)	F Color	Flowing? SWL Pumping WL Pump Rate Spec. Cap.		(mbgs) (mbgs) (LPM) (LPM/m) Soil Descriptio	(masl) (masl) / Hr / Min ns
		Town/City	y Ottawa				0.3 1.8 4.0 4.3		BLACK GREY GREY GREY		GRAVEL / SAND / CLAY / TILL /	SILT SILT GRAVEL	/ HARD / DENSE / DENSE / HARD


EXP Services Inc.

1740-1760 St Laurent Blvd., Ottawa, Ontario Hydrogeological Investigation OTT-00260579-B0 October 17, 2023

Appendix B – Borehole Logs

Project Name: Proposed Residential Development 1740-1760 St. Laurent Boulevard, Ottawa, Ontario Project Number: OTT-00260579-A0 February 2, 2021 DRAFT 2

Notes On Sample Descriptions

1. All sample descriptions included in this report follow the Canadian Foundations Engineering Manual soil classification system. This system follows the standard proposed by the International Society for Soil Mechanics and Foundation Engineering. Laboratory grain size analyses provided by **exp** Services Inc. also follow the same system. Different classification systems may be used by others; one such system is the Unified Soil Classification. Please note that, with the exception of those samples where a grain size analysis has been made, all samples are classified visually. Visual classification is not sufficiently accurate to provide exact grain sizing or precise differentiation between size classification systems.

CLAY		SILT			SAND			GRAVEL		COBBLES	BOULDERS
	FINE	MEDIUM	COARS	E FINE	MEDIUM	COA	RSE FINE	MEDIUM	COARS	E	
	0.002	0.006	0.02	0.06	0.2	0.6	2.0	6.0	20	60	200

CLAY (PLASTIC) TO	FINE	MEDIUM	CRS.	FINE	COARSE
SILT (NONPLASTIC)		SAND	0		GRAVEL

UNIFIED SOIL CLASSIFICATION

- 2. Fill: Where fill is designated on the borehole log it is defined as indicated by the sample recovered during the boring process. The reader is cautioned that fills are heterogeneous in nature and variable in density or degree of compaction. The borehole description may therefore not be applicable as a general description of site fill materials. All fills should be expected to contain obstruction such as wood, large concrete pieces or subsurface basements, floors, tanks, etc., none of these may have been encountered in the boreholes. Since boreholes cannot accurately define the contents of the fill, test pits are recommended to provide supplementary information. Despite the use of test pits, the heterogeneous nature of fill will leave some ambiguity as to the exact composition of the fill. Most fills contain pockets, seams, or layers of organically contaminated soil. This organic material can result in the generation of methane gas and/or significant ongoing and future settlements. Fill at this site may have been monitored for the presence of methane gas and, if so, the results are given on the borehole logs. The monitoring process does not indicate the volume of gas that can be potentially generated nor does it pinpoint the source of the gas. These readings are to advise of the presence of gas only, and a detailed study is recommended for sites where any explosive gas/methane is detected. Some fill material may be contaminated by toxic/hazardous waste that renders it unacceptable for deposition in any but designated land fill sites; unless specifically stated the fill on this site has not been tested for contaminants that may be considered toxic or hazardous. This testing and a potential hazard study can be undertaken if requested. In most residential/commercial areas undergoing reconstruction, buried oil tanks are common and are generally not detected in a conventional geotechnical site investigation.
- 3. Till: The term till on the borehole logs indicates that the material originates from a geological process associated with glaciation. Because of this geological process the till must be considered heterogeneous in composition and as such may contain pockets and/or seams of material such as sand, gravel, silt or clay. Till often contains cobbles (60 to 200 mm) or boulders (over 200 mm). Contractors may therefore encounter cobbles and boulders during excavation, even if they are not indicated by the borings. It should be appreciated that normal sampling equipment cannot differentiate the size or type of any obstruction. Because of the horizontal and vertical variability of till, the sample description may be applicable to a very limited zone; caution is therefore essential when dealing with sensitive excavations or dewatering programs in till materials.

	Log of E	Bore	9	ho	le _	M١	N1	<u>9-0</u>	<u>1</u>			*	Ļ	xn
Project No:	<u>OTT-000256275-B0</u>							F	iqure N	Jo	3			$\gamma \gamma$
Project:	Phase II Environmental Site Assessme	nt							0		of	- 2		•
Location:	1760 St. Laurent Boulevard, Ottawa								Pa	ge. <u> </u>	_ 01	<u> </u>		
Date Drilled:	November 18th, 2019			Split Spo	oon Sample	е	\boxtimes]	Combus	tible Vapou	ır Readiı	ng		
Drill Type:	CME 55 Rubber Track			Auger S SPT (N)	•			-	Natural I Atterberg	Aoisture Co a Limits	ontent	F		X ⊕
Datum:	Geodetic Elevation			Dynamic	Cone Tes	st		-	Undraine	, ed Triaxial a at Failure	at	•		⊕
Logged by:	MD Checked by: PS			Shelby T Shear S Vane Te	trength by		+ s	•	Shear St	ar Pailure rength by neter Test				
G Y M B C L L	SOIL DESCRIPTION	Geodetic Elevation m 70.4	D e p t h	Shear	andard Per 20 4 Strength 50 10	0	60	alue <u>80</u> kPa 200	2: Nat Atterb	tible Vapou 50 500 ural Moistur erg Limits (0 40	ce Conte % Dry W	50 nt %	Ρl	Natural Unit Wt. kN/m³
Brow stain Stain Trace	WITH CLAY TO SILTY CLAY e fine gravel present, brownish grey, t to wet, no odour or staining, (hard). – –	70.3 69.8 68.87 68.87	1					1 225 s=4.{1	0.5 0.3 1.3 1.5				\ominus	SS1 SS2 SS3A SS3B
With dark	DY GRAVELLY TILL cobbles and boulders, brown turning grey, moist / wet, no odour or staining, [_] e to very dense).			8				1	9.9				H	SS4A SS4B
	-	-	4	5 O					27.3				X	SS5

Continued Next Part NOTES: 1. Borehole data requires interpretation by EXP b use by others	WAT	V	VEL RE Vater evel (m)		S Hole Op		Run No.	CO Dep (m	th	LLING RE % Rec.)	RUN2
Dark grey to black, some hor fractures and silt seams, fair quality.	izontal to good	8 -										RUN1
	63.4 63.3 63.3	7 -			50 / 76 mr	n		₽ 27.0 				SS8 SS9
WM.GDT 9/2/1/20	-	6 -		27			119/3	2.2 380 mm				SS7
	-		5 ○ 4 ○					27.3				SS5 SS6

ŝ	1. Borehole data requires interpretation by EXP before	WAI	ER LEVEL RECO	RDS		CORE DRI	LLING RECOF	
LOG	use by others	Date	Water Level (m)	Hole Open To (m)	Run No.	Depth (m)	% Rec.	RQD %
Ц	2. A flushmount monitoring well with a 51 mm slotted standpipe was installed in the borehole upon	Nov. 22, 2019	1.7	-	1	7.57 - 9.07	100	71
핅	completion.	Nov. 25, 2019	2.1	-	2	9.07 - 10.59	100	84
BORI	3. Field work was supervised by an EXP representative.	Sept. 3, 2020	1.5					
Ы	4. See Notes on Sample Descriptions							
LOG	5. Log to be read with EXP Report OTT-000256275-B0							

Log of Borehole MW19-01 Project No: OTT-000256275-B0

Project: Phase II Environmental Site Assessment

Figure No.

re No. ____

s				Sta	ndard P	enetratio	on Te	est N	Valu	е		Pag	tible V	/apoi	ur Read	2 ling (ppm)	Ş	
М В	SOIL DESCRIPTION	Geodetic Elevation	D e p t h		20	40	60)	80)		25	50	50	0	750	- Å	Natur Unit V kN/m
S Y B O L		m	ĥ	Shear	Strength					kPa	A					ent % Weight)	SAMPLES	kN/n
		60.4	10		50	100	15	0 • :: ::•	20			2	• • • • •	40	, 	60 · · · · · · · · · ·		
																	-	
	End of Borehole at 10.59 m Depth.	- 59.8	-					•										
	End of Borehole at 10.59 m Depth, Borehole Terminated																	
								::										
								::										
								: :	:::									
											::							
								::										
								::										
								::										
								::										
								: :				:::	::::					
								::			::	:::	::::					
								:::										
								::										
								:::		· · · · ·								
				1 : : : :	1:::		:::	11	:::		111	:::	111		::::	1::::		

S OF	NOTES: 1. Borehole data requires interpretation by EXP before	WAT	ER LEVEL RECO	RDS		CORE DRI	ILLING RECOF	RD
LOG	use by others	Date	Water Level (m)	Hole Open To (m)	Run No.	Depth (m)	% Rec.	RQD %
Ľ	2. A flushmount monitoring well with a 51 mm slotted standpipe was installed in the borehole upon	Nov. 22, 2019	1.7	-	1	7.57 - 9.07	100	71
H	completion.	Nov. 25, 2019	2.1	-	2	9.07 - 10.59	100	84
BORI	3. Field work was supervised by an EXP representative.	Sept. 3, 2020	1.5					
Р	4. See Notes on Sample Descriptions							
LOG	5. Log to be read with EXP Report OTT-000256275-B0							

	Log of E	Bore	e	hole	N	IW	<u> 19-0</u>	2		*	axe
Project No:	OTT-000256275-B0							Figure No.	4		
Project:	Phase II Environmental Site Assessme	nt						0		4	
Location:	1760 St. Laurent Boulevard, Ottawa							Page.	_1_ of _	<u> </u>	
Date Drilled:	November 18th, 2019			Split Spoon Sa	ample		\boxtimes	Combustible	Vapour Readir	ıg	
Drill Type:	CME 55 Rubber Track		_	Auger Sample SPT (N) Value				Natural Mois Atterberg Lir	ture Content	L	X
Datum:	Geodetic Elevation			Dynamic Cone		_		Undrained T	riaxial at		0 ⊕
Logged by:	MD Checked by: PS		-	Shelby Tube Shear Strength Vane Test	ו by		■ + s	% Strain at F Shear Stren Penetromete	gth by		€
G Y W B L O L	SOIL DESCRIPTION	Geodetic Elevation m 70.29	D e p t h	20 Shear Streng	40	ation Test	N Value 80 kPa 200	250 Natural	Vapour Readir 500 75 Moisture Conter Limits (% Dry W 40 6	50 nt % /eight)	S A P Unit Wt. KN/m ³
SAN Brow stain	HALT ~ 70 mm DY GRAVEL FILL In and grey, moist, no odour or ing, (compact). SAND WITH SOME SILT	70.29 70.2 69.7	0	24 •				17.1			SS1
	n, moist, no odour or staining, (loose).	68.9	1	9 0				17.0			SS2
Brow stiff).	rn, moist, no odour or staining, (very –	68.23	2	10 O				∏ 7.7			ss3
	-	-		4 O				31.7			SS4
	_		3		110 s = 8						UANE5
With turnin	YEY TILL TO SANDY SILTY TILL cobbles and boulders, brownish grey ng dark grey, wet, no odour or staining,	66.5	4	6 0				23.0			X SS6A X SS6B
(loos	e to compact).	4	1		÷ + + + + + + + + + + + + + + + + + + +				· · · · · · · · · · · · · · · · · · ·		7 I

4 O

> 9 0

> > **13** O

> > > 50 / 76 mm

5

8

63.4

62.0

16.7

21.4

38.6

21.0

SS7

SS8

SS9

🛛 SS10

V

X

SHALE BEDROCK

Auger Refusal, Borehole Terminated at 8.33 m Depth

NOTES: 1. Borehole data requires interpretation by EXP before	WAT	ER LEVEL RECC	RDS		CORE DRILLING RECORD						
use by others	Date	Water Level (m)	Hole Open To (m)	Run No.	Depth (m)	% Rec.	RQD %				
2. A flushmount monitoring well with a 51 mm slotted standpipe was installed in the borehole upon	Nov. 22, 2019	2.2	-		· · ·						
completion.	Nov. 25, 2019	2.3	-								
3. Field work was supervised by an EXP representative.	Sept. 3, 2020	2.1									
4. See Notes on Sample Descriptions											
5. Log to be read with EXP Report OTT-000256275-B0											

	Log of	Bore	эl	hole <u>MW19</u>	-0 (<u>3</u> 🍪		yn
Project No:	OTT-000256275-B0							mp.
Project:	Phase II Environmental Site Assessme	ent			۲	igure No. <u>5</u>		I
Location:	1760 St. Laurent Boulevard, Ottawa					Page. <u>1</u> of <u>1</u>		
Date Drilled:	November 19th, 2019		_	Split Spoon Sample		Combustible Vapour Reading		
Drill Type:	CME 55 Rubber Track			Auger Sample		Natural Moisture Content		×
Datum:	Geodetic Elevation			SPT (N) Value O Dynamic Cone Test Shelby Tube		Atterberg Limits H Undrained Triaxial at % Strain at Failure		
Logged by:	MD Checked by: PS			Shear Strength by + Vane Test S		Shear Strength by Penetrometer Test		A
G Y W B U O L	SOIL DESCRIPTION	Geodetic Elevation m 70.3	D e p t h	Standard Penetration Test N Value 20 40 60 80 Shear Strength 50 100 150 200	kPa	Combustible Vapour Reading (ppm) 250 500 750 Natural Moisture Content % Atterberg Limits (% Dry Weight) 20 40 60	SAMPLES	Natural Unit Wt. kN/m ³
SAN Brow	HALT DY GRAVEL FILL n and grey, moist, no odour or ing, (compact).	70.2 69.5	0	18 O		95		SS1A SS1B
	D WITH SOME GRAVEL FILL		1	13. O		1.8 29.4	-0	SS2A

6

7

4 4

4

0

5

2

3

67.87

68.9

68.3

66.5

64.2

63.6

SS2B

SS3A

SS3B

SS4

VANE5

SS6

SS7

SS8

S9A

SS9B

X X

22.0

29.5

٠ſ 11.7

16.5

31.4

32.0

25.0

65.0

70.0

150

s = 4.7

62 / 355 mm

67.0

21/20
DT 9/
AWA.G
/ OTT/
TROW
T.GPJ
UREN'
STLA
. 1760
ATE -
TEMPI
ES
EHOL
B
Ч
LOGS
OLE
OREH

Brown, moist, no odour or staining,

FINE SAND WITH SOME SILT AND

Brown with some orange mottling at 1.4 to 1.5 m depth, moist, no odour or staining,

SILTY CLAY TO CLAY WITH SOME SILT

With stratified layers of silt, cobbles and boulders, grey, wet, no odour or staining,

INFERRED WEATHERED SHALE

Auger Refusal, Borehole Terminated at 6.71 m Depth

Brown turning grey, moist, no odour or staining, (very stiff).

(compact).

CLAY

(loose).

CLAYEY TILL

(loose).

BEDROCK

S OF E	NOTES: 1. Borehole data requires interpretation by EXP before	WAT	ER LEVEL RECO	RDS		CORE DRILLING RECORD						
LOG	use by others	Date	Water Level (m)	Hole Open To (m)	Run No.	Depth (m)	% Rec.	RQD %				
Ľ	2. A flushmount monitoring well with a 51 mm slotted standpipe was installed in the borehole upon	Nov. 22, 2019	2.6	-								
H	completion.	Nov. 25, 2019	2.7	-								
BORI	3. Field work was supervised by an EXP representative.	Sept. 3, 2020	2.4									
Я	4. See Notes on Sample Descriptions											
LOG	5.Log to be read with EXP Report OTT-000256275-B0											

			Log of E	Bore	e	hole _	<u>NN</u>	V19	-0	<u>4</u>			*	nxe
Pı	roject	t No:	OTT-000256275-B0								1	6		JNP.
Pı	roject	t:	Phase II Environmental Site Assessme	nt					F	igure N		6	-	1
Lo	ocatio	on:	1760 St. Laurent Boulevard, Ottawa							Paę	ge	l_of	_1	
Da	ate D	rilled:	November 19th, 2019		_	Split Spoon Sample		\boxtimes		Combus	tible Vapo	our Readi	ng	
Dr	ill Ty	pe:	CME 55 Rubber Track		_	Auger Sample SPT (N) Value				Natural M Atterberg	Moisture C	Content	· .	×
Da	atum:		Geodetic Elevation		_	Dynamic Cone Test				Undraine	ed Triaxial at Failure		I	Ð
Lo	ggeo	l by:	MD Checked by: PS			Shelby Tube Shear Strength by Vane Test		■ + s		Shear St	trength by meter Tes	,		•
G W L	SY MBO		SOIL DESCRIPTION	Geodetic Elevation m	D e p t h	20 40 Shear Strength	60	0 80	kPa	2: Nati Atterb	ural Moist berg Limits	00 7 ure Conte	50 nt %	S M P Unit Wt. kN/m ³
			HALT ~ 50 mm	70 69.9	0	50 100	15	0 200			20 4			5
		Brow	n and grey, moist, no odour or — ing, (compact).	69.4						32.0				SS1
		SILT Brow	Y CLAY TO CLAY WITH SOME SILT n, moist turning moist/wet, no odour or ing, (very stiff to stiff).	68.77	1	- <u>6</u>	8			36.0				ss2
		_	-	67.7	2	90 s=6				49.0				SS3
		Strat	D SILT AND CLAY fied layers of sand silt and clay, n, wet, no odour or staining, (loose).			<u>6</u> 0				41.0				SS4
ĿЦ	V///	_	—	66.9	3						1		1	

8

8 O 4

6 0

24

5

6

64.0 63.9

48.0⁻

43.5

55.0

35.0

SS5

SS6

SS7

SS8

SANDY SILTY GRAVELLY TILL Stratified layers of silt, cobbles and boulders, grey, wet, no odour or staining, (loose to compact).

