

Assessment of Adequacy of Public Services Report

6310 Hazeldean Road, Ottawa, ON

Prepared for:

9441-6302 Quebec Inc

Attention: Felix Allaire

Revision 1: December 22, 2023 September 21, 2023

LRL File No.: 220027

TABLE OF CONTENTS

1	INT	RODUCTION AND SITE DESCRIPTION	1			
2	EXI	STING SITE AND AVAILABLE SERVICES	1			
3	со	NCEPT DEVELOPMENT	2			
4	WA	TER SUPPLY SERVICING	2			
	4.1	Residential Water Demands	3			
	4.2	Commercial Water Demands	4			
	4.3	Total Water Demands & Watermain Sizing	4			
5	SA	NITARY SERVICE	6			
6	STO	ORMWATER MANAGEMENT	7			
	6.1	Existing Stormwater Infrastructure	7			
	6.2	Design Criteria	7			
	6.3	Proposed Stormwater Management System	7			
7	ER	OSION & SEDIMENT CONTROL	8			
8	3 CONCLUSION9					

APPENDICES

- Appendix A Correspondance/ Communication
- Appendix B Site Topographical Survey
- Appendix C Site Plan and Architectural Floor Plans
- Appendix D Water Demand Calculations
- Appendix E Sanitary Calculations
- Appendix F Stormwater Management Design Calculations
- Appendix G Fire Hydrant Coverage

LIST OF TABLES

Table 1: City of Ottawa Design Guidelines- Water Design	Parameters3
Table 2: Development Residential Population Estimate	3
Table 3: Summary of Boundary Conditions	Error! Bookmark not defined.
Table 4: Fire Protection Summary Table	6
Table 5: Post-Development Estimated Areas & Runoff Co	oefficients8
Table 6: Summary of 100-year Flow Rates and Storage R	Requirements8

LIST OF FIGURES

1 INTRODUCTION AND SITE DESCRIPTION

LRL Associates LTD. was retained by Figurr Architects Collective to prepare a functional serviceability report to support Zoning Bylaw Amendment of the property located at 6310 Hazeldean Road within the City of Ottawa.

The subject site is within the Stittsville Ward, located on the east side of Hazeldean Road, and has an approximate area of **1.20 ha**. Under the City of Ottawa Zoning by-law, the property is currently zoned as AM [2102]. The land is currently vacant, consisting mainly of a large mixed paved and gravel area as well as some landscaping. The subject site can be seen below in Figure 1.

Figure 1: Arial View of Subject Lands

2 EXISTING SITE AND AVAILABLE SERVICES

The site is currently primarily covered with gravel and some natural landscaping. Based on the topography and site survey information, there is 10 m wide easement along the west property line which includes a ditch collecting and conveying water from the municipal ROW, sloping from the northeast corner of the site to the southeast corner. The existing site topographical survey can be found in **Appendix B**.

Sewer and watermain mapping, along with as-built information collected from the City of Ottawa indicate the following existing infrastructure located within the adjacent right-of-ways:

Hazeldean Road:

- 375mmØ PVC Sanitary Sewer
- 406mmØ PVC Watermain

Easement at parcel west of Site:

- 450mmØ PVC Sanitary Sewer
- 305mmØ PVC Watermain

No storm sewers are existing in close proximity of subject site, however, a ditch exists along Hazeldean Road and within an easement along the east side of the site.

There are no stormwater management measures noted on site. Runoff is currently flowing off the site uncontrolled towards Hazeldean Road and the existing ditch.

3 CONCEPT DEVELOPMENT

The contemplated development will be comprised of two multistorey buildings, Building A and Building B. Both buildings will be accessible via Hazeldean Road. A total of 431 residential apartments are contemplated for the development, including 179 units in Building A and 252 units in Building B. There are three levels for parking, an underground level and 2 above ground at levels 1 and 2 of the building.

Amenity spaces and green space will be allocated on third level of Building A. While Building A will be 10 storeys high and Building B will extend to 18 storeys high, with private terraces extending from level 10 to the upper levels. For additional detail of the proposed development, refer to the Architectural Floor Plans prepared by Figurr Architects Collective included in *Appendix C*.

4 WATER SUPPLY SERVICING

The subject property lies within the City of Ottawa 3W water distribution network pressure zone. There is an existing 406 mm watermain within Hazeldean Road. There are currently at least three (3) existing fire hydrants within close proximity to the subject property. Refer to *Appendix D* for the water pressure zone and location of fire hydrants.

According to the City of Ottawa Water Distribution Guidelines (Technical Bulletin ISDTB-2014-02), since the subject site is anticipated to house more than 50 residential units, it is required to be serviced by two water service laterals, separated by an isolation valve, for redundancy and to avoid creation of a vulnerable service area. Hence, the contemplated development is anticipated to be serviced via two (2) 150 mm diameter services connected to the existing 406 mm watermain within Hazeldean Road. The service laterals are to be looped Inside the building in coordination with the mechanical engineer at detailed design stage. Table 1, shown below, summarizes the City of Ottawa Design Guidelines design parameters in the preparation of the water demand estimate.

Design Parameter	Value
Residential Bachelor / 1 Bedroom Apartment	1.4 P/unit
Residential 2 Bedroom Apartment	2.1 P/unit
Residential 3 Bedroom Apartment	3.1 P/unit6
Commercial Average Daily Demand	2.8 L/m ² /d
Average Daily Demand	280 L/d/per
Minimum Depth of Cover	2.4 m from top of watermain to finished grade
Desired operating pressure range during normal	350 kPa and 480 kPa
operating conditions	
During normal operating conditions pressure must not	275 kPa
drop below	
During normal operating conditions pressure shall not	552 kPa
exceed	
During fire flow operating conditions pressure must not	140 kPa
drop below	
*Table updated to reflect technical Bulletin ISDTB-2018-0	2

4.1 Residential Water Demands

Anticipated population demands have been calculated from the architectural floor plan drawings completed by Figurr Architects Collective. The contemplated development is anticipated to include **431** residential units which translates to a population of approximately **805** people as per the City of Ottawa Water Distribution Design Guidelines. Table 1 below summarizes the proposed population count as interpreted using Table 4.1 of the *City of Ottawa Water Distribution Design Guidelines*.

Population Count					
Unit Type	Persons Per Unit	Number of Units	Population		
Studio	1.4	3	4.2		
1 Bedroom Apartment	1.4	211	295.4		
2 Bedroom Apartment	2.1	168	352.8		
3 Bedroom Apartment	3.1	49	151.9		
	Total	431	804.3		

Table 2: Development Residential Population Estimate

The required water supply for the residential units in the proposed development have been calculated using the following formula:

Where:

$$Q = (q \times P \times M)$$

q = average water consumption (L/capita/day)

P = design population (capita)

M = Peak factor

With reference to *Table 4.2 of the City of Ottawa Water Distribution Design Guidelines*, using an average water consumption rate of 280 L/c/d, a calculated Maximum Daily Demand Factor and Maximum Hour Demand Factor of 2.5 and 2.2, respectively, anticipated demands were calculated as follows:

- Average daily domestic water demand is 2.61 L/s,
- o Maximum daily demand is 6.52 L/s, and
- Maximum hourly demand is **14.34** L/s.

4.2 Commercial Water Demands

As per the architectural floor plan drawings completed by Figurr Architects Collective, there will be a total of **0.072ha** of proposed amenity space. The required water supply requirements for the commercial space within the proposed subdivision have been calculated using the following formula:

Where:

$$Q = (q \times A \times M)$$

q = average water consumption (L/m²/day)

A = commercial area (m²)

M = Peak factor

With reference to Table 4.2 of the *City of Ottawa Water Distribution Design Guidelines* and *technical bulletin ISTB-18-02*, using an average water consumption rate of 2.8 L/m²/d, a calculated Maximum Daily Demand Factor and Maximum Hour Demand Factor of 1.5 and 1.8, respectively, anticipated commercial demands were calculated as follows:

- Average daily domestic water demand is 0.023 L/s,
- Maximum daily demand is **0.035** L/s, and
- Maximum hourly demand is **0.063** L/s.

4.3 Total Water Demands & Watermain Sizing

Based on calculated residential and commercial demands for the concept development, the total anticipated water demands are as follows;

- Average daily domestic water demand is 2.63 L/s,
- Maximum daily demand is 6.55 L/s, and
- \circ Maximum hourly demand is 14.40 L/s.

For greater detail on Water Demand Calculations, please refer to Appendix D.

The City of Ottawa was contacted to obtain boundary conditions associated with the estimated water demand, as indicated in the boundary request correspondence included in *Appendix A*.

However, at the time of submission, water resources was unable to provide the data required. Once this becomes available to our team at LRL, a revision to this report will be made to confirm available operating pressures and verify if the pressures available for the following scenarios fall within the required pressure range stated in the Table 1 as per City of Ottawa Design Guidelines.

- 1. Average Dailey Demand: 2.63L/s
- 2. Maximum Day + Max Fire Flow Demand (Per FUS Calculations): 6.55L/s + 183.30L/s
- 3. Peak Hourly Demand: 14.40L/s

Fire Flow Demands

The estimated fire flow for the proposed buildings was calculated in accordance with *ISTB-2018-02*. The following parameters were assumed by Figurr Architects Collective:

- Type of construction Ordinary Construction;
- Occupancy type Limited Combustibility; and
- Sprinkler Protection Automatic & Fully Supervised Sprinkler System.

The Fire Underwriters Survey 2020 was used to calculate the fire flow demand for the site. The total effective area considers the two largest adjoining floor areas plus 50% of all floors immediately above them up to a maximum of eight. Buildings A and B although sharing the same parking garage were considered as two separate buildings since the parking garage is separated from the buildings by a fire separation wall.

The Total Effective Area was calculated for each building and to be conservative the building with the larger Total Effective Area was used. This was Building A, located on the west side of the site. It had a total effective floor area of 9,414m³. Building B was considered in the calculations through consideration of exposure distance.

The maximum estimated fire flow demand was calculated to be **11,000 L/min** for Building A, see **Appendix D** for details.

There are at least three (3) existing fire hydrants near the contemplated buildings that are available to provide the maximum required fire flow demands of **11,000 L/min**. Refer to **Appendix G** for fire hydrant locations.

Table 4 below summarizes the aggregate fire flow of the contributing hydrants near the proposed development based on Table 18.5.4.3 of *ISTB-2018-02*.

	Max. Fire Flow	Fire	Fire	Available
	Demand	Hydrants(s)	Hydrant(s)	Combined Fire
	(L/min)	within 75m	within 150m	Flow (L/min)
Contemplated Development	11,000	2	1	(2 x 5678) + (1 x 3785) = 15,141

Table 2: Fire Protection Summary Table	Table	2:	Fire	Protection	Summary	Table
--	-------	----	------	------------	---------	-------

The total available fire flow from contributing hydrants is equal to **15,141 L/min** which is sufficient to provide adequate fire flow for the proposed development. A certified fire protection system specialist will need to be employed to design the building's fire suppression system and confirm the actual fire flow demand.

5 SANITARY SERVICE

There is an existing municipal sanitary sewer within an easement located at the neighboring property parallel to the western property line of the subject site. As per pre-consultation with City staff, it is anticipated that the contemplated development will connect to the existing 450mm sanitary sewer within the neighboring easement via a single 150 mm diameter sanitary service lateral, to be connected to all proposed buildings through the underground parking garage. If a sanitary service is proposed to connect to this sewer section, an easement with the neighbouring property will be required. Alternatively, a connection can be made to the maintenance hole located within the Hazeldean road boulevard. The preferred connection method under this alignment would be for the owner to provide a small sewer extension in the Hazeldean ROW. The sewer extension would be a standard sewer extension and would require MECP ECA approval. The connection location will be confirmed at the detailed design stage.

The total anticipated post development total flow was calculated to be is **9.0 L/s** as a result of the proposed residential population, commercial use and a small portion of infiltration. The parameters used to determine this were an average daily flow of 280L/person/day, a commercial and institutional flow of 28,000L/ha/day, an infiltration rate of 0.33L/s/ha, a residential peaking factor of 4, a commercial peaking factor of 1 and a total population of 804.3persons.

Refer to **Appendix E** for further information on the calculated sanitary flows.

Based on information available from Geoottawa, the existing 450 mm sanitary sewer located west of property is assumed to be sloped at 0.17% with an existing maximum capacity of **117.6 L/s**. The anticipated wet wastewater flows from the contemplated development represent approximately 7.6% of the maximum existing sewer capacity.

Asset Management at the City of Ottawa has been contacted to provide clarification on the existing conditions of the sanitary infrastructure in Hazeldean and the availability for additional capacity in the range of the expected sanitary effluent of approximately 9.0 L/s. This will need to be confirmed prior to progression of the detailed design.

6 STORMWATER MANAGEMENT

6.1 Existing Stormwater Infrastructure

The subject property lies within the Poole Creek sub-watershed and is within the Carp River Watershed Plan. There is a ditch located north of the site and a ditch located east of the site within a 10 m-wide easement. There are no municipal storm sewers within the Hazeldean road right-of-way.

In pre-development conditions, the site is generally flat and is generally covered with gravel with some grassed areas at the site boundaries. Stormwater runoff from the subject site generally flows uncontrolled overland to the north of the site towards Hazeldean roadside ditch and to the east side towards the existing ditch running parallel to the site's east property line. Refer to *Appendix F* for topographical survey showing existing contours and ditches.

