Geotechnical Engineering

Environmental Engineering

Hydrogeology

Geological Engineering

Materials Testing

Building Science

Paterson Group Inc.

Consulting Engineers 154 Colonnade Road South Ottawa (Nepean), Ontario Canada K2E 7J5

Tel: (613) 226-7381 Fax: (613) 226-6344 www.patersongroup.ca

patersongroup

Phase II – Environmental Site Assessment

337 & 345 Montgomery Street and 94 Selkirk Street Ottawa, Ontario

Prepared For

Serco Realty Group

October 28, 2021

Report: PE5412-2

TABLE OF CONTENTS

PAGE

EXEC	UTIV	E SUMMARYi	ii
1.0	INTR	ODUCTION	1
	1.1	Site Description	1
	1.2	Property Ownership	2
	1.3	Current and Proposed Future Uses	2
	1.4	Applicable Site Condition Standard	2
2.0	BAC	GROUND INFORMATION	3
	2.1	Physical Setting	3
3.0	SCO	PE OF INVESTIGATION	3
	3.1	Overview of Site Investigation	3
	3.2	Media Investigated	3
	3.3	Phase I ESA Conceptual Site Model	4
4.0	INVE	STIGATION METHOD	8
	4.1	Subsurface Investigation	8
	4.2	Soil Sampling	9
	4.3	Field Screening Measurements	9
	4.4	Groundwater Monitoring Well Installation1	0
	4.5	Field Measurement of Water Quality Parameters 1	0
	4.6	Groundwater Sampling1	1
	4.7	Analytical Testing1	1
	4.8	Residue Management1	3
	4.9	Elevation Surveying1	3
	4.10	Quality Assurance and Quality Control Measures	3
5.0	REVI	EW AND EVALUATION 13	3
	5.1	Geology1	3
	5.2	Groundwater Elevations, Flow Direction, and Hydraulic Gradient 1-	4
	5.3	Fine/Coarse Soil Texture	4
	5.4	Field Screening1	4
	5.5	Soil Quality1	5
	5.6	Groundwater Quality2	1
	5.7	Quality Assurance and Quality Control Results	3
	5.8	Phase II Conceptual Site Model2	8
6.0	CON	CLUSIONS	6
7.0	STAT	EMENT OF LIMITATIONS	9

List of Figures

Figure 1 – Key Plan Drawing PE5412-3 – Test Hole Location Plan Drawing PE5412-4 – Analytical Testing Plan – Soil (PHCs) Drawing PE5412-4A – Cross Section A-A' – Soil (PHCs) Drawing PE5412-4B – Cross Section B-B' – Soil (PHCs) Drawing PE5412-5 – Analytical Testing Plan – Soil (VOCs) Drawing PE5412-5A – Cross Section A-A' – Soil (VOCs) Drawing PE5412-5B – Cross Section B-B' – Soil (VOCs) Drawing PE5412-6 – Analytical Testing Plan – Soil (PAHs) Drawing PE5412-6A – Cross Section A-A' – Soil (PAHs) Drawing PE5412-6B – Cross Section B-B' – Soil (PAHs) Drawing PE5412-7 – Analytical Testing Plan – Soil (Metals) Drawing PE5412-7A – Cross Section A-A' – Soil (Metals) Drawing PE5412-7B – Cross Section B-B' – Soil (Metals) Drawing PE5412-8 – Analytical Testing Plan – Groundwater Drawing PE5412-8A – Cross Section A-A' – Groundwater Drawing PE5412-8B – Cross Section B-B' – Groundwater

List of Appendices

- Appendix 1 Sampling and Analysis Plan Soil Profile and Test Data Sheets Symbols and Terms Laboratory Certificates of Analysis
- Appendix 2 Soil Profile and Test Data Sheets (EXP, 2019) Laboratory Certificates of Analysis (EXP, 2019)

EXECUTIVE SUMMARY

Assessment

A Phase II ESA was conducted for the properties addressed 337 & 345 Montgomery Street and 94 Selkirk Street, in the City of Ottawa, Ontario. The purpose of the Phase II ESA was to address potentially contaminating activities (PCAs) that were identified during the Phase I ESA and were considered to result in areas of potential environmental concern (APECs) on the Phase I Property.

A previous subsurface investigation carried out by others in 2019 consisted of the placement of three boreholes on the property addressed 337 Montgomery Street (BH1 to BH3).

Three soil samples were submitted for laboratory analysis of a combination of PHCs (F₁-F₄), VOCs, PAHs, metals, and/or pH parameters. Based on the analytical test results, the concentrations of hexane as well as PHCs F₁ and F₂ in the soil sample analyzed from BH1 were in excess of the MECP Table 3 residential soil standards. In addition, the concentrations of PHCs F₂, benzo(a)pyrene, and fluoranthene in the soil sample analyzed from BH2 were in excess of the MECP Table 3 residential soil standards.

Three groundwater samples (one from each monitoring well) were submitted for laboratory analysis of BTEX, PHCs (F₁-F₄), metals, and VOCs. No BTEX, PHC, or VOC parameters identified in the samples analyzed. Metal concentrations identified in the samples analyzed were in compliance with the MECP Table 3 non-potable groundwater standards.

The current subsurface investigation, conducted on September 9 and September 10, 2021, consisted of drilling six boreholes (BH1-21 to BH6-21) across the Phase II Property. BH1-21, BH3-21, BH4-21, and BH6-21 were advanced to shallow depths ranging from approximately 2.95 m to 3.25 m below ground surface and terminated within a layer of native brown silty sand (glacial till). BH2-21 and BH5-21 were advanced to deeper depths of 9.04 m and 9.12 m below ground surface, respectively, and terminated within the underlying bedrock. Upon completion, two of the boreholes (BH2-21 and BH5-21) were instrumented with groundwater monitoring wells. Three groundwater monitoring wells (BH1-19–BH3-19), installed in 2019 as part of a previous subsurface investigation completed by EXP Services Inc., were located and utilized as part of this current investigation.

In general, the stratigraphy at the Phase II Property consisted of topsoil or a pavement structure (consisting of asphalt over engineered fill material) at ground surface, followed by fill material and/or native glacial till. Overburden was underlain by limestone bedrock interbedded with shale. The fill material observed generally consisted of brown silty sand with crushed stone, gravel and/or trace clay. Brick, concrete and/or glass fragments were identified in BH1-21 and BH6-21.

Six soil samples were submitted for laboratory analysis of either PHCs (F₁-F₄), VOCs, PAHs, metals, and/or pH parameters. Based on the analytical test results, the concentrations of metals and PAHs within the soil/fill sample recovered from BH4-21 were in excess of the selected MECP Table 3 residential standards.

Two groundwater samples, recovered from the monitoring wells installed in BH2-21 and BH5-21, were submitted for laboratory analysis of PHCs (F₁-F₄) and VOCs. Based on the analytical results no parameter concentrations were identified in the groundwater samples analyzed, and as such, are in compliance with the MECP Table 3 non-potable groundwater standards.

Recommendations

Soil

Based on the findings of the Phase II ESA, it is recommended that a soil remediation program be carried out at the Phase II Property in conjunction with site redevelopment activities.

Prior to off-site disposal of impacted soils at a licensed landfill, a leachate analysis of a representative sample of contaminated soil must be conducted in accordance with Ontario Regulation 347/558.

It is recommended that Paterson personnel be on-site at the time of the remedial activities to direct excavation and segregation of impacted soil and to collect additional delineation and confirmatory soil samples are required in accordance with O.Reg. 347/558.

Excess Soil

Excess soil requiring off-site disposal during construction must be managed in accordance with Ontario Regulation 406/19: On-site and Excess Soil Management.

Monitoring Wells

If the groundwater monitoring wells installed on-site are not going to be used in the future, or will be destroyed during future construction activities, then they must be decommissioned according to Ontario Regulation 903 (Ontario Water Resources Act), however, we recommend that the wells be maintained for future sampling purposes. The monitoring wells will be registered with the MECP under this regulation. Further information can be provided upon request in this regard.

1.0 INTRODUCTION

At the request of Serco Realty Group, Paterson Group (Paterson) conducted a Phase II – Environmental Site Assessment (Phase II ESA) for the properties addressed 337 & 345 Montgomery Street and 94 Selkirk Street, in the City of Ottawa, Ontario. The purpose of this Phase II ESA has been to address the areas of potential environmental concern (APECs) identified on the Phase I Property as a result the findings of the Phase I ESA. This report includes the findings of a 2019 Phase II ESA prepared by EXP.

1.1 Site Description

Addresses:	337 Montgomery Street, Ottawa, Ontario; 345 Montgomery Street, Ottawa, Ontario; and 94 Selkirk Street, Ottawa, Ontario.
Legal Description:	Part of Lot 7, Junction Gore Concession (Rideau Front), Formerly the Township of Gloucester, in the City of Ottawa, Ontario.
Location:	The Phase II Property is located on the southeastern corner of the Montgomery Street and Selkirk Street intersection, in the City of Ottawa, Ontario. Refer to Figure 1 – Key Plan, appended to this report.
Latitude and Longitude:	45° 25' 54" N, 75° 39' 57" W
Site Description:	
Configuration:	Irregular
Site Area:	1,695 m ² (approximate)
Zoning:	R5C H(25) – Residential Fourth Density Zone.
Current Use:	The Phase II Property is currently occupied with a mixed-use building (337 Montgomery Street) and two residential dwellings (345 Montgomery Street and 94 Selkirk Street).
Services:	The Phase I Property is located within a municipally serviced area.

1.2 Property Ownership

The Phase II Property is currently owned by Serco Realty Group. Paterson was retained to complete this Phase II ESA by Ms. Loredana Porcari of Serco Realty Group, whose offices are located at 9 Capella Court, Suite 200, Ottawa, Ontario. Ms. Porcari can be contacted via telephone at 613-226-2221.

1.3 Current and Proposed Future Uses

The Phase II Property is currently occupied by three residential dwellings. It should be noted that the commercial unit at 337 Montgomery Street is currently vacant. It is our understanding that the Phase I Property is to be redeveloped with a multi-storey residential building.

1.4 Applicable Site Condition Standard

The site condition standards for the Phase II Property were obtained from Table 3 of the document entitled, *"Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act"*, prepared by the Ministry of the Environment, Conservation and Parks (MECP), and dated April 15, 2011. The selected MECP standards are based on the following considerations:

- Coarse-grained soil conditions
- **G** Full-depth conditions
- □ Non-potable groundwater conditions
- Residential land use

Section 35 of O.Reg.153/04 does apply to the Phase II Property in that the property relies upon municipal drinking water.

Section 41 of O.Reg. 153/04 does not apply to the Phase II Property, as the property is not within 30 m of an environmentally sensitive area and the pH of the soil is between 5 and 9.

Section 43.1 of O.Reg. 153/04 does not apply to the Phase II Property, as the Property is not a shallow soil property.

The residential standards were selected based on the future intended land use of the Phase II Property.

Grain size analysis was not conducted as part of this assessment. The coarsegrained soil standards were selected as a conservative approach.

2.0 BACKGROUND INFORMATION

2.1 Physical Setting

The Phase II Property is currently occupied with three residential dwellings (the commercial unit at 337 Montgomery Street is currently vacant), while the remainder of the site is largely paved with asphaltic concrete or consists of landscaped areas. The site topography appears to be relatively flat, whereas the regional topography appears to slope down to the northwest, in the general direction of the Rideau River. Water drainage on the Phase I Property occurs primarily via infiltration within the landscaped areas, as well as via sheet flow towards catch basins located on the adjacent streets.

3.0 SCOPE OF INVESTIGATION

3.1 Overview of Site Investigation

The subsurface investigation for was conducted on September 9 and September 10, 2021 and consisted of drilling six boreholes (BH1-21 to BH6-21) across the Phase I Property. Boreholes BH1-21, BH3-21, BH4-21, and BH6-21 were advanced to shallow depths ranging from approximately 2.95 m to 3.25 m below ground surface and terminated within a layer of native brown silty sand (glacial till). Boreholes BH2-21 and BH5-21 were advanced to deeper depths of 9.04 m and 9.12 m below ground surface, respectively, and cored into the underlying bedrock. Upon completion, BH2-21 and BH5-21, were instrumented with groundwater monitoring wells.

Three groundwater monitoring wells (BH1-19 to BH3-19), installed in 2019 as part of a previous subsurface investigation completed by EXP Services Inc., were located and utilized as part of this current investigation.

3.2 Media Investigated

During the subsurface investigation, soil and groundwater samples were obtained and submitted for laboratory analysis. The rationale for sampling and analyzing these media is based on the contaminants of potential concern (CPCs) identified in the Phase I ESA.

The CPCs for the soil and/or groundwater on the Phase II Property include the following:

Benzene, Toluene, Ethylbenzene, Xylenes (BTEX);

- □ Volatile Organic Compounds (VOCs);
- D Petroleum Hydrocarbons, fractions 1 4 (PHCs F₁-F₄);
- D Polycyclic Aromatic Hydrocarbons (PAHs);
- □ Metals (including As, Sb, Se);
- Mercury (Hg); and
- Hexavalent Chromium (CrVI).

3.3 Phase I ESA Conceptual Site Model

Geological and Hydrogeological Setting

Based on the available information, the bedrock in the area of the subject site consists of shale of the Billings Formation. The surficial geology generally consists of offshore marine sediments (erosional terraces), with an overburden thickness ranging from approximately 3 m to 5 m.

According to the 2019 Phase II ESA report prepared by EXP Services Inc., the groundwater flow beneath the Phase I Property is towards the south. It is considered likely that the redevelopment of the property at 350 Montgomery Street has influenced the local groundwater flow. Based on our knowledge of the area, the regional groundwater flow is anticipated to be in a westerly direction toward the Rideau River.

Existing Buildings and Structures

The Phase I Property is currently occupied with five buildings, each described as follows:

□ 337 Montgomery Street

This property is currently occupied with a two-storey residential dwelling (currently vacant), with one basement level. The residence was constructed sometime in the early-1900's with a stone and mortar foundation and is finished on the exterior with stone and brick siding, as well as a sloped-shingled roof.

Additionally, a one-storey, slab-on-grade style addition is attached to the east side of the subject building, formerly occupied by a restaurant and currently vacant.

The addition was constructed sometime in the 1930's or 1940's with a poured concrete foundation and is finished on the exterior with stone and concrete block siding as well as a flat tar-and-gravel style roof. The residence and the addition are currently heated via with a natural gas-fired furnace, located in the basement.

□ 345 Montgomery Street

This property is currently occupied with a two-and-a-half-storey residential dwelling, with one basement level. Built sometime in the early-1900's, the subject building is constructed with a stone and mortar foundation and is finished on the exterior with brick and wood siding, as well as a sloped-shingled roof. The subject building is currently heated with a natural gas-fired furnace, located in the basement.

- □ A one-storey, slab-on-grade style private garage is also present on this property. The garage is constructed with a poured concrete foundation and is finished on the exterior with stone siding, as well as a flat tar-and-gravel style roof. The garage does not contain any heating equipment.
- □ 94 Selkirk Street

This property is currently occupied with a two-and-a-half-storey residential dwelling, with one basement level. Built sometime in the early-1900's, the subject building is constructed with a stone foundation and is finished on the exterior with vinyl siding, as well as a sloped-shingled roof. The subject building is currently heated with natural gas-fired equipment, located in the basement.

A one-storey, slab-on-grade style private garage is also present on this property. The garage is constructed with a poured concrete foundation and is finished on the exterior with vinyl siding, as well as a flat tar-and-gravel style roof. The garage does not contain any heating equipment.

Underground Utilities and Below Grade Structures

Underground service locates were completed in conjunction with this assessment. Underground utilities on the Phase I Property include electrical cables, natural gas pipelines, as well as municipal water and wastewater services.

Water Bodies

No water bodies were identified within the Phase I Study Area. The nearest named water body with respect to the Phase I Property is the Rideau River, located approximately 300 m to the west.

Areas of Natural and Scientific Interest

No areas of natural and scientific interest were identified within the Phase I Study Area.

Drinking Water Wells

Based on the available well record information, as well as the availability of municipal water services, no drinking water wells are expected to be present within the Phase I Study Area.

Neighbouring Land Use

The neighbouring lands within the Phase I Study Area consist of a combination of residential and commercial properties. Current land use is shown on Drawing PE5412-2 – Surrounding Land Use Plan, in the Figures section of this report.

Potentially Contaminating Activities and Areas of Potential Environmental Concern

As per Section 7.1, two on-site and two off-site potentially contaminating activities (PCAs), have resulted in three areas of potential environmental concern (APECs) on the Phase I Property. The PCAs, APECs, and CPCs are presented below in Table 1.

337 & 345 Montgomery Street and 94 Selkirk Street Ottawa, Ontario

Table 1 Areas of Potential Environmental Concern							
Area of Potential Environmental Concern	Location of Area of Potential Environmental Concern with Respect to Phase I Property	Potentially Contaminating Activity	Location of PCA (On-Site or Off- Site)	Contaminants of Potential Concern	Media Potentially Impacted (Groundwater, Soil, and/or Sediment)		
APEC 1	Central Portion of the Phase I Property	PCA #30 - Importation of Fill Material of Unknown Quality	On-site	Metals As, Sb, Se Hg, CrVI	Soil (Fill Material)		
APEC 2	Central Portion of the Phase I Property	Other – Impacted Soil Previously Identified by Others	On-site	BTEX PHCs (F1-F4) VOCs PAHs	Soil Groundwater		
		PCA #28 – Gasoline and Associated Products Storage in Fixed Tanks	Off-site				
APEC 3	Southwestern Portion of Phase I Property	PCA #52 - Storage, Maintenance, Fuelling and Repair of Equipment, Vehicles and Material Used to Maintain Transportation Systems	Off-site	BTEX PHCs (F1-F4) VOCs	Groundwater		

Other existing or historical off-site PCAs identified within the Phase I Study Area are not considered to represent APECs on the Phase I Property based on their separation distances and/or their cross- or down-gradient orientations relative to the Phase I Property.

According to the 2019 Phase II ESA report prepared by EXP Services Inc., the groundwater flow beneath the Phase I Property is towards the south. It is considered likely that the redevelopment of the property at 350 Montgomery Street has influenced the local groundwater flow. Based on our knowledge of the area, the regional groundwater flow is anticipated to be in a westerly direction toward the Rideau River.

Contaminants of Potential Concern

As noted above in Table 3, the contaminants of potential concern (CPCs) in the soil and/or groundwater at the Phase I Property include the following:

- Benzene, Toluene, Ethylbenzene, Xylenes (BTEX);
- □ Volatile Organic Compounds (VOCs);
- □ Petroleum Hydrocarbons, fractions 1 4 (PHCs F₁-F₄);
- D Polycyclic Aromatic Hydrocarbons (PAHs);
- □ Metals (including As, Sb, Se);
- □ Mercury (Hg⁺);
- Hexavalent Chromium (Cr^{VI}).

Assessment of Uncertainty and/or Absence of Information

The information available for review as part of the preparation of the Phase I ESA is considered to be sufficient to conclude that there are PCAs and APECs associated with the Phase I Property.

The presence of PCAs was confirmed by a variety of independent sources, and as such, the conclusions of this report are not affected by uncertainty which may be present with respect to the individual sources.

4.0 INVESTIGATION METHOD

4.1 Subsurface Investigation

The subsurface investigation for was conducted on September 9 and September 10, 2021 and consisted of drilling six boreholes (BH1-21 to BH6-21) across the Phase I Property. Boreholes BH1-21, BH3-21, BH4-21, and BH6-21 were advanced to shallow depths ranging from approximately 2.95 m to 3.25 m below ground surface and terminated within a layer of native brown silty sand (glacial till). Boreholes BH2-21 and BH5-21 were advanced to deeper depths of 9.04 m and 9.12 m below ground surface, respectively, and cored into the underlying bedrock. Upon completion, BH2-21 and BH5-21, were instrumented with groundwater monitoring wells.

Three groundwater monitoring wells (BH1-19 to BH3-19), installed in 2019 as part of a previous subsurface investigation completed by EXP Services Inc., were located and utilized as part of this current investigation.

Under the full-time supervision of Paterson personnel, the boreholes were drilled using a low-clearance drill rig provided by George Downing Estate Drilling of Hawkesbury, Ontario. The locations of the boreholes are illustrated on Drawing PE5412-3 – Test Hole Location Plan, appended to this report.

4.2 Soil Sampling

Soil sampling protocols were followed using the MECP document entitled, *"Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario"*, dated May 1996.

The samples were recovered using a stainless-steel split spoon while wearing protective gloves (changed after each sample), and immediately placed into plastic bags. If significant contamination was encountered, the samples were instead placed into glass jars.

Sampling equipment was routinely washed in soapy water and rinsed with methylhydrate after each split spoon to prevent any cross contamination of the samples. The samples were also stored in coolers to reduce analyte volatilization during transportation.

A total of 31 soil samples and 8 rock core samples were obtained from the boreholes by means of auger and split spoon sampling. The depths at which auger, split spoon, and rock core samples were obtained from the boreholes are shown as "**AU**", "**SS**", and "**RC**", respectively, on the Soil Profile and Test Data Sheets, appended to this report.

4.3 Field Screening Measurements

All soil samples collected were subjected to a preliminary screening procedure, which included visual screening for colour and evidence of metals, as well as soil vapour screening with an RKI Eagle GasTech Detector.

The recovered soil samples were placed immediately into airtight plastic bags with nominal headspace. All lumps of soil inside the bags were broken by hand, and the soil was allowed to come to room temperature prior to conducting the vapour survey, ensuring consistency of readings between samples. To measure the soil vapours, the analyser probe was inserted into the nominal headspace above the sample. The sample was then agitated and manipulated gently by hand as the measurement was taken. The peak reading registered within the first 15 seconds was recorded as the vapour measurement. The parts per million (ppm) scale was used to measure concentrations of organic vapours. The results of the vapour survey are presented on the Soil Profile and Test Data Sheets, appended to this report.

4.4 Groundwater Monitoring Well Installation

Two groundwater monitoring wells (BH2-21 and BH5-21) were installed on the Phase II Property as part of this Phase II ESA investigation. The monitoring wells were constructed using 32 mm diameter Schedule 40 threaded PVC risers and screens. A sand pack consisting of silica sand was placed around the screen and a bentonite seal was placed above the screen to minimize cross-contamination. A summary of the monitoring well construction details are listed below in Table 2 as well as on the Soil Profile and Test Data Sheets provided in Appendix 1.

Upon completion, the groundwater monitoring wells were developed using a dedicated inertial lift pump; the wells were purged until a minimum of three well volumes had been removed or the wells were dry.

Table 2 Monitoring Well Construction Details									
Well ID	Ground Surface Elevation (m ASL)	Total Depth (m BGS)	Screened Interval (m BGS)	Sand Pack (m BGS)	Bentonite Seal (m BGS)	Casing Type			
BH2-21	57.58	9.04	6.04 - 9.04	5.48 – 9.04	0.30 – 5.48	Flushmount			
BH5-21	57.86	9.12	6.12 – 9.12	5.77 – 9.12	0.30 - 5.77	Flushmount			

4.5 Field Measurement of Water Quality Parameters

Groundwater monitoring and sampling was conducted at BH2-21 and BH5-21 on September 16, 2021. Field parameters, including temperature, pH, and electrical conductivity, were measured after each well volume purged. Wells were purged prior to sampling until at least three well volumes had been removed, the field parameters were relatively stable or the well was dry. Stabilized field parameter values are summarized in Table 3.

Table 3 Measurement of Water Quality Parameters							
Well ID	Temperature (°C)	Conductivity (μS)	рН (Units)	Date of Measurement			
BH2-21	15.9	11.78	7.30	Sontombor 16, 2021			
BH5-21	14.5	11.07	7.00	September 16, 2021			

4.6 Groundwater Sampling

Groundwater sampling protocols were followed using the MECP document entitled, *"Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario"*, dated May 1996.

Standing water was purged from each monitoring well prior to the recovery of the groundwater samples using dedicated sampling equipment. The samples were then stored in coolers to reduce possible analyte volatilization during their transportation.

Further details of our standard operating procedure for groundwater sampling are provided in the Sampling and Analysis Plan, appended to this report.

4.7 Analytical Testing

The following soil and groundwater samples were submitted for laboratory analysis:

337 & 345 Montgomery Street and 94 Selkirk Street Ottawa, Ontario

Table 4									
Testing Parameters for Submitted Soil Samples									
		Par	amet	ers A	naly:	zed			
Sample ID	Sample Depth (m BGS) & Stratigraphic Unit	vocs	PHCs (F ₁ -F ₄)	PAHs	Metals ¹	Hq	Rationale		
BH1-21-AU2	0.20 m – 0.46 m Fill Material			Х	Х		To assess for potential impacts resulting from the presence of fill material of unknown quality.		
BH1-21-SS5	2.29 m – 2.90 m Glacial Till	Х	х				To assess for potential impacts resulting from a former off-site auto service garage.		
BH3-21-SS5	2.29 m – 2.90 m Glacial Till	х	х				To assess for potential impacts resulting from a former off-site auto service garage.		
BH4-21-AU2	0.23 m – 0.46 m Fill Material			Х	х	х	To assess for potential impacts resulting from the presence of fill material of unknown quality.		
BH4-21-SS6	3.05 m – 3.35 m Glacial Till	х	х			х	To assess for potential impacts resulting from a former off-site auto service garage.		
BH5-21-SS5	3.05 m – 3.66 m Glacial Till	х	х				To assess for potential impacts resulting from a former off-site auto service garage.		
DUP-1 ²	0.20 m – 0.46 m Fill Material			Х	Х		For laboratory QA/QC purposes.		
DUP-2 ³	2.29 m – 2.90 m Glacial Till	х	Х				For laboratory QA/QC purposes.		
1 – Includes Merci	ury (Hg ⁺) and Hexavaler	nt Chro	mium ((Cr ⁶⁺)					

2 – Duplicate Sample of BH1-21-AU2 3 – Duplicate Sample of BH3-21-SS5

Table 5 Testing Pa	arameters for	Submitte	ed Groun	dwater Samples
	Correspond	Parameter	s Analyzed	
Sample ID	Interval (m BGS) & Stratigraphic Unit	Screened Interval (m BGS) & O Stratigraphic Unit		Rationale
BH2-21-GW1	6.04 m – 9.04 m Bedrock	Х	х	To assess for potential impacts resulting from a former off-site auto service garage.
BH5-21-GW1	6.12 m – 9.12 m Bedrock	х	х	To assess for potential impacts resulting from a former off-site auto service garage.
DUP-1 ¹	6.04 m – 9.04 m Bedrock	х		For laboratory QA/QC purposes.
Trip Blank	N/A	Х		For laboratory QA/QC purposes.
1 – Duplicate sam	ple of BH2-21-GW1			

Paracel Laboratories (Paracel), of Ottawa, Ontario, was retained to perform the laboratory analysis on the soil and groundwater samples submitted for analytical testing. Paracel is a member of the Standards Council of Canada/Canadian Association for Laboratory Accreditation (SCC/CALA) and is accredited and certified by the SCC/CALA for specific tests registered with the association.

4.8 **Residue Management**

All soil cuttings, purge water, and equipment cleaning fluids were retained onsite.

4.9 Elevation Surveying

The ground surface elevations at each borehole location were surveyed using a GPS device by Paterson personnel and referenced to a geodetic datum.

4.10 Quality Assurance and Quality Control Measures

A summary of the quality assurance and quality control (QA/QC) measures, undertaken as part of this assessment, is provided in the Sampling and Analysis Plan in Appendix 1.

5.0 REVIEW AND EVALUATION

5.1 Geology

In general, the stratigraphy encountered at the borehole locations consisted of a pavement structure (a thin layer of asphaltic concrete over engineered fill) followed by fill material and/or native glacial till.

The fill material encountered beneath the pavement structure was observed to extend up to depths of approximately 1.07 m below ground surface. Brick and concrete fragments were identified in the fill material at BH1-21, while glass fragments were identified in the fill material at BH6-21.

Bedrock, consisting of interbedded limestone and shale, was confirmed in BH2-21 and BH5-21 at depths of approximately 4.60 m and 3.53 m below ground surface, respectively.

Site geology details are provided in the Soil Profile and Test Data Sheets in Appendix 1.

5.2 Groundwater Elevations, Flow Direction, and Hydraulic Gradient

Groundwater levels were measured at BH2-21 and BH5-21 on September 16, 2021, using an electronic water level meter. The groundwater levels are summarized below in Table 6.

Table 6 Groundwater Level Measurements								
Borehole Location	Borehole Ground Surface Water Location Elevation (m ASL) (r		Water Level Elevation (m ASL)	Date of Measurement				
BH2-21	57.58	6.20	51.38	September 16,				
BH5-21	57.86	6.72	51.14	2021				

The groundwater at the Phase II Property was encountered within the bedrock at depths ranging from approximately 6.20 m to 6.72 m below the existing ground surface. No unusual visual or olfactory observations were identified in any the recovered groundwater samples.

According to the 2019 Phase II ESA by EXP, the groundwater was encountered within the overburden at depths ranging from approximately 3.2 m to 3.6 m below the existing ground surface. Based on the measured levels, the groundwater flow direction was interpreted to be in a southerly direction.

It should be noted that, during the September 16, 2021 sampling event, the wells installed by EXP were dry. It is suspected that the redevelopment of 350 Montgomery Street (20 m to the south of the Phase II Property) has contributed to the lowering of the local groundwater table, and as a result, has influenced the local groundwater flow.

5.3 Fine/Coarse Soil Texture

Grain size analysis was not completed as part of this investigation. As a result, the coarse-grained soil standards were chosen as a conservative approach.

5.4 Field Screening

Field screening of the soil samples collected during the drilling program resulted in vapour readings ranging from 15 ppm to 35 ppm and were not considered to be indicative of potential hydrocarbon impacts No obvious staining or odours were noted in the soil samples. As previously noted, fragments of concrete, brick and/or glass were observed in the fill material at BH1-21 and BH6-21; otherwise, no evidence of deleterious material were identified during the field program. The field screening results of each individual soil sample are provided on the Soil Profile and Test Data Sheets appended to this report.

5.5 Soil Quality

2019 Phase II ESA – EXP Services Inc.

As part of the previous 2019 Phase II ESA completed for 337 Montgomery Street, EXP submitted three soil samples for analysis of a combination of PHCs (F_1 - F_4), VOCs, PAHs, metals, and/or pH parameters. Based on the analytical test results, the concentrations of hexane as well as PHCs F_1 and F_2 in the soil sample analyzed from BH1 were in excess of the MECP Table 3 residential soil standards. In addition, the concentrations of PHCs F_2 , benzo(a)pyrene, and fluoranthene in the soil sample analyzed from BH2 were in excess of the MECP Table 3 residential soil standards. Refer to the laboratory Certificates of Analysis presented in Appendix 2.

2021 Phase II ESA – Paterson Group Inc.

Six soil samples were submitted for laboratory analysis of a combination of PHCs (F_1 - F_4), VOCs, PAHs, metals, and/or pH parameters. The results of the analytical testing are presented below in Tables 7 to 11, as well as on the laboratory Certificates of Analysis included in Appendix 1.

Table 7 Analytical Test Results – Soil Petroleum Hydrocarbons (PHCs F1-F4)									
			Soil Samp	oles (µg/g)					
		BH1_21_	September	9 & 10, 2021 BH4-21-	BH5-01-	Residential			
Parameter	MDL (ug/g)	SS5	SS5	SS6	SS5	Soil			
	(P9/9/		Standards						
		(2.3 – 2.5)	(2.3 – 2.5)	(3.0 – 3.3)	(3.1 – 3.4)	(µg/g)			
PHCs F ₁	7	nd	nd	8	nd	55			
PHCs F ₂	4	44	10	40	35	98			
PHCs F ₃	8	63	27	96	53	300			
PHCs F ₄	6	37	31	83	31	2,800			
Notes: Image: Comparison of the second sec									

Concentrations of PHC F_2 - F_4 parameters were identified in each of the samples analysed, while a concentration of PHC F_1 was identified only in Sample BH4-21-SS6. All detected PHC concentrations comply with the selected MECP Table 3 residential soil standards.

337 & 345 Montgomery Street and 94 Selkirk Street Ottawa, Ontario

-		(-	Soil Sam			
			September	9 & 10, 2021		MECP Table 3
Parameter	MDL	BH1-21-SS5	BH3-21-SS5	BH4-21-SS6	BH5-21-SS5	Residential
i ulunicici	(µg/g)		Sample Dep	oth (m BGS)		Soil Standards
		(2.3 – 2.5)	(2.3 – 2.5)	(3.0 – 3.3)	(3.1 – 3.4)	(48/8)
Acetone	0.50	nd	nd	nd	nd	16
Benzene	0.02	nd	nd	nd	nd	0.21
Bromodichloromethane	0.05	nd	nd	nd	nd	13
Bromoform	0.05	nd	nd	nd	nd	0.27
Bromomethane	0.05	nd	nd	nd	nd	0.05
Carbon Tetrachloride	0.05	nd	nd	nd	nd	0.05
Chlorobenzene	0.05	nd	nd	nd	nd	2.4
Chloroform	0.05	nd	nd	nd	nd	0.05
Dibromochloromethane	0.05	nd	nd	nd	nd	9.4
Dichlorodifluoromethane	0.05	nd	nd	nd	nd	16
1,2-Dichlorobenzene	0.05	nd	nd	nd	nd	3.4
1,3-Dichlorobenzene	0.05	nd	nd	nd	nd	4.8
1,4-Dichlorobenzene	0.05	nd	nd	nd	nd	0.083
1,1-Dichloroethane	0.05	nd	nd	nd	nd	3.5
1,2-Dichloroethane	0.05	nd	nd	nd	nd	0.05
1,1-Dichloroethylene	0.05	nd	nd	nd	nd	0.05
cis-1,2-Dichloroethylene	0.05	nd	nd	nd	nd	3.4
trans-1,2-Dichloroethylene	0.05	nd	nd	nd	nd	0.084
1,2-Dichloropropane	0.05	nd	nd	nd	nd	0.05
1,3-Dichloropropene	0.05	nd	nd	nd	nd	0.05
Ethylbenzene	0.05	nd	nd	nd	nd	2
Ethylene Dibromide	0.05	nd	nd	nd	nd	0.05
Hexane	0.05	nd	nd	nd	nd	2.8
Methyl Ethyl Ketone	0.50	nd	nd	nd	nd	16
Methyl Isobutyl Ketone	0.50	nd	nd	nd	nd	1.7
Methyl tert-butyl ether	0.05	nd	nd	nd	nd	0.75
Methylene Chloride	0.05	nd	nd	nd	nd	0.1
Styrene	0.05	nd	nd	nd	nd	0.7
1,1,1,2-Tetrachloroethane	0.05	nd	nd	nd	nd	0.058
1,1,2,2-Tetrachloroethane	0.05	nd	nd	nd	nd	0.05
Tetrachloroethylene	0.05	nd	nd	nd	nd	0.28
Toluene	0.05	nd	nd	nd	nd	2.3
1,1,1-Trichloroethane	0.05	nd	nd	nd	nd	0.38
1,1,2-Trichloroethane	0.05	nd	nd	nd	nd	0.05
Trichloroethylene	0.05	nd	nd	nd	nd	0.061
Trichlorofluoromethane	0.05	nd	nd	nd	nd	4
Vinyl Chloride	0.02	nd	nd	nd	nd	0.02

 MDL – Method Detection Limit
 nd – not detected above the MI
 Bold and Underlined – value et al. nd - not detected above the MDL

 $\underline{\textbf{Bold and Underlined}} - value \ exceeds \ selected \ MECP \ standards$

No VOC concentrations were identified in any of the samples analysed. As such, the results are in compliance with the selected MECP Table 3 residential soil standards.

		Soil Sam	ples (µg/g)	MECP Table 3
- .	MDL -	September	9 & 10, 2021	- Residential
Parameter	(µg/g) —	BH1-21-AU2	BH4-21-AU2	 Soil Standards
		Sample De	pth (m BGS)	(µg/g)
		(0.1 – 0.2)	(0.0 – 0.2)	
Acenaphthene	0.02	nd	0.08	7.9
Acenaphthylene	0.02	0.03	0.12	0.15
Anthracene	0.02	0.05	0.33	0.67
Benzo[a]anthracene	0.02	0.13	1.33	0.5
Benzo[a]pyrene	0.02	0.16	<u>1.51</u>	0.3
Benzo[b]fluoranthene	0.02	0.24	1.84	0.78
Benzo[g,h,i]perylene	0.02	0.13	0.99	6.6
Benzo[k]fluoranthene	0.02	0.13	0.88	0.78
Chrysene	0.02	0.15	1.29	7
Dibenzo[a,h]anthracene	0.02	nd	0.23	0.1
Fluoranthene	0.02	0.28	2.76	0.69
Fluorene	0.02	nd	0.08	62
Indeno[1,2,3-cd]pyrene	0.02	0.11	0.95	0.38
1-Methylnaphthalene	0.02	nd	0.04	0.99
2-Methylnaphthalene	0.02	nd	0.05	0.99
Methylnaphthalene (1&2)	0.04	nd	0.10	0.99
Naphthalene	0.01	0.02	0.06	0.6
Phenanthrene	0.02	0.15	1.16	6.2
Pyrene	0.02	0.23	2.36	78

Concentrations of various PAH parameters were identified in each sample analysed. Those identified in Sample BH1-21-AU2 comply with the MECP Table 3 standards, however several parameter concentrations identified in Sample BH4-21-AU2 exceed the MECP Table 3 residential standards.

337 & 345 Montgomery Street and 94 Selkirk Street Ottawa, Ontario

		Soil Samp	oles (µg/g)	
	MDI	September	9 & 10, 2021	MECP Table 3
Parameter		BH1-21-AU2	BH4-21-AU2	Soil Standards
	(#9/9/	Sample Dep	oth (m BGS)	(ua/a)
		(0.1 – 0.2)	(0.0 – 0.2)	(1-9,9)
Antimony	1.0	nd	nd	7.5
Arsenic	1.0	5.5	5.3	18
Barium	1.0	82.3	91.6	390
Beryllium	0.5	nd	nd	4
Boron	5.0	5.6	6.3	120
Cadmium	0.5	nd	0.6	1.2
Chromium (VI)	5.0	nd	nd	8
Chromium	0.2	19.7	15.9	160
Cobalt	1.0	5.8	5.4	22
Copper	5.0	31.9	29.0	140
Lead	1.0	94.9	<u>151</u>	120
Mercury	0.1	nd	nd	0.27
Molybdenum	1.0	1.0	1.2	6.9
Nickel	5.0	17.2	22.4	100
Selenium	1.0	nd	nd	2.4
Silver	0.3	nd	nd	20
Thallium	1.0	nd	nd	1
Uranium	1.0	nd	nd	23
Vanadium	10.0	26.1	27.6	86
Zinc	20.0	169	119	340

Bold and Underlined – value exceeds selected MECP standards

Concentrations of various metal parameters were identified in each sample analysed. Those identified in Sample BH1-21-AU2 comply with the MECP Table 3 standards, however the concentration of lead identified in Sample BH4-21-AU2 exceeds the MECP Table 3 residential standards

337 & 345 Montgomery Street and 94 Selkirk Street Ottawa, Ontario

Table 11 Analytica Inorganic	al Test R 2 Parame	esults – Soil eters		
		Soil Samp	MECP Table 3 Residential Soil Standards (units)	
		September		
Parameter	(units)	BH4-21-AU2 BH4-21-SS6		
		Sample Dep		
		(0.0 – 0.2)	(3.0 – 3.3)	(unito)
рН	5.00 - 9.00			
Notes:	- Method Dete	ection Limit		

The pH levels detected in the soil samples analyzed are in compliance with the selected MECP Table 3 residential soil standards.

Phase II – Environmental Site Assessment

337 & 345 Montgomery Street and 94 Selkirk Street Ottawa, Ontario

	Maximum			
Parameter	Concentration (µg/g)	Sample ID	Depth Interval (m BGS)	
PHCs F1	8	BH4-21-SS6	3.05 m – 3.35 m	
PHCs F ₂	44	BH1-21-SS5	2.29 m – 2.90 m	
PHCs F ₃	96	BH4-21-SS6	3.05 m – 3.35 m	
PHCs F ₄	83	BH4-21-SS6	3.05 m – 3.35 m	
Acenaphthene	0.08	BH4-21-AU2	0.23 m – 0.46 m	
Acenaphthylene	0.12	BH4-21-AU2	0.23 m – 0.46 m	
Anthracene	0.33	BH4-21-AU2	0.23 m – 0.46 m	
Benzo[a]anthracene	<u>1.33</u>	BH4-21-AU2	0.23 m – 0.46 m	
Benzo[a]pyrene	<u>1.51</u>	BH4-21-AU2	0.23 m – 0.46 m	
Benzo[b]fluoranthene	1.84	BH4-21-AU2	0.23 m – 0.46 m	
Benzo[g,h,i]perylene	0.99	BH4-21-AU2	0.23 m – 0.46 m	
Benzo[k]fluoranthene	0.88	BH4-21-AU2	0.23 m – 0.46 m	
Chrysene	1.29	BH4-21-AU2	0.23 m – 0.46 m	
Dibenzo[a,h]anthracene	0.23	BH4-21-AU2	0.23 m – 0.46 m	
Fluoranthene	2.76	BH4-21-AU2	0.23 m – 0.46 m	
Fluorene	0.08	BH4-21-AU2	0.23 m – 0.46 m	
Indeno[1,2,3-cd]pyrene	0.95	BH4-21-AU2	0.23 m – 0.46 m	
1-Methylnaphthalene	0.04	BH4-21-AU2	0.23 m – 0.46 m	
2-Methylnaphthalene	0.05	BH4-21-AU2	0.23 m – 0.46 m	
Methylnaphthalene (1&2)	0.10	BH4-21-AU2	0.23 m – 0.46 m	
Naphthalene	0.06	BH4-21-AU2	0.23 m – 0.46 m	
Phenanthrene	1.16	BH4-21-AU2	0.23 m – 0.46 m	
Pyrene	2.36	BH4-21-AU2	0.23 m – 0.46 m	
Arsenic	5.5	BH1-21-AU2	0.20 m – 0.46 m	
Barium	91.6	BH4-21-AU2	0.23 m – 0.46 m	
Boron	6.3	BH4-21-AU2	0.23 m – 0.46 m	
Cadmium	0.6	BH4-21-AU2	0.23 m – 0.46 m	
Chromium	19.7	BH1-21-AU2	0.20 m – 0.46 m	
Cobalt	5.8	BH1-21-AU2	0.20 m – 0.46 m	
Copper	31.9	BH1-21-AU2	0.20 m – 0.46 m	
Lead	<u>151</u>	BH4-21-AU2	0.23 m – 0.46 m	
Molybdenum	1.2	BH4-21-AU2	0.23 m – 0.46 m	
Nickel	22.4	BH4-21-AU2	0.23 m – 0.46 m	
Vanadium	27.6	BH4-21-AU2	0.23 m – 0.46 m	
Zinc	169	BH1-21-AU2	0.20 m – 0.46 m	
На	7.83	BH4-21-SS6	3.05 m – 3.35 m	

All other parameter concentrations analyzed were below the laboratory detection limits. The laboratory Certificates of Analysis are provided in Appendix 1.