INFERRED WEATHERED SHALE

Borehole Terminated at 6.05 m Depth

	Ľ		
0	Ŀ	Ì	
Q	Ŀ		
~	I.	i	-
Q	Ŀ	•	-
σ	ŀ		
_		1	
`	Ľ		_
5	Ŀ		⊢
9	Ł		F
₹	ŀ.		
5	Г		
.⊲	L		
E	L		
5	L		
0	L		
≥	L		
б	L		
ř	L		
Ë.	L		
	L		
2	L		
法	L		
Ģ	L		
F	L		
z	L		
щ	L		
Ľ.	L		
2	L		
٩.	L		
-	L		
5	L		
	L		
ö			
760			
1760			
- 1760			
E - 1760			
TE - 1760			
ATE - 1760			
PLATE - 1760			
APLATE - 1760			
EMPLATE - 1760			
TEMPLATE - 1760			
5 TEMPLATE - 1760			
ES TEMPLATE - 1760			
LES TEMPLATE - 1760			
DLES TEMPLATE - 1760 :			
HOLES TEMPLATE - 1760			
EHOLES TEMPLATE - 1760			
REHOLES TEMPLATE - 1760			
OREHOLES TEMPLATE - 1760			
BOREHOLES TEMPLATE - 1760			
BOREHOLES TEMPLATE - 1760 :			
DF BOREHOLES TEMPLATE - 1760			N
OF BOREHOLES TEMPLATE - 1760			N
SS OF BOREHOLES TEMPLATE - 1760			N
JGS OF BOREHOLES TEMPLATE - 1760			N
OGS OF BOREHOLES TEMPLATE - 1760			N.,
LOGS OF BOREHOLES TEMPLATE - 1760			N
E LOGS OF BOREHOLES TEMPLATE - 1760			
LE LOGS OF BOREHOLES TEMPLATE - 1760			N
OLE LOGS OF BOREHOLES TEMPLATE - 1760			N
EHOLE LOGS OF BOREHOLES TEMPLATE - 1760 ST LAURENT.GPJ TROW OTTAWA.GDT 9.			N

Ê													
	NOTES: 1. Borehole data requires interpretation by EXP before	WAT	ER LEVEL RECO	RDS	CORE DRILLING RECORD								
LOGS	use by others	Date	Water Level (m)	Hole Open To (m)	Run No.	Depth (m)	% Rec.	RQD %					
Щ	2. A flushmount monitoring well with a 51 mm slotted standpipe was installed in the borehole upon	Nov. 22,2019	1.5	-									
H	completion.	Nov. 25, 2019	2.1	-									
BOREHOLE	3. Field work was supervised by an EXP representative.	Sept. 3, 2020	1.2										
Ь	4. See Notes on Sample Descriptions												
P C C	5.Log to be read with EXP Report OTT-000256275-B0												

	Log of Bor	ehole BH2	20-0	5 *	^{\$} eyn
Project No:	OTT-00260579-A0			_	CAP.
Project:	Residential Development			Figure No. /	I
Location:	1740 - 1760 St. Laurent Boulevard, Ottawa, On.			Page. <u>1</u> of <u>2</u>	2
Date Drilled:	'August 21, 2020	Split Spoon Sample	\boxtimes	Combustible Vapour Reading	
Drill Type:	CME-75 Truck Mounted Drill Rig	Auger Sample SPT (N) Value	∎ ○	Natural Moisture Content Atterberg Limits	× ⊢⊸⊖
Datum:	Geodetic Elevation	Dynamic Cone Test — Shelby Tube		Undrained Triaxial at % Strain at Failure	\oplus
Logged by:	ML Checked by: SMP	Shear Strength by Vane Test	+ s	Shear Strength by Penetrometer Test	A
S.		D Standard Penetration Test	N Value	Combustible Vapour Reading	(ppm) S A Netural

G Y B C	SOIL DESCRIPTION		Geodetic Elevation	D e p				est N Va	lue 30	2	50		'50		Natural Unit Wt.
W B L O L			m 72.37	h	Shear S	trength			kPa 00		berg Limi	sture Conte its (% Dry \ 40	Weight) 60	L ES	kN/m ³
	ASPHALTIC CONCRETE ~ 40 mm th		72.3	0											
	GRANULAR FILL (BASE) ~ 150 mm Silty sand with crushed gravel, grey,	thick	72.2		2	0				×				N	SS1
	FILL														
	Mixture of silty sand, clayey silt and s clay with gravel, brown and grey, mo	silty _	-	1	14						×			\mathbb{N}	SS2
	wet, (loose to compact/firm to very st	tiff)			Ĭ						<u> </u>				20.2
	<u>-</u>				9									17	
				2	Ō					×				X	SS3
				2											
					9					×				łV	SS4
														\mathbb{N}	24.0
		_	69.37	3	4									1	
					4 O						*			X	SS5
		_												7	
	-			4	11					X				łV	SS6
			07.0											\mathbb{N}	330
	GLACIAL TILL		67.9												
	Clayey sand with gravel, cobbles and boulders, dark grey, moist, (compact	d tto		5	10 O					×				XE	SS7
	dense/stiff to hard)			ľ										P	
	_	_	-		14					×				\mathbb{N}	SS8
					Ĭ										000
	-	_		6											,
							45 O			>	<			X	SS9
			65.5			· · · · · · · · · · · · · · · · · · ·								\mathbb{H}	
	- INFERRED WEATHERED SHALE		00.0	7			for 100 r	nm		×				$\overline{\mathbf{N}}$	SS10
	BEDROCK													4	0010
			64.7												
	<u>SHALE BEDROCK</u> — Grey to dark grey, (poor to good qua	lity) —		8											
		37												-	RUN1
		_												-	
	200 mm thick rubble zone (broken ro	ock)												-	
	—with clay seams at 7.7 m depth	_		9										-	
														-	RUN2
														-	
	Continued Next Page			10			<u>Leese</u>	12262	<u>n : : : : :</u>	Leere	1.1.1.1.1		10000		
NOTES: 1.Boreho use by	ole data requires interpretation by EXP before		WATE	RL	EVEL RE										
use by	v others	Dat	e	L	Water .evel (m)		Hole Op To (m)		Run No.	Dep (m		% Re	eC.	R	QD %
2. Two (2 and 17	 2) - 19 mm diameter standpipes installed to 7.6 m 7.6 m depths as shown. 	Aug. 21,			2.5		5.5		1	7.7 -	8.6	97			76
2. Two (2 and 17 3. Fieldw	ork supervised by an EXP representative.	Sept. 3, Sept. 10			3.1/3.0 3.2/3.0				23	8.6 - ⁻ 10.1 -		100 100			70 67
4.See No	otes on Sample Descriptions								4	11.6 -	13.2	100)		19
5. Log to	be read with EXP Report OTT-00260579-A0								5 6	13.2 - 14.7 -		100 100			47 15
L		L	I]	7	14.7 -		100			71

Log of Borehole <u>BH20-05</u>

⁷exp. ₀_{f 2}

Project No: OTT-00260579-A0

Project: **Residential Development** Figure No.

Projec	t: <u>Residential Development</u>								Pa	ge.	2 of	2		
s		Geodetic	D		rd Pe	netration T	est N Val	ue	Combu	stible Vap	oour Readi 500 7	 ng (ppm '50) S A	Natura
G M W B L O L	SOIL DESCRIPTION	Elevation	l e	20 Shear Stree		40 6	0 8	80 kPa	Nat Atter	ural Mois	ture Conte ts (% Dry V	ent % Veight)) SAMPLES	Unit Wt
- 0 L		62.37	h 10	50		00 15	50 2	00				60	Ē	kN/m ³
	SHALE BEDROCK Grey to dark grey, (poor to good qua	lity)												
	(continued)												_	
	200 mm thick clay layer at 10.7 m de	pth												RUN
	-	· _	11	1										1.OI
									0.000					
		_											-	
			13	, ··· ··· ··· ···										
	_250 mm thick rubble zone (broken ro 12.3 m depth	ock) at									· · · · · · · · · ·	1.1.1.1.1.		RUN
	<u>1</u> 1	_	13	3										
		1										1.0.0.1.		
	1		1/	4										RUN
			'											
	1 7	_											_	
	Rubble zone (broken rock) from 14.7	'm to												
	– 16.3 m depths	_	15	5									_	
														RUN
		_												
		_	16	8										
	50 mm thick clay seam at 16.2 m de	oth												
											-			
														RUN
		_	17	7										T(O)
<u>.</u> Н.	Borehole Terminated at 17.6 m D		-											
OTES:		WATE	RI	EVEL RECO	חאכ	S			C.O	RE DRI	LLING R	ECOR		
1.Boreh use bv	ole data requires interpretation by EXP before y others	Date		Water		Hole Ope		Run	Dep	th	% Re			QD %
		Date Aug. 21, 2020	L	<u>_evel (m)</u> 2.5		<u>To (m)</u> 5.5		No. 1	<u>(m</u> 7.7 -)	97			76
	 19 mm diameter standpipes installed to 7.6 m 7.6 m depths as shown. 	Sept. 3, 2020		3.1/3.0		0.0		2	8.6 - 1		100			70
	vork supervised by an EXP representative.	Sept. 10, 2020		3.2/3.0				3	10.1 -		100			67
	lotes on Sample Descriptions							4 5	11.6 - 13.2 -		100 100			19 47
5. Log to	be read with EXP Report OTT-00260579-A0							6	14.7 -		100			15

13.2 - 14.7 6 14.7 - 16.1 16.1 - 17.6 7

100

15 71

	Log of B	orehole <u>BH2</u>	0-06	[%] ≏yn
Project No:	OTT-00260579-A0			CAP.
Project:	Residential Development		Figure No. <u>8</u>	- •
Location:	1740 - 1760 St. Laurent Boulevard, Ottaw	/a, On.	Page. <u>1</u> of	
Date Drilled:	'August 20, 2020	Split Spoon Sample	Combustible Vapour Read	ding
Drill Type:	CME-75 Truck Mounted Drill Rig		 Natural Moisture Content Atterberg Limits 	× ⊢⊸
Datum:	Geodetic Elevation	Dynamic Cone Test Shelby Tube	Undrained Triaxial at % Strain at Failure	\oplus
Logged by:	ML Checked by: SMP	Shear Strength by Vane Test	+ Shear Strength by S Penetrometer Test	A
G Y		Geodetic D e 20 40 60		750 A Natural

Γ		S Y		Geodetic	D	Standard F	Penetration	Test N Va	lue	Combus	stible Vap 50 5	our Readin i00 75	ig (ppm)	S A M P	Natural
	G W L	Ь В О	SOIL DESCRIPTION	Elevation	e p t h	20		60	80	Nat	ural Moist	ture Conter s (% Dry W			Unit Wt.
	-	0 L		m		Shear Strength		150 2	kPa 200			s (% Dry vv 40 6	eignt)	Ē	kN/m ³
			ASPHALTIC CONCRETE ~ 75 mm thick	71.36 71.3 71.2	0	4						+0 0	<u>,</u>	7	004
			→Silty sand with gravel, brown, damp	-		0				×			Į	Ŋ	SS1
			_Mixture of silty sand, clayey silt and silty _ clay with gravel, brown and grey, moist to wet, (loose/firm)	-	1	4 ©				×					SS2
			GLACIAL TILL Silty sand with gravel, cobbles and	69.8	2	.9 O				×				$\left\langle \right\rangle$	SS3
			boulders, dark grey, moist, (compact to dense/ stiff to hard)	-		14								7	004
		<u>II</u>		_	3	0				×			4		SS4
				-		26 O				×			/	\langle	SS5 24.2
				-	4		36 O			×					SS6
										×			/	$\langle \rangle$	
				-	5	23					×			$\left(\right)$	SS7
720				-			38			×				$\overline{\langle}$	SS8
SDT 9/22				-	6					X					
TAWA.0				64.6		32 O				×			/	X	SS9 24.5
ROW O		37.4.7	INFERRED WEATHERED SHALE BEDROCK		7		50 for 100 O	mm		×				$\overline{\langle}$	SS10
.GPJ T				63.7			-50 for 50	mm		×				M	SS11
BOREHOLES - 1740&1760 ST LAURENT.GPJ TROW OTTAWA.GDT 9/22/20			Auger Refusal at 7.7 m Depth												
ES - 1740&1															
BOREHOL															
ЪГ	NO.	TES:		WATER	٦L	EVEL RECOR	DS			CO	RE DRI	LLING RE	ECORD		
LOGS OF	1.E נ	Boreho use by	ole data requires interpretation by EXP before others Dat			Water evel (m)	Hole Op		Run	Dep	th	% Rec		RC	QD %

2	NOTES: 1. Borehole data requires interpretation by EXP before	WAT	ER LEVEL RECO	RDS		CORE DF	RILLING RECOF	RD
	use by others	Date	Water Level (m)	Hole Open To (m)	Run No.	Depth (m)	% Rec.	RQD %
	2. Borehole backfilled upon completion of drilling.							
Ť	3. Fieldwork supervised by an EXP representative.							
<u>Š</u>	4. See Notes on Sample Descriptions							
5	5. Log to be read with EXP Report OTT-00260579-A0							
ЗI								

	Log of Bor	ehole BH2	0-07	,	* evn
Project No:	OTT-00260579-A0			-	
Project:	Residential Development			gure No. <u>9</u>	1
Location:	1740 - 1760 St. Laurent Boulevard, Ottawa, On.			Page. <u>1</u> of	<u>1</u>
Date Drilled:	'August 20, 2020	Split Spoon Sample	\triangleleft (Combustible Vapour Reading	
Drill Type:	CME-75 Truck Mounted Drill Rig	Auger Sample[]SPT (N) Value()		Natural Moisture Content Atterberg Limits	× ⊢—⊖
Datum:	Geodetic Elevation	Dynamic Cone Test Shelby Tube		Undrained Triaxial at % Strain at Failure	\oplus
Logged by:	ML Checked by: SMP			Shear Strength by Penetrometer Test	A
ş	Quality	D Standard Penetration Test N V	/alue	Combustible Vapour Reading	

G W L	S Y B O	SOIL DESCRIPTION	Geodetic Elevation	l e	Standard 20 Shear Streng	40	tion Test N Va	alue 80 kPa	2	50 50	our Reading (ppm 00 750 ure Content % 5 (% Dry Weight)	M P	Natural Unit Wt.
		ASPHALTIC CONCRETE ~ 35 mm tr GRANULAR FILL (BASE) ~ 150 mm Silty sand with crushed gravel, grey, SILTY CLAY Brown, moist, (very stiff)	thick 70.1	ĥ	50 50	<u>100</u>	150 132	200	2		10 60		kN/m ³
		_			⊙ 7 ⊙					×		X	SS2 18.6 SS3
		<u>GLACIAL TILL</u> Clayey sand with gravel, cobbles and boulders, brown, moist, (loose to _compact/stiff)	– t	2					×			-A -X	SS4
		GLACIAL TILL Clayey sand with gravel, shale fragm cobbles and boulders, dark grey, mo wet, (loose to compact/stiff)	ents,67.2	3	12 ©				**⊢	Ð			SS5
		 with a 150 mm thick silty sand layer a	- - at 4.6	4	8 • • • • • • • • • • • • • • • • • • •				× × >	<			SS6
0212		_m depth 	65.0	5	O	50 for	100 mm O		×			-Å -X	SS7 SS8
		Auger Refusal at 5.9 m Depth	64.4										
												· · · · · · · · · · · · · · · · · · ·	
NC 1.													
NC 1.	DTES: Boreho use by	ole data requires interpretation by EXP before others	WATE Date		EVEL RECO Water evel (m)	Hole	e Open o (m)	Run No.	CO Dep (m	th	LING RECOR % Rec.		QD %

2. Borehole backfilled upon completion of drilling. 3. Fieldwork supervised by an EXP representative.

LOG OF BOREHOLE 4. See Notes on Sample Descriptions

5. Log to be read with EXP Report OTT-00260579-A0

Date	Water Level (m)	Hole Open To (m)	Run No.	Depth (m)	% Rec.	RQD %
	1		· · · · · · · · · · · · · · · · · · ·			

	Log of I	Bor	e	hole E	3H2	20-0	8 💖	P	yn	
Project No:	OTT-00260579-A0							\cup	'nΜ	•
Project:	Residential Development						Figure No. <u>10</u>			
Location:	1740 - 1760 St. Laurent Boulevard, Otta	awa, On.					Page. <u>1</u> of <u>1</u>			
Date Drilled:	'August 20, 2020			Split Spoon Sample		\boxtimes	Combustible Vapour Reading			
Drill Type:	CME-75 Truck Mounted Drill Rig			Auger Sample SPT (N) Value			Natural Moisture Content Atterberg Limits	—	× ⊸	
Datum:	Geodetic Elevation			Dynamic Cone Test Shelby Tube			Undrained Triaxial at % Strain at Failure		\oplus	
Logged by:	ML Checked by: SMP			Shear Strength by Vane Test		+ s	Shear Strength by Penetrometer Test		▲	
G SY M B L O L	SOIL DESCRIPTION	Geodetic Elevation m	D e p t h	Standard Penetrai	tion Test N 60 150	N Value 80 kPa 200	Combustible Vapour Reading (ppn 250 500 750 Natural Moisture Content % Atterberg Limits (% Dry Weight) 20 40 60	n) SAMPLES	Natural Unit Wt. kN/m ³	