6.2 Design Criteria

The stormwater management criteria for this development is based on pre-consultation with City of Ottawa officials, the City of Ottawa Sewer Design Guidelines including City of Ottawa Stormwater Management Design Guidelines, 2012 (City standards), as well as the Ministry of the Environment's Stormwater Planning and Design Manual, 2003 (SWMPD Manual).

The stormwater management will need to meet the following stormwater design criteria.

- Meet an allowable release rate based on the pre-development Rational Method Coefficient or a maximum of 0.50, employing the City of Ottawa IDF parameters for a 5-year storm with a calculated time of concentration equal to or greater than 10 minutes; and
- > Attenuate all storms up to and including the City of Ottawa 100-year storm event on site.
- Based on coordination with the MVCA, enhanced quality treatment (80% TSS removal) prior to release from site will be required.

6.3 Proposed Stormwater Management System

Based on pre-consultation with the City of Ottawa, the preferred outlet location of the site will be to the ditch the crosses the site at the eastern limit. This ditch is located within a 10m wide existing drainage easement OC626261. The conditions set out in the easement must be respected.

It is anticipated that area drains on the surface parking lot along with roof drains on building rooftops will be utilised to collect and direct runoff to the building's mechanical system in the underground garage. A storm service lateral outlet will be provided on the east side of the underground garage to discharge the runoff to the ditch.

Based on stormwater objectives for the subject site, the allowable release rate for the contemplated development is **173.79 L/s** for all storms up to and including the 100-year storms. To meet the stormwater objectives, the contemplated development may contain a combination of roof top flow attenuation, surface storage and subsurface/cistern storage. Due to the high elevation of the proposed ditch outlet, flows from the buildings mechanical system will likely have to be pumped to the ditch.

Table 5 below summarizes assumed post-development drainage areas based on the *Site Plan*. Calculations can be seen in *Appendix F.*

WATERSHED	C = 0.20	C = 0.70	C = 0.90	Total Area (m ²)	Total Area (ha)	Combined C
WS- 01(UNCONTROLLED)	2568.0	0.0	1489.0	4057.0	0.406	0.46
WS-02 (CISTERN - CONTROLLED)	888.0	0.0	7055.0	7943.0	0.794	0.82
TOTAL	3456.0	0.0	8544.0	12000.0	1.200	0.70

Table 5: Post-Development Estimated Areas & Runoff Coefficients

Table 6, below, summarizes post-development flow rates. The following storage requirement estimate is based on the Site Plan completed by Figurr Architects. It assumes that most of the roofs and asphalt parking area between buildings one and two will be controlled and the remainder of the site will be uncontrolled. Based on the assumptions, high level post development flow rates and storage requirement calculations were completed.

Catchment Area	Drainage Area (ha)	100-year Release Rate (L/s)	100-Year Required Storage(m3)	Total Available Storage (m3)
WS-02 (Controlled)	0.794	58.77	259.50	260
WS-01 (Uncontrolled)	0.406	115.02	0.00	0.00
TOTAL	1.20	173.79	259.50	260.00

Table 6: Summary of 100-year Flow Rates and Storage Requirements

It is anticipated that approximately **260.00** m³ of storage will be required on site to attenuate flows to the established release rate of **173.79** L/s in the 100-year storm. The required volume is a high-level approximation. At the detailed design stage, grading will be completed an a more accurate required volume will be calculated. Refer to *Appendix F for* storage calculations. The required storage can be achieved with underground storage within the underground parking area and roof storage.

It is anticipated that the contemplated development would utilize an Oil/Grit Separator (OGS) to achieve the required 80% TSS removal treatment as specified by MVCA. The OGS would be required to treat all contaminated runoff collected in the surface parking lot before runoff is discharged into ditch.

7 EROSION & SEDIMENT CONTROL

During construction, Best management practices (BMPs) shall be undertaken to Control Erosion and Sediment. These BMPs aim to minimize soil erosion, sedimentation, and other negative

impacts on water quality and natural habitats. Some examples of BMPs for erosion and sediment control are;

- Controlling mud tracking: By means of installing, maintaining, and using stabilized construction entrances and exits at all access locations. Mud matts shall be maintained and cleaned on a regular basis.
- Installing inlet sediment control devices: To prevent surface erosion from entering any storm sewer system during construction, filter bags will be placed under grates of nearby catch basins and structures.
- Establishing vegetation: Vegetation, such as grasses and trees, can help stabilize soil and prevent erosion. In areas where vegetation is not present, consider planting native species that are well adapted to the local soil and climate conditions.
- Installing silt fences to trap sediment and prevent it from entering nearby waterways. To be erected along the perimeter of the site where runoff has the potential of leaving the site.
- Manage construction activities: Proper management of construction activities is essential to minimize soil disturbance and sedimentation. This may include controlling runoff from disturbed areas, using proper excavation techniques, and minimizing the amount of time that soil is exposed.
- Implement good housekeeping practices: This includes properly managing and disposing
 of waste materials, regularly maintaining equipment to prevent leaks and spills, and
 keeping work areas clean and free of debris. It's important to note that the specific BMPs
 used for erosion and sediment control may vary depending on the site conditions and
 project requirements. Therefore, it's important to ensure that the appropriate BMPs are
 selected and implemented for this site.

A Light Duty Straw Bail Barrier is to be installed downstream of the development's storm outlet within the Ditch as per OPSD 219.100.

8 CONCLUSION

This evaluation is limited to assessing the serviceability of the site described within this document to support an Official Plan Amendment and Zoning By-law Amendment.

Based on the Site Plan completed by Figurr Architects Collective, included to **Appendix C**, the following conclusions, in relation to the serviceability of the site, can be made:

- Water:
 - The contemplated development is anticipated to be serviced via a 150mm dual connections to the existing 406mm watermain within Hazeldean Road.
 - Domestic demands from the proposed concept subdivision are expected to be in the range of 2.63 L/s for the Average daily demand, 6.55 L/s for the maximum daily and 14.40 L/s for maximum hourly.
 - The maximum required fire flow was calculated at **11,000 L/min** using the FUS 2020 method.
 - There are at least three (3) existing fire hydrants available to service the proposed development. They will provide a combined fire flow of **15,141 L/min** to the site.
- Sanitary:

- The post development total sanitary effluent was calculated to be is 9.00 L/s considering proposed residential & commercial population and a small portion of infiltration.
- It is anticipated to service the contemplated development via a 150 mm diameter sanitary service lateral to be connected to the existing 450mm sanitary sewer within the neighboring easement to the west of the site.
- The proposed sanitary discharge represents 7.6% of the maximum capacity of the existing receiving sewer leg.
- Stormwater:
 - Site stormwater runoff will need to be controlled to a pre-development release rate of 173.79 L/s and accommodate 260.00 m³ of stormwater storage during the 100year storm event.
 - It is anticipated that an OGS will be installed to treat all contaminated runoff to an enhanced quality treatment level (80% TSS removal).
 - The subject site is anticipated to outlet to the ditch within the easement located on the east side of the site.

Shall the site plan change in relation to the number of units, building footprint, or impervious area of the site, the conclusions above would no longer be appropriate. During the detailed design stage of this development, the storm, sanitary and water servicing details will be further refined and confirmed.

Prepared by:

LRL Associates Ltd.

Tamara Harb, EIT Civil Designer

Virginia Johnson, P.Eng. Civil Engineer

APPENDIX A

Correspondence/ Communication

Tamara Harb

From:	Brault, Ryan <ryan.brault@ottawa.ca></ryan.brault@ottawa.ca>
Sent:	December 19, 2023 11:36 AM
То:	Tamara Harb
Cc:	Virginia Johnson; Schaeffer, Gabrielle; Stern, Lisa; Armstrong, Justin
Subject:	RE: LRL220027_6310 Hazeldean Road_Request for Boundary Conditions

Hi Tamara,

Thank you for reaching out – I confirm receipt of the additional information (received Friday). I will be doing my review of the information this afternoon, unless I have follow up questions for you, I will then forward the request to our water services team for them to provide the boundary conditions. They have a 10-business day turn around on requests. I will ask for an expedited analysis, however, cannot guarantee that they will be able to provide BCs before end of week. I will keep you updated with any information I receive.

Please let me know if you have any questions or concerns.

Regards,

Ryan Brault, M.Eng., P.Eng Project Manager - Infrastructure Approvals

City of Ottawa Development Review - West Branch Planning, Real Estate and Economic Development Department 110 Laurier Ave West, 4th Floor East; Ottawa ON K1P 1J1 Tel: 613-580-2424 x 32540

From: Tamara Harb <tharb@lrl.ca>
Sent: December 19, 2023 11:03 AM
To: Brault, Ryan <ryan.brault@ottawa.ca>
Cc: Virginia Johnson <vjohnson@lrl.ca>; Schaeffer, Gabrielle <gabrielle.schaeffer@Ottawa.ca>; Stern, Lisa
<lisa.stern@ottawa.ca>; Armstrong, Justin <justin.armstrong@ottawa.ca>
Subject: FW: LRL220027_6310 Hazeldean Road_Request for Boundary Conditions

CAUTION: This email originated from an External Sender. Please do not click links or open attachments unless you recognize the source.

ATTENTION : Ce courriel provient d'un expéditeur externe. Ne cliquez sur aucun lien et n'ouvrez pas de pièce jointe, excepté si vous connaissez l'expéditeur.

Good morning Ryan,

I wanted to follow up on my previous email. Do you require any other information for your review? I understand this is short notice, but we're pushing to submit this before the holidays. Could we expect to receive boundary conditions before end of the week?

Thank you,

Tamara Harb, EIT Civil EIT/ Designer

From: Tamara Harb
Sent: Friday, December 15, 2023 10:30 AM
To: Brault, Ryan <<u>ryan.brault@ottawa.ca</u>>
Cc: Virginia Johnson <<u>vjohnson@lrl.ca</u>>; gabrielle.schaeffer@ottawa.ca; lisa.stern@ottawa.ca; Armstrong, Justin
<<u>Justin.Armstrong@ottawa.ca</u>>
Subject: RE: LRL220027_6310 Hazeldean Road_Request for Boundary Conditions

Good morning,

I've attached the architectural floor plans for your reference and below is a breakdown of the floor areas of the buildings.

The Fire Underwriters Survey 2020 was used to calculate the fire flow demand for the site. The total effective area considers the two largest adjoining floor areas plus 50% of all floors immediately above them up to a maximum of eight. Buildings A and B although sharing the same parking garage were considered as two separate buildings since the parking garage is separated from the buildings by a fire separation wall. The Total Effective Area was calculated for each building and to be conservative the building with the larger Total Effective Area was used. This was Building A. It had a total effective floor area of 9,414m³. Building B was considered in the calculations through consideration of exposure distance.

Floor	Area, Building 01	Area, Building 02 (tower) sq. m
	sq. m	
P1 (shared)	9479	
1	1823	1309
2	1830	1312
3	2587	1400
	+ 2678 outdoor	
	terrace (amenity)	
4	2585	1230
5	2320	1230
6	2320	1230
7	1281	1230
8	1281	782
9	1281	750
10		750
11		750
12		750
13		750
14		750

15	750
16	750
17	750
18	750
19	750
20	750
21	750
22	750
23	750
24	750
25	750

Hope this helps you with your review. Please let me know if you have any questions.

Thank you,

Tamara Harb, EIT Civil EIT/ Designer LRL Engineering | Irl.ca Cell: (613)915-0350 | tharb@Irl.ca

From: Brault, Ryan <ryan.brault@ottawa.ca>
Sent: Wednesday, December 13, 2023 2:56 PM
To: Tamara Harb <<u>tharb@lrl.ca></u>
Cc: Schaeffer, Gabrielle <<u>gabrielle.schaeffer@Ottawa.ca</u>>; Stern, Lisa <<u>lisa.stern@ottawa.ca</u>>; Armstrong, Justin
<<u>justin.armstrong@ottawa.ca</u>>
Subject: RE: LRL220027_6310 Hazeldean Road_Request for Boundary Conditions

Good Afternoon Tamara,

Are you able to provide additional information/plans showing the relevant details to be reviewed with your calculation sheets? This will assist in our review prior to sending the request to our Water Services Department.

Please let me know if you have any questions or concerns.

Regards,

Ryan Brault, M.Eng., P.Eng

Project Manager - Infrastructure Approvals

City of Ottawa Development Review - West Branch Planning, Real Estate and Economic Development Department 110 Laurier Ave West, 4th Floor East; Ottawa ON K1P 1J1 From: Tamara Harb <<u>tharb@lrl.ca</u>>
Sent: December 11, 2023 12:28 PM
To: Armstrong, Justin <<u>justin.armstrong@ottawa.ca</u>>
Cc: Virginia Johnson <<u>vjohnson@lrl.ca</u>>
Subject: LRL220027_6310 Hazeldean Road_Request for Boundary Conditions

CAUTION: This email originated from an External Sender. Please do not click links or open attachments unless you recognize the source.

ATTENTION : Ce courriel provient d'un expéditeur externe. Ne cliquez sur aucun lien et n'ouvrez pas de pièce jointe, excepté si vous connaissez l'expéditeur.

Good afternoon,

I'd like to request boundary conditions for the site located at 6310 Hazeldean Road. Could you please provide the boundary conditions at the connection point shown below in blue?

The following table shows the expected water and fire demands.

