

1047 Richmond Road

TIA Report

July 2023

1047 Richmond Road

TIA Report

prepared for: Fengate Capital Management Ltd. 2275 Upper Middle Rd. E. Suite 700 Oakville, ON L6H 0C3

1223 Michael Street North Suite 100 Ottawa, ON K1J 7T2

July 14, 2023

478087-01000

DOCUMENT CONTROL PAGE

CLIENT:	Fengate Capital Management Ltd.		
PROJECT NAME:	1047 Richmond Road		
REPORT TITLE:	TIA Step 5 Report		
PARSONS PROJECT NO:	478087 - 01000		
APPLICATION TYPE:	Zoning By-Law Amendment (ZBLA) and Official Plan Amendment (OPA) Applications		
VERSION:	Draft		
DIGITAL MASTER:	\\xccan57fs01\data\IS0\478087\1000\D0CS\STEP5-TIA ZBA Resubmission\1047 Richmond_TIA Report_2023- 07-14.docx		
ORIGINATOR	Basel Ansari, P.Eng.		
REVIEWER:	Austin Shih, M.A.Sc., P.Eng.		
AUTHORIZATION:			
CIRCULATION LIST:	Josiane Gervais, Project Manager Infrastructure Approvals		
	- TIA Step 1 Screening Form – November 19, 2021		
	- TIA Step 2 Scoping Report – November 19, 2021		
HISTORY:	- TIA Step 3 Forecasting Report – December 3, 2021		
	- TIA Step 4 Strategy Report – January 25, 2022		
	- TIA Step 5 Report – July 14, 2023		

TIA Plan Reports

On 14 June 2017, the Council of the City of Ottawa adopted new Transportation Impact Assessment (TIA) Guidelines. In adopting the guidelines, Council established a requirement for those preparing and delivering transportation impact assessments and reports to sign a letter of certification.

Individuals submitting TIA reports will be responsible for all aspects of development-related transportation assessment and reporting, and undertaking such work, in accordance and compliance with the City of Ottawa's Official Plan, the Transportation Master Plan and the Transportation Impact Assessment (2017) Guidelines.

By submitting the attached TIA report (and any associated documents) and signing this document, the individual acknowledges that s/he meets the four criteria listed below.

CERTIFICATION

- 1. I have reviewed and have a sound understanding of the objectives, needs and requirements of the City of Ottawa's Official Plan, Transportation Master Plan and the Transportation Impact Assessment (2017) Guidelines;
- 2. I have a sound knowledge of industry standard practice with respect to the preparation of transportation impact assessment reports, including multi modal level of service review;
- 3. I have substantial experience (more than 5 years) in undertaking and delivering transportation impact studies (analysis, reporting and geometric design) with strong background knowledge in transportation planning, engineering or traffic operations; and
- I am either a licensed¹ or registered² professional in good standing, whose field of expertise [check √ appropriate field(s)] is either transportation engineering or transportation planning □.

^{1,2} License of registration body that oversees the profession is required to have a code of conduct and ethics guidelines that will ensure appropriate conduct and representation for transportation planning and/or transportation engineering works.

City Of Ottawa Infrastructure Services and Community Sustainability Planning and Growth Management 110 Laurier Avenue West, 4th fl. Ottawa, ON K1P 1J1 Tel. : 613-580-2424 Fax: 613-560-6006 Ville d'Ottawa Services d'infrastructure et Viabilité des collectivités Urbanisme et Gestion de la croissance 110, avenue Laurier Ouest Ottawa (Ontario) K1P 1J1 Tél. : 613-580-2424 Télécopieur: 613-560-6006 Dated at _____ this <u>30</u> day of <u>June 2023</u>.

(City)

Name:

Austin Shih, P.Eng. (Please Print)

Professional Title:

Senior Project Manager

Aarti fuil

Signature of Individual certifier that s/he meets the above four criteria

Office Contact Information (Please Print)
Address:
1223 Michael Street North, Suite 100
City / Postal Code:
Ottawa, Ontario, K1J 7T2
Telephone / Extension:
613-738-4160
E-Mail Address:
austin.shih@parsons.com

TABLE OF CONTENTS

1.0 2.0		NG FORM REPORT	
2.0		ING AND PLANNED CONDITIONS	
	2.1.1.		
	2.1.2.	EXISTING CONDITIONS	
	2.1.3.	PLANNED CONDITIONS	
		3.1. Future Transportation Network Changes	
		3.2. Other Area Developments	
		Y AREA AND TIME PERIODS	
	2.3. EXEM	IPTION REVIEW	
3.0	FORECAS	TING REPORT	12
	3.1. DEVE	LOPMENT GENERATED TRAVEL DEMAND	
	3.1.1.	TRIP GENERATION AND MODE SHARES	
	3.1.2.	TRIP DISTRIBUTION AND ASSIGNMENT	14
	3.2. BACK	GROUND NETWORK TRAFFIC	15
	3.2.1.	TRANSPORTATION NETWORK PLANS	15
	3.2.2.	BACKGROUND GROWTH	16
	3.2.3.	OTHER DEVELOPMENTS	17
	3.3. DEM/	AND RATIONALIZATION	
4.0	ANALYSIS	S	22
		LOPMENT DESIGN	
	4.1.1.	DESIGN FOR SUSTAINABLE MODES	22
		CIRCULATION AND ACCESS	
		ING	
		IDARY STREET DESIGN	
		SS INTERSECTION DESIGN	
		SPORTATION DEMAND MANAGEMENT	
		CONTEXT FOR TDM	
	4.5.2.	NEED AND OPPORTUNITY	
	4.5.3.		
		HBOURHOOD TRAFFIC MANAGEMENT	
		SIT	
		EW OF NETWORK CONCEPT	
	4.9.1.		
5.0	FINDINGS	S, CONCLUSIONS AND RECOMMENDATIONS	

LIST OF FIGURES

FIGURE 1: LOCAL CONTEXT	2
FIGURE 2: PROPOSED CONCEPT PLAN	3

FIGURE 3: STUDY AREA ACTIVE TRANSPORTATION FACILITIES	
FIGURE 4: AREA TRANSIT NETWORK	7
FIGURE 5: BUS STOP LOCATIONS	
FIGURE 6: EXISTING PEAK HOUR TRAFFIC VOLUMES	8
FIGURE 7: EXISTING PEAK HOUR AT VOLUMES AT RICHMOND/NEW ORCHARD	8
FIGURE 8: LRT STAGE 2 EXPANSIONS MAP	10
FIGURE 9: STUDY AREA	12
FIGURE 10: PROPOSED DEVELOPMENT SITE-GENERATED TRAFFIC	
FIGURE 11: FUTURE BACKGROUND 2026 TRAFFIC VOLUMES	16
FIGURE 12: FUTURE BACKGROUND 2031 TRAFFIC VOLUMES	17
FIGURE 13: 1071 AMBLESIDE DR PROPOSED FUTURE DEVELOPMENT	18
FIGURE 14: TOTAL FUTURE BACKGROUND 2026 TRAFFIC VOLUMES	
FIGURE 15: TOTAL FUTURE BACKGROUND 2031 TRAFFIC VOLUMES	19
FIGURE 16: TOTAL PROJECTED 2026 TRAFFIC VOLUMES	20
FIGURE 17: TOTAL PROJECTED 2031 TRAFFIC VOLUMES	20
FIGURE 18: TOTAL PROJECTED 2031 TRAFFIC VOLUMES, WITH 30% REDUCTION	
FIGURE 19: TRANSIT RIDERSHIP DATA BUS STOP LOCATIONS	25

LIST OF TABLES

TABLE 1: EXEMPTIONS REVIEW SUMMARY	12
TABLE 2: RESIDENTIAL TRIP GENERATION TRIP RATES	13
TABLE 3: APARTMENT UNITS PEAK PERIOD PERSON TRIP GENERATION	13
TABLE 4: RESIDENTIAL PEAK PERIOD TRIPS MODE SHARES BREAKDOWN	13
TABLE 5: PEAK PERIOD TO PEAK HOUR CONVERSION FACTORS (2020 TRANS MANUAL)	13
TABLE 6: RESIDENTIAL PEAK HOUR TRIPS MODE SHARE BREAKDOWN	
TABLE 7: RESIDENTIAL LAND USE TRIP GENERATION	
TABLE 8: RESIDENTIAL PEAK HOUR TRIPS TOD MODE SHARE BREAKDOWN	
TABLE 9: RESIDENTIAL LAND USE TRIP GENERATION (TOD MODE SHARES)	
TABLE 10: PERCENT ANNUAL CHANGE AT RICHMOND/NEW ORCHARD	16
TABLE 11: TRANSIT RIDERSHIP DATA (5 JAN 2020 - 16 MAR 2020)	26
TABLE 12: EXISTING CONDITIONS INTERSECTION PERFORMANCE	27
TABLE 13: TOTAL FUTURE BACKGROUND 2026 CONDITIONS INTERSECTION PERFORMANCE	
TABLE 14: TOTAL FUTURE BACKGROUND 2031 CONDITIONS TRAFFIC VOLUMES	
TABLE 15: TOTAL PROJECTED 2026 CONDITIONS TRAFFIC VOLUMES	28
TABLE 16: TOTAL PROJECTED 2031 CONDITIONS TRAFFIC VOLUMES	29
TABLE 17: TOTAL PROJECTED 2031 CONDITIONS TRAFFIC VOLUMES, WITH 30% REDUCTION AND MITIGA	
MEASURES	30

LIST OF APPENDICES

APPENDIX A: SCREENING FORM AND CITY COMMENTS APPENDIX B: TRANSIT ROUTE MAPS APPENDIX C: TRAFFIC DATA APPENDIX D: BACKGROUND GROWTH ANALYSIS APPENDIX E: 2031 CITY TRANSPORTATION MODEL APPENDIX F: TDM CHECKLISTS APPENDIX G: TRUCK TURNING TEMPLATES APPENDIX H: SYNCHRO ANALYSIS REPORTS

TIA REPORT

Parsons has been retained by Fengate Capital Management Ltd. to prepare a TIA in support of a Zoning By-Law Amendment (ZBLA) and Official Plan Amendment (OPA) Application for a proposed residential development at 1047 Richmond Rd. This document follows the TIA process as outlined in the City of Ottawa's Transportation Impact Assessment (TIA) Guidelines (2017). The following report represents Step 5 – TIA Report.

1.0 SCREENING FORM

The Screening Form confirmed the need for a TIA Report based on the Trip Generation, Location and Safety triggers. The Trip Generation trigger was met as the development is anticipated to generate more than 60 person trips during peak hours. The Location trigger was met due to the location of the proposed development site in both a Transit-Oriented Development (TOD) zone and a Design Priority Area (DPA) and the designation of Richmond Rd as a Spine Route. The Safety trigger is met due to the proximity of the proposed access within 150m of the signalized Richmond/New Orchard intersection. The Screening Form has been provided in **Appendix A** along with responses to the latest City comments.

2.0 SCOPING REPORT

2.1. Existing and Planned Conditions

2.1.1. Proposed Development

The proposed development is located at the municipal address of 1047 Richmond Rd. The site is currently occupied by a car dealership, which will be replaced by three proposed residential towers that are 6 to 40-storeys high. The buildings will consist of approximately 1,152 apartment units, along with approximately 859 m² (9,247 ft²) of first floor retail. Additionally, the development is proposed to provide three truck loading areas, an underground parking garage and a park approximately 1,013 m² (10,900 ft²).

A single access to New Orchard Ave N is provided at the north end of the site. Internally, the driveway provides access to the underground parking garage, three truck loading areas and a drop-off courtyard.

The full buildout of the development is estimated to be 2026. The site is currently zoned as Traditional Mainstreet TM[2494] H(25). The local context of the site is illustrated in **Figure 1**, while the concept plan for the proposed development is provided in **Figure 2** (high quality plan provided in **Appendix A**).

Figure 1: Local Context

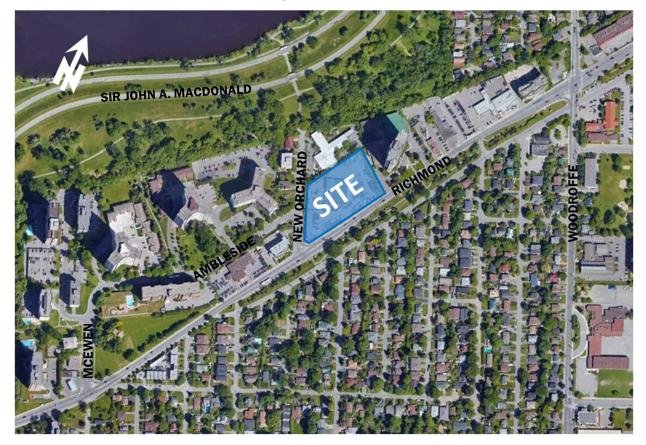
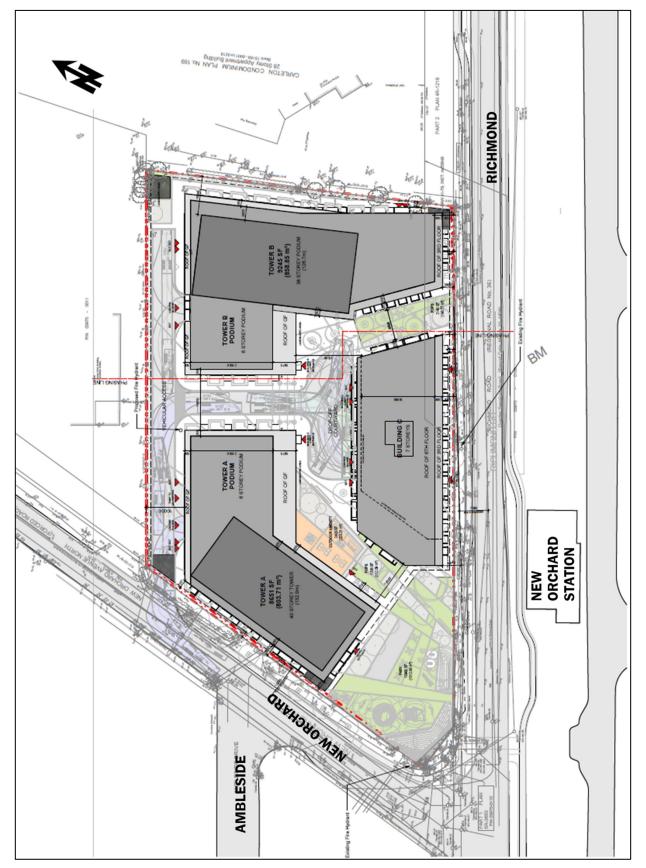



Figure 2: Proposed Concept Plan

2.1.2. Existing Conditions

Area Road Network

Description of roads included within the study area has been provided below.

Richmond Rd is an east-west municipal arterial road that extends from Baseline Rd in the west (where it continues west as Robertson Rd) to Island Park Dr in the east (where it continues east as Wellington St W). Within the study area, the roadway consists of a two-lane cross-section, with sidewalks on both sides of the road. Bike lanes are provided west of New Orchard Ave N. The posted speed limit is 50 km/h.

Ambleside Dr is a short east-west municipal local road providing access to residential buildings, extending from New Orchard Ave N to McEwen Ave. The roadway consists of a two-lane cross-section, with on-street parking on the south side and a sidewalk on the north side. The speed limit is assumed to be 50 km/h.

New Orchard Ave N is a short (dead-end) north-south municipal local road providing access to the car dealership, a nursing home and low to high-rise residential units. The road extends from Richmond Rd to a cul-de-sac 200m north. The roadway consists of a two-lane cross-section and a sidewalk on the west side, with on-street parking permitted on both sides north of Ambleside Dr. The cul-de-sac at the north end provides access to a series of pathways along Sir John A. Macdonald Pkwy. The speed limit is assumed to be 50 km/h.

McEwen Ave is a short (dead-end) north-south municipal local road providing access to residential buildings. The road extends from Richmond Rd to Ambleside Dr, where it turns left and ends at a cul-de-sac. The road consists of a two-lane cross-section, with sidewalks provided on both sides along most sections and on-street parking permitted on the west side near the north end. Similar to New Orchard Ave N, the cul-de-sac at the north end provides access to a series of pathways along Sir John A. Macdonald Pkwy. The speed limit is assumed to be 50 km/h.

Woodroffe Ave is a north-south municipal arterial roadway that extends from Sir John A. Macdonald Pkwy in the north to south of Cortleigh Dr and Castlestone Way in the south. Within the study area, the roadway consists of a two-lane cross-section, with sidewalks on both sides of the road. The posted speed limit along Woodroffe Ave is 50 km/h.

Existing Study Area Intersections

Richmond/New Orchard

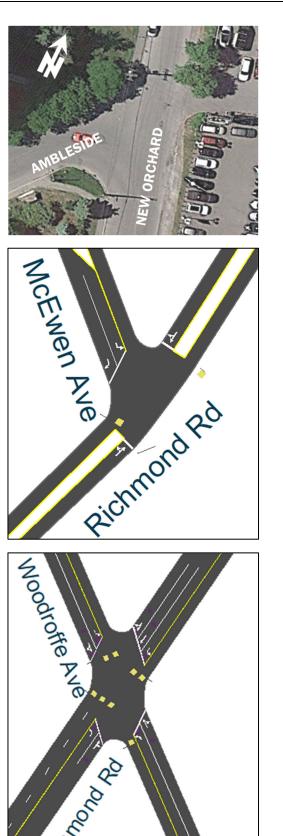
The Richmond/New Orchard intersection is a signalized three-legged "T" intersection. Prior to the ongoing closure of the west leg due to construction, the intersection consisted of the configuration shown.

The eastbound approach consists of a through lane and an auxiliary left-turn lane. The westbound and southbound approaches consist of an all-movement lane. Painted zebra crosswalks are provided on all legs of the intersection. Existing bike lanes have been removed recently to provide space for LRT construction. There are no prohibited movements at the intersection.

Ambleside/New Orchard

The Ambleside/New Orchard intersection is an unsignalized three-legged intersection, with stop control on the eastbound approach only. All approaches of the intersection consist of a single all-movement lane. On the east side, there is a driveway access to the car dealership. No dedicated pedestrian crossings are provided at the intersection.

Richmond/McEwen/Edgeworth


The Richmond/McEwen/Edgeworth intersection is a signalized three-legged "T" intersection. Prior to the ongoing closure of the east leg due to construction, the intersection consisted of the configuration shown.

The eastbound and westbound approaches consist of an all-movement lane. The southbound approach consists of a right-turn lane and an auxiliary left-turn lane. At the northbound approach, Edgeworth Ave is designed as a right-turn only onto Richmond Rd. However, this movement has long been blocked off to traffic. All movements to/from Edgeworth Ave are prohibited. Bike lanes and provided on both sides of Richmond Rd and sidewalks are provided on all sides of the intersection. Painted crosswalks are provided on the north, west and south legs.

Richmond/Woodroffe

The Richmond/Woodroffe intersection is a signalized four-legged intersection. Prior to the ongoing closure of the south leg due to construction, the intersection consisted of the configuration shown.

The northbound, southbound and eastbound approaches consist of a shared through/right-turn lane and an auxiliary left-turn lane. The westbound approach consists of a through lane, an auxiliary right-turn lane and an auxiliary left-turn lane. Painted zebra crosswalks are provided on all legs of the intersection. There are no restricted movements at this intersection.

Existing Driveways to Adjacent Developments

A single site access is proposed off New Orchard Ave N at the north end of the site. Adjacent development accesses located within 200m of the proposed access are described below.

New Orchard Ave N Access

- On the west side of New Orchard Ave N, there is a total of 5 adjacent driveways. North of Ambleside Dr, there is an access to a high-rise residential apartment building, an access to a single residential unit and two accesses to low and mid-rise residential buildings. South of Ambleside Dr, there is an outbound driveway to a social services organization.
- On the east side of New Orchard Ave N, there are 2 adjacent driveways, which are all located north of Ambleside Dr. The two accesses are for a nursing home.

Existing Area Traffic Management Measures

Existing area traffic management measures within the study area include pedestrian advance walk phases at the Richmond/New Orchard intersection, along with zebra crosswalks at signalized intersections.

Pedestrian/Cycling Network

The active transportation network facilities for pedestrians and cyclists are illustrated in **Figure 3**. As shown, sidewalk facilities are provided on the north side of Ambleside Dr, the west side of New Orchard Ave N, and the north side and some sections on the south side of Richmond Rd. Sidewalks are also provided on both sides of McEwen Ave and Woodroffe Ave.

A Pedestrian Crossover was recently constructed on Richmond Rd, approximately 200m west of New Orchard Ave N.

For both pedestrian and cyclist usage, major Multi-Use Pathways (MUP) are provided north of the site and run along both sides of Sir John A. Macdonald Pkwy. The MUP is designated as a major pathway in the City of Ottawa Official Plan (OP). An underpass is available through the New Orchard Ave N cul-de-sac to access the MUP on the north side of Sir John A. Macdonald Pkwy. A MUP is also available on the south side of Richmond Rd, east of New Orchard Ave N.

Based on the City of Ottawa TMP, Richmond Rd is classified as a Crosstown Bikeway in the city's urban cycling network. Bike lanes are currently provided along both sides of Richmond Rd from New Orchard Ave N to Carling Ave.

Transit Network

The following description of OC Transpo routes within the study area reflect the current bus operations:

- Route #11 (Parliament <-> Bayshore): identified by OC Transpo as a "Frequent Route", this route operates all day, 7 days a week and at an average rate of every 15 minutes during weekday peak hours. The nearest bus stop to the site is at the intersection of Richmond/New Orchard.
- Route #87 (Tunney's Pasture <-> Baseline): identified by OC Transpo as a "Frequent Route", this route
 operates all day, 7 days a week and at an average rate of every 15-to-30 minutes during weekday peak
 hours. The nearest bus stop to the site is within 600m at the intersection of Woodroffe/Richmond.
- Route #153 (Tunney's Pasture <-> Lincoln Fields): identified by OC Transpo as a "Local Route", this route
 operates with a custom routing to local destinations. The nearest bus stops to the site are at the
 intersections of Ambleside/New Orchard and Richmond/New Orchard.

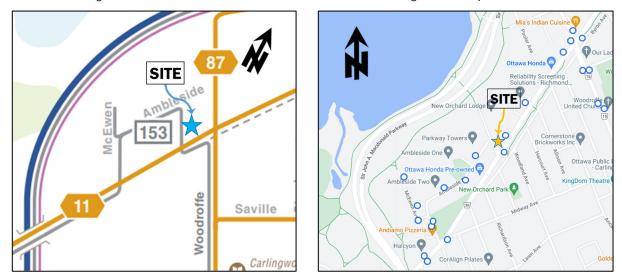

The transit network for the study area is illustrated in **Figure 4** and the transit route maps are provided in **Appendix B. Figure 5** illustrates the bus stop locations.

Figure 3: Study Area Active Transportation Facilities

Figure 4: Area Transit Network

Figure 5: Bus Stop Locations

Peak Hour Travel Demands

The existing peak hour traffic volumes at the signalized intersections within the study area were obtained from the City of Ottawa for the following intersections:

- Richmond/McEwen Conducted Thursday, August 25, 2016
- Richmond/New Orchard Conducted Thursday, August 25, 2016
- Richmond/Woodroffe Conducted Thursday, December 01, 2016

Counts were conducted separately at the intersection of Ambleside/New Orchard on Wednesday, August 11, 2021.

The vehicle volumes at study area intersections are shown in **Figure 6**, with raw traffic count data provided in **Appendix C**. Pedestrian and cyclist volumes at the intersection of Richmond/New Orchard are shown in **Figure 7**.

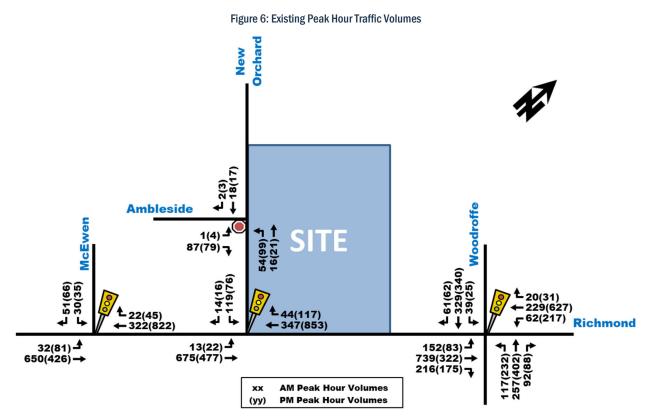
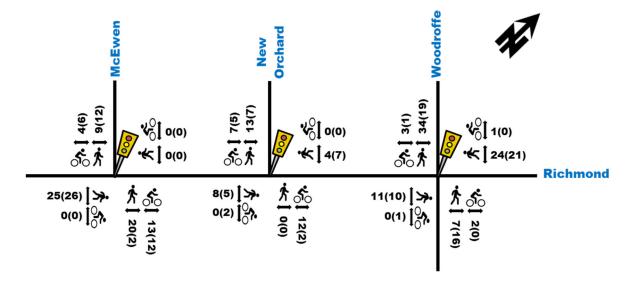



Figure 7: Existing Peak Hour AT Volumes at Richmond/New Orchard

Existing Road Safety Conditions

A five-year collision history data (2015-2019, inclusive) was reviewed using the Open Ottawa webpage from the City of Ottawa. Data for all intersections and road segments within the study area was obtained. It was determined that a total of 73 collisions have occurred at intersections and road segments within the study area. Of the 73 collisions, 26 resulted from rear ends, 17 from turning movements, 13 from angled collisions, 7 from single vehicle (unattended), 3 from single vehicle (other), 3 from sideswipes, 1 from approaching and 2 from "other". Furthermore, 57 (78%) collisions representing the majority of collisions, resulted in property damage only, while 16 (22%) resulted in non-fatal injuries.

A standard unit of measure for assessing collisions at an intersection is based on the number of collisions per million entering vehicles (MEV). Intersections with a ratio of 1.0 Collisions/MEV or greater are considered to be at a higher risk for collisions. Based on the City of Ottawa TIA Guidelines (2017), a collision pattern is characterized as a sequence of more than six collisions of the same impact type occurring for a specific movement within a five-year period.

At intersections within the study area, reported collisions have historically taken place as follows:

- 0.27 Collisions/MEV at the intersection of Richmond/New Orchard. A total of 8 collisions occurred at this
 intersection with no particular collision pattern observed.
- 0.25 Collisions/MEV at the intersection of Richmond/McEwen. A total of 7 collisions occurred at this intersection in the five-year period, with no particular collision patterns observed.
- 0.68 Collisions/MEV at the intersection of Richmond/Woodroffe. A total of 39 collisions occurred at this
 intersection in the five-year period. The only potential collision pattern at this intersection occurred in the
 northbound approach, where 7 rear end collisions occurred within the five-year period.
- Only 1 collision occurred at the intersection of Ambleside/New Orchard.

With regards to road segments on the development site's boundary streets, the number of collisions that have occurred in the five-year period are as follows:

- 1 collision occurred along New Orchard Ave N, between Richmond Rd and the north end.
- 13 collision occurred along Richmond Rd, between New Orchard Ave N and Woodroffe Ave.
- 4 collision occurred along Richmond Rd, between McEwen Ave and New Orchard Ave N.

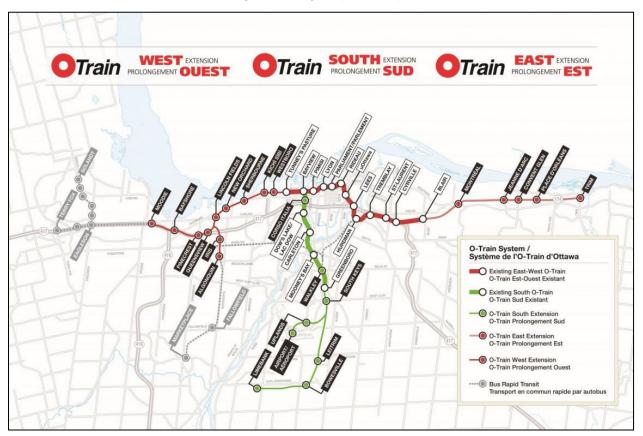
With regards to active transportation (i.e. walking and biking) related collisions, the following collisions are documented out of the total 73 collisions in the study area:

- 1 bicycle collision at the intersection of Richmond/New Orchard and 1 at the intersection of Richmond/Woodroffe, both of which resulted in a non-fatal injury.
- 1 pedestrian collision at the intersection of Richmond/McEwen and 2 at the intersection of Richmond/Woodroffe, all of which resulted in a non-fatal injury. Also, 3 pedestrian collisions occurred along Richmond Rd, between New Orchard Ave N and Woodroffe Ave, which resulted in a non-fatal injury.

Since the preparation of this section, 2020 data has also become available on the Open Ottawa webpage, which included 4 additional collisions in the study area consisting of the following:

- 1 vehicle collision at the intersection of Richmond/McEwen resulting in non-fatal injury,
- 1 vehicle collision at the intersection of Richmond/Woodroffe resulting in property damage only,
- 1 vehicle collision at the intersection of Ambleside/New Orchard resulting in property damage only, and
- 1 vehicle collision along Richmond Rd, between New Orchard Ave N and Woodroffe Ave, resulting in property damage only.

Based on the data presented, there are no significant safety concerns within the study area. Note that the Protected Intersection Design Guidelines (PIDG) will be incorporated into future analysis at study area intersections (advanced pedestrian intervals, no right-turn-on-red, etc.), which will result in improvements of safety and comfort for pedestrians and cyclists and reduce potential collisions.


2.1.3. Planned Conditions

2.1.3.1. Future Transportation Network Changes

LRT Stage 2

The Light Rail Transit (LRT) in the City of Ottawa has entered Stage 2 of its development, which will include the extending of the LRT corridor in the west, east and south directions. The west extension will include a new station called "New Orchard" within the Byron Linear Park, which will be located within 150m walking distance of the new proposed residential building development. The west extension is expected to be completed by 2026. **Figure 8** illustrates the full expansion of the LRT Stage 2 system.

Future Study Area Modifications

Some modifications will be implemented to the study area as part of the LRT Stage 2 project. The designs have not been finalized and may still undergo design changes in the future. These modifications include the following:

- Along Richmond Rd, cycle tracks are anticipated to be provided on both sides of the road.
- A new concrete sidewalk will be constructed on the north side of Ambleside Dr and west side of McEwen Ave.
- The intersection of Richmond/New Orchard is expected to operate with a single all-movement lane on all approaches.
- The intersection of Richmond/Woodroffe is expected to operate with an auxiliary left-turn lane and a shared through/right-turn lane on all approaches. A channelized right-turn will be provided on the eastbound approach.
- The intersection of Richmond/McEwen will provide a single all-movement lane on the southbound and westbound approaches and a through lane with auxiliary left-turn lane on the eastbound approach.

 Bike crossings will also be provided on all approaches of the three Richmond Rd intersections at McEwen Ave, New Orchard Ave N and Woodroffe Ave. All bike crossings are expected to be unidirectional, with a bidirectional crossing at the south leg of the Woodroffe Ave intersection.

2.1.3.2. Other Area Developments

The following section outlines proposed future adjacent developments within the study area. Based on the City of Ottawa's Development Applications search tool, there are three development applications initiated near the development site.

100 New Orchard Ave N

A Zoning By-Law Amendment (ZBLA) application has been submitted for a 14-storey high-rise residential building located at 100 New Orchard Ave N. The development will consist of 84 residential units, which did not trigger the need for a TIA report. As such, the development is anticipated to generate a low traffic volume.

1071 Ambleside Dr

A Zoning By-Law Amendment (ZBLA) and Official Plan Amendment (OPA) application has been submitted for a 30-storey residential building with 293 apartment units that will be replacing a surface parking lot at 1071 Ambleside Dr. The development is anticipated to generate approximately 47 vehicle trips during peak hours by 2023 (full buildout) and 18 vehicle trips during peak hours by 2028 (i.e. post LRT west extension).

1299 Richmond Rd

A Zoning By-Law Amendment (ZBLA) and Site Plan Control (SPC) application has been submitted for a residential tower development with a 28 and 32-storey towers. The towers will consist of 590 apartment units and 8,046 ft² ground floor retail space, replacing the existing commercial building. Full buildout is expected by year 2025, where the development is expected to generate up to 61 veh/h during peak hours. As this development is located outside the study limits at approximately 900m west of the proposed development, volumes generated will be considered as part of the background growth rate.

2.2. Study Area and Time Periods

The proposed development is assumed to be fully constructed by 2026. The development may be constructed in multiple phases, which will be reviewed in more detail at Site Plan Application (SPA). For the purpose of this report, horizon years 2026 and 2031 (i.e. five-years after development buildout) will be analyzed using the weekday morning and afternoon peak hour time period traffic volumes. Proposed study area intersections are outlined below and highlighted in **Figure 9**.

Richmond/New Orchard

Ambleside/New Orchard

- Richmond/McEwen
- Richmond/Woodroffe

Figure 9: Study Area

2.3. Exemption Review

The following modules/elements of the TIA process provided in **Table 1** are recommended to be exempt in the subsequent steps of the TIA process, based on the City's TIA guidelines and the subject site:

Table 1: Exemptions Review Summary			
Module Element Exemption Consideration		Exemption Consideration	
4.1 – 4.4 Design Review Component	All	Not required for applications involving ZBLA. However, a brief description may be provided.	

3.0 FORECASTING REPORT

3.1. Development Generated Travel Demand

3.1.1. Trip Generation and mode shares

As mentioned previously, the site currently consists of a car dealership and a surface parking lot. Conservatively, the dealership is assumed to generate a negligible number of trips during peak hours. The proposed development will replace the dealership with three high-rise residential buildings containing 1,152 apartment units and 9,247 ft² of first floor commercial space. The commercial space will likely provide ancillary use for the high-density residential units and is expected to be intended for local residents, community and potentially some pass-by traffic. As such, it is not expected to be a regional attraction and is not anticipated to generate new trips.

The appropriate trip generation rates for high-rise apartment land uses were obtained from the 2020 TRANS Trip Generation Manual. The Manual provides person-trip rates during the peak AM and PM periods (7am-9:30am and 3:30PM-6PM). The trip rates are summarized in **Table 2** below.

Table 2: Residential Trip Generation Trip Rates

Landling		Data	Trip Rates		
	Land Use	Source	AM Peak Period (7-9:30am)	PM Peak Period (3:30-6pm)	
	High-Rise Apartments	TRANS 2020	T = 0.8(du);	T = 0.9(du);	
Notes:	Notes: T = Average Vehicle Trip Ends				
	du = Dwelling unit				

Using the trip rates provided in **Table 2**, the total number of person trips expected to be generated during the morning and afternoon peak periods can be found in **Table 3**.

Table 3: Apartment Units Peak Period Person Trip Generation

Land Use	Dwelling	AM Peak Period	PM Peak Period
	Units	Person Trips	Person Trips
High-Rise Apartments	1,152	921	1,036

The proposed development is anticipated to generate 921 and 1,036 person trips during the morning and afternoon peak periods, respectively. The total peak period person trips in **Table 3** are then divided into different travel modes using mode share percentages obtained from the 2020 TRANS Manual for the "Ottawa West" district. **Table 4** provides the travel mode breakdown for the proposed building.

Travel Mode	Mode Share	AM Peak Period Person Trip	Mode Share	PM Peak Period Person Trips
Auto Driver	28%	262	33%	341
Auto Passenger	11%	105	11%	119
Transit	41%	379	26%	265
Cycling	3%	30	7%	71
Walking	16%	144	23%	241
Total Person Trips	100%	921	100%	1,036

Table 4: Residential Peak Period Trips Mode Shares Breakdown

Standard traffic analysis is usually conducted using the morning and afternoon peak hour trips as they represent a worst-case scenario. In the 2020 TRANS Manual, Table 4 provides conversions rates from peak period to peak hours for different mode shares. The conversion rates are provided in **Table 5** below.

Travel Mode	Peak Period to Peak Hour Conversion Factors			
Travel Would	AM	PM		
Auto Driver and Passenger	0.48	0.44		
Transit	0.55	0.47		
Bike	0.58	0.48		
Walk	0.58	0.52		

Table 5: Peak Period to Peak Hour Conversion Factors (2020 TRANS Manual)

Using the conversion rates in **Table 5** and the peak period person trips for different travel modes in **Table 4**, the peak hour trips for different travel modes can be calculated as shown in **Table 6**.

Travel Mode	AM Peak Hour Trips	PM Peak Hour Trips
Auto Driver	126	150
Auto Passenger	51	52
Transit	208	125
Cycling	17	34
Walking	84	125
Total Person Trips	486	486

Table 6: Residential Peak Hour Trips Mode Share Breakdown

As shown in **Table 6**, the proposed development is anticipated to generate a total of 486 person trips during the morning and afternoon peak hours. Inbound and outbound percentages were obtained from the 2020 TRANS Manual and applied to each travel mode as shown in **Table 7**.

Travel Mode	AM Pe	eak (Person T	rips/h)	PM Peak (Person Trips/h)			
	ln (31%)	Out (69%)	Total	In (58%)	Out (42%)	Total	
Auto Driver	39	87	126	87	63	150	
Passenger	16	35	51	30	22	52	
Transit	65	144	208	72	52	125	
Cycling	5	12	17	20	14	34	
Walk	26	58	84	73	53	125	
Total Person Trips	151	335	486	282	204	486	

As shown **Table 7**, the proposed development is anticipated to generate up to 150 vehicle trips, 208 transit trips and 159 Active Transport (walking and cycling) trips, during the morning and afternoon peak hours.

However, the New Orchard LRT Station is expected to be fully constructed by full buildout of the proposed development (2026). As such, the transit mode share should be adjusted to reflect the higher number of transit trips. The percentages provided in **Table 8**, are reflective of the City's Transit-Oriented Development (TOD) projections. A higher cycling percentage was assumed given the proximity to the major pathways along Sir John A. Macdonald Pkwy and the future cycle tracks along Richmond Rd. Walking percentages have been reduced considering the general distance of the site from major employment centres.

Travel Mode	Mode Share	AM Peak Hour Trips	PM Peak Hour Trips
Auto Driver	15%	73	73
Auto Passenger	5%	24	24
Transit	65%	316	316
Cycling	10%	49	49
Walking	5%	24	24
Total Person Trips	100%	486	486

Using the TOD mode shares in **Table 8**, the breakdown of inbound and outbound trips for the residential land use are provided in **Table 9**.

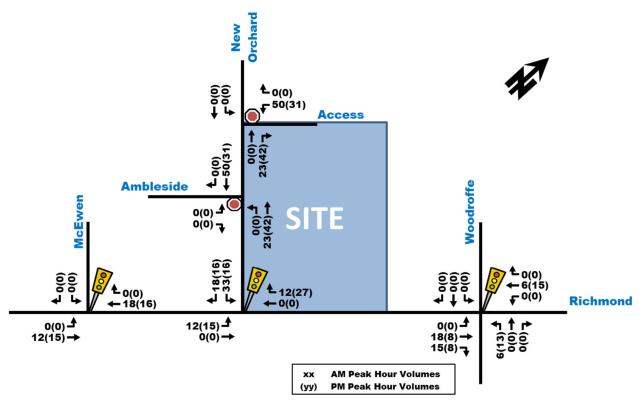
Travel Mode	AM Pe	eak (Person T	rips/h)	PM Peak (Person Trips/h)			
	ln (31%)	Out (69%)	Total	In (58%)	Out (42%)	Total	
Auto Driver	23	50	73	42	31	73	
Passenger	7	17	24	14	10	24	
Transit	98	218	316	183	133	316	
Cycling	15	34	49	28	21	49	
Walk	7	17	24	14	10	24	
Total Person Trips	151	335	486	282	204	486	

Table 9: Residential Land Use Trip Generation (TOD Mode Shares)

As shown in **Table 9**, the proposed development is anticipated to generate 73 vehicle trips, 316 transit trips and 73 active transport trips during peak hours.

3.1.2. Trip Distribution and Assignment

Based on the 2011 OD Survey (Ottawa West district) and the distribution of background traffic volumes on Richmond Rd, the site-generated commuter traffic (i.e. vehicles travelling to work in the AM peak hour and back from work in the PM peak hour) was estimated as follows:


- 10% to/from the north;
- 25% to/from the south;

- 30% to/from the east; and,
- 35% to/from the west.

For non-commuter site-generated traffic (i.e. inbound traffic during the AM peak hour and outbound traffic during the PM peak hour), it was assumed that traffic would be divided evenly with regards to their travel directions for the primary purpose of reaching major commercial destinations, such as Ikea, Bayshore Mall and Lincoln Fields Mall to the west and the downtown and Hwy 417 to the east and south. The distribution of site-generated traffic volumes was estimated as follows:

- 50% to/from the west on Richmond Rd;
- 25% to/from the east on Richmond Rd; and,
- 25% to/from Hwy 417 via Woodroffe Ave.

Trips travelling to/from the north, south and east will travel east on Richmond Rd, while trips travelling west will travel west on Richmond Rd. The anticipated site-generated auto trips for the proposed building were then assigned to the road networks as shown in **Figure 10**. As mentioned previously, the new proposed building will be accessed via a new access along New Orchard Ave N.

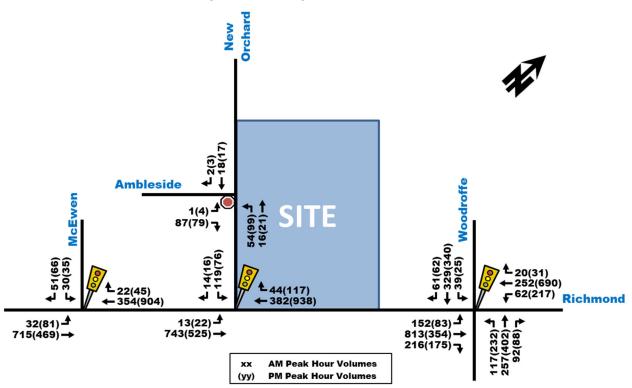
Figure 10: Proposed Development Site-Generated Traffic

3.2. Background Network Traffic

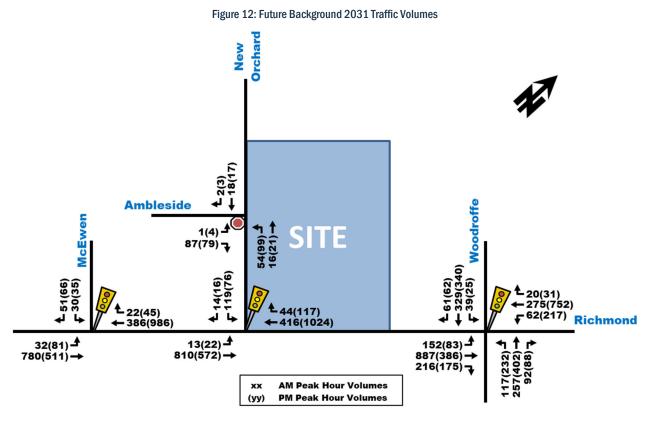
3.2.1. Transportation network plans

Refer to **Section 2.1.3**: **Planned Conditions** for a summary of all future modifications anticipated within the study area and at the Richmond Rd intersections with McEwen Ave, New Orchard Ave N and Woodroffe Ave as a result of constructing the New Orchard LRT Station.

3.2.2. Background Growth

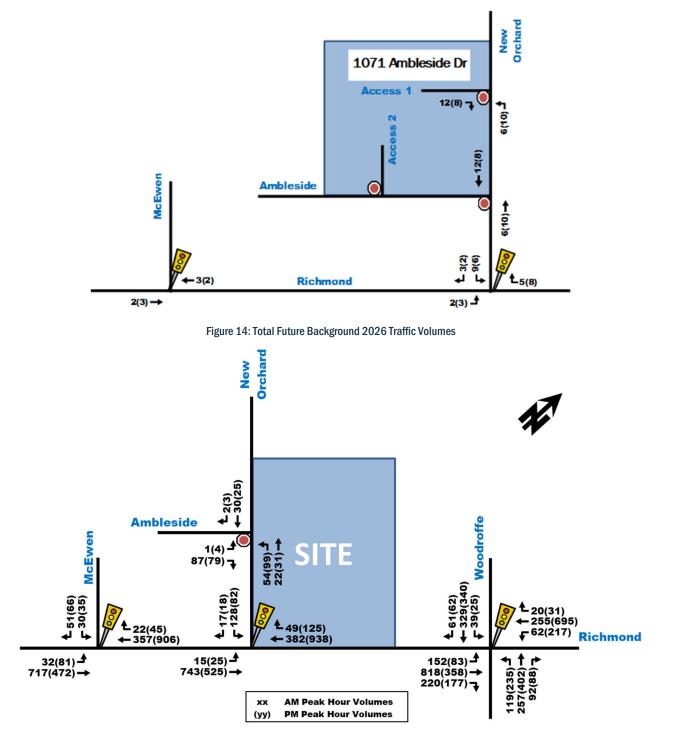

A regression analysis was conducted using historic (2009, 2011, 2016) traffic volumes at the intersection of Richmond/New Orchard. A summary of the analysis results is provided in **Table 10** below, with the detailed analysis sheet provided in **Appendix D**.

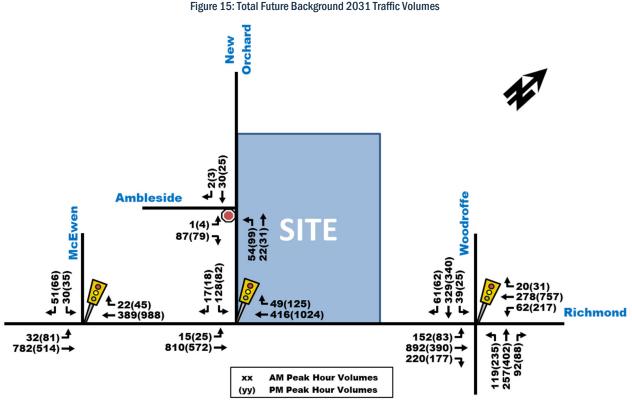
Time	Percent Annual Change									
Period	North Leg	East Leg	Overall							
8 hrs	1.28%	1.86%	1.38%	1.60%						
AM Peak	0.64%	0.07%	0.15%	0.15%						
PM Peak	2.75%	2.53%	2.06%	2.34%						


Table 10: Percent Annual Change at Richmond/New Orchard

Based on the results provided in **Table 10**, a background growth rate of 2% was applied to the through movements on Richmond Rd. This growth rate is considered conservative as the AM peak indicates no growth and the 8 hrs period indicates a growth of less than 2%. Although the north leg of the intersection also indicates some growth, there is no background growth rate applied to New Orchard Ave N as it is a short local street with a dead-end, which provides very limited capacity for traffic growth.

A conservative 2% background traffic growth rate was applied only to the through movements of Richmond Rd to account for potential future developments in the area. **Figure 11** provides the future background traffic at horizon year 2026 and **Figure 12** provides the future background traffic at horizon year 2031.





3.2.3. Other Developments

Description of other area developments taking place within the study area was provided in Section 2.1.3.2: Other Area Developments. Only one future adjacent development, located at 1071 Ambleside Dr, was anticipated to generate traffic in the study area. Traffic volumes anticipated to be generated by the 1071 Ambleside Dr development are illustrated in Figure 13. Total future background 2026 and 2031 volumes are illustrated in Figure 14 and Figure 15, where the adjacent development volumes in Figure 13 were added to the future background volumes in Figure 11 and Figure 12.

3.3. Demand Rationalization

The total projected future traffic volumes can be determined by superimposing the site-generated traffic volumes in **Figure 10**, onto the total future background traffic volumes in **Figure 14** and **Figure 15**. The resulting total projected traffic volumes 2026 and 2031 illustrated in **Figure 16** and **Figure 17**. Analysis of study area intersections is provided in **Section 4.9**.

While the proposed development is anticipated to generate a total of 73 vehicles during both peak hours, the traffic will split between east and west travel directions on Richmond Rd, resulting in mostly negligible impacts to existing traffic operations within the study area.

Potential Future Capacity Issues

The ongoing construction of LRT along Richmond Rd will result in lost operational capacity at study area intersections as existing auxiliary turn lanes are removed to enhance pedestrian and cycling infrastructure along the corridor.

The Richmond/New Orchard intersection will be losing the auxiliary EBL turn lane, which will potentially result in extended traffic queues forming as left-turning vehicles may block through traffic. However, side street volumes are relatively low, and may be resolved via demand rationalizations over time.

The intersection of Woodroffe/Richmond will lose the auxiliary EBR lane and the second EBT and WBT lanes. The current intersection operation is poor and the long-term outlook of this intersection will remain poor since both roadways are major arterial connections, carrying heavy traffic.

Additionally, intersection timings at all three intersections will be adjusted to accommodate new protected intersection designs that provide more time for pedestrians and cyclists, reducing the overall time available for

vehicles. The intersection timings in the forthcoming analysis will be adjusted based on the City of Ottawa's Protected intersection Design Guide (September 2021). Pedestrian and cyclist volumes will also increase significantly, especially at the Richmond/New Orchard intersection as a result of the new facilities and pedestrian trips to/from the future New Orchard LRT Station. The following section will address adjustments to future traffic.

