780 Baseline Road Transportation Impact Assessment

Step 1 Screening Report
Step 2 Scoping Report
Step 3 Forecasting Report
Step 4 Strategy Report

Prepared for:

Theberge Developments Ltd. 1600 Laperriere Avenue, Suite 205 Ottawa ON K1Z 8P5

Prepared by:

6 Plaza Court Ottawa, ON K2H 7W1

May 2022

PN: 2021-083

Table of Contents

1		Screening	. 1
2		Existing and Planned Conditions	. 1
	2.1	Proposed Development	. 1
	2.2	Existing Conditions	. 3
	2.2	2.1 Area Road Network	. 3
	2.2	2.2 Existing Intersections	. 3
	2.2	2.3 Existing Driveways	. 4
	2.2	2.4 Cycling and Pedestrian Facilities	. 5
	2.2	2.5 Existing Transit	. 9
	2.2	2.6 Existing Area Traffic Management Measures	10
	2.2	2.7 Existing Peak Hour Travel Demand	11
	2.2	2.8 Collision Analysis	13
	2.3	Planned Conditions	16
	2.3	3.1 Changes to the Area Transportation Network	16
	2.3	3.2 Other Study Area Developments	17
3		Study Area and Time Periods	17
	3.1	Study Area	17
	3.2	Time Periods	
	3.3	Horizon Years	17
4		Exemption Review	
5		Development-Generated Travel Demand	18
	5.1	Mode Shares	
	5.2	Trip Generation	
	5.3	Trip Distribution	
	5.4	Trip Assignment	
6		Background Network Travel Demands	
	6.1	Transportation Network Plans	
	6.2	Background Growth	
	6.3	Other Developments	
	6.4	Trip Reductions from Existing Site Land Uses	
7		Demand Rationalization	
	7.1	2034 Future Background Operations	
	7.2	Demand Rationalization Conclusions	
8		Transportation Demand Management	
	8.1	Context for TDM	
	8.2	Need and Opportunity	
	8.3	TDM Program	
9		Transit	
	9.1	Transit Priority	
10		Network Intersection Design	
	10.1	Network Intersection Control	
	10.2	Network Intersection Design	28

	10.2.1	2034 Future Total Operations	28
	10.2.2	Network Intersection MMLOS	30
	10.2.3	Recommended Design Elements	31
11	Sumn	nary of Improvements Indicated and Modifications Options	31
12	Next	Steps	33
Lic	t of Fig	IIroc	
	_		4
_		Context Plan	
_		cept Plan	
_		ing Driveways	
_		y Area Pedestrian Facilities	
_		y Area Cycling Facilities	
_		ring Pedestrian Volumes	
_		ring Cyclist Volumes	
_		ing Study Area Transit Service	
		ring Study Area Transit Stops	
_		sting Traffic Counts	
_		dy Area Collision Records – Representation of 2015-2019	
_		seline Road Rapid Transit Corridor Standard Cross-Section – Clyde Ave to Prince of Wales Dr	
_		w Site Generation Auto Volumes	
Figu	ıre 14: Pas	ss-By Auto Volumes	22
Figu	ıre 15: Tri _l	o Reduction Volumes	24
Figu	ıre 16: 203	34 Future Background Volumes	25
Figu	ıre 17: 203	34 Future Total Volumes	29
T_	bla of 1	Tables	
	ble of 1		
		section Count Date	
		ng Intersection Operations	
		/ Area Collision Summary, 2015-2019	
		mary of Collision Locations, 2015-2019	
		r Avenue at Baseline Road Collision Summary	
		ine Road between Marson Street and Fisher Avenue Collision Summary	
Tab	le 7: Fishe	r Avenue between McCooey Lane and Baseline Road Collision Summary	16
Tab	le 8: Exem	ption Review	18
Tab	le 9: TRAN	IS Trip Generation Manual Recommended Mode Shares – Merivale	18
Tab	le 10: Pro	oosed Development Mode Shares	19
Tab	le 11: Trip	Generation Person Trip Rates by Peak Period	19
Tab	le 12: Tota	al Residential Person Trip Generation by Peak Period	19
		rnal Capture Rates	
		Generation by Mode	
		Survey Distribution – Merivale	
		Assignment	

Table 17: TRANS Regional Model Projections – Study Area Growth Rates	23
Table 18: Study Area Growth Rates Applied	23
Table 19: 2034 Future Background Intersection Operations	25
Table 20: Trip Generation by Transit Mode	28
Table 21: 2034 Future Total Intersection Operations	29
Table 22: Study Area Intersection MMLOS Analysis	30

List of Appendices

Appendix A – TIA Screening Form and Certification Form

Appendix B – Turning Movement Count Data

Appendix C – Synchro Intersection Worksheets – Existing Conditions

Appendix D - Collision Data

Appendix E – TRANS Model Plots

Appendix F – Background development Volumes

Appendix G – Synchro Intersection Worksheets – 2034 Future Background Conditions

Appendix H – Synchro Intersection Worksheets – 2034 Future Total Conditions

Appendix I – TDM Checklist

Appendix J – MMLOS Analysis

1 Screening

This study has been prepared according to the City of Ottawa's 2017 Transportation Impact Assessment (TIA) Guidelines. Accordingly, a Step 1 Screening Form has been prepared and is included as Appendix A, along with the Certification Form for the TIA Study PM. As shown in the Screening Form, a TIA is required including the Network Impact Component. This study has been prepared to support an Official Plan amendment and zoning by-law amendment.

2 Existing and Planned Conditions

2.1 Proposed Development

The existing site, located at 780 Baseline Road, is zoned as General Mixed Use (GM) and includes a business strip consisting of retail, service, and restaurant land uses with surrounding surface parking lots. The proposed development is anticipated to include a total of 868 dwelling units and 31,169 sq. ft of commercial space in three mixed-used buildings and is to be constructed across multiple phases with the anticipated full build-out and occupancy horizon is 2034. The first phase is understood to consist of constructing a mixed-use building comprising a 25-storey tower at the south of the parcel in the present location of the surface parking lot. The remaining two phases are understood to include the demolition of the existing business strip and the construction of two mixed-use buildings, one 25-storey tower adjacent to the residential lands to the west, and a 29-storey tower at the Baseline Road and Fisher Avenue intersection. The development proposes the use of an existing right-in/right-out access onto Baseline Road and an existing full-movements access on Fisher Avenue and proposes the addition of one full-movements access on Fisher Avenue to the south of the existing access. A total of 376 residential parking, 157 visitor parking, 62 retail parking, and 404 bicycle parking spaces will be provided. The site is located within the Carleton Heights Secondary Plan area. Figure 1 illustrates the Study Area Context. Figure 2 illustrates the proposed concept plan.



Figure 1: Area Context Plan

Source: http://maps.ottawa.ca/geoOttawa/ Accessed: May 11, 2022

2.2 Existing Conditions

2.2.1 Area Road Network

Baseline Road: Baseline Road is a City of Ottawa arterial road with a divided four-lane urban cross-section. Sidewalks are provided on the south side of the roadway, at intersections and bus stops on the north side of the road to the west, and on both sides of the road to the east of Prince of Wales Drive. The posted speed limit is 60 km/h within the study area and the City-protected right of way is 44.5 metres. Baseline Road is designated as a truck route.

Heron Road: Heron Road is a City of Ottawa arterial road with a divided six-lane urban cross-section, including bus lanes and sidewalks on both sides of the road. Bike lanes are present over the Heron Bridge. The posted speed limit is 60 km/h within the study area and the City-protected right of way is 44.5 metres. Heron Road is designated as a truck route.

Fisher Avenue: Fisher Avenue is a City of Ottawa arterial road with a two-lane rural cross-section with paved shoulders on both sides of the road. North of Baseline Road, a sidewalk is present on the west side of the road and sidewalks are present on both sides of the road to the south. The posted speed limit is 50 km/h, the City-protected right of way is 34.0 metres north of Baseline Road, and the measured right of way varies between 24.5 and 30.0 metres south of Baseline Road within the study area. Fisher Avenue is designated as a truck route.

Prince of Wales Drive: Prince of Wales Drive is a City of Ottawa arterial road with a two-lane semi-urban cross-section to the north and a two-lane urban cross-section to the south of Baseline Road. To the north, a paved shoulder is provided on the west side of the road and a curbside bike lane with a sidewalk is provided on the east side of the road within the study area. South of Baseline Road, sidewalks are provided on both sides of the road and bike lanes transition to cycletracks. The posted speed limit is 60 km/h north of Baseline Road and 50 km/h south of Baseline Road. The city-protected right of way is 26.0 metres to the north, and the measured right of way varies between 28.5 and 73.5 metres to the south of Baseline Road. Prince of Wales Drive is designated as a truck route.

Deer Park Road: Deer Park Road is a City of Ottawa collector road with a two-lane urban cross-section. Sidewalks are present on both sides of the road east of Millbrook Crescent and on the south side of the road to the west. The posted speed limit is 40 km/h, and the City-protected right of way is 26.0 metres.

Dynes Road: Dynes Road is a City of Ottawa collector road with a two-lane urban cross-section. Sidewalks and bike lanes are present on both sides of the road. The posted speed limit is 50 km/h, and the measured right of way is 18.0 metres.

Sunnycrest Drive: Sunnycrest Drive is a City of Ottawa local road with a two-lane urban cross-section with onstreet parking permitted on both sides of the road. The posted speed limit is 40 km/h and the measured right of way is 20.0 metres.

Hilliard Avenue: Hilliard Avenue is a City of Ottawa local road with a two-lane urban cross-section with on-street parking permitted on both sides of the road. The posted speed limit is 40 km/h and the measured right of way is 20.0 metres.

2.2.2 Existing Intersections

The existing signalized area intersections within 400 metres of the site have been summarized below and comprise only Baseline Road at Fisher Avenue. The intersection of Baseline Road/Heron Road at Prince of Wales Drive has additionally been included as a key intersection for the purposes of this study:

Fisher Avenue at Baseline Road

The intersection of Fisher Avenue at Baseline Road is a signalized intersection. The northbound and southbound approaches each consist of an auxiliary left-turn lane, two through lanes, and a channelized auxiliary right-turn lane. The eastbound approach consists of an auxiliary left-turn lane, two through lanes, and a channelized auxiliary right turn lane, and the westbound approach consists of two auxiliary left-turn lanes, a through lane and a shared through/channelized right-turn lane. Eastbound and westbound U-turn movements are prohibited, and trucks are prohibited from making westbound left turns.

Prince of Wales Drive at Baseline Road/Heron Road

The intersection of Prince of Wales Drive at Baseline Road and Heron Road is a signalized intersection. The northbound and southbound approaches each consist of an auxiliary left-turn lane, two through lanes, a floating bike lane, and a channelized auxiliary right-turn lane. The eastbound approach consists of an auxiliary left-turn lane, two through lanes, an auxiliary through lane, and a channelized auxiliary right-turn lane, and the westbound approach consists of two auxiliary left-turn lanes, two through lanes, a transit queue-jump lane, and a channelized auxiliary right-turn lane. No turn restrictions were noted.

Fisher Avenue at Deer Park Road / Dynes Road The intersection of Fisher Avenue at Deer Park Road/Dynes Road is a signalized intersection. The northbound approach consists of a shared left-turn/through lane and a right-turn lane, and the southbound approach consists of a shared left-turn/through lane and an auxiliary through/right-turn lane. The eastbound and westbound approaches each consist of a shared all-movement lane. Cycle tracks are provided on all approaches. No turn restrictions were noted.

2.2.3 Existing Driveways

Within 200 metres of the site accesses, eight driveways semi-detached and detached dwellings are located on the west side of Baseline Road. Eight driveways semi-detached and detached dwellings are present on the south side of Fisher Avenue. None of the driveways within the area of consideration are significant traffic generators. Figure 3 illustrates the existing driveways.

Source: http://maps.ottawa.ca/geoOttawa/ Accessed: May 11, 2022

2.2.4 Cycling and Pedestrian Facilities

Figure 4 illustrates the pedestrian facilities in the study area and Figure 5 illustrates the cycling facilities.

Sidewalks are provided along the south side of Baseline Road and of Deer Park Road west of Millbrook Crescent, on the east side of Prince of Wales Drive, on the west side of Fisher Avenue north of Baseline Road, on both sides of Fisher Avenue south of Baseline Road, Dynes Road, and Deer Park Road east of Millbrook Crescent. Sidewalks are also present at intersections and bus stops on the north side of Baseline Road to the west of Fisher Avenue.

A paved shoulder is present on both sides of Fisher Avenue except through the intersection with Baseline Avenue where bike lanes are present and on the east side of the road between Malibu Terrace and the auxiliary northbound right turn lane taper at Baseline Road where a cycletrack is present. Cycletracks are also present at the Fisher Avenue at Deer Park Road/Dynes Road intersection, and bike lanes are present along Dynes Road.

Fisher Avenue, Prince of Wales Drive, Baseline Road, and Heron Road are spine routes. Baseline Road, Heron Road and Prince of Wales Drive are cross-town bikeways. Malibu Terrace west of Fisher Avenue, Hilliard Avenue north of Malibu Terrace, Sunnycrest Drive, Deer Park Road, Dynes Road, and McCooey Lane are local routes.

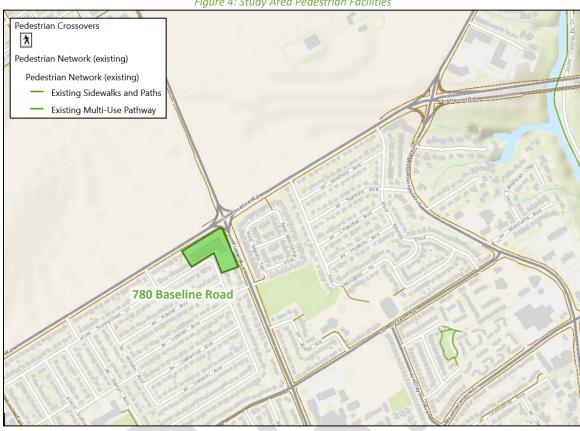


Figure 4: Study Area Pedestrian Facilities

Source: http://maps.ottawa.ca/geoOttawa/ Accessed: May 11, 2022

Figure 5: Study Area Cycling Facilities

Source: http://maps.ottawa.ca/geoOttawa/ Accessed: May 11, 2022

Pedestrian and cyclist volumes included in study area intersection counts, presented in Section 2.2.7, have been compiled and are illustrated in Figure 6 and Figure 7 respectively.

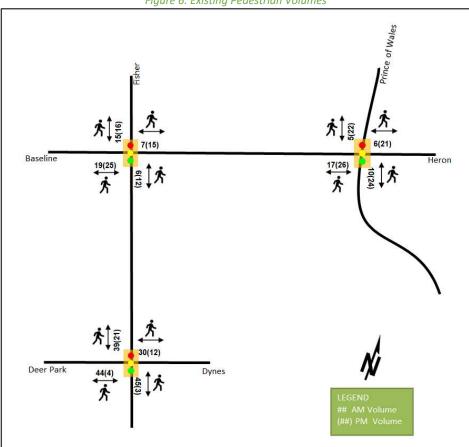


Figure 6: Existing Pedestrian Volumes

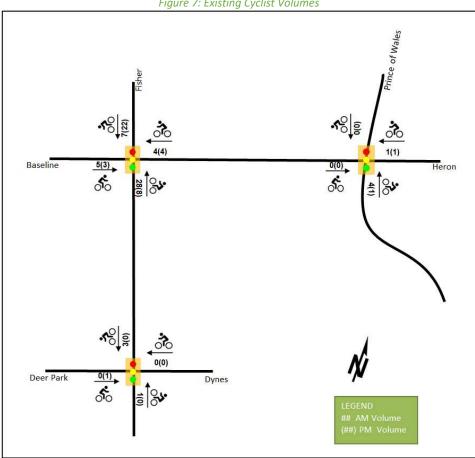
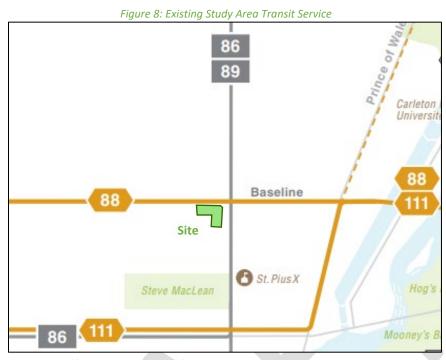


Figure 7: Existing Cyclist Volumes


2.2.5 Existing Transit

Within the study area, routes #86 and #89 travel along Fisher Avenue, the route #88 travels along Baseline Road and Heron Road, and route #111 travels along Prince of Wales Drive, continuing along Heron Road. Primary stops are located at Marson Street at Baseline Road and Fisher Avenue at Baseline Road intersections. The frequency of these routes within proximity of the proposed site currently are:

- Route #86 15-minute service in the peak period/direction, 30-minute service all day
- Route #88 10-12-minute service in the peak period/direction, 15-minute service all day
- Route #89 15-minute service in the peak period/direction, 30-minute service all day
- Route # 111 15-minute service all day

Figure 8 illustrates the transit system map in the study area and Figure 9 illustrates nearby transit stops.

Source: http://www.octranspo.com/ Accessed: May 11, 2022

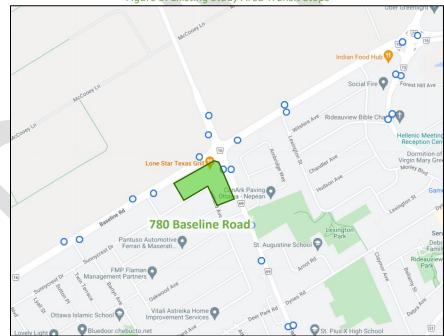


Figure 9: Existing Study Area Transit Stops

Source: http://www.octranspo.com/ Accessed: May 11, 2022

2.2.6 Existing Area Traffic Management Measures

The primary traffic calming measure within the study area is on-road messaging stating the speed limit on Sunnycrest Drive.

2.2.7 Existing Peak Hour Travel Demand

Existing turning movement counts were acquired from the City of Ottawa for the existing Study Area intersection. Table 1 summarizes the intersection count dates.

Table 1: Intersection Count Date

Intersection	Count Date
Fisher Avenue at Baseline Road	Wednesday, August 03, 2016
Prince of Wales Drive at Baseline Road/Heron Road	Wednesday, March 04, 2020
Fisher Avenue at Deer Park Road/Dynes Road	Wednesday, March 09, 2016

Figure 10 illustrates the existing traffic counts, balanced along the Baseline Road and Fisher Avenue corridors, and Table 2 summarizes the existing intersection operations. At the time of the Prince of Wales Drive at Baseline Road/Heron Road turning movement count, the Hog's Back Bridge was closed, and it is noted that the count includes detour volumes from this closure. The level of service for signalized intersections is based on the volume to capacity ratio (v/c) calculation for individual lane movements and HCM 2000 v/c calculations for the overall intersection. Detailed turning movement count data is included in Appendix B and the Synchro worksheets are provided in Appendix C.

Figure 10: Existing Traffic Counts

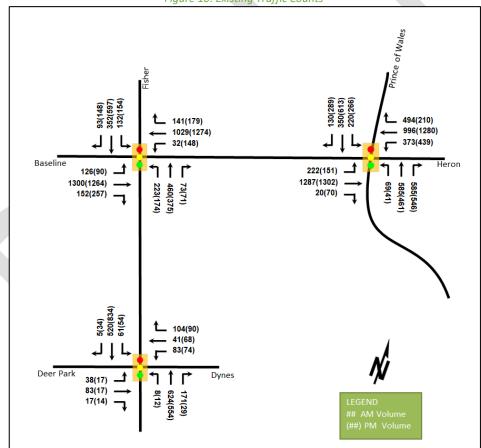


Table 2: Existing Intersection Operations

Intersection	EBL	LOS	V/C	Doloy (c)					
		_		Delay (s)	Q (95 th)	LOS	V/C	Delay (s)	Q (95 th)
		В	0.70	73.0	55.3	В	0.64	74.7	43.2
	EBT	Е	0.95	49.6	#272.2	F	1.08	86.2	#266.5
	EBR	Α	0.23	3.8	12.2	Α	0.45	18.6	55.9
	WBL	Α	0.23	82.3	m2.7	Α	0.57	64.0	32.0
Fisher Avenue	WBT/R	F	1.14	91.0	m112.3	F	1.26	156.8	#328.2
at Baseline	NBL	D	0.86	78.6	#100.0	D	0.85	86.3	#86.3
Road	NBT	С	0.73	53.6	81.1	В	0.65	53.7	70.5
Signalized	NBR	Α	0.18	0.9	0.0	А	0.21	2.4	2.3
	SBL	С	0.76	79.3	#62.8	C	0.79	79.9	#72.4
	SBT	С	0.76	62.4	66.7	F	1.07	106.8	#136.5
	SBR	Α	0.25	1.4	0.0	Α	0.43	13.9	24.6
	Overall	E	0.98	62.8	-	F	1.07	99.6	-
	EBL	F	1.28	198.6	m#93.0	F	1.63	361.0	#107.8
	EBT/R	F	1.16	106.8	m#179.4	F	1.20	139.0	#206.3
	WBL	D	0.82	66.1	70.2	F	1.24	174.3	#114.8
Prince of	WBT	F	1.87	426.7	#268.6	F	1.59	305.7	#319.7
Wales Drive at Baseline	WBR	D	0.87	25.5	#90.8	А	0.42	7.1	19.8
Road/Heron	NBL	Α	0.53	69.3	34.4	Α	0.32	62.4	24.0
Road	NBT	D	0.82	56.2	105.8	В	0.62	47.5	81.0
Signalized	NBR	F	1.05	71.4	#177.9	F	1.10	95.6	#196.2
Signanzea	SBL	F	1.06	129.1	#120.1	F	1.13	144.4	#145.1
	SBT/R	Α	0.53	37.8	78.7	E	0.96	61.8	#172.4
	Overall	F	1.03	144.8	-	F	1.34	156.2	-
Ciaban Arrani-	EB	Α	0.44	26.4	31.2	А	0.18	23.0	14.2
Fisher Avenue	WB	В	0.69	30.3	46.5	С	0.80	48.3	62.2
at Deer Park Road/Dynes	NBL/T	В	0.70	18.7	#148.5	Α	0.57	12.9	105.0
Road	NBR	Α	0.23	2.5	9.1	Α	0.03	1.6	2.4
Signalized	SBL	Α	0.44	11.6	46.4	Α	0.55	11.3	77.7
Signunzeu	Overall	В	0.69	16.8	-	В	0.62	16.7	-

Saturation flow rate of 1800 veh/h/lane

Notes: Queue is measured in metres

Peak Hour Factor = 0.90

V/C = volume-to-capacity ratio

m = metered queue

= volume for the 95th %ile cycle exceeds capacity

Generally, the study area intersections experience capacity issues and significant delays during both AM and PM peak hours.

At the intersection of Fisher Avenue at Baseline Road, movements that are over theoretical capacity and may be subject to high delays and extended queues are the westbound shared through/right-turn movement during AM peak hour and the eastbound through, westbound shared through/right-turn, and southbound through movements during PM peak hour. Extended queues may also be exhibited on the eastbound through movement during AM peak hour, and on the northbound and southbound left-turn movements during both peak hours. High delays may be experienced on the westbound left-turn movement during AM peak hour and on the northbound left-turn movement during PM peak hour. The overall intersection operates over theoretical capacity with high delays during the PM peak hour.

The intersection of the Prince of Wales Drive at Baseline Road/Heron Road may exhibit extended queues on the westbound right-turn movement during AM peak hour and on the southbound shared through/right-turn movement during PM peak hour. The eastbound and southbound left-turn, eastbound shared through right-turn,

westbound through, and northbound right-turn movements are over theoretical capacity and may be subject to high delays and extended queues during both peak hours as with the westbound left-turn during PM peak hour. The overall intersection operates over theoretical capacity and may be subject to high delays during both peak hours.

At the intersection of Fisher Avenue at Deer Park Road/Dynes Road intersection, extended queues may be exhibited on the northbound left-turn/through movements during AM peak hour.

2.2.8 Collision Analysis

Collision data have been acquired from the City of Ottawa open data website (data.ottawa.ca) for five years prior to the commencement of this TIA for the surrounding study are road network. Table 3 summarizes the collision types and conditions in the study area, Figure 11 illustrates the intersections and segments analyzed, and Table 4 summarizes the total collisions for each of these locations. Collision data are included in Appendix D.

Table 3: Study Area Collision Summary, 2015-2019

		Number	%
Total (Collisions	133	100%
	Fatality	1	1%
Classification	Non-Fatal Injury	24	18%
	Property Damage Only	108	82%
	Angle	8	6%
	Rear end	87	65%
	Sideswipe	17	13%
Initial Impact Type	Turning Movement	8	6%
	SMV Unattended	1	1%
	SMV Other	8	6%
	Other	4	3%
	Dry	95	71%
	Wet	19	14%
Road Surface Condition	Loose Snow	8	6%
Road Surface Condition	Slush	3	2%
	Packed Snow	5	4%
	Ice	3	2%
Pedestrian Involved		4	3%
Cyclists Involved		1	1%

Table 4: Summary of Collision Locations, 2015-2019

	Number	%
Intersections / Segments	133	100%
Fisher Ave @ Baseline Rd	81	61%
Fisher Ave @ Malibu Ter	7	5%
Baseline Rd btwn Marson St & Fisher Ave	12	9%
Baseline Rd btwn Fisher Ave & Lexington St	10	8%
Fisher Ave btwn McCooey Lane & Baseline Rd	13	10%
Fisher Ave btwn Baseline Rd & Malibu Ter	10	8%

Within the study area, the intersection of Fisher Avenue at Baseline Road and segments of Baseline Road between Marson Street and Fisher Avenue, and Fisher Avenue between McCooey Lane and Baseline Road are noted to have experienced higher collisions than other locations. Table 5, Table 6, and Table 7summarize the collision types and conditions for each of these locations respectively.

Table 5: Fisher Avenue at Baseline Road Collision Summary

		Number	%
Total	Collisions	81	100%
	Fatality	1	1%
Classification	Non-Fatal Injury	9	11%
	Property Damage Only	71	88%
	Angle	2	2%
	Rear end	59	73%
	Sideswipe	11	14%
Initial Impact Type	Turning Movement	2	2%
	SMV Unattended	1	1%
	SMV Other	5	6%
	Other	1	1%
	Dry	60	74%
	Wet	7	9%
Road Surface Condition	Loose Snow	7	9%
Road Surface Condition	Slush	2	2%
	Packed Snow	2	2%
	Ice	3	4%
Pedestrian Involved	Pedestrian Involved		4%
Cyclists Involved		1	1%

The Fisher Avenue at Baseline Road intersection had a total of 81 collisions during the 2015-2019 time period, including one angle collision involving a fatality. The fatality occurred during the morning at 7:46 am in dry driving conditions in November 2018, where a pedestrian was killed as a result of a two-vehicle collision. Seventy-one collisions had property damage only and the remaining nine having non-fatal injuries. The collision types are most represented by rear end with 59, followed by 11 sideswipe collisions, five SMV other collisions, two collisions each for angle and turning movement, and with the remaining collisions as SMV unattended and other. Rear end collisions are typical of congested areas and the sideswipe collisions may be influenced by the channelized right-turn runout lanes and merging movements required around the intersection. No further patterns are noted. Weather conditions do not affect collisions at this location.

Table 6: Baseline Road between Marson Street and Fisher Avenue Collision Summary

		Number	%
Total Collisions		12	100%
	Fatality	0	0%
Classification	Non-Fatal Injury	4	33%
	Property Damage Only	8	67%
Initial Impact Type	Rear end	10	83%
Initial Impact Type	Sideswipe	2	17%
	Dry	7	58%
Road Surface Condition	Wet	4	33%
	Packed Snow	1	8%
Pedestrian Involved		0	0%
Cyclists Involved	0	0%	

The segment of Baseline Road between Marson Street and Fisher Avenue had a total of 12 collisions during the 2015-2019 time period, with eight involving property damage only and the remaining four having non-fatal injuries. The collision types are most represented by rear end with ten collisions, followed by two sideswipe

collisions. Rear end collisions are typical of congested conditions. Weather conditions are not considered to affect collisions at this location.

Table 7: Fisher Avenue between McCooey Lane and Baseline Road Collision Summary

		Number	%
Tota	l Collisions	13	100%
	Fatality	0	0%
Classification	Non-Fatal Injury	3	23%
	Property Damage Only	10	77%
	Rear end	7	54%
Initial Impact Type	Sideswipe	2	15%
	Turning Movement	2	15%
	SMV Other	2	15%
	Dry	8	62%
Road Surface Condition	Wet	3	23%
Road Surface Colldition	Slush	1	8%
	Packed Snow	1	8%
Pedestrian Involved		0	0%
Cyclists Involved		0	0%

The segment of Fisher Avenue between McCooey Lane and Baseline Road had a total of 13 collisions during the 2015-2019 time period, with ten involving property damage only and the remaining three having non-fatal injuries. The collision types are most represented by rear end with the remaining collisions split between sideswipe, turning movement, and SMV other. As previously stated, rear end collisions are typical of congested areas and no further identifiable patterns are evident in the collision types. Weather conditions are not considered to affect collisions at this location.

2.3 Planned Conditions

2.3.1 Changes to the Area Transportation Network

The Transportation Master Plan's (TMP) Rapid Transit and Transit Priority Network (RTTP) identifies Bus Rapid Transit (BRT) along Baseline Road and Heron Road, and isolated transit priority measures along Fisher Avenue within the Affordable Network diagram. Isolated transit priority measures are additionally noted in the Network Concept diagram on Prince of Wales Drive south of Baseline Road.

The timing of the Baseline Road Rapid Transit Corridor project is subject to the timing of funding sources. The standard cross-section for the segment of Baseline Road west of Prince of Wales Drive from the Baseline Road Rapid Transit Corridor Planning and Environmental Assessment Study is illustrated in Figure 12. It is noted that improved cycling infrastructure is included as part of the project.

The Baseline Road Rapid Transit Corridor project is assumed to be build-out prior to 2034 and will be analyzed in the future horizons. The future geometry is based upon the preliminary detailed design from the Baseline Road Rapid Transit Corridor project for the Baseline Road at Fisher Avenue intersection provided by the City, and the 1111 Prince of Wales Drive TIA (Novatech, 2020) for the intersection Baseline Road/Heron Road at Price and Price of Wales Drive intersection.

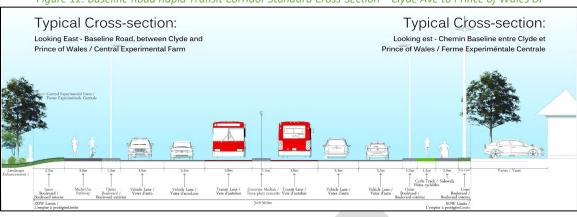


Figure 12: Baseline Road Rapid Transit Corridor Standard Cross-Section – Clyde Ave to Prince of Wales Dr

2.3.2 Other Study Area Developments

1111 Prince of Wales Drive

The proposed development includes a site plan for additional parking spaces for the office building. The reconfiguration is expected to provide a total of 319 parking spaces. No new trips are expected to / from the site, and the site trips will be reassigned due to the new driveway. (Novatech, 2020)

3 Study Area and Time Periods

3.1 Study Area

The study area will include the intersections of Fisher Avenue at Baseline Road, Prince of Wales Drive at Baseline Road/Heron Road, Fisher at Deer Park Road/Dynes Road, and the newly proposed site accesses onto Baseline Road and Fisher Avenue.

The boundary roads will be Baseline Road, Fisher Avenue, Sunnycrest Drive, and Hilliard Avenue. TRANS screenlines SL20 and SL27 are located to the east along the Rideau River/Canal and will not be assessed in this study.

3.2 Time Periods

As the proposed development is mixed-use development with residential units and commercial units, the AM and PM peak hours will be examined.

3.3 Horizon Years

The anticipated build-out year is 2034 for the entire site and this single horizon will be reviewed in support of the OPA/ZBA.

4 Exemption Review

Table 8 summarizes the exemptions for this TIA.

Table 8: Exemption Review

Module	Element	Explanation	Exempt/Required
Design Review Compo	nent		·
4.1 Development	4.1.2 Circulation and Access	Only required for site plans	Required at Site Plan Application
Design	4.1.3 New Street Networks	Only required for plans of subdivision	Exempt
	4.2.1 Parking Supply	Only required for site plans	Required at Site Plan Application
4.2 Parking	4.2.2 Spillover Parking	Only required for site plans where parking supply is 15% below unconstrained demand	Exempt. May be required at Site Plan Application
Network Impact Comp	onent		
4.5 Transportation Demand Management	All Elements	Not required for site plans expected to have fewer than 60 employees and/or students on location at any given time	Required
4.6 Neighbourhood Traffic Management	4.6.1 Adjacent Neighbourhoods	Only required when the development relies on local or collector streets for access and total volumes exceed ATM capacity thresholds	Exempt
4.8 Network Concept		Only required when proposed development generates more than 200 person-trips during the peak hour in excess of equivalent volume permitted by established zoning	Exempt

5 Development-Generated Travel Demand

5.1 Mode Shares

Examining the mode shares recommended in the TRANS Trip Generation Manual (2020) for the subject district, derived from the most recent National Capital Region Origin-Destination survey (OD Survey), the existing average district mode shares by land use for Merivale have been summarized in Table 9.

Table 9: TRANS Trip Generation Manual Recommended Mode Shares – Merivale

Travel Mode	Multi-Unit	(High-Rise)	Commercial Generator	
Travel Widde	AM	PM	AM	PM
Auto Driver	41%	41%	71%	61%
Auto Passenger	6%	11%	19%	16%
Transit	42%	33%	1%	8%
Cycling	2%	2%	0%	1%
Walking	8%	13%	9%	14%
Total	100%	100%	100%	100%

As a result of the planned cycling and Baseline Road Rapid Transit Corridor project, along which a station at Fisher Avenue will be provided, the site transit and cycling mode shares are expected to surpass the values recommended for the Merivale area. Table 10 summarizes the proposed mode share targets for the subject development.

Table 10: Proposed Development Mode Shares

Travel Mode	Multi-Unit	(High-Rise)	Commercial Generator		
	AM	PM	AM	PM	
Auto Driver	29%	29%	61%	51%	
Auto Passenger	6%	11%	19%	16%	
Transit	52%	43%	11%	18%	
Cycling	4%	4%	0%	1%	
Walking	8%	13%	9%	14%	
Total	tal 100% 100%		100%	100%	

5.2 Trip Generation

This TIA has been prepared using the vehicle and person trip rates for the residential dwellings using the TRANS Trip Generation Manual (2020) and the vehicle trip rates and derived person trip rates for commercial component from the ITE Trip Generation Manual 10th Edition (2017) using the City-prescribed conversion factor of 1.28. Table 11 summarizes the person trip rates for the proposed residential land use for each peak period and the person trip rates for the non-residential land use by peak hour.

Table 11: Trip Generation Person Trip Rates by Peak Period

Land Use	Land Use Land Use Code Peak Period		Vehicle Trip Rate	Person Trip Rates		
Marie: Heie (Hiele Diee)	221 & 222	AM	-	0.80		
Multi-Unit (High-Rise)	(TRANS)	PM	-	0.90		
Land Use	Land Use Code	Peak Hour	Vehicle Trip Rate	Person Trip Rates		
Land Use Retail (<40k sq. ft.)	Land Use Code 822	Peak Hour AM	Vehicle Trip Rate 2.36	Person Trip Rates 3.02		

Using the above person trip rates, the total person trip generation has been estimated. Table 12 summarizes the total person trip generation for the residential land use and for the non-residential land use.

Table 12: Total Residential Person Trip Generation by Peak Period

Land Use		AM Peak Period			PM Peak Period			
	Units	ln	Out	Total	In	Out	Total	
Multi-Unit (High-Rise)	868	215	479	694	453	328	781	
Land Use	Unite /CEA		AM Peak Hou	ır	PM Peak Hour			
Land Use	Units / GFA	In	Out	Total	In	Out	Total	
Retail (<40k sq. ft.)	31,169 SF	56	38	94	131	131	261	

Internal capture rates from the ITE Trip Generation Handbook 3rd Edition have been assigned to the development's retail component for mixed-use developments. The rates summarized in Table 13 represent the percentage of trips to/from the retail use based on the residential component.

Table 13: Internal Capture Rates

Land Use	Al	M	PM	
Land Ose	In	Out	ln	Out
Residential to/from Retail	17%	14%	10%	26%

Pass-by reductions applied to the retail trip generation at a rate of 35% have been included, a value taken as a moderately conservative interpretation from the rates presented in the ITE Trip Generation Handbook 3rd Edition.

Using the above mode share targets for a BRT area, the internal capture and pass-by rates, and the person trip rates, the person trips by mode have been projected. Trip generation by peak hour has been forecasted using the

prescribed peak period conversion factors presented in the TRANS Trip Generation Manual (2020) for the residential component. Table 14 summarizes the total trip generation.

Table 14: Trip Generation by Mode

_			M Peak F		on by wice	I .	И Peak F	lour	
·	ravel Mode	Mode Share	In	Out	Total	Mode Share	In	Out	Total
	Auto Driver	29%	30	66	96	29%	57	42	99
ie (je	Auto Passenger	6%	6	14	20	11%	22	16	38
Multi-Unit (High-Rise)	Transit	52%	62	137	199	43%	92	66	158
ulti igh	Cycling	4%	5	11	16	4%	9	6	15
ΣΞ	Walking	8%	10	22	32	13%	31	22	53
	Total	100%	108	240	363	100%	199	144	363
	Auto Driver	61%	18	13	31	51%	39	32	71
	Auto Passenger	19%	9	6	15	16%	19	15	34
sq. ft.)	Transit	11%	5	4	9	18%	21	17	39
8	Cycling	0%	0	0	0	1%	1	1	2
×,	Walking	9%	4	3	7	14%	17	14	30
Retail (<40k	Internal Capture	varies	-10	-5	-15	varies	-13	-34	-47
Ret	Pass-by	35%	-10	-7	-17	35%	-21	-17	-38
	Total	100%	36	26	62	100%	97	80	176
	Auto Driver	-	48	79	127	-	96	74	170
	Auto Passenger	-	15	20	35	-	41	31	72
Total	Transit	-	67	141	208	-	113	83	197
Ļ	Cycling	-	5	11	16	-	10	7	17
	Walking	-	14	25	39	-	48	36	83
	Total	-	144	266	425	-	296	224	539

As shown above, a total of 127 AM and 170 PM new peak hour two-way vehicle trips are projected as a result of the proposed development.