	Demand (UPDATED)
	L/s
Avg. Daily	2.63
Max Day + FUS	6.55 + 183.3
Max Hour	14.40

I have also attached our water and fire demand calculation sheets for your reference. Please let me know if you have any questions.

Thank you,

Tamara Harb, EIT Civil EIT/ Designer LRL Engineering | Irl.ca Cell: (613)915-0350 | tharb@Irl.ca

A MULTIDIS	CIPLINARY ENGINEERING FIR	M
	 5430 Canotek Rd., Ottawa, ON K1J 9G2 (613) 842-3434 	

This e-mail originates from the City of Ottawa e-mail system. Any distribution, use or copying of this e-mail or the information it contains by other than the intended recipient(s) is unauthorized. Thank you.

Le présent courriel a été expédié par le système de courriels de la Ville d'Ottawa. Toute distribution, utilisation ou reproduction du courriel ou des renseignements qui s'y trouvent par une personne autre que son destinataire prévu est interdite. Je vous remercie de votre collaboration.

. .

ı.

This e-mail originates from the City of Ottawa e-mail system. Any distribution, use or copying of this e-mail or the information it contains by other than the intended recipient(s) is unauthorized. Thank you.

Le présent courriel a été expédié par le système de courriels de la Ville d'Ottawa. Toute distribution, utilisation ou reproduction du courriel ou des renseignements qui s'y trouvent par une personne autre que son destinataire prévu est interdite. Je vous remercie de votre collaboration.

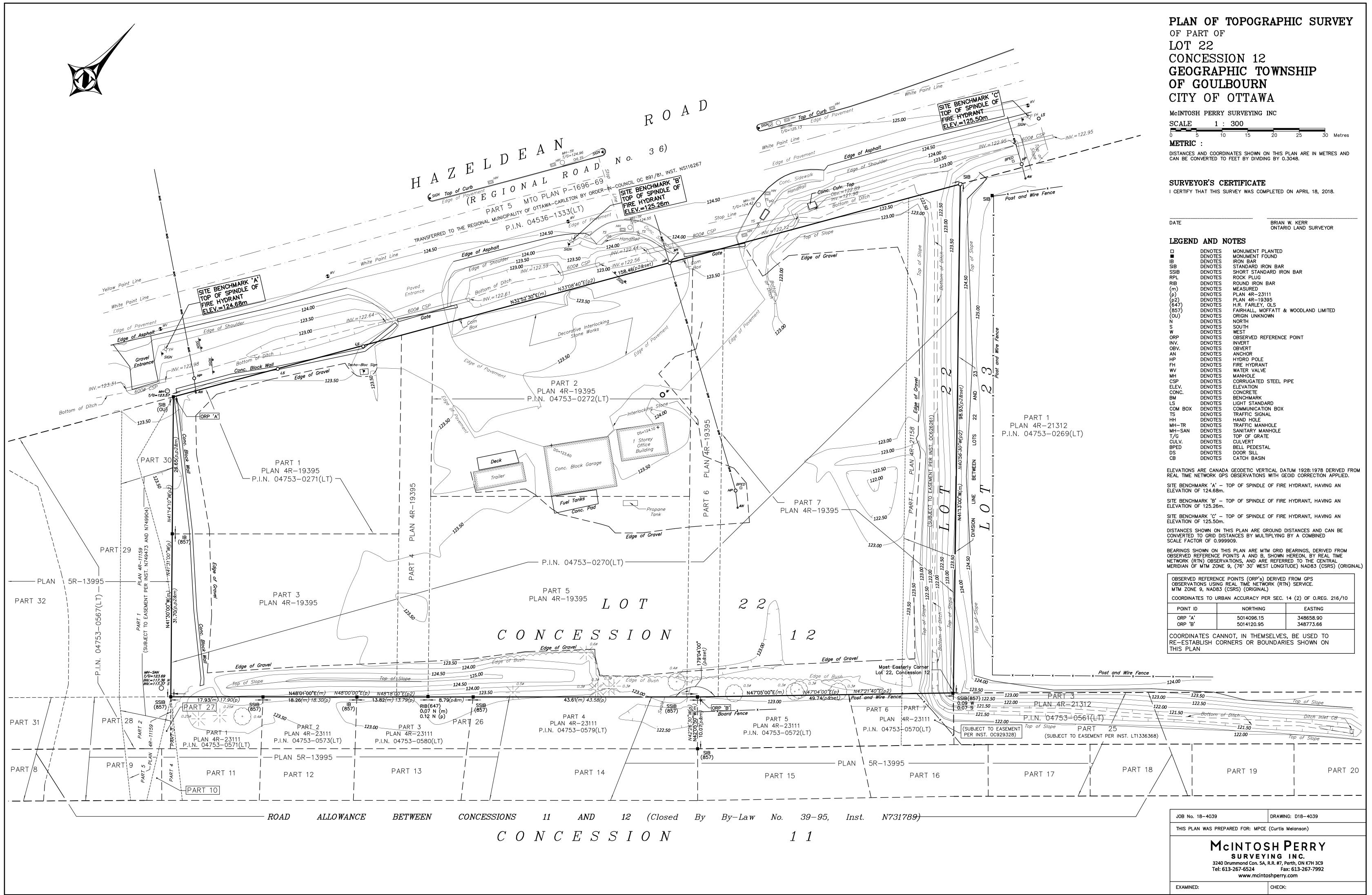
Tamara Harb

From:	Tamara Harb
Sent:	December 22, 2023 1:00 PM
То:	Brault, Ryan
Cc:	Virginia Johnson
Subject:	LRL220027_6310 Hazeldean Road_Sanitary Sewer Capacity

Good afternoon Ryan,

Could you confirm with the Asset Management Group to verify that the sanitary downstream capacity can take the 9 L/s for the proposed development at 6310 Hazeldean Road?

Please let me know if you require any further information.


Thank you,

Tamara Harb, EIT Civil EIT/ Designer LRL Engineering | Irl.ca Cell: (613)915-0350 | tharb@Irl.ca

APPENDIX B

Site Topographical Survey

M:\SURVEY-DATA\S2018\18-4039 MPCE (6310 HAZELDEAN ROAD)\D18-4039.DWG

APPENDIX C

Site Plan and Architectural Floor Plans

UNIT TYPE	COUNT	r ratio	PARKING T	YPE	COUNT	PARKING TYP	PE COUI	NT R
1B	111	25.8%	2.4m X 4.6m SMA	LL	76	BIKE PARKING	G 395	0.
1B + D	100	23.2%	BARRIER FREE P	ARKING	6	TOTAL BIKE P		SPOT
2B	109	25.3%	REGULAR PARKI		393			
				-				
2B + D	59	13.7%	TOTAL PARKING	SPOTS: 4	/5			
3B	49	11.4%						
STUDIO	3	0.7%	PARKING T	O UNIT R	ATIO			
TOTAL UNIT	S: 431		1.10					
UNIT ST			UNIT STATS -					
UNIT TY		COUNT	UNIT TYPE	COUN	T			
1B	3	0	1B	81				
1B + D	6	6	1B + D	34				
2B		i0	2B	59				
					_			
2B + D		4	2B + D	45				
3B	1	6	3B	33				
STUDIO	3	;	TOTAL UNITS: 25	2				
CATEGORY	COUNT	AREA	CATEGORY	COUNT	AREA	CATEGORY	COUNT	A
1 PARKING	12	2022 #2	RES. COMMONS	2	855 ft²	Level 16-B2	2	644.52
ARBAGE	13 2	2933 ft ² 2894 ft ²	Level 8-B1 EXCLUSIONS	2	180 ft ²	EXCLUSIONS RENTABLE	3	611 ft ² 6578 f
ARBAGE	1	92789 ft ²	RENTABLE	16	11185 ft ²	RES. COMMONS	1	419 ft ²
ES. COMMONS	7	1417 ft ²	RES. COMMONS	2	813 ft²	Level 17-B2		-
evel 1 MENITY	0	1889 ft ²	Level 8-B2 EXCLUSIONS	3	620 ft ²	EXCLUSIONS RENTABLE	3	611 ft ² 6578 f
XCLUSIONS	2	3737 ft ²	RENTABLE		6648 ft ²	RES. COMMONS	1	419 ft ²
ARKING	1	32726 ft ²	RES. COMMONS	2	445 ft ²	Level 18-B2	-	
ENTABLE	24	20066 ft ²	Level 9-B1	0	100.02	EXCLUSIONS	2	568 ft ²
ES. COMMONS evel 2	13	6514 ft ²	EXCLUSIONS RENTABLE	2	180 ft ² 11194 ft ²	RENTABLE RES. COMMONS	9	6701 ft 26 ft ²
MENITY	1	930 ft²	RES. COMMONS	-	812 ft ²	Level 19-B2	-	
XCLUSIONS	15	2108 ft ²	Level 9-B2			EXCLUSIONS	3	936 ft ²
ENTABLE ES. COMMONS	29 4	24409 ft ² 3310 ft ²	EXCLUSIONS RENTABLE		620 ft ² 6557 ft ²	RENTABLE Level 20-B2	9	6685 f
evel 3	4	3310 lt	RES. COMMONS		445 ft ²	EXCLUSIONS	1	576 ft ²
MENITY	5	3760 ft ²	Level 10-B2			RENTABLE	9	6733 f
XCLUSIONS	13	1497 ft ²	EXCLUSIONS		652 ft²	Level 21-B2		
XT. COMMONS ENTABLE	1 40	28894 ft ² 30626 ft ²	RENTABLE RES, COMMONS		6519 ft ² 445 ft ²	EXCLUSIONS RENTABLE	9	576 ft ² 6733 f
ENTABLE ES. COMMONS	40	30626 ft ² 2880 ft ²	Level 10-B1	۷	440 IC	Level 22-B2	3	01331
evel 4			EXCLUSIONS	8	2906 ft ²	EXCLUSIONS	1	576 ft²
MENITY	1	728 ft ²	Level 11-B2			RENTABLE	9	6732 ft
EXCLUSIONS	11 39	1422 ft ² 30247 ft ²	EXCLUSIONS RENTABLE	1 9	553 ft ² 6578 ft ²	Level 23-B2 EXCLUSIONS	1	576 ft ²
ES. COMMONS	4	30247 π ² 2565 ft ²	RES. COMMONS		6578 π ² 419 ft ²	RENTABLE	9	6732 ft
evel 5			Level 12-B2			Level 24-B2		
XCLUSIONS	14	1642 ft ²	EXCLUSIONS		642 ft ²	EXCLUSIONS	1	576 ft ²
ENTABLE ES. COMMONS	38 4	29829 ft ² 2520 ft ²	RENTABLE RES. COMMONS	-	6578 ft ² 445 ft ²	RENTABLE Level 25-B2	9	6732 f
evel 6	*	ZJZU IL	Level 13-B2	4	ידדט ונ	EXCLUSIONS	1	576 ft ²
XCLUSIONS	14	1644 ft ²	EXCLUSIONS		611 ft²	RENTABLE	9	6737 f
ENTABLE	38	29845 ft ²	RENTABLE	-	6578 ft²	TOTAL SQ.FT: 671		55323
ES. COMMONS	4	2524 ft ²	RES. COMMONS	1	419 ft ²			
evel 7-B2 XCLUSIONS	4	786 ft ²	Level 14-B2 EXCLUSIONS	3	611 ft ²			
	13	10520 ft ²	RENTABLE		6578 ft ²			
	2	720 ft ²	RES. COMMONS		419 ft ²			
RENTABLE RES. COMMONS		 	Level 15-B2	1.				
ENTABLE ES. COMMONS evel 7-B1	-	494 ft ²	EXCLUSIONS		611 ft ²			
ENTABLE ES. COMMONS evel 7-B1 XCLUSIONS	6	11077 42		1 1	6578 ft ²			
ENTABLE ES. COMMONS evel 7-B1	6 16	11277 ft ²	RENTABLE RES. COMMONS		419 ft ²			
ENTABLE ES. COMMONS evel 7-B1 XCLUSIONS		11277 ft ²	RES. COMMONS		419 ft ²			
ENTABLE ES. COMMONS evel 7-B1 XCLUSIONS		11277 ft ²			419 ft ²			
ENTABLE ES. COMMONS evel 7-B1 XCLUSIONS	16	11277 ft ²			419 ft ²			