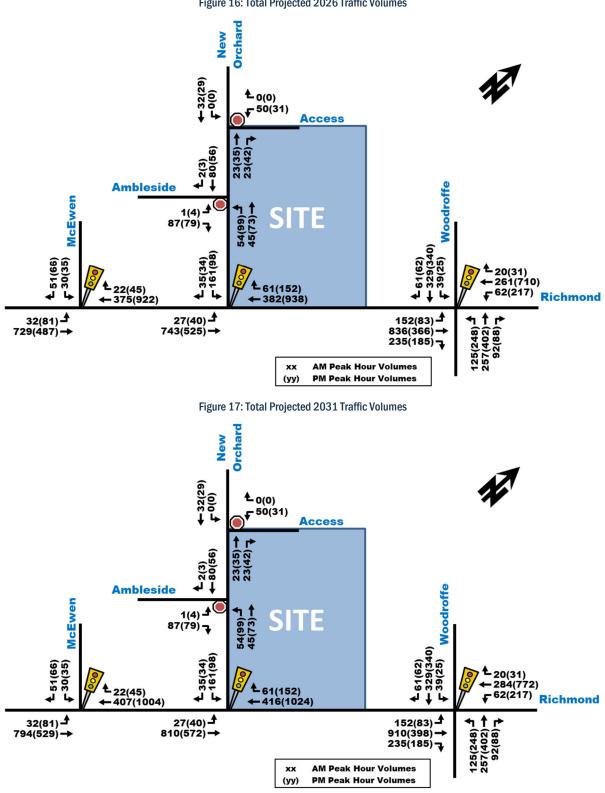
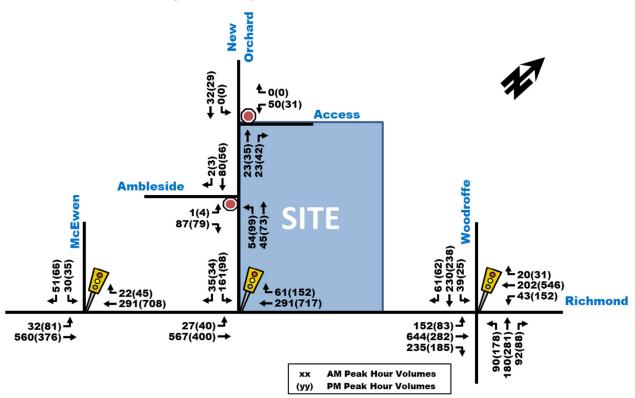


Figure 16: Total Projected 2026 Traffic Volumes


Future Background Traffic Adjustments

In Section 3.2.2 of this TIA, background traffic along Richmond Rd was conservatively expected to continue increasing by 2% per year which aligns with historical growth. However, the implementation of LRT along the corridor and other sustainable initiatives throughout the City are expected to encourage existing drivers to take transit or active travel, and reduce background traffic in the fullness of time. It is also worth noting that the COVID-19 pandemic already resulted in notable changes to travel behaviors, where post-pandemic traffic volumes are notably reduced during peak hours due to increased work-from-home rates. These changes in travel behaviors are not reflected in this report, given that the traffic counts are dated pre-pandemic.

The assumption that traffic volumes would be reduced is also supported by the City's Regional Transportation Model (RTM), which forecasts travel patterns of traffic up to the 2031 horizon year during the AM peak hour. The model suggests Richmond Rd traffic could stagnate or reduce by up to 10% from existing levels. The City's model outputs have been provided in **Appendix E**.

A sensitivity analysis was conducted using total projected 2031 traffic volumes in **Figure 17**, where future traffic volumes (without demand rationalizations) have been reduced in increments of 10% to a maximum of 30% for the through movements on Richmond Rd and Woodroffe Ave, which is the estimated limit based on the City's RTM. Note that the NBL and WBL at Richmond/Woodroffe intersection were also reduced based on preliminary analysis review of future operations.

Figure 18 illustrates total projected 2031 traffic volumes with a 30% reduction. The implications of this reduction on the adjacent road network will be discussed in **Section 4.9**.

4.0 ANALYSIS

4.1. Development Design

As this is a ZBLA, design related elements will be provided in more detail in the future Site Plan Application (SPA) submission of the proposed development.

4.1.1. Design for Sustainable Modes

The City of Ottawa's TDM-supportive Development Design and Infrastructure checklist has been provided in **Appendix F** and discussed in more detail in **Section 4.5**.

Auto and Bicycle Parking

Vehicle and bicycle parking are proposed to be provided in a three-level underground parking garage. The parking garage ramp, three truck loading entrances and a drop-off courtyard are all located along the site's proposed internal driveways.

Pedestrian and Cyclist Facilities

Pedestrian sidewalks will be provided at the frontages of the proposed development, along Richmond Rd and New Orchard Ave N. As mentioned previously, bike lanes will be provided along Richmond Rd and New Orchard Ave N (up to Ambleside Dr) as part of the construction work for the west expansion of the LRT. Additionally, bike crossings will be provided on all approaches at the three Richmond Rd intersections with Woodroffe Ave, New Orchard Ave N and McEwen Ave.

Transit Amenities

The New Orchard LRT Station will be located within a 150m walking distance of the proposed development site. The station can be accessed via sidewalk facilities and the crossings at the intersection of Richmond/New Orchard. The existing bus routes may also continue to operate in the future as indicated in **Section 2.1.2**: **Transit Network**. The existing bus stop along the site frontage on Richmond Rd is expected to be unaffected in the future.

4.1.2. Circulation and Access

Municipal service, emergency and moving vehicles will access the site via New Orchard Ave N. Three loading bays are proposed onsite, one assigned to each building. The fire route includes the internal site courtyard where fire trucks may access Building C. A preliminary truck turning review was completed to support the current site plan concept. However, the site plan is expected to undergo further refinements over the course of approvals and leading into the future Site Plan Application; the truck turning review will be revisited at that stage to ensure there are no conflicts. Preliminary truck turn templates have been provided in **Appendix G**.

4.2. Parking

The development is proposing to provide a total of 1,152 dwelling units and approximately 1,013 m² (10,900 ft²) retail space, within three residential buildings. Based on the City of Ottawa Parking Provisions, the proposed development is located in "Area Z", which consists of the following parking requirements:

- No off-street motor vehicle parking required for the proposed residential and commercial land uses.
- Visitor parking is required at a rate of 0.1 per dwelling unit, up to a maximum of 30 spaces per building and excluding the first twelve units. Based on the number of units in each building, this equates to a total of approximately 68 required spaces for the three proposed buildings.
- Bicycle parking is required at a rate of 0.50 per dwelling unit and 1 per 250 m² of retail space, for a total of approximately 580 required spaces.

The development is proposing to provide a total of 689 vehicle parking spaces within three levels of an underground parking garage. Additionally, the total number of bicycle parking spaces proposed is 726 spaces, well above the required by-law amount.

4.3. Boundary Street Design

The detailed Multi-Modal Level of Service (MMLOS) analysis for boundary streets and signalized intersections will be provided in the future Site Plan Application.

4.4. Access Intersection Design

Access to the proposed development will be provided via an internal driveway that connects to New Orchard Ave N. The New Orchard Ave N access will be located at the north end of the site, approximately 90m north of the Richmond/New Orchard intersection. Note that both accesses will allow all movements in/out of the site. Along the internal driveway, access will be provided to three truck loading areas, a drop-off courtyard, and a three-level underground parking garage.

The Private Approach By-Law notes the following requirements under Section 25 that are relevant to the subject development:

- The maximum width for a two-way access is 9m.
- The minimum distance between the property access and the adjacent property line must be at least 3m. However, it is noted in Section 25, paragraph 1.P, that a distance of 0.3m may be acceptable to City staff if the access is found to be a safe distance from the adjacent property, has adequate sight lines and does not create a traffic hazard.

Compliance of the access with the requirements of the Private Approach By-Law will be ensured as part of the future Site Plan Application (SPA) for this development.

4.5. Transportation Demand Management

4.5.1. Context for TDM

The proposed development is located in both a Design Priority Area (DPA), known as Richmond Traditional Mainstreet, and a Transit-Oriented Development (DPA) zone, where the future New Orchard LRT Station will be located within 150m walking distance. The property is owned and will be managed by the Fengate Capital Management.

Given the proposed land-use of the development as a residential building, it is assumed that most trips generated will be from residents leaving the site in the AM peak to go to work and returning to the site in the PM peak. **Sections 3.1.1** and **3.1.2** describe how many trips are anticipated per travel mode and anticipates the likely locations that they will travel to and from based on the OD-Survey 2011 for Ottawa.

The development is proposing to provide 1,152 apartment units in three residential buildings. A breakdown of the unit types indicates that the units provided will consist of 89 studio units, 526 one-bedroom units, 519 twobedroom units and 18 three-bedroom units.

4.5.2. Need and Opportunity

Transit usage is anticipated to increase greatly in the area as a result of the future New Orchard LRT Station. In addition to the LRT expansions, the active transportation facilities (sidewalks and bike lanes) are anticipated to be improved in the area. Therefore, transit and active transport travel modes are expected to generate the highest number of trips.

The proposed development is expected to utilize Transportation Demand Management (TDM) measures to maintain sustainable transit and active mode shares, as described in more detail in **Section 4.5.3** below.

4.5.3. TDM Program

The TDM Infrastructure and TDM Measures Checklists have been provided in **Appendix F**. The proposed measures in each respective checklists are identified below. It should be noted that some measures are being considered but will be confirmed during the Site Plan Application (SPA).

Proposed measures identified in the TDM-supportive Development Design and Infrastructure Checklist are:

- All ten (10) Required measures related to Walking and Cycling (facilities and bicycle parking) and Vehicle Parking have been satisfied
- Ten (10) out of fourteen (14) basic measures related to Walking and Cycling, Parking and Ridesharing have been satisfied, namely:
 - Locating building close to the street.
 - Locating building entrances to minimize walk distance to sidewalks and transit.
 - Locating building doors and windows to ensure visibility of pedestrians.
 - Providing safe, direct and attractive walking routes to transit.
 - Ensuring walking routes are secure, visible, and lighted.
 - Designing roads for cyclist circulation.
 - o Providing lighting, landscaping and benches along walking and cycling routes.
 - Providing wayfinding signage for site access.
 - Provide a designated area for carpool drivers to drop-off or pick-up passengers.
 - Providing parking for long-term and short-term users.
- One (1) out of seven (7) better measures related to Parking have been satisfied, while one Carsharing measure will be considered during Site Plan Application, namely:
 - Provide separate areas for short-term and long-term parking.
 - Providing carshare parking spaces for tenants and the benefit of the surrounding community. (To be confirmed during SPA)

Proposed measures identified in the TDM Measures Checklist are:

- Designate an internal or external coordinator. (To be confirmed during SPA)
- Conduct periodic surveys to identify travel-related behaviors. (To be confirmed during SPA)
- Display walking and cycling information at major entrances.
- Display transit information at major entrances.
- Offer PRESTO cards for one month. (One year measure to be considered during SPA)
- Provide on-site carshare vehicles for residents and carshare memberships. (To be confirmed during SPA)
- Unbundle parking costs from monthly rent.
- Provide multi-modal travel information package to new residents.

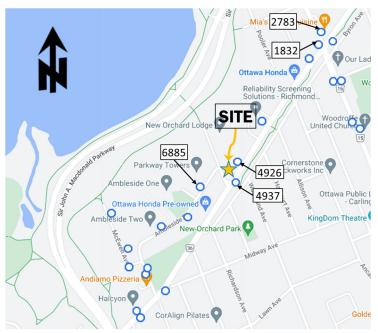
4.6. Neighbourhood Traffic Management

This module compares the maximum two-way traffic of a local or collector road during morning and afternoon peak hours, to the respective thresholds suggested by the City of Ottawa TIA Guidelines.

Site-generated traffic of the proposed development are expected to use local road New Orchard Ave N as part of their access route to/from the proposed development. The thresholds suggested in the TIA Guidelines indicate an ideal two-way traffic volume limit of 120 veh/h for local roads during peak hours. Using the total projected 2031 traffic volumes in **Figure 17**, future traffic volumes along New Orchard Ave N were projected to be as follows:

• Existing two-way traffic volumes on New Orchard Ave N is nearly double the optimal limit, with 231 veh/h during the afternoon peak hour.

With the proposed development, traffic volumes are expected to increase on to approximately 324 veh/h during the afternoon peak hour, between Ambleside Dr and Richmond Rd. These volumes are more aligned with the collector road threshold of 300 veh/h.


It should be noted that these volumes are exceeding the specified threshold on New Orchard Ave N over a short distance of approximately 60m, as the majority of traffic diverts to/from Ambleside Dr. Additionally, the 60m section of New Orchard Ave N is designed with wider lanes and limited access to developments, which are typical characteristics of a collector road.

The thresholds provided in the TIA Guidelines are ideal suggestions and not firm requirements for traffic volumes. The City may choose to reclassify this section of New Orchard Ave N as a collector road. However, it is not considered critical at this time. With the future LRT extensions completed, its possible that volumes here may decrease over time to align more closely with the ideal limit of a local road.

4.7. Transit

As shown in **Table 9**, the proposed development is anticipated to generate a total of **316** transit trips during both the morning and afternoon peak hours. These trips are expected to utilize both the LRT at the future New Orchard Station along with any bus routes that will be operating in the area. The LRT was created with the purpose of accommodating a substantial number of riders in the future. As such, the future transit network is expected to have sufficient capacity that can easily accommodate the projected number of site-generated transit trips.

Existing conditions (pre-COVID) transit ridership data was obtained from OC Transpo for six bus stops near the proposed development site, as shown in **Figure 19**. The data, provided in **Table 11**, is a summary of average bus boarding, alighting and occupancy information for bus routes at each of the respective stop numbers, during morning and afternoon peak hours.

Stop				AM			PM		
Stop No.	Location	Route	Direction	Boarding	Alighting	Avg. Load at Depart.	Boarding	Alighting	Avg. Load at Depart.
1832	Woodroffe / Richmond	87	SB	0	0	4	0	3	17
2783	Woodroffe / Richmond	87	NB	25	0	17	11	14	9
4926	Richmond /	11	WB	8	3	6	4	23	11
4920	New Orchard	153	WB	0	0	1	0	0	7
4937	Richmond /	11	EB	30	5	12	12	5	7
4957	New Orchard	153	EB	0	0	4	0	0	4
6885	Ambleside / New Orchard	153	WB	0	0	1	2	1	7

Table 11: Transit Ridership Data (5 Jan 2020 - 16 Mar 2020)

As shown in **Table 11**, the average load of each bus route at its respective bus stop ranges from about 1 to 17 persons during the peak hours. It should be noted that these bus routes serve their respective stops several times during peak hours. Bus route #11 and #87 in particular are "frequent routes" that arrive every 15 minutes or less during peak hours. In the future, the LRT will also be providing service in the area, at the New Orchard Station. It is expected that the LRT will arrive approximately every 3-5 minutes less during peak hours. At this time, it is not known if the bus route will continue to operate with the exact same routes and rates as today, but the LRT is expected to mor than enough capacity to accommodate all future transit volumes.

Based on information obtained from the OC Transpo website, the person capacity of OC Transpo vehicles, which includes the number of seats on the bus plus the standing capacity, ranges from approximately 57 occupants in its smallest vehicles to approximately 110 occupants in its largest vehicles. The LRT's capacity is approximately 336 occupants.

Therefore, based on the current average bus loads, the available capacity and frequency of the existing bus routes, and the future anticipated capacity and frequency of the LRT, the proposed development generating approximately 316 transit trips during peak hours is anticipated to be accommodated by the available and future transit services.

4.8. Review of Network Concept

The purpose of this module is to determine if the proposed development zoning is expected to generate more than 200 peak hour person trips compared to the existing zoning of the site. As indicated in **Section 3.1.1**, the proposed development is expected to generate approximately 486 total person trips during peak hours. Based on project statistics, the total GFA of the proposed development is approximately 730,000 ft².

Under existing zoning, the total GFA of the development was estimated to be approximately 550,000 ft², as identified in a Density Study completed for this development. Therefore, existing zoning permits up to approximately 75% of the size of the proposed development, or 870 total residential units.

Using the trip generation rates and calculations in **Section 3.1.1**, it is estimated that the proposed development would generate 366 total person trips during peak hours, under existing zoning. Therefore, this results in a difference of 120 total person trips between existing zoning and proposed development zoning, which does not trigger any changes to the TMP concepts for auto or transit vehicle networks as identified in the TIA Guidelines.

4.9. Intersection Design

4.9.1. Intersection Control

Stop control will be provided for vehicles exiting the site at the New Orchard Ave N access, which will allow all movements in/out of the site. All other off-site intersection controls in the study area will continue to operate similar to existing conditions.

4.9.2. Intersection Design

Synchro 11 Trafficware was used to analyze intersection performance of intersections within the study area. Critical movements at each of the intersections were assessed based on either the movement with the highest volume-to-capacity ratio (for signalized intersections), or the movement experiencing the highest average delay (for unsignalized intersections). It should be noted that, as per the TIA Guidelines, the Peak Hour Factor (PHF) used for analysis was 0.90 in existing conditions and 1.0 in all future scenario conditions.

As mentioned previously, the intersection designs for each of the Richmond Rd intersections at McEwen Ave, New Orchard Ave N and Woodroffe Ave will be modified in the future as part of the LRT construction in the area (see **Section 2.1.3.1**). This will result in modifications in the signal timing plans at each of the signalized intersections. As such, the timing plans have been modified at signalized intersections for both horizon years 2026 and 2031 in accordance with the guidelines of the City of Ottawa's Protected Intersection Design Guide (September 2021). Additionally, all phase timings in Synchro were optimized, while cycle lengths were unchanged from existing. Future pedestrian and cyclist volumes are expected to increase significantly in the study area due to improved facilities and pedestrians accessing LRT station. These volumes will be accounted for in the total projected Synchro models.

All detailed Synchro analysis reports for existing and future conditions have been provided in Appendix H.

Existing Conditions

 Table 12 below summarizes the intersection performance of study area intersections, based on existing conditions traffic volumes illustrated in Figure 6.

	Weekday AM Peak (PM Peak)							
Intersection		Critical Mover	nent	Intersection 'As a Whole'				
Intersection	LOS	max. v/c or avg. delay (s)	Movement	Delay (s)	LOS	v/c		
Richmond Rd/McEwen Ave (S)	A(B)	0.55(0.70)	EBT(WBT)	7.3(6.9)	A(B)	0.53(0.65)		
Richmond Rd/New Orchard Ave N (S)	A(C)	0.59(0.80)	EBT(WBT)	8.7(14.2)	A(C)	0.58(0.76)		
Woodroffe Ave/Richmond Rd (S)	F(F)	1.72(1.11)	EBT(NBL)	167.2(59.6)	F(F)	1.37(1.01)		
Ambleside/New Orchard Ave N (U)	A(A)	8.8(8.8)	EB(EB)	6.6(6.6)	A(A)	-		
Note: Analysis of signalized intersections assumes a PHF of 0.9 and a saturation flow rate of 1800 veh/h/lane. (S) - Signalized intersection, movement with highest v/c ratio identified as critical movement. (U) - Unsignalized intersection, movement with highest average delay identified as critical movement.								

Table 12: Existing Conditions Intersection Performance

As shown in **Table 12**, both the critical movement and the intersection 'as a whole' at the signalized Richmond/Woodroffe intersection operate at capacity with a LOS 'F' during both peak hours, while the other two signalized intersections operate at a LOS 'C' or better.

The unsignalized intersection of Ambleside/New Orchard operates at a LOS 'A' during both peak hours.

Total Future Background 2026

Table 13 below summarizes the Synchro traffic operations at study area intersections, based on total futurebackground 2026 traffic volumes illustrated in Figure 14.

		Weekday AM Peak (PM Peak)							
Intersection		Critical Mover	nent	Intersection 'As a Whole'					
Intersection	LOS	max. v/c or avg. delay (s)	Movement	Delay (s)	LOS	v/c			
Richmond Rd/McEwen Ave (S)	A(B)	0.55(0.69)	EBT(WBT)	8.1(6.4)	A(B)	0.53(0.63)			
Richmond Rd/New Orchard Ave N (S)	A(C)	0.60(0.79)	EBT(WBT)	8.2(13.1)	A(B)	0.58(0.65)			
Woodroffe Ave/Richmond Rd (S)	F(F)	1.13(1.21)	EBT(NBL)	62.7(75.7)	F(F)	1.01(1.07)			
Ambleside/New Orchard Ave N (U)	A(A)	8.8(8.8)	EB(EB)	6.0(6.2)	A(A)	-			
Note: Analysis of signalized intersections assumes a PHF of 1.0 and a saturation flow rate of 1800 veh/h/lane. (S) – Signalized intersection, movement with highest v/c ratio identified as critical movement.									

Table 13: Total Future Background 2026 Conditions Intersection Performance

(U) – Unsignalized intersection, movement with highest average delay identified as critical movement.

As shown in **Table 13**, operations are similar to or slightly better than existing conditions due to increasing the PHF to 1.0. The intersection of Woodroffe/Richmond continues to experience congestion, although the morning peak hour experiences better performance compared to existing conditions.

Total Future Background 2031

Table 14 below summarizes the Synchro traffic operations at study area intersections, based on total futurebackground 2031 traffic volumes illustrated in Figure 15.

TILL AA TILLE I		O
Table 14: Total Futi	ure Background 203	L Conditions Traffic Volumes

		Weekday AM Peak (PM Peak)						
Intersection		Critical Moven	nent	Intersection 'As a Whole'				
Intersection	LOS	max. v/c or avg. delay (s)	Movement	Delay (s)	LOS	v/c		
Richmond Rd/McEwen Ave (S)	A(C)	0.60(0.75)	EBT(WBT)	8.6(6.2)	A(B)	0.57(0.69)		
Richmond Rd/New Orchard Ave N (S)	B(D)	0.66(0.85)	EBT(WBT)	8.6(16.4)	B(C)	0.64(0.71)		
Woodroffe Ave/Richmond Rd (S)	F(F)	1.23(1.42)	EBT(NBL)	79.0(86.8)	F(F)	1.07(1.13)		
Ambleside/New Orchard Ave N (U)	A(A)	8.8(8.8)	EB(EB)	6.0(6.2)	A(A)	-		
Note: Analysis of signalized intersections assumes a PHF of 1.0 and a saturation flow rate of 1800 veh/h/lane.								
(S) – Signalized intersection, movement with highest v/c ratio identified as critical movement.								
(U) – Unsignalized intersection, movement with	(U) – Unsignalized intersection, movement with highest average delay identified as critical movement.							

As shown in **Table 14**, operations at the signalized intersections are anticipated to deteriorate slightly compared to total future background 2026 due to higher congestions and delays.

Total Projected 2026

Table 15 below summarizes the Synchro traffic operations at study area intersections, based on total projected2026 traffic volumes illustrated in Figure 16.

	Weekday AM Peak (PM Peak)							
Intersection		Critical Mover	nent	Intersection 'As a Whole'				
Intersection	LOS	max. v/c or avg. delay (s)	Movement	Delay (s)	LOS	v/c		
Richmond Rd/McEwen Ave (S)	B(D)	0.69(0.83)	EBT(WBT)	17.1(14.7)	B(C)	0.65(0.77)		
Richmond Rd/New Orchard Ave N (S)	E(F)	0.95(1.86)	EBT(EBT)	31.9(201.3)	E(F)	0.91(1.63)		
Woodroffe Ave/Richmond Rd (S)	F(F)	1.15(1.27)	EBT(NBL)	67.4(83.2)	F(F)	1.03(1.11)		
Ambleside/New Orchard Ave N (U)	A(A)	9.1(9.0)	EB(EB)	4.5(4.9)	A(A)	-		
New Orchard Ave N/Site Access (U)	A(A)	9.1(8.7)	WB(WB)	3.5(2.0)	A(A)	-		
Note: Analysis of signalized intersections assumes a PHF of 1.0 and a saturation flow rate of 1800 veh/h/lane. (S) – Signalized intersection, movement with highest v/c ratio identified as critical movement.								

Table 15: Total Projected 2026 Conditions Traffic Volumes

(U) – Unsignalized intersection, movement with highest average delay identified as critical movement.

As shown in **Table 15**, operations at the signalized intersections are expected to deteriorate significantly in comparison to the future background 2026 volumes, particularly at the intersections of Richmond/New Orchard and Richmond/Woodroffe. The Richmond/New Orchard intersection 'as a whole' is expected to operate at capacity during the afternoon peak hour and near capacity during the morning peak hour, with critical movements operating similarly. The Richmond/Woodroffe intersection continues to operate at capacity during peak hours and with regards to its critical movements.

The poor operations are caused by a combination of factors, which includes:

- The loss of lane capacity at the intersections due to the future LRT corridor.
- The application of the Protected Intersection Design Guidelines (PIDG) to the intersection timing plans which allocates protected phasing times for pedestrians and cyclists and reduces green time for vehicles, which is in full alignment with the vision outlined in the TMP and New Official Plan to support more sustainable modes of travel.
- The addition of significant number of pedestrians and cyclist at the intersections, especially Richmond/New Orchard, where many pedestrian trips are the result of travel to/from the future New Orchard LRT Station.

With regards to unsignalized intersections, the WB movement at the proposed development access along New Orchard Ave N is anticipated to operate at a LOS 'A' during both peak hours. The Ambleside/New Orchard intersection will continue to operate at LOS 'A' during peak hours.

Total Projected 2031 (without Demand Rationalizations)

Table 16 below summarizes the Synchro traffic operations at study area intersections, based on total projected2031 traffic volumes illustrated in Figure 17.

Intersection	Weekday AM Peak (PM Peak)					
	Critical Movement			Intersection 'As a Whole'		
	LOS	max. v/c or avg. delay (s)	Movement	Delay (s)	LOS	v/c
Richmond Rd/McEwen Ave (S)	C(D)	0.75(0.90)	EBT(EBL)	18.9(19.2)	B(D)	0.70(0.86)
Richmond Rd/New Orchard Ave N (S)	F(F)	1.04(2.01)	EBT(EBT)	42.8(245.0)	E(F)	0.99(1.77)
Woodroffe Ave/Richmond Rd (S)	F(F)	1.25(1.50)	EBT(NBL)	84.0(95.5)	F(F)	1.10(1.17)
Ambleside/New Orchard Ave N (U)	A(A)	9.1(9.0)	EB(EB)	4.5(4.9)	A(A)	-
New Orchard Ave N/Site Access (U)	A(A)	9.1(8.7)	WB(WB)	3.5(2.0)	A(A)	-
Note: Analysis of signalized intersections assumes a PHF of 1.0 and a saturation flow rate of 1800 veh/h/lane. (S) – Signalized intersection, movement with highest v/c ratio identified as critical movement. (U) – Unsignalized intersection, movement with highest average delay identified as critical movement.						

Table 16: Total Projected 2031 Conditions Traffic Volumes

As shown in **Table 16**, operations are similar to total projected 2026 operations, with higher delays and v/c ratios. Intersection performance indicates very high congestion rates due to previously mentioned factors resulting in significant reduction of vehicular capacity, particularly the implementation of PIDG requirements to prioritize active transportation users along the corridor. Significant traffic queues are also expected as a result of the congestion. Demand rationalization analysis is provided in the next section to address the high traffic concerns.

Total Projected 2031 (with Demand Rationalizations)

Table 17 below summarizes the Synchro traffic operations at study area intersections, based on total projected2031 traffic volumes with the demand rationalization outlined in Section 3.3., i.e. a 30% reduction in backgroundtraffic volumes, as illustrated in Figure 18.

		V	Veekday AM F	eak (PM Peak)					
Intersection		Critical Moven	nent	Intersection 'As a Whole'					
	LOS	max. v/c or avg. delay (s)	Movement	Delay (s)	LOS	v/c			
Richmond Rd/McEwen Ave (S)	A(B)	0.53(0.65)	EBT(WBT)	13.7(10.3)	A(A)	0.50(0.59)			
Richmond Rd/New Orchard Ave N (S)	C(E)	0.77(0.94)	SBL(WBT)	21.3(40.4)	C(D)	0.75(0.85)			
Woodroffe Ave/Richmond Rd (S)	D(D)	0.84(0.88)	EBT(WBT)	35.2(45.4)	C(D)	0.74(0.84)			
Ambleside/New Orchard Ave N (U)	A(A)	9.1(9.0)	EB(EB)	4.5(4.9)	A(A)	-			
New Orchard Ave N/Site Access (U)	A(A)	9.1(8.7)	WB(WB)	3.5(2.0)	A(A)	-			
Note: Analysis of signalized intersections assume (S) – Signalized intersection, movement with high (U) – Unsignalized intersection, movement with h	est v/c ra	tio identified as cr	itical movement	t. , , ,					

Table 17: Total Projected 2031 Conditions Traffic Volumes, with 30% Reduction and Mitigation Measures

As shown in **Table 17**, operations of intersections 'as a whole' have improved as a result of the 30% reduction in traffic and adjustment of timings. All signalized intersections now operate at a LOS 'D' or better during peak hours, with respective critical movements operating at a LOS 'E' or better. Unsignalized intersections of Ambleside/New Orchard and the New Orchard Ave N site access continue to operate at LOS 'A' during peak hours. Based on a review of traffic queue lengths (both 95th percentile and average) in Synchro reports, it is expected that traffic queues would not be excessive at the study area intersections.

As mentioned in **Section 3.3**, a reduction of 30% is not considered unreasonable given that future study area modifications will result in significant reduction of vehicle capacity on Richmond Rd and background traffic volumes are expected to be offset by a significant increase in transit capacity due to the LRT. This is combined with the post-pandemic change in travel behavior during peak hours as a result of shift to work-from-home will also play a role in reducing future background volumes.

As previously noted, the increase in vehicle congestion in the study area is a direct result of the city's vision of the increase in active transportation and transit users and the requirements of the PIDG to prioritize them along transit priority corridors, such as Richmond Rd. The tradeoff is reduced operating capacity for vehicles. The 30% reduction represents an optimal reduction factor that results in very good traffic operations and minimal queues along the corridor. But even with a lower reduction factor for background traffic, such as 20% (which is equivalent to a 0% background traffic growth rate), would only result in isolated segments of congestion along Richmond Rd (particularly in the segment between New Orchard Ave N and Woodroffe Ave), only during the peak hour periods. This would be considered acceptable in light of the notable enhancements to transit opportunities and active transportation safety.

5.0 FINDINGS, CONCLUSIONS AND RECOMMENDATIONS

Based on the results summarized herein, the following transportation related conclusions are offered:

Proposed Development

- Fengate Capital Management is proposing a residential development to replace the existing car dealership at the northeast corner of the Richmond/New Orchard signalized intersection. The municipal address of the development is 1047 Richmond Rd.
- The proposed development is assumed to be fully constructed by 2026. The development may be constructed in multiple phases, which will be reviewed in more detail at Site Plan Application (SPA).
- The development will consist of three residential buildings that are 6 to 40-storeys high. The buildings are proposed to consist of 1,152 apartment units, along with approximately 859 m² (9,247 ft²) of first floor retail. A park approximately 1,013 m² (10,900 ft²) in size is also proposed.

- Approximately 689 vehicle parking spaces and 726 bicycle parking spaces are proposed to be provided in the underground parking garage, which adheres to the requirements of the City of Ottawa's Parking Provisions.
- The New Orchard Ave N access will be located at the north end of the site, approximately 90m north of the Richmond/New Orchard intersection. The underground parking garage ramp, a drop-off courtyard and three loading zones will be located along the internal site driveway. The site access will provide stop control for vehicles exiting the site.
- Municipal service and loading vehicle circulation pathing were assessed and can generally be accommodated within the internal road network and each loading bay. Fire trucks will be permitted onsite to access Building C, the courtyard has been designed to accommodate the turnaround. However, further refinements to the site plan are expected and the truck turning assessment will be revisited during the Site Plan Control application.
- The development is anticipated to generate approximately 486 person trips during peak hours, which includes 73 vehicle trips, 24 passenger trips, 316 transit trips and 73 active transport (walking and cycling) trips.
- The development will be located across from the future New Orchard LRT Station (anticipated to be constructed by 2026), within a 150m walking distance. As a result, transit usage was expected to be very high, with 316 trips anticipated to be generated by the proposed development. A review of the existing and future transit network in the area indicated that these volumes can be accommodated in the future.
- Based on a review of a Density Study completed for this development, it was estimated that approximately 870 total residential units can be constructed under existing zoning. The difference in total person trips between the proposed development's zoning and the existing zoning is approximately 120 person trips, which does not trigger any changes to the TMP concepts for auto or transit vehicle networks as identified in the TIA Guidelines.
- A suite of TDM measures is anticipated to be adopted by the development for the purpose of ensuring sustainable transit and active mode travel patterns are maintained. Additional measures may be considered during SPA. At this time, measures include displaying multi-modal travel information for walking, cycling and transit, and unbundling parking costs from monthly rent. Proposed number of bicycle parking spaces is approximately 25% more than minimum By-Law requirements. Other proposed key measures include:
 - Providing safe, direct, and attractive walking routes to transit.
 - Offering residents PRESTO cards for one month.
 - Locating buildings close to street.
 - Designing roads to accommodate cyclist circulation.
 - Providing lighting, landscaping and benches along walking and cycling routes.

Future Study Area Modifications

- As part of LRT west extension, which will be complete by 2026, the following modifications are expected:
 - A new station will be constructed within the Byron Linear Park called New Orchard Station (directly across from development site).
 - Cycle tracks are anticipated to be provided on both sides of Richmond Rd.
 - The intersection of Richmond/New Orchard will provide a single all-movement lane on all approaches.

- The intersection of Richmond/Woodroffe is expected to operate with an auxiliary left-turn lane and a shared through/right-turn lane on all approaches. A channelized right-turn will be provided on the eastbound approach.
- The intersection of Richmond/McEwen will provide a single all-movement lane on the southbound and westbound approaches and a through lane with auxiliary left-turn lane on the eastbound approach.
- Unidirectional bike crossings will be provided on all approaches of the three Richmond Rd intersections with McEwen Ave, New Orchard Ave N and Woodroffe Ave, with a bidirectional crossing on the south leg of the Woodroffe Ave intersection.
- A new concrete sidewalk will be constructed on the north side of Ambleside Dr and west side of McEwen Ave.
- Three adjacent developments are anticipated to be constructed at 100 New Orchard Ave N, 1071
 Ambleside Dr and 1299 Richmond Rd. The 100 New Orchard Ave N development is anticipated to
 generate minimal traffic, while the 1071 Ambleside Dr development is anticipated to generate 47
 vehicle trips by 2023 and 18 vehicle trips by 2028, which has been included in the future background
 traffic volumes. The 1299 Richmond Rd development is outside the study limits and was accounted for
 in the future background growth rate.

Existing and Future Background Conditions

- In existing conditions, the intersection of Woodroffe/Richmond 'as a whole' operates at capacity with a LOS 'F' during both peak hours. All other intersections provide acceptable traffic operations.
- A review of historical traffic volumes indicated a growth trend at the Richmond/New Orchard intersection
 of approximately 2% during the afternoon peak hour. Therefore, a 2% background growth rate was
 conservatively applied to both the morning and afternoon peak hours, to account for any unforeseen
 future developments that may generate traffic in the study area. The growth rate was only applied only
 to the through movements of Richmond Rd.
- Given the future modifications of the signalized study area intersections as protected intersections, the signal timing plans were modified in accordance with the City of Ottawa's Protected Intersection Design Guide (September 2021). While this affords greater prioritization and safety for pedestrians and cyclists along the corridor, it comes at the cost of vehicle capacity. Furthermore, with the construction of the New Orchard LRT Station, its expected there will be a significant number of new transit riders crossing Richmond Road. Therefore, the 2% background growth rate applied was considered overly conservative and traffic volume reduction scenarios were developed to account for the significant enhancements to transit and active transportation opportunities within the study area.
- Both the total future background 2026 and 2031 conditions are expected to operate similar to existing conditions, with some differences in delays and v/c ratios. Some improvements in operations can be attributed to the increase of the Peak Hour Factor (PHF) to 1.0 for all future scenarios in Synchro, as per the requirements of the TIA Guidelines.
- MMLOS analysis of boundary streets and signalized intersections for existing and future conditions will be provided during SPA.

Projected Conditions

 With regards to neighbourhood traffic management, the two-way traffic volumes along New Orchard Ave N exceeds the 120 veh/h ideal threshold of a local road in existing conditions, between Richmond Rd and Ambleside Dr, and slightly exceed the 300 veh/h threshold of a collector road in future conditions, with up to 324 veh/h during the afternoon peak hour of total projected 2031 conditions. A reclassification is not considered necessary as the threshold is exceeded over a short distance of 60m and volumes may decrease over time due to effects of the LRT.

- In total projected 2026 and 2031 conditions, traffic operations are anticipated to deteriorate significantly compared to the respective total future background conditions, especially at the intersection of Richmond/New Orchard. The intersections of Richmond/New Orchard and Richmond/Woodroffe are both expected to operate at capacity, with their critical movements also operating at capacity during peak hours. Excessive traffic queuing is also expected at study area intersections. The poor traffic operations can be attributed to the following combination of factors:
 - Loss of lane capacity, especially auxiliary turn lanes at study area intersections due to LRT.
 - Applying measures from the Protected Intersection Design Guidelines (PIDG) to the intersection timing plans, which includes measures to enhance priority and safety of pedestrians and cyclists and reduce vehicle priority. These measures align with the vision of the City of Ottawa new TMP and OP to support sustainable travel modes.
 - Adding a significant number of pedestrians and cyclists at the intersections to account for both site-generated trips and pedestrian travel to/from the future LRT New Orchard station.

Demand Rationalizations

Since a conservative background growth rate of 2% was applied to through volumes on Richmond Rd to
account for potential future development traffic, operations are expected to be fairly congested at study
area intersections. This congestion is a tradeoff of the City's vision to improve bike, walk and transit
facilities and incorporate PIDG. It is reasonable to assume that future background traffic would naturally
decrease as a result of these initiatives. The reduction is further supported by the change in travel
behavior post-pandemic, where traffic decreased as a result of increase in work-from-home.

A reduction up to 30% was supported by the City's Regional Transportation Model forecasts on both Richmond Rd and Woodroffe Ave. Therefore, reductions were applied as follows:

- 30% reduction of background traffic volumes for the through volumes on Richmond Rd and Woodroffe Ave; and
- The northbound and westbound left-turns at the intersection of Woodroffe/Richmond.

The reductions resulted in improvements, where all signalized intersections now operate at a LOS 'D' or better during peak hours, with respective critical movements operating at a LOS 'E' or better. Additionally, traffic queues were reduced to reasonable levels.

Overall, based on the preceding report, the proposed development can be supported by the transportation network at the 2026 and 2031 horizon years. The development plan leverages its location in close proximity to the future New Orchard LRT Station with enhanced active transportation facilities and will consider various TDM initiatives to promote sustainable travel choices for its residents and reduce the vehicular impacts on the adjacent network. As a result, the analysis confirmed that no off-site roadway modifications were needed to support the development based on information available at the time of this study. The proposed development is recommended to proceed from a transportation perspective.

Prepared By:

Basel Ansari, P.Eng. Transportation Engineer

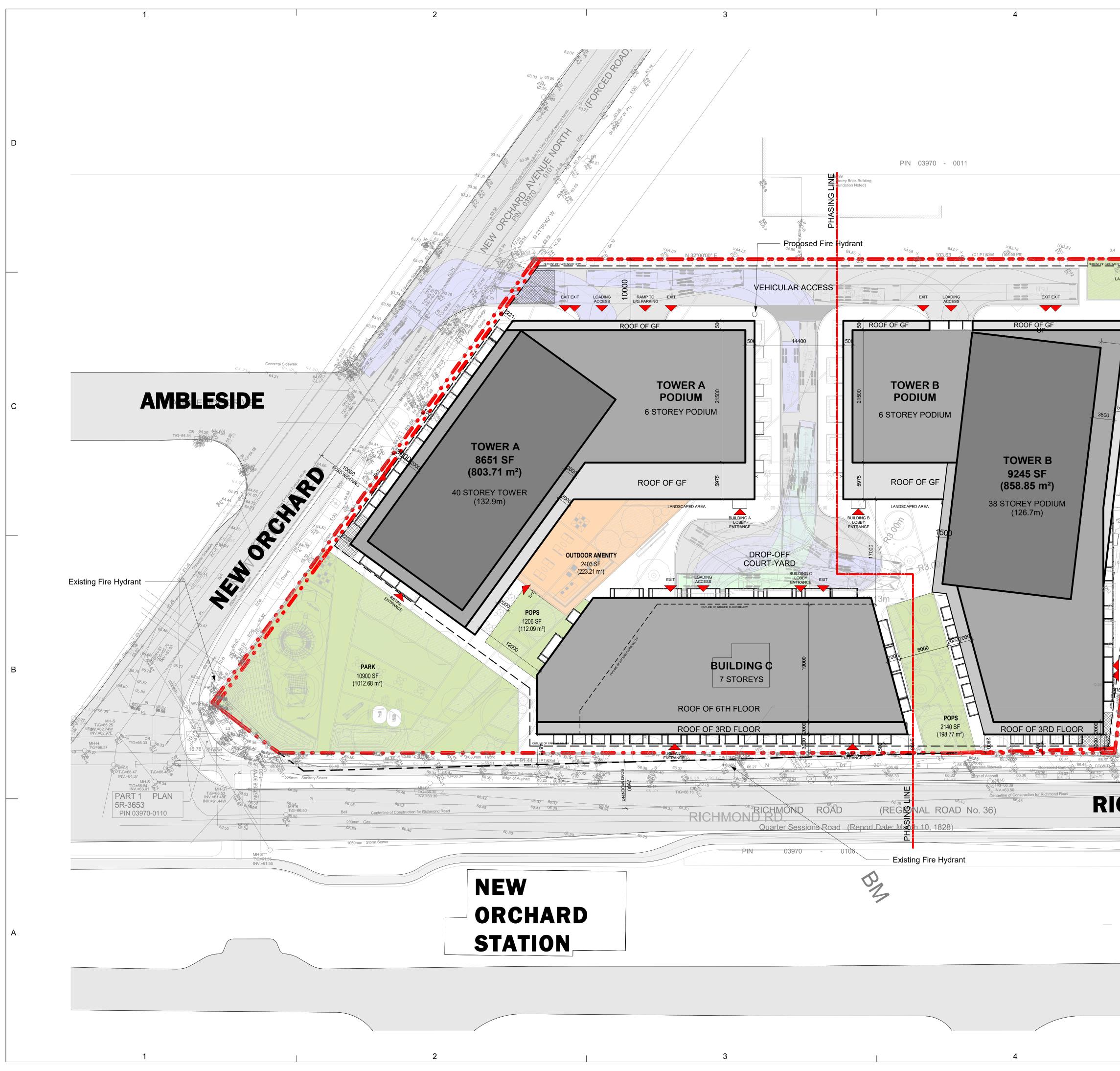
Reviewed By:

Austin Shih, M.A.Sc., P.Eng. Senior Transportation Engineer

Appendix A:

Screening Form and City Comments

City of Ottawa 2017 TIA Guidelines	Date	16-Nov-21
TIA Screening Form	Project	1047 Richmond Rd
	Project Number	477943-01000
Results of Screening	Yes/No	
Development Satisfies the Trip Generation Trigger	Yes	
Development Satisfies the Location Trigger	Yes	
Development Satisfies the Safety Trigger	Yes	


Module 1.1 - Description of Proposed Development	
Municipal Address	1047 Richmond Rd, Ottawa, ON
Description of location	Northeast corner of the intersection of Richmond/New Orchard
Land Use	Apartment units, with first floor retail
Development Size	Three buildings 6-40 storeys, 1,151 units
Number of Accesses and Locations	One on New Orchard Ave
Development Phasing	1 Phase
Buildout Year	Assumed 2026
Sketch Plan / Site Plan	See attached

Module 1.2 - Trip Generation Trigger		
Land Use Type	Townhomes or Apartments	
Development Size	1151	Units
Trip Generation Trigger Met?	Yes	

Module 1.3 - Location Triggers		
Development Proposes a new driveway to a boundary street that is designated as part of the City's Transit Priority, Rapid Transit, or Spine Bicycle Networks (See Sheet 3)	No	
Development is in a Design Priority Area (DPA) or Transit- oriented Development (TOD) zone. (See Sheet 3)	Yes	
Location Trigger Met?	Yes	

Module 1.4 - Safety Triggers			
Posted Speed Limit on any boundary road	<80	km/h	
Horizontal / Vertical Curvature on a boundary street limits sight lines at a proposed driveway	No		
A proposed driveway is within the area of influence of an adjacent traffic signal or roundabout (i.e. within 300 m of intersection in rural conditions, or within 150 m of intersection in urban/ suburban conditions) or within auxiliary lanes of an intersection;	Yes		
A proposed driveway makes use of an existing median break that serves an existing site	No		
There is a documented history of traffic operations or safety			
concerns on the boundary streets within 500 m of the	No		
development			
The development includes a drive-thru facility	No		
Safety Trigger Met?	Yes		

DELIVERING A BETTER WORLD

5	Client Name
63.33 × 0.6 0.15 0.15 × 50.04 02.98 ×	D COPYRIGHT: Any reproduction or distribution for any purpose other than authorized by IBI Group is forbidden. Written dimensions shall have precedence over scaled dimensions on the job and IBI Group shall be informed of any variations from the dimensions and conditions shown on the drawing. Shop drawings shall be submitted to IBI Group for general conformance before proceeding with fabrication. IBI Group Architects (Canada) Inc. ISSUES NO ISSUANCE NO ISSUANCE
CARLETON CONDOMINUUM PLAN No.169 Biotics/Appartment Building Biotics/Appartment Building	C SEAL
90.25 1565.63 154.37 (P7)&Meas. PART 2 PLAN 4R-1218	B SUB CONSULTANT
W 41-79, INST. ns53649 4 66.49 66.49 66.49 66.29 66.29 66.22 66.24 66.25 TG=66.26 66.26 66.25 CB_626 66.26	PRIME CONSULTANT
	PROJECT 1047 RICHMOND ROAD Project Address PROJECT NO: Project Number
	A SCALE: 1:300 DATE: 12/09/20 SHEET TITLE
5	SITE PLAN

5 July 2023

City of Ottawa Development Review Services 110 Laurier Avenue West Ottawa, ON K1P 1J1

Attention: Josiane Gervais

Dear Josiane:

Re: 1047 Richmond Rd TIA

Step 5 – Response to City Comments

The following response has been prepared in response to City of Ottawa TIA Forecasting Report comments received on April 18, 2022. City comments are presented in black with the corresponding responses from Parsons in Green.

Transportation Engineering Services

1. Section 4.8 must ensure that the network capacity (auto trips and transit trips) can accommodate the proposed increase in trips due to rezoning of the site. A comparison between the largest trip generation for the current zoning and the proposed rezoning is required to assess if any changes are required in the network that are not reflected in the current TMP. Provide a response to this specific issue if the difference in zoning results in the potential for 200 more peak hour person trips.

Section 4.8 was updated to provide an estimate of the difference in total person trips between existing zoning and proposed development zoning. It was determined that the difference would not exceed 200 person trips.

2. Transit trips start as pedestrian trips. Ensure adequate facilities and space for the 500 plus trips during peak periods.

Noted.

3. To support the projected mode shares (which are already heavily supported by the Stage 2 LRT development) ensure that the building integrates well with the transit system as well as the active modes. Provide enhanced measures for cycling, including secure and comfortably designed bicycle parking for each tenant, bicycle repair stations, bicycle wash stations and easy access to bike parking. Conditions defined during zoning could support future site plan submissions.

Proposed TDM Measures are identified in Section 4.5 of the TIA Report. Further measures may be explored at SPC.

Consideration for future Site Plan Submission

4. Display the protected ROW on both New Orchard and Richmond on the site plan.

Proponent notified. To be included at SPC.

5. Provide site access grades and ensure compliance with Section 25.1.u of the PABL. Regarding the underground parking ramp grade of 15% shown in Sheet A201 of the Site Plan provided in devApps, please note that such a slope can be difficult for cyclists to clear and can be a psychological barrier to some drivers. When the underground parking ramp's slope exceeds 8%, a vertical-curve transition or a transition slope of half the ramp should be implemented. In addition, when the slope is exceeding 6%, a subsurface melting device should be used.

DELIVERING A BETTER WORLD

Ramp and access grades to be confirmed at SPC.

6. Please note that the 3 metre distance requirement mentioned in Section 25.1.p of the PABL applies at both the street line and curb line / roadway edge. As such, both accesses do not seem to meet this clause of the PABL. Attempt to meet the bylaw or an exemption will be required.

To be reviewed at SPC.

7. In existing conditions, New Orchard Ave N has somewhat of a rural cross-section (especially north of Ambleside Dr where only a substandard asphalt sidewalk is provided on the west side). This development is expected to continue upgrading the remainder of its frontages where the project leaves off (with continuity of the pedestrian and cycling facilities that will be provided as part of the LRT project).

Frontage on New Orchard Ave is expected to be upgraded as part of development. To be confirmed at SPC.

8. Ensure no issues will arise from the loading zone and underground parking ramp being directly adjacent to each other as shown in Sheet A201 of the Site Plan.

To be reviewed at SPC.

9. Any drop off locations should be provided on private property and allow for vehicles to return to Richmond Road without making on street u-turns.

Richmond Rd access has been removed from the latest site plan; therefore, U-turns will not be possible. Access is now only proposed along New Orchard Ave N.

10. Ensure paving materials used on City right of way are durable and appropriate to the harsh urban and climatic conditions of Ottawa. Use materials that can be sourced when needed to be replaced. Contact David Atkinson for additional information on paver selection. A maintenance and liability agreement may be required for these pavers placed in City ROW.

Proponent notified.

Traffic Signal Operations

11. Synchro model for the 2031 with mitigation shows that the cycle length along the corridor increased to 130s at Richmond/Woodroffe and 120s at the other intersections, in addition to a 30% reduction in volumes. These are very big cycle lengths for relatively small intersections. The side street delays for pedestrians and cyclists will be significant under these circumstances and will not be considered user-friendly. The high non-auto modal shares benchmarks need to be met in order for Richmond Road to function effectively.

Synchro analysis has been updated. Cycle lengths were reverted to existing conditions cycle lengths at the 2031 demand rationalization scenario.

Traffic Signal Design

12. Please note there is ongoing construction part of stage 2 LRT Confederation line along the Richmond Rd corridor, the intersections have not been finalized. The intersection of Richmond & New Orchard is to be rebuilt in accordance with the Protected Intersection Guidelines and AODA references part of the complete streets rehabilitation project in 2026, this will include all new traffic signal plant.

Noted. The Protected Intersection Guidelines have been considered as part of the intersection capacity analysis conducted in Synchro.

13. If/when the proposed modifications at 1047 Richmond Road are approved for installation and RMA approved, please forward the approved geometry detail design drawings (dwg digital format, NAD83 coordinates) including base mapping, existing/proposed utilities, approved pavement marking drawing, autoturn templates (in separate digital files) for detail traffic plant design layout. Please send all digital (CAD) design files to Jon.Pach@ottawa.ca.

Note that RMA not needed at this time.