	G W L	Y M	SOIL DESCRIPTION	Geod	etic	e p t Shear	20	40	6	0	30		250	500	750		Natural Unit Wt.
	Ľ	M B O	SOIL DESCRIPTION	Eleva					0	0 (kPa	Atte	rberg Lim	sture Conte its (% Dry	Weight)		kN/m ³
		L		69 68		h 0	50	100) 15	50 2	00		20	40	60	S	
		0	ASPHALTIC CONCRETE ~ 50 mm thick					331								÷Н	
		0 0	GRANULAR FILL (BASE) ~ 450 mm thic	ck 69.2		13										÷W	004
		XXX	√Silty sand with crushed gravel, grey, dar	mp _		0						X				ΞÅ	SS1
			FILL Mintum of silts could also us silt and silts													(+)	
	ł	***	_Mixture of silty sand, clayey silt and silty clay with gravel, brown and grey, moist	/ _		1	5					X				HV	SS2
	ł		wet, (compact/stiff to very stiff)	10												$ \Lambda $	332
		XX														\mathbb{H}	
	k	XX	SILTY CLAY	68.1		4	48						X			÷N/	
	ł		Low plasticity, brown, moist, (firm)			0	4							×		X	SS3
	F			_		2										-/	17.5
	Ě															-	
	ł		_			236											
	ŀ					ō : 🔺			(\cdot,\cdot)				\leftarrow) 🗙		X	SS4
	ł			66.7				e e la	<u></u>		1.1.1.1.1.1		1222	1 - C - D - C - C - C - C - C - C - C - C		÷Δ	
	l		GLACIAL TILL	66.7		3			<u></u>					<u></u>		<u>: / /</u>	
	Ê	KKA.	Silty clay with gravel, low plasticity, cob	oles		10 O							×			ΞV	SS5
		SIA	and boulders, grey to dark grey, (very lo	ose_												\square	000
		III A	to compact/soft to stiff)					t T								÷Η	
	ļ	TH)						i i i									
	Ē	7 <i>1</i> 1}_	_	_		4 5							ЮX			ΗV	SS6
		1H)							<u></u>	-2-3-3-2	1.1.1.1.1					ΞA	330
	E	11D														÷Η	
		YA)											×				
	ŀ	۶LA				2										÷Ν	SS7
		1 D	_	_		5							X			НΛ	337
	l	YA)				13				-2-2-2-2						Η	
		H/A	_			0							X				SS8
/20	i	JH S	-			-2-1-1-2		i i i								Ĥ	
9/22	ł	IN S															
E.	Ē	16/18	_	63.6		6		-50	for 75 m	m						<u>.</u>	000
8			INFERRED WEATHERED SHALE	63.3					0			×				\mathbb{X}	SS9
₹.			BEDROCK													-	
Ā			Auger Refusal at 6.4 m Depth												1 : : :	1	
히							111									:	
≷							1.1	: :								1	
ЩЦ							1.1	11	::::						1.1.1	1	
2							1.1								1	:	
٣.							111				1				1.1.1	:	
Ł							111		::::						1.1.1	:	
찕							1 : :									1	
Γ							1 : :									1	
E I																	
00																	
\$17															1 : : :	1	
<u>4</u>							1.1								1.1.1.1	:	
- 1740&1760 ST LAURENT.GPJ TROW OTTAWA.GDT 9/22/20							1.1	::	:::::		1			: : : : :		:	
S							1::		::::		1			: : : : : :	1 : : :	:	
							1::	::	::::		1 : : : :			: : : : : :		:	
ШШ																:	
ŘΓ																	
ЩЦ	NO	TES:	[]							1
LOGS OF BOREHOLES			le data requires interpretation by EXP before	WA	TER	LEVEL R	ECOF					C	ORE DR	RILLING F			
ö		use by		Date		Water			ole Ope	en	Run	De		% Re	ec.	R	QD %
			le backfilled upon completion of drilling.	Dale	_	Level (m)		To (m)		No.	(r	n)				
OLE	∠.1																

LOG OF BOREHOLI 3. Fieldwork supervised by an EXP representative.

4. See Notes on Sample Descriptions

5. Log to be read with EXP Report OTT-00260579-A0

	Log of I	Bor	e	hole <u>BH</u>	20-09	9 %	avr	2
Project No:	OTT-00260579-A0				-		$\sim \sim \sim$	/•
Project:	Residential Development				F	Figure No. <u>11</u>	1	
Location:	1740 - 1760 St. Laurent Boulevard, Otta	awa, On.				Page. <u>1</u> of <u>1</u>		
Date Drilled:	'August 25, 2020			Split Spoon Sample	\boxtimes	Combustible Vapour Reading		
Drill Type:	CME-75 Truck Mounted Drill Rig			Auger Sample SPT (N) Value		Natural Moisture Content Atterberg Limits	×	
Datum:	Geodetic Elevation			Dynamic Cone Test -		Undrained Triaxial at % Strain at Failure	Ð	
Logged by:	ML Checked by: SMP			Shear Strength by Vane Test	+ s	Shear Strength by Penetrometer Test	A	
G W B O L	SOIL DESCRIPTION	Geodetic Elevation m 69.35	D e p t h	Standard Penetration Test 20 40 60 Shear Strength 50 100 150	t N Value 80 kPa 200	Combustible Vapour Reading (ppm) 250 500 750 Natural Moisture Content % Atterberg Limits (% Dry Weight) 20 40 60	S A P Unit Wt. E S	
		69.3 69.1	0					

8

6 0

7

.

2

3 5 0

4 2

5

13 O 72 ▲ SS1

SS2 18.2

SS3

SS4

SS5

SS6

X

X

Х

×

×

×

68.6

66.9

64.9

63.5

 GRANULAR FILL (BASE)
 ~ 200 mm thick

 Silty sand with crushed gravel, grey, damp

 FILL

 Silty sand with gravel, brown, moist

 SILTY CLAY

 Brown, moist, (stiff)

SILTY CLAY With silt partings, grey, wet, (soft to firm)

Clayey sand with gravel, cobbles and boulders, grey, wet, (compact/stiff)

Auger Refusal at 5.9 m Depth

GLACIAL TILL

9/22/20	
A.GDT	
W OTTAW	
TRO/	
T.GPJ	
AURENT	
STL	
1760	
- 1740&1760	
E BOREHOLES - 1	
ШШ	ſ
LOGS O	
BOREHOLE	

5 I								
m,								
	NOTES: 1.Borehole data requires interpretation by EXP before	WAT	ER LEVEL RECO	RDS		CORE DF	RILLING RECOF	RD
LOGS	use by others	Date	Water Level (m)	Hole Open To (m)	Run No.	Depth (m)	% Rec.	RQD %
OLE	2. Borehole backfilled upon completion of drilling.	completion	2.5	5.8				
BOREHOLE	3. Fieldwork supervised by an EXP representative.							
	4. See Notes on Sample Descriptions							
LOG OF	5. Log to be read with EXP Report OTT-00260579-A0							

	Log of	Bor	e	ho	le _	BH	<u>120</u>	-1(<u>0</u>			*	ave
Project									- igure N	lo	12		<i>.</i>
Project:	Residential Development							- г	•			-	
Locatio	n: <u>1740 - 1760 St. Laurent Boulevard, Ott</u>	awa, On.						_	Paę	ge	1_of	<u> </u>	
Date Dr	illed: 'August 24, 2020			Split Spo	oon Sample		\boxtimes		Combus	tible Vapo	our Readir	ng	
Drill Typ	De: CME-75 Truck Mounted Drill Rig			Auger Sa SPT (N)	•				Natural M Atterberg	Aoisture (a Limits	Content	F	×
Datum:	Geodetic Elevation			. ,	Cone Test				Undraine	d Triaxia at Failure		•	\oplus
Logged	by: <u>ML</u> Checked by: <u>SMP</u>				trength by		+ s		Shear St	rength by neter Tes	/		•
GWL L	SOIL DESCRIPTION	Geodetic Elevation m 69.86	D e p t h	Shear	andard Pene 20 40 Strength 50 100	60	0 80	kPa	2: Nati Atterb	50 5 ural Moist	our Readir 00 7 ure Conte s (% Dry W	50 nt %	S A M Natural P Unit Wt. L S KN/m ³
	ASPHALTIC CONCRETE ~ 60 mm thick	69.8	0										0
	GRANULAR FILL (BASE) ~ 300 mm thick Silty sand with crushed gravel, grey, damp FILL Silty sand with gravel, brown, moist	69.5 69.1											
	FILL Mixture of silty sand, clayey silt and silty clay with gravel, brown and grey, moist to	-	1	11 						×			SS1 18.4
	wet, (loose to compact/firm to very stiff)	68.06	2	8 O						×			SS2 18.6
		-			-28 O					×			ss3
		66.1	3	5					×				SS4

9 4

13 O

50 for 50 mm

5

6

63.9 63.8

SS5

SS6

SS7

RUN1

х

Х

×

	t 1	-	ŀ.
	Ŀ٧		b
	k		h
	ĸ		К
	Þ		ĥ
	K		K
	b		Ľ
	ŀ		ų
	É		Ľ
	Ø		Ø
	P		P
0	Œ		Ø
5	24		₽
2	F		Ø
ດັ	Dr		Þ
F	k		b
B	21		Ď
٦ ا	k		'n
ŝ			Б
_₹	8		h
F	K		Б
0	R		h
≥	K		К
õ			ĥ
Ë	K		K
~	þ		
Ľ,	K		K
	b		Ľ
E	ŀ		ų
Щ	É		Ľ
5	ŀ		ų
₹	É		Ľ
Ē	ļŧ		Ų
ò	Ĕ		P
8	Ø		Ø
Ē	P,		P
òð	Œ		Ø
4	24		Þ
7	F		Ø
÷ 1	21		Ď
ŝ	K		'n
1	51		Ď
Ŷ	k		h
亩	BI.		Б
ĸ	R		h
ы	-		
Ч	Π	N	0
EHOLE LOGS OF BOREHOLES - 1740&1760 ST LAURENT. GPJ TROW OTTAWA. GDT 9/22/20	1		Ĩ
ğ		1	1
2			
ш		-	>
Ы		1	
Ĭ			

GLACIAL TILL Clayey sand with gravel, cobbles and boulders, grey, wet, (loose to compact/stiff)

INFERRED WEATHERED SHALE

SHALE BEDROCK Grey to dark grey, (poor to excellent quality)

	1740&1760 ST LAURENT.GPJ TRO	mmmm	k) in upper ⁻	125 — — —	8									RUN2
I. Borehole data requires interpretation by EXP before use by others Date Water Hole Open Run Depth % Rec. RQD % 2. A 50 mm diameter monitoring well installed to a 4.2 m depth as shown. 3. Fieldwork supervised by an EXP representative. Aug. 24, 2020 2.3 6.0 1 6.1 - 7.2 100 36 3. Fieldwork supervised by an EXP representative. 4. See Notes on Sample Descriptions Sept. 10, 2020 1.8 3 8.7 - 10.2 98 98 4. See Notes on Sample Descriptions 5 117 - 132 100 95	BOREHOLES -	Continued Ne.	xt Page		9								· · · · · · · · · · · · · · · · · · ·	RUN3
Umpose 2. A 50 mm diameter monitoring well installed to a 4.2 m depth as shown. Aug. 24, 2020 2.3 6.0 1 6.1 - 7.2 100 36 3. Fieldwork supervised by an EXP representative. Aug. 24, 2020 1.8 2 7.2 - 8.7 100 68 4. See Notes on Sample Descriptions Sept. 10, 2020 1.8 3 8.7 - 10.2 98 98	OGS		EXP before			Water	Hole Op			Dep	th			QD %
		2.A 50 mm diameter monitoring well installe	ed to a 4.2 m		L)	No.		/	100		36
	윎			e .					2			100		68
	B R	3. Fieldwork supervised by an EXP represer	ntative.	Sept. 10, 2020		1.8			3	8.7 - 1	0.2	98		98
	ШШ	4. See Notes on Sample Descriptions												
9		5. Log to be read with EXP Report OTT-002	60579-A0						-					
	3[6	13.2 -	14./	100		96

Log of Borehole <u>BH20-10</u>

*ехр.

Project No: OTT-00260579-A0

oject	:: Residential Development	Geodetic	D	S	stan	dar	d Pe	enet	ratio	on Te	est N	l Val	ue		Co			e Vap		of Readin	ng (ppr	n) S	Natur
SYMBOL	SOIL DESCRIPTION	Elevation m 59.86	D e p t h 10	hea	20 r St 50	ren	gth	40 100		60 15			30 00	kPa		Nat Atterb	tural berg	Moist Limits	ture C s (% I 40	Conter Dry W	nt % /eight)	n) S M P L E S	Natur Unit V kN/m
	SHALE BEDROCK Grey to dark grey, (poor to excellent –quality)	_							• • • • •														
	Rubble zone (broken rock) in upper 125 [–] mm <i>(continued)</i>	_	11																				RU
	-	_							• • • •														
	-	_	12																				
	-	_							• • • •														RU
	-		13																				
	_		14																				RU
	-		14																				
	Borehole Terminated at 14.7 m Depth	55.2																					
						· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·							· · · ·				· · · ·				· · · · · · · · · · · · · · · · · · ·	
						· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·					· · · · · · · · · · · · · · · · · · ·		· · · ·				· · · ·					
						· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·					· · · · · · · · · · · · · · · · · · ·		· · · ·									
						· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·					· · · · · · · · · · · · · · · · · · ·		· · · ·									
						· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·					· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·									
						· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·					· · · · · · · · · · · · · · · · · · ·		· · · ·									
				· · ·		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·													· · · · · · · · · · · · · · · · · · ·	
						· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·																
				· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·														
						· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·					· · · · · · · · · · · · · · · · · · ·											
						· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·																
					:								E										

SOF	NOTES:	WAT	ER LEVEL RECO	RDS		CORE DR	ILLING RECOR	RD
LOG	1. Borehole data requires interpretation by EXP before use by others	Date	Water Level (m)	Hole Open To (m)	Run No.	Depth (m)	% Rec.	RQD %
븻	2. A 50 mm diameter monitoring well installed to a 4.2 m depth as shown.	Aug. 24, 2020	2.3	6.0	1	6.1 - 7.2	100	36
핅	1	Sept. 3, 2020	1.8		2	7.2 - 8.7	100	68
OR	3. Fieldwork supervised by an EXP representative.	Sept. 10, 2020	1.8		3	8.7 - 10.2	98	98
В	4. See Notes on Sample Descriptions				4	10.2 - 11.7	100	95
ō	5. Log to be read with EXP Report OTT-00260579-A0				5	11.7 - 13.2	100	92
ĕ	e. Log to be fold with Ext Report of F 662666767.6				6	13.2 - 14.7	100	96

	Log of	Bor	e	ho	le .	Bł	<u> 120</u>)-1	1			* •	יב	xn
Project No:	OTT-00260579-A0								-igure N	lo	13			$\gamma \gamma$
Project:	Residential Development							_ '	-			4		
Location:	1740 - 1760 St. Laurent Boulevard, Otta	awa, On.						_	Pag	je	of	<u> </u>		
Date Drilled:	'August 25, 2020			Split Spo	on Samp	le	\boxtimes		Combust	ible Vapo	ur Reading	í.	[
Drill Type:	CME-75 Truck Mounted Drill Rig			Auger Sa	•				Natural M		Content		-	×
Datum:	Geodetic Elevation		-	SPT (N) Dynamic		st	0		Atterberg Undraine		at			Ð
			-	Shelby T	ube				% Strain				ŧ	⊕
Logged by:	ML Checked by: SMP			Shear St Vane Te			+ s		Shear Sti Penetron				4	
c S Y		Geodetic	D		ndard Pe	netration -	Fest N Valu	le	Combus 25		our Reading		S A M	Vatural
G Y W B L O	SOIL DESCRIPTION	Elevation	e p t	Shear	0 4 Strength	40 6	60 8	0 kPa	Natu	ural Moistu	ire Content (% Dry Wei	%	IPIU	Jnit Wt. kN/m ³
Ľ		70.68	h 0		0	00 1	50 20		2	-	0 60		L E S	NN/III
Silty	sand with gravel, brown, damp									· · · · · · · · · · · · · · · · · · ·				
	-	69.9												
FILL Silty	sand, brown and grey, moist to wet,		1	6					×				$\overline{\mathbb{N}}$	SS1
	e/firm)												Д	331
	-	68.98		4					×	• • • • • • • • • •			$\overline{\mathbb{N}}$	SS2
	-	-	2										A	
	_	_		4									\square	
		67.7		0									Д	SS3
	CIAL TILL sand with gravel, cobbles and	1	3	.9					×				$\overline{\mathbb{N}}$	SS4
	ders, grey, wet, (loose to dense/stiff to _	-								• • • • • • •			Д	
Hard)			AE									Н	
HUM	=	1	4	15 0					×				iXI	SS5

15 O

13 O

48 〇

5

6

7

63.5

	Auger Refusal at 7.2 m Depth	
NOTES:		[
1.Boreh use b	ole data requires interpretation by EXP before y others	
	nm diameter monitoring well installed to a 4.2 m as shown.	
uepui		
	vork supervised by an EXP representative.	