5.3 Trip Distribution

To understand the travel patterns of the subject development, the OD Survey has been reviewed to determine the travel, and these patterns were applied based on the build-out of Merivale. Table 15 below summarizes the distributions.

Table 15: OD Survey Distribution – Merivale

% of Trips
30%
25%
20%
25%
100%

5.4 Trip Assignment

Using the distribution outlined above, turning movement splits, and access to major transportation infrastructure, the trips generated by the site have been assigned to the study area road network. Table 16 summarizes the proportional assignment to the study area roadways, and Figure 13 and Figure 14 illustrate the new site generated volumes and pass-by volumes, respectively.

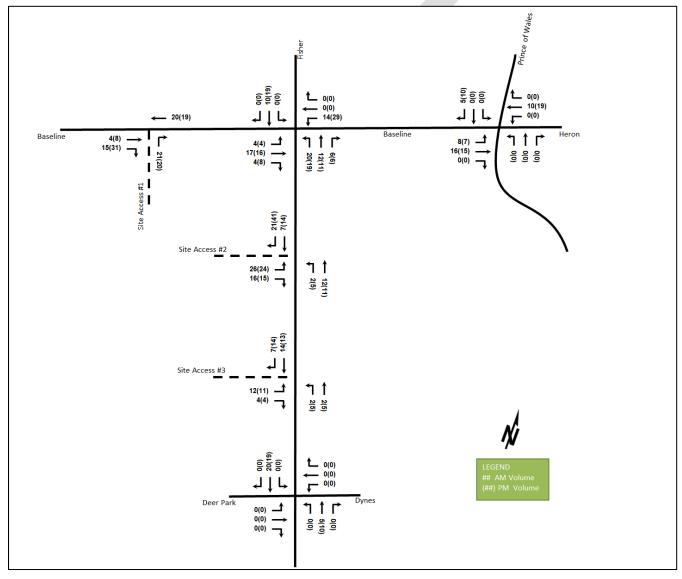


Table 16: Trip Assignment

To/From	Inbound Via	Outbound Via
North	20% Fisher Ave (N)	20% Fisher Ave (N)
North 1	10% Prince of Wales Dr (N)	10% Prince of Wales Dr (N)
South	10% Fisher Ave (S)	25% Fisher Ave (S)
South	15% Baseline Rd (W)	25% FISHEL AVE (3)
East	20% Heron Rd (E)	20% Heron Rd (E)
West	25% Baseline Rd (W)	25% Baseline Rd (W)
Total	100%	100%

Figure 13: New Site Generation Auto Volumes

95

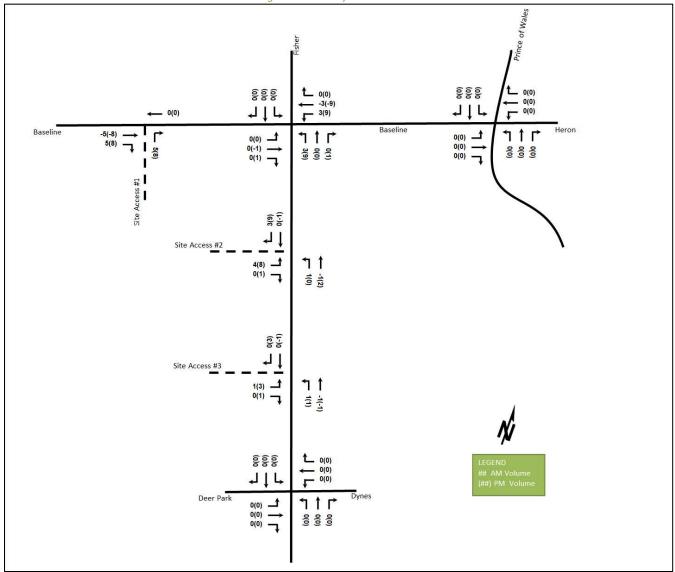


Figure 14: Pass-By Auto Volumes

6 Background Network Travel Demands

6.1 Transportation Network Plans

The transportation network plans were discussed in Section 2.3. The Baseline Road Rapid Transit Corridor project is the only confirmed project within the study and will be incorporated into the road network analysis. The future geometry is based upon the preliminary detailed design from the Baseline Road Rapid Transit Corridor project for the Baseline Road at Fisher Avenue intersection provided by the City, and the 1111 Prince of Wales Drive TIA (Novatech, 2020) for the intersection of Prince of Wales Drive at Baseline Road/Heron Road. No other improvements impacting the transportation network elements or traffic were noted within the study area.

6.2 Background Growth

A review of the background projections from the City's TRANS Regional Model for the 2011 and 2031 horizons was completed to determine the background growth for each of the study area roadways. The background TRANS model growth rates are summarized in Table 17 and the TRANS model plots are provided in Appendix E.

Table 17: TRANS Regional Model Projections – Study Area Growth Rates

Chunch	TRANS Rate				
Street	Eastbound	Westbound			
Baseline Road	-0.28%	0.07%			
Heron Road	-0.05%	0.41%			
	Northbound	Southbound			
Prince of Wales Drive	0.77%	0.72%			
Fisher Avenue	0.61%	0.12%			

The growth rates derived from the 2011 and 2031 TRANS model horizons are projected to be positive in the westbound direction along Baseline Road and Heron Road, and in the northbound and southbound directions along Prince of Wales Drive and Fisher Avenue. Annual growth rates rounded to the nearest 0.25% will be applied to the mainline volumes of the appropriate study area roads in the AM peak hour and reversed in the PM peak hour. Table 18 summarizes the growth rates applied.

Table 18: Study Area Growth Rates Applied

rable 10. Stady rived Growth Rates ripplied										
Street	AM Pea	k Hour	PM Peak Hour							
Street	Eastbound	Westbound	Eastbound	Westbound						
Baseline Road	-	-	-	-						
Heron Road	-	0.50%	0.50%	-						
	Northbound	Southbound	Northbound	Southbound						
Prince of Wales Drive	Wales Drive 0.75%		0.75%	0.75%						
Fisher Avenue	0.50%	0.25%	0.25%	0.50%						

6.3 Other Developments

The background developments explicitly considered in the background conditions include 1111 Prince of Wales Drive and these volumes have been provided in Appendix F.

6.4 Trip Reductions from Existing Site Land Uses

The existing site comprises a 3,247 m² of commercial building and is estimated to produce 98 AM two-way auto trips in the AM peak hour and 169 two-way auto trips in the PM peak hour based on the existing land uses and the recommended area mode shares. These auto trips were assigned to the road network using the distribution presented in Section 5.3 and Figure 15 illustrates the trip reduction volumes from existing site.

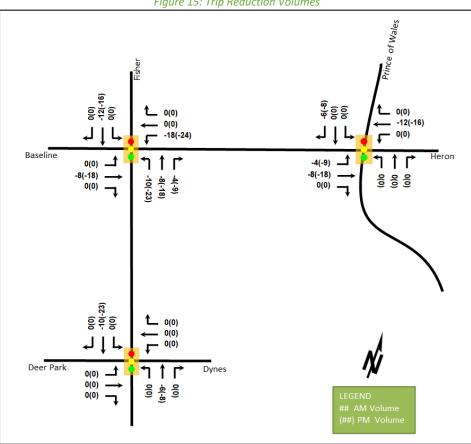


Figure 15: Trip Reduction Volumes

Demand Rationalization

2034 Future Background Operations

Figure 16 illustrates the 2034 background volumes and Table 19 summarizes the 2034 background intersection operations which include signal timing adjustments for the new intersection approach configurations including the BRT corridor. The Prince of Wales Drive at Baseline Road/Heron Road intersection counts have been factored to remove the detour volumes. The level of service for signalized intersections is based on v/c calculations for individual lane movements and HCM 2000 v/c calculations for the overall intersection. The synchro worksheets for the 2034 future background horizon are provided in Appendix G.

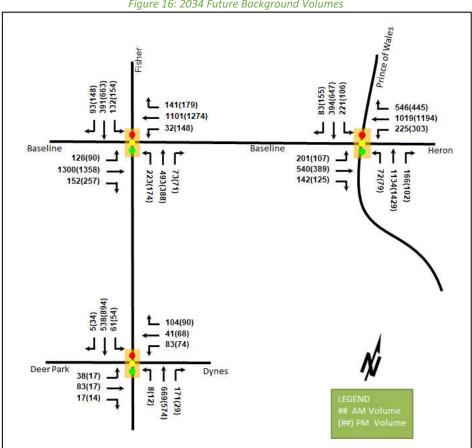


Figure 16: 2034 Future Background Volumes

Table 19: 2034 Future Background Intersection Operations

Intersection	Lana		AM Peak Hour				PM Peak Hour			
intersection	Lane	LOS	V/C	Delay (s)	Q (95 th)	LOS	V/C	Delay (s)	Q (95 th)	
	EBL	С	0.71	78.0	#73.4	Е	0.92	131.2	#56.4	
	EBT	D	0.89	43.9	#242.4	F	1.14	110.7	#255.3	
	EBR	Α	0.24	26.9	45.5	Α	0.50	36.3	77.1	
Fish su Assesse	WBL	Α	0.42	59.0	m10.6	F	1.10	128.7	m#46.8	
Fisher Avenue at Baseline	WBT	E	0.97	88.0	m#169.6	Е	0.99	62.6	m123.1	
Road	WBR	Α	0.29	65.4	m40.9	Α	0.32	42.2	m33.9	
Signalized	NBL	E	0.95	102.1	#105.9	F	1.09	151.1	#96.8	
Signanzea	NBT/R	С	0.72	50.5	85.6	Α	0.52	42.7	69.6	
	SBL	C	0.73	78.9	#55.0	F	1.02	136.1	#84.7	
	SBT/R	С	0.73	53.9	74.5	Е	0.96	68.8	#146.3	
	Overall	E	0.92	62.7	-	F	1.07	81.7	-	

14		AM Peak Hour					PM Pe	ak Hour	
Intersection	Lane	LOS	V/C	Delay (s)	Q (95 th)	LOS	V/C	Delay (s)	Q (95 th)
	EBL	F	1.20	156.5	m#82.4	F	1.18	126.9	m#28.5
	EBT/R	D	0.81	69.9	m111.3	D	0.87	63.8	m67.1
Prince of	WBL	Е	0.95	101.6	#107.1	E	0.98	100.0	#135.5
Wales Drive at	WBT	F	1.02	78.7	#186.8	F	1.13	110.9	#228.2
Baseline	WBR	F	1.24	165.2	#240.9	E	0.99	83.4	#180.7
Road/Heron	NBL	Α	0.53	70.1	32.9	Α	0.53	70.1	36.2
Road	NBT/R	F	1.18	129.8	#252.3	F	1.21	138.8	#294.4
Signalized	SBL	F	1.26	204.0	#62.3	D	0.85	110.7	#31.1
	SBT/R	Α	0.45	37.3	71.3	C	0.75	44.1	119.8
	Overall	F	1.22	107.3	-	F	1.19	100.6	-
	EB	Α	0.40	25.9	29.4	А	0.17	23.6	13.1
Fisher Avenue	WB	В	0.63	27.5	42.2	С	0.76	45.9	54.7
at Deer Park	NBL/T	В	0.67	16.7	117.4	Α	0.52	11.3	93.7
Road/Dynes Road	NBR	Α	0.20	2.3	8.2	Α	0.03	1.3	2.1
Signalized	SB	Α	0.38	10.5	39.0	А	0.51	10.1	72.1
Signulized	Overall	В	0.64	15.3	-	Α	0.57	15.1	-

Saturation flow rate of 1800 veh/h/lane

Notes: Queue is measured in metres
Peak Hour Factor = 1.00

m = metered queue

= volume for the 95th %ile cycle exceeds capacity

The planned geometric changes at the Baseline Road intersections focus on the development and facilitation of transit service along the corridor and will not directly mitigate auto operational constraints.

At the intersection of Fisher Avenue and Baseline Road, the future geometry and background growth are forecasted to change operations. During the AM peak hour, the eastbound left turn movement is anticipated to exhibit extended queues and the northbound left turn movement may be subject to high delays at this horizon. During the PM peak hour, the eastbound left movement may be subject to high delays and extended queues, the westbound left movement is forecasted to be over theoretical capacity with high delays and extended queues, the northbound left movement is forecasted to be over theoretical capacity and the southbound left movement is forecasted to be over theoretical capacity with high delays.

At the intersection of Prince of Wales Drive and Baseline Road/Heron Road, the geometric changes, background growth, and the reversion to the condition without the detour volumes are anticipated to be associated with operations that are different and improved from the existing horizon. Under these conditions, during the AM peak hour the eastbound left, westbound through, westbound right, northbound through/right and southbound left movements are anticipated to be over capacity with high delays and extended queues, the westbound left movement is anticipated to be subject to high delays and extended queues, and the overall intersection is forecasted to be over theoretical capacity with high delays. During the PM peak hour, the eastbound left, westbound through, and northbound through/right movements are anticipated to be over theoretical capacity with high delays and extended queues, the westbound left, westbound right, and southbound left movements are anticipated to be subject to high delays and extended queues, and the overall intersection is forecasted to be over theoretical capacity with high delays.

The Fisher Avenue and Deer Park Road/Dynes Road intersection is anticipated to continue to operate well.

7.2 Demand Rationalization Conclusions

Overall, the proposed development is anticipated to contribute negligible volumes to the study area above the existing land uses, as described in Section 6.4. From a review of the permitted uses for the existing zoning, a

permitted office building may generate a minimum of 175 additional AM and 102 additional PM peak hour auto volumes above the existing land use, subject to the Section 5.1 new development proposed mode shares. No specific development-generated demand rationalization is therefore required for the subject site.

With respect to rationalization of background traffic, is anticipated that residual trip capacity will be available in the Baseline Road corridor will be available in the form of transit and cycling trips once the improvements are completed. For the BRT corridor to maintain intersection operations commensurate with the existing conditions, shifts from auto trips to transit trips of 3% of the volumes at the intersection of Fisher Avenue and Baseline Road in the PM peak hour. For the intersection of Prince of Wales Drive at Baseline Road/Heron Road, the intersection is anticipated to be overcapacity with delay and queuing issues in the future even if shifts to transit in area and regional trips are achieved through the construction of the BRT corridor based upon the high regional demand.

8 Transportation Demand Management

8.1 Context for TDM

The mode shares used within the TIA represent a shift from auto modes to transit and cycling modes. As the future Baseline Road Rapid Transit Corridor project will enhance the cycling connectivity and transit access of the development and result in residual trip capacity for these modes, the increases in these mode shares is likely to be achieved. Supportive TDM measures should be included aimed at ensuring this outcome and encouraging further shifts towards transit.

The subject site is not within a design priority area. Total bedrooms within the development are subject to the unit breakdown. No age restrictions are noted.

8.2 Need and Opportunity

The subject site has been assumed to rely on auto travel and transit with an increase in transit and cycling ridership with the immediate proximity to the future BRT corridor, and those assumptions have been carried through the analysis. Risks associated with failing to meet mode share targets may be increased volumes on the existing overcapacity movements at the intersections of Fisher Avenue at Baseline Road and Prince of Wales Drive at Baseline Road/Heron Road. The presence of further operational issues will, however, encourage transit uptake.

8.3 TDM Program

The "suite of post occupancy TDM measures" has been summarized in the TDM checklist for the residential land uses. The checklist is provided in Appendix I. The key TDM measures recommended include:

- Display local area maps with walking and cycling routes, and transit route information and schedules at major entrances
- Provide real-time arrival information display at entrances
- Provide a multimodal travel option information package to new residents
- Contract with providers to install on-site bikeshare (or other micro-mobility, e.g., scootershare)
- Contract with providers to install on-site carshare spaces
- Inclusion of a 1-year Presto card for first time new townhome purchase and apartment rental, with a set time frame for this offer (e.g. 6-months) from the initial opening of the site
- Unbundle parking cost from purchase or rental costs

9 Transit

In Section 5.1 the trip generation by mode was estimated, including an estimate of the number of transit trips that will be generated by the proposed development. Table 20 summarizes the transit trip generation.

Table 20: Trip Generation by Transit Mode

Tuescal Manda	Nanda Chava	AN	1 Peak Per	iod	PN	1 Peak Peri	iod
Travel Mode	Mode Share	In	Out	Total	In	Out	Total
Transit	Varies	67	141	208	113	83	197

The proposed development is anticipated to generate an additional 208 AM peak hour transit trips and 197 PM peak hour transit trips. Of these trips, 141 outbound AM trips and 113 inbound PM trips are anticipated. From the trip distribution found in Section 5.3, site-generated transit ridership impacts can be forecasted on the area network.

The existing routes #86 and #89 are northbound and southbound routes and routes #88 and #111 are eastbound and westbound routes. Each route provides up to four buses during peak period. Trips to the north and south may also be taken by connecting to the LRT Trillium Line east of the site via the routes #88 and #111.

Along the future BRT corridor, it is estimated that transit planning will need to an additional 58 outbound trips to the east (including trips to the LRT line) and 35 outbound trips to the west during the AM peak hour. During the PM peak hour, it is forecasted that 28 inbound trips from the west and 44 inbound trips from the east (including trips from the LRT line) generated by the development will need to be accommodated on the Baseline BRT corridor. The ridership increase is anticipated to be approximately one additional bus per peak hour in each direction on the BRT corridor.

Ridership increases of approximately 15 outbound trips to the north and 33 outbound trips to the south during the AM peak hour are anticipated on the routes #86 and #89. During the PM peak hour, it is forecasted that approximately 14 inbound trips from the north and 27 inbound trips from the south are anticipated on these routes. To accommodate the ridership increase, an equivalent of half a single bus capacity would be required in the off-peak direction for routes #86 and #89.

9.1 Transit Priority

Examining the study area intersection operations, negligible impacts on delay are anticipated on transit movements at the study area intersections as a result of the development site traffic.

10 Network Intersection Design

10.1 Network Intersection Control

No change to the existing signalized control is recommended for the network intersections.

10.2 Network Intersection Design

10.2.1 2034 Future Total Operations

Figure 17 illustrates the 2034 total volumes and Table 21 summarizes the 2034 total intersection operations including signal timing adjustments as in the background conditions. The level of service for signalized intersections is based on v/c calculations for individual lane movements and HCM 2000 v/c calculations for the overall intersection. The synchro worksheets for the 2034 total horizon are provided in Appendix H.

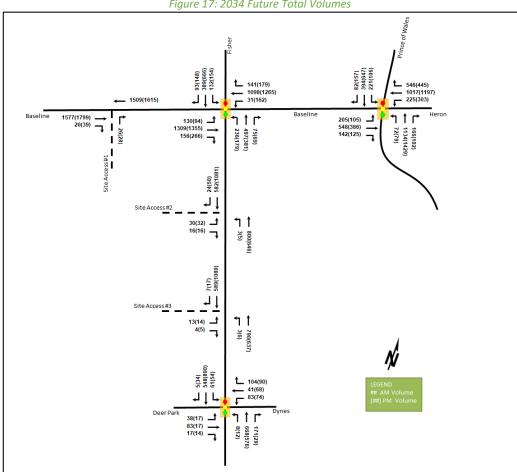


Figure 17: 2034 Future Total Volumes

Table 21: 2034 Future Total Intersection Operations

Intersection	Lane		AM Pe	ak Hour		PM Peak Hour				
		LOS	V/C	Delay (s)	Q (95 th)	LOS	V/C	Delay (s)	Q (95 th)	
	EBL	В	0.70	76.4	#76.1	E	0.96	140.9	#59.0	
	EBT	D	0.90	44.6	#245.0	F	1.13	109.8	#254.8	
	EBR	Α	0.25	27.0	46.7	Α	0.52	36.9	80.0	
Fisher Avenue at Baseline Road Signalized	WBL	Α	0.41	58.8	m10.2	F	1.20	161.9	m#53.6	
	WBT	E	0.98	90.7	m#169.7	E	0.99	61.0	m122.3	
	WBR	Α	0.29	65.9	m41.3	Α	0.32	42.2	m34.0	
	NBL	E	1.00	115.1	#113.9	F	1.13	161.7	#100.5	
	NBT/R	С	0.73	50.8	86.5	Α	0.51	42.5	68.3	
	SBL	С	0.73	78.9	#55.0	F	1.02	136.1	#84.7	
	SBT/R	С	0.73	53.7	74.2	Е	0.96	69.1	#147.1	
	Overall	E	0.94	64.3	-	F	1.09	83.0	-	

Intersection	Lane		AM Pe	ak Hour		PM Peak Hour				
		LOS	V/C	Delay (s)	Q (95 th)	LOS	V/C	Delay (s)	Q (95 th)	
	EBL	F	1.22	164.7	m#84.0	F	1.15	118.5	m#27.7	
	EBT/R	D	0.82	70.1	m111.8	D	0.86	63.7	m66.8	
Prince of	WBL	Е	0.95	101.6	#107.1	Е	0.98	100.0	#135.5	
Wales Drive at	WBT	F	1.02	78.2	#186.3	F	1.13	111.9	#228.7	
Baseline Road/Heron Road Signalized	WBR	F	1.24	165.2	#240.9	# 240.9 E		83.4	#180.7	
	NBL	Α	0.53	70.1	32.9	Α	0.53	70.1	36.2	
	NBT/R	F	1.18	129.8	#252.3	F	1.21	138.8	#294.4	
	SBL	F	1.26	204.0	#62.3	D	0.85	110.7	#31.1	
	SBT/R	Α	0.45	37.2	71.3	C	0.76	44.1	120.3	
	Overall	F	1.22	107.6	-	F	1.19	100.7	-	
	EB	Α	0.40	25.9	29.4	А	0.17	23.6	13.1	
Fisher Avenue at Deer Park Road/Dynes Road Signalized	WB	В	0.63	27.5	42.2	С	0.76	45.9	54.7	
	NBL/T	В	0.67	16.6	117.2	Α	0.52	11.4	94.3	
	NBR	Α	0.20	2.3	8.2	Α	0.03	1.3	2.1	
	SB	Α	0.39	10.5	39.6	А	0.51	10.1	71.8	
	Overall	В	0.64	15.3	-	Α	0.57	15.1	-	

Saturation flow rate of 1800 veh/h/lane

Notes: Queue is measured in metres
Peak Hour Factor = 1.00

m = metered queue

= volume for the 95th %ile cycle exceeds capacity

The study area intersections at the 2034 future total horizon operate similarly to the 2034 background conditions. Impacts from the redevelopment are forecasted to be negligible. No new capacity issues are noted during either peak hour.

10.2.2 Network Intersection MMLOS

Table 22 summarizes the MMLOS analysis for the network intersections within the study area. The existing and future conditions for both intersections will be the same and are considered in one row. The intersection analysis of Fisher Avenue at Baseline Road and Prince of Wales Drive at Baseline Road/Heron Road are based on the policy area within 600 metres of a rapid transit station, and Fisher Avenue at Deer Park Road/Dynes Road is based on the policy area of within 300 metres of a school. The MMLOS worksheets has been provided in Appendix J.

Table 22: Study Area Intersection MMLOS Analysis

Tuble 22. Study Area Intersection Willeds Analysis											
Intersection	Horizon	Pedestrian LOS		Bicycle LOS		Transit LOS		Truck LOS		Auto LOS	
		PLOS	Target	BLOS	Target	TLOS	Target	TrLOS	Target	ALOS	Target
Fisher Ave at Baseline Rd	Existing	F	Α	F	Α	F	Α	Α	D	F	Е
	Future	F	Α	Α	Α	F	Α	Α	D	F	Е
Prince of Wales Dr at Baseline	Existing	F	A	F	А	F	А	Α	D	F	E
Rd/ Heron Rd	Future	F	Α	Α	Α	F	Α	Α	D	F	Е
Fisher Ave at Deer Park Rd/ Dynes Rd	Existing /Future	E	А	А	В	С	D	-	-	В	E

The pedestrian LOS will not be met at the intersections throughout the study area. As is typical for arterial roads, the crossing distances do not permit the targets to be met. To meet pedestrian LOS targets, the maximum crossing distance on all pedestrian crossings would need to be reduced to two lane-widths.

The bicycle LOS will not be met at the existing intersections of Fisher Avenue at Baseline Road and Prince of Wales Drive at Baseline Road/Heron Road, but it will be met once the planned modifications are completed.

The transit LOS will not be met at the intersections throughout the study area except for Fisher Avenue at Deer Park Road/Dynes Road intersection. To meet transit LOS, the delay would need to be reduced to zero seconds on all transit movements. The future Baseline Road Rapid Transit Corridor is anticipated to improve the eastbound and westbound operations, but the northbound and southbound movements will not meet the transit LOS.

The auto LOS will not be met throughout the study area except for Fisher Avenue at Deer Park Road/Dynes Road intersection.

The MMLOS scores for the future conditions are highlighted for the City's review given their planned improvements for these intersections, and meeting these targets are not considered the responsibility of the developer.

10.2.3 Recommended Design Elements

No study area intersection design elements are proposed as part of this study.

11 Summary of Improvements Indicated and Modifications Options

The following summarizes the analysis and results presented in this TIA report:

Proposed Site and Screening

- The proposed site includes three mixed-use buildings with a total of 868 dwelling units and 31,169 sq. ft of commercial space
- The first phase of development is to include the construction of the southern building in the location of an existing parking lot, and the remaining phases are to involve the demolition of the strip retail plaza
- The development proposes the use of an existing right-in/right-out access on Baseline Road, an existing full-movements access on Fisher Avenue, and proposes the addition of one full-movement access on Fisher Avenue to the south of the existing access
- The development is proposed to be completed across multiple phases in 2034
- The trip generation, location, and safety triggers were met for the TIA Screening
- · This report accompanies an Official Plan amendment and zoning by-law amendment

Existing Conditions

- Baseline Road, Heron Road, Fisher Avenue, Prince of Wales Drive are arterial roads in the study area, and Deer Park Road and Dynes Road are collector roads
- Sidewalks are provided along the south side of Baseline Road and of Deer Park Road west of Millbrook
 Crescent, on the east side of Prince of Wales Drive, on the west side of Fisher Avenue north of Baseline
 Road, on both sides of Fisher Avenue south of Baseline Road, Dynes Road, and Deer Park Road east of
 Millbrook Crescent
- A paved shoulder is present on both sides of Fisher Avenue except through the intersection with Baseline
 Avenue where bike lanes are present and on Fisher Avenue of the road between Malibu Terrace and the
 auxiliary northbound right turn lane taper at Baseline Road where a cycletrack is present
- Cycletracks are also present at the Fisher Avenue at Deer Park Road/Dynes Road intersection, and bike lanes are present along Dynes Road
- Fisher Avenue, Prince of Wales Drive, Baseline Road, and Heron Road are spine routes, and Baseline Road, Heron Road and Prince of Wales Drive are cross-town bikeways
- Malibu Terrace west of Fisher Avenue, Hilliard Avenue north of Malibu Terrace, Sunnycrest Drive, Deer Park Road, Dynes Road, and McCooey Lane are local routes

- The high volumes roadways have produced a high number of collisions at the study area intersections, primarily at the Fisher Avenue at Baseline Road intersection
- The Fisher Avenue at Baseline Road intersection had an angle collision involving a fatality where a
 pedestrian was killed as a result of a two-vehicle collision, but the remaining collisions are largely
 associated with congestion
- The study area intersections of Fisher Avenue at Baseline Road and of Prince of Wales Drive at Baseline Road/Heron Road experience capacity issues and significant delay and queuing during both peak hours
- Existing volumes were noted to include detour volumes from the closure of the Hog's Back Bridge

Development Generated Travel Demand

- The proposed development is forecasted produce 127 two-way vehicle trips during the AM peak hour and 170 two-way vehicle trips during the PM peak hour based upon an increase in transit and cycling from the typical district mode shares given the proximity of the Baseline BRT improvements
- Of the forecasted trips, 30% are anticipated to travel north, 25% to the south and the west, and 20% to the east

Background Conditions

- The annual background growth derived from the two TRANS model horizons was rounded to the nearest 0.25% and applied in the AM peak hour and reversed int the PM peak hour.
- Changes from the Baseline Road Rapid Transit Corridor project are included in future horizons and volumes at the intersection of Prince of Wales Drive and Baseline Road/Heron Road have been factored to remove the detour volumes
- The existing site comprises a 3,247 m² of commercial building and is estimated to produce 98 AM twoway auto trips in the AM peak hour and 169 two-way auto trips in the PM peak hour based on the existing land uses and the recommended area mode shares
- The planned geometric changes at the Baseline Road intersections are not anticipated to directly mitigate operations, which are anticipated to persist at the 2034 future background horizon
- Operational improvements are noted at the intersection of Prince of Wales Drive and Baseline Road/Heron Road where the detour volumes are not included

Demand Rationalization

- The development traffic increase above the existing conditions is forecasted to be negligible, and over 100 two-way vehicles lower in each peak hour than permitted land uses
- Residual trip capacity will be available via the Baseline BRT corridor for the transit and cycling modes
- To maintain operations to a similar performance to the existing conditions, a reduction in auto traffic of 3% is required at the intersection of Fisher Avenue at Baseline Road via a shift in auto traffic to transit
- Given the high regional demand, capacity issues are anticipated to persist despite shifts from auto to transit at the intersection of Prince of Wales Drive and Baseline Road/Heron Road

TDM

- A TDM program should be employed to utilize the added trip capacity from the BRT corridor improvements
- Supportive TDM measures to be included within the proposed development should include:

- Display local area maps with walking and cycling routes, and transit route information and schedules at major entrances
- o Provide a multimodal travel option information package to new residents
- o Contract with providers to install on-site bikeshare (or other micro-mobility, e.g., scootershare)
- Contract with providers to install on-site carshare spaces
- o Inclusion of a 1-year Presto card for first time new townhome purchase and apartment rental, with a set time frame for this offer (e.g. 6-months) from the initial opening of the site
- Unbundle parking cost from purchase or rental costs

Transit

- The proposed development is anticipated to generate an additional 208 AM peak hour transit trips and 197 PM peak hour transit trips
- It is estimated that approximately 58 outbound trips to the east and 35 outbound trips to the west during the AM peak hour and 28 inbound trips from the west and 44 inbound trips from the east generated by the development will need to be accommodated on the Baseline BRT corridor
- Ridership increases for routes #86 and #89 of approximately 15 outbound trips to the north and 33 outbound trips to the south during the AM peak hour, and approximately 14 inbound trips from the north and 27 inbound trips from the south are anticipated from the development
- To accommodate the ridership increase, an equivalent of half a single bus capacity would be required in the off-peak direction for routes #86 and #89 and approximately one bus per peak hour and direction on the BRT corridor
- Negligible impacts are anticipated on transit movement delays at the study area intersections from the subject development

Network Intersection Design

- The future total operations are similar to the future background operation and the traffic impacts from the redevelopment are anticipated to be negligible
- The pedestrian, transit, and auto LOS will not be met at the intersections of Fisher Avenue at Baseline Road and Prince of Wales Drive at Baseline Road/Heron Road in the existing or future conditions
- The bicycle LOS at the future intersections of Fisher Avenue at Baseline Road and Prince of Wales Drive at
 Baseline Road/Heron Road will be met but are not met in the existing conditions, and the pedestrian LOS
 will not be met at the intersection of Fisher Avenue at Deer Park Road/Dynes Road
- The MMLOS scores for the future conditions are highlighted for the City's review given their planned improvements for these intersections, and meeting these targets are not considered the responsibility of the developer

12 Next Steps

Following the circulation and review of the TIA, any outstanding comments will be documents within the context of the Official Plan amendment and zoning by-law amendment in the Step 4 Strategy Report. Once remaining TIA Steps are completed and sign-off has been received from City Transportation Project Manager, a signed and stamped final report will be provided to City staff.

Appendix A

TIA Screening Form and PM Certification Form

City of Ottawa 2017 TIA Guidelines Step 1 - Screening Form Date: 25-Feb-22
Project Number: 2021-083
Project Reference: 780 Baseline Road

1.1 Description of Proposed Development	
Municipal Address	780 Baseline Road
Description of Location	Ward 9. 1.36 ha parcel area on south side of Baseline Rd and West side of Fisher Ave
Land Use Classification	General Mixed Use (GM)
Development Size	900 residential units and approximatly 25,000 sq.ft commercial space
Accesses	One on Baseline Road, Two on Fisher Avenue
Phase of Development	Two
Buildout Year	2027
TIA Requirement	Full TIA Required

1.2 Trip Generation Trigger	
Land Use Type	Townhomes or apartments
Development Size	900 Units
Trip Generation Trigger	Yes

1.3 Location Triggers		
Does the development propose a new driveway to a boundary street that is		
designated as part of the City's Transit Priority, Rapid Transit or Spine	Yes	Transit Priority, Rapid Transt, and
Bicycle Networks?		Spine
Is the development in a Design Priority Area (DPA) or Transit-oriented	No	
Development (TOD) zone?	NO	
Location Trigger	Yes	

1.4. Safety Triggers	
Are posted speed limits on a boundary street 80 km/hr or greater?	No
Are there any horizontal/vertical curvatures on a boundary street limits	No
sight lines at a proposed driveway?	NO
Is the proposed driveway within the area of influence of an adjacent traffic	
signal or roundabout (i.e. within 300 m of intersection in rural conditions, or	Yes
within 150 m of intersection in urban/ suburban conditions)?	
Is the proposed driveway within auxiliary lanes of an intersection?	No
Does the proposed driveway make use of an existing median break that	No
serves an existing site?	INO
Is there is a documented history of traffic operations or safety concerns on	Yes
the boundary streets within 500 m of the development?	res
Does the development include a drive-thru facility?	No
Safety Trigger	Yes

TIA Plan Reports

On 14 June 2017, the Council of the City of Ottawa adopted new Transportation Impact Assessment (TIA) Guidelines. In adopting the guidelines, Council established a requirement for those preparing and delivering transportation impact assessments and reports to sign a letter of certification.

Individuals submitting TIA reports will be responsible for all aspects of development-related transportation assessment and reporting, and undertaking such work, in accordance and compliance with the City of Ottawa's Official Plan, the Transportation Master Plan and the Transportation Impact Assessment (2017) Guidelines.

By submitting the attached TIA report (and any associated documents) and signing this document, the individual acknowledges that s/he meets the four criteria listed below.

CERTIFICATION

- 1. I have reviewed and have a sound understanding of the objectives, needs and requirements of the City of Ottawa's Official Plan, Transportation Master Plan and the Transportation Impact Assessment (2017) Guidelines;
- 2. I have a sound knowledge of industry standard practice with respect to the preparation of transportation impact assessment reports, including multi modal level of service review;
- 3. I have substantial experience (more than 5 years) in undertaking and delivering transportation impact studies (analysis, reporting and geometric design) with strong background knowledge in transportation planning, engineering or traffic operations; and
- 4. I am either a licensed¹ or registered² professional in good standing, whose field of expertise [check $\sqrt{\text{appropriate field(s)}}$] is either transportation engineering $\sqrt{\text{or}}$ or transportation planning \square .
- License of registration body that oversees the profession is required to have a code of conduct and ethics guidelines that will ensure appropriate conduct and representation for transportation planning and/or transportation engineering works.