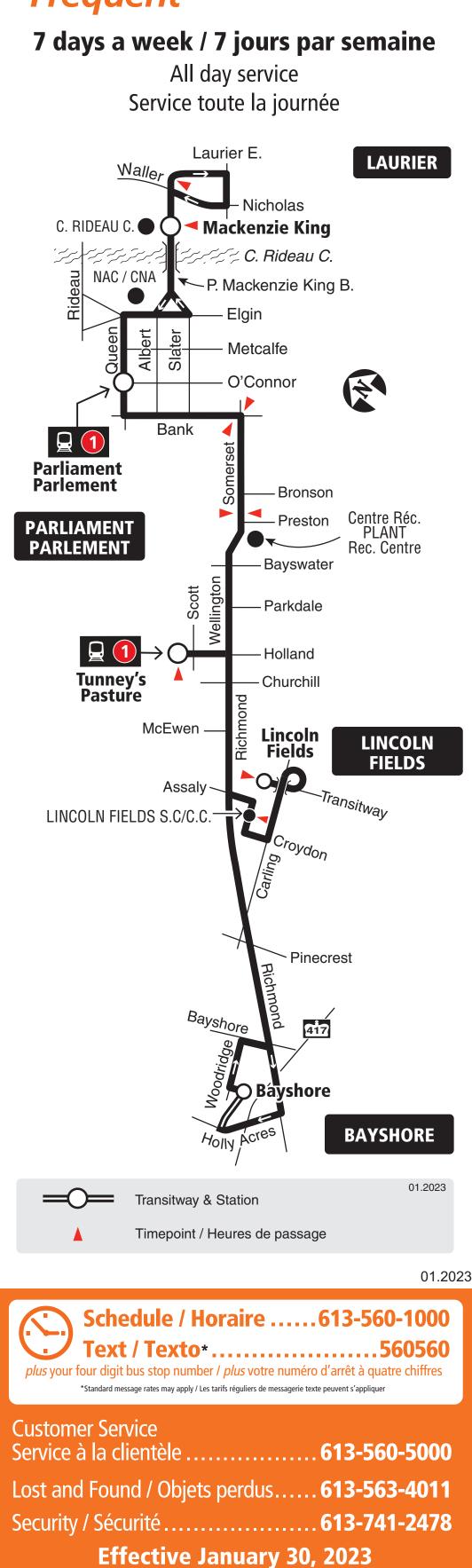
Street Lighting

14. No comments with initial development review. Street Lighting reserves the right to make future comments based on subsequent submissions.

Noted.

- 15. Future considerations are as follows:
 - a. If there are any proposed changes to the existing city roadway geometry, the City of Ottawa Street Light Asset Management Group is required to provide a full street light design. Street Lighting contact is Barrie Forrester (City of Ottawa) at 613-580-2424 ext. 23332, Barrie.Forrester@ottawa.ca
 - b. Be advised that the applicant will be 100% responsible for all costs associated with any relocations/modifications to the existing street light plant.

Noted.


Appendix B:

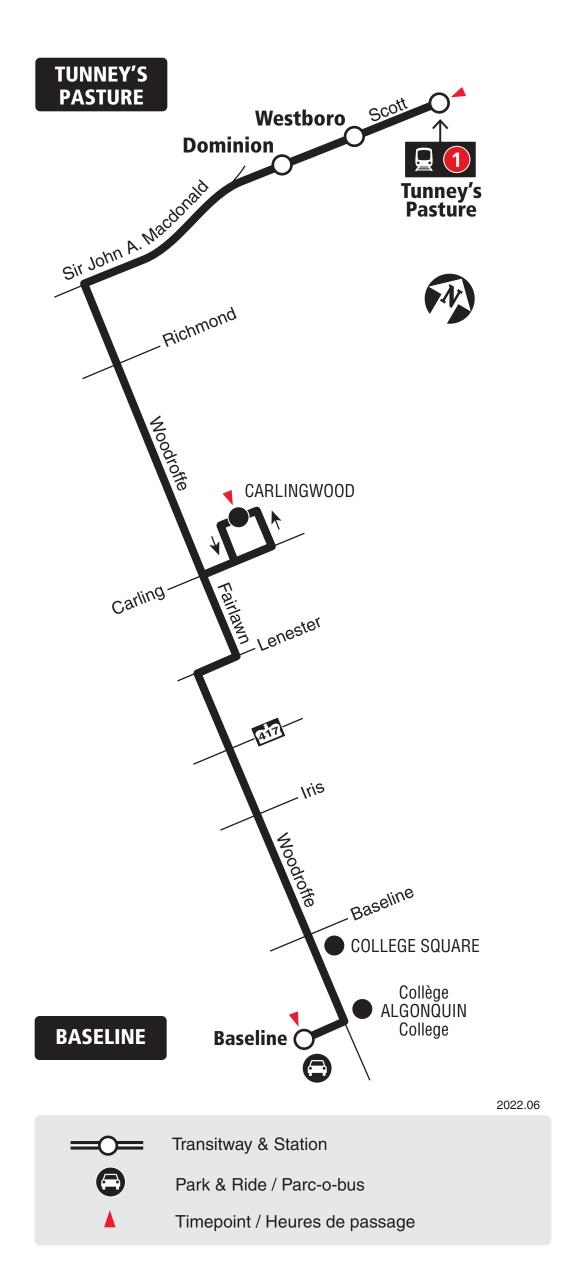
Transit Route Maps

LINCOLN FIELDS BAYSHORE

LAURIER

En vigueur 30 janvier 2023

INFO 613-560-5000 octranspo.com



BASELINE TUNNEY'S PASTURE

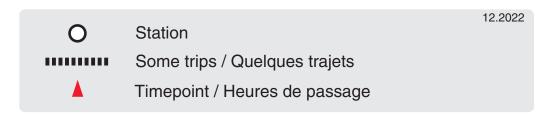
7 days a week / 7 jours par semaine

All day service Service toute la journée

2022.06

C Transpo

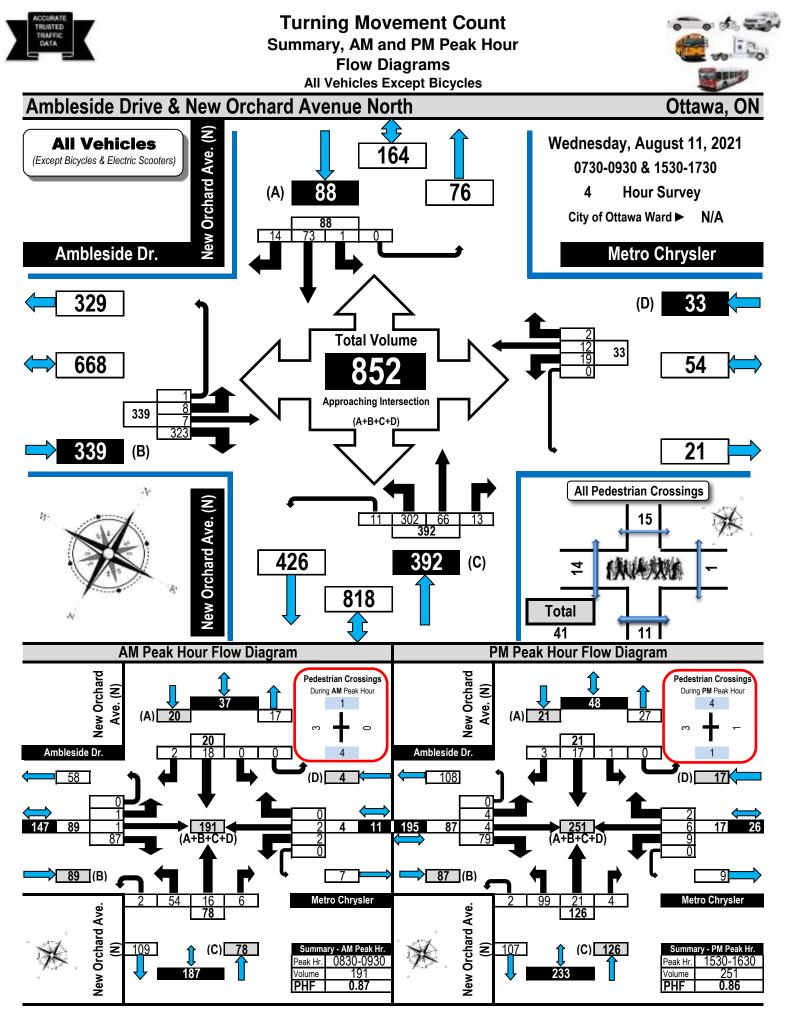
INFO 613-560-5000 octranspo.com


LINCOLN FIELDS TUNNEY'S PASTURE CARLINGWOOD

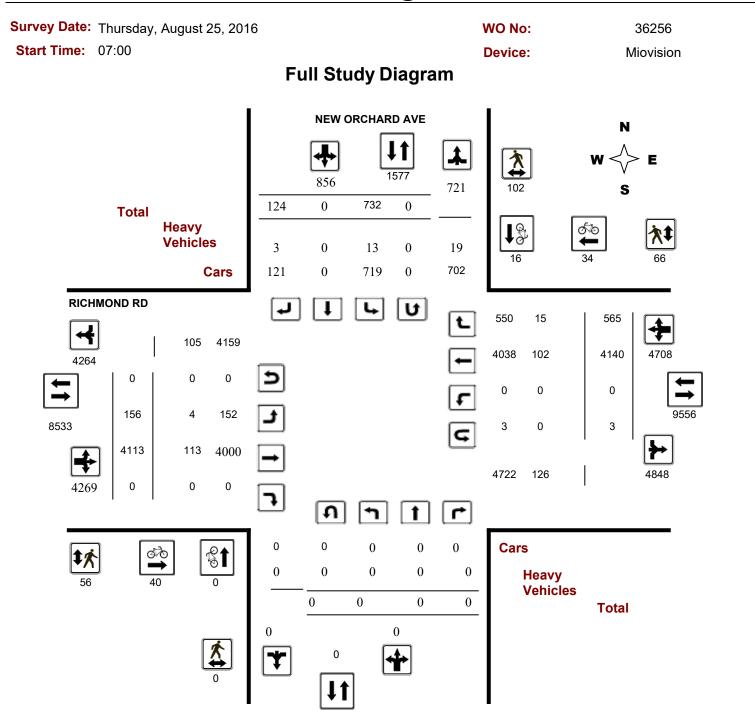
Local

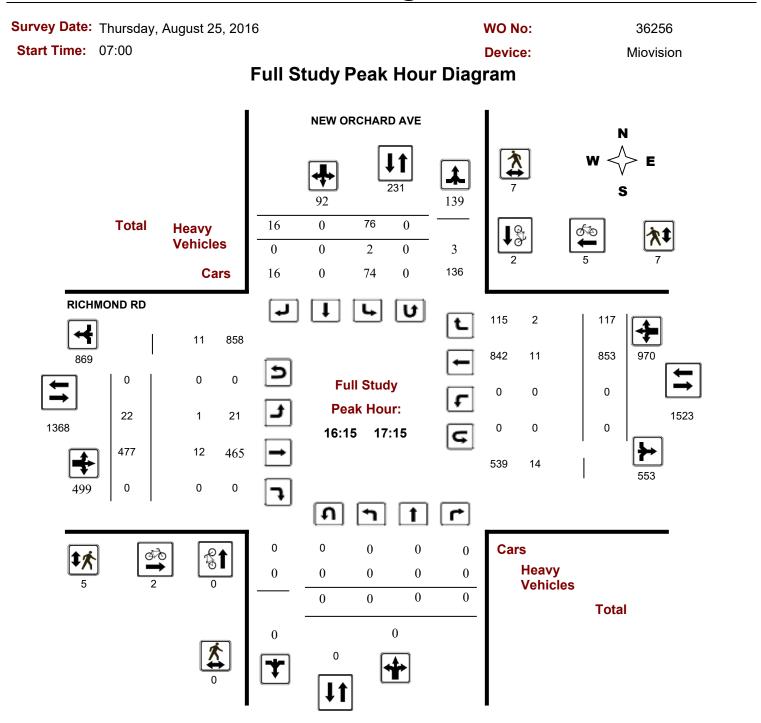
7 days a week / 7 jours par semaine

Selected time periods only Périodes sélectionnées seulement

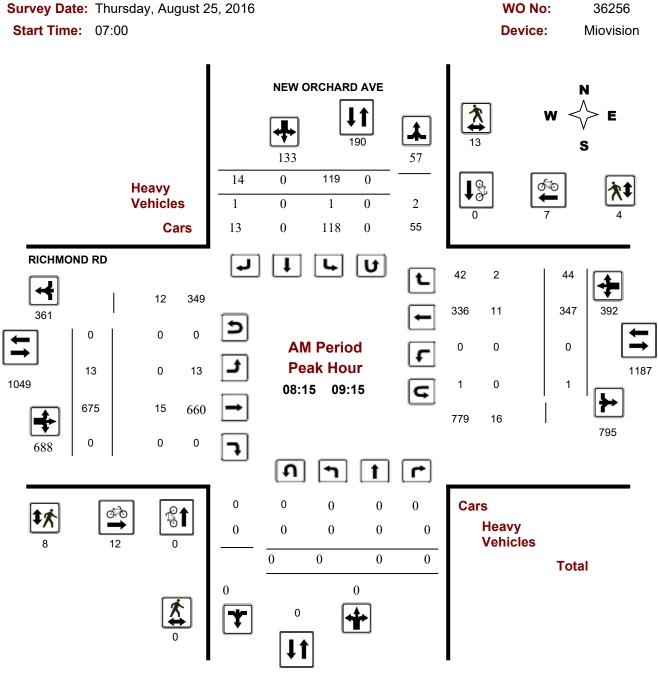


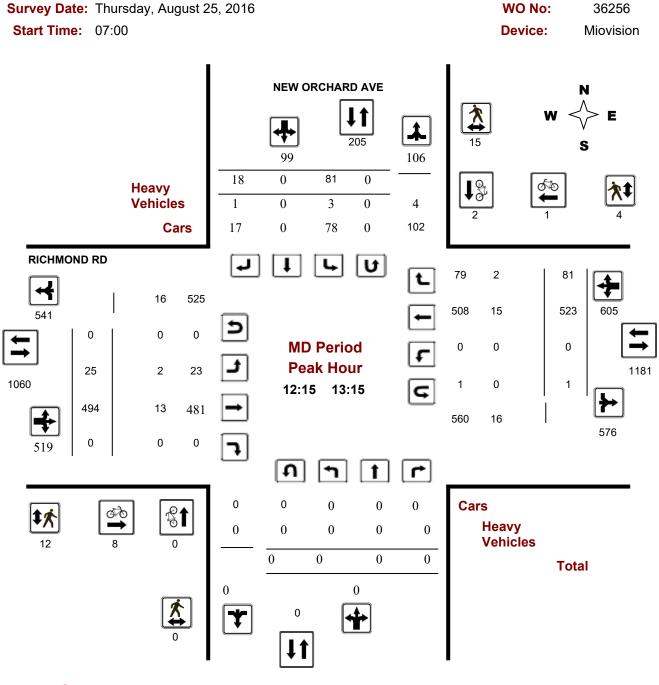
12.2022


Appendix C: Traffic Data

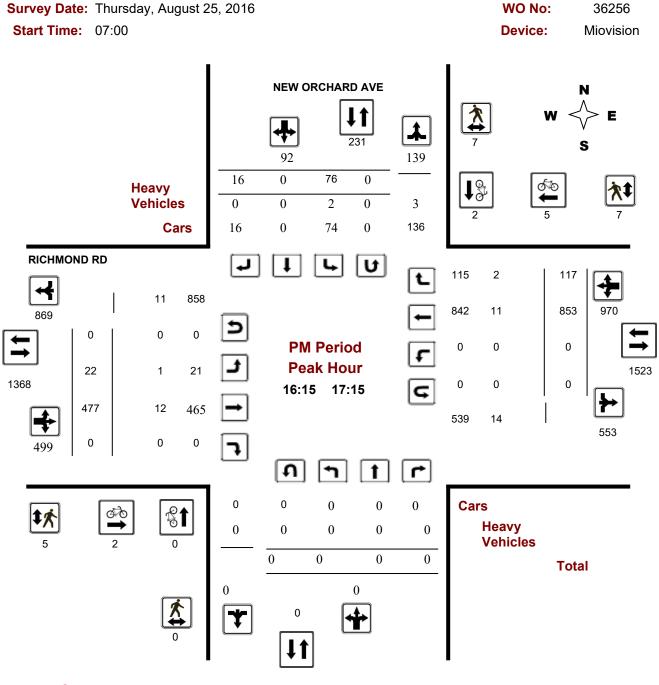

Prepared by: thetrafficspecialist@gmail.com

Flow Diagrams: AM PM Peak





Turning Movement Count - Peak Hour Diagram NEW ORCHARD AVE @ RICHMOND RD



Turning Movement Count - Peak Hour Diagram NEW ORCHARD AVE @ RICHMOND RD

Turning Movement Count - Peak Hour Diagram NEW ORCHARD AVE @ RICHMOND RD

										<u> </u>									
Survey Da	ate: TI	hursda	ay, Au	igust 2	5, 201	6						wo	No:			36	256		
Start Tim												Devi	ce:			Mio	vision		
				F		Stud	v Si	umma	rv (S		2 Sta								
Survey Da	to: T	Thured		∎ ugust 2			y Ot						u)						
Survey Da	le.	nuisu	ay, A	uyusi	25, 20	10		Northbound		bser	red U-	nbound:	0					T Facto	or
								Eastbound	0			tbound:	0				.90		
		NIT				_		Casibound	J. ()		West		-						
				RCHA									IMON	ID RD					
	Nor	thbou	nd		So	uthbou	Ind			E	astbou	ind		V	Vestbo	und			•
Period	LT	ST	RT	NB TOT	LT	ST	RT	SB TOT	STR TOT	LT	ST	RT	EB TOT	LT	ST	RT	WB TOT	STR TOT	Granc Tota
07:00 08:00	0	0	0	0	93	0	5	98	98	18	559	0	577	0	191	30	221	798	896
08:00 09:00	0	0	0	0	104	0	15	119	119	13	706	0	719	0	327	43	370	1089	1208
09:00 10:00	0	0	0	0	110	0	11	121	121	19	493	0	512	0	350	49	399	911	1032
11:30 12:30	0	0	0	0	94	0	22	116	116	23	498	0	521	0	475	79	554	1075	1191
12:30 13:30	0	0	0	0	82	0	14	96	96	23	488	0	511	0	489	76	565	1076	1172
15:00 16:00	0	0	0	0	95	0	18	113	113	20	431	0	451	0	696	95	791	1242	1355
16:00 17:00	0	0	0	0	73	0	20	93	93	17	459	0	476	0	819	103	922	1398	1491
17:00 18:00	0	0	0	0	81	0	19	100	100	23	479	0	502	0	793	90	883	1385	1485
Sub Total	0	0	0	0	732	0	124	856	856	156	4113	0	4269	0	4140	565	4705	8974	9830
U Turns	0			0	0			0	0	0			0	3			3	3	3
Total	0	0	0	0	732	0	124	856	856	156	4113	0	4269	3	4140	565	4708	8977	9833
EQ 12Hr	0	0	0	0	1017	0	172	1189	1189	217	5717	0	5934	4	5755	785	6544	12478	13667
Note: These va	alues ar	e calcul	ated by	y multipl	ying the	totals b	y the a	ppropriate	expans	ion fac	tor.			1.39					
AVG 12Hr	0	0	0	0	915	0	155	1070	1070	195	5145	0	5340	4	5180	706	5890	11230	12300
Note: These ve	olumes	are calc	ulated	by multi	plying th	ne Equiv	alent 1	2 hr. totals	s by the	AADT	factor.			.90					
AVG 24Hr	0	0	0	0	1199	0	203	1402	1402	255	6740	0	6995	5	6786	925	7716	14711	16113
Note: These ve	olumes	are calc	ulated	by multi	plying th	ne Avera	age Dai	ily 12 hr. to	otals by	12 to 2	4 expan	sion fact	tor.	1.31					
				-			-	-											

Note: U-Turns provided for approach totals. Refer to 'U-Turn' Report for specific breakdown.

												wo	No:			3	6256		
Start Tin	ie: 0	7:00											Devi	ice:			Mic	ovisior	1
						F	ull S	stud	y 15	5 Mi	nute	Inc	rem	ent	S				
		N	EW OR	RCHA	RD A	VE			-			RICH	IMON	D RD					
	N	lorthbo	und		Sc	uthbou	ind			E	astbour	nd		W	estbour	nd			
Time Period	I LT	ST	RT	N TOT	LT	ST	RT	S TOT	STR TOT	LT	ST	RT	Е ТОТ	LT	ST	RT	W тот	STR TOT	Grand Total
07:00 07:1	5 0	0	0	0	17	0	0	17	17	4	103	0	107	0	32	4	36	143	160
07:15 07:3	0 (0	0	0	18	0	1	19	19	4	128	0	132	0	59	7	66	198	217
07:30 07:4	5 0	0	0	0	26	0	1	27	27	7	157	0	164	0	42	8	50	214	241
07:45 08:0	0 (0	0	0	32	0	3	35	35	3	171	0	174	0	58	11	69	243	278
08:00 08:1	5 0	0	0	0	21	0	4	25	25	5	177	0	182	0	68	9	77	259	284
08:15 08:3	0 (0	0	0	22	0	6	28	28	1	161	0	162	0	82	8	90	252	280
08:30 08:4	5 0	0	0	0	25	0	4	29	29	2	177	0	179	1	90	12	103	282	311
08:45 09:0	0 (0	0	0	36	0	1	37	37	5	191	0	196	0	87	14	101	297	334
09:00 09:1	5 0	0	0	0	36	0	3	39	39	5	146	0	151	0	88	10	98	249	288
09:15 09:3	0 (0	0	0	26	0	1	27	27	5	110	0	115	0	87	11	98	213	240
09:30 09:4	5 0	0	0	0	21	0	5	26	26	4	113	0	117	0	89	15	104	221	247
09:45 10:0	0 (0	0	0	27	0	2	29	29	5	124	0	129	0	86	13	99	228	257
11:30 11:4	5 0	0	0	0	22	0	4	26	26	7	132	0	139	1	116	14	131	270	296
11:45 12:0	0 (0	0	0	19	0	5	24	24	5	135	0	140	0	109	24	133	273	297
12:00 12:1	5 0	0	0	0	32	0	5	37	37	7	115	0	122	0	112	20	132	254	291
12:15 12:3	0 (0	0	0	21	0	8	29	29	4	116	0	120	0	138	21	159	279	308
12:30 12:4	5 0	0	0	0	21	0	4	25	25	13	123	0	136	0	130	29	159	295	320
12:45 13:0	0 (0	0	0	19	0	4	23	23	3	124	0	127	0	126	13	139	266	289
13:00 13:1	5 0	0	0	0	20	0	2	22	22	5	131	0	136	1	129	18	148	284	306
13:15 13:3	0 (0	0	0	22	0	4	26	26	2	110	0	112	0	104	16	120	232	258
15:00 15:1	5 0	0	0	0	26	0	8	34	34	3	95	0	98	0	125	27	152	250	284
15:15 15:3	0 (0	0	0	27	0	3	30	30	7	114	0	121	0	155	21	176	297	327
15:30 15:4	5 0	0	0	0	17	0	5	22	22	6	109	0	115	0	191	26	217	332	354
15:45 16:0	0 (0	0	0	25	0	2	27	27	4	113	0	117	0	225	21	246	363	390
16:00 16:1	5 0	0	0	0	19	0	10	29	29	4	109	0	113	0	188	23	211	324	353
16:15 16:3	0 (0	0	0	19	0	5	24	24	3	118	0	121	0	213	26	239	360	384
16:30 16:4	5 0	0	0	0	22	0	2	24	24	5	120	0	125	0	200	27	227	352	376
16:45 17:0	0 (0	0	0	13	0	3	16	16	5	112	0	117	0	218	27	245	362	378
17:00 17:1	5 0	0	0	0	22	0	6	28	28	9	127	0	136	0	222	37	259	395	423
17:15 17:3	0 (0	0	0	22	0	4	26	26	4	121	0	125	0	197	20	217	342	368
17:30 17:4	5 0	0	0	0	18	0	4	22	22	4	108	0	112	0	207	21	228	340	362
17:45 18:0	0 (0	0	0	19	0	5	24	24	6	123	0	129	0	167	12	179	308	332
Total:	0	0	0	0	732	0	124	856	856	156	4113	0	4269	3	4140	565	4708	856	9,833

Note: U-Turns are included in Totals.

Survey Dat	e: Thursday,	August 25, 2016	6		WO No:		36256
Start Time	07:00				Device:	I	Viovision
			Full Study	Cyclist V	olume		
	NE	W ORCHARD		e j ellet i	RICHMOND RI	D	
Time Period	Northbound	Southbound	Street Total	Eastbound	Westbound	Street Total	_ Grand Total
07:00 07:15	0	0	0	1	1	2	2
07:15 07:30	0	0	0	2	3	5	5
07:30 07:45	0	0	0	2	2	4	4
07:45 08:00	0	0	0	2	3	5	5
08:00 08:15	0	2	2	3	2	5	7
08:15 08:30	0	0	0	3	4	7	7
08:30 08:45	0	0	0	3	1	4	4
08:45 09:00	0	0	0	4	1	5	5
09:00 09:15	0	0	0	2	1	3	3
09:15 09:30	0	0	0	0	0	0	0
09:30 09:45	0	1	1	1	0	1	2
09:45 10:00	0	0	0	2	0	2	2
11:30 11:45	0	0	0	0	1	1	1
11:45 12:00	0	0	0	2	0	2	2
12:00 12:15	0	0	0	0	0	0	0
12:15 12:30	0	1	1	0	1	1	2
12:30 12:45	0	0	0	2	0	2	2
12:45 13:00	0	1	1	5	0	5	6
13:00 13:15	0	0	0	1	0	1	1
13:15 13:30	0	1	1	0	0	0	1
15:00 15:15	0	0	0	0	0	0	0
15:15 15:30	0	1	1	0	0	0	1
15:30 15:45	0	1	1	0	0	0	1
15:45 16:00	0	0	0	0	0	0	0
16:00 16:15	0	0	0	0	2	2	2
16:15 16:30	0	0	0	0	1	1	1
16:30 16:45	0	0	0	0	1	1	1
16:45 17:00	0	1	1	0	1	1	2
17:00 17:15	0	1	1	2	2	4	5
17:15 17:30	0	3	3	2	2	4	7
17:30 17:45	0	0	0	0	3	3	3
17:45 18:00	0	3	3	1	2	3	6
Total	0	16	16	40	34	74	90

Survey Da	ate: Thursday,	August 25, 2016			WO No:		36256
Start Tim	e: 07:00				Device:		Miovision
		F	ull Stud	ly Pedestria	n Volume		
		NEW ORCHARD A		ly i ouoonia	RICHMOND RD		
Time Period	NB Approach (E or W Crossing)	SB Approach (E or W Crossing)	Total	EB Approach (N or S Crossing)	WB Approach (N or S Crossing)	Total	Grand Total
07:00 07:15	0	2	2	2	0	2	4
07:15 07:30	0	1	1	0	0	0	1
07:30 07:45	0	0	0	0	1	1	1
07:45 08:00	0	1	1	0	2	2	3
08:00 08:15	0	3	3	2	1	3	6
8:15 08:30	0	3	3	2	2	4	7
8:30 08:45	0	4	4	1	0	1	5
8:45 09:00	0	3	3	3	2	5	8
9:00 09:15	0	3	3	2	0	2	5
9:15 09:30	0	6	6	4	4	8	14
9:30 09:45	0	4	4	1	2	3	7
9:45 10:00	0	1	1	3	2	5	6
1:30 11:45	0	1	1	0	3	3	4
1:45 12:00	0	5	5	1	4	5	10
2:00 12:15	0	7	7	0	2	2	9
2:15 12:30	0	4	4	2	1	3	7
2:30 12:45	0	3	3	4	1	5	8
2:45 13:00	0	3	3	2	0	2	5
3:00 13:15	0	5	5	4	2	6	11
3:15 13:30	0	4	4	3	5	8	12
5:00 15:15	0	5	5	1	1	2	7
5:15 15:30	0	11	11	8	7	15	26
5:30 15:45	0	7	7	1	3	4	11
5:45 16:00	0	0	0	2	3	5	5
6:00 16:15	0	2	2	0	5	5	7
6:15 16:30	0	2	2	1	3	4	6
6:30 16:45	0	1	1	2	1	3	4
6:45 17:00	0	3	3	0	2	2	5
7:00 17:15	0	1	1	2	1	3	4
7:15 17:30	0	4	4	1	5	6	10
7:30 17:45	0	1	1	1	0	1	2
7:45 18:00	0	2	2	1	1	2	4
Total	0	102	102	56	66	122	224

Survey Date	e: Tł	nursda	ay, Au	gust	25, 20	016							wo	No:			3	6256	
Start Time	: 07	2:00											Dev	ice:			Mic	ovisior	ı
						F	ull S	Stud	v He	avv	Veł	nicle	es						
		NE	W OR	СНА	RD A			•		,			IMON	D RD					
	No	orthbou	und		Sc	uthbou	Ind			E	astbour	nd		W	estbour	nd			
Time Period		ST	RT	Ν	LT	ST	RT	S	STR	LT	ST	RT	Е	LT	ST	RT	w	STR	Grand
·	LT			тот				тот	тот		r		тот				тот	тот	Total
07:00 07:15	0	0	0	0	0	0	0	0	0	0	5	0	5	0	0	0	0	5	5
07:15 07:30	0	0	0	0	0	0	0	0	0	0	3	0	3	0	2	0	2	5	5
07:30 07:45	0	0	0	0	0	0	0	0	0	0	3	0	3	0	2	0	2	5	5
07:45 08:00	0	0	0	0	0	0	0	0	0	0	5	0	5	0	4	0	4	9	9
08:00 08:15	0	0	0	0	1	0	0	1	1	1	3	0	4	0	5	0	5	9	10
08:15 08:30	0	0	0	0	0	0	1	1	1	0	3	0	3	0	3	0	3	6	7
08:30 08:45	0	0	0	0	0	0	0	0	0	0	4	0	4	0	2	0	2	6	6
08:45 09:00	0	0	0	0	1	0	0	1	1	0	4	0	4	0	4	2	6	10	11
09:00 09:15	0	0	0	0	0	0	0	0	0	0	4	0	4	0	2	0	2	6	6
09:15 09:30	0	0	0	0	0	0	0	0	0	0	3	0	3	0	3	1	4	7	7
09:30 09:45	0	0	0	0	1	0	0	1	1	0	4	0	4	0	3	1	4	8	9
09:45 10:00	0	0	0	0	2	0	0	2	2	0	3	0	3	0	3	2	5	8	10
11:30 11:45	0	0	0	0	0	0	0	0	0	0	7	0	7	0	9	0	9	16	16
11:45 12:00	0	0	0	0	0	0	1	1	1	0	6	0	6	0	3	3	6	12	13
12:00 12:15	0	0	0	0	0	0	0	0	0	0	6	0	6	0	6	0	6	12	12
12:15 12:30	0	0	0	0	2	0	1	3	3	1	1	0	2	0	4	0	4	6	9
12:30 12:45	0	0	0	0	0	0	0	0	0	1	2	0	3	0	2	1	3	6	6
12:45 13:00	0	0	0	0	1	0	0	1	1	0	4	0	4	0	6	1	7	11	12
13:00 13:15	0	0	0	0	0	0	0	0	0	0	6	0	6	0	3	0	3	9	9
13:15 13:30	0	0	0	0	1	0	0	1	1	0	3	0	3	0	3	0	3	6	7
15:00 15:15	0	0	0	0	1	0	0	1	1	0	5	0	5	0	4	0	4	9	10
15:15 15:30	0	0	0	0	0	0	0	0	0	0	5	0	5	0	5	0	5	10	10
15:30 15:45	0	0	0	0	0	0	0	0	0	0	3	0	3	0	4	0	4	7	7
15:45 16:00	0	0	0	0	0	0	0	0	0	0	3	0	3	0	2	0	2	5	5
16:00 16:15	0	0	0	0	0	0	0	0	0	0	1	0	1	0	2	0	2	3	3
16:15 16:30	0	0	0	0	2	0	0	2	2	0	5	0	5	0	1	0	1	6	8
16:30 16:45	0	0	0	0	0	0	0	0	0	0	2	0	2	0	4	2	6	8	8
16:45 17:00	0	0	0	0	0	0	0	0	0	0	1	0	1	0	2	0	2	3	3
17:00 17:15	0	0	0	0	0	0	0	0	0	1	4	0	5	0	4	0	4	9	9
17:15 17:30	0	0	0	0	1	0	0	1	1	0	2	0	2	0	2	1	3	5	6
17:30 17:45	0	0	0	0	0	0	0	0	0	0	1	0	1	0	2	0	2	3	3
17:45 18:00	0	0	0	0	0	0	0	0	0	0	2	0	2	0	1	1	2	4	4
Total: None	0	0	0	0	13	0	3	16	16	4	113	0	117	0	102	15	117	234	250

y Date:	Thursd	ay, August :	25, 2016	WC	36256		
Time:	07:00				De	vice:	Miovision
			Full S NEW ORCHA	tudy 15 Mir ^{RD AVE}		n Total HMOND RD	
	Time Period		Northbound U-Turn Total	Southbound U-Turn Total	Eastbound U-Turn Total	Westbound U-Turn Total	Total
(07:00	07:15	0	0	0	0	0
(07:15	07:30	0	0	0	0	0
(07:30	07:45	0	0	0	0	0
(07:45	08:00	0	0	0	0	0
(08:00	08:15	0	0	0	0	0
(08:15	08:30	0	0	0	0	0
(08:30	08:45	0	0	0	1	1
(08:45	09:00	0	0	0	0	0
(09:00	09:15	0	0	0	0	0
(09:15	09:30	0	0	0	0	0
(09:30	09:45	0	0	0	0	0
(09:45	10:00	0	0	0	0	0
	11:30	11:45	0	0	0	1	1
	11:45	12:00	0	0	0	0	0
	12:00	12:15	0	0	0	0	0
	12:15	12:30	0	0	0	0	0
	12:30	12:45	0	0	0	0	0
	12:45	13:00	0	0	0	0	0
	13:00	13:15	0	0	0	1	1
	13:15	13:30	0	0	0	0	0
	15:00	15:15	0	0	0	0	0
	15:15	15:30	0	0	0	0	0
	15:30	15:45	0	0	0	0	0
	15:45	16:00	0	0	0	0	0
	16:00	16:15	0	0	0	0	0
	16:15	16:30	0	0	0	0	0
	16:30	16:45	0	0	0	0	0
	16:45	17:00	0	0	0	0	0
	17:00	17:15	0	0	0	0	0
	17:15	17:30	0	0	0	0	0
	17:30	17:45	0	0	0	0	0
	17:45	18:00	0	0	0	0	0
	То	otal	0	0	0	3	3

Transportation Services - Traffic Services W.O.

36566

Turning Movement Count - 15 Minute Summary Report

Sur	vey D	ate:	Th	ursda	iv. Dec	cemb	er 01, 2	2016			NOC Total		ved l	J-Turr	IS					
- 41	, .				.,				N	orthbou				uthboun)				
									E	astbour	nd: (I	We	estboun	d: 1					
			W	OOD	ROFF	E AV	E					F	RICHN	IOND	RD					
		No	orthbou	ind		So	uthboun	d			Eas	tbound			We	stbound				
Time I	Period	LT	ST	RT	N TOT	LT	ST	RT	S TOT	STR TOT	LT	ST	RT	Е ТОТ	LT	ST	RT	W TOT	STR TOT	Grand Total
07:00	07:15	16	44	18	78	5	81	10	96	174	24	106	36	166	11	32	4	47	213	387
07:15	07:30	18	48	15	81	7	86	18	111	192	29	132	35	196	11	33	3	47	243	435
07:30	07:45	25	65	22	112	11	92	12	115	227	36	154	54	244	11	22	2	35	279	506
07:45	08:00	33	75	20	128	5	90	17	112	240	37	175	50	262	17	42	5	64	326	566
08:00	08:15	26	67	20	113	11	69	14	94	207	39	188	56	283	17	56	4	77	360	567
08:15	08:30	32	49	28	109	15	83	8	106	215	37	189	55	281	10	73	7	90	371	586
08:30	08:45	26	66	24	116	8	87	22	117	233	39	187	55	281	18	58	4	80	361	594
08:45	09:00	25	67	24	116	7	66	19	92	208	30	189	43	262	18	54	5	77	339	547
09:00	09:15	33	57	26	116	5	67	11	83	199	29	132	49	210	22	70	7	99	309	508
09:15	09:30	27	42	12	81	4	48	9	61	142	19	99	46	164	21	49	2	72	236	378
09:30	09:45	45	54	22	121	2	56	12	70	191	18	88	63	169	22	59	2	83	252	443
)9:45	10:00	46	44	21	111	2	47	9	58	169	22	81	73	176	26	66	2	94	270	439
11:30	11:45	35	43	34	112	4	42	11	57	169	17	72	49	138	25	69	6	100	238	407
11:45	12:00	45	65	26	136	4	60	12	76	212	24	82	60	166	36	48	4	88	254	466
12:00	12:15	62	46	25	133	7	54	11	72	205	16	78	61	155	27	87	6	120	275	480
12:15	12:30	48	58	24	130	4	51	6	61	191	19	77	75	171	26	89	9	124	295	486
12:30	12:45	53	58	29	140	5	59	16	80	220	22	69	57	148	29	80	2	111	259	479
12:45	13:00	50	63	27	140	4	46	9	59	199	16	71	61	148	32	77	9	118	266	465
13:00	13:15	53	57	20	130	3	49	9	61	191	22	73	60	155	38	81	7	126	281	472
13:15	13:30	45	64	25	134	6	49	10	65	199	20	68	62	150	29	80	6	115	265	464
15:00	15:15	59	92	17	168	8	77	11	96	264	31	88	47	166	34	90	7	131	297	561
15:15	15:30	53	91	15	159	10	93	20	123	282	22	65	36	123	40	117	3	160	283	565
15:30	15:45	59	115	34	208	9	88	21	118	326	16	67	53	136	36	150	16	202	338	664
15:45	16:00	59	81	24	164	7	88	18	113	277	13	74	42	129	43	176	11	230	359	636
16:00	16:15	57	95	24	176	5	102	13	120	296	19	71	43	133	52	163	14	229	362	658
16:15	16:30	46	100	15	161	8	90	17	115	276	14	84	44	142	53	156	10	219	361	637
16:30	16:45	70	96	22	188	3	73	17	93	281	29	86	46	161	64	161	4	230	391	672
16:45	17:00	59	111	27	197	9	75	15	99	296	21	81	42	144	48	147	3	198	342	638
17:00	17:15	49	80	24	153	5	81	15	101	254	18	90	49	157	49	160	5	214	371	625
17:15	17:30	57	100	28	185	11	94	22	127	312	9	93	38	140	51	147	9	207	347	659
17:30	17:45	62	68	18	148	9	86	17	112	260	21	73	41	135	47	158	2	207	342	602
17:45	18:00	71	76	27	174	7	95	22	124	298	30	88	35	153	34	139	6	179	332	630
ΓΟΤΑΙ	_: 1	444	2237	737	4418	210	2324	453	2987	7405	758	3270	1616	5644	997	2989	186	6 41 :	73 9817	1722

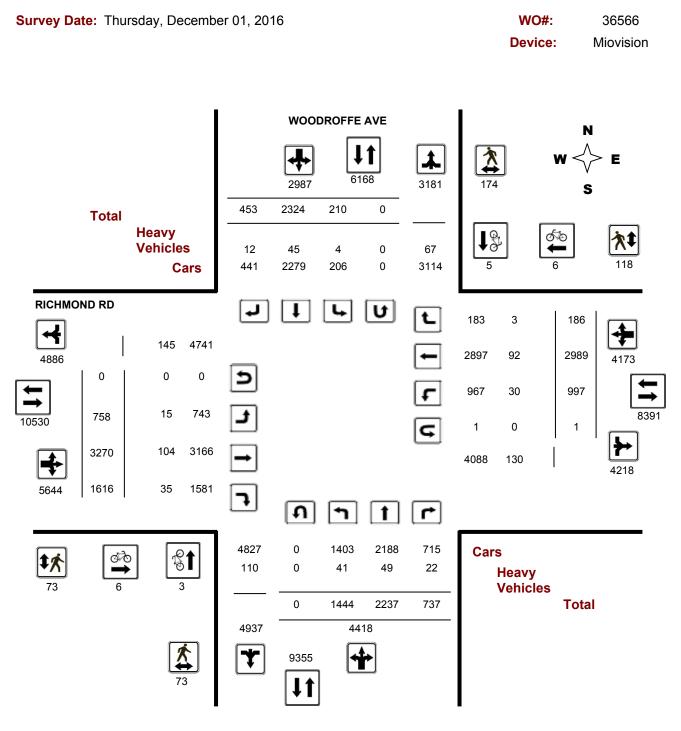
Transportation Services - Traffic Services

Turning Movement Count - Cyclist Volume Report

Work Order

36566

RICHMOND RD @ WOODROFFE AVE


Count Dat	te: Thursday,	December 01, 2	2016		07:00							
	W	OODROFFE AV	Έ		RICHMOND RD							
Time Period	Northbound	Southbound	Street Total	Eastbound	Westbound	Street Total	Grand Total					
07:00 08:00	0	1	1	1	2	3	4					
08:00 09:00	2	1	3	1	1	2	5					
09:00 10:00	0	0	0	3	0	3	3					
11:30 12:30	0	0	0	0	0	0	0					
12:30 13:30	1	0	1	1	0	1	2					
15:00 16:00	0	0	0	0	0	0	0					
16:00 17:00	0	1	1	0	1	1	2					
17:00 18:00	0	2	2	0	2	2	4					
Total	3	5	8	6	6	12	20					

Comment:

Note: These volumes consists of bicycles only (no mopeds or motorcycles) and ARE NOT included in the Turning Movement Count Summary.

RICHMOND RD @ WOODROFFE AVE

36566

Turning Movement Count - Heavy Vehicle Report

RICHMOND RD @ WOODROFFE AVE

Survey Date: Thursday, December 01, 2016

			woo	DRO	FFE A	VE				RICHMOND RD										
		Northb	ound		5	Southb	ound				Eastbound			١	Westbo	ound				
Time I	Period	LT	ST	RT	N TOT	LT	ST	RT	S TOT	STR TOT	LT	ST	RT	E TOT	LT	ST	RT	W тот	STR TOT	Grand Total
07:00	08:00	7	6	4	17	2	6	0	8	25	3	25	1	29	0	7	0	7	36	61
00:80	09:00	5	5	4	14	0	6	1	7	21	4	28	9	41	6	17	1	24	65	86
09:00	10:00	7	8	7	22	1	3	2	6	28	1	14	3	18	8	11	1	20	38	66
11:30	12:30	2	8	4	14	0	3	2	5	19	3	6	2	11	3	7	1	11	22	41
12:30	13:30	7	6	1	14	0	7	3	10	24	1	8	6	15	9	16	0	25	40	64
15:00	16:00	3	7	1	11	0	6	4	10	21	0	9	7	16	0	9	0	9	25	46
16:00	17:00	7	6	1	14	1	7	0	8	22	2	8	4	14	1	16	0	17	31	53
17:00	18:00	3	3	0	6	0	7	0	7	13	1	6	3	10	3	9	0	12	22	35
Sub	Total	41	49	22	112	4	45	12	61	173	15	104	35	154	30	92	3	125	279	452
J-Turn	s (Heav	vy Veľ	nicles)		0				0	0				0				0	0	0
То	tal	41	49	22	0	4	45	12	61	173	15	104	35	154	30	92	3	125	279	452

Transportation Services - Traffic Services

Work Order

36566

Turning Movement Count - Pedestrian Volume Report

RICHMOND RD @ WOODROFFE AVE

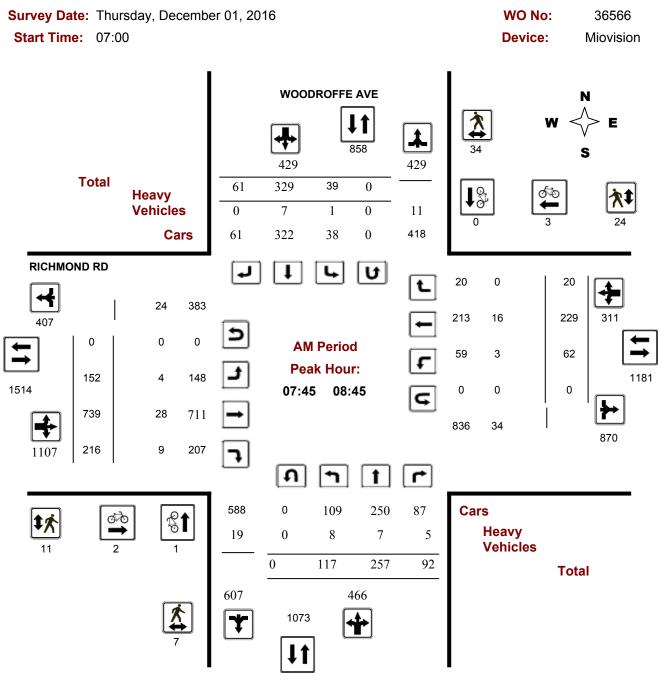
Count Date	e: Thursday, D	ecember 01, 2016				Start Time:	07:00
Time Period	NB Approach (E or W Crossing)	SB Approach (E or W Crossing)	Total	EB Approach (N or S Crossing)	WB Approach (N or S Crossing)	Total	Grand Total
07:00 07:15	1	2	3	1	1	2	5
07:15 07:30	0	5	5	0	4	4	9
07:30 07:45	2	8	10	1	12	13	23
07:45 08:00	3	10	13	1	11	12	25
07:00 08:00	6	25	31	3	28	31	62
08:00 08:15	3	4	7	3	5	8	15
08:15 08:30	0	12	12	3	2	5	17
08:30 08:45	1	8	9	4	6	10	19
08:45 09:00	6	6	12	4	3	7	19
08:00 09:00	10	30	40	14	16	30	70
09:00 09:15	0	8	8	1	2	3	11
09:15 09:30	5	1	6	2	2	4	10
09:30 09:45	2	4	6	1	2	3	9
09:45 10:00	1	4	5	4	8	12	17
09:00 10:00	8	17	25	8	14	22	47
11:30 11:45	2	2	4	2	2	4	8
11:45 12:00	2	4	6	3	6	9	15
12:00 12:15	1	10	11	1	3	4	15
12:15 12:30	1	6	7	1	3	4	11
11:30 12:30	6	22	28	7	14	21	49
12:30 12:45	2	7	9	6	1	7	16
12:45 13:00	2	1	3	2	1	3	6
13:00 13:15	3	3	6	0	1	1	7
13:15 13:30	1	5	6	2	2	4	10
2:30 13:30	8	16	24	10	5	15	39
15:00 15:15	0	5	5	3	0	3	8
15:15 15:30	1	2	3	2	1	3	6
15:30 15:45	1	4	5	5	2	7	12
15:45 16:00	1	3	4	1	3	4	8
5:00 16:00	3	14	17	11	6	17	34
6:00 16:15	2	11	13	2	7	9	22
6:15 16:30	4	1	5	2	2	4	9
16:30 16:45	6	4	10	4	6	10	20
16:45 17:00	4	3	7	2	6	8	15
16:00 17:00	16	19	35	10	21	31	66
7:00 17:15	3	9	12	3	3	6	18
17:15 17:30	2	1	3	0	1	1	4
17:30 17:45	5	14	19	3	5	8	27
17:45 18:00	6	7	13	4	5	9	22
17:00 18:00	16	31	47	10	14	24	71
Total	73	174	247	73	118	191	438

Comment:

36566

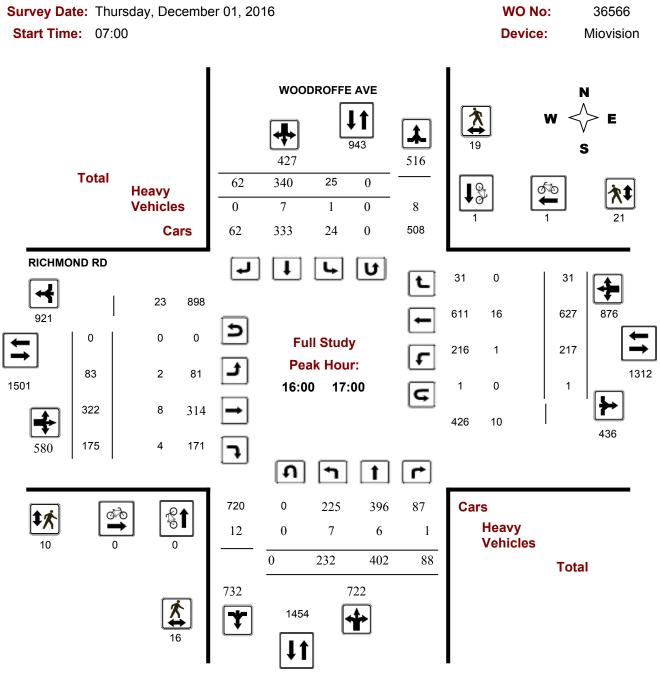
Turning Movement Count - Full Study Summary Report

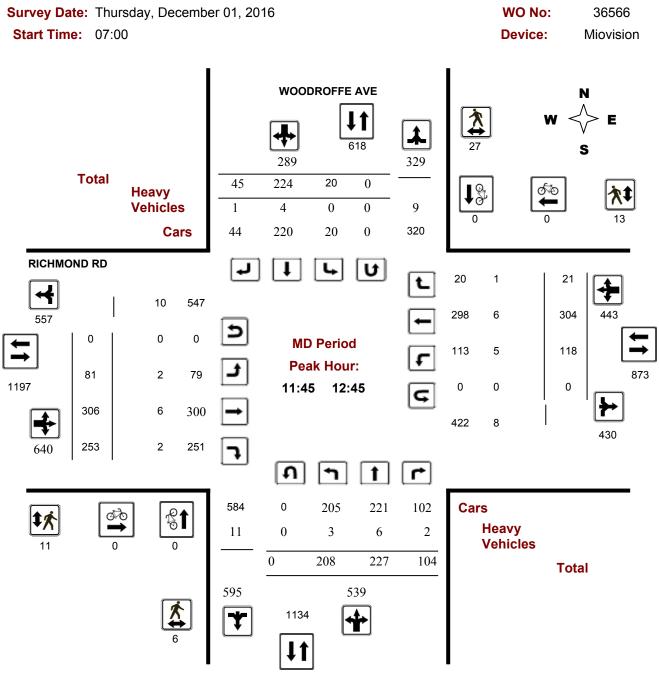
RICHMOND RD @ WOODROFFE AVE


Survey D	ate:	Thurso	day, D	ecemb	er 01	, 2016			Total (Obser	ved U	-Turn	s				AAD	T Fact	or
								Northbo	0			hbound	0				1.00		
								Eastbou	• •		Wes	stbound	: 1						
								F	ull St	udy									
_				DDROF					_				СНМС	DND R					
	1	Northb	ound		ę	Southb	ound				Eastb	ound			Westb	ound			
Period	LT	ST	RT	NB TOT	LT	ST	RT	SB TOT	STR TOT	LT	ST	RT	EB TOT	LT	ST	RT	WB TOT	STR TOT	Gran Tota
07:00 08:00	92	232	75	399	28	349	57	434	833	126	567	175	868	50	129	14	193	1061	1894
08:00 09:00	109	249	96	454	41	305	63	409	863	145	753	209	1107	63	241	20	324	1431	2294
09:00 10:00	151	197	81	429	13	218	41	272	701	88	400	231	719	91	244	13	348	1067	1768
11:30 12:30	190	212	109	511	19	207	40	266	777	76	309	245	630	114	293	25	432	1062	1839
12:30 13:30	201	242	101	544	18	203	44	265	809	80	281	240	601	128	318	24	470	1071	1880
15:00 16:00	230	379	90	699	34	346	70	450	1149	82	294	178	554	153	533	37	723	1277	2426
16:00 17:00	232	402	88	722	25	340	62	427	1149	83	322	175	580	217	627	31	875	1455	2604
17:00 18:00	239	324	97	660	32	356	76	464	1124	78	344	163	585	181	604	22	807	1392	2516
Sub Total	1444	2237	737	4418	210	2324	453	2987	7405	758	3270	1616	5644	997	2989	186	4172	9816	17221
U Turns				0				0	0				0				1	1	1
Total	1444	2237	737	4418	210	2324	453	2987	7405	758	3270	1616	5644	997	2989	186	4173	9817	17222
EQ 12Hr	2007	3109	1024	6141	292	3230	630	4152	10293	1054	4545	2246	7845	1386	4155	259	5800	13645	23938
Note: These	values a	ire calcu	ilated by	y multiply	ying the	e totals b	y the a	opropriat	te expans	sion fac	tor.			1.39					
AVG 12Hr	2007	3109	1024	6141	292	3230	630	4152	10293	1054	4545	2246	7845	1386	4155	259	5800	13645	23938
Note: These	volumes	are cal	culated	by multi	plying t	he Equiv	alent 1	2 hr. tota	als by the	AADT	factor.			1.00					
AVG 24Hr	2629	4073	1342	8045	382	4232	825	5439	13484	1380	5954	2943	10277	1815	5443	339	7599	17876	31360
Note: These	volumes	are cal	culated	by multi	plying t	he Avera	age Dai	ly 12 hr.	totals by	12 to 2	4 expan	sion fac	ctor.	1.31					

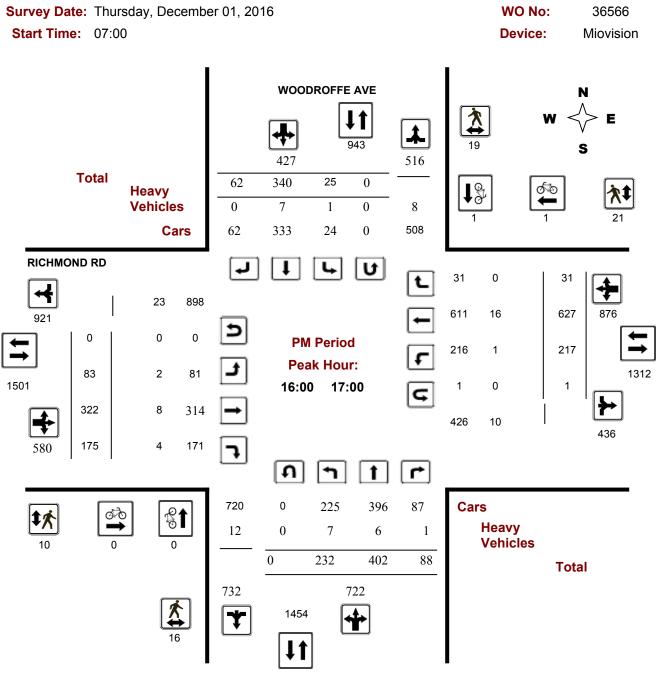
Comments:

Note: U-Turns provided for approach totals. Refer to 'U-Turn' Report for specific breakdown.


