1400 Bank Street

Transportation Impact Assessment

Step 1 Screening Report

Step 2 Scoping Report

Step 3 Forecasting Report

Step 4 Strategy Report

Prepared for:

SerCo Realty Group 9 Capella Court, Unit 200 Ottawa, ON K2E 8A7

Prepared by:

13 Markham Avenue Ottawa, ON K2G 3Z1

November 2021

PN: 2021-093

Table of Contents

1	Scree	ning	1
2	Existir	ng and Planned Conditions	1
2.1	Pro	posed Development	1
2.2	Exis	ting Conditions	3
2	2.2.1	Area Road Network	3
2	2.2.2	Existing Intersections	3
2	2.2.3	Existing Driveways	4
2	2.2.4	Cycling and Pedestrian Facilities	5
2	2.2.5	Existing Transit	8
2	2.2.6	Existing Area Traffic Management Measures	9
2	2.2.7	Existing Peak Hour Travel Demand	9
2	2.2.8	Collision Analysis	11
2.3	Plar	ned Conditions	13
2	2.3.1	Changes to the Area Transportation Network	13
2	2.3.2	Other Study Area Developments	14
3	Study	Area and Time Periods	15
3.1	Stud	dy Area	15
3.2	Tim	e Periods	15
3.3	Hor	izon Years	15
4	Exem	ption Review	15
5	Devel	opment-Generated Travel Demand	16
5.1	Moo	de Shares	16
5.2	Trip	Generation	16
5.3	Trip	Distribution	18
5.4	Trip	Assignment	18
6	Backg	round Network Travel Demands	19
6.1	Trar	nsportation Network Plans	19
6.2	Bac	kground Growth	19
6.3	Oth	er Developments	20
7	Dema	nd Rationalization	20
7.1	202	6 Future Background Operations	20
7.2	203	1 Future Background Operations	21
7.3	Moo	dal Share Sensitivity and Demand Rationalization Conclusions	22
8	Trans	portation Demand Management	23
8.1	Con	text for TDM	23
8.2	Nee	d and Opportunity	23
8.3	TDN	Л Program	23
9	Neigh	bourhood Traffic Management	23
10	Trans	it	23
10.	1 Rou	te Capacity	23
10.	2 Trar	nsit Priority	24
11	Netwo	ork Intersection Design	24

1	1.1 Net	work Intersection Control	24
1	1.2 Net	work Intersection Design	24
	11.2.1	2026 Future Total Network Intersection Operations	24
	11.2.2	2031 Future Total Network Intersection Operations	26
	11.2.3	Network Intersection MMLOS	27
	11.2.4	Recommended Design Elements	27
12	Summ	nary of Improvements Indicated and Modifications Options	28
13	Next S	Steps	29

List of Figures

1
2
4
5
6
7
7
8
9
0
1
4
9
0
2
5
6

Table of Tables

Table 1: Intersection Count Date	9
Table 2: Existing Intersection Operations	10
Table 3: Study Area Collision Summary, 2015-2019	11
Table 4: Summary of Collision Locations, 2015-2019	12
Table 5: Bank Street at Belanger Avenue/Lamira Street Collision Summary	12
Table 6: Bank Steet Segment Between Belanger Avenue & Rockingham Avenue Collision Summary	13
Table 7: Exemption Review	15
Table 8: TRANS Trip Generation Manual Recommended Mode Shares – Alta Vista	16
Table 9: Proposed Development Mode Shares – Within 700 m of Rapid Transit	16
Table 10: Trip Generation Person Trip Rates by Peak Period	17
Table 11: Total Person Trip Generation by Peak Period	17
Table 12: Internal Capture Rates	17
Table 13: Trip Generation by Mode	18

Table 14: OD Survey Distribution – Alta Vista	18
Table 15: Trip Assignment	19
Table 16: Applied Study Area Growth Rates	20
Table 17: 2026 Future Background Intersection Operations	21
Table 18: 2031 Future Background Intersection Operations	22
Table 19: Trip Generation by Transit Mode	24
Table 20: 2026 Future Total Network Intersection Operations	25
Table 21: 2031 Future Total Network Intersection Operations	26
Table 22: Study Area Intersection MMLOS Analysis	27

List of Appendices

Appendix A – TIA Screening Form and Certification Form

- Appendix B Turning Movement Count Data
- Appendix C Synchro Intersection Worksheets Existing Conditions
- Appendix D Collision Data

Appendix E – Synchro Intersection Worksheets – 2026 Future Background Conditions

- Appendix F Synchro Intersection Worksheets 2031 Future Background Conditions
- Appendix G MMLOS Analysis

Appendix H – Synchro Intersection Worksheets – 2026 Future Total Conditions

- Appendix I Synchro Intersection Worksheets 2031 Future Total Conditions
- Appendix J TDM Checklist

1 Screening

This study has been prepared according to the City of Ottawa's 2017 Transportation Impact Assessment (TIA) Guidelines. Accordingly, a Step 1 Screening Form has been prepared and is included as Appendix A, along with the Certification Form for the TIA Study PM. As shown in the Screening Form, a TIA is required including the Design Review component (during site plan) and the Network Impact Component. This study has been prepared to support an Official Plan Amendment and Zoning Bylaw Amendment applications.

2 Existing and Planned Conditions

2.1 Proposed Development

The existing site, located at 1400 Bank Street, is zoned as Arterial Mainstreet Zone (AM1 (1913)). The existing site includes a commercial/retail building with a flower shop, a cash advance business, and a surface parking lot that loops behind the building between Belanger Avenue and Bank Street. The proposed redevelopment consists of a 16-storey mixed-use building with a total of 3,791 sq. ft. of commercial space, 5,365 sq. ft. of office space, a total of 160 apartment units, and 66 underground parking spaces. The anticipated full build-out and occupancy horizon is 2026 with construction occurring in a single phase. Along with the removal of one existing driveway access, the concept plan proposes the relocation of an existing full-movements access onto Belanger Avenue as an underground parking access, and the main entrance will be located at the corner at Bank Street. The site is located within the Bank Street Secondary Plan and intersects the Bank Arterial Mainstreet design priority area. Figure 1 illustrates the study area context. Figure 2 illustrates the proposed concept plan.

Source: http://maps.ottawa.ca/geoOttawa/ Accessed: August 12, 2021

2.2 Existing Conditions

2.2.1 Area Road Network

Bank Street: Bank Street is a City of Ottawa arterial road. The roadway has a divided four-lane urban cross-section north of Randall Avenue and has a five-lane urban cross-section including a two-way left-turn lane south of Randall Avenue. Sidewalks are provided on both sides of the road. The posted limit is 40 km/h north of Riverdale Avenue and 50 km/h south of Riverdale Avenue. North of Ohio Street, a southbound bike lane is provided and a northbound bike lane begins approximately 110 metres to the north. The City-protected right of way is 37.5 metres. Bank Street is designated as a truck route.

Lamira Street: Lamira Street is a collector road with a two-lane urban cross-section. A sidewalk is provided on north side of the road. The unposted speed limit is assumed to be 50 km/h and the existing right of way provided is 27.0 metres.

Transitway Access: The Transitway access is a roadway that is restricted to buses only. The road is between Bank Street and Data Centre Road and serves as a bus connection to the Transitway.

Ohio Street: Ohio Street is a local road with a two-lane urban cross-section. Sidewalks are present on the north side of the road for 65.0 metres, and along the south side of the road. The unposted speed limit is assumed to be 50 km/h and the existing right of way provided is 3.0 metres.

Belanger Avenue: Belanger Avenue is a local road with an undivided two-lane urban cross-section. Sidewalks are present on both sides of the road. The unposted speed limit is assumed to be 50 km/h and the existing right of way provided is 18.5 metres.

Rockingham Avenue: Rockingham Avenue is a local road with a two-lane urban cross-section. Sidewalks are present on both sides of the road. The unposted speed limit is assumed to be 50 km/h and the existing right of way provided is 18.5 metres.

Randall Avenue: Randall Avenue is a local road with a two-lane urban cross-section. The unposted speed limit is assumed to be 50 km/h and the existing right of way provided is 20.0 metres.

Clementine Boulevard: Clementine Boulevard is a local road with a two-lane urban cross-section. Sidewalks are present on east side of the road. The posted limit is 40 km/h and the existing right of way provided is 12.0 metres

2.2.2 Existing Intersections

The existing signalized area intersections within 400 metre of the site have been summarized below:

Bank Street at Belanger Avenue/ Lamira Street

The intersection of Bank Street and Belanger Avenue/ Lamira Street is a signalized intersection. The northbound and southbound approaches each consist of an auxiliary leftturn lane, a through lane, and a shared through/right-turn lane. The westbound approach consists of a shared leftturn/through lane and an auxiliary, channelized right-turn lane, and the eastbound approach consists of a shared allmovement lane. Vehicles are prohibited from making westbound through movements during weekdays between 7:00–9:00 AM and eastbound through movements during weekdays between 3:30-5:30 PM. Bicycles are permitted to make these movements.

Bank Street at Randall Avenue

The intersection of Bank Street and Randall Avenue is a signalized intersection. The northbound approach consists of a through lane and a shared through/right-turn lane, and the southbound approach consists of an auxiliary left-turn lane and two through lanes. The westbound approach consists of a right-turn lane. Northbound and southbound U-turn movements, and westbound left-turn movements are prohibited.

2.2.3 Existing Driveways

Within 200 metres of the site access, driveways to four low-rise buildings and five semi-detached dwellings are located on Belanger Avenue, and a driveway to a parking lot is present on Lamira Street. Driveways to two mid-rise buildings, a commercial building, a clinic building, a mixed-use building, and a church are present on Bank Street. Driveways to three commercial buildings, eight low-rise building, one mid-rise building, and four detached dwellings are also present on Rockingham Avenue, and driveways to three semi-detached dwellings, one low-rise building, two detached dwellings are located on Clementine Boulevard. Figure 3 illustrates the existing driveways.

Source: http://maps.ottawa.ca/geoOttawa/ Accessed: August 12, 2021

2.2.4 Cycling and Pedestrian Facilities

Figure 4 illustrates the pedestrian facilities in the study area and Figure 5 illustrates the cycling facilities.

Sidewalks are provided along both sides of Bank Street, Belanger Avenue, and Ohio Street. Sidewalks are also provided along the north side of Randall Avenue and the Transitway access, on the east side of Clementine Boulevard, on the west side of Lamira Street, and on part of the south side of Rockingham Avenue east of Clementine Boulevard.

Cycling facilities include a bike lane along Bank Street north of Ohio Street to Riverside Drive, and a cycletrack along Heron Road. A multi-use pathway runs along the north side of Riverside Drive westbound. Bank Street and Heron Road are spine routes, and Data Centre Road and the MUP north of Riverside Drive are major pathways. Lamira Street, Belanger Avenue, and Clementine Boulevard south of Belanger Avenue are identified as local cycling routes. Bank Street north of Heron Road and Heron Road are designated as cross-town bikeways.

Figure 4: Study Area Pedestrian Facilities

Source: http://maps.ottawa.ca/geoOttawa/ Accessed: August 12, 2021

Source: http://maps.ottawa.ca/geoOttawa/ Accessed: August 12, 2021

Pedestrian and cyclist volumes included in study area intersection counts, presented in Section 2.2.7, have been compiled and are illustrated in Figure 6 and Figure 7 respectively.

2.2.5 Existing Transit

Within the study area, the route #6 travels along Bank Street, the routes #46, #140, and #141 travels along Bank Street, Belanger Avenue, and Clementine Boulevard, and the route #48 travels along Bank Street and Lamira Street.

Primary stops are located at the intersections of Bank Street at Ohio Street, Bank Street at Belanger Avenue, Bank Street at Lamira Street, and Bank Street at Clementine Boulevard. The frequency of these routes within proximity of the proposed site currently are:

- Route # 6 15-minute service all day, 30-minute service after 8:00 PM
- Route # 46 15-minute service in peak direction/period, 30-minute service all day
- Route # 48 30-minute service all day
- Route #140 30-minute service in peak direction/period
- Route # 141 1-hr service in peak direction/period

Figure 8 illustrates the transit system map in the study area and Figure 9 illustrates nearby transit stops.

Source: http://www.octranspo.com/ Accessed: August 12, 2021

2.2.6 Existing Area Traffic Management Measures

There are no existing area traffic management measures within the study area.

2.2.7 Existing Peak Hour Travel Demand

Existing turning movement counts were acquired from the City of Ottawa for the existing study area intersections. Table 1 summarizes the intersection count dates.

Table 1: Intersection Count Date				
Intersection	Count Date			
Bank Street at Belanger Avenue/Lamira Street	Wednesday, 28 January 2015			
Bank Street at Randall Avenue	Thursday, July 30, 2015			

Figure 10 illustrates the existing traffic counts and Table 2 summarizes the existing intersection operations. The level of service for signalized intersections is based on HCM 2010 v/c calculations for individual lane movements and HCM 2000 v/c calculations for the overall intersection. Detailed turning movement count data is included in Appendix B and the Synchro worksheets are provided in Appendix C.

Figure 10: Existing Traffic Counts

Table 2: Existing Intersection Operations

Interrection	Lana		AM Pea	ak Hour			PM Pea	ak Hour	
Intersection	Lane	LOS	V/C	Delay	Q (95 th)	LOS	V/C	Delay	Q (95 th)
	EB	А	0.40	29.2	28.3	А	0.39	27.1	21.4
	WBL/T	А	0.40	31.8	28.6	В	0.69	44.5	46.9
Bank Street &	WBR	А	0.56	7.2	17.9	А	0.36	6.9	13.1
Belanger Avenue /	NBL	А	0.10	14.5	m6.5	А	0.26	26.3	15.4
Lamira Street	NBT/R	D	0.90	31.8	#180.1	В	0.66	25.7	91.8
Signalized	SBL	В	0.67	31.0	#39.3	В	0.63	19.2	#69.0
	SBT/R	А	0.26	10.6	34.7	А	0.51	11.0	90.2
	Overall	С	0.72	24.0	-	В	0.68	19.4	-
	WBR	А	0.12	0.5	0.0	А	0.04	3.0	2.7
Bank Street &	NBT	А	0.49	10.8	58.0	С	0.74	18.7	66.4
Randall Avenue	SBL	А	0.05	5.0	m2.0	А	0.22	16.5	7.5
Signalized	SBT/R	А	0.31	6.5	20.4	С	0.76	19.6	70.5
	Overall	Α	0.35	8.8	-	Α	0.39	18.9	-
Notes: Saturation flow	w rate of 1800	veh/h/lane			m = metered	queue	or mid block k	ongth	

During both the AM and PM peak hours, the study area intersections are anticipated to operate well.

The intersection of the Bank Street at Belanger Avenue/Lamira Street may exhibit extended queues on the northbound shared through/right-turn movements during the AM peak hour, and on the southbound left-turn movement during both peak hours.

2.2.8 Collision Analysis

Collision data have been acquired from the City of Ottawa open data website (data.ottawa.ca) for five years prior to the commencement of this TIA for the surrounding study are road network. Table 3 summarizes the collisions types and conditions in the study area, Figure 11 illustrates the intersections and segments analyzed, and Table 4 summarizes the total collisions for each of these locations. Collision data are included in Appendix D.

	,	Number	%
Total Collisions		62	100%
	Fatality	0	0%
Classification	Non-Fatal Injury	19	31%
	Property Damage Only	43	69%
	Angle	11	18%
	Rear end	21	34%
	Sideswipe	3	5%
Initial Impact Type	Turning Movement	13	21%
	SMV Unattended	3	5%
	SMV Other	6	10%
	Other	5	8%
	Dry	40	65%
Dood Surface	Wet	13	21%
Condition	Loose Snow	5	8%
Condition	Slush	3	5%
	Ice	1	2%
Pedestrian Involved		8	13%
Cyclists Involved		7	11%

		0 11: 1	6	2015 2010
able 3: Stud	y Area	Collision	Summary,	2015-2019

Figure 11: Study Area Collision Records – Representation of 2015-2019

	Number	%		
Intersections / Segments	62	100%		
Bank St @ Ohio St	1	2%		
Bank St @ Belanger Ave/Lamira St	38	61%		
Bank St @ Rockingham Ave	3	5%		
Belanger Ave Btwn Clementine Blvd & Bank St	4	6%		
Bank St Btwn Ohio St & Belanger Ave	4	6%		
Bank St Btwn Belanger Ave & Rockingham Ave	12	19%		

Table 4: Summary of Collision Locations, 2015-2019

Within the study area, the intersection of Bank Street at Belanger Avenue/Lamira Street and the segment of Bank Steet between Belanger Avenue and Rockingham Avenue are noted to have experienced higher collisions than other locations. Table 5 and Table 6 summarize the collision types and conditions for these locations.

		Number	%
Total Collisions		38	100%
	Fatality	0	0%
Classification	Non-Fatal Injury	14	37%
	Property Damage Only	24	63%
	Angle	5	13%
	Rear end	12	32%
Initial Impact Type	Sideswipe	1	3%
пппа ппраст туре	Turning Movement	13	34%
	SMV Other	4	11%
	Other	3	8%
Dood Surface	Dry	26	68%
Condition	Wet	9	24%
condition	Loose Snow	3	8%
Pedestrian Involved		3	8%
Cyclists Involved		0	0%

 Table 5: Bank Street at Belanger Avenue/Lamira Street Collision Summary

The Bank Street at Belanger Avenue/Lamira Street intersection had a total of 38 collisions during the 2015-2019 time period, with 24 involving property damage only and the remaining 14 having non-fatal injuries. The collision types are most represented by turning movement with 13 collisions, followed by twelve rear end collisions, with the remaining collision types represented by angle, SMV other, other, and sideswipe. Turning movement collisions are likely due to the channelized right-turn from Lamira Street and the skewed geometry of the intersection. The rear end collisions are typical of congested conditions and the shared through/right-turn lanes. Weather conditions are not considered to have influenced collisions at this location. The Bank Street Renewal will remove the channelized right-turn from Lamira Street and the protected intersection design will likely reduce collisions in the future. No further action is recommended at this time.

		Number	%
Total Collisions		12	100%
	Fatality	0	0%
Classification	Non-Fatal Injury	0	0%
	Property Damage Only	12	100%
	Angle	4	33%
Initial Impact Type	Rear end	6	50%
	Sideswipe	2	17%
Dood Surface	Dry	8	67%
Condition	Loose Snow	2	17%
Condition	Slush	2	17%
Pedestrian Involved		0	0%
Cyclists Involved		0	0%

Table 6: Bank Steet Segment Between Belanger Avenue & Rockingham Avenue Collision Summary

The Bank Steet segment between Belanger Avenue and Rockingham had a total of 12 collisions during the 2015-2019 time period, all involving property damage only. The collision types are most represented by rear end with six collisions, followed by angle with four collisions with the remaining two sideswipe collisions. Rear end collisions are typical of congested areas. Angled collisions are generally represented by left-turning movements and may be influenced by the private accesses along the segment. Weather conditions are not considered to have influenced collisions at this location.

2.3 Planned Conditions

2.3.1 Changes to the Area Transportation Network

The Transportation Master Plan's (TMP) Rapid Transit and Transit Priority Network (RTTP) identifies isolated transit priority measures along Bank Street within the Affordable Network diagram.

The Bank Street Renewal (Riverside Drive (Westbound) to Ledbury Avenue) is a project that is currently in the detailed design phase of the project underway by the City of Ottawa. The construction is scheduled in early Winter 2022, and the completion of the entire project will be based on the future budget. The renewal will include cycletracks along Bank Street, protected intersection configurations and a raised centre median. Figure 12 illustrates examples of the changes anticipated to the area intersections.

Figure 12: Bank Street Renewal – Preliminary Proposed Study Area Changes

Source: https://ottawa.ca/en/city-hall/public-engagement/projects/bank-street-renewal-riverside-drive-westbound-ledburyavenue Accessed: September 2, 2021

2.3.2 Other Study Area Developments

1330, 1344 and 1346 Bank Street, and 2211 Riverside Dive

The proposed development application includes a Zoning By-law Amendment to allow the construction of a 27storey mixed use building with 309 residential units and 3,603 ft² commercial space as well as a 29-storey apartment building with 228 residential units. The development is predicted to generate 73 new AM two-way peak-hour auto trips and 54 new PM two-way peak-hour auto trips. (Parsons, 2021)

1335 and 1339 Bank Street

The proposed development application includes a Zoning By-law Amendment to allow the construction of a 26storey mixed use building with 391 residential units and 525 m² commercial space. The development is forecasted

to generate 61 new AM two-way peak-hour auto trips and 37 new PM two-way peak-hour auto trips. (Parsons, 2020)

3 Study Area and Time Periods

3.1 Study Area

The study area will include the intersections of:

- Bank Street at:
 - Belanger Avenue/Lamira Street
 - Randall Avenue
- Belanger Avenue at:
 - Site Access (Future Conditions)

The boundary road will be Belanger Avenue and Bank Street, and no screenlines are present within proximity to the site.

3.2 Time Periods

As the proposed development is mixed-use development with residential units, commercial units, and office units, therefore, the AM and PM peak hours will be examined.

3.3 Horizon Years

The anticipated build-out year is 2026. As a result, the full build-out plus five years horizon year is 2031.

4 Exemption Review

Table 7 summarizes the exemptions for this TIA.

Table 7: Exemption Review							
Module	Element	Explanation	Exempt/Required				
Design Review Compo	nent						
	4.1.2 Circulation	Only required for site plans	Required at				
4.1 Development	and Access		Site Plan Application				
Design	4.1.3 New Street	Only required for plans of subdivision	Exempt				
	Networks						
	4.2.1 Parking	Only required for site plans	Required at				
	Supply		Site Plan Application				
4.2 Parking	4.2.2 Spillover	Only required for site plans where parking	Exempt. May be				
	Parking	supply is 15% below unconstrained	required at Site Plan				
		demand	Application				
Network Impact Comp	oonent						
4.5 Transportation	All Elements	Not required for site plans expected to	Required				
Demand		have fewer than 60 employees and/or					
Management		students on location at any given time					
	4.6.1 Adjacent	Only required when the development relies	Required				
4.6 Neighbourhood	Neighbourhoods	on local or collector streets for access and					
Traffic Management		total volumes exceed ATM capacity					
		thresholds					
		Only required when proposed	Exempt				
4.8 Network Concept		development generates more than 200					
		person-trips during the peak hour in excess					

Module	Element	Explanation	Exempt/Required
		of equivalent volume permitted by	
		established zoning	

5 Development-Generated Travel Demand

5.1 Mode Shares

Examining the mode shares presented in the TRANS Trip Generation Manual (2020) for the district derived from the most recent National Capital Region Origin-Destination survey (OD Survey), the existing mode shares by land use and peak period for Alta Vista have been summarized in Table 8.

Tuble 6. Than's trip deneration manual neconimicnated mode shares Alta vista								
Travel Mode	Multi-Unit (High-Rise)		Commercia	I Generator	Employment Generator			
	AM	PM	AM	PM	AM and PM			
Auto Driver	38%	45%	64%	60%	69%			
Auto Passenger	12%	16%	9%	20%	7%			
Transit	42%	28%	12%	9%	18%			
Cycling	2%	2%	1%	0%	3%			
Walking	7%	9%	14%	11%	3%			
Total	100%	100%	100%	100%	100%			

Table 8: TRANS Trip Generation Manual Recommended Mode Shares – Alta Vista

Being within 700 metres-walk (or a 400 metres linear distance) of the Billing's Bridge BRT station, a higher transit mode is considered achievable at this location. Given that the residential transit mode share is already high (42%) during AM peak, this mode share is proposed to remain, and a seven percent shift to transit mode taken from the auto mode is proposed for PM peak. A ten percent shift to transit mode from the auto mode is proposed for each the commercial and employment generator land uses. The proposed modified mode share targets are summarized in Table 9.

Travel Mode	Multi-Unit (High-Rise)		Commercia	al Generator	Employment Generator
	AM	РМ	AM	PM	AM and PM
Auto Driver	38%	38%	54%	50%	59%
Auto Passenger	12%	16%	9%	20%	7%
Transit	42%	35%	22%	19%	28%
Cycling	2%	2%	1%	0%	3%
Walking	7%	9%	14%	11%	3%
Total	100%	100%	100%	100%	100%

Table 9: Proposed Development Mode Shares – Within 700 m of Rapid Transit

5.2 Trip Generation

This TIA has been prepared using the vehicle and person trip rates for the residential dwellings using the TRANS Trip Generation Manual (2020) and the vehicle trip rates and derived person trip rates for commercial component from the ITE Trip Generation Manual 10th Edition (2017) using the City-prescribed conversion factor of 1.28. Table 10 summarizes the person trip rates for the proposed residential land uses for each peak period and the person trip rates for the non-residential land uses by peak hour.

Land Use	Land Use	Peak	Vehicle Trip	Person Trip
	Code	Period	Rate	Rates
Multi Unit High Bico	221 & 222	AM	-	0.80
	(TRANS)	PM	-	0.90
Land Use	Land Use	Peak	Vehicle Trip	Person Trip
	Code	Hour	Rate	Rates
	710	AM	1.16	1.48
General Office	710	AM	1.16	1.48
	(ITE)	PM	1.15	1.47
General Office	710	AM	1.16	1.48
	(ITE)	PM	1.15	1.47
	820	AM	0.94	1.20

Table 10: Trip Generation Person Trip Rates by Peak Period

Using the above person trip rates, the total person trip generation has been estimated. Table 11 summarizes the total person trip generation for the residential and non-residential land uses.

Land Use	l lucito	AM Peak Period			PM Peak Period		
	Units	In	Out	Total	In	Out	Total
Multi-Unit (High-Rise)	160	40	88	128	84	60	144
	Units / GFA	AM Peak Hour			PM Peak Hour		
Land Use		In	Out	Total	In	Out	Total
General Office	5,365 ft ²	7	1	8	1	7	8
Shopping Centre	3,791 ft ²	3	2	5	9	10	19

Table 11: Total Person Trip Generation by Peak Period

Internal capture rates from the ITE Trip Generation Handbook 3rd Edition have been assigned to the development's retail component for mixed-use developments. The rates summarized in Table 12 represent the percentage of trips to/from the retail use based on the residential component.

Table 12: Internal Capture Rates							
	Α	М	PM				
Land Use	In	Out	In	Out			
Residential to/from Shopping Centre	17%	14%	10%	26%			

Pass-by reductions applied to the retail trip generation at a rate of 35% have been included, a value taken as a moderately conservative interpretation from the rates presented in the ITE Trip Generation Handbook 3rd Edition.

Using the above mode share targets for a BRT area, the internal capture and pass-by rates, and the person trip rates, the person trips by mode have been projected. Table 13 summarizes the trip generation by mode and peak hour using the residential peak hour adjustment factor and the non-residential trip generation using the internal capture and pass-by reductions.

