

Engineers, Planners & Landscape Architects

Engineering

Land/Site Development

Municipal Infrastructure

Environmental/ Water Resources

Traffic/ Transportation

Recreational

Planning

Land/Site Development

Planning Application Management

Municipal Planning

Urban Design

Expert Witness (LPAT)

Wireless Industry

Landscape Architecture

Streetscapes & Public Amenities

Open Space, Parks & Recreation

Community & Residential

Commercial & Institutional

Environmental Restoration

Proposed Mixed-Use Development 555, 591, 595, and 603 March Road, Ottawa

Transportation Impact Assessment

Proposed Mixed-Use Development 555, 591, 595, and 603 March Road

Transportation Impact Assessment

Prepared For:

March & Main Developments Inc. and 591-595 March Road Developments Inc.

Prepared By:

NOVATECH Suite 200, 240 Michael Cowpland Drive Ottawa, Ontario K2M 1P6

> Dated: November 2022 Revised: April 2023

Novatech File: 122125 Ref: R-2022-145

April 28, 2022

City of Ottawa Planning and Growth Management Department 110 Laurier Ave. W., 4th Floor, Ottawa, Ontario K1P 1J1

Attention: Mr. Mike Giampa Senior Engineer, Infrastructure Applications

Dear Mr. Giampa:

Reference: 555, 591, 595, and 603 March Road Revised Transportation Impact Assessment Novatech File No. 122125

We are pleased to submit the following revised Transportation Impact Assessment (TIA) on behalf of March & Main Developments Inc. and 591-595 March Road Developments Inc., in support of a Zoning By-Law Amendment application at 555-603 March Road, for your review and signoff. The structure and format of this report is in accordance with the City of Ottawa's *Transportation Impact Assessment Guidelines* (June 2017).

The original TIA was submitted in November 2022. This revised TIA addresses City comments related to this Zoning By-Law Amendment application.

If you have any questions or comments regarding this report, please feel free to contact Brad Byvelds, or the undersigned.

Yours truly,

NOVATECH

Joshua Audia, P.Eng. Project Engineer | Transportation

M:\2022\122125\DATA\REPORTS\TRAFFIC\4-RESUBMISSION\122125 - TIA.DOCX

TIA Plan Reports

On 14 June 2017, the Council of the City of Ottawa adopted new Transportation Impact Assessment (TIA) Guidelines. In adopting the guidelines, Council established a requirement for those preparing and delivering transportation impact assessments and reports to sign a letter of certification.

Individuals submitting TIA reports will be responsible for all aspects of development-related transportation assessment and reporting, and undertaking such work, in accordance and compliance with the City of Ottawa's Official Plan, the Transportation Master Plan and the Transportation Impact Assessment (2017) Guidelines.

By submitting the attached TIA report (and any associated documents) and signing this document, the individual acknowledges that s/he meets the four criteria listed below.

CERTIFICATION

- 1. I have reviewed and have a sound understanding of the objectives, needs and requirements of the City of Ottawa's Official Plan, Transportation Master Plan and the Transportation Impact Assessment (2017) Guidelines;
- 2. I have a sound knowledge of industry standard practice with respect to the preparation of transportation impact assessment reports, including multi modal level of service review;
- 3. I have substantial experience (more than 5 years) in undertaking and delivering transportation impact studies (analysis, reporting and geometric design) with strong background knowledge in transportation planning, engineering or traffic operations; and
- I am either a licensed¹ or registered² professional in good standing, whose field of expertise [check √ appropriate field(s)] is either transportation engineering or transportation planning □.

^{1,2} License of registration body that oversees the profession is required to have a code of conduct and ethics guidelines that will ensure appropriate conduct and representation for transportation planning and/or transportation engineering works.

City Of Ottawa Infrastructure Services and Community Sustainability Planning and Growth Management 110 Laurier Avenue West, 4th fl. Ottawa, ON K1P 1J1 Tel.: 613-580-2424 Fax: 613-560-6006 Ville d'Ottawa Services d'infrastructure et Viabilité des collectivités Urbanisme et Gestion de la croissance 110, avenue Laurier Ouest Ottawa (Ontario) K1P 1J1 Tél. : 613-580-2424 Télécopieur: 613-560-6006

Dated at	Ottawa	this_	28 <u>th</u>	_ day of _	April	, 2023.
	(City)			-	-	

Name:

Brad Byvelds, P.Eng. (Please Print)

Professional Title:

Project Coordinator, Transportation/Traffic_____

B. Byvelds

Signature of Individual certifier that s/he meets the above four criteria

Office Contact Information (Please Print)					
Address:	240 Michael Cowpland Drive, Suite 200				
City / Postal Code:	Ottawa, ON, K2M 1P6				
Telephone / Extension:	613-254-9643 x 286				
E-Mail Address:	b.byvelds@novatech-eng.com				

TABLE OF CONTENTS

EXECUTIVE SUMMARY	I
1.0 SCREENING	1
1.1 INTRODUCTION	
1.2 PROPOSED DEVELOPMENT	
1.3 SCREENING FORM	2
2.0 SCOPING	3
2.1 EXISTING CONDITIONS	3
2.1.1 Roadways	3
2.1.2 Driveways	4
2.1.3 Intersections	
2.1.4 Pedestrian and Cycling Facilities	
2.1.5 Transit	
2.1.6 Area Traffic Management	
2.1.7 Existing Traffic Volumes2.1.8 Collision Records	
2.1.6 Collision Records 2.2 PLANNED CONDITIONS	
2.2.1 Planned Transportation Projects	
2.2.2 Other Area Developments	
2.3 Study Area and Time Periods	
2.4 EXEMPTIONS REVIEW.	
3.0 FORECASTING	20
3.1 DEVELOPMENT-GENERATED TRAVEL DEMAND	20
3.1.1 Trip Generation	
3.1.2 Trip Distribution	
3.1.3 Trip Assignment	
3.2 BACKGROUND TRAFFIC	
3.2.1 Other Area Developments	
3.2.2 General Background Growth Rate	
3.2.3 March Road BRT Corridor	
3.2.4 Diverted/Cut-Through Traffic	
3.3 VOLUME FIGURES	
3.4.1 Existing Traffic Conditions	
3.4.2 2037 Background Traffic Conditions	
4.0 ANALYSIS	
4.1 TRANSPORTATION DEMAND MANAGEMENT	
4.1.1 Context for TDM4.1.2 Need and Opportunity	
4.1.3 TDM Program	
4.2 NEIGHBOURHOOD TRAFFIC MANAGEMENT	
4.3 TRANSIT	
4.4 NETWORK CONCEPT	
4.5 INTERSECTION DESIGN.	
4.5.1 Existing Intersection MMLOS Review	
4.5.2 Preliminary Intersection Review of Proposed March Road Access	
4.5.3 2037 Total Intersection Operations	
5.0 CONCLUSIONS AND RECOMMENDATIONS	53

Figures

Figure 1: View of the Subject Site	2
Figure 2: Roadway Network	5
Figure 3: Pedestrian and Cycling Network	8
Figure 4: OC Transpo Bus Stop Locations	
Figure 5: Existing Traffic Volumes	
Figure 6: Excerpt of the 2031 Affordable RTTP Network	
Figure 7: Excerpt of the 2031 RTTP Network Concept	. 17
Figure 8: Existing Site-Generated Volumes	. 32
Figure 9: Proposed Site-Generated Volumes	. 33
Figure 10: Net Site-Generated Volumes	. 34
Figure 11: Other Area Development-Generated Volumes	. 35
Figure 12: 2037 Background Volumes	. 36
Figure 13: 2037 Diverted Volumes	. 37
Figure 14: 2037 Total Volumes	
Figure 15: Planned Modifications to March Road/Solandt Road	

Tables

Table 1: OC Transpo Transit Stops	8
Table 2: OC Transpo Route Information	10
Table 3: Reported Collisions	12
Table 4: TIA Exemptions	
Table 5: Existing Development – Peak Hour Trip Generation	20
Table 6: Surveyed Kanata/Stittsville Mode Shares – Existing Uses	21
Table 7: Existing Development – Peak Hour Trips by Mode Share	21
Table 8: Existing Strip Retail – Primary and Pass-by Trips	
Table 9: Surveyed Kanata/Stittsville Mode Shares – Proposed Uses	22
Table 10: Proposed Residential – Peak Period Trip Generation	
Table 11: Proposed Residential – Peak Period Trips by Mode Share	23
Table 12: Proposed Residential – Peak Hour Trips by Mode Share	23
Table 13: Proposed Office/Retail – Peak Hour Trip Generation	24
Table 14: Proposed Office/Retail – Peak Hour Trips by Mode Share	24
Table 15: Proposed Development – Total Peak Hour Trips	
Table 16: Proposed Development – Internally Captured Trips	
Table 17: Proposed Retail – Primary and Pass-by Trips	
Table 18: Existing Office – Trip Assignment	
Table 19: Proposed Development – Trip Assignment	
Table 20: Existing Traffic Operations	
Table 21: 2037 Background Traffic Operations	
Table 22: 2037 Background – Critical Queues	
Table 23: Transit Utilization	45
Table 24: Intersection MMLOS Summary	
Table 25: 2037 Total Traffic Operations	
Table 26: 2037 Total – Critical Queues	52

Appendices

- Appendix A: Concept Plan
- Appendix B: TIA Screening Form
- Appendix C: OC Transpo Information
- Appendix D: Traffic Count Data
- Appendix E: Collision Records
- Appendix F: Internal Capture Worksheets
- Appendix G: Other Area Developments
- Appendix H: Strategic Long-Range Model Snapshots
- Appendix I: Future March Road Transitway Functional Design
- Appendix J: Signal Timing Plans
- Appendix K: Existing Synchro Analysis
- Appendix L: Background Synchro Analysis
- Appendix M: Transportation Demand Management
- Appendix N: MMLOS Analysis
- Appendix O: Total Synchro Analysis
- Appendix P: Left Turn Lane Warrants

EXECUTIVE SUMMARY

This Transportation Impact Assessment (TIA) has been prepared on behalf of March & Main Developments Inc. and 591-595 March Road Developments Inc., in support of a Zoning By-Law Amendment application for the property located at 555, 591, 595, and 603 March Road ('Subject Site'). The Subject Site is approximately 13.6 acres in size, and currently includes a one-storey commercial use (recreational athletic facility) at 555 March Road, a one-storey retail plaza at 591 March Road, a vacant parcel at 595 March Road, and a two-storey office building at 603 March Road. The Subject Site is currently served by three right-in/right-out (RIRO) driveways to March Road and a full-movement driveway to Terry Fox Drive, which serve the separate parcels. Only the parcels at 555 and 591 March Road share access. The Subject Site is surrounded by the following:

- Terry Fox Drive, followed by low-rise single-detached residences to the north,
- Commercial/office uses to the south,
- March Road, followed by the 'Nokia' office use to the east, and
- Hines Road and commercial/office uses to the west.

March & Main is proposing a redevelopment of the Subject Site with eight residential and mixeduse buildings between six and 30 storeys, and two office buildings with seven or eight storeys. Ground-floor retail is proposed in select buildings. March & Main have prepared a concept plan in support of the Zoning By-Law Amendment application, to illustrate the potential redevelopment of the Subject Site in conformity with the policies in the new City of Ottawa Official Plan (particularly for the 'Activity Centre' outlined in Section 6.6.3.2 – Kanata North Economic District). In total, the proposed development will have the potential to include approximately 2,100 dwellings, 154,178 ft² gross floor area (GFA) of office space, and 31,482 ft² GFA of retail space. Access to the proposed development will be provided via new connections to March Road, Terry Fox Drive, and Hines Road. The development will be developed in phases through subsequent applications for Site Plan Approval and/or Draft Plan of Subdivision. It is anticipated to be fully completed by 2037.

The current zoning for the properties is a mixture of 'General Industrial' IG6 and 'Business Park Industrial Zone' IP6[1149] and IP6[1084]. The proposed residential uses are not permitted in these zones and therefore, a Zoning By-Law Amendment is required to permit them. Pursuant to the City of Ottawa's Official Plan (2021, Council Adopted), the Subject Site is located within the 'Kanata North Economic District,' 'Evolving Neighbourhood' overlay, and is designated as 'Corridor – Mainstreet' (March Road) and 'Corridor – Minor' (Terry Fox Drive) on Schedule B5.

The Council-adopted Official Plan includes proposed policies that will permit a higher density of development and greater degree of mixed uses, including residential within new 'activity centres' that are generally located within 600m of two planned transit stations in the Kanata North Economic District. The goal of the activity centres is to create a place to live, work, learn, play, and provide access to daily needs without the use of a car. The Subject Site is in the activity centre based around a planned transit station at the intersection of March Road/Terry Fox Drive, as part of a future Bus Rapid Transit (BRT) project.

The study area for this report includes the boundary roadways March Road, Terry Fox Drive, and Hines Road, as well as March Road/Morgan's Grant Way/Shirley's Brook Drive, March Road/Terry Fox Drive, March Road/Solandt Road, Terry Fox Drive/Flamborough Way/Innovation Drive, and Innovation Drive/Hines Road.

The selected time periods for the analysis are the weekday AM and PM peak hours, as they represent the 'worst case' combination of site generated traffic and adjacent street traffic. Analysis has been completed for the ultimate buildout year 2037.

Forecasting

• The proposed development as a whole is estimated to generate 1,232 person trips during the AM peak hour (including 611 external vehicle trips) and 1,382 person trips during the PM peak hour (including 662 external vehicle trips).

Transportation Demand Management

 While the final list of TDM measures to be implemented by the proposed development will be confirmed at the Site Plan Control application stage, the proponent has agreed to consider a suite of TDM measures for non-residential and residential developments at this time.

<u>Transit</u>

- The proposed development is anticipated to generate the following number of external transit trips:
 - o 287 transit trips during the AM peak hour (124 trips in, 163 trips out);
 - o 279 transit trips during the PM peak hour (136 trips in, 143 trips out).
- The proposed development is not anticipated to necessitate more frequent service for OC Routes 63, 64, 110, and 166.

Intersection MMLOS

- The results of the intersection MMLOS analysis can be summarized as follows:
 - No study area intersections meet the target pedestrian level of service (PLOS);
 - No study area intersections meet the target bicycle level of service (BLOS);
 - No study area intersections along March Road meet the target transit level of service (TLOS);
 - All study area intersections meet the target truck level of service (TkLOS), except for Terry Fox Drive/Flamborough Way/Innovation Drive.
- There is limited opportunity in improving the PLOS at any approach without reducing the number of travel lanes, restricting turning movements, or removing right turn channels. There is also limited opportunity in improving the delay score at any intersection to the target PLOS.
- The north, south, and east approaches of March Road/Morgan's Grant Way/Shirley's Brook Drive do not meet the target BLOS. The target BLOS can be achieved at the east approach by reducing the operating speed to 40 km/h (which is the current speed limit on Shirley's Brook Drive). For left turns from the north and south approaches, the implementation of twostage left-turn bike boxes at all approaches would not require a right turns on red (RTOR) restriction. This would require the stop bars at all approaches to be shifted away from the intersection. These measures are identified for the City's consideration.

- All approaches of March Road/Terry Fox Drive do not meet the target BLOS. Given that all right turn movements are channelized at this intersection, the implementation of two-stage left turn-bike boxes at all approaches would not require a RTOR restriction. This would require the stop bars at all approaches to be shifted away from the intersection. This is identified for the City's consideration. The target BLOS can be met by shortening the right turn lanes to 50m or shorter. Given the high traffic volumes at this intersection, this is not recommended.
- The east and west approaches of March Road/Solandt Road does not meet the target BLOS. Two-stage left-turn bike boxes have recently been implemented for northbound and southbound cyclists. Implementing this improvement for eastbound and westbound cyclists as well is identified for the City's consideration. For cyclists interacting with right turning vehicles, the right turn lanes at the north and west approaches are greater than 50m, and the bike lane shifts to the left of the right turn lane at the south approach. The target BLOS can be met by shortening the right turn lanes to 50m or shorter. Given the high traffic volumes at this intersection, this is not recommended.
- All approaches of Terry Fox Drive/Flamborough Way/Innovation Drive do not meet the target BLOS. The target BLOS requires the implementation of two-stage left-turn bike boxes on all approaches, which would require RTOR restrictions. This is identified for the City's consideration. For cyclists interacting with right turning vehicles, the right turn lanes at the east and west approaches are greater than 50m. The target BLOS can be met by shortening the right turn lanes to 50m or shorter. Given the magnitude of right-turning traffic volumes at this intersection, this is not recommended.
- The City's RTTP Affordable Network includes at-grade median bus rapid transit (BRT) on March Road south of Solandt Road, and transit signal priority and queue jump lanes north of Solandt Road. These initial measures are anticipated to improve the delays for transit vehicles to the target TLOS or better. Future conversion to median BRT along the entire March Road corridor is anticipated to further improve the delays for buses travelling along March Road.
- While the effective corner radii of each corner at Terry Fox Drive/Flamborough Way/ Innovation Drive is greater than 15m, the target TkLOS can only be achieved by providing multiple receiving lanes. Since Flamborough Way and Innovation Drive are not classified as truck routes, no recommendations are identified.
- The proposed signalized intersection at March Road/Nokia Access/Site Access is anticipated to be a fully protected intersection, with the following lane configuration:
 - Northbound approach (March Road): one left turn lane, two through lanes, and one right turn lane;
 - Southbound approach (March Road): one left turn lane, two through lanes, and one shared through/right turn lane;
 - Eastbound approach (Site Access): one left turn lane and one shared through/right turn lane;
 - Westbound approach (Nokia Access): one left turn lane and one shared through/right turn lane.

 It is anticipated that the new signalized intersection will achieve a PLOS F, BLOS A, and TLOS E. All MMLOS scores will be confirmed as functional designs of the intersection are developed.

Existing Traffic Operations

 All study area intersections operate at an acceptable level of service during the AM and PM peak hours.

Background Traffic Operations

- Critical movements at the study area intersections generally operate at an acceptable level
 of service, with the exception of the westbound left turn movement at March Road/Solandt
 Road during the PM peak hour. Per the functional design of the March Road BRT, one of
 the westbound left turn lanes will be removed. It is anticipated that this is the primary driver
 for the failing vehicular level of service of this movement, and therefore it is recommended
 that the dual westbound left turn lanes are maintained at this intersection.
- To achieve the target vehicular level of service (Auto LOS) E at March Road/Solandt Road, a reduction of approximately 110 southbound through/right turning vehicles is required during the AM peak hour, and a reduction of approximately 45 northbound through/right turning vehicles are required during the PM peak hour.

Total Traffic Operations

- Northbound through queues at March Road/Terry Fox Drive and southbound through queues at March Road/Nokia Access/Site Access do not extend into the opposite intersection. Based on the maximum northbound left turn queues at March Road/Terry Fox Drive, the existing northbound left turn storage length could be reduced to accommodate a longer southbound left turn lane at March Road/Nokia Access/Site Access. A functional design and Roadway Modification Approval (RMA) submission for this modification will be provided as part of a subsequent Site Plan Control application.
- It is anticipated that an auxiliary westbound left turn lane will be required at the proposed access to Terry Fox Drive. A review of the most relevant left turn lane storage graphs included in the Ministry of Transportation of Ontario (MTO)'s *Design Supplement to the Transportation Association of Canada (TAC)'s Geometric Design Guide for Canadian Roads* has been conducted to determine that a storage length of 30m is required. A functional design and RMA submission for this modification will be provided as part of a subsequent Site Plan Control application.
- Based on the foregoing, the proposed development is recommended from a transportation perspective.

1.0 SCREENING

1.1 Introduction

This Transportation Impact Assessment (TIA) has been prepared on behalf of March & Main Developments Inc. and 591-595 March Road Developments Inc., in support of a Zoning By-Law Amendment application for the property located at 555, 591, 595, and 603 March Road ('Subject Site'). The Subject Site is approximately 13.6 acres in size, and currently includes a one-storey commercial use (recreational athletic facility) at 555 March Road, a one-storey retail plaza at 591 March Road, a vacant parcel at 595 March Road, and a two-storey office building at 603 March Road. The Subject Site is currently served by three right-in/right-out (RIRO) driveways to March Road and a full-movement driveway to Terry Fox Drive, which serve the separate parcels. Only the parcels at 555 and 591 March Road share access. The Subject Site is surrounded by the following:

- Terry Fox Drive, followed by low-rise single-detached residences to the north,
- Commercial/office uses to the south,
- March Road, followed by the 'Nokia' office use to the east, and
- Hines Road and commercial/office uses to the west.

An aerial of the vicinity around the Subject Site is provided in Figure 1.

1.2 Proposed Development

March & Main is proposing a redevelopment of the Subject Site with eight residential and mixeduse buildings between six and 30 storeys, and two office buildings with seven or eight storeys. Ground-floor retail is proposed in select buildings. March & Main have prepared a concept plan in support of the Zoning By-Law Amendment application, to illustrate the potential redevelopment of the Subject Site in conformity with the policies in the new City of Ottawa Official Plan (particularly for the 'Activity Centre' outlined in Section 6.6.3.2 – Kanata North Economic District). In total, the proposed development will have the potential to include approximately 2,100 dwellings, 154,178 ft² gross floor area (GFA) of office space, and 31,482 ft² GFA of retail space. Access to the proposed development will be provided via new connections to March Road, Terry Fox Drive, and Hines Road. The development will be developed in phases through subsequent applications for Site Plan Approval and/or Draft Plan of Subdivision. It is anticipated to be fully completed by 2037. A copy of the concept plan is included in **Appendix A**.

The current zoning for the properties is a mixture of 'General Industrial' IG6 and 'Business Park Industrial Zone' IP6[1149] and IP6[1084]. The proposed residential uses are not permitted in these zones and therefore, a Zoning By-Law Amendment is required to permit them. Pursuant to the City of Ottawa's Official Plan (2021, Council Adopted), the Subject Site is located within the 'Kanata North Economic District,' 'Evolving Neighbourhood' overlay, and is designated as 'Corridor – Mainstreet' (March Road) and 'Corridor – Minor' (Terry Fox Drive) on Schedule B5.

The Council-adopted Official Plan includes proposed policies that will permit a higher density of development and greater degree of mixed uses, including residential within new 'activity centres' that are generally located within 600m of two planned transit stations in the Kanata North Economic District. The goal of the activity centres is to create a place to live, work, learn, play, and provide access to daily needs without the use of a car. The Subject Site is in the activity centre based around a planned transit station at the intersection of March Road/Terry Fox Drive, as part of a future Bus Rapid Transit (BRT) project.

Figure 1: View of the Subject Site

1.3 Screening Form

The City's *2017 TIA Guidelines* identify three triggers for completing a TIA report, including trip generation, location, and safety. The criteria for each trigger are outlined in the City's TIA Screening Form, which is included in **Appendix B**. The trigger results are as follows:

- Trip Generation Trigger The development is anticipated to generate over 60 peak hour person trips; further assessment is **required** based on this trigger.
- Location Triggers The development proposes new connections to a designated Rapid Transit or Transit Priority (RTTP) corridor or Spine Cycling Route; further assessment is **required** based on this trigger.
- Safety Triggers The development meets multiple safety triggers; further assessment is **required** based on this trigger.

2.0 SCOPING

2.1 Existing Conditions

2.1.1 Roadways

All roadways within the study area fall under the jurisdiction of the City of Ottawa.

March Road is an arterial roadway that, for the purposes of this report, is considered to run on a north-south alignment within the study area, running between Dunrobin Road and Highway 417. West of Dunrobin Road, the roadway runs on an east-west alignment until Appleton Sideroad in the Town of Mississippi Mills, where it continues as Ottawa Street. South of Highway 417, the roadway continues on a north-south alignment as Eagleson Road. Within the study area, March Road has a four-lane divided urban cross-section, sidewalks on both sides of the roadway, on-street bike lanes, and a posted speed limit of 80 km/h. March Road is classified as a truck route, allowing full loads. Street parking is not permitted. The Official Plan reserves a 44.5m right-of-way (ROW) for March Road.

The West Transitway Connection – Highway 417/Eagleson Road to North of Maxwell Bridge Road Environmental Project Report (EPR), prepared by Delcan in October 2013, identifies that further ROW widening within the vicinity of the intersection of March Road/Terry Fox Drive may be required. Per the approved functional design within the EPR, the ROW protection for March Road widens to approximately 51.5m along the Subject Site's frontage. A widening along some of the Subject Site's frontage may be required as part of a subsequent Draft Plan of Subdivision and/or Site Plan Control application.

Terry Fox Drive travels between Eagleson Road and Herzberg Road, and is classified as an arterial roadway west of March Road and major collector roadway east of March Road. Within the study area, Terry Fox Drive generally runs on an east-west alignment, has on-street bike lanes and a multi-use pathway west of the Subject Site, and a posted speed limit of 50 or 60 km/h. Terry Fox Drive generally has a four-lane divided rural cross-section west of March Road, transitioning to an urban cross-section within 50m of March Road, and a two-lane divided urban cross-section with a grass median east of March Road. Sidewalks or pathways are provided on the north side of Terry Fox Drive west of Flamborough Way, on the south side of Terry Fox Drive between Acklam Terrace and east of McKinley Drive, and on both sides of Terry Fox Drive between Acklam Terrace and McKinley Drive. West of March Road, Terry Fox Drive is classified as a truck route, allowing full loads. Between March Road and Herzberg Road, Terry Fox Drive is not classified as a truck route. Street parking is not permitted. The Official Plan reserves a 44.5m ROW for Terry Fox Drive, and it appears that a widening will not be required as part of a subsequent Draft Plan of Subdivision and/or Site Plan Control application.

Morgan's Grant Way is a collector roadway that generally runs on an east-west alignment within the study area, running between Flamborough Way and March Road. East of March Road, the roadway continues as Shirley's Brook Drive. Within the study area, Morgan's Grant Way has a twolane undivided urban cross-section, sidewalk on the south side of the roadway, and a posted speed limit of 40 km/h. Morgan's Grant Way is not classified as a truck route. Street parking is not permitted on either side of the roadway for the 60m immediately west of March Road, and is not permitted on the north side of the roadway for an additional 50m. Shirley's Brook Drive is a collector roadway that generally runs on an east-west alignment within the study area, running between March Road and Helmsdale Drive. The roadway intersects with Helmsdale Drive in two locations, as it forms a loop east of Helmsdale Drive. West of March Road, the roadway continues as Morgan's Grant Way. Within the study area, Shirley's Brook Drive has a two-lane undivided urban cross-section, sidewalk on the south side of the roadway, and a posted speed limit of 40 km/h. Shirley's Brook Drive is not classified as a truck route. Street parking is permitted.

Solandt Road is a collector roadway that generally runs on an east-west alignment, starting at Hines Road and terminating approximately 450m east of Legget Drive. Within the study area, Solandt Road has a two-lane urban cross-section and an unposted regulatory speed limit of 50 km/h. Sidewalks are provided along the north side for the entire distance of Solandt Road, as well as the south side between March Road and Legget Drive. Solandt Road is not classified as a truck route. Street parking is permitted.

Flamborough Way is a collector roadway that generally runs on a north-south alignment, running between Halton Terrace and Terry Fox Drive. South of Terry Fox Drive, the roadway continues as Innovation Drive. Flamborough Way has a two-lane undivided urban cross-section, sidewalks on both sides of the roadway, and a posted speed limit of 40 km/h. Flamborough Way is not classified as a truck route. Street parking is permitted.

Innovation Drive is a curvilinear collector roadway, running between Terry Fox Drive and Hines Road. North of Terry Fox Drive, the roadway continues as Flamborough Way. Innovation Drive has a two-lane cross-section that is divided in the vicinity of Terry Fox Drive and undivided elsewhere. sidewalks or pathways on both sides of the roadway, and an unposted speed limit of 50 km/h. Innovation Drive is not classified as a truck route. Street parking is generally permitted.

Hines Road is a collector roadway that generally runs on a north-south alignment between Solandt Road and approximately 320m north of Innovation Drive. The roadway then turns 90-degrees and becomes an east-west roadway for approximately 140m to the west. Within the study area, Hines Road has a two-lane undivided cross-section, no sidewalks, and an unposted speed limit of 50 km/h. Hines Road is not classified as a truck route. Street parking is permitted.

The roadway network of the greater area surrounding the Subject Site is illustrated in **Figure 2**.

2.1.2 Driveways

A review of the existing adjacent driveways along the boundary roads are provided as follows:

March Road, east side

• One driveway to an office use at 600 March Road

Terry Fox Drive, north side

No driveways within 200m of Subject Site

Hines Road, east side

50, 70, 84, and 88 Hines Road

March Road, west side

• One driveway to an office use at 525 March Road

Terry Fox Drive, south side

No driveways within 200m of Subject Site

Hines Road, west side

• Six driveways to commercial/office uses at • Five driveways to commercial/office uses at 93-99 Hines Road, 1000 Innovation Drive, and 385 Terry Fox Drive

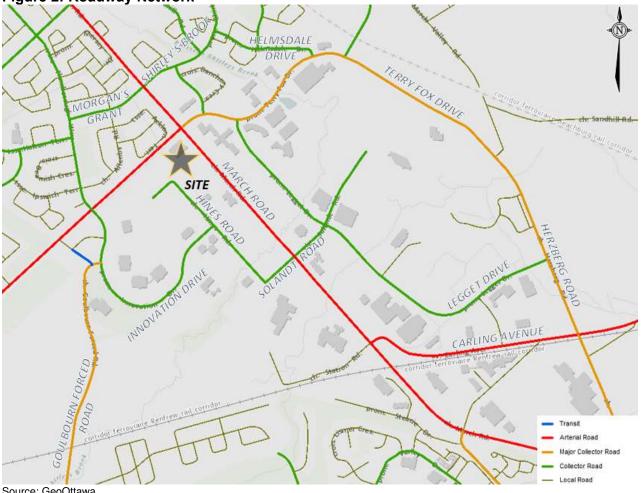


Figure 2: Roadway Network

Source: GeoOttawa

2.1.3 Intersections

March Road/Morgan's Grant Way/

Shirley's Brook Drive

- Signalized four-legged intersection
- North/South Approaches (March Road): one left turn lane, three through lanes, one bike lane, and one channelized right turn lane
- East Approach (Shirley's Brook Drive): one left turn lane, one through lane, and one channelized right turn lane
- West Approach (Morgan's Grant Way): one shared left turn/through lane and one channelized right turn lane
- Standard crosswalks on all approaches

March Road/Terry Fox Drive

- Signalized four-legged intersection
- North Approach (March Road): one left turn lane, three through lanes, one bike lane, and one channelized right turn lane
- South Approach (March Road): two left turn lanes, three through lanes, one bike lane, and one channelized right turn lane
- East/West Approaches (Terry Fox Drive): two left turn lanes, two through lanes, one bike lane, and one channelized right turn lane
- Standard crosswalks on all approaches

March Road/Solandt Road

- Signalized four-legged intersection
- North/South Approaches (March Road): one left turn lane, two through lanes, one bike lane, and one channelized right turn lane
- East Approach (Solandt Road): two left turn lanes, and one shared through/ channelized right turn lane
- West Approach (Solandt Road): one left turn lane, one through lane, and one channelized right turn lane
- Standard crosswalks on all approaches
- Two-stage, left-turn bike boxes for northbound and southbound cyclists

<u>Terry Fox Drive/Flamborough Way/</u> <u>Innovation Drive</u>

- Signalized four-legged intersection
- North Approach (Flamborough Way): one left turn lane and one shared through/right turn lane
- South Approach (Innovation Drive): one left turn lane and one shared through/right turn lane
- East/West Approaches (Terry Fox Drive): one left turn lane, one through lane, one bike lane, and one right turn lane
- Standard crosswalks on all approaches

Innovation Drive/Hines Road

- Unsignalized four-legged intersection
- Stop-controlled on Innovation Drive and access to 70 Hines Road (Royal Canadian Legion)
- Multiple accesses across from west approach
- North Approach (Hines Road): one shared left turn/through/right turn lane
- South Approach (Hines Road): one shared left turn/through/right turn lane
- East Approach (access to 70 Hines Road): one shared left turn/through/right turn lane
- West Approach (Innovation Drive): one shared left turn/through/right turn lane
- Standard crosswalks on west approach (not shown in aerial)

2.1.4 Pedestrian and Cycling Facilities

As described in Section 2.1.1, sidewalks are provided on both sides of March Road, and on one or both sides of Terry Fox Drive, Morgan's Grant Way, Shirley's Brook Drive, Solandt Road, Flamborough Way, Innovation Drive, and Hines Road. Asphalt pathways with widths of 3.0m are provided on the south side of Terry Fox Drive west of the Subject Site, and on the outside of Innovation Drive.

In the City of Ottawa's primary cycling network, the Spine Routes within the study area include March Road and Terry Fox Drive, which is also designated as a Crosstown Bikeway west of March Road. The Local Routes within the study area include Shirley's Brook Drive west of Helmsdale Drive, Solandt Road west of Legget Drive, Flamborough Way south of Klondike Road, and the entire lengths of Morgan's Grant Way, Innovation Drive, and Hines Road. Bike lanes are provided along March Road and Terry Fox Drive within the study area.

The pedestrian and cycling network of the greater area surrounding the Subject Site is illustrated in **Figure 3**.

2.1.5 Transit

The locations of OC Transpo bus stops in the vicinity of the Subject Site are described in **Table 1**, and are shown in **Figure 4**. A summary of the various routes which serve the study area is included in **Table 2**. Detailed route information and an excerpt from the OC Transpo System Map are included in **Appendix C**.

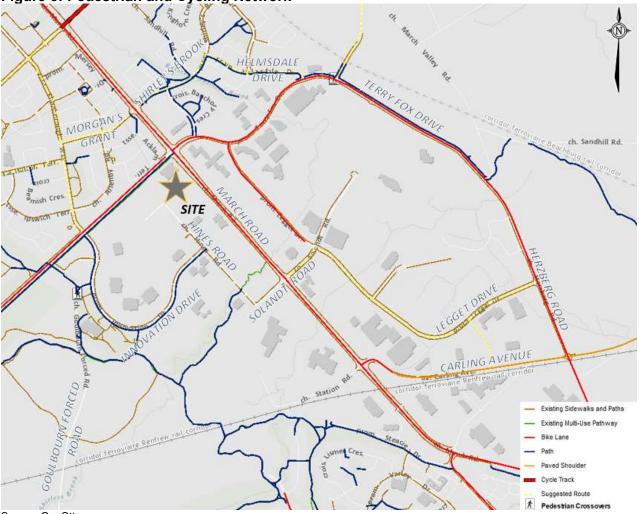


Figure 3: Pedestrian and Cycling Network

Source: GeoOttawa

Table 1: OC Transpo Transit Stops

Stop	Location	Routes Serviced
#1174	East side of Hines Road, south of Innovation Drive	64, 166
#1175	West side of Hines Road, south of Innovation Drive	64, 166
#1176	North side of Innovation Drive, west of Hines Road	64, 166
#1177	South side of Innovation Drive, west of Hines Road	64, 166
#1515	North side of Terry Fox Drive, east of Legget Drive	66, 166
#1536	East side of Innovation Drive, south of Terry Fox Drive	63, 165, 166
#1819	West side of Flamborough Way, south of Allenby Road	63, 64, 165
#1820	East side of March Road, between Terry Fox Drive and Solandt Road	63
#1821	North side of Shirley's Brook Drive, west of Inverary Drive	63, 165
#3057	Innovation Station, between Terry Fox Drive and	63, 64, 110,
(A/B)	Goulbourn Forced Road	165, 166
#4875	North side of Terry Fox Drive, west of March Road	63, 110
#4972	West side of Legget Drive, south of Terry Fox Drive	63, 66, 110, 166
#6149	East side of Legget Drive, south of Terry Fox Drive	63, 66, 110, 166
#6152	North side of Morgan's Grant Way, west of March Road	63, 165

Stop	Location	Routes Serviced
#6155	South side of Terry Fox Drive, west of March Road	63, 110
#6159	South side of Terry Fox Drive, east of Legget Drive	66, 166
#6578	West side of Innovation Drive, south of Terry Fox Drive	63, 165, 166
#7994	West side of March Road, between Terry Fox Drive and Solandt Road	63
#7999	East side of Flamborough Way, south of Allenby Road	63, 64

Figure 4: OC Transpo Bus Stop Locations

Route	From ↔ To	Frequency
63	Innovation / Briarbrook ↔ Tunney's Pasture / Gatineau	15- to 30-minute headways, seven days per week; all day service
64	Innovation / Morgan's Grant ↔ Tunney's Pasture	15- to 30-minute headways, Monday to Friday; all day service
66	Kanata ↔ Tunney's Pasture / Gatineau	15- to 30-minute headways, Monday to Friday; peak period service
110	Innovation ↔ Fallowfield	30-minute headways, Monday to Friday; no late evening service
165	Innovation ↔ Terry Fox	60-minute headways, Monday to Friday; selected time periods
166	Innovation ↔ Eagleson	Single bus per peak period, Monday to Friday; limited service

Table 2: OC Transpo Route Information

2.1.6 Area Traffic Management

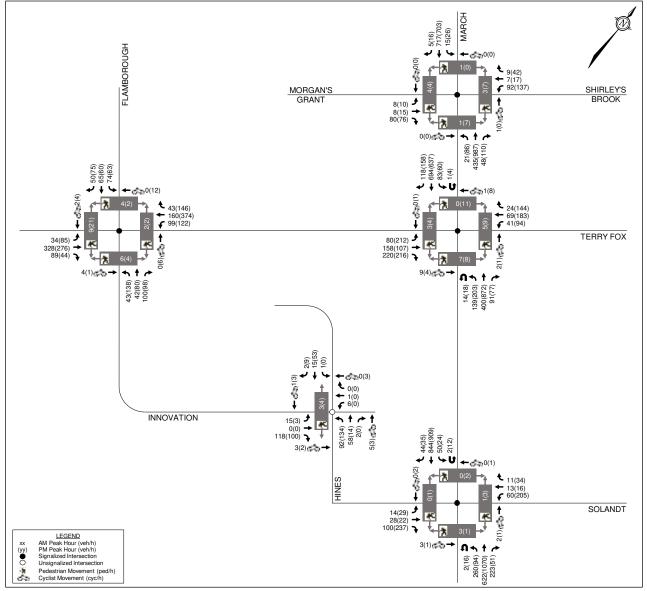
There are no Area Traffic Management (ATM) studies within the study area that have been completed or are currently in progress. The following traffic calming measures have been implemented within the study area:

- Morgan's Grant Way: '40 KM/HR MAX' line painting and painted edge lines;
- Shirley's Brook Drive: '40 KM/HR MAX' line painting, centreline flex posts, and painted edge lines;
- Solandt Road: painted edge lines (west of March Road);
- Flamborough Way: '40 KM/HR MAX' line painting and centreline flex posts;
- Innovation Drive: 'SLOW' line painting.

2.1.7 Existing Traffic Volumes

Weekday traffic counts coordinated by Novatech were used to determine the existing pedestrian, cyclist, and vehicular traffic volumes at the study area intersections. These counts were completed on the following dates.

٠	March Road/Morgan's Grant Way/Shirley's Brook Drive	August 4, 2022
٠	March Road/Terry Fox Drive	August 4, 2022
٠	March Road/Solandt Road	August 4, 2022
٠	Terry Fox Drive/Flamborough Way/Innovation Drive	August 9, 2022
٠	Innovation Drive/Hines Road	August 10, 2022


It is acknowledged that City traffic counts were conducted at the study area intersections between 2016 and 2018. City staff have concurred that these counts no longer reflect commuter patterns, with the increased prevalence of 'work from home' and 'hybrid work' arrangements arising from the COVID-19 pandemic, particularly among technology-based companies. Comparing pre-pandemic and post-pandemic data within the study area, traffic volumes are generally significantly lower in post-pandemic conditions.

Along the frontages to the Subject Site, the boundary streets March Road, Terry Fox Drive, and Hines Road approximately have the following average annual daily traffic (AADT) volumes, in vehicles per day (vpd):

- March Road: 21,580 vpd;
- Terry Fox Drive: 10,060 vpd;
- Hines Road: 950 vpd.

All traffic count data previously discussed are included in **Appendix D**. Traffic volumes within the study area are shown in **Figure 5**.

2.1.8 Collision Records

Historical collision data from the last five years was obtained from the City's Public Works and Service Department for the study area intersections and midblock segments. Copies of the collision summary reports are included in **Appendix E**.

The collision data has been evaluated to determine if there are any identifiable collision patterns, which are defined in the *2017 TIA Guidelines* as 'more than six collisions in five years' for any one movement. The number of collisions at each intersection from January 1, 2016 to December 31, 2020 is summarized in **Table 3**.

Intersection/							
Street Segment	Approach	Angle	Rear End	Sideswipe	Turning Movement	SMV ⁽¹⁾ / Other	Total
March Road/Morgan's Grant Way/Shirley's Brook Drive	-	4	12	4	17	1	38
March Road/ Terry Fox Drive	1	2	28	7	2	7	47
March Road/ Solandt Road	-	1	21	1	20	1	44
Terry Fox Drive/Flamborough Way/Innovation Drive	-	4	11	1	3	1	20
Innovation Drive/ Hines Road	-	-	1	-	-	-	1
March Road btwn Morgan's Grant Way and Terry Fox Drive	-	-	2	2	-	2	6
March Road btwn Terry Fox Drive and Solandt Road	-	1	7	2	-	6	16
Terry Fox Drive btwn March Road and Innovation Drive	-	-	3	-	1	1	5
Innovation Drive btwn Terry Fox Drive and Hines Road	-	3	-	-	-	2	5
Hines Road north of Innovation Drive	-	-	-	-	-	1	1

Table 3: Reported Collisions

1. SMV = Single Motor Vehicle

March Road/Morgan's Grant Way/Shirley's Brook Drive

A total of 38 collisions were reported at this intersection over the last five years, of which there were four angle impacts, 12 rear-end impacts, four sideswipe impacts, 17 turning movement impacts, and one single vehicle/other impact. Eleven of the collisions caused injuries, but none caused fatalities. Eleven of the 38 collisions occurred in poor driving conditions. No collisions involved cyclists or pedestrians.

Of the 12 rear-end impacts, four involved northbound vehicles (one left turn incident and three through incidents), two involved southbound vehicles (two through incidents), two involved eastbound vehicles (one through incident and one right turn incident), and four involved westbound vehicles (two through incidents and two right turn incidents).

Of the 17 turning movement impacts, six involved left turns from the northbound approach, one involved a U-turn from the northbound approach, and ten involved left turns from the southbound approach. Turning movement impacts from the southbound approach exceeds the threshold to be considered a collision pattern.

Fully protected left turn phasing for the northbound and southbound left turn movements at March Road/Morgan's Grant Way/Shirley's Brook Drive have recently been implemented. This is anticipated to reduce the frequency of these collisions.

March Road/Terry Fox Drive

A total of 47 collisions were reported at this intersection over the last five years, of which there was one approaching impact, two angle impacts, 28 rear-end impacts, seven sideswipe impacts, two turning movement impacts, and seven single vehicle/other impacts. Ten of the collisions caused injuries, but none caused fatalities. Twenty-four of the 47 collisions occurred in poor driving conditions. No collisions involved cyclists or pedestrians.

Of the 28 rear-end impacts, 16 occurred at the northbound approach (including one left turn incident, 14 through incidents, and one right turn incident), seven occurred at the southbound approach (six through incidents and one right turn incident), three occurred at the eastbound approach (one through incident and two right turn incidents), and two occurred at the westbound approach (one through incident and one right turn incident). Through rear-end impacts at the northbound approach exceeds the threshold to be considered a collision pattern. High traffic volumes on March Road, as well as a posted speed limit of 80 km/h, may have been factors in these collisions. There does not appear to be any apparent geometric factors that would make rear-end impacts more likely at this intersection.

Of the seven sideswipe impacts, three occurred at the northbound approach, two occurred at the eastbound approach, and two occurred at the westbound approach.

Of the seven single vehicle/other impacts, two occurred at the northbound approach, two occurred at the southbound approach, two occurred at the eastbound approach, and one occurred at the westbound approach.

March Road/Solandt Road

A total of 44 collisions were reported at this intersection over the last five years, of which there was one angle impact, 21 rear-end impacts, one sideswipe impact, 20 turning movement impacts, and one single vehicle/other impact. Six collisions resulted in injuries, but none caused fatalities. Twenty of the 44 collisions occurred in poor driving conditions. None of the collisions involved pedestrians or cyclists.

Of the 21 rear-end impacts, six occurred at the northbound approach (one left turn incident, four through incidents, and one right turn incident), eight occurred at the southbound approach (six through incidents and two right turn incidents), four occurred at the eastbound approach (two through incidents and two right turn incidents), and three occurred at the westbound approach (one through incident and one right turn incidents). Similar to the discussion of the previous intersection, high traffic volumes and operating speeds on March Road may have been factors in these collisions.

Of the 20 turning movement impacts, ten involved a left turning vehicle at the northbound approach, four involved a left turning vehicle at the southbound approach, four involved a U-turning vehicle at the southbound approach, one involved a U-turning vehicle at the eastbound approach, and one involved a left turning vehicle at the westbound approach. Turning movement impacts at the northbound approach exceed the threshold to be considered a collision pattern.

Six of the ten northbound impacts occurred in poor driving conditions, suggesting that environmental conditions may have been a factor in these collisions. Other likely factors include the posted 80 km/h speed limit on March Road, and the significant left turn/opposing through volumes on March Road during the peak hours, which may result in drivers misjudging gaps in traffic or taking more risks when attempting a left turn.

Terry Fox Drive/Flamborough Way/Innovation Drive

A total of 20 collisions were reported at this intersection over the last five years, of which there was four angle impacts, 11 rear-end impacts, one sideswipe impact, three turning movement impacts, and one single vehicle/other impact. Six collisions resulted in injuries, but none caused fatalities. Ten of the 20 collisions occurred in poor driving conditions. One collision involved a pedestrian, and none involved cyclists.

Of the 11 rear-end impacts, three occurred at the southbound approach (three through incidents), two occurred at the eastbound approach (two through incidents), and six occurred at the westbound approach (one left turn incident and five through incidents).

Innovation Drive/Hines Road

One collision was reported at this intersection over the last five years, which was a rear-end impact at the eastbound approach. This collision did not result in injury, and did not involve any pedestrians or cyclists.

March Road between Morgan's Grant Way/Shirley's Brook Drive and Terry Fox Drive

A total of six collisions were reported along this segment over the last five years, of which there were two rear-end impacts, two sideswipe impacts, and two single vehicle/other impacts. Two collisions resulted in injuries, but none caused fatalities. All six collisions occurred in poor driving conditions. None of the collisions involved pedestrians or cyclists.

March Road between Terry Fox Drive and Solandt Road

A total of 16 collisions were reported along this segment over the last five years, of which there was one angle impact, seven rear-end impacts, two sideswipe impacts, and six single vehicle/other impacts. Six collisions resulted in injuries, but none caused fatalities. Nine of the 16 collisions occurred in poor driving conditions. None of the collisions involved pedestrians or cyclists.

Of the seven rear-end impacts, five involved northbound vehicles and two involved southbound vehicles. Of the six single vehicle/other impacts, one involved a northbound vehicle and five involved a southbound vehicle.

Terry Fox Drive between March Road and Innovation Drive

A total of five collisions were reported along this segment over the last five years, of which there were three rear-end impacts, one turning movement impact, and one single vehicle/other impact. One collision resulted in injuries, but none caused fatalities. Two of the five collisions occurred in poor driving conditions. None of the collisions involved pedestrians or cyclists.

Innovation Drive between Terry Fox Drive and Hines Road

A total of five collisions were reported along this segment over the last five years, of which there were three angle impacts and two single vehicle/other impacts. One collision resulted in injuries, but none caused fatalities. One of the five collisions occurred in poor driving conditions. None of the collisions involved pedestrians or cyclists.

Hines Road north of Innovation Drive

One collision was reported along this segment over the last five years, which was a single vehicle/ other impact involving a southbound vehicle. This collision did not result in injury, and did not involve any pedestrians or cyclists.

2.2 Planned Conditions

2.2.1 Planned Transportation Projects

The City's *2013 Transportation Master Plan (TMP)* does not identify any upcoming roadway projects within the study area in its 2031 Affordable Road Network.

The City's *2013 TMP* identifies transit improvements in its 2031 Affordable Network and 2031 Network Concept. In the Network Concept, at-grade bus rapid transit (BRT) will be provided on March Road between Highway 417 and the urban boundary. In the Affordable Network, at-grade BRT will be provided on March Road between Highway 417 and Solandt Road, and transit priority measures such as transit priority signals and queue jump lanes will be provided on March Road between Solandt Road and the urban boundary, which will allow for future conversion to BRT.

An excerpt of the Affordable Network and Network Concept maps from the City's *2013 TMP* are shown in **Figure 6** and **Figure 7**.

The City's *2013 Cycling Plan* identifies multiple Phase 2 (2020-2025) cycling infrastructure projects within the vicinity of the Kanata Research Park. Bike lanes will be implemented on Flamborough Way, Innovation Drive, Hines Road, Solandt Road, and Legget Drive, to improve connectivity between the residential and employment areas in northern Kanata. These projects are retained on the Active Transportation Project List in the City's Draft *2023 Transportation Master Plan*.

The City's *2013 Pedestrian Plan* does not identify any pedestrian infrastructure projects within the vicinity of the Kanata Research Park.

2.2.2 Other Area Developments

In proximity of the proposed development, there are multiple other residential and mixed-use developments are under construction, approved, or in the approval process. Other developments in the area include the following.

359 Terry Fox Drive and 525 Legget Drive

A TIA was prepared by Novatech in January 2022, in support of a development including a single 30-storey building with 253 apartment dwellings and a 3,877 ft² rooftop restaurant. The TIA identified a buildout year of 2024.

570-600 March Road

A TIA was prepared by Stantec in July 2022, in support of a development including 1,900 residential dwellings, 46,000 m² of office space, and 11,350 m² of retail space. The TIA identified a buildout year of 2032.

706-714 March Road

A TIA was prepared by CGH in December 2020, in support of a development including a 4,165 m² GFA supermarket, 350 m² GFA fast-food restaurant with drive-through, and 1,500 m² GFA of multiunit commercial space. The TIA identified a buildout year of 2023.

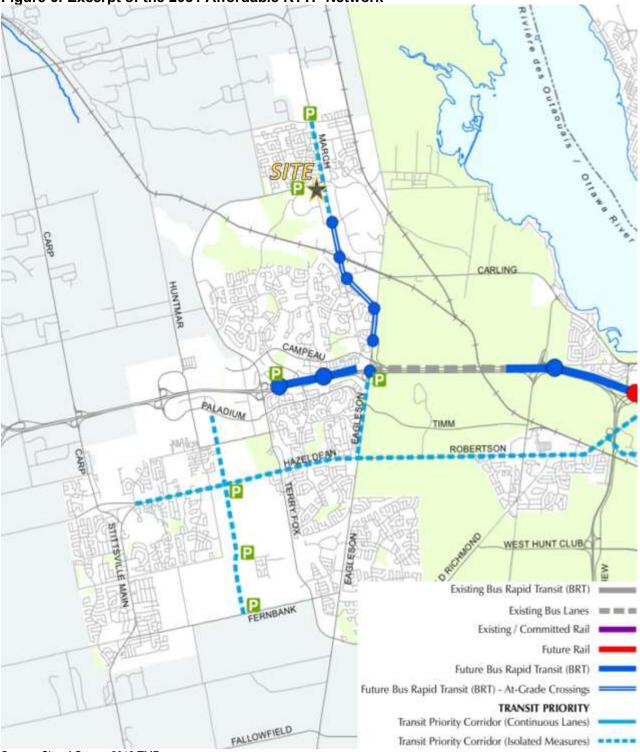


Figure 6: Excerpt of the 2031 Affordable RTTP Network

Source: City of Ottawa 2013 TMP

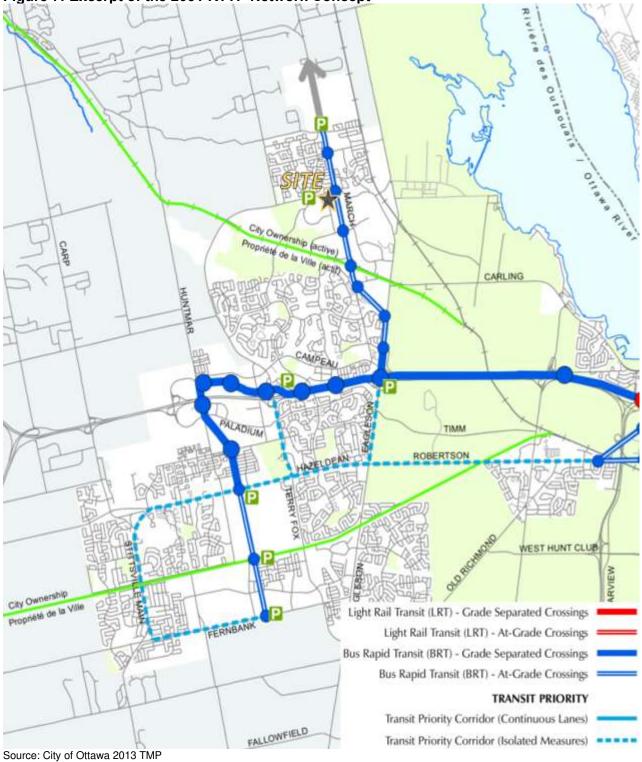


Figure 7: Excerpt of the 2031 RTTP Network Concept

788 March Road

A TIA and three subsequent addenda were prepared by Parsons (originally submitted in August 2018, with the addenda submitted in October 2018, December 2018, and March 2020), in support of a development including 92 apartment dwellings. The TIA identified a buildout year of 2023.

910 March Road

A TIA was prepared by CGH in January 2021, in support of a development including a 1,835 m² hardware store, a 234 m² restaurant with drive-through, a 191 m² coffee shop with drive-through, a 416 m² retail store, and a 249 m² gas bar. The TIA identified a buildout year of 2022.

1104 Halton Terrace

A TIA was prepared by Novatech in October 2021, in support of a development including a fourstorey building with 86 apartment dwellings. The TIA identified a buildout year of 2024.

2700 Solandt Road and 415 Legget Drive

A TIA was prepared by WSP in March 2022, in support of a development application to convert an existing two-storey office building into a warehouse and construct two new warehouses. In total, the development will result in approximately 32,930 m² of new warehouse space. The TIA identified a buildout year of 2023.

2707 Solandt Road

A TIA was prepared by Novatech in January 2020, in support of a development that includes an eight-storey, 198,615 ft² office building. The TIA identified a buildout year of 2021.

3026 Solandt Road

A TIA was prepared by CIMA+ in March 2020, in support of a development that includes a fivestorey, 100,000 ft² office building. The TIA identified a buildout year of 2021.

Kanata North Urban Expansion Area (KNUEA)

The *KNUEA TMP* was prepared by Novatech in June 2016, and estimated that the development of the Kanata North lands has the potential to consist of 960 single-detached homes, 950 street townhomes, 1,040 multi-unit residential dwellings, 400,000 ft² GFA of commercial space, three elementary schools, one high school, and a 500-space park and ride. The TMP identified a buildout year of 2026.

2.3 Study Area and Time Periods

The study area for this report includes the boundary roadways March Road, Terry Fox Drive, and Hines Road, as well as the following intersections:

- March Road/Morgan's Grant Way/Shirley's Brook Drive;
- March Road/Terry Fox Drive;
- March Road/Solandt Road;
- Terry Fox Drive/Flamborough Way/Innovation Drive;
- Innovation Drive/Hines Road.

The selected time periods for the analysis are the weekday AM and PM peak hours, as they represent the 'worst case' combination of site generated traffic and adjacent street traffic. Analysis will be completed for the ultimate buildout year 2037. Due to the extended buildout period, a five-year horizon will not be completed. A further review of traffic operations will be provided as each phase proceeds to the Site Plan Control application stage.

2.4 Exemptions Review

This module reviews possible exemptions from the final Transportation Impact Assessment, as outlined in the *2017 TIA Guidelines*. The applicable exemptions for this site are shown in **Table 4**.

Module	Element	Exemption Criteria	Status
Design Review	Component	-	
4.1	<i>4.1.2</i> Circulation and Access	 Only required for site plans 	Exempt
Development Design	<i>4.1.3</i> New Street Networks	 Only required for plans of subdivision 	Exempt
4.2	<i>4.2.1</i> Parking Supply	 Only required for site plans 	Exempt
Parking	<i>4.2.2</i> Spillover Parking	 Only required for site plans where parking supply is 15% below unconstrained demand 	Exempt
Network Impact	Component		
4.5 Transportation Demand Management	All elements	 Not required for non-residential site plans expected to have fewer than 60 employees and/or students on location at any given time 	Not Exempt
4.6 Neighbourhood Traffic Management	<i>4.6.1</i> Adjacent Neighbourhoods	 Only required when the development relies on local or collector streets for access and total volumes exceed ATM capacity thresholds 	Not Exempt
4.8 Network Concept	All elements	 Only required when proposed development generates more than 200 person-trips during the peak hour in excess of the equivalent volume permitted by the established zoning 	Exempt

Table 4: TIA Exemptions

As this TIA is in support of a Zoning By-Law Amendment application, the Design Review components (Modules 4.1 to 4.4) have been omitted from the analysis. Based on the foregoing, the following modules will be included in the TIA report:

Network Impact Component

- Module 4.5: Transportation Demand Management
- Module 4.6: Neighbourhood Traffic Management
- Module 4.7: Transit
- Module 4.9: Intersection Design

3.0 FORECASTING

3.1 Development-Generated Travel Demand

3.1.1 Trip Generation

Existing Trip Generation

The area of the existing buildings at 555, 591, and 603 March Road have been estimated using aerial photography. The existing one-storey athletic facility is estimated to include 18,500 ft² of gym space, the existing two-storey office building is estimated to include 78,400 ft² GFA of office space, and the existing one-storey retail plaza is estimated to include 15,400 ft² GFA of retail space.

The number of trips generated by the existing uses has been estimated using the trip generation rates outlined in the *ITE Trip Generation Manual*, 11th Edition, corresponding to the Health/Fitness Club (code 492), General Office Building (code 710), or Strip Retail Plaza (code 822) land uses. Trips estimated using the *ITE Trip Generation Manual* have been converted to person trips using an adjustment factor of 1.28, consistent with the City's 2017 TIA Guidelines. To reflect the prevalence of 'work from home' or 'hybrid work' arrangements, the estimated vehicular volumes that are currently generated by the existing offices has been reduced by 40%. This assumption is based on the comparison of pre-pandemic and post-pandemic traffic counts on Solandt Road and Terry Fox Drive, which shows that 2022 volumes on these roadways have decreased by approximately 35% to 50%.

The estimated number of person trips generated by the existing land uses are shown in **Table 5**.

Land Use	ITE Code	GFA	AM Peak Hour (pph ⁽¹⁾)			PM Peak Hour (pph)		
		GIA	IN	OUT	тот	IN	OUT	тот
Health/Fitness Club	492	18,500 ft ²	16	15	31	47	35	82
General Office Bldg	710	78,400 ft ²	154	20	174	29	145	174
40% reduction		-61	-8	-69	-11	-58	-69	
Strip Retail Plaza	822	15,400 ft ²	29	20	49	68	68	136
Total			138	47	185	133	190	323

Table 5: Existing Development – Peak Hour Trip Generation

1. pph: Person Trips per Hour

From the previous table, the existing development is estimated to generate approximately 254 person trips during the AM peak hour and 323 person trips during the PM peak hour.

The *TRANS Trip Generation Manual Summary Report*, prepared in October 2020 by WSP, includes data to estimate the mode shares for employment trip generators and commercial trip generators, based on the district. The *TRANS Trip Generation Manual* identifies the Subject Site as being located within the Kanata/Stittsville district. The employment mode shares were only surveyed during the AM peak hour, as employees are assumed to use the same mode to arrive at and depart from work. All trips to/from the athletic facility are assumed to originate or terminate at other sites within Kanata/Stittsville. Therefore, the athletic facility mode shares have been estimated using the 'Within District' mode shares outlined in the *2011 TRANS O-D Survey Report*, for the Kanata/Stittsville district.

The surveyed peak hour mode shares for the existing land uses are summarized in Table 6.

Mode	Trips With	in District	Emplo	yment	Commercial		
Widde	AM	РМ	AM	PM	AM	РМ	
Auto Driver	45%	57%	84%	-	81%	73%	
Auto Passenger	17%	23%	4%	-	12%	22%	
Transit	4%	2%	8%	-	5%	1%	
Cyclist	1%	1%	1%	-	0%	0%	
Pedestrian	19%	12%	3%	-	2%	4%	
Other	15%	6%	-	-	-	-	

Table 6: Surveyed Kanata/Stittsville Mode Shares – Existing Uses

For the purposes of this review, the employment mode shares have been applied directly to the trips generated by the existing office building. The commercial mode shares during the PM peak hour have been applied directly to the trips generated by the existing retail uses. The mode shares of the existing athletic facility are assumed to generally follow the surveyed mode shares within the Kanata/Stittsville district (i.e. 55% auto driver, 20% auto passenger, 5% transit, 5% cyclist, and 15% pedestrian). The estimated number of trips generated by the existing uses, broken down by mode share, are included in **Table 7**.

Travel Mode Mode Share			Α	M Peak Ho	ur	PM Peak Hour				
	AM	PM	IN	OUT	ТОТ	IN	OUT	тот		
Fitness	s Perso	n Trips	16	15	31	47	35	82		
Auto Driver	55	5%	8	8	16	26	19	45		
Auto Passenger	20)%	3	3	6	10	7	17		
Transit	5	%	1	1	2	2	2	4		
Cyclist	5	%	1	1	2	2	2	4		
Pedestrian	15	5%	3	2	5	7	5	12		
Office	e Perso	n Trips	93	12	105	18	87	105		
Auto Driver	84	1%	78	10	88	15	73	88		
Auto Passenger	4	%	4	1	5	1	3	4		
Transit	8	%	7	1	8	2	7	9		
Cyclist	1	%	1	-	1	-	1	1		
Pedestrian	3	%	3	-	3	-	3	3		
Strip Retai	l Perso	n Trips	29	20	49	68	68	136		
Auto Driver	81%	73%	24	16	40	50	50	100		
Auto Passenger	12%	22%	3	2	5	15	15	30		
Transit	5%	1%	1	1	2	1	-	1		
Cyclist	0%	0%	-	-	-	-	-	-		
Pedestrian	2%	4%	1	1	2	2	3	5		
Tota	l Perso	n Trips	138	47	185	133	190	323		
	Auto	Driver	110	34	144	91	142	233		
A	Auto Passenger		10	6	16	26	25	51		
		Transit	9	3	12	5	9	14		
		Cyclist	2	1	3	2	3	5		
	Pec	destrian	7	3	10	9	11	20		

Table 7: Existing Development – Peak Hour Trips by Mode Share

From the previous table, the existing development is anticipated to generate 144 vehicle trips during the AM peak hour and 233 vehicle trips during the PM peak hour.

The retail land uses is anticipated to generate two types of external peak hour trips: primary and pass-by trips. Primary trips are made for the specific purpose of visiting the site, while pass-by trips are made as intermediate stops on the way to another destination. Peak hour pass-by trips for the existing retail plaza are estimated to account for approximately 40% of all trips, based on the average rate identified in the *ITE Trip Generation Manual*.

The primary and pass-by trips generated by the existing retail plaza are summarized in Table 8.

Trip Type	ΑΜ Ρε	ak Hour (vph ⁽¹⁾)	PM Peak Hour (vph)			
пр туре	IN	OUT	тот	IN	OUT	ТОТ	
Existing Strip Retail Trips	24	16	40	50	50	100	
Adjustment for Pass-by Trips (40%)	-8	-8	-16	-20	-20	-40	
Primary Trips (60%)	16	8	24	30	30	60	

Table 8: Existing Strip Retail – Primary and Pass-by Trips

1. vph: Vehicle Trips per Hour

It has been assumed that no existing trips generated by the Subject Site are internally captured, based on the general layout of the existing athletic facility, retail plaza, and office building. This assumption allows for a more conservative analysis.

Proposed Trip Generation

The proposed development is assumed to include 2,100 high-rise dwellings, 154,178 ft² GFA of office space, and 31,482 ft² GFA of retail space.

The *TRANS Trip Generation Manual Summary Report* includes data to estimate the mode shares for residential trip generators in the Kanata/Stittsville district, in addition to the employment and commercial trip generators described previously. The surveyed mode shares for the proposed land uses are included in **Table 9**.

Mode	Resid	lential	Emplo	yment	Commercial					
INIOUE	AM	PM	AM	PM	AM	PM				
Auto Driver	42%	55%	84%	-	81%	73%				
Auto Passenger	26%	19%	4%	-	12%	22%				
Transit	28%	21%	8%	-	5%	1%				
Cyclist	0%	0%	1%	-	0%	0%				
Pedestrian	4%	5%	3%	-	2%	4%				

Table 9: Surveyed Kanata/Stittsville Mode Shares – Proposed Uses

The assumed residential mode shares for the proposed residences have been developed by taking the average of the surveyed mode shares for residences in the Kanata/Stittsville district. Since the 2031 Affordable Transit Network will only include bus rapid transit along March Road between Solandt Road and Highway 417, and the surveyed transit share is already notably high at 21% to 28% during the peak hours, the transit share for the proposed residential development has not been increased. The assumed employment mode shares for the proposed offices have been adjusted by increasing the transit share to 20% from 8% and decreasing the driver share accordingly from 84% to 72%, to account for planned bus rapid transit to Solandt Road. The assumed commercial mode shares for the proposed retail uses have been adjusted by considering the PM peak hour only, increasing the transit share to 10% from 1%, and decreasing the driver share accordingly from 73% to 64%. This can be summarized as follows.

Residential Mode Shares

- Auto Driver: 49%
- Auto Passenger: 22%
- Transit: 25%
- Cyclist: 0%
- Pedestrian: 4%

Employment Mode Shares

- Auto Driver: 72%
- Auto Passenger: 4%
- Transit: 20%
- Cyclist: 1%
- Pedestrian: 3%

Commercial Mode Shares

- Auto Driver: 64%
- Auto Passenger: 22%
- Transit: 10%
- Cyclist: 0%
- Pedestrian: 4%

Proposed Residential Trip Generation

The *TRANS Trip Generation Manual Summary Report*, prepared in October 2020 by WSP, includes data to estimate the trip generation for residential uses, divided into single-family detached housing, low-rise multifamily housing (one or two storeys), and high-rise multifamily housing (three or more storeys). For the High-Rise Multifamily Housing land use, the process of converting the trip generation estimates from peak period to peak hour is shown in the following tables. The estimated number of person trips generated by the proposed dwellings for the AM and PM peak periods are shown in **Table 10**. A breakdown of these trips by mode share is shown in **Table 11**.

Table 10: Proposed Residential – Peak Period Trip Generation

Land Use	TRANS Data Units		AM Pea	ak Period	(ppp ⁽¹⁾)	PM Peak Period (ppp)		
Land Use	Rate	Units	IN	OUT	тот	IN	OUT	тот
High-Rise Multifamily Housing	AM: 0.80 PM: 0.90	2,100	521	1,159	1,680	1,096	794	1,890

1. ppp: Person Trips per Peak Period

Table 11: Proposed Residential – Peak Period Trips by Mode Share

10010 11. 1 10000		I bait i								
Travel Mode	Mode Share	A	I Peak Peri	od	PM Peak Period					
	woue share	IN	OUT	ТОТ	IN	OUT	ТОТ			
Residential Trips		521	1,159	1,680	1,096	794	1,890			
Auto Driver	49%	255	568	823	537	389	926			
Auto Passenger	22%	115	255	370	241	175	416			
Transit	25%	130	290	420	274	198	472			
Cyclist	0%	-	-	-	-	-	-			
Pedestrian	4%	21	46	67	44	32	76			

Table 4 of the *TRANS Trip Generation Manual* includes adjustment factors to convert the estimated number of trips generated for each mode from peak period to peak hour. A breakdown of the peak hour trips by mode is shown in **Table 12**.

Table 12: Proposed Residential – Peak Hour Trips by Mode Share

14010 12.110000										
Travel Mode	Adj. F	actor	Α	AM Peak Hour			PM Peak Hour			
	AM	PM	IN	OUT	тот	IN	OUT	тот		
Auto Driver	0.48	0.44	123	273	396	236	171	407		
Auto Passenger	0.48	0.44	55	122	177	106	76	182		
Transit	0.55	0.47	71	160	231	129	94	223		
Cyclist	0.58	0.48	-	-	-	-	-	-		
Pedestrian	0.58	0.52	12	27	39	23	17	40		
Peak Hour Person Trips			261	582	843	494	358	852		

From the previous table, the proposed residential dwellings are estimated to generate 843 person trips during the AM peak hour (including 396 vehicle trips) and 852 person trips during the PM peak hour (including 407 vehicle trips).

Proposed Office and Retail Trip Generation

The number of trips generated by the proposed office and retail uses has been estimated using the trip generation rates outlined in the *ITE Trip Generation Manual*, 11th Edition, corresponding to the General Office Building (code 710) or Strip Retail Plaza (code 822) land uses. A 40% reduction has not been applied to the estimated number of office-generated trips, as this maintains a conservative analysis. The estimated number of person trips generated by the proposed office and retail uses are shown in **Table 13**, and are broken down by mode share in **Table 14**.

Table 10. 1 Toposed Office/Retail - 1 cak floar trip Generation												
Land Use	ITE Code	GFA		eak Hour	(pph)	PM Peak Hour (pph)						
			IN	OUT	тот	IN	OUT	тот				
General Office Bldg	710	154,178 ft ²	274	37	311	52	253	305				
Strip Retail Plaza	822	31,482 ft ²	47	31	78	113	112	225				
	321	68	389	165	365	530						

Table 13: Proposed Office/Retail – Peak Hour Trip Generation

Table 14: Proposed Office/Retail – Peak Hour Trips by Mode Share

Travel Mode	Mode Share	A	M Peak Ho	ur	PM Peak Hour			
	woue Share	IN	OUT	тот	IN	OUT	тот	
Office	e Person Trips	274	37	311	52	253	305	
Auto Driver	72%	197	27	224	37	182	219	
Auto Passenger	4%	12	1	13	1	10	11	
Transit	20%	55	7	62	11	51	62	
Cyclist	1%	2	1	3	1	2	3	
Pedestrian	3%	8	1	9	2	8	10	
Retai	l Person Trips	47	31	78	113	112	225	
Auto Driver	64%	30	20	50	72	72	144	
Auto Passenger	22%	10	6	16	25	25	50	
Transit	10%	5	4	9	12	11	23	
Cyclist	0%	-	-	-	-	-	-	
Pedestrian	4%	2	1	3	4	4	8	
Tota	l Person Trips	321	68	389	165	365	530	
	Auto Driver	227	47	274	109	254	363	
A	Auto Passenger		7	29	26	35	61	
	Transit		11	71	23	62	85	
	Cyclist		1	3	1	2	3	
	Pedestrian	10	2	12	6	12	19	

From the previous table, the proposed office and retail uses are estimated to generate 389 person trips during the AM peak hour (including 274 vehicle trips) and 530 person trips during the PM peak hour (including 363 vehicle trips).

The proposed development as a whole is estimated to generate 1,232 person trips during the AM peak hour (including 670 vehicle trips) and 1,382 person trips during the PM peak hour (including 770 vehicle trips). A detailed breakdown of the estimated trip generation by mode share is included in **Table 15**.

Travel Mode		AM Peak Hou	r	PM Peak Hour				
	IN	OUT	тот	IN	OUT	тот		
Total Person Trips	582	650	1,232	659	723	1,382		
Auto Driver	350	320	670	345	425	770		
Auto Passenger	77	129	206	132	111	243		
Transit	131	171	302	152	156	308		
Cyclist	2	1	3	1	2	3		
Pedestrian	22	29	51	29	29	58		

Table 15: Proposed Development – Total Peak Hour Trips

Subtracting the existing site-generated volumes shown in **Table 7** from the proposed site-generated volumes shown in **Table 15**, the proposed development is estimated to generate a net additional 1,047 person trips (including 536 vehicle trips) during the AM peak hour, and a net additional 1,059 person trips (including 537 vehicle trips) during the PM peak hour.

Pass-by and Internally Captured Trips

Some trips are anticipated to be internally captured within the Subject Site, as people may both live and work within the Subject Site, and some resident/employee trips may involve travelling between home, work, and the proposed retail areas on-site. Additionally, the proposed retail uses are anticipated to generate both primary and pass-by trips. The results of adjusting for internally captured trips and pass-by trips is included below. Per the example included in the *TRANS Trip Generation Manual*, internally captured trips between the proposed land uses have been estimated using the methodology outlined in the *ITE Trip Generation Handbook* and the *NCHRP Report 684 Estimator* spreadsheet tool (developed by the Texas A&M Transportation Institute in 2010). The completed spreadsheets are included in **Appendix F**, and include internal trip adjustments for the driver, transit, and non-motorized modes.

A summary of the internally captured and external trips generated by the proposed development are included in **Table 16**.

	Table 16: Proposed Development – Internally Captured Trips											
Trip Type						-						
		IN	OUT	тот	IN	OUT	тот					
	Vehicle	123	273	396	236	171	407					
Residential Trips	Transit	71	160	231	129	94	223					
-	Non-Auto	12	27	39	23	17	40					
	Vehicle	-3	-10	-13	-24	-17	-41					
Internal Adjustment	Transit	-1	-4	-5	-9	-7	-16					
-	Non-Auto	-	-1	-1	-2	-1	-3					
	Vehicle	120	263	383	212	154	366					
External Trips	Transit	70	156	226	120	87	207					
· · · · ·	Non-Auto	12	26	38	21	16	37					
	Vehicle	197	27	224	37	182	219					
Office Trips	Transit	55	7	62	11	51	62					
	Non-Auto	10	2	12	3	10	13					
	Vehicle	-13	-8	-21	-12	-11	-23					
Internal Adjustment	Transit	-4	-2	-6	-4	-3	-7					
-	Non-Auto	-	-1	-1	-2	-	-2					
	Vehicle	184	19	203	25	171	196					
External Trips	Transit	51	5	56	7	48	55					
	Non-Auto	10	1	11	1	10	11					

Table 16: Proposed Development – Internally Captured Trips

	Trip Type		M Peak Ho	ur	PM Peak Hour			
		IN	OUT	тот	IN	OUT	тот	
	Vehicle	30	20	50	72	72	144	
Retail Trips	Transit	5	4	9	12	11	23	
-	Non-Auto	2	1	3	4	4	8	
	Vehicle	-14	-11	-25	-17	-27	-44	
Internal Adjustment	Transit	-2	-2	-4	-3	-3	-6	
	Non-Auto	-1	-	-1	-	-1	-1	
	Vehicle	16	9	25	55	45	100	
External Trips	Transit	3	2	5	9	8	17	
	Non-Auto	1	1	2	4	3	7	

Peak hour pass-by trips for the proposed retail areas are estimated to account for approximately 40% of all trips, matching the assumption for the existing strip retail uses. The primary and pass-by trips generated by the proposed retail uses are summarized in **Table 17**.

Table 17: Proposed Retail – Primary and Pass-by Trips

Trip Type	AM P	eak Hour	(vph)	PM Peak Hour (vph)			
пр туре	IN	OUT	тот	IN	OUT	тот	
Retail External Vehicle Trips	16	9	25	55	45	100	
Adjustment for Pass-by Trips (40%)	-5	-5	-10	-20	-20	-40	
Primary Trips (60%)	11	4	15	35	25	60	

3.1.2 Trip Distribution

The assumed distribution of trips generated by the proposed residential and existing/proposed office uses have been estimated by considering the typical commuter patterns (based on AM peak outbound volumes and PM peak inbound volumes for residential trips, and vice versa for office trips) and logical trip routing. Additional trips have been distributed to/from the north for the proposed offices, to account for the extensive KNUEA developments north of the study area. As a result, the assumed trip distribution for the residential and office uses is summarized as follows:

Proposed Residential

- 20% to/from the north via March Road;
- 45% to/from the south via March Road;
- 10% to/from the east via Terry Fox Drive;
- 10% to/from the east via Solandt Road;
- 10% to/from the west via Terry Fox Drive;
- 5% to/from the west via Innovation Drive.

Proposed Office

- 35% to/from the north via March Road;
- 5% to/from the north via Flamborough Way;
- 35% to/from the south via March Road;
- 5% to/from the east via Terry Fox Drive;
- 5% to/from the east via Shirley's Brook Drive;
- 10% to/from the west via Terry Fox Drive;
- 5% to/from the west via Morgan's Grant Way.

Existing Office

- 25% to/from the north via March Road;
- 5% to/from the north via Flamborough Way;
- 40% to/from the south via March Road;
- 5% to/from the east via Terry Fox Drive;
- 5% to/from the east via Shirley's Brook Drive;
- 15% to/from the west via Terry Fox Drive;
- 5% to/from the west via Morgan's Grant Way.

The assumed distribution of trips generated by the existing athletic facility and existing/proposed retail uses have been estimated based on the two-way midday peak hour volumes, as these uses are anticipated to have a more regional draw. As a result, the assumed trip distribution for the athletic facility and retail uses can be summarized as follows:

Existing or Proposed Retail and Existing Athletic Facility

- 25% to/from the north via March Road;
- 5% to/from the north via Flamborough Way;
- 30% to/from the south via March Road;
- 5% to/from the east via Terry Fox Drive;
- 5% to/from the east via Shirley's Brook Drive;
- 5% to/from the east via Solandt Road;
- 10% to/from the west via Terry Fox Drive;
- 5% to/from the west via Morgan's Grant Way;
- 10% to/from the west via Innovation Drive.

All pass-by trips for the existing or proposed retail uses are assumed to occur on March Road, as it carries the majority of traffic volumes throughout the study area and acts as the primary arterial roadway through northern Kanata.

3.1.3 Trip Assignment

Existing Land Uses

The existing office building are accessed via one full-movement access to Terry Fox Drive and one RIRO access to March Road. The assumed trip assignment for the office use is summarized in **Table 18**.

Origin/Destination	March Road Access	Terry Fox Drive Access
to the north via March Road	-	100%
from the north via March Road	100%	-
to the south via March Road	100%	-
from the south via March Road	-	100%
to/from the north via Flamborough Way	-	100%
to/from the east via Terry Fox Drive	-	100%
to/from the west via Terry Fox Drive	-	100%

Table 18: Existing Office – Trip Assignment

The existing retail plaza and athletic facility are accessed via the same two RIRO accesses to March Road. Based on the layout of these sites, all retail trips have been assigned to the northerly access (including all pass-by trips), and all athletic facility trips have been assigned to the southerly access. Based on the existing U-turn volumes at March Road/Terry Fox Drive and March Road/Solandt Road, it has been conservatively assumed that no trips travelling to/from the Subject Site perform a U-turn, and use other roadways within the Kanata Research Park. For example, inbound trips originating from the south via March Road or east via Solandt Road are assumed to travel on Legget Drive to Terry Fox Drive, and outbound trips destined to the north via Flamborough Way or west via Terry Fox Drive are assumed to travel on Solandt Road, Hines Road, and Innovation Drive.

Proposed Land Uses

The Subject Site is anticipated to include a full-movement access to March Road opposite the proposed signalized access to the Nokia development at 570-600 March Road (discussed further in Section 3.2.1), and full-movement accesses to Terry Fox Drive and Hines Road. In accordance with the previous section, all pass-by trips have been assigned to the proposed March Road access. All primary trips have been assigned to the proposed accesses as shown in **Table 19**.

Origin/Destination	March Road Access	Terry Fox Drive Access	Hines Road Access
to/from the north via March Road	50%	50%	-
to/from the north via Flamborough Way	-	100%	-
to/from the south via March Road	100%	-	-
to/from the east via Terry Fox Drive	-	100%	-
to/from the east via Shirley's Brook Drive	50%	50%	-
to/from the east via Solandt Road	100%	-	-
to/from the west via Terry Fox Drive	-	100%	-
to/from the west via Morgan's Grant Way	50%	50%	-
to/from the west via Innovation Drive	-	-	100%

Table 19: Proposed Development – Trip Assignment

3.2 Background Traffic

3.2.1 Other Area Developments

As first discussed in Section 2.2.2, there are multiple development applications for sites in proximity of the proposed development that are under construction, approved, or in the approval process. Traffic generated by these developments have been accounted for as background traffic. Relevant excerpts for the transportation studies in support of each development listed below are included in **Appendix G**.

359 Terry Fox Drive and 525 Legget Drive

The proposed development includes 253 apartment dwellings and 3,877 ft² GFA of restaurant space, and the associated TIA identified a buildout year of 2024. Therefore, volumes generated by this development have been added to the 2037 background volumes.

570-600 March Road

The proposed redevelopment of the Nokia campus includes 1,900 residential dwellings, 46,000 m² of office space, and 11,350 m² of retail space. The TIA identified a buildout year of 2032. Therefore, the net additional volumes generated by this development have been added to the 2037 background volumes. To reflect the prevalence of 'work from home' or 'hybrid work' arrangements, the estimated vehicular volumes that are currently generated by the existing offices has been reduced by 40%. This assumption is based on the comparison of pre-pandemic and post-pandemic traffic counts on Solandt Road and Terry Fox Drive, which shows that 2022 volumes on these roadways have decreased by approximately 35% to 50%.

The development includes a signalized, full-movement access to March Road. While the exact location of this signalized access has not been determined, it has been assumed that this signal will be located at the southern limit of the Subject Site, so that both the Nokia redevelopment and this proposed development can use this signal.

706-714 March Road

The proposed development includes a 4,165 m² GFA supermarket, 350 m² GFA fast-food restaurant with drive-through, and 1,500 m² GFA of multi-unit commercial space. The associated TIA identified a buildout year of 2023. Therefore, volumes generated by this development have been added to the 2037 background volumes.

788 March Road

The proposed development includes 92 apartment dwellings, and the associated TIA identified a buildout year of 2023. Therefore, volumes generated by this development have been added to the 2037 background volumes.

910 March Road

The proposed development includes a 1,835 m² hardware store, a 234 m² restaurant with drivethrough, a 191 m² coffee shop with drive-through, a 416 m² retail store, and a 249 m² gas bar. The associated TIA identified a buildout year of 2022. Therefore, volumes generated by this development have been added to the 2037 background volumes.

1104 Halton Terrace

The proposed development includes 86 apartment dwellings. As this did not meet the trip generation trigger, the TIA did not include a distribution of development-generated traffic to its study area. Therefore, volumes generated by this development have not been added to the 2037 background volumes.

2700 Solandt Road and 415 Legget Drive

The proposed development includes approximately 32,930 m² of new warehouse space. The associated TIA identified a buildout year of 2022. Therefore, volumes generated by this development have been added to the 2037 background volumes.

2707 Solandt Road

The proposed development includes an eight-storey, 198,615 ft² office building. While the associated TIA identified a buildout year of 2021, this development has not been built out. Therefore, volumes generated by this development have been added to the 2037 background volumes.

3026 Solandt Road

The proposed development includes a five-storey, 100,000 ft² office building. While the associated TIA identified a buildout year of 2021, this development has not been built out. Therefore, volumes generated by this development have been added to the 2037 background volumes.

Kanata North Urban Expansion Area (KNUEA)

The KNUEA TMP was prepared by Novatech in June 2016, and estimated that the development of the Kanata North lands has the potential to consist of 960 single-detached homes, 950 street townhomes, 1,040 multi-unit residential dwellings, 400,000 ft² GFA of commercial space, three elementary schools, one high school, and a 500-space park and ride. The TMP originally identified a buildout year of 2026. Therefore, volumes generated by this development have been added to the 2037 background volumes.

3.2.2 General Background Growth Rate

A review of the City's *Strategic Long-Range Model* (comparing snapshots of 2011 and 2031 AM peak hour volumes) and *2013 TMP* has been conducted. The snapshots are included in **Appendix H**. A review of the long-range snapshots estimate negligible growth in traffic volumes on March Road, and the magnitude of traffic volumes modelled on Terry Fox Drive and Innovation Drive are generally not large enough to estimate a consistent growth rate. Since background volumes from all of the other area developments listed above have been added to the study area volumes, an annual background growth rate has not been applied.

3.2.3 March Road BRT Corridor

The assumed existing transit modal shares within the study area follow the modal shares outlined in the Existing Conditions report of the *KNUEA TMP*. The TMP included a Transportation Area of Interest (TAI) screenline located immediately south of Terry Fox Drive between Second Line Road and March Valley Road, where person trips for vehicle and non-auto modes were estimated using observed traffic, transit rider, cyclist, and pedestrian volumes. Passenger volumes were estimated using a private vehicle occupancy of 1.2. This analysis was performed because the KNUEA is located at the boundary between the Kanata/Stittsville and Rural West regions as shown in the *2011 TRANS O-D Survey Report*.

The results of this exercise indicated that, at the TAI screenline, the existing transit share is 7% and 5% in the weekday AM and PM peak hours, respectively. Existing mode shares at the TAI screenline were not found to be reflective of the mode shares presented for the Kanata/Stittsville district, since the rapid transit stations within Kanata/Stittsville are centralized along Highway 417, which is approximately 4.5km south of the screenline. Conversely, the existing shares are more aligned with those presented for the Rural West district. As the TAI screenline was located immediately south of Terry Fox Drive, and is therefore located within the study area, the existing transit shares of 7% in the AM peak hour and 5% in the PM peak hour have been assumed for this study.

Exhibit 2.13 of the City's *2013 TMP* identifies a transit share target of 21% within the Kanata/ Stittsville district by 2031. Within the study area, it is anticipated that the 21% transit share target will be achieved through the implementation of the planned RTTP projects on March Road, as described in Section 2.2.1. Consistent with the *KNUEA TMP*, a reduction in the background vehicular volumes has been made in the buildout year 2037, to reflect the 21% transit share target and the planned implementation of transit priority measures on March Road.

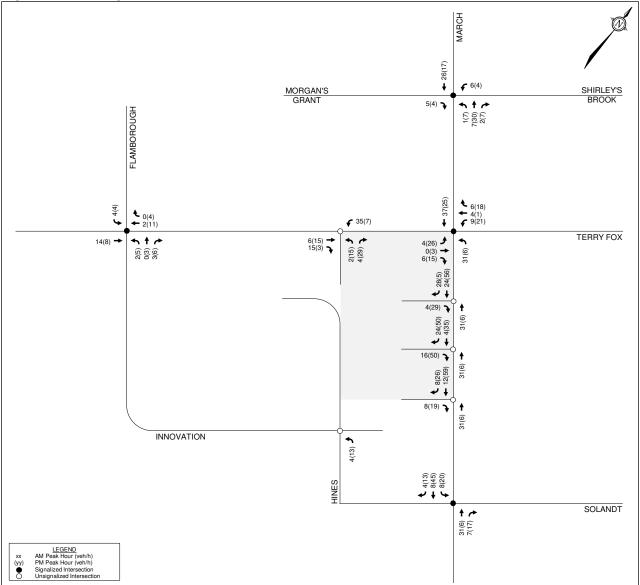
A functional design of median BRT lanes on March Road was included as part of the *West Transitway* Connection EPR, prepared by Delcan in October 2013. The relevant pages of the functional design are included in **Appendix I**.

3.2.4 Diverted/Cut-Through Traffic

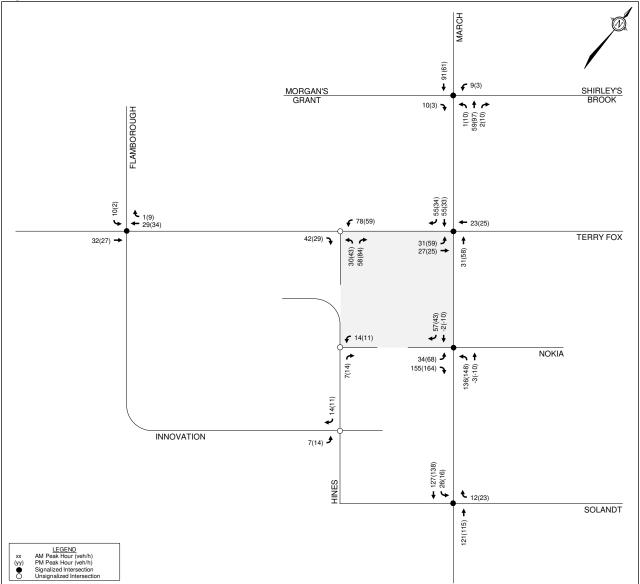
It is assumed that the proposed development will create the potential for diverted or cut-through traffic, using the proposed signalized intersection to March Road. A proportion of background volumes on the following routes have been re-routed through the subject site for the 2037 total traffic scenario:

- 50% of the northbound and southbound through volumes at Hines Road/Innovation Drive have been re-routed to travel through the Subject Site rather than on Hines Road;
- 10% of the northbound right turn, southbound left turn, eastbound through, westbound left turn, westbound through, and westbound right turn volumes at March Road/Solandt Road have been re-routed to perform those movements at March Road/Nokia Access/Site Access instead.

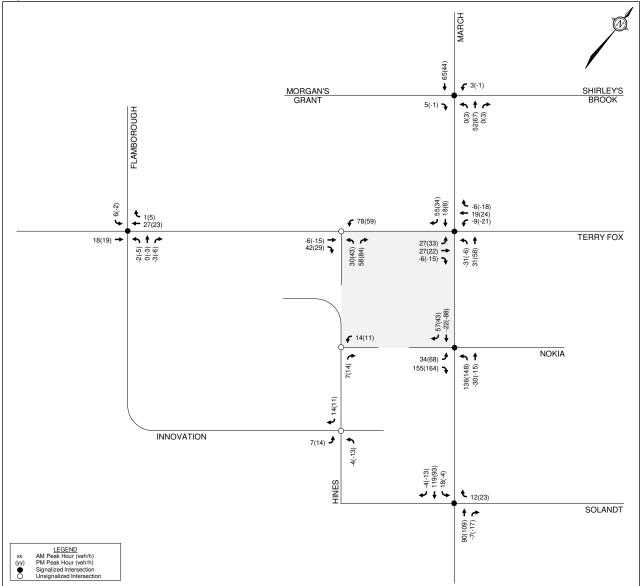
3.3 Volume Figures

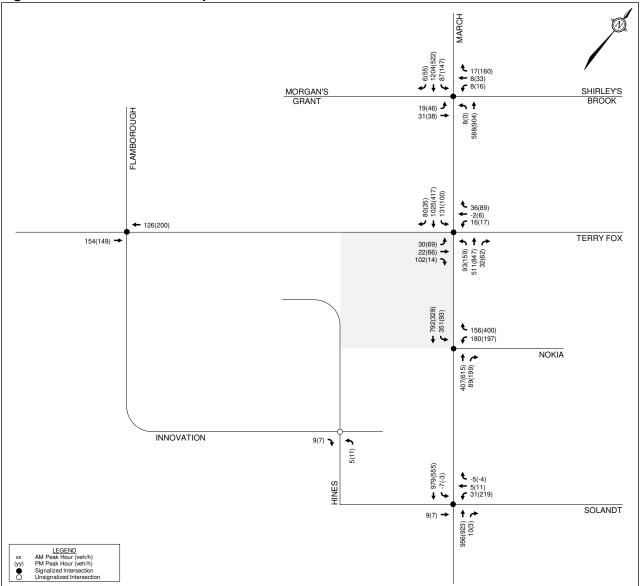

The figures below present the following traffic conditions:

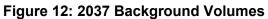
- Existing site-generated traffic volumes are shown in Figure 8;
- Proposed site-generated traffic volumes are shown in Figure 9;
- Net site-generated traffic volumes are shown in Figure 10;
- Other area development-generated traffic volumes in 2037 are shown in Figure 11;
- Background traffic volumes in 2037 are shown in Figure 12;
- Diverted traffic volumes in 2037 are shown in Figure 13;
- Total traffic volumes in 2037 are shown in Figure 14.

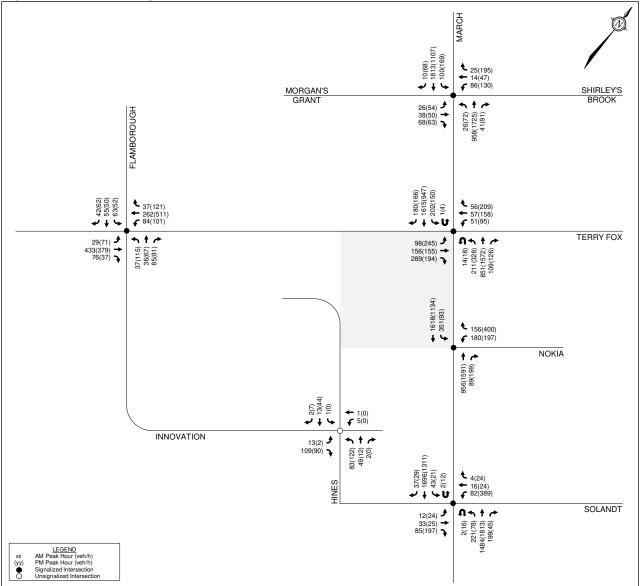

3.4 Demand Rationalization

A review of the existing and background intersection operations has been conducted to determine where traffic volumes exceed capacity within the study area. The intersection parameters used in the analysis are consistent with the *2017 TIA Guidelines* (Saturated Flow Rate: 1,800 vphpl, Peak Hour Factor: 0.9 in existing conditions and 1.0 in future conditions). Per Exhibit 22 of the *Multi-Modal Level of Service (MMLOS) Guidelines*, the target vehicular level of service (Auto LOS) at all study area intersections is an Auto LOS D in existing conditions. This equates to a vehicle-to-capacity (v/c) ratio of 0.90 at signalized intersections, and a maximum delay of 35 seconds at unsignalized intersections. In future conditions, the *MMLOS Guidelines* identify a target Auto LOS E for March Road/Solandt Road and March Road/Nokia Access, as the 2031 Affordable Network identifies a future transit station within 600m of these intersections. Signal timing plans have been obtained from the City, and are included in **Appendix J**.









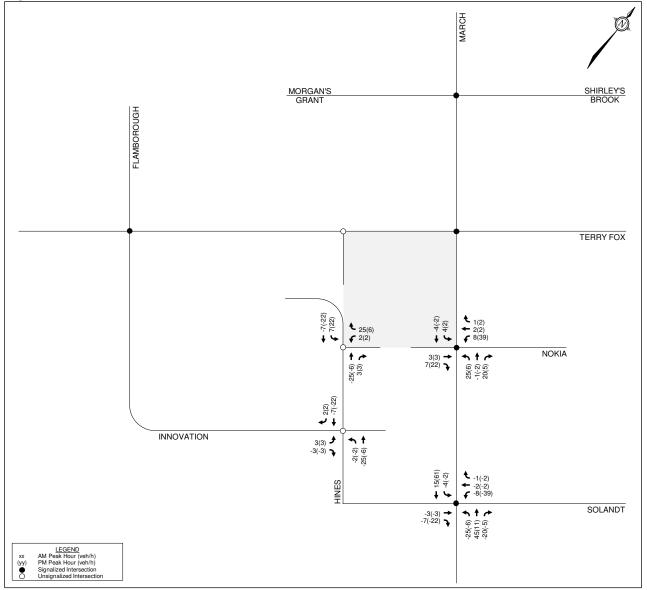


Figure 11: Other Area Development-Generated Volumes

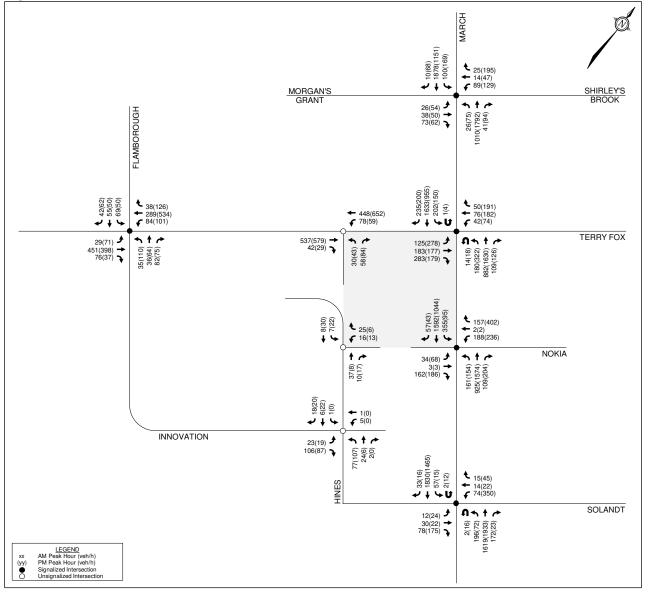


Figure 13: 2037 Diverted Volumes

Figure 14: 2037 Total Volumes

3.4.1 Existing Traffic Conditions

Intersection capacity analysis has been conducted for the existing traffic conditions. The results of the analysis are summarized in **Table 20** for the weekday AM and PM peak hours. Detailed reports are included in **Appendix K**.