Dated at Ottawa (City)	this 20 day of September	, 2018
Name: _	Andrew Harte (Please Print)	
Professional Title: _	Professional Engineer	
	The Rest	
Signature of	of Individual certifier that s/he meets the above four criteria	

Office Contact Information (Please Print)
Address: 13 Markham Avenue
City / Postal Code: Ottawa / K2G 3Z1
Telephone / Extension: (613) 697-3797
E-Mail Address: Andrew.Harte@CGHTransportation.com

Appendix B

Turning Movement Counts

Turning Movement Count - Study Results BASELINE RD @ FISHER AVE Survey Date: Wednesday, August 03, 2016 WO No: 36121 Start Time: 07:00 Device: Miovision **Full Study Diagram** FISHER AVE 11 ҈Ҳ 5043 4777 1034 2 3120 Total Heavy Vehicles 134 19 0 126 1015 4651 Cars 2986 2 BASELINE RD 4 U 1094 4 226 9543 7455 9240 9769 5 0 **+ +** F 17434 880 11 869 18809 2 6642 195 6447 + 7970 224 1515 30 1485 ٦ **1** [7] |ค| 7 5120 2686 ₫ਐ **→** 22 1398 506 Cars **‡*** 81 185 26 96 10

0

10027

11

5305

*

★

1424

4722

4

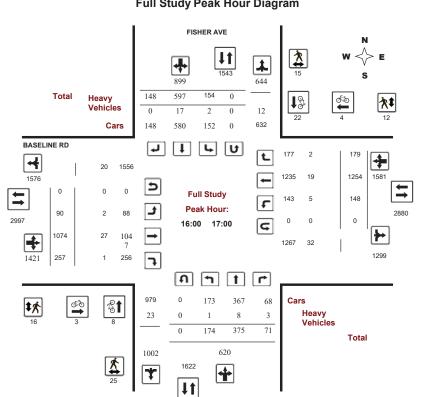
2782

516

Heavy

Vehicles

Total

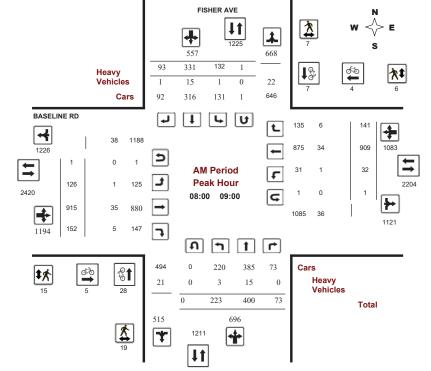

Transportation Services - Traffic Services

Turning Movement Count - Study Results

BASELINE RD @ FISHER AVE

Survey Date: Wednesday, August 03, 2016 WO No: 36121 Start Time: 07:00 Device: Miovision

Full Study Peak Hour Diagram

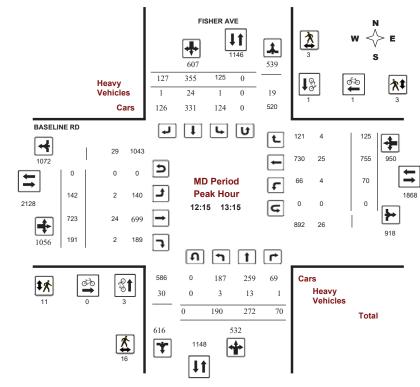

July 9, 2021 Page 2 of 8 Page 1 of 8 July 9, 2021

Turning Movement Count - Peak Hour Diagram

BASELINE RD @ FISHER AVE

Survey Date: Wednesday, August 03, 2016 WO No: 36121
Start Time: 07:00 Device: Miovision

Comments

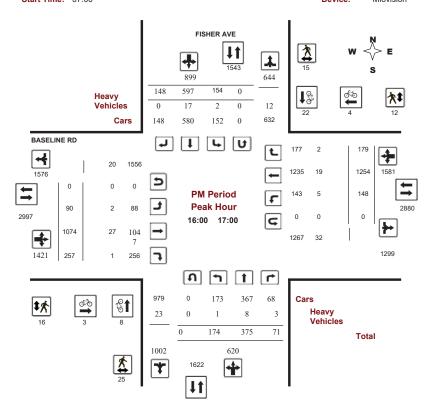

Transportation Services - Traffic Services

Turning Movement Count - Peak Hour Diagram

BASELINE RD @ FISHER AVE

 Survey Date:
 Wednesday, August 03, 2016
 WO No:
 36121

 Start Time:
 07:00
 Device:
 Miovision


Comments

Turning Movement Count - Peak Hour Diagram

BASELINE RD @ FISHER AVE

Survey Date: Wednesday, August 03, 2016 WO No: 36121 Start Time: 07:00 Device: Miovision

Comments

Transportation Services - Traffic Services

Turning Movement Count - Study Results

BASELINE RD @ FISHER AVE

Survey Date: Wednesday, August 03, 2016 WO No: 36121 Start Time: 07:00 Device: Miovision

Full Study Summary (8 HR Standard)

Survey Date: Wednesday, August 03, 2016 **Total Observed U-Turns AADT Factor** .90

								Eastbou	na: 3		vves	tbouna	2						
			FIS	HER A	AVE							ВА	SELIN	E RD					
_	No	rthbou	nd		So	uthbo	und			Е	astbou	und		V	Vestbo	und			
Period	LT	ST	RT	NB TOT	LT	ST	RT	SB TOT	STR TOT	LT	ST	RT	EB TOT	LT	ST	RT	WB TOT	STR TOT	Gran Tota
07:00 08:00	174	406	68	648	121	309	57	487	1135	104	835	106	1045	36	702	105	843	1888	302
08:00 09:00	223	400	73	696	132	331	93	556	1252	126	915	152	1193	32	909	141	1082	2275	352
09:00 10:00	172	343	55	570	121	269	96	486	1056	70	670	151	891	58	685	120	863	1754	281
11:30 12:30	172	276	59	507	121	365	135	621	1128	128	658	187	973	71	802	123	996	1969	309
12:30 13:30	168	283	68	519	108	337	124	569	1088	139	707	211	1057	71	718	125	914	1971	305
15:00 16:00	153	345	52	550	128	442	120	690	1240	115	848	212	1175	113	1179	173	1465	2640	388
16:00 17:00	174	375	71	620	154	597	148	899	1519	90	1074	257	1421	148	1254	179	1581	3002	452
17:00 18:00	188	354	70	612	149	470	114	733	1345	108	935	239	1282	141	1206	147	1494	2776	412
Sub Total	1424	2782	516	4722	1034	3120	887	5041	9763	880	6642	1515	9037	670	7455	1113	9238	18275	2803
U Turns	0			0	2			2	2	3			3	2			2	5	7
Total	1424	2782	516	4722	1036	3120	887	5043	9765	883	6642	1515	9040	672	7455	1113	9240	18280	2804
EQ 12Hr	1979	3867	717	6563	1440	4337	1233	7010	13573	1227	9232	2106	12565	934	10362	1547	12843	25408	3898
Note: These	values a	re calcu	lated by	y multip	ying the	totals b	y the a	ppropriat	te expans	sion fac	tor.			1.39					
AVG 12Hr	1781	3480	645	5906	1296	3903	1110	6309	12215	1104	8309	1895	11308	841	9326	1392	11559	22867	3508
Note: These	volumes	are calo	culated	by mult	plying t	he Equi	valent 1	2 hr. tota	als by the	AADT	factor.			.90					
AVG 24Hr	2333	4559	845	7737	1698	5113	1454	8265	16002	1446	10885	2482	14813	1102	12217	1824	15143	29956	45958
Note: These	volumes	are cal	culated	by mult	plying t	he Aver	age Dai	ly 12 hr.	totals by	12 to 2	4 expan	sion fac	ctor.	1.31					
Note: U-Tur	ns prov	ided fo	r appro	ach to	tals. Re	efer to '	U-Turn	' Repor	t for spe	ecific b	reakdov	vn.							

Note: U-Turns provided for approach totals. Refer to 'U-Turn' Report for specific breakdown.

2021-Jul-09 Page 3 of 3 July 9, 2021 Page 3 of 8

Turning Movement Count - Study Results

BASELINE RD @ FISHER AVE

 Survey Date:
 Wednesday, August 03, 2016
 WO No:
 36121

 Start Time:
 07:00
 Device:
 Miovision

Full Study 15 Minute Increments BASELINE RD

FISHER AVE LT LT ST RT LT ST 845 53 110 14 177 32 80 21 133 **310** 34 218 29 281 144 289 34 255 862 133 **302** 40 847 303 23 902 125 **289** 17 14 | 138 | 22 | 77 | 23 | 122 | **260** | 19 | 177 | 42 | 238 53 68 10 131 35 61 22 118 688 **249** 16 155 41 212 184 30 227 **439** 668 19 137 25 70 26 121 **258** 18 145 32 195 **279** 25 146 43 76 11 130 28 88 30 146 **276** 36 177 41 254 12 833 54 66 12 132 42 100 35 177 309 29 182 37 248 21 759 52 78 11 141 22 93 29 144 285 41 179 45 265 162 33 209 **474** 41 58 31 130 38 86 23 147 **277** 42 187 781 16 129 23 76 40 139 268 30 175 59 264 187 33 772 139 **258** 26 747 292 154 **282** 31 1015 12 154 37 115 31 183 337 28 239 **329** 26 1075 1147 **400** 17 220 1105 **358** 23 248 **351** 27 222 327 38 411 **712** 1063 **321** 32 229 1016 20 134 35 130 17 182 **316** 26 236 60 322

1424 2782 516 4722 1036 3120 887 5043 9765 883 6642 1515 9040

Note: U-Turns are included in Totals.

Transportation Services - Traffic Services

Turning Movement Count - Study Results

BASELINE RD @ FISHER AVE

FIGURE AVE

 Survey Date:
 Wednesday, August 03, 2016
 WO No:
 36121

 Start Time:
 07:00
 Device:
 Miovision

Full Study Cyclist Volume

BASELINE DO

		FISHER AVE			BASELINE RI	D	
Time Period	Northbound	Southbound	Street Total	Eastbound	Westbound	Street Total	Grand Total
07:00 07:15	5	4	9	0	0	0	9
07:15 07:30	5	2	7	0	0	0	7
7:30 07:45	12	2	14	0	0	0	14
07:45 08:00	8	2	10	1	2	3	13
08:00 08:15	7	2	9	2	0	2	11
8:15 08:30	9	1	10	1	2	3	13
08:30 08:45	10	4	14	1	0	1	15
08:45 09:00	2	0	2	1	2	3	5
9:00 09:15	3	4	7	2	1	3	10
9:15 09:30	1	1	2	0	2	2	4
9:30 09:45	0	0	0	0	0	0	0
9:45 10:00	2	2	4	0	0	0	4
1:30 11:45	1	1	2	0	0	0	2
1:45 12:00	0	0	0	1	0	1	1
2:00 12:15	0	1	1	0	1	1	2
2:15 12:30	2	1	3	0	0	0	3
2:30 12:45	0	0	0	0	1	1	1
2:45 13:00	0	0	0	0	0	0	0
3:00 13:15	1	0	1	0	0	0	1
3:15 13:30	0	0	0	0	0	0	0
5:00 15:15	2	2	4	1	0	1	5
5:15 15:30	1	1	2	3	0	3	5
5:30 15:45	0	3	3	0	0	0	3
5:45 16:00	1	5	6	1	0	1	7
6:00 16:15	2	2	4	0	0	0	4
6:15 16:30	4	7	11	2	3	5	16
6:30 16:45	1	9	10	0	1	1	11
6:45 17:00	1	4	5	1	0	1	6
7:00 17:15	2	8	10	1	3	4	14
7:15 17:30	5	6	11	2	6	8	19
7:30 17:45	4	8	12	1	0	1	13
7:45 18:00	3	5	8	1	2	3	11
Total	94	87	181	22	26	48	229

July 9, 2021 Page 4 of 8 July 9, 2021 Page 5 of 8

Turning Movement Count - Study Results

BASELINE RD @ FISHER AVE

 Survey Date:
 Wednesday, August 03, 2016
 WO No:
 36121

 Start Time:
 07:00
 Device:
 Miovision

Full Study Pedestrian Volume

FISHER AVE BASELINE RD

Time Period	NB Approach (E or W Crossing)	SB Approach (E or W Crossing)	Total	EB Approach (N or S Crossing)	WB Approach (N or S Crossing)	Total	Grand Total
07:00 07:15	6	3	9	5	3	8	17
07:15 07:30	2	2	4	3	3	6	10
07:30 07:45	5	1	6	3	3	6	12
07:45 08:00	4	2	6	4	2	6	12
08:00 08:15	3	1	4	4	1	5	9
08:15 08:30	5	3	8	3	3	6	14
08:30 08:45	3	2	5	4	1	5	10
08:45 09:00	8	1	9	4	1	5	14
09:00 09:15	0	1	1	2	1	3	4
09:15 09:30	3	1	4	3	2	5	9
09:30 09:45	0	1	1	1	1	2	3
09:45 10:00	1	0	1	1	1	2	3
11:30 11:45	1	1	2	1	1	2	4
11:45 12:00	0	0	0	0	0	0	0
12:00 12:15	1	0	1	1	1	2	3
12:15 12:30	4	0	4	2	1	3	7
12:30 12:45	5	0	5	3	0	3	8
12:45 13:00	2	2	4	3	2	5	9
13:00 13:15	5	1	6	3	0	3	9
13:15 13:30	3	1	4	2	0	2	6
15:00 15:15	5	0	5	8	0	8	13
15:15 15:30	0	3	3	2	1	3	6
15:30 15:45	3	3	6	1	1	2	8
15:45 16:00	15	0	15	4	1	5	20
16:00 16:15	6	10	16	6	4	10	26
16:15 16:30	7	1	8	1	0	1	9
16:30 16:45	9	3	12	3	4	7	19
16:45 17:00	3	1	4	6	4	10	14
17:00 17:15	8	2	10	5	1	6	16
17:15 17:30	10	2	12	4	0	4	16
17:30 17:45	5	2	7	6	2	8	15
17:45 18:00	4	1	5	3	1	4	9
Total	136	51	187	101	46	147	334

Transportation Services - Traffic Services

Turning Movement Count - Study Results

BASELINE RD @ FISHER AVE

 Survey Date:
 Wednesday, August 03, 2016
 WO No:
 36121

 Start Time:
 07:00
 Device:
 Miovision

Full Study Heavy Vehicles

FISHER AVE BASELINE RD

	N	orthbo	und		Sc	outhbou	ind			E	astbour	nd		We	estbour	nd			
Time Period	LT	ST	RT	N TOT	LT	ST	RT	S TOT	STR TOT	LT	ST	RT	E TOT	LT	ST	RT	W TOT	STR TOT	Grand Total
07:00 07:15	3	7	0	10	1	1	0	2	12	0	4	0	4	0	6	0	6	10	22
07:15 07:30	1	1	0	2	0	5	0	5	7	0	7	1	8	0	8	1	9	17	24
07:30 07:45	0	6	0	6	0	2	0	2	8	0	5	0	5	0	5	0	5	10	18
07:45 08:00	1	4	0	5	0	3	1	4	9	1	10	1	12	0	4	2	6	18	27
08:00 08:15	0	2	0	2	0	4	0	4	6	0	8	0	8	0	8	2	10	18	24
08:15 08:30	2	6	0	8	1	4	0	5	13	1	6	4	11	0	7	1	8	19	32
08:30 08:45	0	3	0	3	0	2	0	2	5	0	11	1	12	1	9	2	12	24	29
08:45 09:00	1	4	0	5	0	5	1	6	11	0	10	0	10	0	10	1	11	21	32
09:00 09:15	3	2	0	5	0	4	0	4	9	0	6	2	8	0	13	0	13	21	30
09:15 09:30	1	3	1	5	0	6	0	6	11	1	6	2	9	1	6	0	7	16	27
09:30 09:45	0	3	0	3	3	2	1	6	9	1	5	1	7	0	9	0	9	16	25
09:45 10:00	1	2	0	3	1	3	0	4	7	0	3	2	5	2	6	0	8	13	20
11:30 11:45	1	3	2	6	2	2	1	5	11	0	8	2	10	0	5	1	6	16	27
11:45 12:00	2	3	1	6	0	2	0	2	8	0	3	2	5	1	6	1	8	13	21
12:00 12:15	3	2	0	5	0	4	1	5	10	1	7	1	9	0	8	0	8	17	27
12:15 12:30	0	3	1	4	0	7	1	8	12	1	6	1	8	2	8	1	11	19	31
12:30 12:45	0	3	0	3	0	8	0	8	11	1	4	0	5	0	7	2	9	14	25
12:45 13:00	2	4	0	6	1	5	0	6	12	0	5	1	6	2	4	1	7	13	25
13:00 13:15	1	3	0	4	0	4	0	4	8	0	9	0	9	0	6	0	6	15	23
13:15 13:30	0	3	0	3	1	3	1	5	8	1	7	2	10	1	8	1	10	20	28
15:00 15:15	1	3	0	4	1	6	0	7	11	0	5	0	5	1	6	0	7	12	23
15:15 15:30	0	2	0	2	1	4	1	6	8	0	5	2	7	0	4	0	4	11	19
15:30 15:45	0	6	0	6	1	4	0	5	11	1	6	1	8	1	6	0	7	15	26
15:45 16:00	2	2	0	4	0	3	0	3	7	0	5	1	6	1	3	1	5	11	18
16:00 16:15	0	1	1	2	1	4	0	5	7	1	8	0	9	1	6	1	8	17	24
16:15 16:30	0	2	1	3	0	4	0	4	7	0	6	0	6	1	4	0	5	11	18
16:30 16:45	0	2	0	2	0	4	0	4	6	1	11	1	13	1	5	0	6	19	25
16:45 17:00	1	3	1	5	1	5	0	6	11	0	2	0	2	2	4	1	7	9	20
17:00 17:15	0	1	0	1	2	5	0	7	8	0	4	0	4	1	4	0	5	9	17
17:15 17:30	0	3	0	3	1	7	0	8	11	0	3	0	3	2	2	0	4	7	18
17:30 17:45	0	3	1	4	0	5	1	6	10	0	6	0	6	0	3	0	3	9	19
17:45 18:00	0	1	1	2	1	7	0	8	10	0	4	2	6	0	1	0	1	7	17
Total: None	26	96	10	132	19	134	9	162	294	11	195	30	236	21	191	19	231	467	761

 July 9, 2021
 Page 6 of 8
 July 9, 2021
 Page 7 of 8

Turning Movement Count - Study Results

BASELINE RD @ FISHER AVE

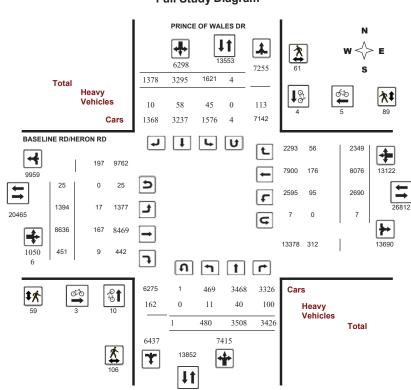
 Survey Date:
 Wednesday, August 03, 2016
 WO No:
 36121

 Start Time:
 07:00
 Device:
 Miovision

Full Study 15 Minute U-Turn Total FISHER AVE BASELINE RD

Time F	Period	Northbound U-Turn Total	Southbound U-Turn Total	Eastbound U-Turn Total	Westbound U-Turn Total	Total
07:00	07:15	0	0	0	0	0
07:15	07:30	0	0	0	0	0
07:30	07:45	0	0	0	0	0
07:45	08:00	0	0	0	0	0
08:00	08:15	0	1	1	0	2
08:15	08:30	0	0	0	0	0
08:30	08:45	0	0	0	0	0
08:45	09:00	0	0	0	1	1
09:00	09:15	0	0	0	0	0
09:15	09:30	0	0	0	0	0
09:30	09:45	0	0	0	0	0
09:45	10:00	0	0	0	0	0
11:30	11:45	0	0	1	1	2
11:45	12:00	0	0	0	0	0
12:00	12:15	0	0	1	0	1
12:15	12:30	0	0	0	0	0
12:30	12:45	0	0	0	0	0
12:45	13:00	0	0	0	0	0
13:00	13:15	0	0	0	0	0
13:15	13:30	0	0	0	0	0
15:00	15:15	0	0	0	0	0
15:15	15:30	0	0	0	0	0
15:30	15:45	0	0	0	0	0
15:45	16:00	0	0	0	0	0
16:00	16:15	0	0	0	0	0
16:15	16:30	0	0	0	0	0
16:30	16:45	0	0	0	0	0
16:45	17:00	0	0	0	0	0
17:00	17:15	0	0	0	0	0
17:15	17:30	0	0	0	0	0
17:30	17:45	0	0	0	0	0
17:45	18:00	0	1	0	0	1

Transportation Services - Traffic Services


Turning Movement Count - Study Results

BASELINE RD/HERON RD @ PRINCE OF WALES DR

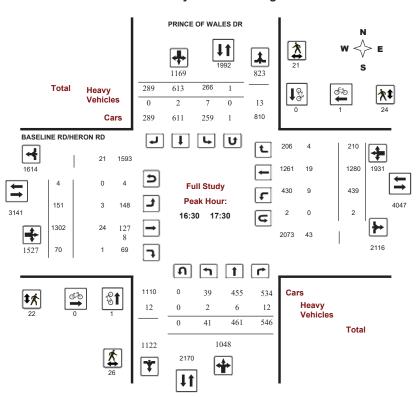
 Survey Date:
 Wednesday, March 04, 2020
 WO No:
 39636

 Start Time:
 07:00
 Device:
 Microsion

Full Study Diagram

5478543 - MAR 4, 2020 - 8HR REIMPORT

July 9, 2021 Page 8 of 8 April 2, 2020 Page 1 of 8


Turning Movement Count - Study Results

BASELINE RD/HERON RD @ PRINCE OF WALES DR

 Survey Date:
 Wednesday, March 04, 2020
 WO No:
 39636

 Start Time:
 07:00
 Device:
 Miovision

Full Study Peak Hour Diagram

5478543 - MAR 4, 2020 - 8HR REIMPORT

Ottawa


Transportation Services - Traffic Services

Turning Movement Count - Peak Hour Diagram

BASELINE RD/HERON RD @ PRINCE OF WALES DR

 Survey Date:
 Wednesday, March 04, 2020
 WO No:
 39636

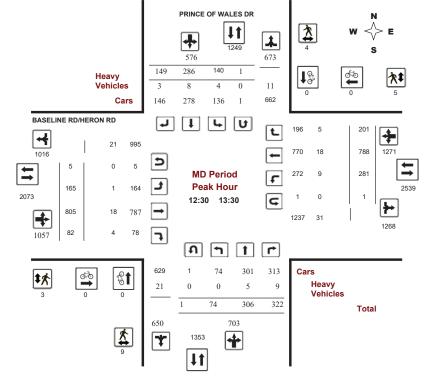
 Start Time:
 07:00
 Device:
 Miovision

Comments 5478543 - MAR 4, 2020 - 8HR REIMPORT

Page 1 of 3
April 2, 2020

April 2, 2020

Page 2 of 8



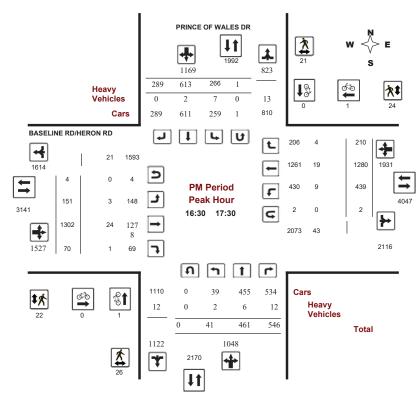
Turning Movement Count - Peak Hour Diagram

BASELINE RD/HERON RD @ PRINCE OF WALES DR

 Survey Date:
 Wednesday, March 04, 2020
 WO No:
 39636

 Start Time:
 07:00
 Device:
 Miovision

Comments 5478543 - MAR 4, 2020 - 8HR REIMPORT



Transportation Services - Traffic Services

Turning Movement Count - Peak Hour Diagram

BASELINE RD/HERON RD @ PRINCE OF WALES DR

Survey Date: Wednesday, March 04, 2020 WO No: 39636
Start Time: 07:00 Device: Miovision

Comments 5478543 - MAR 4, 2020 - 8HR REIMPORT

Turning Movement Count - Study Results

BASELINE RD/HERON RD @ PRINCE OF WALES DR

Survey Date: Wednesday, March 04, 2020 WO No: 39636 Start Time: 07:00 Device: Miovision

Full Study Summary (8 HR Standard)

Survey Date: Wednesday, March 04, 2020 **Total Observed U-Turns AADT Factor** Southbound: 4 1.00

Eastbound:	25	Westbound:	7
------------	----	------------	---

								Eastbour	nd: 2	5	West	bound	7						
_		PR	RINCE	OF W	ALES	DR					BAS	SELIN	E RD/I	HERO	N RD				
	No	rthbou	ınd		So	uthbou	und			Е	astbou	ınd		٧	Vestbo	und			
Period	LT	ST	RT	NB TOT	LT	ST	RT	SB TOT	STR TOT	LT	ST	RT	EB TOT	LT	ST	RT	WB TOT	STR TOT	Gra To
7:00 08:00	53	669	421	1143	179	315	73	567	1710	205	1201	40	1446	274	809	433	1516	2962	46
8:00 09:00	69	585	585	1239	220	350	130	700	1939	222	1287	20	1529	373	996	494	1863	3392	53
9:00 10:00	68	436	359	863	155	282	103	540	1403	186	977	55	1218	264	826	269	1359	2577	39
1:30 12:30	70	272	290	632	163	302	153	618	1250	130	695	44	869	272	848	198	1318	2187	34
2:30 13:30	74	306	322	702	140	286	149	575	1277	165	805	82	1052	281	788	201	1270	2322	35
5:00 16:00	57	387	414	858	234	572	218	1024	1882	161	1101	73	1335	368	1213	325	1906	3241	51
6:00 17:00	41	430	528	999	287	607	292	1186	2185	160	1265	70	1495	426	1278	208	1912	3407	55
7:00 18:00	48	423	507	978	243	581	260	1084	2062	165	1305	67	1537	432	1318	221	1971	3508	55
Sub Total	480	3508	3426	7414	1621	3295	1378	6294	13708	1394	8636	451	10481	2690	8076	2349	13115	23596	373
U Turns				1				4	5				25				7	32	
Total	480	3508	3426	7415	1621	3295	1378	6298	13713	1394	8636	451	10506	2690	8076	2349	13122	23628	373
EQ 12Hr	667	4876	4762	10307	2253	4580	1915	8754	19061	1938	12004	627	14603	3739	11226	3265	18240	32843	519
Note: These values are calculated by multiplying the totals by the appropriate expansion factor. 1.39																			
AVG 12Hr	629	4595	4488	9714	2124	4316	1805	8250	19061	1826	11313	591	13763	3524	10580	3077	17190	32843	519
lote: These v	olumes/	are cal	culated	by multi	plying th	ne Equiv	valent 1	2 hr. tota	ls by the	AADT	factor.			1					
AVG 24Hr	824	6020	5879	12725	2782	5655	2365	10808	23533	2392	14820	774	18029	4616	13859	4031	22519	40548	640
ote: These v	olumes/	are cal	culated	by multi	plying tl	ne Avera	age Dai	ily 12 hr. t	totals by	12 to 2	4 expans	sion fa	ctor.	1.31					

Note: U-Turns provided for approach totals. Refer to 'U-Turn' Report for specific breakdown.

Transportation Services - Traffic Services

Turning Movement Count - Study Results

BASELINE RD/HERON RD @ PRINCE OF WALES DR

Survey Date: Wednesday, March 04, 2020 WO No: 39636 Start Time: 07:00 Device: Miovision