4. See Notes on Sample Descriptions

5. Log to be read with EXP Report OTT-00260579-A0

LOG OF BOREHOLE LOGS OF BOREHOLES - 1740&1760 ST LAURENT GPJ TROW OTTAWA GDT 9/22/20

R LEVEL RECO	RDS		CORE DR	ILLING RECOF	RD
Water Level (m)	Hole Open To (m)	Run No.	Depth (m)	% Rec.	RQD %
3.0	-				
1.7					
3	Water Level (m) 3.0	Level (m) To (m) 3.0 -	Water Hole Open Run Level (m) To (m) No. 3.0 - -	Water Hole Open Run Depth Level (m) To (m) No. (m) 3.0 -	Water Hole Open Run Depth % Rec. Level (m) To (m) No. (m) % 3.0 -

SS6

SS7

SS8

X

×

X

	Log of I	Bor	ehole <u>BH</u>	20-	12	* evn
Project No:	OTT-00260579-A0					CAP.
Project:	Residential Development				Figure No. <u>14</u>	I
Location:	1740 - 1760 St. Laurent Boulevard, Otta	awa, On.			Page. <u>1</u> of _	1
Date Drilled:	'August 25, 2020		_ Split Spoon Sample	\boxtimes	Combustible Vapour Reading	
Drill Type:	CME-75 Truck Mounted Drill Rig		Auger Sample - SPT (N) Value		Natural Moisture Content Atterberg Limits	× ⊢—⊖
Datum:	Geodetic Elevation		Dynamic Cone Test — Shelby Tube	_	Undrained Triaxial at % Strain at Failure	\oplus
Logged by:	ML Checked by: SMP		Shear Strength by Vane Test	+ s	Shear Strength by Penetrometer Test	•
G M		Geodetic	D e Standard Penetration Test	t N Value	Combustible Vapour Reading 250 500 750	

	G W L	S Y B O L	SOIL DESCRIPTION	Geodetic Elevation m	ו p t	Shear S	20 Streng		<u>0 6</u>	0	80 kPa	Na Atter	250 tural Moi berg Lim	500 isture Cor hits (% Dry	750 itent % Weight	— í	Natural Unit Wt. kN/m ³
	_	L	FILL	72.18	h 0		50	10	00 15	50 2	200		20	40	60		ŝ
			Mixture of silty sand, clayey silt and silty – clay with gravel, brown and grey, moist to	0 _		9 O							×				SS1
			wet, (very loose to loose/soft to stiff)		1												
			-			8							×				ss2
			-	_	2												4
			-	_													
	2 2 2 2		-	_	3	2								1			
			-	_		0						×				_/	SS3
			-	68.1	4												
			GLACIAL TILL Silty sand with gravel, cobbles and boulders, grey, wet, (compact/stiff to very	_													
			stiff) -	, 	5	14 O						×					SS4
			_			··· ···										/	
9/22/20																	
-1740&1760 ST LAURENT.GPJ TROW OTTAWA.GDT 9/22/20			-		6		24					×					ss5
OTTAW			-	65.3				· · · ·								4	
TROW			Auger Refusal at 6.9 m Depth														
- GPJ																	
AURENT																	
0 ST L/																	
40&176																	
BOREHOLES								· · · ·									
		TES:		WATE	ERL	EVEL R	ECO	RDS	6			CC	RE DR	RILLING	RECO	RD	
LOGS OF	1.I เ	Boreho use by	le data requires interpretation by EXP before	Date	1	Water evel (m))	ŀ	Hole Ope To (m)		Run No.	Dep (m		% F	lec.		RQD %
				completion	L	3.0	,		6.7		140.	(II	'/				
REH			ork supervised by an EXP representative.														
JF BC			tes on Sample Descriptions be read with EXP Report OTT-00260579-A0														
LOG OF BOREHOLE	ن. ا		De read Will EAF Repuir OT 1-002003/3-AU														

	Log of I	Bor	e	hole	Bŀ	120)-1:	3			**	ב	xn
Project No:	OTT-00260579-A0			-						15			$\gamma \gamma$
Project:	Residential Development						_ F	igure No.		15	•		
Location:	1740 - 1760 St. Laurent Boulevard, Otta	awa, On.						Page.	1	_ of	2		
Date Drilled:	August 20 and 21, 2020			Split Spoon Sampl	e	\boxtimes		Combustible	e Vapou	r Readir	ng		
Drill Type:	CME-75 Truck Mounted Drill Rig			Auger Sample SPT (N) Value				Natural Mois Atterberg Li		ntent	F		× Ð
Datum:	Geodetic Elevation			Dynamic Cone Tes Shelby Tube	st			Undrained 1 % Strain at		it			\oplus
Logged by:	ML Checked by: SMP			Shear Strength by Vane Test		+ s		Shear Stren Penetromet					A
GWL L	SOIL DESCRIPTION	Geodetic Elevation m 71.07	D e p t h	Shear Strength	40 6	8 0	ue 0 kPa 00	Combustibl 250 Natural Atterberg 20	500 Moistur) 75 e Conter	50 nt %		Natural Unit Wt. kN/m ³
clay	ure of silty sand, clayey silt and silty with gravel, brown and grey, moist to — (compact to dense/very stiff to hard)		0	21 O				×				Ø	SS1

- clay with gravel, brown and grey, moist to wet, (compact to dense/very stiff to hard) 		SS2 SS3 20.9 SS4
		SS3 20.9
		20.9
		20.9
		· 1/ M
68.1 3		
Silty sand with gravel, cobbles and		
dense/firm to hard)		
		23.9
51		SS7
INFERRED WEATHERED SHALE 64.1 BEDROCK 63.5 SHALE BEDROCK 63.5 Grey to dark grey, (very poor to excellent quality) 64.1 Very poor quality bedrock with numerous clay seams and rubble zone (broken rock) from 7.6 m to 14.9 m depths 9		SS9
64.1 7		
SHALE BEDROCK Grey to dark grey, (very poor to excellent		
		RUN1
Very poor quality bedrock with numerous		
clay seams and rubble zone (broken rock) from 7.6 m to 14.9 m depths		2-
		RUN2
Continued Next Page		D
00 00 1. Borehole data requires interpretation by EXP before use by others 00	6 Rec.	RQD %
Image: Date Level (m) To (m) No. (m) Image: Update Level (m) To (m) 1 7.6 - 8.8	22	0
L Sept. 3, 2020 2.6 2 8.8 - 10.3	71	0
3. Fieldwork supervised by an EXP representative. Sept. 10, 2020 2.6 3 10.3 - 11.8 0 4 11.8 - 13.4	92 92	13 6
4. See Notes of Sample Descriptions 4 11.0-10.4 0 5 13.4 - 14.7	67	0
	100	77 100

16.3 - 17.7

100

100

Log of Borehole <u>BH20-13</u>

*exp. 15

100

7

16.3 - 17.7

100

Project No: OTT-00260579-A0

Project: **Residential Development** Figure No.

									Pa		2_of		
SY		Geodetic	D)		netration 1			2	250 5	our Readi	/50	S M P Unit E S
SYMBOL	SOIL DESCRIPTION	Elevation m	l it	Shear	20 Strength	40 6	60	80 kPa	Nat Attert	tural Mois bera Limit	ture Conte s (% Dry V	ent % Veight)	PUnit
Ľ		61.07	h 10			00 1	50 2	200				60	E KIN/ S
	SHALE BEDROCK Grey to dark grey, (very poor to exc	ollont							0000				
	quality)								0.000				
	Very poor quality bedrock with nume	erous	11	1									RU
	clay seams and rubble zone (broker from 7.6 m to 14.9 m depths <i>(contin</i>	ued)											
		_											-
	<u> </u>	_	12	2									
	-	_											RU
		_	13	3									
		7											11
			14	4		1999	13333		6666	14334	12.2.2.2	19999	RU
		_											11
				0.000									:
	<u></u>	-	15	5									11
													11_
	<u>-</u>	1											RU
			16	D									
		_											
									0.000				•
		_	17	7	· · · · · · · · · · · · · · · · · · ·		1.0.0.00		0.000				RU
	<u> </u>												-
	Borehole Terminated at 17.7 m I	Depth											
			_										
IOTES:		WATE	RL	EVEL R	ECORD	S			CO	REDRI	LLING R	ECORD	
1. Boreho use by	ole data requires interpretation by EXP before v others	Date		Water		Hole Op		Run	Dep	oth	% Re		RQD %
2. A 19 m	nm diameter standpipe installed to a 17.7 m	-	L	<u>_evel (m</u> -)	<u>To (m)</u> -)	<u>No.</u>	(m 7.6 -		22		0
	as shown.	Sept. 3, 2020		2.6				2	8.8 -		71		0
	rork supervised by an EXP representative.	Sept. 10, 2020		2.6				3	10.3 -		92		13
	otes on Sample Descriptions							4 5	11.8 - 13.4 -		92 67		6 0
5. Log to	be read with EXP Report OTT-00260579-A0							6	14.7 -		100		77
		ч						7	163-		100		100

			Log of	Bor	e	ho	le _	Bł	<u> 120</u>)-1	<u>4</u>			*	e	xn
Pı	roject	t No:	OTT-00260579-A0								Figure I	No	16	3		$\gamma \gamma$
Pi	roject	t:	Residential Development								U			_		
Lo	ocatio	on:	1740 - 1760 St. Laurent Boulevard, Ott	awa, On.							Pa	ge		<u> </u>		
Da	ate D	rilled:	'August 25, 2020			Split Spoo	on Sampl	e	\boxtimes		Combus	stible Vap	our Read	ding		
Dr	ill Ty	pe:	CME-75 Truck Mounted Drill Rig			Auger Sa SPT (N) \	•				Natural Atterber	Moisture g Limits	Content	F		× +0
Da	atum	:	Geodetic Elevation			Dynamic Shelby Tu		st			Undrain	ed Triaxia 1 at Failur		-		•
Lo	ggeo	d by:	ML Checked by: SMP			Shear Str Vane Tes	ength by		+ s		Shear S	trength b meter Te	у			A
G W L	S Y M B O L		SOIL DESCRIPTION	Geodetic Elevation m 71.98	D e p t h		0 4 itrength	10		ue 60 kPa 00	2 Nat Attert		500 ture Cont	ding (ppm) 750 tent % Weight) 60	A M	Natural Unit Wt. kN/m ³
		FILL Silty	sand with gravel, brown, damp -		0		28 O				×					SS1
		clay		71.2	1	14 					×					SS2
			Y CLAY n, wet, (very stiff)	70.28	2	16 O			180			×				SS3 19.4
		_	-	69.0	3	7 O			192	2			X			SS4
			YCLAY plasticity, grey, wet, (stiff)	_	3	2	72 ▲					>	<			SS5 18.6
		_	-	-	4	 1 0						-0	×		$\overline{\mathbf{N}}$	SS6

43 O

37 O

SS7

SS8

SS9

Х

X

X

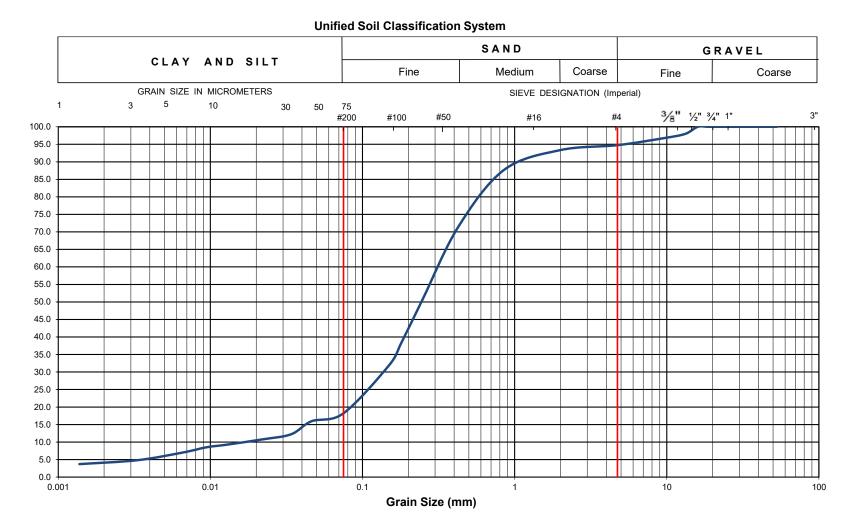
4 **1**÷ ₽:

5

11 0

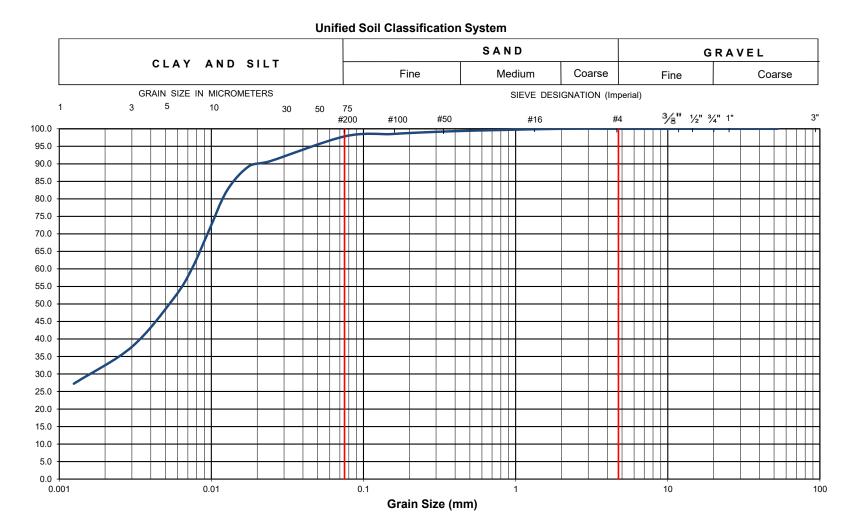
67.5

65.2

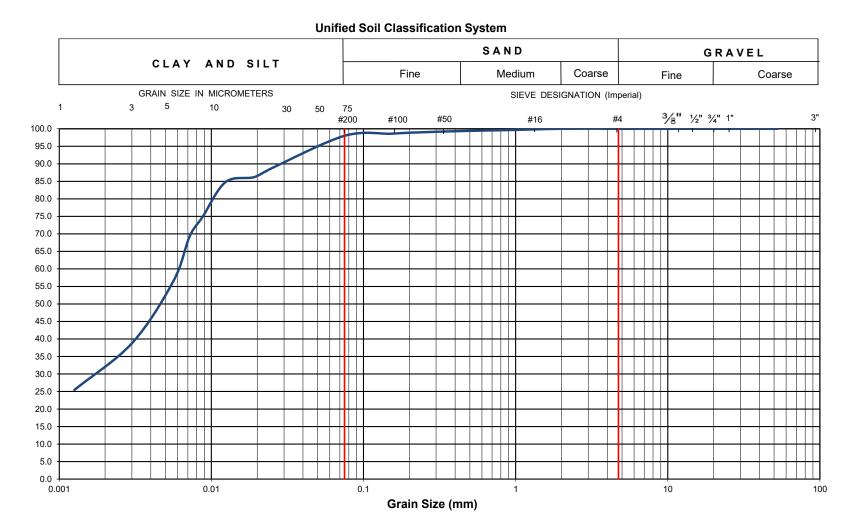

GLACIAL TILL Silty sand with gravel, cobbles and boulders, grey, wet, (compact to dense/stiff – to hard)

Auger Refusal at 6.8 m Depth

REHOLE LOGS OF BOREHOLES - 1740&1760 ST LAURENT.GPJ TROW OTTAWA.GDT 9/22/20		
OF BC	10	
LOGS (1.	E
HOLE	2.	A C F
Ë	3.	F

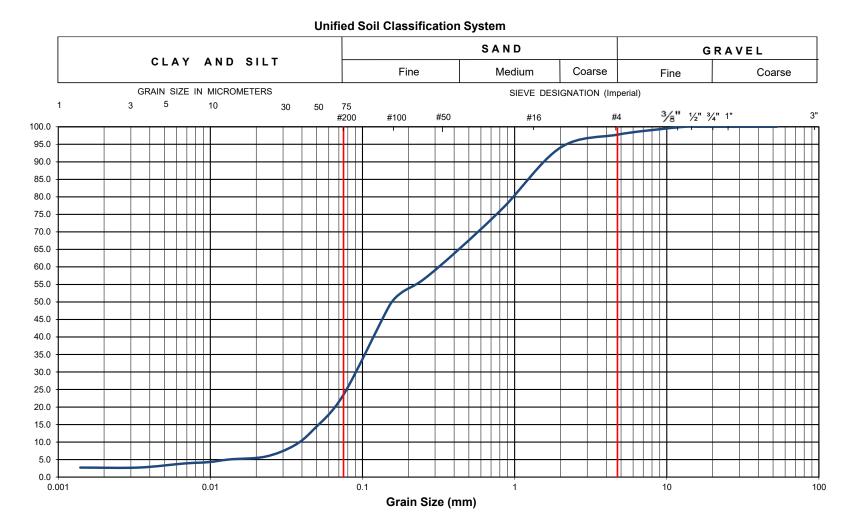

ñ								
-	NOTES: 1. Borehole data requires interpretation by EXP before	WAT	ER LEVEL RECC	RDS		CORE DF	RILLING RECOF	RD
LOGS	use by others	Date	Water Level (m)	Hole Open To (m)	Run No.	Depth (m)	% Rec.	RQD %
Щ	2. A 50 mm diameter monitoring well installed to a 4.2 m	Aug. 25, 2020	3.0	-				
H	depth as shown.	Sept. 3, 2020	1.7					
R	3. Fieldwork supervised by an EXP representative.							
OF BORE	4. See Notes on Sample Descriptions							
g	5. Log to be read with EXP Report OTT-00260579-A0							
Ц								

EXP Project No.:	OTT-00260579	Project Name :	oject Name : Geotechnical Investigation - Proposed Residential De							
Client :	Heafy Group	Project Location	oject Location : 1740-1760 St. Laurent Blvd. Ottawa,Ontario							
Date Sampled :	August 25, 2020	Borehole No:	Borehole No: BH20-11				SS	62	Depth (m) :	1.5-2.1
Sample Description :		% Silt and Clay	18	% Sand	77	% Gravel		5	Eigung i	17
Sample Description :		FILL: S	FILL: Silty Sand (SM)						Figure :	17

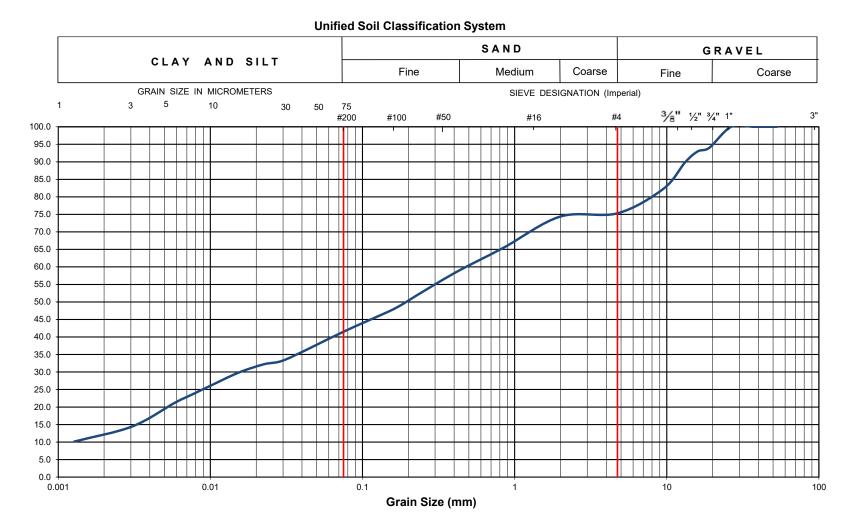


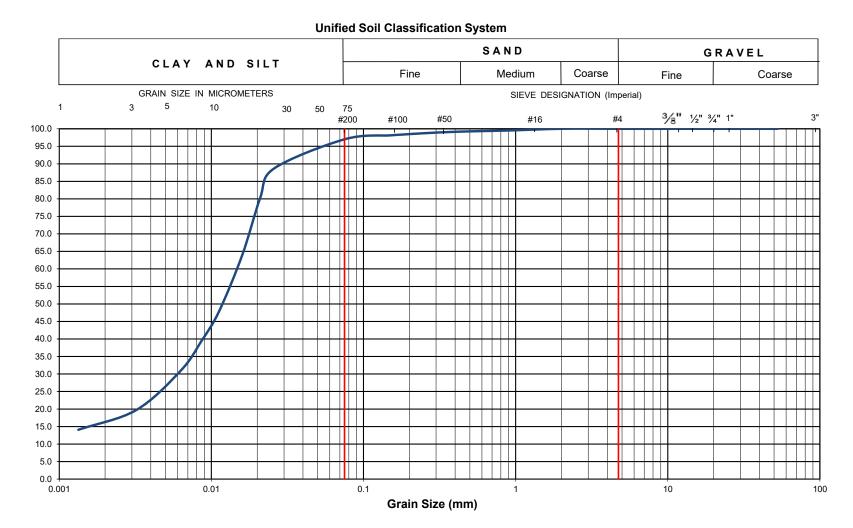
EXP Project No.:	OTT-00260579		Project Name :	roject Name : Geotechnical Investigation - Proposed Residential Development								
Client :	Heafy Group		Project Location : 1740-1760 St. Laurent Blvd. Ottawa, Ontario									
Date Sampled :	August 25, 2020		Borehole No:		BH20-08	BH20-08 Sample No.: SS4					2.3-2.9	
Sample Description :			% Silt and Clay	98	% Sand	2	% Gravel		0	Eigung i	18	
Sample Description :		BRC	OWN SILTY CLAY CRUST: Low Plasticity (CL)							Figure :	10	