		Critic	al Move	ements	Intersection			
Intersection	Period	Max v/c or Delay	LOS	Mvmt	v/c	Delay	LOS	
March Road/Morgan's Grant	AM	0.60	Α	WBL	0.28	14 sec	А	
Way/Shirley's Brook Drive ⁽¹⁾	PM	0.73	С	WBL	0.31	16 sec	А	
March Road/	AM	0.62	В	EBR	0.36	28 sec	А	
Terry Fox Drive ⁽¹⁾	PM	0.69	В	NBL	0.48	32 sec	А	
March Road/	AM	0.64	В	NBL	0.56	14 sec	А	
Solandt Road ⁽¹⁾	PM	0.80	С	EBR	0.64	24 sec	В	
Terry Fox Drive/Flamborough	AM	0.73	С	SBL	0.40	21 sec	А	
Way/Innovation Drive ⁽¹⁾	PM	0.87	D	NBL	0.46	23 sec	А	
Innovation Drive/	AM	13 sec	В	WB				
Hines Road ⁽²⁾	PM	9 sec	Α	EB		-		

Table 20: Existing Traffic Operations

1. Signalized intersection

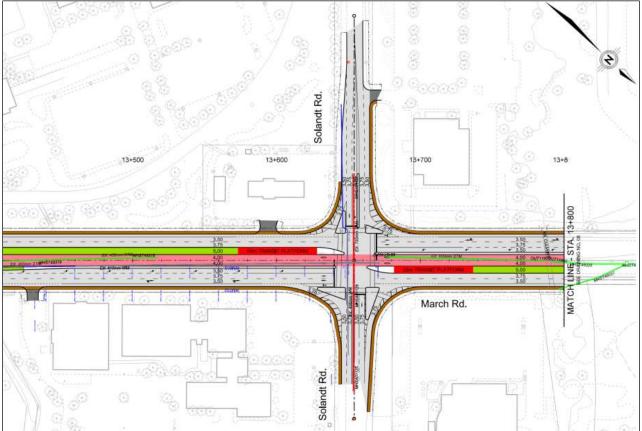
2. Unsignalized intersection

From the previous table, all study area intersections operate at an acceptable level of service during the AM and PM peak hours.

3.4.2 2037 Background Traffic Conditions

Intersection capacity analysis has been conducted for the 2037 background traffic conditions. A reduction in the background vehicular volumes has been applied to reflect a higher transit modal share as a result of rapid transit and transit priority measures that will be implemented on March Road. Within the study area and the City's Affordable Network, median bus lanes are anticipated on March Road at Solandt Road, and transit priority measures are anticipated on March Road north of Solandt Road. Therefore, the intersection geometry at March Road/Solandt Road and the signal timings at March Road/Morgan's Grant Way/Shirley's Brook Drive, March Road/Terry Fox Drive, and March Road/Solandt Road have been adjusted to reflect these measures. Other parameters have also been adjusted, consistent with the transportation assessments conducted by Delcan as part of the *West Transitway Connection* EPR. It should be noted that the transportation assessments evaluated the transitway alternatives based on person travel time rather than vehicular level of service.

Adjustments to the March Road/Morgan's Grant Way/Shirley's Brook Drive and March Road/Terry Fox Drive intersections are summarized as follows:


- Reduction of speed limit on March Road from 80 km/h to 60 km/h;
- Amber plus all-red timings adjusted to reflect increased clearance requirements and changes in the speed limit on March Road;
- Cycle length maintained at 130 seconds, but with splits and offsets optimized.

Adjustments to the March Road/Solandt Road intersection are summarized as follows:

- Adjustments to all right turn curb radii and turn lane lengths as required;
- Removal of the existing northbound right turn lane, southbound right turn lane, and one of the westbound left turn lanes;
- Addition of one auxiliary westbound right turn lane;
- Reduction of speed limit on March Road from 80 km/h to 60 km/h;
- Minimum pedestrian crossing times for eastbound/westbound pedestrians consistent with a two-stage crossing;
- Northbound/southbound left turn phases adjusted to become fully protected;
- Eastbound left turn phase adjusted to become permitted (no fully protected phase);
- Westbound left turn phase adjusted to become permitted during AM peak hour and protected plus permitted during PM peak hour (no fully protected phase);
- Amber plus all-red timings adjusted to reflect increased clearance requirements and changes in the speed limit on March Road;
- Cycle length maintained at 130 seconds, but with splits and offsets optimized.

A screenshot of the geometric changes to March Road/Solandt Road is included in Figure 15.

Figure 15: Planned Modifications to March Road/Solandt Road

Analysis of the 2037 background volumes also includes the future signalized intersection at 570-600 March Road (referred to as March Road/Nokia Access). As the intersection is approximately located where three southbound lanes on March Road reduce to two, the location of this reduction has been shifted further south for the purposes of the Synchro analysis. This assumption is carried forward for the total traffic analysis as well (i.e. the southbound approach of this intersection will include one left turn lane into the Nokia development, two through lanes, and one shared through/ right turn lane into the Subject Site).

The results of the analysis are summarized in **Table 21** and **Table 22** for the weekday AM and PM peak hours. Detailed reports are included in **Appendix L**.

		Critic	al Move	ements		ntersectio	n		
Intersection	Period	Max v/c or Delay	LOS	Mvmt	v/c	Delay	LOS		
March Road/Morgan's Grant	AM	0.60	Α	SBL	0.38	14 sec	А		
Nay/Shirley's Brook Drive ⁽¹⁾	PM	0.74	С	SBL	0.65	33 sec	В		
March Road/ Terry Fox Drive ⁽¹⁾	AM	0.78	С	SBL	0.64	35 sec	В		
	PM	0.85	D	EBL	0.74	37 sec	С		
March Road/	AM	1.00	E	SBT/R	0.93	30 sec	E		
Solandt Road ⁽¹⁾	PM	1.65	F	WBL	1.02	61 sec	F		
Terry Fox Drive/Flamborough	AM	0.52	Α	SBL	0.37	18 sec	Α		
Way/Innovation Drive ⁽¹⁾	PM	0.72	С	NBL	0.44	24 sec	Α		
Innovation Drive/	AM	12 sec	В	WB		i			
Hines Road ⁽²⁾	PM	9 sec	Α	EB		-			
March Road/	AM	0.72	С	WBL	0.61	14 sec	В		
Nokia Access ⁽¹⁾	PM	0.87	D	WBR	0.89	36 sec	D		

Table 21: 2037 Background Traffic Operations

1. Signalized intersection

2. Unsignalized intersection

Table 22: 2037 Background – Critical Queues

	Storage/			AM Peak		PM Peak				
Intersection	Mvmt	Spacing ⁽¹⁾	v/c [LOS]	50 th % Queue (m)	95 th % Queue (m)	v/c [LOS]	50 th % Queue (m)	95 th % Queue (m)		
	NBL	165m	0.69 [B]	49	#105	0.59 [A]	21	#52		
March Road/	NBT/R	200m	0.76 [C]	129	213	0.91 [E]	199	#316		
Solandt Road	SBT/R	520m	1.00 [E]	222	#268	0.76 [C]	63	137		
	WBL	135m	0.53 [A]	19	30	1.65 [F]	~140	#164		
March Road/	SBL	TBC ⁽²⁾	0.72 [B]	28	24	0.62 [B]	14	m#36		
Nokia Access	WBL		0.69 [B]	41	57	0.47 [A]	39	56		

1: Indicates the storage length for auxiliary lanes or the spacing to the nearest upstream intersection/access for through lanes

2. Storage requirements for SBL and WBL movements to be confirmed as part of future Site Plan Control applications

#: Volume for the 95th percentile cycle exceeds capacity

m: Queue is metered by an upstream signal

~: Approach is above capacity

From the previous tables, critical movements at the study area intersections generally operate at an acceptable level of service, with the exception of the westbound left turn movement at March Road/Solandt Road during the PM peak hour. Per the functional design of the March Road BRT, one of the westbound left turn lanes will be removed. It is anticipated that this is the primary driver for the failing vehicular level of service of this movement.

Analysis of an alternate scenario has been conducted, where dual westbound left turn lanes at March Road/Solandt Road are maintained, with a fully protected left turn phase. Detailed Synchro reports of this scenario are included in **Appendix L**. A comparison of the northbound through/right turn, southbound through/right turn, and westbound left turn movements in both scenarios is provided below:

- AM Peak Hour
 - Northbound through/right turn: v/c downgrades from 0.76 to 0.85 (Auto LOS D);
 - Southbound through/right turn: v/c downgrades from 1.00 to 1.07 (Auto LOS F);
 - Westbound left turn: v/c downgrades from 0.53 to 0.68 (Auto LOS B).
- PM Peak Hour
 - Northbound through/right turn: v/c downgrades from 0.91 to 1.03 (Auto LOS F);
 - Southbound through/right turn: v/c downgrades from 0.76 to 0.87 (Auto LOS D);
 - Westbound left turn: v/c improves from 1.65 to 0.97 (Auto LOS E).

Given the level of improvement for the westbound left turn movement during the PM peak hour, it is recommended that the dual westbound left turns remain at March Road/Solandt Road after the median BRT is implemented. Therefore, this recommendation has been carried forward to the 2037 total traffic analysis.

The movements that are operating at an Auto LOS F above would require the following volume reductions to achieve the target Auto LOS E:

- AM Peak Hour
 - Southbound through/right turn (v/c: 1.07): approximately 110 vehicles required.
- PM Peak Hour
 - Northbound through/right turn (v/c: 1.03): approximately 45 vehicles required.

Detailed Synchro reports with these reductions applied is also included in Appendix L.

4.0 ANALYSIS

4.1 Transportation Demand Management

4.1.1 Context for TDM

The exact number of proposed residential dwellings and GFAs for the proposed office and retail uses will be determined as part of subsequent Site Plan Control application(s). For the purposes of this TIA, the unit statistics outlined in the concept plan have been considered, which can be described as follows:

- 2,100 residential dwellings, which will include a mix of studio, one-bedroom, two-bedroom, and three-bedroom units;
- 154,178 ft² GFA of office space;
- 31,482 ft² GFA of retail space.

4.1.2 Need and Opportunity

The Subject Site is located within the 'Kanata North Economic District,' 'Evolving Neighbourhood' overlay, and is designated as 'Corridor – Mainstreet' (March Road) and 'Corridor – Minor' (Terry Fox Drive) on Schedule B5 of the City of Ottawa's Official Plan (2021, Council Adopted). The implemented zoning for the properties are either 'General Industrial' IG6 and 'Business Park Industrial Zone' IP6[1149] and IP6[1084]. As first discussed in Section 3.1.1, the assumed mode shares for the proposed development are generally consistent with the surveyed residential, employment, and commercial mode shares of the Kanata/Stittsville district (as outlined in the *TRANS Trip Generation Manual*), with increased transit shares for the proposed office and retail uses.

The purpose of the proposed development is to become an 'activity centre,' designed for residents or employees to live, work, learn, play, and access daily needs without a car. Therefore, it is anticipated that the assumed driver share target will not be exceeded. Additionally, bus rapid transit along March Road is identified as a future improvement for commuters and residents of Kanata North.

4.1.3 TDM Program

A review of the City's *TDM Measures Checklist* has been conducted by the proponent (included in **Appendix M**). While the final list of TDM measures to be implemented by the proposed development will be confirmed at the Site Plan Control application stage, the proponent has agreed to consider the following measures at this time:

Non-Residential

- 1.1.1 Designate an internal coordinator, or contract with an external coordinator;
- 2.1.1 Display local area maps with walking/cycling access routes and key destinations at major entrances;
- 3.1.1 Display relevant transit schedules and route maps at entrances;
- 3.1.2 Provide online links to OC Transpo and STO information;
- 4.1.1 Provide a dedicated ridematching portal at OttawaRideMatch.com;
- 5.1.1 Contract with provider to install on-site bikeshare station for use by commuters and visitors;
- 5.2.1 Contact with provider to install on-site carshare vehicles and promote their use by tenants;
- 6.1.1 Charge for long-term parking (daily, weekly, monthly);
- 6.1.3 Charge for short-term parking (hourly);
- 7.1.1 Provide a multimodal travel option information package to new/relocating employees and students;
- 8.2.1 Encourage flex work hours;
- 8.3.1 Provide local business travel options that minimize the need for employees to bring a personal car to work;
- 8.5.1 Provide on-site amenities/services to minimize mid-day or mid-commute errands.

<u>Residential</u>

- 1.1.1 Designate an internal coordinator, or contract with an external coordinator;
- 2.1.1 Display local area maps with walking/cycling access routes and key destinations at major entrances;
- 3.1.1 Display relevant transit schedules and route maps at entrances;
- 4.1.1 Contract with provider to install on-site bikeshare station;
- 4.2.1 Contract with provider to install on-site carshare vehicles and promote their use by residents;
- 5.1.1 Unbundle parking cost from purchase price;
- 5.1.2 Unbundle parking cost from monthly rent;
- 6.1.1 Provide a multimodal travel option information package to new residents.

4.2 Neighbourhood Traffic Management

The *2017 TIA Guidelines* identify two-way peak hour traffic volume thresholds for considering a Neighbourhood Traffic Management (NTM) plan should be developed, when the site relies on local or collector roadways for access. The NTM two-way volume thresholds are as follows:

- 120 vph for local roadways;
- 300 vph for collector roadways;
- 600 vph for major collector roadways.

While March Road and Terry Fox Drive are arterial roadways, the proposed development will also include an access to Hines Road (i.e. a collector roadway). Based on the two-way NTM thresholds for collector roadways and the 2037 total traffic peak hour volumes on Hines Road, peak hour traffic on Hines Road is not anticipated to exceed the City's NTM threshold.

4.3 Transit

Based on the trip generation estimates presented in Section 3.1.1 and **Table 16**, the proposed development is anticipated to generate the following number of external transit trips:

- 287 transit trips during the AM peak hour (124 trips in, 163 trips out);
- 279 transit trips during the PM peak hour (136 trips in, 143 trips out).

Per discussions with City staff, all site-generated transit trips are anticipated to arrive or depart the study area via OC Routes 63, 64, 110, or 166, and all trips will utilize stops at Innovation Drive/Hines Road (stops #1174, #1175, #1176, and #1177), March Road/Terry Fox Drive (stops #4875 and #6155), and at 501 March Road (stop #7994).

Since nearly all site-generated transit trips are anticipated to be generated by the residential component of the development, the assumed transit trip distribution is similar to the residential distribution outlined in Section 3.1.2. The assumed distribution of transit trips to/from the proposed development can be summarized as follows:

- 25% to/from the north/west (i.e. Kanata North or Innovation) via OC Routes 63 and 64;
- 75% to/from the south/east (i.e. City of Ottawa) via OC Routes 63, 64, 110, and 166.

Transit utilization data from the Spring 2022 period (April 24 to June 25) has been obtained from OC Transpo, and is included in **Appendix C**. Average peak period (6:00am to 9:00am and 3:00pm to 6:00pm) boarding, alighting, and bus load at departure information was obtained for the stops previously listed in this section.

Existing and projected boarding and alighting information is summarized in **Table 23**. Any zero (0) values in the table indicate a measured average boarding and alighting value of zero, rather than an absence of data. Any dash (-) values in the table indicate that the route does not serve the stop in a given time period. Peak period boarding and alighting data have been converted to peak hour boardings and alightings, using factors of 0.55 for the AM peak hour and 0.47 for the PM peak hour (per the *TRANS Trip Generation Manual*).

Stop	Location	Route	Dir	Boa	rding (tp	h) ⁽¹⁾	Alig	hting (tp	h) ⁽¹⁾
-		noule		Existing	Site	Total	Existing	Site	Total
AM Pea	k Hour								
#1174	40 Hines	64	WB	1	0	1	3	25	28
#11/4	40111165	166	EB	0	0	0	0	19	19
#1175	Hines/Innovation	64	EB	0	41	41	0	0	0
#1175	Times/Innovation	166	WB	-	-	-	-	-	-
#1176	#1176 Innovation/Hines	64	WB	0	21	21	4	0	4
#1170		166	EB	0	0	0	0	0	0
#1177	Innovation/Hines	64	EB	0	0	0	0	16	16
π	Innovation/Times	166	WB	-	-	-	-	-	-
#4875	Terry Fox/March	63	WB	0	20	22	1	25	26
#4075	Terry Tox/March	110	NB	0	0	0	1	0	1
#6155	Terry Fox/March	63	EB	2	20	22	0	7	7
	-	110	SB	1	41	42	0	25	25
#7994	March/Ad. 501	63	EB	0	20	20	0	7	7
PM Pea	k Hour								
#1174	40 Hines	64	WB	0	0	0	1	34	35
#11/4	40 mines	166	EB	-	-	-	-	-	-
#1175	Hines/Innovation	64	EB	8	29	37	0	0	0
#1175	nines/innovation	166	WB	0	21	21	0	0	0
#1176	Innovation/Hines	64	WB	0	18	18	1	0	1
#1170	IIIII0valioII/HIIIes	166	EB	-	-	-	-	-	-
#1177	Innovation/Hines	64	EB	4	0	4	0	17	17
#11//	IIIII0ValioII/TIIIES	166	WB	0	0	0	0	0	0
#4875	Terry Fox/March	63	WB	0	18	18	14	34	48
#4075	Terry FUX/IVIAICI	110	NB	1	0	1	3	0	3
#6155	Terry Fox/March	63	EB	5	14	19	0	8	8
#0100	Terry FUX/IVIAICI	110	SB	1	29	30	0	34	34
#7994	March/Ad. 501	63	EB	0	14	14	0	9	9

Table 23: Transit Utilization

1. tph: transit trips per hour

A discussion of the site-generated impacts to OC Routes 63, 64, 110, and 166 during the weekday peak hours is included below.

Route 63 (eastbound, to Tunney's Pasture / Gatineau)

At stops #6155 and #7994, the proposed development is projected to generate an additional 20 AM boarding trips, seven AM alighting trips, 14 PM boarding trips, and eight PM alighting trips per stop. As route 63 runs on approximately 15-minute headways during the peak hours, this equates to approximately five AM boardings, two AM alightings, four PM boardings, and two PM alightings per bus at both stops.

The existing average bus loads at departure are five riders in the AM peak and three riders in the PM peak. Accounting for the above trips at both stops, the average bus loads when departing stop #7994 are anticipated to increase from five riders to 15 riders during the AM peak hour, and from three riders to 11 riders during the PM peak hour.

Route 63 (westbound, to Innovation / Briarbrook)

At stops #1820 and #4875, the proposed development is projected to generate an additional ten AM boarding trips, 13 AM alighting trips, nine PM boarding trips, and 17 PM alighting trips per stop. As route 63 runs on approximately 15-minute headways during the peak hours, this equates to approximately three AM boardings, four AM alightings, three PM boardings, and five PM alightings per bus at both stops.

The existing average bus loads at departure are one rider in the AM peak and six riders in the PM peak. Accounting for the above trips, the average bus loads when departing stop #4875 are anticipated to increase from one rider to six riders during the AM peak hour, and from six riders to 11 riders during the PM peak hour.

Route 64 (eastbound, to Tunney's Pasture)

At stop #1175, the proposed development is projected to generate an additional 41 AM boarding trips and 29 PM boarding trips. At stop #1177, the proposed development is projected to generate an additional 16 AM alighting trips and 17 PM alighting trips. As route 64 runs on approximately 15minute headways during the peak hours, this equates to approximately 11 AM boardings, four AM alightings, eight PM boardings, and five PM alightings per bus at these stops.

The existing average bus loads at departure are five riders in the AM peak at both stops, two riders in the PM peak at stop #1177, and four riders in the PM peak at stop #1175. Accounting for the above trips, the average bus loads when departing stop #1175 are anticipated to increase from five riders to 16 riders during the AM peak hour, and from four riders to 12 riders during the PM peak hour. The average bus loads when arriving at stop #1177 are anticipated to increase from five riders to nine riders during the AM peak hour, and from two riders to seven riders during the PM peak hour.

Route 64 (westbound, to Innovation / Morgan's Grant)

At stop #1176, the proposed development is projected to generate an additional 21 AM boarding trips and 18 PM boarding trips. At stop #1174, the proposed development is projected to generate an additional 25 AM alighting trips and 34 PM alighting trips. As route 64 runs on approximately 15minute headways during the peak hours, this equates to approximately five AM boardings, seven AM alightings, five PM boardings, and nine PM alightings per bus at these stops. The existing average bus loads at departure are two riders in the AM peak at both stops, six riders in the PM peak at stop #1176, and seven riders in the PM peak at stop #1174. Accounting for the above trips, the average bus loads when departing stop #1176 are anticipated to increase from two riders to seven riders during the AM peak hour, and from six riders to 11 riders during the PM peak hour. The average bus loads when arriving at stop #1174 are anticipated to increase from two riders to nine riders during the AM peak hour, and from seven riders to 17 riders during the PM peak hour.

Route 110 (northbound, to Innovation)

The proposed development is not projected to generate any trips for this route and direction, as the route terminates at Innovation Station (i.e. within one kilometre of the Subject Site).

Route 110 (southbound, to Fallowfield)

At stop #6155, the proposed development is projected to generate an additional 41 AM boarding trips, 25 AM alighting trips, 29 PM boarding trips, and 34 PM alighting trips. As route 110 runs on approximately 30-minute headways during the peak hours, this equates to approximately 21 AM boardings, 13 AM alightings, 15 PM boardings, and 17 PM alightings per bus.

The existing average bus load at departure is one rider during both the AM and PM peaks. Accounting for the above trips, the average bus loads when departing stop #6155 are anticipated to increase from one rider to 22 riders during the AM peak hour, and from one rider to 16 riders during the PM peak hour.

Route 166 (northbound, to Innovation)

At stop #1174, the proposed development is projected to generate an additional 19 AM alighting trips. Route 166 runs once during the AM peak hour, in the northbound direction only.

The existing average bus load at departure is one rider during the AM peak. Accounting for the above trips, the average bus load when arriving at stop #1174 is anticipated to increase from one rider to 20 riders during the AM peak hour.

Route 166 (southbound, to Eagleson)

At stop #1175, the proposed development is projected to generate an additional 21 PM boarding trips. Route 166 runs once during the PM peak hour, in the southbound direction only.

The existing average bus load at departure is one rider during the PM peak. Accounting for the above trips, the average bus load when departing stop #1175 is anticipated to increase from one rider to 22 riders during the PM peak hour.

Based on the above, the proposed development is not anticipated to necessitate more frequent service for OC Routes 63, 64, 110, and 166.

As discussed in Section 2.2.1, the Affordable RTTP Network identifies at-grade BRT on March Road between Highway 417 and Solandt Road, along with transit priority signals and/or queue jump lanes on March Road between Solandt Road and the urban boundary. A future rapid transit station at Solandt Road will be located within 600m walking distance of the proposed development. These improvements to the transit service in the area is anticipated to increase the transit share of those travelling to/from the proposed development.

4.4 Network Concept

The current zoning of the Subject Site permits a total GFA of approximately 1,415,000 ft². From a traffic generation perspective, the 'worst case' would be constructing an office of this size. Based on the General Office Building land use rates included in the *ITE Trip Generation Manual*, 11th *Edition*, this would result in approximately 2,093 person trips during the AM peak hour and 1,917 person trips during the PM peak hour.

Per the *2017 TIA Guidelines*, the Network Concept module is only required when a proposed development generates more than 200 person trips during the peak hour in excess of the equivalent volume permitted by the established zoning. Since the proposed development will not generate more than the maximum development permitted by the established zoning, this module is exempt.

4.5 Intersection Design

4.5.1 Existing Intersection MMLOS Review

This section provides a review of the signalized study area intersections using complete streets principles. All intersections within the study area have been evaluated for PLOS, BLOS, TLOS, and TkLOS. Since the *MMLOS Guidelines* refer to the land use designations outlined in the City's previously adopted Official Plan, those designations have been considered for the purposes of this review.

The MMLOS targets associated with the 'General Urban Area' designation have been used to evaluate March Road/Morgan's Grant Way/Shirley's Brook Drive, and the targets associated with the 'Employment Area' designation have been used to evaluated March Road/Solandt Road. Since March Road/Terry Fox Drive and Terry Fox Drive/Flamborough Way/Innovation Drive are located in both land use designations, whichever target is stricter has been used in evaluation of these intersections. The full intersection MMLOS analysis is included in **Appendix N**. A summary of the results is shown in **Table 24**.

Intersection	PLOS		BLOS		TLOS		TkLOS	
Intersection	Actual	Target	Actual	Target	Actual	Target	Actual	Target
March Road/ Morgan's Grant Way/Shirley's Brook Drive	F	С	F	В	F	D	С	D
March Road/ Terry Fox Drive	F	С	F	В	F	D	А	В
March Road/ Solandt Road	F	С	F	С	F	В	А	В
Terry Fox Drive/ Flamborough Way/Innovation Drive	F	С	F	В	F	-	С	В

Table 24: Intersection MMLOS Summary

The results of the intersection MMLOS analysis can be summarized as follows:

- No study area intersections meet the target PLOS;
- No study area intersections meet the target BLOS;
- No study area intersections along March Road meet the target TLOS;
- All study area intersections meet the target TkLOS, except for Terry Fox Drive/Flamborough Way/Innovation Drive.

March Road/Morgan's Grant Way/Shirley's Brook Drive

This intersection does not meet the target PLOS C, BLOS B, or TLOS D.

All approaches have a divided cross-section with a width equivalent to ten lanes crossed or more (assuming a lane width equals 3.5m, per the *MMLOS Guidelines*). There is limited opportunity in improving the PLOS at each approach without reducing the number of travel lanes or restricting turning movements. No approaches meet the City's vehicle/pedestrian conflict threshold for zebra-striped crosswalks (greater than 400,000 vehicle/pedestrian conflicts over an eight-hour period). There is limited opportunity in improving the delay score for pedestrians without incurring major delays for vehicles.

The north, south, and east approaches do not meet the target BLOS based on left turn characteristics. Per Exhibit 12 of the *MMLOS Guidelines*, the target BLOS can be achieved at the east approach by reducing the operating speed to 40 km/h (which is the current speed limit on Shirley's Brook Drive). For left turns from the north and south approaches, cyclists are required to cross multiple lanes of traffic, on a roadway with a posted speed limit of 80 km/h. Given that all right turn movements are channelized at this intersection, the implementation of two-stage left-turn bike boxes at all approaches would not require a right turns on red (RTOR) restriction. This would require the stop bars at all approaches to be shifted away from the intersection. These measures are identified for the City's consideration.

The east approach does not meet the target TLOS. As Shirley's Brook Drive is not designated as a transit priority route, no modifications are not recommended for the east approach.

March Road/Terry Fox Drive

This intersection does not meet the target PLOS C, BLOS B, or TLOS D.

All approaches have a divided cross-section with a width equivalent to ten lanes crossed or more. There is limited opportunity in improving the PLOS at each approach without reducing the number of travel lanes or restricting turning movements. The north and south approaches meet the City's vehicle/pedestrian conflict threshold for zebra-striped crosswalks. There is limited opportunity in improving the delay score for pedestrians without incurring major delays for vehicles.

All approaches do not meet the target BLOS, based on both left and right turn characteristics. Given that all right turn movements are channelized at this intersection, the implementation of two-stage left turn-bike boxes at all approaches would not require a RTOR restriction. This would require the stop bars at all approaches to be shifted away from the intersection. This is identified for the City's consideration. Exhibit 12 of the *MMLOS Guidelines* identifies that the target BLOS can be met by shortening the right turn lanes to 50m or shorter. Given the high traffic volumes at this intersection, this is not recommended.

The east and west approaches do not have a target TLOS, but the approach delays of approximately 35 to 45 seconds during the peak hours are noted. The City's RTTP Affordable Network includes transit priority signals and queue jump lanes on March Road north of Solandt Road, and would be expected to improve the delays for northbound/southbound transit vehicles. Future conversion to median BRT is anticipated to further improve the delays for buses travelling along March Road.

March Road/Solandt Road

This intersection does not meet the target PLOS C, BLOS C, or TLOS B.

All approaches have a divided cross-section with a width equivalent to ten lanes crossed or more. There is limited opportunity in improving the PLOS at each approach without reducing the number of travel lanes or restricting turning movements. No approaches meet the City's vehicle/pedestrian conflict threshold for zebra-striped crosswalks. There is limited opportunity in improving the delay score for pedestrians without incurring major delays for vehicles.

The east approach does not meet the target BLOS based on left turn characteristics, and the west approach does not meet the target BLOS based on both left and right turn characteristics. For left turning cyclists on all approaches, they are required to cross at least one lane of traffic on roads with an operating speed of 50 km/h or greater. Two-stage left-turn bike boxes have recently been implemented for northbound and southbound cyclists. Implementing this improvement for eastbound and westbound cyclists as well is identified for the City's consideration.

For cyclists interacting with right turning vehicles, the right turn lanes at the north and west approaches are greater than 50m, and the bike lane shifts to the left of the right turn lane at the south approach. Exhibit 12 of the *MMLOS Guidelines* identifies that the target BLOS can be met by shortening the right turn lanes to 50m or shorter. Given the high traffic volumes at this intersection, this is not recommended.

The north and south approaches do not meet the target TLOS. The east and west approaches do not have a target TLOS, however delays are significant. The City's RTTP Affordable Network includes at-grade median BRT on March Road south of Solandt Road, and transit signal priority and queue jump lanes north of Solandt Road. These initial measures are anticipated to improve the delays for transit vehicles to the target TLOS or better. Future conversion to median BRT along the entire March Road corridor is anticipated to further improve the delays for buses travelling along March Road.

Terry Fox Drive/Flamborough Way/Innovation Drive

This intersection does not meet the target PLOS C, BLOS B, or TkLOS B.

All approaches have a divided cross-section with a width equivalent to five to eight lanes crossed. There is limited opportunity in improving the PLOS at each approach without reducing the number of travel lanes or restricting turning movements. The west approach meets the City's vehicle/ pedestrian conflict threshold for zebra-striped crosswalks. There is limited opportunity in improving the delay score for pedestrians without incurring major delays for vehicles.

All approaches do not meet the target BLOS based on left turn characteristics, and additionally, the east and west approaches do not meet the target BLOS based on right turn characteristics. For left turning cyclists on all approaches, they are required to cross one lane of traffic on roads with an operating speed of 50 or 60 km/h. Exhibit 12 of the *MMLOS Guidelines* identifies that the target BLOS requires the implementation of two-stage left-turn bike boxes on all approaches, which would require RTOR restrictions. This is identified for the City's consideration.

For cyclists interacting with right turning vehicles, the right turn lanes at the east and west approaches are greater than 50m. Exhibit 12 of the *MMLOS Guidelines* identifies that the target BLOS can be met by shortening the right turn lanes to 50m or shorter. Given the magnitude of right-turning traffic volumes at this intersection, this is not recommended.

All approaches do not meet the target TkLOS. While the effective corner radii of each corner is greater than 15m (i.e. the best possible, per Exhibit 21 of the *MMLOS Guidelines*), the target TkLOS can only be achieved by providing multiple receiving lanes. Since Flamborough Way and Innovation Drive are not classified as truck routes, no recommendations are identified.

4.5.2 Preliminary Intersection Review of Proposed March Road Access

The proposed signalized intersection at March Road/Nokia Access/Site Access will have the following lane configuration for each approach:

- Northbound Approach (March Road): one left turn lane, two through lanes, and one right turn lane;
- Southbound Approach (March Road): one left turn lane, two through lanes, and one shared through/right turn lane;
- Eastbound Approach (Site Access): one left turn lane and one shared through/right turn lane;
 Weathound Approach (Nekia Access);
- Westbound Approach (Nokia Access): one left turn lane and one shared through/right turn lane.

This intersection will undergo a detailed MMLOS review as part of a future Site Plan Control application, when functional designs of the intersection are developed. At this stage, it is proposed that the new intersection will be a fully protected intersection, constructed to City of Ottawa standards. As a fully-protected intersection, the new intersection is anticipated to achieve the following multi-modal levels of service:

- PLOS F, due to the crossing distance for pedestrians along March Road;
- BLOS A, as each approach will accommodate left and right turns for cyclists outside of the roadway platform;
- TLOS E, as the north and south approaches are anticipated to operate with approximately 15 to 40 seconds of delay during the peak hours;
- The TkLOS will be confirmed when the functional designs are developed. Turning movements will be completed at all approaches to ensure the largest design vehicles can navigate the intersection safely.

Isolated transit priority measures on March Road at this new intersection (such as queue jump lanes) can be considered when functional designs of the intersection are developed. Isolated measures like queue jump lanes could mitigate the delay for northbound and southbound transit vehicles, and would be consistent with the City's Affordable RTTP Network, which identifies isolated transit priority measures on March Road north of Solandt Road.

4.5.3 2037 Total Intersection Operations

Intersection capacity analysis has been conducted for the 2037 total traffic conditions. As identified in Section 3.4.2, it is assumed that dual westbound left turn lanes are maintained at the March Road/Solandt Road intersection following implementation of the BRT. The results of the analysis are summarized in **Table 25** and **Table 26** for the weekday AM and PM peak hours. Detailed reports are included in **Appendix O**.

Table 25: 2037 Total Traffic Operations

		Critic	al Move	ements		ntersectio	n
Intersection	Period	Max v/c or Delay	LOS	Mvmt	v/c	Delay	LOS
March Road/Morgan's Grant	AM	0.60	Α	SBL	0.39	16 sec	Α
Way/Shirley's Brook Drive ⁽¹⁾	PM	0.75	С	SBL	0.68	18 sec	В
March Road/	AM	0.78	С	SBL	0.67	31 sec	В
Terry Fox Drive ⁽¹⁾	PM	0.85	D	EBL	0.79	35 sec	С
March Road/	AM	1.15	F	SBT/R	1.07	62 sec	F
Solandt Road ⁽¹⁾	PM	1.06	F	NBT/R	1.02	58 sec	F
Terry Fox Drive/Flamborough	AM	0.54	Α	SBL	0.38	17 sec	А
Way/Innovation Drive ⁽¹⁾	PM	0.71	С	NBL	0.45	22 sec	А
Innovation Drive/	AM	11 sec	В	WB			
Hines Road ⁽²⁾	PM	9 sec	Α	EB		-	
March Road/	AM	0.90	D	WBL	0.65	32 sec	В
Nokia Access/Site Access ⁽¹⁾	PM	0.95	E	NBT	0.92	28 sec	Е
Terry Fox Drive/	AM	16 sec	С	NB			
Site Access ⁽²⁾	PM	18 sec	С	NB	-		
Hines Road/	AM	9 sec	Α	WB			
Site Access ⁽²⁾	PM	9 sec	А	WB		-	

1. Signalized intersection

2. Unsignalized intersection

Table 26: 2037 Total – Critical Queues

	Mvmt	Storage/ Spacing ⁽¹⁾	AM Peak			PM Peak		
Intersection			v/c [LOS]	50 th % Queue (m)	95 th % Queue (m)	v/c [LOS]	50 th % Queue (m)	95 th % Queue (m)
March Road/ Terry Fox Drive	NBL	130m	0.67 [B]	22	34	0.78 [C]	43	m45
	NBT	280m	0.42 [A]	74	93	0.84 [D]	64	m#165
	EBL	95m	0.73 [C]	16	#33	0.85 [D]	31	#54
March Road/ Solandt Road	NBL	165m	0.59 [A]	43	#126	0.59 [A]	20	#50
	NBT/R	200m	0.88 [D]	189	#294	1.06 [F]	~273	#371
	SBT/R	520m	1.15 [F]	~276	#304	0.94 [E]	178	#261
	WBL	135m	0.62 [B]	9	#18	0.88 [D]	~42	#66
March Road/ Nokia Access/ Site Access	NBL	TBC ⁽²⁾	0.69 [B]	28	m42	0.53 [A]	1	m3
	NBT	375m	0.60 [A]	82	m117	0.95 [E]	~213	m10
	SBL	TBC ⁽²⁾	0.77 [C]	59	47	0.69 [B]	15	m#39
	SBT	280m	0.63 [B]	141	157	0.49 [A]	27	74
	WBL	TBC ⁽²⁾	0.90 [D]	43	#70	0.90 [D]	43	#77

1: Indicates the storage length for auxiliary lanes or the spacing to the nearest upstream intersection/access for through lanes

2. Storage requirements for SBL and WBL movements to be confirmed as part of future Site Plan Control applications

#: Volume for the 95th percentile cycle exceeds capacity m: Queue is metered by an upstream signal

m: Queue is metered by an upstrea

~: Approach is above capacity

From the previous tables, critical movements at the study area intersections generally operate at an acceptable level of service, with the exception of the southbound through/right turn movement at March Road/Solandt Road during the AM peak hour and the northbound through/right turn movement at March Road/Solandt Road during the PM peak hour.

Northbound through queues at March Road/Terry Fox Drive and southbound through queues at March Road/Nokia Access/Site Access do not extend into the opposite intersection. Based on the maximum northbound left turn queues at March Road/Terry Fox Drive, the existing northbound left turn storage length could be reduced to accommodate a longer southbound left turn lane at March

Road/Nokia Access/Site Access. A functional design and Roadway Modification Approval (RMA) submission for this modification will be provided as part of a subsequent Site Plan Control application.

Based on the projected 2037 total traffic volumes, it is anticipated that an auxiliary westbound left turn lane will be required at the proposed access to Terry Fox Drive. A review of the most relevant left turn lane storage graphs included in the Ministry of Transportation of Ontario (MTO)'s Design Supplement to the Transportation Association of Canada (TAC)'s Geometric Design Guide for Canadian Roads has been conducted to determine the storage length required. In this scenario, the most relevant graphs are Exhibit 9A-10 and 9A-11, which are used for roadways with a design speed of 70km/h. During the AM peak hour, the westbound left-turning volume is approximately 15% of the total advancing volume (corresponding to Exhibit 9A-11). During the PM peak hour, the westbound left-turning volume is approximately 10% of the total advancing volume (corresponding to Exhibit 9A-10). In both exhibits, a storage length of 30m is required. These exhibits are included in Appendix P. It is anticipated that the required auxiliary westbound left turn lane at the Terry Fox access can be accommodated without impacting the eastbound left turn storage at March Road/Terry Fox Drive, by widening of the existing median on Terry Fox Drive and shifting the alignment of the westbound lanes on Terry Fox Drive in front of the subject site. A functional design and RMA submission for this modification will be provided as part of a subsequent Site Plan Control application.

5.0 CONCLUSIONS AND RECOMMENDATIONS

Based on the foregoing, the conclusions and recommendations of this TIA can be summarized as follows:

Forecasting

• The proposed development as a whole is estimated to generate 1,232 person trips during the AM peak hour (including 611 external vehicle trips) and 1,382 person trips during the PM peak hour (including 662 external vehicle trips).

Transportation Demand Management

 While the final list of TDM measures to be implemented by the proposed development will be confirmed at the Site Plan Control application stage, the proponent has agreed to consider a suite of TDM measures for non-residential and residential developments at this time.

<u>Transit</u>

- The proposed development is anticipated to generate the following number of external transit trips:
 - o 287 transit trips during the AM peak hour (124 trips in, 163 trips out);
 - o 279 transit trips during the PM peak hour (136 trips in, 143 trips out).
- The proposed development is not anticipated to necessitate more frequent service for OC Routes 63, 64, 110, and 166.

Intersection MMLOS

- The results of the intersection MMLOS analysis can be summarized as follows:
 - No study area intersections meet the target pedestrian level of service (PLOS);
 - No study area intersections meet the target bicycle level of service (BLOS);
 - No study area intersections along March Road meet the target transit level of service (TLOS);
 - All study area intersections meet the target truck level of service (TkLOS), except for Terry Fox Drive/Flamborough Way/Innovation Drive.
- There is limited opportunity in improving the PLOS at any approach without reducing the number of travel lanes, restricting turning movements, or removing right turn channels. There is also limited opportunity in improving the delay score at any intersection to the target PLOS.
- The north, south, and east approaches of March Road/Morgan's Grant Way/Shirley's Brook Drive do not meet the target BLOS. The target BLOS can be achieved at the east approach by reducing the operating speed to 40 km/h (which is the current speed limit on Shirley's Brook Drive). For left turns from the north and south approaches, the implementation of twostage left-turn bike boxes at all approaches would not require a right turns on red (RTOR) restriction. This would require the stop bars at all approaches to be shifted away from the intersection. These measures are identified for the City's consideration.
- All approaches of March Road/Terry Fox Drive do not meet the target BLOS. Given that all
 right turn movements are channelized at this intersection, the implementation of two-stage
 left turn-bike boxes at all approaches would not require a RTOR restriction. This would
 require the stop bars at all approaches to be shifted away from the intersection. This is
 identified for the City's consideration. The target BLOS can be met by shortening the right
 turn lanes to 50m or shorter. Given the high traffic volumes at this intersection, this is not
 recommended.
- The east and west approaches of March Road/Solandt Road does not meet the target BLOS. Two-stage left-turn bike boxes have recently been implemented for northbound and southbound cyclists. Implementing this improvement for eastbound and westbound cyclists as well is identified for the City's consideration. For cyclists interacting with right turning vehicles, the right turn lanes at the north and west approaches are greater than 50m, and the bike lane shifts to the left of the right turn lane at the south approach. The target BLOS can be met by shortening the right turn lanes to 50m or shorter. Given the high traffic volumes at this intersection, this is not recommended.
- All approaches of Terry Fox Drive/Flamborough Way/Innovation Drive do not meet the target BLOS. The target BLOS requires the implementation of two-stage left-turn bike boxes on all approaches, which would require RTOR restrictions. This is identified for the City's consideration. For cyclists interacting with right turning vehicles, the right turn lanes at the east and west approaches are greater than 50m. The target BLOS can be met by shortening the right turn lanes to 50m or shorter. Given the magnitude of right-turning traffic volumes at this intersection, this is not recommended.

- The City's RTTP Affordable Network includes at-grade median bus rapid transit (BRT) on March Road south of Solandt Road, and transit signal priority and queue jump lanes north of Solandt Road. These initial measures are anticipated to improve the delays for transit vehicles to the target TLOS or better. Future conversion to median BRT along the entire March Road corridor is anticipated to further improve the delays for buses travelling along March Road.
- While the effective corner radii of each corner at Terry Fox Drive/Flamborough Way/ Innovation Drive is greater than 15m, the target TkLOS can only be achieved by providing multiple receiving lanes. Since Flamborough Way and Innovation Drive are not classified as truck routes, no recommendations are identified.
- The proposed signalized intersection at March Road/Nokia Access/Site Access is anticipated to be a fully protected intersection, with the following lane configuration:
 - Northbound approach (March Road): one left turn lane, two through lanes, and one right turn lane;
 - Southbound approach (March Road):
 one left turn lane, two through lanes, and one shared through/right turn lane;
 - Eastbound approach (Site Access): one left turn lane and one shared through/right turn lane;
 - Westbound approach (Nokia Access): one left turn lane and one shared through/right turn lane.
- It is anticipated that the new signalized intersection will achieve a PLOS F, BLOS A, and TLOS E. All MMLOS scores will be confirmed as functional designs of the intersection are developed.

Existing Traffic Operations

• All study area intersections operate at an acceptable level of service during the AM and PM peak hours.

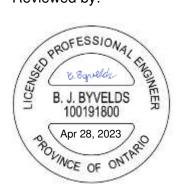
Background Traffic Operations

- Critical movements at the study area intersections generally operate at an acceptable level
 of service, with the exception of the westbound left turn movement at March Road/Solandt
 Road during the PM peak hour. Per the functional design of the March Road BRT, one of
 the westbound left turn lanes will be removed. It is anticipated that this is the primary driver
 for the failing vehicular level of service of this movement, and therefore it is recommended
 that the dual westbound left turn lanes are maintained at this intersection.
- To achieve the target vehicular level of service (Auto LOS) E at March Road/Solandt Road, a reduction of approximately 110 southbound through/right turning vehicles is required during the AM peak hour, and a reduction of approximately 45 northbound through/right turning vehicles are required during the PM peak hour.

Total Traffic Operations

- Northbound through queues at March Road/Terry Fox Drive and southbound through queues at March Road/Nokia Access/Site Access do not extend into the opposite intersection. Based on the maximum northbound left turn queues at March Road/Terry Fox Drive, the existing northbound left turn storage length could be reduced to accommodate a longer southbound left turn lane at March Road/Nokia Access/Site Access. A functional design and Roadway Modification Approval (RMA) submission for this modification will be provided as part of a subsequent Site Plan Control application.
- It is anticipated that an auxiliary westbound left turn lane will be required at the proposed access to Terry Fox Drive. A review of the most relevant left turn lane storage graphs included in the Ministry of Transportation of Ontario (MTO)'s *Design Supplement to the Transportation Association of Canada (TAC)'s Geometric Design Guide for Canadian Roads* has been conducted to determine that a storage length of 30m is required. A functional design and RMA submission for this modification will be provided as part of a subsequent Site Plan Control application.

Based on the foregoing, the proposed development is recommended from a transportation perspective.


NOVATECH

Prepared by:

Joshua Audia, P.Eng. Project Engineer | Transportation

Reviewed by:

Brad Byvelds, P.Eng. Project Manager | Transportation

APPENDIX A

Concept Plan

Concept Plan

APPENDIX B

TIA Screening Form

City of Ottawa 2017 TIA Guidelines Screening Form

1. Description of Proposed Development

Municipal Address	555, 591, 595, and 603 March Road	
Description of Location	Approx. 13.6 acres in area, located at the southwest corner of March Road/Terry Fox Drive	
Land Use Classification	Residential, office, and retail	
Development Size (units)	2,100 dwellings	
Development Size (m ²)	Approx. 154,178 ft ² (14,324 m ²) GFA of office space; Approx. 31,482 ft ² (2,925 m ²) GFA of commercial space	
Number of Accesses and Locations	One access proposed to each of March Road, Terry Fox Drive, and Hines Road	
Phase of Development	4	
Buildout Year	2037	

If available, please attach a sketch of the development or site plan to this form.

2. Trip Generation Trigger

Considering the Development's Land Use type and Size (as filled out in the previous section), please refer to the Trip Generation Trigger checks below.

Land Use Type	Minimum Development Size		
Single-family homes	40 units		
Townhomes or apartments	90 units		
Office	3,500 m ²		
Industrial	5,000 m ²		
Fast-food restaurant or coffee shop	100 m ²		
Destination retail	1,000 m ²		
Gas station or convenience market	75 m ²		

* If the development has a land use type other than what is presented in the table above, estimates of person-trip generation may be made based on average trip generation characteristics represented in the current edition of the Institute of Transportation Engineers (ITE) Trip Generation Manual.

If the proposed development size is greater than the sizes identified above, <u>the Trip Generation</u> <u>Trigger is satisfied.</u>

3. Location Triggers

	Yes	No
Does the development propose a new driveway to a boundary street that is designated as part of the City's Transit Priority, Rapid Transit or Spine Bicycle Networks?	\checkmark	
Is the development in a Design Priority Area (DPA) or Transit-oriented Development (TOD) zone?*		\checkmark

*DPA and TOD are identified in the City of Ottawa Official Plan (DPA in Section 2.5.1 and Schedules A and B; TOD in Annex 6). See Chapter 4 for a list of City of Ottawa Planning and Engineering documents that support the completion of TIA).

If any of the above questions were answered with 'Yes,' the Location Trigger is satisfied.

4. Safety Triggers

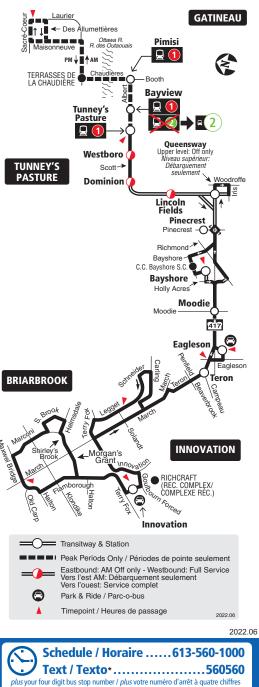
	Yes	No
Are posted speed limits on a boundary street are 80 km/hr or greater?	\checkmark	
Are there any horizontal/vertical curvatures on a boundary street limiting sight lines at a proposed driveway?		\checkmark
Is the proposed driveway within the area of influence of an adjacent traffic signal or roundabout (i.e. within 300 m of intersection in rural conditions, or within 150 m of intersection in urban/suburban conditions)?	\checkmark	
Is the proposed driveway within auxiliary lanes of an intersection?	\checkmark	
Does the proposed driveway make use of an existing median break that serves an existing site?	\checkmark	
Is there is a documented history of traffic operations or safety concerns on the boundary streets within 500 m of the development?		\checkmark
Does the development include a drive-thru facility?		\checkmark

If any of the above questions were answered with 'Yes,' the Safety Trigger is satisfied.

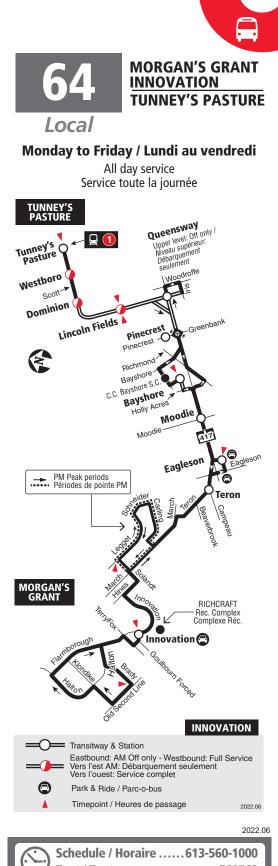
5. Summary

	Yes	No
Does the development satisfy the Trip Generation Trigger?	\checkmark	
Does the development satisfy the Location Trigger?	\checkmark	
Does the development satisfy the Safety Trigger?	\checkmark	

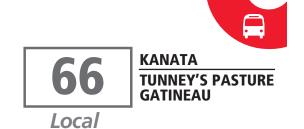
If none of the triggers are satisfied, <u>the TIA Study is complete</u>. If one or more of the triggers is satisfied, <u>the TIA Study must continue into the next stage</u> (Screening and Scoping).


APPENDIX C

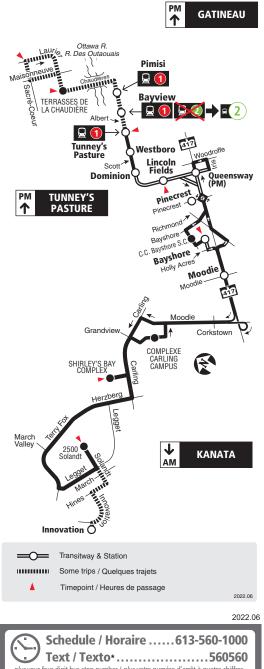
OC Transpo Information



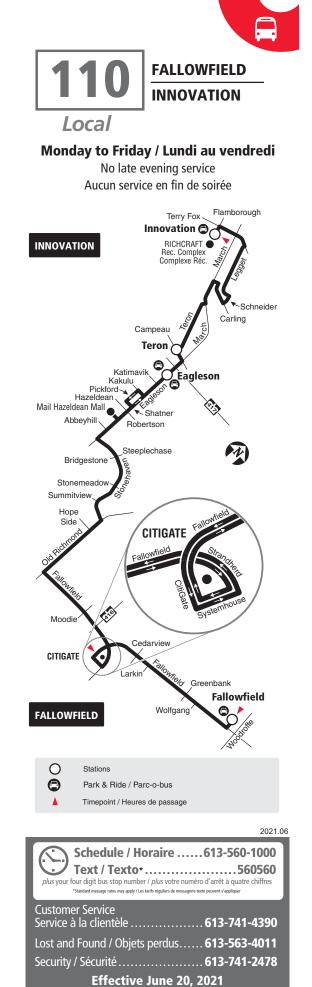
7 days a week / 7 jours par semaine


All day service Service toute la journée

plus your four digit bus stop number /	560560 <i>plus</i> votre numéro d'arrêt à quatre chiffres fs réguliers de messagerie texte peuvent s'appliquer
Customer Service Service à la clientèle	613-560-5000
Lost and Found / Objets p	perdus 613-563-4011
Security / Sécurité	613-741-2478
	lune 26, 2022 r 26 juin 2022
C Transpo	INFO 613-560-5000 octranspo.com



<i>plus</i> your four digit bus stop number /	caire613-560-1000
Customer Service Service à la clientèle	613-560-5000
Security / Sécurité	erdus 613-563-4011 613-741-2478 une 26, 2022
	26 juin 2022
CC Transpo	INFO 613-560-5000 octranspo.com



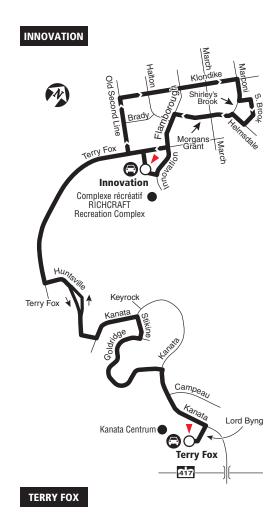
Monday to Friday / Lundi au vendredi

Peak periods only Périodes de pointe seulement

Plus your four digit bus stop number / plus votre numéro d'arrêt à quatre chiffres *standard message rates may apply / Les tarifs réguliers de messagerie texte peuvent s'appliquer
Customer Service Service à la clientèle
Lost and Found / Objets perdus 613-563-4011 Security / Sécurité
Effective June 26, 2022 En vigueur 26 juin 2022
CC Transpo INFO 613-560-5000 octranspo.com

En vigueur 20 juin 2021

C Transpo

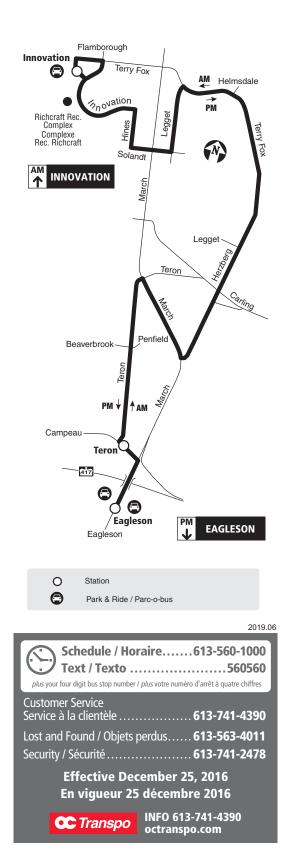

INFO 613-741-4390

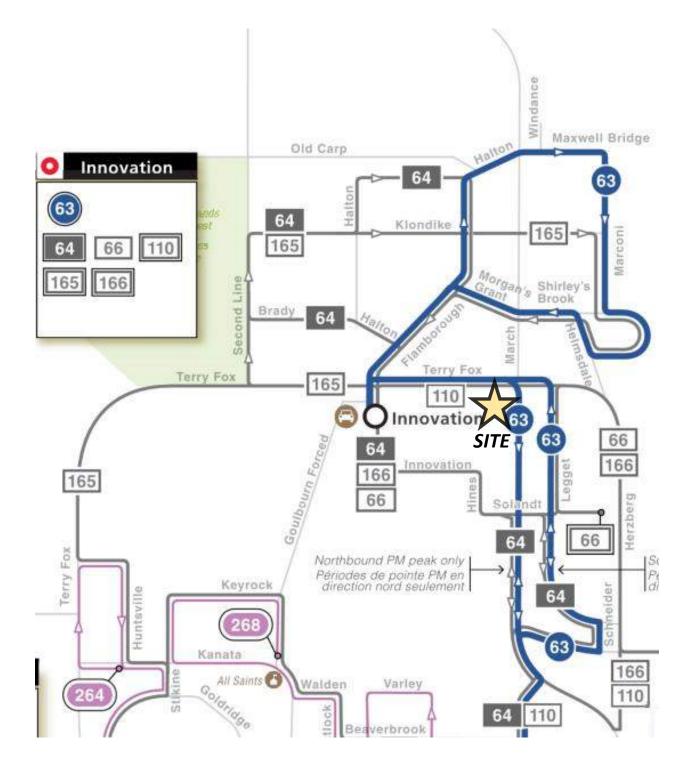
octranspo.com

Monday to Friday/ Lundi au vendredi

Selected time periods Périodes sélectionnées

0	Station
Θ	Park & Ride / Parc-o-bus
A	Timepoint / Heures de passage


2019.06


Schedule / Horaire613-560-1000 Text / Texto	- 1
Customer Service Service à la clientèle613-741-4390	
Lost and Found / Objets perdus 613-563-4011 Security / Sécurité 613-741-2478	
Effective December 25, 2016 En vigueur 25 décembre 2016	
CC Transpo INFO 613-741-4390 octranspo.com	

Monday to Friday/ Lundi au vendredi

Limited service / Service limité

From: Rathwell, Graham <graham.rathwell@ottawa.ca> Sent: Tuesday, September 13, 2022 8:34 AM To: Joshua Audia <j.audia@novatech-eng.com> Subject: RE: Transit Data Request - March/Terry Fox area

Hi again Josh,

My apologies again for the delay, the requested data is provided in the table below. This list of stops should be a sufficient representative sample, covering those closest to the site in question and all of the routes/directions available within a short walk distance.

Data is provided for the Spring 2022 schedule period which ran from April 24 to June 25. System wide, conventional bus ridership for this period was at 51% of the ridership for same period in 2019, pre-pandemic. A reminder that zero (0) values indicate a measured average value of zero rather than an absence of data, based on available APC data. Dashes (-) indicate that the route does not serve the stop in question in the given time period. In this case this applies only to Route 166, which is a special limited peak-direction service.

Spring	2022 (April 2	24 - June	e 25)	AN	/ (06:00-0	9:00)	PN	/ (15:00-1	8:00)	24-hr					
Stop	Location	Route	Dir	Board	Alight	Avg Load Departure	Board	Alight	Avg Load Departure	Board	Alight	Avg Load Departure			
1174	40 Hines	64	WB	1	6	2	0	1	7	1	10	3			
11/4	40 mines	166	EB	0	0	1	-	-	-	0	0	1			
1175	Hines/	64	EB	0	0	5	17	0	4	17	0	3			
1175	Innovation	166	WB	-	-	-	0	0	1	0	0	1			
1176	Innovation/	64	WB	0	8	2	0	1	6	0	13	3			
1170	Hines	166	EB	0	0	1	-	-	-	0	0	1			
1177	Innovation/	64	EB	0	0	5	9	0	2	10	0	2			
11//	Hines	166	WB	-	-	-	0	0	1	0	0	1			
4875	Terry Fox/	63	WB	0	1	1	0	29	6	1	51	3			
4075	March	110	NB	0	1	0	1	6	1	1	11	1			
6155	Terry Fox/	63	EB	3	0	5	11	0	3	29	0	3			
0155	March	110	SB	2	0	1	2	0	1	5	0	1			
7994	March/ AD. 501 63 EB 0 0 5		5	-	-	-	1	0	4						

Please let me know if there are any questions, or if there is any additional data that you require.

Thank you, Graham Rathwell

Transit Planner, Network Service Design Service Planning Branch Transit Services Department OC Transpo | City of Ottawa

APPENDIX D

Traffic Count Data

Turning Movement Count Summary Report Including Peak Hours, AADT and Expansion Factors All Vehicles Except Bicycles

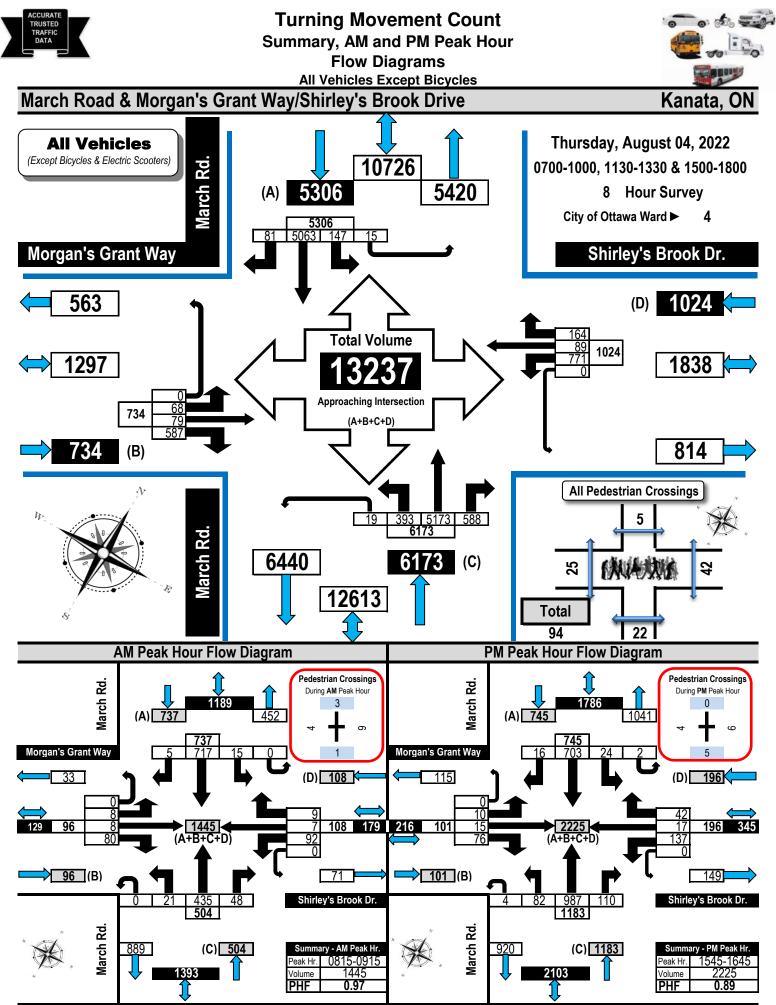
Kanata, ON

March Road & Morgan's Grant Way/Shirley's Brook Drive

Survey Date: Thursday, August 0					st 04,	, 2022						Start Time: 0700							0.9				
Veather AM	l:	Overc	ast 20	° C		Survey Duration: 8 Hrs.							ey Ho	ours:		0700-	1000	, 1130	800				
Veather PM	l:	Mostly	/ Clou	dy 28'	с								veyor(s):		T. Ca	rmod	y					
	Vay	Sh	irley	's Br	ook l	Dr.			Ма	rch l	Rd.			Ma	rch	Rd.							
		Ea	stbou	nd			We	stbou	Ind				No	rthbou	Ind			Sou	ıthbo	und			
Time Period	LT	ST	RT	UT	E/B Tot	LT	ST	RT	UT	W/B Tot	Street Total	LT	ST	RT	UT	N/B Tot	LT	ST	RT	UT	S/B Tot	Street Total	Grane Tota
0700-0800	4	8	82	0	94	74	7	9	0	90	184	20	267	26	1	314	5	594	4	1	604	918	
0800-0900	6	4	88	0	98	-	5	-	0	124	222	29	387	43	0	459	14	741	3			1217	143
0900-1000	6	8	82	0	96	-	14		0			29	446	51	1	527	15	617	10	1	643		
1130-1230	11	4	66	0	81	92	/	14	0			47	642	73	4			610	12	1	640		
1230-1330 1500-1600	12 8	11 13	61 58	0	84 79	83 91	8 14		0		197 213	44 70	631 818	74 93	3 6		15 23	613 600	11 12	3	-	1394 1628	
1600-1600	0 12	13	50 71	0	100	-	14	29 43	0	201	301	70	990	93 113	<u> </u>			668	12	÷		1897	219
1700-1800	9	14	79	0	100	98	17		0		243	77	992	115	÷	1185		620	16		664		209
Totals	68	79		0			89		-									5063					
	Totals68795870734771891640102417583935173588196173147506381155306114Equivalent 12 & 24-hour Vehicle Volumes Including the Annual Average Daily Traffic (AADT) Factor Applicable to the Day and Month of the Turning Movement CountExpansion factors are applied exclusively to standard weekday8-hour turning movement countconducted during the hours of 0700h - 1000h, 1130h - 1330h and 1500h - 1800h																ts						

Equ. 12 Hr	95	110 816	0 10	20 1072	124	228	0 1423	2444	546	7190	817	26 8580	204	7038	113	21 7	375 15956	18399
		Average o	aily 12-hou	r vehicle v	olumes.	These volu	imes are	calculate	ed by n	nultiplyi	ng the e	quivalent 12	hour t	otals by	the AA	DT facto	r of: 0.9	
AADT 12-hr	85	99 734	0 9	18 965	111	205	0 1281	2199	492	6471	736	24 7722	184	6334	101	19 6	638 14360	16559
	24-	Hour AADT.	These volur	nes are cal	culated I	oy multiply	ing the a	verage d	laily 12	-hour ve	ehicle v	olumes by th	e 12 🗭	24 expa	nsion f	actor of	1.31	
AADT 24 Hr	111	129 962	0 12	03 1264	146	269	0 1678	2881	644	8478	964	31 10116	241	8297	133	25 8	696 18812	21693

				A	ADT	and e	expa	nsia	on f	acto	ors pr	ovid	ed by	y the	Ci	ty of	Otta	awa					
AM Peak Hour Factor 🔿 0.97														Hig	hest	Hourly	y Vehi	icle Vo	lume	Betv	veen (700h 8	1000h
AM Peak Hr	LT	ST	RT	UT	Total	LT	ST	RT	UT	Total	Str. Tot.	LT	ST	RT	UT	Total	LT	ST	RT	UT	Total	Str. Tot.	Gr. Tot.
0815-0915	8	8	80	0	96	92	7	9	0	108	204	21	435	48	0	504	15	717	5	0	737	1241	1445
OFF Peak H	our Fa	ctor I	•	0.	98									Hig	hest	Hourly	y Vehi	icle Vo	lume	Betv	veen 1	130h 8	1330h
OFF Peak Hr	LT	ST	RT	UT	Total	LT	ST	RT	UT	Total	Str. Tot.	LT	ST	RT	UT	Total	LT	ST	RT	UT	Total	Str. Tot.	Gr. Tot.
1145-1245	12	9	64	0	85	86	8	17	0	111	196	42	676	78	3	799	17	629	12	1	659	1458	1654
PM Peak Ho	our Fac	tor 🗖		0.	89									Hig	hest	Hourly	y Vehi	icle Vo	lume	Betv	veen 1	500h 8	1800h
PM Peak Hr	LT	ST	RT	UT	Total	LT	ST	RT	UT	Total	Str. Tot.	LT	ST	RT	UT	Total	LT	ST	RT	UT	Total	Str. Tot.	Gr. Tot.
1545-1645	10	15	76	0	101	137	17	42	0	196	297	82	987	110	4	1183	24	703	16	2	745	1928	2225


Comments:

OC Transpo and Para Transpo buses, together with a few school buses, comprise 10.19% of the heavy vehicle traffic. The bicycle totals include 2 E-Scooters (stand-up type). The pedestrian crossing totals include 1 with accessibility issues using an electric wheelchair.

Notes:

1. Includes all vehicle types except bicycles, electric bicycles, and electric scooters.

2. When expansion and AADT factors are applied, the results will differ slightly due to rounding.

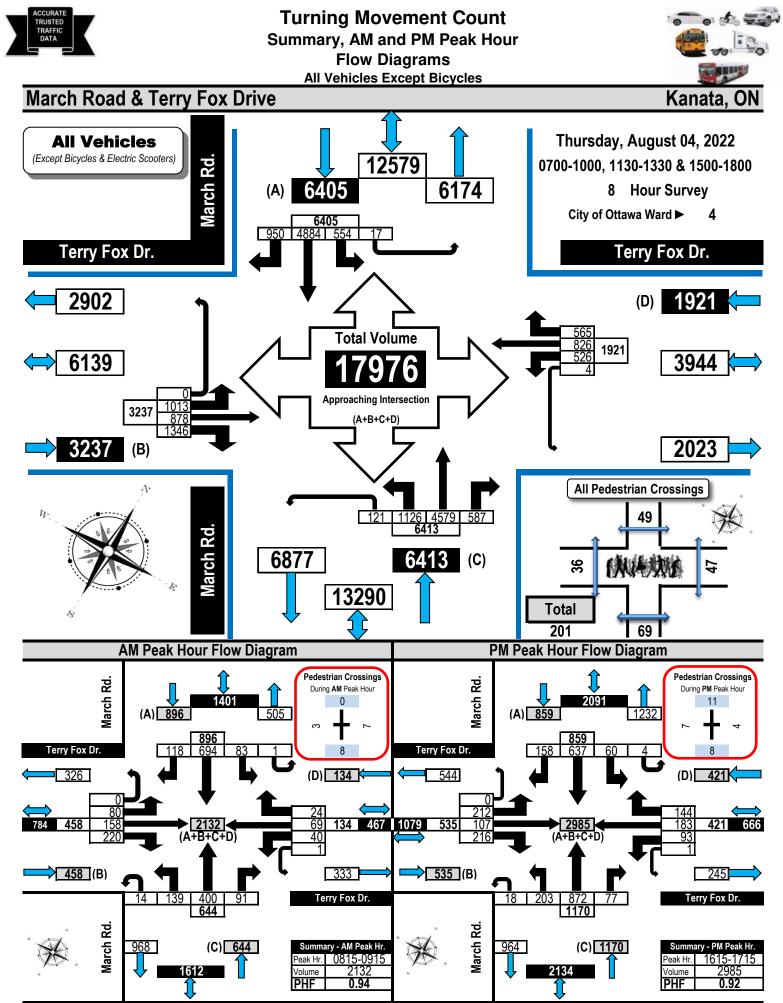
Prepared by: thetrafficspecialist@gmail.com

Flow Diagrams: AM PM Peak

March Road & Terry Fox Drive

March	Roa	d &	Ter	ry F	Тох	Driv	/e														Ka	anata	, ON
Survey Da	te:	Thurs	day, l	Augu	st 04,	2022						Start	Time	:		0700			AAD)T Fa	ctor:		0.9
Weather AM	Λ:	Overc	ast 22	°C		Su	rvey l	Durat	tion:	8	Hrs.	Surv	ev Ho	urs:		0700-	1000	. 1130	-133	0&1	500-18	00	
Weather PM		Mostly			° C					Ū			eyor(s			T. Ca		, ,		••••		•••	
Weather I h				<u>,</u>		_				-		Sulv				1. Ua	mou	<u> </u>					
		Гerry					「erry			r			-	rch I	-			-	rch	-			
		Eas	stbou	nd			We	stboı	ind				Noi	thbou	Ind			Soi	uthbo	und			
Time Period	LT	ST	RT	UT	E/B Tot	LT	ST	RT	UT	W/B Tot	Street Total	LT	ST	RT	UT	N/B Tot	LT	ST	RT	UT	S/B Tot	Street Total	Grand Total
0700-0800	35	87	151	0	273	32	37	11	0	80	353	71	267	52	10	400	50	630	59	1	740	1140	1493
0800-0900	67	130	194	0	391	29	50	19	1	99	490	127	369	96	14	606	85	743	111	0	939	1545	2035
0900-1000	87	158	157	0	402	45	74	36	0	155	557	131	418	78	16	643	71	589	113	2	775	1418	1975
1130-1230	129	104	146	0	379	75	111	82	-	268	647	125	550	82	14	771	85	583	112	0	780	1551	2198
1230-1330	141	100	130	0	371	76	84	70	1	231	602	125	530	76	18	749	75	554	121	3	753	1502	2104
1500-1600	146	89	167	0	402	81	118		0		694	-	752	54	21	955	63	567	127	2	759	1714	2408
1600-1700	214	119	207	0	540	87	194	137	0				819	78	20	1130	65	636	170	5	876	2006	2964
1700-1800	194	91	194	0	479	101	158		2			206	874	71	8	1159	60	582	137	4	783	1942	2799
Totals	1013	878	1346	0	3237	526	826	565	4	1921	5158	1126	4579	587	121	6413	554	4884	950	17	6405	12818	17976
	-	ion f cor	acto Iduc	ors a ted	Applie re a duri	cable pplie ng tl	e to t ed ex ne he	he D kclu burs	ay a sive of	and N ely to 0700	lonth o sta)h - 1	of th ndar 000h	e Tu d <u>we</u> 1, 11	rning ekd 30h	Mov <u>ay</u> 8 - 13	veme I-hou 30h a	nt C r tu and	ount rning 1500	j ma Dh -	over 180	Oh	tor count	S
Equ. 12 Hr	1408	•	alent 12 1871	2 -hour 0			es. Thes 1148				ulated by 7170					s by the 8914		-		ctor o 24		17817	24987
AADT 12-hr	1267		-							umes ar 2403		ated by 1409		-		alent 12 8023	_				actor of: 8013	0.9 16035	22488
AADT 24 Hr				_		_	1354 1354	-			average 8453					es by th 10510		-			r of 1.31 10497	21006	29459
						and	exp	ans	ion	fact	ors p	rovie	led I	-		-							
AM Peak He	our Fa	ctor •	•		94													ehicle	Volu	me B	etween	0700h 8	k 1000h
AM Peak Hr	LT	ST	RT	UT	Total	LT	ST	RT	UT	Total	Str. Tot.	LT	ST	RT	UT	Total	LT	ST	RT	UT	Total	Str. Tot.	Gr. Tot

AM Peak Ho	ur Fac	tor 🟓	•	0.	94									H	ighe	st Hou	rly Ve	hicle \	Volum	ne Be	etween	0700h &	1000h
AM Peak Hr	LT	ST	RT	UT	Total	LT	ST	RT	UT	Total	Str. Tot.	LT	ST	RT	UT	Total	LT	ST	RT	UT	Total	Str. Tot.	Gr. Tot.
0815-0915	80	158	220	0	458	40	69	24	1	134	592	139	400	91	14	644	83	694	118	1	896	1540	2132
OFF Peak Ho	our Fa	ctor <	•	0.	.97									H	ighe	st Hou	rly Ve	hicle \	Volum	ne Be	etween	1130h &	1330h
OFF Peak Hr	LT	ST	RT	UT	Total	LT	ST	RT	UT	Total	Str. Tot.	LT	ST	RT	UT	Total	LT	ST	RT	UT	Total	Str. Tot.	Gr. Tot.
1145-1245	144	114	135	0	393	83	110	95	1	289	682	143	577	86	14	820	85	588	117	0	790	1610	2292
PM Peak Ho	ur Fac	tor 🟓	•	0.	.92									H	ighe	st Hou	rly Ve	hicle \	Volum	ne Be	etween	1500h &	1800h
PM Peak Hr	LT	ST	RT	UT	Total	LT	ST	RT	UT	Total	Str. Tot.	LT	ST	RT	UT	Total	LT	ST	RT	UT	Total	Str. Tot.	Gr. Tot.
1615-1715	212	107	216	0	535	93	183	144	1	421	956	203	872	77	18	1170	60	637	158	4	859	2029	2985


Comments:

OC Transpo and Para Transpo buses, together with a few school buses, comprise 18.97% of the heavy vehicle traffic. The bicycle totals include 3 E-Scooters (stand-up type). The pedestrian crossing totals include 1 with accessibility issues using an electric wheelchair.

Notes:

1. Includes all vehicle types except bicycles, electric bicycles, and electric scooters.

2. When expansion and AADT factors are applied, the results will differ slightly due to rounding.

Prepared by: thetrafficspecialist@gmail.com

Flow Diagrams: AM PM Peak

Kanata, ON

March Road & Solandt Road

Survey Da	ite:	Thurs	day,	Augu	ıst 04,	2022						Start	Time	:		0700			AAD	T Fa	ctor:		0.9
Weather AM	N:	Overc	ast 20)° C		Su	rvey	Dura	tion:	8	Hrs.	Surve	ey Ho	urs:		0700-	1000,	1130-	1330	& 15	00-180	0	
Weather PM	/ :	Mostly	/ Clou	dy 28	°C	_						Surve	eyor(s	5):		T. Car	mody	,					
		Sola	andt	Rd.			Sola	Indt	Rd.				Ма	rch l	Rd.			Ма	arch I	Rd.			
-		Ea	stbou	Ind			We	stbou	Ind				No	rthbou	und			Soι	uthbo	und			
Time Period	LT	ST	RT	UT	E/B Tot	LT	ST	RT	UT	W/B Tot	Street Total	LT	ST	RT	UT	N/B Tot	LT	ST	RT	UT	S/B Tot	Street Total	Grand Total
0700-0800	4	15	37	0	56	18		4	0	30	86	175	389	118	1	683	25	753	34	0	812	1495	1581
0800-0900	17	25	80	0	122	50	13	10	0	73	195	248	567	202	2	1019	52	873	38	4	967	1986	2181
0900-1000	20	15	86	0	121	69	12	5	0	86	207	219	636	194	3	1052	35	742	47	0	824	1876	2083
1130-1230	42	12	110	0	164	90	12	18	0	120	284	96	703	66	11	876	36	726	41	3	806	1682	1966
1230-1330	22	18	106	0	146	80	13	10	0	103	249	106	692	85	8	891	24	705	46	12	787	1678	1927
1500-1600	20	12	119	0	151	146	16	15	0	177	328	71	912	67	3	1053	16	760	33	5	814	1867	2195
1600-1700	31	14	228	0	273	198	19	39	0	256	529	80	1050	59	7	1196	27	905	38	11	981	2177	2706
1700-1800	28	16	193	0	237	193	12	30	0	235	472	104	1078	40	22	1244	19	857	27	10	913	2157	2629
Totals	184	127	959	0	1270	844	105	131	0	1080	2350	1099	6027	831	57	8014	234	6321	304	45	6904	14918	17268

Equivalent 12 & 24-hour Vehicle Volumes Including the Annual Average Daily Traffic (AADT) Factor Applicable to the Day and Month of the Turning Movement Count

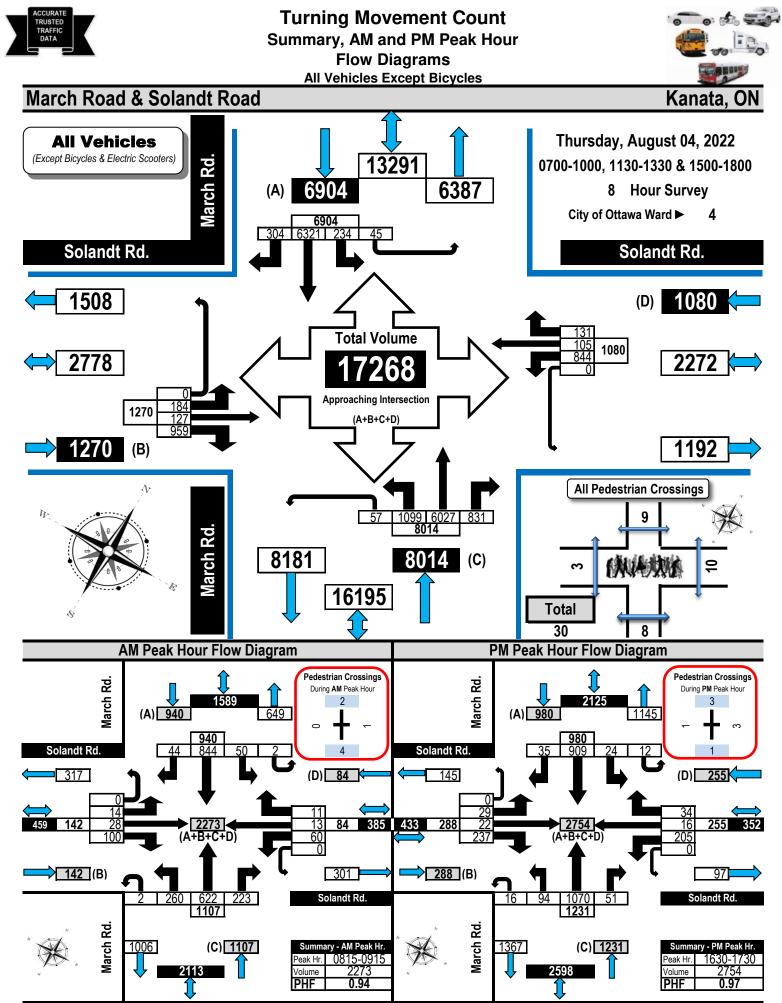
Expansion factors are applied exclusively to standard weekday 8-hour turning movement counts

conducted during the hours of 0700h - 1000h, 1130h - 1330h and 1500h - 1800h

Equ. 12 Hr	256	Equivalent 12 177 1333		vehicle 1765		es. The 146									s by the 3 11139		•		or of 1 63	.39 9597	20736	24003
AADT 12-hr	230	Average 159 1200	-	12-hou 1589		e volun 131	n es. Th 164			are calc 2940					ivalent 12 10026					ctor of: 8637	0.9 18662	21602
	200	4-Hour AADT.				-	-														10002	21002
AADT 24 Hr	302	208 1572	0	2081	1383	172	215	0	1770	3851	1801	9877	1362	93	13133	383	10359	498	74	11314	24448	28299

AADT and expansion factors provided by the City of Ottawa

-																-							
AM Peak Ho	ur Fac	tor ∎	•	0.9	94				_						Highe	est Hou	ırly Ve	hicle V	'olum	e Bet	tween	0700h 8	1000h
AM Peak Hr	LT	ST	RT	UT	Total	LT	ST	RT	UT	Total	Str. Tot.	LT	ST	RT	UT	Total	LT	ST	RT	UT	Total	Str. Tot.	Gr. Tot.
0815-0915	14	28	100	0	142	60	13	11	0	84	226	260	622	223	2	1107	50	844	44	2	940	2047	2273
OFF Peak H	our Fa	ctor	•	0.9	97										Highe	est Hou	ırly Ve	hicle V	'olum	e Bet	tween '	1130h &	1330h
OFF Peak Hr	LT	ST	RT	UT	Total	LT	ST	RT	UT	Total	Str. Tot.	LT	ST	RT	UT	Total	LT	ST	RT	UT	Total	Str. Tot.	Gr. Tot.
1145-1245	39	16	116	0	171	99	12	18	0	129	300	105	722	71	12	910	40	719	45	7	811	1721	2021
PM Peak Ho	ur Fac	tor •	•	0.9	97										Highe	est Hou	ırly Ve	hicle V	'olum	e Bet	tween '	1500h &	1800h
PM Peak Hr	LT	ST	RT	UT	Total	LT	ST	RT	UT	Total	Str. Tot.	LT	ST	RT	UT	Total	LT	ST	RT	UT	Total	Str. Tot.	Gr. Tot.
1630-1730	29	22	237	0	288	205	16	34	0	255	543	94	1070	51	16	1231	24	909	35	12	980	2211	2754


Comments:

OC Transpo and Para Transpo buses, together with a few school buses, comprise 18.11% of the heavy vehicle traffic. The bicycle totals include 1 E-Scooter (Vespa style). There was one serious conflict between a N/B left-turning & a S/B straight vehicle at 0916h.

Notes:

1. Includes all vehicle types except bicycles, electric bicycles, and electric scooters.

2. When expansion and AADT factors are applied, the results will differ slightly due to rounding.

Printed on: 8/9/2022

Prepared by: thetrafficspecialist@gmail.com

Flow Diagrams: AM PM Peak

Turning Movement Count Summary Report Including Peak Hours, AADT and Expansion Factors All Vehicles Except Bicycles

Kanata, ON

Flamborough Way/Innovation Drive & Terry Fox Drive

Survey Da	te:	Tueso	day, A	Augus	st 09, 1	2022						Star	Time):		0700			AAD	T Fa	ctor:		0.9
Weather AM	/ :	Light F	Rain 1	5° C		Su	rvey	Dura	tion:	8	Hrs.	Surv	ey Ho	ours:		0700-	1000	, 1130)-133	0&1	500-1	800	
Weather PM	/ :	Cloudy	y 19°	С								Surv	eyor(s):		J. Mo	ussea	au/S. I	Merre	ett			
		Terry	y Fo	x Dr		•	Гerry	/ Fo	x Dr			I	nno	/atio	n D	r.	Fla	mbo	rou	gh \	Nay		
_		Eas	stbou	Ind			We	stbou	Ind				No	rthbou	Ind			Sou	ithbo	und			
Time Period	LT	ST	RT	UT	E/B Tot	LT	ST	RT	UT	W/B Tot	Street Total	LT	ST	RT	UT	N/B Tot	LT	ST	RT	UT	S/B Tot	Street Total	Grand Total
0700-0800	21	165	55	0	241	35	96	26	0	157	398	25	12	40	0	77	73	40	32	0	145	222	620
0800-0900	40	269	96	0	405	75	140	41	0	256	661	31	40	85	0	156	98	64	49	0	211	367	1028
0900-1000	31	262	55	0	348	88	158	40	0	286	634	43	32	97	0	172	66	33	46	0	145	317	951
1130-1230	41	214	38	0	293	95	205	61	0	361	654	40	31	88	0	159	63	45	40	0	148	307	961
1230-1330	46	241	40	0	327	92	197	65	0	354	681	48	44	82	0	174	70	36	36	0	142	316	997
1500-1600	42	260	36	0	338	78	228	77	0	383	721	60	37	79	0	176	67	29	45	0	141	317	1038
1600-1700	85	276	44	0	405	122	374	146	0	642	1047	138	80	98	0	316	63	60	75	0	198	514	1561
1700-1800	85	253	47	0	385	119	321	113	0	553	938	89	52	97	0	238	76	40	66	0	182	420	1358
Totals	391	1940	411	0	2742	704	1719	569	0	2992	5734	474	328	666	0	1468	576	347	389	0	1312	2780	8514

Equivalent 12 & 24-hour Vehicle Volumes Including the Annual Average Daily Traffic (AADT) Factor Applicable to the Day and Month of the Turning Movement Count

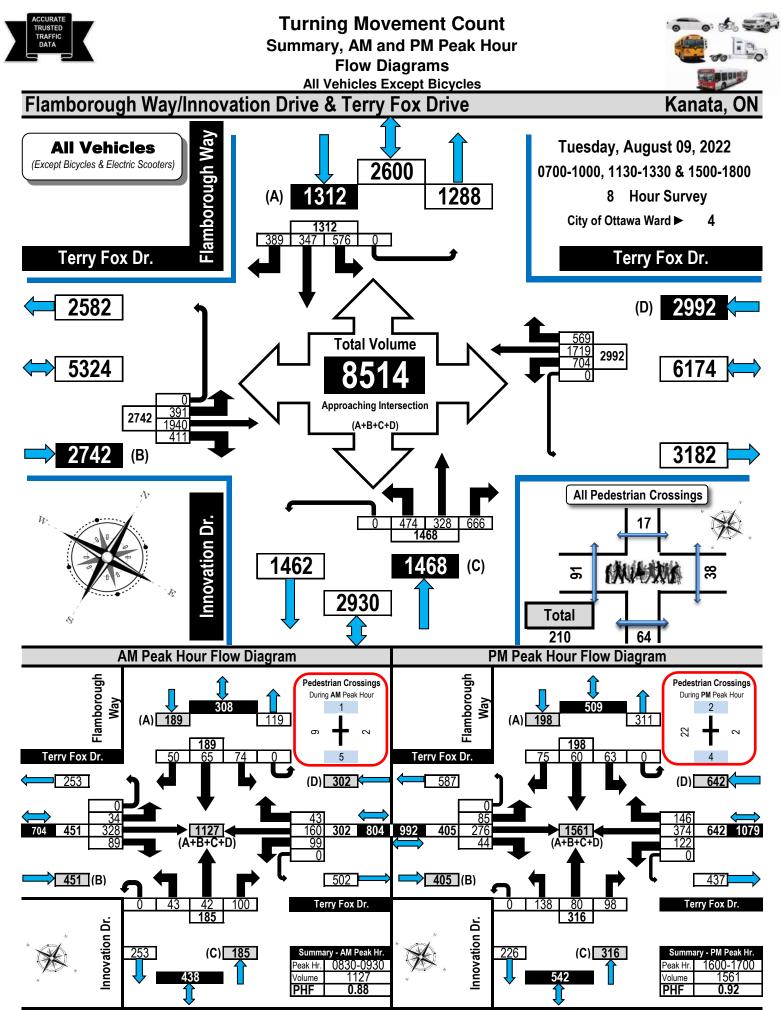
Expansion factors are applied exclusively to standard weekday 8-hour turning movement counts

conducted during the hours of 0700h - 1000h, 1130h - 1330h and 1500h - 1800h

Equ. 12 Hr		2697	ent 12-hou 571	3811						7970					-		482			-	3864	11834
		Ave	age daily 1	2-hour ve	hicle v	olumes.	These ve	olum	es are c	alculate	d by m	ultiplyir	ng the e	quival	ent 12-l	nour to	tals by	the AAI)T fac	tor of: ().9	
AADT 12-hr	489	2427	514	0 3430	881	2150	712	0	3743	7173	593	410	833	0	1836	721	434	487	0	1641	3478	10651

AADT and expansion factors provided by the City of Ottawa

																-							
AM Peak Ho	ur Fa	ctor <	•	0.	88									Hig	hest	Hourl	y Vehi	cle Vo	lume	Betv	veen O	700h 8	1000h
AM Peak Hr	LT	ST	RT	UT	Total	LT	ST	RT	UT	Total	Str. Tot.	LT	ST	RT	UT	Total	LT	ST	RT	UT	Total	Str. Tot.	Gr. Tot.
0830-0930	34	328	89	0	451	99	160	43	0	302	753	43	42	100	0	185	74	65	50	0	189	374	1127
OFF Peak He	our Fa	actor	•	0.	95									Hig	hest	Hourl	y Vehi	cle Vo	olume	Betv	veen 1	130h 8	1330h
OFF Peak Hr	LT	ST	RT	UT	Total	LT	ST	RT	UT	Total	Str. Tot.	LT	ST	RT	UT	Total	LT	ST	RT	UT	Total	Str. Tot.	Gr. Tot.
1200-1300	43	258	43	0	344	117	205	68	0	390	734	45	34	81	0	160	71	51	40	0	162	322	1056
PM Peak Ho	ur Fa	ctor <	•	0.	92									Hig	hest	Hourl	y Vehi	cle Vo	olume	Betv	veen 1	500h 8	1800h
PM Peak Hr	LT	ST	RT	UT	Total	LT	ST	RT	UT	Total	Str. Tot.	LT	ST	RT	UT	Total	LT	ST	RT	UT	Total	Str. Tot.	Gr. Tot.
1600-1700	85	276	44	0	405	122	374	146	0	642	1047	138	80	98	0	316	63	60	75	0	198	514	1561


Comments:

OC Transpo buses, together with a few school buses, comprise 55.36% of the heavy vehicle traffic.

Notes:

1. Includes all vehicle types except bicycles, electric bicycles, and electric scooters.

2. When expansion and AADT factors are applied, the results will differ slightly due to rounding.

Printed on: 8/11/2022

Prepared by: thetrafficspecialist@gmail.com

Flow Diagrams: AM PM Peak

Kanata, ON

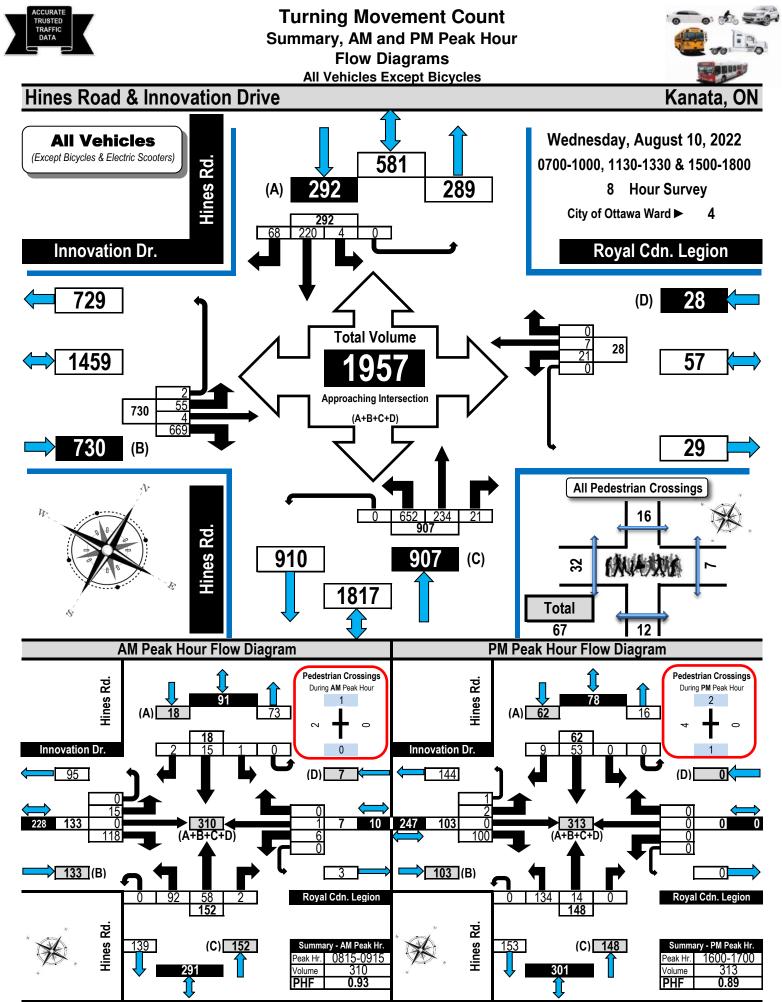
Hines Road & Innovation Drive

Survey Da	te:	Wedr	nesda	ay, Au	gust 1	10, 20	22					Star	t Time	: :		0700			AAD	T Fa	ctor:		0.9
Weather AM	Λ:	Clear	& Sur	ny 12	°C	Su	irvey	Dura	tion:	8	Hrs.	Surv	ey Ho	ours:		0700-	1000	, 1130)-133	0&1	500-1	800	
Weather PM	/ :	Mostly	/ Suni	ny 28°	С							Surv	eyor(s):		J. Mo	ussea	au, S.	Merr	ett			
		Innov	vatio	on Di	r.	Ro	yal C	dn.	Leg	ion			Hir	nes I	Rd.			Hir	nes	Rd.			
		Ea	stbou	Ind				stbou					No	rthbou	und			Sou	ıthbo	und		I	
Time Period	LT	ST	RT	UT	E/B Tot	LT	ST	RT	UT	W/B Tot	Street Total	LT	ST	RT	UT	N/B Tot	LT	ST	RT	UT	S/B Tot	Street Total	Grand Total
0700-0800	12	0			82	1	0	0	0	1	83	44	40		0		0	12	2	0	14	102	
0800-0900	9	0	-		122	5		0	-	6	128	91	56		0		2	11	1	0	14	162	
0900-1000	12	2		0	107	4	0		·	4	111	75		12		-	1	15		0		150	
1130-1230	6	1	75		82	6			•	11	93	73		2			0	26	12	0	38	140	
1230-1330	8	0		0	88	2	0	-	·	2	90	53					0	21	14	0	35		
1500-1600	4	0		0	75	3		0	-	4	79	69			0		1	49	15	0	65		
1600-1700	2	0			103		-		-	0	103	134				-	0	53	9	0	62	210	
1700-1800	2	1	68	0	71	0	0	, i	Ŭ	0	71	113		0	•		0	33	9	0	42	159	
Totals	55	4	669	2	730	21	7	0	0	28	758	652	234	21	0	907	4	220	68	0	292	1199	1957
	-	on fa	acto	A ors a	pplic re aj	able pplie	to ti d ex	ne Da Iclus	ay aı Sive l	nd Me l <mark>y to</mark>	uding onth o stan n - 10	of th dar	e Tu d <u>we</u>	rning <mark>ekda</mark>	Mov ay 8	/eme -hou	nt Co r tu	ount ming	, mo	ven	ient	tor <mark>coun</mark>	Its

Egu. 12 Hr	Е 76	quivalent 12-h 6 930	our vehicle v 3 1015			umesare) 0					totals by the 8 0 1261	₱12 6	expans i 306	ion facto 95	or of 1 0	.39 406	1667	2720
				-								-						•
		Average dai	ly 12-hour vel	icle volu	mes. The	se volume	es are o				quivalent 12-h	our to	tals by	the AAD	OT fact	or of: ().9	
AADT 12-hr	69	5 837	3 913	26	9 (0 0	35	948 816	5 293	26	0 1135	5	275	85	0	365	1500	2448
	24-H	our AADT. Th	ese volumes a	are calcul	lated by n	nultiplying	g the av	/erage daily '	2-hour ve	ehicle vo	olumes by the	12 🔿	24 expa	nsion fa	actor o	f 1.31		
AADT 24 Hr	90	7 1096	3 1196	34	11 (0 0	46	1242 1069	383	34	0 1486	7	361	111	0	479	1965	3207

AADT and expansion factors provided by the City of Ottawa

AM Peak Ho	our Fac	tor •	•	0.	93									High	nest	Hourly	y Vehi	cle Vo	lume	Betv	veen O	700h 8	1000h
AM Peak Hr	LT	ST	RT	UT	Total	LT	ST	RT	UT	Total	Str. Tot.	LT	ST	RT	UT	Total	LT	ST	RT	UT	Total	Str. Tot.	Gr. Tot.
0815-0915	15	0	118	0	133	6	1	0	0	7	140	92	58	2	0	152	1	15	2	0	18	170	310
OFF Peak H	our Fa	ctor	•	0.	94									Higł	nest	Hourly	y Vehi	cle Vo	lume	Betv	veen 1	130h 8	1330h
OFF Peak Hr	LT	ST	RT	UT	Total	LT	ST	RT	UT	Total	Str. Tot.	LT	ST	RT	UT	Total	LT	ST	RT	UT	Total	Str. Tot.	Gr. Tot.
1130-1230	6	1	75	0	82	6	5	0	0	11	93	73	27	2	0	102	0	26	12	0	38	140	233
PM Peak Ho	ur Fac	tor <	•	0.	89									Higł	nest	Hourl	y Vehi	cle Vo	lume	Betv	veen 1	500h 8	1800h
PM Peak Hr	LT	ST	RT	UT	Total	LT	ST	RT	UT	Total	Str. Tot.	LT	ST	RT	UT	Total	LT	ST	RT	UT	Total	Str. Tot.	Gr. Tot.
1600-1700	2	0	100	1	103	0	0	0	0	0	103	134	14	0	0	148	0	53	9	0	62	210	313


Comments:

OC Transpo buses comprise 32.46% of the heavy vehicle traffic.