		A	AM Peak Hour				PM Peak Hour			
Т	ravel Mode	Mode Share	In	Out	Total	Mode Share	In	Out	Total	
	Auto Driver	38%	7	16	23	38%	14	10	24	
it (e)	Auto Passenger	12%	2	5	7	16%	6	4	10	
Ļ iž	Transit	42%	9	20	29	35%	14	10	24	
ulti igh	Cycling	2%	1	1	2	2%	1	0	1	
ΣΞ	Walking	7%	2	3	5	9%	4	3	7	
	Total	100%	20	44	64	100%	37	26	63	
a	Auto Driver	59%	4	1	5	59%	1	4	5	
ĮĮjo	Auto Passenger	7%	0	0	1	7%	0	0	1	
Ö	Transit	28%	2	0	2	28%	0	2	2	
era	Cycling	3%	0	0	0	3%	0	0	0	
jen	Walking	3%	0	0	0	3%	0	0	0	
0	Total	100%	7	1	8	100%	1	7	8	
	Auto Driver	54%	1	1	2	50%	3	2	5	
e	Auto Passenger	9%	0	0	0	20%	1	1	2	
ent	Transit	22%	0	0	1	19%	1	1	2	
S S	Cycling	1%	0	0	0	0%	0	0	0	
pin	Walking	14%	0	0	0	11%	1	0	1	
do	Internal Capture	varies	0	0	0	varies	-1	-2	-3	
2 V	Pass-by	35%	-1	-1	-2	35%	-3	-4	-7	
	Total	100%	2	1	3	100%	5	4	9	
	Auto Driver	-	12	18	30	-	18	16	34	
	Auto Passenger	-	2	5	7	-	7	5	13	
tal	Transit	-	11	20	31	-	15	13	28	
<u>٩</u>	Cycling	-	1	1	2	-	1	0	1	
	Walking		2	3	5	-	5	3	8	
	Total		29	46	75	-	43	37	80	

Table 13: Trip Generation by Mode

As shown above, a total of 30 new AM and 34 new PM peak hour two-way vehicle trips are projected as a result of the proposed development.

5.3 Trip Distribution

To understand the travel patterns of the subject development, the OD Survey has been reviewed to determine the travel for the existing district travel and these patterns were applied based on the build-out of Alta Vista. Table 14 below summarizes the distributions.

Table 14: OD Survey Distribution – Alta Vista					
To/From	% of Trips				
North	30%				
South	15%				
East	10%				
West	45%				
Total	100%				

5.4 Trip Assignment

Using the distribution outlined above, turning movement splits, and access to major transportation infrastructure, the trips generated by the site have been assigned to the study area road network. Table 15 summarizes the

proportional assignment to the study area roadways, and Figure 13 illustrates the new site generated and passby volumes.

Table 15: Trip Assignment						
To/From	Via					
North	30% Bank Street (N)					
South	15% Bank Street (S)					
East	10% Bank Street (N)					
West	20% Bank Street (N), 25% Bank Street (S)					
Total	100%					

Figure 13: New Site Generation and Pass-by Auto Volumes

6 Background Network Travel Demands

6.1 Transportation Network Plans

The transportation network plans were discussed in Section 2.3 . and have been incorporated into the road network analysis.

6.2 Background Growth

A review of the background projections from the City's TRANS Regional Model for the 2011 and 2031 horizons was completed to determine the background growth for each of the study area roadways. The TRANS model plots and a summary of the results of the model interpolation are provided in Appendix E.

In general, the growth rates in the study area derived from the two TRANS model horizons are projected to be negative in the northbound direction and slightly positive in the southbound direction. When reviewing the existing volumes, it was noted that the southbound volumes were lower than historical values. Resultantly, growth rates derived from the existing horizon to the 2031 model horizon will be peak-directionally applied to the

appropriate roadway's mainline volumes as a conservative growth scenario. Table 16 summarizes the growth rates applied within the study area.

Table 16: Applied Study Area Growth Rates							
Street	AM Pea	ak Hour	PM Peak Hour				
	Northbound	Southbound	Northbound	Southbound			
Bank Street	-	1.80%	1.80%	-			

6.3 Other Developments

The background developments explicitly considered in the background conditions (Section 6.2) include:

- 1330, 1344 and 1346 Bank Street, and 2211 Riverside Dive
- 1335 and 1339 Bank Street

The background development volumes within the study area have been provided in Appendix G.

7 Demand Rationalization

7.1 2026 Future Background Operations

Figure 14 illustrates the 2026 background volumes and Table 17 summarizes the 2026 background intersection operations. The level of service for signalized intersections is based on HCM 2010 v/c calculations for individual lane movements and HCM 2000 v/c calculations for the overall intersection. The synchro worksheets for the 2026 future background horizon are provided in Appendix E.

I			AM Pe	ak Hour		PM Peak Hour			
Intersection	Lane	LOS	V/C	Delay	Q (95 th)	LOS	V/C	Delay	Q (95 th)
	EB	А	0.35	27.7	25.7	А	0.35	26.1	19.1
	WBL/T	А	0.39	31.6	26.4	В	0.65	43.7	42.3
Bank Street &	WBR	А	0.53	7.0	17.3	А	0.35	7.3	12.5
Belanger Avenue /	NBL	А	0.10	14.5	m6.8	А	0.21	23.4	13.6
Lamira Street	NBT/R	С	0.80	25.9	#155.7	В	0.68	25.8	#111.1
Signalized	SBL	В	0.61	24.7	#30.3	В	0.61	18.8	#63.5
	SBT/R	А	0.29	10.8	39.3	А	0.46	9.9	78.3
	Overall	В	0.65	20.2	-	В	0.67	19.3	-
	WBR	А	0.10	0.4	0.0	А	0.04	4.3	3.2
Bank Street &	NBT	А	0.44	10.2	50.7	D	0.81	21.5	#77.4
Randall Avenue	SBL	А	0.04	4.8	m1.7	А	0.23	17.6	7.2
Signalized	SBT/R	А	0.35	6.4	20.4	В	0.69	17.8	61.6
	Overall	Α	0.32	8.2	-	Α	0.41	19.6	-
Notos: Saturation flo	w rate of 1800	voh/h/lang			m - motorod	allollo			

Table 17: 2026 Future Background Intersection Operations

rate of 1800 veh/h/lane PHF = 1.00

= queue exceeds storage or mid-block length

During both the AM and PM peak hours at the 2026 future background horizon, the study area intersections operate similarly to the existing conditions. Extended queues are forecasted along Bank Street on the northbound approaches at both study area intersections during the PM peak hour.

7.2 2031 Future Background Operations

Figure 15 illustrates the 2031 background volumes and Table 18 summarizes the 2031 background intersection operations. The level of service for signalized intersections is based on HCM 2010 v/c calculations for individual lane movements and HCM 2000 v/c calculations for the overall intersection. The synchro worksheets for the 2031 future background horizon are provided in Appendix F.

Figure 15: 2031 Future Background Volumes

Table 18: 2031 Future Background Intersection Operations

Intercetion	Lana		AM Pea	ak Hour		PM Peak Hour					
Intersection	Lane	LOS	V/C	Delay	Q (95 th)	LOS	V/C	Delay	Q (95 th)		
	EB	А	0.35	27.7	25.7	А	0.35	26.1	19.1		
	WBL/T	А	0.39	31.6	26.4	В	0.65	43.7	42.3		
Bank Street &	WBR	А	0.53	7.0	17.3	А	0.35	7.3	12.5		
Belanger	NBL	А	0.10	14.6	m6.9	А	0.21	23.4	13.6		
Avenue/Lamira	NBT/R	С	0.80	25.9	#155.7	С	0.74	27.8	#127.5		
Sireer	SBL	В	0.61	24.7	#30.3	В	0.64	23.3	#71.1		
Signunzeu	SBT/R	А	0.32	11.0	43.2	А	0.46	9.9	78.3		
	Overall	В	0.65	20.0	-	С	0.71	20.6	-		
	WBR	А	0.10	0.4	0.0	А	0.04	5.6	3.7		
Bank Street &	NBT	A	0.44	10.2	50.7	D	0.88	25.9	#99.2		
Randall Avenue	SBL	А	0.04	4.7	m1.6	А	0.23	17.6	7.1		
Signalized	SBT/R	A	0.38	6.5	21.5	В	0.69	17.8	61.6		
	Overall	A	0.32	8.2	-	Α	0.45	22.1	-		
Notes: Saturation flo	Notes: Saturation flow rate of 1800 veh/h/lane m = metered queue										

Notes: Saturation flow rate of 1800 veh/h PHF = 1.00

= queue exceeds storage or mid-block length

The intersections at the 2031 future background horizon are anticipated to operate similarly to the 2026 background conditions. No new capacity issues are forecasted.

7.3 Modal Share Sensitivity and Demand Rationalization Conclusions

No capacity constraints are noted within the study area. As such, no rationalization of the modal share and projected volumes is required.

8 Transportation Demand Management

8.1 Context for TDM

The mode shares used within the TIA represent a shift from auto modes to transit modes. Overall, the modal shares are likely to be achieved and supporting TDM measures should be provided.

The subject site is within a within the Bank Arterial Mainstreet design priority area. Total bedrooms within the development are subject to the final unit count and layout selections by purchasers. No age restrictions are noted.

8.2 Need and Opportunity

The subject site has been assumed to rely predominantly on auto travel with an increase in transit ridership with the proximity to the BRT station, and those assumptions have been carried through the analysis. The study area intersections are anticipated to have residual capacity and the increase in transit ridership is achievable.

8.3 TDM Program

The "suite of post occupancy TDM measures" has been summarized in the TDM checklists for the both the residential and non-residential land uses. The checklist is provided in Appendix J. The key TDM measures recommended include:

- Display local area maps with walking and cycling routes, and transit route information and schedules at major entrances
- Provide a multimodal travel option information package to new residents
- Contract with providers to install on-site bikeshare (or other micro-mobility, e.g. scootershare) and carshare spaces
- Inclusion of a 1-year Presto card for first time new townhome purchase and apartment rental, with a set time frame for this offer (e.g. 6-months) from the initial opening of the site
- Unbundle parking cost from purchase or rental costs

9 Neighbourhood Traffic Management

Site traffic is proposed to access the arterial network via Belanger Avenue. The TIA Guidelines propose a threshold of 120 vehicles per peak hour for the classification of local roads, equivalent to two total cars per minute, which per City guidance is to be interpreted as two-way volumes.

The existing volumes on Belanger Avenue are 148 two-way vehicles in the AM peak hour and 196 two-way vehicles in the PM peak hour. Overall, the site is anticipated to generate approximately 30 and 34 two-way vehicle trips during the AM and PM peak hours, respectively, all of which will access Belanger Avenue. The site traffic will account for approximately 14-17% of the total traffic on Belanger Avenue, or a single vehicle every two minutes on either direction during the peak hours. While over the prescribed theoretical local road capacity, this volume increase is not considered a significant relative impact on Belanger Avenue and is furthermore confined to the under 25-metre section of road between the intersection and the site access.

10 Transit

10.1 Route Capacity

In Section 5.1 the trip generation by mode was estimated, including an estimate of the number of transit trips that will be generated by the proposed development. Table 19 summarizes the transit trip generation.

Travel Mode	Mode Share	AM Peak Period			PIV	I Peak Per	iod
Transit	Varias	In	Out	Total	In	Out	Total
	Varies	11	20	31	15	13	28

Table 19: Trip Generation by Transit Mode

The proposed development is anticipated to generate an additional 31 AM peak hour transit trips and 28 PM peak hour transit trips. Of these trips, 20 outbound AM trips and 13 inbound PM trips are anticipated. From the trip distribution found in Section 5.3, these values can be further broken down.

Site-generated outbound AM trips break down to six trips to the north, three trips to the south, two trips to the east, and nine trips to the west. Site-generated inbound PM trips break down to five trips from the north, two trips each from the south and east, and six trips from the west.

The existing transit routes provide up to 11 buses in the peak direction, which would result in an averaged increase of under two additional riders per bus. Therefore, no service changes are anticipated as being required to accommodate site-generated transit trips.

10.2 Transit Priority

At the intersection of Belanger Avenue/Lamira Street and Bank Street, the site volumes will result in an approximate increase in delay for the southbound through/right-turn of maximum 0.1 seconds, the eastbound movement of maximum 3.3 seconds. No decrease in transit level of service is noted by these impacts.

11 Network Intersection Design

11.1 Network Intersection Control

No change to the existing signalized control is recommended for the network intersections.

11.2 Network Intersection Design

11.2.1 2026 Future Total Network Intersection Operations

Figure 16 illustrates the 2026 future total volumes and 2026 future total network intersection operations are summarized below in Table 20. The level of service for signalized intersections is based on HCM 2010 v/c calculations for individual lane movements and HCM 2000 v/c calculations for the overall intersection. The synchro worksheets have been provided in Appendix H.

Figure 16: 2026 Future Total Volumes

Table 20: 2026 Future Total Network Intersection Operations

Intersection			AM Pea	ak Hour		PM Peak Hour			
Intersection	Lane	LOS	V/C	Delay	Q (95 th)	LOS	V/C	Delay	Q (95 th)
	EB	А	0.42	29.2	29.7	А	0.46	29.4	23.5
	WBL/T	А	0.36	30.8	26.1	В	0.66	44.5	42.5
Bank Street &	WBR	А	0.53	7.0	17.3	Α	0.36	7.3	12.5
Belanger Avenue /	NBL	А	0.11	14.9	m8.2	Α	0.26	24.8	16.6
Lamira Street	NBT/R	D	0.81	26.0	#155.5	В	0.68	25.5	#110.7
Signalized	SBL	В	0.61	24.8	#30.3	В	0.61	18.6	#62.9
	SBT/R	А	0.30	10.9	39.8	Α	0.46	9.9	79.6
	Overall	В	0.67	20.3	-	В	0.67	19.4	-
	WBR	А	0.10	0.4	0.0	Α	0.04	4.3	3.2
Bank Street &	NBT	Α	0.45	10.3	51.2	D	0.82	21.8	#79.3
Randall Avenue	SBL	А	0.04	4.8	m1.8	Α	0.23	17.6	7.2
Signalized	SBT/R	А	0.35	6.6	21.6	В	0.70	17.9	62.2
	Overall	A	0.32	8.3	-	Α	0.41	19.8	-
Notes: Saturation flow rate of 1800 veh/h/lane m = metered queue									

Notes: Saturation flow rate of 1800 veh, PHF = 1.00

= queue exceeds storage or mid-block length

The intersections for the 2026 future total horizon in the study area generally operate similarly to the 2026 future background conditions during the peak hours. No new capacity issues are noted.

11.2.2 2031 Future Total Network Intersection Operations

Figure 17 illustrates the 2031 future total volumes and the 2031 future total network intersection operations are summarized below in Table 21. The level of service for signalized intersections is based on HCM 2010 v/c calculations for individual lane movements and HCM 2000 v/c calculations for the overall intersection. The synchro worksheets have been provided in Appendix I.

Table 21: 2031 Future Total Network Intersection Operations

Interrection	Lana	AM Peak Hour							
intersection	Lane	LOS	V/C	Delay	Q (95 th)	LOS	V/C	Delay	Q (95 th)
	EB	А	0.42	29.2	29.7	А	0.45	29.4	23.5
	WBL/T	А	0.36	30.8	26.1	В	0.66	44.5	42.5
Bank Street &	WBR	А	0.53	7.0	17.3	Α	0.36	7.3	12.5
Belanger Avenue /	NBL	А	0.12	15.1	m8.4	Α	0.26	24.8	16.5
Lamira Street	NBT/R	D	0.81	26.0	#155.5	С	0.74	27.6	#127.2
Signalized	SBL	В	0.61	24.8	#30.3	В	0.64	22.9	#70.7
	SBT/R	А	0.32	11.1	43.6	Α	0.46	9.9	79.6
	Overall	В	0.67	20.2	-	С	0.71	20.7	-

Intersection	Lana		AM Pe	ak Hour		PM Peak Hour				
intersection	Lane	LOS	V/C	Delay	Q (95 th)	LOS	V/C	Delay	Q (95 th)	
	WBR	А	0.10	0.4	0.0	А	0.04	5.8	3.8	
Bank Street &	NBT	А	0.45	10.3	51.2	D	0.89	26.3	#100.2	
Randall Avenue	SBL	А	0.04	4.8	m1.6	А	0.23	17.6	7.1	
Signalized	SBT/R	А	0.38	6.7	22.6	В	0.70	17.9	62.2	
	Overall	Α	0.32	8.3	-	Α	0.45	22.3	-	
Notes: Saturation flo	ow rate of 1800	300 veh/h/lane m = metered queue								
PHF = 1.00			# = queue exceeds storage or mid-block length							

The intersections for the 2031 future total horizon in the study area operate similarly to the 2031 future background conditions during the peak hours. No new capacity issues are noted.

11.2.3 Network Intersection MMLOS

Table 22 summarizes the MMLOS analysis for the network intersections of Bank Street at Belanger Avenue/Lamira Street and Bank Street at Randall Avenue. The existing and future conditions will be the different and are considered in separate rows. The intersection analysis is based on the policy area of "Within 600 m of a rapid transit station." The MMLOS worksheets has been provided in Appendix G.

Intercection	Pedest	Pedestrian LOS		Bicycle LOS		Transit LOS		Truck LOS		Auto LOS	
Intersection	PLOS	Target	BLOS	Target	TLOS	Target	TrLOS	Target	ALOS	Target	
Bank Street & Belanger Avenue / Lamira Street (Existing)	F	А	F	А	F	D	-	D	С	E	
Bank Street & Belanger Avenue / Lamira Street (Future)	F	А	А	А	F	D	-	D	D	E	
Bank Street & Randall Avenue (Existing)	F	А	F	А	С	D	-	D	A	E	
Bank Street & Randall Avenue (Future)	E	А	А	A	D	D	-	D	A	E	

Table 22: Study Area Intersection MMLOS Analysis

The pedestrian LOS targets will not be met at the existing or future intersections along Bank Street. As is typical for arterial roads, the crossing distance does not permit the targets to be met, and to meet pedestrian LOS targets, the maximum crossing distance on all pedestrian crossings would need to be reduced to two lane-widths.

The bicycle LOS targets are not met for the existing intersection geometries but will be met once the Bank Street Renewal is complete.

The transit LOS targets will not be met at the existing or future intersections at the intersection of Bank Street at Belanger Avenue/Lamira Street. To meet transit LOS, the delay would need to be reduced to below 30 seconds on all transit approach movements.

11.2.4 Recommended Design Elements

No study area intersection design elements are proposed as part of this study.

12 Summary of Improvements Indicated and Modifications Options

The following summarizes the analysis and results presented in this TIA report:

Proposed Site and Screening

- The proposed site includes 160 apartment units with a total of 3,791 sq. ft. of commercial space and 5,365 sq. ft. of office space
- Accesses is proposed to Belanger Avenue via a full-moves access
- The development is proposed to be completed as a single phase by 2026
- The trip generation, location and safety triggers were met for the TIA Screening
- This report accompanies Official Plan Amendment and Zoning Bylaw Amendment

Existing Conditions

- Bank Street is an arterial road, and Lamira Street is a collector road in the study area
- Sidewalks are provided along both sides on Bank Street, Belanger Avenue, Heron Road, and Ohio Street, and one side on of Randall Avenue, the Transitway access, Clementine Boulevard, Lamira Street, and part of Rockingham Avenue
- A bike lane is provided along Bank Street north of Ohio Street to Riverside Drive, and a cycle track provided along Heron Road, and a multi-use pathway runs along the north side of Riverside Drive westbound
- Bank Street and Heron Road are spine routes, Lamira Street, Belanger Avenue, and Clementine Boulevard south of Belanger Avenue are local routes, Data Centre Road and the MUP north of Riverside Drive are major pathways, and Bank Street north of Heron Road and Heron Road are cross-town bikeways
- The high volumes roadways have produced a high number of collisions at the study area intersections, primarily at the Bank Street at Belanger Avenue/Lamira Street intersection, but also on the segment of Bank Steet between Belanger Avenue and Rockingham Avenue
- The collisions are predominantly turning movement and rear end at the Bank Street at Belanger Avenue/Lamira Street intersection, and predominantly rear end and angled on the segment of Bank Steet between Belanger Avenue and Rockingham Avenue, both locations will be improved through the City's Bank Street Revitalization project in the future
- Some extended queues on the northbound shared through/right-turn movements and southbound leftturn movement are noted at the Bank Street and Belanger Avenue/Lamira Street intersection at peak hours, but generally the intersections operate well

Development Generated Travel Demand

- The proposed development is forecasted produce 77 two-way people trips during the AM peak hour and 90 two-way people trips during the PM peak hour
- Of the forecasted people trips, 30 two-way trips will be vehicle trips during the AM peak hour and 34 twoway trips will be vehicle trips during the PM peak hour based on a higher transit modal share target due to the development being within 700 metres-walk of the Billing's Bridge BRT station
- Of the forecasted trips, 30% are anticipated to travel north, 10% to the east, 45% to the west, and 15% to the south

Background Conditions

- The background growth applied is an annual 1.80% growth on existing Bank Street mainline volumes
- All study area intersections will operate similarly to the existing conditions

TDM

- Supportive TDM measures to be provided as part of the proposed development should include:
 - Display local area maps with walking and cycling routes, and transit route information and schedules at major entrances
 - Provide a multimodal travel option information package to new residents
 - Contract with providers to install on-site bikeshare (or other micromobility, e.g. scootershare) and carshare spaces
 - Inclusion of a 1-year Presto card for first time new townhome purchase and apartment rental, with a set time frame for this offer (e.g. 6-months) from the initial opening of the site
 - Unbundle parking cost from purchase or rental costs

NTM

• The site traffic will account for approximately 14-17% of the total traffic on Belanger Avenue, which is over the local road thresholds in both peak hours, however any site impacts are confined to the short stretch of roadway between the site access and the intersection

Transit

- 20 outbound AM transit trips and 15 inbound PM transit trips are anticipated from the development
- The existing transit routes provide up to 11 buses in the peak direction, which would result in under two passengers increase per bus and no service changes are anticipated as being required to accommodate site-generated transit trips
- At the intersection of Bank Street and Belanger Avenue/Lamira Street, the additional site volumes will result in an approximate increase in delay for the southbound through/right-turn of maximum 0.1 seconds, the eastbound movement of maximum 3.3 seconds. No decrease in transit level of service is noted by these impacts

Network Intersection Design

- Generally, the network intersections at the future total horizons will operate similarly to the background conditions
- The pedestrian LOS targets will not be met at the existing or future intersections along Bank Street as crossing distances are in excess of two lane-widths
- The bicycle LOS targets are not met for the existing intersection geometries but will be met once the Bank Street Renewal is complete
- The transit LOS targets will not be met at the existing or future intersections at the intersection of Bank Street at Belanger Avenue/Lamira Street due to delays in excess of 30 seconds

13 Next Steps

Following the circulation and review of the TIA, any outstanding comments will be documents within the context of the Official Plan Amendment and Zoning Bylaw Amendment in the Step 4 Strategy Report. Once remaining TIA Steps are completed and sign-off has been received from City Transportation Project Manager, a signed and stamped final report will be provided to City staff.

Appendix A

TIA Screening Form and PM Certification Form

City of Ottawa 2017 TIA Guidelines	Date:	27-Oct-21
Step 1 - Screening Form	Project Number:	2021-093
	Project Reference:	1400 Bank Street

1.1 Description of Proposed Development	
Municipal Address	1400 Bank Street
Description of Location	Ward 17, Southwest corner of the Bank Street and Belanger Avenue/Lamira Street intersection
Land Use Classification	Arterial Mainstreet Zone (AM1 (1913))
Development Size	160 apartment units, 3,791 sq. ft. of commercial space, and 5,365 sq. ft. of office space
Accesses	One full-moves access onto Belange Avenue
Phase of Development	Single Phase
Buildout Year	2026
TIA Requirement	Full TIA Required

1.2 Trip Generation Trigger				
Land Use Type	Townhomes or apartments			
Development Size	160 Units			
Trip Generation Trigger	Yes			

1.3 Location Triggers	
Does the development propose a new driveway to a boundary street that is	
designated as part of the City's Transit Priority, Rapid Transit or Spine Bicycle	No
Networks?	
Is the development in a Design Priority Area (DPA) or Transit-oriented	Vec
Development (TOD) zone?	fes
Location Trigger	Yes

1.4. Safety Triggers	
Are posted speed limits on a boundary street 80 km/hr or greater?	No
Are there any horizontal/vertical curvatures on a boundary street limits sight	No
lines at a proposed driveway?	NO
Is the proposed driveway within the area of influence of an adjacent traffic	Vez
signal or roundabout (i.e. within 300 m of intersection in rural conditions, or	Yes
within 150 m of intersection in urban/ suburban conditions)?	
Is the proposed driveway within auxiliary lanes of an intersection?	No
Does the proposed driveway make use of an existing median break that	No
serves an existing site?	NO
Is there is a documented history of traffic operations or safety concerns on	Vor
the boundary streets within 500 m of the development?	Tes
Does the development include a drive-thru facility?	No
Safety Trigger	Yes

Turning Movement Counts

Ottawa

Transportation Services - Traffic Services

Work Order 34332

Turning Movement Count - Full Study Summary Report

Survey Da	ate:	Wedne 2015	esday	, Janua	ary 28	,		Total Observed U-Turns										AADT Factor		
								Northbou Eastbou	und: 7 ind: 0	3	Sout Wes	hbound: tbound:	17 2				1.00			
								F	ull St	udy									-	
				BANK	ST						KILB	ORN A	VE/B	ELAN	GER A	VE				
-		Northb	ound		5	Southb	ound		-		Eastbo	ound			Westb	ound				
Period	LT	ST	RT	NB TOT	LT	ST	RT	SB TOT	STR TOT	LT	ST	RT	EB TOT	LT	ST	RT	WB TOT	STR TOT	Gran Tota	
07:00 08:00	22	894	59	975	83	371	12	466	1441	51	22	7	80	56	2	131	189	269	1710	
08:00 09:00	25	1014	78	1117	147	456	15	618	1735	57	19	5	81	111	6	291	408	489	2224	
09:00 10:00	37	727	59	823	95	575	25	695	1518	45	24	19	88	89	18	181	288	376	1894	
11:30 12:30	34	741	76	851	141	707	22	870	1721	57	6	14	77	114	30	151	295	372	2093	
12:30 13:30	22	581	75	678	139	711	20	870	1548	57	15	11	83	107	12	154	273	356	1904	
15:00 16:00	33	709	63	805	187	856	15	1058	1863	48	12	21	81	101	34	171	306	387	2250	
16:00 17:00	32	702	75	809	246	962	20	1228	2037	46	15	21	82	119	54	139	312	394	2431	
17:00 18:00	21	695	77	793	216	723	22	961	1754	51	17	11	79	122	25	142	289	368	2122	
Sub Total	226	6063	562	6851	1254	5361	151	6766	13617	412	130	109	651	819	181	1360	2360	3011	16628	
U Turns				73				17	90				0				2	2	92	
Total	226	6063	562	6924	1254	5361	151	6783	13707	412	130	109	651	819	181	1360	2362	3013	16720	
EQ 12Hr	314	8428	781	9624	1743	7452	210	9428	19052	573	181 tor	152	905	1138	252	1890	3283	4188	23240	
Note: These	alues	are calcu	lated b	y mulupi	ying the	e totais d	y trie a	рргорпа	le expans	sion tac	lor.			1.39						
AVG 12Hr Note: These	314 volume	8428 s are calo	781 culated	9624 by multi	1743 iplying ti	7452 he Equiv	210 alent 1	9428 2 hr. tota	19052 als by the	573 AADT	181 factor.	152	905	1138 1.00	252	1890	3283	4188	23240	
AVG 24Hr	412	11040	1023	12608	2283	9762	275	12351	24959	750	237	198	1185	1491	330	2476	4301	5486	30445	

Comments:

Note: U-Turns provided for approach totals. Refer to 'U-Turn' Report for specific breakdown.

