

Engineering

Land/Site Development

Municipal Infrastructure

Environmental/ Water Resources

Traffic/ Transportation

Recreational

Planning

Land/Site Development

Planning Application Management

Municipal Planning

Urban Design

Expert Witness (LPAT)

Wireless Industry

Landscape Architecture

Streetscapes & Public Amenities

Open Space, Parks & Recreation

Community & Residential

Commercial &

Institutional Environmental

Restoration

1104 Halton Terrace

Site Servicing and Stormwater Management Report

MAPLE LEAF HOMES

1104 HALTON TERRACE

SITE SERVICING AND STORMWATER MANAGEMENT REPORT

Prepared for:

Maple Leaf Homes

Prepared By:

NOVATECH

Suite 200, 240 Michael Cowpland Drive Ottawa, Ontario K2M 1P6

Issued: October 19, 2021

Novatech File: 119024 Report Ref: R-2021-114

October 19, 2021

City of Ottawa Planning, Infrastructure and Economic Development Department Planning Services Branch 110 Laurier Ave. West, 4th Floor Ottawa, Ontario K1P 1J1

Attention: Laurel McCreight, Planner

Reference: 1104 Halton Terrace

Site Servicing and Stormwater Management Report

Novatech File No.: 119024

Novatech has prepared this Site Servicing and Stormwater Management Report on behalf of Maple Leaf Homes for 1104 Halton Terrace.

The report outlines the detailed sanitary, water, and storm servicing / stormwater management for the proposed site plan.

Should you have any questions or comments, please do not hesitate to contact us.

Sincerely,

NOVATECH

Lucas Wilson, P.Eng. Project Coordinator

TABLE OF CONTENTS

1.0	INTRODUCTION	3
1.1 1.2	Background	
2.0	EXISTING CONDITIONS	5
2.1 2.2	Topography & DrainageSubsurface Conditions	
3.0	SANITARY SERVICING	6
3.1 3.2 3.3 3.4	Existing Conditions Proposed Sanitary Sewer Outlet Design Criteria Proposed Sanitary Sewer System	6 6
4.0	WATERMAIN	9
4.1 4.2 4.3 4.4	Existing Conditions Proposed Watermain System Design Criteria Hydraulic Analysis	9
5.0	STORM SEWER SYSTEM AND STORMWATER MANAGEMENT	12
5.2 5 5 5.3	5.1.1 Allowable Release Rate Existing and Proposed Storm Infrastructure	12 14 14
6.0	ROADWAYS	20
6.1	Proposed Road Infrastructure	20
7.0	EROSION AND SEDIMENT CONTROL	21
8.0	CONCLUSIONS AND RECOMMENDATIONS	22
9.0	CLOSURE	23

LIST OF TABLES

Table 4.1: Summary of Hydraulic Model Results - Maximum Day + Fire Flow

Table 4.2: Summary of Hydraulic Model Results - Peak Hour Demand

Table 4.3: Summary of Hydraulic Model Results – Maximum Pressure Check

Table 5.1: Total Available Storage

Table 5.2: Hydrologic Modeling Parameters (subcatchments)

Table 5.3: Inlet Control Devices and Design Flows

Table 5.4: Overland Flow Results Table 5.5: 100-year HGL Elevations Table 5.6: Comparison of Peak Flows

Table 6.1: Roadway Structure

LIST OF FIGURES

Figure 1	Site Location
Figure 2	Site Plan
Figure 3	Proposed Sanitary System
Figure 4	Proposed Watermain Network
Figure 5	Proposed Storm System

LIST OF APPENDICIES

Appendix A	Correspondence
Appendix B	Sanitary Design Sheets
Appendix C	Watermain Boundary Conditions, FUS Calculations, and Modelling Results
Appendix D	STM Design Sheets, SWM Excerpts & PCSWMM Modelling Info

LIST OF DRAWINGS

110021 011	Grading riam
119024-GP	General Plan of Services
119024-STM	Storm Drainage Area Plan
110024 ESC	Erosion and Sediment Control

Grading Plan

Erosion and Sediment Control Plan 119024-ESC

ENCLOSED

119024-GR

- Report (pdf)
- Drawings (pdf)
- PCSWMM Packaged Model Files

Page ii Novatech

1.0 INTRODUCTION

Novatech has been retained by Maple Leaf Homes to prepare a Site Servicing and Stormwater Management Report for 1104 Halton Terrace in North Kanata, Ottawa.

This report outlines the servicing and proposed storm drainage and stormwater management strategy for the site.

1.1 Background

The proposed development is located within the Kanata North Community west of the intersection of Halton Terrace and Old Carp Road. The development is approximately 0.72ha and is bounded by Halton Terrace to the south and east, Old Carp Road to the north, and existing residential to the west. Refer to **Figure 1** – Site Location and **Figure 2** – Site Plan.

Figure 1 – Site Location

The proposed development will consist of one 4-storey apartment building with underground parking consisting of 86 units. The proposed site plan is shown in **Figure 2**.

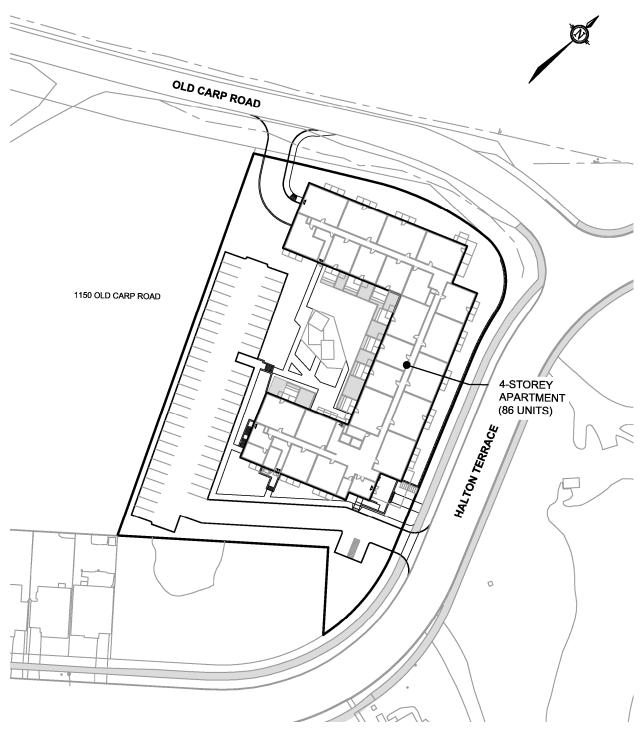


Figure 2 Site Plan

1.2 Additional Reports

This report provides information on the considerations and approach by which Novatech has designed and evaluated the proposed servicing for the Maple Leaf Homes Lands. This report should be read in conjunction with the following:

- Geotechnical Investigation, Proposed Development, 1104 & 1150 Halton Terrace, completed by Paterson, Report: PG4872-1, dated May 3, 2019.
- Master Servicing Study Update for Morgan's Grant Subdivision, completed by J.L. Richards & Associates Limited, Ref. JLR 17730 dated September 2003.

2.0 EXISTING CONDITIONS

2.1 Topography & Drainage

The proposed site is currently undeveloped and consists of agricultural lands with scattered mature trees. Access to the site is currently provided off Old Carp Road via a private gravel entrance.

The site generally slopes northerly towards an existing ditch line within the Halton Terrace and Old Carp Road rights-of-way. The existing ditch is routed through a 500mm diameter culvert crossing Old Carp Road.

2.2 Subsurface Conditions

Paterson completed a geotechnical investigation in support of the development, consisting of 1104 Halton Terrace and 1150 Old Carp Road properties.

The principal findings of the geotechnical investigation are as follows:

- The existing soil profile consists of having a layer of topsoil ranging from 0.05m to 0.35m thick. Silty sand to clayey silt was generally encountered underlying the topsoil ranging from 0.6 to 0.9m thick. Glacial till consisting of light brown clayey silt with some sand, gravel, cobbles, and boulders was encountered underlying the silty sand to clayey silt layer ranging from 0.15m to 0.65m thick.
- Practical refusal was encountered at all test hole locations ranging from 0.45m to 2.15m below grade.
- Based on field observations, groundwater level is expected to be within the bedrock. Besides spring melt being encountered at TP 1-19 and TP 5-19, there was no groundwater encountered at all remaining test pits upon completion of excavation.

The report provides engineering guidelines based on Paterson's interpretation of the borehole information and project requirements. Refer to the above-noted report for complete details.

3.0 SANITARY SERVICING

3.1 Existing Conditions

Currently, there is an existing 250mm sanitary sewer along Halton Terrace with an existing manhole adjacent to the proposed site. Flows from the site will be routed through the Morgan's Grant Subdivision sanitary sewers, which eventually outlets into the East March Trunk sewer.

3.2 Proposed Sanitary Sewer Outlet

A 200mm sanitary sewer service will be installed connecting into the existing 250mm sanitary sewer network in Halton Terrace. The proposed outlet is consistent with the approved Morgan's Grant Master Servicing Study Update (J.L. Richards). The proposed sanitary layout can be seen on **Figure 3** below.

3.3 Design Criteria

Sanitary sewers, for the proposed development, are designed based on criteria established by the City of Ottawa in the following documents:

- Section 4.0 of the City of Ottawa Sewer Design Guidelines (October 2012).
- Technical Bulletin ISTB-2018-01 from the City of Ottawa regarding new sanitary design parameters. Design parameters from this technical bulletin will supersede values within the Sewer Design Guidelines (2012).

The resulting design parameters are summarized as follows:

Population Flow = 280 L/capita/day Infiltration = 0.33 L/s/ha Apartment = 1.8 persons per unit Maximum Residential Peak Factor = 4.0 Harmon Correction Factor = 0.8 Minimum velocity = 0.6m/s Manning's n = 0.013

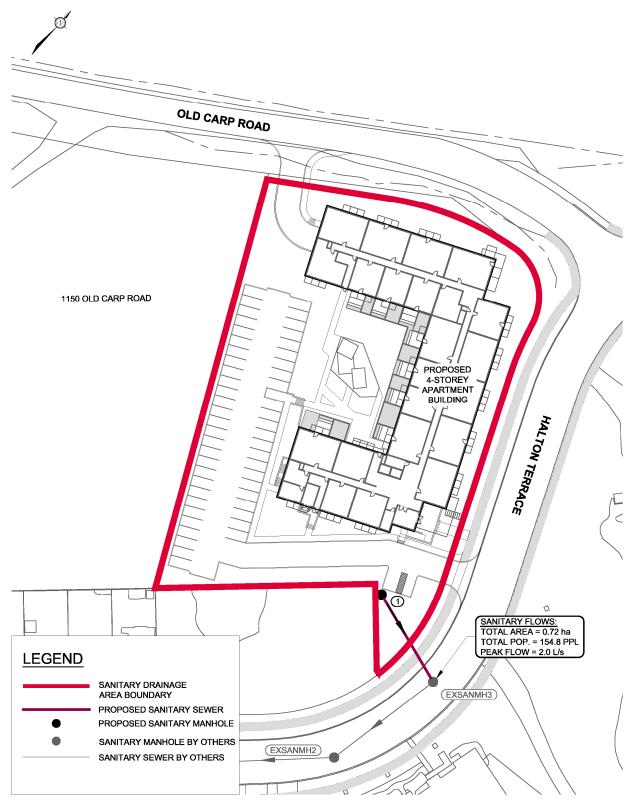


Figure 3 Proposed Sanitary System

3.4 Proposed Sanitary Sewer System

The calculated peak sanitary design flow for the development is 2.0 L/s. The total flow being directing to the 250mm sanitary sewer network in Halton Terrace, consisting of the proposed site and existing single-family homes is 2.5 L/s. The Morgan's Grant Master Servicing Study Update accounted for a total flow of 5.6 L/s through the existing 250mm sanitary sewers, exceeding the current calculated peak design flow of 2.5 L/s. For detailed calculations refer to the Sanitary Sewer Design Sheet located in **Appendix B**.

The USF is at an elevation of 80.97m and is too low to provide a gravity connection for the underground parking floor drains (residential units will have a gravity connection). A pump will be required to connect the underground parking floor drains to the 200mm diameter sanitary service.

The downstream sanitary sewers within Halton Terrace have adequate capacity to accommodate the proposed development as shown in the sanitary design sheet provided in **Appendix B**.

4.0 WATERMAIN

4.1 Existing Conditions

The proposed development is located inside the EMR Pressure Zone. An existing 300mm watermain is located along Halton Terrace.

4.2 Proposed Watermain System

A 150mm water service will be installed connecting to the existing 300mm watermain in Halton Terrace. **Figure 4** highlights the proposed works and connection points for the proposed water service and hydrants. All existing watermain boundary conditions were provided by the City of Ottawa and are included in **Appendix C**.

4.3 Design Criteria

A fire flow demand of 333 L/s has been calculated as per the Fire Underwriter's Survey (FUS) and calculations are included in **Appendix C**. Watermain analysis was completed based on the following criteria:

Demands:

Apartment Density 1.8 persons/unit
 Average Daily Demand 280 L/capita/day

Max. Daily Demand
 Peak Hour Demand
 Fire Flow Demand
 2.5 x Average Daily Demand
 2.2 x Maximum Daily Demand
 Fire Underwriters Survey

System Requirements:

Max. Pressure (Unoccupied Areas) 690 kPa (100 psi)
Max. Pressure (Occupied Areas) 552 kPa (80 psi)

Min. Pressure
Min. Pressure (Fire)
276 kPa (40 psi) excluding fire flows
138 kPa (20 psi) including fire flows

• Max. Age (Quality) 192 hours (onsite)

Friction Factors:

Watermain Size C-Factor
 150mm 100
 300mm 120

Hydraulic modeling of the Subject Site was completed using EPANET 2.0. EPANET is public domain software capable of modeling municipal water distribution systems by performing simulations of the water movement within a pressurized system. EPANET uses the Hazen-Williams equation to analyze the performance of the proposed watermain and considered the following input parameters: water demand, pipe length, pipe diameter, pipe roughness, and pipe elevation.

4.4 Hydraulic Analysis

A summary of the model results are shown below in **Table 4.1**, **Table 4.2** and **Table 4.3**. Full model results are included in **Appendix C**. Refer to **Figure 4** below for details about the node and pipe network.

Table 4.1: Summary of Hydraulic Model Results - Maximum Day + Fire Flow

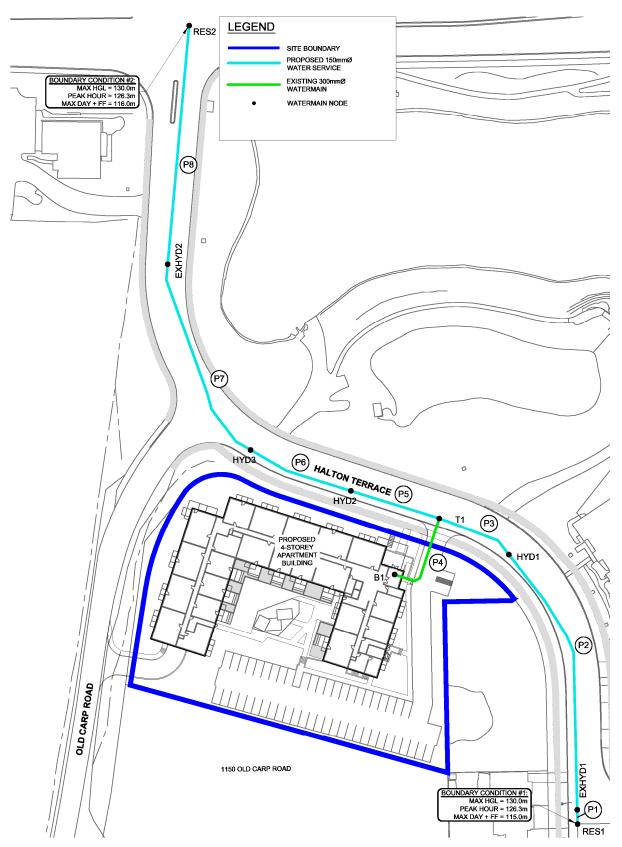
Operating Condition	Minimum Pressure		
333 L/s	272.33 kPa (B1)		

Table 4.2: Summary of Hydraulic Model Results - Peak Hour Demand

Operating Condition	Maximum Pressure	Minimum Pressure
2.759 L/s through system	460.00 kPa (EXHYD2)	387.99 kPa (EXHYD1)

The hydraulic modeling summarized above highlights the maximum and minimum system pressures during Peak Hour conditions, and the minimum system pressures during the Maximum Day + Fire condition. Since the Maximum Day + Fire Flow pressures are above the minimum 140 kPa, and the Peak Hour Pressures onsite fall within the normal operating pressure range (345 kPa to 552 kPa) the proposed development can be adequately serviced.

Table 4.3: Summary of Hydraulic Model Results - Maximum Pressure Check


Operating Condition	Maximum Pressure	Minimum Pressure	Maximum Age
0.502 L/s through system	463.33 kPa (HYD3)	424.28 kPa (EXHYD1)	16.84 Hours (HYD2)

The average day pressures throughout the system are below 552 kPa, therefore pressure reducing valves are not required.

Water retention was analyzed at each node during average day demand. The maximum age throughout the system is within City standards.

A copy of the boundary conditions provided by the City of Ottawa, fire flow calculations, and detailed hydraulic analysis results are included in **Appendix C**.

There are no deviations from the City of Ottawa Design Guidelines – Water Distribution (2010).

Figure 4 Proposed Watermain Network

5.0 STORM SEWER SYSTEM AND STORMWATER MANAGEMENT

5.1 Stormwater Management Criteria

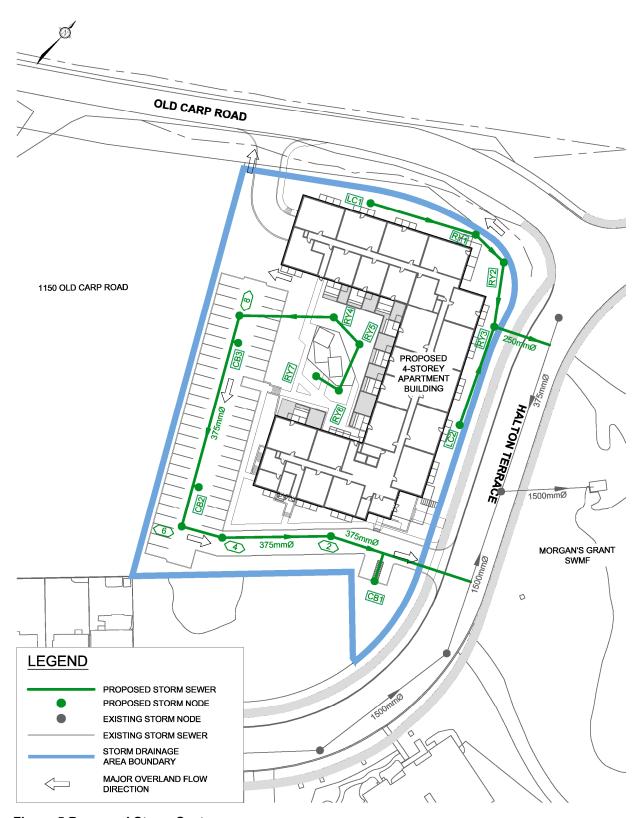
The following stormwater management criteria for the proposed development was prepared in accordance with the City of Ottawa Sewer Design Guidelines (October 2012) and the Master Servicing Study Update for Morgan's Grant Subdivision (J.L. Richards, September 2003).

- Provide a dual drainage system (i.e. minor and major system flows);
- Maximize the use of surface storage available on site;
- Control runoff to the allowable release rate specified in Section 5.1.1 using on-site storage;
- Ensure that no surface ponding will occur on the paved surfaces (i.e. private drive aisles or parking areas) during the 2-year storm event; and,
- Ensure that ponding is confined within the parking areas at a maximum depth of 0.35m for both static ponding and dynamic flow.

5.1.1 Allowable Release Rate

The allowable release rate was established based on the restricted minor system flow of 70 L/s/ha (50.4 L/s) for all storms up-to and including the 100-year storm event.

5.2 Existing and Proposed Storm Infrastructure


Existing Conditions

Under existing conditions, storm runoff from the site generally flows northly to an existing ditch within the Halton Terrace and Old Carp Road rights-of-way. The existing ditch is routed through a 500mm diameter culvert crossing Old Carp Road, ultimately outletting to Shirley's Brook.

There are existing 375mm and 1500mm diameter storm sewers on Halton Terrace, outletting to the adjacent Morgan's Grant SWMF.

Proposed Conditions

The majority of runoff from the site will be routed to the 1500mm diameter storm sewer located at the main entrance on Halton Terrace. A small section of landscaped areas along Old Carp Road and Halton Terrace will be routed to the 375mm diameter storm sewer in Halton Terrace. Both storm sewers within Halton Terrace are directed to Morgan's Grant SWMF which provides water quality control. As such, on-site stormwater quality controls are not required. Refer to **Figure 5** for the storm servicing layout.

Figure 5 Proposed Storm System

5.2.1 Minor System (Storm Sewers)

Storm servicing has been provided using a dual-drainage system. Runoff from frequent events will be conveyed by the proposed storm sewers (minor system), while flows from large storm events that exceed the capacity of the minor system will be stored underground using Stormtech SC-740 arch-type chambers, on the surface in road sags, and/or conveyed overland along defined overland flow routes (major system).