Notes:

1. Includes all vehicle types except bicycles, electric bicycles, and electric scooters.

2. When expansion and AADT factors are applied, the results will differ slightly due to rounding.

Prepared by: thetrafficspecialist@gmail.com

Flow Diagrams: AM PM Peak

APPENDIX E

Collision Records

Location: HINES	RD @ INNOV	ATION DR							
Traffic Control: Sto	p sign						Total Collisions:	1	
Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuve	r Vehicle type	First Event	No. Ped
2017-Mar-20, Mon,09:26	Clear	Rear end	P.D. only	Dry	East	Going ahead	Automobile, station wagon	Other motor vehicle	0
					East	Stopped	Unknown	Other motor vehicle	
Location: INNOV	ATION DR @	ProposedNULL NA	AME						
Traffic Control: Trat	ffic signal						Total Collisions:	1	
Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuve	r Vehicle type	First Event	No. Ped
2018-Sep-11, Tue,16:48	Clear	Angle	P.D. only	Dry	North	Going ahead	Automobile, station wagon	Other motor vehicle	0
					West	Going ahead	Automobile, station wagon	Other motor vehicle	
Location: INNOV	ATION DR btv	vn Flamboroug	H WAY & FLAME	BOROUGH WA	λY				
Traffic Control: No	control						Total Collisions:	4	
Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuve	r Vehicle type	First Event	No. Ped
2016-Jun-20, Mon,13:10	Clear	SMV other	Non-fatal injury	Dry	North	Going ahead	Motorcycle	Other	0
2018-Apr-04, Wed,16:24	Clear	SMV other	P.D. only	Wet	South	Slowing or stopping	g Automobile, station wagon	Debris on road	0
2018-Sep-12, Wed,18:26	Clear	Angle	P.D. only	Dry	East	Turning left	Automobile, station wagon	Other motor vehicle	0
					North	Going ahead	Automobile, station wagon	Other motor vehicle	
2020-Feb-27, Thu,07:00	Snow	Angle	P.D. only	Loose snow	South	Unknown	Truck - dump	Other motor vehicle	0
					East	Turning left	Automobile, station wagon	Other motor vehicle	
Location: MARCH	HRD @ MOR	GAN'S GRANT WA	AY/SHIRLEY'S BR	ROOK					
Traffic Control: Trat	ffic signal						Total Collisions:	38	
Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuve	r Vehicle type	First Event	No. Ped
2016-Mar-06, Sun,12:03	Clear	Turning movement	Non-fatal injury	Dry	South	Going ahead	Pick-up truck	Other motor vehicle	0
					North	Turning left	Passenger van	Other motor vehicle	
2016-Jun-17, Fri,13:40	Clear	Rear end	P.D. only	Dry	North	Changing lanes	Automobile, station wagon	Other motor vehicle	0
					North	Going ahead	Pick-up truck	Other motor vehicle	

Traffic Control: Trai	ffic signal						Total Collisions:	38	
Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuve	r Vehicle type	First Event	No. Ped
2016-Aug-04, Thu,09:12	Clear	Angle	P.D. only	Dry	South	Going ahead	Pick-up truck	Other motor vehicle	0
					West	Going ahead	Automobile, station wagon	Other motor vehicle	
2016-Nov-16, Wed,17:43	Clear	Turning movement	Non-fatal injury	Dry	North	Turning left	Delivery van	Other motor vehicle	0
					South	Going ahead	Automobile, station wagon	Other motor vehicle	
					East	Stopped	Automobile, station wagon	Debris falling off vehicle	
2017-Apr-18, Tue,09:31	Clear	Turning movement	P.D. only	Dry	South	Turning left	Passenger van	Other motor vehicle	0
					North	Going ahead	Automobile, station wagon	Other motor vehicle	
2017-Apr-27, Thu,12:53	Clear	Rear end	P.D. only	Dry	West	Turning right	Pick-up truck	Other motor vehicle	0
					West	Turning right	Automobile, station wagon	Other motor vehicle	
2017-May-17, Wed,16:47	Clear	Turning movement	P.D. only	Dry	South	Turning left	Pick-up truck	Other motor vehicle	0
					North	Going ahead	Pick-up truck	Other motor vehicle	
2017-Jun-09, Fri,22:27	Clear	Turning movement	P.D. only	Dry	South	Turning left	Automobile, station wagon	Other motor vehicle	0
					North	Going ahead	Automobile, station wagon	Other motor vehicle	
2017-Jun-28, Wed,13:14	Clear	Rear end	Non-fatal injury	Dry	North	Going ahead	Automobile, station wagon	Other motor vehicle	0
					North	Stopped	Automobile, station wagon	Other motor vehicle	
2017-Sep-21, Thu,17:33	Clear	Turning movement	Non-fatal injury	Dry	North	Turning left	Automobile, station wagon	Other motor vehicle	0
					South	Going ahead	Automobile, station wagon	Other motor vehicle	
2017-Sep-28, Thu,08:21	Clear	Sideswipe	P.D. only	Dry	South	Changing lanes	Passenger van	Other motor vehicle	0
					South	Going ahead	Automobile, station wagon	Other motor vehicle	
2017-Nov-28, Tue,17:07	Clear	Turning movement	P.D. only	Dry	North	Turning left	Truck and trailer	Other motor vehicle	0
					South	Going ahead	Pick-up truck	Other motor vehicle	
					East	Turning left	Automobile, station wagon	Other motor vehicle	
2017-Dec-26, Tue,14:33	Clear	Rear end	P.D. only	Dry	West	Stopped	Automobile, station wagon	Other motor vehicle	0
					West	Turning left	Delivery van	Other motor vehicle	

Traffic Control: Tra	ffic signal						Total Collisions:	38	
Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuve	r Vehicle type	First Event	No. Peo
2018-Jan-30, Tue,15:35	Clear	Rear end	P.D. only	Dry	South	Going ahead	Pick-up truck	Other motor vehicle	0
					South	Stopped	Unknown	Other motor vehicle	
2018-Feb-28, Wed,09:47	Clear	Rear end	P.D. only	Dry	East	Going ahead	Automobile, station wagon	Other motor vehicle	0
					East	Merging	Automobile, station wagon	Other motor vehicle	
2018-Apr-22, Sun,15:30	Clear	Rear end	Non-fatal injury	Dry	North	Slowing or stopping	g Motorcycle	Skidding/sliding	0
					North	Stopped	Automobile, station wagon	Other motor vehicle	
2018-May-17, Thu,07:35	Clear	Turning movement	P.D. only	Dry	South	Turning left	Passenger van	Other motor vehicle	0
					South	Going ahead	Automobile, station wagon	Other motor vehicle	
2018-May-25, Fri,17:46	Rain	Sideswipe	P.D. only	Wet	North	Going ahead	Automobile, station wagon	Other motor vehicle	0
					North	Slowing or stopping	g Automobile, station wagon	Other motor vehicle	
2018-Aug-15, Wed,22:13	Clear	Turning movement	Non-fatal injury	Dry	South	Turning left	Automobile, station wagon	Other motor vehicle	0
					North	Going ahead	Automobile, station wagon	Other motor vehicle	
2018-Sep-22, Sat,12:00	Clear	Rear end	P.D. only	Dry	West	Merging	Passenger van	Other motor vehicle	0
					West	Merging	Automobile, station wagon	Other motor vehicle	
2018-Nov-23, Fri,07:54	Clear	Rear end	P.D. only	lce	South	Going ahead	Automobile, station wagon	Other motor vehicle	0
					South	Stopped	Pick-up truck	Other motor vehicle	
2018-Dec-06, Thu,06:21	Snow	Angle	P.D. only	Wet	South	Going ahead	Automobile, station wagon	Other motor vehicle	0
					West	Going ahead	Municipal transit bus	Other motor vehicle	
2018-Dec-20, Thu,09:55	Clear	Turning movement	P.D. only	Dry	South	Turning left	Automobile, station wagon	Other motor vehicle	0
					North	Going ahead	Unknown	Other motor vehicle	
2019-Jan-02, Wed,12:42	Clear	Turning movement	P.D. only	Dry	South	Turning left	Automobile, station wagon	Other motor vehicle	0
					North	Going ahead	Passenger van	Other motor vehicle	
2019-Jan-17, Thu,18:45	Clear	Angle	P.D. only	Dry	North	Going ahead	Automobile, station wagon	Other motor vehicle	0
					East	Going ahead	Automobile, station wagon	Other motor vehicle	

Traffic Control: Tra	ffic signal						Total Collisions: 38			
Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuve	r Vehicle type	First Event	No. Ped	
2019-Mar-06, Wed, 15:45	Clear	Rear end	P.D. only	Dry	North	Turning left	Pick-up truck	Other motor vehicle	0	
					North	Turning left	Automobile, station wagon	Other motor vehicle		
2019-May-01, Wed,18:11	Rain	Sideswipe	P.D. only	Wet	North	Unknown	Unknown	Other motor vehicle	0	
					North	Going ahead	Automobile, station wagon	Other motor vehicle		
2019-Jul-30, Tue,17:36	Clear	Rear end	P.D. only	Dry	West	Turning right	Automobile, station wagon	Other motor vehicle	0	
					West	Turning right	Automobile, station wagon	Other motor vehicle		
2019-Sep-28, Sat,19:33	Clear	Turning movement	Non-fatal injury	Dry	South	Turning left	Automobile, station wagon	Other motor vehicle	0	
					North	Going ahead	Automobile, station wagon	Other motor vehicle		
2019-Dec-13, Fri,17:57	Clear	Turning movement	P.D. only	Dry	South	Turning left	Automobile, station wagon	Other motor vehicle	0	
					North	Going ahead	Automobile, station wagon	Other motor vehicle		
2020-Jan-22, Wed,08:55	Clear	Rear end	P.D. only	Loose snow	East	Turning right	Automobile, station wagon	Other motor vehicle	0	
					East	Turning right	Pick-up truck	Other motor vehicle		
2020-Feb-14, Fri,16:48	Clear	Turning movement	P.D. only	Dry	North	Turning left	Automobile, station wagon	Other motor vehicle	0	
					South	Going ahead	Automobile, station wagon	Other motor vehicle		
2020-Apr-10, Fri,18:14	Clear	Turning movement	Non-fatal injury	Dry	North	Turning left	Pick-up truck	Other motor vehicle	0	
					South	Going ahead	Automobile, station wagon	Other motor vehicle		
2020-May-23, Sat,12:21	Clear	Angle	P.D. only	Dry	North	Going ahead	Unknown	Other motor vehicle	0	
					West	Going ahead	Pick-up truck	Other motor vehicle		
2020-Sep-26, Sat,15:23	Clear	Turning movement	Non-fatal injury	Dry	South	Turning left	Automobile, station wagon	Other motor vehicle	0	
					North	Going ahead	Automobile, station wagon	Other motor vehicle		
2020-Oct-20, Tue,17:28	Clear	SMV other	Non-fatal injury	Dry	North	Going ahead	Automobile, station wagon	Ran off road	0	
2020-Nov-10, Tue,06:40	Clear	Turning movement	Non-fatal injury	Dry	North	Making "U" turn	Automobile, station wagon	Other motor vehicle	0	
					South	Going ahead	Automobile, station wagon	Other motor vehicle		

Location: MARCH	HRD@MOR	GAN'S GRANT WA	Y/SHIRLEY'S BR	ROOK					
Traffic Control: Tra	ffic signal						Total Collisions:	38	
Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuver	Vehicle type	First Event	No. Ped
2020-Dec-10, Thu,15:15	Clear	Sideswipe	P.D. only	Dry	North	Changing lanes	Automobile, station wagon	Other motor vehicle	0
					North	Going ahead	Automobile, station wagon	Other motor vehicle	
Location: MARCI	HRD @ SOLA	ANDT RD							
Traffic Control: Tra	ffic signal						Total Collisions:	44	
Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuver	^r Vehicle type	First Event	No. Ped
2016-Feb-16, Tue,11:02	Snow	Turning movement	P.D. only	Loose snow	West	Turning left	Passenger van	Other motor vehicle	0
					East	Going ahead	Pick-up truck	Other motor vehicle	
2016-Feb-23, Tue,15:50	Clear	Rear end	P.D. only	Dry	North	Slowing or stopping	Automobile, station wagon	Other motor vehicle	0
					North	Stopped	Pick-up truck	Other motor vehicle	
2016-Mar-02, Wed, 19:35	Clear	Turning movement	P.D. only	Wet	North	Turning left	Automobile, station wagon	Other motor vehicle	0
					South	Going ahead	Passenger van	Other motor vehicle	
2016-Mar-14, Mon,10:46	Rain	Turning movement	P.D. only	Wet	North	Turning left	Automobile, station wagon	Other motor vehicle	0
					South	Going ahead	Automobile, station wagon	Other motor vehicle	
2016-May-03, Tue,16:55	Clear	Rear end	P.D. only	Dry	East	Turning right	Pick-up truck	Other motor vehicle	0
					East	Turning right	Automobile, station wagon	Other motor vehicle	
2016-Aug-17, Wed,10:51	Clear	Rear end	Non-fatal injury	Dry	North	Turning left	Automobile, station wagon	Other motor vehicle	0
					North	Turning left	Automobile, station wagon	Other motor vehicle	
2016-Sep-16, Fri,11:14	Clear	Rear end	P.D. only	Dry	South	Turning right	Automobile, station wagon	Other motor vehicle	0
					South	Going ahead	Automobile, station wagon	Other motor vehicle	
					South	Going ahead	Passenger van	Debris falling off vehicle	
2016-Oct-20, Thu,16:28	Rain	Rear end	P.D. only	Wet	South	Slowing or stopping	Automobile, station wagon	Other motor vehicle	0
					South	Stopped	Passenger van	Other motor vehicle	

Location: MARCH	H RD @ SOLA	ANDT RD							
Traffic Control: Tra	ffic signal						Total Collisions:	44	
Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuve	r Vehicle type	First Event	No. Ped
2016-Oct-31, Mon,08:05	Clear	Rear end	P.D. only	Dry	South	Turning right	Automobile, station wagon	Other motor vehicle	0
					South	Turning right	Automobile, station wagon	Other motor vehicle	
2016-Nov-20, Sun,20:27	Drifting Snow	SMV other	P.D. only	Ice	North	Turning left	Automobile, station wagon	Pole (utility, power)	0
2016-Nov-28, Mon,12:27	Clear	Turning movement	P.D. only	Dry	East	Making "U" turn	Automobile, station wagon	Other motor vehicle	0
					West	Going ahead	Automobile, station wagon	Other motor vehicle	
2017-Feb-16, Thu,19:15	Clear	Turning movement	P.D. only	Dry	North	Turning left	Automobile, station wagon	Other motor vehicle	0
					South	Going ahead	Pick-up truck	Other motor vehicle	
2017-Mar-22, Wed,09:35	Clear	Turning movement	Non-fatal injury	Dry	South	Going ahead	Pick-up truck	Other motor vehicle	0
					North	Turning left	Automobile, station wagon	Other motor vehicle	
2017-Apr-18, Tue,15:58	Clear	Rear end	Non-fatal injury	Dry	West	Turning right	Motorcycle	Other motor vehicle	0
					West	Turning right	Automobile, station wagon	Other motor vehicle	
2017-May-09, Tue,09:30	Clear	Rear end	P.D. only	Dry	North	Turning right	Automobile, station wagon	Other motor vehicle	0
					North	Turning right	Pick-up truck	Other motor vehicle	
2017-Jun-02, Fri,07:58	Clear	Turning movement	P.D. only	Dry	North	Going ahead	Automobile, station wagon	Other motor vehicle	0
					South	Turning left	Automobile, station wagon	Other motor vehicle	
2017-Jun-13, Tue,17:30	Clear	Turning movement	P.D. only	Dry	South	Making "U" turn	Automobile, station wagon	Other motor vehicle	0
					North	Going ahead	Pick-up truck	Other motor vehicle	
2017-Sep-12, Tue,07:13	Clear	Rear end	P.D. only	Dry	East	Going ahead	Passenger van	Other motor vehicle	0
					East	Stopped	Automobile, station wagon	Other motor vehicle	
2017-Oct-24, Tue,07:37	Rain	Turning movement	P.D. only	Wet	North	Turning left	Automobile, station wagon	Other motor vehicle	0
					South	Going ahead	Automobile, station wagon	Other motor vehicle	
2017-Oct-31, Tue,15:47	Clear	Turning movement	P.D. only	Dry	North	Turning left	Automobile, station wagon	Other motor vehicle	0
					South	Going ahead	Automobile, station wagon	Other motor vehicle	

Traffic Control: Tra	ffic signal						Total Collisions:	44	
Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuve	r Vehicle type	First Event	No. Ped
2017-Dec-20, Wed,15:51	Clear	Rear end	P.D. only	Dry	West	Going ahead	Automobile, station wagon	Other motor vehicle	0
					West	Turning left	Automobile, station wagon	Other motor vehicle	
2017-Dec-21, Thu,10:30	Clear	Angle	P.D. only	Dry	North	Going ahead	Automobile, station wagon	Other motor vehicle	0
					West	Turning left	Automobile, station wagon	Other motor vehicle	
2018-Jan-31, Wed,17:54	Snow	Rear end	P.D. only	Loose snow	South	Going ahead	Automobile, station wagon	Skidding/sliding	0
					South	Stopped	Automobile, station wagon	Other motor vehicle	
2018-Feb-26, Mon,19:50	Clear	Turning movement	P.D. only	Dry	South	Changing lanes	Automobile, station wagon	Other motor vehicle	0
					North	Turning left	Automobile, station wagon	Other motor vehicle	
2018-Mar-14, Wed,08:56	Snow	Turning movement	Non-fatal injury	Slush	North	Turning left	Automobile, station wagon	Other motor vehicle	0
					South	Going ahead	Automobile, station wagon	Other motor vehicle	
2018-Apr-06, Fri,16:40	Rain	Rear end	P.D. only	Wet	South	Slowing or stopping	g Automobile, station wagon	Other motor vehicle	0
					South	Stopped	Automobile, station wagon	Other motor vehicle	
2018-May-28, Mon,20:50	Clear	Rear end	P.D. only	Dry	East	Turning right	Pick-up truck	Other motor vehicle	0
					East	Turning right	Automobile, station wagon	Other motor vehicle	
2018-Jun-06, Wed,20:24	Clear	Turning movement	P.D. only	Dry	South	Making "U" turn	Automobile, station wagon	Other motor vehicle	0
					North	Going ahead	Automobile, station wagon	Other motor vehicle	
2018-Aug-09, Thu,09:19	Clear	Turning movement	Non-fatal injury	Dry	South	Turning left	Automobile, station wagon	Other motor vehicle	0
					North	Going ahead	Automobile, station wagon	Other motor vehicle	
2018-Aug-24, Fri,15:53	Clear	Rear end	P.D. only	Dry	South	Slowing or stopping	g Pick-up truck	Other motor vehicle	0
					South	Stopped	Automobile, station wagon	Other motor vehicle	
2018-Oct-09, Tue,06:53	Clear	Rear end	P.D. only	Wet	East	Unknown	Unknown	Other motor vehicle	0
					East	Stopped	Automobile, station wagon	Other motor vehicle	
2018-Oct-26, Fri,13:38	Clear	Rear end	P.D. only	Dry	South	Going ahead	Automobile, station wagon	Other motor vehicle	0
					South	Stopped	Automobile, station wagon	Other motor vehicle	

Traffic Control: Tra	H RD @ SOLA ffic signal						Total Collisions:	11	
	•								
Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuve	r Vehicle type	First Event	No. Ped
2018-Oct-31, Wed, 15:43	Rain	Rear end	P.D. only	Wet	North	Going ahead	Pick-up truck	Other motor vehicle	0
					North	Stopped	Automobile, station wagon	Other motor vehicle	
					North	Stopped	Passenger van	Other motor vehicle	
2019-Jan-11, Fri,07:27	Clear	Turning movement	P.D. only	Dry	South	Making "U" turn	Automobile, station wagon	Other motor vehicle	0
					North	Going ahead	Automobile, station wagon	Other motor vehicle	
2019-Jan-28, Mon,17:24	Clear	Turning movement	Non-fatal injury	Packed snow	South	Turning left	Automobile, station wagon	Other motor vehicle	0
					North	Going ahead	Automobile, station wagon	Other motor vehicle	
2019-Apr-01, Mon,12:40	Clear	Rear end	P.D. only	Dry	West	Turning right	Automobile, station wagon	Other motor vehicle	0
					West	Turning right	Automobile, station wagon	Other motor vehicle	
2019-Jun-08, Sat,10:11	Clear	Rear end	P.D. only	Dry	North	Slowing or stopping	g Automobile, station wagon	Other motor vehicle	0
					North	Stopped	Automobile, station wagon	Other motor vehicle	
2019-Jul-10, Wed,10:24	Clear	Turning movement	P.D. only	Dry	North	Turning left	Truck and trailer	Other motor vehicle	0
					South	Going ahead	Automobile, station wagon	Other motor vehicle	
2019-Jul-27, Sat,21:52	Clear	Sideswipe	P.D. only	Dry	North	Changing lanes	Automobile, station wagon	Other motor vehicle	0
					North	Going ahead	Automobile, station wagon	Other motor vehicle	
2019-Sep-24, Tue,08:59	Clear	Turning movement	P.D. only	Dry	North	Turning left	Automobile, station wagon	Other motor vehicle	0
					South	Going ahead	Automobile, station wagon	Other motor vehicle	
2019-Dec-19, Thu,10:15	Clear	Rear end	P.D. only	Dry	South	Slowing or stopping	g Automobile, station wagon	Other motor vehicle	0
					South	Stopped	Automobile, station wagon	Other motor vehicle	
2019-Dec-30, Mon,20:00	Freezing Rain	Rear end	P.D. only	lce	North	Going ahead	Automobile, station wagon	Skidding/sliding	0
	-		-		North	Stopped	Automobile, station wagon	Other motor vehicle	
2020-Jan-05, Sun,10:55	Clear	Turning movement	P.D. only	Wet	South	Turning left	Automobile, station wagon	Other motor vehicle	0
		-	÷		North	Going ahead	Automobile, station wagon	Other motor vehicle	

	HRD @ SOLA								
Traffic Control: Tra	ffic signal						Total Collisions:	44	
Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuve	r Vehicle type	First Event	No. Ped
2020-Jan-21, Tue,18:06	Clear	Turning movement	P.D. only	Wet	South	Making "U" turn	Automobile, station wagon	Other motor vehicle	0
					North	Going ahead	Automobile, station wagon	Other motor vehicle	
Location: MARCI	H RD @ TERF	RY FOX DR							
Traffic Control: Tra	ffic signal						Total Collisions:	47	
Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuve	r Vehicle type	First Event	No. Ped
2016-Jan-12, Tue,17:18	Clear	Rear end	P.D. only	Wet	North	Going ahead	Automobile, station wagon	Other motor vehicle	0
					North	Going ahead	Automobile, station wagon	Other motor vehicle	
2016-Apr-05, Tue,08:26	Clear	Rear end	P.D. only	Dry	East	Turning right	Pick-up truck	Other motor vehicle	0
					East	Turning right	Pick-up truck	Other motor vehicle	
2016-Apr-14, Thu,07:40	Clear	Rear end	Non-fatal injury	Dry	East	Turning right	Pick-up truck	Other motor vehicle	0
					East	Turning right	Pick-up truck	Other motor vehicle	
2016-Jul-26, Tue,16:23	Clear	Rear end	P.D. only	Dry	North	Going ahead	Automobile, station wagon	Other motor vehicle	0
					North	Stopped	Pick-up truck	Other motor vehicle	
2016-Oct-02, Sun,13:23	Rain	Sideswipe	P.D. only	Wet	West	Turning left	Pick-up truck	Other motor vehicle	0
					West	Turning left	Automobile, station wagon	Other motor vehicle	
2016-Dec-14, Wed,11:30	Clear	Angle	P.D. only	Dry	South	Turning left	Automobile, station wagon	Other motor vehicle	0
					East	Going ahead	Automobile, station wagon	Other motor vehicle	
2016-Dec-22, Thu,09:33	Snow	Sideswipe	P.D. only	Slush	North	Changing lanes	Automobile, station wagon	Skidding/sliding	0
					North	Going ahead	Automobile, station wagon	Other motor vehicle	
					North	Going ahead	Automobile, station wagon	Other motor vehicle	
2017-Jan-08, Sun,14:48	Clear	Rear end	P.D. only	Wet	South	Turning right	Automobile, station wagon	Other motor vehicle	0
					South	Turning right	Pick-up truck	Other motor vehicle	

Location: MARCH	HRD @ TERP	RY FOX DR							
Traffic Control: Tra	ffic signal						Total Collisions:	47	
Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuve	r Vehicle type	First Event	No. Ped
2017-Apr-24, Mon,14:47	Clear	Rear end	P.D. only	Dry	West	Going ahead	Automobile, station wagon	Other motor vehicle	0
					West	Stopped	Automobile, station wagon	Other motor vehicle	
2017-May-18, Thu,09:47	Clear	Rear end	P.D. only	Dry	North	Going ahead	Passenger van	Other motor vehicle	0
					North	Stopped	Truck and trailer	Other motor vehicle	
2017-Jun-13, Tue,20:15	Clear	Rear end	P.D. only	Dry	North	Changing lanes	Pick-up truck	Other motor vehicle	0
					North	Going ahead	Pick-up truck	Other motor vehicle	
2017-Jun-14, Wed, 18:47	Clear	Rear end	Non-fatal injury	Dry	North	Slowing or stoppin	g Automobile, station wagon	Other motor vehicle	0
					North	Stopped	Pick-up truck	Other motor vehicle	
2017-Jun-29, Thu,11:53	Rain	Rear end	P.D. only	Wet	South	Going ahead	Automobile, station wagon	Other motor vehicle	0
					South	Stopped	Automobile, station wagon	Other motor vehicle	
2017-Jul-24, Mon,15:37	Rain	Rear end	P.D. only	Wet	South	Going ahead	Automobile, station wagon	Other motor vehicle	0
					South	Stopped	Passenger van	Other motor vehicle	
2017-Aug-24, Thu,17:49	Clear	Rear end	P.D. only	Dry	North	Going ahead	Automobile, station wagon	Other motor vehicle	0
					North	Stopped	Automobile, station wagon	Other motor vehicle	
2017-Sep-03, Sun,10:39	Rain	Sideswipe	Non-fatal injury	Wet	East	Going ahead	Automobile, station wagon	Other motor vehicle	0
					East	Turning left	Automobile, station wagon	Other motor vehicle	
2017-Sep-20, Wed, 16:15	Clear	Rear end	P.D. only	Dry	North	Changing lanes	Automobile, station wagon	Other motor vehicle	0
					North	Going ahead	Automobile, station wagon	Other motor vehicle	
2017-Sep-27, Wed, 14:43	Clear	Rear end	Non-fatal injury	Dry	North	Changing lanes	Automobile, station wagon	Other motor vehicle	0
					North	Stopped	Automobile, station wagon	Other motor vehicle	
2017-Oct-04, Wed,17:45	Clear	Sideswipe	P.D. only	Dry	West	Overtaking	Automobile, station wagon	Other motor vehicle	0
					West	Going ahead	Automobile, station wagon	Other motor vehicle	
2017-Oct-14, Sat,08:00	Rain	SMV other	P.D. only	Wet	North	Merging	Automobile, station wagon	Curb	0

	HRD @ TERR							47	
Traffic Control: Tra	ffic signal						Total Collisions:	47	
Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuve	r Vehicle type	First Event	No. Ped
2017-Oct-20, Fri,19:04	Clear	Other	P.D. only	Dry	West	Reversing	Automobile, station wagon	Other motor vehicle	0
					West	Stopped	Automobile, station wagon	Other motor vehicle	
2017-Dec-02, Sat,18:19	Clear	Sideswipe	P.D. only	Dry	North	Changing lanes	Passenger van	Other motor vehicle	0
					North	Turning left	Automobile, station wagon	Other motor vehicle	
2017-Dec-19, Tue,08:32	Clear	SMV other	P.D. only	Loose snow	North	Turning right	Automobile, station wagon	Snowbank/drift	0
2017-Dec-27, Wed,14:55	Clear	SMV other	P.D. only	lce	South	Going ahead	Automobile, station wagon	Other	0
2018-Jan-14, Sun,12:37	Clear	Rear end	P.D. only	lce	North	Going ahead	Automobile, station wagon	Other motor vehicle	0
					North	Stopped	Automobile, station wagon	Other motor vehicle	
2018-Jan-21, Sun,21:32	Clear	Angle	P.D. only	Dry	East	Reversing	Automobile, station wagon	Other motor vehicle	0
					South	Going ahead	Automobile, station wagon	Other motor vehicle	
2018-Feb-09, Fri,23:12	Snow	Turning movement	Non-fatal injury	Loose snow	South	Going ahead	Automobile, station wagon	Other motor vehicle	0
					North	Turning left	Automobile, station wagon	Other motor vehicle	
2018-Feb-11, Sun,18:56	Freezing Rain	SMV other	P.D. only	lce	East	Turning right	Automobile, station wagon	Skidding/sliding	0
2018-Feb-22, Thu,17:20	Clear	Rear end	P.D. only	Wet	North	Slowing or stopping	g Automobile, station wagon	Other motor vehicle	0
					North	Turning left	Automobile, station wagon	Other motor vehicle	
2018-Feb-28, Wed,13:53	Clear	Rear end	P.D. only	Dry	North	Slowing or stopping	g Pick-up truck	Other motor vehicle	0
					North	Stopped	Automobile, station wagon	Other motor vehicle	
2018-Jun-06, Wed,17:35	Clear	Rear end	P.D. only	Dry	North	Unknown	Motorcycle	Other motor vehicle	0
					North	Stopped	Automobile, station wagon	Other motor vehicle	
2018-Jun-09, Sat,17:11	Clear	SMV other	P.D. only	Dry	South	Going ahead	Automobile, station wagon	Curb	0
2018-Jun-22, Fri,15:38	Clear	Rear end	P.D. only	Dry	North	Turning right	Pick-up truck	Other motor vehicle	0
					North	Turning right	Automobile, station wagon	Other motor vehicle	
2018-Jul-14, Sat,11:41	Clear	Rear end	P.D. only	Dry	West	Turning right	Automobile, station wagon	Other motor vehicle	0
					West	Stopped	Automobile, station wagon	Other motor vehicle	

Location: MARCH	HRD @ TERF	RY FOX DR							
Traffic Control: Tra	ffic signal						Total Collisions:	47	
Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuve	r Vehicle type	First Event	No. Ped
2018-Jul-24, Tue,09:30	Rain	Rear end	P.D. only	Wet	East	Going ahead	Automobile, station wagon	Other motor vehicle	0
					East	Going ahead	Automobile, station wagon	Other motor vehicle	
2018-Nov-14, Wed,19:00	Clear	Rear end	Non-fatal injury	Dry	North	Going ahead	Automobile, station wagon	Other motor vehicle	0
					North	Stopped	Automobile, station wagon	Other motor vehicle	
2018-Dec-18, Tue,08:59	Clear	Rear end	Non-fatal injury	Dry	South	Going ahead	Automobile, station wagon	Other motor vehicle	0
					South	Slowing or stoppin	g Automobile, station wagon	Other motor vehicle	
2018-Dec-21, Fri,16:20	Rain	Rear end	Non-fatal injury	Wet	South	Going ahead	Automobile, station wagon	Other motor vehicle	0
					South	Stopped	Automobile, station wagon	Other motor vehicle	
2019-Feb-26, Tue,16:30	Snow	Sideswipe	P.D. only	lce	North	Changing lanes	Automobile, station wagon	Other motor vehicle	0
					North	Going ahead	Automobile, station wagon	Other motor vehicle	
2019-Mar-10, Sun,14:45	Snow	Rear end	P.D. only	Slush	South	Slowing or stoppin	g Automobile, station wagon	Other motor vehicle	0
					South	Stopped	Automobile, station wagon	Other motor vehicle	
2019-Jun-26, Wed,09:46	Rain	Approaching	Non-fatal injury	Wet	South	Going ahead	Automobile, station wagon	Skidding/sliding	0
					North	Stopped	Automobile, station wagon	Other motor vehicle	
					North	Stopped	Automobile, station wagon	Other motor vehicle	
2019-Nov-05, Tue,18:17	Clear	Sideswipe	P.D. only	Dry	East	Turning right	Automobile, station wagon	Other motor vehicle	0
					East	Turning right	Truck and trailer	Other motor vehicle	
2019-Dec-24, Tue,22:58	Clear	Rear end	P.D. only	Dry	North	Going ahead	Automobile, station wagon	Other motor vehicle	0
					North	Stopped	Automobile, station wagon	Other motor vehicle	
2020-May-24, Sun,14:00	Clear	Rear end	P.D. only	Dry	North	Slowing or stoppin	g Automobile, station wagon	Other motor vehicle	0
					North	Going ahead	Automobile, station wagon	Other motor vehicle	
2020-Aug-13, Thu,14:30	Clear	Rear end	P.D. only	Dry	South	Unknown	Unknown	Other motor vehicle	0
					South	Stopped	Pick-up truck	Other motor vehicle	

Location: MARCI	H RD @ TERF	RY FOX DR							
Traffic Control: Tra	ffic signal						Total Collisions:	47	
Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuve	r Vehicle type	First Event	No. Ped
2020-Oct-14, Wed, 22:26	Clear	Turning movement	Non-fatal injury	Dry	South	Going ahead	Automobile, station wagon	Other motor vehicle	0
					North	Turning left	Automobile, station wagon	Other motor vehicle	
2020-Nov-22, Sun,17:45	Snow	SMV other	P.D. only	Loose snow	East	Slowing or stopping	g Automobile, station wagon	Skidding/sliding	0
Location: MARCI	H RD btwn MC	RGAN'S GRANT	NAY & TERRY F	OX DR					
Traffic Control: No	control						Total Collisions:	6	
Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuve	r Vehicle type	First Event	No. Ped
2018-Feb-23, Fri,13:12	Freezing Rain	SMV other	Non-fatal injury	Ice	North	Going ahead	Automobile, station wagon	Ran off road	0
2018-Oct-29, Mon,07:27	Rain	Rear end	P.D. only	Wet	South	Going ahead	Automobile, station wagon	Other motor vehicle	0
					South	Stopped	Automobile, station wagon	Other motor vehicle	
					South	Going ahead	Delivery van	Other motor vehicle	
					South	Stopped	Automobile, station wagon	Other motor vehicle	
2019-May-14, Tue,20:48	Clear	Sideswipe	P.D. only	Dry	North	Going ahead	Automobile, station wagon	Other motor vehicle	0
					North	Going ahead	Delivery van	Other motor vehicle	
2019-May-28, Tue,10:39	Rain	SMV other	P.D. only	Wet	North	Going ahead	Automobile, station wagon	Curb	0
2019-Nov-05, Tue,06:41	Clear	Rear end	Non-fatal injury	Wet	South	Changing lanes	Automobile, station wagon	Other motor vehicle	0
					South	Going ahead	Automobile, station wagon	Other motor vehicle	
2020-Jan-04, Sat,19:54	Clear	Sideswipe	P.D. only	Wet	North	Changing lanes	Automobile, station wagon	Other motor vehicle	0
					North	Going ahead	Automobile, station wagon	Other motor vehicle	
Location: MARCI	H RD btwn SO	LANDT RD & TER	RY FOX DR						
Traffic Control: No	control						Total Collisions	: 16	
Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuve	r Vehicle type	First Event	No. Ped

Traffic Control: No control							Total Collisions: 16		
ate/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuve		First Event	No. Ped
2016-Jan-15, Fri,17:54	Clear	Rear end	P.D. only	Dry	North	Slowing or stoppin	g Automobile, station wagon	Other motor vehicle	0
					North	Stopped	Automobile, station wagon	Other motor vehicle	
					North	Stopped	Automobile, station wagon	Other motor vehicle	
2016-Jun-17, Fri,06:36	Clear	SMV other	Non-fatal injury	Dry	South	Going ahead	Automobile, station wagon	Animal - wild	0
2016-Jun-30, Thu,16:46	Clear	Angle	Non-fatal injury	Dry	North	Going ahead	Bicycle	Other motor vehicle	0
					East	Turning right	Pick-up truck	Cyclist	
2016-Dec-19, Mon,23:58	Clear	Sideswipe	P.D. only	Loose snow	North	Changing lanes	Automobile, station wagon	Other motor vehicle	0
					North	Going ahead	Pick-up truck	Other motor vehicle	
2017-Feb-14, Tue,11:55	Snow	Rear end	Non-fatal injury	Wet	North	Merging	Automobile, station wagon	Other motor vehicle	0
					North	Stopped	Automobile, station wagon	Other motor vehicle	
2017-May-20, Sat,07:57	Clear	Sideswipe	P.D. only	Dry	South	Changing lanes	Automobile, station wagon	Other motor vehicle	0
					South	Going ahead	Automobile, station wagon	Other motor vehicle	
2017-Jun-05, Mon,08:55	Clear	Rear end	P.D. only	Dry	South	Changing lanes	Automobile, station wagon	Other motor vehicle	0
					South	Going ahead	Automobile, station wagon	Other motor vehicle	
					South	Going ahead	Truck and trailer	Other motor vehicle	
2018-Oct-30, Tue,17:12	Clear	Rear end	P.D. only	Dry	North	Going ahead	Automobile, station wagon	Other motor vehicle	0
					North	Slowing or stoppin	g Automobile, station wagon	Other motor vehicle	
					North	Stopped	Automobile, station wagon	Other motor vehicle	
					North	Stopped	Automobile, station wagon	Other motor vehicle	
2019-Apr-18, Thu,03:22	Clear	Rear end	Non-fatal injury	Dry	North	Going ahead	Automobile, station wagon	Other motor vehicle	0
					North	Going ahead	Pick-up truck	Other motor vehicle	
2019-May-23, Thu,16:30	Rain	Rear end	P.D. only	Wet	South	Unknown	Unknown	Other motor vehicle	0
					South	Stopped	Automobile, station wagon	Other motor vehicle	
2019-Aug-04, Sun,11:40	Clear	SMV other	Non-fatal injury	Dry	North	Going ahead	Motorcycle	Skidding/sliding	0

Location: MARC	control						Total Calliciana	10	
Traffic Control: No	control						Total Collisions:	-	
Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuve	er Vehicle type	First Event	No. Ped
2019-Nov-16, Sat,19:07	Clear	SMV other	P.D. only	Dry	South	Going ahead	Automobile, station wagon	Debris on road	0
2019-Nov-26, Tue,07:00	Clear	SMV other	P.D. only	Dry	South	Going ahead	Automobile, station wagon	Animal - wild	0
2019-Dec-31, Tue,07:57	Snow	Rear end	P.D. only	Slush	North	Going ahead	Pick-up truck	Other motor vehicle	0
					North	Stopped	Automobile, station wagon	Other motor vehicle	
2020-Apr-03, Fri,09:29	Rain	SMV other	Non-fatal injury	Wet	South	Going ahead	Automobile, station wagon	Pole (utility, power)	0
2020-Oct-29, Thu,07:10	Clear	SMV other	P.D. only	Dry	South	Going ahead	Passenger van	Animal - wild	0
Location: TERRY	Y FOX DR btw	n INNOVATION DE	R & MARCH RD						
Traffic Control: No	control						Total Collisions:	5	
Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuve	er Vehicle type	First Event	No. Ped
2016-May-20, Fri,15:14	Clear	Rear end	Non-fatal injury	Dry	West	Going ahead	Automobile, station wagon	Other motor vehicle	0
					West	Slowing or stoppin	g Pick-up truck	Other motor vehicle	
2018-Apr-22, Sun,15:43	Clear	SMV other	P.D. only	Dry	West	Going ahead	Automobile, station wagon	Animal - wild	0
2018-Jun-14, Thu,17:32	Rain	Rear end	P.D. only	Wet	West	Slowing or stoppin	g Automobile, station wagon	Other motor vehicle	0
					West	Stopped	Automobile, station wagon	Other motor vehicle	
					West	Going ahead	Automobile, station wagon	Other motor vehicle	
2018-Oct-22, Mon,11:30	Clear	Turning movement	P.D. only	Dry	West	Turning right	Automobile, station wagon	Other motor vehicle	0
					West	Going ahead	Automobile, station wagon	Other motor vehicle	
2018-Nov-29, Thu,17:09	Clear	Rear end	P.D. only	Dry	West	Slowing or stoppin	g Automobile, station wagon	Other motor vehicle	0
					West	Stopped	Automobile, station wagon	Other motor vehicle	
Location: TERRY	Y FOX DR N @	FLAMBOROUGH	I WAY/INNOVATIO	ON DR					
Traffic Control: Tra	iffic signal						Total Collisions:	20	
Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuve	er Vehicle type	First Event	No. Peo

Traffic Control: Tra	ffic signal						Total Collisions:	20	
Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuve	er Vehicle type	First Event	No. Ped
2016-Feb-19, Fri,06:43	Clear	Angle	P.D. only	Ice	East	Going ahead	Pick-up truck	Other motor vehicle	0
					North	Turning left	Pick-up truck	Other motor vehicle	
2016-Jul-24, Sun,11:52	Clear	Rear end	P.D. only	Dry	East	Slowing or stoppin	g Passenger van	Other motor vehicle	0
					East	Stopped	Automobile, station wagon	Other motor vehicle	
2016-Jul-26, Tue,19:34	Clear	Rear end	P.D. only	Dry	West	Turning left	Pick-up truck	Other motor vehicle	0
					West	Turning left	Automobile, station wagon	Other motor vehicle	
2016-Sep-08, Thu,17:36	Clear	Rear end	P.D. only	Dry	West	Going ahead	Automobile, station wagon	Other motor vehicle	0
					West	Going ahead	Automobile, station wagon	Other motor vehicle	
2016-Oct-20, Thu,11:30	Rain	Sideswipe	P.D. only	Wet	North	Unknown	Pick-up truck	Other motor vehicle	0
					North	Going ahead	Pick-up truck	Other motor vehicle	
2017-Apr-04, Tue,09:11	Rain	Turning movement	Non-fatal injury	Wet	West	Turning left	Pick-up truck	Other motor vehicle	0
					East	Going ahead	Automobile, station wagon	Other motor vehicle	
					North	Stopped	Automobile, station wagon	Other motor vehicle	
					North	Stopped	Passenger van	Other motor vehicle	
					North	Stopped	Pick-up truck	Other motor vehicle	
2017-Jun-17, Sat,13:17	Clear	Angle	P.D. only	Dry	West	Slowing or stoppin	g Pick-up truck	Other motor vehicle	0
					South	Going ahead	Passenger van	Other motor vehicle	
2017-Aug-23, Wed,16:59	Clear	Rear end	Non-fatal injury	Dry	West	Going ahead	Delivery van	Other motor vehicle	0
					West	Stopped	Automobile, station wagon	Other motor vehicle	
					West	Slowing or stoppin	g Automobile, station wagon	Other motor vehicle	
					West	Stopped	Automobile, station wagon	Other motor vehicle	
2017-Dec-12, Tue,19:04	Snow	Rear end	P.D. only	Slush	South	Going ahead	Automobile, station wagon	Other motor vehicle	0
					South	Stopped	Pick-up truck	Other motor vehicle	

Traffic Control: Tra	ffic signal						Total Collisions:	20	
Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuve	r Vehicle type	First Event	No. Ped
2018-Jan-13, Sat,14:18	Clear	Turning movement	Non-fatal injury	Loose snow	West	Turning left	Automobile, station wagon	Other motor vehicle	0
					East	Going ahead	Automobile, station wagon	Other motor vehicle	
2018-Jan-16, Tue,15:00	Clear	Rear end	P.D. only	Loose snow	West	Going ahead	Automobile, station wagon	Other motor vehicle	0
					West	Stopped	Automobile, station wagon	Other motor vehicle	
2018-Apr-05, Thu,17:54	Clear	Turning movement	P.D. only	Dry	West	Making "U" turn	Automobile, station wagon	Other motor vehicle	0
					West	Going ahead	Automobile, station wagon	Other motor vehicle	
2018-May-24, Thu,13:46	Clear	Rear end	P.D. only	Dry	South	Going ahead	Automobile, station wagon	Other motor vehicle	0
					South	Stopped	Automobile, station wagon	Other motor vehicle	
					South	Stopped	Automobile, station wagon	Other motor vehicle	
2018-Jun-04, Mon,17:47	Rain	Rear end	P.D. only	Wet	West	Going ahead	Automobile, station wagon	Other motor vehicle	0
					West	Stopped	Automobile, station wagon	Other motor vehicle	
2018-Sep-12, Wed, 19:05	Clear	SMV other	P.D. only	Dry	North	Turning left	Unknown	Pedestrian	1
2019-Oct-01, Tue,09:00	Rain	Rear end	Non-fatal injury	Wet	East	Going ahead	Pick-up truck	Other motor vehicle	0
					East	Slowing or stopping	g Pick-up truck	Other motor vehicle	
2019-Oct-28, Mon,17:48	Clear	Angle	Non-fatal injury	Dry	East	Going ahead	Passenger van	Other motor vehicle	0
					North	Going ahead	Automobile, station wagon	Other motor vehicle	
2019-Nov-14, Thu,07:45	Snow	Rear end	P.D. only	Loose snow	South	Slowing or stopping	g Automobile, station wagon	Other motor vehicle	0
					South	Stopped	Automobile, station wagon	Other motor vehicle	
2020-Feb-25, Tue,17:20	Clear	Rear end	P.D. only	Wet	West	Going ahead	Automobile, station wagon	Other motor vehicle	0
					West	Stopped	Unknown	Other motor vehicle	
2020-Sep-21, Mon,18:51	Clear	Angle	Non-fatal injury	Dry	North	Turning right	Automobile, station wagon	Cyclist	0
					East	Going ahead	Bicycle	Other motor vehicle	

Location: HINES	Location: HINES RD btwn END & INNOVATION DR											
Traffic Control: No	Traffic Control: No control Total Collisions: 1											
Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuve	Vehicle type	First Event	No. Ped			
2017-Dec-07, Thu,07:40	Snow	SMV other	P.D. only	Ice	South	Stopped	Automobile, station wagon	Ran off road	0			

APPENDIX F

Internal Capture Worksheets

	NCHRP 684 Internal Trip Capture E	Esti	mation Tool	
Project Name:	555-603 March Road		Organization:	Novatech
Project Location:	Ottawa, ON		Performed By:	Josh Audia
Scenario Description:	Full Site Development		Date:	10/28/2022
Analysis Year:		Ī	Checked By:	
Analysis Period:	AM Street Peak Hour		Date:	

	Table 1-A: Base	Vehicle-Trip (Generation Estima	tes	(Single-Use Site	Estimate)	
Land Use	Developme	ent Data (<i>For In</i>	formation Only)		E	stimated Vehicle-Tri	ps ³
Land Use	ITE LUCs ¹	Quantity	Units		Total	Entering	Exiting
Office					224	197	27
Retail					50	30	20
Restaurant					0		
Cinema/Entertainment					0		
Residential					396	123	273
Hotel					0		
All Other Land Uses ²					0		
					670	350	320

	Table 2-A: Mode Split and Vehicle Occupancy Estimates										
Land Use		Entering Tri	ps		Exiting Trips						
	Veh. Occ.4	% Transit	% Non-Motorized		Veh. Occ.4	% Transit	% Non-Motorized				
Office		20%	4%			20%	4%				
Retail		10%	4%			10%	4%				
Restaurant											
Cinema/Entertainment											
Residential		27%	5%			27%	5%				
Hotel											
All Other Land Uses ²											

	Table 3-A: Average Land Use Interchange Distances (Feet Walking Distance)										
Origin (From)		Destination (To)									
Origin (From)	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel					
Office											
Retail											
Restaurant											
Cinema/Entertainment											
Residential											
Hotel											

	Table 4-A: Internal Person-Trip Origin-Destination Matrix*										
Origin (From)		Destination (To)									
Origin (From)	Office	Office Retail Restaurant Cinema/Entertainment		Residential	Hotel						
Office		10	0	0	0	0					
Retail	9		0	0	4	0					
Restaurant	0	0		0	0	0					
Cinema/Entertainment	0	0	0		0	0					
Residential	8	6	0	0		0					
Hotel	0	0	0	0	0						

Table 5-A:	: Computatio	ons Summary		ble 6-A: Internal Trip Capture Percentages by L			
	Total	Entering	Exiting	Land Use	Entering Trips	Exiting Trip	
All Person-Trips	1,232	582	650	Office	6%	27%	
Internal Capture Percentage	6%	6%	6%	Retail	34%	42%	
				Restaurant	N/A	N/A	
External Vehicle-Trips ⁵	611	320	291	Cinema/Entertainn	N/A	N/A	
External Transit-Trips ⁶	287	124	163	Residential	2%	2%	
External Non-Motorized Trips ⁶	51	23	28	Hotel	N/A	N/A	

¹Land Use Codes (LUCs) from *Trip Generation Manual*, published by the Institute of Transportation Engineers.

²Total estimate for all other land uses at mixed-use development site is not subject to internal trip capture computations in this estimator.
³Enter trips assuming no transit or non-motorized trips (as assumed in ITE *Trip Generation Manual*).
*Enter vehicle occupancy assumed in Table 1-A vehicle trips. If vehicle occupancy changes for proposed mixed-use project, manual

"Enter vehicle occupancy assumed in Table 1-A vehicle trips. If vehicle occupancy changes for proposed mixed-use project, manual adjustments must be made to Tables 5-A, 9-A (O and D). Enter transit, non-motorized percentages that will result with proposed mixed-use project complete

Vehicle-trips computed using the mode split and vehicle occupancy values provided in Table 2-A.

⁶Person-Trips

Indicates computation that has been rounded to the nearest whole number.

Estimation Tool Developed by the Texas A&M Transportation Institute - Version 2013.1

Project Name:	555-603 March Road
Analysis Period:	AM Street Peak Hour

	Table 7-A: Conversion of Vehicle-Trip Ends to Person-Trip Ends										
Land Use	Tab	le 7-A (D): Enter	ring Trips		Table 7-A (O): Exiting Trips						
		Vehicle-Trips	Person-Trips*			Vehicle-Trips	Person-Trips*				
Office		197	274	Ī		27	37				
Retail		30	47	1		20	31				
Restaurant		0	0	Ī		0	0				
Cinema/Entertainment		0	0	Ī		0	0				
Residential		123	261]		273	582				
Hotel		0	0			0	0				

Table 8-A (O): Internal Person-Trip Origin-Destination Matrix (Computed at Origin)								
Destination (To)								
Origin (From)	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel		
Office		10	23	0	0	0		
Retail	9		4	0	4	0		
Restaurant	0	0		0	0	0		
Cinema/Entertainment	0	0	0		0	0		
Residential	12	6	116	0		0		
Hotel	0	0	0	0	0			

Table 8-A (D): Internal Person-Trip Origin-Destination Matrix (Computed at Destination)						
Ocicie (Fram) Destination (To)						
Origin (From)	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel
Office		15	0	0	0	0
Retail	11		0	0	5	0
Restaurant	38	4		0	13	0
Cinema/Entertainment	0	0	0		0	0
Residential	8	8	0	0		0
Hotel	8	2	0	0	0	

Table 9-A (D): Internal and External Trips Summary (Entering Trips)								
Destination Land Use		Person-Trip Esti	mates		External Trips by Mode*			
Destination Land Use	Internal	External	Total		Vehicles ¹	Transit ²	Non-Motorized ²	
Office	17	257	274	I	184	51	10	
Retail	16	31	47	I	16	3	1	
Restaurant	0	0	0	1	0	0	0	
Cinema/Entertainment	0	0	0	I	0	0	0	
Residential	4	257	261	I	120	70	12	
Hotel	0	0	0	I	0	0	0	
All Other Land Uses ³	0	0	0		0	0	0	

	Table 9-A	(O): Internal a	nd External Trips	Sum	mary (Exiting Tri	ps)	
Origin Land Llos	ł	Person-Trip Estimates			External Trips by Mode*		
Origin Land Use	Internal	External	Total		Vehicles ¹	Transit ²	Non-Motorized ²
Office	10	27	37	T	19	5	1
Retail	13	18	31	T	9	2	1
Restaurant	0	0	0	T	0	0	0
Cinema/Entertainment	0	0	0	T	0	0	0
Residential	14	568	582		263	156	26
Hotel	0	0	0		0	0	0
All Other Land Uses ³	0	0	0		0	0	0

¹ Vehicle-trips computed using the mode split and vehicle occupancy values provided in Table 2-A
² Person-Trips
³ Total estimate for all other land uses at mixed-use development site is not subject to internal trip capture computations in this estimator
*Indicates computation that has been rounded to the nearest whole number.

	NCHRP 684 Internal Trip Capture Estimation Tool						
Project Name:	555-603 March Road		Organization:	Novatech			
Project Location:	Ottawa, ON		Performed By:	Josh Audia			
Scenario Description:	Full Site Development		Date:	10/28/2022			
Analysis Year:			Checked By:				
Analysis Period:	PM Street Peak Hour		Date:				

	Table 1-P: Base	Vehicle-Trip G	eneration Estima	tes	(Single-Use Site	Estimate)	
Land Use	Developme	ent Data (<i>For Inf</i>	ormation Only)		E	stimated Vehicle-Tri	ps ³
Lanu Ose	ITE LUCs ¹	Quantity	Units		Total	Entering	Exiting
Office				Ī	219	37	182
Retail				ĪĪ	144	72	72
Restaurant				i i	0		
Cinema/Entertainment				ĪĪ	0		
Residential				i i	407	236	171
Hotel				i i	0		
All Other Land Uses ²				Ìİ	0		
				i i	770	345	425

	Table 2-P: Mode Split and Vehicle Occupancy Estimates						
Land Use	Entering Trips				Exiting Trips		
Land Use	Veh. Occ. ⁴	% Transit	% Non-Motorized		Veh. Occ. ⁴	% Transit	% Non-Motorized
Office		20%	4%			20%	4%
Retail		10%	4%			10%	4%
Restaurant							
Cinema/Entertainment							
Residential		26%	5%			26%	5%
Hotel							
All Other Land Uses ²							

Table 3-P: Average Land Use Interchange Distances (Feet Walking Distance)						
Origin (From)			D	estination (To)		
Origin (From)	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel
Office		328			328	
Retail					328	
Restaurant						
Cinema/Entertainment						
Residential		328				
Hotel						

Table 4-P: Internal Person-Trip Origin-Destination Matrix*							
Origin (From)	Destination (To)						
Origin (From)	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel	
Office		9	0	0	5	0	
Retail	2		0	0	29	0	
Restaurant	0	0		0	0	0	
Cinema/Entertainment	0	0	0		0	0	
Residential	14	11	0	0		0	
Hotel	0	0	0	0	0		

Table 5-P: Computations Summary				able 6-P: Internal Trip Capture Percentages by Land U		
	Total	Entering	Exiting	Land Use	Entering Trips	Exiting Trips
All Person-Trips	1,382	659	723	Office	31%	6%
Internal Capture Percentage	10%	11%	10%	Retail	18%	28%
				Restaurant	N/A	N/A
External Vehicle-Trips ⁵	662	292	370	Cinema/Entertainm	N/A	N/A
External Transit-Trips ⁶	279	136	143	Residential	7%	7%
External Non-Motorized Trips ⁶	55	26	29	Hotel	N/A	N/A

¹Land Use Codes (LUCs) from *Trip Generation Manual*, published by the Institute of Transportation Engineers.

²Total estimate for all other land uses at mixed-use development site is not subject to internal trip capture computations in this estimator. ³Enter trips assuming no transit or non-motorized trips (as assumed in ITE *Trip Generation Manual*).

⁴Enter vehicle occupancy assumed in Table 1-P vehicle trips. If vehicle occupancy changes for proposed mixed-use project, manual ⁵Vehicle-trips computed using the mode split and vehicle occupancy values provided in Table 2-P.

⁶Person-Trips

*Indicates computation that has been rounded to the nearest whole number.

Estimation Tool Developed by the Texas A&M Transportation Institute - Version 2013.1

Project Name:	555-603 March Road
Analysis Period:	PM Street Peak Hour

Table 7-P: Conversion of Vehicle-Trip Ends to Person-Trip Ends										
Land Use	Tab	le 7-P (D): Enter	ing Trips		Tab	Table 7-P (O): Exiting Trips				
Land Ose		Vehicle-Trips	Person-Trips*			Vehicle-Trips	Person-Trips*			
Office		37	52	Ī		182	253			
Retail		72	113	1		72	112			
Restaurant		0	0	Ī		0	0			
Cinema/Entertainment		0	0	Ī		0	0			
Residential		236	494]		171	358			
Hotel		0	0			0	0			

Table 8-P (O): Internal Person-Trip Origin-Destination Matrix (Computed at Origin)											
Origin (From)			D	estination (To))						
Oligili (Flolil)	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel					
Office		49	10	0	5	0					
Retail	2		32	4	29	6					
Restaurant	0	0		0	0	0					
Cinema/Entertainment	0	0	0		0	0					
Residential	14	145	75	0		11					
Hotel	0	0	0	0	0						

Table	Table 8-P (D): Internal Person-Trip Origin-Destination Matrix (Computed at Destination)										
Origin (From)			D	estination (To))						
	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel					
Office		9	0	0	20	0					
Retail	16		0	0	227	0					
Restaurant	16	57		0	79	0					
Cinema/Entertainment	3	5	0		20	0					
Residential	30	11	0	0		0					
Hotel	0	2	0	0	0						

Table 9-P (D): Internal and External Trips Summary (Entering Trips)									
Destination Land Use		Person-Trip Esti	mates		External Trips by Mode*				
Destination Land Ose	Internal	External	Total		Vehicles ¹	Transit ²	Non-Motorized ²		
Office	16	36	52	T	25	7	1		
Retail	20	93	113	T	55	9	4		
Restaurant	0	0	0	1	0	0	0		
Cinema/Entertainment	0	0	0	T	0	0	0		
Residential	34	460	494	T	212	120	21		
Hotel	0	0	0	T	0	0	0		
All Other Land Uses ³	0	0	0		0	0	0		

Table 9-P (O): Internal and External Trips Summary (Exiting Trips)									
Origin Land Llag	ŀ	Person-Trip Esti	mates		External Trips by Mode*				
Origin Land Use	Internal	External	Total	1 [Vehicles ¹	Transit ²	Non-Motorized ²		
Office	14	239	253	ור	171	48	10		
Retail	31	81	112	ור	45	8	3		
Restaurant	0	0	0	ור	0	0	0		
Cinema/Entertainment	0	0	0	ור	0	0	0		
Residential	25	333	358	1 [154	87	16		
Hotel	0	0	0	1 [0	0	0		
All Other Land Uses ³	0	0	0		0	0	0		

¹ Vehicle-trips computed using the mode split and vehicle occupancy values provided in Table 2-P
² Person-Trips
³ Total estimate for all other land uses at mixed-use development site is not subject to internal trip capture computations in this estimator
*Indicates computation that has been rounded to the nearest whole number.

APPENDIX G

Other Area Developments

1.0 SCREENING

1.1 Introduction

This Transportation Impact Assessment (TIA) has been prepared for a proposed development at 359 Terry Fox Drive and 525 Legget Drive on behalf of Wesley Clover International (Brookstreet Hotel), in support of Zoning By-Law Amendment and Site Plan Control applications. The Subject Site is a redevelopment of portions of 359 Terry Fox Drive and 525 Legget Drive (Brookstreet Hotel). A new parcel will be created through a severance process that will consist of the existing easterly access to 359 Terry Fox Drive and a portion of the area of 525 Legget Drive between an existing parking garage and the stormwater pond to the east.

The existing uses at 359 Terry Fox Drive include light industrial and office uses, and the existing uses at 525 Legget Drive include the Brookstreet Hotel, and accessory small commercial and office uses. Based on the location of the existing driveways, the subject site could be accessed via a driveway to 525 Legget Drive, two driveways to 555 Legget Drive, and two driveways to 359 Terry Fox Drive. The easterly access to 359 Terry Fox Drive, which will become part of the proposed parcel, is proposed to be the primary access to the development.

The subject site is surrounded by the following:

- Office uses, followed by Terry Fox Drive to the north,
- The Marshes Golf Club, followed by office uses and Solandt Road to the south,
- The Marshes Golf Club, followed by office uses and Terry Fox Drive to the east, and
- Legget Drive, followed by office uses and March Road to the west.

An aerial of the vicinity around the subject site is provided in **Figure 1**. A copy of the site plan is included in **Appendix A**.

1.2 Proposed Development

The subject site is designated as 'Urban Employment Area' on Schedule B of the City of Ottawa's Official Plan. The implemented zoning for the property is 'Business Park Industrial Zone (Kanata North Business Park)' (IP6). The subject site is not within any Community Design Plan or Secondary Plan areas. A Zoning By-Law Amendment is required to permit the proposed use. The draft City of Ottawa Official Plan includes proposed policies that will permit a higher density of development and greater degree of mixed uses, including residential within new 'activity centres' that are generally located within 600 metres of planned transit stations. The goal of the activity centres is to create a place to live, work, learn and play and provide access daily needs without a car. The City of Ottawa Official Plan includes a transit station at the intersection of March Road and Terry Fox as part of the future Bus Rapid Transit.

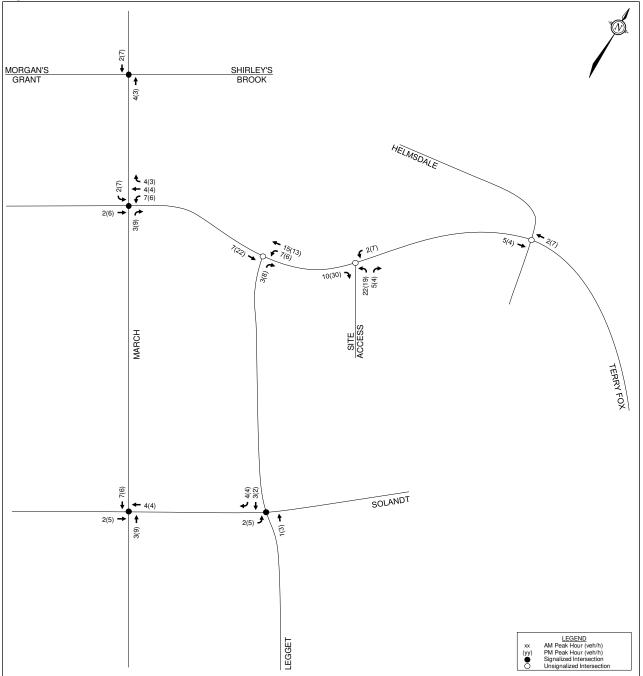

The proposed development consists of a single 30-storey high-rise residential building with 253 rental dwellings and approximately 3,877 ft² gross floor area (GFA) of rooftop restaurant space. The proposed development will provide a unique residential rental accommodation within the Kanata North Economic District, a technology park which employs over 20,000 people. The rental units will offer apartments within short walking or cycling distance of major employers, and will act as the catalyst for one of the City's proposed activity centres within the district. The residential tower will also be directly connected to the Brookstreet Hotel and will provide a unique experience for residents, as tenants will have access to amenities such as restaurants, fitness facilities, a spa, and recreational facilities.

Figure 1: View of the Subject Site

- Other area development-generated traffic volumes in 2029 are shown in Figure 12;
- Background traffic volumes in 2024 are shown in Figure 13;
- Background traffic volumes in 2029 are shown in Figure 14;
- Total traffic volumes in 2024 are shown in Figure 15;
- Total traffic volumes in 2029 are shown in Figure 16.

Figure 8: Proposed Site-Generated Volumes

1.0 SCREENING

1.1 SUMMARY OF DEVELOPMENT

Municipal Address	600 March Road
Description of Location	Southeast quadrant of the March Road at Terry Fox Drive intersection
Land Use Classification	Mixed-Use Development (Residential High-Rise, Retail, Office)
Development Size (units)	Residential units = 1,900
Development Size (m ²)	Office/Lab: 46,000 m ² Retail: 11,350 m ²
Number of Accesses and Locations	Four (4) accesses from March Road, One (1) access from Terry Fox Drive, Three (3) accesses from Legget Drive.
Phase of Development	Nokia Campus: 2026 Residential: 1 tower (250 units/year) after 2026
Buildout Year	2032 (10 year build out)

If available, please attach a sketch of the development or site plan to this form.

1.2 TRIP GENERATION TRIGGER

Considering the Development's Land Use type and Size (as filled out in the previous section), please refer to the Trip Generation Trigger checks below.

Land Use Type	Minimum Development Size	Triggered
Single-family homes	40 units	×
Townhomes or apartments	90 units	\checkmark
Office	3,500 m²	\checkmark
Industrial	5,000 m²	×
Fast-food restaurant or coffee shop	100 m ²	×
Destination retail	1,000 m ²	\checkmark
Gas station or convenience market	75 m²	×

* If the development has a land use type other than what is presented in the table above, estimates of person-trip generation may be made based on average trip generation characteristics represented in the current edition of the Institute of Transportation Engineers (ITE) Trip Generation Manual.

If the proposed development size is greater than the sizes identified above, <u>the Trip Generation Trigger is</u> <u>satisfied.</u>

Figure 1 - Site Location

				In	Out	Total	In	Out	Total
		Auto Driver	48%	694	94	788	107	523	631
		Auto Passenger	23%	209	28	238	32	158	190
710	General Office Building	Transit	25%	10	1	11	1	7	9
	Building	Cycling	0%	0	0	0	0	0	0
		Walking	5%	38	5	43	6	29	35

Comparing the vehicle trips associated with the existing Nokia campus, as outlined in **Table 9** above, to the existing traffic volumes along Legget Drive, it is clear that the volumes outlined in **Table 9** are an overestimation of the actual volumes the existing Nokia campus is generating. As the main entrances to the existing Nokia campus are on Legget Drive, the vehicle trips outlined in **Table 9** above are not realistic and thus were decreased to more accurately match the existing volumes along Legget Drive. This reduction was done in conjunction with assessing the existing volumes on Legget Drive along with the surrounding land uses. **Table 10** below outlines the existing Nokia volumes after the reductions were applied, which are more in line with the turning movement counts collected in the area.

Table 10 – Adjusted Existing Trips

LUC	Land Use	Trip Conversion		Week	day AM Pe	eak Hour	Weekday PM Peak Hour		
				In	Out	Total	In	Out	Total
710	General Office Building	Reduction	30%	486	66	552	75	366	442

3.1.2 Future Trip Generation and Mode Shares

The *Institute of Transportation (ITE) Trip Generation Manual (11th Edition)* was used to forecast the auto trip generation for the retail and office land uses and the *Trans Trip Generation Study* was used to forecast the auto trip generation for the residential land use. Land use codes 222 – Multi-Unit High Rise Building, 821 – Shopping Plaza, and 710 – General Office Building were thought to be the most representative of the proposed land uses.

Table 11 outlines the assumed land uses and the trip generation rates for each land use.

Table 11 – Future Land Uses and Trip Generation Rates

LUC	Land Use	Units/Employees/ Weekday AM Peak Hour Weekday				ay PM Pea	y PM Peak Hour		
LUC	Lanu Use	GFA (1000's SF)	In	Out	Total	In	Out	Total	
222	Multi - Unit (High-Rise)	1900 Units	31%	69%	0.80	58%	42%	0.90	
710	General Office Building	2400	88%	12%	0.42	17%	83%	0.32	
821	Shopping Plaza	122 GFA	62%	38%	1.73	48%	52%	5.19	

It is noted that as per direction from Nokia, the office land use is anticipated to generate an additional 25 inbound and 25 outbound delivery trips during each of the AM and PM peak hours. Of the net 25 deliveries, 3 are anticipated to be tractor trailers (entering the site from Legget Drive), and 22 are anticipated to be box trucks / vans (entering the site from March Road). The delivery trips are not included in the trip generation tables and were accounted for as part of the total office land use trips shown in **Figure 12**.

 Table 12 outlines development-generated person trips for each land use.

LUC	Land Use	Trip Conversion	Weekd	ay AM Pea	k Hour				
LUC			In	Out	Total	In	Out	Total	
		Person Trips (Peak Period	471	1049	1520	992	718	1710	
222	Multi - Unit (High-Rise)	Person Trips (Peak Hour) 0.50 for AM & 0.40 for PM	236	525	761	436	316	752	
		Auto Trips	880	120	1000	131	641	772	
710	General Office	Person Trip Factor 1.28							
		Person Trips	1126	154	1280	168	820	988	
		Auto Trips	131	80	211	304	330	634	
821	Shopping Plaza	Person Trip Factor	1.28						
		Person Trips	168	102	270	389	422	812	
Т	otal Development	Total Person Trips	1530	781	2311	993	1558	2552	

Table 12 – Future Person Trips Generated by Land Use

To reflect local travel characteristics, the person trips were assigned to the four primary modal shares (i.e., auto, passenger, transit, and active moves). As per the City of Ottawa's TMP, the March Road Bus Rapid Transit (BRT) is scheduled to be implemented by 2031, between Solandt Road and Highway 417. The subject development is planned to be built and occupied by 2032. The office portion of the subject development is anticipated to be within 400m of the planned BRT station at Solandt Road. Per direction from the City of Ottawa, the March Road BRT, north of Solandt Road, is scheduled to occur beyond the horizons of this subject study (i.e., post 2037). The residential / retail portion of the subject development (north half) are not anticipated to be within 400m of a rapid transit station during the study horizons. As such, the modal shares for the northern and southern portions of the subject development will differ as a direct result of the implementation plan of the March Road BRT.

Residential Trips – Mode Shares

Section 4.2 (Table 8) of the *TRANS Trip Generation Summary Report* was utilized to determine the residential mode share for high rise multi-family housing for the Kanata / Stittsville district. The average mode shares for the district include a 49% auto mode share and a 25% transit mode share. As the existing transit mode share is notably high for the general area, it is not anticipated to see increase as a result of the planned March Road BRT (between Highway 417 and Solandt Road) as the distance between the transit station and the residential component of the proposed development is anticipated to be greater than 400m.

Office Trips – Mode Shares

Section 6.2 (Table 12) of the *TRANS Trip Generation Summary Report* was utilized to determine the employment generator mode share by district. The report exclusively cites AM mode shares, however, it is expected that the PM mode shares would be identical as the commute from employment generators during the PM peak hour is very unlikely to differ from the commute to employment generators during the AM peak hour. For the Kanata / Stittsville district, the aforementioned report cites an 8% transit mode share and an 84% auto mode share.

Commercial Trips – Mode Shares

Section 6.3 (Table 13) of the *TRANS Trip Generation Summary Report* was utilized to determine the commercial generator mode share for the Kanata / Stittsville district. The report exclusively cites that the sample size for shopping trips during the AM peak tends to be low. As such, more emphasis was placed on the mode shares during the PM peak period to better represent the activity in the district. During the PM peak, the mode shares for the district include a 73%

600 March Road Transportation Impact Assessment Forecasting

July 18, 2022

auto mode share and a 1% transit mode share. To account for the enhanced overall transit service as a result of the planned March Road BRT (between Highway 417 and Solandt Road), the transit mode share for the commercial land use was increased from 1% to 10% (a 9% net increase) while subsequently reducing the 73% auto mode share by 9% for a total of 64%.

Table 13 outlines the modal shares that were used for the proposed development.

LUC	Land Use	Trip Convers	Week	day AM Pe	ak Hour	Weekday PM Peak Hour			
			In	Out	Total	In	Out	Total	
		Auto Driver	49%	116	257	373	214	155	369
	Marial Linda (Lillada	Auto Passenger	22%	52	116	168	96	70	166
222	Multi - Unit (High- Rise)	Transit	25%	58	129	187	107	77	184
	11130)	Cycling	0%	0	0	0	0	0	0
		Walking	4%	9	21	30	17	13	30
		Auto Driver	84%	946	129	1075	141	689	832
	O an and Office	Auto Passenger	4%	45	6	51	7	33	39
710	General Office Building	Transit	8%	90	12	102	13	66	79
	Dunung	Cycling	1%	11	2	12	2	8	11
		Walking	3%	34	5	37	5	25	31
		Auto Driver	64%	108	65	173	249	270	51
		Auto Passenger	22%	37	22	59	86	93	179
821	Shopping Plaza	Transit	10%	17	10	27	39	42	81
		Cycling	0%	0	0	0	0	0	0
		Walking	4%	7	4	11	16	17	33
		Auto Drive	r	1170	451	1621	604	1114	1719
		Auto Passen	ger	139	144	278	189	196	384
Tot	tal Development	Transit		165	151	316	159	185	344
		Cycling		11	2	12	2	8	11
		Walking		50	30	78	38	55	94

Table 13 – Future Trip Generation by Travel Mode

3.1.3 Internal Capture and Pass-By

When predicting trips that are associated with different land use types the interaction between those land use types must be accounted for by applying the principals of internal capture adjustments. Internal capture trips are trips which are shared between two or more uses on the same site. A portion of the generated trips for each individual land use is therefore drawn from the adjacent land uses. Internal capture adjustments were made to account for vehicles that visit more than one land use within the subject development. Since these trips are contained within the subject site, accounting for each trip separately on the roadway network would result in "double-counting". For this reason, land uses that may have associated internal capture trips between one another ultimately had their net new trips adjusted consistent with typical industry standards. In the subject development, the land uses that are subject to internal capture reductions are the retail and office land uses.

In addition, a portion of the auto trips generated by the proposed retail land uses will be 'pass-by' in nature. Pass-by trips are considered intermediate stops between an origin and a destination. They are site trips that are drawn from existing traffic volumes on the road network that are "passing-by" the site. While the total number of trips generated by a given development remains the same, the turning movements at study area intersections and site accesses require

600 March Road Transportation Impact Assessment Forecasting

July 18, 2022

adjustments to reflect pass-by traffic. The rate of pass-by traffic is based on the specific land use which was obtained from the *ITE Trip Generation Manual*. A pass-by rate of 34% was used for the retail land use.

 Table 14 outlines the pass-by, internal capture, and net new trips anticipated for the proposed development.

LUC Land Use Trip Conversion				We	ekday A Hou		Weekday PM Peak Hour			
			In	Out	Total	In	Out	Total		
		Auto Tri	ps		946	129	1075	141	690	831
	General Office	Internal Capture	AM	PM						
710	Building	Inbound	4%	10%	-38	-36	-74	-14	-34	-48
	Dunung	Outbound	28%	5%						
		Net New Auto Trips			908	93	1001	127	655	783
		Auto Tri	ps		108	65	173	249	519	
		Internal Capture	AM	PM						
821	Shopping Plaza	Inbound	24%	16%	-26	-21	-47	-40	-76	-116
		Outbound	33%	28%						
		Net New Aut	o Trips		82	44	126	209	194	403
		Auto Trips			82	44	126	209	194	403
821 – SI	hopping Plaza	Pass-By		34%				71	66	137
			Net Auto	o Trips	82	44	126	138	128	266
Net New	v Auto Trips									
222 – Multi Unit (High Rise)				116	257	373	214	155	369	
710 – Office Building/ Lab			908	93	1001	127	655	783		
821 – Shopping Plaza				82	44	126	138	128	266	
Total De	evelopment									
Net New Auto Trips			110 6	394	1500	479	938	1418		

Table 14 – Future Pass-By and Internal Capture Trips

3.1.4 Trip Distribution

The distribution of traffic to / from the proposed development was developed using the relative traffic flows and volumes at the study area inlets / outlets. To account for the significant Kanata North Urban Expansion Area (KNUEA) development north of the study area (anticipated to be fully built by the 2032 horizon year and is projected to add 800 vehicles to / from the north during the peak hours), the 2032 future background horizon volumes were utilized for this exercise.

Overall, for the office land use, the following trip distribution is anticipated:

- 35% to / from the North (via March Road)
- 50% to / from the South (via March Road)
- 15% to / from the West (via Terry Fox Drive)
- Note: Terry Fox Road (E) and Legget Drive (S) are anticipated to carry negligible development traffic due to the limited connectivity to the adjacent transportation network. Traffic to / from the south of the proposed development is projected to be predominantly on March Road due to the higher speeds and superior connectivity to Highway 417 and the district to the south.

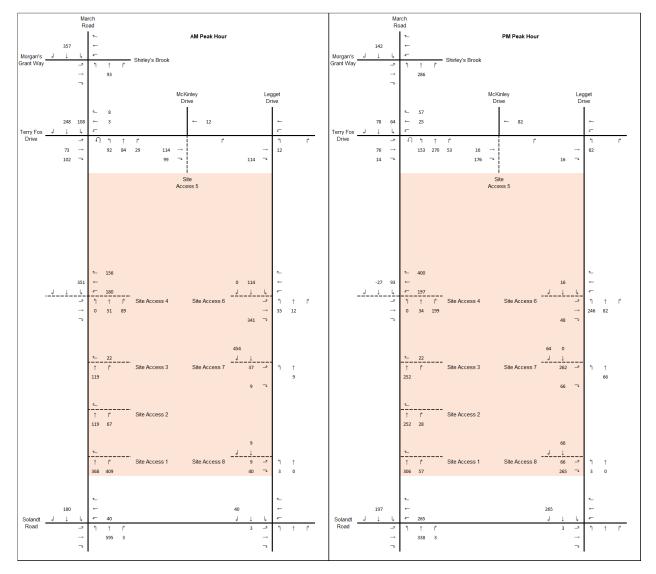
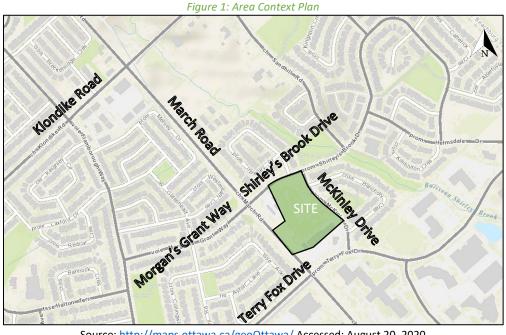


Figure 15 - Site Generated Traffic Volumes - All Land Uses & Pass-by Trips

1 Screening

This study has been prepared according to the City of Ottawa's 2017 Transportation Impact Assessment (TIA) Guidelines. Accordingly, a Step 1 Screening Form has been prepared and is included as Appendix A, along with the Certification Form for TIA Study PM. As shown in the Screening Form, a TIA is required including the Design Review Component and the Network Impact Component.


2 Existing and Planned Conditions

2.1 Proposed Development

The subject property, located at 706, 710, and 714 March Road, is currently zoned as General Mixed Use [GM] and Local Commercial [LC] and is currently undeveloped.

The proposed development consists of a 4,165 square metre supermarket, a 350 square-metre fast-food restaurant with a drive-through, and a large multi-unit commercial space that is 1,500 square metres. A total of 225 parking stalls are shown on the site plan.

Access to the site will be accommodated via March Road (190 metres north of Terry Fox Drive), McKinley Drive (235 and 210 metres north of Terry Fox Drive), and Shirley's Brook Drive (100 metres east of March Road). As March road is divided by a median, this access would be restricted to a right in / right out only. The McKinley Drive access 235 metres north of Terry Fox Drive is anticipated to be a full movement access and will serve customers as well as small and medium trucks. Large heavy vehicles serving the supermarket loading docks will also exist the site via this access. The McKinley Drive Access 210 metres north of Terry Fox Drive will be a left-in only access and allow large trucks serving the supermarket to enter the site. The Shirley's Brook Drive access will be east of the end of the left turn lane that is provided for the intersection with March Road, therefore, a full movement access can be considered at this access. For the purposes of this TIA the projected full build-out and occupancy horizon is 2023, and the plus five-year horizon is 2028. Figure 1 illustrates the Study Area Context. Figure 2 illustrates the proposed concept plan.

Source: http://maps.ottawa.ca/geoOttawa/ Accessed: August 20, 2020

To assign the pass-by trips to the accesses, a ratio of southbound trips as a portion of all traffic on March Road, and northbound trips as a portion of all traffic on March Road was developed. It was determined that 75% of the total traffic is southbound and 25% is northbound in the 2023 AM peak period and 30% of the total traffic is southbound and 70% is northbound in both the 2023 PM and 2023 Saturday peak periods. It was also determined that 75% of the total traffic is southbound and 25% is northbound in the 2023 PM and 2023 Saturday peak periods. It was also determined that 75% of the total traffic is southbound and 25% is northbound in the 2028 AM peak period and 30% of the total traffic is southbound and 70% is northbound in both the 2028 PM and 2028 Saturday peak periods. Using these percentages, the traffic volumes have been logically distributed to the access points. Figure 21 illustrates the site pass-by trip volumes.

Figure 22 illustrates the combined impact of the net new site trip generation and pass-by trips.

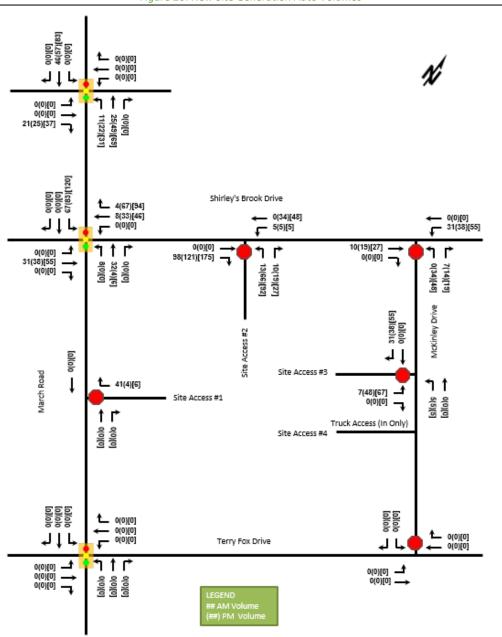
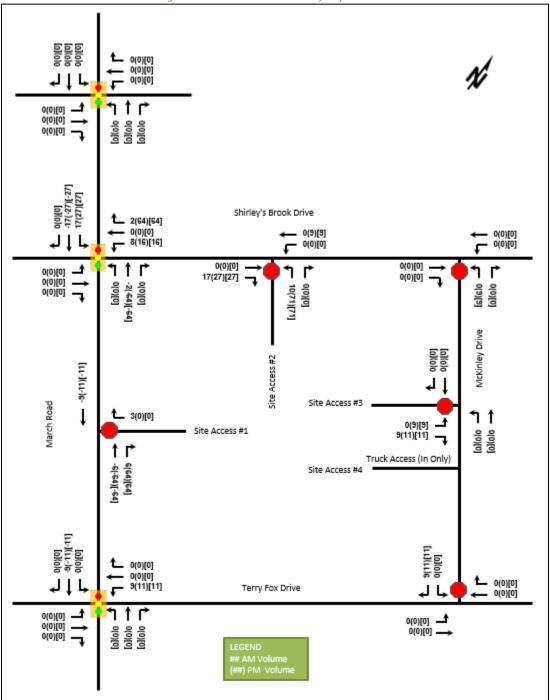



Figure 20: New Site Generation Auto Volumes

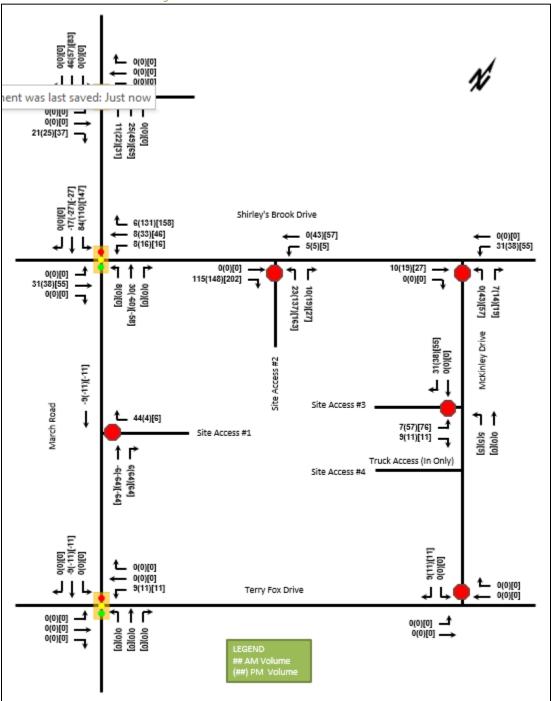


Figure 22: Net New Site Generation Auto Volumes

March 19, 2020 Ralph Esposito Jr. 10731854 Canada Inc. 555 Legget Drive, Suite 304, Tower A, Kanata, ON, K2K 2X3

Subject: 788 March Road

Transportation Impact Assessment Study (October 2018) - Addendum 3

1. Introduction

1.1. Context

Recent changes have been made to the original Site Plan (dated July 07, 2018) for this residential project that impact the proposed development's peak hour traffic generation, and result in a different site configuration with respect to access location. This Addendum 3 represents an update to the original TIA and subsequent Addendum 1 to 2 with regard to these two items. The site is now anticipated to be developed in a single phase, and the updated Site Plan can be found in Appendix A.

2. Changes to Trip Generation

Site generated traffic is directly related to the number of proposed residential units. There is a proposed decrease in the number of units relative to the original study, and therefore the anticipated trips generated by the site is also expected to decrease. The following sections summarize the expected changes to the trip generation.

2.1. Trip Generation – Previous Study (2018)

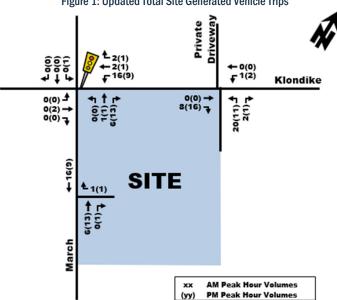
The values shown in Table 1 below, were taken from the previous Site Plan for the Phase 2 (2023) horizon full buildout horizon where 196 residential units were proposed.

Travel Mode	AM Mode	AM	Peak (persons/	′h)	PM Peak (persons/h)			
i lavei Moue	Share	In	Out	Total	In	Out	Total	
Auto Driver	50%	20	49	69	41	28	69	
Auto Passenger	10%	3	11	14	8	6	14	
Transit	25%	7	20	27	16	12	28	
Non-motorized	15%	8	20	28	15	12	27	
Total People Trips	100%	38	100	138	80	58	138	
Total 'New' High-Rise Condominium (2023) Auto Trips		20	49	69	41	28	69	

Table 1: Site Person Trip Generation Using OD-Survey Mode Share – Previous Study

The total two-way anticipated site generated person trips are 138 for the AM and PM peak hours, and the total two-way vehicle generated trips are 69 trips for the AM and PM peak hours.

2.2. Trip Generation – 2020 Updated Site Plan


Using the updated Site Plan with the total of 92 proposed residential units and applying the same modal shares and directional splits, the new anticipated person trips are shown in Table 2 below.

DELIVERING A BETTER WORLD

Travel Mode	AM Mode	AM Peak (persons/h) Pl				M Peak (persons/h)		
Traver would	Share	In	In Out Total		In	Out	Total	
Auto Driver	50%	9	23	32	19	13	32	
Auto Passenger	10%	1	5	6	4	3	7	
Transit	25%	4	13	17	9	7	16	
Non-motorized	15%	3	7	10	5	5	10	
Total People Trips	100%	17	48	65	37	28	65	
Total 'New' High-Rise Condominium (2023) Auto Trips		9	23	32	19	13	32	

Table 2: Site Person Trip Generation Using OD-Survey Mode Share - Updated

The total two-way anticipated site generated person trips are 65 for the AM and PM peak hours, and the total two-way vehicle generated trips are 32 trips for the AM and PM peak hours. Figure 1, below shows the updated vehicle volumes assigned to the local roadways within the study area.

Figure 1: Updated Total Site Generated Vehicle Trips

2.3. Difference in Forecasted Trips

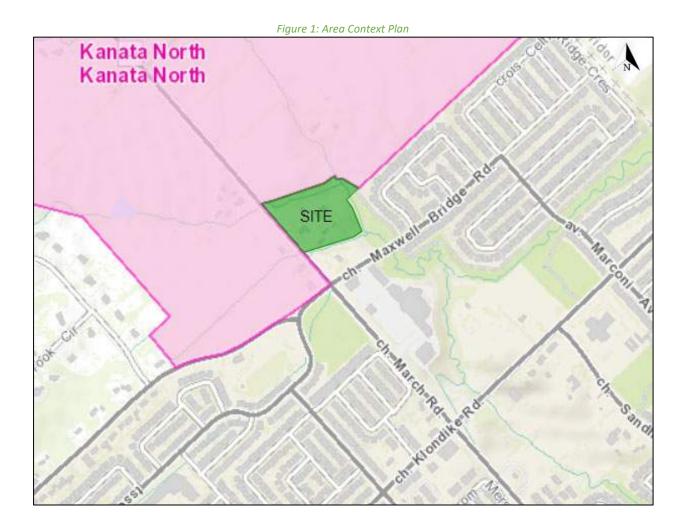
To understand the difference between the previous Site Plan and the updated Site Plan with regard to trip generation, the forecasted volumes from the original TIA were compared to those associated with the updated Site Plan. Table 3 summarizes the difference (Table 2 - Table 1 values).

1 Screening

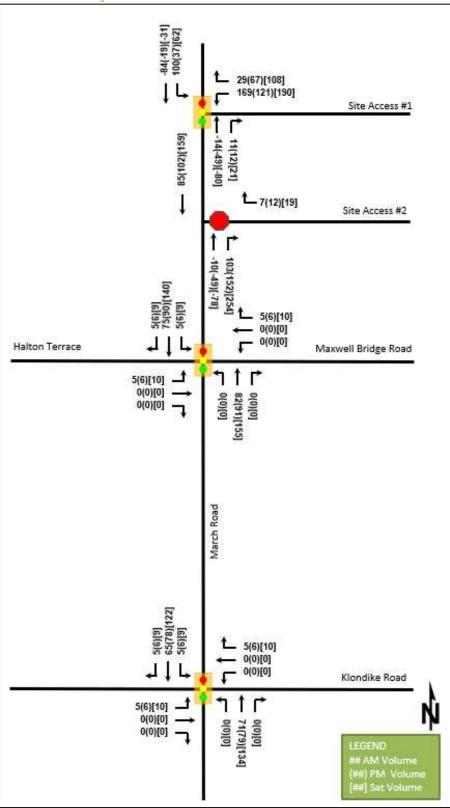
This study has been prepared according to the City of Ottawa's 2017 Transportation Impact Assessment (TIA) Guidelines. Accordingly, a Step 1 Screening Form has been prepared and is included as Appendix A, along with the Certification Form for TIA Study PM. As shown in the Screening Form, a TIA is required including the Design Review Component and the Network Impact Component.

As a result of the review process, additional comments and analysis have been produced for the City of Ottawa in the form of comment-response documents. The first round of responses to the City's comments have been included in Appendix B and the second round of responses to the City's comments have been included in Appendix C as supplements to the TIA.

Additionally, as the plan has evolved, the building areas have shifted slightly, however these changes are considered minor and have not been reflected in the analysis. Ambiguity surrounding the use of what is shown as Retail B in the most recent plan submitted with this report has required a conservative analysis approach to be adopted. It has been indicated that Retail B may in fact take the form of a restaurant. A previous version of the plan identified the building in question as a restaurant (Restaurant 2) instead of a retail building and as a result, the analysis sections of this TIA have considered this building to be a restaurant in order to produce a conservative analysis. The previous version of the plan is shown in Appendix D which shows the statistics used for Restaurant 2.


2 Existing and Planned Conditions

2.1 Proposed Development


The subject property, located at 910 March Road, is currently zoned as Rural [Ru] and Development Reserve [DR] and is undeveloped.

The proposed development consists of a 1,835 square metre hardware store, a 234 square metre restaurant with a drive through, a 416 square metre retail store, and a 249 square metre gas bar attached to a 191 square metre Tim Hortons with a drive-through. A total of 164 vehicle parking stalls and 16 bicycle parking spaces will be provided. The site is proposed to have two accesses. Both accesses are located along March Road; the first (Site Access #1) is a full-movement access located approximately 215 metres north of Maxwell Bridge Road, measured from intersection centreline to intersection centreline. Based on professional experience and the development design, signalization of this access is anticipated, however it will be confirmed within this report. The second (Site Access #2) is a right-in / right-out access located approximately 150 metres north of Maxwell Bridge Road, measured intersection centreline to intersection centreline. The anticipated full build-out and occupancy horizon is 2022. Figure 1 illustrates the Study Area Context. Figure 2 illustrates the proposed concept plan.

1.0 INTRODUCTION

This TIA has been prepared in support of Site Plan Control and Zoning By-Law Amendment applications for the property located at 1104 Halton Terrace. The site is currently vacant and is surrounded by the following:

- Old Carp Road, followed by vacant land to the north;
- Halton Terrace, followed by a stormwater management pond to the east;
- Halton Terrace, followed by existing low-density residential development to the south; and
- Low-density residential development to the west.

A view of the subject site is provided in Figure 1.

Figure 1: View of the Subject Site

2.0 PROPOSED DEVELOPMENT

The proposed development is designated as 'General Urban Area' in Schedule B of the City of Ottawa's Official Plan. The implemented zoning for 1104 Halton Terrace is 'Residential Third Density' (R3).

The proposed development will feature 86 apartment dwellings. Five single detached dwellings with frontage on Halton Terrace are proposed at the southern limits of the site but are not part of the subject application. The proposed development will be accessed by two new driveways along Halton Terrace and Old Carp Road. The access along Halton Terrace will serve a surface parking lot containing 53 parking spaces. The access along Old Carp Road will serve an underground parking lot containing 68 parking spaces. The proposed development is expected to be constructed in a single phase, with full occupancy in 2024.

A copy of the proposed Site Plan is included in **Appendix A**.

3.0 SCREENING

3.1 Screening Form

The City's 2017 TIA Guidelines identify three triggers for completing a TIA report, including trip generation, location, and safety. The criteria for each trigger are outlined in the City's TIA Screening Form. The trigger results are as follows:

- Trip Generation Trigger The development is not anticipated to generate over 60 peak hour person trips; further assessment is not required based on this trigger.
- Location Triggers The development is not located within a Design Priority Area or Transit-Oriented Development zone, and does not propose a new driveway to a boundary street designated as part of the City's Rapid Transit, Transit Priority, or Spine Cycling networks; further assessment is not required based on this trigger.
- Safety Triggers The horizontal curvature of Halton Terrace may limit sightlines at the proposed access to Halton Terrace; further assessment is required based on this trigger.

A copy of the TIA Screening Form is included in **Appendix B**.

4.0 SCOPING

4.1 Existing Conditions

4.1.1 Roadways

All roadways within the study area fall under the jurisdiction of the City of Ottawa.

March Road is an arterial roadway that generally runs on a north-south alignment within the study area, running between Dunrobin Road and Highway 417. West of Dunrobin Road, the roadway runs on an east-west alignment until Appleton Sideroad in Almonte, where it continues as Ottawa Street. South of Highway 417, the roadway continues on a north-south alignment as Eagleson Road. Within

10010 4.1 100000									
Travel Mode	Mode Share	AN	I Peak Peri	iod	PM Peak Period				
	moue Share	IN	OUT	тот	IN	OUT	ТОТ		
Peak Period Person Trips		21	48	69	45	32	77		
Auto Driver	50%	11	24	35	23	16	39		
Auto Passenger	20%	4	10	14	9	6	15		
Transit	25%	5	12	17	11	8	19		
Cyclist	0%	0	0	0	0	0	0		
Pedestrian	5%	1	2	3	2	2	4		

Table 4: Proposed Residential – Peak Period Person Trips by Mode Share

Table 4 of the *TRANS Trip Generation Manual* includes adjustment factors to convert the estimated number of trips generated for each mode from peak period to peak hour. A breakdown of the peak hour person trips by mode is shown in the following table.