Percent Passing

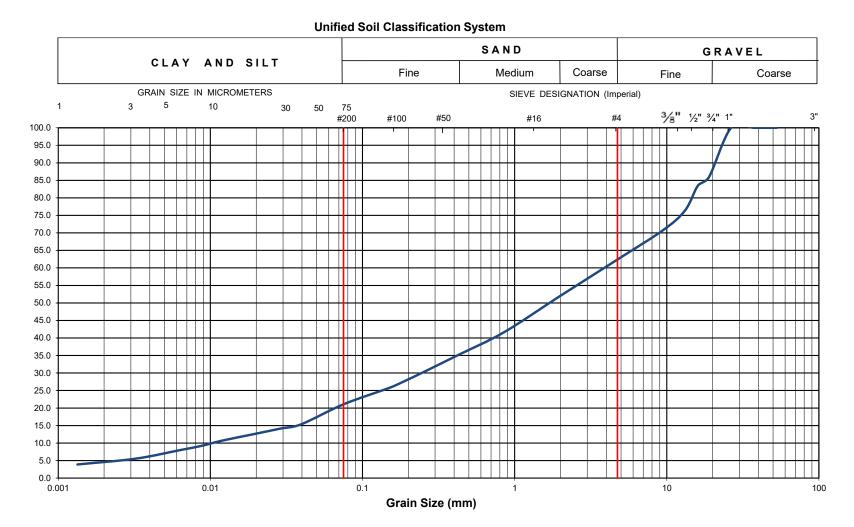


EXP Project No.:	OTT-00260579	Project Name :	Project Name : Geotechnical Investigation - Proposed Residential Development							
Client :	Heafy Group	Project Location	Project Location : 1740-1760 St. Laurent Blvd, Ottawa, Ontario							
Date Sampled :	August 25, 2020	Borehole No:	Borehole No: BH20-14 Sample No.: SS6					66	Depth (m) :	3.8-4.4
Sample Description :		% Silt and Clay	98	% Sand	2	% Gravel		0	Figure :	19
Sample Description :		GREY SILTY CLA	GREY SILTY CLAY: Low Plasticity (CL)							


Percent Passing

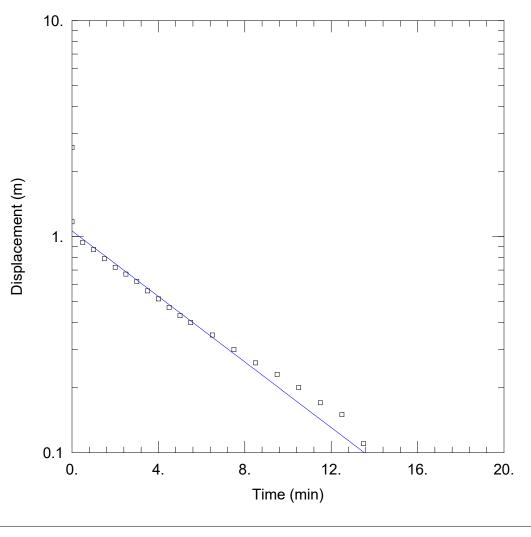

EXP Project No.:	OTT-00260579	Project Name :	oject Name : Geotechnical Investigation - Proposed Resident							
Client :	Heafy Group	Project Location	ject Location : 1740-1760 St. Laurent Blvd. Ottawa, Ontario							
Date Sampled :	August 25, 2020	Borehole No:	Borehole No: BH20-06				SS8		Depth (m) :	5.3-5.9
Sample Description :		% Silt and Clay	24	% Sand	74	% Gravel		2	Eigung i	20
Sample Description :		GLACIAL TIL	GLACIAL TILL: Silty Sand (SM)						Figure :	20

EXP Project No.:	OTT-00260579	Project Name :	roject Name : Geotechnical Investigation - Proposed Residential Development								
Client :	Heafy Group	Project Location	roject Location : 1740-1760 St. Laurent Blvd. Ottawa, Ontario								
Date Sampled :	August 25, 2020	Borehole No:		BH20-07	BH20-07 Sample No.: SS4-SS6				Depth (m) :	2.3-4.4	
Sample Description :		% Silt and Clay	42	% Sand	33	% Gravel		25	Eigung I	24	
Sample Description :		GLACIAL TILL: Clay	yey Sa	Figure :	21						



EXP Project No.:	OTT-00260579	Project Name :	roject Name : Geotechnical Investigation - Proposed Residential Development							
Client :	nt : Heafy Group Project Location : 1740-1760 St. Laurent Blvd. Ottawa, Ontario									
Date Sampled :	August 25, 2020	Borehole No:	orehole No: BH20-08 Sample No.: SS6 [Depth (m) :	3.8-4.4	
Sample Description :		% Silt and Clay	97	% Sand	3	% Gravel		0	Figure :	22
Sample Description :		GLACIAL TILL: Silty Cl	IAL TILL: Silty Clay of Low Plasticity (CL-ML)							22

Percent Passing


EXP Project No.:	OTT-00260579	Project Name :	oject Name : Geotechnical Investigation - Proposed Resident							
Client :	Heafy Group	Project Location	:							
Date Sampled :	August 25, 2020	Borehole No:	Borehole No: BH20-14				SS8		Depth (m) :	5.3-5.9
Sample Description :		% Silt and Clay	21	% Sand	41	% Gravel		38	Figure	22
Sample Description : GLACIAL TILL: Silty Sand with Gravel (SM)									Figure :	23

EXP Services Inc.

1740-1760 St Laurent Blvd., Ottawa, Ontario Hydrogeological Investigation OTT-00260579-B0 October 17, 2023

Appendix C – SWRT Results

WELL TEST ANALYSIS

Data Set: <u>C:\Users\AhmedD\OneDrive - EXP\Desktop\St Laurent Blvd\AqtSolve\Aqt BH19-02 RH.aqt</u> Date: <u>10/06/23</u> Time: <u>11:56:20</u>

PROJECT INFORMATION

Company: <u>EXP Services Inc.</u> Project: <u>OTT-00260579-B0</u> Location: <u>1740 St Laurent Blvd</u> Test Well: <u>MW19-02 FH</u> Test Date: September 26, 2023

Test Date: September 26, 2023			
AQUIFER DATA			
Saturated Thickness: <u>1.4</u> m	Anisotropy Ratio (Kz/Kr): <u>1.</u>		
WELL DATA (I	WELL DATA (MW19-02 RH)		
Initial Displacement: <u>2.59</u> m Total Well Penetration Depth: <u>6.3</u> m Casing Radius: <u>0.05</u> m	Static Water Column Height: <u>6.2</u> m Screen Length: <u>3.</u> m Well Radius: <u>0.07</u> m		
SOLUTION			
Aquifer Model: Confined	Solution Method: Hvorslev		
K = <u>4.955E-6</u> m/sec	y0 = <u>1.062</u> m		

Data Set: C:\Users\AhmedD\OneDrive - EXP\Desktop\St Laurent Blvd\AqtSolve\Aqt MW19-02 FH.aqt Date: 10/06/23 Time: 12:28:31

PROJECT INFORMATION

Company: EXP Services Inc. Project: OTT-00260579-B0 Location: 1740 St Laurent Blvd Test Date: September 26, 2023 Test Well: MW19-02 FH

AQUIFER DATA

Saturated Thickness: 1.4 m Anisotropy Ratio (Kz/Kr): 1.

SLUG TEST WELL DATA

Test Well: MW19-02 FH

X Location: 0. m Y Location: 0. m

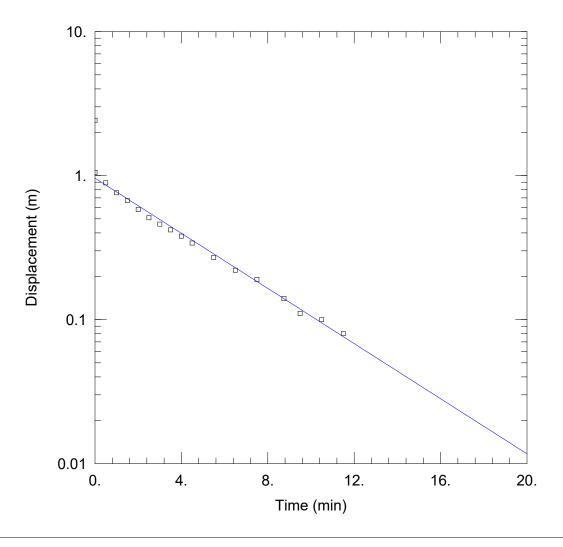
Initial Displacement: 2.59 m Static Water Column Height: 6.2 m Casing Radius: 0.05 m Well Radius: 0.07 m Well Skin Radius: 0.1 m Screen Length: 3. m Total Well Penetration Depth: 6.3 m

No. of Observations: 20

Observation Data			
Time (min)	Displacement (m)	Time (min)	Displacement (m)
0.	1.17	5.	0.43
0.5	0.94	5.5	0.4
1.	0.87	6.5	0.35
1.5	0.79	7.5	0.3
2.	0.72	8.5	0.26
2.5	0.67	9.5	0.23
3.	0.62	10.5	0.2
3.5	0.56	11.5	0.17
4.	0.515	12.5	0.15
4.5	0.47	13.5	0.11

SOLUTION

Slug Test Aquifer Model: Confined Solution Method: Hvorslev Log Factor: 0.1887


VISUAL ESTIMATION RESULTS

Estimated Parameters

Parameter	Estimate	
K	4.955E-6	m/sec
у0	1.062	m

K = 0.0004955 cm/sec

 $T = K^*b = 6.937E-6 \text{ m}^2/\text{sec} (0.06937 \text{ sq. cm/sec})$

MULTI WELL SLUG TEST

Data Set: <u>C:\Users\AhmedD\OneDrive - EXP\Desktop\St Laurent Blvd\AqtSolve\Aqt MW19-03 FH.aqt</u> Date: <u>10/06/23</u> Time: <u>12:18:59</u>

PROJECT INFORMATION

Company: <u>EXP Services Inc.</u> Project: <u>OTT-00260579-B0</u> Location: <u>1740 St Laurent Blvd</u> Test Well: <u>MW19-03 FH</u> Test Date: September 26, 2023

Test Date: September 26, 2023				
AQUIFE	AQUIFER DATA			
Saturated Thickness: <u>1.4</u> m	Anisotropy Ratio (Kz/Kr): <u>1.</u>			
WELL DATA (WELL DATA (MW19-03 FH)			
Initial Displacement: <u>2.42</u> m Total Well Penetration Depth: <u>6.3</u> m Casing Radius: <u>0.05</u> m	Static Water Column Height: <u>4.27</u> m Screen Length: <u>3.</u> m Well Radius: <u>0.07</u> m			
SOLUTION				
Aquifer Model: Confined	Solution Method: <u>Hvorslev</u>			
K = <u>6.253E-6</u> m/sec	y0 = <u>0.9589</u> m			

Data Set: C:\Users\AhmedD\OneDrive - EXP\Desktop\St Laurent Blvd\AqtSolve\Aqt MW19-03 FH.aqt Title: Multi Well Slug Test Date: 10/06/23 Time: 12:22:53

PROJECT INFORMATION

Company: EXP Services Inc. Project: OTT-00260579-B0 Location: 1740 St Laurent Blvd Test Date: September 26, 2023 Test Well: MW19-03 FH

AQUIFER DATA

Saturated Thickness: 1.4 m Anisotropy Ratio (Kz/Kr): 1.

SLUG TEST WELL DATA

Test Well: MW19-03 FH

X Location: 0. m Y Location: 0. m

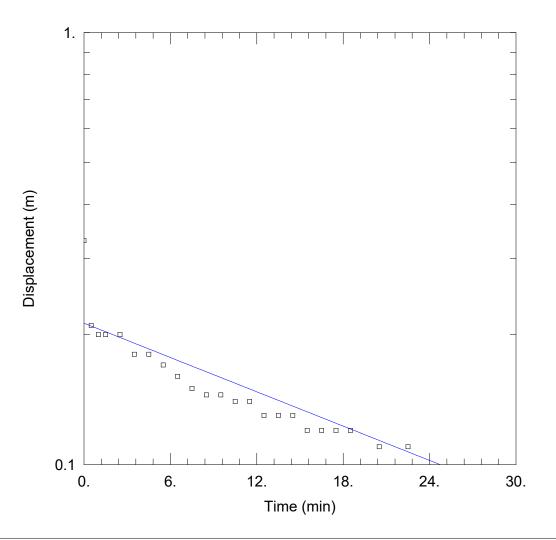
Initial Displacement: 2.42 m Static Water Column Height: 4.27 m Casing Radius: 0.05 m Well Radius: 0.07 m Well Skin Radius: 0.1 m Screen Length: 3. m Total Well Penetration Depth: 6.3 m

No. of Observations: 17

Observation Data			
Time (min)	Displacement (m)	Time (min)	Displacement (m)
0.	1.05	4.5	0.34
0.5	0.89	5.5	0.27
1.	0.76	6.5	0.22
1.5	0.67	7.5	0.19
2.	0.58	8.75	0.14
2.5	0.51	9.5	0.11
3.	0.46	10.5	0.1
3.5	0.42	11.5	0.08
4.	0.38		

SOLUTION

Slug Test Aquifer Model: Confined Solution Method: Hvorslev Log Factor: 0.1887


VISUAL ESTIMATION RESULTS

Estimated Parameters

Parameter	Estimate	
K	6.253E-6	m/sec
у0	0.9589	m

K = 0.0006253 cm/sec

T = K*b = 8.754E-6 m²/sec (0.08754 sq. cm/sec)

MULTI WELL SLUG TEST

Data Set: <u>C:\Users\AhmedD\OneDrive - EXP\Desktop\St Laurent Blvd\AqtSolve\Aqt UNK ID FH.aqt</u> Date: <u>10/06/23</u> Time: <u>12:26:44</u>

PROJECT INFORMATION

Company: <u>EXP Services Inc.</u> Project: <u>OTT-00260579-B0</u> Location: <u>1740 St Laurent Blvd</u> Test Well: <u>UNK ID</u> Test Date: September 26, 2023

AQUIFER DATA

Saturated Thickness: 1.4 m

Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (U<u>NK ID FH)</u>

Initial Displacement: <u>2.42</u> m Total Well Penetration Depth: <u>6.3</u> m Casing Radius: <u>0.05</u> m Static Water Column Height: <u>4.27</u> m Screen Length: <u>3.</u> m Well Radius: 0.07 m

SOLUTION

Aquifer Model: Confined

K = 8.653E-7 m/sec

Solution Method: Hvorslev

y0 = 0.2125 m

Data Set: C:\Users\AhmedD\OneDrive - EXP\Desktop\St Laurent Blvd\AqtSolve\Aqt UNK ID FH.aqt Title: Multi Well Slug Test Date: 10/06/23 Time: 12:27:08

PROJECT INFORMATION

Company: EXP Services Inc. Project: OTT-00260579-B0 Location: 1740 St Laurent Blvd Test Date: September 26, 2023 Test Well: UNK ID

AQUIFER DATA

Saturated Thickness: 1.4 m Anisotropy Ratio (Kz/Kr): 1.