Full Study 15 Minute Increments

PRINCE OF WALES DR BASELINE RD/HERON RD

Time Period CT ST RT No CT ST RT No CT ST RT ST S			Northbound Southbound				Eastbound				Westbound										
07:15 07:30 7 169 91 267 41 74 14 129 7 67 333 12 412 61 198 111 370 7 1178 07:30 07:45 18 171 109 298 54 80 27 161 12 44 339 7 391 75 209 110 394 12 1244 07:45 08:00 15 187 133 335 47 99 20 166 12 47 264 16 327 78 218 124 420 12 1248 08:00 18:15 16 140 134 290 53 73 34 160 5 5 88 297 4 359 112 253 144 511 5 1320 08:15 16 140 134 290 53 73 34 160 5 5 88 297 4 359 112 253 144 511 5 1320 08:15 16 143 124 283 59 81 25 165 11 55 332 5 392 79 228 137 444 11 1284 08:30 08:45 22 151 152 325 66 78 46 180 10 45 333 37 1106 27 119 482 10 1358 08:45 120 10 15 151 175 341 52 118 25 196 8 64 335 8 407 76 258 94 428 8 1372 09:00 09:15 19 126 116 261 39 77 23 139 9 65 340 10 416 76 236 80 392 9 1208 09:15 09:30 13 109 98 220 29 68 22 119 13 40 231 13 286 74 216 77 367 13 992 09:30 09:45 15 96 16 79 190 42 71 25 138 13 51 223 12 286 74 216 77 367 13 992 109:30 09:45 15 66 192 45 66 33 144 7 3 30 183 20 233 62 214 61 337 7 906 11:30 11:45 16 62 70 148 35 72 31 138 10 34 144 13 194 62 223 49 335 10 815 11:45 120 15 71 58 144 39 76 45 160 7 28 210 122 27 9 20 44 38 48 7 903 12:00 12:15 22 70 78 170 37 71 51 160 6 25 188 13 10 34 144 13 194 62 223 49 335 10 815 12:35 12 286 67 15 23 17 69 34 12:15 12:30 17 69 84 170 52 83 26 83 26 123 82 27 9 20 44 38 84 7 903 12:00 12:15 22 70 78 170 37 71 51 160 6 25 188 10 22 27 9 20 44 38 38 7 7 906 11:30 12:45 13 87 7 6 169 34 54 35 123 8 52 122 28 55 86 81 90 56 314 8 883 13:00 13:15 18 75 76 169 34 54 74 33 142 8 32 223 19 275 68 190 56 314 8 883 13:00 13:15 18 75 76 169 34 54 35 123 8 52 192 25 26 28 25 31 20 48 348 7 903 12:00 12:15 12 20 70 78 170 37 71 51 160 6 42 25 186 10 222 79 209 44 38 28 44 12:30 12:45 13:30 20 56 76 152 34 74 33 142 8 32 223 19 275 68 190 56 314 8 883 13:00 13:15 18 75 76 169 34 54 74 33 142 8 32 223 19 275 68 190 56 314 8 883 13:00 13:15 18 75 76 169 34 54 74 33 142 8 32 223 19 275 68 190 56 314 8 883 13:00 13:15 18 75 76 169 34 54 74 74 74 79 13 3 32 274 19 326 82 255 86 43 31 13 1250 13:15 13:30 120 23 63 144 48 255 6 13 58 278 20 356 118 307 74 986 6 1331 160	Time Per	riod	LT	ST	RT		LT	ST	RT			LT	ST	RT		LT	ST	RT			
07:30 07:45 18 171 109 298 54 80 27 161 12 44 339 7 391 75 209 110 394 12 1244 07:45 08:00 15 187 133 335 47 99 20 166 12 47 264 16 327 78 218 124 420 12 1248 08:00 08:15 16 140 134 290 53 73 34 160 5 58 297 4 359 112 253 144 511 5 1320 08:15 08:30 16 143 124 283 59 81 25 165 111 55 332 5 392 79 228 137 444 11 1284 08:30 08:45 22 151 152 325 56 78 46 180 10 45 332 3 3 371 106 257 119 482 10 1358 08:45 09:00 15 151 175 341 52 118 25 196 8 64 335 8 407 76 258 94 428 8 1372 09:00 09:15 19 126 116 261 139 77 23 139 9 65 340 10 416 76 236 89 392 9 1208 09:15 09:30 13 109 98 220 29 68 22 119 13 40 231 13 286 74 216 77 367 13 992 09:30 09:45 15 96 79 190 42 71 25 138 13 51 223 12 286 52 160 51 263 13 877 09:45 10:00 21 105 66 192 45 66 33 144 7 30 183 20 23 362 214 61 337 7 906 11:30 11:45 16 62 70 148 39 77 23 139 9 76 34 144 13 134 66 22 23 49 335 10 815 11:30 11:45 16 62 70 148 39 77 23 139 16 34 144 13 194 62 22 3 49 335 10 815 11:30 11:45 16 62 70 148 39 77 25 83 26 161 8 43 15 15 12:30 17 69 84 170 52 83 26 161 8 43 15:50 17 15 18 12 12 17 15 12:30 17 69 84 170 52 83 26 161 8 43 155 9 209 55 317 6 943 12:45 13 83 877 183 877 193 170 90:50 12:15 22 70 78 170 52 83 26 161 8 43 155 9 209 55 317 6 943 12:45 13:30 17 69 84 170 52 83 26 161 8 43 155 9 209 55 317 6 943 12:45 13:30 13:45 18 75 76 169 34 74 33 142 8 32 223 19 275 68 190 55 317 6 943 12:45 13:30 17 106 105 228 65 115 64 225 4 34 23 4 22 290 74 356 81 511 4 12:04 15:15 15:30 17 106 105 228 65 141 59 265 10 49 243 19 311 94 298 84 476 10 1280 15:30 15:45 14 10 19 99 222 60 172 47 79 13 32 274 19 326 82 255 86 42 44 30 11 138 13:65 16:30 15:45 14 10 19 99 22 60 172 47 79 13 32 274 19 326 82 255 86 44 30 11 138 13:65 16:30 16:45 17 122 146 28 55 147 90 292 11 38 34 14 13 144 13 144 14 13 144 14 14 14 14 14 14 14 14 14 14 14 14	07:00 07	7:15	13	142	88	243	37	62	12	111	6	47	265	5	317	60	184	88	332	6	1003
07:45 08:00 15 187 133 335 47 99 20 166 12 47 264 16 327 78 218 124 420 12 1248 08:00 08:15 16 140 134 290 53 73 34 160 5 58 297 4 359 112 253 144 511 5 1320 08:15 08:30 16 143 124 283 59 81 25 165 11 55 332 5 392 79 228 137 444 11 1284 08:30 08:45 22 151 152 325 56 78 46 180 10 45 332 3 371 106 257 119 482 10 1358 08:45 09:00 15 151 175 341 52 118 25 196 8 64 335 8 407 76 258 94 428 8 1372 09:00 09:15 19 126 116 261 39 77 23 139 9 65 340 10 416 76 236 80 392 9 1208 09:15 09:30 13 109 98 220 29 68 22 119 13 40 231 13 286 74 216 77 367 13 992 09:30 09:45 15 09:00 12 105 66 192 45 66 33 144 7 30 183 20 233 62 214 61 337 7 906 11:30 11:45 16 62 70 148 35 72 31 138 10 34 144 13 194 62 223 49 335 10 815 11:45 12:00 15 71 58 144 35 72 31 138 10 34 144 13 194 62 223 49 335 10 815 11:45 12:00 15 71 69 84 170 52 83 26 161 8 8 43 155 9 209 51 196 57 304 8 844 12:30 12:45 13:00 20 66 76 152 83 163 47 43 161 6 45 120 15 1263 13 8 879 13:15 12:30 17 69 84 170 52 83 26 161 8 8 43 155 9 209 51 196 57 304 8 844 12:30 12:45 13:00 20 66 76 152 83 163 47 43 161 6 45 120 15 15 16 18 70 90 178 46 115 64 225 4 34 234 22 290 74 366 81 511 4 120 15 16 18 70 90 178 46 115 64 225 4 34 234 22 290 74 366 81 511 4 120 15 16 16 30 15 16 16 34 122 51 18 18 70 90 178 46 115 64 225 4 34 234 22 290 74 366 81 511 4 120 15 16 16 16 34 120 15 16 16 16 34 120 15 16 16 16 34 120 15 16 16 16 34 120 15 16 16 16 16 16 16 16 16 17 17 18 18 75 76 16 16 34 54 35 123 142 8 32 23 12 25 26 8 33 194 40 318 8 879 13:15 13:30 23 92 83 199 32 81 37 150 7 36 180 13 211 77 195 50 322 7 902 15:00 15:15 18 70 90 178 46 115 64 225 4 34 234 22 290 74 366 81 511 4 1204 15:15 16:30 17 106 105 228 65 141 59 226 61 136 71 138 33 11 11 13 136 16:00 18:15 13 10 133 242 76 163 47 286 13 58 278 20 356 118 307 55 481 13 1250 15:30 15:45 14 109 99 22 22 60 172 47 279 13 32 274 19 326 82 255 86 423 13 1250 15:30 15:45 14 109 199 22 26 61 163 67 1286 44 11 14 130 118 304 74 496 6 1391 15:30 15:45 16:00 8 112 12 12 146 163 67 144 82 255 6 4 46 13 30 114 11 130 114 140 111 130 144	07:15 07	7:30	7	169	91	267	41	74	14	129	7	67	333	12	412	61	198	111	370	7	1178
08:00 08:15 16 140 134 290 53 73 34 160 5 58 297 4 359 112 253 144 511 5 1320 08:15 08:30 16 143 124 283 59 81 25 165 11 55 332 5 392 79 228 137 444 11 1284 08:30 08:45 22 151 152 325 56 78 46 180 10 45 323 3 371 106 257 119 482 10 1358 08:45 99:00 15 151 175 341 52 118 25 196 8 64 335 8 407 76 258 94 428 8 1372 09:00 09:15 19 126 116 261 39 77 23 139 9 65 340 10 416 76 236 80 392 9 1208 09:15 09:30 13 109 98 220 29 68 22 119 13 40 231 13 286 74 216 77 367 13 992 09:30 09:45 15 15 66 6 192 45 66 33 144 7 30 183 20 233 62 214 61 337 7 906 11:30 11:45 16 62 70 148 35 72 31 138 13 51 223 12 286 52 160 51 263 13 877 12:00 12:15 12:00 15 71 58 144 39 76 45 160 7 28 28 10 12 251 80 220 48 348 7 903 11:45 12:00 15 71 58 144 39 76 45 160 6 25 186 10 222 79 209 44 332 6 84 12:15 12:30 17 69 84 170 52 83 26 161 8 43 155 9 209 51 196 57 304 8 844 12:30 12:45 13 83 87 183 40 77 44 161 6 45 22 27 9 209 44 332 6 84 12:15 13:00 12:15 12 20 70 78 170 52 83 26 161 8 43 155 9 209 51 196 57 304 8 844 12:30 12:45 13 83 87 183 40 77 44 161 6 45 210 25 282 53 209 55 317 6 943 12:45 13:00 13:15 18 77 6 169 34 54 35 123 8 52 223 19 275 68 190 56 314 8 883 12:45 13:00 20 56 76 152 34 74 33 142 8 32 223 19 275 68 190 56 314 8 883 12:45 13:30 27 23 29 28 3 199 32 81 37 150 7 36 180 13:25 29 7 10 78 170 52 83 16 15 64 225 4 34 224 22 29 7 7 166 10 50 314 8 883 12:45 15:30 17 106 105 22 86 51 141 59 265 10 49 243 19 311 94 40 314 8 883 12:45 15:30 17 106 105 22 86 51 141 59 265 10 49 243 19 311 94 40 314 8 883 15:10 13:15 13:30 23 92 83 199 32 81 37 150 7 36 180 13 231 77 195 50 322 7 902 15:00 15:15 18 70 90 178 46 116 64 225 4 34 22 290 74 356 81 511 4 1204 15:15 15:30 17 106 105 228 65 141 59 265 10 49 243 19 311 94 288 84 476 10 1280 15:15 15:30 17 106 105 228 65 141 59 265 10 49 243 19 311 94 288 84 476 10 1280 15:15 15:30 17 106 105 228 65 141 99 22 60 172 47 279 13 32 274 19 326 18 34 46 45 171 11 1486 16:30 16:45 17 10 24 247 62 61 136 71 268 4 41 134 144 16 401 111 300 40 471 496 6 1391 15:30 15:45 16:00 8 10 12 20 20 63 144 88 29	07:30 07	7:45	18	171	109	298	54	80	27	161	12	44	339	7	391	75	209	110	394	12	1244
08:15 08:30 16 143 124 283 59 81 25 165 11 55 332 5 392 79 228 137 444 11 1284 08:30 08:45 22 151 152 325 56 78 46 180 10 45 323 3 371 106 257 119 482 10 1358 08:45 09:00 15 151 175 341 52 118 25 196 8 64 335 8 407 76 258 94 428 8 1372 09:00 09:15 19 126 116 261 39 77 23 139 9 65 340 10 416 76 236 80 392 9 1208 09:15 09:30 13 109 98 220 29 68 22 119 13 40 231 13 286 74 216 77 367 13 992 09:30 09:45 15 96 79 190 42 71 25 138 13 51 223 12 286 52 160 51 263 13 877 09:45 10:00 21 105 66 192 45 66 33 144 7 30 183 20 233 62 214 61 337 7 906 11:30 11:45 16 62 70 148 35 72 31 138 10 34 144 13 194 62 223 49 335 10 815 11:45 12:00 15 71 68 144 39 76 45 160 7 28 210 12 251 80 220 48 348 7 903 12:00 12:15 12:30 17 69 84 170 52 83 26 161 8 43 155 9 209 51 196 57 304 8 844 12:30 12:45 13:3	07:45 08	8:00	15	187	133	335	47	99	20	166	12	47	264	16	327	78	218	124	420	12	1248
08:30 08:45 22 151 152 325 56 78 46 180 10 45 323 3 371 106 257 119 482 10 1358 08:45 09:00 15 151 175 341 52 118 25 196 8 64 335 8 407 76 258 94 428 8 1372 09:00 09:15 19 126 116 261 39 77 23 139 9 65 340 10 416 76 236 80 392 9 1208 09:15 09:30 13 109 98 220 29 68 22 119 13 40 231 13 286 74 216 77 367 13 992 09:30 09:45 15 96 79 190 42 71 25 138 13 51 223 12 286 52 160 51 263 13 877 09:45 10:00 21 105 66 192 45 66 33 144 7 30 183 20 233 62 214 61 337 7 906 11:30 11:45 16 62 70 148 35 72 31 138 10 34 144 13 194 62 223 49 335 10 815 145 11:45 12:30 17 69 84 170 37 77 151 160 6 25 186 10 222 79 209 44 332 6 884 12:15 12:30 17 69 84 170 52 83 26 161 8 43 155 9 209 51 196 57 304 8 844 12:35 12:45 13:00 20 25 67 6 152 34 74 43 161 6 45 210 25 282 53 209 55 317 6 943 13:00 13:15 18 75 76 169 34 54 35 123 8 52 192 25 69 83 194 40 318 8 83 13:00 13:15 18:30 23 92 83 199 32 81 37 150 7 36 180 13 241 118 304 74 496 6 1391 16:00 16:15 18 80 10 13 24 74 286 13 144 8 255 6 46 350 13 410 118 304 74 496 6 1391 16:00 16:15 18 10 133 242 76 163 47 286 13 144 144 15 192 32 25 10 285 44 430 11 133 136 17 144 16:15 16:30 16:45 17 10 12 25 18 80 120 12 25 18 80 120 12 12 15 10 15 18 10 14 14 14 14 14 14 14 14 14 14 14 14 14	08:00 08	8:15	16	140	134	290	53	73	34	160	5	58	297	4	359	112	253	144	511	5	1320
08:45 09:00 15 151 175 341 52 118 25 196 8 64 335 8 407 76 258 94 428 8 1372 09:00 09:15 19 126 116 261 39 77 23 139 9 65 340 10 416 76 236 80 392 9 1208 09:15 09:30 13 109 98 220 29 68 22 119 13 40 231 13 286 74 216 77 367 13 992 09:045 15 96 79 190 42 71 25 138 13 51 223 12 286 52 160 51 263 13 877 09:45 10:00 21 105 66 192 45 66 33 144 7 30 183 20 233 62 214 61 337 7 906 11:30 11:45 16 62 70 148 35 72 31 138 10 34 144 13 194 62 223 49 335 10 815 11:45 12:00 15 71 58 144 39 76 45 160 7 28 210 12 251 80 220 94 44 332 6 884 12:15 12:30 17 69 84 170 52 83 26 161 8 43 155 9 209 51 196 57 304 8 844 12:15 12:30 17 69 84 170 52 83 26 161 8 43 155 9 209 51 196 57 304 8 844 12:30 12:45 13:00 20 56 76 152 34 74 33 142 8 32 223 19 275 68 190 56 314 6 883 13:00 13:15 18 75 76 169 34 54 35 123 8 52 192 25 26 88 194 40 318 8 879 13:15 13:30 23 92 83 199 32 81 37 150 7 36 180 13 231 77 195 50 322 7 902 15:00 15:15 18 70 90 178 46 115 64 225 4 34 234 22 290 74 356 81 51 4 4 1204 15:15 15:30 17 106 105 228 65 141 59 265 10 49 243 19 311 9 4 298 84 476 10 1280 15:30 15:45 14 109 99 222 60 172 47 279 13 32 274 19 31 32 62 55 86 131 31 136 130 130 145 18 75 76 169 34 48 825 6 46 350 13 410 118 304 74 496 6 1391 16:00 16:15 18 10 133 242 76 163 47 286 13 58 278 20 356 118 307 55 881 13 1365 16:15 16:30 8 89 122 120 230 63 144 88 255 6 46 350 13 410 118 304 74 496 6 1391 16:00 16:15 18 10 133 242 76 163 47 286 13 58 278 20 356 118 307 55 881 13 1365 16:15 16:30 8 11 1 133 242 76 163 47 286 13 58 278 20 356 118 307 55 881 13 1365 16:15 16:30 8 118 126 252 81 163 67 311 11 35 301 14 352 100 285 44 430 11 1346	08:15 08	8:30	16	143	124	283	59	81	25	165	11	55	332	5	392	79	228	137	444	11	1284
09:00 09:15 19 126 116 261 39 77 23 139 9 65 340 10 416 76 236 80 392 9 1208 09:15 09:30 13 109 98 220 29 68 22 119 13 40 231 13 286 74 216 77 367 13 992 09:30 09:45 15 96 79 190 42 71 25 138 13 51 223 12 286 52 160 51 263 13 877 09:45 10:00 21 105 66 192 45 66 33 144 7 30 183 20 23 62 214 61 337 7 906 11:30 11:45 16 62 70 148 35 72 31 138 10 34 144 13 194 62 223 49 335 10 815 11:45 12:00 15 71 58 144 39 76 45 160 7 28 210 12 251 80 220 48 348 7 903 12:00 12:15 22 70 78 170 37 71 51 160 6 25 186 10 222 79 209 44 332 6 884 12:15 12:30 17 69 84 170 52 83 26 161 8 43 155 9 209 51 196 57 304 8 844 12:30 12:46 13 83 87 183 40 77 44 161 6 45 210 25 282 53 209 55 317 6 943 12:45 13:00 20 56 76 152 34 74 33 142 8 32 223 19 275 68 190 56 314 8 883 13:00 13:15 18 75 76 169 34 54 64 35 123 8 52 192 25 269 83 194 40 318 8 879 13:15 13:30 23 92 83 199 32 81 37 150 7 36 180 13 231 77 195 50 322 7 902 15:00 15:15 18 70 90 178 46 115 64 225 4 34 234 22 290 74 356 81 511 4 1204 15:15 16:30 17 106 105 228 65 141 59 265 10 49 243 19 311 94 298 84 476 10 1280 15:30 15:45 16:00 8 102 120 230 63 144 48 255 6 46 350 13 410 118 304 74 496 6 1391 16:00 16:15 8 10 133 242 76 163 47 299 13 32 274 19 326 82 255 86 423 13 1250 16:45 16:00 8 102 120 230 63 144 48 8255 6 46 350 13 410 118 304 74 496 6 1391 16:00 16:15 16:30 8 101 133 242 76 163 47 296 13 58 278 20 356 118 304 40 311 13 1250 16:45 16:00 8 102 120 230 63 144 48 8255 6 46 350 13 410 118 304 74 496 6 1391 16:00 16:15 16:30 8 101 133 242 76 163 47 286 13 58 278 20 356 118 304 40 471 4 104 16:30 16:45 17 122 146 285 55 147 90 292 11 38 334 19 392 108 344 64 517 11 1486 16:45 17:00 8 118 126 252 81 163 67 311 11 35 301 14 352 100 285 44 430 11 1345 17:00 17:15 11 104 147 262 61 136 71 268 4 41 344 16 401 111 300 40 471 4 1402 16:30 16:45 17:00 8 118 126 252 81 163 67 311 11 35 301 14 352 100 285 44 430 11 1345	08:30 08	8:45	22	151	152	325	56	78	46	180	10	45	323	3	371	106	257	119	482	10	1358
09:15 09:30 13 109 98 220 29 68 22 119 13 40 231 13 286 74 216 77 367 13 992 09:30 09:45 15 96 79 190 42 71 25 138 13 51 223 12 286 52 160 51 283 13 877 09:45 10:00 21 105 66 192 45 66 33 144 7 30 183 20 23 62 214 61 337 7 906 11:30 11:45 16 62 70 148 35 72 31 138 10 34 144 13 194 62 234 49 335 10 815 11:45 12:00 15 71 58 144 39 76 45 160 7 28 210 12 251 80 220 48 348 7 903 12:00 12:15 22 70 78 170 37 71 51 160 6 25 186 10 222 79 209 44 332 6 884 12:15 12:30 17 69 84 170 52 83 26 161 8 43 155 9 209 51 196 57 304 8 844 12:30 12:45 13 83 87 183 40 77 44 161 6 45 210 25 282 53 209 55 317 6 943 13:16 13:30 20 56 76 152 34 74 33 142 8 32 223 19 275 68 190 56 314 8 883 13:00 13:15 18 75 76 169 34 54 35 123 8 52 192 25 269 83 194 40 318 8 879 13:16 13:30 23 92 83 199 32 81 37 150 7 36 180 13 231 77 195 50 322 7 902 15:00 15:15 18 70 90 178 46 115 64 225 4 34 234 22 290 74 356 81 511 4 1204 15:15 15:30 17 106 105 228 65 141 59 265 10 49 243 19 31 19 4 298 84 476 10 1280 15:30 15:45 16:00 8 102 120 230 63 144 48 255 6 46 350 13 410 118 304 74 496 6 1391 16:00 16:15 8 80 121 122 146 285 55 147 80 292 11 38 5278 20 356 118 304 74 40 61 133 1250 16:45 16:00 8 102 120 230 63 144 48 255 6 46 350 13 410 118 304 74 496 6 1391 16:00 16:15 16:30 8 89 123 220 75 134 88 279 6 29 352 17 398 100 342 45 487 6 1402 16:30 16:45 17 102 146 285 55 147 80 292 11 38 334 10 34 11 352 100 285 44 430 11 1345 17:00 17:15 11 104 147 262 61 136 77 286 4 41 344 16 401 111 300 40 471 4 1402 16:30 16:45 17:00 8 118 126 252 81 163 67 311 11 35 301 14 352 100 285 44 430 11 1345 17:00 17:15 11 104 147 262 61 136 77 286 4 41 344 16 401 111 300 40 471 4 1402 17:15 17:30 5 117 127 249 69 167 61 298 3 37 323 21 382 120 331 62 513 3 1442 17:30 17:45 13 110 124 247 62 156 59 277 9 43 33 15 15 365 115 354 52 521 1 1 1348	08:45 09	9:00	15	151	175	341	52	118	25	196	8	64	335	8	407	76	258	94	428	8	1372
09:30 09:45 15 96 79 190 42 71 25 138 13 51 223 12 286 52 160 51 263 13 877 09:45 10:00 21 10:5 66 192 45 66 33 144 7 30 183 20 233 62 214 61 337 7 90:6 11:30 11:45 16 62 70 148 35 72 31 138 10 34 144 13 194 62 223 49 335 10 815 11:45 12:00 15 71 58 144 39 76 45 160 7 28 210 12 251 80 220 48 348 7 90:3 12:00 12:15 22 70 78 170 37 71 51 160 6 25 186 10 222 79 209 44 332 6 884 12:15 12:30 17 69 84 170 52 83 26 161 8 43 155 9 209 51 196 57 304 8 844 12:3 12:45 13:00 12:45 13 83 87 183 40 77 44 161 6 45 210 25 28 15 209 55 317 6 943 13:00 12:45 13:00 20 56 76 152 34 74 33 142 8 32 223 19 2 25 289 83 194 40 318 8 83 13:00 13:15 18 75 76 169 34 54 35 123 8 52 192 25 269 83 194 40 318 8 879 13:15 13:30 23 92 83 199 32 81 37 150 7 36 180 13 231 77 195 50 322 7 902 15:00 15:15 18 70 90 178 46 115 64 225 4 34 234 22 290 74 356 81 511 4 1204 15:15 15:30 17 106 105 228 65 141 59 265 10 49 243 19 311 94 298 84 476 10 1280 15:30 15:45 14 109 99 222 60 172 47 279 13 32 274 19 326 82 255 86 423 13 1250 15:30 16:15 18 80 102 120 230 63 144 48 255 6 46 350 13 410 118 304 74 496 6 1391 16:00 16:15 18 80 10 13 23 22 75 134 88 297 6 29 352 17 392 108 344 64 17 1 138 1365 17:00 16:15 18 10 13 3 242 76 163 47 286 13 58 278 20 356 118 300 342 45 487 6 1402 16:30 16:45 17:00 8 118 126 252 81 163 67 311 11 35 301 14 352 100 285 44 430 11 133 1365 17:00 17:15 11 104 147 262 61 136 77 288 4 41 344 16 401 111 320 40 471 4 1402 16:30 16:45 17:00 8 118 126 252 81 163 67 311 11 35 301 14 352 100 285 44 430 11 1345 17:00 17:15 17:00 8 118 126 252 81 163 67 311 11 35 301 14 305 15 305 44 430 11 133 66 251 14 402 17:30 17:45 13 100 17:47 27 29 90 21 13 33 21 13 301 14 352 100 285 44 430 11 1345 17:00 17:15 17:00 5 117 127 249 69 167 61 298 3 37 323 21 382 120 331 62 513 3 1442 17:30 17:45 13 110 124 247 62 156 59 277 9 43 33 15 15 305 115 354 52 521 1 1 1348	09:00 09	9:15	19	126	116	261	39	77	23	139	9	65	340	10	416	76	236	80	392	9	1208
09.45 10:00 21 105 66 192 45 66 33 144 7 30 183 20 23 62 214 61 337 7 906 11:30 11:45 16 62 70 148 35 72 31 138 10 34 144 13 194 62 223 49 335 10 815 11:45 12:00 15 71 58 144 39 76 45 160 7 28 210 12 251 80 220 48 348 7 903 12:00 12:15 22 70 78 170 37 71 51 160 6 2 58 186 10 222 79 209 44 332 6 884 12:15 12:30 17 69 84 170 52 83 26 161 8 43 155 9 209 51 196 57 304 8 844 12:30 12:45 13 83 87 183 40 77 44 161 6 45 210 25 282 53 209 55 317 6 943 12:45 13:00 20 56 76 152 34 74 33 142 8 32 223 19 275 68 190 56 314 8 883 13:00 13:15 18 75 76 169 34 54 35 123 8 52 192 25 269 83 194 40 318 8 879 13:15 13:30 23 92 83 199 32 81 37 150 7 36 180 13 231 77 195 50 322 7 902 15:00 15:15 18 70 90 178 46 115 64 225 4 34 234 22 290 74 356 81 511 4 1204 15:15 15:30 17 106 105 228 65 141 59 265 10 49 243 19 311 94 298 84 476 10 1280 15:30 15:45 14 109 99 92 222 60 172 47 279 13 32 274 19 326 82 255 86 423 13 1250 15:30 16:45 17 102 140 230 63 144 48 255 6 46 350 13 410 118 304 74 496 6 1391 16:00 16:15 8 101 133 242 75 163 47 90 291 11 38 334 17 399 10 342 45 46 47 11 1486 16:45 17:00 8 118 126 252 81 163 67 311 11 35 301 14 352 100 342 45 447 61 11 1486 16:45 17:00 8 118 126 252 81 163 67 311 11 35 301 14 352 100 285 44 430 11 1345 17:30 17:45 13:00 19 92 109 220 51 122 69 242 1 44 30 5 15 365 115 365 52 521 1 1348	09:15 09	9:30	13	109	98	220	29	68	22	119	13	40	231	13	286	74	216	77	367	13	992
11:30 11:45 16 62 70 148 35 72 31 138 10 34 144 13 194 62 223 49 335 10 815 11:45 12:00 15 71 58 144 39 76 45 160 7 28 210 12 251 80 220 48 348 7 903 12:00 12:15 12:2 70 78 170 37 71 51 160 6 25 186 10 222 79 209 44 332 6 884 12:30 12:45 13 83 87 183 40 77 44 161 6 45 210 25 282 53 209 55 317 6 943 12:45 13:30 20 56 76 152 34 74 33 142 8	09:30 09	9:45	15	96	79	190	42	71	25	138	13	51	223	12	286	52	160	51	263	13	877
11:45 12:00 15 71 58 144 39 76 45 160 7 28 210 12 251 80 220 48 348 7 903 12:00 12:15 22 70 78 170 37 71 51 160 6 25 186 10 222 79 209 44 332 6 884 12:30 17 69 84 170 52 83 26 161 8 43 155 9 209 51 196 57 304 8 844 12:30 12:45 13 83 87 183 40 77 44 161 6 45 210 25 282 53 209 55 317 6 943 13:00 13:15 18 75 76 169 34 54 35 123 8 52	09:45 10	0:00	21	105	66	192	45	66	33	144	7	30	183	20	233	62	214	61	337	7	906
12:00 12:15 22 70 78 170 37 71 51 160 6 25 186 10 222 79 209 44 332 6 884 12:15 12:30 17 69 84 170 52 83 26 161 8 43 155 9 209 51 196 57 304 8 844 12:30 12:45 13 83 87 183 40 77 44 161 6 45 210 25 28 53 209 55 317 6 943 13:45 13:300 20 56 76 152 34 74 33 142 8 32 223 19 275 68 190 56 314 8 883 13:00 13:15 18 75 76 169 34 54 35 123 8 52 192 25 269 83 194 40 318 8 879 13:15 13:30 23 92 83 199 32 81 37 150 7 36 180 13 231 77 195 50 322 7 902 15:00 15:15 18 70 90 178 46 115 64 225 4 34 234 22 290 17 4 356 81 511 4 1204 15:15 15:30 17 106 105 228 65 141 59 265 10 49 243 19 31 94 298 84 476 10 1280 15:30 15:45 14 109 99 222 60 172 47 279 13 32 274 19 326 82 255 86 423 13 1250 15:45 16:00 8 102 120 230 63 144 48 255 6 46 350 13 410 118 304 74 496 6 1391 16:00 16:15 8 10:30 16:15 18 30 24 76 163 47 286 13 58 278 20 356 118 304 44 430 11 148 13:30 16:45 17 102 146 285 55 147 89 292 11 38 334 19 392 108 344 64 517 11 1486 16:45 17:00 8 118 126 252 81 163 67 311 11 35 301 14 352 100 285 44 430 11 133 1365 17:00 8 118 126 252 81 163 67 311 11 35 301 14 352 100 285 44 430 11 1345 17:00 17:15 11 104 147 262 61 136 77 288 4 11 34 34 16 401 111 320 40 471 4 1402 16:30 16:45 17:00 8 118 126 252 81 163 67 311 11 35 301 14 352 100 285 44 430 11 1345 17:30 17:45 13 100 17:24 69 167 61 298 3 373 323 21 382 120 313 62 513 3 1442 17:30 17:45 13 110 124 247 69 167 61 298 3 373 323 21 382 120 313 62 513 3 1442 17:30 17:45 13 110 124 247 62 156 59 277 9 43 333 15 15 365 115 365 15 56 52 11 1348	11:30 11	1:45	16	62	70	148	35	72	31	138	10	34	144	13	194	62	223	49	335	10	815
12:15 12:30 17 69 84 170 52 83 26 161 8 43 155 9 209 51 196 57 304 8 844 12:30 12:45 13 83 87 183 40 77 44 161 6 45 210 25 282 53 209 55 317 6 943 12:45 13:00 20 56 76 152 34 74 33 142 8 32 223 19 275 68 190 56 314 8 883 13:00 13:15 18 75 76 169 34 54 35 123 8 52 192 25 269 83 194 40 318 8 879 13:15 13:30 23 92 83 199 32 81 37 150 7 36 180 13 231 77 195 50 322 7 902 15:00 15:15 18 70 90 178 46 115 64 225 4 34 224 22 290 74 356 81 511 4 12:04 15:15 15:30 17 106 105 228 65 141 59 265 10 49 243 19 311 94 298 84 476 10 1280 15:30 15:45 14 109 99 222 60 172 47 279 13 32 274 19 326 82 255 86 423 13 12:50 15:45 16:00 8 102 120 230 63 144 48 255 6 46 350 13 410 118 304 74 496 6 1391 16:00 16:15 8 101 133 242 76 163 47 286 13 58 278 20 356 118 307 55 481 13 1365 16:15 16:30 16:45 17 122 146 285 55 147 80 292 11 38 334 19 392 108 344 64 517 11 1486 16:45 17:00 8 118 126 252 81 163 67 311 11 35 301 14 352 100 285 44 430 11 1345 17:00 17:15 17:00 17:15 11 104 147 262 61 136 71 268 41 344 344 16 401 111 30 40 71 44 1402 17:15 17:30 5 17:45 11 104 147 262 61 136 71 268 44 11 344 16 401 111 30 40 71 4 140 11 1345 17:00 17:45 13 110 124 247 62 165 69 242 1 44 30 5 15 365 115 393 86 313 67 466 9 1383 17:45 18:00 19 92 109 220 51 122 69 242 1 44 305 15 365 115 365 52 521 1 1348	11:45 12	2:00	15	71	58	144	39	76	45	160	7	28	210	12	251	80	220	48	348	7	903
12:30 12:45 13 83 87 183 40 77 44 161 6 45 210 25 282 53 209 55 317 6 943 12:45 13:00 20 56 76 152 34 74 33 142 8 32 223 19 275 68 190 56 314 8 883 13:00 13:15 18 75 76 169 34 54 35 123 8 52 192 25 269 83 194 40 318 8 879 13:15 13:30 23 92 83 199 32 81 137 150 7 36 180 13 231 77 195 50 322 7 902 15:00 15:16 18 70 90 178 46 115 64 225 4 34 234 22 290 74 356 81 511 4 1204 15:15 15:30 17 106 105 228 65 141 59 265 10 49 243 19 311 94 298 84 476 10 1280 15:30 15:45 14 109 99 222 60 172 47 279 13 32 274 19 326 82 255 86 423 13 1250 15:45 16:00 8 102 120 230 63 144 48 255 6 46 350 13 410 118 304 74 496 6 1391 16:00 16:15 8 101 133 242 76 163 47 286 13 58 278 20 356 118 307 55 481 13 1365 16:15 16:30 8 8 89 123 220 75 134 88 297 6 29 352 17 398 100 342 45 487 6 1402 16:30 16:45 17:00 8 118 126 252 81 163 67 311 11 35 301 14 352 100 285 44 300 11 1486 16:45 17:00 8 118 126 252 81 163 67 311 11 35 301 14 352 100 285 44 300 11 1345 17:00 17:15 11 104 147 262 61 136 71 268 4 11 344 16 401 11 300 40 471 4 1402 17:15 17:30 5 117 127 249 69 167 61 298 3 37 323 21 382 120 331 62 513 3 1442 17:30 17:45 13 110 124 247 62 156 59 277 9 43 333 15 393 86 313 67 466 9 1383 17:45 18:00 19 92 109 220 51 122 69 242 1 44 305 15 365 115 354 52 521 1 1348	12:00 12	2:15	22	70	78	170	37	71	51	160	6	25	186	10	222	79	209	44	332	6	884
12:45 13:00 20 56 76 152 34 74 33 142 8 32 223 19 275 68 190 56 314 8 883 13:00 13:15 18 75 76 169 34 54 35 123 8 52 192 25 269 83 194 40 318 8 879 13:15 18 70 90 178 46 115 64 225 4 34 234 77 95 50 322 7 902 15:15 15:30 17 106 105 228 65 141 59 265 10 49 243 19 311 94 298 84 476 10 1280 15:30 15:45 14 109 99 222 60 172 47 279 13 32 274 19	12:15 12	2:30	17	69	84	170	52	83	26	161	8	43	155	9	209	51	196	57	304	8	844
13:00 13:15 18 75 76 169 34 54 35 123 8 52 192 25 269 83 194 40 318 8 879 13:15 13:30 23 92 83 199 32 81 37 150 7 36 180 13 231 77 195 50 322 7 902 15:00 15:15 18 70 90 178 46 115 64 225 4 34 234 22 290 74 356 81 511 4 1204 15:15 15:30 17 106 105 228 65 141 59 265 10 49 243 19 311 94 298 84 476 10 1280 15:45 16:00 8 102 120 230 63 144 48 255 6 <td>12:30 12</td> <td>2:45</td> <td>13</td> <td>83</td> <td>87</td> <td>183</td> <td>40</td> <td>77</td> <td>44</td> <td>161</td> <td>6</td> <td>45</td> <td>210</td> <td>25</td> <td>282</td> <td>53</td> <td>209</td> <td>55</td> <td>317</td> <td>6</td> <td>943</td>	12:30 12	2:45	13	83	87	183	40	77	44	161	6	45	210	25	282	53	209	55	317	6	943
13:15 13:30 23 92 83 199 32 81 37 150 7 36 180 13 231 77 195 50 322 7 902 15:00 15:15 18 70 90 178 46 115 64 225 4 34 234 22 290 74 356 81 511 4 1204 15:30 15:45 14 109 99 222 60 172 47 279 13 32 274 19 311 94 298 84 476 10 1280 15:30 15:45 14 109 99 922 226 60 172 47 279 13 32 274 19 310 326 82 255 86 423 13 1250 15:45 16:00 8 102 120 230 63 144	12:45 13	3:00	20	56	76	152	34	74	33	142	8	32	223	19	275	68	190	56	314	8	883
15:00 15:15 18 70 90 178 46 115 64 225 4 34 234 22 290 74 356 81 511 4 1204 15:15 15:30 17 106 105 228 65 141 59 265 10 49 243 19 311 94 298 84 476 10 1280 15:30 15:45 14 109 99 222 60 172 47 279 13 32 274 19 326 82 255 86 423 13 1250 15:45 16:00 16:15 8 101 133 242 76 63 47 286 13 58 278 20 356 118 307 55 481 13 136 16:15 16:30 8 89 123 220 75 134 88 297	13:00 13	3:15	18	75	76	169	34	54	35	123	8	52	192	25	269	83	194	40	318	8	879
15:15 15:30 17 106 105 228 65 141 59 265 10 49 243 19 311 94 298 84 476 10 1280 15:30 15:45 14 109 99 222 60 172 47 279 13 32 274 19 326 82 255 86 423 13 1250 15:45 16:00 8 102 120 230 63 144 48 255 6 46 350 13 410 118 304 74 496 6 1391 16:00 16:15 8 101 133 242 76 163 47 286 13 58 278 20 356 118 307 55 481 13 136 16:15 16:30 8 89 123 220 75 134 88 297	13:15 13	3:30	23	92	83	199	32	81	37	150	7	36	180	13	231	77	195	50	322	7	902
15:30 15:45 14 109 99 222 60 172 47 279 13 32 274 19 326 82 255 86 423 13 1250 15:45 16:00 8 102 120 230 63 144 48 255 6 46 350 13 410 118 304 74 496 6 1391 16:00 16:15 16:30 8 89 123 220 75 134 88 297 352 177 398 100 342 45 487 6 1402 1402 1402 1402 1402 1402 1402 1402 1402 1403 1402 1403	15:00 15	5:15	18	70	90	178	46	115	64	225	4	34	234	22	290	74	356	81	511	4	1204
15:45 16:00 8 102 120 230 63 144 48 255 6 46 350 13 410 118 304 74 496 6 1391 16:00 16:15 8 101 133 242 76 163 47 286 13 58 278 20 356 118 307 55 481 13 1365 16:15 16:30 8 89 123 220 75 134 88 297 6 29 352 17 398 100 342 45 487 6 1402 16:30 16:45 17 122 146 285 55 147 90 292 11 38 334 19 392 108 344 64 517 11 1486 16:45 17:00 8 118 126 252 81 163 67 311	15:15 15	5:30	17	106	105	228	65	141	59	265	10	49	243	19	311	94	298	84	476	10	1280
16:00 16:15 8 101 133 242 76 163 47 286 13 58 278 20 356 118 307 55 481 13 1365 16:15 16:30 8 89 123 220 75 134 88 297 6 29 352 17 398 100 342 45 487 6 1402 16:30 16:45 17 122 146 285 55 147 90 292 11 38 334 19 392 108 344 64 517 11 1486 16:45 17:00 8 118 126 252 81 163 67 311 11 35 301 14 352 100 285 44 430 11 1345 17:00 17:15 11 104 147 262 61 136 71 268	15:30 15	5:45	14	109	99	222	60	172	47	279	13	32	274	19	326	82	255	86	423	13	1250
16:15 16:30 8 89 123 220 75 134 88 297 6 29 352 17 398 100 342 45 487 6 1402 16:30 16:45 17 122 146 285 55 147 90 292 11 38 334 19 392 108 344 64 517 11 1486 16:45 17:00 8 118 126 252 81 163 67 311 11 35 301 14 352 100 285 44 430 11 1345 17:00 17:15 11 104 147 262 61 136 71 268 4 41 344 16 401 111 320 40 471 4 1402 17:15 17:30 5 117 127 249 69 167 61 298 3 37 323 21 382 120 331 62 513 3 1442 17:30 17:45 13 110 124 247 62 156 59 277 9 43	15:45 16	6:00	8	102	120	230	63	144	48	255	6	46	350	13	410	118	304	74	496	6	1391
16:30 16:45 17 122 146 285 55 147 90 292 11 38 334 19 392 108 344 64 517 11 1486 16:45 17:00 8 118 126 252 81 163 67 311 11 35 301 14 352 100 285 44 430 11 1345 17:00 17:15 11 104 147 262 61 136 71 268 4 41 344 16 401 111 320 40 471 4 1402 17:15 17:30 5 117 127 249 69 167 61 298 3 37 323 21 382 120 331 62 513 3 1442 17:30 17:45 13 110 124 247 62 156 59 277 9 43 333 15 393 86 313 67 466 9 1383 17:45 18:00 19 92 109 220 51 122 69 242 1 44	16:00 16	6:15	8	101	133	242	76	163	47	286	13	58	278	20	356	118	307	55	481	13	1365
16:45 17:00 8 118 126 252 81 163 67 311 11 35 301 14 352 100 285 44 430 11 1345 17:00 17:15 11 104 147 262 61 136 71 268 4 41 344 16 401 111 320 40 471 4 1402 17:15 17:30 5 117 127 249 69 167 61 298 3 37 323 21 382 120 331 62 513 3 1442 17:30 17:45 13 110 124 247 62 156 59 277 9 43 333 15 393 86 313 67 466 9 1383 17:45 18:00 19 92 109 220 51 122 69 242 1 44 305 15 365 115 354 52 521 1 1348	16:15 16	6:30	8	89	123	220	75	134	88	297	6	29	352	17	398	100	342	45	487	6	1402
17:00 17:15 11 104 147 262 61 136 71 268 4 41 344 16 401 111 320 40 471 4 1402 17:15 17:30 5 117 127 249 69 167 61 298 3 37 323 21 382 120 331 62 513 3 1442 17:30 17:45 13 110 124 247 62 156 59 277 9 43 333 15 393 86 313 67 466 9 1383 17:45 18:00 19 92 109 220 51 122 69 242 1 44 305 15 365 115 354 52 521 1 1348	16:30 16	6:45	17	122	146	285	55	147	90	292	11	38	334	19	392	108	344	64	517	11	1486
17:15 17:30 5 117 127 249 69 167 61 298 3 37 323 21 382 120 331 62 513 3 1442 17:30 17:45 13 110 124 247 62 156 59 277 9 43 333 15 393 86 313 67 466 9 1383 17:45 18:00 19 92 109 220 51 122 69 242 1 44 305 15 365 115 354 52 521 1 1348	16:45 17	7:00	8	118	126	252	81	163	67	311	11	35	301	14	352	100	285	44	430	11	1345
17:30 17:45 13 110 124 247 62 156 59 277 9 43 333 15 393 86 313 67 466 9 1383 17:45 18:00 19 92 109 220 51 122 69 242 1 44 305 15 365 115 354 52 521 1 1348	17:00 17	7:15	11	104	147	262	61	136	71	268	4	41	344	16	401	111	320	40	471	4	1402
17:45 18:00 19 92 109 220 51 122 69 242 1 44 305 15 365 115 354 52 521 1 1348	17:15 17	7:30	5	117	127	249	69	167	61	298	3	37	323	21	382	120	331	62	513	3	1442
	17:30 17	7:45	13	110	124	247	62	156	59	277	9	43	333	15	393	86	313	67	466	9	1383
Total: 480 3508 3426 7415 1621 3295 1378 6298 264 1394 8636 451 10506 2690 8076 2349 13122 264 37,341	17:45 18	8:00	19	92	109	220	51	122	69	242	1	44	305	15	365	115	354	52	521	1	1348
	Total:		480	3508	3426	7415	1621	3295	1378	6298	264	1394	8636	451	10506	2690	8076	2349	13122	264	37,341

Note: U-Turns are included in Totals.

