

Kollaard Associates Engineers 210 Prescott Street, Unit 1 P.O. Box 189

Kemptville, Ontario K0G 1J0

Civil • Geotechnical • Structural • Environmental • Hydrogeology

> (613) 860-0923 FAX: (613) 258-0475

STORMWATER MANAGEMENT REPORT PROPOSED RESIDENTIAL SUBDIVISION 2050 DUNROBIN ROAD CITY OF OTTAWA

Submitted to:

Hauderowicz, Zbigniew and Teresa 165 Constance Lake Road Kanata, Ontario K2K 1X7

PROJECT #: 200977

DISTRIBUTION 6 copies – City of Ottawa 1 copy – Client 1 copy – Kollaard Associates 1 copy – Mississippi Conservation

Issued in support of the Subdivision Agreement

September 24, 2021

Kollaard Associates

September 24, 2021

File No. 200977

1. INTROD	UCTION
1.1. Bac	kground1
2. Stormw	ater Management Development Requirements2
2.1. Gui	delines, Manuals and Reports 2
2.2. Bes	t Management Practices
3. PROPOS	SED HYDROLOGIC MODEL
3.1. Des	ign Storm Intensity
3.2. Me	thodology4
3.3. OT	Image: Frequencies of the second
3.3.1.	Runoff Curve Numbers5
3.3.2.	Initial Abstraction And Potential Storage
3.3.3.	Time of Concentration and Time to Peak7
3.4. Wa	tershed or Catchment Areas
3.4.1.	Delineation of Offsite Catchment Areas9
3.4.2.	Delineation of Onsite Catchment Areas
3.5. Op	en Channel Flow
3.5.1.	Conveyance of Offsite Runoff
3.5.2.	Conveyance of Internal Site Runoff10
4. Receivir	ng Water Body - Harwood Creek10
4.1. Est	mated Flow Rate
4.2. Rai	road Culvert Capacity – Estimate Flow Rate12
4.3. Effe	ect of Development on Flood Levels in Harwood Creek and Surrounding Area. 14
4.3.1.	Flood Risk From Existing Conditions and Mitigation of Risk14
4.3.2.	During Storm Events
5. PRE-DE	VELOPMENT STORMWATER ANALYSIS16
5.1. Adj	acent Off Site Properties16
5.2. On	Site Predevelopment Conditions16
5.3. Pre	-Development Runoff17
6. POST-D	EVELOPMENT STORMWATER ANALYSIS
6.1. Sto	rmwater Conveyance18
6.1.1.	Conveyance Along Roadside Ditches
6.1.2.	Conveyance Along Easement Swale
6.2. Qu	antity Control
6.2.1.	Allowable Release Rate
6.2.2.	Storage Swale Volume and Rating Curve23
6.2.3.	Post Development Runoff Rate and Storage Requirements
6.3. Qua	ality Control
6.3.1.	Volumetric Sizing and Filter Size
6.3.2.	Discharge Through Filter

File No. 200977

6.3.3. Filter Design Summary Table	
6.4. Best Management Practices	
7. Driveway Culverts	
8. Operation and Maintenance	
8.1. Operation and Maintenance	
8.1.1. Grassed Swales and Roadside Ditches	
8.1.2. Stormwater Management Swale	
8.2. Site Runoff Protection	34
9. EROSION AND SEDIMENT CONTROL	
10. STORMWATER MANAGEMENT CONCLUSIONS	

TABLES

Table 4-2: Estimated Flow Rates for Harwood Creek Adjacent Site12Table 4-3: Capacity of Culvert Under Railroad Tracks13Table 4-4: Approximate Water Surface Elevation for Storm Events at Railway Crossing14Culvert14Table 5-1: Pre-Development Runoff Rates and Runoff Volumes17Table 6-1: Flow within the Road Side Ditches20Table 6-2: Flow within the Easement Swale21Table 6-3: Unmanaged Post-Development and Calc. of Allowable Release Rate23Table 6-4: Storage Swale Volume and Release Rate24Table 6-5: Pre-development Vs Controlled Post Development25Table 6-6: Storage Requirements26Table 6-7: Filter Design Summary Table30Table 7-1: Culvert Flow Demand and Capacity32	Table 4-1: Estimated Flow Rates for Similar Creeks	12
Table 4-3: Capacity of Culvert Under Railroad Tracks13Table 4-4: Approximate Water Surface Elevation for Storm Events at Railway Crossing14Culvert14Table 5-1: Pre-Development Runoff Rates and Runoff Volumes17Table 6-1: Flow within the Road Side Ditches20Table 6-2: Flow within the Easement Swale21Table 6-3: Unmanaged Post-Development and Calc. of Allowable Release Rate23Table 6-4: Storage Swale Volume and Release Rate24Table 6-5: Pre-development Vs Controlled Post Development.25Table 6-6: Storage Requirements26Table 6-7: Filter Design Summary Table30Table 7-1: Culvert Flow Demand and Capacity32	Table 4-2: Estimated Flow Rates for Harwood Creek Adjacent Site	12
Table 4-4: Approximate Water Surface Elevation for Storm Events at Railway CrossingCulvert14Table 5-1: Pre-Development Runoff Rates and Runoff Volumes17Table 6-1: Flow within the Road Side Ditches20Table 6-2: Flow within the Easement Swale21Table 6-3: Unmanaged Post-Development and Calc. of Allowable Release Rate23Table 6-4: Storage Swale Volume and Release Rate24Table 6-5: Pre-development Vs Controlled Post Development25Table 6-6: Storage Requirements26Table 6-7: Filter Design Summary Table30Table 7-1: Culvert Flow Demand and Capacity32	Table 4-3: Capacity of Culvert Under Railroad Tracks	13
Culvert14Table 5-1: Pre-Development Runoff Rates and Runoff Volumes17Table 6-1: Flow within the Road Side Ditches20Table 6-2: Flow within the Easement Swale21Table 6-3: Unmanaged Post-Development and Calc. of Allowable Release Rate23Table 6-4: Storage Swale Volume and Release Rate24Table 6-5: Pre-development Vs Controlled Post Development25Table 6-6: Storage Requirements26Table 6-7: Filter Design Summary Table30Table 7-1: Culvert Flow Demand and Capacity32	Table 4-4: Approximate Water Surface Elevation for Storm Events at Railway Crossing	
Table 5-1: Pre-Development Runoff Rates and Runoff Volumes17Table 6-1: Flow within the Road Side Ditches20Table 6-2: Flow within the Easement Swale21Table 6-3: Unmanaged Post-Development and Calc. of Allowable Release Rate23Table 6-4: Storage Swale Volume and Release Rate24Table 6-5: Pre-development Vs Controlled Post Development.25Table 6-6: Storage Requirements.26Table 6-7: Filter Design Summary Table.30Table 7-1: Culvert Flow Demand and Capacity32	Culvert	14
Table 6-1: Flow within the Road Side Ditches20Table 6-2: Flow within the Easement Swale21Table 6-3: Unmanaged Post-Development and Calc. of Allowable Release Rate23Table 6-4: Storage Swale Volume and Release Rate24Table 6-5: Pre-development Vs Controlled Post Development25Table 6-6: Storage Requirements26Table 6-7: Filter Design Summary Table30Table 7-1: Culvert Flow Demand and Capacity32	Table 5-1: Pre-Development Runoff Rates and Runoff Volumes	17
Table 6-2: Flow within the Easement Swale21Table 6-3: Unmanaged Post-Development and Calc. of Allowable Release Rate23Table 6-4: Storage Swale Volume and Release Rate24Table 6-5: Pre-development Vs Controlled Post Development.25Table 6-6: Storage Requirements.26Table 6-7: Filter Design Summary Table.30Table 7-1: Culvert Flow Demand and Capacity32	Table 6-1: Flow within the Road Side Ditches	20
Table 6-3: Unmanaged Post-Development and Calc. of Allowable Release Rate23Table 6-4: Storage Swale Volume and Release Rate24Table 6-5: Pre-development Vs Controlled Post Development25Table 6-6: Storage Requirements26Table 6-7: Filter Design Summary Table30Table 7-1: Culvert Flow Demand and Capacity32	Table 6-2: Flow within the Easement Swale	21
Table 6-4: Storage Swale Volume and Release Rate24Table 6-5: Pre-development Vs Controlled Post Development.25Table 6-6: Storage Requirements.26Table 6-7: Filter Design Summary Table.30Table 7-1: Culvert Flow Demand and Capacity32	Table 6-3: Unmanaged Post-Development and Calc. of Allowable Release Rate	23
Table 6-5: Pre-development Vs Controlled Post Development.25Table 6-6: Storage Requirements.26Table 6-7: Filter Design Summary Table.30Table 7-1: Culvert Flow Demand and Capacity	Table 6-4: Storage Swale Volume and Release Rate	24
Table 6-6: Storage Requirements	Table 6-5: Pre-development Vs Controlled Post Development	25
Table 6-7: Filter Design Summary Table	Table 6-6: Storage Requirements	26
Table 7-1: Culvert Flow Demand and Capacity	Table 6-7: Filter Design Summary Table	30
	Table 7-1: Culvert Flow Demand and Capacity	32

LIST OF APPENDICES

APPENDIX A: POST-DEVELOPMENT CATCHMENT AREAS AND SITE PARAMETERS APPENDIX B: TIME OF CONCENTRATION AND TIME TO PEAK CALCULATION APPENDIX C: PRE-DEVELOPMENT STORM DATA APPENDIX D: POST-DEVELOPMENT OTTHYMO STORM DATA APPENDIX E: STORMWATER MANAGEMENT SWALE APPENDIX F: CULVERT ANALYSIS AND HYDRAFLOW EXPRESS ANALYSIS RESULTS

File No. 200977

LIST OF DRAWINGS

200977-PRECA – Pre-Development Drainage Plan

200977-POSTCA – Post-Development Drainage Plan

200977-GRD - Grading and Drainage Plan

200977-ESC - Erosion and Sediment Control

1. INTRODUCTION

Mr. Zbigniew Hauderowicz retained Kollaard Associates Inc. to complete a Site Grading and Drainage Plan along with a Stormwater Management Report in support of the City of Ottawa Subdivision Approval Application for the proposed residential development at 2050 Dunrobin Road in the City of Ottawa, Ontario.

The increase in stormwater runoff on site, caused by the increased impervious area created during development, will be treated through a system of vegetated swales, road side ditches and sand filtration. The roadside ditches and stormwater management swale will provide stormwater storage while the vegetated swales and sand filter will promote infiltration and reduce suspended solids in order to achieve quantity and quality control parameters established by the City of Ottawa, Mississippi Valley Conservation Authority and the Ministry of Environment Conservation and Parks.

1.1. Background

The proposed residential development will be located on the northeast side of Dunrobin Road just southeast of Constance Lake Road in the City of Ottawa, Ontario. The total site development area is approximately 9.0 hectares (22 acres) and will create a total of eight residential lots, each with a respective single family dwelling. The proposed residential development will affect an additional 0.11 hectare portion of City of Ottawa property, in the form of landscaping between the site and the city street.

The proposed development has in general a rectangular shape and extends from Dunrobin Road to the former CN railway tracks located along the northeast side of the site. A narrow portion of the site projects southeast from the east corner of the site along the CN railway. The projection has an average width of about 14.5 metres, a maximum width of about 26.5 metres and extends about 160 metres to the south side of Harwood Creek.

The proposed development site is part of the Harwood Creek watershed. Harwood Creek is a tributary to Constance Lake and is adjacent the eastern extension of the site. Harwood Creek is a watercourse of record with sufficient size and capacity to receive the runoff from the proposed development.

File No. 200977

A road will be extended through the development, northeast from Dunrobin Road, ending in a cul-de-sac on the site. Residential driveways will originate along both sides of the proposed development roadway. The single family dwellings will be serviced by wells, onsite septic leaching beds and side yard swales.

The proposed stormwater management design directs stormwater runoff to the east corner of the site by means of the ditch road side ditches and an outlet swale towards the Harwood Creek.

2. Stormwater Management Development Requirements

The subject lands are within the City of Ottawa and the Mississippi Valley Conservation Authority jurisdiction. Stormwater management guidelines set out by the Ministry of the Environment, *Stormwater Planning and Design Manual* (SWPDM) and the City of Ottawa, *Ottawa Sewer Design Guidelines* 2021 as amended (OSDG) include the following parameters for the stormwater management design at the development site:

- Post development peak runoff rates are to be equal to or less than pre development levels for all storms up to and including the 100 year storm event.
- Surface runoff volumes are to be minimized through infiltration techniques
- The design shall include enhanced quality treatment as recommended by the MOE (SWPDM)
- Downstream sedimentation shall be mitigated at 2050 Dunrobin Road by increasing particle settlement along runoff flow paths within the development
- Onsite stormwater storage and flow shall be controlled as to not affect lands adjacent the development site

2.1. Guidelines, Manuals and Reports

The following guidelines and manuals were utilized in the creation of the stormwater management design and the preparation of this report.

Ottawa Sewer Design Guildelines (OSDG)

City of Ottawa, October 2012 as amended.

Stormwater Management Planning and Design Manual (SWMP Design Manual)

Ministry of the Environment, March 2003

File No. 200977

Visual OTTHYMO V2.0: Reference Manual Greenland International Consulting Inc., July 2002

2.2. Best Management Practices

Best Management Practices (BMPs) will be incorporated into the subdivision design to reduce the post-development peak runoff rate, improve the quality of the water leaving the subdivision and to establish boundary conditions to control future runoff of surrounding developments that might potentially impact the proposed 2050 Dunrobin Road development.

The proposed BMPs will include both general and lot level BMPs. The general BMPs will include reduced swale slopes and an increased swale cross section to reduce flow rates and provide filtration and the removal of sediments. Lot level BMPs may include directing runoff from impervious surfaces to adjacent grassed areas, and re-vegetating any surface areas of the lot disturbed during construction as soon as possible.

3. PROPOSED HYDROLOGIC MODEL

3.1. Design Storm Intensity

Intensity-Duration-Frequency curves derived from Meteorological Services of Canada rainfall data for the MacDonald-Cartier Airport in Ottawa were used to determine the expected rainfall intensity for a given duration and storm frequency.

The IDF formulae obtained from the OSDG are as follows:

100 year Intensity	$= 1735.688 / (Time in min + 6.014)^{0.820}$
10 year Intensity	= 1174.184 / (Time in min + 6.014) ^{0.816}
5 year Intensity	= 998.071 / (Time in min + 6.053) ^{0.814}

The information obtained from the IDF curves were used to generate 6 hour and 12 hour SCS Type II Design Storms which were used in the Model. The historical design storms from July 1, 1979 and August 4, 1988, the 4 hour and 12 hour Chicago storm distribution were also used in the analysis for comparison and quality control consideration. The 15 mm and

Stormwater Management Report

25 millimeter 4 hour Chicago storms are considered by the Ontario Ministry of Environment Conservation and Parks to be the design storm for quality control purposes.

3.2. Methodology

The hydrologic modeling software, Visual OTTHYMO (V2.6.3) was used to assess pre- and post-development stormwater conditions at the site.

The pre-development were calculated using the NASHYD watershed command. The postdevelopment conditions were also calculated using the NASHYD watershed command as the average impervious ratio for the Subdivision is less than 20 percent.

The NASHYD hydrograph method uses the Nash instantaneous unit hydrograph which is made of a cascade of 'N' linear reservoirs and is used to model rural areas.

Both the Pre and Post-development conditions were modeled for quantity control purposes utilizing SCS Type II Storm Distributions and Chicago storm distributions of various duration and magnitude. The historical design storms from July 1, 1979 and August 4, 1988 were also considered. The parameters used in the model are presented in Appendix A.

The pre- and post-development conditions were modeled using the 15 mm and 25 mm 4 hour Chicago storm for quality control purposes.

The resulting pre and post-development models contain the storm events as follows:

Simulation Number 1 – 6 hour 5 year SCS Type II Simulation Number 2 – 6 hour 100 year SCS Type II Simulation Number 3 – 12 hour 5 year SCS Type II Simulation Number 4 – 12 hour 10 year SCS Type II Simulation Number 5 – 12 hour 100 year SCS Type II Simulation Number 6 – 12 hour 5 year Chicago Simulation Number 7 – 12 hour 100 year Chicago Simulation Number 8 – Historical Storm July 1, 1979 Simulation Number 9 – Historical Storm August 4, 1988 Simulation Number 10 – 25mm 4 hour Chicago File No. 200977

The SCS Type II storm data was given priority in the SWM design as the proposed development is a rural residential development. The 12 SCS storms are generally applicable to undeveloped or rural basins where peak flow rates are largely influenced by the total volume of rainfall. The SCS Type II storm distribution is generally preferred for both large and small rural areas (OSDG). The Chicago storm is more commonly used for urban areas.

3.3. OTTHYMO Storm Analysis Variables

As previously indicated, the stormwater runoff was calculated using the NASHYD watershed command. The NASHYD command uses the Nash instantaneous unit hydrograph which is made of a cascade of 'N' linear reservoirs and is used to model rural areas.

The NASHYD command uses the following inputs:

DT – Simulation time step increment (min) – must be shorter than TP

Area – Watershed or catchment area (hectares)

DWF – A constant Dry Weather Flow or Baseflow (m3/s) assumed to be 0 (doesn't change

from pre to post development)

CN – SCS Modified Curve Number

IA – Initial Abstraction (mm)

- N Number of Linear reservoir used for derivation of the Nash Unit Hydrograph
- TP Unit hydrograph time to peak (hr)

The Storm Analysis Model Variables for each catchment used in the storm water management model are summarized in Appendix A of this report.

3.3.1. Runoff Curve Numbers

The NasHyd hydrograph method which uses the SCS loss method for pervious areas was used to model both the pre- and post development conditions of the proposed subdivision. Runoff Curve Numbers (CN) are utilized in the SCS hydrology method. The Curve Number is a function of soil type, ground cover, and antecedent moisture conditions. The soil type was chosen to be Group B for the site in keeping with the Hydrogeological Investigation and Terrain Evaluation Report prepared for the proposed development. The subsurface conditions were found to consist of sand, silty sand and glacial till underlying the topsoil at the site. A calculation of the CN values for both the pre- and post-development conditions is presented in Appendix A.

The CN values used for each catchment area consist of a weighted average value based on the conditions and cover of the ground surface in the catchment area. For the purposes of analysis presented in this report, the surface cover was considered to be Open Space (lawns) in good condition 61, Woods/brush in good condition (the woods/brush on site is recent re-growth with dense undergrowth) 55, and Impervious 98. The offsite contributing area to the northwest was considered to be a combination of open space in good condition and woods in fair condition resulting in a CN of 61. The CN values were taken from OSDG Table 5.9 and from the United States Department of Agriculture Urban Hydrology for Small Watersheds Technical Release 55 (USDA TR55).

File No. 200977

3.3.2. Initial Abstraction And Potential Storage

The initial abstraction includes all losses before runoff begins, and includes water retained in surface depressions, water taken up by vegetation, evaporation, and infiltration. This value is related to characteristics of the soil and the soil cover. Initial abstraction is a function of the potential storage and is generally assumed to be equal to 0.2S where S is the potential storage.

It is considered that for lower CN values, the relationship IA = 0.2S tends to overestimate the initial abstraction resulting in underestimated peak runoff. As such suggested guidelines are as follows:

CN ≤ 70 IA = 0.075S

CN > 70 ≤ 80 IA = 0.10S

CN > 80 ≤ 90 IA = 0.15S

CN > 90 IA = 0.2S

The potential storage S is related to the runoff coefficient as follows:

S = (25400/CN) - 254

The initial abstraction IA and potential storage S values for both the pre- and postdevelopment conditions are also presented in Appendix A.

Kollaard Associates

September 24, 2021

File No. 200977

3.3.3. Time of Concentration and Time to Peak

The time to peak is generally considered to be 2/3rds of the time of concentration of a catchment area. The calculation for the time of concentration of each catchment is summarized in Appendix B. The time of concentration of each catchment was determined using the Velocity method. The velocity method assumes that the time of concentration is the sum of travel times for segments along the hydraulically most distant flow path. The segments used in the velocity method may be of three types: sheet flow T_s , shallow concentrated flow T_{sc} , and open channel flow T_c . The open channel flow will be modelled using the route Channel Command in OTTHYMO.

Travel time for sheet flow

$$T_s = \frac{0.091(nl)^{0.8}}{(P_2)^{0.5}S^{0.4}}$$

Where

T_s = travel time, h

n = Manning's roughness coefficient sheet flow

I = sheet flow length, 15 m

P₂ = 2-year 24-hour rainfall, = 48 mm

S = Slope of land surface m/m

The Manning's roughness coefficient for sheet flow for woods in good condition n = 0.6, for treed areas on residential lots outside of the developed area of the lots n = 0.4, for residential open space and lawns n = 0.25. During the analysis for post-development conditions, the Manning's roughness coefficient for each lot was taken as 0.25 as the exact amount of spaced cleared on each lot by the developer/home builder may vary from design. Since a roughness coefficient of 0.25 results in more runoff than a roughness coefficient of 0.4, the design accommodates a worst case scenario where an individual clears the entire lot.

Shallow concentrated flow was assumed to occur after a maximum of 15 metres on each catchment. The length of sheet flow is expected to end sooner in the catchments were a swale or ditch could intersect the flow.

File No. 200977

Travel time for shallow concentrated flow

The flow velocity used to calculate the time of travel for shallow concentrated flow was determined using Figure 15-4 of Chapter 15 of the USDA handbook (Included in Appendix B of this Report). This figure can be used to determine the velocity when the slope and ground cover is known. The ground cover to be used in reading Figure 15-4 was determined as follows: Catchment areas with woods cover in good conditions Manning's n for concentrated flow = 0.101. For the residential lots, Manning's n for concentrated flow was also assumed to be = 0.1 as the length of the flow path and anticipated flow depth would not result in flows exceeding the height of the vegetation on the open space surface. The Manning's n was compared to the Flow Type identified in Table 15-3.

From Table 15-3 of the USDA handbook, a Manning's n of 0.1 corresponds to minimum Tillage Cultivation. As an example, the slope for Catchment C8 was determined to be 2.8 m over a distance of 56 m or 0.05. From Figure 15-4 of the USDA Handbook using a slope of 5.0% and minimum tillage cultivation, the velocity is estimated at 0.34 m/s (1.1ft/s) for catchment C8.

$$T_{sc} = \frac{l}{3600 \text{ V}}$$

Where $T_{sc} = travel time, h$

I = distance of shallow concentrated flow = 56 m

V = average velocity = 0.34 m/s

 $T_{sc} = 0.05 \text{ hrs}$

Travel time for open channel flow

The open channel flow will be modelled using the route Channel Command in OTTHYMO.

The main channels consist of the roadside and drainage easement ditches. The easement swales and roadside ditches in the development are channels which were designed to be excavated channels in earth with short grass and few weeds. Using Chow 1959, the channels having these characteristics will have a Manning's n of 0.027.

The channels are assumed to have the following characteristics – Trapezoidal shaped channel with side slopes of 3H:1V and a bottom width of about 0.3 metres.

File No. 200977

3.4. Watershed or Catchment Areas

The catchment areas contributing runoff to the stormwater management works consist of both onsite and offsite catchment areas. The catchment areas used in the design for the proposed subdivision are presented in the attached drawings 200977-PRECA and 200977-POSTCA.

3.4.1. Delineation of Offsite Catchment Areas

A review of watershed drainage patterns surrounding the subdivision was completed using the Ministry of Natural Resources and Forestry Ontario Flow Assessment Tool, large scale topographic mapping, the City of Ottawa geoOttawa tool, and the Mississippi Valley Conservation Authority Flood Plain Mapping. Based on the information obtained from the above sources it is apparent that runoff is generally directed parallel to the site from Dunrobin Road to the rail corridor northeast of the site. The flood plain mapping and topographical information provided indicates that there is a 100 year flood plain from the Hardwood Creek which extends onto the lower portion of the site. Runoff is directed towards the flood plain and towards the Harwood Creek. Due to these drainage patterns there are no offsite areas southeast or northeast of the site which contribute runoff to the site.

The existing topography of the site adjacent the northwest property line and topographic information obtained from contours of the adjacent site indicate that a portion of the properties northwest of the site contribute runoff to the site. This off site area has been delineated on the pre- and post-development drainage plans.

3.4.2. Delineation of Onsite Catchment Areas

The onsite catchment areas were delineated based on the topography obtained of the site area on and on the proposed development. The catchment areas used in the analysis for the design of the stormwater management facility including determining quantity and quality storage requirements and determining the flow depth in the swales and ditches are presented in the attached drawing 200977-POSTCA – Post-Development Drainage Plan.

3.5. Open Channel Flow

Open Channel Flow will occur along the road side ditches and along the conveyance easement extending from the end of the cul-de-sac to Harwood Creek.

File No. 200977

3.5.1. Conveyance of Offsite Runoff

Sheet flow and shallow concentrated flow from the offsite catchments will be collected by a shallow easement swale located along the northwest sides of the proposed development. This flow will be routed along the outside edge of the development to the ditch along the rail corridor.

3.5.2. Conveyance of Internal Site Runoff

Internal site runoff will be conveyed along roadside ditches and easement swales as illustrated on the proposed subdivision grading plans.

4. Receiving Water Body - Harwood Creek

4.1. Estimated Flow Rate

The headwaters of the Harwood Creek adjacent to the site are located slightly east of the Village of Carp. The Harwood Creek passes through a double barrel box culvert beneath the railway adjacent to the east corner of the site immediately downstream of the site. The Harwood Creek outlets to Constance Lake about 1.2 kilometres downstream of the railway culvert. The drainage area of the branch upstream of the railway culvert was estimated from National Resources Canada Topographic Maps in combination with the outline of the water course indicated on the aerial photographs contained on the City of Ottawa Electronic Map to be about 13 square kilometers. This estimation was verified using the Ontario Flow Assessment Tool which was used to generate the catchment area illustrated in the figure below. The Catchment generated by OFAT has an area of 12.7 square kilometers which is in keeping with the above calculated area.

Flood plain mapping for the Harwood Creek was obtained from the Mississippi Valley Conservation Authority (MVAC) website. The flood plain mapping provides information with respect to the 100 year flood elevation along the Harwood Creek. Calculations or data with respect to the expected flow rates during various storm events were not available for this particular creek. In order to estimate flow rates within the Harwood Creek, a comparison of this Creek was made to other Creeks in the West Carlton Area of Ottawa for which flow rate calculations had been made by others.

A study of the Carp River watershed area was completed by Robinson Consultants Inc. dated December 2004. This study provided characteristics of several tributary creeks to the Carp River as well as calculated peak flows. The tributary creeks include Feedmill Creek, Corkery Creek, and Poole Creek.

The following tables indicates the calculated flows from the above creeks for various storm events at their outlet point to the Carp River as well as the catchment area and the flow per square kilometer of catchment. The calculated flows were obtained from the Carp River Watershed / Subwatershed Study Volume 1 Main Report prepared by Robinson Consultants Inc dated December 2004 Table 8.3.3.

File No. 200977

Table 4-1: Estimated Flow Rates for Similar Creeks

Storm Event	2 Year	5 year	100 year	Catchment Area (km²)
Creek	Flov	<i>w</i> Rate At Outlet (m ³ /s	sec)	
Poole	8.8	12.1	21.5	20.9
Feedmill	3.5	4.8	8.8	7.4
Corkery	11.3	15.5	27.0	33.6
Creek	Flow Rate per squa	re kilometre of catch	ment (m ³ /sec/km ²)	
Poole	0.42	0.58	1.03	
Feedmill	0.47	0.65	1.19	
Corkery	0.34	0.46	0.80	
Average	0.41	0.56	1.01	

From the above table and considering the catchment area of Harwood Creek in question, the following estimated flow rates were determined adjacent the site. The Ontario Flow Assessment Tool was also used to generate flow rates for various return periods in the Harwood Creek using the Primary Multiple Regression Method. These flow rates have been added to the following table for comparison.

Table 4-2: Estimated Flow Rates for Harwood Creek Adjacent Site

Storm Event	2 Year	5 year	100 year	Catchment Area (km²)
Creek	Flow Rate At Railroad Culvert (m ³ /sec) based on similar			
	Creeks			
Harwood	5.3	7.3	13.1	13
	Flow Rate At Railroad Culvert (m ³ /sec) from OFAT			
Harwood	2.8	4.6	10.5	12.7

From the above, the estimated peak flow rate during a 100 year design storm in the Harwood Creek at the railway culvert is 13.1 m³/sec.

4.2. Railroad Culvert Capacity – Estimate Flow Rate

The Harwood Creek passes under the Railroad Immediately east of the site by means of a double barrel cast-in-place concrete culvert. The culvert has the following dimensions. Right (south) Barrel 1.6 m high x 2.8 m wide, invert of 72.76, Left (north) barrel 1.4 m high by 2.9 m wide, invert of 72.96, beveled entrance and exits, and 33 degree wing walls. The

File No. 200977

obverts of the barrels are at an elevation of 74.38 m. The centre of the railroad tracks above the culvert is at an elevation of 75.8 m.

Based on the above, the culvert has the following capacities depending on flow conditions.

Table 4-3: Capacity of Culvert Under Railroad Tracks

Capacity under inlet control	Capacity under full flow
conditions (no restriction at	conditions (tail water restricting
outlet)	flow)
m³/sec	m³/sec
5.6	5.6
6.3	6.3
6.8	6.8
7.3	7.3
7.7	7.7
8.0	8.0
9.4	8.4
11.1	8.7
12.8	8.9
14.5	9.2
16.2	9.4
17.9	7.4
19.4	11.8
20.8	15.6
22.8	19.0
24.8	21.4
26.5	24.0
28.5	26.4
30.2	28.5
	Capacity under inlet control conditions (no restriction at outlet) m ³ /sec 5.6 6.3 6.8 7.3 7.7 8.0 9.4 11.1 12.8 14.5 16.2 14.5 16.2 17.9 19.4 20.8 22.8 24.8 24.8 24.8 26.5 28.5 30.2

From the above capacities, and in consideration of the estimated flow rates from the various design storms, the railroad culvert will accommodate the calculated flows at the following elevations.

File No. 200977

Table 4-4: Approximate Water Surface Elevation for Storm Events at Railway Crossing Culvert

Storm Event	Elevation with no restriction	Elevation with elevated tail
	(m)	water (m)
2	< 73.3	< 73.3
5	73.6	73.6
100	74.15	74.55

The flood plain mapping obtained from MVCA indicates that the 100 year flood elevation in the Harwood creek is at an elevation of 75.2 m immediately adjacent to the southwest side of the railway at the crossing culverts and 74.8 m immediately adjacent to the northeast side of the railway. This indicates that the flood plain elevation within the Harwood Creek is a function of the capacity of the creek rather than the capacity of the crossing culverts. As such the proposed development will not have a significant effect on the railway crossing culverts.

4.3. Effect of Development on Flood Levels in Harwood Creek and Surrounding Area.

4.3.1. Flood Risk From Existing Conditions and Mitigation of Risk

Information obtained from site reconnaissance and from residents in the surrounding areas indicates that, the lower elevations of the site are subject to flooding during the spring and a result of damming of the creek by beavers. The existing ground surface elevation at the relatively level lower portion of the site ranges in elevation from about 74.9 to about 75.4 metres and extends southwest of the rear property line some 90 metres along the northeast side of the site and some 110 metres along the southeast side of the site. This lower level of the site acts as a natural buffer to the local flooding resulting from spring melt and from damming of the creek. This lower area is also a backwater of Harwood Creek.

Flood plain mapping obtained from the MVCA indicates the 100 year flood plain elevation of the Harwood Creek adjacent to the site is 75.45 m. This causes the eastern portion of the development to be located within a flood plain backwater area. In order to facilitate the proposed development of the two lots in this lower area of the site, fill material will be placed to raise the ground surface to a minimum of 75.75 m in the area of the proposed development. This fill will remove the development area from the flood plain backwater.

File No. 200977

The existing flow through the flood plain backwater will be re-routed around the south east side of the fill to maintain the drainage of the property and the rear yards of the adjacent properties.