Storm Sewer Design Criteria

The following is the storm sewer design criteria [Ottawa Sewer Design Guidelines (Oct. 2012)]:

- Rational Method (Q) = 2.78CIA, where
 - Q = peak flow (L/s)
 - C = runoff coefficient

$$\circ$$
 C = (0.70 * %Imp.) + 0.20

- I = rainfall intensity for a 2-year return period (mm/hr)
 - \circ I_{2yr} = 732.951 / [(Tc(min) + 6.199)]^{0.810}
- A = site area (ha)
- Minimum Pipe Size = 250 mm; Minimum / Maximum Full Flow Velocity = 0.8 m/s / 3.0 m/s

The on-site storm sewers are sized to convey peak flows corresponding to a 2-year return period storm event based on the Rational Method. Refer to the storm sewer design sheets provided in **Appendix D**.

<u>Underground Storage</u>

Underground storage will be required to attenuate runoff from the site. Underground storage will be provided using Stormtech SC-740 arch-type chambers (or approved equivalent), which are covered in 50mm dia. (D_{50}) clearstone. A total of 36 storage chambers will provide 92.6 m³ of storage. Refer to **Appendix D** for further details. The proposed layout of underground storage chambers is shown on the General Plan of Services (drawing 119024-GP).

Inlet Control Devices

Inlet control devices (ICDs) are to be installed within the selected catchbasins and rear-yard catchbasins. The ICDs have been sized to control minor system peak flows to the Halton Terrace storm sewer to the allowable release rate and to ensure that no ponding occurs during the 2-year storm event.

Hydraulic Grade Line

The storm sewers for the proposed site have been designed to ensure the hydraulic grade line (HGL) for a 100-year storm event will provide a minimum 0.30 m clearance from the underside of footing (USF) elevation.

5.2.2 Major System Design

The site has been designed to convey private roadway and parking area runoff from storms that exceed the minor system capacity to Halton Terrace through the private entrance. The landscaped areas adjacent Halton Terrace and Old Carp Road have been designed to convey runoff that exceed the minor system capacity to the existing ditch along Old Carp Road. A third major overland flow route is provided for the shared amenity area, which is directed adjacent the underground parking ramp and outlets to the existing ditch along Old Carp Road. The site has

been graded to ensure the 100-year peak overland flows are confined within the parking and landscaped areas.

Approximately 0.038 ha of land flows uncontrolled to either Halton Terrace or the existing ditch along Old Carp Road and accounts for the only flows being directed off-site. These flows are included as part of the minor system release rate.

Surface/Underground Storage

The stage-storage curves for each inlet were calculated based on the proposed Grading Plan (drawing 119024-GR) and the proposed underground storage chamber locations. The total storage shown in the stage-storage curves at each inlet is provided in **Appendix D**. Approximately 92.6 m³ of underground storage and 169.5 m³ of surface storage is available on-site.

The total storage provided underground and on the surface is as follows:

Table 5.1: Total Available Storage

Structure ID	Number of Chambers Underground Storage (m³)		Surface Storage (m³)	Total Storage (m³)	
		Provided	Provided	Provided	
CB01*	6	18.3	3.0	21.3	
TOTAL	6	18.3	3.0	21.3	
CB02*	3	8.5	39.8	48.3	
TOTAL	3	8.5	39.8	48.3	
CB03*	27	65.8	58.7	124.5	
TOTAL	27	65.8	58.7	124.5	
RY04	-	-	17.0	17.0	
RY05	-	-	17.0	17.0	
RY06	-	-	17.0	17.0	
RY07	•	-	17.0	17.0	
TOTAL	-	-	68.0	68.0	
TOTAL OVERALL	36	92.6	169.5	262.1	

^{*}Structure with ICD.

5.3 Hydrologic & Hydraulic Modeling

The City of Ottawa Sewer Design Guidelines (October 2012) require hydrologic modeling for all dual drainage systems. The performance of the proposed storm drainage system for 1104 Halton Terrace was evaluated using the PCSWMM hydrologic/hydraulic modeling software.

Design Storms

The PCSWMM model includes the following design storms based on the City of Ottawa IDF data presented in the City of Ottawa Sewer Design Guidelines (October 2012):

- 3-hour Chicago Storm Distribution (10-minute time step)
- 12-hour SCS Storm Distribution (30-minute time step)

The 3-hour Chicago storm distribution includes the 2-year, 5-year, 100-year, and 100-year (+20%) return periods while the 12-hour SCS storm distribution includes only the 100-year return period.

The 3-hour Chicago storm distribution was determined to be the critical design storm for the proposed development.

PCSWMM Model Schematics, Output Data and Modeling Files

PCSWMM model schematics and output data for the 100-year 3-hour Chicago storm distribution are provided in **Appendix D**.

Table 5.2 provides a summary of the hydrologic modeling parameters (subcatchments).

Table 5.2: Hydrologic Modeling Parameters (subcatchments)

Area ID Catchment Area		Runoff Coefficient	Percent Imperviousness	Zero Imperviousness	Equivalent Width	Average Slope			
	(ha)	(%)	(%)	(%)	(m)	(%)			
Controlled Areas									
A-01	0.086	0.77	81.4	0	43	1.5			
A-02	0.105	0.52	45.7	0	53	2.5			
A-03	0.068	0.82	88.2	0	45	1.5			
A-04	0.115	0.53	47.8	0	58	1.5			
A-05	0.013	0.20	0	0	26	1.5			
A-06	0.014	0.20	0	0	28	1.5			
A-07	0.016	0.20	0	0	32	1.5			
A-08	0.022	0.20	0	0	44	1.5			
A-09	0.017	0.78	82.4	0	11	6.5			
A-10	0.220	0.90	100	95	63	1.5			
Uncontrolled Are	eas								
B-01	0.006	0.32	16.7	0	10	6			
B-02	0.006	0.20	0	0	12	33.33			
B-03	0.026	0.20	0	0	10	2.7			
Subdivision	0.715	0.66	65.7	-	-	-			

Subcatchment Areas / Runoff Coefficients

- The proposed site has been divided into subcatchments based on the tributary drainage areas to each inlet of the proposed storm sewer system, as shown on the Storm Drainage Area Plan (Drawing 119024-STM).
- Weighted runoff coefficients were assigned based on the percent impervious values used in the PCSWMM model. As per the City of Ottawa Sewer Design Guidelines (October 2012), the runoff coefficient is based on the following equation:

$$C = (\% Imp. * 0.7) - 0.2$$

Infiltration

Infiltration losses for all catchment areas were modeled using Horton's infiltration equation, which defines the infiltration capacity of the soil over the duration of a precipitation event using a decay function that ranges from an initial maximum infiltration rate to a minimum rate as the storm progresses. The default values for the Sewer Design Guidelines were used for all catchments.

Horton's Equation: Initial infiltration rate: $f_o = 76.2$ mm/hr $f(t) = f_c + (f_o - f_c)e^{-k(t)}$ Final infiltration rate: $f_c = 13.2$ mm/hr Decay Coefficient: k = 4.14/hr

Depression Storage

• The default values for depression storage (1.57 mm impervious / 4.67 mm pervious) have been applied to all catchments.

Subarea Routing

Subarea routing for all subcatchments has been set to 'direct to outlet'.

Equivalent Width

 The equivalent width parameter for all subcatchments is based on the measured flow length.

Minor System Conduits (Bend / Exit Losses)

- The minor system network was created in Civil3D and imported into PCSWMM.
- The following exit losses have been inputted into the model. They represent the loss coefficient based on the bend angle, as per the Appendix 6-B in the City of Ottawa Sewer Design Guidelines (October 2012).

Bend Angle	Loss Coefficient
0	0.00
15	0.09
30	0.21
45	0.39
60	0.64
75	0.96
90	1.32
45 60	0.39 0.64 0.96

Downstream Boundary Condition (Minor System)

- The storm sewer outlets for the proposed development are the existing 375mm and 1500mm diameter storm sewers in Halton Terrace.
- The Master Servicing Study Update for Morgan's Grant Subdivision estimated a 100-year HGL elevation of 82.32m at MH104 (See Appendix D for MSS excerpts).

5.3.1 PCSWMM Model Results

Inlet Control Devices (ICDs)

ICDs are provided for catchbasins within the roadway and catchbasin in the landscaped areas. The ICD sizes and design flows are provided in **Table 5.3**. The ICDs have been sized to maximize surface storage, limit the outlet peak flows to the allowable release rate and not have surface ponding during a 2-year storm event.

Table 5.3: Inlet Control Devices and Design Flows

	ICD Size & Inlet Rate								
Structure ID	ICD Type	T/G	Orifice Invert	100-year Head on Orifice	2-year Orifice Peak Flow*	5-year Orifice Peak Flow*	100-year Orifice Peak Flow*		
		(m)	(m)	(m)	(L/s)	(L/s)	(L/s)		
CB01	Tempest MHF (81mm)	83.20	81.50	1.11	7.1	8.6	13.7		
CB02	Tempest LMF (Vortex 70)	84.95	83.25	1.99	4.0	5.7	6.0		
CB03	Tempest LMF (Vortex 70)	85.05	83.35	2.01	3.6	5.8	6.1		
RY03	Tempest LMF (Vortex 74)	83.13	81.54	1.67	0.2	4.3	6.1		
RY04	Tempest LMF (Vortex 79)	83.65	82.31	1.50	5.9	6.4	6.7		

^{*}From PCSWMM model, 3-hour Chicago storm distribution.

Both IPEX Tempest LMF (i.e. Vortex ICD's) and MHF ICDs are proposed for the site. Sizing documentation and correspondence is provided in **Appendix D**.

Overland Flow (Major System)

The major system network was evaluated using the PCSWMM model to ensure that the ponding depths conform to the City of Ottawa Sewer Design Guidelines (Oct. 2012). A summary of ponding depths at each inlet for the 2-year, 5-year, 100-year and 100-year (+20%) events are provided in **Appendix D**. The maximum static and dynamic ponding depths are less than 0.35m during all events up to and including the 100-year, thereby meeting the major system criteria. In addition, there is no cascading flow over the highpoints during the 100-year storm event.

Table 5.4: Overland Flow Results

	T/G	Max. Stati	ic Ponding		,	100-yr Event	
Structure	(m)	Elev. (m)	Spill Depth (m)	Elev. (m)	Depth (m)	Cascading Flow?	Cascade Depth (m)
CB01	83.32	83.45	0.13	83.43	0.11	N	0.00
CB02	84.95	85.25	0.30	85.24	0.29	N	0.00
CB03	85.05	85.35	0.30	85.36	0.31	Υ	0.01
LC01	83.13	83.28	0.15	83.21	0.08	N	0.00
LC02	83.13	83.43	0.30	83.21	0.08	N	0.00
RY02	83.13	83.28	0.15	83.21	0.08	N	0.00
RY03	83.13	83.30	0.17	83.21	0.08	N	0.00
RY04	83.65	83.95	0.30	83.81	0.16	N	0.00

	T/G	Max. Stati	ic Ponding	100-yr Event									
Structure		Elev.	Spill Depth	Elev.	Depth	Cascading	Cascade Depth						
	(m)	(m)	(m)	(m)	(m)	Flow?	(m)						
RY05	83.65	83.95	0.30	83.81	0.16	N	0.00						
RY06	83.65	83.95	0.30	83.81	0.16	N	0.00						
RY07	83.60	83.95	0.35	83.81	0.21	N	0.00						

^{*}From PCSWMM model, 3-hour Chicago storm distribution.

An expanded table of the ponding depths at low points in the roadway (including the stress-test event) is provided in **Appendix D**. Based on these results, the proposed storm drainage system will not experience any adverse flooding even with a 20% increase to the 100-year event.

Hydraulic Grade Line

Table 5.5 provides a summary of the 100-year HGL elevations at each storm manhole. The results of this analysis were used to determine if a minimum freeboard of 0.30m is provided between the 100-year HGL and the designed underside of footing (USF) elevation to ensure a gravity connection from the foundation drain to the storm sewer system is possible.

Table 5.5: 100-year HGL Elevations

Manhole ID	MH Invert Elevation (m)	T/G Elevation (m)	HGL Elevation (100yr) (m)	Design USF (m)
MH02	81.26	84.12	82.34	80.97
MH04	81.38	85.25	82.34	-
MH06	81.42	85.28	82.34	-
MH08	81.69	85.11	82.35	-

^{*}From PCSWMM model, 3-hour Chicago storm distribution.

As shown above in **Table 5.5**, the USF is at an elevation of 80.97m and is too low to provide a gravity connection for the foundation drain to the proposed storm sewer system. A sump pump is proposed to connect to a 200mm diameter storm service that provides a free-flow outlet from the foundation drain. The invert of the service connection is set at 82.64m and provides a freeboard of 0.30m; meeting the minimum requirement.

A storage tank and pump (by others) will also be required for the underground parking ramp trench drain (TD1). The pump is proposed to discharge flows from the underground parking ramp to surface within the shared outdoor amenity area and captured by RY4.

Comparison of Peak Flows

Table 5.6 provides a comparison of the minor system flows from the proposed development to Klondike Road and major system flows / direct flows to Shirley's Brook.

Table 5.6: Comparison of Peak Flows

Design Event	Allowable Release Rate (L/s)	Controlled Minor System Release Rate (L/s)	Uncontrolled Minor System Release Rate (L/s)	Total Minor System Release Rate (L/s)	Major System Release Rate Off-site (L/s)
2-yr		19.9	0.5	20.4	0
5-yr	50.4	30.5	3.4	33.9	0
100-yr		38.5	11.4	49.9	0
100-yr (+20%)	-	39.4	15.7	55.1	70.0

⁽¹⁾ PCSWMM model results for the 3-hour Chicago storm distribution.

The 100-year minor system peak flow to Halton Terrace is controlled to just under the allowable release rate of 50.4 L/s for the proposed site. The total 100-year major system peak flow is contained on-site through a combination of underground and surface storage.

Roof Downspout Outlet

The model has accounted for the building roof drain to discharge to surface within the rear parking area and captured by CB3. The 65.8 m³ of underground storage (27 SC-740 chambers) at this location ensures the major system flow from the 100-year storm event in contained on site.

6.0 ROADWAYS

6.1 Proposed Road Infrastructure

Paterson has prepared a Geotechnical Investigation report for the Development (May 2019) that provides recommendations for roadway structure, servicing and foundations. The site consists of a private roadway and at-grade parking; the recommended roadway structure is as follows:

Table 6.1: Roadway Structure

Roadway Material Description	Pavement Structure Layer Thickness (mm) Private Road
Asphalt Wear Course: Superpave 12.5 (Class B)	40
Asphalt Binder Course: Superpave 19.0 (Class B)	50
Base: Granular A	150
Sub-Base: Granular B – Type II	<u>400</u>
Total	640

7.0 EROSION AND SEDIMENT CONTROL

Erosion and sediment control measures will be implemented during construction in accordance with the "Guidelines on Erosion and Sediment Control for Urban Construction Sites" (Government of Ontario, May 1987). An Erosion and Sediment Control Plan will be prepared as part of the detailed design.

Typical erosion and sediment control measures recommended include, but are not limited to, the use of silt fences around perimeter of site (OPSD 219.110), catch basin inserts under catch basin/maintenance hole lids, heavy duty silt fence barrier (OPSD 219.130), straw bale check dams (OPSD 219.180), rock check dams (219.210 or OPSD 219.211), riprap (OPSS 511), mud mats, silt bags for dewatering operations, topsoil and sod to disturbed areas and natural grassed waterways. Dewatering and sediment control techniques will be developed for the individual situations based on the above guidelines and utilizing typical measures to ensure erosion and sediment control is controlled in an acceptable manner and there is no negative impact to adjacent Lands, water bodies or water treatment/conveyance facilities.

It will be the responsibility of the Contractor to submit a detailed construction schedule and appropriate staging, dewatering and erosion and sediment control plans to the Contract Administrator for review and approval prior to the commencement of work.

General Erosion and Sediment Control Measures

- All erosion and sediment control measures are to be installed to the satisfaction of the engineer, the municipality and the conservation authority prior to undertaking any site alterations (filling, grading, removal of vegetation, etc.) and remain present during all phases of site preparation and construction.
- A qualified inspector, provided by the owner, should conduct daily visits during construction to ensure that the contractor is working in accordance with the design drawings and that mitigation measures are being implemented as specified.
 - A light duty silt fence barrier is to be installed in the locations shown on the Erosion and Sediment Control Plan.
 - Rock check dams and/or straw bales are to be installed in drainage ditches.
 - Catch basin inserts are to be placed under the grates of all existing and proposed catchbasins and structures.
 - After complete build-out, all sewers are to be inspected and cleaned and all sediment and construction fencing is to be removed.
- The contractor shall ensure that proper dust control is provided with the application of water (and if required, calcium chloride) during dry periods.
- The contractor shall immediately report to the engineer or inspector any accidental discharges of sediment material into any ditch or sewer system. Appropriate response measures shall be carried out by the contractor without delay.

The contractor acknowledges that failure to implement erosion and sediment control measures may result in penalties imposed by any applicable regulatory agency.

8.0 CONCLUSIONS AND RECOMMENDATIONS

Sanitary Servicing

The analysis of the proposed sanitary servicing confirms the following:

- It is proposed that the development will outlet directly to the 250mm sanitary sewer along Halton Terrace. The proposed outlet is consistent with the approved Morgan's Grant Master Servicing Study (J.L. Richards).
- The proposed development can be serviced with a 200mm sanitary sewer service.
- The underground parking floor drains will require a pump to connect to the 200mm sanitary service.
- The total proposed sanitary flow from the subject lands is 2.0 L/s, which is less than the flows identified in the Master Servicing Study.
- The proposed and existing sanitary sewers have adequate capacity to accommodate the peak sanitary flow.

Watermain

The analysis of the proposed watermain network confirms the following:

- It is proposed to service the site with a 150mm water service.
- The analysis confirms the proposed and existing watermains provide adequate fire protection and domestic service under all operating conditions.

Stormwater Management

The following provides a summary of the storm servicing and stormwater management system:

- Proposed storm sewer system will convey stormwater to the 375mm and 1500mm diameter storm sewers in Halton Terrace.
 - Storm sewers (minor system) have been designed to convey the uncontrolled 2year peak flow using the Rational Method.
 - o Inflows to the minor system will be controlled using inlet control devices (ICDs) to an overall allowable release rate of 50.4 L/s.
 - A sump pump will be required to connect the foundation drain to the proposed 200mm diameter storm service.
 - A storage tank and pump will be required for the underground parking ramp trench drain and flow will be directed to surface within the shared amenity area.
 - Roof drain to discharge to surface within the rear parking area and captured by CB3.
 - A minimum clearance of 0.30m is provided between the 100-year hydraulic grade line (HGL) and the proposed 200mm diameter storm service.
- Surface and underground storage has been maximized to provide stormwater storage during storm events that exceed the allowable minor system inlet rate.
 - The major overland flow outlet for the site is located at the main entrance on Halton
 Terrace and the existing ditch along the south side of Old Carp Road. No overland

flow occurs up to and including the 100-year storm event, the major overland flow route is provided for emergency purposes only.

- Ponding depths do not exceed 0.35m for all storms up to and including the 100year event.
- Underground storage will be provided using Stormtech SC-740 (or approved equivalent) arch-type storage chambers.

Erosion and Sediment control

- Erosion and sediment control measures (i.e. filter fabric, silt fences, etc.) will be implemented prior to construction and are to remain in place until vegetation is established.
- The Erosion and Sediment Control Plan will ensure erosion and sediment control is controlled in an acceptable manner and there is no negative impact to adjacent lands, water bodies or water treatment/conveyance facilities.

9.0 CLOSURE

The preceding report is respectfully submitted for review and approval. Please contact the undersigned should you have questions or require additional information.

NOVATECH

Prepared by:

Lucas Wilson, P.Eng. Project Coordinator

Mark Bissett, P.Eng. Senior Project Manager

FOR REVIEW

Appendix A

Correspondence

Lucas Wilson

From: Christine McCuaig <christine@q9planning.com>

Sent: Friday, November 20, 2020 8:30 AM

To: Brian Saumure; Mark Bissett; Jennifer Luong

Subject: Fwd: Pre-Consultation Follow-Up: 1104 Halton Terrace

Attachments: AODA Checklist.docx; 1104 Halton Terrace design brief submission requirements.pdf;

Plans & Study List (2020).pdf

From: "McCreight, Laurel" < Laurel. McCreight@ottawa.ca>

Date: November 20, 2020 at 7:55:06 AM EST

To: Christine McCuaig <christine@q9planning.com>

Subject: Pre-Consultation Follow-Up: 1104 Halton Terrace

Hi Christine,

Please refer to the below regarding the Pre-Application for 1104 Halton Terrace for a Site Plan Control Application and Zoning By-law Amendment for a residential development. I have also attached the required Plans & Study List for application submission.

An email was sent providing instructions on how to pay the fee for the pre-application consultation.

Below are staff's preliminary comments based on the information available at the time of the preconsultation meeting:

Planning / Urban Design

- Grading of the site at the intersection of Old Carp Road and Halton Terrace will be an important
 consideration. Please ensure that the basement level is not exposed at this corner, and the
 principal entrance to the building is not significantly higher than the existing sidewalk/right of
 way.
- Will the Old Carp Road frontage be urbanized? If not please consider how this can be designed to work with the proposal.
- Please ensure the setback to the proposed low-rise residential is adequate and considers light and privacy.
- Please ensure that the TIA scoping includes all units, not just the apartment units, but also the detached dwellings.

- Please ensure adequate room for tree planting on-site.
- A design brief is required. Please see the attached terms of reference.
- Cash-in-lieu of Parkland will be required.
- You are encouraged to contact the Ward Councillor, Councillor <u>Jenna Sudds</u>, regarding the proposal.