5.6 Groundwater Quality

2019 Phase II ESA – EXP Services Inc.

As part of the previous 2019 Phase II ESA completed for 337 Montgomery Street, EXP submitted three groundwater samples (one from each monitoring well) for laboratory analysis of BTEX, PHCs (F₁-F₄), metals, and VOCs. No BTEX, PHC, or VOC parameters identified in the samples analyzed. Metal concentrations identified in the samples analyzed were in compliance with the MECP Table 3 non-potable groundwater standards.

2020 Phase II ESA – Paterson Group Inc.

Groundwater samples were recovered from the monitoring wells installed in BH2-21 and BH5-21 and submitted for laboratory analysis of PHCs (F₁-F₄) and VOCs. The results of the analytical testing are presented below in Table 13 and 14.

Table 13 Analytical T PHCs (F1-F4	est Res	ults – Groundwater					
	-	Groundwater	Groundwater Samples (µg/L)				
Demonster	MDL (µg/L)	September 16, 2021		Non-Potable			
Parameter		Screened In	Standards				
		(6.04 – 9.04)	(6.12 – 9.12)	(µg/L)			
PHC F ₁ 25		nd	nd	750			
PHC F ₂ 100		nd	nd	150			
PHC F ₃ 100		nd	nd	500			
PHC F ₄ 100		nd nd		500			
Notes: MDL – Me nd – not c	ethod Detectio letected above	n Limit ∌ the MDL					

No PHC parameter concentrations identified above the laboratory method detection limits, and as such, the results comply with the MECP Table 3 non-potable groundwater standards.

337 & 345 Montgomery Street and 94 Selkirk Street Ottawa, Ontario

Table 14 Analytical Test Results – Groundwater VOCs

		Groundwater	MECP Table 3	
- .	MDL -		Non-Potable	
Parameter	(ua/L) —	BH2-21-GW1	Groundwater	
I	(F-9' -/	Screened Int	Standards	
		(6.04 – 9.04)	(6.12 – 9.12)	(µg/∟)
Acetone	5.0	nd	nd	130,000
Benzene	0.5	nd	nd	44
Bromodichloromethane	0.5	nd	nd	85,000
Bromoform	0.5	nd	nd	380
Bromomethane	0.5	nd	nd	5.6
Carbon Tetrachloride	0.2	nd	nd	0.79
Chlorobenzene	0.5	nd	nd	630
Chloroform	0.5	nd	nd	2.4
Dibromochloromethane	0.5	nd	nd	82,000
Dichlorodifluoromethane	1.0	nd	nd	4,400
1,2-Dichlorobenzene	0.5	nd	nd	4,600
1,3-Dichlorobenzene	0.5	nd	nd	9,600
1,4-Dichlorobenzene	0.5	nd	nd	8
1,1-Dichloroethane	0.5	nd	nd	320
1,2-Dichloroethane	0.5	nd	nd	1.6
1,1-Dichloroethylene	0.5	nd	nd	1.6
cis-1,2-Dichloroethylene	0.5	nd	nd	1.6
trans-1,2-Dichloroethylene	0.5	nd	nd	1.6
1,2-Dichloropropane	0.5	nd	nd	16
1,3-Dichloropropene	0.5	nd	nd	5.2
Ethylbenzene	0.5	nd	nd	2,300
Ethylene Dibromide	0.2	nd	nd	0.25
Hexane	1.0	nd	nd	51
Methyl Ethyl Ketone	5.0	nd	nd	470,000
Methyl Isobutyl Ketone	5.0	nd	nd	140,000
Methyl tert-butyl ether	2.0	nd	nd	190
Methylene Chloride	5.0	nd	nd	610
Styrene	0.5	nd	nd	1,300
1,1,1,2-Tetrachloroethane	0.5	nd	nd	3.3
1,1,2,2-Tetrachloroethane	0.5	nd	nd	3.2
Tetrachloroethylene	0.5	nd	nd	1.6
Toluene	0.5	nd	nd	18,000
1,1,1-Trichloroethane	0.5	nd	nd	640
1,1,2-Trichloroethane	0.5	nd	nd	4.7
Trichloroethylene	0.5	nd	nd	1.6
Trichlorofluoromethane	1.0	nd	nd	2,500
Vinyl Chloride	0.5	nd	nd	0.5
Xvlenes	0.5	nd	nd	4,200
Notoo			<u> </u>	,

No VOC parameters were identified in the samples analysed; the results comply with the MECP Table 3 non-potable groundwater standards.

5.7 Quality Assurance and Quality Control Results

As per the Sampling and Analysis Plan, a duplicate soil sample was obtained from BH1-21-AU2 and submitted for laboratory analysis of PAHs and metals. The relative percent difference (RPD) calculations for the original and duplicate samples are provided below in Table 15.

Table 15 QA/QC Calculations – Soil (PAHs & Metals)					
Parameter	MDL (µg/g)	BH1-21-AU2	DUP-1	RPD (%)	QA/QC Result (Target: <20% RPD)
Acenaphthene	0.02	nd	nd	0	Meets Target
Acenaphthylene	0.02	0.03	0.03	0	Meets Target
Anthracene	0.02	0.05	0.03	50	Does Not Meet Target
Benzo[a]anthracene	0.02	0.13	0.10	26.1	Does Not Meet Target
Benzo[a]pyrene	0.02	0.16	0.12	28.6	Does Not Meet Target
Benzo[b]fluoranthene	0.02	0.24	0.16	40	Does Not Meet Target
Benzo[g,h,i]perylene	0.02	0.13	0.10	26.1	Does Not Meet Target
Benzo[k]fluoranthene	0.02	0.13	0.08	47.6	Does Not Meet Target
Chrysene	0.02	0.15	0.11	30.8	Does Not Meet Target
Dibenzo[a,h]anthracene	0.02	nd	0.02	N/A	N/A
Fluoranthene	0.02	0.28	0.18	43.5	Does Not Meet Target
Fluorene	0.02	nd	nd	0	Meets Target
Indeno[1,2,3-cd]pyrene	0.02	0.11	0.09	20	Meets Target
1-Methylnaphthalene	0.02	nd	nd	0	Meets Target
2-Methylnaphthalene	0.02	nd	nd	0	Meets Target
Methylnaphthalene (1&2)	0.04	nd	nd	0	Meets Target
Naphthalene	0.01	0.02	0.02	0	Meets Target
Phenanthrene	0.02	0.15	0.08	60.9	Does Not Meet Target
Pyrene	0.02	0.23	0.16	35.9	Does Not Meet Target
Antimony	1.0	nd	nd	0	Meets Target
Arsenic	1.0	5.5	5.9	7	Meets Target
Barium	1.0	82.3	88.3	7	Meets Target
Beryllium	0.5	nd	nd	0	Meets Target
Boron	5.0	5.6	6.0	6.9	Meets Target
Cadmium	0.5	nd	nd	0	Meets Target
Chromium (VI)	5.0	nd	nd	0	Meets Target
Chromium	0.2	19.7	20.8	5.4	Meets Target
Cobalt	1.0	5.8	6.0	3.4	Meets Target
Copper	5.0	31.9	36.8	14.3	Meets Target
Lead	1.0	94.9	110	14.7	Meets Target
Mercury	0.1	nd	nd	0	Meets Target
Molybdenum	1.0	1.0	nd	N/A	N/A
Nickel	5.0	17.2	16.8	2.4	Meets Target
Selenium	1.0	nd	nd	0	Meets Target
Silver	0.3	nd	nd	0	Meets Target
Thallium	1.0	nd	nd	0	Meets Target
Uranium	1.0	nd	nd	0	Meets Target
Vanadium	10.0	26.1	27.5	5.2	Meets Target
Zinc	20.0	169	190	11.7	Meets Target
Notes:		I			· · · · · ·
Bold and Underlined	<u>I</u> – value excee	ds selected MECP stan	dards		

The RPD values for several PAH parameters fell outside of the acceptable range of 20%. It should be noted that these discrepancies are likely due to the variability in the low level concentrations detected between the samples. Furthermore, the RPD values for all metal parameters fell within the acceptable range. As a result, the results are considered to be acceptable.

A duplicate soil sample was also obtained from BH3-21-SS5 and submitted for laboratory analysis of VOCs and PHCs. The relative percent difference (RPD) calculations for the original and duplicate samples are provided below in Table 16.

patersongroup North Bay

Ottawa

337 & 345 Montgomery Street and 94 Selkirk Street Ottawa, Ontario

Parameter	MDL	BH3-21-SS5	DUP-2	RPD	QA/QC Result
	(µg/g)			(%)	(Target: <20% RPD)
Acetone	0.50	nd	nd	0	Meets Target
Benzene	0.02	nd	nd	0	Meets Larget
Bromodichloromethane	0.05	nd	nd	0	Meets Target
Bromotorm	0.05	nd	nd	0	Meets Target
Bromomethane	0.05	nd	nd	0	Meets Target
Carbon Tetrachloride	0.05	nd	nd	0	Meets Target
Chlorobenzene	0.05	nd	nd	0	Meets Larget
Chloroform	0.05	nd	nd	0	Meets Larget
Dibromochloromethane	0.05	nd	nd	0	Meets Target
Dichlorodifluoromethane	0.05	nd	nd	0	Meets Larget
1,2-Dichlorobenzene	0.05	nd	nd	0	Meets Target
1,3-Dichlorobenzene	0.05	nd	nd	0	Meets Target
1,4-Dichlorobenzene	0.05	nd	nd	0	Meets Target
1,1-Dichloroethane	0.05	nd	nd	0	Meets Target
1,2-Dichloroethane	0.05	nd	nd	0	Meets Larget
1,1-Dichloroethylene	0.05	nd	nd	0	Meets Target
cis-1,2-Dichloroethylene	0.05	nd	nd	0	Meets Larget
trans-1,2-Dichloroethylene	0.05	nd	nd	0	Meets Target
1,2-Dichloropropane	0.05	nd	nd	0	Meets Larget
1,3-Dichloropropene	0.05	nd	nd	0	Meets Target
Ethylbenzene	0.05	nd	nd	0	Meets Larget
Ethylene Dibromide	0.05	nd	nd	0	Meets Target
Hexane	0.05	nd	nd	0	Meets Larget
Methyl Ethyl Ketone	0.50	nd	nd	0	Meets Target
Methyl Isobutyl Ketone	0.50	nd	nd	0	Meets Larget
Methyl tert-butyl ether	0.05	nd	nd	0	Meets Target
Methylene Chloride	0.05	nd	nd	0	Meets Target
Styrene	0.05	nd	nd	0	Meets Target
1,1,1,2-Tetrachloroethane	0.05	nd	nd	0	Meets Target
1,1,2,2-Tetrachloroethane	0.05	nd	nd	0	Meets Target
Tetrachloroethylene	0.05	nd	nd	0	Meets Target
Toluene	0.05	nd	nd	0	Meets Target
1,1,1-Trichloroethane	0.05	nd	nd	0	Meets Target
1,1,2-Trichloroethane	0.05	nd	nd	0	Meets Target
Trichloroethylene	0.05	nd	nd	0	Meets Target
Trichlorofluoromethane	0.05	nd	nd	0	Meets Target
Vinyl Chloride	0.02	nd	nd	0	Meets Target
Xylenes	0.05	nd	nd	0	Meets Target
PHCs F ₁	7	nd	nd	0	Meets Target
PHCs F ₂	4	10	8	22.2	Does Not Meet Target
PHCs F ₃	8	27	47	54.1	Does Not Meet Target
PHCs F ₄	6	31	65	70.8	Does Not Meet Target

The RPD values for several PHC parameters fell outside of the acceptable range of 20%. While there are some discrepancies between the results, it should be noted that there is a consistency in the detected parameters between the samples. Furthermore, no VOCs were detected between the original or duplicate sample. As a result, the results are considered to be acceptable.

A duplicate groundwater sample was obtained from sample BH2-21-GW1 and submitted for laboratory analysis of VOCs. The relative percent difference (RPD) calculations for the original and duplicate samples are provided below in Table 17.

Parameter	MDL	BH1-21-GW1	DUP	RPD	QA/QC Result
	(µg/L)			(%)	(Target: <20% RPD)
Acetone	5.0	nd	nd	0	Meets Target
Benzene	0.5	nd	nd	0	Meets Target
Bromodichloromethane	0.5	nd	nd	0	Meets Target
Bromoform	0.5	nd	nd	0	Meets Target
Bromomethane	0.5	nd	nd	0	Meets Target
Carbon Tetrachloride	0.2	nd	nd	0	Meets Target
Chlorobenzene	0.5	nd	nd	0	Meets Target
Chloroform	0.5	nd	nd	0	Meets Target
Dibromochloromethane	0.5	nd	nd	0	Meets Target
Dichlorodifluoromethane	1.0	nd	nd	0	Meets Target
1,2-Dichlorobenzene	0.5	nd	nd	0	Meets Target
1,3-Dichlorobenzene	0.5	nd	nd	0	Meets Target
1,4-Dichlorobenzene	0.5	nd	nd	0	Meets Target
1,1-Dichloroethane	0.5	nd	nd	0	Meets Target
1,2-Dichloroethane	0.5	nd	nd	0	Meets Target
1,1-Dichloroethylene	0.5	nd	nd	0	Meets Target
cis-1,2-Dichloroethylene	0.5	nd	nd	0	Meets Target
trans-1,2-Dichloroethylene	0.5	nd	nd	0	Meets Target
1,2-Dichloropropane	0.5	nd	nd	0	Meets Target
1,3-Dichloropropene	0.5	nd	nd	0	Meets Target
Ethylbenzene	0.5	nd	nd	0	Meets Target
Ethylene Dibromide	0.2	nd	nd	0	Meets Target
Hexane	1.0	nd	nd	0	Meets Target
Methyl Ethyl Ketone	5.0	nd	nd	0	Meets Target
Methyl Isobutyl Ketone	5.0	nd	nd	0	Meets Target
Methyl tert-butyl ether	2.0	nd	nd	0	Meets Target
Methylene Chloride	5.0	nd	nd	0	Meets Target
Styrene	0.5	nd	nd	0	Meets Target
1,1,1,2-Tetrachloroethane	0.5	nd	nd	0	Meets Target
1,1,2,2-Tetrachloroethane	0.5	nd	nd	0	Meets Target
Tetrachloroethylene	0.5	nd	nd	0	Meets Target
Toluene	0.5	nd	nd	0	Meets Target
1,1,1-Trichloroethane	0.5	nd	nd	0	Meets Target
1,1,2-Trichloroethane	0.5	nd	nd	0	Meets Target
Trichloroethylene	0.5	nd	nd	0	Meets Target
Trichlorofluoromethane	1.0	nd	nd	0	Meets Target
Vinyl Chloride	0.5	nd	nd	0	Meets Target
Xvlenes	0.5	nd	nd	0	Meets Target

No parameter concentrations were detected in either the original or the duplicate sample, and as such, the results are considered to be acceptable.

A Trip Blank sample was also acquired and submitted for laboratory analysis of VOCs. The results of the analytical testing are presented below in Table 18.

		Groundwater Samples (ug/L)	MECP Table 3 Non-Potable Groundwater Standards (µg/L) 130,000	
_	MDL	September 16, 2021		
Parameter	(μg/L)	Trip Blank		
Acetone	5.0	nd		
Benzene	0.5	nd	44	
Bromodichloromethane	0.5	nd	85,000	
Bromoform	0.5	nd	380	
Bromomethane	0.5	nd	5.6	
Carbon Tetrachloride	0.2	nd	0.79	
Chlorobenzene	0.5	nd	630	
Chloroform	0.5	nd	2.4	
Dibromochloromethane	0.5	nd	82,000	
Dichlorodifluoromethane	1.0	nd	4,400	
1,2-Dichlorobenzene	0.5	nd	4,600	
1,3-Dichlorobenzene	0.5	nd	9,600	
1,4-Dichlorobenzene	0.5	nd	8	
1,1-Dichloroethane	0.5	nd	320	
1,2-Dichloroethane	0.5	nd	1.6	
1,1-Dichloroethylene	0.5	nd	1.6	
cis-1,2-Dichloroethylene	0.5	nd	1.6	
trans-1,2-Dichloroethylene	0.5	nd	1.6	
1,2-Dichloropropane	0.5	nd	16	
1,3-Dichloropropene	0.5	nd	5.2	
Ethylbenzene	0.5	nd	2,300	
Ethylene Dibromide	0.2	nd	0.25	
Hexane	1.0	nd	51	
Methyl Ethyl Ketone	5.0	nd	470,000	
Methyl Isobutyl Ketone	5.0	nd	140,000	
Methyl tert-butyl ether	2.0	nd	190	
Methylene Chloride	5.0	nd	610	
Styrene	0.5	nd	1,300	
1,1,1,2-Tetrachloroethane	0.5	nd	3.3	
1,1,2,2-Tetrachloroethane	0.5	nd	3.2	
Tetrachloroethylene	0.5	nd	1.6	
Toluene	0.5	nd	18,000	
1,1,1-Trichloroethane	0.5	nd	640	
1,1,2-Trichloroethane	0.5	nd	4.7	
Trichloroethylene	0.5	nd	1.6	
Trichlorofluoromethane	1.0	nd	2,500	
Vinyl Chloride	0.5	nd	0.5	
Xvlenes	0.5	nd	4.200	

 nd – not detected above the MDL
 <u>Bold and Underlined</u> – value exc Bold and Underlined - value exceeds selected MECP standards No parameter concentrations were detected in the Trip Blank sample, and as such, the results are considered to be acceptable.

Based on the results of the QA/QC analysis, the quality of the field data collected during this Phase II ESA is considered to be sufficient to meet the overall objectives of this assessment.

All samples submitted as part of this Phase II ESA were handled in accordance with the analytical protocols with respect to holding time, preservation method, storage requirement, and container type.

As per Subsection 47(3) of O. Reg. 153/04, as amended by the Environmental Protection Act, the certificates of analysis have been received for each sample submitted for laboratory analysis and have been appended to this report.

5.8 Phase II Conceptual Site Model

The following section has been prepared in general accordance with the requirements of O. Reg. 153/04 amended by the Environmental Protection Act. Conclusions and recommendations are discussed in a subsequent section.

Site Description

Potentially Contaminating Activity and Areas of Potential Environmental Concern

As described in Section 7.1 of the Phase I ESA report, as well as in Section 2.2 of this report, the following PCAs, as defined by Table 2 of O. Reg. 153/04, are considered to result in APECs on the Phase I Property:

D Item 30: "Importation of Fill Material of Unknown Quality"

This PCA was identified as a result of the presence of fill material of unknown quality, situated beneath the asphaltic concrete parking lot in the central portion of the Phase I Property (APEC 1).

□ No Item Number: "Impacted Soils Previously Identified By Others"

This PCA was identified as a result of the presence of impacted soil, previously identified by EXP's 2019 Phase II ESA, and is situated beneath the asphaltic concrete parking lot in the central portion of the Phase I Property (APEC 2).

Item 52: "Storage, Maintenance, Fuelling, and Repair of Equipment, Vehicles, and Material Used to Maintain Transportation Systems"

This PCA was identified as a result of the presence of a former off-site auto service garage located at 350 Montgomery Street, situated approximately 20 m to the south of the Phase I Property (APEC 3).

Contaminants of Potential Concern

The contaminants of potential concern (CPCs) associated with the aforementioned APECs are considered to be:

- Benzene, Toluene, Ethylbenzene, Xylenes (BTEX);
- □ Volatile Organic Compounds (VOCs);
- □ Petroleum Hydrocarbons, fractions 1 4 (PHCs F₁-F₄);
- D Polycyclic Aromatic Hydrocarbons (PAHs);
- □ Metals (including As, Sb, Se);
- □ Mercury (Hg⁺);
- \Box Hexavalent Chromium (Cr^{VI}).

These CPCs have the potential to be present in the soil matrix and/or the groundwater situated beneath the Phase I Property.

Subsurface Structures and Utilities

Underground service locates were completed prior to the subsurface investigation. Underground utilities on the Phase II Property include electrical cables, natural gas pipelines, as well as municipal water and wastewater services.

Physical Setting

Site Stratigraphy

The stratigraphy of the Phase I Property generally consists of:

Pavement structure (consisting of asphalt over engineered fill) or topsoil at ground surface to depths ranging from approximately ; encountered at ground surface and extending to an average depth of approximately 0.2 m to 0.7 m below ground surface.

- Fill Material consisting of dark brown silty sand with crushed stone, gravel, and trace clay, and extending to depths ranging from approximately 0.61 m to 1.07 m below ground surface. (BH1-21, BH4-21, BH5-21, and BH6-21 only).
- □ Glacial Till consisting of brown silty sand with gravel, cobbles, and boulders, and extending to depths ranging from approximately 3.53 m to 4.60 m below ground surface.
- Interbedded Limestone and Shale Bedrock confirmed in BH1, BH2, BH3, BH2-21, and BH5-21, at depths ranging from approximately 3.53 m to 5.20 m below ground surface.

The site stratigraphy, from ground surface to the deepest aquifer or aquitard investigated, is provided in the Soil Profile and Test Data Sheets in Appendix 1.

Hydrogeological Characteristics

According to the 2019 Phase II ESA by EXP, the groundwater was encountered within the overburden at depths ranging from approximately 3.2 m to 3.6 m below the existing ground surface. Based on the measured levels, the groundwater flow direction was interpreted to be in a southerly direction.

It should be noted that, during the September 16, 2021 sampling event, the wells installed by EXP were dry. It is suspected that the redevelopment of 350 Montgomery Street (20 m to the south of the Phase II Property) has contributed to the lowering of the local groundwater table, and as a result, has influenced the local groundwater flow.

During the September 16, 2021 sampling event, the groundwater at the Phase II Property was encountered within the bedrock in BH2-21 and BH5-21 at depths ranging from approximately 6.20 m to 6.72 m below ground surface.

Approximate Depth to Bedrock

Bedrock, consisting of interbedded limestone and shale, was encountered at depths ranging from approximately 3.53 m to 5.20 m below ground surface, respectively.

Approximate Depth to Water Table

The depth to the water table is approximately 6.20 m to 6.72 m below ground surface.
Sections 41 and 43.1 of Ontario Regulation 153/04

Section 41 of the Regulation does not apply to the Phase I Property, as there are no bodies of water or areas of natural significance located on or within 30 m of the Phase II Property. The Phase II Property is therefore not considered to be environmentally sensitive.

Section 43.1 of the Regulation does not apply to the Phase I Property, since the bedrock is situated at depths greater than 2 m below ground surface, and thus is not considered to be a shallow soil property.

Water Bodies

No water bodies were identified within 250m of the Phase II Property. The nearest named water body with respect to the Phase II Property is the Rideau River, located approximately 300 m to the west.

Areas of Natural and Scientific Interest

No areas of natural and scientific interest were identified within 250 m of the Phase II Property.

Existing Buildings and Structures

The Phase I Property is currently occupied with five buildings, each described as follows:

□ 337 Montgomery Street

This property is currently occupied with a two-storey residential dwelling (currently vacant), with one basement level. The residence was constructed sometime in the early-1900's with a stone and mortar foundation and is finished on the exterior with stone and brick siding, as well as a sloped-shingled roof.

Additionally, a one-storey, slab-on-grade style addition is attached to the east side of the subject building, formerly occupied by a restaurant and currently vacant. The addition was constructed sometime in the 1930's or 1940's with a poured concrete foundation and is finished on the exterior with stone and concrete block siding as well as a flat tar-and-gravel style roof. The residence and the addition are currently heated via with a natural gas-fired furnace, located in the basement.

□ 345 Montgomery Street

This property is currently occupied with a two-and-a-half-storey residential dwelling, with one basement level. Built sometime in the early-1900's, the subject building is constructed with a stone and mortar foundation and is finished on the exterior with brick and wood siding, as well as a sloped-shingled roof. The subject building is currently heated with a natural gas-fired furnace, located in the basement.

A one-storey, slab-on-grade style private garage is also present on this property. The garage is constructed with a poured concrete foundation and is finished on the exterior with stone siding, as well as a flat tar-and-gravel style roof. The garage does not contain any heating equipment.

□ 94 Selkirk Street

This property is currently occupied with a two-and-a-half-storey residential dwelling, with one basement level. Built sometime in the early-1900's, the subject building is constructed with a stone foundation and is finished on the exterior with vinyl siding, as well as a sloped-shingled roof. The subject building is currently heated with natural gas-fired equipment, located in the basement.

A one-storey, slab-on-grade style private garage is also present on this property. The garage is constructed with a poured concrete foundation and is finished on the exterior with vinyl siding, as well as a flat tar-and-gravel style roof. The garage does not contain any heating equipment.

Proposed Buildings and Other Structures

It is our understanding that the Phase II Property is to be redeveloped with a multi-storey residential building.

Environmental Condition

Areas Where Contaminants are Present

Based on the findings of the 2019 subsurface investigation conducted by EXP, soil impacted with hexane, PHC and/or PAH concentrations exceeding the MECP Table 3 standards is present on the central portion of the Phase II Property, at the locations of BH1 and BH2.

Based on the findings of the current investigation, additional PAH and lead impacts were identified on the central portion of the Phase II Property at the location of BH4-21.

Based on the findings of the 2019 and 2021 investigations, groundwater beneath the Phase II Property complies with the MECP Table 3 standards.

Types of Contaminants

Based on the findings of this assessment, the following contaminants were detected in the soil/fill at concentrations exceeding the selected MECP Table 3 residential soil standards:

- □ PHC fractions F1 and F2;
- □ Volatile Organic Compounds: Hexane;
- PAHs: Benzo[a]anthracene, Benzo[a]pyrene, Benzo[b]fluoranthene, Benzo[k]fluoranthene, Dibenzo[a,h]anthracene, Fluoranthene, Indeno[1,2,3cd]pyrene
- Metals: Lead

Groundwater beneath the Phase II Property complies with the MECP Table 3 standards.

Contaminated Media

The deeper native soils in the vicinity of BH1 and BH2 are impacted with hexane and/or PHC F_1 and F_2 , while the fill material in the vicinity of BH2 and BH4 is impacted with lead and/or PAHs.

Groundwater beneath the Phase II Property complies with the MECP Table 3 standards.

What Is Known About Areas Where Contaminants Are Present

Based on the findings of this assessment, as well as the previous 2019 Phase II ESA, metal and PAH contaminants were identified within the shallow soil/fill material situated beneath the asphaltic concrete parking lot on 337 Montgomery Street. The presence of these contaminants is likely the result of the importation of poor-quality fill material used for grading the parking area on the central portion of the Phase II Property (337 Montgomery Street).

Based on the findings of the previous 2019 Phase II ESA, some minor VOC and PHC contamination was identified within the deeper native soils (approximate depth of 3.0 m to 4.5 m below ground surface) beneath the asphaltic concrete parking lot on 337 Montgomery Street. The presence of these contaminants may be due to small fuel releases (gasoline and/or diesel) from vehicles.

Distribution and Migration of Contaminants

Based on the findings of the Phase II ESA, identified soil impacts are considered to be limited to the central portion of the Phase II Property. Given the clean groundwater results, soil impacts are not considered to have vertically migrated into the bedrock. No significant distribution or migration of contaminants is considered to have occurred on the Phase II Property.

Discharge of Contaminants

The contamination identified within the fill material situated beneath the asphaltic concrete parking lot on 337 Montgomery Street is considered to likely be the result of the importation of poor-quality fill material used for grading of the paved parking lot

The contamination identified within the deeper native soils beneath the asphaltic concrete parking lot on 337 Montgomery Street may be the result of small releases of fuels from vehicles parked on site.

Climatic and Meteorological Conditions

In general, climatic and meteorological conditions have the potential to affect contaminant distribution. Two ways by which climatic and meteorological conditions may affect contaminant distribution include the downward leaching of contaminants via the infiltration of precipitation, and the migration of contaminants via groundwater levels and/or flow, which may fluctuate seasonally.

Some amount of downward leaching is suspected to have occurred, based on the detection of impacted soil within the deeper native soils on-site.

Fluctuations in the groundwater level and groundwater flow are not considered to have affected contaminant distribution based on clean groundwater results.

Potential for Vapour Intrusion

Given the location of volatile contaminants with respect to the subject buildings, the potential for vapour intrusion is considered to be low.

During redevelopment of the Phase II Property, all soil exceeding the selected MECP Table 3 residential standards will be removed and disposed of off-site. As such, there is no anticipated potential for future vapour intrusion at the Phase II Property.

6.0 CONCLUSIONS

Assessment

A Phase II ESA was conducted for the properties addressed 337 & 345 Montgomery Street and 94 Selkirk Street, in the City of Ottawa, Ontario. The purpose of the Phase II ESA was to address potentially contaminating activities (PCAs) that were identified during the Phase I ESA and were considered to result in areas of potential environmental concern (APECs) on the Phase I Property.

A previous subsurface investigation carried out by others in 2019 consisted of the placement of three boreholes on the property addressed 337 Montgomery Street (BH1 to BH3).

Three soil samples were submitted for laboratory analysis of a combination of PHCs (F_1 - F_4), VOCs, PAHs, metals, and/or pH parameters. Based on the analytical test results, the concentrations of hexane as well as PHCs F_1 and F_2 in the soil sample analyzed from BH1 were in excess of the MECP Table 3 residential soil standards. In addition, the concentrations of PHCs F_2 , benzo(a)pyrene, and fluoranthene in the soil sample analyzed from BH2 were in excess of the MECP Table 3 residential soil standards.

Three groundwater samples (one from each monitoring well) were submitted for laboratory analysis of BTEX, PHCs (F_1 - F_4), metals, and VOCs. No BTEX, PHC, or VOC parameters identified in the samples analyzed. Metal concentrations identified in the samples analyzed were in compliance with the MECP Table 3 non-potable groundwater standards.

The current subsurface investigation, conducted on September 9 and September 10, 2021, consisted of drilling six boreholes (BH1-21 to BH6-21) across the Phase II Property. BH1-21, BH3-21, BH4-21, and BH6-21 were advanced to shallow depths ranging from approximately 2.95 m to 3.25 m below ground surface and terminated within a layer of native brown silty sand (glacial till). BH2-21 and BH5-21 were advanced to deeper depths of 9.04 m and 9.12 m below ground surface, respectively, and terminated within the underlying bedrock. Upon completion, two of the boreholes (BH2-21 and BH5-21) were instrumented with groundwater monitoring wells. Three groundwater monitoring wells (BH1-19–BH3-19), installed in 2019 as part of a previous subsurface investigation completed by EXP Services Inc., were located and utilized as part of this current investigation.

In general, the stratigraphy at the Phase II Property consisted of topsoil or a pavement structure (consisting of asphalt over engineered fill material) at ground surface, followed by fill material and/or native glacial till. Overburden was underlain by limestone bedrock interbedded with shale. The fill material observed generally consisted of brown silty sand with crushed stone, gravel and/or trace clay. Brick, concrete and/or glass fragments were identified in BH1-21 and BH6-21.

Six soil samples were submitted for laboratory analysis of either PHCs (F_1 - F_4), VOCs, PAHs, metals, and/or pH parameters. Based on the analytical test results, the concentrations of metals and PAHs within the soil/fill sample recovered from BH4-21 were in excess of the selected MECP Table 3 residential standards.

Two groundwater samples, recovered from the monitoring wells installed in BH2-21 and BH5-21, were submitted for laboratory analysis of PHCs (F_1 - F_4) and VOCs. Based on the analytical results no parameter concentrations were identified in the groundwater samples analyzed, and as such, are in compliance with the MECP Table 3 non-potable groundwater standards.

Recommendations

Soil

Based on the findings of the Phase II ESA, it is recommended that a soil remediation program be carried out at the Phase II Property in conjunction with site redevelopment activities.

Prior to off-site disposal of impacted soils at a licensed landfill, a leachate analysis of a representative sample of contaminated soil must be conducted in accordance with Ontario Regulation 347/558.

It is recommended that Paterson personnel be on-site at the time of the remedial activities to direct excavation and segregation of impacted soil and to collect additional delineation and confirmatory soil samples are required in accordance with O.Reg. 347/558.

Excess Soil

Excess soil requiring off-site disposal during construction must be managed in accordance with Ontario Regulation 406/19: On-site and Excess Soil Management.

Monitoring Wells

If the groundwater monitoring wells installed on-site are not going to be used in the future, or will be destroyed during future construction activities, then they must be decommissioned according to Ontario Regulation 903 (Ontario Water Resources Act), however, we recommend that the wells be maintained for future sampling purposes. The monitoring wells will be registered with the MECP under this regulation. Further information can be provided upon request in this regard.

7.0 STATEMENT OF LIMITATIONS

This Phase II – Environmental Site Assessment report has been prepared in general accordance with O.Reg. 153/04, as amended, and meets the requirements of CSA Z769-00. The conclusions presented herein are based on information gathered from a limited sampling and testing program. The test results represent conditions at specific test locations at the time of the field program.

The client should be aware that any information pertaining to soils and all test hole logs are furnished as a matter of general information only and test hole descriptions or logs are not to be interpreted as descriptive of conditions at locations other than those of the test holes themselves.

Should any conditions be encountered at the Phase I Property and/or historical information that differ from our findings, we request that we be notified immediately in order to allow for a reassessment.

This report was prepared for the sole use of Serco Realty Group. Permission and notification from Serco Realty Group and Paterson Group will be required prior to the release of this report to any other party.

Paterson Group Inc.

N. Sullin

Nick Sullivan, B.Sc.

Kaup Munch

Karyn Munch, P.Eng., QPESA

Report Distribution:

- Serco Realty Group
- Paterson Group Inc.

FIGURES

FIGURE 1 – KEY PLAN

DRAWING PE5412-3 – TEST HOLE LOCATION PLAN DRAWING PE5412-4 – ANALYTICAL TESTING PLAN – SOIL (PHCs) DRAWING PE5412-4A – CROSS SECTION A-A' – SOIL (PHCs) DRAWING PE5412-4B – CROSS SECTION B-B' – SOIL (PHCs) DRAWING PE5412-5 – ANALYTICAL TESTING PLAN – SOIL (VOCs) DRAWING PE5412-5A – CROSS SECTION A-A' – SOIL (VOCs) DRAWING PE5412-5B – CROSS SECTION B-B' – SOIL (VOCs) DRAWING PE5412-6 – ANALYTICAL TESTING PLAN – SOIL (PAHs) DRAWING PE5412-6A – CROSS SECTION A-A' – SOIL (PAHs) DRAWING PE5412-6B – CROSS SECTION B-B' – SOIL (PAHs) DRAWING PE5412-7 – ANALYTICAL TESTING PLAN – SOIL (METALS) DRAWING PE5412-7A – CROSS SECTION A-A' – SOIL (METALS) DRAWING PE5412-7B – CROSS SECTION B-B' – SOIL (METALS) DRAWING PE5412-8 – ANALYTICAL TESTING PLAN – GROUNDWATER DRAWING PE5412-8A – CROSS SECTION A-A' – GROUNDWATER DRAWING PE5412-8B – CROSS SECTION B-B' – GROUNDWATER

patersongroup

FIGURE 1 KEY PLAN

336 G	GARDNER STREET RESIDENTIAL
GOMERY STREET SIDENTIAL	353 MONTGOMERY STREET RESIDENTIAL
LEGENI	
+	BOREHOLE LOCATION
\bullet	BOREHOLE WITH MONITORING WELL LOCATION
\oplus	BOREHOLE WITH MONITORING WELL LOCATION BY OTHERS
57.42	GROUND SURFACE ELEVATION (m)
[52.98]	BEDROCK SURFACE ELEVATION (m)
{54.47}	PRACTICAL REFUSAL TO AUGERING ELEVATION (m)
(51.38)	GROUNDWATER SURFACE ELEVATION (m) (SEPTEMBER 16, 2021)
(54.75)	GROUNDWATER SURFACE ELEVATION (m) (APRIL 16, 2019) PROVIDED BY EXP INC.
A - A '	CROSS SECTION
— 54.3—	GROUNDWATER CONTOUR (m)
(0.05m/m)	APPROX. GROUNDWATER FLOW DIRECTION (HORIZONTAL HYDRAULIC GRADIENT)
	D SURFACE ELEVATION AT BOREHOLE LOCATIONS ARE ENCED TO A GEODETIC DATUM.
SCALE: 1:3	300
0 1 2 3	4 5 10 15 20m
	Scale: Date: 1:300 11/2021
	Drawn by: Report No.:
= ſ ONTARIO	YA PE5412-2 Checked by: Dwg. No.:
	NS PE5412-3
	MSD Revision No.:

	Scale:		Date:
	AS S	HOWN	11/2021
	Drawn by:		Report No.:
ET		YA	PE5412-2
ONTARIO	Checked by:		Dwg. No.:
		NS	PE5412-4A
	Approved by:		·
		MSD	Revision No.:

SS6	3.8-4.4 m	April 5, 2019
neter	Result(µg/g)	Standard(µg/g)
s F1	220	55
s F2	170	98
aining PHC	s comply with ME	CP Table 3 Standards
SS7	4.6-5.1m	April 5, 2019
s comply wi	th MECP Table 3	Standards

	Scale:		Date:
	AS S	HOWN	11/2021
	Drawn by:		Report No.:
ET		YA	PE5412-2
ONTARIO	Checked by:		Dwg. No.:
		NS	PF5412-4B
	Approved by:		
		MSD	Revision No.:

		Scale: AS	SHOWN	Date: 11/2021
		Drawn by:		Report No.:
ET		-	YA	PE5412-2
0	NTARIO	Checked by:		Dwg. No.:
		-	NS	PE5412-5A
		Approved by:		
			MSD	Revision No.:

SS6	3.8-4.4m	April 5, 2019
neter	Result(µg/g)	Standard(µg/g)
ne	4.0	2.8
ining VC	Cs comply with MEC	P Table 3 Standards

		Scale:		Date:	
	AS	SHOWN		11/2021	
		Drawn by:		Report No.:	
ЕΤ			YA		PE5412-2
(ONTARIO	Checked by:		Dwg. No.:	
			NS	PE54	112-5B
		Approved by:			
			MSD	Revision No.:	

		Scale: AS S	SHOWN	Date: 11/2021
		Drawn by:		Report No.:
ЕΤ		-	YA	PE5412-2
	ONTARIO	Checked by:		Dwg. No.:
			NS	PE5412-6A
		Approved by:		
			MSD	Revision No.:

autocad drawings\environmental\pe54xx\pe5412\pe5412-phase ii.dv

autocad drawings\environmental\pe54xx\pe5412\pe5412-phase

	Scale: AS	SHOWN	Date: 11/2021
	Drawn by:		Report No.:
ET	-	YA	PE5412-2
ONTARIO	Checked by:		Dwg. No.:
		NS	PE5412-7A
	Approved by:		
		MSD	Revision No.:

		Scale: AS	SHOWN	Date: 11/2021
		Drawn by:		Report No.:
ΞТ			YA	PE5412-2
	ONTARIO	Checked by:		Dwg. No.:
			NS	PE5412-7B
		Approved by:		
			MSD	Revision No.:

	Scale:		Date:
	AS	SHOWN	11/2021
	Drawn by:		Report No.:
ET		YA	PE5412-2
ONTARIO	Checked by:		Dwg. No.:
		NS	PE5412-8A
VOCs)	Approved by:		· =• · · = • / ·
		MSD	Revision No.:

GROUNDWATER RESULT COMPLIES WITH MECP TABLE 3 STANDARDS

GROUNDWATER RESULT EXCEEDS MECP TABLE 3 STANDARDS

natorcondroup					SERCO REALTY GROUP
patersongroup					GEOTECHNICAL INVESTIGATION
consulting engineers					337 AND 345 MONTGOMERY STREET AND 94 SELKIRK STREE
					ОТТАЖА,
154 Colonnade Road South					Title:
Ottawa, Ontario K2E 7J5 Tel: (613) 226-7381 Fax: (613) 226-6344					CROSS SECTION B-B' - GROUNDWATER (BTEX, PHCs, METALS,
161. (013) 220-73011 ax. (013) 220-0344	NO.	REVISIONS	DATE	INITIAL	

	Scale:		Date:
	AS SHOWN		11/2021
	Drawn by:		Report No.:
ΞT		YA	PE5412-2
ONTARIO	Checked by:		Dwg. No.:
		NS	PE5412-8B
VOCs)	Approved by:		• • _
,		MSD	Revision No.:

APPENDIX 1

SAMPLING AND ANALYSIS PLAN

SOIL PROFILE AND TEST DATA SHEETS

SYMBOLS AND TERMS

LABORATORY CERTIFICATES OF ANALYSIS

patersongroup

Geotechnical Engineering

Environmental Engineering

Hydrogeology

Geological Engineering

Materials Testing

Building Science

Sampling & Analysis Plan

Phase II – Environmental Site Assessment 337 & 345 Montgomery Street and 94 Selkirk Street Ottawa, Ontario

Prepared For

Serco Realty Group

Paterson Group Inc.