Turning Movement Count - Full Study Peak Hour Diagram RICHMOND RD @ WOODROFFE AVE


Transportation Services - Traffic Services

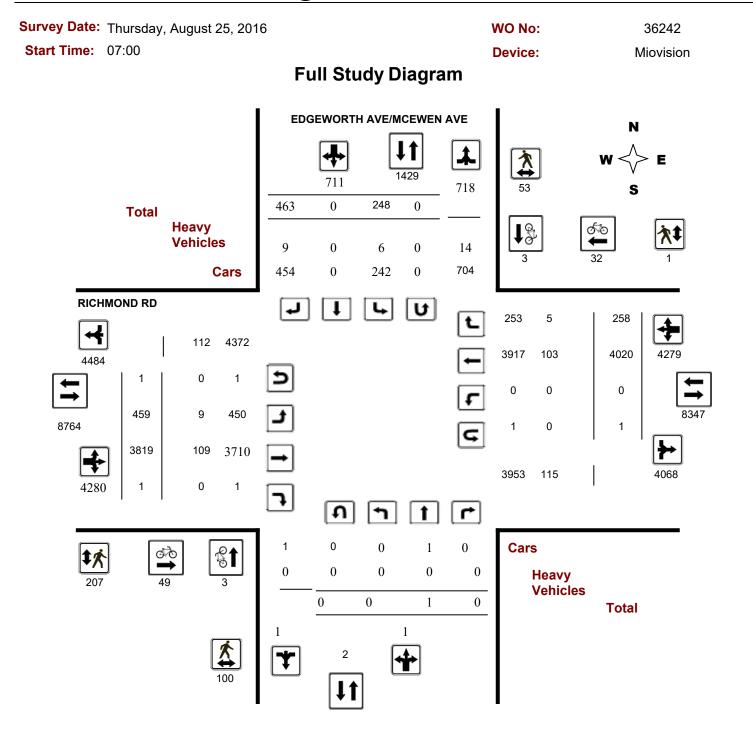
Turning Movement Count - Full Study Peak Hour Diagram RICHMOND RD @ WOODROFFE AVE


Turning Movement Count - Full Study Peak Hour Diagram RICHMOND RD @ WOODROFFE AVE

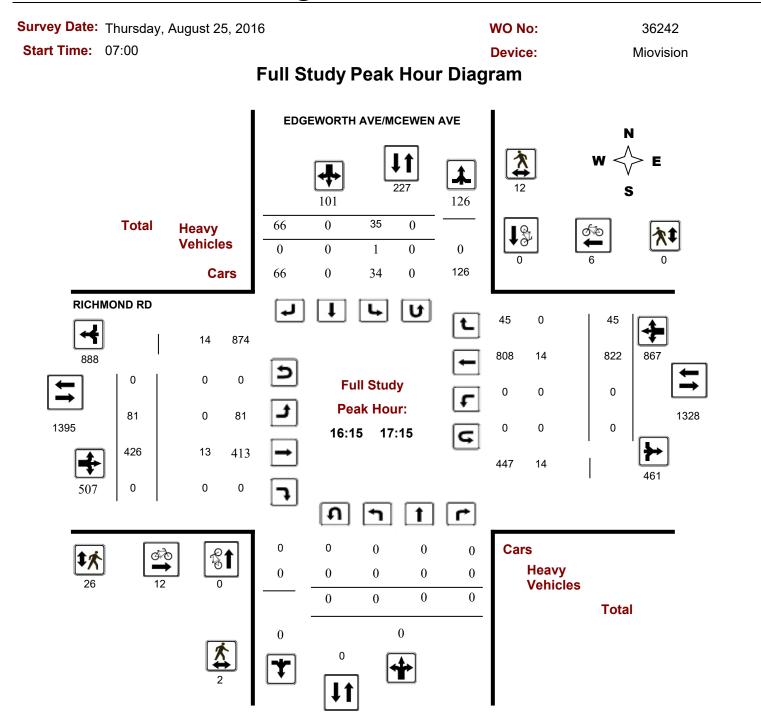
Transportation Services - Traffic Services

Turning Movement Count - Full Study Peak Hour Diagram RICHMOND RD @ WOODROFFE AVE

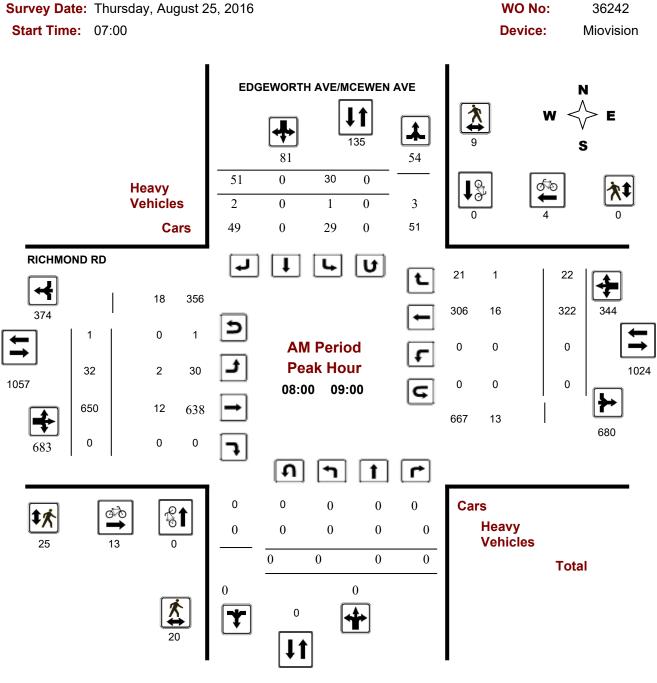
Comments

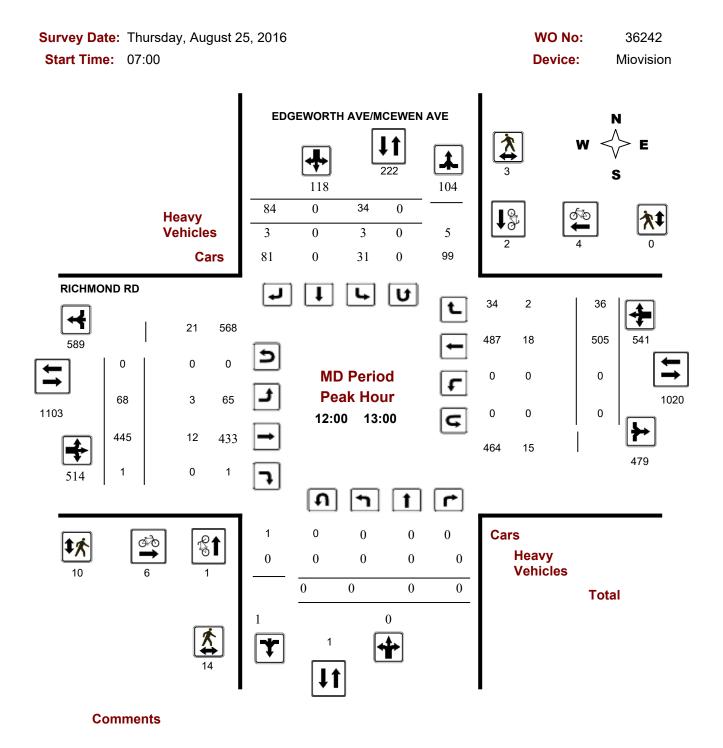

Work Order 36566

Turning Movement Count - 15 Min U-Turn Total Report

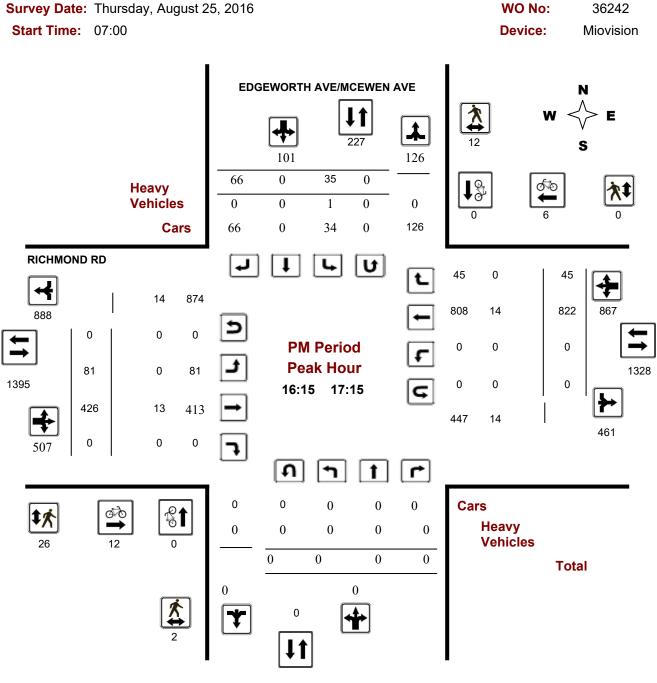

RICHMOND RD @ WOODROFFE AVE

Survey Date:	Thu	sday, December	01, 2016			
Time Pe	riod	Northbound U-Turn Total	Southbound U-Turn Total	Eastbound U-Turn Total	Westbound U-Turn Total	Total
07:00	07:15	0	0	0	0	0
07:15	07:30	0	0	0	0	0
07:30	07:45	0	0	0	0	0
07:45	08:00	0	0	0	0	0
08:00	08:15	0	0	0	0	0
08:15	08:30	0	0	0	0	0
08:30	08:45	0	0	0	0	0
08:45	09:00	0	0	0	0	0
09:00	09:15	0	0	0	0	0
09:15	09:30	0	0	0	0	0
09:30	09:45	0	0	0	0	0
09:45	10:00	0	0	0	0	0
11:30	11:45	0	0	0	0	0
11:45	12:00	0	0	0	0	0
12:00	12:15	0	0	0	0	0
12:15	12:30	0	0	0	0	0
12:30	12:45	0	0	0	0	0
12:45	13:00	0	0	0	0	0
13:00	13:15	0	0	0	0	0
13:15	13:30	0	0	0	0	0
15:00	15:15	0	0	0	0	0
15:15	15:30	0	0	0	0	0
15:30	15:45	0	0	0	0	0
15:45	16:00	0	0	0	0	0
16:00	16:15	0	0	0	0	0
16:15	16:30	0	0	0	0	0
16:30	16:45	0	0	0	1	1
16:45	17:00	0	0	0	0	0
17:00	17:15	0	0	0	0	0
17:15	17:30	0	0	0	0	0
17:30	17:45	0	0	0	0	0
17:45	18:00	0	0	0	0	0
Tota	1	0	0	0	1	1




Turning Movement Count - Peak Hour Diagram RICHMOND RD @ EDGEWORTH AVE/MCEWEN AVE

Comments



Turning Movement Count - Peak Hour Diagram RICHMOND RD @ EDGEWORTH AVE/MCEWEN AVE

Turning Movement Count - Peak Hour Diagram RICHMOND RD @ EDGEWORTH AVE/MCEWEN AVE

Comments

Survey Da	ate: TI	nursda	ay, Au	gust 2	5, 201	6						wo	No:			36	242		
Start Tim	ie: 07	7:00										Devi	ce:			Miov	vision		
				F	ull S	Stud	y Sı	umma	ry (8	B HR	R Sta	ndaı	d)						
Survey Da	te: T	hursd	lay, Ai	ugust 2			-		• •		ved U-						AAD	T Facto	or
							I	Northbound				nbound:	0				.90		
								Eastbound	d: 1		West	bound:	1						
	ED	GEW	ORTH	AVE/N	ACEW	EN AV	/E					RICH	IMON	ID RD					
	Nor	thboui	nd		Sou	uthbou	Ind			E	astbou	Ind		N	/estbo	und			
Period	LT	ST	RT	NB TOT	LT	ST	RT	SB TOT	STR TOT	LT	ST	RT	EB TOT	LT	ST	RT	WB TOT	STR TOT	Grano Tota
07:00 08:00	0	0	0	0	24	0	40	64	64	26	572	0	598	0	187	21	208	806	870
08:00 09:00	0	0	0	0	30	0	51	81	81	32	650	0	682	0	322	22	344	1026	1107
09:00 10:00	0	0	0	0	30	0	59	89	89	39	428	0	467	0	318	28	346	813	902
11:30 12:30	0	0	0	0	28	0	71	99	99	70	460	1	531	0	463	36	499	1030	1129
12:30 13:30	0	0	0	0	39	0	71	110	110	70	456	0	526	0	461	33	494	1020	1130
15:00 16:00	0	0	0	0	31	0	54	85	85	57	395	0	452	0	706	36	742	1194	1279
16:00 17:00	0	0	0	0	35	0	60	95	95	75	404	0	479	0	797	39	836	1315	1410
17:00 18:00	0	1	0	1	31	0	57	88	89	90	454	0	544	0	766	43	809	1353	1442
Sub Total	0	1	0	1	248	0	463	711	712	459	3819	1	4279	0	4020	258	4278	8557	9269
U Turns	0			0	0			0	0	1			1	1			1	2	2
Total	0	1	0	1	248	0	463	711	712	460	3819	1	4280	1	4020	258	4279	8559	9271
EQ 12Hr	0	1	0	1	345	0	644	989	990	639	5308	1	5948	1	5588	359	5948	11896	12886
Note: These v	alues ar	e calcul	lated by	/ multiply	ying the	totals b	y the a	ppropriate	expans	ion fac	tor.			1.39					
AVG 12Hr	0	1	0	1	310	0	580	890	891	575	4777	1	5353	1	5029	323	5353	10706	11597
Note: These v	olumes	are calc	culated	by multi	plying th	ie Equiv	alent 1	2 hr. totals	s by the	AADT	factor.			.90					
AVG 24Hr	0	1	0	1	406	0	760	1166	1167	753	6258	1	7012	1	6588	423	7012	14024	15191
Note: These v	olumes	are calc	culated	by multi	plying th	e Avera	age Da	ily 12 hr. to	otals by	12 to 2	4 expan	sion fact	or.	1.31					

Note: U-Turns provided for approach totals. Refer to 'U-Turn' Report for specific breakdown.

Surve				ay, Au	gust	25, 20	016							wo					6242	
Start	IIme	: 07	:00				_						_	Dev				Mie	ovisior	1
							F	ull S	Stud	y 15	5 Mi	nute				S				
		EDO	SEMC	DRTH	AVE/	MCEV	VEN A	AVE					RICH	IMON	D RD					
		No	orthboi	und		Sc	outhbou	Ind			E	astbour	nd		W	estbour	nd			
Time Po	eriod	LT	ST	RT	N TOT	LT	ST	RT	S TOT	STR TOT	LT	ST	RT	Е ТОТ	LT	ST	RT	W TOT	STR TOT	Grand Total
07:00	07:15	0	0	0	0	4	0	7	11	11	3	105	0	108	0	34	4	38	146	157
07:15	07:30	0	0	0	0	3	0	11	14	14	4	149	0	153	0	39	10	49	202	216
07:30	07:45	0	0	0	0	9	0	11	20	20	12	165	0	177	0	53	5	58	235	255
07:45	08:00	0	0	0	0	8	0	11	19	19	7	153	0	160	0	61	2	63	223	242
08:00	08:15	0	0	0	0	5	0	16	21	21	11	142	0	153	0	61	9	70	223	244
08:15	08:30	0	0	0	0	6	0	12	18	18	10	163	0	173	0	80	6	86	259	277
08:30	08:45	0	0	0	0	11	0	9	20	20	4	189	0	193	0	84	3	87	280	300
08:45	09:00	0	0	0	0	8	0	14	22	22	8	156	0	164	0	97	4	101	265	287
09:00	09:15	0	0	0	0	7	0	16	23	23	7	121	0	128	0	74	9	83	211	234
09:15	09:30	0	0	0	0	5	0	14	19	19	16	115	0	131	0	82	9	91	222	241
09:30	09:45	0	0	0	0	12	0	13	25	25	8	95	0	103	0	89	5	94	197	222
09:45	10:00	0	0	0	0	6	0	16	22	22	8	97	0	105	0	73	5	78	183	205
11:30	11:45	0	0	0	0	8	0	16	24	24	13	116	0	129	0	106	9	115	244	268
11:45	12:00	0	0	0	0	5	0	16	21	21	21	139	0	160	0	100	8	108	268	289
12:00	12:15	0	0	0	0	7	0	19	26	26	18	96	1	115	0	129	8	137	252	278
12:15	12:30	0	0	0	0	8	0	20	28	28	18	109	0	127	0	128	11	139	266	294
12:30	12:45	0	0	0	0	8	0	23	31	31	16	116	0	132	0	112	7	119	251	282
12:45	13:00	0	0	0	0	11	0	22	33	33	16	124	0	140	0	136	10	146	286	319
13:00	13:15	0	0	0	0	8	0	11	19	19	14	98	0	112	1	105	9	115	227	246
13:15	13:30	0	0	0	0	12	0	15	27	27	24	118	0	142	0	108	7	115	257	284
15:00	15:15	0	0	0	0	11	0	16	27	27	13	83	0	96	0	130	8	138	234	261
15:15	15:30	0	0	0	0	6	0	16	22	22	17	100	0	117	0	168	8	176	293	315
15:30	15:45	0	0	0	0	6	0	12	18	18	10	112	0	122	0	198	5	203	325	343
15:45	16:00	0	0	0	0	8	0	10	18	18	17	100	0	117	0	210	15	225	342	360
16:00	16:15	0	0	0	0	8	0	9	17	17	14	109	0	123	0	186	7	193	316	333
16:15	16:30	0	0	0	0	8	0	20	28	28	23	93	0	116	0	210	16	226	342	370
16:30	16:45	0	0	0	0	11	0	16	27	27	17	101	0	118	0	180	11	191	309	336
16:45	17:00	0	0	0	0	8	0	15	23	23	21	101	0	122	0	221	5	226	348	371
17:00	17:15	0	0	0	0	8	0	15	23	23	20	131	0	151	0	211	13	224	375	398
17:15	17:30	0	1	0	1	8	0	19	27	28	22	104	0	126	0	182	14	196	322	350
17:30	17:45	0	0	0	0	7	0	10	17	17	24	99	0	123	0	202	11	213	336	353
17:45	18:00	0	0	0	0	8	0	13	21	21	24	120	0	144	0	171	5	176	320	341
Total:		0	1	0	1	248	0	463	711	712	460	3819	1	4280	1	4020	258	4279	712	9,271

Note: U-Turns are included in Totals.

Survey Dat	te: Thursday, <i>i</i>	August 25, 2016	6		WO No:		36242
Start Time	: 07:00				Device:		Miovision
			Full Study	Cyclist V	olume		
	EDGEWO	ORTH AVE/MCE		2	RICHMOND RE)	
Time Period	Northbound	Southbound	Street Total	Eastbound	Westbound	Street Total	Grand Total
07:00 07:15	0	0	0	0	0	0	0
07:15 07:30	0	0	0	2	1	3	3
07:30 07:45	0	0	0	0	0	0	0
07:45 08:00	0	0	0	1	1	2	2
08:00 08:15	0	0	0	5	1	6	6
08:15 08:30	0	0	0	2	2	4	4
08:30 08:45	0	0	0	4	1	5	5
08:45 09:00	0	0	0	2	0	2	2
09:00 09:15	0	0	0	1	1	2	2
09:15 09:30	0	0	0	0	0	0	0
09:30 09:45	0	0	0	3	0	3	3
09:45 10:00	0	0	0	0	0	0	0
11:30 11:45	0	0	0	1	1	2	2
11:45 12:00	0	0	0	1	2	3	3
12:00 12:15	0	1	1	1	2	3	4
12:15 12:30	0	0	0	1	0	1	1
12:30 12:45	0	0	0	1	0	1	1
12:45 13:00	1	1	2	3	2	5	7
13:00 13:15	0	0	0	4	0	4	4
13:15 13:30	0	0	0	0	2	2	2
15:00 15:15	1	1	2	2	0	2	4
15:15 15:30	0	0	0	0	0	0	0
15:30 15:45	0	0	0	0	1	1	1
15:45 16:00	0	0	0	0	0	0	0
16:00 16:15	0	0	0	0	3	3	3
16:15 16:30	0	0	0	2	1	3	3
16:30 16:45	0	0	0	3	2	5	5
16:45 17:00	0	0	0	3	1	4	4
17:00 17:15	0	0	0	4	2	6	6
17:15 17:30	0	0	0	0	1	1	1
17:30 17:45	1	0	1	0	2	2	3
17:45 18:00	0	0	0	3	3	6	6
Total	3	3	6	49	32	81	87

Survey Da	ate: Thursday, A	August 25, 2016			WO No:		36242
Start Tim	e: 07:00				Device:		Miovision
		F	ull Study	y Pedestria	n Volume		
	EDGEV	VORTH AVE/MCE	-		RICHMOND RD		
Time Period	NB Approach (E or W Crossing)	SB Approach (E or W Crossing)	Total	EB Approach (N or S Crossing)	WB Approach (N or S Crossing)	Total	Grand Total
7:00 07:15	0	0	0	6	0	6	6
7:15 07:30	0	0	0	8	0	8	8
7:30 07:45	0	0	0	7	0	7	7
7:45 08:00	0	1	1	8	0	8	9
8:00 08:15	6	3	9	7	0	7	16
8:15 08:30	2	1	3	2	0	2	5
8:30 08:45	5	2	7	9	0	9	16
8:45 09:00	7	3	10	7	0	7	17
9:00 09:15	1	2	3	6	0	6	9
9:15 09:30	7	1	8	10	0	10	18
9:30 09:45	5	2	7	6	0	6	13
9:45 10:00	3	0	3	5	0	5	8
1:30 11:45	2	3	5	6	0	6	11
1:45 12:00	5	0	5	8	0	8	13
2:00 12:15	2	0	2	1	0	1	3
2:15 12:30	5	2	7	5	0	5	12
2:30 12:45	3	1	4	3	0	3	7
2:45 13:00	4	0	4	1	0	1	5
3:00 13:15	4	1	5	8	0	8	13
3:15 13:30	3	6	9	4	1	5	14
5:00 15:15	1	0	1	3	0	3	4
5:15 15:30	7	3	10	8	0	8	18
5:30 15:45	2	5	7	10	0	10	17
5:45 16:00	5	1	6	6	0	6	12
6:00 16:15	3	0	3	6	0	6	9
6:15 16:30	1	4	5	2	0	2	7
6:30 16:45	0	2	2	3	0	3	5
6:45 17:00	0	2	2	10	0	10	12
7:00 17:15	1	4	5	11	0	11	16
7:15 17:30	4	1	5	10	0	10	15
7:30 17:45	5	2	7	12	0	12	19
7:45 18:00	7	1	8	9	0	9	17
otal	100	53	153	207	1	208	361

Survey Date	e: Tł	nursd	ay, Au	igust	25, 20	016							wo	No:			3	6242	
Start Time	: 07	2:00											Dev	ice:			Mie	ovisior	า
						F	ull S	Stud	v He	avv	Veł	nicle	s						
	EDG	EWO	DRTH	AVE/	MCEV				,	,			IMON	D RD					
		orthboi				outhbou				F	astbour				estbour	nd			
-				N				S	STR				Е				w	STR	Grand
Time Period	LT	ST	RT	тот	LT	ST	RT	TOT		LT	ST	RT	тот	LT	ST	RT	TOT	тот	Total
07:00 07:15	0	0	0	0	0	0	0	0	0	0	6	0	6	0	1	0	1	7	7
07:15 07:30	0	0	0	0	0	0	0	0	0	0	2	0	2	0	1	0	1	3	3
07:30 07:45	0	0	0	0	0	0	0	0	0	0	5	0	5	0	5	0	5	10	10
07:45 08:00	0	0	0	0	0	0	0	0	0	0	4	0	4	0	2	0	2	6	6
08:00 08:15	0	0	0	0	0	0	0	0	0	1	2	0	3	0	5	0	5	8	8
08:15 08:30	0	0	0	0	1	0	1	2	2	0	2	0	2	0	4	1	5	7	9
08:30 08:45	0	0	0	0	0	0	0	0	0	1	2	0	3	0	2	0	2	5	5
08:45 09:00	0	0	0	0	0	0	1	1	1	0	6	0	6	0	5	0	5	11	12
09:00 09:15	0	0	0	0	0	0	1	1	1	0	5	0	5	0	2	1	3	8	9
09:15 09:30	0	0	0	0	0	0	1	1	1	0	3	0	3	0	4	0	4	7	8
09:30 09:45	0	0	0	0	0	0	0	0	0	0	4	0	4	0	4	0	4	8	8
09:45 10:00	0	0	0	0	0	0	0	0	0	0	2	0	2	0	1	1	2	4	4
11:30 11:45	0	0	0	0	0	0	0	0	0	0	7	0	7	0	7	0	7	14	14
11:45 12:00	0	0	0	0	0	0	1	1	1	0	8	0	8	0	5	0	5	13	14
12:00 12:15	0	0	0	0	0	0	0	0	0	2	2	0	4	0	8	0	8	12	12
12:15 12:30	0	0	0	0	0	0	1	1	1	0	3	0	3	0	3	0	3	6	7
12:30 12:45	0	0	0	0	0	0	1	1	1	1	5	0	6	0	2	1	3	9	10
12:45 13:00	0	0	0	0	3	0	1	4	4	0	2	0	2	0	5	1	6	8	12
13:00 13:15	0	0	0	0	0	0	0	0	0	1	7	0	8	0	2	0	2	10	10
13:15 13:30	0	0	0	0	0	0	0	0	0	0	3	0	3	0	2	0	2	5	5
15:00 15:15	0	0	0	0	0	0	0	0	0	0	2	0	2	0	3	0	3	5	5
15:15 15:30	0	0	0	0	0	0	0	0	0	1	6	0	7	0	8	0	8	15	15
15:30 15:45	0	0	0	0	1	0	0	1	1	0	3	0	3	0	2	0	2	5	6
15:45 16:00	0	0	0	0	0	0	0	0	0	0	1	0	1	0	1	0	1	2	2
16:00 16:15	0	0	0	0	0	0	0	0	0	1	1	0	2	0	1	0	1	3	3
16:15 16:30	0	0	0	0	0	0	0	0	0	0	3	0	3	0	3	0	3	6	6
16:30 16:45	0	0	0	0	0	0	0	0	0	0	3	0	3	0	4	0	4	7	7
16:45 17:00	0	0	0	0	0	0	0	0	0	0	2	0	2	0	2	0	2	4	4
17:00 17:15	0	0	0	0	1	0	0	1	1	0	5	0	5	0	5	0	5	10	11
17:15 17:30	0	0	0	0	0	0	1	1	1	0	0	0	0	0	1	0	1	1	2
17:30 17:45	0	0	0	0	0	0	0	0	0	0	2	0	2	0	2	0	2	4	4
17:45 18:00	0	0	0	0	0	0	0	0	0	1	1	0	2	0	1	0	1	3	3
Total: None	0	0	0	0	6	0	9	15	15	9	109	0	118	0	103	5	108	226	241

Date: Thurso	lay, August :	25, 2016		WC) No:	36242
ime: 07:00				De	vice:	Miovision
		Full S	tudy 15 Mir	nute U-Turr	n Total	
	ED	GEWORTH AVE/			HMOND RD	
Time	Period	Northbound U-Turn Total	Southbound U-Turn Total	Eastbound U-Turn Total	Westbound U-Turn Total	Total
07:00	07:15	0	0	0	0	0
07:15	07:30	0	0	0	0	0
07:30	07:45	0	0	0	0	0
07:45	08:00	0	0	0	0	0
08:00	08:15	0	0	0	0	0
08:15	08:30	0	0	0	0	0
08:30	08:45	0	0	0	0	0
08:45	09:00	0	0	1	0	1
09:00	09:15	0	0	0	0	0
09:15	09:30	0	0	0	0	0
09:30	09:45	0	0	0	0	0
09:45	10:00	0	0	0	0	0
11:30	11:45	0	0	0	0	0
11:45	12:00	0	0	0	0	0
12:00	12:15	0	0	0	0	0
12:15	12:30	0	0	0	0	0
12:30	12:45	0	0	0	0	0
12:45	13:00	0	0	0	0	0
13:00	13:15	0	0	0	1	1
13:15	13:30	0	0	0	0	0
15:00	15:15	0	0	0	0	0
15:15	15:30	0	0	0	0	0
15:30	15:45	0	0	0	0	0
15:45	16:00	0	0	0	0	0
16:00	16:15	0	0	0	0	0
16:15	16:30	0	0	0	0	0
16:30	16:45	0	0	0	0	0
16:45	17:00	0	0	0	0	0
17:00	17:15	0	0	0	0	0
17:15	17:30	0	0	0	0	0
17:30	17:45	0	0	0	0	0
17:45	18:00	0	0	0	0	0
	otal	0	0	1	1	2

Appendix D:

Background Growth Analysis

Richmond/New Orchard <u>8 hrs</u>

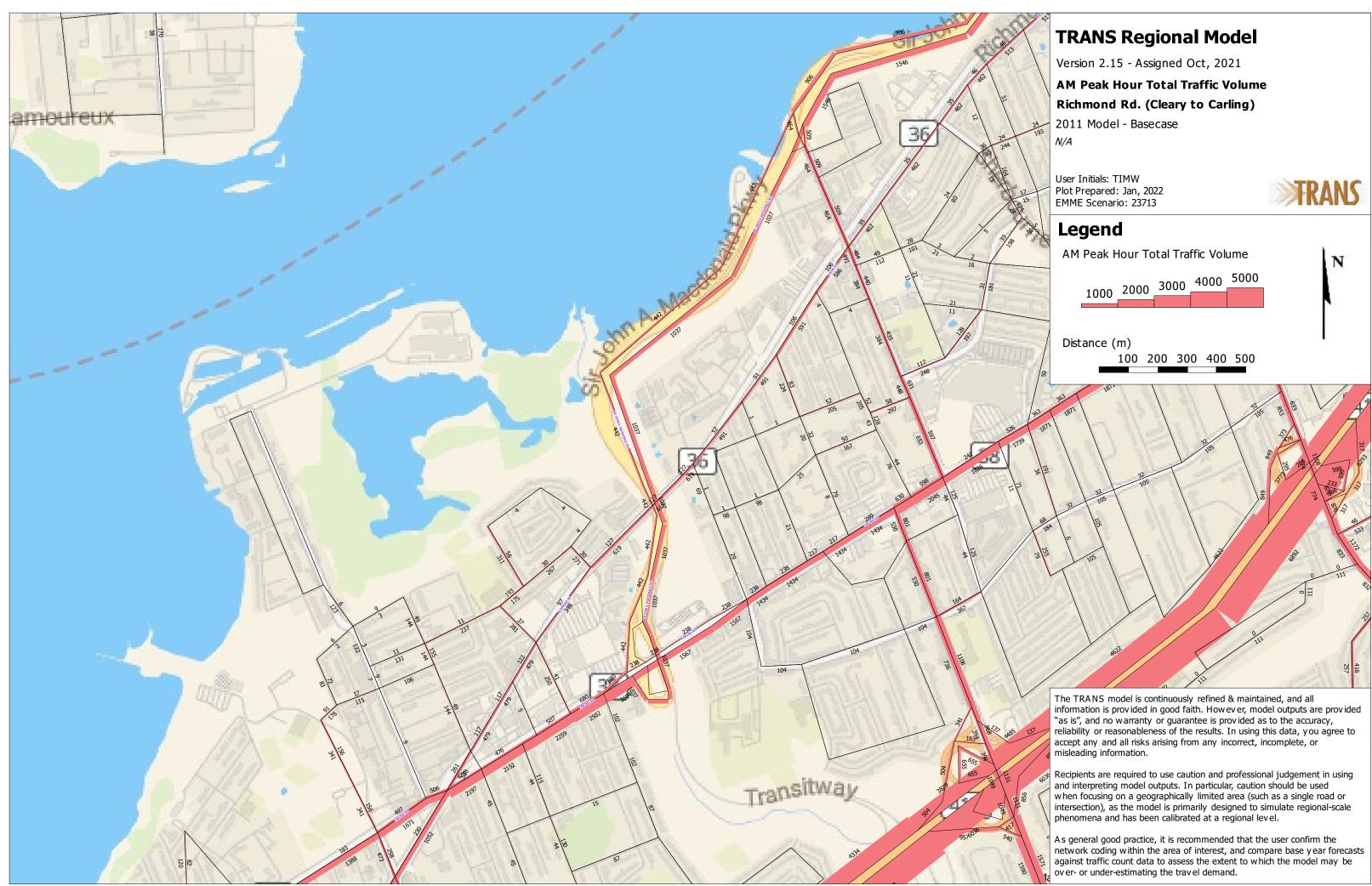
Year	Date	Nort	h Leg	South	Leg		t Leg		t Leg	Total
	Date	SB	NB	NB	SB	WB	EB	EB	WB	
2009	Wednesday, August 19	823	594	1	1	3639	4238	3783	3413	16492
011	Thursday, July 14	807	746	1	1	4467	5691	5347	4184	21244
016	Thursday, August 25	856	721	1	1	4708	4848	4269	4264	19668
					-					
		Year		Cou					hange	TAUT
	North Leg	2000	NB 594	SB	NB+SB	INT	NB	SB	NB+SB	INT
		2009		823	1417	16492		1.00/	0.60/	20.00/
		2011	746	807	1553	21244	25.6%	-1.9%	9.6%	28.8%
		2016	721	856	1577	19668	-3.4%	6.1%	1.5%	-7.4%
	L									
	Regression Estimate	2009	646	812	1458					
	Regression Estimate	2016	742	851	1593					
	Average Annual Change		2.00%	0.69%	1.28%					
		Year		Cou	nts			% C	hange	
	West Leg		EB	WB	EB+WB	INT	EB	WB	EB+WB	INT
		2009	3783	3413	7196	16492				
		2011	5347	4184	9531	21244	41.3%	22.6%	32.4%	28.8%
		2016	4269	4264	8533	19668	-20.2%	1.9%	-10.5%	-7.4%
	- Regression Estimate	2009	4422	3650	8072					
	Regression Estimate	2016	4525	4359	8884					
	Average Annual Change		0.33%	2.57%	1.38%					
	Г			Cou	nts			% C	hange	
	East Leg	Year	EB	WB	EB+WB	INT	EB	WB	EB+WB	INT
	-	2009	4238	3639	7877	16492				
		2011	5691	4467	10158	21244	34.3%	22.8%	29.0%	28.8%
		2016	4848	4708	9556	19668	-14.8%	5.4%	-5.9%	-7.4%
	Regression Estimate	2009	4812	3873	8685		•			
	Regression Estimate	2016	5078	4802	9879					
	Average Annual Change		0.77%	3.12%	1.86%					
	T	Year		Cou					hange	
	South Leg		NB	SB	NB+SB	INT	NB	SB	NB+SB	INT
		2009	1	1	2	16492				
		2011	1	1	2	21244	0.0%	0.0%	0.0%	28.8%
		2016	1	1	2	19668	0.0%	0.0%	0.0%	-7.4%
		2000	<u> </u>				<u> </u>		<u> </u>	
	Regression Estimate Regression Estimate	2009 2016	1 1	1 1	2 2					

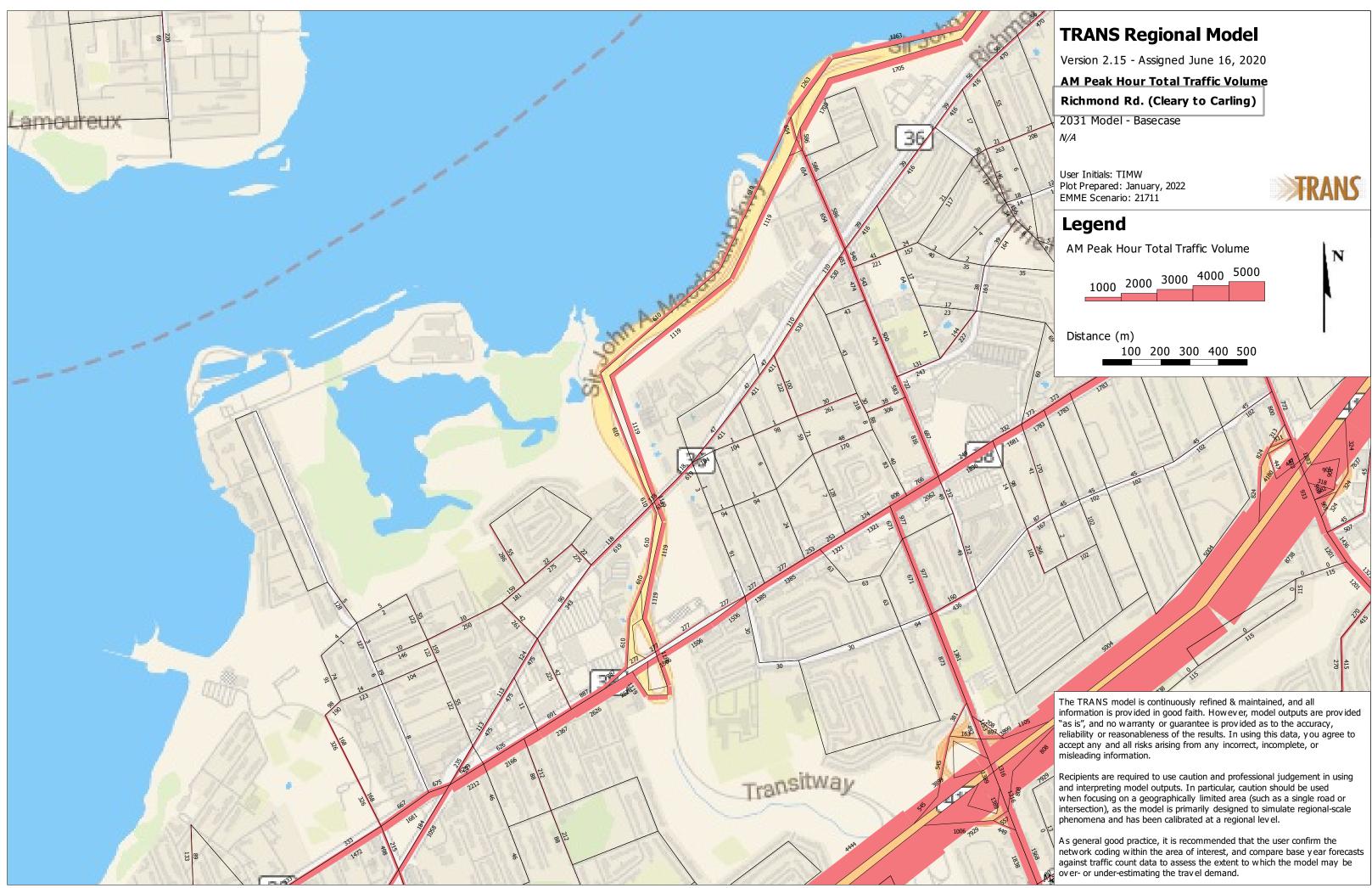
Average Annual Change0.00%0.00%

Richmond/New Orchard <u>AM Peak</u>

Year	Date		h Leg	South	n Leg		t Leg		t Leg	Total
rear	Date	SB	NB	NB	SB	WB	EB	EB	WB	TOLAT
2009	Wednesday, August 19	142	37	1	1	373	788	662	352	2356
2011	Thursday, July 14	137	55	1	1	388	854	748	364	2548
2016	Thursday, August 25	133	57	1	1	392	795	688	361	2428
		Year		Cou					hange	
	North Leg		NB	SB	NB+SB	INT	NB	SB	NB+SB	INT
		2009	37	142	179	2356				
		2011	55	137	192	2548	48.6%	-3.5%	7.3%	8.1%
		2016	57	133	190	2428	3.6%	-2.9%	-1.0%	-4.7%
	Ĺ									
	Regression Estimate	2009	43	141	183					
	Regression Estimate	2016	59	133	192					
	Average Annual Change	2010	4.85%	-0.87%	0.64%					
	Г	Year		Cou	nts			% CI	hange	
	West Leg	Teal	EB	WB	EB+WB	INT	EB	WB	EB+WB	INT
		2009	662	352	1014	2356				
		2011	748	364	1112	2548	13.0%	3.4%	9.7%	8.1%
		2016	688	361	1049	2428	-8.0%	-0.8%	-5.7%	-4.7%
	- Regression Estimate	2009	697	356	1053		-			
	Regression Estimate	2016	702	363	1065					
	Average Annual Change		0.10%	0.26%	0.15%					
	Г	Veer		Cou	nts			% C	hange	
	East Leg	Year	EB	WB	EB+WB	INT	EB	WB	EB+WB	INT
	-	2009	788	373	1161	2356				
		2011	854	388	1242	2548	8.4%	4.0%	7.0%	8.1%
		2016	795	392	1187	2428	-6.9%	1.0%	-4.4%	-4.7%
		2010	,,,,,	072	110/	2.20	01570	110 /0		
		2000								
	Regression Estimate	2009	817	377	1194					
	Regression Estimate	2016	806	394	1200					
	Average Annual Change		-0.18%	0.61%	0.07%					
	_	Year		Cou					hange	
	South Leg		NB	SB	NB+SB	INT	NB	SB	NB+SB	INT
		2009	1	1	2	2356				
		2011	1	1	2	2548	0.0%	0.0%	0.0%	8.1%
		2016	1	1	2	2428	0.0%	0.0%	0.0%	-4.7%
							<u> </u>			
	Regression Estimate Regression Estimate	2009 2016	1 1	1 1	2					
	Average Annual Change	2010	0.00%	0.00%	0.00%					
			0.0070	0.0070	0.0070					

Richmond/New Orchard <u>PM Peak</u>

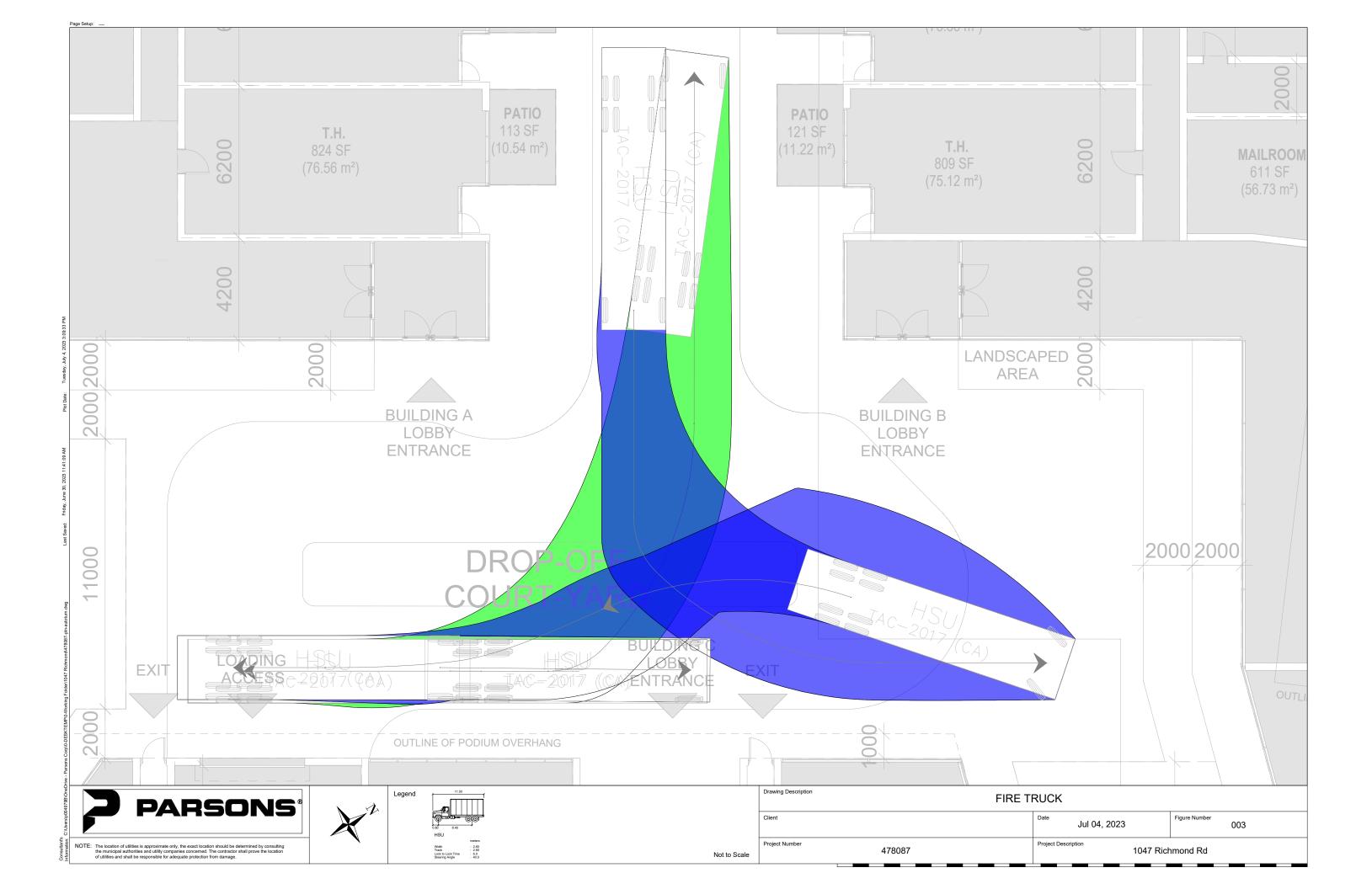

Voar	Date	Nort	th Leg	South	n Leg	Eas	t Leg	Wes	st Leg	Total
edr		SB	NB	NB	SB	WB	EB	EB	WB	iotal
009	Wednesday, August 19	104	86	1	1	710	502	441	667	2512
011	Thursday, July 14	97	108	1	1	895	630	597	851	3180
016	Thursday, August 25	92	139	1	1	970	553	499	869	3124
	<u> </u>									
		Year		Cou					hange	
	North Leg		NB	SB	NB+SB	INT	NB	SB	NB+SB	INT
		2009	86	104	190	2512		6		
		2011	108	97	205	3180	25.6%	-6.7%	7.9%	26.6%
		2016	139	92	231	3124	28.7%	-5.2%	12.7%	-1.8%
	L									
	Regression Estimate	2009	89	102	191					
	Regression Estimate	2016	140	91	232					
	Average Annual Change		6.70%	-1.62%	2.75%					
	Γ	Year		Cou	nts			% C	hange	
	West Leg	rear	EB	WB	EB+WB	INT	EB	WB	EB+WB	INT
		2009	441	667	1108	2512				
		2011	597	851	1448	3180	35.4%	27.6%	30.7%	26.6%
		2016	499	869	1368	3124	-16.4%	2.1%	-5.5%	-1.8%
	Regression Estimate	2009	504	724	1227		1			
	Regression Estimate	2016	524	892	1416					
	Average Annual Change	2010	0.57%	3.03%	2.06%					
	Г			Cou	nts			% C	hange	
	East Leg	Year	EB	WB	EB+WB	INT	EB	WB	EB+WB	INT
		2009	502	710	1212	2512				
		2011	630	895	1525	3180	25.5%	26.1%	25.8%	26.6%
		2016	553	970	1523	3124	-12.2%	8.4%	-0.1%	-1.8%
	Regression Estimate	2009	553	760	1313		1	1		
	Regression Estimate	2016	573	990	1563					
	Average Annual Change		0.52%	3.85%	2.53%					
	Courts I am	Year		Cou			-		hange	
	South Leg	2000	NB	SB	NB+SB	<u>INT</u>	NB	SB	NB+SB	INT
		2009	1	1	2	2512	0.00/	0.00/	0.00/	26.624
		2011	1	1	2	3180	0.0%	0.0%	0.0%	26.6%
		2016	1	1	2	3124	0.0%	0.0%	0.0%	-1.8%
	L		<u> </u>				1	1	<u>I</u>	
	Regression Estimate Regression Estimate	2009 2016	1	1 1	2 2					
	Regression esumate	2010	1	1	2					