Engineering

- The Servicing Study Guidelines for Development Applications are available here.
- Servicing and site works shall be in accordance with the following documents:
 - Ottawa Sewer Design Guidelines (October 2012)
 - Ottawa Design Guidelines Water Distribution (2010)
 - Geotechnical Investigation and Reporting Guidelines for Development Applications in the City of Ottawa (2007)
 - o City of Ottawa Slope Stability Guidelines for Development Applications (revised 2012)
 - o City of Ottawa Environmental Noise Control Guidelines (January, 2016)
 - City of Ottawa Park and Pathway Development Manual (2012)
 - City of Ottawa Accessibility Design Standards (2012)
 - Ottawa Standard Tender Documents (latest version)
 - o Ontario Provincial Standards for Roads & Public Works (2013)
- Record drawings and utility plans are also available for purchase from the City (Contact the City's Information Centre by email at lnformationCentre@ottawa.ca or by phone at (613) 580-2424 x.44455).
- The Stormwater Management Criteria for the subject site is to be based on the following:
 - The allowable storm release rate for the subject site is limited to 70 L/s/ha as per the Master Servicing Study Update for Morgan's Grant Subdivision.
 - Onsite storm runoff, in excess of the allowable release rate, must be detained on site.
 - The hydraulic grade line in the storm sewer must remain at least 0.3 m below the underside of adjacent building footings during the 100-year storm event.
 - Quantity control to be provided by the adjacent stormwater management facility and/or as determined by the Mississippi Valley Conservation Authority (MVCA). Please include correspondence from the MVCA in the stormwater management report.
- Additional studies pertaining to discharge to Shirley's Creek sub-watershed will not be required
 if out letting to existing stormwater management pond to the east. Stormwater charges will not
 be imposed to connect to the existing stormwater management pond to the east.
- No sanitary sewer capacity constraints were identified on Halton Terrace during the initial review of the concept plan.

- As per Section 4.3.1 of the Water Design Guidelines, two watermain connections will be required to provide a looped connection if the basic day demand is greater than 50 m3/day (approx. 50 homes).
- Water Boundary condition requests must include the location of the service and the expected loads required by the proposed development. Please provide the following information:

		•	
\circ	Location	ot se	rvice

 Type of development and the amount of fire flow required (as per FUS, 19 	0	Type of developme	ent and the am	ount of fire flow	required (as	per FUS	. 1999
--	---	-------------------	----------------	-------------------	--------------	---------	--------

o Average daily demand: ____ l/s.

o Maximum daily demand: ____l/s.

Maximum hourly daily demand: ____ l/s.

- An MECP Environmental Compliance Approval in not anticipated to be required for the subject site.
- Phase 1 ESAs and Phase 2 ESAs must conform to clause 4.8.4 of the Official Plan that requires that development applications conform to Ontario Regulation 153/04

Please contact Infrastructure Project Manager Ahmed Elsayed for follow-up questions.

Transportation

- Follow Traffic Impact Assessment Guidelines
 - o Traffic Impact Assessment will be required.
 - Start this process asap.
 - Applicant advised that their application will not be deemed complete until the submission of the draft step 1-4, including the functional draft RMA package (if applicable) and/or monitoring report (if applicable).
 - o Reduced scope with regards to the study area will be considered.
- To allow for a reduction of the ROW from 26 m, the development proponent should demonstrate that the 24 m ROW can accommodate the road requirements, services, trees and pedestrian and cycling facilities. This can be done by showing the recommended cross section based on the Designing Neighbourhood Collector Guidelines (2019).
- Corner triangles as per OP Annex 1 Road Classification and Rights-of-Way at the following locations on the final plan will be required:
 - o Collector Road to Collector Road: 5 metre x 5 metres
- Noise Impact Studies required for the following:
 - Road
 - Stationary (if there will be any exposed mechanical equipment due to the proximity to neighbouring noise sensitive land uses)
- It is recommended that the access is located only on Halton Terrace to minimize accesses on Old Carp. The realignment of Old Carp is going to add more traffic to this road and the road currently does not have many accesses. The location of the accesses will be further reviewed in the TIA. Sight line analysis for the accesses on Halton Terrace and Carp (if proposed) will be required.
- On site plan:
 - Show all details of the roads abutting the site up to and including the opposite curb;
 include such items as pavement markings, accesses and/or sidewalks.

- Turning templates will be required for all accesses showing the largest vehicle to access the site; required for internal movements and at all access (entering and exiting and going in both directions). Show on separate drawings.
- Show all curb radii measurements; ensure that all curb radii are reduced as much as possible
- Show lane/aisle widths.
- Sidewalks are to be continuous across access as per City Specification 7.1.
- It is recommended that the accessibility requirements are implemented (checklist is attached.)

Please contact Transportation Project Manager, <u>Neeti Paudel</u> for follow-up questions.

Forestry

- A Tree Conservation Report (TCR) must be supplied for review along with the suite of other plans/reports required by the City; an approved TCR is a requirement of Site Plan approval.
- Any removal of privately-owned trees 10cm or larger in diameter requires a tree permit issued under the Urban Tree Conservation Bylaw; the permit is based on the approved TCR.
- Any removal of City-owned trees will require the permission of Forestry Services who will also review the submitted TCR.
- The TCR must list all trees on site by species, diameter and health condition.
- The TCR must list all trees on adjacent sites if they have a critical root zone that extends onto the development site.
- If trees are to be removed, the TCR must clearly show where they are, and document the reason they cannot be retained.
- The City encourages the retention of healthy trees; if possible, please seek opportunities for retention of trees that will contribute to the design/function of the site.
- Please ensure newly planted trees have an adequate soil volume for their size at maturity. Here are the recommended soil volumes:

Tree Type/Size	Single Tree Soil	Multiple Tree Soil						
	Volume (m3)	Volume (m3/tree)						
Ornamental	15	9						
Columnar	15	9						
Small	20	12						
Medium	25	15						
Large	30	18						
Conifer	25	15						

For more information on the process or help with tree retention options, contact Mark Richardson

Other

Please refer to the links to "<u>Guide to preparing studies and plans</u>" and <u>fees</u> for general information. Additional information is available related to <u>building permits</u>, <u>development charges</u>, and the <u>Accessibility Design Standards</u>. Be aware that other fees and permits may be required, outside of the development review process. You may obtain background drawings by contacting <u>informationcentre@ottawa.ca</u>.

These pre-consultation comments are valid for one year. If you submit a development application(s) after this time, you may be required to meet for another pre-consultation meeting and/or the

submission requirements may change. You are as well encouraged to contact us for a follow-up meeting if the plan/concept will be further refined.

Please do not hesitate to contact me if you have any questions.

Regards, Laurel

Laurel McCreight MCIP, RPP

Planner Development Review West Urbaniste Examen des demandes d'aménagement ouest

City of Ottawa | Ville d'Ottawa

613.580.2424 ext./poste 16587 ottawa.ca/planning / ottawa.ca/urbanisme

This e-mail originates from the City of Ottawa e-mail system. Any distribution, use or copying of this e-mail or the information it contains by other than the intended recipient(s) is unauthorized. Thank you.

Le présent courriel a été expédié par le système de courriels de la Ville d'Ottawa. Toute distribution, utilisation ou reproduction du courriel ou des renseignements qui s'y trouvent par une personne autre que son destinataire prévu est interdite. Je vous remercie de votre collaboration.

ı

C

Appendix B

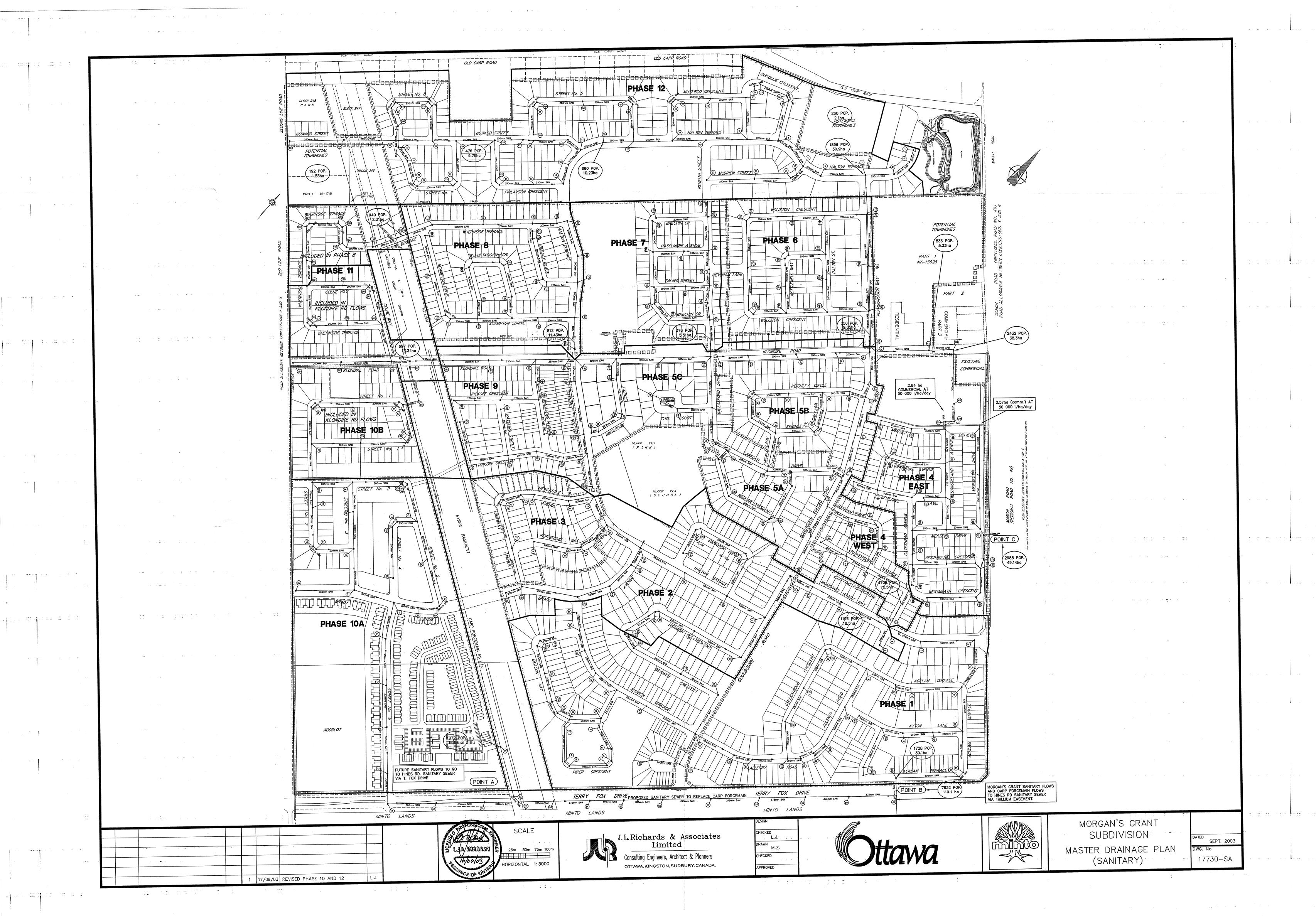
Sanitary Design Sheets

1104 Halton Terrace: Sanitary Sewer Design Sheet

		RESID	ENTIA	L			INFILTRATION					PIPE								
			Si	ngles	Apartm	partments TOTAL														
ID	From	То	Units	Pop.	Units	Pop.	Pop.	Accum. Pop.	Peak Factor	Peak Flow (I/s)	Total Area (ha)	Accum. Area (ha)	Infilt. Flow (I/s)	Total Flow (I/s)	Size (mm)	Slope (%)	Length (m)	Capacity (l/s)	Full Flow Vel. (m/s)	Q/Q _{full} (%)
1104 Halton	104 Halton Terrace																			
	MH01	EXSANMH3	0	0.0	86	154.8	154.8	154.8	3.5	1.8	0.73	0.73	0.2	2.0	200	1.00	25.3	34.2	1.06	5.9%
Existing Ha	Iton Terrace									-										
	EXSANMH3	EXSANMH2	2	6.8	0.00	0.0	6.8	161.6	3.5	1.9	0.22	0.95	0.3	2.2	250	0.38	31.2	38.2	0.75	5.7%
	EXSANMH2	EXSANMH1	6	20.4	0.00	0.0	20.4	182.0	3.5	2.1	0.42	1.37	0.5	2.5	250	0.27	59.9	32.2	0.64	7.9%
Design Para	ameters:								Popula	tion Density:							Proje	ect: 1104 Ha	Iton Terra	ce (119024)
Avg Flow/Pe Comm./Inst.	erson =		280 28000	l/day l/ha/day					·	ppl/unit							•		Des	igned: LRW ecked: MAB
Light Industr Infiltration =	ial Flow =		35000 0.33	l/ha/day l/s/ha				Αŗ	partment	1.8								Dat	e: Septemb	er 15, 2021
Pipe Friction	n =		0.013						Single											
Residential F	Peaking Factor =	Harmon Equa	tion (max	4, min 2)																
Peaking Fac	tor Comm./Inst.	=	1.5																	

J.L. Richards & Associates Limited Consulting Engineers, Architects & Planners

CITY OF OTTAWA


SANITARY SEWER DESIGN SHEET Revised September 16, 2003

MINTO DEVELOPMENT INC. MORGAN'S GRANT SUBDIVISION - PHASE 10A & 10B JLR NO. 17730

Designed by: J.B. Checked by: L.J.

DESIGN PARAMETERS

						RESIDENTIA						SIDENTI															
STREET	M.1	H. #	NO. of UNITS		IDUAL AREA	POPUL.	LATIVE AREA	Peaking Factor	POPUL. FLOW	AREA	CUMM. AREA	Peaking Factor	NON- RES.	INFIL. FLOW		DIA.	Slone		ER DA		RESIDUAL	Obvert	UPSTREAR Obvert	Invert	DOWNS Obvert	Invert	COMMENTS
	FROM			people	ha	people	ha		l/s	ha	ha		FLOW (I/s)	l/s	l/s	mm	%	l/s	m/s	m	CAP. (I/s)	Drop	00.0			11.0011	
Street No. 1		5 Ex. 1	4 25	16 100	0.15	1500 1600	26.93 27.74	3.68 3.66	22.36 23.72	0.00	2.93 2.93	1.50	2.54	7.54		250		39.23			6.79	0.078			82.685		Phase 12
	1	EX. I	25_	100	10,01	1000	21.14	3.60	23.12	0.00	2.93	1.50	2,54	1.11	34.03	250	0.40	39.23	0.77	90.60	5.21	0.063	82.622	82.368	82.260	82.006	Phase 12
STREET No. 1 Phase 12	4	3	2	8	0.21	8	0.21	4.00	0.13	0.00	0.00	1.50	0.00	0.06	0.19	250	0.40	39.23	0.77	24.00	39.04		82 140	81 890	82.044	81 794	PHASE 12
f	3	2	3	12	0.33	20	0.54	4.00	0.32	0.00	0.00	1.50	0.00	0.15		250		39.23			38.76				81.925		PHASE 12
1																ļ	 										
BIDGOOD LANDS	-	2	65	260	2.10	260	2.10	4.00	4.21	0.00	0.00	1.50	0.00	0.59	4.80	250	0.40	39.23	0.77	95.00	34.43						Assumed Future Townhomes
	2	Ex. 1	4	16	0.34	296	2.98	4.00	4.80	0.00	0.00	1.50	0.00	0.83	5.63	250	0.40	39.23	0.77	37.50	33.60		81.905	81.655	81.755	81.505	PHASE 12
FLAMBOROUGH WAY	Ex. 1	Ex. 172A			0.17	1006	20.00			0.00	0.00	1.50	0.54	İ													
1 EAMBOROGGIT WAT		Ex. 171A		0	0.17	1896 1896	30.89 31.66	3.60 3.60	27.68 27.68	0.00	2.93 2.93	1.50	2.54 2.54	8.65 8.86	38.87 39.09	300	0.18	42.21			3.34 4.98		81.726 81.584	81.426 81.284		81.284 81.084	PHASE 6 (as-built info. added) PHASE 6 (as-built info. added)
		Ex. 170A		0	0.68	1896	32.34	3.60	27.68	0.00	2.93	1.50	2.54	9.06	39.28	300	0.20	44.98	0.62	88.50	5.71		81.344	81.044	81.168	80.868	PHASE 6 (as-built info. added)
	Ex. 170A Ex. 142B	Ex. 142B Ex. 142C		0	0.41	1896 1896	32.75 32.75	3.60 3.60	27.68 27.68	0.00	2.93 2.93	1.50 1.50	2.54 2.54	9.17 9.17	39.39 39.39	300	0.18	42.24 46.28			2.85 6.89		81.165 80.954			80.730 80.613	PHASE 6 (as-built info. added) PHASE 6 (as-built info. added)
KLONDIKE ROAD	Ex. 142C			0	0.22	1896	32.97	3.60	27.68	0.00	2.93	1.50	2.54	9.23	39.45	300		183.25		110.00	143,79	0.04			77.248		TTITIOE O (US DUIN IIIIO. Added)
KLONDIKE ROAD	142D	142E	134	536	5.33	2432	38.30	3.52	34.66	0.37	3.30	1.50	2.86	10.72	48.25	300	0.20	55.25	0.76	50.50	7.00	1.07	76.178	75.873	76.026	75.722	Flow from Future Townhouse Complex
COMMERCIAL SITE	142E	142F		0	2.84	2432	41.14	3.52 3.52	34.66	2.84	6.14	1.50	5.33	11.52	51.51	300	0.30	55.25	0.76	110.00	3.74	1.07	76.026		75.696	75.392	1 low florit didle lowificuse Complex
	142F 120B	120B 120A		0	0.00	2432 2432	41.14 41.14	l 3.52	34.66 34.66	0.00	6.14	1.50	5.33	11.52		300	0.30	55.25	0.76	36.15	3.74		75.696	75.392	75.588	75.283	Commercial Property
	120A	Ex. 120		0	0.00	2432	41.14	3.52 3.52	34.66	0.00	6.14 6.14	1.50 1.50	5.33 5.33	11.52 11.52	51.51 51.51	300		55.25 62.18		18.69 15.84	3.74 10.67		75.588 75.532	75.283 75.227	75.532	75.227 75.167	Commercial Property
Mersey Drive	100	101		0.4	0.00		200																				
Mersey Drive	122 121	121 120		24 24	0.38	24 48	0.38 0.66	4.00 4.00	0.39 0.78	0.00	0.00	1.50 1.50	0.00	0.11 0.18	0.50 0.96			66.52 54.43		63.5 68.0	66.02 53.47		77.900	80.200 77.700	78.000 76.179	77.800 75.979	
Westmoreland Avenue	120			20	0.33	2500	42.13	3.51	35.53	0.00	6.14	1.50	5.33	11.80	52.66	300	0.42	65.32	0.90	70.6	12.66		75.467	75.167	75.171	74.871	Phase IV (as-built info. Added)
Whithorn Avenue	116	119		8	0.14	8	0.14	4.00	0.13	0.00	0.00	1.50	0.00	0.04	0.17	200	2.00	48.38	1.49	8.1	48.22		79.262	79.062	79.100	78.900	
	119	118		24 44	0.22 0.50	32 76	0.36 0.86	4.00 4.00	0.52 1.23	0.00	0.00	1.50 1.50	0.00 0.00	0.10 0.24	0.62 1.47			56.10 50.86		37.2	55.48			78.800		77.800	
							0.00	4.00	1.23	0.00	0.00	1.50	0.00	0,24	1.47	200	2.21	50.86	1.57	81.1	49.39		77.700	77.500	75.908	75.708	
Westmoreland Avenue		1111		24	0.31	2600	43.30	3.49	36.81	0.00	6.14	1.50	5.33	12.12	54.26	300	0.42	65.49	0.90	68.8	11.23		75.160	74.860	74.870	74.570	Phase IV (as-built info. Added)
	111	110		12	0.33	12	0.33	4.00	0.19	0.00	0.00	1.50	0.00	0.09	0.29	200	1.91	47.28	1,46	46.0	47.00		76,500	76.300	75.620	75.420	
Westmoreland Avenue	110	109		16	0.30	2628	40.00	-0.40		1		7.50	F 00					1									
Westinoleiand Avenue	1117	103		16	0.30	2020	43.93	3.49	37.16	0.00	6.14	1.50	5.33	12.30	54.79	300	0.36	60.31	0.83	66.3	5.52		74.840	74.540	74.603	74.303	Phase IV (as-built info. Added)
	115	114		20	0.32	20	0.32	4.00	0.32	0.00	0.00	1.50	0.00	0.09	0.41	200	4.49	72.51	2.24	51.2	72.10		81.500	81.300	79.200	79.000	
	116	114		20	0.30	20	0.30	4.00	0.32	0.00	0.00	1.50	0.00	0.08	0.41	200	0.58	26.06	0.80	64.5	25.65		79 374	79 174	79.000	78 800	
																	0.00			0.110			10.07	7,0	70.000	7 0.000	
:	114	113		32	0.40	72	1.02	4.00	1.17	0.00	0.00	1.50	0.00	0.29	1.45	200	0.62	26.94	0.83	72.8	25.49		78 750	78.550	78.300	78.100	
	440																										
	113	112		16	0.32	88	1.34	4.00	1.43	0.00	0.00	1.50	0.00	0.38	1.80	200	0.50	24.24	0.75	67.7	22,44		78.200	78.000	77.860	77.660	
	112A	112		16	0.35	16	0.35	4.00	0.26	0.00	0.00	1.50	0.00	0.10	0.36	200	1.00	34.21	1.06	48.0	33.86		77.680	77.480	77.200	77.000	
	112	109	·	16	0.32	120	2.01	4.00	1.94	0.00	0.00	1.50	0.00	0.56	2.51	200	1 71	44.74	1 20	70.0	42.23		77.007	76 907	75.900	75.700	
		190			0.02	120	2.01	4.00				1.50	0.00	0.50	2.51	200	1,71	44.74	1.30	70.0	42.23		77.097	70.097	75.900	15.700	
Mersey Drive	109	100		24	0.33	2772	46.27	3.47	38.98	0.00	6.14	1.50	5.33	12.96	57.27	300	0.46	68.74	0.94	68.7	11.47		74.580	74.280	74.261	73.961	Phase IV (as-built info. Added)
Mersey Drive	124	123		28	0.44	28	0.44	4.00	0.45	0.00	0.00	1.50	0.00	0.12	0.58	200	0.55	25.38	0.78	96.3	24.80		75,600	75,400	75.070	74.870	Phase IV (as-built info. Added)
	123	103		32	0.42	60	0.86	4.00	0.97	0.00	0.00	1.50	0.00	0.24	1.21	200	0.59	26.27	0.81	109.2	25.06		75.065	74.865	74.421	74.221	Phase IV (as-built info. Added)
Easement	1666	int		0	0.00	2832	47.13	3.46	39.73	0.00	6.14	1.50	5.33	13.20	58.26	375	0.32	103.88	0.91	12.4	45.62		74 245	73,870	74.205	73,830	Phase IV (as-built info. Added)
																											- 1.000 1- (00 00)1 (1101 / 1000d)
	127 126	126 126A	 	<u>56</u> 16	0.78 0.19	56 72	0.78 0.97	4.00 4.00	0.91 1.17	0.00	0.00	1.50 1.50	0.00	0.22 0.27	1.13 1.44	200		34.21 26.06	1.06	100.7 13.1	33.09 24.62		78.155		77.148 77.042	76.948 76.842	
	126A	103	 	0	0.00	72	0.97	4.00	1.17	0.00	0.00	1.50	0.00	0.27	1.44			57.56	1.77	49.8	56.12				75.600	75.400	
	107	106		12	0.19	12	0.19	4.00	0.19	0.00	0.00	1.50	0.00	0.05	0.05	200	1.00	34.21	1.00	44.0	22.07		77 470	77 070	77.060	76.860	
	106	105		12 36	0.36	48	0.55	4.00	0.78	0.00	0.00	1.50	0.00	0.15	0.25 0.93	200	0.58	26.06	0.80	41.0 69.9	33.97 25.12		77.000	76.800	76.595	76.395	
	105 104	104 103		32	0.39 0.01	80	0.94	4.00	1.30	0.00	0.00	1.50	0.00	0.26	1.56	200	0.58	26.06	0.80	59.2	24.50		75.860	75.660	75.516	75.316	
	1 104	1 103	l	L4	J 0.01	84	0.95	4.00	1.36	0.00	0.00	1.50	0.00	0.27	1.63	200	1.00	34.21	1.06	14.9	32.59	l	75.049	74.849	74.900	74.700	