Transportation Services - Traffic Services

Turning Movement Count - Peak Hour Diagram BANK ST @ KILBORN AVE/BELANGER AVE

Survey Date: Wednesday, Janu Start Time: 07:00	ary 28, 2015	WO No:34332Device:Miovision
	BANK ST	N 31 W ↔ E 31 S
Heavy Vehicles Cars	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
KILBORN AVE/BELANGER AVE 45 6 3		8 283 0 3 383

Comments

2018-Aug-07

2018-Aug-07

Survey Date: Start Time:	Wednesday, Janua 07:00	ıry 28, 201	15					WO No Device): :	34332 Miovision
	Heavy Vehicles Cars		1230 962 19 943	BANK ST 2 246 4 242	1119 2 0 2	889 23 866			₩ < % %	
106 0 188 46 188 15 82 21	B 98 0 0 5 5 41 6 1 14 1 20	+ + + +	PN Pe: 16:0	L Perio ak Hou 0 17:	d ur bo	L L U	137 53 117 0 331	2 1 2 0 5	139 54 119 0 	312 648 336
43		1087 23 1110	7 1 8 1927	29 3 32 8	686 16 702 17	75 0 75	Cars H V	leavy /ehicles	Tota	1
43 Comm	$ \begin{array}{c} \hline \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	1087 23 1110	7 1 8 1927	29 3 32 8	686 16 702 17	75 0 75	Cars F V	leavy /ehicles	Tota	I

Transportation Services - Traffic Services

Turning Movement Count - Full Study Summary Report

BANK ST @ RANDALL AVE

Survey Da	ate:	Thursd	lay, J	uly 30,	2015				Total O	bserv	/ed U-	Turns					AAD	T Fact	or
							1	Northbo	und: 1		South	bound:	0				.90		
								Eastbou	ind: 0		West	bound:	0						
								F	ull Stu	dy									
				BANK	ST							RA	NDAL	L AVE					
-		Northbo	ound		9	Southb	ound				Eastbo	ound		V	Vestb	ound			
Period	LT	ST	RT	NB TOT	LT	ST	RT	SB TOT	STR TOT	LT	ST	RT	EB TOT	LT	ST	RT	WB TOT	STR TOT	Granc Tota
07:00 08:00	0	672	22	694	11	456	0	467	1161	0	0	0	0	0	0	43	43	43	1204
08:00 09:00	0	836	26	862	12	517	0	529	1391	0	0	0	0	0	0	67	67	67	1458
09:00 10:00	0	791	41	832	9	568	0	577	1409	0	0	0	0	0	0	42	42	42	1451
11:30 12:30	0	823	42	865	12	644	0	656	1521	0	0	0	0	0	0	31	31	31	1552
12:30 13:30	0	909	52	961	30	699	0	729	1690	0	0	0	0	0	0	31	31	31	1721
15:00 16:00	0	841	55	896	31	898	0	929	1825	0	0	0	0	0	0	23	23	23	1848
16:00 17:00	0	778	76	854	37	914	0	951	1805	0	0	0	0	0	0	34	34	34	1839
17:00 18:00	0	805	80	885	24	608	0	632	1517	0	0	0	0	0	0	24	24	24	1541
Sub Total	0	6455	394	6849	166	5304	0	5470	12319	0	0	0	0	0	0	295	295	295	12614
U Turns				1				0	1				0				0	0	1
Total	0	6455	394	6850	166	5304	0	5470	12320	0	0	0	0	0	0	295	295	295	12615
EQ 12Hr	0	8972	548	9522	231	7373	0	7603	17125	0	0	0	0	0	0	410	410	410	17535
Note: These	alues	are calcu	lated b	y multipl	ying the	totals b	y the ap	opropria	te expansi	on facte	or.		1	.39					
AVG 12Hr	0	8075	493	8569	208	6635	0	6843	15412	0	0	0	0	0	0	369	369	369	15781
Note: These	volume	s are calo	culated	by multi	plying t	he Equiv	alent 1	2 hr. tota	als by the A	AADT f	actor.			90					
AVG 24Hr	0	10579	646	11226	272	8692	0	8964	20190	0	0	0	0	0	0	483	483	483	20673
Note: These	volume	s are calo	culated	by multi	plying t	he Avera	ge Dail	y 12 hr.	totals by 1	2 to 24	expans	sion fact	or. 1	.31					

Comments:

Note: U-Turns provided for approach totals. Refer to 'U-Turn' Report for specific breakdown.

Work Order 35034

Transportation Services - Traffic Services

Turning Movement Count - Peak Hour Diagram BANK ST @ RANDALL AVE

2018-Aug-07

Appendix C

Synchro Intersection Worksheets – Existing Conditions

Lanes, Volumes, Ti 1: Bank & Belanger	imings r/Lamira	а									09/	14/2021
	≯	-	\mathbf{r}	4	-	•	-	1	1	1	Ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			ન	1	শ	≜ ⊅			≜î ≽	
Traffic Volume (vph)	67	26	6	97	3	283	31	1061	76	140	431	15
Future Volume (vph)	67	26	6	97	3	283	31	1061	76	140	431	15
Satd. Flow (prot)	0	1560	0	0	1665	1469	1595	3180	0	1595	3147	0
Flt Permitted		0.692			0.700		0.470			0.091		
Satd. Flow (perm)	0	1096	0	0	1220	1407	776	3180	0	153	3147	0
Satd. Flow (RTOR)		4				314		9			6	
Lane Group Flow (vph)	0	110	0	0	111	314	34	1263	0	156	496	0
Turn Type	Perm	NA		Perm	NA	Perm	Perm	NA		pm+pt	NA	
Protected Phases		4			8			2		1	6	
Permitted Phases	4			8		8	2			6		
Detector Phase	4	4		8	8	8	2	2		1	6	
Switch Phase												
Minimum Initial (s)	10.0	10.0		10.0	10.0	10.0	10.0	10.0		5.0	10.0	
Minimum Split (s)	33.3	33.3		33.3	33.3	33.3	34.9	34.9		10.9	34.9	
Total Split (s)	34.0	34.0		34.0	34.0	34.0	36.0	36.0		15.0	51.0	
Total Split (%)	37.8%	37.8%		37.8%	37.8%	37.8%	40.0%	40.0%		16.7%	56.7%	
Yellow Time (s)	3.3	3.3		3.3	3.3	3.3	3.3	3.3		3.3	3.3	
All-Red Time (s)	3.0	3.0		3.0	3.0	3.0	2.6	2.6		2.6	2.6	
Lost Time Adjust (s)		0.0			0.0	0.0	0.0	0.0		0.0	0.0	
Total Lost Time (s)		6.3			6.3	6.3	5.9	5.9		5.9	5.9	
Lead/Lag	Lag	Lag		Lag	Lag	Lag	Lag	Lag		Lead		
Lead-Lag Optimize?	Yes	Yes		Yes	Yes	Yes	Yes	Yes		Yes		
Recall Mode	None	None		None	None	None	C-Max	C-Max		None	C-Max	
Act Effct Green (s)		22.4			20.4	20.4	39.8	39.8		54.4	54.4	
Actuated g/C Ratio		0.25			0.23	0.23	0.44	0.44		0.60	0.60	
v/c Ratio		0.40			0.40	0.56	0.10	0.90		0.67	0.26	
Control Delay		29.2			31.8	7.2	14.5	31.8		31.0	10.6	
Queue Delay		0.0			0.0	0.0	0.0	0.0		0.0	0.0	
Total Delay		29.2			31.8	7.2	14.5	31.8		31.0	10.6	
LOS		С			С	А	В	С		С	В	
Approach Delay		29.2			13.6			31.3			15.5	
Approach LOS		С			В			С			В	
Queue Length 50th (m)		12.9			14.7	0.0	2.8	~139.5		14.2	24.6	
Queue Length 95th (m)		28.3			28.6	17.9	m6.5	#180.1		#39.3	34.7	
Internal Link Dist (m)		168.3			242.0			149.0			322.6	
Turn Bay Length (m)						65.0	60.0			56.5		
Base Capacity (vph)		361			375	650	342	1409		244	1903	
Starvation Cap Reductn		0			0	0	0	0		0	0	
Spillback Cap Reductn		0			0	0	0	0		0	0	
Storage Cap Reductn		0			0	0	0	0		0	0	
Reduced v/c Ratio		0.30			0.30	0.48	0.10	0.90		0.64	0.26	
Intersection Summary												
Cycle Length: 90												
Actuated Cycle Length: 90												
Offset: 4 (4%), Referenced t	to phase 2	:NBTL an	d 6:SBTL	., Start of	Green							
Natural Cycle: 95												
Control Type: Actuated-Coo	rdinated											
	1 40 00	00/40/0/								-		D 1

Scenario 1 1400 Bank Street 12:00 am 08/13/2021 Existing AM Peak Hour

Synchro 11 Report Page 1 Lanes, Volumes, Timings 1: Bank & Belanger/Lamira

> Ø3 Ø7

Lane Group

Lane Configurations		
Traffic Volume (vph)		
Future Volume (vph)		
Satd. Flow (prot)		
Flt Permitted		
Satd. Flow (perm)		
Satd. Flow (RTOR)		
Lane Group Flow (vph)		
Turn Type		
Protected Phases	3	7
Permitted Phases		
Detector Phase		
Switch Phase		
Minimum Initial (s)	1.0	1.0
Minimum Split (s)	5.0	5.0
Total Split (s)	5.0	5.0
Total Split (%)	6%	6%
Yellow Time (s)	2.0	2.0
All-Red Time (s)	0.0	0.0
Lost Time Adjust (s)	0.0	0.0
Total Lost Time (s)		
l ead/l ag	Lead	Lead
Lead-Lag Optimize?	Yes	Yes
Recall Mode	None	None
Act Effct Green (s)	Nono	Nono
Actuated g/C Ratio		
v/c Ratio		
Control Delay		
Queue Delay		
Total Delay		
Approach Delay		
Approach LOS		
Oueue Length 50th (m)		
Queue Length 95th (m)		
Internal Link Dist (m)		
Turn Bay Length (m)		
Rase Canacity (vnh)		
Starvation Can Reducto		
Starvation Cap Reducto		
Storage Cap Reductin		
Poducod v/c Patio		
Neudeu V/C Nalio		
Intersection Summary		

Scenario 1 1400 Bank Street 12:00 am 08/13/2021 Existing AM Peak Hour

Synchro 11 Report Page 2

09/14/2021

Lanes, Volumes, Timings		
1: Bank & Belanger/Lamira		09/14/2021
Maximum v/a Batia: 0.00		
Waximum v/c Railo. 0.90		
Intersection Signal Delay: 24.0	Intersection LOS: C	
Intersection Capacity Utilization 80.4%	ICU Level of Service D	
Analysis Period (min) 15		
~ Volume exceeds capacity, queue is theoretically	infinite.	
Queue shown is maximum after two cycles.		
# 95th percentile volume exceeds capacity, queue	may be longer.	
Queue shown is maximum after two cycles.		
m Volume for 95th percentile queue is metered by	upstream signal.	

Splits and Phases: 1: Bank & Belanger/Lamira

Ø1	, ~†∉	02 (R)		ø	3 - 1 04	
15 s	36 s		5 s		34 s	
Ø6 (R)				ø	7 08	
51 s			5.5		34 s	

	4		†	1	- \	÷.
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations		1	≜1 .		5	**
Traffic Volume (vph)	0	54	831	31	12	547
Euture Volume (vph)	0	54	831	31	12	547
Satd Flow (prot)	0	1510	3205	0	1658	3221
Elt Permitted	0	1010	5205	0	0.258	5221
Satd Flow (perm)	0	1/18/	3205	0	450	3221
Satd. Flow (BTOR)	0	1/6	7	0	400	5221
Lane Group Flow (vph)	0	60	957	0	13	608
	0	Porm	NA	0	Dorm	NA
Protected Phases		renn	2		renn	6
Protected Phases		8	2		6	0
Detector Phases		8	2		6	6
Switch Phase		0	2		0	0
Switch Plidse		E 0	10.0		10.0	10.0
Minimum Culit (s)		5.0	10.0		10.0	10.0
winimum Split (s)		29.0	29.2		24.2	24.2
Total Split (S)		29.0	67.00/		67.00/	67.00
i utai Split (%)		32.2%	07.8%		07.8%	07.8%
reliow Time (s)		3.0	3.3		3.3	3.3
All-Red Lime (s)		1.0	2.9		2.9	2.9
Lost Time Adjust (s)		0.0	0.0		0.0	0.0
I otal Lost Time (s)		4.0	6.2		6.2	6.2
Lead/Lag						
Lead-Lag Optimize?						
Recall Mode		Ped	C-Max		C-Max	C-Max
Act Effct Green (s)		25.0	54.8		54.8	54.8
Actuated g/C Ratio		0.28	0.61		0.61	0.61
v/c Ratio		0.12	0.49		0.05	0.31
Control Delay		0.5	10.8		5.0	6.5
Queue Delay		0.0	0.0		0.0	0.0
Total Delay		0.5	10.8		5.0	6.5
LOS		А	В		A	A
Approach Delay	0.5		10.8			6.5
Approach LOS	A		В			A
Queue Length 50th (m)		0.0	43.8		0.6	15.8
Queue Length 95th (m)		0.0	58.0		m2.0	20.4
Internal Link Dist (m)	292.7		258.7			149.0
Turn Bay Length (m)					67.5	
Base Capacity (vph)		517	1954		274	1961
Starvation Can Reducto		0	0		0	0
Snillback Can Reducto		0	0		0	0
Storage Can Reducto		0	0		0	0
Reduced v/c Ratio		0.12	0 / 0		0.05	0.31
		0.12	0.43		0.00	0.01
Cycle Length: 90						
Actuated Cycle Length: 00						
Actualed Cycle Length. 90	ad to phood		ad GODT	Clark	f Croop	
Unset: 72 (80%), Reference	ed to phase	E ZINR L S	ING 0:5811	L, Start d	or Green	
Natural Cycle: 60						
Control Type: Actuated-Co	ordinated					

Scenario 1 1400 Bank Street 12:00 am 08/13/2021 Existing AM Peak Hour

Synchro 11 Report Page 4

Scenario 1 1400 Bank Street 12:00 am 08/13/2021 Existing AM Peak Hour

Lanes, Volumes, Timings	
2. Ponk & Dondoll	

2: Bank & Randall

m v/c Ratio: 0.49 Movim

Maximum v/c Ratio: 0.49	
Intersection Signal Delay: 8.8	Intersection LOS: A
Intersection Capacity Utilization 54.6%	ICU Level of Service A
Analysis Period (min) 15	
m Volume for 95th percentile queue is metered by upstream si	ignal.

Splits and Phases: 2: Bank & Randall

∮ Ø2 (R)	
61s	
	~
🕈 Ø6 (R)	Ø8
61s	29 s

Lane Group EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBT Lane Configurations + - - - - - + <t< th=""><th></th><th>۶</th><th>-</th><th>\mathbf{r}</th><th>4</th><th>-</th><th>. 🔨</th><th>1</th><th>1</th><th>1</th><th>1</th><th>Ļ</th><th>-</th></t<>		۶	-	\mathbf{r}	4	-	. 🔨	1	1	1	1	Ļ	-
Lane Configurations 4 7 248 962 7 7 248 962 7 7 248 962 7 7 248 962 7 7 248 962 7 7 248 962 7 7 248 962 7 7 248 962 7 7 248 962 7 7 248 962 7 <th7< th=""> 7 7 7<!--</th--><th>Lane Group</th><th>EBL</th><th>EBT</th><th>EBR</th><th>WBL</th><th>WBT</th><th>WBR</th><th>NBL</th><th>NBT</th><th>NBR</th><th>SBL</th><th>SBT</th><th>SB</th></th7<>	Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SB
Traffic Volume (vph) 46 15 21 119 54 139 40 702 75 248 962 Future Volume (vph) 46 15 21 119 54 139 40 702 75 248 962 Satd. Flow (rorb) 0 1532 0 0 1688 1483 1537 3256 0 1658 3280 Fit Permitted 0.0.670 0.772 0.262 0.177 Satd. Flow (rorm) 0 1049 0 0 1342 1447 418 3256 0 308 3230 Satd. Flow (rom) 0 91 0 0 192 154 44 863 0 276 1091 Tum Type Perm NA Perm NA Perm Perm NA pre-t NA Protected Phases 4 8 8 2 1 16 Detector Phase 4 4 8 8 8 2 2 1 6 Detector Phase 4 4 8 8 8 2 2 1 6 Detector Phase 4 4 8 8 8 2 2 1 6 Switch Phase Total Split (s) 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33	Lane Configurations		\$			ę	1	٢	≜ †î≽		٦	A1⊅	
Fulure (vph) 46 15 21 119 54 139 40 702 75 248 962 Sald, Flow (prot) 0 1532 0 0 1688 1483 1537 3256 0 1658 3290 Filtermitted 0.772 0.262 0.177 0.262 0.177 0.262 0.177 0.262 0.177 0.262 0.177 0.262 0.177 0.262 0.177 1091 3 3 3 a 3 3 a 3 3 a 3 3 a 3 3 a 3 <td>Traffic Volume (vph)</td> <td>46</td> <td>15</td> <td>21</td> <td>119</td> <td>54</td> <td>139</td> <td>40</td> <td>702</td> <td>75</td> <td>248</td> <td>962</td> <td>2</td>	Traffic Volume (vph)	46	15	21	119	54	139	40	702	75	248	962	2
Satd. Flow (prot) 0 1532 0 0 1688 1483 1537 3256 0 1688 3290 Fit Permitted 0.670 0.772 0.262 0.177 Satd. Flow (perm) 0 1049 0 1342 1447 418 3256 0 308 3290 Satd. Flow (perm) 0 1949 0 1342 1447 418 3256 0 308 3290 Lane Group Flow (vph) 0 191 0 192 154 44 863 0 276 1091 Permitted Phases 4 8 8 2 2 1 6 Permitted Phase 4 8 8 8 2 2 1 6 Winimum Inital (s) 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 144 13.3	Future Volume (vph)	46	15	21	119	54	139	40	702	75	248	962	2
Fit Permitted 0.670 0.772 0.262 0.177 Satd. Flow (perm) 0 1049 0 0 1447 418 3256 0 308 3290 Satd. Flow (ptPOR) 20 154 13 3 3 Lane Group Flow (vph) 0 91 0 0 192 154 44 83 0 276 1091 Turn Type Perm NA Perm NA Perm NA pm+pt NA Protected Phases 4 8 8 2 2 1 6 Detector Phase 4 4 8 8 2 2 1 6 Switch Phase 10.0 10.0 10.0 10.0 10.0 10.0 5.0 10.0 Minimum Split (s) 33.3 <	Satd. Flow (prot)	0	1532	0	0	1688	1483	1537	3256	0	1658	3290	
Satel, Flow (perm) 0 1049 0 0 1342 1447 418 3256 0 308 3280 Satel, Flow (pRTOR) 20 154 44 863 0 276 1091 Tum Type Perm NA Perm NA Perm NA pm+pt NA Protected Phases 4 8 8 2 1 6 Detector Phase 4 4 8 8 2 1 6 Winimum Shit (s) 10.0 10.	Flt Permitted		0.670			0.772		0.262			0.177		
Satd. Flow (RTOR) 20 154 13 3 Lane Group Flow (vph) 0 91 0 0 192 154 44 863 0 276 1091 Tum Type Perm NA SA	Satd. Flow (perm)	0	1049	0	0	1342	1447	418	3256	0	308	3290	
Lane Group Flow (vph) 0 91 0 0 192 154 44 863 0 276 1091 Tum Type Perm NA Perm NA Perm PA Perm NA perm PA PA Perm NA perm PA NA Perotected Phases 4 8 8 2 1 1 6 Perotected Phases 4 8 8 8 2 2 1 6 Detector Phase 4 4 8 8 8 8 2 2 1 6 Detector Phase 4 4 8 8 8 8 2 2 1 6 Switch Phase Minimum Initial (s) 10.0 10.0 10.0 10.0 10.0 10.0 10.0 5.0 10.0 Minimum Split (s) 33.3 33.3 33.3 33.3 33.3 33.3 33.3 34.9 34.9	Satd. Flow (RTOR)		20				154		13			3	
Turn Type Perm NA Perm NA Perm NA pm+pt NA Protected Phases 4 8 8 2 6 6 Detector Phase 4 4 8 8 2 2 1 6 Switch Phase 4 4 8 8 2 2 1 6 Switch Phase 5 33.3 33.3 33.3 33.3 34.9 34.9 10.9 34.9 Total Split (s) 34.0 34.0 34.0 34.0 36.0 15.0 15.0 15.0 56.7% Yellow Time (s) 3.3	Lane Group Flow (vph)	0	91	0	0	192	154	44	863	0	276	1091	
Protected Phases 4 8 2 1 6 Permitted Phases 4 8 8 2 6 Switch Phase	Turn Type	Perm	NA		Perm	NA	Perm	Perm	NA		pm+pt	NA	
Permitted Phases 4 8 8 2 6 Detector Phase 4 4 8 8 2 2 1 6 Minimum Initial (s) 10.0 <td< td=""><td>Protected Phases</td><td></td><td>4</td><td></td><td></td><td>8</td><td></td><td></td><td>2</td><td></td><td>1</td><td>6</td><td></td></td<>	Protected Phases		4			8			2		1	6	
Detector Phase 4 4 8 8 8 2 2 1 6 Switch Phase Minimum Initial (s) 10.0	Permitted Phases	4			8		8	2			6		
Switch Phase Switch Phase Minimum Initial (s) 10.0 10.0 10.0 10.0 10.0 5.0 10.0 Minimum Split (s) 33.3 33.3 33.3 33.3 33.3 33.3 34.9 34.9 10.9 34.9 Total Split (s) 37.8% 37.8% 37.8% 40.0% 40.0% 16.7% 56.7% Yellow Time (s) 3.3 <	Detector Phase	4	4		8	8	8	2	2		1	6	
Minimum Initial (s) 10.0 10.0 10.0 10.0 10.0 10.0 5.0 10.0 Minimum Split (s) 33.3 33.3 33.3 33.3 33.3 33.3 33.3 34.9 34.9 10.9 34.9 Total Split (s) 34.0 34.0 34.0 34.0 36.0 36.0 15.0 51.0 Total Split (s) 37.8% 37.8% 37.8% 37.8% 40.0% 40.0% 16.7% 56.7% Yellow Time (s) 3.3 <td>Switch Phase</td> <td></td>	Switch Phase												
Minimum Split (s) 33.3 33.3 33.3 33.3 33.3 34.9 34.9 10.9 34.9 Total Split (s) 34.0 34.0 34.0 34.0 36.0 36.0 15.0 51.0 Total Split (s) 37.8% 37.8% 37.8% 37.8% 40.0% 40.0% 16.7% 56.7% Yellow Time (s) 3.3	Minimum Initial (s)	10.0	10.0		10.0	10.0	10.0	10.0	10.0		5.0	10.0	
Total Split (s) 34.0 34.0 34.0 34.0 34.0 36.0 36.0 15.0 51.0 Total Split (%) 37.8% 37.8% 37.8% 37.8% 40.0% 40.0% 16.7% 56.7% Yellow Time (s) 3.3 <	Minimum Split (s)	33.3	33.3		33.3	33.3	33.3	34.9	34.9		10.9	34.9	
Total Split (%) 37.8% 37.8% 37.8% 37.8% 37.8% 40.0% 40.0% 16.7% 56.7% Yellow Time (s) 3.3 <	Total Split (s)	34.0	34.0		34.0	34.0	34.0	36.0	36.0		15.0	51.0	
Yellow Time (s) 3.3	Total Split (%)	37.8%	37.8%		37.8%	37.8%	37.8%	40.0%	40.0%		16.7%	56.7%	
All-Red Time (s) 3.0 3.0 3.0 3.0 3.0 3.0 2.6 <td>Yellow Time (s)</td> <td>3.3</td> <td>3.3</td> <td></td> <td>3.3</td> <td>3.3</td> <td>3.3</td> <td>3.3</td> <td>3.3</td> <td></td> <td>3.3</td> <td>3.3</td> <td></td>	Yellow Time (s)	3.3	3.3		3.3	3.3	3.3	3.3	3.3		3.3	3.3	
Lost Time Adjust (s) 0.0	All-Red Time (s)	3.0	3.0		3.0	3.0	3.0	2.6	2.6		2.6	2.6	
Total Lost Time (s) 6.3 6.3 6.3 5.9 6.0 5.9 5.9 6.0 7 5.9 5.9 6.0 7 5.9	Lost Time Adjust (s)		0.0			0.0	0.0	0.0	0.0		0.0	0.0	
Lead/Lag Lag Ves Yes Ye	Total Lost Time (s)		6.3			6.3	6.3	5.9	5.9		5.9	5.9	
Lead-Lag Optimize? Yes	Lead/Lag	Lag	Lag		Lag	Lag	Lag	Lag	Lag		Lead		
Recall Mode None None None None None C-Max C-Max C-Max Act EffCd Green (s) 18.8 18.8 18.8 18.8 36.1 36.1 58.0 58.0 Actuated g/C Ratio 0.21 0.21 0.40 0.40 0.64 0.64 Ver Ratio 0.39 0.69 0.36 0.26 0.66 0.63 0.51 Control Delay 27.1 44.5 6.9 26.3 25.7 19.2 11.0 Queue Delay 0.0	Lead-Lag Optimize?	Yes	Yes		Yes	Yes	Yes	Yes	Yes		Yes		
Act Effct Green (s) 18.8 18.8 18.8 36.1 36.1 58.0 58.0 Actuated g/C Ratio 0.21 0.21 0.21 0.40 0.64 0.64 0.64 Vic Ratio 0.39 0.69 0.36 0.26 0.66 0.63 0.51 Control Delay 27.1 44.5 6.9 26.3 25.7 19.2 11.0 Queue Delay 0.0 0.25.7 19.2 11.0 0.26 0.6 0.5.0 61.5 17.5<	Recall Mode	None	None		None	None	None	C-Max	C-Max		None	C-Max	
Actuated g/C Ratio 0.21 0.21 0.21 0.40 0.40 0.64 0.64 V/c Ratio 0.39 0.69 0.36 0.26 0.66 0.63 0.51 Control Delay 27.1 44.5 6.9 26.3 25.7 19.2 11.0 Queue Delay 0.0	Act Effct Green (s)		18.8			18.8	18.8	36.1	36.1		58.0	58.0	
v/c Ratio 0.39 0.69 0.36 0.26 0.66 0.63 0.51 Control Delay 27.1 44.5 6.9 26.3 25.7 19.2 11.0 Queue Delay 0.0 0.	Actuated g/C Ratio		0.21			0.21	0.21	0.40	0.40		0.64	0.64	
Control Delay 27.1 44.5 6.9 26.3 25.7 19.2 11.0 Queue Delay 0.0 0.2 It.0 It	v/c Ratio		0.39			0.69	0.36	0.26	0.66		0.63	0.51	
Queue Delay 0.0 <th< td=""><td>Control Delay</td><td></td><td>27.1</td><td></td><td></td><td>44.5</td><td>6.9</td><td>26.3</td><td>25.7</td><td></td><td>19.2</td><td>11.0</td><td></td></th<>	Control Delay		27.1			44.5	6.9	26.3	25.7		19.2	11.0	
Total Delay 27.1 44.5 6.9 26.3 25.7 19.2 11.0 LOS C D A C C B B Approach Delay 27.1 27.8 25.7 12.6 Approach Delay 27.1 27.8 25.7 12.6 Queue Length 50th (m) 10.5 30.8 0.0 5.0 61.5 17.5 45.3 Queue Length 95th (m) 21.4 46.9 13.1 15.4 91.8 #69.0 90.2 Internal Link Dist (m) 168.3 242.0 148.8 322.6 325.5 Base Capacity (vph) 336 413 551 167 1314 437 2119 Starvation Cap Reducth 0 0 0 0 0 0 0 0 Spillback Cap Reducth 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Queue Delav		0.0			0.0	0.0	0.0	0.0		0.0	0.0	
LOS C D A C C B B Approach Delay 27.1 27.8 25.7 12.6 Approach LOS C C B B Approach LOS C C B B Approach LOS C C C B Queue Length 50th (m) 10.5 30.8 0.0 5.0 61.5 17.5 45.3 Queue Length 95th (m) 21.4 46.9 13.1 15.4 91.8 #69.0 90.2 Internal Link Dist (m) 168.3 242.0 148.8 322.6 Tum Bay Length (m) 65.0 60.0 56.5 Base Capacity (vph) 336 413 551 167 1314 437 2119 Starvation Cap Reductn 0 <	Total Delay		27.1			44.5	6.9	26.3	25.7		19.2	11.0	
Approach Delay 27.1 27.8 25.7 12.6 Approach LOS C C C B Queue Length 50th (m) 10.5 30.8 0.0 5.0 61.5 17.5 45.3 Queue Length 95th (m) 21.4 46.9 13.1 15.4 91.8 #69.0 90.2 Internal Link Dist (m) 168.3 242.0 148.8 322.6 322.6 Turn Bay Length (m) 65.0 60.0 56.5 388 629.01 1314 437 2119 Starvation Cap Reductn 0 <	LOS		C			D	A	C	C		В	В	
Approach LOS C C C B Queue Length 50th (m) 10.5 30.8 0.0 5.0 61.5 17.5 45.3 Queue Length 95th (m) 21.4 46.9 13.1 15.4 91.8 #69.0 90.2 Internal Link Dist (m) 168.3 242.0 148.8 322.6 Jum Bay Length (m) 65.0 60.0 56.5 Base Capacity (vph) 336 413 551 167 1314 437 2119 Starvation Cap Reducth 0	Approach Delay		27.1			27.8			25.7			12.6	
Queue Length 50th (m) 10.5 30.8 0.0 5.0 61.5 17.5 45.3 Queue Length 95th (m) 21.4 46.9 13.1 15.4 91.8 #69.0 90.2 Internal Link Dist (m) 168.3 242.0 148.8 322.6 Jum Bay Length (m) 65.0 60.0 56.5 Base Capacity (vph) 336 413 551 167 1314 437 2119 Starvation Cap Reducth 0	Approach LOS		С			C			С			В	
Queue Length 95th (m) 21.4 46.9 13.1 15.4 91.8 #69.0 90.2 Internal Link Dist (m) 168.3 242.0 148.8 322.6 Tum Bay Length (m) 65.0 60.0 56.5 Base Capacity (typh) 336 413 551 167 1314 437 2119 Starvation Cap Reductn 0	Queue Length 50th (m)		10.5			30.8	0.0	5.0	61.5		17.5	45.3	
Internal Link Dist (m) 168.3 242.0 148.8 322.6 Turm Bay Length (m) 65.0 60.0 56.5 5 Base Capacity (vph) 336 413 551 167 1314 437 2119 Starvation Cap Reducth 0 <td>Queue Length 95th (m)</td> <td></td> <td>21.4</td> <td></td> <td></td> <td>46.9</td> <td>13.1</td> <td>15.4</td> <td>91.8</td> <td></td> <td>#69.0</td> <td>90.2</td> <td></td>	Queue Length 95th (m)		21.4			46.9	13.1	15.4	91.8		#69.0	90.2	
Turn Bay Length (m) 65.0 60.0 56.5 Base Capacity (vph) 336 413 551 167 1314 437 2119 Starvation Cap Reductn 0 0 0 0 0 0 0 0 Spillback Cap Reductn 0<	Internal Link Dist (m)		168.3			242.0			148.8			322.6	
Base Capacity (vph) 336 413 551 167 1314 437 2119 Starvation Cap Reducth 0	Turn Bay Length (m)						65.0	60.0			56.5		
Starvation Cap Reductn 0	Base Capacity (vph)		336			413	551	167	1314		437	2119	
Spillback Cap Reductin 0	Starvation Cap Reductn		0			0	0	0	0		0	0	
Storage Cap Reductn 0	Spillback Cap Reductn		0			0	0	0	0		0	0	
Reduced v/c Ratio 0.27 0.46 0.28 0.26 0.66 0.63 0.51 Intersection Summary Cycle Length: 90 Cycle Len	Storage Cap Reductn		0			0	0	0	0		0	0	
Intersection Summary Cycle Length: 90 Actuated Cycle Length: 90 Offset: 10 (21%) Referenced to phase 2:NRTL and 6:SRTL. Start of Groop	Reduced v/c Ratio		0.27			0.46	0.28	0.26	0.66		0.63	0.51	
Cycle Length: 90 Actuated Cycle Length: 90 Offset: 19 (214): Defanged to phase 2:NBTL and 6:SBTL. Start of Groop	Intersection Summary												
Actuated Cycle Length: 90 Offset: 19 (21%) Referenced to phase 2:NBTL and 6:SBTL. Start of Groop	Cycle Length: 90												
Litteet: 19 (71%) Referenced to phase 2/NRTL and 6/SRTL. Start of Groop	Actuated Cycle Length: 90		ONDT	10.00	TI 01 1	(0							
איז	Ottset: 19 (21%), Reference	ed to phase	2:NBTL a	and 6:SB	TL, Start	of Green							