Table 5: Proposed	l Residential –	Peak Hour Person Trips b	y Mode Share

Travel Mode	Adj. F	actor	A	M Peak Ho	ur	PM Peak Hour		
	AM	PM	IN	OUT	ТОТ	IN	OUT	ТОТ
Auto Driver	0.48	0.44	5	12	17	10	7	17
Auto Passenger	0.48	0.44	2	5	7	4	3	7
Transit	0.55	0.47	3	6	9	5	4	9
Cyclist	0.58	0.48	0	0	0	0	0	0
Pedestrian	0.58	0.52	1	1	2	1	1	2
Peak Hour Person Trips			11	24	35	20	15	35

From the previous table, the development is estimated to generate 35 person trips (including 17 vehicle trips) during the AM and PM peak hours.

5.2 Background Traffic

5.2.1 Other Area Developments

The City of Ottawa Development Application Search Tool identifies the following other area developments in proximity of the subject site. Relevant excerpts from other area development traffic reports are included in **Appendix F**.

706-714 March Road

Development of a 4,165 m² GFA supermarket, 350 m² GFA fast-food restaurant with drive-through, and 1,500 m² GFA of multi-unit commercial space. The TIA identified a buildout year of 2023. Traffic generated by this development has been added to the 2024 background traffic volumes.

788 March Road

Development of a 92 apartment dwellings. The TIA identified a buildout year of 2023. Traffic generated by this development has been added to the 2024 background traffic volumes.

910 March Road

Development of a 1,835 m² hardware store, a 234 m² restaurant with drive-through, a 191 m² coffee shop with drive-through, a 416 m² retail store, and a 249 m² gas bar. The TIA identified a buildout year of 2022. Traffic generated by this development has been added to the 2024 background traffic volumes.

2 SCOPING

2.1 SCREENING FORM

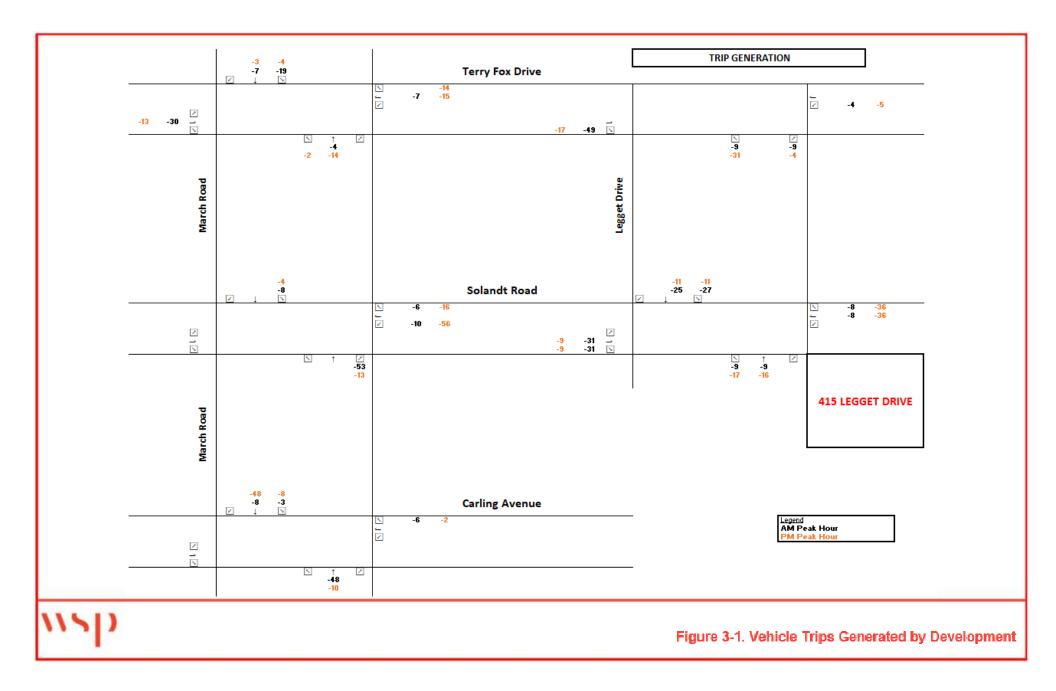
The completed Screening Form is provided in Appendix B.

2.2 DESCRIPTION OF PROPOSED DEVELOPMENT

This Transportation Impact Assessment (TIA) has been prepared in support of the Site Plan Control Application for the proposed development at 415 Legget Drive and 2700 Solandt Road. The site is currently occupied by a two-storey general office building (9,600 m²) with a large parking lot. The site area is 72,860 m² and is located at the northeast corner of the Legget Drive and Solandt Road intersection.

The redevelopment of the site is split into two (2) phases. Phase 1 includes the change of use from existing office and building to 2-storey warehousing occupancy. A partial removal of the second storey is proposed which will reduce the overall GFA of the building to approximately 14,350 m².

The proposed development of Phase 2 will include the construction of two warehouse buildings. Proposed building 'A' and Proposed Building 'B' (combined GFA of 18,580 m²) will be constructed within the existing parking lot.


The property contains two access points along Legget Drive, and a third along Solandt Road about 150 m north of the intersection of Legget Drive and Solandt Road. All existing site accesses will remain as the access/egress points to the proposed development.

The property is currently zoned as a Business Park Industrial Zone Subzone 6 (IP-6). **Figure 2-1** illustrates the Study Area Context. The development information, as stated in the draft site plan attached as **Appendix C**, states that 152 surface level parking spaces will be provided.

The new warehouse buildings will be built with an estimated date of completion in 2022 and full occupancy in mid 2023.

Figure 2-1. Area Context Plan

1.0 INTRODUCTION

This Transportation Impact Assessment has been prepared in support of Site Plan Control and Zoning By-Law Amendment applications for the property located at 2707 Solandt Road. The site is currently vacant.

The subject site is surrounded by the following:

- The Marshes Golf Club to the north and east;
- Solandt Road, followed by offices to the south;
- Offices, followed by Legget Drive to the west.

A view of the subject site is provided in **Figure 1**.

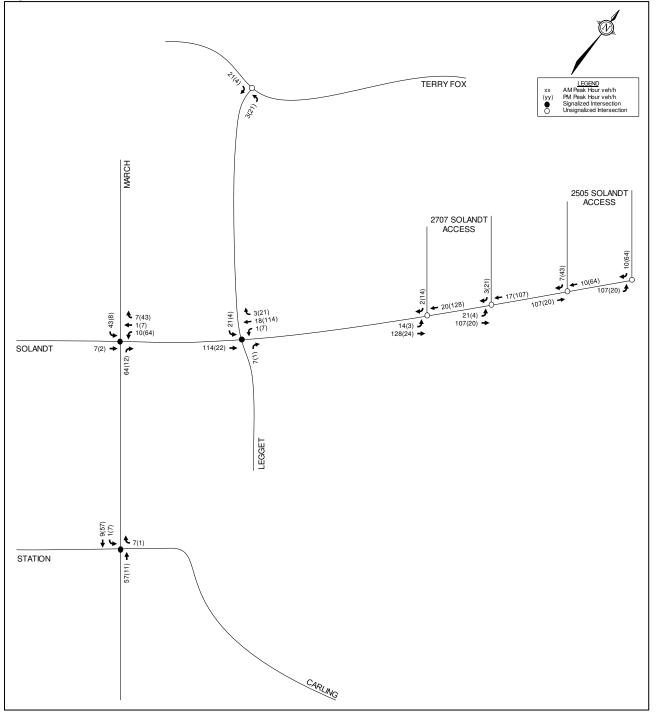
2.0 PROPOSED DEVELOPMENT

The proposed development will include an 8-storey, 198,615 ft² office building at 2707 Solandt Road, and will connect to the existing parking lot located at 2505 Solandt Road. As the parking lot at 2505 Solandt Road was previously approved in 2009 (SP D07-12-06-007), the Site Plan and re-zoning applications relate to the 2707 Solandt Road property only. A total of 587 parking spaces will be provided on the two sites combined. Access to the proposed development will be provided via two existing driveways to the parking lot at 2505 Solandt Road and two new driveways to 2707 Solandt Road. It is anticipated that the proposed development may be constructed in a single phase, with full occupancy in 2021.

The proposed development is designated as 'Urban Employment Area' in Schedule B of the City of Ottawa's Official Plan. The implemented zoning for the subject site is 'Business Park Industrial Zone (Kanata North Business Park)' (IP6). The proposed development is permitted under the implemented zoning, however a Zoning By-Law Amendment is required to seek relief of the current height limit of 22m.

A copy of the concept plan is included in **Appendix A**.

3.0 SCREENING


The City's 2017 TIA Guidelines identify three triggers for completing a TIA report, including trip generation, location, and safety. The criteria for each trigger are outlined in the City's TIA Screening Form. A copy of the TIA Screening Form is included in **Appendix B**. The trigger results are as follows:

- Trip Generation Trigger The development is anticipated to generate over 60 peak hour person trips; further assessment is required based on this trigger.
- Location Triggers The development is not located within a Design Priority Area or Transit-Oriented Development zone, and does not propose a new driveway to a boundary street designated as part of the City's Rapid Transit, Transit Priority, or Spine Cycling networks; further assessment is not required based on this trigger.
- Safety Triggers No safety triggers outlined in the TIA Screening Form are met; further assessment is not required based on this trigger.

Figure 1: View of the Subject Site

Figure 6: Site-Generated Traffic

1. Step 1 – Screening Form

With respect to the City of Ottawa's 2017 Transportation Impact Assessment (TIA) Guidelines, the proposed development (described below in Section 2.1) triggered the trip generation and the safety criteria outlined in the City's TIA Step 1 – Screening form. However, based on the location of the proposed development, the location trigger was not met. As only one of three triggers are required, a formal TIA (i.e. completed Steps 1-5) must accompany the subject development application.

2. Step 2 – Scoping

2.1 Description of Proposed Development

Based on the information provided, it is our understanding that the proponent is proposing a new office building located at 3026 Solandt Road, which is located on a vacant parcel of land that was previously occupied by a similar land use in 2014 (i.e. an office building existed on the subject parcel of land and has since been demolished). The new office building being proposed includes approximately 100,000 ft² of total floor area, accompanied by approximately 350 new parking spaces. The proposed development will be built in a single phase with an anticipated buildout year in 2021.

The latest Site Plan shows two direct vehicle driveway connections to Solandt Road, with inter-site connectivity between adjacent land uses to two other driveway connections (i.e. there will be a shared driveway connection to Legget Drive and March Road). All these driveways currently exist and are proposed to be maintained, with the exception of the west driveway connection to Solandt Road is proposed to be relocated towards the east and will function as one-way inbound only. It should be noted that the driveway connections to Solandt Road are currently barricaded.

In the event that inter-site connectivity between adjacent land uses is severed, it has been assumed that all sitegenerated traffic for the subject development will be assigned to the driveway connections to Solandt Road only. This is considered to be a conservative assumption as the available shared driveway connections to Legget Drive and March Road can provide additional capacity.

The local context of the subject site is provided as **Figure 1** and the proposed Concept Plan is provided as **Figure 2**.

Figure 1: Local Context

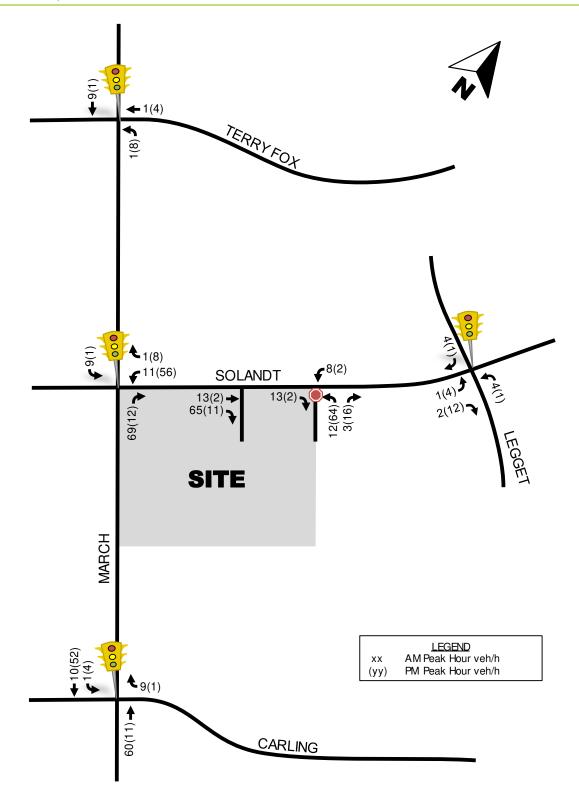
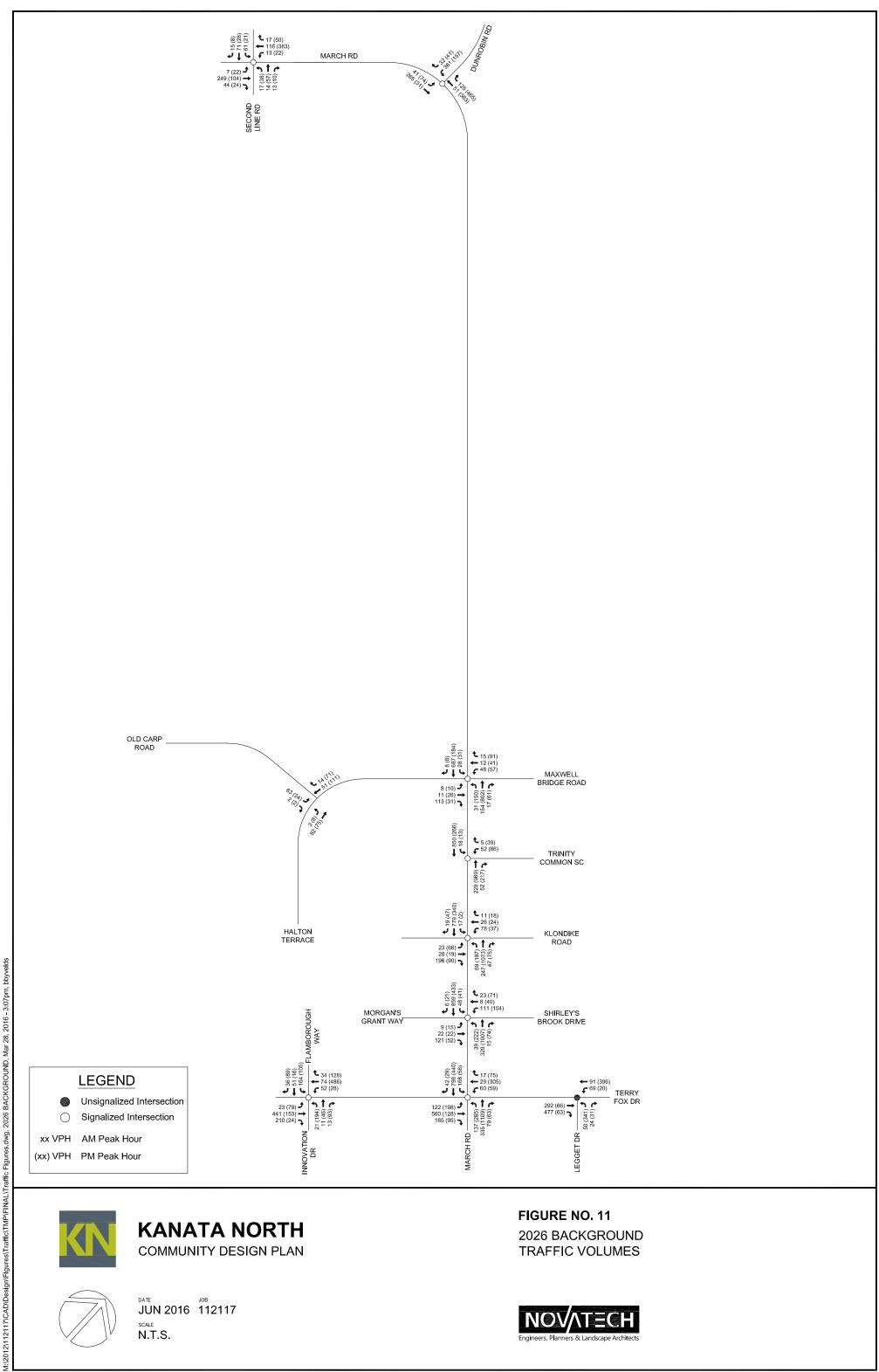
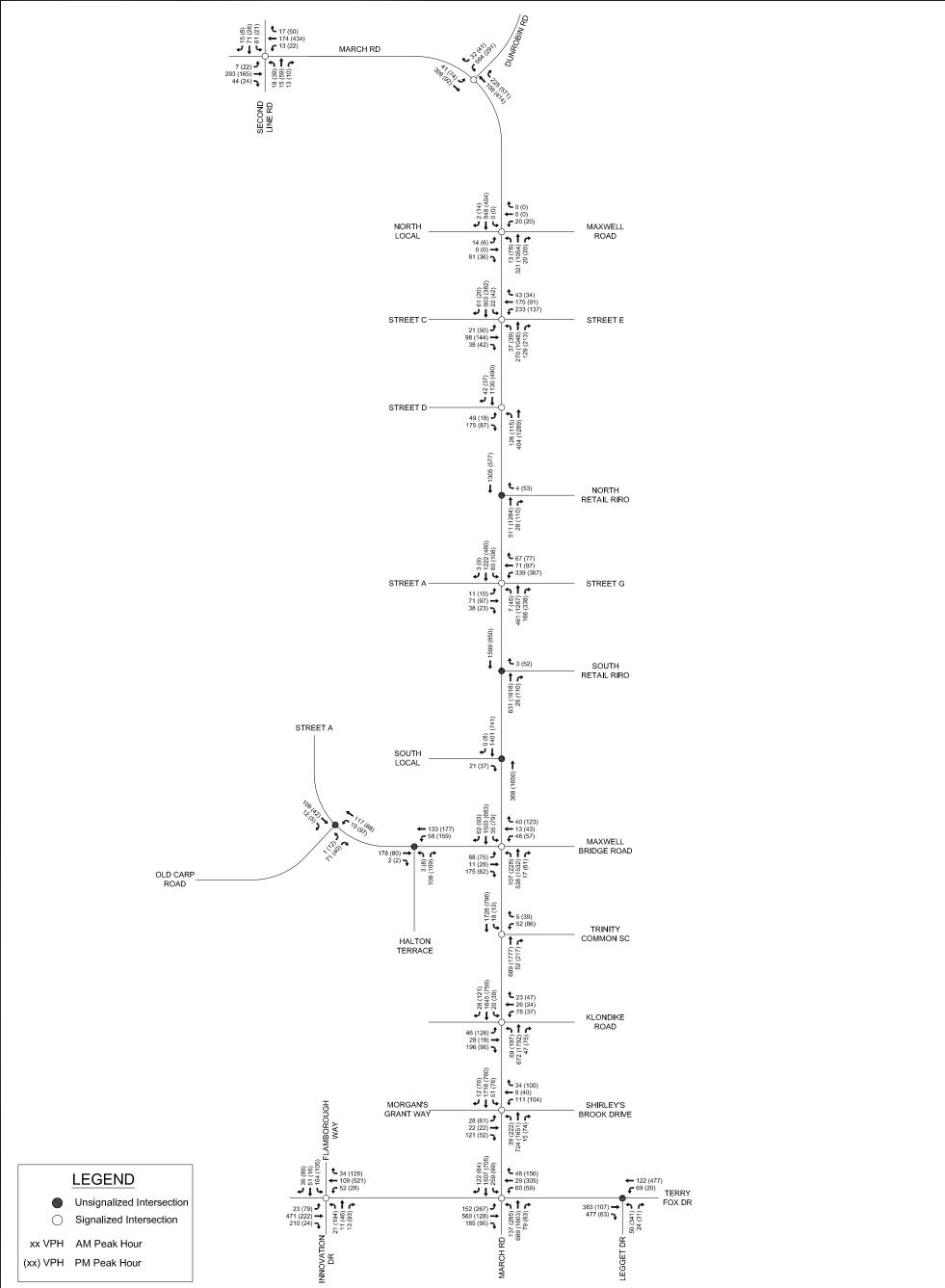



Figure 7: Projected Site-Generated Traffic

KN

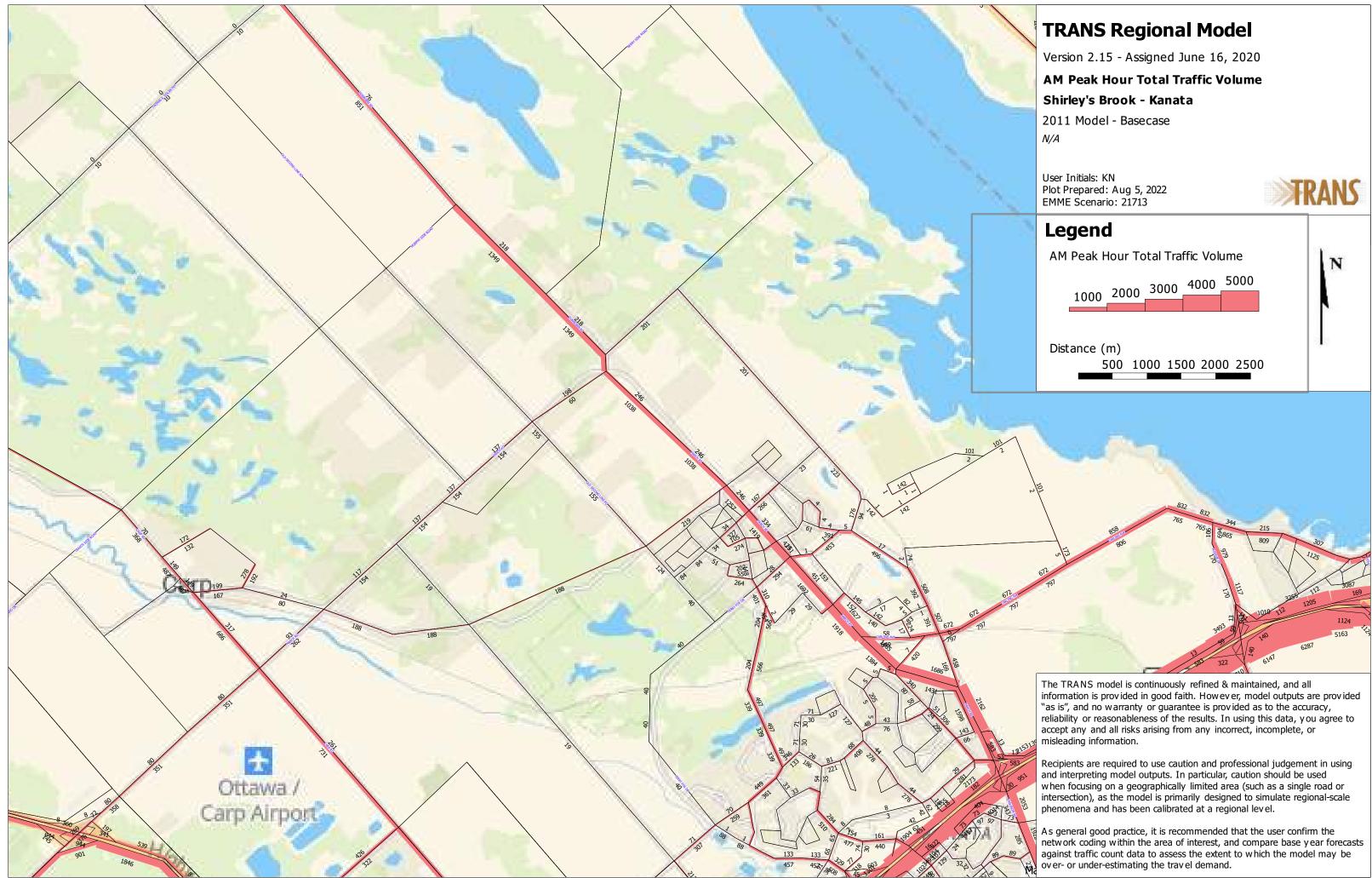

 KANATA NORTH
COMMUNITY DESIGN PLAN

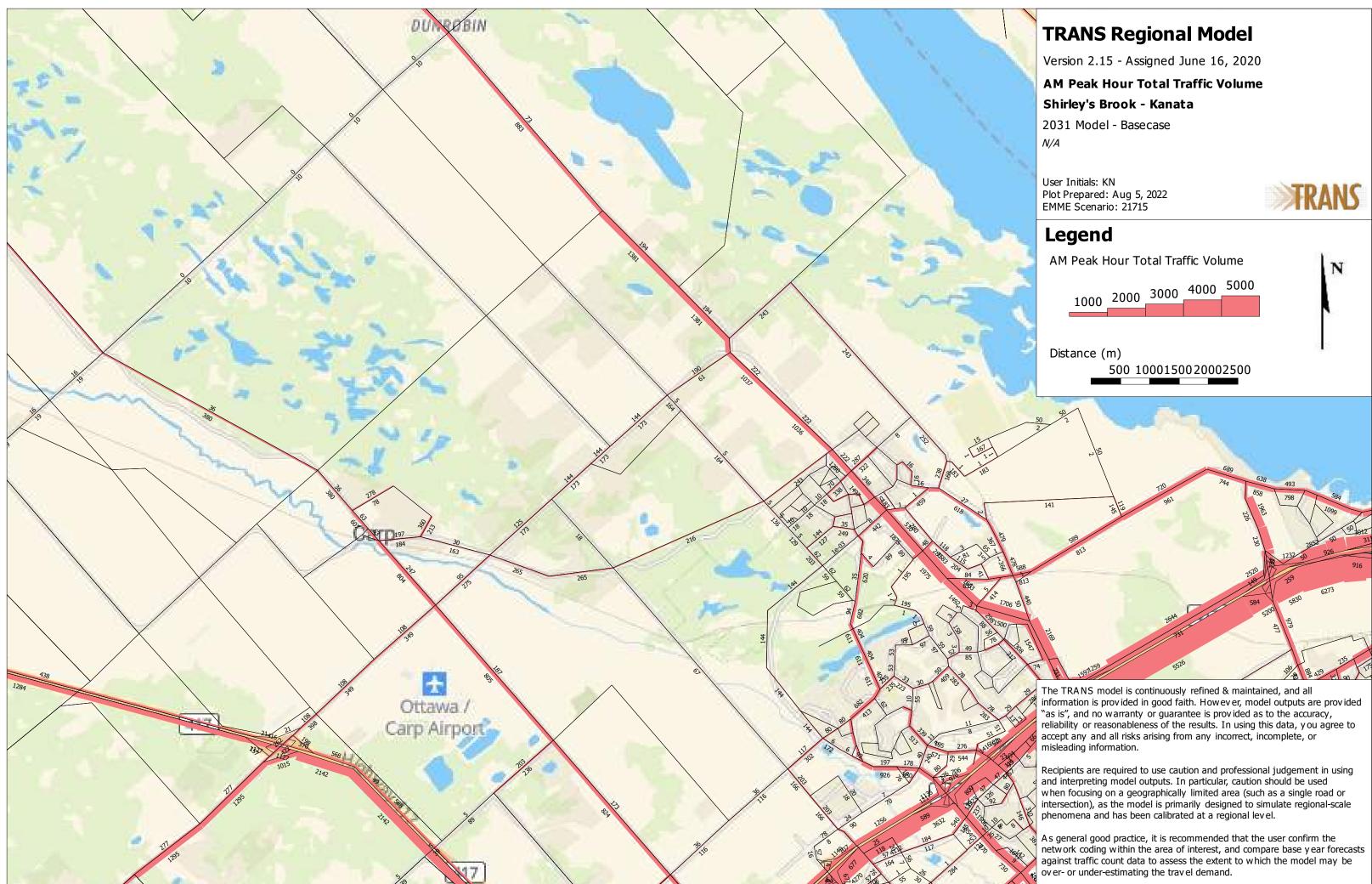
١N

١	JUN 2016	^{јов} 112117
)	SCALE N.T.S.	

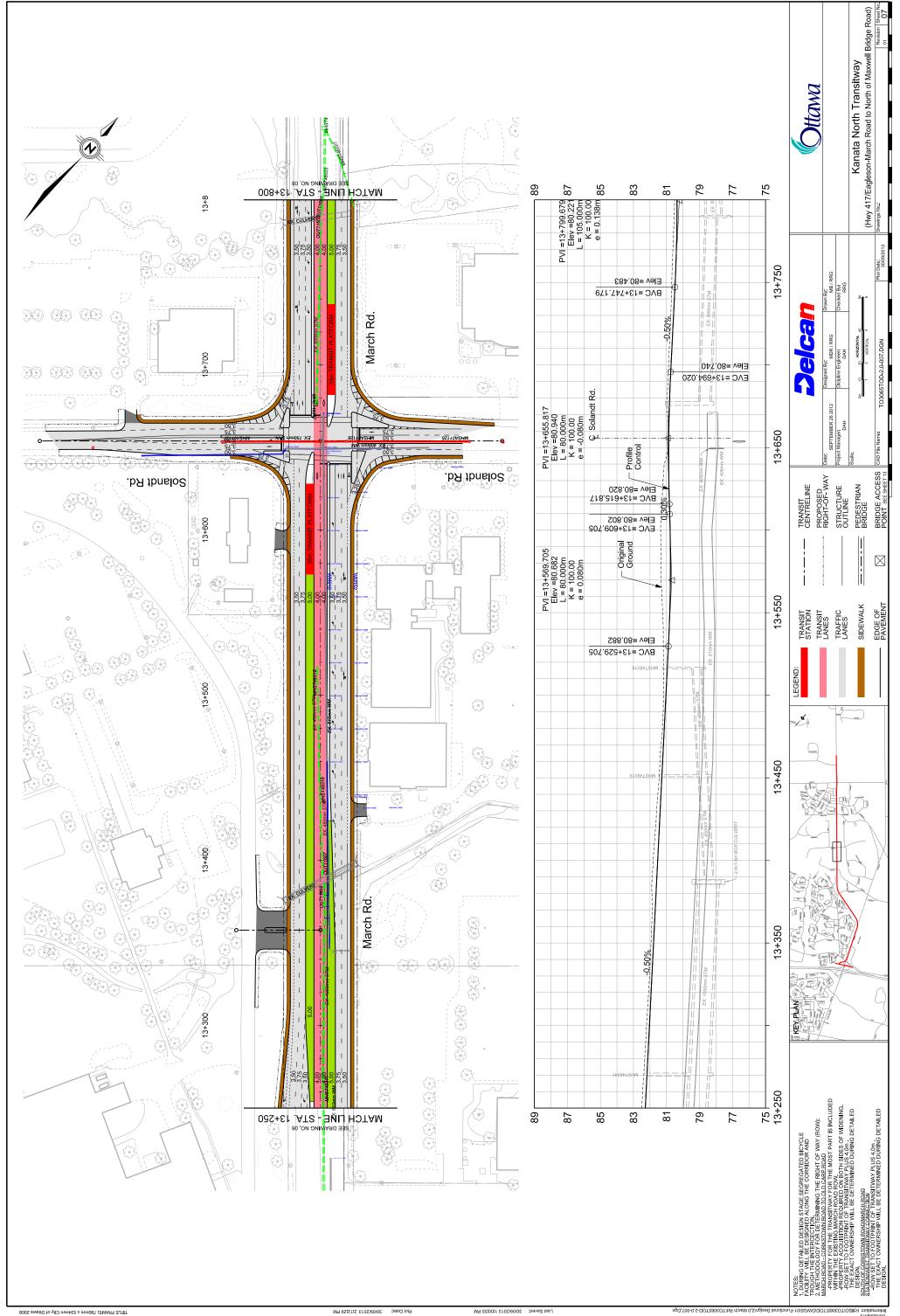
FIGURE NO. 11 2026 BACKGROUND TRAFFIC VOLUMES

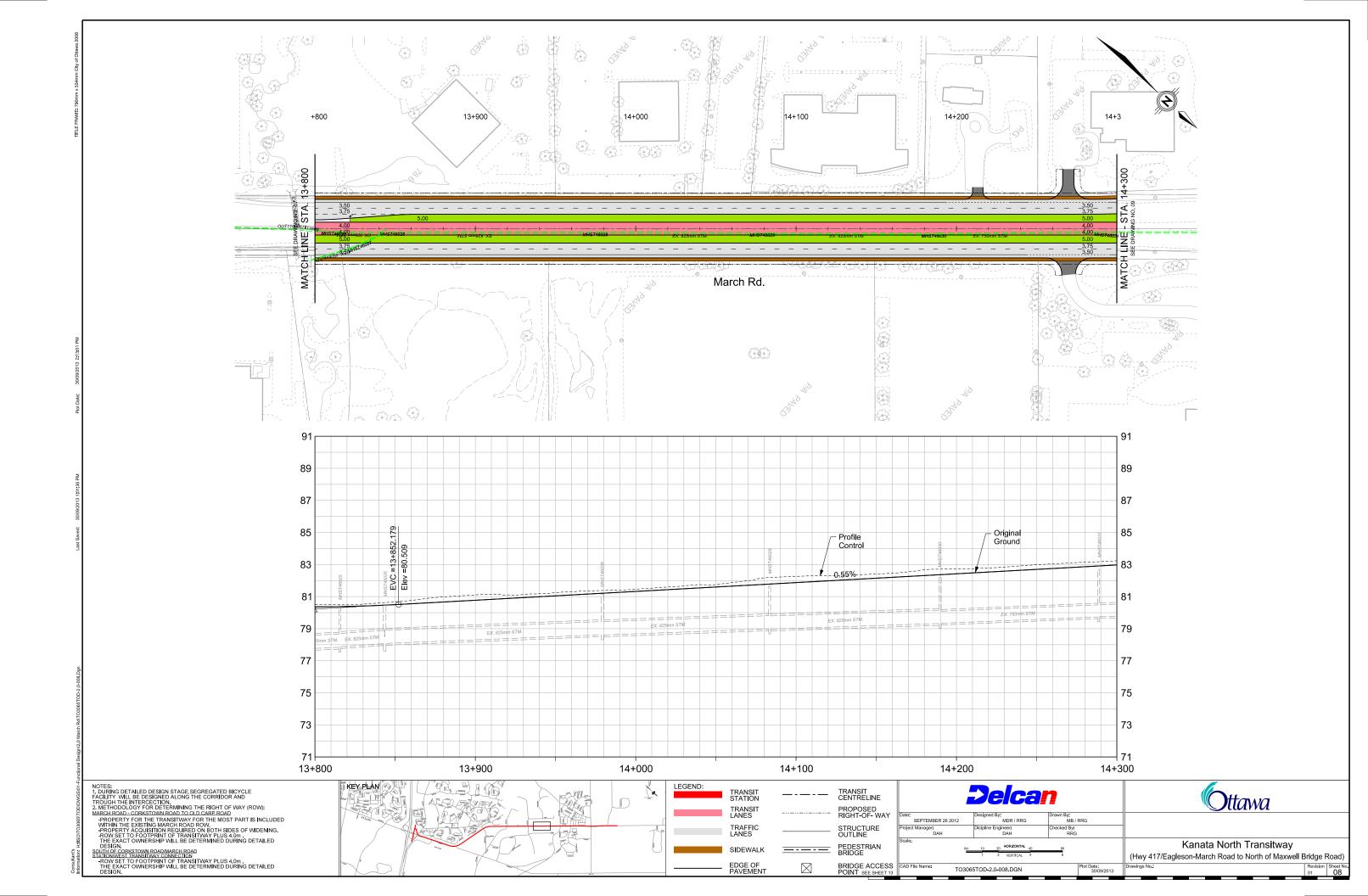
KANATA NORTH
COMMUNITY DESIGN PLAN

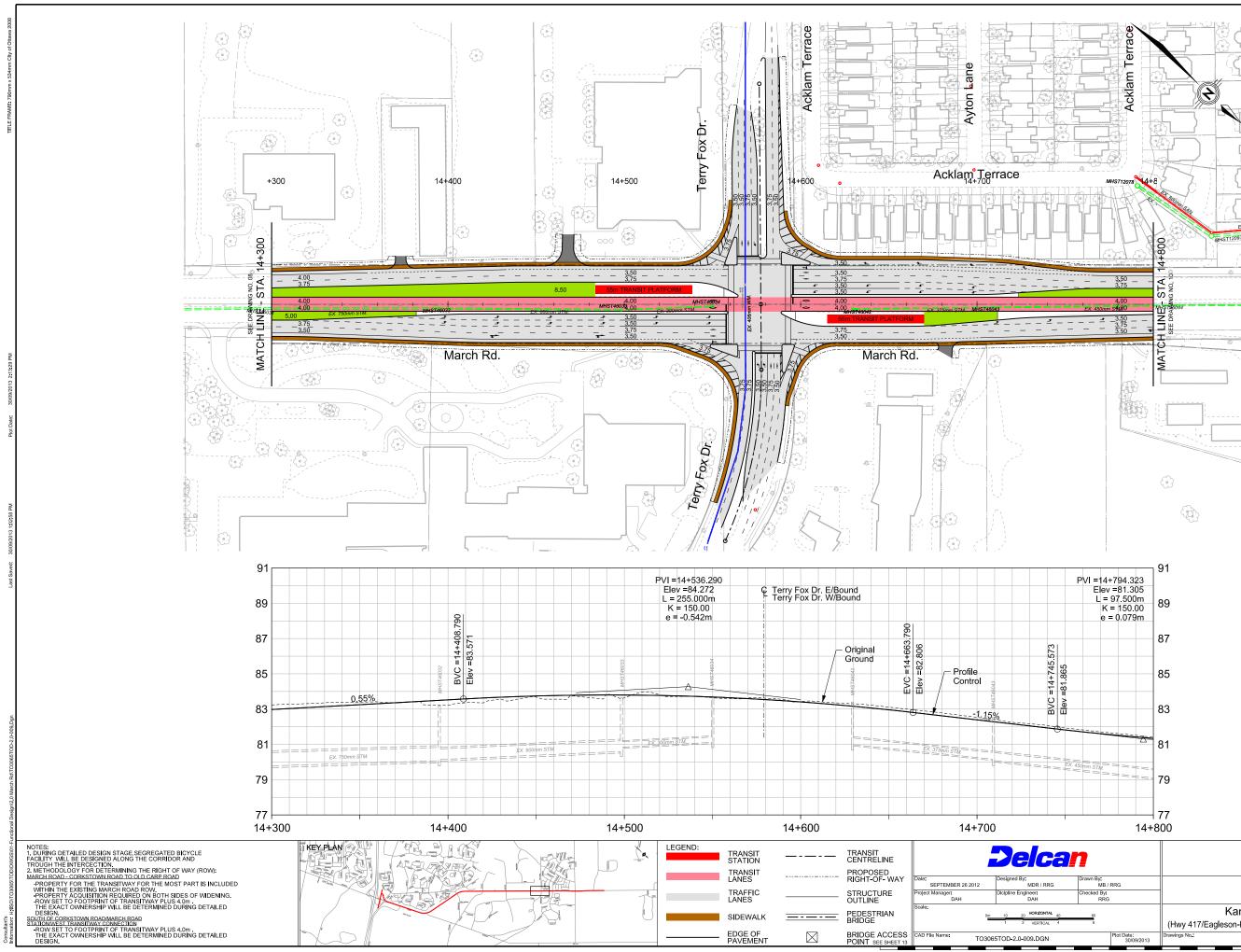



FIGURE NO. 36 2026 TOTAL TRAFFIC VOLUMES

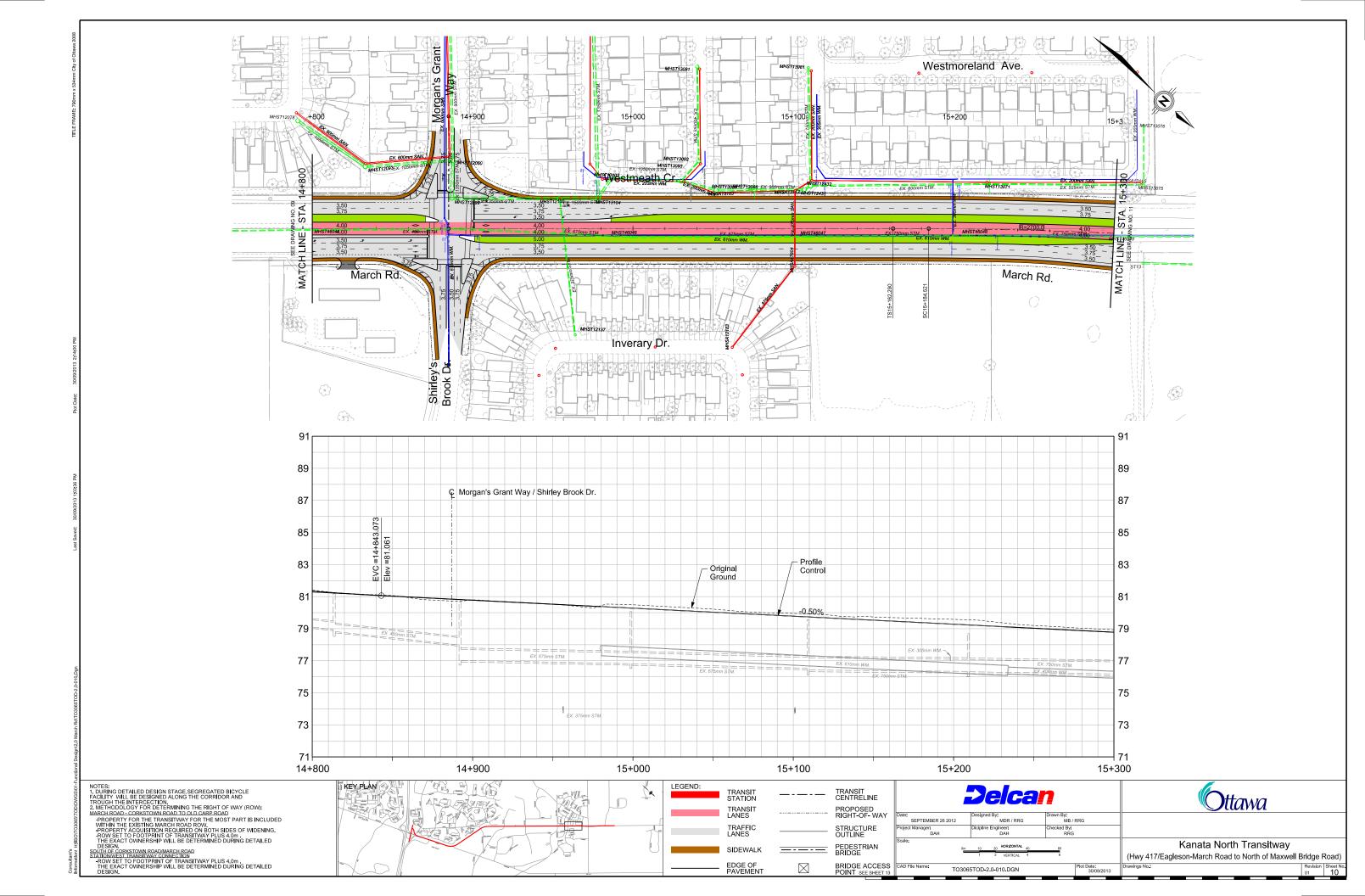
APPENDIX H


Strategic Long-Range Model Snapshots




APPENDIX I

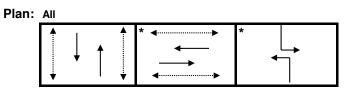
Future March Road Transitway Functional Design



TITLE FRAME: 790mm x 534mm City of Ottawa 2008

ica	7	Ottawa
y. MDR / RRG	Drawn By: MB / RRG	
igineer: DAH	Checked By: RRG	
20 HORIZONTAL 40	60	Kanata North Transitway
2 VERTICAL 4	6	(Hwy 417/Eagleson-March Road to North of Maxwell Bridge Road)
-009.DGN	Plot Date: 30/09/2013	Drawings No.: Revision Sheet No. 01 09

APPENDIX J


Signal Timing Plans

City of Ottawa, Public Works Department										
	Traffic Signal Operations Unit									
Intersection: Main: March side: Morgans Grant / Shirleys Bro										
Controller: ATC3 TSD: 5767										
Author:	Matthew Anderson	Date:	28-Jul-2022							

Existing Timing Plans⁺

Plan					Ped Min	imum Ti	me	
	AM Peak	Off Peak	PM Peak	Night	PM Heavy	Walk	DW	A+R
	1	2	3	4	13			
Cycle	130	110	120	95	130			
Offset	95	90	89	х	105			
NB Thru	70	51	61	41	70	7	11	4.6+1.5
SB Thru	70	51	61	41	70	7	11	4.6+1.5
EB Thru	39	39	39	39	39	7	24	3.0+4.5
WB Thru	39	39	39	39	39	7	24	3.0+4.5
NB Left (fp)	21	20	20	15	21	-	-	4.6+1.8
SB Left (fp)	21	20	20	15	21	-	-	4.6+1.8

Phasing Sequence[‡]

Notes: 1) If the EW pedestrian phase is not actuated, the EW phases will force off after 28s

Schedule

Weekday						
Time	Plan					
0:10	4					
6:30	1					
9:30	2					
15:00	3					
16:30	13					
18:00	3					
18:30	2					
23:00	4					

Weeken		
Time	Plan	
0:10	4	
8:00	2	_
22:00	4	_
		-

Sunday						
Time	Plan					
0:10	4					
8:00	2					
22:00	4					

Notes

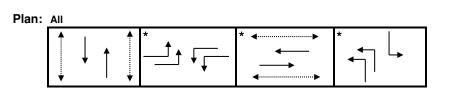
†: Time for each direction includes amber and all red intervals

‡: Start of first phase should be used as reference point for offset

Asterisk (*) Indicates actuated phase

(fp): Fully Protected Left Turn

Pedestrian signal


Cost is \$61.16 (\$54.12 + HST)

City of Ottawa, Transportation Services Department							
Traffic Signal Operations Unit							
Intersection:	<i>Main:</i> March	Side:	Terry Fox				
Controller:	MS 3200	TSD:	5920				
Author:	Matthew Anderson	Date:	27-Jul-2021				

Existing Timing Plans[†]

	Plan					Ped Min	imum T	ime
	AM Peak	Off Peak	PM Peak	Night	PM Heavy	Walk	DW	A+R
	1	2	3	4	13			
Cycle	130	110	120	105	130			
Offset	114	80	72	Х	96			
NB Thru	47	38	38	38	41	7	19	4.6+2.1
SB Thru	47	38	38	38	41	7	19	4.6+2.1
EB Left (fp)	16	15	19	13	24	-	-	3.7+3.1
WB Left (fp)	16	15	19	13	24	-	-	3.7+3.1
EB Thru	42	42	42	42	42	7	28	3.7+3.3
WB Thru	42	42	42	42	42	7	28	3.7+3.3
NB Left (fp)	25	15	21	12	23	-	-	4.6+2.3
SB Left (fp)	25	15	21	12	23	-	-	4.6+2.3

Phasing Sequence[‡]

Notes: 1) If the EW Pedestrian phase is not actuated, the EW Thru phases will force off after 30s

Schedule

Weekday		Weeken	d
Time	Plan	Time	Plan
0:10	4	0:10	4
6:30	1	8:00	2
9:30	2	22:00	4
15:00	3		
16:30	13		
18:00	3		
18:30	2		
22:00	4		

Notes

†: Time for each direction includes amber and all red intervals

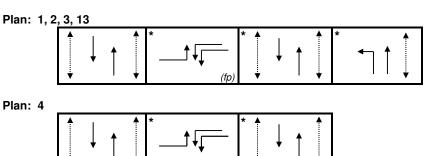
‡: Start of first phase should be used as reference point for offset

Asterisk (*) Indicates actuated phase

(fp): Fully Protected Left Turn

◄····· Pedestrian signal

City of Ottawa	Transportation Services	Department
----------------	-------------------------	------------


Traffic Signal Operations Unit

Intersection:	Main: March	Side: Solandt
Controller:	MS-3200	TSD: 5359
Author:	Jean Nabolle	Date: 08-Jul-2019

Existing Timing Plans[†]

	Plan					Ped Min	imum Ti	me
	AM Peak	Off Peak	PM Peak	PM Peak Night PM H		Walk	DW	A+R
	1	2	3	4	13			
Cycle	130	110	120	85	130			
Offset	15	16	21	Х	30			
NB Thru	85	60	59	38	64	7	12	4.6 + 1.7
SB Thru	46	47	47	38	52	7	12	4.6 + 1.7
EB Left (fp)	13	18	29	16	34	-	-	3.3 + 2.6
WB Left (fp)	13	18	29	16	34	-	-	3.3 + 2.6
EB Thru	32	32	32	31	32	7	18	3.3 + 3.2
WB Thru	32	32	32	31	32	7	18	3.3 + 3.2
NB Left	39	13	12	-	12	-	-	4.6 + 1.7

Phasing Sequence[‡]

(fp)

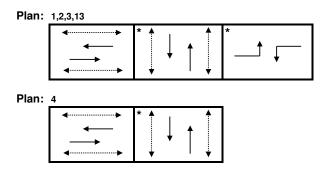
Notes: 1) For plan 1, if the pedestrian phase is not actuated then the EW thru movements will be forced off after 10 seconds green. In addition, all extra time for plan 1 will be added to the NS thru movements

Weekday		Weeken
Time	Plan	Time
0:10	4	0:10
6:30	1	8:00
9:30	2	22:30
15:00	3	
16:30	13	
18:00	3	_
18:30	2	_
23:00	4	_

Time Plan 0:10 4 8:00 2 22:30 4

Notes

†: Time for each direction includes amber and all red intervals‡: Start of first phase should be used as reference point for offset


Cost is \$57.63 (\$51 + HST)

		City of Ottawa, Publi	ic Works Departme	nt						
Traffic Signal Operations Unit										
Intersection:	Main:	Terry Fox	Side:	Innovation / Flamborough						
Controller:	ATC 3		TSD:	6768						
Author:	Matthew	w Anderson	Date:	28-Jul-2022						

Existing Timing Plans⁺

	Plan				Ped Minimum Time									
	AM Peak	Off Peak	PM Peak Night F		PM Heavy	Walk	DW	A+R						
	1	2	3	4	13									
Cycle	130	110	120	80	130									
Offset	124	41	47	х	66									
EB Thru	70	57	63	42	66	7	15	3.7+2.2						
WB Thru	70	57	63	42	66	7	15	3.7+2.2						
NB Thru	42	40	45	38	52	7	23	3.3+3.0						
SB Thru	42	40	45	38	52	7	23	3.3+3.0						
EB Left	18	13	12	-	12	-	-	3.7+2.3						
WB Left	18	13	12	-	12	-	-	3.7+2.3						

Phasing Sequence[‡]

Schedule

Weekday			Week
Time	Plan		Time
0:15	4		0:15
6:30	1		8:00
9:30	2		22:00
15:00	3		
16:30	13		
18:00	3		
18:30	2		
22:00	4		
		-	

Time	Plan
0:15	4
8:00	2
22:00	4

Notes

†: Time for each direction includes amber and all red intervals

‡: Start of first phase should be used as reference point for offset

Asterisk (*) Indicates actuated phase (fp): Fully Protected Left Turn

Pedestrian signal **∢**.....►

Cost is \$61.16 (\$54.12 + HST)

APPENDIX K

Existing Synchro Analysis

1: March & Morgan's Grant/Shirley's Brook AM Peak Hour

AM Peak Hour							2022 Existing Traffic					
	٦	-	$\mathbf{\hat{v}}$	•	←	*	1	1	۲	1	Ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		र्भ	1	<u> </u>	↑	1	ሻ	***	1	<u>۲</u>	***	7
Traffic Volume (vph)	8	8	80	92	7	9	21	435	48	15	717	5
Future Volume (vph)	8	8	80	92	7	9	21	435	48	15	717	5
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Storage Length (m)	0.0		20.0	45.0		35.0	130.0		30.0	65.0		25.0
Storage Lanes	0		1	1		1	1		1	1		1
Taper Length (m)	10.0			30.0			40.0			35.0		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.91	1.00	1.00	0.91	1.00
Ped Bike Factor		1.00	0.99	1.00		0.99	1.00		0.97	0.99		0.97
Frt			0.850			0.850			0.850			0.850
Flt Protected		0.976		0.950			0.950			0.950		
Satd. Flow (prot)	0	1720	1498	1580	1271	1498	1674	4628	1427	1674	4718	1498
Flt Permitted		0.876		0.746			0.950			0.950		
Satd. Flow (perm)	0	1543	1478	1239	1271	1478	1666	4628	1383	1665	4718	1447
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			89			80			91			91
Link Speed (k/h)		40			40			80			80	
Link Distance (m)		465.2			359.5			318.9			462.6	
Travel Time (s)		41.9			32.4			14.4			20.8	
Confl. Peds. (#/hr)	1		1	1		1	4		3	3		4
Confl. Bikes (#/hr)									1			
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Heavy Vehicles (%)	1%	1%	1%	7%	40%	1%	1%	5%	6%	1%	3%	1%
Adj. Flow (vph)	9	9	89	102	8	10	23	483	53	17	797	6
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	18	89	102	8	10	23	483	53	17	797	6
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	L NA	Left	R NA	L NA	Left	R NA	L NA	Left	R NA	L NA	Left	R NA
Median Width(m)		3.5			5.0			9.0			9.0	
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		5.0			5.0			5.0			5.0	
Two way Left Turn Lane												
Headway Factor	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09
Number of Detectors	1	2	1	1	2	1	1	2	1	1	2	1
Detector Template	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right
Leading Detector (m)	2.0	10.0	2.0	2.0	10.0	2.0	2.0	10.0	2.0	2.0	10.0	2.0
Trailing Detector (m)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Position(m)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Size(m)	2.0	0.6	2.0	2.0	0.6	2.0	2.0	0.6	2.0	2.0	0.6	2.0
Detector 1 Type	CI+Ex	CI+Ex	CI+Ex	CI+Ex	Cl+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 2 Position(m)		9.4			9.4			9.4			9.4	
Detector 2 Size(m)		0.6			0.6			0.6			0.6	
Detector 2 Type		CI+Ex			CI+Ex			CI+Ex			CI+Ex	
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	Perm	NA	Perm	Perm	NA	Perm	Prot	NA	Perm	Prot	NA	Perm
Protected Phases		4	•••••	•••••	8		5	2		1	6	
					•		-	-		•	•	
	4		4	8		8			2			6
Permitted Phases Detector Phase	4	4	4 4	8 8	8	8 8	5	2	2 2	1	6	6 6

J.Audia, Novatech

1: March & Morgan's Grant/Shirley's Brook AM Peak Hour

Lane Group Minimum Initial (s) Minimum Split (s) Total Split (s) Total Split (%) 30 Maximum Green (s) Yellow Time (s) All-Red Time (s) Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) Recall Mode Walk Time (s)	EBL 10.0 38.5	→ EBT	$\mathbf{\hat{v}}$	1	-	•	•	+		1	1	,
Minimum Initial (s) Minimum Split (s) Total Split (s) Total Split (%) Maximum Green (s) Yellow Time (s) All-Red Time (s) Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) Recall Mode Walk Time (s) Flash Dont Walk (s) Pedestrian Calls (#/hr) Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS	10.0 38.5			-		-	7	1	1		+	-
Minimum Split (s) Total Split (s) Total Split (%) Maximum Green (s) Yellow Time (s) Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) Recall Mode Walk Time (s) Flash Dont Walk (s) Pedestrian Calls (#/hr) Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS	38.5		EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Total Split (s)Total Split (%)30Maximum Green (s)Yellow Time (s)All-Red Time (s)Lost Time Adjust (s)Total Lost Time (s)Lead/LagLead/LagLead-Lag Optimize?Vehicle Extension (s)Recall ModeWalk Time (s)Flash Dont Walk (s)Pedestrian Calls (#/hr)Act Effct Green (s)Actuated g/C Ratiov/c RatioControl DelayQueue DelayTotal DelayLOSApproach DelayApproach LOS		10.0	10.0	10.0	10.0	10.0	5.0	20.0	20.0	5.0	20.0	20.0
Total Split (%)30Maximum Green (s)Yellow Time (s)Yellow Time (s)Lost Time Adjust (s)Lost Time Adjust (s)Total Lost Time (s)Lead/LagLead-Lag Optimize?Vehicle Extension (s)Recall ModeWalk Time (s)Flash Dont Walk (s)Pedestrian Calls (#/hr)Act Effct Green (s)Actuated g/C Ratiov/c RatioControl DelayQueue DelayTotal DelayLOSApproach DelayApproach LOS		38.5	38.5	38.5	38.5	38.5	11.4	26.1	26.1	11.4	26.1	26.1
Total Split (%)30Maximum Green (s)Yellow Time (s)Yellow Time (s)Lost Time Adjust (s)Lost Time Adjust (s)Total Lost Time (s)Lead/LagLead-Lag Optimize?Vehicle Extension (s)Recall ModeWalk Time (s)Flash Dont Walk (s)Pedestrian Calls (#/hr)Act Effct Green (s)Actuated g/C Ratiov/c RatioControl DelayQueue DelayTotal DelayLOSApproach DelayApproach LOS	39.0	39.0	39.0	39.0	39.0	39.0	21.0	70.0	70.0	21.0	70.0	70.0
Maximum Green (s) Yellow Time (s) All-Red Time (s) Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) Recall Mode Walk Time (s) Flash Dont Walk (s) Pedestrian Calls (#/hr) Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS	0.0%	30.0%	30.0%	30.0%	30.0%	30.0%	16.2%	53.8%	53.8%	16.2%	53.8%	53.8%
Yellow Time (s) All-Red Time (s) Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) Recall Mode Walk Time (s) Flash Dont Walk (s) Pedestrian Calls (#/hr) Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS	31.5	31.5	31.5	31.5	31.5	31.5	14.6	63.9	63.9	14.6	63.9	63.9
Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) Recall Mode Walk Time (s) Flash Dont Walk (s) Pedestrian Calls (#/hr) Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS	3.0	3.0	3.0	3.0	3.0	3.0	4.6	4.6	4.6	4.6	4.6	4.6
Total Lost Time (s) Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) Recall Mode Walk Time (s) Flash Dont Walk (s) Pedestrian Calls (#/hr) Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS	4.5	4.5	4.5	4.5	4.5	4.5	1.8	1.5	1.5	1.8	1.5	1.5
Total Lost Time (s) Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) Recall Mode Walk Time (s) Flash Dont Walk (s) Pedestrian Calls (#/hr) Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) Recall Mode Walk Time (s) Flash Dont Walk (s) Pedestrian Calls (#/hr) Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach Delay		7.5	7.5	7.5	7.5	7.5	6.4	6.1	6.1	6.4	6.1	6.1
Vehicle Extension (s) Recall Mode N Walk Time (s) Flash Dont Walk (s) Pedestrian Calls (#/hr) Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS							Lead	Lag	Lag	Lead	Lag	Lag
Vehicle Extension (s) Recall Mode N Walk Time (s) Flash Dont Walk (s) Pedestrian Calls (#/hr) Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS							Yes	Yes	Yes	Yes	Yes	Yes
Walk Time (s) Flash Dont Walk (s) Pedestrian Calls (#/hr) Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Walk Time (s) Flash Dont Walk (s) Pedestrian Calls (#/hr) Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS	None	None	None	None	None	None	None	C-Max	C-Max	None	C-Max	C-Max
Flash Dont Walk (s) Pedestrian Calls (#/hr) Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS	7.0	7.0	7.0	7.0	7.0	7.0		7.0	7.0		7.0	7.0
Pedestrian Calls (#/hr) Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS	24.0	24.0	24.0	24.0	24.0	24.0		11.0	11.0		11.0	11.0
Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS	1	1	1	1	1	1		4	4		3	3
Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS		17.8	17.8	17.8	17.8	17.8	7.3	92.7	92.7	6.9	89.7	89.7
v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS		0.14	0.14	0.14	0.14	0.14	0.06	0.71	0.71	0.05	0.69	0.69
Queue Delay Total Delay LOS Approach Delay Approach LOS		0.09	0.32	0.60	0.05	0.04	0.24	0.15	0.05	0.19	0.24	0.01
Queue Delay Total Delay LOS Approach Delay Approach LOS		45.4	11.5	65.7	43.9	0.2	64.3	7.9	2.4	63.2	9.6	0.0
Total Delay LOS Approach Delay Approach LOS		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
LOS Approach Delay Approach LOS		45.4	11.5	65.7	43.9	0.2	64.3	7.9	2.4	63.2	9.6	0.0
Approach LOS		D	В	E	D	А	E	А	А	E	А	А
Approach LOS		17.2			58.8			9.7			10.6	
Queue Length 50th (m)		В			E			А			В	
		3.8	0.0	23.4	1.7	0.0	5.8	10.2	0.0	3.9	25.4	0.0
Queue Length 95th (m)		9.4	12.3	35.7	5.4	0.0	14.9	19.4	0.7	11.1	45.4	0.0
Internal Link Dist (m)		441.2			335.5			294.9			438.6	
Turn Bay Length (m)			20.0	45.0		35.0	130.0		30.0	65.0		25.0
Base Capacity (vph)		373	425	300	307	418	188	3300	1012	188	3256	1026
Starvation Cap Reductn		0	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn		0	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn		0	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio		0.05	0.21	0.34	0.03	0.02	0.12	0.15	0.05	0.09	0.24	0.01
Intersection Summary												
Area Type: Other												
Cycle Length: 130												
Actuated Cycle Length: 130												
Offset: 95 (73%), Referenced to phase	se 2:N	BT and 6:8	SBT, Start	of Green								
Natural Cycle: 80												
Control Type: Actuated-Coordinated												
Maximum v/c Ratio: 0.60												
Intersection Signal Delay: 14.3					tersection							
Intersection Capacity Utilization 52.1	%			IC	U Level of	Service A						
Analysis Period (min) 15												
Splits and Phases: 1: March & Mo	rgan's	Grant/Shir	ley's Brool	k								
≜	•		, <u> </u>						~ .			
♥Ø1 ♥Ø2(к)							39.6	04			

Ø1	Ø2 (R)	
21 s	70 s	39 s
▲ Ø5		∲ Ø8
21 s	70 s	39 s

	≯	-	\mathbf{r}	1	-	•	₹Ĩ	1	1	1	L	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL
Lane Configurations	ካካ	† †	1	ሻሻ	† †	1		ሻሻ	<u> </u>	1		ሻ
Traffic Volume (vph)	80	158	220	41	69	24	14	139	400	91	1	83
Future Volume (vph)	80	158	220	41	69	24	14	139	400	91	1	83
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Storage Length (m)	95.0	1000	60.0	75.0	1000	75.0	1000	130.0	1000	85.0	1000	110.0
Storage Lanes	2		2	2		1		2		2		1
Taper Length (m)	40.0		2	20.0				90.0		2		40.0
Lane Util. Factor	0.97	0.95	1.00	0.97	0.95	1.00	0.91	0.97	0.91	1.00	0.91	1.00
Ped Bike Factor	0.01	0.00	0.97	0.99	0.00	0.99	0.01	1.00	0.01	0.98	0.01	1.00
Frt			0.850	0.00		0.850		1.00		0.850		1.00
Flt Protected	0.950		0.000	0.950		0.000		0.950		0.000		0.950
Satd. Flow (prot)	3185	3316	1483	3248	3161	1498	0	3245	4628	1469	0	1674
Flt Permitted	0.950	0010	1400	0.950	0101	1400	U	0.950	4020	1400	0	0.950
Satd. Flow (perm)	3185	3316	1443	3228	3161	1479	0	3237	4628	1438	0	1667
Right Turn on Red	0100	0010	Yes	5220	5101	Yes	U	5257	4020	Yes	0	1007
Satd. Flow (RTOR)			244			146				149		
Link Speed (k/h)		60	244		60	140			80	143		
Link Distance (m)		165.4			149.1				308.9			
Travel Time (s)		9.9			8.9				13.9			
		9.9	7	7	0.9			3	13.9	5		5
Confl. Peds. (#/hr) Confl. Bikes (#/hr)			9	1		1		3		2		5
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
	3%	2%	2%		0.90 7%		2%	0.90 1%		0.90 3%		0.90
Heavy Vehicles (%)				1%		1%			5%		2%	
Adj. Flow (vph)	89	176	244	46	77	27	16	154	444	101	1	92
Shared Lane Traffic (%)	00	470	044	10	77	07	0	470		404	^	00
Lane Group Flow (vph)	89	176	244	46	77	27	0	170	444	101	0	93
Enter Blocked Intersection	No	No	No	Yes	Yes	Yes	No	No	No	No	No	No
Lane Alignment	L NA	Left	R NA	L NA	Left	R NA	R NA	L NA	Left	R NA	R NA	L NA
Median Width(m)		10.5			10.5				10.5			
Link Offset(m)		0.0			0.0				0.0			
Crosswalk Width(m)		5.0			5.0				5.0			
Two way Left Turn Lane												
Headway Factor	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09
Number of Detectors	1	2	1	1	2	1	1	1	2	1	1	1
Detector Template	Left	Thru	Right	Left	Thru	Right	Left	Left	Thru	Right	Left	Left
Leading Detector (m)	2.0	10.0	2.0	2.0	10.0	2.0	2.0	2.0	10.0	2.0	2.0	2.0
Trailing Detector (m)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Position(m)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Size(m)	2.0	0.6	2.0	2.0	0.6	2.0	2.0	2.0	0.6	2.0	2.0	2.0
Detector 1 Type	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	Cl+Ex	Cl+Ex	CI+Ex	Cl+Ex	CI+Ex	CI+Ex	Cl+Ex
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 2 Position(m)		9.4			9.4				9.4			
Detector 2 Size(m)		0.6			0.6				0.6			
Detector 2 Type		CI+Ex			CI+Ex				Cl+Ex			
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0				0.0			
Turn Type	Prot	NA	Perm	Prot	NA	Perm	Prot	Prot	NA	Perm	Prot	Prot
Protected Phases	7	4		3	8		5	5	2		1	1
Permitted Phases	·		4	Ţ	-	8		Ū.	_	2		
Detector Phase	7	4	4	3	8	8	5	5	2	2	1	1
Switch Phase	,	7	7	0	U	U	0	U	2	-	1	

J.Audia, Novatech

Lane Group SBT SBR Lane Gonfigurations ↑↑↑↑ ↑↑↑↑ Traffic Volume (vph) 694 118 Future Volume (vph) 694 118 Ideal Flow (vphpl) 1800 1800 Storage Langth (m) 100.0 Storage Lanes 1 Taper Length (m) Lane Util. Factor 0.91 1.00 Ped Bike Factor 0.98 Frt 0.850 Flt Protected Satd. Flow (prot) 4718 1445 Right Turn on Red Yes Satd. Flow (perm) 4718 1445 Right Turn on Red Yes Satd. Flow (RTOR) 149 Link Speed (k/h) 80 Link Distance (m) 318.9 Travel Time (s) 14.4 Confl. Peds. (#/hr) 3 Confl. Peds. (#/hr) 3 Confl. Sikes (#/hr) 9 Queue (s) 3% 3% Adj. Flow (vph) 771 131 Shared Lane Traffic (%) Lane Alignment Left R NA Median Width(m) 7.0 Link Offset(m) 0.0 Con <th></th> <th>Ţ</th> <th>1</th>		Ţ	1
Lane Configurations Image: Configuration is a configratex configuration is a configuratin itex configurati		•	-
Traffic Volume (vph) 694 118 Future Volume (vph) 694 118 Ideal Flow (vphpl) 1800 1800 Storage Length (m) 100.0 Storage Lanes 1 Taper Length (m) 100.0 Ped Bike Factor 0.91 Ped Bike Factor 0.98 Fit 0.850 Fit Protected 0.98 Satd. Flow (prot) 4718 1469 Fit Protected 144 1445 Right Turn on Red Yes 28 Satd. Flow (RTOR) 144 1445 Link Distance (m) 318.9 17 Travel Time (s) 14.4 20 Confl. Bikes (#/hr) 3 3 Confl. Bikes (#/hr) 3 3% Adj. Flow (vph) 771 131 Shared Lane Traffic (%) 2 2 Lane Alignment Left R NA Median Width(m) 5.0 7 Travel Timplate Thru Right Headway Factor 1.09 1.09 Number of	· · · · · · · · · · · · · · · · · · ·		
Future Volume (vph) 694 118 Ideal Flow (vphpl) 1800 1800 Storage Lanes 1 Taper Length (m) 100.0 Paper Length (m) 1.00 Ped Bike Factor 0.91 1.00 Ped Bike Factor 0.93 Fit 0.850 Fit Protected Satd. Flow (prot) 4718 1469 Fit Permitted Satd. Flow (perm) 4718 1445 Right Turn on Red Yes Satd. Flow (RTOR) 149 Link Distance (m) 318.9 Travel Time (s) 14.4 Confl. Peds. (#/hr) 3 3 3% Adj. Flow (vph) 771 131 Shared Lane Traffic (%) Lane Group Flow (vph) 771 131 Enter Blocked Intersection No Lane Alignment Left R NA Median Width(m) 7.0 Link Offset(m) 0.0 Cond Cond Cond Number of Detectors 2 1 Detector Template Thru Right <		<u> </u>	
Ideal Flow (vphpl) 1800 1800 Storage Length (m) 100.0 Storage Lanes 1 Taper Length (m) 100.0 Lane Util. Factor 0.91 1.00 Ped Bike Factor 0.98 Frt 0.850 Flt Protected Satd. Flow (prot) 4718 1469 Flt Permitted Satd. Flow (perm) 4718 1445 Right Turn on Red Yes Satd. Flow (RTOR) 149 Link Speed (k/h) 80 111 Satd. Flow (RTOR) 149 Link Distance (m) 318.9 Travel Time (s) 14.4 Confl. Peds. (#/hr) 3 Confl. Bikes (#/hr) 3 3 3% 3% Adj. Flow (vph) 771 131 Shared Lane Traffic (%) Lane Group Flow (vph) 771 131 Enter Blocked Intersection No No Lane Group Flow (vph) 771 131 Enter Blocked Intersection No No Lane Group Flow (vph) 701 1314 Enter Blocked Inters		694	
Storage Length (m) 100.0 Storage Lanes 1 Taper Length (m) 1 Lane Util. Factor 0.91 1.00 Ped Bike Factor 0.98 Frt 0.850 Flt Protected Satd. Flow (prot) 4718 1469 Satd. Flow (perm) 4718 1445 Right Turn on Red Yes Satd. Flow (RTOR) 149 Link Distance (m) 318.9 Travel Time (s) 14.4 Confl. Peds. (#/hr) 3 Confl. Bikes (#/hr) Peak Hour Factor 0.90 0.90 Heavy Vehicles (%) 3% 3% Adj. Flow (vph) 771 131 Shared Lane Traffic (%) Lane Group Flow (vph) 771 131 Enter Blocked Intersection No No No Lane Group Flow (vph) 771 131 Enter Blocked Intersection No No Lane Group Flow (vph) 771 131 Enter Blocked Intersection No No Lane Group Flow (vph) 771 131 Enter	(1)		
Storage Lanes 1 Taper Length (m) 100 Ped Bike Factor 0.91 1.00 Ped Bike Factor 0.98 Frt 0.850 Fit 0.850 Fit Protected Satd. Flow (prot) 4718 1449 Satd. Flow (perm) 4718 1445 Right Turn on Red Yes Satd. Flow (RTOR) 149 Link Speed (k/h) 80 11 Satd. Flow (RTOR) 149 Link Distance (m) 318.9 Travel Time (s) 14.4 Confl. Bikes (#/hr) 3 Confl. Bikes (#/hr) 3 3% 3% Adj. Flow (vph) 771 131 Shared Lane Traffic (%) 143 Enter Blocked Intersection No No Lane Group Flow (vph) 771 131 Enter Blocked Intersection No No Lane Group Flow (vph) 771 131 Enter Blocked Intersection No No Lane Alignment Left R NA Median Width(m) 5.0 Two way Left Turn Lane <t< td=""><td></td><td>1800</td><td></td></t<>		1800	
Taper Length (m) Lane Util. Factor 0.91 1.00 Ped Bike Factor 0.98 Frt 0.850 Satd. Flow (prot) 4718 1469 Flt Permitted			100.0
Lane Util. Factor 0.91 1.00 Ped Bike Factor 0.98 Frt 0.850 Flt Protected Satd. Flow (prot) 4718 1469 Satd. Flow (perm) 4718 1445 Right Turn on Red Yes Satd. Flow (RTOR) 149 Link Speed (k/h) 80 Link Distance (m) 318.9 Travel Time (s) 14.4 Confl. Peds. (#/hr) 3 Confl. Bikes (#/hr) 90 0.90 Heavy Vehicles (%) 3% Adj. Flow (vph) 771 131 Shared Lane Traffic (%) Lane Group Flow (vph) 771 131 Enter Blocked Intersection No No Lane Alignment Left R NA Median Width(m) 7.0 Link Offset(m) 0.0 Corsswalk Width(m) 5.0 Two way Left Turn Lane Headway Factor 1.09 1.09 Number of Detectors 2 1 Detector Template Thru Right Leading Detector (m) 0.0 0.0 Dot Detector 1 Size(m)			1
Lane Util. Factor 0.91 1.00 Ped Bike Factor 0.98 Frt 0.850 Flt Protected	Taper Length (m)		
Ped Bike Factor 0.98 Frt 0.850 Fit Protected Satd. Flow (port) 4718 1469 Stad. Flow (perm) 4718 1445 Right Turn on Red Yes Satd. Flow (RTOR) 149 Link Speed (k/h) 80 Link Distance (m) 318.9 Travel Time (s) 14.4 Confl. Peds. (#/hr) 3 Confl. Bikes (#/hr) 90 0.90 Heavy Vehicles (%) 3% 3% Adj. Flow (vph) 771 131 Shared Lane Traffic (%) Lane Group Flow (vph) 771 Lane Group Flow (vph) 771 131 Enter Blocked Intersection No No Lane Alignment Left R NA Median Width(m) 7.0 Link Offset(m) 0.0 Crosswalk Width(m) 5.0 Trailing Detector (m) 10.0 2.0 Trailing Detector (m) 0.0 0.0 0.0 0.0 0.0 Detector 1 Position(m) 0.0 0.0 0.0 0.0		0.91	1.00
Frt 0.850 Fit Protected Satd. Flow (prot) 4718 1469 Satd. Flow (perm) 4718 1445 Right Turn on Red Yes Satd. Flow (RTOR) 149 Link Speed (k/h) 80 Link Distance (m) 318.9 Travel Time (s) 14.4 Confl. Peds. (#/hr) 3 Peak Hour Factor 0.90 0.90 Heavy Vehicles (%) 3% 3% Adj. Flow (vph) 771 131 Shared Lane Traffic (%) Iane Group Flow (vph) 771 Lane Group Flow (vph) 771 131 Enter Blocked Intersection No No Lane Alignment Left R NA Median Width(m) 7.0 Link Offset(m) 0.0 Crosswalk Width(m) 5.0 Thru Right Leading Detector (m) 10.0 2.0 1 Detector Template Thru Right Leading Detector (m) 0.0 0.0 0.0			
Filt Protected Satd. Flow (prot) 4718 1469 Filt Permitted 1445 Right Turn on Red Yes Satd. Flow (RTOR) 149 Link Speed (k/h) 80 Link Distance (m) 318.9 Travel Time (s) 14.4 Confl. Peds. (#/hr) 3 Peak Hour Factor 0.90 0.90 Heavy Vehicles (%) 3% 3% Adj. Flow (vph) 771 131 Shared Lane Traffic (%) 2 2 Lane Group Flow (vph) 771 131 Shared Lane Traffic (%) 3 3% Lane Group Flow (vph) 7.0 1 Link Offset(m) 0.0 0 Crosswalk Width(m) 5.0 7 Two way Left Turn Lane Headway Factor 1.09 1.09 Number of Detectors 2 1 1 Detector Template Thru Right Leading Detector (m) 0.0 0.0 0 Detector 1 Size(m) 0.6 2.0 0 0 0			
Satd. Flow (prot) 4718 1469 Fil Permitted 1445 Right Turn on Red Yes Satd. Flow (RTOR) 149 Link Speed (k/h) 80 Link Distance (m) 318.9 Travel Time (s) 14.4 Confl. Peds. (#/hr) 3 Peak Hour Factor 0.90 0.90 Heavy Vehicles (%) 3% 3% Adj. Flow (vph) 771 131 Shared Lane Traffic (%) 2 2 Lane Group Flow (vph) 771 131 Shared Lane Traffic (%) 2 1 Lane Group Flow (vph) 771 131 Shared Lane Traffic (%) 2 1 Lane Group Flow (vph) 7.0 1 Link Offset(m) 0.0 0 Crosswalk Width(m) 5.0 1 Two way Left Turn Lane Headway Factor 1.09 1.09 Headway Factor (m) 0.0 0.0 0 0 Detector Template Thru Right			
Fit Permitted Satd. Flow (perm) 4718 1445 Right Turn on Red Yes Satd. Flow (RTOR) 149 Link Distance (m) 318.9 Travel Time (s) 14.4 Confl. Peds. (#/hr) 3 Confl. Bikes (#/hr) 3 Peak Hour Factor 0.90 0.90 Heavy Vehicles (%) 3% 3% Adj. Flow (vph) 771 131 Shared Lane Traffic (%) 2 2 Lane Group Flow (vph) 771 131 Enter Blocked Intersection No No Lane Alignment Left R NA Median Width(m) 7.0 1.09 Link Offset(m) 0.0 0.0 Crosswalk Width(m) 5.0 1.09 Number of Detectors 2 1 Detector Template Thru Right Leading Detector (m) 0.0 0.0 Detector 1 Position(m) 0.0 0.0 Detector 1 Size(m) 0.6 2.0 Detector 1 Size(m) 0.6 2.0		4718	1469
Satd. Flow (perm) 4718 1445 Right Turn on Red Yes Satd. Flow (RTOR) 149 Link Speed (k/h) 80 Link Distance (m) 318.9 Travel Time (s) 14.4 Confl. Peds. (#/hr) 3 Peak Hour Factor 0.90 0.90 Heavy Vehicles (%) 3% 3% Adj. Flow (vph) 771 131 Shared Lane Traffic (%) 2 2 Lane Group Flow (vph) 771 131 Enter Blocked Intersection No No Lane Alignment Left R NA Median Width(m) 7.0 1.09 Link Offset(m) 0.0 0.0 Crosswalk Width(m) 5.0 1.09 Traw way Left Turn Lane Headway Factor 1.09 1.09 Number of Detectors 2 1 Detector Template Thru Right Leading Detector (m) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0			
Right Turn on Red Yes Satd. Flow (RTOR) 149 Link Speed (k/h) 80 Link Distance (m) 318.9 Travel Time (s) 14.4 Confl. Peds. (#/hr) 3 Peak Hour Factor 0.90 0.90 Heavy Vehicles (%) 3% 3% Adj. Flow (vph) 771 131 Shared Lane Traffic (%) Lane Group Flow (vph) 771 Lane Group Flow (vph) 771 131 Enter Blocked Intersection No No Lane Alignment Left R NA Median Width(m) 7.0 Link Offset(m) 0.0 Crosswalk Width(m) 5.0 Two way Left Turn Lane Headway Factor 1.09 1.09 Number of Detectors 2 1 Detector Template Thru Right Leading Detector (m) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0<		4718	1445
Satd. Flow (RTOR) 149 Link Speed (k/h) 80 Link Distance (m) 318.9 Travel Time (s) 14.4 Confl. Peds. (#/hr) 3 Peak Hour Factor 0.90 0.90 Heavy Vehicles (%) 3% 3% Adj. Flow (vph) 771 131 Shared Lane Traffic (%) Lane Group Flow (vph) 771 Lane Group Flow (vph) 771 131 Enter Blocked Intersection No No Lane Alignment Left R NA Median Width(m) 7.0 Link Offset(m) 0.0 Crosswalk Width(m) 5.0 Two way Left Turn Lane Headway Factor 1.09 1.09 Number of Detectors 2 1 Detector Template Thru Right Leading Detector (m) 0.0 0.0 0.0 0.0 Detector 1 Position(m) 0.0 0.0 0.0 0.0 Detector 1 Size(m) 0.6 2.0 0.0 0.0 0.0 0.0 0.0 <td></td> <td>1710</td> <td></td>		1710	
Link Speed (k/h) 80 Link Distance (m) 318.9 Travel Time (s) 14.4 Confl. Peds. (#/hr) 3 Peak Hour Factor 0.90 0.90 Heavy Vehicles (%) 3% 3% Adj. Flow (vph) 771 131 Shared Lane Traffic (%) Lane Group Flow (vph) 771 131 Enter Blocked Intersection No No No Lane Alignment Left R NA Median Width(m) 7.0 Link Offset(m) 0.0 Crosswalk Width(m) 5.0 Two way Left Turn Lane Headway Factor 1.09 1.09 Number of Detectors 2 1 Detector Template Thru Right Leading Detector (m) 0.0 0.0 Inailing Detector (m) 0.0 0.0 0.0 0.0 0.0 0.0 Detector 1 Position(m) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0			
Link Distance (m) 318.9 Travel Time (s) 14.4 Confl. Peds. (#/hr) 3 Peak Hour Factor 0.90 0.90 Heavy Vehicles (%) 3% 3% Adj. Flow (vph) 771 131 Shared Lane Traffic (%) Lane Group Flow (vph) 771 131 Enter Blocked Intersection No No No Lane Alignment Left R NA Median Width(m) 7.0 Link Offset(m) 0.0 Crosswalk Width(m) 5.0 Two way Left Turn Lane Headway Factor 1.09 1.09 1.09 Number of Detectors 2 1 Detector Template Thru Right Leading Detector (m) 0.0 0.0 0.0 Detector 1 Size(m) 0.6 2.0 Detector 1 Position(m) 0.0 0.0 0.0 Detector 1 Size(m) 0.6 2.0 Detector 1 Size(m) 0.6 2.0 0.0 0.0 Detector 1 Channel Detector 1 Channel Detector 2 Position(m) 9.4		80	175
Travel Time (s) 14.4 Confl. Peds. (#/hr) 3 Confl. Bikes (#/hr) 90 Peak Hour Factor 0.90 Heavy Vehicles (%) 3% Adj. Flow (vph) 771 Shared Lane Traffic (%) 131 Lane Group Flow (vph) 771 Lane Group Flow (vph) 771 Inter Blocked Intersection No No No Lane Alignment Left R NA Median Width(m) 7.0 Link Offset(m) Link Offset(m) 0.0 Crosswalk Width(m) 5.0 Two way Left Turn Lane Headway Factor Headway Factor 1.09 1.09 Number of Detectors 2 1 Detector Template Thru Right Leading Detector (m) 0.0 0.0 Detector 1 Position(m) 0.0 0.0 Detector 1 Size(m) 0.6 2.0 Detector 1 Size(m) 0.6 2.0 Detector 1 Queue (s) 0.0 0.0 Detector 2 Position(m) 9.4 0.0 <td></td> <td></td> <td></td>			
Confl. Peds. (#/hr) 3 Confl. Bikes (#/hr) 90 0.90 Peak Hour Factor 0.90 0.90 Heavy Vehicles (%) 3% 3% Adj. Flow (vph) 771 131 Shared Lane Traffic (%) 2 1 Lane Group Flow (vph) 771 131 Enter Blocked Intersection No No Lane Alignment Left R NA Median Width(m) 7.0 1 Link Offset(m) 0.0 0 Crosswalk Width(m) 5.0 1 Wedway Factor 1.09 1.09 Number of Detectors 2 1 Detector Template Thru Right Leading Detector (m) 0.0 0.0 Detector 1 Position(m) 0.0 0.0 Detector 1 Size(m) 0.6 2.0 Detector 1 Size(m) 0.6 2.0 Detector 1 Queue (s) 0.0 0.0 Detector 1 Queue (s) 0.0 0.0 Detector 2			
Confl. Bikes (#/hr) Peak Hour Factor 0.90 0.90 Heavy Vehicles (%) 3% 3% Adj. Flow (vph) 771 131 Shared Lane Traffic (%) 2 2 Lane Group Flow (vph) 771 131 Enter Blocked Intersection No No Lane Alignment Left R NA Median Width(m) 7.0 1 Link Offset(m) 0.0 0 Crosswalk Width(m) 5.0 1 Wo way Left Turn Lane Headway Factor 1.09 1.09 Number of Detectors 2 1 1 Detector Template Thru Right Leading Detector (m) 0.0 0.0 0 Detector 1 Position(m) 0.0 0.0 0 0 Detector 1 Size(m) 0.6 2.0 0 0 0 0 Detector 1 Vpe Cl+Ex Cl+Ex Cl+Ex 0 0 0 0 0 0 0 <		14.4	3
Peak Hour Factor 0.90 0.90 Heavy Vehicles (%) 3% 3% Adj. Flow (vph) 771 131 Shared Lane Traffic (%) Image: Component of the section			J
Heavy Vehicles (%) 3% 3% Adj. Flow (vph) 771 131 Shared Lane Traffic (%) Image: Component of the section of the		0.00	0.00
Adj. Flow (vph) 771 131 Shared Lane Traffic (%) 131 Enter Blocked Intersection No Lane Group Flow (vph) 771 131 Enter Blocked Intersection No No Lane Alignment Left R NA Median Width(m) 7.0 Link Offset(m) 0.0 Crosswalk Width(m) 5.0 Two way Left Turn Lane Headway Factor 1.09 1.09 Number of Detectors 2 1 Detector Template Thru Right Leading Detector (m) 10.0 2.0 1 Trailing Detector (m) 0.0 0.0 Detector Template Thru Right Leading Detector (m) 0.0 0.0 Detector 1 Position(m) 0.0 0.0 0.0 0.0 0.0 Detector 1 Size(m) 0.6 2.0 0.0 0.0 0.0 Detector 1 Size(m) 0.6 0.0 0.0 0.0 0.0 0.0 Detector 1 Queue (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0<			
Shared Lane Traffic (%) Lane Group Flow (vph) 771 131 Enter Blocked Intersection No No Lane Alignment Left R NA Median Width(m) 7.0 Link Offset(m) 0.0 Crosswalk Width(m) 5.0 Two way Left Turn Lane Headway Factor 1.09 1.09 Number of Detectors 2 1 Detector Template Thru Right Leading Detector (m) 10.0 2.0 Trailing Detector (m) 0.0 0.0 Detector Template Thru Right Leading Detector (m) 0.0 0.0 Detector 1 Position(m) 0.0 0.0 0.0 Detector 1 Size(m) 0.6 2.0 Detector 1 Size(m) 0.6 2.0 Detector 1 Channel Detector 1 Channel Detector 1 Channel Detector 2 Position(m) 9.4 Detector 2 Position(m) 9.4 Detector 2 Size(m) 0.6 Detector 2 Size(m) 0.6 Detector 2 Channel Detector 2 Channel Detector 2 Channel Detector 2 Channel Detector 2 Extend (s) 0.0			
Lane Group Flow (vph) 771 131 Enter Blocked Intersection No No Lane Alignment Left R NA Median Width(m) 7.0		111	131
Enter Blocked IntersectionNoNoLane AlignmentLeftR NAMedian Width(m)7.0Link Offset(m)0.0Crosswalk Width(m)5.0Two way Left Turn LaneHeadway FactorHeadway Factor1.09Number of Detectors2Detector TemplateThruRightLeading Detector (m)0.0O.00.0Detector 1 Position(m)0.0Detector 1 Size(m)0.6Detector 1 Size(m)0.0Detector 1 ChannelDetector 2 Position(m)9.4Detector 2 Size(m)0.6Detector 2 Size(m)0.6Detector 2 ChannelDetector 2 ChannelDetector 2 Extend (s)0.0Turn TypeNAPermitted Phases6Permitted Phases6		774	101
Lane Alignment Left R NA Median Width(m) 7.0 Link Offset(m) 0.0 Crosswalk Width(m) 5.0 Two way Left Turn Lane Headway Factor Headway Factor 1.09 1.09 Number of Detectors 2 1 Detector Template Thru Right Leading Detector (m) 10.0 2.0 Trailing Detector (m) 0.0 0.0 Detector 1 Position(m) 0.0 0.0 Detector 1 Size(m) 0.6 2.0 Detector 1 Size(m) 0.6 2.0 Detector 1 Size(m) 0.6 0.0 Detector 1 Size(m) 0.6 0.0 Detector 1 Queue (s) 0.0 0.0 Detector 2 Position(m) 9.4 Detector 2 Position(m) Detector 2 Size(m) 0.6 Detector 2 Channel Detector 2 Type Cl+Ex Detector 2 Channel Detector 2 Extend (s) 0.0 0.0 Turn Type NA Perm Protected			
Median Width(m) 7.0 Link Offset(m) 0.0 Crosswalk Width(m) 5.0 Two way Left Turn Lane Headway Factor Headway Factor 1.09 1.09 Number of Detectors 2 1 Detector Template Thru Right Leading Detector (m) 10.0 2.0 Trailing Detector (m) 0.0 0.0 Detector 1 Position(m) 0.0 0.0 Detector 1 Size(m) 0.6 2.0 Detector 1 Channel Detector 1 Channel Detector 2 Position(m) Detector 2 Position(m) 9.4 Detector 2 Position(m) 9.4 Detector 2 Size(m) 0.6 Detector 2 Channel Detector 2 Channel Detector 2 Channel Detector 2 Channel Detector 2 Channel Detector 2 Channel Detector 2 Extend (s) 0.0 Turn Type NA Perm Pro			
Link Offset(m) 0.0 Crosswalk Width(m) 5.0 Two way Left Turn Lane Headway Factor 1.09 1.09 Number of Detectors 2 1 Detector Template Thru Right Leading Detector (m) 10.0 2.0 Trailing Detector (m) 0.0 0.0 Detector 1 Position(m) 0.0 0.0 Detector 1 Size(m) 0.6 2.0 Detector 1 Size(m) 0.6 2.0 Detector 1 Position(m) 0.0 0.0 Detector 1 Size(m) 0.6 2.0 Detector 1 Size(m) 0.6 2.0 Detector 1 Queue (s) 0.0 0.0 Detector 2 Position(m) 9.4 0.0 Detector 2 Position(m) 9.4 0.6 Detector 2 Size(m) 0.6 0.0 Detector 2 Channel 0.0 0.0 Detector 2 Channel 0.0 0.0 Detector 2 Extend (s) 0.0 0.0 Turn Type NA Perm <td></td> <td></td> <td>RNA</td>			RNA
Crosswalk Width(m) 5.0 Two way Left Turn Lane 1.09 1.09 Headway Factor 1.09 1.09 Number of Detectors 2 1 Detector Template Thru Right Leading Detector (m) 10.0 2.0 Trailing Detector (m) 0.0 0.0 Detector 1 Position(m) 0.0 0.0 Detector 1 Size(m) 0.6 2.0 Detector 1 Queue (s) 0.0 0.0 Detector 2 Position(m) 9.4 0 Detector 2 Position(m) 9.4 0 Detector 2 Size(m) 0.6 0 Detector 2 Channel 0 0 Detector 2 Channel 0 0 Detector 2 Extend (s) 0.0 0 Turn Type NA Perm Protec			
Two way Left Turn Lane Headway Factor 1.09 1.09 Number of Detectors 2 1 Detector Template Thru Right Leading Detector (m) 10.0 2.0 Trailing Detector (m) 0.0 0.0 Detector 1 Position(m) 0.0 0.0 Detector 1 Size(m) 0.6 2.0 Detector 1 Channel Detector 1 Channel 0.0 Detector 1 Queue (s) 0.0 0.0 Detector 2 Position(m) 9.4 0.0 Detector 2 Size(m) 0.6 0.0 Detector 2 Size(m) 0.6 0.0 Detector 2 Channel 0.0 0.0 Detector 2 Channel 0.0 0.0 Detector 2 Extend (s) 0.0 0.0 Turn Type NA Perm Protected Phases 6 6 Detector			
Headway Factor 1.09 1.09 Number of Detectors 2 1 Detector Template Thru Right Leading Detector (m) 10.0 2.0 Trailing Detector (m) 0.0 0.0 Detector 1 Position(m) 0.0 0.0 Detector 1 Size(m) 0.6 2.0 Detector 1 Channel Detector 1 Channel 0.0 Detector 1 Queue (s) 0.0 0.0 Detector 2 Position(m) 9.4 0.0 Detector 2 Position(m) 9.4 0.0 Detector 2 Size(m) 0.6 0.0 Detector 2 Channel 0.0 0.0 Detector 2 Channel 0.0 0.0 Detector 2 Extend (s) 0.0 0.0 Turn Type NA Perm Protected Phases 6 6 Detector Phase 6 6 <		5.0	
Number of Detectors 2 1 Detector Template Thru Right Leading Detector (m) 10.0 2.0 Trailing Detector (m) 0.0 0.0 Detector 1 Position(m) 0.0 0.0 Detector 1 Size(m) 0.6 2.0 Detector 1 Size(m) 0.6 2.0 Detector 1 Size(m) 0.6 2.0 Detector 1 Type CI+Ex CI+Ex Detector 1 Channel			
Detector Template Thru Right Leading Detector (m) 10.0 2.0 Trailing Detector (m) 0.0 0.0 Detector 1 Position(m) 0.0 0.0 Detector 1 Size(m) 0.6 2.0 Detector 1 Size(m) 0.6 2.0 Detector 1 Type CI+Ex CI+Ex Detector 1 Channel Detector 1 Channel 0.0 Detector 1 Queue (s) 0.0 0.0 Detector 1 Queue (s) 0.0 0.0 Detector 2 Position(m) 9.4 Detector 2 Position(m) Detector 2 Size(m) 0.6 Detector 2 Cl+Ex Detector 2 Size(m) 0.6 Detector 2 Channel Detector 2 Channel Detector 2 Channel Detector 2 Extend (s) 0.0 Turn Type NA Perm Protected Phases 6 Permitted Phases 6 6 Detector Phase 6			
Leading Detector (m) 10.0 2.0 Trailing Detector (m) 0.0 0.0 Detector 1 Position(m) 0.0 0.0 Detector 1 Size(m) 0.6 2.0 Detector 1 Size(m) 0.6 2.0 Detector 1 Type CI+Ex CI+Ex Detector 1 Channel Detector 1 Channel 0.0 Detector 1 Queue (s) 0.0 0.0 Detector 1 Queue (s) 0.0 0.0 Detector 2 Position(m) 9.4 Detector 2 Position(m) Detector 2 Size(m) 0.6 Detector 2 Size(m) Detector 2 Channel Detector 2 Channel Detector 2 Channel Detector 2 Extend (s) 0.0 Turn Type NA Permited Phases 6 Permited Phases 6 Detector Phase 6 6 6			
Trailing Detector (m) 0.0 0.0 Detector 1 Position(m) 0.0 0.0 Detector 1 Size(m) 0.6 2.0 Detector 1 Size(m) 0.6 2.0 Detector 1 Type CI+Ex CI+Ex Detector 1 Channel 0.0 0.0 Detector 1 Extend (s) 0.0 0.0 Detector 1 Queue (s) 0.0 0.0 Detector 1 Delay (s) 0.0 0.0 Detector 2 Position(m) 9.4 0 Detector 2 Size(m) 0.6 0 Detector 2 Channel 0.0 0.0 Detector 2 Channel 0.0 0.0 Detector 2 Extend (s) 0.0 0.0 Turn Type NA Perm Protected Phases 6 6 Detector Phase 6 6			
Detector 1 Position(m) 0.0 0.0 Detector 1 Size(m) 0.6 2.0 Detector 1 Type CI+Ex CI+Ex Detector 1 Channel Detector 1 Channel 0.0 Detector 1 Extend (s) 0.0 0.0 Detector 1 Queue (s) 0.0 0.0 Detector 1 Delay (s) 0.0 0.0 Detector 2 Position(m) 9.4 Detector 2 Size(m) Detector 2 Size(m) 0.6 Detector 2 Channel Detector 2 Channel Detector 2 Channel Detector 2 Extend (s) Detector 2 Extend (s) 0.0 Turn Type NA Permitted Phases 6 6 Detector Phase 6 6			
Detector 1 Size(m) 0.6 2.0 Detector 1 Type CI+Ex CI+Ex Detector 1 Channel Detector 1 Extend (s) 0.0 0.0 Detector 1 Queue (s) 0.0 0.0 Detector 1 Delay (s) 0.0 0.0 Detector 2 Position(m) 9.4 Detector 2 Size(m) 0.6 Detector 2 Size(m) 0.6 Detector 2 Channel Detector 2 Extend (s) 0.0 Turn Type NA Perm Protected Phases 6 Detector Phase 6 6			
Detector 1 TypeCI+ExCI+ExDetector 1 Channel0.0Detector 1 Extend (s)0.0Detector 1 Queue (s)0.0Detector 1 Delay (s)0.0Detector 2 Position(m)9.4Detector 2 Size(m)0.6Detector 2 Size(m)0.6Detector 2 Channel0.0Detector 2 Extend (s)0.0Turn TypeNAPermitted Phases6Detector Phase6			
Detector 1 ChannelDetector 1 Extend (s)0.0Detector 1 Queue (s)0.0Detector 1 Delay (s)0.0Detector 2 Position(m)9.4Detector 2 Size(m)0.6Detector 2 Size(m)0.6Detector 2 ChannelCl+ExDetector 2 ChannelDetector 2 ChannelDetector 2 Extend (s)0.0Turn TypeNAPermitted Phases6Detector Phase6			
Detector 1 Extend (s) 0.0 0.0 Detector 1 Queue (s) 0.0 0.0 Detector 1 Delay (s) 0.0 0.0 Detector 2 Position(m) 9.4 0.6 Detector 2 Size(m) 0.6 0.0 Detector 2 Size(m) 0.6 0.0 Detector 2 Channel 0.0 0.0 Detector 2 Extend (s) 0.0 0.0 Turn Type NA Perm Protected Phases 6 6 Detector Phase 6 6		CI+Ex	CI+Ex
Detector 1 Queue (s)0.00.0Detector 1 Delay (s)0.00.0Detector 2 Position(m)9.4Detector 2 Size(m)0.6Detector 2 TypeCl+ExDetector 2 Channel0.0Detector 2 Extend (s)0.0Turn TypeNAPermitted Phases6Detector Phase666	Detector 1 Channel		
Detector 1 Queue (s)0.00.0Detector 1 Delay (s)0.00.0Detector 2 Position(m)9.4Detector 2 Size(m)0.6Detector 2 TypeCl+ExDetector 2 Channel0.0Detector 2 Extend (s)0.0Turn TypeNAPermitted Phases6Detector Phase666		0.0	0.0
Detector 1 Delay (s)0.00.0Detector 2 Position(m)9.4Detector 2 Size(m)0.6Detector 2 TypeCI+ExDetector 2 Channel0.0Detector 2 Extend (s)0.0Turn TypeNAProtected Phases6Permitted Phases6Detector Phase6			
Detector 2 Position(m)9.4Detector 2 Size(m)0.6Detector 2 TypeCI+ExDetector 2 ChannelDetector 2 Extend (s)Detector 2 Extend (s)0.0Turn TypeNAProtected Phases6Permitted Phases6Detector Phase6			
Detector 2 Size(m)0.6Detector 2 TypeCI+ExDetector 2 ChannelDetector 2 Extend (s)0.0Turn TypeNAProtected Phases6Permitted Phases6Detector Phase6			
Detector 2 TypeCI+ExDetector 2 ChannelDetector 2 Extend (s)0.0Turn TypeNAProtected Phases6Permitted Phases6Detector Phase6			
Detector 2 ChannelDetector 2 Extend (s)0.0Turn TypeNAProtected Phases6Permitted Phases6Detector Phase6			
Detector 2 Extend (s)0.0Turn TypeNAPermProtected Phases6Permitted Phases6Detector Phase6		5 . – A	
Turn TypeNAPermProtected Phases6Permitted Phases6Detector Phase6		0.0	
Protected Phases6Permitted Phases6Detector Phase666			Perm
Permitted Phases6Detector Phase66			1 0111
Detector Phase 6 6		0	6
		6	
OWIGHTTIASE		U	U
	Switch Flidse		