Appendix C

Watermain Boundary Conditions, FUS Calculations, & Modelling Results

Boundary Conditions 1104 Halton Terrace

Provided Information

Saamaria	Demand					
Scenario	L/min	L/s				
Average Daily Demand	30	0.50				
Maximum Daily Demand	75	1.25				
Peak Hour	166	2.76				
Fire Flow Demand #1	20,000	333.33				

Location

Results

Connection 1 – Halton Terr.

Demand Scenario	Head (m)	Pressure ¹ (psi)
Maximum HGL	130.0	61.5
Peak Hour	126.3	56.3
Max Day plus Fire 1	115.0	40.2

Ground Elevation = 86.7 m

Connection 2 - Maxwell Bridge Rd.

Demand Scenario	Head (m)	Pressure ¹ (psi)
Maximum HGL	130.0	72.5
Peak Hour	126.3	67.3
Max Day plus Fire 1	116.0	52.7

Ground Elevation = 79.0 m

Disclaimer

The boundary condition information is based on current operation of the city water distribution system. The computer model simulation is based on the best information available at the time. The operation of the water distribution system can change on a regular basis, resulting in a variation in boundary conditions. The physical properties of watermains deteriorate over time, as such must be assumed in the absence of actual field test data. The variation in physical watermain properties can therefore alter the results of the computer model simulation. Fire Flow analysis is a reflection of available flow in the watermain; there may be additional restrictions that occur between the watermain and the hydrant that the model cannot take into account.

FUS - Fire Flow Calculations

As per 1999 Fire Underwriter's Survey Guidelines

Novatech Project #: 119024

Project Name: 1104 Halton Terrace

Date: 7/19/2021

Input By: Designer

Reviewed By: Project Manager

Building Description: 4-Storey Apartment

Wood frame

Legend

Input by User

No Information or Input Required

Step			Input		Value Used	Total Fire Flow (L/min)
		Base Fire Flo	w			
	Construction Ma	terial		Mult	iplier	
1	Coefficient related to type	Wood frame Ordinary construction	Yes	1.5 1		
	of construction	Non-combustible construction Modified Fire resistive construction (2 hrs) Fire resistive construction (> 3 hrs)		0.8 0.6 0.6	1.5	
	Floor Area		· I			
2	A	Building Footprint (m²) Number of Floors/Storeys	2180		0.720	
_		Area of structure considered (m ²)	20		8,720	
	Base fire flow without reductions					31,000
		$F = 220 C (A)^{0.5}$				
		b n				
	Occupancy haza	rd reduction or surcharge		Reduction	/Surcharge	
3		Non-combustible Limited combustible	Yes	-25% -15%		
•	(1)	Combustible Free burning		0% 15%	-15%	26,350
		Rapid burning		25%	_	
	Sprinkler Reduct		_	Redu	ction	
		Adequately Designed System (NFPA 13)	Yes	-30%	-30%	
4	(2)	Standard Water Supply	Yes	-10%	-10%	-10,540
	(-/	Fully Supervised System		-10%		10,010
			Cum	nulative Total	-40%	
	Exposure Surcha	arge (cumulative %)			Surcharge	
		North Side	> 45.1m		0%	
5	(5)	East Side	> 45.1m		0%	
	(3)	South Side	20.1 - 30 m		10%	3,953
		West Side	30.1- 45 m	l nulative Total	5%	
			15%			
		Results				
6	(1) + (2) + (3)	Total Required Fire Flow, rounded to nea			L/min	20,000
	(1) · (2) · (3)	(2,000 L/min < Fire Flow < 45,000 L/min)		or or	L/s USGPM	333 5,284
_		Required Duration of Fire Flow (hours)			Hours	4.5
7	Storage Volume	Required Volume of Fire Flow (m ³)	m ³	5400		

1104 Halton Terrace Water Demand										
				Average Day	Maximum Day	Peak Hour				
	Area			Demand	Demand	Demand				
	(ha)	Units	Population	(L/s)	(L/s)	(L/s)				
Apartment Unit	N/A	86	155	0.502	1.254	2.759				
Total	0.00	86	155	0.502	1.254	2.759				

Water Demand Parameters

Apartment Unit	1.8	ppl/unit
Residential Demand	280	L/c/day
Residential Max Day	2.5	x Avg Day
Residential Peak Hour	2.2	x Max Day
Residential Fire Flow	333	L/s

1104 Halton Terrace: Watermain Demand

Node	Apartment Unit	Total Population	Average Day Demand (L/s)	Maximum Day Demand (L/s)	Peak Hour Demand (L/s)	Fire Flow (L/s)
B1	86	155	0.502	1.254	2.759	N/A
EXHYD1		0	0.000	0.000	0.000	62
EXHYD2		0	0.000	0.000	0.000	62
HYD1		0	0.000	0.000	0.000	95
HYD2		0	0.000	0.000	0.000	95
HYD3		0	0.000	0.000	0.000	95
T1		0	0.000	0.000	0.000	N/A
Total	86	155	0.502	1.254	2.759	

Water Demand Paramete	ers				
Apartment Unit	1.8	ppl/unit	Residential Max Day	2.5	x Avg Day
Residential Demand	280	L/c/day	Residential Peak Hour	2.2	x Max Day
			Anartment Fire Flow	333	l /e

1104 Halton Terrace: Watermain Analysis

Network Table - Nodes	s - (Peak Hour)						
	Elevation	Demand	Head	Pressure	Pressure	Pressure	
Node ID	m	LPS	m	m	kPa	psi	
Junc B1	85.9	2.76	126.29	40.36	395.93	57.43	
Junc EXHYD1	86.75	0	126.3	39.55	387.99	56.27	
Junc EXHYD2	80.05	0	126.3	46.25	460.00	66.72	
Junc HYD1	84.11	0	126.3	42.19	450.00	65.27	
Junc HYD2	82.8	0	126.3	43.5	426.74	61.89	
Junc HYD3	82.77	0	126.3	43.53	427.03	61.94	
Junc T1	83.29	0	126.3	43.01	421.93	61.20	
Resvr RES1	126.3	-1.6	126.3	0	0.00	0.00	
Resvr RES2	126.3	-1.15	126.3	0	0.00	0.00	
Network Table - Links	- (Peak Hour)						
	Length	Diameter	Roughness	Flow	Velocity	Headloss	Fricti
Link ID	m	mm		LPS	m/s	m/km	Fact
Pipe P1	5	300	120	1.60	0.02	0.00	0.04
Pipe P2	87	300	120	1.60	0.02	0.00	0.04
Pipe P3	25	300	120	1.60	0.02	0.00	0.03
Pipe P4	31	150	100	2.76	0.16	0.40	0.04
Pipe P5	33	300	120	-1.15	0.02	0.00	0.04
Pipe P6	35	300	120	-1.15	0.02	0.00	0.04
Pipe P7	69	300	120	-1.15	0.02	0.00	0.0
Pipe P8	77	300	120	-1.15	0.02	0.00	0.0

1104 Halton Terrace: Watermain Analysis

Network Table - Nodes - (N	Max Pressure Check)					
	Elevation	Demand	Head	Pressure	Pressure	Pressure	Age
Node ID	m	LPS	m	m	kPa	psi	Hours
Junc B1	85.9	0.5	130	44.07	432.33	62.70	13.16
Junc EXHYD1	86.75	0	130	43.25	424.28	61.54	0.32
Junc EXHYD2	80.05	0	130	49.95	460.00	66.72	7.16
Junc HYD1	84.11	0	130	45.89	450.00	65.27	6.14
Junc HYD2	82.8	0	130	47.2	463.03	67.16	16.84
Junc HYD3	82.77	0	130	47.23	463.33	67.20	13.56
Junc T1	83.29	0	130	46.71	458.23	66.46	12.86
Resvr RES2	130	-0.21	130	0	0.00	0.00	0
Resvr RES1	130	-0.29	130	0	0.00	0.00	0
Network Table - Links - (M	ax Pressure Check)						
	Length	Diameter	Roughness	Flow	Velocity	Headloss	Friction
Link ID	m	mm		LPS	m/s	m/km	Factor
Pipe P1	5	300	120	0.29	0.00	0.00	0.000
Pipe P2	87	300	120	0.29	0.00	0.00	0.037
Pipe P3	25	300	120	0.29	0.00	0.00	0.131
Pipe P4	31	150	100	0.50	0.03	0.02	0.061
Pipe P5	33	300	120	-0.21	0.00	0.00	0.000
Pipe P6	35	300	120	-0.21	0.00	0.00	0.177
Pipe P7	69	300	120	-0.21	0.00	0.00	0.000
Pipe P8	77	300	120	-0.21	0.00	0.00	0.081

1104 Halton Terrace: Watermain Analysis

	Elevation	Demand	Head	Pressure	Pressure	Pressure	
Node ID	m	LPS	m	m	kPa	psi	
Junc B1	85.9	1.25	113.69	27.76	272.33	39.50	
Junc EXHYD1	86.75	48	114.89	28.14	276.05	40.04	
Junc EXHYD2	80.05	0	114.8	34.75	460.00	66.72	
Junc HYD1	84.11	95	113.73	29.62	450.00	65.27	
Junc HYD2	82.8	95	113.65	30.85	302.64	43.89	
Junc HYD3	82.77	95	113.73	30.96	303.72	44.05	
Junc T1	83.29	0	113.7	30.41	298.32	43.27	
Resvr RES2	116	-149.14	116	0	0.00	0.00	
Resvr RES1	115	-185.12	115	0	0.00	0.00	
Network Table - Links	- (Max Day + FF)						
	Length	Diameter	Roughness	Flow	Velocity	Headloss	Frictio
Link ID	m	mm		LPS	m/s	m/km	Facto
Pipe P1	5	300	120	185.12	2.62	23.32	0.020
Pipe P2	87	300	120	137.12	1.94	13.37	0.021
Pipe P3	25	300	120	42.12	0.60	1.50	0.025
Pipe P4	31	150	100	1.25	0.07	0.09	0.054
Pipe P5	33	300	120	40.86	0.58	1.42	0.025
Pipe P6	35	300	120	-54.14	0.77	2.39	0.024
Pipe P7	69	300	120	-149.14	2.11	15.62	0.02

Appendix D

STM Design Sheets, SWM Excerpts & PCSWMM Modelling Info

1104 Halton Terrace (119024) PCSWMM Model Results (Ponding)

ICB / CBMHI I I I I		Ponding		HGL Elev. (m) ¹			Ponding Depth (m)			Spill Depth (m)						
ID	Elev. (m)	Elev. (m)	Elev. (m)	Depth (m)	2-yr	5-yr	100-yr	100-yr (+20%)	2-yr	5-yr	100-yr	100-yr (+20%)	2-yr	5-yr	100-yr	100-yr (+20%)
CB01	82.32	83.32	83.45	0.13	82.65	82.79	83.43	83.48	0.00	0.00	0.11	0.16	0.00	0.00	0.00	0.03
CB02	83.25	84.95	85.25	0.30	84.14	85.02	85.24	85.26	0.00	0.07	0.29	0.31	0.00	0.00	0.00	0.01
CB03	83.35	85.05	85.35	0.30	84.08	85.19	85.36	85.39	0.00	0.14	0.31	0.34	0.00	0.00	0.01	0.04
LC01	82.13	83.13	83.28	0.15	82.14	82.17	83.21	83.30	0.00	0.00	0.08	0.17	0.00	0.00	0.00	0.02
LC02	82.13	83.13	83.43	0.30	82.14	82.16	83.21	83.30	0.00	0.00	0.08	0.17	0.00	0.00	0.00	0.00
RY02	81.92	83.13	83.28	0.15	81.93	82.01	83.21	83.30	0.00	0.00	0.08	0.17	0.00	0.00	0.00	0.02
RY03	81.54	83.13	83.30	0.17	81.56	82.01	83.21	83.30	0.00	0.00	0.08	0.17	0.00	0.00	0.00	0.00
RY04	82.31	83.65	83.95	0.30	83.48	83.69	83.81	83.85	0.00	0.04	0.16	0.20	0.00	0.00	0.00	0.00
RY05	82.40	83.65	83.95	0.30	83.48	83.69	83.81	83.85	0.00	0.04	0.16	0.20	0.00	0.00	0.00	0.00
RY06	82.53	83.65	83.95	0.30	83.48	83.69	83.81	83.85	0.00	0.04	0.16	0.20	0.00	0.00	0.00	0.00
RY07	82.60	83.60	83.95	0.35	83.48	83.70	83.81	83.85	0.00	0.10	0.21	0.25	0.00	0.00	0.00	0.00

¹ 3-hour Chicago Storm.

Date: 10/18/2021

M:\2019\119024\DATA\Calculations\SWM\119024-Model Results.xlsx

CB01-Storage										
Depth (m) Area (m²) Volume (m										
0.00	0.00	0.00								
0.76	48.20	18.32								
0.77	0	18.56								
1.00	0.36	18.64								
1.13	46.00	21.66								
1.14	0.00	21.89								
2.00	0.00	21.89								

CB02-Storage											
Depth (m)	Depth (m) Area (m²) Volume (m										
0.00	0.00	0.00									
0.76	22.40	8.51									
0.77	0.36	8.63									
1.70	0.36	8.96									
2.00	265	48.76									
2.01	0.00	50.09									
2.70	0.00	50.09									

CB03-Storage											
Depth (m) Area (m²) Volume (m³											
0.00	0.00	0.00									
0.76	173.20	65.82									
0.77	0.36	66.68									
1.70	0.36	67.02									
2.00	391	125.72									
2.01	0.00	127.68									
2.70	0.00	127.68									

RY04-Storage											
Depth (m) Area (m ²) Volume (n											
0.00	0.36	0.00									
1.34	0.36	0.48									
1.64	113	17.49									
1.65	0.00	18.05									
2.34	0.00	18.05									

RY05-Storage											
Depth (m)	Area (m2)	Volume (m3)									
0.00	0.36	0.00									
1.25	0.36	0.45									
1.55	113	17.45									
1.56	0.00	18.02									
2.25	0.00	18.02									

RY06-Storage											
Depth (m)	Area (m2)	Volume (m3)									
0.00	0.36	0.00									
1.12	0.36	0.40									
1.42	113	17.41									
1.43	0.00	17.97									
2.12	0.00	17.97									

RY07-Storage											
Depth (m)	Area (m2)	Volume (m3)									
0.00	0.36	0.00									
1.00	0.36	0.36									
1.35	97	17.40									
1.36	0.00	17.88									
2.00	0.00	17.88									

1104 Halton Terrace (119024) Summary of Hydraulic Grade Line (HGL) Elevations

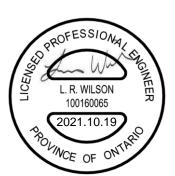
MH ID	MH ID Obvert Elevation		HGL Elevation ¹	Surcharge	Clearance from T/G	HGL in Stress Test ¹
	(m)	(m)	(m)	(m)	(m)	(m)
MH02	81.64	84.12	82.34	0.70	1.78	82.34
MH04	81.76	85.25	82.34	0.59	2.91	82.34
MH06	81.81	85.28	82.34	0.53	2.94	82.34
MH08	82.07	85.11	82.35	0.28	2.76	82.35

¹ 3-hour Chicago Storm; Fixed outfall (100yr HGL @ connections to existing = 82.32).

Date: 10/18/2021

M:\2019\119024\DATA\Calculations\SWM\119024-Model Results.xlsx

STORM SEWER DESIGN SHEET (Maple Leaf Homes) FLOW RATES BASED ON RATIONAL METHOD


LOCATION				A (ha)					FLO	W			TOTAL FLOW				SE	WER DA	TA				
0.41410	From	То	Area	С	AC	Indiv	Accum	Time of	Rainfall Intensity	Rainfall Intensity	Rainfall Intensity					Туре	Slope	Length	Capacity	Velocity	Flow	Ratio	
Catchment ID	Manhole	Manhole	(ha)		(ha)	2.78 AC	2.78 AC	Concentration	2 Year (mm/hr)	5 Year (mm/hr)	10 Year (mm/hr)	(L/s)	Flow, Q (L/s)	Actual	(mm)		(%)	(m)	(L/s)	(m/s)	(min)	Q/Q full	
A-01, A-02, A-03			0.496	0.78	0.39	1.076	1.076	10.00	76.81			82.6			_								
	MH08	MH06			0.00								82.6	0.381	375	PVC	0.40	54.9	115.6	1.01	0.90	71%	
					0.00	0.000	0.000	10.00														\perp	
			0.000	0.00	0.00				73.51			79.1											
	MH06	MH02			0.00	0.000	0.000	10.90					79.1 0.381	79.1 0.381	79.1 0.381	.1 0.381 375	0.381 375 1		PVC 0.40	37.8 115.6	1.01	0.62 689	68%
					0.00	0.000	0.000	10.90															
						_													·				
			0.115	0.53	0.06	0.169	1.245	11.52	71.41			88.9			0.381 375								
A-04	MH02	EX 1500mm			0.00	0.000	0.000	11.52					88.9	88.9 0.381		PVC 0.4	0.40	0 36.9	115.6	1.01	0.61	77%	
					0.00	0.000	0.000	11.52															
	A-01, A-02, A-03, A-09, A-10	Catchment ID From Manhole A-01, A-02, A-03, MH08 MH08	Catchment ID From To Manhole A-01, A-02, A-03, A-09, A-10 MH08 MH06 MH06 MH02	Catchment ID From To Area (ha) A-01, A-02, A-03, A-09, A-10 MH08 MH06 MH02 0.000 0.115	Catchment ID From To Manhole C (ha) A-01, A-02, A-03, A-09, A-10 MH08 MH06 MH02 O.000 0.00 O.115 0.53	Catchment ID From To Manhole (ha) (ha) A-01, A-02, A-03, A-09, A-10 MH08 MH06 0.78 0.39 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Catchment ID From Manhole (ha) (ha) 2.78 AC	Catchment ID From Manhole Manhole (ha) C AC Indiv Accum	Catchment ID	Catchment ID	Catchment ID	Catchment ID	Catchment ID	Catchment ID	Catchment ID	Catchment ID	Catchment ID From To Area C AC Indiv Accum Time of Rainfall Intensity Rainfall Intensity Rainfall Intensity Rainfall Intensity Peak Flow Total Peak Flow, Q (L/s) Actual (mm) Peak Flow Total Peak Flow, Q (L/s) Actual Peak Flow, Q (L/s) Actu	Catchment ID	Catchment ID	Catchment ID Manhole Manhole Manhole (ha) Catchment ID Manhole (ha) Ca	Catchment ID From To Area C AC Indiv Accum Time of Rainfall Intensity Rainfall Intensity Rainfall Intensity Peak Flow Total Peak Flow, Q (L/s) Actual (mm) C (%) (m) (L/s) (m/s)	Catchment ID	