A permit for placement of fill within the flood plain will be applied for as part of the development process in order to remove the developed portion of the subdivision from the flood plain. Since the portion of the flood plain of the Harwood Creek that is located on the site is a backwater area, it does not contribute to the storage capacity of the Harwood Creek during a flood event. As such, its removal will not affect the flow capacity of the Harwood Creek.

The proposed dwellings will be constructed with a minimum underside of footing elevation of 75.80 metres. The proposed septic leaching beds should be constructed with a minimum tile elevation of 76.35 metres. The proposed area for development is above an elevation of 75.45 metres. It is intended that wells will be installed on the upslope side of the dwellings adjacent the lower level of the site.

4.3.2. During Storm Events

As demonstrated in the following Section 6 of this report, the 5 year and the 100 year postdevelopment flow rates will be less than the calculated pre-development flow rates for each design storm event. As such it is considered that the proposed development will have negligible effect on the water level in the Harwood Creek during the design storm events.

Based on the above, it is considered that there will be no flood risk to the proposed development from the Harwood Creek during various storm events up to and including the 100 year storm events provided there are no extraneous circumstances such as damming of the creek downstream of the site. It is also considered that the proposed development will not affect adjacent landowners by increasing flood elevations.

File No. 200977

5. PRE-DEVELOPMENT STORMWATER ANALYSIS

5.1. Adjacent Off Site Properties

As previously indicated, the site is located on the northeast side of Dunrobin Road in the City of Ottawa. The site is continuously sloped downward from the edge of Dunrobin Road with the predominate slope perpendicular to Dunrobin Road. There is essentially no defined road side ditch between the shoulder of Dunrobin Road and the site. As a result, all of the runoff generated from the northwest bound lane of Dunrobin Road and from the ditch along the northeast side of the road travels across the site. There is a slight cross slope towards the southeast such that the runoff at the bottom of the site travels along the ditch along the southwest side of the railway to the Hardwood Creek located southeast of the site.

Runoff from the adjacent properties northwest of the site is predominately directed to the roadside ditch along Constance Lake Rd and to the ditch along the railway. Runoff from a relatively small portion of the rear yards of these properties is directed to the site. This runoff is currently directed across the site by a shallow swale which outlets to the Harwood Creek. The portion of these properties contributing runoff to the site are predominately surfaced with grass and woods/brush. These offsite areas contribute runoff to the overall subdivision drainage basin during both pre- and post- development conditions.

Runoff from the adjacent property to the southeast flows in a southeasterly direction to the Harwood Creek.

5.2. On Site Predevelopment Conditions

As previously indicated, the property is generally rectangular with an about 160 m long projection towards the southeast along the existing railway corridor.

Historical imagery available on the geoOttawa website indicates that the site was historically occupied by farmland with a dwelling and outbuildings. These images show that no significant agricultural activity was carried out on the site within the last 20 to 30 years or more and that the dwelling has been abandoned. The ground surface across the site has a general downward slope of about 0.3 to 2 percent from the southwest end of the property to the northeast. Current site drainage takes the form of sheet flow following the general slope of the site.

The vegetative communities on the southwest portion of the site predominately consisted of Forb Meadow which transitions to Buckthorn Deciduous Shrub Thickets through the central portion of the site. The northeast end of the site adjacent the railway corridor is occupied by fresh-moist poplar deciduous woodland.

File No. 200977

Harwood Creek Crosses the eastern most portion of the 160 m long projection of the property. This projection is almost entirely occupied by the 100 year flood plain of the Harwood Creek. A tailwater section of the Flood Plain extends on the site covering a significant portion of the eastern about 100 metres of the site.

5.3. Pre-Development Runoff

Table 5-1 summarizes the pre-development peak release rate and runoff volumes for the above storm events. Appendix C contains pre-development OTTHYMO summary output data. Also included in Appendix C is the detailed output data for the last link in the model. The detailed output data for the last link provides a summary of the predevelopment outflow from the proposed development including off site catchment areas.

Design Storm Event		Pre-Development Runoff Rate	Runoff Volume
		(m³/s)	(mm)
Sim 1	6 hour 5 year SCS Type II	0.129	6.71
Sim 2	6 hour 100 year SCS Type II	0.483	22.91
Sim 3	12 hour 5 year SCS Type II	0.162	9.07
Sim 4	12 hour 10 year SCS Type II	0.244	13.03
Sim 5	12 hour 100 year SCS Type II	0.541	27.07
Sim 6	12 hour 5 year Chicago	0.144	8.69
Sim 7	12 hour 100 year Chicago	0.529	25.93
Sim 8	Historical Storm July 1, 1979	0.659	20.79
Sim 9	Historical Storm August 4, 1988	0.596	19.10
Sim 10	25mm 4 hour Chicago	0.010	0.79
Sim 11	15mm 4 hour Chicago	0.001	0.03

Table 5-1: Pre-Development Runoff Rates and Runoff Volumes

File No. 200977

6. POST-DEVELOPMENT STORMWATER ANALYSIS

As stated in the *Background* section, the proposed development has a total site area of approximately 9.0 hectares and will be divided into eight residential lots with a minimum lot size of 0.8 hectares for a single family dwelling construction. A table summarizing the post-development sub-catchment areas and properties used in the stormwater management model is attached in Appendix A.

6.1. Stormwater Conveyance

Runoff for each lot will be managed as follows: Runoff originating from the front portion of each lot including all the impervious areas resulting from the construction of the proposed dwellings and driveways will be directed to the road side ditches along the subdivision roadway. This runoff will be conveyed to the stormwater management swale which extends east from the end of the cul-de-sac.

Any disturbed areas in the rear portion of the site will be rehabilitated and leveled to ensure any runoff is in the form of sheet flow. The sheet flow from the rear of the sites along the southeast side of the development will be left to flow in the existing predevelopment drainage patterns. Runoff from the rear of the sites along the northwest side of the development as well as from the off-site area northwest of the development will be directed by means of a drainage easement swale constructed along the rear property lines of these lots. The swale will outlet to the stormwater management swale extended from the cul-de-sac and will replace the existing swale currently directing this runoff to the Harwood Creek.

It is considered that the low slope in the drainage easement swale will be insufficient to ensure that there are no localized high or low spots within the easement channel. The localized high and low spots will result in ponded water within the swales following a storm event. It is expected however that the ponding will be of limited depth.

Based on the sandy silt and glacial till materials encountered at the site, the coefficient of permeability k for the native soils at the site is expected to be in the order of $k=4x10^{-6}$ m/s. Based on this permeability it is expected that the infiltration rate through the bottom of the swales will be in the order of 0.02 m³/hr/m² of swale bottom, assuming 0.1 metres of ponding depth and infiltration into the upper 0.3 metres below the swale bottom, where: q = ki; k = 1 x 10⁻³ cm/sec; i = 1.33 = ((h+d/d) where d is the upper 0.3 m of soil below the

File No. 200977

storage area and h is the ponding depth of 0.1 m. At a flow rate of 0.02 $m^3/hr/m^2$ it is estimated that a 0.1 m deep puddle would infiltrate in about 5 hours. It is expected that seasonally high ground water levels may affect the rate of infiltration through the bottom of the swales. However it is also expected that any ponding within the swales will dissipate under normal conditions due to infiltration.

6.1.1. Conveyance Along Roadside Ditches

As previously indicated, the runoff from the front of each lot will be conveyed along the subdivision roadside ditches to the stormwater management swale extending from the culde-sac. The ditch along the northwest side of road will receive runoff from the front of Lots 1, 3, 5 and 7. The ditch along the southeast side of road will receive runoff from the front of Lots 2, 4, 6 and 8.

The roadside ditches have been designed with sufficient capacity to fully contain the flow from a 100 year storm event within the confines of the road allowance. The longitudinal slope of the roadside ditches along the subdivision road between Dunrobin Road and station 0+180 (180 metres from the center of Dunrobin Road) varies between 1.1 and 3.7 percent. Station 0+180 corresponds to about the southeast side of Lot 3. The slope of the the roadside ditches decreases to about 0.85 percent between station 0+180 and 0+240 and to about 0.35 between station 0+240 and the stormwater management swale. Station 0+180 corresponds to about the southeast side of Lot 5. The roadside ditches will be subdrained where the slope is less than 1 percent.

The following Table 6.1 provides a detailed summary of the stormwater conveyance along the roadside ditches of the subdivision for various design storm events.

The design storm events are listed below and abbreviated in the table as follows:

12 hour 10 year SCS Type II - 12-10

12 hour 100 year SCS Type II - 12-100

File No. 200977

Table 6-1: Flow within the Road Side Ditches

Ditch Section	Storm Event	Flow Rate	Flow Depth	Minimum
				Available
				Depth
		(m³/s)	(m)	(m)
In front of Lots 1	12hr-10yr	0.06	0.10	05
and 3	12hr-100yr	0.11	0.14	0.5
In front of Lots 5	12hr-10yr	0.10	0.21	0.7
and 7	12hr-100yr	0.20	0.28	0.7
In front of Lots 2	12hr-10yr	0.06	0.10	05
and 4	12hr-100yr	0.11	0.14	0.5
In front of Lots 6	12hr-10yr	0.10	0.21	0.7
and 8	12hr-100yr	0.20	0.28	0.7

6.1.2. Conveyance Along Easement Swale

As previously indicated, Runoff from the rear of the sites along the northwest side of the development as well as from the off-site area northwest of the development will be directed by means of a drainage easement swale constructed along the rear property lines of these lots. The drainage easement swale has designed with sufficient capacity to fully contain the flow from a 100 year storm event within the confines of the swale. The following Table 6.2 provides a detailed summary of the stormwater conveyance along the easement swale for various design storm events.

The design storm events are listed below and abbreviated in the table as follows:

12 hour 10 year SCS Type II	- 12hr-10yr
12 hour 100 year SCS Type II	- 12hr-100yr

File No. 200977

Table 6-2: Flow within the Easement Swale

Ditch Section	Storm Event	Flow Rate	Flow Depth	Minimum Available
				Depth
		(m ³ /s)	(m)	(m)
Rear of Lot 3	12hr-10yr	0.06	0.10	0.2
	12hr-100yr	0.12	0.15	0.3
Rear of Lot 5	12hr-10yr	0.07	0.13	0.2
	12hr-100yr	0.14	0.19	0.3
Rear of Lot 7	12hr-10yr	0.09	0.17	0.25
	12hr-100yr	0.21	0.25	0.35

The above analyses, which indicates the flow depth along each section of the easement swale and roadside ditches, demonstrates that the flow from the 100 year storm event is conveyed within the easement swales and roadside ditches.

6.2. Quantity Control

The proposed development has been divided into controlled and uncontrolled catchment areas. The uncontrolled catchment areas consist of those from which runoff is allowed to exit the site without restriction to the runoff rate. The controlled areas are those areas from which the runoff is collected and directed to the proposed stormwater management swale. The uncontrolled areas consist of the rear yards and the offsite catchment area northwest of the proposed development.

Due to the increased impervious area and decreased time of concentration resulting from the proposed development, the unrestricted runoff from the site will be greater than the pre-development flow rates. In order to meet the stormwater management criteria for the site with respect to runoff rate, temporary flow detention will be provided by means of the outlet control in the proposed stormwater management swale.

As previously indicated, the stormwater originating from the controlled areas of the proposed development will be collected and controlled through the use of the roadside ditches which will direct the runoff to the stormwater management swale.

6.2.1. Allowable Release Rate

As previously indicated, the post-development flow rate will be restricted such that the maximum release rate from the proposed development including offsite catchment areas will be less than or equal to the pre-development flow rate from the proposed development area including the offsite catchment areas during corresponding storm events up to and including the 100 year storm event. Runoff in excess of the pre-development runoff rate will be detained within the stormwater management swale to be released at a controlled rate during and following a storm event. The release rate from the stormwater management swale will be controlled by means of an outlet control structure.

File No. 200977

The outlet control structure will consist of a berm placed across the stormwater management swale with one 375 mm diameter outlet culvert and one 525 mm diameter outlet culvert placed at different elevations. Flow through the 375 mm culvert which is the lower of the two outlet culverts will be restricted by means of a 210 mm diameter orifice set at an elevation equal to the bottom of the swale. Flow through the 525 mm culvert will be restricted by means of a 410 mm diameter orifice set at an elevation equal to 0.45 metres above the bottom of the swale.

The SWMP design verified the stormwater results for a range of storm types and durations to ensure that a conservative assessment of post development stormwater conditions is maintained. The storage requirements were determined by including a reservoir model in the stormwater management swale. The storage requirement is a function of the difference between the unrestricted flow rate and the allowable elease rate through the outlet control. The maximum allowable release rate through the outlet control was determined by subtracting the runoff rate from the uncontrolled areas from the predevelopment runoff rates as indicated in the following Table 6-3. Table 6-3 also summarizes the post-development peak un-managed runoff rates for the various storm events.

Table 6-3: Unmanaged Post-Development and Calc. of Allowable Release Rate

Column 1	Column 2	Column 3	Column 4	Column 5
Design Storm Event	Post-Develop	. Runoff Rate		Allowable
	Unmanaged Controlled Area	Uncontrolled Area	Pre-Develop. Runoff Rate	Release Rate*
	(m³/s)	(m³/s)	(m³/s)	(m³/s)
6 hour 5 year SCS Type II	0.117	0.071	0.129	0.058
6 hour 100 year SCS Type II	0.361	0.271	0.483	0.212
12 hour 5 year SCS Type II	0.143	0.089	0.162	0.073
12 hour 10 year SCS Type II	0.197	0.135	0.244	0.109
12 hour 100 year SCS Type II	0.401	0.308	0.541	0.233
12 hour 5 year Chicago	0.143	0.079	0.144	0.065
12 hour 100 year Chicago	0.445	0.299	0.529	0.230
Historical Storm July 1, 1979	0.466	0.374	0.659	0.285
Historical August 4, 1988	0.451	0.343	0.596	0.253
25mm 4 hour Chicago	0.012	0.006	0.010	0.004
15mm 4 hour Chicago	0.001	0.001	0.001	0.000
Catchment Area (ha.)	4.63	6.39	11.02	

*The allowable release rate is equal to Column 4 – Column 3.

A review of the above table indicates that the un-managed post development rate for the controlled area is much greater than the allowable release rate.

Appendix D contains the OTTHYMO summary output data for the post-development storms. Also included in Appendix D is the detailed output file for the last link before the stormwater management swale, the last link before Harwood Creek and the swale before Harwood Creek. These output files summarize the unmanaged post-development flows into the stormwater management swale and the post-development flows exiting the proposed development.

6.2.2. Storage Swale Volume and Rating Curve

Details for the proposed storage swale are provided on drawing # 200977-GRD Grading and Drainage Plan. The proposed storage swale is to extend east from the bottom of the culde-sac. The storage swale will have a bottom with of 3 metres and a length of 85 metres between the edge of the roadside ditch and the outlet control structure. The storage swale bottom will be constructed of coarse grained sand and will be subdrained by a perforated storm pipe. The side slopes of the swale will be constructed at 3H:1V.

An outlet rating curve is entered into the reservoir model in the form of an allowable release rate as a function of available storage. The outlet rating curve was obtained in two steps. The first step consisted of calculating the available storage volume within the proposed swale at elevation increments using Auto Cad Civil 3D modeling software. The second step consisted of determining the outlet release rate for the storage swale with respect to ponding elevation or head on the outlet control structure and sand filter. The two results were combined to produce the outlet rating curve. The drawdown time is a function of the storage volume and the discharge rate.

File No. 200977

The following Table 6-4 Storage Swale Volume and Release rate provides a summary of the available storage volume and release rate with respect to elevation and depth. The outlet rating curve and reservoir data from the model is also provided in Appendix E.

Elevation (m)	Cumulative Volume (m³)	Total Storage Depth / Heard on Sand Filer (m)	Discharge Rate Through Filter (m ³ /s)	Ponding Depth Above Outlet Invert (m)	Head on Outlet Orifice (m)	Discharge Rate Through Outlet Orifice (m³/s)	Total Discharge Rate (m ³ /s)	Cumulative Volume (ha*m)
75.45	0	0.00	0.000	0.00	0.00	0.000	0.000	0.0000
75.50	2	0.05	0.003	0.00	0.00	0.000	0.003	0.0002
75.60	22	0.15	0.017	0.00	0.00	0.000	0.017	0.0022
75.70	58	0.25	0.024	0.00	0.00	0.000	0.024	0.0058
75.80	102	0.35	0.025	0.00	0.00	0.000	0.025	0.0102
75.90	156	0.45	0.026	0.10	0.00	0.013	0.039	0.0156
76.00	221	0.55	0.027	0.20	0.00	0.050	0.077	0.0221
76.10	299	0.65	0.027	0.30	0.00	0.103	0.130	0.0299
76.20	389	0.75	0.028	0.40	0.00	0.164	0.192	0.0389
76.30	498	0.85	0.029	0.50	0.28	0.214	0.243	0.0498
76.40	623	0.95	0.030	0.60	0.38	0.249	0.279	0.0623

Table 6-4: Storage Swale Volume and Release Rate

6.2.3. Post Development Runoff Rate and Storage Requirements

The stormwater management model is re-run and the outlet control and associated rating curve is adjusted through iteration to ensure that the post-development flow rates do not exceed the pre-development flow rates. The inclusion of the reservoir routine in the

File No. 200977

stormwater management model results in the post-development flow rates presented in the following table 6-5. The pre-development flow rate has been added for comparison.

Table 6-5: Pre-development Vs Controlled Post Development

Design Storm Event	Pre-Dev. Max. Runoff Rate	Post-Dev Controlled Area Allowable Release Rate	Post-Dev Controlled Area Actual Release Rate	Post-Dev. Max. Runoff Rate	Difference Between Pre and Post- Development Runoff
	(m³/s)	(m³/s)	(m³/s)	(m³/s)	(m ³ /sec)
Quantity Control Design Storn	าร				
6 hour 5 year SCS Type II	0.129	0.058	0.051	0.113	-0.016
6 hour 100 year SCS Type II	0.483	0.212	0.204	0.459	-0.024
12 hour 5 year SCS Type II	0.162	0.073	0.060	0.135	-0.027
12 hour 10 year SCS Type II	0.244	0.109	0.096	0.216	-0.028
12 hour 100 year SCS Type II	0.541	0.233	0.219	0.508	-0.033
12 hour 5 year Chicago	0.144	0.065	0.051	0.116	-0.028
12 hour 100 year Chicago	0.529	0.230	0.212	0.491	-0.038
Historical Storm July 1, 1979	0.659	0.285	0.258	0.614	-0.045
Historical August 4, 1988	0.596	0.253	0.236	0.551	-0.045
Quality Control Design Storms					
25mm 4 hour Chicago	0.010	0.004	0.010	0.016	0.006
15mm 4 hour Chicago	0.001	0.000	0.001	0.002	0.001

A negative value in the Difference column indicates that the post-development release rate from the entire catchment area including the all offsite contributing areas is less than the pre-development runoff rate for the design storm events.

It is noted that the post-development runoff rate for the quality control storms is greater than the pre-development runoff rate for these design storms. Because there is very little runoff generated during a quality control storm, the minor changes to the uncontrolled area result in an allowable release rate from the controlled area that is less than the minimum rate that is released by infiltration through the bottom of the storage swale.

The Otthymo Reservoir Report is provided in Appendix E. From the reservoir model the storage requirements for the various storm events are shown in the following Table 6-6.

Table 6-6: Storage Requirements

Design Storm Event		Maximum Storage Requirement	Approximate Maximum Ponding Elevation	Storage Swale Drawdown Time
		m ³	m	hrs
Quantity	Control Design Storms			
Sim. 1	6 hour 5 year SCS Type II	176	75.93	2.4
Sim. 2	6 hour 100 year SCS Type II	415	76.23	3.0
Sim. 3	12 hour 5 year SCS Type II	191	75.95	2.4
Sim. 4	12 hour 10 year SCS Type II	249	76.04	2.7
Sim. 5	12 hour 100 year SCS Type II	448	76.26	3.0
Sim. 6	12 hour 5 year Chicago	176	75.93	2.4
Sim. 7	12 hour 100 year Chicago	434	76.24	3.0
Sim. 8	Historical Storm July 1, 1979	552	76.34	3.1
Sim. 9	Historical August 4, 1988	486	76.29	3.0
Quality Control Design Storms				
Sim. 10	25mm 4 hour Chicago	12	75.56	0.7
Sim. 11	15mm 4 hour Chicago	1	75.41	0.4

The invert of the outlet pipe from the storage swale has been set at an elevation of 75.80 meters resulting in a storage volume of 102 cubic metres below the outlet. There is a total available storage volume of 623 cubic metres within the storage swale below an elevation of 76.40 metres.

The maximum storage requirement of 552 cubic metres occurs during the July 1, 1979 historical storm. The minimum modeled storage requirement is 1 cubic meters during a 15 mm 4 hr Chicago storm. The maximum drawdown time is equal to 2.8 hours.

The available volume below the outlet is well in excess of the storage volume required during the quality control design storms.

Since the maximum storage requirement is less than the maximum available storage volume there is sufficient storage volume available within the proposed storage swale.

6.3. Quality Control

As previously stated, an enhanced level of treatment is required for the runoff from the site. An enhanced level of treatment corresponds to 80 percent total suspended solids removal. The main source of suspended solids in a residential development is the runoff from the roads and driveways. The vegetated landscaped surfaces and dwelling roofs are typically not considered to be significant sources of suspended solids. As previously indicated, the proposed driveways and subdivision road will be within the controlled area of the site.

Stormwater treatment of 80% TSS removal will be provided by a treatment train approach. The treatment train consists of sedimentation within the grass surfaced roadside ditches and first 10 metres of the stormwater management swale followed by filtration through a sand filter along the bottom of the treatment swale. Pre-treatment for the stormwater prior to sand filter will be by vegetative filtration and sedimentation within the first 10 m of the swale preceding the filter.

Quality Control will be provided by temporary detention of the entire quality control volume generated in the controlled area within the storage swale to be discharged through the filter only.

The quality storage swale has been designed to outlet the quality storage volume vertically through a sand filter into a perforated subdrain below the bottom of the stormwater management swale. The perforated subdrain outlets into the swale downstream of the outlet control structure.

The Ministry of Environment Stormwater Management Planning and Design Manual (March 2003)(MOE Manual) provides guidance on design for stormwater quality control. Quality control design is completed with the fundamental understanding that the majority of sediment and particulate pollutants are washed from the site surfaces during minor (frequent) storm events. Section 3.3.1 of the MOE Manual indicates that in most cases, quality control design storms range from 12.5 mm to 25 mm. The MOE Manual also indicates that an alternate approach to the volumetric sizing of stormwater facilities for quality control has been applied in Ontario. The alternate approach is summarized in Table 3.2 *Water Quality Storage Requirements Based on Receiving Waters.* Table 3.2 of the MOE

manual specifies the storage volume required to achieve an enhanced minimum required quality control level of treatment using filtration.

File No. 200977

In Part 4, the MOE Manual details the design requirements of several types of end of pipe stormwater management facilities. The proposed stormwater management design for quality control will consist of filtration. Design guidance for filtration is provided in Part 4 Section 4.6.7 Filters of the MOE Manual

6.3.1. Volumetric Sizing and Filter Size

The water quality storage volume requirement to achieve an enhanced level of treatment using the sand filter was determined from the MOE Manual Table 3.2 under infiltration. The impervious ratio for the controlled area of the site is 17%. From Table 3.2, for a 17% impervious ratio at an enhanced level of treatment the storage requirement was extrapolated to be 20.5 m³/ha.

The total controlled area is 4.63 ha. 4.63 ha x 20.5 m^3 /ha gives a quality storage requirement of 94.9 m^3 .

The MOE Manual in section 4.6.7 under the heading Volumetric Sizing provides the following additional design guidance when using filtration for quality control:

"Water quality volumes to be used in the design are provided in Table 3.2 under the "infiltration" heading. Erosion and quantity control volumes are not applicable to this type of SWMP. The design should be such that at a minimum, the by-pass of flows should not occur below or at the peak runoff from a 4 hour 15 mm design event."

In order to ensure that by-pass would not occur below a 4 hr 15 mm design event, the 4 hr 15 mm design storm was added to the storm water management model and the runoff volume was calculated to be equal to 0.12 mm of depth across the entire catchment. The runoff volume generated during a 4hr 25mm design storm event was also calculated using the stormwater management model to be 1.18 mm of depth.

The MOE Manual indicates that the filter be sized to ensure a specified volume is discharged within a specified time period using the Darcy Equation. The size of the filter and storage volume must be sufficient to ensure that no overflow or by-pass occurs below the 4 hr 15 mm design storm.

File No. 200977

The controlled catchments have a combined area of 4.63 ha. A 15mm quality storm event will result in a runoff volume of (4.63 ha x 0.12 mm) 5.6 m³. A 25mm quality storm event will result in a runoff volume of 54.6 m³. Both of these volumes are less than the quality storage requirement calculated using Table 3.2. As such the maximum quality storage requirement of was determined to be 94.9 m³ using Table 3.2. There is a total storage volume for quality control purposes of 102 m³ in the stormwater storage swale which is discharged by infiltration only.

As such the entire quality control volume required by the MOE Manual as calculated by Table 3.2 will be stored below the outlet ICD and no by-pass or overtopping will occur during a 4 hr 15mm storm event.

The proposed filter has been sized based on the space available for the filter. The flow rate through the filter was calculated and the drawdown time was determined based on the volume of the quality storage in the catchment. The proposed filter will be constructed with a width of 3 m and length of 75 m.

The sand used to construct the filter will consist of a medium poorly graded sand having a percolation rate "T" time of 4 min/cm and a maximum of 3 percent passing the 0.08 millimetre sieve size. This corresponds to a coefficient of permeability of k = 360 millimetres per hour or 1×10^{-4} m/s. The sand will be placed as shown in the details on Kollaard Associates Inc. drawing #200977 – GRD–Grading and Drainage Plan and will have a depth of 0.5 metres. The filter will be protected on the surface by a 100 mm thick layer of clearstone. A non-woven 6 ounce/square yard geotextile filter fabric (such as Terrafix 360R, Soleno TX-110 or an approved alternative) will be placed between the sand and the layer of clearstone. The filter fabric will also be extended beneath and beside the filter to avoid contamination of the filter sand from the adjacent native material. This fabric offers medium tensile strength at high elongation and good filtration, coupled with high permeability to allow for proper filtration, while holding the filter sand in place as designed.

6.3.2. Discharge Through Filter

The flow rate through the sand filters was calculated using Darcy's Equation to be:

Q= A K i

A = the cross sectional area of the filter K= coefficient of permeability

File No. 200977

i= hydraulic gradient = head across the filter/ flow path across the filter

As an example: For a ponding depth of 0.35 metres which corresponds to the invert of the outlet pipe.

A= 3 m (width) x 75 m (filter length) = 225 m² K= 1x10⁻⁴ m/s i = 1.1 Q = 25L/s

Based on the discharge rates through the filter, it is expected that the draw down time in the swale below the outlet elevation is approximately 1.8 hrs.

6.3.3. Filter Design Summary Table

Section 4.6.7 provides the design guidance with respect to the use of a filter as summarized in the table below. A column has been added to indicate how the proposed design conforms to the Criteria.

Design	Design	Minimum Criteria	Design Conformance
Element	Objective		
Drainage		< 5 hectares	4.63 hectares
Area			
Pre-	Longevity	Pre-treatment by means of	Pre-treatment by vegetated
treatment		sedimentation chamber, or	filtration along ditch bottom,
		forebay, vegetated filter	storage swale bottom and side
		strip, swale or oil/grit	slopes. Minimum length along
		separator	bottom of 10 metres
Storage	Avoid Filter	Subsurface sand and	Maximum storage depth of
Depth	Compaction	organic filters: 0.5 m	storage swale of 0.89m
		Maximum 1.0 m	
Filter	Filtering	Sand: 0.5 m	sand: 0.5m
Media			
Depth			

Table 6-7: Filter Design Summary Table

Under- drain	Discharge	Minimum 100 mm perforated pipes bedded in 150 – 300 mm of 50 mm gravel	Discharge to 250mm diameter perforated pipe surrounded in in 25 to 50 mm clear stone.
Land use		any land use, often employed for commercial and industrial	Residential
Volumetric Sizing		Calculated using Table 3.2 – infiltration = 94.9 m ³ . By- pass flows should not occur below a 4 hr 15 mm design event	Storage for Quality Storm = 102 m ³ No bypass or overflow during a 4 hr 25 mm storm event
Filter Size		Determined using the Darcy Equation	Determined using the Darcy Equation
Filter Lining	prevent clogging	liner to prevent native material from entering filter	Non-woven geotextile filter cloth used between native material and filter and between filter and clearstone
Overflow / by-pass		required	overflow is provided above the quality storage requirement
Drawdown time	prevent standing water	maximum from 24 to 48 hours - 24 hours preferred	storage swale: approximately 3 hrs following a storm event

File No. 200977

Since the proposed design meets the design criteria as demonstrated in the table above, the proposed design will meet the quality control criteria.

6.4. Best Management Practices

The proposed residential subdivision development will employ Best Management Practices wherever possible. The intent of implementing BMPs is to ensure that water quality and quantity concerns are considered at all stages of development. BMPs will be implemented at both a lot level and at a conveyance level.

Proposed lot level BMPs include minimizing ground slopes and maximizing the landscaped surfaces of the lots. Ministry of Environment of Ontario (MOE) advocates yard grading as

File No. 200977

flat as 0.5% in order to reduce runoff from residential lots. The minimum slope required to ensure proper drainage away from a dwelling is 2%. As such, the proposed finished ground slopes for the lots will be sloped at greater than 2% adjacent to the dwelling envelope, and then kept within the range of 0.5 to 5% where possible beyond the immediate dwelling envelope. As part of these practices, the slope of the side yard swales are reduced to 1% in order to promote vegetative filtration, sedimentation and infiltration.

7. Driveway Culverts

From Table 6-1 above the maximum flow rate in the roadside ditches during the 10 year and 100 year design storm events is 0.10 m^3 /sec and 0.20 m^3 /sec respectively. The maximum flow depths along the roadside ditches is 0.21 and 0.28 m for the 10 year and 100 year design storms respectively. The longitudinal slope of the ditch along this section is 0.3 percent.

The flow rate and headwater depth for the driveway culverts using the above worst case flow rates was also calculated using Hydroflow Express extension for Autodesk AutoCAD Civil 3D. Summary reports are including in Appendix F.

Culvert Number	Diameter / Embedment	Culvert Capacity	10 year Storm		100 year storm	
	Depth (m)	(gravity) (m ³ /s)	Flow Demand (m ³ /s)	Headwater Depth (m)	Flow Demand (m ³ /s)	Headwater Depth (m)
Driveway	0.5 / 0.05	0.12	0.10	0.24	0.20	0.60

Table 7-1: Culvert Flow Demand and Capacity

From the above analyses, there is sufficient capacity to convey the maximum flow rate generated during a 10 year design storm in the roadside ditches through the driveway culverts without exceeding the minimum available ditch depth and without surcharging the culvert. There is sufficient capacity through the driveway culverts to convey the flows generated during a 100 year design storm without exceeding the minimum available ditch depth.

8. Operation and Maintenance

The responsibility for the operation and maintenance of the stormwater management facility in the subdivision is that of the owner/developer until the subdivision is accepted by

the City of Ottawa. Once the subdivision is accepted by the City of Ottawa, the operation and maintenance of the stormwater management facility in the subdivision is the responsibility of the City of Ottawa

File No. 200977

8.1. Operation and Maintenance

8.1.1. Grassed Swales and Roadside Ditches

The grassed swales and ditches proposed for the development will require occasional maintenance. Periodic grass trimming along the drainage easements and ditches represents the bulk of the maintenance required. Temporary straw bale check dams should be used to trap the debris and sediment disrupted during ditch cleaning operations.

Should excavation be required during maintenance, re-vegetation of disturbed areas should be completed after maintenance operations have been completed.