UNIT	STATS
------	-------

 B1-113

 Level 2

 B1-201

 B1-203

 B1-204

 B1-206

 B1-206

 B1-206

 B1-207

 B1-208

 B1-209

 B1-211

 B1-213

 B1-214

 B1-215

 B1-216

 B1-217

 B1-218

 B1-217

 B1-218

 B1-217

 B1-218

 B1-219

 B1-301

 B1-302

 B1-303

 B1-304

 B1-305

 B1-306

 B1-307

 B1-308

 B1-309

 B1-311

 B1-312

 B1-313

 B1-314

 B1-315

 B1-316

 B1-321

 B1-322

 B1-322

 B1-322

 B1-322

 B1-322

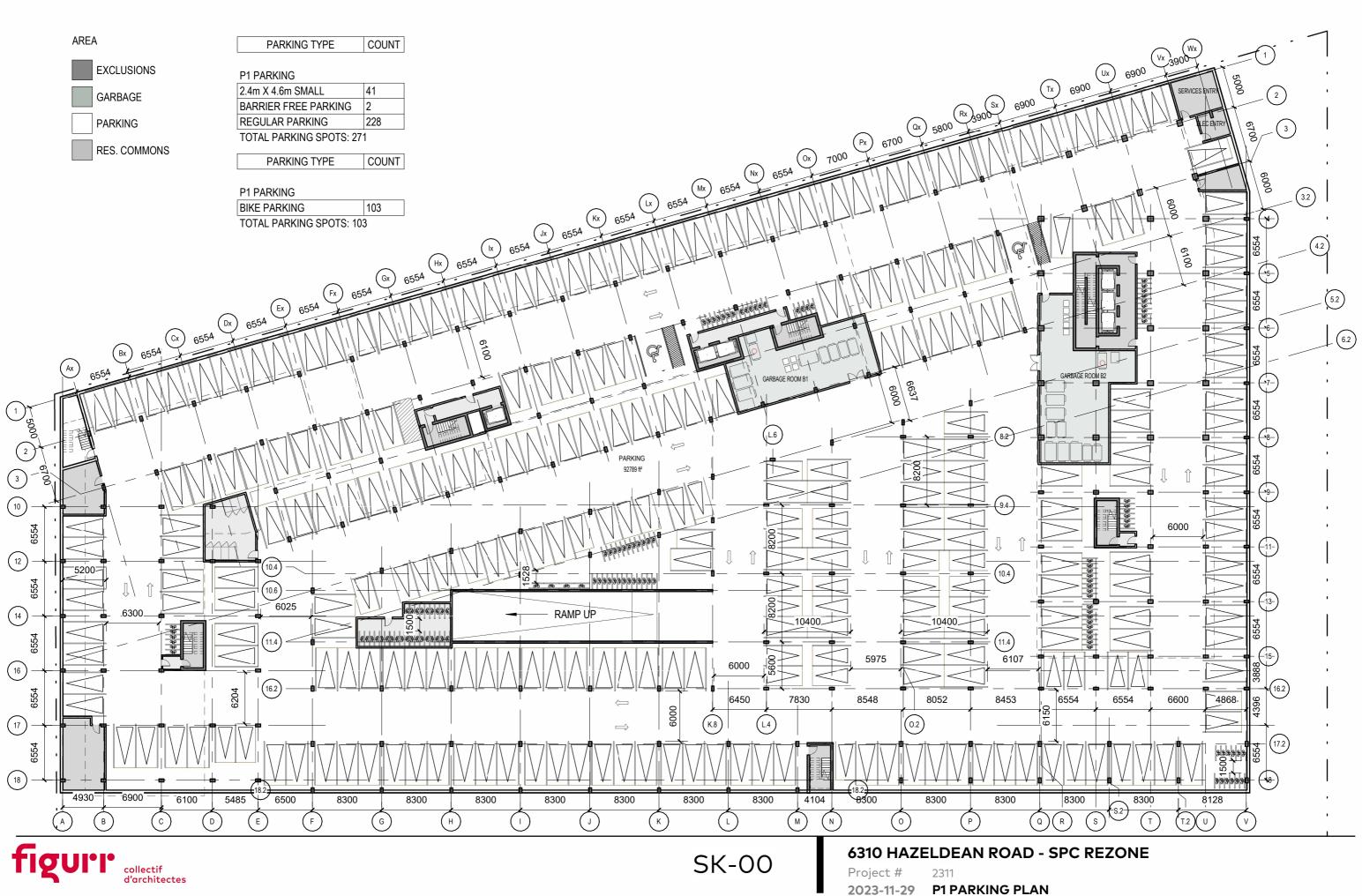
 B1-322

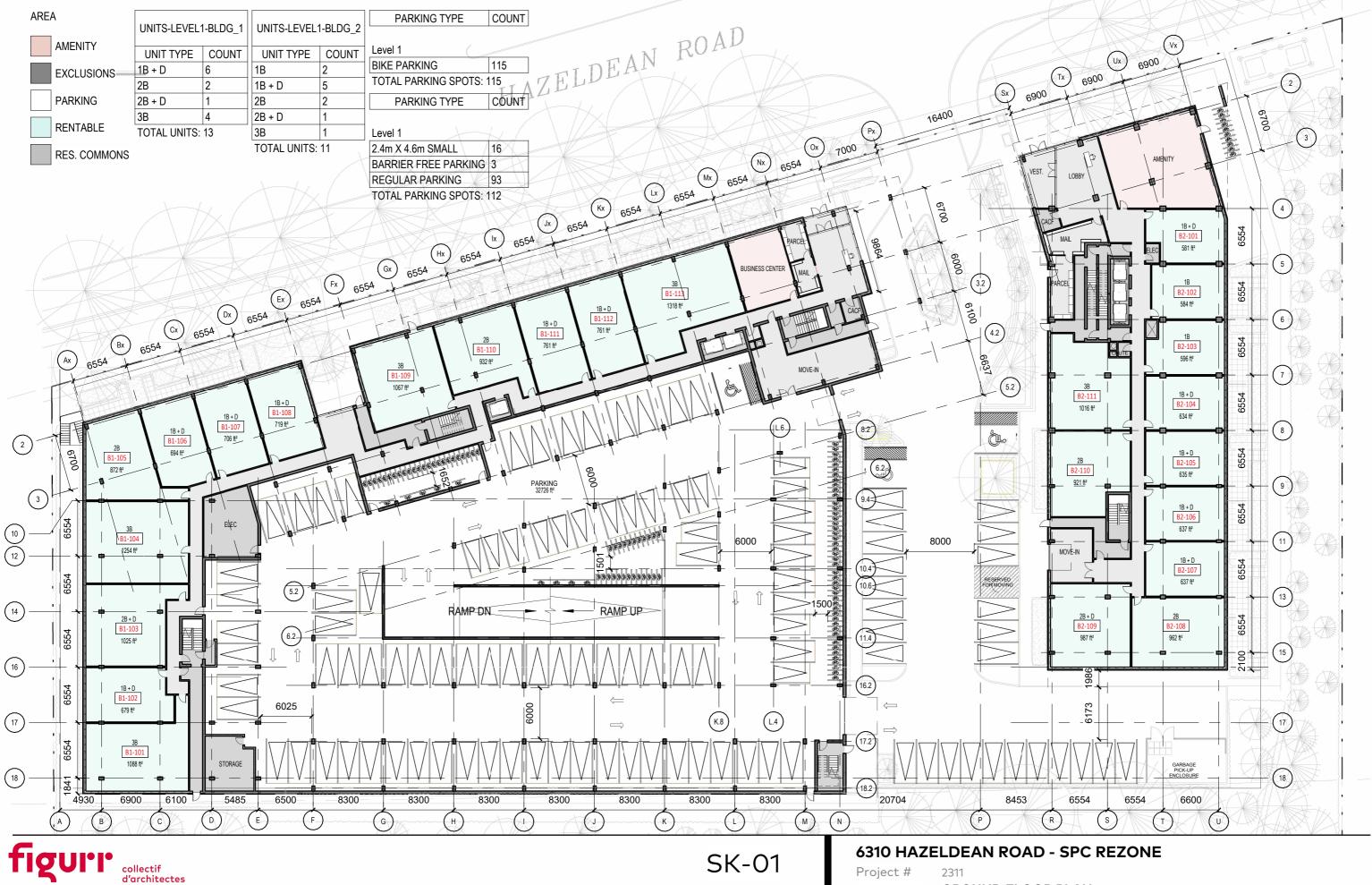
 B1-322

 B1-323

 B1-324

Level 4 B1-401 B1-402 B1-403 B1-404 B1-405 B1-406 B1-406 B1-407 B1-408 B1-409 B1-410 B1-411 B1-412 B1-413


BLDG 1 U	LDG 1 UNITS (TYPICAL FLOORS) BLDG 1 UNITS (TYPICAL FLOO		FLOORS)		
ROOM #	UNIT TYPE	AREA	ROOM #	UNIT TYPE	AREA
Level 1 B1-101	3B	1088 ft ²	B1-501 B1-502	2B 2B	1113 ft ² 977 ft ²
B1-102	1B + D	679 ft ²	B1-502	1B + D	838 ft ²
B1-102 B1-103	2B + D	1025 ft ²	B1-503	1B 1 D	587 ft ²
B1-103	3B	1254 ft ²	B1-504 B1-505	1B	585 ft ²
B1-104 B1-105	2B	872 ft ²	B1-505	1B	594 ft ²
B1-105	1B + D	694 ft ²	B1-507	2B	891 ft ²
B1-100 B1-107	1B + D	706 ft ²	B1-508	2B 2B	884 ft ²
B1-107 B1-108	1B + D	700 ft 719 ft ²	B1-508	1B + D	586 ft ²
B1-108 B1-109	3B	1067 ft ²	B1-510	1B + D	586 ft ²
B1-109 B1-110	2B	932 ft ²	B1-510 B1-511	1B + D	586 ft ²
B1-110 B1-111	1B + D	761 ft ²	B1-512	2B	885 ft ²
B1-112	1B + D	761 ft ²		2B 2B	
			B1-513	2B + D	884 ft ²
B1-113	3B	1318 ft ²	B1-514 B1-515	-	1079 ft ² 730 ft ²
Level 2	20	4007.82		2B	
B1-201	3B	1287 ft ²	B1-516	2B	706 ft ²
B1-202	1B + D	682 ft ²	B1-517	1B + D	611 ft ²
B1-203	2B + D	974 ft ²	B1-518	1B + D	602 ft ²
B1-204	2B + D	1183 ft ²	B1-519	1B + D	602 ft ²
B1-205	2B	920 ft ²	B1-520	2B	772 ft ²
B1-206	1B + D	747 ft ²	B1-521	2B	781 ft ²
B1-207	1B + D	759 ft ²	B1-522	1B + D	643 ft ²
B1-208	2B	772 ft ²	B1-523	1B + D	655 ft ²
B1-209	1B + D	698 ft ²	B1-524	2B + D	1139 ft ²
B1-210	1B + D	635 ft ²	B1-525	2B + D	1027 ft ²
B1-211	1B + D	683 ft ²	Level 7-B1		
B1-212	1B + D	810 ft ²	B1-701	1B + D	673 ft ²
B1-213	1B + D	811 ft ²	B1-702	3B	1190 ft ²
B1-214	1B + D	768 ft ²	B1-703	1B	586 ft ²
B1-216	2B	636 ft ²	B1-704	1B	585 ft ²
B1-217	2B	1025 ft ²	B1-705	1B	586 ft ²
Level 3	1	1.020.0	B1-706	1B	585 ft ²
B1-301	2B	916 ft ²	B1-707	2B	885 ft ²
B1-302	1B	593 ft ²	B1-708	2B	884 ft ²
B1-303	2B	919 ft ²	B1-709	3B	1083 ft ²
	-				-
B1-304	2B	919 ft ²	B1-710	2B	728 ft ²
B1-305	2B	892 ft ²	B1-711	2B	706 ft ²
B1-306	1B + D	636 ft ²	B1-712	1B	611 ft ²
B1-307	1B + D	637 ft ²	B1-713	1B	602 ft ²
B1-308	1B + D	646 ft ²	B1-714	1B	602 ft ²
B1-309	1B + D	698 ft ²	B1-715	STUDIO	516 ft ²
B1-310	1B + D	638 ft ²	B1-716	STUDIO	454 ft ²
B1-311	1B + D	636 ft ²	4		
B1-312	1B + D	636 ft ²	4		
B1-313	1B + D	637 ft ²			
B1-314	1B + D	637 ft ²			
B1-315	2B + D	985 ft ²			
B1-316	2B + D	986 ft ²			
B1-317	2B	896 ft ²			
B1-318	1B	635 ft ²			
B1-319	1B + D	668 ft ²			
B1-320	2B	706 ft ²	1		
B1-321	1B + D	611 ft ²	1		
B1-322	1B + D	602 ft ²	1		
B1-323	1B + D	602 ft ²	1		
B1-324	3B	1034 ft ²	1		
B1-325	1B + D	611 ft ²	1		
B1-326	2B	788 ft ²	1		
Level 4			-		
B1-401	3B	1101 ft ²	1		
B1-401	2B + D	075.02	1		
B1-402 B1-403	2B + D 2B	975 π ² 840 ft ²	1		
B1-403 B1-404	1B	584 ft ²	1		
			-		
B1-405	1B	585 ft ²	-		
B1-406	1B	593 ft ²	-		
B1-407	1B + D	697 ft ²	4		
B1-408	1B + D	635 ft ²	4		
B1-409	1B + D	637 ft ²	4		
B1-410	1B + D	636 ft ²	4		
B1-411	1B + D	637 ft ²	1		
B1-412	1B + D	638 ft ²			
B1-413	2B + D	987 ft ²			
B1-414	3B	1090 ft ²	1		
B1-415	3B	1247 ft ²	1		
B1-416	2B	733 ft ²	1		
B1-410 B1-417	2B	706 ft ²	1		
B1-417 B1-418	1B	611 ft ²	1		
B1-410 B1-419	1B 1B	602 ft ²	-		
	-		-		
B1-420	1B	602 ft ²	-		
B1-421	2B	772 ft ²	-		
B1-422	2B	781 ft ²	4		
B1-423	1B + D	643 ft ²	4		
B1-424	1B + D	654 ft ²	4		
B1-425	1B + D	812 ft ²	1		
B1-426	3B	975 ft ²			
Level 5			_		