Q = 2.78 AIC, where	Consultant:	Novatech		
Q = Peak Flow in Litres per Second (L/s)	Date:	October 19, 2021		
A = Area in hectares (ha)	Design By:	Lucas Wilson		
I = Rainfall Intensity (mm/hr), 5 year storm	Client:	Dwg. Reference:	Checked By:	
C = Runoff Coefficient	Maple Leaf Homes	119024-STM	MAB	

Legend:

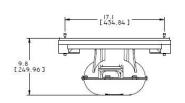
Indicates 100 Year intensity for storm sewers

10.00 Storm sewers designed to the 2 year event (without ponding) for local roads
10.00 Storm sewers designed to the 5 year event (without ponding) for collector roads
10.00 Storm sewers designed to the 10 year event (without ponding) for arterial roads

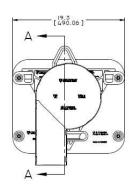
TEMPEST Product Submittal Package R2

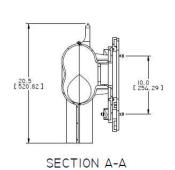
<u>Date</u>: September 15, 2021

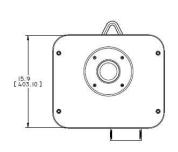
Customer: Novatech

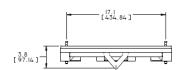

Contact: Lucas Wilson

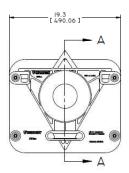
Location:

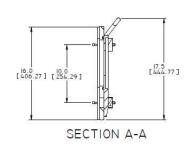

Project Name: 1104 Halton Terrace



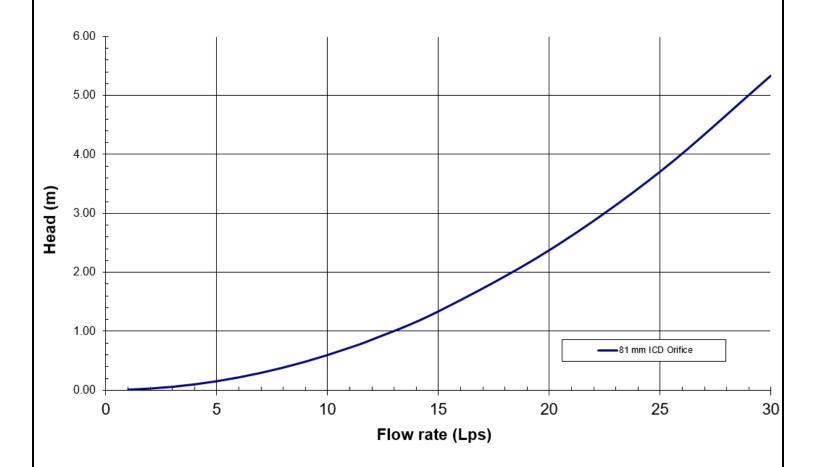

Tempest LMF ICD Sq Shop Drawing




TOLERANCES LINEAR : A 0.000 [inche]	TECHNO	X LOGIES II	PRODUCT COME, DATE OF THE STATE OF COMMENTS OF COMME	es 10: , QC, H3E IHT	
X.XX 40.000 [cac-ed] X.XX 40.000 [cac-ed] X.XX 70.00 [cac-ed]	1	LMF S	QUARE CB ASSEMB	LY	
PRACTICK ALTIO* ANDREAS +1.0*	DRAWN BY H. M-MARTIN	2011-07-27	B 1/8	1 OF I	
The state of the s	VERN'ED BY	2011-07-27	SGM74 FADDIRDS		

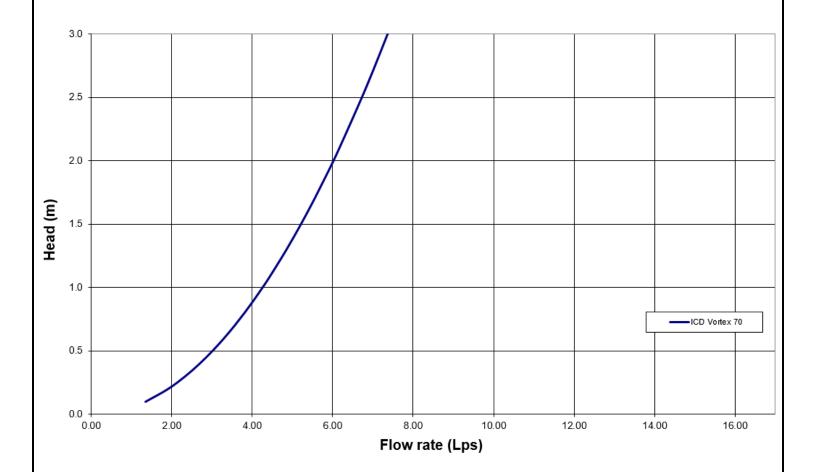


Tempest MHF ICD Sq Shop Drawing

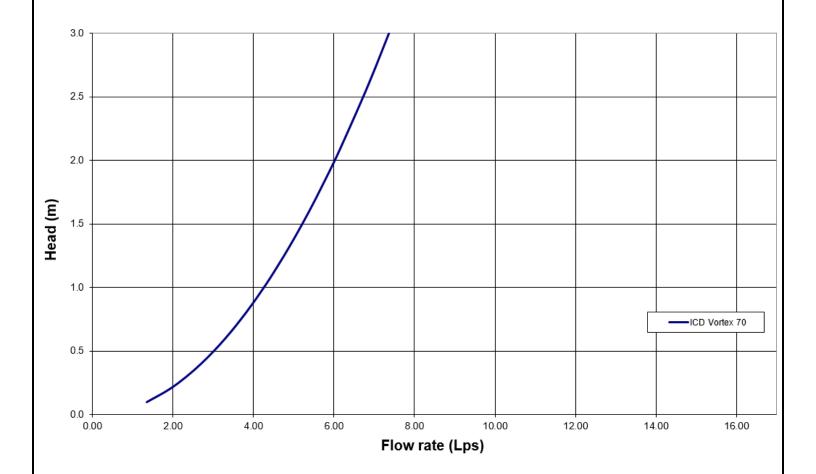


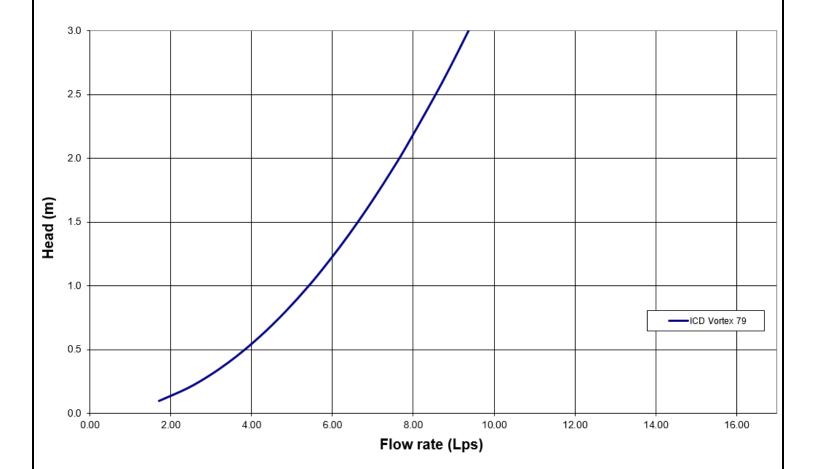
	TOLERAN LABAR: A. X.X K.XX X.XXX	40.000" [1.to m] 40.000" [1.to m] 40.000" [1.to m]	PROJECTION	CHNO uris in (mm)	LOGIES I	NC.	CB ASSEN	s, Some 10: meAL, QC, HIME INT 1 2200
	ANDULAR HUSBIRG	+1,0°	H. M-MARTIN		2011-07-25	sen B	I/8	1 OF I
Time Windows Inte	- CARGO AND AND AND THE PARTY OF THE PARTY O	meeting of the second	WERE'ED BY:		DATE	ORAWS	NO NUMBER	REV

Flow: 13.7 L/s Head: 1.11 m

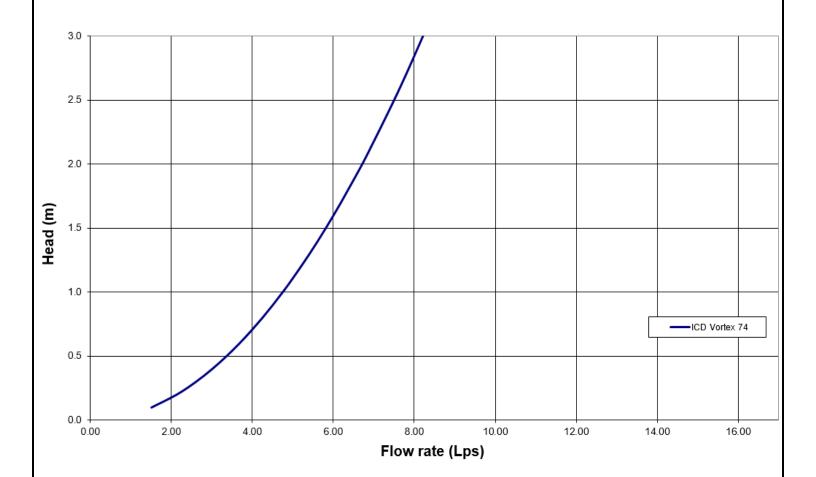

CB01

Flow: 6.0 L/s Head: 1.99 m


CB02

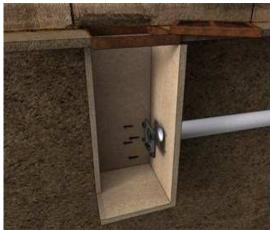

Flow: 6.1 L/s Head: 2.01 m

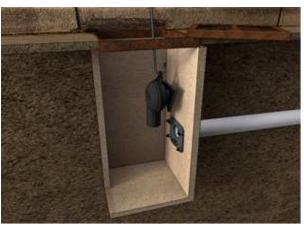
CB03


Flow: 6.7 L/s Head: 1.5 m RY04

Flow: 6.1 L/s Head: 1.67 m

RY03





Square CB Installation Notes:

- 1. Materials and tooling verification:
 - Tooling: impact drill, 3/8" concrete bit, torque wrench for 9/16" nut, hand hammer, level, and marker.
 - Material: (4) concrete anchor 3/8x3-1/2, (4) washers, (4) nuts
- 2. Use the mounting wall plate to locate and mark the hole (4) pattern on the catch basin wall. You should use a level to ensure that the plate is at the horizontal.
- 3. Use an impact drill with a 3/8" concrete bit to make the four holes at a minimum of 1-1/2" depth up to 2-1/2". Clean the concrete dust from the holes.
- 4. Install the anchors (4) in the holes by using a hammer. Put the nuts on the top of the anchors to protect the threads when you will hit the anchors with the hammer. Remove the nuts on the ends of the anchors
- 5. Install the wall mounting plate on the anchors and screw the nut in place with a maximum torque of 40 N.m (30 lbf-ft). There should be no gap between the wall mounting plate and the catch basin wall.
- 6. From ground above using a reach bar, lower the device by hooking the end of the reach bar to the handle of the LMF device. Align the triangular plate portion into the mounting wall plate. Push down the device to be sure it has centered in to the wall mounting plate and has created a seal.

Round CB Installation Notes: (Refer to square install notes above for steps 1, 3, & 4)

- 2. Use spigot catch basin wall plate to locate and mark the hole (4) pattern on the catch basin wall. You should use a level to ensure that the plate is at the horizontal.
- 5. Install the CB spigot wall plate on the anchors and screw the 4 nuts in place with a maximum torque of 40 N.m (30 lb-ft). There should be no gap between the CB spigot wall plate and the catch basin wall.
- 6. Apply solvent cement on the hub of the universal mounting plate and the spigot of the spigot CB wall plate. Slide the hub over the spigot. Make sure the universal mounting plate is at the horizontal and its hub is completely inserted onto the spigot. Normally, the corners of the universal mounting plate hub adapter should touch the catch basin wall.
- 7. From ground above using a reach bar, lower the ICD device by hooking the end of the reach bar to the handle of the ICD device. Align the triangular plate portion into the mounting wall plate. Push down the device to be sure it has centered into the mounting plate and has created a seal.

CAUTION/WARNING/DISCLAIM:

- Verify that the inlet(s) pipe(s) is not protruding into the catch basin. If it is, cut it back so that the inlet pipe is flush with the catch basin wall.
- Any required cement in the installation must be approved for PVC.
- The solvent cement should not be used below 0°C (32°F) or in a high humidity environment. Please refer to the IPEX solvent cement guide to confirm required curing times or attend the IPEX Online Solvent Cement Training Course.
- Call your IPEX representative for more information or if you have any questions about our products.

IPEX TEMPEST Inlet Control Devices Technical Specification

General

Inlet control devices (ICD's) are designed to provide flow control at a specified rate for a given water head level and also provide odour and floatable control where specified. All ICD's will be IPEX Tempest or approved equal.

All devices shall be removable from a universal mounting plate. An operator from street level using only a T-bar with a hook will be able to retrieve the device while leaving the universal mounting plate secured to the catch basin wall face. The removal of the TEMPEST devices listed above must not require any unbolting or special manipulation or any special tools.

High Flow (HF) Sump devices will consist of a removable threaded cap which can be accessible from street level with out entry into the catchbasin (CB). The removal of the threaded cap shall not require any special tools other than the operator's hand.

ICD's must have no moving parts.

Materials

ICD's are to be manufactured from Polyvinyl Chloride (PVC) or Polyurethane material, designed to be durable enough to withstand multiple freeze-thaw cycles and exposure to harsh elements.

The inner ring seal will be manufactured using a Buna or Nitrile material with hardness between Duro 50 and Duro 70.

The wall seal is to be comprised of a 3/8" thick Neoprene Closed Cell Sponge gasket which is attached to the back of the wall plate.

All hardware will be made from 304 stainless steel.

Dimensioning

The Low Medium Flow (LMF), High Flow (HF) and the High Flow (HF) Sump shall allow for a minimum outlet pipe diameter of 200mm with a 600mm deep Catch Basin sump.

Installation

Contractor shall be responsible for securing, supporting and connecting the ICD's to the existing influent pipe and catchbasin/manhole structure as specified and designed by the Engineer.

StormTech SC-740 Chamber

Designed to meet the most stringent industry performance standards for superior structural integrity while providing designers with a cost-effective method to save valuable land and protect water resources. The StormTech system is designed primarily to

be used under parking lots thus maximizing land usage for

municipal

Subsurface Stormwater Management[™]

ACCEPTS 4" (100 mm) SCH 40 PIPE FOR OPTIONAL INSPECTION PORT

StormTech SC-740 Chamber

(not to scale)

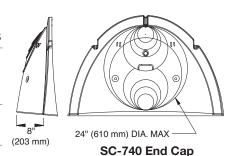
Nominal Chamber Specifications

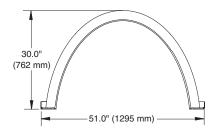
Size $(L \times W \times H)$ 85.4" x 51.0" x 30.0" (2170 x 1295 x 762 mm)

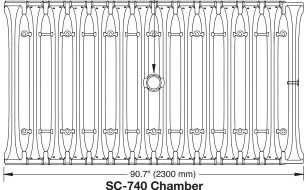
Chamber Storage

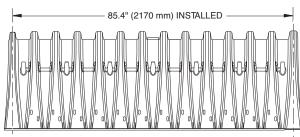
45.9 ft³ (1.30 m³)

Minimum Installed Storage*

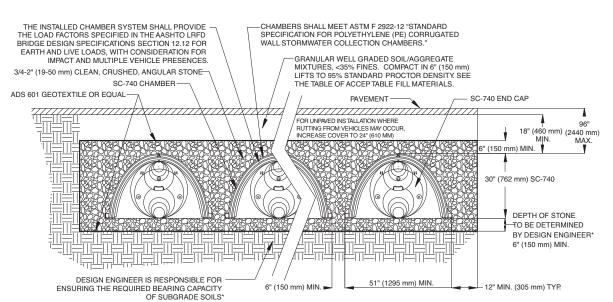

74.9 ft3 (2.12 m3)


Weight


74.0 lbs (33.6 kg)


Shipping

30 chambers/pallet 60 end caps/pallet 12 pallets/truck



Typical Cross Section Detail

(not to scale)

THIS CROSS SECTION DETAILS THE REQUIREMENTS NECESSARY TO SATISFY THE LOAD FACTORS SPECIFIED IN THE AASHTO LIFED BRIDGE DESIGN SPECIFICATIONS SECTION 12.12 FOR EARTH AND LIVE LOADS USING STORMTECH CHAMBERS

SC-740 Cumulative Storage Volumes Per Chamber

Assumes 40% Stone Porosity. Calculations are Based Upon a 6" (152 mm) Stone Base Under the Chambers.

Depth of Water in System Inches (mm)	Cumulative Chamber Storage Ft³ (m³)	Total System Cumulative Storage Ft³ (m³)
42 (1067)	45.90 (1.300)	74.90 (2.121)
41 (1041)	45.90 (1.300)	73.77 (2.089)
40 (1016)	Stone 45.90 (1.300)	72.64 (2.057)
39 (991)	Cover 45.90 (1.300)	71.52 (2.025)
38 (965)	 45.90 (1.300)	70.39 (1.993)
37 (948)	45.90 (1.300)	69.26 (1.961)
36 (914)	45.90 (1.300)	68.14 (1.929)
35 (889)	45.85 (1.298)	66.98 (1.897)
34 (864)	45.69 (1.294)	65.75 (1.862)
33 (838)	45.41 (1.286)	64.46 (1.825)
32 (813)	44.81 (1.269)	62.97 (1.783)
31 (787)	44.01 (1.246)	61.36 (1.737)
30 (762)	43.06 (1.219)	59.66 (1.689)
29 (737)	41.98 (1.189)	57.89 (1.639)
28 (711)	40.80 (1.155)	56.05 (1.587)
27 (686)	39.54 (1.120)	54.17 (1.534)
26 (660)	38.18 (1.081)	52.23 (1.479)
25 (635)	36.74 (1.040)	50.23 (1.422)
24 (610)	35.22 (0.977)	48.19 (1.365)
23 (584)	33.64 (0.953)	46.11 (1.306)
22 (559)	31.99 (0.906)	44.00 (1.246)
21 (533)	30.29 (0.858)	41.85 (1.185)
20 (508)	28.54 (0.808)	39.67 (1.123)
19 (483)	26.74 (0.757)	37.47 (1.061)
18 (457)	24.89 (0.705)	35.23 (0.997)
17 (432)	23.00 (0.651)	32.96 (0.939)
16 (406)	21.06 (0.596)	30.68 (0.869)
15 (381)	19.09 (0.541)	28.36 (0.803)
14 (356)	17.08 (0.484)	26.03 (0.737)
13 (330)	15.04 (0.426)	23.68 (0.670)
12 (305)	12.97 (0.367)	21.31 (0.608)
11 (279)	10.87 (0.309)	18.92 (0.535)
10 (254)	8.74 (0.247)	16.51 (0.468)
9 (229)	6.58 (0.186)	14.09 (0.399)
8 (203)	4.41 (0.125)	11.66 (0.330)
7 (178)	2.21 (0.063)	9.21 (0.264)
6 (152)	0	6.76 (0.191)
5 (127)	0	5.63 (0.160)
4 (102)	Stone Foundation 0	4.51 (0.125)
3 (76)	0	3.38 (0.095)
2 (51)	0	2.25 (0.064)
1 (25)	• 0	1.13 (0.032)

Note: Add 1.13 cu. ft. (0.032 m³) of storage for each additional inch (25 mm) of stone foundation.

Storage Volume Per Chamber

	Bare Chamber Storage		amber and Sto e Foundation I in. (mm)			
	ft³ (m³)	6 (150)	12 (305)	18 (460)		
StormTech SC-740	45.9 (1.3)	74.9 (2.1)	74.9 (2.1) 81.7 (2.3) 88.4 (2.5)			

Note: Storage volumes are in cubic feet per chamber. Assumes 40% porosity for the stone plus the chamber volume.

Amount of Stone Per Chamber

	Sto	ne Foundation De	pth
ENGLISH TONS (CUBIC YARDS)	6"	12"	18"
StormTech SC-740	3.8 (2.8 yd³)	4.6 (3.3 yd³)	5.5 (3.9 yd³)
METRIC KILOGRAMS (METER ³)	150 mm	305 mm	460 mm
StormTech SC-740	3450 (2.1 m³)	4170 (2.5 m³)	4490 (3.0 m³)

Note: Assumes 6" (150 mm) of stone above, and between chambers.

Volume of Excavation Per Chamber

	Sto	ne Foundation De	pth
	6" (150 mm)	12" (305 mm)	18" (460 mm)
StormTech SC-740	5.5 (4.2)	6.2 (4.7)	6.8 (5.2)

Note: Volumes are in cubic yards (cubic meters) per chamber. Assumes 6" (150 mm) of separation between chamber rows and 18" (460 mm) of cover. The volume of excavation will vary as the depth of the cover increases.