Consulting Engineers 154 Colonnade Road South Ottawa (Nepean), Ontario Canada K2E 7J5

Tel: (613) 226-7381 Fax: (613) 226-6344 www.patersongroup.ca September 1, 2021

Report: PE5412-SAP

TABLE OF CONTENTS

1.0	SAMPLING PROGRAM	1
2.0	ANALYTICAL TESTING PROGRAM	2
3.0	STANDARD OPERATING PROCEDURES	3
	3.1 Environmental Drilling Procedure	3
	3.2 Monitoring Well Installation Procedure	6
	3.3 Monitoring Well Sampling Procedure	7
4.0	QUALITY ASSURANCE/QUALITY CONTROL (QA/QC)	8
5.0	DATA QUALITY OBJECTIVES	9
6.0	PHYSICAL IMPEDIMENTS	

1.0 SAMPLING PROGRAM

Paterson Group Inc. (Paterson) was commissioned by Serco Realty Group, to conduct a Phase II – Environmental Site Assessment (Phase II ESA) for the properties addressed 337 & 345 Montgomery Street and 94 Selkirk Street, in the City of Ottawa, Ontario.

Based on the findings of the Phase I ESA, the following subsurface investigation program was developed.

Borehole	Location & Rationale	Proposed Depth & Rationale
BH1-21	Southern portion of Phase I Property; to assess for potential impacts resulting from the presence of fill material of unknown quality and to delineate previously identified soil contamination.	Drill to bedrock; for geotechnical and general coverage purposes.
BH2-21	Southern portion of Phase I Property; to assess for potential impacts resulting from a former off-site auto service garage.	Core into bedrock to approximate depth of 8 to 10 m below grade; to intercept the groundwater table for the purpose of installing a groundwater monitoring well.
BH3-21	Eastern portion of Phase I Property; to delineate previously identified soil impacts.	Drill to bedrock; for geotechnical and general coverage purposes.
BH4-21	Northern portion of Phase I Property; to assess for potential impacts resulting from the presence of fill material of unknown quality to delineate previously identified soil contamination.	Drill to bedrock; for geotechnical and general coverage purposes.
BH5-21	Northern portion of Phase I Property; to assess for potential impacts resulting from previously identified soil contamination.	Core into bedrock to approximate depth of 8 to 10 m below grade; to intercept the groundwater table for the purpose of installing a groundwater monitoring well.
BH6-21	Central portion of Phase I Property; to assess for potential impacts resulting from the presence of fill material of unknown quality and previously identified soil contamination.	Drill to bedrock; for geotechnical and general coverage purposes.

Borehole locations are shown on Drawing PE5412-3 – Test Hole Location Plan, appended to the main report.

At each borehole, split-spoon samples of the overburden soils will be obtained at 0.76 m (2'6") intervals until practical refusal to augering. All soil samples will be retained, and samples will be selected for submission following a preliminary screening analysis.

Following the borehole drilling, groundwater monitoring wells will be installed in BH2-21 and BH5-21 for the collection of groundwater samples.

2.0 ANALYTICAL TESTING PROGRAM

The analytical testing program for soil at the Phase I Property is based on the following general considerations:

- □ At least one sample from each borehole should be submitted, in order to delineate the horizontal extent of contamination across the site.
- □ At least one sample from each stratigraphic unit should be submitted, in order to delineate the vertical extent of contamination at the site.
- In boreholes where there is visual or olfactory evidence of contamination, or where organic vapour meter or photoionization detector readings indicate the presence of contamination, the 'worst-case' sample from each borehole should be submitted for comparison with MECP site condition standards.
- In boreholes with evidence of contamination as described above, a sample should be submitted from the stratigraphic unit below the 'worst-case' sample to determine whether the contaminant(s) have migrated downward.
- Parameters analyzed should be consistent with the Contaminants of Potential Concern identified in the Phase I ESA.

The analytical testing program for soil at the Phase I Property is based on the following general considerations:

- Groundwater monitoring wells should be installed in all boreholes with visual or olfactory evidence of soil contamination, in stratigraphic units where soil contamination was encountered, where those stratigraphic units are at or below the water table (i.e. a water sample can be obtained).
- Groundwater monitoring well screens should straddle the water table at sites where the contaminants of concern are suspected to be LNAPLs.
- ☐ At least one groundwater monitoring well should be installed in a stratigraphic unit below the suspected contamination, where said stratigraphic unit is water-bearing.
- Parameters analyzed should be consistent with the Contaminants of Concern identified in the Phase I ESA and with the contaminants identified in the soil samples.

3.0 STANDARD OPERATING PROCEDURES

3.1 Environmental Drilling Procedure

Purpose

The purpose of environmental boreholes is to identify and/or delineate contamination within the soil and/or to install groundwater monitoring wells in order to identify contamination within the groundwater.

Equipment

The following is a list of equipment that is in addition to regular drilling equipment stated in the geotechnical drilling SOP:

- Glass soil sample jars
- □ two buckets
- □ cleaning brush (toilet brush works well)
- □ dish detergent
- methyl hydrate
- □ water (if not available on site water jugs available in trailer)
- □ latex or nitrile gloves (depending on suspected contaminant)
- RKI Eagle organic vapour meter or MiniRae photoionization detector (depending on contamination suspected)

Determining Borehole Locations

If conditions on site are not as suspected, and planned borehole locations cannot be drilled, **call the office to discuss**. Alternative borehole locations will be determined in conversation with the field technician and supervising engineer.

After drilling is completed a plan with the borehole locations must be provided. Distances and orientations of boreholes with respect to site features (buildings, roadways, etc.) must be provided. Distances should be measured using a measuring tape or wheel rather than paced off. Ground surface elevations at each borehole should be surveyed relative to a geodetic benchmark, if one is available, or a temporary site benchmark which can be tied in at a later date if necessary.

Drilling Procedure

The actual drilling procedure for environmental boreholes is the same as geotechnical boreholes (see SOP for drilling and sampling) with a few exceptions as follows:

- Continuous split spoon samples (every 0.6 m or 2') or semi-continuous (every 0.76 m or 2'6") are required.
- □ Make sure samples are well sealed in plastic bags with no holes prior to screening and are kept cool but unfrozen.
- If sampling for VOCs, BTEX, or PHCs F₁, a soil core from each soil sample, which may be analyzed, must be taken and placed in the laboratory-provided methanol vial.
- □ Note all and any odours or discolouration of samples.
- □ Split spoon samplers must be washed between samples.
- □ If obvious contamination is encountered, continue sampling until vertical extent of contamination is delineated.
- ☐ As a general rule, environmental boreholes should be deep enough to intercept the groundwater table (unless this is impossible/impractical - call project manager to discuss).
- If at all possible, soil samples should be submitted to a preliminary screening procedure on site, either using a RKI Eagle, PID, etc. depending on type of suspected contamination.

Spoon Washing Procedure

All sampling equipment (spilt spoons, etc.) must be washed between samples in order to prevent cross contamination of soil samples.

- □ Obtain two buckets of water (preferably hot if available)
- Add a small amount of dish soap to one bucket
- □ Scrub spoons with brush in soapy water, inside and out, including tip
- **D** Rinse in clean water
- □ Apply a small amount of methyl hydrate to the inside of the spoon. (A spray bottle or water bottle with a small hole in the cap works well)
- □ Allow to dry (takes seconds)
- □ Rinse with distilled water, a spray bottle works well.

The methyl hydrate eliminates any soap residue that may be on the spoon and is especially important when dealing with suspected VOCs.

Screening Procedure

The RKI Eagle is used to screen most soil samples, particularly where petroleum hydrocarbon contamination is suspected. The MiniRae is used when VOCs are suspected, however it also can be useful for detecting petroleum. These tools are for screening purposes only and cannot be used in place of laboratory testing. Vapour results obtained from the RKI Eagle and the PID are relative and must be interpreted.

Screening equipment should be calibrated on an approximately monthly basis, more frequently if heavily used.

- □ Samples should be brought to room temperature; this is specifically important in colder weather. Soil must not be frozen.
- **T** Turn instrument on and allow to come to zero calibrate if necessary
- If using RKI Eagle, ensure instrument is in methane elimination mode unless otherwise directed.
- Ensure measurement units are ppm (parts per million) initially. RKI Eagle will automatically switch to %LEL (lower explosive limit) if higher concentrations are encountered.
- Break up large lumps of soil in the sample bag, taking care not to puncture bag.
- □ Insert probe into soil bag, creating a seal with your hand around the opening.
- Gently manipulate soil in bag while observing instrument readings.
- □ Record the highest value obtained in the first 15 to 25 seconds
- Make sure to indicate scale (ppm or LEL); also note which instrument was used (RKI Eagle 1 or 2, or MiniRae).
- □ Jar samples and refrigerate as per Sampling and Analysis Plan.

3.2 Monitoring Well Installation Procedure

Equipment

- ☐ 5' x 2" threaded sections of Schedule 40 PVC slotted well screen (5' x 1 ¼" if installing in cored hole in bedrock)
- □ 5' x 2" threaded sections of Schedule 40 PVC riser pipe (5' x 1 ¼" if installing in cored hole in bedrock)
- □ Threaded end-cap
- □ Slip-cap or J-plug
- □ Asphalt cold patch or concrete
- □ Silica Sand
- □ Bentonite chips (Holeplug)
- □ Steel flushmount casing

Procedure

- Drill borehole to required depth, using drilling and sampling procedures described above.
- If borehole is deeper than required monitoring well, backfill with bentonite chips to required depth. This should only be done on wells where contamination is not suspected, in order to prevent downward migration of contamination.
- □ Only one monitoring well should be installed per borehole.
- Monitoring wells should not be screened across more than one stratigraphic unit to prevent potential migration of contaminants between units.
- Where LNAPLs are the suspected contaminants of concern, monitoring wells should be screened straddling the water table in order to capture any free product floating on top of the water table.
- Thread the end cap onto a section of screen. Thread second section of screen if required. Thread risers onto screen. Lower into borehole to required depth. Ensure slip-cap or J-plug is inserted to prevent backfill materials entering well.
- □ As drillers remove augers, backfill borehole annulus with silica sand until the level of sand is approximately 0.3 m above the top of the screen.
- Backfill with holeplug until at least 0.3 m of holeplug is present above the top of the silica sand.
- Backfill remainder of borehole with holeplug or with auger cuttings (if contamination is not suspected).
- Install flushmount casing. Seal space between flushmount and borehole annulus with concrete, cold patch, or holeplug to match surrounding ground surface.
3.3 Monitoring Well Sampling Procedure

Equipment

- □ Water level metre or interface probe on hydrocarbon/LNAPL sites
- Spray bottles containing water and methanol to clean water level tape or interface probe
- Peristaltic pump
- D Polyethylene tubing for peristaltic pump
- □ Flexible tubing for peristaltic pump
- □ Latex or nitrile gloves (depending on suspected contaminant)
- □ Allen keys and/or 9/16" socket wrench to remove well caps
- Graduated bucket with volume measurements
- D pH/Temperature/Conductivity combo pen
- □ Laboratory-supplied sample bottles

Sampling Procedure

- □ Locate well and use socket wrench or Allan key to open metal flush mount protector cap. Remove plastic well cap.
- Measure water level, with respect to existing ground surface, using water level meter or interface probe. If using interface probe on suspected NAPL site, measure the thickness of free product.
- □ Measure total depth of well.
- Clean water level tape or interface probe using methanol and water. Change gloves between wells.
- □ Calculate volume of standing water within well and record.
- Insert polyethylene tubing into well and attach to peristaltic pump. Turn on peristaltic pump and purge into graduated bucket. Purge at least three well volumes of water from the well. Measure and record field chemistry. Continue to purge, measuring field chemistry after every well volume purged, until appearance or field chemistry stabilizes.
- Note appearance of purge water, including colour, opacity (clear, cloudy, silty), sheen, presence of LNAPL, and odour. Note any other unusual features (particulate matter, effervescence (bubbling) of dissolved gas, etc.).
- Fill required sample bottles. If sampling for metals, attach 75-micron filter to discharge tube and filter metals sample. If sampling for VOCs, use low flow rate to ensure continuous stream of non-turbulent flow into sample bottles. Ensure no headspace is present in VOC vials.
- □ Replace well cap and flushmount casing cap.

4.0 QUALITY ASSURANCE/QUALITY CONTROL (QA/QC)

The QA/QC program for this Phase II ESA is as follows:

- All non-dedicated sampling equipment (split spoons) will be decontaminated according to the SOPs listed above.
- □ All groundwater sampling equipment is dedicated (polyethylene and flexible peristaltic tubing is replaced for each well).
- Where groundwater samples are to be analyzed for VOCs, one laboratoryprovided trip blank will be submitted for analysis with every laboratory submission.
- Approximately one (1) field duplicate will be submitted for every ten (10) samples submitted for laboratory analysis. A minimum of one (1) field duplicate per project will be submitted. Field duplicates will be submitted for soil and groundwater samples
- Where combo pens are used to measure field chemistry, they will be calibrated on an approximately monthly basis, according to frequency of use.

5.0 DATA QUALITY OBJECTIVES

The purpose of setting data quality objectives (DQOs) is to ensure that the level of uncertainty in data collected during the Phase II ESA is low enough that decision-making is not affected, and that the overall objectives of the investigation are met.

The quality of data is assessed by comparing field duplicates with original samples. If the relative percent difference (RPD) between the duplicate and the sample is within 20%, the data are considered to be of sufficient quality so as not to affect decision-making. The RPD is calculated as follows:

$$RPD = \left| \frac{x_1 - x_2}{(x_1 + x_2)/2} \right| \times 100\%$$

Where x_1 is the concentration of a given parameter in an original sample and x_2 is the concentration of that same parameter in the field duplicate sample.

For the purpose of calculating the RPD, it is desirable to select field duplicates from samples for which parameters are present in concentrations above laboratory detection limits, i.e. samples which are expected to be contaminated. If parameters are below laboratory detection limits for selected samples or duplicates, the RPD may be calculated using a concentration equal to one half the laboratory detection limit.

It is also important to consider data quality in the overall context of the project. For example, if the DQOs are not met for a given sample, yet the concentrations of contaminants in both the sample and the duplicate exceed the MOE site remediation standards by a large margin, the decision-making usefulness of the sample may not be considered to be impaired. The proximity of other samples which meet the DQOs must also be considered in developing the Phase II Conceptual Site Model; often there are enough data available to produce a reliable Phase II Conceptual Site Model even if DQOs are not met for certain individual samples.

These considerations are discussed in the body of the report.

6.0 PHYSICAL IMPEDIMENTS

North Bay

patersongroup

Ottawa

Physical impediments to the Sampling and Analysis plan may include:

- □ The location of underground utilities
- Poor recovery of split-spoon soil samples
- □ Insufficient groundwater volume for groundwater samples
- Breakage of sampling containers following sampling or while in transit to the laboratory
- Elevated detection limits due to matrix interference (generally related to soil colour or presence of organic material)
- Elevated detection limits due to high concentrations of certain parameters, necessitating dilution of samples in laboratory
- Drill rig breakdowns
- Winter conditions
- **O** Other site-specific impediments

Site-specific impediments to the Sampling and Analysis plan are discussed in the body of the Phase II ESA report.

SOIL PROFILE AND TEST DATA

Phase II - Environmental Site Assessment 337 & 345 Montgomery St. and 94 Selkirk Street Ottawa, Ontario

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geodetic

REMARKS

DATUM

FILE NO.	
	PE5412

REMARKS	٦rill				ATE (Sontomb	or 10 20	01	HOLE NO.	1-21
	БОЛ		SAN	IPLE		DEPTH ELEV.		Photo I	r Mell	
SOIL DESCRIPTION	RATA PI	ЧРЕ	ABER	° ©VERY	ALUE RQD	(m)	(m)		r Fxplosive I imit	nitoring (
GROUND SURFACE	ST	Ĥ	ION	REC	N N N			20	40 60 80	
Asphaltic concrete 0.05 FILL: Dark brown silty sand with crushed stone and gravel, trace clay, concrete and brick		AU AU	1 2			- 0-	-57.42	<u>А</u>		
1.07		-ss	3	71	19	1-	-56.42	Δ		
GLACIAL TILL: Compact to very dense, brown silty sand with gravel, cobbles and boulders		∑ss ∑ss	4	78	50+	2-	-55.42	Δ		
2.95										
Practical refusal to augering at 2.95m depth										
								100 RKI I ▲ Full Ga	200 300 400 Eagle Rdg. (ppm) as Resp. △ Methane	500 Elim.

SOIL PROFILE AND TEST DATA

Т

Phase II - Environmental Site Assessment 337 & 345 Montgomery St. and 94 Selkirk Street Ottawa, Ontario

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

DATUM Geodetic									FILE NO.	PE5412	2
REMARKS	Drill				ATE	Sentemb	or 9 202	1	HOLE NO.	BH 2-2	21
SOIL DESCRIPTION	ТОТ		SAN	/IPLE		DEPTH	ELEV.	Photo I	Ionization D		Well tion
	TRATA P	ТҮРЕ	UMBER	°° COVERY	VALUE r RQD	(m)	(m)	 Lowe 	er Explosive	Limit %	onitoring Construc
GROUND SURFACE	0		Z	RE	z o	0.	57 59	20	40 60	80	ΣŬ
Asphaltic concrete0.08		U [−] Same AU	1				57.56	Δ			
		ss	2			1-	-56.58	Δ			
GLACIAL TILL: Very dense, brown silty sand with gravel, cobbles and boulders		ss	3		76	2-	-55.58	Δ			
		ss	4		50+			Δ			<u>իրիկիիի</u>
						3-	-54.58				
		RC	1	28		4-	-53.58				<u>իկիկկիկի</u> Սկոսիսիսի
4. <u>60</u>		RC	2	50	50	5-	-52.58				<u>իրիդիդիդի</u> հերդիդիդի
REDROCK, Esiste averallant availty						6-	-51.58				
grey interbedded limestone and shale		RC	3	98	82						
		_				7-	-50.58				
		BC	4	100	90	8-	-49.58				
9.04						9-	-48.58				
(GWL @ 6.20m - Sept. 16, 2021)											
								100 RKI I ▲ Full G	200 300 Eagle Rdg. (as Resp. △ M	400 50 (ppm) lethane Elim.	∔ 00

SOIL PROFILE AND TEST DATA

Phase II - Environmental Site Assessment 337 & 345 Montgomery St. and 94 Selkirk Street Ottawa, Ontario

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

DATUM Geodetic					I				FILE NO.	PE5412	2
REMARKS	٦rill				ATE (Sontomb	or 10, 20	21	HOLE NO.	BH 3-2	21
	гот		SAN	IPLE			ELEV.	Photo I	onization I		Well
SOIL DESCRIPTION	RATA P	YPE	MBER	°8 ©VERY	/ALUE RQD	(m)	(m)		r Explosiv	e Limit %	nitoring onstruct
GROUND SURFACE	ST	H	ŊŊ	REC	N OF			20	40 60	80	ΞŬ
Asphaltic concrete0.02 FILL: Dark brown silty sand with 0.20 crushed stone and gravel		菜 <u>AU</u> 翠 AU 」	1 2			- 0-	-57.75				
		ss	3	8	14	1-	-56.75	Δ			
GLACIAL TILL: Compact to very dense, brown silty sand to sandy silt with gravel, cobbles and boulders		ss	4	82	50+	2-	-55.75	Δ			
3.05		∑ss	5	67	50+	3-	-54 75				
End of Borehole								100 RKI II ▲ Full Gi	200 300 Eagle Rdg. as Resp. △ M	400 50 (ppm) Jethane Elim.	00

SOIL PROFILE AND TEST DATA

• Full Gas Resp. \triangle Methane Elim.

Phase II - Environmental Site Assessment 337 & 345 Montgomery St. and 94 Selkirk Street Ottawa, Ontario

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

DATUM Geodetic									FILE NO.	PE5412	2
REMARKS	٦rill					Sontomb	or 10, 20	21	HOLE NO.	BH 4-2	21
BURINGS BY CIVIL-33 LOW Clearance L	н		SAN					Photo I	onization	Detector	
SOIL DESCRIPTION	A PLO		۰ ۳	л LL Хи	۳o	DEPTH (m)	ELEV. (m)	Vola	tile Organic F	Rdg. (ppm)	ing We
	STRAT	ТҮРЕ	NUMBEI	ECOVEI	I VALU or RQI			○ Lowe	r Explosiv	e Limit %	Aonitor
GROUND SURFACE	~~~~	×1 ⁻		8	2 *	0-	-57.83	20	40 60	80	2
Asphaltic concrete 0.02 FILL:Dark brown silty sand with		X AU X AU	1 2								
crushed stone and gravel, trace clay		-ss	3	62	20	1-	-56.83	Δ			
		x ss	4	0	50+						-
GLACIAL TILL: Compact to very dense, brown silty sand to sandy silt with gravel, cobbles and boulders		ss	5	44	50+	2-	-55.83	Δ			
3.25		≍ ss	6	40	50+	3-	-54.83	Δ			
End of Borehole											
Practical refusal to augering at 3.25m depth											
								100 RKI E	200 300 Eagle Rdg.	400 5 (ppm)	1 00

SOIL PROFILE AND TEST DATA

FILE NO.

PE5412

Phase II - Environmental Site Assessment 337 & 345 Montgomery St. and 94 Selkirk Street Ottawa, Ontario

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

DATUM

REIVIARNO			

Geodetic

BORINGS BY CME-55 Low Clearance	Drill			D	ATE	HOLE NO.	BH 5-2	21			
SOIL DESCRIPTION	LOT		SAN	IPLE	I	DEPTH	ELEV.	Photo Ionization Detector Volatile Organic Rdg. (ppm)			
	STRATA 1	ТҮРЕ	NUMBER	» ECOVERY	NALUE or ROD	(m)	(m)	○ Lowe	r Explosive	e Limit %	Aonitoring Construc
GROUND SURFACE				<u></u>	-	0-	57.86	20	40 60	80	
FILL: Brown silty sand with crushed stone and gravel0.60		AU	1					Δ			
		ss	2	33	45	1-	-56.86				<u>իրիիիի</u>
GLACIAL TILL: Dense to very dense, brown silty sand with gravel, cobbles and boulders		∦ss ⊓	3	25	50+	2-	-55.86				<u>ին ին ին ին։</u> Ուս ուս ուս ուս ուս
		ss	4	42	66	3-	-54.86	Δ		· · · · · · · · · · · · · · · · · · ·	
3.53		RC	1	43 78	73	4-	-53.86				<u>նուրներինըները։</u> Անդուներիներիներ
BEDBOCK: Fair quality grey		RC	2	95	54	5-	-52.86				<u>ինընդնդնդնդնդուն</u> Ուրենդներու
interbedded limestone and shale						6-	-51.86				
		RC	3	95	53	7-	-50.86				
		RC	4	100	75	8-	-49.86				
End of Borehole						9-	40.00				
(GWE @ 0.7211 - Ocpt. 10, 2021)											
								100 RKI E ▲ Full Ga	200 300 Eagle Rdg. as Resp. △ N	400 5 (ppm) lethane Elim.	1 00

SOIL PROFILE AND TEST DATA

200

RKI Eagle Rdg. (ppm) ▲ Full Gas Resp. △ Methane Elim.

100

300

400

500

Phase II - Environmental Site Assessment 337 & 345 Montgomery St. and 94 Selkirk Street

DATUM	(

154 Colonnade Road South, Ottawa, Ontario K2E 7J5 Ottawa, Ontario											
DATUM Geodetic									FILE NO.	PE5412	2
REMARKS									HOLE NO.		
BORINGS BY CME-55 Low Clearance I	Drill	1		D	ATE	Septembe	er 10, 20	21		BH 6-2	21
SOIL DESCRIPTION	РІОТ		SAN	IPLE		DEPTH	ELEV.	Photo I • Vola	onization tile Organic F	Detector Rdg. (ppm)	g Well ction
		TPE	MBER % OVERY		VALUE ROD		(,	○ Lowe	r Explosiv	e Limit %	nitorin onstru
GROUND SURFACE	LS.		NC	REC	Z O			20	40 60	80	₹O
Asphaltic concrete0.05 FILL: Brown silty sand with 0.23		AU AU	1 2			- 0-	-57.69				
FILL: Brown silty sand with clay, 0.91 crushed stone, gravel and glass		∦ ∦ss	3	52	55	1-	-56.69	<u>A</u>			
GLACIAL TILL: Very dense, dark brown silty sand to sandy silt with		ss	4	67	71	2-	-55.69				
gravel, cobbles and boulders, trace clay		ss	5	62	50+			Δ			
<u>3.20</u>		⊈.ss	6	29	50+	3-	-54.69	Δ			
Practical refusal to augering at 3.20m depth											

SYMBOLS AND TERMS

SOIL DESCRIPTION

Behavioural properties, such as structure and strength, take precedence over particle gradation in describing soils. Terminology describing soil structure are as follows:

Desiccated	-	having visible signs of weathering by oxidation of clay minerals, shrinkage cracks, etc.
Fissured	-	having cracks, and hence a blocky structure.
Varved	-	composed of regular alternating layers of silt and clay.
Stratified	-	composed of alternating layers of different soil types, e.g. silt and sand or silt and clay.
Well-Graded	-	Having wide range in grain sizes and substantial amounts of all intermediate particle sizes (see Grain Size Distribution).
Uniformly-Graded	-	Predominantly of one grain size (see Grain Size Distribution).

The standard terminology to describe the relative strength of cohesionless soils is the compactness condition, usually inferred from the results of the Standard Penetration Test (SPT) 'N' value. The SPT N value is the number of blows of a 63.5 kg hammer, falling 760 mm, required to drive a 51 mm O.D. split spoon sampler 300 mm into the soil after an initial penetration of 150 mm. An SPT N value of "P" denotes that the split-spoon sampler was pushed 300 mm into the soil without the use of a falling hammer.

Compactness Condition	'N' Value	Relative Density %
Very Loose	<4	<15
Loose	4-10	15-35
Compact	10-30	35-65
Dense	30-50	65-85
Very Dense	>50	>85

The standard terminology to describe the strength of cohesive soils is the consistency, which is based on the undisturbed undrained shear strength as measured by the in situ or laboratory shear vane tests, unconfined compression tests, or occasionally by the Standard Penetration Test (SPT). Note that the typical correlations of undrained shear strength to SPT N value (tabulated below) tend to underestimate the consistency for sensitive silty clays, so Paterson reviews the applicable split spoon samples in the laboratory to provide a more representative consistency value based on tactile examination.

Consistency	Undrained Shear Strength (kPa)	'N' Value
Very Soft	<12	<2
Soft	12-25	2-4
Firm	25-50	4-8
Stiff	50-100	8-15
Very Stiff	100-200	15-30
Hard	>200	>30

SYMBOLS AND TERMS (continued)

SOIL DESCRIPTION (continued)

Cohesive soils can also be classified according to their "sensitivity". The sensitivity, S_t , is the ratio between the undisturbed undrained shear strength and the remoulded undrained shear strength of the soil. The classes of sensitivity may be defined as follows:

St < 2
$2 < S_t < 4$
$4 < S_t < 8$
$8 < S_t < 16$
St > 16

ROCK DESCRIPTION

The structural description of the bedrock mass is based on the Rock Quality Designation (RQD).

The RQD classification is based on a modified core recovery percentage in which all pieces of sound core over 100 mm long are counted as recovery. The smaller pieces are considered to be a result of closely-spaced discontinuities (resulting from shearing, jointing, faulting, or weathering) in the rock mass and are not counted. RQD is ideally determined from NQ or larger size core. However, it can be used on smaller core sizes, such as BQ, if the bulk of the fractures caused by drilling stresses (called "mechanical breaks") are easily distinguishable from the normal in situ fractures.

RQD % ROCK QUALITY

90-100	Excellent, intact, very sound
75-90	Good, massive, moderately jointed or sound
50-75	Fair, blocky and seamy, fractured
25-50	Poor, shattered and very seamy or blocky, severely fractured
0-25	Very poor, crushed, very severely fractured

SAMPLE TYPES

SS	-	Split spoon sample (obtained in conjunction with the performing of the Standard Penetration Test (SPT))					
TW	-	Thin wall tube or Shelby tube, generally recovered using a piston sampler					
G	-	"Grab" sample from test pit or surface materials					
AU	-	Auger sample or bulk sample					
WS	-	Wash sample					
RC	-	Rock core sample (Core bit size BQ, NQ, HQ, etc.). Rock core samples are obtained with the use of standard diamond drilling bits.					

SYMBOLS AND TERMS (continued)

PLASTICITY LIMITS AND GRAIN SIZE DISTRIBUTION

WC%	-	Natural water content or water content of sample, %					
LL	-	Liquid Limit, % (water content above which soil behaves as a liquid)					
PL	-	Plastic Limit, % (water content above which soil behaves plastically)					
ΡI	-	Plasticity Index, % (difference between LL and PL)					
Dxx	-	Grain size at which xx% of the soil, by weight, is of finer grain sizes These grain size descriptions are not used below 0.075 mm grain size					
D10	-	Grain size at which 10% of the soil is finer (effective grain size)					
D60	-	Grain size at which 60% of the soil is finer					
Сс	-	Concavity coefficient = $(D30)^2 / (D10 \times D60)$					
Cu	-	Uniformity coefficient = D60 / D10					
-							

Cc and Cu are used to assess the grading of sands and gravels: Well-graded gravels have: 1 < Cc < 3 and Cu > 4Well-graded sands have: 1 < Cc < 3 and Cu > 6Sands and gravels not meeting the above requirements are poorly-graded or uniformly-graded. Cc and Cu are not applicable for the description of soils with more than 10% silt and clay (more than 10% finer than 0.075 mm or the #200 sieve)

CONSOLIDATION TEST

p'o	-	Present effective overburden pressure at sample depth
p'c	-	Preconsolidation pressure of (maximum past pressure on) sample
Ccr	-	Recompression index (in effect at pressures below p'c)
Сс	-	Compression index (in effect at pressures above p'c)
OC Ra	tio	Overconsolidaton ratio = p'c / p'o
Void Ra	atio	Initial sample void ratio = volume of voids / volume of solids
Wo	-	Initial water content (at start of consolidation test)

PERMEABILITY TEST

k - Coefficient of permeability or hydraulic conductivity is a measure of the ability of water to flow through the sample. The value of k is measured at a specified unit weight for (remoulded) cohesionless soil samples, because its value will vary with the unit weight or density of the sample during the test.

SYMBOLS AND TERMS (continued) STRATA PLOT Topsoil Asphalt Peat Sand Silty Sand Fill ∇ Sandy Silt Clay Silty Clay Clayey Silty Sand Glacial Till Shale Bedrock

MONITORING WELL AND PIEZOMETER CONSTRUCTION

PIEZOMETER CONSTRUCTION

RELIABLE.

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

Paterson Group Consulting Engineers

154 Colonnade Road South Nepean, ON K2E 7J5 Attn: Nick Sullivan

Client PO: 33144 Project: PE5412 Custody: 133109

Report Date: 21-Sep-2021 Order Date: 15-Sep-2021

Order #: 2138415

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID	Client ID
2138415-01	BH1-21-AU2
2138415-02	BH1-21-SS5
2138415-03	BH3-21-SS5
2138415-04	BH4-21-AU2
2138415-05	BH4-21-SS6
2138415-06	BH5-21-SS5
2138415-07	DUP-1
2138415-08	DUP-2

Approved By:

Mark Foto

Mark Foto, M.Sc. Lab Supervisor

Any use of these results implies your agreement that our total liability in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.

Order #: 2138415

Report Date: 21-Sep-2021 Order Date: 15-Sep-2021

Project Description: PE5412

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
Chromium, hexavalent - soil	MOE E3056 - Extraction, colourimetric	16-Sep-21	17-Sep-21
Mercury by CVAA	EPA 7471B - CVAA, digestion	21-Sep-21	21-Sep-21
pH, soil	EPA 150.1 - pH probe @ 25 °C, CaCl buffered ext.	17-Sep-21	18-Sep-21
PHC F1	CWS Tier 1 - P&T GC-FID	16-Sep-21	16-Sep-21
PHCs F2 to F4	CWS Tier 1 - GC-FID, extraction	16-Sep-21	17-Sep-21
REG 153: Metals by ICP/MS, soil	EPA 6020 - Digestion - ICP-MS	17-Sep-21	17-Sep-21
REG 153: PAHs by GC-MS	EPA 8270 - GC-MS, extraction	16-Sep-21	21-Sep-21
REG 153: VOCs by P&T GC/MS	EPA 8260 - P&T GC-MS	16-Sep-21	16-Sep-21
Solids, %	Gravimetric, calculation	16-Sep-21	16-Sep-21

PARACEL LABORATORIES LTD.

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Client PO: 33144

Order #: 2138415

Report Date: 21-Sep-2021 Order Date: 15-Sep-2021

Project Description: PE5412

	Client ID: Sample Date: Sample ID:	BH1-21-AU2 10-Sep-21 09:00 2138415-01 Soil	BH1-21-SS5 10-Sep-21 09:00 2138415-02 Soil	BH3-21-SS5 10-Sep-21 09:00 2138415-03 Soil	BH4-21-AU2 10-Sep-21 09:00 2138415-04 Soil
Physical Characteristics	MDE/Onits				
% Solids	0.1 % by Wt.	83.9	93.0	90.5	92.7
General Inorganics			ł		
рН	0.05 pH Units	-	-	-	7.75
Metals					
Antimony	1.0 ug/g dry	<1.0	-	-	<1.0
Arsenic	1.0 ug/g dry	5.5	-	-	5.3
Barium	1.0 ug/g dry	82.3	-	-	91.6
Beryllium	0.5 ug/g dry	<0.5	-	-	<0.5
Boron	5.0 ug/g dry	5.6	-	-	6.3
Cadmium	0.5 ug/g dry	<0.5	-	-	0.6
Chromium	5.0 ug/g dry	19.7	-	-	15.9
Chromium (VI)	0.2 ug/g dry	<0.2	-	-	<0.2
Cobalt	1.0 ug/g dry	5.8	-	-	5.4
Copper	5.0 ug/g dry	31.9	-	-	29.0
Lead	1.0 ug/g dry	94.9	-	-	151
Mercury	0.1 ug/g dry	<0.1	-	-	<0.1
Molybdenum	1.0 ug/g dry	1.0	-	-	1.2
Nickel	5.0 ug/g dry	17.2	-	-	22.4
Selenium	1.0 ug/g dry	<1.0	-	-	<1.0
Silver	0.3 ug/g dry	<0.3	-	-	<0.3
Thallium	1.0 ug/g dry	<1.0	-	-	<1.0
Uranium	1.0 ug/g dry	<1.0	-	-	<1.0
Vanadium	10.0 ug/g dry	26.1	-	-	27.6
Zinc	20.0 ug/g dry	169	-	-	119
Volatiles					
Acetone	0.50 ug/g dry	-	<0.50	<0.50	-
Benzene	0.02 ug/g dry	-	<0.02	<0.02	-
Bromodichloromethane	0.05 ug/g dry	-	<0.05	<0.05	-
Bromoform	0.05 ug/g dry	-	<0.05	<0.05	-
Bromomethane	0.05 ug/g dry	-	<0.05	<0.05	-
Carbon Tetrachloride	0.05 ug/g dry		<0.05	<0.05	-
Chlorobenzene	0.05 ug/g dry		<0.05	<0.05	
Chloroform	0.05 ug/g dry	_	<0.05	<0.05	-
Dibromochloromethane	0.05 ug/g dry	-	<0.05	<0.05	-
Dichlorodifluoromethane	0.05 ug/g dry	-	<0.05	<0.05	-

Order #: 2138415

Report Date: 21-Sep-2021 Order Date: 15-Sep-2021

Project Description: PE5412

	Client ID:	BH1-21-AU2	BH1-21-SS5	BH3-21-SS5	BH4-21-AU2
	Sample Date:	10-Sep-21 09:00	10-Sep-21 09:00	10-Sep-21 09:00	10-Sep-21 09:00
Г	Sample ID:	2138415-01 Soil	2138415-02 Soil	2138415-03 Soil	2138415-04 Soil
1 2-Dichlorobenzene	0.05 uq/q dry	-		<0.05	301
1 3-Dichlorobenzene	0.05 ug/g dry		<0.05	<0.05	
1 4-Dichlorobenzene	0.05 ug/g drv		<0.05	<0.05	
1 1-Dichloroethane	0.05 ug/g dry		<0.05	<0.05	
1 2-Dichloroethane	0.05 ug/g dry	_	<0.05	<0.05	
1.1-Dichloroethylene	0.05 ug/g dry		<0.00	<0.05	
cis-1.2-Dichloroethylene	0.05 ug/g dry	_	<0.00	<0.05	_
trans-1.2-Dichloroethvlene	0.05 ug/g dry	_	<0.05	<0.05	_
1,2-Dichloropropane	0.05 ug/g dry	_	<0.05	<0.05	_
cis-1,3-Dichloropropylene	0.05 ug/g dry	_	<0.05	<0.05	-
trans-1,3-Dichloropropylene	0.05 ug/g dry	_	< 0.05	<0.05	_
1,3-Dichloropropene, total	0.05 ug/g dry	-	<0.05	<0.05	-
Ethylbenzene	0.05 ug/g dry	-	<0.05	<0.05	-
Ethylene dibromide (dibromoethane, 1,2-)	0.05 ug/g dry	-	<0.05	<0.05	-
Hexane	0.05 ug/g dry	-	<0.05	<0.05	-
Methyl Ethyl Ketone (2-Butanone)	0.50 ug/g dry	-	<0.50	<0.50	-
Methyl Isobutyl Ketone	0.50 ug/g dry	-	<0.50	<0.50	-
Methyl tert-butyl ether	0.05 ug/g dry	-	<0.05	<0.05	-
Methylene Chloride	0.05 ug/g dry	-	<0.05	<0.05	-
Styrene	0.05 ug/g dry	-	<0.05	<0.05	-
1,1,1,2-Tetrachloroethane	0.05 ug/g dry	-	<0.05	<0.05	-
1,1,2,2-Tetrachloroethane	0.05 ug/g dry	-	<0.05	<0.05	-
Tetrachloroethylene	0.05 ug/g dry	-	<0.05	<0.05	-
Toluene	0.05 ug/g dry	-	<0.05	<0.05	
1,1,1-Trichloroethane	0.05 ug/g dry	-	<0.05	<0.05	-
1,1,2-Trichloroethane	0.05 ug/g dry	-	<0.05	<0.05	-
Trichloroethylene	0.05 ug/g dry	-	<0.05	<0.05	
Trichlorofluoromethane	0.05 ug/g dry	-	<0.05	<0.05	-
Vinyl chloride	0.02 ug/g dry	-	<0.02	<0.02	-
m,p-Xylenes	0.05 ug/g dry	-	<0.05	<0.05	-
o-Xylene	0.05 ug/g dry	-	<0.05	<0.05	-
Xylenes, total	0.05 ug/g dry	-	<0.05	<0.05	-
4-Bromofluorobenzene	Surrogate	-	68.0%	72.1%	-
Dibromofluoromethane	Surrogate	-	90.0%	85.2%	-
Toluene-d8	Surrogate	-	96.5%	104%	-
Hvdrocarbons					

Report Date: 21-Sep-2021 Order Date: 15-Sep-2021

Project Description: PE5412

	Client ID: Sample Date: Sample ID:	BH1-21-AU2 10-Sep-21 09:00 2138415-01	BH1-21-SS5 10-Sep-21 09:00 2138415-02	BH3-21-SS5 10-Sep-21 09:00 2138415-03	BH4-21-AU2 10-Sep-21 09:00 2138415-04
	MDL/Units	Soil	Soil	Soil	Soil
F1 PHCs (C6-C10)	7 ug/g dry	-	<7	<7	-
F2 PHCs (C10-C16)	4 ug/g dry	-	44	10	-
F3 PHCs (C16-C34)	8 ug/g dry	-	63	27	-
F4 PHCs (C34-C50)	6 ug/g dry	-	37	31	-
Semi-Volatiles					
Acenaphthene	0.02 ug/g dry	<0.02	-	-	0.08
Acenaphthylene	0.02 ug/g dry	0.03	-	-	0.12
Anthracene	0.02 ug/g dry	0.05	-	-	0.33
Benzo [a] anthracene	0.02 ug/g dry	0.13	-	-	1.33
Benzo [a] pyrene	0.02 ug/g dry	0.16	-	-	1.51
Benzo [b] fluoranthene	0.02 ug/g dry	0.24	-	-	1.84
Benzo [g,h,i] perylene	0.02 ug/g dry	0.13	-	-	0.99
Benzo [k] fluoranthene	0.02 ug/g dry	0.13	-	-	0.88
Chrysene	0.02 ug/g dry	0.15	-	-	1.29
Dibenzo [a,h] anthracene	0.02 ug/g dry	<0.02	-	-	0.23
Fluoranthene	0.02 ug/g dry	0.28	-	-	2.76
Fluorene	0.02 ug/g dry	<0.02	-	-	0.08
Indeno [1,2,3-cd] pyrene	0.02 ug/g dry	0.11	-	-	0.95
1-Methylnaphthalene	0.02 ug/g dry	<0.02	-	-	0.04
2-Methylnaphthalene	0.02 ug/g dry	<0.02	-	-	0.05
Methylnaphthalene (1&2)	0.04 ug/g dry	<0.04	-	-	0.10
Naphthalene	0.01 ug/g dry	0.02	-	-	0.06
Phenanthrene	0.02 ug/g dry	0.15	-	-	1.16
Pyrene	0.02 ug/g dry	0.23	_	-	2.36
2-Fluorobiphenyl	Surrogate	88.9%	-	-	99.0%
Terphenyl-d14	Surrogate	99.2%	-	-	120%

PARACEL LABORATORIES LTD.