 Regression Estimate
 2016
 1
 1
 2

 Average Annual Change
 0.00%
 0.00%
 0.00%

Appendix E:

2031 City Transportation Model



Appendix F: TDM Checklists

Appendix G:

Truck Turning Templates

TDM-Supportive Development Design and Infrastructure Checklist:

Residential Developments (multi-family or condominium)

Legend									
REQUIRED	The Official Plan or Zoning By-law provides related guidance that must be followed								
BASIC	The measure is generally feasible and effective, and in most cases would benefit the development and its users								
BETTER The measure could maximize support for users of sustainable modes, and optimize development performance									

	TDM-s	supportive design & infrastructure measures: Residential developments	Check if completed & add descriptions, explanations or plan/drawing references
	1.	WALKING & CYCLING: ROUTES	
	1.1	Building location & access points	
BASIC	1.1.1	Locate building close to the street, and do not locate parking areas between the street and building entrances	
BASIC	1.1.2	Locate building entrances in order to minimize walking distances to sidewalks and transit stops/stations	
BASIC	1.1.3	Locate building doors and windows to ensure visibility of pedestrians from the building, for their security and comfort	
	1.2	Facilities for walking & cycling	· · · · · ·
REQUIRED	1.2.1	Provide convenient, direct access to stations or major stops along rapid transit routes within 600 metres; minimize walking distances from buildings to rapid transit; provide pedestrian-friendly, weather-protected (where possible) environment between rapid transit accesses and building entrances; ensure quality linkages from sidewalks through building entrances to integrated stops/stations (see Official Plan policy 4.3.3)	
REQUIRED	1.2.2	Provide safe, direct and attractive pedestrian access from public sidewalks to building entrances through such measures as: reducing distances between public sidewalks and major building entrances; providing walkways from public streets to major building entrances; within a site, providing walkways along the front of adjoining buildings, between adjacent buildings, and connecting areas where people may congregate, such as courtyards and transit stops; and providing weather protection through canopies, colonnades, and other design elements wherever possible (see Official <i>Plan policy 4.3.12</i>)	

	TDM-s	supportive design & infrastructure measures: Residential developments	Check if completed & add descriptions, explanations or plan/drawing references
REQUIRED	1.2.3	Provide sidewalks of smooth, well-drained walking surfaces of contrasting materials or treatments to differentiate pedestrian areas from vehicle areas, and provide marked pedestrian crosswalks at intersection sidewalks (see Official Plan policy 4.3.10)	
REQUIRED	1.2.4	Make sidewalks and open space areas easily accessible through features such as gradual grade transition, depressed curbs at street corners and convenient access to extra-wide parking spaces and ramps (see Official Plan policy 4.3.10)	
REQUIRED	1.2.5	Include adequately spaced inter-block/street cycling and pedestrian connections to facilitate travel by active transportation. Provide links to the existing or planned network of public sidewalks, multi-use pathways and on- road cycle routes. Where public sidewalks and multi-use pathways intersect with roads, consider providing traffic control devices to give priority to cyclists and pedestrians (see Official Plan policy 4.3.11)	
BASIC	1.2.6	Provide safe, direct and attractive walking routes from building entrances to nearby transit stops	
BASIC	1.2.7	Ensure that walking routes to transit stops are secure, visible, lighted, shaded and wind-protected wherever possible	
BASIC	1.2.8	Design roads used for access or circulation by cyclists using a target operating speed of no more than 30 km/h, or provide a separated cycling facility	
	1.3	Amenities for walking & cycling	•
BASIC	1.3.1	Provide lighting, landscaping and benches along walking and cycling routes between building entrances and streets, sidewalks and trails	
BASIC	1.3.2	Provide wayfinding signage for site access (where required, e.g. when multiple buildings or entrances exist) and egress (where warranted, such as when directions to reach transit stops/stations, trails or other common destinations are not obvious)	

	TDM-s	supportive design & infrastructure measures: Residential developments	Check if completed & add descriptions, explanations or plan/drawing references
	2.	WALKING & CYCLING: END-OF-TRIP FACILI	TIES
	2.1	Bicycle parking	
REQUIRED	2.1.1	Provide bicycle parking in highly visible and lighted areas, sheltered from the weather wherever possible (see Official Plan policy 4.3.6)	
REQUIRED	2.1.2	Provide the number of bicycle parking spaces specified for various land uses in different parts of Ottawa; provide convenient access to main entrances or well- used areas (see Zoning By-law Section 111)	
REQUIRED	2.1.3	Ensure that bicycle parking spaces and access aisles meet minimum dimensions; that no more than 50% of spaces are vertical spaces; and that parking racks are securely anchored <i>(see Zoning By-law Section 111)</i>	
BASIC	2.1.4	Provide bicycle parking spaces equivalent to the expected number of resident-owned bicycles, plus the expected peak number of visitor cyclists	
	2.2	Secure bicycle parking	
REQUIRED	2.2.1	Where more than 50 bicycle parking spaces are provided for a single residential building, locate at least 25% of spaces within a building/structure, a secure area (e.g. supervised parking lot or enclosure) or bicycle lockers (see Zoning By-law Section 111)	
BETTER	2.2.2	Provide secure bicycle parking spaces equivalent to at least the number of units at condominiums or multi- family residential developments	
	2.3	Bicycle repair station	
BETTER	2.3.1	Provide a permanent bike repair station, with commonly used tools and an air pump, adjacent to the main bicycle parking area (or secure bicycle parking area, if provided)	
	3.	TRANSIT	
	3.1	Customer amenities	
BASIC	3.1.1	Provide shelters, lighting and benches at any on-site transit stops	
BASIC	3.1.2	Where the site abuts an off-site transit stop and insufficient space exists for a transit shelter in the public right-of-way, protect land for a shelter and/or install a shelter	
BETTER	3.1.3	Provide a secure and comfortable interior waiting area by integrating any on-site transit stops into the building	

	TDM-s	upportive design & infrastructure measures: Residential developments	Check if completed & add descriptions, explanations or plan/drawing references			
	4.	RIDESHARING				
	4.1	Pick-up & drop-off facilities				
BASIC	4.1.1	Provide a designated area for carpool drivers (plus taxis and ride-hailing services) to drop off or pick up passengers without using fire lanes or other no-stopping zones				
	5.	CARSHARING & BIKESHARING				
	5.1	Carshare parking spaces				
BETTER	5.1.1	Provide up to three carshare parking spaces in an R3, R4 or R5 Zone for specified residential uses <i>(see Zoning By-law Section 94)</i>	May be considered. To be confirmed during Site Plan Control process.			
	5.2	Bikeshare station location				
BETTER	5.2.1	Provide a designated bikeshare station area near a major building entrance, preferably lighted and sheltered with a direct walkway connection				
	6.	PARKING				
	6.1	Number of parking spaces				
REQUIRED	6.1.1	Do not provide more parking than permitted by zoning, nor less than required by zoning, unless a variance is being applied for				
BASIC	6.1.2	Provide parking for long-term and short-term users that is consistent with mode share targets, considering the potential for visitors to use off-site public parking				
BASIC	6.1.3	Where a site features more than one use, provide shared parking and reduce the cumulative number of parking spaces accordingly <i>(see Zoning By-law</i> <i>Section 104)</i>				
BETTER	6.1.4	Reduce the minimum number of parking spaces required by zoning by one space for each 13 square metres of gross floor area provided as shower rooms, change rooms, locker rooms and other facilities for cyclists in conjunction with bicycle parking <i>(see Zoning By-law Section 111)</i>				
	6.2	Separate long-term & short-term parking areas				
BETTER	6.2.1	Provide separate areas for short-term and long-term parking (using signage or physical barriers) to permit access controls and simplify enforcement (i.e. to discourage residents from parking in visitor spaces, and vice versa)				

TDM Measures Checklist:

 \star

Residential Developments (multi-family, condominium or subdivision)

Legend

The measure is generally feasible and effective, and in most cases would benefit the development and its users

BETTER The measure could maximize support for users of sustainable modes, and optimize development performance

The measure is one of the most dependably effective tools to encourage the use of sustainable modes

	TDM	measures: Residential developments	Check if proposed & add descriptions			
	1.	TDM PROGRAM MANAGEMENT				
	1.1	Program coordinator				
BASIC	★ 1.1.1	Designate an internal coordinator, or contract with an external coordinator	May be considered. To be confirme during Site Plan Control process.			
	1.2	Travel surveys				
BETTER	1.2.1	Conduct periodic surveys to identify travel-related behaviours, attitudes, challenges and solutions, and to track progress	May be considered. To be confirmed during Site Plan Control process.			
	2.	WALKING AND CYCLING				
	2.1	Information on walking/cycling routes & des	tinations			
BASIC	2.1.1	Display local area maps with walking/cycling access routes and key destinations at major entrances (multi-family, condominium)				
	2.2	Bicycle skills training				
BETTER	2.2.1	Offer on-site cycling courses for residents, or subsidize off-site courses				

	TDM	measures: Residential developments	Check if proposed & add descriptions
	3.	TRANSIT	
	3.1	Transit information	
BASIC	3.1.1	Display relevant transit schedules and route maps at entrances (<i>multi-family, condominium</i>)	
BETTER	3.1.2	Provide real-time arrival information display at entrances (multi-family, condominium)	
	3.2	Transit fare incentives	
BASIC	3.2.1	Offer PRESTO cards preloaded with one monthly transit pass on residence purchase/move-in, to encourage residents to use transit	
BETTER	3.2.2	Offer at least one year of free monthly transit passes on residence purchase/move-in	May be considered. To be confirmed during Site Plan Control process.
	3.3	Enhanced public transit service	
BETTER	3.3.1	Contract with OC Transpo to provide early transit services until regular services are warranted by occupancy levels (<i>subdivision</i>)	
	3.4	Private transit service	
BETTER	3.4.1	Provide shuttle service for seniors homes or lifestyle communities (e.g. scheduled mall or supermarket runs)	
	4.	CARSHARING & BIKESHARING	
	4.1	Bikeshare stations & memberships	
BETTER	4.1.1	Contract with provider to install on-site bikeshare station (<i>multi-family</i>)	
BETTER	4.1.2	Provide residents with bikeshare memberships, either free or subsidized (multi-family)	
	4.2	Carshare vehicles & memberships	
BETTER	4.2.1	Contract with provider to install on-site carshare vehicles and promote their use by residents	May be considered. To be confirmed during Site Plan Control process.
BETTER	4.2.2	Provide residents with carshare memberships, either free or subsidized	
	5.	PARKING	
	5.1	Priced parking	
BASIC	\$ 5.1.1	Unbundle parking cost from purchase price (condominium)	
BASIC	5.1.2	Unbundle parking cost from monthly rent (multi-family)	

	TDM	measures: Residential developments	Check if proposed & add descriptions
	6.	TDM MARKETING & COMMUNICATIONS	
	6.1	Multimodal travel information	
BASIC	★ 6.1.1	Provide a multimodal travel option information package to new residents	
	6.2	Personalized trip planning	
BETTER	★ 6.2.1	Offer personalized trip planning to new residents	

Appendix H:

Synchro Analysis Reports

Existing Conditions

Lanes, Volumes, Timings <u>1: Richmond Rd & McEwen Ave</u>

	≯	-	+	1	~	
Lane Group	EBL	EBT	WBT	SBL	SBR	Ø9
Lane Configurations		ب ا	1 ,	N	1	
Traffic Volume (vph)	32	650	322	30	51	
Future Volume (vph)	32	650	322	30	51	
Lane Group Flow (vph)	0	758	382	33	57	
Turn Type	Perm	NA	NA	Perm	Perm	
Protected Phases		4	8			9
Permitted Phases	4	•	Ŭ	6	6	Ū
Detector Phase	4	4	8	6	6	
Switch Phase		•	Ŭ	Ŭ	v	
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	3.0
Minimum Split (s)	24.3	24.3	36.3	23.8	23.8	5.0
Total Split (s)	41.0	41.0	41.0	23.0	24.0	5.0
Total Split (%)	58.6%	58.6%	58.6%	34.3%	34.3%	7%
Yellow Time (s)	3.3	3.3	3.3	34.3 %	3.3	2.0
All-Red Time (s)	3.0	3.3 3.0	3.0	3.5 3.5	3.5	0.0
	3.0					0.0
Lost Time Adjust (s)		0.0	0.0	0.0	0.0	
Total Lost Time (s)		6.3	6.3	6.8	6.8	
Lead/Lag						
Lead-Lag Optimize?	• • •	<u></u>				
Recall Mode	C-Max	C-Max	C-Max	None	None	None
Act Effct Green (s)		56.1	56.1	10.0	10.0	
Actuated g/C Ratio		0.80	0.80	0.14	0.14	
v/c Ratio		0.55	0.27	0.14	0.23	
Control Delay		7.1	5.5	27.9	10.9	
Queue Delay		0.0	0.0	0.0	0.0	
Total Delay		7.1	5.5	27.9	10.9	
LOS		А	А	С	В	
Approach Delay		7.1	5.5	17.1		
Approach LOS		A	A	В		
Queue Length 50th (m)		48.7	31.7	3.9	0.0	
Queue Length 95th (m)		80.8	52.5	11.0	8.9	
Internal Link Dist (m)		726.4	379.9	123.9	0.0	
Turn Bay Length (m)			0.0.0	20.0		
Base Capacity (vph)		1389	1417	416	389	
Starvation Cap Reductn		0	0	410	0	
Spillback Cap Reductn		0	0	0	0	
Storage Cap Reductn		0	0	0	0	
Reduced v/c Ratio		0.55	0.27	0.08	0.15	
		0.55	0.21	0.00	0.15	
Intersection Summary						
Cycle Length: 70						
Actuated Cycle Length: 70						
Offset: 38 (54%), Referenced to pha	ise 4:EBTL a	nd 8:WBT,	Start of Gre	en		
Natural Cycle: 70						
Control Type: Actuated-Coordinated						
Maximum v/c Ratio: 0.55						
Intersection Signal Delay: 7.3				In	tersection L(OS: A
Intersection Capacity Utilization 86.2	2%				U Level of S	
Analysis Period (min) 15						
Splits and Phases: 1: Richmond F	Rd & McEwei	n Ave				
Ø9			404	(D)		

Ø9	●Ø4 (R)					
	41 s		5 s			
Ø6	← Ø8 (R)					
24 s	41 s					

Lanes, Volumes, Timings 2: Richmond Rd & New Orchard Ave N

	≯	-	-	1		
Lane Group	EBL	EBT	WBT	SBL	Ø9	
Lane Configurations	<u> </u>	•	1	¥	~~	_
Traffic Volume (vph)	13	7 675	347	119		
Future Volume (vph)	13	675	347	119		
Lane Group Flow (vph)	13	750	435	148		
Turn Type	Perm	NA	NA	Perm		
Protected Phases		4	8	1 0111	9	
Permitted Phases	4	-	0	6	5	
Detector Phase	4	4	8	6		
Switch Phase	т	т	0	0		
Minimum Initial (s)	10.0	10.0	10.0	10.0	3.0	
Minimum Split (s)	24.3	24.3	32.3	28.7	5.0	
Total Split (s)	36.0	36.0	36.0	20.7	5.0	
Total Split (%)	51.4%	51.4%	51.4%	41.4%	7%	
Yellow Time (s)	3.3	31.4%	3.3	3.3	2.0	
All-Red Time (s)	3.0	3.3 3.0	3.3 3.0	3.3 3.4	0.0	
	0.0	3.0 0.0	3.0 0.0	0.0	0.0	
Lost Time Adjust (s)	0.0 6.3		0.0 6.3	0.0 6.7		
Total Lost Time (s)	0.3	6.3	0.3	0.7		
Lead/Lag						
Lead-Lag Optimize?	C Mari	C Mari	C Mari	Mana	None	
Recall Mode	C-Max	C-Max	C-Max	None	None	
Act Effct Green (s)	49.6	49.6	49.6	12.0		
Actuated g/C Ratio	0.71	0.71	0.71	0.17		
v/c Ratio	0.02	0.59	0.35	0.51		
Control Delay	2.2	5.6	6.8	30.4		
Queue Delay	0.0	0.0	0.0	0.0		
Total Delay	2.2	5.6	6.8	30.4		
LOS	A	A	A	C		
Approach Delay		5.5	6.8	30.4		
Approach LOS		A	A	С		
Queue Length 50th (m)	0.2	11.5	21.5	16.9		
Queue Length 95th (m)	m0.4	14.8	44.4	30.6		
Internal Link Dist (m)		379.9	396.9	54.3		
Turn Bay Length (m)	70.0					
Base Capacity (vph)	625	1263	1241	537		
Starvation Cap Reductn	0	0	0	0		
Spillback Cap Reductn	0	0	0	0		
Storage Cap Reductn	0	0	0	0		
Reduced v/c Ratio	0.02	0.59	0.35	0.28		
Intersection Summary						
Cycle Length: 70						
Actuated Cycle Length: 70						
		nd 0.\MDT	Start of Car	00		
Offset: 68 (97%), Referenced to ph	Iase 4.EBTL a	nu o.WB1,	Start of Gre	en		
Natural Cycle: 75	d					
Control Type: Actuated-Coordinate Maximum v/c Ratio: 0.59	eu la					
						٨
Intersection Signal Delay: 8.7	00/				ersection LOS: A	
Intersection Capacity Utilization 59	1.0%			IC	U Level of Service	ie R
Analysis Period (min) 15		L				
m Volume for 95th percentile que	eue is metered	by upstrea	m signal.			
Solits and Phases: 2. Richmond	Rd & Now Or	chard Ave N	J			

Splits and Phases:	2: Richmond Rd & New Orchard Ave N	

Ø9	Ø4 (R)		*	
	36 s		5 s	
Ø6	← Ø8 (R)			
29 s	36 s			

	٦	1	Ŧ
Lane Group	EBL	NBT	SBT
Lane Configurations	¥	ل اً	ĥ
Traffic Volume (vph)	1	16	18
Future Volume (vph)	1	16	18
Lane Group Flow (vph)	98	78	22
Sign Control	Stop	Free	Free
Intersection Summary Control Type: Unsignalized			

Intersection Capacity Utilization 23.1% Analysis Period (min) 15

HCM Unsignalized Intersection Capacity Analysis 3: New Orchard Ave N & Ambleside Dr

	≯	\mathbf{i}	•	1	↓ ·	∢
Movement	EBL	- EBR	- NBL	NBT	- SBT	SBR
Lane Configurations	¥			ب ا		
Traffic Volume (veh/h)	1	87	54	16	1 8	2
Future Volume (Veh/h)	1	87	54	16	18	2
Sign Control	Stop	0.	•.	Free	Free	-
Grade	0%			0%	0%	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	1	97	60	18	20	2
Pedestrians	· ·	•.			20	-
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type				None	None	
Median storage veh)						
Upstream signal (m)				78		
pX, platoon unblocked						
vC, conflicting volume	159	21	22			
vC1, stage 1 conf vol	100					
vC2, stage 2 conf vol						
vCu, unblocked vol	159	21	22			
tC, single (s)	6.4	6.2	4.1			
tC, 2 stage (s)						
tF (s)	3.5	3.3	2.2			
p0 queue free %	100	91	96			
cM capacity (veh/h)	801	1056	1593			
Direction, Lane #	EB 1	NB 1	SB 1			
Volume Total	98	78	22			
Volume Left	1	60	0			
Volume Right	97	0	2			
cSH	1053	1593	1700			
Volume to Capacity	0.09	0.04	0.01			
Queue Length 95th (m)	2.3	0.04	0.0			
Control Delay (s)	8.8	5.7	0.0			
Lane LOS	0.0 A	3.7 A	0.0			
Approach Delay (s)	8.8	5.7	0.0			
Approach LOS	0.0 A	5.7	0.0			
Approach LOS	A					
Intersection Summary						
Average Delay			6.6			
Intersection Capacity Utilization			23.1%	IC	U Level of Serv	vice
Analysis Period (min)			15			

Lanes, Volumes, Timings 6: Woodroffe Ave & Richmond Rd

	≯	-	4	+	1	1	1	Ļ	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Configurations	5	٦,	N	4 15	5	î,	5	1,	
Traffic Volume (vph)	152	739	62	229	117	257	39	329	
Future Volume (vph)	152	739	62	229	117	257	39	329	
Lane Group Flow (vph)	169	1061	69	276	130	388	43	434	
Turn Type	pm+pt	NA	pm+pt	NA	pm+pt	NA	Perm	NA	
Protected Phases	7	4	3	8	5	2		6	
Permitted Phases	4		8		2		6		
Detector Phase	7	4	3	8	5	2	6	6	
Switch Phase		(0.0		(0.0			(0.0	(0.0	
Minimum Initial (s)	5.0	10.0	5.0	10.0	5.0	10.0	10.0	10.0	
Minimum Split (s)	11.7	33.9	11.7	33.9	10.3	31.5	31.5	31.5	
Total Split (s)	15.0	39.0	15.0	39.0 39.0%	12.0 12.0%	46.0 46.0%	34.0	34.0 34.0%	
Total Split (%) Yellow Time (s)	15.0% 3.3	39.0% 3.3	15.0% 3.3	39.0%	3.3	40.0%	34.0% 3.3	34.0%	
All-Red Time (s)	3.4	3.6	3.4	3.6	2.0	3.2	3.2	3.2	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.7	6.9	6.7	6.9	5.3	6.5	6.5	6.5	
Lead/Lag	Lead	Lag	Lead	Lag	Lead	0.0	Lag	Lag	
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes		Yes	Yes	
Recall Mode	None	C-Max	None	C-Max	None	Max	Max	Max	
Act Effct Green (s)	42.4	35.5	39.8	32.2	40.7	39.5	27.5	27.5	
Actuated g/C Ratio	0.42	0.36	0.40	0.32	0.41	0.40	0.28	0.28	
v/c Ratio	0.37	1.72	0.35	0.26	0.60	0.57	0.17	0.90	
Control Delay	18.5	356.0	20.1	25.0	32.0	26.4	29.8	57.7	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	18.5	356.0	20.1	25.0	32.0	26.4	29.8	57.7	
LOS	В	F	С	C	С	C	С	E	
Approach Delay		309.6		24.0		27.8		55.2	
Approach LOS	18.5	F ~316.8	7 1	C 20.0	15.9	C 54.5	6.3	E 79.4	
Queue Length 50th (m)	31.3	~316.6 #394.7	7.1 14.6	30.1	#28.8	54.5 83.7	0.3 15.2	79.4 #134.9	
Queue Length 95th (m) Internal Link Dist (m)	31.3	#394.7	14.0	30.1 81.7	#20.0	838.1	13.2	#134.9 358.2	
Turn Bay Length (m)	95.0	09.0	75.0	01.7	55.0	000.1	50.0	000.2	
Base Capacity (vph)	459	617	212	1078	216	677	253	483	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	Ŭ	0	0	Ŭ	Ũ	0	Ũ	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.37	1.72	0.33	0.26	0.60	0.57	0.17	0.90	
Intersection Summary									
Cycle Length: 100 Actuated Cycle Length: 100									
Offset: 35 (35%), Referenced to ph	nase 4:EBTL a	and 8:WBTL	, Start of Gr	een					
Natural Cycle: 150			, ,						
Control Type: Actuated-Coordinate	d								
Maximum v/c Ratio: 1.72									
Intersection Signal Delay: 167.2				Int	ersection L	OS: F			
	rsection Capacity Utilization 110.6% ICU Level of Service H								
nalysis Period (min) 15									
 Volume exceeds capacity, queue is theoretically infinite. 									
	Queue shown is maximum after two cycles.								
# 95th percentile volume exceed		eue may be	longer.						
Queue shown is maximum after	two cycles.								
Splits and Phases: 6: Woodroffe	Ave & Richm	ond Rd							
▲					1				

↑ _{Ø2}	√ Ø3	Ø4 (R)
46 s	15 s	39 s
★ ø5	▶ Ø7	€ Ø8 (R)
12 s 34 s	15 s	39 s

Lanes, Volumes, Timings 1: Richmond Rd & McEwen Ave

	≯	→	+	1	~	
Lane Group	EBL	EBT	WBT	SBL	SBR	Ø9
Lane Configurations		ب ا	1.	5	1	
Traffic Volume (vph)	81	426	822	35	66	
Future Volume (vph)	81	426	822	35	66	
Lane Group Flow (vph)	0	563	963	39	73	
Turn Type	Perm	NA	NA	Perm	Perm	
Protected Phases	. 0111	4	8			9
Permitted Phases	4	т	0	6	6	5
Detector Phase	4	4	8	6	6	
Switch Phase	4	4	0	0	0	
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	3.0
()	24.3	24.3	36.3	23.8	23.8	5.0 5.0
Minimum Split (s)	24.3 56.0	24.3 56.0	36.3 56.0	23.8	23.8	5.0 5.0
Total Split (s)						
Total Split (%)	65.9%	65.9%	65.9%	28.2%	28.2%	6%
Yellow Time (s)	3.3	3.3	3.3	3.3	3.3	2.0
All-Red Time (s)	3.0	3.0	3.0	3.5	3.5	0.0
Lost Time Adjust (s)		0.0	0.0	0.0	0.0	
Total Lost Time (s)		6.3	6.3	6.8	6.8	
Lead/Lag						
Lead-Lag Optimize?						
Recall Mode	C-Max	C-Max	C-Max	None	None	None
Act Effct Green (s)		66.5	66.5	10.0	10.0	
Actuated g/C Ratio		0.78	0.78	0.12	0.12	
v/c Ratio		0.61	0.70	0.20	0.32	
Control Delay		9.1	3.9	36.6	13.2	
Queue Delay		0.0	0.0	0.0	0.0	
Total Delay		9.1	3.9	36.6	13.2	
LOS		A	A	D	B	
Approach Delay		9.1	3.9	21.3	-	
Approach LOS		A	A	C		
Queue Length 50th (m)		39.1	19.1	5.8	0.0	
Queue Length 95th (m)		70.8	32.4	14.7	11.6	
Internal Link Dist (m)		760.7	379.9	123.9	11.0	
Turn Bay Length (m)		100.1	519.9	20.0		
		921	1385	342	339	
Base Capacity (vph)		921	1385	34Z 0	339	
Starvation Cap Reductn		0			0	
Spillback Cap Reductn			0	0		
Storage Cap Reductn		0	0	0	0	
Reduced v/c Ratio		0.61	0.70	0.11	0.22	
Intersection Summary						
Cycle Length: 85						
Actuated Cycle Length: 85						
Offset: 17 (20%), Referenced to phase		nd 8·\MRT	Start of Gro	۵n		
Natural Cycle: 100	JU 4.LDIL d					
Control Type: Actuated-Coordinated						
Maximum v/c Ratio: 0.70						00.4
Intersection Signal Delay: 6.9	0 01				tersection L(
Intersection Capacity Utilization 104. Analysis Period (min) 15	9%			IC	U Level of S	Service G
, , , ,						
Splits and Phases: 1: Richmond R	d & McEwe	n Ave				
Ø9		<u>↓</u> — → @4	(R)			
		56 8				

Ø6

4

Ø8 (R)

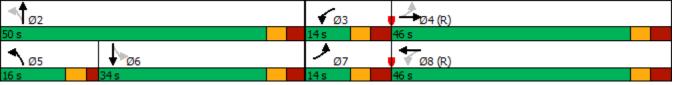
5 s

Lanes, Volumes, Timings 2: Richmond Rd & New Orchard Ave N

	٦	-	-	1				
Lane Group	EBL	EBT	WBT	SBL	Ø9			
Lane Configurations	5	•		Y				
Traffic Volume (vph)	22	477	1 853	76				
Future Volume (vph)	22	477	853	76				
Lane Group Flow (vph)	24	530	1078	102				
Furn Type	Perm	NA	NA	Perm				
Protected Phases	1 01111	4	8	T OIIII	9			
Permitted Phases	4	т	Ū	6	0			
Detector Phase	4	4	8	6				
Switch Phase	-	т	Ū	Ū				
Minimum Initial (s)	10.0	10.0	10.0	10.0	3.0			
Minimum Split (s)	24.3	24.3	32.3	28.7	5.0			
Fotal Split (s)	51.0	51.0	51.0	29.0	5.0			
Fotal Split (%)	60.0%	60.0%	60.0%	34.1%	6%			
fellow Time (s)	3.3	3.3	3.3	3.3	2.0			
All-Red Time (s)	3.0	3.0	3.0	3.4	0.0			
()	3.0 0.0	0.0	3.0 0.0	0.0	0.0			
Lost Time Adjust (s) Total Lost Time (s)	0.0 6.3	0.0 6.3	0.0 6.3	0.0 6.7				
Lead/Lag	0.3	0.3	0.3	0.1				
Lead-Lag Optimize?	C Mar	C Mari	C Mari	Neese	None			
Recall Mode	C-Max	C-Max	C-Max	None	None			
Act Effct Green (s)	65.4	65.4	65.4	11.2				
Actuated g/C Ratio	0.77	0.77	0.77	0.13				
//c Ratio	0.11	0.39	0.80	0.45				
Control Delay	8.3	8.4	15.1	36.1				
Queue Delay	0.0	0.0	0.0	0.0				
Total Delay	8.3	8.4	15.1	36.1				
OS	А	A	В	D				
Approach Delay		8.4	15.1	36.1				
Approach LOS		А	В	D				
Queue Length 50th (m)	1.4	37.9	99.7	13.9				
Queue Length 95th (m)	m3.5	78.9	#236.5	27.2				
nternal Link Dist (m)		379.9	402.2	54.3				
Turn Bay Length (m)	70.0							
Base Capacity (vph)	219	1372	1347	440				
Starvation Cap Reductn	0	0	0	0				
Spillback Cap Reductn	0	0	0	0				
Storage Cap Reductn	0	0	0	0				
Reduced v/c Ratio	0.11	0.39	0.80	0.23				
ntersection Summary								
Cycle Length: 85								
Actuated Cycle Length: 85								
		8-\N/DT 04	art of Croose					
Offset: 1 (1%), Referenced to pha		0.0001, 50	art of Green					
Natural Cycle: 100	tod							
Control Type: Actuated-Coordinat Maximum v/c Ratio: 0.80	led							
ntersection Signal Delay: 14.2	F 70/				tersection LOS: B	D		
ntersection Capacity Utilization 7	5.1%			IC	U Level of Service I	U		
Analysis Period (min) 15								
95th percentile volume excee		eue may be	ionger.					
Queue shown is maximum after	,							
m Volume for 95th percentile qu	ueue is metered	by upstrea	m signal.					
Splits and Phases: 2: Richmon	d Rd & New Or	chard Ave I	N					
			<u>_</u>				 	2
Ø9			Ø4(R)			 	, j
			51 s					5 s
1			4					

Ø9	Ø4 (R)	*
	51s	5s
	+	
Ø6	Ø8 (R)	
29 s	51 s	

	≯	Ť	Ŧ
Lane Group	EBL	NBT	SBT
Lane Configurations	¥.	<u>ل</u>	ĥ
Traffic Volume (vph)	4	21	17
Future Volume (vph)	4	21	17
Lane Group Flow (vph)	92	133	22
Sign Control	Stop	Free	Free
Intersection Summary	•		
Control Type: Unsignalized			


Intersection Capacity Utilization 25.7% Analysis Period (min) 15

HCM Unsignalized Intersection Capacity Analysis 3: New Orchard Ave N & Ambleside Dr

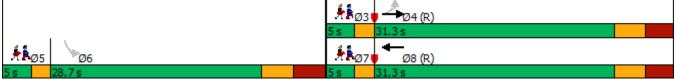
	≯	\mathbf{r}	1	1	↓ ·	∢
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	¥			đ	1,	
Traffic Volume (veh/h)	4	79	99	21	17	3
Future Volume (Veh/h)	4	79	99	21	17	3
Sign Control	Stop	15	55	Free	Free	5
Grade	0%			0%	0%	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	4	88	110	23	19	3
Pedestrians	4	00	110	25	15	5
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)				Neza	Nama	
Median type				None	None	
Median storage veh)				70		
Upstream signal (m)				78		
pX, platoon unblocked	004		00			
vC, conflicting volume	264	20	22			
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	264	20	22			
tC, single (s)	6.4	6.2	4.1			
tC, 2 stage (s)						
tF (s)	3.5	3.3	2.2			
p0 queue free %	99	92	93			
cM capacity (veh/h)	675	1057	1593			
Direction, Lane #	EB 1	NB 1	SB 1			
Volume Total	92	133	22			
Volume Left	4	110	0			
Volume Right	88	0	3			
cSH	1032	1593	1700			
Volume to Capacity	0.09	0.07	0.01			
Queue Length 95th (m)	2.2	1.7	0.0			
Control Delay (s)	8.8	6.2	0.0			
Lane LOS	A	A	0.0			
Approach Delay (s)	8.8	6.2	0.0			
Approach LOS	A	0.2	0.0			
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					
Intersection Summary						
Average Delay			6.6			
Intersection Capacity Utilization			25.7%	IC	U Level of Serv	vice
Analysis Period (min)			15			

# Lanes, Volumes, Timings 6: Woodroffe Ave & Richmond Rd

	٦	-	4	+	•	1	1	Ŧ
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT
Lane Configurations	5	٦,	5	<b>≜</b> 1,	5	٦,	5	1,
Traffic Volume (vph)	83	322	217	627	232	402	25	340
Future Volume (vph)	83	322	217	627	232	402	25	340
Lane Group Flow (vph)	92	552	241	731	258	545	28	447
Turn Type	pm+pt	NA	pm+pt	NA	pm+pt	NA	Perm	NA
Protected Phases	7	4	3	8	5	2		6
Permitted Phases	4		8		2		6	
Detector Phase	7	4	3	8	5	2	6	6
Switch Phase								
Minimum Initial (s)	5.0	10.0	5.0	10.0	5.0	10.0	10.0	10.0
Minimum Split (s)	11.7	33.9	11.7	33.9	10.3	31.5	31.5	31.5
Total Split (s)	14.0	46.0	14.0	46.0	16.0	50.0	34.0	34.0
Total Split (%)	12.7%	41.8%	12.7%	41.8%	14.5%	45.5%	30.9%	30.9%
Yellow Time (s)	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3
All-Red Time (s)	3.4	3.6	3.4	3.6	2.0	3.2	3.2	3.2
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	6.7	6.9	6.7	6.9	5.3	6.5	6.5	6.5
Lead/Lag	Lead	Lag	Lead	Lag	Lead		Lag	Lag
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes		Yes	Yes
Recall Mode	None	C-Max	None	C-Max	None	Max	Max	Max
Act Effct Green (s)	46.4	39.1	47.9	41.9	44.7	43.5	27.5	27.5
Actuated g/C Ratio	0.42	0.36	0.44	0.38	0.41	0.40	0.25	0.25
v/c Ratio	0.33	0.91	1.10	0.57	1.11	0.80	0.18	1.02
Control Delay	19.0	53.0	113.6	29.8	119.7	38.9	36.1	88.0
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	19.0	53.0	113.6	29.8	119.7	38.9	36.1	88.0
LOS	В	D	F	С	F	D	D	F
Approach Delay		48.2		50.5		64.8		84.9
Approach LOS		D		D		E		F
Queue Length 50th (m)	10.4	107.0	~35.1	66.8	~48.1	99.5	4.7	~97.6
Queue Length 95th (m)	19.4	#172.1	#84.2	86.4	#98.3	#145.6	12.8	#161.4
Internal Link Dist (m)		69.3		80.5		859.2		386.2
Turn Bay Length (m)	95.0		75.0		55.0		50.0	
Base Capacity (vph)	285	607	220	1281	232	685	155	440
Starvation Cap Reductn	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.32	0.91	1.10	0.57	1.11	0.80	0.18	1.02
Intersection Summary								
Cycle Length: 110								
Actuated Cycle Length: 110								
Offset: 0 (0%), Referenced to pha	ase 4 FBTL and	8 WRTL S	tart of Gree	n				
Natural Cycle: 120		0.001L, 0						
Control Type: Actuated-Coordinat	ted							
Maximum v/c Ratio: 1.11								
Intersection Signal Delay: 59.6				Int	tersection L	OS F		
Intersection Capacity Utilization 1	01.2%				U Level of S			
Analysis Period (min) 15	U1.270			10				
Volume exceeds capacity, queue is theoretically infinite.								
<ul> <li>Volume exceeds capacity, queue is theoretically infinite.</li> <li>Queue shown is maximum after two cycles.</li> </ul>								
		elle mav he	longer					
# 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.								
Splits and Phases: 6: Woodroff	e Ave & Richm	ond Rd						
. <b>™</b>					(	- 2		



**Total Future Background 2026** 


## Lanes, Volumes, Timings 1: Richmond Rd & McEwen Ave

	≯	-	-	×				
Lane Group	EBL	EBT	WBT	SBL	Ø3	Ø5	Ø7	
Lane Configurations		•		¥	~~	~~	~ .	
Traffic Volume (vph)	<b>*</b> 32	717	<b>1</b> 357	30				
Future Volume (vph)	32	717	357	30				
Lane Group Flow (vph)	32	717	379	81				
		NA	NA	Perm				
Turn Type	Perm	NA 4	NA 8	Penn	3	r	7	
Protected Phases	4	4	0	<u>^</u>	ა	5	1	
Permitted Phases	4		0	6				
Petector Phase	4	4	8	6				
witch Phase	40.0	10.0	10.0	40.0	4.0	4.0	1.0	
linimum Initial (s)	10.0	10.0	10.0	10.0	1.0	1.0	1.0	
linimum Split (s)	24.3	24.3	31.3	23.8	5.0	5.0	5.0	
otal Split (s)	36.2	36.2	36.2	23.8	5.0	5.0	5.0	
otal Split (%)	51.7%	51.7%	51.7%	34.0%	7%	7%	7%	
ellow Time (s)	3.3	3.3	3.3	3.3	2.0	2.0	2.0	
I-Red Time (s)	3.0	3.0	3.0	3.5	0.0	0.0	0.0	
ost Time Adjust (s)	0.0	0.0	0.0	0.0				
otal Lost Time (s)	6.3	6.3	6.3	6.8				
ead/Lag	Lag	Lag	Lag	Lag	Lead	Lead	Lead	
ad-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
call Mode	C-Max	C-Max	C-Max	None	None	None	None	
t Effct Green (s)	51.4	51.4	51.4	10.1				
uated g/C Ratio	0.73	0.73	0.73	0.14				
Ratio	0.05	0.55	0.29	0.31				
ntrol Delay	4.3	7.9	7.0	16.7				
eue Delay	0.0	0.0	0.0	0.0				
ital Delay	4.3	7.9	7.0	16.7				
S	A.	A	A	B				
proach Delay	А	7.7	7.0	16.7				
proach LOS		A	7.0 A	В				
	1.2	43.4	31.1	3.5				
ieue Length 50th (m)	3.7	43.4 72.9	52.6	14.3				
ueue Length 95th (m)	3.7							
ernal Link Dist (m)	E0 0	742.1	379.9	123.9 20.0				
rn Bay Length (m)	50.0	1040	1000					
ase Capacity (vph)	698	1310	1298	410				
arvation Cap Reductn	0	0	0	0				
billback Cap Reductn	0	0	0	0				
orage Cap Reductn	0	0	0	0				
duced v/c Ratio	0.05	0.55	0.29	0.20				
tersection Summary								
/cle Length: 70								
ctuated Cycle Length: 70								
ffset: 38 (54%), Referenced to phase	4.FBTL	nd 8 WBT	Start of Gre	en				
atural Cycle: 75								
ontrol Type: Actuated-Coordinated								
aximum v/c Ratio: 0.55								
tersection Signal Delay: 8.1				Int	ersection LC	NS A		
tersection Capacity Utilization 62.4%					U Level of S			
nalysis Period (min) 15				iCl				
11aiysis Fellou (11111) 13								
olits and Phases: 1: Richmond Rd	8 MoEuro							
olits and Phases: 1: Richmond Rd		II AVE						 
				102	404	(D)		

	₩øз	Ø4 (R)
	5 s	36.2 s
₩ <b>\$</b> ø5 \06	Heg7	← Ø8 (R)
5 s 23.8 s	5 s	36.2 s

# Lanes, Volumes, Timings 2: Richmond Rd & New Orchard Ave N

	٦	-	-	1			
Lane Group	EBL	EBT	WBT	SBL	Ø3	Ø5	Ø7
Lane Configurations				W.			
Traffic Volume (vph)	15	<b>4</b> 743	<b>1</b> 382	128			
Future Volume (vph)	15	743	382	128			
Lane Group Flow (vph)	0	758	431	145			
Turn Type	Perm	NA	NA	Perm			
Protected Phases		4	8		3	5	7
Permitted Phases	4		-	6	-	-	
Detector Phase	4	4	8	6			
Switch Phase				-			
Minimum Initial (s)	10.0	10.0	10.0	10.0	1.0	1.0	1.0
Minimum Split (s)	24.3	24.3	27.3	28.7	5.0	5.0	5.0
Total Split (s)	31.3	31.3	31.3	28.7	5.0	5.0	5.0
Total Split (%)	44.7%	44.7%	44.7%	41.0%	7%	7%	7%
Yellow Time (s)	3.3	3.3	3.3	3.3	2.0	2.0	2.0
All-Red Time (s)	3.0	3.0	3.0	3.4	0.0	0.0	0.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)		6.3	6.3	6.7			
Lead/Lag	Lag	Lag	Lag	Lag	Lead	Lead	Lead
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Recall Mode	C-Max	C-Max	C-Max	None	None	None	None
Act Effct Green (s)	Onitian	49.7	49.7	11.9	None	Rono	None
Actuated g/C Ratio		0.71	0.71	0.17			
v/c Ratio		0.60	0.35	0.50			
Control Delay		4.8	6.7	30.1			
Queue Delay		0.0	0.0	0.0			
Total Delay		4.8	6.7	30.1			
LOS		4.0 A	0.7 A	50.1 C			
Approach Delay		4.8	6.7	30.1			
Approach LOS		4.0 A	0.7 A	30.1 C			
Queue Length 50th (m)		9.0	21.1	16.4			
		9.0 13.2	43.6	29.8			
Queue Length 95th (m) Internal Link Dist (m)		379.9	43.0	29.0 54.3			
Turn Bay Length (m)		319.9	490.4	54.5			
Base Capacity (vph)		1253	1243	530			
Starvation Cap Reductn		1255	1243	530 0			
		0	0	0			
Spillback Cap Reductn		0	0	0			
Storage Cap Reductn Reduced v/c Ratio		0.60	0.35	0.27			
Intersection Summary		0.00	0.35	0.27			
Cycle Length: 70							
Actuated Cycle Length: 70		nd 0.\MDT	Start of Com	00			
Offset: 68 (97%), Referenced to pha	ase 4:EBTL a		Start of Gre	en			
Natural Cycle: 90	.1						
Control Type: Actuated-Coordinated	3						
Maximum v/c Ratio: 0.60				1-4	ana ation 1.0		
Intersection Signal Delay: 8.2	70/				ersection LC		
Intersection Capacity Utilization 75.	1%			ICU	J Level of S	ervice D	
Analysis Period (min) 15							
Splits and Phases: 2: Richmond I	Rd & New Or	chard Ave N	1				
					1.1		



	≯	1	Ŧ
Lane Group	EBL	NBT	SBT
Lane Configurations	¥.	<del>ب</del> ا ۲	1.
Traffic Volume (vph)	1	22	30
Future Volume (vph)	1	22	30
Lane Group Flow (vph)	88	76	32
Sign Control	Stop	Free	Free
Intersection Summary			
Control Type: Unsignalized			
Interpretion Consolity Litilization 02 E0/			

Intersection Capacity Utilization 23.5% Analysis Period (min) 15

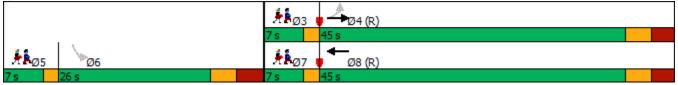
	≯	$\mathbf{r}$	•	† 1	Ţ	
Movement	EBL	EBR	۱ NBL	NBT	▼ SBT	SBR
		EBR	NBL			SDR
Lane Configurations	M	07	<b>F</b> 4	<b>4</b> 22	<b>1</b> 30	0
Traffic Volume (veh/h)	1	87	54			2
Future Volume (Veh/h)	1	87	54	22	30	2
Sign Control	Stop			Free	Free	
Grade	0%	4.00	4.00	0%	0%	1 0 0
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	1	87	54	22	30	2
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type				None	None	
Median storage veh)						
Upstream signal (m)				78		
pX, platoon unblocked						
vC, conflicting volume	161	31	32			
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	161	31	32			
tC, single (s)	6.4	6.2	4.1			
tC, 2 stage (s)						
tF (s)	3.5	3.3	2.2			
p0 queue free %	100	92	97			
cM capacity (veh/h)	802	1043	1580			
Direction, Lane #	EB 1	NB 1	SB 1			
Volume Total	88	76	32			
Volume Left	1	54	0			
Volume Right	87	0	2			
cSH	1040	1580	1700			
Volume to Capacity	0.08	0.03	0.02			
Queue Length 95th (m)	2.1	0.8	0.0			
Control Delay (s)	8.8	5.3	0.0			
Lane LOS	0.0 A	0.0 A	0.0			
Approach Delay (s)	8.8	5.3	0.0			
Approach LOS	0.0 A	0.0	0.0			
	A					
Intersection Summary						
Average Delay			6.0			
Intersection Capacity Utilization			23.5%	IC	U Level of Serv	vice
Analysis Period (min)			15			

	Ť	Ļ
Lane Group	NBT	SBT
Lane Configurations	ĥ	រា
Traffic Volume (vph)	23	4 32
Future Volume (vph)	23	32
Lane Group Flow (vph)	23	32
Sign Control	Free	Free
Intersection Summary		
Control Type: Unsignalized		
Intersection Capacity Utilization 6.7	7%	

Analysis Period (min) 15

Parsons

	1	•	1	1	<b>\</b>	ŧ
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	¥		1.			⊿
Traffic Volume (veh/h)	0	0	<b>1</b> 23	0	0	<b>4</b> 32
Future Volume (Veh/h)	0	0	23	0	0	32
Sign Control	Stop		Free			Free
Grade	0%		0%			0%
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	0	0	23	0	0	32
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type			None			None
Median storage veh)						
Upstream signal (m)			108			
pX, platoon unblocked			100			
vC, conflicting volume	55	23			23	
vC1, stage 1 conf vol	00	20			20	
vC2, stage 2 conf vol						
vCu, unblocked vol	55	23			23	
tC, single (s)	6.4	6.2			4.1	
tC, 2 stage (s)	0.4	0.2			7.1	
tF (s)	3.5	3.3			2.2	
p0 queue free %	100	100			100	
cM capacity (veh/h)	953	1054			1592	
,					1552	
Direction, Lane #	WB 1	NB 1	SB 1			
Volume Total	0	23	32			
Volume Left	0	0	0			
Volume Right	0	0	0			
cSH	1700	1700	1592			
Volume to Capacity	0.00	0.01	0.00			
Queue Length 95th (m)	0.0	0.0	0.0			
Control Delay (s)	0.0	0.0	0.0			
Lane LOS	A					
Approach Delay (s)	0.0	0.0	0.0			
Approach LOS	А					
Intersection Summary						
/			0.0			
Average Delay			0.0 6.7%		J Level of Servi	inn
Intersection Capacity Utilization				ICL	J Level Of Servi	ice
Analysis Period (min)			15			