Scenario 1 1400 Bank Street 12:00 am 08/13/2021 Existing

AM Peak Hour

Synchro 11 Report Page 5

09/14/2021

Scenario 1 1400 Bank Street 12:00 am 08/13/2021 Existing PM Peak Hour

Lanes, Volumes, Timings	
1: Bank & Belanger/Lamir	а

09/14/2021

Lane Group	Ø3	Ø7
Lane Configurations		
Traffic Volume (vph)		
Future Volume (vph)		
Satd. Flow (prot)		
Flt Permitted		
Satd. Flow (perm)		
Satd. Flow (RTOR)		
Lane Group Flow (vph)		
Turn Type		
Protected Phases	3	7
Permitted Phases		
Detector Phase		
Switch Phase		
Minimum Initial (s)	1.0	1.0
Minimum Split (s)	5.0	5.0
Total Split (s)	5.0	5.0
Total Split (%)	6%	6%
Yellow Time (s)	2.0	2.0
All-Red Time (s)	0.0	0.0
Lost Time Adjust (s)	0.0	0.0
Total Lost Time (s)		
Lead/Lag	Lead	Lead
Lead-Lag Optimize?	Yes	Yes
Recall Mode	None	None
Act Effct Green (s)		
Actuated g/C Ratio		
v/c Ratio		
Control Delay		
Queue Delay		
Total Delay		
105		
Approach Delay		
Approach LOS		
Queue Length 50th (m)		
Queue Length 95th (m)		
Internal Link Dist (m)		
Turn Bay Length (m)		
Base Canacity (vnh)		
Starvation Can Reducto		
Snillback Can Reducto		
Storage Can Reducto		
Reduced v/c Ratio		
Intersection Summary		

 1: Bank & Belanger/Lamira

 Maximum v/c Ratio: 0.69

 Intersection Signal Delay: 19.4

 Intersection Capacity Utilization 70.2%

 ICU Level of Service C

 Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

Splits and Phases: 1: Bank & Belanger/Lamira

Lanes, Volumes, Timings

Ø1	Ø2 (R)		ø	3-204	
15 s	36 s	5 s		34 s	
Ø6 (R)	•		ø	7 [€] Ø8	
51 s		5 s		34 s	

Scenario 1 1400 Bank Street 12:00 am 08/13/2021 Existing PM Peak Hour

Scenario 1 1400 Bank Street 12:00 am 08/13/2021 Existing PM Peak Hour

Synchro 11 Report Page 3

09/14/2021

Lanes Volumes Timings
2: Bank & Randall

	4		Ť	1	1	Ļ
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations		1	A 1:		*	**
Traffic Volume (vnh)	0	25	850	57	26	942
Future Volume (vph)	0	25	850	57	26	942
Satd Flow (prot)	0	1510	3273	0	1658	3316
Elt Permitted	0	1310	3213	0	0 187	5510
Setd Elow (norm)	٥	1/00	2072	٥	0.107	2216
Satu. Flow (perifi)	U	1400	3213	U	324	3310
Salu. FIOW (KTUK)	0	43	14	0	00	1017
Lane Group Flow (vpn)	0	28	1007	0	29	1047
Turn Type		Perm	NA		Perm	NA
Protected Phases			2			6
Permitted Phases		8			6	
Detector Phase		8	2		6	6
Switch Phase						
Minimum Initial (s)		5.0	10.0		10.0	10.0
Minimum Split (s)		29.0	29.2		24.2	24.2
Total Split (s)		29.0	31.0		31.0	31.0
Total Split (%)		48.3%	51.7%		51.7%	51.7%
Yellow Time (s)		3.0	3.3		3.3	3.3
All-Red Time (s)		1.0	2.0		2.0	2.0
Lost Time Adjust (s)		0.0	2.9		2.9	2.9
Total Lost Time (a)		0.0	0.0		0.0	0.0
Total Lost Time (s)		4.0	0.2		0.2	0.2
Lead/Lag						
Lead-Lag Optimize?						
Recall Mode		Ped	C-Max		C-Max	C-Max
Act Effct Green (s)		25.0	24.8		24.8	24.8
Actuated g/C Ratio		0.42	0.41		0.41	0.41
v/c Ratio		0.04	0.74		0.22	0.76
Control Delay		3.0	18.7		16.5	19.6
Queue Delay		0.0	0.0		0.0	0.0
Total Delay		3.0	18.7		16.5	19.6
LOS		A	В		B	В
Approach Delay	3.0		18.7		5	19.6
Approach LOS	Δ		R			10.0 R
Ouque Length 50th (m)	A	0.0	16 F		20	/0.7
Queue Length Out (III)		0.0	40.5		2.0	49.7
Queue Length 95th (m)	000 7	Z.1	00.4		1.5	70.5
Internal Link Dist (m)	292.7		258.7			148.8
Turn Bay Length (m)					67.5	
Base Capacity (vph)		641	1361		133	1370
Starvation Cap Reductn		0	0		0	0
Spillback Cap Reductn		0	0		0	0
Storage Cap Reductn		0	0		0	0
Reduced v/c Ratio		0.04	0.74		0.22	0.76
Internetion Commons						
Intersection Summary						
Cycle Length: 60						
Actuated Cycle Length: 60						
Offset: 29 (48%), Referenced	to phase	2:NBT a	ind 6:SBT	L, Start of	f Green	
Natural Cycle: 60						
Control Type: Actuated-Coord	linated					
y						

Scenario 1 1400 Bank Street 12:00 am 08/13/2021 Existing PM Peak Hour

Synchro 11 Report Page 4

09/14/2021

2: Bank & Randall		09/14/2021
Maximum v/c Ratio: 0.76		
Intersection Signal Delay: 18.9	Intersection LOS: B	
Intersection Capacity Utilization 56.2%	ICU Level of Service B	
Analysis Period (min) 15		

Scenario 1 1400 Bank Street 12:00 am 08/13/2021 Existing PM Peak Hour

Collision Data

Accident Date	Accident Year	Accident Time	Location	Environment Condition	Light	Traffic Control	Traffic Control Condition	Classification Of Accident	Initial Impact Type	Road Surface Condition
4/28/2015	2015	17:12	BANK ST @ ROCKINGHAM AVE	01 - Clear	01 - Daylight	02 - Stop sign		02 - Non-fatal injury	02 - Angle	01 - Dry
1/7/2015	2015	15:31	BANK ST @ ROCKINGHAM AVE	03 - Snow	01 - Daylight	02 - Stop sign		03 - P.D. only	99 - Other	06 - Ice
2/17/2016	2016	15:30	BANK ST @ ROCKINGHAM AVE	01 - Clear	01 - Daylight	02 - Stop sign		03 - P.D. only	03 - Rear end	02 - Wet
3/4/2015	2015	13:29	BANK ST @ KILBORN AVE/BELANGER AVE	01 - Clear	01 - Daylight	01 - Traffic signal		02 - Non-fatal injury	02 - Angle	01 - Dry
1/6/2015	2015	22:39	BANK ST @ KILBORN AVE/BELANGER AVE	03 - Snow	07 - Dark	01 - Traffic signal		02 - Non-fatal injury	03 - Rear end	03 - Loose snow
4/12/2015	2015	17:00	BANK ST @ KILBORN AVE/BELANGER AVE	01 - Clear	01 - Daylight	01 - Traffic signal		02 - Non-fatal injury	03 - Rear end	01 - Dry
3/30/2015	2015	21:09	BANK ST @ KILBORN AVE/BELANGER AVE	01 - Clear	07 - Dark	01 - Traffic signal		03 - P.D. only	99 - Other	01 - Dry
3/17/2015	2015	7:59	BANK ST @ KILBORN AVE/BELANGER AVE	02 - Rain	01 - Daylight	01 - Traffic signal		03 - P.D. only	03 - Rear end	02 - Wet
3/20/2015	2015	13:18	BANK ST @ KILBORN AVE/BELANGER AVE	01 - Clear	01 - Daylight	01 - Traffic signal		03 - P.D. only	05 - Turning movement	01 - Dry
4/2/2015	2015	20:06	BANK ST @ KILBORN AVE/BELANGER AVE	02 - Rain	07 - Dark	01 - Traffic signal		03 - P.D. only	05 - Turning movement	02 - Wet
6/5/2015	2015	14:38	BANK ST @ KILBORN AVE/BELANGER AVE	01 - Clear	01 - Daylight	01 - Traffic signal		03 - P.D. only	03 - Rear end	01 - Dry
2/28/2015	2015	14:43	BANK ST @ KILBORN AVE/BELANGER AVE	01 - Clear	01 - Davlight	01 - Traffic signal		03 - P.D. only	02 - Angle	01 - Drv
6/29/2015	2015	16:22	BANK ST @ KILBORN AVE/BELANGER AVE	01 - Clear	01 - Davlight	01 - Traffic signal		03 - P.D. only	03 - Rear end	01 - Drv
9/12/2015	2015	10:45	BANK ST @ KILBORN AVE/BELANGER AVE	02 - Rain	01 - Davlight	01 - Traffic signal		03 - P.D. only	05 - Turning movement	02 - Wet
12/4/2015	2015	13:42	BANK ST @ KILBORN AVE/BELANGER AVE	01 - Clear	01 - Davlight	01 - Traffic signal		03 - P.D. only	03 - Rear end	01 - Drv
11/20/2015	2015	9:13	BANK ST @ KILBORN AVE/BELANGER AVE	01 - Clear	01 - Davlight	01 - Traffic signal		03 - P.D. only	03 - Rear end	01 - Drv
9/1/2016	2016	11:46	BANK ST @ KILBORN AVE/BELANGER AVE	01 - Clear	01 - Davlight	01 - Traffic signal		02 - Non-fatal injury	02 - Angle	01 - Drv
10/6/2016	2016	12:05	BANK ST @ KILBORN AVE/BELANGER AVE	01 - Clear	01 - Davlight	01 - Traffic signal		02 - Non-fatal injury	03 - Rear end	01 - Drv
9/26/2016	2016	5:41	BANK ST @ KILBORN AVE/BELANGER AVE	01 - Clear	07 - Dark	01 - Traffic signal		02 - Non-fatal injury	02 - Angle	01 - Drv
8/12/2016	2016	14:51	BANK ST @ KILBORN AVE/BELANGER AVE	01 - Clear	01 - Davlight	01 - Traffic signal		03 - P.D. only	03 - Rear end	01 - Drv
8/12/2016	2016	14:51	BANK ST @ KII BORN AVE/RELANGER AVE	01 - Clear	01 - Davlight	01 - Traffic signal		03 - P.D. only	03 - Rear end	01 - Dry
6/3/2016	2016	7:03	BANK ST @ KII BORN AVE/RELANGER AVE	01 - Clear	01 - Davlight	01 - Traffic signal		03 - P.D. only	03 - Rear end	01 - Dry
5/13/2017	2017	13.54	BANK ST @ KILBORN AVE/BELANGER AVE	02 - Rain	01 - Davlight	01 - Traffic signal		03 - P.D. only	05 - Turning movement	02 - Wet
11/22/2017	2017	10:49	BANK ST @ KILBORN AVE/BELANGER AVE	01 - Clear	01 - Daylight	01 - Traffic signal		02 - Non-fatal injuny	05 - Turning movement	02 - Wet
2/14/2017	2017	18:03	BANK ST @ KILBORN AVE/BELANGER AVE	03 - Snow	07 - Dark	01 - Traffic signal		03 - P.D. only	05 - Turning movement	03 - Loose snow
1/1/2017	2017	11:41	PANK ST @ KILBORN AVE/BELANGER AVE	01 Clear	01 Davlight	01 Traffic signal		02 R.D. only	99. Other	02 Wet
2/1/2017	2017	0.26	BANK ST @ KIEDONN AVE/BEDANGER AVE	02 Pain	01 - Daylight	01 - Traffic signal		03 Non fatal injuny	OF Turning movement	02 - Wet
1/14/2018	2017	12:21	BANK ST @ KILBORN AVE/BELANGER AVE (0007208)	02 - Kain 01 - Clear	01 - Daylight	01 - Traffic signal		02 - Non-fatal injury	05 - Turning movement	02 - Wet
2/7/2018	2018	17:20	BANK ST @ KILBORN AVE/BELANGER AVE (0007208)	03 - Snow	05 - Dusk	01 - Traffic signal		03 - P.D. only	05 - Turning movement	03 - Loose snow
2/14/2019	2010	21:50	PANK ST @ KILBORN AVE/BELANGER AVE (0007208)	01 Clear	07 Dark	01 Traffic signal		02 Non fatal injury	07 SM/ othor	01 Dov
C/21/2018	2018	12-22	BANK ST @ KILBORN AVE/BELANGER AVE (0007208)	01 - Clear	01 Davlight	01 - Traffic signal		02 - Non-fatal injury	07 SMV other	01 - Dry
7/5/2018	2018	15.32	BANK ST @ KILBORN AVE/BELANGER AVE (0007208)	01 - Clear	01 - Daylight	01 - Traffic signal		02 - Non-fatal injury	07 SMV other	01 - Dry
9/1/2018	2018	17:10	BANK ST @ KILBORN AVE/BELANGER AVE (0007208)	01 - Clear	01 - Daylight	01 - Traffic signal		02 - Non-ratar injury	OF Turning movement	01 - Dry
0/1/2010	2018	17.15	BANK ST @ KILBORN AVE/BELANGER AVE (0007208)	01 - Clear	01 - Daylight	01 - Traffic signal		03 Non fatal injuny	07 SMV othor	01 - Dry
0/7/2010	2018	12.40	DANK ST @ KILDORN AVE/BELANGER AVE (0007208)	01 - Clear	01 - Daylight	01 - Traffic signal		02 - Non-ratal injury	07 - Siviv Other	01 - DIY
10/18/2018	2018	16.12	DANK ST @ KILDORN AVE/BELANGER AVE (0007208)	01 - Clear	01 - Daylight	01 - Traffic signal		03 - P.D. only	99 - Ottler	01 - DIY
10/30/2018	2018	10.10	DANK ST @ KILDORN AVE/BELANGER AVE (0007208)	01 - Clear	01 - Daylight	01 - Traffic signal		03 - P.D. only	04 - Sideswipe	01 - DIY
10/27/2018	2018	15.04	BANK ST @ KILBORN AVE/BELANGER AVE (0007208)	01 - Clear	01 - Daylight	01 - Traffic signal		03 - P.D. Offy	US - Real ellu	01 - DIV
1/14/2019	2019	10.56	BANK ST @ KILBORN AVE/BELANGER AVE (0007208)	01 - Clear	01 - Daylight	01 - Traffic signal		03 - P.D. Offy	UZ - Aligie	01 - DIV
//18/2019	2019	14:15	BANK ST @ KILBORN AVE/BELANGER AVE (0007208)	01 - Clear	01 - Daylight	01 - Traffic signal		03 - P.D. only	05 - Turning movement	UI - Dry
8/30/2019	2019	15:15	BANK ST @ KILBORN AVE/BELANGER AVE (0007208)	01 - Clear	01 - Daylight	01 - Traffic signal		U3 - P.D. only	05 - Turning movement	01 - Dry
0/11/2019	2019	20.16	DANK ST @ KILBORN AVE/BELANGER AVE (0007208)	02 - Ralli	01 Daviett	02 - Traffic Signal		02 - Non-ratal injury	00 Other	02 - Wet
9/11/2019	2019	10.10	DANK ST (# OHIO ST (0002239)	01 - Clear	01 - Daylight	10. No sentral		03 - P.D. Ulily	99 - Ottler	01 - DIY
1/27/2015	2015	11.00	BANK ST DIWI ONIO ST & BELANGER AVE	01 - Clear	01 - Daylight	10 - NO CONTROL		02 - Non-ratal Injury	07 - Siviv Other	01 - DIV
8/2//2015	2015	17:40	BANK ST DUWN OHIO ST & BELANGER AVE	UI - Clear	01 - Daylight	10 - No control		U2 - Non-ratal injury	U3 - Rear end	UI - Dry
2/25/2016	2016	1:54	BANK ST DTWN UHIU ST & BELANGER AVE	UZ - Rain	U7 - Dark	10 - No control		U2 - Non-tatal injury	07 - SNIV other	U4 - Slush
3/18/2019	2019	9:02	BANK ST btwn OHIO ST & BELANGER AVE (3ZA3BQ)	01 - Clear	01 - Daylight	10 - No control		02 - Non-fatal injury	03 - Rear end	01 - Dry
1/26/2016	2016	13:33	BANK ST btwn BELANGER AVE & ROCKINGHAM AVE	01 - Clear	01 - Daylight	10 - No control		03 - P.D. only	03 - Rear end	01 - Dry
5/23/2017	2017	11:48	BANK ST btwn BELANGER AVE & ROCKINGHAM AVE	01 - Clear	01 - Daylight	10 - No control		03 - P.D. only	04 - Sideswipe	01 - Dry
5/10/2017	2017	16:00	BANK ST btwn BELANGER AVE & ROCKINGHAM AVE	01 - Clear	01 - Daylight	10 - No control		03 - P.D. only	03 - Rear end	01 - Dry
3/26/2017	2017	13:55	BANK ST btwn BELANGER AVE & ROCKINGHAM AVE	02 - Rain	01 - Daylight	10 - No control		03 - P.D. only	02 - Angle	03 - Loose snow
1/26/2016	2016	13:33	BANK ST btwn BELANGER AVE & ROCKINGHAM AVE	01 - Clear	01 - Daylight	10 - No control		03 - P.D. only	03 - Rear end	01 - Dry
5/23/2017	2017	11:48	BANK ST btwn BELANGER AVE & ROCKINGHAM AVE	01 - Clear	01 - Daylight	10 - No control		03 - P.D. only	04 - Sideswipe	01 - Dry
5/10/2017	2017	16:00	BANK ST btwn BELANGER AVE & ROCKINGHAM AVE	01 - Clear	01 - Daylight	10 - No control		03 - P.D. only	03 - Rear end	01 - Dry
3/26/2017	2017	13:55	BANK ST btwn BELANGER AVE & ROCKINGHAM AVE	02 - Rain	01 - Daylight	10 - No control		03 - P.D. only	02 - Angle	03 - Loose snow
1/23/2019	2019	18:30	BANK ST btwn BELANGER AVE & ROCKINGHAM AVE (3ZBOEG)	03 - Snow	07 - Dark	10 - No control		03 - P.D. only	02 - Angle	04 - Slush
12/2/2019	2019	17:28	BANK ST btwn BELANGER AVE & ROCKINGHAM AVE (3ZBOEG)	01 - Clear	07 - Dark	10 - No control		03 - P.D. only	03 - Rear end	01 - Dry
1/23/2019	2019	18:30	BANK ST btwn BELANGER AVE & ROCKINGHAM AVE (3ZBOEG)	03 - Snow	07 - Dark	10 - No control		03 - P.D. only	02 - Angle	04 - Slush
12/2/2019	2019	17:28	BANK ST btwn BELANGER AVE & ROCKINGHAM AVE (3ZBOEG)	01 - Clear	07 - Dark	10 - No control		03 - P.D. only	03 - Rear end	01 - Dry
4/29/2015	2015	8:30	BELANGER AVE btwn CLEMENTINE BLVD & BANK ST	01 - Clear	01 - Daylight	10 - No control		03 - P.D. only	02 - Angle	01 - Dry
2/29/2016	2016	13:05	BELANGER AVE btwn CLEMENTINE BLVD & BANK ST	01 - Clear	01 - Daylight	10 - No control		03 - P.D. only	06 - SMV unattended vehicle	02 - Wet
2/25/2017	2017	16:30	BELANGER AVE btwn CLEMENTINE BLVD & BANK ST	02 - Rain	01 - Daylight	10 - No control		03 - P.D. only	06 - SMV unattended vehicle	02 - Wet
11/13/2018	2018	14:15	BELANGER AVE by CLEMENTINE BLVD & BANK ST (37BOLIA)	03 - Snow	01 - Davlight	10 - No control		03 - P.D. only	06 - SMV unattended vehicle	02 - Wet

Appendix E

Synchro Intersection Worksheets – 2026 Future Background Conditions

Lanes, Volumes, Timings 1: Bank & Belanger/Lamira 09/14/2021												
	≯	-	\mathbf{r}	4	-	•	-	†	1	1	Ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			- •	1	1	↑ ĵ≽			≜1 ≱	
Traffic Volume (vph)	67	26	6	97	3	285	31	1066	76	146	540	15
Future Volume (vph)	67	26	6	97	3	285	31	1066	76	146	540	15
Satd. Flow (prot)	0	1561	0	0	1665	1469	1595	3180	0	1595	3156	0
Flt Permitted		0.718			0.661		0.444			0.103		
Satd. Flow (perm)	0	1138	0	0	1152	1407	734	3180	0	173	3156	0
Satd. Flow (RTOR)		4				285		9			4	
Lane Group Flow (vph)	0	99	0	0	100	285	31	1142	0	146	555	0
Turn Type	Perm	NA		Perm	NA	Perm	Perm	NA		pm+pt	NA	
Protected Phases		4			8			2		1	6	
Permitted Phases	4			8		8	2			6		
Detector Phase	4	4		8	8	8	2	2		1	6	
Switch Phase												
Minimum Initial (s)	10.0	10.0		10.0	10.0	10.0	10.0	10.0		5.0	10.0	
Minimum Split (s)	33.3	33.3		33.3	33.3	33.3	34.9	34.9		10.9	34.9	
Total Split (s)	34.0	34.0		34.0	34.0	34.0	36.0	36.0		15.0	51.0	
Total Split (%)	37.8%	37.8%		37.8%	37.8%	37.8%	40.0%	40.0%		16.7%	56.7%	
Yellow Time (s)	3.3	3.3		3.3	3.3	3.3	3.3	3.3		3.3	3.3	
All-Red Time (s)	3.0	3.0		3.0	3.0	3.0	2.6	2.6		2.6	2.6	
Lost Time Adjust (s)		0.0			0.0	0.0	0.0	0.0		0.0	0.0	
Total Lost Time (s)		6.3			6.3	6.3	5.9	5.9		5.9	5.9	
Lead/Lag	Lag	Lag		Lag	Lag	Lag	Lag	Lag		Lead		
Lead-Lag Optimize?	Yes	Yes		Yes	Yes	Yes	Yes	Yes		Yes		
Recall Mode	None	None		None	None	None	C-Max	C-Max		None	C-Max	
Act Effct Green (s)		22.3			20.3	20.3	40.1	40.1		54.5	54.5	
Actuated g/C Ratio		0.25			0.23	0.23	0.45	0.45		0.61	0.61	
v/c Ratio		0.35			0.39	0.53	0.10	0.80		0.61	0.29	
Control Delay		27.7			31.6	7.0	14.5	25.9		24.7	10.8	
Queue Delay		0.0			0.0	0.0	0.0	0.0		0.0	0.0	
Total Delay		27.7			31.6	7.0	14.5	25.9		24.7	10.8	
LOS		С			С	А	В	С		С	В	
Approach Delay		27.7			13.4			25.6			13.7	
Approach LOS		С			В			С			В	
Queue Length 50th (m)		11.4			13.2	0.0	2.6	~116.2		13.0	28.3	
Queue Length 95th (m)		25.7			26.4	17.3	m6.8	#155.7		#30.3	39.3	
Internal Link Dist (m)		168.3			242.0			148.9			322.6	
Turn Bay Length (m)						42.0	60.0			56.5		
Base Capacity (vph)		375			354	630	326	1420		255	1914	
Starvation Cap Reductn		0			0	0	0	0		0	0	
Spillback Cap Reductn		0			0	0	0	0		0	0	
Storage Cap Reductn		0			0	0	0	0		0	0	
Reduced v/c Ratio		0.26			0.28	0.45	0.10	0.80		0.57	0.29	
Intersection Summary												
Cycle Length: 90												
Actuated Cycle Length: 90												
Offset: 4 (4%), Referenced to	phase 2	:NBTL an	d 6:SBTL	, Start of	Green							
Natural Cycle: 85												
Control Type: Actuated-Coor	dinated											