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Client PO: 33144

Order #: 2138415

Report Date: 21-Sep-2021

Order Date: 15-Sep-2021

Project Description: PE5412

	Client ID: Sample Date: Sample ID: MDI /Units	BH4-21-SS6 10-Sep-21 09:00 2138415-05 Soil	BH5-21-SS5 09-Sep-21 09:00 2138415-06 Soil	DUP-1 10-Sep-21 09:00 2138415-07 Soil	DUP-2 10-Sep-21 09:00 2138415-08 Sojl
Physical Characteristics	mbe/onits				
% Solids	0.1 % by Wt.	90.9	91.7	82.6	89.0
General Inorganics	· · · ·				
рН	0.05 pH Units	7.83	-	-	-
Metals	· · · ·				
Antimony	1.0 ug/g dry	-	-	<1.0	-
Arsenic	1.0 ug/g dry	-	-	5.9	-
Barium	1.0 ug/g dry	-	-	88.3	-
Beryllium	0.5 ug/g dry	-	-	<0.5	-
Boron	5.0 ug/g dry	-	-	6.0	-
Cadmium	0.5 ug/g dry	-	-	<0.5	-
Chromium	5.0 ug/g dry	-	-	20.8	-
Chromium (VI)	0.2 ug/g dry	-	-	<0.2	-
Cobalt	1.0 ug/g dry	-	-	6.0	-
Copper	5.0 ug/g dry	-	-	36.8	-
Lead	1.0 ug/g dry	-	-	110	-
Mercury	0.1 ug/g dry	-	-	<0.1	-
Molybdenum	1.0 ug/g dry	-	-	<1.0	-
Nickel	5.0 ug/g dry	-	-	16.8	-
Selenium	1.0 ug/g dry	-	-	<1.0	-
Silver	0.3 ug/g dry	-	-	<0.3	-
Thallium	1.0 ug/g dry	-	-	<1.0	-
Uranium	1.0 ug/g dry	-	-	<1.0	-
Vanadium	10.0 ug/g dry	-	-	27.5	-
Zinc	20.0 ug/g dry	-	-	190	-
Volatiles	· · · ·				
Acetone	0.50 ug/g dry	<0.50	<0.50	-	<0.50
Benzene	0.02 ug/g dry	<0.02	<0.02	-	<0.02
Bromodichloromethane	0.05 ug/g dry	<0.05	<0.05	-	<0.05
Bromoform	0.05 ug/g dry	<0.05	<0.05	-	<0.05
Bromomethane	0.05 ug/g dry	<0.05	<0.05	-	<0.05
Carbon Tetrachloride	0.05 ug/g dry	<0.05	<0.05	-	<0.05
Chlorobenzene	0.05 ug/g dry	<0.05	<0.05	-	<0.05
Chloroform	0.05 ug/g dry	<0.05	<0.05	-	<0.05
Dibromochloromethane	0.05 ug/g dry	<0.05	<0.05	-	<0.05
Dichlorodifluoromethane	0.05 ug/g dry	<0.05	<0.05	-	<0.05

Order #: 2138415

Report Date: 21-Sep-2021 Order Date: 15-Sep-2021

Project Description: PE5412

	Client ID: Sample Date: Sample ID: MDI /Units	BH4-21-SS6 10-Sep-21 09:00 2138415-05 Soil	BH5-21-SS5 09-Sep-21 09:00 2138415-06 Soil	DUP-1 10-Sep-21 09:00 2138415-07 Soil	DUP-2 10-Sep-21 09:00 2138415-08 Soil
1,2-Dichlorobenzene	0.05 ug/g dry	<0.05	<0.05	-	<0.05
1,3-Dichlorobenzene	0.05 ug/g dry	<0.05	<0.05	-	<0.05
1,4-Dichlorobenzene	0.05 ug/g dry	<0.05	<0.05	-	<0.05
1,1-Dichloroethane	0.05 ug/g dry	<0.05	<0.05	-	<0.05
1,2-Dichloroethane	0.05 ug/g dry	<0.05	<0.05	-	<0.05
1,1-Dichloroethylene	0.05 ug/g dry	<0.05	<0.05	-	<0.05
cis-1,2-Dichloroethylene	0.05 ug/g dry	<0.05	<0.05	-	<0.05
trans-1,2-Dichloroethylene	0.05 ug/g dry	<0.05	<0.05	-	<0.05
1,2-Dichloropropane	0.05 ug/g dry	<0.05	<0.05	-	<0.05
cis-1,3-Dichloropropylene	0.05 ug/g dry	<0.05	<0.05	-	<0.05
trans-1,3-Dichloropropylene	0.05 ug/g dry	<0.05	<0.05	-	<0.05
1,3-Dichloropropene, total	0.05 ug/g dry	<0.05	<0.05	-	<0.05
Ethylbenzene	0.05 ug/g dry	<0.05	<0.05	-	<0.05
Ethylene dibromide (dibromoethane, 1	0.05 ug/g dry	<0.05	<0.05	-	<0.05
Hexane	0.05 ug/g dry	<0.05	<0.05	-	<0.05
Methyl Ethyl Ketone (2-Butanone)	0.50 ug/g dry	<0.50	<0.50	-	<0.50
Methyl Isobutyl Ketone	0.50 ug/g dry	<0.50	<0.50	-	<0.50
Methyl tert-butyl ether	0.05 ug/g dry	<0.05	<0.05	-	<0.05
Methylene Chloride	0.05 ug/g dry	<0.05	<0.05	-	<0.05
Styrene	0.05 ug/g dry	<0.05	<0.05	-	<0.05
1,1,1,2-Tetrachloroethane	0.05 ug/g dry	<0.05	<0.05	-	<0.05
1,1,2,2-Tetrachloroethane	0.05 ug/g dry	<0.05	<0.05	-	<0.05
Tetrachloroethylene	0.05 ug/g dry	<0.05	<0.05	-	<0.05
Toluene	0.05 ug/g dry	<0.05	<0.05	-	<0.05
1,1,1-Trichloroethane	0.05 ug/g dry	<0.05	<0.05	-	<0.05
1,1,2-Trichloroethane	0.05 ug/g dry	<0.05	<0.05	-	<0.05
Trichloroethylene	0.05 ug/g dry	<0.05	<0.05	-	<0.05
Trichlorofluoromethane	0.05 ug/g dry	<0.05	<0.05	-	<0.05
Vinyl chloride	0.02 ug/g dry	<0.02	<0.02	-	<0.02
m,p-Xylenes	0.05 ug/g dry	<0.05	<0.05	-	<0.05
o-Xylene	0.05 ug/g dry	<0.05	<0.05	-	<0.05
Xylenes, total	0.05 ug/g dry	<0.05	<0.05	-	<0.05
4-Bromofluorobenzene	Surrogate	81.7%	68.3%	-	74.7%
Dibromofluoromethane	Surrogate	83.3%	61.6%	-	61.5%
Toluene-d8	Surrogate	91.3%	94.5%	-	103%

Client PO: 33144

Order #: 2138415

Report Date: 21-Sep-2021

Order Date: 15-Sep-2021

Project Description: PE5412

	Client ID: Sample Date: Sample ID:	BH4-21-SS6 10-Sep-21 09:00 2138415-05	BH5-21-SS5 09-Sep-21 09:00 2138415-06	DUP-1 10-Sep-21 09:00 2138415-07	DUP-2 10-Sep-21 09:00 2138415-08
	MDL/Units	Soil	Soil	Soil	Soil
Hydrocarbons					
F1 PHCs (C6-C10)	7 ug/g dry	8	<7	-	<7
F2 PHCs (C10-C16)	4 ug/g dry	40	35	-	8
F3 PHCs (C16-C34)	8 ug/g dry	96	53	-	47
F4 PHCs (C34-C50)	6 ug/g dry	83	31	-	65
Semi-Volatiles	· ·				
Acenaphthene	0.02 ug/g dry	-	-	<0.02	-
Acenaphthylene	0.02 ug/g dry	-	-	0.03	-
Anthracene	0.02 ug/g dry	-	-	0.03	-
Benzo [a] anthracene	0.02 ug/g dry	-	-	0.10	-
Benzo [a] pyrene	0.02 ug/g dry	-	-	0.12	-
Benzo [b] fluoranthene	0.02 ug/g dry	-	-	0.16	-
Benzo [g,h,i] perylene	0.02 ug/g dry	-	-	0.10	-
Benzo [k] fluoranthene	0.02 ug/g dry	-	-	0.08	-
Chrysene	0.02 ug/g dry	-	-	0.11	-
Dibenzo [a,h] anthracene	0.02 ug/g dry	-	-	0.02	-
Fluoranthene	0.02 ug/g dry	-	-	0.18	-
Fluorene	0.02 ug/g dry	-	-	<0.02	-
Indeno [1,2,3-cd] pyrene	0.02 ug/g dry	-	-	0.09	-
1-Methylnaphthalene	0.02 ug/g dry	-	-	<0.02	-
2-Methylnaphthalene	0.02 ug/g dry	-	-	<0.02	-
Methylnaphthalene (1&2)	0.04 ug/g dry	-	-	<0.04	-
Naphthalene	0.01 ug/g dry	-	-	0.02	-
Phenanthrene	0.02 ug/g dry	-	-	0.08	-
Pyrene	0.02 ug/g dry	-	-	0.16	-
2-Fluorobiphenyl	Surrogate	-	-	68.2%	-
Terphenyl-d14	Surrogate	-	-	77.1%	-

Dichlorodifluoromethane

Certificate of Analysis Client: Paterson Group Consulting Engineers Client PO: 33144

Method Quality Control: Blank

Report Date: 21-Sep-2021

Order Date: 15-Sep-2021

Project Description: PE5412

		Reporting		Source		%REC		RPD	
Analyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes
Hydrocarbons									
		7	uala						
F1 FHCs (C0-C10) F2 PHCs (C10 C16)		1	ug/g						
F2 FHCs (C10-C10) F2 PHCs (C16 C24)		4	ug/g						
$F_{2} = F_{1} = F_{2} = F_{2$		0	ug/g						
14 FIIOS (004-000)	ND	0	ug/g						
metais									
Antimony	ND	1.0	ug/g						
Arsenic	ND	1.0	ug/g						
Barium	ND	1.0	ug/g						
Beryllium	ND	0.5	ug/g						
Boron	ND	5.0	ug/g						
Cadmium	ND	0.5	ug/g						
Chromium (VI)	ND	0.2	ug/g						
Chromium	ND	5.0	ug/g						
Cobalt	ND	1.0	ug/g						
Copper	ND	5.0	ug/g						
		1.0	ug/g						
Melubeleauer		0.1	ug/g						
Niekol		1.0	ug/g						
Solonium		5.0	ug/g						
Silver		1.0	ug/g						
Thallium		0.3	ug/g						
Iranium		1.0	ug/g						
Vanadium	ND	10.0	ug/g						
Zinc	ND	20.0	ug/g						
Somi Volatilos	ne -	20.0	ug, g						
Semi-volatiles									
Acenaphthene	ND	0.02	ug/g						
Acenaphthylene	ND	0.02	ug/g						
Anthracene	ND	0.02	ug/g						
Benzo [a] anthracene	ND	0.02	ug/g						
Benzo [a] pyrene	ND	0.02	ug/g						
Benzo [b] fluorantnene		0.02	ug/g						
Benzo [g,n,i] perviene		0.02	ug/g						
Christene		0.02	ug/g						
Dibenzo [a b] anthracene		0.02	ug/g						
Fluoranthene		0.02	ug/g						
Fluorene		0.02	ug/g						
Indeno [1 2 3-cd] nyrene	ND	0.02	ug/g						
1-Methylnaphthalene	ND	0.02	ug/g						
2-Methylnaphthalene	ND	0.02	ug/g						
Methylnaphthalene (1&2)	ND	0.04	ua/a						
Naphthalene	ND	0.01	ua/a						
Phenanthrene	ND	0.02	ug/g						
Pyrene	ND	0.02	ug/g						
Surrogate: 2-Fluorobiphenyl	1.03		ug/g		76.9	50-140			
Surrogate: Terphenyl-d14	1.26		ug/g		94.9	50-140			
Volatiles									
Acetone	ND	0.50	ua/a						
Benzene	ND	0.02	ug/a						
Bromodichloromethane	ND	0.05	ug/q						
Bromoform	ND	0.05	ug/g						
Bromomethane	ND	0.05	ug/g						
Carbon Tetrachloride	ND	0.05	ug/g						
Chlorobenzene	ND	0.05	ug/g						
Chloroform	ND	0.05	ug/g						
Dibromochloromethane	ND	0.05	ug/g						

OTTAWA • MISSISSAUGA • HAMILTON • CALGARY • KINGSTON • LONDON • NIAGARA • WINDSOR • RICHMOND HILL

ug/g

ND

0.05

Method Quality Control: Blank

Report Date: 21-Sep-2021

Order Date: 15-Sep-2021

Project Description: PE5412

Analyte	Decult	Reporting		Source		%REC		RPD	Natas
Analyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes
1,2-Dichlorobenzene	ND	0.05	ug/g						
1,3-Dichlorobenzene	ND	0.05	ug/g						
1,4-Dichlorobenzene	ND	0.05	ug/g						
1,1-Dichloroethane	ND	0.05	ug/g						
1,2-Dichloroethane	ND	0.05	ug/g						
1,1-Dichloroethylene	ND	0.05	ug/g						
cis-1,2-Dichloroethylene	ND	0.05	ug/g						
trans-1,2-Dichloroethylene	ND	0.05	ug/g						
1,2-Dichloropropane	ND	0.05	ug/g						
cis-1,3-Dichloropropylene	ND	0.05	ug/g						
trans-1,3-Dichloropropylene	ND	0.05	ug/g						
1,3-Dichloropropene, total	ND	0.05	ug/g						
Ethylbenzene	ND	0.05	ug/g						
Ethylene dibromide (dibromoethane, 1,2	ND	0.05	ug/g						
Hexane	ND	0.05	ug/g						
Methyl Ethyl Ketone (2-Butanone)	ND	0.50	ug/g						
Methyl Isobutyl Ketone	ND	0.50	ug/g						
Methyl tert-butyl ether	ND	0.05	ug/g						
Methylene Chloride	ND	0.05	ug/g						
Styrene	ND	0.05	ug/g						
1,1,1,2-Tetrachloroethane	ND	0.05	ug/g						
1,1,2,2-Tetrachloroethane	ND	0.05	ug/g						
Tetrachloroethylene	ND	0.05	ug/g						
Toluene	ND	0.05	ug/g						
1,1,1-Trichloroethane	ND	0.05	ug/g						
1,1,2-Trichloroethane	ND	0.05	ug/g						
Trichloroethylene	ND	0.05	ug/g						
Trichlorofluoromethane	ND	0.05	ug/g						
Vinyl chloride	ND	0.02	ug/g						
m,p-Xylenes	ND	0.05	ug/g						
o-Xylene	ND	0.05	ug/g						
Xylenes, total	ND	0.05	ug/g						
Surrogate: 4-Bromofluorobenzene	2.47		ug/g		77.1	50-140			
Surrogate: Dibromofluoromethane	3.48		ug/g		109	50-140			
Surrogate: Toluene-d8	3.42		ug/g		107	50-140			

Method Quality Control: Duplicate

Report Date: 21-Sep-2021

Order Date: 15-Sep-2021

Project Description: PE5412

		Reporting		Source		%REC		•• •	
Analyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes
General Inorganics									
На	7.57	0.05	pH Units	7.60			0.4	2.3	
Hvdrocarbons			·						
F1 PHCs (C6-C10)	ND	7	ua/a dry	ND			NC	40	
$F_2 PHC_8 (C10_C16)$		1	ug/g dry				NC	30	
F_{2} PHCs (C16 C34)	100	4	ug/g dry	214			7.5	30	
F_{4} PHCs (C34 C50)	142	0	ug/g dry	175			20.8	30	
P4 PHCS (C34-C30)	142	0	ug/g ury	175			20.0	30	
Wetais			, .						
Antimony	1.0	1.0	ug/g dry	ND			NC	30	
Arsenic	5.7	1.0	ug/g dry	5.5			2.5	30	
Barium	78.1	1.0	ug/g dry	82.3			5.2	30	
Beryllium	ND	0.5	ug/g dry	ND			NC	30	
Boron	6.0	5.0	ug/g dry	5.6			7.2	30	
Cadmium	ND	0.5	ug/g dry	ND			NC	30	
Chromium (VI)	ND	0.2	ug/g dry	ND			NC	35	
Chromium	18.9	5.0	ug/g dry	19.7			4.1	30	
Cobalt	5.6	1.0	ug/g dry	5.8			3.0	30	
Copper	28.0	5.0	ug/g dry	31.9			13.1	30	
Lead	115	1.0	ug/g dry	94.9			19.3	30	
Mercury	ND	0.1	ug/g dry	ND			NC	30	
Molybdenum	1.1	1.0	ug/g dry	1.0			5.1	30	
Nickel	15.5	5.0	ug/g dry	17.2			10.4	30	
Selenium	ND	1.0	ug/g dry	ND			NC	30	
Silver	ND	0.3	ug/g dry	ND			NC	30	
Thallium	ND	1.0	ug/g dry	ND			NC	30	
Uranium	ND	1.0	ua/a drv	ND			NC	30	
Vanadium	25.3	10.0	ua/a drv	26.1			3.5	30	
Zinc	160	20.0	ua/a drv	169			5.8	30	
Physical Characteristics									
% Solido	00.4	0.1	% by M/t	02.4			2.2	25	
Somi Volatilos	50.4	0.1	70 Dy VVI.	32.4			2.2	20	
Semi-volatiles	0.000							10	
Acenaphthene	0.026	0.02	ug/g dry	ND			NC	40	
Acenaphthylene	ND	0.02	ug/g dry	ND			NC	40	
Anthracene	0.086	0.02	ug/g dry	ND			NC	40	
Benzo [a] anthracene	0.172	0.02	ug/g dry	0.029			NC	40	
Benzo [a] pyrene	0.175	0.02	ug/g dry	0.034			NC	40	
Benzo [b] fluoranthene	0.224	0.02	ug/g dry	0.045			NC	40	
Benzo [g,h,i] perylene	0.116	0.02	ug/g dry	0.028			NC	40	
Benzo [k] fluoranthene	0.133	0.02	ug/g dry	0.020			NC	40	
Chrysene	0.187	0.02	ug/g dry	0.035			NC	40	
Dibenzo [a,h] anthracene	0.023	0.02	ug/g dry	ND			NC	40	
Fluoranthene	0.461	0.02	ug/g dry	0.068			NC	40	
Fluorene	0.036	0.02	ug/g dry	ND			NC	40	
Indeno [1,2,3-cd] pyrene	0.096	0.02	ug/g dry	0.022			125.0	40	
1-Methylnaphthalene	0.084	0.02	ug/g dry	ND			NC	40	
2-Methylnaphthalene	0.098	0.02	ug/g dry	0.024			NC	40	
Naphthalene	0.068	0.01	ug/g dry	0.017			NC	40	
Phenanthrene	0.376	0.02	ug/g dry	0.056			NC	40	
Pyrene	0.370	0.02	ug/g dry	0.060			NC	40	
Surrogate: 2-Fluorobiphenyl	1.06		ug/g dry		67.6	50-140			
Surrogate: Terphenyl-d14	1.31		ug/g dry		83.4	50-140			
Volatiles									
Acetone	ND	0.50	ua/a dry	ND			NC	50	
Benzene	סא	0.00	ug/g ury				NC	50	
Bromodichloromethane	סא	0.02	ug/g dry				NC	50	
Bromoform	סא	0.05	ug/g dry				NC	50	
		0.05	ugig ury	ND			NC	50	

Method Quality Control: Duplicate

Report Date: 21-Sep-2021 Order Date: 15-Sep-2021

Project Description: PE5412

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Dromomothono	ND	0.05	uala dar	ND			NC		
Corbon Totrochlorido		0.05	ug/g dry				NC	50	
Carbon Tetrachionde	ND	0.05	ug/g ary	ND			NC	50	
Chlorobenzene	ND	0.05	ug/g dry	ND			NC	50	
Chiorotorm	ND	0.05	ug/g ary	ND			NC	50	
Dibromochloromethane	ND	0.05	ug/g dry	ND			NC	50	
Dichlorodifluoromethane	ND	0.05	ug/g dry	ND			NC	50	
1,2-Dichlorobenzene	ND	0.05	ug/g dry	ND			NC	50	
1,3-Dichlorobenzene	ND	0.05	ug/g dry	ND			NC	50	
1,4-Dichlorobenzene	ND	0.05	ug/g dry	ND			NC	50	
1,1-Dichloroethane	ND	0.05	ug/g dry	ND			NC	50	
1,2-Dichloroethane	ND	0.05	ug/g dry	ND			NC	50	
1,1-Dichloroethylene	ND	0.05	ug/g dry	ND			NC	50	
cis-1,2-Dichloroethylene	ND	0.05	ug/g dry	ND			NC	50	
trans-1,2-Dichloroethylene	ND	0.05	ug/g dry	ND			NC	50	
1,2-Dichloropropane	ND	0.05	ug/g dry	ND			NC	50	
cis-1,3-Dichloropropylene	ND	0.05	ug/g dry	ND			NC	50	
trans-1,3-Dichloropropylene	ND	0.05	ug/g dry	ND			NC	50	
Ethylbenzene	ND	0.05	ug/g dry	ND			NC	50	
Ethylene dibromide (dibromoethane, 1,2	ND	0.05	ug/g dry	ND			NC	50	
Hexane	ND	0.05	ug/g dry	ND			NC	50	
Methyl Ethyl Ketone (2-Butanone)	ND	0.50	uq/q dry	ND			NC	50	
Methyl Isobutyl Ketone	ND	0.50	ug/g dry	ND			NC	50	
Methyl tert-butyl ether	ND	0.05	uq/q dry	ND			NC	50	
Methylene Chloride	ND	0.05	ua/a drv	ND			NC	50	
Styrene	ND	0.05	uq/q dry	ND			NC	50	
1.1.1.2-Tetrachloroethane	ND	0.05	ua/a drv	ND			NC	50	
1.1.2.2-Tetrachloroethane	ND	0.05	ua/a drv	ND			NC	50	
Tetrachloroethylene	ND	0.05	ua/a drv	ND			NC	50	
Toluene	ND	0.05	ua/a dry	ND			NC	50	
1 1 1-Trichloroethane	ND	0.05	ua/a dry	ND			NC	50	
1 1 2-Trichloroethane	ND	0.05	ug/g dry	ND			NC	50	
Trichloroethylene	ND	0.05	ua/a dry	ND			NC	50	
Trichlorofluoromethane	ND	0.05	ug/g dry	ND			NC	50	
	ND	0.00	ug/g dry	ND			NC	50	
m n-Xylenes	ND	0.05	ug/g dry				NC	50	
o Yvlene		0.05	ug/g dry				NC	50	
Surragete: A-Bromofluorobenzene	2.60	0.05	ug/g ury		77.6	50-140	NO	50	
Surragate: Dibramafluoromathana	2.00		ug/g ury		04.1	50-140			
	3.10		ug/g ury		94.1	50-140			
Surrogate: 101uene-av	3.54		ug/g ary		106	50-140			

Method Quality Control: Spike

Report Date: 21-Sep-2021 Order Date: 15-Sep-2021

Project Description: PE5412

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	226	7	ug/g	ND	113	80-120			
F2 PHCs (C10-C16)	97	4	ug/g	ND	89.1	60-140			
F3 PHCs (C16-C34)	425	8	ug/g	214	79.4	60-140			
F4 PHCs (C34-C50)	314	6	ug/g	175	83.1	60-140			
Metals									
Antimony	52.4	1.0	ug/g	ND	104	70-130			
Arsenic	56.6	1.0	ug/g	2.2	109	70-130			
Barium	81.6	1.0	ug/g	32.9	97.4	70-130			
Beryllium	53.5	0.5	ug/g	ND	107	70-130			
Boron	53.3	5.0	ug/g	ND	102	70-130			
Cadmium	50.2	0.5	ug/g	ND	100	70-130			
Chromium (VI)	0.1	0.2	ug/g	ND	53.5	70-130			QM-05
Chromium	61.1	5.0	ug/g	7.9	106	70-130			
Cobalt	55.2	1.0	ug/g	2.3	106	70-130			
Copper	62.7	5.0	ug/g	12.8	99.9	70-130			
Lead	99.1	1.0	ug/g	37.9	122	70-130			
Mercury	1.49	0.1	ug/g	ND	99.3	70-130			
Molybdenum	54.5	1.0	ug/g	ND	108	70-130			
Nickel	58.9	5.0	ug/g	6.9	104	70-130			
Selenium	51.8	1.0	ug/g	ND	103	70-130			
Silver	46.3	0.3	ug/g	ND	92.6	70-130			
Thallium	52.1	1.0	ug/g	ND	104	70-130			
Uranium	55.4	1.0	ug/g	ND	110	70-130			
Vanadium	64.5	10.0	ug/g	10.5	108	70-130			
Zinc	112	20.0	ug/g	67.6	88.6	70-130			
Semi-Volatiles									
Acenaphthene	0.136	0.02	ug/g	ND	81.6	50-140			
Acenaphthylene	0.125	0.02	ug/g	ND	74.7	50-140			
Anthracene	0.157	0.02	ug/g	ND	93.9	50-140			
Benzo [a] anthracene	0.140	0.02	ug/g	ND	84.0	50-140			
Benzo [a] pyrene	0.150	0.02	ug/g	ND	90.0	50-140			
Benzo [b] fluoranthene	0.175	0.02	ug/g	ND	105	50-140			
Benzo [g,h,i] perylene	0.173	0.02	ug/g	ND	104	50-140			
Benzo [k] fluoranthene	0.181	0.02	ug/g	ND	109	50-140			
Chrysene	0.177	0.02	ug/g	ND	106	50-140			
Dibenzo [a,h] anthracene	0.165	0.02	ug/g	ND	99.0	50-140			
Fluoranthene	0.144	0.02	ug/g	ND	86.6	50-140			
Fluorene	0.141	0.02	ug/g	ND	84.6	50-140			
Indeno [1,2,3-cd] pyrene	0.140	0.02	ug/g	ND	83.7	50-140			
1-Methylnaphthalene	0.126	0.02	ug/g	ND	75.4	50-140			
2-Methylnaphthalene	0.142	0.02	ug/g	ND	85.0	50-140			
Naphthalene	0.119	0.01	ug/g	ND	71.3	50-140			
Phenanthrene	0.143	0.02	ug/g	ND	85.6	50-140			
Pyrene	0.146	0.02	ug/g	ND	87.3	50-140			
Surrogate: 2-Fluorobiphenyl	1.12		ug/g		84.0	50-140			
Surrogate: Terphenyl-d14	1.55		ug/g		116	50-140			
Volatiles									
Acetone	12.5	0.50	ug/g	ND	125	50-140			

Method Quality Control: Spike

Report Date: 21-Sep-2021 Order Date: 15-Sep-2021

Project Description: PE5412

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Benzene	2.92	0.02	ug/g	ND	73.0	60-130			
Bromodichloromethane	2.66	0.05	ug/g	ND	66.4	60-130			
Bromoform	4.21	0.05	ug/g	ND	105	60-130			
Bromomethane	3.43	0.05	ug/g	ND	85.8	50-140			
Carbon Tetrachloride	2.89	0.05	ug/g	ND	72.3	60-130			
Chlorobenzene	3.65	0.05	ug/g	ND	91.4	60-130			
Chloroform	2.66	0.05	ug/g	ND	66.4	60-130			
Dibromochloromethane	3.69	0.05	ug/g	ND	92.4	60-130			
Dichlorodifluoromethane	4.80	0.05	ug/g	ND	120	50-140			
1,2-Dichlorobenzene	3.71	0.05	ug/g	ND	92.7	60-130			
1,3-Dichlorobenzene	3.54	0.05	ug/g	ND	88.6	60-130			
1,4-Dichlorobenzene	3.60	0.05	ug/g	ND	90.1	60-130			
1,1-Dichloroethane	2.92	0.05	ug/g	ND	73.1	60-130			
1,2-Dichloroethane	2.76	0.05	ug/g	ND	69.1	60-130			
1,1-Dichloroethylene	2.72	0.05	ug/g	ND	67.9	60-130			
cis-1,2-Dichloroethylene	2.65	0.05	ug/g	ND	66.3	60-130			
trans-1,2-Dichloroethylene	3.13	0.05	ug/g	ND	78.2	60-130			
1,2-Dichloropropane	4.00	0.05	ug/g	ND	99.9	60-130			
cis-1,3-Dichloropropylene	3.01	0.05	ug/g	ND	75.3	60-130			
trans-1,3-Dichloropropylene	3.12	0.05	ug/g	ND	78.0	60-130			
Ethylbenzene	3.38	0.05	ug/g	ND	84.5	60-130			
Ethylene dibromide (dibromoethane, 1,2	3.84	0.05	ug/g	ND	96.0	60-130			
Hexane	3.80	0.05	ug/g	ND	94.9	60-130			
Methyl Ethyl Ketone (2-Butanone)	8.99	0.50	ug/g	ND	89.9	50-140			
Methyl Isobutyl Ketone	10.9	0.50	ug/g	ND	109	50-140			
Methyl tert-butyl ether	10.3	0.05	ug/g	ND	103	50-140			
Methylene Chloride	2.68	0.05	ug/g	ND	66.9	60-130			
Styrene	3.22	0.05	ug/g	ND	80.4	60-130			
1,1,1,2-Tetrachloroethane	3.89	0.05	ug/g	ND	97.2	60-130			
1,1,2,2-Tetrachloroethane	4.33	0.05	ug/g	ND	108	60-130			
Tetrachloroethylene	3.60	0.05	ug/g	ND	90.1	60-130			
Toluene	3.79	0.05	ug/g	ND	94.7	60-130			
1,1,1-Trichloroethane	2.62	0.05	ug/g	ND	65.4	60-130			
1,1,2-Trichloroethane	3.33	0.05	ug/g	ND	83.3	60-130			
Trichloroethylene	4.01	0.05	ug/g	ND	100	60-130			
Trichlorofluoromethane	2.90	0.05	ug/g	ND	72.4	50-140			
Vinyl chloride	4.30	0.02	ug/g	ND	108	50-140			
m,p-Xylenes	7.05	0.05	ug/g	ND	88.1	60-130			
o-Xylene	3.69	0.05	ug/g	ND	92.3	60-130			
Surrogate: 4-Bromofluorobenzene	2.79		ug/g		87.3	50-140			
Surrogate: Dibromofluoromethane	2.30		ug/g		72.0	50-140			
Surrogate: Toluene-d8	2.97		ug/g		92.7	50-140			

Qualifier Notes:

QC Qualifiers :

QM-05 : The spike recovery was outside acceptance limits for the matrix spike due to matrix interference.

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference. NC: Not Calculated

Soil results are reported on a dry weight basis when the units are denoted with 'dry'. Where %Solids is reported, moisture loss includes the loss of volatile hydrocarbons.

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.

- F1 range corrected for BTEX.
- F2 to F3 ranges corrected for appropriate PAHs where available.
- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.
- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.
- When reported, data for F4G has been processed using a silica gel cleanup.

GPARACEL TRUS LABORATORIES LTD. RESP	TEI ONS ABL). 3 I V . E .	E	Para	icel ID: 21	3841	5					Chair (I Nº	n Of Co ab Use C 133	ustod Dnly) 109	Y
Client Name: Paterson Group		Proje	ct Ref:	PE5412								١	Page]	of	
Contact Name: Nick Sullivan		Quote	e #:									Turi	naround	1 Time	
Address:		PO #:	3	3144								1 day		J	3 day
154 Colonnado 16. S. Telephone: 613-226-7381		E-mai	1: N	sullivan@	paterson	Sco	SP.	ca			Date	2 day Required		X	Regular
REG 153/04 REG 406/19 Other Regulation	Ι,	dately 1		S (Soll/Sod) SHUG	111/1-1										
Table 1 Res/Park Med/Fine REG 558 PWQO	1'	SW (Su	rype: Irface \	Nater) SS (Storm/Sa	round water) nitary Sewer)					Re	quired	d Analysis			
Table 2 Ind/Comm Coarse CCME MISA			P (8	Paint) A (Air) O (Oth	ner)	1		Γ	Γ						
Table 3 Agri/Other SU - Sani SU - Storm			ers			ų.			d.						
Table Mun:		ê	taine	Sample	Taken	1-F4			0 V						
For RSC: Yes No Other:	trix	Volui	f Con			S S	ő	<u>0</u>	tals t	Γ	-	SMF			
Sample ID/Location Name	Ň	Air	0 #	Date	Time	Н	Š	PAF	Met	ВН	S	В (F			
1 BAI-21-AVZ	S		1	Sept 10/21				X	X	X	X				
2 BH1-21-555	5		2	1		×	Х								\square
3 843-21-555	S		2			X	X							-	+
4 RHH-21-4UZ	5		ī			~	~		V	X	X				+-
5 RUN RYU-21-556	5		7	V.			~	<u>^</u>	^		~		+-+		+
6 RU5-21-555	\leq		2	Sudabi		X	~						+		+
7 0 0 1	2	-	att. I	Sect 1/21		×	X						+		+
8 0 0 0	2		2	Sept 10/21				X	X	X	X		+		+
007-2	2		6	ď		×	Х								+
10															
10															
sport of rectrical										Method	l of Del	ivery:	-, ,	1	
Relinquished By (Sign)? Received By D	river/D	epot:	/	T	Received at Lab:	875	1	21.		Verified	1 By://	1	<u>~</u> C	oux	IEC
Relinquished By (Print): 1/ / Date/Time:	-	1.		LOUIE	meeta	M	•	CAL .	myell	Date/7	U	۰ ۱	NO.		
Date/Time: Alick Sullivan	5/	09	z	1 3,00	Jepis,	real		04,1	45	oate/11	ine:	CPL	5 hor	X S	14D
September 13/2021 remperature:				° 71.	remperature:	• •	°C	foed.		pH Veri	ified: [_ v _ 8)		3. R	

RELIABLE.

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

Paterson Group Consulting Engineers

154 Colonnade Road South Nepean, ON K2E 7J5 Attn: Nick Sullivan

Client PO: 33198 Project: PE5412 Custody: 133119

Report Date: 23-Sep-2021 Order Date: 20-Sep-2021

Order #: 2139153

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID	Client ID
2139153-01	BH2-21-GW1
2139153-02	BH5-21-GW1
2139153-03	DUP-1
2139153-04	Trip Blank

Approved By:

Mark Foto

Mark Foto, M.Sc. Lab Supervisor

Any use of these results implies your agreement that our total liability in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.

Report Date: 23-Sep-2021 Order Date: 20-Sep-2021

Order #: 2139153

Project Description: PE5412

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
PHC F1	CWS Tier 1 - P&T GC-FID	21-Sep-21	21-Sep-21
PHCs F2 to F4	CWS Tier 1 - GC-FID, extraction	21-Sep-21	22-Sep-21
REG 153: VOCs by P&T GC/MS	EPA 624 - P&T GC-MS	21-Sep-21	21-Sep-21

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Client PO: 33198

Order #: 2139153

Report Date: 23-Sep-2021

Order Date: 20-Sep-2021

Project Description: PE5412

	Client ID: Sample Date: Sample ID:	BH2-21-GW1 16-Sep-21 12:25 2139153-01	BH5-21-GW1 16-Sep-21 11:40 2139153-02	DUP-1 16-Sep-21 00:00 2139153-03	Trip Blank 14-Sep-21 00:00 2139153-04
	MDL/Units	Water	Water	Water	Water
Volatiles	5.0 µg/l	-5 0	-5.0	<5.0	-5.0
Renzene	0.5 ug/L	<5.0	<5.0	< 5.0	<5.0
Bremediableramethana	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Bromodichioromethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Bromomothene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Carbon Tetrachlarida	0.2 µg/l	<0.5	<0.5	<0.5	<0.5
	0.5 ug/L	<0.2	<0.2	<0.2	<0.2
Chloroform	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Diharmashlan mathana	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Dichlorodifluoromethane	1.0 ug/L	<1.0	<1.0	<1.0	<1.0
1,2-Dichlorobenzene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,3-Dichlorobenzene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,4-Dichlorobenzene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,1-Dichloroethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,2-Dichloroethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,1-Dichloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
cis-1,2-Dichloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
trans-1,2-Dichloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,2-Dichloropropane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
cis-1,3-Dichloropropylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
trans-1,3-Dichloropropylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,3-Dichloropropene, total	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Ethylene dibromide (dibromoethane, 1,2-)	0.2 ug/L	<0.2	<0.2	<0.2	<0.2
Hexane	1.0 ug/L	<1.0	<1.0	<1.0	<1.0
Methyl Ethyl Ketone (2-Butanone)	5.0 ug/L	<5.0	<5.0	<5.0	<5.0
Methyl Isobutyl Ketone	5.0 ug/L	<5.0	<5.0	<5.0	<5.0
Methyl tert-butyl ether	2.0 ug/L	<2.0	<2.0	<2.0	<2.0
Methylene Chloride	5.0 ug/L	<5.0	<5.0	<5.0	<5.0
Styrene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,1,1,2-Tetrachloroethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,1,2,2-Tetrachloroethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Tetrachloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Toluene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,1,1-Trichloroethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5

PARACEL LABORATORIES LTD.