# Lanes, Volumes, Timings 6: Woodroffe Ave & Richmond Rd

	≯	-	$\mathbf{i}$	4	+	1	Ť	1	Ļ	
Lane Group	EBL	EBT	EBR	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Configurations	5	•	1	5	î,	5	î,	5	1.	
Traffic Volume (vph)	152	818	220	62	255	119	257	39	<b>1</b> 329	
Future Volume (vph)	152	818	220	62	255	119	257	39	329	
ane Group Flow (vph)	152	818	220	62	275	119	349	39	390	
urn Type	Prot	NA	Perm	Prot	NA	pm+pt	NA	Perm	NA	
rotected Phases	7	4		3	8	5	2		6	
Permitted Phases			4			2		6		
Detector Phase	7	4	4	3	8	5	2	6	6	
Switch Phase										
Ainimum Initial (s)	5.0	10.0	10.0	5.0	10.0	5.0	10.0	10.0	10.0	
finimum Split (s)	11.9	28.9	28.9	11.7	33.9	11.5	31.5	31.5	31.5	
fotal Split (s)	19.4	45.3	45.3	11.7	37.6	11.5	43.0	31.5	31.5	
otal Split (%)	19.4%	45.3%	45.3%	11.7%	37.6%	11.5%	43.0%	31.5%	31.5%	
ellow Time (s)	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	
II-Red Time (s)	3.6	3.6	3.6	3.4	3.6	3.2	3.2	3.2	3.2	
ost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
otal Lost Time (s)	6.9	6.9	6.9	6.7	6.9	6.5	6.5	6.5	6.5	
ead/Lag	Lead	0.0	0.0	•	Lag	Lead	0.0	Lag	Lag	
ead-Lag Optimize?	Yes				Yes	Yes		Yes	Yes	
ecall Mode	None	C-Max	C-Max	None	C-Max	None	Max	Max	Max	
ct Effct Green (s)	11.8	40.7	40.7	5.0	31.4	36.5	36.5	25.0	25.0	
ctuated g/C Ratio	0.12	0.41	0.41	0.05	0.31	0.36	0.36	0.25	0.25	
c Ratio	0.76	1.13	0.31	0.74	0.50	0.64	0.57	0.16	0.90	
ontrol Delay	67.0	104.2	6.4	92.8	32.1	40.2	29.9	31.6	62.0	
ueue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
ital Delay	67.0	104.2	6.4	92.8	32.1	40.2	29.9	31.6	62.0	
)S	67.0 E	F	0.4 A	52.0 F	52.1 C	40.2 D	23.3 C	01.0 C	02.0 E	
pproach Delay	L.	81.4	~		43.2		32.5	Ŭ	59.3	
oproach LOS		61.4 F			43.2 D		02.0 C		55.5 E	
Queue Length 50th (m)	28.7	~192.8	4.6	12.1	43.6	15.5	53.5	5.9	73.3	
ueue Length 95th (m)	#57.2	#262.6	19.4	#33.9	68.2	#32.1	81.5	14.7	#125.9	
iternal Link Dist (m)	πJ1.Z	490.4	13.4	π00.0	81.7	<i>π</i> JZ.1	861.3	14.7	399.3	
urn Bay Length (m)	95.0		30.0	75.0	01.7	55.0	001.0	50.0	000.0	
ase Capacity (vph)	211	727	702	84	550	185	613	239	433	
tarvation Cap Reductn	0	0	02	04	0	0	013	239	433	
pillback Cap Reductn	0	0	0	0	0	0	0	0	0	
torage Cap Reductn	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.72	1.13	0.31	0.74	0.50	0.64	0.57	0.16	0.90	
	0.72	1.15	0.01	0.74	0.00	0.04	0.51	0.10	0.90	
ntersection Summary										
Cycle Length: 100										
ctuated Cycle Length: 100										
offset: 0 (0%), Referenced to phase	e 4:EBT and 8	3:WBT, Star	t of Green							
atural Cycle: 120										
ontrol Type: Actuated-Coordinated	d									
aximum v/c Ratio: 1.13										
tersection Signal Delay: 62.7				In	tersection L	OS: E				
tersection Capacity Utilization 101	1.1%			IC	U Level of S	Service G				
nalysis Period (min) 15										
Volume exceeds capacity, queu	ue is theoretic	ally infinite.								
Queue shown is maximum after										
95th percentile volume exceeds		eue may be	longer.							
Queue shown is maximum after			-							
Splits and Phases: 6: Woodroffe	Ave & Richm	ond Rd								
<b>▲</b>										

<b>₫</b> _{Ø2}		<b>√</b> Ø3	
43 s		11.7 s	45.3 s
<b>▲</b> Ø5	Ø6		●Ø8 (R)
11.5 s	31.5 s	19.4 s	37.6 s

# Lanes, Volumes, Timings 1: Richmond Rd & McEwen Ave

	٦	-	-	1			
Lane Group	EBL	EBT	WBT	SBL	Ø3	Ø5	Ø7
Lane Configurations	5	•	1,	¥	20	~~	~1
Traffic Volume (vph)	81	472	906	35			
Future Volume (vph)	81	472	906	35			
Lane Group Flow (vph)	81	472	951	101			
Turn Type	Perm	NA	NA	Perm			
Protected Phases		4	8		3	5	7
Permitted Phases	4			6			
Detector Phase	4	4	8	6			
Switch Phase							
Minimum Initial (s)	10.0	10.0	10.0	10.0	1.0	1.0	1.0
Minimum Split (s)	24.3	24.3	36.3	23.8	5.0	5.0	5.0
Total Split (s)	45.0	45.0	45.0	26.0	7.0	7.0	7.0
Total Split (%)	52.9%	52.9%	52.9%	30.6%	8%	8%	8%
Yellow Time (s)	3.3	3.3	3.3	3.3	2.0	2.0	2.0
All-Red Time (s)	3.0	3.0	3.0	3.5	0.0	0.0	0.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0			
Total Lost Time (s)	6.3	6.3	6.3	6.8			
Lead/Lag	Lag	Lag	Lag	Lag	Lead	Lead	Lead
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Recall Mode	C-Max	C-Max	C-Max	None	None	None	None
Act Effct Green (s)	66.1	66.1	66.1	10.5			
Actuated g/C Ratio	0.78	0.78	0.78	0.12			
v/c Ratio	0.26	0.34	0.69	0.41			
Control Delay	6.8	4.9	5.6	20.3			
Queue Delay	0.0	0.0	0.0	0.0			
Total Delay	6.8	4.9	5.6	20.3			
LOS	A	A	A	С			
Approach Delay		5.2	5.6	20.3			
Approach LOS		A	A	C			
Queue Length 50th (m)	3.7	23.3	31.2	5.2			
Queue Length 95th (m)	10.8	40.4	54.2	18.7			
Internal Link Dist (m)	50.0	679.4	379.9	123.9			
Turn Bay Length (m)	50.0	1000	1070	20.0			
Base Capacity (vph)	313	1386	1376	392			
Starvation Cap Reductn	0	0	0	0			
Spillback Cap Reductn Storage Cap Reductn	0	0 0	0	0 0			
Reduced v/c Ratio	0.26	0.34	0.69	0.26			
	0.20	0.34	0.09	0.20			
Intersection Summary							
Cycle Length: 85							
Actuated Cycle Length: 85							
Offset: 17 (20%), Referenced to	phase 4:EBTL a	nd 8:WBT,	Start of Gre	en			
Natural Cycle: 90							
Control Type: Actuated-Coordina	ated						
Maximum v/c Ratio: 0.69							
Intersection Signal Delay: 6.4	00 50/				ersection LC		
Intersection Capacity Utilization & Analysis Period (min) 15	89.5%			ICU	J Level of S	ervice E	
Splits and Phases: 1: Richmor	nd Rd & McEwei	n Ave					



# Lanes, Volumes, Timings 2: Richmond Rd & New Orchard Ave N

	≯	-	-	1			
Lane Group	EBL	EBT	WBT	SBL	Ø3	Ø5	Ø7
Lane Configurations		4		¥	20	20	~
Traffic Volume (vph)	25	525	<b>1</b> 938	82			
Future Volume (vph)	25	525	938	82			
	25	525	1063	100			
Lane Group Flow (vph)		NA	NA	Perm			
Turn Type	Perm	NA 4	NA 8	rem	3	-	7
Protected Phases	4	4	ð	^	3	5	1
Permitted Phases	4		•	6			
Detector Phase	4	4	8	6			
Switch Phase							
Minimum Initial (s)	10.0	10.0	10.0	10.0	1.0	1.0	1.0
Minimum Split (s)	24.3	24.3	27.3	28.7	5.0	5.0	5.0
Total Split (s)	46.3	46.3	46.3	28.7	5.0	5.0	5.0
Total Split (%)	54.5%	54.5%	54.5%	33.8%	6%	6%	6%
Yellow Time (s)	3.3	3.3	3.3	3.3	2.0	2.0	2.0
All-Red Time (s)	3.0	3.0	3.0	3.4	0.0	0.0	0.0
Lost Time Adjust (s)		0.0	0.0	0.0			
Total Lost Time (s)		6.3	6.3	6.7			
Lead/Lag	Lag	Lag	Lag	Lag	Lead	Lead	Lead
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Recall Mode	C-Max	C-Max	C-Max	None	None	None	None
Act Effct Green (s)	Umux	65.5	65.5	11.1	110110	Rono	1 tono
Actuated g/C Ratio		0.77	0.77	0.13			
v/c Ratio		0.43	0.77	0.13			
Control Delay		6.3	14.5	35.6			
		0.0	0.0	35.6 0.0			
Queue Delay							
Total Delay		6.3	14.5	35.6			
LOS		A	B	D			
Approach Delay		6.3	14.5	35.6			
Approach LOS		А	В	D			
Queue Length 50th (m)		28.6	96.1	13.4			
Queue Length 95th (m)		53.6	#230.6	26.6			
Internal Link Dist (m)		379.9	495.5	54.3			
Turn Bay Length (m)							
Base Capacity (vph)		1282	1348	435			
Starvation Cap Reductn		0	0	0			
Spillback Cap Reductn		0	0	0			
Storage Cap Reductn		0	0	0			
Reduced v/c Ratio		0.43	0.79	0.23			
		0.40	0.10	0.20			
Intersection Summary							
Cycle Length: 85							
Actuated Cycle Length: 85							
Offset: 1 (1%), Referenced to pha	ase 4:EBTL and	8:WBT, St	art of Green				
Natural Cycle: 110		,					
Control Type: Actuated-Coordina	ted						
Maximum v/c Ratio: 0.79							
Intersection Signal Delay: 13.1				Int	ersection LC	)S [.] B	
Intersection Capacity Utilization 8	30.9%				J Level of S		
Analysis Period (min) 15	0.070			100			
# 95th percentile volume excee	de canacity du		longer				
4 95th percentile volume excee Queue shown is maximum after a shown is maximum after Queue shown is maximum after A sh		eue may be	ionger.				
Queue shown is maximum and	er two cycles.						
Splits and Phases: 2: Richmon	nd Rd & New Or	chard Ave I	N				



	≯	1	Ļ
Lane Group	EBL	NBT	SBT
Lane Configurations	W.	ۍ ۲	1.
Traffic Volume (vph)	4	31	25
Future Volume (vph)	4	31	25
Lane Group Flow (vph)	83	130	28
Sign Control	Stop	Free	Free
Intersection Summary			
Control Type: Unsignalized			
Internetien Consolity Little-stice OC 00	/		

Intersection Capacity Utilization 26.2% Analysis Period (min) 15

	≯	~	•	Ť	Ļ	~
Movement	EBL	EBR	NBL	• NBT	• SBT	SBR
Lane Configurations	¥		NUC	4	1	OBIT
Traffic Volume (veh/h)	<b>4</b>	79	99	4 31	25	3
Future Volume (Veh/h)	4	79	99	31	25	3
Sign Control	Stop	19	99	Free	Free	5
Grade	0%			0%	0%	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
		79	99	31	25	
Hourly flow rate (vph)	4	79	99	31	25	3
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type				None	None	
Median storage veh)						
Upstream signal (m)				78		
pX, platoon unblocked						
vC, conflicting volume	256	26	28			
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	256	26	28			
tC, single (s)	6.4	6.2	4.1			
tC, 2 stage (s)						
tF (s)	3.5	3.3	2.2			
p0 queue free %	99	92	94			
cM capacity (veh/h)	687	1049	1585			
	EB 1	NB 1	SB 1			
Direction, Lane #						
Volume Total	83	130	28			
Volume Left	4	99	0			
Volume Right	79	0	3			
cSH	1023	1585	1700			
Volume to Capacity	0.08	0.06	0.02			
Queue Length 95th (m)	2.0	1.5	0.0			
Control Delay (s)	8.8	5.8	0.0			
Lane LOS	А	А				
Approach Delay (s)	8.8	5.8	0.0			
Approach LOS	А					
Intersection Summary						
Average Delay			6.2			
Intersection Capacity Utilization			26.2%	ICI	U Level of Ser	vice
Analysis Period (min)			15			
			10			

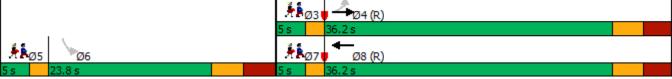
-		
	t t	Ţ
	•	•
Lane Group	NBT	SBT
Lane Configurations	ĥ	្ត
Traffic Volume (vph)	35	<b>4</b> 29
Future Volume (vph)	35	29
Lane Group Flow (vph)	35	29
Sign Control	Free	Free
Intersection Summary		
Control Type: Unsignalized		
Control Type: Unsignalized Intersection Capacity Utilization 6.7%		

Analysis Period (min) 15

Parsons

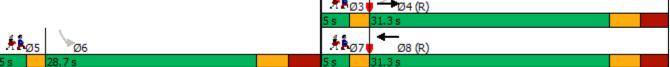
	4	•	1	1	<b>\</b>	Ļ
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	¥					
Traffic Volume (veh/h)	0	0	<b>1</b> 4 35	0	0	<b>4</b> 29
Future Volume (Veh/h)	0	0	35	0	0	29
Sign Control	Stop		Free			Free
Grade	0%		0%			0%
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	0	0	35	0	0	29
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type			None			None
Median storage veh)						
Upstream signal (m)			110			
pX, platoon unblocked						
vC, conflicting volume	64	35			35	
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	64	35			35	
tC, single (s)	6.4	6.2			4.1	
tC, 2 stage (s)						
tF (s)	3.5	3.3			2.2	
p0 queue free %	100	100			100	
cM capacity (veh/h)	942	1038			1576	
Direction, Lane #	WB 1	NB 1	SB 1			
Volume Total	0	35	29			
Volume Left	0	0	29			
Volume Right	0	0	0			
cSH	1700	1700	1576			
Volume to Capacity	0.00	0.02	0.00			
Queue Length 95th (m)	0.00	0.02	0.00			
Control Delay (s)	0.0	0.0	0.0			
Lane LOS	0.0 A	0.0	0.0			
Approach Delay (s)	0.0	0.0	0.0			
	0.0 A	0.0	0.0			
Approach LOS	A					
Intersection Summary						
Average Delay			0.0			
Intersection Capacity Utilization			6.7%	ICL	J Level of Serv	ice
Analysis Period (min)			15			

# Lanes, Volumes, Timings 6: Woodroffe Ave & Richmond Rd


	٦	-	$\mathbf{\hat{z}}$	4	+	1	Ť	1	Ļ
Lane Group	EBL	EBT	EBR	WBL	WBT	NBL	NBT	SBL	SBT
Lane Configurations	5	•	1	5	1,	ሻ	1.	5	1.
Traffic Volume (vph)	83	358	177	217	695	235	<b>1</b> 402	25	<b>1</b> 340
Future Volume (vph)	83	358	177	217	695	235	402	25	340
Lane Group Flow (vph)	83	358	177	217	726	235	490	25	402
urn Type	Prot	NA	Perm	Prot	NA	pm+pt	NA	Perm	NA
Protected Phases	7	4		3	8	5	2		6
Permitted Phases			4			2		6	
Detector Phase	7	4	4	3	8	5	2	6	6
Switch Phase	- 0	40.0	40.0	- 0	40.0		40.0	10.0	10.0
Minimum Initial (s)	5.0	10.0	10.0	5.0	10.0	5.0	10.0	10.0	10.0
Minimum Split (s)	11.9 12.0	33.9 39.5	33.9 39.5	11.7 22.0	33.9 49.5	11.5 17.0	31.5 48.5	31.5 31.5	31.5 31.5
Total Split (s) Total Split (%)	10.9%	39.5 35.9%	39.5 35.9%	22.0	49.5 45.0%	15.5%	40.5 44.1%	28.6%	28.6%
Yellow Time (s)	3.3	3.3	35.9%	20.0%	45.0%	3.3	44.1% 3.3	20.0%	20.0%
All-Red Time (s)	3.6	3.6	3.6	3.4	3.6	3.2	3.2	3.2	3.2
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	2.0	0.0	0.0	0.0
Total Lost Time (s)	6.9	6.9	6.9	6.7	6.9	8.5	6.5	6.5	6.5
Lead/Lag	Lead	0.0	0.0	0.7	Lag	Lead	0.0	Lag	Lag
Lead-Lag Optimize?	Yes				Yes	Yes		Yes	Yes
Recall Mode	None	C-Max	C-Max	None	C-Max	None	Max	Max	Max
Act Effct Green (s)	5.1	32.6	32.6	15.3	42.6	40.0	42.0	25.0	25.0
Actuated g/C Ratio	0.05	0.30	0.30	0.14	0.39	0.36	0.38	0.23	0.23
v/c Ratio	1.06	0.68	0.30	0.92	1.06	1.21	0.75	0.14	1.02
Control Delay	171.5	41.7	2.6	89.6	85.1	158.5	37.9	36.5	94.1
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	171.5	41.7	2.6	89.6	85.1	158.5	37.9	36.5	94.1
LOS	F	D	А	F	F	F	D	D	F
Approach Delay		47.9			86.1		77.0		90.7
Approach LOS	10.0	D		40.0	F	10.0	E	10	F
Queue Length 50th (m)	~19.6	67.5	0.0	46.6	~171.7	~46.6	89.7	4.3	~91.9
Queue Length 95th (m)	#50.5	99.6	5.9	#90.5	#241.6	#94.9	129.7	11.9	#150.1
Internal Link Dist (m)	95.0	495.5	30.0	75.0	80.5	55.0	862.0	50.0	399.0
Turn Bay Length (m) Base Capacity (vph)	95.0 78	528	30.0 587	75.0 235	685	55.0 195	655	50.0 177	393
Starvation Cap Reductn	0	526 0	507 0	235	000	0	000	0	393
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	1.06	0.68	0.30	0.92	1.06	1.21	0.75	0.14	1.02
Intersection Summary									
Cycle Length: 110									
Actuated Cycle Length: 110 Offset: 0 (0%), Referenced to pha	on I.EPT and	8.W/RT Cto	t of Groop						
Natural Cycle: 130		0.0001, S(a)	t of Green						
Control Type: Actuated-Coordinat Maximum v/c Ratio: 1.21	ted								
Intersection Signal Delay: 75.7				In	tersection L	OS' F			
Intersection Capacity Utilization 1	06.3%				U Level of S				
Analysis Period (min) 15					0.01010				
<ul> <li>Volume exceeds capacity, que</li> </ul>	eue is theoretic	ally infinite.							
Queue shown is maximum after									
# 95th percentile volume excee	ds capacity, qu	eue may be	longer.						
Queue shown is maximum after	er two cycles.								
Splits and Phases: 6: Woodroff	e Ave & Richm	ond Rd							
⊸₽					~				

<b>↑</b> ø2		<b>√</b> Ø3	🛡 🐨 🗖 Ø4 (R)
48.5 s		22 s	39.5 s
<b>↑</b> ø5	Ø6	▶ _{Ø7}	← ∅8 (R <b>)</b>
17 s	31.5 s	12 s	49.5 s

**Total Future Background 2031** 


# Lanes, Volumes, Timings 1: Richmond Rd & McEwen Ave

	≯	-	-	1				
Lane Group	EBL	EBT	WBT	SBL	Ø3	Ø5	Ø7	
Lane Configurations		•		W.				
Traffic Volume (vph)	<b>*</b> 32	782	<b>1</b> 389	30				
Future Volume (vph)	32	782	389	30				
Lane Group Flow (vph)	32	782	411	81				
Turn Type	Perm	NA	NA	Perm				
Protected Phases		4	8		3	5	7	
Permitted Phases	4	•	Ŭ	6	v	Ŭ	•	
Detector Phase	4	4	8	6				
Switch Phase	•	•	•	•				
Minimum Initial (s)	10.0	10.0	10.0	10.0	1.0	1.0	1.0	
Minimum Split (s)	24.3	24.3	31.3	23.8	5.0	5.0	5.0	
Total Split (s)	36.2	36.2	36.2	23.8	5.0	5.0	5.0	
Total Split (%)	51.7%	51.7%	51.7%	34.0%	7%	7%	7%	
Yellow Time (s)	3.3	3.3	3.3	3.3	2.0	2.0	2.0	
All-Red Time (s)	3.0	3.0	3.0	3.5	0.0	0.0	0.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.3	6.3	6.3	6.8				
Lead/Lag	Lag	Lag	Lag	Lag	Lead	Lead	Lead	
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Recall Mode	C-Max	C-Max	C-Max	None	None	None	None	
Act Effct Green (s)	51.4	51.4	51.4	10.1	None	NONC	None	
Actuated g/C Ratio	0.73	0.73	0.73	0.14				
/c Ratio	0.05	0.60	0.32	0.14				
Control Delay	4.3	8.7	7.2	16.7				
Queue Delay	0.0	0.0	0.0	0.0				
Total Delay	4.3	8.7	7.2	16.7				
LOS	4.3 A	0.7 A	A	B				
Approach Delay	А	8.5	7.2	16.7				
Approach LOS		0.5 A	A	В				
Queue Length 50th (m)	1.2	50.4	34.9	3.5				
Queue Length 95th (m)	3.7	85.3	58.1	14.3				
Internal Link Dist (m)	3.7	546.0	379.9	123.9				
Turn Bay Length (m)	50.0	540.0	519.9	20.0				
Base Capacity (vph)	50.0 678	1310	1299	410				
Starvation Cap Reductn	0/0	0	1299	410				
Spillback Cap Reductn	0	0	0	0				
Spiliback Cap Reductin	0	0	0	0				
Reduced v/c Ratio	0.05	0.60	0.32	0.20				
	0.05	0.00	0.52	0.20				
Intersection Summary								
Cycle Length: 70								
Actuated Cycle Length: 70								
Offset: 38 (54%), Referenced to phase	e 4:EBTL a	and 8:WBT,	Start of Gre	en				
Natural Cycle: 80								
Control Type: Actuated-Coordinated								
Maximum v/c Ratio: 0.60						_		
Intersection Signal Delay: 8.6					ersection LC			
Intersection Capacity Utilization 66.0%	)			IC	U Level of S	ervice C		
Analysis Period (min) 15								
Calita and Dhaqaa. 1. Dishmard Dd	9 McC	n Avo						
Splits and Phases: 1: Richmond Rd	& IVICEWe	n Ave						 
				1	2	(m)		



# Lanes, Volumes, Timings 2: Richmond Rd & New Orchard Ave N

	≯	-	-	1				
Lane Group	EBL	EBT	WBT	SBL	Ø3	Ø5	Ø7	
Lane Configurations		र्भ	1,	W.	100			
Traffic Volume (vph)	15	810	416	128				
Future Volume (vph)	15	810	416	128				
Lane Group Flow (vph)	0	825	465	145				
Furn Type	Perm	NA	NA	Perm				
Protected Phases	I CIIII	4	8		3	5	7	
Permitted Phases	4	4	0	6	J	J	I	
		4	0					
Detector Phase	4	4	8	6				
Switch Phase	10.0	40.0	40.0	40.0	10	10	4.0	
Ainimum Initial (s)	10.0	10.0	10.0	10.0	1.0	1.0	1.0	
Minimum Split (s)	24.3	24.3	27.3	28.7	5.0	5.0	5.0	
Fotal Split (s)	31.3	31.3	31.3	28.7	5.0	5.0	5.0	
otal Split (%)	44.7%	44.7%	44.7%	41.0%	7%	7%	7%	
ellow Time (s)	3.3	3.3	3.3	3.3	2.0	2.0	2.0	
All-Red Time (s)	3.0	3.0	3.0	3.4	0.0	0.0	0.0	
ost Time Adjust (s)		0.0	0.0	0.0				
otal Lost Time (s)		6.3	6.3	6.7				
_ead/Lag	Lag	Lag	Lag	Lag	Lead	Lead	Lead	
.ead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Recall Mode	C-Max	C-Max	C-Max	None	None	None	None	
Act Effct Green (s)	2	49.7	49.7	11.9				
ctuated g/C Ratio		0.71	0.71	0.17				
/c Ratio		0.66	0.37	0.50				
Control Delay		5.8	7.0	30.1				
		5.8 0.0	7.0 0.0	0.0				
Queue Delay			0.0 7.0	0.0 30.1				
otal Delay		5.8						
OS		A	A	C				
Approach Delay		5.8	7.0	30.1				
Approach LOS		A	A	С				
Queue Length 50th (m)		9.6	23.6	16.4				
Queue Length 95th (m)		#14.6	48.2	29.8				
nternal Link Dist (m)		379.9	490.4	54.3				
urn Bay Length (m)								
ase Capacity (vph)		1253	1245	530				
tarvation Cap Reductn		0	0	0				
pillback Cap Reductn		0	0	0				
Storage Cap Reductn		0	0	0				
Reduced v/c Ratio		0.66	0.37	0.27				
		0.00	5.01	J.L1				
ntersection Summary								
cycle Length: 70								
ctuated Cycle Length: 70								
offset: 68 (97%), Referenced to phas	e 4:EBTL a	nd 8:WBT,	Start of Gre	en				
latural Cycle: 90								
Control Type: Actuated-Coordinated								
laximum v/c Ratio: 0.66								
tersection Signal Delay: 8.6				Int	tersection LC	DS: A		
ntersection Capacity Utilization 79.5%	%				U Level of S			
nalysis Period (min) 15				10	2 20101010	0.1100 D		
95th percentile volume exceeds c	anacity ou	elle mav he	longer					
Queue shown is maximum after tw		cue may De	ionger.					
Splits and Phases: 2: Richmond Ro	d & New Or	chard Ave N	١					
		0.1010/1001	•		11	<u>_</u>	(5)	
					1 Ø3	31.3 s	(R)	
1.5						01.00		



	≯	1	Ļ
Lane Group	EBL	NBT	SBT
Lane Configurations	¥.	<del>ب</del> اً	ĥ
Traffic Volume (vph)	1	22	30
Future Volume (vph)	1	22	30
Lane Group Flow (vph)	88	76	32
Sign Control	Stop	Free	Free
Intersection Summary			
Control Type: Unsignalized			
Intersection Canacity I Itilization 23 5%			

Intersection Capacity Utili Analysis Period (min) 15

	≯	>	•	†	Ţ	~
Movement	EBL	EBR	NBL	NBT	▼ SBT	SBR
Lane Configurations	V	LDIX	NDL			JUIN
	<b>•••</b>	87	54	<b>2</b> 2	<b>1</b> 4 30	2
Traffic Volume (veh/h)	1	87 87	54 54	22	30	2
Future Volume (Veh/h)		87	54			2
Sign Control	Stop			Free	Free	
Grade	0%	1.00	1.00	0%	0%	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	1	87	54	22	30	2
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type				None	None	
Median storage veh)						
Upstream signal (m)				78		
pX, platoon unblocked						
vC, conflicting volume	161	31	32			
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	161	31	32			
tC, single (s)	6.4	6.2	4.1			
tC, 2 stage (s)	0.4	0.2	7.1			
tF (s)	3.5	3.3	2.2			
p0 queue free %	100	92	97			
cM capacity (veh/h)	802	1043	1580			
Direction, Lane #	EB 1	NB 1	SB 1			
Volume Total	88	76	32			
Volume Left	1	54	0			
Volume Right	87	0	2			
cSH	1040	1580	1700			
Volume to Capacity	0.08	0.03	0.02			
Queue Length 95th (m)	2.1	0.8	0.0			
Control Delay (s)	8.8	5.3	0.0			
Lane LOS	А	А				
Approach Delay (s)	8.8	5.3	0.0			
Approach LOS	А					
Intersection Summary						
Average Delay			6.0			
Intersection Capacity Utilization			23.5%	ICI	U Level of Serv	vice
Analysis Period (min)			15	100		
			10			

	†	ţ
Lane Group	NBT	SBT
Lane Configurations	ĥ	ส์
Traffic Volume (vph)	23	<b>4</b> 32
Future Volume (vph)	23	32
Lane Group Flow (vph)	23	32
Sign Control	Free	Free
Intersection Summary		
Control Type: Unsignalized		
Control Type: Unsignalized Intersection Capacity Utilization 6	6.7%	

Analysis Period (min) 15

Parsons

	4	•	Ť	1	<b>\</b>	t –
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Y				001	
Traffic Volume (veh/h)	0	0	<b>1</b> 23	0	0	<b>4</b> 32
Future Volume (Veh/h)	0	0	23	0	0	32
Sign Control	Stop	U	Free	U	U	Free
Grade	0%		0%			0%
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	0.1	1.00	23	0.1	0.1	32
	0	0	23	0	0	32
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type			None			None
Median storage veh)						
Upstream signal (m)			108			
pX, platoon unblocked						
vC, conflicting volume	55	23			23	
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	55	23			23	
tC, single (s)	6.4	6.2			4.1	
tC, 2 stage (s)						
tF (s)	3.5	3.3			2.2	
p0 queue free %	100	100			100	
cM capacity (veh/h)	953	1054			1592	
					1002	
Direction, Lane #	WB 1	NB 1	SB 1			
Volume Total	0	23	32			
Volume Left	0	0	0			
Volume Right	0	0	0			
cSH	1700	1700	1592			
Volume to Capacity	0.00	0.01	0.00			
Queue Length 95th (m)	0.0	0.0	0.0			
Control Delay (s)	0.0	0.0	0.0			
Lane LOS	A	0.0	5.0			
Approach Delay (s)	0.0	0.0	0.0			
Approach LOS	0.0 A	0.0	0.0			
	A					
Intersection Summary						
Average Delay			0.0			
Intersection Capacity Utilization			6.7%	ICL	J Level of Serv	rice
Analysis Period (min)			15			
			-			

# Lanes, Volumes, Timings 6: Woodroffe Ave & Richmond Rd

	≯	-	$\mathbf{\hat{z}}$	∢	+	1	Ť	1	Ļ	
Lane Group	EBL	EBT	EBR	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Configurations	5	•	1	5	٦,	5	1.	5	1.	
Traffic Volume (vph)	152	892	220	62	278	119	<b>1</b> 257	39	<b>1</b> 329	
Future Volume (vph)	152	892	220	62	278	119	257	39	329	
Lane Group Flow (vph)	152	892	220	62	298	119	349	39	390	
Turn Type	Prot	NA	Perm	Prot	NA	pm+pt	NA	Perm	NA	
Protected Phases	7	4		3	8	5	2		6	
Permitted Phases			4			2		6		
Detector Phase	7	4	4	3	8	5	2	6	6	
Switch Phase										
Minimum Initial (s)	5.0	10.0	10.0	5.0	10.0	5.0	10.0	10.0	10.0	
Minimum Split (s)	11.9	28.9	28.9	11.7	33.9	11.5	31.5	31.5	31.5	
Total Split (s)	17.0	45.3	45.3	11.7	40.0	11.5	43.0	31.5	31.5	
Total Split (%)	17.0%	45.3%	45.3%	11.7%	40.0%	11.5%	43.0%	31.5%	31.5%	
Yellow Time (s)	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	
All-Red Time (s)	3.6	3.6	3.6	3.4	3.6	3.2	3.2	3.2	3.2	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.9	6.9	6.9	6.7	6.9	6.5	6.5	6.5	6.5	
Lead/Lag	Lead				Lag	Lead		Lag	Lag	
Lead-Lag Optimize?	Yes				Yes	Yes		Yes	Yes	
Recall Mode	None	C-Max	C-Max	None	C-Max	None	Max	Max	Max	
Act Effct Green (s)	10.1	40.7	40.7	5.0	33.1	36.5	36.5	25.0	25.0	
Actuated g/C Ratio	0.10	0.41	0.41	0.05	0.33	0.36	0.36	0.25	0.25	
v/c Ratio	0.89	1.23	0.31	0.74	0.51	0.64	0.57	0.16	0.90	
Control Delay	90.8	143.8	6.4	92.8	30.8	40.2	29.9	31.6	62.0	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Fotal Delay	90.8	143.8	6.4	92.8	30.8	40.2	29.9	31.6	62.0	
LOS	F	F	A	52.0 F	C	-10.2 D	20.0 C	C	E	
Approach Delay		113.5	/、		41.5	5	32.5	Ŭ	59.3	
Approach LOS		F			D		C		E	
Queue Length 50th (m)	29.6	~222.8	4.6	12.1	46.1	15.5	53.5	5.9	73.3	
Queue Length 95th (m)	#65.5	#294.2	19.4	#33.9	71.2	#32.1	81.5	14.7	#125.9	
nternal Link Dist (m)		490.4	10.7		81.7		868.8	17.1	410.6	
Turn Bay Length (m)	95.0	100.4	30.0	75.0	51.1	55.0	000.0	50.0	110.0	
Base Capacity (vph)	171	727	702	84	581	185	613	239	433	
Starvation Cap Reductn	0	0	0	0	0	0	0	0		
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.89	1.23	0.31	0.74	0.51	0.64	0.57	0.16	0.90	
	0.00	1.20	0.01	0.74	0.01	0.07	0.01	0.10	0.00	
Intersection Summary										
Cycle Length: 100										
Actuated Cycle Length: 100										
Offset: 0 (0%), Referenced to phase	e 4:EBT and 8	3:WBT, Star	t of Green							
Natural Cycle: 150										
Control Type: Actuated-Coordinate	d									
Maximum v/c Ratio: 1.23										
ntersection Signal Delay: 79.0					tersection L					
Intersection Capacity Utilization 105	5.2%			IC	U Level of S	Service G				
Analysis Period (min) 15										
<ul> <li>Volume exceeds capacity, queu</li> </ul>		ally infinite.								
Queue shown is maximum after										
# 95th percentile volume exceeds		eue may be	longer.							
Queue shown is maximum after			-							
Splits and Phases: 6: Woodroffe	Ave & Richm	ond Rd								

<b>₫</b> <i>Ø</i> 2	<b>√</b> Ø3	<b>⊸</b> •u <mark>#</mark> 4 (R)	
43 s	11.7 s	45.3 s	
▲ ø5 🕹 ø6		 Ø8 (R)	
11.5 s 31.5 s	17 s	40 s	

## Lanes, Volumes, Timings 1: Richmond Rd & McEwen Ave


	٦	-	-	1			
Lane Group	EBL	EBT	WBT	SBL	Ø3	Ø5	Ø7
Lane Configurations	5	•	1.	¥.	<i>,</i>		<i>,</i> <b>2</b> .
Traffic Volume (vph)	81	514	988	35			
Future Volume (vph)	81	514	988	35			
Lane Group Flow (vph)	81	514	1033	101			
Turn Type	Perm	NA	NA	Perm			
Protected Phases	i cim	4	8	T OIIII	3	5	7
Permitted Phases	4		Ū	6	U	U	,
Detector Phase	4	4	8	6			
Switch Phase	г		Ū	U			
Minimum Initial (s)	10.0	10.0	10.0	10.0	1.0	1.0	1.0
Minimum Split (s)	24.3	24.3	36.3	23.8	5.0	5.0	5.0
Total Split (s)	51.2	51.2	51.2	23.8	5.0	5.0	5.0
Total Split (%)	60.2%	60.2%	60.2%	28.0%	6%	6%	5.0 6%
Yellow Time (s)	3.3	3.3	3.3	3.3	2.0	2.0	2.0
All-Red Time (s)	3.0	3.0	3.0 3.0	3.5	0.0	0.0	0.0
Lost Time Adjust (s)	0.0	3.0 0.0	3.0 0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	0.0 6.3	0.0 6.3	0.0 6.3	0.0 6.8			
Lead/Lag			Lag		Lead	Lead	Lead
Lead/Lag Lead-Lag Optimize?	Lag Yes	Lag Yes	Lag Yes	Lag Yes	Yes	Yes	Yes
Recall Mode	res C-Max	res C-Max	res C-Max	None	None	None	
	66.1	66.1	66.1	None 10.4	None	None	None
Act Effct Green (s)							
Actuated g/C Ratio	0.78	0.78	0.78	0.12			
v/c Ratio	0.31	0.37	0.75	0.42			
Control Delay	8.4	5.1	5.3	20.3			
Queue Delay	0.0	0.0	0.0	0.0			
Total Delay	8.4	5.1	5.3	20.3			
LOS	A	A	A	С			
Approach Delay		5.6	5.3	20.3			
Approach LOS		A	A	C			
Queue Length 50th (m)	3.9	26.1	20.5	5.2			
Queue Length 95th (m)	12.3	44.9	m34.0	18.7			
Internal Link Dist (m)		508.0	379.9	123.9			
Turn Bay Length (m)	50.0			20.0			
Base Capacity (vph)	260	1387	1377	355			
Starvation Cap Reductn	0	0	0	0			
Spillback Cap Reductn	0	0	0	0			
Storage Cap Reductn	0	0	0	0			
Reduced v/c Ratio	0.31	0.37	0.75	0.28			
Intersection Summary							
Cycle Length: 85							
Actuated Cycle Length: 85							
Offset: 17 (20%), Referenced to pha		nd 8-\//DT	Start of Gro	on			
Natural Cycle: 100			Start of Gre	en			
Control Type: Actuated-Coordinated							
Maximum v/c Ratio: 0.75				1-1	area attact 1		
Intersection Signal Delay: 6.2	70/				ersection LC		
Intersection Capacity Utilization 93.7	70			IC	J Level of S	ervice F	
Analysis Period (min) 15		1.6	·· · · · · · · · · · · · · · · · · · ·				
m Volume for 95th percentile queu	ie is metered	i by upstrea	m signal.				

Splits and Phases: 1: Richmond Rd & McEwen Ave

				÷	Ø	Ø4 (R)	
				5 s		51.2 s	
H	ø	Ø6		1	Ø	← Ø8 (R)	
5s		23.8 s		5 s		51.2 s	

# Lanes, Volumes, Timings 2: Richmond Rd & New Orchard Ave N

	≯	-	-	1			
Lane Group	EBL	EBT	WBT	SBL	Ø3	Ø5	Ø7
Lane Configurations		4		V N	20		
Traffic Volume (vph)	25	572	<b>1</b> 024	82			
Future Volume (vph)	25	572	1024	82			
Lane Group Flow (vph)	0	597	1149	100			
Turn Type	Perm	NA	NA	Perm			
Protected Phases	1 Cilli	4	8	I CIIII	3	5	7
Permitted Phases	4	4	0	6	J	J	1
Detector Phase	4	4	8	6			
Switch Phase	4	4	0	U			
Minimum Initial (s)	10.0	10.0	10.0	10.0	1.0	1.0	1.0
( )	24.3	24.3	27.3	28.7	5.0	5.0	5.0
Minimum Split (s)							
Total Split (s)	46.3	46.3	46.3	28.7	5.0	5.0 6%	5.0 6%
Total Split (%)	54.5%	54.5%	54.5%	33.8%	6%		
Yellow Time (s)	3.3	3.3	3.3	3.3	2.0	2.0	2.0
All-Red Time (s)	3.0	3.0	3.0	3.4	0.0	0.0	0.0
Lost Time Adjust (s)		0.0	0.0	0.0			
Total Lost Time (s)		6.3	6.3	6.7			
Lead/Lag	Lag	Lag	Lag	Lag	Lead	Lead	Lead
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Recall Mode	C-Max	C-Max	C-Max	None	None	None	None
Act Effct Green (s)		65.5	65.5	11.1			
Actuated g/C Ratio		0.77	0.77	0.13			
v/c Ratio		0.50	0.85	0.44			
Control Delay		9.9	18.2	35.6			
Queue Delay		0.0	0.0	0.0			
Total Delay		9.9	18.2	35.6			
LOS		А	В	D			
Approach Delay		9.9	18.2	35.6			
Approach LOS		A	В	D			
Queue Length 50th (m)		35.4	119.0	13.4			
Queue Length 95th (m)		98.1	#262.1	26.6			
Internal Link Dist (m)		379.9	495.5	54.3			
Turn Bay Length (m)				20			
Base Capacity (vph)		1183	1350	435			
Starvation Cap Reductn		0	0	0			
Spillback Cap Reductn		0	0	0			
Storage Cap Reductin		0	0	0			
Reduced v/c Ratio		0.50	0.85	0.23			
		0.50	0.00	0.25			
Intersection Summary							
Cycle Length: 85							
Actuated Cycle Length: 85							
Offset: 1 (1%), Referenced to pl	hase 4:EBTL and	8:WBT, St	art of Green				
Natural Cycle: 130		,					
Control Type: Actuated-Coordin	ated						
Maximum v/c Ratio: 0.85							
Intersection Signal Delay: 16.4				Int	ersection LC	)S·B	
Intersection Capacity Utilization	85.7%				U Level of S		
Analysis Period (min) 15	00.170			100			
# 95th percentile volume exce	ands canacity any		longer				
Queue shown is maximum a		sue may De	ionyer.				
Splits and Phases: 2: Richmo	ond Rd & New Or	chard Ave I	N				
			·		4		



	≯	1	Ļ
Lane Group	EBL	NBT	SBT
Lane Configurations	W.	ۍ ۲	1,
Traffic Volume (vph)	4	31	25
Future Volume (vph)	4	31	25
Lane Group Flow (vph)	83	130	28
Sign Control	Stop	Free	Free
Intersection Summary			
Control Type: Unsignalized			
Internetien Consolity Little-stice OC 00	/		

Intersection Capacity Utilization 26.2% Analysis Period (min) 15

	≯	~	•	Ť	Ļ	~
Movement	EBL	EBR	NBL	• NBT	• SBT	SBR
Lane Configurations	¥		NUC	4	1	<u>991</u>
Traffic Volume (veh/h)	4	79	99	4 31	25	3
Future Volume (Veh/h)	4	79	99	31	25	3
Sign Control	Stop	19	99	Free	Free	5
Grade	0%			0%	0%	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
		79	99	31	25	
Hourly flow rate (vph)	4	79	99	31	25	3
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type				None	None	
Median storage veh)						
Upstream signal (m)				78		
pX, platoon unblocked						
vC, conflicting volume	256	26	28			
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	256	26	28			
tC, single (s)	6.4	6.2	4.1			
tC, 2 stage (s)						
tF (s)	3.5	3.3	2.2			
p0 queue free %	99	92	94			
cM capacity (veh/h)	687	1049	1585			
	EB 1	NB 1	SB 1			
Direction, Lane #						
Volume Total	83	130	28			
Volume Left	4	99	0			
Volume Right	79	0	3			
cSH	1023	1585	1700			
Volume to Capacity	0.08	0.06	0.02			
Queue Length 95th (m)	2.0	1.5	0.0			
Control Delay (s)	8.8	5.8	0.0			
Lane LOS	А	А				
Approach Delay (s)	8.8	5.8	0.0			
Approach LOS	А					
Intersection Summary						
Average Delay			6.2			
Intersection Capacity Utilization			26.2%	IC	U Level of Ser	vice
Analysis Period (min)			15			
			10			

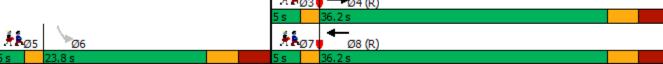
	†	ţ
Lane Group	NBT	SBT
Lane Configurations	î,	च
Traffic Volume (vph)	35	<b>4</b> 29
Future Volume (vph)	35	29
Lane Group Flow (vph)	35	29
Sign Control	Free	Free
Intersection Summary		
Control Type: Unsignalized		
Control Type: Unsignalized Intersection Capacity Utilization 6.	.7%	

Analysis Period (min) 15

Parsons

	<	*	1	1	1	†
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	¥		1.			
Traffic Volume (veh/h)	0	0	<b>1</b> 35	0	0	<b>4</b> 29
Future Volume (Veh/h)	0	0	35	0	0	29
Sign Control	Stop		Free			Free
Grade	0%		0%			0%
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	0	0	35	0	0	29
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type			None			None
Median storage veh)						
Upstream signal (m)			110			
pX, platoon unblocked						
vC, conflicting volume	64	35			35	
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	64	35			35	
tC, single (s)	6.4	6.2			4.1	
tC, 2 stage (s)	••••	0.2				
tF (s)	3.5	3.3			2.2	
p0 queue free %	100	100			100	
cM capacity (veh/h)	942	1038			1576	
Direction, Lane #	WB 1	NB 1	SB 1			
Volume Total		35	29			
Volume Left	0	35	29			
	0	0	0			
Volume Right	-	-	-			
cSH	1700	1700	1576			
Volume to Capacity	0.00	0.02	0.00			
Queue Length 95th (m)	0.0	0.0	0.0			
Control Delay (s)	0.0	0.0	0.0			
Lane LOS	A	0.0	0.0			
Approach Delay (s)	0.0	0.0	0.0			
Approach LOS	А					
Intersection Summary						
Average Delay			0.0			
Intersection Capacity Utilization			6.7%	ICL	U Level of Serv	vice
Analysis Period (min)			15			
• • • • •						

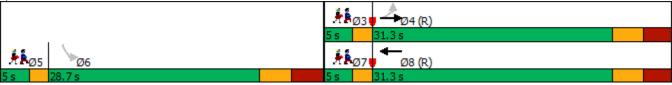
# Lanes, Volumes, Timings 6: Woodroffe Ave & Richmond Rd


	٦	-	$\mathbf{i}$	4	-	1	Ť	1	ţ
Lane Group	EBL	EBT	EBR	WBL	WBT	NBL	NBT	SBL	SBT
Lane Configurations	5	•	1	5	î,	5	٦,	5	٦,
Traffic Volume (vph)	83	390	177	217	757	235	402	25	340
Future Volume (vph)	83	390	177	217	757	235	402	25	340
Lane Group Flow (vph)	83	390	177	217	788	235	490	25	402
Turn Type	Prot	NA	Perm	Prot	NA	pm+pt	NA	Perm	NA
Protected Phases	7	4		3	8	5	2		6
Permitted Phases			4			2		6	
Detector Phase	7	4	4	3	8	5	2	6	6
Switch Phase	F 0	10.0	10.0	F 0	10.0	۲ ۵	10.0	10.0	10.0
Minimum Initial (s) Minimum Split (s)	5.0 11.9	10.0 33.9	10.0 33.9	5.0 11.7	10.0 33.9	5.0 11.5	10.0 31.5	10.0 31.5	10.0 31.5
Total Split (s)	12.0	41.5	41.5	22.0	53.9 51.5	15.0	46.5	31.5	31.5
Total Split (%)	10.9%	37.7%	37.7%	20.0%	46.8%	13.6%	40.5	28.6%	28.6%
Yellow Time (s)	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3
All-Red Time (s)	3.6	3.6	3.6	3.4	3.6	3.2	3.2	3.2	3.2
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	2.0	0.0	0.0	0.0
Total Lost Time (s)	6.9	6.9	6.9	6.7	6.9	8.5	6.5	6.5	6.5
Lead/Lag	Lead				Lag	Lead		Lag	Lag
Lead-Lag Optimize?	Yes				Yes	Yes		Yes	Yes
Recall Mode	None	C-Max	C-Max	None	C-Max	None	Max	Max	Max
Act Effct Green (s)	5.1	34.6	34.6	15.3	44.6	38.0	40.0	25.0	25.0
Actuated g/C Ratio	0.05	0.31	0.31	0.14	0.41	0.35	0.36	0.23	0.23
v/c Ratio	1.06	0.70	0.29	0.92	1.10	1.42	0.79	0.16	1.02
Control Delay	171.5	40.8	2.4	89.6	96.3	249.2	41.7	37.4	94.1
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	171.5	40.8	2.4	89.6	96.3	249.2	41.7	37.4	94.1
LOS	F	D	A	F	F	F	D	D	F
Approach Delay		47.0 D			94.9 F		109.0 F		90.8 F
Approach LOS Queue Length 50th (m)	~19.6	73.2	0.0	46.6	٦ 192.2~	~53.8	г 92.6	4.3	~91.9
Queue Length 95th (m)	#50.5	107.0	0.0 5.7	40.0 #90.5	#263.4	#102.1	92.0 #135.2	4.3	~91.9 #150.1
Internal Link Dist (m)	#50.5	495.5	5.7	#90.5	#203.4	#102.1	878.5	12.0	424.0
Turn Bay Length (m)	95.0	400.0	30.0	75.0	00.0	55.0	070.0	50.0	727.0
Base Capacity (vph)	78	561	609	235	717	165	624	156	393
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	Ű	0	0	0	0	0	Ũ	0	Ű
Storage Cap Reductn	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	1.06	0.70	0.29	0.92	1.10	1.42	0.79	0.16	1.02
Intersection Summary									
Cycle Length: 110									
Actuated Cycle Length: 110									
Offset: 0 (0%), Referenced to phase	se 4. FRT and a	RWRT Sta	t of Green						
Natural Cycle: 140		J. WD1, Old							
Control Type: Actuated-Coordinate	ed								
Maximum v/c Ratio: 1.42									
Intersection Signal Delay: 86.8				In	tersection L	OS: F			
Intersection Capacity Utilization 10	)9.7%				U Level of S				
Analysis Period (min) 15									
<ul> <li>Volume exceeds capacity, que</li> </ul>		ally infinite.							
Queue shown is maximum after									
# 95th percentile volume exceed		eue may be	longer.						
Queue shown is maximum after	r two cycles.								
Splits and Phases: 6: Woodroffe	e Ave & Richm	ond Rd		-					
< <b>↑</b>					_				

1 ø2		<b>√</b> Ø3			
46.5 s		22 s		41.5 s	
▲ ø5	<b>₽</b> Ø6	<u>♦</u> Ø7	←Ø8 (R)		
15 s	31.5 s	12 s	51.5 s		