8.1.2. Stormwater Management Swale

The stormwater management swale should be inspected on a weekly basis and after any rain fall event after construction until vegetation is well established. Once the vegetation is well established and during the first year of operation, the stormwater management swale should be visually inspected on a bi-monthly basis and following significant storm event. For inspection purposes, a rain fall event of more than 25 mm in 4 hours would be considered to be a significant event.

The grassed bottom and side slopes of the stormwater management swale should be subjected to the same maintenance schedule as municipal roadside ditches. That is, the grass should be mowed and cared for as required to maintain a normal healthy appearance. Minimum recommended grass height in the storm pond is 100 mm.

Removal of accumulated sediment from the stormwater management swale should be conducted when the accumulation of the sediment begins to significantly affect the quality of the grass growth and/or the drainage patterns along the grassed surfaces. The sand filter should be replaced / remediated when the drawdown time increases significantly beyond the design value and when standing water remains within the stormwater management swale more than 24 hrs after the rainfall event.

File No. 200977

8.2. Site Runoff Protection

The agricultural residential land surrounding the site has been lightly developed. Further development of the adjacent site areas is not expected to have a significant impact on the proposed development site and its respective SWMP design functionality. The rear portion of each lot is expected to remain undeveloped. As such existing drainage patterns will be preserved with runoff from the rear portions of each lot and from adjacent properties ultimately being directed to Harwood Creek.

File No. 200977

9. EROSION AND SEDIMENT CONTROL

Before construction begins, silt fence barriers will be placed along the east and south property lines of the site.

Straw bale flow check dams will be installed at select locations as indicated on drawing 200977-ESC Erosion and Sediment Control Plan. These controls will be cleaned after large storm events and maintained throughout construction. If deemed necessary, additional straw bale check dams and silt fences can be installed where required during construction.

All activities, including equipment maintenance and refueling, shall be controlled to prevent entry of petroleum products or other deleterious substances, including any debris, waste, rubble or concrete material into a watercourse. The refueling and maintenance of vehicles will occur at least 120 metres in distance from Harwood Creek. Any material which is inadvertently spilt shall be cleaned up and removed by the contractor at the contractor's expense in a manner satisfactory to the Contract Administrator. Construction material, excess material, construction debris, and empty containers shall be stored a minimum of 120 metres away from the Creek.

The Contractor shall have on site at all times an emergency spill kit that will include as a minimum the following items:

- 2-3 in. diameter by 4 ft long floating absorbent boom suitable for water installation
- 10 18 in x 18 in absorbent pads,
- 5 lbs Zorbal absorbing material
- 1 pair goggles, 1 pair PVC gloves.

Contractor to have a supply of 20 - 40 lb. bags of Zorbal, 2 boxes of 4 ft floating absorbent boom (suitable for water installation, 40 pcs) and 1 box of 18 in. x 18 in. absorbent pads (100 pcs.) on site.

All spills will be reported to the local office of the Ministry of Environment as well as the Contract Administrator as soon as they happen. The spills action centre phone hotline is # 1–800-268-6060.

Every effort will be made to ensure that all disturbed areas are topsoiled and seeded as soon as reasonably possible.

File No. 200977

As each lot is developed, proper sediment and erosion controls will be installed and maintained until the development of the lot is completed and the vegetative cover is established. Sediment controls shall consist of, at minimum straw bales or a silt fence barrier at the downgradient property line. Grass shall be established as soon as reasonably possible.

The attached drawing 200977-ESC Erosion and Sediment Control for the subdivision includes the above noted measures. These measures are intended to ensure no sediment laden runoff leaves the site or impacts the water way either during construction or after development has been completed.

File No. 200977

10. STORMWATER MANAGEMENT CONCLUSIONS

- The proposed Dunrobin subdivision covers a total of about 9.0 hectares. The subdivision will consist of 8 lots proposed for single family residential development.
- The property has been previously used for farming and currently drains to the eastern portion of the site. The proposed development will ensure that the existing overall drainage patterns of the site are not changed.
- The stormwater runoff will be treated using road side ditches, grassed swales and filtration to ensure that an enhanced level of protection is achieved.
- Runoff will be managed from the site to ensure that the post-development runoff does not exceed the pre-development runoff.
- Erosion measures will be placed prior to construction and during development and will remain in place until construction is complete.
- Disturbed areas will be topsoiled and seeded as soon as reasonably possible.

We trust that this report provides sufficient information for your present purposes. If you have any questions concerning this report or if we can be of any further assistance to you on this project, please do not hesitate to contact our office.

Sincerely,

Kollaard Associates Inc.

Steven deWit, P.Eng.

APPENDIX A: POST-DEVELOPMENT CATCHMENT AREAS AND SITE PARAMETERS

File No. 200977

Post-development OTTHYMO Model Schematic

Stormwater Management Report Proposed Residential Subdivision Hauderowicz, Zbigniew and Teresa 2050 Dunrobin Road, Ottawa

File No. 200977

Schematic Summary Table

Hydrograph No.	Model Type	Item Represented	Comment
1	NASHYD	Sub-Catchment C1	Catchment represents rear yard of Lot 2. Uncontrolled.
2	NASHYD	Sub-Catchment C2	Catchment represents rear yard of Lot 4. Uncontrolled.
3	NASHYD	Sub-Catchment C3	Catchment represents rear yard of Lot 6. Uncontrolled.
4	NASHYD	Sub-Catchment C4	Catchment represents rear yard of Lot 8. Uncontrolled.
5	StandHyd	Sub-Catchment C5	Catchment represents rear yard of Lot 7. Uncontrolled.
6	StandHyd	Sub-Catchment C6	Catchment represents rear yard of Lot 5. Uncontrolled.
7	StandHyd	Sub-Catchment C7	Catchment represents rear yard of Lot 3. Uncontrolled.
8	StandHyd	Sub-Catchment C8	Catchment represents rear yard of Lot 1. Uncontrolled.
9	StandHyd	Sub-Catchment C9	Catchment includes front yard of Lot 1 and contains dwelling, driveway and half of road. Controlled
10	StandHyd	Sub-Catchment C10	Catchment includes front yard of Lot 3 and contains dwelling, driveway and half of road. Controlled
11	StandHyd	Sub-Catchment C11	Catchment includes front yard of Lot 5 and contains dwelling, driveway and half of road. Controlled
12	StandHyd	Sub-Catchment C12	Catchment includes front yard of Lot 7 and contains dwelling, driveway and half of road. Controlled
13	StandHyd	Sub-Catchment C13	Catchment includes front yard of Lot 8 and contains dwelling, driveway and half of road. Controlled
14	StandHyd	Sub-Catchment C14	Catchment includes front yard of Lot 6 and contains dwelling, driveway and half of road. Controlled
15	StandHyd	Sub-Catchment C15	Catchment includes front yard of Lot 4 and contains dwelling, driveway and half of road. Controlled

Stormwater Management Report Proposed Residential Subdivision Hauderowicz, Zbigniew and Teresa 2050 Dunrobin Road, Ottawa

16	StandHyd	Sub-Catchment C16	Catchment includes front yard of Lot 2 and contains dwelling, driveway and half of road. Controlled
17	StandHyd	Sub-Catchment C-A	Catchment includes northwest side of Lot 1 and southeast half of Dunrobin Road Controlled
18	StandHyd	Sub-Catchment C-B	Catchment includes southwest side of Lot 2 and southeast half of Dunrobin Road Controlled
19	StandHyd	Sub-Catchment C- OFF1	Catchment includes offsite area northwest of the proposed development Controlled
20, 32, 21	Route Channel	Open Channel Flow along grassed swale	Models the open channel flow component of the runoff during post-development conditions along the northwest side of the development and along the northeast side of Lot 7
22,23,26,27	Route Channel	Open Channel Flow, Road side ditches	Models the open channel flow component of the runoff during post-development conditions along the front of Lots 1, 3, 2 and 4 respectively.
24,25,28,29	Route Channel	Open Channel Flow, Road side ditches	Models the open channel flow component of the runoff during post-development conditions along the front of Lots 5, 7, 6 and 8 respectively.
47,48	Route Channel	Open Channel Flow, Grassed Swales	Models the open channel flow component of the runoff during post-development conditions following the stormwater management swale to Harwood Creek
52	Route Reservoir	The stormwater management swale	Provides a model of the storm pond storage and release.
30,31,33- 46 49 50	NASHYD	Add Hydrograph	Used to add two hydrographs in the routing

File No. 200977

File No. 200977

Catchment Areas and Model Parameters

Refer to Drawing # 200977-PRECA and Drawing # 200977-POSTCA for an illustration of the specified catchment areas.

Pre-deve	Pre-development Catchment Areas										
Catchment Area Label	Total Catchment Area (ha)	lmpervious Area (ha)	Open Space (ha)	Woodland / Brush (ha)	Weighted Average CN number	Potential Storage (mm)	Initial Abstraction (mm)	Impervious Ratio			
		CN = 98	CN = 60	CN = 55							
C-Pre1	4.304	0	2.152	2.152	59	180	13.5	0			
C-Pre2	4.307	0	2.303	2.303	59	180	13.5	0			
C-A	0.209	0.047	0.161	0	69	112	8.5	0.23			
C-B	0.210	0.048	0.162	0	69	112	8.4	0.23			
C-OFF1	1.6901	0.039	0.826	0.826	61	160	12	0.02			

File No. 200977

Post-development Catchment Areas												
Catchment Area Label	Total Catchment Area (ha)	lmpervious Area (ha)	Open Space (ha)	Woodland / Brush (ha)	Weighted Average CN number	Potential Storage (mm)	lnitial Abstraction (mm)	Impervious Ratio				
		CN = 98	CN = 61	CN = 55								
On site Ca	tchment A	reas										
C1	0.330	0.000	0.330	0.000	61	162	12.2	0.00				
C16	0.525	0.087	0.439	0.000	67	125	9.3	0.16				
C2	0.345	0.000	0.172	0.172	58	184	13.8	0.00				
C15	0.535	0.087	0.448	0.000	67	125	9.4	0.16				
C3	0.352	0.000	0.176	0.176	58	184	13.8	0.00				
C14	0.519	0.084	0.435	0.000	67	125	9.4	0.16				
C4	1.486	0.000	0.743	0.743	58	184	13.8	0.00				
C13	0.514	0.084	0.430	0.000	67	125	9.4	0.16				
C5	1.171	0.000	0.585	0.585	58	184	13.8	0.00				
C12	0.555	0.096	0.459	0.000	67	123	9.2	0.17				
C6	0.341	0.000	0.171	0.171	58	184	13.8	0.00				
C11	0.534	0.086	0.448	0.000	67	125	9.4	0.16				
C7	0.341	0.000	0.171	0.171	58	184	13.8	0.00				
C10	0.535	0.087	0.449	0.000	67	125	9.4	0.16				
C8	0.332	0.000	0.332	0.000	61	162	12.2	0.00				
C9	0.493	0.084	0.409	0.000	67	123	9.3	0.17				
			Offsi	te Areas								
C-A	0.209	0.047	0.161	0.000	69	112	8.4	0.23				
C-B	0.210	0.048	0.162	0.000	69	112	8.4	0.23				
C-OFF1	1.691	0.039	0.826	0.000	61	160	12.0	0.02				

Stormwater Management Report Proposed Residential Subdivision Hauderowicz, Zbigniew and Teresa 2050 Dunrobin Road, Ottawa

September 24, 2021

File No. 200977

APPENDIX B: TIME OF CONCENTRATION AND TIME TO PEAK CALCULATION

Pre-Development

		Sh	eet Flo	w		Shallow Conc.						
Tributary Area	Manning's n sheet flow	Length of Sheet Flow (m)	2 year 24 hr Rainfall (mm)	Slope of Land Surface	Time of Sheet Flow (hr)		Flow Length to Major Channel (m)	Slope of Land Surface	velocity (m/s)	Time of Shallow Conc. Flow (hr)	total Time of Conc. (hr)	Time to Peak (hr)
Label												
C-Pre1	0.30	15	48.00	0.010	0.28		162	0.006	0.33	0.14	0.41	0.27
C-Pre2	0.30	15	48.00	0.010	0.28		225	0.006	0.33	0.19	0.47	0.31
C-A	0.30	3	48.00	0.030	0.05		180	0.006	0.33	0.15	0.20	0.13
C-B	0.30	3	48.00	0.030	0.05		250	0.006	0.33	0.21	0.26	0.17
C-OFF1	0.30	15	48.00	0.010	0.28		247	0.000	0.33	0.21	0.48	0.32

Post-Development

		Sł	neet Flo	w		Shallow	/ Conc.				
Tributary Area	Manning's n sheet flow	Length of Sheet Flow (m)	2 year 24 hr Rainfall (mm)	Slope of Land Surface	Time of Sheet Flow (hr)	Flow Length to Major Channel (m)	Slope of Land Surface	velocity (m/s)	Time of Shallow Conc. Flow (hr)	total Time of Conc. (hr)	Time to Peak (hr)
Label											
C1	0.30	15	48.00	0.045	0.15	305	0.015	0.18	0.47	0.62	0.41
C16	0.30	15	48.00	0.049	0.15	52	0.015	0.18	0.08	0.23	0.15
C2	0.30	15	48.00	0.013	0.25	270	0.012	0.21	0.36	0.61	0.40
C15	0.30	15	48.00	0.044	0.15	52	0.015	0.18	0.08	0.23	0.15
C3	0.30	15	48.00	0.010	0.28	190	0.015	0.18	0.30	0.57	0.38
C14	0.30	15	48.00	0.033	0.17	52	0.015	0.18	0.08	0.25	0.17
C4	0.30	15	48.00	0.039	0.16	125	0.017	0.19	0.18	0.34	0.23
C13	0.30	15	48.00	0.036	0.17	36	0.015	0.18	0.05	0.22	0.15
C5	0.30	15	48.00	0.023	0.20	40	0.049	0.33	0.03	0.23	0.15
C12	0.30	15	48.00	0.037	0.16	36	0.015	0.18	0.05	0.22	0.15
C6	0.30	15	48.00	0.029	0.18	30	0.067	0.40	0.02	0.20	0.13
C11	0.30	15	48.00	0.039	0.16	52	0.015	0.18	0.08	0.24	0.16
C7	0.30	15	48.00	0.019	0.21	107	0.018	0.38	0.08	0.29	0.19
C10	0.30	15	48.00	0.048	0.15	52	0.015	0.18	0.08	0.23	0.15
C8	0.30	15	48.00	0.022	0.20	175	0.016	0.34	0.14	0.35	0.23
C9	0.30	15	48.00	0.034	0.17	52	0.015	0.18	0.08	0.25	0.17
C-A	0.30	3	48.00	0.030	0.05	0	0.000	6.00	0.00	0.05	0.03
C-B	0.30	3	48.00	0.030	0.05	0	0.000	6.00	0.00	0.05	0.03
C-OFF1	0.30	15	48.00	0.010	0.28	247	0.002	0.33	0.21	0.48	0.32

Stormwater Management Report Proposed Residential Subdivision Hauderowicz, Zbigniew and Teresa 2050 Dunrobin Road, Ottawa

September 24, 2021

File No. 200977

Chapter 15

Time of Concentration

Part 630 National Engineering Handbook

APPENDIX C: PRE-DEVELOPMENT STORM DATA

Pre-development OTTHYMO summary output file

Pre-development Detailed Output file from last link in model

File No. 200977

Proiec	rt # 200977		1	of 9	2050	Dunrobin Septe	n Road ember	, Ottaw 21, 202
=====						=======		======
	VVIS VVIS VVI VVI VVIS	SSSS U S U SS U SS U SSSS UU	U A U A A U AAAA U A U UUU A	L L A L A L A LLLLL				
	000 TTTTT I 0 0 T 0 0 T 000 T	TTTT H T H T H T H	H Y H Y Y H Y H Y	Y M M MM MM M M M M	000 0 0 0 0 000			
	* * *	** S U	MMARY	T O U T	PUT ***	* *		
W/E	COMMAND START @ .00 hr	HYD s	ID DT min	AREA ha	Qpeak Tpea cms hrs	k R.V. mm	R.C.	Qbas cms
Addi	READ STORM [Ptot= 50.41 mm fname : G:\Proje itional lots\Stor remark: SCS II 6] cts\2020 m\Design hr 5yr C	30.0 200977 - Sto Ottawa	· Zbigniev	v Hauderowi	cz – 2050) Dunro	obin Ro
**	CALIB NASHYD [CN=59.0 [N = 3.0:Tp .3	0002] 1]	1 5.0	4.61	.05 3.3	3 6.38	.13	.00
* *	CALIB NASHYD [CN=69.0 [N = 3.0:Tp .1	0007] 7]	1 5.0	.21	.01 3.0	8 11.26	.22	.00
* *	CALIB NASHYD [CN=61.0 [N = 3.0:Tp .3	0003] 2]	1 5.0	1.69	.02 3.3	3 7.34	.15	.00
* *	CALIB NASHYD [CN=59.0 [N = 3.0:Tp .2	0001] 7]	1 5.0	4.30	.05 3.2	5 6.38	.13	.00
* *	CALIB NASHYD [CN=69.0 [N = 3.0:Tp .1	0004] 7]	1 5.0	.21	.01 3.0	8 11.26	.22	.00
	ADD [0002 + 0007] 0005	3 5.0	4.82	.06 3.3	3 6.59	n/a	.00
	ADD [0001 + 0004] 0008	3 5.0	4.51	.06 3.2	5 6.61	n/a	.00

.05 3.50 6.59 n/a .000

.08 3.25 6.81 n/a .000

CHANNEL[2 : 0005] 0011 1 5.0 4.82

ADD [0003 + 0008] 0009 3 5.0 6.20

*

*

K]	Pre-de	evelopment	t Otthyı	no Anal 2050 D	lysis Su unrobi	ummar n Road	y Output , Ottawa
Projec	ct # 200977				2 of 9			Sept	ember	21, 2021
*	CHANNEL[2 : 0009] ADD [0011 + 0010]	0010 0012	1 3	5.0 5.0	6.20	.07	3.33 3.42	6.80 6.71	n/a n/a	.000
* * * ; * * * ;	**************************************	***** 2 ** *****								
W/E	COMMAND	HYD	ID	DT min	AREA ha	Qpeak cms	Tpeak hrs	R.V. mm	R.C.	Qbase cms
	START @ .00 hrs									
- Add	READ STORM [Ptot= 87.00 mm] fname : G:\Projects itional lots\Storm\]	 s\2020 Design	\20 St	30.0	- Zbignie	w Haude	erowicz	- 2050) Dunro	obin Rd
*	remark: SCS II 6hr	100yr	Ot	tawa						
*	CALIB NASHYD [CN=59.0] [N = 3.0:Tp .31]	0002	1	5.0	4.61	.19	3.25	21.60	.25	.000
* *	CALIB NASHYD [CN=69.0] [N = 3.0:Tp .17]	0007	1	5.0	.21	.02	3.00	31.94	.37	.000
*	CALIB NASHYD [CN=61.0] [N = 3.0:Tp .32]	0003	1	5.0	1.69	.08	3.25	23.69	.27	.000
**	CALIB NASHYD [CN=59.0] [N = 3.0:Tp .27]	0001	1	5.0	4.30	.19	3.17	21.60	.25	.000
* **	CALIB NASHYD [CN=69.0] [N = 3.0:Tp .17]	0004	1	5.0	.21	.02	3.00	31.94	.37	.000
*	ADD [0002 + 0007]	0005	3	5.0	4.82	.21	3.17	22.05	n/a	.000
*	ADD [0001 + 0004]	0008	3	5.0	4.51	.21	3.17	22.07	n/a	.000
*	CHANNEL[2 : 0005]	0011	1	5.0	4.82	.20	3.25	22.05	n/a	.000
*	ADD [0003 + 0008]	0009	3	5.0	6.20	.29	3.17	22.51	n/a	.000
*	CHANNEL[2 : 0009]	0010	1	5.0	6.20	.28	3.25	22.51	n/a	.000
*	ADD [0011 + 0010]	0012	3	5.0	11.02	.48	3.25	22.31	n/a	.000

(K)]	Pre-de	evelopmen	t Otthyı	mo Ana 2050 D	o Analysis Summary Output 050 Dunrobin Road, Ottawa			
Project #	200977				3 of 9			Sept	ember	21, 2021
****** ** SIM(******	**************************************	*****	* *							
W/E CON	MAND	HYD	ID	DT min	AREA ha	Qpeak cms	Tpeak hrs	R.V. mm	R.C.	Qbase cms
STA	ART @ .00 hrs									
REA [I fna - Additic ren	AD STORM Ptot= 57.20 mm] ame : G:\Project; onal lots\Storm\) nark: SCS II 12h:	 s\2020 Design r 5yr	D\2(n St Ott	30.0 00977 co cawa	- Zbignie	ew Haude	erowicz	- 2050	0 Dunr	obin Rd
* CAI [Cl [l	LIB NASHYD N=59.0] N = 3.0:Tp .31]	0002	1	5.0	4.61	.06	6.25	8.67	.15	.000
* CAI [Cl	LIB NASHYD N=69.0] N = 3.0:Tp .17]	0007	1	5.0	.21	.01	6.00	14.56	.25	.000
* CAI [Cl [l	LIB NASHYD N=61.0] N = 3.0:Tp .32]	0003	1	5.0	1.69	.03	6.25	9.84	.17	.000
* CAI [Cl [l	LIB NASHYD N=59.0] N = 3.0:Tp .27]	0001	1	5.0	4.30	.07	6.17	8.67	.15	.000
* CAI [Cl []	LIB NASHYD N=69.0] N = 3.0:Tp .17]	0004	1	5.0	.21	.01	6.00	14.56	.25	.000
ADI	0 [0002 + 0007]	0005	3	5.0	4.82	.07	6.17	8.93	n/a	.000
ADI	0 [0001 + 0004]	0008	3	5.0	4.51	.07	6.17	8.94	n/a	.000
CHA	ANNEL[2 : 0005]	0011	1	5.0	4.82	.07	6.25	8.92	n/a	.000
ADI	0 [0003 + 0008]	0009	3	5.0	6.20	.10	6.17	9.18	n/a	.000
CHA	ANNEL[2 : 0009]	0010	1	5.0	6.20	.09	6.25	9.18	n/a	.000
ADI	0 [0011 + 0010]	0012	3	5.0	11.02	.16	6.25	9.07	n/a	.000
****** ** SIMU ******	**************************************	******	* * *							
W/E CON	MAND	HYD	ID	DT min	AREA ha	Qpeak cms	Tpeak hrs	R.V. mm	R.C.	Qbase cms
STA	ART @ .00 hrs									
REA [I fna - Additic ren	AD STORM Ptot= 67.20 mm] ame : G:\Project; onal lots\Storm\J nark: SCS II 12h	s\2020 Design r 10v1	0\2(n. St r. Ot	30.0 00977	- Zbignie	ew Haude	erowicz	- 2050	0 Dunr	obin Rd

(K)
Project # 200977

	0								-		-
*	* *	CALIB NASHYD [CN=59.0] [N = 3.0:Tp .31]	0002	1	5.0	4.61	.10	6.17	12.52	.19	.000
*	* *	CALIB NASHYD [CN=69.0] [N = 3.0:Tp .17]	0007	1	5.0	.21	.01	6.00	19.92	.30	.000
*	**	CALIB NASHYD [CN=61.0] [N = 3.0:Tp .32]	0003	1	5.0	1.69	.04	6.17	14.00	.21	.000
*	**	CALIB NASHYD [CN=59.0] [N = 3.0:Tp .27]	0001	1	5.0	4.30	.10	6.17	12.52	.19	.000
*	**	CALIB NASHYD [CN=69.0] [N = 3.0:Tp .17]	0004	1	5.0	.21	.01	6.00	19.92	.30	.000
*		ADD [0002 + 0007]	0005	3	5.0	4.82	.11	6.17	12.84	n/a	.000
 +		ADD [0001 + 0004]	0008	3	5.0	4.51	.11	6.17	12.86	n/a	.000
*		CHANNEL[2 : 0005]	0011	1	5.0	4.82	.10	6.25	12.84	n/a	.000
*		ADD [0003 + 0008]	0009	3	5.0	6.20	.15	6.17	13.17	n/a	.000
*		CHANNEL[2 : 0009]	0010	1	5.0	6.20	.14	6.25	13.17	n/a	.000
*		ADD [0011 + 0010]	0012	3	5.0	11.02	.24	6.25	13.03	n/a	.000

K)]	Pre-de	velopmen	t Otthyı	mo Ana 2050 D	lysis Su Junrobi	ummar n Roac	y Output l, Ottawa
Proje	ct # 200977				5 of 9			Sept	ember	21, 2021
* * * * * * * *	**************************************	* * * * * * 5 * * * * * * * *	; ;							
W/E	E COMMAND	HYD	ID	DT min	AREA ha	Qpeak cms	Tpeak hrs	R.V. mm	R.C.	Qbase cms
	START @ .00 hrs									
- Add	READ STORM [Ptot= 96.00 mm] fname : G:\Project: ditional lots\Storm\ remark: SCS II 12h:	 s\2020 Desigr r 100})\2(1 St 7r (30.0 0977 to Ottawa	- Zbignie	ew Haude	erowicz	- 2050) Dunr	obin Rd
* * *	CALIB NASHYD [CN=59.0] [N = 3.0:Tp .31]	0002	1	5.0	4.61	.22	6.17	26.27	.27	.000
* *	CALIB NASHYD [CN=69.0] [N = 3.0:Tp .17]	0007	1	5.0	.21	.02	6.00	37.90	.39	.000
~ **	CALIB NASHYD [CN=61.0] [N = 3.0:Tp .32]	0003	1	5.0	1.69	.09	6.17	28.63	.30	.000
^ **	CALIB NASHYD [CN=59.0] [N = 3.0:Tp .27]	0001	1	5.0	4.30	.22	6.08	26.26	.27	.000
*	CALIB NASHYD [CN=69.0] [N = 3.0:Tp .17]	0004	1	5.0	.21	.02	6.00	37.90	.39	.000
*	ADD [0002 + 0007]	0005	3	5.0	4.82	.23	6.17	26.78	n/a	.000
~ +	ADD [0001 + 0004]	0008	3	5.0	4.51	.24	6.08	26.80	n/a	.000
+	CHANNEL[2 : 0005]	0011	1	5.0	4.82	.23	6.25	26.77	n/a	.000
~ F	ADD [0003 + 0008]	0009	3	5.0	6.20	.32	6.17	27.30	n/a	.000
+	CHANNEL[2 : 0009]	0010	1	5.0	6.20	.32	6.17	27.30	n/a	.000
.	ADD [0011 + 0010]	0012	3	5.0	11.02	.54	6.17	27.07	n/a	.000
^ * * * * * * * *	**************************************	* * * * * * * 6 * * * * * * * *	; ; ;							
W/E	E COMMAND	HYD	ID	DT min	AREA ha	Qpeak cms	Tpeak hrs	R.V. mm	R.C.	Qbase cms
	START @ .00 hrs									
*	CHIC STORM [Ptot= 56.17 mm]			10.0						
* *	CALIB NASHYD [CN=59.0]	0002	1	5.0	4.61	.06	4.42	8.30	.15	.000

K)	Pre-development Otthymo Analysis Summary Ou 2050 Dunrobin Road, Otta									
Projec	et # 200977				6 of 9		September 21, 2021				
*	[N = 3.0:Tp .31]										
* *	CALIB NASHYD [CN=69.0] [N = 3.0:Tp .17]	0007	1	5.0	.21	.01	4.17	14.04	.25	.000	
*	CALIB NASHYD [CN=61.0] [N = 3.0:Tp .32]	0003	1	5.0	1.69	.02	4.42	9.44	.17	.000	
**	CALIB NASHYD [CN=59.0] [N = 3.0:Tp .27]	0001	1	5.0	4.30	.06	4.33	8.30	.15	.000	
*	CALIB NASHYD [CN=69.0] [N = 3.0:Tp .17]	0004	1	5.0	.21	.01	4.17	14.04	.25	.000	
	ADD [0002 + 0007]	0005	3	5.0	4.82	.06	4.33	8.55	n/a	.000	
*	ADD [0001 + 0004]	0008	3	5.0	4.51	.06	4.33	8.57	n/a	.000	
*	CHANNEL[2 : 0005]	0011	1	5.0	4.82	.06	4.50	8.55	n/a	.000	
*	ADD [0003 + 0008]	0009	3	5.0	6.20	.09	4.33	8.81	n/a	.000	
*	CHANNEL[2 : 0009]	0010	1	5.0	6.20	.08	4.42	8.80	n/a	.000	
*	ADD [0011 + 0010]	0012	З	5.0	11.02	.14	4.42	8.69	n/a	.000	
**** *** (**************************************	* * * * * * 7 * * * * * * * *	; ; ;								
W/E	COMMAND	HYD	ID	DT min	AREA ha	Qpeak cms	Tpeak hrs	R.V. mm	R.C.	Qbase cms	
	START @ .00 hrs										
*	CHIC STORM [Ptot= 93.90 mm]			10.0							
**	CALIB NASHYD [CN=59.0] [N = 3.0:Tp .31]	0002	1	5.0	4.61	.21	4.33	25.15	.27	.000	
**	CALIB NASHYD [CN=69.0] [N = 3.0:Tp .17]	0007	1	5.0	.21	.02	4.08	36.49	.39	.000	
* *	CALIB NASHYD [CN=61.0] [N = 3.0:Tp .32]	0003	1	5.0	1.69	.09	4.33	27.45	.29	.000	
* * *	CALIB NASHYD [CN=59.0] [N = 3.0:Tp .27]	0001	1	5.0	4.30	.21	4.25	25.15	.27	.000	
* * *	CALIB NASHYD [CN=69.0] [N = 3.0:Tp .17]	0004	1	5.0	.21	.02	4.08	36.49	.39	.000	