April 2, 2020 April 2, 2020 Page 4 of 8 Page 3 of 8

Turning Movement Count - Study Results

BASELINE RD/HERON RD @ PRINCE OF WALES DR

 Survey Date:
 Wednesday, March 04, 2020
 WO No:
 39636

 Start Time:
 07:00
 Device:
 Miovision

Full Study Cyclist Volume

			. an otaay	0,0			
	PRI	NCE OF WALES	S DR	BAS	ELINE RD/HER	ON RD	
Time Period	Northbound	Southbound	Street Total	Eastbound	Westbound	Street Total	Grand Total
07:00 07:15	0	1	1	0	0	0	1
07:15 07:30	0	0	0	0	0	0	0
07:30 07:45	0	0	0	1	0	1	1
07:45 08:00	0	1	1	0	0	0	1
08:00 08:15	0	0	0	0	0	0	0
08:15 08:30	0	0	0	0	0	0	0
08:30 08:45	4	0	4	0	1	1	5
08:45 09:00	0	0	0	0	0	0	0
09:00 09:15	0	0	0	0	0	0	0
09:15 09:30	0	0	0	0	0	0	0
09:30 09:45	0	0	0	0	1	1	1
09:45 10:00	2	0	2	1	0	1	3
11:30 11:45	0	0	0	0	0	0	0
11:45 12:00	2	0	2	1	0	1	3
12:00 12:15	0	0	0	0	0	0	0
12:15 12:30	0	0	0	0	0	0	0
12:30 12:45	0	0	0	0	0	0	0
12:45 13:00	0	0	0	0	0	0	0
13:00 13:15	0	0	0	0	0	0	0
13:15 13:30	0	0	0	0	0	0	0
15:00 15:15	0	0	0	0	0	0	0
15:15 15:30	0	0	0	0	0	0	0
15:30 15:45	0	1	1	0	0	0	1
15:45 16:00	0	0	0	0	0	0	0
16:00 16:15	0	0	0	0	1	1	1
16:15 16:30	0	1	1	0	1	1	2
16:30 16:45	0	0	0	0	0	0	0
16:45 17:00	0	0	0	0	1	1	1
17:00 17:15	0	0	0	0	0	0	0
17:15 17:30	1	0	1	0	0	0	1
17:30 17:45	1	0	1	0	0	0	1
17:45 18:00	0	0	0	0	0	0	0
Total	10	4	14	3	5	8	22

Transportation Services - Traffic Services

Turning Movement Count - Study Results

BASELINE RD/HERON RD @ PRINCE OF WALES DR

 Survey Date:
 Wednesday, March 04, 2020
 WO No:
 39636

 Start Time:
 07:00
 Device:
 Miovision

Full Study Pedestrian Volume

PRINCE OF WALES DR BASELINE RD/HERON RD

07:00 07:15 07:00 07:15 07:15 07:30 07:15 07:30 07:45 08:00 08:00 08:15 08:15 08:30 08:45 08:00 09:00 09:15 09:30 09:45 09:30 09:45 09:45 10:00 11:30 11:45 11:45 12:00 12:00 12:15 12:15 12:30 12:30 12:45 12:45 13:30	0 0 0 4 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0	0 4 3 7 8 7 6 2 1	0 0 2 4 0 5 0 0	4 2 3 4 3 1 4 2 3	4 2 5 8 3 6 4 2	4 6 8 15 11 13 10 4 5
07:30 07:45 07:46 08:00 08:00 08:15 08:15 08:30 08:30 08:45 08:45 09:00 09:00 09:15 09:30 09:45 09:30 09:45 11:30 11:45 11:45 12:00 12:00 12:15 12:15 12:30 12:30 12:45 12:30 13:00 13:00 13:15	3 0 3 4 6 2 4 3 6 0 1 1 0 1 0 0 5 0	3 7 8 7 6 2 1	2 4 0 5 0 0	3 4 3 1 4 2 3	5 8 3 6 4 2	8 15 11 13 10 4 5
07:45 08:00 08:00 08:15 08:15 08:30 08:30 08:45 08:45 09:00 09:00 09:15 09:15 09:30 09:30 09:45 09:45 10:00 11:30 11:45 12:00 12:00 12:15 12:15 12:30 12:30 12:45 12:45 13:00 13:00 13:15	3 4 6 2 4 3 6 0 1 1 1 0 0 0 5 0 0	7 8 7 6 2 1	4 0 5 0 0	4 3 1 4 2 3	8 3 6 4 2 4	15 11 13 10 4 5
08:00 08:15 08:15 08:30 08:30 08:45 08:45 09:00 09:00 09:15 09:15 09:30 09:30 09:45 09:45 10:00 11:30 11:45 11:45 12:00 12:00 12:15 12:15 12:30 12:30 12:45 12:45 13:00 13:00 13:15	6 2 4 3 6 0 1 1 1 0 1 0 0 5 0	8 7 6 2 1	0 5 0 0	3 1 4 2 3	3 6 4 2 4	11 13 10 4 5
08:15 08:30 08:30 08:45 08:45 09:00 09:00 09:15 09:15 09:30 09:30 09:45 09:45 10:00 11:30 11:45 11:45 12:00 12:00 12:15 12:15 12:30 12:30 12:45 12:45 13:00 13:00 13:15	4 3 6 0 1 1 0 1 0 0 5 0	7 6 2 1 0	5 0 0	1 4 2 3	6 4 2 4	13 10 4 5
08:30 08:45 08:45 09:00 09:00 09:15 09:15 09:30 09:30 09:45 09:45 10:00 11:30 11:45 11:45 12:00 12:00 12:15 12:15 12:30 12:30 12:45 12:45 13:00 13:00 13:15	6 0 1 1 0 1 0 0 5 0	6 2 1 0	0 0 1	4 2 3	4 2 4	10 4 5
08:45 09:00 09:00 09:15 09:15 09:30 09:30 09:45 09:45 10:00 11:30 11:45 12:00 12:15 12:15 12:30 12:30 12:45 12:45 13:00 13:00 13:15	1 1 0 1 0 0 0 5 0 0	2 1 0	0	2	2	4 5
09:00 09:15 09:15 09:30 09:30 09:45 09:45 10:00 11:30 11:45 11:45 12:00 12:00 12:15 12:15 12:30 12:30 12:45 12:45 13:00 13:00 13:15	0 1 0 0 5 0	1 0	1	3	4	5
09:15 09:30 09:30 09:45 09:45 10:00 11:30 11:45 11:45 12:00 12:00 12:15 12:15 12:30 12:30 12:45 12:45 13:00 13:00 13:15	0 0	0				
09:30 09:45 09:45 10:00 11:30 11:45 11:45 12:00 12:00 12:15 12:15 12:30 12:30 12:45 12:45 13:00 13:00 13:15	5 0		0	^		
09:45 10:00 11:30 11:45 11:45 12:00 12:00 12:15 12:15 12:30 12:30 12:45 12:45 13:00 13:00 13:15		5		0	0	0
11:30 11:45 11:45 12:00 12:00 12:15 12:15 12:30 12:30 12:45 12:45 13:00 13:00 13:15	6 0		0	5	5	10
11:45 12:00 12:00 12:15 12:15 12:30 12:30 12:45 12:45 13:00 13:00 13:15		6	0	6	6	12
12:00 12:15 12:15 12:30 12:30 12:45 12:45 13:00 13:00 13:15	2 2	4	2	2	4	8
12:15 12:30 12:30 12:45 12:45 13:00 13:00 13:15	2 0	2	0	3	3	5
12:30 12:45 12:45 13:00 13:00 13:15	0 2	2	2	0	2	4
12:45 13:00 13:00 13:15	1 0	1	0	2	2	3
13:00 13:15	1 0	1	0	0	0	1
	4 0	4	1	1	2	6
13:15 13:30	3 2	5	1	4	5	10
	1 2	3	1	0	1	4
15:00 15:15	1 1	2	1	1	2	4
15:15 15:30	2 0	2	0	3	3	5
15:30 15:45	4 0	4	0	0	0	4
15:45 16:00	4 2	6	2	1	3	9
16:00 16:15	1 7	8	4	3	7	15
16:15 16:30	7 7	14	6	2	8	22
16:30 16:45	6 5	11	4	5	9	20
16:45 17:00	7 2	9	3	12	15	24
17:00 17:15	9 10	19	5	5	10	29
17:15 17:30	4 4	8	10	2	12	20
17:30 17:45	8 4	12	3	6	9	21
17:45 18:00	1 0	1	2	0	2	3
Total	106 61	167	59	89	148	315

5478543 - MAR 4, 2020 - 8HR REIMPORT

April 2, 2020 Page 5 of 8 April 2, 2020 Page 6 of 8

PRINCE OF WALES DR

Transportation Services - Traffic Services

Turning Movement Count - Study Results

BASELINE RD/HERON RD @ PRINCE OF WALES DR

 Survey Date:
 Wednesday, March 04, 2020
 WO No:
 39636

 Start Time:
 07:00
 Device:
 Miovision

Full Study Heavy Vehicles R BASELINE RD/HERON RD

	N	orthbo	und		Sc	uthbou	nd		Eastbound Westbound					nd					
Time Period	LT	ST	RT	N TOT	LT	ST	RT	S TOT	STR TOT	LT	ST	RT	E TOT	LT	ST	RT	W TOT	STR	Grand Total
07:00 07:15	0	1	3	4	1	1	0	2	6	0	0	1	1	2	3	2	7	8	14
07:15 07:30	0	2	4	6	0	0	1	1	7	0	6	0	6	4	3	3	10	16	23
07:30 07:45	0	2	2	4	2	5	1	8	12	2	1	0	3	5	7	3	15	18	30
07:45 08:00	0	2	6	8	2	2	0	4	12	1	5	0	6	6	7	3	16	22	34
08:00 08:15	0	0	4	4	1	0	0	1	5	0	3	0	3	4	13	2	19	22	27
08:15 08:30	0	2	4	6	1	3	1	5	11	0	4	0	4	7	6	4	17	21	32
08:30 08:45	1	2	5	8	1	1	0	2	10	3	5	0	8	2	5	2	9	17	27
08:45 09:00	0	1	4	5	1	2	0	3	8	0	7	0	7	4	5	2	11	18	26
09:00 09:15	1	2	5	8	0	1	0	1	9	1	7	0	8	2	10	2	14	22	31
09:15 09:30	1	3	5	9	1	2	1	4	13	1	5	0	6	4	4	1	9	15	28
09:30 09:45	1	1	3	5	0	7	1	8	13	1	5	1	7	3	3	2	8	15	28
09:45 10:00	0	0	1	1	2	4	0	6	7	0	9	1	10	0	5	0	5	15	22
11:30 11:45	0	0	5	5	2	3	0	5	10	1	4	0	5	3	2	2	7	12	22
11:45 12:00	0	2	3	5	0	1	1	2	7	0	4	0	4	3	7	4	14	18	25
12:00 12:15	0	1	3	4	2	0	0	2	6	1	3	0	4	6	6	2	14	18	24
12:15 12:30	2	0	2	4	2	1	1	4	8	1	3	0	4	1	2	4	7	11	19
12:30 12:45	0	1	1	2	0	2	2	4	6	0	4	0	4	3	3	2	8	12	18
12:45 13:00	0	1	2	3	2	2	1	5	8	0	5	2	7	1	3	1	5	12	20
13:00 13:15	0	1	4	5	0	3	0	3	8	1	5	1	7	3	8	1	12	19	27
13:15 13:30	0	2	2	4	2	1	0	3	7	0	4	1	5	2	4	1	7	12	19
15:00 15:15	2	0	2	4	0	0	0	0	4	0	6	0	6	2	3	0	5	11	15
15:15 15:30	0	1	2	3	5	2	0	7	10	0	6	0	6	3	6	1	10	16	26
15:30 15:45	0	1	5	6	2	5	0	7	13	1	6	1	8	1	15	2	18	26	39
15:45 16:00	0	0	2	2	2	2	0	4	6	0	9	0	9	5	7	3	15	24	30
16:00 16:15	0	4	5	9	1	3	0	4	13	0	11	0	11	1	6	0	7	18	31
16:15 16:30	0	2	1	3	3	0	0	3	6	0	7	0	7	2	5	0	7	14	20
16:30 16:45	1	4	6	11	0	0	0	0	11	1	11	1	13	2	4	3	9	22	33
16:45 17:00	0	2	4	6	4	1	0	5	11	1	5	0	6	1	5	1	7	13	24
17:00 17:15	0	0	2	2	2	0	0	2	4	1	6	0	7	4	5	0	9	16	20
17:15 17:30	1	0	0	1	1	1	0	2	3	0	2	0	2	2	5	0	7	9	12
17:30 17:45	1	0	2	3	3	3	0	6	9	0	5	0	5	4	4	2	10	15	24
17:45 18:00	0	0	1	1	0	0	0	0	1	0	4	0	4	3	5	1	9	13	14
Total: None	11	40	100	151	45	58	10	113	264	17	167	9	193	95	176	56	327	520	784

Transportation Services - Traffic Services

Turning Movement Count - Study Results

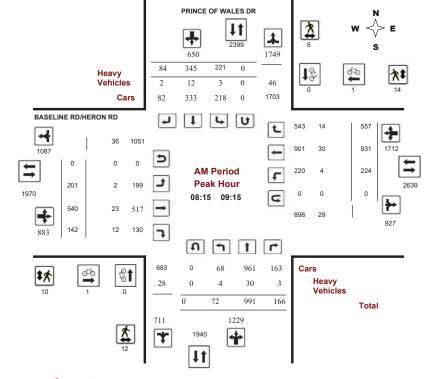
BASELINE RD/HERON RD @ PRINCE OF WALES DR

 Survey Date:
 Wednesday, March 04, 2020
 WO No:
 39636

 Start Time:
 07:00
 Device:
 Miovision

Full Study 15 Minute U-Turn Total PRINCE OF WALES DR BASELINE RD/HERON RD

		Transoc or viv	ALLO DIX	DAGLLIN	L REMILERON RE	
Time I	Period	Northbound U-Turn Total	Southbound U-Turn Total	Eastbound U-Turn Total	Westbound U-Turn Total	Total
07:00	07:15	0	0	0	0	0
07:15	07:30	0	0	0	0	0
07:30	07:45	0	0	1	0	1
07:45	08:00	0	0	0	0	0
08:00	08:15	0	0	0	2	2
08:15	08:30	0	0	0	0	0
08:30	08:45	0	0	0	0	0
08:45	09:00	0	1	0	0	1
09:00	09:15	0	0	1	0	1
09:15	09:30	0	0	2	0	2
09:30	09:45	0	0	0	0	0
09:45	10:00	0	0	0	0	0
11:30	11:45	0	0	3	1	4
11:45	12:00	0	0	1	0	1
12:00	12:15	0	1	1	0	2
12:15	12:30	0	0	2	0	2
12:30	12:45	0	0	2	0	2
12:45	13:00	0	1	1	0	2
13:00	13:15	0	0	0	1	1
13:15	13:30	1	0	2	0	3
15:00	15:15	0	0	0	0	0
15:15	15:30	0	0	0	0	0
15:30	15:45	0	0	1	0	1
15:45	16:00	0	0	1	0	1
16:00	16:15	0	0	0	1	1
16:15	16:30	0	0	0	0	0
16:30	16:45	0	0	1	1	2
16:45	17:00	0	0	2	1	3
17:00	17:15	0	0	0	0	0
17:15	17:30	0	1	1	0	2
17:30	17:45	0	0	2	0	2
17:45	18:00	0	0	1	0	1
Te	otal	1	4	25	7	37
	•					

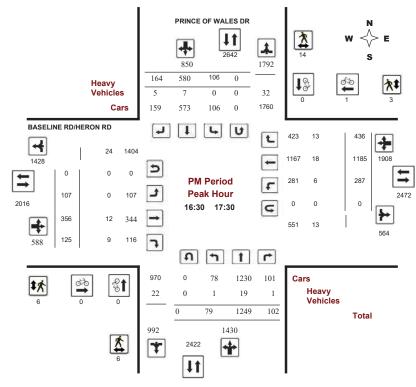

April 2, 2020 Page 7 of 8 April 2, 2020 Page 8 of 8

Turning Movement Count - Peak Hour Diagram

BASELINE RD/HERON RD @ PRINCE OF WALES DR

Survey Date: Tuesday, January 19, 2016 WO No: 35667
Start Time: 07:00 Device: Miovision

Comments



Transportation Services - Traffic Services

Turning Movement Count - Peak Hour Diagram

BASELINE RD/HERON RD @ PRINCE OF WALES DR

Survey Date: Tuesday, January 19, 2016 WO No: 35667
Start Time: 07:00 Device: Miovision

Comments

Appendix C

Synchro Intersection Worksheets – Existing Conditions

Lanes, Volumes, Timings 1: Fisher & Baseline

Existing AM Peak Hour

	•	\rightarrow	•	•	—	•	1	1	1	1	Į.	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	44	7	1,1	↑ ↑		7	44	7	ሻ	44	7
Traffic Volume (vph)	126	1300	152	32	1029	141	223	400	73	132	331	93
Future Volume (vph)	126	1300	152	32	1029	141	223	400	73	132	331	93
Satd. Flow (prot)	1658	3252	1469	3185	3183	0	1658	3252	1483	1658	3221	1483
Flt Permitted	0.950			0.950			0.950			0.950		
Satd. Flow (perm)	1655	3252	1356	3162	3183	0	1634	3252	1414	1649	3221	1418
Satd. Flow (RTOR)			180		12				181			231
Lane Group Flow (vph)	140	1444	169	36	1300	0	248	444	81	147	368	103
Turn Type	Prot	NA	Perm	Prot	NA		Prot	NA	Perm	Prot	NA	Perm
Protected Phases	5	2		1	6		7	4		3	8	
Permitted Phases			2						4			8
Detector Phase	5	2	2	1	6		7	4	4	3	8	8
Switch Phase												
Minimum Initial (s)	5.0	10.0	10.0	5.0	10.0		5.0	10.0	10.0	5.0	10.0	10.0
Minimum Split (s)	11.3	29.1	29.1	11.3	29.1		10.9	30.3	30.3	10.9	30.3	30.3
Total Split (s)	26.0	56.0	56.0	13.0	43.0		30.7	38.0	38.0	23.0	30.3	30.3
Total Split (%)	20.0%	43.1%	43.1%	10.0%	33.1%		23.6%	29.2%	29.2%	17.7%	23.3%	23.3%
Yellow Time (s)	3.7	3.7	3.7	3.7	3.7		3.3	3.3	3.3	3.3	3.3	3.3
All-Red Time (s)	2.6	2.4	2.4	2.6	2.4		2.6	3.0	3.0	2.6	3.0	3.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	6.3	6.1	6.1	6.3	6.1		5.9	6.3	6.3	5.9	6.3	6.3
Lead/Lag	Lead	Lag	Lag	Lead	Lag		Lead	Lag	Lag	Lead	Lag	Lag
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes		Yes	Yes	Yes	Yes	Yes	Yes
Recall Mode	None	C-Max	C-Max	None	C-Max		None	None	None	None	None	None
Act Effct Green (s)	15.7	61.0	61.0	6.4	46.9		22.7	27.6	27.6	15.2	20.2	20.2
Actuated g/C Ratio	0.12	0.47	0.47	0.05	0.36		0.17	0.21	0.21	0.12	0.16	0.16
v/c Ratio	0.70	0.95	0.23	0.23	1.13		0.86	0.64	0.18	0.76	0.74	0.25
Control Delay	73.0	48.0	3.9	82.8	85.4		78.6	50.9	0.9	79.3	61.4	1.4
Queue Delay	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	73.0	48.0	3.9	82.8	85.4		78.6	50.9	0.9	79.3	61.4	1.4
LOS	Е	D	Α	F	F		Е	D	Α	Е	Е	Α
Approach Delay		45.8			85.3			54.5			55.6	
Approach LOS		D			F			D			Е	
Queue Length 50th (m)	34.8	~216.3	0.0	4.2	~212.8		61.1	54.9	0.0	36.5	48.0	0.0
Queue Length 95th (m)	55.3	#272.2	12.3	m2.7	m112.3		#100.0	69.8	0.0	#62.8	62.8	0.0
Internal Link Dist (m)		145.0			585.3			126.3			158.3	
Turn Bay Length (m)	138.0		58.5	134.0			127.0		85.0	65.0		60.0
Base Capacity (vph)	251	1526	731	165	1155		316	792	481	218	594	450
Starvation Cap Reductn	0	0	0	0	0		0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0		0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0		0	0	0	0	0	0
Reduced v/c Ratio	0.56	0.95	0.23	0.22	1.13		0.78	0.56	0.17	0.67	0.62	0.23
Intersection Summary												

Intersection Summary

Cycle Length: 130

Actuated Cycle Length: 130

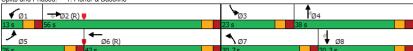
Offset: 119 (92%), Referenced to phase 2:EBT and 6:WBT, Start of Green

Natural Cycle: 135

Control Type: Actuated-Coordinated

Scenario 1 780 Baseline Road 11:59 pm 07/07/2021 Existing

Lanes, Volumes, Timings 1: Fisher & Baseline Existing AM Peak Hour


Maximum v/c Ratio: 1.13
Intersection Signal Delay: 60.4
Intersection LOS: E
Intersection Capacity Utilization 89.5%
ICU Level of Service E
Analysis Period (min) 15

Volume exceeds capacity, queue is theoretically infinite.
Queue shown is maximum after two cycles.

Queue shown is maximum after two cycles.

Splits and Phases: 1: Fisher & Baseline

m Volume for 95th percentile queue is metered by upstream signal.

	•	→	\rightarrow	•	←	*	4	†	-	-	↓	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	ተተ _ጉ		1616	^	7	*	^	7	ሻ	† 1>	
Traffic Volume (vph)	222	1287	20	373	996	494	69	585	585	220	350	130
Future Volume (vph)	222	1287	20	373	996	494	69	585	585	220	350	130
Satd. Flow (prot)	1658	4752	0	3124	3283	1483	1658	3316	1469	1658	3164	0
Flt Permitted	0.950			0.950			0.950			0.950		
Satd. Flow (perm)	1654	4752	0	3104	3283	1449	1653	3316	1428	1649	3164	0
Satd. Flow (RTOR)		2				452			364		38	
Lane Group Flow (vph)	247	1452	0	414	1107	549	77	650	650	244	533	0
Turn Type	Prot	NA		Prot	NA	Perm	Prot	NA	Perm	Prot	NA	
Protected Phases	5	2		1	6		7	4		3	8	
Permitted Phases						6			4			
Detector Phase	5	2		1	6	6	7	4	4	3	8	
Switch Phase												
Minimum Initial (s)	5.0	10.0		5.0	10.0	10.0	5.0	12.0	12.0	5.0	12.0	
Minimum Split (s)	11.8	29.5		11.8	29.8	29.8	10.9	37.8	37.8	10.9	37.8	
Total Split (s)	22.0	38.0		30.0	30.0	30.0	24.0	38.0	38.0	24.0	38.0	
Total Split (%)	16.9%	29.2%		23.1%	23.1%	23.1%	18.5%	29.2%	29.2%	18.5%	29.2%	
Yellow Time (s)	3.7	3.0		3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	
All-Red Time (s)	3.1	2.8		3.1	2.8	2.8	2.2	3.1	3.1	2.2	3.1	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.8	5.8		6.8	6.5	6.5	5.9	6.8	6.8	5.9	6.8	
Lead/Lag	Lag	0.0		0.0	Lag	Lag	Lead	Lag	Lag	Lead	Lag	
Lead-Lag Optimize?	Yes				Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Recall Mode	None	C-Max		None	C-Max	C-Max	None	Min	Min	None	Min	
Act Effct Green (s)	15.2	34.3		21.1	23.5	23.5	11.4	31.2	31.2	18.1	40.5	
Actuated g/C Ratio	0.12	0.26		0.16	0.18	0.18	0.09	0.24	0.24	0.14	0.31	
v/c Ratio	1.28	1.16		0.82	1.87	0.87	0.53	0.82	1.05	1.06	0.53	
Control Delay	198.7	107.1		66.1	426.7	25.5	69.3	56.2	71.4	129.1	37.8	
Queue Delay	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	198.7	107.1		66.1	426.7	25.5	69.3	56.2	71.4	129.1	37.8	
LOS	F	F		E	F	C	E	E	Е	F	D	
Approach Delay		120.4			248.1			64.1	_		66.5	
Approach LOS		F			F			Е			Е	
Queue Length 50th (m)	~78.3	~160.8		52.8	~226.9	24.0	19.2	83.3	~105.5	~68.4	56.6	
Queue Length 95th (m)	m#94.1 r			70.2		#90.8	34.4	105.8	#177.9	#120.1	78.7	
Internal Link Dist (m)		188.2			220.4			142.9			135.6	
Turn Bay Length (m)	125.0	100.2		115.0	LLUII	184.0	117.0	112.0	40.0	66.0	100.0	
Base Capacity (vph)	193	1254		557	593	632	230	795	619	230	1011	
Starvation Cap Reductn	0	0		0	0	0	0	0	0.0	0	0	
Spillback Cap Reductn	0	0		0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0		0	0	0	0	0	0	0	0	
Reduced v/c Ratio	1.28	1.16		0.74	1.87	0.87	0.33	0.82	1.05	1.06	0.53	
	20			V 1		0.01	0.00	0.02			0.00	
Intersection Summary												
Cycle Length: 130	0											
Actuated Cycle Length: 13		0.EDT	1 C-1 N/D-	F 044								
Offset: 42 (32%), Reference	ced to phase	e ⊼:FR1 ai	na 6:WB	, Start o	Green							
Natural Cycle: 150	P (1											
Control Type: Actuated-Co	ordinated											

Lane Group	Ø13	Ø14
Lane Configurations		
Traffic Volume (vph)		
Future Volume (vph)		
Satd. Flow (prot)		
Flt Permitted		
Satd. Flow (perm)		
Satd. Flow (RTOR)		
Lane Group Flow (vph)		
Turn Type		
Protected Phases	13	14
Permitted Phases		
Detector Phase		
Switch Phase		
Minimum Initial (s)	1.0	1.0
Minimum Split (s)	3.0	3.0
Total Split (s)	8.0	8.0
Total Split (%)	6%	6%
Yellow Time (s)	2.0	2.0
All-Red Time (s)	0.0	0.0
Lost Time Adjust (s)		
Total Lost Time (s)		
Lead/Lag	Lead	Lead
Lead-Lag Optimize?	Yes	Yes
Recall Mode	Max	Max
Act Effct Green (s)		
Actuated g/C Ratio		
v/c Ratio		
Control Delay		
Queue Delay		
Total Delay		
LOS		
Approach Delay		
Approach LOS		
Queue Length 50th (m)		
Queue Length 95th (m)		
Internal Link Dist (m)		
Turn Bay Length (m)		
Base Capacity (vph)		
Starvation Cap Reductn		
Spillback Cap Reductn		
Storage Cap Reductn		
Reduced v/c Ratio		
Intersection Summary		
,		

Existing AM Peak Hour

2: Prince of Wales & Baseline/Heron

Maximum v/c Ratio: 1.87

Intersection LOS: F ICU Level of Service F

Intersection Capacity Utilization 96.1% Analysis Period (min) 15

Intersection Signal Delay: 144.9

~ Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 2: Prince of Wales & Baseline/Heron

Lanes, Volumes, Timings 1: Fisher & Baseline Existing PM Peak Hour

	•	\rightarrow	7	•	—	*	1	1	1	-	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	^	7	77	↑ 1>		ች	^	7	*	^	7
Traffic Volume (vph)	90	1264	257	148	1274	179	174	375	71	154	597	148
Future Volume (vph)	90	1264	257	148	1274	179	174	375	71	154	597	148
Satd. Flow (prot)	1658	3283	1483	3185	3240	0	1658	3316	1455	1658	3283	1483
Flt Permitted	0.950			0.950			0.950			0.950		
Satd. Flow (perm)	1653	3283	1401	3153	3240	0	1641	3316	1396	1640	3283	1390
Satd. Flow (RTOR)			130		13				128			142
Lane Group Flow (vph)	100	1404	286	164	1615	0	193	417	79	171	663	164
Turn Type	Prot	NA	Perm	Prot	NA		Prot	NA	Perm	Prot	NA	Perm
Protected Phases	5	2		1	6		7	4		3	8	
Permitted Phases			2						4			8
Detector Phase	5	2	2	1	6		7	4	4	3	8	8
Switch Phase												
Minimum Initial (s)	5.0	10.0	10.0	5.0	10.0		5.0	10.0	10.0	5.0	10.0	10.0
Minimum Split (s)	11.3	29.1	29.1	11.3	29.1		10.9	30.3	30.3	10.9	30.3	30.3
Total Split (s)	21.0	54.0	54.0	21.0	54.0		24.7	30.3	30.3	24.7	30.3	30.3
Total Split (%)	16.2%	41.5%	41.5%	16.2%	41.5%		19.0%	23.3%	23.3%	19.0%	23.3%	23.3%
Yellow Time (s)	3.7	3.7	3.7	3.7	3.7		3.3	3.3	3.3	3.3	3.3	3.3
All-Red Time (s)	2.6	2.4	2.4	2.6	2.4		2.6	3.0	3.0	2.6	3.0	3.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	6.3	6.1	6.1	6.3	6.1		5.9	6.3	6.3	5.9	6.3	6.3
Lead/Lag	Lead	Lag	Lag	Lead	Lag		Lag	Lag	Lag	Lead	Lead	Lead
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes		Yes	Yes	Yes	Yes	Yes	Yes
Recall Mode	None	C-Max	C-Max	None	C-Max		None	None	None	None	None	None
Act Effct Green (s)	12.3	51.8	51.8	11.9	51.3		17.8	24.8	24.8	17.0	24.0	24.0
Actuated g/C Ratio	0.09	0.40	0.40	0.09	0.39		0.14	0.19	0.19	0.13	0.18	0.18
v/c Ratio	0.64	1.07	0.45	0.57	1.25		0.85	0.66	0.21	0.79	1.09	0.44
Control Delay	74.7	85.4	18.3	64.0	155.7		86.3	54.6	2.5	79.9	113.7	14.3
Queue Delay	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	74.7	85.4	18.3	64.0	155.7		86.3	54.6	2.5	79.9	113.7	14.3
LOS	Е	F	В	Е	F		F	D	Α	Е	F	Е
Approach Delay		74.1			147.2			57.5			91.6	
Approach LOS		Е			F			Е			F	
Queue Length 50th (m)	24.9	~214.3	28.4	21.0	~278.9		48.5	53.0	0.0	42.3	~100.8	4.7
Queue Length 95th (m)	43.2	#266.1	55.4	32.0	#327.8		#86.3	70.8	2.6	#72.4	#138.3	25.1
Internal Link Dist (m)		142.5			582.5			115.0			126.1	
Turn Bay Length (m)	138.0		50.0	134.0			127.0		85.0	65.0		60.0
Base Capacity (vph)	187	1307	636	360	1287		239	633	370	239	606	372
Starvation Cap Reductn	0	0	0	0	0		0	0	0	0	0	C
Spillback Cap Reductn	0	0	0	0	0		0	0	0	0	0	C
Storage Cap Reductn	0	0	0	0	0		0	0	0	0	0	C
Reduced v/c Ratio	0.53	1.07	0.45	0.46	1.25		0.81	0.66	0.21	0.72	1.09	0.44

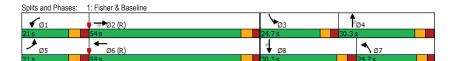
Intersection Summary

Cycle Length: 130 Actuated Cycle Length: 130

Offset: 123 (95%), Referenced to phase 2:EBT and 6:WBT, Start of Green

Natural Cycle: 145

Control Type: Actuated-Coordinated


Queue shown is maximum after two cycles.

Existing PM Peak Hour

Maximum v/c Ratio: 1.25
Intersection Signal Delay: 100.0
Intersection Capacity Utilization 97.8%
ICU Level of Service F
Analysis Period (min) 15

Volume exceeds capacity, queue is theoretically infinite.
Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Lanes, Volumes, Timings
2: Prince of Wales & Baseline/Heron

Existing PM Peak Hour

	•	\rightarrow	*	•	—	•	1	1	-	-	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	ተተ _ጉ		ሻሻ	^	7	ች	^	7	*	↑ ↑	
Traffic Volume (vph)	151	1302	70	439	1280	210	41	461	546	266	613	289
Future Volume (vph)	151	1302	70	439	1280	210	41	461	546	266	613	289
Satd. Flow (prot)	1658	4713	0	3216	3316	1483	1610	3316	1483	1642	3117	C
Flt Permitted	0.950			0.950			0.950			0.950		
Satd. Flow (perm)	1650	4713	0	3187	3316	1412	1599	3316	1420	1617	3117	0
Satd. Flow (RTOR)		6				233			261		63	
Lane Group Flow (vph)	168	1525	0	488	1422	233	46	512	607	296	1002	0
Turn Type	Prot	NA		Prot	NA	Perm	Prot	NA	Perm	Prot	NA	
Protected Phases	5	2		1	6		7	4		3	8	
Permitted Phases						6			4			
Detector Phase	5	2		1	6	6	7	4	4	3	8	
Switch Phase												
Minimum Initial (s)	5.0	10.0		5.0	10.0	10.0	12.0	12.0	12.0	5.0	10.0	
Minimum Split (s)	11.8	29.5		11.8	29.5	29.5	17.9	37.8	37.8	10.9	37.8	
Total Split (s)	15.0	42.0		23.0	42.0	42.0	17.9	38.0	38.0	27.0	49.0	
Total Split (%)	11.4%	31.8%		17.4%	31.8%	31.8%	13.6%	28.8%	28.8%	20.5%	37.1%	
Yellow Time (s)	3.7	3.7		3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	
All-Red Time (s)	3.1	2.8		3.1	2.8	2.8	2.2	3.1	3.1	2.2	3.1	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.8	6.5		6.8	6.5	6.5	5.9	6.8	6.8	5.9	6.8	
Lead/Lag	Lag						Lead	Lag	Lag	Lead	Lag	
Lead-Lag Optimize?	Yes						Yes	Yes	Yes	Yes	Yes	
Recall Mode	None	C-Max		None	C-Max	C-Max	Min	Min	Min	None	None	
Act Effct Green (s)	8.2	35.5		16.2	35.5	35.5	12.0	33.1	33.1	21.1	42.2	
Actuated g/C Ratio	0.06	0.27		0.12	0.27	0.27	0.09	0.25	0.25	0.16	0.32	
v/c Ratio	1.63	1.20		1.24	1.59	0.42	0.32	0.62	1.10	1.13	0.96	
Control Delay	361.0	139.0		174.3	305.7	7.1	62.4	47.5	95.6	144.4	61.8	
Queue Delay	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	361.0	139.0		174.3	305.7	7.1	62.4	47.5	95.6	144.4	61.8	
LOS	F	F		F	F	Α	Е	D	F	F	Е	
Approach Delay		161.0			243.3			73.2			80.6	
Approach LOS		F			F			Е			F	
Queue Length 50th (m)	~62.9	~176.1		~80.8	~277.4	0.0	11.4	62.4	~124.9	~89.0	128.1	
Queue Length 95th (m)	#107.8	#206.3		#114.8	#319.7	19.8	24.0	81.0	#196.2	#145.1	#172.4	
Internal Link Dist (m)		190.6			284.9			145.3			127.0	
Turn Bay Length (m)	125.0			115.0		243.0	117.0		40.0	66.0		
Base Capacity (vph)	103	1272		394	892	550	146	832	551	262	1040	
Starvation Cap Reductn	0	0		0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0		0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0		0	0	0	0	0	0	0	0	
Reduced v/c Ratio	1.63	1.20		1.24	1.59	0.42	0.32	0.62	1.10	1.13	0.96	

Intersection Summary

Cycle Length: 131.9

Actuated Cycle Length: 131.9 Offset: 84 (64%), Referenced to phase 2:EBT and 6:WBT, Start of Green

Scenario 1 780 Baseline Road 7:50 am 07/07/2021 Existing

Natural Cycle: 145

Control Type: Actuated-Coordinated

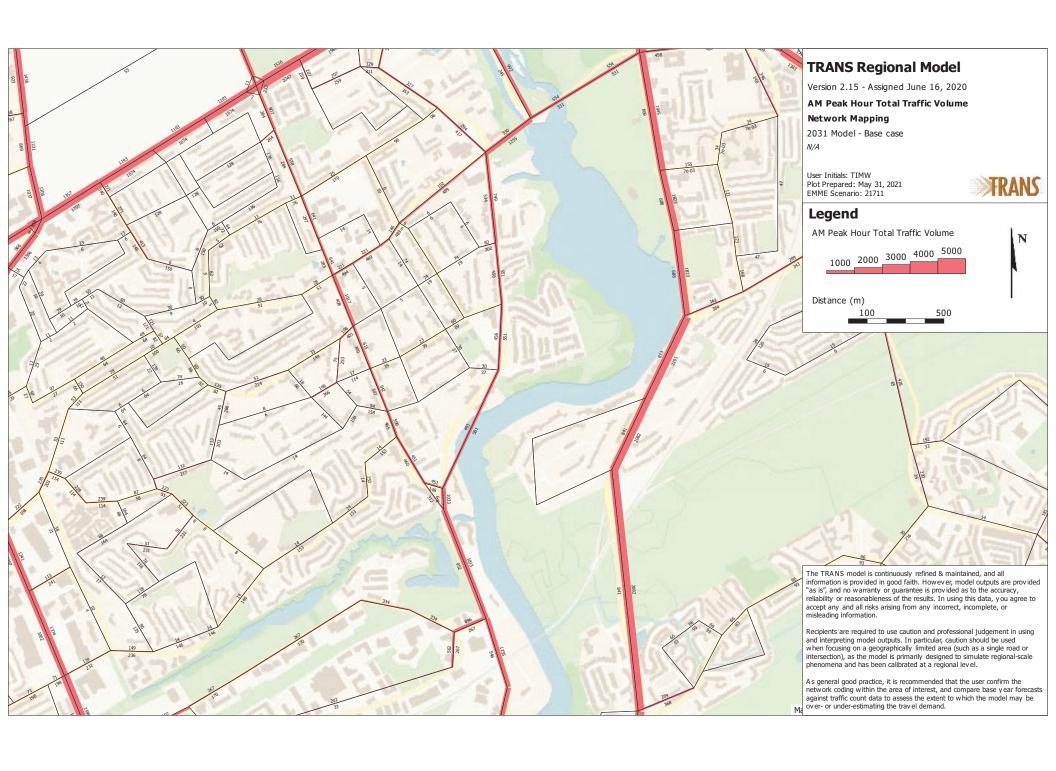
M	aximum v/c Ratio: 1.63	
In	tersection Signal Delay: 156.2	Intersection LOS: F
In	tersection Capacity Utilization 106.2%	ICU Level of Service G
A	nalysis Period (min) 15	
~	Volume exceeds capacity, queue is theoretically infinite.	
	Queue shown is maximum after two cycles.	
#	95th percentile volume exceeds capacity, queue may be lon	ger.
	Queue shown is maximum after two cycles.	