J.Audia, Novatech

2: March & Terry Fox AM Peak Hour

Lane Group EBL EBT EBR WBT WBT NBL NBL NBL NBL NBL SBU Minimum Inital (s) 5.0 10.0 10.0 5.0 10.0 10.0 5.0 5.0 5.0 20.0 20.0 5.0 Total Split (s) 16.0 42.0 11.8 42.0 42.0 11.9 11.9 32.7 32.7 11.9 Total Split (s) 16.0 42.0 42.0 12.3% 32.3% 52.3% 18.1 18.1 40.3 40.3 40.3 40.3 40.3 40.3 40.3 18.1 Veloce 11.8 17.0 6.8 7.0 7.0 6.9 6.7 6.7 Leadt Ag Lead Lag	AM Peak Hour	٠		<u> </u>		-	•			•)22 Existin	
Minimum Initial (s) 5.0 10.0 10.0 5.0 10.0 10.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 3.0 3.2 3.2 4.2 1.6 4.2.0 1.6 4.2.0 4.2.0 1.6 4.2.0 4.2.0 4.2.0 4.2.0 4.2.0 4.2.0 4.2.0 4.2.0 4.2.0 4.2.0 4.2.0 4.2.0 4.2.0 4.2.0 4.2.0 4.2.0 4.2.0 4.2.0 4.2.0 3.2.3 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.1 3.3			-	•	-	•		₹		T		-	
Minimum Spit (a) 11.8 42.0 42.0 11.8 42.0 42.0 11.9 11.9 12.7 32.7 32.7 11.9 Total Spit (s) 16.0 42.0 42.0 16.0 42.0 42.0 25.0 47.0 42.7 0 25.0 Total Spit (s) 16.0 42.0 42.0 42.0 16.0 42.0 42.0 25.0 47.0 47.0 25.0 Total Spit (s) 12.3% 32.3% 32.3% 32.3% 32.3% 32.3% 19.2% 19.2% 36.2% 36.2% 19.2% Maximum creen (s) 9.2 35.0 35.0 9.2 35.0 35.0 18.1 18.1 18.1 40.3 40.3 18.1 (s) 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 4.6 4.6 4.6 4.6 4.6 Use Time (s) 3.1 3.3 3.3 3.1 3.3 3.3 2.3 2.3 2.3 2.1 2.1 2.1 2.3 Los Time (s) 6.8 7.0 7.0 6.8 7.0 7.0 6.9 6.7 6.7 Lead Lag Lag Lead Lag Lag Lead Lag													SB
Trail Split (\$) Trail Split													5.
Total Spift (%) Maximum Green (s) 9.2 Maximum Green (s) 9.2 Maximum Green (s) 9.2 35.0 18.1 18.1 40.3 18.1 18.1 40.3 18.1 18.1 40.3 18.1 18.1 40.3 40.3 18.1 18.1 40.3 40.3 18.1 18.1 40.3 40.3 18.1 18.1 40.3 40.3 18.1 18.1 40.3 40.3 18.1 18.1 40.3 40.3 18.1 18.1 40.3 40.3 18.1 18.1 40.3 40.3 18.1 18.1 40.3 40.3 18.1 18.1 40.3 40.3 18.1 18.1 40.3 40.3 18.1 18.1 40.3 40.3 18.1 18.1 40.3 40.3 18.1 40.3 40.3 18.1 40.3 40.3 40.3 10.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	,												11.9
Maximum Green (s) 9.2 35.0 9.2 35.0 10 11 11.1 40.3 40.3 41.1 40.3 40.3 41.1 40.3 <td></td> <td>25.0</td>													25.0
Yellov Time (s) 37 37 37 37 37 37 37 46 46 46 46 46 46 46 46 46 446 44Red Time (s) 31 33 33 31 33 33 31 33 33 2.3 2.3 2.3 2.1 2.1 2.3 2.4 2.1 2.3 2.4 2.1 2.3 2.4 2.1 2.3 2.4 2.1 2.3 2.4 2.1 2.3 2.4 2.1 2.3 2.4 2.1 2.3 2.4 2.1 2.3 2.4 2.1 2.3 2.4 2.1 2.3 2.4 2.1 2.3 2.4 2.1 2.3 2.4 2.1 2.3 2.4 2.1 2.3 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4						32.3%		19.2%	19.2%			19.2%	19.2%
All-Red Time (s) 3.1 3.3 3.3 3.1 3.3 3.3 2.3 2.3 2.1 2.1 2.3 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Maximum Green (s)												18.1
Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Yellow Time (s)				3.7						4.6		4.6
Total Lost Time (s) 6.8 7.0 7.0 6.8 7.0 7.0 6.7 6.7 Lead/Lag Lead Lag Lag Lag Lag Lead								2.3				2.3	2.3
Lead.Lag Lead Lag			0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0		0.0
Lead-Lag Optimize? Yes	Total Lost Time (s)	6.8	7.0	7.0	6.8	7.0	7.0		6.9	6.7	6.7		6.9
Vehicle Extension (s) 3.0 3	Lead/Lag	Lead	Lag	Lag	Lead	Lag	Lag	Lead	Lead	Lag	Lag	Lead	Lead
Recall Mode None None None None None None C-Max C-Max None Walk Time (s) 7.0	Lead-Lag Optimize?		Yes							Yes		Yes	Yes
Weak Time (s) 7.0	Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Flash Dont Walk (s) 28.0 28.0 28.0 28.0 19.0 19.0 Pedestrian Calls (#hr) 7 7 1 1 5 5 Act Effe Green (s) 9.1 16.5 16.5 7.3 15.6 15.6 12.1 68.8 68.8 Actuated g/C Ratio 0.07 0.13 0.13 0.06 0.12 0.09 0.53 0.53 v/c Ratio 0.40 0.42 0.62 0.25 0.09 0.56 0.18 0.12 Control Delay 60.0 50.9 15.2 61.7 50.0 0.6 58.9 23.7 7.1 Dueue Delay 0.0 0	Recall Mode	None	None	None	None	None	None	None	None	C-Max	C-Max	None	None
Pedestrian Calls (#/hr) 7 7 7 1 1 1 5 5 5 Act Effici Green (s) 9.1 16.5 16.5 7.3 15.6 15.6 12.1 68.8 68.8 Actuated g/C Ratio 0.07 0.13 0.13 0.06 0.12 0.09 0.56 0.18 0.12 Control Delay 60.0 50.9 15.2 61.7 50.0 0.6 58.9 23.7 7.1 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Walk Time (s)		7.0	7.0		7.0	7.0			7.0	7.0		
Act Effct Green (s) 9.1 16.5 16.5 7.3 15.6 15.6 12.1 68.8 68.8 Actuated g/C Ratio 0.07 0.13 0.03 0.06 0.12 0.12 0.09 0.53 0.53 Vic Ratio 0.40 0.42 0.62 0.25 0.09 0.56 0.18 0.12 Control Delay 60.0 50.9 15.2 61.7 50.0 0.6 58.9 23.7 7.1 Queue Delay 0.0 0.20 1.1.4 1.1.4 1.1.4 1.			28.0	28.0		28.0	28.0			19.0	19.0		
Act Effct Green (s) 9.1 16.5 16.5 7.3 15.6 15.6 12.1 68.8 68.8 Actuated g/C Ratio 0.07 0.13 0.13 0.06 0.12 0.12 0.09 0.53 0.53 0.53 Vic Ratio 0.40 0.42 0.62 0.25 0.20 0.09 0.56 0.18 0.12 Control Delay 60.0 50.9 15.2 61.7 50.0 0.6 58.9 23.7 7.1 Queue Delay 0.0 <td>Pedestrian Calls (#/hr)</td> <td></td> <td>7</td> <td>7</td> <td></td> <td>1</td> <td>1</td> <td></td> <td></td> <td>5</td> <td>5</td> <td></td> <td></td>	Pedestrian Calls (#/hr)		7	7		1	1			5	5		
Actuated g/C Ratio 0.07 0.13 0.13 0.06 0.12 0.12 0.09 0.53 0.53 v/c Ratio 0.40 0.42 0.62 0.25 0.20 0.09 0.56 0.18 0.12 Control Delay 60.0 50.9 15.2 61.7 50.0 0.6 58.9 23.7 7.1 Queue Delay 0.0		9.1	16.5	16.5	7.3	15.6	15.6		12.1				12.5
wic Ratio 0.40 0.42 0.62 0.25 0.20 0.09 0.56 0.18 0.12 Control Delay 60.0 50.9 15.2 61.7 50.0 0.6 58.9 23.7 7.1 Queue Delay 0.0 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.10</td></t<>													0.10
Control Delay 60.0 50.9 15.2 61.7 50.0 0.6 58.9 23.7 7.1 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Ū.												0.58
Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 60.0 50.9 15.2 61.7 50.0 0.6 58.9 23.7 7.1 LOS E D B E D A E C A Approach LOS D D C Queue Length 50th (m) 10.7 21.7 8.4 5.4 9.1 0.0 20.1 18.0 0.0 Queue Length 50th (m) 10.7 21.7 8.4 5.4 9.1 0.0 20.1 18.0 0.0 Queue Length 50th (m) 10.6.4 28.3 28.9 11.2 13.1 0.0 32.0 41.2 11.4 Internal Link Dist (m) 141.4 125.1 284.9 130.0 85.0 Base Capacity (vph) 230 893 566 229 851 504 451 2447 830 Starvation Cap Reductn 0 0 0 0 0 0 0 0 0 0 0													85.8
Total Delay 60.0 50.9 15.2 61.7 50.0 0.6 58.9 23.7 7.1 LOS E D B E D A E C A Approach Delay 35.4 44.7 29.7 Approach LOS D C Queue Length 50th (m) 10.7 21.7 8.4 5.4 9.1 0.0 20.1 18.0 0.0 Queue Length 95th (m) 16.4 28.3 28.9 11.2 13.1 0.0 32.0 41.2 11.4 Internal Link Dist (m) 95.0 60.0 75.0 75.0 130.0 85.0 Base Capacity (vph) 230 893 566 229 851 504 451 2447 830 Starvation Cap Reductn 0 0 0 0 0 0 0 0 0 Spliback Cap Reductn 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0													0.0
LOS E D B E D A E C A Approach Delay 35.4 44.7 29.7 Approach LOS D C Queue Length 50th (m) 10.7 21.7 8.4 5.4 9.1 0.0 20.1 18.0 0.0 Queue Length 95th (m) 16.4 28.3 28.9 11.2 13.1 0.0 32.0 41.2 11.4 Internal Link Dist (m) 141.4 125.1 284.9 Turn Bay Length (m) 95.0 60.0 75.0 75.0 130.0 85.0 Base Capacity (vph) 230 893 566 229 851 504 451 2447 830 Starvation Cap Reductn 0 0 0 0 0 0 0 0 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 0 0 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 0 0 0 0 0 0 0 0 Reduced v/c Ratio 0.39 0.20 0.43 0.20 0.09 0.05 0.38 0.18 0.12 Intersection Summary Area Type: Other Cycle Length: 130 Actuated Cycle Length: 130 Offset: 114 (88%), Referenced to phase 2:NBT and 6:SBT, Start of Green Natural Cycle: 100 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.62 Intersection Capacity Utilization 71.3% ICU Level of Service C Analysis Period (min) 15 Splits and Phases: 2: March & Terry Fox													85.8
Approach Lolay 35.4 44.7 29.7 Approach LOS D D C Queue Length 50th (m) 10.7 21.7 8.4 5.4 9.1 0.0 20.1 18.0 0.0 Queue Length 95th (m) 16.4 28.3 28.9 11.2 13.1 0.0 32.0 41.2 11.4 Internal Link Dist (m) 141.4 125.1 284.9 284.9 11.2 13.1 0.0 32.0 41.2 11.4 Internal Link Dist (m) 95.0 60.0 75.0 75.0 130.0 85.0 Base Capacity (vph) 230 893 566 229 851 504 451 244.7 830 Starvation Cap Reductn 0													F
Approach LOS D D C Queue Length 50th (m) 10.7 21.7 8.4 5.4 9.1 0.0 20.1 18.0 0.0 Queue Length 95th (m) 16.4 28.3 28.9 11.2 13.1 0.0 32.0 41.2 11.4 Internal Link Dist (m) 141.4 125.1 284.9 284.9 11.2 13.1 0.0 85.0 Base Capacity (vph) 230 893 566 229 851 504 451 2447 830 Starvation Cap Reductn 0 <t< td=""><td></td><td>_</td><td></td><td>_</td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		_		_	_								
Queue Length 50th (m) 10.7 21.7 8.4 5.4 9.1 0.0 20.1 18.0 0.0 Queue Length 95th (m) 16.4 28.3 28.9 11.2 13.1 0.0 32.0 41.2 11.4 Internal Link Dist (m) 141.4 125.1 284.9 284.9 Turn Bay Length (m) 95.0 60.0 75.0 75.0 130.0 85.0 Base Capacity (vph) 230 893 566 229 851 504 451 2447 830 Starvation Cap Reductn 0													
Queue Length 95th (m) 16.4 28.3 28.9 11.2 13.1 0.0 32.0 41.2 11.4 Internal Link Dist (m) 141.4 125.1 284.9 Turn Bay Length (m) 95.0 60.0 75.0 75.0 130.0 85.0 Base Capacity (vph) 230 893 566 229 851 504 451 2447 830 Starvation Cap Reducth 0 <		10.7		8.4	5.4		0.0		20.1		0.0		23.4
Internal Link Dist (m) 141.4 125.1 284.9 Turn Bay Length (m) 95.0 60.0 75.0 75.0 130.0 85.0 Base Capacity (vph) 230 893 566 229 851 504 451 2447 830 Starvation Cap Reductn 0													36.8
Turn Bay Length (m) 95.0 60.0 75.0 75.0 130.0 85.0 Base Capacity (vph) 230 893 566 229 851 504 451 2447 830 Starvation Cap Reductn 0				_0.0			0.0		02.0				
Base Capacity (vph) 230 893 566 229 851 504 451 2447 830 Starvation Cap Reductn 0 <td< td=""><td></td><td>95.0</td><td></td><td>60.0</td><td>75.0</td><td>120.1</td><td>75.0</td><td></td><td>130.0</td><td>20110</td><td>85.0</td><td></td><td>110.0</td></td<>		95.0		60.0	75.0	120.1	75.0		130.0	20110	85.0		110.0
Starvation Cap Reductn 0 <td></td> <td></td> <td>893</td> <td></td> <td></td> <td>851</td> <td></td> <td></td> <td></td> <td>2447</td> <td></td> <td></td> <td>233</td>			893			851				2447			233
Spillback Cap Reductn 0													200
Storage Cap Reductin 0													C
Reduced v/c Ratio 0.39 0.20 0.43 0.20 0.09 0.05 0.38 0.18 0.12 Intersection Summary Area Type: Other Other <td< td=""><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0</td></td<>			-										0
Intersection Summary Area Type: Other Cycle Length: 130 Actuated Cycle Length: 130 Offset: 114 (88%), Referenced to phase 2:NBT and 6:SBT, Start of Green Natural Cycle: 100 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.62 Intersection Signal Delay: 27.9 Intersection LOS: C Intersection Capacity Utilization 71.3% ICU Level of Service C Analysis Period (min) 15 Splits and Phases: 2: March & Terry Fox													0.40
Area Type: Other Cycle Length: 130 Actuated Cycle Length: 130 Offset: 114 (88%), Referenced to phase 2:NBT and 6:SBT, Start of Green Natural Cycle: 100 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.62 Intersection Signal Delay: 27.9 Intersection LOS: C Intersection Capacity Utilization 71.3% ICU Level of Service C Analysis Period (min) 15 Splits and Phases: 2: March & Terry Fox		0.00	0.20	0.40	0.20	0.00	0.00		0.00	0.10	0.12		0.40
Cycle Length: 130 Actuated Cycle Length: 130 Offset: 114 (88%), Referenced to phase 2:NBT and 6:SBT, Start of Green Natural Cycle: 100 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.62 Intersection Signal Delay: 27.9 Intersection LOS: C Intersection Capacity Utilization 71.3% ICU Level of Service C Analysis Period (min) 15 Splits and Phases: 2: March & Terry Fox 01 02 (R) 03 04													
Actuated Cycle Length: 130 Offset: 114 (88%), Referenced to phase 2:NBT and 6:SBT, Start of Green Natural Cycle: 100 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.62 Intersection Signal Delay: 27.9 Intersection LOS: C Intersection Capacity Utilization 71.3% ICU Level of Service C Analysis Period (min) 15 Splits and Phases: 2: March & Terry Fox 01 02 (R) 02 (R) 02 03 000	Area Type:	Other											
Offset: 114 (88%), Referenced to phase 2:NBT and 6:SBT, Start of Green Natural Cycle: 100 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.62 Intersection Signal Delay: 27.9 Intersection LOS: C Intersection Capacity Utilization 71.3% ICU Level of Service C Analysis Period (min) 15 Splits and Phases: 2: March & Terry Fox	Cycle Length: 130												
Natural Cycle: 100 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.62 Intersection Signal Delay: 27.9 Intersection LOS: C Intersection Capacity Utilization 71.3% ICU Level of Service C Analysis Period (min) 15 Splits and Phases: 2: March & Terry Fox 01 02 (R) 02 (R)													
Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.62 Intersection Signal Delay: 27.9 Intersection Capacity Utilization 71.3% ICU Level of Service C Analysis Period (min) 15 Splits and Phases: 2: March & Terry Fox	Offset: 114 (88%), Referenced	d to phase 2:	NBT and 6	:SBT, Star	t of Green								
Maximum v/c Ratio: 0.62 Intersection Signal Delay: 27.9 Intersection Capacity Utilization 71.3% Analysis Period (min) 15 Splits and Phases: 2: March & Terry Fox 100 Level of Service C Splits and Phases: 2: March & Terry Fox 100 Level of Service C 100 Level of Service C	Natural Cycle: 100												
Intersection Signal Delay: 27.9 Intersection LOS: C Intersection Capacity Utilization 71.3% ICU Level of Service C Analysis Period (min) 15 Splits and Phases: 2: March & Terry Fox	Control Type: Actuated-Coord	inated											
Intersection Capacity Utilization 71.3% ICU Level of Service C Analysis Period (min) 15 Splits and Phases: 2: March & Terry Fox	Maximum v/c Ratio: 0.62												
Analysis Period (min) 15 Splits and Phases: 2: March & Terry Fox	Intersection Signal Delay: 27.9	9			In	tersection	LOS: C						
Splits and Phases: 2: March & Terry Fox	Intersection Capacity Utilizatio	on 71.3%			IC	CU Level of	Service C	, ,					
Ø1 Ø2 (R) Ø3 →Ø4	Analysis Period (min) 15												
	Splits and Phases: 2: March	n & Terry Fox											
	4 _{Ø1}	02 (R)				1 or	3	5 04				
	25 s	47 s	/				16 s		42 s				

Ø1	• Tø2 (R)	Ø3	₩Ø4
25 s	47 s	16 s	42 s
* Ø5	♥ ♥ Ø6 (R)		4 [≜] _ Ø8
25 s	47 s	16 s	42 s

	_	_
	1	1
	•	-
Lane Group	SBT	SBR
Minimum Initial (s)	20.0	20.0
Minimum Split (s)	32.7	32.7
Total Split (s)	47.0	47.0
Total Split (%)	36.2%	36.2%
Maximum Green (s)	40.3	40.3
	40.5	40.5
Yellow Time (s)		
All-Red Time (s)	2.1	2.1
Lost Time Adjust (s)	0.0	0.0
Total Lost Time (s)	6.7	6.7
Lead/Lag	Lag	Lag
Lead-Lag Optimize?	Yes	Yes
Vehicle Extension (s)	3.0	3.0
Recall Mode	C-Max	C-Max
Walk Time (s)	7.0	7.0
Flash Dont Walk (s)	19.0	19.0
Pedestrian Calls (#/hr)	3	3
Act Effct Green (s)	69.2	69.2
Actuated g/C Ratio	0.53	0.53
v/c Ratio	0.31	0.16
Control Delay	15.4	1.5
Queue Delay	0.0	0.0
Total Delay	15.4	1.5
LOS	13.4 B	1.5 A
Approach Delay	20.1	A
Approach LOS	20.1 C	
	18.8	0.3
Queue Length 50th (m)		
Queue Length 95th (m)	68.3	3.9
Internal Link Dist (m)	294.9	100.0
Turn Bay Length (m)		100.0
Base Capacity (vph)	2510	838
Starvation Cap Reductn	0	0
Spillback Cap Reductn	0	0
Storage Cap Reductn	0	0
Reduced v/c Ratio	0.31	0.16
Interportion Cummers		
Intersection Summary		

	≯	-	\mathbf{r}	1	-	•	₹	•	1	1	L	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL
Lane Configurations	5	•	1	ሻሻ	ţ,			ሻ	^	1		ሻ
Traffic Volume (vph)	14	28	100	60	13	11	2	260	622	223	2	50
Future Volume (vph)	14	28	100	60	13	11	2	260	622	223	2	50
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Storage Length (m)	35.0	1000	60.0	85.0	1000	0.0	1000	165.0	1000	0.0	1000	155.0
Storage Lanes	1		1	2		0.0		105.0		0.0		135.0
	50.0		I	2 95.0		0		40.0		I		25.0
Taper Length (m)	1.00	1.00	1.00	95.0 0.97	1.00	1.00	0.95	1.00	0.95	1.00	0.95	1.00
Lane Util. Factor	1.00	1.00			1.00	1.00	0.95	1.00	0.95		0.95	
Ped Bike Factor			0.98	0.99	0.024					0.98		1.00
Frt Elt Desta start	0.050		0.850	0.050	0.931			0.050		0.850		0.050
Flt Protected	0.950	(=00		0.950		•	•	0.950			•	0.950
Satd. Flow (prot)	1537	1728	1414	3124	1421	0	0	1658	3283	1498	0	1674
Flt Permitted	0.950			0.950				0.194				0.389
Satd. Flow (perm)	1537	1728	1386	3101	1421	0	0	339	3283	1461	0	684
Right Turn on Red			Yes			Yes				Yes		
Satd. Flow (RTOR)			130		12					248		
Link Speed (k/h)		50			50				80			
Link Distance (m)		212.6			241.6				610.9			
Travel Time (s)		15.3			17.4				27.5			
Confl. Peds. (#/hr)			3	3						1		1
Confl. Bikes (#/hr)			3							2		
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Heavy Vehicles (%)	10%	3%	7%	5%	30%	1%	2%	2%	3%	1%	2%	1%
Adj. Flow (vph)	16	31	111	67	14	12	2	289	691	248	2	56
Shared Lane Traffic (%)												
Lane Group Flow (vph)	16	31	111	67	26	0	0	291	691	248	0	58
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	L NA	Left	R NA	L NA	Left	R NA	R NA	L NA	Left	R NA	R NA	L NA
Median Width(m)		7.0			10.5				3.5			
Link Offset(m)		0.0			0.0				0.0			
Crosswalk Width(m)		5.0			5.0				5.0			
Two way Left Turn Lane		0.0			0.0				0.0			
Headway Factor	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09
Number of Detectors	1.03	2	1.00	1.05	2	1.00	1.00	1.00	2	1.03	1.03	1.03
Detector Template	Left	Thru	Right	Left	Thru		Left	Left	Thru	Right	Left	Left
Leading Detector (m)	2.0	10.0	2.0	2.0	10.0		2.0	2.0	10.0	2.0	2.0	2.0
Trailing Detector (m)	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Position(m)	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Size(m)	2.0	0.0	2.0	2.0	0.6		2.0	2.0	0.0	2.0	2.0	2.0
Detector 1 Type	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex		CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex
Detector 1 Channel					OI+EX							
	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 2 Position(m)		9.4			9.4				9.4			
Detector 2 Size(m)		0.6			0.6				0.6			
Detector 2 Type		CI+Ex			CI+Ex				CI+Ex			
Detector 2 Channel												
Detector 2 Extend (s)		0.0	_		0.0				0.0			
Turn Type	Prot	NA	Perm	Prot	NA		pm+pt	pm+pt	NA	Perm	Perm	Perm
Protected Phases	7	4		3	8		5	5	2			
Permitted Phases			4				2	2		2	6	6
Detector Phase	7	4	4	3	8		5	5	2	2	6	6
Switch Phase												

J.Audia, Novatech

Lane Group Lane Configurations Traffic Volume (vph) Future Volume (vph) Ideal Flow (vphpl)	SBT	SBR
Lane Configurations Traffic Volume (vph) Future Volume (vph) Ideal Flow (vphpl)	* *	
Traffic Volume (vph) Future Volume (vph) Ideal Flow (vphpl)		1
Future Volume (vph) Ideal Flow (vphpl)	8/1/	r 44
Ideal Flow (vphpl)	844 844	44
	844 1800	44 1800
Storage Longth (m)	1000	75.0
Storage Length (m)		75.0 1
Storage Lanes		
Taper Length (m)	0.05	1.00
Lane Util. Factor	0.95	1.00
Ped Bike Factor		0.050
Frt		0.850
Flt Protected		
Satd. Flow (prot)	3283	1498
Flt Permitted		
Satd. Flow (perm)	3283	1498
Right Turn on Red		Yes
Satd. Flow (RTOR)		132
Link Speed (k/h)	80	
Link Distance (m)	610.3	
Travel Time (s)	27.5	
Confl. Peds. (#/hr)		
Confl. Bikes (#/hr)		
Peak Hour Factor	0.90	0.90
Heavy Vehicles (%)	3%	1%
Adj. Flow (vph)	938	49
Shared Lane Traffic (%)	000	
Lane Group Flow (vph)	938	49
Enter Blocked Intersection	No	No
Lane Alignment	Left	RNA
Median Width(m)	3.5	111/1
Link Offset(m)	0.0	
Crosswalk Width(m)	5.0	
	5.0	
Two way Left Turn Lane	4.00	1.00
Headway Factor	1.09	1.09
Number of Detectors	2	1 Dialat
Detector Template	Thru	Right
Leading Detector (m)	10.0	2.0
Trailing Detector (m)	0.0	0.0
Detector 1 Position(m)	0.0	0.0
Detector 1 Size(m)	0.6	2.0
Detector 1 Type	CI+Ex	CI+Ex
Detector 1 Channel		
Detector 1 Extend (s)	0.0	0.0
Detector 1 Queue (s)	0.0	0.0
Detector 1 Delay (s)	0.0	0.0
Detector 2 Position(m)	9.4	
Detector 2 Size(m)	0.6	
Detector 2 Type	CI+Ex	
Detector 2 Channel		
	0.0	
Detector 2 Extend (s)	NA	Perm
Detector 2 Extend (s)	11/1	1 0111
Turn Type		
Turn Type Protected Phases	6	6
Turn Type Protected Phases Permitted Phases	6	6
Turn Type Protected Phases		6 6

J.Audia, Novatech

	≯	-	\rightarrow	1	+	•	₹Ĩ	1	†	1	L	· •
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SB
/linimum Initial (s)	5.0	10.0	10.0	5.0	10.0		5.0	5.0	20.0	20.0	20.0	20.
/linimum Split (s)	10.9	31.5	31.5	10.9	31.5		11.3	11.3	26.3	26.3	26.3	26.
Total Split (s)	13.0	32.0	32.0	13.0	32.0		39.0	39.0	85.0	85.0	46.0	46.
Total Split (%)	10.0%	24.6%	24.6%	10.0%	24.6%		30.0%	30.0%	65.4%	65.4%	35.4%	35.4%
Maximum Green (s)	7.1	25.5	25.5	7.1	25.5		32.7	32.7	78.7	78.7	39.7	39.
fellow Time (s)	3.3	3.3	3.3	3.3	3.3		4.6	4.6	4.6	4.6	4.6	4.
All-Red Time (s)	2.6	3.2	3.2	2.6	3.2		1.7	1.7	1.7	1.7	1.7	1.
ost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0			0.0	0.0	0.0		0.
Total Lost Time (s)	5.9	6.5	6.5	5.9	6.5			6.3	6.3	6.3		6.
_ead/Lag	Lead	Lag	Lag	Lead	Lag		Lead	Lead			Lag	La
ead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes		Yes	Yes			Yes	Ye
/ehicle Extension (s)	3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.
Recall Mode	None	None	None	None	None		None	None	C-Max	C-Max	C-Max	C-Ma
Valk Time (s)		7.0	7.0		7.0				7.0	7.0	7.0	7.
Flash Dont Walk (s)		18.0	18.0		18.0				12.0	12.0	12.0	12.
Pedestrian Calls (#/hr)		3	3		1				1	1	1	
Act Effct Green (s)	6.5	13.0	13.0	6.9	18.2			93.8	93.8	93.8		66.
Actuated g/C Ratio	0.05	0.10	0.10	0.05	0.14			0.72	0.72	0.72		0.5
v/c Ratio	0.21	0.18	0.44	0.41	0.12			0.64	0.29	0.22		0.1
Control Delay	65.6	53.5	10.5	67.2	32.5			15.7	7.8	1.6		13.
Queue Delay	0.0	0.0	0.0	0.0	0.0			0.0	0.0	0.0		0.0
Total Delay	65.6	53.5	10.5	67.2	32.5			15.7	7.8	1.6		13.
LOS	E	D	В	E	C			В	A	A		E
Approach Delay		24.5			57.5				8.4			
Approach LOS		С			E				A			
Queue Length 50th (m)	3.7	7.0	0.0	8.0	2.8			20.5	26.6	0.0		3.
Queue Length 95th (m)	10.8	14.3	10.4	15.1	10.2			51.9	50.7	9.2		8.2
Internal Link Dist (m)		188.6			217.6				586.9			
Turn Bay Length (m)	35.0		60.0	85.0				165.0				155.0
Base Capacity (vph)	83	338	376	170	288			576	2368	1122		35
Starvation Cap Reductn	0	0	0	0	0			0	0	0		(
Spillback Cap Reductn	0	0	0	0	0			0	0	0		(
Storage Cap Reductn	0	0	0	0	0			0	0	0		(
Reduced v/c Ratio	0.19	0.09	0.30	0.39	0.09			0.51	0.29	0.22		0.17
ntersection Summary												
, i	Other											
Cycle Length: 130												
Actuated Cycle Length: 130	a nhaaa QiNi	DTI and G		art of Croo	-							
Offset: 15 (12%), Referenced t	o phase 2.N	BIL and o	.301L, 31	ant of Gree	n							
Natural Cycle: 90	n a ta d											
Control Type: Actuated-Coordi	nated											
Maximum v/c Ratio: 0.64 Intersection Signal Delay: 13.9				ما	torogation I							
					tersection L							
ntersection Capacity Utilization	11/4.5%			IL.	CU Level of	Service D						
Analysis Period (min) 15	oodo caraati	he average	moukeler									
# 95th percentile volume exc Queue shown is maximum			nay be ion	yer.								
	-											
Splits and Phases: 3: March	& Solandt											
									1			

1 Ø2 (R)		√ Ø3	₩ Ø4
85 s		13 s	32 s
* Ø5	Ø6 (R)	∕×	4 — Ø8
39 s	46 s	13 s	32 s

-	-	
		1
	*	4
Lane Group	SBT	SBR
Minimum Initial (s)	20.0	20.0
Minimum Split (s)	26.3	26.3
Total Split (s)	46.0	46.0
Total Split (%)	35.4%	35.4%
Maximum Green (s)	39.7	39.7
Yellow Time (s)	4.6	4.6
All-Red Time (s)	1.7	1.7
Lost Time Adjust (s)	0.0	0.0
Total Lost Time (s)	6.3	6.3
Lead/Lag	Lag	Lag
Lead-Lag Optimize?	Yes 3.0	Yes
Vehicle Extension (s)		3.0
Recall Mode	C-Max	C-Max
Walk Time (s)	7.0	7.0
Flash Dont Walk (s)	12.0	12.0
Pedestrian Calls (#/hr)	1	1
Act Effct Green (s)	66.6	66.6
Actuated g/C Ratio	0.51	0.51
v/c Ratio	0.56	0.06
Control Delay	15.7	0.1
Queue Delay	0.0	0.0
Total Delay	15.7	0.1
LOS	В	А
Approach Delay	14.9	
Approach LOS	В	
Queue Length 50th (m)	86.7	0.1
Queue Length 95th (m)	#147.3	0.2
Internal Link Dist (m)	586.3	
Turn Bay Length (m)		75.0
Base Capacity (vph)	1681	831
Starvation Cap Reductn	0	0
Spillback Cap Reductn	0	0
Storage Cap Reductn	0	0
Reduced v/c Ratio	0.56	0.06
	0.00	0.00
Intersection Summary		

4: Innovation/Flamborough & Terry Fox AM Peak Hour

AM Peak Hour												
	٦	-	\mathbf{F}	4	+	×	٩.	Ť	۲	1	ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	↑	1	<u>۲</u>	↑	1	ሻ	la la		<u>۲</u>	4	
Traffic Volume (vph)	34	328	89	99	160	43	43	42	100	74	65	50
Future Volume (vph)	34	328	89	99	160	43	43	42	100	74	65	50
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Storage Length (m)	75.0		120.0	110.0		130.0	220.0		0.0	30.0		0.0
Storage Lanes	1		1	1		1	1		0	1		0
Taper Length (m)	50.0			80.0			50.0			15.0		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor	0.99		0.96	0.99		0.97	0.98	0.98		1.00	0.98	
Frt			0.850			0.850		0.895			0.934	
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1470	1728	1469	1626	1728	1498	1658	1525	0	1674	1555	0
Flt Permitted	0.645			0.498			0.583			0.483		
Satd. Flow (perm)	989	1728	1410	845	1728	1451	1001	1525	0	848	1555	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			99			78		90			30	
Link Speed (k/h)		60			60			50			50	
Link Distance (m)		508.2			485.8			547.1			313.7	
Travel Time (s)		30.5			29.1			39.4			22.6	
Confl. Peds. (#/hr)	4		6	6		4	9		2	2		9
Confl. Bikes (#/hr)	•		4	•		•	Ŭ		_	_		2
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Heavy Vehicles (%)	15%	3%	3%	4%	3%	1%	2%	2%	3%	1%	1%	10%
Adj. Flow (vph)	38	364	99	110	178	48	48	47	111	82	72	56
Shared Lane Traffic (%)	00	001	00	110	170	10	10			02	12	00
Lane Group Flow (vph)	38	364	99	110	178	48	48	158	0	82	128	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	LNA	Left	R NA	LNA	Left	R NA	LNA	Left	R NA	L NA	Left	RNA
Median Width(m)		3.5	1110/1		3.5	1111/1		3.5	1110/1		3.5	
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		5.0			5.0			5.0			5.0	
Two way Left Turn Lane		5.0			5.0			5.0			5.0	
Headway Factor	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09
Number of Detectors	1.09	2	1.09	1.09	2	1.09	1.09	1.09	1.09	1.09	1.09	1.09
Detector Template	Left	∠ Thru	Right	Left	Z Thru	Right	Left	Z Thru		Left	∠ Thru	
Leading Detector (m)	2.0	10.0	2.0	2.0	10.0	2.0	2.0	10.0		2.0	10.0	
•	2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Trailing Detector (m)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			0.0	
Detector 1 Position(m)	2.0		2.0			2.0	2.0			0.0 2.0		
Detector 1 Size(m)		0.6		2.0	0.6			0.6			0.6	
Detector 1 Type	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex		CI+Ex	CI+Ex	
Detector 1 Channel	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Detector 2 Position(m)		9.4			9.4			9.4			9.4	
Detector 2 Size(m)		0.6			0.6			0.6			0.6	
Detector 2 Type		CI+Ex			CI+Ex			CI+Ex			CI+Ex	_
Detector 2 Channel												
Detector 2 Extend (s)		0.0	_		0.0	_	_	0.0		_	0.0	
Turn Type	pm+pt	NA	Perm	pm+pt	NA	Perm	Perm	NA		Perm	NA	
Protected Phases	5	2		1	6			8			4	
Permitted Phases	2		2	6		6	8			4		
Detector Phase	5	2	2	1	6	6	8	8		4	4	
Switch Phase												

J.Audia, Novatech

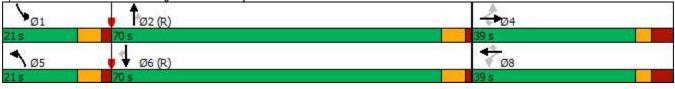
4: Innovation/Flamborough & Terry Fox AM Peak Hour

	٦	-	~	-	-	•	•	Ť	/	1		4
Lane Group	EBL	EBT	EBR	• WBL	WBT	WBR	• NBL	NBT	• NBR	SBL	SBT	SB
Minimum Initial (s)	5.0	10.0	10.0	5.0	10.0	10.0	10.0	10.0		10.0	10.0	
Minimum Split (s)	11.0	27.9	27.9	11.0	27.9	27.9	36.3	36.3		36.3	36.3	
Fotal Split (s)	18.0	70.0	70.0	18.0	70.0	70.0	42.0	42.0		42.0	42.0	
Fotal Split (%)	13.8%	53.8%	53.8%	13.8%	53.8%	53.8%	32.3%	32.3%		32.3%	32.3%	
Maximum Green (s)	12.0	64.1	64.1	12.0	64.1	64.1	35.7	35.7		35.7	35.7	
fellow Time (s)	3.7	3.7	3.7	3.7	3.7	3.7	3.3	3.3		3.3	3.3	
All-Red Time (s)	2.3	2.2	2.2	2.3	2.2	2.2	3.0	3.0		3.0	3.0	
ost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Fotal Lost Time (s)	6.0	5.9	5.9	6.0	5.9	5.9	6.3	6.3		6.3	6.3	
.ead/Lag	Lead	Lag	Lag	Lead	Lag	Lag	0.5	0.5		0.5	0.5	
ead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes						
ehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0	
Recall Mode		C-Max	C-Max		C-Max	C-Max						
	None			None			None	None		None	None	
Valk Time (s) Tash Dont Walk (s)		7.0 15.0	7.0 15.0		7.0 15.0	7.0 15.0	7.0 23.0	7.0 23.0		7.0 23.0	7.0 23.0	
Pedestrian Calls (#/hr)			15.0		15.0	15.0						
()	02.0	3		07.0			3	3 17.2		3 17.2	3	
Act Effct Green (s)	93.0	86.7	86.7	97.0	90.5	90.5	17.2				17.2	
Actuated g/C Ratio	0.72	0.67	0.67	0.75	0.70	0.70	0.13	0.13		0.13	0.13	
/c Ratio	0.05	0.32	0.10	0.16	0.15	0.05	0.36	0.56		0.73	0.55	
Control Delay	5.3	11.5	2.5	2.9	6.0	2.2	56.2	29.9		86.7	47.6	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
otal Delay	5.3	11.5	2.5	2.9	6.0	2.2	56.2	29.9		86.7	47.6	
.OS	A	В	A	A	A	A	E	С		F	D	
Approach Delay		9.3			4.4			36.0			62.8	
Approach LOS	4 7	A	• •	4.0	A		10 7	D		10.0	E	
Queue Length 50th (m)	1.7	31.5	0.0	1.6	13.4	0.0	10.7	15.1		19.2	22.2	
Queue Length 95th (m)	6.1	67.5	7.4	11.6	21.0	0.0	19.7	31.3		31.7	35.9	
nternal Link Dist (m)	75.0	484.2	400.0	440.0	461.8	100.0	000.0	523.1		00.0	289.7	
Furn Bay Length (m)	75.0	4450	120.0	110.0	1000	130.0	220.0	10.1		30.0	440	
Base Capacity (vph)	794	1153	973	721	1202	1033	274	484		232	448	
Starvation Cap Reductn	0	0	0	0	0	0	0	0		0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0		0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0		0	0	
Reduced v/c Ratio	0.05	0.32	0.10	0.15	0.15	0.05	0.18	0.33		0.35	0.29	
ntersection Summary rea Type:	Other											
Cycle Length: 130	Outer											
Actuated Cycle Length: 130												
Offset: 124 (95%), Reference	d to phase 2:	EBTL and		tart of Gr	oon							
latural Cycle: 80	u to phase 2.		0.WDTL, C		5011							
Control Type: Actuated-Coord	lingtod											
aximum v/c Ratio: 0.73	Inaleu											
ntersection Signal Delay: 21.	٨			lr.	tersection							
tersection Capacity Utilization					CU Level o		•					
nalysis Period (min) 15	0100.0%			R	O Level 0		/					
•	otion/Flamba	rough 0 T	orm / Fase									
· •	vation/Flambo	rougn & I	erry Fox				11	1				
01 01	2 (R)							▼ Ø4				_
8 s 70 s	22200C							42 s				
+							1					

Ø1	🚽 🗭 Ø2 (R)		
18 s	70 s	42 s	
▶ Ø5	● ♥ Ø6 (R)	≪¶ø8	
18 s	70 s	42 s	

Movement EBL EBL EBL WBL WBT WBL NBL NBT NBR SBL SBT Lane Configurations 1 0 118 6 1 0 92 58 2 1 15 Sign Control Stop Stop Stop Stop Free Free Free Free Free Free Free Stop 0%<		۶		~		+			*	•	7	1	1
Lane Configurations 4 4 4 5 4 5 5 2 1 15 Traffic Volume (veh/h) 15 0 118 6 1 0 92 58 2 1 15 Sign Control Stop Stop Stop Pree Free Free Free Free Stop 0%			-	•	¥	•				1		+	*
Traffic Volume (veh/n) 15 0 118 6 1 0 92 58 2 1 15 Future Volume (Veh/n) 15 0 118 6 1 0 92 58 2 1 15 Sign Control Stop Stop Free 3 Jan J		EBL		EBR	WBL		WBR	NBL		NBR	SBL		SBR
Traffic Volume (veh/h) 15 0 118 6 1 0 92 58 2 1 15 Future Volume (Veh/h) 15 0 118 6 1 0 92 58 2 1 15 Sign Control Stop Stop Free 73 0 0.90	Lane Configurations		4			4						4	
Sign Control Stop Free Free Free Grade 0% 10	Traffic Volume (veh/h)	15			6		0			2	1	15	2
Grade 0% 0% 0% 0% 0% 0% Peak Hour Factor 0.90 0		15	0	118	6	1	0	92	58	2	1	15	2
Peak Hour Factor 0.90													
Hourly flow rate (vph) 17 0 131 7 1 0 102 64 2 1 17 Pedestrians 3 and Width (m) 3.5 Walking Speed (m/s) 1.0 Percent Blockage 0 Median type N Median type N Median storage veh) Upstream signal (m) pX, platoon unblocked VC, conflicting volume 296 293 21 420 293 68 22 VC, stage 2 conf vol VC, stage 2 conf vol VC, stage 2 conf vol VC, stage 2 conf vol VC, stage (s) T (s, single (s) 7.1 6.5 6.3 7.1 6.5 6.2 4.2 K (s, single (s) 7.1 6.5 6.3 7.1 6.5 6.2 4.2 K (s, single (s) 7.1 6.5 6.3 7.1 6.5 6.2 F (s) 3.5 4.0 3.4 3.5 4.0 3.3 P (s, single (s) 7.1 6.5 6.3 7.1 6.5 6.2 F (s) 3.5 4.0 3.4 3.5 4.0 3.3 C (s, single (s) 7.1 6.5 6.3 7.1 6.5 6.2 F (s) 3.5 4.0 3.4 K (s, single (s) 7.1 6.5 6.3 7.1 6.5 6.2 F (s) 3.5 4.0 3.4 F (s) 3.5 F (s) 3.5 F (s) 4.0 F (s) 3.5 F (s) 4.0 F (s) 3.5 F (s) 4.0 F (s) 4.2 F (s) 3.5 F (s) 4.0 F (s) 4.2 F (s) 5.0 F (s)	Grade		0%			0%			0%			0%	
Pedestrians 3 3 Lane Width (m) 3.5 3.5 Valking Speed(m/s) 1.0 1.0 Percent Blockage 0 0 Right tum flare (veh) 0 0 Median type None None Median storage veh)	Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Lane Width (m) 3.5 3.5 Walking Speed (m(s) 1.0 1.0 Percent Blockage 0 0 Right turn flare (veh) None None Median storage veh) Upstream signal (m) None None yZ, platoon unblocked vC, conflicting volume 296 293 21 420 293 68 22 66 vC2, stage 1 conf vol vC2, stage 2 66 0 VC2, stage (s) T 6.5 6.3 7.1 6.5 6.2 4.2 4.1 U2, stage (s) T 100 87 98 100 100 23 100 CM capacity (veh/h) 619 575 1042 452 577 995 1551 1536 Direction, Lane # EB 1 WB 1 NB 1 SB 1 Volume Left 17 7 102 1 Volume Left 131 0 2 2	Hourly flow rate (vph)	17	0	131	7	1	0	102	64	2	1	17	2
Walking Speed (m/s) 1.0 1.0 1.0 Percent Blockage 0 0 0 Right turn flare (veh) None None None Median storage veh) VC, conflicting volume 296 293 21 420 293 68 22 66 VC1, stage 1 conf vol VC2, stage 2 conf vol VC2, stage 2 conf vol VC2, stage 2 conf vol 68 22 66 VC2, stage 2 conf vol VC2, stage 2 conf vol VC1, de5 6.3 7.1 6.5 6.2 4.2 4.1 VC2, stage 2 conf vol VC2, stage 2 conf vol VC2, stage 2 conf vol VC1, unblocked vol 296 293 21 420 293 68 22 66 VC3, stage 1 conf vol VC2, stage 2 conf vol VC2, stage 2 conf vol VC2, stage 2 conf vol 4.1 100 1	Pedestrians		3									3	
Percent Blockage 0 0 Right tum flare (veh) None None Median storage veh) Upstream signal (m) None None yX, platoon unblocked vC, conflicting volume 296 293 21 420 293 68 22 66 vC1, stage 1 conf vol vC2, stage 2 conf vol vC1, stage 1 conf vol vC2, stage 2 conf vol vC2, stage 1 con	Lane Width (m)		3.5									3.5	
Right turn flare (veh) None None None Median storage veh) Upstream signal (m) PX, platoon unblocked VC, conflicting volume 296 293 21 420 293 68 22 66 VC1, stage 1 conf vol VC2, stage 2 conf vol VC2, stage 2 conf vol VC2, stage 2 conf vol VC2 420 293 68 22 66 VC2, stage 2 conf vol VC2 VC2 420 293 68 22 66 VC2, stage 2 conf vol VC2 VC2 420 293 68 22 66 VC2, stage 2 conf vol VC2 VC2 420 293 68 22 66 VC3, stage (s) T.1 6.5 6.2 4.2 4.1 10 10 100	Walking Speed (m/s)		1.0									1.0	
Median type None None Median storage veh) Upstream signal (m) PX, platoon unblocked PX, platoon unblocked PX, platoon unblocked PX, platoon unblocked PX (Listage 1 conf vol PX (Listage 1 conf vo	Percent Blockage		0									0	
Median type None None Median storage veh) Upstream signal (m) PX, platoon unblocked PX, platoon unblocked PX, platoon unblocked PX, platoon unblocked PX (Listage 1 conf vol PX (Listage 1 conf vo													
Median storage veh) Upstream signal (m) pX, platoon unblocked vC, conflicting volume 296 293 21 420 293 68 22 66 vC1, stage 1 conf vol vC2, stage 2 conf vol vC2, stage 2 conf vol vC1 65 6.2 4.2 4.1 tC2, stage 2 conf vol vC1, unblocked vol 296 293 21 420 293 68 22 66 tC2, stage 2 conf vol vC1, unblocked vol 296 293 21 420 293 68 22 66 tC2, stage 2 conf vol vC1, unblocked vol 296 293 21 420 293 68 22 66 tC2, stage 2 conf vol vC1 6.5 6.3 7.1 6.5 6.2 4.2 4.1 tC, stage (s) Total 3.3 2.3 2.2 pd queue free % 97 100 87 98 100 100 93 100 100 100 100 100 100 100 100 100 100 100 100 100									None			None	
Upstream signal (m) pX, platoon unblocked vC, conflicting volume 296 293 21 420 293 68 22 66 vC1, stage 1 conf vol vC2, stage 2 conf vol vC2, stage 2 conf vol vC2, unblocked vol 296 293 21 420 293 68 22 66 tC, single (s) 7.1 6.5 6.3 7.1 6.5 6.2 4.2 4.1 tC, 2 stage (s) tF (s) 3.5 4.0 3.4 3.5 4.0 3.3 2.3 2.2 p0 queue free % 97 100 87 98 100 100 93 100 cM capacity (veh/h) 619 575 1042 452 577 995 1551 1536 Direction, Lane # EB 1 WB 1 NB 1 SB 1 Volume Left 17 7 102 1 Volume Left 17 7 102 1 Volume Right 131 0 2 2 cSH 966 464 1551 1536 Volume Left 17 7 0.2 cSH 966 464 1551 1536 Volume Loft 131 0 2 0 cSH 966 464 1551 1536 Volume Loft 17 7 0.4 Lane LOS A B A A Approach LOS A B A A Approach LOS A B A Approach LOS A B Intersection Capacity Utilization 30.3% ICU Level of Service A													
pX, platoon unblocked vC, conflicting volume 296 293 21 420 293 68 22 66 vC1, stage 1 conf vol vC2, stage 2 conf vol vC2, stage 2 conf vol vC2, stage 2 conf vol vC2, stage (s) 7.1 6.5 6.3 7.1 6.5 6.2 4.2 4.1 tC, 2 stage (s) tF (s) 3.5 4.0 3.4 3.5 4.0 3.3 2.3 2.2 p0 queue free % 97 100 87 98 100 100 93 100 cM capacity (veh/h) 619 575 1042 452 577 995 1551 1536 Direction, Lane # EB 1 WB 1 NB 1 SB 1 Volume Total 148 8 168 20 Volume Cotal 148 8 168 20 Volume Right 131 0 2 2 cSH 966 464 1551 1536 Volume to Capacity 0.15 0.02 0.07 0.00 Queue Length 95th (m) 3.8 0.4 1.5 0.0 Control Delay (s) 9.4 12.9 4.7 0.4 Lane LOS A B A A Approach LOS A B Intersection Summary Network 0.33 ICU Level of Service A													
vC, conflicting volume 296 293 21 420 293 68 22 66 vC1, stage 1 conf vol vc2, stage 2 conf vol vC1, single (s) 7.1 6.5 6.3 7.1 6.5 6.2 4.2 4.1 tC, 2 stage (s) T 0 87 98 100 100 93 100 p0 queue free % 97 100 87 98 100 100 93 100 cM capacity (veh/h) 619 575 1042 452 577 995 1551 1536 Direction, Lane # EB 1 WB 1 NB 1 SB 1 Volume concent and the stage of the sta													
vC1, stage 1 conf vol vC2, stage 2 conf vol vC2, stage 2 conf vol vCu, unblocked vol 296 293 21 420 293 68 22 66 tC, single (s) 7.1 6.5 6.3 7.1 6.5 6.2 4.2 4.1 tC, single (s) 7.1 6.5 6.3 7.1 6.5 6.2 4.2 4.1 tC, stage (s) T 105 6.3 7.1 6.5 6.2 4.2 4.1 tC, 2 stage (s) T 100 87 98 100 100 93 100 cM capacity (veh/h) 619 575 1042 452 577 995 1551 1536 Direction, Lane # EB 1 WB 1 NB 1 SB 1 Volume Total 148 8 168 20 Volume Left 17 7 102 1 Volume Left 17 7 102 1 Volume Left 131 0 2 2 c c SH Volume Left 131 0 2 2 c c <td></td> <td>296</td> <td>293</td> <td>21</td> <td>420</td> <td>293</td> <td>68</td> <td>22</td> <td></td> <td></td> <td>66</td> <td></td> <td></td>		296	293	21	420	293	68	22			66		
vC2, stage 2 conf vol vCu, unblocked vol 296 293 21 420 293 68 22 66 tC, single (s) 7.1 6.5 6.3 7.1 6.5 6.2 4.2 4.1 tC, single (s) 7.1 6.5 6.3 7.1 6.5 6.2 4.2 4.1 tC, stage (s) 7.1 6.5 6.3 7.1 6.5 6.2 4.2 4.1 tC, stage (s) 7.1 6.5 6.3 7.1 6.5 6.2 4.2 4.1 tC, stage (s) 7.1 0.0 87 98 100 100 93 100 cM capacity (veh/h) 619 575 1042 452 577 995 1551 1536 Direction, Lane # EB 1 WB 1 NB 1 SB 1 Volume Total 148 8 168 20 Volume Total 148 8 168 20 Volume Right 131 0 2 2 cSH 966 464 1551 1536 Volume to Capacity 0.15 0.02<													
vCu, unblocked vol 296 293 21 420 293 68 22 66 tC, single (s) 7.1 6.5 6.3 7.1 6.5 6.2 4.2 4.1 tC, 2 stage (s)													
tC, single (s) 7.1 6.5 6.3 7.1 6.5 6.2 4.2 4.1 tC, 2 stage (s) tF (s) 3.5 4.0 3.4 3.5 4.0 3.3 2.3 2.2 p0 queue free % 97 100 87 98 100 100 93 100 cM capacity (veh/h) 619 575 1042 452 577 995 1551 1536 Direction, Lane # EB 1 WB 1 NB 1 SB 1 Volume Total 148 8 168 20 Volume Total 148 8 168 20 Volume Left 17 7 102 1 Volume Right 131 0 2 2 2 CSH 966 464 1551 1536 Volume to Capacity 0.15 0.02 0.07 0.00 Queue Length 95th (m) 3.8 0.4 1.5 0.0 Control Delay (s) 9.4 12.9 4.7 0.4 Lane LOS A B A Approach LOS A B A Average De		296	293	21	420	293	68	22			66		
tC, 2 stage (s) tF (s) 3.5 4.0 3.4 3.5 4.0 3.3 2.3 2.2 p0 queue free % 97 100 87 98 100 100 93 100 cM capacity (veh/h) 619 575 1042 452 577 995 1551 1536 Direction, Lane # EB 1 WB 1 NB 1 SB 1 Volume Total 148 8 168 20 Volume Total 148 8 168 20 Volume Left 17 7 102 1 Volume Right 131 0 2 2 CSH 966 464 1551 1536 Volume to Capacity 0.15 0.02 0.07 0.00 Queue Length 95th (m) 3.8 0.4 1.5 0.0 Control Delay (s) 9.4 12.9 4.7 0.4 Lane LOS A B A A Approach LOS A B Intersection Summary Average Delay 6.7 Intersection Capacity Utilization 30.3% ICU Level of Service A A<		7.1	6.5	6.3	7.1	6.5	6.2	4.2			4.1		
tF (s) 3.5 4.0 3.4 3.5 4.0 3.3 2.3 2.2 p0 queue free % 97 100 87 98 100 100 93 100 cM capacity (veh/h) 619 575 1042 452 577 995 1551 1536 Direction, Lane # EB 1 WB 1 NB 1 SB 1 Volume Total 148 8 168 20 Volume Total 148 8 168 20 Volume Left 17 7 102 1 Volume Right 131 0 2 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>													
p0 queue free % 97 100 87 98 100 100 93 100 cM capacity (veh/h) 619 575 1042 452 577 995 1551 1536 Direction, Lane # EB 1 WB 1 NB 1 SB 1 Volume Total 148 8 168 20 Volume Left 17 7 102 1 Volume Right 131 0 2		3.5	4.0	3.4	3.5	4.0	3.3	2.3			2.2		
cM capacity (veh/h) 619 575 1042 452 577 995 1551 1536 Direction, Lane # EB 1 WB 1 NB 1 SB 1 Volume Total 148 8 168 20 Volume Left 17 7 102 1 Volume Right 131 0 2 2 CSH 966 464 1551 1536 Volume to Capacity 0.15 0.02 0.07 0.00 Queue Length 95th (m) 3.8 0.4 1.5 0.0 0.0 Control Delay (s) 9.4 12.9 4.7 0.4 0.4 Lane LOS A B A A Approach Delay (s) 9.4 12.9 4.7 0.4 Lane LOS A B A A Approach LOS A B A A Intersection Summary 6.7 ICU Level of Service A Intersection Capacity Utilization 30.3% ICU Level of Service A													
Volume Total 148 8 168 20 Volume Left 17 7 102 1 Volume Right 131 0 2 2 cSH 966 464 1551 1536 Volume to Capacity 0.15 0.02 0.07 0.00 Queue Length 95th (m) 3.8 0.4 1.5 0.0 Control Delay (s) 9.4 12.9 4.7 0.4 Lane LOS A B A A Approach Delay (s) 9.4 12.9 4.7 0.4 Lane LOS A B A A Approach Delay (s) 9.4 12.9 4.7 0.4 Approach LOS A B A A Average Delay 6.7 Intersection Capacity Utilization 30.3% ICU Level of Service A													
Volume Total 148 8 168 20 Volume Left 17 7 102 1 Volume Right 131 0 2 2 cSH 966 464 1551 1536 Volume to Capacity 0.15 0.02 0.07 0.00 Queue Length 95th (m) 3.8 0.4 1.5 0.0 Control Delay (s) 9.4 12.9 4.7 0.4 Lane LOS A B A A Approach Delay (s) 9.4 12.9 4.7 0.4 Approach LOS A B A A Average Delay 6.7 Intersection Capacity Utilization 30.3% ICU Level of Service A	Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Left 17 7 102 1 Volume Right 131 0 2 2 cSH 966 464 1551 1536 Volume to Capacity 0.15 0.02 0.07 0.00 Queue Length 95th (m) 3.8 0.4 1.5 0.0 Control Delay (s) 9.4 12.9 4.7 0.4 Lane LOS A B A A Approach Delay (s) 9.4 12.9 4.7 0.4 Lane LOS A B A A Approach Delay (s) 9.4 12.9 4.7 0.4 Approach LOS A B A A Approach LOS A B A A Average Delay 6.7 Intersection Capacity Utilization 30.3% ICU Level of Service A													
Volume Right 131 0 2 2 cSH 966 464 1551 1536 Volume to Capacity 0.15 0.02 0.07 0.00 Queue Length 95th (m) 3.8 0.4 1.5 0.0 Control Delay (s) 9.4 12.9 4.7 0.4 Lane LOS A B A A Approach Delay (s) 9.4 12.9 4.7 0.4 Lane LOS A B A A Approach Delay (s) 9.4 12.9 4.7 0.4 Approach LOS A B A A Intersection Summary Control Delay 6.7 ICU Level of Service A													
cSH 966 464 1551 1536 Volume to Capacity 0.15 0.02 0.07 0.00 Queue Length 95th (m) 3.8 0.4 1.5 0.0 Control Delay (s) 9.4 12.9 4.7 0.4 Lane LOS A B A A Approach Delay (s) 9.4 12.9 4.7 0.4 Approach LOS A B A A Average Delay 6.7 Intersection Capacity Utilization 30.3% ICU Level of Service A				2									
Volume to Capacity 0.15 0.02 0.07 0.00 Queue Length 95th (m) 3.8 0.4 1.5 0.0 Control Delay (s) 9.4 12.9 4.7 0.4 Lane LOS A B A A Approach Delay (s) 9.4 12.9 4.7 0.4 Approach LOS A B A A Approach LOS A B A A Average Delay 6.7 Intersection Capacity Utilization 30.3% ICU Level of Service A													
Queue Length 95th (m) 3.8 0.4 1.5 0.0 Control Delay (s) 9.4 12.9 4.7 0.4 Lane LOS A B A A Approach Delay (s) 9.4 12.9 4.7 0.4 Approach Delay (s) 9.4 12.9 4.7 0.4 Approach LOS A B A A Intersection Summary 6.7 ICU Level of Service A													
Control Delay (s) 9.4 12.9 4.7 0.4 Lane LOS A B A A Approach Delay (s) 9.4 12.9 4.7 0.4 Approach Delay (s) 9.4 12.9 4.7 0.4 Approach LOS A B A A Intersection Summary 6.7 Intersection Capacity Utilization 30.3% ICU Level of Service A													
Lane LOS A B A A Approach Delay (s) 9.4 12.9 4.7 0.4 Approach LOS A B Intersection Summary Intersection Summary 6.7 Intersection Capacity Utilization 30.3% ICU Level of Service													
Approach Delay (s) 9.4 12.9 4.7 0.4 Approach LOS A B Intersection Summary Intersection Summary 6.7 Intersection Capacity Utilization 30.3% ICU Level of Service A													
Approach LOS A B Intersection Summary 6.7 Average Delay 6.7 Intersection Capacity Utilization 30.3% ICU Level of Service													
Average Delay 6.7 Intersection Capacity Utilization 30.3% ICU Level of Service					0.1								
Average Delay 6.7 Intersection Capacity Utilization 30.3% ICU Level of Service	Intersection Summary												
Intersection Capacity Utilization 30.3% ICU Level of Service A				6.7									
					IC	U Level of	Service			А			
Analysis Period (min) 15	Analysis Period (min)			15	10								

1: March & Morgan's Grant/Shirley's Brook PM Peak Hour


PM Peak Hour	ZUZZ EXIS									UZZ EXISTII	ting I rattic		
	٦	-	$\mathbf{\hat{z}}$	4	+	*	1	1	۲	1	Ŧ	~	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		स	1	<u> </u>		1	<u>۲</u>	<u> </u>	1	<u>۲</u>	***	1	
Traffic Volume (vph)	10	15	76	137	17	42	86	987	110	26	703	16	
Future Volume (vph)	10	15	76	137	17	42	86	987	110	26	703	16	
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	
Storage Length (m)	0.0		20.0	45.0		35.0	130.0		30.0	65.0		25.0	
Storage Lanes	0		1	1		1	1		1	1		1	
Taper Length (m)	10.0			30.0			40.0			35.0			
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.91	1.00	1.00	0.91	1.00	
Ped Bike Factor			0.98	0.99			1.00		0.95	0.99		0.97	
Frt			0.850			0.850			0.850			0.850	
Flt Protected		0.981		0.950			0.950			0.950			
Satd. Flow (prot)	0	1670	1498	1674	1548	1498	1674	4764	1498	1674	4718	1498	
Flt Permitted		0.899		0.739			0.950			0.950			
Satd. Flow (perm)	0	1531	1467	1291	1548	1498	1666	4764	1428	1665	4718	1447	
Right Turn on Red			Yes			Yes			Yes			Yes	
Satd. Flow (RTOR)			84			80			91			91	
Link Speed (k/h)		40			40			80			80		
Link Distance (m)		465.2			359.5			318.9			462.6		
Travel Time (s)		41.9			32.4			14.4			20.8		
Confl. Peds. (#/hr)			7	7			4		7	7		4	
Confl. Bikes (#/hr)			-	-					3	-			
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	
Heavy Vehicles (%)	10%	1%	1%	1%	15%	1%	1%	2%	1%	1%	3%	1%	
Adj. Flow (vph)	11	17	84	152	19	47	96	1097	122	29	781	18	
Shared Lane Traffic (%)		••	0.	102	10	••		1001		20		10	
Lane Group Flow (vph)	0	28	84	152	19	47	96	1097	122	29	781	18	
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No	
Lane Alignment	L NA	Left	R NA	L NA	Left	R NA	L NA	Left	R NA	L NA	Left	R NA	
Median Width(m)	2.0.	3.5		2.00	5.0		2101	9.0		2.00	9.0		
Link Offset(m)		0.0			0.0			0.0			0.0		
Crosswalk Width(m)		5.0			5.0			5.0			5.0		
Two way Left Turn Lane		0.0			0.0			0.0			0.0		
Headway Factor	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	
Turning Speed (k/h)	24	1.00	14	24	1.00	14	24	1.00	14	24	1.00	14	
Number of Detectors	1	2	1	1	2	1	1	2	1	1	2	1	
Detector Template	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	
Leading Detector (m)	2.0	10.0	2.0	2.0	10.0	2.0	2.0	10.0	2.0	2.0	10.0	2.0	
Trailing Detector (m)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Detector 1 Position(m)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Detector 1 Size(m)	2.0	0.0	2.0	2.0	0.0	2.0	2.0	0.0	2.0	2.0	0.0	2.0	
Detector 1 Type	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	
Detector 1 Channel		OI+EX	OI+EX		OI+EX	OI+EX			OI+EX				
	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Detector 1 Extend (s)	0.0 0.0	0.0	0.0 0.0	0.0	0.0 0.0	0.0	0.0 0.0	0.0 0.0	0.0	0.0 0.0	0.0	0.0	
Detector 1 Queue (s)		0.0	0.0	0.0	0.0	0.0			0.0	0.0	0.0	0.0 0.0	
Detector 1 Delay (s)	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Detector 2 Position(m)		9.4			9.4			9.4			9.4		
Detector 2 Size(m)		0.6			0.6			0.6			0.6		
Detector 2 Type		CI+Ex			CI+Ex			CI+Ex			CI+Ex		
Detector 2 Channel								0.0					
Detector 2 Extend (s)	Ρ.	0.0	D	Det	0.0	D	D: 1	0.0	D	D. 1	0.0	Β.	
Turn Type	Perm	NA	Perm	Perm	NA	Perm	Prot	NA	Perm	Prot	NA	Perm	
Protected Phases		4			8		5	2	-	1	6	_	
Permitted Phases	4		4	8		8	_		2			6	
Detector Phase	4	4	4	8	8	8	5	2	2	1	6	6	

J.Audia, Novatech

1: March & Morgan's Grant/Shirley's Brook PM Peak Hour

	≯	-	\mathbf{r}	1	-	•	1	1	1	×	Ŧ	-
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Switch Phase												
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	10.0	5.0	20.0	20.0	5.0	20.0	20.0
Minimum Split (s)	38.5	38.5	38.5	38.5	38.5	38.5	11.4	26.1	26.1	11.4	26.1	26.
Total Split (s)	39.0	39.0	39.0	39.0	39.0	39.0	21.0	70.0	70.0	21.0	70.0	70.0
Total Split (%)	30.0%	30.0%	30.0%	30.0%	30.0%	30.0%	16.2%	53.8%	53.8%	16.2%	53.8%	53.8%
Maximum Green (s)	31.5	31.5	31.5	31.5	31.5	31.5	14.6	63.9	63.9	14.6	63.9	63.9
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0	3.0	4.6	4.6	4.6	4.6	4.6	4.0
All-Red Time (s)	4.5	4.5	4.5	4.5	4.5	4.5	1.8	1.5	1.5	1.8	1.5	1.
Lost Time Adjust (s)		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)		7.5	7.5	7.5	7.5	7.5	6.4	6.1	6.1	6.4	6.1	6.
Lead/Lag							Lead	Lag	Lag	Lead	Lag	La
Lead-Lag Optimize?							Yes	Yes	Yes	Yes	Yes	Ye
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	None	None	None	None	None	None	None	C-Max	C-Max	None	C-Max	C-Ma
Walk Time (s)	7.0	7.0	7.0	7.0	7.0	7.0		7.0	7.0		7.0	7.0
Flash Dont Walk (s)	24.0	24.0	24.0	24.0	24.0	24.0		11.0	11.0		11.0	11.0
Pedestrian Calls (#/hr)	7	7	7	1	1	1		7	7		4	4
Act Effct Green (s)		21.0	21.0	21.0	21.0	21.0	12.2	86.2	86.2	7.8	76.8	76.8
Actuated g/C Ratio		0.16	0.16	0.16	0.16	0.16	0.09	0.66	0.66	0.06	0.59	0.59
v/c Ratio		0.11	0.27	0.73	0.08	0.15	0.61	0.35	0.12	0.29	0.28	0.02
Control Delay		44.0	10.6	70.6	43.1	3.1	93.2	3.0	0.5	65.1	14.6	0.1
Queue Delay		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay		44.0	10.6	70.6	43.1	3.1	93.2	3.0	0.5	65.1	14.6	0.1
LOS		D	В	Е	D	А	F	А	А	E	В	A
Approach Delay		19.0			53.6			9.3			16.1	
Approach LOS		В			D			А			В	
Queue Length 50th (m)		5.8	0.0	34.6	3.9	0.0	20.7	28.5	0.3	6.7	31.5	0.0
Queue Length 95th (m)		12.7	11.9	51.5	9.5	2.7	40.6	8.7	0.1	15.7	49.0	0.0
Internal Link Dist (m)		441.2			335.5			294.9			438.6	
Turn Bay Length (m)			20.0	45.0		35.0	130.0		30.0	65.0		25.0
Base Capacity (vph)		370	419	312	375	423	190	3157	977	188	2786	89
Starvation Cap Reductn		0	0	0	0	0	0	0	0	0	0	(
Spillback Cap Reductn		0	0	0	0	0	0	0	0	0	0	(
Storage Cap Reductn		0	0	0	0	0	0	0	0	0	0	(
Reduced v/c Ratio		0.08	0.20	0.49	0.05	0.11	0.51	0.35	0.12	0.15	0.28	0.02
Intersection Summary												
Area Type:	Other											
Cycle Length: 130												
Actuated Cycle Length: 130												
Offset: 105 (81%), Referenceo Natural Cycle: 80	d to phase 2:I	NBT and 6	:SBT, Star	t of Green								
Control Type: Actuated-Coord	inated											
Maximum v/c Ratio: 0.73	matou											
Intersection Signal Delay: 15.9	2			In	tersection	LOS' B						
Intersection Capacity Utilizatio					U Level of							
	/1 00.0 /0			I.								

Splits and Phases: 1: March & Morgan's Grant/Shirley's Brook

J.Audia, Novatech

	≯	-	\mathbf{r}	4	+	•	₹I	•	1	1	L	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL
Lane Configurations	ሻሻ	^	1	ሻሻ	^	1		ካካ	<u> </u>	1		۲
Traffic Volume (vph)	212	107	216	94	183	144	18	203	872	77	4	60
Future Volume (vph)	212	107	216	94	183	144	18	203	872	77	4	60
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Storage Length (m)	95.0	1000	60.0	75.0	1000	75.0	1000	130.0	1000	85.0	1000	110.0
Storage Lanes	2		2	2		1		2		2		1
Taper Length (m)	40.0		2	20.0		1		90.0		2		40.0
	0.97	0.95	1.00	0.97	0.95	1.00	0.91	90.0 0.97	0.91	1.00	0.91	
Lane Util. Factor		0.95			0.95		0.91		0.91		0.91	1.00
Ped Bike Factor	0.99		0.98	0.99		0.97		1.00		0.97		1.00
Frt	0.050		0.850	0.050		0.850		0.050		0.850		0.050
Flt Protected	0.950	0004	4400	0.950	00.40	4.400	•	0.950	1701	4.400	•	0.950
Satd. Flow (prot)	3248	3221	1498	3248	3349	1498	0	3188	4764	1469	0	1673
Flt Permitted	0.950			0.950				0.950				0.950
Satd. Flow (perm)	3218	3221	1462	3224	3349	1452	0	3176	4764	1431	0	1667
Right Turn on Red			Yes			Yes				Yes		
Satd. Flow (RTOR)			240			160				149		
Link Speed (k/h)		60			60				80			
Link Distance (m)		165.4			149.1				308.9			
Travel Time (s)		9.9			8.9				13.9			
Confl. Peds. (#/hr)	11		8	8		11		4		9		9
Confl. Bikes (#/hr)			4			8				1		
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Heavy Vehicles (%)	1%	5%	1%	1%	1%	1%	2%	3%	2%	3%	2%	1%
Adj. Flow (vph)	236	119	240	104	203	160	20	226	969	86	4	67
Shared Lane Traffic (%)											-	
Lane Group Flow (vph)	236	119	240	104	203	160	0	246	969	86	0	71
Enter Blocked Intersection	No	No	No	Yes	Yes	Yes	No	No	No	No	No	No
Lane Alignment	L NA	Left	R NA	L NA	Left	R NA	R NA	L NA	Left	R NA	R NA	L NA
Median Width(m)		10.5			10.5				10.5			
Link Offset(m)		0.0			0.0				0.0			
Crosswalk Width(m)		5.0			5.0				5.0			
Two way Left Turn Lane												
Headway Factor	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09
Turning Speed (k/h)	24	1.00	14	24	1.00	14	14	24	1.00	14	14	24
Number of Detectors	1	2	1	1	2	1	1	1	2	1	1	1
Detector Template	Left	Thru	Right	Left	Thru	Right	Left	Left	Thru	Right	Left	Left
Leading Detector (m)	2.0	10.0	2.0	2.0	10.0	2.0	2.0	2.0	10.0	2.0	2.0	2.0
Trailing Detector (m)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Position(m)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Size(m)	2.0	0.6	2.0	2.0	0.6	2.0	2.0	2.0	0.6	2.0	2.0	2.0
Detector 1 Type	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex
Detector 1 Channel	CITEX							CITEX				
	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 2 Position(m)		9.4			9.4				9.4			
Detector 2 Size(m)		0.6			0.6				0.6			
Detector 2 Type		CI+Ex			CI+Ex				CI+Ex			
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0				0.0			
Turn Type	Prot	NA	Perm	Prot	NA	Perm	Prot	Prot	NA	Perm	Prot	Prot
Protected Phases	7	4		3	8		5	5	2		1	1
Permitted Phases			4			8				2		
Detector Phase	7	4	4	3	8	8	5	5	2	2	1	1

	ţ	~
Lane Group	SBT	SBR
Lane Configurations	*	
Traffic Volume (vph)	637	158
Future Volume (vph)	637	158
Ideal Flow (vphpl)	1800	1800
Storage Length (m)	1000	100.0
Storage Lanes		100.0
		1
Taper Length (m) Lane Util. Factor	0.91	1.00
Ped Bike Factor	0.91	
		0.98
Frt Fit Drotoctod		0.850
Flt Protected	1710	4.400
Satd. Flow (prot)	4718	1483
Flt Permitted	1710	4.150
Satd. Flow (perm)	4718	1456
Right Turn on Red		Yes
Satd. Flow (RTOR)		176
Link Speed (k/h)	80	
Link Distance (m)	318.9	
Travel Time (s)	14.4	
Confl. Peds. (#/hr)		4
Confl. Bikes (#/hr)		1
Peak Hour Factor	0.90	0.90
Heavy Vehicles (%)	3%	2%
Adj. Flow (vph)	708	176
Shared Lane Traffic (%)		
Lane Group Flow (vph)	708	176
Enter Blocked Intersection	No	No
Lane Alignment	Left	R NA
Median Width(m)	7.0	
Link Offset(m)	0.0	
Crosswalk Width(m)	5.0	
Two way Left Turn Lane	0.0	
Headway Factor	1.09	1.09
Turning Speed (k/h)	1.09	1.09
Number of Detectors	2	14
Detector Template	Z Thru	Right
Leading Detector (m)	10.0	Right 2.0
Trailing Detector (m)	0.0	0.0
Detector 1 Position(m)	0.0	0.0
Detector 1 Size(m)	0.6	2.0
Detector 1 Type	CI+Ex	CI+Ex
Detector 1 Channel		
Detector 1 Extend (s)	0.0	0.0
Detector 1 Queue (s)	0.0	0.0
Detector 1 Delay (s)	0.0	0.0
Detector 2 Position(m)	9.4	
Detector 2 Size(m)	0.6	
Detector 2 Type	CI+Ex	
Detector 2 Channel		
Detector 2 Extend (s)	0.0	
Turn Type	NA	Perm
Protected Phases	6	
Permitted Phases		6
Detector Phase	6	6
	V	0

J.Audia, Novatech

PM Peak Hour										20	J22 Existin	ig i ramic
	≯	-	\mathbf{r}	4	-	•	₹Ĩ	•	1	1	L.	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL
Switch Phase												
Minimum Initial (s)	5.0	10.0	10.0	5.0	10.0	10.0	5.0	5.0	20.0	20.0	5.0	5.0
Minimum Split (s)	11.8	42.0	42.0	11.8	42.0	42.0	11.9	11.9	32.7	32.7	11.9	11.9
Total Split (s)	24.0	42.0	42.0	24.0	42.0	42.0	23.0	23.0	41.0	41.0	23.0	23.0
Total Split (%)	18.5%	32.3%	32.3%	18.5%	32.3%	32.3%	17.7%	17.7%	31.5%	31.5%	17.7%	17.7%
Maximum Green (s)	17.2	35.0	35.0	17.2	35.0	35.0	16.1	16.1	34.3	34.3	16.1	16.1
Yellow Time (s)	3.7	3.7	3.7	3.7	3.7	3.7	4.6	4.6	4.6	4.6	4.6	4.6
All-Red Time (s)	3.1	3.3	3.3	3.1	3.3	3.3	2.3	2.3	2.1	2.1	2.3	2.3
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0		0.0
Total Lost Time (s)	6.8	7.0	7.0	6.8	7.0	7.0		6.9	6.7	6.7		6.9
Lead/Lag	Lead	Lag	Lag	Lead	Lag	Lag	Lead	Lead	Lag	Lag	Lead	Lead
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	None	None	None	None	None	None	None	None	C-Max	C-Max	None	None
Walk Time (s)		7.0	7.0		7.0	7.0			7.0	7.0		
Flash Dont Walk (s)		28.0	28.0		28.0	28.0			19.0	19.0		
Pedestrian Calls (#/hr)		8	8		11	11			9	9		
Act Effct Green (s)	14.4	25.9	25.9	9.5	21.0	21.0		14.6	59.1	59.1		10.9
Actuated g/C Ratio	0.11	0.20	0.20	0.07	0.16	0.16		0.11	0.45	0.45		0.08
v/c Ratio	0.66	0.19	0.50	0.44	0.38	0.43		0.69	0.45	0.12		0.51
Control Delay	66.5	43.1	13.8	63.1	48.5	9.2		51.8	23.4	7.2		71.2
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0		0.0
Total Delay	66.5	43.1	13.8	63.1	48.5	9.2		51.8	23.4	7.2		71.2
LOS	E	D	В	E	D	А		D	С	А		E
Approach Delay		40.6			38.3				27.7			
Approach LOS		D			D				С			
Queue Length 50th (m)	28.6	14.2	7.6	12.3	24.5	0.0		24.0	61.4	3.3		17.3
Queue Length 95th (m)	40.7	16.3	23.9	20.4	29.2	15.0		36.8	100.3	m15.3		31.4
Internal Link Dist (m)		141.4			125.1				284.9			
Turn Bay Length (m)	95.0		60.0	75.0		75.0		130.0		85.0		110.0
Base Capacity (vph)	429	920	589	429	901	507		398	2164	731		207
Starvation Cap Reductn	0	0	0	0	0	0		0	0	0		0
Spillback Cap Reductn	0	0	0	0	0	0		0	0	0		0
Storage Cap Reductn	0	0	0	0	0	0		0	0	0		0
Reduced v/c Ratio	0.55	0.13	0.41	0.24	0.23	0.32		0.62	0.45	0.12		0.34
Intersection Summary												
Area Type:	Other											
Cycle Length: 130												
Actuated Cycle Length: 130)											
Offset: 96 (74%), Referenc		BT and 6:	SBT, Start	of Green								
Natural Cycle: 100												
Control Type: Actuated-Co	ordinated											
Maximum v/c Ratio: 0.69												
Intersection Signal Delay: 3	31.3			In	tersection	LOS: C						
Intersection Capacity Utilization				IC	CU Level o	f Service D						
Analysis Period (min) 15												

Analysis Period (min) 15 m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 2: March & Terry Fox **4**_{Ø1} **6**Ø3 Ø2 (R) · Ø4 4.5 ۶ N Ø5 Ø7 Ø6 (R) Ø8

	1	1
	*	4
Lane Group	SBT	SBR
Switch Phase		
Minimum Initial (s)	20.0	20.0
Minimum Split (s)	32.7	32.7
Total Split (s)	41.0	41.0
Total Split (%)	31.5%	31.5%
Maximum Green (s)	34.3	34.3
Yellow Time (s)	4.6	4.6
All-Red Time (s)	2.1	2.1
Lost Time Adjust (s)	0.0	0.0
Total Lost Time (s)	6.7	6.7
Lead/Lag	Lag	Lag
Lead-Lag Optimize?	Yes	Yes
Vehicle Extension (s)	3.0	3.0
Recall Mode	C-Max	C-Max
Walk Time (s)	7.0	7.0
Flash Dont Walk (s)	19.0	19.0
Pedestrian Calls (#/hr)	4	4
Act Effct Green (s)	52.7	52.7
Actuated g/C Ratio	0.41	0.41
v/c Ratio	0.37	0.25
Control Delay	27.7	6.7
Queue Delay	0.0	0.0
Total Delay	27.7	6.7
LOS	С	А
Approach Delay	27.1	
Approach LOS	С	
Queue Length 50th (m)	33.1	0.7
Queue Length 95th (m)	53.0	15.7
Internal Link Dist (m)	294.9	
Turn Bay Length (m)		100.0
Base Capacity (vph)	1910	694
Starvation Cap Reductn	0	0
Spillback Cap Reductn	0	0
Storage Cap Reductn	0	0
Reduced v/c Ratio	0.37	0.25
Intersection Summary		

	۶	-	\mathbf{i}	4	-	×	ŧ١	•	1	1	L	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL
Lane Configurations	٦	•	1	ካካ	t,			٦	<u>†</u> †	1		۲
Traffic Volume (vph)	29	22	237	205	16	34	16	94	1070	51	12	24
Future Volume (vph)	29	22	237	205	16	34	16	94	1070	51	12	24
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Storage Length (m)	35.0	1000	60.0	85.0	1000	0.0	1000	165.0	1000	0.0	1000	155.0
Storage Lanes	1		00.0	2		0.0		105.0		0.0		135.0
	50.0		I	2 95.0		U		40.0		l.		25.0
Taper Length (m)		1 00	1 00		1 00	1 00	0.05		0.05	1 00	0.05	
Lane Util. Factor	1.00	1.00	1.00	0.97	1.00	1.00	0.95	1.00	0.95	1.00	0.95	1.00
Ped Bike Factor	1.00		0.99	1.00	0.99					0.97		
Frt	0.050		0.850	0.050	0.898			0.050		0.850		0.050
Flt Protected	0.950			0.950				0.950				0.950
Satd. Flow (prot)	1674	1695	1483	3248	1463	0	0	1644	3316	1427	0	1647
Flt Permitted	0.950			0.950				0.159				0.225
Satd. Flow (perm)	1669	1695	1462	3240	1463	0	0	275	3316	1383	0	390
Right Turn on Red			Yes			Yes				Yes		
Satd. Flow (RTOR)			170		38					79		
Link Speed (k/h)		50			50				80			
Link Distance (m)		212.6			241.6				610.9			
Travel Time (s)		15.3			17.4				27.5			
Confl. Peds. (#/hr)	2		1	1		2		1		3		3
Confl. Bikes (#/hr)	_		1	-		1				1		-
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Heavy Vehicles (%)	1%	5%	2%	1%	6%	9%	2%	3%	2%	6%	2%	3%
Adj. Flow (vph)	32	24	263	228	18	38	18	104	1189	57	13	27
Shared Lane Traffic (%)												
Lane Group Flow (vph)	32	24	263	228	56	0	0	122	1189	57	0	40
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	L NA	Left	R NA	L NA	Left	R NA	R NA	L NA	Left	R NA	R NA	L NA
Median Width(m)		7.0			10.5				3.5			
Link Offset(m)		0.0			0.0				0.0			
Crosswalk Width(m)		5.0			5.0				5.0			
Two way Left Turn Lane												
Headway Factor	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09
Turning Speed (k/h)	24		14	24		14	14	24		14	14	24
Number of Detectors	1	2	1	1	2		1	1	2	1	1	1
Detector Template	Left	Thru	Right	Left	Thru		Left	Left	Thru	Right	Left	Left
Leading Detector (m)	2.0	10.0	2.0	2.0	10.0		2.0	2.0	10.0	2.0	2.0	2.0
Trailing Detector (m)	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Position(m)	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Size(m)	2.0	0.6	2.0	2.0	0.6		2.0	2.0	0.6	2.0	2.0	2.0
Detector 1 Type	CI+Ex	CI+Ex	CI+Ex	CI+Ex	Cl+Ex		CI+Ex	CI+Ex	Cl+Ex	CI+Ex	CI+Ex	CI+Ex
Detector 1 Channel	OFLX	OFLX	OFLX	OFLX							OILX	OITEX
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 2 Position(m)		9.4			9.4				9.4			
Detector 2 Size(m)		0.6			0.6				0.6			
Detector 2 Type		CI+Ex			Cl+Ex				Cl+Ex			
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0				0.0			
Turn Type	Prot	NA	Perm	Prot	NA		pm+pt	pm+pt	NA	Perm	Perm	Perm
Protected Phases	7	4		3	8		5	5	2			
Permitted Phases			4				2	2		2	6	6
Detector Phase	7	4	4	3	8		5	5	2	2	6	6
				-	-		-			_	-	

-		
		-
	+	-
	ODT	
Lane Group	SBT	SBR
Lane configurations	*	
Traffic Volume (vph)	909	35
Future Volume (vph)	909	35
Ideal Flow (vphpl)	1800	1800
Storage Length (m)		75.0
Storage Lanes		1
Taper Length (m)		
Lane Util. Factor	0.95	1.00
Ped Bike Factor		0.97
Frt		0.850
Flt Protected		0.000
Satd. Flow (prot)	3316	1469
Flt Permitted	5510	1409
	0040	4 4 0 0
Satd. Flow (perm)	3316	1432
Right Turn on Red		Yes
Satd. Flow (RTOR)		132
Link Speed (k/h)	80	
Link Distance (m)	610.3	
Travel Time (s)	27.5	
Confl. Peds. (#/hr)		1
Confl. Bikes (#/hr)		2
Peak Hour Factor	0.90	0.90
Heavy Vehicles (%)	2%	3%
Adj. Flow (vph)	1010	39
Shared Lane Traffic (%)	1010	00
	1010	39
Lane Group Flow (vph)		
Enter Blocked Intersection	No	No
Lane Alignment	Left	R NA
Median Width(m)	3.5	
Link Offset(m)	0.0	
Crosswalk Width(m)	5.0	
Two way Left Turn Lane		
Headway Factor	1.09	1.09
Turning Speed (k/h)		14
Number of Detectors	2	1
Detector Template	Thru	Right
Leading Detector (m)	10.0	2.0
Trailing Detector (m)	0.0	0.0
Detector 1 Position(m)	0.0	0.0
	0.0	2.0
Detector 1 Size(m)		
Detector 1 Type	CI+Ex	CI+Ex
Detector 1 Channel		
Detector 1 Extend (s)	0.0	0.0
Detector 1 Queue (s)	0.0	0.0
Detector 1 Delay (s)	0.0	0.0
Detector 2 Position(m)	9.4	
Detector 2 Size(m)	0.6	
Detector 2 Type	CI+Ex	
Detector 2 Channel	0	
Detector 2 Extend (s)	0.0	
Turn Type	NA	Perm
	NA 6	
Protected Phases	0	<u>^</u>
Permitted Phases	-	6
Detector Phase	6	6

PM Peak Hour										2	022 Existir	ig Traffic
	٦	-	\mathbf{r}	1	-	*	₹Ĩ	1	1	1	L	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL
Switch Phase												
Minimum Initial (s)	5.0	10.0	10.0	5.0	10.0		5.0	5.0	20.0	20.0	20.0	20.0
Minimum Split (s)	10.9	31.5	31.5	10.9	31.5		11.3	11.3	26.3	26.3	26.3	26.3
Total Split (s)	34.0	32.0	32.0	34.0	32.0		12.0	12.0	64.0	64.0	52.0	52.0
Total Split (%)	26.2%	24.6%	24.6%	26.2%	24.6%		9.2%	9.2%	49.2%	49.2%	40.0%	40.0%
Maximum Green (s)	28.1	25.5	25.5	28.1	25.5		5.7	5.7	57.7	57.7	45.7	45.7
Yellow Time (s)	3.3	3.3	3.3	3.3	3.3		4.6	4.6	4.6	4.6	4.6	4.6
All-Red Time (s)	2.6	3.2	3.2	2.6	3.2		1.7	1.7	1.7	1.7	1.7	1.7
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0			0.0	0.0	0.0		0.0
Total Lost Time (s)	5.9	6.5	6.5	5.9	6.5			6.3	6.3	6.3		6.3
Lead/Lag	Lead	Lag	Lag	Lead	Lag		Lead	Lead			Lag	Lag
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes		Yes	Yes			Yes	Yes
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	None	None	None	None	None		None	None	C-Max	C-Max	C-Max	C-Max
Walk Time (s)		7.0	7.0		7.0				7.0	7.0	7.0	7.0
Flash Dont Walk (s)		18.0	18.0		18.0				12.0	12.0	12.0	12.0
Pedestrian Calls (#/hr)		3	3		1				1	1	1	1
Act Effct Green (s)	8.0	16.1	16.1	14.4	27.4			80.7	80.7	80.7		62.5
Actuated g/C Ratio	0.06	0.12	0.12	0.11	0.21			0.62	0.62	0.62		0.48
v/c Ratio	0.31	0.11	0.80	0.63	0.17			0.41	0.58	0.06		0.21
Control Delay	65.5	48.3	37.0	63.0	19.1			16.4	17.5	1.7		18.5
Queue Delay	0.0	0.0	0.0	0.0	0.0			0.0	0.0	0.0		0.0
Total Delay	65.5	48.3	37.0	63.0	19.1			16.4	17.5	1.7		18.5
LOS	E	D	D	E	В			В	В	А		В
Approach Delay		40.7			54.4				16.7			
Approach LOS		D			D				В			
Queue Length 50th (m)	7.4	5.2	21.7	26.9	3.6			10.8	79.8	0.0		4.8
Queue Length 95th (m)	16.8	11.7	46.6	37.9	13.2			24.6	130.4	3.5		m17.5
Internal Link Dist (m)		188.6			217.6				586.9			
Turn Bay Length (m)	35.0		60.0	85.0				165.0				155.0
Base Capacity (vph)	361	332	423	702	347			295	2059	888		187
Starvation Cap Reductn	0	0	0	0	0			0	0	0		0
Spillback Cap Reductn	0	0	0	0	0			0	0	0		0
Storage Cap Reductn	0	0	0	0	0			0	0	0		0
Reduced v/c Ratio	0.09	0.07	0.62	0.32	0.16			0.41	0.58	0.06		0.21
Intersection Summary												
Area Type:	Other											
Cycle Length: 130												
Actuated Cycle Length: 130)											
Offset: 30 (23%), Reference		BTL and 6	SBTL, Sta	art of Gree	n							
Natural Cycle: 90												
Control Type: Actuated-Co	ordinated											
Maximum v/c Ratio: 0.80												
Intersection Signal Delay: 2	25.0				Itersection L							
Intersection Capacity Utilization	ation 77.2%			IC	CU Level of	Service D						
Analysis Period (min) 15												

Analysis Period (min) 15 m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 3: March & Solandt

1 Ø2 (R)	√ Ø3	₩04	
64s	34 s	32·s	
🕈 Ø5 🖕 🍁 Ø6 (R)	▶ ₀₇	← Ø8	
12 s 52 s	34 s	32·s	

J.Audia, Novatech

		1
	*	-
Lane Group	SBT	SBR
Switch Phase		
Minimum Initial (s)	20.0	20.0
Minimum Split (s)	26.3	26.3
Total Split (s)	52.0	52.0
Total Split (%)	40.0%	40.0%
Maximum Green (s)	45.7	45.7
Yellow Time (s)	4.6	4.6
All-Red Time (s)	1.7	1.7
Lost Time Adjust (s)	0.0	0.0
Total Lost Time (s)	6.3	6.3
Lead/Lag	Lag	Lag
Lead-Lag Optimize?	Yes	Yes
Vehicle Extension (s)	3.0	3.0
Recall Mode	C-Max	C-Max
Walk Time (s)	7.0	7.0
Flash Dont Walk (s)	12.0	12.0
Pedestrian Calls (#/hr)	1	1
Act Effct Green (s)	62.5	62.5
Actuated g/C Ratio	0.48	0.48
v/c Ratio	0.63	0.05
Control Delay	24.0	2.0
Queue Delay	0.0	0.0
Total Delay	24.0	2.0
LOS	С	А
Approach Delay	23.0	
Approach LOS	С	
Queue Length 50th (m)	108.7	0.4
Queue Length 95th (m)	144.4	m4.0
Internal Link Dist (m)	586.3	
Turn Bay Length (m)		75.0
Base Capacity (vph)	1595	757
Starvation Cap Reductn	0	0
Spillback Cap Reductn	0	0
Storage Cap Reductn	0	0
Reduced v/c Ratio	0.63	0.05
Intersection Summary		