Certificate of Analysis Client: Paterson Group Consulting Engineers Client PO: 33198

Report Date: 23-Sep-2021 Order Date: 20-Sep-2021

Order #: 2139153

Project Description: PE5412

	-				
	Client ID:	BH2-21-GW1	BH5-21-GW1	DUP-1	Trip Blank
	Sample Date:	16-Sep-21 12:25	16-Sep-21 11:40	16-Sep-21 00:00	14-Sep-21 00:00
	Sample ID:	2139153-01	2139153-02	2139153-03	2139153-04
	MDL/Units	Water	Water	Water	Water
1,1,2-Trichloroethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Trichloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Trichlorofluoromethane	1.0 ug/L	<1.0	<1.0	<1.0	<1.0
Vinyl chloride	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
m,p-Xylenes	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
o-Xylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Xylenes, total	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
4-Bromofluorobenzene	Surrogate	98.4%	100%	97.6%	98.8%
Dibromofluoromethane	Surrogate	119%	114%	111%	113%
Toluene-d8	Surrogate	82.9%	82.9%	82.1%	84.6%
Hydrocarbons					
F1 PHCs (C6-C10)	25 ug/L	<25	<25	-	-
F2 PHCs (C10-C16)	100 ug/L	<100	<100	-	-
F3 PHCs (C16-C34)	100 ug/L	<100	<100	-	-
F4 PHCs (C34-C50)	100 ug/L	<100	<100	-	-

Г

Certificate of Analysis Client: Paterson Group Consulting Engineers Client PO: 33198

Method Quality Control: Blank

Report Date: 23-Sep-2021

Order Date: 20-Sep-2021

Project Description: PE5412

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	25	ua/L						
F2 PHCs (C10-C16)	ND	100	ug/L						
F3 PHCs (C16-C34)	ND	100	ua/L						
F4 PHCs (C34-C50)	ND	100	ug/L						
Volatiles			- 5						
Acetone	ND	5.0	ua/L						
Benzene	ND	0.5	ug/L						
Bromodichloromethane	ND	0.5	ug/L						
Bromoform	ND	0.5	ug/L						
Bromomethane	ND	0.5	ug/L						
Carbon Tetrachloride	ND	0.2	ug/L						
Chlorobenzene	ND	0.5	ug/L						
Chloroform	ND	0.5	ug/L						
Dibromochloromethane	ND	0.5	ug/L						
Dichlorodifluoromethane	ND	1.0	ug/L						
1,2-Dichlorobenzene	ND	0.5	ug/L						
1,3-Dichlorobenzene	ND	0.5	ug/L						
1,4-Dichlorobenzene	ND	0.5	ug/L						
1,1-Dichloroethane	ND	0.5	ug/L						
1,2-Dichloroethane	ND	0.5	ug/L						
1,1-Dichloroethylene	ND	0.5	ug/L						
cis-1,2-Dichloroethylene	ND	0.5	ug/L						
trans-1,2-Dichloroethylene	ND	0.5	ug/L						
1,2-Dichloropropane	ND	0.5	ug/L						
cis-1,3-Dichloropropylene	ND	0.5	ug/L						
trans-1,3-Dichloropropylene	ND	0.5	ug/L						
1,3-Dichloropropene, total	ND	0.5	ug/L						
Ethylbenzene	ND	0.5	ug/L						
Ethylene dibromide (dibromoethane, 1,2	ND	0.2	ug/L						
Hexane	ND	1.0	ug/L						
Methyl Ethyl Ketone (2-Butanone)	ND	5.0	ug/L						
Methyl Isobutyl Ketone	ND	5.0	ug/L						
Methyl tert-butyl ether	ND	2.0	ug/L						
Methylene Chloride	ND	5.0	ug/L						
Styrene	ND	0.5	ug/L						
1,1,1,2-Tetrachloroethane	ND	0.5	ug/L						
1,1,2,2-Tetrachloroethane	ND	0.5	ug/L						
Tetrachloroethylene	ND	0.5	ug/L						
Toluene	ND	0.5	ug/L						
1,1,1-Trichloroethane	ND	0.5	ug/L						
1,1,2-Trichloroethane	ND	0.5	ug/L						
Trichloroethylene	ND	0.5	ug/L						
Trichlorofluoromethane	ND	1.0	ug/L						
Vinyl chloride	ND	0.5	ug/L						
m,p-Xylenes	ND	0.5	ug/L						
o-Xylene	ND	0.5	ug/L						
Xylenes, total	ND	0.5	ug/L						
Surrogate: 4-Bromofluorobenzene	75.8		ug/L		94.7	50-140			
Surrogate: Dibromofluoromethane	86.0		ug/L		108	50-140			
Surrogate: Toluene-d8	65.3		ug/L		81.6	50-140			

Certificate of Analysis Client: Paterson Group Consulting Engineers Client PO: 33198

Method Quality Control: Duplicate

Urder #: 21391

Report Date: 23-Sep-2021

Order Date: 20-Sep-2021

53

Project Description: PE5412

		Reporting		Source		%REC		RPD	
Analyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	25	ug/L	ND			NC	30	
Volatiles			0						
Asstance	ND	5.0		ND			NO	00	
Acetone	ND	5.0	ug/L	ND			NC	30	
Benzene	ND	0.5	ug/L				NC	30	
Bromodichioromethane	ND	0.5	ug/L	ND			NC	30	
Bromotorm	ND	0.5	ug/L	ND			NC	30	
Bromometnane	ND	0.5	ug/L	ND			NC	30	
Carbon Tetrachionde	ND	0.2	ug/L	ND			NC	30	
Chlorobenzene	ND	0.5	ug/L	ND			NC	30	
Chlorotorm	ND	0.5	ug/L	ND			NC	30	
Dibromocniorometnane	ND	0.5	ug/L	ND			NC	30	
	ND	1.0	ug/L	ND			NC	30	
1,2-Dichlorobenzene	ND	0.5	ug/L	ND			NC	30	
1,3-Dichlorobenzene	ND	0.5	ug/L	ND			NC	30	
1,4-Dichlorobenzene	ND	0.5	ug/L	ND			NC	30	
1,1-Dichloroethane	ND	0.5	ug/L	ND			NC	30	
1,2-Dichloroethane	ND	0.5	ug/L	ND			NC	30	
1,1-Dichloroethylene	ND	0.5	ug/L	ND			NC	30	
cis-1,2-Dichloroethylene	ND	0.5	ug/L	ND			NC	30	
trans-1,2-Dichloroethylene	ND	0.5	ug/L	ND			NC	30	
1,2-Dichloropropane	ND	0.5	ug/L	ND			NC	30	
cis-1,3-Dichloropropylene	ND	0.5	ug/L	ND			NC	30	
trans-1,3-Dichloropropylene	ND	0.5	ug/L	ND			NC	30	
Ethylbenzene	ND	0.5	ug/L	ND			NC	30	
Ethylene dibromide (dibromoethane, 1,2-	ND	0.2	ug/L	ND			NC	30	
Hexane	ND	1.0	ug/L	ND			NC	30	
Methyl Ethyl Ketone (2-Butanone)	ND	5.0	ug/L	ND			NC	30	
Methyl Isobutyl Ketone	ND	5.0	ug/L	ND			NC	30	
Methyl tert-butyl ether	ND	2.0	ug/L	ND			NC	30	
Methylene Chloride	ND	5.0	ug/L	ND			NC	30	
Styrene	ND	0.5	ug/L	ND			NC	30	
1,1,1,2-Tetrachloroethane	ND	0.5	ug/L	ND			NC	30	
1,1,2,2-Tetrachloroethane	ND	0.5	ug/L	ND			NC	30	
Tetrachloroethylene	ND	0.5	ug/L	ND			NC	30	
Toluene	ND	0.5	ug/L	ND			NC	30	
1,1,1-Trichloroethane	ND	0.5	ug/L	ND			NC	30	
1,1,2-Trichloroethane	ND	0.5	ug/L	ND			NC	30	
Trichloroethylene	ND	0.5	ug/L	ND			NC	30	
Trichlorofluoromethane	ND	1.0	ug/L	ND			NC	30	
Vinyl chloride	ND	0.5	ug/L	ND			NC	30	
m,p-Xylenes	ND	0.5	ug/L	ND			NC	30	
o-Xylene	ND	0.5	ug/L	ND			NC	30	
Surrogate: 4-Bromofluorobenzene	82.5		ug/L		103	50-140			
Surrogate: Dibromofluoromethane	92.3		ug/L		115	50-140			
Surrogate: Toluene-d8	66.8		ug/L		83.6	50-140			

OTTAWA • MISSISSAUGA • HAMILTON • CALGARY • KINGSTON • LONDON • NIAGARA • WINDSOR • RICHMOND HILL

Certificate of Analysis Client: Paterson Group Consulting Engineers Client PO: 33198

Method Quality Control: Spike

Report Date: 23-Sep-2021

Order Date: 20-Sep-2021

Project Description: PE5412

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons						-			
	1000	25	ug/l		02.0	60 117			
FT FHCS (C0-C10) F2 PHCs (C10 C16)	1440	20	ug/L		93.9	60 140			
F_2 PHCs (C10-C10) F_2 PHCs (C16-C24)	2000	100	ug/L		90.0	60 140			
F3 PHCs (C16-C34)	2000	100	ug/L		99.0	60-140			
F4 PHCs (C34-C50)	3060	100	ug/L	ND	124	60-140			
Volatiles									
Acetone	117	5.0	ug/L	ND	117	50-140			
Benzene	37.5	0.5	ug/L	ND	93.8	60-130			
Bromodichloromethane	36.2	0.5	ug/L	ND	90.4	60-130			
Bromoform	37.3	0.5	ug/L	ND	93.3	60-130			
Bromomethane	38.4	0.5	ug/L	ND	95.9	50-140			
Carbon Tetrachloride	35.4	0.2	ug/L	ND	88.5	60-130			
Chlorobenzene	42.2	0.5	ug/L	ND	105	60-130			
Chloroform	39.6	0.5	ug/L	ND	98.9	60-130			
Dibromochloromethane	41.1	0.5	ug/L	ND	103	60-130			
Dichlorodifluoromethane	42.1	1.0	ug/L	ND	105	50-140			
1,2-Dichlorobenzene	29.9	0.5	ug/L	ND	74.7	60-130			
1,3-Dichlorobenzene	30.0	0.5	ug/L	ND	75.0	60-130			
1,4-Dichlorobenzene	29.4	0.5	ug/L	ND	73.5	60-130			
1,1-Dichloroethane	38.6	0.5	ug/L	ND	96.5	60-130			
1,2-Dichloroethane	39.9	0.5	ug/L	ND	99.8	60-130			
1,1-Dichloroethylene	37.8	0.5	ug/L	ND	94.4	60-130			
cis-1,2-Dichloroethylene	35.3	0.5	ug/L	ND	88.2	60-130			
trans-1,2-Dichloroethylene	36.5	0.5	ug/L	ND	91.2	60-130			
1,2-Dichloropropane	36.1	0.5	ug/L	ND	90.4	60-130			
cis-1,3-Dichloropropylene	31.0	0.5	ug/L	ND	77.5	60-130			
trans-1,3-Dichloropropylene	30.1	0.5	ug/L	ND	75.2	60-130			
Ethylbenzene	36.9	0.5	ug/L	ND	92.3	60-130			
Ethylene dibromide (dibromoethane, 1,2-	43.4	0.2	ug/L	ND	109	60-130			
Hexane	43.3	1.0	ug/L	ND	108	60-130			
Methyl Ethyl Ketone (2-Butanone)	87.3	5.0	ug/L	ND	87.3	50-140			
Methyl Isobutyl Ketone	102	5.0	ug/L	ND	102	50-140			
Methyl tert-butyl ether	100	2.0	ug/L	ND	100	50-140			
Methylene Chloride	40.2	5.0	ug/L	ND	100	60-130			
Styrene	39.9	0.5	ug/L	ND	99.8	60-130			
1,1,1,2-Tetrachloroethane	40.5	0.5	ug/L	ND	101	60-130			
1,1,2,2-Tetrachloroethane	41.1	0.5	ug/L	ND	103	60-130			
Tetrachloroethylene	42.8	0.5	ug/L	ND	107	60-130			
Toluene	42.3	0.5	ug/L	ND	106	60-130			
1,1,1-Trichloroethane	38.5	0.5	ug/L	ND	96.2	60-130			
1,1,2-Trichloroethane	37.8	0.5	ug/L	ND	94.4	60-130			
Trichloroethylene	38.3	0.5	ug/L	ND	95.7	60-130			
Trichlorofluoromethane	41.5	1.0	ug/L	ND	104	60-130			
Vinyl chloride	38.3	0.5	ug/L	ND	95.7	50-140			
m,p-Xylenes	64.8	0.5	ug/L	ND	81.0	60-130			
o-Xylene	42.0	0.5	ug/L	ND	105	60-130			
Surrogate: 4-Bromofluorobenzene	55.8		ug/L		69.7	50-140			
Surrogate: Dibromofluoromethane	84.5		ug/L		106	50-140			
Surrogate: Toluene-d8	56.8		ug/L		71.0	50-140			

OTTAWA • MISSISSAUGA • HAMILTON • CALGARY • KINGSTON • LONDON • NIAGARA • WINDSOR • RICHMOND HILL

Certificate of Analysis Client: Paterson Group Consulting Engineers Client PO: 33198

None

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference. NC: Not Calculated

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.

- F1 range corrected for BTEX.

- F2 to F3 ranges corrected for appropriate PAHs where available.

- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.

- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.

- When reported, data for F4G has been processed using a silica gel cleanup.

Order #: 2139153

Report Date: 23-Sep-2021 Order Date: 20-Sep-2021 Project Description: PE5412

Parace PARACE	cel II): 2]	1391	153	Bivd. 3 4J8 bs.com	Para	cel Ori (Lab U	der Nu se Onl	imber V)	• • • • • • • • •		Cha N	ain O (Lab U 0 1	f Cus Ise Onl 331	tody y) 19	
nient Name: Paterson Group		Project Quote	t Ref: #:	PE5412	A							T	Page urnarc	eof	ime	
elephone: 613-226-7381		PO #: E-mail:	33	198 sullivan(epaters	ns ns	000	Q. (ca		Date	1 day 2 day Requir	red: _	200	1 3 (R	day egular
REG 153/04 REG 406/19 Other Regulation Table 1 Res/Park Med/Fine REG 558 PWQO Table 2 Ind/Comm Coarse CCME MISA	N	1atrix T SW (Su	ype: rface V P (P	S (Soil/Sed.) GW (Gr Vater) SS (Storm/Sar Vaint) A (Air) O (Oth	round Water) nitary Sewer) er)	*				Ree	quired	l Analy	/sis			
Table 3 Agri/Other SU - Sani SU - Storm Table Mun: SU - Storm For RSC: Yes No Other:	trix	Volume	f Containers	Sample	Taken	Cs F1-F4 400	Cs	Hs	tals by ICP	927. J	//	HWS)	in de Marte	- 7	e alie weete	
Sample ID/Location Name	Ma	Air	0 11	Date	Time	H	9	PA	Ňe	ŋ	ð	B			and an a	_
1 BH2-21-GW1	GW		3	Sept 16/21	12:25 PM	X	X								_	
2 BH5-21-GWI	1		3		11: HO AM	Х	Χ									_
3 DUP-1			2	V	1.1	1.1	X							_		
4 Trip Blank	¥		1	Sept. 14/21			X		1			1			2.1	4_
5														_		_
6																
7							-								10.11	
8																
9																
10																
omments:										Meth	od of D	elivery:		10.000	Marc Sara	1
				ania - munana an								DC	(Ag	laox	الشاري	
elinquished By (Sign): Received By (Driver/C	epot:			Received at Lab:	Y				Verifi	ed By	1)	à	~	_	
elinquished By (Print):					Date/Time:	V	10	Josi	12:40	Date,	Time:	K	0-	21 '	221	10
ate/Time: / Temperature			/	00.30485637 Pr	Temperature	0	SU C	100	10 1 19	auti	arifiad	3	KQ.	6	no a l	A

APPENDIX 2

SOIL PROFILE AND TEST DATA SHEETS (EXP, 2019)

LABORATORY CERTIFICATES OF ANALYSIS (EXP, 2019)

	Loa of	Borehole BH1	*ovr
Project No:	OTT-00241758-B0		
Project: Location:	PIIESA and Geotechnical Investigation 337 Montgomery Street, Ottawa, Ontario		Page. <u>1</u> of <u>1</u>
Date Drilled:	April 4th, 2019	Split Spoon Sample	Combustible Vapour Reading
Drill Type:	CME 45 (track)	Auger Sample	Atterberg Limits
Datum:	Assumed	Dynamic Cone Test Shelby Tube	Undrained Triaxial at \oplus % Strain at Failure
Logged by:	MAD Checked by: MGM/IT	Shear Strength by + Vane Test S	Shear Strength by Penetrometer Test
S		D Standard Penetration Test N Value	Combustible Vapour Reading (ppm) S

	G,	Y M	SOIL DESCRIPTION	Assum	ed	e	2	0	4) e	60	80	2	250 5	500	750 ent %	Ř	Natural
i	Ë	0 B		m		ť	Shear S	Strength	1	-		kPa	Atter	berg Limit	ts (% Dry	Weight)	Ë	kN/m ³
		L	ASPHALT ~ 12 mm	100.47	7	0	5	0	10	0 1	50	200		20	40	60	S	
L		\otimes		100.4			13						5				N	0.01
		\otimes	-Sand and gravel with trace silt brown with -	-													Ŵ	551
		XX	$_{\neg}$ some orange mottling, moist, no odour.	99.8													1	
		7D	(compact).														1	
		(H)	SANDY SILTY TILL WITH SOME	1		1	-1		4)							IX	SS2
		HA	GRAVEL														1//	
		M	– Occasional boudler and cobble, dark –	-														
		(H)	brown/grey, moist, no odour (dense).						4	12			5				W	662
		HA	_			2				9			4				IV	333
	2	TD)				-	-2-2-2-2-										<u> </u>	4
		(H)															1	1
		H)								0			• []	1.1.0.0.1			1¥	SS4
		TD)										5 E E E E E	Tees		1.2.1.2.2		://\	
		(H)		97.4		3			-								1	1
	Ś	H)	BOULDERY COBBLY TILL	1						AA			5					
		11	Dark brown/grey, moist, organic gassy							0			Ф				X	SS5
	ľ	HD	shale odour, (dense to very dense).	9	0.9												\mathbb{N}	
	k	HD																
		1913		1		4				49		<u></u>	_20			-	ΙV	556
		HA								di Mada							://	000
	ć	HX		-												-	1	1
		Y S									1.2.2.2	87	5		1.2.1.2.2		17	1
		6DA				_	-2-6-1-2-				1333	0	Фенен	13333			1X	SS7
	Ě			95.4		5											\sim	
ი			Black shale, some horizontal and vertical															
22/1			fractures above. (very poor to good guality).											1				Run 1
4			······································															I Kull I
			Silt seam from 7.42m to 7.51m _	-		6		11111	1		1.2.2.2.2.	2		1.1.0.0.1				
₹.	I.F		- Silt seam from 7.50m to 7.70m															
₹	╡╞							1.1.2.5.										
6	3.6]			-2-6-2-2-				1224			1.1.0.0.1				
8							-0-6-1-0-	1100			1222							Run 2
ř	ΞĒ			1		7												
2 i	╡╞																	
9 6	∃₿			-														
3																	Π	
≓∣	╡╞																	
AP	31					°												
≿∣∣	∃₿																	Run 3
Ë	ŧĒ																	T turi o
5	E																	
z	ŧ					9						3 - - 1 - 3 - 1 1 - - 1 - 1 - 1 1 1 1 1 1						
읽니	╧╞		Porcholo Terminated at 0.45 m Denth	91.3				· · · · · · · ·		· · · · · · · · · · · ·								
ES			Dorenole reminated at 9.15 m Depth															
힉																		
前									1									
ğ٢				1		l			:		1:::	11:1:		1::::	1::::	1::::	1	

S OF	NOTES:	WAT	ER LEVEL RECO	RDS		CORE DR	ILLING RECOF	RD
LOG	use by others	Elapsed Time	Water Level (m)	Hole Open To (m)	Run No.	Depth (m)	% Rec.	RQD %
ЪГЕ	2. A flushmount monitoring well with a 51 mm slotted	completion	4.5	-	1	5.05 - 6.12	94	16
EHC	completion.	1 day	4.2	-	2	6.12 - 7.57	100	79
BOR	3. Field work was supervised by an exp representative.	12 days	3.6		3	7.57 - 9.14	100	74
PF DF	4. See Notes on Sample Descriptions							
PO	5. Log to be read with EXP Report OTT-00241758-B0							

	Log o	of B	0	reł	lor	e _	<u>BH</u>	<u>2</u>			***		xn
Project No:	OTT-00241758-B0								iauro N	- 1			MP.
Project:	PIIESA and Geotechnical Investigation							_ '		. <u> </u>	-		1
Location:	337 Montgomery Street, Ottawa, Ontari	0							Page	e. <u>1</u> of			
Date Drilled:	April 4th, 2019			Split Spor	on Sample	e	\boxtimes		Combustik	ole Vapour Read	ing		
Drill Type:	CME 45 (track)			Auger Sa	mple				Natural Mo	oisture Content			X
Datum:	Assumed			SPT (N) \ Dynamic	/alue Cone Tes	st	0		Atterberg I	Limits Triaxial at	F		-0
				Shelby Tu	lbe				% Strain a	t Failure			\oplus
Logged by:	MAD Checked by: MGM/IT			Shear Str Vane Tes	rength by t		+ s		Penetrome	engtn by eter Test			A
S			D	Sta	ndard Pen	netration T	est N Valu	ue	Combusti	ble Vapour Read	ing (ppm)	S	Natural
	SOIL DESCRIPTION	Assumed m	p t	2 Shear S	0 4 Strength	0 6	0 8	i0 kPa	Natur Atterbe	al Moisture Conte rg Limits (% Dry \	nt % Veight)	P	Unit Wt. kN/m ³
	HALT ~ 20 mm	100.69	n 0	5	0 10	00 1	50 20	00	20	40	50	S	
SAN	D AND GRAVEL FILL	100.5		17 0					10				UG1/SS2
Crus (com	hed stone, grey, moist, no odour,						- <u>-</u>					Р	
	D SILT FILL WITH GRAVEL		1	12					5			$\overline{\mathbb{N}}$	
oran	e roots present, dark brown with some ge, moist, no odour, (compact).			0								\mathbb{N}	883
SAN	DY SILTY TILL WITH SOME	99.2				50			25			॑	
GRA	<u>VEL</u> asional boudler and cobble_dark		2			õ							SS4
brow	n/grey, moist, no odour (dense).	98.4	2			 50/130mn	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		15			Н	
BOU Dark	LDERY COBBLY TILL brown/grey moist organic gassy					0	· · · · · · · · · ·						885
shale	e odour, (dense to very dense).												
	-	97.52	3				70/200mm	1 n	10			\mathbb{H}	SS6
	_											Ĥ	
												Π	RUN1
	-		4										
					• • • • • • • • • •								
	-				• • • • • • •							1	
			6										I

5

6

95.5

94.9

94.5

WEATHERED BEDROCK (Very poor quality).

SHALE BEDROCK (Very poor quality). Borehole Terminated at 6.18 m Depth

RUN2

EHOLES MONTGOMERY - APRIL 2019.GPJ TROW OTTAWA.GDT 4/22/19

SR SR								
<u>n</u>								
S OF	NOTES:	WAT	ER LEVEL RECO	RDS		CORE DR	ILLING RECOR	RD
LOG	 Borehole data requires interpretation by EXP before use by others 	Elapsed Time	Water Level (m)	Hole Open To (m)	Run No.	Depth (m)	% Rec.	RQD %
HOLE	 A flushmount monitoring well with a 51 mm slotted standpipe was installed in the borehole upon completion. 	completion	3.6	-	1	3.58 - 3.93 3.94 - 6.15	93 34	0 5
BORE	3. Field work was supervised by an exp representative.	12 days	3.2					
S OF	4. See Notes on Sample Descriptions							
PO	5. Log to be read with EXP Report OTT-00241758-B0							

	Logo	of B	0	reh	ole	e <u> </u>	<u>8H3</u>	3				*	2	xr)
Project No:	OTT-00241758-B0							-	iguro N		5			$\gamma \gamma$	•
Project:	PIIESA and Geotechnical Investigation							Г		10.	5				
Location:	337 Montgomery Street, Ottawa, Ontar	io							Pag	je	01	1			
Date Drilled:	April 5th, 2019		_	Split Spoon	Sample		\boxtimes		Combust	ible Vapo	ur Readir	ng			
Drill Type:	CME 45 (track)			Auger Samp	ole				Natural N	Noisture C	ontent			×	
Dim Type.			-	SPT (N) Val	ue		0		Atterberg	Limits		H		-0	
Datum:	Assumed		_	Dynamic Co	one Test	-			Undraine % Strain	d Triaxial at Failure	at			\oplus	
Logged by:	MAD Checked by: MGM/IT			Shear Stren Vane Test	gth by		+ s		Shear Str Penetron	rength by neter Test	t			A	
G Y		Assumed	D e	Standa	ard Pene	tration Test	t N Value		Combus 25	tible Vapo 50 50	our Readir	ng (ppm) 50	S A M	Natural	
	SOIL DESCRIPTION	m	t	20 Shear Stre	ength	60	80	kPa	Natu Atterb	ural Moistu erg Limits	ire Conter (% Dry W	nt % /eight)	Ľ	kN/m ³	
Ĺ		100.69	0	50	100	150	200		2	0 4	0 6	0	Š		
Sanc	SOIL I with some gravel and trace organics, brown, moist, no odour, (loose),	100 1		Ō				1	0				3	1/AUG	В
SAN GRA	DY SILTY TILL WITH SOME VEL	100.1	1						5						
Occa brow	asional boudler and cobble, dark n/grey, moist, no odour (dense).			Ø				[]				Å	SS2	

0

59/280mm

2

3

4

5

97.47

98.3

BOULDERY COBBLE TILL Some gravel, dark brown, moist, no odour.

TITIT

15

 \square

10 []]

139/210 mm

φı

SS3

SS4

Run 1

Run 2

Run 3

χ SS5

DT 4/22/19																Run 4
A.G		WEATHERED BEDROCK	04.4	6	-2-2-2-2-2-											
A		(Very poor quality).	94.4													┞───┤
El		Borehole Terminated at 6.25 m De	epth													
Š																
띩																
2																
9.G						:::		11								
201																
님						:::									:	
AP																
۲																
ME																
2																
S						::::		11								
S																
١L																
핇																
ß																
S OF I	NOTES:		W	ATER L	EVEL RE	CORI	DS				CO	RE DRI	LLING RI	ECOR	D	
8	use b	y others	Elapsed		Water		Hole	e Ope	n	Run	Dep	th	% Re	C.	R	QD %
Щ	2. A flus	hmount monitoring well with a 51 mm slotted	l ime		<u>_evel (m)</u> 3 3		ſc	<u>o (m)</u>		NO.	<u>(m</u>	3 76	30			0
힑	stand	pipe was installed in the borehole upon	completion		0.0					2	3 76 -	46	36			0
R.	comp		12 days		3.2					3	4.6 - 5	5.36	27			õ
BC	3. Field	work was supervised by an exp representative.	,0							4	5.36 -	6.25	66			0
j G	4.See I	Notes on Sample Descriptions														
ğ	5.Log t	b be read with EXP Report OTT-00241758-B0														

Your Project #: OTT-00241785-B Site Location: MONTGOMERY Your C.O.C. #: 710467-02-01

Attention: Mark Devlin

exp Services Inc Ottawa Branch 100-2650 Queensview Drive Ottawa, ON CANADA K2B 8H6

> Report Date: 2019/04/12 Report #: R5668423 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B990299

Received: 2019/04/05, 15:50

Sample Matrix: Soil # Samples Received: 9

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Methylnaphthalene Sum (1)	3	N/A	2019/04/11	CAM SOP-00301	EPA 8270D m
Methylnaphthalene Sum (1)	1	N/A	2019/04/12	CAM SOP-00301	EPA 8270D m
1,3-Dichloropropene Sum (1)	4	N/A	2019/04/11		EPA 8260C m
Petroleum Hydrocarbons F2-F4 in Soil (1, 2)	4	2019/04/08	2019/04/09	CAM SOP-00316	CCME CWS m
Strong Acid Leachable Metals by ICPMS (1)	3	2019/04/09	2019/04/10	CAM SOP-00447	EPA 6020B m
Strong Acid Leachable Metals by ICPMS (1)	1	2019/04/11	2019/04/11	CAM SOP-00447	EPA 6020B m
Moisture (1)	7	N/A	2019/04/08	CAM SOP-00445	Carter 2nd ed 51.2 m
Moisture (1)	1	N/A	2019/04/11	CAM SOP-00445	Carter 2nd ed 51.2 m
PAH Compounds in Soil by GC/MS (SIM) (1)	3	2019/04/10	2019/04/10	CAM SOP-00318	EPA 8270D m
PAH Compounds in Soil by GC/MS (SIM) (1)	1	2019/04/11	2019/04/12	CAM SOP-00318	EPA 8270D m
pH CaCl2 EXTRACT (1)	4	2019/04/10	2019/04/10	CAM SOP-00413	EPA 9045 D m
Volatile Organic Compounds and F1 PHCs (1)	5	N/A	2019/04/10	CAM SOP-00230	EPA 8260C m

Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing. Maxxam is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Maxxam, results relate to the supplied samples tested. This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Your Project #: OTT-00241785-B Site Location: MONTGOMERY Your C.O.C. #: 710467-02-01

Attention: Mark Devlin

exp Services Inc Ottawa Branch 100-2650 Queensview Drive Ottawa, ON CANADA K2B 8H6

> Report Date: 2019/04/12 Report #: R5668423 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B990299

Received: 2019/04/05, 15:50

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) This test was performed by Maxxam Analytics Mississauga

(2) All CCME PHC results met required criteria unless otherwise stated in the report. The CWS PHC methods employed by Maxxam conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following "Alberta Environment's Interpretation of the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Validation of Performance-Based Alternative Methods September 2003". Documentation is available upon request. Modifications from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data reported using validated cold solvent extraction instead of Soxhlet extraction.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Alisha Williamson, Project Manager Email: AWilliamson@maxxam.ca Phone# (613) 274-0573

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

exp Services Inc Client Project #: OTT-00241785-B Site Location: MONTGOMERY Sampler Initials: MAD

O.REG 153 ICPMS METALS (SOIL)

Maxxam ID		JJQ530	JJQ532	JJQ534		JJQ539		
Sampling Data		2019/04/04	2019/04/04	2019/04/05				
		10:00	13:00	10:00				
COC Number		710467-02-01	710467-02-01	710467-02-01		710467-02-01		
	UNITS	BH1-SS1	BH2-AUG1	BH3-AUG1B	QC Batch	BH10-SS2	RDL	QC Batch
Metals								
Acid Extractable Antimony (Sb)	ug/g	0.92	0.31	0.39	6060690	0.64	0.20	6065343
Acid Extractable Arsenic (As)	ug/g	6.3	4.6	6.8	6060690	7.4	1.0	6065343
Acid Extractable Barium (Ba)	ug/g	93	72	120	6060690	110	0.50	6065343
Acid Extractable Beryllium (Be)	ug/g	0.72	0.39	0.80	6060690	0.70	0.20	6065343
Acid Extractable Boron (B)	ug/g	5.5	<5.0	9.2	6060690	<5.0	5.0	6065343
Acid Extractable Cadmium (Cd)	ug/g	0.35	0.38	0.38	6060690	0.46	0.10	6065343
Acid Extractable Chromium (Cr)	ug/g	22	15	26	6060690	22	1.0	6065343
Acid Extractable Cobalt (Co)	ug/g	12	6.1	11	6060690	12	0.10	6065343
Acid Extractable Copper (Cu)	ug/g	28	39	30	6060690	32	0.50	6065343
Acid Extractable Lead (Pb)	ug/g	34	52	42	6060690	60	1.0	6065343
Acid Extractable Molybdenum (Mo)	ug/g	2.9	1.1	2.1	6060690	2.9	0.50	6065343
Acid Extractable Nickel (Ni)	ug/g	35	18	39	6060690	36	0.50	6065343
Acid Extractable Selenium (Se)	ug/g	<0.50	<0.50	<0.50	6060690	<0.50	0.50	6065343
Acid Extractable Silver (Ag)	ug/g	<0.20	<0.20	<0.20	6060690	0.26	0.20	6065343
Acid Extractable Thallium (Tl)	ug/g	0.44	0.19	0.43	6060690	0.41	0.050	6065343
Acid Extractable Uranium (U)	ug/g	1.2	0.61	1.6	6060690	1.1	0.050	6065343
Acid Extractable Vanadium (V)	ug/g	40	22	35	6060690	36	5.0	6065343
Acid Extractable Zinc (Zn)	ug/g	69	81	99	6060690	91	5.0	6065343
RDL = Reportable Detection Limit			-	·				
QC Batch = Quality Control Batch								

exp Services Inc Client Project #: OTT-00241785-B Site Location: MONTGOMERY Sampler Initials: MAD

O.REG 153 PAHS (SOIL)

Maxxam ID		JJQ530		JJQ532		JJQ534		JJQ539		
Sampling Data		2019/04/04		2019/04/04		2019/04/05				
		10:00		13:00		10:00				
COC Number		710467-02-01		710467-02-01		710467-02-01		710467-02-01		
	UNITS	BH1-SS1	RDL	BH2-AUG1	RDL	BH3-AUG1B	QC Batch	BH10-SS2	RDL	QC Batch
Inorganics										
Moisture	%	16	1.0	13	1.0	22	6059726	17	1.0	6064740
Calculated Parameters									μ	
Methylnaphthalene, 2-(1-)	ug/g	<0.0071	0.0071	<0.071	0.071	<0.0071	6058367	0.012	0.0071	6063447
Polyaromatic Hydrocarbons							•			<u></u>
Acenaphthene	ug/g	0.016	0.0050	<0.050	0.050	<0.0050	6062873	0.024	0.0050	6065637
Acenaphthylene	ug/g	0.015	0.0050	0.057	0.050	<0.0050	6062873	0.035	0.0050	6065637
Anthracene	ug/g	0.031	0.0050	0.069	0.050	0.012	6062873	0.063	0.0050	6065637
Benzo(a)anthracene	ug/g	0.098	0.0050	0.36	0.050	0.073	6062873	0.27	0.0050	6065637
Benzo(a)pyrene	ug/g	0.095	0.0050	0.35	0.050	0.074	6062873	0.29	0.0050	6065637
Benzo(b/j)fluoranthene	ug/g	0.14	0.0050	0.49	0.050	0.11	6062873	0.44	0.0050	6065637
Benzo(g,h,i)perylene	ug/g	0.065	0.0050	0.21	0.050	0.061	6062873	0.20	0.0050	6065637
Benzo(k)fluoranthene	ug/g	0.050	0.0050	0.19	0.050	0.037	6062873	0.16	0.0050	6065637
Chrysene	ug/g	0.084	0.0050	0.34	0.050	0.073	6062873	0.25	0.0050	6065637
Dibenz(a,h)anthracene	ug/g	0.018	0.0050	0.067	0.050	0.015	6062873	0.053	0.0050	6065637
Fluoranthene	ug/g	0.23	0.0050	0.85	0.050	0.20	6062873	0.56	0.0050	6065637
Fluorene	ug/g	0.015	0.0050	<0.050	0.050	<0.0050	6062873	0.024	0.0050	6065637
Indeno(1,2,3-cd)pyrene	ug/g	0.069	0.0050	0.25	0.050	0.066	6062873	0.23	0.0050	6065637
1-Methylnaphthalene	ug/g	<0.0050	0.0050	<0.050	0.050	<0.0050	6062873	0.0055	0.0050	6065637
2-Methylnaphthalene	ug/g	<0.0050	0.0050	<0.050	0.050	<0.0050	6062873	0.0064	0.0050	6065637
Naphthalene	ug/g	<0.0050	0.0050	<0.050	0.050	<0.0050	6062873	0.0062	0.0050	6065637
Phenanthrene	ug/g	0.12	0.0050	0.36	0.050	0.066	6062873	0.23	0.0050	6065637
Pyrene	ug/g	0.18	0.0050	0.68	0.050	0.15	6062873	0.45	0.0050	6065637
Surrogate Recovery (%)										
D10-Anthracene	%	93		115		96	6062873	100		6065637
D14-Terphenyl (FS)	%	106		102		96	6062873	98		6065637
D8-Acenaphthylene	%	95		97		100	6062873	92		6065637
RDL = Reportable Detection L	imit									
QC Batch = Quality Control Ba	atch									

exp Services Inc Client Project #: OTT-00241785-B Site Location: MONTGOMERY Sampler Initials: MAD

O.REG 153 VOCS BY HS & F1-F4 (SOIL)

Sampling Date 2019/04/04 11:00 2019/04/04 15:00 2019/04/05 12:00 2019/04/05 13:00 2019/04/05 13:00 COC Number 710467-02-01 71046	Maxxam ID		JJQ531		JJQ533	JJQ535	JJQ536		
Sampling Date 11:00 15:00 12:00 13:00 Image: Constraint of the state of the sta	Sampling Date		2019/04/04		2019/04/04	2019/04/05	2019/04/05		
COC Number 710467-02-01 QC Bat Inorganics Moisture % 3.3 1.0 6.0 7.0 5.2 1.0 60597 Calculated Parameters I 60583 Volatile Organics 606020 Benzene ug/g <0.020			11:00		15:00	12:00	13:00		ļ
UNITS BH1-SS6 RDL BH2-SS6 BH3-SS5 BH10-SS3 RDL QC Bat Inorganics Moisture % 3.3 1.0 6.0 7.0 5.2 1.0 60597. Calculated Parameters 3.3 1.0 6.0 7.0 5.2 1.0 60597. Calculated Parameters	COC Number		710467-02-01		710467-02-01	710467-02-01	710467-02-01		ļ
Inorganics Moisture % 3.3 1.0 6.0 7.0 5.2 1.0 60597. Calculated Parameters 1,3-Dichloropropene (cis+trans) ug/g <0.050		UNITS	BH1-SS6	RDL	BH2-SS6	BH3-SS5	BH10-SS3	RDL	QC Batch
Moisture % 3.3 1.0 6.0 7.0 5.2 1.0 60597. Calculated Parameters 1,3-Dichloropropene (cis+trans) ug/g <0.050 0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	Inorganics								
Calculated Parameters 1,3-Dichloropropene (cis+trans) ug/g <0.050	Moisture	%	3.3	1.0	6.0	7.0	5.2	1.0	6059726
1,3-Dichloropropene (cis+trans) ug/g <0.050	Calculated Parameters		-				-		
Volatile Organics Acetone (2-Propanone) ug/g <0.50	1,3-Dichloropropene (cis+trans)	ug/g	<0.050	0.050	<0.050	<0.050	<0.050	0.050	6058355
Acetone (2-Propanone) ug/g <0.50 0.50 <0.50 <0.50 <0.50 <0.50 606021 Benzene ug/g <0.020	Volatile Organics								
Benzene ug/g <0.020 0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 606024 Bromodichloromethane ug/g <0.050	Acetone (2-Propanone)	ug/g	<0.50	0.50	<0.50	<0.50	<0.50	0.50	6060206
Bromodichloromethane ug/g <0.050 0.050 <0.050 <0.050 <0.050 0.050 606021 Bromoform ug/g <0.050	Benzene	ug/g	<0.020	0.020	<0.020	<0.020	<0.020	0.020	6060206
Bromoform ug/g <0.050 0.050 <0.050 <0.050 <0.050 0.050 606021 Bromomethane ug/g <0.050	Bromodichloromethane	ug/g	<0.050	0.050	<0.050	<0.050	<0.050	0.050	6060206
Bromomethane ug/g <0.050 0.050 <0.050 <0.050 <0.050 606021 Carbon Tetrachloride ug/g <0.050	Bromoform	ug/g	<0.050	0.050	<0.050	<0.050	<0.050	0.050	6060206
Carbon Tetrachloride ug/g <0.050 0.050 <0.050 <0.050 <0.050 606024 Chlorobenzene ug/g <0.050	Bromomethane	ug/g	<0.050	0.050	<0.050	<0.050	<0.050	0.050	6060206
Chlorobenzene ug/g <0.050 0.050 <0.050 <0.050 <0.050 60602 Chloroform ug/g <0.050	Carbon Tetrachloride	ug/g	<0.050	0.050	<0.050	<0.050	<0.050	0.050	6060206
Chloroform ug/g <0.050 0.050 <0.050 <0.050 <0.050 606024 Dibromochloromethane ug/g <0.050	Chlorobenzene	ug/g	<0.050	0.050	<0.050	<0.050	<0.050	0.050	6060206
Dibromochloromethane ug/g <0.050 0.050 <0.050 <0.050 0.050 606024 1,2-Dichlorobenzene ug/g <0.050	Chloroform	ug/g	<0.050	0.050	<0.050	<0.050	<0.050	0.050	6060206
1,2-Dichlorobenzene ug/g <0.050 0.050 <0.050 <0.050 0.050 606020 1,3-Dichlorobenzene ug/g <0.050	Dibromochloromethane	ug/g	<0.050	0.050	<0.050	<0.050	<0.050	0.050	6060206
	1,2-Dichlorobenzene	ug/g	<0.050	0.050	<0.050	<0.050	<0.050	0.050	6060206
	1,3-Dichlorobenzene	ug/g	<0.050	0.050	<0.050	<0.050	<0.050	0.050	6060206
1,4-Dichlorobenzene ug/g <0.050 0.050 <0.050 <0.050 <0.050 0.050 0.050 0.050	1,4-Dichlorobenzene	ug/g	<0.050	0.050	<0.050	<0.050	<0.050	0.050	6060206
Dichlorodifluoromethane (FREON 12) ug/g <0.050 0.050 <0.050 <0.050 <0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050	Dichlorodifluoromethane (FREON 12)	ug/g	<0.050	0.050	<0.050	<0.050	<0.050	0.050	6060206
1,1-Dichloroethane ug/g <0.050 0.050 <0.050 <0.050 <0.050 0.050 0.050 0.050 0.050	1,1-Dichloroethane	ug/g	<0.050	0.050	< 0.050	<0.050	<0.050	0.050	6060206
1,2-Dichloroethane ug/g <0.050 0.050 <0.050 <0.050 <0.050 0.050 0.050 0.050	1,2-Dichloroethane	ug/g	<0.050	0.050	<0.050	<0.050	<0.050	0.050	6060206
1,1-Dichloroethylene ug/g <0.050 0.050 <0.050 <0.050 <0.050 0.050 0.050 0.050	1,1-Dichloroethylene	ug/g	<0.050	0.050	<0.050	<0.050	<0.050	0.050	6060206
cis-1,2-Dichloroethylene ug/g <0.050 0.050 <0.050 <0.050 <0.050 0.050 0.050 0.050	cis-1,2-Dichloroethylene	ug/g	<0.050	0.050	<0.050	<0.050	<0.050	0.050	6060206
trans-1,2-Dichloroethylene ug/g <0.050 0.050 <0.050 <0.050 <0.050 0.050 0.050 0.050	trans-1,2-Dichloroethylene	ug/g	<0.050	0.050	<0.050	<0.050	<0.050	0.050	6060206
1,2-Dichloropropane ug/g <0.050 0.050 <0.050 <0.050 <0.050 0.050 0.050 0.050	1,2-Dichloropropane	ug/g	<0.050	0.050	<0.050	<0.050	<0.050	0.050	6060206
cis-1,3-Dichloropropene ug/g <0.030 0.030 <0.030 <0.030 <0.030 0.030 0.030 0.030	cis-1,3-Dichloropropene	ug/g	<0.030	0.030	<0.030	<0.030	<0.030	0.030	6060206
trans-1,3-Dichloropropene ug/g <0.040 0.040 <0.040 <0.040 <0.040 0.040 0.040 606020	trans-1,3-Dichloropropene	ug/g	<0.040	0.040	<0.040	<0.040	<0.040	0.040	6060206
Ethylbenzene ug/g <0.020 0.020 <0.020 <0.020 <0.020 0.020 0.020 0.020 0.020 0.020	Ethylbenzene	ug/g	<0.020	0.020	<0.020	<0.020	<0.020	0.020	6060206
Ethylene Dibromide ug/g <0.050 0.050 <0.050 <0.050 <0.050 0.050 0.050 0.050	Ethylene Dibromide	ug/g	<0.050	0.050	<0.050	<0.050	<0.050	0.050	6060206
Hexane ug/g 4.0 0.050 0.16 0.39 0.47 0.050 606020	Hexane	ug/g	4.0	0.050	0.16	0.39	0.47	0.050	6060206
Methylene Chloride(Dichloromethane) ug/g <0.050 0.050 <0.050 <0.050 <0.050 0.050 0.050 0.050 0.050 0.050 0.050	Methylene Chloride(Dichloromethane)	ug/g	<0.050	0.050	<0.050	<0.050	<0.050	0.050	6060206
Methyl Ethyl Ketone (2-Butanone) ug/g <0.50 0.50 <0.50 <0.50 <0.50 <0.50 0.50	Methyl Ethyl Ketone (2-Butanone)	ug/g	<0.50	0.50	<0.50	<0.50	<0.50	0.50	6060206
Methyl Isobutyl Ketone ug/g <0.50 0.50 <0.50 <0.50 <0.50 0.50 0.50	Methyl Isobutyl Ketone	ug/g	<0.50	0.50	<0.50	<0.50	<0.50	0.50	6060206
Methyl t-butyl ether (MTBE) ug/g <0.050 0.050 <0.050 <0.050 <0.050 0.050 0.050 0.050	Methyl t-butyl ether (MTBE)	ug/g	<0.050	0.050	<0.050	<0.050	<0.050	0.050	6060206
Styrene ug/g <0.050 0.050 <0.050 <0.050 <0.050 0.050 0.050 0.050	Styrene	ug/g	<0.050	0.050	<0.050	<0.050	<0.050	0.050	6060206
RDL = Reportable Detection Limit	RDL = Reportable Detection Limit								

exp Services Inc Client Project #: OTT-00241785-B Site Location: MONTGOMERY Sampler Initials: MAD

O.REG 153 VOCS BY HS & F1-F4 (SOIL)