STANDARD LIMITED WARRANTY OF STORMTECH LLC ("STORMTECH"): PRODUCTS

- This Limited Warranty applies solely to the StormTech chambers and endplates manufactured by StormTech and sold to the original purchaser (the "Purchaser"). The chambers and endplates are collectively referred to as the "Products."
- The structural integrity of the Products, when installed strictly in accordance with StormTech's written installation instructions at the time of installation, are warranted to the Purchaser against defective materials and workmanship for one (1) year from the date of purchase. Should a defect appear in the Limited Warranty period, the Purchaser shall provide StormTech with written notice of the alleged defect at StormTech's corporate headquarters within ten (10) days of the discovery of the defect. The notice shall describe the alleged defect in reasonable detail. StormTech agrees to supply replacements for those Products determined by StormTech to be defective and covered by this Limited Warranty. The supply of replacement products is the sole remedy of the Purchaser for breaches of this Limited Warranty. StormTech's liability specifically excludes the cost of removal and/or installation of the Products.
- THIS LIMITED WARRANTY IS EXCLUSIVE. THERE ARE NO OTHER WARRANTIES WITH RESPECT TO THE PRODUCTS, INCLUDING NO IMPLIED WARRANTIES OF MERCHANT-ABILITY OR OF FITNESS FOR A PARTICULAR PURPOSE.
- This Limited Warranty only applies to the Products when the Products are installed in a single layer UNDER NO CIRCUMSTANCES, SHALL THE PRODUCTS BE INSTALLED IN A MULTI-LAYER CONFIGURATION.
- No representative of StormTech has the authority to change this Limited Warranty in any manner or to extend this Limited Warranty. This Limited Warranty does not apply to any person other than to the Purchaser.
- Under no circumstances shall StormTech be liable to the Purchaser or to any third party for product liability claims; claims arising from the design, shipment, or installation of the Products, or the cost of other goods or services related to the purchase and installation of the Products. For this Limited Warranty to apply, the Products must be installed in accordance with all site conditions required by state and local codes; all other applicable laws; and StormTech's written installation instructions.
- THE LIMITED WARRANTY DOES NOT EXTEND TO INCIDENTAL, CONSEQUENTIAL, SPE-CIAL OR INDIRECT DAMAGES. STORMTECH SHALL NOT BE LIABLE FOR PENALTIES OR LIQUIDATED DAMAGES, INCLUDING LOSS OF PRODUCTION AND PROFITS; LABOR AND MATERIALS; OVERHEAD COSTS; OR OTHER LOSS OR EXPENSE INCURRED BY THE PURCHASER OR ANY THIRD PARTY. SPECIFICALLY EXCLUDED FROM LIMITED WAR-RANTY COVERAGE ARE DAMAGE TO THE PRODUCTS ARISING FROM ORDINARY WEAR AND TEAR; ALTERATION, ACCIDENT, MISUSE, ABUSE OR NEGLECT; THE PRODUCTS BEING SUBJECTED TO VEHICLE TRAFFIC OR OTHER CONDITIONS WHICH ARE NOT PERMITTED BY STORMTECH'S WRITTEN SPECIFICATIONS OR INSTALLATION INSTRUC-TIONS; FAILURE TO MAINTAIN THE MINIMUM GROUND COVERS SET FORTH IN THE INSTALLATION INSTRUCTIONS; THE PLACEMENT OF IMPROPER MATERIALS INTO THE PRODUCTS; FAILURE OF THE PRODUCTS DUE TO IMPROPER SITING OR IMPROPER SIZING: OR ANY OTHER EVENT NOT CAUSED BY STORMTECH. THIS LIMITED WAR-RANTY REPRESENTS STORMTECH'S SOLE LIABILITY TO THE PURCHASER FOR CLAIMS RELATED TO THE PRODUCTS, WHETHER THE CLAIM IS BASED UPON CON-TRACT, TORT, OR OTHER LEGAL THEORY.

20 Beaver Road, Suite 104 | Wethersfield | Connecticut | 06109 860.529.8188 | 888.892.2694 | fax 866.328.8401 | fax 860-529-8040 | www.stormtech.com

User Inputs

Results

Chamber Model: SC-740 System Volume and Bed Size **Outlet Control Structure:** No

Project Name: 1104 Halton Terrace **Installed Storage Volume:**

Engineer: Lucas Wilson Storage Volume Per Chamber: 1.30 cubic meters.

Project Location: Number Of Chambers Required:

Measurement Type: Metric **Number Of End Caps Required:**

Required Storage Volume: 8.50 cubic meters. **Chamber Rows:** 1

40% **Stone Porosity:** 152 mm.

Stone Foundation Depth: Stone Above Chambers: 152 mm.

Average Cover Over Chambers: 457 mm.

(2.00 m. x 8.00 m.) **Design Constraint Dimensions:**

2

Maximum Length: 7.60 m. Maximum Width: 1.91 m.

Approx. Bed Size Required: 14.49 square me-

8.52 cubic meters.

System Components

Amount Of Stone Required: 11.56 cubic meters

Volume Of Excavation (Not Including 15.45 cubic meters

Fill):

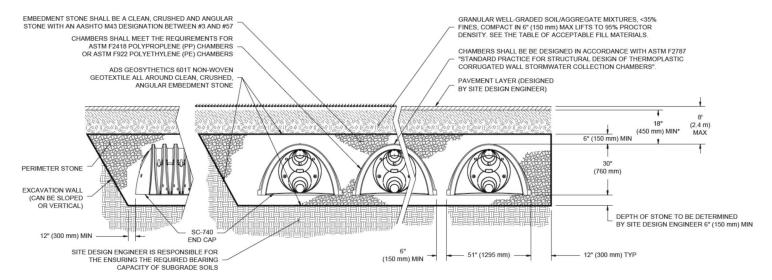
Non-woven Geotextile Required (ex- 59.12 square meters

cluding Isolator Row):

Non-woven Geotextile Required (Iso- 20.47 square meters

lator Row):

Total Non-woven Geotextile Required:79.58 square meters


Woven Geotextile Required (excluding0.00 square meters

Isolator Row):

Woven Geotextile Required (Isolator 12.79 square meters

Row):

Total Woven Geotextile Required: 12.79 square meters

*MINIMUM COVER TO BOTTOM OF FLEXIBLE PAVEMENT. FOR UNPAVED INSTALLATIONS WHERE RUTTING FROM VEHICLES MAY OCCUR, INCREASE COVER TO 24" (600 mm).

User Inputs

<u>Results</u>

Chamber Model: SC-740

Outlet Control Structure:

Project Name: 1104 Halton Terrace

Engineer: Lucas Wilson

Project Location:

Measurement Type: Metric

Required Storage Volume: 18.00 cubic meters.

40% **Stone Porosity:**

Stone Foundation Depth: 152 mm.

Stone Above Chambers: 152 mm.

Average Cover Over Chambers: 457 mm.

(5.00 m. x 7.00 m.) **Design Constraint Dimensions:**

System Volume and Bed Size

Installed Storage Volume: 18.27 cubic meters.

Storage Volume Per Chamber: 1.30 cubic meters.

Number Of Chambers Required:

Number Of End Caps Required: 6

3 **Chamber Rows:**

Maximum Length: 6.63 m.

Maximum Width: 4.80 m.

Approx. Bed Size Required: 31.85 square me-

System Components

Amount Of Stone Required: 26.17 cubic meters

Volume Of Excavation (Not Including 33.97 cubic meters

Fill):

Non-woven Geotextile Required (ex- 105.71 square me-

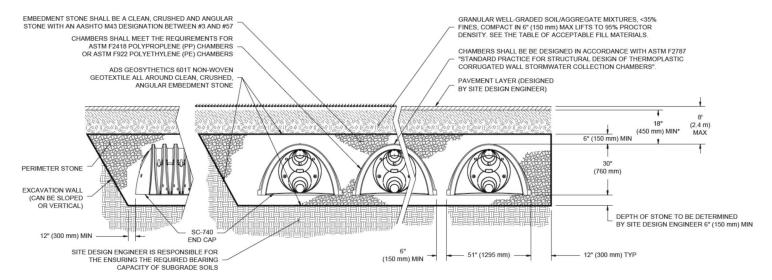
cluding Isolator Row):

ters

Non-woven Geotextile Required (Iso- 14.12 square meters

lator Row):

Total Non-woven Geotextile Required: 119.83 square me-


Woven Geotextile Required (excluding 13.24 square meters

Isolator Row):

Woven Geotextile Required (Isolator 8.83 square meters

Row):

Total Woven Geotextile Required: 22.06 square meters

*MINIMUM COVER TO BOTTOM OF FLEXIBLE PAVEMENT. FOR UNPAVED INSTALLATIONS WHERE RUTTING FROM VEHICLES MAY OCCUR, INCREASE COVER TO 24" (600 mm).

User Inputs

<u>Results</u>

Chamber Model: SC-740

Project Name: 1104 Halton Terrace

Yes

Engineer: Lucas Wilson

Project Location:

Outlet Control Structure:

Measurement Type: Metric

Required Storage Volume: 65.00 cubic meters.

40% **Stone Porosity:**

Stone Foundation Depth: 152 mm.

Stone Above Chambers: 152 mm.

Average Cover Over Chambers: 457 mm.

(5.00 m. x 22.00 m.) **Design Constraint Dimensions:**

System Volume and Bed Size

Installed Storage Volume: 67.45 cubic meters.

Storage Volume Per Chamber: 1.30 cubic meters.

Number Of Chambers Required: 27

Number Of End Caps Required: 6

3 **Chamber Rows:**

Maximum Length: 21.82 m.

Maximum Width: 4.98 m.

Approx. Bed Size Required: 108.73 square me-

System Components

Amount Of Stone Required: 80.90 cubic meters

Volume Of Excavation (Not Including 115.99 cubic meters

Fill):

Non-woven Geotextile Required (ex- 329.57 square me-

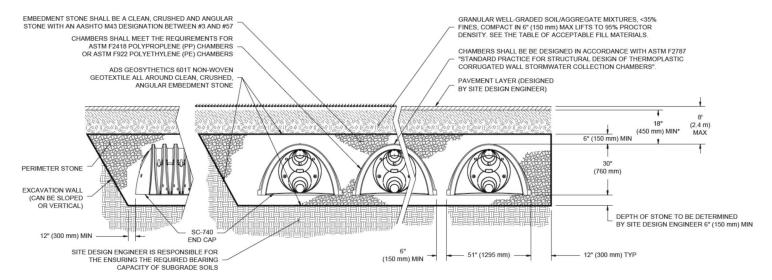
cluding Isolator Row):

Non-woven Geotextile Required (Iso- 58.55 square meters

lator Row):

Total Non-woven Geotextile Required: 388.12 square me-

ters


Woven Geotextile Required (excluding 13.24 square meters

Isolator Row):

Woven Geotextile Required (Isolator 36.59 square meters

Row):

Total Woven Geotextile Required: 49.83 square meters

*MINIMUM COVER TO BOTTOM OF FLEXIBLE PAVEMENT. FOR UNPAVED INSTALLATIONS WHERE RUTTING FROM VEHICLES MAY OCCUR, INCREASE COVER TO 24" (600 mm).

EPA STORM WATER MANAG							RY05 RY06 RY07	STORAGE STORAGE STORAGE	82	.40 .53	2.25 2.12 2.00	0.0 0.0 0.0		
********* Element Count ********* Number of rain gag Number of subcatch Number of nodes	ments 13						**************************************	From Node	To Node	1	'ype	Length	%Slope!	Roughness
Number of links Number of pollutan Number of land use							C1 C2 C3 C4	RY06 HP-RY06 RY05 RY07	HP-RY06 RY07 RY04 HP-RY07	(CONDUIT CONDUIT CONDUIT CONDUIT	3.0 3.0 9.4 3.0	-5.0063 6.6815 0.9575 -8.3624	0.0350 0.0350 0.0130 0.0350
							C5	HP-RY07	RY04		CONDUIT	3.0	6.6815	0.0350
**********							C6	RY05	HP-RY05		ONDUIT	3.0	-5.0063	0.0350
Raingage Summary							C7 HP1-LC02	HP-RY05 HP01	RY04 LC02		CONDUIT	3.0 19.7	5.0063 3.7081	0.0350 0.0350
			Data	Record	ling		LC01-RY01	LC01	RY01		ONDUIT	27.6	0.5073	0.0330
Name	Data Source		Type	Interv			LC03-LC02	LC02	RY03		CONDUIT	26.2	0.4962	0.0130
							MC02-RY02	RY02	RY03		CONDUIT	16.3	0.4908	0.0130
RG-1	C3h-100yr		INTENSI	TY 10 m:	n.		MH02-Ex_1500	MH02	Ex_1500		CONDUIT	36.9	0.4065	0.0130
							MH04-MH02	MHO4 MHO6	MH02 MH04		CONDUIT	27.3	0.4029	0.0130
*******	**						MH06-MH04 MH08-MH06	MH08	MHO4 MHO6		ONDUIT	10.5 54.9	0.3810	0.0130
Subcatchment Summa:							MS-CB01	CB01	HP-CB01	-	ONDUIT	3.0	-4.3374	0.0150
******							MS-CB02(1)	CB02	HP-CB02		ONDUIT		-10.0504	0.0150
Name	Area	Width %Imper	rv %Slo	pe Rain Ga	ige	Outlet	MS-CB02(2)	HP-CB02	CB01		CONDUIT	3.0	84.0315	0.0150
							MS-CB03(1)	CB03	HP-CB03		CONDUIT		-10.0504	0.0150
	0.00	42.00				0000	MS-CB03(2)	HP-CB03	CB02		ONDUIT	3.0	13.4535	0.0150
A-01 A-02	0.09 0.10	43.00 81.4 52.50 45.7		00 RG-1 00 RG-1		CB02 RY04	MS-HP02 MS-LC01	HP02 LC01	LC01 HP-LC01		CONDUIT	16.6 3.0	1.5062 -5.0063	0.0350
A-02 A-03	0.10	45.33 88.2		00 RG-1		CB03	MS-LC01 MS-LC02(1)	LC02	HP-LC01		ONDUIT	6.6	-4.5502	0.0350
A-04	0.12	57.50 47.8		00 RG-1		CB01	MS-LC02(2)	HP-LC02	RY03		ONDUIT	20.0	1.5002	0.0350
A-05	0.01	26.00 0.0		00 RG-1		LC02	MS-RY01(1)	RY01	LC01		CONDUIT	27.6	1.4857	0.0350
A-06	0.01	28.00 0.0		00 RG-1		RY03	MS-RY01(2)	RY01	RY02		ONDUIT	10.6	3.8708	0.0350
A-07 A-08	0.02 0.02	32.00 0.0 44.00 0.0		00 RG-1 00 RG-1		RY02 LC01	MS-RY02 MS-RY03(1)	RY02 RY03	HP-RY02 HP-RY03		ONDUIT	3.0 6.6	-5.0063 -2.5766	0.0350 0.0350
A-09	0.02	11.33 82.4		00 RG-1		RY04	MS-RY03(2)	HP-RY03	RY02		ONDUIT	10.0	1.7002	0.0350
A-10	0.22	62.86 100.0		00 RG-1		CB03	MS-RY04(1)	RY04	HP-RY04		ONDUIT		-10.0504	0.0350
B-01	0.01	10.00 16.7	70 6.00	00 RG-1		OF1	MS-RY04(2)	HP-RY04	OF3	(CONDUIT	28.7	2.7537	0.0350
B-02	0.01	12.00 0.0		00 RG-1		OF2	RY01-RY02	RY01	RY02		CONDUIT	9.9	0.5051	0.0130
B-03	0.03	10.40 0.0	00 2.70	00 RG-1		OF3	RY06-RY05	RY06 RY07	RY05 RY06		CONDUIT	12.7	1.0237	0.0130
							RY07-RY06 O-CB01	CB01	MHO2		ONDUIT	6.7	1.0448	0.0130
******							0-CB02	CB02	MH08		RIFICE			
Node Summary							O-CB03	CB03	MH08		RIFICE			
*******							0-RY03	RY03	Ex_375	-	RIFICE			
Name	Туре	Invert Elev.	Max. Depth	Ponded Area	External Inflow		O-RY04	RY04	MH08	(RIFICE			
HP01	JUNCTION	83.86	1.00	0.0			********	*****						
HP02	JUNCTION	83.38	1.00	0.0			Cross Section							
HP-CB02	JUNCTION	85.25	1.00	0.0			********	*****						
HP-CB03 HP-LC02	JUNCTION JUNCTION	85.35 83.43	1.00	0.0			Conduit	Shape	Full Depth	Full Area	Hyd. Rad.	Max. No Width Bar		ull low
HP-ECUZ HP-RY03	JUNCTION	83.30	1.00	0.0			Conduit	Snape	Depth	Area	Rad.	width Bar		
HP-RY04	JUNCTION	83.95	1.00	0.0			C1	RECT_OPEN	1.00	3.00	0.60	3.00	1 13643	.85
HP-RY05	JUNCTION	83.80	1.00	0.0			C2	RECT_OPEN	1.00	3.00	0.60	3.00	1 15762	.25
HP-RY06	JUNCTION	83.80	1.00	0.0			C3	CIRCULAR	0.25	0.05	0.06	0.25	1 58	
HP-RY07 Ex_1500	JUNCTION OUTFALL	83.85 80.11	1.00	0.0			C4 C5	RECT_OPEN RECT_OPEN	1.00	3.00	0.60	3.00	1 17633 1 15762	
Ex_1500 Ex_375	OUTFALL	81.13	0.00	0.0			C6	RECT_OPEN	1.00	3.00	0.60	3.00	1 13643	
HP-CB01	OUTFALL	83.45	1.00	0.0			C7	RECT_OPEN	1.00	3.00	0.60	3.00	1 13643	
HP-LC01	OUTFALL	83.28	1.00	0.0			HP1-LC02	TRAPEZOIDAL	1.00	3.15	0.49	6.15	1 10721	
HP-RY02	OUTFALL	83.28	1.00	0.0			LC01-RY01	CIRCULAR	0.25	0.05	0.06	0.25	1 42	
OF1 OF2	OUTFALL	0.00	0.00	0.0			LC03-LC02	CIRCULAR	0.25	0.05	0.06	0.25	1 41 1 41	
OF3	OUTFALL OUTFALL	0.00 83.16	0.00	0.0			MC02-RY02 MH02-Ex_1500	CIRCULAR CIRCULAR	0.25 0.38	0.05	0.06	0.25	1 41 1 111	
CB01	STORAGE	82.32	2.00	0.0			MH04-MH02	CIRCULAR	0.38	0.11	0.09	0.38	1 111	
CB02	STORAGE	83.25	2.70	0.0			MH06-MH04	CIRCULAR	0.38	0.11	0.09	0.38	1 108	
CB03	STORAGE	83.35	2.70	0.0			MH08-MH06	CIRCULAR	0.38	0.11	0.09	0.38	1 111	
LC01	STORAGE	82.13	2.00	0.0			MS-CB01	RECT_OPEN	1.00	3.00	0.60	3.00	1 29632	
LC02 MH02	STORAGE STORAGE	82.13 81.26	2.00	0.0			MS-CB02(1) MS-CB02(2)	RECT_OPEN	1.00	3.00	0.60	3.00	1 45107 1 13043	
MH02 MH04	STORAGE	81.26 81.38	2.86 3.87	0.0			MS-CB02(2) MS-CB03(1)	RECT_OPEN RECT_OPEN	1.00	3.00	0.60	3.00	1 130430	
MH06	STORAGE	81.42	3.86	0.0			MS-CB03(1)	RECT_OPEN	1.00	3.00	0.60	3.00	1 52188	
MH08	STORAGE	81.69	3.42	0.0			MS-HP02	TRAPEZOIDAL	1.00	3.15	0.49	6.15	1 6832	.97
RY01	STORAGE	81.98	2.56	0.0			MS-LC01	TRAPEZOIDAL	1.00	3.15	0.49	6.15	1 12457	
RY02	STORAGE	81.92	2.21	0.0			MS-LC02(1)	TRAPEZOIDAL	1.00	3.15	0.49	6.15	1 11876	
RY03	STORAGE	81.54	2.59	0.0			MS-LC02(2)	TRAPEZOIDAL	1.00	3.15	0.49	6.15	1 6819	
RY04	STORAGE	82.31	2.34	0.0			MS-RY01(1)	TRAPEZOIDAL	1.00	3.15	0.49	6.15	1 6786	. 40

MS-RY01(2)	TRAPEZOIDAL	1.00	3.15	0.49	6.15	1 1	0953.95
MS-RY02	TRAPEZOIDAL	1.00	3.15	0.49	6.15	1 1	2457.35
MS-RY03(1)	TRAPEZOIDAL	1.00	3.15	0.49	6.15	1	8937.04
MS-RY03(2)	TRAPEZOIDAL	1.00	3.15	0.49	6.15	1	7259.80
MS-RY04(1)	RECT_OPEN	1.00	3.00	0.60	3.00	1 1	9331.76
MS-RY04(2)	TRAPEZOIDAL	1.00	16.65	0.50	33.15	1 4	9703.74
RY01-RY02	CIRCULAR	0.25	0.05	0.06	0.25	1	42.26
RY06-RY05	CIRCULAR	0.25	0.05	0.06	0.25	1	60.17
RY07-RY06	CIRCULAR	0.25	0.05	0.06	0.25	1	60.79

NOTE: The summary statistics displayed in this report are based on results found at every computational time step, not just on results from each reporting time step.