4: Innovation/Flamborough & Terry Fox PM Peak Hour

										20	JZZ EXISTIN	y manic
	٦	-	$\mathbf{\hat{z}}$	4	←	*	1	Ť	1	1	Ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	۲.	•	1	<u>۲</u>	•	1	ሻ	f,		ሻ	4	
Traffic Volume (vph)	85	276	44	122	374	146	138	80	98	63	60	75
Future Volume (vph)	85	276	44	122	374	146	138	80	98	63	60	75
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Storage Length (m)	75.0		120.0	110.0		130.0	220.0		0.0	30.0		0.0
Storage Lanes	1		1	1		1	1		0	1		0
Taper Length (m)	50.0			80.0			50.0			15.0		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor	1.00		0.97	0.99		0.96	0.96	0.98		1.00	0.96	
Frt			0.850			0.850		0.917			0.917	
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1566	1745	1498	1642	1762	1498	1674	1548	0	1674	1497	0
Flt Permitted	0.465			0.533			0.568			0.452		
Satd. Flow (perm)	765	1745	1450	915	1762	1445	965	1548	0	794	1497	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			78			162		52			53	
Link Speed (k/h)		60			60			50			50	
Link Distance (m)		508.2			485.8			547.1			313.7	
Travel Time (s)		30.5			29.1			39.4			22.6	
Confl. Peds. (#/hr)	2	00.0	4	4	20.1	2	21	00.1	2	2	22.0	21
Confl. Bikes (#/hr)	_		1	•		12			6	_		4
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Heavy Vehicles (%)	8%	2%	1%	3%	1%	1%	1%	2%	5%	1%	1%	8%
Adj. Flow (vph)	94	307	49	136	416	162	153	89	109	70	67	83
Shared Lane Traffic (%)	VI	001	10	100	110	102	100	00	100	10	01	00
Lane Group Flow (vph)	94	307	49	136	416	162	153	198	0	70	150	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	L NA	Left	R NA	L NA	Left	R NA	LNA	Left	R NA	L NA	Left	R NA
Median Width(m)		3.5	1110/1		3.5	1111/1		3.5			3.5	1111/1
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		5.0			5.0			5.0			5.0	
Two way Left Turn Lane		0.0			0.0			0.0			0.0	
Headway Factor	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09
Turning Speed (k/h)	24	1.05	14	24	1.05	14	24	1.05	1.03	24	1.05	14
Number of Detectors	1	2	1	1	2	1	1	2	17	1	2	17
Detector Template	Left	Thru	Right	Left	Thru	Right	Left	Thru		Left	Thru	
Leading Detector (m)	2.0	10.0	2.0	2.0	10.0	2.0	2.0	10.0		2.0	10.0	
Trailing Detector (m)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Detector 1 Position(m)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Detector 1 Size(m)	2.0	0.0	2.0	2.0	0.6	2.0	2.0	0.6		2.0	0.6	
Detector 1 Type	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex		CI+Ex	CI+Ex	
Detector 1 Channel	CITEX				CITEX	CITEX		OI+EX		CITEX	CITEX	
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
	0.0 0.0	0.0	0.0 0.0	0.0	0.0	0.0	0.0 0.0	0.0		0.0	0.0	
Detector 1 Queue (s)		0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0 0.0	0.0	
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0			0.0	0.0	
Detector 2 Position(m)		9.4			9.4			9.4			9.4	
Detector 2 Size(m)		0.6			0.6			0.6			0.6	
Detector 2 Type		CI+Ex			CI+Ex			CI+Ex			CI+Ex	
Detector 2 Channel					~ ~			0.0			~ ~	
Detector 2 Extend (s)		0.0	C		0.0	2	_	0.0		2	0.0	
Turn Type	pm+pt	NA	Perm	pm+pt	NA	Perm	Perm	NA		Perm	NA	
Protected Phases	5	2	_	1	6		_	8			4	
Permitted Phases	2		2	6	_	6	8	_		4		
Detector Phase	5	2	2	1	6	6	8	8		4	4	

J.Audia, Novatech

4: Innovation/Flamborough & Terry Fox PM Peak Hour

PM Peak Hour										20	022 Existin	y man
	٦	-	\rightarrow	1	-	*	1	1	1	1	Ŧ	-
ane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SE
Switch Phase												
/linimum Initial (s)	5.0	10.0	10.0	5.0	10.0	10.0	10.0	10.0		10.0	10.0	
/linimum Split (s)	11.0	27.9	27.9	11.0	27.9	27.9	36.3	36.3		36.3	36.3	
Total Split (s)	12.0	66.0	66.0	12.0	66.0	66.0	52.0	52.0		52.0	52.0	
Total Split (%)	9.2%	50.8%	50.8%	9.2%	50.8%	50.8%	40.0%	40.0%		40.0%	40.0%	
laximum Green (s)	6.0	60.1	60.1	6.0	60.1	60.1	45.7	45.7		45.7	45.7	
ellow Time (s)	3.7	3.7	3.7	3.7	3.7	3.7	3.3	3.3		3.3	3.3	
All-Red Time (s)	2.3	2.2	2.2	2.3	2.2	2.2	3.0	3.0		3.0	3.0	
ost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
otal Lost Time (s)	6.0	5.9	5.9	6.0	5.9	5.9	6.3	6.3		6.3	6.3	
.ead/Lag	Lead	Lag	Lag	Lead	Lag	Lag						
ead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes						
ehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0	
Recall Mode	None	C-Max	C-Max	None	C-Max	C-Max	None	None		None	None	
Valk Time (s)		7.0	7.0		7.0	7.0	7.0	7.0		7.0	7.0	
Flash Dont Walk (s)		15.0	15.0		15.0	15.0	23.0	23.0		23.0	23.0	
Pedestrian Calls (#/hr)		3	3		3	3	3	3		3	3	
Act Effct Green (s)	86.9	79.0	79.0	88.9	80.0	80.0	23.8	23.8		23.8	23.8	
ctuated g/C Ratio	0.67	0.61	0.61	0.68	0.62	0.62	0.18	0.18		0.18	0.18	
/c Ratio	0.17	0.29	0.05	0.20	0.38	0.17	0.87	0.61		0.48	0.47	
Control Delay	7.5	14.8	1.3	3.7	7.3	0.7	90.4	42.3		56.6	33.5	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
otal Delay	7.5	14.8	1.3	3.7	7.3	0.7	90.4	42.3		56.6	33.5	
.OS	A	В	A	А	A	А	F	D		E	С	
Approach Delay		11.8			5.1			63.3			40.9	
Approach LOS		В			А			E			D	
Queue Length 50th (m)	5.9	32.5	0.0	4.8	19.8	0.5	35.4	31.9		15.0	20.3	
Queue Length 95th (m)	13.9	61.4	2.4	10.9	34.7	1.1	54.3	50.2		26.8	36.0	
nternal Link Dist (m)		484.2			461.8		••	523.1			289.7	
urn Bay Length (m)	75.0		120.0	110.0		130.0	220.0			30.0		
Base Capacity (vph)	560	1059	911	676	1083	951	339	577		279	560	
Starvation Cap Reductn	0	0	0	0	0	0	0	0		0	0	
pillback Cap Reductn	0	0	0	0	0	0	0	0		0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0		0	0	
Reduced v/c Ratio	0.17	0.29	0.05	0.20	0.38	0.17	0.45	0.34		0.25	0.27	
ntersection Summary												
rea Type:	Other											
Cycle Length: 130												
Actuated Cycle Length: 130												
Offset: 66 (51%), Referenced	to phase 2:E	BTL and 6	:WBTL, Sta	art of Gree	n							
latural Cycle: 80												
Control Type: Actuated-Coord	inated											
Aaximum v/c Ratio: 0.87												
ntersection Signal Delay: 23.2	2			In	tersection	LOS: C						
	Intersection Capacity Utilization 71.7% ICU Level of Service C											
ntersection Capacity Utilizatio	n 71.7%			IC	CU Level o	f Service C	;					

Splits and Phases: 4: Innovation/Flamborough & Terry Fox

√ Ø1	• + Ø2 (R)	↓ Ø4
12 s	66 s	52·s
≯ _{øs}	♥ ♥ Ø6 (R)	[™] Ø8
12 s	66 s	52 s

												g manie
	≯	-	\mathbf{r}	1	←	•	1	Ť	۲	1	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			\$			\$			\$	
Traffic Volume (veh/h)	3	0	100	0	0	0	134	14	0	0	53	9
Future Volume (Veh/h)	3	0	100	0	0	0	134	14	0	0	53	9
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	3	0	111	0	0	0	149	16	0	0	59	10
Pedestrians		4						1			2	
Lane Width (m)		3.5						3.5			3.5	
Walking Speed (m/s)		1.0						1.0			1.0	
Percent Blockage		0						0			0	
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC, conflicting volume	384	382	69	490	387	18	73			16		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	384	382	69	490	387	18	73			16		
tC, single (s)	7.1	6.5	6.2	7.1	6.5	6.2	4.1			4.1		
tC, 2 stage (s)												
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	99	100	89	100	100	100	90			100		
cM capacity (veh/h)	528	496	989	401	493	1061	1515			1608		
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total	114	0	165	69								
Volume Left	3	0	149	0								
Volume Right	111	0	0	10								
cSH	967	1700	1515	1608								
Volume to Capacity	0.12	0.02	0.10	0.00								
Queue Length 95th (m)	2.8	0.02	2.3	0.0								
Control Delay (s)	9.2	0.0	7.0	0.0								
Lane LOS	A	A	A	0.0								
Approach Delay (s)	9.2	0.0	7.0	0.0								
Approach LOS	A	A	7.0	0.0								
Intersection Summary												
Average Delay			6.3									
Intersection Capacity Utilization			29.0%		U Level of	Service			А			
Analysis Period (min)			29.0 %	10					~			
Analysis Fellou (IIIII)			10									

APPENDIX L

Background Synchro Analysis

1: March & Morgan's Grant/Shirley's Brook AM Peak Hour

										2037	Баскугоці	
	٦	-	$\mathbf{\hat{v}}$	4	+	*	1	1	1	1	Ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		स्	1	<u> </u>	•	1	ሻ	***	1	- N	***	1
Traffic Volume (vph)	26	38	68	86	14	25	26	958	41	100	1813	10
Future Volume (vph)	26	38	68	86	14	25	26	958	41	100	1813	10
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Storage Length (m)	0.0		20.0	45.0		35.0	130.0		30.0	65.0		25.0
Storage Lanes	0		1	1		1	1		1	1		1
Taper Length (m)	10.0			30.0			40.0			35.0		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.91	1.00	1.00	0.91	1.00
Ped Bike Factor		1.00	0.98	0.99		0.98	1.00		0.96	1.00		0.96
Frt			0.850			0.850			0.850			0.850
Flt Protected		0.980		0.950			0.950			0.950		
Satd. Flow (prot)	0	1727	1498	1580	1271	1498	1674	4628	1427	1674	4718	1498
Flt Permitted	-	0.861		0.715			0.950			0.950		
Satd. Flow (perm)	0	1514	1464	1183	1271	1464	1672	4628	1368	1666	4718	1436
Right Turn on Red	•		Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			136			136			145			91
Link Speed (k/h)		40	100		40	100		60			60	01
Link Distance (m)		465.2			359.5			318.9			462.6	
Travel Time (s)		41.9			32.4			19.1			27.8	
Confl. Peds. (#/hr)	5	41.5	5	5	02.4	5	5	10.1	5	5	21.0	5
Confl. Bikes (#/hr)	Ū		5	Ū		5	Ū		5	Ū		5
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles (%)	1%	1%	1%	7%	40%	1%	1%	5%	6%	1%	3%	1%
Adj. Flow (vph)	26	38	68	86	14	25	26	958	41	100	1813	10
Shared Lane Traffic (%)	20	50	00	00	14	20	20	300	71	100	1015	10
Lane Group Flow (vph)	0	64	68	86	14	25	26	958	41	100	1813	10
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	LNA	Left	R NA	LNA	Left	R NA	LNA	Left	R NA	L NA	Left	R NA
Median Width(m)	LINA	3.5	RINA	LINA	5.0	RINA	LINA	9.0	RINA	LINA	9.0	KINA
		0.0			5.0 0.0			9.0			9.0	
Link Offset(m)		5.0			5.0			10.0			10.0	
Crosswalk Width(m)		5.0			5.0			10.0			10.0	
Two way Left Turn Lane	1.00	1 00	1.00	1.00	1 00	1 00	1.00	1.00	1.00	1.00	1.00	1.00
Headway Factor	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09
Turning Speed (k/h)	24	0	14	24	0	14	24	0	14	24	0	14
Number of Detectors	1	2	1	1	2	1	1	2	1	1	2	1
Detector Template	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right
Leading Detector (m)	2.0	10.0	2.0	2.0	10.0	2.0	2.0	10.0	2.0	2.0	10.0	2.0
Trailing Detector (m)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Position(m)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Size(m)	2.0	0.6	2.0	2.0	0.6	2.0	2.0	0.6	2.0	2.0	0.6	2.0
Detector 1 Type	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 2 Position(m)		9.4			9.4			9.4			9.4	
Detector 2 Size(m)		0.6			0.6			0.6			0.6	
Detector 2 Type		CI+Ex			CI+Ex			CI+Ex			CI+Ex	
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	Perm	NA	Perm	Perm	NA	Perm	Prot	NA	Perm	Prot	NA	Perm
Protected Phases		4			8		5	2		1	6	
Permitted Phases	4		4	8		8			2			6
Detector Phase	4	4	4	8	8	8	5	2	2	1	6	6

J.Audia, Novatech

1: March & Morgan's Grant/Shirley's Brook AM Peak Hour

AM Peak Hour	•		~	~	+	•	•	•	*	2001	Backgrour	
	-	-	•	Ŧ		`	7		r		*	•
ane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SB
Switch Phase												
Ainimum Initial (s)	10.0	10.0	10.0	10.0	10.0	10.0	5.0	10.0	10.0	5.0	10.0	10.
/linimum Split (s)	38.5	38.5	38.5	38.5	38.5	38.5	11.4	24.4	24.4	11.4	24.4	24
Γotal Split (s)	40.0	40.0	40.0	40.0	40.0	40.0	14.0	65.0	65.0	25.0	76.0	76
Fotal Split (%)	30.8%	30.8%	30.8%	30.8%	30.8%	30.8%	10.8%	50.0%	50.0%	19.2%	58.5%	58.5
Maximum Green (s)	32.5	32.5	32.5	32.5	32.5	32.5	7.6	58.6	58.6	18.6	69.6	69
fellow Time (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.7	3.7	3.7	3.7	3.7	3
All-Red Time (s)	4.5	4.5	4.5	4.5	4.5	4.5	2.7	2.7	2.7	2.7	2.7	2
ost Time Adjust (s)		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.
Fotal Lost Time (s)		7.5	7.5	7.5	7.5	7.5	6.4	6.4	6.4	6.4	6.4	6
ead/Lag							Lead	Lag	Lag	Lead	Lag	La
ead-Lag Optimize?												
/ehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.
Recall Mode	None	None	None	None	None	None	None	C-Max	C-Max	None	C-Max	C-Ma
Valk Time (s)	7.0	7.0	7.0	7.0	7.0	7.0		7.0	7.0		7.0	7.
Flash Dont Walk (s)	24.0	24.0	24.0	24.0	24.0	24.0		11.0	11.0		11.0	11.
Pedestrian Calls (#/hr)	5	5	5	5	5	5		5	5		5	
Act Effct Green (s)		17.1	17.1	17.1	17.1	17.1	7.4	79.6	79.6	13.1	90.2	90.
Actuated g/C Ratio		0.13	0.13	0.13	0.13	0.13	0.06	0.61	0.61	0.10	0.69	0.6
//c Ratio		0.32	0.22	0.55	0.08	0.08	0.27	0.34	0.05	0.60	0.55	0.0
Control Delay		52.8	1.6	64.3	45.9	0.5	86.8	2.0	0.1	69.8	13.1	0.
Queue Delay		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.
Total Delay		52.8	1.6	64.3	45.9	0.5	86.8	2.0	0.1	69.8	13.1	0.
.OS		D	А	E	D	А	F	А	А	E	В	
Approach Delay		26.4			49.5			4.1			16.0	
Approach LOS		С			D			А			В	
Queue Length 50th (m)		14.2	0.0	19.7	3.0	0.0	6.6	2.1	0.0	22.9	76.6	0.
Queue Length 95th (m)		23.6	0.0	30.8	7.7	0.0	m15.0	3.7	m0.0	38.4	130.4	0.
nternal Link Dist (m)		441.2			335.5			294.9			438.6	
Furn Bay Length (m)			20.0	45.0		35.0	130.0		30.0	65.0		25.
Base Capacity (vph)		378	468	295	317	468	103	2832	893	239	3272	102
Starvation Cap Reductn		0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn		0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn		0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio		0.17	0.15	0.29	0.04	0.05	0.25	0.34	0.05	0.42	0.55	0.0
ntersection Summary												
Area Type:	Other											
Cycle Length: 130	Calor											
Actuated Cycle Length: 130												
Offset: 94 (72%), Referenced	to phase 2.N	BT and 6.9	SBT Start	of Green								
Vatural Cycle: 90												
Control Type: Actuated-Coord	dinated											
Aaximum v/c Ratio: 0.60												
ntersection Signal Delay: 13.	9			In	tersection	LOS: B						
ntersection Capacity Utilization					CU Level o)					
Analysis Period (min) 15												
n Volume for 95th percentil	le queue is m	etered by u	upstream s	ignal.								
m Volume for 95th percentil	e queue is me	etered by t	upstream s	ignal.								

Splits and Phases: 1: March & Morgan's Grant/Shirley's Brook

J.Audia, Novatech

	۶	-	\mathbf{r}	•	-	×.	٩	•	Ť	~	L	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL
Lane Configurations	ሻሻ	<u>^</u>	1	ካካ	† †	1		ካካ	<u> </u>	1		3
Traffic Volume (vph)	98	156	289	51	57	56	14	211	851	109	1	202
Future Volume (vph)	98	156	289	51	57	56	14	211	851	109	1	202
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Storage Length (m)	95.0	1000	60.0	75.0	1000	75.0	1000	130.0	1000	85.0	1000	110.0
Storage Lanes	2		2	2		1		2		2		1
Taper Length (m)	40.0		2	20.0		1		90.0		2		40.0
Lane Util. Factor	0.97	0.95	1.00	0.97	0.95	1.00	0.91	90.0 0.97	0.91	1.00	0.91	1.00
Ped Bike Factor	0.99	0.35	0.97	0.99	0.35	0.98	0.91	1.00	0.31	0.97	0.31	1.00
Frt	0.99		0.850	0.99		0.98		1.00		0.850		1.00
Fit Protected	0.950		0.000	0.950		0.000		0.950		0.000		0.950
	0.950 3185	2240	1400	3248	2464	1400	0	3246	4000	1400	0	
Satd. Flow (prot)		3316	1483		3161	1498	0		4628	1469	0	1674
Flt Permitted	0.950	2240	4400	0.950	2404	4.400	^	0.950	4000	4404	0	0.950
Satd. Flow (perm)	3169	3316	1438	3219	3161	1466	0	3242	4628	1424	0	1666
Right Turn on Red			Yes			Yes				Yes		
Satd. Flow (RTOR)		<u></u>	193		00	193			00	198		
Link Speed (k/h)		60			60				60			
Link Distance (m)		165.4			149.1				308.9			
Travel Time (s)	-	9.9	10	40	8.9	-		-	18.5	10		10
Confl. Peds. (#/hr)	5		10	10		5		5		10		10
Confl. Bikes (#/hr)			10		1.00	5			(00	5		4.00
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles (%)	3%	2%	2%	1%	7%	1%	2%	1%	5%	3%	2%	1%
Adj. Flow (vph)	98	156	289	51	57	56	14	211	851	109	1	202
Shared Lane Traffic (%)				- 1		-0	•		0-1	(00	•	
Lane Group Flow (vph)	98	156	289	51	57	56	0	225	851	109	0	203
Enter Blocked Intersection	No	No	No	Yes	Yes	Yes	No	No	No	No	No	No
Lane Alignment	L NA	Left	R NA	L NA	Left	R NA	R NA	L NA	Left	R NA	R NA	L NA
Median Width(m)		10.5			10.5				10.5			
Link Offset(m)		0.0			0.0				0.0			
Crosswalk Width(m)		5.0			5.0				5.0			
Two way Left Turn Lane												
Headway Factor	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09
Turning Speed (k/h)	24		14	24		14	14	24	-	14	14	24
Number of Detectors	1	2	1	1	2	1	1	1	2	1	1	1
Detector Template	Left	Thru	Right	Left	Thru	Right	Left	Left	Thru	Right	Left	Left
Leading Detector (m)	2.0	10.0	2.0	2.0	10.0	2.0	2.0	2.0	10.0	2.0	2.0	2.0
Trailing Detector (m)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Position(m)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Size(m)	2.0	0.6	2.0	2.0	0.6	2.0	2.0	2.0	0.6	2.0	2.0	2.0
Detector 1 Type	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	Cl+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 2 Position(m)		9.4			9.4				9.4			
Detector 2 Size(m)		0.6			0.6				0.6			
Detector 2 Type		CI+Ex			CI+Ex				CI+Ex			
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0				0.0			
Turn Type	Prot	NA	Perm	Prot	NA	Perm	Prot	Prot	NA	Perm	Prot	Prot
Protected Phases	7	4		3	8		5	5	2		1	1
Permitted Phases			4			8				2		
Detector Phase	7	4	4	3	8	8	5	5	2	2	1	1

	1	~
	*	-
Lane Group	SBT	SBR
Lane Configurations	***	1
Traffic Volume (vph)	1615	180
Future Volume (vph)	1615	180
Ideal Flow (vphpl)	1800	1800
Storage Length (m)		100.0
Storage Lanes		1
Taper Length (m)		
Lane Util. Factor	0.91	1.00
Ped Bike Factor		0.98
Frt		0.850
Flt Protected		
Satd. Flow (prot)	4718	1469
Flt Permitted		. 100
Satd. Flow (perm)	4718	1436
Right Turn on Red	110	Yes
Satd. Flow (RTOR)		180
Link Speed (k/h)	60	100
Link Distance (m)	318.9	
Travel Time (s)	19.1	
Confl. Peds. (#/hr)	19.1	5
		5 5
Confl. Bikes (#/hr) Peak Hour Factor	1.00	с 1.00
	3%	3%
Heavy Vehicles (%)		
Adj. Flow (vph)	1615	180
Shared Lane Traffic (%)	4045	400
Lane Group Flow (vph)	1615	180
Enter Blocked Intersection	No	No
Lane Alignment	Left	R NA
Median Width(m)	7.0	
Link Offset(m)	0.0	
Crosswalk Width(m)	5.0	
Two way Left Turn Lane		
Headway Factor	1.09	1.09
Turning Speed (k/h)		14
Number of Detectors	2	1
Detector Template	Thru	Right
Leading Detector (m)	10.0	2.0
Trailing Detector (m)	0.0	0.0
Detector 1 Position(m)	0.0	0.0
Detector 1 Size(m)	0.6	2.0
Detector 1 Type	CI+Ex	CI+Ex
Detector 1 Channel		
Detector 1 Extend (s)	0.0	0.0
Detector 1 Queue (s)	0.0	0.0
Detector 1 Delay (s)	0.0	0.0
Detector 2 Position(m)	9.4	3.0
Detector 2 Size(m)	0.6	
Detector 2 Type	CI+Ex	
Detector 2 Channel	OI. EX	
Detector 2 Extend (s)	0.0	
Turn Type	NA	Perm
Protected Phases	6	i onn
Permitted Phases	0	6
Detector Phase	6	6
Delector i liase	0	U

	≯	-	\mathbf{r}	 Image: A second s	+	×	₹Ĩ	•	Ť	*	L	\ \
Lane Group	EBL	EBT	EBR	• WBL	WBT	WBR	NBU	NBL	• NBT	NBR	SBU	SB
Switch Phase			LDIX	WDL		WDIX	NDO	NDL		NDIX	000	0
Ainimum Initial (s)	5.0	10.0	10.0	5.0	10.0	10.0	5.0	5.0	10.0	10.0	5.0	5.
Ainimum Split (s)	11.8	42.0	42.0	11.8	42.0	42.0	11.4	11.4	32.4	32.4	11.4	11.
Fotal Split (s)	13.0	43.0	43.0	12.0	42.0	42.0	18.0	18.0	44.0	44.0	31.0	31.
Total Split (%)	10.0%	33.1%	33.1%	9.2%	32.3%	32.3%	13.8%	13.8%	33.8%	33.8%	23.8%	23.89
Maximum Green (s)	6.2	36.0	36.0	5.2	35.0	35.0	11.6	11.6	37.6	37.6	24.6	24.
(ellow Time (s)	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.
All-Red Time (s)	3.1	3.3	3.3	3.1	3.3	3.3	2.7	2.7	2.7	2.7	2.7	2.
.ost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0		0.
Total Lost Time (s)	6.8	7.0	7.0	6.8	7.0	7.0		6.4	6.4	6.4		6.
.ead/Lag	Lead	Lag	Lag	Lead	Lag	Lag	Lead	Lead	Lag	Lag	Lead	Lea
ead-Lag Optimize?		9	-~3		9	3			-~3	3		
/ehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.
Recall Mode	None	None	None	None	None	None	None	None	C-Max	C-Max	None	Non
Valk Time (s)		7.0	7.0		7.0	7.0			7.0	7.0		
Flash Dont Walk (s)		28.0	28.0		28.0	28.0			19.0	19.0		
Pedestrian Calls (#/hr)		10	10		5	5			5	5		
Act Effct Green (s)	7.0	21.5	21.5	5.2	20.7	20.7		12.5	58.9	58.9		20.
Actuated g/C Ratio	0.05	0.17	0.17	0.04	0.16	0.16		0.10	0.45	0.45		0.1
/c Ratio	0.57	0.29	0.73	0.40	0.11	0.14		0.72	0.41	0.14		0.7
Control Delay	82.6	44.3	23.3	70.1	42.7	0.8		54.0	39.3	9.5		74.
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0		0.
Total Delay	82.6	44.3	23.3	70.1	42.7	0.8		54.0	39.3	9.5		74.
_OS	F	D	С	E	D	A		D	D	A		
Approach Delay		40.1	-		36.9				39.3			
Approach LOS		D			D				D			
Queue Length 50th (m)	12.7	14.1	13.4	6.1	6.5	0.0		24.2	73.4	1.1		49.
Queue Length 95th (m)	#23.4	21.7	38.3	12.5	10.3	0.0		#42.8	90.1	20.1		74.
nternal Link Dist (m)		141.4			125.1				284.9			
Furn Bay Length (m)	95.0		60.0	75.0		75.0		130.0		85.0		110.
Base Capacity (vph)	171	918	537	129	851	535		316	2098	753		31
Starvation Cap Reductn	0	0	0	0	0	0		0	0	0		
Spillback Cap Reductn	0	0	0	0	0	0		0	0	0		
Storage Cap Reductn	0	0	0	0	0	0		0	0	0		
Reduced v/c Ratio	0.57	0.17	0.54	0.40	0.07	0.10		0.71	0.41	0.14		0.6
ntersection Summary												
vrea Type:	Other											
Cycle Length: 130												
Actuated Cycle Length: 130												
Offset: 80 (62%), Referenced	to phase 2:N	BT and 6:8	SBT, Start	of Green								
Natural Cycle: 110												
Control Type: Actuated-Coord	linated											
Aximum v/c Ratio: 0.78	•											
ntersection Signal Delay: 35.					tersection							
ntersection Capacity Utilization	on 88.6%			IC	U Level of	Service E						
Analysis Period (min) 15												
 95th percentile volume ex Queue shown is maximum 			nay be lon	ger.								
Queue shown is maximum		185.										
Splits and Phases: 2: Marc	h & Terry Fox											
14	▲					1	_					

4 _{Ø1}		Ø2 (R)		√ Ø3	₩ Ø4	
31 s		44 s		12 s	43 s	
* Ø5	🖗 Ø6 (R) 🖣				4 [♠] Ø8	
18 s	57 s			13 s	42 s	суполго П порон

·		
		1
	+	•
l	0.07	000
Lane Group	SBT	SBR
Switch Phase		
Minimum Initial (s)	10.0	10.0
Minimum Split (s)	32.4	32.4
Total Split (s)	57.0	57.0
Total Split (%)	43.8%	43.8%
Maximum Green (s)	50.6	50.6
Yellow Time (s)	3.7	3.7
All-Red Time (s)	2.7	2.7
Lost Time Adjust (s)	0.0	0.0
Total Lost Time (s)	6.4	6.4
Lead/Lag	Lag	Lag
Lead-Lag Optimize?	5	5
Vehicle Extension (s)	3.0	3.0
Recall Mode	C-Max	C-Max
Walk Time (s)	7.0	7.0
Flash Dont Walk (s)	19.0	19.0
Pedestrian Calls (#/hr)	5	5
Act Effct Green (s)	66.6	66.6
Actuated g/C Ratio	0.51	0.51
v/c Ratio	0.67	0.22
Control Delay	28.0	8.8
Queue Delay	0.0	0.0
Total Delay	28.0	8.8
LOS	20.0 C	0.0 A
Approach Delay	31.0	A
Approach LOS	51.0 C	
Queue Length 50th (m)	67.2	0.0
	122.4	27.0
Queue Length 95th (m)	122.4 294.9	27.0
Internal Link Dist (m)	294.9	100.0
Turn Bay Length (m)	0447	100.0
Base Capacity (vph)	2417	823
Starvation Cap Reductn	0	0
Spillback Cap Reductn	0	0
Storage Cap Reductn	0	0
Reduced v/c Ratio	0.67	0.22
Intersection Summary		
interesotion ourinnury		

	•		_									۱.
	٦	-	\rightarrow	1	-	•	₹	1	Ť	1		-
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL
Lane Configurations	<u>۲</u>	•	1	<u>۲</u>	↑	1		- h	≜1 }-			ሻ
Traffic Volume (vph)	12	33	85	82	16	4	2	221	1484	199	2	43
Future Volume (vph)	12	33	85	82	16	4	2	221	1484	199	2	43
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Storage Length (m)	35.0		60.0	135.0		55.0		165.0		0.0		155.0
Storage Lanes	1		1	1		1		1		0		1
Taper Length (m)	50.0		-	50.0				40.0		-		25.0
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	0.95	1.00	0.95	0.95	0.95	1.00
Ped Bike Factor	0.99	1.00	0.98	0.99	1.00	0.98	0.00	1.00	1.00	0.00	0.00	1.00
Frt	0.00		0.850	0.00		0.850		1.00	0.982			1.00
Flt Protected	0.950		0.000	0.950		0.000		0.950	0.002			0.950
Satd. Flow (prot)	1537	1728	1414	1610	1369	1498	0	1658	3223	0	0	1674
Flt Permitted	0.747	1720	1414	0.736	1309	1490	0	0.950	5225	0	0	0.950
	1201	1700	1001		1200	1463	0	1656	2002	٥	٥	
Satd. Flow (perm)	1201	1728	1381	1240	1369		0	1000	3223	0	0	1672
Right Turn on Red			Yes			Yes			10	Yes		
Satd. Flow (RTOR)		50	141		50	141			19			
Link Speed (k/h)		50			50				60			_
Link Distance (m)		212.6			241.6				610.9			
Travel Time (s)		15.3			17.4				36.7			
Confl. Peds. (#/hr)	5		5	5		5		5		5		5
Confl. Bikes (#/hr)			5			5				5		
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles (%)	10%	3%	7%	5%	30%	1%	2%	2%	3%	1%	2%	1%
Adj. Flow (vph)	12	33	85	82	16	4	2	221	1484	199	2	43
Shared Lane Traffic (%)												
Lane Group Flow (vph)	12	33	85	82	16	4	0	223	1683	0	0	45
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	L NA	Left	R NA	L NA	Left	R NA	R NA	L NA	Left	R NA	R NA	L NA
Median Width(m)		3.5			10.5				17.5			
Link Offset(m)		0.0			0.0				0.0			
Crosswalk Width(m)		5.0			5.0				5.0			
Two way Left Turn Lane												
Headway Factor	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09
Turning Speed (k/h)	24		14	24		14	14	24		14	14	24
Number of Detectors	1	2	1	1	2	1	1	1	2	••	1	1
Detector Template	Left	Thru	Right	Left	Thru	Right	Left	Left	Thru		Left	Left
Leading Detector (m)	2.0	10.0	2.0	2.0	10.0	2.0	2.0	2.0	10.0		2.0	2.0
Trailing Detector (m)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0
Detector 1 Position(m)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0
Detector 1 Size(m)	2.0	0.6	2.0	2.0	0.6	2.0	2.0	2.0	0.6		2.0	2.0
Detector 1 Type	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex		CI+Ex	CI+Ex
Detector 1 Channel	OITEX											
	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0
Detector 1 Extend (s)	0.0	0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0			0.0	0.0
Detector 1 Queue (s)	0.0 0.0	0.0 0.0	0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0		0.0 0.0	0.0 0.0
Detector 1 Delay (s)	0.0		0.0	0.0		0.0	0.0	0.0			0.0	0.0
Detector 2 Position(m)		9.4			9.4				9.4			
Detector 2 Size(m)		0.6			0.6				0.6			
Detector 2 Type		CI+Ex			CI+Ex				CI+Ex			
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0				0.0			
Turn Type	Perm	NA	Perm	Perm	NA	Perm	Prot	Prot	NA		Prot	Prot
Protected Phases		4			8		5	5	2		1	1
Permitted Phases	4		4	8		8						
Detector Phase	4	4	4	8	8	8	5	5	2		1	1

	Ţ	1
	•	-
Lane Group	SBT	SBR
Lane Configurations	^1 }	
Traffic Volume (vph)	1696	37
Future Volume (vph)	1696	37
Ideal Flow (vphpl)	1800	1800
Storage Length (m)		0.0
Storage Lanes		0
Taper Length (m)		
Lane Util. Factor	0.95	0.95
Ped Bike Factor	1.00	
Frt	0.997	
Flt Protected		
Satd. Flow (prot)	3272	0
Flt Permitted		
Satd. Flow (perm)	3272	0
Right Turn on Red		Yes
Satd. Flow (RTOR)	2	
Link Speed (k/h)	60	
Link Distance (m)	411.0	
Travel Time (s)	24.7	
Confl. Peds. (#/hr)		5
Confl. Bikes (#/hr)		5
Peak Hour Factor	1.00	1.00
Heavy Vehicles (%)	3%	1%
Adj. Flow (vph)	1696	37
Shared Lane Traffic (%)	1000	01
Lane Group Flow (vph)	1733	0
Enter Blocked Intersection	No	No
Lane Alignment	Left	R NA
	17.5	N NA
Median Width(m)	0.0	
Link Offset(m)		
Crosswalk Width(m)	5.0	
Two way Left Turn Lane	4 00	1.00
Headway Factor	1.09	1.09
Turning Speed (k/h)	^	14
Number of Detectors	2	
Detector Template	Thru	
Leading Detector (m)	10.0	
Trailing Detector (m)	0.0	
Detector 1 Position(m)	0.0	
Detector 1 Size(m)	0.6	
Detector 1 Type	CI+Ex	
Detector 1 Channel		
Detector 1 Extend (s)	0.0	
Detector 1 Queue (s)	0.0	
Detector 1 Delay (s)	0.0	
Detector 2 Position(m)	9.4	
Detector 2 Size(m)	0.6	
Detector 2 Type	CI+Ex	
Detector 2 Channel	. _ /.	
Detector 2 Extend (s)	0.0	
Turn Type	NA	
Protected Phases	6	
Permitted Phases	U	
Detector Phase	6	
Delector Fliase	0	

AM Peak Hour										2037	Backgroun	d Traffi
	≯	-	\mathbf{r}	1	-	•	₹Ĩ	1	1	1	L	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SB
Switch Phase												
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	10.0	5.0	5.0	10.0		5.0	5.0
Minimum Split (s)	36.5	36.5	36.5	36.5	36.5	36.5	12.0	12.0	26.8		12.0	12.0
Total Split (s)	36.6	36.6	36.6	36.6	36.6	36.6	23.0	23.0	80.4		13.0	13.0
Total Split (%)	28.2%	28.2%	28.2%	28.2%	28.2%	28.2%	17.7%	17.7%	61.8%		10.0%	10.0%
Maximum Green (s)	30.1	30.1	30.1	30.1	30.1	30.1	16.0	16.0	74.6		6.0	6.0
Yellow Time (s)	3.3	3.3	3.3	3.3	3.3	3.3	3.7	3.7	3.7		3.7	3.7
All-Red Time (s)	3.2	3.2	3.2	3.2	3.2	3.2	3.3	3.3	2.1		3.3	3.3
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0			0.0
Total Lost Time (s)	6.5	6.5	6.5	6.5	6.5	6.5		7.0	5.8			7.0
Lead/Lag							Lead	Lead	Lag		Lead	Lead
Lead-Lag Optimize?									- 0			
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0
Recall Mode	None	None	None	None	None	None	None	None	C-Max		None	None
Walk Time (s)	7.0	7.0	7.0	7.0	7.0	7.0			7.0			
Flash Dont Walk (s)	23.0	23.0	23.0	23.0	23.0	23.0			14.0			
Pedestrian Calls (#/hr)	5	5	5	5	5	5			5			
Act Effct Green (s)	16.3	16.3	16.3	16.3	16.3	16.3		25.3	89.1			7.8
Actuated g/C Ratio	0.13	0.13	0.13	0.13	0.13	0.13		0.19	0.69			0.06
v/c Ratio	0.13	0.15	0.13	0.13	0.09	0.13		0.19	0.05			0.00
Control Delay	46.6	48.6	3.0	63.4	47.1	0.0		61.4	18.6			77.6
Queue Delay	40.0	40.0	0.0	0.0	0.0	0.0		0.0	0.0			0.0
Total Delay	46.6	48.6	3.0	63.4	47.1	0.0		61.4	18.6			77.6
LOS	40.0 D	40.0 D	3.0 A	03.4 E	47.1 D	0.0 A		61.4 E	10.0 B			E
Approach Delay	U	18.6	A	E	58.4	A		E	23.6			L
Approach LOS		10.0 B			50.4 E				23.0 C			
Queue Length 50th (m)	2.6	7.2	0.0	18.8	3.5	0.0		48.6	129.3			11.2
Queue Length 95th (m)	7.2	14.3	1.5	29.8	8.7	0.0		40.0 #105.1	212.6			#26.7
	1.2	188.6	1.0	29.0		0.0		#105.1	586.9			#20.1
Internal Link Dist (m)	35.0	100.0	60.0	135.0	217.6	55.0		165.0	200.9			155.0
Turn Bay Length (m)		400			240				2214			
Base Capacity (vph)	278	400	428	287	316	447		322				101
Starvation Cap Reductn	0	0	0	0	0	0		0	0			0
Spillback Cap Reductn	0	0	0	0	0	0		0	0			(
Storage Cap Reductn	0	0	0	0	0	0		0	0			(
Reduced v/c Ratio	0.04	0.08	0.20	0.29	0.05	0.01		0.69	0.76			0.45
Intersection Summary												
Area Type:	Other											
Cycle Length: 130												
Actuated Cycle Length: 130												
Offset: 112 (86%), Referenced	d to phase 2:	NBT and 6	:SBT. Star	t of Green								
Natural Cycle: 140			,									
Control Type: Actuated-Coord	inated											
Maximum v/c Ratio: 1.00												
Intersection Signal Delay: 30.1	1			In	tersection	1 OS' C						
Intersection Capacity Utilizatio						f Service G						
Analysis Period (min) 15												
# 95th percentile volume exc	ceeds canaci		nav he lon	ner								
Queue shown is maximum				901.								
	and two cyc											
Splits and Phases: 3: March	h & Solandt											
									04			

	T	1
	•	-
Lane Group	SBT	SBR
Switch Phase		
Minimum Initial (s)	10.0	
Minimum Split (s)	26.8	
Total Split (s)	70.4	
Total Split (%)	54.2%	
Maximum Green (s)	64.6	
Yellow Time (s)	3.7	
All-Red Time (s)	2.1	
Lost Time Adjust (s)	0.0	
Total Lost Time (s)	5.8	
Lead/Lag	Lag	
Lead-Lag Optimize?		
Vehicle Extension (s)	3.0	
Recall Mode	C-Max	
Walk Time (s)	7.0	
Flash Dont Walk (s)	14.0	
Pedestrian Calls (#/hr)	5	
Act Effct Green (s)	69.1	
Actuated g/C Ratio	0.53	
v/c Ratio	1.00	
Control Delay	35.1	
Queue Delay	0.0	
Total Delay	35.1	
LOS	D	
Approach Delay	36.1	
Approach LOS	D	
Queue Length 50th (m)	221.8	
Queue Length 95th (m)	#267.8	
Internal Link Dist (m)	387.0	
Turn Bay Length (m)		
Base Capacity (vph)	1740	
Starvation Cap Reductn	0	
Spillback Cap Reductn	0	
Storage Cap Reductn	0	
Reduced v/c Ratio	1.00	
Intersection Summary		

Fit Permitted 0.950 0.202 Satd. Flow (perm) 1654 1456 3283 1408 356 4718 Right Turn on Red Yes Yes Yes Satd. Flow (RTOR) 156 89 Link Speed (k/h) 50 60 60 60 Link Distance (m) 167.8 199.3 308.9 Travel Time (s) 12.1 12.0 18.5 Confl. Bikes (#/hr) 5 5 5 Peak Hour Factor 1.00 1.00 1.00 1.00 1.00 Heavy Vehicles (%) 1% 1% 3% 1% 1% 3% Adj. Flow (vph) 180 156 956 89 351 1618 Shared Lane Traffic (%) Lane Aignment LNA Right Left Right LNA Left Median Width(m) 3.5 7.0 7.0 7.0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.0		4	×.	1	1	1	ţ
Lane Configurations Y	Lane Group	WBI	WBR	NBT	NBR	SBL	SBT
Traffic Volume (vph) 180 156 956 89 351 1618 Future Volume (vph) 180 180 1800 1800 1800 1800 Storage Length (m) 65.0 0.0 100.0 75.0 50.0 Lane Util. Factor 1.00 1.00 0.95 1.00 1.00 0.91 Ped Bike Factor 0.99 0.97 0.94 50.0 1.00 1.00 0.91 Ped Bike Factor 0.990 0.97 0.94 50.0 0.202 53.0 0.202 53.0 0.202 53.0 0.202 53.0 0.202 53.0 60 60 60 1.00 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
Future Volume (vph) 180 156 956 89 351 1618 Ideal Flow (vphpl) 1800 1800 1800 1800 1800 1800 1800 Storage Lanes 1 1 1 1 1 1 Taper Length (m) 25.0 50.0 100 0.95 1.00 0.91 Lane Util, Factor 0.99 0.97 0.94							
Ideal Flow (vphp) 1800 100 100 100							
Storage Length (m) 65.0 0.0 100.0 75.0 Storage Lanes 1 1 1 1 1 Taper Length (m) 25.0 50.0 50.0 Lane Util, Factor 0.99 0.97 0.94 50.0 Ped Bike Factor 0.99 0.97 0.94 50.0 Fit Protected 0.950 0.850 0.850 50.2 Satd. Flow (port) 1674 1498 3283 1408 356 4718 Right Tum on Red Yes Yes Yes Set Set 60 60 Link Speed (kh) 50 60 60 60 60 100 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
Storage Lanes 1 1 1 1 1 Taper Length (m) 25.0 50.0 Lane Util. Factor 1.00 1.00 0.95 1.00 0.91 Ped Bike Factor 0.99 0.97 0.94 0.950 0.94 Fit 0.850 0.850 0.202 Stat. Flow (port) 1674 1498 3283 1498 1674 4718 Fit Protected 0.950 0.202 Stat. Flow (port) 1654 1456 3283 1408 356 4718 Right Turn on Red Yes Yes Yes Stat. Flow (RTOR) 156 89 11nk Distance (m) 167.8 199.3 308.9 Travel Time (s) 12.1 12.0 18.5 1618 Shared Lane Traffic (%) 100 1.00				1000			1000
Taper Length (m) 25.0 50.0 Lane Util, Factor 1.00 1.00 0.95 1.00 1.00 0.91 Ped Bike Factor 0.99 0.97 0.94 1.00 1.01 0.91 Fit 0.850 0.850 0.850 0.202 1.00 1.01 4.718 Fit Permitted 0.950 0.202 2 Satd. Flow (perm) 1654 1456 3283 1408 356 4718 Right Turn on Red Yes Yes Yes 1.00							
Lane Util, Factor 1.00 1.00 0.95 1.00 1.00 0.91 Ped Bike Factor 0.93 0.97 0.94 0.95 Fit 0.850 0.850 0.950 0.950 Satd. Flow (port) 1674 1498 3283 1498 1674 4718 Pit Permitted 0.950 0.202 284 Flow (perm) 1654 1456 3283 1408 356 4718 Satd. Flow (perm) 1654 1456 3283 1408 356 4718 Link Dstance (m) 167.8 199.3 308.9 1749 10 10 10 100 100 100 100 100 100 100 1.00			I		1	-	
Ped Bike Factor 0.99 0.97 0.94 Frt 0.850 0.850 Fit Protected 0.950 0.950 Satd. Flow (port) 1674 1498 3283 1498 1674 4718 Fit Permitted 0.950 0.202 2 3atd. Flow (perm) 1654 1456 3283 1408 356 4718 Right Turn on Red Yes Yes Yes 308.9 308.9 308.9 17724 116 10 10 10 10 10 10 100 1.			4.00	0.05	4.00		0.04
Frt 0.850 0.850 FIP Protected 0.950 0.950 Satd, Flow (prot) 1674 1498 3283 1498 1674 4718 FIP Permitted 0.950 0.202 202 202 202 Satd, Flow (perm) 1654 1456 3283 1408 356 4718 Right Turn on Red Yes Yes Yes 202 202 Satd, Flow (RTOR) 156 89 100 100 60 60 Link Speed (k/h) 50 60 18.5 601 89 308.9 Travel Time (s) 12.1 12.0 18.5 601 100 100 100 100 Confl. Bikes (#hr) 5 <td></td> <td></td> <td></td> <td>0.95</td> <td></td> <td>1.00</td> <td>0.91</td>				0.95		1.00	0.91
Fit Protected 0.950 0.950 Satd. Flow (prot) 1674 1498 3283 1498 1674 4718 Fit Permitted 0.950 0.202 0.202 0.202 Satd. Flow (perm) 1654 1456 3283 1408 356 4718 Right Turn on Red Yes Yes Yes Yes Yes Yes Satd. Flow (RTOR) 156 89 0.00 60 60 100 Link Distance (m) 167.8 199.3 308.9 308.9 308.9 7724 Confl. Bikes (#hr) 10 10 10 10 100 1.00 <t< td=""><td></td><td>0.99</td><td></td><td></td><td></td><td></td><td></td></t<>		0.99					
Satd. Flow (prot) 1674 1498 3283 1498 1674 4718 FI Permitted 0.950 0.202 0.202 0.202 0.202 Satd. Flow (perm) 1654 1456 3283 1408 356 4718 Right Turn on Red Yes Yes Satd. Flow (RTOR) 156 89 60 60 60 Link Speed (k/h) 50 60 60 18.5 5 5 5 5 5 5 5 5 5 7 7 100 1.00 <td></td> <td></td> <td>0.850</td> <td></td> <td>0.850</td> <td></td> <td></td>			0.850		0.850		
Fit Permitted 0.950 0.202 Satd. Flow (perm) 1654 1456 3283 1408 356 4718 Right Turn on Red Yes Yes Yes Yes Yes Satd. Flow (RTOR) 156 89 100 100 60 60 Link Speed (k/h) 50 60 60 18.5 Confl. Peds. (#/hr) 10 10 10 Confl. Peds. (#/hr) 5 5 5 5 5 5 Peak Hour Factor 1.00 1.							
Satd. Flow (perm) 1654 1456 3283 1408 356 4718 Right Turn on Red Yes Yes Yes Yes Yes Satd. Flow (RTOR) 156 89 116 Seed (k/n) 50 60 60 Link Distance (m) 167.8 199.3 308.9 308.9 Travel Time (s) 12.1 12.0 18.5 Confl. Bikes (#/n) 10 10 10 100 1.00	Satd. Flow (prot)		1498	3283	1498		4718
Right Turn on Red Yes Yes Satd. Flow (RTOR) 156 89 Link Speed (k/h) 50 60 60 Link Distance (m) 167.8 199.3 308.9 Travel Time (s) 12.1 12.0 18.5 Confl. Peds. (#/hr) 10 10 10 10 Confl. Reds. (#/hr) 5 5 5 Peak Hour Factor 1.00 1.00 1.00 1.00 1.00 Heavy Vehicles (%) 1% 1% 3% 1% 3% Adj. Flow (vph) 180 156 956 89 351 1618 Shared Lane Traffic (%) Lane Aigment L NA Right Left Right L NA Left Lane Alignment L NA Right Left Right L NA Left Median Width(m) 3.5 7.0 7.0 1.09 1.09 1.09 1.09 1.09 1.09 1.09 1.09 1.09 1.09 1.09 <td>Flt Permitted</td> <td>0.950</td> <td></td> <td></td> <td></td> <td>0.202</td> <td></td>	Flt Permitted	0.950				0.202	
Right Turn on Red Yes Yes Satd. Flow (RTOR) 156 89 Link Speed (k/h) 50 60 60 Link Distance (m) 167.8 199.3 308.9 Travel Time (s) 12.1 12.0 18.5 Confl. Peds. (#/hr) 10 10 10 10 Confl. Reds. (#/hr) 5 5 5 Peak Hour Factor 1.00 1.00 1.00 1.00 1.00 Heavy Vehicles (%) 1% 1% 3% 1% 3% Adj. Flow (vph) 180 156 956 89 351 1618 Shared Lane Traffic (%) Lane Aigment L NA Right Left Right L NA Left Lane Alignment L NA Right Left Right L NA Left Median Width(m) 3.5 7.0 7.0 1.09 1.09 1.09 1.09 1.09 1.09 1.09 1.09 1.09 1.09 1.09 <td>Satd. Flow (perm)</td> <td></td> <td>1456</td> <td>3283</td> <td>1408</td> <td></td> <td>4718</td>	Satd. Flow (perm)		1456	3283	1408		4718
Satd. Flow (RTOR) 156 89 Link Speed (k/h) 50 60 60 Link Distance (m) 167.8 199.3 308.9 Travel Time (s) 12.1 12.0 18.5 Confl. Peks. (#/hr) 10 10 10 10 Confl. Bikes (#/hr) 5 5 5 Peak Hour Factor 1.00 1.00 1.00 1.00 1.00 Hour Yehicles (%) 1% 1% 3% 1% 3% Adj. Flow (vph) 180 156 956 89 351 1618 Shared Lane Traffic (%) Lane Alignment LNA Right Left Right L NA Left Right L NA Left Right L NA Left Median Width(m) 3.5 7.0 7.0 1.09 1.09 1.09 1.09 1.09 1.09 1.09 1.09 1.09 1.09 1.09 1.09 1.09 1.09 1.09 1.09 1.09 1.09 <							
Link Speed (k/h) 50 60 60 Link Distance (m) 167.8 199.3 308.9 Travel Time (s) 12.1 12.0 18.5 Confl. Bkes (#/hr) 10 10 10 10 Confl. Bikes (#/hr) 5 5 5 Peak Hour Factor 1.00 1.00 1.00 1.00 1.00 1.00 Heavy Vehicles (%) 1% 1% 3% 1% 1% 3% Adj. Flow (vph) 180 156 956 89 351 1618 Shared Lane Traffic (%) Lane Group Flow (vph) 180 156 956 89 351 1618 Enter Blocked Intersection No No No No No No Link Offset(m) 0.0 0.0 0.0 0.0 Coccostauk Width(m) 5.0 5.0 Tow way Left Turn Lane Headway Factor 1.09 1.09 1.09 1.09 1.09 1.09 1.09 1.09 1.09							
Link Distance (m) 167.8 199.3 308.9 Travel Time (s) 12.1 12.0 18.5 Confl. Peds. (#/hr) 10 10 10 10 Confl. Bikes (#/hr) 5 5 Peak Hour Factor 1.00 <		50	100	60	00		60
Travel Time (s) 12.1 12.0 18.5 Confl. Peds. (#/hr) 10 10 10 10 Confl. Peds. (#/hr) 5 5 Peak Hour Factor 1.00 1.00 1.00 1.00 1.00 Heavy Vehicles (%) 1% 1% 3% 1% 1% 3% Adj. Flow (vph) 180 156 956 89 351 1618 Shared Lane Traffic (%) 180 156 956 89 351 1618 Enter Blocked Intersection No No No No No No No Lane Alignment L NA Right Left Right L NA Left Median Width(m) 3.5 7.0 7.0 7.0 1.00 1.09 1.09 1.09 1.09 Turning Speed (k/h) 24 14 14 24 14 24 14 24 Number of Detectors 1 1 2 1 1 2 1 1 2 Detector Template Left R							
Confl. Peds. (#/hr) 10 10 10 10 10 Confl. Bikes (#/hr) 5 5 5 Peak Hour Factor 1.00 1.00 1.00 1.00 1.00 1.00 Heavy Vehicles (%) 1% 1% 3% 1% 1% 3% Adj. Flow (vph) 180 156 956 89 351 1618 Shared Lane Traffic (%) Lane Group Flow (vph) 180 156 956 89 351 1618 Enter Blocked Intersection No No No No No No No Lane Alignment L NA Right Left Right L NA Left Median Width(m) 3.5 7.0 7.0 7.0 Link Offset(m) 0.0 0.0 0.0 0.0 0.0 0.0 Crosswalk Width(m) 5.0 5.0 5.0 7.0 1.09 1.09 1.09 1.09 1.09 1.09 1.09 1.09							
Confl. Bikes (#/hr) 5 5 Peak Hour Factor 1.00 No			40	12.0	40	40	18.5
Peak Hour Factor 1.00 No Inor <td></td> <td>10</td> <td></td> <td></td> <td></td> <td>10</td> <td></td>		10				10	
Heavy Vehicles (%) 1% 1% 3% 1% 1% 3% Adj. Flow (vph) 180 156 956 89 351 1618 Shared Lane Traffic (%) 180 156 956 89 351 1618 Enter Blocked Intersection No No No No No No No Lane Alignment L NA Right Left Right L NA Left Nub 0.0 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>							
Adj. Flow (vph) 180 156 956 89 351 1618 Shared Lane Traffic (%) Lane Group Flow (vph) 180 156 956 89 351 1618 Enter Blocked Intersection No No No No No No No No Lane Alignment L NA Right Left Right L NA Left Median Width(m) 3.5 7.0 7.0 100 1.00 0.0 0.0 Link Offset(m) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Crosswalk Width(m) 5.0 5.0 5.0 5.0 5.0 5.0 Two way Left Turn Lane Headway Factor 1.09 1.09 1.09 1.09 1.09 1.09 Turning Speed (k/h) 24 14 14 24 14 14 24 Number of Detectors 1 1 2 1 1 2 1 1 2 Detector Template Left Right Thru Right Left Thru							
Shared Lane Traffic (%) Lane Group Flow (vph) 180 156 956 89 351 1618 Enter Blocked Intersection No No No No No No Lane Alignment L NA Right Left Right L NA Left Median Width(m) 3.5 7.0 7.0 1.00 0.0 0.0 Crosswalk Width(m) 5.0 5.0 5.0 5.0 5.0 5.0 Two way Left Turn Lane Headway Factor 1.09 1.09 1.09 1.09 1.09 1.09 Turning Speed (k/h) 24 14 14 24 14 24 Number of Detectors 1 1 2 1 1 2 Detector Template Left Right Thru Right Left Thru Leading Detector (m) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0<	Heavy Vehicles (%)						
Shared Lane Traffic (%) Lane Group Flow (vph) 180 156 956 89 351 1618 Enter Blocked Intersection No No No No No No Lane Alignment L NA Right Left Right L NA Left Median Width(m) 3.5 7.0 7.0 1.00 0.0 0.0 Crosswalk Width(m) 5.0 5.0 5.0 5.0 5.0 5.0 Two way Left Turn Lane Headway Factor 1.09 1.09 1.09 1.09 1.09 1.09 Turning Speed (k/h) 24 14 14 24 10.0 2.0 2.0 10.0 2.0 2.0 10.0 1.00	Adj. Flow (vph)	180	156	956	89	351	1618
Lane Group Flow (vph) 180 156 956 89 351 1618 Enter Blocked Intersection No No No No No No No Lane Alignment L NA Right Left Right L NA Left Median Width(m) 3.5 7.0 7.0 Link Offset(m) 0.0 0.0 0.0 Crosswalk Width(m) 5.0 5.0 5.0 Two way Left Turn Lane	Shared Lane Traffic (%)						
Enter Blocked Intersection No Intert Interd	Lane Group Flow (vph)	180	156	956	89	351	1618
Lane Alignment L NA Right Left Right L NA Left Median Width(m) 3.5 7.0 7.0 Link Offset(m) 0.0 0.0 0.0 Crosswalk Width(m) 5.0 5.0 5.0 Two way Left Turn Lane	,						
Median Width(m) 3.5 7.0 7.0 Link Offset(m) 0.0 0.0 0.0 Crosswalk Width(m) 5.0 5.0 5.0 Two way Left Turn Lane							
Link Offset(m) 0.0 0.0 0.0 Crosswalk Width(m) 5.0 5.0 5.0 Two way Left Turn Lane Headway Factor 1.09 1.09 1.09 1.09 1.09 1.09 Turning Speed (k/h) 24 14 14 24 Number of Detectors 1 1 2 1 1 2 Detector Template Left Right Thru Right Left Thru Leading Detector (m) 2.0 2.0 10.0 2.0 2.0 10.0 Detector 1 Position(m) 0.0 0.0 0.0 0.0 0.0 0.0 Detector 1 Size(m) 2.0 2.0 0.6 2.0 2.0 0.6 Detector 1 Size(m) 2.0 2.0 0.6 2.0 2.0 0.6 Detector 1 Size(m) 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0			rugin		- agin		
Crosswalk Width(m) 5.0 5.0 5.0 Two way Left Turn Lane Headway Factor 1.09 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
Two way Left Tun Lane Headway Factor 1.09 1.09 1.09 1.09 1.09 Turning Speed (k/h) 24 14 14 24 Number of Detectors 1 1 2 1 1 2 Detector Template Left Right Thru Right Left Thru Leading Detector (m) 2.0 2.0 10.0 2.0 2.0 10.0 Trailing Detector (m) 0.0 0.0 0.0 0.0 0.0 0.0 Detector 1 Position(m) 0.0 0.0 0.0 0.0 0.0 0.0 Detector 1 Size(m) 2.0 2.0 1.6 2.0 2.0 0.6 Detector 1 Size(m) 2.0 2.0 0.6 2.0 0.0 0.0 Detector 1 Channel U U U U U U U U U U U U U U U U U U U <							
Headway Factor 1.09 1.09 1.09 1.09 1.09 1.09 Turning Speed (k/h) 24 14 14 24 Number of Detectors 1 1 2 1 1 2 Detector Template Left Right Thru Right Left Thru Leading Detector (m) 0.0 0.0 0.0 0.0 0.0 0.0 Trailing Detector (m) 0.0 0.0 0.0 0.0 0.0 0.0 Detector 1 Position(m) 0.0 0.0 0.0 0.0 0.0 0.0 Detector 1 Size(m) 2.0 2.0 0.6 2.0 2.0 0.6 Detector 1 Size(m) 2.0 2.0 0.6 2.0 2.0 0.6 Detector 1 Channel U <		5.0		5.0			5.0
Turning Speed (k/h) 24 14 14 24 Number of Detectors 1 1 2 1 1 2 Detector Template Left Right Thru Right Left Thru Leading Detector (m) 2.0 2.0 10.0 2.0 2.0 10.0 Trailing Detector (m) 0.0 0.0 0.0 0.0 0.0 0.0 Detector 1 Position(m) 0.0 0.0 0.0 0.0 0.0 0.0 Detector 1 Size(m) 2.0 2.0 0.6 2.0 2.0 0.6 Detector 1 Size(m) 2.0 2.0 0.6 2.0 2.0 0.6 Detector 1 Channel U			1	1	4.00	4	4.00
Number of Detectors 1 1 2 1 1 2 Detector Template Left Right Thru Right Left Thru Leading Detector (m) 2.0 2.0 10.0 2.0 2.0 10.0 Trailing Detector (m) 0.0 0.0 0.0 0.0 0.0 0.0 Detector 1 Position(m) 0.0 0.0 0.0 0.0 0.0 0.0 Detector 1 Size(m) 2.0 2.0 0.6 2.0 2.0 0.6 Detector 1 Size(m) 2.0 2.0 0.6 2.0 2.0 0.6 Detector 1 Size(m) 2.0 2.0 0.6 2.0 2.0 0.6 Detector 1 Channel				1.09			1.09
Detector Template Left Right Thru Right Left Thru Leading Detector (m) 2.0 2.0 10.0 2.0 2.0 10.0 Trailing Detector (m) 0.0 0.0 0.0 0.0 0.0 0.0 Detector 1 Position(m) 0.0 0.0 0.0 0.0 0.0 0.0 Detector 1 Size(m) 2.0 2.0 0.6 2.0 2.0 0.6 Detector 1 Size(m) 2.0 2.0 0.6 2.0 2.0 0.6 Detector 1 Size(m) 2.0 2.0 0.6 2.0 2.0 0.6 Detector 1 Channel							
Leading Detector (m) 2.0 2.0 10.0 2.0 2.0 10.0 Trailing Detector (m) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Detector 1 Position(m) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Detector 1 Size(m) 2.0 2.0 0.6 2.0 2.0 0.6 Detector 1 Type CI+Ex CI CI <t< td=""><td>Number of Detectors</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Number of Detectors						
Leading Detector (m) 2.0 2.0 10.0 2.0 2.0 10.0 Trailing Detector (m) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Detector 1 Position(m) 0.0 0.0 0.0 0.0 0.0 0.0 Detector 1 Size(m) 2.0 2.0 0.6 2.0 2.0 0.6 Detector 1 Size(m) 2.0 2.0 0.6 2.0 2.0 0.6 Detector 1 Size(m) 2.0 2.0 0.6 2.0 2.0 0.6 Detector 1 Channel U	Detector Template	Left	Right	Thru	Right	Left	Thru
Trailing Detector (m) 0.0	Leading Detector (m)	2.0		10.0		2.0	10.0
Detector 1 Position(m) 0.0			0.0				
Detector 1 Size(m) 2.0 2.0 0.6 2.0 2.0 0.6 Detector 1 Type CI+Ex CI CI CI CI CI+Ex CI+Ex CI+Ex CI							
Detector 1 Type CI+Ex Detector 1.00 0.0							
Detector 1 Channel Detector 1 Extend (s) 0.0 <							
Detector 1 Extend (s) 0.0							
Detector 1 Queue (s) 0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Delay (s) 0.0 Detector 2 Size(m) 0.6 0.6 0.6 Detector 2 Size(m) 0.6 Cl+Ex Cl+Ex Detector 2 Channel Detector 2 Channel 0.0 0.0 0.0 0.0 0.0 Turn Type Perm Perm NA Perm pm+pt NA Protected Phases 2 1 6 Permitted Phases 8 8 2 6							
Detector 2 Position(m) 9.4 9.4 Detector 2 Size(m) 0.6 0.6 Detector 2 Type CI+Ex CI+Ex Detector 2 Channel 0.0 0.0 Detector 2 Extend (s) 0.0 0.0 Turn Type Perm Perm NA Protected Phases 2 1 6 Permitted Phases 8 8 2 6							
Detector 2 Size(m) 0.6 0.6 Detector 2 Type CI+Ex CI+Ex Detector 2 Channel 0.0 0.0 Detector 2 Extend (s) 0.0 0.0 Turn Type Perm Perm NA Protected Phases 2 1 6 Permitted Phases 8 8 2 6		0.0	0.0		0.0	0.0	
Detector 2 TypeCI+ExCI+ExDetector 2 Channel0.00.0Detector 2 Extend (s)0.00.0Turn TypePermPermNAProtected Phases216Permitted Phases8826							
Detector 2 Channel Detector 2 Extend (s) 0.0 Turn Type Perm Protected Phases 2 Permitted Phases 8 8 2 6	Detector 2 Size(m)						
Detector 2 Channel Detector 2 Extend (s) 0.0 Turn Type Perm Protected Phases 2 Permitted Phases 8 8 2 6	Detector 2 Type			CI+Ex			CI+Ex
Detector 2 Extend (s) 0.0 0.0 Turn Type Perm Perm NA Perm Pm+pt NA Protected Phases 2 1 6 Permitted Phases 8 8 2 6							
Turn TypePermPermNAPermpm+ptNAProtected Phases216Permitted Phases8826				0.0			0.0
Protected Phases216Permitted Phases8826		Perm	Perm		Perm	pm+pt	
Permitted Phases 8 8 2 6							
		Q	Q	2	2		0
				0			C
	Delector Phase	ð	õ	2	2		0

	4	*	1	1	1	ţ
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Switch Phase						
Minimum Initial (s)	10.0	10.0	10.0	10.0	5.0	10.0
Minimum Split (s)	38.5	38.5	23.8	23.8	11.4	23.8
Total Split (s)	42.0	42.0	55.0	55.0	33.0	88.0
Total Split (%)	32.3%	32.3%	42.3%	42.3%	25.4%	67.7%
Maximum Green (s)	35.5	35.5	49.2	49.2	26.6	82.2
Yellow Time (s)	3.3	3.3	3.7	3.7	3.7	3.7
All-Red Time (s)	3.2	3.2	2.1	2.1	2.7	2.1
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	6.5	6.5	5.8	5.8	6.4	5.8
Lead/Lag	0.0	0.0	Lag	Lag	Lead	0.0
Lead-Lag Optimize?			Lug	Lug	Louu	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	None	None	C-Max	C-Max	None	C-Max
Walk Time (s)	7.0	7.0	7.0	7.0	NONE	7.0
Flash Dont Walk (s)	25.0	25.0	11.0	11.0		11.0
Pedestrian Calls (#/hr)	25.0	25.0	10	10		10
Act Effct Green (s)	20.6	20.6	68.5	68.5	96.5	97.1
						97.1 0.75
Actuated g/C Ratio	0.16	0.16	0.53	0.53	0.74	
v/c Ratio	0.69	0.43	0.55	0.11	0.72	0.46
Control Delay	64.2	10.0	19.7	6.1	15.8	6.1
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	64.2	10.0	19.7	6.1	15.8	6.1
LOS	E	В	В	А	В	A
Approach Delay	39.0		18.6			7.9
Approach LOS	D		В			А
Queue Length 50th (m)	41.1	0.0	34.0	0.0	28.3	61.0
Queue Length 95th (m)	56.7	15.5	93.2	m6.8	23.8	72.5
Internal Link Dist (m)	143.8		175.3			284.9
Turn Bay Length (m)	65.0			100.0	75.0	
Base Capacity (vph)	451	511	1729	783	542	3524
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.40	0.31	0.55	0.11	0.65	0.46
Intersection Summary	0.1					
Area Type:	Other					
Cycle Length: 130						
Actuated Cycle Length: 130						
Offset: 0 (0%), Referenced to	phase 2:NBT	and 6:SB	TL, Start o	f Green		
Natural Cycle: 90						
Control Type: Actuated-Coord	inated					
Maximum v/c Ratio: 0.72						
Intersection Signal Delay: 14.3	3				tersection	
Intersection Capacity Utilization	on 79.1%			IC	U Level o	f Service D
Analysis Period (min) 15						
m Volume for 95th percentile				innal		

Splits and Phases: 6: March & Nokia Access

J.Audia, Novatech

4: Innovation/Flamborough & Terry Fox AM Peak Hour

Storage Length (m) 75.0 120.0 110.0 130.0 220.0 0.0 30.0 Storage Lanes 1 1 1 1 1 0 1 Taper Length (m) 50.0 80.0 50.0 15.0 15.0 Lane Util. Factor 0.09 0.95 0.99 0.96 0.98 0.97 0.99 Ped Bike Factor 0.99 0.950 0.950 0.950 0.950 0.950 Flt Protected 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.533 534 101 1174 121 0 1674 Flt Promited 0.533 544 0.644 0.533 55 55 55 55 55 55 5	
Lane Configurations Y	
Traffic Volume (vph) 29 433 76 84 262 37 37 36 85 63 Future Volume (vph) 1800 180	SBT SBR
Traffic Volume (vph) 29 433 76 84 262 37 37 36 85 63 Future Volume (vph) 1800 180	۹,
Ideal Flow (vphpl) 1800 100 100 100	55 42
Ideal Flow (vphpl) 1800 100 100 100	55 42
Storage Length (m) 75.0 120.0 110.0 130.0 220.0 0.0 30.0 Storage Lanes 1 1 1 1 1 0 1 Taper Length (m) 50.0 80.0 50.0 15.0 15.0 Lane Util. Factor 0.09 0.95 0.99 0.96 0.98 0.97 0.99 Ped Bike Factor 0.990 0.950 0.950 0.950 0.950 0.950 Fit Protected 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.533 54.150 (Ror Ror Ror Ror Ror Ror Ror Ror Ror Ror	800 1800
Storage Lanes 1 1 1 1 1 1 0 1 Taper Length (m) 50.0 80.0 50.0 15.3 15.0 15.3 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.5 10.0<	0.0
Taper Length (m) 50.0 80.0 50.0 15.0 Lane Util. Factor 1.00 <td< td=""><td>0</td></td<>	0
Lane Util, Factor 1.00 <th1.01< th=""> 1.01 1.01</th1.01<>	
Ped Bike Factor 0.99 0.95 0.99 0.96 0.98 0.97 0.99 Fit 0.850 0.850 0.850 0.895 0.990 Stat. Flow (prot) 1470 1728 1469 1626 1728 1498 1658 1511 0 1674 Flt Protected 0.597 0.454 0.684 0.593 0.593 Satd. Flow (perm) 916 1728 1392 769 1728 1441 1171 1511 0 1036 Right Turn on Red Yes Yes Yes Yes Yes Stat. Flow (RTOR) 78 85 547.1 177 177 10 10 5	1.00 1.00
Frit 0.850 0.850 0.895 0.950 0.950 0.950 Flt Protected 0.950 0.950 0.950 0.950 0.950 Satd, Flow (port) 1470 1728 1469 1658 1511 0 1674 Flt Permitted 0.597 0.454 0.684 0.593 Satd, Flow (perm) 916 1728 1392 769 1728 1441 1171 1511 0 1036 Right Turn on Red Yes Yes Yes Yes Yes 1728 1441 1171 1511 0 1036 1441 <td< td=""><td>0.98</td></td<>	0.98
Fit Protected 0.950 0.950 0.950 0.950 Satd, Flow (prot) 1470 1728 1469 1626 1728 1498 1658 1511 0 1674 Fit Permitted 0.597 0.454 0.684 0.593 Satd. Flow (perm) 916 1728 1392 769 1728 1441 1171 1511 0 1036 Right Turn on Red Yes Yes Yes Yes Yes Yes Satd. Flow (RTOR) 78 78 85 111 0 1036 0	935
Satd. Flow (prot) 1470 1728 1469 1626 1728 1498 1658 1511 0 1674 Flt Permitted 0.597 0.454 0.684 0.593 Satd. Flow (perm) 916 1728 1392 769 1728 1441 1171 151 0 1036 Right Turn on Red Yes Yes </td <td></td>	
Fit Permitted 0.597 0.454 0.684 0.593 Satd, Flow (perm) 916 1728 1392 769 1728 1441 1171 1511 0 1036 Right Turn on Red Yes Yes Yes Yes Yes Yes Satd, Flow (RTOR) 78 78 855 10 50 10 50 Link Speed (k/h) 60 60 50 5 </td <td>554 0</td>	554 0
Satd. Flow (perm) 916 1728 1392 769 1728 1441 1171 1511 0 1036 Right Turn on Red Yes <	
Right Turn on Red Yes Yes Yes Yes Satd. Flow (RTOR) 78 78 78 85 Link Speed (k/h) 60 60 50 Link Distance (m) 508.2 485.8 547.1 78 Travel Time (s) 30.5 29.1 39.4 5 Confl. Peds. (#/hr) 5 10 10 5 10 1.00 Heavy Vehicles (%) 15% 3% 4% 3% 1% 2% 2% 3% 1% Adj. Flow (vph) 29 433 76 84 262 37 37 36 85 63 Shared Lane Traffic (%) 129 433 76 84 262 37 37 121 0 63 Enter Blocked Intersection No No <td>554 0</td>	554 0
Satd. Flow (RTOR) 78 78 85 Link Speed (k/h) 60 60 50 Link Distance (m) 508.2 485.8 547.1 77 Travel Time (s) 30.5 29.1 39.4 76 Confl. Peds. (#hr) 5 10 10 5 5 Confl. Peds. (#hr) 5 10 1.00	Yes
Link Speed (k/h) 60 60 50 Link Distance (m) 508.2 485.8 547.1 5 Travel Time (s) 30.5 29.1 39.4 5 Confl. Bikes (#hr) 5 10 10 5 10 5 5 Peak Hour Factor 1.00 <t< td=""><td>29</td></t<>	29
Link Distance (m) 508.2 485.8 547.1 5 Travel Time (s) 30.5 29.1 39.4 5 6 Confl. Peds. (#/hr) 5 10 10 5 10 5 5 Peak Hour Factor 1.00 1.0	50
Travel Time (s) 30.5 29.1 39.4 Confl. Peds. (#/hr) 5 10 10 5 10 5 5 5 Confl. Bikes (#/hr) 5 5 5 5 5 5 5 Peak Hour Factor 1.00 <	13.7
Confl. Peds. (#/hr) 5 10 10 5 10 5 5 Confl. Bikes (#/hr) 5 5 5 5 5 5 Peak Hour Factor 1.00 <td< td=""><td>22.6</td></td<>	22.6
Confl. Bikes (#/hr) 5 5 5 Peak Hour Factor 1.00 </td <td>10</td>	10
Peak Hour Factor 1.00	5
Heavy Vehicles (%) 15% 3% 3% 4% 3% 1% 2% 2% 3% 1% Adj. Flow (vph) 29 433 76 84 262 37 37 36 85 63 Shared Lane Traffic (%) 63 85 63 63 Enter Blocked Intersection No Sister Sister Sister Sister Sister	1.00 1.00
Adj. Flow (vph) 29 433 76 84 262 37 37 36 85 63 Shared Lane Traffic (%) Lane Group Flow (vph) 29 433 76 84 262 37 37 121 0 63 Enter Blocked Intersection No Si 3.5 3.5 3.5 3.5 Si	1% 10%
Shared Lane Traffic (%) Lane Group Flow (vph) 29 433 76 84 262 37 37 121 0 63 Enter Blocked Intersection No So 5.5 5.0 5.0 Trow way Left Turn Lane Headway Factor 1.09 1.09 1.09 1.09 1.09 1.09 1.09 1.09 1.09 1.09 1.09 1.09 1.09 <	55 42
Lane Group Flow (vph) 29 433 76 84 262 37 37 121 0 63 Enter Blocked Intersection No Si 3.5 3.5 3.5 3.5 Si	55 72
Enter Blocked Intersection No No <th< td=""><td>97 0</td></th<>	97 0
Lane Alignment L NA Left R NA L NA Median Width(m) 3.5 3.5 3.5 3.5 3.5 3.5 3.5 1.00 0.0	No No
Median Width(m) 3.5 3.5 3.5 Link Offset(m) 0.0 0.0 0.0 Crosswalk Width(m) 5.0 5.0 5.0 Two way Left Turn Lane	Left R NA
Link Offset(m) 0.0 0.0 0.0 Crosswalk Width(m) 5.0 5.0 5.0 Two way Left Turn Lane	3.5
Crosswalk Width(m) 5.0 5.0 5.0 Two way Left Turn Lane Headway Factor 1.09 <td>0.0</td>	0.0
Two way Left Turn Lane Headway Factor 1.09	5.0
Headway Factor 1.09<	5.0
Turning Speed (k/h) 24 14 <td>1.09 1.09</td>	1.09 1.09
Number of Detectors 1 2 1	1.09 1.09
Detector Template Left Thru Right Left Thru Right Left Thru Right Left Thru Left Clift Left Dial 2.0 2.0 2.0 2.0 0.0	2
Leading Detector (m) 2.0 10.0 2.0 10.0 2.0 10.0 2.0 10.0 2.0 10.0 2.0 10.0 2.0 10.0 2.0 10.0 2.0 10.0 2.0 10.0 2.0 10.0 2.0 10.0 2.0 10.0 2.0 10.0 2.0 10.0 2.0 10.0 2.0 10.0 2.0 10.0 2.0 10.0 2.0 0.0	Z Thru
Trailing Detector (m) 0.0	10.0
Detector 1 Position(m) 0.0	
Detector 1 Size(m) 2.0 0.6 2.0 2.0	0.0
Detector 1 Type CI+Ex CI	0.0
	0.6
	+Ex
Detector 1 Channel	0.0
Detector 1 Extend (s) 0.0	0.0
Detector 1 Queue (s) 0.0	0.0
Detector 1 Delay (s) 0.0	0.0
Detector 2 Position(m) 9.4 9.4 9.4	9.4
Detector 2 Size(m) 0.6 0.6 0.6	0.6
	+Ex
Detector 2 Channel	
Detector 2 Extend (s) 0.0 0.0 0.0	0.0
Turn Type pm+pt NA Perm pm+pt NA Perm Perm NA Perm	NA
Protected Phases 5 2 1 6 8	4
Permitted Phases 2 2 6 6 8 4	
Detector Phase 5 2 2 1 6 6 8 8 4	4

J.Audia, Novatech

4: Innovation/Flamborough & Terry Fox AM Peak Hour

	٦	-	\rightarrow	-	-	•	▲	Ť	1	>	Ŧ	*
ane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	S
Switch Phase												
/linimum Initial (s)	5.0	10.0	10.0	5.0	10.0	10.0	10.0	10.0		10.0	10.0	
/linimum Split (s)	11.0	27.9	27.9	11.0	27.9	27.9	36.3	36.3		36.3	36.3	
Гotal Split (s)	18.0	70.0	70.0	18.0	70.0	70.0	42.0	42.0		42.0	42.0	
Fotal Split (%)	13.8%	53.8%	53.8%	13.8%	53.8%	53.8%	32.3%	32.3%		32.3%	32.3%	
Aaximum Green (s)	12.0	64.1	64.1	12.0	64.1	64.1	35.7	35.7		35.7	35.7	
fellow Time (s)	3.7	3.7	3.7	3.7	3.7	3.7	3.3	3.3		3.3	3.3	
All-Red Time (s)	2.3	2.2	2.2	2.3	2.2	2.2	3.0	3.0		3.0	3.0	
ost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Lost Time (s)	6.0	5.9	5.9	6.0	5.9	5.9	6.3	6.3		6.3	6.3	
.ead/Lag	Lead	Lag	Lag	Lead	Lag	Lag						
ead-Lag Optimize?		Ŭ	Ŭ		Ŭ	Ŭ						
/ehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0	
Recall Mode	None	C-Max	C-Max	None	C-Max	C-Max	None	None		None	None	
Valk Time (s)		7.0	7.0		7.0	7.0	7.0	7.0		7.0	7.0	
Flash Dont Walk (s)		15.0	15.0		15.0	15.0	23.0	23.0		23.0	23.0	
Pedestrian Calls (#/hr)		5	5		5	5	5	5		5	5	
Act Effct Green (s)	95.2	89.2	89.2	99.5	94.8	94.8	15.4	15.4		15.4	15.4	
Actuated g/C Ratio	0.73	0.69	0.69	0.77	0.73	0.73	0.12	0.12		0.12	0.12	
/c Ratio	0.04	0.37	0.08	0.13	0.21	0.03	0.27	0.48		0.52	0.46	
Control Delay	4.9	11.1	2.5	6.3	13.4	5.6	53.6	23.5		66.1	42.3	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Delay	4.9	11.1	2.5	6.3	13.4	5.6	53.6	23.5		66.1	42.3	
.OS	A	В		A	В	A	D	C		E	D	
Approach Delay		9.6	7.		11.1		2	30.6		-	51.7	
Approach LOS		A			В			C			D	
Queue Length 50th (m)	1.1	35.3	0.0	11.3	37.2	0.9	8.3	8.0		14.6	15.4	
Queue Length 95th (m)	5.0	81.8	6.1	m19.7	66.8	m4.1	15.9	21.7		24.6	27.2	
nternal Link Dist (m)	0.0	484.2	0.1		461.8		10.0	523.1		21.0	289.7	
Furn Bay Length (m)	75.0	-10-1.2	120.0	110.0	+01.0	130.0	220.0	020.1		30.0	200.1	
Base Capacity (vph)	763	1185	979	682	1260	1072	321	476		284	447	
Starvation Cap Reductn	0	0	0	002	0	0	0	0		0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0		0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0		0	0	
Reduced v/c Ratio	0.04	0.37	0.08	0.12	0.21	0.03	0.12	0.25		0.22	0.22	
ntersection Summary												
Area Type:	Other											
Cycle Length: 130												
Actuated Cycle Length: 130												
Offset: 124 (95%), Referenced	d to phase 2:	EBTL and	6:WBTL, S	Start of Gre	en							
latural Cycle: 80												
Control Type: Actuated-Coord	linated											
/laximum v/c Ratio: 0.52												
ntersection Signal Delay: 18.	1			In	tersection	LOS: B						
ntersection Capacity Utilization					U Level of		;					
nalysis Period (min) 15												

Splits and Phases: 4: Innovation/Flamborough & Terry Fox

J.Audia, Novatech

	≯	+	\mathbf{F}	4	ł	×	<	1	1	×	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			\$			\$			\$	
Traffic Volume (veh/h)	15	0	118	6	1	0	92	58	2	1	15	2
Future Volume (Veh/h)	15	0	118	6	1	0	92	58	2	1	15	2
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	15	0	118	6	1	0	92	58	2	1	15	2
Pedestrians		5										
Lane Width (m)		3.5										
Walking Speed (m/s)		1.0										
Percent Blockage		0										
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC, conflicting volume	266	267	21	379	267	59	22			60		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	266	267	21	379	267	59	22			60		
tC, single (s)	7.1	6.5	6.3	7.1	6.5	6.2	4.2			4.1		
tC, 2 stage (s)												
tF (s)	3.5	4.0	3.4	3.5	4.0	3.3	2.3			2.2		
p0 queue free %	98	100	89	99	100	100	94			100		
cM capacity (veh/h)	650	598	1040	489	599	1010	1548			1544		
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total	133	7	152	18								
Volume Left	15	6	92	1								
Volume Right	118	0	2	2								
cSH	974	502	1548	1544								
Volume to Capacity	0.14	0.01	0.06	0.00								
Queue Length 95th (m)	3.3	0.01	1.3	0.0								
Control Delay (s)	9.3	12.3	4.7	0.0								
Lane LOS	3.3 A	12.3 B	ч. <i>1</i> А	A								
Approach Delay (s)	9.3	12.3	4.7	0.4								
Approach LOS	9.3 A	12.3 B	7.1	0.4								
	<i>/</i> \	D										
Intersection Summary			6.6									
Average Delay				10	الم الما ال	Convise			Λ			
Intersection Capacity Utilization			30.3%	iC	U Level of	Service			А			
Analysis Period (min)			15									

	٨	-	\mathbf{i}	•	+	*	₽	1	1	1	L	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL
Lane Configurations	1	•	1	ሻሻ	el 🕺			1	∱ĵ ≽			<u>۲</u>
Traffic Volume (vph)	12	33	85	82	16	4	2	221	1484	199	2	43
Future Volume (vph)	12	33	85	82	16	4	2	221	1484	199	2	43
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Storage Length (m)	35.0		60.0	85.0		55.0		165.0		0.0		155.0
Storage Lanes	1		1	2		0		1		0		1
Taper Length (m)	50.0			95.0				40.0				25.0
Lane Util. Factor	1.00	1.00	1.00	0.97	1.00	1.00	0.95	1.00	0.95	0.95	0.95	1.00
Ped Bike Factor	0.99		0.98	0.99	1.00			1.00	1.00			1.00
Frt			0.850		0.970				0.982			
Flt Protected	0.950			0.950				0.950				0.950
Satd. Flow (prot)	1537	1728	1414	3124	1384	0	0	1658	3223	0	0	1674
Flt Permitted	0.950			0.950		-	-	0.950		-	-	0.950
Satd. Flow (perm)	1528	1728	1381	3092	1384	0	0	1656	3223	0	0	1672
Right Turn on Red	1020	1120	Yes	0002	1001	Yes	Ŭ	1000	0220	Yes	v	1012
Satd. Flow (RTOR)			137		4	100			16	100		
Link Speed (k/h)		50	101		50				60			
Link Distance (m)		212.6			241.6				610.9			
Travel Time (s)		15.3			17.4				36.7			
Confl. Peds. (#/hr)	5	15.5	5	5	17.4	5		5	50.7	5		5
Confl. Bikes (#/hr)	J		5	J		5		J		5		J
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles (%)	1.00	3%	7%	5%	30%	1%	2%	2%	3%	1%	2%	1%
Adj. Flow (vph)	10 %	33	85	82	16	4	2 /0	270	1484	199	2 /0	43
Shared Lane Traffic (%)	12	33	00	02	10	4	2	221	1404	199	2	43
Lane Group Flow (vph)	12	33	85	82	20	0	0	223	1683	0	0	45
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	L NA	Left	R NA	L NA	Left	R NA	R NA	L NA	Left	R NA	R NA	L NA
Median Width(m)		7.0			10.5				17.5			
Link Offset(m)		0.0			0.0				0.0			
Crosswalk Width(m)		5.0			5.0				5.0			
Two way Left Turn Lane												
Headway Factor	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09
Number of Detectors	1.00	2	1.00	1	2	1.00	1.00	1.00	2	1.00	1	1
Detector Template	Left	Thru	Right	Left	Thru		Left	Left	Thru		Left	Left
Leading Detector (m)	2.0	10.0	2.0	2.0	10.0		2.0	2.0	10.0		2.0	2.0
Trailing Detector (m)	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0		0.0	0.0
Detector 1 Position(m)	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0		0.0	0.0
Detector 1 Size(m)	2.0	0.0	2.0	2.0	0.6		2.0	2.0	0.6		2.0	2.0
Detector 1 Type	CI+Ex	CI+Ex	CI+Ex	CI+Ex	Cl+Ex		CI+Ex	CI+Ex	Cl+Ex		CI+Ex	CI+Ex
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0		0.0	0.0
· · · · · · · · · · · · · · · · · · ·	0.0	0.0	0.0		0.0		0.0		0.0			
Detector 1 Queue (s) Detector 1 Delay (s)	0.0			0.0	0.0		0.0	0.0			0.0	0.0 0.0
Detector 1 Delay (s) Detector 2 Position(m)	0.0	0.0 9.4	0.0	0.0	0.0 9.4		0.0	0.0	0.0 9.4		0.0	0.0
					9.4 0.6							
Detector 2 Size(m)		0.6							0.6			
Detector 2 Type		CI+Ex			Cl+Ex				CI+Ex			
Detector 2 Channel		0.0							0.0			
Detector 2 Extend (s)	- /	0.0	D	- ·	0.0		- (- (0.0		. .	
Turn Type	Prot	NA	Perm	Prot	NA		Prot	Prot	NA		Prot	Prot
Protected Phases	7	4		3	8		5	5	2		1	1
Permitted Phases			4		_							
Detector Phase	7	4	4	3	8		5	5	2		1	1
Switch Phase												

	1	1
	+	•
Lane Group	SBT	SBR
Lane Configurations		
Traffic Volume (vph)	T ⊮ 1696	37
	1696	37
Future Volume (vph)		
Ideal Flow (vphpl)	1800	1800
Storage Length (m)		0.0
Storage Lanes		0
Taper Length (m)		
Lane Util. Factor	0.95	0.95
Ped Bike Factor	1.00	
Frt	0.997	
Flt Protected		
Satd. Flow (prot)	3272	0
Flt Permitted		
Satd. Flow (perm)	3272	0
Right Turn on Red	V212	Yes
Satd. Flow (RTOR)	2	103
Link Speed (k/h)	60	
Link Distance (m)	411.0	
Travel Time (s)	24.7	_
Confl. Peds. (#/hr)		5
Confl. Bikes (#/hr)		5
Peak Hour Factor	1.00	1.00
Heavy Vehicles (%)	3%	1%
Adj. Flow (vph)	1696	37
Shared Lane Traffic (%)		
Lane Group Flow (vph)	1733	0
Enter Blocked Intersection	No	No
Lane Alignment	Left	R NA
Median Width(m)	17.5	111/1
Link Offset(m)	0.0	
Crosswalk Width(m)	5.0	
Two way Left Turn Lane		
Headway Factor	1.09	1.09
Number of Detectors	2	
Detector Template	Thru	
Leading Detector (m)	10.0	
Trailing Detector (m)	0.0	
Detector 1 Position(m)	0.0	
Detector 1 Size(m)	0.6	
Detector 1 Type	CI+Ex	
Detector 1 Channel		
Detector 1 Extend (s)	0.0	
Detector 1 Queue (s)	0.0	
Detector 1 Delay (s)	0.0	
Detector 2 Position(m)	9.4	
Detector 2 Size(m)	0.6	
Detector 2 Type	CI+Ex	
Detector 2 Channel		
Detector 2 Extend (s)	0.0	
Turn Type	NA	
Protected Phases	6	
Permitted Phases	Ŭ	
Detector Phase	6	
	U	
Switch Phase		

								2007 Da	ickground i	Tanic (uua		Solanut)
	٦	-	$\mathbf{\hat{v}}$	4	←	•	₽	1	1	1	L	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL
Minimum Initial (s)	5.0	10.0	10.0	5.0	10.0		5.0	5.0	10.0		5.0	5.0
Minimum Split (s)	11.5	36.5	36.5	11.5	36.5		12.0	12.0	26.8		12.0	12.0
Total Split (s)	11.5	36.5	36.5	11.5	36.5		12.0	12.0	70.0		12.0	12.0
Total Split (%)	8.8%	28.1%	28.1%	8.8%	28.1%		9.2%	9.2%	53.8%		9.2%	9.2%
Maximum Green (s)	5.0	30.0	30.0	5.0	30.0		5.0	5.0	64.2		5.0	5.0
Yellow Time (s)	3.3	3.3	3.3	3.3	3.3		3.7	3.7	3.7		3.7	3.7
All-Red Time (s)	3.2	3.2	3.2	3.2	3.2		3.3	3.3	2.1		3.3	3.3
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0			0.0	0.0			0.0
Total Lost Time (s)	6.5	6.5	6.5	6.5	6.5			7.0	5.8			7.0
Lead/Lag	Lead	Lag	Lag	Lead	Lag		Lead	Lead	Lag		Lead	Lead
Lead-Lag Optimize?	Yes				Yes							
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0		3.0	3.0
Recall Mode	None	None	None	None	None		None	None	C-Max		None	None
Walk Time (s)		7.0	7.0		7.0				7.0			
Flash Dont Walk (s)		23.0	23.0		23.0				14.0			
Pedestrian Calls (#/hr)		5	5		5				5			
Act Effct Green (s)	5.0	14.0	14.0	5.0	20.9			21.0	79.9			7.9
Actuated g/C Ratio	0.04	0.11	0.11	0.04	0.16			0.16	0.61			0.06
v/c Ratio	0.20	0.18	0.31	0.68	0.09			0.84	0.85			0.45
Control Delay	68.8	51.8	3.9	89.0	40.1			77.5	26.9			88.9
Queue Delay	0.0	0.0	0.0	0.0	0.0			0.0	0.0			0.0
Total Delay	68.8	51.8	3.9	89.0	40.1			77.5	26.9			88.9
LOS	E	D	Α	F	D			E	С			F
Approach Delay		22.1			79.4				32.8			
Approach LOS		С			E				С			
Queue Length 50th (m)	2.8	7.5	0.0	10.0	3.2			49.6	158.0			10.6
Queue Length 95th (m)	9.0	14.3	2.2	#21.1	9.3			#139.8	#266.6			#30.6
Internal Link Dist (m)		188.6			217.6				586.9			
Turn Bay Length (m)	35.0		60.0	85.0				165.0				155.0
Base Capacity (vph)	59	398	424	120	322			267	1987			101
Starvation Cap Reductn	0	0	0	0	0			0	0			0
Spillback Cap Reductn	0	0	0	0	0			0	0			0
Storage Cap Reductn	0	0	0	0	0			0	0			0
Reduced v/c Ratio	0.20	0.08	0.20	0.68	0.06			0.84	0.85			0.45
Intersection Summary												
Area Type:	Other											
Cycle Length: 130												
Actuated Cycle Length: 130												
Offset: 0 (0%), Referenced to	phase 2:NBT	and 6:SB	T, Start of	Green								
Natural Cycle: 150												
Control Type: Actuated-Coord	linated											
Maximum v/c Ratio: 1.07	_											
Intersection Signal Delay: 50.8					tersection l							
Intersection Capacity Utilization	on 100.3%			IC	U Level of	Service G						
Analysis Period (min) 15												
 Volume exceeds capacity 			nfinite.									
Queue shown is maximum												
# 95th percentile volume ex			nay be lon	ger.								
Queue shown is maximum	atter two cyc	les.										