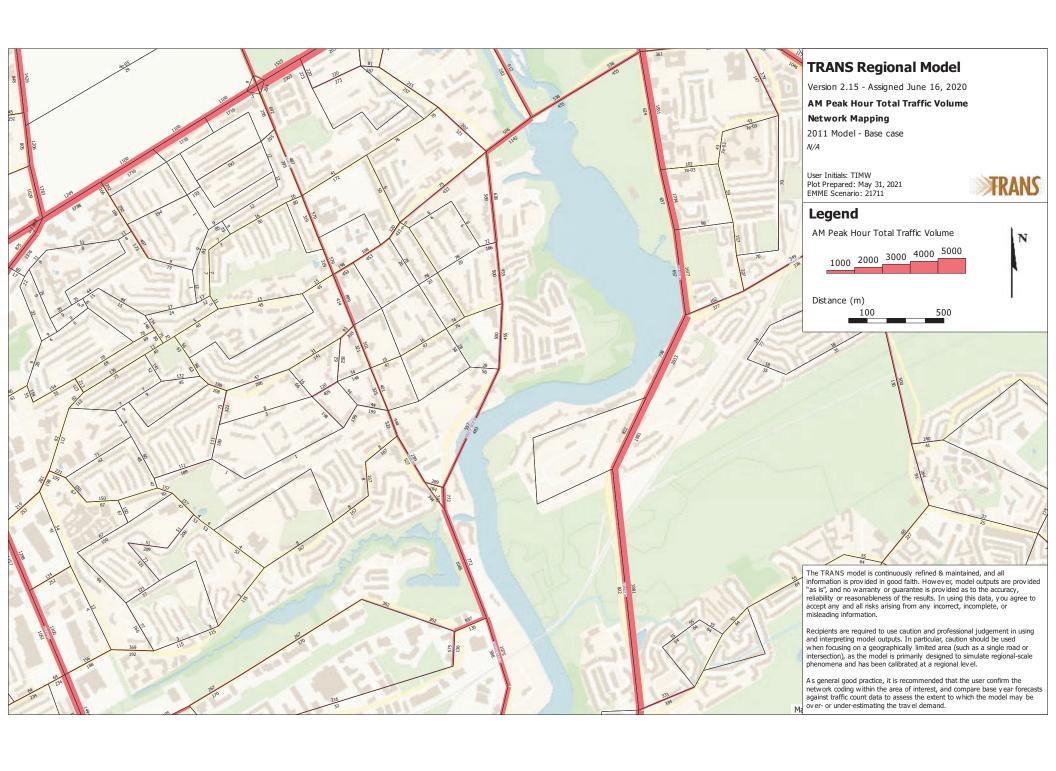
Splits and Phases:	2: Prince of Wales & Baselin	e/Heron		
ÿ1	→ Ø2 (R)	Vø3	1 Ø4	
23 s	42 s	27 s	38 s	
●ø13 • ø5	Ø6 (R)	↑ Ø7	↓ Ø8	
8 s 15 s	42 s	17.9 s	49 s	

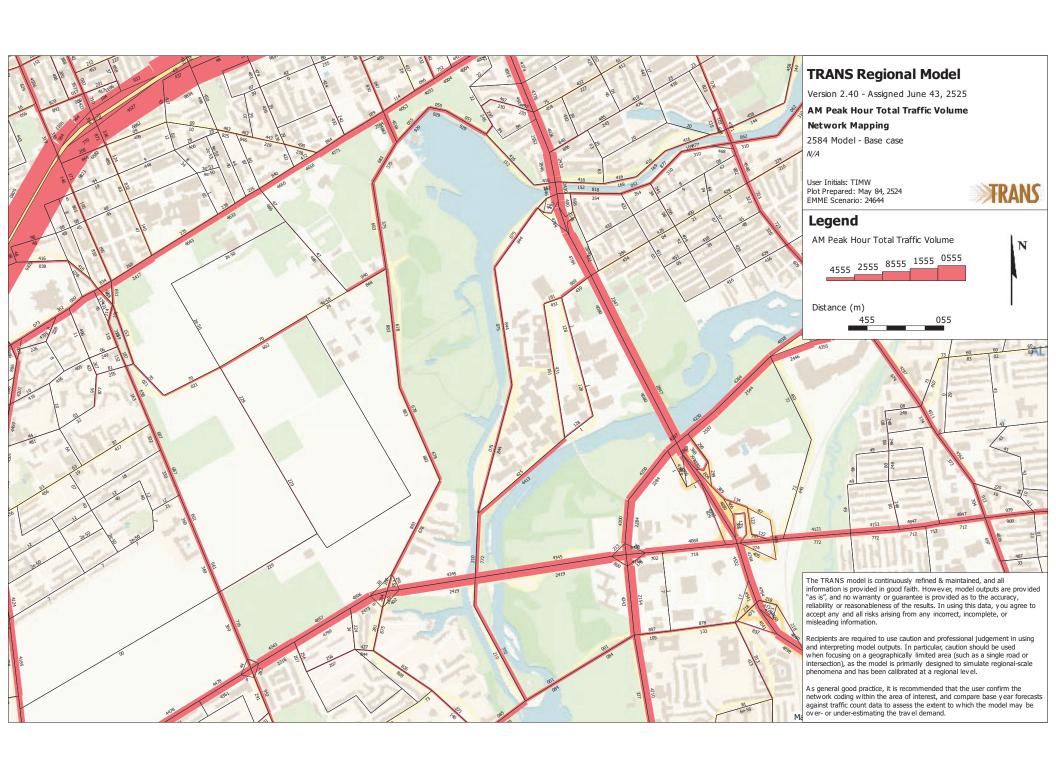
Lane Group	Ø13	
Lane Configurations		
Traffic Volume (vph)		
Future Volume (vph)		
Satd. Flow (prot)		
Flt Permitted		
Satd. Flow (perm)		
Satd. Flow (RTOR)		
Lane Group Flow (vph)		
Turn Type		
Protected Phases	13	
Permitted Phases		
Detector Phase		
Switch Phase		
Minimum Initial (s)	4.0	
Minimum Split (s)	6.0	
Total Split (s)	8.0	
Total Split (%)	6%	
Yellow Time (s)	2.0	
All-Red Time (s)	0.0	
Lost Time Adjust (s)	0.0	
Total Lost Time (s)		
Lead/Lag	Lead	
Lead-Lag Optimize?	Yes	
Recall Mode	Max	
Act Effct Green (s)	IVIAA	
Actuated g/C Ratio		
v/c Ratio		
Control Delay		
Queue Delay		
Total Delay		
LOS		
Approach Delay		
Approach LOS		
Queue Length 50th (m) Queue Length 95th (m)		
Internal Link Dist (m)		
Turn Bay Length (m)		
Base Capacity (vph)		
Starvation Cap Reductn		
Spillback Cap Reductn		
Storage Cap Reductn		
Reduced v/c Ratio		
Neuded V/C Natio		
Intersection Summary		
		-

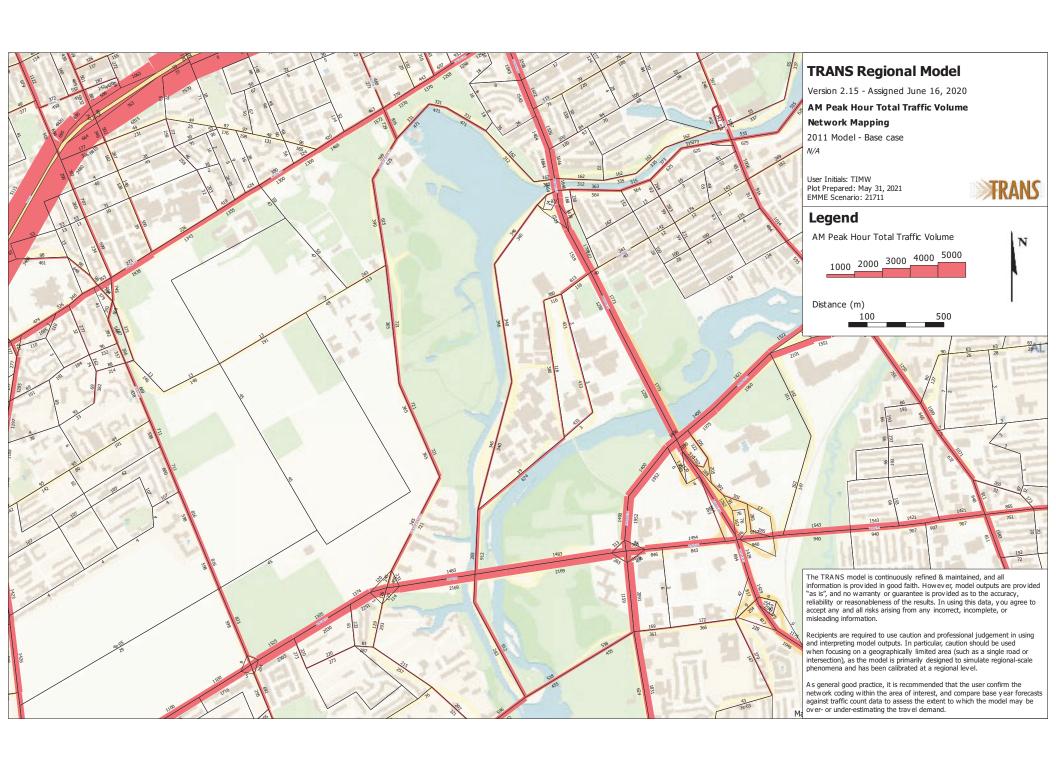
Appendix D

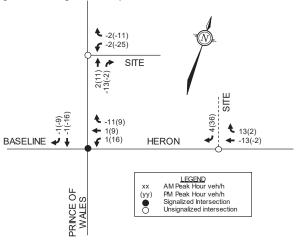
Collision Data


Accident Date	Accident Year	Accident Time	Location	Environment Condition	Light	Traffic Control	Traffic Control Condition	Classification Of Accident	Initial Impact Type	Road Surface Condition
3/6/2015	2015	14:51	BASELINE RD btwn MARSON ST & FISHER AVE	01 - Clear	01 - Daylight	10 - No control	Transc Control Condition	03 - P.D. only	03 - Rear end	01 - Dry
3/27/2015	2015	8:11	BASELINE RD btwn MARSON ST & FISHER AVE	03 - Snow	01 - Daylight	10 - No control		03 - P.D. only	03 - Rear end	02 - Wet
12/2/2015	2015	18:23	BASELINE RD btwn MARSON ST & FISHER AVE	01 - Clear	07 - Dark	10 - No control		03 - P.D. only	03 - Rear end	02 - Wet
8/8/2017	2017	17:09	BASELINE RD btwn MARSON ST & FISHER AVE	01 - Clear	01 - Daylight	10 - No control		02 - Non-fatal injury	03 - Rear end	01 - Dry
9/12/2017	2017	10:35	BASELINE RD btwn MARSON ST & FISHER AVE	01 - Clear	01 - Daylight	10 - No control		02 - Non-fatal injury	03 - Rear end	01 - Dry
1/4/2017 1/24/2018	2017 2018	15:21 18:06	BASELINE RD btwn MARSON ST & FISHER AVE BASELINE RD btwn MARSON ST & FISHER AVE (3ZA4JL)	03 - Snow 01 - Clear	01 - Daylight 07 - Dark	10 - No control 10 - No control		03 - P.D. only 02 - Non-fatal injury	03 - Rear end 03 - Rear end	05 - Packed snow 01 - Dry
6/19/2018	2018	6:40	BASELINE RD DEWIT MARSON ST & FISHER AVE (01 - Clear	01 - Daylight	10 - No control		03 - P.D. only	04 - Sideswipe	01 - Dry
9/21/2018	2018	8:36	BASELINE RD btwn MARSON ST & FISHER AVE (3ZA4JL)	02 - Rain	01 - Daylight	10 - No control		02 - Non-fatal injury	03 - Rear end	02 - Wet
1/10/2019	2019	13:42	BASELINE RD btwn MARSON ST & FISHER AVE (3ZA4JL)	01 - Clear	01 - Daylight	10 - No control		03 - P.D. only	03 - Rear end	02 - Wet
9/11/2019	2019	13:04	BASELINE RD btwn MARSON ST & FISHER AVE (3ZA4JL)	01 - Clear	01 - Daylight	10 - No control		03 - P.D. only	04 - Sideswipe	01 - Dry
12/5/2019	2019	17:00	BASELINE RD btwn MARSON ST & FISHER AVE (3ZA4JL)	01 - Clear	07 - Dark	10 - No control		03 - P.D. only	03 - Rear end	01 - Dry
7/14/2015	2015	16:33	FISHER AVE btwn MCCOOEY LANE & BASELINE RD	01 - Clear	01 - Daylight	10 - No control		03 - P.D. only	03 - Rear end	01 - Dry
10/13/2015	2015	9:20	FISHER AVE btwn MCCOOEY LANE & BASELINE RD	02 - Rain	01 - Daylight	10 - No control		03 - P.D. only	03 - Rear end	02 - Wet
10/27/2015	2015 2016	10:43 16:36	FISHER AVE btwn MCCOOEY LANE & BASELINE RD FISHER AVE btwn MCCOOEY LANE & BASELINE RD	01 - Clear 01 - Clear	01 - Daylight 01 - Daylight	10 - No control		03 - P.D. only 02 - Non-fatal injury	04 - Sideswipe 03 - Rear end	01 - Dry 01 - Dry
3/23/2016	2016	17:56	FISHER AVE blwn MCCOOEY LANE & BASELINE RD	01 - Clear	01 - Daylight	10 - No control		02 - Non-fatal injury	03 - Rear end	01 - Dry
6/4/2016	2016	11:05	FISHER AVE bown MCCOOEY LANE & BASELINE RD	01 - Clear	01 - Daylight	10 - No control		03 - P.D. only	03 - Rear end	01 - Dry
10/27/2017	2017	10:19	FISHER AVE btwn MCCOOEY LANE & BASELINE RD	01 - Clear	01 - Daylight	10 - No control		03 - P.D. only	05 - Turning movement	01 - Dry
2/12/2018	2018	16:44	FISHER AVE btwn MCCOOEY LANE & BASELINE RD (3ZA4JS)	01 - Clear	01 - Daylight	10 - No control		03 - P.D. only	05 - Turning movement	05 - Packed snow
5/4/2018	2018	21:32	FISHER AVE btwn MCCOOEY LANE & BASELINE RD (3ZA4JS)	06 - Strong wind	07 - Dark	10 - No control		03 - P.D. only	07 - SMV other	01 - Dry
5/25/2018	2018	17:53	FISHER AVE btwn MCCOOEY LANE & BASELINE RD (3ZA4JS)	02 - Rain	01 - Daylight	10 - No control		03 - P.D. only	03 - Rear end	02 - Wet
12/6/2018 1/25/2019	2018 2019	8:54 15:30	FISHER AVE btwn MCCOOEY LANE & BASELINE RD (3ZA4JS) FISHER AVE btwn MCCOOEY LANE & BASELINE RD (3ZA4JS)	01 - Clear 01 - Clear	01 - Daylight 01 - Daylight	10 - No control 10 - No control		02 - Non-fatal injury 03 - P.D. only	07 - SMV other 04 - Sideswipe	02 - Wet 04 - Slush
9/17/2019	2019	7:50	FISHER AVE blwn MCCOOEY DANE & BASELINE RD (3ZA4JS) FISHER AVE blwn MCCOOEY LANE & BASELINE RD (3ZA4JS)	01 - Clear	01 - Daylight 01 - Daylight	10 - No control		03 - P.D. only	03 - Rear end	01 - Dry
1/2/2015	2015	20:32	FISHER AVE btwn BASELINE RD & MALIBU TER	01 - Clear	07 - Dark	10 - No control		03 - P.D. only	02 - Angle	01 - Dry
5/29/2015	2015	15:54	FISHER AVE btwn BASELINE RD & MALIBU TER	01 - Clear	01 - Daylight	10 - No control		03 - P.D. only	99 - Other	01 - Dry
9/28/2015	2015	5:30	FISHER AVE btwn BASELINE RD & MALIBU TER	02 - Rain	07 - Dark	10 - No control		03 - P.D. only	03 - Rear end	02 - Wet
12/17/2015	2015	16:15	FISHER AVE btwn BASELINE RD & MALIBU TER	02 - Rain	05 - Dusk	10 - No control		03 - P.D. only	05 - Turning movement	02 - Wet
9/30/2015	2015	16:28	FISHER AVE btwn BASELINE RD & MALIBU TER	01 - Clear	01 - Daylight	10 - No control		03 - P.D. only	03 - Rear end	01 - Dry
8/26/2016	2016	18:16	FISHER AVE btwn BASELINE RD & MALIBU TER FISHER AVE btwn BASELINE RD & MALIBU TER	01 - Clear	01 - Daylight	10 - No control		02 - Non-fatal injury	03 - Rear end	01 - Dry
10/22/2016 12/7/2017	2016 2017	8:27 17:30	FISHER AVE DEWN BASELINE RD & MALIBU TER FISHER AVE betwn BASELINE RD & MALIBU TER	01 - Clear 01 - Clear	01 - Daylight 07 - Dark	10 - No control 10 - No control		03 - P.D. only 03 - P.D. only	05 - Turning movement 02 - Angle	01 - Dry 01 - Dry
4/30/2018	2017	17:22	FISHER AVE DEWI BASELINE RD & MALIBU TER (3ZA4JK)	01 - Clear	01 - Daylight	10 - No control		03 - P.D. only	99 - Other	01 - Dry
8/17/2019	2019	13:14	FISHER AVE btwn BASELINE RD & MALIBU TER (3ZA4JK)	02 - Rain	01 - Daylight	10 - No control		02 - Non-fatal injury	02 - Angle	02 - Wet
5/9/2015	2015	12:49	BASELINE RD btwn FISHER AVE & LEXINGTON ST	01 - Clear	01 - Daylight	10 - No control		03 - P.D. only	03 - Rear end	01 - Dry
4/22/2015	2015	9:30	BASELINE RD btwn FISHER AVE & LEXINGTON ST	01 - Clear	01 - Daylight	10 - No control		03 - P.D. only	04 - Sideswipe	01 - Dry
5/11/2016	2016	17:43	BASELINE RD btwn FISHER AVE & LEXINGTON ST	01 - Clear	01 - Daylight	10 - No control		03 - P.D. only	03 - Rear end	01 - Dry
11/8/2016	2016	17:55	BASELINE RD btwn FISHER AVE & LEXINGTON ST	01 - Clear	07 - Dark	10 - No control		03 - P.D. only	03 - Rear end	01 - Dry
6/5/2017	2017	8:40	BASELINE RD btwn FISHER AVE & LEXINGTON ST	01 - Clear	01 - Daylight	10 - No control		03 - P.D. only	03 - Rear end	01 - Dry
9/15/2018	2018	13:06	BASELINE RD btwn FISHER AVE & LEXINGTON ST (3ZA4JR)	01 - Clear	01 - Daylight	10 - No control		02 - Non-fatal injury	03 - Rear end	01 - Dry
10/30/2018 2/12/2019	2018 2019	17:53 17:47	BASELINE RD btwn FISHER AVE & LEXINGTON ST (3ZA4JR) BASELINE RD btwn FISHER AVE & LEXINGTON ST (_3ZA4JR)	01 - Clear 03 - Snow	05 - Dusk 05 - Dusk	10 - No control 10 - No control		02 - Non-fatal injury 03 - P.D. only	03 - Rear end 04 - Sideswipe	01 - Dry 03 - Loose snow
6/25/2019	2019	15:49	BASELINE RD blwn FISHER AVE & LEXINGTON ST (3ZA4JR) BASELINE RD btwn FISHER AVE & LEXINGTON ST (3ZA4JR)	01 - Clear	01 - Daylight	10 - No control		03 - P.D. only	03 - Rear end	01 - Dry
11/10/2019	2019	20:17	BASELINE RD btwn FISHER AVE & LEXINGTON ST (_3ZA4JR)	01 - Clear	07 - Dark	10 - No control		03 - P.D. only	99 - Other	01 - Dry
2/27/2015	2015	8:39	FISHER AVE @ MALIBU TER	01 - Clear	01 - Daylight	02 - Stop sign		02 - Non-fatal injury	02 - Angle	01 - Dry
2/14/2015	2015	20:39	FISHER AVE @ MALIBU TER	03 - Snow	07 - Dark	02 - Stop sign		03 - P.D. only	05 - Turning movement	05 - Packed snow
6/3/2015	2015	8:14	FISHER AVE @ MALIBU TER	01 - Clear	01 - Daylight	02 - Stop sign		03 - P.D. only	02 - Angle	01 - Dry
9/30/2017	2017	10:05	FISHER AVE @ MALIBU TER	01 - Clear	01 - Daylight	02 - Stop sign		03 - P.D. only	02 - Angle	01 - Dry
2/15/2018	2018	16:01	FISHER AVE @ MALIBU TER (0003121)	01 - Clear	01 - Daylight	02 - Stop sign		02 - Non-fatal injury	05 - Turning movement	02 - Wet
10/18/2018	2018	8:00	FISHER AVE @ MALIBU TER (0003121)	01 - Clear	01 - Daylight	02 - Stop sign		02 - Non-fatal injury	07 - SMV other	01 - Dry
1/26/2019 7/4/2015	2019 2015	10:40 13:17	FISHER AVE @ MALIBU TER (0003121) BASELINE RD @ FISHER AVE	01 - Clear 01 - Clear	01 - Daylight 01 - Daylight	02 - Stop sign 01 - Traffic signal		02 - Non-fatal injury 02 - Non-fatal injury	03 - Rear end 03 - Rear end	02 - Wet 01 - Dry
2/4/2015	2015	10:15	BASELINE RD @ FISHER AVE	03 - Snow	01 - Daylight	01 - Traffic signal		03 - P.D. only	03 - Rear end	03 - Loose snow
3/4/2015	2015	16:30	BASELINE RD @ FISHER AVE	01 - Clear	01 - Daylight	01 - Traffic signal		03 - P.D. only	03 - Rear end	01 - Dry
1/4/2015	2015	19:50	BASELINE RD @ FISHER AVE	04 - Freezing Rain	07 - Dark	01 - Traffic signal		03 - P.D. only	99 - Other	06 - Ice
8/18/2015	2015	17:10	BASELINE RD @ FISHER AVE	01 - Clear	01 - Daylight	01 - Traffic signal		03 - P.D. only	03 - Rear end	01 - Dry
3/6/2015	2015	16:32	BASELINE RD @ FISHER AVE	01 - Clear	01 - Daylight	01 - Traffic signal		03 - P.D. only	04 - Sideswipe	01 - Dry
3/15/2015	2015	7:37	BASELINE RD @ FISHER AVE	03 - Snow	01 - Daylight	01 - Traffic signal		03 - P.D. only	07 - SMV other	03 - Loose snow
2/19/2015	2015	13:10	BASELINE RD @ FISHER AVE	01 - Clear	01 - Daylight	01 - Traffic signal		03 - P.D. only	03 - Rear end	02 - Wet
2/19/2015 6/23/2015	2015 2015	13:29 8:45	BASELINE RD @ FISHER AVE BASELINE RD @ FISHER AVE	05 - Drifting Snow 01 - Clear	01 - Daylight 01 - Daylight	01 - Traffic signal 01 - Traffic signal		03 - P.D. only 03 - P.D. only	03 - Rear end 03 - Rear end	03 - Loose snow 01 - Dry
3/27/2015	2015	19:37	BASELINE RD @ FISHER AVE	03 - Snow	07 - Daylight	01 - Traffic signal		03 - P.D. only	03 - Rear end	03 - Loose snow
5/13/2015	2015	10:38	BASELINE RD @ FISHER AVE	01 - Clear	01 - Daylight	01 - Traffic signal		03 - P.D. only	03 - Rear end	01 - Dry
4/26/2015	2015	11:30	BASELINE RD @ FISHER AVE	01 - Clear	01 - Daylight	01 - Traffic signal		03 - P.D. only	04 - Sideswipe	01 - Dry
6/26/2015	2015	14:56	BASELINE RD @ FISHER AVE	01 - Clear	01 - Daylight	01 - Traffic signal		03 - P.D. only	03 - Rear end	01 - Dry
11/12/2015	2015	16:50	BASELINE RD @ FISHER AVE	02 - Rain	05 - Dusk	01 - Traffic signal		03 - P.D. only	03 - Rear end	02 - Wet
9/18/2015	2015	17:51	BASELINE RD @ FISHER AVE	01 - Clear	01 - Daylight	01 - Traffic signal		03 - P.D. only	03 - Rear end	01 - Dry
8/4/2015	2015	14:16	BASELINE RD @ FISHER AVE	01 - Clear	01 - Daylight	01 - Traffic signal		03 - P.D. only	03 - Rear end	01 - Dry
12/31/2015 4/1/2016	2015 2016	16:43 16:56	BASELINE RD @ FISHER AVE BASELINE RD @ FISHER AVE	03 - Snow 01 - Clear	05 - Dusk 01 - Daylight	01 - Traffic signal 01 - Traffic signal		03 - P.D. only 02 - Non-fatal injury	03 - Rear end 07 - SMV other	03 - Loose snow 01 - Dry
9/20/2016	2016	17:20	BASELINE RD @ FISHER AVE	01 - Clear	01 - Daylight	01 - Traffic signal		02 - Non-ratar injury 03 - P.D. only	03 - Rear end	01 - Dry
10/15/2016	2016	12:50	BASELINE RD @ FISHER AVE	01 - Clear	01 - Daylight	01 - Traffic signal		03 - P.D. only	03 - Rear end	01 - Dry
1/5/2016	2016	9:17	BASELINE RD @ FISHER AVE	01 - Clear	01 - Daylight	01 - Traffic signal		03 - P.D. only	04 - Sideswipe	01 - Dry
1/28/2016	2016	16:44	BASELINE RD @ FISHER AVE	01 - Clear	05 - Dusk	01 - Traffic signal		03 - P.D. only	03 - Rear end	01 - Dry
7/16/2016	2016	20:52	BASELINE RD @ FISHER AVE	01 - Clear	05 - Dusk	01 - Traffic signal		03 - P.D. only	03 - Rear end	01 - Dry
3/22/2016	2016	12:14	BASELINE RD @ FISHER AVE	01 - Clear	01 - Daylight	01 - Traffic signal		03 - P.D. only	03 - Rear end	01 - Dry
11/2/2016 7/20/2016	2016 2016	18:06 16:30	BASELINE RD @ FISHER AVE	01 - Clear 01 - Clear	07 - Dark	01 - Traffic signal		03 - P.D. only	03 - Rear end	01 - Dry
10/11/2016	2016	16:30	BASELINE RD @ FISHER AVE BASELINE RD @ FISHER AVE	01 - Clear 01 - Clear	01 - Daylight 01 - Daylight	01 - Traffic signal 01 - Traffic signal		03 - P.D. only 03 - P.D. only	03 - Rear end 03 - Rear end	01 - Dry 01 - Dry
10/11/2016	2016	3:08	BASELINE RD @ FISHER AVE	01 - Clear 01 - Clear	01 - Daylight 07 - Dark	01 - Traffic signal		03 - P.D. only	06 - SMV unattended vehicle	01 - Dry 01 - Dry
12/21/2016	2016	16:48	BASELINE RD @ FISHER AVE	01 - Clear	05 - Dusk	01 - Traffic signal		03 - P.D. only	03 - Rear end	01 - Dry
11/26/2016	2016	21:20	BASELINE RD @ FISHER AVE	01 - Clear	07 - Dark	01 - Traffic signal		03 - P.D. only	02 - Angle	01 - Dry
7/21/2017	2017	9:19	BASELINE RD @ FISHER AVE	01 - Clear	01 - Daylight	01 - Traffic signal		02 - Non-fatal injury	04 - Sideswipe	01 - Dry
9/11/2017	2017	16:16	BASELINE RD @ FISHER AVE	01 - Clear	01 - Daylight	01 - Traffic signal		03 - P.D. only	03 - Rear end	01 - Dry
9/7/2017	2017	7:30	BASELINE RD @ FISHER AVE	01 - Clear	01 - Daylight	01 - Traffic signal		02 - Non-fatal injury	03 - Rear end	01 - Dry
10/6/2017	2017	9:29	BASELINE RD @ FISHER AVE	01 - Clear	01 - Daylight	01 - Traffic signal		02 - Non-fatal injury	03 - Rear end	01 - Dry
10/3/2017	2017	13:32	BASELINE RD @ FISHER AVE	01 - Clear	01 - Daylight	01 - Traffic signal		03 - P.D. only	03 - Rear end	01 - Dry
12/11/2017 12/6/2017	2017 2017	17:30 16:43	BASELINE RD @ FISHER AVE BASELINE RD @ FISHER AVE	01 - Clear 01 - Clear	07 - Dark 05 - Dusk	01 - Traffic signal 01 - Traffic signal		03 - P.D. only 03 - P.D. only	03 - Rear end 03 - Rear end	01 - Dry 01 - Dry
1/5/2017	2017	10:43	BASELINE RD @ FISHER AVE BASELINE RD @ FISHER AVE	01 - Clear 01 - Clear	05 - Dusk 01 - Daylight	01 - Traffic signal		03 - P.D. only 02 - Non-fatal injury	03 - Rear end	05 - Packed snow
2/15/2017	2017	10:47	BASELINE RD @ FISHER AVE	03 - Snow	01 - Daylight	01 - Traffic signal		02 - Non-fatal injury	07 - Near end	03 - Loose snow
1/12/2017	2017	17:55	BASELINE RD @ FISHER AVE	01 - Clear	07 - Dark	01 - Traffic signal		03 - P.D. only	03 - Rear end	02 - Wet
3/5/2017	2017	9:38	BASELINE RD @ FISHER AVE	01 - Clear	01 - Daylight	01 - Traffic signal		03 - P.D. only	03 - Rear end	01 - Dry
3/9/2017	2017	11:52	BASELINE RD @ FISHER AVE	01 - Clear	01 - Daylight	01 - Traffic signal		03 - P.D. only	04 - Sideswipe	01 - Dry
12/23/2017	2017	12:15	BASELINE RD @ FISHER AVE	03 - Snow	01 - Daylight	01 - Traffic signal		03 - P.D. only	05 - Turning movement	04 - Slush
1/2/2018	2018	17:00	BASELINE RD @ FISHER AVE (0002346)	03 - Snow	05 - Dusk	01 - Traffic signal		03 - P.D. only	03 - Rear end	05 - Packed snow
2/27/2018	2018	16:26	BASELINE RD @ FISHER AVE (0002346)	01 - Clear	01 - Daylight	01 - Traffic signal		03 - P.D. only	03 - Rear end	01 - Dry
3/16/2018 3/16/2018	2018 2018	17:31 20:07	BASELINE RD @ FISHER AVE (0002346) BASELINE RD @ FISHER AVE (0002346)	01 - Clear 01 - Clear	01 - Daylight 07 - Dark	01 - Traffic signal 01 - Traffic signal		03 - P.D. only 03 - P.D. only	03 - Rear end 03 - Rear end	01 - Dry 03 - Loose snow
3/10/2016	2010	20:07	MACENTE NO @ FISHER AVE (0002340)	OI - Clear	U7 - DdIK	or - manne signal		05 - P.D. UHIY	os - Redi ena	02 - F0026 2HOM


Appendix E


TRANS Model Plots




Appendix F

Synchro Intersection Worksheets – 2027 Future Background Conditions

Figure 6: Reassigned Site Trips

5.2 Background Traffic

5.2.1 Future Background Traffic

For the 'Inner Suburbs' area of Ottawa, Exhibit 2.10 of the 2013 TMP projects population and employment growth rates of approximately 0.3% and 1.2% per annum, respectively. To reflect the study area's development as an employment area, a 1% background growth rate has been applied to non-site traffic in this area.

This 1% background growth rate is in line with the annual historical (2000 to 2016) growth rate for this area (-2% to 2%) identified by the City of Ottawa (See **Figure 7**).

2020 and 2025 background traffic volumes for the study area are shown in **Figure 8** and **Figure 9**, respectively.

Novatech Page 11

Appendix G

Synchro Intersection Worksheets – 2032 Future Background Conditions

Lanes, Volumes, Timings 1: Fisher Ave & Baseline Rd 2034 Future Background AM Peak Hour

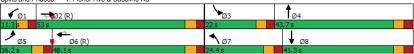
	•	-	*	•	←	*	1	†	1	-	↓	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	^	7	ሻ	^	7	7	† 1>		ሻ	† }	
Traffic Volume (vph)	126	1300	152	32	1101	141	223	493	73	132	391	93
Future Volume (vph)	126	1300	152	32	1101	141	223	493	73	132	391	93
Satd. Flow (prot)	1658	3252	1469	1642	3252	1455	1658	3182	0	1658	3124	0
Flt Permitted	0.950			0.950			0.950			0.950		
Satd. Flow (perm)	1654	3252	1407	1634	3252	1419	1644	3182	0	1653	3124	0
Satd. Flow (RTOR)												
Lane Group Flow (vph)	126	1300	152	32	1101	141	223	566	0	132	484	0
Turn Type	Prot	NA	Perm	Prot	NA	Perm	Prot	NA		Prot	NA	
Protected Phases	5	2		1	6		7	4		3	8	
Permitted Phases			2			6						
Detector Phase	5	2	2	1	6	6	7	4		3	8	
Switch Phase												
Minimum Initial (s)	5.0	10.0	10.0	5.0	10.0	10.0	5.0	10.0		5.0	10.0	
Minimum Split (s)	11.3	41.2	41.2	11.3	41.2	41.2	10.9	41.3		10.9	41.3	
Total Split (s)	16.2	53.0	53.0	11.3	48.1	48.1	24.4	43.7		22.0	41.3	
Total Split (%)	12.5%	40.8%	40.8%	8.7%	37.0%	37.0%	18.8%	33.6%		16.9%	31.8%	
Yellow Time (s)	3.7	3.7	3.7	3.7	3.7	3.7	3.3	3.3		3.3	3.3	
All-Red Time (s)	2.6	2.5	2.5	2.6	2.5	2.5	2.6	3.0		2.6	3.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Lost Time (s)	6.3	6.2	6.2	6.3	6.2	6.2	5.9	6.3		5.9	6.3	
Lead/Lag	Lead	Lag	Lag	Lead	Lag	Lag	Lead	Lag		Lead	Lag	
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		Yes	Yes	
Recall Mode	None	C-Max	C-Max	None	C-Max	C-Max	None	None		None	None	
Act Effct Green (s)	13.9	58.1	58.1	6.1	45.3	45.3	18.5	31.9		14.2	27.6	
Actuated g/C Ratio	0.11	0.45	0.45	0.05	0.35	0.35	0.14	0.25		0.11	0.21	
v/c Ratio	0.71	0.89	0.24	0.42	0.97	0.29	0.95	0.72		0.73	0.73	
Control Delay	78.0	43.9	26.9	59.0	88.0	65.4	102.1	50.5		78.9	53.9	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Delay	78.0	43.9	26.9	59.0	88.0	65.4	102.1	50.5		78.9	53.9	
LOS	E	D	С	Е	F	E	F	D		Е	D	
Approach Delay		45.0			84.8			65.1			59.3	
Approach LOS		D			F			Е			Е	
Queue Length 50th (m)	30.6	170.6	25.5	8.6	~161.2	37.6	57.4	73.1		32.8	62.6	
Queue Length 95th (m)	#73.4	#242.4	45.5	m10.6	m#169.6	m40.9	#105.9	85.6		#55.0	74.5	
Internal Link Dist (m)		271.5			796.1			86.9			158.3	
Turn Bay Length (m)	124.5	4.450	100.0	134.0	1100	91.5		0.15		65.0	0.11	
Base Capacity (vph)	177	1453	628	77	1132	494	235	915		205	841	
Starvation Cap Reductn	0	0	0	0	0	0	0	0		0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0		0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0		0	0	
Reduced v/c Ratio	0.71	0.89	0.24	0.42	0.97	0.29	0.95	0.62		0.64	0.58	
Intersection Summary												

Cycle Length: 130
Actuated Cycle Length: 130
Offset: 0 (0%), Referenced to phase 2:EBT and 6:WBT, Start of Green

Natural Cycle: 135

Control Type: Actuated-Coordinated

Scenario 1 780 Baseline Road 11:59 pm 03-16-2022 2034 Future Background


Synchro 11 Report Page 1

Lanes, Volumes, Timings 1: Fisher Ave & Baseline Rd

2034 Future Background AM Peak Hour

Maximum v/c Ratio: 0.97	
Intersection Signal Delay: 62.7	Intersection LOS: E
Intersection Capacity Utilization 96.2%	ICU Level of Service F
Analysis Period (min) 15	
 Volume exceeds capacity, queue is theoretically infinite. 	
Queue shown is maximum after two cycles.	
# 95th percentile volume exceeds capacity, queue may be lon	ger.
Queue shown is maximum after two cycles.	
m Volume for 95th percentile queue is metered by upstream s	ignal.