ADD [0002 + (ADD [0001 + (ADD [0001 + (CHANNEL[2 : ADD [0003 + (CHANNEL[2 : ADD [0011 + (************************************	00007] 0004] 0005] 0008] 0009] 0010] ****** MBER: ****** MBER: ****** 9 mm] rojects Storm\I	0005 0008 0011 0009 0010 0012 ****** HYD	3 3 1 3 1 3 3 7 TD	5.0 5.0 5.0 5.0 5.0 5.0 DT min	7 of 9 4.82 4.51 4.82 6.20 6.20 11.02 AREA ha	.23 .22 .31 .31 .53 Qpeak cms	4.33 4.25 4.42 4.25 4.33 4.33 Tpeak hrs	Septe 25.65 25.67 25.65 26.16 26.15 25.93 R.V. mm	n/a n/a n/a n/a n/a R.C.	21, 202 .000 .000 .000 .000 .000
ADD [0002 + 0 ADD [0001 + 0 CHANNEL[2 : ADD [0003 + 0 CHANNEL[2 : ADD [0011 + 0 ************************************	0007] 0004] 0005] 0008] 0009] 0010] ****** MBER: ******* MBER: ****** 9 mm] rojects Storm\I	0005 0008 0011 0009 0010 0012 ****** 8 ** ***** HYD	3 1 3 1 3 1 3 5 TD	5.0 5.0 5.0 5.0 5.0 5.0	4.82 4.51 4.82 6.20 6.20 11.02 AREA ha	.23 .22 .31 .31 .53 Qpeak cms	4.33 4.25 4.42 4.25 4.33 4.33	25.65 25.67 25.65 26.16 26.15 25.93 R.V. mm	n/a n/a n/a n/a R.C.	.000 .000 .000 .000 .000 Qbase cms
ADD [0002 + (ADD [0001 + (CHANNEL[2 : ADD [0003 + (CHANNEL[2 : ADD [0011 + (************************************	0007] 0004] 0005] 0008] 0009] 0010] ****** MBER: ******* MBER: ****** 9 hrs 9 mm] rojects Storm\I	0005 0008 0011 0009 0010 0012 ****** 8 ** ****** HYD	3 1 3 1 3 3 *	5.0 5.0 5.0 5.0 5.0 5.0 DT min	4.82 4.51 4.82 6.20 6.20 11.02	.23 .22 .31 .31 .53 Qpeak	4.33 4.25 4.42 4.25 4.33 4.33 Tpeak	25.65 25.67 25.65 26.16 26.15 25.93 R.V.	n/a n/a n/a n/a R.C.	.000 .000 .000 .000 .000 Qbase cms
ADD [0001 + (CHANNEL[2 : ADD [0003 + (CHANNEL[2 : ADD [0011 + (************************************	0004] 0005] 0008] 0009] 0010] ******* MBER: ******* 0 hrs 9 mm] rojects Storm\I	0008 0011 0009 0010 0012 ****** 8 ** ****** HYD	3 1 3 1 3 4 4 4	5.0 5.0 5.0 5.0 5.0 DT min	4.51 4.82 6.20 6.20 11.02 AREA ha	.23 .22 .31 .53 Qpeak cms	4.25 4.42 4.25 4.33 4.33 Tpeak hrs	25.67 25.65 26.16 26.15 25.93 R.V.	n/a n/a n/a n/a R.C.	.000 .000 .000 .000 Qbase cms
CHANNEL[2 : ADD [0003 + (CHANNEL[2 : ADD [0011 + (************************************	0005] 0008] 0009] 0010] ****** MBER: ****** 0 hrs 9 mm] rojects Storm\I	0011 0009 0010 0012 ****** 8 ** ****** HYD	1 3 1 3 *	5.0 5.0 5.0 5.0 DT min	4.82 6.20 6.20 11.02 AREA ha	.22 .31 .53 Qpeak cms	4.42 4.25 4.33 4.33 Tpeak hrs	25.65 26.16 26.15 25.93 R.V.	n/a n/a n/a R.C.	.000 .000 .000 Qbase cms
ADD [0003 + (CHANNEL[2 : ADD [0011 + (************************************	0008] 0009] 0010] ****** MBER: ****** 0 hrs 9 mm] rojects Storm\I	0009 0010 0012 ****** ****** HYD	3 1 3 	5.0 5.0 5.0 DT min	6.20 6.20 11.02 AREA ha	.31 .31 .53 Qpeak cms	4.25 4.33 4.33 Tpeak hrs	26.16 26.15 25.93 R.V. mm	n/a n/a n/a R.C.	.00 .00 .00 Qbase cms
CHANNEL[2 : ADD [0011 + () ************************************	0009] 0010] ****** MBER: ******* 0 hrs 9 mm] rojects Storm\I	0010 0012 ****** ****** HYD	1 3 * ID	5.0 5.0 DT min	6.20 11.02 AREA ha	.31 .53 Qpeak cms	4.33 4.33 Tpeak hrs	26.15 25.93 R.V. mm	n/a n/a R.C.	.00 .00 Qbase cms
ADD [0011 + (***********************************	0010] ****** MBER: ****** 0 hrs 9 mm] rojects Storm\I	0012 ****** 8 ** HYD	3	5.0 DT min 5.0	11.02 AREA ha	.53 Qpeak cms	4.33 Tpeak hrs	25.93 R.V. mm	n/a R.C.	.00 Qbas cms
<pre>************************************</pre>	****** MBER: ****** 0 hrs 9 mm] rojects Storm\I	****** 8 ** ****** HYD 	ID	DT min 5.0	AREA ha	Qpeak cms	Tpeak hrs	R.V. mm	R.C.	Qbas cms
<pre>W/E COMMAND START @ .00 READ STORM [Ptot= 83.99 fname : G:\Pr Additional lots\S remark: Ottaw ** CALIB NASHYD [CN=59.0 [N = 3.0:Tp</pre>	0 hrs 9 mm] rojects Storm\I	HYD	ID	DT min 5.0	AREA ha	Qpeak cms	Tpeak hrs	R.V. mm	R.C.	Qbas cms
START @ .00 READ STORM [Ptot= 83.99 fname : G:\Pr Additional lots\S remark: Ottaw ** CALIB NASHYD [CN=59.0 [N = 3.0:Tp	0 hrs 9 mm] roject: Storm\I			5.0						
READ STORM [Ptot= 83.99 fname : G:\Pr Additional lots\S remark: Ottav ** CALIB NASHYD [CN=59.0 [N = 3.0:Tp	9 mm] roject: Storm\I	 -\ 2020		5.0						
<pre>[Ptot= 83.99 fname : G:\Pr Additional lots\S remark: Ottav ** CALIB NASHYD [CN=59.0 [N = 3.0:Tp</pre>	9 mm] roject: Storm\I	<u>-</u> \ 2020		•						
[N = 3.0:Tp	wa July]	Design y 1 19 0002	1 St	5.0	4.61	.27	1.83	20.11	.24	.00
	.31]									
** CALIB NASHYD [CN=69.0 [N = 3.0:Tp] .17]	0007	1	5.0	.21	.02	1.67	30.01	.36	.00
** CALIB NASHYD [CN=61.0 [N = 3.0:Tp] .32]	0003	1	5.0	1.69	.11	1.83	22.10	.26	.00
** CALIB NASHYD [CN=59.0 [N = 3.0:Tp] .27]	0001	1	5.0	4.30	.26	1.75	20.10	.24	.00
** CALIB NASHYD [CN=69.0 [N = 3.0:Tp] .17]	0004	1	5.0	.21	.02	1.67	30.01	.36	.00
ADD [0002 + (0007]	0005	3	5.0	4.82	.28	1.83	20.54	n/a	.00
ADD [0001 + (0004]	0008	3	5.0	4.51	.29	1.75	20.56	n/a	.00
CHANNEL[2:	0005]	0011	1	5.0	4.82	.28	1.92	20.54	n/a	.00
ADD [0003 + (00081	0009	3	5.0	6.20	.39	1.75	20.98	n/a	.00
CHANNET 2	00001	0010	1	5 0	6 20	20	1 82	20 02	n / ⊃	0.0
	0000]	0010	+ ~	5.0 E 0	11 00		1 00	20.70	/u	.00

(K)	Р	re-de	evelopment	Otthyn	no Ana 2050 D	o Analysis Summary Output 2050 Dunrobin Road, Ottawa					
Project # 200977					8 of 9		September 21, 2021				
**************************************	********* NUMBER: *******	***** 9 ** ****									
W/E COMMAND		HYD	ID	DT min	AREA ha	Qpeak cms	Tpeak hrs	R.V. mm	R.C.	Qbase cms	
START @	.00 hrs										
READ STORM [Ptot= 80 fname : G:	.57 mm]	- \2020	\20	5.0 0977	- Zbigniev	w Haude	rowicz	- 2050	Dunr	obin Rd	
- Additional lot remark: Ot *	s\Storm\D tawa Aug	esign 4 198	Sto 8	C	5						
** CALIB NASH [CN=59.0 [N = 3.0:	TP .31]	0002	1	5.0	4.61	.24	2.17	18.46	.23	.000	
** CALIB NASH [CN=69.0 [N = 3.0:	YD] Tp .17]	0007	1	5.0	.21	.02	2.08	27.86	.35	.000	
** CALIB NASH [CN=61.0 [N = 3.0:	YD] Tp .32]	0003	1	5.0	1.69	.10	2.17	20.35	.25	.000	
** CALIB NASH [CN=59.0 [N = 3.0:	YD] Tp .27]	0001	1	5.0	4.30	.24	2.17	18.46	.23	.000	
* ** CALIB NASH [CN=69.0 [N = 3.0:	TD] Tp .17]	0004	1	5.0	.21	.02	2.08	27.86	.35	.000	
* ADD [0002	+ 0007]	0005	3	5.0	4.82	.26	2.17	18.87	n/a	.000	
* ADD [0001	+ 0004]	0008	3	5.0	4.51	.27	2.08	18.89	n/a	.000	
* CHANNEL[2	: 0005]	0011	1	5.0	4.82	.25	2.17	18.87	n/a	.000	
* ADD [0003	+ 0008]	0009	3	5.0	6.20	.36	2.17	19.29	n/a	.000	
* CHANNEL[2	: 0009]	0010	1	5.0	6.20	.35	2.17	19.29	n/a	.000	
* ADD [0011 *	+ 0010]	0012	3	5.0	11.02	.60	2.17	19.10	n/a	.000	

(K)	Pre-de	evelopment Otthy	mo Analysis Su 2050 Dunrobi	ummary Output n Road, Ottawa			
Project # 200977		9 of 9 September 21,					
**************************************	* * * * 0 * * * * *						
W/E COMMAND I	HYD ID DT min	AREA Qpeak ha cms	Tpeak R.V. hrs mm	R.C. Qbase cms			
START @ .00 hrs							
READ STORM [Ptot= 25.00 mm] fname : G:\Projects\; - Additional lots\Storm\Des remark: twentyfive mm	10.0 2020\200977 sign Sto m 4 hr chica	- Zbigniew Haudo ago storm	erowicz – 205() Dunrobin Rd			
* CALIB NASHYD 00 [CN=59.0] [N = 3.0:Tp .31]	002 1 5.0	4.61 .00	2.67 .70	.03 .000			
* CALIB NASHYD 00 [CN=69.0] [N = 3.0:Tp .17]	007 1 5.0	.21 .00	1.75 2.10	.08 .000			
** CALIB NASHYD 00 [CN=61.0] [N = 3.0:Tp .32]	003 1 5.0	1.69 .00	2.42 .96	.04 .000			
** CALIB NASHYD 00 [CN=59.0] [N = 3.0:Tp .27]	001 1 5.0	4.30 .00	2.50 .70	.03 .000			
** CALIB NASHYD 00 [CN=69.0] [N = 3.0:Tp .17]	004 1 5.0	.21 .00	1.75 2.10	.08 .000			
* ADD [0002 + 0007] 00	005 3 5.0	4.82 .00	2.58 .76	n/a .000			
* ADD [0001 + 0004] 00	008 3 5.0	4.51 .00	2.50 .77	n/a .000			
* CHANNEL[2 : 0005] 00	011 1 5.0	4.82 .00	2.83 .76	n/a .000			
* ADD [0003 + 0008] 00	009 3 5.0	6.20 .01	2.42 .82	n/a .000			
* CHANNEL[2 : 0009] 00	010 1 5.0	6.20 .01	2.75 .82	n/a .000			
* ADD [0011 + 0010] 00	012 3 5.0	11.02 .01	2.83 .79	n/a .000			
FINISH							
	=======================================						

Pre-development Otthymo Analysis Detailed Output Last Link 2050 Dunrobin Road, Ottawa Project # 200977 1 of 3 September 21, 2021 ** SIMULATION NUMBER: 1 ** _____ ADD HYD (0012) 1 + 2 = 3 AREA QPEAK TPEAK R.V.
 ---- (ha)
 (cms)
 (hrs)
 (mm)

 ID1=1
 (0011):
 4.82
 .055
 3.50
 6.59

 + ID2=2
 (0010):
 6.20
 .075
 3.33
 6.80
 _____ (mm) ID = 3 (0012): 11.02 .129 3.42 6.71 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. ** SIMULATION NUMBER: 2 ** _____ ADD HYD (0012)

 2 = 3
 AREA
 QPEAK
 TPEAK
 R.V.

 ------ (ha)
 (cms)
 (hms)
 (mm)

 ID1= 1
 (0011):
 4.82
 .203
 3.25
 22.05

 + ID2= 2
 (0010):
 6.20
 .280
 3.25
 22.51

 1 + 2 = 3 _____ ID = 3 (0012): 11.02 .483 3.25 22.31 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. _____ ** SIMULATION NUMBER: 3 ** _____ | ADD HYD (0012) | AREA QPEAK TPEAR (ha) (cms) (hrs) (mm) 02 .068 6.25 8.92 6 25 9.18 AREA QPEAK TPEAK 1 + 2 = 3 R.V. _____ (mm) ID1= 1 (0011): 4.82 .068 6.25 + ID2= 2 (0010): 6.20 .094 6.25 ------ID = 3 (0012): 11.02 .162 6.25 9.07 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. _____ _____ ** SIMULATION NUMBER: 4 ** _____ ADD HYD (0012) 1 + 2 = 3 ID = 3 (0012): 11.02 .244 6.25 13.03 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. _____

September 21,		3	2 of 3		roject # 200977
				**** 5 ** ***	**************************************
)	R.V. (mm) 26.77 27.30	TPEAK (hrs) 6.25 6.17	QPEAK (cms) .229 .315	AREA (ha) 4.82 6.20	ADD HYD (0012) 1 + 2 = 3 ID1= 1 (0011): + ID2= 2 (0010):
2	27.07	======= 6.17	 .541	11.02	======================================
	IY.	OWS IF AN	DE BASEFL	NOT INCLU	NOTE: PEAK FLOWS DO
				**** 6 ** ****	**************************************
	R.V. (mm)	TPEAK (hrs)	QPEAK (cms)	AREA (ha)	1 + 2 = 3
-)	8.55	4.50 4.42	.060	4.82	ID1= 1 (0011): + ID2= 2 (0010):
)	0.00		========	=======================================	===============
=	8 69	4 4 2	144		T - 3 (0012):
-	8.80 ====== 8.69 NY.	4.42 OWS IF AN	.144 DE BASEFL	NOT INCLU	ID = 3 (0012): NOTE: PEAK FLOWS DO :
= 	8.80 8.69 NY.	4.42 OWS IF AN	.144 DE BASEFL	NOT INCLU	<pre>ID = 3 (0012): NOTE: PEAK FLOWS DO ************************************</pre>
	R.V.	4.42 OWS IF AN 	.144 DE BASEFL 	NOT INCLU. **** 7 ** **** AREA	ID = 3 (0012): NOTE: PEAK FLOWS DO ************************************
	R.V. (mm) 25.65 26.15	4.42 OWS IF AN TPEAK (hrs) 4.42 4.33	.144 DE BASEFL QPEAK (cms) .222 .309	NOT INCLU. **** 7 ** **** AREA (ha) 4.82 6.20	ID = 3 (0012): NOTE: PEAK FLOWS DO ************************************

roject # 200977		3 of 3	3	2050 Di	September 21, 20		
**************************************	* * * * 8 * * * * *						
ADD HYD (0012) 1 + 2 = 3 ID1= 1 (0011): + ID2= 2 (0010):	AREA (ha) 4.82 6.20	QPEAK (cms) .279 .382	TPEAK (hrs) 1.92 1.83	R.V. (mm) 20.54 20.98			
ID = 3 (0012): NOTE: PEAK FLOWS DO 1	11.02 NOT INCLU	.659 DE BASEFL	1.83 OWS IF AI	20.79			
**************************************	 * * * * 9 * * * * * *						
ADD HYD (0012) 1 + 2 = 3	AREA	OPEAK	ͲΡΕΔΚ	RV			
ADD HYD (0012) 1 + 2 = 3 ID1= 1 (0011): + ID2= 2 (0010):	AREA (ha) 4.82 6.20	QPEAK (cms) .249 .348	TPEAK (hrs) 2.17 2.17	R.V. (mm) 18.87 19.29			
ADD HYD (0012) 1 + 2 = 3 ID1= 1 (0011): + ID2= 2 (0010): ID = 3 (0012): NOTE: PEAK FLOWS DO D	AREA (ha) 4.82 6.20 ======== 11.02 NOT INCLU	QPEAK (cms) .249 .348 ======== .596 DE BASEFL	TPEAK (hrs) 2.17 2.17 2.17 2.17 COWS IF AN	R.V. (mm) 18.87 19.29 ====== 19.10 NY.			
ADD HYD (0012) 1 + 2 = 3 ID1= 1 (0011): + ID2= 2 (0010): ID = 3 (0012): NOTE: PEAK FLOWS DO D ************************************	AREA (ha) 4.82 6.20 ======== 11.02 NOT INCLU **** 10 ** ****	QPEAK (cms) .249 .348 ======= .596 DE BASEFL	TPEAK (hrs) 2.17 2.17 2.17 2.17	R.V. (mm) 18.87 19.29 ====== 19.10 NY.			
ADD HYD (0012) 1 + 2 = 3 ID1= 1 (0011): + ID2= 2 (0010): ====================================	AREA (ha) 4.82 6.20 ====== 11.02 NOT INCLU 	QPEAK (cms) .249 .348 ======= .596 DE BASEFL DE BASEFL QPEAK (cms) .004 .006	TPEAK (hrs) 2.17 2.17 2.17 30WS IF AN 30WS I	R.V. (mm) 18.87 19.29 ====== 19.10 NY. 			

APPENDIX D: POST-DEVELOPMENT OTTHYMO STORM DATA

Post-Development OTTHYMO summary output file

Post-Development Detailed Output file Last Link before Stormwater Management Swale

File No. 200977

Post-Development Detailed Output file Last Link before Harwood Creek

Post-Development Detailed Output file Swale Discharging to Harwood Creek

V V I SSSSS U U А L v v I U U AA L SS v v U AAAAA L SS IJ Ι v v SS U U A A L I VV I SSSSS UUUUU A A LLLLL OOO TTTTT TTTTT H H Y Y M М 000 0 0 Т Т Н Н ҮҮ ММ ММ О О 0 0 Т т Н Н Ү м м о о Т Т Η 000 Н Y M M 000 ***** SUMMARY OUTPUT ***** ****** ** SIMULATION NUMBER: 1 ** W/E COMMAND HYD ID DT AREA Qpeak Tpeak R.V. R.C. Qbase min ha cms hrs mm cms START @ .00 hrs _____ READ STORM 30.0 [Ptot= 50.41 mm] fname : G:\Projects\2020\200977 - Zbigniew Hauderowicz - 2050 Dunrobin Rd - Additional lots\Storm\Design Sto remark: SCS II 6hr 5yr Ottawa * * 0004 1 5.0 1.49 .02 3.25 6.07 .12 .000 CALIB NASHYD] [CN=58.0 [N = 3.0:Tp .28]* CALIB NASHYD 0003 1 5.0 [CN=58.0] ** .35 .00 3.50 6.07 .12 .000 [N = 3.0:Tp .38]* * CALIB NASHYD 0002 1 5.0 [CN=58.0] .34 .000 .00 3.58 6.07 .12 [N = 3.0:Tp .40]CALIB NASHYD 0001 1 5.0 * * .33 .00 3.50 7.27 .14 .000 [N = 3.0:Tp .41] CALIB NASHYD 0005 1 5.0 [CN=58.0] ** 1.17 .02 3.08 6.06 .12 .000 [N = 3.0:Tp .17]** CALIB NASHYD 0006 1 5.0 [CN=58.0] .34 .00 3.08 6.05 .12 .000 [N = 3.0:Tp .17]** CALIB NASHYD 0019 1 5.0 [CN=61.0] 1.69 .02 3.33 7.34 .15 .000 [N = 3.0:Tp .32]

K		
Project	#	200

Post-development Otthy	mo Analysis Summary Output
	2050 Dunrobin Road, Ottawa

Project # 20	0977				2 of 26		2050 Dunrobin Road, Otta September 21, 20				
** CALIB [CN=5 [N =	NASHYD 8.0 3.0:Tp .1	0007] 9]	1	5.0	.34	.00	3.08	6.06	.12	.000	
* CALIB [CN=6 [N =	NASHYD 1.0 3.0:Tp .2	0008] 3]	1	5.0	.33	.00	3.17	7.27	.14	.000	
* CALIB [CN=6 [N =	NASHYD 7.0 3.0:Tp .1	0013] 7]	1	5.0	.51	.01	3.08	10.09	.20	.000	
** CALIB [CN=6 [N =	NASHYD 7.0 3.0:Tp .1	0014] 7]	1	5.0	.52	.01	3.08	10.09	.20	.000	
** CALIB [CN=6 [N =	NASHYD 7.0 3.0:Tp .1	0015] 7]	1	5.0	.53	.01	3.08	10.09	.20	.000	
** CALIB [CN=6 [N =	NASHYD 7.0 3.0:Tp .1	0016] 7]	1	5.0	.53	.01	3.08	10.13	.20	.000	
** CALIB [CN=6 [N =	NASHYD 9.0 3.0:Tp .1	0018] 7]	1	5.0	.21	.01	3.08	11.26	.22	.000	
** CALIB [CN=6 [N =	NASHYD 7.0 3.0:Tp .1	0012] 7]	1	5.0	.56	.01	3.08	10.17	.20	.000	
** CALIB [CN=6 [N =	NASHYD 7.0 3.0:Tp .1	0011] 7]	1	5.0	.53	.01	3.08	10.09	.20	.000	
** CALIB [CN=6 [N =	NASHYD 7.0 3.0:Tp .1	0010] 7]	1	5.0	.54	.01	3.08	10.09	.20	.000	
** CALIB [CN=6 [N =	NASHYD 7.0 3.0:Tp .1	0009] 7]	1	5.0	.49	.01	3.08	10.13	.20	.000	
** CALIB [CN=6 [N =	NASHYD 9.0 3.0:Tp .1	0017] 7]	1	5.0	.21	.01	3.08	11.26	.22	.000	
 ADD [0002 + 0001] 0044	3	5.0	.67	.01	3.58	6.66	n/a	.000	
ADD [0007 + 0008] 0030	3	5.0	.67	.01	3.08	6.66	n/a	.000	
ADD [0016 + 0018] 0039	3	5.0	.73	.02	3.08	10.45	n/a	.000	
ADD [0009 + 0017] 0035	3	5.0	.70	.02	3.08	10.47	n/a	.000	
ADD [0003 + 0044] 0045	3	5.0	1.03	.01	3.50	6.46	n/a	.000	
ADD [0019 + 0030] 0031	3	5.0	2.36	.03	3.25	7.15	n/a	.000	
CHANN	EL[2 : 003	9] 0026	1	5.0	.73	.02	3.08	10.45	n/a	.000	

(K)		
Project	#	200

Post-development Otthy	mo Analysis Summary Output
	2050 Dunrobin Road, Ottawa
3 of 26	September 21, 2021

CHANNEL[2 : 0035] ADD [0004 + 0045] CHANNEL[2 : 0031] ADD [0015 + 0026] ADD [0010 + 0022] ADD [0006 + 0020] CHANNEL[2 : 0040] CHANNEL[2 : 0033]	0022 0046 0020 0040 0036 0033 0027	1 3 1 3 3 3 1	5.0 5.0 5.0 5.0 5.0	.70 2.51 2.36 1.27 1.24	.02 .03 .03 .03 .03	3.08 3.42 3.25 3.08	10.47 6.23 7.15 10.30	n/a n/a n/a n/a	.000 .000 .000 .000
ADD [0004 + 0045] CHANNEL[2 : 0031] ADD [0015 + 0026] ADD [0010 + 0022] ADD [0006 + 0020] CHANNEL[2 : 0040] CHANNEL[2 : 0036] CHANNEL[2 : 0033]	0046 0020 0040 0036 0033 0027	3 1 3 3 3 1	5.0 5.0 5.0 5.0 5.0	2.51 2.36 1.27 1.24	.03 .03 .03 .03	3.42 3.25 3.08	6.23 7.15 10.30	n/a n/a n/a	.000 .000 .000
CHANNEL[2 : 0031] ADD [0015 + 0026] ADD [0010 + 0022] ADD [0006 + 0020] CHANNEL[2 : 0040] CHANNEL[2 : 0036] CHANNEL[2 : 0033]	0020 0040 0036 0033 0027 0023	1 3 3 3	5.0 5.0 5.0 5.0	2.36 1.27 1.24	.03 .03 .03	3.25	7.15 10.30	n/a n/a	.000
ADD [0015 + 0026] ADD [0010 + 0022] ADD [0006 + 0020] CHANNEL[2 : 0040] CHANNEL[2 : 0036] CHANNEL[2 : 0033]	0040 0036 0033 0027 0023	3 3 3 1	5.0 5.0 5.0	1.27 1.24	.03	3.08	10.30	n/a	.000
ADD [0010 + 0022] ADD [0006 + 0020] CHANNEL[2 : 0040] CHANNEL[2 : 0036] CHANNEL[2 : 0033]	0036 0033 0027 0023	3 3 1	5.0 5.0	1.24	.03	2			
ADD [0006 + 0020] CHANNEL[2 : 0040] CHANNEL[2 : 0036] CHANNEL[2 : 0033]	0033 0027 0023	3 1	5.0			3.08	10.30	n/a	.000
CHANNEL[2 : 0040] CHANNEL[2 : 0036] CHANNEL[2 : 0033]	0027 0023	1		2.71	.03	3.25	7.01	n/a	.000
CHANNEL[2 : 0036] CHANNEL[2 : 0033]	0023		5.0	1.27	.03	3.08	10.30	n/a	.000
CHANNEL[2 : 0033]		1	5.0	1.24	.03	3.08	10.30	n/a	.000
	0032	1	5.0	2.71	.03	3.25	7.01	n/a	.000
ADD [0014 + 0027]	0041	3	5.0	1.79	.05	3.08	10.24	n/a	.000
ADD [0011 + 0023]	0037	3	5.0	1.77	.05	3.08	10.24	n/a	.000
ADD [0005 + 0032]	0034	3	5.0	3.88	.05	3.25	6.72	n/a	.000
CHANNEL[2 : 0041]	0028	1	5.0	1.79	.05	3.08	10.24	n/a	.000
CHANNEL[2 : 0037]	0024	1	5.0	1.77	.05	3.08	10.24	n/a	.000
CHANNEL[2 : 0034]	0021	1	5.0	3.88	.04	3.42	6.72	n/a	.000
ADD [0013 + 0028]	0042	3	5.0	2.30	.06	3.08	10.20	n/a	.000
ADD [0012 + 0024]	0038	3	5.0	2.33	.06	3.08	10.22	n/a	.000
ADD [0046 + 0021]	0049	3	5.0	6.39	.07	3.42	6.53	n/a	.000
CHANNEL[2 : 0042]	0029	1	5.0	2.30	.06	3.17	10.20	n/a	.000
CHANNEL[2 : 0038]	0025	1	5.0	2.33	.06	3.17	10.22	n/a	.000
ADD [0029 + 0025]	0043	3	5.0	4.63	.12	3.17	10.21	n/a	.000
RESRVR [2 : 0043] {ST= .02 ha.m }	0052	1	5.0	4.63	.05	3.83	10.21	n/a	.000
CHANNEL[2 : 0052]	0047	1	5.0	4.63	.05	3.83	10.21	n/a	.000
ADD [0049 + 0047]	0050	3	5.0	11.02	.11	3.67	8.07	n/a	.000
CHANNEL[2 : 0050]	0048	1	5.0	11.02	.11	3.67	8.07	n/a	.000
**************************************	****** 2 ** *****								
COMMAND	HYD	ID	DT min	AREA ha	Qpeak cms	Tpeak hrs	R.V. mm	R.C.	Qbase cms
START @ .00 hrs									
	ADD [0011 + 0023] ADD [0005 + 0032] CHANNEL[2 : 0041] CHANNEL[2 : 0037] CHANNEL[2 : 0034] ADD [0013 + 0028] ADD [0012 + 0024] ADD [0046 + 0021] CHANNEL[2 : 0042] CHANNEL[2 : 0042] CHANNEL[2 : 0043] {ST= .02 ha.m } CHANNEL[2 : 0052] ADD [0049 + 0047] CHANNEL[2 : 0050] ************************************	ADD [0011 + 0023] 0037 ADD [0005 + 0032] 0034 CHANNEL[2 : 0041] 0028 CHANNEL[2 : 0037] 0024 CHANNEL[2 : 0034] 0021 ADD [0013 + 0028] 0042 ADD [0012 + 0024] 0038 ADD [0046 + 0021] 0049 CHANNEL[2 : 0042] 0029 CHANNEL[2 : 0042] 0029 CHANNEL[2 : 0042] 0043 RESRVR [2 : 0043] 0052 {ST= .02 ha.m } CHANNEL[2 : 0052] 0047 ADD [0049 + 0047] 0050 CHANNEL[2 : 0050] 0048 ************************************	ADD [0011 + 0023] 0037 3 ADD [0005 + 0032] 0034 3 CHANNEL[2 : 0041] 0028 1 CHANNEL[2 : 0037] 0024 1 CHANNEL[2 : 0037] 0024 1 CHANNEL[2 : 0034] 0021 1 ADD [0013 + 0028] 0042 3 ADD [0012 + 0024] 0038 3 ADD [0046 + 0021] 0049 3 CHANNEL[2 : 0042] 0029 1 CHANNEL[2 : 0043] 0052 1 ADD [0029 + 0025] 0043 3 RESRVR [2 : 0043] 0052 1 {ST= .02 ha.m} CHANNEL[2 : 0050] 0048 1 ************************************	ADD [0011 + 0023] 0037 3 5.0 ADD [0005 + 0032] 0034 3 5.0 CHANNEL[2 : 0041] 0028 1 5.0 CHANNEL[2 : 0037] 0024 1 5.0 CHANNEL[2 : 0034] 0021 1 5.0 CHANNEL[2 : 0034] 0021 1 5.0 CHANNEL[2 : 0034] 0021 1 5.0 ADD [0013 + 0028] 0042 3 5.0 ADD [0012 + 0024] 0038 3 5.0 ADD [0046 + 0021] 0049 3 5.0 CHANNEL[2 : 0042] 0029 1 5.0 CHANNEL[2 : 0043] 0052 1 5.0 ADD [0029 + 0025] 0043 3 5.0 RESRVR [2 : 0043] 0052 1 5.0 ST= .02 ha.m } CHANNEL[2 : 0050] 0048 1 5.0 ADD [0049 + 0047] 0050 3 5.0 CHANNEL[2 : 0050] 0048 1 5.0 MULATION NUMBER: 2 ** MULATION NUMBER: 2 ** COMMAND HYD ID DT MINULATION NUMBER: 2 ** COMMAND HYD ID DT	ADD [0011 + 0023] 0037 3 5.0 1.77 ADD [0005 + 0032] 0034 3 5.0 3.88 CHANNEL[2 : 0041] 0028 1 5.0 1.79 CHANNEL[2 : 0037] 0024 1 5.0 1.77 CHANNEL[2 : 0034] 0021 1 5.0 3.88 ADD [0013 + 0028] 0042 3 5.0 2.30 ADD [0012 + 0024] 0038 3 5.0 2.33 ADD [0046 + 0021] 0049 3 5.0 6.39 CHANNEL[2 : 0042] 0029 1 5.0 2.30 CHANNEL[2 : 0042] 0029 1 5.0 2.33 ADD [0029 + 0025] 0043 3 5.0 4.63 RESRVR [2 : 0043] 0052 1 5.0 4.63 START @ .00 hrs 11.02 MADD [000 Hrs 2.30	ADD [0011 + 0023] 0037 3 5.0 1.77 .05 ADD [0005 + 0032] 0034 3 5.0 3.88 .05 CHANNEL[2 : 0041] 0028 1 5.0 1.79 .05 CHANNEL[2 : 0037] 0024 1 5.0 1.77 .05 CHANNEL[2 : 0034] 0021 1 5.0 3.88 .04 ADD [0013 + 0028] 0042 3 5.0 2.30 .06 ADD [0014 + 0021] 0049 3 5.0 6.39 .07 CHANNEL[2 : 0042] 0029 1 5.0 2.30 .06 ADD [0029 + 0025] 0043 3 5.0 4.63 .12 RESERVR [2 : 0043] 0052 1 5.0 4.63 .05 {ST= .02 ha.m} CHANNEL[2 : 0050] 0048 1 5.0 11.02 .11 CHANNEL[2 : 0050] 0048 1 5.0 11.02 .11 CHANNEL[2 : 0050] 0048 1 5.0 11.02 .11 ************************************	ADD [0011 + 0023] 0037 3 5.0 1.77 .05 3.08 ADD [0005 + 0032] 0034 3 5.0 3.88 .05 3.25 CHANNEL[2 : 0041] 0028 1 5.0 1.79 .05 3.08 CHANNEL[2 : 0037] 0024 1 5.0 1.77 .05 3.08 CHANNEL[2 : 0037] 0024 1 5.0 1.77 .05 3.08 CHANNEL[2 : 0037] 0024 1 5.0 1.77 .05 3.08 CHANNEL[2 : 0034] 0021 1 5.0 3.88 .04 3.42 ADD [0013 + 0028] 0042 3 5.0 2.30 .06 3.08 ADD [0012 + 0024] 0038 3 5.0 2.33 .06 3.08 ADD [0046 + 0021] 0049 3 5.0 6.39 .07 3.42 CHANNEL[2 : 0042] 0029 1 5.0 2.30 .06 3.17 CHANNEL[2 : 0042] 0029 1 5.0 2.33 .06 3.17 ADD [0029 + 0025] 0043 3 5.0 4.63 .12 3.17 RESRVR [2 : 0043] 0052 1 5.0 4.63 .05 3.83 (ST= .02 ha.m } .05 3.83 .05 3.83 ADD [0049 + 0047] 0050 3 5.0 11.02 .11 3.67 ************************************	ADD [0011 + 0023] 0037 3 5.0 1.77 .05 3.08 10.24 ADD [0005 + 0032] 0034 3 5.0 3.88 .05 3.25 6.72 CHANNEL[2 : 0041] 0028 1 5.0 1.79 .05 3.08 10.24 CHANNEL[2 : 0037] 0024 1 5.0 1.77 .05 3.08 10.24 CHANNEL[2 : 0034] 0021 1 5.0 3.88 .04 3.42 6.72 ADD [0013 + 0028] 0042 3 5.0 2.30 .06 3.08 10.20 ADD [0012 + 0024] 0038 3 5.0 2.33 .06 3.08 10.22 ADD [0046 + 0021] 0049 3 5.0 6.39 .07 3.42 6.53 CHANNEL[2 : 0042] 0029 1 5.0 2.30 .06 3.17 10.20 CHANNEL[2 : 0042] 0029 1 5.0 2.33 .06 3.17 10.20 CHANNEL[2 : 0042] 0029 1 5.0 2.33 .06 3.17 10.22 ADD [0029 + 0025] 0043 3 5.0 4.63 .12 3.17 10.21 RESEVR [2 : 0043] 0052 1 5.0 4.63 .05 3.83 10.21 ST= .02 ha.m } CHANNEL[2 : 0050] 0048 1 5.0 11.02 .11 3.67 8.07 ************************************	ADD [0011 + 0023] 0037 3 5.0 1.77 .05 3.08 10.24 n/a ADD [0005 + 0032] 0034 3 5.0 3.88 .05 3.25 6.72 n/a CHANNEL[2 : 0041] 0028 1 5.0 1.79 .05 3.08 10.24 n/a CHANNEL[2 : 0037] 0024 1 5.0 1.77 .05 3.08 10.24 n/a CHANNEL[2 : 0034] 0021 1 5.0 1.77 .05 3.08 10.24 n/a CHANNEL[2 : 0034] 0021 1 5.0 3.88 .04 3.42 6.72 n/a ADD [0013 + 0028] 0042 3 5.0 2.30 .06 3.08 10.20 n/a ADD [0014 + 0024] 0038 3 5.0 2.33 .06 3.08 10.22 n/a ADD [0046 + 0021] 0049 3 5.0 6.39 .07 3.42 6.53 n/a CHANNEL[2 : 0038] 0025 1 5.0 2.30 .06 3.17 10.22 n/a ADD [0029 + 0025] 0043 3 5.0 4.63 .12 3.17 10.21 n/a CHANNEL[2 : 0043] 0052 1 5.0 4.63 .05 3.83 10.21 n/a RESRVR [2 : 0043] 0052 1 5.0 11.02 .11 3.67 8.07 n/a STT .02 ha.m } CHANNEL[2 : 0050] 0048 1 5.0 11.02 .11 3.67 8.07 n/a ADD [0049 + 0047] 0050 3 5.0 11.02 .11 3.67 8.07 n/a CHANNEL[2 : 0050] 0048 1 5.0 11.02 .11 3.67 8.07 n/a CHANNEL[2 : 0050] 0048 1 5.0 11.02 .11 3.67 8.07 n/a CHANNEL[2 : 0050] 0048 1 5.0 11.02 .11 3.67 8.07 n/a COMMAND HYD ID DT AREA cms hrs mm