Scenario 1 1400 Bank Street 12:00 am 08/13/2021 2026 Future Background AM Peak Hour

Synchro 11 Report Page 1 Lanes, Volumes, Timings 1: Bank & Belanger/Lamira

09/14/2021

ane Group	Ø3	Ø7
Lane Configurations		
Troffic Volume (uph)		
Future Volume (vph)		
ruture volume (vpn)		
Satd. Flow (prot)		
FIt Permitted		
Satd. Flow (perm)		
Satd. Flow (RTOR)		
Lane Group Flow (vph)		
Turn Type		
Protected Phases	3	7
Permitted Phases		
Detector Phase		
Switch Phase		
Minimum Initial (s)	10	10
Minimum Split (s)	5.0	5.0
Total Salit (a)	5.0	5.0
Total Split (%)	5.0	5.0
Total Spiit (%)	0%	0%
reliow Time (s)	2.0	2.0
All-Red Lime (s)	0.0	0.0
Lost Time Adjust (s)		
Total Lost Time (s)		
Lead/Lag	Lead	Lead
Lead-Lag Optimize?	Yes	Yes
Recall Mode	None	None
Act Effct Green (s)		
Actuated g/C Ratio		
v/c Ratio		
Control Delay		
Total Delay		
LUS Assessed Delay		
Approach Delay		
Approach LOS		
Queue Length 50th (m)		
Queue Length 95th (m)		
Internal Link Dist (m)		
Turn Bay Length (m)		
Base Capacity (vph)		
Starvation Cap Reductn		
Spillback Cap Reductn		
Storage Can Reducto		
Reduced v/c Ratio		
Intersection Summary		

Scenario 1 1400 Bank Street 12:00 am 08/13/2021 2026 Future Background AM Peak Hour

Lanes, Volumes, Timings		
1: Bank & Belanger/Lamira		09/14/2021
Maximum v/c Ratio: 0.80		
Intersection Signal Delay: 20.2	Intersection LOS: C	
Intersection Capacity Utilization 80.6%	ICU Level of Service D	
Analysis Period (min) 15		
 Volume exceeds capacity, queue is theoretically 	y infinite.	
Queue shown is maximum after two cycles.		
# 95th percentile volume exceeds capacity, queue	e may be longer.	
Queue shown is maximum after two cycles.		
m Volume for 95th percentile queue is metered by	y upstream signal.	

Splits and Phases: 1: Bank & Belanger/Lamira

Ø1	🖉 🔨 🖉 Ø2 (R)	● _{∅β} -4 ₀₄	
15 s	36 s	5 s 34 s	
Ø6 (R)		● ₀₇ ∜ øs	
51 s		5 5 34 5	

۰. Ť. 1 1 - ŧ € SBL Lane Group WBL WBR NBT NBR SBT Lane Configurations **۴**۴ **††** 682 Traffic Volume (vph) 0 54 836 31 12 Future Volume (vph) 0 54 836 31 12 682 Satd. Flow (prot) 1510 3205 1658 3221 0 0 Flt Permitted 0.293 Satd. Flow (perm) 0 1484 3205 0 510 3221 Satd. Flow (RTOR) 178 7 Lane Group Flow (vph) 0 54 867 0 12 682 Turn Type Perm NA Perm NA Protected Phases 2 6 8 Permitted Phases 6 Detector Phase 8 2 6 6 Switch Phase 10.0 Minimum Initial (s) 5.0 10.0 10.0 29.0 24.2 24.2 Minimum Split (s) 29.2 Total Split (s) 29.0 61.0 61.0 61.0 32.2% 67.8% 67.8% 67.8% Total Split (%) Yellow Time (s) 3.3 3.0 3.3 3.3 All-Red Time (s) 1.0 2.9 2.9 2.9 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 Total Lost Time (s) 4.0 6.2 6.2 6.2 Lead/Lag Lead-Lag Optimize? Recall Mode C-Max C-Max Ped C-Max Act Effct Green (s) 25.0 54.8 54.8 54.8 Actuated g/C Ratio 0.28 0.61 0.61 0.61 v/c Ratio 0.10 0.04 0.35 0.44 Control Delay 0.4 10.2 4.8 6.4 Queue Delay 0.0 0.0 0.0 0.0 Total Delay 0.4 10.2 4.8 6.4 LOS А B А Α 0.4 Approach Delay 10.2 6.3 Approach LOS В А Α Queue Length 50th (m) 0.0 38.2 0.5 16.0 0.0 50.7 m1.7 20.4 Queue Length 95th (m) Internal Link Dist (m) 292.7 258.7 148.9 Turn Bay Length (m) 67.5 540 1954 310 Base Capacity (vph) 1961 Starvation Cap Reductn 0 0 0 0 Spillback Cap Reductn 0 0 0 0 Storage Cap Reductn 0 0 0 0 Reduced v/c Ratio 0.10 0.44 0.04 0.35 Intersection Summary Cycle Length: 90 Actuated Cycle Length: 90 Offset: 72 (80%), Referenced to phase 2:NBT and 6:SBTL, Start of Green Natural Cycle: 60

Control Type: Actuated-Coordinated

Lanes, Volumes, Timings 2: Bank & Randall

Scenario 1 1400 Bank Street 12:00 am 08/13/2021 2026 Future Background AM Peak Hour

Synchro 11 Report Page 4

09/14/2021

Scenario 1 1400 Bank Street 12:00 am 08/13/2021 2026 Future Background AM Peak Hour

Lanes, Volumes, Timings	
2. Ponk & Dondoll	

2: Bank & Randall

Maximum v/c Ratio: 0.44

Maximum v/c Ratio: 0.44	
Intersection Signal Delay: 8.2	Intersection LOS: A
Intersection Capacity Utilization 54.8%	ICU Level of Service A
Analysis Period (min) 15	
m Volume for 95th percentile queue is metered by upstream	signal.

Splits and Phases: 2: Bank & Randall

∮ Ø2 (R)	
61s	
	~
🕈 Ø6 (R)	Ø8
61s	29 s

	≯	_	~	~	+	•	•	ŧ	*	6	T	1
l ane Group	FBI	FBT	FBR	WBI	WBT	WBR	NBI	NBT	NBR	SBI	SBT	SB
Lane Configurations	202	<u></u>	2011		1	#	*	A1.		*	A1.	
Traffic Volume (vnh)	46	15	21	119	54	142	40	866	75	251	969	2
Future Volume (vph)	46	15	21	119	54	142	40	866	75	251	969	2
Satd Flow (prot)	0	1530	0	0	1688	1483	1537	3265	0	1658	3290	-
Elt Permitted	v	0 713	v	v	0 774	1400	0 290	0200	Ū	0 156	0200	
Satd Flow (perm)	0	1115	0	0	1346	1447	461	3265	0	271	3290	
Satd. Flow (RTOR)	, i i i i i i i i i i i i i i i i i i i	20	Ŭ	· ·	1010	142		11	· ·	2	3	
Lane Group Flow (vph)	0	82	0	0	173	142	40	941	0	251	989	
Turn Type	Perm	NA		Perm	NA	Perm	Perm	NA		pm+pt	NA	
Protected Phases		4			8			2		1	6	
Permitted Phases	4			8	-	8	2			6	-	
Detector Phase	4	4		8	8	8	2	2		1	6	
Switch Phase												
Minimum Initial (s)	10.0	10.0		10.0	10.0	10.0	10.0	10.0		5.0	10.0	
Minimum Split (s)	33.3	33.3		33.3	33.3	33.3	34.9	34.9		10.9	34.9	
Total Split (s)	34.0	34.0		34.0	34.0	34.0	36.0	36.0		15.0	51.0	
Total Split (%)	37.8%	37.8%		37.8%	37.8%	37.8%	40.0%	40.0%		16.7%	56.7%	
Yellow Time (s)	3.3	3.3		3.3	3.3	3.3	3.3	3.3		3.3	3.3	
All-Red Time (s)	3.0	3.0		3.0	3.0	3.0	2.6	2.6		2.6	2.6	
Lost Time Adjust (s)		0.0			0.0	0.0	0.0	0.0		0.0	0.0	
Total Lost Time (s)		6.3			6.3	6.3	5.9	5.9		5.9	5.9	
Lead/Lag	Lag	Lag		Lag	Lag	Lag	Lag	Lag		Lead		
Lead-Lag Optimize?	Yes	Yes		Yes	Yes	Yes	Yes	Yes		Yes		
Recall Mode	None	None		None	None	None	C-Max	C-Max		None	C-Max	
Act Effct Green (s)		17.8			17.8	17.8	37.8	37.8		59.0	59.0	
Actuated g/C Ratio		0.20			0.20	0.20	0.42	0.42		0.66	0.66	
v/c Ratio		0.35			0.65	0.35	0.21	0.68		0.61	0.46	
Control Delay		26.1			43.7	7.3	23.4	25.8		18.8	9.9	
Queue Delay		0.0			0.0	0.0	0.0	0.0		0.0	0.0	
Total Delay		26.1			43.7	7.3	23.4	25.8		18.8	9.9	
LOS		С			D	A	С	С		В	A	
Approach Delay		26.1			27.3			25.7			11.7	
Approach LOS		С			С			С			В	
Queue Length 50th (m)		9.3			28.0	0.0	4.3	66.7		14.7	36.8	
Queue Length 95th (m)		19.1			42.3	12.5	13.6	#111.1		#63.5	78.3	
Internal Link Dist (m)		168.3			242.0			149.1			322.6	
Turn Bay Length (m)						42.0	60.0			56.5		
Base Capacity (vph)		357			414	543	193	1377		413	2157	
Starvation Cap Reductn		0			0	0	0	0		0	0	
Spillback Cap Reductn		0			0	0	0	0		0	0	
Storage Cap Reductn		0			0	0	0	0		0	0	
Reduced v/c Ratio		0.23			0.42	0.26	0.21	0.68		0.61	0.46	
Intersection Summary												
Cycle Length: 90												
Actuated Cycle Length: 90												
Offset: 19 (21%), Reference	ed to phase	2:NBTL a	and 6:SB	TL, Start	of Green							
Natural Cycle: 85												
Control Type: Actuated-Coc	rdinated											

Scenario 1 1400 Bank Street 12:00 am 08/13/2021 2026 Future Background AM Peak Hour

Synchro 11 Report Page 5

PM Peak Hour

09/14/2021

Lanes,	Volumes, Timings	
1: Bank	& Belanger/Lamira	

09/14/2021

Lane Group	Ø3	Ø7
Lane Configurations		
Traffic Volume (vph)		
Future Volume (vph)		
Satd. Flow (prot)		
Flt Permitted		
Satd. Flow (perm)		
Satd. Flow (RTOR)		
Lane Group Flow (vph)		
Turn Type		
Protected Phases	3	7
Permitted Phases	-	
Detector Phase		
Switch Phase		
Minimum Initial (s)	1.0	1.0
Minimum Split (s)	5.0	5.0
Total Split (s)	5.0	5.0
Total Split (%)	6%	6%
Yellow Time (s)	2.0	20
All-Red Time (s)	0.0	0.0
Lost Time Adjust (s)	0.0	0.0
Total Lost Time (s)		
	bool	bool
Leau/Lay	Ves	Ves
Recall Mode	Nono	Nono
Act Effet Croop (c)	INOUL	NULLE
Actuated a/C Patia		
Noticaleu y/C Ralio		
V/G RdIIU Centrel Deley		
Control Delay		
Queue Delay		
Total Delay		
LUS Assessed Deless		
Approach Delay		
Approach LOS		
Queue Length 50th (m)		
Queue Length 95th (m)		
Internal Link Dist (m)		
Turn Bay Length (m)		
Base Capacity (vph)		
Starvation Cap Reductn		
Spillback Cap Reductn		
Storage Cap Reductn		
Reduced v/c Ratio		
Intersection Summary		
intersection summary		

 1: Bank & Belanger/Lamira
 09/14/2021

 Maximum v/c Ratio: 0.68
 Intersection LOS: B

 Intersection Capacity Utilization 74.1%
 ICU Level of Service D

 Analysis Period (min) 15
 #

 # 95th percentile volume exceeds capacity, queue may be longer.
 Queue shown is maximum after two cycles.

Splits and Phases: 1: Bank & Belanger/Lamira

Lanes, Volumes, Timings

Ø1	↓ [↑] Ø2 (R)	● _{Ø3} → _{Ø4}
15 s	36 s	5 s 34 s
Ø6 (R)	•	● _{Ø7} ◆ _{Ø8}
51 s		5 9 34 9

Scenario 1 1400 Bank Street 12:00 am 08/13/2021 2026 Future Background PM Peak Hour

Synchro 11 Report Page 2 Scenario 1 1400 Bank Street 12:00 am 08/13/2021 2026 Future Background PM Peak Hour

Lanes, Volumes, Timings
2: Bank & Randall

	4		1	1	1	ţ
Lane Group	WBI	WBR	NBT	NBR	SBI	SBT
Lane Configurations	TIDL	1	A1-			
	0	25	1046	57	26	9/0
Future Volume (vph)	0	20	1040	57	20	040
Sote Elow (prot)	0	1510	2070	57	1659	2210
Satu. Flow (plot)	0	1510	3210	0	0 161	2210
Sote Elow (norm)	0	1/00	2070	0	0.101	2210
Salu. Flow (perm)	0	1480	3218	0	279	3316
Sata. Flow (KTUK)	0	30	11	0	00	040
Lane Group Flow (vpn)	0	25	1103	0	26	949
Turn Type		Perm	NÁ		Perm	NA
Protected Phases		_	2			6
Permitted Phases		8			6	
Detector Phase		8	2		6	6
Switch Phase						
Minimum Initial (s)		5.0	10.0		10.0	10.0
Minimum Split (s)		29.0	29.2		24.2	24.2
Total Split (s)		29.0	31.0		31.0	31.0
Total Split (%)		48.3%	51.7%		51.7%	51.7%
Yellow Time (s)		3.0	3.3		3.3	3.3
All-Red Time (s)		1.0	2.9		2.9	2.9
Lost Time Adjust (s)		0.0	0.0		2.5	2.5
Total Lost Time (s)		0.0	6.2		6.0	6.0
		4.0	0.2		0.2	0.2
Lead Lag Optimize2						
Leau-Lag Optimize?		D. I	0.11		0.14-	0.14-
Recall Mode		Ped	C-Max		C-Max	C-Max
Act Effct Green (s)		25.0	24.8		24.8	24.8
Actuated g/C Ratio		0.42	0.41		0.41	0.41
v/c Ratio		0.04	0.81		0.23	0.69
Control Delay		4.3	21.5		17.6	17.8
Queue Delay		0.0	0.0		0.0	0.0
Total Delay		4.3	21.5		17.6	17.8
LOS		A	С		В	В
Approach Delay	4.3		21.5			17.7
Approach LOS	A		C			B
Queue Length 50th (m)	~	0.0	53.3		1.8	43.1
Queue Length 95th (m)		3.0	#77 /		7.0	40.1
Internal Link Dist (m)	202.7	J.Z	258.7		1.2	1/0 1
Turn Day Length (m)	292.1		200.7		67.5	149.1
Turn Bay Length (m)		004	4004		67.5	4070
Base Capacity (vph)		634	1361		115	1370
Starvation Cap Reductn		0	0		0	0
Spillback Cap Reductn		0	0		0	0
Storage Cap Reductn		0	0		0	0
Reduced v/c Ratio		0.04	0.81		0.23	0.69
Intersection Summary						
Cycle Length: 60						
Actuated Cycle Length: 60						
Offset: 29 (48%), Referenced	to phase	2:NBT a	nd 6:SBT	L, Start o	f Green	
Natural Cycle: 60						
Control Type: Actuated-Coord	linated					
Control Type: Actuated-Coord	Inated					

Scenario 1 1400 Bank Street 12:00 am 08/13/2021 2026 Future Background PM Peak Hour

Synchro 11 Report Page 4

09/14/2021

Lanes, Volumes, Timings		
2: Bank & Randall		09/14/2021
Maximum v/c Ratio: 0.81		
Intersection Signal Delay: 19.6	Intersection LOS: B	
Intersection Capacity Utilization 61.9%	ICU Level of Service B	
Analysis Period (min) 15		
# 95th percentile volume exceeds capacity, queue	e may be longer.	
Queue shown is maximum after two cycles.		

Splits and Phases: 2: Bank & Randall

Scenario 1 1400 Bank Street 12:00 am 08/13/2021 2026 Future Background PM Peak Hour

Appendix F

Synchro Intersection Worksheets – 2031 Future Background Conditions

1: Bank & Belanger	imings r/Lamira	а									09/	14/2021
	۶	-	\mathbf{r}	*	+	*	1	1	1	1	Ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations					ન	1	শ	≜î ≽		ሻ	≜î ≽	
Traffic Volume (vph)	67	26	6	97	3	285	31	1066	76	146	589	15
Future Volume (vph)	67	26	6	97	3	285	31	1066	76	146	589	15
Satd. Flow (prot)	0	1561	0	0	1665	1469	1595	3180	0	1595	3158	(
Flt Permitted		0.718			0.661		0.423			0.103		
Satd. Flow (perm)	0	1138	0	0	1152	1407	700	3180	0	173	3158	(
Satd. Flow (RTOR)		4				285		9			4	
Lane Group Flow (vph)	0	99	0	0	100	285	31	1142	0	146	604	(
Turn Type	Perm	NA		Perm	NA	Perm	Perm	NA		pm+pt	NA	
Protected Phases		4			8			2		1	6	
Permitted Phases	4			8		8	2			6		
Detector Phase	4	4		8	8	8	2	2		1	6	
Switch Phase												
Minimum Initial (s)	10.0	10.0		10.0	10.0	10.0	10.0	10.0		5.0	10.0	
Minimum Split (s)	33.3	33.3		33.3	33.3	33.3	34.9	34.9		10.9	34.9	
Total Split (s)	34.0	34.0		34.0	34.0	34.0	36.0	36.0		15.0	51.0	
Total Split (%)	37.8%	37.8%		37.8%	37.8%	37.8%	40.0%	40.0%		16.7%	56.7%	
Yellow Time (s)	3.3	3.3		3.3	3.3	3.3	3.3	3.3		3.3	3.3	
All-Red Time (s)	3.0	3.0		3.0	3.0	3.0	2.6	2.6		2.6	2.6	
Lost Time Adjust (s)		0.0			0.0	0.0	0.0	0.0		0.0	0.0	
Total Lost Time (s)		6.3			6.3	6.3	5.9	5.9		5.9	5.9	
Lead/Lag	Lag	Lag		Lag	Lag	Lag	Lag	Lag		Lead		
Lead-Lag Optimize?	Yes	Yes		Yes	Yes	Yes	Yes	Yes		Yes		
Recall Mode	None	None		None	None	None	C-Max	C-Max		None	C-Max	
Act Effct Green (s)		22.3			20.3	20.3	40.1	40.1		54.5	54.5	
Actuated g/C Ratio		0.25			0.23	0.23	0.45	0.45		0.61	0.61	
v/c Ratio		0.35			0.39	0.53	0.10	0.80		0.61	0.32	
Control Delay		27.7			31.6	7.0	14.6	25.9		24.7	11.0	
Queue Delay		0.0			0.0	0.0	0.0	0.0		0.0	0.0	
Total Delay		27.7			31.6	7.0	14.6	25.9		24.7	11.0	
LOS		С			С	A	В	С		С	В	
Approach Delay		27.7			13.4			25.6			13.7	
Approach LOS		С			В			С			В	
Queue Length 50th (m)		11.4			13.2	0.0	2.6	~116.2		13.0	31.4	
Queue Length 95th (m)		25.7			26.4	17.3	m6.9	#155.7		#30.3	43.2	
Internal Link Dist (m)		168.3			242.0			148.9			322.6	
Turn Bay Length (m)						42.0	60.0			56.5		
Base Capacity (vph)		375			354	630	311	1420		255	1915	
Starvation Cap Reductn		0			0	0	0	0		0	0	
Spillback Cap Reductn		0			0	0	0	0		0	0	
Storage Cap Reductn		0			0	0	0	0		0	0	
Reduced v/c Ratio		0.26			0.28	0.45	0.10	0.80		0.57	0.32	
Intersection Summary Cycle Length: 90												
Actuated Cycle Length: 90												
Offset: 4 (4%), Referenced t	to phase 2	:NBTL an	d 6:SBTL	., Start of	Green							
Natural Cycle: 85												
Control Type: Actuated-Coo	ordinated											

Scenario 1 1400 Bank Street 12:00 am 08/13/2021 2031 Future Background AM Peak Hour

Synchro 11 Report Page 1 Lanes, Volumes, Timings 1: Bank & Belanger/Lamira

09/14/2021

ane Group	Ø3	Ø7
Lane Configurations		
Troffic Volume (uph)		
Future Volume (vph)		
ruture volume (vpn)		
Satd. Flow (prot)		
FIt Permitted		
Satd. Flow (perm)		
Satd. Flow (RTOR)		
Lane Group Flow (vph)		
Turn Type		
Protected Phases	3	7
Permitted Phases		
Detector Phase		
Switch Phase		
Minimum Initial (s)	10	10
Minimum Split (s)	5.0	5.0
Total Salit (a)	5.0	5.0
Total Split (%)	5.0	5.0
Total Spiit (%)	0%	0%
reliow Time (s)	2.0	2.0
All-Red Lime (s)	0.0	0.0
Lost Time Adjust (s)		
Total Lost Time (s)		
Lead/Lag	Lead	Lead
Lead-Lag Optimize?	Yes	Yes
Recall Mode	None	None
Act Effct Green (s)		
Actuated g/C Ratio		
v/c Ratio		
Control Delay		
Total Delay		
LUS Assessed Delay		
Approach Delay		
Approach LOS		
Queue Length 50th (m)		
Queue Length 95th (m)		
Internal Link Dist (m)		
Turn Bay Length (m)		
Base Capacity (vph)		
Starvation Cap Reductn		
Spillback Cap Reductn		
Storage Can Reducto		
Reduced v/c Ratio		
Intersection Summary		

Scenario 1 1400 Bank Street 12:00 am 08/13/2021 2031 Future Background AM Peak Hour

Lanes, Volumes, Timings		
1: Bank & Belanger/Lamira		09/14/2021
Maximum v/c Ratio: 0.80		
Intersection Signal Delay: 20.0	Intersection LOS: C	
Intersection Capacity Utilization 80.6%	ICU Level of Service D	
Analysis Period (min) 15		
~ Volume exceeds capacity, queue is theoretical	y infinite.	
Queue shown is maximum after two cycles.		
# 95th percentile volume exceeds capacity, queu	e may be longer.	
Queue shown is maximum after two cycles.		
m Volume for 95th percentile queue is metered b	y upstream signal.	

Splits and Phases: 1: Bank & Belanger/Lamira

Ø1	 Ø2 (R)		ø	3 4 04	
15 s	36 s	5 s		34 s	
Ø6 (R)			ø	07 ₹ Ø8	
51 s		5 s		34 s	

	4	•	†	1	1	÷.	
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations		1	† î»		٦	<u></u>	
Traffic Volume (vph)	0	54	836	31	12	744	
Future Volume (vph)	0	54	836	31	12	744	
Satd. Flow (prot)	0	1510	3205	0	1658	3221	
Flt Permitted					0.293		
Satd. Flow (perm)	0	1484	3205	0	510	3221	
Satd. Flow (RTOR)		178	7				
Lane Group Flow (vph)	0	54	867	0	12	744	
Turn Type		Perm	NA		Perm	NA	
Protected Phases			2			6	
Permitted Phases		8			6		
Detector Phase		8	2		6	6	
Switch Phase							
Minimum Initial (s)		5.0	10.0		10.0	10.0	
Minimum Split (s)		29.0	29.2		24.2	24.2	
Total Split (s)		29.0	61.0		61.0	61.0	
Total Split (%)		32.2%	67.8%		67.8%	67.8%	
Yellow Time (s)		3.0	3.3		3.3	3.3	
All-Red Time (s)		1.0	2.9		2.9	2.9	
Lost Time Adjust (s)		0.0	0.0		0.0	0.0	
Total Lost Time (s)		4.0	6.2		6.2	6.2	
Lead/Lag							
Lead-Lag Optimize?							
Recall Mode		Ped	C-Max		C-Max	C-Max	
Act Effct Green (s)		25.0	54.8		54.8	54.8	
Actuated g/C Ratio		0.28	0.61		0.61	0.61	
v/c Ratio		0.10	0.44		0.04	0.38	
Control Delay		0.4	10.2		4.7	6.5	
Queue Delav		0.0	0.0		0.0	0.0	
Total Delay		0.4	10.2		4.7	6.5	
105		Δ	R		Δ	Δ	
Approach Delay	0.4		10.2			6.4	
Approach LOS	Δ		R			Δ	
Queue Length 50th (m)		0.0	38.2		0.5	17 1	
Queue Length 95th (m)		0.0	50.2		m1.6	21.5	
Internal Link Dist (m)	292.7	0.0	258.7			148.9	
Turn Bay Length (m)	LUL.I		200.1		67.5	110.0	
Base Canacity (vnh)		540	1954		310	1961	
Starvation Can Reducto		0+0	0		0.0	0	
Spillback Can Reducto		0	0		0	0	
Storage Can Reducto		0	0		0	0	
Reduced v/c Ratio		0 10	0.44		0.04	0 38	
		0.10	0.44		0.04	0.50	
Intersection Summary							
Cycle Length: 90							
Actuated Cycle Length: 90							

Scenario 1 1400 Bank Street 12:00 am 08/13/2021 2031 Future Background AM Peak Hour

Synchro 11 Report Page 4

09/14/2021

Scenario 1 1400 Bank Street 12:00 am 08/13/2021 2031 Future Background AM Peak Hour

Lanes, Volumes, Timings	
2. Ponk & Dondoll	

2: Bank & Randall

Maximum v/c Ratio: 0.44

Maximum v/c Ratio: 0.44	
Intersection Signal Delay: 8.2	Intersection LOS: A
Intersection Capacity Utilization 54.8%	ICU Level of Service A
Analysis Period (min) 15	
m Volume for 95th percentile queue is metered by upstream si	gnal.