Maxxam ID		JJQ531		JJQ533	JJQ535	JJQ536		
Sampling Data		2019/04/04		2019/04/04	2019/04/05	2019/04/05		
		11:00		15:00	12:00	13:00		
COC Number		710467-02-01		710467-02-01	710467-02-01	710467-02-01		
	UNITS	BH1-SS6	RDL	BH2-SS6	BH3-SS5	BH10-SS3	RDL	QC Batch
1,1,1,2-Tetrachloroethane	ug/g	<0.050	0.050	<0.050	<0.050	<0.050	0.050	6060206
1,1,2,2-Tetrachloroethane	ug/g	<0.050	0.050	<0.050	<0.050	<0.050	0.050	6060206
Tetrachloroethylene	ug/g	<0.050	0.050	<0.050	<0.050	<0.050	0.050	6060206
Toluene	ug/g	0.025	0.020	<0.020	0.024	0.026	0.020	6060206
1,1,1-Trichloroethane	ug/g	<0.050	0.050	<0.050	<0.050	<0.050	0.050	6060206
1,1,2-Trichloroethane	ug/g	<0.050	0.050	<0.050	<0.050	<0.050	0.050	6060206
Trichloroethylene	ug/g	<0.050	0.050	<0.050	<0.050	<0.050	0.050	6060206
Trichlorofluoromethane (FREON 11)	ug/g	<0.050	0.050	<0.050	<0.050	<0.050	0.050	6060206
Vinyl Chloride	ug/g	<0.020	0.020	<0.020	<0.020	<0.020	0.020	6060206
p+m-Xylene	ug/g	0.43	0.020	0.024	0.053	0.067	0.020	6060206
o-Xylene	ug/g	0.13	0.020	<0.020	<0.020	<0.020	0.020	6060206
Total Xylenes	ug/g	0.56	0.020	0.024	0.053	0.067	0.020	6060206
F1 (C6-C10)	ug/g	220	50	18	17	24	10	6060206
F1 (C6-C10) - BTEX	ug/g	220	50	18	16	24	10	6060206
F2-F4 Hydrocarbons								
F2 (C10-C16 Hydrocarbons)	ug/g	170	10	120	29	28	10	6059788
F3 (C16-C34 Hydrocarbons)	ug/g	180	50	150	<50	<50	50	6059788
F4 (C34-C50 Hydrocarbons)	ug/g	<50	50	<50	<50	<50	50	6059788
Reached Baseline at C50	ug/g	Yes		Yes	Yes	Yes		6059788
Surrogate Recovery (%)		-	-	-		-		
o-Terphenyl	%	96		94	94	95		6059788
4-Bromofluorobenzene	%	98		97	96	96		6060206
D10-o-Xylene	%	109		120	105	104		6060206
D4-1,2-Dichloroethane	%	101		107	106	102		6060206
D8-Toluene	%	100		98	100	100		6060206
RDL = Reportable Detection Limit								
QC Batch = Quality Control Batch								

exp Services Inc Client Project #: OTT-00241785-B Site Location: MONTGOMERY Sampler Initials: MAD

RESULTS OF ANALYSES OF SOIL

Maxxam ID		JJQ530	JJQ531	JJQ532	JJQ533	
Comulia o Doto		2019/04/04	2019/04/04	2019/04/04	2019/04/04	
Sampling Date		10:00	11:00	13:00	15:00	
COC Number		710467-02-01	710467-02-01	710467-02-01	710467-02-01	
	UNITS	BH1-SS1	BH1-SS6	BH2-AUG1	BH2-SS6	QC Batch
Inorganics	UNITS	BH1-SS1	BH1-SS6	BH2-AUG1	BH2-SS6	QC Batch
Inorganics Available (CaCl2) pH	pH	7.55	BH1-SS6 7.99	8H2-AUG1 7.68	8H2-SS6	QC Batch 6062631

exp Services Inc Client Project #: OTT-00241785-B Site Location: MONTGOMERY Sampler Initials: MAD

VOLATILE ORGANICS BY GC/MS (SOIL)

Maxxam ID		JJQ538		
Sampling Date		2019/04/05		
COC Number		710467-02-01		
	UNITS	TRIP BLANK	RDL	QC Batch
Volatile Organics				
Acetone (2-Propanone)	ug/g	<0.50	0.50	6060206
Benzene	ug/g	<0.020	0.020	6060206
Bromodichloromethane	ug/g	<0.050	0.050	6060206
Bromoform	ug/g	<0.050	0.050	6060206
Bromomethane	ug/g	<0.050	0.050	6060206
Carbon Tetrachloride	ug/g	<0.050	0.050	6060206
Chlorobenzene	ug/g	<0.050	0.050	6060206
Chloroform	ug/g	<0.050	0.050	6060206
Dibromochloromethane	ug/g	<0.050	0.050	6060206
1,2-Dichlorobenzene	ug/g	<0.050	0.050	6060206
1,3-Dichlorobenzene	ug/g	<0.050	0.050	6060206
1,4-Dichlorobenzene	ug/g	<0.050	0.050	6060206
Dichlorodifluoromethane (FREON 12)	ug/g	<0.050	0.050	6060206
1,1-Dichloroethane	ug/g	<0.050	0.050	6060206
1,2-Dichloroethane	ug/g	<0.050	0.050	6060206
1,1-Dichloroethylene	ug/g	<0.050	0.050	6060206
cis-1,2-Dichloroethylene	ug/g	<0.050	0.050	6060206
trans-1,2-Dichloroethylene	ug/g	<0.050	0.050	6060206
1,2-Dichloropropane	ug/g	<0.050	0.050	6060206
cis-1,3-Dichloropropene	ug/g	<0.030	0.030	6060206
trans-1,3-Dichloropropene	ug/g	<0.040	0.040	6060206
Ethylbenzene	ug/g	<0.020	0.020	6060206
Ethylene Dibromide	ug/g	<0.050	0.050	6060206
Hexane	ug/g	<0.050	0.050	6060206
Methylene Chloride(Dichloromethane)	ug/g	<0.050	0.050	6060206
Methyl Ethyl Ketone (2-Butanone)	ug/g	<0.50	0.50	6060206
Methyl Isobutyl Ketone	ug/g	<0.50	0.50	6060206
Methyl t-butyl ether (MTBE)	ug/g	<0.050	0.050	6060206
Styrene	ug/g	<0.050	0.050	6060206
1,1,1,2-Tetrachloroethane	ug/g	<0.050	0.050	6060206
1,1,2,2-Tetrachloroethane	ug/g	<0.050	0.050	6060206
Tetrachloroethylene	ug/g	<0.050	0.050	6060206
Toluene	ug/g	<0.020	0.020	6060206
1,1,1-Trichloroethane	ug/g	<0.050	0.050	6060206
RDL = Reportable Detection Limit QC Batch = Quality Control Batch				

exp Services Inc Client Project #: OTT-00241785-B Site Location: MONTGOMERY Sampler Initials: MAD

VOLATILE ORGANICS BY GC/MS (SOIL)

	JJQ538		
	2019/04/05		
	710467-02-01		
UNITS	TRIP BLANK	RDL	QC Batch
ug/g	<0.050	0.050	6060206
ug/g	<0.050	0.050	6060206
ug/g	<0.050	0.050	6060206
ug/g	<0.020	0.020	6060206
ug/g	<0.020	0.020	6060206
ug/g	<0.020	0.020	6060206
ug/g	<0.020	0.020	6060206
ug/g	<10	10	6060206
ug/g	<10	10	6060206
%	94		6060206
%	103		6060206
%	105		6060206
%	99		6060206
	-		
	UNITS Ug/g Ug/g Ug/g Ug/g Ug/g Ug/g Ug/g Ug/	JJQ538 2019/04/05 710467-02-01 UNITS TRIP BLANK ug/g <0.050	JJQ538 JJQ538 2019/04/05 710467-02-01 UNITS TRIP BLANK RDL ug/g <0.050

Test Description Methylnaphthalene Sum exp Services Inc Client Project #: OTT-00241785-B Site Location: MONTGOMERY Sampler Initials: MAD

TEST SUMMARY

JJQ530
BH1-SS1
Soil

				Collected: Shipped: Received:	2019/04/04 2019/04/05
Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
CALC	6058367	N/A	2019/04/11	Automate	d Statchk
ICP/MS	6060690	2019/04/09	2019/04/10	Daniel Tec	lu
DAL	6050726	NI / A	2010/04/08	Min Vene	

Strong Acid Leachable Metals by ICPMS	ICP/MS	6060690	2019/04/09	2019/04/10	Daniel Teclu
Moisture	BAL	6059726	N/A	2019/04/08	Min Yang
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	6062873	2019/04/10	2019/04/10	Mitesh Raj
pH CaCl2 EXTRACT	AT	6062631	2019/04/10	2019/04/10	Surinder Rai

Maxxam ID: JJQ531 Sample ID: BH1-SS6 Matrix: Soil

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
1,3-Dichloropropene Sum	CALC	6058355	N/A	2019/04/11	Automated Statchk
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	6059788	2019/04/08	2019/04/09	(Kent) Maolin Li
Moisture	BAL	6059726	N/A	2019/04/08	Min Yang
pH CaCl2 EXTRACT	AT	6062631	2019/04/10	2019/04/10	Surinder Rai
Volatile Organic Compounds and F1 PHCs	GC/MSFD	6060206	N/A	2019/04/10	Xueming Jiang

Maxxam ID: JJQ532 Sample ID: BH2-AUG1 Matrix: Soil

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	6058367	N/A	2019/04/11	Automated Statchk
Strong Acid Leachable Metals by ICPMS	ICP/MS	6060690	2019/04/09	2019/04/10	Daniel Teclu
Moisture	BAL	6059726	N/A	2019/04/08	Min Yang
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	6062873	2019/04/10	2019/04/10	Mitesh Raj
pH CaCl2 EXTRACT	AT	6062631	2019/04/10	2019/04/10	Surinder Rai

Maxxam ID: JJQ533 Sample ID: BH2-SS6 Matrix: Soil Collected: 2019/04/04 Shipped: Received: 2019/04/05

Collected: 2019/04/04

Collected: 2019/04/04

Received: 2019/04/05

2019/04/05

Shipped:

Received:

Shipped:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
1,3-Dichloropropene Sum	CALC	6058355	N/A	2019/04/11	Automated Statchk
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	6059788	2019/04/08	2019/04/09	(Kent) Maolin Li
Moisture	BAL	6059726	N/A	2019/04/08	Min Yang
pH CaCl2 EXTRACT	AT	6062631	2019/04/10	2019/04/10	Surinder Rai
Volatile Organic Compounds and F1 PHCs	GC/MSFD	6060206	N/A	2019/04/10	Xueming Jiang

Maxxam ID: Sample ID: Matrix:	JJQ534 BH3-AUG1B Soil					Collected: 2019/04/05 Shipped: 2019/04/05 Received: 2019/04/05
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum		CALC	6058367	N/A	2019/04/11	Automated Statchk
Strong Acid Leachable Me	tals by ICPMS	ICP/MS	6060690	2019/04/09	2019/04/10	Daniel Teclu

Page 10 of 23

Maxxam Analytics International Corporation o/a Maxxam Analytics 32 Colonnade Rd, Unit #1000, Nepean, ON K2E 7J6 Phone: 613 274-0573 Fax: 613 274-0574 Website: www.maxxam.ca

exp Services Inc Client Project #: OTT-00241785-B Site Location: MONTGOMERY Sampler Initials: MAD

TEST SUMMARY

Maxxam ID: JJQ53 Sample ID: BH3-A Matrix: Soil	4 AUG1B				(Collected: Shipped: Received:	2019/04/05 2019/04/05
Test Description	Instru	umentation B	atch Ex	tracted	Date Analyzed	Analyst	
Moisture	BAL	6	059726 N	/A	2019/04/08	Min Yang	
PAH Compounds in Soil by GC/MS	S (SIM) GC/N	1S 6	062873 20	019/04/10	2019/04/10	Mitesh Raj	
Maxxam ID: JJQ53 Sample ID: BH3-S Matrix: Soil	5 SS5				(Collected: Shipped: Received:	2019/04/05 2019/04/05
Test Description	Instru	umentation B	atch Ex	tracted	Date Analyzed	Analyst	
1,3-Dichloropropene Sum	CALC	6	058355 N,	/A	2019/04/11	Automated	Statchk
Petroleum Hydrocarbons F2-F4 ir	n Soil GC/F	ID 6	059788 20	019/04/08	2019/04/09	(Kent) Mao	lin Li
Moisture	BAL	6	059726 N	/A	2019/04/08	Min Yang	
Volatile Organic Compounds and	F1 PHCs GC/N	1SFD 6	060206 N	/A	2019/04/10	Xueming Jia	ang
Maxxam ID: JJQ53 Sample ID: BH10 Matrix: Soil	6 -SS3				(Collected: Shipped: Received:	2019/04/05 2019/04/05
Test Description	Instru	umentation B	atch Ex	tracted	Date Analyzed	Analyst	
1,3-Dichloropropene Sum	CALC	6	058355 N,	/A	2019/04/11	Automated	Statchk
Petroleum Hydrocarbons F2-F4 ir	n Soil GC/F	ID 6	059788 20	019/04/08	2019/04/09	(Kent) Mao	lin Li
Moisture	BAL	6	059726 N	/A	2019/04/08	Min Yang	
Volatile Organic Compounds and	F1 PHCs GC/N	1SFD 6	060206 N	/A	2019/04/10	Xueming Jia	ang
Maxxam ID: JJQ53 Sample ID: TRIP E Matrix: Soil	8 BLANK				Ċ	Collected: Shipped: Received:	2019/04/05 2019/04/05
Test Description	Instru	umentation B	atch Ex	tracted	Date Analyzed	Analyst	
Volatile Organic Compounds and	F1 PHCs GC/N	1SFD 6	060206 N,	/A	2019/04/10	Xueming Jia	ang
Maxxam ID: JJQ53 Sample ID: BH10 Matrix: Soil	9 -SS2				Ċ	Collected: Shipped: Received:	2019/04/05
Test Description	Instru	umentation B	atch Ex	tracted	Date Analyzed	Analyst	
Methylnaphthalene Sum	CALC	6	063447 N	/A	2019/04/12	Automated	Statchk
Strong Acid Leachable Metals by	ICPMS ICP/N	AS 6	065343 20	019/04/11	2019/04/11	Daniel Tech	L
Moisture	BAL	6	064740 N	/A	2019/04/11	Min Yang	
PAH Compounds in Soil by GC/MS	S (SIM) GC/N	1S 6	065637 20	019/04/11	2019/04/12	Mitesh Raj	

exp Services Inc Client Project #: OTT-00241785-B Site Location: MONTGOMERY Sampler Initials: MAD

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1 6.3°C

Sample JJQ531 [BH1-SS6] : VOCF1 Analysis: Due to high concentrations of hydrocarbon compounds, sample required dilution. Detection limits were adjusted accordingly. In order to meet required regulatory criteria, results for selected compounds (obtained by a separate analysis using an appropriate low dilution) are included in the report.

Sample JJQ532 [BH2-AUG1] : PAH Analysis: Due to the sample matrix, sample required dilution. Detection limits were adjusted accordingly.

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

			Matrix Spike		SPIKED	BLANK	Method I	Blank	RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
6059788	o-Terphenyl	2019/04/09	108	60 - 130	95	60 - 130	95	%		
6060206	4-Bromofluorobenzene	2019/04/09	98	60 - 140	99	60 - 140	92	%		
6060206	D10-o-Xylene	2019/04/09	112	60 - 130	88	60 - 130	93	%		
6060206	D4-1,2-Dichloroethane	2019/04/09	112	60 - 140	107	60 - 140	109	%		
6060206	D8-Toluene	2019/04/09	104	60 - 140	101	60 - 140	98	%		
6062873	D10-Anthracene	2019/04/10	87	50 - 130	90	50 - 130	87	%		
6062873	D14-Terphenyl (FS)	2019/04/10	106	50 - 130	103	50 - 130	87	%		
6062873	D8-Acenaphthylene	2019/04/10	86	50 - 130	89	50 - 130	82	%		
6065637	D10-Anthracene	2019/04/11	88	50 - 130	93	50 - 130	89	%		
6065637	D14-Terphenyl (FS)	2019/04/11	74	50 - 130	77	50 - 130	81	%		
6065637	D8-Acenaphthylene	2019/04/11	85	50 - 130	88	50 - 130	88	%		
6059726	Moisture	2019/04/08							0.68	20
6059788	F2 (C10-C16 Hydrocarbons)	2019/04/09	106	50 - 130	94	80 - 120	<10	ug/g	NC	30
6059788	F3 (C16-C34 Hydrocarbons)	2019/04/09	110	50 - 130	97	80 - 120	<50	ug/g	NC	30
6059788	F4 (C34-C50 Hydrocarbons)	2019/04/09	109	50 - 130	97	80 - 120	<50	ug/g	NC	30
6060206	1,1,1,2-Tetrachloroethane	2019/04/10	106	60 - 140	101	60 - 130	<0.050	ug/g	NC	50
6060206	1,1,1-Trichloroethane	2019/04/10	100	60 - 140	101	60 - 130	<0.050	ug/g	NC	50
6060206	1,1,2,2-Tetrachloroethane	2019/04/10	111	60 - 140	102	60 - 130	<0.050	ug/g	NC	50
6060206	1,1,2-Trichloroethane	2019/04/10	111	60 - 140	102	60 - 130	<0.050	ug/g	NC	50
6060206	1,1-Dichloroethane	2019/04/10	106	60 - 140	103	60 - 130	<0.050	ug/g	NC	50
6060206	1,1-Dichloroethylene	2019/04/10	105	60 - 140	106	60 - 130	<0.050	ug/g	NC	50
6060206	1,2-Dichlorobenzene	2019/04/10	106	60 - 140	98	60 - 130	<0.050	ug/g	NC	50
6060206	1,2-Dichloroethane	2019/04/10	111	60 - 140	106	60 - 130	<0.050	ug/g	NC	50
6060206	1,2-Dichloropropane	2019/04/10	97	60 - 140	94	60 - 130	<0.050	ug/g	NC	50
6060206	1,3-Dichlorobenzene	2019/04/10	105	60 - 140	98	60 - 130	<0.050	ug/g	NC	50
6060206	1,4-Dichlorobenzene	2019/04/10	107	60 - 140	98	60 - 130	<0.050	ug/g	NC	50
6060206	Acetone (2-Propanone)	2019/04/10	105	60 - 140	99	60 - 140	<0.50	ug/g	NC	50
6060206	Benzene	2019/04/10	101	60 - 140	99	60 - 130	<0.020	ug/g	NC	50
6060206	Bromodichloromethane	2019/04/10	104	60 - 140	101	60 - 130	<0.050	ug/g	NC	50
6060206	Bromoform	2019/04/10	101	60 - 140	94	60 - 130	<0.050	ug/g	NC	50
6060206	Bromomethane	2019/04/10	112	60 - 140	110	60 - 140	<0.050	ug/g	NC	50
6060206	Carbon Tetrachloride	2019/04/10	101	60 - 140	102	60 - 130	<0.050	ug/g	NC	50

QUALITY ASSURANCE REPORT(CONT'D)

			Matrix	Spike	SPIKED	BLANK	Method E	Blank	RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
6060206	Chlorobenzene	2019/04/10	102	60 - 140	96	60 - 130	<0.050	ug/g	NC	50
6060206	Chloroform	2019/04/10	105	60 - 140	103	60 - 130	<0.050	ug/g	NC	50
6060206	cis-1,2-Dichloroethylene	2019/04/10	105	60 - 140	103	60 - 130	<0.050	ug/g	NC	50
6060206	cis-1,3-Dichloropropene	2019/04/10	78	60 - 140	74	60 - 130	<0.030	ug/g	NC	50
6060206	Dibromochloromethane	2019/04/10	105	60 - 140	98	60 - 130	<0.050	ug/g	NC	50
6060206	Dichlorodifluoromethane (FREON 12)	2019/04/10	145 (1)	60 - 140	149 (1)	60 - 140	<0.050	ug/g	NC	50
6060206	Ethylbenzene	2019/04/10	96	60 - 140	91	60 - 130	<0.020	ug/g	NC	50
6060206	Ethylene Dibromide	2019/04/10	108	60 - 140	99	60 - 130	<0.050	ug/g	NC	50
6060206	F1 (C6-C10) - BTEX	2019/04/10					<10	ug/g	NC	30
6060206	F1 (C6-C10)	2019/04/10	111	60 - 140	100	80 - 120	<10	ug/g	NC	30
6060206	Hexane	2019/04/10	96	60 - 140	97	60 - 130	<0.050	ug/g	NC	50
6060206	Methyl Ethyl Ketone (2-Butanone)	2019/04/10	108	60 - 140	100	60 - 140	<0.50	ug/g	NC	50
6060206	Methyl Isobutyl Ketone	2019/04/10	98	60 - 140	91	60 - 130	<0.50	ug/g	NC	50
6060206	Methyl t-butyl ether (MTBE)	2019/04/10	99	60 - 140	96	60 - 130	<0.050	ug/g	NC	50
6060206	Methylene Chloride(Dichloromethane)	2019/04/10	113	60 - 140	110	60 - 130	<0.050	ug/g	NC	50
6060206	o-Xylene	2019/04/10	94	60 - 140	90	60 - 130	<0.020	ug/g	NC	50
6060206	p+m-Xylene	2019/04/10	89	60 - 140	84	60 - 130	<0.020	ug/g	NC	50
6060206	Styrene	2019/04/10	93	60 - 140	87	60 - 130	<0.050	ug/g	NC	50
6060206	Tetrachloroethylene	2019/04/10	105	60 - 140	102	60 - 130	<0.050	ug/g	NC	50
6060206	Toluene	2019/04/10	105	60 - 140	100	60 - 130	<0.020	ug/g	NC	50
6060206	Total Xylenes	2019/04/10					<0.020	ug/g	NC	50
6060206	trans-1,2-Dichloroethylene	2019/04/10	106	60 - 140	105	60 - 130	<0.050	ug/g	NC	50
6060206	trans-1,3-Dichloropropene	2019/04/10	83	60 - 140	75	60 - 130	<0.040	ug/g	NC	50
6060206	Trichloroethylene	2019/04/10	103	60 - 140	102	60 - 130	<0.050	ug/g	NC	50
6060206	Trichlorofluoromethane (FREON 11)	2019/04/10	116	60 - 140	118	60 - 130	<0.050	ug/g	NC	50
6060206	Vinyl Chloride	2019/04/10	119	60 - 140	119	60 - 130	<0.020	ug/g	NC	50
6060690	Acid Extractable Antimony (Sb)	2019/04/10	97	75 - 125	99	80 - 120	<0.20	ug/g	NC	30
6060690	Acid Extractable Arsenic (As)	2019/04/10	106	75 - 125	103	80 - 120	<1.0	ug/g	0.84	30
6060690	Acid Extractable Barium (Ba)	2019/04/10	NC	75 - 125	97	80 - 120	<0.50	ug/g	7.4	30
6060690	Acid Extractable Beryllium (Be)	2019/04/10	104	75 - 125	96	80 - 120	<0.20	ug/g	NC	30
6060690	Acid Extractable Boron (B)	2019/04/10	99	75 - 125	95	80 - 120	<5.0	ug/g	NC	30
6060690	Acid Extractable Cadmium (Cd)	2019/04/10	105	75 - 125	97	80 - 120	<0.10	ug/g	NC	30

QUALITY ASSURANCE REPORT(CONT'D)

			Matrix Spike		SPIKED	BLANK	Method Blank		RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
6060690	Acid Extractable Chromium (Cr)	2019/04/10	NC	75 - 125	96	80 - 120	<1.0	ug/g	2.8	30
6060690	Acid Extractable Cobalt (Co)	2019/04/10	105	75 - 125	99	80 - 120	<0.10	ug/g	5.4	30
6060690	Acid Extractable Copper (Cu)	2019/04/10	NC	75 - 125	100	80 - 120	<0.50	ug/g	2.3	30
6060690	Acid Extractable Lead (Pb)	2019/04/10	110	75 - 125	103	80 - 120	<1.0	ug/g	5.3	30
6060690	Acid Extractable Molybdenum (Mo)	2019/04/10	106	75 - 125	99	80 - 120	<0.50	ug/g	NC	30
6060690	Acid Extractable Nickel (Ni)	2019/04/10	116	75 - 125	101	80 - 120	<0.50	ug/g	0.54	30
6060690	Acid Extractable Selenium (Se)	2019/04/10	106	75 - 125	98	80 - 120	<0.50	ug/g	NC	30
6060690	Acid Extractable Silver (Ag)	2019/04/10	105	75 - 125	99	80 - 120	<0.20	ug/g	NC	30
6060690	Acid Extractable Thallium (TI)	2019/04/10	108	75 - 125	102	80 - 120	<0.050	ug/g	3.8	30
6060690	Acid Extractable Uranium (U)	2019/04/10	109	75 - 125	102	80 - 120	<0.050	ug/g	8.3	30
6060690	Acid Extractable Vanadium (V)	2019/04/10	NC	75 - 125	98	80 - 120	<5.0	ug/g	4.2	30
6060690	Acid Extractable Zinc (Zn)	2019/04/10	NC	75 - 125	102	80 - 120	<5.0	ug/g	1.7	30
6062631	Available (CaCl2) pH	2019/04/10			100	97 - 103			0.81	N/A
6062873	1-Methylnaphthalene	2019/04/10	98	50 - 130	100	50 - 130	<0.0050	ug/g	NC	40
6062873	2-Methylnaphthalene	2019/04/10	87	50 - 130	90	50 - 130	<0.0050	ug/g	NC	40
6062873	Acenaphthene	2019/04/10	83	50 - 130	85	50 - 130	<0.0050	ug/g	NC	40
6062873	Acenaphthylene	2019/04/10	83	50 - 130	86	50 - 130	<0.0050	ug/g	NC	40
6062873	Anthracene	2019/04/10	79	50 - 130	82	50 - 130	<0.0050	ug/g	NC	40
6062873	Benzo(a)anthracene	2019/04/10	85	50 - 130	86	50 - 130	<0.0050	ug/g	NC	40
6062873	Benzo(a)pyrene	2019/04/10	81	50 - 130	83	50 - 130	<0.0050	ug/g	NC	40
6062873	Benzo(b/j)fluoranthene	2019/04/10	83	50 - 130	86	50 - 130	<0.0050	ug/g	NC	40
6062873	Benzo(g,h,i)perylene	2019/04/10	80	50 - 130	81	50 - 130	<0.0050	ug/g	NC	40
6062873	Benzo(k)fluoranthene	2019/04/10	76	50 - 130	77	50 - 130	<0.0050	ug/g	NC	40
6062873	Chrysene	2019/04/10	82	50 - 130	85	50 - 130	<0.0050	ug/g	NC	40
6062873	Dibenz(a,h)anthracene	2019/04/10	78	50 - 130	80	50 - 130	<0.0050	ug/g	NC	40
6062873	Fluoranthene	2019/04/10	99	50 - 130	99	50 - 130	<0.0050	ug/g	NC	40
6062873	Fluorene	2019/04/10	83	50 - 130	85	50 - 130	<0.0050	ug/g	NC	40
6062873	Indeno(1,2,3-cd)pyrene	2019/04/10	78	50 - 130	83	50 - 130	<0.0050	ug/g	NC	40
6062873	Naphthalene	2019/04/10	79	50 - 130	82	50 - 130	<0.0050	ug/g	NC	40
6062873	Phenanthrene	2019/04/10	80	50 - 130	83	50 - 130	<0.0050	ug/g	NC	40
6062873	Pyrene	2019/04/10	101	50 - 130	94	50 - 130	<0.0050	ug/g	NC	40
6064740	Moisture	2019/04/11							2.3	20

QUALITY ASSURANCE REPORT(CONT'D)

			Matrix Spike		SPIKED BLANK		Method Blank		RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
6065343	Acid Extractable Antimony (Sb)	2019/04/11	91	75 - 125	98	80 - 120	<0.20	ug/g	17	30
6065343	Acid Extractable Arsenic (As)	2019/04/11	97	75 - 125	103	80 - 120	<1.0	ug/g	6.0	30
6065343	Acid Extractable Barium (Ba)	2019/04/11	NC	75 - 125	101	80 - 120	<0.50	ug/g	3.0	30
6065343	Acid Extractable Beryllium (Be)	2019/04/11	97	75 - 125	97	80 - 120	<0.20	ug/g	9.1	30
6065343	Acid Extractable Boron (B)	2019/04/11	95	75 - 125	97	80 - 120	<5.0	ug/g	10	30
6065343	Acid Extractable Cadmium (Cd)	2019/04/11	96	75 - 125	98	80 - 120	<0.10	ug/g	3.4	30
6065343	Acid Extractable Chromium (Cr)	2019/04/11	95	75 - 125	101	80 - 120	<1.0	ug/g	10	30
6065343	Acid Extractable Cobalt (Co)	2019/04/11	92	75 - 125	99	80 - 120	<0.10	ug/g	6.3	30
6065343	Acid Extractable Copper (Cu)	2019/04/11	99	75 - 125	102	80 - 120	<0.50	ug/g	3.4	30
6065343	Acid Extractable Lead (Pb)	2019/04/11	NC	75 - 125	99	80 - 120	<1.0	ug/g	11	30
6065343	Acid Extractable Molybdenum (Mo)	2019/04/11	98	75 - 125	98	80 - 120	<0.50	ug/g	1.7	30
6065343	Acid Extractable Nickel (Ni)	2019/04/11	91	75 - 125	99	80 - 120	<0.50	ug/g	3.9	30
6065343	Acid Extractable Selenium (Se)	2019/04/11	100	75 - 125	104	80 - 120	<0.50	ug/g	NC	30
6065343	Acid Extractable Silver (Ag)	2019/04/11	98	75 - 125	99	80 - 120	<0.20	ug/g	NC	30
6065343	Acid Extractable Thallium (TI)	2019/04/11	90	75 - 125	97	80 - 120	<0.050	ug/g	4.8	30
6065343	Acid Extractable Uranium (U)	2019/04/11	97	75 - 125	100	80 - 120	<0.050	ug/g	0.70	30
6065343	Acid Extractable Vanadium (V)	2019/04/11	NC	75 - 125	100	80 - 120	<5.0	ug/g	11	30
6065343	Acid Extractable Zinc (Zn)	2019/04/11	NC	75 - 125	101	80 - 120	<5.0	ug/g	14	30
6065637	1-Methylnaphthalene	2019/04/11	91	50 - 130	102	50 - 130	<0.0050	ug/g	NC	40
6065637	2-Methylnaphthalene	2019/04/11	81	50 - 130	93	50 - 130	<0.0050	ug/g	NC	40
6065637	Acenaphthene	2019/04/11	89	50 - 130	89	50 - 130	<0.0050	ug/g	NC	40
6065637	Acenaphthylene	2019/04/11	88	50 - 130	89	50 - 130	<0.0050	ug/g	NC	40
6065637	Anthracene	2019/04/11	84	50 - 130	86	50 - 130	<0.0050	ug/g	NC	40
6065637	Benzo(a)anthracene	2019/04/11	88	50 - 130	91	50 - 130	<0.0050	ug/g	NC	40
6065637	Benzo(a)pyrene	2019/04/11	73	50 - 130	78	50 - 130	<0.0050	ug/g	NC	40
6065637	Benzo(b/j)fluoranthene	2019/04/11	74	50 - 130	78	50 - 130	<0.0050	ug/g	NC	40
6065637	Benzo(g,h,i)perylene	2019/04/11	97	50 - 130	106	50 - 130	<0.0050	ug/g	NC	40
6065637	Benzo(k)fluoranthene	2019/04/11	70	50 - 130	74	50 - 130	<0.0050	ug/g	NC	40
6065637	Chrysene	2019/04/11	90	50 - 130	94	50 - 130	<0.0050	ug/g	NC	40
6065637	Dibenz(a,h)anthracene	2019/04/11	95	50 - 130	83	50 - 130	<0.0050	ug/g	NC	40
6065637	Fluoranthene	2019/04/11	84	50 - 130	82	50 - 130	<0.0050	ug/g	NC	40
6065637	Fluorene	2019/04/11	97	50 - 130	86	50 - 130	<0.0050	ug/g	NC	40

QUALITY ASSURANCE REPORT(CONT'D)

exp Services Inc Client Project #: OTT-00241785-B Site Location: MONTGOMERY Sampler Initials: MAD

		_	Matrix	Spike	SPIKED	BLANK	Method B	llank	RPE)
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
6065637	Indeno(1,2,3-cd)pyrene	2019/04/11	103	50 - 130	96	50 - 130	<0.0050	ug/g	NC	40
6065637	Naphthalene	2019/04/11	80	50 - 130	88	50 - 130	<0.0050	ug/g	NC	40
6065637	Phenanthrene	2019/04/11	86	50 - 130	86	50 - 130	<0.0050	ug/g	NC	40
6065637	Pyrene	2019/04/11	89	50 - 130	77	50 - 130	<0.0050	ug/g	NC	40

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

(1) The recovery was above the upper control limit. This may represent a high bias in some results for this specific analyte. For results that were not detected (ND), this potential bias has no impact.

exp Services Inc Client Project #: OTT-00241785-B Site Location: MONTGOMERY Sampler Initials: MAD

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Ewa Pranjic, M.Sc., C.Chem, Scientific Specialist

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

	INVO	CE TO:				REPO	RT TO:						PROJEC	T INFORMATION:			Laboratory Use (Only:
pany Name:	#17497 exp Servic	es Inc		Compan	y Name:						Quotation		B460	66			Maxxam Job #:	Bottle Order #:
ntion:	Accounts Payable			Attentio	m: Mark D	Devlin Ma	rk Mi	Calle	1		P.O. #:							
ess:	100-2650 Queensvi	ew Drive		Address			_		-		Project:		Monte	gomery OTT-C	0241785-1	2		710467
-	(613) 688, 1890	0	/613) 225 723	7	1				-		Project N	ame:	P				COC #:	Project Manager:
	accounting ottawa@	Fax:	en.Burke@exp	Com: Email:	mark	evlin@exp.co	m TM Fax:	. 40	1.II.		Site #:			MID		1000		Alisha Williamson
MOE REGI		ATER OR WA		FOR HIMAN C	ONSUMPTION	MUSTRE	11100	K INC	Calla	ANA	LYSIS RE	By.	PLEASE	BE SPECIFIC)			C#/10457-02-01 Turnaround Time (TAT) R	en lind:
NOL NEO	SUBMITTED ON	THE MAXXAM	DRINKING WA	TER CHAIN OF	CUSTODY	MOSTBL		1		-							Please provide advance notice for	or rush projects
Regulatio	n 153 (2011)		Other Regulatio	ins	Special In	structions	ircle	F4 (S		25						Regular (S	Standard) TAT:	ſ
ible 1 📈	Res/Park Medium/Fi		Sanitary Sew	er Bylaw	8 -		se c	E1-		- 3		-				Standard TA	T = 5-7 Working days for most tests	Ł
able 2	Ind/Comm Coarse	Reg 558.	Storm Sewer	Bylaw	1. 1.		plea g / C	HSA	(ji	SH		-				Please note:	Standard TAT for certain tests such as B	OD and Dioxins/Furans are >
ible	Agriconer Clear KSC		Municipality _		13.12-		H/	5	ts (S	~~	~	0	X			Job Concill	a your Project Manager for detass.	destan)
		Other			-		Filte	3 VO	PAH	22	7	Ĭ	3			Date Require	d: Tin	e Required:
	Include Criteria o	Certificate of	Analysis (Y/N)?		3		2 g	10	5	63	2	~				Rush Confirm	nation Number:(c	all lab for #)
Sample	Barcode Label	Sample (Locatio	n) Identification	Date Sampled	Time Sampled	Matrix	L.	0.Re	O.Re	5-						#of Bottles	Comm	ents
		BHI -	- 551	April 4 2019	10:00	Soil			X	X	X					2		
		BH1-	- 556	April 14	11:00	Soil		X			x					3	AXIS 19 Pone	St. M.
-		D 41) -	- Aug 1	Aprilas	1:00	Soil				X	×					>	and the content c	1000
		15110	rugi	A0014	pre	C		V	X	~	V					2	05-Apr-1	9 15:50
	24	RH4-	226	2019	3.40ju	2011		X			x					3	Alisha William	son
3.	Sec. 1	8+13-	Aug1B	ASU15	10:00	Sorl			X	X						2	B990299	1111 11
	1 1	BH3-	555	Apr:15	12:00	Sal		×								3	LIRE ENV-	755
		BHID-	\$53	A5115 5019	1:00	5.1		X								3	OKE LIV	
		BH)-	555	Aprily	10:30	501						X				3	Please hold	
		Trin	RIGAK	April 5	vesta.	Soil							X			1		
		o ip		2019	anon	Son		-					n		_	1		
			0	-	1.1												RECEN	54 110
AI'R	ELINQUISHED BY: (Signa	(ture/Print)	Date: (YY	/MM/DD)	ime	RECEIVED E	Y: (Signature/	Print)	1	Date: (YY/N	M/DD)	Ti	me	# jars used and		Labora	tory Use Only	~ ~~~
Murk	Ul no	-	19/09	10 3:	47m 30	Solar	sk fe	ger	19	104/	05	15:5	50	-	Time Sensitive	Temperat	ure (°C) Recei Custody Se Present	al Yes N
SS OTHER	ISE AGREED TO IN WORTH	G WORK SUBALT	TED ON THIS CHAIN	OF CUSTODY IS SI	IB JECT TO MAY	IS STANDARD TO	PMS AND COM	DITIONS S	CNING OF	LOM/JH	106	148-18	MENTIN	-	_	10,	Z, O Intact	1
WLEDGMEN	T AND ACCEPTANCE OF	OUR TERMS WHICH	HARE AVAILABLE F	OR VIEWING AT WW	W.MAXXAM.CA/TER	IMS.		ornona. a	Guing Or	THIS CHAI	NUP CUS	1001 0000	IMENT IS				Wh	ite: Maxxa Yellow: C
HE RESPON	ISIBILITY OF THE RELINQ	JISHER TO ENSUR	E THE ACCURACY	OF THE CHAIN OF C	JSTODY RECORD.	AN INCOMPLETE O	HAIN OF CUST	ODY MAY R	ESULT IN A	NALYTICA	L TAT DE	LAYS.		SAMP	UNTIL I	DELIVERY TO	MAXXAM	
LE CONTAI	NER, PRESERVATION, HO	LD TIME AND PACE	KAGE INFORMATIO	CAN BE VIEWED A	THTTP://MAXXAM	CAWP-CONTENT/	JPLOADS/ONT	ARIO-COC.	POF.					2 3 32 4			名·伊利奈尔在 2.1 名	

exp Services Inc Client Project #: OTT-00241785-B Project name: MONTGOMERY Client ID: BH1-SS6

Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

Reference Spectrum

TYPICAL PRODUCT CARBON NUMBER RANGES

Gasoline: C6 - C12	Diesel: C10-C24	Jet Fuels: C6 - C16
Varsol: C8 - C12	Fuel Oils: C6 - C32	Creosote: C10 - C26
Kerosene: C8 - C16	Motor Oils: C16 - C50	Asphalt: C18 - C50 +

exp Services Inc Client Project #: OTT-00241785-B Project name: MONTGOMERY Client ID: BH2-SS6

Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

Reference Spectrum

TYPICAL PRODUCT CARBON NUMBER RANGES

Gasoline: C6 - C12	Diesel: C10-C24	Jet Fuels: C6 - C16
Varsol: C8 - C12	Fuel Oils: C6 - C32	Creosote: C10 - C26
Kerosene: C8 - C16	Motor Oils: C16 - C50	Asphalt: C18 - C50 +

exp Services Inc Client Project #: OTT-00241785-B Project name: MONTGOMERY Client ID: BH3-SS5

Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

Reference Spectrum

TYPICAL PRODUCT CARBON NUMBER RANGES

Gasoline: C6 - C12	Diesel: C10-C24	Jet Fuels: C6 - C16
Varsol: C8 - C12	Fuel Oils: C6 - C32	Creosote: C10 - C26
Kerosene: C8 - C16	Motor Oils: C16 - C50	Asphalt: C18 - C50+

exp Services Inc Client Project #: OTT-00241785-B Project name: MONTGOMERY Client ID: BH10-SS3

Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

Reference Spectrum

TYPICAL PRODUCT CARBON NUMBER RANGES

Gasoline: C6 - C12	Diesel: C10-C24	Jet Fuels: C6 - C16
Varsol: C8 - C12	Fuel Oils: C6 - C32	Creosote: C10 - C26
Kerosene: C8 - C16	Motor Oils: C16 - C50	Asphalt: C18 - C50+

Your Project #: OTT-00241785-BO Your C.O.C. #: 117554

Attention: Mark McCalla

exp Services Inc Ottawa Branch 100-2650 Queensview Drive Ottawa, ON CANADA K2B 8H6

> Report Date: 2019/04/22 Report #: R5679913 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B9A0751

Received: 2019/04/17, 10:45

Sample Matrix: Soil # Samples Received: 2

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Methylnaphthalene Sum (1)	1	N/A	2019/04/22	CAM SOP-00301	EPA 8270D m
Petroleum Hydro. CCME F1 & BTEX in Soil (2)	1	N/A	2019/04/17	OTT SOP-00002	CCME CWS
Petroleum Hydrocarbons F2-F4 in Soil (3)	1	2019/04/17	2019/04/17	OTT SOP-00001	CCME CWS
Moisture	1	N/A	2019/04/18	CAM SOP-00445	McKeague 2nd ed 1978
Moisture (1)	1	N/A	2019/04/18	CAM SOP-00445	Carter 2nd ed 51.2 m
PAH Compounds in Soil by GC/MS (SIM) (1)	1	2019/04/18	2019/04/19	CAM SOP-00318	EPA 8270D m

Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing. Maxxam is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Maxxam, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) This test was performed by Maxxam Analytics Mississauga