SК

Г

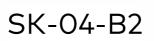
AL	FLOORS)	BLDG	2 UNITS (TYPIC	CAL FLOORS)
E	AREA	ROOM #		PE AREA
	1113 ft ²	Level 1		
	977 ft ²	B2-101	1B + D	581 ft ²
	838 ft ²	B2-101	1B	584 ft ²
	587 ft ²	B2-103	1B	596 ft ²
	585 ft ²	B2-104	1B + D	634 ft ²
	594 ft ²	B2-105	1B + D	635 ft ²
	891 ft ²	B2-106	1B + D	637 ft ²
	884 ft ²	B2-100	1B + D	637 ft ²
	586 ft ²	B2-108	2B	962 ft ²
	586 ft ²	B2-109	2B + D	987 ft ²
	586 ft ²	B2-110	2B	921 ft ²
	885 ft ²	B2-111	3B	1016 ft ²
			30	10101
	884 ft ²	Level 2		
	1079 ft ²	B2-201	3B	1268 ft ²
_	730 ft ²	B2-202	2B	743 ft ²
	706 ft ²	B2-203	1B + D	640 ft ²
	611 ft ²	B2-204	2B + D	1047 ft ²
	602 ft ²	B2-205	2B	960 ft ²
	602 ft ²	B2-206	3B	1228 ft ²
	772 ft ²	B2-207	2B	955 ft ²
			1B	
	781 ft ²	B2-208		540 ft ²
	643 ft ²	B2-209	1B	536 ft ²
	655 ft ²	B2-210	1B	575 ft ²
	1139 ft ²	B2-211	1B	578 ft ²
			2B	
	1027 ft ²	B2-212	_	876 ft ²
		B2-213	2B	1074 ft ²
	673 ft ²	Level 3		
-	1190 ft ²	B2-301	3B	1267 ft ²
	586 ft ²	B2-302	2B	741 ft ²
	585 ft ²	B2-303	1B + D	641 ft ²
	586 ft ²	B2-304	2B + D	1047 ft ²
	585 ft ²	B2-305	1B + D	737 ft ²
	885 ft ²	B2-306	3B	1076 ft ²
	884 ft ²	B2-307	2B + D	940 ft ²
	1083 ft ²	B2-308	2B	844 ft ²
			1B	527 ft ²
	728 ft ²	B2-309	_	
	706 ft ²	B2-310	1B	537 ft ²
	611 ft ²	B2-311	1B	574 ft ²
	602 ft ²	B2-312	1B	572 ft ²
	602 ft ²	B2-313	2B	871 ft ²
			_	
	516 ft ²	B2-314	2B	1085 ft ²
	454 ft ²	Level 4		
		B2-401	3B	1151 ft ²
		B2-402	2B	867 ft ²
		B2-403	2B + D	1048 ft ²
		B2-404	1B + D	751 ft ²
		B2-405	3B	1066 ft ²
		B2-406	2B	942 ft ²
		B2-407	2B	882 ft ²
		B2-408	1B	563 ft ²
		B2-409	1B	575 ft ²
		B2-410	1B	613 ft ²
			1B	
		B2-411		615 ft ²
		B2-412	1B	579 ft ²
		B2-413	2B	820 ft ²
		Level 8-B2		
			20	024.02
		B2-801	3B	934 ft ²
		B2-802	1B	533 ft ²
		B2-803	1B + D	623 ft ²
			3B	020 #2
		B2-804		938 ft ²
		B2-805	2B + D	927 ft ²
		B2-806	2B	742 ft ²
		B2-807	1B	563 ft ²
		B2-808	1B	574 ft ²
		B2-809	2B + D	813 ft ²

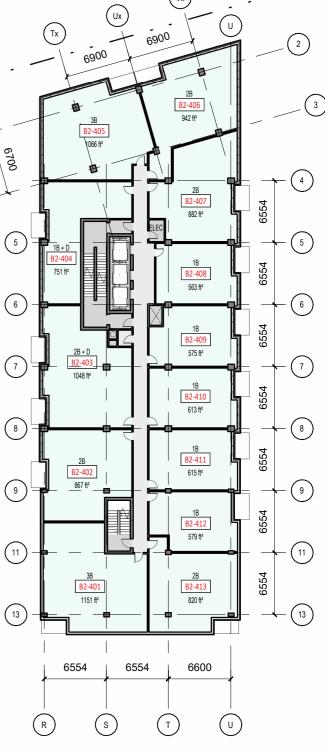
figurr collectif d'architectes

AREA	
EXCLUSIONS	
RENTABLE	
RES. COMMONS	-

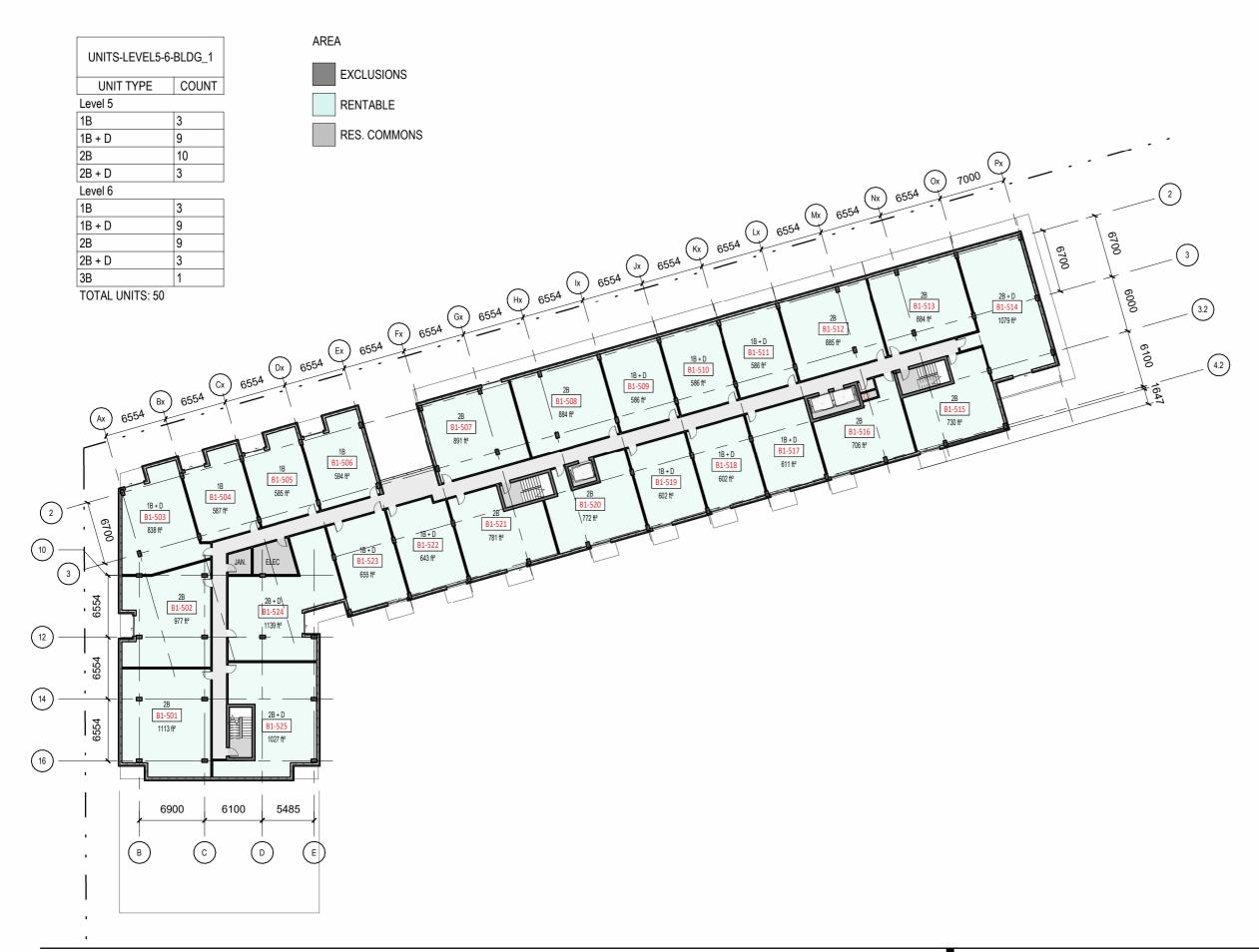
2

2)	6700
3	J
	5
	6
	(7
	(8


((11)
	_


UNIT TYPE	COUNT
Level 4	
1B	5
1B + D	1
2B	4
2B + D	1
3B	2
Level 5	
1B	6
1B + D	1
2B	4
3B	2
Level 6	
1B	2
1B + D	4
2B	3
2B + D	2
3B	2
Level 7-B2	
1B	4
1B + D	2
2B	2
2B + D	2
3B	3

UNITS-LEVEL 4-7-BLDG_2


TOTAL UNITS: 52

Vx

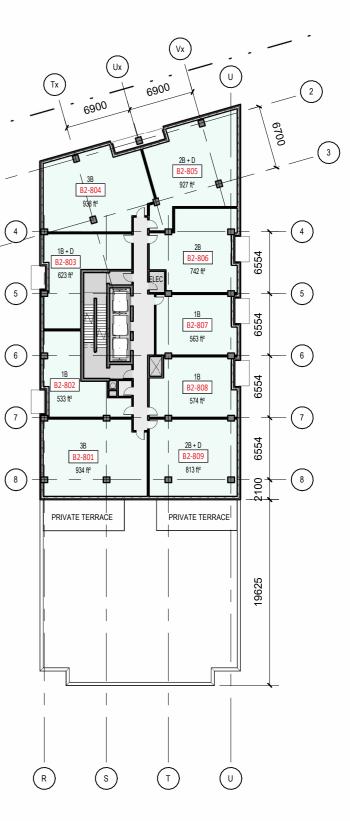
AREA

EXCLUSIONS
RENTABLE
RES. COMMONS

(2)

3

UNITS-LEVEL10-2	25-BLDG_2	U
UNIT TYPE	COUNT	
Level 8-B2		Le
1B	3	16
1B + D	1	16
2B	1	28
2B + D	2	28
3B	2	38
Level 9-B2		Le
1B	3	16
1B + D	1	16
2B	2	28
2B + D	2	28
3B	1	38
Level 10-B2		Le
1B	3	16
1B + D	1	16
2B	2	28
2B + D	2	28
3B	1	38
Level 11-B2		Le
1B	3	16
1B + D	1	16
2B	2	28
2B + D	2	28
3B	1	38
Level 12-B2		Le
1B	3	16
1B + D	1	16
2B	2	28
2B + D	2	28
3B	1	38


figure collectif d'architectes

UNIT TYPE	COUN
Level 13-B2	
1B	3
1B + D	1
2B	2
2B + D	2
3B	1
Level 14-B2	
1B	3
1B + D	1
2B	2
2B + D	2
3B	1
Level 15-B2	
1B	3
1B + D	1
2B	2
2B + D	2
3B	1
Level 16-B2	
1B	3
1B + D	1
2B	2
2B + D	2
3B	1
Level 17-B2	
1B	3
1B + D	1
2B	2
2B + D	2