SLUG TEST WELL DATA

Test Well: UNK ID FH

X Location: 0. m Y Location: 0. m

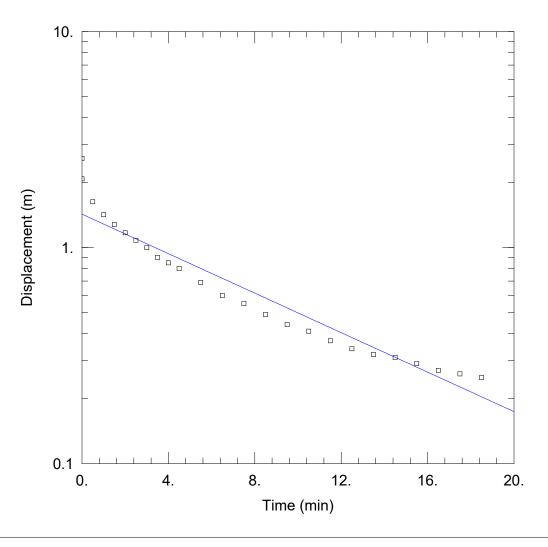
Initial Displacement: 2.42 m Static Water Column Height: 4.27 m Casing Radius: 0.05 m Well Radius: 0.07 m Well Skin Radius: 0.1 m Screen Length: 3. m Total Well Penetration Depth: 6.3 m

No. of Observations: 23

Observation Data				
Time (min)	Displacement (m)	Time (min)	Displacement (m)	
0.	0.33	10.5	0.14	
0.5	0.21	11.5	0.14	
1.	0.2	12.5	0.13	
1.5	0.2	13.5	0.13	
2.5	0.2	14.5	0.13	
3.5	0.18	15.5	0.12	
4.5	0.18	16.5	0.12	
5.5	0.17	17.5	0.12	
6.5	0.16	18.5	0.12	
7.5	0.15	20.5	0.11	
8.5	0.145	22.5	0.11	
9.5	0.145			

SOLUTION

Slug Test Aquifer Model: Confined Solution Method: Hvorslev Log Factor: 0.1887


VISUAL ESTIMATION RESULTS

Estimated Parameters

Parameter	Estimate	
K	8.653E-7	m/sec
y0	0.2125	m

K = 8.653E-5 cm/sec

T = K*b = 1.211E-6 m²/sec (0.01211 sq. cm/sec)

MULTI WELL SLUG TEST

Data Set: <u>C:\Users\AhmedD\OneDrive - EXP\Desktop\St Laurent Blvd\AqtSolve\Aqt MW19-02 RH.aqt</u> Date: <u>10/06/23</u> Time: <u>14:36:04</u>

PROJECT INFORMATION

Company: <u>EXP Services Inc.</u> Project: <u>OTT-00260579-B0</u> Location: <u>1740 St Laurent Blvd</u> Test Well: <u>MW19-02 RH</u> Test Date: September 26, 2023

Test Date: September 26, 2023				
AQUIFE	AQUIFER DATA			
Saturated Thickness: <u>1.4</u> m	Anisotropy Ratio (Kz/Kr): <u>1.</u>			
WELL DATA (I	WELL DATA (MW19-02 RH)			
Initial Displacement: <u>2.59</u> m Total Well Penetration Depth: <u>6.3</u> m Casing Radius: <u>0.05</u> m	Static Water Column Height: <u>6.2</u> m Screen Length: <u>3.</u> m Well Radius: <u>0.07</u> m			
SOLUTION				
Aquifer Model: Confined	Solution Method: <u>Hvorslev</u>			
K = <u>2.985E-6</u> m/sec	y0 = <u>1.427</u> m			

Data Set: C:\Users\AhmedD\OneDrive - EXP\Desktop\St Laurent Blvd\AqtSolve\Aqt MW19-02 RH.aqt Title: Multi Well Slug Test Date: 10/06/23 Time: 14:36:26

PROJECT INFORMATION

Company: EXP Services Inc. Project: OTT-00260579-B0 Location: 1740 St Laurent Blvd Test Date: September 26, 2023 Test Well: MW19-02 RH

AQUIFER DATA

Saturated Thickness: 1.4 m Anisotropy Ratio (Kz/Kr): 1.

SLUG TEST WELL DATA

Test Well: MW19-02 RH

X Location: 0. m Y Location: 0. m

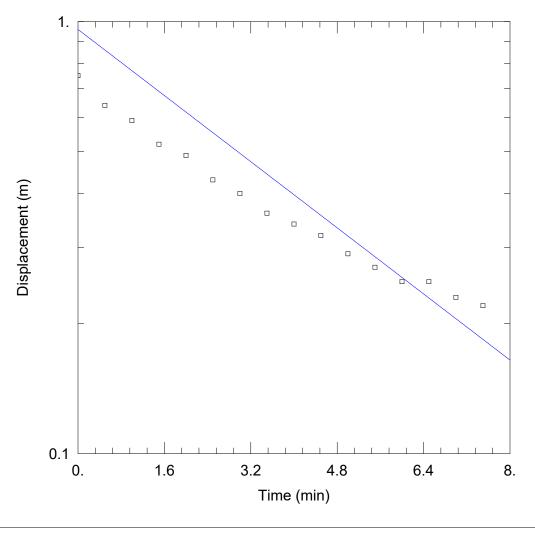
Initial Displacement: 2.59 m Static Water Column Height: 6.2 m Casing Radius: 0.05 m Well Radius: 0.07 m Well Skin Radius: 0.1 m Screen Length: 3. m Total Well Penetration Depth: 6.3 m

No. of Observations: 24

Observation Data			
Time (min)	Displacement (m)	Time (min)	Displacement (m)
0.	2.08	7.5	0.55
0.5	1.63	8.5	0.49
1.	1.42	9.5	0.44
1.5	1.28	10.5	0.41
2.	1.17	11.5	0.37
2.5	1.08	12.5	0.34
3.	1.	13.5	0.32
3.5	0.9	14.5	0.31
4.	0.85	15.5	0.29
4.5	0.8	16.5	0.27
5.5	0.69	17.5	0.26
6.5	0.6	18.5	0.25

SOLUTION

Slug Test Aquifer Model: Confined Solution Method: Hvorslev Log Factor: 0.1887


VISUAL ESTIMATION RESULTS

Estimated Parameters

Parameter	Estimate	
K	2.985E-6	m/sec
y0	1.427	m

K = 0.0002985 cm/sec

 $T = K^*b = 4.179E-6 \text{ m}^2/\text{sec} (0.04179 \text{ sq. cm/sec})$

MULTI WELL SLUG TEST

Data Set: <u>C:\Users\AhmedD\OneDrive - EXP\Desktop\St Laurent Blvd\AqtSolve\Aqt MW19-03 FH.aqt</u> Date: <u>10/06/23</u> Time: <u>14:39:00</u>

PROJECT INFORMATION

Company: <u>EXP Services Inc.</u> Project: <u>OTT-00260579-B0</u> Location: <u>1740 St Laurent Blvd</u> Test Well: <u>MW19-03</u> Test Date: <u>September 26, 2023</u>

AQUIFER DATA

WELL DATA (MW19-03 RH)

Saturated Thickness: 1.4 m

Anisotropy Ratio (Kz/Kr): <u>1.</u>

Initial Displacement: <u>2.42</u> m Total Well Penetration Depth: <u>6.3</u> m Casing Radius: 0.05 m Static Water Column Height: <u>4.27</u> m Screen Length: <u>3.</u> m Well Radius: 0.07 m

SOLUTION

Aquifer Model: Confined

K = 6.253E-6 m/sec

Solution Method: Hvorslev

y0 = 0.9589 m

Data Set: C:\Users\AhmedD\OneDrive - EXP\Desktop\St Laurent Blvd\AqtSolve\Aqt MW19-03 FH.aqt Title: Multi Well Slug Test Date: 10/06/23 Time: 14:39:37

PROJECT INFORMATION

Company: EXP Services Inc. Project: OTT-00260579-B0 Location: 1740 St Laurent Blvd Test Date: September 26, 2023 Test Well: MW19-03

AQUIFER DATA

Saturated Thickness: 1.4 m Anisotropy Ratio (Kz/Kr): 1.

SLUG TEST WELL DATA

Test Well: MW19-03 RH

X Location: 0. m Y Location: 0. m

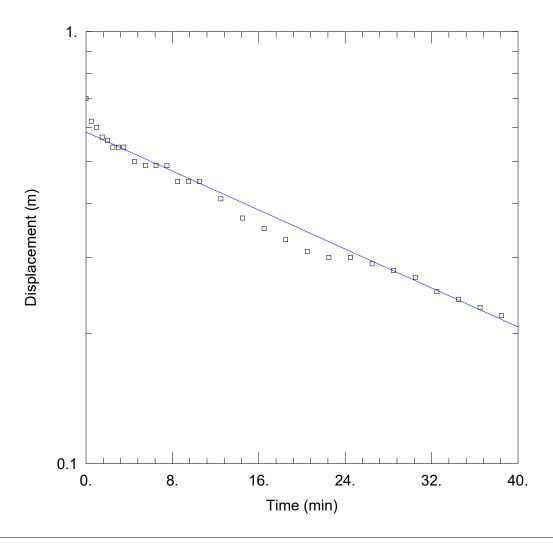
Initial Displacement: 2.42 m Static Water Column Height: 4.27 m Casing Radius: 0.05 m Well Radius: 0.07 m Well Skin Radius: 0.1 m Screen Length: 3. m Total Well Penetration Depth: 6.3 m

No. of Observations: 16

Observation Data			
Displacement (m)	Time (min)	Displacement (m)	
0.75	4.	0.34	
0.64	4.5	0.32	
0.59	5.	0.29	
0.52	5.5	0.27	
0.49	6.	0.25	
0.43	6.5	0.25	
0.4	7.	0.23	
0.36	7.5	0.22	
	Displacement (m) 0.75 0.64 0.59 0.52 0.49 0.43 0.4	Displacement (m)Time (min)0.754.0.644.50.595.0.525.50.496.0.436.50.47.	

SOLUTION

Slug Test Aquifer Model: Confined Solution Method: Hvorslev Log Factor: 0.1887


VISUAL ESTIMATION RESULTS

Estimated Parameters

Parameter	Estimate	
K	6.253E-6	m/sec
у0	0.9589	m

K = 0.0006253 cm/sec

T = K*b = 8.754E-6 m²/sec (0.08754 sq. cm/sec)

MULTI WELL SLUG TEST

Data Set: <u>C:\Users\AhmedD\OneDrive - EXP\Desktop\St Laurent Blvd\AqtSolve\Aqt UNK ID FH.aqt</u> Date: <u>10/06/23</u> Time: <u>14:41:24</u>

PROJECT INFORMATION

Company: <u>EXP Services Inc.</u> Project: <u>OTT-00260579-B0</u> Location: <u>1740 St Laurent Blvd</u> Test Well: <u>UNK ID</u> Test Date: September 26, 2023

AQUIFER DATA

Saturated Thickness: 1.4 m

Anisotropy Ratio (Kz/Kr): <u>1.</u>

WELL DATA (UNK ID RH)

Initial Displacement: <u>2.42</u> m Total Well Penetration Depth: <u>6.3</u> m Casing Radius: <u>0.05</u> m Static Water Column Height: <u>4.27</u> m Screen Length: <u>3.</u> m Well Radius: 0.07 m

SOLUTION

Aquifer Model: Confined

K = 7.365E-7 m/sec

Solution Method: Hvorslev

y0 = 0.5851 m

Data Set: C:\Users\AhmedD\OneDrive - EXP\Desktop\St Laurent Blvd\AqtSolve\Aqt UNK ID FH.aqt Title: Multi Well Slug Test Date: 10/06/23 Time: 14:41:56

PROJECT INFORMATION

Company: EXP Services Inc. Project: OTT-00260579-B0 Location: 1740 St Laurent Blvd Test Date: September 26, 2023 Test Well: UNK ID

AQUIFER DATA

Saturated Thickness: 1.4 m Anisotropy Ratio (Kz/Kr): 1.

SLUG TEST WELL DATA

Test Well: UNK ID RH

X Location: 0. m Y Location: 0. m

Initial Displacement: 2.42 m Static Water Column Height: 4.27 m Casing Radius: 0.05 m Well Radius: 0.07 m Well Skin Radius: 0.1 m Screen Length: 3. m Total Well Penetration Depth: 6.3 m

No. of Observations: 29

	Observatio	on Data	
Time (min)	Displacement (m)	Time (min)	Displacement (m)
0.	0.7	12.5	0.41
0.5	0.62	14.5	0.37
1.	0.6	16.5	0.35
1.5	0.57	18.5	0.33
2.	0.56	20.5	0.31
2.5	0.54	22.5	0.3
3.	0.54	24.5	0.3
3.5	0.54	26.5	0.29
4.5	0.5	28.5	0.28
5.5	0.49	30.5	0.27
6.5	0.49	32.5	0.25
7.5	0.49	34.5	0.24
8.5	0.45	36.5	0.23
9.5	0.45	38.5	0.22
10.5	0.45		

SOLUTION

Slug Test Aquifer Model: Confined Solution Method: Hvorslev Log Factor: 0.1887

VISUAL ESTIMATION RESULTS

Estimated Parameters

Parameter	Estimate	
K	7.365E-7	m/sec
y0	0.5851	m

K = 7.365E-5 cm/sec T = K*b = 1.031E-6 m²/sec (0.01031 sq. cm/sec)

1740-1760 St Laurent Blvd., Ottawa, Ontario Hydrogeological Investigation OTT-00260579-B0 October 17, 2023

Appendix D – Laboratory Certificates of Analysis

	Client ID:		City of Ottawa	City of Ottawa	1740 SLB	
	Sample ID:	Sample ID:Sewer Use By-LawDate Collected:Sanitary		Sewer Use By-Law	23-026159-1	
	Date Collected:			Storm	26-Sep-23	
Parameter	Units	R.L.	Limits	Limits		
oH @25°C	pH units		5.5 to 11	6 to 9	7.23	
Fluoride	mg/L	0.1	10		<0.7	
Sulphate	mg/L	1	1500		279	
BOD5	mg/L	3	300	25	<3	
Total Suspended Solids	mg/L	3	350	15	5	
Phosphorus (Total)	mg/L	0.01	10	0.4	<0.01	
Total Kjeldahl Nitrogen	mg/L	0.1	100		0.4	
Sulphide	mg/L	0.01	2		<0.01	
Cyanide (Total)	mg/L	0.005	2	0.02	<0.005	
Phenolics	mg/L	0.001	1	0.008	<0.002	
Aluminum (Total)	mg/L	0.01	50		0.14	
Bismuth (Total)	mg/L	0.02	5		<0.02	
Boron (Total)	mg/L	0.005	25		0.195	
Cadmium (Total)	mg/L	0.005	0.02	0.008	<0.005	
Chromium (Total)	mg/L	0.002	5	0.08	<0.002	
Cobalt (Total)	mg/L	0.005	5		<0.005	
Copper (Total)	mg/L	0.002	3	0.04	<0.002	
Lead (Total)	mg/L	0.02	5	0.12	<0.02	
Vanganese (Total)	mg/L	0.001	5	0.05	0.057	
Molybdenum (Total)	mg/L	0.01	5		<0.01	
Nickel (Total)	mg/L	0.01	3	0.08	<0.01	
Silver (Total)	mg/L	0.005	5	0.12	<0.005	
Tin (Total)	mg/L	0.05	5		<0.05	
Titanium (Total)	mg/L	0.005	5		<0.005	
Vanadium (Total)	mg/L	0.005	5		<0.005	
Zinc (Total)	mg/L	0.005	3	0.04	<0.005	
Antimony (Total)	mg/L	0.0005	5		<0.0005	
Arsenic (Total)	mg/L	0.0005	1		<0.0005	
Selenium (Total)	mg/L	0.005	5		<0.005	
Mercury	mg/L	2E-05	0.001		<0.00002	

	Client ID: Sample ID:		City of Ottawa	City of Ottawa	1740 SLB
			Sewer Use By-Law	Sewer Use By-Law	23-026159-
	Date Collected:		Sanitary	Storm	26-Sep-23
Parameter	Units R.L.		Limits	Limits	
Benzene	mg/L	0.0005	0.01	0.002	<0.0005
Bromodichloromethane	mg/L	0.002	0.35		<0.002
Bromoform	mg/L	0.005	0.63		<0.005
Bromomethane	mg/L	0.0005	0.11		<0.0005
Carbon Tetrachloride	mg/L	0.0002	0.057		<0.0002
Chlorobenzene	mg/L	0.0005	0.057		<0.0005
Chloroethane	mg/L	0.003	0.27		<0.003
Chloroform	mg/L	0.001	0.08	0.002	<0.001
Chloromethane (Methyl Chloride)	mg/L	0.002	0.19		<0.002
Dibromochloromethane	mg/L	0.002	0.057		<0.002
Ethylene Dibromide	mg/L	0.0002			<0.0002
Dichlorobenzene,1,2-	mg/L	0.0005	0.088	0.0056	<0.0005
Dichlorobenzene,1,3-	mg/L	0.0005	0.036		<0.0005
Dichlorobenzene,1,4-	mg/L	0.0005	0.017	0.0068	<0.0005
Dichloroethane,1,1-	mg/L	0.0005	0.2		<0.0005
Dichloroethane,1,2-	mg/L	0.0005	0.21		<0.0005
Dichloroethylene,1,1-	mg/L	0.0005	0.04		<0.0005
Dichloroethylene,1,2-cis-	mg/L	0.0005	0.2	0.0056	<0.0005
Dichloroethylene,1,2-trans-	mg/L	0.0005	0.2		<0.0005
Dichloropropane,1,2-	mg/L	0.0005	0.85		<0.0005
Dichloropropene,1,3-cis-	mg/L	0.0005	0.07		<0.0005
Dichloropropene,1,3-trans-	mg/L	0.0005	0.07		<0.0005
Ethylbenzene	mg/L	0.0005	0.057	0.002	<0.0005
Dichloromethane (Methylene Chloride)	mg/L	0.005	0.211	0.0052	<0.005
Styrene	mg/L	0.0005	0.04		<0.0005
Tetrachloroethane,1,1,2,2-	mg/L	0.0005	0.04	0.017	<0.0005
Tetrachloroethylene	mg/L	0.0005	0.05	0.0044	<0.0005
Toluene	mg/L	0.0005	0.08	0.002	<0.0005
Trichloroethane,1,1,1-	mg/L	0.0005	0.054		<0.0005
Trichloroethane,1,1,2-	mg/L	0.0005	0.8		<0.0005
Trichloroethylene	mg/L	0.0005	0.054	0.0076	<0.0005
Trichlorofluoromethane (Freon 11)	mg/L	0.005	0.02		<0.005
Trimethylbenzene,1,3,5-	mg/L	0.0001	0.003		<0.0001
Vinyl Chloride	mg/L	0.0002	0.4		<0.0002
Xylene, m,p-	μg/L	1			<1
Xylene, m,p,o-	mg/L	0.0011			<0.0011
Xylene, o-	µg/L	0.5			<0.5
Oil & Grease (Total)	mg/L	1			11.8
Oil and Grease (Mineral)	mg/L	1	15		<1.0
Oil and Grease (Anim/Veg)	mg/L	1	150		11.8
Poly-Chlorinated Biphenyls (PCB's)	µg/L	0.05		4	<0.05