Splits and Phases: 2: Bank & Randall

∮ Ø2 (R)	
61s	
	~
🕈 Ø6 (R)	Ø8
61s	29 s

	≯	-	\mathbf{i}	4	-	. 🔨	-	1	1	- \	÷.	-
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SB
Lane Configurations		\$			ર્સ	1	5	≜1≽		ኘ	≜ 1}	
Traffic Volume (vph)	46	15	21	119	54	142	40	946	75	251	969	
Future Volume (vph)	46	15	21	119	54	142	40	946	75	251	969	:
Satd. Flow (prot)	0	1530	0	0	1688	1483	1537	3269	0	1658	3290	
It Permitted		0.713			0.774		0.290			0.127		
Satd. Flow (perm)	0	1115	0	0	1346	1447	461	3269	0	221	3290	
Satd. Flow (RTOR)		20				142		10			3	
ane Group Flow (vph)	0	82	0	0	173	142	40	1021	0	251	989	
Turn Type	Perm	NA		Perm	NA	Perm	Perm	NA		pm+pt	NA	
Protected Phases		4			8			2		1	6	
Permitted Phases	4			8		8	2			6		
Detector Phase	4	4		8	8	8	2	2		1	6	
Switch Phase												
Vinimum Initial (s)	10.0	10.0		10.0	10.0	10.0	10.0	10.0		5.0	10.0	
Vinimum Split (s)	33.3	33.3		33.3	33.3	33.3	34.9	34.9		10.9	34.9	
Fotal Split (s)	34.0	34.0		34.0	34.0	34.0	36.0	36.0		15.0	51.0	
Fotal Split (%)	37.8%	37.8%		37.8%	37.8%	37.8%	40.0%	40.0%		16.7%	56.7%	
Yellow Time (s)	3.3	3.3		3.3	3.3	3.3	3.3	3.3		3.3	3.3	
All-Red Time (s)	3.0	3.0		3.0	3.0	3.0	2.6	2.6		2.6	2.6	
ost Time Adjust (s)		0.0			0.0	0.0	0.0	0.0		0.0	0.0	
Total Lost Time (s)		6.3			6.3	6.3	5.9	5.9		5.9	5.9	
_ead/Lag	Lag	Lag		Lag	Lag	Lag	Lag	Lag		Lead		
ead-Lag Optimize?	Yes	Yes		Yes	Yes	Yes	Yes	Yes		Yes		
Recall Mode	None	None		None	None	None	C-Max	C-Max		None	C-Max	
Act Effct Green (s)		17.8			17.8	17.8	37.7	37.7		59.0	59.0	
Actuated g/C Ratio		0.20			0.20	0.20	0.42	0.42		0.66	0.66	
//c Ratio		0.35			0.65	0.35	0.21	0.74		0.64	0.46	
Control Delay		26.1			43.7	7.3	23.4	27.8		23.3	9.9	
Queue Delay		0.0			0.0	0.0	0.0	0.0		0.0	0.0	
Total Delay		26.1			43.7	7.3	23.4	27.8		23.3	9.9	
LOS		С			D	А	С	С		С	A	
Approach Delay		26.1			27.3			27.6			12.6	
Approach LOS		С			С			С			В	
Queue Length 50th (m)		9.3			28.0	0.0	4.3	75.2		18.0	36.8	
Queue Length 95th (m)		19.1			42.3	12.5	13.6	#127.5		#71.1	78.3	
nternal Link Dist (m)		168.3			242.0			149.0			322.6	
Furn Bay Length (m)						42.0	60.0			56.5		
Base Capacity (vph)		357			414	543	193	1373		391	2157	
Starvation Cap Reductn		0			0	0	0	0		0	0	
Spillback Cap Reductn		0			0	0	0	0		0	0	
Storage Cap Reductn		0			0	0	0	0		0	0	
Reduced v/c Ratio		0.23			0.42	0.26	0.21	0.74		0.64	0.46	
ntersection Summary												
Cycle Length: 90 Actuated Cycle Length: 90 Offset: 19 (21%), Reference Vatural Cycle: 85 Control Type: Actuated-Coc	ed to phase	e 2:NBTL a	and 6:SB	TL, Start	of Green							

Scenario 1 1400 Bank Street 12:00 am 08/13/2021 2031 Future Background AM Peak Hour

Synchro 11 Report Page 5

PM Peak Hour

09/14/2021

Lanes,	Volumes, Timings	
1: Bank	& Belanger/Lamira	

09/14/2021

Lane Group	Ø3	Ø7
Lane Configurations		
Traffic Volume (vph)		
Future Volume (vph)		
Satd. Flow (prot)		
Flt Permitted		
Satd. Flow (perm)		
Satd. Flow (RTOR)		
Lane Group Flow (vph)		
Turn Type		
Protected Phases	3	7
Permitted Phases	-	
Detector Phase		
Switch Phase		
Minimum Initial (s)	1.0	1.0
Minimum Split (s)	5.0	5.0
Total Split (s)	5.0	5.0
Total Split (%)	6%	6%
Yellow Time (s)	2.0	20
All-Red Time (s)	0.0	0.0
Lost Time Adjust (s)	0.0	0.0
Total Lost Time (s)		
	bool	bool
Leau/Lay	Ves	Ves
Recall Mode	Nono	Nono
Act Effet Croop (c)	NOULE	NULLE
Actuated a/C Patia		
Noticaleu y/C Ralio		
V/G RdIIU Centrel Deley		
Control Delay		
Queue Delay		
Total Delay		
LUS Assessed Deless		
Approach Delay		
Approach LOS		
Queue Length 50th (m)		
Queue Length 95th (m)		
Internal Link Dist (m)		
Turn Bay Length (m)		
Base Capacity (vph)		
Starvation Cap Reductn		
Spillback Cap Reductn		
Storage Cap Reductn		
Reduced v/c Ratio		
Intersection Summary		
intersection summary		

 1: Bank & Belanger/Lamira

 Maximum v/c Ratio: 0.74

 Intersection Signal Delay: 20.6
 Intersection LOS: C

 Intersection Capacity Utilization 76.4%
 ICU Level of Service D

 Analysis Period (min) 15
 #

 # 95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 1: Bank & Belanger/Lamira

Lanes, Volumes, Timings

Ø1	🗖 🔊 🖉 Ø2 (R)	● _{Øβ} ▲ _{Ø4}
15 s	36 s	5 s 34 s
Ø6 (R)	•	● øp \$ ø8
51 s		5 s 34 s

Scenario 1 1400 Bank Street 12:00 am 08/13/2021 2031 Future Background PM Peak Hour

Synchro 11 Report Page 2 Scenario 1 1400 Bank Street 12:00 am 08/13/2021 2031 Future Background PM Peak Hour

Synchro 11 Report Page 3

09/14/2021

Lanes, Volumes, Timings
2: Bank & Randall

	4	×	1	1	1	ŧ
Lane Group	WBI	WBR	NBT	NBR	SBI	SBT
Lane Configurations	TTDL	1	A1-		No.	
	0	25	11/13	57	26	9/0
Future Volume (vph)	0	25	11/12	57	20	0/0
Sote Elow (prot)	0	1510	2202	57	1659	2216
Satu. Flow (plot)	U	1510	3203	0	0 161	3310
Sote Elow (norm)	0	1/00	2002	0	0.101	2216
Salu. Flow (perm)	U	1480	3283	0	280	3316
Sata. Flow (KTUK)	0	22	10	0	00	040
Lane Group Flow (vpn)	0	25	1200	0	26	949
Turn Type		Perm	NÁ		Perm	NA
Protected Phases			2			6
Permitted Phases		8			6	
Detector Phase		8	2		6	6
Switch Phase						
Minimum Initial (s)		5.0	10.0		10.0	10.0
Minimum Split (s)		29.0	29.2		24.2	24.2
Total Split (s)		29.0	31.0		31.0	31.0
Total Split (%)		48.3%	51.7%		51.7%	51.7%
Yellow Time (s)		3.0	3.3		3.3	3.3
All-Red Time (s)		1.0	2 0		2 9	2.0
Lost Time Adjust (s)		0.0	2.9		2.9	2.9
Total Lost Time (s)		0.0	6.2		0.0	6.0
Total LOSt TIME (S)		4.0	0.2		0.2	0.2
Lead Lag Optimize2						
Leau-Lag Optimize?		D. I	0.11		0.14-	0.14-
Recall Mode		Ped	C-Max		C-Max	C-Max
Act Effct Green (s)		25.0	24.8		24.8	24.8
Actuated g/C Ratio		0.42	0.41		0.41	0.41
v/c Ratio		0.04	0.88		0.23	0.69
Control Delay		5.6	25.9		17.6	17.8
Queue Delay		0.0	0.0		0.0	0.0
Total Delay		5.6	25.9		17.6	17.8
LOS		A	С		В	В
Approach Delay	5.6		25.9		5	17.7
Approach LOS	Δ		C			B
Oueue Length 50th (m)	A	0.2	8 08		1.8	/13.1
Queue Length 95th (m)		3.7	#00.0		1.0	43.1
Internal Link Diet (m)	202.7	3.1	#33.Z		1.1	140.0
Tuer Devilorette (m)	292.7		258.7		07.5	149.0
Turn Bay Length (m)		0.00	1000		67.5	4070
Base Capacity (vph)		629	1362		115	1370
Starvation Cap Reductn		0	0		0	0
Spillback Cap Reductn		0	0		0	0
Storage Cap Reductn		0	0		0	0
Reduced v/c Ratio		0.04	0.88		0.23	0.69
Intersection Summary						
Cycle Length: 60						
Actuated Cycle Length: 60						
Offset: 29 (48%), Referenced	to phase	2:NBT a	nd 6:SBT	L, Start o	f Green	
Natural Cycle: 60				,		
Control Type: Actuated-Coord	inated					
Sona of Type. Actuated Coold	natou					

Scenario 1 1400 Bank Street 12:00 am 08/13/2021 2031 Future Background PM Peak Hour

Synchro 11 Report Page 4

09/14/2021

Lanes, Volumes, Timings		
2: Bank & Randall		09/14/2021
Maximum v/c Ratio: 0.88		
Intersection Signal Delay: 22.1	Intersection LOS: C	
Intersection Capacity Utilization 64.7%	ICU Level of Service C	
Analysis Period (min) 15		
# 95th percentile volume exceeds capacity, queue	e may be longer.	
Queue shown is maximum after two cycles.		

Splits and Phases: 2: Bank & Randall

Scenario 1 1400 Bank Street 12:00 am 08/13/2021 2031 Future Background PM Peak Hour

MMLOS Analysis

Multi-Modal Level of Service - Intersections Form

Consultant	CGH Transportation Inc.	Project	1400 BankStreet		
Scenario	Existing/Future	Date	9/14/2021		
Comments					

l	NTERSECTIONS	TIONS Bank Street at Belanger Avenue/ Lamira Street Bank Street at Randall Avenue Ba						Bank Street at Belanger Avenue/ Lamira Street (future)				Bank Street at Randall Avenue (future)					
	Crossing Side	NORTH	SOUTH	EAST	WEST	NORTH	SOUTH	EAST	WEST	NORTH	SOUTH	EAST	WEST	NORTH	SOUTH	EAST	WEST
	Lanes Median	7 No Median - 2.4 m	8 No Median - 2.4 m	6 No Median - 2.4 m	4 No Median - 2.4 m	6 No Median - 2.4 m	7 Median > 2.4 m	3 No Median - 2.4 m		6 No Median - 2.4 m	5 No Median - 2.4 m	4 No Median - 2.4 m	3 No Median - 2.4 m	5 No Median - 2.4 m	5 Median > 2.4 m	3 No Median - 2.4 m	
	Conflicting Left Turns	Permissive	Permissive	Protected/ Permissive	Permissive	No left turn / Prohib.	No left turn / Prohib.	Permissive		Permissive	Permissive	Permissive	Permissive	No left turn / Prohib.	No left turn / Prohib.	Permissive	
	Conflicting Right Turns	Permissive or yield control	Permissive or yield control	Permissive or yield control	Permissive or yield control	Permissive or yield control	No right turn	Permissive or yield control		Permissive or yield control	Permissive or yield control	Permissive or yield control	Permissive or yield control	Permissive or yield control	No right turn	Permissive or yield control	
	Right Turns on Red (RToR) ?	RTOR allowed	RTOR allowed	RTOR allowed	RTOR allowed	RTOR allowed	RTOR allowed	RTOR allowed		RTOR prohibited	RTOR prohibited	RTOR prohibited	RTOR prohibited	RTOR prohibited	RTOR prohibited	RTOR allowed	
	Ped Signal Leading Interval?	No	No	Yes	Yes	No	No	No		No	No	Yes	Yes	No	No	No	
ian	Right Turn Channel	No Channel	No Channel	No Channel	Conventional with Receiving Lane	No Channel	No Right Turn	No Channel		No Channel	No Channel	No Channel	No Channel	No Channel	No Right Turn	No Channel	
str	Corner Radius	15-25m	3-5m	10-15m	10-15m	15-25m	No Right Turn	10-15m		15-25m	5-10m	10-15m	10-15m	15-25m	No Right Turn	10-15m	
ede	Crosswalk Type	Zebra stripe hi-vis markings	Zebra stripe hi-vis markings	Zebra stripe hi-vis markings	Zebra stripe hi-vis markings	Std transverse markings	Std transverse markings	Std transverse markings		Zebra stripe hi-vis markings	Zebra stripe hi-vis markings	Zebra stripe hi-vis markings	Zebra stripe hi-vis markings	Zebra stripe hi-vis markings	Zebra stripe hi-vis markings	Zebra stripe hi-vis markings	
-	PETSI Score	5	-7	25	59	26	33	70		24	44	61	78	49	69	73	
	Ped. Exposure to Traffic LoS	F	F	F	D	F	E	С	-	F	E	С	В	D	С	С	-
	Cycle Length	90	90	90	90	90	90	90		90	90	90	90	90	90	90	
	Effective Walk Time	16	16	14	29	7	7	41		16	16	14	29	7	7	41	
	Average Pedestrian Delay	30	30	32	21	38	38	13		30	30	32	21	38	38	13	
	Pedestrian Delay LoS	D	D	D	С	D	D	В	-	D	D	D	С	D	D	В	-
		F	F	F	D	F	E	С	-	F	E	D	С	D	D	C	-
	Level of Service		F	F				-				F			[)	
	Approach From	NORTH	SOUTH	EAST	WEST	NORTH	SOUTH	EAST	WEST	NORTH	SOUTH	EAST	WEST	NORTH	SOUTH	EAST	WEST
	Bicycle Lane Arrangement on Approach	Mixed Traffic	Mixed Traffic	Mixed Traffic	Mixed Traffic	Mixed Traffic	Mixed Traffic	Mixed Traffic		Curb Bike Lane, Cycletrack or MUP	Curb Bike Lane, Cycletrack or MUP	Curb Bike Lane, Cycletrack or MUP	Curb Bike Lane, Cycletrack or MUP	Curb Bike Lane, Cycletrack or MUP	Curb Bike Lane, Cycletrack or MUP	Curb Bike Lane, Cycletrack or MUP	
	Right Turn Lane Configuration			≤ 50 m						Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable	
	Right Turning Speed			>25 km/h						Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable	
Q	Cyclist relative to RT motorists	-	-	E	-	-	-	-	-	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable	-
l l	Separated or Mixed Traffic	Mixed Traffic	Mixed Traffic	Mixed Traffic	Mixed Traffic	Mixed Traffic	Mixed Traffic	Mixed Traffic	-	Separated	Separated	Separated	Separated	Separated	Separated	Separated	-
Bic	Left Turn Approach	≥ 2 lanes crossed	≥ 2 lanes crossed	One lane crossed	No lane crossed	≥ 2 lanes crossed		No lane crossed		2-stage, LT box	2-stage, LT box	2-stage, LT box	2-stage, LT box	2-stage, LT box	2-stage, LT box	2-stage, LT box	
	Operating Speed	> 50 to < 60 km/h	> 50 to < 60 km/h	> 50 to < 60 km/h	> 50 to < 60 km/h	> 50 to < 60 km/h		> 50 to < 60 km/h		> 50 to < 60 km/h	> 50 to < 60 km/h	> 50 to < 60 km/h	> 50 to < 60 km/h	> 50 to < 60 km/h	> 50 to < 60 km/h	> 50 to < 60 km/h	
	Left Turning Cyclist	F	F	E	С	F	-	С	-	A	А	А	А	A	А	А	-
	Level of Service	-	-	E	-	-		-	-	A	Α	Α	Α	A	Α	A	-
			E					-			1	4			1	4	
oit.	Average Signal Delay	≤ 4U sec	≤ 4U sec	≤ 1U sec	> 4U sec	≤ 2U sec	≤ 2U sec			≤ 30 sec	≤ 40 sec	> 40 sec	≤ 4U sec	≤ 2U sec			
sue		E	E	В	F	C	C	-	-	D	E	E E	E	C	-	-	
Tra	Level of Service		F	F			()				F			(0	
	Effective Corner Radius Number of Receiving Lanes on Departure																
ЧСĶ	from Intersection																
Ē.	Level of Service	-	-		-	-	-			-				-	-		-
	Volume to Operative Datio		0.74	0.80				0.60		-				-			
bt.	volume to Capacity Ratio		0.71	- 0.00			0.0 -	0.00			0.81	- 0.00			0.0 -	0.00	
Aı	Level of Service	C			A			D				A					

Appendix H

Synchro Intersection Worksheets – 2026 Future Total Conditions

Lanes, Volumes, Timings 1: Bank & Belanger/Lamira 11/18/2021												
	≯	-	\mathbf{r}	4	-	•	-	Ť	1	1	Ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			ર્ન	1	শ	- † Þ		ሻ	- † 1-	
Traffic Volume (vph)	79	26	13	97	3	285	37	1065	76	146	540	22
Future Volume (vph)	79	26	13	97	3	285	37	1065	76	146	540	22
Satd. Flow (prot)	0	1553	0	0	1665	1469	1595	3180	0	1595	3140	0
Flt Permitted		0.699			0.693		0.441			0.103		
Satd. Flow (perm)	0	1101	0	0	1207	1407	729	3180	0	173	3140	0
Satd. Flow (RTOR)		7				285		9			6	
Lane Group Flow (vph)	0	118	0	0	100	285	37	1141	0	146	562	0
Turn Type	Perm	NA		Perm	NA	Perm	Perm	NA		pm+pt	NA	
Protected Phases		4			8		_	2		1	6	
Permitted Phases	4			8		8	2	_		6		
Detector Phase	4	4		8	8	8	2	2		1	6	
Switch Phase												
Minimum Initial (s)	10.0	10.0		10.0	10.0	10.0	10.0	10.0		5.0	10.0	
Minimum Split (s)	33.3	33.3		33.3	33.3	33.3	34.9	34.9		10.9	34.9	
Total Split (s)	34.0	34.0		34.0	34.0	34.0	36.0	36.0		15.0	51.0	
Total Split (%)	37.8%	37.8%		37.8%	37.8%	37.8%	40.0%	40.0%		16.7%	56.7%	
Yellow Time (s)	3.3	3.3		3.3	3.3	3.3	3.3	3.3		3.3	3.3	
All-Red Time (s)	3.0	3.0		3.0	3.0	3.0	2.6	2.6		2.6	2.6	
Lost Time Adjust (s)		0.0			0.0	0.0	0.0	0.0		0.0	0.0	
Total Lost Time (s)		6.3			6.3	6.3	5.9	5.9		5.9	5.9	
Lead/Lag	Lag	Lag		Lag	Lag	Lag	Lag	Lag		Lead		
Lead-Lag Optimize?	Yes	Yes		Yes	Yes	Yes	Yes	Yes		Yes	0.14	
Recall Mode	None	None		None	None	None	C-Max	C-Max		None	C-Max	
Act Effct Green (s)		22.4			20.4	20.4	39.9	39.9		54.4	54.4	_
Actuated g/C Ratio		0.25			0.23	0.23	0.44	0.44		0.60	0.60	
V/C Ratio		0.42			0.30	0.53	0.11	0.81		0.01	0.30	_
Control Delay		29.2			30.8	7.0	14.9	26.0		24.8	10.9	
Queue Delay		20.0			20.0	0.0	0.0	0.0		0.0	10.0	_
		29.2			30.0	7.0	14.9	20.0		24.0	10.9	
LUS Approach Dolou		20.2			12.2	A	D	25.6		U	12.0	_
Approach LOS		29.2			13.Z			20.0			13.0 D	
Approach Loos		12.6			12.1	0.0	2.2	-115.7		12.0	20.7	
Queue Length 50th (m)		20.7			26.1	17.3	3.3 m8.2	#155.5		#30.3	20.7	
Internal Link Dist (m)		168.3			242.0	17.5	110.2	1/0.3		#30.3	322.6	
Turn Bay Longth (m)		100.5			242.0	42.0	60.0	143.5		56.5	522.0	
Base Canacity (ynh)		364			371	630	323	1/1/1		254	1800	
Starvation Can Reductn		0			0	000	020	0		204	0	
Snillback Can Reductn		0			0	0	0	0		0	0	
Storage Can Reductn		0			0	0	0	0		0	0	
Reduced v/c Ratio		0.32			0.27	0.45	0.11	0.81		0.57	0.30	
Intersection Summary												
Cycle Length: 90												
Actuated Cycle Length: 90												
Offset: 4 (4%) Referenced t	o nhase 2	NRTL an	d 6.SBTI	Start of	Green							
Natural Cycle: 85	o pridoo Z		a 0.001L	., 51011 01	CICCII							
Control Type: Actuated-Coo	rdinated											
	anatod											

Scenario 1 1400 Bank Street 12:00 am 08/13/2021 2026 Future Total AM Peak Hour

Synchro 11 Report Page 1 Lanes, Volumes, Timings 1: Bank & Belanger/Lamira

Lane Group	Ø3	Ø7
Lane Configurations		
Traffic Volume (vph)		
Future Volume (vph)		
Satd. Flow (prot)		
Flt Permitted		
Satd, Flow (perm)		
Satd, Flow (RTOR)		
Lane Group Flow (vph)		
Turn Type		
Protected Phases	3	7
Permitted Phases	Ŭ	
Detector Phase		
Switch Phase		
Minimum Initial (s)	10	10
Minimum Split (s)	5.0	5.0
Total Solit (s)	5.0	5.0
Total Split (%)	6%	6%
Vollow Time (s)	2.0	2.0
All Dod Time (s)	2.0	2.0
All-Reu Time (S)	0.0	0.0
Total Lost Time (a)		
	اممر	اممط
Lead/Lag	Lead	Lead
Lead-Lag Optimize?	tes	tes
Recall Mode	None	None
Act Effect Green (s)		
Actuated g/C Ratio		
V/C Ratio		
Control Delay		
Queue Delay		
Total Delay		
LOS		
Approach Delay		
Approach LOS		
Queue Length 50th (m)		
Queue Length 95th (m)		
Internal Link Dist (m)		
Turn Bay Length (m)		
Base Capacity (vph)		
Starvation Cap Reductn		
Spillback Cap Reductn		
Storage Cap Reductn		
Reduced v/c Ratio		
Internetion Cummer-		
intersection Summary		

Scenario 1 1400 Bank Street 12:00 am 08/13/2021 2026 Future Total AM Peak Hour

Synchro 11 Report Page 2

11/18/2021

Lanes, Volumes, Timings		
1: Bank & Belanger/Lamira		11/18/2021
Maximum v/c Ratio: 0.81		
Intersection Signal Delay: 20.3	Intersection LOS: C	
Intersection Capacity Utilization 80.6%	ICU Level of Service D	
Analysis Period (min) 15		
~ Volume exceeds capacity, queue is theoretically infini	te.	
Queue shown is maximum after two cycles.		
# 95th percentile volume exceeds capacity, queue may	be longer.	
Queue shown is maximum after two cycles.		
m Volume for 95th percentile queue is metered by upstr	ream signal.	

Splits and Phases: 1: Bank & Belanger/Lamira

Ø1	Ø2 (R)		Ø3 - Ø4
15 s	36 s	5 s	34 s
Ø6 (R)	,		Ø7 🗸 Ø8
51 s		5.5	34 s

2: Bank & Randall 11/18/2021 ۰. 1 1 1 - ŧ € SBL Lane Group WBL WBR NBT NBR SBT Lane Configurations **↑1,** 841 **††** 689 Traffic Volume (vph) 0 54 31 12 Future Volume (vph) 0 54 841 31 12 689 Satd. Flow (prot) 1510 3205 1658 3221 0 0 Flt Permitted 0.291 Satd. Flow (perm) 0 1484 3205 0 507 3221 Satd. Flow (RTOR) 176 7 Lane Group Flow (vph) 0 54 872 0 12 689 Turn Type Perm NA Perm NA Protected Phases 2 6 8 Permitted Phases 6 Detector Phase 8 2 6 6 Switch Phase 10.0 10.0 Minimum Initial (s) 5.0 10.0 29.0 24.2 24.2 Minimum Split (s) 29.2 Total Split (s) 29.0 61.0 61.0 61.0 32.2% 67.8% 67.8% 67.8% Total Split (%) Yellow Time (s) 3.3 3.0 3.3 3.3 All-Red Time (s) 1.0 2.9 2.9 2.9 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 Total Lost Time (s) 4.0 6.2 6.2 6.2 Lead/Lag Lead-Lag Optimize? Recall Mode C-Max C-Max Ped C-Max Act Effct Green (s) 25.0 54.8 54.8 54.8 Actuated g/C Ratio 0.28 0.61 0.61 0.61 v/c Ratio 0.10 0.04 0.35 0.45 Control Delay 0.4 10.3 4.8 6.6 Queue Delay 0.0 0.0 0.0 0.0 Total Delay 0.4 10.3 4.8 6.6 LOS А B Α Α 0.4 10.3 Approach Delay 6.5 Approach LOS В А Α Queue Length 50th (m) 0.0 38.5 0.5 17.0 Queue Length 95th (m) 0.0 51.2 m1.8 21.6 Internal Link Dist (m) 292.7 258.7 149.3 Turn Bay Length (m) 67.5 539 1954 308 Base Capacity (vph) 1961 Starvation Cap Reductn 0 0 0 0 Spillback Cap Reductn 0 0 0 0 Storage Cap Reductn 0 0 0 0 Reduced v/c Ratio 0.10 0.45 0.04 0.35 Intersection Summary Cycle Length: 90 Actuated Cycle Length: 90 Offset: 72 (80%), Referenced to phase 2:NBT and 6:SBTL, Start of Green Natural Cycle: 60 Control Type: Actuated-Coordinated Scenario 1 1400 Bank Street 12:00 am 08/13/2021 2026 Future Total

Lanes, Volumes, Timings

AM Peak Hour

Scenario 1 1400 Bank Street 12:00 am 08/13/2021 2026 Future Total AM Peak Hour

Synchro 11 Report Page 3

Lanes, Volumes, Timings
2. Bank & Bandall

2: Bank & Randall

Ma	aximum v/c Ratio: 0.45	
Inte	ersection Signal Delay: 8.3	Intersection LOS: A
Inte	ersection Capacity Utilization 54.9%	ICU Level of Service A
An	alysis Period (min) 15	
m	Volume for 95th percentile queue is metered by upstream s	signal.