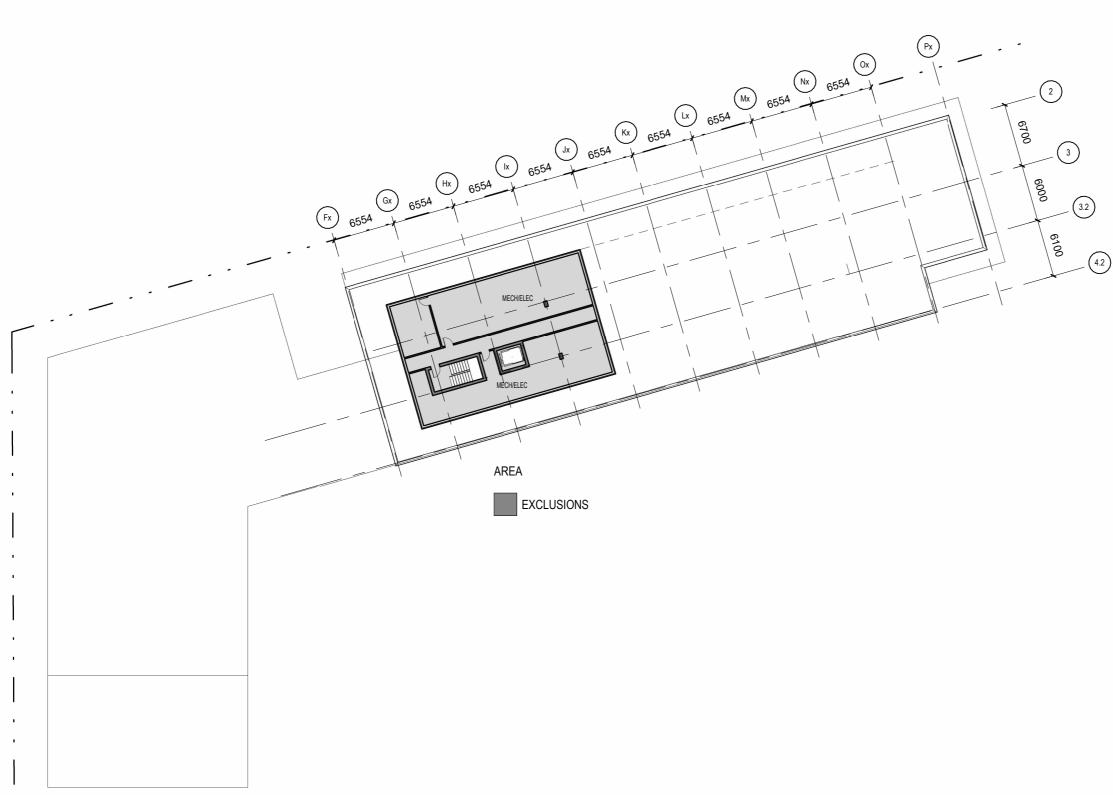
1

1B 3 1B + D 1 2B 2 2B + D 2 3B 1 Level 19-B2 1 1B 3 1B + D 1 2B 2 2B + D 2 3B 1 Level 19-B2 1 2B 2 2B + D 2 3B 1 Level 20-B2 3 1B + D 1 2B 2 2B + D 2 3B 1 Level 21-B2 1 1B + D 1 2B 2 2B + D 2 3B 1 Level 22-B2 1 1B 3 1B + D 1 2B 2 2B 1 Level 22-B2 1 1B 3 1B + D 1 2B 2 2B + D 2 2B + D 2	UNITS-LEVEL10-2	5-BLDG_2
1B 3 1B + D 1 2B 2 2B + D 2 3B 1 Level 19-B2 1 1B 3 1B + D 1 2B 2 2B + D 2 3B 1 Level 19-B2 1 2B 2 2B + D 2 3B 1 Level 20-B2 3 1B + D 1 2B 2 2B + D 2 3B 1 Level 21-B2 1 1B + D 1 2B 2 2B + D 2 3B 1 Level 22-B2 1 1B 3 1B + D 1 2B 2 2B 1 Level 22-B2 1 1B 3 1B + D 1 2B 2 2B + D 2 2B + D 2	UNIT TYPE	COUNT
1B + D 1 2B 2 2B + D 2 3B 1 .evel 19-B2 3 1B 3 1B + D 1 2B 2 2B 2 2B 2 2B 2 2B 2 2B 2 2B 1 .evel 20-B2 1 1B 3 1B + D 1 2B 2 2B 2 2B 1 .evel 21-B2 1 1B 3 1B + D 1 2B 2 2B 2 2B 2 2B 2 2B 1 .evel 22-B2 1 1B 3 1B + D 1 .evel 22-B2 1 1B 3 1B + D 1 .evel 22-B2 2 2B 2	Level 18-B2	
2B 2 2B + D 2 3B 1	1B	3
2B + D 2 3B 1 Level 19-B2 3 1B 3 1B + D 1 2B 2 2B + D 2 3B 1 2B 2 2B + D 2 3B 1 Level 20-B2 3 1B + D 1 2B 2 2B + D 2 3B 1 Level 21-B2 1 1B + D 1 2B 2 2B + D 2 3B 1 Level 22-B2 1 1B 3 1B + D 1 2B 2 2B 1 Level 22-B2 1 1B 3 1B + D 1 2B 2 2B 2 2B 2 2B + D 2	1B + D	1
3B 1 _evel 19-B2 3 1B 3 1B + D 1 2B 2 2B + D 2 3B 1 _evel 20-B2 3 1B + D 1 2B 2 2B + D 2 2B + D 2 2B + D 2 3B 1 _evel 21-B2 1 1B + D 1 2B 2 2B + D 2 3B 1 _evel 21-B2 1 2B 2 2B + D 2 3B 1 _evel 22-B2 1 1B 3 1B + D 1 2B 2 2B 2 2B 2 2B 2 2B 2 2B + D 2	2B	2
Level 19-B2 1B 3 1B + D 1 2B 2 2B + D 2 3B 1 Level 20-B2 1 1B 3 1B + D 1 2B 2 2B + D 2 3B 1 Level 20-B2 2 3B 1 2B 2 2B 2 2B 1 Level 21-B2 1 1B 3 1B + D 1 2B 2 2B 2 2B 1 Level 22-B2 1 1B 3 1B + D 1 2B 2	2B + D	2
1B 3 1B + D 1 2B 2 2B + D 2 3B 1 _evel 20-B2 1 1B 3 1B + D 1 2B 2 2B + D 2 3B 1 _evel 21-B2 2 1B 3 _evel 21-B2 1 2B 2 2B + D 1 2B 2 3B 1 _evel 22-B2 1 1B 3 1B + D 1 2B 2 2B + D 2 2B 2 2B + D 1 2B 2 2B + D 2	3B	1
1B + D 1 2B 2 2B + D 2 3B 1 Level 20-B2 3 1B 3 1B + D 1 2B 2 2B + D 2 2B + D 2 3B 1 Level 21-B2 1 1B + D 1 2B 2 2B + D 2 3B 1 Level 21-B2 2 1B + D 1 2B 2 2B + D 2 3B 1 Level 22-B2 1 1B + D 1 2B - 2 2 1B + D 1 2B - 2 2 2B - 2 2 2B - 2 2 2B + D 2	Level 19-B2	
2B 2 2B 2 2B 2 2B 2 3B 1 Level 20-B2 3 1B 3 1B 3 1B 2 2B 2 2B 2 2B 2 2B 2 2B 1 Level 21-B2 1 1B 3 1B 1 2B 2 2B 2 2B 1 Level 22-B2 1 1B 3 1B 3 1B 3 1B 3 1B 3 1B 3 2B 2	1B	3
2B + D 2 3B 1 Level 20-B2 1 1B + D 1 2B 2 2B + D 2 2B + D 2 3B 1 Level 21-B2 1 1B + D 1 2B 2 2B + D 2 3B 1 Level 21-B2 1 2B 2 2B + D 2 3B 1 Level 22-B2 1 1B 3 1B + D 1 2B 2 2B 2 2B + D 2 2B + D 2 2B + D 2	1B + D	1
3B 1 _evel 20-B2 3 1B 3 1B + D 1 2B 2 2B + D 2 3B 1 _evel 21-B2 1 1B + D 1 2B 2 2B + D 2 2B + D 1 2B 2 2B + D 2 3B 1 _evel 22-B2 1 1B + D 1 _evel 22-B2 2 2B 2 2B + D 2 2B + D 2	2B	2
Level 20-B2 1B 3 1B + D 1 2B 2 2B + D 2 3B 1 Level 21-B2 1 1B + D 1 2B + D 2 2B + D 2 2B + D 1 2B + D 2 3B 1 1 Level 22-B2 1 1B 3 3 1B + D 1 2B 2 2 2B 1 2 2B 2 2 2B 1 2 2B 2 2 2B 3 1 Level 22-B2 1 1B 3 3 1B + D 1 2B 2 2 2B 2 2 2B 2 2	2B + D	2
1B 3 1B + D 1 2B 2 2B + D 2 3B 1 Level 21-B2 1 1B 3 1B + D 1 2B 2 2B + D 2 3B 1 Level 22-B2 1 1B 3 1B + D 1 2B 2 2B 2 2B 2 2B 2 2B 2 2B 2	3B	1
1B + D 1 2B 2 2B + D 2 3B 1 _evel 21-B2 1 1B 3 1B + D 1 2B 2 2B 2 2B 2 2B + D 2 3B 1 Level 22-B2 1 1B 3 1B + D 1 2B 2 2B + D 2	Level 20-B2	
2B 2 2B + D 2 3B 1 .evel 21-B2 1 1B 3 1B + D 1 2B 2 2B + D 2 3B 1 .evel 22-B2 1 1B + D 1 .evel 22-B2 3 1B + D 1 .evel 22-B2 2 1B + D 1 .evel 22-B2 2 1B + D 1 .evel 22-B2 2	1B	3
2B + D 2 3B 1 Level 21-B2 1B 3 1B + D 1 2B 2 2B + D 2 3B 1 Level 22-B2 1 1B + D 1 2B + D 2 2B + D 1 2B + D 1 2B + D 2 2B + D 2	1B + D	1
3B 1 Level 21-B2 1B 3 1B + D 1 2B 2 2B + D 2 3B 1 Level 22-B2 1 1B + D 1 2B 2 2B 2 3B 1 Level 22-B2 1 1B 3 1B + D 1 2B 2 2B + D 2	2B	2
Level 21-B2 1B 3 1B + D 1 2B 2 2B + D 2 3B 1 Level 22-B2 1B 3 1B + D 1 2B 2 2B + D 2 1B 3 1B + D 2 2B + D 2 2B + D 2 2B + D 2 2B 2 2B + D 2 2B + D 2 2B 2 2B + D 2 2B 2 2B + D 2 2B 2	2B + D	2
1B 3 1B + D 1 2B 2 2B + D 2 3B 1 Level 22-B2 1 1B 3 1B + D 1 2B 2 2B + D 2	3B	1
1B + D 1 2B 2 2B + D 2 3B 1 Level 22-B2 3 1B 3 1B + D 1 2B 2 2B + D 2	Level 21-B2	
2B 2 2B + D 2 3B 1 Level 22-B2 1 1B 3 1B + D 1 2B 2 2B + D 2	1B	3
2B + D 2 3B 1 Level 22-B2 3 1B 3 1B + D 1 2B 2 2B + D 2	1B + D	-
3B 1 Level 22-B2 1B 3 1B + D 1 2B 2B + D 2	2B	2
Level 22-B2 1B 3 1B + D 1 2B 2 2B + D 2	2B + D	2
1B 3 1B + D 1 2B 2 2B + D 2	3B	1
1B + D 1 2B 2 2B + D 2	Level 22-B2	
2B 2 2B + D 2	1B	3
2B + D 2	1B + D	
	2B	
3B 1	2B + D	2
	3B	1

UNIT TYPE	COUNT
Level 23-B2	•
1B	3
1B + D	1
2B	2
2B + D	2
3B	1
Level 24-B2	
1B	3
1B + D	1
2B	2
2B + D	2
3B	1
Level 25-B2	·
1B	3
1B + D	1
2B	2
2B + D	2
3B	1

UNITS-LEVEL10-25-BLDG_2			
UNIT TYPE	COUNT		
Level 8-B2			
1B	3		
1B + D	1		
2B	1		
2B + D	2		
3B	2		
Level 9-B2			
1B	3		
1B + D	1		
2B	2		
2B + D	2		
3B	1		
Level 10-B2	<u> </u>		
1B	3		
1B + D	1		
2B	2		
2B + D	2		
3B	1		
Level 11-B2			
1B	3		
1B + D	1		
2B	2		
2B + D	2		
3B	1		
Level 12-B2			
1B	3		
1B + D	1		
2B	2		
2B + D	2		
3B	1		

UNIT TYPE	COUNT
Level 13-B2	
1B	3
1B + D	1
2B	2
2B + D	2
3B	1
Level 14-B2	·
1B	3
1B + D	1
2B	2
2B + D	2
3B	1
Level 15-B2	
1B	3
1B + D	1
2B	2
2B + D	2
3B	1
Level 16-B2	
1B	3
1B + D	1
2B	2
2B + D	2
3B	1
Level 17-B2	
1B	3
1B + D	1
2B	2
2B + D	2
3B	1


UNIT TYPE	COUNT
Level 18-B2	
1B	3
1B + D	1
2B	2
2B + D	2
3B	1
Level 19-B2	
1B	3
1B + D	1
2B	2
2B + D	2
3B	1
Level 20-B2	
1B	3
1B + D	1
2B	2
2B + D	2
3B	1
Level 21-B2	
1B	3
1B + D	1
2B	2
2B + D	2
3B	1
Level 22-B2	
1B	3
1B + D	1
2B	2
2B + D	2
3B	1

UNIT TYPE	COUN
Level 23-B2	
1B	3
1B + D	1
2B	2
2B + D	2
3B	1
Level 24-B2	
1B	3
1B + D	1
2B	2
2B + D	2
3B	1
Level 25-B2	
1B	3
1B + D	1
2B	2
2B + D	2
3B	1

(4

APPENDIX D

Water Demand Calculations and Figures

Water Supply Calculations

LRL File No.220027Date2023-12-11Prepared byTamara HarbProject6310 Hazeldean Road

Water Demand based on the City of Ottawa Design Guidelines-Water Distribution, 2010

Domestic Demand			
Unit Type	Persons Per Unit	Number of Units	Population
Studio	1.4	3	4.2
1 Bedroom Apartment	1.4	211	295.4
2 Bedroom Apartment	2.1	168	352.8
3 Bedroom Apartment	3.1	49	151.9
	Total	431	804.3

*Based on a daily demand of 280L/day per person as identified by Appendix 4-A of the Sewer design guidelines.