************ Analysis Options *********** Flow Units LPS Process Models: Rainfall/Runoff YES RDII NO Snowmelt NO Groundwater NO
Flow Routing YES
Ponding Allowed NO Water Quality NO
Infiltration Method HORTON Flow Routing Method DYNWAVE Surcharge Method EXTRAN Starting Date 07/21/2021 00:00:00 Ending Date 07/22/2021 00:00:00
Ending Date 07/22/2021 00:00:00
Antecedent Dry Days 0.0
Report Time Step 00:01:00
Wet Time Step 00:05:00 Dry Time Step 00:05:00 Routing Time Step 5.00 sec Variable Time Step YES Maximum Trials 8

Number of Threads 4 Head Tolerance 0.001524 m $\,$

*******	Volume	Depth
Runoff Quantity Continuity	hectare-m	mm

Total Precipitation	0.051	71.667
Evaporation Loss	0.000	0.000
Infiltration Loss	0.011	15.377
Surface Runoff	0.040	56.581
Final Storage	0.000	0.570
Continuity Error (%)	-1.201	

*******	Volume	Volume
Flow Routing Continuity	hectare-m	10^6 ltr

Dry Weather Inflow	0.000	0.000
Wet Weather Inflow	0.040	0.404
Groundwater Inflow	0.000	0.000
RDII Inflow	0.000	0.000
External Inflow	0.000	0.002
External Outflow	0.041	0.406
Flooding Loss	0.000	0.000
Evaporation Loss	0.000	0.000
Exfiltration Loss	0.000	0.000
Initial Stored Volume	0.002	0.023
Final Stored Volume	0.002	0.023
Continuity Error (%)	-0.183	

Link MS-CB03(2) (3)

Link MS-CB03(1) (3) Link RY01-RY02 (2) Link O-RY03 (2)

Minimum Time Step 0.69 sec Average Time Step 4.81 sec Maximum Time Step Percent in Steady State 0.00 Average Iterations per Step : 2.01 Percent Not Converging 0.07 Time Step Frequencies 5.000 - 3.155 sec 3.155 - 1.991 sec 94.09 % 0.60 % 1.991 - 1.256 sec 5.29 % 1.256 - 0.792 sec 0.01 % 0.792 - 0.500 sec

Total	Peak	Runoff	Total Precip	Total Runon	Total Evap	Total Infil	Imperv Runoff	Perv Runoff	Total Runoff	
	tchment	f Coeff LPS	mm	mm	mm	mm	mm	mm	mm	
A-01 0.05	41.23	0.877	71.67	0.00	0.00	8.21	57.25	5.62	62.87	
A-02 0.05	43.53	0.664	71.67	0.00	0.00	24.25	32.08	15.53	47.61	
A-03 0.04	33.13	0.917	71.67	0.00	0.00	5.18	61.99	3.74	65.72	
A-04 0.06	46.52	0.673	71.67	0.00	0.00	23.42	33.57	14.70	48.26	
A-05 0.00 A-06	5.09	0.414	71.67	0.00	0.00	44.28	0.00	29.64	29.64	
0.00 A-07	5.48	0.414	71.67	0.00	0.00	44.28	0.00	29.64	29.64	
0.00 A-08	6.26	0.414	71.67	0.00	0.00	44.28	0.00	29.64	29.64	
0.01 A-09	8.61	0.414	71.67	0.00	0.00	7.72	57.83	5.66	63.49	
0.01 A-10 0.16	8.21	0.886	71.67	0.00	0.00	0.00	72.05	0.00	72.05	
B-01 0.00	2.58	0.525	71.67	0.00	0.00	36.64	11.75	25.85	37.60	
B-02 0.00	2.54	0.451	71.67	0.00	0.00	43.81	0.00	32.35	32.35	
B-03 0.01	6.30	0.374	71.67	0.00	0.00	45.72	0.00	26.83	26.83	

١			Average	Maximum	Maximum	Time of Max	Reported
١			Depth	Depth	HGL	Occurrence	Max Depth
١	Node	Type	Meters	Meters	Meters	days hr:min	Meters

HP01	JUNCTION	0.00	0.00	83.86	0	00:00	0.00
HP02	JUNCTION	0.00	0.00	83.38	0	00:00	0.00
HP-CB02	JUNCTION	0.00	0.00	85.25	0	00:00	0.00
HP-CB03	JUNCTION	0.00	0.01	85.36	0	01:22	0.01
HP-LC02	JUNCTION	0.00	0.00	83.43	0	00:00	0.00
HP-RY03	JUNCTION	0.00	0.00	83.30	0	00:00	0.00
HP-RY04	JUNCTION	0.00	0.00	83.95	0	00:00	0.00
HP-RY05	JUNCTION	0.00	0.01	83.81	0	01:31	0.01
HP-RY06	JUNCTION	0.00	0.01	83.81	0	01:30	0.01
HP-RY07	JUNCTION	0.00	0.00	83.85	0	00:00	0.00
Ex_1500	OUTFALL	2.21	2.21	82.32	0	00:00	2.21
Ex_375	OUTFALL	1.19	1.19	82.32	0	00:00	1.19
HP-CB01	OUTFALL	0.00	0.00	83.45	0	00:00	0.00
HP-LC01	OUTFALL	0.00	0.00	83.28	0	00:00	0.00
HP-RY02	OUTFALL	0.00	0.00	83.28	0	00:00	0.00
OF1	OUTFALL	0.00	0.00	0.00	0	00:00	0.00
OF2	OUTFALL	0.00	0.00	0.00	0	00:00	0.00
OF3	OUTFALL	0.00	0.00	83.16	0	00:00	0.00
CB01	STORAGE	0.07	1.11	83.43	0	01:21	1.11
CB02	STORAGE	0.34	1.99	85.24	0	01:55	1.99
CB03	STORAGE	0.58	2.01	85.36	0	01:22	2.01
LC01	STORAGE	0.24	1.08	83.21	0	01:21	1.08
LC02	STORAGE	0.24	1.08	83.21	0	01:21	1.08
MH02	STORAGE	1.06	1.08	82.34	0	01:14	1.08
MH04	STORAGE	0.94	0.96	82.34	0	01:14	0.96
MH06	STORAGE	0.90	0.92	82.34	0	01:14	0.92
MH08	STORAGE	0.63	0.66	82.35	0	01:13	0.66
RY01	STORAGE	0.39	1.23	83.21	0	01:20	1.23
RY02	STORAGE	0.45	1.29	83.21	0	01:20	1.29
RY03	STORAGE	0.83	1.67	83.21	0	01:21	1.67
RY04	STORAGE	0.20	1.50	83.81	0	01:31	1.50
RY05	STORAGE	0.18	1.41	83.81	0	01:32	1.41
RY06	STORAGE	0.16	1.28	83.81	0	01:30	1.28
RY07	STORAGE	0.15	1.21	83.81	0	01:31	1.21

Node	Туре	Maximum Lateral Inflow LPS	Maximum Total Inflow LPS	0ccu	irrence	Lateral Inflow Volume 10^6 ltr	Total Inflow Volume 10^6 ltr	Flow Balance Error Percent
 HP01	JUNCTION	0.00	0.00	0	00:00	0	0	0.000 1
HP02	JUNCTION	0.00	0.00	0	00:00	0	0	0.000 1
HP-CB02	JUNCTION	0.00	0.00	0	00:00	0	0	0.000 1
HP-CB03	JUNCTION	0.00	29.79	0	01:22	0	0.025	-3.099
HP-LC02	JUNCTION	0.00	0.00	0	00:00	0	0	0.000 1
HP-RY03	JUNCTION	0.00	0.00	0	00:00	0	0	0.000 1
HP-RY04	JUNCTION	0.00	0.00	0	00:00	0	0	0.000 1
HP-RY05	JUNCTION	0.00	2.91	0	01:21	0	0.00249	-0.028
HP-RY06	JUNCTION	0.00	1.20	0	01:21	0	0.000991	0.055
HP-RY07	JUNCTION	0.00	0.00	0	00:00	0	0	0.000 1
Ex_1500	OUTFALL	0.00	32.39	0	01:14	0	0.376	0.000
Ex_375	OUTFALL	0.00	6.06	0	01:21	0	0.0204	0.000
IP-CB01	OUTFALL	0.00	0.00	0	00:00	0	0	0.000 1
HP-LC01	OUTFALL	0.00	0.00	0	00:00	0	0	0.000 1
HP-RY02	OUTFALL	0.00	0.00	0	00:00	0	0	0.000 1
OF1	OUTFALL	2.58	2.58	0	01:10	0.00225	0.00225	0.000
DF2	OUTFALL	2.54	2.54	0	01:10	0.00194	0.00194	0.000
DF3	OUTFALL	6.30	6.30	0	01:10	0.00697	0.00697	0.000
CB01	STORAGE	46.52	46.52	0	01:10	0.0555	0.0555	-0.521
CB02	STORAGE	41.23	41.23	0	01:10	0.054	0.0798	-1.554
CB03	STORAGE	142.20	142.20	0	01:10	0.203	0.203	0.680
LC01	STORAGE	8.61	8.61	0	01:10	0.00651	0.00703	0.062
LC02	STORAGE	5.09	5.09	0	01:10	0.00385	0.00435	0.082
4H02	STORAGE	0.00	32.34	0	01:14	0	0.377	0.000
4H04	STORAGE	0.00	19.30	0	01:33	0	0.321	0.000
4H06	STORAGE	0.00	19.11	0	01:33	0	0.321	-0.000
4H08	STORAGE	0.00	18.73	0	01:43	0	0.32	0.019
RY01	STORAGE	0.00	5.03	0	01:10	0	0.00768	0.010
RY02	STORAGE	6.26	7.32	0	01:11	0.00474	0.0126	0.047
RY03	STORAGE	5.48	10.23	0	01:10	0.00415	0.0212	-0.008
RY04	STORAGE	51.74	51.74	0	01:10	0.0607	0.0861	-0.037
RY05	STORAGE	0.00	27.69	0	01:10	0	0.0418	0.067
RY06	STORAGE	0.00	17.66	0	01:11	0	0.0265	0.019
RY07	STORAGE	0.00	16.50	0	01:04	0	0.00959	0.581

No nodes were surcharged.

No nodes were flooded.

	Average	Avg	Evap	Exfil	Maximum	Max	Time	of Max	Maximum
	Volume	Pcnt	Pcnt	Pcnt	Volume	Pcnt	0ccu	rrence	Outflow
Storage Unit	1000 m3	Full	Loss	Loss	1000 m3	Full	days	hr:min	LPS
CB01	0.001	6	0	0	0.021	95	0	01:21	13.69
CB02	0.006	11	0	0	0.046	91	0	01:55	6.03
CB03	0.034	26	0	0	0.128	100	0	01:21	35.85
LC01	0.000	12	0	0	0.000	54	0	01:21	5.03
LC02	0.000	12	0	0	0.000	54	0	01:21	2.05
MH02	0.001	37	0	0	0.001	38	0	01:14	32.39
MH04	0.001	24	0	0	0.001	25	0	01:14	19.47
MH06	0.001	23	0	0	0.001	24	0	01:14	19.30
MH08	0.001	19	0	0	0.001	19	0	01:13	19.11
RY01	0.000	15	0	0	0.000	48	0	01:20	2.63
RY02	0.000	20	0	0	0.000	58	0	01:20	4.22
RY03	0.000	32	0	0	0.001	64	0	01:21	6.06
RY04	0.000	3	0	0	0.005	30	0	01:31	34.32
RY05	0.000	2	0	0	0.005	29	0	01:32	17.66
RY06	0.000	2	0	0	0.005	29	0	01:30	16.50
RY07	0.001	3	0	0	0.007	36	0	01:31	5.83

Outfall Node	Flow Freq Pont	Avg Flow LPS	Max Flow LPS	Total Volume 10^6 ltr
Ex_1500 Ex_375 HP-CB01 HP-LC01 HP-RY02 OF1 OF2 OF3	88.34 17.69 0.00 0.00 0.00 9.23 5.74 8.50	6.02 2.33 0.00 0.00 0.00 0.34 0.46	32.39 6.06 0.00 0.00 0.00 2.58 2.54 6.30	0.376 0.020 0.000 0.000 0.000 0.000 0.002 0.002
System	16.19	10.62	45.46	0.007

Link	Type	Maximum Flow LPS	Occu	of Max rrence hr:min	Maximum Veloc m/sec	Max/ Full Flow	Max/ Full Depth
C1	CONDUIT	1.20	0	01:21	0.01	0.00	0.08
C2	CONDUIT	0.97	0	01:46	0.00	0.00	0.11
C3	CONDUIT	27.69	0	01:10	0.56	0.48	1.00
C4	CONDUIT	0.00	0	00:00	0.00	0.00	0.10
C5	CONDUIT	0.00	0	00:00	0.00	0.00	0.08
C6	CONDUIT	2.73	0	01:21	0.01	0.00	0.08
C7	CONDUIT	2.91	0	01:21	0.01	0.00	0.08
HP1-LC02	CONDUIT	0.00	0	00:00	0.00	0.00	0.04
LC01-RY01	CONDUIT	5.03	0	01:10	0.10	0.12	1.00
LC03-LC02	CONDUIT	2.05	0	01:13	0.04	0.05	1.00
MC02-RY02	CONDUIT	4.22	0	01:12	0.09	0.10	1.00

MH02-Ex_1500	CONDUIT	32.39	0	01:14	0.29	0.29	1.00
MH04-MH02	CONDUIT	19.47	0	01:32	0.18	0.17	1.00
MH06-MH04	CONDUIT	19.30	0	01:33	0.17	0.18	1.00
MH08-MH06	CONDUIT	19.11	0	01:33	0.17	0.17	1.00
MS-CB01	CONDUIT	0.00	0	00:00	0.00	0.00	0.05
MS-CB02(1)	CONDUIT	0.00	0	00:00	0.00	0.00	0.14
MS-CB02(2)	CONDUIT	0.00	0	00:00	0.00	0.00	0.05
MS-CB03(1)	CONDUIT	29.79	0	01:22	0.06	0.00	0.16
MS-CB03(2)	CONDUIT	29.94	0	01:22	0.09	0.00	0.15
MS-HP02	CONDUIT	0.00	0	00:00	0.00	0.00	0.04
MS-LC01	CONDUIT	0.00	0	00:00	0.00	0.00	0.04
MS-LC02(1)	CONDUIT	0.00	0	00:00	0.00	0.00	0.04
MS-LC02(2)	CONDUIT	0.00	0	00:00	0.00	0.00	0.04
MS-RY01(1)	CONDUIT	0.00	0	00:00	0.00	0.00	0.04
MS-RY01(2)	CONDUIT	0.00	0	00:00	0.00	0.00	0.04
MS-RY02	CONDUIT	0.00	0	00:00	0.00	0.00	0.04
MS-RY03(1)	CONDUIT	0.00	0	00:00	0.00	0.00	0.04
MS-RY03(2)	CONDUIT	0.00	0	00:00	0.00	0.00	0.04
MS-RY04(1)	CONDUIT	0.00	0	00:00	0.00	0.00	0.08
MS-RY04(2)	CONDUIT	0.00	0	00:00	0.00	0.00	0.00
RY01-RY02	CONDUIT	2.63	0	01:35	0.05	0.06	1.00
RY06-RY05	CONDUIT	17.66	0	01:11	0.36	0.29	1.00
RY07-RY06	CONDUIT	16.50	0	01:04	0.34	0.27	1.00
O-CB01	ORIFICE	13.69	0	01:21			1.00
O-CB02	ORIFICE	6.03	0	01:55			1.00
O-CB03	ORIFICE	6.06	0	01:22			1.00
O-RY03	ORIFICE	6.06	0	01:21			1.00
O-RY04	ORIFICE	6.68	0	01:33			1.00

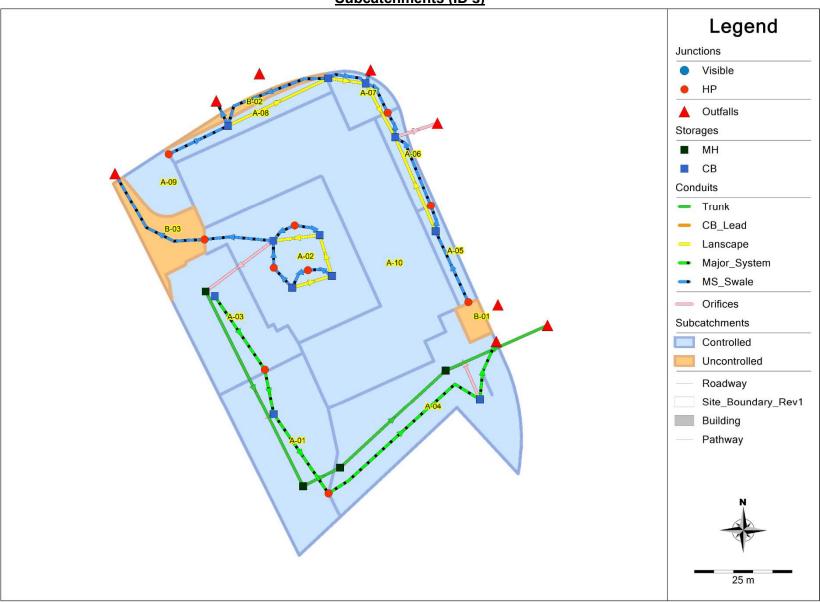
Flow Classification Summary

	Adjusted									
Conduit	/Actual Length	Dry			Crit		Up Crit	Crit		Ctrl
C1	1.00		0.06				0.00			
C2	1.00	0.88	0.06	0.00	0.06	0.00	0.00	0.00	0.92	0.00
C3	1.00	0.00	0.80	0.00	0.20	0.00	0.00	0.00	0.85	0.00
C4	1.00		0.12					0.00		
C5	1.00	0.88		0.00		0.00		0.00		
C6	1.00		0.05	0.00		0.00		0.00		
C7	1.00	0.88		0.00		0.00		0.00		
HP1-LC02	1.00		0.03	0.00		0.00		0.00		
LC01-RY01	1.00	0.00		0.00		0.00		0.00		
LC03-LC02	1.00	0.00		0.00	1.00	0.00		0.00	0.00	
MC02-RY02	1.00	0.00		0.00	1.00	0.00		0.00	0.00	
MH02-Ex_1500		0.00		0.00	1.00	0.00		0.00	0.00	
MH04-MH02	1.00		0.00	0.00		0.00		0.00		
MH06-MH04	1.00	0.00	0.00	0.00		0.00		0.00	0.00	
MH08-MH06 MS-CB01	1.00	0.00		0.00		0.00		0.00		
MS-CB02(1)	1.00	0.84		0.00		0.00		0.00		
MS-CB02(1)	1.00		0.10			0.00		0.00		
MS-CB03(1)	1.00	0.77		0.00	0.08	0.00		0.00	0.90	
MS-CB03(2)	1.00	0.84		0.00		0.00		0.00	0.95	
MS-HP02	1.00	0.97		0.00	0.00	0.00		0.00	0.00	
MS-LC01	1.00		0.03	0.00		0.00		0.00	0.00	
MS-LC02(1)	1.00	0.97		0.00		0.00		0.00	0.00	
MS-LC02(2)	1.00		0.03	0.00		0.00		0.00		
MS-RY01(1)	1.00	0.97	0.03	0.00	0.00	0.00	0.00	0.00	0.00	0.00
MS-RY01(2)	1.00	0.97		0.00		0.00		0.00	0.00	
MS-RY02	1.00	0.97	0.03	0.00	0.00	0.00	0.00	0.00	0.00	0.00
MS-RY03(1)	1.00	0.97	0.03	0.00	0.00	0.00	0.00	0.00	0.00	0.00
MS-RY03(2)	1.00	0.97	0.03	0.00	0.00	0.00	0.00	0.00	0.00	0.00
MS-RY04(1)	1.00	0.88	0.12	0.00	0.00	0.00	0.00	0.00	0.00	0.00
MS-RY04(2)	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
RY01-RY02	1.00	0.00	0.00	0.00		0.00		0.00		0.00
RY06-RY05	1.00	0.02			0.97			0.00		0.00
RY07-RY06	1.00	0.03	0.00	0.00	0.96	0.00	0.00	0.00	0.86	0.00
******	*****									
Conduit Surcharg										
		How	no Ful	1			urs e Full	Ho Capa	urs	

Conduit	Both Ends	Upstream	Dnstream	Normal Flow	Limited
C3	2.52	2.52	2.63	0.01	0.01
LC01-RY01	1.13	1.13	24.00	0.01	0.01
LC03-LC02	1.13	1.13	24.00	0.01	0.01
MC02-RY02	24.00	24.00	24.00	0.01	0.01
MH02-Ex_1500	24.00	24.00	24.00	0.01	0.01
MH04-MH02	24.00	24.00	24.00	0.01	0.01
MH06-MH04	24.00	24.00	24.00	0.01	0.01
MH08-MH06	24.00	24.00	24.00	0.01	0.01
RY01-RY02	24.00	24.00	24.00	0.01	0.01
RY06-RY05	2.39	2.39	2.52	0.01	0.01
RY07-RY06	2.34	2.34	2.39	0.01	0.01

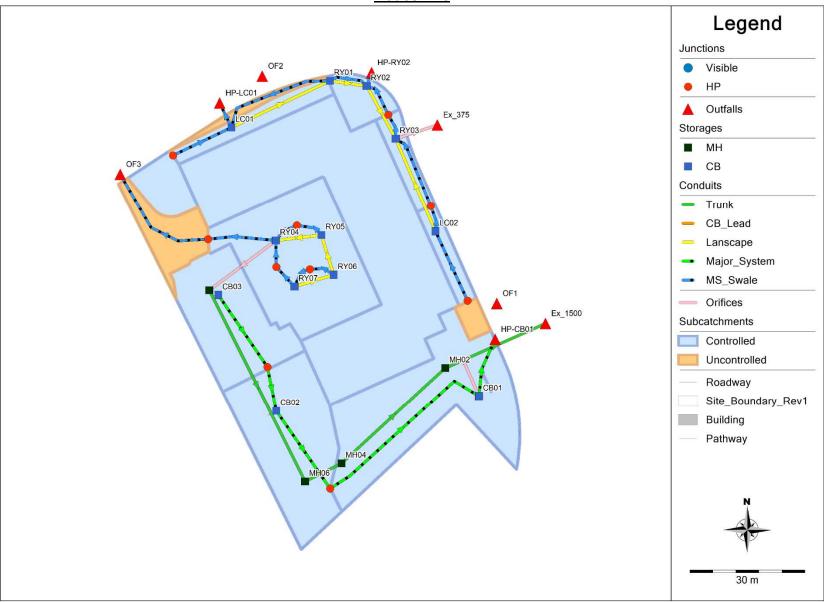
Analysis begun on: Mon Oct 18 11:48:35 2021 Analysis ended on: Mon Oct 18 11:48:36 2021 Total elapsed time: 00:00:01