Splits and Phases: 1: Fisher Ave & Baseline Rd

Lanes, Volumes, Timings 6: Deer Park Rd/Dynes Rd & Fisher Ave 2034 Future Background AM Peak Hour

EBL											
	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
	4			4			ની	7		† î»	
38	83	17	83	41	104	8	669	171	61	538	
38	83	17	83	41	104	8	669	171	61	538	
0	1660	0	0	1577	0	0	1710	1483	0	3293	
	0.849			0.843			0.993			0.799	
0	1421	0	0	1336	0	0	1699	1289	0	2644	
	9			56				171		1	
0	138	0	0	228	0	0	677	171	0	604	
Perm	NA		Perm	NA		Perm	NA	Perm	Perm	NA	
	4			8			2			6	
4			8			2		2	6		
4	4		8	8		2	2	2	6	6	
10.0	10.0		10.0	10.0		10.0	10.0	10.0	10.0	10.0	
31.1	31.1		31.1	31.1		27.2	27.2	27.2	27.2	27.2	
33.0	33.0		33.0	33.0		47.0	47.0	47.0	47.0	47.0	
41.3%	41.3%		41.3%	41.3%		58.8%	58.8%	58.8%	58.8%	58.8%	
3.0	3.0		3.0	3.0		3.3	3.3	3.3	3.3	3.3	
4.1	4.1		4.1	4.1		2.9	2.9	2.9	2.9	2.9	
	0.0			0.0			0.0	0.0		0.0	
None	None		None	None		C-Max	C-Max	C-Max	C-Max	C-Max	
	19.0			19.0			47.7	47.7		47.7	
	0.24			0.24			0.60	0.60		0.60	
	0.40			0.63			0.67	0.20		0.38	
	25.9			27.5			16.7	2.3		10.5	
	0.0			0.0			0.0	0.0		0.0	
	25.9			27.5			16.7	2.3		10.5	
	C			C			В	A		В	
	25.9			27.5			13.8			10.5	
	С			C			В			В	
								0.0			
	29.4			42.2			117.4	8.2		39.0	
	152.1			156.9			172.3			30.0	
	466			470			1013	837		1577	
	0			0			0	0		0	
	0			0			0	0		0	
	0			0			0	0		0	
	0.30			0.49			0.67	0.20		0.38	
d to phase	2·NRTL 2	and 6:SB	TI Start	of Green							
a to pridate	, Z.INDIL C	a 0.0D	re, oldit	Or Oroth							
	38 0 0 Perm 4 4 10.0 31.1 33.0 41.3% 3.0 4.1	38 83 0 1660 0.849 0 1421 9 0 138 Perm NA 4 4 4 4 10.0 10.0 31.1 31.1 33.0 3.0 41.3% 41.3% 41.3% 10.0 0.0 7.1 None None 19.0 0.24 0.40 0.40 0.25.9 0.0 0.25.9 0.0 25.9 0.0 25.9 0.0 15.0 29.4 152.1 466 0 0 0 0.30	38 83 17 0 1660 0 0.849 0 1421 0 9 0 138 0 Perm NA 4 4 4 4 4 10.0 10.0 31.1 31.1 33.0 33.0 41.3% 41.3% 3.0 3.0 4.1 4.1 0.0 7.1 None None 19.0 0.24 0.40 25.9 0.0 25.9 0.0 25.9 0.0 25.9 0.0 25.9 0.0 25.9 0.0 25.9 0.0 0.0 25.9 0.0 0.0 25.9 0.0 0.0 25.9 0.0 0.0 0.30 d to phase 2:NBTL and 6:SB	38 83 17 83 0 1660 0 0 0.849 0 1421 0 0 9 0 138 0 0 Perm NA Perm 4 4 8 4 4 8 10.0 10.0 10.0 10.0 31.1 31.1 31.1 33.0 33.0 33.0 41.3% 41.3% 41.3% 41.3% 3.0 3.0 3.0 3.0 4.1 4.1 4.1 0.0 7.1 None None None 19.0 0.24 0.40 25.9 0.0 25.9 0.0 25.9 0.0 25.9 0.0 25.9 0.0 25.9 0.0 25.9 0.0 0.25.9 0.0 0.25.9 0.0 0.25.9 0.0 0.25.9 0.0 0.25.9 0.0 0.25.9 0.0 0.30 0.30	38 83 17 83 41 0 1660 0 0 0 1577 0.849 0.843 0 1421 0 0 1336 9 56 0 138 0 0 228 Perm NA Perm NA 4 8 4 4 8 8 4 4 4 8 8 10.0 10.0 10.0 10.0 31.1 31.1 31.1 31.1 31.1 33.0 33.0 33.0 33.0 33.0 41.3% 41.3% 41.3% 41.3% 41.3% 3.0 3.0 3.0 3.0 3.0 4.1 4.1 4.1 4.1 4.1 1.1 7.1 None None None None None 19.0 0.0 7.1 7.1 None 19.0 19.0 0.24 0.24 0.40 0.63 25.9 27.5 0.0 0.0 25.9 27.5 C C 26.0 27.5 C C 27.5 27.5 C C 27.5 27.5 C C 28.7 28.7 28.7 28.7 28.7 28.7 28.7 28.7	38 83 17 83 41 104 0 1660 0 0 1577 0 0.849 0.843 0 1421 0 0 1336 0 9 56 0 138 0 0 228 0 Perm NA Perm NA 4 8 4 8 8 4 4 4 8 8 10.0 10.0 10.0 10.0 31.1 31.1 31.1 31.1	38 83 17 83 41 104 8 0 1660 0 0 1577 0 0 0.849 0.843 0 1421 0 0 1336 0 0 9 56 0 138 0 0 228 0 0 Perm NA Perm NA Perm 4 8 2 4 4 8 8 2 10.0 10.0 10.0 10.0 10.0 10.0 31.1 31.1 31.1 31.1 31.1 27.2 33.0 33.0 33.0 33.0 33.0 47.0 41.3% 41.3% 41.3% 41.3% 58.8% 3.0 3.0 3.0 3.0 3.0 3.3 4.1 4.1 4.1 4.1 2.9 0.0 7.1 7.1 None None None None C-Max 19.0 19.0 19.0 0.24 0.24 0.40 0.63 25.9 27.5 0.0 0.0 0.0 25.9 27.5 C C C C C C C C 25.9 27.5 C C C C C	38	38	38	38

Scenario 1 780 Baseline Road 11:59 pm 03-16-2022 2034 Future Background

Synchro 11 Report Page 3 Lanes, Volumes, Timings 6: Deer Park Rd/Dynes Rd & Fisher Ave 2034 Future Background AM Peak Hour

Maximum v/c Ratio: 0.67
Intersection Signal Delay: 15.3
Intersection LOS: B
Intersection Capacity Utilization 93.4%
Analysis Period (min) 15

2034 Future Background AM Peak Hour

Lane Configurations		•	-	*	1	—	•	1	1	1	-	ļ	1
Traffic Volume (vph)	Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Traffic Volume (vph)	Lane Configurations	ሻ	† 12		ሻ	^	7	*	↑ 1>		77	† 1>	
Satd. Flow (prot)	Traffic Volume (vph)	201		142	225		546	72		166			83
Fit Permitted 0.950 0.950 0.950 0.950 0.950 0.950 Sald. Flow (perm) 1654 3186 0 1592 3283 1450 1652 3237 0 3205 3219 1 5341. Flow (perm) 1654 3186 0 1592 3283 1450 1652 3237 0 3205 3219 1 5341. Flow (perm) 1654 3186 0 1592 3283 1450 1652 3237 0 3205 3219 1 5341. Flow (perm) 1654 3186 0 1592 3283 1450 1652 3237 0 3205 3219 1 5341. Flow (perm) 1654 3186 0 1592 3283 1450 1652 3237 0 3205 3219 1 545 72 1 300 0 2 21 477 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Future Volume (vph)	201	540	142	225	1019	546	72	1134	166	221	394	83
Satd. Flow (perm)	Satd. Flow (prot)	1658	3186	0	1610	3283	1483	1658	3237	0	3216	3219	0
Satd. Flow (RTOR) Lane Group Flow (vph) 201 682 0 225 1019 546 72 1300 0 221 477 Turn Type Prot NA Prot NA Perm Prot NA Prot NA Protected Phases 5 2 1 6 7 4 3 8 Permitted Phases 5 2 1 6 6 7 4 3 8 Elemental Phases 5 2 1 6 6 7 4 3 8 Elemental Phases 5 2 1 6 6 7 4 3 8 Elemental Phases 6 7 4 3 8 Elemental Phases 6 8 Elemental Phases 7 8 8 Elemental Phases 8 8 8 Elemental Phase 8 8 8 Elemental Phase 8 8 8 Elemental Phase 9 8 8 Elemental Phase 9 8 8 8 Elemental Phase 9 8 8 8 Elemental Split (s) 10.0 10.0 10.0 5.0 12.0 5.0 12.0 5.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12	Flt Permitted	0.950			0.950			0.950			0.950		
Lane Group Flow (vph)	Satd. Flow (perm)	1654	3186	0	1592	3283	1450	1652	3237	0	3205	3219	0
Turn Type	Satd. Flow (RTOR)												
Protected Phases	Lane Group Flow (vph)	201	682	0	225	1019	546	72	1300	0	221	477	0
Permitted Phases 6 6 6 7 4 3 8	Turn Type	Prot	NA		Prot	NA	Perm	Prot	NA		Prot	NA	
Detector Phase 5 2	Protected Phases	5	2		1	6		7	4		3	8	
Switch Phase Minimum Initial (s)	Permitted Phases						6						
Minimum Initial (s) 5.0 10.0 5.0 10.0 10.0 5.0 12.0 5.0 12.0 Minimum Spit (s) 11.8 29.5 11.8 29.8 19.9 37.8 10.9 37.8 Total Spit (s) 20.0 40.0 26.0 46.0 46.0 26.0 25.0 11.3 43.6 Total Spit (%) 15.4% 30.8% 20.0% 35.4% 35.4% 15.7% 39.2% 110.0% 33.5% Yellow Time (s) 3.7 3.0 3.7	Detector Phase	5	2		1	6	6	7	4		3	8	
Minimum Split (s)	Switch Phase												
Total Split (s)	Minimum Initial (s)	5.0	10.0		5.0	10.0	10.0	5.0	12.0		5.0	12.0	
Total Split (%)	Minimum Split (s)	11.8	29.5		11.8	29.8	29.8	10.9	37.8		10.9	37.8	
Yellow Time (s) 3.7 3.0 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7	Total Split (s)	20.0	40.0		26.0	46.0	46.0	20.4	51.0		13.0	43.6	
All-Red Time (s) 3.1 2.8 3.1 2.8 2.8 2.2 3.1 2.2 3.1 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Total Split (%)	15.4%	30.8%		20.0%	35.4%	35.4%	15.7%	39.2%		10.0%	33.5%	
Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Yellow Time (s)	3.7	3.0		3.7	3.7	3.7	3.7	3.7		3.7	3.7	
Total Lost Time (s) 6.8 5.8 6.8 6.5 6.5 5.9 6.8 5.9 6.8 Lead/Lag Lead-Lag Optimize?	All-Red Time (s)	3.1	2.8		3.1	2.8	2.8	2.2	3.1		2.2	3.1	
Lead/Lag Lead Lag Lead Lag Lead-Lag Optimize? Yes	Lost Time Adjust (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Lead-Lag Optimize? Yes Yes Yes Yes Recall Mode None C-Max None C-Max None Min None Min Act Effct Green (s) 13.2 34.2 19.2 39.5 39.5 10.8 44.2 7.1 43.0 Actuated g/C Ratio 0.10 0.26 0.15 0.30 0.30 0.08 44.2 7.1 43.0 Vic Ratio 1.20 0.81 0.95 1.02 1.24 0.53 1.18 1.26 0.45 Control Delay 156.5 69.9 101.6 78.7 165.2 70.1 129.8 204.0 37.3 LOS F E F E F F F F D 0.0<	Total Lost Time (s)	6.8	5.8		6.8	6.5	6.5	5.9	6.8		5.9	6.8	
Recall Mode None C-Max None C-Max C-Max C-Max C-Max C-Max None Min Act Effet Green (s) 13.2 34.2 19.2 39.5 39.5 10.8 44.2 7.1 43.0 Actuated g/C Ratio 0.10 0.26 0.15 0.30 0.30 0.08 0.34 0.05 0.33 v/c Ratio 1.20 0.81 0.95 1.02 1.24 0.53 1.18 1.26 0.45 Control Delay 156.5 69.9 101.6 78.7 165.2 70.1 129.8 204.0 37.3 Queue Delay 0.0<	Lead/Lag							Lead	Lag		Lead	Lag	
Act Effet Green (s)	Lead-Lag Optimize?							Yes	Yes		Yes	Yes	
Actuated g/C Ratio 0.10 0.26 0.15 0.30 0.30 0.08 0.34 0.05 0.33 v/c Ratio 1.20 0.81 0.95 1.02 1.24 0.53 1.18 1.26 0.45 Control Delay 156.5 69.9 101.6 78.7 165.2 70.1 129.8 204.0 37.3 Queue Delay 0.0 </td <td>Recall Mode</td> <td>None</td> <td>C-Max</td> <td></td> <td>None</td> <td>C-Max</td> <td>C-Max</td> <td>None</td> <td>Min</td> <td></td> <td>None</td> <td>Min</td> <td></td>	Recall Mode	None	C-Max		None	C-Max	C-Max	None	Min		None	Min	
v/c Ratio 1.20 0.81 0.95 1.02 1.24 0.53 1.18 1.26 0.45 Control Delay 156.5 69.9 101.6 78.7 165.2 70.1 129.8 204.0 37.3 Queue Delay 0.0 <td>Act Effct Green (s)</td> <td>13.2</td> <td>34.2</td> <td></td> <td>19.2</td> <td>39.5</td> <td>39.5</td> <td>10.8</td> <td>44.2</td> <td></td> <td>7.1</td> <td>43.0</td> <td></td>	Act Effct Green (s)	13.2	34.2		19.2	39.5	39.5	10.8	44.2		7.1	43.0	
Control Delay 156.5 69.9 101.6 78.7 165.2 70.1 129.8 204.0 37.3 Queue Delay 0.0 <t< td=""><td>Actuated g/C Ratio</td><td>0.10</td><td>0.26</td><td></td><td>0.15</td><td>0.30</td><td>0.30</td><td>0.08</td><td>0.34</td><td></td><td>0.05</td><td>0.33</td><td></td></t<>	Actuated g/C Ratio	0.10	0.26		0.15	0.30	0.30	0.08	0.34		0.05	0.33	
Queue Delay 0.0 37.3 10.0 <	v/c Ratio	1.20	0.81		0.95	1.02	1.24	0.53	1.18		1.26	0.45	
Total Delay	Control Delay	156.5	69.9		101.6	78.7	165.2	70.1	129.8		204.0	37.3	
LOS F E F E F E F E F D D Approach Delay 89.7 108.0 126.7 99.1 Approach LOS F F F F F F F F F F F F F F F F F F F	Queue Delay	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Approach Delay 89.7 108.0 126.7 90.1 Approach LOS F F F F F F Queue Length 50th (m) ~64.3 98.6 57.9 ~145.7 ~173.4 18.0 ~210.0 ~36.5 52.1 Queue Length 95th (m) m#82.4 m#111.3 #107.1 #186.8 #240.9 32.9 #252.3 #62.3 71.3 Internal Link Dist (m) 796.1 320.4 184.0 117.0 74.0 Base Capacity (vph) 168 838 237 997 440 184 1100 175 1064 Starvation Cap Reductn 0 </td <td>Total Delay</td> <td>156.5</td> <td>69.9</td> <td></td> <td>101.6</td> <td>78.7</td> <td>165.2</td> <td>70.1</td> <td>129.8</td> <td></td> <td>204.0</td> <td>37.3</td> <td></td>	Total Delay	156.5	69.9		101.6	78.7	165.2	70.1	129.8		204.0	37.3	
Approach LOS F F F F F F F P Queue Length OF P 20 20 20	LOS	F	Е		F	Е	F	Е	F		F	D	
Queue Length 50th (m) ~64.3 98.6 57.9 ~145.7 ~173.4 18.0 ~210.0 ~36.5 52.1 Queue Length 95th (m) m#82.4 m111.3 #107.1 #186.8 #240.9 32.9 #252.3 #62.3 71.3 Internal Link Dist (m) 796.1 320.4 142.9 135.6 Turn Bay Length (m) 125.0 118.0 184.0 117.0 74.0 Base Capacity (vph) 168 838 237 997 440 184 1100 175 1064 Starvation Cap Reductn 0	Approach Delay		89.7			108.0			126.7			90.1	
Queue Length 95th (m) m#82.4 m111.3 #107.1 #186.8 #240.9 32.9 #252.3 #62.3 71.3 Internal Link Dist (m) 796.1 320.4 142.9 135.6 Turn Bay Length (m) 125.0 118.0 184.0 117.0 74.0 Base Capacity (vph) 168 838 237 997 440 184 1100 175 1064 Starvation Cap Reductn 0	Approach LOS		F			F			F			F	
Internal Link Dist (m) 796.1 320.4 142.9 135.6 Turn Bay Length (m) 125.0 118.0 184.0 117.0 74.0 Base Capacity (vph) 168 838 237 997 440 184 1100 175 1064 Starvation Cap Reductn 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Queue Length 50th (m)	~64.3	98.6		57.9	~145.7	~173.4	18.0	~210.0		~36.5	52.1	
Turn Bay Length (m) 125.0 118.0 184.0 117.0 74.0 Base Capacity (vph) 168 838 237 997 440 184 1100 175 1064 Starvation Cap Reductn 0	Queue Length 95th (m)	m#82.4	m111.3		#107.1	#186.8	#240.9	32.9	#252.3		#62.3	71.3	
Base Capacity (vph) 168 838 237 997 440 184 1100 175 1064 Starvation Cap Reductn 0 0 0 0 0 0 0 0 0 0 Spillback Cap Reductn 0 0 0 0 0 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 0 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 0 0 0 0 0 0 Reduced v/c Ratio 1.20 0.81 0.95 1.02 1.24 0.39 1.18 1.26 0.45	Internal Link Dist (m)		796.1			320.4			142.9			135.6	
Base Capacity (vph) 168 838 237 997 440 184 1100 175 1064 Starvation Cap Reducth 0 0 0 0 0 0 0 0 0 0 Storage Cap Reducth 0 0 0 0 0 0 0 0 0 Storage Cap Reducth 0 0 0 0 0 0 0 0 0 0 Storage Cap Reducth 0 0 0 0 0 0 0 0 0 0 0 Reduced v/c Ratio 1.20 0.81 0.95 1.02 1.24 0.39 1.18 1.26 0.45	Turn Bay Length (m)	125.0			118.0		184.0	117.0			74.0		
Starvation Cap Reductn 0 0 0 0 0 0 0 0 Spillback Cap Reductn 0	Base Capacity (vph)	168	838		237	997	440	184	1100		175	1064	
Spillback Cap Reductn 0 0 0 0 0 0 0 0 Storage Cap Reductn 0	Starvation Cap Reductn	0	0		0	0	0	0	0		0	0	
Storage Cap Reductn 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reduced v/c Ratio 1.20 0.81 0.95 1.02 1.24 0.39 1.18 1.26 0.45	Spillback Cap Reductn	0	0		0	0	0	0	0		0	0	
	Storage Cap Reductn	0	0		0	0	0	0			0	0	
Intersection Summary	Reduced v/c Ratio	1.20	0.81		0.95	1.02	1.24	0.39	1.18		1.26	0.45	
	Intersection Summany												

Cycle Length: 130
Actuated Cycle Length: 130
Offset: 0 (0%), Referenced to phase 2:EBT and 6:WBT, Start of Green

Natural Cycle: 145

Control Type: Actuated-Coordinated

Scenario 1 780 Baseline Road 11:59 pm 03-16-2022 2034 Future Background

Synchro 11 Report Page 5

Lanes, Volumes, Timings 8: Prince of Wales Dr & Baseline Rd/Heron Rd

2034 Future Background AM Peak Hour

Ma	aximum v/c Ratio: 1.26	
Int	ersection Signal Delay: 107.3	Intersection LOS: F
Int	ersection Capacity Utilization 108.6%	ICU Level of Service G
An	alysis Period (min) 15	
~	Volume exceeds capacity, queue is theoretically infinite.	
	Queue shown is maximum after two cycles.	
#	95th percentile volume exceeds capacity, queue may be lon	ger.
	Queue shown is maximum after two cycles.	
m	Volume for 95th percentile queue is metered by upstream s	ignal.

Splits and Phases: 8: Prince of Wales Dr & Baseline Rd/Heron Rd ÿ1 †ø4 →Ø2 (R) Ø5 ₩ Ø8

Lanes, Volumes, Timings 1: Fisher Ave & Baseline Rd 2034 Future Background PM Peak Hour

	•	-	•	1	—	*	1	†	1	-	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	44	7	ሻ	^	7	7	↑ ↑		ሻ	ħ₽	
Traffic Volume (vph)	90	1358	257	148	1274	179	174	388	71	154	663	148
Future Volume (vph)	90	1358	257	148	1274	179	174	388	71	154	663	148
Satd. Flow (prot)	1658	3283	1483	1642	3316	1483	1658	3214	0	1658	3173	0
Flt Permitted	0.950			0.950			0.950			0.950		
Satd. Flow (perm)	1652	3283	1410	1633	3316	1431	1648	3214	0	1646	3173	0
Satd. Flow (RTOR)												
Lane Group Flow (vph)	90	1358	257	148	1274	179	174	459	0	154	811	0
Turn Type	Prot	NA	Perm	Prot	NA	Perm	Prot	NA		Prot	NA	
Protected Phases	5	2		1	6		7	4		3	8	
Permitted Phases			2			6						
Detector Phase	5	2	2	1	6	6	7	4		3	8	
Switch Phase												
Minimum Initial (s)	5.0	10.0	10.0	5.0	10.0	10.0	5.0	10.0		5.0	10.0	
Minimum Split (s)	11.3	33.2	33.2	11.3	33.2	33.2	10.9	41.5		10.9	41.5	
Total Split (s)	14.0	53.5	53.5	17.0	56.5	56.5	18.0	41.7		17.8	41.5	
Total Split (%)	10.8%	41.2%	41.2%	13.1%	43.5%	43.5%	13.8%	32.1%		13.7%	31.9%	
Yellow Time (s)	3.7	3.7	3.7	3.7	3.7	3.7	3.3	3.3		3.3	3.3	
All-Red Time (s)	2.6	2.5	2.5	2.6	2.5	2.5	2.6	3.0		2.6	3.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Lost Time (s)	6.3	6.2	6.2	6.3	6.2	6.2	5.9	6.3		5.9	6.3	
Lead/Lag	Lead	Lag	Lag	Lead	Lag	Lag	Lag	Lag		Lead	Lead	
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		Yes	Yes	
Recall Mode	None	C-Max	C-Max	None	C-Max	C-Max	None	None		None	None	
Act Effct Green (s)	7.7	47.3	47.3	10.7	50.3	50.3	12.5	35.4		11.9	34.8	
Actuated g/C Ratio	0.06	0.36	0.36	0.08	0.39	0.39	0.10	0.27		0.09	0.27	
v/c Ratio	0.92	1.14	0.50	1.10	0.99	0.32	1.09	0.52		1.02	0.96	
Control Delay	131.2	110.7	36.3	128.7	62.6	42.2	151.1	42.7		136.1	68.8	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Delay	131.2	110.7	36.3	128.7	62.6	42.2	151.1	42.7		136.1	68.8	
LOS	F	F	D	F	Е	D	F	D		F	Е	
Approach Delay		100.6			66.4			72.5			79.6	
Approach LOS		F			Е			Е			Е	
Queue Length 50th (m)	23.4	~213.1	50.9	~43.6	130.7	33.5	~51.5	52.6		~40.8	107.5	
Queue Length 95th (m)	#56.4	#255.3	77.1	m#46.8	m123.1	m33.9	#96.8	69.6		#84.7	#146.3	
Internal Link Dist (m)		192.5			794.8			85.7			126.1	
Turn Bay Length (m)	124.5		100.0	134.0		91.5	127.0			65.0		
Base Capacity (vph)	98	1194	513	135	1283	553	160	875		151	859	
Starvation Cap Reductn	0	0	0	0	0	0	0	0		0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0		0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0		0	0	
Reduced v/c Ratio	0.92	1.14	0.50	1.10	0.99	0.32	1.09	0.52		1.02	0.94	
Intersection Summary												

Cycle Length: 130

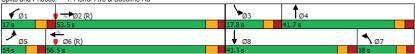
Actuated Cycle Length: 130
Offset: 0 (0%), Referenced to phase 2:EBT and 6:WBT, Start of Green

Natural Cycle: 150

Control Type: Actuated-Coordinated

Scenario 1 780 Baseline Road 7:50 am 03-16-2022 2034 Future Background

Synchro 11 Report


Page 1

Lanes, Volumes, Timings 1: Fisher Ave & Baseline Rd

2034 Future Background PM Peak Hour

Maximum v/c Ratio: 1.14	
Intersection Signal Delay: 81.7	Intersection LOS: F
Intersection Capacity Utilization 105.5%	ICU Level of Service G
Analysis Period (min) 15	
 Volume exceeds capacity, queue is theoretically infinite. 	
Queue shown is maximum after two cycles.	
# 95th percentile volume exceeds capacity, queue may be lo	nger.
Queue shown is maximum after two cycles.	
m Volume for 95th percentile queue is metered by upstream	signal.

Splits and Phases: 1: Fisher Ave & Baseline Rd

Lanes, Volumes, Timings 6: Deer Park Rd/Dynes Rd & Fisher Ave 2034 Future Background PM Peak Hour

•	\rightarrow	*	•	-	•	1	Ť		-	¥	4
EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
	43-			43-			ની	7		413	
17	17	14	74	68	90	12	574	29	54	894	3
17	17	14	74	68	90	12	574	29	54	894	3
0	1640	0	0	1611	0	0	1743	1483	0	3251	
	0.830			0.875			0.976			0.885	
0	1381	0	0	1431	0	0	1703	1441	0	2885	
	14			33				47		6	
0	48	0	0	232	0	0	586	29	0	982	
Perm	NA		Perm	NA		Perm	NA	Perm	Perm	NA	
	4			8			2			6	
4			8			2		2	6		
4	4		8	8		2	2	2	6	6	
10.0	10.0		10.0	10.0		10.0	10.0	10.0	10.0	10.0	
31.1	31.1		31.1	31.1		27.2	27.2	27.2	27.2	27.2	
	33.0			33.0		62.0	62.0	62.0	62.0	62.0	
	34.7%					65.3%	65.3%	65.3%	65.3%	65.3%	
7.1						2.0			2.0		
	7						0.2	0.2		0.2	
None	None		None	None		C-May	C-May	C-May	C-Max	C-May	
140110			140110			O Max			O Max		
								0.0			
								2.1			
	140.0			140.5			101.2			22.4	
	206			111			1121	072		1010	
							-				
	-						-	-			
	0.12			0.50			0.52	0.03		0.51	
ed to phase	2:NBTL a	and 6:SB	TL, Start	of Green							
	EBL 17 17 0 0 Perm 4 4 10.0 31.1 33.0 34.7% 3.0 4.1	EBL EBT 17 17 17 17 17 17 17 17 0 1640 0.830 0 1381 44 0 48 Perm NA 4 4 4 4 4 10.0 10.0 31.1 31.1 33.0 33.0 34.7% 34.7% 3.0 3.0 4.1 4.1 0.0 7.1 None None 18.6 0.20 0.17 23.6 C 24.7 C	EBL EBT EBR 17 17 14 17 17 14 0 1640 0 0.830 0 1381 0 14 0 4 8 0 Perm NA 4 4 4 4 4 4 10.0 10.0 33.0 33.0 34.7% 34.7% 34.7% 34.7% 34.7% 34.7% 32.6 0.20 0.17 23.6 0.20 0.17 23.6 0.20 0.17 23.6 0.20 0.17 23.6 0.20 0.17 23.6 0.20 0.17 23.6 0.20 0.17 23.6 0.20 0.17 23.6 0.20 0.17 23.6 0.20 0.17 23.6 0.20 0.17 23.6 0.20 0.17 23.6 0.20 0.17 23.6 0.20 0.17 23.6 0.20 0.17 23.6 0.20 0.17 23.6 0.20 0.20 0.17 23.6 0.20 0.20 0.17 23.6 0.20 0.20 0.17 23.6 0.20 0.20 0.17 23.6 0.20 0.20 0.17 23.6 0.20 0.20 0.17 23.6 0.20 0.20 0.20 0.17 23.6 0.20 0.20 0.20 0.17 23.6 0.20 0.20 0.20 0.17 23.6 0.20 0.20 0.20 0.17 23.6 0.20 0.20 0.20 0.20 0.17 23.6 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.	EBL EBT EBR WBL 17 17 14 74 17 17 14 74 0 1640 0 0 0.830 0 1381 0 0 14 0 48 0 0 Perm NA Perm 4 4 8 10.0 10.0 10.0 10.0 31.1 31.1 31.1 33.0 33.0 33.0 33.0 34.7% 34.7% 34.7% 3.0 3.0 3.0 3.0 1.1 4.1 4.1 0.0 7.1 None None 18.6 0.20 0.17 23.6 0.0 23.6 C 24.7	EBL EBT EBR WBL WBT 17 17 14 74 68 17 17 14 74 68 0 1640 0 0 1611 0.830 0.875 0 1381 0 0 1431 14 33 0 48 0 0 232 Perm NA Perm NA 4 8 4 4 8 4 4 8 8 4 4 4 8 8 10.0 10.0 10.0 10.0 31.1 31.1 31.1 31.1 31.1 31.1 33.0 33.0	EBL EBT EBR WBL WBT WBR 17 17 14 74 68 90 17 17 14 74 68 90 0 1640 0 0 1611 0 0.830 0.875 0 1381 0 0 1431 0 14 333 0 48 0 0 232 0 Perm NA Perm NA 4 8 4 8 8 4 4 8 8 8 10.0 10.0 10.0 10.0 10.0 31.1 31.1 31.1 31.1 31.1 31.1 33.0 33.0	EBL EBT EBR WBL WBT WBR NBL 17 17 14 74 68 90 12 18 17 17 14 74 68 90 12 19 1640 0 0 1611 0 0 18 10 0.830 0.875 0 1381 0 0 1431 0 0 14 333 0 48 0 0 232 0 0 Perm NA Perm NA Perm NA Perm 4 8 2 4 4 8 8 2 4 4 4 8 8 8 2 10.0 10.0 10.0 10.0 10.0 10.0 31.1 31.1 31.1 31.1 27.2 33.0 33.0 33.0 33.0 62.0 34.7% 34.7% 34.7% 65.3% 3.0 3.0 3.0 3.0 3.0 3.0 3.1 4.1 4.1 4.1 2.9 0.0 7.1 7.1 None None None None C-Max 18.6 0.20 0.20 0.17 0.76 23.6 45.9 C D 23.6 45.9 C D 23.6 45.9 C D 23.6 45.9 C D 5.2 34.7 13.1 54.7 145.0 146.3	EBL EBT EBR WBL WBT WBR NBL NBT	EBL EBT EBR WBL WBT WBR NBL NBT NBR	EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL 17 17 17 14 74 68 90 12 574 29 54 17 17 17 14 74 68 90 12 574 29 54 0 1640 0 0 1611 0 0 1743 1483 0 0.830 0.875 0.976 0 1381 0 0 1431 0 0 1703 1441 0 14 33	Fig. Fig.

Scenario 1 780 Baseline Road 7:50 am 03-16-2022 2034 Future Background

Synchro 11 Report Page 3 Lanes, Volumes, Timings 6: Deer Park Rd/Dynes Rd & Fisher Ave 2034 Future Background PM Peak Hour

Maximum v/c Ratio: 0.76
Intersection Signal Delay: 15.1 Intersection LOS: B
Intersection Capacity Utilization 96.5% ICU Level of Service F
Analysis Period (min) 15

Splits and Phases: 6: Deer Park Rd/Dynes Rd & Fisher Ave

2034 Future Background PM Peak Hour

	•	-	*	1	←	*	1	1	1	-	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	† }		ሻ	^	7	7	↑ 1>		77	† 1>	
Traffic Volume (vph)	107	389	125	303	1194	445	79	1429	102	106	647	155
Future Volume (vph)	107	389	125	303	1194	445	79	1429	102	106	647	155
Satd. Flow (prot)	1658	3153	0	1658	3316	1483	1610	3273	0	3185	3195	0
Flt Permitted	0.950			0.950			0.950			0.950		
Satd. Flow (perm)	1647	3153	0	1622	3316	1413	1596	3273	0	3166	3195	0
Satd. Flow (RTOR)												
Lane Group Flow (vph)	107	514	0	303	1194	445	79	1531	0	106	802	0
Turn Type	Prot	NA		Prot	NA	Perm	Prot	NA		Prot	NA	
Protected Phases	5	2		1	6		7	4		3	8	
Permitted Phases						6						
Detector Phase	5	2		1	6	6	7	4		3	8	
Switch Phase												
Minimum Initial (s)	5.0	10.0		5.0	10.0	10.0	12.0	12.0		5.0	10.0	
Minimum Split (s)	11.8	29.5		11.8	29.5	29.5	17.9	37.8		10.9	37.8	
Total Split (s)	14.0	31.0		31.0	48.0	48.0	18.0	57.0		11.0	50.0	
Total Split (%)	10.8%	23.8%		23.8%	36.9%	36.9%	13.8%	43.8%		8.5%	38.5%	
Yellow Time (s)	3.7	3.7		3.7	3.7	3.7	3.7	3.7		3.7	3.7	
All-Red Time (s)	3.1	2.8		3.1	2.8	2.8	2.2	3.1		2.2	3.1	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Lost Time (s)	6.8	6.5		6.8	6.5	6.5	5.9	6.8		5.9	6.8	
Lead/Lag							Lead	Lag		Lead	Lag	
Lead-Lag Optimize?							Yes	Yes		Yes	Yes	
Recall Mode	None	C-Max		None	C-Max	C-Max	Min	Min		None	None	
Act Effct Green (s)	7.2	24.5		24.2	41.5	41.5	12.0	50.2		5.1	43.3	
Actuated g/C Ratio	0.06	0.19		0.19	0.32	0.32	0.09	0.39		0.04	0.33	
v/c Ratio	1.18	0.87		0.98	1.13	0.99	0.53	1.21		0.85	0.75	
Control Delay	126.9	63.8		100.0	110.9	83.4	70.1	138.8		110.7	44.1	
Queue Delay	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Delay	126.9	63.8		100.0	110.9	83.4	70.1	138.8		110.7	44.1	
LOS	F	Е		F	F	F	Е	F		F	D	
Approach Delay		74.6			102.9			135.5			51.9	
Approach LOS		Е			F			F			D	
Queue Length 50th (m)	~32.7	74.0		78.1	~186.2	113.2	19.6	~251.8		14.1	96.0	
Queue Length 95th (m)	m#28.5	m67.1		#135.5	#228.2	#180.7	36.2	#294.4		#31.1	119.8	
Internal Link Dist (m)		794.8			323.7			145.3			127.9	
Turn Bay Length (m)	125.0			118.0		184.0	117.0			74.0		
Base Capacity (vph)	91	594		308	1058	451	149	1263		124	1063	
Starvation Cap Reductn	0	0		0	0	0	0	0		0	0	
Spillback Cap Reductn	0	0		0	0	0	0	0		0	0	
Storage Cap Reductn	0	0		0	0	0	0	0		0	0	
Reduced v/c Ratio	1.18	0.87		0.98	1.13	0.99	0.53	1.21		0.85	0.75	

Cycle Length: 130

Actuated Cycle Length: 130
Offset: 0 (0%), Referenced to phase 2:EBT and 6:WBT, Start of Green

Natural Cycle: 150

Control Type: Actuated-Coordinated

Scenario 1 780 Baseline Road 7:50 am 03-16-2022 2034 Future Background

Synchro 11 Report Page 5

Lanes, Volumes, Timings 8: Prince of Wales Dr & Baseline Rd/Heron Rd

2034 Future Background PM Peak Hour

Maximum v/c Ratio: 1.21	
Intersection Signal Delay: 100.6	Intersection LOS: F
Intersection Capacity Utilization 112.2%	ICU Level of Service H
Analysis Period (min) 15	
 Volume exceeds capacity, queue is theoretically infinite. 	
Queue shown is maximum after two cycles.	
# 95th percentile volume exceeds capacity, queue may be lon-	ger.
Queue shown is maximum after two cycles.	
m Volume for 95th percentile queue is metered by upstream s	ignal.

Splits and Phases: 8: Prince of Wales Dr & Baseline Rd/Heron Rd ↑ Ø4 ÿ1 **₩** Ø8 Ø6 (R)

Appendix H

Synchro Intersection Worksheets – 2034 Future Total Conditions

Lanes, Volumes, Timings 1: Fisher Ave & Baseline Rd 2034 Future Total AM Peak Hour

	•	-	*	1	—	*	1	†	1	-	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	^	7	ሻ	^	7	7	↑ 1>		7	† }	
Traffic Volume (vph)	130	1309	156	31	1098	141	236	497	75	132	389	93
Future Volume (vph)	130	1309	156	31	1098	141	236	497	75	132	389	93
Satd. Flow (prot)	1658	3252	1469	1642	3252	1455	1658	3178	0	1658	3124	0
Flt Permitted	0.950			0.950			0.950			0.950		
Satd. Flow (perm)	1654	3252	1407	1634	3252	1419	1644	3178	0	1653	3124	0
Satd. Flow (RTOR)												
Lane Group Flow (vph)	130	1309	156	31	1098	141	236	572	0	132	482	0
Turn Type	Prot	NA	Perm	Prot	NA	Perm	Prot	NA		Prot	NA	
Protected Phases	5	2		1	6		7	4		3	8	
Permitted Phases			2			6						
Detector Phase	5	2	2	1	6	6	7	4		3	8	
Switch Phase												
Minimum Initial (s)	5.0	10.0	10.0	5.0	10.0	10.0	5.0	10.0		5.0	10.0	
Minimum Split (s)	11.3	41.2	41.2	11.3	41.2	41.2	10.9	41.3		10.9	41.3	
Total Split (s)	16.2	53.0	53.0	11.3	48.1	48.1	24.4	43.7		22.0	41.3	
Total Split (%)	12.5%	40.8%	40.8%	8.7%	37.0%	37.0%	18.8%	33.6%		16.9%	31.8%	
Yellow Time (s)	3.7	3.7	3.7	3.7	3.7	3.7	3.3	3.3		3.3	3.3	
All-Red Time (s)	2.6	2.5	2.5	2.6	2.5	2.5	2.6	3.0		2.6	3.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Lost Time (s)	6.3	6.2	6.2	6.3	6.2	6.2	5.9	6.3		5.9	6.3	
Lead/Lag	Lead	Lag	Lag	Lead	Lag	Lag	Lead	Lag		Lead	Lag	
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		Yes	Yes	
Recall Mode	None	C-Max	C-Max	None	C-Max	C-Max	None	None		None	None	
Act Effct Green (s)	14.5	58.1	58.1	6.1	44.6	44.6	18.5	32.0		14.2	27.6	
Actuated g/C Ratio	0.11	0.45	0.45	0.05	0.34	0.34	0.14	0.25		0.11	0.21	
v/c Ratio	0.70	0.90	0.25	0.41	0.98	0.29	1.00	0.73		0.73	0.73	
Control Delay	76.4	44.6	27.0	58.8	90.7	65.9	115.1	50.8		78.9	53.7	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Delay	76.4	44.6	27.0	58.8	90.7	65.9	115.1	50.8		78.9	53.7	
LOS	Е	D	С	Е	F	Е	F	D		Е	D	
Approach Delay	_	45.4		_	87.1			69.6		_	59.1	
Approach LOS		D			F			Е			Е	
Queue Length 50th (m)	31.5	173.4	26.4	8.2	~164.1	37.7	~61.3	73.8		32.8	62.0	
Queue Length 95th (m)	#76.1	#245.0	46.7		m#169.7	m41.3	#113.9	86.5		#55.0	74.2	
Internal Link Dist (m)		271.5			796.1			86.9			158.3	
Turn Bay Length (m)	124.5	27 1.0	100.0	134.0	100.1	91.5		00.0		65.0	100.0	
Base Capacity (vph)	185	1452	628	76	1116	487	235	914		205	841	
Starvation Cap Reductn	0	0	0	0	0	0	0	0		0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0		0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0		0	0	
Reduced v/c Ratio	0.70	0.90	0.25	0.41	0.98	0.29	1.00	0.63		0.64	0.57	
	0.70	0.00	0.20	0.71	0.00	0.20		0.00		0.01	0.07	
Intersection Summary												

ntersection Summar

Cycle Length: 130

Actuated Cycle Length: 130

Offset: 0 (0%), Referenced to phase 2:EBT and 6:WBT, Start of Green

Natural Cycle: 145

Control Type: Actuated-Coordinated

Scenario 1 780 Baseline Road 11:59 pm 03-16-2022 2034 Future Total

Synchro 11 Report

Page 1

Lanes, Volumes, Timings 1: Fisher Ave & Baseline Rd

2034 Future Total AM Peak Hour

Maximum v/c Ratio: 1.00
Intersection Signal Delay: 64.3
Intersection LOS: E
Intersection Capacity Utilization 97.2%
ICU Level of Service F
Analysis Period (min) 15

Volume exceeds capacity, queue is theoretically infinite.
Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 1: Fisher Ave & Baseline Rd

Lanes, Volumes, Timings 6: Deer Park Rd/Dynes Rd & Fisher Ave 2034 Future Total AM Peak Hour

	•	\rightarrow	*	1	-	•	1	Ť		-	¥	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
ane Configurations		4			4			ર્ન	7		↑ ↑	
Traffic Volume (vph)	38	83	17	83	41	104	8	668	171	61	548	
Future Volume (vph)	38	83	17	83	41	104	8	668	171	61	548	
Satd. Flow (prot)	0	1660	0	0	1577	0	0	1710	1483	0	3293	(
Flt Permitted		0.849			0.843			0.993			0.801	
Satd. Flow (perm)	0	1421	0	0	1336	0	0	1699	1289	0	2651	(
Satd. Flow (RTOR)		9			56				171		1	
Lane Group Flow (vph)	0	138	0	0	228	0	0	676	171	0	614	(
Turn Type	Perm	NA		Perm	NA		Perm	NA	Perm	Perm	NA	
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2		2	6		
Detector Phase	4	4		8	8		2	2	2	6	6	
Switch Phase												
Minimum Initial (s)	10.0	10.0		10.0	10.0		10.0	10.0	10.0	10.0	10.0	
Minimum Split (s)	31.1	31.1		31.1	31.1		27.2	27.2	27.2	27.2	27.2	
Total Split (s)	33.0	33.0		33.0	33.0		47.0	47.0	47.0	47.0	47.0	
Total Split (%)	41.3%	41.3%		41.3%	41.3%		58.8%	58.8%	58.8%	58.8%	58.8%	
Yellow Time (s)	3.0	3.0		3.0	3.0		3.3	3.3	3.3	3.3	3.3	
All-Red Time (s)	4.1	4.1		4.1	4.1		2.9	2.9	2.9	2.9	2.9	
ost Time Adjust (s)		0.0			0.0			0.0	0.0		0.0	
Total Lost Time (s)		7.1			7.1			6.2	6.2		6.2	
_ead/Lag												
Lead-Lag Optimize?												
Recall Mode	None	None		None	None		C-Max	C-Max	C-Max	C-Max	C-Max	
Act Effct Green (s)		19.0			19.0			47.7	47.7		47.7	
Actuated g/C Ratio		0.24			0.24			0.60	0.60		0.60	
v/c Ratio		0.40			0.63			0.67	0.20		0.39	
Control Delay		25.9			27.5			16.6	2.3		10.5	
Queue Delay		0.0			0.0			0.0	0.0		0.0	
Total Delay		25.9			27.5			16.6	2.3		10.5	
LOS		С			С			В	Α		В	
Approach Delay		25.9			27.5			13.7			10.5	
Approach LOS		С			С			В			В	
Queue Length 50th (m)		15.0			21.1			74.3	0.0		27.7	
Queue Length 95th (m)		29.4			42.2			117.2	8.2		39.6	
Internal Link Dist (m)		152.1			156.9			172.3			30.0	
Turn Bay Length (m)												
Base Capacity (vph)		466			470			1013	837		1581	
Starvation Cap Reductn		0			0			0	0		0	
Spillback Cap Reductn		0			0			0	0		0	
Storage Cap Reductn		0			0			0	0		0	
Reduced v/c Ratio		0.30			0.49			0.67	0.20		0.39	
Intersection Summary												
Cycle Length: 80												
Actuated Cycle Length: 80												
Offset: 78 (98%), Reference	ed to phase	2:NBTL	and 6:SB	TL, Start	of Green							
Natural Cycle: 70												