**Total Projected 2026** 

# Lanes, Volumes, Timings 1: Richmond Rd & McEwen Ave


	≯	-	←	×				
Lane Group	EBL	EBT	WBT	SBL	Ø3	Ø5	Ø7	
Lane Configurations	5	•	î,	¥				
Traffic Volume (vph)	32	729	375	30				
Future Volume (vph)	32	729	375	30				
Lane Group Flow (vph)	32	729	397	81				
Turn Type	Perm	NA	NA	Perm				
Protected Phases		4	8		3	5	7	
Permitted Phases	4			6	•	•	•	
Detector Phase	4	4	8	6				
Switch Phase	•			•				
Minimum Initial (s)	10.0	10.0	10.0	10.0	1.0	1.0	1.0	
Minimum Split (s)	24.3	24.3	31.3	23.8	5.0	5.0	5.0	
Total Split (s)	36.2	36.2	36.2	23.8	5.0	5.0	5.0	
Total Split (%)	51.7%	51.7%	51.7%	34.0%	7%	7%	7%	
Yellow Time (s)	3.3	3.3	3.3	3.3	2.0	2.0	2.0	
All-Red Time (s)	3.0	3.0	3.0	3.5	0.0	0.0	0.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.3	6.3	6.3	6.8				
Lead/Lag	Lag	Lag	Lag	Lag	Lead	Lead	Lead	
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Recall Mode	C-Max	C-Max	C-Max	None	None	None	None	
Act Effct Green (s)	41.3	41.3	41.3	14.2	NUIL	NUNC	None	
Actuated g/C Ratio	0.59	0.59	0.59	0.20				
v/c Ratio	0.07	0.69	0.39	0.20				
Control Delay	12.2	21.7	9.8	12.9				
Queue Delay	0.0	0.0	9.0 0.0	0.0				
Total Delay	12.2	21.7	9.8	12.9				
LOS	12.2 B	21.7 C	9.0 A	12.9 B				
Approach Delay	D	21.3	9.8	12.9				
Approach LOS		21.J C	9.0 A	12.9 B				
Queue Length 50th (m)	2.4	88.9	51.7	3.1				
	7.2	#156.7	82.0	12.7				
Queue Length 95th (m)	Ι.Ζ	#156.7 546.0						
Internal Link Dist (m)	50.0	540.0	379.9	123.9				
Turn Bay Length (m) Base Capacity (vph)	50.0 492	1053	1040	20.0 368				
Starvation Cap Reductn	492	0	1040	368				
	0	0	0	0				
Spillback Cap Reductn	0	0	0	0				
Storage Cap Reductn Reduced v/c Ratio			0.38	0.22				
	0.07	0.69	0.38	0.22				
Intersection Summary								
Cycle Length: 70								
Actuated Cycle Length: 70 Offset: 38 (54%), Referenced to pha	ase 4:EBTL a	and 8:WBT,	Start of Gre	en				
Natural Cycle: 75 Control Type: Actuated-Coordinated								
Maximum v/c Ratio: 0.69								
Intersection Signal Delay: 17.1					ersection L(			
Intersection Capacity Utilization 64.5 Analysis Period (min) 15				IC	U Level of S	Service C		
# 95th percentile volume exceeds Queue shown is maximum after f		eue may be	longer.					
Splits and Phases: 1: Richmond F		n Ave						
				11				
						(R)		
				5s	36.2 s			



#### Lanes, Volumes, Timings 2: Richmond Rd & New Orchard Ave N

	≯	+	÷	1			
Lane Group	EBL	EBT	WBT	SBL	Ø3	Ø5	Ø7
Lane Configurations		ې لې	٦,	¥	~~	~~	~.
Traffic Volume (vph)	27	743	382	161			
Future Volume (vph)	27	743	382	161			
Lane Group Flow (vph)	0	743	443	196			
Turn Type	Perm	NA	NA	Perm			
Protected Phases	FCIII	4	8		3	5	7
Permitted Phases	4	4	0	6	3	5	1
Detector Phase	4	4	8	6			
Switch Phase	4	4	0	0			
	10.0	10.0	10.0	10.0	1.0	1.0	1.0
Minimum Initial (s)							
Minimum Split (s)	24.3	24.3	27.3	28.7	5.0	5.0	5.0
Total Split (s)	31.3	31.3	31.3	28.7	5.0	5.0	5.0
Total Split (%)	44.7%	44.7%	44.7%	41.0%	7%	7%	7%
Yellow Time (s)	3.3	3.3	3.3	3.3	2.0	2.0	2.0
All-Red Time (s)	3.0	3.0	3.0	3.4	0.0	0.0	0.0
Lost Time Adjust (s)		0.0	0.0	0.0			
Total Lost Time (s)		6.3	6.3	6.7			
Lead/Lag	Lag	Lag	Lag	Lag	Lead	Lead	Lead
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Recall Mode	C-Max	C-Max	C-Max	None	None	None	None
Act Effct Green (s)		32.7	32.7	18.3			
Actuated g/C Ratio		0.47	0.47	0.26			
v/c Ratio		0.95	0.57	0.77			
Control Delay		36.0	20.2	42.5			
Queue Delay		0.0	0.0	0.0			
Total Delay		36.0	20.2	42.5			
LOS		D	С	D			
Approach Delay		36.0	20.2	42.5			
Approach LOS		D	С	D			
Queue Length 50th (m)		~121.3	48.1	20.0			
Queue Length 95th (m)		#181.8	#88.6	#47.2			
Internal Link Dist (m)		379.9	490.4	54.3			
Turn Bay Length (m)							
Base Capacity (vph)		808	781	301			
Starvation Cap Reductn		0	0	0			
Spillback Cap Reductn		0	0	0			
Storage Cap Reductn		0	0	0			
Reduced v/c Ratio		0.95	0.57	0.65			
		5.00	5.01	0.00			
Intersection Summary							
Cycle Length: 70							
Actuated Cycle Length: 70							
Offset: 68 (97%), Referenced to ph	nase 4:EBTL a	nd 8:WBT,	Start of Gre	en			
Natural Cycle: 90							
Control Type: Actuated-Coordinate	ed						
Maximum v/c Ratio: 0.95							
Intersection Signal Delay: 31.9					tersection LC		
Intersection Capacity Utilization 93	.5%			IC	U Level of S	ervice F	
Analysis Period (min) 15							
~ Volume exceeds capacity, que	ue is theoretic	ally infinite.					
Queue shown is maximum after							
# 95th percentile volume exceeds		eue may be	longer.				
Queue shown is maximum after		.,,,	0				
Solits and Phases: 2. Richmond	Rd & New Or	chard Ave N	J				

Splits and Phases: 2: Richmond Rd & New Orchard Ave N



	٦	Ť	Ļ
Lane Group	EBL	NBT	SBT
Lane Configurations	¥	4	î,
Traffic Volume (vph)	1	<b>4</b> 45	80
Future Volume (vph)	1	45	80
Lane Group Flow (vph)	88	99	82
Sign Control	Stop	Free	Free
Intersection Summary			
Control Type: Unsignalized			
	=0/		

Intersection Capacity Utilization 24.7% Analysis Period (min) 15

# HCM Unsignalized Intersection Capacity Analysis 3: New Orchard Ave N & Ambleside Dr

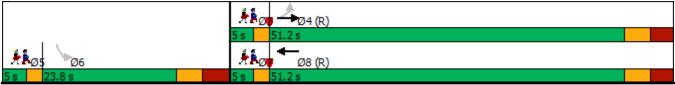
	≯	$\mathbf{r}$	1	1	Ļ.	∢
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	¥.			र्च		-
Traffic Volume (veh/h)	1	87	54	45	<b>1</b> 4 80	2
Future Volume (Veh/h)	1	87	54	45	80	2
Sign Control	Stop	0.	•.	Free	Free	-
Grade	0%			0%	0%	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	1	87	54	45	80	2
Pedestrians		07	04	-10	00	-
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type				None	None	
Median storage veh)				NULLE	NULLE	
Upstream signal (m)				78		
pX, platoon unblocked				10		
vC, conflicting volume	234	81	82			
vC1, stage 1 conf vol	204	01	02			
vC2, stage 2 conf vol						
vCu, unblocked vol	234	81	82			
tC, single (s)	6.4	6.2	4.1			
	0.4	0.2	4.1			
tC, 2 stage (s)	3.5	3.3	2.2			
tF (s) p0 queue free %	3.5 100	3.3 91	2.2 96			
	727	91	96 1515			
cM capacity (veh/h)	121	919	1212			
Direction, Lane #	EB 1	NB 1	SB 1			
Volume Total	88	99	82			
Volume Left	1	54	0			
Volume Right	87	0	2			
cSH	975	1515	1700			
Volume to Capacity	0.09	0.04	0.05			
Queue Length 95th (m)	2.3	0.8	0.0			
Control Delay (s)	9.1	4.2	0.0			
Lane LOS	А	А				
Approach Delay (s)	9.1	4.2	0.0			
Approach LOS	А					
Intersection Summary						
Average Delay			4.5			
Intersection Capacity Utilization			24.7%	IC	U Level of Serv	vice
Analysis Period (min)			15			
			.0			

	4	1	ţ
Lane Group	WBL	NBT	SBT
Lane Configurations	W.	1.	ન
Traffic Volume (vph)	50	<b>1</b> ₀ 23	32
Future Volume (vph)	50	23	32
Lane Group Flow (vph)	50	46	32
Sign Control	Stop	Free	Free
Intersection Summary			
Control Type: Unsignalized			
Internetien Consolity Little-stice 12 20/			

Intersection Capacity Utilization 13.3% Analysis Period (min) 15

		A.	•		1	1
	<		I	1	*	•
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	¥		1			4
Traffic Volume (veh/h)	50	0	<b>1</b> 23	23	0	<b>1</b> 32
Future Volume (Veh/h)	50	0	23	23	0	32
Sign Control	Stop		Free			Free
Grade	0%		0%			0%
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	50	0	23	23	0	32
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type			None			None
Median storage veh)						
Upstream signal (m)			108			
pX, platoon unblocked						
vC, conflicting volume	66	34			46	
vC1, stage 1 conf vol		•				
vC2, stage 2 conf vol						
vCu, unblocked vol	66	34			46	
tC, single (s)	6.4	6.2			4.1	
tC, 2 stage (s)	0.4	0.2			7.1	
tF (s)	3.5	3.3			2.2	
p0 queue free %	95	100			100	
cM capacity (veh/h)	939	1039			1562	
					1002	
Direction, Lane #	WB 1	NB 1	SB 1			
Volume Total	50	46	32			
Volume Left	50	0	0			
Volume Right	0	23	0			
cSH	939	1700	1562			
Volume to Capacity	0.05	0.03	0.00			
Queue Length 95th (m)	1.3	0.0	0.0			
Control Delay (s)	9.1	0.0	0.0			
Lane LOS	А					
Approach Delay (s)	9.1	0.0	0.0			
Approach LOS	А					
Intersection Summary						
Average Delay			3.5			
Intersection Capacity Utilization			3.5 13.3%		J Level of Serv	vico
				ICI	Level of Selv	nce
Analysis Period (min)			15			

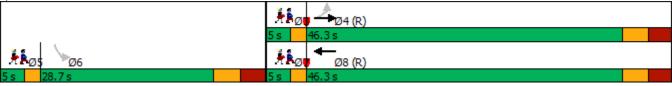
## Lanes, Volumes, Timings 6: Woodroffe Ave & Richmond Rd


	٦	-	$\mathbf{r}$	4	-	1	Ť	1	Ŧ
Lane Group	EBL	EBT	EBR	WBL	WBT	NBL	NBT	SBL	SBT
Lane Configurations	<u> </u>	•	1	7	î,	5	î,	7	î,
Traffic Volume (vph)	152	836	235	62	261	125	257	39	329
Future Volume (vph)	152	836	235	62	261	125	257	39	329
Lane Group Flow (vph)	152	836	235	62	281	125	349	39	390
Turn Type	Prot	NA	Perm	Prot	NA	pm+pt	NA	Perm	NA
Protected Phases	7	4		3	8	5	2		6
Permitted Phases			4			2		6	
Detector Phase	7	4	4	3	8	5	2	6	6
Switch Phase									
Minimum Initial (s)	5.0	10.0	10.0	5.0	10.0	5.0	10.0	10.0	10.0
Minimum Split (s)	11.9	28.9	28.9	11.7	33.9	11.5	31.5	31.5	31.5
Total Split (s)	19.4	45.3	45.3	11.7	37.6	11.5	43.0	31.5	31.5
Total Split (%)	19.4%	45.3%	45.3%	11.7%	37.6%	11.5%	43.0%	31.5%	31.5%
Yellow Time (s)	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3
All-Red Time (s)	3.6	3.6	3.6	3.4	3.6	3.2	3.2	3.2	3.2
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	6.9	6.9	6.9	6.7	6.9	6.5	6.5	6.5	6.5
Lead/Lag	Lead				Lag	Lead		Lag	Lag
Lead-Lag Optimize?	Yes				Yes	Yes		Yes	Yes
Recall Mode	None	C-Max	C-Max	None	C-Max	None	Max	Max	Max
Act Effct Green (s)	11.8	40.7	40.7	5.0	31.4	36.5	36.5	25.0	25.0
Actuated g/C Ratio	0.12	0.41	0.41	0.05	0.31	0.36	0.36	0.25	0.25
v/c Ratio	0.76	1.15	0.43	0.74	0.52	0.70	0.60	0.18	0.94
Control Delay	67.0	113.4	8.6	92.8	32.5	45.4	31.0	32.2	68.7
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	67.0	113.4	8.6	92.8	32.5	45.4	31.0	32.2	68.7
LOS	E	F	А	F	С	D	С	С	E
Approach Delay		87.5			43.4		34.8		65.3
Approach LOS		F			D		С		E
Queue Length 50th (m)	28.7	~200.1	6.6	12.1	44.8	16.4	54.2	6.0	74.1
Queue Length 95th (m)	#57.2	#270.3	25.0	#33.9	69.7	#36.5	83.3	14.8	#129.2
Internal Link Dist (m)		490.4			81.7		868.8		410.6
Turn Bay Length (m)	95.0	_	30.0	75.0		55.0		50.0	
Base Capacity (vph)	211	727	552	84	543	179	582	216	417
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.72	1.15	0.43	0.74	0.52	0.70	0.60	0.18	0.94
Intersection Summary									
Cycle Length: 100									
Actuated Cycle Length: 100									
Offset: 0 (0%), Referenced to pha	se 4:EBT and	8:WBT, Sta	t of Green						
Natural Cycle: 130		.,							
Control Type: Actuated-Coordinat	ed								
Maximum v/c Ratio: 1.15									
Intersection Signal Delay: 67.4				In	tersection L	OS: E			
Intersection Capacity Utilization 1	03.2%				U Level of S				
Analysis Period (min) 15									
<ul> <li>Volume exceeds capacity, que</li> </ul>	eue is theoretic	ally infinite.							
Queue shown is maximum after		,							
# 95th percentile volume exceed		eue may be	longer.						
Queue shown is maximum after		.,	J						
	,								
Splits and Phases: 6: Woodroff	e Ave & Richm	ond Rd							
<b>→</b>									

<b>₫</b> _{Ø2}		<b>√</b> ø3	<u>→</u> •04 <b>(R</b> )
43 s		11.7 s	45.3 s
Ø5	Ø6	▶ _{Ø7}	● ● Ø8 (R)
11.5 s	31.5 s	19.4 s	37.6 s

# Lanes, Volumes, Timings 1: Richmond Rd & McEwen Ave

	≯	-	-	1			
Lane Group	EBL	EBT	WBT	SBL	Ø3	Ø5	Ø7
Lane Configurations	5	•	1.	¥	~~	~~	~.
Traffic Volume (vph)	81	487	922	35			
Future Volume (vph)	81	487	922	35			
Lane Group Flow (vph)	81	487	967	101			
Turn Type	Perm	NA	NA	Perm			
Protected Phases	1 01111	4	8	1 Unit	3	5	7
Permitted Phases	4	•	Ŭ	6	v	Ū	
Detector Phase	4	4	8	6			
Switch Phase	-		0	U			
Minimum Initial (s)	10.0	10.0	10.0	10.0	1.0	1.0	1.0
Minimum Split (s)	24.3	24.3	36.3	23.8	5.0	5.0	5.0
Total Split (s)	51.2	51.2	51.2	23.8	5.0	5.0	5.0
Total Split (%)	60.2%	60.2%	60.2%	28.0%	6%	6%	6%
Yellow Time (s)	3.3	3.3	3.3	3.3	2.0	2.0	2.0
All-Red Time (s)	3.0	3.0	3.0	3.5	0.0	0.0	0.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	6.3	0.0 6.3	0.0 6.3	0.0 6.8			
Lead/Lag					Lead	Lead	Lead
Lead/Lag Lead-Lag Optimize?	Lag Yes	Lag Yes	Lag Yes	Lag Yes	Yes	Yes	Yes
Recall Mode	res C-Max	res C-Max	res C-Max	None			
		C-Max 56.3	C-Max 56.3	None 14.2	None	None	None
Act Effct Green (s) Actuated g/C Ratio	56.3 0.66	56.3 0.66	56.3 0.66	0.17			
0							
v/c Ratio	0.57 36.1	0.41 11.7	0.83 14.1	0.37 16.8			
Control Delay							
Queue Delay	0.0	0.0	0.0	0.0			
Total Delay LOS	36.1	11.7	14.1 B	16.8 B			
	D	B					
Approach Delay		15.2	14.1 P	16.8			
Approach LOS	0.0	B	B	B			
Queue Length 50th (m)	9.3	48.3	~60.9	4.7			
Queue Length 95th (m)	#34.9	73.9	m35.4	17.7			
Internal Link Dist (m)	50.0	508.0	379.9	123.9			
Turn Bay Length (m)	50.0	4400	1400	20.0			
Base Capacity (vph)	143	1182	1168	314			
Starvation Cap Reductn	0	0	0	0			
Spillback Cap Reductn	0	0	0	0			
Storage Cap Reductn	0	0	0	0			
Reduced v/c Ratio	0.57	0.41	0.83	0.32			
Intersection Summary							
Cycle Length: 85							
Actuated Cycle Length: 85							
Offset: 17 (20%), Referenced to ph	ase 4:EBTL a	nd 8:WBT,	Start of Gre	en			
Natural Cycle: 90							
Control Type: Actuated-Coordinate	d						
Maximum v/c Ratio: 0.83							
Intersection Signal Delay: 14.7				Int	ersection LC	DS: B	
Intersection Capacity Utilization 92.	.0%			ICI	J Level of S	ervice F	
Analysis Period (min) 15							
~ Volume exceeds capacity, queu	ue is theoretic	ally infinite.					
Queue shown is maximum after							
# 95th percentile volume exceeds		eue may be	longer.				
Queue shown is maximum after			Ŭ.				
m Volume for 95th percentile que		by upstrea	m signal.				
Solits and Phases: 1: Richmond			Ŭ				


Splits and Phases: 1: Richmond Rd & McEwen Ave



# Lanes, Volumes, Timings 2: Richmond Rd & New Orchard Ave N

	≯	+	Ļ	1			
Lane Group	EBL	EBT	WBT	SBL	Ø3	Ø5	Ø7
Lane Configurations		4	1,	¥	~~	~~	~.
Traffic Volume (vph)	40	525	938	98			
Future Volume (vph)	40	525	938	98			
Lane Group Flow (vph)	-0	565	1090	132			
Turn Type	Perm	NA	NA	Perm			
Protected Phases	. 0111	4	8		3	5	7
Permitted Phases	4	4	- 0	6	0	U	,
Detector Phase	4	4	8	6			
Switch Phase	т	т	Ū	U			
Minimum Initial (s)	10.0	10.0	10.0	10.0	1.0	1.0	1.0
Minimum Split (s)	24.3	24.3	27.3	28.7	5.0	5.0	5.0
Total Split (s)	46.3	46.3	46.3	28.7	5.0	5.0	5.0
Total Split (%)	54.5%	54.5%	54.5%	33.8%	6%	6%	6%
Yellow Time (s)	3.3	3.3	3.3	3.3	2.0	2.0	2.0
All-Red Time (s)	3.0	3.0	3.0	3.3	0.0	0.0	0.0
Lost Time Adjust (s)	5.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)		0.0 6.3	0.0 6.3	0.0 6.7			
	1.00				Lood	Lood	Lead
Lead/Lag Lead-Lag Optimize?	Lag Yes	Lag Yes	Lag Yes	Lag Yes	Lead Yes	Lead Yes	Yes
Recall Mode		res C-Max	C-Max				
	C-Max			None	None	None	None
Act Effct Green (s)		48.3	48.3	17.7			
Actuated g/C Ratio		0.57	0.57	0.21			
v/c Ratio		1.86	1.16	0.67			
Control Delay		420.3	107.1	41.8			
Queue Delay		0.0	0.0	0.0			
Total Delay		420.3	107.1	41.8			
LOS		F	F	D			
Approach Delay		420.3	107.1	41.8			
Approach LOS		F	F	D			
Queue Length 50th (m)		~151.3	~240.9	15.6			
Queue Length 95th (m)		#212.9	#314.2	33.9			
Internal Link Dist (m)		379.9	495.5	54.3			
Turn Bay Length (m)							
Base Capacity (vph)		304	939	241			
Starvation Cap Reductn		0	0	0			
Spillback Cap Reductn		0	0	0			
Storage Cap Reductn		0	0	0			
Reduced v/c Ratio		1.86	1.16	0.55			
Intersection Summary							
Cycle Length: 85							
Actuated Cycle Length: 85							
	A.EDTL and		art of Croca				
Offset: 1 (1%), Referenced to phase		10.0001, 36	an or Green				
Natural Cycle: 140	4						
Control Type: Actuated-Coordinated	u l						
Maximum v/c Ratio: 1.86				1.4	oroooting 1.0		
Intersection Signal Delay: 201.3	40/				ersection LC		
Intersection Capacity Utilization 93.	1%			ICU	U Level of S	ervice F	
Analysis Period (min) 15							
~ Volume exceeds capacity, queu		ally infinite.					
Queue shown is maximum after							
# 95th percentile volume exceeds		eue may be	longer.				
Queue shown is maximum after	two cycles.						

Splits and Phases: 2: Richmond Rd & New Orchard Ave N



	٦	Ť	Ļ
Lane Group	EBL	NBT	SBT
Lane Configurations	M.	ส์	ĥ
Traffic Volume (vph)	4	73	56
Future Volume (vph)	4	73	56
Lane Group Flow (vph)	83	172	59
Sign Control	Stop	Free	Free
Intersection Summary			
Control Type: Unsignalized			

Intersection Capacity Utilization 28.6% Analysis Period (min) 15

# HCM Unsignalized Intersection Capacity Analysis 3: New Orchard Ave N & Ambleside Dr

Movement         EBL         EBR         NBL         NBT         SBT         SBR           Lane Configurations         M         1         1         1         1         1           Traffic Volume (veh/h)         4         79         99         73         56         3           Future Volume (Veh/h)         4         79         99         73         56         3           Sign Control         Stop         Free         Free         Free         Grade         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%
Lane Configurations         Y         Y         99         73         56         3           Traffic Volume (veh/h)         4         79         99         73         56         3           Sign Control         Stop         Free         Free         Free         Grade         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%
Traffic Volume (veh/h)       4       79       99       73       56       3         Future Volume (Veh/h)       4       79       99       73       56       3         Sign Control       Stop       Free       Free       Free         Grade       0%       0%       0%       0%         Peak Hour Factor       1.00       1.00       1.00       1.00       1.00         Hourly flow rate (vph)       4       79       99       73       56       3         Peak Hour Factor       1.00       1.00       1.00       1.00       1.00       1.00         Hourly flow rate (vph)       4       79       99       73       56       3         Pedestrians
Future Volume (Veh/h)       4       79       99       73       56       3         Sign Control       Stop       Free       Free       Free         Grade       0%       0%       0%       0%         Peak Hour Factor       1.00       1.00       1.00       1.00       1.00       1.00         Hourly flow rate (vph)       4       79       99       73       56       3         Pedestrians       2       2       73       56       3       3         Lane Width (m)       Walking Speed (m/s)       73       56       3       3         Percent Blockage       73       76       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3
Sign Control         Stop         Free         Free           Grade         0%         0%         0%           Peak Hour Factor         1.00         1.00         1.00         1.00         1.00           Houry flow rate (vph)         4         79         99         73         56         3           Pedestrians
Grade         0%         0%         0%           Peak Hour Factor         1.00         1.00         1.00         1.00         1.00         1.00           Hourly flow rate (vph)         4         79         99         73         56         3           Pedestrians
Peak Hour Factor       1.00       1.00       1.00       1.00       1.00       1.00         Hourly flow rate (vph)       4       79       99       73       56       3         Pedestrians       Lane Width (m)       Walking Speed (m/s)
Hourly flow rate (vph)       4       79       99       73       56       3         Pedestrians       Lane Width (m)       Walking Speed (m/s)
Pedestrians         Lane Width (m)         Walking Speed (m/s)         Percent Blockage         Right turn flare (veh)         Median type       None         Median storage veh)         Upstream signal (m)       78         pX, platoon unblocked         vC, conflicting volume       328       58       59         vC1, stage 1 conf vol         vC2, stage 2 conf vol       vC4, unblocked vol       328       58       59         tC, single (s)       6.4       6.2       4.1       10       10         tF (s)       3.5       3.3       2.2       10       10
Lane Width (m) Walking Speed (m/s) Percent Blockage Right turn flare (veh) Median storage veh) Upstream signal (m) 78 pX, platoon unblocked vC, conflicting volume 328 58 59 vC1, stage 1 conf vol vC2, stage 2 conf vol vC2, stage 2 conf vol vC4, unblocked vol 328 58 59 tC, single (s) 6.4 6.2 4.1 tC, 2 stage (s) tF (s) 3.5 3.3 2.2
Walking Speed (m/s)         Percent Blockage         Right turn flare (veh)         Median type       None         Median storage veh)         Upstream signal (m)       78         pX, platoon unblocked         vC, conflicting volume       328       58       59         vC1, stage 1 conf vol         vC2, stage 2 conf vol         vCu, unblocked vol       328       58       59         vCu, unblocked vol       328       58       59         tC, single (s)       6.4       6.2       4.1         tC, 2 stage (s)       tr       tr       tr        tF (s)       3.5       3.3       2.2
Percent Blockage         Right turn flare (veh)         Median type       None         Median storage veh)       Voltage         Upstream signal (m)       78         pX, platoon unblocked       78         vC, conflicting volume       328       58       59         vC1, stage 1 conf vol       vC2, stage 2 conf vol       vC4, unblocked vol       328       58       59         vC1, stage 1 conf vol       vC4, unblocked vol       328       58       59       100         vC2, stage 2 conf vol       vC4, unblocked vol       328       58       59       100         vC1, stage 1 conf vol       vC3       vC4, unblocked vol       328       58       59       100         vC1, stage (s)       6.4       6.2       4.1       100       100       100         vC3       stage (s)       tr       tr       tr       tr       tr        vC3       3.5       3.3       2.2       tr       tr       tr         vC3       vC3       vC3       vC3       vC3       vC3       tr        vC4       vC3       vC4       vC4       vC4       vC4       tr        vC4       vC4       vC4       vC4 <t< td=""></t<>
Right turn flare (veh)         Median type       None       None         Median storage veh)       Upstream signal (m)       78         Upstream signal (m)       78       78         pX, platoon unblocked       vC, conflicting volume       328       58       59         vC1, stage 1 conf vol       vC2, stage 2 conf vol       vC4, unblocked vol       328       58       59         vCu, unblocked vol       328       58       59       59       59         vCu, stage 2 conf vol       vC4, stage 2 conf vol       vC4, stage 2 conf vol       100         vC2, stage 2 conf vol       vC4, stage 3       59       100       100         vC4, stage (s)       6.4       6.2       4.1       100       100         tF (s)       3.5       3.3       2.2       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100
Median typeNoneNoneMedian storage veh)Upstream signal (m)78pX, platoon unblocked78vC, conflicting volume328vC1, stage 1 conf vol58vC2, stage 2 conf vol58vC4, unblocked vol328vC4, unblocked vol328vC5, single (s)6.46.24.1tC, 2 stage (s)53.5tF (s)3.53.53.32.2
Median storage veh)       78         Upstream signal (m)       78         pX, platoon unblocked       78         vC, conflicting volume       328       58       59         vC1, stage 1 conf vol       vc2, stage 2 conf vol       vc2, stage 2 conf vol         vC2, stage 2 conf vol       vc4, unblocked vol       328       58       59         vC4, unblocked vol       328       58       59       59         tC, single (s)       6.4       6.2       4.1       4.1         tC, 2 stage (s)       tr        tF (s)       3.5       3.3       2.2
Upstream signal (m) 78 pX, platoon unblocked vC, conflicting volume 328 58 59 vC1, stage 1 conf vol vC2, stage 2 conf vol vCu, unblocked vol 328 58 59 tC, single (s) 6.4 6.2 4.1 tC, 2 stage (s) tF (s) 3.5 3.3 2.2
pX, platoon unblocked vC, conflicting volume 328 58 59 vC1, stage 1 conf vol vC2, stage 2 conf vol vCu, unblocked vol 328 58 59 tC, single (s) 6.4 6.2 4.1 tC, 2 stage (s) tF (s) 3.5 3.3 2.2
vC, conflicting volume 328 58 59 vC1, stage 1 conf vol vC2, stage 2 conf vol vCu, unblocked vol 328 58 59 tC, single (s) 6.4 6.2 4.1 tC, 2 stage (s) tF (s) 3.5 3.3 2.2
vC1, stage 1 conf vol vC2, stage 2 conf vol vCu, unblocked vol 328 58 59 tC, single (s) 6.4 6.2 4.1 tC, 2 stage (s) tF (s) 3.5 3.3 2.2
vC2, stage 2 conf vol vCu, unblocked vol 328 58 59 tC, single (s) 6.4 6.2 4.1 tC, 2 stage (s) tF (s) 3.5 3.3 2.2
vCu, unblocked vol 328 58 59 tC, single (s) 6.4 6.2 4.1 tC, 2 stage (s) tF (s) 3.5 3.3 2.2
tC, single (s) 6.4 6.2 4.1 tC, 2 stage (s) tF (s) 3.5 3.3 2.2
tC, 2 stage (s) tF (s) 3.5 3.3 2.2
tC, 2 stage (s) tF (s) 3.5 3.3 2.2
tF (s) 3.5 3.3 2.2
p0 queue free % 99 92 94
cM capacity (veh/h) 623 1009 1545
Direction, Lane # EB 1 NB 1 SB 1
Volume Total 83 172 59
Volume Left 4 99 0
Volume Lent 79 0 3
cSH 979 1545 1700
Volume to Capacity 0.08 0.06 0.03
Queue Length 95th (m) 2.1 1.6 0.0
Control Delay (s) 9.0 4.5 0.0
Lane LOS A A
Approach Delay (s) 9.0 4.5 0.0
Approach LOS A
Intersection Summary
Average Delay 4.9
Intersection Capacity Utilization 28.6% ICU Level of Service
Analysis Period (min) 15

	4	Ť	Ļ
Lane Group	WBL	NBT	SBT
Lane Configurations	¥	î.	<del>ب</del> اً
Traffic Volume (vph)	0	<b>1</b> → 35	29
Future Volume (vph)	0	35	29
Lane Group Flow (vph)	31	77	29
Sign Control	Stop	Free	Free
Intersection Summary			
Control Type: Unsignalized			

Intersection Capacity Utilization 14.7% Analysis Period (min) 15

	*	A.	+	-	5	1
	•		I.	1	-	*
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	W.		۴.			្ឋ
Traffic Volume (veh/h)	0	31	<b>1</b> 4 35	42	0	<b>4</b> 29
Future Volume (Veh/h)	0	31	35	42	0	29
Sign Control	Stop		Free			Free
Grade	0%		0%			0%
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	0	31	35	42	0	29
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type			None			None
Median storage veh)						
Upstream signal (m)			110			
pX, platoon unblocked						
vC, conflicting volume	85	56			77	
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	85	56			77	
tC, single (s)	6.4	6.2			4.1	
tC, 2 stage (s)						
tF (s)	3.5	3.3			2.2	
p0 queue free %	100	97			100	
cM capacity (veh/h)	916	1011			1522	
Direction, Lane #	WB 1	NB 1	SB 1			
Volume Total	31	77	29			
Volume Left	0	0	0			
Volume Right	31	42	0			
cSH	1011	1700	1522			
Volume to Capacity	0.03	0.05	0.00			
Queue Length 95th (m)	0.7	0.0	0.0			
Control Delay (s)	8.7	0.0	0.0			
Lane LOS	А					
Approach Delay (s)	8.7	0.0	0.0			
Approach LOS	А					
Intersection Summary						
Average Delay			2.0			
Intersection Capacity Utilization			14.7%		U Level of Serv	vice
Analysis Period (min)			14.7%	100		
Analysis Fellou (IIIII)			15			

## Lanes, Volumes, Timings 6: Woodroffe Ave & Richmond Rd

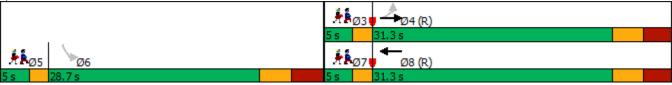
	۶	-	$\mathbf{i}$	4	-	1	Ť	1	Ļ
Lane Group	EBL	EBT	EBR	WBL	WBT	NBL	NBT	SBL	SBT
Lane Configurations	5	•	1	5	î,	5	٦,	5	î,
Traffic Volume (vph)	83	366	185	217	710	248	402	25	340
Future Volume (vph)	83	366	185	217	710	248	402	25	340
Lane Group Flow (vph)	83	366	185	217	741	248	490	25	402
Turn Type	Prot	NA	Perm	Prot	NA	pm+pt	NA	Perm	NA
Protected Phases	7	4		3	8	5	2		6
Permitted Phases			4			2		6	
Detector Phase	7	4	4	3	8	5	2	6	6
Switch Phase									
Minimum Initial (s)	5.0	10.0	10.0	5.0	10.0	5.0	10.0	10.0	10.0
Minimum Split (s)	11.9	33.9	33.9	11.7	33.9	11.5	31.5	31.5	31.5
Total Split (s)	12.0	39.5	39.5	22.0	49.5	17.0	48.5	31.5	31.5
Total Split (%)	10.9%	35.9%	35.9%	20.0%	45.0%	15.5%	44.1%	28.6%	28.6%
Yellow Time (s)	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3
All-Red Time (s)	3.6	3.6	3.6	3.4	3.6	3.2	3.2	3.2	3.2
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	2.0	0.0	0.0	0.0
Total Lost Time (s)	6.9	6.9	6.9	6.7	6.9	8.5	6.5	6.5	6.5
Lead/Lag	Lead				Lag	Lead		Lag	Lag
Lead-Lag Optimize?	Yes				Yes	Yes		Yes	Yes
Recall Mode	None	C-Max	C-Max	None	C-Max	None	Max	Max	Max
Act Effct Green (s)	5.1	32.6	32.6	15.3	42.6	40.0	42.0	25.0	25.0
Actuated g/C Ratio	0.05	0.30	0.30	0.14	0.39	0.36	0.38	0.23	0.23
v/c Ratio	1.06	0.69	0.39	0.92	1.09	1.27	0.78	0.16	1.07
Control Delay	171.5	42.3	4.0	89.6	95.4	183.4	40.0	37.1	106.6
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	171.5	42.3	4.0	89.6	95.4	183.4	40.0	37.1	106.6
LOS	F	D	A	F	F	F	D	D	F
Approach Delay		48.1			94.1		88.2		102.5
Approach LOS		D			F		F		F
Queue Length 50th (m)	~19.6	69.4	0.0	46.6	~179.7	~52.5	91.2	4.3	~95.4
Queue Length 95th (m)	#50.5	102.0	7.6	#90.5	#249.6	#101.8	132.8	11.9	#153.6
Internal Link Dist (m)		495.5			80.5		878.5		424.0
Turn Bay Length (m)	95.0		30.0	75.0		55.0		50.0	
Base Capacity (vph)	78	528	474	235	679	195	630	161	377
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	1.06	0.69	0.39	0.92	1.09	1.27	0.78	0.16	1.07
Intersection Summary									
Cycle Length: 110									
Actuated Cycle Length: 110									
Offset: 0 (0%), Referenced to phase	se 4:EBT and 8	s:WBF, Sta	t of Green						
Natural Cycle: 140									
Control Type: Actuated-Coordinate	ed								
Maximum v/c Ratio: 1.27						00 F			
Intersection Signal Delay: 83.2	0.00/				Itersection L				
Intersection Capacity Utilization 10	J8.8%			IC	CU Level of	Service G			
Analysis Period (min) 15									
~ Volume exceeds capacity, que		ally infinite.							
Queue shown is maximum after									
# 95th percentile volume exceed		eue may be	longer.						
Queue shown is maximum after	r two cycles.								
Splits and Phases: 6: Woodroffe	e Ave & Richm	ond Rd							
<td< td=""><td></td><td></td><td></td><td></td><td>-</td><td></td><td>1</td><td></td><td></td></td<>					-		1		

1 Ø2		<b>√</b> Ø3		
48.5 s		22 s		39.5 s
▲ ø5	<b>↓</b> Ø6		Ø8 (R)	,
17 s	31.5 s	12 s	49.5 s	

**Total Projected 2031** 

# Lanes, Volumes, Timings 1: Richmond Rd & McEwen Ave

	٦	-	-	1			
Lane Group	EBL	EBT	WBT	SBL	Ø3	Ø5	Ø7
Lane Configurations	5	•	1,	W.			
Traffic Volume (vph)	32	794	407	30			
Future Volume (vph)	32	794	407	30			
Lane Group Flow (vph)	32	794	429	81			
Turn Type	Perm	NA	HZ3 NA	Perm			
Protected Phases	I CIIII	4	8	I CIIII	3	5	7
Permitted Phases	4	-	0	6	J	J	1
Detector Phase	4	4	8	6			
Switch Phase	4	4	0	0			
Minimum Initial (s)	10.0	10.0	10.0	10.0	1.0	1.0	1.0
( )	24.3	24.3	31.3	23.8	5.0	5.0	5.0
Minimum Split (s)	36.2	36.2	36.2	23.8	5.0	5.0	5.0
Total Split (s) Total Split (%)	51.7%	51.7%	51.7%	23.0 34.0%	5.0 7%	5.0 7%	5.0 7%
Yellow Time (s)	3.3	3.3	51.7% 3.3	34.0% 3.3	7% 2.0	7% 2.0	7% 2.0
	3.3 3.0	3.3 3.0	3.3 3.0	3.3 3.5	2.0	2.0 0.0	2.0
All-Red Time (s)					0.0	0.0	0.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0			
Total Lost Time (s)	6.3	6.3	6.3	6.8	المعط	المعط	المعط
Lead/Lag	Lag	Lag	Lag	Lag	Lead	Lead	Lead
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Recall Mode	C-Max	C-Max	C-Max	None	None	None	None
Act Effct Green (s)	41.3	41.3	41.3	14.2			
Actuated g/C Ratio	0.59	0.59	0.59	0.20			
v/c Ratio	0.07	0.75	0.41	0.26			
Control Delay	12.2	24.6	10.0	12.9			
Queue Delay	0.0	0.0	0.0	0.0			
Total Delay	12.2	24.6	10.0	12.9			
LOS	В	С	B	В			
Approach Delay		24.1	10.0	12.9			
Approach LOS		С	В	В			
Queue Length 50th (m)	2.4	~115.2	57.2	3.1			
Queue Length 95th (m)	7.2	#176.3	87.6	12.7			
Internal Link Dist (m)		546.0	379.9	123.9			
Turn Bay Length (m)	50.0			20.0			
Base Capacity (vph)	465	1053	1040	368			
Starvation Cap Reductn	0	0	0	0			
Spillback Cap Reductn	0	0	0	0			
Storage Cap Reductn	0	0	0	0			
Reduced v/c Ratio	0.07	0.75	0.41	0.22			
Intersection Summary							
Cycle Length: 70							
Actuated Cycle Length: 70							
Offset: 38 (54%), Referenced to pha	ase 4:EBTL a	ind 8:WBT.	Start of Gre	en			
Natural Cycle: 80		,					
Control Type: Actuated-Coordinated	d						
Maximum v/c Ratio: 0.75							
Intersection Signal Delay: 18.9				Inte	ersection L(	DS: B	
Intersection Capacity Utilization 68.	1%				J Level of S		
Analysis Period (min) 15	. 1 /0			100			
<ul> <li>Volume exceeds capacity, queu</li> </ul>	le is theoretic	ally infinite					
Queue shown is maximum after	two cycles	any minine.					
<ul><li># 95th percentile volume exceeds</li></ul>		elle mav he	longer				
Queue shown is maximum after		cue may be	ionger.				
	two cycles.						
Solits and Phases: 1: Richmond	Rd & McEwe	n Ave					


#### Splits and Phases: 1: Richmond Rd & McEwen Ave



#### Lanes, Volumes, Timings 2: Richmond Rd & New Orchard Ave N

	≯	+	÷	1			
Lane Group	EBL	EBT	WBT	SBL	Ø3	Ø5	Ø7
Lane Configurations		<del>ب</del> ا	1,	¥			
Traffic Volume (vph)	27	<b>810</b>	416	161			
Future Volume (vph)	27	810	410	161			
Lane Group Flow (vph)	0	837	410	196			
Turn Type	Perm	NA	477 NA	Perm			
Protected Phases	r CIIII	4	8		3	5	7
Permitted Phases	4	4	0	6	3	5	1
Detector Phase	4	4	8	6			
Switch Phase	4	4	0	0			
	10.0	10.0	10.0	10.0	1.0	1.0	1.0
Minimum Initial (s)							
Minimum Split (s)	24.3	24.3	27.3	28.7	5.0	5.0	5.0
Total Split (s)	31.3	31.3	31.3	28.7	5.0	5.0	5.0
Total Split (%)	44.7%	44.7%	44.7%	41.0%	7%	7%	7%
Yellow Time (s)	3.3	3.3	3.3	3.3	2.0	2.0	2.0
All-Red Time (s)	3.0	3.0	3.0	3.4	0.0	0.0	0.0
Lost Time Adjust (s)		0.0	0.0	0.0			
Total Lost Time (s)		6.3	6.3	6.7			
Lead/Lag	Lag	Lag	Lag	Lag	Lead	Lead	Lead
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Recall Mode	C-Max	C-Max	C-Max	None	None	None	None
Act Effct Green (s)		32.7	32.7	18.3			
Actuated g/C Ratio		0.47	0.47	0.26			
v/c Ratio		1.04	0.61	0.77			
Control Delay		55.1	21.5	42.5			
Queue Delay		0.0	0.0	0.0			
Total Delay		55.1	21.5	42.5			
LOS		E	C	D			
Approach Delay		55.1	21.5	42.5			
Approach LOS		E	C	D			
Queue Length 50th (m)		~140.3	53.4	20.0			
Queue Length 95th (m)		#202.2	#99.8	#47.2			
Internal Link Dist (m)		379.9	490.4	54.3			
Turn Bay Length (m)		010.0	100.4	01.0			
Base Capacity (vph)		808	785	301			
Starvation Cap Reductn		000	0	0			
Spillback Cap Reductn		0	0	0			
Storage Cap Reductn		0	0	0			
Reduced v/c Ratio		1.04	0.61	0.65			
		1.04	0.01	0.05			
Intersection Summary							
Cycle Length: 70							
Actuated Cycle Length: 70							
Offset: 68 (97%), Referenced to ph	nase 4:EBTL a	nd 8:WBT,	Start of Gre	en			
Natural Cycle: 90							
Control Type: Actuated-Coordinate	ed						
Maximum v/c Ratio: 1.04							
Intersection Signal Delay: 42.8					tersection LC		
Intersection Capacity Utilization 97	.2%			IC	U Level of S	ervice F	
Analysis Period (min) 15							
~ Volume exceeds capacity, que	ue is theoretic	ally infinite.					
Queue shown is maximum after	r two cycles.						
# 95th percentile volume exceed		eue may be	longer.				
Queue shown is maximum after			-				
	,						
Splits and Phases: 2. Richmond	Rd & New Or	chard Ave N	J				

Splits and Phases: 2: Richmond Rd & New Orchard Ave N



	≯	1	Ļ
Lane Group	EBL	NBT	SBT
Lane Configurations	¥.	្ឋ	î,
Traffic Volume (vph)	1	45 45	80
Future Volume (vph)	1	45	80
Lane Group Flow (vph)	88	99	82
Sign Control	Stop	Free	Free
Intersection Summary			
Control Type: Unsignalized			

Intersection Capacity Utilization 24.7% Analysis Period (min) 15

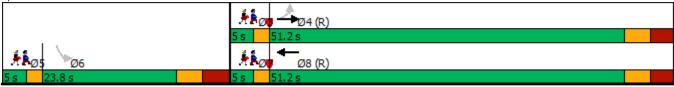
	٨	~	•	Ť	Ļ	~
Movement	EBL	EBR	NBL	NBT	▼ SBT	SBR
	V V	LDN	NDL			SBR
Lane Configurations		07	54	<b>4</b> 5	<b>1</b> 4 80	0
Traffic Volume (veh/h)	1	87				2
Future Volume (Veh/h)	1	87	54	45	80	2
Sign Control	Stop			Free	Free	
Grade	0%			0%	0%	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	1	87	54	45	80	2
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type				None	None	
Median storage veh)						
Upstream signal (m)				78		
pX, platoon unblocked						
vC, conflicting volume	234	81	82			
vC1, stage 1 conf vol		• •				
vC2, stage 2 conf vol						
vCu, unblocked vol	234	81	82			
tC, single (s)	6.4	6.2	4.1			
tC, 2 stage (s)	0.4	0.2	4.1			
tF (s)	3.5	3.3	2.2			
p0 queue free %	3.5 100	3.3 91	2.2			
	727	979	96 1515			
cM capacity (veh/h)						
Direction, Lane #	EB 1	NB 1	SB 1			
Volume Total	88	99	82			
Volume Left	1	54	0			
Volume Right	87	0	2			
cSH	975	1515	1700			
Volume to Capacity	0.09	0.04	0.05			
Queue Length 95th (m)	2.3	0.8	0.0			
Control Delay (s)	9.1	4.2	0.0			
Lane LOS	А	А				
Approach Delay (s)	9.1	4.2	0.0			
Approach LOS	A					
Intersection Summary						
Average Delay			4.5			
Intersection Capacity Utilization			4.5 24.7%		U Level of Serv	vico
				iU	O LEVELOI SEN	NCE
Analysis Period (min)			15			

	4	1	ţ
Lane Group	WBL	NBT	SBT
Lane Configurations	W.	1.	ન
Traffic Volume (vph)	50	<b>1</b> ₀ 23	32
Future Volume (vph)	50	23	32
Lane Group Flow (vph)	50	46	32
Sign Control	Stop	Free	Free
Intersection Summary			
Control Type: Unsignalized			
Internetien Consolity Little-stice 12 20/			

Intersection Capacity Utilization 13.3% Analysis Period (min) 15

		A.	•		1	1
	<		I	1	*	•
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	¥		1			4
Traffic Volume (veh/h)	50	0	<b>1</b> 23	23	0	<b>1</b> 32
Future Volume (Veh/h)	50	0	23	23	0	32
Sign Control	Stop		Free			Free
Grade	0%		0%			0%
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	50	0	23	23	0	32
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type			None			None
Median storage veh)						
Upstream signal (m)			108			
pX, platoon unblocked						
vC, conflicting volume	66	34			46	
vC1, stage 1 conf vol		•				
vC2, stage 2 conf vol						
vCu, unblocked vol	66	34			46	
tC, single (s)	6.4	6.2			4.1	
tC, 2 stage (s)	0.4	0.2			7.1	
tF (s)	3.5	3.3			2.2	
p0 queue free %	95	100			100	
cM capacity (veh/h)	939	1039			1562	
					1002	
Direction, Lane #	WB 1	NB 1	SB 1			
Volume Total	50	46	32			
Volume Left	50	0	0			
Volume Right	0	23	0			
cSH	939	1700	1562			
Volume to Capacity	0.05	0.03	0.00			
Queue Length 95th (m)	1.3	0.0	0.0			
Control Delay (s)	9.1	0.0	0.0			
Lane LOS	А					
Approach Delay (s)	9.1	0.0	0.0			
Approach LOS	А					
Intersection Summary						
Average Delay			3.5			
Intersection Capacity Utilization			3.5 13.3%		J Level of Serv	vico
				ICI	Level of Selv	nce
Analysis Period (min)			15			

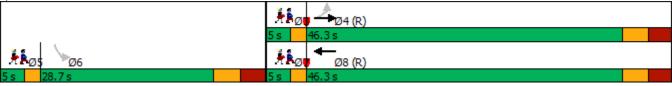
## Lanes, Volumes, Timings 6: Woodroffe Ave & Richmond Rd


	٦	-	$\mathbf{i}$	∢	+	1	Ť	1	ţ
Lane Group	EBL	EBT	EBR	WBL	WBT	NBL	NBT	SBL	SBT
Lane Configurations	3	•	1	5	î.	ሻ	1.	۲.	1.
Traffic Volume (vph)	152	910	235	62	<b>1</b> 284	125	<b>1</b> 257	39	<b>1</b> 329
Future Volume (vph)	152	910	235	62	284	125	257	39	329
Lane Group Flow (vph)	152	910	235	62	304	125	349	39	390
Turn Type	Prot	NA	Perm	Prot	NA	pm+pt	NA	Perm	NA
Protected Phases	7	4		3	8	5	2		6
Permitted Phases			4			2		6	
Detector Phase	7	4	4	3	8	5	2	6	6
Switch Phase	5.0	10.0	10.0	۲ ۵	10.0	۲ ۵	10.0	10.0	10.0
Minimum Initial (s)	5.0 11.9	10.0 28.9	10.0 28.9	5.0 11.7	10.0 33.9	5.0 11.5	10.0 31.5	10.0 31.5	10.0 31.5
Minimum Split (s) Total Split (s)	17.9	20.9 45.3	45.3	11.7	33.9 40.0	11.5	43.0	31.5	31.5
Total Split (%)	17.0%	45.3%	45.3%	11.7%	40.0%	11.5%	43.0%	31.5%	31.5%
Yellow Time (s)	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3
All-Red Time (s)	3.6	3.6	3.6	3.4	3.6	3.2	3.2	3.2	3.2
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	6.9	6.9	6.9	6.7	6.9	6.5	6.5	6.5	6.5
Lead/Lag	Lead				Lag	Lead		Lag	Lag
Lead-Lag Optimize?	Yes				Yes	Yes		Yes	Yes
Recall Mode	None	C-Max	C-Max	None	C-Max	None	Max	Max	Max
Act Effct Green (s)	10.1	40.7	40.7	5.0	33.1	36.5	36.5	25.0	25.0
Actuated g/C Ratio	0.10	0.41	0.41	0.05	0.33	0.36	0.36	0.25	0.25
v/c Ratio	0.89	1.25	0.43	0.74	0.53	0.70	0.60	0.18	0.94
Control Delay	90.8	153.9	8.6	92.8	31.2	45.4	31.0	32.2	68.7
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	90.8	153.9	8.6	92.8	31.2	45.4	31.0	32.2	68.7
LOS	F	F	Α	F	C	D	C	С	E
Approach Delay		120.2 F			41.6		34.8		65.3 E
Approach LOS	29.6	۲ ~230.1	6.6	12.1	D 47.3	16.4	C 54.2	6.0	E 74.1
Queue Length 50th (m) Queue Length 95th (m)	29.6 #65.5	~230.1 #301.9	25.0	#33.9	47.3 73.0	#36.5	54.2 83.3	14.8	/4.1 #129.2
Internal Link Dist (m)	#05.5	490.4	23.0	#33.5	81.7	#30.3	868.8	14.0	410.6
Turn Bay Length (m)	95.0	+JU.+	30.0	75.0	01.7	55.0	000.0	50.0	+10.0
Base Capacity (vph)	171	727	552	84	575	179	582	216	417
Starvation Cap Reductn	0	0	002	0	0/0	0	002	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.89	1.25	0.43	0.74	0.53	0.70	0.60	0.18	0.94
Intersection Summary									
Cycle Length: 100 Actuated Cycle Length: 100									
Offset: 0 (0%), Referenced to pha	ase A.ERT and	8.W/RT Stor	t of Green						
Natural Cycle: 150	ase 4.LD1 allu	0.0001, Stal	I UI UI UI UI UI						
Control Type: Actuated-Coordina	ited								
Maximum v/c Ratio: 1.25									
Intersection Signal Delay: 84.0				In	tersection L	OS: F			
Intersection Capacity Utilization 1	107.3%				U Level of S				
Analysis Period (min) 15									
<ul> <li>Volume exceeds capacity, qu</li> </ul>	eue is theoretic	ally infinite.							
Queue shown is maximum aft									
# 95th percentile volume excee	eds capacity, qu	eue may be	longer.						
Queue shown is maximum aft	er two cycles.								
Splits and Phases: 6: Woodrof	fe Ave & Richm	ond Rd							
				1 /		1			