(2) No lab extraction date is given for F1BTEX & VOC samples that are field preserved with methanol. Extraction date is the date sampled unless otherwise stated.
(3) All CCME PHC results met required criteria unless otherwise stated in the report. The CWS PHC methods employed by Maxxam conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following "Alberta Environment's Interpretation of the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Validation of Performance-Based Alternative Methods September 2003". Documentation is available upon request. Modifications from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data

Page 1 of 13

Your Project #: OTT-00241785-BO Your C.O.C. #: 117554

Attention: Mark McCalla

exp Services Inc Ottawa Branch 100-2650 Queensview Drive Ottawa, ON CANADA K2B 8H6

> Report Date: 2019/04/22 Report #: R5679913 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B9A0751 Received: 2019/04/17, 10:45 reported using validated cold solvent extraction instead of Soxhlet extraction.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Alisha Williamson, Project Manager Email: AWilliamson@maxxam.ca Phone# (613) 274-0573

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

exp Services Inc Client Project #: OTT-00241785-BO Sampler Initials: MAD

O.REG 153 PAHS (SOIL)

Maxxam ID		JLW130				
Sampling Date		2019/04/04				
		13:00				
COC Number		117554				
	UNITS	BH 2 SS3	RDL	QC Batch		
Inorganics						
Moisture	%	12	1.0	6077209		
Calculated Parameters						
Methylnaphthalene, 2-(1-)	ug/g	<0.071	0.071	6074477		
Polyaromatic Hydrocarbons	•					
Acenaphthene	ug/g	<0.050	0.050	6078546		
Acenaphthylene	ug/g	<0.050	0.050	6078546		
Anthracene	ug/g	<0.050	0.050	6078546		
Benzo(a)anthracene	ug/g	<0.050	0.050	6078546		
Benzo(a)pyrene	ug/g	<0.050	0.050	6078546		
Benzo(b/j)fluoranthene	ug/g	<0.050	0.050	6078546		
Benzo(g,h,i)perylene	ug/g	<0.050	0.050	6078546		
Benzo(k)fluoranthene	ug/g	<0.050	0.050	6078546		
Chrysene	ug/g	<0.050	0.050	6078546		
Dibenz(a,h)anthracene	ug/g	<0.050	0.050	6078546		
Fluoranthene	ug/g	0.056	0.050	6078546		
Fluorene	ug/g	<0.050	0.050	6078546		
Indeno(1,2,3-cd)pyrene	ug/g	<0.050	0.050	6078546		
1-Methylnaphthalene	ug/g	<0.050	0.050	6078546		
2-Methylnaphthalene	ug/g	<0.050	0.050	6078546		
Naphthalene	ug/g	<0.050	0.050	6078546		
Phenanthrene	ug/g	0.051	0.050	6078546		
Pyrene	ug/g	<0.050	0.050	6078546		
Surrogate Recovery (%)						
D10-Anthracene	%	107		6078546		
D14-Terphenyl (FS)	%	88		6078546		
D8-Acenaphthylene	%	99		6078546		
RDL = Reportable Detection Limit						
QC Batch = Quality Control B	atch					

exp Services Inc Client Project #: OTT-00241785-BO Sampler Initials: MAD

O.REG 153 PETROLEUM HYDROCARBONS (SOIL)

Maxxam ID		JLW129			JLW129				
Sampling Date		2019/04/02			2019/04/02				
		13:00			13:00				
COC Number		117554			117554				
	UNITS	BH 1 SS7	RDL	QC Batch	BH 1 SS7 Lab-Dup	RDL	QC Batch		
Inorganics									
Moisture	%	7.7	0.2	6075110					
BTEX & F1 Hydrocarbons									
Benzene	ug/g	<0.02	0.02	6075586					
Toluene	ug/g	<0.02	0.02	6075586					
Ethylbenzene	ug/g	<0.02	0.02	6075586					
o-Xylene	ug/g	<0.02	0.02	6075586					
p+m-Xylene	ug/g	<0.04	0.04	6075586					
Total Xylenes	ug/g	<0.04	0.04	6075586					
F1 (C6-C10)	ug/g	12	10	6075586					
F1 (C6-C10) - BTEX	ug/g	12	10	6075586					
F2-F4 Hydrocarbons			-			-			
F2 (C10-C16 Hydrocarbons)	ug/g	51	10	6073563	48	10	6073563		
F3 (C16-C34 Hydrocarbons)	ug/g	80	50	6073563	83	50	6073563		
F4 (C34-C50 Hydrocarbons)	ug/g	<50	50	6073563	<50	50	6073563		
Reached Baseline at C50	ug/g	Yes		6073563	Yes		6073563		
Surrogate Recovery (%)									
1,4-Difluorobenzene	%	100		6075586					
4-Bromofluorobenzene	%	107		6075586					
D10-Ethylbenzene	%	109		6075586					
D4-1,2-Dichloroethane	%	97		6075586					
o-Terphenyl	%	83		6073563	86		6073563		
RDL = Reportable Detection L	imit								
QC Batch = Quality Control B	atch								
Lab-Dup = Laboratory Initiate	ed Duplic	cate							

exp Services Inc Client Project #: OTT-00241785-BO Sampler Initials: MAD

TEST SUMMARY

Maxxam ID: Sample ID:	JLW129 BH 1 SS7					Collected:	2019/04/02
Matrix:	Soil					Received:	2019/04/17
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Petroleum Hydro. CCME	F1 & BTEX in Soil	HSGC/MSFD	6075586	N/A	2019/04/17	Fatemeh H	abibagahi
Petroleum Hydrocarbons	F2-F4 in Soil	GC/FID	6073563	2019/04/17	2019/04/17	Mariana Va	iscan
Moisture		BAL	6075110	N/A	2019/04/18	Mariana Va	iscan
Maxxam ID:	JLW129 Dup					Collected:	2019/04/02
Sample ID: Matrix:	Soil					Shipped: Received:	2019/04/17
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
rest bescription		mstrumentation				-	
Petroleum Hydrocarbons	F2-F4 in Soil	GC/FID	6073563	2019/04/17	2019/04/17	Mariana Va	iscan
Petroleum Hydrocarbons Maxxam ID: Sample ID: Matrix:	F2-F4 in Soil JLW130 BH 2 SS3 Soil	GC/FID	6073563	2019/04/17	2019/04/17	Mariana Va Collected: Shipped: Received:	2019/04/04 2019/04/17
Petroleum Hydrocarbons Maxxam ID: Sample ID: Matrix: Test Description	F2-F4 in Soil JLW130 BH 2 SS3 Soil	GC/FID	6073563 Batch	2019/04/17 Extracted	2019/04/17 Date Analyzed	Mariana Va Collected: Shipped: Received: Analyst	2019/04/04 2019/04/17
Petroleum Hydrocarbons Maxxam ID: Sample ID: Matrix: Test Description Methylnaphthalene Sum	F2-F4 in Soil JLW130 BH 2 SS3 Soil	GC/FID Instrumentation CALC	6073563 Batch 6074477	2019/04/17 Extracted N/A	2019/04/17 Date Analyzed 2019/04/22	Mariana Va Collected: Shipped: Received: Analyst Automated	scan 2019/04/04 2019/04/17 Statchk
Petroleum Hydrocarbons Maxxam ID: Sample ID: Matrix: Test Description Methylnaphthalene Sum Moisture	F2-F4 in Soil JLW130 BH 2 SS3 Soil	GC/FID Instrumentation CALC BAL	6073563 Batch 6074477 6077209	2019/04/17 Extracted N/A N/A	2019/04/17 Date Analyzed 2019/04/22 2019/04/18	Mariana Va Collected: Shipped: Received: Analyst Automated Gurpreet K	2019/04/04 2019/04/17 Statchk aur

exp Services Inc Client Project #: OTT-00241785-BO Sampler Initials: MAD

GENERAL COMMENTS

Each te	Each temperature is the average of up to three cooler temperatures taken at receipt											
	Package 1	12.0°C]									
Sample	JLW130 [BH 2 SS	3] : PAH analysis:	Due to the sample matrix, sample required dilution. Detection limits were adjusted accordingly.									
Results	s relate only to the	e items tested.										

QUALITY ASSURANCE REPORT

exp Services Inc Client Project #: OTT-00241785-BO Sampler Initials: MAD

			Matrix	Spike	SPIKED	BLANK	Method I	Blank	RP	D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
6073563	o-Terphenyl	2019/04/17	91	30 - 130	91	30 - 130	86	%		
6075586	1,4-Difluorobenzene	2019/04/17	102	60 - 140	102	60 - 140	101	%		
6075586	4-Bromofluorobenzene	2019/04/17	100	60 - 140	101	60 - 140	101	%		
6075586	D10-Ethylbenzene	2019/04/17	111	30 - 130	105	30 - 130	88	%		
6075586	D4-1,2-Dichloroethane	2019/04/17	93	60 - 140	95	60 - 140	96	%		
6078546	D10-Anthracene	2019/04/18	103	50 - 130	103	50 - 130	102	%		
6078546	D14-Terphenyl (FS)	2019/04/18	89	50 - 130	91	50 - 130	92	%		
6078546	D8-Acenaphthylene	2019/04/18	99	50 - 130	99	50 - 130	99	%		
6073563	F2 (C10-C16 Hydrocarbons)	2019/04/17	96	50 - 130	100	80 - 120	<10	ug/g	6.1	50
6073563	F3 (C16-C34 Hydrocarbons)	2019/04/17	96	50 - 130	100	80 - 120	<50	ug/g	4.2	50
6073563	F4 (C34-C50 Hydrocarbons)	2019/04/17	96	50 - 130	100	80 - 120	<50	ug/g	NC	50
6075110	Moisture	2019/04/18							29	50
6075586	Benzene	2019/04/17	88	60 - 140	92	60 - 140	<0.02	ug/g	NC	50
6075586	Ethylbenzene	2019/04/17	88	60 - 140	91	60 - 140	<0.02	ug/g	NC	50
6075586	F1 (C6-C10) - BTEX	2019/04/17					<10	ug/g	101 (1)	50
6075586	F1 (C6-C10)	2019/04/17	93	60 - 140	94	80 - 120	<10	ug/g	74 (1)	50
6075586	o-Xylene	2019/04/17	86	60 - 140	92	60 - 140	<0.02	ug/g	NC	50
6075586	p+m-Xylene	2019/04/17	80	60 - 140	86	60 - 140	<0.04	ug/g	NC	50
6075586	Toluene	2019/04/17	84	60 - 140	90	60 - 140	<0.02	ug/g	NC	50
6075586	Total Xylenes	2019/04/17					<0.04	ug/g	NC	50
6077209	Moisture	2019/04/18							0	20
6078546	1-Methylnaphthalene	2019/04/18	108	50 - 130	111	50 - 130	<0.0050	ug/g	NC	40
6078546	2-Methylnaphthalene	2019/04/18	96	50 - 130	99	50 - 130	<0.0050	ug/g	NC	40
6078546	Acenaphthene	2019/04/18	92	50 - 130	95	50 - 130	<0.0050	ug/g	NC	40
6078546	Acenaphthylene	2019/04/18	100	50 - 130	99	50 - 130	<0.0050	ug/g	NC	40
6078546	Anthracene	2019/04/18	96	50 - 130	97	50 - 130	<0.0050	ug/g	NC	40
6078546	Benzo(a)anthracene	2019/04/18	109	50 - 130	108	50 - 130	<0.0050	ug/g	NC	40
6078546	Benzo(a)pyrene	2019/04/18	93	50 - 130	96	50 - 130	<0.0050	ug/g	NC	40
6078546	Benzo(b/j)fluoranthene	2019/04/18	92	50 - 130	94	50 - 130	<0.0050	ug/g	NC	40
6078546	Benzo(g,h,i)perylene	2019/04/18	97	50 - 130	98	50 - 130	<0.0050	ug/g	NC	40
6078546	Benzo(k)fluoranthene	2019/04/18	76	50 - 130	92	50 - 130	<0.0050	ug/g	NC	40
6078546	Chrysene	2019/04/18	99	50 - 130	100	50 - 130	<0.0050	ug/g	NC	40

Page 7 of 13

QUALITY ASSURANCE REPORT(CONT'D)

exp Services Inc Client Project #: OTT-00241785-BO Sampler Initials: MAD

			Matrix	Spike	SPIKED	BLANK	Method E	Blank	RPI)
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
6078546	Dibenz(a,h)anthracene	2019/04/18	94	50 - 130	91	50 - 130	<0.0050	ug/g	NC	40
6078546	Fluoranthene	2019/04/18	95	50 - 130	97	50 - 130	<0.0050	ug/g	NC	40
6078546	Fluorene	2019/04/18	91	50 - 130	94	50 - 130	<0.0050	ug/g	NC	40
6078546	Indeno(1,2,3-cd)pyrene	2019/04/18	100	50 - 130	101	50 - 130	<0.0050	ug/g	NC	40
6078546	Naphthalene	2019/04/18	84	50 - 130	89	50 - 130	<0.0050	ug/g	NC	40
6078546	Phenanthrene	2019/04/18	92	50 - 130	94	50 - 130	<0.0050	ug/g	NC	40
6078546	Pyrene	2019/04/18	96	50 - 130	97	50 - 130	<0.0050	ug/g	NC	40

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

(1) Recovery or RPD for this parameter is outside control limits. The overall quality control for this analysis meets acceptability criteria.

exp Services Inc Client Project #: OTT-00241785-BO Sampler Initials: MAD

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Ewa Pranjic, M.Sc., C.Chem, Scientific Specialist

Liliana Gaburici, VOC Lab

Steve Roberts, Ottawa Lab Manager

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Invoice Information			Report	Information	(if dif	fers fro	om invo	oice)		16	T		Proje	ect Information (where applicable)		1	Turnarou	nd Time (TAT) Required
ompany Name: EXP Service,	Inc .	Company N	lame:			184						Quotation	n #:	Stream 3			Regular TAT (5-	7 days) Most analyses
ontact Name: MARK MCAL	LA	Contact Na	me:			1	11	1	101			P.O. #/ AF				P	LEASE PROVIDE AD	VANCE NOTICE FOR RUSH PROJECTS
idress: 2650 Queensvi	ow Drive	Address:			1			2.5	and a			Project #:	-	OTT-00241785	-B0		Rush TAT (S	urcharges will be applied)
ottawa	5. A 19.											Site Locat	ion:				1 Day	2 Days 3-4 Days
one: 613 688-1899 Fax:		Phone: _	The Real	Kult		Fax:						Site #:			1915			
iail: Mark. McCalla @	expilom	Email:					-			10	_	Sampled I	By: _	MAD -		Date R	equired:	
MOE REGULATED DRINKING W	ATER OR WATER INTE	NDED FOR	HUMAN CONSI	JMPTION M	IUST E	E SUB	MITTE	DONT	THE MA	XXXAM	DRIN	NKING WA	TER CHA	NN OF CUSTODY		Rush C	onfirmation #:	
Regulation 153		Other Regu	lations			-	-	-		-	-	Analysis	s Reques	sted	_		LABC	RATORY USE ONLY
Table 2 Grant Coarse Table 3 Agri/ Other Table FOR RSC (PLEASE CIRCLE) Y / N	MISA PWQO Other (Spe REG 558 (N	Storm S Region cify) MIN. 3 DAY T	ewer Bylaw		TED	Metals / Hg / CrVI				ANICS		HWS - B)				Prese		
ude Criteria on Certificate of Analysis: Y / N	244	1.21.0		S	UBMIT	CLE) A				INORG	INIS	etals, F			TAZE			
SAMPLES MUST BE KEPT COOL (< 10 $^{\circ}$ C) FROM TI	ME OF SAMPLING UN	TIL DELIVER			INERS S	ED (CIF		14		TALS &	MS ME	TALS PMS M	44		OT ANA			
SAMPLE IDENTIFICATION	DATE SA (YYYY/M	MPLED M/DD)	TIME SAMPLED (HH:MM)	MATRIX	# OF CONTA	FIELD FILTER	BTEX/ PHC F	PHCs F2 - F4	vocs	REG 153 ME	REG 153 ICP	REG 153 ME (Hg. Cr VI, IC	0		N OG-GTOH	COOLIN	G MEUIA PRESENT	COMMENTS
BHI 557	2019/1	14/0,2	(5			X	X				201			1		1.881	
BHZ 553	20191	64/02	- 1	5				-					X				1.1.2	
	1	1													1.14			S. There is
100 C 100 C	11.2.6		100	1								1						
			1								-					1		
							17	An	r-19	0 10	:45	5						Sec. 1
	C - 1				٨	Linh	17.	-Ap	ams	son							1	- 19 - 19 - 19 - 19 - 19 - 19 - 19 - 19
	1.163		Re C	1							11					-		IN ITTO IN CATTON
			1	165		B	9A	07	51								an'	R
100 100 100 100 100 100 100 100 100 100				-	77.7	17		~1	<u>م</u>	1	1		1.1			-	021	
BELINOUISHED BY (Signature (Print)	DATE / WWW/AAA	(00)	TIME ININA	1.1	-	PEC	ENCO	BV. /CL	anatura	Drint	1		047			-		

Unless otherwise agreed to in writing, work submitted on this Chain of Custody is subject to Maxxam's standard Terms and Conditions. Signing of this Chain of Custody document is acknowledgment and acceptance of our terms which are available for viewing at www.maxxam.ca/terms. Sample container, preservation, hold time and packages information can be viewed at http://maxxam.ca/wp-content/uploads/Ontario-COC.pdf.

COC-1004 (03/17)

Max	Sept to: Maxxam Mi Group Company Group Company Tel: (905) 8	ssissauga obello Rd I, ON, LSN 17-5700	21.8			MA	XXAN	1 INTERLA	B CHAIN	OF (CÚSTOD	Y RECO	RD		Page 0 COC # B	9A0751-NONT-01-01	1			
REPORT INFORM	ATION					-			ANAL	YSIS R	EQUESTED				Job Bo	nrcode Label	2			
Company:	Maxxam					-														
Address:	32 Colonnade Unit 1000, Nepean,	Ontario, K	2E 7)6								1					-4 P	1			
Contact Name:	Alisha Williamson		,												111444					*
Email:	AWilliamson@maxxam.ca, scontra	actor@mai	xxam.ca				-			- 1				1 1			1			
Phone:										- 1				1 1	POA	0751				
Maxxam Project #	89A0751														Dar	10751				
Client Invoice To:	exp Services Inc (17498)						(Soil								ж					
Client Report To:	exp Services Inc (17498)			Incl. on	Report? Ye	s/No	AHS							I L	· · · ·					
# SAMPLE ID		MATRIX	DATE SAMPLED	TIME SAMPLED	SAMPLE	# CONT,	0.Reg 1531							-	ADDITIONAL SA	MPLE INFORMATION				
1 JLW130-BH	2 553	SOIL	2019/04/02	13:00	MAD	1	x							0	P: 01)	16 - E			S 195	
2 -				-																
3					1															
4																•				
5																				
6																				
7					1															
8					1															
9					1															
10		-			1					-		-	-			191				
SITE LOCATION:		-	REG	SULATORY C	RITERIA			SPECIAL IN	ISTRUCTION	NS			-	R	REQUIRED EDDs	TURNAROUND TIME				
SITE #: PROJECT #: 0TT-00241785-BC	NER/SERVICE ORDER TIME ITEM							Please info for the req **Please r	irm Maxxar uested test eturn a cop	m imm t(s). ey of th	ediately if t	tou are n	ot accred	dited N	National Excel (N001) DEC Excel (0036)	X Rush Required 2019/04/22 Date Required		7		
POTATE, TASK OR	DERYSERVICE ORDER, LINE ITEM.															will be incurred.				
COOLER ID: / Custody Seal Presi	YES NO 1 2 ent V Temp: 1/4 /4/	-	COOLER ID: Custody Seal	Present	YES NO	Ten	np:	1 2	3 0	OOLER	ID: Seal Prese	YE	5 NO	Temp:	1 2 3	RECEIVING LAB USE ONLY Maxxam Job #				
Custody Seal Intac Cooling Media Pre	t V (°C) 4 4	7	Custody Seal Cooling Medi	Intact a Present		(°¢	-)		0	ustody ooling	Seal Intact Media Pres	sent	+	(°C)		B9A0751				
RELINQUISHED BY	(\$IGN & PRINT)	DATE:	(YYYY/MM/DD)	TIME: (F	HH:MM)	RECE	IVED BY	1: (SIGN & PRIM	(1)	_		-	DATE: (Y	YYY/MM/D	D) TIME: (HH:MM)	Samples Labels Verified Labelled By: By:	,			
1 1	Jung 16	Jei	2/04/1	7 11	30	1.	-	0	J.r.	11/	5		23/9/	104/1	18 08200					
2.	V					2,				6										÷

exp Services Inc Client Project #: OTT-00241785-BO Client ID: BH 1 SS7

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

exp Services Inc Client Project #: OTT-00241785-BO Client ID: BH 1 SS7

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

Your Project #: OTT-00241785-B Site Location: MONTGOMERY Your C.O.C. #: 712975-01-01

Attention: Mark McCalla

exp Services Inc 100-2650 Queensview Drive Ottawa, ON CANADA K2B 8H6

> Report Date: 2019/04/25 Report #: R5683556 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B9A0656 Received: 2019/04/16. 17:58

Sample Matrix: Water # Samples Received: 5

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
1,3-Dichloropropene Sum	5	N/A	2019/04/24	OTT SOP-00002	EPA 8260C m
Petroleum Hydrocarbons F2-F4 in Water (2)	1	2019/04/17	2019/04/17	OTT SOP-00001	CCME Hydrocarbons
Petroleum Hydrocarbons F2-F4 in Water (2)	3	2019/04/17	2019/04/18	OTT SOP-00001	CCME Hydrocarbons
Dissolved Metals by ICPMS (1)	4	N/A	2019/04/22	CAM SOP-00447	EPA 6020B m
Volatile Organic Compounds and F1 PHCs	4	N/A	2019/04/23	OTT SOP-00002	EPA 8260C m
Volatile Organic Compounds in Water	1	N/A	2019/04/23	OTT SOP-00002	EPA 8260C m

Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing. Maxxam is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Maxxam, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) This test was performed by Maxxam Analytics Mississauga

(2) All CCME PHC results met required criteria unless otherwise stated in the report. The CWS PHC methods employed by Maxxam conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following "Alberta Environment's Interpretation of the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Validation of Performance-Based Alternative Methods September 2003". Documentation is available upon request. Modifications from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data reported using validated cold solvent extraction instead of Soxhlet extraction.

Your Project #: OTT-00241785-B Site Location: MONTGOMERY Your C.O.C. #: 712975-01-01

Attention: Mark McCalla

exp Services Inc 100-2650 Queensview Drive Ottawa, ON CANADA K2B 8H6

> Report Date: 2019/04/25 Report #: R5683556 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B9A0656 Received: 2019/04/16, 17:58

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Alisha Williamson, Project Manager Email: AWilliamson@maxxam.ca Phone# (613) 274-0573

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

exp Services Inc Client Project #: OTT-00241785-B Site Location: MONTGOMERY Sampler Initials: MAD

O.REG 153 DISSOLVED ICPMS METALS (WATER)

Maxxam ID		JLV697	JLV698	JLV699	JLV700		
Sampling Data		2019/04/16	2019/04/16	2019/04/16	2019/04/16		
		12:00	12:00	12:00	12:00		
COC Number		712975-01-01	712975-01-01	712975-01-01	712975-01-01		
	UNITS	MW19-1	MW19-2	MW19-3	DUP-1	RDL	QC Batch
Metals							
Dissolved Antimony (Sb)	ug/L	<0.50	<0.50	<0.50	<0.50	0.50	6077360
Dissolved Arsenic (As)	ug/L	<1.0	<1.0	<1.0	<1.0	1.0	6077360
Dissolved Barium (Ba)	ug/L	98	53	120	95	2.0	6077360
Dissolved Beryllium (Be)	ug/L	<0.50	<0.50	<0.50	<0.50	0.50	6077360
Dissolved Boron (B)	ug/L	61	49	43	62	10	6077360
Dissolved Cadmium (Cd)	ug/L	<0.10	<0.10	<0.10	<0.10	0.10	6077360
Dissolved Chromium (Cr)	ug/L	<5.0	<5.0	<5.0	<5.0	5.0	6077360
Dissolved Cobalt (Co)	ug/L	<0.50	0.67	<0.50	<0.50	0.50	6077360
Dissolved Copper (Cu)	ug/L	1.0	1.9	1.5	<1.0	1.0	6077360
Dissolved Lead (Pb)	ug/L	<0.50	<0.50	<0.50	<0.50	0.50	6077360
Dissolved Molybdenum (Mo)	ug/L	4.6	3.8	5.0	5.1	0.50	6077360
Dissolved Nickel (Ni)	ug/L	3.8	5.2	4.5	3.7	1.0	6077360
Dissolved Selenium (Se)	ug/L	3.6	5.4	2.3	3.6	2.0	6077360
Dissolved Silver (Ag)	ug/L	<0.10	<0.10	<0.10	<0.10	0.10	6077360
Dissolved Sodium (Na)	ug/L	390000	520000	190000	400000	100	6077360
Dissolved Thallium (Tl)	ug/L	<0.050	<0.050	<0.050	<0.050	0.050	6077360
Dissolved Uranium (U)	ug/L	7.6	15	7.2	7.5	0.10	6077360
Dissolved Vanadium (V)	ug/L	<0.50	<0.50	<0.50	<0.50	0.50	6077360
Dissolved Zinc (Zn)	ug/L	<5.0	<5.0	<5.0	<5.0	5.0	6077360
RDL = Reportable Detection Li	nit						

QC Batch = Quality Control Batch

exp Services Inc Client Project #: OTT-00241785-B Site Location: MONTGOMERY Sampler Initials: MAD

O.REG 153 VOCS BY HS & F1-F4 (WATER)

Maxxam ID		JLV697			JLV697			JLV698		
Sampling Date		2019/04/16	Γ		2019/04/16	Γ		2019/04/16	∏ ∣	
		12:00	ļ		12:00			12:00		ļ
COC Number		712975-01-01	ļ		712975-01-01			712975-01-01		
	UNITS	MW19-1	RDL	QC Batch	MW19-1 Lab-Dup	RDL	QC Batch	MW19-2	RDL	QC Batch
Calculated Parameters						_				
1,3-Dichloropropene (cis+trans)	ug/L	<0.50	0.50	6074610				<0.50	0.50	6074610
Volatile Organics	<u> </u>			<u> </u>						
Acetone (2-Propanone)	ug/L	<10	10	6082362	<10	10	6082362	<10	10	6082362
Benzene	ug/L	<0.20	0.20	6082362	<0.20	0.20	6082362	<0.20	0.20	6082362
Bromodichloromethane	ug/L	<0.50	0.50	6082362	<0.50	0.50	6082362	<0.50	0.50	6082362
Bromoform	ug/L	<1.0	1.0	6082362	<1.0	1.0	6082362	<1.0	1.0	6082362
Bromomethane	ug/L	<0.50	0.50	6082362	<0.50	0.50	6082362	<0.50	0.50	6082362
Carbon Tetrachloride	ug/L	<0.20	0.20	6082362	<0.20	0.20	6082362	<0.20	0.20	6082362
Chlorobenzene	ug/L	<0.20	0.20	6082362	<0.20	0.20	6082362	<0.20	0.20	6082362
Chloroform	ug/L	<0.20	0.20	6082362	<0.20	0.20	6082362	0.68	0.20	6082362
Dibromochloromethane	ug/L	<0.50	0.50	6082362	<0.50	0.50	6082362	<0.50	0.50	6082362
1,2-Dichlorobenzene	ug/L	<0.50	0.50	6082362	<0.50	0.50	6082362	<0.50	0.50	6082362
1,3-Dichlorobenzene	ug/L	<0.50	0.50	6082362	<0.50	0.50	6082362	<0.50	0.50	6082362
1,4-Dichlorobenzene	ug/L	<0.50	0.50	6082362	<0.50	0.50	6082362	<0.50	0.50	6082362
Dichlorodifluoromethane (FREON 12)	ug/L	<1.0	1.0	6082362	<1.0	1.0	6082362	<1.0	1.0	6082362
1,1-Dichloroethane	ug/L	<0.20	0.20	6082362	<0.20	0.20	6082362	<0.20	0.20	6082362
1,2-Dichloroethane	ug/L	<0.50	0.50	6082362	<0.50	0.50	6082362	<0.50	0.50	6082362
1,1-Dichloroethylene	ug/L	<0.20	0.20	6082362	<0.20	0.20	6082362	<0.20	0.20	6082362
cis-1,2-Dichloroethylene	ug/L	<0.50	0.50	6082362	<0.50	0.50	6082362	<0.50	0.50	6082362
trans-1,2-Dichloroethylene	ug/L	<0.50	0.50	6082362	<0.50	0.50	6082362	<0.50	0.50	6082362
1,2-Dichloropropane	ug/L	<0.20	0.20	6082362	<0.20	0.20	6082362	<0.20	0.20	6082362
cis-1,3-Dichloropropene	ug/L	<0.30	0.30	6082362	<0.30	0.30	6082362	<0.30	0.30	6082362
trans-1,3-Dichloropropene	ug/L	<0.40	0.40	6082362	<0.40	0.40	6082362	<0.40	0.40	6082362
Ethylbenzene	ug/L	<0.20	0.20	6082362	<0.20	0.20	6082362	<0.20	0.20	6082362
Ethylene Dibromide	ug/L	<0.20	0.20	6082362	<0.20	0.20	6082362	<0.20	0.20	6082362
Hexane	ug/L	<1.0	1.0	6082362	<1.0	1.0	6082362	<1.0	1.0	6082362
Methylene Chloride(Dichloromethane)	ug/L	<2.0	2.0	6082362	<2.0	2.0	6082362	<2.0	2.0	6082362
Methyl Ethyl Ketone (2-Butanone)	ug/L	<10	10	6082362	<10	10	6082362	<10	10	6082362
Methyl Isobutyl Ketone	ug/L	<5.0	5.0	6082362	<5.0	5.0	6082362	<5.0	5.0	6082362
Methyl t-butyl ether (MTBE)	ug/L	<0.50	0.50	6082362	<0.50	0.50	6082362	<0.50	0.50	6082362
Styrene	ug/L	<0.50	0.50	6082362	<0.50	0.50	6082362	<0.50	0.50	6082362
1,1,1,2-Tetrachloroethane	ug/L	<0.50	0.50	6082362	<0.50	0.50	6082362	<0.50	0.50	6082362
1,1,2,2-Tetrachloroethane	ug/L	<0.50	0.50	6082362	<0.50	0.50	6082362	<0.50	0.50	6082362
RDL = Reportable Detection Limit										

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

exp Services Inc Client Project #: OTT-00241785-B Site Location: MONTGOMERY Sampler Initials: MAD

O.REG 153 VOCS BY HS & F1-F4 (WATER)

Maxxam ID		JLV697			JLV697			JLV698		
Sampling Data		2019/04/16			2019/04/16			2019/04/16		
		12:00			12:00			12:00		
COC Number		712975-01-01			712975-01-01			712975-01-01		
	UNITS	MW19-1	RDL	QC Batch	MW19-1 Lab-Dup	RDL	QC Batch	MW19-2	RDL	QC Batch
Tetrachloroethylene	ug/L	<0.20	0.20	6082362	<0.20	0.20	6082362	<0.20	0.20	6082362
Toluene	ug/L	<0.20	0.20	6082362	<0.20	0.20	6082362	<0.20	0.20	6082362
1,1,1-Trichloroethane	ug/L	<0.20	0.20	6082362	<0.20	0.20	6082362	<0.20	0.20	6082362
1,1,2-Trichloroethane	ug/L	<0.50	0.50	6082362	<0.50	0.50	6082362	<0.50	0.50	6082362
Trichloroethylene	ug/L	<0.20	0.20	6082362	<0.20	0.20	6082362	<0.20	0.20	6082362
Trichlorofluoromethane (FREON 11)	ug/L	<0.50	0.50	6082362	<0.50	0.50	6082362	<0.50	0.50	6082362
Vinyl Chloride	ug/L	<0.20	0.20	6082362	<0.20	0.20	6082362	<0.20	0.20	6082362
p+m-Xylene	ug/L	<0.20	0.20	6082362	<0.20	0.20	6082362	<0.20	0.20	6082362
o-Xylene	ug/L	<0.20	0.20	6082362	<0.20	0.20	6082362	<0.20	0.20	6082362
Total Xylenes	ug/L	<0.20	0.20	6082362	<0.20	0.20	6082362	<0.20	0.20	6082362
F1 (C6-C10)	ug/L	<25	25	6082362	<25	25	6082362	<25	25	6082362
F1 (C6-C10) - BTEX	ug/L	<25	25	6082362	<25	25	6082362	<25	25	6082362
F2-F4 Hydrocarbons										
F2 (C10-C16 Hydrocarbons)	ug/L	<100	100	6072615				<100	100	6072615
F3 (C16-C34 Hydrocarbons)	ug/L	<200	200	6072615				<200	200	6072615
F4 (C34-C50 Hydrocarbons)	ug/L	<200	200	6072615				<200	200	6072615
Reached Baseline at C50	ug/L	Yes		6072615				Yes		6072615
Surrogate Recovery (%)								•		
o-Terphenyl	%	107		6072615				106		6072615
4-Bromofluorobenzene	%	101		6082362	100		6082362	99		6082362
D4-1,2-Dichloroethane	%	111		6082362	109		6082362	103		6082362
D8-Toluene	%	98		6082362	98		6082362	98		6082362
RDL = Reportable Detection Limit QC Batch = Quality Control Batch Lab-Dup = Laboratory Initiated Duplicate	5		-							

exp Services Inc Client Project #: OTT-00241785-B Site Location: MONTGOMERY Sampler Initials: MAD

O.REG 153 VOCS BY HS & F1-F4 (WATER)

Maxxam ID		JLV699	JLV700		
Compling Data		2019/04/16	2019/04/16		
		12:00	12:00		
COC Number		712975-01-01	712975-01-01		
	UNITS	MW19-3	DUP-1	RDL	QC Batch
Calculated Parameters					
1,3-Dichloropropene (cis+trans)	ug/L	<0.50	<0.50	0.50	6074610
Volatile Organics				•	,
Acetone (2-Propanone)	ug/L	<10	<10	10	6082362
Benzene	ug/L	<0.20	<0.20	0.20	6082362
Bromodichloromethane	ug/L	<0.50	<0.50	0.50	6082362
Bromoform	ug/L	<1.0	<1.0	1.0	6082362
Bromomethane	ug/L	<0.50	<0.50	0.50	6082362
Carbon Tetrachloride	ug/L	<0.20	<0.20	0.20	6082362
Chlorobenzene	ug/L	<0.20	<0.20	0.20	6082362
Chloroform	ug/L	0.35	<0.20	0.20	6082362
Dibromochloromethane	ug/L	<0.50	<0.50	0.50	6082362
1,2-Dichlorobenzene	ug/L	<0.50	<0.50	0.50	6082362
1,3-Dichlorobenzene	ug/L	<0.50	<0.50	0.50	6082362
1,4-Dichlorobenzene	ug/L	<0.50	<0.50	0.50	6082362
Dichlorodifluoromethane (FREON 12)	ug/L	<1.0	<1.0	1.0	6082362
1,1-Dichloroethane	ug/L	<0.20	<0.20	0.20	6082362
1,2-Dichloroethane	ug/L	<0.50	<0.50	0.50	6082362
1,1-Dichloroethylene	ug/L	<0.20	<0.20	0.20	6082362
cis-1,2-Dichloroethylene	ug/L	<0.50	<0.50	0.50	6082362
trans-1,2-Dichloroethylene	ug/L	<0.50	<0.50	0.50	6082362
1,2-Dichloropropane	ug/L	<0.20	<0.20	0.20	6082362
cis-1,3-Dichloropropene	ug/L	<0.30	<0.30	0.30	6082362
trans-1,3-Dichloropropene	ug/L	<0.40	<0.40	0.40	6082362
Ethylbenzene	ug/L	<0.20	<0.20	0.20	6082362
Ethylene Dibromide	ug/L	<0.20	<0.20	0.20	6082362
Hexane	ug/L	<1.0	<1.0	1.0	6082362
Methylene Chloride(Dichloromethane)	ug/L	<2.0	<2.0	2.0	6082362
Methyl Ethyl Ketone (2-Butanone)	ug/L	<10	<10	10	6082362
Methyl Isobutyl Ketone	ug/L	<5.0	<5.0	5.0	6082362
Methyl t-butyl ether (MTBE)	ug/L	<0.50	<0.50	0.50	6082362
Styrene	ug/L	<0.50	<0.50	0.50	6082362
1,1,1,2-Tetrachloroethane	ug/L	<0.50	<0.50	0.50	6082362
1,1,2,2-Tetrachloroethane	ug/L	<0.50	<0.50	0.50	6082362
RDL = Reportable Detection Limit					
QC Batch = Quality Control Batch					

exp Services Inc Client Project #: OTT-00241785-B Site Location: MONTGOMERY Sampler Initials: MAD

O.REG 153 VOCS BY HS & F1-F4 (WATER)

Maxxam ID		JLV699	JLV700		
Compling Data		2019/04/16	2019/04/16		
		12:00	12:00		
COC Number		712975-01-01	712975-01-01		
	UNITS	MW19-3	DUP-1	RDL	QC Batch
Tetrachloroethylene	ug/L	<0.20	<0.20	0.20	6082362
Toluene	ug/L	<0.20	<0.20	0.20	6082362
1,1,1-Trichloroethane	ug/L	<0.20	<0.20	0.20	6082362
1,1,2-Trichloroethane	ug/L	<0.50	<0.50	0.50	6082362
Trichloroethylene	ug/L	<0.20	<0.20	0.20	6082362
Trichlorofluoromethane (FREON 11)	ug/L	<0.50	<0.50	0.50	6082362
Vinyl Chloride	ug/L	<0.20	<0.20	0.20	6082362
p+m-Xylene	ug/L	<0.20	<0.20	0.20	6082362
o-Xylene	ug/L	<0.20	<0.20	0.20	6082362
Total Xylenes	ug/L	<0.20	<0.20	0.20	6082362
F1 (C6-C10)	ug/L	<25	<25	25	6082362
F1 (C6-C10) - BTEX	ug/L	<25	<25	25	6082362
F2-F4 Hydrocarbons					
F2 (C10-C16 Hydrocarbons)	ug/L	<100	<100	100	6072615
F3 (C16-C34 Hydrocarbons)	ug/L	<200	<200	200	6072615
F4 (C34-C50 Hydrocarbons)	ug/L	<200	<200	200	6072615
Reached Baseline at C50	ug/L	Yes	Yes		6072615
Surrogate Recovery (%)					
o-Terphenyl	%	104	105		6072615
4-Bromofluorobenzene	%	95	100		6082362
D4-1,2-Dichloroethane	%	100	111		6082362
D8-Toluene	%	99	98		6082362
RDL = Reportable Detection Limit					
QC Batch = Quality Control Batch					

exp Services Inc Client Project #: OTT-00241785-B Site Location: MONTGOMERY Sampler Initials: MAD

O.REG 153 VOCS (WATER)

Maxxam ID		JLV701		
Sampling Date		2019/04/16		
		12:00		
COC Number		712975-01-01		
	UNITS	TRIP BLANK	RDL	QC Batch
Calculated Parameters				
1,3-Dichloropropene (cis+trans)	ug/L	<0.50	0.50	6074610
Volatile Organics				
Acetone (2-Propanone)	ug/L	<10	10	6083182
Benzene	ug/L	<0.20	0.20	6083182
Bromodichloromethane	ug/L	<0.50	0.50	6083182
Bromoform	ug/L	<1.0	1.0	6083182
Bromomethane	ug/L	<0.50	0.50	6083182
Carbon Tetrachloride	ug/L	<0.20	0.20	6083182
Chlorobenzene	ug/L	<0.20	0.20	6083182
Chloroform	ug/L	<0.20	0.20	6083182
Dibromochloromethane	ug/L	<0.50	0.50	6083182
1,2-Dichlorobenzene	ug/L	<0.50	0.50	6083182
1,3-Dichlorobenzene	ug/L	<0.50	0.50	6083182
1,4-Dichlorobenzene	ug/L	<0.50	0.50	6083182
Dichlorodifluoromethane (FREON 12)	ug/L	<1.0	1.0	6083182
1,1-Dichloroethane	ug/L	<0.20	0.20	6083182
1,2-Dichloroethane	ug/L	<0.50	0.50	6083182
1,1-Dichloroethylene	ug/L	<0.20	0.20	6083182
cis-1,2-Dichloroethylene	ug/L	<0.50	0.50	6083182
trans-1,2-Dichloroethylene	ug/L	<0.50	0.50	6083182
1,2-Dichloropropane	ug/L	<0.20	0.20	6083182
cis-1,3-Dichloropropene	ug/L	<0.30	0.30	6083182
trans-1,3-Dichloropropene	ug/L	<0.40	0.40	6083182
Ethylbenzene	ug/L	<0.20	0.20	6083182
Ethylene Dibromide	ug/L	<0.20	0.20	6083182
Hexane	ug/L	<1.0	1.0	6083182
Methylene Chloride(Dichloromethane)	ug/L	<2.0	2.0	6083182
Methyl Ethyl Ketone (2-Butanone)	ug/L	<10	10	6083182
Methyl Isobutyl Ketone	ug/L	<5.0	5.0	6083182
Methyl t-butyl ether (MTBE)	ug/L	<0.50	0.50	6083182
Styrene	ug/L	<0.50	0.50	6083182
1,1,1,2-Tetrachloroethane	ug/L	<0.50	0.50	6083182
1,1,2,2-Tetrachloroethane	ug/L	<0.50	0.50	6083182
RDL = Reportable Detection Limit				
QC Batch = Quality Control Batch				

exp Services Inc Client Project #: OTT-00241785-B Site Location: MONTGOMERY Sampler Initials: MAD

O.REG 153 VOCS (WATER)