Splits and Phases: 2: Bank & Randall

∮ Ø2 (R)	
61s	
	~
🕈 Ø6 (R)	Ø8
61s	29 s

	≯	-	\mathbf{x}	1	-		-	†	1	1	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SB
Lane Configurations		¢.			ર્સ	1	5	4 1,		5	≜1 ≽	
Traffic Volume (vph)	58	15	29	119	54	142	49	864	75	251	967	3
Future Volume (vph)	58	15	29	119	54	142	49	864	75	251	967	3
Satd. Flow (prot)	0	1523	0	0	1688	1483	1537	3265	0	1658	3274	
Flt Permitted		0.673			0.765		0.287			0.158		
Satd. Flow (perm)	0	1048	0	0	1330	1447	450	3265	0	275	3274	
Satd. Flow (RTOR)		23				142		11			5	
Lane Group Flow (vph)	0	102	0	0	173	142	49	939	0	251	1000	
Turn Type	Perm	NA		Perm	NA	Perm	Perm	NA		pm+pt	NA	
Protected Phases		4			8			2		1	6	
Permitted Phases	4			8		8	2			6		
Detector Phase	4	4		8	8	8	2	2		1	6	
Switch Phase												
Minimum Initial (s)	10.0	10.0		10.0	10.0	10.0	10.0	10.0		5.0	10.0	
Minimum Split (s)	33.3	33.3		33.3	33.3	33.3	34.9	34.9		10.9	34.9	
Total Split (s)	34.0	34.0		34.0	34.0	34.0	36.0	36.0		15.0	51.0	
Total Split (%)	37.8%	37.8%		37.8%	37.8%	37.8%	40.0%	40.0%		16.7%	56.7%	
Yellow Time (s)	3.3	3.3		3.3	3.3	3.3	3.3	3.3		3.3	3.3	
All-Red Time (s)	3.0	3.0		3.0	3.0	3.0	2.6	2.6		2.6	2.6	
Lost Time Adjust (s)		0.0			0.0	0.0	0.0	0.0		0.0	0.0	
Total Lost Time (s)		6.3			6.3	6.3	5.9	5.9		5.9	5.9	
Lead/Lag	Lag	Lag		Lag	Lag	Lag	Lag	Lag		Lead		
Lead-Lag Optimize?	Yes	Yes		Yes	Yes	Yes	Yes	Yes		Yes		
Recall Mode	None	None		None	None	None	C-Max	C-Max		None	C-Max	
Act Effct Green (s)		17.7			17.7	17.7	38.0	38.0		59.1	59.1	
Actuated g/C Ratio		0.20			0.20	0.20	0.42	0.42		0.66	0.66	
v/c Ratio		0.46			0.66	0.36	0.26	0.68		0.61	0.46	
Control Delay		29.4			44.5	7.3	24.8	25.5		18.6	9.9	
Queue Delay		0.0			0.0	0.0	0.0	0.0		0.0	0.0	
Total Delay		29.4			44.5	7.3	24.8	25.5		18.6	9.9	
LOS		С			D	A	С	С		В	Α	
Approach Delay		29.4			27.7			25.5			11.6	
Approach LOS		С			С			С			В	
Queue Length 50th (m)		12.1			28.0	0.0	5.3	66.2		14.7	37.2	
Queue Length 95th (m)		23.5			42.5	12.5	16.6	#110.7		#62.9	79.6	
Internal Link Dist (m)		168.3			242.0			149.0			322.6	
Turn Bay Length (m)						42.0	60.0			56.5		
Base Capacity (vph)		338			409	543	190	1384		414	2151	
Starvation Cap Reductn		0			0	0	0	0		0	0	
Spillback Cap Reductn		0			0	0	0	0		0	0	
Storage Cap Reductn		0			0	0	0	0		0	0	
Reduced v/c Ratio		0.30			0.42	0.26	0.26	0.68		0.61	0.46	
Intersection Summary												
Cycle Length: 90												
Actuated Cycle Length: 90												
Offset: 19 (21%), Reference	ed to phase	2:NBTL a	and 6:SB	TL, Start	of Green							
Natural Cycle: 85												
Control Type: Actuated Car	undin at a d											

Scenario 1 1400 Bank Street 12:00 am 08/13/2021 2026 Future Total AM Peak Hour

Synchro 11 Report Page 5

PM Peak Hour

11/18/2021

Lanes, Volumes, Timings	
1: Bank & Belanger/Lamira	

11/18/2021

Lane Group	Ø3	Ø7
Lane Configurations		
Traffic Volume (vph)		
Future Volume (vph)		
Satd. Flow (prot)		
Flt Permitted		
Satd. Flow (perm)		
Satd. Flow (RTOR)		
Lane Group Flow (vph)		
Turn Type		
Protected Phases	3	7
Permitted Phases		
Detector Phase		
Switch Phase		
Minimum Initial (s)	1.0	1.0
Minimum Split (s)	5.0	5.0
Total Split (s)	5.0	5.0
Total Split (%)	6%	6%
Yellow Time (s)	2.0	2.0
All-Red Time (s)	0.0	0.0
Lost Time Adjust (s)		
Total Lost Time (s)		
Lead/Lag	Lead	Lead
Lead-Lag Optimize?	Yes	Yes
Recall Mode	None	None
Act Effct Green (s)		
Actuated g/C Ratio		
v/c Ratio		
Control Delay		
Queue Delay		
Total Delay		
LOS		
Approach Delay		
Approach LOS		
Queue Length 50th (m)		
Queue Length 95th (m)		
Internal Link Dist (m)		
Turn Bay Length (m)		
Base Capacity (vph)		
Starvation Cap Reductn		
Spillback Cap Reductn		
Storage Cap Reductn		
Reduced v/c Ratio		
Internetion Cummer		
Intersection Summary		

 1: Bank & Belanger/Lamira
 11/11

 Maximum v/c Ratio: 0.68
 Intersection LOS: B

 Intersection Capacity Utilization 74.0%
 ICU Level of Service D

 Analysis Period (min) 15
 # 95th percentile volume exceeds capacity, queue may be longer.

 Queue shown is maximum after two cycles.
 Queue shown is maximum after two cycles.

Splits and Phases: 1: Bank & Belanger/Lamira

Lanes, Volumes, Timings

Ø1	∎ ¶ Ø2 (R)	● _{Øβ} ▲ _{Ø4}
15 s	36 s	5s 34s
Ø6 (R)	•	● _{Ø7} ▼ _{Ø8}
51 s		58 348

Scenario 1 1400 Bank Street 12:00 am 08/13/2021 2026 Future Total PM Peak Hour

Synchro 11 Report Page 2 Scenario 1 1400 Bank Street 12:00 am 08/13/2021 2026 Future Total PM Peak Hour

Synchro 11 Report Page 3

11/18/2021

Lanes, Volumes, Timings
2: Bank & Randall

	1		Ť	1	1	Ļ		
Lane Group	WBI	WBR	NBT	NBR	SBI	SBT		
Lane Configurations	1102	1	A 1:	- NDI	*	**		
Traffic Volume (vnh)	0	25	1053	57	26	955		
Future Volume (vph)	0	25	1053	57	20	955		
Satd Elow (prot)	0	1510	3079	57	1659	3316		
Elt Pormittod	0	1510	3210	U	0 161	3310		
Satd Elow (porm)	0	1/180	3079	0	270	3316		
Satu. Flow (perifi)	U	1400	3210	U	219	2210		
Salu. FIOW (KTUK)	0	30	1110	0	26	055		
Lane Group Flow (vpn)	0	25	1110	U	26	955		
Turn Type		Perm	NA		Perm	NA		
Protected Phases		_	2		_	6		
Permitted Phases		8			6	-		
Detector Phase		8	2		6	6		
Switch Phase		_						
Minimum Initial (s)		5.0	10.0		10.0	10.0		
Minimum Split (s)		29.0	29.2		24.2	24.2		
Total Split (s)		29.0	31.0		31.0	31.0		
Total Split (%)		48.3%	51.7%		51.7%	51.7%		
Yellow Time (s)		3.0	3.3		3.3	3.3		
All-Red Time (s)		1.0	2.9		2.9	2.9		
Lost Time Adjust (s)		0.0	0.0		0.0	0.0		
Total Lost Time (s)		4.0	6.2		6.2	6.2		
Lead/Lag								
Lead-Lag Optimize?								
Recall Mode		Ped	C-Max		C-Max	C-Max		
Act Effct Green (s)		25.0	24.8		24.8	24.8		
Actuated g/C Ratio		0.42	0.41		0.41	0.41		
v/c Ratio		0.04	0.82		0.23	0.70		
Control Delay		1 2	21.8		17.6	17.0		
Ouque Delay		4.5	21.0		17.0	17.9		
Total Dalay		0.0	0.0		17.6	17.0		
Total Delay		4.3	21.8		17.6	17.9		
LUS Annual Dalay	4.0	A	C Of C		В	B		
Approach Delay	4.3		21.8			17.8		
Approach LOS	A		C			B		
Queue Length 50th (m)		0.0	53.8		1.8	43.5		
Queue Length 95th (m)		3.2	#79.3		7.2	62.2		
Internal Link Dist (m)	292.7		258.7			149.0		
Turn Bay Length (m)					67.5			
Base Capacity (vph)		634	1361		115	1370		
Starvation Cap Reductn		0	0		0	0		
Spillback Cap Reductn		0	0		0	0		
Storage Cap Reductn		0	0		0	0		
Reduced v/c Ratio		0.04	0.82		0.23	0.70		
Intersection Summary								
Cycle Length: 60								
Actuated Cycle Length: 60								
Offset: 29 (48%) Referenced	to nhase	2.NRT a	ind 6:SBT	Start o	f Green			
Natural Cycle: 60								
Control Type: Actuated Coor	dinated							
Control Type: Actuated-Coor	unated							

Scenario 1 1400 Bank Street 12:00 am 08/13/2021 2026 Future Total PM Peak Hour

Synchro 11 Report Page 4

11/18/2021

2: Bank & Randall		11/18/2021
Maximum v/c Ratio: 0.82		
Intersection Signal Delay: 19.8	Intersection LOS: B	
Intersection Capacity Utilization 62.1%	ICU Level of Service B	
Analysis Period (min) 15		
# 95th percentile volume exceeds capacity, queue	e may be longer.	
Queue shown is maximum after two cycles.		

Splits and Phases: 2: Bank & Randall

Scenario 1 1400 Bank Street 12:00 am 08/13/2021 2026 Future Total PM Peak Hour

Appendix I

Synchro Intersection Worksheets – 2031 Future Total Conditions

Lanes, Volumes, Ti 1: Bank & Belanger	mings /Lamira	а									11/	18/2021
	≯	-	\mathbf{r}	4	-	•	-	Ť	1	1	Ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			ર્ન	1	শ	- † 1-		ሻ	₹₽	
Traffic Volume (vph)	79	26	13	97	3	285	37	1065	76	146	589	22
Future Volume (vph)	79	26	13	97	3	285	37	1065	76	146	589	22
Satd. Flow (prot)	0	1553	0	0	1665	1469	1595	3180	0	1595	3146	0
Flt Permitted		0.699			0.693		0.421			0.103		
Satd. Flow (perm)	0	1101	0	0	1207	1407	697	3180	0	173	3146	0
Satd. Flow (RTOR)		7				285		9			6	
Lane Group Flow (vph)	0	118	0	0	100	285	37	1141	0	146	611	0
Turn Type	Perm	NA		Perm	NA	Perm	Perm	NA		pm+pt	NA	
Protected Phases		4			8			2		1	6	
Permitted Phases	4			8		8	2			6		
Detector Phase	4	4		8	8	8	2	2		1	6	
Switch Phase												
Minimum Initial (s)	10.0	10.0		10.0	10.0	10.0	10.0	10.0		5.0	10.0	
Minimum Split (s)	33.3	33.3		33.3	33.3	33.3	34.9	34.9		10.9	34.9	
Total Split (s)	34.0	34.0		34.0	34.0	34.0	36.0	36.0		15.0	51.0	
Total Split (%)	37.8%	37.8%		37.8%	37.8%	37.8%	40.0%	40.0%		16.7%	56.7%	
Yellow Time (s)	3.3	3.3		3.3	3.3	3.3	3.3	3.3		3.3	3.3	
All-Red Time (s)	3.0	3.0		3.0	3.0	3.0	2.6	2.6		2.6	2.6	
Lost Time Adjust (s)		0.0			0.0	0.0	0.0	0.0		0.0	0.0	
Total Lost Time (s)		6.3			6.3	6.3	5.9	5.9		5.9	5.9	
Lead/Lag	Lag	Lag		Lag	Lag	Lag	Lag	Lag		Lead		
Lead-Lag Optimize?	Yes	Yes		Yes	Yes	Yes	Yes	Yes		Yes		
Recall Mode	None	None		None	None	None	C-Max	C-Max		None	C-Max	
Act Effct Green (s)		22.4			20.4	20.4	39.9	39.9		54.4	54.4	
Actuated g/C Ratio		0.25			0.23	0.23	0.44	0.44		0.60	0.60	
v/c Ratio		0.42			0.36	0.53	0.12	0.81		0.61	0.32	
Control Delay		29.2			30.8	7.0	15.1	26.0		24.8	11.1	
Queue Delay		0.0			0.0	0.0	0.0	0.0		0.0	0.0	
Total Delay		29.2			30.8	7.0	15.1	26.0		24.8	11.1	
LOS		С			С	A	В	С		С	В	
Approach Delay		29.2			13.2			25.7			13.8	
Approach LOS		С			В			С			В	
Queue Length 50th (m)		13.6			13.1	0.0	3.3	~115.7		13.0	31.8	
Queue Length 95th (m)		29.7			26.1	17.3	m8.4	#155.5		#30.3	43.6	
Internal Link Dist (m)		168.3			242.0			149.1			322.6	
Turn Bay Length (m)					074	42.0	60.0			56.5	1000	
Base Capacity (vpn)		364			3/1	630	309	1414		254	1903	
Starvation Cap Reductn		0			0	0	0	0		0	0	_
Spillback Cap Reductn		0			0	0	0	0		0	0	
Storage Cap Reductn		0			0	0	0	0		0	0	
Reduced v/c Ratio		0.32			0.27	0.45	0.12	0.81		0.57	0.32	
Intersection Summary												
Cycle Length. 90												
Actualed Cycle Length: 90	a nhaaa 0			Chart of	Creen							
Notural Cuolo: 95	o priase z	INDIL an	u 0.301L	., Start Of	Gleen							
Indiural Cycle: 00	dinatod											
Control Type: Actuated-Cool	unated											

Scenario 1 1400 Bank Street 12:00 am 08/13/2021 2031 Future Total AM Peak Hour

Synchro 11 Report Page 1 Lanes, Volumes, Timings 1: Bank & Belanger/Lamira

Lane Group	Ø3	Ø7
Lane Configurations		
Traffic Volume (vph)		
Future Volume (vph)		
Satd, Flow (prot)		
Flt Permitted		
Satd, Flow (perm)		
Satd Flow (RTOR)		
Lane Group Flow (vph)		
Turn Type		
Protected Phases	3	7
Permitted Phases	0	'
Detector Phase		
Switch Phase		
Minimum Initial (c)	10	10
Minimum Chlit (c)	5.0	5.0
Total Calit (a)	5.0	5.0
Total Split (S)	5.0	5.0
	0%	0%
Yellow Time (s)	2.0	2.0
All-Red Time (s)	0.0	0.0
Lost Time Adjust (s)		
I otal Lost Time (s)		
Lead/Lag	Lead	Lead
Lead-Lag Optimize?	Yes	Yes
Recall Mode	None	None
Act Effct Green (s)		
Actuated g/C Ratio		
v/c Ratio		
Control Delay		
Queue Delay		
Total Delay		
LOS		
Approach Delay		
Approach LOS		
Queue Length 50th (m)		
Queue Length 95th (m)		
Internal Link Dist (m)		
Turn Bay Length (m)		
Base Capacity (vph)		
Starvation Cap Reductn		
Spillback Cap Reductn		
Storage Can Reductn		
Reduced v/c Ratio		
Intersection Summary		

Scenario 1 1400 Bank Street 12:00 am 08/13/2021 2031 Future Total AM Peak Hour

Synchro 11 Report Page 2

11/18/2021

Lanes, Volumes, Timings						
1: Bank & Belanger/Lamira		11/18/2021				
Maximum v/c Ratio: 0.81						
Intersection Signal Delay: 20.2	Intersection LOS: C					
Intersection Capacity Utilization 80.6%	ICU Level of Service D					
Analysis Period (min) 15						
~ Volume exceeds capacity, queue is theoretically i	nfinite.					
Queue shown is maximum after two cycles.						
Queue shown is maximum after two cycles.						
m Volume for 95th percentile queue is metered by u	ipstream signal.					

Splits and Phases: 1: Bank & Belanger/Lamira

Ø1	Ø2 (R)		ø	3 4 04	
15 s	36 s	5 s		34 s	
Ø6 (R)	•		ø	Ø7 ♥Ø8	
51 s		5.5		34 s	

2: Bank & Randall 11/18/2021 ۰. 1 1 1 - ŧ € SBL Lane Group WBL WBR NBT NBR SBT Lane Configurations **↑1,** 841 **††** Traffic Volume (vph) 0 54 31 12 Future Volume (vph) 0 54 841 31 12 751 Satd. Flow (prot) 1510 3205 1658 3221 0 0 Flt Permitted 0.291 Satd. Flow (perm) 0 1484 3205 0 507 3221 Satd. Flow (RTOR) 176 7 Lane Group Flow (vph) 0 54 872 0 12 751 Turn Type Perm NA Perm NA Protected Phases 2 6 8 Permitted Phases 6 Detector Phase 8 2 6 6 Switch Phase 10.0 10.0 Minimum Initial (s) 5.0 10.0 29.0 24.2 24.2 Minimum Split (s) 29.2 Total Split (s) 29.0 61.0 61.0 61.0 32.2% 67.8% 67.8% 67.8% Total Split (%) Yellow Time (s) 3.3 3.0 3.3 3.3 All-Red Time (s) 1.0 2.9 2.9 2.9 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 Total Lost Time (s) 4.0 6.2 6.2 6.2 Lead/Lag Lead-Lag Optimize? Recall Mode C-Max C-Max Ped C-Max Act Effct Green (s) 25.0 54.8 54.8 54.8 Actuated g/C Ratio 0.28 0.61 0.61 0.61 v/c Ratio 0.10 0.04 0.38 0.45 Control Delay 0.4 10.3 4.8 6.7 Queue Delay 0.0 0.0 0.0 0.0 Total Delay 0.4 10.3 4.8 6.7 LOS А B Α Α 0.4 10.3 Approach Delay 6.6 Approach LOS В А Α Queue Length 50th (m) 0.0 38.5 0.5 18.1 0.0 51.2 m1.6 22.6 Queue Length 95th (m) Internal Link Dist (m) 292.7 258.7 149.1 Turn Bay Length (m) 67.5 539 1954 308 Base Capacity (vph) 1961 Starvation Cap Reductn 0 0 0 0 Spillback Cap Reductn 0 0 0 0 Storage Cap Reductn 0 0 0 0 Reduced v/c Ratio 0.10 0.45 0.04 0.38 Intersection Summary Cycle Length: 90 Actuated Cycle Length: 90 Offset: 72 (80%), Referenced to phase 2:NBT and 6:SBTL, Start of Green Natural Cycle: 60 Control Type: Actuated-Coordinated Scenario 1 1400 Bank Street 12:00 am 08/13/2021 2031 Future Total

Lanes, Volumes, Timings

AM Peak Hour

Scenario 1 1400 Bank Street 12:00 am 08/13/2021 2031 Future Total AM Peak Hour

Synchro 11 Report Page 3

Lanes, Volumes, Timings
2. Bank & Bandall

2: Bank & Randall

Ma	aximum v/c Ratio: 0.45							
Inte	ersection Signal Delay: 8.3	Intersection LOS: A						
Inte	ersection Capacity Utilization 54.9%	ICU Level of Service A						
An	Analysis Period (min) 15							
m Volume for 95th percentile queue is metered by upstream signal.								