Average Water Consumption Rate	280	L/c/d	
Average Day Demand	225,204	L/d	2.61 L/s
Maximum Day Factor	2.5		Table (3-3) MOE Peaking Factors
Maximum Daily Demand	563,010	L/d	6.52 L/s
Peak Hour Factor	2.2		Table (3-3) MOE Peaking Factors
Maximum Hour Demand	1,238,622	L/d	14.34 L/s

Institutional / Commercial / Industrial Demand									
Property Type	Unit Rate	Units	Demand (L/d)						
Amenities	28000 L/ha/d	0.072 ha	2016.0						

Average Day Demand	2,016	L/d 0.023 L/s
Maximum Day Factor	1.5	(Design Guidelines-Water Distribution Table 4.2)
Maximum Daily Demand	3,024	L/d 0.035 L/s
Peak Hour Factor	1.8	(Design Guidelines-Water Distribution Table 4.2)
Maximum Hour Demand	5,443	L/d 0.063 L/s

	TOTAL DEMAND			
Average Day Demand	227,220 L/d	2.63	L/s	
Maximum Daily Demand	566,034 L/d	6.55	L/s	
Maximum Hour Demand	1,244,065 L/d	14.40	L/s	

Water Service Pipe Sizing

Q = VA

Where: V = velocity A = area of pipe Q = flow rate

Assuming a maximum velocity of 1.8m/s, the diameter of pipe is calculated as:

Minimum pipe diameter (d) =	(4Q/πV) ^{1/2}	
=	0.101	m
=	101	mm
Proposed pipe diameter (d) =	150	mm
=	6	Inches

Fire Flow Calculations

LRL File No.	220227
Date	December 11, 2023
Method	Fire Underwriters Survey (FUS)
Prepared by	Tamara Harb
Project Location	6310 Hazeldean Road

Step	Task	Term	Options	Multiplier	Choose:	Value	Unit	Fire Flow
			Structural Framing Material					
			Wood Frame	1.5				
	Chasse from used for	Coefficient C related to the type of construction	Ordinary Construction	1.0				
1	building		Non-combustible construction	0.8	Non-combustible construction	0.8		
			Fire resistive construction <2 hrs	0.7				
			Fire resistive construction >2 hrs	0.6				
			Floor Space Area (A)					
2	Are	a of Structure concidered for FUS (ef	fective floor area) (Sum of Two Largest Floors + 5	0% of Eight Ad	ditional Floors/	9,414	m ²	
3	Obtain fire flow before Required fire flow							18,000
			Reductions or surcharge due to factors aff	ecting burning	l			
			Non-combustible	-25%				
	Chasses combustibility	Occurrency bezerd reduction or	Limited combustible	-15%				
4	Choose combustibility of contents	Occupancy hazard reduction or surcharge	Combustible	0%	Limited combustible	-15%	L/min	15,300
			Free burning	15%				
			Rapid burning	25%				
			Full automatic sprinklers	-30%	True	-30%		
5	Choose reduction for sprinklers	Sprinkler reduction	Water supply is standard for both the system and fire department hose lines	-10%	True	-10%	L/min	7,650
			Fully supervised system	-10%	True	-10%		
			Northwest side	>30m	0%			
6	Choose separation	Exposure distance between units	Southwest side	>30m	0%		L/min	11,475
0			Northeast side	10.1 to 20m	15%		L/11111	11,475
			Southeast side	20.1 to 30m	10%	25%		
			Net required fire flow					
	Obtain fire flow,			Minimum	required fire flow rate (rounded to n	,	L/min	11,000
7	7 Obtain fire flow, duration, and volume Minimum required fire flow rate							183.3
Required duration of fire flow								2.25

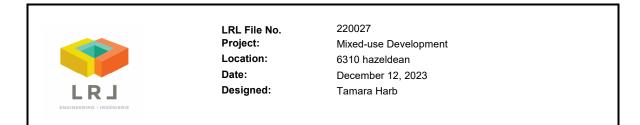
APPENDIX E

Sanitary Flow Calculations

ENGINEERING		LRL File No Project: Location: Date:		220027 Mixed-Use I 6310 hazelo December 1	dean Road				Average Daily Flow = 280 L/p/day Commercial & Institutional Flow = 28000 Light Industrial Flow = 35000 L/ha/day Heavy Industrial Flow = 55000 L/ha/day Maximum Residential Peak Factor = 4.0 Commercial & Institutional Peak Factor =						-	Design Parameters Industrial Peak Factor = as per Appendix 4-B = 7 Extraneous Flow = 0.33L/s/gross ha					Pipe Design Parameters Minimum Velocity = 0.60 m/s Manning's n = 0.013						
	LOCATION			RESIDEN	TIAL AREA	AND POPL	JLATION		COMM	ERCIAL	11	NDUSTRIA	۸L	INSTIT	UTIONAL	C+I+I	INF	FILTRATIO	N	TOTAL			F	PIPE			
STREET	FROM MH	ТО МН	AREA (Ha)	POP.	CUMM AREA (Ha)	ULATIVE POP.	PEAK FACT.	PEAK FLOW (I/s)	AREA (Ha)	ACCU. AREA (Ha)	AREA (Ha)	ACCU. AREA (Ha)	PEAK FACT.	AREA (Ha)	ACCU. AREA (Ha)	PEAK FLOW (l/s)	TOTAL AREA (Ha)	ACCU. AREA (Ha)	INFILT. FLOW (I/s)	TOTAL FLOW (I/s)	LENGTH (m)	DIA. (mm)	SLOPE (%)	MATERIAL	CAP. (FULL) (I/s)	VEL. (FULL) (m/s)	
azeldean Road	Bldg	EX. SAN	1.200	804.3	1.20	804.3	3.3	8.57	0.056	0.072	0.00	0.00	7.0	0.0	0.0	0.04	1.200	1.200	0.40	9.00							
IOTES	Existing inverts	s and slopes ar	e estimate	d. They are t	to be confir	med on-site]		Design Checke	ТН			· · · · · ·				Mixed-Use LOC	OJECT: Developm CATION: azeldean R			·	
														Dwg. R	eference:		File Ref.:				Date:					Sheet	t No.

C.401

220027


2023-12-12

1 of 1

APPENDIX F

Stormwater Management Calculations

LRL Associates Ltd. Storm Watershed Summary

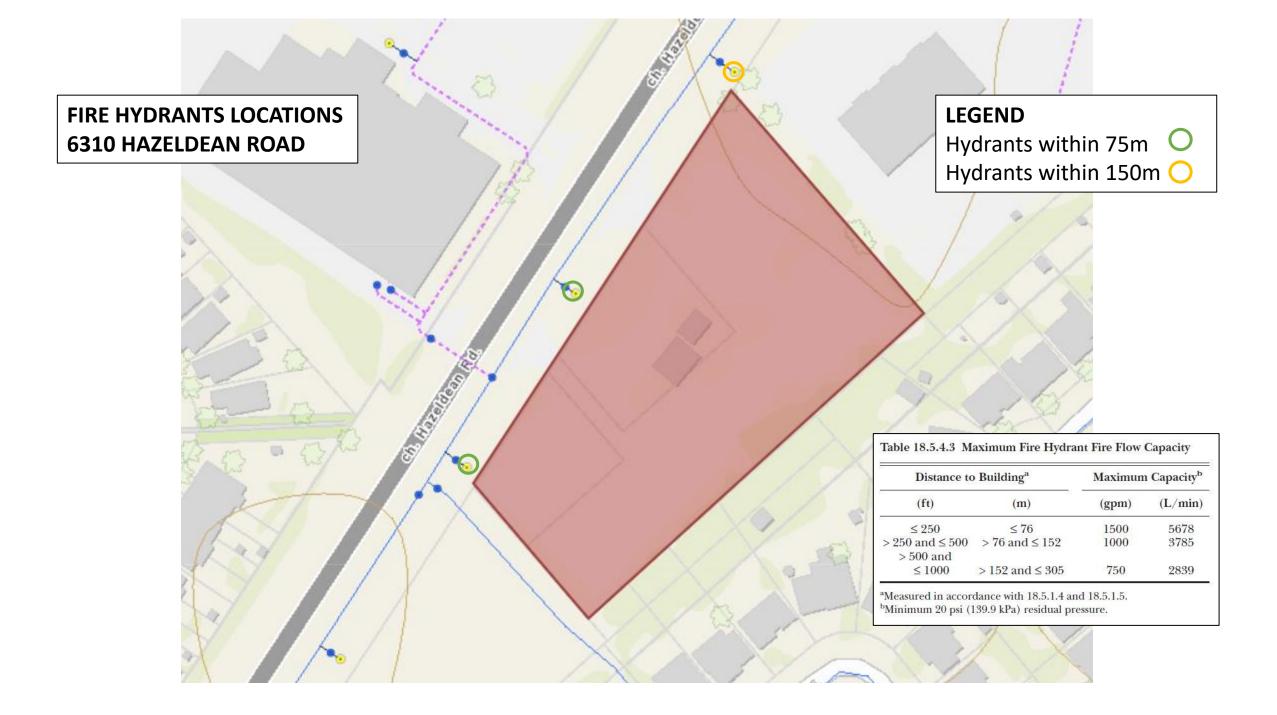
Pre-Development Catchments

WATERSHED	C = 0.2	C = 0.80	C = 0.90	Total Area (m ²)	Total Area (ha)	Combined C
EWS-01	2850.0	9150.0	0.0	12000.0	1.200	0.66
TOTAL	2850.0	9150.0	0.0	12000.0	1.200	0.66

Post-Development Catchments

WATERSHED	C = 0.20	C = 0.70	C = 0.90	Total Area (m ²)	Total Area (ha)	Combined C
WS-01(UNCONTROLLED)	2568.0	0.0	1489.0	4057.0	0.406	0.46
WS-02 (CISTERN - CONTROLLED)	888.0	0.0	7055.0	7943.0	0.794	0.82
TOTAL	3456.0	0.0	8544.0	12000.0	1.200	0.70