[Ptot= 87.00 mm]

(K)
Project # 200977

Post-development Otth	ymo Analysis Summary Output
	2050 Dunrobin Road, Ottawa
4 of 26	September 21 2021

Pro	oject	# 200977					4 of 26			Septe	mber	21, 2021
- 1	t Addit	fname : G:\P tional lots\ remark: SCS	roject: Storm\I II 6hr	s\2020 Design 100yr	\20 St Ot	0977 o tawa	- Zbigniew	Haude:	rowicz	- 2050	Dunro	obin Rd
*	** (CALIB NASHYD [CN=58.0 [N = 3.0:Tp]	0004	1	5.0	1.49	.06	3.17	20.83	.24	.000
* *	** (CALIB NASHYD [CN=58.0 [N = 3.0:Tp] .38]	0003	1	5.0	.35	.01	3.33	20.83	.24	.000
* *	** (CALIB NASHYD [CN=58.0 [N = 3.0:Tp] .40]	0002	1	5.0	.34	.01	3.42	20.83	.24	.000
* *	** (CALIB NASHYD [CN=61.0 [N = 3.0:Tp] .41]	0001	1	5.0	.33	.01	3.42	23.58	.27	.000
* *	** (CALIB NASHYD [CN=58.0 [N = 3.0:Tp]	0005	1	5.0	1.17	.06	3.08	20.76	.24	.000
*	** (CALIB NASHYD [CN=58.0 [N = 3.0:Tp] .17]	0006	1	5.0	.34	.02	3.08	20.76	.24	.000
*	** (CALIB NASHYD [CN=61.0 [N = 3.0:Tp]	0019	1	5.0	1.69	.08	3.25	23.69	.27	.000
*	** (CALIB NASHYD [CN=58.0 [N = 3.0:Tp] .19]	0007	1	5.0	.34	.02	3.08	20.79	.24	.000
*	** (CALIB NASHYD [CN=61.0 [N = 3.0:Tp]	0008	1	5.0	.33	.02	3.08	23.56	.27	.000
*	** (CALIB NASHYD [CN=67.0 [N = 3.0:Tp] .17]	0013	1	5.0	.51	.04	3.00	29.60	.34	.000
*	** (CALIB NASHYD [CN=67.0 [N = 3.0:Tp] .17]	0014	1	5.0	.52	.04	3.00	29.60	.34	.000
*	* (CALIB NASHYD [CN=67.0 [N = 3.0:Tp]	0015	1	5.0	.53	.04	3.00	29.60	.34	.000
*	* * (CALIB NASHYD [CN=67.0 [N = 3.0:Tp]	0016	1	5.0	.53	.04	3.00	29.66	.34	.000
*	** (CALIB NASHYD [CN=69.0 [N = 3.0:Tp]	0018	1	5.0	.21	.02	3.00	31.94	.37	.000
*	** (CALIB NASHYD [CN=67.0]	0012	1	5.0	.56	.04	3.00	29.72	.34	.000

(K)		
Droject	#	20

Project # 200977				5 of 26					September 21, 2021		
	[N = 3.0:Tp .17]										
* **	CALIB NASHYD [CN=67.0] [N = 3.0:Tp .17]	0011	1	5.0	.53	.04	3.00	29.60	.34	.000	
*	CALIB NASHYD [CN=67.0] [N = 3.0:Tp .17]	0010	1	5.0	.54	.04	3.00	29.60	.34	.000	
**	CALIB NASHYD [CN=67.0] [N = 3.0:Tp .17]	0009	1	5.0	.49	.04	3.00	29.66	.34	.000	
**	CALIB NASHYD [CN=69.0] [N = 3.0:Tp .17]	0017	1	5.0	.21	.02	3.00	31.94	.37	.000	
*	ADD [0002 + 0001]	0044	3	5.0	.67	.03	3.42	22.18	n/a	.000	
*	ADD [0007 + 0008]	0030	3	5.0	.67	.04	3.08	22.16	n/a	.000	
*	ADD [0016 + 0018]	0039	3	5.0	.73	.06	3.00	30.31	n/a	.000	
*	ADD [0009 + 0017]	0035	3	5.0	.70	.06	3.00	30.34	n/a	.000	
*	ADD [0003 + 0044]	0045	3	5.0	1.03	.04	3.42	21.72	n/a	.000	
т.	ADD [0019 + 0030]	0031	3	5.0	2.36	.11	3.17	23.25	n/a	.000	
*	CHANNEL[2 : 0039]	0026	1	5.0	.73	.06	3.08	30.31	n/a	.000	
*	CHANNEL[2 : 0035]	0022	1	5.0	.70	.06	3.08	30.34	n/a	.000	
*	ADD [0004 + 0045]	0046	3	5.0	2.51	.10	3.25	21.19	n/a	.000	
*	CHANNEL[2 : 0031]	0020	1	5.0	2.36	.11	3.17	23.25	n/a	.000	
*	ADD [0015 + 0026]	0040	3	5.0	1.27	.10	3.08	30.01	n/a	.000	
*	ADD [0010 + 0022]	0036	3	5.0	1.24	.10	3.08	30.02	n/a	.000	
*	ADD [0006 + 0020]	0033	3	5.0	2.71	.13	3.17	22.94	n/a	.000	
*	CHANNEL[2 : 0040]	0027	1	5.0	1.27	.10	3.08	30.01	n/a	.000	
*	CHANNEL[2 : 0036]	0023	1	5.0	1.24	.10	3.08	30.02	n/a	.000	
*	CHANNEL[2 : 0033]	0032	1	5.0	2.71	.13	3.17	22.94	n/a	.000	
*	ADD [0014 + 0027]	0041	3	5.0	1.79	.14	3.08	29.89	n/a	.000	
*	ADD [0011 + 0023]	0037	3	5.0	1.77	.14	3.08	29.89	n/a	.000	
*	ADD [0005 + 0032]	0034	3	5.0	3.88	.18	3.08	22.28	n/a	.000	
*	CHANNEL[2 : 0041]	0028	1	5.0	1.79	.14	3.08	29.89	n/a	.000	
*	CHANNEL[2 : 0037]	0024	1	5.0	1.77	.14	3.08	29.89	n/a	.000	
*	CHANNEL[2 : 0034]	0021	1	5.0	3.88	.17	3.25	22.28	n/a	.000	

(K)
Project # 200977

	ojec	π # 200777				0 01 20			Sept	cinoci	21, 202
		ADD [0013 + 0028]	0042	3	5.0	2.30	.18	3.08	29.83	n/a	.000
*		ADD [0012 + 0024]	0038	3	5.0	2.33	.19	3.08	29.85	n/a	.000
*		ADD [0046 + 0021]	0049	3	5.0	6.39	.27	3.25	21.85	n/a	.000
*		CHANNEL[2 : 0042]	0029	1	5.0	2.30	.18	3.08	29.82	n/a	.000
*		CHANNEL[2 : 0038]	0025	1	5.0	2.33	.18	3.08	29.85	n/a	.000
т ×		ADD [0029 + 0025]	0043	3	5.0	4.63	.37	3.08	29.83	n/a	.000
*		RESRVR [2 : 0043] {ST= .04 ha.m }	0052	1	5.0	4.63	.20	3.50	29.83	n/a	.000
*		CHANNEL[2 : 0052]	0047	1	5.0	4.63	.20	3.50	29.83	n/a	.000
*		ADD [0049 + 0047]	0050	3	5.0	11.02	.46	3.33	25.20	n/a	.000
*		CHANNEL[2 : 0050]	0048	1	5.0	11.02	.46	3.33	25.20	n/a	.000
	****	**************************************	******	* * *							
	W/E	COMMAND	HYD	ID	DT min	AREA ha	Qpeak cms	Tpeak hrs	R.V. mm	R.C.	Qbase cms
		START @ .00 hrs									
-	Add	READ STORM [Ptot= 57.20 mm] fname : G:\Project itional lots\Storm\ remark: SCS II 12h	s\2020 Design r 5yr	0\20 n St Ott	30.0 0977 co cawa	- Zbigni	.ew Haude	erowicz	- 2050) Dunr	obin Rd
*	* *	CALIB NASHYD [CN=58.0] [N = 3.0:Tp .28]	0004	1	5.0	1.49	.02	6.17	8.28	.14	.000
•	* *	CALIB NASHYD [CN=58.0] [N = 3.0:Tp .38]	0003	1	5.0	.35	.00	6.33	8.28	.14	.000
*	* *	CALIB NASHYD [CN=58.0] [N = 3.0:Tp .40]	0002	1	5.0	.34	.00	6.33	8.28	.14	.000
*	* *	CALIB NASHYD [CN=61.0] [N = 3.0:Tp .41]	0001	1	5.0	.33	.00	6.33	9.76	.17	.000
*	* *	CALIB NASHYD [CN=58.0] [N = 3.0:Tp .17]	0005	1	5.0	1.17	.02	6.08	8.26	.14	.000
*	* *	CALIB NASHYD [CN=58.0] [N = 3.0:Tp .17]	0006	1	5.0	.34	.01	6.08	8.25	.14	.000
<u>~</u>	* *	CALIB NASHYD [CN=61.0]	0019	1	5.0	1.69	.03	6.25	9.84	.17	.000

(K)	
Droject +	+ 200

Project # 200977					7 of 26	September 21, 2021				
*	[N = 3.0:Tp .32	2]								
**	CALIB NASHYD [CN=58.0 [N = 3.0:Tp .19	0007] 9]	1	5.0	.34	.01	6.08	8.26	.14	.000
**	CALIB NASHYD [CN=61.0 [N = 3.0:Tp .23	0008] 3]	1	5.0	.33	.01	6.08	9.75	.17	.000
*	CALIB NASHYD [CN=67.0 [N = 3.0:Tp .17	0013] /]	1	5.0	.51	.02	6.00	13.17	.23	.000
*	CALIB NASHYD [CN=67.0 [N = 3.0:Tp .17	0014] /]	1	5.0	.52	.02	6.00	13.17	.23	.000
*	CALIB NASHYD [CN=67.0 [N = 3.0:Tp .17	0015] /]	1	5.0	.53	.02	6.00	13.17	.23	.000
**	CALIB NASHYD [CN=67.0 [N = 3.0:Tp .17	0016] /]	1	5.0	.53	.02	6.00	13.21	.23	.000
*	CALIB NASHYD [CN=69.0 [N = 3.0:Tp .17	0018] /]	1	5.0	.21	.01	6.00	14.56	.25	.000
*	CALIB NASHYD [CN=67.0 [N = 3.0:Tp .17	0012] /]	1	5.0	.56	.02	6.00	13.26	.23	.000
*	CALIB NASHYD [CN=67.0 [N = 3.0:Tp .17	0011] /]	1	5.0	.53	.02	6.00	13.17	.23	.000
*	CALIB NASHYD [CN=67.0 [N = 3.0:Tp .17	0010] /]	1	5.0	.54	.02	6.00	13.17	.23	.000
* * *	CALIB NASHYD [CN=67.0 [N = 3.0:Tp .17	0009] 7]	1	5.0	.49	.02	6.00	13.21	.23	.000
**	CALIB NASHYD [CN=69.0 [N = 3.0:Tp .17	0017] /]	1	5.0	.21	.01	6.00	14.56	.25	.000
*	ADD [0002 + 0001]	0044	3	5.0	.67	.01	6.33	9.00	n/a	.000
*	ADD [0007 + 0008]	0030	3	5.0	.67	.01	6.08	9.00	n/a	.000
*	ADD [0016 + 0018]	0039	3	5.0	.73	.02	6.00	13.60	n/a	.000
*	ADD [0009 + 0017]	0035	3	5.0	.70	.02	6.00	13.62	n/a	.000
*	ADD [0003 + 0044]	0045	3	5.0	1.03	.01	6.33	8.76	n/a	.000
*	ADD [0019 + 0030]	0031	3	5.0	2.36	.04	6.17	9.60	n/a	.000

(K)
Project # 200977

Post-development Otthymo	Analysis Summary Output
20	050 Dunrobin Road, Ottawa

Project # 200977					8 of 26			September 21, 2021		
	CHANNEL[2 : 0039]	0026	1	5.0	.73	.02	6.08	13.60	n/a	.000
*	CHANNEL[2 : 0035]	0022	1	5.0	.70	.02	6.08	13.62	n/a	.000
*	ADD [0004 + 0045]	0046	3	5.0	2.51	.03	6.25	8.48	n/a	.000
*	CHANNEL[2 : 0031]	0020	1	5.0	2.36	.04	6.17	9.60	n/a	.000
*	ADD [0015 + 0026]	0040	3	5.0	1.27	.04	6.08	13.42	n/a	.000
т х	ADD [0010 + 0022]	0036	3	5.0	1.24	.04	6.08	13.42	n/a	.000
т ^	ADD [0006 + 0020]	0033	3	5.0	2.71	.04	6.17	9.43	n/a	.000
*	CHANNEL[2 : 0040]	0027	1	5.0	1.27	.04	6.08	13.42	n/a	.000
*	CHANNEL[2 : 0036]	0023	1	5.0	1.24	.04	6.08	13.42	n/a	.000
т х	CHANNEL[2 : 0033]	0032	1	5.0	2.71	.04	6.17	9.43	n/a	.000
т х	ADD [0014 + 0027]	0041	3	5.0	1.79	.06	6.08	13.34	n/a	.000
*	ADD [0011 + 0023]	0037	3	5.0	1.77	.06	6.08	13.34	n/a	.000
т х	ADD [0005 + 0032]	0034	3	5.0	3.88	.06	6.17	9.07	n/a	.000
т ^	CHANNEL[2 : 0041]	0028	1	5.0	1.79	.06	6.08	13.34	n/a	.000
т ^	CHANNEL[2 : 0037]	0024	1	5.0	1.77	.06	6.08	13.34	n/a	.000
т х	CHANNEL[2 : 0034]	0021	1	5.0	3.88	.06	6.25	9.07	n/a	.000
т ~	ADD [0013 + 0028]	0042	3	5.0	2.30	.07	6.08	13.30	n/a	.000
т х	ADD [0012 + 0024]	0038	3	5.0	2.33	.07	6.08	13.32	n/a	.000
т ^	ADD [0046 + 0021]	0049	3	5.0	6.39	.09	6.25	8.84	n/a	.000
т ^	CHANNEL[2 : 0042]	0029	1	5.0	2.30	.07	6.08	13.30	n/a	.000
т ^	CHANNEL[2 : 0038]	0025	1	5.0	2.33	.07	6.08	13.32	n/a	.000
* *	ADD [0029 + 0025]	0043	3	5.0	4.63	.14	6.08	13.31	n/a	.000
*	RESRVR [2 : 0043] {ST= .02 ha.m }	0052	1	5.0	4.63	.06	6.67	13.31	n/a	.000
*	CHANNEL[2 : 0052]	0047	1	5.0	4.63	.06	6.67	13.31	n/a	.000
÷	ADD [0049 + 0047]	0050	3	5.0	11.02	.14	6.50	10.71	n/a	.000
т ^	CHANNEL[2 : 0050]	0048	1	5.0	11.02	.13	6.50	10.71	n/a	.000
•	**************************************	* * * * * * 4 * * * * * * * *	- -							
Ţ	V/E COMMAND	HYD	ID	DT min	AREA ha	Qpeak cms	Tpeak hrs	R.V. mm	R.C.	Qbase cms

START @ .00 hrs

(K)	
Project # 2009) ′

Post-development Otthy	mo Analysis Summary Output
	2050 Dunrobin Road, Ottawa

Project # 200977				9 of 26		Septe	September 21, 2021			
	READ STORM [Ptot= 67.20) mm]			30.0					
- Ao	fname : G:\Pr dditional lots\S remark: SCS]	roject: Storm\I II 12hi	s\2020 Design r 10yr	\20 St Ot	0977 :0 :tawa	- Zbigniew	Hauderowic	z – 2050	Dunro	obin Rd
*	* CALIB NASHYD [CN=58.0 [N = 3.0:Tp] .28]	0004	1	5.0	1.49	.03 6.17	12.01	.18	.000
*	* CALIB NASHYD [CN=58.0 [N = 3.0:Tp] .38]	0003	1	5.0	.35	.01 6.33	12.01	.18	.000
* *	* CALIB NASHYD [CN=58.0 [N = 3.0:Tp] .40]	0002	1	5.0	.34	.01 6.33	12.01	.18	.000
*	* CALIB NASHYD [CN=61.0 [N = 3.0:Tp] .41]	0001	1	5.0	.33	.01 6.33	13.91	.21	.000
* *	* CALIB NASHYD [CN=58.0 [N = 3.0:Tp] .17]	0005	1	5.0	1.17	.03 6.00	11.97	.18	.000
*	* CALIB NASHYD [CN=58.0 [N = 3.0:Tp] .17]	0006	1	5.0	.34	.01 6.00	11.97	.18	.000
* *	* CALIB NASHYD [CN=61.0 [N = 3.0:Tp] .32]	0019	1	5.0	1.69	.04 6.17	14.00	.21	.000
* *	* CALIB NASHYD [CN=58.0 [N = 3.0:Tp] .19]	0007	1	5.0	.34	.01 6.08	11.99	.18	.000
* *	* CALIB NASHYD [CN=61.0 [N = 3.0:Tp] .23]	0008	1	5.0	.33	.01 6.08	13.90	.21	.000
*	* CALIB NASHYD [CN=67.0 [N = 3.0:Tp] .17]	0013	1	5.0	.51	.02 6.00	18.20	.27	.000
*	* CALIB NASHYD [CN=67.0 [N = 3.0:Tp] .17]	0014	1	5.0	.52	.02 6.00	18.20	.27	.000
*	* CALIB NASHYD [CN=67.0 [N = 3.0:Tp] .17]	0015	1	5.0	.53	.02 6.00	18.20	.27	.000
* *	* CALIB NASHYD [CN=67.0 [N = 3.0:Tp] .17]	0016	1	5.0	.53	.02 6.00	18.25	.27	.000
* *	* CALIB NASHYD [CN=69.0 [N = 3.0:Tp] .17]	0018	1	5.0	.21	.01 6.00	19.92	.30	.000

K	
Project	# 200

Post-development Otthymo Analysis Summary Output 2050 Dunrobin Road, Ottawa

Project # 200977					10 of 26		September 21, 20				
**	CALIB NASHYD [CN=67.0] [N = 3.0:Tp .17]	0012	1	5.0	.56	.02	6.00	18.31	.27	.000	
* *	CALIB NASHYD [CN=67.0] [N = 3.0:Tp .17]	0011	1	5.0	.53	.02	6.00	18.20	.27	.000	
*	CALIB NASHYD [CN=67.0] [N = 3.0:Tp .17]	0010	1	5.0	.54	.02	6.00	18.20	.27	.000	
* **	CALIB NASHYD [CN=67.0] [N = 3.0:Tp .17]	0009	1	5.0	. 49	.02	6.00	18.25	.27	.000	
* **	CALIB NASHYD [CN=69.0] [N = 3.0:Tp .17]	0017	1	5.0	.21	.01	6.00	19.92	.30	.000	
*	ADD [0002 + 0001]	0044	3	5.0	.67	.01	6.33	12.94	n/a	.000	
*	ADD [0007 + 0008]	0030	3	5.0	.67	.02	6.08	12.93	n/a	.000	
*	ADD [0016 + 0018]	0039	3	5.0	.73	.03	6.00	18.73	n/a	.000	
*	ADD [0009 + 0017]	0035	3	5.0	.70	.03	6.00	18.75	n/a	.000	
*	ADD [0003 + 0044]	0045	3	5.0	1.03	.02	6.33	12.62	n/a	.000	
*	ADD [0019 + 0030]	0031	3	5.0	2.36	.06	6.17	13.69	n/a	.000	
*	CHANNEL[2 : 0039]	0026	1	5.0	.73	.03	6.08	18.73	n/a	.000	
*	CHANNEL[2 : 0035]	0022	1	5.0	.70	.03	6.08	18.75	n/a	.000	
*	ADD [0004 + 0045]	0046	3	5.0	2.51	.05	6.17	12.26	n/a	.000	
*	CHANNEL[2 : 0031]	0020	1	5.0	2.36	.06	6.17	13.69	n/a	.000	
*	ADD [0015 + 0026]	0040	3	5.0	1.27	.06	6.08	18.51	n/a	.000	
*	ADD [0010 + 0022]	0036	3	5.0	1.24	.05	6.08	18.51	n/a	.000	
^	ADD [0006 + 0020]	0033	3	5.0	2.71	.07	6.17	13.48	n/a	.000	
*	CHANNEL[2 : 0040]	0027	1	5.0	1.27	.06	6.08	18.50	n/a	.000	
*	CHANNEL[2 : 0036]	0023	1	5.0	1.24	.06	6.08	18.51	n/a	.000	
*	CHANNEL[2 : 0033]	0032	1	5.0	2.71	.07	6.17	13.48	n/a	.000	
*	ADD [0014 + 0027]	0041	3	5.0	1.79	.08	6.08	18.42	n/a	.000	
*	ADD [0011 + 0023]	0037	3	5.0	1.77	.08	6.08	18.42	n/a	.000	
*	ADD [0005 + 0032]	0034	3	5.0	3.88	.09	6.08	13.02	n/a	.000	
*	CHANNEL[2 : 0041]	0028	1	5.0	1.79	.08	6.08	18.42	n/a	.000	
*	CHANNEL[2 : 0037]	0024	1	5.0	1.77	.08	6.08	18.42	n/a	.000	
)		Р	ost-de	velopment	t Otthyr	no Ana 2050 F	lysis Su	ummar n Road	y Output Ottawa	
--------	---	-------------------------	----------------------	------------------------------	------------	--------------	------------------	--------------------	-----------------	--------------------	
Projec	ct # 200977		11 of 26					September 21, 2021			
	CHANNEL[2 : 0034]	0021	1	5.0	3.88	.09	6.25	13.02	n/a	.000	
*	ADD [0013 + 0028]	0042	3	5.0	2.30	.10	6.08	18.37	n/a	.000	
*	ADD [0012 + 0024]	0038	3	5.0	2.33	.10	6.08	18.39	n/a	.000	
*	ADD [0046 + 0021]	0049	3	5.0	6.39	.14	6.25	12.72	n/a	.000	
*	CHANNEL[2 : 0042]	0029	1	5.0	2.30	.10	6.08	18.36	n/a	.000	
*	CHANNEL[2 : 0038]	0025	1	5.0	2.33	.10	6.08	18.39	n/a	.000	
*	ADD [0029 + 0025]	0043	3	5.0	4.63	.20	6.08	18.38	n/a	.000	
*	RESRVR [2 : 0043] {ST= .02 ha.m }	0052	1	5.0	4.63	.10	6.50	18.37	n/a	.000	
+	CHANNEL[2 : 0052]	0047	1	5.0	4.63	.10	6.50	18.37	n/a	.000	
т v	ADD [0049 + 0047]	0050	3	5.0	11.02	.22	6.33	15.09	n/a	.000	
^	CHANNEL[2 : 0050]	0048	1	5.0	11.02	.22	6.42	15.09	n/a	.000	
W/E	COMMAND	HYD	ID	DT min	AREA ha	Qpeak cms	Tpeak hrs	R.V. mm	R.C.	Qbase cms	
	START @ .00 hrs										
- Add	READ STORM [Ptot= 96.00 mm] fname : G:\Project itional lots\Storm\ remark: SCS II 12h	s\202 Desig r 100	0\20 n St yr 0	30.0 0977 :0)ttawa	- Zbignie	w Haude	erowicz	- 2050) Dunro	obin Rd	
* **	CALIB NASHYD [CN=58.0] [N = 3.0:Tp .28]	0004	1	5.0	1.49	.07	6.17	25.38	.26	.000	
* * *	CALIB NASHYD [CN=58.0] [N = 3.0:Tp .38]	0003	1	5.0	.35	.01	6.25	25.38	.26	.000	
* *	CALIB NASHYD [CN=58.0] [N = 3.0:Tp .40]	0002	1	5.0	.34	.01	6.25	25.38	.26	.000	
* *	CALIB NASHYD [CN=61.0] [N = 3.0:Tp .41]	0001	1	5.0	.33	.01	6.33	28.52	.30	.000	
* *	CALIB NASHYD [CN=58.0] [N = 3.0:Tp .17]	0005	1	5.0	1.17	.07	6.00	25.30	.26	.000	
* * *	CALIB NASHYD [CN=58.0] [N = 3.0:Tp .17]	0006	1	5.0	.34	.02	6.00	25.30	.26	.000	

K		
Project	#	200

Post-development Otthym	o Analysis Summa	ıry Output
2	050 Dunrobin Roa	d, Ottawa

Proje	ct # 200977			12 of 26	-	2050 Dunrobin Road, Ottawa September 21, 2021				
**	CALIB NASHYD [CN=61.0 [N = 3.0:Tp .32	0019]]	1	5.0	1.69	.09	6.17	28.63	.30	.000
* **	CALIB NASHYD [CN=58.0 [N = 3.0:Tp .19	0007]]	1	5.0	.34	.02	6.08	25.33	.26	.000
* **	CALIB NASHYD [CN=61.0 [N = 3.0:Tp .23	0008]]	1	5.0	.33	.02	6.08	28.49	.30	.000
* **	CALIB NASHYD [CN=67.0 [N = 3.0:Tp .17	0013]]	1	5.0	.51	.05	6.00	35.30	.37	.000
* **	CALIB NASHYD [CN=67.0 [N = 3.0:Tp .17	0014]]	1	5.0	.52	.05	6.00	35.30	.37	.000
* **	CALIB NASHYD [CN=67.0 [N = 3.0:Tp .17	0015]]	1	5.0	.53	.05	6.00	35.30	.37	.000
* **	CALIB NASHYD [CN=67.0 [N = 3.0:Tp .17	0016]]	1	5.0	.53	.05	6.00	35.36	.37	.000
* **	CALIB NASHYD [CN=69.0 [N = 3.0:Tp .17	0018]]	1	5.0	.21	.02	6.00	37.90	.39	.000
* **	CALIB NASHYD [CN=67.0 [N = 3.0:Tp .17	0012]]	1	5.0	.56	.05	6.00	35.43	.37	.000
* **	CALIB NASHYD [CN=67.0 [N = 3.0:Tp .17	0011]]	1	5.0	.53	.05	6.00	35.30	.37	.000
* **	CALIB NASHYD [CN=67.0 [N = 3.0:Tp .17	0010]]	1	5.0	.54	.05	6.00	35.30	.37	.000
* **	CALIB NASHYD [CN=67.0 [N = 3.0:Tp .17	0009]]	1	5.0	.49	.04	6.00	35.36	.37	.000
* **	CALIB NASHYD [CN=69.0 [N = 3.0:Tp .17	0017]]	1	5.0	.21	.02	6.00	37.90	.39	.000
*	ADD [0002 + 0001]	0044	3	5.0	.67	.03	6.33	26.92	n/a	.000
*	ADD [0007 + 0008]	0030	3	5.0	.67	.04	6.08	26.89	n/a	.000
*	ADD [0016 + 0018]	0039	3	5.0	.73	.07	6.00	36.09	n/a	.000
*	ADD [0009 + 0017]	0035	3	5.0	.70	.06	6.00	36.12	n/a	.000
*	ADD [0003 + 0044]	0045	3	5.0	1.03	.04	6.25	26.39	n/a	.000

(K)		
Project	#	200

Post-development Otthy	mo Analysis Summary Output
	2050 Dunrobin Road, Ottawa
13 of 26	September 21, 2021