Splits and Phases: 2: Bank & Randall

∮ Ø2 (R)	
61s	
	~
🕈 Ø6 (R)	Ø8
61s	29 s

BT EBR W 15 29 1 15 29 1 15 29 1 15 29 1 16 29 1 173 3 3 102 0 NA 4	BL WB1 4 19 54 19 54 0 19 56 0 0 1688 0 0 173 7 0 173 7 0 173 8 8 8 8 0.0 10.0 33.3 3.3 3.3 3.3 3.0 3.4.0 34.0 %3.3 3.3 3.3 .0 0.0 0.0 .0 6.5 26 .0 0.0 17.7 .0 0.22 0.26	WBR 142 142 142 142 142 142 142 142 142 142	NBL 49 49 1537 0.287 457 49 Perm 2 2 2 2 10.0 34.9 36.0 40.0% 3.3 2.6 0.0 5.9 9 Lag Yes C-Max 37.7	NBT 944 944 3269 100 1019 NA 2 10.0 34.9 36.0 40.0% 33.3 2.6 0.0 5.9 Lag Yes C-Max 37.7	NBR 75 75 0 0 0	SBL 251 251 1658 0.129 224 251 pm+pt 1 6 1 1 5.0 10.9 15.0 16.7% 3.3 2.6 6 0.0 5.9 Lead Yes None 5.0	SBT 967 967 3274 3274 5 1000 NA 6 6 10.0 34.9 51.0 56.7% 3.3 2.6 0.0 59.9 C-Max 59.1	SB
4- 29 11 15 29 1 523 0 0 773 - - 102 0 - 23 - - 102 0 - 4 - - 4 - - 4 - - 4 - - 4 - - 4 - - 4 - - 4 - - 5 - - 5 - - 6.3 - - 1.33 - - 3.0 - - 0.0 - - - 1.33 - - - 3.0 - - - 1.40 - - - 1.33 - - -	4 19 54 19 54 0 1688 0.766 0 1330 0 173 m NA 8 8 8 8 8 8 8 8 8 8 8 8 8	142 142 142 1483 1483 1447 142 142 142 142 142 142 142 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	49 49 1537 0.287 457 49 Perm 2 2 2 10.0 34.9 36.0 40.0% 3.3 2.6 0.0 5.9 Lag Yes C-Max 37.7	 ♣♣ 944 944 944 944 946 3269 100 1019 NA 2 2 10.0 34.9 36.0 40.0% 3.3 2.6 0.0 9 Lag Yess C-Max 37.7 	75 75 0 0 0	251 251 1658 0.129 224 251 pm+pt 1 6 1 1 5.0 10.9 15.0 16.7% 3.3 2.6 6 0.0 5.9 Lead Yes None 5.0	 ♣ ♣ 967 967 3274 5 1000 NA 6 6 10.0 34.9 51.0 56.7% 3.3 2.6 0.0 5.9 50.1 	
15 29 1 15 29 1 15 29 1 15 29 1 373 0 23 102 0 0 NA Pe 4 4 0 3 4 0 3 3.3 3.3 3 3.0 3 3 0.0 6.3 6.3 cag L Ver 7.7 .20 .45 9.4	19 52 19 54 0 1688 0.765 0 1330 0 0 1330 0 1330 0 1330 0 1332 0 1333.3 3.3 33.3 3.3 3.3 3.0 3.0 0.0 0.6.3 ag Lag es Yees ne None 17.7 0.20 0.054 0.210	142 142 1483 1483 1447 142 142 142 8 8 8 8 8 8 8 8 8 8 8 8 8 8 10.0 33.3 34.0 37.8% 3.3 0 0.0 6.3 37.8% 3.3 0.0 0.0 6.3 142 142 142 142 142 142 142 142 142 142	49 49 1537 0.287 457 49 Perm 2 2 2 10.0 34.9 36.0 40.0% 3.3 2.6 0.0 0.0 5.9 Lag Yes C-Max 37.7	944 944 3269 10 1019 NA 2 2 2 10.0 34.9 36.0 40.0% 3.3 2.6 0.0 5.9 Lag Yes C-Max 37.7	75 75 0 0	251 251 1658 0.129 224 251 pm+pt 1 6 1 0.9 15.0 10.9 15.0 16.7% 3.3 2.6 0.0 5.9 Lead Yes None 5.0	967 967 3274 3274 5 1000 NA 6 6 6 10.0 34.9 51.0 56.7% 3.3 2.6 0.0 59 9 7 2 4 2 8 0.0 59 50.1	
15 29 1 123 0 0 773 7 7 149 0 23 0 102 0 0 10 23 - - - 4 - - - 4 - - - 4.0 - - - 3.3 - - - 3.3 - - - 0.0 - - - 6.3 - - - .ag L - - 7.7 - - - 9.4 - - -	19 54 0 1688 0.765 0 0 1333 0 173 rm NA 8 8 8 8 0.0 10.0 3.3 33.3 3.0 3.6.0 0.0 4.0 4.0 34.0 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.4 3.4 6.5 2 6.2 Yes ne None 17.7 0.22 0.6 0.6	142 1483 1447 142 142 142 142 Perm 8 8 8 8 8 8 10.0 33.3 34.0 0 37.8% 33.0 0.0 0 6.3 1.0 8 8 10.0 37.8% 3.0 0.0 0 0.0 10 10 10 10 10 10 10 10 10 10 10 10 10	49 1537 0.287 457 49 Perm 2 2 2 10.0 34.9 36.0 40.0% 3.3 2.6 0.0 5.9 Lag Yes C-Max 37.7	944 3269 10 1019 NA 2 2 10.0 34.9 36.0 40.0% 3.3 2.6 0.0 5.9 Lag Yes C-Max 37.7	75 0 0	251 1658 0.129 224 251 pm+pt 1 6 1 5.0 10.9 15.0 16.7% 3.3 2.6 0.0 5.9 Lead Yes None 5.0	967 3274 5 1000 NA 6 6 10.0 34.9 51.0 56.7% 3.3 2.6 0.0 5.9 .9 	3
523 0 773 - 774 0 23 - 102 0 4 - 4 - 4 - 4 - 4 - 4 - 4 - 500 11 3.3 3: 3.3 - 3.3 - 5.3 - 6.3 - .aeg L .r.7 - .20 - .45 -	0 1688 0.766 0 1330 0 173 m NA 8 8 8 8 8 8 8 8 8 8 8 8 8	1483 1447 1442 Perm 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	1537 0.287 457 49 Perm 2 2 2 10.0 34.9 36.0 40.0% 3.3 2.6 0.0 0 5.9 Lag Yes C-Max 37.7	3269 3269 100 1019 NA 2 2 10.0 34.9 36.0 40.0% 3.3 2.6 0.0 0 5.9 Lag Yes C-Max 37.7	0 0	1658 0.129 224 251 pm+pt 1 6 1 5.0 10.9 15.0 16.7% 3.3 2.6 0.0 5.9 Lead Yes None	3274 3274 5 1000 NA 6 10.0 34.9 51.0 56.7% 3.3 2.6 0.0 5.9 5.9 5.9	
373 3749 0 23 002 0 NA Pe 4 4 4 1 4 3.3 3.3 3.3 3.3 3.3 3.0 3.3 3.3 3.0 5 0.0 6.3 6.3 6.3 aag L Kees Y onne Nc 7.7 .20 .45 .94 -	0.765 0 1330 0 173 m NA 8 8 8 8 8 8 8 8 8 8 8 8 8	 1447 142 142 Perm 8 8 10.0 33.3 34.0 37.8% 3.3 0.0 6.3 Lag Yes None 17.7 0.20 	0.287 457 2 2 2 10.0 34.9 36.0 40.0% 3.3 2.66 0.0 5.9 Lag Yes C-Max 37.7	3269 10 1019 NA 2 2 10.0 34.9 36.0 40.0% 3.3 2.6 0.0 0 5.9 Lag Yes C-Max 37.7	0	0.129 224 251 pm+pt 1 6 1 5.0 10.9 15.0 16.7% 3.3 2.6 0.0 0 5.9 Lead Yes None	3274 5 1000 NA 6 10.0 34.9 51.0 56.7% 3.3 2.6 0.0 5.9 C-Max 60.1	
349 0 23 0 202 0 NA Pee 4 - 4 - 4 - 3.3 3.3 3.0 - 3.0 - 6.3 - .ag L .fes Y .one Nc 7.7 - .20 - .45 -	0 1330 0 173 m NA 8 8 8 8 8 8 0.0 10.0 3.3 33.3 0.0 34.0 0.4 0.3 43.3 3.3 3.3 3.3 3.3 3.3 0.0 34.0 0.0 1.0 3.3 0.0 0.0 1.0 3.3 3.3 0.0 0.0 0.0 0.0 0.0 0	1447 142 142 Perm 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	457 49 Perm 2 2 2 10.0 34.9 36.0 40.0% 3.3 2.66 0.0 0 5.9 Lag Yes C-Max 37.7	3269 10 1019 NA 2 2 10.0 34.9 36.0 40.0% 3.3 2.6 0.0 0 5.9 Lag Yes C-Max 37.7	0	224 251 pm+pt 6 10.9 15.0 16.7% 3.3 2.6 0.0 5.9 Lead Yes None	3274 5 1000 NA 6 10.0 34.9 51.0 56.7% 3.3 2.6 0.0 55.7% 5.9 C-Max 50.1	
23 102 0 NA Pe 4 4 0.0 11 3.3 3 4.0 3 1.3 3.3 3 3.3 3 3.3 3 3.0 3 0.0 6.3 0.0 6.3 0.0 6.3 0.0 6.3 0.0 11 0.0	0 173 rm NA 8 8 8 8 0.0 10.0 3.3 33.3 0.0 34.0 37.8% 3.3 3.3 0.0 34.0 6.5 ag Lages Yes ne None 17.7 0.20 0.6	142 142 Perm 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	49 Perm 2 2 10.0 34.9 36.0 40.0% 3.3 2.6 0.0 5.9 Lag Yes C-Max 37.7	10 1019 NA 2 2 10.0 34.9 36.0 40.0% 3.3 2.6 6 0.0 5.9 Lag Yes C-Max 37.7	0	251 pm+pt 1 6 1 1 5.0 10.9 15.0 16.7% 3.3 2.6 0.0 0 5.9 Lead Yes None	5 1000 NA 6 10.0 34.9 51.0 56.7% 3.3 2.6 0.0 5.9 C-Max 60.1	
02 0 NA Pe 4 4 0.0 11 3.3 3 4.0 3 8% 37.1 3.3 3 3.0 3 0.0 6.3 0.0 6.3 0.0 6.3 0.0 10 6.3 0 0.0 7.7 2.20 9.4	0 173 rm NA 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	 142 Perm 8 10.0 33.3 34.0 37.8% 3.3 3.0 0.0 6.3 Lag Yes None 17.7 0.20 	49 Perm 2 2 10.0 34.9 36.0 40.0% 3.3 2.6 0.0 5.9 Lag Yess C-Max 37.7	1019 NA 2 2 10.0 34.9 36.0 40.0% 3.3 2.6 6 0.0 5.9 Lag Yes C-Max 37.7	0	251 pm+pt 1 6 10.9 15.0 16.7% 3.3 2.6 0.0 5.9 Lead Yes None	1000 NA 6 10.0 34.9 51.0 56.7% 3.3 2.6 0.0 5.9 C-Max 60.1	
NA Pe 4 4 0.0 11 3.3 33 4.0 3.4 8% 37.1 3.3 3 3.0 5 0.0 6.3 0.0 6.3 0.0 6.3 Cag L Yone Nc 7.7 2.2 20 9.4	m NA 8 8 8 8 8 8 9 0.0 10.0 3.3 33.3 8.0 34.0 3.3 3.3 8.0 3.0 6.3 ag Lag es Yet ne None 17.7 0.20 0.66	Perm 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Perm 2 2 10.0 34.9 36.0 40.0% 3.3 2.6 0.0 5.9 Lag Yes C-Max 37.7	NA 2 10.0 34.9 36.0 40.0% 3.3 2.6 0.0 5.9 Lag Yes C-Max 37.7		pm+pt 1 6 1 5.0 10.9 15.0 16.7% 3.3 2.6 0.0 5.9 Lead Yes None 5.0	NA 6 10.0 34.9 51.0 56.7% 3.3 2.6 0.0 5.9 C-Max 59.1	
4 4 0.0 11 3.3 3 4.0 3 3.3 3 3.0 3 3.0 3 0.0 6.3 .ag L Yes Y No 7.7 .20 .45 .94	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	8 8 8 9 10.0 33.3 9 34.0 9 37.8% 3.3.3 0 0.0 6.3 1 Lag 9 Yes None 17.7 0 220	2 2 10.0 34.9 36.0 40.0% 3.3 2.6 0.0 5.9 Lag Yes C-Max 37.7	2 10.0 34.9 36.0 40.0% 3.3 2.6 0.0 5.9 Lag Yes C-Max 37.7		1 6 1 1 5.0 10.9 15.0 16.7% 3.3 2.6 0.0 5.9 Lead Yes None	6 10.0 34.9 51.0 56.7% 3.3 2.6 0.0 5.9 C-Max 59.1	
4 0.0 11 3.3 3.3 4.0 3.3 8% 37.1 3.3 0.0 6.3 a.ag L (res Y) one Nc 7.7 2.20 45 9.4	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 9 0.0 10.0 3.3 3.3 3.3 3.3 3.0 3.0 0.0 6.3 ag Laa es Yes ne None 17.7 0.22 0.66	8 8 10.0 33.3 34.0 37.8% 3.0 0.0 0.0 6.3 Lag Yes None 17.7 0.20	2 2 36.0 40.0% 3.3 2.6 0.0 5.9 Lag Yes C-Max 37.7	2 10.0 34.9 36.0 40.0% 3.3 2.6 0.0 5.9 Lag Yes C-Max 37.7		6 1 5.0 10.9 15.0 16.7% 3.3 2.6 0.0 5.9 Lead Yes None	6 10.0 34.9 51.0 56.7% 3.3 2.6 0.0 5.9 C-Max 59.1	
4 0.0 1 3.3 3.3 4.0 3.4 0 3.3 3.3 3.0 5 0.0 6.3 a.ag L fes Y one Nc 7.7 2.20 4.5 9.4	8 8 0.0 10.0 3.3 33.3 4.0 34.0 3.3 3.3 3.3 3.3 3.0 3.0 0.0.1 6.5 ag Lage yees Yees ne None 17.7 0.22 0.66 0.66	8 8 10.0 33.3 34.0 37.8% 3.3 3.0 0.0 6.3 Lag Yes None 17.7 0.20	2 10.0 34.9 36.0 40.0% 3.3 2.6 0.0 5.9 Lag Yes C-Max 37.7	2 10.0 34.9 36.0 40.0% 3.3 2.6 0.0 5.9 Lag Yes C-Max 37.7		1 5.0 10.9 15.0 16.7% 3.3 2.6 0.0 5.9 Lead Yes None	6 10.0 34.9 51.0 56.7% 3.3 2.6 0.0 5.9 C-Max 59.1	
0.0 11 3.3 3: 4.0 3: 8% 37.4 3.3 3: 3.0 5: 0.0 6.3 cag L fes Y No 7.7 20 45 9.4	0.0 10.0 3.3 33.3 4.0 34.0 3% 37.8% 3.3 3.3 8.0 3.0 0.0 6.3 ag Lag es Yes ne None 17.7 0.22 0.66	10.0 33.3 34.0 37.8% 3.3 3.0 0.0 6.3 Lag Yes None 17.7	10.0 34.9 36.0 40.0% 3.3 2.6 0.0 5.9 Lag Yes C-Max 37.7	10.0 34.9 36.0 40.0% 3.3 2.6 0.0 5.9 Lag Yes C-Max 37.7		5.0 10.9 15.0 16.7% 3.3 2.6 0.0 5.9 Lead Yes None	10.0 34.9 51.0 56.7% 3.3 2.6 0.0 5.9 C-Max	
0.0 11 3.3 3 4.0 3 8% 37.1 3.3 3 0.0 6 6.3 0 0.0 6 6.3 0 0.0 6 6.3 0 0.0 7.7 Nc 7.7 20 45 9.4 0 0.4	0.0 10.0 3.3 33.3 4.0 34.0 37.8% 37.8% 37.8% 3.3 3.3 8.0 3.0 0.0 6.3 ag Lag es Yes ne None 17.7 0.22 0.66	 10.0 33.3 34.0 37.8% 3.3 3.0 0.0 6.3 Lag Yes None 17.7 0.20 	10.0 34.9 36.0 40.0% 3.3 2.6 0.0 5.9 Lag Yes C-Max 37.7	10.0 34.9 36.0 40.0% 3.3 2.6 0.0 5.9 Lag Yes C-Max 37.7		5.0 10.9 15.0 16.7% 3.3 2.6 0.0 5.9 Lead Yes None	10.0 34.9 51.0 56.7% 3.3 2.6 0.0 5.9 C-Max	
3.3 3. 4.0 3. 8% 37.1 3.3 3. 3.0 5. 0.0 6.3 0.0 6.3 0.0 6.3 0.0 Nc 7.7 2.20 4.5 9.4	3.3 33.3 4.0 34.0 3% 37.8% 3.3 3.3 3.0 3.0 3.0 3.0 ag Lag es Yes 17.7 0.20 0.66 0.66	33.3 34.0 37.8% 3.3 3.0 0.0 6.3 Lag Yes None 17.7	34.9 36.0 40.0% 3.3 2.6 0.0 5.9 Lag Yes C-Max 37.7	34.9 36.0 40.0% 3.3 2.6 0.0 5.9 Lag Yes C-Max 37.7		10.9 15.0 16.7% 3.3 2.6 0.0 5.9 Lead Yes None	34.9 51.0 56.7% 3.3 2.6 0.0 5.9 C-Max	
4.0 3. 8% 37.1 3.3 : 3.0 : 0.0 6.3 : ces Y None Not 7.7 .20 .45 .94	4.0 34.0 37.8% 3.3 3.3 3.0 3.0 6.3 ag Lag es Yes ne None 17.7 0.20 0.66	34.0 37.8% 3.3 3.0 0.0 6.3 Lag Yes None 17.7	36.0 40.0% 3.3 2.6 0.0 5.9 Lag Yes C-Max 37.7	36.0 40.0% 3.3 2.6 0.0 5.9 Lag Yes C-Max 37.7		15.0 16.7% 3.3 2.6 0.0 5.9 Lead Yes None	51.0 56.7% 3.3 2.6 0.0 5.9 C-Max	
8% 37.1 3.3 3 3.0 5 6.3	3% 37.8% 3.3 3.3 3.0 3.0 6.3 ag Lag es Yes ne None 17.7 0.20 0.66	37.8% 37.8% 3.3 3.0 0.0 6.3 Lag Yes None 17.7	40.0% 3.3 2.6 0.0 5.9 Lag Yes C-Max 37.7	40.0% 3.3 2.6 0.0 5.9 Lag Yes C-Max 37.7		16.7% 16.7% 3.3 2.6 0.0 5.9 Lead Yes None 50.1	56.7% 3.3 2.6 0.0 5.9 C-Max	
3.3 3.3 3.3 3.0 5.3 0.	3.3 3.3 3.0 3.0 6.3 ag Lag es Yes ne None 17.7 0.20 0.66	3.3 3.0 0.0 6.3 Lag Yes None 17.7	3.3 2.6 0.0 5.9 Lag Yes C-Max 37.7	3.3 2.6 0.0 5.9 Lag Yes C-Max 37.7		3.3 2.6 0.0 5.9 Lead Yes None	3.3 2.6 0.0 5.9	
3.0 3.0 3.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5	3.0 3.0 0.0 6.3 ag Lag es Yes ne None 17.7 0.20 0.66	3.0 0.0 6.3 4 Lag 7 Yes None 17.7	2.6 0.0 5.9 Lag Yes C-Max 37.7	2.6 0.0 5.9 Lag Yes C-Max 37.7		2.6 0.0 5.9 Lead Yes None	2.6 0.0 5.9 C-Max	
0.0 6.3 .ag L /es Y nne No 7.7 .20 .45 .94	0.0 6.3 ag Lag es Yes ne None 17.7 0.20 0.66	0.0 6.3 Lag Yes None 17.7	0.0 5.9 Lag Yes C-Max 37.7	0.0 5.9 Lag Yes C-Max 37.7		0.0 5.9 Lead Yes None	0.0 5.9 C-Max	
6.3 .ag L ('es Y one No 7.7 .20 .45 9.4	6.3 ag Lag es Yes ne None 17.7 0.20 0.66	6.3 Lag Yes None 17.7	5.9 Lag Yes C-Max 37.7	5.9 Lag Yes C-Max 37.7		5.9 Lead Yes None	5.9 C-Max	
.ag L /es Y one No 7.7 .20 .45 9.4	ag Lag es Yes ne None 17.7 0.20 0.66	Lag Yes None	Lag Yes C-Max 37.7	Lag Yes C-Max 37.7		Lead Yes None	C-Max	
Yes Y one No 7.7 .20 .45 9.4	es Yes ne None 17.7 0.20 0.66	Ves None 17.7	Yes C-Max 37.7	Yes C-Max 37.7		Yes None	C-Max	
one No 7.7 .20 .45 9.4	ne None 17.7 0.20 0.66	None	C-Max 37.7	C-Max 37.7		None 50.1	C-Max	
7.7 .20 .45 9.4	17.7 0.20 0.66	17.7	37.7	37.7		50.1	50.1	
.20 .45 9.4	0.20	0.20	01.1	01.1		. 194 1	. 191 1	
.45 9.4	0.66	0.70	0.42	0 42		0.66	0.66	
9.4	0.00	0.36	0.26	0.74		0.64	0.46	
	44 5	7.3	24.8	27.6		22.9	9.9	
0.0	0.0	0.0	0.0	0.0		0.0	0.0	
9.4	44 F	7.3	24.8	27.6		22.9	9.9	
C	Г	Δ	C.	C		C.	Δ	
94	27 7	· · · ·	Ŭ	27.5		Ŭ	12.5	
C				C.			B	
21	28 (0.0	53	74.8		17.6	37.2	
3.5	42 5	12.5	16.5	#127.2		#70 7	79.6	
8.3	242 (12.0	10.0	149.1			322.6	
0.0	272.0	42.0	60.0	140.1		56.5	022.0	
338	409	543	191	1376		393	2151	
0		0.0	0	0		0	0	
0	(0	0	0		0	0	
0	(0	0	0		0	0	
30	0.42	0.26	0.26	0 74		0.64	0.46	
	C 2.1 3.5 8.3 0 0 0 0 30 30 31 ATL and 6:SBTL, S	C C C 2.1 28.0 3.5 42.5 3.3 242.0 38 409 0 0 0 0 0 0 30 0.42 BTL and 6:SBTL, Start of Gree	C C 2.1 28.0 0.0 3.5 42.5 12.5 8.3 242.0 42.0 38 409 543 0 0 0 0 0 0 30 0.42 0.26	C C C 2.1 28.0 0.0 5.3 3.5 42.5 12.5 16.5 3.3 242.0 60.0 0 038 409 543 191 0 0 0 0 0 0 0 0 0 0 0 30 0.42 0.26 0.26 0.26	C C C 21.1 28.0 0.0 5.3 74.8 3.5 42.5 12.5 16.5 #127.2 3.3 242.0 149.1 149.1 42.0 60.0 138 409 543 191 1376 0 0 0 0 0 0 0 0 0 0 0 0 30 0.26 0.26 0.74 30 31 <t< td=""><td>C C C 2.1 28.0 0.0 5.3 74.8 3.5 42.5 12.5 16.5 #127.2 3.3 242.0 149.1 42.0 60.0 38 409 543 191 1376 0 0 0 0 0 0 0 0 0 0 0 0 30 0.42 0.26 0.26 0.74</td><td>C C C 21 28.0 0.0 5.3 74.8 17.6 3.5 42.5 12.5 16.5 #127.2 #70.7 8.3 242.0 149.1 149.1 1376 393 0</td><td>C C C B 2.1 28.0 0.0 5.3 74.8 17.6 37.2 3.5 42.5 12.5 16.5 #127.2 #70.7 79.6 3.3 242.0 149.1 322.6 39.3 2151 30.0 56.5 3.8 409 543 191 1376 393 2151 0<</td></t<>	C C C 2.1 28.0 0.0 5.3 74.8 3.5 42.5 12.5 16.5 #127.2 3.3 242.0 149.1 42.0 60.0 38 409 543 191 1376 0 0 0 0 0 0 0 0 0 0 0 0 30 0.42 0.26 0.26 0.74	C C C 21 28.0 0.0 5.3 74.8 17.6 3.5 42.5 12.5 16.5 #127.2 #70.7 8.3 242.0 149.1 149.1 1376 393 0	C C C B 2.1 28.0 0.0 5.3 74.8 17.6 37.2 3.5 42.5 12.5 16.5 #127.2 #70.7 79.6 3.3 242.0 149.1 322.6 39.3 2151 30.0 56.5 3.8 409 543 191 1376 393 2151 0<

Scenario 1 1400 Bank Street 12:00 am 08/13/2021 2031 Future Total PM Peak Hour

Synchro 11 Report Page 1

Scenario 1 1400 Bank Street 12:00 am 08/13/2021 2031 Future Total AM Peak Hour

Synchro 11 Report Page 5

11/18/2021

Lanes, Volumes, Timing	S
1: Bank & Belanger/Lam	ira

11/18/2021

Lane Group	Ø3	Ø7
Lane Configurations		
Traffic Volume (vph)		
Future Volume (vph)		
Satd. Flow (prot)		
Flt Permitted		
Satd, Flow (perm)		
Satd, Flow (RTOR)		
Lane Group Flow (vph)		
Turn Type		
Protected Phases	3	7
Permitted Phases	Ŭ	
Detector Phase		
Switch Phase		
Minimum Initial (c)	10	10
Minimum Split (s)	5.0	5.0
Total Split (a)	5.0	5.0
Total Split (S)	5.0	5.0
Velley Time (a)	0%	0%
Tellow Time (s)	2.0	2.0
All-Ked Lime (S)	0.0	0.0
Lost Time Adjust (s)		
Total Lost Time (s)		
Lead/Lag	Lead	Lead
Lead-Lag Optimize?	Yes	Yes
Recall Mode	None	None
Act Effct Green (s)		
Actuated g/C Ratio		
v/c Ratio		
Control Delay		
Queue Delay		
Total Delay		
LOS		
Approach Delay		
Approach LOS		
Queue Length 50th (m)		
Queue Length 95th (m)		
Internal Link Dist (m)		
Turn Bay Length (m)		
Base Capacity (vph)		
Starvation Can Reductn		
Spillback Can Reductn		
Storage Can Reductn		
Reduced v/c Ratio		

Lanes, Volumes, Timings 1: Bank & Belanger/Lamira

Maximum v/c Ratio: 0.74						
Intersection Signal Delay: 20.7	Intersection LOS: C					
Intersection Capacity Utilization 76.3%	ICU Level of Service D					
Analysis Period (min) 15						
# 95th percentile volume exceeds capacity, queue may be longer.						
Queue shown is maximum after two cycles.						

Splits and Phases: 1: Bank & Belanger/Lamira

Ø1	🚽 🔨 Ø2 (R)		3 4 04	
15 s	36 s	5 s	34 s	
Ø6 (R)	•		7 1 08	
51 s		5 s	34 s	

Scenario 1 1400 Bank Street 12:00 am 08/13/2021 2031 Future Total PM Peak Hour

Scenario 1 1400 Bank Street 12:00 am 08/13/2021 2031 Future Total PM Peak Hour

Synchro 11 Report Page 3

11/18/2021
Lanes, Volumes, Timings
2: Bank & Randall

	4		1	1	1	Ļ	
Lane Group	WBI	WBR	NBT	NBR	SBI	SBT	
Lane Configurations	TIDE	1	A 1:	HDI	×	**	
Traffic Volume (vnh)	0	25	1150	57	26	955	
Future Volume (vph)	0	25	1150	57	26	955	
Satd Elow (prot)	0	1510	3282	0	1659	3316	
Flt Permitted	0	1510	3203	0	0 161	3310	
Satd Flow (norm)	0	1/180	3080	0	280	3316	
Satu. 110w (perm)	U	1400	3203	U	200	3310	
Salu. FIOW (KTUK)	0	21	1007	0	20	055	
Lane Group Flow (vpn)	0	Z5	1207	0	20	955	
Turri Type		Perm	INA		Perm	NA	
Protected Phases		~	2		^	6	
Permitted Phases		8	0		6		
Detector Phase		8	2		6	6	
Switch Phase		_					
Minimum Initial (s)		5.0	10.0		10.0	10.0	
Minimum Split (s)		29.0	29.2		24.2	24.2	
Total Split (s)		29.0	31.0		31.0	31.0	
Total Split (%)		48.3%	51.7%		51.7%	51.7%	
Yellow Time (s)		3.0	3.3		3.3	3.3	
All-Red Time (s)		1.0	2.9		2.9	2.9	
Lost Time Adjust (s)		0.0	0.0		0.0	0.0	
Total Lost Time (s)		4.0	6.2		6.2	6.2	
Lead/Lag			0.2		0.2	0.2	
Lead-Lag Optimize?							
Recall Mode		Pad	C-Max		C-Max	C-Max	
Act Effet Groon (s)		25.0	2/ 2		2/ 9	2/ 0	
Actuated a/C Patio		25.0	24.0		24.0	24.0	
Notuated g/G Ratio		0.42	0.41		0.41	0.41	
WC Rallo		0.04	0.89		0.23	0.70	
Control Delay		5.8	26.3		17.6	17.9	
Queue Delay		0.0	0.0		0.0	0.0	
Total Delay		5.8	26.3		17.6	17.9	
LOS		A	С		В	В	
Approach Delay	5.8		26.3			17.8	
Approach LOS	Α		С			В	
Queue Length 50th (m)		0.3	61.2		1.8	43.5	
Queue Length 95th (m)		3.8	#100.2		7.1	62.2	
Internal Link Dist (m)	292.7		258.7			149.1	
Turn Bay Length (m)					67.5		
Base Capacity (vph)		628	1362		115	1370	
Starvation Can Reducto		0_0	0		0	0	
Snillhack Can Reductn		0	0		0	0	
Storage Can Reducth		0	0		0	0	
Reduced v/c Ratio		0.04	0 80		0.23	0 70	
Neudeu V/C Nalio		0.04	0.09		0.23	0.70	
Intersection Summary							
Cycle Length: 60							
Actuated Cycle Length: 60							
Offset: 29 (48%). Referenced to phase 2:NBT and 6:SBTL. Start of Green							
Natural Cycle: 60							
Control Type: Actuated-Coordinated							
Control Type. Actuated-Coold	Control Type: Actuated-Coordinated						

Scenario 1 1400 Bank Street 12:00 am 08/13/2021 2031 Future Total PM Peak Hour

Synchro 11 Report Page 4

11/18/2021

2: Bank & Randall		11/18/2021
Maximum v/c Ratio: 0.89		
Intersection Signal Delay: 22.3	Intersection LOS: C	
Intersection Capacity Utilization 64.9%	ICU Level of Service C	
Analysis Period (min) 15		
# 95th percentile volume exceeds capacity, queue	e may be longer.	
Queue shown is maximum after two cycles.		

Splits and Phases: 2: Bank & Randall

Scenario 1 1400 Bank Street 12:00 am 08/13/2021 2031 Future Total PM Peak Hour

Synchro 11 Report Page 5

TDM Checklist

TDM Measures Checklist:

Residential Developments (multi-family, condominium or subdivision)

Legend

The measure is generally feasible and effective, and in most cases would benefit the development and its users

BETTER The measure could maximize support for users of sustainable modes, and optimize development performance

The measure is one of the most dependably effective tools to encourage the use of sustainable modes

	TDM	measures: Residential developments	Check if proposed & add descriptions
	1.	TDM PROGRAM MANAGEMENT	
	1.1	Program coordinator	
BASIC	★ 1.1.1	Designate an internal coordinator, or contract with an external coordinator	
	1.2	Travel surveys	
BETTER	1.2.1	Conduct periodic surveys to identify travel-related behaviours, attitudes, challenges and solutions, and to track progress	
	2.	WALKING AND CYCLING	
	2.1	Information on walking/cycling routes & des	tinations
BASIC	2.1.1	Display local area maps with walking/cycling access routes and key destinations at major entrances (multi-family, condominium)	
	2.2	Bicycle skills training	
BETTER	2.2.1	Offer on-site cycling courses for residents, or subsidize off-site courses	

		TDM	measures: Residential developments	Check if proposed & add descriptions		
		3.	TRANSIT			
		3.1	Transit information			
BASIC		3.1.1	Display relevant transit schedules and route maps at entrances (multi-family, condominium)	\square		
BETTER		3.1.2	Provide real-time arrival information display at entrances (multi-family, condominium)			
		3.2	Transit fare incentives			
BASIC	*	3.2.1	Offer PRESTO cards preloaded with one monthly transit pass on residence purchase/move-in, to encourage residents to use transit			
BETTER		3.2.2	Offer at least one year of free monthly transit passes on residence purchase/move-in	∇		
		3.3	Enhanced public transit service			
BETTER	*	3.3.1	Contract with OC Transpo to provide early transit services until regular services are warranted by occupancy levels <i>(subdivision)</i>			
		3.4	Private transit service			
BETTER		3.4.1	Provide shuttle service for seniors homes or lifestyle communities (e.g. scheduled mall or supermarket runs)			
		4.	CARSHARING & BIKESHARING			
		4.1	Bikeshare stations & memberships			
BETTER		4.1.1	Contract with provider to install on-site bikeshare station (<i>multi-family</i>)	\checkmark		
BETTER		4.1.2	Provide residents with bikeshare memberships, either free or subsidized <i>(multi-family)</i>			
		4.2	Carshare vehicles & memberships			
BETTER		4.2.1	Contract with provider to install on-site carshare vehicles and promote their use by residents			
BETTER		4.2.2	Provide residents with carshare memberships, either free or subsidized			
		5.	PARKING			
		5.1	Priced parking			
BASIC	*	5.1.1	Unbundle parking cost from purchase price (condominium)			
BASIC	*	5.1.2	Unbundle parking cost from monthly rent (multi-family)	\square		

Version 1.0 (30 June 2017)

TDM	I measures: Residential developments	Check if proposed & add descriptions
6.	TDM MARKETING & COMMUNICATIONS	6
6.1	Multimodal travel information	
BASIC ★ 6.1.1	Provide a multimodal travel option information package to new residents	
6.2	Personalized trip planning	
BETTER ★ 6.2.1	Offer personalized trip planning to new residents	