	Client ID:		City of Ottawa	City of Ottawa	1740 S.L.B	
	Sample ID:	Sample ID: Sewer Use By-Law		Sewer Use By-Law	23-026588-1	
	Date Collected:		Sanitary	Storm	30-Sep-23	
Parameter	Units	R.L.				
Acenaphthene	µg/L	0.05			<0.05	
Acenaphthylene	µg/L	0.05			<0.05	
Anthracene	µg/L	0.05			<0.05	
Benzo[a]anthracene	µg/L	0.05			<0.05	
Benzo(a)pyrene	µg/L	0.01			<0.01	
Benzo(b)fluoranthene	μg/L	0.05			<0.05	
Benzo(b+k)fluoranthene	μg/L	0.1			<0.1	
Benzo(g,h,i)perylene	μg/L	0.05			<0.05	
Benzo(k)fluoranthene	µg/L	0.05			<0.05	
Butyl Benzyl Phthalate	µg/L	1			<1	
Bis(2-Chloroethoxy)methane	µg/L	2	0.036		<2	
Bis(2-Chloroethyl)ether	µg/L	0.2			<0.2	
Chrysene	µg/L	0.05			<0.05	
Dibenzo(a,h)anthracene	µg/L	0.05			<0.05	
Di-n-Butyl Phthalate	µg/L	1	0.057		<1	
Dichlorophenol,2,4-	µg/L	0.2	0.044		<0.2	
Diethyl Phthalate	µg/L	1	0.2		<1	
Di-n-Octyl Phthalate	µg/L	1	0.03		<1	
Fluoranthene	µg/L	0.05			<0.05	
Fluorene	µg/L	0.05	0.059		<0.05	
Indeno(1,2,3,-cd)Pyrene	µg/L	0.05			<0.05	
Indole	μg/L	2	0.05		<2	
Methylnaphthalene,1-	μg/L	0.05	0.032		<0.05	
Methylnaphthalene,2-(1-)	µg/L	1			<1	
Methylnaphthalene,2-	μg/L	0.05	0.022		<0.05	
Naphthalene	μg/L	0.05	0.059	6.4	<0.05	
Phenanthrene	µg/L	0.05	included in Total PAHs		<0.05	
Pyrene	μg/L	0.05	included in Total PAHs		<0.05	
Total PAH	μg/L	0.1	0.015	6	<0.1	
Hexachlorobenzene	µg/L	0.01	0.001	0.04	<0.01	

R.L. = Reporting Limit

GENERAL SAMPLE SUBMISSION FORM	SAMPLES SUBMIT	TED TO:			TESTI	NG REQUI	REMENTS						BER (Lab Us	a construction of the second
CADUCE N" ENVIRONMENTAL LABORATORIES Clert committed. Quality assured. Prov.dy Canadáan	Kingston Ottawa Richmond Hil Barrie Windson			O'Reg 153/04 O'Reg 406/19 RPI Coarse MISA Other:	Table (1 - 9	.1) ICO Me PV		O'I La	1) pricultural Reg 558 TCLP ndfill Monitor 社会ンニ		31	09	12	69
Are any samples to be submitted intended for Huma	n Consumption under a		-		Ye	;	No	(If yes, subn	nit all Drinkir	ng Water Sa	mples on a D		er Chain of Cu OUND SERVIC	
Organization: EXP Services Inc. Address: Contact: Delwar Ahmed Tel: 6136881899 Fax 2894043187 OH Email: 0elwar ahmed Cexp. con Address: 265 d.	O Queenson	un	lame or #:		B Flore (hui)	Long Sector		S REQUESTE		IIO = IO Suspected Highly Contaminated		REQUESTE	D (see back p ranged in adva 200% 100% 50% 5 25% 5 5-7 da	age) ance Surcharge Surcharge Surcharge Surcharge
							Indicate Test F	or Each Sample		x		leld	# Bottles/	Field Filtered
No. Sample Source and/or Sample Identification	(Watertrax)	Matrix *	(yy-mm-dd) 23-09-26	Collected 16:35	11	By Usi	ng A Check Mar	k In The Box Pro	vided		рН	Temp.	Sample 12	VIN N
														1
			A 44								1			
	8		1											
SVOC + OCP	. 53		a										- fer	1
not needed		449	Success:								-		113	
			mi	VER	FIE	D								
									/					1
		R.												1 . 6
SAMPLE SUBMISSION INFORMATION	SHIPPING Courier (Client account)	G INFORMATIC	ON Invoice	REPOR Report by Fax	TING / INVO		Received B	1	C 1.	-	Signature	DRATORY U		
Sampled by: Submitted by:	Courier (Caduceon account)		magice	Report by Email		1		ved (yy-mm-dd)	TO	126	Time Rece		5.0	G
Sign: War	Drop Off		# of Pieces	Invoice by Email	2		Laboratory	Prepared Bottle	es:	Yes	No		0	
Data (aumm.dd)/Time: Data (uumm.dd)/Time:	Caduceon (Pick-up)		State of the	Invoice by Mail	L			mperature °C:	9.6		eled by:		B	2
<u>Comments:</u> Sewer Use by-lev (Zoo 3- 14 Amber, C	- 514), Sch	redul	ιA,	Tables	1.	82						Page	of	1
11-Amber, c	otor, pet:	R, N	IP, HS,	M, CI	N, H	g,p	heno	1, 21	DC-	BL		G 1	101	J1
	1-1)			1								CofC, Oct 20	21 Revision No: 1	24

Table 1. Limits for Sanitary and Combined Sewers I

Parameter	Limit (mg/L)
Biochemical Oxygen Demand	300
Cyanide (total)	2
Fluoride	10
Total Kjeldahl Nitrogen	100
Oil & Grease . Animal & Vegetable	150
Oil & Grease . Mineral & Synthetic	15
Phenolics (4AAP)	1
Phosphorous (total)	10
Sulphates	1500
Sulphides	2
Suspended Solids (total)	350
Aluminum (total)	50
Antimony (total)	5
Arsenic (total)	1
Bismuth (total)	5
Boron (total)	25
Cadmium (total)	0.02
Chromium (total)	5
Cobalt (total)	5
Copper (total)	3
Lead (total)	5
Manganese (total)	5
Mercury (total)	0.001
Molybdenum (total)	5
Nickel (total)	3
Selenium (total)	5
Silver (total)	5
Tin (total)	5
Titanium (total)	5
Vanadium	5
Zinc (total)	3
Benzene	0.01
Bromodichloromethane	0.35
Bromoform	0.63

Pet CN RNP 044 X Phena H25 Metal Hg 2voc (Blank) XIL

CADUCE NVIRONMENTAL LABORATORIES Client committed. Quality assured.

÷ .

.

QUOTATION FOR ANALYTICAL SERVICES

Valid Until:

HST

Total Cost

\$397.18

\$3,452.42

Quote #: Organization: Contact: Telephone: Email: Project #: Address: City of Ottawa Sewer Use By-law 2003-514 Invoice To: Date:

Item #	Quantity	Analysis Request	Matrix	Unit Cost, \$	Amount,
	北京在中国中国家 的	Schedule A Sanitary and Combined Sewe	r Discharge	對地球和影響的調	兩方透過的時
1	1	General Chemistry (pH, BOD5, TSS, CN, F, TP/TKN, Total Oil & Grease (Animal/Vegetable/Mineral/Synthetic), Phenols (4AAP), SO4, S ²⁺)	ww	173.45	173.45
2	1	Metals (AI, Sb, As, Bi, B, Cd, Cr, Co, Cu, Pb, Mn, Hg, Mo, Ni, Se, Ag, Sn, Ti, V, Zn)	ww	52.50	52.50
3	1	VOC'S (Benzene, Bromodichloromethane, Bromoform, Bromomethane, Carbon Tetrachloride, Chloroform, Chloromethane, Chlorobenzene, 1,2-Dichlorobenzene, Dibromochloromethane, cis-1,3 Dichlorobenzene, 1,4-Dichlorobenzene, 1,3- Dichlorobenzene, 1,4-Dichlorobenzene, 1,1- Dichlorethane, 1,2-Dichlorobenzene, 1,1- Dichlorethylene, Trans-1,2-Dichlorobethylene, 1,1- Trichlorethylene, Trans-1,2-Dichlorobethylene, 1,1,1- Trichlorothylene, 1,2-Dichloropthylene, 1,1,2- Dichloroethylene, 1,2-Dichloropthylene, Methylene Chloride, Ethylbenzene, Tetrachloroothylene, Trichlorofluromethane, 1,3-STrimethylbenzene, Toluene, Trans-1,3 Dichloropropylene, 1,1,2,2- Tetrachloroothane, Vinyl Chloride, Chloroethylene)	ww	87.15	87.15
4	1	SVOC's and PAH's (Bis(2-Chloreth)meth, Bis(2-ethylhexyl Phthalate), Butyl Benzyl Phthalate, 2,4-Dichlorophenol, Diethyl Phthalate, Dibutyl Phthalate, Dioctylphthalate, Fluorene, Hexachlorobenzene, Indole, 1-Methyl- Naphthalene, 2-Methyl-Naphthalene, Naphthalene, PAH (Total)	ww	\$204.75	\$204.75
5	1	Dioxins and Furans (sub-contracted)	ww	1300.00	1300.00
6	1	Formaldehyde (sub-contracted)	ww	275.00	260.00
7	1	Nitrosodimethylamine (NDMA) (sub- contracted)	ww	500.00	500.00
8	1	Nonyiphenois & Nonyiphenoi Ethoxylates (sub-contracted)	ww	330.00	330.00
-		Sample Supplies Surcharge	Surcharge	5%	\$145.39
-	1	Sample Disposal Surcharge	Surcharge	\$2.00	\$2.00
				Subtotal	\$3.055.24

Steve Garrett Director of Laboratory Services Caduceon Environmental Laboratories E-mail: sgarrett@caduceonlabs.com

CERTIFICATE OF ANALYSIS

C A D U C E

Client committed. Quality assured. Canadian owned.

C.O.C.: G 110101

Report To:

EXP Services Inc - Ottawa 2650 Queensview Drive Suite 100 Ottawa, ON K2B 8H6

Attention: Delwar Ahmed

DATE RECEIVED:

DATE REPORTED:

CADUCEON Environmental Laboratories 2378 Holly Lane

Ottawa, ON K1V 7P1

CUSTOMER PROJECT: OTT-00260579 P.O. NUMBER:

SAMPLE MATRIX: Ground V	Vater					
Analyses	Qty	Site Analyzed	Authorized	Date Analyzed	Lab Method	Reference Method
Anions (Liquid)	1	OTTAWA	VKASYAN	2023-Sep-27	A-IC-01	SM 4110B
BOD5 (Liquid)	1	KINGSTON	JWOLFE	2023-Sep-29	BOD-001	SM 5210B
Cond/pH/Alk Auto (Liquid)	1	OTTAWA	SBOUDREAU	2023-Sep-27	COND-02/PH-02/A	SM 2510B/4500H/
					LK-02	2320B
Cyanide Total (Liquid)	1	KINGSTON	JMACINNES	2023-Sep-29	CN-001	SM 4500-CN-E
ICP/MS Total (Liquid)	1	OTTAWA	AOZKAYMAK	2023-Sep-28	D-ICPMS-01	EPA 6020
ICP/OES Total (Liquid)	1	OTTAWA	APRUDYVUS	2023-Sep-28	D-ICP-01	SM 3120B
Mercury (Liquid)	1	OTTAWA	TBENNETT	2023-Oct-02	D-HG-02	SM 3112B
Oil & Grease (Liquid)	1	KINGSTON	MLANE	2023-Sep-28	O&G-001	SM 5520
PCB's (Liquid)	1	KINGSTON	CSUMMERHAYS	2023-Oct-02	PCB-001	EPA 8081
Phenols (Liquid)	1	KINGSTON	JMACINNES	2023-Oct-04	PHEN-01	MECP E3179
Sulphide (Liquid)	1	KINGSTON	EHINCH	2023-Sep-28	H2S-001	SM 4500-S2
TP & TKN (Liquid)	1	KINGSTON	KDIBBITS	2023-Sep-29	TPTKN-001	MECP E3516.2
TSS (Liquid)	1	KINGSTON	AMANIYA	2023-Sep-28	TSS-001	SM 2540D
VOC-Volatiles Full (Water)	1	RICHMOND_HILL	JEVANS	2023-Sep-29	C-VOC-02	EPA 8260

R.L. = Reporting Limit

NC = Not Calculated

Test methods may be modified from specified reference method unless indicated by an *

2023-Sep-26

2023-Oct-04

Steve Garrett Director of Laboratory Services

Final Report

REPORT No: 23-026159 - Rev. 0

Г

				Client I.D.	1740 SLB
				Sample I.D.	23-026159-1
Demension	11-14-	ы	l inste	Date Collected	2023-Sep-26
Parameter	Units	R.L.	Limits		-
pH @25°C	pH units	-	11.0	SAN	7.23
Fluoride	mg/L	0.1	10	SAN	<0.7
Sulphate	mg/L	1	1500	SAN	279
BOD5	mg/L	3	300	SAN	<3
Total Suspended Solids	mg/L	3	350	SAN	5
Phosphorus (Total)	mg/L	0.01	10	SAN	<0.01
Total Kjeldahl Nitrogen	mg/L	0.1	100	SAN	0.4
Sulphide	mg/L	0.01	2	SAN	<0.01
Cyanide (Total)	mg/L	0.005	2	SAN	<0.005
Phenolics	mg/L	0.001	1	SAN	<0.002
Aluminum (Total)	mg/L	0.01	50	SAN	0.14
Bismuth (Total)	mg/L	0.02	5	SAN	<0.02
Boron (Total)	mg/L	0.005	25	SAN	0.195
Cadmium (Total)	mg/L	0.005	0.02	SAN	<0.005
Chromium (Total)	mg/L	0.002	5	SAN	<0.002
Cobalt (Total)	mg/L	0.005	5	SAN	<0.005
Copper (Total)	mg/L	0.002	3	SAN	<0.002
Lead (Total)	mg/L	0.02	5	SAN	<0.02
Manganese (Total)	mg/L	0.001	5	SAN	0.057
Molybdenum (Total)	mg/L	0.01	5	SAN	<0.01
Nickel (Total)	mg/L	0.01	3	SAN	<0.01

Г

				Client I.D.	1740 SLB
Parameter	Units	R.L.	Limits	Sample I.D. Date Collected	23-026159-1 2023-Sep-26
Silver (Total)	mg/L	0.005	5	SAN	<0.005
Tin (Total)	mg/L	0.05	5	SAN	<0.05
Titanium (Total)	mg/L	0.005	5	SAN	<0.005
Vanadium (Total)	mg/L	0.005	5	SAN	<0.005
Zinc (Total)	mg/L	0.005	3	SAN	<0.005
Antimony (Total)	mg/L	0.0005	5	SAN	<0.0005
Arsenic (Total)	mg/L	0.0005	1	SAN	<0.0005
Selenium (Total)	mg/L	0.005	5	SAN	<0.005
Mercury	mg/L	0.00002	0.001	SAN	<0.00002

 \subset

Г

				Client I.D.	1740 SLB
				Sample I.D.	23-026159-1
Devenuetor	l In:te	ы	Limite	Date Collected	2023-Sep-26
Parameter	Units	R.L.	Limits		-
Benzene	mg/L	0.0005	0.01	SAN	<0.0005
Bromodichloromethane	mg/L	0.002	0.35	SAN	<0.002
Bromoform	mg/L	0.005	0.63	SAN	<0.005
Bromomethane	mg/L	0.0005	0.11	SAN	<0.0005
Carbon Tetrachloride	mg/L	0.0002	0.057	SAN	<0.0002
Chlorobenzene	mg/L	0.0005	0.057	SAN	<0.0005
Chloroethane	mg/L	0.003	0.27	SAN	<0.003
Chloroform	mg/L	0.001	0.08	SAN	<0.001
Chloromethane (Methyl Chloride)	mg/L	0.002	0.19	SAN	<0.002
Dibromochloromethane	mg/L	0.002	0.057	SAN	<0.002
Ethylene Dibromide	mg/L	0.0002	0.028	SAN	<0.0002
Dichlorobenzene,1,2-	mg/L	0.0005	0.088	SAN	<0.0005
Dichlorobenzene,1,3-	mg/L	0.0005	0.036	SAN	<0.0005
Dichlorobenzene,1,4-	mg/L	0.0005	0.017	SAN	<0.0005
Dichloroethane,1,1-	mg/L	0.0005	0.2	SAN	<0.0005
Dichloroethane,1,2-	mg/L	0.0005	0.21	SAN	<0.0005
Dichloroethylene,1,1-	mg/L	0.0005	0.04	SAN	<0.0005
Dichloroethylene,1,2-cis-	mg/L	0.0005	0.2	SAN	<0.0005
Dichloroethylene,1,2-trans-	mg/L	0.0005	0.2	SAN	<0.0005
Dichloropropane,1,2-	mg/L	0.0005	0.85	SAN	<0.0005
Dichloropropene,1,3-cis-	mg/L	0.0005	0.07	SAN	<0.0005

Γ

				Client I.D.	1740 SLB
				Sample I.D.	23-026159-1
Parameter	Units	R.L.	Limits	Date Collected	2023-Sep-26
Farameter	Units	<u>к.L.</u>	Linits		-
Dichloropropene,1,3-trans-	mg/L	0.0005	0.07	SAN	<0.0005
Ethylbenzene	mg/L	0.0005	0.057	SAN	<0.0005
Dichloromethane (Methylene Chloride)	mg/L	0.005	0.211	SAN	<0.005
Styrene	mg/L	0.0005	0.04	SAN	<0.0005
Tetrachloroethane,1,1,2,2-	mg/L	0.0005	0.04	SAN	<0.0005
Tetrachloroethylene	mg/L	0.0005	0.05	SAN	<0.0005
Toluene	mg/L	0.0005	0.08	SAN	<0.0005
Trichloroethane,1,1,1-	mg/L	0.0005	0.054	SAN	<0.0005
Trichloroethane,1,1,2-	mg/L	0.0005	0.8	SAN	<0.0005
Trichloroethylene	mg/L	0.0005	0.054	SAN	<0.0005
Trichlorofluoromethane (Freon 11)	mg/L	0.005	0.02	SAN	<0.005
Trimethylbenzene,1,3,5-	mg/L	0.0001	0.003	SAN	<0.0001
Vinyl Chloride	mg/L	0.0002	0.4	SAN	<0.0002
Xylene, m,p-	µg/L	1			<1
Xylene, m,p,o-	mg/L	0.0011	0.32	SAN	<0.0011
Xylene, o-	µg/L	0.5			<0.5
Oil & Grease (Total)	mg/L	1.0			11.8
Oil and Grease (Mineral)	mg/L	1.0	15	SAN	<1.0
Oil and Grease (Anim/Veg)	mg/L	1.0	150	SAN	11.8