Pro	ject # 200977				13 of 26			Septe	ember	21, 202
	ADD [0019 + 0030]	0031	3	5.0	2.36	.12	6.17	28.13	n/a	.000
т ^	CHANNEL[2 : 0039]	0026	1	5.0	.73	.07	6.08	36.09	n/a	.000
^ +	CHANNEL[2 : 0035]	0022	1	5.0	.70	.06	6.08	36.12	n/a	.000
т ^	ADD [0004 + 0045]	0046	3	5.0	2.51	.11	6.17	25.79	n/a	.000
^ +	CHANNEL[2 : 0031]	0020	1	5.0	2.36	.12	6.17	28.13	n/a	.000
~ +	ADD [0015 + 0026]	0040	3	5.0	1.27	.11	6.00	35.75	n/a	.000
^ +	ADD [0010 + 0022]	0036	3	5.0	1.24	.11	6.00	35.76	n/a	.000
~ +	ADD [0006 + 0020]	0033	3	5.0	2.71	.14	6.08	27.77	n/a	.000
*	CHANNEL[2 : 0040]	0027	1	5.0	1.27	.11	6.08	35.75	n/a	.000
~ +	CHANNEL[2 : 0036]	0023	1	5.0	1.24	.11	6.08	35.76	n/a	.000
~ +	CHANNEL[2 : 0033]	0032	1	5.0	2.71	.14	6.17	27.77	n/a	.000
^ +	ADD [0014 + 0027]	0041	3	5.0	1.79	.16	6.08	35.62	n/a	.000
~ +	ADD [0011 + 0023]	0037	3	5.0	1.77	.15	6.08	35.62	n/a	.000
*	ADD [0005 + 0032]	0034	3	5.0	3.88	.21	6.08	27.03	n/a	.000
+	CHANNEL[2 : 0041]	0028	1	5.0	1.79	.16	6.08	35.62	n/a	.000
~ +	CHANNEL[2 : 0037]	0024	1	5.0	1.77	.16	6.08	35.62	n/a	.000
*	CHANNEL[2 : 0034]	0021	1	5.0	3.88	.20	6.17	27.02	n/a	.000
*	ADD [0013 + 0028]	0042	3	5.0	2.30	.20	6.08	35.55	n/a	.000
*	ADD [0012 + 0024]	0038	3	5.0	2.33	.20	6.08	35.57	n/a	.000
*	ADD [0046 + 0021]	0049	3	5.0	6.39	.31	6.17	26.54	n/a	.000
*	CHANNEL[2 : 0042]	0029	1	5.0	2.30	.20	6.08	35.54	n/a	.000
*	CHANNEL[2 : 0038]	0025	1	5.0	2.33	.20	6.08	35.57	n/a	.000
+	ADD [0029 + 0025]	0043	3	5.0	4.63	.40	6.08	35.56	n/a	.000
т ,	RESRVR [2 : 0043] {ST= .04 ha.m }	0052	1	5.0	4.63	.22	6.42	35.55	n/a	.000
*	CHANNEL[2 : 0052]	0047	1	5.0	4.63	.22	6.42	35.55	n/a	.000
*	ADD [0049 + 0047]	0050	3	5.0	11.02	.51	6.25	30.32	n/a	.000
*	CHANNEL[2 : 0050]	0048	1	5.0	11.02	.50	6.25	30.32	n/a	.000
* * *	**************************************	****** 6 **	* * *							
W	/E COMMAND	HYD	ID	DT min	AREA ha	Qpeak cms	Tpeak hrs	R.V. mm	R.C.	Qbase cms

(K)					Post-development Otthymo Analysis Summary Output 2050 Dunrobin Road, Ottawa							
Project # 200977				14 of 26				September 21, 2021				
	START @ .00	hrs										
	CHIC STORM [Ptot= 56.17				10.0							
* *	CALIB NASHYD [CN=58.0 [N = 3.0:Tp] .28]	0004	1	5.0	1.49	.02	4.33	7.93	.14	.000	
* **	CALIB NASHYD [CN=58.0 [N = 3.0:Tp] .38]	0003	1	5.0	.35	.00	4.50	7.93	.14	.000	
* **	CALIB NASHYD [CN=58.0 [N = 3.0:Tp] .40]	0002	1	5.0	.34	.00	4.50	7.93	.14	.000	
* **	CALIB NASHYD [CN=61.0 [N = 3.0:Tp] .41]	0001	1	5.0	.33	.00	4.50	9.36	.17	.000	
* **	CALIB NASHYD [CN=58.0 [N = 3.0:Tp] .17]	0005	1	5.0	1.17	.02	4.17	7.90	.14	.000	
* **	CALIB NASHYD [CN=58.0 [N = 3.0:Tp] .17]	0006	1	5.0	.34	.01	4.17	7.90	.14	.000	
* **	CALIB NASHYD [CN=61.0 [N = 3.0:Tp] .32]	0019	1	5.0	1.69	.02	4.42	9.44	.17	.000	
* **	CALIB NASHYD [CN=58.0 [N = 3.0:Tp] .19]	0007	1	5.0	.34	.01	4.25	7.91	.14	.000	
* **	CALIB NASHYD [CN=61.0 [N = 3.0:Tp] .23]	0008	1	5.0	.33	.01	4.25	9.36	.17	.000	
* **	CALIB NASHYD [CN=67.0 [N = 3.0:Tp] .17]	0013	1	5.0	.51	.02	4.17	12.68	.23	.000	
* **	CALIB NASHYD [CN=67.0 [N = 3.0:Tp] .17]	0014	1	5.0	.52	.02	4.17	12.68	.23	.000	
* **	CALIB NASHYD [CN=67.0 [N = 3.0:Tp] .17]	0015	1	5.0	.53	.02	4.17	12.68	.23	.000	
* **	CALIB NASHYD [CN=67.0 [N = 3.0:Tp] .17]	0016	1	5.0	.53	.02	4.17	12.73	.23	.000	
* **	CALIB NASHYD [CN=69.0 [N = 3.0:Tp] .17]	0018	1	5.0	.21	.01	4.17	14.04	.25	.000	
* **	CALIB NASHYD		0012	1	5.0	.56	.02	4.17	12.77	.23	.000	

Proje		15 of 26					September 21, 2021			
*	[CN=67.0] [N = 3.0:Tp .17]									
**	CALIB NASHYD [CN=67.0] [N = 3.0:Tp .17]	0011	1	5.0	.53	.02	4.17	12.68	.23	.000
* *	CALIB NASHYD [CN=67.0] [N = 3.0:Tp .17]	0010	1	5.0	.54	.02	4.17	12.68	.23	.000
* **	CALIB NASHYD [CN=67.0] [N = 3.0:Tp .17]	0009	1	5.0	.49	.02	4.17	12.73	.23	.000
* **	CALIB NASHYD [CN=69.0] [N = 3.0:Tp .17]	0017	1	5.0	.21	.01	4.17	14.04	.25	.000
*	ADD [0002 + 0001]	0044	3	5.0	.67	.01	4.50	8.63	n/a	.000
*	ADD [0007 + 0008]	0030	3	5.0	.67	.01	4.25	8.63	n/a	.000
*	ADD [0016 + 0018]	0039	3	5.0	.73	.02	4.17	13.10	n/a	.000
*	ADD [0009 + 0017]	0035	3	5.0	.70	.02	4.17	13.12	n/a	.000
*	ADD [0003 + 0044]	0045	3	5.0	1.03	.01	4.50	8.39	n/a	.000
*	ADD [0019 + 0030]	0031	3	5.0	2.36	.03	4.33	9.21	n/a	.000
*	CHANNEL[2 : 0039]	0026	1	5.0	.73	.02	4.17	13.10	n/a	.000
*	CHANNEL[2 : 0035]	0022	1	5.0	.70	.02	4.17	13.12	n/a	.000
*	ADD [0004 + 0045]	0046	3	5.0	2.51	.03	4.42	8.12	n/a	.000
т ×	CHANNEL[2 : 0031]	0020	1	5.0	2.36	.03	4.33	9.21	n/a	.000
*	ADD [0015 + 0026]	0040	3	5.0	1.27	.04	4.17	12.92	n/a	.000
т ×	ADD [0010 + 0022]	0036	3	5.0	1.24	.04	4.17	12.93	n/a	.000
*	ADD [0006 + 0020]	0033	3	5.0	2.71	.04	4.33	9.04	n/a	.000
т ~	CHANNEL[2 : 0040]	0027	1	5.0	1.27	.04	4.17	12.92	n/a	.000
т ~	CHANNEL[2 : 0036]	0023	1	5.0	1.24	.04	4.17	12.93	n/a	.000
*	CHANNEL[2 : 0033]	0032	1	5.0	2.71	.04	4.33	9.04	n/a	.000
*	ADD [0014 + 0027]	0041	3	5.0	1.79	.06	4.17	12.85	n/a	.000
⊥ ×	ADD [0011 + 0023]	0037	3	5.0	1.77	.05	4.17	12.85	n/a	.000
*	ADD [0005 + 0032]	0034	3	5.0	3.88	.06	4.33	8.70	n/a	.000
*	CHANNEL[2 : 0041]	0028	1	5.0	1.79	.06	4.25	12.85	n/a	.000
*	CHANNEL[2 : 0037]	0024	1	5.0	1.77	.05	4.25	12.85	n/a	.000
*	CHANNEL[2 : 0034]	0021	1	5.0	3.88	.05	4.50	8.70	n/a	.000

			-		· · · · · ·	it Ottilyi	2050 E	Dunrobi	n Road	l, Ottav
ojec	ct # 200977				16 of 26			Septe	ember	21, 20
	ADD [0013 + 0028]	0042	3	5.0	2.30	.07	4.17	12.81	n/a	.00
	ADD [0012 + 0024]	0038	3	5.0	2.33	.07	4.17	12.83	n/a	.00
	ADD [0046 + 0021]	0049	3	5.0	6.39	.08	4.42	8.47	n/a	.00
	CHANNEL[2 : 0042]	0029	1	5.0	2.30	.07	4.25	12.81	n/a	.00
	CHANNEL[2 : 0038]	0025	1	5.0	2.33	.07	4.25	12.83	n/a	.00
	ADD [0029 + 0025]	0043	3	5.0	4.63	.14	4.25	12.82	n/a	.00
	RESRVR [2 : 0043] {ST= .02 ha.m }	0052	1	5.0	4.63	.05	4.83	12.82	n/a	.00
	CHANNEL[2 : 0052]	0047	1	5.0	4.63	.05	4.83	12.82	n/a	.00
	ADD [0049 + 0047]	0050	3	5.0	11.02	.12	4.67	10.30	n/a	.00
	CHANNEL[2 : 0050]	0048	1	5.0	11.02	.12	4.67	10.29	n/a	.00
J/E				1.1.1.			INPAK	IX 1/	RI	
W/E	START @ 00 brs	нтр	ID	min	AREA ha	cms	hrs	mm	R.C.	Cms
N∕E	START @ .00 hrs CHIC STORM [Ptot= 93.90 mm]	нтD 	ID	Dr min 10.0	AREA ha	cms	hrs	mm	R.C.	CME
*	START @ .00 hrs CHIC STORM [Ptot= 93.90 mm] CALIB NASHYD [CN=58.0] [N = 3.0:Tp .28]	0004	1	DT min 10.0 5.0	AREA ha 1.49	cms	4.33	24.29	.26	. 00
/E *	START @ .00 hrs CHIC STORM [Ptot= 93.90 mm] CALIB NASHYD [CN=58.0] [N = 3.0:Tp .28] CALIB NASHYD [CN=58.0] [N = 3.0:Tp .38]	0004	1	DT min 10.0 5.0 5.0	AREA ha 1.49 .35	.07 .01	4.33 4.42	24.29 24.29	.26	. 00
* * *	START @ .00 hrs CHIC STORM [Ptot= 93.90 mm] CALIB NASHYD [CN=58.0] [N = 3.0:Tp .28] CALIB NASHYD [CN=58.0] [N = 3.0:Tp .38] CALIB NASHYD [CN=58.0] [N = 3.0:Tp .40]	0004 0003 0002	1D 1 1	Dr min 10.0 5.0 5.0 5.0	AREA ha 1.49 .35 .34	.07 .01	4.33 4.42 4.42	24.29 24.29 24.29	.26	. 00 . 00
* * *	START @ .00 hrs CHIC STORM [Ptot= 93.90 mm] CALIB NASHYD [CN=58.0] [N = 3.0:Tp .28] CALIB NASHYD [CN=58.0] [N = 3.0:Tp .38] CALIB NASHYD [CN=58.0] [N = 3.0:Tp .40] CALIB NASHYD [CN=61.0] [N = 3.0:Tp .41]	0004 0003 0002 0001	1D 1 1 1	Dr min 10.0 5.0 5.0 5.0 5.0	AREA ha 1.49 .35 .34 .33	.07 .01 .01	4.33 4.42 4.42 4.50	R.v. mm 24.29 24.29 24.29 24.29 24.34	.26 .26 .26 .29	. 0(. 0(. 0(. 0(
/E * * * * *	START @ .00 hrs CHIC STORM [Ptot= 93.90 mm] CALIB NASHYD [CN=58.0] [N = 3.0:Tp .28] CALIB NASHYD [CN=58.0] [N = 3.0:Tp .38] CALIB NASHYD [CN=58.0] [N = 3.0:Tp .40] CALIB NASHYD [CN=61.0] [N = 3.0:Tp .41] CALIB NASHYD [CN=58.0] [N = 3.0:Tp .41]	0004 0003 0002 0001 0005	1D 1 1 1 1	DT min 10.0 5.0 5.0 5.0 5.0 5.0	AREA ha 1.49 .35 .34 .33 1.17	.07 .01 .01 .01 .01	4.33 4.42 4.42 4.50 4.17	R.v. mm 24.29 24.29 24.29 24.29 27.34 24.21	.26 .26 .26 .29 .26	. 00 . 00 . 00 . 00
r/E * * * *	START @ .00 hrs CHIC STORM [Ptot= 93.90 mm] CALIB NASHYD [CN=58.0] [N = 3.0:Tp .28] CALIB NASHYD [CN=58.0] [N = 3.0:Tp .38] CALIB NASHYD [CN=58.0] [N = 3.0:Tp .40] CALIB NASHYD [CN=61.0] [N = 3.0:Tp .41] CALIB NASHYD [CN=58.0] [N = 3.0:Tp .17] CALIB NASHYD [CN=58.0] [N = 3.0:Tp .17]	 HID 0004 0003 0002 0001 0005 0006 	1D 1 1 1 1 1 1	DT min 10.0 5.0 5.0 5.0 5.0 5.0 5.0	AREA ha 1.49 .35 .34 .33 1.17 .34	.07 .01 .01 .01 .01 .07 .02	4.33 4.42 4.42 4.42 4.50 4.17 4.17	R.v. mm 24.29 24.29 24.29 27.34 24.21 24.21	.26 .26 .26 .29 .26 .26	. 00 . 00 . 00 . 00 . 00

K		
Project	#	200

Post-development Otthymo	Analysis Summary	y Output
20	50 Dunrobin Road	, Ottawa

Project # 200977				1	7 of 26		2050 Dunrobin Road, Ottawa September 21, 2021				
**	CALIB NASHYD [CN=58.0] [N = 3.0:Tp .19]	0007	1	5.0	.34	.02	4.17	24.24	.26	.000	
* *	CALIB NASHYD [CN=61.0] [N = 3.0:Tp .23]	0008	1	5.0	.33	.02	4.25	27.31	.29	.000	
**	CALIB NASHYD [CN=67.0] [N = 3.0:Tp .17]	0013	1	5.0	.51	.05	4.17	33.94	.36	.000	
* *	CALIB NASHYD [CN=67.0] [N = 3.0:Tp .17]	0014	1	5.0	.52	.05	4.17	33.94	.36	.000	
**	CALIB NASHYD [CN=67.0] [N = 3.0:Tp .17]	0015	1	5.0	.53	.05	4.17	33.94	.36	.000	
**	CALIB NASHYD [CN=67.0] [N = 3.0:Tp .17]	0016	1	5.0	.53	.05	4.17	34.01	.36	.000	
**	CALIB NASHYD [CN=69.0] [N = 3.0:Tp .17]	0018	1	5.0	.21	.02	4.08	36.49	.39	.000	
* *	CALIB NASHYD [CN=67.0] [N = 3.0:Tp .17]	0012	1	5.0	.56	.05	4.17	34.07	.36	.000	
**	CALIB NASHYD [CN=67.0] [N = 3.0:Tp .17]	0011	1	5.0	.53	.05	4.17	33.94	.36	.000	
**	CALIB NASHYD [CN=67.0] [N = 3.0:Tp .17]	0010	1	5.0	.54	.05	4.17	33.94	.36	.000	
**	CALIB NASHYD [CN=67.0] [N = 3.0:Tp .17]	0009	1	5.0	.49	.05	4.17	34.01	.36	.000	
**	CALIB NASHYD [CN=69.0] [N = 3.0:Tp .17]	0017	1	5.0	.21	.02	4.08	36.49	.39	.000	
	ADD [0002 + 0001]	0044	3	5.0	.67	.03	4.50	25.78	n/a	.000	
	ADD [0007 + 0008]	0030	3	5.0	.67	.04	4.17	25.76	n/a	.000	
	ADD [0016 + 0018]	0039	3	5.0	.73	.07	4.08	34.71	n/a	.000	
	ADD [0009 + 0017]	0035	3	5.0	.70	.07	4.08	34.75	n/a	.000	
	ADD [0003 + 0044]	0045	3	5.0	1.03	.04	4.42	25.27	n/a	.000	
	ADD [0019 + 0030]	0031	3	5.0	2.36	.12	4.25	26.97	n/a	.000	
	CHANNEL[2 : 0039]	0026	1	5.0	.73	.07	4.17	34.71	n/a	.000	

(K)	
Project # 200977	

Post-development Otthy	mo Analysis Summary Output
	2050 Dunrobin Road, Ottawa
18 of 26	September 21, 2021

11	0ject # 200977				10 01 20			Septe	muer	21, 202
	CHANNEL[2 : 0035]	0022	1	5.0	.70	.07	4.17	34.75	n/a	.000
*	ADD [0004 + 0045]	0046	3	5.0	2.51	.11	4.33	24.69	n/a	.000
*	CHANNEL[2 : 0031]	0020	1	5.0	2.36	.12	4.33	26.97	n/a	.000
*	ADD [0015 + 0026]	0040	3	5.0	1.27	.12	4.17	34.39	n/a	.000
*	ADD [0010 + 0022]	0036	3	5.0	1.24	.12	4.17	34.40	n/a	.000
т ×	ADD [0006 + 0020]	0033	3	5.0	2.71	.14	4.25	26.62	n/a	.000
*	CHANNEL[2 : 0040]	0027	1	5.0	1.27	.13	4.17	34.39	n/a	.000
*	CHANNEL[2 : 0036]	0023	1	5.0	1.24	.12	4.17	34.40	n/a	.000
*	CHANNEL[2 : 0033]	0032	1	5.0	2.71	.14	4.33	26.62	n/a	.000
*	ADD [0014 + 0027]	0041	3	5.0	1.79	.17	4.17	34.26	n/a	.000
т ×	ADD [0011 + 0023]	0037	3	5.0	1.77	.17	4.17	34.26	n/a	.000
*	ADD [0005 + 0032]	0034	3	5.0	3.88	.20	4.25	25.89	n/a	.000
*	CHANNEL[2 : 0041]	0028	1	5.0	1.79	.18	4.17	34.26	n/a	.000
*	CHANNEL[2 : 0037]	0024	1	5.0	1.77	.18	4.17	34.26	n/a	.000
•	CHANNEL[2 : 0034]	0021	1	5.0	3.88	.19	4.33	25.89	n/a	.000
*	ADD [0013 + 0028]	0042	3	5.0	2.30	.23	4.17	34.19	n/a	.000
	ADD [0012 + 0024]	0038	3	5.0	2.33	.23	4.17	34.21	n/a	.000
*	ADD [0046 + 0021]	0049	3	5.0	6.39	.30	4.33	25.42	n/a	.000
	CHANNEL[2 : 0042]	0029	1	5.0	2.30	.22	4.17	34.18	n/a	.000
	CHANNEL[2 : 0038]	0025	1	5.0	2.33	.23	4.17	34.21	n/a	.000
*	ADD [0029 + 0025]	0043	3	5.0	4.63	.45	4.17	34.20	n/a	.000
*	RESRVR [2 : 0043] {ST= .04 ha.m }	0052	1	5.0	4.63	.21	4.50	34.19	n/a	.000
•	CHANNEL[2 : 0052]	0047	1	5.0	4.63	.21	4.58	34.19	n/a	.000
*	ADD [0049 + 0047]	0050	3	5.0	11.02	.49	4.42	29.10	n/a	.000
	CHANNEL[2 : 0050]	0048	1	5.0	11.02	.49	4.42	29.10	n/a	.000
v	**************************************	***** 8 ** *****								
	W/E COMMAND	HYD	ID	DT min	AREA ha	Qpeak cms	Tpeak hrs	R.V. mm	R.C.	Qbase cms
	START @ .00 hrs									

READ STORM 5.0 [Ptot= 83.99 mm]

(K)
Project # 200977

Post-development Otthy	no Analysis Summary Output
	2050 Dunrobin Road, Ottawa
19 of 26	September 21, 2021

_										-		
-	Addi	fname : G:\Pr itional lots\S remark: Ottaw	ojects torm\I va July	s\2020 Design 7 1 19	\20 St 79	0977 o	- Zbigniew	Haude	rowicz	- 2050	Dunro	bin Rd
*	* *	CALIB NASHYD [CN=58.0 [N = 3.0:Tp] .28]	0004	1	5.0	1.49	.09	1.83	19.38	.23	.000
*	* *	CALIB NASHYD [CN=58.0 [N = 3.0:Tp] .38]	0003	1	5.0	.35	.02	1.92	19.38	.23	.000
*	* *	CALIB NASHYD [CN=58.0 [N = 3.0:Tp] .40]	0002	1	5.0	.34	.02	2.00	19.38	.23	.000
*	* *	CALIB NASHYD [CN=61.0 [N = 3.0:Tp] .41]	0001	1	5.0	.33	.02	2.00	22.00	.26	.000
*	**	CALIB NASHYD [CN=58.0 [N = 3.0:Tp] .17]	0005	1	5.0	1.17	.08	1.67	19.32	.23	.000
*	* *	CALIB NASHYD [CN=58.0 [N = 3.0:Tp] .17]	0006	1	5.0	.34	.02	1.67	19.32	.23	.000
*	* *	CALIB NASHYD [CN=61.0 [N = 3.0:Tp]	0019	1	5.0	1.69	.11	1.83	22.10	.26	.000
*	* *	CALIB NASHYD [CN=58.0 [N = 3.0:Tp]	0007	1	5.0	.34	.02	1.67	19.34	.23	.000
*	* *	CALIB NASHYD [CN=61.0 [N = 3.0:Tp] .23]	0008	1	5.0	.33	.02	1.75	21.98	.26	.000
*	* *	CALIB NASHYD [CN=67.0 [N = 3.0:Tp] .17]	0013	1	5.0	.51	.05	1.67	27.76	.33	.000
*	* *	CALIB NASHYD [CN=67.0 [N = 3.0:Tp] .17]	0014	1	5.0	.52	.05	1.67	27.76	.33	.000
*	* *	CALIB NASHYD [CN=67.0 [N = 3.0:Tp] .17]	0015	1	5.0	.53	.05	1.67	27.76	.33	.000
*	* *	CALIB NASHYD [CN=67.0 [N = 3.0:Tp] .17]	0016	1	5.0	.53	.05	1.67	27.82	.33	.000
*	**	CALIB NASHYD [CN=69.0 [N = 3.0:Tp]	0018	1	5.0	.21	.02	1.67	30.01	.36	.000
*	* *	CALIB NASHYD [CN=67.0]	0012	1	5.0	.56	.06	1.67	27.88	.33	.000

(K)		
Droject	#	20

Proje	ct # 200977		20 of 26						September 21, 2021		
	[N = 3.0:Tp .17]										
*	CALIB NASHYD [CN=67.0] [N = 3.0:Tp .17]	0011	1	5.0	.53	.05	1.67	27.76	.33	.000	
**	CALIB NASHYD [CN=67.0] [N = 3.0:Tp .17]	0010	1	5.0	.54	.05	1.67	27.76	.33	.000	
*	CALIB NASHYD [CN=67.0] [N = 3.0:Tp .17]	0009	1	5.0	.49	.05	1.67	27.82	.33	.000	
*	CALIB NASHYD [CN=69.0] [N = 3.0:Tp .17]	0017	1	5.0	.21	.02	1.67	30.01	.36	.000	
*	ADD [0002 + 0001]	0044	3	5.0	.67	.03	2.00	20.66	n/a	.000	
*	ADD [0007 + 0008]	0030	3	5.0	.67	.05	1.75	20.64	n/a	.000	
*	ADD [0016 + 0018]	0039	3	5.0	.73	.08	1.67	28.44	n/a	.000	
+	ADD [0009 + 0017]	0035	3	5.0	.70	.07	1.67	28.47	n/a	.000	
т ~	ADD [0003 + 0044]	0045	3	5.0	1.03	.05	2.00	20.22	n/a	.000	
*	ADD [0019 + 0030]	0031	3	5.0	2.36	.15	1.75	21.69	n/a	.000	
*	CHANNEL[2 : 0039]	0026	1	5.0	.73	.08	1.67	28.44	n/a	.000	
*	CHANNEL[2 : 0035]	0022	1	5.0	.70	.07	1.67	28.47	n/a	.000	
*	ADD [0004 + 0045]	0046	3	5.0	2.51	.14	1.83	19.72	n/a	.000	
*	CHANNEL[2 : 0031]	0020	1	5.0	2.36	.15	1.83	21.69	n/a	.000	
*	ADD [0015 + 0026]	0040	3	5.0	1.27	.13	1.67	28.16	n/a	.000	
*	ADD [0010 + 0022]	0036	3	5.0	1.24	.13	1.67	28.16	n/a	.000	
^	ADD [0006 + 0020]	0033	3	5.0	2.71	.17	1.75	21.39	n/a	.000	
*	CHANNEL[2 : 0040]	0027	1	5.0	1.27	.13	1.67	28.15	n/a	.000	
*	CHANNEL[2 : 0036]	0023	1	5.0	1.24	.13	1.67	28.16	n/a	.000	
*	CHANNEL[2 : 0033]	0032	1	5.0	2.71	.17	1.83	21.39	n/a	.000	
*	ADD [0014 + 0027]	0041	3	5.0	1.79	.18	1.67	28.04	n/a	.000	
*	ADD [0011 + 0023]	0037	3	5.0	1.77	.18	1.67	28.04	n/a	.000	
*	ADD [0005 + 0032]	0034	3	5.0	3.88	.25	1.75	20.76	n/a	.000	
*	CHANNEL[2 : 0041]	0028	1	5.0	1.79	.18	1.67	28.04	n/a	.000	
*	CHANNEL[2 : 0037]	0024	1	5.0	1.77	.18	1.67	28.04	n/a	.000	
*	CHANNEL[2 : 0034]	0021	1	5.0	3.88	.24	1.83	20.76	n/a	.000	

K			P	Post-development Otthymo Analysis Summary Output 2050 Dunrobin Road, Ottawa								
rojec	ct # 200977				21 of 26		September 21, 20					
	ADD [0013 + 0028]	0042	3	5.0	2.30	.23	1.67	27.98	n/a	.000		
	ADD [0012 + 0024]	0038	3	5.0	2.33	.24	1.67	28.00	n/a	.000		
	ADD [0046 + 0021]	0049	3	5.0	6.39	.37	1.83	20.35	n/a	.000		
	CHANNEL[2 : 0042] 0029	1	5.0	2.30	.23	1.75	27.97	n/a	.000		
	CHANNEL[2 : 0038] 0025	1	5.0	2.33	.23	1.75	28.00	n/a	.000		
	ADD [0029 + 0025]	0043	3	5.0	4.63	.46	1.75	27.98	n/a	.000		
	RESRVR [2 : 0043 {ST= .06 ha.m }] 0052	1	5.0	4.63	.26	2.08	27.98	n/a	.000		
	CHANNEL[2 : 0052] 0047	1	5.0	4.63	.26	2.08	27.98	n/a	.000		
	ADD [0049 + 0047]	0050	3	5.0	11.02	.61	1.92	23.55	n/a	.000		
	CHANNEL[2 : 0050] 0048	1	5.0	11.02	.61	1.92	23.55	n/a	.000		
** 9 *** W/E	SIMULATION NUMBER: ************************************	9 ** ******* HYD	ID	DT	AREA	Qpeak	Tpeak	R.V.	R.C.	Qbase		
				min	ha	cms	hrs	mm		cms		
	START @ .00 hrs											
Add:	READ STORM [Ptot= 80.57 mm fname : G:\Project itional lots\Storm remark: Ottawa Aug] ts\2020 \Desigr g 4 198)\20 1 St 38	5.0 10977 .0	- Zbignie	ew Haude	erowicz	- 2050) Dunro	obin Rd		
* *	CALIB NASHYD [CN=58.0 [N = 3.0:Tp .28	0004]]	1	5.0	1.49	.08	2.17	17.77	.22	.000		
* *	CALIB NASHYD [CN=58.0 [N = 3.0:Tp .38	0003]]	1	5.0	.35	.02	2.25	17.78	.22	.000		
* *	CALIB NASHYD [CN=58.0 [N = 3.0:Tp .40	0002]]	1	5.0	.34	.01	2.25	17.78	.22	.000		
* *	CALIB NASHYD [CN=61.0 [N = 3.0:Tp .41	0001]]	1	5.0	.33	.02	2.25	20.25	.25	.000		
* *	CALIB NASHYD [CN=58.0 [N = 3.0:Tp .17	0005]]	1	5.0	1.17	.09	2.08	17.72	.22	.000		
* *	CALIB NASHYD [CN=58.0 [N = 3.0:Tp .17	0006]]	1	5.0	.34	.02	2.08	17.72	.22	.000		
* *	CALIB NASHYD [CN=61.0	0019	1	5.0	1.69	.10	2.17	20.35	.25	.000		

(K)	
Project # 20	

Proje	ct # 200977		22 of 26						September 21, 2021		
*	[N = 3.0:Tp .32]									
**	CALIB NASHYD [CN=58.0 [N = 3.0:Tp .19	0007]]	1	5.0	.34	.02	2.08	17.74	.22	.000	
**	CALIB NASHYD [CN=61.0 [N = 3.0:Tp .23	0008]]	1	5.0	.33	.02	2.08	20.23	.25	.000	
*	CALIB NASHYD [CN=67.0 [N = 3.0:Tp .17	0013]]	1	5.0	.51	.05	2.08	25.71	.32	.000	
*	CALIB NASHYD [CN=67.0 [N = 3.0:Tp .17	0014]]	1	5.0	.52	.05	2.08	25.71	.32	.000	
*	CALIB NASHYD [CN=67.0 [N = 3.0:Tp .17	0015]]	1	5.0	.53	.05	2.08	25.71	.32	.000	
**	CALIB NASHYD [CN=67.0 [N = 3.0:Tp .17	0016]]	1	5.0	.53	.05	2.08	25.77	.32	.000	
*	CALIB NASHYD [CN=69.0 [N = 3.0:Tp .17	0018]]	1	5.0	.21	.02	2.08	27.86	.35	.000	
*	CALIB NASHYD [CN=67.0 [N = 3.0:Tp .17	0012]]	1	5.0	.56	.06	2.08	25.83	.32	.000	
*	CALIB NASHYD [CN=67.0 [N = 3.0:Tp .17	0011]]	1	5.0	.53	.05	2.08	25.71	.32	.000	
**	CALIB NASHYD [CN=67.0 [N = 3.0:Tp .17	0010]]	1	5.0	.54	.05	2.08	25.71	.32	.000	
**	CALIB NASHYD [CN=67.0 [N = 3.0:Tp .17	0009]]	1	5.0	.49	.05	2.08	25.77	.32	.000	
* **	CALIB NASHYD [CN=69.0 [N = 3.0:Tp .17	0017]]	1	5.0	.21	.02	2.08	27.86	.35	.000	
*	ADD [0002 + 0001]	0044	3	5.0	.67	.03	2.25	18.99	n/a	.000	
*	ADD [0007 + 0008]	0030	3	5.0	.67	.05	2.08	18.97	n/a	.000	
*	ADD [0016 + 0018]	0039	3	5.0	.73	.08	2.08	26.36	n/a	.000	
*	ADD [0009 + 0017]	0035	3	5.0	.70	.07	2.08	26.39	n/a	.000	
*	ADD [0003 + 0044]	0045	3	5.0	1.03	.05	2.25	18.57	n/a	.000	
*	ADD [0019 + 0030]	0031	3	5.0	2.36	.14	2.08	19.96	n/a	.000	