<b>₫</b> _{Ø2}		<b>√</b> Ø3	- <b>∞</b> ••••••••••••••••••••••••••••••••••••
43 s		11.7 s	45.3 s
▲ ø5	Ø6	▶ 07	↓ Ø8 (R)
11.5 s 31	1.5 s	17 s	40 s

# Lanes, Volumes, Timings 1: Richmond Rd & McEwen Ave

۶	<b>→</b>	+	5			
EBL	EBT	WBT	SBL	Ø3	Ø5	Ø7
	٨					
	529	1004				
				3	5	7
4			6	U	U	
	4	8				
т			U			
10.0	10.0	10.0	10.0	10	10	1.0
						5.0
						5.0
						6%
						2.0
						0.0
				0.0	0.0	0.0
				ead	l ead	Lead
						Yes
						None
				NULLE	NULLE	NULLE
Г						
. 15 0						
#30.9						
E0 0	500.0	379.9				
	1100	1160				
0.90	0.45	0.90	0.32			
ase 4:EBTL a	nd 8:WBT,	Start of Gre	en			
ł						
			Int	ersection LC	DS: B	
1%			ICI	U Level of S	ervice F	
e is theoretic	ally infinite.					
two cycles.						
	eue may be	longer.				
two cycles.		-				
	by upstrea	m signal.				
		-				
	EBL 81 81 81 81 Perm 4 4 10.0 24.3 51.2 60.2% 3.3 51.2 60.2% 3.3 3.0 0.0 6.3 Lag Yes C-Max 56.3 0.66 0.90 100.1 0.0 100.1 F ~15.3 #30.9 50.0 90 0 0 0 0 0 0 0 0 0 0 0 0 0	EBL         EBT           81         529           81         529           81         529           81         529           81         529           81         529           81         529           Perm         NA           4         4           4         4           4         4           4         4           4         4           4         4           60.2%         60.2%           3.3         3.3           3.0         0.0           0.0         0.0           60.2%         60.3           6.3         6.3           1.ag         Lag           Lag         Lag           Ves         Yes           Yes         Yes           C-Max         C-Max           56.3         56.3           0.66         0.66           0.90         0.45           100.1         12.2           F         B           23.9         C           ~15.3         54.2      #30.9         82.6 <td>EBL         EBT         WBT           81         529         1004           81         529         1004           81         529         1004           81         529         1004           81         529         1004           81         529         1049           Perm         NA         NA           4         4         8           4         4         8           4         4         8           4         4         8           10.0         10.0         10.0           24.3         24.3         36.3           51.2         51.2         51.2           60.2%         60.2%         60.2%           3.3         3.3         3.3           3.0         3.0         3.0           0.0         0.0         0.0           0.0         0.0         0.0           10.1         12.2         16.7           F         B         B           23.9         16.7           C         B           ~10.1         12.2      #30.9         82.6</td> <td>EBL         EBT         WBT         SBL           81         529         1004         35           81         529         1049         101           Perm         NA         NA         Perm           4         8         6           4         4         6           4         4         8           4         6           4         4         8           60.2%         60.2%         28.0%           3.3         3.3         3.3         3.3           3.0         3.0         3.0         3.5           0.0         0.0         0.0         0.0           6.3         6.3         6.3         6.8           Lag         Lag         Lag         Lag         Lag           Yes         Yes         Yes         Yes         Yes           C-Max         C-Max         C-Max         None         56.3           56.3         56.3         56.3         14.2         0.66           0.66         0.66         0.66         17         0.0           0.0         0.0         0.0         0.0         0.0         0.0</td> <td>EBL         EBT         WBT         SBL         Ø3           81         529         1004         35           81         529         1004         35           81         529         1004         35           81         529         1049         101           Perm         NA         NA         Perm           4         8         6           10.0         10.0         10.0         1.0           24.3         24.3         36.3         23.8         5.0           61.2         51.2         51.2         23.8         5.0           60.2%         60.2%         28.0%         6%         3.3         3.3         3.2         0           3.0         3.0         3.0         3.5         0.0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0</td> <td>EBL         EBT         WBT         SBL         Ø3         Ø5           81         529         1004         35         35         35         35         35         35         36         35         36         35         35         36         35         36         35         36         35         36         35         36         35         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         &lt;</td>	EBL         EBT         WBT           81         529         1004           81         529         1004           81         529         1004           81         529         1004           81         529         1004           81         529         1049           Perm         NA         NA           4         4         8           4         4         8           4         4         8           4         4         8           10.0         10.0         10.0           24.3         24.3         36.3           51.2         51.2         51.2           60.2%         60.2%         60.2%           3.3         3.3         3.3           3.0         3.0         3.0           0.0         0.0         0.0           0.0         0.0         0.0           10.1         12.2         16.7           F         B         B           23.9         16.7           C         B           ~10.1         12.2      #30.9         82.6	EBL         EBT         WBT         SBL           81         529         1004         35           81         529         1049         101           Perm         NA         NA         Perm           4         8         6           4         4         6           4         4         8           4         6           4         4         8           60.2%         60.2%         28.0%           3.3         3.3         3.3         3.3           3.0         3.0         3.0         3.5           0.0         0.0         0.0         0.0           6.3         6.3         6.3         6.8           Lag         Lag         Lag         Lag         Lag           Yes         Yes         Yes         Yes         Yes           C-Max         C-Max         C-Max         None         56.3           56.3         56.3         56.3         14.2         0.66           0.66         0.66         0.66         17         0.0           0.0         0.0         0.0         0.0         0.0         0.0	EBL         EBT         WBT         SBL         Ø3           81         529         1004         35           81         529         1004         35           81         529         1004         35           81         529         1049         101           Perm         NA         NA         Perm           4         8         6           10.0         10.0         10.0         1.0           24.3         24.3         36.3         23.8         5.0           61.2         51.2         51.2         23.8         5.0           60.2%         60.2%         28.0%         6%         3.3         3.3         3.2         0           3.0         3.0         3.0         3.5         0.0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0	EBL         EBT         WBT         SBL         Ø3         Ø5           81         529         1004         35         35         35         35         35         35         36         35         36         35         35         36         35         36         35         36         35         36         35         36         35         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         36         <


Splits and Phases: 1: Richmond Rd & McEwen Ave



# Lanes, Volumes, Timings 2: Richmond Rd & New Orchard Ave N

	≯	+	+	*			
Lane Group	EBL	EBT	WBT	SBL	Ø3	Ø5	Ø7
Lane Configurations		<u>ج</u>	1.	¥	~~	~~	~.
Traffic Volume (vph)	40	572	1024	98			
Future Volume (vph)	40	572	1024	98			
Lane Group Flow (vph)	-0	612	1176	132			
Turn Type	Perm	NA	NA	Perm			
Protected Phases	i viili	4	8		3	5	7
Permitted Phases	4	т	0	6	0		
Detector Phase	4	4	8	6			
Switch Phase	7	т	0	0			
Minimum Initial (s)	10.0	10.0	10.0	10.0	1.0	1.0	1.0
Minimum Split (s)	24.3	24.3	27.3	28.7	5.0	5.0	5.0
Total Split (s)	46.3	46.3	46.3	28.7	5.0	5.0	5.0
Total Split (%)	40.3 54.5%	40.3 54.5%	40.3 54.5%	33.8%	5.0 6%	5.0 6%	5.0 6%
	54.5% 3.3	54.5% 3.3	54.5% 3.3	33.0%	2.0	2.0	2.0
Yellow Time (s)	3.3 3.0	3.3 3.0	3.3 3.0	3.3 3.4	2.0	2.0	2.0 0.0
All-Red Time (s)	3.0				0.0	0.0	0.0
Lost Time Adjust (s)		0.0	0.0	0.0			
Total Lost Time (s)		6.3	6.3	6.7	1	1	
Lead/Lag	Lag	Lag	Lag	Lag	Lead	Lead	Lead
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Recall Mode	C-Max	C-Max	C-Max	None	None	None	None
Act Effct Green (s)		48.3	48.3	17.7			
Actuated g/C Ratio		0.57	0.57	0.21			
v/c Ratio		2.01	1.25	0.67			
Control Delay		487.5	141.7	41.8			
Queue Delay		0.0	0.0	0.0			
Total Delay		487.5	141.7	41.8			
LOS		F	F	D			
Approach Delay		487.5	141.7	41.8			
Approach LOS		F	F	D			
Queue Length 50th (m)		~168.4	~270.3	15.6			
Queue Length 95th (m)		#231.8	#345.0	33.9			
Internal Link Dist (m)		379.9	495.5	54.3			
Turn Bay Length (m)							
Base Capacity (vph)		304	944	241			
Starvation Cap Reductn		0	0	0			
Spillback Cap Reductn		0	0	0			
Storage Cap Reductn		0	0	0			
Reduced v/c Ratio		2.01	1.25	0.55			
		2.01	1.20	0.00			
Intersection Summary							
Cycle Length: 85							
Actuated Cycle Length: 85							
Offset: 1 (1%), Referenced to phas	e 4:EBTL and	8:WBT, Sta	art of Green				
Natural Cycle: 150							
Control Type: Actuated-Coordinate	ed						
Maximum v/c Ratio: 2.01							
Intersection Signal Delay: 245.0				Inte	ersection LC	DS: F	
Intersection Capacity Utilization 96	.8%				J Level of S		
Analysis Period (min) 15							
<ul> <li>Volume exceeds capacity, que</li> </ul>	ue is theoretic	ally infinite					
Queue shown is maximum after		,					
# 95th percentile volume exceeds		eue mav he	longer				
Queue shown is maximum after		sao may be	.ongoi.				

Splits and Phases: 2: Richmond Rd & New Orchard Ave N



	٦	t	Ļ
Lane Group	EBL	NBT	SBT
Lane Configurations	¥	្ឋ	1,
Traffic Volume (vph)	4	4 73	56
Future Volume (vph)	4	73	56
Lane Group Flow (vph)	83	172	59
Sign Control	Stop	Free	Free
Intersection Summary			
Control Type: Unsignalized			
	001		

Intersection Capacity Utilization 28.6% Analysis Period (min) 15

## HCM Unsignalized Intersection Capacity Analysis 3: New Orchard Ave N & Ambleside Dr

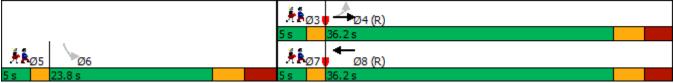
	≯	$\mathbf{r}$	1	1	↓ ·	∢
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	¥.			<del>ب</del> اً		-
Traffic Volume (veh/h)	4	79	99	73	<b>1</b> 56	3
Future Volume (Veh/h)	4	79	99	73	56	3
Sign Control	Stop	10	00	Free	Free	Ŭ
Grade	0%			0%	0%	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	4	79	99	73	56	3
Pedestrians	-	10	00	10	00	U
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type				None	None	
Median storage veh)				NULLE	NULLE	
Upstream signal (m)				78		
pX, platoon unblocked				10		
vC, conflicting volume	328	58	59			
vC1, stage 1 conf vol	320	50	59			
vC2, stage 2 conf vol						
vCu, unblocked vol	328	58	59			
	520 6.4	50 6.2	59 4.1			
tC, single (s)	0.4	0.2	4.1			
tC, 2 stage (s)	2.5	2.2	0.0			
tF (s)	3.5 99	3.3 92	2.2 94			
p0 queue free %						
cM capacity (veh/h)	623	1009	1545			
Direction, Lane #	EB 1	NB 1	SB 1			
Volume Total	83	172	59			
Volume Left	4	99	0			
Volume Right	79	0	3			
cSH	979	1545	1700			
Volume to Capacity	0.08	0.06	0.03			
Queue Length 95th (m)	2.1	1.6	0.0			
Control Delay (s)	9.0	4.5	0.0			
Lane LOS	А	А				
Approach Delay (s)	9.0	4.5	0.0			
Approach LOS	A					
Intersection Summary						
Average Delay			4.9			
Intersection Capacity Utilization			28.6%	IC	U Level of Serv	vice
Analysis Period (min)			15	10		
			10			

	•	1	Ŧ
Lane Group	WBL	NBT	SBT
Lane Configurations	¥	۴.	đ
Traffic Volume (vph)	0	<b>1</b> → 35	29
Future Volume (vph)	0	35	29
Lane Group Flow (vph)	31	77	29
Sign Control	Stop	Free	Free
Intersection Summary			
Control Type: Unsignalized			
	,		

Intersection Capacity Utilization 14.7% Analysis Period (min) 15

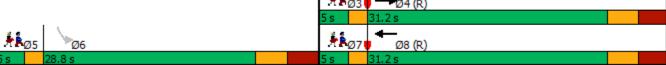
	4	•	t	*	<	Ţ
Movement	• WBL	WBR	NBT	• NBR	SBL	• SBT
Lane Configurations	¥	TIBI(	1,	TIDIX	002	
Traffic Volume (veh/h)	0	31	35	42	0	<b>4</b> 29
Future Volume (Veh/h)	0	31	35	42	0	29
Sign Control	Stop	51	Free	42	0	Free
Grade	0%		0%			0%
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	0	31	35	42	0	29
Pedestrians	0	51	55	42	0	23
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type			None			None
Median storage veh)			NOTE			NUTE
Upstream signal (m)			110			
pX, platoon unblocked			110			
vC, conflicting volume	85	56			77	
vC1, stage 1 conf vol	65	50			11	
vC2, stage 2 conf vol						
vCu, unblocked vol	85	56			77	
tC, single (s)	6.4	6.2			4.1	
tC, 2 stage (s)	0.4	0.2			4.1	
tF (s)	3.5	3.3			2.2	
p0 queue free %	3.5 100	3.3 97			100	
cM capacity (veh/h)	916	1011			1522	
					IJZZ	
Direction, Lane #	WB 1	NB 1	SB 1			
Volume Total	31	77	29			
Volume Left	0	0	0			
Volume Right	31	42	0			
cSH	1011	1700	1522			
Volume to Capacity	0.03	0.05	0.00			
Queue Length 95th (m)	0.7	0.0	0.0			
Control Delay (s)	8.7	0.0	0.0			
Lane LOS	А					
Approach Delay (s)	8.7	0.0	0.0			
Approach LOS	А					
Intersection Summary						
Average Delay			2.0			
Intersection Capacity Utilization			14.7%	ICI	U Level of Serv	vice
Analysis Period (min)			14.770	100		
			15			

## Lanes, Volumes, Timings 6: Woodroffe Ave & Richmond Rd


	٦	-	$\mathbf{i}$	4	-	1	Ť	1	ţ
Lane Group	EBL	EBT	EBR	WBL	WBT	NBL	NBT	SBL	SBT
Lane Configurations	5	•	1	5	î,	5	٦,	5	٦,
Traffic Volume (vph)	83	398	185	217	772	248	402	25	340
Future Volume (vph)	83	398	185	217	772	248	402	25	340
ane Group Flow (vph)	83	398	185	217	803	248	490	25	402
Turn Type	Prot	NA	Perm	Prot	NA	pm+pt	NA	Perm	NA
Protected Phases	7	4		3	8	5	2		6
Permitted Phases			4			2		6	
Detector Phase	7	4	4	3	8	5	2	6	6
Switch Phase									
Minimum Initial (s)	5.0	10.0	10.0	5.0	10.0	5.0	5.0	10.0	10.0
Minimum Split (s)	11.9	33.9	33.9	11.7	33.9	11.5	31.5	31.5	31.5
Total Split (s)	12.0	41.5	41.5	22.0	51.5	15.0	46.5	31.5	31.5
Total Split (%)	10.9%	37.7%	37.7%	20.0%	46.8%	13.6%	42.3%	28.6%	28.6%
Yellow Time (s)	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3
All-Red Time (s)	3.6	3.6	3.6	3.4	3.6	3.2	3.2	3.2	3.2
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	2.0	0.0	0.0	0.0
Total Lost Time (s)	6.9	6.9	6.9	6.7	6.9	8.5	6.5	6.5	6.5
Lead/Lag	Lead				Lag	Lead		Lag	Lag
Lead-Lag Optimize?	Yes				Yes	Yes		Yes	Yes
Recall Mode	None	C-Max	C-Max	None	C-Max	None	Max	Max	Max
Act Effct Green (s)	5.1	34.6	34.6	15.3	44.6	38.0	40.0	25.0	25.0
Actuated g/C Ratio	0.05	0.31	0.31	0.14	0.41	0.35	0.36	0.23	0.23
v/c Ratio	1.06	0.71	0.38	0.92	1.13	1.50	0.82	0.17	1.07
Control Delay	171.5	41.4	3.7	89.6	107.3	281.3	44.4	38.0	106.6
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	171.5	41.4	3.7	89.6	107.3	281.3	44.4	38.0	106.6
LOS	F	D	А	F	F	F	D	D	F
Approach Delay		47.2			103.5		124.0		102.6
Approach LOS		D			F		F		F
Queue Length 50th (m)	~19.6	75.1	0.0	46.6	~200.2	~59.7	94.2	4.4	~95.4
Queue Length 95th (m)	#50.5	109.6	7.4	#90.5	#271.8	#108.9	#146.9	12.1	#153.6
Internal Link Dist (m)		495.5			80.5		878.5		424.0
Turn Bay Length (m)	95.0		30.0	75.0		55.0		50.0	
Base Capacity (vph)	78	561	490	235	711	165	600	143	377
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	1.06	0.71	0.38	0.92	1.13	1.50	0.82	0.17	1.07
Intersection Summary									
Cycle Length: 110									
Actuated Cycle Length: 110									
Offset: 0 (0%), Referenced to phas	e 4. FBT and	WRT Star	t of Green						
Natural Cycle: 140									
Control Type: Actuated-Coordinate	h								
Maximum v/c Ratio: 1.50									
Intersection Signal Delay: 95.5				In	tersection L	OS' F			
Intersection Capacity Utilization 11	2.2%				U Level of				
Analysis Period (min) 15	/0			ic.					
<ul> <li>Volume exceeds capacity, que</li> </ul>	ue is theoretic	ally infinite							
Queue shown is maximum after		any minine.							
# 95th percentile volume exceed		alle may be	longer						
Queue shown is maximum after	1 27 1	sac may be	longer.						
	1 WO CYCICS.								
Splits and Phases: 6: Woodroffe	Ave & Richm	ond Rd							
				-					
<b>T</b>								4 (0)	

		<b>√</b> Ø3		♥
46.5 s		22 s		41.5 s
▲ ø5	<b>₽</b> Ø6		← Ø8 (R)	<b>x</b>
15 s	31.5 s	12 s	51.5 s	

Total Projected 2031 with 30% Traffic Reductions


## Lanes, Volumes, Timings 1: Richmond Rd & McEwen Ave

	٦	-	-	1				
Lane Group	EBL	EBT	WBT	SBL	Ø3	Ø5	Ø7	
Lane Configurations	۲	•	1.	¥	~~	~~	~.	
Traffic Volume (vph)	32	560	291	30				
Future Volume (vph)	32	560	291	30				
Lane Group Flow (vph)	32	560	313	81				
Turn Type	Perm	NA	NA	Perm				
Protected Phases		4	8		3	5	7	
Permitted Phases	4		-	6	-	-	-	
Detector Phase	4	4	8	6				
Switch Phase								
Minimum Initial (s)	10.0	10.0	10.0	10.0	1.0	1.0	1.0	
Minimum Split (s)	16.3	16.3	31.3	23.8	5.0	5.0	5.0	
Total Split (s)	36.2	36.2	36.2	23.8	5.0	5.0	5.0	
Total Split (%)	51.7%	51.7%	51.7%	34.0%	7%	7%	7%	
Yellow Time (s)	3.3	3.3	3.3	3.3	2.0	2.0	2.0	
All-Red Time (s)	3.0	3.0	3.0	3.5	0.0	0.0	0.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0				
Total Lost Time (s)	6.3	6.3	6.3	6.8				
Lead/Lag	Lag	Lag	Lag	Lag	Lead	Lead	Lead	
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Recall Mode	C-Max	C-Max	C-Max	None	None	None	None	
Act Effct Green (s)	41.3	41.3	41.3	14.2				
Actuated g/C Ratio	0.59	0.59	0.59	0.20				
v/c Ratio	0.06	0.53	0.30	0.26				
Control Delay	12.0	16.1	9.7	12.9				
Queue Delay	0.0	0.0	0.0	0.0				
Total Delay	12.0	16.1	9.7	12.9				
LOS	В	В	А	В				
Approach Delay		15.9	9.7	12.9				
Approach LOS		В	А	В				
Queue Length 50th (m)	2.4	58.8	37.9	3.1				
Queue Length 95th (m)	7.1	94.3	64.8	12.7				
Internal Link Dist (m)		546.0	379.9	123.9				
Turn Bay Length (m)	50.0			20.0				
Base Capacity (vph)	565	1053	1037	368				
Starvation Cap Reductn	0	0	0	0				
Spillback Cap Reductn	0	0	0	0				
Storage Cap Reductn	0	0	0	0				
Reduced v/c Ratio	0.06	0.53	0.30	0.22				
Intersection Summary								
Cycle Length: 70								
Actuated Cycle Length: 70								
Offset: 38 (54%), Referenced to pha	se 4:EBTL a	nd 8:WBT,	Start of Gre	en				
Natural Cycle: 70								
Control Type: Actuated-Coordinated								
Maximum v/c Ratio: 0.53								
Intersection Signal Delay: 13.7				Int	ersection LC	)S: B		
Intersection Capacity Utilization 55.1	%			ICI	J Level of S	ervice B		
Analysis Period (min) 15								
Splits and Phases: 1: Richmond F	Rd & McEwe	n Ave						
				102	400	(D)		



#### Lanes, Volumes, Timings 2: Richmond Rd & New Orchard Ave N

	≯	+	Ļ	1			
Lane Group	EBL	EBT	WBT	SBL	Ø3	Ø5	Ø7
Lane Configurations		<u>له</u>	1	V			
Traffic Volume (vph)	27	567	291	161			
Future Volume (vph)	27	567	291	161			
Lane Group Flow (vph)	0	594	352	196			
Turn Type	Perm	NA	NA	Perm			
Protected Phases		4	8		3	5	7
Permitted Phases	4		•	6			
Detector Phase	4	4	8	6			
Switch Phase			•				
Minimum Initial (s)	10.0	10.0	10.0	10.0	1.0	1.0	1.0
Minimum Split (s)	16.3	16.3	27.3	28.7	5.0	5.0	5.0
Total Split (s)	31.2	31.2	31.2	28.8	5.0	5.0	5.0
Total Split (%)	44.6%	44.6%	44.6%	41.1%	7%	7%	7%
Yellow Time (s)	3.3	3.3	3.3	3.3	2.0	2.0	2.0
All-Red Time (s)	3.0	3.0	3.0	3.4	0.0	0.0	0.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	210	
Total Lost Time (s)		6.3	6.3	6.7			
Lead/Lag	Lag	Lag	Lag	Lag	Lead	Lead	Lead
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Recall Mode	C-Max	C-Max	C-Max	None	None	None	None
Act Effct Green (s)		32.6	32.6	18.3			
Actuated g/C Ratio		0.47	0.47	0.26			
v/c Ratio		0.74	0.46	0.77			
Control Delay		16.6	17.5	42.3			
Queue Delay		0.0	0.0	0.0			
Total Delay		16.6	17.5	42.3			
LOS		B	B	D			
Approach Delay		16.6	17.5	42.3			
Approach LOS		B	B	D			
Queue Length 50th (m)		8.5	35.1	20.0			
Queue Length 95th (m)		#129.5	60.0	#47.1			
Internal Link Dist (m)		379.9	490.4	54.3			
Turn Bay Length (m)							
Base Capacity (vph)		802	768	302			
Starvation Cap Reductn		0	0	0			
Spillback Cap Reductn		0	0	0			
Storage Cap Reductn		0	0	0			
Reduced v/c Ratio		0.74	0.46	0.65			
		5.14	0.40	0.00			
Intersection Summary							
Cycle Length: 70							
Actuated Cycle Length: 70							
Offset: 68 (97%), Referenced to pha	ase 4:EBTL a	and 8:WBT,	Start of Gre	en			
Natural Cycle: 75							
Control Type: Actuated-Coordinated	1						
Maximum v/c Ratio: 0.77							
Intersection Signal Delay: 21.3					ersection LC		
Intersection Capacity Utilization 83.9	9%			ICI	U Level of S	ervice E	
Analysis Period (min) 15							
# 95th percentile volume exceeds		eue may be	longer.				
Queue shown is maximum after	two cycles.						
Splits and Phases: 2: Richmond F	Rd & New Or	chard Ave N	N				
					₩øз	<b>4</b> 04	(R)
					5s	31.2 s	• •



	≯	Ť	ţ
Lane Group	EBL	NBT	SBT
Lane Configurations	W.	្ឋ	14
Traffic Volume (vph)	1	45 45	<b>1</b> 80
Future Volume (vph)	1	45	80
Lane Group Flow (vph)	88	99	82
Sign Control	Stop	Free	Free
Intersection Summary			
Control Type: Unsignalized			
Intersection Capacity Utilization 24.7%	D		

Analysis Period (min) 15

## HCM Unsignalized Intersection Capacity Analysis 3: New Orchard Ave N & Ambleside Dr

	≯	$\mathbf{r}$	1	1	Ļ	∢
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	¥			ਵੀ	<b>1</b> .	
Traffic Volume (veh/h)	1	87	54	45	<b>1</b> 4 80	2
Future Volume (Veh/h)	1	87	54	45	80	2
Sign Control	Stop	•	•.	Free	Free	-
Grade	0%			0%	0%	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	1.00	87	54	45	80	2
Pedestrians		01	04	U	00	L
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type				None	None	
				NOTE	None	
Median storage veh)				70		
Upstream signal (m)				78		
pX, platoon unblocked vC, conflicting volume	234	81	82			
	234	81	82			
vC1, stage 1 conf vol						
vC2, stage 2 conf vol	00.4	0.4	00			
vCu, unblocked vol	234	81	82			
tC, single (s)	6.4	6.2	4.1			
tC, 2 stage (s)						
tF (s)	3.5	3.3	2.2			
p0 queue free %	100	91	96			
cM capacity (veh/h)	727	979	1515			
Direction, Lane #	EB 1	NB 1	SB 1			
Volume Total	88	99	82			
Volume Left	1	54	0			
Volume Right	87	0	2			
cSH	975	1515	1700			
Volume to Capacity	0.09	0.04	0.05			
Queue Length 95th (m)	2.3	0.8	0.0			
Control Delay (s)	9.1	4.2	0.0			
Lane LOS	A	A				
Approach Delay (s)	9.1	4.2	0.0			
Approach LOS	A		0.0			
Intersection Summary						
Average Delay			4.5			
Intersection Capacity Utilization			24.7%	ICI	U Level of Ser	vice
Analysis Period (min)			15			100
			10			

	•	Ť	Ŧ
Lane Group	WBL	NBT	SBT
Lane Configurations	W.	1.	<u>ل</u> اً
Traffic Volume (vph)	50	<b>1</b> → 23	32
Future Volume (vph)	50	23	32
Lane Group Flow (vph)	50	46	32
Sign Control	Stop	Free	Free
Intersection Summary			
Control Type: Unsignalized			
Intersection Capacity Utilization 13.3%	, D		

Intersection Capacity Utili Analysis Period (min) 15

	4	*	1	1	<b>\</b>	† –
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	¥		1⊾			⊿1
Traffic Volume (veh/h)	50	0	<b>1</b> 23	23	0	<b>1</b> 32
Future Volume (Veh/h)	50	0	23	23	0	32
Sign Control	Stop	-	Free		-	Free
Grade	0%		0%			0%
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	50	0	23	23	0	32
Pedestrians		Ŭ		_•	•	
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type			None			None
Median storage veh)			NULLE			
Upstream signal (m)			108			
pX, platoon unblocked			100			
vC, conflicting volume	66	34			46	
vC1, stage 1 conf vol	00	34			40	
vC2, stage 2 conf vol						
vCu, unblocked vol	66	34			46	
	6.4	34 6.2			40	
tC, single (s)	0.4	0.Z			4.1	
tC, 2 stage (s)	2.5	2.2			0.0	
tF (s)	3.5 95	3.3			2.2 100	
p0 queue free %		100				
cM capacity (veh/h)	939	1039			1562	
Direction, Lane #	WB 1	NB 1	SB 1			
Volume Total	50	46	32			
Volume Left	50	0	0			
Volume Right	0	23	0			
cSH	939	1700	1562			
Volume to Capacity	0.05	0.03	0.00			
Queue Length 95th (m)	1.3	0.0	0.0			
Control Delay (s)	9.1	0.0	0.0			
Lane LOS	А					
Approach Delay (s)	9.1	0.0	0.0			
Approach LOS	А					
Intersection Summary						
Average Delay			3.5			
Intersection Capacity Utilization			13.3%	ICI	J Level of Serv	ice
Analysis Period (min)			15.5%	100		
			10			

## Lanes, Volumes, Timings 6: Woodroffe Ave & Richmond Rd

	۶	-	$\mathbf{r}$	4	+	•	Ť	1	Ŧ
Lane Group	EBL	EBT	EBR	WBL	WBT	NBL	NBT	SBL	SBT
Lane Configurations	5	•	1	5	٦,	5	<b>1</b> ,	5	î,
Traffic Volume (vph)	152	644	235	43	202	90	180	39	230
Future Volume (vph)	152	644	235	43	202	90	180	39	230
Lane Group Flow (vph)	152	644	235	43	222	90	272	39	291
Turn Type	Prot	NA	Perm	Prot	NA	pm+pt	NA	Perm	NA
Protected Phases	7	4		3	8	5	2		6
Permitted Phases			4			2		6	
Detector Phase	7	4	4	3	8	5	2	6	6
Switch Phase									
Minimum Initial (s)	5.0	10.0	10.0	5.0	10.0	5.0	10.0	10.0	10.0
Minimum Split (s)	11.9	28.9	28.9	11.7	33.9	11.5	31.5	31.5	31.5
Total Split (s)	19.4	45.3	45.3	11.7	37.6	11.5	43.0	31.5	31.5
Total Split (%)	19.4%	45.3%	45.3%	11.7%	37.6%	11.5%	43.0%	31.5%	31.5%
Yellow Time (s)	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3
All-Red Time (s)	3.6	3.6	3.6	3.4	3.6	3.2	3.2	3.2	3.2
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	6.9	6.9	6.9	6.7	6.9	6.5	6.5	6.5	6.5
Lead/Lag	Lead				Lag	Lead		Lag	Lag
Lead-Lag Optimize?	Yes				Yes	Yes		Yes	Yes
Recall Mode	None	C-Max	C-Max	None	C-Max	None	Max	Max	Max
Act Effct Green (s)	11.8	43.1	43.1	5.0	31.4	36.5	36.5	27.3	27.3
Actuated g/C Ratio	0.12	0.43	0.43	0.05	0.31	0.36	0.36	0.27	0.27
v/c Ratio	0.76	0.84	0.41	0.51	0.41	0.35	0.48	0.16	0.66
Control Delay	67.0	38.7	8.4	67.9	30.2	25.6	28.0	31.6	41.6
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	67.0	38.7	8.4	67.9	30.2	25.6	28.0	31.6	41.6
LOS	E	D	А	E	С	С	С	С	D
Approach Delay		36.0			36.3		27.4		40.4
Approach LOS		D			D		С	_	D
Queue Length 50th (m)	28.7	118.2	6.6	8.3	34.0	11.5	40.1	5.9	51.7
Queue Length 95th (m)	#57.2	#187.6	25.0	#22.2	55.0	22.4	63.8	14.7	#82.2
Internal Link Dist (m)		490.4			81.7		868.8		410.6
Turn Bay Length (m)	95.0		30.0	75.0		55.0		50.0	
Base Capacity (vph)	211	768	573	84	539	257	564	249	444
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.72	0.84	0.41	0.51	0.41	0.35	0.48	0.16	0.66
Intersection Summary									
Cycle Length: 100									
Actuated Cycle Length: 100									
Offset: 0 (0%), Referenced to phase	se 4:EBT and	8:WBT. Sta	t of Green						
Natural Cycle: 90									
Control Type: Actuated-Coordinate	ed								
Maximum v/c Ratio: 0.84									
Intersection Signal Delay: 35.2				In	tersection L	OS: D			
Intersection Capacity Utilization 91	1.3%				U Level of S				
Analysis Period (min) 15				10					
<ul><li># 95th percentile volume exceed</li></ul>	ls capacity, qu	eue mav be	longer.						
Queue shown is maximum afte									
Splits and Phases: 6: Woodroffe	e Ave & Richm	ond Rd							
1 m				<b>1</b>	32	-	<b>/=</b> )		
42 -				11.7		₩04 45.2	<b>(1</b> )		
43 S				11./S		45.3 s	_		

1 Ø2		▼ Ø3		.)	
43 s		11.7 s	45.3 s		
<b>Ø</b> 5	<b>₽</b> Ø6	<u>♦</u> ∅7	•	< Ø8 (R)	
11.5 s	31.5 s	19.4 s		37.6 s	

#### Lanes, Volumes, Timings 1: Richmond Rd & McEwen Ave

	٦	-	-	1			
Lane Group	EBL	EBT	WBT	SBL	Ø3	Ø5	Ø7
Lane Configurations	۲	•		Y			
Traffic Volume (vph)	81	376	<b>1</b> 708	35			
Future Volume (vph)	81	376	708	35			
Lane Group Flow (vph)	81	376	753	101			
Turn Type	Perm	NA	NA	Perm			
Protected Phases		4	8		3	5	7
Permitted Phases	4	•	· ·	6	•	•	•
Detector Phase	4	4	8	6			
Switch Phase							
Minimum Initial (s)	10.0	10.0	10.0	10.0	1.0	1.0	1.0
Minimum Split (s)	16.3	16.3	31.3	23.8	5.0	5.0	5.0
Total Split (s)	51.2	51.2	51.2	23.8	5.0	5.0	5.0
Total Split (%)	60.2%	60.2%	60.2%	28.0%	6%	6%	6%
Yellow Time (s)	3.3	3.3	3.3	3.3	2.0	2.0	2.0
All-Red Time (s)	3.0	3.0	3.0	3.5	0.0	0.0	0.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0			
Total Lost Time (s)	6.3	6.3	6.3	6.8			
Lead/Lag	Lag	Lag	Lag	Lag	Lead	Lead	Lead
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Recall Mode	C-Max	C-Max	C-Max	None	None	None	None
Act Effct Green (s)	56.3	56.3	56.3	14.2			
Actuated g/C Ratio	0.66	0.66	0.66	0.17			
v/c Ratio	0.28	0.32	0.65	0.37			
Control Delay	14.2	10.6	8.9	16.8			
Queue Delay	0.0	0.0	0.0	0.0			
Total Delay	14.2	10.6	8.9	16.8			
LOS	В	В	А	В			
Approach Delay		11.2	8.9	16.8			
Approach LOS		В	А	В			
Queue Length 50th (m)	7.2	34.3	32.4	4.7			
Queue Length 95th (m)	17.8	53.7	m34.9	17.7			
Internal Link Dist (m)		508.0	379.9	123.9			
Turn Bay Length (m)	50.0			20.0			
Base Capacity (vph)	294	1182	1165	314			
Starvation Cap Reductn	0	0	0	0			
Spillback Cap Reductn	0	0	0	0			
Storage Cap Reductn	0	0	0	0			
Reduced v/c Ratio	0.28	0.32	0.65	0.32			
Intersection Summary							
Cycle Length: 85							
Actuated Cycle Length: 85							
Offset: 17 (20%), Referenced to pha	ise 4:EBTL a	nd 8:WBT	Start of Gre	en			
Natural Cycle: 80				•••			
Control Type: Actuated-Coordinated							
Maximum v/c Ratio: 0.65							
Intersection Signal Delay: 10.3				Int	ersection LC	DS: B	
Intersection Capacity Utilization 80.1	1%				U Level of S		
Analysis Period (min) 15				.0			
m Volume for 95th percentile queu	le is meterer	by upstream	m signal				
		.,					

Splits and Phases: 1: Richmond Rd & McEwen Ave

			Å	i _ø	Ø4 (R)	
			5 s		51.2 s	
<u>.</u>	Ø	Ø6	¥	i.	← Ø8 (R)	
5 s		23.8 s	5 s		51.2 s	

#### Lanes, Volumes, Timings 2: Richmond Rd & New Orchard Ave N

	≯	-	+	1			
Lane Group	EBL	EBT	WBT	SBL	Ø3	Ø5	Ø7
Lane Configurations		4	1	V N	20		
Traffic Volume (vph)	40	400	717	98			
Future Volume (vph)	40	400	717	98			
Lane Group Flow (vph)	40	400	869	132			
Turn Type	Perm	440 NA	NA	Perm			
Protected Phases	reilli	NA 4	NA 8	Feiiil	3	5	7
Permitted Phases	4	4	0	6	3	5	1
	4	4	0	6			
Detector Phase Switch Phase	4	4	8	b			
	40.0	40.0	40.0	10.0	10	4.0	4.0
Minimum Initial (s)	10.0	10.0	10.0	10.0	1.0	1.0	1.0
Minimum Split (s)	16.3	16.3	27.3	28.7	5.0	5.0	5.0
Total Split (s)	46.3	46.3	46.3	28.7	5.0	5.0	5.0
Total Split (%)	54.5%	54.5%	54.5%	33.8%	6%	6%	6%
Yellow Time (s)	3.3	3.3	3.3	3.3	2.0	2.0	2.0
All-Red Time (s)	3.0	3.0	3.0	3.4	0.0	0.0	0.0
Lost Time Adjust (s)		0.0	0.0	0.0			
Total Lost Time (s)		6.3	6.3	6.7			
Lead/Lag	Lag	Lag	Lag	Lag	Lead	Lead	Lead
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Recall Mode	C-Max	C-Max	C-Max	None	None	None	None
Act Effct Green (s)		48.3	48.3	17.7			
Actuated g/C Ratio		0.57	0.57	0.21			
v/c Ratio		0.72	0.94	0.67			
Control Delay		37.8	41.6	41.8			
Queue Delay		0.0	0.0	0.0			
Total Delay		37.8	41.6	41.8			
LOS		D	-1.0 D	41.0 D			
Approach Delay		37.8	41.6	41.8			
Approach LOS		57.0 D	41.0 D	41.0 D			
Queue Length 50th (m)		77.7	~165.7	15.6			
		#123.2	#235.1	33.9			
Queue Length 95th (m)		#123.2 379.9	#235.1 495.5	33.9 54.3			
Internal Link Dist (m)		5/9.9	490.0	54.5			
Turn Bay Length (m)		C4F	000	044			
Base Capacity (vph)		615	920	241			
Starvation Cap Reductn		0	0	0			
Spillback Cap Reductn		0	0	0			
Storage Cap Reductn		0	0	0			
Reduced v/c Ratio		0.72	0.94	0.55			
Intersection Summary							
Cycle Length: 85							
Actuated Cycle Length: 85							
Offset: 1 (1%), Referenced to phase	4:EBTL and	I 8:WBT, Sta	art of Green				
Natural Cycle: 100							
Control Type: Actuated-Coordinated							
Maximum v/c Ratio: 0.94							
Intersection Signal Delay: 40.4					ersection LC		
Intersection Capacity Utilization 86.5	0%			ICI	U Level of S	ervice E	
Analysis Period (min) 15							
~ Volume exceeds capacity, queu		ally infinite.					
Queue shown is maximum after t							
# 95th percentile volume exceeds		eue may be	longer.				
Queue shown is maximum after t	wo cycles.						

#### Splits and Phases: 2: Richmond Rd & New Orchard Ave N



	≯	1	ţ
Lane Group	EBL	NBT	SBT
Lane Configurations	W.	្ឋ	î,
Traffic Volume (vph)	4	4 73	56
Future Volume (vph)	4	73	56
Lane Group Flow (vph)	83	172	59
Sign Control	Stop	Free	Free
Intersection Summary			
Control Type: Unsignalized			
Intersection Capacity Utilization 28 6%			

Analysis Period (min) 15

## HCM Unsignalized Intersection Capacity Analysis 3: New Orchard Ave N & Ambleside Dr

	≯	$\mathbf{r}$	1	1	↓ ·	∢
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	¥			ដ	1.	-
Traffic Volume (veh/h)	4	79	99	73	<b>1</b> 56	3
Future Volume (Veh/h)	4	79	99	73	56	3
Sign Control	Stop	10	00	Free	Free	Ű
Grade	0%			0%	0%	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	4	79	99	73	56	3
Pedestrians	•					Ŭ
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type				None	None	
Median storage veh)				NONO	110110	
Upstream signal (m)				78		
pX, platoon unblocked				10		
vC, conflicting volume	328	58	59			
vC1, stage 1 conf vol	020	00	00			
vC2, stage 2 conf vol						
vCu, unblocked vol	328	58	59			
tC, single (s)	6.4	6.2	4.1			
tC, 2 stage (s)	0.4	0.2	7.1			
tF (s)	3.5	3.3	2.2			
p0 queue free %	99	92	94			
cM capacity (veh/h)	623	1009	1545			
Direction, Lane #	EB 1	NB 1	SB 1			
Volume Total	83	172	59			
Volume Left	4	99	0			
Volume Right	79	0	3			
cSH	979	1545	1700			
Volume to Capacity	0.08	0.06	0.03			
Queue Length 95th (m)	2.1	1.6	0.0			
Control Delay (s)	9.0	4.5	0.0			
Lane LOS	А	А				
Approach Delay (s)	9.0	4.5	0.0			
Approach LOS	А					
Intersection Summary						
Average Delay			4.9			
Intersection Capacity Utilization			28.6%	IC	U Level of Serv	/ice
Analysis Period (min)			15			

		-	
	•	1	Ŧ
Lane Group	WBL	NBT	SBT
Lane Configurations	¥	ĥ	đ.
Traffic Volume (vph)	0	<b>1</b> 35	29
Future Volume (vph)	0	35	29
Lane Group Flow (vph)	31	77	29
Sign Control	Stop	Free	Free
Intersection Summary			
Control Type: Unsignalized			
Intersection Canacity I Itilization 14 7%			

Intersection Capacity Utilization 14.7% Analysis Period (min) 15

# HCM Unsignalized Intersection Capacity Analysis 5: New Orchard Ave N & Access

	•	*	1	1	<b>\</b>	Ļ
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	¥		î,			đ
Traffic Volume (veh/h)	0	31	35	42	0	29
Future Volume (Veh/h)	0	31	35	42	0	29
Sign Control	Stop		Free			Free
Grade	0%		0%			0%
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	0	31	35	42	0	29
Pedestrians		•			•	
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type			None			None
Median storage veh)			NONG			
Upstream signal (m)			110			
pX, platoon unblocked			IIV			
vC, conflicting volume	85	56			77	
vC1, stage 1 conf vol	00	50			11	
vC2, stage 2 conf vol						
vCu, unblocked vol	85	56			77	
tC, single (s)	6.4	6.2			4.1	
tC, 2 stage (s)	0.4	0.2			4.1	
tF (s)	3.5	3.3			2.2	
p0 queue free %	100	97			100	
cM capacity (veh/h)	916	1011			1522	
					1522	
Direction, Lane #	WB 1	NB 1	SB 1			
Volume Total	31	77	29			
Volume Left	0	0	0			
Volume Right	31	42	0			
cSH	1011	1700	1522			
Volume to Capacity	0.03	0.05	0.00			
Queue Length 95th (m)	0.7	0.0	0.0			
Control Delay (s)	8.7	0.0	0.0			
Lane LOS	А					
Approach Delay (s)	8.7	0.0	0.0			
Approach LOS	А					
Intersection Summary						
Average Delay			2.0			
Intersection Capacity Utilization			14.7%	ICl	J Level of Serv	ice
Analysis Period (min)			15			
			10			

## Lanes, Volumes, Timings 6: Woodroffe Ave & Richmond Rd

	≯	-	$\mathbf{r}$	4	-	1	t	1	Ļ
Lane Group	EBL	EBT	EBR	WBL	WBT	NBL	NBT	SBL	SBT
Lane Configurations	5	•	1	5	<b>1</b> 4	5	î,	5	î,
Traffic Volume (vph)	83	282	185	152	546	178	281	25	238
Future Volume (vph)	83	282	185	152	546	178	281	25	238
Lane Group Flow (vph)	83	282	185	152	577	178	369	25	300
Turn Type	Prot	NA	Perm	Prot	NA	pm+pt	NA	Perm	NA
Protected Phases	7	4		3	8	5	2		6
Permitted Phases			4			2		6	
Detector Phase	7	4	4	3	8	5	2	6	6
Switch Phase									
Minimum Initial (s)	5.0	10.0	10.0	5.0	10.0	5.0	5.0	10.0	10.0
Minimum Split (s)	11.9	28.9	28.9	11.7	33.9	11.5	31.5	31.5	31.5
Total Split (s)	14.0	41.8	41.8	20.7	48.5	16.0	47.5	31.5	31.5
Total Split (%)	12.7%	38.0%	38.0%	18.8%	44.1%	14.5%	43.2%	28.6%	28.6%
Yellow Time (s)	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3
All-Red Time (s)	3.6	3.6	3.6	3.4	3.6	3.2	3.2	3.2	3.2
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	2.0	0.0	0.0	0.0
Total Lost Time (s)	6.9	6.9	6.9	6.7	6.9	8.5	6.5	6.5	6.5
Lead/Lag	Lead				Lag	Lead		Lag	Lag
Lead-Lag Optimize?	Yes	0.14	0.14	News	Yes	Yes		Yes	Yes
Recall Mode	None	C-Max	C-Max	None	C-Max	None	Max	Max	Max
Act Effct Green (s)	7.1	35.9	35.9	13.0	41.6	39.0	41.0	25.0	25.0
Actuated g/C Ratio	0.06	0.33	0.33	0.12	0.38	0.35	0.37	0.23	0.23
v/c Ratio Control Delay	0.76 90.5	0.48 33.5	0.41 8.6	0.76 70.9	0.88 47.9	0.80 54.6	0.62 33.5	0.13 36.1	0.82 59.1
Queue Delay	90.5 0.0	33.5 0.0	8.6 0.0	70.9 0.0	47.9	54.6 0.0	33.5 0.0	36.1 0.0	59.1 0.0
Total Delay	90.5	33.5	0.0 8.6	70.9	47.9	0.0 54.6	33.5	36.1	59.1
LOS	90.5 F	33.5 C	0.0 A	70.9 E	47.9 D	54.6 D	33.5 C	30.1 D	59.1 E
Approach Delay	1.	33.7	A	L	52.7	U	40.4	U	57.3
Approach LOS		55.7 C			J2.7 D		40.4 D		57.5 E
Queue Length 50th (m)	17.9	48.9	2.5	31.7	113.6	27.3	63.7	4.3	61.3
Queue Length 95th (m)	#43.6	74.3	19.8	#59.6	#176.0	#58.0	95.2	11.8	#104.2
Internal Link Dist (m)	" <del>1</del> 0.0	495.5	10.0	,, 00.0	80.5		878.5		424.0
Turn Bay Length (m)	95.0		30.0	75.0	00.0	55.0	0.0.0	50.0	.21.0
Base Capacity (vph)	109	582	455	215	659	222	599	190	368
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.76	0.48	0.41	0.71	0.88	0.80	0.62	0.13	0.82
Intersection Summany									
Intersection Summary									
Cycle Length: 110									
Actuated Cycle Length: 110	and A.E.D.T. and (	N/DT Stor	t of Croop						
Offset: 0 (0%), Referenced to pha	ase 4:EBT and a	SIVBI, Star	t of Green						
Natural Cycle: 90 Control Type: Actuated-Coordinat	tod								
Maximum v/c Ratio: 0.88									
Intersection Signal Delay: 45.4				In	tersection L	05 0			
Intersection Capacity Utilization 9	2.7%				CU Level of S				
Analysis Period (min) 15	2.1 /0			ic.					
<ul> <li># 95th percentile volume exceed</li> </ul>	ds capacity our	eue mav he	longer						
Queue shown is maximum after		sao may be	iongoi.						
	fe Ave & Richm	and Dd							
Splits and Phases: 6: Woodroff	re Ave & Richm	ona Ra							
Ø2					Ø3		🕴 🐨 🖗 4	+ (R)	
47.5 s				20.7 s			41.8 s		

1 Ø2		▼ Ø3	🖣 🐨 🖉 4 (R)
47.5 s		20.7 s	41.8 s
▲ ø5	Ø6		<b>←</b> Ø <b>₽</b> (R)
16 s	31.5 s	14 s	48.5 s