1104 Halton Terrace – Maple Leaf Homes (119024) PCSWMM Model Schematic


Date: 2021-10-19

M:\2019\119024\DATA\Calculations\SWM\Model Schematic.docx

1104 Halton Terrace – Maple Leaf Homes (119024) PCSWMM Model Schematic


Date: 2021-10-19

M:\2019\119024\DATA\Calculations\SWM\Model Schematic.docx

1104 Halton Terrace – Maple Leaf Homes (119024) PCSWMM Model Schematic

Date: 2021-10-19

M:\2019\119024\DATA\Calculations\SWM\Model Schematic.docx

MASTER SERVICING STUDY UPDATE FOR MORGAN'S GRANT SUBDIVISION

CITY OF OTTAWA

September 2003

Prepared for:

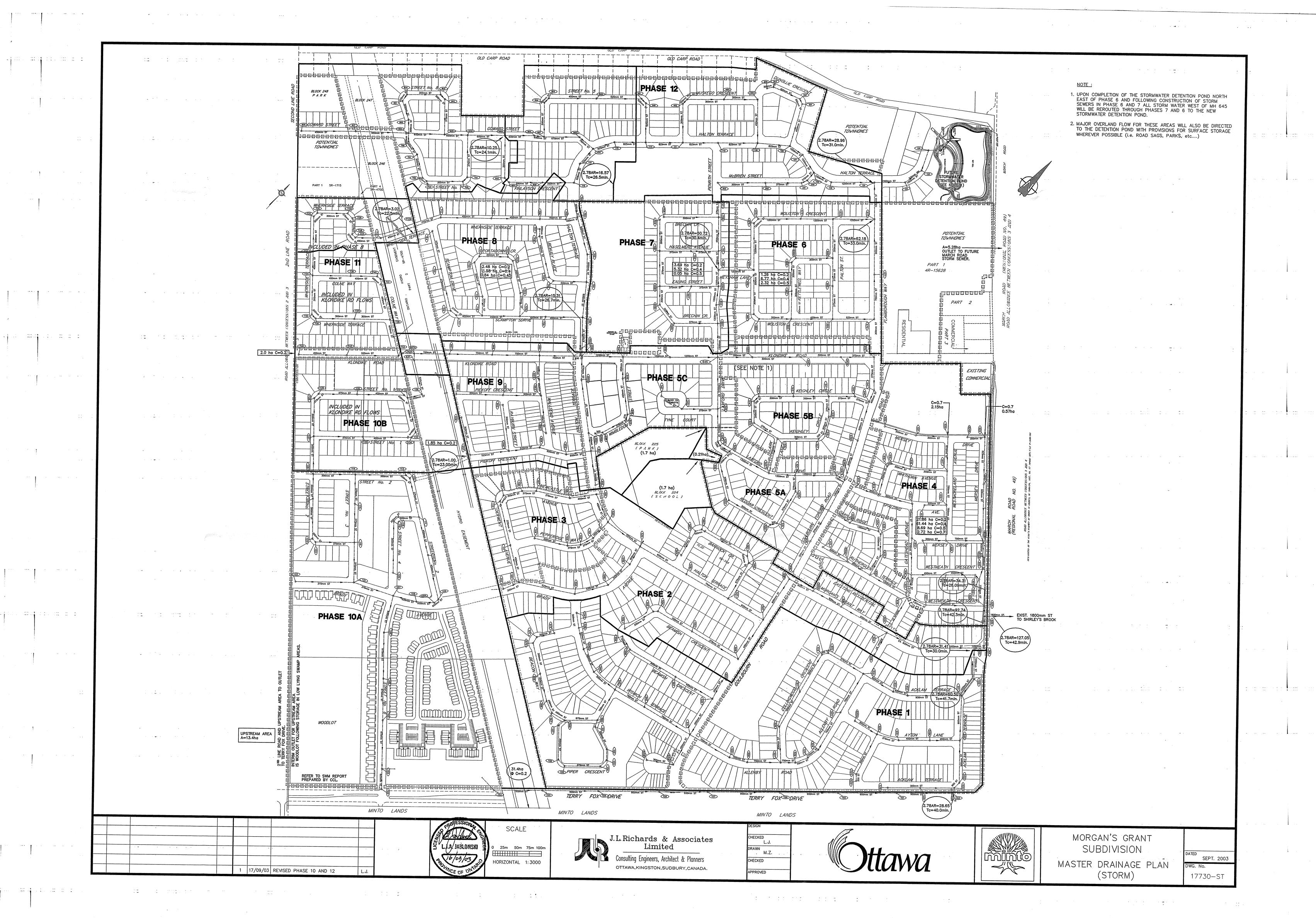
MINTO DEVELOPMENTS INC.

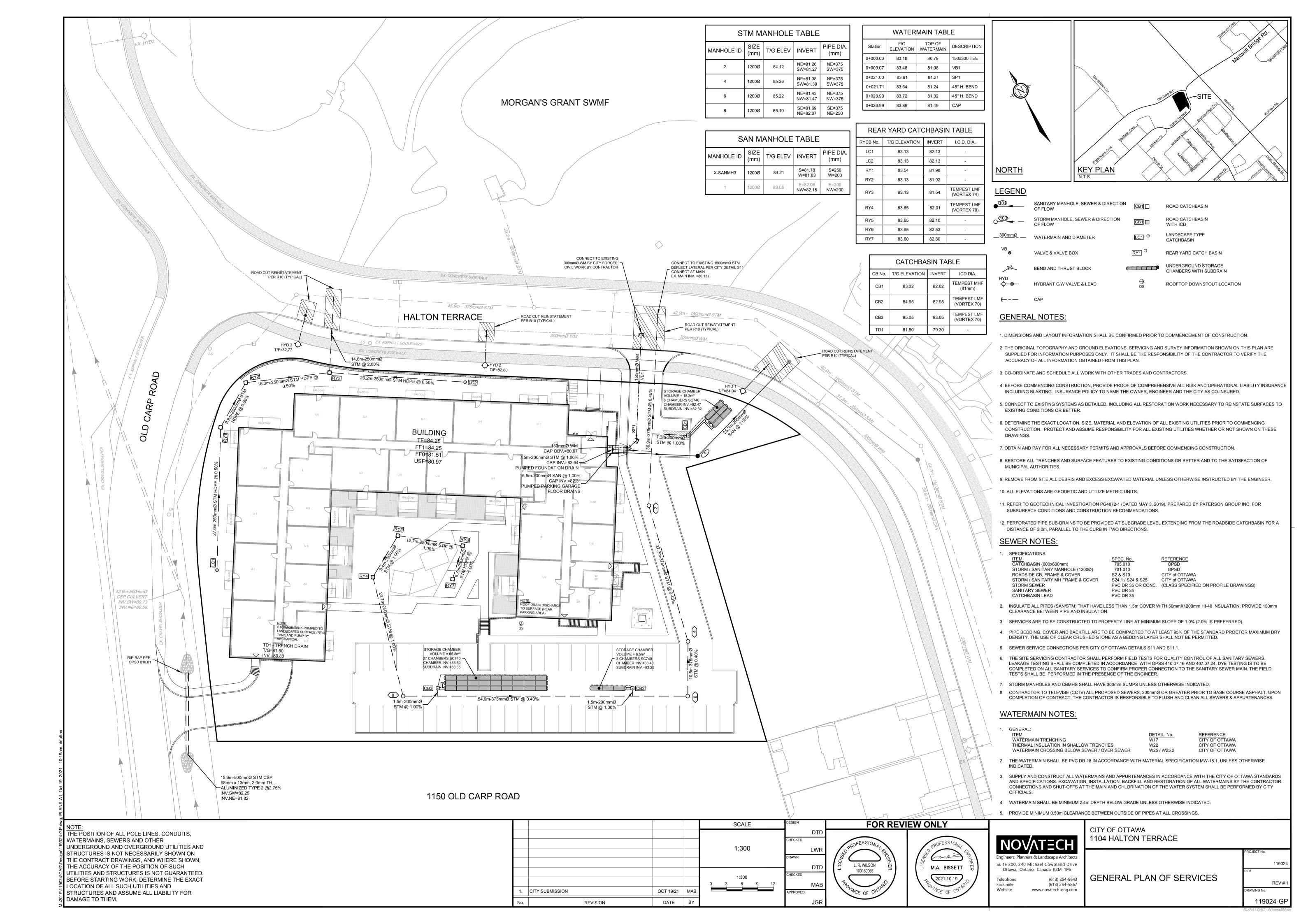
427 Laurier Avenue West, Suite 300 Ottawa, Ontario K1R 7Y2

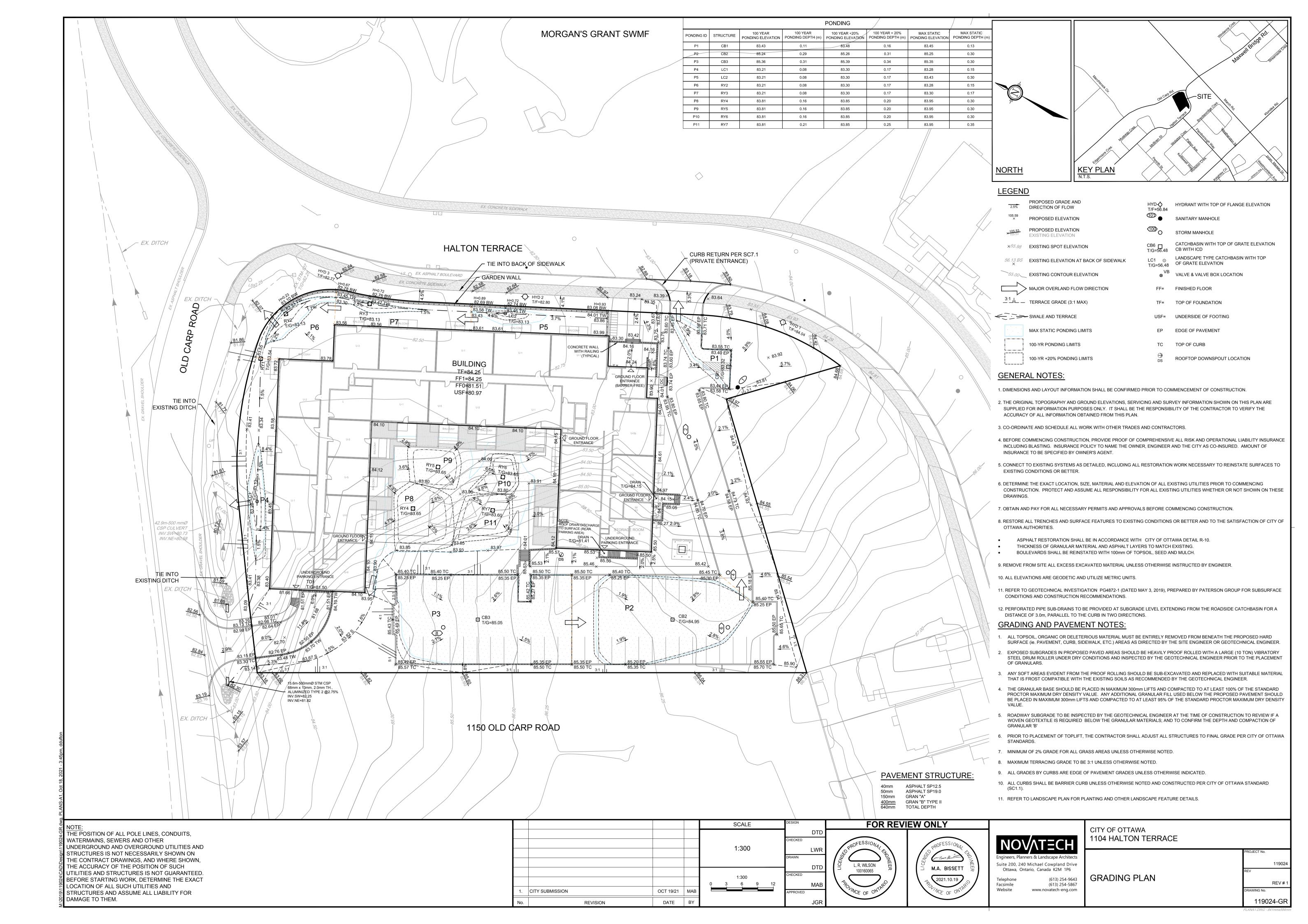
Prepared by:

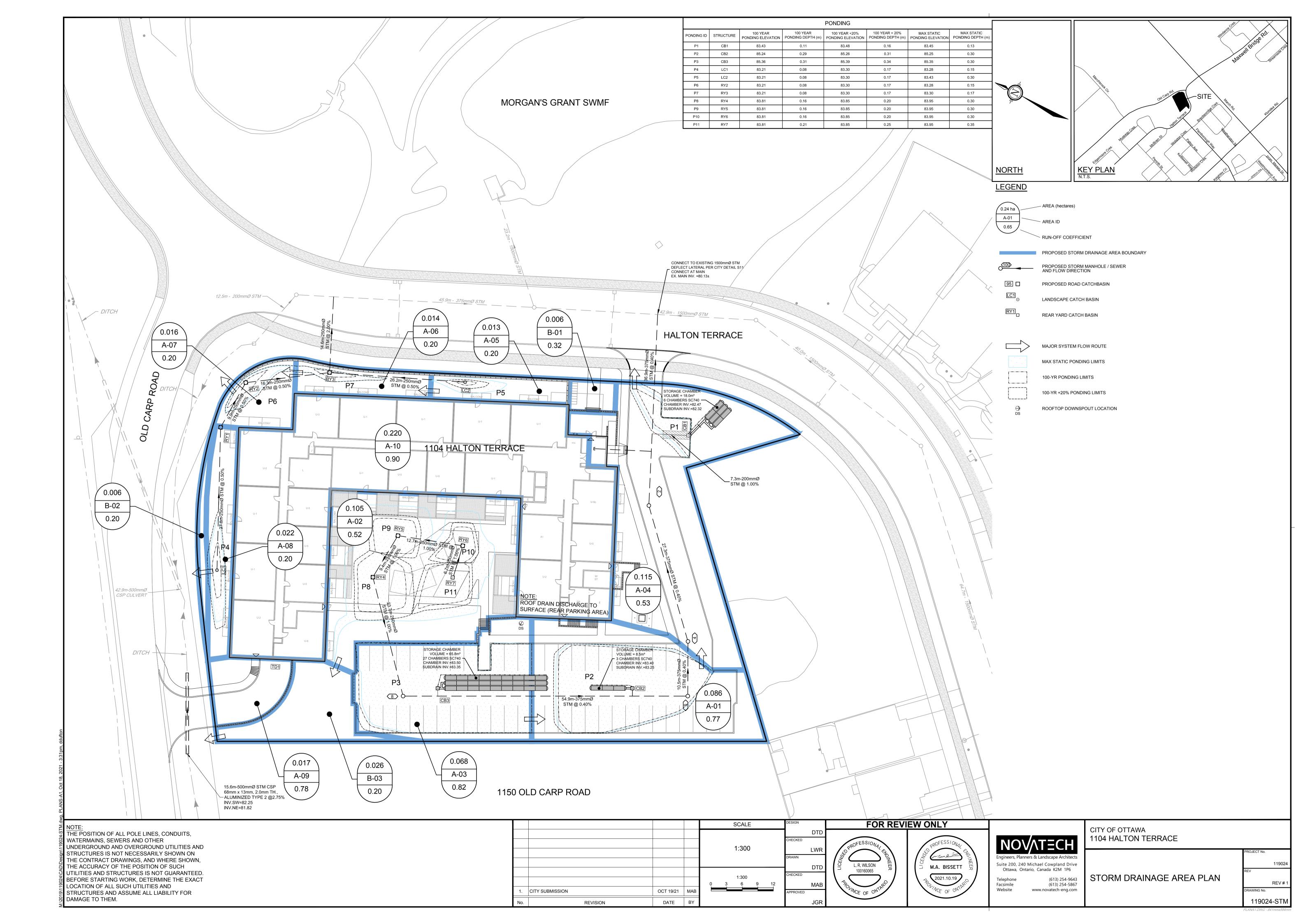
J.L. RICHARDS & ASSOCIATES LIMITED

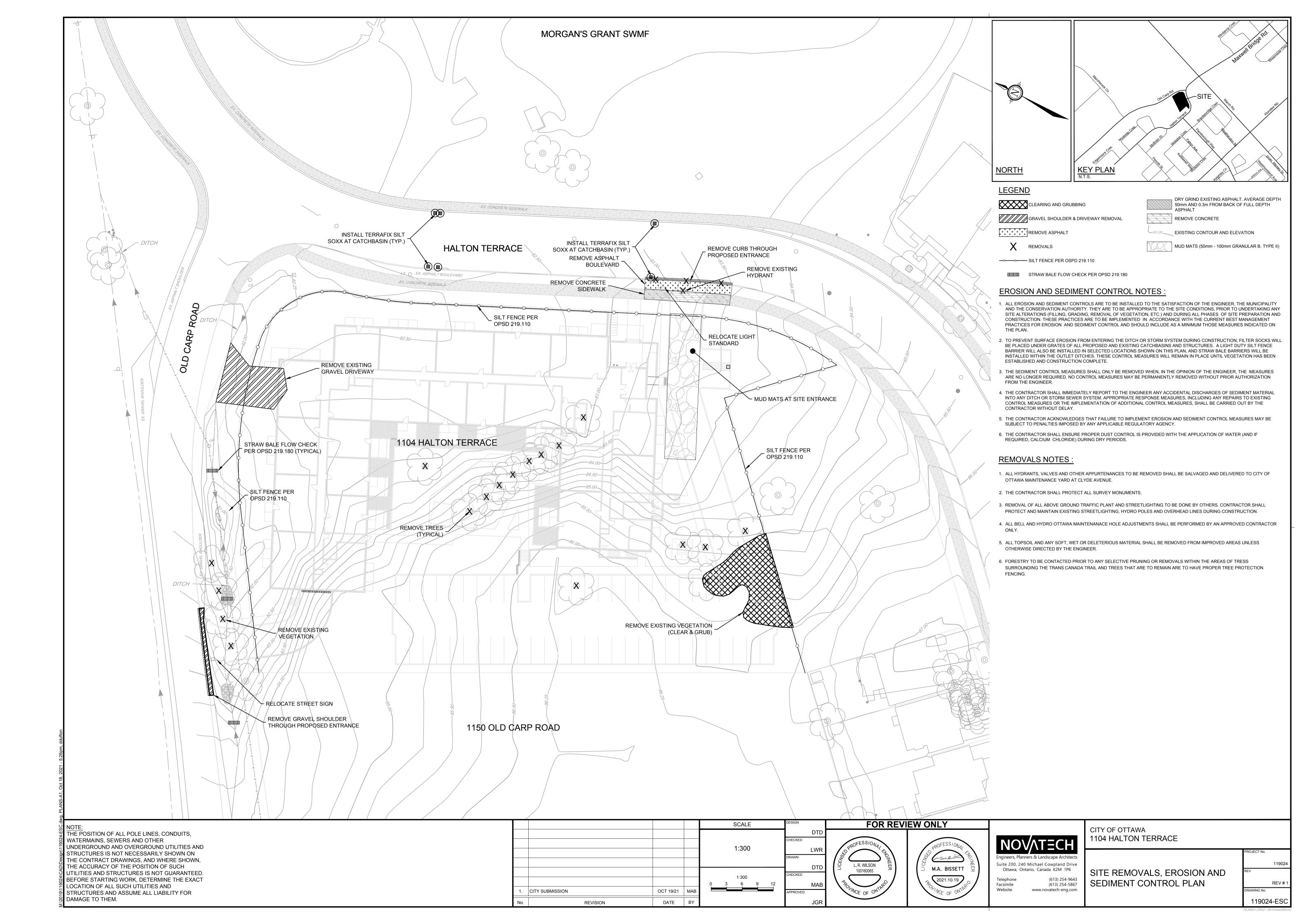
Consulting Engineers, Architects & Planners 864 Lady Ellen Place Ottawa, Ontario K1Z 5M2


JLR 17730


Table 5 - Results of HGL Analysis (2003)


Manhole Junction Number	1:100 Year HGL Elevation (m)	HGL-Centreline Road Elev. (M)		
101	83.927	3.073		
102	83,392	1.908		
103	83.017	1.733		
104	82.322	1.068		
Chamber	82.000	1.200		


2.5 On-Site Storage Requirements


To minimize land requirements for stormwater management facilities, ICDs, combined with on-site storage, have been utilized in all recent Phases of the Subdivision. As such, local storm sewers are to be designed to limit the capture rate to 70 L/s/ha, approximately equivalent to a 1:5 year storm event. Storm runoff in excess of the 1:5 year recurrence is to be detained, tentatively, on site by means of road-sag storage, park storage, hydro easement storage or, ultimately, by the stormwater management facility. To maintain the integrity of the design of the stormwater management facilities (existing and future), specific on-site storage requirements have been calculated and are presented in Table 6.