(K)	
Project # 200977	

Post-development Otthy	mo Analysis Summary Outpu	t
	2050 Dunrobin Road, Ottawa	a

P	roject # 200977				23 of 26			Sept	ember	21, 2021
	CHANNEL[2 : 0039]	0026	1	5.0	.73	.08	2.08	26.36	n/a	.000
	CHANNEL[2 : 0035]	0022	1	5.0	.70	.08	2.08	26.39	n/a	.000
*	ADD [0004 + 0045]	0046	3	5.0	2.51	.12	2.17	18.10	n/a	.000
^ 	CHANNEL[2 : 0031]	0020	1	5.0	2.36	.14	2.17	19.96	n/a	.000
*	ADD [0015 + 0026]	0040	3	5.0	1.27	.13	2.08	26.09	n/a	.000
^ +	ADD [0010 + 0022]	0036	3	5.0	1.24	.13	2.08	26.10	n/a	.000
*	ADD [0006 + 0020]	0033	3	5.0	2.71	.16	2.08	19.67	n/a	.000
^ +	CHANNEL[2 : 0040]	0027	1	5.0	1.27	.13	2.08	26.09	n/a	.000
*	CHANNEL[2 : 0036]	0023	1	5.0	1.24	.13	2.08	26.10	n/a	.000
*	CHANNEL[2 : 0033]	0032	1	5.0	2.71	.16	2.17	19.67	n/a	.000
*	ADD [0014 + 0027]	0041	3	5.0	1.79	.18	2.08	25.98	n/a	.000
*	ADD [0011 + 0023]	0037	3	5.0	1.77	.18	2.08	25.98	n/a	.000
*	ADD [0005 + 0032]	0034	3	5.0	3.88	.24	2.08	19.08	n/a	.000
*	CHANNEL[2 : 0041]	0028	1	5.0	1.79	.18	2.08	25.98	n/a	.000
*	CHANNEL[2 : 0037]	0024	1	5.0	1.77	.18	2.08	25.98	n/a	.000
*	CHANNEL[2 : 0034]	0021	1	5.0	3.88	.22	2.17	19.08	n/a	.000
*	ADD [0013 + 0028]	0042	3	5.0	2.30	.23	2.08	25.92	n/a	.000
*	ADD [0012 + 0024]	0038	3	5.0	2.33	.24	2.08	25.94	n/a	.000
*	ADD [0046 + 0021]	0049	3	5.0	6.39	.34	2.17	18.69	n/a	.000
*	CHANNEL[2 : 0042]	0029	1	5.0	2.30	.22	2.08	25.91	n/a	.000
*	CHANNEL[2 : 0038]	0025	1	5.0	2.33	.22	2.08	25.94	n/a	.000
*	ADD [0029 + 0025]	0043	3	5.0	4.63	.44	2.08	25.93	n/a	.000
*	RESRVR [2 : 0043] {ST= .05 ha.m }	0052	1	5.0	4.63	.24	2.33	25.92	n/a	.000
*	CHANNEL[2 : 0052]	0047	1	5.0	4.63	.24	2.33	25.92	n/a	.000
- +	ADD [0049 + 0047]	0050	3	5.0	11.02	.55	2.25	21.73	n/a	.000
*	CHANNEL[2 : 0050]	0048	1	5.0	11.02	.55	2.25	21.73	n/a	.000
^	**************************************	10 ** *****								
	W/E COMMAND	HYD	ID	DT min	AREA ha	Qpeak cms	Tpeak hrs	R.V. mm	R.C.	Qbase cms

START @ .00 hrs

K)			Pe	Post-development Otthymo Analysis Summary Output 2050 Dunrobin Road, Ottawa								
Projec	et # 200977					24 of 26			Septe	mber	21, 2021		
- Add	READ STORM [Ptot= 25.00 fname : G:\Pr itional lots\S	mm] oject: torm\l	s\2020 Desigr)\20 1 St	10.0 0977 0	- Zbigniew	Haude	rowicz	- 2050	Dunro	obin Rd		
*	remark: twent	yrıve	mm 4	nr	cnica	ago storm							
**	CALIB NASHYD [CN=58.0 [N = 3.0:Tp] .28]	0004	1	5.0	1.49	.00	2.67	.64	.03	.000		
**	CALIB NASHYD [CN=58.0 [N = 3.0:Tp] .38]	0003	1	5.0	.35	.00	2.92	.64	.03	.000		
**	CALIB NASHYD [CN=58.0 [N = 3.0:Tp] .40]	0002	1	5.0	.34	.00	3.00	.64	.03	.000		
* **	CALIB NASHYD [CN=61.0 [N = 3.0:Tp] .41]	0001	1	5.0	.33	.00	2.67	.93	.04	.000		
* **	CALIB NASHYD [CN=58.0 [N = 3.0:Tp] .17]	0005	1	5.0	1.17	.00	2.33	.64	.03	.000		
* **	CALIB NASHYD [CN=58.0 [N = 3.0:Tp] .17]	0006	1	5.0	.34	.00	2.33	.64	.03	.000		
* * *	CALIB NASHYD [CN=61.0 [N = 3.0:Tp] .32]	0019	1	5.0	1.69	.00	2.42	.96	.04	.000		
* **	CALIB NASHYD [CN=58.0 [N = 3.0:Tp] .19]	0007	1	5.0	.34	.00	2.33	.64	.03	.000		
* **	CALIB NASHYD [CN=61.0 [N = 3.0:Tp] .23]	0008	1	5.0	.33	.00	2.17	.93	.04	.000		
* **	CALIB NASHYD [CN=67.0 [N = 3.0:Tp] .17]	0013	1	5.0	.51	.00	1.75	1.72	.07	.000		
* **	CALIB NASHYD [CN=67.0 [N = 3.0:Tp] .17]	0014	1	5.0	.52	.00	1.75	1.72	.07	.000		
* **	CALIB NASHYD [CN=67.0 [N = 3.0:Tp] .17]	0015	1	5.0	.53	.00	1.75	1.72	.07	.000		
* **	CALIB NASHYD [CN=67.0 [N = 3.0:Tp] .17]	0016	1	5.0	.53	.00	1.75	1.74	.07	.000		
*	CALIB NASHYD [CN=69.0 [N = 3.0:Tp] .17]	0018	1	5.0	.21	.00	1.75	2.10	.08	.000		

K		
Project	#	200

							2000 L	Junrobir	i Koad	i, Ottawa
Projec	ct # 200977				25 of 26			Septe	ember	21, 2021
**	CALIB NASHYD [CN=67.0] [N = 3.0:Tp .17]	0012	1	5.0	.56	.00	1.75	1.76	.07	.000
**	CALIB NASHYD [CN=67.0] [N = 3.0:Tp .17]	0011	1	5.0	.53	.00	1.75	1.72	.07	.000
* **	CALIB NASHYD [CN=67.0] [N = 3.0:Tp .17]	0010	1	5.0	.54	.00	1.75	1.72	.07	.000
* **	CALIB NASHYD [CN=67.0] [N = 3.0:Tp .17]	0009	1	5.0	.49	.00	1.75	1.74	.07	.000
*	CALIB NASHYD [CN=69.0] [N = 3.0:Tp .17]	0017	1	5.0	.21	.00	1.75	2.10	.08	.000
*	ADD [0002 + 0001]	0044	3	5.0	.67	.00	2.75	.78	n/a	.000
л	ADD [0007 + 0008]	0030	3	5.0	.67	.00	2.25	.78	n/a	.000
*	ADD [0016 + 0018]	0039	3	5.0	.73	.00	1.75	1.84	n/a	.000
*	ADD [0009 + 0017]	0035	3	5.0	.70	.00	1.75	1.85	n/a	.000
*	ADD [0003 + 0044]	0045	3	5.0	1.03	.00	2.83	.73	n/a	.000
*	ADD [0019 + 0030]	0031	3	5.0	2.36	.00	2.33	.91	n/a	.000
*	CHANNEL[2 : 0039]	0026	1	5.0	.73	.00	1.83	1.84	n/a	.000
*	CHANNEL[2 : 0035]	0022	1	5.0	.70	.00	1.83	1.85	n/a	.000
*	ADD [0004 + 0045]	0046	3	5.0	2.51	.00	2.75	.68	n/a	.000
*	CHANNEL[2 : 0031]	0020	1	5.0	2.36	.00	2.42	.91	n/a	.000
*	ADD [0015 + 0026]	0040	3	5.0	1.27	.00	1.83	1.79	n/a	.000
т ~	ADD [0010 + 0022]	0036	3	5.0	1.24	.00	1.83	1.79	n/a	.000
л	ADD [0006 + 0020]	0033	3	5.0	2.71	.00	2.42	.88	n/a	.000
т ~	CHANNEL[2 : 0040]	0027	1	5.0	1.27	.00	1.83	1.79	n/a	.000
^	CHANNEL[2 : 0036]	0023	1	5.0	1.24	.00	1.83	1.79	n/a	.000
*	CHANNEL[2 : 0033]	0032	1	5.0	2.71	.00	2.50	.88	n/a	.000
*	ADD [0014 + 0027]	0041	3	5.0	1.79	.01	1.83	1.77	n/a	.000
*	ADD [0011 + 0023]	0037	3	5.0	1.77	.01	1.83	1.77	n/a	.000
*	ADD [0005 + 0032]	0034	3	5.0	3.88	.00	2.42	.81	n/a	.000
*	CHANNEL[2 : 0041]	0028	1	5.0	1.79	.01	1.92	1.77	n/a	.000
*	CHANNEL[2 : 0037]	0024	1	5.0	1.77	.01	1.92	1.77	n/a	.000

)		Post-development Otthymo Analysis Summary Output 2050 Dunrobin Road, Ottawa							
Projec	et # 200977				26 of 26		2020 D	Septe	mber 2	1, 2021
4	CHANNEL[2 : 0034]	0021	1	5.0	3.88	.00	2.83	.80	n/a	.000
^	ADD [0013 + 0028]	0042	3	5.0	2.30	.01	1.83	1.76	n/a	.000
*	ADD [0012 + 0024]	0038	3	5.0	2.33	.01	1.83	1.77	n/a	.000
^	ADD [0046 + 0021]	0049	3	5.0	6.39	.01	2.83	.75	n/a	.000
*	CHANNEL[2 : 0042]	0029	1	5.0	2.30	.01	2.00	1.76	n/a	.000
*	CHANNEL[2 : 0038]	0025	1	5.0	2.33	.01	2.00	1.77	n/a	.000
*	ADD [0029 + 0025]	0043	3	5.0	4.63	.01	2.00	1.76	n/a	.000
*	RESRVR [2 : 0043] {ST= .00 ha.m }	0052	1	5.0	4.63	.01	2.42	1.76	n/a	.000
*	CHANNEL[2 : 0052]	0047	1	5.0	4.63	.01	2.50	1.76	n/a	.000
 +	ADD [0049 + 0047]	0050	3	5.0	11.02	.02	2.58	1.18	n/a	.000
*	CHANNEL[2 : 0050]	0048	1	5.0	11.02	.02	2.67	1.17	n/a	.000
FINIS	SH									
=====		======	===			=====	======	======	======	=====

Post-development Otthymo Analysis Detailed Output Last Link Before Stormwater Management Swale 2050 Dunrobin Road, Ottawa September 21, 2021 Project # 200977 1 of 3 ** SIMULATION NUMBER: 1 ** _____ ADD HYD (0043) AREA QPEAK TPEAK R.V. (ha) (cms) (hrs) (mm) 1 + 2 = 3 _____ (ha) (cms) (hrs) ID1= 1 (0029): 2.30 .058 3.17 10.20 + ID2= 2 (0025): 2.33 .059 3.17 10.22 _____ ID = 3 (0043): 4.63 .117 3.17 10.21 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. _____ ** SIMULATION NUMBER: 2 ** _____ ADD HYD (0043) 1 + 2 = 3 | AREA QPEAK TPEAK R.V. (ha) (cms) (hrs) (mm) (ha) (cms) (hrs) ID1= 1 (0029): 2.30 .182 3.08 29.82 + ID2= 2 (0025): 2.33 .184 3.08 29.85 _____ ID = 3 (0043): 4.63 .367 3.08 29.83 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. _____ ** SIMULATION NUMBER: 3 ** ***** _____ ADD HYD (0043) 1 + 2 = 3 _____ ID = 3 (0043): 4.63 .142 6.08 13.31 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. _____ ** SIMULATION NUMBER: 4 ** _____ ADD HYD (0043) $\begin{vmatrix} 1 & + & 2 & = & 3 \\ ----- & (ha) & (cms) & (hrs) & (mm) \end{vmatrix}$ (ha) (cms) (hrs) ID1= 1 (0029): 2.30 .099 6.08 18.36 + ID2= 2 (0025): 2.33 .101 6.08 18.39 ID = 3 (0043): 4.63 .200 6.08 18.38 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. _____

```
Post-development Otthymo Analysis Detailed Output
                            Last Link Before Stormwater Management Swale
                                          2050 Dunrobin Road, Ottawa
Project # 200977
                                                 September 21, 2021
                                2 of 3
 *****
 ** SIMULATION NUMBER: 5 **
 _____
ADD HYD (0043)
AREA QPEAK TPEAK R.V.
(ha) (cms) (hrs) (mm)

        ID1=1(0029):
        2.30
        201
        6.08
        35.54

        + ID2=2(0025):
        2.33
        .203
        6.08
        35.57

_____
       _____
       ID = 3 (0043): 4.63 .404 6.08 35.56
   NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
_____
 ** SIMULATION NUMBER: 6 **
 *******
_____
ADD HYD (0043)
                    AREA QPEAK TPEAK R.V.
(ha) (cms) (hrs) (mm)
1 + 2 = 3

      ID1= 1 (0029):
      2.30
      .071
      4.25
      12.81

      + ID2= 2 (0025):
      2.33
      .072
      4.25
      12.83

       ------
       ID = 3 (0043): 4.63 .142 4.25 12.82
   NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
                        _____
 *****
 ** SIMULATION NUMBER: 7 **
 _____
ADD HYD (0043)
                     AREA QPEAK TPEAK R.V.
1 + 2 = 3
                   (ha) (cms) (hrs) (mm)
2.30 .225 4.17 34.18
2.33 .227 4.17 34.21
_____
                                            ( mm )
       ID1= 1 (0029):
      + ID2= 2 (0025):
       ID = 3 (0043):
                     4.63 .452
                                   4.17
                                          34.20
   NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
```

```
Post-development Otthymo Analysis Detailed Output
                            Last Link Before Stormwater Management Swale
                                           2050 Dunrobin Road, Ottawa
Project # 200977
                                                 September 21, 2021
                                3 of 3
 ****
 ** SIMULATION NUMBER: 8 **
 *****
_____
ADD HYD (0043)
AREA QPEAK TPEAK R.V.
(ha) (cms) (hrs) (mm)

        ID1=1(0029):
        2.30
        .230
        1.75
        27.97

        + ID2=2(0025):
        2.33
        .232
        1.75
        28.00

_____
       _____
       ID = 3 (0043): 4.63 .462
                                   1.75
                                          27.98
   NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
_____
 ** SIMULATION NUMBER: 9 **
 *******
_____
ADD HYD (0043)
                    AREA QPEAK TPEAK R.V.
(ha) (cms) (hrs) (mm)
| 1 + 2 = 3 |

      ID1= 1 (0029):
      2.30
      .220
      2.08
      25.91

      + ID2= 2 (0025):
      2.33
      .223
      2.08
      25.94

       ------
       ID = 3 (0043): 4.63 .444 2.08 25.93
   NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
                         _____
 *****
 ** SIMULATION NUMBER: 10 **
 _____
 ADD HYD (0043)
                     AREA QPEAK TPEAK R.V.
 1 + 2 = 3
                    (ha) (cms) (hrs) (mm)
2.30 .006 2.00 1.76
2.33 .006 2.00 1.77
_____
                                            ( mm )
       ID1= 1 (0029):
      + ID2= 2 (0025):
        ID = 3 (0043):
                     4.63 .013
                                   2.00
                                          1.76
   NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
```

```
Post-development Otthymo Analysis Detailed Output
                                   Last Link Before Harwood Creek
                                      2050 Dunrobin Road, Ottawa
Project # 200977
                           1 of 3
                                            September 21, 2021
** SIMULATION NUMBER: 1 **
 _____
ADD HYD (0050)
 1 + 2 = 3
                  AREA QPEAK TPEAK R.V.
                   AREA <u>VELECE</u>
(ha) (cms) (hrs) (mm)
271 342 6.53
_____
                                      ( mm )
     ID1= 1 (0049): 6.39 .071 3.42 6.53
+ ID2= 2 (0047): 4.63 .051 3.83 10.21
       _____
       ID = 3 (0050): 11.02 .113 3.67 8.07
   NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
_____
 ** SIMULATION NUMBER: 2 **
 *****
 _____
ADD HYD (0050)
 1 + 2 = 3
                  AREA QPEAK TPEAK R.V.
(ha) (cms) (hrs) (mm)
     ----- (ha) (cms) (hrs) (mm)
ID1= 1 (0049): 6.39 .271 3.25 21.85
+ ID2= 2 (0047): 4.63 .204 3.50 29.83
_____
       _____
       ID = 3 (0050): 11.02 .459 3.33 25.20
   NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
                      _____
 ** SIMULATION NUMBER: 3 **
 _____
ADD HYD (0050)
 1 + 2 = 3 | AREA QPEAK TPEAK R.V.
----- (ha) (cms) (hrs) (mm)
                   AREA QE DALL
(ha) (cms) (hrs) (mm)
220 6.25 8.84
                                      ( mm )
     ID1= 1 (0049): 6.39 .089 6.25 8.84
+ ID2= 2 (0047): 4.63 .060 6.67 13.31
       ID = 3 (0050): 11.02 .135 6.50 10.71
   NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
     _____
 ** SIMULATION NUMBER: 4 **
 *****
_____
ADD HYD (0050)
                   AREA QPEAK TPEAK R.V.
(ha) (cms) (hrs) (mm)
1 + 2 = 3

      ID1= 1 (0049):
      6.39
      .136
      6.25
      12.72

      + ID2= 2 (0047):
      4.63
      .096
      6.50
      18.37

_____
       ID = 3 (0050): 11.02 .216
                               6.33
                                     15.09
   NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
_____
```

Due is at # 200077		2 - 6 2		2050 Di	inrobin Road, Ottaw
Project # 200977		2 of 3			September 21, 202
**************************************	**** 5 ** ***				
ADD HYD (0050)	1001	0000		D 11	
1 + 2 = 3	(ha)	(cms)	(hrs)	R.V. (mm)	
ID1= 1 (0049): + ID2= 2 (0047):	6.39 4.63	.307 .219	6.17 6.42	26.54 35.55	
ID = 3 (0050):	11.02	.508	6.25	30.32	
**************************************	6 ** ****				
**************************************	**** 6 ** ****				
**************************************	**** 6 ** **** AREA (ha)	QPEAK (cms)	TPEAK (hrs)	R.V. (mm)	
**************************************	**** 6 ** **** AREA (ha) 6.39	QPEAK (cms) .079	TPEAK (hrs) 4.42	R.V. (mm) 8.47	
**************************************	**** 6 ** **** AREA (ha) 6.39 4.63	QPEAK (cms) .079 .051	TPEAK (hrs) 4.42 4.83	R.V. (mm) 8.47 12.82	
**************************************	**** 6 ** **** AREA (ha) 6.39 4.63 ====================================	QPEAK (cms) .079 .051 .116	TPEAK (hrs) 4.42 4.83 ======== 4.67	R.V. (mm) 8.47 12.82 ====== 10.30	
**************************************	**** 6 ** **** AREA (ha) 6.39 4.63 ====================================	QPEAK (cms) .079 .051 ======= .116 E BASEFL	TPEAK (hrs) 4.42 4.83 ======== 4.67 wows IF AM	R.V. (mm) 8.47 12.82 ====== 10.30	
<pre>************************************</pre>	<pre>**** 6 ** 6 ** **** AREA (ha) 6.39 4.63 ====================================</pre>	QPEAK (cms) .079 .051 .116 E BASEFL	TPEAK (hrs) 4.42 4.83 ======== 4.67 SOWS IF AN	R.V. (mm) 8.47 12.82 ===== 10.30 JY.	
<pre>************************************</pre>	AREA (ha) 6.39 4.63 ====================================	QPEAK (cms) .079 .051 .116 E BASEFL	TPEAK (hrs) 4.42 4.83 	R.V. (mm) 8.47 12.82 ====== 10.30 JY.	
<pre>************************************</pre>	<pre>**** 6 ** 6 ** **** AREA (ha) 6.39 4.63 ====================================</pre>	QPEAK (cms) .079 .051 ======= .116 E BASEFL QPEAK (cms)	TPEAK (hrs) 4.42 4.83 4.67 OWS IF AN OWS IF AN TPEAK (hrs)	R.V. (mm) 8.47 12.82 ===== 10.30 JY. R.V. (mm)	
<pre>************************************</pre>	AREA (ha) 6.39 4.63 ====================================	QPEAK (cms) .079 .051 ====== .116 E BASEFL ====== QPEAK (cms) .298 .212	TPEAK (hrs) 4.42 4.83 4.67 OWS IF AN OWS IF AN TPEAK (hrs) 4.33 4.58	R.V. (mm) 8.47 12.82 ====== 10.30 JY. 	
<pre>************************************</pre>	AREA (ha) 6.39 4.63 ====================================	QPEAK (cms) .079 .051 ====== .116 E BASEFL BASEFL 202 .212 	TPEAK (hrs) 4.42 4.83 4.67 OWS IF AN COWS IF AN COMPANT IF AN COMPAN	R.V. (mm) 8.47 12.82 ====== 10.30 JY.	

9			La	st Link Bo 2050 Du	efore Harwood Cree Inrobin Road, Ottaw
Project # 200977		3 of 3			September 21, 202
**************************************	* * * 8 * * * * *				
ADD HYD (0050) 1 + 2 = 3	AREA	QPEAK	TPEAK	R.V. (mm)	
ID1= 1 (0049): + ID2= 2 (0047):	6.39 4.63	.375 .258	1.83 2.08	20.35 27.98	
ID = 3 (0050):	11.02	.614	1.92	23.55	
**************************************	 **** 9 **				
<pre>************************************</pre>	AREA (ha) 6.39 4.63	QPEAK (cms) .343 .236	TPEAK (hrs) 2.17 2.33	R.V. (mm) 18.69 25.92	
**************************************	AREA (ha) 6.39 4.63 ====================================	QPEAK (cms) .343 .236 =======	TPEAK (hrs) 2.17 2.33 ========	R.V. (mm) 18.69 25.92 ====== 21.73	
**************************************	AREA (ha) 6.39 4.63 ======= 11.02 NOT INCLUD 	QPEAK (cms) .343 .236 ======= .551 E BASEFL	TPEAK (hrs) 2.17 2.33 ======= 2.25 OWS IF AN	R.V. (mm) 18.69 25.92 ===== 21.73 NY.	
<pre>************************************</pre>	AREA (ha) 6.39 4.63 ======== 11.02 NOT INCLUD 	QPEAK (cms) .343 .236 ======= .551 E BASEFL QPEAK (cms) .006 .010	TPEAK (hrs) 2.17 2.33 ======= 2.25 OWS IF AN 	R.V. (mm) 18.69 25.92 ====== 21.73 NY. 	

************** ** SIMULATI **********	************ ON NUMBER: **********	1 ** *****				
ROUTE CHN (IN= 2> O	 0048) UT= 1	Routing ti	.me step (mi	n)'= 5.00		
		5	1			
	< I	DATA FOR SEC	CTION (1.	1)>		
	Distance	Elevat	10n M	anning		
	5 00	101.	00 050	0 / 0250	Main Channel	
	8.00	101.	00 .050	.0250	Main Channel	
	8.30	100.	00	.0250	Main Channel	
	11.30	101.	00 .025	0 / .0500	Main Channel	
	16.00	101.	10	.0500		
	20.00	101.	30	.0500		
/	п	יסאזעדי יידאע	ייא דע		>	
DEPTH	ELEV	VOLUME	FLOW RATE	VELOCITY	TRAV.TIME	
(m)	(m)	(cu.m.)	(cms)	(m/s)	(min)	
.06	100.06	.259E+01	.0	.26	6.53	
.11	100.11	.704E+01	.0	.37	4.47	
.17	100.17	.133E+02	.1	.47	3.57	
.22	100.22	.215E+02	.1	.55	3.03	
.28	100.28	.315E+02	.2	.63	2.66	
.33	100.33	.433E+02	.3	.70	2.39	
.39	100.39	.570E+02	. 4	.77	2.18	
.44	100.44	.726E+02	.6	.83	2.01	
.50	100.50	.900E+02	.8	.89	1.87	
.56	100.56	.109E+03	1.0	.95	1.75	
.61	100.61	.130E+03	1.3	1.01	1.65	
.67	100.67	.153E+03	1.6	1.07	1.56	
.72	100.72	.178E+03	2.0	1.12	1.49	
.78	100.78	.205E+03	2.4	1.17	1.42	
.83	100.83	.233E+03	2.9	1.23	1.36	
.89	100.89	.264E+03	3.4	1.28	1.30	
.94	100.94	.296E+03	3.9	1.33	1.26	
1.00	101.00	.330E+03	4.5	1.38	1.21	
1.06	101.06	.380E+03	5.4	1.42	1.18	
			< hydr	ograph	-> <-pipe / d	channel->
		AREA	QPEAK	TPEAK R.V	MAX DEPTH	MAX VEL
		(ha)	(cms)	(hrs) (mm	n) (m)	(m/s)
INFLOW :	ID= 2 (005	50) 11.02	.11	3.67 8.0	.22	.54
OUTFLOW:	ID= 1 (004	11.02	.11	3.67 8.0	.22	.54

**** ** SIMULATION NUMBER: 2 ** ***** _____ | ROUTE CHN (0048) | | IN= 2---> OUT= 1 | Routing time step (min)'= 5.00 _____ <----> DATA FOR SECTION (1.1) ----> Distance Elevation Manning .0500 .00 101.10 5.00 101.00 .0500 / .0250 Main Channel .0250 8.00 100.00 Main Channel 8.30 Main Channel 100.00 .0250 11.30 101.00 .0250 / .0500 Main Channel .0500 16.00 101.10 20.00 101.30 .0500 <-----> TRAVEL TIME TABLE -----> DEPTH ELEV VOLUME FLOW RATE VELOCITY TRAV.TIME (m) (m) (cu.m.) (cms) (m/s) (min) .26 .06 100.06 .259E+01 .0 6.53 .37 .11 100.11 .704E+01 .0 4.47 .0 .1 .1 .2 .3 .4 .133E+02 .47 .17 100.17 3.57 .215E+02 100.22 .22 .55 3.03 .315E+02 .63 100.28 .28 2.66 .433E+02 .33 100.33 .70 2.39 100.39 .570E+02 .77 .39 2.18 .6 100.44 .44 .726E+02 .83 2.01 100.50 .8 .89 .50 .900E+02 1.87 1.0 .56 100.56 .109E+03 .95 1.75 1.01 .61 100.61 .130E+03 1.3 1.65 .67 100.67 1.07 .153E+03 1.6 1.56 .72 100.72 .178E+03 2.0 1.12 1.49 100.78 .78 .205E+03 2.4 1.17 1.42 .83 100.83 .233E+03 2.9 1.23 1.36 100.89 .264E+03 1.28 1.30 .89 3.4 3.9 .296E+03 1.33 1.26 .94 100.94 .330E+03 101.00 1.00 4.5 1.38 1.21 1.06 101.06 .380E+03 5.4 1.42 1.18 <---- hydrograph ----> <-pipe / channel-> QPEAK TPEAK R.V. (cms) (hrs) (mm) AREA MAX DEPTH MAX VEL (m) (ha) (m/s) .46 .40 .77 INFLOW : ID= 2 (0050) 11.02 3.33 25.20 OUTFLOW: ID= 1 (0048) 3.33 25.20 11.02 .46 .40 .77

**************************************	************ ON NUMBER: *********	* * * * * * 3 * * * * * * * *				
ROUTE CHN () IN= 2> OI	 0048) UT= 1	Routing t	ime step (mi	in)'= 5.00		
	I	DATA FOR SEG	CTION (1	.1)>		
	Distance	Elevat	tion N	Manning		
	.00	101	.10	.0500		
	5.00	101	.00 .050	00 / .0250	Main Channel	
	8.00	100	.00	.0250	Main Channel	
	8.30	100	.00	.0250	Main Channel	
	11.30	101	.00 .025	50 / .0500	Main Channel	
	16.00	101	.10	.0500		
	20.00	101	.30	.0500		
	"	PRAVEL TIME	TABLE		>	
DEPTH	ELEV	VOLUME	FLOW RATE	VELOCITY	Y TRAV.TIME	
(m)	(m)	(cu.m.)	(cms)	(m/s)	(min)	
.06	100.06	.259E+01	.0	.26	6.53	
.11	100.11	.704E+01	.0	.37	4.47	
.17	100.17	.133E+02	.1	.47	3.57	
.22	100.22	.215E+02	.1	.55	3.03	
.28	100.28	.315E+02	.2	.63	2.66	
.33	100.33	.433E+02	.3	.70	2.39	
. 39	100.39	.570E+02	. 4	.77	2.18	
.44	100.44	.726E+02	.6	.83	2.01	
.50	100.50	.900E+02	.8	.89	1.8/	
.50	100.50	.109E+03	1.0	.95	1.75	
.01	100.01	152E+03	1.5	1.01	1.05	
.07	100.07	178E+03	2 0	1 12	1 49	
.78	100.78	.205E+03	2.4	1.17	1.42	
.83	100.83	.233E+03	2.9	1.23	1.36	
.89	100.89	.264E+03	3.4	1.28	1.30	
.94	100.94	.296E+03	3.9	1.33	1.26	
1.00	101.00	.330E+03	4.5	1.38	1.21	
1.06	101.06	.380E+03	5.4	1.42	1.18	
				,	. ,	
		3553	< hydi	rograph	-> <-pipe / c	cnannel->
		AREA	QPEAK	(brg) (mr	v. MAX DEPTH	MAX VEL
TNET OM .	TD- 2 (00)	(11a) 50) 11 02		(IIIS) (MI	ແ/ ([[[]) 71 22	(III/S) 57
OUTEI.OM:	TD = 2 (00)	18) 11 02	•±4 12	6 50 10 °	71 22	.57
0011100.	ID- I (00-	10, 11.02		0.00 10.	, T , T , T , T , T , T , T , T , T , T	. 50

**** ** SIMULATION NUMBER: 4 ** ***** _____ | ROUTE CHN (0048) | | IN= 2---> OUT= 1 | Routing time step (min)'= 5.00 _____ <----> DATA FOR SECTION (1.1) ----> Distance Elevation Manning 101.10 .0500 .00 5.00 101.00 .0500 / .0250 Main Channel .0250 8.00 100.00 Main Channel 8.30 Main Channel 100.00 .0250 11.30 101.00 .0250 / .0500 Main Channel .0500 16.00 101.10 20.00 101.30 .0500 <----> TRAVEL TIME TABLE -----> DEPTH ELEV VOLUME FLOW RATE VELOCITY TRAV.TIME (m) (m) (cu.m.) (cms) (m/s) (min) .0 .26 100.06 .259E+01 .06 6.53 .0 .37 .11 100.11 .704E+01 4.47 .1 .133E+02 .47 .17 100.17 3.57 .215E+02 100.22 .1 .22 .55 3.03 .2 .315E+02 .63 100.28 .28 2.66 .33 100.33 .433E+02 .3 .70 2.39 .4 100.39 .39 .570E+02 .77 2.18 .6 100.44 .44 .726E+02 .83 2.01 100.50 .89 .50 .900E+02 .8 1.87 .109E+03 1.0 .56 100.56 .95 1.75 1.01 .61 100.61 .130E+03 1.3 1.65 .67 100.67 1.6 1.07 .153E+03 1.56 .72 100.72 .178E+03 2.0 1.12 1.49 100.78 .78 .205E+03 2.4 1.17 1.42 2.9 .83 100.83 .233E+03 1.23 1.36 100.89 .89 .264E+03 3.4 1.28 1.30 .296E+03 1.33 .94 100.94 3.9 1.26 .330E+03 101.00 1.00 4.5 1.38 1.21 1.42 1.06 101.06 .380E+03 5.4 1.18