 $\overline{}$

				Client I.D.	1740 SLB
				Sample I.D.	23-026159-1
				Date Collected	2023-Sep-26
Parameter	Units	R.L.	Limits		-
Poly-Chlorinated Biphenyls (PCB's)	µg/L	0.05			<0.05

: City of Ottawa SAN: Sanitary Sewer By Law

C

			and the state of the second state of the secon	ESTING REQUIREMENTS		REPORT NUMBER (Lab Use)
		O.Reg 153 Table		ledium/Fine Coarse	MISA Guidelines	23/09/30 23-026588
	ENVIRONMENTAL LABORATORIES		Agricultural ord of Site Condition	(O.Reg 153) on (O.Reg 153)	O.Reg 558 Leachate Analysis Disposal Site:	23101100
	Client committed. Quality assured.	Provincial Water Quality Object		(enitsgites)	Landfill Monitoring	-12-011 EQQ
		Sewer Use By-Law:			Other:	13020000
	Are any samples to be submitted intended for Human Consumption				submit all Drinking Water Samples on	
0	Indicate Laboratory Samples are submitte		n Ottaw			
Urga	Address and Invoicing Address act: elwar Ahmed		-		QUESTED (Print Test in Boxes)	TURNAROUND SERVICE REQUESTED (see back page)
Con	tact:	View D' . joth	Tang	de		
D	elwar Ahmed			J		REQUESTED (see back page)
	3-188-1899			1,5		
East	289-404-3187 Quote No.: 289-404-3187 Quote No.: War · Ahmed @exp. com	Project Name: 2	0	S		Silver 50% Surcharge Bronze 25% Surcharge Standard 5-7 days
cen	281-707-5101	Project Name: 2 2605 7	-9 0	be		हु Standard 5-7 days
He	Lwar · Ahmed Dep. com	Additional Info:	N	U		Specific Date:
	* Sample Matrix Legend: WW=Waste Wat			Sludge, SS=Solid Sludge, S	=Soil, Sed=Sediment, PC=Paint Chips, F=I	Filter, Oil = Oil
La			Time Collected		est For Each Sample k Mark In The Box Provided	Field #Bottles/ Field pH Temp. Sample Filtered(Y/N)
		40			A Main III The Box Flowled	
	17405-L.B	Gw23009-30 11	:15 1	V		2 10
	SAMPLE SUBMISSION INFORMATION	SHIPPING INFORMATION	N REP	PORTING / INVOICING	SAMPLE RECEIVING INFORI	MATION (LABORATORY USE ONLY)
	Sampled by: Submitted by:	Client's Courier 🔲 In	Invoice Repor	ort by Fax	Received By (print): Asme Hirs	Signature: Aau, H
Prin	Shahynaz Shahynaz	Caduceon's Courier	Repor	ort by Email	ate Received (yy-mm-dd): 23-09-3	O Time Received: 11: 2%
Sign		Drop Off # of	of Pieces Invoid	ice by Email	aboratory Prepared Bottles:	Yes 🔲 No
		Caduceon (Pick-up)	Invoid	ice by Mail		
Com	Date (yy-mm-dd)/Time: Date (yy-mm-dd)/Time:			S	ample Temperature °C: 146, 1	Labeled by:
<u>o o ni</u>	city of ottawa sever	by law				Page of
	J chiana is	0		2×1LUb	lank)	G 90848

White: Lab Copy / Yellow: Invoicing Copy / Pink: Client Copy

CofC, May 2019, Revision No: 22

CERTIFICATE OF ANALYSIS

NAB-W-001

C A D U C E

Client committed. Quality assured. Canadian owned.

C.O.C.: G 90848

Report To:

EXP Services Inc - Ottawa 2650 Queensview Drive Suite 100 Ottawa, ON K2B 8H6

Attention: Delwar Ahmed

SVOC - Semi-Volatiles (Liquid)

DATE RECEIVED: DATE REPORTED: SAMPLE MATRIX:	2023-Sep-30 2023-Oct-05 Ground Water				TOMER PROJEC NUMBER:	CT: OTT-00260	579
Analyses		Qty	Site Analyzed	Authorized	Date Analyzed	Lab Method	Reference Method
OC Pesticides (Liquid)		1	KINGSTON	CSUMMERHAYS	2023-Oct-05	PESTCL-001	EPA 8081

PRANA

R.L. = Reporting Limit

NC = Not Calculated

Test methods may be modified from specified reference method unless indicated by an $\,^{\star}\,$

1

KINGSTON

	Cli	ent I.D.	1740 S.L.B	
	Sam	ple I.D.	23-026588-1	
	Date Co	llected	2023-09-30	
Parameter	Units	R.L.	-	
Acenaphthene	µg/L	0.05	<0.05	
Acenaphthylene	µg/L	0.05	<0.05	
Anthracene	µg/L	0.05	<0.05	
Benzo[a]anthracene	µg/L	0.05	<0.05	
Benzo(a)pyrene	µg/L	0.01	<0.01	
Benzo(b)fluoranthene	µg/L	0.05	<0.05	
Benzo(b+k)fluoranthene	µg/L	0.1	<0.1	
Benzo(g,h,i)perylene	µg/L	0.05	<0.05	
Benzo(k)fluoranthene	µg/L	0.05	<0.05	
Butyl Benzyl Phthalate	µg/L	1	<1	

AVX

Steve Garrett Director of Laboratory Services

Final Report

EPA 8270D

REPORT No: 23-026588 - Rev. 1

CADUCEON Environmental Laboratories 2378 Holly Lane

Ottawa, ON K1V 7P1

2023-Oct-04

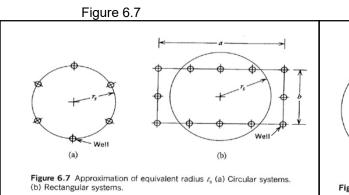
	CI	ient I.D.	1740 S.L.B
	Sam	ple I.D.	23-026588-1
	Date Co	ollected	2023-09-30
Parameter	Units	R.L.	-
Bis(2-Chloroethoxy)methane	µg/L	2	<2
Bis(2-Chloroethyl)ether	µg/L	0.2	<0.2
Chrysene	µg/L	0.05	<0.05
Dibenzo(a,h)anthracene	µg/L	0.05	<0.05
Di-n-Butyl Phthalate	µg/L	1	<1
Dichlorophenol,2,4-	µg/L	0.2	<0.2
Diethyl Phthalate	µg/L	1	<1
Di-n-Octyl Phthalate	µg/L	1	<1
Fluoranthene	µg/L	0.05	<0.05
Fluorene	µg/L	0.05	<0.05
Indeno(1,2,3,-cd)Pyrene	µg/L	0.05	<0.05
Indole	µg/L	2	<2
Methylnaphthalene,1-	µg/L	0.05	<0.05
Methylnaphthalene,2-(1-)	µg/L	1	<1
Methylnaphthalene,2-	µg/L	0.05	<0.05
Naphthalene	µg/L	0.05	<0.05
Phenanthrene	µg/L	0.05	<0.05
Pyrene	µg/L	0.05	<0.05
Total PAH	µg/L	0.1	<0.1

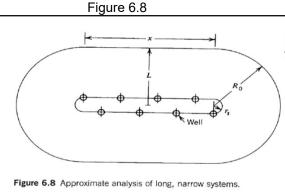
C

	Client I.D.		1740 S.L.B
	Sam	ple I.D.	23-026588-1
	Date Collected		2023-09-30
Parameter	Units R.L.		-
Hexachlorobenzene	µg/L	0.01	<0.01

C

EXP Services Inc.


1740-1760 St Laurent Blvd., Ottawa, Ontario Hydrogeological Investigation OTT-00260579-B0 October 17, 2023


Appendix E – Dewatering and Drainage Flow Rate Calculations

*ехр.

Figure DW-2:	Dewatering Flow	r Estimation Equations				
Basic Dewatering Eq	uations Used	Consistent Units		Table 6.1 Summary of Analytics Model	Basic equation	U.S. u
		Equation for Confined Aquifer	Refer to Table 6.1, p. 67, Po	0-7-R0-4		
Radial Flow	Confined Aquifer Q	$_{cr} = [2\pi KB(H-h)]/ln(R_o/r_w)$	<radial end<="" flow="contributions" from="" th=""><th></th><th>$Q_{\rm w} = \frac{2\pi K B (H - h_{\rm w})}{\ln R_{\rm o} / r_{\rm w}}$</th><th>$Q_{\rm w} = \frac{KB(z)}{229}$</th></radial>		$Q_{\rm w} = \frac{2\pi K B (H - h_{\rm w})}{\ln R_{\rm o} / r_{\rm w}}$	$Q_{\rm w} = \frac{KB(z)}{229}$
Trench Flow	Confined Aquifer Q	_{ct} = 2xKB(H-h)/L	<trench both<="" flow="contributions" from="" td=""><td>H B t</td><td>$Q_{\rm w} = \frac{1}{\ln R_0 / r_{\rm w}}$</td><td>^Q_w ⁻ 229</td></trench>	H B t	$Q_{\rm w} = \frac{1}{\ln R_0 / r_{\rm w}}$	^Q _w ⁻ 229
where		K = hydraulic conductivity in m/day		Radial flow, confined aquifer	K = hydraulic conductivity	
		B = saturated thickness of the aquifer in m		9 4 7		
		H = initial GW elevation measured from ref. datum in m	<initial elevation<="" gw="" td=""><td>T</td><td></td><td></td></initial>	T		
		h = Target GW elevation in the well measured from ref. datum	n ir <target gw="" lower="" td="" the="" to="" to!<=""><td>Ì</td><td>$\pi K(H^2 - h^2)$</td><td>K(F</td></target>	Ì	$\pi K(H^2 - h^2)$	K(F
	F	$R_o = radius of influence in m$	< Sichart & Kryelis Eq. R _o = 3000(H-h) and K in m/sec.R _o will be in metres.	Radial flow, water table	$Q_{w} = \frac{\pi K(H^{2} - h_{w}^{2})}{\ln R_{0}/r_{w}}$ K = hydraulic conductivity	$Q_{\rm w} = \frac{K(F)}{458}$
			Alternative equation by Bear (Bear, J., 1 McGraw-Hill, New York, 569p) R _o =1.5(T m²/day, t is pumping duration in days, S coefficient. R _o will be in metres .	aquifier	$Q_{\rm w} = \frac{\pi K(2BH - B^2 - h_{\rm w}^2)}{\ln R_0 / r_{\rm w}}$	$Q_{\rm w} = \frac{K2BH}{458}$
	I	$r_w = radius of of the well in m$		Radial flow, mixed aquifer	K = hydraulic conductivity	
		L = distance of influence for trench flow in m	< Similar to R_0 = ZOI for radial flow			
		Q = volume in m³/day			$\frac{Q}{x} = \frac{KB(H-h)}{L}$	$\frac{Q}{x} = \frac{KB}{1}$
		Equation for Unconfined Aquifer		Confined flow from a line	x = unit length of trench, for flow	w from 2 sides, use
Radial Flow Ur	nconfined Aquifer Q	$_{\rm ur} = \pi K(H^2 - h^2)]/\ln(R_o/r_w)$	<radial end<="" flow="contributions" from="" td=""><td></td><td>K = hydraulic conductivity</td><td></td></radial>		K = hydraulic conductivity	
Trench	Flow Unconfined Q	ut = xK(H²-h²)/L These eqs have been used in dewatering calculations.	<trench both<="" flow="contributions" from="" td=""><td>T H</td><td>$\frac{Q}{x} = \frac{K(H^2 - h^2)}{2L}$</td><td>$\frac{Q}{x} = \frac{K(F)}{2}$</td></trench>	T H	$\frac{Q}{x} = \frac{K(H^2 - h^2)}{2L}$	$\frac{Q}{x} = \frac{K(F)}{2}$
		mese eqs have been used in dewatening calculations.		Water table flow from a line	x = unit length of trench, for flow K = hydraulic conductivity	w from 2 sides, use
Refer to Figs 6.7 and 6.8, p	o.70, Powers et al., 2007			source to a drainage trench	K = hydraulic conductivity	
Equivalent Radius App Circular System	$r_s = (ab/\pi)^{0.5}$	< Circular system with aspect ratio a/b close to 1[Figure Powers et al].	e 6.7(a), p-70, Construction Dewatering & G	Recommended flow per unit	$\label{eq:Q} \begin{split} \mathcal{Q} &= 2\pi l_w r_w \mathcal{C} \sqrt{K} \\ \mathcal{C} &= \text{empirical coefficient} \end{split}$	$Q_{\rm w} = 0.03$ $r_{\rm w}$ in $l_{\rm w}$ in
Rectangular System	r _s = a+b/π	< Where the system is rectangular with unequal dimens 6.7(b), p-70, Construction Dewatering & Groundwater Cor		length of wet borehole (Sichart)		
If the well array is as sho	wn in Fig. 6.7 substitute r _w	, with r_s and use the equation for radial flow shown above	e based on confined or unconfined aqu	*Except where noted: Q in gpm; H, B, *Except where noted: Q in L/min; H, I	R_0 , r_w in ft; K in gpd/ft ² Z 3, R_0 , r_w in m; K in m/sec	

Where the aspect ratio is > 1.5 or large and the well array is double sided as shown in Fig. 6.8, use the equations 6.10a nd 6.10b shown on p. 71 of Powers et. al.,

Equations 6.10a and 6.10b

(6.10a)

(6.10b)

 $Q = \frac{2\pi KB(H-h)}{\ln R_0/r_s} + 2\left[\frac{xKB(H-h)}{L}\right]$

 $Q = \frac{\pi K (H^2 - h^2)}{\ln R_0 / r_{\rm s}} + 2 \left[\frac{x K (H^2 - h^2)}{2L} \right]$

https://exp-my.sharepoint.com/personal/delwar_ahmed_exp_com/Documents/Desktop/St Laurent Blvd/1740 SLB Dewatering Rate Calculations

$$\frac{1}{2} \text{ Dewatering Design Using Analytical Methods} \quad \mathbf{67}$$

$$\frac{U.S. \text{ units}^{*} \qquad \text{Metric units}^{*}}{229 \ln R_{0}/r_{w}} \qquad Q_{w} = \frac{KB(H - h_{w})}{2.55 \times 10^{-6} \ln R_{0}/r_{w}}$$

$$= \frac{K(H^{2} - h_{w}^{2})}{458 \ln R_{0}/r_{w}} \qquad Q_{w} = \frac{K(H^{2} - h_{w}^{2})}{5.31 \times 10^{-6} \ln R_{0}/r_{w}}$$

$$\frac{K(2BH - B^{2} - h_{w}^{2})}{458 \ln R_{0}/r_{w}} \qquad Q_{w} = \frac{K(2BH - B^{2} - h_{w}^{2})}{5.31 \times 10^{-6} \ln R_{0}/r_{w}}$$

$$\frac{R}{2} = \frac{KB(H - h)}{1440L} \qquad Q_{w} = \frac{K(2BH - B^{2} - h_{w}^{2})}{1.67 \times 10^{-6} L}$$
Is, use twice the indicated value
$$\frac{R}{2} = \frac{K(H^{2} - h^{2})}{2880L} \qquad \frac{Q}{x} = \frac{K(H^{2} - h^{2})}{3.34 \times 10^{-6} L}$$
es, use twice the indicated value
$$\frac{R}{x} = \frac{K(H^{2} - h^{2})}{2880L} \qquad \frac{Q}{x} = \frac{24.91L_{w}\sqrt{K}}{r_{w} \ln m}}$$

able DW-1: Summary of Short- Term Construction Dewatering and and Long-	Term Drainage Volume, 1740-1760 S	t Laurent Blvd., Ottawa, ON
REFERENCE AREA	Towers 1 and 2 P3 1740-1760 St Laurent Blvd	Towers 3 and 4 P2 1740-1760 St Laurent Blvd
DEWATERING SYSTEM CONFIGURATION =	Linear dewatering system High end K	Linear dewatering system High end K
Aquifer Type =	Confined	Confined
Foundation Elevation (assumed) =	60.11	63.11
Active Dewatering Segment Length (m) =	295	355
Aquifer Top Elevation (masl) =	64.2	64.2
Aquifer Bottom Elevation (masl) =	59	59
K (m/day) =	0.5403	0.5403
K (m/sec) =	6.25E-06	6.25E-06
Initial GW Elevation (masl) =	67.8	67.8
GW Elevation at Invert (masl) =	59.61	62.11
Drawdown (m) =	8.19	5.69
Excavation Bottom Elevation (masl) =	59.61	62.11
Target GW Elevation (masl) =	59.61	62.11
Ro from Sichart & Kryieleis (1982) =	61	43
Zone of Influence (m) =	61	43
Radius of the well rw =	0.25	0.25
Storage Coefficient 'S' =	0.005	0.005
Pumping Duration 't' in days =	3	3
rw (m) =	0.25	0.25
Initial State Distance of Influence 'L' in m =	58	56
t (day) =	3	3
S =	0.005	0.005
ESTIMATED INITIAL STATE =	246,690	126,470
PTTW Category =	EASR	EASR
STEADY STATE/LONG-TERM DRAINAGE RATE=	162,815	83,470
Maximum Dewatering Rate (excludngStormwater) (LPD) =		3,160
Stormwater Volume from 17.8 mm of rainfall over a 10-min interval from a 10-yr storm event =	81,560	132,610
Total Volume for each Excacavtion Area (includes Stormwater) (LPD) =	328,250	259,080
Total without Stormwater Voume (LPD) =	,	
Maximum Total Permit Application Dewatering Rate (inc. Stormwater) (LPD) =	587	,330