Maxxam ID		JLV701		
Sampling Data		2019/04/16		
		12:00		
COC Number		712975-01-01		
	UNITS	TRIP BLANK	RDL	QC Batch
Tetrachloroethylene	ug/L	<0.20	0.20	6083182
Toluene	ug/L	<0.20	0.20	6083182
1,1,1-Trichloroethane	ug/L	<0.20	0.20	6083182
1,1,2-Trichloroethane	ug/L	<0.50	0.50	6083182
Trichloroethylene	ug/L	<0.20	0.20	6083182
Trichlorofluoromethane (FREON 11)	ug/L	<0.50	0.50	6083182
Vinyl Chloride	ug/L	<0.20	0.20	6083182
p+m-Xylene	ug/L	<0.20	0.20	6083182
o-Xylene	ug/L	<0.20	0.20	6083182
Total Xylenes	ug/L	<0.20	0.20	6083182
Surrogate Recovery (%)			•	<u>, </u>
4-Bromofluorobenzene	%	97		6083182
D4-1,2-Dichloroethane	%	102		6083182
D8-Toluene	%	97		6083182
RDL = Reportable Detection Limit				
QC Batch = Quality Control Batch				

exp Services Inc Client Project #: OTT-00241785-B Site Location: MONTGOMERY Sampler Initials: MAD

TEST SUMMARY

Maxxam ID: Sample ID: Matrix:	JLV697 MW19-1 Water					Collected: Shipped: Received:	2019/04/16 2019/04/16
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
1,3-Dichloropropene Sum	า	CALC	6074610	N/A	2019/04/24	Automate	d Statchk
Petroleum Hydrocarbons	F2-F4 in Water	GC/FID	6072615	2019/04/17	2019/04/17	Mariana V	ascan
Dissolved Metals by ICPM	1S	ICP/MS	6077360	N/A	2019/04/22	Thao Nguy	ven
Volatile Organic Compou	nds and F1 PHCs	GC/MSFD	6082362	N/A	2019/04/23	Liliana Gat	purici
Maxxam ID: Sample ID: Matrix:	JLV697 Dup MW19-1 Water					Collected: Shipped: Received:	2019/04/16 2019/04/16
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Volatile Organic Compou	nds and F1 PHCs	GC/MSFD	6082362	N/A	2019/04/23	Liliana Gat	purici
Maxxam ID: Sample ID: Matrix:	JLV698 MW19-2 Water					Collected: Shipped: Received:	2019/04/16 2019/04/16
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
1,3-Dichloropropene Sum	ı	CALC	6074610	N/A	2019/04/24	Automate	d Statchk
Petroleum Hydrocarbons	F2-F4 in Water	GC/FID	6072615	2019/04/17	2019/04/18	Mariana V	ascan
Dissolved Metals by ICPM	1S	ICP/MS	6077360	N/A	2019/04/22	Thao Nguy	ven
Volatile Organic Compou	nds and F1 PHCs	GC/MSFD	6082362	N/A	2019/04/23	Liliana Gat	purici
Maxxam ID: Sample ID: Matrix:	JLV699 MW19-3 Water					Collected: Shipped: Received:	2019/04/16 2019/04/16
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
1,3-Dichloropropene Sum	า	CALC	6074610	N/A	2019/04/24	Automate	d Statchk
Petroleum Hydrocarbons	F2-F4 in Water	GC/FID	6072615	2019/04/17	2019/04/18	Mariana V	ascan
Dissolved Metals by ICPN	1S	ICP/MS	6077360	N/A	2019/04/22	Thao Nguy	ven
Volatile Organic Compou	nds and F1 PHCs	GC/MSFD	6082362	N/A	2019/04/23	Liliana Gat	purici
Maxxam ID: Sample ID: Matrix:	JLV700 DUP-1 Water					Collected: Shipped: Received:	2019/04/16 2019/04/16
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
1,3-Dichloropropene Sum	1	CALC	6074610	N/A	2019/04/24	Automate	d Statchk
Petroleum Hydrocarbons	F2-F4 in Water	GC/FID	6072615	2019/04/17	2019/04/18	Mariana V	ascan
Dissolved Metals by ICPN	1S	ICP/MS	6077360	N/A	2019/04/22	Thao Nguy	ven
Volatile Organic Compou	nds and F1 PHCs	GC/MSFD	6082362	N/A	2019/04/23	Liliana Gat	ourici

exp Services Inc Client Project #: OTT-00241785-B Site Location: MONTGOMERY Sampler Initials: MAD

TEST SUMMARY

Maxxam ID: Sample ID: Matrix:	JLV701 TRIP BLANK Water					Collected: 2019/04/16 Shipped: Received: 2019/04/16
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst
1,3-Dichloropropene Sum		CALC	6074610	N/A	2019/04/24	Automated Statchk
Volatile Organic Compour	ids in Water	GC/MS	6083182	N/A	2019/04/23	Liliana Gaburici

exp Services Inc Client Project #: OTT-00241785-B Site Location: MONTGOMERY Sampler Initials: MAD

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1 7.0°C

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

exp Services Inc Client Project #: OTT-00241785-B Site Location: MONTGOMERY Sampler Initials: MAD

			Matrix	Spike	SPIKED	BLANK	Method	Blank	RP	D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
6072615	o-Terphenyl	2019/04/17	104	30 - 130	106	30 - 130	108	%		
6082362	4-Bromofluorobenzene	2019/04/23	106	70 - 130	104	70 - 130	96	%		
6082362	D4-1,2-Dichloroethane	2019/04/23	126	70 - 130	120	70 - 130	94	%		
6082362	D8-Toluene	2019/04/23	97	70 - 130	97	70 - 130	102	%		
6083182	4-Bromofluorobenzene	2019/04/23			104	70 - 130	97	%		
6083182	D4-1,2-Dichloroethane	2019/04/23			122	70 - 130	111	%		
6083182	D8-Toluene	2019/04/23			99	70 - 130	96	%		
6072615	F2 (C10-C16 Hydrocarbons)	2019/04/17	97	50 - 130	96	80 - 120	<100	ug/L	8.6	50
6072615	F3 (C16-C34 Hydrocarbons)	2019/04/17	97	50 - 130	96	80 - 120	<200	ug/L	NC	50
6072615	F4 (C34-C50 Hydrocarbons)	2019/04/17	97	50 - 130	96	80 - 120	<200	ug/L	NC	50
6077360	Dissolved Antimony (Sb)	2019/04/22	104	80 - 120	101	80 - 120	<0.50	ug/L	NC	20
6077360	Dissolved Arsenic (As)	2019/04/22	100	80 - 120	99	80 - 120	<1.0	ug/L	NC	20
6077360	Dissolved Barium (Ba)	2019/04/22	101	80 - 120	99	80 - 120	<2.0	ug/L	1.7	20
6077360	Dissolved Beryllium (Be)	2019/04/22	100	80 - 120	98	80 - 120	<0.50	ug/L	NC	20
6077360	Dissolved Boron (B)	2019/04/22	100	80 - 120	100	80 - 120	<10	ug/L	3.0	20
6077360	Dissolved Cadmium (Cd)	2019/04/22	100	80 - 120	99	80 - 120	<0.10	ug/L	NC	20
6077360	Dissolved Chromium (Cr)	2019/04/22	100	80 - 120	98	80 - 120	<5.0	ug/L	NC	20
6077360	Dissolved Cobalt (Co)	2019/04/22	99	80 - 120	98	80 - 120	<0.50	ug/L	NC	20
6077360	Dissolved Copper (Cu)	2019/04/22	98	80 - 120	99	80 - 120	<1.0	ug/L	7.4	20
6077360	Dissolved Lead (Pb)	2019/04/22	97	80 - 120	96	80 - 120	<0.50	ug/L	2.8	20
6077360	Dissolved Molybdenum (Mo)	2019/04/22	104	80 - 120	102	80 - 120	<0.50	ug/L	15	20
6077360	Dissolved Nickel (Ni)	2019/04/22	99	80 - 120	98	80 - 120	<1.0	ug/L	NC	20
6077360	Dissolved Selenium (Se)	2019/04/22	101	80 - 120	100	80 - 120	<2.0	ug/L	NC	20
6077360	Dissolved Silver (Ag)	2019/04/22	99	80 - 120	100	80 - 120	<0.10	ug/L	NC	20
6077360	Dissolved Sodium (Na)	2019/04/22	96	80 - 120	94	80 - 120	<100	ug/L	1.9	20
6077360	Dissolved Thallium (Tl)	2019/04/22	96	80 - 120	95	80 - 120	<0.050	ug/L	NC	20
6077360	Dissolved Uranium (U)	2019/04/22	97	80 - 120	96	80 - 120	<0.10	ug/L	3.9	20
6077360	Dissolved Vanadium (V)	2019/04/22	101	80 - 120	99	80 - 120	<0.50	ug/L	NC	20
6077360	Dissolved Zinc (Zn)	2019/04/22	101	80 - 120	97	80 - 120	<5.0	ug/L	NC	20
6082362	1,1,1,2-Tetrachloroethane	2019/04/23	118	70 - 130	112	70 - 130	<0.50	ug/L	NC	30
6082362	1,1,1-Trichloroethane	2019/04/23	99	70 - 130	94	70 - 130	<0.20	ug/L	NC	30
6082362	1,1,2,2-Tetrachloroethane	2019/04/23	108	70 - 130	111	70 - 130	<0.50	ug/L	NC	30

QUALITY ASSURANCE REPORT(CONT'D)

exp Services Inc Client Project #: OTT-00241785-B Site Location: MONTGOMERY Sampler Initials: MAD

			Matrix	Spike	SPIKED	BLANK	Method I	Blank	RPI	2
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
6082362	1,1,2-Trichloroethane	2019/04/23	118	70 - 130	107	70 - 130	<0.50	ug/L	NC	30
6082362	1,1-Dichloroethane	2019/04/23	93	70 - 130	87	70 - 130	<0.20	ug/L	NC	30
6082362	1,1-Dichloroethylene	2019/04/23	93	70 - 130	86	70 - 130	<0.20	ug/L	NC	30
6082362	1,2-Dichlorobenzene	2019/04/23	95	70 - 130	91	70 - 130	<0.50	ug/L	NC	30
6082362	1,2-Dichloroethane	2019/04/23	112	70 - 130	102	70 - 130	<0.50	ug/L	NC	30
6082362	1,2-Dichloropropane	2019/04/23	95	70 - 130	89	70 - 130	<0.20	ug/L	NC	30
6082362	1,3-Dichlorobenzene	2019/04/23	88	70 - 130	85	70 - 130	<0.50	ug/L	NC	30
6082362	1,4-Dichlorobenzene	2019/04/23	93	70 - 130	90	70 - 130	<0.50	ug/L	NC	30
6082362	Acetone (2-Propanone)	2019/04/23	111	60 - 140	111	60 - 140	<10	ug/L	NC	30
6082362	Benzene	2019/04/23	98	70 - 130	91	70 - 130	<0.20	ug/L	NC	30
6082362	Bromodichloromethane	2019/04/23	107	70 - 130	98	70 - 130	<0.50	ug/L	NC	30
6082362	Bromoform	2019/04/23	108	70 - 130	123	70 - 130	<1.0	ug/L	NC	30
6082362	Bromomethane	2019/04/23	117	60 - 140	108	60 - 140	<0.50	ug/L	NC	30
6082362	Carbon Tetrachloride	2019/04/23	98	70 - 130	93	70 - 130	<0.20	ug/L	NC	30
6082362	Chlorobenzene	2019/04/23	98	70 - 130	94	70 - 130	<0.20	ug/L	NC	30
6082362	Chloroform	2019/04/23	95	70 - 130	94	70 - 130	<0.20	ug/L	NC	30
6082362	cis-1,2-Dichloroethylene	2019/04/23	91	70 - 130	85	70 - 130	<0.50	ug/L	NC	30
6082362	cis-1,3-Dichloropropene	2019/04/23	81	70 - 130	99	70 - 130	<0.30	ug/L	NC	30
6082362	Dibromochloromethane	2019/04/23	128	70 - 130	120	70 - 130	<0.50	ug/L	NC	30
6082362	Dichlorodifluoromethane (FREON 12)	2019/04/23	112	60 - 140	103	60 - 140	<1.0	ug/L	NC	30
6082362	Ethylbenzene	2019/04/23	84	70 - 130	79	70 - 130	<0.20	ug/L	NC	30
6082362	Ethylene Dibromide	2019/04/23	124	70 - 130	113	70 - 130	<0.20	ug/L	NC	30
6082362	F1 (C6-C10) - BTEX	2019/04/23					<25	ug/L	NC	30
6082362	F1 (C6-C10)	2019/04/23	101	60 - 140	93	60 - 140	<25	ug/L	NC	30
6082362	Hexane	2019/04/23	92	70 - 130	88	70 - 130	<1.0	ug/L	NC	30
6082362	Methyl Ethyl Ketone (2-Butanone)	2019/04/23	95	60 - 140	113	60 - 140	<10	ug/L	NC	30
6082362	Methyl Isobutyl Ketone	2019/04/23	118	70 - 130	114	70 - 130	<5.0	ug/L	NC	30
6082362	Methyl t-butyl ether (MTBE)	2019/04/23	96	70 - 130	91	70 - 130	<0.50	ug/L	NC	30
6082362	Methylene Chloride(Dichloromethane)	2019/04/23	107	70 - 130	99	70 - 130	<2.0	ug/L	NC	30
6082362	o-Xylene	2019/04/23	92	70 - 130	89	70 - 130	<0.20	ug/L	NC	30
6082362	p+m-Xylene	2019/04/23	90	70 - 130	85	70 - 130	<0.20	ug/L	NC	30
6082362	Styrene	2019/04/23	96	70 - 130	92	70 - 130	<0.50	ug/L	NC	30

QUALITY ASSURANCE REPORT(CONT'D)

exp Services Inc Client Project #: OTT-00241785-B Site Location: MONTGOMERY Sampler Initials: MAD

			Matrix	Spike	SPIKED	BLANK	Method E	Blank	RPI	כ
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
6082362	Tetrachloroethylene	2019/04/23	88	70 - 130	84	70 - 130	<0.20	ug/L	NC	30
6082362	Toluene	2019/04/23	91	70 - 130	86	70 - 130	<0.20	ug/L	NC	30
6082362	Total Xylenes	2019/04/23					<0.20	ug/L	NC	30
6082362	trans-1,2-Dichloroethylene	2019/04/23	92	70 - 130	86	70 - 130	<0.50	ug/L	NC	30
6082362	trans-1,3-Dichloropropene	2019/04/23	101	70 - 130	87	70 - 130	<0.40	ug/L	NC	30
6082362	Trichloroethylene	2019/04/23	98	70 - 130	94	70 - 130	<0.20	ug/L	NC	30
6082362	Trichlorofluoromethane (FREON 11)	2019/04/23	93	70 - 130	87	70 - 130	<0.50	ug/L	NC	30
6082362	Vinyl Chloride	2019/04/23	126	70 - 130	115	70 - 130	<0.20	ug/L	NC	30
6083182	1,1,1,2-Tetrachloroethane	2019/04/23			120	70 - 130	<0.50	ug/L	8.1	30
6083182	1,1,1-Trichloroethane	2019/04/23			100	70 - 130	<0.20	ug/L	3.2	30
6083182	1,1,2,2-Tetrachloroethane	2019/04/23			108	70 - 130	<0.50	ug/L	3.5	30
6083182	1,1,2-Trichloroethane	2019/04/23			118	70 - 130	<0.50	ug/L	14	30
6083182	1,1-Dichloroethane	2019/04/23			93	70 - 130	<0.20	ug/L	7.6	30
6083182	1,1-Dichloroethylene	2019/04/23			90	70 - 130	<0.20	ug/L	3.2	30
6083182	1,2-Dichlorobenzene	2019/04/23			98	70 - 130	<0.50	ug/L	4.6	30
6083182	1,2-Dichloroethane	2019/04/23			110	70 - 130	<0.50	ug/L	14	30
6083182	1,2-Dichloropropane	2019/04/23			95	70 - 130	<0.20	ug/L	11	30
6083182	1,3-Dichlorobenzene	2019/04/23			90	70 - 130	<0.50	ug/L	1.2	30
6083182	1,4-Dichlorobenzene	2019/04/23			96	70 - 130	<0.50	ug/L	2.4	30
6083182	Acetone (2-Propanone)	2019/04/23			113	60 - 140	<10	ug/L	17	30
6083182	Benzene	2019/04/23			97	70 - 130	<0.20	ug/L	7.4	30
6083182	Bromodichloromethane	2019/04/23			105	70 - 130	<0.50	ug/L	10	30
6083182	Bromoform	2019/04/23			111	70 - 130	<1.0	ug/L	5.1	30
6083182	Bromomethane	2019/04/23			84	60 - 140	<0.50	ug/L	6.8	30
6083182	Carbon Tetrachloride	2019/04/23			97	70 - 130	<0.20	ug/L	2.0	30
6083182	Chlorobenzene	2019/04/23			99	70 - 130	<0.20	ug/L	5.0	30
6083182	Chloroform	2019/04/23			103	70 - 130	<0.20	ug/L	16	30
6083182	cis-1,2-Dichloroethylene	2019/04/23			91	70 - 130	<0.50	ug/L	9.1	30
6083182	cis-1,3-Dichloropropene	2019/04/23			90	70 - 130	<0.30	ug/L	11	30
6083182	Dibromochloromethane	2019/04/23			84	70 - 130	<0.50	ug/L	30	30
6083182	Dichlorodifluoromethane (FREON 12)	2019/04/23			108	60 - 140	<1.0	ug/L	13	30
6083182	Ethylbenzene	2019/04/23			84	70 - 130	<0.20	ug/L	3.1	30

QUALITY ASSURANCE REPORT(CONT'D)

exp Services Inc Client Project #: OTT-00241785-B Site Location: MONTGOMERY Sampler Initials: MAD

			Matrix	Spike	SPIKED	BLANK	Method	Blank	RPI	כ
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
6083182	Ethylene Dibromide	2019/04/23			100	70 - 130	<0.20	ug/L	7.7	30
6083182	Hexane	2019/04/23			94	70 - 130	<1.0	ug/L	4.8	30
6083182	Methyl Ethyl Ketone (2-Butanone)	2019/04/23			102	60 - 140	<10	ug/L	7.9	30
6083182	Methyl Isobutyl Ketone	2019/04/23			109	70 - 130	<5.0	ug/L	2.2	30
6083182	Methyl t-butyl ether (MTBE)	2019/04/23			93	70 - 130	<0.50	ug/L	9.0	30
6083182	Methylene Chloride(Dichloromethane)	2019/04/23			105	70 - 130	<2.0	ug/L	7.8	30
6083182	o-Xylene	2019/04/23			93	70 - 130	<0.20	ug/L	2.5	30
6083182	p+m-Xylene	2019/04/23			88	70 - 130	<0.20	ug/L	0.10	30
6083182	Styrene	2019/04/23			98	70 - 130	<0.50	ug/L	5.1	30
6083182	Tetrachloroethylene	2019/04/23			88	70 - 130	<0.20	ug/L	1.4	30
6083182	Toluene	2019/04/23			92	70 - 130	<0.20	ug/L	4.6	30
6083182	Total Xylenes	2019/04/23					<0.20	ug/L		
6083182	trans-1,2-Dichloroethylene	2019/04/23			92	70 - 130	<0.50	ug/L	3.9	30
6083182	trans-1,3-Dichloropropene	2019/04/23			102	70 - 130	<0.40	ug/L	13	30
6083182	Trichloroethylene	2019/04/23			96	70 - 130	<0.20	ug/L	2.7	30
6083182	Trichlorofluoromethane (FREON 11)	2019/04/23			92	70 - 130	<0.50	ug/L	0.99	30
6083182	Vinyl Chloride	2019/04/23			124	70 - 130	<0.20	ug/L	42 (1)	30

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

(1) Recovery or RPD for this parameter is outside control limits. The overall quality control for this analysis meets acceptability criteria.

exp Services Inc Client Project #: OTT-00241785-B Site Location: MONTGOMERY Sampler Initials: MAD

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Ewa Pranjic, M.Sc., C.Chem, Scientific Specialist

Steve Roberts, Ottawa Lab Manager

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Bit 1487 eg S Bardicello Inc. Oraces intello Oraces intello Bit 100 See Concerts Particle Marchen Particle Marchen Bit 100 See Concerts Particle Oraces intello Marchen Particle Marchen Bit 100 See Concerts Particle Oraces intello Marchen Particle Marchen Bit 100 See Concerts Particle Oraces intello Particle Oraces intello Oraces intello Oraces intello Oraces intello Oraces intello Oraces intello Particle Oraces intello O		INVOICE TO:				REP	PORT TO:					F	ROJECT INFORM	ATION:			Labora	tory Use O	nly:
Image: Account Physicile Answer Media Page: OTTOGRATIPES B OTTOGR	pany Name: #17497 exp 3	Services Inc	S 2010	Compa	ny Name:				1		Ouetation t		B91716				Maxxam Job #:		Bottle Orde
See Objection Nome: Paper Instruction Display Control (2012) Display Contro (2012) Display Control (2012) <t< th=""><th>ntion: Accounts Pay</th><th>able</th><th></th><th>Attentio</th><th>n: Mar</th><th>k McCalla /].</th><th>Jack De</th><th>enin</th><th></th><th></th><th>P.O.#:</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>	ntion: Accounts Pay	able		Attentio	n: Mar	k McCalla /].	Jack De	enin			P.O.#:								
Under UN ACE 889 m. (613) 225-7337 M. (717) 710 M. (717) 710 M. (717) 710 M. (717) 710 (717) 710 (717) 710	ess: 100-2650 Que	ensview Drive		Addres	s:	L.					Project:		OTT-0024178	35-B	1.1				712975
	Ottawa ON K2	B 8H6									Project Nar	ne:	Montas	n. 00.	,		COC #:		Project Mana
Bucknownie wie de werten werten bei de werten werten de werten date de werten de we	(613) 688-189	9 Fax: (6	13) 225-7337	Tel:	(613	3) 225-9940 Ext	t: 243 Fax	i			Site #:			1		11100			
	accounting,ott	awa@exp.com; Karen.l	Burke@exp.co	om; Email:	mar	k.mccalla@exp	.com;mark.r	hicalla@	exp.con	n	Sampled B	r	MAD	>			C#712975-01-01		Alisha William
Building the United North Res (URING VALUE CENTOR CUSTOR) Image points and the URING RES (URING VALUE CENTOR CUSTOR) Image points and the URING VALUE CENTOR CUSTOR VALUE CENTOR CUSTOR VALUE CENTOR V	MOE REGULATED DRINK	ING WATER OR WATER	R INTENDED F	OR HUMAN	CONSUMPTIC	ON MUST BE			1	AN	ALYSIS REC	UESTED (PL	LEASE BE SPECIF	IC)			Turnaround	Time (TAT) Rec	quired:
Implicit Stratt Other Regulation Regulat (Reductive International I	SUBMITTE	D ON THE MAXXAM DH	RINKING WATE	R CHAIN OF	CUSTODY		~			.97							Please provide adv	ance notice for I	rush projects
Bit	Regulation 153 (2011)		Other Regulations		Specia	al Instructions	circle	2		Aeta						Regular (Si	andard) TAT:	ified)	
Implicitient Biological	able 1 Res/Park Med	lium/Fine	Sanitary Sewer	Bylaw			58 C	EF1.		WS			1.00			Standard TAT	= 5-7 Working days for n	nost lesis.	
be		Reg 558.	Storm Sewer By	law			plea	14SH	-	ICP						Please note: S	tandard TAT for certain t	tests such as BOL	and Dioxins/Furan
Image: Simple Barcola Letter and Austrik 17(19) Image: Simple Barcola Letter and Austrik 17(19) <td< td=""><td>ible</td><td></td><td>Municipality</td><td></td><td></td><td></td><td>) pa</td><td>a by</td><td></td><td>Ived</td><td>11</td><td></td><td></td><td></td><td></td><td>days - contact</td><td>your Project Manager fo</td><td>r details.</td><td></td></td<>	ible		Municipality) pa	a by		Ived	11					days - contact	your Project Manager fo	r details.	
Include Criteria on Certificate of Analysis (7/107) Image: I		Other			-		talk liter	NOC	PAH	Disse	6		· ·			Job Specific	Rush TAT (if applies t	to entire submis	sion)
Induce Induce<	Include Crite	ria on Certificate of Ann	huele (MAR2				Me) 53	153	153	S					Rush Confirm	ition Number:	1 eme	Hequired:
Image: Data statute	Sample Barcode Label	Sample (Location) Ide	leptification	Date Sampled	Time Sample	Matrix		Reg	Reg	Reg						# of Bottles	And the state of the	(call	lab for #}
MW19-1 April 10 12-20 GW Y X G MW9-2 H Y X G G HW9-3 H Y X G G Dup1 Y Y X G Y Dup1 Y Y X G Y Trip Blank V DI X G G Hill Milliminum B9A0656 H G G G Mult Date: (YMMADD) Tme RECEIVED BY: (BignaturePrint) Date: (YMMADD) Tme G G Mult Date: (YMMADD) Tme RECEIVED BY: (BignaturePrint) Date: (YMMADD) Tme G G G Mult Date: (YMMADD) Tme RECEIVED BY: (BignaturePrint) Date: (YMMADD) Tme Milliminini B G </td <td></td> <td></td> <td></td> <td>N 11/</td> <td>time sumpre</td> <td>nd matrix</td> <td>-</td> <td>0</td> <td>0</td> <td>50</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Commen</td> <td>ls.</td>				N 11/	time sumpre	nd matrix	-	0	0	50								Commen	ls.
MWM - 2 H <t< td=""><td></td><td>MW19-1</td><td>3</td><td>April 16</td><td>12-00</td><td>Gw</td><td>Y</td><td>X</td><td></td><td>X</td><td> </td><td></td><td></td><td></td><td></td><td>6</td><td></td><td></td><td></td></t<>		MW19-1	3	April 16	12-00	Gw	Y	X		X						6			
MWM - 2 MWM - 2 MWM - 2 MWM - 2 MWM - 3 MWM - 2 MWM - 2 MWM - 2 Dup I Y Y X MWM - 2 Dup I Y Y X MWM - 2 Trip Blank DI Y Y X MWM - 2 Trip Blank DI Y Y X MWM - 2 Multiple MULtiple District YMM BOD Time Files Used and Instandmitted Time Sensitive Laboratory Use Only District Ymm BOD				addig			- /	10	-	1						P			
Hurlg-3 Hurlg-3 Hurlg-3 Dupl Hurlg-3 Jup 2 Trip Blank DI Jup 2 Image: Straight of the straight		MW19-2				1	4	X		X						1			
MWR-3 Y <td></td> <td>11</td> <td></td> <td></td> <td></td> <td></td> <td>/</td> <td>1</td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		11					/	1		1									
Dupl y		MW19-3	3				M	X		IX									
Image: Data I Image: V V		A 1					/	17		17									
Trip Blank DI; Image: Construct Print) DI; Image: Construct Print) Image: Construct Print) </td <td></td> <td>Dupl</td> <td></td> <td></td> <td></td> <td>1</td> <td>Y</td> <td>X</td> <td></td> <td>IX.</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>14</td> <td></td> <td></td> <td></td>		Dupl				1	Y	X		IX.						14			
If the Blank V D_I X If the Blank V D_I If the Blank V D_I X If the Blank Z Z If the Blank If the Blank If the Blank If the Blank Z Z Z If the Blank Z Z Z If the Blank If the Bl					14		/			1	1			_		2			
16-Apr-19 17:58 Alisha Williamson 1111111111111111 B9A0656 1111111111111111 B9A0656 1111111111111111 11111111111111111 11111111111111111111 11111111111111111111 111111111111111111111111111111111111		IFID BLO	ank	V	V	DT	19.0				X					2			
Image: State of the state o		1					100106-000					1				Y			
Image: State of the state														1					
Alisha Williamson B9A0656 <u>Control of the submitted on this chain of custody is albeitet to maximum strandard terms and conditions. signing of this chain of custody decomposition of submitted to the submitted terms which are available for viewing at www.maximum strandard terms and conditions. signing of this chain of custody decomposition of the submitted terms which are available for viewing at www.maximum strandard terms and conditions. signing of this chain of custody decomposition of the submitted terms which are available for viewing at www.maximum strandard terms and conditions. signing of this chain of custody decomposition of the submitted on the subm</u>												16-A1	or-1917.6	0					
* RELINQUISHED BY: (Signature/Print) Date: (YY/MM/DD) Time B9A0656 B9A0656 * RELINQUISHED BY: (Signature/Print) Date: (YY/MM/DD) Time B9A0656 B9A0656 * RELINQUISHED BY: (Signature/Print) Date: (YY/MM/DD) Time Bijars used and not submitted Custody Seal Yes * MALDIAL 19/04/1/6 5:50m 27552 Gaget 19/04/1/6 Yes * OTHERWISE AGREED TO IN WRITING, WORK SUBMITTED ON THIS CHAIN OF CUSTODY IS SUBJECT TO MAXXAM'S STANDARD TERMS AND CONDITIONS. SIGNING OF THIS CHAIN OF CUSTODY DOCUMENT IS Ime Sensitive Time Sensitive Custody Seal Yes * ERESPONSIBILITY OF THE RELINQUISHER TO ENSURE THE CHAIN OF CUSTODY IS SUBJECT TO MAXXAM'S STANDARD TERMS AND CONDITIONS. SIGNING OF THIS CHAIN OF CUSTODY DOCUMENT IS SAMPLES MIST BE KEPT COOL (<100 C EREMATINE OF SAMPLESS											Alist	a Win	1/13	8					
B9A0656 B9A0656 B9A0656 B9A0656 B9A0656 B9A0656 BCCEIVED IN OTAM CONTROL OF C							12100					1111111	amson						
* RELINQUISHED BY: (Signature/Print) Date: (YY/MM/DD) Time Figure Print) Date: (YY/M/DD) Time Figure Print) Figure Print) Figure Print) Figure Print) Figure Print)											B	94065							
* RELINQUISHED BY: (Signature/Print) Date: (YY/MM/DD) Time RECEIVED BY: (Signature/Print) Date: (YY/MM/DD) Time # jars used and not submitted Laboratory Use Only * RELINQUISHED BY: (Signature/Print) Date: (YY/MM/DD) Time # jars used and not submitted Laboratory Use Only * MMK Dev/n 19/04/16 5:50m 2 5:50m <t< td=""><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0</td><td></td><td></td><td></td><td>21.1.5</td><td>10</td><td></td></t<>					-								0				21.1.5	10	
* RELINQUISHED BY: (Signature/Print) Date: (YY/MM/DD) Time # jars used and Laboratory Use Only * RELINQUISHED BY: (Signature/Print) Date: (YY/MM/DD) Time # jars used and Laboratory Use Only * MP/L Dial/					-		11111				1	OTT	001					ou	100
* RELINQUISHED BY: (Signature/Print) Date: (YY/MM/DD) Time RECEIVED BY: (Signature/Print) Date: (YY/M/D) Time Received BY: (Signature/Print) Received BY: (Signature/Pri														1	-			0.0	NI COTTAN
PSD:WOUSDED BT: (signaturePrint) Date: (YY/MM/DD) Time RECEIVED BT: (signaturePrint) Date: (YY/MM/DD) Time # jars used and not submitted Mint Dot 19/04/16 55.50m 27.525g 6.924 (1////16/17:58) not submitted Time Sensitive Image: (C) on Recei Present Present Image: (C) on Recei	* PEI MOURNED BY	Planature (Palat)													1 N		REC	CEIVED I	NOTIAN
Mile: Maxxa Yello ERESPONSIBILITY OF THE RELINQUISHER TO ENSURE THE ACCURACY OF THE CHAIN OF CUSTODY DECOMPLANE AND CONDITIONS.	Main Contraction Brit	signature/Print)	Date: (YY/MM	(/DD) T	me //	RECEIVED	BY: (Signature/	Print)		Date: (YY/M	MM/DD)	Time	9 # jars t	bmitted		Laborate	wy Use Only		
2 OTHERWISE AGREED TO IN WRITING, WORK SUBMITTED ON THIS CHAIN OF CUSTODY IS SUBJECT TO ADXXAM'S STANDARD TERMS AND CONDITIONS. SIGNING OF THIS CHAIN OF CUSTODY DOCUMENT IS E DOMENT AND ACCEPTANCE OF OUR TERMS WHICH ARE AVAILABLE FOR VIEWING AT WWW.MAXXAM.CATTERMS. E RESPONSIBILITY OF THE RELINQUISHER TO ENSURE THE ACCURACY OF THE CHAIN OF CUSTODY DECUMENT THE RELINQUISHER TO ENSURE THE ACCURACY OF THE CHAIN OF CUSTODY DECUMENT THE RELINQUISHER TO ENSURE THE ACCURACY OF THE CHAIN OF CUSTODY DECUMENT THE RELINQUISHER TO ENSURE THE ACCURACY OF THE CHAIN OF CUSTODY DECUMENT THE RELINQUISHER TO ENSURE THE ACCURACY OF THE CHAIN OF CUSTODY DECUMENT THE RELINQUISHER TO ENSURE THE ACCURACY OF THE CHAIN OF CUSTODY DECUMENT THE RELINQUISHER TO ENSURE THE ACCURACY OF THE CHAIN OF CUSTODY DECUMENT THE CUT OF THE CHAIN OF CUSTODY DECUMENT THE RELINQUISHER TO ENSURE THE ACCURACY OF THE CHAIN OF CUSTODY DECUMENT THE CUT OF THE CHAIN OF CUSTODY DECUMENT THE RELINQUISHER TO ENSURE THE ACCURACY OF THE CHAIN OF CUSTODY DECUMENT THE CUT OF THE CHAIN OF CUSTODY DECUMENT THE CUT OF THE RELINQUISHER TO ENSURE THE ACCURACY OF THE CHAIN OF CUSTODY DECUMENT THE CUT OF THE RELINQUISHER TO ENSURE THE ACCURACY OF THE CHAIN OF CUSTODY DECUMENT THE CUT OF THE RELINQUISHER TO ENSURE THE ACCURACY OF THE CHAIN OF CUSTODY DECUMENT THE CUT OF THE RELINQUISHER TO ENSURE THE ACCURACY OF THE RELINQUISHER TO ENSURE THE ACCURACY OF THE CHAIN OF CUSTODY DECUMENT THE CUT OF THE RELINQUISHER TO ENSURE THE ACCURACY OF THE CHAIN OF CUSTODY DECUMENT THE RELINQUISHER TO ENSURE THE ACCURACY OF THE RELINQUISHER TO ENSURE THE ACCURACY OF THE RELINDUISHER TO ENSURE THE ACCURACY OF	Ander Davin		19/04/1	6 3.	som Z	5 Juze	leger		- /	9/04	116	715	5		Time Sensitive	Temperatur	e (°C) on Recei	Custody Seal Present	Yes
LEDGMENT AND ACCEPTANCE OF OUR TERMS WHICH ARE AVAILABLE FOR VEWING AT WWW.MAXXAW'S STANDARD TERMS AND CONDITIONS. SIGNING OF THIS CHAIN OF CUSTODY DOCUMENT IS E RESPONSIBILITY OF THE RELINQUISHER TO ENSURE THE ACCURACY OF THE CHAIN OF CUSTODY DECORD AN INFORMATING CUSTODY	S OTHERWISE AGREED TO IN	RITING WORK SUBMITTED	ON THIS CHAIN OF	CUETODVIC	K I	6	-			/ /					-	7,4	10	Intact	X
	S OTHERWISE AGREED TO IN V MLEDGMENT AND ACCEPTANCI IE RESPONSIBILITY OF THE RE	RITING, WORK SUBMITTED C OF OUR TERMS WHICH ARE	ON THIS CHAIN OF E AVAILABLE FOR V	CUSTODY IS SU	BJECT TO MAXX WMAXXAM.CA/T	AM'S STANDARD TI ERMS.	ERMS AND CON	DITIONS. SI	GNING OF	THIS CHAI	N OF CUSTO	DY DOCUME	NT IS	SAMPL	ES MUST BE KEPT	719 COOL (< 10° C	FROM TIME OF SAME	PLING	: Maxxa Y
	AMER, PRESERVATION	, HOLD TIME AND PACKAGE	INFORMATION CA	A BE VIEWED A	HITP://MAXXA	M.CA/WP-CONTENT	/UPLOADS/ONT	ARIO-COC.P	DF.										

		INVOICE TO:		1			REPO	RT TO:						PROJEC	TINFORM	ATION:		1	La	aboratory Use (Only: *
manu Blai	#17497 exp S	ervices Inc		-	Comesau	Name	v •*					Contation 5		B9171	16				Maxxam Jo	b#:	Bottle Order #:
ntion:	Accounts Paya	ble			Attention:	Mark M	cCalla /M	uk De	Nin	-		P.O.#	·			-				17	
655;	100-2650 Quee	ensview Drive			Address:		- /			*		Project;		OTT-0	0024178	5-B			4		712975
	Ottawa ON K2	3 8H6				101010		210	_			Project Nam	ne:	M	00/57	mary			COC #:		Project Manager.
	(613) 688-1899 accounting otta	Fax: (61	3) 225-7337 urke@exp.	'om'	Tel	(613) 2 mark m	ccalla@exp.	243 Fax	Reduced	exp con	*	Site #.	*		HAT	X			C#712075.0		Alisha Williamson
MOER	EGUI ATED DRINKI	NG WATER OR WATER	INTENDER	FOR HU	MAN CO	NSUMPTION	MUSTRE		Connette	unp.oon	AN/	ALYSIS REQ	V.	PLEASE B	E SPECIE	ic)		_	Tuma	round Time (TAT) R	equirad:
MOLIN	SUBMITTED	O ON THE MAXXAM DRI	NKING WAT	ER CHA	IN OF C	USTODY	MOOTUL				1.00				194	1.19			Please prov	ide advance notice fo	r rush projects
Regu	lation 153 (2011)	0	her Regulation	15		Special In	structions	rcle)	2		Aetots				-			Regular	Standard) TAT	t specified):	- [
ble 1	Res/Park Med	um/Fine CCME	Sanitary Sewe	er Byław				se o	114		WS N							Standard To	T = 5-7 Working d	ays for most tests.	×
ove	Ind/Comm	se Reg 558.	Storm Sewer	Bytaw				piea g / C			100	•				1		Please note days - contr	Standard TAT for	certain tests such as B	OD and Dickins/Furges are 1
able 3		PWQ0	unicipality		-			Pau H	Cs by	\$	solve	V				· · ·		Job Speci	fic Rush TAT (if a	pplies to entire subn	ission)
		Other						Filte	3 40	3 PA	3 Dis	0			1			Date Requi	ed	Tir	ne Required:
	Include Crite	ria on Certificate of Analy	sis (Y/N)? _					N Isla	12	21 Be	er) fer)	2		•				Rush Confi	mation Number:	(c	nil (ab for #)
Sa	mple Barcode Label	Sample (Location) Ide	ntification	Date S	ampled	Time Sampled	Matrix	-	0.8	0 H	O.B.							# of Bottles		Comm	ents
		MW19-1		Apr	116	17:00	Gw	Y	X		X	•						6			
		MW19-2					1	Y	X		X							1			
		MW19-3						y	X		X			_			<				
		Ducl						V	X		X										
		eup i	2	1		1	×	7	-	-	1	1		-				2			
		Trip Bla	nk		V	V	DT.					X.		_				2			
		N.									÷.,			1				1			
					_						1.	02580	16-/	Apr-19	917.5	8					
									-		1.	Alis	ha Wi	lliams	on	0		_			
											1	B	9.4.06	56	1111						
													07	" <u>"</u> 001						JU	ice
																1				RECEIVED	IN OTTAWA
	* RELINQUISHED BY: (Signature/Print)	Date: (YY/	MM/DD)	Tim	e	RECEIVED E	3Y: (Signature	/Print)	-	Date: (YY/	MM/DD)	Tin	ne	# jars	used and		Labo	atory Use Only		
Phy	Litahi		19/04	16	5:5	om 92	- Suze	loger	· •	1	9/00	16	17:1	58	not si	ubmitted	Time Sensit	ve Tempera	ture ("C) on Re	cei Custody Se Present	eal Yes M
P	ruck Derlin		1			11t	A	Tren	1-	i	118/3	4/18	opin	50	1			7.	4,10	Intact	X
SS OTH	ERWISE AGREED TO IN V	WRITING, WORK SUBMITTED C	N THIS CHAIN	OF CUSTO	AT WWW	JECT TO MAXXAN MAXXAM.CA/TER	S STANDARD TE	HMS AND CON	DITIONS. S	IGNING O	F THIS CHA	IN OF CUSTO	DOY DOCU	MENT IS		Sec. 4				W	nite: Maxxa Yellow: C
THE RES	PONSIBILITY OF THE RE	LINQUISHER TO ENSURE THE	ACCURACYO	THE CHA	IN OF CUS	TODY RECORD. A	N INCOMPLETE	CHAIN OF CUST	ODY MAY P	RESULT IN	ANALYTIC	AL TAT DELA	AYS.			SAMPL	ES MUST BE H	EPT COOL (< 10 NTIL DELIVERY T	C) FROM TIME O MAXXAM	OF SAMPLING	
PLECO	NTAINER PRESERVATIO	N HOLD TIME AND PACKAGE	INFORMATION	CAN BE V	EWED AT I	HTTP://MAXYAM	AMP.CONTENT		ARIO-COC	PDF		4	4/4	415	-	1					

Page 19 of 23

exp Services Inc Client Project #: OTT-00241785-B Project name: MONTGOMERY Client ID: MW19-1

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

exp Services Inc Client Project #: OTT-00241785-B Project name: MONTGOMERY Client ID: MW19-2

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

exp Services Inc Client Project #: OTT-00241785-B Project name: MONTGOMERY Client ID: MW19-3

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

exp Services Inc Client Project #: OTT-00241785-B Project name: MONTGOMERY Client ID: DUP-1

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.