Scenario 1 780 Baseline Road 11:59 pm 03-16-2022 2034 Future Total

Control Type: Actuated-Coordinated

Synchro 11 Report Page 3 Lanes, Volumes, Timings 6: Deer Park Rd/Dynes Rd & Fisher Ave 2034 Future Total AM Peak Hour

Maximum v/c Ratio: 0.67
Intersection Signal Delay: 15.3
Intersection LOS: B
Intersection Capacity Utilization 93.6%
Analysis Period (min) 15

Splits and Phases: 6: Deer Park Rd/Dynes Rd & Fisher Ave

2034 Future Total AM Peak Hour

Lane Group EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBT Lane Configurations 1 <t< th=""><th>82 82 0 0</th></t<>	82 82 0 0
Traffic Volume (vph) 205 548 142 225 1017 546 72 1134 166 221 394 Future Volume (vph) 205 548 142 225 1017 546 72 1134 166 221 394	82 0
Traffic Volume (vph) 205 548 142 225 1017 546 72 1134 166 221 394 Future Volume (vph) 205 548 142 225 1017 546 72 1134 166 221 394	82 0
	0
Satd. Flow (prot) 1658 3186 0 1610 3283 1483 1658 3237 0 3216 3219	0
Flt Permitted 0.950 0.950 0.950 0.950	
Satd. Flow (perm) 1654 3186 0 1593 3283 1450 1652 3237 0 3205 3219	0
Satd. Flow (RTOR)	0
Lane Group Flow (vph) 205 690 0 225 1017 546 72 1300 0 221 476	
Turn Type Prot NA Prot NA Perm Prot NA Prot NA	
Protected Phases 5 2 1 6 7 4 3 8	
Permitted Phases 6	
Detector Phase 5 2 1 6 6 7 4 3 8	
Switch Phase	
Minimum Initial (s) 5.0 10.0 5.0 10.0 5.0 12.0 5.0 12.0	
Minimum Split (s) 11.8 29.5 11.8 29.8 29.8 10.9 37.8 10.9 37.8	
Total Split (s) 20.0 40.0 26.0 46.0 46.0 20.4 51.0 13.0 43.6	
Total Split (%) 15.4% 30.8% 20.0% 35.4% 35.4% 15.7% 39.2% 10.0% 33.5%	
Yellow Time (s) 3.7 3.0 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7	
All-Red Time (s) 3.1 2.8 3.1 2.8 2.2 3.1 2.2 3.1	
Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	
Total Lost Time (s) 6.8 5.8 6.8 6.5 5.9 6.8 5.9 6.8	
Lead/Lag Lead Lag Lead Lag	
Lead-Lag Optimize? Yes Yes Yes Yes	
Recall Mode None C-Max None C-Max None Min None Min	
Act Effct Green (s) 13.2 34.2 19.2 39.5 39.5 10.8 44.2 7.1 43.0	
Actuated g/C Ratio 0.10 0.26 0.15 0.30 0.30 0.08 0.34 0.05 0.33	
v/c Ratio 1.22 0.82 0.95 1.02 1.24 0.53 1.18 1.26 0.45	
Control Delay 164.7 70.1 101.6 78.2 165.2 70.1 129.8 204.0 37.2	
Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	
Total Delay 164.7 70.1 101.6 78.2 165.2 70.1 129.8 204.0 37.2	
LOS FEFEFE FD	
Approach Delay 91.8 107.7 126.7 90.1	
Approach LOS F F F F	
Queue Length 50th (m) ~66.4 99.7 57.9 ~145.1 ~173.4 18.0 ~210.0 ~36.5 51.9	
Queue Length 95th (m) m#84.0 m111.8 #107.1 #186.3 #240.9 32.9 #252.3 #62.3 71.3	
Internal Link Dist (m) 796.1 320.4 142.9 135.6	
Turn Bay Length (m) 125.0 118.0 184.0 117.0 74.0	
Base Capacity (vph) 168 838 237 997 440 184 1100 175 1064	
Starvation Cap Reductn 0 0 0 0 0 0 0 0 0	
Spillback Cap Reductn 0 0 0 0 0 0 0 0 0	
Storage Cap Reductn 0 0 0 0 0 0 0 0 0	
Reduced v/c Ratio 1.22 0.82 0.95 1.02 1.24 0.39 1.18 1.26 0.45	
Intersection Summary	

ntersection Summary

Cycle Length: 130

Actuated Cycle Length: 130

Offset: 0 (0%), Referenced to phase 2:EBT and 6:WBT, Start of Green

Natural Cycle: 145

Control Type: Actuated-Coordinated

Scenario 1 780 Baseline Road 11:59 pm 03-16-2022 2034 Future Total

Synchro 11 Report

Page 5

Lanes, Volumes, Timings 8: Prince of Wales Dr & Baseline Rd/Heron Rd 2034 Future Total AM Peak Hour

Maximum v/c Ratio: 1.26
Intersection Signal Delay: 107.6
Intersection Capacity Utilization 108.8%
ICU Level of Service G
Analysis Period (min) 15

Volume exceeds capacity, queue is theoretically infinite.
Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 8: Prince of Wales Dr & Baseline Rd/Heron Rd

Lanes, Volumes, Timings 1: Fisher Ave & Baseline Rd 2034 Future Total PM Peak Hour

	•	-	•	1	—	*	1	1	1	-	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	**	7	ሻ	^	7	7	ħβ		ሻ	ħ₽	
Traffic Volume (vph)	94	1355	266	162	1265	179	179	381	69	154	666	148
Future Volume (vph)	94	1355	266	162	1265	179	179	381	69	154	666	148
Satd. Flow (prot)	1658	3283	1483	1642	3316	1483	1658	3214	0	1658	3173	0
Flt Permitted	0.950			0.950			0.950			0.950		
Satd. Flow (perm)	1652	3283	1410	1633	3316	1431	1648	3214	0	1646	3173	0
Satd. Flow (RTOR)												
Lane Group Flow (vph)	94	1355	266	162	1265	179	179	450	0	154	814	0
Turn Type	Prot	NA	Perm	Prot	NA	Perm	Prot	NA		Prot	NA	
Protected Phases	5	2		1	6		7	4		3	8	
Permitted Phases			2			6						
Detector Phase	5	2	2	1	6	6	7	4		3	8	
Switch Phase												
Minimum Initial (s)	5.0	10.0	10.0	5.0	10.0	10.0	5.0	10.0		5.0	10.0	
Minimum Split (s)	11.3	33.2	33.2	11.3	33.2	33.2	10.9	41.5		10.9	41.5	
Total Split (s)	14.0	53.5	53.5	17.0	56.5	56.5	18.0	41.7		17.8	41.5	
Total Split (%)	10.8%	41.2%	41.2%	13.1%	43.5%	43.5%	13.8%	32.1%		13.7%	31.9%	
Yellow Time (s)	3.7	3.7	3.7	3.7	3.7	3.7	3.3	3.3		3.3	3.3	
All-Red Time (s)	2.6	2.5	2.5	2.6	2.5	2.5	2.6	3.0		2.6	3.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Lost Time (s)	6.3	6.2	6.2	6.3	6.2	6.2	5.9	6.3		5.9	6.3	
Lead/Lag	Lead	Lag	Lag	Lead	Lag	Lag	Lag	Lag		Lead	Lead	
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		Yes	Yes	
Recall Mode	None	C-Max	C-Max	None	C-Max	C-Max	None	None		None	None	
Act Effct Green (s)	7.7	47.3	47.3	10.7	50.3	50.3	12.5	35.4		11.9	34.8	
Actuated g/C Ratio	0.06	0.36	0.36	0.08	0.39	0.39	0.10	0.27		0.09	0.27	
v/c Ratio	0.96	1.13	0.52	1.20	0.99	0.32	1.13	0.51		1.02	0.96	
Control Delay	140.9	109.8	36.9	161.9	61.0	42.2	161.7	42.5		136.1	69.1	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Delay	140.9	109.8	36.9	161.9	61.0	42.2	161.7	42.5		136.1	69.1	
LOS	F	F	D	F	Е	D	F	D		F	Е	
Approach Delay		100.2			69.1			76.4			79.8	
Approach LOS		F			Е			Е			Е	
Queue Length 50th (m)	24.5	~212.2	53.1	~50.9	129.7	33.6	~54.2	51.5		~40.8	108.1	
Queue Length 95th (m)	#59.0	#254.8	80.0	m#53.6	m122.3	m34.0	#100.5	68.3		#84.7	#147.1	
Internal Link Dist (m)		192.5			794.8			85.7			126.1	
Turn Bay Length (m)	124.5		100.0	134.0		91.5	127.0			65.0		
Base Capacity (vph)	98	1194	513	135	1283	553	159	875		151	859	
Starvation Cap Reductn	0	0	0	0	0	0	0	0		0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0		0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0		0	0	
Reduced v/c Ratio	0.96	1.13	0.52	1.20	0.99	0.32	1.13	0.51		1.02	0.95	
Intersection Summary												

Cycle Length: 130

Actuated Cycle Length: 130

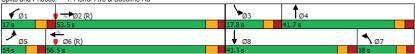
Offset: 0 (0%), Referenced to phase 2:EBT and 6:WBT, Start of Green

Natural Cycle: 150

Control Type: Actuated-Coordinated

Scenario 1 780 Baseline Road 7:50 am 03-16-2022 2034 Future Total

Synchro 11 Report Page 1


Lanes, Volumes, Timings 1: Fisher Ave & Baseline Rd

2034 Future Total PM Peak Hour

Maximum v/c Ratio: 1.20 Intersection Signal Delay: 83.0 Intersection LOS: F Intersection Capacity Utilization 106.6% ICU Level of Service G Analysis Period (min) 15 ~ Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles. m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 1: Fisher Ave & Baseline Rd

Lanes, Volumes, Timings 6: Deer Park Rd/Dynes Rd & Fisher Ave 2034 Future Total PM Peak Hour

	•	\rightarrow	*	1	-	•	1	Ť		-	Į.	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations		4			4			ની	7		413	
Traffic Volume (vph)	17	17	14	74	68	90	12	576	29	54	890	3
Future Volume (vph)	17	17	14	74	68	90	12	576	29	54	890	3
Satd. Flow (prot)	0	1640	0	0	1611	0	0	1743	1483	0	3251	
Flt Permitted		0.830			0.875			0.976			0.884	
Satd. Flow (perm)	0	1381	0	0	1431	0	0	1703	1441	0	2882	
Satd. Flow (RTOR)		14			33				47		6	
Lane Group Flow (vph)	0	48	0	0	232	0	0	588	29	0	978	
Turn Type	Perm	NA		Perm	NA		Perm	NA	Perm	Perm	NA	
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2		2	6		
Detector Phase	4	4		8	8		2	2	2	6	6	
Switch Phase												
Minimum Initial (s)	10.0	10.0		10.0	10.0		10.0	10.0	10.0	10.0	10.0	
Minimum Split (s)	31.1	31.1		31.1	31.1		27.2	27.2	27.2	27.2	27.2	
Total Split (s)	33.0	33.0		33.0	33.0		62.0	62.0	62.0	62.0	62.0	
Total Split (%)	34.7%	34.7%		34.7%	34.7%		65.3%	65.3%	65.3%	65.3%	65.3%	
Yellow Time (s)	3.0	3.0		3.0	3.0		3.3	3.3	3.3	3.3	3.3	
All-Red Time (s)	4.1	4.1		4.1	4.1		2.9	2.9	2.9	2.9	2.9	
Lost Time Adjust (s)		0.0			0.0			0.0	0.0		0.0	
Total Lost Time (s)		7.1			7.1			6.2	6.2		6.2	
Lead/Lag												
Lead-Lag Optimize?												
Recall Mode	None	None		None	None		C-Max	C-Max	C-Max	C-Max	C-Max	
Act Effct Green (s)		18.6			18.6			63.1	63.1	-	63.1	
Actuated g/C Ratio		0.20			0.20			0.66	0.66		0.66	
v/c Ratio		0.17			0.76			0.52	0.03		0.51	
Control Delay		23.6			45.9			11.4	1.3		10.1	
Queue Delay		0.0			0.0			0.0	0.0		0.0	
Total Delay		23.6			45.9			11.4	1.3		10.1	
LOS		С			D			В	Α		В	
Approach Delay		23.6			45.9			10.9			10.1	
Approach LOS		С			D			В			В	
Queue Length 50th (m)		5.2			34.7			49.6	0.0		42.6	
Queue Length 95th (m)		13.1			54.7			94.3	2.1		71.8	
Internal Link Dist (m)		145.0			146.3			187.2			22.4	
Turn Bay Length (m)		1 10.0			1 10.0			107.12				
Base Capacity (vph)		386			414			1131	973		1917	
Starvation Cap Reductn		0			0			0	0		0	
Spillback Cap Reductn		0			0			0	0		0	
Storage Cap Reductn		0			0			0	0		0	
Reduced v/c Ratio		0.12			0.56			0.52	0.03		0.51	
Intersection Summary												
Cycle Length: 95												
Actuated Cycle Length: 95	4 1- :	ONDT	1 0.00	TI 04- 1	-4 0							
Offset: 10 (11%), Reference	ed to phase	S:NRIF	ind 6:SB	IL, Start	of Green							
Natural Cycle: 65 Control Type: Actuated-Coo												

Scenario 1 780 Baseline Road 7:50 am 03-16-2022 2034 Future Total

Synchro 11 Report Page 3 Lanes, Volumes, Timings 6: Deer Park Rd/Dynes Rd & Fisher Ave 2034 Future Total PM Peak Hour

Maximum v/c Ratio: 0.76
Intersection Signal Delay: 15.1
Intersection LOS: B
Intersection Capacity Utilization 96.5%
ICU Level of Service F
Analysis Period (min) 15

Splits and Phases: 6: Deer Park Rd/Dynes Rd & Fisher Ave

2034 Future Total PM Peak Hour

	•	\rightarrow	*	1	—	*	1	†	1	-	Į.	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	1	↑ ↑		*	^	7	*	∱ β		75	↑ 1>	
Traffic Volume (vph)	105	386	125	303	1197	445	79	1429	102	106	647	157
Future Volume (vph)	105	386	125	303	1197	445	79	1429	102	106	647	157
Satd. Flow (prot)	1658	3150	0	1658	3316	1483	1610	3273	0	3185	3195	0
Flt Permitted	0.950			0.950			0.950			0.950		
Satd. Flow (perm)	1647	3150	0	1622	3316	1413	1596	3273	0	3166	3195	0
Satd. Flow (RTOR)												
Lane Group Flow (vph)	105	511	0	303	1197	445	79	1531	0	106	804	0
Turn Type	Prot	NA		Prot	NA	Perm	Prot	NA		Prot	NA	
Protected Phases	5	2		1	6		7	4		3	8	
Permitted Phases						6						
Detector Phase	5	2		1	6	6	7	4		3	8	
Switch Phase												
Minimum Initial (s)	5.0	10.0		5.0	10.0	10.0	12.0	12.0		5.0	10.0	
Minimum Split (s)	11.8	29.5		11.8	29.5	29.5	17.9	37.8		10.9	37.8	
Total Split (s)	14.0	31.0		31.0	48.0	48.0	18.0	57.0		11.0	50.0	
Total Split (%)	10.8%	23.8%		23.8%	36.9%	36.9%	13.8%	43.8%		8.5%	38.5%	
Yellow Time (s)	3.7	3.7		3.7	3.7	3.7	3.7	3.7		3.7	3.7	
All-Red Time (s)	3.1	2.8		3.1	2.8	2.8	2.2	3.1		2.2	3.1	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Lost Time (s)	6.8	6.5		6.8	6.5	6.5	5.9	6.8		5.9	6.8	
Lead/Lag	0.0	0.0		0.0	0.0	0.0	Lead	Lag		Lead	Lag	
Lead-Lag Optimize?							Yes	Yes		Yes	Yes	
Recall Mode	None	C-Max		None	C-Max	C-Max	Min	Min		None	None	
Act Effct Green (s)	7.2	24.5		24.2	41.5	41.5	12.0	50.2		5.1	43.3	
Actuated g/C Ratio	0.06	0.19		0.19	0.32	0.32	0.09	0.39		0.04	0.33	
v/c Ratio	1.15	0.86		0.98	1.13	0.99	0.53	1.21		0.85	0.76	
Control Delay	118.5	63.7		100.0	111.9	83.4	70.1	138.8		110.7	44.1	
Queue Delay	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Delay	118.5	63.7		100.0	111.9	83.4	70.1	138.8		110.7	44.1	
LOS	F	E		F	F	F	E	F		F	D	
Approach Delay		73.1			103.6		_	135.5			51.9	
Approach LOS		E			F			F			D	
Queue Length 50th (m)	~31.7	73.6		78.1	~187.0	113.2	19.6	~251.8		14.1	96.3	
Queue Length 95th (m)	m#27.7	m66.8		#135.5	#228.7	#180.7	36.2	#294.4		#31.1	120.3	
Internal Link Dist (m)	111/1/27.1	794.8		11 100.0	323.7	11 100.1	00.2	145.3		1101.1	127.9	
Turn Bay Length (m)	125.0	134.0		118.0	020.1	184.0	117.0	170.0		74.0	121.5	
Base Capacity (vph)	91	593		308	1058	451	149	1263		124	1063	
Starvation Cap Reductn	0	0		0	0	0	0	0		0	0	
Spillback Cap Reductn	0	0		0	0	0	0	0		0	0	
Storage Cap Reductn	0	0		0	0	0	0	0		0	0	
Reduced v/c Ratio	1.15	0.86		0.98	1.13	0.99	0.53	1.21		0.85	0.76	
Neduced WC Natio	1.15	0.00		0.30	1.13	0.59	0.55	1.21		0.05	0.70	
Intersection Summary												

ntersection Summar

Cycle Length: 130

Actuated Cycle Length: 130

Offset: 0 (0%), Referenced to phase 2:EBT and 6:WBT, Start of Green

Natural Cycle: 150

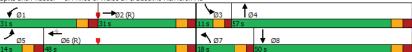
Control Type: Actuated-Coordinated

Scenario 1 780 Baseline Road 7:50 am 03-16-2022 2034 Future Total

Synchro 11 Report

Page 5

Lanes, Volumes, Timings 8: Prince of Wales Dr & Baseline Rd/Heron Rd 2034 Future Total PM Peak Hour


Maximum v/c Ratio: 1.21
Intersection Signal Delay: 100.7
Intersection LOS: F
Intersection Capacity Utilization 112.2%
ICU Level of Service H
Analysis Period (min) 15

Volume exceeds capacity, queue is theoretically infinite.
Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 8: Prince of Wales Dr & Baseline Rd/Heron Rd

Appendix I

TDM Checklist

TDM Measures Checklist:

Non-Residential Developments (office, institutional, retail or industrial)

	Legend
BASIC	The measure is generally feasible and effective, and in most cases would benefit the development and its users
BETTER	The measure could maximize support for users of sustainable modes, and optimize development performance
*	The measure is one of the most dependably effective tools to encourage the use of sustainable modes

	TDM	measures: Non-residential developments	Check if proposed & add descriptions
	1.	TDM PROGRAM MANAGEMENT	
	1.1	Program coordinator	
BASIC	★ 1.1.1	Designate an internal coordinator, or contract with an external coordinator	
	1.2	Travel surveys	
BETTER	1.2.1	Conduct periodic surveys to identify travel-related behaviours, attitudes, challenges and solutions, and to track progress	
	2.	WALKING AND CYCLING	
	2.1	Information on walking/cycling routes & destin	ations
BASIC	2.1.1	Display local area maps with walking/cycling access routes and key destinations at major entrances	abla
	2.2	Bicycle skills training	
		Commuter travel	
BETTER	★ 2.2.1	Offer on-site cycling courses for commuters, or subsidize off-site courses	
	2.3	Valet bike parking	
		Visitor travel	
BETTER	2.3.1	Offer secure valet bike parking during public events when demand exceeds fixed supply (e.g. for festivals, concerts, games)	

	TDM	measures: Non-residential developments	Check if proposed & add descriptions
	3.	TRANSIT	
	3.1	Transit information	
BASIC	3.1.1	Display relevant transit schedules and route maps at entrances	abla
BASIC	3.1.2	Provide online links to OC Transpo and STO information	
BETTER	3.1.3	Provide real-time arrival information display at entrances	
	3.2	Transit fare incentives	
		Commuter travel	
BETTER	3.2.1	Offer preloaded PRESTO cards to encourage commuters to use transit	
BETTER ★	3.2.2	Subsidize or reimburse monthly transit pass purchases by employees	
		Visitor travel	
BETTER	3.2.3	Arrange inclusion of same-day transit fare in price of tickets (e.g. for festivals, concerts, games)	
	3.3	Enhanced public transit service	
		Commuter travel	
BETTER	3.3.1	Contract with OC Transpo to provide enhanced transit services (e.g. for shift changes, weekends)	
		Visitor travel	
BETTER	3.3.2	Contract with OC Transpo to provide enhanced transit services (e.g. for festivals, concerts, games)	
	3.4	Private transit service	
		Commuter travel	
BETTER	3.4.1	Provide shuttle service when OC Transpo cannot offer sufficient quality or capacity to serve demand (e.g. for shift changes, weekends)	
		Visitor travel	
BETTER	3.4.2	Provide shuttle service when OC Transpo cannot offer sufficient quality or capacity to serve demand (e.g. for feetivals, concerts games)	

8

Visitor travel

6.1.3 Charge for short-term parking (hourly)

City of Ottawa

	TDM	measures: Non-residential developments	Check if proposed & add descriptions
	4.	RIDESHARING	
	4.1	Ridematching service	
		Commuter travel	
BASIC	★ 4.1.1	Provide a dedicated ridematching portal at OttawaRideMatch.com	
	4.2	Carpool parking price incentives	
		Commuter travel	
BETTER	4.2.1	Provide discounts on parking costs for registered carpools	
	4.3	Vanpool service	
		Commuter travel	
BETTER	4.3.1	Provide a vanpooling service for long-distance commuters	
	5.	CARSHARING & BIKESHARING	
	5.1	Bikeshare stations & memberships	
BETTER	5.1.1	Contract with provider to install on-site bikeshare station for use by commuters and visitors	
		Commuter travel	
BETTER	5.1.2	Provide employees with bikeshare memberships for local business travel	
	5.2	Carshare vehicles & memberships	
		Commuter travel	
BETTER	5.2.1	Contract with provider to install on-site carshare vehicles and promote their use by tenants	
BETTER	5.2.2	Provide employees with carshare memberships for local business travel	
	6.	PARKING	
	6.1	Priced parking	
		Commuter travel	
BASIC	★ 6.1.1	Charge for long-term parking (daily, weekly, monthly)	\checkmark
BASIC	6.1.2	Unbundle parking cost from lease rates at multi-tenant sites	□

	TDM	measures: Non-residential developments	Check if proposed & add descriptions
	7.	TDM MARKETING & COMMUNICATIONS	
	7.1	Multimodal travel information	
		Commuter travel	
BASIC *	7.1.1	Provide a multimodal travel option information package to new/relocating employees and students	Ø
		Visitor travel	
BETTER ★	7.1.2	Include multimodal travel option information in invitations or advertising that attract visitors or customers (e.g. for festivals, concerts, games)	
	7.2	Personalized trip planning	
		Commuter travel	
BETTER ★	7.2.1	Offer personalized trip planning to new/relocating employees	
	7.3	Promotions	
		Commuter travel	
BETTER	7.3.1	Deliver promotions and incentives to maintain awareness, build understanding, and encourage trial of sustainable modes	
	8.	OTHER INCENTIVES & AMENITIES	
	8.1	Emergency ride home	
		Commuter travel	
BETTER ★	8.1.1	Provide emergency ride home service to non-driving commuters	
	8.2	Alternative work arrangements	
		Commuter travel	
BASIC ★	8.2.1	Encourage flexible work hours	
BETTER	8.2.2	Encourage compressed workweeks	
BETTER *	8.2.3	Encourage telework	
	8.3	Local business travel options	
		Commuter travel	
BASIC *	8.3.1	Provide local business travel options that minimize the need for employees to bring a personal car to work	
	8.4	Commuter incentives	
		Commuter travel	
BETTER	8.4.1	Offer employees a taxable, mode-neutral commuting allowance	
	8.5	On-site amenities	
		Commuter travel	
BETTER	8.5.1	Provide on-site amenities/services to minimize	

10

TDM Measures Checklist:

Residential Developments (multi-family, condominium or subdivision)

	Legend
BASIC	The measure is generally feasible and effective, and in most cases would benefit the development and its users
BETTER	The measure could maximize support for users of sustainable modes, and optimize development performance
*	The measure is one of the most dependably effective tools to encourage the use of sustainable modes

	TDM	measures: Residential developments	Check if proposed & add descriptions
	1.	TDM PROGRAM MANAGEMENT	
	1.1	Program coordinator	
BASIC *	1.1.1	Designate an internal coordinator, or contract with an external coordinator	
	1.2	Travel surveys	
BETTER	1.2.1	Conduct periodic surveys to identify travel-related behaviours, attitudes, challenges and solutions, and to track progress	
	2.	WALKING AND CYCLING	
	2.1	Information on walking/cycling routes & des	tinations
BASIC	2.1.1	Display local area maps with walking/cycling access routes and key destinations at major entrances (multi-family, condominium)	
	2.2	Bicycle skills training	
BETTER	2.2.1	Offer on-site cycling courses for residents, or subsidize off-site courses	

	TDM	measures: Residential developments	Check if proposed & add descriptions
	3.	TRANSIT	
	3.1	Transit information	
BASIC	3.1.1	Display relevant transit schedules and route maps at entrances (multi-family, condominium)	♥
BETTER	3.1.2	Provide real-time arrival information display at entrances (multi-family, condominium)	Ø
	3.2	Transit fare incentives	
BASIC #	3.2.1	Offer PRESTO cards preloaded with one monthly transit pass on residence purchase/move-in, to encourage residents to use transit	abla
BETTER	3.2.2	Offer at least one year of free monthly transit passes on residence purchase/move-in	Ø
	3.3	Enhanced public transit service	
BETTER #	3.3.1	Contract with OC Transpo to provide early transit services until regular services are warranted by occupancy levels (subdivision)	
	3.4	Private transit service	
BETTER	3.4.1	Provide shuttle service for seniors homes or lifestyle communities (e.g. scheduled mall or supermarket runs)	
	4.	CARSHARING & BIKESHARING	
	4.1	Bikeshare stations & memberships	
BETTER	4.1.1	Contract with provider to install on-site bikeshare station (multi-family)	Ø
BETTER	4.1.2	Provide residents with bikeshare memberships, either free or subsidized (multi-family)	
	4.2	Carshare vehicles & memberships	
BETTER	4.2.1	Contract with provider to install on-site carshare vehicles and promote their use by residents	☑
BETTER	4.2.2	Provide residents with carshare memberships, either free or subsidized	
	5.	PARKING	
	5.1	Priced parking	
BASIC #	5.1.1	Unbundle parking cost from purchase price (condominium)	abla
BASIC	5.1.2	Unbundle parking cost from monthly rent (multi-family)	Ø

12

TDM	measures: Residential developments	Check if proposed & add descriptions
6.	TDM MARKETING & COMMUNICATIONS	
6.1	Multimodal travel information	
BASIC ★ 6.1.1	Provide a multimodal travel option information package to new residents	\square
6.2	Personalized trip planning	
BETTER ★ 6.2.1	Offer personalized trip planning to new residents	

Appendix J

MMLOS Analysis

Multi-Modal Level of Service - Intersections Form

Scenario	CGH Transportation Inc. Existing/Future	,	2021-083 2022-04-20
Comments			

	INTERSECTIONS	S Fisher Avenue at Baseline Road (Existing)			Prince of Wales Drive at Baseline Road/Heron Road (Existing)				Fisher Avenue at Baseline Road (Future)				Prince of Wales Drive at Baseline Road/Heron Road (Future)				Fisher Avenue at Deer Park Road/Dynes Road				
	Crossina Side	NORTH	SOUTH	EAST	WEST	NORTH	SOUTH	EAST	WEST	NORTH	SOUTH	EAST	WEST	NORTH	SOUTH	EAST	WEST	NORTH	SOUTH	EAST	WEST
	Lanes	6	7	6	7	7	6	9	9	7	9	10+	10+	7	7	9	9	5	5	3	3
	Median	No Median - 2.4 m	No Median - 2.4 m	No Median - 2.4 m	No Median - 2.4 m	No Median - 2.4 m	No Median - 2.4 m	No Median - 2.4 m	No Median - 2.4 m	No Median - 2.4 m	No Median - 2.4 m	Median > 2.4 m	Median > 2.4 m	Median > 2.4 m	Median > 2.4 m	Median > 2.4 m	Median > 2.4 m	No Median - 2.4 m	No Median - 2.4 m	No Median - 2.4 m	No Median - 2.4 m
	Conflicting Left Turns	Protected	Protected	Protected	Protected	Protected	Protected	Protected	Protected	Protected	Protected	Protected	Protected	Protected	Protected	Protected	Protected	Permissive	Permissive	Permissive	Permissive
	Conflicting Right Turns	Permissive or yield		Permissive or yield			Permissive or yield		Permissive or yield	Permissive or yield		Permissive or yield					Permissive or yield			Permissive or yield	
		control	control	control	control	control	control	control	control	control	control	control	control	control	control	control	control	control	control	control	control
	Right Turns on Red (RToR)? Ped Signal Leading Interval?	RTOR allowed	RTOR allowed	RTOR allowed	RTOR allowed	RTOR allowed	RTOR allowed	RTOR allowed	RTOR allowed	RTOR prohibited	RTOR prohibited	RTOR prohibited No	RTOR prohibited	RTOR prohibited	RTOR prohibited	RTOR prohibited	RTOR prohibited	RTOR allowed	RTOR allowed No	RTOR allowed	RTOR allowed
듩	Right Turn Channel	Conventional with Receiving Lane	Conventional with Receiving Lane	Conventional with Receiving Lane	Conventional with Receiving Lane	Conv'tl without Receiving Lane	Conv'tl without Receiving Lane	Conventional with Receiving Lane	Conv'tl without Receiving Lane	No Channel	No Channel	No Channel	No Channel	Conv'tl without Receiving Lane	Conv'tl without Receiving Lane	No Channel	No Channel	No Channel	No Channel	No Channel	No Channel
Ë	Company Residence	15-25m	15-25m	15-25m	15-25m		>25m	>25m	>25m	45.05	45.05	15-25m	15-25m	>25m	>25m	>25m	>25m	10-15m	10-15m	15-25m	10-15m
S	Corner Radius					>25m				15-25m	15-25m										
Ped	Crosswalk Type	Std transverse markings	Std transverse markings	Std transverse markings	Std transverse markings	Zebra stripe hi-vis markings	Zebra stripe hi-vis markings	Zebra stripe hi-vis markings	Zebra stripe hi-vis markings	Std transverse markings	Std transverse markings	Std transverse markings	Std transverse markings	Zebra stripe hi-vis markings	Zebra stripe hi-vis markings	Zebra stripe hi-vis markings	Zebra stripe hi-vis markings	Zebra stripe hi-vis markings	Zebra stripe hi-vis markings	Zebra stripe hi-vis markings	Zebra stripe hi-vis markings
	PETSI Score	27	11	27	11	16	32	-20	-17	13	-20	-26	-26	25	25	-9	-9	40	40	71	73
	Ped. Exposure to Traffic LoS	F	F	F	F	F	E	#N/A	#N/A	F	#N/A	#N/A	#N/A	F	F	F	F	E	E	С	С
	Cycle Length	130	130	130	130	130	130	130	130	130	130	130	130	130	130	130	130	95	95	95	95
	Effective Walk Time	7	7	21	34	10	10	11	19	9	7	28	31	10	10	11	19	83	83	76	76
	Average Pedestrian Delay	58	58	46	35	55	55	54	47	56	58	40	38	55	55	54	47	1	1	2	2
	Pedestrian Delay LoS	E	E	E	D	E	E	E	E	E	E	E	D	E	E	E	E	Α	Α	Α	Α
		F	F	F	F	F	Е	#N/A	#N/A	F	#N/A	#N/A	#N/A	F	F	F	F	E	Е	С	С
	Level of Service					•															
			F			#N/A			#N/A			F				E					
	Approach From	NORTH	SOUTH	EAST	WEST	NORTH	SOUTH	EAST	WEST	NORTH	SOUTH	EAST	WEST	NORTH	SOUTH	EAST	WEST	NORTH	SOUTH	EAST	WEST
	Bicycle Lane Arrangement on Approach	Curb Bike Lane, Cycletrack or MUP	Curb Bike Lane, Cycletrack or MUP	Mixed Traffic	Mixed Traffic	Curb Bike Lane, Cycletrack or MUP	Curb Bike Lane, Cycletrack or MUP	Mixed Traffic	Mixed Traffic	Curb Bike Lane, Cycletrack or MUP	Curb Bike Lane, Cycletrack or MUP	Curb Bike Lane, Cycletrack or MUP	Curb Bike Lane, Cycletrack or MUP	Curb Bike Lane, Cycletrack or MUP	Curb Bike Lane, Cycletrack or MUP	Curb Bike Lane, Cycletrack or MUP	Curb Bike Lane, Cycletrack or MUP	Curb Bike Lane, Cycletrack or MUP			
	Right Turn Lane Configuration	Not Applicable	Not Applicable	> 50 m	> 50 m	Not Applicable	Not Applicable	> 50 m	> 50 m	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable
	Right Turning Speed	Not Applicable	Not Applicable	>25 km/h	>25 km/h	Not Applicable	Not Applicable	>25 km/h	>25 km/h	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable
σ.	Cyclist relative to RT motorists	Not Applicable	Not Applicable	F	F	Not Applicable	Not Applicable	F	F	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable
- 5	Separated or Mixed Traffic	Separated	Separated	Mixed Traffic	Mixed Traffic	Separated	Separated	Mixed Traffic	Mixed Traffic	Separated	Separated	Separated	Separated	Separated	Separated	Separated	Separated	Separated	Separated	Separated	Separated
Bicy	Left Turn Approach	≥ 2 lanes crossed	≥ 2 lanes crossed	One lane crossed	One lane crossed	≥ 2 lanes crossed	≥ 2 lanes crossed	≥ 2 lanes crossed	≥ 2 lanes crossed	2-stage, LT box	2-stage, LT box	2-stage, LT box	2-stage, LT box	2-stage, LT box	2-stage, LT box	2-stage, LT box	2-stage, LT box	2-stage, LT box	2-stage, LT box	2-stage, LT box	2-stage, LT box
	Operating Speed	≥ 60 km/h	≥ 60 km/h	≥ 60 km/h	≥ 60 km/h	≥ 60 km/h	≥ 60 km/h	≥ 60 km/h	≥ 60 km/h	≥ 60 km/h	≥ 60 km/h	≥ 60 km/h	≥ 60 km/h	≥ 60 km/h	≥ 60 km/h	≥ 60 km/h	≥ 60 km/h	≥ 60 km/h	≥ 60 km/h	≥ 60 km/h	> 50 to < 60 km/h
	Left Turning Cyclist	F	F	F	F	F	F	F	F	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
		F	F	F	F	F	F	F	F	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
	Level of Service			F		F			Α			Α				Α					
	Average Signal Delay	> 40 sec	> 40 sec	> 40 sec	> 40 sec		> 40 sec	> 40 sec	> 40 sec	> 40 sec	> 40 sec	> 40 sec	> 40 sec		> 40 sec	> 40 sec	> 40 sec	≤ 20 sec	≤ 20 sec		
<u>is</u>		F	F	F	F	_	F	F	F	F	F	F	F	_	F	F	F	С	С		
Trar	Level of Service		· ·	 F	<u> </u>		<u> </u>	F	<u> </u>		<u> </u>	 F	<u> </u>		<u> </u>	 F	· ·			 C	
•	Effective Corner Radius	> 15 m	> 15 m	> 15 m	> 15 m	> 15 m	> 15 m	> 15 m	> 15 m	> 15 m	> 15 m	> 15 m	> 15 m	> 15 m	> 15 m	> 15 m	> 15 m				
		/ 10 III	/ IUIII	~ IU III	~ IO III	/ IS III	> 10 III	/ 10 III	~ 10 III	- 10 III	~ III III	/ IO III	~ 10 III	× 10 III	~ 10 III	/ 10 III	/ 15 III				
축	Number of Receiving Lanes on Departure from Intersection	≥2	≥ 2	≥ 2	≥ 2	≥2	≥ 2	≥ 2	≥ 2	≥ 2	≥ 2	≥ 2	≥2	≥ 2	≥ 2	≥2	≥2				
Ē	Level of Service	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	A	Α	Α	Α	Α	Α	-	-	-	-
	Level of Service			A				Α			,	A				A				-	
0	Volume to Capacity Ratio		> 1	1.00			>	1.00			> 1	1.00			>	1.00			0.61	- 0.70	
Aut	Level of Service			F				F				F				F				В	