		Location: Date:	Mixed-use Development 6310 hazeldean December 12, 2023 Tamara Harb				water Managem Design Sheet	nent	
	Q = 2.78CIA (L/s) C = Runoff coeffic I = Rainfall intens A = Area (ha) C _c = Time of conce	ity (mm/hr)	= A / (Td + C) ^B						
e-development Stormwa	ater Management I ₅ = 998.071 / (Td	+ 6.053) ^{0.814}		a =	998.071	h=	= 0.814	C =	6.053
(Ti Total Area	C = 0.50 I = 104.2 c = 10	max of 0.5 as per mm/hr min ha	City of Ottawa						
ost-development Stormw	vater Managemer	<u>it</u>					ΣR ₂₈₅	ΣR ₁₀₀	
		Total Site		1.2000	ha	∑R=	0.70	0.87	
Controlled		WS-02 (CONT Total Contr		0.794	ha ha	R= ∑R=	0.82	1.00 1.00	
Un-controlled		Total Conta	onou		ha	R=			
UII-CONTROLLED		WS-01(UNCON	TROLLED)	0.406			0.46	0.57	
Un-controlled	vater Managemer	Total Un-Con	ntrolled =	0.406	ha	ΣR=	0.46	0.57	
ost-development Stormw)0 Year Storm Event:	₁₀ = 1735.688 / (To	Total Un-Con <u>It (Uncontrolled C</u> 1 + 6.014) ^{0.820}	atchment WS-01)	0.406		<u>Σ</u> R=			4
ost-development Stormw)0 Year Storm Event: I ₁₀	₁₀ = 1735.688 / (To	Total Un-Con it (Uncontrolled C i + 6.014) ^{0.820} Uncontrolled	trolled = atchment WS-01) Controlled Release Rate	0.406 a =	ha	<u>Σ</u> R=	0.46	0.57	4
ost-development Stormw)0 Year Storm Event:	₁₀ = 1735.688 / (To	Total Un-Con <u>It (Uncontrolled C</u> 1 + 6.014) ^{0.820}	atchment WS-01)	0.406	ha	<u>Σ</u> R=	0.46	0.57	4
Di Year Storm Event: In Year Storm Event: In In Time (min) 10 Dist-development Stormwe 10 Year Storm Event:	• = 1735.688 / (To Intensity (mm/hr) 178.6	Total Un-Con tt (Uncontrolled C t+ 6.014) ^{0.820} Uncontrolled Runoff (L/s) 115.02 tt (WS-03)	trolled = atchment WS-01) Controlled Release Rate Constant (L/s) 0.00	0.406 a = Total Release Rate (L/s) 115.02 a =	ha	<u>Σ</u> R= b =	0.46	0.57	
Dost-development Stormw 10 Year Storm Event: In Time (min) 10 Dost-development Stormw 10 Year Storm Event: In 10	₀ = 1735.688 / (To Intensity (mm/hr) 178.6 /ater Managemer // (To) = 1735.688 / (To) Intensity	Total Un-Con at (Uncontrolled C at 6.014) ^{0.820} Uncontrolled Runoff (L(s) 115.02 at (WS-03) at 6.014) ^{0.820} Controlled	trolled = atchment WS-01) Controlled Release Rate Constant (L/s) 0.00 Storage Required	0.406 a = Total Release Rate (L/s) 115.02 a = Controlled Release Rate	ha 1735.688 1735.688 Uncontrolled	<u>Σ</u> R= b = Total Release	0.820	0.57 C = 6.01	
Di Year Storm Event: Ig Time (min) 10 Di Year Storm Event: Ig Di Year Storm Event: Ig Time (min)	₀ = 1735.688 / (To Intensity (mm/hr) 178.6 vater Managemer vater Managemer (mm/hr)	Total Un-Con at (Uncontrolled C at + 6.014) ^{0.820} Uncontrolled Runoff (L/s) 115.02 at (WS-03) at + 6.014) ^{0.820} Controlled Runoff (L/s)	ttrolled = atchment WS-01) Controlled Release Rate Constant (L/s) 0.00 Storage Required Storage Volume (m ³)	0.406 a = Total Release Rate (L/s) 115.02 a = Controlled Release Rate Constant (L/s)	ha 1735.688 1735.688 Uncontrolled Runoff (L/s)	<u>Σ</u> R= b = Total Release Rate (L/s)	0.820	0.57 C = 6.01	
Dost-development Stormw 10 Year Storm Event: In Time (min) 10 Dost-development Stormw 10 Year Storm Event: In 10	₀ = 1735.688 / (To Intensity (mm/hr) 178.6 /ater Managemer // (To) = 1735.688 / (To) Intensity	Total Un-Con at (Uncontrolled C at 6.014) ^{0.820} Uncontrolled Runoff (L(s) 115.02 at (WS-03) at 6.014) ^{0.820} Controlled	trolled = atchment WS-01) Controlled Release Rate Constant (L/s) 0.00 Storage Required	0.406 a = Total Release Rate (L/s) 115.02 a = Controlled Release Rate	ha 1735.688 1735.688 Uncontrolled	<u>Σ</u> R= b = Total Release	0.820	0.57 C = 6.01	
Di Year Storm Event: 10 Year Storm Event: 10 Time (min) 10 Di Year Storm Event: 10 10 10 10 15 20	₀ = 1735.688 / (To Intensity (mm/hr) 178.6 vater Managemer ₀ = 1735.688 / (To Intensity (mm/hr) 178.6 142.9 120.0	Total Un-Con t (Uncontrolled C t + 6.014) ^{0.820} Uncontrolled Runoff (L/s) 115.02 t (WS-03) U + 6.014) ^{0.820} Controlled Runoff (L/s) 394.29 315.53 264.87	ttrolled = atchment WS-01) Controlled Release Rate Constant (L/s) 0.00 Storage Required Storage Volume (m ³) 201.31 231.08 247.31	0.406 a = Total Release Rate (L/s) 115.02 a = Controlled Release Rate Constant (L/s) 58.77 58.77	ha 1735.688 1735.688 Uncontrolled Runoff (L/s) 0.00 0.00 0.00	<u>Σ</u> R= b = Total Release Rate (L/s) 58.77 58.77	0.820	0.57 C = 6.01	
Dist-development Stormw 10 Year Storm Event: 10 Time (min) 10 Dist-development Stormw 00 Year Storm Event: 10 10 15 20 25	•• = 1735.688 / (To Intensity (mm/hr) 178.6 /ater Managemer ////////////////////////////////////	Total Un-Con t (Uncontrolled C ut (Uncontrolled C Uncontrolled Runoff (L/s) 115.02 t (WS-03) Ut 6.014) ^{0.820} Controlled Runoff (L/s) 394.29 315.53 264.87 229.31	trolled = atchment WS-01) Controlled Release Rate Constant (L/s) 0.00 Storage Required Storage Volume (m ³) 201.31 231.08 247.31 255.81	0.406 a = Total Release Rate (L/s) 115.02 a = Controlled Release Rate Constant (L/s) 58.77 58.77 58.77	ha 1735.688 1735.688 Uncontrolled Runoff (<i>L</i> /s) 0.00 0.00 0.00	<u>Σ</u> R= b = Total Release Rate (<i>L</i> (<i>s</i>) 58.77 58.77 58.77	0.820	0.57 C = 6.01	
Di Year Storm Event: 10 Year Storm Event: 10 Time (min) 10 Di Year Storm Event: 10 Di Year Storm Event: 10 Time (min) 10 15 20 25 30	₀ = 1735.688 / (To Intensity (mm/hr) 178.6 vater Managemer action of the second	Total Un-Con t (Uncontrolled C 4 + 6.014) ^{0.820} Uncontrolled Runoff (L/s) 115.02 t (WS-03) 4 + 6.014) ^{0.820} Controlled Runoff (L/s) 394.29 315.53 264.87 229.31 202.86	trolled = atchment WS-01) Controlled Release Rate Constant (L/s) 0.00 Storage Required Storage Volume (m ³) 201.31 231.08 247.31 256.81 255.81	0.406 a = Total Release Rate (L/s) 115.02 a = Controlled Release Rate Constant (L/s) 58.77 58.77 58.77 58.77	ha 1735.688 1735.688 Uncontrolled Runoff (L/s) 0.00 0.00 0.00 0.00 0.00	<u>Σ</u> R= b = Total Release Rate (L/s) 58.77 58.77 58.77 58.77	0.820	0.57 C = 6.01	
Dist-development Stormw 10 Year Storm Event: 10 Time (min) 10 Dist-development Stormw 00 Year Storm Event: 10 10 15 20 25	₀ = 1735.688 / (To intensity (mm/hr) 178.6 ////////////////////////////////////	Total Un-Con t (Uncontrolled C t + 6.014) ^{0.820} Uncontrolled Runoff (L/s) 115.02 t (WS-03) t + 6.014) ^{0.820} Controlled Runoff (L/s) 394.29 315.53 264.87 229.31 202.86 182.35	trolled = atchment WS-01) Controlled Release Rate Constant (L/s) 0.00 Storage Required Storage Volume (m ³) 201.31 231.08 247.31 255.81 259.35 259.35 259.50	0.406 a = Total Release Rate (L/s) 115.02 a = Controlled Release Rate Constant (L/s) 58.77 58.77 58.77	ha 1735.688 Uncontrolled Runoff (<i>L</i> /s) 0.00 0.00 0.00	<u>Σ</u> R= b = Total Release Rate (<i>L</i> (<i>s</i>) 58.77 58.77 58.77	0.820	0.57 C = 6.01	
2015-development Stormw 2010 Year Storm Event: 10 10 2015- 20 25 30 35 40 45	₀ = 1735.688 / (To intensity (mm/hr) 178.6 vater Managemer ₀ = 1735.688 / (To 0 = 1735.688 / (To 178.6 142.9 120.0 103.8 91.9 82.6 75.1 69.1	Total Un-Con t (Uncontrolled C 4 + 6.014) ^{0.820} Uncontrolled Runoff (L/s) 115.02 t (WS-03) 4 + 6.014) ^{0.820} Controlled Runoff (L/s) 394.29 315.53 264.87 229.31 202.86 182.35 165.93 155.93	trolled = atchment WS-01) Controlled Release Rate Constant (L/s) 0.00 Storage Required Storage Volume (m ³) 201.31 231.08 247.31 255.81 255.81 259.95 257.18 252.99	0.406 0.406 a = Total Release Rate (L/s) 115.02 a = Controlled Release Rate Constant (L/s) 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77	ha 1735.688 Uncontrolled Runoff (L/s) 0.00	<u>Σ</u> R= b = Total Release Rate (L/s) 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77	0.820	0.57 C = 6.01	
Dost-development Stormw 10 Year Storm Event: Ing Time (min) 10 20 25 30 35 40 45 50	intensity (mm/hr) 1735.688 / (To intensity (mm/hr) 178.6 vater Managemer va	Total Un-Con t (Uncontrolled C ut (Uncontrolled C Uncontrolled Runoff (L/s) 115.02 t (WS-03) ut (WS-03) Ut (6.014) ^{0.820} Controlled Runoff (L/s) 394.29 315.53 264.87 222.35 165.93 165.93 165.93 165.247 141.22	trolled = atchment WS-01) Controlled Release Rate Constant (<i>L/s</i>) 0.00 Storage Required Storage Volume (m ³) 231.08 247.31 259.35 259.85 257.18 252.99 247.34	0.406 a = Total Release Rate (L/s) 115.02 a = Controlled Release Rate Constant (L/s) 58.77 57 57 57 57 57 57 57 57 57	ha 1735.688 Uncontrolled Runoff (L/s) 0.00	<u>Σ</u> R= b = Total Release Rate (L/s) 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77	0.820	0.57 C = 6.01	
2015-development Stormw 2010 Year Storm Event: 10 10 10 205 20 25 30 35 40 45 50 60	₀ = 1735.688 / (To Intensity (mm/hr) 178.6 vater Managemer vater Vater Managemer vater Vater Managemer vater Vater Managemer vater Vater Managemer vater Vater	Total Un-Con t (Uncontrolled C 1 + 6.014) ^{0.820} Uncontrolled Runoff (L/s) 115.02 t (WS-03) 4 + 6.014) ^{0.820} Controlled Runoff (L/s) 394.29 315.53 264.87 202.86 182.35 165.93 152.47 141.22 123.42	trolled = atchment WS-01) Controlled Release Rate Constant (L/s) 0.00 Storage Required Storage Volume (m ³) 201.31 231.08 247.31 256.81 259.90 257.18 259.90 247.34 232.74	0.406 0.406 a = Total Release Rate (L/s) 115.02 a = Controlled Release Rate Constant (L/s) 58.77 5	ha 1735.688 Uncontrolled Runoff (L/s) 0.00	<u>Σ</u> R= b = Total Release Rate (L/s) 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77	0.820	0.57 C = 6.01	
2015-development Stormw 20 Year Storm Event: 10 10 2015-development Stormw 2019 Year Storm Event: 10 2015 201 201 20 30 35 40 45 50 60 70	₀ = 1735.688 / (To intensity (mm/hr) 178.6 vater Managemer vater Managemer vater Managemer 178.6 142.9 120.0 103.8 91.9 22.6 75.1 69.1 64.0 55.9 49.8	Total Un-Con t (Uncontrolled C t + 6.014) ^{0.820} Uncontrolled Runoff (L/s) 115.02 t (WS-03) t + 6.014) ^{0.820} Controlled Runoff (L/s) 394.29 315.53 264.87 229.31 229.31 229.34 202.86 165.93 155.93	trolled = atchment WS-01) Controlled Release Rate Constant (L/s) 0.00 Storage Required Storage Volume (m ³) 201.31 231.08 247.31 258.81 259.85 259.50 257.18 252.99 247.34 232.74 214.91	0.406 0.406 a = Total Release Rate (L/s) 115.02 a = Controlled Release Rate Constant (L/s) 58.77 5	ha 1735.688 1735.688 Uncontrolled Runoff (L/s) 0.00 0.	<u>Σ</u> R= b = Total Release Rate (<i>L</i> /s) 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77	0.820	0.57 C = 6.01	
2015-development Stormw 10 Year Storm Event: 10 Time (min) 10 20 25 30 15 20 25 30 35 40 45 50 60 70 90	₀ = 1735.688 / (To Intensity (mm/hr) 178.6 ////////////////////////////////////	Total Un-Con t (Uncontrolled C ut (0.00000000000000000000000000000000000	trolled = atchment WS-01) Controlled Release Rate Constant (L/s) 0.00 Storage Required 201.31 231.08 247.31 235.81 259.35 259.35 259.50 257.18 252.99 247.34 232.74 214.91 172.83	0.406 0.406 a = Total Release Rate (L/s) 115.02 a = Controlled Release Rate Constant (L/s) 58.77 57 57 57 57 57 57 57 57 57	ha 1735.688 1735.688 Uncontrolled Runoff (L/s) 0.00 0.	<u>Σ</u> R= b = Total Release Rate (L/s) 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77	0.820	0.57 C = 6.01	
2015-development Stormw 20 Year Storm Event: 10 10 2015-development Stormw 2019 Year Storm Event: 10 2015 201 201 20 30 35 40 45 50 60 70	₀ = 1735.688 / (To intensity (mm/hr) 178.6 vater Managemer vater Managemer vater Managemer 178.6 142.9 120.0 103.8 91.9 22.6 75.1 69.1 64.0 55.9 49.8	Total Un-Con t (Uncontrolled C t + 6.014) ^{0.820} Uncontrolled Runoff (L/s) 115.02 t (WS-03) t + 6.014) ^{0.820} Controlled Runoff (L/s) 394.29 315.53 264.87 229.31 229.31 229.34 202.86 165.93 155.93	trolled = atchment WS-01) Controlled Release Rate Constant (L/s) 0.00 Storage Required Storage Volume (m ³) 201.31 231.08 247.31 258.81 259.85 259.50 257.18 252.99 247.34 232.74 214.91	0.406 0.406 a = Total Release Rate (L/s) 115.02 a = Controlled Release Rate Constant (L/s) 58.77 5	ha 1735.688 1735.688 Uncontrolled Runoff (L/s) 0.00 0.	<u>Σ</u> R= b = Total Release Rate (<i>L</i> /s) 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77	0.820	0.57 C = 6.01	
Di Year Storm Event: In Time (min) 10 Di Year Storm Event: In Di Year Storm Event: In Di Year Storm Event: In Time (min) 10 15 20 25 30 35 40 45 50 60 70 90 110	₀ = 1735.688 / (To Intensity (mm/hr) 178.6 vater Managemer action of the second	Total Un-Con t (Uncontrolled C 4 + 6.014) ^{0.820} Uncontrolled Runoff (L/s) 115.02 t (WS-03) 4 + 6.014) ^{0.820} Controlled Runoff (L/s) 394.29 315.53 264.87 229.31 202.86 182.35 165.93 177.73 177.75	trolled = atchment WS-01) Controlled Release Rate Constant (L/s) 0.00 Storage Required Storage Volume (m ³) 201.31 231.08 247.31 255.81 259.50 257.18 259.50 257.18 252.99 247.34 232.74 214.91 172.83 122.13	0.406 0.406 a = Total Release Rate (L/s) 115.02 a = Controlled Release Rate Constant (L/s) 58.77 5	ha 1735.688 1735.688 Uncontrolled Runoff (L/s) 0.00 0.	<u>Σ</u> R= b = Total Release Rate (L/s) 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77	0.820	0.57 C = 6.01	


Total Storage Required = 259.50 m³

refer to LRL Plan C.601

Summary of release Rates and Storage Volumes										
Catchment Area	Drainage Area (ha)	100-year Release Rate (L/s)	100-Year Required Storage (m3)	Total Available Storage (m3)						
WS-02 (Controlled)	0.794	58.77	259.50	260						
WS-01 (Uncontrolled)	0.406	115.02	0.00	0.00						
TOTAL	1.20	173.79	259.50	260.00						

APPENDIX G

Fire Hydrant Coverage