Splits and Phases: 3: March & Solandt

₩ _{Ø1} ↓ ↑ _{Ø2 (R)}	✓ Ø3 → Ø4
12 s 70 s	11.5 <mark>s 36,5</mark> s
🖈 øs 🏮 k ø6 (R)	
12 s 70 s	11.5 s 36.5 s

	Ţ	1
	•	-
Lane Group	SBT	SBR
Minimum Initial (s)	10.0	
Minimum Split (s)	26.8	
Total Split (s)	70.0	
Total Split (%)	53.8%	
Maximum Green (s)	64.2	
Yellow Time (s)	3.7	
All-Red Time (s)	2.1	
Lost Time Adjust (s)	0.0	
Total Lost Time (s)	5.8	
Lead/Lag	Lag	
Lead-Lag Optimize?		
Vehicle Extension (s)	3.0	
Recall Mode	C-Max	
Walk Time (s)	7.0	
Flash Dont Walk (s)	14.0	
Pedestrian Calls (#/hr)	5	
Act Effct Green (s)	64.2	
Actuated g/C Ratio	0.49	
v/c Ratio	1.07	
Control Delay	70.0	
Queue Delay	0.0	
Total Delay	70.0	
LOS	E	
Approach Delay	70.5	
Approach LOS	E	
Queue Length 50th (m)	~234.6	
Queue Length 95th (m)	#283.4	
Internal Link Dist (m)	387.0	
Turn Bay Length (m)		
Base Capacity (vph)	1616	
Starvation Cap Reductn	0	
Spillback Cap Reductn	0	
Storage Cap Reductn	0	
Reduced v/c Ratio	1.07	
Intersection Summary		
intersection summary		

	٦	-	\mathbf{F}	4	+	•	₹Ĩ	1	Ť	1	L	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL
Lane Configurations	<u>م</u>	•	1	ኘኘ	el el			7	A1≱			2
Traffic Volume (vph)	12	33	85	82	16	4	2	221	1484	199	2	43
Future Volume (vph)	12	33	85	82	16	4	2	221	1484	199	2	43
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Storage Length (m)	35.0		60.0	85.0		55.0		165.0		0.0		155.0
Storage Lanes	1		1	2		0		1		0		1
Taper Length (m)	50.0			95.0				40.0				25.0
Lane Util. Factor	1.00	1.00	1.00	0.97	1.00	1.00	0.95	1.00	0.95	0.95	0.95	1.00
Ped Bike Factor	0.99		0.98	0.99	1.00		0.00	1.00	1.00	0.00	0.00	1.00
Frt	0.00		0.850	0.00	0.970				0.982			
Flt Protected	0.950			0.950	0.01.0			0.950	0.001			0.950
Satd. Flow (prot)	1537	1728	1414	3124	1384	0	0	1658	3223	0	0	1674
Flt Permitted	0.950	1720	1111	0.950	1004	0	0	0.950	0220	U	0	0.950
Satd. Flow (perm)	1528	1728	1381	3092	1384	0	0	1655	3223	0	0	1672
Right Turn on Red	1520	1720	Yes	3032	1004	Yes	U	1000	JZZJ	Yes	U	1072
Satd. Flow (RTOR)			137		4	163			16	163		
Link Speed (k/h)		50	137		4 50				60			
		212.6			241.6				610.9			
Link Distance (m)									36.7			
Travel Time (s)	F	15.3	F	F	17.4	F		F	30.7	F		F
Confl. Peds. (#/hr)	5		5	5		5		5		5		5
Confl. Bikes (#/hr)	4 00	4 00	5	4 00	4.00	5	4.00	4.00	4.00	5	4.00	4.00
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles (%)	10%	3%	7%	5%	30%	1%	2%	2%	3%	1%	2%	1%
Adj. Flow (vph) Shared Lane Traffic (%)	12	33	85	82	16	4	2	221	1484	199	2	43
Lane Group Flow (vph)	12	33	85	82	20	0	0	223	1683	0	0	45
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	45 No
Lane Alignment	LNA	Left	R NA	LNA	Left	RNA	RNA	LNA	Left	R NA	R NA	LNA
Median Width(m)	LINA	7.0	n na	LINA	10.5	IN INA	IN INA	LINA	17.5	n NA	IN INA	LINA
Link Offset(m)		0.0			0.0				0.0			
		5.0			0.0 5.0				5.0			
Crosswalk Width(m)		5.0			5.0				5.0			
Two way Left Turn Lane	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	1.00	4.00	1.00
Headway Factor	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09
Number of Detectors	1	2	1	1	2		1	1	2		1	1
Detector Template	Left	Thru	Right	Left	Thru		Left	Left	Thru		Left	Left
Leading Detector (m)	2.0	10.0	2.0	2.0	10.0		2.0	2.0	10.0		2.0	2.0
Trailing Detector (m)	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0		0.0	0.0
Detector 1 Position(m)	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0		0.0	0.0
Detector 1 Size(m)	2.0	0.6	2.0	2.0	0.6		2.0	2.0	0.6		2.0	2.0
Detector 1 Type	CI+Ex	CI+Ex	CI+Ex	CI+Ex	Cl+Ex		CI+Ex	CI+Ex	CI+Ex		CI+Ex	CI+Ex
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0		0.0	0.0
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0		0.0	0.0
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0		0.0	0.0
Detector 2 Position(m)		9.4			9.4				9.4			
Detector 2 Size(m)		0.6			0.6				0.6			
Detector 2 Type		CI+Ex			CI+Ex				Cl+Ex			
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0				0.0			
Turn Type	Prot	NA	Perm	Prot	NA		Prot	Prot	NA		Prot	Prot
Protected Phases	7	4		3	8		5	5	2		1	1
Permitted Phases			4									
Detector Phase	7	4	4	3	8		5	5	2		1	1
Switch Phase												

	1	1
	+	-
Lane Group	SBT	SBR
Lane Configurations		
Traffic Volume (vph)	1586	37
Future Volume (vph)	1586	37
Ideal Flow (vphpl)	1800	1800
	1000	0.0
Storage Length (m)		0.0
Storage Lanes Taper Length (m)		U
	0.05	0.95
Lane Util. Factor	0.95	0.95
Ped Bike Factor	1.00	
Frt Elt Diretected	0.997	
Fit Protected	0070	0
Satd. Flow (prot)	3272	0
Flt Permitted	0070	
Satd. Flow (perm)	3272	0
Right Turn on Red	•	Yes
Satd. Flow (RTOR)	2	
Link Speed (k/h)	60	
Link Distance (m)	411.0	
Travel Time (s)	24.7	
Confl. Peds. (#/hr)		5
Confl. Bikes (#/hr)		5
Peak Hour Factor	1.00	1.00
Heavy Vehicles (%)	3%	1%
Adj. Flow (vph)	1586	37
Shared Lane Traffic (%)		
Lane Group Flow (vph)	1623	0
Enter Blocked Intersection	No	No
Lane Alignment	Left	R NA
Median Width(m)	17.5	
Link Offset(m)	0.0	
Crosswalk Width(m)	5.0	
Two way Left Turn Lane		
Headway Factor	1.09	1.09
Number of Detectors	2	
Detector Template	Thru	
Leading Detector (m)	10.0	
Trailing Detector (m)	0.0	
Detector 1 Position(m)	0.0	
Detector 1 Size(m)	0.6	
Detector 1 Type	CI+Ex	
Detector 1 Channel		
Detector 1 Extend (s)	0.0	
Detector 1 Queue (s)	0.0	
Detector 1 Delay (s)	0.0	
Detector 2 Position(m)	9.4	
Detector 2 Size(m)	0.6	
Detector 2 Type	CI+Ex	
Detector 2 Channel		
Detector 2 Extend (s)	0.0	
Turn Type	NA	
Protected Phases	6	
Permitted Phases	0	
Detector Phase	6	
	0	
Switch Phase		

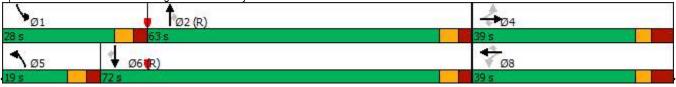
	≯	-	\mathbf{i}	4	←	•	₹	•	t	1	L	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL
Minimum Initial (s)	5.0	10.0	10.0	5.0	10.0		5.0	5.0	10.0		5.0	5.0
Minimum Split (s)	11.5	36.5	36.5	11.5	36.5		12.0	12.0	26.8		12.0	12.0
Total Split (s)	11.5	36.5	36.5	11.5	36.5		12.0	12.0	70.0		12.0	12.0
Total Split (%)	8.8%	28.1%	28.1%	8.8%	28.1%		9.2%	9.2%	53.8%		9.2%	9.2%
Maximum Green (s)	5.0	30.0	30.0	5.0	30.0		5.0	5.0	64.2		5.0	5.0
Yellow Time (s)	3.3	3.3	3.3	3.3	3.3		3.7	3.7	3.7		3.7	3.7
All-Red Time (s)	3.2	3.2	3.2	3.2	3.2		3.3	3.3	2.1		3.3	3.3
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0			0.0	0.0			0.0
Total Lost Time (s)	6.5	6.5	6.5	6.5	6.5			7.0	5.8			7.0
Lead/Lag	Lead	Lag	Lag	Lead	Lag		Lead	Lead	Lag		Lead	Lead
Lead-Lag Optimize?	Yes				Yes							
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0		3.0	3.0
Recall Mode	None	None	None	None	None		None	None	C-Max		None	None
Walk Time (s)		7.0	7.0		7.0				7.0			
Flash Dont Walk (s)		23.0	23.0		23.0				14.0			
Pedestrian Calls (#/hr)		5	5		5				5			
Act Effct Green (s)	5.0	14.0	14.0	5.0	20.9			21.0	79.9			7.9
Actuated g/C Ratio	0.04	0.11	0.11	0.04	0.16			0.16	0.61			0.06
v/c Ratio	0.20	0.18	0.31	0.68	0.09			0.84	0.85			0.45
Control Delay	68.8	51.8	3.9	89.0	40.1			77.5	26.9			75.6
Queue Delay	0.0	0.0	0.0	0.0	0.0			0.0	0.0			0.0
Total Delay	68.8	51.8	3.9	89.0	40.1			77.5	26.9			75.6
LOS	E	D	А	F	D			E	С			E
Approach Delay		22.1			79.4				32.8			
Approach LOS		С			E				С			
Queue Length 50th (m)	2.8	7.5	0.0	10.0	3.2			49.6	158.0			11.2
Queue Length 95th (m)	9.0	14.3	2.2	#21.1	9.3			#139.8	#266.6			#30.2
Internal Link Dist (m)		188.6			217.6				586.9			
Turn Bay Length (m)	35.0	000	60.0	85.0	000			165.0	4007			155.0
Base Capacity (vph)	59	398	424	120	322			267	1987			101
Starvation Cap Reductn	0	0	0	0	0			0	0			0
Spillback Cap Reductn	0	0	0	0	0			0	0			0
Storage Cap Reductn	0	0	0	0	0			0	0			0
Reduced v/c Ratio	0.20	0.08	0.20	0.68	0.06			0.84	0.85			0.45
Intersection Summary												
	Other											
Cycle Length: 130												
Actuated Cycle Length: 130												
Offset: 103 (79%), Referenced	to phase 2:I	NBT and 6	:SBT, Star	t of Green								
Natural Cycle: 150												
Control Type: Actuated-Coordin	nated											
Maximum v/c Ratio: 1.00				J.a.	torooction !							
Intersection Signal Delay: 37.1	07 40/				tersection L							
Intersection Capacity Utilization	197.1%				U Level of	Service F						
Analysis Period (min) 15	1	orotically	ofinite									
 Volume exceeds capacity, or Output a shown is maximum or 			innite.									
Queue shown is maximum a												
# 95th percentile volume exce	ando conosi	hy autours	novhalas	aor								

Splits and Phases: 3: March & Solandt

₩ø1 🖕 1ø2 (R)	€ Ø3 →04
12 s 70 s	11.5 <mark>s 36.5s</mark>
🕈 Ø5 🏮 🕇 Ø6 (R)	
12 s 70 s	11.5. <mark>s 36.5</mark> s

	T	1
	•	•
Lane Group	SBT	SBR
Minimum Initial (s)	10.0	
Minimum Split (s)	26.8	
Total Split (s)	70.0	
Total Split (%)	53.8%	
Maximum Green (s)	64.2	
Yellow Time (s)	3.7	
All-Red Time (s)	2.1	
Lost Time Adjust (s)	0.0	
Total Lost Time (s)	5.8	
Lead/Lag	Lag	
Lead-Lag Optimize?		
Vehicle Extension (s)	3.0	
Recall Mode	C-Max	
Walk Time (s)	7.0	
Flash Dont Walk (s)	14.0	
Pedestrian Calls (#/hr)	5	
Act Effct Green (s)	64.2	
Actuated g/C Ratio	0.49	
v/c Ratio	1.00	
Control Delay	39.5	
Queue Delay	0.0	
Total Delay	39.5	
LOS	D	
Approach Delay	40.5	
Approach LOS	D	
Queue Length 50th (m)	~131.9	
Queue Length 95th (m)	#103.7	
Internal Link Dist (m)	387.0	
Turn Bay Length (m)		
Base Capacity (vph)	1616	
Starvation Cap Reductn	0	
Spillback Cap Reductn	0	
Storage Cap Reductn	0	
Reduced v/c Ratio	1.00	
Intersection Summary		
intersection Summary		

1: March & Morgan's Grant/Shirley's Brook PM Peak Hour


										2037 Background Trainc			
	٦	-	$\mathbf{\hat{z}}$	4	•	*	1	Ť	1	1	ŧ	~	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		स्	1	<u> </u>	↑	1	<u>۲</u>	***	1	- N	***	1	
Traffic Volume (vph)	54	50	63	130	47	195	72	1725	91	169	1107	68	
Future Volume (vph)	54	50	63	130	47	195	72	1725	91	169	1107	68	
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	
Storage Length (m)	0.0		20.0	45.0		35.0	130.0		30.0	65.0		25.0	
Storage Lanes	0		1	1		1	1		1	1		1	
Taper Length (m)	10.0			30.0			40.0			35.0			
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.91	1.00	1.00	0.91	1.00	
Ped Bike Factor		1.00	0.97	0.99		0.98	1.00		0.94	1.00		0.96	
Frt			0.850			0.850			0.850			0.850	
Flt Protected		0.975		0.950			0.950			0.950			
Satd. Flow (prot)	0	1642	1498	1674	1548	1498	1674	4764	1498	1674	4718	1498	
Flt Permitted	-	0.812		0.690			0.950			0.950	-		
Satd. Flow (perm)	0	1364	1455	1203	1548	1464	1668	4764	1409	1669	4718	1436	
Right Turn on Red	-		Yes			Yes			Yes			Yes	
Satd. Flow (RTOR)			136			195			145			91	
Link Speed (k/h)		40			40			60			60	•	
Link Distance (m)		465.2			359.5			318.9			462.6		
Travel Time (s)		41.9			32.4			19.1			27.8		
Confl. Peds. (#/hr)	5	11.0	10	10	02.1	5	5	10.1	10	10	21.0	5	
Confl. Bikes (#/hr)	Ŭ		5			5	Ŭ		5	10		5	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Heavy Vehicles (%)	10%	1%	1%	1%	15%	1%	1%	2%	1%	1%	3%	1%	
Adj. Flow (vph)	54	50	63	130	47	195	72	1725	91	169	1107	68	
Shared Lane Traffic (%)	7	00	00	100	11	100	12	1720	51	100	1107	00	
Lane Group Flow (vph)	0	104	63	130	47	195	72	1725	91	169	1107	68	
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No	
Lane Alignment	L NA	Left	R NA	L NA	Left	R NA	L NA	Left	R NA	L NA	Left	RNA	
Median Width(m)		3.5			5.0			9.0			9.0	IT INA	
Link Offset(m)		0.0			0.0			0.0			0.0		
Crosswalk Width(m)		5.0			5.0			10.0			10.0		
Two way Left Turn Lane		5.0			5.0			10.0			10.0		
Headway Factor	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	
Turning Speed (k/h)	24	1.09	1.09	24	1.09	1.09	24	1.09	1.09	24	1.09	14	
Number of Detectors	24	2	14	24 1	2	14	24	2	14	24 1	2	14	
Detector Template	Left	Thru	Right	Left	Thru	Right	Left	Thru		Left	Thru		
	2.0	10.0	2.0	2.0	10.0	2.0	2.0	10.0	Right 2.0	2.0	10.0	Right 2.0	
Leading Detector (m)			2.0							0.0			
Trailing Detector (m)	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Detector 1 Position(m)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Detector 1 Size(m)	2.0	0.6	2.0	2.0	0.6	2.0	2.0	0.6	2.0	2.0	0.6	2.0	
Detector 1 Type	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	
Detector 1 Channel	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Detector 2 Position(m)		9.4			9.4			9.4			9.4		
Detector 2 Size(m)		0.6			0.6			0.6			0.6		
Detector 2 Type		CI+Ex			CI+Ex			CI+Ex			CI+Ex		
Detector 2 Channel													
Detector 2 Extend (s)	_	0.0	_	_	0.0	_	_	0.0	_	_	0.0		
Turn Type	Perm	NA	Perm	Perm	NA	Perm	Prot	NA	Perm	Prot	NA	Perm	
Protected Phases		4			8		5	2		1	6		
Permitted Phases	4		4	8		8			2			6	
Detector Phase	4	4	4	8	8	8	5	2	2	1	6	6	

J.Audia, Novatech

1: March & Morgan's Grant/Shirley's Brook PM Peak Hour

PM Peak Hour										2037	Backgrour	nd Traffic
	٦	-	\mathbf{i}	4	+	*	•	1	1	1	ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Switch Phase												
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	10.0	5.0	10.0	10.0	5.0	10.0	10.0
Minimum Split (s)	38.5	38.5	38.5	38.5	38.5	38.5	11.4	24.4	24.4	11.4	24.4	24.4
Total Split (s)	39.0	39.0	39.0	39.0	39.0	39.0	19.0	63.0	63.0	28.0	72.0	72.0
Total Split (%)	30.0%	30.0%	30.0%	30.0%	30.0%	30.0%	14.6%	48.5%	48.5%	21.5%	55.4%	55.4%
Maximum Green (s)	31.5	31.5	31.5	31.5	31.5	31.5	12.6	56.6	56.6	21.6	65.6	65.6
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.7	3.7	3.7	3.7	3.7	3.7
All-Red Time (s)	4.5	4.5	4.5	4.5	4.5	4.5	2.7	2.7	2.7	2.7	2.7	2.7
Lost Time Adjust (s)		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)		7.5	7.5	7.5	7.5	7.5	6.4	6.4	6.4	6.4	6.4	6.4
Lead/Lag							Lead	Lag	Lag	Lead	Lag	Lag
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	None	None	None	None	None	None	None	C-Max	C-Max	None	C-Max	C-Max
Walk Time (s)	7.0	7.0	7.0	7.0	7.0	7.0		7.0	7.0		7.0	7.0
Flash Dont Walk (s)	24.0	24.0	24.0	24.0	24.0	24.0		11.0	11.0		11.0	11.0
Pedestrian Calls (#/hr)	10	10	10	5	5	5		10	10		5	5
Act Effct Green (s)		20.0	20.0	20.0	20.0	20.0	10.5	71.9	71.9	17.7	81.8	81.8
Actuated g/C Ratio		0.15	0.15	0.15	0.15	0.15	0.08	0.55	0.55	0.14	0.63	0.63
v/c Ratio		0.50	0.19	0.70	0.20	0.50	0.53	0.65	0.11	0.74	0.37	0.07
Control Delay		56.6	1.2	70.6	46.7	10.3	46.2	41.6	12.6	72.9	14.1	1.7
Queue Delay		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay		56.6	1.2	70.6	46.7	10.3	46.2	41.6	12.6	72.9	14.1	1.7
LOS		E	А	E	D	В	D	D	В	E	В	A
Approach Delay		35.7			36.0			40.4			20.8	
Approach LOS		D			D			D			С	
Queue Length 50th (m)		22.9	0.0	29.6	9.9	0.0	15.8	111.1	0.1	38.6	46.0	0.0
Queue Length 95th (m)		35.8	0.0	45.0	18.3	17.2	m22.6	173.0	m11.5	59.3	71.1	4.0
Internal Link Dist (m)		441.2			335.5			294.9			438.6	
Turn Bay Length (m)			20.0	45.0		35.0	130.0		30.0	65.0		25.0
Base Capacity (vph)		330	455	291	375	502	163	2636	844	279	2967	936
Starvation Cap Reductn		0	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn		0	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn		0	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio		0.32	0.14	0.45	0.13	0.39	0.44	0.65	0.11	0.61	0.37	0.07
Intersection Summary												
Area Type:	Other											
Cycle Length: 130												
Actuated Cycle Length: 130												
Offset: 83 (64%), Referenced	to phase 2:N	BT and 6:	SBT, Start	of Green								
Natural Cycle: 90												
Control Type: Actuated-Coord	linated											
Maximum v/c Ratio: 0.74												
Intersection Signal Delay: 32.					tersection							
Intersection Capacity Utilization	on 81.5%			IC	CU Level of	f Service D						
Analysis Period (min) 15												
m Volume for 95th percentil	e queue is me	etered by u	ipstream s	ignal.								

Splits and Phases: 1: March & Morgan's Grant/Shirley's Brook

J.Audia, Novatech

	٨	-	\mathbf{r}	4	+	•	ŧ١	•	Ť	~	L	1
Lane Group	EBL	EBT	EBR	• WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL
Lane Configurations	ሻሻ	^	7	ኘካ	<u>^</u>	7	NDO	ሻሻ	^	101	000	<u> </u>
Traffic Volume (vph)	245	155	194	95	158	209	18	328	1572	126	4	150
	245	155	194	95 95	158	209	18	328	1572	120	4	150
Future Volume (vph)												
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Storage Length (m)	95.0		60.0	75.0		75.0		130.0		85.0		110.0
Storage Lanes	2		2	2		1		2		2		1
Taper Length (m)	40.0			20.0				90.0				40.0
Lane Util. Factor	0.97	0.95	1.00	0.97	0.95	1.00	0.91	0.97	0.91	1.00	0.91	1.00
Ped Bike Factor	0.99		0.97	0.99		0.96		1.00		0.97		1.00
Frt			0.850			0.850				0.850		
Flt Protected	0.950			0.950				0.950				0.950
Satd. Flow (prot)	3248	3221	1498	3248	3349	1498	0	3187	4764	1469	0	1674
Flt Permitted	0.950			0.950				0.950				0.950
Satd. Flow (perm)	3204	3221	1458	3219	3349	1443	0	3176	4764	1425	0	1671
Right Turn on Red			Yes			Yes				Yes		
Satd. Flow (RTOR)			194			193				144		
Link Speed (k/h)		60			60				60			
Link Distance (m)		165.4			149.1				308.9			
Travel Time (s)		9.9			8.9				18.5			
Confl. Peds. (#/hr)	15	0.0	10	10	0.0	15		5	10.0	10		10
Confl. Bikes (#/hr)	10		5	10		10		U		5		10
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles (%)	1%	5%	1%	1%	1%	1%	2%	3%	2%	3%	2%	1%
Adj. Flow (vph)	245	155	194	95	158	209	18	328	1572	126	4	150
Shared Lane Traffic (%)											4	
Lane Group Flow (vph)	245	155	194	95	158	209	0	346	1572	126	0	154
Enter Blocked Intersection	No	No	No	Yes	Yes	Yes	No	No	No	No	No	No
Lane Alignment	L NA	Left	R NA	L NA	Left	R NA	R NA	L NA	Left	R NA	R NA	L NA
Median Width(m)		10.5			10.5				10.5			
Link Offset(m)		0.0			0.0				0.0			
Crosswalk Width(m)		5.0			5.0				5.0			
Two way Left Turn Lane												
Headway Factor	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09
Turning Speed (k/h)	24		14	24		14	14	24		14	14	24
Number of Detectors	1	2	1	1	2	1	1	1	2	1	1	1
Detector Template	Left	Thru	Right	Left	Thru	Right	Left	Left	Thru	Right	Left	Left
Leading Detector (m)	2.0	10.0	2.0	2.0	10.0	2.0	2.0	2.0	10.0	2.0	2.0	2.0
Trailing Detector (m)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Position(m)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Size(m)	2.0	0.6	2.0	2.0	0.6	2.0	2.0	2.0	0.6	2.0	2.0	2.0
Detector 1 Type	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex
Detector 1 Channel					CITEX							
	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 2 Position(m)		9.4			9.4				9.4			
Detector 2 Size(m)		0.6			0.6				0.6			
Detector 2 Type		CI+Ex			Cl+Ex				CI+Ex			
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0				0.0			
Turn Type	Prot	NA	Perm	Prot	NA	Perm	Prot	Prot	NA	Perm	Prot	Prot
Protected Phases	7	4		3	8		5	5	2		1	1
Permitted Phases			4			8				2		
Detector Phase	7	4	4	3	8	8	5	5	2	2	1	1
				•	v	v	v	v	-	-		

	Ļ	~
Lane Group	SBT	SBR
Lane Configurations	***	
Traffic Volume (vph)	TTT 947	166
Future Volume (vph)	947 947	166
Ideal Flow (vphpl)	1800	1800
Storage Length (m)	1000	100.0
Storage Lanes		100.0
		1
Taper Length (m) Lane Util. Factor	0.91	1.00
Ped Bike Factor	0.91	0.98
Frt Flt Drotootod		0.850
Fit Protected	1710	4.400
Satd. Flow (prot)	4718	1483
Flt Permitted	1710	4.1.10
Satd. Flow (perm)	4718	1449
Right Turn on Red		Yes
Satd. Flow (RTOR)		198
Link Speed (k/h)	60	
Link Distance (m)	318.9	
Travel Time (s)	19.1	
Confl. Peds. (#/hr)		5
Confl. Bikes (#/hr)		5
Peak Hour Factor	1.00	1.00
Heavy Vehicles (%)	3%	2%
Adj. Flow (vph)	947	166
Shared Lane Traffic (%)		
Lane Group Flow (vph)	947	166
Enter Blocked Intersection	No	No
Lane Alignment	Left	R NA
Median Width(m)	7.0	
Link Offset(m)	0.0	
Crosswalk Width(m)	5.0	
Two way Left Turn Lane	0.0	
Headway Factor	1.09	1.09
Turning Speed (k/h)	1.00	14
Number of Detectors	2	1
Detector Template	Thru	Right
Leading Detector (m)	10.0	2.0
Trailing Detector (m)	0.0	0.0
Detector 1 Position(m)	0.0	0.0
Detector 1 Size(m)	0.0	2.0
	0.6 CI+Ex	Z.U Cl+Ex
Detector 1 Type	UI+EX	CI+EX
Detector 1 Channel	0.0	0.0
Detector 1 Extend (s)	0.0	0.0
Detector 1 Queue (s)	0.0	0.0
Detector 1 Delay (s)	0.0	0.0
Detector 2 Position(m)	9.4	
Detector 2 Size(m)	0.6	
Detector 2 Type	CI+Ex	
Detector 2 Channel		
Detector 2 Extend (s)	0.0	
Turn Type	NA	Perm
Protected Phases	6	
Permitted Phases		6
Detector Phase	6	6

J.Audia, Novatech

PM Peak Hour										2037	Backgrour	id I raffic
	٦	-	\mathbf{F}	4	+	*	₹Ĩ	1	1	1	L	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL
Switch Phase												
Minimum Initial (s)	5.0	10.0	10.0	5.0	10.0	10.0	5.0	5.0	10.0	10.0	5.0	5.0
Minimum Split (s)	11.8	42.0	42.0	11.8	42.0	42.0	11.4	11.4	32.4	32.4	11.4	11.4
Total Split (s)	18.4	46.6	46.6	13.8	42.0	42.0	27.1	27.1	50.6	50.6	19.0	19.0
Total Split (%)	14.2%	35.8%	35.8%	10.6%	32.3%	32.3%	20.8%	20.8%	38.9%	38.9%	14.6%	14.6%
Maximum Green (s)	11.6	39.6	39.6	7.0	35.0	35.0	20.7	20.7	44.2	44.2	12.6	12.6
Yellow Time (s)	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7
All-Red Time (s)	3.1	3.3	3.3	3.1	3.3	3.3	2.7	2.7	2.7	2.7	2.7	2.7
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0		0.0
Total Lost Time (s)	6.8	7.0	7.0	6.8	7.0	7.0		6.4	6.4	6.4		6.4
Lead/Lag	Lead	Lag	Lag	Lead	Lag	Lag	Lead	Lead	Lag	Lag	Lead	Lead
Lead-Lag Optimize?	Loud	Lag	Lug	Loud	Lag	Lug	Loud	Louid	Lug	Lag	Loud	Loud
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	None	None	None	None	None	None	None	None	C-Max	C-Max	None	None
Walk Time (s)	Nono	7.0	7.0	Nono	7.0	7.0	Nono	Nono	7.0	7.0	Nono	Tiono
Flash Dont Walk (s)		28.0	28.0		28.0	28.0			19.0	19.0		
Pedestrian Calls (#/hr)		15	15		15	15			10.0	10		
Act Effct Green (s)	11.6	25.0	25.0	6.9	20.3	20.3		18.4	55.9	55.9		15.6
Actuated g/C Ratio	0.09	0.19	0.19	0.05	0.16	0.16		0.14	0.43	0.43		0.12
v/c Ratio	0.85	0.25	0.44	0.55	0.30	0.54		0.77	0.77	0.18		0.77
Control Delay	79.9	52.9	16.8	72.6	47.5	12.2		70.5	31.6	4.6		69.7
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0		0.0
Total Delay	79.9	52.9	16.8	72.6	47.5	12.2		70.5	31.6	4.6		69.7
LOS	F 10.5	02.0 D	10.0 B	72.0 E	-77.5 D	12.2 B		70.5 E	01.0 C	ч.0 А		603.7 E
Approach Delay	L	52.3	U	-	36.7	U		-	36.6	Л		L
Approach LOS		02.0 D			D				00.0 D			
Queue Length 50th (m)	29.5	20.0	7.0	11.4	19.1	3.6		42.9	63.5	1.5		21.4
Queue Length 95th (m)	#49.2	28.2	31.1	19.8	23.5	20.8		m52.2	#161.5	m3.8		#72.1
Internal Link Dist (m)	<i>π</i> + J .∠	141.4	01.1	10.0	125.1	20.0		1102.2	284.9	110.0		<i>π1</i> 2 .1
Turn Bay Length (m)	95.0	T-11-1	60.0	75.0	120.1	75.0		130.0	204.0	85.0		110.0
Base Capacity (vph)	289	981	579	174	901	529		507	2048	694		200
Starvation Cap Reductn	0	0	0/0	0	0	020		0	0	0		0
Spillback Cap Reductn	0	0	0	0	0	0		0	0	0		0
Storage Cap Reductn	0	0	0	0	0	0		0	0	0		0
Reduced v/c Ratio	0.85	0.16	0.34	0.55	0.18	0.40		0.68	0.77	0.18		0.77
Intersection Summary												
Area Type:	Other											
Cycle Length: 130												
Actuated Cycle Length: 130												
Offset: 0 (0%), Referenced		and 6:SB	T, Start of	Green								
Natural Cycle: 120												
Control Type: Actuated-Coc	ordinated											
Maximum v/c Ratio: 0.85												
Intersection Signal Delay: 3	7.5			Ir	tersection	LOS: D						
Intersection Capacity Utiliza				IC	CU Level o	f Service F						

Intersection Capacity Utilization 91.3% Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.
 Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 2: March & Terry Fox

4 _{Ø1}		√ Ø3	* Ø4	
19 s	50.6 s	13.8 s	46.6 s	
1 Ø5	Ø6 (R)	● Ø7	4 [⊕] Ø8	
27.1s	42,5 s	18.4s	42 s	

	1	1
	+	•
Lane Group	SBT	SBR
	301	JOR
Switch Phase	10.0	10.0
Minimum Initial (s)	10.0	10.0
Minimum Split (s)	32.4	32.4
Total Split (s)	42.5	42.5
Total Split (%)	32.7%	32.7%
Maximum Green (s)	36.1	36.1
Yellow Time (s)	3.7	3.7
All-Red Time (s)	2.7	2.7
Lost Time Adjust (s)	0.0	0.0
Total Lost Time (s)	6.4	6.4
Lead/Lag	Lag	Lag
Lead-Lag Optimize?		
Vehicle Extension (s)	3.0	3.0
Recall Mode	C-Max	C-Max
Walk Time (s)	7.0	7.0
Flash Dont Walk (s)	19.0	19.0
Pedestrian Calls (#/hr)	10	10
Act Effct Green (s)	53.0	53.0
Actuated g/C Ratio	0.41	0.41
v/c Ratio	0.49	0.23
Control Delay	30.2	10.2
Queue Delay	0.0	0.0
Total Delay	30.2	10.2
LOS	C	В
Approach Delay	32.4	_
Approach LOS	C	
Queue Length 50th (m)	61.8	10.7
Queue Length 95th (m)	96.2	30.8
Internal Link Dist (m)	294.9	00.0
Turn Bay Length (m)	204.0	100.0
Base Capacity (vph)	1924	708
Starvation Cap Reductn	0	0
Spillback Cap Reductn	0	0
Storage Cap Reductn	0	0
Reduced v/c Ratio	0.49	0.23
	0.49	0.23
Intersection Summary		

Lane Group EBL EBT EBL EBT WBL WBL WBL NBL		٠		~		+	4		4	•			<u> </u>
Lane Configurations 1 7 7 1			-	•	¥	•		₹Ĩ		I	1	-	*
Taffie Volume (vph) 24 25 197 389 24 24 16 78 1813 45 12 21 Ideal Flow (vphp) 1800	· · · · · · · · · · · · · · · · · · ·							NBU			NBR	SBU	SBL
Funce Volume (vph) 24 25 197 389 24 24 16 78 181 45 12 21 Storage Langth (m) 35.0 60.0 135.0 1800	Lane Configurations	- T	↑			↑			- T	≜ ⊅			
Ideal Flow (vphp) 1800 <td>Traffic Volume (vph)</td> <td></td> <td></td> <td>197</td> <td>389</td> <td>24</td> <td>24</td> <td>16</td> <td>78</td> <td>1813</td> <td>45</td> <td></td> <td>21</td>	Traffic Volume (vph)			197	389	24	24	16	78	1813	45		21
Storage Length (m) 35.0 60.0 135.0 55.0 165.0 0.0 155.0 Lane Util, Factor 1.00 1.00 1.00 1.00 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.955	Future Volume (vph)	24	25	197	389	24	24	16	78	1813	45	12	21
Sbrage lanse 1 0 1 1 <t< td=""><td>Ideal Flow (vphpl)</td><td>1800</td><td>1800</td><td>1800</td><td>1800</td><td>1800</td><td>1800</td><td>1800</td><td>1800</td><td>1800</td><td>1800</td><td>1800</td><td>1800</td></t<>	Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Storage lanks 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 <	Storage Length (m)	35.0		60.0	135.0		55.0		165.0		0.0		155.0
Taper Length (m) 50.0 40.0 25.1 Taper Length (m) 50.0 1.00 1.00 0.95 0.95 1.00 Pad Bike Factor 0.99 0.98 0.99 0.98 1.00 1.00 0.95 0.95 0.95 0.950 0.955 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.955 0.950 0.950 0.950 0.955 0.950 0.950 0.950 0.950 0.950 0.950 0.955 0.950		1		1	1		1		1		0		1
Laine Utili, Factor 1.00 </td <td></td> <td>50.0</td> <td></td> <td></td> <td>50.0</td> <td></td> <td></td> <td></td> <td>40.0</td> <td></td> <td></td> <td></td> <td>25.0</td>		50.0			50.0				40.0				25.0
Ped Biks Factor 0.99 0.88 0.99 0.850 0.050 0.996 1.00 1.00 Fit Protected 0.950 0.950 0.950 0.950 0.950 0.950 Stalt Fibrowrited 0.742 0.950 1674 1679 1388 0 1641 3297 0 0 1645 Stalt Fibrowrited 0.742 0.950 11679 1338 0 1641 3297 0 0 1645 Stalt Fibrowrited 1299 1695 1449 911 1679 1338 0 1641 3297 0 0 1645 Stalt Fibrowrited Yes Yes Yes Yes Yes 337 164 1600 100			1.00	1.00		1.00	1.00	0.95	1.00	0.95	0.95	0.95	1.00
Fri 0.850 0.850 0.996 Said, Flow (prot) 1674 1695 1483 1674 1679 1388 0 1644 3297 0 0 1648 Said, Flow (prot) 1674 1695 1483 1674 1679 1388 0 1641 3297 0 0 1648 Said, Flow (prot) 1299 1995 1449 911 1679 1338 0 1641 3297 0 0 1648 Said, Flow (prot) 1299 1995 1449 911 1679 1338 0 1641 3297 0 0 1648 Said, Flow (prot) 137 82 3 Yes 5													1.00
File Protected 0.950 0.950 0.950 0.950 0.950 Satd. Flow (prot) 1674 1695 1483 1679 1388 0 1644 3297 0 0 1645 Satd. Flow (prot) 1299 1695 1449 911 1679 1388 0 1641 3297 0 0 1645 Satd. Flow (prot) 1299 1695 1449 911 1679 1388 0 1641 3297 0 0 1645 Link Speed (kh) 50 50 50 600 500 600 500 <td< td=""><td>Frt</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	Frt												
Sahd Elw (prot) 1674 1685 1483 1674 1679 1338 0 1644 3297 0 0 1646 Fit Permitted 0.742 0.520 0.350 0.350 0.350 0.350 0.350 0.950<		0.950			0.950				0.950				0.950
FIP Permitted 0.742 0.520 0.950 0.950 0.950 Satd, Flow (perm) 1299 1695 1449 911 1679 1358 0 1641 3297 0 0 1642 Satd, Flow (RTOR) 137 82 3 - - Yes			1695	1483		1679	1388	0		3297	0	0	
Sald, Elw (perm) 1299 1695 1449 911 1679 1338 0 1641 3297 0 0 1646 Right Turn on Red Yes Y			1000	1100		1010	1000	Ŭ		0201	v	v	
Right Tum on Red Yes Yes Yes Yes Satd Flow (RTOR) 137 82 3			1695	1449		1679	1358	0		3297	0	0	
Said Flow (RTOR) 137 82 3 Link Speed (kh) 50 50 60 111 Link Speed (kh) 15.3 17.4 36.7 111 Confl. Reds. (#hr) 5		1255	1055		511	1075		U	10-11	5251		0	10-0
Link Speed (k/h) 50 50 60 Link Distance (m) 212.6 241.6 610.9 Travel Time (s) 15.3 17.4 36.7 Confl. Peds: (#/hr) 5 5 5 5 5 Peak Hour Factor 1.00										3	163		
Link Distance (m) 212.6 241.6 610.9 Travel Time (s) 15.3 17.4 36.7 Confl. Petis, (#hr) 5 5 5 5 5 Peak Hour Factor 1.00	()		50	137		50	02						
Travel Time (s) 15.3 17.4 36.7 Confl. Peds. (#/hr) 5													
Confl. Peds. (#hr) 5 7													
Confl. Bikes (#hr) 5 5 5 Peak Hour Factor 1.00 <td></td> <td>~</td> <td>15.3</td> <td>-</td> <td>-</td> <td>17.4</td> <td>~</td> <td></td> <td>~</td> <td>30.7</td> <td>-</td> <td></td> <td>-</td>		~	15.3	-	-	17.4	~		~	30.7	-		-
Peak Hour Factor 1.00		5			5				5				5
Heavy Vehicles (%) 1% 5% 2% 1% 6% 9% 2% 3% 2% 6% 2% 3% Adj. Flow (vph) 24 25 197 389 24 24 16 78 1813 45 12 21 Lane Group Flow (vph) 24 25 197 389 24 24 0 94 1858 0 0 33 Enter Blocked Intersection No						1.00		1.00	((00			
Adj. Flow (vph) 24 25 197 389 24 24 16 78 1813 45 12 21 Shared Lane Traffic (%) Lane Group Flow (vph) 24 25 197 389 24 24 0 94 1858 0 0 33 Enter Blocked Intersection No No <td></td>													
Shared Lane Traffic (%) Lane Group Flow (vph) 24 25 197 389 24 24 0 94 1858 0 0 33 Enter Blocked Intersection No No <td></td>													
Lane Group Flow (vph) 24 25 197 389 24 24 0 94 1858 0 0 33 Enter Blocked Intersection No		24	25	197	389	24	24	16	78	1813	45	12	21
Enter Blocked Intersection No No <td></td>													
Lane Alignment L NA Left R NA L NA Left L NA L NA <thl na<="" th=""> <thl n<="" td=""><td> ,</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td>33</td></thl></thl>	,											-	33
Median Width(m) 3.5 10.5 17.5 Link Offset(m) 0.0 0.0 0.0 Crosswalk Width(m) 5.0 5.0 5.0 Two way Left Turn Lane													No
Link Offset(m) 0.0 0.0 0.0 Crosswalk Width(m) 5.0 5.0 5.0 Two way Left Turn Lane	Lane Alignment	L NA		R NA	L NA		R NA	R NA	L NA		R NA	R NA	L NA
Crosswalk Width(m) 5.0 5.0 5.0 Two way Left Turn Lane 1.09 1.00 1.00	Median Width(m)												
Two way Left Turn Lane Headway Factor 1.09 1.00 1.00 1.00													
Headway Factor 1.09<	Crosswalk Width(m)		5.0			5.0				5.0			
Turning Speed (k/h) 24 14 24 14 <td>Two way Left Turn Lane</td> <td></td>	Two way Left Turn Lane												
Number of Detectors 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 1 1 2 1 1 1 1 2 1 1 1 1 1 2 1	Headway Factor	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09
Number of Detectors 1 2 1 1 2 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 1 1 2 1	Turning Speed (k/h)	24		14	24		14	14	24		14	14	24
Leading Detector (m) 2.0 10.0 2.0 2.0 10.0 2.0 2.0 10.0 2.0 2.0 2.0 2.0 10.0 2.0 2.0 2.0 2.0 10.0 2.0 2.0 2.0 10.0 2.0 2.0 2.0 10.0 2.0 2.0 2.0 10.0 0.0	Number of Detectors	1	2	1	1	2	1	1	1	2		1	1
Leading Detector (m) 2.0 10.0 2.0 2.0 10.0 2.0 2.0 10.0 2.0 2.0 2.0 2.0 10.0 2.0 2.0 2.0 2.0 10.0 2.0 2.0 2.0 10.0 2.0 2.0 2.0 10.0 2.0 2.0 2.0 10.0 0.0	Detector Template	Left	Thru	Right	Left	Thru	Right	Left	Left	Thru		Left	Left
Trailing Detector (m) 0.0	Leading Detector (m)				2.0			2.0	2.0			2.0	2.0
Detector 1 Position(m) 0.0	3 ()					0.0							0.0
Detector 1 Size(m) 2.0 0.6 2.0 2.0 0.6 2.0 2.0 0.6 2.0 2.0 0.6 2.0 2.0 0.6 2.0 2.0 0.6 2.0 2.0 0.6 2.0 2.0 0.6 2.0 2.0 0.6 2.0 2.0 0.6 2.0 2.0 0.6 2.0 2.0 0.6 2.0 2.0 0.6 2.0 2.0 0.6 2.0 2.0 0.6 2.0 2.0 0.0													0.0
Detector 1 Type CI+Ex CI CI<													2.0
Detector 1 Extend (s) 0.0													
Detector 1 Extend (s) 0.0													
Detector 1 Queue (s) 0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0
Detector 1 Delay (s) 0.0													
Detector 2 Position(m) 9.4 9.4 9.4 Detector 2 Size(m) 0.6 0.6 0.6 Detector 2 Type CI+Ex CI+Ex CI+Ex Detector 2 Channel 0.0 0.0 0.0 Detector 2 Extend (s) 0.0 0.0 0.0 Turn Type Perm NA Perm Prot Prot Protected Phases 4 3 8 5 5 2 1 1 Permitted Phases 4 4 8 8 5 5 2 1 1													
Detector 2 Size(m) 0.6 0.6 0.6 Detector 2 Type CI+Ex CI+Ex CI+Ex Detector 2 Channel 0.0 0.0 0.0 Detector 2 Extend (s) 0.0 0.0 0.0 Turn Type Perm NA Perm Prot Prot Protected Phases 4 3 8 5 5 2 1 1 Permitted Phases 4 4 8 8 5 5 2 1 1		0.0		0.0	0.0		0.0	0.0	0.0			0.0	0.0
Detector 2 TypeCI+ExCI+ExDetector 2 Channel0.00.0Detector 2 Extend (s)0.00.0Turn TypePermNAPermNAPermProtected Phases4385521Permitted Phases448	· · · · ·												
Detector 2 Channel 0.0 0.0 0.0 Detector 2 Extend (s) 0.0 0.0 0.0 Turn Type Perm NA Perm Prot Prot Prot Protected Phases 4 3 8 5 5 2 1 1 Permitted Phases 4 4 8 8 5 5 2 1 1													
Detector 2 Extend (s) 0.0 0.0 0.0 Turn Type Perm NA Perm Prot Prot <td></td>													
Turn TypePermNAPermProtProtNAProtProtProtected Phases43855211Permitted Phases44888			0.0			0.0				0.0			
Protected Phases 4 3 8 5 5 2 1 1 Permitted Phases 4 4 8 8 5 5 2 1 1		Dame		Deme			Derm	Deet	Deet			Deet	Deret
Permitted Phases 4 4 8 8		Perm		Perm			Perm						
			4			8		5	5	2		1	1
Detector Phase 4 4 4 3 8 8 5 5 2 1 1								_	_	-			
	Detector Phase	4	4	4	3	8	8	5	5	2		1	1

	Ţ	1
	•	
Lane Group	SBT	SBR
Lane onfigurations	≜1 ≱	
Traffic Volume (vph)	1311	29
Future Volume (vph)	1311	29
Ideal Flow (vphpl)	1800	1800
Storage Length (m)		0.0
Storage Lanes		0
Taper Length (m)		
Lane Util. Factor	0.95	0.95
Ped Bike Factor	1.00	
Frt	0.997	
Flt Protected		
Satd. Flow (prot)	3302	0
Flt Permitted	0002	
Satd. Flow (perm)	3302	0
Right Turn on Red	0002	Yes
Satd. Flow (RTOR)	2	100
Link Speed (k/h)	60	
Link Distance (m)	411.0	
Travel Time (s)	24.7	
Confl. Peds. (#/hr)	24.1	5
Confl. Bikes (#/hr)		5
Peak Hour Factor	1.00	5 1.00
Heavy Vehicles (%)	2%	3%
Adj. Flow (vph)	1311	29
Shared Lane Traffic (%)	4040	•
Lane Group Flow (vph)	1340	0
Enter Blocked Intersection	No	No
Lane Alignment	Left	R NA
Median Width(m)	17.5	
Link Offset(m)	0.0	
Crosswalk Width(m)	5.0	
Two way Left Turn Lane		
Headway Factor	1.09	1.09
Turning Speed (k/h)		14
Number of Detectors	2	
Detector Template	Thru	
Leading Detector (m)	10.0	
Trailing Detector (m)	0.0	
Detector 1 Position(m)	0.0	
Detector 1 Size(m)	0.6	
Detector 1 Type	CI+Ex	
Detector 1 Channel		
Detector 1 Extend (s)	0.0	
Detector 1 Queue (s)	0.0	
Detector 1 Delay (s)	0.0	
Detector 2 Position(m)	9.4	
Detector 2 Size(m)	9.4 0.6	
Detector 2 Type	CI+Ex	
Detector 2 Type Detector 2 Channel	GI+EX	
	0.0	
Detector 2 Extend (s)	0.0	
Turn Type	NA	
Protected Phases	6	
Permitted Phases	•	
Detector Phase	6	

J.Audia, Novatech

	_		-	-	•	.	•	Ť	-	L.	- \
FRI	FRT	FRD	▼ W/RI	W/RT		♥I NBU	NRI	NRT	NRD	SBII	SBI
		LDIX	VVDL		VVDIX	NDO	NDL		NDIN	000	
10.0	10.0	10.0	5.0	10.0	10.0	5.0	5.0	10.0		5.0	5.0
											12.0
											12.0
											9.2%
											5.0
											3.7
											3.3
						0.0				0.0	0.0
											7.0
				0.0	0.0	Lead				Lead	Lead
Lug	Lug	Lug	Louu			Louu	Louu	Lug		Louu	Loud
3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0
											None
			NONE			NULLE	NONE			None	None
			28.3				12.6				7.1
											0.05
											0.03
											79.8
											0.0
											79.8
											E
U		Ū			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		-				_
54		13 7	~139.6		0.0		21.2				8.2
											#19.7
11.0		02.2	1100.0		0.0		# 0 2.1				".ю.,
35.0		60.0	135.0		55.0		165.0				155.0
	397			561				2045			90
		0									0
		0									0
											0
0.08	0.06	0.44	1.65	0.04	0.05		0.59	0.91			0.37
)ther											
phase 2:NF	BT and 6:8	SBT. Start	of Green								
p		.,									
ated											
			In	tersection	LOS: E						
104.2%						1					
ueue is the	oretically in	nfinite.									
		nav be lor	aer.								
fter two cycl			5								
	Other phase 2:Nf ated 104.2% ueue is theo fter two cycl eds capacit	10.0 10.0 36.5 36.5 37.0 37.0 28.5% 28.5% 30.5 30.5 3.3 3.2 0.0 0.0 6.5 6.5 Lag Lag 3.0 3.0 None None 7.0 7.0 23.0 23.0 5 5 15.3 15.3 0.12 0.16 0.13 50.0 48.8 0.0 0 0 55.4 5.6 11.3 11.6 188.6 35.0 304 397 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10.0 10.0 10.0 36.5 36.5 36.5 37.0 37.0 37.0 28.5% 28.5% 28.5% 30.5 30.5 30.5 3.3 3.3 3.3 3.2 3.2 3.2 0.0 0.0 0.0 6.5 6.5 6.5 Lag Lag Lag 3.0 3.0 3.0 3.0 3.0 3.0 5 5 5 15.3 15.3 15.3 0.12 0.12 0.12 0.16 0.13 0.68 50.0 48.8 29.1 0.0 0.0 0.0 50.0 48.8 29.1 0.0 0.0 0.0 50.0 48.8 29.1 0.0 0.0 0.0 33.1 C 5.4 5.6 13.7 11.3 11.6 32.2	10.0 10.0 10.0 5.0 36.5 36.5 36.5 11.5 37.0 37.0 37.0 13.0 28.5% 28.5% 28.5% 10.0% 30.5 30.5 30.5 6.5 3.3 3.3 3.3 3.3 3.2 3.2 3.2 3.2 0.0 0.0 0.0 0.0 6.5 6.5 6.5 6.5 Lag Lag Lag Lead 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 23.0 23.0 23.0 23.0 5 5 5 5 15.3 15.3 15.3 28.3 0.12 0.12 0.22 0.16 0.13 0.0 0.0 0.0 0.0 0 0.0 0.0 0.0	10.0 10.0 10.0 5.0 10.0 36.5 36.5 36.5 11.5 36.5 37.0 37.0 37.0 13.0 50.0 28.5% 28.5% 28.5% 10.0% 38.5% 30.5 30.5 30.5 6.5 43.5 3.3 3.3 3.3 3.3 3.3 3.3 3.2 3.2 3.2 3.2 3.2 3.2 0.0 0.0 0.0 0.0 0.0 0.0 6.5 6.5 6.5 6.5 6.5 6.5 Lag Lag Lag Lag Lead	10.0 10.0 10.0 5.0 10.0 10.0 36.5 36.5 36.5 31.5 36.5 36.5 37.0 37.0 37.0 13.0 50.0 50.0 28.5% 28.5% 10.0% 38.5% 38.5% 30.5 30.5 30.5 6.5 43.5 43.5 3.0 3.0 3.3 3.3 3.3 3.3 3.3 3.2 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 <td>10.0 10.0 10.0 5.0 10.0 10.0 5.0 36.5 36.5 36.5 11.5 36.5 36.5 12.0 37.0 37.0 37.0 13.0 50.0 50.0 15.0 28.5% 28.5% 10.0% 38.5% 38.5% 11.5% 30.5 30.5 30.5 6.5 43.5 43.5 8.0 3.3 3.0</td> <td>10.0 10.0 10.0 5.0 10.0 10.0 5.0 36.5 36.5 36.5 11.5 36.5 36.5 12.0 12.0 37.0 37.0 37.0 13.0 50.0 50.0 15.0 15.0 28.5% 28.5% 28.5% 10.0% 38.5% 38.5% 11.5% 11.5% 30.5 30.5 30.5 6.5 43.5 43.5 8.0 8.0 3.3 3.3 3.3 3.3 3.3 3.7 3.7 3.2 3.2 3.2 3.2 3.2 3.2 3.3 3.0 0.0 0.0 0.0 0.0 6.5 6.5 6.5 6.5 6.5 6.5 7.0 1.0 <</td> <td>10.0 10.0 10.0 5.0 10.0 10.0 5.0 10.0 36.5 36.5 36.5 11.5 36.5 36.5 12.0 12.0 28.8 37.0 37.0 13.0 50.0 50.0 15.0 15.0 68.0 28.5% 28.5% 28.5% 10.0% 38.5% 38.5% 11.5% 52.3% 30.5 30.5 30.5 6.5 43.5 43.5 8.0 80.0 62.2 3.3 3.3 3.3 3.3 3.3 3.3 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.0</td> <td>10.0 10.0 10.0 5.0 10.0 10.0 5.0 5.0 10.0 36.5 36.5 36.5 36.5 11.5 36.5 36.5 12.0 12.0 22.8 37.0 37.0 37.0 13.0 50.0 50.0 15.0 15.0 68.0 28.5% 28.5% 10.0% 38.5% 38.5% 11.5% 11.5% 52.3% 30.5 30.5 65.6 6.5 6.5 80.0 80.0 62.2 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.1 3.7 3.7 3.7 3.2 3.3 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0</td> <td>10.0 10.0 10.0 5.0 10.0 10.0 5.0 5.0 10.0 10.0 36.5 36.5 36.5 11.5 36.5 36.5 12.0 12.0 26.8 12.0 37.0 37.0 37.0 13.0 50.0 15.0 15.0 68.0 12.0 28.5% 28.5% 28.5% 10.0% 38.5% 38.5% 11.5% 11.5% 52.3% 9.2% 30.5 30.5 30.5 6.5 43.5 43.5 80 60 62.2 5.0 31.3 3.3 3.3 3.3 3.3 3.3 3.7</td>	10.0 10.0 10.0 5.0 10.0 10.0 5.0 36.5 36.5 36.5 11.5 36.5 36.5 12.0 37.0 37.0 37.0 13.0 50.0 50.0 15.0 28.5% 28.5% 10.0% 38.5% 38.5% 11.5% 30.5 30.5 30.5 6.5 43.5 43.5 8.0 3.3 3.0	10.0 10.0 10.0 5.0 10.0 10.0 5.0 36.5 36.5 36.5 11.5 36.5 36.5 12.0 12.0 37.0 37.0 37.0 13.0 50.0 50.0 15.0 15.0 28.5% 28.5% 28.5% 10.0% 38.5% 38.5% 11.5% 11.5% 30.5 30.5 30.5 6.5 43.5 43.5 8.0 8.0 3.3 3.3 3.3 3.3 3.3 3.7 3.7 3.2 3.2 3.2 3.2 3.2 3.2 3.3 3.0 0.0 0.0 0.0 0.0 6.5 6.5 6.5 6.5 6.5 6.5 7.0 1.0 <	10.0 10.0 10.0 5.0 10.0 10.0 5.0 10.0 36.5 36.5 36.5 11.5 36.5 36.5 12.0 12.0 28.8 37.0 37.0 13.0 50.0 50.0 15.0 15.0 68.0 28.5% 28.5% 28.5% 10.0% 38.5% 38.5% 11.5% 52.3% 30.5 30.5 30.5 6.5 43.5 43.5 8.0 80.0 62.2 3.3 3.3 3.3 3.3 3.3 3.3 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.0	10.0 10.0 10.0 5.0 10.0 10.0 5.0 5.0 10.0 36.5 36.5 36.5 36.5 11.5 36.5 36.5 12.0 12.0 22.8 37.0 37.0 37.0 13.0 50.0 50.0 15.0 15.0 68.0 28.5% 28.5% 10.0% 38.5% 38.5% 11.5% 11.5% 52.3% 30.5 30.5 65.6 6.5 6.5 80.0 80.0 62.2 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.1 3.7 3.7 3.7 3.2 3.3 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	10.0 10.0 10.0 5.0 10.0 10.0 5.0 5.0 10.0 10.0 36.5 36.5 36.5 11.5 36.5 36.5 12.0 12.0 26.8 12.0 37.0 37.0 37.0 13.0 50.0 15.0 15.0 68.0 12.0 28.5% 28.5% 28.5% 10.0% 38.5% 38.5% 11.5% 11.5% 52.3% 9.2% 30.5 30.5 30.5 6.5 43.5 43.5 80 60 62.2 5.0 31.3 3.3 3.3 3.3 3.3 3.3 3.7

	T	1
	•	-
Lane Group	SBT	SBR
Switch Phase		
Minimum Initial (s)	10.0	
Minimum Split (s)	26.8	
Total Split (s)	65.0	
Total Split (%)	50.0%	
Maximum Green (s)	59.2	
Yellow Time (s)	3.7	
All-Red Time (s)	2.1	
Lost Time Adjust (s)	0.0	
Total Lost Time (s)	5.8	
Lead/Lag	Lag	
Lead-Lag Optimize?		
Vehicle Extension (s)	3.0	
Recall Mode	C-Max	
Walk Time (s)	7.0	
Flash Dont Walk (s)	14.0	
Pedestrian Calls (#/hr)	5	
Act Effct Green (s)	69.8	
Actuated g/C Ratio	0.54	
v/c Ratio	0.76	
Control Delay	25.6	
Queue Delay	0.0	
Total Delay	25.6	
LOS	С	
Approach Delay	26.9	
Approach LOS	С	
Queue Length 50th (m)	62.8	
Queue Length 95th (m)	137.3	
Internal Link Dist (m)	387.0	
Turn Bay Length (m)	· ·	
Base Capacity (vph)	1774	
Starvation Cap Reductn	0	
Spillback Cap Reductn	0	
Storage Cap Reductn	0	
Reduced v/c Ratio	0.76	
Intersection Summary		

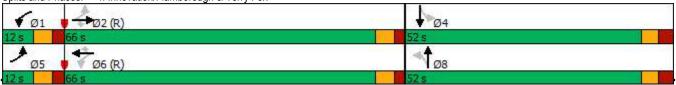
	4	•	Ť	۲	1	Ŧ
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	۲	1	^	1	۲	^
Traffic Volume (vph)	197	400	1591	199	93	1134
Future Volume (vph)	197	400	1591	199	93	1134
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800
Storage Length (m)	65.0	0.0	1000	100.0	75.0	1000
	05.0	0.0		100.0	15.0	
Storage Lanes		I		1	-	
Taper Length (m)	25.0			(00	50.0	
Lane Util. Factor	1.00	1.00	0.95	1.00	1.00	0.91
Ped Bike Factor	0.99	0.97		0.94		
Frt		0.850		0.850		
Flt Protected	0.950				0.950	
Satd. Flow (prot)	1674	1498	3283	1498	1674	4718
Flt Permitted	0.950				0.052	
Satd. Flow (perm)	1654	1457	3283	1410	92	4718
Right Turn on Red	1001	Yes	3200	Yes	<u>.</u>	
Satd. Flow (RTOR)		99		199		
	50	33	60	199		60
Link Speed (k/h)						
Link Distance (m)	167.8		199.3			308.9
Travel Time (s)	12.1		12.0			18.5
Confl. Peds. (#/hr)	10	10		10	10	
Confl. Bikes (#/hr)		5		5		
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles (%)	1%	1%	3%	1%	1%	3%
Adj. Flow (vph)	197	400	1591	199	93	1134
Shared Lane Traffic (%)						
Lane Group Flow (vph)	197	400	1591	199	93	1134
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	L NA	Right	Left	Right	L NA	Left
Median Width(m)	3.5		7.0			7.0
Link Offset(m)	0.0		0.0			0.0
Crosswalk Width(m)	5.0		5.0			5.0
Two way Left Turn Lane						
Headway Factor	1.09	1.09	1.09	1.09	1.09	1.09
Turning Speed (k/h)	97	97		97	97	
Number of Detectors	1	1	2	1	1	2
Detector Template	Left	Right	Thru	Right	Left	Thru
·	2.0	2.0	10.0	2.0	2.0	10.0
Leading Detector (m)						
Trailing Detector (m)	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Position(m)	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Size(m)	2.0	2.0	0.6	2.0	2.0	0.6
Detector 1 Type	CI+Ex	CI+Ex	Cl+Ex	CI+Ex	CI+Ex	CI+Ex
Detector 1 Channel						
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0
Detector 2 Position(m)	0.0		9.4			9.4
Detector 2 Size(m)			0.6			0.6
			CI+Ex			CI+Ex
Detector 2 Type			UI+EX			OI+EX
Detector 2 Channel			0.0			0.0
Detector 2 Extend (s)	_	_	0.0	_		0.0
Turn Type	Perm	Perm	NA	Perm	pm+pt	NA
Protected Phases			2		1	6
Permitted Phases	8	8		2	6	
Detector Phase	8	8	2	2	1	6

	4	*	1	1	1	ţ
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Switch Phase	1102				<u></u>	001
Minimum Initial (s)	10.0	10.0	10.0	10.0	5.0	10.0
Minimum Split (s)	38.5	38.5	23.8	23.8	11.4	23.8
Total Split (s)	48.0	48.0	70.0	70.0	12.0	82.0
Total Split (%)	36.9%	36.9%	53.8%	53.8%	9.2%	63.1%
Maximum Green (s)	41.5	41.5	64.2	64.2	5.6	76.2
Yellow Time (s)	3.3	3.3	3.7	3.7	3.7	3.7
All-Red Time (s)	3.3	3.2	2.1	2.1	2.7	2.1
()	0.0	0.0	0.0	0.0	0.0	0.0
Lost Time Adjust (s)	6.5		0.0 5.8		0.0 6.4	
Total Lost Time (s)	0.0	6.5		5.8		5.8
Lead/Lag			Lag	Lag	Lead	
Lead-Lag Optimize?		~ ~	~ ~ ~		~ ~	~ ~ ~
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	None	None	C-Max	C-Max	None	C-Max
Walk Time (s)	7.0	7.0	7.0	7.0		7.0
Flash Dont Walk (s)	25.0	25.0	11.0	11.0		11.0
Pedestrian Calls (#/hr)	10	10	10	10		10
Act Effct Green (s)	33.1	33.1	70.7	70.7	84.0	84.6
Actuated g/C Ratio	0.25	0.25	0.54	0.54	0.65	0.65
v/c Ratio	0.47	0.90	0.89	0.23	0.62	0.37
Control Delay	43.3	58.1	48.5	13.6	58.8	9.0
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	43.3	58.1	48.5	13.6	58.8	9.0
LOS	D	E	D	B	E	A
Approach Delay	53.2		44.6	5		12.8
Approach LOS	00.2 D		-++.0 D			12.0 B
Queue Length 50th (m)	39.0	70.7	201.1	18.2	13.8	18.2
Queue Length 95th (m)	55.7	101.8	#247.4	m31.1	m#36.0	43.7
		101.0		1131.1	11#30.0	
Internal Link Dist (m)	143.8		175.3	100.0	75.0	284.9
Turn Bay Length (m)	65.0	500	4700	100.0	75.0	0000
Base Capacity (vph)	528	532	1786	858	150	3069
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.37	0.75	0.89	0.23	0.62	0.37
Intersection Summary						
	Other					
Area Type: Cycle Length: 130	Other					
Actuated Cycle Length: 130						
Offset: 108 (83%), Reference	ed to phase 2:1	VB1 and b	SBIL, Sta	art of Gree	en	
Natural Cycle: 100						
Control Type: Actuated-Coor	dinated					
Maximum v/c Ratio: 0.90						
Intersection Signal Delay: 35					ntersection	
Intersection Capacity Utilizati	ion 83.9%			10	CU Level o	f Service E
Analysis Period (min) 15						
# 95th percentile volume ex	xceeds capacit	y, queue i	may be lon	ger.		
Queue shown is maximun	n after two cyc	les.				
m Volume for 95th percent	ile aueue is me	etered by i	upstream s	ianal.		
			-poulouni d			

Splits and Phases: 6: March & Nokia Access

4: Innovation/Flamborough & Terry Fox PM Peak Hour

										2037 Dackyroun			
	٦	-	$\mathbf{\hat{z}}$	4	+	*	٩.	Ť	1	1	Ŧ	~	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	ሻ	•	1	<u>۲</u>	•	1	<u> </u>	f,		ሻ	4		
Traffic Volume (vph)	71	379	37	101	511	121	115	67	81	52	50	62	
Future Volume (vph)	71	379	37	101	511	121	115	67	81	52	50	62	
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	
Storage Length (m)	75.0		120.0	110.0		130.0	220.0		0.0	30.0		0.0	
Storage Lanes	1		1	1		1	1		0	1		0	
Taper Length (m)	50.0			80.0			50.0			15.0			
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Ped Bike Factor	1.00		0.96	0.99		0.95	0.95	0.98		0.99	0.95		
Frt			0.850			0.850		0.918			0.917		
Flt Protected	0.950			0.950			0.950			0.950			
Satd. Flow (prot)	1566	1745	1498	1642	1762	1498	1674	1541	0	1674	1485	0	
Flt Permitted	0.422			0.488			0.647			0.537			
Satd. Flow (perm)	693	1745	1440	838	1762	1429	1087	1541	0	938	1485	0	
Right Turn on Red			Yes			Yes			Yes			Yes	
Satd. Flow (RTOR)			78			121		52			53		
Link Speed (k/h)		60			60			50			50		
Link Distance (m)		508.2			485.8			547.1			313.7		
Travel Time (s)		30.5			29.1			39.4			22.6		
Confl. Peds. (#/hr)	5		5	5		5	25		5	5		25	
Confl. Bikes (#/hr)			5			15			10			10	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Heavy Vehicles (%)	8%	2%	1%	3%	1%	1%	1%	2%	5%	1%	1%	8%	
Adj. Flow (vph)	71	379	37	101	511	121	115	67	81	52	50	62	
Shared Lane Traffic (%)													
Lane Group Flow (vph)	71	379	37	101	511	121	115	148	0	52	112	0	
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No	
Lane Alignment	LNA	Left	R NA	L NA	Left	R NA	LNA	Left	R NA	L NA	Left	R NA	
Median Width(m)		3.5			3.5			3.5			3.5		
Link Offset(m)		0.0			0.0			0.0			0.0		
Crosswalk Width(m)		5.0			5.0			5.0			5.0		
Two way Left Turn Lane		0.0			0.0			0.0			0.0		
Headway Factor	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	
Turning Speed (k/h)	24		14	24		14	24		14	24		14	
Number of Detectors	1	2	1	1	2	1	1	2	••	1	2	••	
Detector Template	Left	Thru	Right	Left	Thru	Right	Left	Thru		Left	Thru		
Leading Detector (m)	2.0	10.0	2.0	2.0	10.0	2.0	2.0	10.0		2.0	10.0		
Trailing Detector (m)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0		
Detector 1 Position(m)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0		
Detector 1 Size(m)	2.0	0.6	2.0	2.0	0.6	2.0	2.0	0.6		2.0	0.6		
Detector 1 Type	CI+Ex	CI+Ex	CI+Ex	CI+Ex	Cl+Ex	CI+Ex	CI+Ex	CI+Ex		Cl+Ex	CI+Ex		
Detector 1 Channel	OPEX	OFFER	OIVEX	OI LA		OFEX	OILEX	OILEX					
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0		
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0		
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0		
Detector 2 Position(m)	0.0	9.4	0.0	0.0	9.4	0.0	0.0	9.4		0.0	9.4		
Detector 2 Size(m)		0.6			0.6			0.6			0.6		
Detector 2 Type		CI+Ex			CI+Ex			CI+Ex			CI+Ex		
Detector 2 Channel								UTEX					
Detector 2 Extend (s)		0.0			0.0			0.0			0.0		
	nm		Dorm	nmint		Dorm	Dorm			Dorm	0.0 NA		
Turn Type	pm+pt	NA	Perm	pm+pt	NA	Perm	Perm	NA		Perm			
Protected Phases	5	2	0	1	6	0	0	8		4	4		
Permitted Phases	2	•	2	6	^	6	8	0		4	4		
Detector Phase	5	2	2	1	6	6	8	8		4	4		


J.Audia, Novatech

4: Innovation/Flamborough & Terry Fox PM Peak Hour

PM Peak Hour										2037	Backgroun	d Traf
	٦	-	\mathbf{r}	4	-	•	1	1	1	1	Ŧ	-
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SB
Switch Phase												
Vinimum Initial (s)	5.0	10.0	10.0	5.0	10.0	10.0	10.0	10.0		10.0	10.0	
Vinimum Split (s)	11.0	27.9	27.9	11.0	27.9	27.9	36.3	36.3		36.3	36.3	
Total Split (s)	12.0	66.0	66.0	12.0	66.0	66.0	52.0	52.0		52.0	52.0	
Total Split (%)	9.2%	50.8%	50.8%	9.2%	50.8%	50.8%	40.0%	40.0%		40.0%	40.0%	
Maximum Green (s)	6.0	60.1	60.1	6.0	60.1	60.1	45.7	45.7		45.7	45.7	
fellow Time (s)	3.7	3.7	3.7	3.7	3.7	3.7	3.3	3.3		3.3	3.3	
All-Red Time (s)	2.3	2.2	2.2	2.3	2.2	2.2	3.0	3.0		3.0	3.0	
ost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
otal Lost Time (s)	6.0	5.9	5.9	6.0	5.9	5.9	6.3	6.3		6.3	6.3	
.ead/Lag	Lead	Lag	Lag	Lead	Lag	Lag						
ead-Lag Optimize?		Ŭ	Ŭ		Ŭ	Ŭ						
ehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0	
Recall Mode	None	C-Max	C-Max	None	C-Max	C-Max	None	None		None	None	
Valk Time (s)		7.0	7.0		7.0	7.0	7.0	7.0		7.0	7.0	
Flash Dont Walk (s)		15.0	15.0		15.0	15.0	23.0	23.0		23.0	23.0	
Pedestrian Calls (#/hr)		3	3		3	3	3	3		3	3	
Act Effct Green (s)	91.9	84.9	84.9	94.3	87.9	87.9	19.1	19.1		19.1	19.1	
ctuated g/C Ratio	0.71	0.65	0.65	0.73	0.68	0.68	0.15	0.15		0.15	0.15	
/c Ratio	0.13	0.33	0.04	0.15	0.43	0.12	0.72	0.55		0.38	0.43	
Control Delay	5.9	12.4	0.1	9.1	22.1	8.7	75.8	39.0		55.2	30.3	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Delay	5.9	12.4	0.1	9.1	22.1	8.7	75.8	39.0		55.2	30.3	
.OS	A	В	A	A	C	A	E	D		E	C	
Approach Delay		10.6	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	18.1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	-	55.1		-	38.2	
Approach LOS		B			В			E			D	
Queue Length 50th (m)	3.6	36.0	0.0	8.8	60.9	0.3	26.4	21.1		11.3	12.6	
Queue Length 95th (m)	10.0	70.2	0.3	m22.3	119.7	m21.1	41.3	37.1		21.2	26.6	
nternal Link Dist (m)	10.0	484.2	0.0	1122.0	461.8	1112 1.1	71.0	523.1		21.2	289.7	
furn Bay Length (m)	75.0	-0-1.2	120.0	110.0	401.0	130.0	220.0	020.1		30.0	200.1	
Base Capacity (vph)	538	1139	967	656	1191	1005	382	575		329	556	
Starvation Cap Reductn	0	0	0	000	0	0	0	0		025	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0		0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0		0	0	
Reduced v/c Ratio	0.13	0.33	0.04	0.15	0.43	0.12	0.30	0.26		0.16	0.20	
ntersection Summary												
Area Type:	Other											
Cycle Length: 130	o u loi											
Actuated Cycle Length: 130												
Offset: 66 (51%), Referenced	d to phase 2:E	BTL and 6	:WBTL. St	art of Gree	en							
latural Cycle: 80												
Control Type: Actuated-Coor	dinated											
Aaximum v/c Ratio: 0.72												
ntersection Signal Delay: 23	8			Ir	tersection	10S C						
tersection Capacity Utilizati					CU Level o)					
nalysis Period (min) 15	0.170			IX.		. 501 1100 L	•					
Volumo for 05th porcont		atorad by	un of the own of	ianal								

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 4: Innovation/Flamborough & Terry Fox

J.Audia, Novatech

	≯	+	*	4	ł	*	<	1	1	×	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			\$			\$			\$	
Traffic Volume (veh/h)	3	0	100	0	0	0	134	14	0	0	53	9
Future Volume (Veh/h)	3	0	100	0	0	0	134	14	0	0	53	9
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	3	0	100	0	0	0	134	14	0	0	53	9
Pedestrians		10										
Lane Width (m)		3.5										
Walking Speed (m/s)		1.0										
Percent Blockage		1										
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC, conflicting volume	350	350	68	440	354	14	72			14		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	350	350	68	440	354	14	72			14		
tC, single (s)	7.1	6.5	6.2	7.1	6.5	6.2	4.1			4.1		
tC, 2 stage (s)		0.0	0.2		0.0	0.2						
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	99	100	90	100	100	100	91			100		
cM capacity (veh/h)	556	520	986	440	517	1069	1507			1611		
					011	1000	1001			1011		
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total	103	0	148	62								
Volume Left	3	0	134	0								
Volume Right	100	0	0	9								
cSH	964	1700	1507	1611								
Volume to Capacity	0.11	0.01	0.09	0.00								
Queue Length 95th (m)	2.5	0.0	2.0	0.0								
Control Delay (s)	9.2	0.0	7.0	0.0								
Lane LOS	А	А	А									
Approach Delay (s)	9.2	0.0	7.0	0.0								
Approach LOS	А	А										
Intersection Summary												
Average Delay			6.3									
Intersection Capacity Utilization			28.6%	IC	U Level of	Service			А			
Analysis Period (min)			15									

	۶	-	\mathbf{i}	*	+	*	₹Ĩ	1	1	1	L	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL
Lane Configurations	<u>۲</u>	↑	1	ካካ	- îs			<u>۲</u>	≜ ⊅			- h
Traffic Volume (vph)	24	25	197	389	24	24	16	78	1813	45	12	21
Future Volume (vph)	24	25	197	389	24	24	16	78	1813	45	12	21
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Storage Length (m)	35.0		60.0	85.0		55.0		165.0		0.0		155.0
Storage Lanes	1		1	2		0		1		0		1
Taper Length (m)	50.0			95.0				40.0				25.0
Lane Util. Factor	1.00	1.00	1.00	0.97	1.00	1.00	0.95	1.00	0.95	0.95	0.95	1.00
Ped Bike Factor	0.99		0.98	0.99	0.99			1.00	1.00			1.00
Frt			0.850		0.925				0.996			
Flt Protected	0.950			0.950				0.950				0.950
Satd. Flow (prot)	1674	1695	1483	3248	1515	0	0	1644	3297	0	0	1648
Flt Permitted	0.950			0.950				0.950				0.950
Satd. Flow (perm)	1664	1695	1449	3214	1515	0	0	1641	3297	0	0	1646
Right Turn on Red			Yes			Yes				Yes		
Satd. Flow (RTOR)			137		24				2			
Link Speed (k/h)		50			50				60			
Link Distance (m)		212.6			241.6				610.9			
Travel Time (s)		15.3			17.4				36.7			
Confl. Peds. (#/hr)	5		5	5		5		5		5		5
Confl. Bikes (#/hr)			5			5				5		
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles (%)	1%	5%	2%	1%	6%	9%	2%	3%	2%	6%	2%	3%
Adj. Flow (vph)	24	25	197	389	24	24	16	78	1813	45	12	21
Shared Lane Traffic (%)												
Lane Group Flow (vph)	24	25	197	389	48	0	0	94	1858	0	0	33
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	L NA	Left	R NA	L NA	Left	R NA	R NA	L NA	Left	R NA	R NA	L NA
Median Width(m)		7.0			10.5				17.5			
Link Offset(m)		0.0			0.0				0.0			
Crosswalk Width(m)		5.0			5.0				5.0			
Two way Left Turn Lane												
Headway Factor	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09
Number of Detectors	1	2	1	1	2		1	1	2		1	1
Detector Template	Left	Thru	Right	Left	Thru		Left	Left	Thru		Left	Left
Leading Detector (m)	2.0	10.0	2.0	2.0	10.0		2.0	2.0	10.0		2.0	2.0
Trailing Detector (m)	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0		0.0	0.0
Detector 1 Position(m)	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0		0.0	0.0
Detector 1 Size(m)	2.0	0.6	2.0	2.0	0.6		2.0	2.0	0.6		2.0	2.0
Detector 1 Type	CI+Ex	CI+Ex	CI+Ex	CI+Ex	Cl+Ex		Cl+Ex	CI+Ex	Cl+Ex		CI+Ex	CI+Ex
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0		0.0	0.0
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0		0.0	0.0
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0		0.0	0.0
Detector 2 Position(m)		9.4			9.4				9.4			
Detector 2 Size(m)		0.6			0.6				0.6			
Detector 2 Type		CI+Ex			Cl+Ex				Cl+Ex			
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0				0.0			
Turn Type	Prot	NA	Perm	Prot	NA		Prot	Prot	NA		Prot	Prot
Protected Phases	7	4		3	8		5	5	2		1	1
Permitted Phases			4									
Detector Phase	7	4	4	3	8		5	5	2		1	1
Switch Phase												

Lane Configurations 1 Traffic Volume (vph) 1311 2 Future Volume (vph) 1311 2 Ideal Flow (vphpl) 1800 1800 Storage Length (m) 0. 0. Storage Lanes 7 0.95 0.9 Ped Bike Factor 1.00 Ft 0.997 Fit Frotected 3302 Flt Protected Satd. Flow (prot) 3302 Stad. Flow (perm) 3302 Right Turn on Red Yee Yee Satd. Flow (RTOR) 2 Link Speed (k/h) 60 Link Speed (k/h) 60 Link Speed (k/h) 7 Confi. Peds. (#/hr) 2 Confi. Bikes (#/hr) 7 2 34 Adj. Flow (vph) 1311 2 34 34 34 Lane Group Flow (vph) 1340 Enter Blocked Intersection No N Lane Alignment Left R N Xee Xee Xee
Lane Configurations 1 Traffic Volume (vph) 1311 2 Future Volume (vph) 1311 2 Ideal Flow (vphpl) 1800 1800 Storage Length (m) 0. 0. Storage Lanes 7 7 Taper Length (m) 0.95 0.95 Lane Util. Factor 0.95 0.97 Ped Bike Factor 1.00 7 Fit 0.997 97 Fit Protected 3302 7 Satd. Flow (prot) 3302 7 Right Turn on Red Yee 5 Satd. Flow (RTOR) 2 2 Link Speed (k/h) 60 1 Link Distance (m) 411.0 7 Travel Time (s) 24.7 2 Confl. Peds. (#/hr) 7 2 Confl. Bikes (#/hr) 1.00 1.00 Heavy Vehicles (%) 2% 3" Adj. Flow (vph) 1311 2 Shared Lane Traffic (%) 2 340 </td
Lane Configurations 1 Traffic Volume (vph) 1311 2 Future Volume (vph) 1311 2 Ideal Flow (vphpl) 1800 1800 Storage Length (m) 0. 0. Storage Lanes 7 0.95 0.9 Ped Bike Factor 1.00 1.00 Frt 0.997 Fit Protected Satd. Flow (prot) 3302 Fit Permitted Satd. Flow (prot) 3302 Satd. Flow (prot) 3302 Right Turn on Red Yee Satd. Flow (RTOR) 2 Link Speed (k/h) 60 1. Link Speed (k/h) 60 Link Speed (k/h) 60 24.7 Confl. Peds. (#/hr) Confl. Bikes (#/hr) 7 Confl. Peds. (#/hr) 7.0 Confl. Bikes (#/hr) 2% 3.4 3.4 Peak Hour Factor 1.00 1.0 1.0 Heavy Vehicles (%) 2% 3.4 3.4 Shared Lane Traffic (%) 1.340 2 2 Lane Group Flow (vph) 13
Lane Configurations 1 Traffic Volume (vph) 1311 2 Future Volume (vph) 1311 2 Ideal Flow (vphpl) 1800 1800 Storage Length (m) 0. 0. Storage Lanes 7 0.95 0.9 Ped Bike Factor 1.00 1.00 Frt 0.997 Fit Protected Satd. Flow (prot) 3302 Fit Permitted Satd. Flow (prot) 3302 Satd. Flow (prot) 3302 Right Turn on Red Yee Satd. Flow (RTOR) 2 Link Speed (k/h) 60 1. Link Speed (k/h) 60 Link Speed (k/h) 60 24.7 Confl. Peds. (#/hr) Confl. Bikes (#/hr) 7 Confl. Peds. (#/hr) 7.0 Confl. Bikes (#/hr) 2% 3.4 3.4 Peak Hour Factor 1.00 1.0 1.0 Heavy Vehicles (%) 2% 3.4 3.4 Shared Lane Traffic (%) 1.340 2 2 Lane Group Flow (vph) 13
Traffic Volume (vph) 1311 2 Future Volume (vph) 1311 2 Ideal Flow (vphpl) 1800 1800 Storage Length (m) 0. Lane Util. Factor 0.95 0.9 Ped Bike Factor 1.00 6 Frt 0.997 7 Fit Protected 3302 7 Satd. Flow (prot) 3302 7 Fit Permitted 3302 7 Satd. Flow (perm) 3302 7 Right Turn on Red Ye 7 Satd. Flow (RTOR) 2 2 Link Speed (k/h) 60 1 Link Distance (m) 411.0 1 Travel Time (s) 24.7 2 Confl. Bikes (#/hr) 2% 33 Peak Hour Factor 1.00 1.0 Heavy Vehicles (%) 2% 33 Adj. Flow (vph) 1311 2 Shared Lane Traffic (%) 1340 1 Lane Group Flow (vph) 1340 1<
Future Volume (vph) 1311 2 Ideal Flow (vphpl) 1800 1800 Storage Length (m) 0. Storage Lanes 7 Taper Length (m) 0. Lane Util. Factor 0.95 Ped Bike Factor 1.00 Frt 0.997 Filt Protected 3302 Satd. Flow (prot) 3302 Filt Protected 3302 Satd. Flow (prot) 3302 Right Turn on Red Ye Satd. Flow (RTOR) 2 Link Speed (k/h) 60 Link Distance (m) 411.0 Travel Time (s) 24.7 Confl. Peds. (#/hr) Confl. Bikes (#/hr) Peak Hour Factor 1.00 1.0 Heavy Vehicles (%) 2% 30 Adj. Flow (vph) 1311 2 Shared Lane Traffic (%) Lane Group Flow (vph) 1340 Enter Blocked Intersection No N Lane Alignment Left R N
Ideal Flow (vphpl) 1800 180 Storage Length (m) 0. Storage Lanes 7 Taper Length (m) 0.95 Lane Util. Factor 0.95 Ped Bike Factor 1.00 Frt 0.997 Filt Protected 3302 Satd. Flow (prot) 3302 Filt Permitted 2 Satd. Flow (prot) 2302 Right Turn on Red Ye Satd. Flow (RTOR) 2 Link Speed (k/h) 60 Link Distance (m) 411.0 Travel Time (s) 24.7 Confl. Bikes (#/hr) 2 Peak Hour Factor 1.00 1.0 Heavy Vehicles (%) 2% 33 Adj. Flow (vph) 1311 2 Shared Lane Traffic (%) 2 340 Lane Group Flow (vph) 1340 5 Enter Blocked Intersection No N Lane Alignment Left R N
Storage Length (m) 0. Storage Lanes Taper Length (m) Lane Util. Factor 0.95 0.9 Ped Bike Factor 1.00 Frt Frt 0.997 Fil Protected Satd. Flow (prot) 3302 Fil Permitted Satd. Flow (RTOR) 2 Link Speed (k/h) 60 Link Distance (m) 411.0 Travel Time (s) 24.7 Confl. Peds. (#/hr) Confl. Bikes (#/hr) Peak Hour Factor 1.00 1.0 Heavy Vehicles (%) 2% 30 30 30 Adj. Flow (vph) 1311 2 31 31 30 Enter Blocked Intersection No N N N
Storage LanesTaper Length (m)Lane Util. Factor0.950.9Ped Bike Factor1.00Frt0.997Fit ProtectedSatd. Flow (prot)3302Satd. Flow (prot)3302Right Turn on RedYeSatd. Flow (RTOR)2Link Speed (k/h)60Link Distance (m)411.0Travel Time (s)24.7Confl. Peds. (#/hr)Confl. Bikes (#/hr)Peak Hour Factor1.001.0Hour Factor1.001.0Heavy Vehicles (%)2%33Adj. Flow (vph)13112Shared Lane Traffic (%)Lane Group Flow (vph)1340Enter Blocked IntersectionNoNLane AlignmentLeftR N
Taper Length (m) Lane Util. Factor 0.95 0.9 Ped Bike Factor 1.00 Frt 0.997 Filt Protected 3302 Satd. Flow (prot) 3302 Filt Permitted 3302 Satd. Flow (perm) 3302 Right Turn on Red Ye Satd. Flow (RTOR) 2 Link Speed (k/h) 60 Link Distance (m) 411.0 Travel Time (s) 24.7 Confl. Peds. (#/hr) Confl. Peds. (#/hr) Peak Hour Factor 1.00 1.0 Heavy Vehicles (%) 2% 3° Adj. Flow (vph) 1311 2 Shared Lane Traffic (%) Lane Group Flow (vph) 1340 Enter Blocked Intersection No N Lane Alignment Left R N
Lane Util. Factor 0.95 0.95 Ped Bike Factor 1.00 Frt 0.997 Fit Protected 3302 Satd. Flow (prot) 3302 Fit Permitted 3302 Satd. Flow (perm) 3302 Right Turn on Red Ye Satd. Flow (RTOR) 2 Link Speed (k/h) 60 Link Distance (m) 411.0 Travel Time (s) 24.7 Confl. Peds. (#/hr) Confl. Bikes (#/hr) Peak Hour Factor 1.00 1.0 Heavy Vehicles (%) 2% 3° Adj. Flow (vph) 1311 2 Shared Lane Traffic (%) Lane Group Flow (vph) 1340 Enter Blocked Intersection No N Lane Alignment Left R N
Ped Bike Factor 1.00 Frt 0.997 Fit Protected 3302 Satd. Flow (prot) 3302 Fit Permitted 3302 Satd. Flow (perm) 3302 Right Turn on Red Ye Satd. Flow (RTOR) 2 Link Speed (k/h) 60 Link Distance (m) 411.0 Travel Time (s) 24.7 Confl. Peds. (#/hr) Confl. Bikes (#/hr) Peak Hour Factor 1.00 1.0 Heavy Vehicles (%) 2% 3° Adj. Flow (vph) 1311 2 Shared Lane Traffic (%) Lane Group Flow (vph) 1340 Enter Blocked Intersection No N Lane Alignment Left R N
Frt 0.997 Fit Protected 3302 Satd. Flow (prot) 3302 Fit Permitted 3302 Satd. Flow (perm) 3302 Right Turn on Red Ye Satd. Flow (RTOR) 2 Link Speed (k/h) 60 Link Distance (m) 411.0 Travel Time (s) 24.7 Confl. Peds. (#/hr) Confl. Bikes (#/hr) Peak Hour Factor 1.00 1.0 Heavy Vehicles (%) 2% 3° Adj. Flow (vph) 1311 2 Shared Lane Traffic (%) Lane Group Flow (vph) 1340 Enter Blocked Intersection No N Lane Alignment Left R N
Fit ProtectedSatd. Flow (prot)3302Fit Permitted3302Satd. Flow (perm)3302Right Turn on RedYeSatd. Flow (RTOR)2Link Speed (k/h)60Link Distance (m)411.0Travel Time (s)24.7Confl. Peds. (#/hr)Confl. Bikes (#/hr)Peak Hour Factor1.00Heavy Vehicles (%)2%Shared Lane Traffic (%)Shared Lane Traffic (%)Lane Group Flow (vph)1340Enter Blocked IntersectionNoNoNLane AlignmentLeft
Satd. Flow (prot)3302Fit Permitted3302Satd. Flow (perm)3302Right Turn on RedYeSatd. Flow (RTOR)2Link Speed (k/h)60Link Distance (m)411.0Travel Time (s)24.7Confl. Peds. (#/hr)Confl. Bikes (#/hr)Peak Hour Factor1.00Heavy Vehicles (%)2%Shared Lane Traffic (%)Shared Lane Traffic (%)Lane Group Flow (vph)1340Enter Blocked IntersectionNoNLane Alignment
Fit PermittedSatd. Flow (perm)3302Right Turn on RedYeSatd. Flow (RTOR)2Link Speed (k/h)60Link Distance (m)411.0Travel Time (s)24.7Confl. Peds. (#/hr)Confl. Bikes (#/hr)Peak Hour Factor1.001.001.0Heavy Vehicles (%)2%Shared Lane Traffic (%)Lane Group Flow (vph)1340Enter Blocked IntersectionNoNLane AlignmentLeftR N
Satd. Flow (perm) 3302 Right Turn on Red Yee Satd. Flow (RTOR) 2 Link Speed (k/h) 60 Link Distance (m) 411.0 Travel Time (s) 24.7 Confl. Peds. (#/hr) Confl. Bikes (#/hr) Peak Hour Factor 1.00 1.0 Heavy Vehicles (%) 2% 3 ^d Adj. Flow (vph) 1311 2 Shared Lane Traffic (%) Lane Group Flow (vph) 1340 Enter Blocked Intersection No N Lane Alignment Left R N
Right Turn on Red Ye Satd. Flow (RTOR) 2 Link Speed (k/h) 60 Link Distance (m) 411.0 Travel Time (s) 24.7 Confl. Peds. (#/hr) Confl. Bikes (#/hr) Peak Hour Factor 1.00 1.0 Heavy Vehicles (%) 2% 3° Adj. Flow (vph) 1311 2 Shared Lane Traffic (%) Lane Group Flow (vph) 1340 Enter Blocked Intersection No N Lane Alignment Left R N
Satd. Flow (RTOR) 2 Link Speed (k/h) 60 Link Distance (m) 411.0 Travel Time (s) 24.7 Confl. Peds. (#/hr) Confl. Bikes (#/hr) Confl. Bikes (#/hr) 7 Peak Hour Factor 1.00 1.00 Heavy Vehicles (%) 2% 3 ^d Adj. Flow (vph) 1311 2 Shared Lane Traffic (%) 1340 Enter Blocked Intersection Lane Alignment Left R N
Link Speed (k/h)60Link Distance (m)411.0Travel Time (s)24.7Confl. Peds. (#/hr)7Confl. Bikes (#/hr)7Peak Hour Factor1.00Heavy Vehicles (%)2%Adj. Flow (vph)1311Shared Lane Traffic (%)2Lane Group Flow (vph)1340Enter Blocked IntersectionNoNoNLane AlignmentLeftR N
Link Distance (m)411.0Travel Time (s)24.7Confl. Peds. (#/hr)Confl. Bikes (#/hr)Peak Hour Factor1.00Heavy Vehicles (%)2%Adj. Flow (vph)1311Shared Lane Traffic (%)Lane Group Flow (vph)1340Enter Blocked IntersectionNoNoNLane AlignmentLeftR N
Travel Time (s)24.7Confl. Peds. (#/hr)Confl. Bikes (#/hr)Peak Hour Factor1.001.002%33Adj. Flow (vph)13112Shared Lane Traffic (%)Lane Group Flow (vph)1340Enter Blocked IntersectionNoNLane AlignmentLeftR N
Confl. Peds. (#/hr)Confl. Bikes (#/hr)Peak Hour Factor1.00Heavy Vehicles (%)2%Adj. Flow (vph)1311Shared Lane Traffic (%)Lane Group Flow (vph)1340Enter Blocked IntersectionNoNNLane AlignmentLeft
Confl. Peds. (#/hr)Confl. Bikes (#/hr)Peak Hour Factor1.00Heavy Vehicles (%)2%Adj. Flow (vph)1311Shared Lane Traffic (%)Lane Group Flow (vph)1340Enter Blocked IntersectionNoNNLane AlignmentLeft
Confl. Bikes (#/hr)Peak Hour Factor1.001.00Heavy Vehicles (%)2%3°Adj. Flow (vph)13112Shared Lane Traffic (%)20%1340Lane Group Flow (vph)13401340Enter Blocked IntersectionNoNLane AlignmentLeftR N
Peak Hour Factor1.001.00Heavy Vehicles (%)2%33Adj. Flow (vph)13112Shared Lane Traffic (%)2Lane Group Flow (vph)1340Enter Blocked IntersectionNoNoNLane AlignmentLeft
Heavy Vehicles (%)2%3%Adj. Flow (vph)13112Shared Lane Traffic (%)1340Lane Group Flow (vph)1340Enter Blocked IntersectionNoNoNLane AlignmentLeftR N
Adj. Flow (vph)13112Shared Lane Traffic (%)1340Lane Group Flow (vph)1340Enter Blocked IntersectionNoNLane AlignmentLeftR N
Shared Lane Traffic (%) Lane Group Flow (vph) 1340 Enter Blocked Intersection No N Lane Alignment Left R N
Lane Group Flow (vph)1340Enter Blocked IntersectionNoNLane AlignmentLeftR N
Enter Blocked Intersection No N Lane Alignment Left R N
Lane Alignment Left R N
Link Offset(m) 0.0
Crosswalk Width(m) 5.0
Two way Left Turn Lane
Headway Factor 1.09 1.0
Number of Detectors 2
Detector Template Thru
Leading Detector (m) 10.0
Trailing Detector (m) 0.0
Detector 1 Position(m) 0.0
Detector 1 Size(m) 0.6
Detector 1 Type CI+Ex
Detector 1 Channel
Detector 1 Extend (s) 0.0
Detector 1 Queue (s) 0.0
Detector 1 Delay (s) 0.0
Detector 2 Position(m) 9.4
Detector 2 Size(m) 0.6
Detector 2 Type CI+Ex
Detector 2 Channel
Detector 2 Extend (s) 0.0
Turn Type NA
Protected Phases 6
Protected Phases 6 Permitted Phases
Protected Phases 6

	M Peak Hour 2007 background trainic (dual WBL on Solandi)											
	٦	-	\mathbf{F}	4	-	*	₹	•	1	1	L	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL
Minimum Initial (s)	5.0	10.0	10.0	5.0	10.0		5.0	5.0	10.0		5.0	5.0
Minimum Split (s)	11.5	36.5	36.5	11.5	36.5		12.0	12.0	26.8		12.0	12.0
Total Split (s)	16.3	36.5	36.5	22.5	42.7		15.0	15.0	59.0		12.0	12.0
Total Split (%)	12.5%	28.1%	28.1%	17.3%	32.8%		11.5%	11.5%	45.4%		9.2%	9.2%
Maximum Green (s)	9.8	30.0	30.0	16.0	36.2		8.0	8.0	53.2		5.0	5.0
Yellow Time (s)	3.3	3.3	3.3	3.3	3.3		3.7	3.7	3.7		3.7	3.7
All-Red Time (s)	3.2	3.2	3.2	3.2	3.2		3.3	3.3	2.1		3.3	3.3
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0		0.0	0.0
Total Lost Time (s)	6.5	6.5	6.5	6.5	6.5			7.0	5.8			7.0
Lead/Lag	Lead	Lag	Lag	Lead	Lag		Lead	Lead	Lag		Lead	Lead
Lead-Lag Optimize?	Yes	Lug	Lug	Louu	Yes		Louu	Louu	Lug		Loud	Louu
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0		3.0	3.0
Recall Mode	None	None	None	None	None		None	None	C-Max		None	None
	NONE			None			None	None			None	None
Walk Time (s)		7.0	7.0		7.0				7.0			
Flash Dont Walk (s)		23.0	23.0		23.0				14.0			
Pedestrian Calls (#/hr)		5	5		5				5			
Act Effct Green (s)	7.4	15.3	15.3	16.0	28.8			12.5	71.2			7.0
Actuated g/C Ratio	0.06	0.12	0.12	0.12	0.22			0.10	0.55			0.05
v/c Ratio	0.25	0.13	0.68	0.97	0.14			0.59	1.03			0.38
Control Delay	64.4	48.8	29.1	95.8	24.9			71.9	58.8			67.8
Queue Delay	0.0	0.0	0.0	0.0	0.0			0.0	0.0			0.0
Total Delay	64.4	48.8	29.1	95.8	24.9			71.9	58.8			67.8
LOS	E	D	С	F	С			E	E			E
Approach Delay		34.5			88.0				59.5			
Approach LOS		С			F				E			
Queue Length 50th (m)	5.5	5.6	13.7	47.8	4.9			21.2	~254.8			7.8
Queue Length 95th (m)	13.6	11.6	32.2	#76.8	13.1			#53.6	#346.3			#21.6
Internal Link Dist (m)		188.6			217.6				586.9			
Turn Bay Length (m)	35.0		60.0	85.0				165.0				155.0
Base Capacity (vph)	126	391	439	399	439			158	1806			88
Starvation Cap Reductn	0	0	0	0	0			0	0			0
Spillback Cap Reductn	0	0	0	0	0			0	0			0
Storage Cap Reductn	0	0	0	0	0			0	0			0
Reduced v/c Ratio	0.19	0.06	0.45	0.97	0.11			0.59	1.03			0.38
Intersection Summary												
Area Type:	Other											
Cycle Length: 130												
Actuated Cycle Length: 130												
Offset: 0 (0%), Referenced to p	hase 2·NRT	and 6:SB	T. Start of	Green								
Natural Cycle: 150				Croon								
Control Type: Actuated-Coordi	nated											
Maximum v/c Ratio: 1.03	natoa											
Intersection Signal Delay: 56.4				In	tersection I	OS: F						
Intersection Capacity Utilizatio					CU Level of							
Analysis Period (min) 15	II J T . I /0											
 Volume exceeds capacity, 	queue is the	oratically	nfinito									
Queue shown is maximum			minite.									
# 95th percentile volume exc	eeds capaci	ty, queue r	may be lon	iger.								
Queue shown is maximum												

Queue shown is maximum after two cycles.