		<	hydrograph	h>	<-pipe / 0	channel->
	AR	EA QPE	AK TPEAK	R.V.	MAX DEPTH	MAX VEL
	(h	la) (cm	s) (hrs)	(mm)	(m)	(m/s)
INFLOW : ID= 2	(0050) 11.	02 .	22 6.33	15.09	.29	.64
OUTFLOW: ID= 1	(0048) 11.	02 .	6.42	15.09	.29	.64

ROUTE CHN (C IN= 2> OU	0048) JT= 1	Routing t	ime step (m	in)'= 5.00		
	<	DATA FOR SE	CTION (1	.1)>		
	Distance	e Eleva	tion 1	Manning		
	.00	101	.10	.0500		
	5.00	101	.00 .05	00 / .0250	Main Channel	
	8.00	100	.00	.0250	Main Channel	
	8.30	100	.00	.0250	Main Channel	
	11.30		.00 .02	50 / .0500	Main Channel	
	16.00		.10	.0500		
	20.00	101	.30	.0500		
		TRAVEL TIME	TABLE		>	
DEPTH	ELEV	VOLUME	FLOW RATE	VELOCITY	Y TRAV.TIME	
(m)	(m)	(cu.m.)	(cms)	(m/s)	(min)	
.06	100.06	.259E+01	.0	.26	6.53	
.11	100.11	.704E+01	.0	.37	4.47	
.17	100.17	.133E+02	.1	.47	3.57	
.22	100.22	.215E+02	.1	.55	3.03	
.28	100.28	.315E+02	.2	.63	2.66	
.33	100.33	.433E+02	.3	.70	2.39	
.39	100.39	.570E+02	.4	.77	2.18	
.44	100.44	.726E+02	.6	.83	2.01	
.50	100.50	.900E+02	.8	.89	1.87	
.56	100.56	.109E+03	1.0	.95	1.75	
.61	100.61	.130E+03	1.3	1.01	1.65	
.6/	100.67	.153E+U3	1.6	1.07	1.56	
.72	100.72	.1/0E+03	2.0	1.12	1.49	
.70	100.78	.203E+03	2.4	1 23	1 36	
.05	100.83	264F+03	3 4	1 28	1 30	
.09	100.89	296E+03	3.4	1 33	1.30	
1 00	101 00	330E+03	4 5	1 38	1 21	
1.06	101.06	.380E+03	5.4	1.42	1.18	
			< hyd:	rograph	-> <-pipe / 0	channel->
		AREA	QPEAK	TPEAK R.V	/. MAX DEPTH	MAX VEL
		(ha)	(cms)	(hrs) (mr	n) (m)	(m/s)
INFLOW :	ID= 2 (00)50) 11.02	.51	6.25 30.3	.41	.79

**************************************	********** ON NUMBER ********	******* : 6 ** ****				
ROUTE CHN ((IN= 2> OU	D048) UT= 1	Routing ti	.me step (mi	.n)'= 5.00		
	<	DATA FOR SEC	יידד <u>ס</u> אר (1	1)>		
	Distance	e Elevat	tion N	lanning		
	. 0	0 101.	10	.0500		
	5.0	0 101.	.00 .050	00 / .0250	Main Channel	
	8.0	0 100.	00	.0250	Main Channel	
	8.3	0 100.	00	.0250	Main Channel	
	11.3	0 101.	.025	50 / .0500	Main Channel	
	16.0	0 101.	10	.0500		
	20.0	0 101.	30	.0500		
ישח שידמיםת	 	IRAVEL IIME	IABLE	VEI OCTT		
(m)	(m)		(cmg)	(m/g)	(min)	
.06	100.06	259E+01	. 0	. 26	6.53	
.11	100.11	.704E+01	.0	.20	4.47	
.17	100.17	.133E+02	.1	.47	3.57	
.22	100.22	.215E+02	.1	.55	3.03	
.28	100.28	.315E+02	.2	.63	2.66	
.33	100.33	.433E+02	.3	.70	2.39	
.39	100.39	.570E+02	.4	.77	2.18	
.44	100.44	.726E+02	.6	.83	2.01	
.50	100.50	.900E+02	.8	.89	1.87	
.56	100.56	.109E+03	1.0	.95	1.75	
.61	100.61	.130E+03	1.3	1.01	1.65	
.67	100.67	.153E+03	1.6	1.07	1.56	
. / 2	100.72	.1/8E+U3	2.0	1.12	1.49	
. / 0	100.78	.205E+03	2.4	1 23	1 36	
.05	100.83	.255E+05 264F+03	3.4	1 28	1 30	
.09	100.89	296E+03	3.4	1 33	1 26	
1.00	101.00	.330E+03	4.5	1.38	1.20	
1.06	101.06	.380E+03	5.4	1.42	1.18	
INFLOW :	ID= 2 (0	AREA (ha) 050) 11.02	< hydr QPEAK (cms) .12	rograph TPEAK R. (hrs) (m 4.67 10.	-> <-pipe / V. MAX DEPTH m) (m) 30 .22	channel-> MAX VEL (m/s) .55
OUTFLOW:	ID= 1 (0	048) 11.02	.12	4.67 10.	29 .22	.55

**************************************	************* ON NUMBER: ********	***** 7 ** *****				
ROUTE CHN ((IN= 2> OU	D048) UT= 1	Routing ti	ime step (mi	in)'= 5.00		
	< 1	DATA FOR SEC	TTTON (1	1)>		
	Distance	Elevat	tion N	Manning		
	.00	101.	.10	.0500		
	5.00	101.	.00 .050	00 / .0250	Main Channel	
	8.00	100.	.00	.0250	Main Channel	
	8.30	100.	.00	.0250	Main Channel	
	11.30	101.	.00 .025	50 / .0500	Main Channel	
	16.00	101.	.10	.0500		
	20.00	101.	.30	.0500		
/	,	דס <i>אנז</i> כד יידאכי	тλрт <u>υ</u>			
רבבבבבב	ET.EV	VOLUME	TABLE	VELOCITY		
(m)	(m)		(cms)	(m/s)	(min)	
.06	100.06	.259E+01	. 0	. 26	6.53	
.11	100.11	.704E+01	.0	.37	4.47	
.17	100.17	.133E+02	.1	.47	3.57	
.22	100.22	.215E+02	.1	.55	3.03	
.28	100.28	.315E+02	.2	.63	2.66	
.33	100.33	.433E+02	.3	.70	2.39	
.39	100.39	.570E+02	. 4	.77	2.18	
.44	100.44	.726E+02	.6	.83	2.01	
.50	100.50	.900E+02	.8	.89	1.87	
.56	100.56	.109E+03	1.0	.95	1.75	
.61	100.61	.130E+03	1.3	1.01	1.65	
.67	100.67	.153E+03	1.6	1.07	1.56	
.72	100.72	.178E+03	2.0	1.12	1.49	
. / 8	100.78	.205E+03	2.4	1.1/	1.42	
.83	100.83	.233E+U3	2.9	1.23	1.30	
.09	100.89	.204E+03	3.4	1 22	1.30	
1 00	101.00	3305+03	4 5	1 38	1 21	
1.00	101.06	.380E+03	5.4	1.42	1.18	
			< hydi	rograph	-> <-pipe /	channel->
		AREA	QPEAK	TPEAK R.V	V. MAX DEPTH	MAX VEL
		(ha)	(cms)	(hrs) (mr	m) (m)	(m/s)
INFLOW :	ID= 2 (00	50) 11.02	.49	4.42 29.3	10 .41	.79
OUTFLOW:	ID = 1 (00)	48) 11.02	.49	4.42 29.3	10 .41	.79

*********** ** SIMULATI(**********	******** ON NUMBE *******	********* R: 8 ** *****					
ROUTE CHN (IN= 2> O	0048) UT= 1	Routing	g time ste	ep (min)'=	5.00		
	< Vistan .	- DATA FOR ce Ele 00 1	SECTION evation .01.10	(1.1) Mannir .050(> ng)		
	5. 8. 8. 11.	00 1 00 1 30 1 30 1	.01.00 .00.00 .00.00 .01.00	.0500 / .0250 .0250 .0250 /	.0250 N D N D N .0500 N	Main Channel Main Channel Main Channel Main Channel	
<	20.	00 1 00 1 - TRAVEL TI	.01.30 .ME TABLE	.0500)) 	>	
DEPTH (m)	ELEV (m)	VOLUME (cu.m.)	E FLOW	RATE VI ms)	ELOCITY (m/s)	TRAV.TIME (min)	
.06 .11	100.06 100.11	.259E+01 .704E+01		.0 .0	.26 .37	6.53 4.47	
.17 .22	100.17 100.22	.133E+02 .215E+02		.1 .1	.47 .55	3.57 3.03	
.28	100.28	.315E+02		.2	.63	2.66	
.39	100.39	.570E+02		.4	.77	2.18	
.50	100.50	.900E+02		.8	.89	1.87	
.56	100.56	.130E+03		.0 .3	.95 1.01	1.75	
.67 .72	100.67 100.72	.153E+03 .178E+03	1 8 2	.6 .0	1.07 1.12	1.56 1.49	
.78 .83	100.78 100.83	.205E+03 .233E+03	2	.4 .9	1.17 1.23	1.42 1.36	
.89	100.89 100.94	.264E+03	3	. 4	1.28	1.30	
1.00	101.00	.330E+03 .380E+03	4 5 5	.5 .4	1.38 1.42	1.21 1.18	
		AF (1	< EA QPI na) (cr	- hydrograg EAK TPEAM ns) (hrs	ph> K R.V.) (mm)	> <-pipe / c . MAX DEPTH) (m)	channel-> MAX VEL (m/s)
INFLOW : OUTFLOW:	ID= 2 (ID= 1 (0050) 11. 0048) 11.	02 02	.61 1.92 .61 1.92	2 23.55 2 23.55	5 .45 5 .45	.83 .83

	********	* * * * * * * * * *	* * * * * * *				
	** SIMULATI	ON NUMBER	: 9 **				
	********	*******	* * * * * * * *				
_							
I	ROUTE CHN ((0048)					
ł	IN= 2> OU	UT= 1	Routing t	ime step (m	in)'= 5.00)	
_			5		,		
		<	DATA FOR SE	CTION (1	.1)>	•	
		Distance	e Eleva	tion 1	Manning		
		.00	101	.10	.0500		
		5.00	101	.00 .05	00 / .0250	Main Channel	
		8.00		.00	.0250	Main Channel	
		8.30	J 100	.00	.0250	Main Channel	
		11.30		10 .02	0500	Main Channei	
		20.00	101	30	.0500		
		20.00		. 50	.0500		
<			TRAVEL TIME	TABLE		>	
	DEPTH	ELEV	VOLUME	FLOW RATE	VELOCIT	TRAV.TIME	
	(m)	(m)	(cu.m.)	(cms)	(m/s)	(min)	
	.06	100.06	.259E+01	.0	.26	6.53	
	.11	100.11	.704E+01	.0	.37	4.47	
	.17	100.17	.133E+02	.1	. 47	3.57	
	.22	100.22	.215E+02	.1	.55	3.03	
	.28	100.28	.315E+02	.2	.63	3 2.66	
	.33	100.33	.433E+UZ	. 3	. /(J 2.39	
	. 39	100.39	.570E+02 726F+02	.4	. / .	2.10	
	. 50	100.50	.900E+02	. 8	. 80) 1.87	
	.56	100.56	.109E+03	1.0	.95	5 1.75	
	.61	100.61	.130E+03	1.3	1.01	1.65	
	.67	100.67	.153E+03	1.6	1.07	1.56	
	.72	100.72	.178E+03	2.0	1.12	1.49	
	.78	100.78	.205E+03	2.4	1.17	1.42	
	.83	100.83	.233E+03	2.9	1.23	3 1.36	
	.89	100.89	.264E+03	3.4	1.28	1.30	
	.94	100.94	.296E+03	3.9	1.33	3 1.26	
	1.00	101.00	.330E+03	4.5	1.38	3 L.ZL	
	1.00	101.00	.300E+03	5.4	1.42	1.10	
				< hvd	rograph	> <-nine /	channel->
			AREA	OPEAK	TPEAK R.	V. MAX DEPTI	H MAX VEL
			(ha)	(cms)	(hrs) (n	nm) (m)	(m/s)
	INFLOW :	ID= 2 (00	050) 11.02	.55	2.25 21.	.73 .43	.81
	OUTFLOW:	ID= 1 (00	048) 11.02	.55	2.25 21.	.43	.81

***********	**********	10 ++					
** \$1MULATI *******	ON NUMBER:	10 ^^ ******					
ROUTE CHN (0048)	Devetienen te	·		0.0		
IN= 2> 0	0.1.= T	Routing t	ime step (m	in)'= 5.	00		
	<	DATA FOR SE	CTION (1	.1)	->		
	Distance	Eleva	tion	Manning			
	.00	101	.10	.0500			
	5.00	101	.00 .05	00 / .025	0 Main	Channel	
	8.00	100	.00	.0250	Main	Channel	
	8.30	100	.00	.0250	Main O Main	Channel	
	16.00	101	.00 .02	0500	0 Main	Channel	
	20.00	101	. 30	.0500			
	20100	101					
<		TRAVEL TIME	TABLE			>	
DEPTH	ELEV	VOLUME	FLOW RATE	VELOC	ITY T	RAV.TIME	
(m)	(m)	(cu.m.)	(cms)	(m/	s)	(min)	
.06	100.06	.259E+01	.0		26	6.53	
.11	100.11	.704E+01	.0	•	37	4.47	
.1/	100.17	.133≝+UZ 215⊽±02	.1	•	4 / 55	3.5/	
.22	100.22	315E+02	· ⊥ 2	•	63	2.66	
.20	100.33	.433E+02	. 3	•	70	2.39	
.39	100.39	.570E+02	. 4		77	2.18	
.44	100.44	.726E+02	.6		83	2.01	
.50	100.50	.900E+02	.8		89	1.87	
.56	100.56	.109E+03	1.0		95	1.75	
.61	100.61	.130E+03	1.3	1.	01	1.65	
.67	100.67	.153E+03	1.6	1.	07	1.56	
. / 2	100.72	.1/8E+03	2.0	1.	17	1.49	
./8	100.78	.∠U5E+U3	2.4	⊥. 1	1 1 2 2	1 36	
.05	100.83	264E+03	3 4	1	23	1 30	
.94	100.94	.296E+03	3.9	1.	33	1.26	
1.00	101.00	.330E+03	4.5	1.	38	1.21	
1.06	101.06	.380E+03	5.4	1.	42	1.18	
			< hyd	rograph -	>	<-pipe / c	channel->
		AREA	QPEAK	TPEAK	R.V.	MAX DEPTH	MAX VEL
		(ha)	(cms)	(hrs)	(mm)	(m)	(m/s)
TINE TOM :	D = 2 (00)	50) II.02	.02	∠.58 2.67	⊥.⊥8 1 17	.08	.30
OUIFLOW.	тр-т (ОО		.02	2.0/	±•±/	.00	. 50

APPENDIX E: STORMWATER MANAGEMENT SWALE

File No. 200977

Storage Calculations

Model Rating Curve

OTTHYMO Reservoir Model Detailed Report

sociates auderowicz	Inc z, Zbigniew and ⁻	Teresa		Infiltration	าThrough Bott	tom		Orific	ce Information		
	D		Ъ,	ermeability k	= 0.000042	m/s		Dia (m):	0.440		
. =	n Road, Ottawa	۵	Percola	ation Time T	=	min/cm		Area (mm.):	0.1521	Orifice Top (m):	76.24
	1, 2021		Perc	olation Rate	= 360	mm/hr	Orifi	ce Coeff, C:	0.60	Orifice Cen (m):	76.02
			Pe	ermeability k	= 1.0E-04	m/s	×	/eir Coeff, C:	0.62	Orifice Inv (m):	75.80
					Infiltration			Orifice Flow			
ŝ	Layer s Area	Layer Volume	Cumulative Volume	Head*	Hydraulic Gradient	Infiltration Rate	Depth of Flow - Orifice	Head*	Orifice Flow	Combined Outflow	Cumulative Volume
	(m ²)	(m ³)	(m ³)	(m)	(ɯ/ɯ)	(m³/sec)	(m)	(m)	(m ³ /sec)	(m ³ /sec)	(ha.m)
0	0.0	0.0	0.0	0.000	1.00	0.000		0.000	0.000	0.000	0.0000
10	0.0	1.6	1.6	0.050	1.02	0.001		0.000	0.000	0.001	0.0002
	93.5	7.3	8.8	0.100	1.03	0.007		0.000	0.000	0.007	0.0009
	204.0	13.3	22.1	0.150	1.05	0.017		0.000	0.000	0.017	0.0022
ю	331.5	17.3	39.4	0.200	1.07	0.024		0.000	0.000	0.024	0.0039
10	362.0	19.0	58.3	0.250	1.08	0.024		0.000	0.000	0.024	0.0058
2	397.5	20.9	79.2	0.300	1.10	0.025		0.000	0.000	0.025	0.0079
2	438.0	23.0	102.2	0.350	1.12	0.025	0.00	0.000	0.000	0.025	0.0102
ы	483.5	25.4	127.6	0.400	1.13	0.025	0.05	0.000	0.003	0.029	0.0128
5	534.0	28.1	155.7	0.450	1.15	0.026	0.10	0.000	0.013	0.039	0.0156
ß	589.5	31.0	186.6	0.500	1.17	0.026	0.15	0.000	0.029	0.055	0.0187
2	650.0	34.1	220.8	0.550	1.18	0.027	0.20	0.000	0.050	0.077	0.0221
ю	715.5	37.5	258.3	0.600	1.20	0.027	0.25	0.000	0.075	0.102	0.0258
ю	786.0	41.2	299.4	0.650	1.22	0.027	0.30	0.000	0.103	0.130	0.0299
10	708.5	40.9	340.3	0.700	1.23	0.028	0.35	0.000	0.133	0.161	0.0340
10	932.9	48.5	388.8	0.750	1.25	0.028	0.40	0.000	0.164	0.192	0.0389
10	1007.8	52.3	441.2	0.800	1.27	0.028	0.45	0.230	0.194	0.222	0.0441
	1086.3	56.3	497.5	0.850	1.28	0.029	0.50	0.280	0.214	0.243	0.0498
	1168.2	60.5	558.0	006.0	1.30	0.029	0.55	0.330	0.232	0.261	0.0558
ß	1253.5	64.9	622.9	0.950	1.32	0.030	0.60	0.380	0.249	0.279	0.0623

Storm Pond Model Storage Discharge Rating Curve

Discharge-Storage Table

	DISCH [m³/s]	STORAGE [ha.m]
1	0.000	0.0000
2	0.003	0.0002
3	0.017	0.0022
4	0.024	0.0058
5	0.025	0.0102
6	0.039	0.0156
7	0.077	0.0221
8	0.130	0.0299
9	0.192	0.0389
10	0.243	0.0498
11	0.279	0.0623
×		

(K)		Post-develop	ment Otthymo Ana Stormwate 2050 Di	alysis Detailed Outpu er Management Swale unrobin Road, Ottawa
Project # 200977		1 of 5		September 21, 2021
**************************************	*********** BER: 1 ** ******			
RESERVOIR (0052) IN= 2> OUT= 1 DT= 5.0 min		STORAGE (ha.m.) .0000 .0002	OUTFLOW S (cms) (.0770 .1300	TORAGE ha.m.) .0221 .0299
	.0170 .0240 .0250 .0390	.0022 .0058 .0102 .0156 AREA 0	.1920 .2430 .2790 .0000 PEAK TPEAK	.0389 .0498 .0623 .0000 R.V.
INFLOW : ID= 2 OUTFLOW: ID= 1	2 (0043) . (0052)	(ha) (4.627 4.627	cms)(hrs).1173.17.0503.83	(mm) 10.21 10.21
**************************************	PEAK FLOW TIME SHIFT OF MAXIMUM STOR ************************************	REDUCTION [PEAK FLOW AGE USED	<pre>Qout/Qin](%)= 43. (min)= 40. (ha.m.)= .</pre>	02 00 0176
RESERVOIR (0052) IN= 2> OUT= 1 DT= 5.0 min		STORAGE (ha.m.) .0000	OUTFLOW S (cms) (0770	TORAGE ha.m.) .0221
	.0030 .0170 .0240 .0250 .0390	.0002 .0022 .0058 .0102 .0156	.1300 .1920 .2430 .2790 .0000	.0299 .0389 .0498 .0623 .0000
INFLOW : ID= 2 OUTFLOW: ID= 1	2 (0043) (0052)	AREA Q (ha) (4 4.627 4.627	PEAK TPEAK cms) (hrs) .367 3.08 .204 3.50	R.V. (mm) 29.83 29.83
	PEAK FLOW TIME SHIFT OF MAXIMUM STOR	REDUCTION [PEAK FLOW AGE USED	Qout/Qin](%)= 55. (min)= 25. (ha.m.)= .	74 00 0415
K	Post-developme	nt Otthymo Analysis Detailed Outpu Stormwater Management Swale 2050 Dunrobin Road, Ottawa		
---	---	---		
roject # 200977	2 of 5	September 21, 2021		
**************************************	**** 3 ** ****			
RESERVOIR (0052)				
DT= 5.0 min 0	UTFLOW STORAGE (cms) (ha.m.) .0000 .0000 .0030 .0002 .0170 .0022 .0240 .0058 .0250 .0102 .0390 .0156	OUTFLOWSTORAGE(cms)(ha.m.).0770.0221.1300.0299.1920.0389.2430.0498.2790.0623.0000.0000		
INFLOW : ID= 2 (0043) OUTFLOW: ID= 1 (0052)	AREA QPEA (ha) (cms) 4.627 .14 4.627 .05	AK TPEAK R.V. (hrs) (mm) 2 6.08 13.31 59 6.67 13.31		
PEAK TIME SH MAXIMUM	FLOW REDUCTION [Qou IFT OF PEAK FLOW STORAGE USED	ut/Qin](%)= 41.94 (min)= 35.00 (ha.m.)= .0191		
** SIMULATION NUMBER: ************************************	4 ** ****			
	(cms) (ha.m.) .0000 .0000 .0030 .0002 .0170 .0022 .0240 .0058 .0250 .0102 .0390 .0156	(cms) (ha.m.) .0770 .0221 .1300 .0299 .1920 .0389 .2430 .0498 .2790 .0623 .0000 .0000		
INFLOW : ID= 2 (0043) OUTFLOW: ID= 1 (0052)	AREA QPEA (ha) (cms) 4.627 .20 4.627 .09	AK TPEAK R.V. (hrs) (mm) 00 6.08 18.38 06 6.50 18.37		
PEAK TIME SH MAXIMUM	FLOW REDUCTION [Qou IFT OF PEAK FLOW STORAGE USED	ut/Qin](%)= 47.94 (min)= 25.00 (ha.m.)= .0249		

ĸ	Post-developme	nt Otthymo Analysis Detailed Output Stormwater Management Swale 2050 Dunrobin Road, Ottawa
roject # 200977	3 of 5	September 21, 2021
**************************************	* * * * 5 * * * * *	
RESERVOIR (0052) IN= 2> OUT= 1 DT= 5.0 min O	UTFLOW STORAGE (cms) (ha.m.) .0000 .0000 .0030 .0002 .0170 .0022 .0240 .0058 .0250 .0102 .0390 .0156	OUTFLOWSTORAGE(cms)(ha.m.).0770.0221.1300.0299.1920.0389.2430.0498.2790.0623.0000.0000
INFLOW : ID= 2 (0043) OUTFLOW: ID= 1 (0052) PEAK TIME SH MAXIMUM	AREA QPEA (ha) (cms 4.627 .40 4.627 .21 FLOW REDUCTION [Qou IFT OF PEAK FLOW STORAGE USED	K TPEAK R.V. (hrs) (mm) 4 6.08 35.56 8 6.42 35.55 t/Qin](%)= 53.93 (min)= 20.00 (ha.m.)= .0448
**************************************	**** 6 ** ****	
IN= 2> OUT= 1 DT= 5.0 min O	UTFLOW STORAGE ((cms) (ha.m.) (.0000 .0000 (.0030 .0002 (.0170 .0022 (.0240 .0058 (.0250 .0102 (.0390 .0156 (OUTFLOWSTORAGE(cms)(ha.m.).0770.0221.1300.0299.1920.0389.2430.0498.2790.0623.0000.0000
INFLOW : ID= 2 (0043) OUTFLOW: ID= 1 (0052) DEAK	AREA QPEA (ha) (cms 4.627 .14 4.627 .05	K TPEAK R.V.) (hrs) (mm) 2 4.25 12.82 0 4.83 12.82 t/Oinl(%)= 35.44
TIME SH MAXIMUM	IFT OF PEAK FLOW STORAGE USED	(min) = 35.00 (ha.m.) = .0176

(K)	Post-developmen	nt Otthymo Analysis Detailed Outpu Stormwater Management Swale 2050 Dunrobin Road, Ottawa
Project # 200977	4 of 5	September 21, 2021
**************************************	*	
RESERVOIR (0052) IN= 2> OUT= 1		
DT= 5.0 min OUTF 	LOW STORAGE IS) (ha.m.) 000 .0000 030 .0002 170 .0022 240 .0058 250 .0102 390 .0156	OUTFLOWSTORAGE(cms)(ha.m.).0770.0221.1300.0299.1920.0389.2430.0498.2790.0623.0000.0000
INFLOW : ID= 2 (0043) OUTFLOW: ID= 1 (0052)	AREA QPEA (ha) (cms 4.627 .45 4.627 .21	KTPEAKR.V.)(hrs)(mm)24.1734.2024.5034.19
MAXIMUM S	TORAGE USED * * * *	(ha.m.)= .0434
RESERVOIR (0052) IN= 2> OUT= 1 DT= 5.0 min OUTF	LOW STORAGE	OUTFLOW STORAGE
.0 .0 .0 .0 .0 .0 .0 .0 .0	(11a.m.) 000 .0000 030 .0002 170 .0022 240 .0058 250 .0102 390 .0156	.0770 .0221 .1300 .0299 .1920 .0389 .2430 .0498 .2790 .0623 .0000 .0000
INFLOW : ID= 2 (0043) OUTFLOW: ID= 1 (0052)	AREA QPEA (ha) (cms 4.627 .46 4.627 .25	K TPEAK R.V.) (hrs) (mm) 2 1.75 27.98 8 2.08 27.98
PEAK FLC TIME SHIFT MAXIMUM S	W REDUCTION [Qou OF PEAK FLOW TORAGE USED	t/Qin](%)= 55.92 (min)= 20.00 (ha.m.)= .0552

ĸ	Post-developme	nt Otthymo Analysis Detailed Output Stormwater Management Swale 2050 Dunrobin Road, Ottawa
Project # 200977	5 of 5	September 21, 2021
**************************************	* * * * * * *	
RESERVOIR (0052) IN= 2> OUT= 1 DT= 5.0 min OU 	TFLOW STORAGE cms) (ha.m.) .0000 .0000 .0030 .0002 .0170 .0022 .0240 .0058 .0250 .0102 .0390 .0156	OUTFLOWSTORAGE(cms)(ha.m.).0770.0221.1300.0299.1920.0389.2430.0498.2790.0623.0000.0000
INFLOW : ID= 2 (0043) OUTFLOW: ID= 1 (0052) PEAK F TIME SHI MAXIMUM	AREA QPEA (ha) (cms 4.627 .44 4.627 .23 LOW REDUCTION [Qou FT OF PEAK FLOW STORAGE USED	K TPEAK R.V.) (hrs) (mm) 4 2.08 25.93 5 2.33 25.92 t/Qin](%)= 52.99 (min)= 15.00 (ha.m.)= .0486
**************************************	 *** ***	
IN= 2> OUT= 1 DT= 5.0 min OU	TFLOW STORAGE cms) (ha.m.) .0000 .0000 .0030 .0002 .0170 .0022 .0240 .0058 .0250 .0102 .0390 .0156	OUTFLOWSTORAGE(cms)(ha.m.).0770.0221.1300.0299.1920.0389.2430.0498.2790.0623.0000.0000
INFLOW : ID= 2 (0043) OUTFLOW: ID= 1 (0052) PEAK F	AREA QPEA (ha) (cms 4.627 .01 4.627 .01 LOW REDUCTION [Qou	K TPEAK R.V.) (hrs) (mm) 3 2.00 1.76 0 2.42 1.76 t/Qin](%)= 77.90 (min)= 25.00
MAXIMUM	STORAGE USED	(ha.m.)= .0012

APPENDIX F: CULVERT ANALYSIS AND HYDRAFLOW EXPRESS ANALYSIS RESULTS

File No. 200977

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Wednesday, Aug 18 2021

Driveway Culvert 10 yr

Invert Elev Dn (m)	= 75.6000	Calculations	
Pipe Length (m)	= 10.0000	Qmin (cms)	= 0.1000
Slope (%)	= 0.3000	Qmax (cms)	= 0.2000
Invert Elev Up (m)	= 75.6300	Tailwater Elev (m)	= Normal
Rise (mm)	= 500.0		
Shape	= Circular	Highlighted	
Span (mm)	= 500.0	Qtotal (cms)	= 0.1000
No. Barrels	= 1	Qpipe (cms)	= 0.1000
n-Value	= 0.024	Qovertop (cms)	= 0.0000
Culvert Type	= Circular Corrugate Metal Pipe	Veloc Dn (m/s)	= 0.6445
Culvert Entrance	= Projecting	Veloc Up (m/s)	= 1.2584
Coeff. K,M,c,Y,k	= 0.034, 1.5, 0.0553, 0.54, 0.9	HGL Dn (m)	= 75.9686
		HGL Up (m)	= 75.8424
Embankment		Hw Elev (m)	= 75.9478
Top Elevation (m)	= 76.8500	Hw/D (m)	= 0.6356
Top Width (m)	= 5.0000	Flow Regime	= Inlet Control
Crest Width (m)	= 3.0000	-	

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Wednesday, Aug 18 2021

Driveway Culvert 100 yr

Invert Elev Dn (m)	= 75.6000	Calculations	
Pipe Length (m)	= 10.0000	Qmin (cms)	= 0.1000
Slope (%)	= 0.3000	Qmax (cms)	= 0.2000
Invert Elev Up (m)	= 75.6300	Tailwater Elev (m)	= Normal
Rise (mm)	= 500.0		
Shape	= Circular	Highlighted	
Span (mm)	= 500.0	Qtotal (cms)	= 0.2000
No. Barrels	= 1	Qpipe (cms)	= 0.2000
n-Value	= 0.024	Qovertop (cms)	= 0.0000
Culvert Type	= Circular Corrugate Metal Pipe	Veloc Dn (m/s)	= 1.0188
Culvert Entrance	= Projecting	Veloc Up (m/s)	= 1.0186
Coeff. K,M,c,Y,k	= 0.034, 1.5, 0.0553, 0.54, 0.9	HGL Dn (m)	= 76.1000
		HGL Up (m)	= 76.1957
Embankment		Hw Elev (m)	= 76.2963
Top Elevation (m)	= 76.8500	Hw/D (m)	= 1.3325
Top Width (m)	= 5.0000	Flow Regime	= Outlet Control
Crest Width (m)	= 3.0000	-	