Splits and Phases: 3: March & Solandt

₩ø1 Ø2 (R)	√ Ø3	₩04
12 s 59 s	22.5 s	36.5 s
🕈 Ø5 🖕 🗸 Ø6 (R)	▶ _{Ø7} ◆	Ø8
15 s 56 s	16,3 s 42.0	7.5

	1	1
	V	-
Lane Group	SBT	SBR
Minimum Initial (s)	10.0	
Minimum Split (s)	26.8	
Total Split (s)	56.0	
Total Split (%)	43.1%	
Maximum Green (s)	50.2	
Yellow Time (s)	3.7	
All-Red Time (s)	2.1	
Lost Time Adjust (s)	0.0	
Total Lost Time (s)	5.8	
Lead/Lag	Lag	
Lead-Lag Optimize?		
Vehicle Extension (s)	3.0	
Recall Mode	C-Max	
Walk Time (s)	7.0	
Flash Dont Walk (s)	14.0	
Pedestrian Calls (#/hr)	5	
Act Effct Green (s)	60.4	
Actuated g/C Ratio	0.46	
v/c Ratio	0.87	
Control Delay	45.2	
Queue Delay	0.0	
Total Delay	45.2	
LOS	D	
Approach Delay	45.8	
Approach LOS	D	
Queue Length 50th (m)	114.4	
Queue Length 95th (m)	#226.0	
Internal Link Dist (m)	387.0	
Turn Bay Length (m)		
Base Capacity (vph)	1535	
Starvation Cap Reductn	0	
Spillback Cap Reductn	0	
Storage Cap Reductn	0	
Reduced v/c Ratio	0.87	
Intersection Summary		

	≯	-	\mathbf{F}	4	+	•	₹Ĩ	1	1	1	L	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL
Lane Configurations	۲.	†	1	ካካ	el 🕹			۲	A1⊅			ሻ
Traffic Volume (vph)	24	25	197	389	24	24	16	78	1768	45	12	21
Future Volume (vph)	24	25	197	389	24	24	16	78	1768	45	12	21
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Storage Length (m)	35.0		60.0	85.0		55.0		165.0		0.0		155.0
Storage Lanes	1		1	2		0		1		0		1
Taper Length (m)	50.0			95.0				40.0				25.0
Lane Util. Factor	1.00	1.00	1.00	0.97	1.00	1.00	0.95	1.00	0.95	0.95	0.95	1.00
Ped Bike Factor	0.99		0.98	0.99	0.99			1.00	1.00			1.00
Frt			0.850		0.925				0.996			
Flt Protected	0.950			0.950				0.950				0.950
Satd. Flow (prot)	1674	1695	1483	3248	1515	0	0	1644	3297	0	0	1648
Flt Permitted	0.950	1000	1100	0.950	1010	Ŭ	v	0.950	0201	v	Ŭ	0.950
Satd. Flow (perm)	1664	1695	1449	3214	1515	0	0	1641	3297	0	0	1646
Right Turn on Red	1004	1000	Yes	0214	1010	Yes	0	1041	0201	Yes	0	10-10
Satd. Flow (RTOR)			137		24	100			2	100		
Link Speed (k/h)		50	107		50				60			
Link Distance (m)		212.6			241.6				610.9			
Travel Time (s)		15.3			17.4				36.7			
Confl. Peds. (#/hr)	5	15.5	5	5	17.4	5		5	30.7	5		5
Confl. Bikes (#/hr)	5		5	5		5		5		5		5
. ,	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Peak Hour Factor	1.00	5%	2%	1.00	6%	9%	2%	3%	2%	6%	2%	3%
Heavy Vehicles (%)	24	25	2% 197	389	24	9% 24	2%	3% 78	1768	45	2%	3% 21
Adj. Flow (vph)	24	25	197	389	24	24	10	78	1/00	45	IZ	21
Shared Lane Traffic (%)	24	25	197	200	40	0	0	94	1010	0	0	22
Lane Group Flow (vph)				389	48	0	0		1813	0	0	33
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	L NA	Left	R NA	L NA	Left	R NA	R NA	L NA	Left	R NA	R NA	L NA
Median Width(m)		7.0			10.5				17.5			
Link Offset(m)		0.0			0.0				0.0			
Crosswalk Width(m)		5.0			5.0				5.0			
Two way Left Turn Lane												
Headway Factor	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09
Number of Detectors	1	2	1	1	2		1	1	2		1	1
Detector Template	Left	Thru	Right	Left	Thru		Left	Left	Thru		Left	Left
Leading Detector (m)	2.0	10.0	2.0	2.0	10.0		2.0	2.0	10.0		2.0	2.0
Trailing Detector (m)	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0		0.0	0.0
Detector 1 Position(m)	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0		0.0	0.0
Detector 1 Size(m)	2.0	0.6	2.0	2.0	0.6		2.0	2.0	0.6		2.0	2.0
Detector 1 Type	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex		CI+Ex	CI+Ex	Cl+Ex		CI+Ex	CI+Ex
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0		0.0	0.0
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0		0.0	0.0
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0		0.0	0.0
Detector 2 Position(m)		9.4			9.4				9.4			
Detector 2 Size(m)		0.6			0.6				0.6			
Detector 2 Type		CI+Ex			CI+Ex				Cl+Ex			
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0				0.0			
Turn Type	Prot	NA	Perm	Prot	NA		Prot	Prot	NA		Prot	Prot
Protected Phases	7	4		3	8		5	5	2		1	1
Permitted Phases			4	-								
Detector Phase	7	4	4	3	8		5	5	2		1	1
Switch Phase			•	v	v		v	v	-			- '

	I	1
	+	•
Lane Group	SBT	SBR
Lane Configurations	† 1>	55.1
Traffic Volume (vph)	1311	29
Future Volume (vph)	1311	29
Ideal Flow (vphpl)	1800	1800
Storage Length (m)	1000	0.0
Storage Lanes		0.0
Taper Length (m)		v
Lane Util. Factor	0.95	0.95
Ped Bike Factor	1.00	0.00
Frt	0.997	
Flt Protected	0.001	
Satd. Flow (prot)	3302	0
Flt Permitted	0002	0
Satd. Flow (perm)	3302	0
Right Turn on Red	00UZ	Yes
Satd. Flow (RTOR)	2	163
Link Speed (k/h)	60	
Link Speed (k/n)	411.0	
Travel Time (s) Confl. Peds. (#/hr)	24.7	5
Confl. Bikes (#/hr)		5 5
Peak Hour Factor	1.00	5 1.00
Heavy Vehicles (%)	2%	3%
Adj. Flow (vph)	1311	3% 29
Shared Lane Traffic (%)	1911	29
Lane Group Flow (vph)	1340	0
Enter Blocked Intersection	No	No
Lane Alignment	Left	R NA
Median Width(m)	17.5	
Link Offset(m)	0.0 5.0	
Crosswalk Width(m)	5.0	
Two way Left Turn Lane	4 00	1.00
Headway Factor	1.09	1.09
Number of Detectors	2	
Detector Template	Thru	
Leading Detector (m)	10.0	
Trailing Detector (m)	0.0	
Detector 1 Position(m)	0.0	
Detector 1 Size(m)	0.6	
Detector 1 Type	CI+Ex	
Detector 1 Channel		
Detector 1 Extend (s)	0.0	
Detector 1 Queue (s)	0.0	
Detector 1 Delay (s)	0.0	
Detector 2 Position(m)	9.4	
Detector 2 Size(m)	0.6	
Detector 2 Type	CI+Ex	
Detector 2 Channel		
Detector 2 Extend (s)	0.0	
Turn Type	NA	
Protected Phases	6	
Permitted Phases		
Detector Phase	6	
Switch Phase		

FINI FEAK HOUI								2001 840	Kyrounu m			mzadony
	≯	-	\rightarrow	1	+	•	₹	•	1	1	L#	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL
Minimum Initial (s)	5.0	10.0	10.0	5.0	10.0		5.0	5.0	10.0		5.0	5.0
Minimum Split (s)	11.5	36.5	36.5	11.5	36.5		12.0	12.0	26.8		12.0	12.0
Total Split (s)	16.3	36.5	36.5	22.5	42.7		15.0	15.0	59.0		12.0	12.0
Total Split (%)	12.5%	28.1%	28.1%	17.3%	32.8%		11.5%	11.5%	45.4%		9.2%	9.2%
Maximum Green (s)	9.8	30.0	30.0	16.0	36.2		8.0	8.0	53.2		5.0	5.0
Yellow Time (s)	3.3	3.3	3.3	3.3	3.3		3.7	3.7	3.7		3.7	3.7
All-Red Time (s)	3.2	3.2	3.2	3.2	3.2		3.3	3.3	2.1		3.3	3.3
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0			0.0	0.0			0.0
Total Lost Time (s)	6.5	6.5	6.5	6.5	6.5			7.0	5.8			7.0
Lead/Lag	Lead	Lag	Lag	Lead	Lag		Lead	Lead	Lag		Lead	Lead
Lead-Lag Optimize?	Yes	Lag	Lag	Loud	Yes		Loud	Loud	Lag		Loud	Louid
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0		3.0	3.0
Recall Mode	None	None	None	None	None		None	None	C-Max		None	None
Walk Time (s)	NONE	7.0	7.0	NONE	7.0		NUTE	NONE	7.0		NULLE	None
Flash Dont Walk (s)		23.0	23.0		23.0				14.0			
Pedestrian Calls (#/hr)		23.0	23.0		23.0				5			
	7 /	15.3	15.3	16.0	28.8			12.5	71.2			70
Act Effct Green (s)	7.4											7.0
Actuated g/C Ratio	0.06	0.12	0.12	0.12	0.22			0.10	0.55			0.05
v/c Ratio	0.25	0.13	0.68	0.97	0.14			0.59	1.00			0.38
Control Delay	64.4	48.8	29.1	95.8	24.9			71.9	52.3			84.7
Queue Delay	0.0	0.0	0.0	0.0	0.0			0.0	0.0			0.0
Total Delay	64.4	48.8	29.1	95.8	24.9			71.9	52.3			84.7
LOS	E	D	С	F	С			E	D			F
Approach Delay		34.5			88.0				53.3			
Approach LOS		С			F				D			
Queue Length 50th (m)	5.5	5.6	13.7	47.8	4.9			21.2	~243.0			6.3
Queue Length 95th (m)	13.6	11.6	32.2	#76.8	13.1			#53.6	#334.8			#21.5
Internal Link Dist (m)		188.6			217.6				586.9			
Turn Bay Length (m)	35.0		60.0	85.0				165.0				155.0
Base Capacity (vph)	126	391	439	399	439			158	1806			88
Starvation Cap Reductn	0	0	0	0	0			0	0			0
Spillback Cap Reductn	0	0	0	0	0			0	0			0
Storage Cap Reductn	0	0	0	0	0			0	0			0
Reduced v/c Ratio	0.19	0.06	0.45	0.97	0.11			0.59	1.00			0.38
Intersection Summary												
	Other											
Cycle Length: 130												
Actuated Cycle Length: 130												
Offset: 68 (52%), Referenced t	o phase 2:N	BT and 6:8	SBT, Start	of Green								
Natural Cycle: 150												
Control Type: Actuated-Coordi	nated											
Maximum v/c Ratio: 1.00												
Intersection Signal Delay: 52.3				In	tersection	LOS: D						
Intersection Capacity Utilization					U Level of							
Analysis Period (min) 15												
 Volume exceeds capacity, 	aueue is the	oretically i	nfinite									
Queue shown is maximum												
# 95th percentile volume exc			nay be lon	ger.								
Queue shown is maximum			.,									

Queue shown is maximum after two cycles.

Splits and Phases: 3: March & Solandt

₩ _{Ø1} Ø2 (R)	√ 03	* 04	5.55
12 s 59 s	22.5 s	36.5 s	
🕈 Ø5 🖕 🚽 Ø6 (R)		← Ø8	
15 s 56 s	16.3 s	42.7.s	

	T	1
	•	-
Lane Group	SBT	SBR
Minimum Initial (s)	10.0	
Minimum Split (s)	26.8	
Total Split (s)	56.0	
Total Split (%)	43.1%	
Maximum Green (s)	50.2	
Yellow Time (s)	3.7	
All-Red Time (s)	2.1	
Lost Time Adjust (s)	0.0	
Total Lost Time (s)	5.8	
Lead/Lag	Lag	
Lead-Lag Optimize?		
Vehicle Extension (s)	3.0	
Recall Mode	C-Max	
Walk Time (s)	7.0	
Flash Dont Walk (s)	14.0	
Pedestrian Calls (#/hr)	5	
Act Effct Green (s)	60.4	
Actuated g/C Ratio	0.46	
v/c Ratio	0.87	
Control Delay	41.7	
Queue Delay	0.0	
Total Delay	41.7	
LOS	D	
Approach Delay	42.8	
Approach LOS	D	
Queue Length 50th (m)	174.3	
Queue Length 95th (m)	#226.1	
Internal Link Dist (m)	387.0	
Turn Bay Length (m)		
Base Capacity (vph)	1535	
Starvation Cap Reductn	0	
Spillback Cap Reductn	0	
Storage Cap Reductn	0	
Reduced v/c Ratio	0.87	
Intersection Summary		
mersection summary		

APPENDIX M

Transportation Demand Management

TDM Measures Checklist:

Residential Developments (multi-family, condominium or subdivision)

Legend

The measure is generally feasible and effective, and in most cases would benefit the development and its users

BETTER The measure could maximize support for users of sustainable modes, and optimize development performance

The measure is one of the most dependably effective tools to encourage the use of sustainable modes

	TDM	measures: Residential developments	Check if proposed & add descriptions				
	1.	TDM PROGRAM MANAGEMENT					
	1.1	Program coordinator					
BASIC ★	1.1.1	Designate an internal coordinator, or contract with an external coordinator					
	1.2	Travel surveys					
BETTER	1.2.1	Conduct periodic surveys to identify travel-related behaviours, attitudes, challenges and solutions, and to track progress					
	2.	WALKING AND CYCLING					
	2.1	Information on walking/cycling routes & des	tinations				
BASIC	2.1.1	Display local area maps with walking/cycling access routes and key destinations at major entrances (multi-family, condominium)					
	2.2	Bicycle skills training					
BETTER	2.2.1	Offer on-site cycling courses for residents, or subsidize off-site courses					

	TDM	measures: Residential developments	Check if proposed & add descriptions
	3.	TRANSIT	
	3.1	Transit information	
BASIC	3.1.1	Display relevant transit schedules and route maps at entrances (multi-family, condominium)	\checkmark
BETTER	3.1.2	Provide real-time arrival information display at entrances (multi-family, condominium)	
	3.2	Transit fare incentives	
BASIC ★	3.2.1	Offer PRESTO cards preloaded with one monthly transit pass on residence purchase/move-in, to encourage residents to use transit	
BETTER	3.2.2	Offer at least one year of free monthly transit passes on residence purchase/move-in	
	3.3	Enhanced public transit service	
BETTER ★	3.3.1	Contract with OC Transpo to provide early transit services until regular services are warranted by occupancy levels <i>(subdivision)</i>	
	3.4	Private transit service	
BETTER	3.4.1	Provide shuttle service for seniors homes or lifestyle communities (e.g. scheduled mall or supermarket runs)	
	4.	CARSHARING & BIKESHARING	
	4.1	Bikeshare stations & memberships	
BETTER	4.1.1	Contract with provider to install on-site bikeshare station (<i>multi-family</i>)	\checkmark
BETTER	4.1.2	Provide residents with bikeshare memberships, either free or subsidized (multi-family)	
	4.2	Carshare vehicles & memberships	
BETTER	4.2.1	Contract with provider to install on-site carshare vehicles and promote their use by residents	
BETTER	4.2.2	Provide residents with carshare memberships, either free or subsidized	
	5.	PARKING	
	5.1	Priced parking	
BASIC ★	5.1.1	Unbundle parking cost from purchase price (condominium)	
BASIC 🛨	5.1.2	Unbundle parking cost from monthly rent (multi-family)	

Version 1.0 (30 June 2017)

	TDM	measures: Residential developments	Check if proposed & add descriptions
	6.	TDM MARKETING & COMMUNICATIONS	
	6.1	Multimodal travel information	
BASIC ★	6.1.1	Provide a multimodal travel option information package to new residents	
	6.2	Personalized trip planning	
BETTER ★	6.2.1	Offer personalized trip planning to new residents	

TDM Measures Checklist:

Non-Residential Developments (office, institutional, retail or industrial)

Legend

C The measure is generally feasible and effective, and in most cases would benefit the development and its users

BETTER The measure could maximize support for users of sustainable modes, and optimize development performance

The measure is one of the most dependably effective tools to encourage the use of sustainable modes

	TDM	measures: Non-residential developments	Check if proposed & add descriptions
	1.	TDM PROGRAM MANAGEMENT	
	1.1	Program coordinator	
BASIC	★ 1.1.1	Designate an internal coordinator, or contract with an external coordinator	
	1.2	Travel surveys	
BETTER	1.2.1	Conduct periodic surveys to identify travel-related behaviours, attitudes, challenges and solutions, and to track progress	
	2.	WALKING AND CYCLING	
	2.1	Information on walking/cycling routes & destin	ations
BASIC	2.1.1	Display local area maps with walking/cycling access routes and key destinations at major entrances	
	2.2	Bicycle skills training	
		Commuter travel	
BETTER	2.2.1	Offer on-site cycling courses for commuters, or subsidize off-site courses	
	2.3	Valet bike parking	
		Visitor travel	
BETTER	2.3.1	Offer secure valet bike parking during public events when demand exceeds fixed supply (e.g. for festivals, concerts, games)	

TDM Measures Checklist

Version 1.0 (30 June 2017)

	TDM	measures: Non-residential developments	Check if proposed & add descriptions
	3.	TRANSIT	
	3.1	Transit information	
BASIC	3.1.1	Display relevant transit schedules and route maps at entrances	
BASIC	3.1.2	Provide online links to OC Transpo and STO information	
BETTER	3.1.3	Provide real-time arrival information display at entrances	
	3.2	Transit fare incentives	
		Commuter travel	
BETTER	3.2.1	Offer preloaded PRESTO cards to encourage commuters to use transit	
BETTER	★ 3.2.2	Subsidize or reimburse monthly transit pass purchases by employees	
		Visitor travel	
BETTER	3.2.3	Arrange inclusion of same-day transit fare in price of tickets (e.g. for festivals, concerts, games)	
	3.3	Enhanced public transit service	
		Commuter travel	
BETTER	3.3.1	Contract with OC Transpo to provide enhanced transit services (e.g. for shift changes, weekends)	
		Visitor travel	
BETTER	3.3.2	Contract with OC Transpo to provide enhanced transit services (e.g. for festivals, concerts, games)	
	3.4	Private transit service	
		Commuter travel	
BETTER	3.4.1	Provide shuttle service when OC Transpo cannot offer sufficient quality or capacity to serve demand (e.g. for shift changes, weekends)	
		Visitor travel	
BETTER	3.4.2	Provide shuttle service when OC Transpo cannot offer sufficient quality or capacity to serve demand (e.g. for festivals, concerts, games)	

	TDM	measures: Non-residential developments	Check if proposed & add descriptions
	4.	RIDESHARING	
	4.1	Ridematching service	
		Commuter travel	
BASIC ★	4.1.1	Provide a dedicated ridematching portal at OttawaRideMatch.com	
	4.2	Carpool parking price incentives	
		Commuter travel	
BETTER	4.2.1	Provide discounts on parking costs for registered carpools	
	4.3	Vanpool service	
		Commuter travel	
BETTER	4.3.1	Provide a vanpooling service for long-distance commuters	
	5.	CARSHARING & BIKESHARING	
	5.1	Bikeshare stations & memberships	
BETTER	5.1.1	Contract with provider to install on-site bikeshare station for use by commuters and visitors	
		Commuter travel	1
BETTER	5.1.2	Provide employees with bikeshare memberships for local business travel	
	5.2	Carshare vehicles & memberships	
		Commuter travel	
BETTER	5.2.1	Contract with provider to install on-site carshare vehicles and promote their use by tenants	
BETTER	5.2.2	Provide employees with carshare memberships for local business travel	
	6.	PARKING	
	6.1	Priced parking	
		Commuter travel	
BASIC ★	6.1.1	Charge for long-term parking (daily, weekly, monthly)	
BASIC	6.1.2	Unbundle parking cost from lease rates at multi-tenant sites	
		Visitor travel	
BETTER	6.1.3	Charge for short-term parking (hourly)	

TDM Measures Checklist

Version 1.0 (30 June 2017)

	TDM	measures: Non-residential developments	Check if proposed & add descriptions
	7.	TDM MARKETING & COMMUNICATIONS	
	7.1	Multimodal travel information	
		Commuter travel	
BASIC ★	7.1.1	Provide a multimodal travel option information package to new/relocating employees and students	
BETTER ★	710	Visitor travel Include multimodal travel option information in	
BETTER ★	1.1.2	invitations or advertising that attract visitors or customers (e.g. for festivals, concerts, games)	
	7.2	Personalized trip planning	
		Commuter travel	
BETTER ★	7.2.1	Offer personalized trip planning to new/relocating employees	
	7.3	Promotions	
		Commuter travel	
BETTER	7.3.1	Deliver promotions and incentives to maintain awareness, build understanding, and encourage trial of sustainable modes	
	8.	OTHER INCENTIVES & AMENITIES	
	8.1	Emergency ride home	
		Commuter travel	
BETTER ★	8.1.1	Provide emergency ride home service to non-driving commuters	
	8.2	Alternative work arrangements	
		Commuter travel	
BASIC ★	8.2.1	Encourage flexible work hours	
BETTER	8.2.2	Encourage compressed workweeks	
BETTER ★	8.2.3	Encourage telework	
	8.3	Local business travel options	
		Commuter travel	
BASIC ★	8.3.1	Provide local business travel options that minimize the need for employees to bring a personal car to work	
	8.4	Commuter incentives	
		Commuter travel	1
BETTER	8.4.1	Offer employees a taxable, mode-neutral commuting allowance	
	8.5	On-site amenities	
		Commuter travel	
BETTER	8.5.1	Provide on-site amenities/services to minimize mid-day or mid-commute errands	

APPENDIX N

MMLOS Analysis

Intersection MMLOS Analysis

The following is a review of the MMLOS of the signalized intersections within the study area, using complete streets principles. The MMLOS targets associated with the 'General Urban Area' designation have been used to evaluate March Road/Morgan's Grant Way/Shirley's Brook Drive, and the targets associated with the 'Employment Area' designation have been used to evaluated March Road/Solandt Road. Since March Road/Terry Fox Drive and Terry Fox Drive/Flamborough Way/Innovation Drive is located in both land use designations, whichever target is stricter has been used in evaluation of this intersection.

Exhibit 5 of the Addendum to the MMLOS Guidelines has been used to evaluate the existing PLOS at the intersections listed above. Exhibit 22 of the MMLOS Guidelines suggests a target PLOS C for all roadways within the General Urban or Employment Areas. The results of the intersection PLOS analysis are summarized in **Table 1** through **Table 4**.

Exhibit 12 of the *MMLOS Guidelines* has been used to evaluate the existing BLOS at the intersections listed above. Exhibit 22 of the *MMLOS Guidelines* suggests a target BLOS B for Local Routes in the General Urban Area (Morgan's Grant Way and Shirley's Brook Drive), and a target BLOS C for Spine Routes in the General Urban and Employment Areas (March Road and Terry Fox Drive) and Local Routes in the Employment Area (Solandt Road and Legget Drive). The results of the intersection BLOS analysis are summarized in **Table 5**.

Exhibit 16 of the *MMLOS Guidelines* has been used to evaluate the existing TLOS at the intersections listed above. Exhibit 22 of the *MMLOS Guidelines* identifies a target TLOS B for Rapid Transit Corridors (March Road south of Solandt Road), a target TLOS D for Transit Priority Corridors with Isolated Measures (March Road north of Solandt Road), and does not identify a target TLOS for roadways without a Rapid Transit or Transit Priority designation (Terry Fox Drive, Morgan's Grant Way/Shirley's Brook Drive, Solandt Road, Legget Drive). The TLOS has been evaluated for every approach that is currently used by transit. The results of the intersection TLOS analysis are summarized in **Table 6**.

Exhibit 21 of the *MMLOS Guidelines* has been used to evaluate the existing TkLOS at the intersections listed above. Exhibit 22 of the *MMLOS Guidelines* identifies a target TkLOS B for arterial truck routes in the Employment Area (March Road south of Terry Fox Drive, Terry Fox Drive west of March Road), and a target TkLOS D for arterial truck routes in the General Urban Area (March Road north of Terry Fox Drive) and collector roadways without a truck route designation in the Employment Area (Terry Fox Drive east of March Road, Legget Drive, and Solandt Road). No target is identified for collector roadways without a truck route designation in the General Urban Area (Morgan's Grant Way, Shirley's Brook Drive). The results of the intersection TkLOS analysis are summarized in **Table 7**.

CRITERIA	North Approach		South Approach		East Approach		West Approach	
			PETSI SCORE					
CROSSING DISTANCE CONDITIONS	3							
Median > 2.4m in Width	No	10	No	10	No	-10	No	-10
Lanes Crossed (3.5m Lane Width)	10 +	-10	10 +	-10	10 +	-10	10 +	
SIGNAL PHASING AND TIMING	•						•	
Left Turn Conflict	Permissive	-8	Permissive	-8	Perm + Prot	-8	Perm + Prot	-8
Right Turn Conflict	Permissive or Yield	-5						
Right Turn on Red	N/A	0	N/A	0	N/A	0	N/A	0
Leading Pedestrian Interval	No	-2	No	-2	No	-2	No	-2
CORNER RADIUS	•							•
Parallel Radius	> 15m to 25m	-8						
Parallel Right Turn Channel	Conventional without Receiving	0						
Perpendicular Radius	> 15m to 25m	-8						
Perpendicular Right Turn Channel	Conventional without Receiving	0						
CROSSING TREATMENT	• • • •		^					
Treatment	Standard	-7	Standard	-7	Standard	-7	Standard	-7
	PETSI SCORE	-48		-48		-48		-48
	LOS	F		F		F		F
			DELAY SCORE					
Cycle Length		130		130		130		130
Pedestrian Walk Time		7.5		7.5		52.9		52.9
	DELAY SCORE	57.7		57.7		22.9		22.9
	LOS	Е		E		С		С
	OVERALL	F		F		F		F

Table 1: PLOS Intersection Analysis – March Road/Morgan's Grant Way/Shirley's Brook Drive

Table 2: PLOS Intersection Analysis – March Road/Terry Fox Drive

CRITERIA	North Approach		RIA North Approach South Approach		East Approach		West Approach	
			PETSI SCORE					
CROSSING DISTANCE CONDITIONS	3							
Median > 2.4m in Width	No	-10	No	-10	No	-10	No	-10
Lanes Crossed (3.5m Lane Width)	10 +	-10	10 +	-10	10 +	-10	10 +	-10
SIGNAL PHASING AND TIMING							·	
Left Turn Conflict	Protected	0	Protected	0	Protected	0	Protected	0
Right Turn Conflict	Permissive or Yield	-5	Permissive or Yield	-5	Permissive or Yield	-5	Permissive or Yield	-5
Right Turn on Red	N/A	0	N/A	0	N/A	0	N/A	0
Leading Pedestrian Interval	No	-2	No	-2	No	-2	No	-2
CORNER RADIUS								
Parallel Radius	> 15m to 25m	-8	> 15m to 25m	-8	> 15m to 25m	-8	> 15m to 25m	-8
Parallel Right Turn Channel	Conventional without Receiving	0	Conventional without Receiving	0	Conventional without Receiving	0	Conventional without Receiving	0
Perpendicular Radius	> 15m to 25m	-8	> 15m to 25m	-8	> 15m to 25m	-8	> 15m to 25m	-8
Perpendicular Right Turn Channel	Conventional without Receiving	0	Conventional without Receiving	0	Conventional without Receiving	0	Conventional without Receiving	0
CROSSING TREATMENT								
Treatment	Standard	-7	Standard	-7	Standard	-7	Standard	-7
	PETSI SCORE	-40		-40		-40		-40
	LOS	F		F		F		F
			DELAY SCORE					
Cycle Length		130		130		130		130
Pedestrian Walk Time		7.0		7.0		15.3		15.3
	DELAY SCORE	58.2		58.2		50.6		50.6
	LOS	E		E		E		E
	OVERALL	F		F		F		F

CRITERIA	North Approach		South Approach		East Approach		West Approach	
			PETSI SCORE					
CROSSING DISTANCE CONDITIONS								
Median > 2.4m in Width	No	-10	No	-10	No	-10	No	-10
Lanes Crossed (3.5m Lane Width)	10 +	-10	10 +		10 +		10 +	
SIGNAL PHASING AND TIMING							·	
Left Turn Conflict	Protected	0	Protected	0	Permissive	-8	Perm + Prot	-8
Right Turn Conflict	Permissive or Yield	-5	Permissive or Yield	-5	Permissive or Yield	-5	Permissive or Yield	-5
Right Turn on Red	N/A	0	N/A	0	N/A	0	N/A	0
Leading Pedestrian Interval	No	-2	No	-2	No	-2	No	-2
CORNER RADIUS								
Parallel Radius	> 15m to 25m	-8	> 15m to 25m	-8	> 15m to 25m	-8	> 15m to 25m	-8
Parallel Right Turn Channel	Conventional without Receiving	0	Conventional without Receiving	0	Conventional without Receiving	0	Conventional without Receiving	0
Perpendicular Radius	> 15m to 25m	-8	> 15m to 25m	-8	> 15m to 25m	-8	> 15m to 25m	-8
Perpendicular Right Turn Channel	Conventional without Receiving	0	Conventional without Receiving	0	Conventional without Receiving	0	Conventional without Receiving	0
CROSSING TREATMENT	· · · · · · · · · · · · · · · · · · ·						·	
Treatment	Standard	-7	Standard	-7	Standard	-7	Standard	-7
	PETSI SCORE	-40		-40		-48		-48
	LOS	F		F		F		F
			DELAY SCORE					
Cycle Length		130		130		130		130
Pedestrian Walk Time		7.5		7.5		45.7		27.7
DELAY SCORE		57.7		57.7		27.3		40.3
LOS		E		E		С		E
	OVERALL	F		F		F		F

Table 4: PLOS Intersection Analysis – Terry Fox Drive/Flamborough Way/Innovation Drive

CRITERIA	North Approach		South Approach		East Approach		West Approach	
			PETSI SCORE					
CROSSING DISTANCE CONDITIONS								
Median > 2.4m in Width	No	72	No	72	No	23	No	39
Lanes Crossed (3.5m Lane Width)	5	12	5	12	8	23	7	39
SIGNAL PHASING AND TIMING								
Left Turn Conflict	Perm + Prot	-8	Perm + Prot	-8	Permissive	-8	Perm + Prot	-8
Right Turn Conflict	Permissive or Yield	-5						
Right Turn on Red	RTOR Allowed	-3						
Leading Pedestrian Interval	No	-2	No	-2	No	-2	No	-2
CORNER RADIUS	· · ·							
Parallel Radius	> 10m to 15m	-6						
Parallel Right Turn Channel	No Right Turn Channel	-4						
Perpendicular Radius	N/A	0	N/A	0	N/A	0	N/A	0
Perpendicular Right Turn Channel	N/A	0	N/A	0	N/A	0	N/A	0
CROSSING TREATMENT								
Treatment	Standard	-7	Standard	-7	Standard	-7	Standard	-7
	PETSI SCORE	37		37		-12		4
	LOS	E		Е		F		F
			DELAY SCORE					
Cycle Length		130		130		130		130
Pedestrian Walk Time		45.1		45.1		12.7		12.7
DELAY SCORE		27.7		27.7		52.9		52.9
LOS		С		С		E		E
	OVERALL			E		F		F

Travel Lanes and/or Speed Approach Facility Type Criteria **BLOS** March Road/Morgan's Grant Way/Shirley's Brook Drive Right turn lane < 50m and Right Turn Lane В Pocket Characteristics introduced to the right North Approach Bike Lane Left Turn Three lanes crossed, > 60 km/h F Accommodation **Right Turn Lane** Right turn lane < 50m and В Pocket Characteristics introduced to the right South Approach Bike Lane Left Turn F Three lanes crossed, > 60 km/h Accommodation Right turn lane < 50m and **Right Turn Lane** В Pocket Characteristics introduced to the right East Approach Left Turn Bike Lane С One lane crossed, 50 km/h Accommodation **Right Turn Lane** А No impact to level of traffic stress Curbside Characteristics West Approach Left Turn **Bike Lane** В No lanes crossed, < 50 km/h Accommodation March Road/Terry Fox Drive Right turn lane > 50m and Right Turn Lane D Pocket Characteristics introduced to the right North Approach Bike Lane Left Turn Three lanes crossed, > 50 km/h F Accommodation Right Turn Lane Right turn lane > 50m and D Pocket Characteristics introduced to the right South Approach Bike Lane Left Turn Dual left turn lanes F Accommodation **Right Turn Lane** Right turn lane > 50m and D Pocket Characteristics introduced to the right East Approach Bike Lane Left Turn F Dual left turn lanes Accommodation Right Turn Lane Right turn lane > 50m and D Pocket Characteristics introduced to the right West Approach Bike Lane Left Turn F Dual left turn lanes Accommodation March Road/Solandt Road Right Turn Lane Right turn lane > 50m and D Pocket Characteristics introduced to the right North Approach Bike Lane Left Turn Two-stage left-turn bike box А Accommodation Right Turn Lane Bike lane shifts to the left D Pocket Characteristics of the right turn lane South Approach Bike Lane Left Turn Two-stage left-turn bike box А Accommodation Right Turn Lane А Shared through/right turn lane Characteristics East Approach Mixed Traffic Left Turn Dual left turn lanes F Accommodation **Right Turn Lane** Right turn lane > 50m F Characteristics West Approach Mixed Traffic Left Turn One lane crossed, > 60 km/h F Accommodation

Table 5: BLOS Intersection Analysis

Approach	Facility Type	Criteria	Travel Lanes and/or Speed	BLOS			
Terry Fox Drive/Flamborough Way/Innovation Drive							
North Approach	Mixed Traffic	Right Turn Lane Characteristics	Shared through/right turn lane	А			
		Left Turn Accommodation	One lane crossed; 50 km/h	D			
South Approach	Mixed Traffic	Right Turn Lane Characteristics	Shared through/right turn lane	А			
		Left Turn Accommodation	One lane crossed; 50 km/h	F			
East Approach	Pocket Bike Lane	Right Turn Lane Characteristics	Right turn lane > 50m and introduced to the right	D			
		Left Turn Accommodation	One lane crossed; 50 km/h	Е			
West Approach	Pocket Bike Lane	Right Turn Lane Characteristics	Right turn lane > 50m and introduced to the right	D			
		Left Turn Accommodation	One lane crossed; 50 km/h	E			

Table 6: TLOS Intersection Analysis

Annroach	Dela	TLOS					
Approach	AM Peak	PM Peak	ILU5				
March Road/Morgan's Grant Way/Shirley's Brook Drive							
North Approach	11 sec	16 sec	С				
South Approach	10 sec	9 sec	В				
East Approach	59 sec	54 sec	F				
West Approach	17 sec	19 sec	С				
March Road/Terry Fox Drive	•						
North Approach	20 sec	27 sec	D				
South Approach	30 sec	28 sec	D				
East Approach	45 sec	38 sec	F				
West Approach	35 sec	41 sec	F				
March Road/Solandt Road							
North Approach	15 sec	23 sec	D				
South Approach	8 sec	17 sec	С				
East Approach	58 sec	54 sec	F				
West Approach	25 sec	41 sec	F				
Terry Fox Drive/Flamborough Way/Innovation Drive							
North Approach	63 sec	41 sec	F				
South Approach	36 sec	63 sec	F				
East Approach	4 sec	5 sec	В				
West Approach	9 sec	12 sec	С				

1. Delay based on outputs from Synchro analysis of existing conditions

Table 7: TKLOS Inters	Section Analysis		
Approach	Effective Corner Radius	Number of Receiving Lanes Departing Intersection	TkLOS
March Road/Morgan'	's Grant Way/Shirley's Broo	ok Drive	
North Approach	> 15m	1	С
South Approach	> 15m	1	С
East Approach	> 15m	3	А
West Approach	> 15m	3	А
March Road/Terry Fo	ox Drive		
North Approach	> 15m	2	А
South Approach	> 15m	2	А
East Approach	> 15m	3	А
West Approach	> 15m	3	А
March Road/Solandt	Road		
North Approach	> 15m	2	А
South Approach	> 15m	2	А
East Approach	> 15m	3	А
West Approach	> 15m	3	А
Terry Fox Drive/Flam	borough Way/Innovation	Drive	
North Approach	> 15m	1	С
South Approach	> 15m	1	С
East Approach	> 15m	1	С
West Approach	> 15m	1	С

Table 7: TkLOS Intersection Analysis

APPENDIX O

Total Synchro Analysis

1: March & Morgan's Grant/Shirley's Brook AM Peak Hour

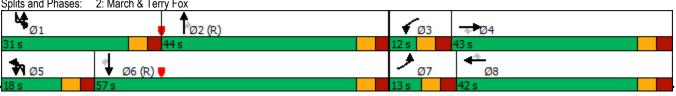
											2001 100	al mailic
	٦	-	$\mathbf{\hat{z}}$	4	•	*	1	Ť	1	1	Ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		र्भ	1	2	•	1	7	***	1	1	***	1
Traffic Volume (vph)	26	38	73	89	14	25	26	1010	41	100	1878	10
Future Volume (vph)	26	38	73	89	14	25	26	1010	41	100	1878	10
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Storage Length (m)	0.0		20.0	45.0		35.0	130.0		30.0	65.0		25.0
Storage Lanes	0		1	1		1	1		1	1		1
Taper Length (m)	10.0			30.0			40.0			35.0		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.91	1.00	1.00	0.91	1.00
Ped Bike Factor		1.00	0.98	0.99		0.98	1.00		0.96	1.00		0.96
Frt			0.850			0.850			0.850			0.850
Flt Protected		0.980		0.950			0.950			0.950		0.000
Satd. Flow (prot)	0	1727	1498	1580	1271	1498	1674	4628	1427	1674	4718	1498
Flt Permitted	Ŭ	0.862	1100	0.715		1100	0.950	1020		0.950		1100
Satd. Flow (perm)	0	1515	1464	1183	1271	1464	1672	4628	1368	1667	4718	1436
Right Turn on Red	U	1010	Yes	1100	12/1	Yes	1072	4020	Yes	1007	110	Yes
Satd. Flow (RTOR)			136			136			145			91
Link Speed (k/h)		40	100		40	100		60	140		60	51
Link Distance (m)		465.2			359.5			318.9			462.6	
Travel Time (s)		41.9			32.4			19.1			27.8	
Confl. Peds. (#/hr)	5	41.5	5	5	52.4	5	5	13.1	5	5	21.0	5
Confl. Bikes (#/hr)	J		5	J		5	J		5	J		5
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles (%)	1.00	1%	1%	7%	40%	1%	1%	5%	6%	1%	3%	1%
Adj. Flow (vph)	26	38	73	89	40 %	25	26	1010	41	100	1878	10
Shared Lane Traffic (%)	20	30	13	09	14	20	20	1010	41	100	10/0	10
Lane Group Flow (vph)	0	64	73	89	14	25	26	1010	41	100	1878	10
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	LNA	Left	R NA	LNA	Left	RNA	LNA	Left	R NA	L NA	Left	R NA
Median Width(m)	LINA	3.5	IN INA	LINA	5.0	n na	LINA	9.0	IN INA	LINA	9.0	T INA
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		0.0 5.0			0.0 5.0			5.0			5.0	
Two way Left Turn Lane		5.0			5.0			5.0			5.0	
	1.09	1.09	1.09	1.09	1.00	1.09	1.09	1.09	1.09	1.09	1.09	1.09
Headway Factor	1.09		1.09		1.09							
Number of Detectors		2 Thru	•	1	2	1 Diabt	1	2 Thru	1 Diabt	1	2	1 Diaht
Detector Template	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right
Leading Detector (m)	2.0	10.0	2.0	2.0	10.0	2.0	2.0	10.0	2.0	2.0	10.0	2.0
Trailing Detector (m)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Position(m)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Size(m)	2.0	0.6	2.0	2.0	0.6	2.0	2.0	0.6	2.0	2.0	0.6	2.0
Detector 1 Type	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 2 Position(m)		9.4			9.4			9.4			9.4	
Detector 2 Size(m)		0.6			0.6			0.6			0.6	
Detector 2 Type		CI+Ex			CI+Ex			CI+Ex			CI+Ex	
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	Perm	NA	Perm	Perm	NA	Perm	Prot	NA	Perm	Prot	NA	Perm
Protected Phases		4			8		5	2		1	6	
Permitted Phases	4		4	8		8			2			6
Detector Phase	4	4	4	8	8	8	5	2	2	1	6	6
Switch Phase												

1: March & Morgan's Grant/Shirley's Brook AM Peak Hour

Lane Group Minimum Initial (s) Minimum Split (s) Total Split (s) Total Split (%) Maximum Green (s)	EBL 10.0 38.5 40.0 30.8% 32.5 3.0	EBT 10.0 38.5 40.0 30.8%	EBR 10.0 38.5 40.0	WBL 10.0 38.5	★ WBT 10.0	WBR	▲ NBL	↑ NBT	NBR	SBL		-
Minimum Initial (s) Minimum Split (s) Total Split (s) Total Split (%)	10.0 38.5 40.0 30.8% 32.5	10.0 38.5 40.0 30.8%	10.0 38.5	10.0			NBL	NRT	NDD	CDI	ODT	
Minimum Split (s) Total Split (s) Total Split (%)	38.5 40.0 30.8% 32.5	38.5 40.0 30.8%	38.5		10.0						SBT	SBI
Total Split (s) Total Split (%)	40.0 30.8% 32.5	40.0 30.8%		38 5		10.0	5.0	10.0	10.0	5.0	10.0	10.
Total Split (%)	30.8% 32.5	30.8%	40.0		38.5	38.5	11.4	24.4	24.4	11.4	24.4	24.
	32.5		40.0	40.0	40.0	40.0	14.0	65.0	65.0	25.0	76.0	76.
Maximum Green (s)			30.8%	30.8%	30.8%	30.8%	10.8%	50.0%	50.0%	19.2%	58.5%	58.5%
	3.0	32.5	32.5	32.5	32.5	32.5	7.6	58.6	58.6	18.6	69.6	69.0
Yellow Time (s)		3.0	3.0	3.0	3.0	3.0	3.7	3.7	3.7	3.7	3.7	3.1
All-Red Time (s)	4.5	4.5	4.5	4.5	4.5	4.5	2.7	2.7	2.7	2.7	2.7	2.
Lost Time Adjust (s)		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)		7.5	7.5	7.5	7.5	7.5	6.4	6.4	6.4	6.4	6.4	6.4
Lead/Lag							Lead	Lag	Lag	Lead	Lag	Lag
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	None	None	None	None	None	None	None	C-Max	C-Max	None	C-Max	C-Ma
Walk Time (s)	7.0	7.0	7.0	7.0	7.0	7.0		7.0	7.0		7.0	7.0
Flash Dont Walk (s)	24.0	24.0	24.0	24.0	24.0	24.0		11.0	11.0		11.0	11.(
Pedestrian Calls (#/hr)	5	5	5	5	5	5		5	5		5	Ę
Act Effct Green (s)		17.3	17.3	17.3	17.3	17.3	7.4	79.4	79.4	13.1	90.0	90.0
Actuated g/C Ratio		0.13	0.13	0.13	0.13	0.13	0.06	0.61	0.61	0.10	0.69	0.69
v/c Ratio		0.32	0.23	0.57	0.08	0.08	0.27	0.36	0.05	0.60	0.58	0.01
Control Delay		52.5	1.8	64.9	45.8	0.5	56.9	9.9	0.6	69.8	13.5	0.0
Queue Delay		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay		52.5	1.8	64.9	45.8	0.5	56.9	9.9	0.6	69.8	13.5	0.0
LOS		D	А	E	D	А	E	А	А	E	В	A
Approach Delay		25.4			50.2			10.6			16.3	
Approach LOS		С			D			В			В	
Queue Length 50th (m)		14.2	0.0	20.4	3.0	0.0	6.1	14.7	0.0	22.9	81.9	0.0
Queue Length 95th (m)		23.6	0.0	32.0	7.7	0.0	m14.9	39.1	m0.6	38.4	138.0	0.0
Internal Link Dist (m)		441.2			335.5			294.9			438.6	
Turn Bay Length (m)			20.0	45.0		35.0	130.0		30.0	65.0		25.0
Base Capacity (vph)		378	468	295	317	468	103	2825	891	239	3265	102
Starvation Cap Reductn		0	0	0	0	0	0	0	0	0	0	(
Spillback Cap Reductn		0	0	0	0	0	0	0	0	0	0	(
Storage Cap Reductn		0	0	0	0	0	0	0	0	0	0	(
Reduced v/c Ratio		0.17	0.16	0.30	0.04	0.05	0.25	0.36	0.05	0.42	0.58	0.0
Intersection Summary												
Area Type:	Other											
Cycle Length: 130												
Actuated Cycle Length: 130												
Offset: 63 (48%), Referenced t	o phase 2:N	BT and 6:S	SBT, Start	of Green								
Natural Cycle: 90												
Control Type: Actuated-Coordi	nated											
Maximum v/c Ratio: 0.60												
Intersection Signal Delay: 16.2					tersection							
Intersection Capacity Utilization	1 /8.2%			IC	U Level of	Service D						
Analysis Period (min) 15 m Volume for 95th percentile	queue is me	etered by u	instream s	ional								
Splits and Phases: 1: March	& Morgan's	Grant/Shir	ley's Broo	k				A				
Ø1	Ø2 (R))						- 4 0	4			
25 s	55 s							40 s				

Ø1	Ø2 (R)	
25 s	65 s	40 s
▲ ø5 🕴	Ø6 (R)	
14 s 76 s	3	40 s

	٦	-	\mathbf{r}	*	-	*	₹Ĩ	1	1	۲	L	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL
Lane Configurations	ሻሻ	<u></u>	1	ኘኘ	^	1		ሻሻ	***	1		1
Traffic Volume (vph)	125	183	283	42	76	50	14	180	882	109	1	202
Future Volume (vph)	125	183	283	42	76	50	14	180	882	109	1	202
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Storage Length (m)	95.0	1000	60.0	75.0	1000	75.0	1000	130.0	1000	85.0	1000	110.0
Storage Lanes	2		2	2		1		2		2		1
Taper Length (m)	40.0		2	20.0				90.0		2		40.0
Lane Util. Factor	0.97	0.95	1.00	0.97	0.95	1.00	0.91	0.97	0.91	1.00	0.91	1.00
Ped Bike Factor	0.99	0.55	0.97	0.99	0.00	0.98	0.01	1.00	0.51	0.97	0.51	1.00
Frt	0.33		0.850	0.33		0.850		1.00		0.850		1.00
Flt Protected	0.950		0.000	0.950		0.000		0.950		0.000		0.950
	3185	3316	1483	3248	3161	1498	0	3246	4628	1469	0	1674
Satd. Flow (prot)		3310	1403		3101	1490	U		4020	1409	U	
Flt Permitted	0.950	2240	4400	0.950	2404	4.400	0	0.950	4000	4404	^	0.950
Satd. Flow (perm)	3169	3316	1438	3220	3161	1466	0	3242	4628	1424	0	1667
Right Turn on Red			Yes			Yes				Yes		
Satd. Flow (RTOR)			193			193				198		
Link Speed (k/h)		60			60				60			
Link Distance (m)		165.4			149.1				308.9			
Travel Time (s)		9.9			8.9				18.5			
Confl. Peds. (#/hr)	5		10	10		5		5		10		10
Confl. Bikes (#/hr)			10			5				5		
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles (%)	3%	2%	2%	1%	7%	1%	2%	1%	5%	3%	2%	1%
Adj. Flow (vph)	125	183	283	42	76	50	14	180	882	109	1	202
Shared Lane Traffic (%)												
Lane Group Flow (vph)	125	183	283	42	76	50	0	194	882	109	0	203
Enter Blocked Intersection	No	No	No	Yes	Yes	Yes	No	No	No	No	No	No
Lane Alignment	L NA	Left	R NA	L NA	Left	R NA	R NA	L NA	Left	R NA	R NA	L NA
Median Width(m)		11.5			10.5				10.5			
Link Offset(m)		0.0			0.0				0.0			
Crosswalk Width(m)		5.0			5.0				5.0			
Two way Left Turn Lane												
Headway Factor	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09
Number of Detectors	1.00	2	1.00	1.00	2	1	1.00	1.00	2	1.00	1.00	1.00
Detector Template	Left	Thru	Right	Left	Thru	Right	Left	Left	Thru	Right	Left	Left
Leading Detector (m)	2.0	10.0	2.0	2.0	10.0	2.0	2.0	2.0	10.0	2.0	2.0	2.0
Trailing Detector (m)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Position(m)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Size(m)	2.0	0.0	2.0	2.0	0.6	2.0	2.0	2.0	0.0	2.0	2.0	2.0
Detector 1 Type	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex
Detector 1 Channel			OITEX	OITEX	OFEX	OITEX		OITEX	OITEX	OFEX		
	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 2 Position(m)		9.4			9.4				9.4			
Detector 2 Size(m)		0.6			0.6				0.6			
Detector 2 Type		CI+Ex			CI+Ex				CI+Ex			
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0				0.0			
Turn Type	Prot	NA	Perm	Prot	NA	Perm	Prot	Prot	NA	Perm	Prot	Prot
Protected Phases	7	4		3	8		5	5	2		1	1
Permitted Phases			4			8				2		
Detector Phase	7	4	4	3	8	8	5	5	2	2	1	1


	1	,
	. ↓	-
	ODT	CDD
Lane Group	SBT	SBR
Lane Configurations	***	1005
Traffic Volume (vph)	1633	235
Future Volume (vph)	1633	235
Ideal Flow (vphpl)	1800	1800
Storage Length (m)		100.0
Storage Lanes		1
Taper Length (m)		
Lane Util. Factor	0.91	1.00
Ped Bike Factor		0.98
Frt		0.850
Flt Protected		
Satd. Flow (prot)	4718	1469
Flt Permitted		
Satd. Flow (perm)	4718	1436
Right Turn on Red		Yes
Satd. Flow (RTOR)		235
Link Speed (k/h)	60	200
Link Distance (m)	318.9	
Travel Time (s)	19.1	
Confl. Peds. (#/hr)	13.1	5
		5 5
Confl. Bikes (#/hr)	1.00	
Peak Hour Factor	1.00	1.00
Heavy Vehicles (%)	3%	3%
Adj. Flow (vph)	1633	235
Shared Lane Traffic (%)	1000	
Lane Group Flow (vph)	1633	235
Enter Blocked Intersection	No	No
Lane Alignment	Left	R NA
Median Width(m)	7.0	
Link Offset(m)	0.0	
Crosswalk Width(m)	5.0	
Two way Left Turn Lane		
Headway Factor	1.09	1.09
Number of Detectors	2	1
Detector Template	– Thru	Right
Leading Detector (m)	10.0	2.0
Trailing Detector (m)	0.0	0.0
Detector 1 Position(m)	0.0	0.0
Detector 1 Size(m)	0.0	2.0
Detector 1 Type	CI+Ex	CI+Ex
Detector 1 Channel		
	0.0	0.0
Detector 1 Extend (s)	0.0	0.0
Detector 1 Queue (s)	0.0	0.0
Detector 1 Delay (s)	0.0	0.0
Detector 2 Position(m)	9.4	
Detector 2 Size(m)	0.6	
Detector 2 Type	CI+Ex	
Detector 2 Channel		
Detector 2 Extend (s)	0.0	
Turn Type	NA	Perm
Protected Phases	6	
Permitted Phases		6
Detector Phase	6	6
Switch Dhose	Ŭ	v

J.Audia, Novatech

Switch Phase

2: March & Terry Fox AM Peak Hour

AM Peak Hour											2037 Tot	al Traffic
	٦	-	\mathbf{r}	4	+	•	₹I	1	Ť	1	L	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL
Minimum Initial (s)	5.0	10.0	10.0	5.0	10.0	10.0	5.0	5.0	10.0	10.0	5.0	5.0
Minimum Split (s)	11.8	42.0	42.0	11.8	42.0	42.0	11.4	11.4	32.4	32.4	11.4	11.4
Total Split (s)	13.0	43.0	43.0	12.0	42.0	42.0	18.0	18.0	44.0	44.0	31.0	31.0
Total Split (%)	10.0%	33.1%	33.1%	9.2%	32.3%	32.3%	13.8%	13.8%	33.8%	33.8%	23.8%	23.8%
Maximum Green (s)	6.2	36.0	36.0	5.2	35.0	35.0	11.6	11.6	37.6	37.6	24.6	24.6
Yellow Time (s)	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7
All-Red Time (s)	3.1	3.3	3.3	3.1	3.3	3.3	2.7	2.7	2.7	2.7	2.7	2.7
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0		0.0
Total Lost Time (s)	6.8	7.0	7.0	6.8	7.0	7.0		6.4	6.4	6.4		6.4
Lead/Lag	Lead	Lag	Lag	Lead	Lag	Lag	Lead	Lead	Lag	Lag	Lead	Lead
Lead-Lag Optimize?		Ū	J		Ū	Ū			J	Ū		
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	None	None	None	None	None	None	None	None	C-Max	C-Max	None	None
Walk Time (s)		7.0	7.0		7.0	7.0			7.0	7.0		
Flash Dont Walk (s)		28.0	28.0		28.0	28.0			19.0	19.0		
Pedestrian Calls (#/hr)		10	10		5	5			5	5		
Act Effct Green (s)	7.0	21.4	21.4	5.2	20.6	20.6		11.6	59.1	59.1		20.2
Actuated g/C Ratio	0.05	0.16	0.16	0.04	0.16	0.16		0.09	0.45	0.45		0.16
v/c Ratio	0.03	0.34	0.71	0.33	0.15	0.13		0.67	0.43	0.43		0.78
Control Delay	92.1	45.7	22.6	67.6	44.0	0.13		52.9	37.4	10.8		88.1
Queue Delay	0.0	43.7	0.0	07.0	0.0	0.0		0.0	0.0	0.0		0.0
Total Delay	92.1	45.7	22.6	67.6	44.0	0.0		52.9	37.4	10.8		88.1
LOS	92.1 F	43.7 D	22.0 C	67.0 E	44.0 D			J2.9 D	57.4 D	10.0 B		60.1 F
Approach Delay	F	44.5	U		37.0	A		U	37.5	D		Г
Approach LOS		44.5 D			57.0 D				57.5 D			
Queue Length 50th (m)	16.1	17.1	12.5	5.0	8.7	0.0		22.0	73.7	4.9		51.1
Queue Length 95th (m)	#32.5	25.1	37.8	10.7	12.9	0.0		33.7	93.0	4.9		70.9
	#32.3	25.1 141.4	37.0	10.7		0.0		<i>33.1</i>	284.9	10.0		70.8
Internal Link Dist (m)	05.0	141.4	0.00	75.0	125.1	75.0		120.0	204.9	05.0		110.0
Turn Bay Length (m)	95.0	010	60.0 537	75.0	054	75.0 535		130.0	0400	85.0		110.0
Base Capacity (vph)	171	918		129	851			301	2102	754		316
Starvation Cap Reductn	0	0	0	0	0	0		0	0	0		0
Spillback Cap Reductn	0	0	0	0	0	0		0	0	0		0
Storage Cap Reductn	0	0	0	0	0	0		0	0	0		(
Reduced v/c Ratio	0.73	0.20	0.53	0.33	0.09	0.09		0.64	0.42	0.14		0.64
Intersection Summary												
Area Type:	Other											
Cycle Length: 130												
Actuated Cycle Length: 130												
Offset: 80 (62%), Referenced	to phase 2:N	BT and 6:	SBT, Start	of Green								
Natural Cycle: 110												
Control Type: Actuated-Coord	dinated											
Maximum v/c Ratio: 0.78												
Intersection Signal Delay: 31.					tersection							
Intersection Capacity Utilization	on 87.7%			IC	CU Level o	f Service E						
Analysis Period (min) 15												
# 95th percentile volume ex			may be lon	ger.								
Queue shown is maximum	n after two cyc	les.										
Splits and Phases: 2: Marc	h & Terry Fox											
opino ana i nases. Z. Maio	and religion	<u> </u>										

J.Audia, Novatech

	I	1
	+	•
Lane Group	SBT	SBR
Minimum Initial (s)	10.0	10.0
Minimum Split (s)	32.4	32.4
Total Split (s)	57.0	57.0
Total Split (%)	43.8%	43.8%
Maximum Green (s)	50.6	50.6
Yellow Time (s)	3.7	3.7
All-Red Time (s)	2.7	2.7
Lost Time Adjust (s)	0.0	0.0
Total Lost Time (s)	6.4	6.4
Lead/Lag	Lag	Lag
Lead-Lag Optimize?	9	9
Vehicle Extension (s)	3.0	3.0
Recall Mode	C-Max	C-Max
Walk Time (s)	7.0	7.0
Flash Dont Walk (s)	19.0	19.0
Pedestrian Calls (#/hr)	5	5
Act Effct Green (s)	67.6	67.6
Actuated g/C Ratio	0.52	0.52
v/c Ratio	0.67	0.27
Control Delay	18.4	1.6
Queue Delay	0.0	0.0
Total Delay	18.4	1.6
LOS	B	1.0 A
Approach Delay	23.3	~
Approach LOS	23.3 C	
Queue Length 50th (m)	34.6	0.0
Queue Length 95th (m)	34.0 85.0	6.5
Internal Link Dist (m)	294.9	0.5
Turn Bay Length (m)	294.9	100.0
	2453	859
Base Capacity (vph) Starvation Cap Reductn	2453 0	859 0
	0	0
Spillback Cap Reductn		0
Storage Cap Reductn	0	-
Reduced v/c Ratio	0.67	0.27
Intersection Summary		

	٦	-	\mathbf{r}	4	+	•	₹Ĩ	1	Ť	۲	L	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL
Lane Configurations	<u>م</u>	•	1	ሻሻ	el e			7	≜1 ≱			1
Traffic Volume (vph)	12	30	78	74	14	15	2	196	1619	172	2	57
Future Volume (vph)	12	30	78	74	14	15	2	196	1619	172	2	57
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Storage Length (m)	35.0	1000	60.0	85.0	1000	55.0	1000	165.0	1000	0.0	1000	155.0
Storage Lanes	1		1	2		0		105.0		0.0		100.0
Taper Length (m)	50.0			95.0		0		40.0		U		25.0
		1 00	1 00		1 00	1 00	0.05		0.05	0.05	0.05	
Lane Util. Factor	1.00	1.00	1.00	0.97	1.00	1.00	0.95	1.00	0.95	0.95	0.95	1.00
Ped Bike Factor	0.99		0.98	0.99	0.99			1.00	1.00			1.00
Frt	0.050		0.850	0.050	0.922			0.050	0.986			0.050
Flt Protected	0.950			0.950				0.950				0.950
Satd. Flow (prot)	1537	1728	1414	3124	1410	0	0	1658	3236	0	0	1674
Flt Permitted	0.950			0.950				0.950				0.950
Satd. Flow (perm)	1528	1728	1381	3092	1410	0	0	1656	3236	0	0	1672
Right Turn on Red			Yes			Yes				Yes		
Satd. Flow (RTOR)			137		15				12			
Link Speed (k/h)		50			50				60			
Link Distance (m)		212.6			241.6				610.9			
Travel Time (s)		15.3			17.4				36.7			
Confl. Peds. (#/hr)	5		5	5		5		5		5		5
Confl. Bikes (#/hr)	U		5	Ū		5		U		5		0
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles (%)	1.00	3%	7%	5%	30%	1%	2%	2%	3%	1%	2%	1.00
	10%		78			1%		196		172		
Adj. Flow (vph)	IZ	30	/8	74	14	15	2	190	1619	172	2	57
Shared Lane Traffic (%)	40	00	70	74	00	0	•	400	4704	0	•	
Lane Group Flow (vph)	12	30	78	74	29	0	0	198	1791	0	0	59
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	L NA	Left	R NA	L NA	Left	R NA	R NA	L NA	Left	R NA	R NA	L NA
Median Width(m)		7.0			10.5				17.5			
Link Offset(m)		0.0			0.0				0.0			
Crosswalk Width(m)		5.0			5.0				5.0			
Two way Left Turn Lane												
Headway Factor	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09
Number of Detectors	1	2	1	1	2		1	1	2		1	1
Detector Template	Left	Thru	Right	Left	Thru		Left	Left	Thru		Left	Left
Leading Detector (m)	2.0	10.0	2.0	2.0	10.0		2.0	2.0	10.0		2.0	2.0
Trailing Detector (m)	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0		0.0	0.0
Detector 1 Position(m)	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0		0.0	0.0
Detector 1 Size(m)	2.0	0.6	2.0	2.0	0.6		2.0	2.0	0.6		2.0	2.0
Detector 1 Type	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex		CI+Ex	CI+Ex	Cl+Ex		CI+Ex	CI+Ex
Detector 1 Channel	OFFER	ONEX	OFER					OFER			ONEX	
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0		0.0	0.0
()	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0		0.0	0.0
Detector 1 Queue (s)												
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0		0.0	0.0
Detector 2 Position(m)		9.4			9.4				9.4			
Detector 2 Size(m)		0.6			0.6				0.6			
Detector 2 Type		CI+Ex			Cl+Ex				Cl+Ex			
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0				0.0			
Turn Type	Prot	NA	Perm	Prot	NA		Prot	Prot	NA		Prot	Prot
Protected Phases	7	4		3	8		5	5	2		1	1
Permitted Phases			4									
Detector Phase	7	4	4	3	8		5	5	2		1	1

J.Audia, Novatech

	Ţ	~
	•	
Lane Group	SBT	SBR
Lane Configurations	A 1>	
Traffic Volume (vph)	1830	33
Future Volume (vph)	1830	33
Ideal Flow (vphpl)	1800	1800
Storage Length (m)		0.0
Storage Lanes		0
Taper Length (m)		
Lane Util. Factor	0.95	0.95
Ped Bike Factor	1.00	
Frt	0.997	
Flt Protected		
Satd. Flow (prot)	3273	0
Flt Permitted		
Satd. Flow (perm)	3273	0
Right Turn on Red		Yes
Satd. Flow (RTOR)	2	
Link Speed (k/h)	60	
Link Distance (m)	382.6	
Travel Time (s)	23.0	
Confl. Peds. (#/hr)		5
Confl. Bikes (#/hr)		5
Peak Hour Factor	1.00	1.00
Heavy Vehicles (%)	3%	1%
Adj. Flow (vph)	1830	33
Shared Lane Traffic (%)		
Lane Group Flow (vph)	1863	0
Enter Blocked Intersection	No	No
Lane Alignment	Left	RNA
Median Width(m)	17.5	
Link Offset(m)	0.0	
Crosswalk Width(m)	0.0 5.0	
Two way Left Turn Lane	5.0	
	1 00	1.09
Headway Factor	1.09	1.09
Number of Detectors	2 Thru	
Detector Template	Thru	
Leading Detector (m)	10.0	
Trailing Detector (m)	0.0	
Detector 1 Position(m)	0.0	
Detector 1 Size(m)	0.6	
Detector 1 Type	CI+Ex	
Detector 1 Channel		
Detector 1 Extend (s)	0.0	
Detector 1 Queue (s)	0.0	
Detector 1 Delay (s)	0.0	
Detector 2 Position(m)	9.4	
Detector 2 Size(m)	0.6	
Detector 2 Type	CI+Ex	
Detector 2 Channel		
Detector 2 Extend (s)	0.0	
Turn Type	NA	
Protected Phases	6	
Permitted Phases		
Detector Phase	6	
Switch Phase	V	

J.Audia, Novatech

ŧ

P Ø5

Ø6 (R)

AM Peak Hour											2037 Tota	
	٦	-	\mathbf{r}	1	-	*	₹Ĩ	1	1	1	L.	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL
Minimum Initial (s)	5.0	10.0	10.0	5.0	10.0		5.0	5.0	10.0		5.0	5.0
Minimum Split (s)	11.5	36.5	36.5	11.5	36.5		12.0	12.0	26.8		12.0	12.0
Total Split (s)	11.5	36.5	36.5	11.5	36.5		12.0	12.0	70.0		12.0	12.0
Total Split (%)	8.8%	28.1%	28.1%	8.8%	28.1%		9.2%	9.2%	53.8%		9.2%	9.2%
Maximum Green (s)	5.0	30.0	30.0	5.0	30.0		5.0	5.0	64.2		5.0	5.0
Yellow Time (s)	3.3	3.3	3.3	3.3	3.3		3.7	3.7	3.7		3.7	3.7
All-Red Time (s)	3.2	3.2	3.2	3.2	3.2		3.3	3.3	2.1		3.3	3.3
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0			0.0	0.0			0.0
Total Lost Time (s)	6.5	6.5	6.5	6.5	6.5			7.0	5.8			7.0
Lead/Lag	Lead	Lag	Lag	Lead	Lag		Lead	Lead	Lag		Lead	Lead
Lead-Lag Optimize?	Yes				Yes							
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0		3.0	3.0
Recall Mode	None	None	None	None	None		None	None	C-Max		None	None
Walk Time (s)		7.0	7.0		7.0				7.0			
Flash Dont Walk (s)		23.0	23.0		23.0				14.0			
Pedestrian Calls (#/hr)		5	5		5				5			
Act Effct Green (s)	5.0	14.0	14.0	5.0	18.6			26.6	81.2			9.6
Actuated g/C Ratio	0.04	0.11	0.11	0.04	0.14			0.20	0.62			0.07
v/c Ratio	0.20	0.16	0.29	0.62	0.14			0.59	0.88			0.48
Control Delay	68.8	51.3	2.8	83.3	29.4			56.7	29.8			70.3
Queue Delay	0.0	0.0	0.0	0.0	0.0			0.0	0.0			0.0
Total Delay	68.8	51.3	2.8	83.3	29.4			56.7	29.8			70.3
LOS	E	D	А	F	С			Е	С			E
Approach Delay		21.5			68.1				32.5			
Approach LOS		С			E				С			
Queue Length 50th (m)	2.8	6.8	0.0	9.0	2.8			43.3	188.6			14.1
Queue Length 95th (m)	9.0	13.1	0.4	#18.4	10.1			#125.6	#294.4			m#30.3
Internal Link Dist (m)		188.6			217.6				586.9			
Turn Bay Length (m)	35.0		60.0	85.0				165.0				155.0
Base Capacity (vph)	59	398	424	120	336			338	2025			123
Starvation Cap Reductn	0	0	0	0	0			0	0			0
Spillback Cap Reductn	0	0	0	0	0			0	0			0
Storage Cap Reductn	0	0	0	0	0			0	0			0
Reduced v/c Ratio	0.20	0.08	0.18	0.62	0.09			0.59	0.88			0.48
Intersection Summary												
Area Type:	Other											
Cycle Length: 130												
Actuated Cycle Length: 130												
Offset: 2 (2%), Referenced to p Natural Cycle: 150	phase 2:NBT	and 6:SB	I, Start of (Green								
Control Type: Actuated-Coordi	inated											
Maximum v/c Ratio: 1.15	natoa											
Intersection Signal Delay: 62.1				In	tersection L	S. E						
Intersection Capacity Utilization					CU Level of S							
Analysis Period (min) 15	11 102.170											
 Volume exceeds capacity, 	queue is the	oretically i	nfinite.									
Queue shown is maximum												
# 95th percentile volume exc			nay be long	ger.								
Queue shown is maximum												
m Volume for 95th percentile	e queue is me	etered by u	ipstream si	gnal.								
Splits and Phases: 3: March	. & Solandt											
Lat ↓												
Ø1 Ø2 (R)							₹ Ø	3 7	-104			

<u>ه</u>ر

Ø8

	Ţ	~
	•	-
Lane Group	SBT	SBR
Minimum Initial (s)	10.0	
Minimum Split (s)	26.8	
Total Split (s)	70.0	
Total Split (%)	53.8%	
Maximum Green (s)	64.2	
Yellow Time (s)	3.7	
All-Red Time (s)	2.1	
Lost Time Adjust (s)	0.0	
Total Lost Time (s)	5.8	
Lead/Lag	Lag	
Lead-Lag Optimize?		
Vehicle Extension (s)	3.0	
Recall Mode	C-Max	
Walk Time (s)	7.0	
Flash Dont Walk (s)	14.0	
Pedestrian Calls (#/hr)	5	
Act Effct Green (s)	64.2	
Actuated g/C Ratio	0.49	
v/c Ratio	1.15	
Control Delay	95.8	
Queue Delay	0.0	
Total Delay	95.8	
LOS	F	
Approach Delay	95.1	
Approach LOS	F	
Queue Length 50th (m)	~275.7	
Queue Length 95th (m)	#303.8	
Internal Link Dist (m)	358.6	
Turn Bay Length (m)		
Base Capacity (vph)	1617	
Starvation Cap Reductn	0	
Spillback Cap Reductn	0	
Storage Cap Reductn	0	
Reduced v/c Ratio	1.15	
Interportion Summer		
Intersection Summary		

6: March & Site Access/Nokia Access AM Peak Hour

											2037 101	
	٦	-	$\mathbf{\hat{z}}$	4	+	*	1	Ť	1	1	Ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	<u>۲</u>	eî 👘		- N	ef 👘		<u> </u>	*	1	<u> </u>	<u> ተተ</u> ጮ	
Traffic Volume (vph)	34	3	162	188	2	157	161	925	109	355	1592	57
Future Volume (vph)	34	3	162	188	2	157	161	925	109	355	1592	57
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Storage Length (m)	65.0		0.0	65.0		0.0	75.0		100.0	75.0		0.0
Storage Lanes	1		0	1		0	1		1	1		0
Taper Length (m)	20.0			25.0			50.0			50.0		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	1.00	1.00	0.91	0.91
Ped Bike Factor				0.99	0.97				0.94			
Frt		0.853			0.852				0.850		0.995	
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1658	1489	0	1674	1460	0	1658	3283	1498	1674	4696	0
Flt Permitted	0.575			0.563			0.111			0.188		
Satd. Flow (perm)	1003	1489	0	983	1460	0	194	3283	1408	331	4696	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		162			157				137		6	
Link Speed (k/h)		50			50			60			60	
Link Distance (m)		126.2			167.8			227.7			308.9	
Travel Time (s)		9.1			12.1			13.7			18.5	
Confl. Peds. (#/hr)		0.1		10	12.1	10		10.1	10	10	10.0	
Confl. Bikes (#/hr)				10		5			5			
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles (%)	2%	2%	2%	1%	2%	1%	2%	3%	1%	1%	3%	2%
Adj. Flow (vph)	34	3	162	188	2	157	161	925	109	355	1592	57
Shared Lane Traffic (%)		0	102	100	2	107	101	525	105	000	1002	51
Lane Group Flow (vph)	34	165	0	188	159	0	161	925	109	355	1649	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	LNA	Left	RNA	LNA	Left	RNA	Left	Left	Right	Left	Left	Right
Median Width(m)		3.5		LINA	3.5		Len	7.0	Tayna	Leit	7.0	Tayna
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		5.0			5.0			5.0			5.0	
Two way Left Turn Lane		5.0			5.0			5.0			5.0	
Headway Factor	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09
Number of Detectors	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	2	1.09
Detector Template	Left	∠ Thru		Left	∠ Thru		Left	Z Thru	-	Left	∠ Thru	
Leading Detector (m)	2.0	10.0		2.0	10.0		2.0	10.0	Right 2.0	2.0	10.0	
•	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Trailing Detector (m)									0.0			
Detector 1 Position(m)	0.0	0.0		0.0	0.0		0.0 2.0	0.0	0.0	0.0	0.0	
Detector 1 Size(m)	2.0	0.6		2.0	0.6			0.6	2.0	2.0	0.6	
Detector 1 Type	CI+Ex	CI+Ex		CI+Ex	Cl+Ex		CI+Ex	CI+Ex	CI+Ex	CI+Ex	Cl+Ex	
Detector 1 Channel	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Detector 2 Position(m)		9.4			9.4			9.4			9.4	
Detector 2 Size(m)		0.6			0.6			0.6			0.6	
Detector 2 Type		CI+Ex			Cl+Ex			CI+Ex			CI+Ex	
Detector 2 Channel												
Detector 2 Extend (s)	-	0.0		-	0.0			0.0	-		0.0	
Turn Type	Perm	NA		Perm	NA		pm+pt	NA	Perm	pm+pt	NA	
Protected Phases		4			8		5	2	_	1	6	
Permitted Phases	4			8			2		2	6		
Detector Phase	4	4		8	8		5	2	2	1	6	
Switch Phase												

J.Audia, Novatech

6: March & Site Access/Nokia Access AM Peak Hour

	≯	+	\mathbf{F}	4	+	•	•	1	1	1	ţ	~
_ane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SB
/linimum Initial (s)	10.0	10.0		10.0	10.0		5.0	10.0	10.0	5.0	10.0	
linimum Split (s)	38.5	38.5		38.5	38.5		11.4	23.8	23.8	11.4	23.8	
otal Split (s)	42.0	42.0		42.0	42.0		20.0	55.0	55.0	33.0	68.0	
otal Split (%)	32.3%	32.3%		32.3%	32.3%		15.4%	42.3%	42.3%	25.4%	52.3%	
laximum Green (s)	35.5	35.5		35.5	35.5		13.6	49.2	49.2	26.6	62.2	
ellow Time (s)	3.3	3.3		3.3	3.3		3.7	3.7	3.7	3.7	3.7	
II-Red Time (s)	3.2	3.2		3.2	3.2		2.7	2.1	2.1	2.7	2.1	
ost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
otal Lost Time (s)	6.5	6.5		6.5	6.5		6.4	5.8	5.8	6.4	5.8	
ead/Lag							Lead	Lag	Lag	Lead	Lag	
ead-Lag Optimize?								5	3		5	
ehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0	
ecall Mode	None	None		None	None		None	C-Max	C-Max	None	C-Max	
/alk Time (s)	7.0	7.0		7.0	7.0			7.0	7.0	110110	7.0	
lash Dont Walk (s)	25.0	25.0		25.0	25.0			11.0	11.0		11.0	
edestrian Calls (#/hr)	10	10		10	10			10	10		10	
ct Effct Green (s)	27.7	27.7		27.7	27.7		71.5	60.6	60.6	89.4	72.1	
ctuated g/C Ratio	0.21	0.21		0.21	0.21		0.55	0.47	0.47	0.69	0.55	
Ĵ	0.21	0.21		0.21	0.21			0.47		0.09	0.63	
/c Ratio Control Delay	40.3	8.2			0.37 8.2		0.69	41.4	0.15 13.6	19.2	29.6	
				89.0			32.9					
ueue Delay	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
otal Delay	40.3	8.2		89.0	8.2		32.9	41.4	13.6	19.2	29.6	
OS	D	A		F	A		С	D	В	В	С	
pproach Delay		13.7			52.0			37.7			27.8	
pproach LOS	o -	В		40.4	D		00.4	D		50.4	C	
Queue Length 50th (m)	6.5	0.6		43.1	0.4		28.4	81.9	4.1	59.4	140.7	
Queue Length 95th (m)	14.1	15.7		#69.5	15.3		m41.9	m116.5	m11.1	46.5	157.2	
nternal Link Dist (m)		102.2			143.8			203.7			284.9	
urn Bay Length (m)	65.0			65.0			75.0		100.0	75.0		
ase Capacity (vph)	273	524		268	512		268	1531	729	506	2606	
tarvation Cap Reductn	0	0		0	0		0	0	0	0	0	
pillback Cap Reductn	0	0		0	0		0	0	0	0	0	
torage Cap Reductn	0	0		0	0		0	0	0	0	0	
educed v/c Ratio	0.12	0.31		0.70	0.31		0.60	0.60	0.15	0.70	0.63	
tersection Summary												
rea Type: ycle Length: 130	Other											
ctuated Cycle Length: 130												
Offset: 0 (0%), Referenced to	phase 2.NRT	l and 6.SF	STI Start	of Green								
atural Cycle: 90			JTE, Otart									
ontrol Type: Actuated-Coord	inated											
laximum v/c Ratio: 0.90												
tersection Signal Delay: 32.4	1			In	tersection L	OS: C						
tersection Capacity Utilizatio	on 92.8%			IC	U Level of S	Service F						
nalysis Period (min) 15												
95th percentile volume exc			nay be long	ger.								
Queue shown is maximum												
n Volume for 95th percentile			pstream si	ignal.								
plits and Phases: 6: March	n & Site Acce	ss/Nokia A	ccess									
	-	.						- <u>A</u>				

Ø1	🚽 🗘 🖉 🖉 🖉	<u></u> 04
33 s	55 s	42 s
▲ ø5	🗸 🖉 Ø6 (R) 🕊	₹ Ø8
20 s.	68 s	42 s cynonio i hopon

4: Innovation/Flamborough & Terry Fox AM Peak Hour

											2037 100	
	٦	-	$\mathbf{\hat{z}}$	4	+	*	1	Ť	1	1	ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	<u>۲</u>	•	1	<u>۲</u>	•	1	ሻ	ef 👘		<u> </u>	ef 👘	
Traffic Volume (vph)	29	451	76	84	289	38	35	36	82	69	55	42
Future Volume (vph)	29	451	76	84	289	38	35	36	82	69	55	42
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Storage Length (m)	75.0		120.0	110.0		130.0	220.0		0.0	30.0		0.0
Storage Lanes	1		1	1		1	1		0	1		0
Taper Length (m)	50.0			80.0			50.0			15.0		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor	0.99		0.95	0.99		0.96	0.98	0.97		0.99	0.98	
Frt			0.850			0.850		0.896			0.935	
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1470	1728	1469	1626	1728	1498	1658	1513	0	1674	1554	0
Flt Permitted	0.583			0.441			0.685			0.607		
Satd. Flow (perm)	895	1728	1392	747	1728	1441	1173	1513	0	1060	1554	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			78			78		82			29	
Link Speed (k/h)		60			60			50			50	
Link Distance (m)		508.2			294.0			547.1			313.7	
Travel Time (s)		30.5			17.6			39.4			22.6	
Confl. Peds. (#/hr)	5		10	10		5	10		5	5		10
Confl. Bikes (#/hr)			5			5			5			5
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles (%)	15%	3%	3%	4%	3%	1%	2%	2%	3%	1%	1%	10%
Adj. Flow (vph)	29	451	76	84	289	38	35	36	82	69	55	42
Shared Lane Traffic (%)												
Lane Group Flow (vph)	29	451	76	84	289	38	35	118	0	69	97	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	L NA	Left	R NA	L NA	Left	R NA	L NA	Left	R NA	L NA	Left	R NA
Median Width(m)		3.5			3.5			3.5			3.5	
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		5.0			5.0			5.0			5.0	
Two way Left Turn Lane												
Headway Factor	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09
Number of Detectors	1	2	1	1	2	1	1	2		1	2	
Detector Template	Left	Thru	Right	Left	Thru	Right	Left	Thru		Left	Thru	
Leading Detector (m)	2.0	10.0	2.0	2.0	10.0	2.0	2.0	10.0		2.0	10.0	
Trailing Detector (m)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Detector 1 Position(m)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Detector 1 Size(m)	2.0	0.6	2.0	2.0	0.6	2.0	2.0	0.6		2.0	0.6	
Detector 1 Type	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex		CI+Ex	CI+Ex	
Detector 1 Channel	OI! EX	OI LA	OI LA	OI' EX	OI LA	OT EX	OI! EX	OI LA			OT EX	
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Detector 2 Position(m)	0.0	9.4	0.0	0.0	9.4	0.0	0.0	9.4		0.0	9.4	
Detector 2 Size(m)		0.6			0.6			0.6			0.6	
Detector 2 Type		CI+Ex			CI+Ex			CI+Ex			CI+Ex	
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	nmint	NA	Perm	nmint	0.0 NA	Perm	Perm	0.0 NA		Perm	NA	
Protected Phases	pm+pt		I CIIII	pm+pt 1		I CIIII	I CIIII				NA 4	
	5 2	2	2	1	6	6	8	8		Λ	4	
Permitted Phases Detector Phase		0		6	G			0		4	Α	
	5	2	2	1	6	6	8	8		4	4	
Switch Phase												

J.Audia, Novatech

4: Innovation/Flamborough & Terry Fox AM Peak Hour

	≯	-	\mathbf{r}	4	-	*	1	1	1	1	↓	-
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SB
Minimum Initial (s)	5.0	10.0	10.0	5.0	10.0	10.0	10.0	10.0		10.0	10.0	
Minimum Split (s)	11.0	27.9	27.9	11.0	27.9	27.9	36.3	36.3		36.3	36.3	
Total Split (s)	18.0	70.0	70.0	18.0	70.0	70.0	42.0	42.0		42.0	42.0	
Total Split (%)	13.8%	53.8%	53.8%	13.8%	53.8%	53.8%	32.3%	32.3%		32.3%	32.3%	
Maximum Green (s)	12.0	64.1	64.1	12.0	64.1	64.1	35.7	35.7		35.7	35.7	
Yellow Time (s)	3.7	3.7	3.7	3.7	3.7	3.7	3.3	3.3		3.3	3.3	
All-Red Time (s)	2.3	2.2	2.2	2.3	2.2	2.2	3.0	3.0		3.0	3.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Lost Time (s)	6.0	5.9	5.9	6.0	5.9	5.9	6.3	6.3		6.3	6.3	
Lead/Lag	Lead	Lag	Lag	Lead	Lag	Lag						
_ead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0	
Recall Mode	None	C-Max	C-Max	None	C-Max	C-Max	None	None		None	None	
Walk Time (s)		7.0	7.0		7.0	7.0	7.0	7.0		7.0	7.0	
Flash Dont Walk (s)		15.0	15.0		15.0	15.0	23.0	23.0		23.0	23.0	
Pedestrian Calls (#/hr)		5	5		5	5	5	5		5	5	
Act Effct Green (s)	94.9	88.8	88.8	99.1	94.5	94.5	15.8	15.8		15.8	15.8	
Actuated g/C Ratio	0.73	0.68	0.68	0.76	0.73	0.73	0.12	0.12		0.12	0.12	
v/c Ratio	0.04	0.38	0.08	0.14	0.23	0.04	0.25	0.46		0.54	0.45	
Control Delay	5.0	11.5	2.6	4.9	9.8	2.9	52.6	23.4		66.8	41.7	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Delay	5.0	11.5	2.6	4.9	9.8	2.9	52.6	23.4		66.8	41.7	
LOS	A	В	Α	Α	A	A	D	С		E	D	
Approach Delay		9.9			8.2			30.1			52.1	
Approach LOS	1 1	A	0.0	77	A	0.5	70	C		15.0	D	
Queue Length 50th (m)	1.1	38.0	0.0	7.7	31.3	0.5	7.8	8.0		15.9	15.4	
Queue Length 95th (m)	5.0	86.1	6.1	m14.9	53.7	m2.5	15.1	21.7		26.4	27.2	
Internal Link Dist (m)	75.0	484.2	100.0	110.0	270.0	120.0	000.0	523.1		20.0	289.7	
Turn Bay Length (m)	75.0 746	1180	120.0 975	110.0 664	1255	130.0 1068	220.0 322	474		30.0 291	447	
Base Capacity (vph)		0	975	004	1255		32Z 0			291		
Starvation Cap Reductn	0	0	0	0	0	0	0	0		0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0		0	0	
Storage Cap Reductn Reduced v/c Ratio	0.04	0.38	0.08	0.13	0.23	0.04	0.11	0.25		0.24	0.22	
	0.04	0.00	0.00	0.10	0.25	0.04	0.11	0.25		0.24	0.22	
Intersection Summary Area Type:	Other											
Cycle Length: 130	0.1.0.											
Actuated Cycle Length: 130												
Offset: 124 (95%), Referenced	d to phase 2:	EBTL and	6:WBTL, S	Start of Gre	en							
Natural Cycle: 80	1											
Control Type: Actuated-Coord	inated											
Maximum v/c Ratio: 0.54												
Intersection Signal Delay: 17.2	2			In	tersection	LOS: B						
Intersection Capacity Utilization	on 59.9%			IC	CU Level o	f Service E	}					
Analysis Period (min) 15												
m Volume for 95th percentil	e queue is m	etered by ι	upstream s	ignal.								
Splits and Phases: 4: Innov	ation/Flambo	rough & T	erry Fox									
			GITYTOX				11					
- CA1	D (D)						A	- CAA				

√ Ø1	💶 🖕 📥 🛛 2 (R)	Ø4
18 s	70.s	42 s
	📕 🕈 🖉 Ø (R)	
18 s	70 s	42.s

	≯	-	\mathbf{F}	4	←	*	1	1	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			\$			\$			\$	
Traffic Volume (veh/h)	23	0	106	5	1	0	77	24	2	1	6	18
Future Volume (Veh/h)	23	0	106	5	1	0	77	24	2	1	6	18
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	23	0	106	5	1	0	77	24	2	1	6	18
Pedestrians		5										
Lane Width (m)		3.5										
Walking Speed (m/s)		1.0										
Percent Blockage		0										
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC, conflicting volume	202	202	20	302	210	25	29			26		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	202	202	20	302	210	25	29			26		
tC, single (s)	7.1	6.5	6.3	7.1	6.5	6.2	4.2			4.1		
tC, 2 stage (s)												
tF (s)	3.5	4.0	3.4	3.5	4.0	3.3	2.3			2.2		
p0 queue free %	97	100	90	99	100	100	95			100		
cM capacity (veh/h)	723	656	1041	561	651	1054	1539			1588		
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total	129	6	103	25								
Volume Left	23	5	77	1								
Volume Right	106	0	2	18								
cSH	965	574	1539	1588								
Volume to Capacity	0.13	0.01	0.05	0.00								
Queue Length 95th (m)	3.2	0.01	1.1	0.00								
Control Delay (s)	9.3	11.3	5.7	0.0								
Lane LOS	9.5 A	П.3 В	5.7 A	0.3 A								
Approach Delay (s)	9.3	ы 11.3	5.7	0.3								
Approach LOS	9.3 A	н.з В	5.7	0.5								
	A	В										
Intersection Summary												
Average Delay			7.1			A .						
Intersection Capacity Utilization			27.1%	IC	U Level of	Service			А			
Analysis Period (min)			15									

7: Site Access & Terry Fox AM Peak Hour

	→	\mathbf{r}	1	-	•	1
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	4Î		5	44	Y	
Traffic Volume (veh/h)	537	42	78	448	30	58
Future Volume (Veh/h)	537	42	78	448	30	58
Sign Control	Free			Free	Stop	
Grade	0%			0%	0%	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	537	42	78	448	30	58
Pedestrians					10	
Lane Width (m)					3.5	
Walking Speed (m/s)					1.0	
Percent Blockage					1	
Right turn flare (veh)						
Median type	Raised			Raised		
Median storage veh)	1			1		
Upstream signal (m)	-			166		
pX, platoon unblocked				100		
vC, conflicting volume			589		948	568
vC1, stage 1 conf vol			505		568	500
vC2, stage 2 conf vol					380	
vCu, unblocked vol			589		948	568
tC, single (s)			4.1		6.8	6.9
tC, 2 stage (s)			4.1		5.8	0.9
tF (s)			2.2		3.5	3.3
p0 queue free %			92		92	88
cM capacity (veh/h)			92 980		92 366	60 464
civi capacity (ven/n)			900		300	404
Direction, Lane #	EB 1	WB 1	WB 2	WB 3	NB 1	
Volume Total	579	78	224	224	88	
Volume Left	0	78	0	0	30	
Volume Right	42	0	0	0	58	
cSH	1700	980	1700	1700	425	
Volume to Capacity	0.34	0.08	0.13	0.13	0.21	
Queue Length 95th (m)	0.0	1.8	0.0	0.0	5.4	
Control Delay (s)	0.0	9.0	0.0	0.0	15.7	
Lane LOS		А			С	
Approach Delay (s)	0.0	1.3			15.7	
Approach LOS					С	
Intersection Summary						
Average Delay			1.7			
Intersection Capacity Utilization			52.7%	IC	U Level of	Service
Analysis Period (min)			15	10	0 20701 01	0011100
			10			

MovementWBLWBRNBTNBRSBLSBTLane ConfigurationsYIsolarityIsolarityIsolarityIsolarityTraffic Volume (veh/h)1625371078
Lane Configurations Y 1 1 Traffic Volume (veh/h) 16 25 37 10 7 8
Traffic Volume (veh/h) 16 25 37 10 7 8
Luturo (/oh/h) 16 06 07 10 7 0
Future Volume (Veh/h) 16 25 37 10 7 8 Sign Control Stop Free Free
Grade 0% 0% 0%
Peak Hour Factor 1.00 1.00 1.00 1.00 1.00 1.00
Hourly flow rate (vph) 16 25 37 10 7 8
Pedestrians 10
Lane Width (m) 3.5
Walking Speed (m/s) 1.0
Percent Blockage 1
Right turn flare (veh)
Median type None None
Median storage veh)
Upstream signal (m)
pX, platoon unblocked
vC, conflicting volume 74 52 57
vC1, stage 1 conf vol
vC2, stage 2 conf vol
vCu, unblocked vol 74 52 57
tC, single (s) 6.4 6.2 4.1
tC, 2 stage (s)
tF (s) 3.5 3.3 2.2
p0 queue free % 98 98 100
cM capacity (veh/h) 919 1009 1539
Direction, Lane # WB 1 NB 1 SB 1
Volume Total 41 47 15
Volume Left 16 0 7
Volume Right 25 10 0
cSH 972 1700 1539
Volume to Capacity 0.04 0.03 0.00
Queue Length 95th (m) 0.9 0.0 0.1
Control Delay (s) 8.9 0.0 3.4
Lane LOS A A
Approach Delay (s) 8.9 0.0 3.4
Approach LOS A
Intersection Summary
Average Delay 4.0
Intersection Capacity Utilization 17.0% ICU Level of Service
Analysis Period (min) 15

1: March & Morgan's Grant/Shirley's Brook PM Peak Hour

	≯		~	1	+	×.	•	ŧ	*	5	<u></u>	1
	-						1 NDI		/			-
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	Γ 4	न्		Š		105	<u></u>	***	1	1		7
Traffic Volume (vph)	54	50	62	129	47	195	75	1792	94	169	1151	68
Future Volume (vph)	54	50	62	129	47	195	75	1792	94	169	1151	68
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Storage Length (m)	0.0		20.0 1	45.0		35.0	130.0		30.0	65.0		25.0
Storage Lanes	0		1	1		1	1		1	1		1
Taper Length (m)	10.0	4.00	4 00	30.0	4.00	4.00	40.0	0.04	4.00	35.0	0.04	4 00
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.91	1.00	1.00	0.91	1.00
Ped Bike Factor		1.00	0.97	0.99		0.98	1.00		0.94	1.00		0.96
Frt		0.075	0.850	0.050		0.850	0.050		0.850	0.050		0.850
Flt Protected	•	0.975	4 4 0 0	0.950	4540	4.400	0.950	4704	4.400	0.950	1710	4 4 0 0
Satd. Flow (prot)	0	1642	1498	1674	1548	1498	1674	4764	1498	1674	4718	1498
Flt Permitted	•	0.812		0.690			0.950	1=0.1		0.950		
Satd. Flow (perm)	0	1364	1455	1203	1548	1464	1668	4764	1409	1669	4718	1436
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			136			195			145			91
Link Speed (k/h)		40			40			60			60	
Link Distance (m)		465.2			359.5			318.9			462.6	
Travel Time (s)		41.9			32.4			19.1			27.8	
Confl. Peds. (#/hr)	5		10	10		5	5		10	10		5
Confl. Bikes (#/hr)			5			5			5			5
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles (%)	10%	1%	1%	1%	15%	1%	1%	2%	1%	1%	3%	1%
Adj. Flow (vph)	54	50	62	129	47	195	75	1792	94	169	1151	68
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	104	62	129	47	195	75	1792	94	169	1151	68
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	L NA	Left	R NA	L NA	Left	R NA	L NA	Left	R NA	L NA	Left	R NA
Median Width(m)		3.5			5.0			9.0			9.0	
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		5.0			5.0			5.0			5.0	
Two way Left Turn Lane												
Headway Factor	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09
Number of Detectors	1	2	1	1	2	1	1	2	1	1	2	1
Detector Template	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right
Leading Detector (m)	2.0	10.0	2.0	2.0	10.0	2.0	2.0	10.0	2.0	2.0	10.0	2.0
Trailing Detector (m)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Position(m)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Size(m)	2.0	0.6	2.0	2.0	0.6	2.0	2.0	0.6	2.0	2.0	0.6	2.0
Detector 1 Type	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 2 Position(m)	0.0	9.4	0.0	0.0	9.4	0.0	0.0	9.4	0.0	0.0	9.4	0.0
Detector 2 Size(m)		0.6			0.6			0.6			0.6	
Detector 2 Type		CI+Ex			CI+Ex			CI+Ex			CI+Ex	
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	Perm	NA	Perm	Perm	NA	Perm	Prot	NA	Perm	Prot	NA	Perm
Protected Phases	1.Guil	4		- I CIIII	8	1 CIIII	5	2	I CIIII	1	6	I CIIII
	4	4	4	8	0	8	5	2	2	I	U	6
Dormitted Dhacoc			4	0		0						0
Permitted Phases Detector Phase	4	4	4	8	8	8	5	2	2	1	6	6

J.Audia, Novatech

1: March & Morgan's Grant/Shirley's Brook PM Peak Hour

PM Peak Hour											2037 10	al Traffic
	٦	-	\rightarrow	1	-	•	1	†	1	1	Ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBI
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	10.0	5.0	10.0	10.0	5.0	10.0	10.
Minimum Split (s)	38.5	38.5	38.5	38.5	38.5	38.5	11.4	24.4	24.4	11.4	24.4	24.
Total Split (s)	38.5	38.5	38.5	38.5	38.5	38.5	19.1	64.5	64.5	27.0	72.4	72.4
Total Split (%)	29.6%	29.6%	29.6%	29.6%	29.6%	29.6%	14.7%	49.6%	49.6%	20.8%	55.7%	55.7%
Maximum Green (s)	31.0	31.0	31.0	31.0	31.0	31.0	12.7	58.1	58.1	20.6	66.0	66.0
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.7	3.7	3.7	3.7	3.7	3.1
All-Red Time (s)	4.5	4.5	4.5	4.5	4.5	4.5	2.7	2.7	2.7	2.7	2.7	2.
Lost Time Adjust (s)		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)		7.5	7.5	7.5	7.5	7.5	6.4	6.4	6.4	6.4	6.4	6.4
Lead/Lag							Lead	Lag	Lag	Lead	Lag	Lag
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	None	None	None	None	None	None	None	C-Max	C-Max	None	C-Max	C-Ma
Walk Time (s)	7.0	7.0	7.0	7.0	7.0	7.0		7.0	7.0		7.0	7.0
Flash Dont Walk (s)	24.0	24.0	24.0	24.0	24.0	24.0		11.0	11.0		11.0	11.(
Pedestrian Calls (#/hr)	10	10	10	5	5	5		10	10		5	Į
Act Effct Green (s)		20.0	20.0	20.0	20.0	20.0	10.6	72.3	72.3	17.4	81.8	81.8
Actuated g/C Ratio		0.15	0.15	0.15	0.15	0.15	0.08	0.56	0.56	0.13	0.63	0.63
v/c Ratio		0.50	0.18	0.70	0.20	0.50	0.56	0.68	0.11	0.75	0.39	0.07
Control Delay		56.8	1.2	70.5	46.8	10.3	71.6	9.7	0.4	74.7	14.2	1.7
Queue Delay		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay		56.8	1.2	70.5	46.8	10.3	71.6	9.7	0.4	74.7	14.2	1.7
LOS		E	A	E	D	В	E	A	A	E	В	A
Approach Delay		36.0	7.		35.9	_	_	11.6		_	21.0	
Approach LOS		D			D			B			C	
Queue Length 50th (m)		22.9	0.0	29.4	9.9	0.0	18.8	29.1	0.2	38.6	48.4	0.0
Queue Length 95th (m)		35.8	0.0	44.5	18.3	17.2	m23.6	35.8	m0.2	60.2	74.1	3.9
Internal Link Dist (m)		441.2	0.0	11.0	335.5		11120.0	294.9	1110.2	00.2	438.6	0.0
Turn Bay Length (m)		111.2	20.0	45.0	000.0	35.0	130.0	201.0	30.0	65.0	100.0	25.0
Base Capacity (vph)		325	450	286	369	497	164	2650	848	266	2968	937
Starvation Cap Reductn		0_0	0	0	0	0	0	0	0	0	0	(
Spillback Cap Reductn		0	0	0	0	0	0	0	0	0	0	(
Storage Cap Reductn		0	0	0	0	0	0	0	0	0	0	(
Reduced v/c Ratio		0.32	0.14	0.45	0.13	0.39	0.46	0.68	0.11	0.64	0.39	0.07
		0.52	0.14	0.45	0.15	0.00	0.40	0.00	0.11	0.04	0.00	0.01
Intersection Summary	Other											
Area Type: Cycle Length: 130	Other											
Actuated Cycle Length: 130												
Offset: 128 (98%), Reference	d to phase 2 [.]	NBT and 6	SBT Star	t of Green								
Natural Cycle: 100	a to pridoo 2.		.001, 0101									
Control Type: Actuated-Coord	linated											
Maximum v/c Ratio: 0.75	inated											
Intersection Signal Delay: 18.3	3			In	tersection	LOS' B						
Intersection Capacity Utilization						f Service E						
Analysis Period (min) 15												
m Volume for 95th percentil	e queue is m	etered by u	upstream s	ignal.								
Splits and Phases: 1: Marcl	h & Morgan's	Grant/Shi	ney's Broo	K								
Ø1	🕴 🔤 🖉	(R)						÷	Ø4			
27 6	64 5 c							38.5	c .			

Ø1	🛛 🖗 🖉 Ø2 (R)	
27 s	64.5 s	38.5 s
▲ Ø5	≪ ▼ Ø ∉ (R)	₩ Ø8
19.1 s	72.4s	38.5 s

	٦	-	\mathbf{r}	1	←	*	₹	1	1	1	L	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL
Lane Configurations	ሻሻ	<u></u>	1	ሻሻ	<u>^</u>	1		ኘኘ	<u></u>	1		2
Traffic Volume (vph)	278	177	179	74	182	191	18	322	1630	126	4	150
Future Volume (vph)	278	177	179	74	182	191	18	322	1630	126	4	150
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Storage Length (m)	95.0		60.0	75.0		75.0		130.0		85.0		110.0
Storage Lanes	2		2	2		1		2		2		1
Taper Length (m)	40.0			20.0				90.0				40.0
Lane Util. Factor	0.97	0.95	1.00	0.97	0.95	1.00	0.91	0.97	0.91	1.00	0.91	1.00
Ped Bike Factor	0.99	0.00	0.97	0.99	0.00	0.96	0.0.	1.00	0.0.	0.97		1.00
Frt	0.00		0.850	0.00		0.850		1.00		0.850		1.00
Fit Protected	0.950		0.000	0.950		0.000		0.950		0.000		0.950
Satd. Flow (prot)	3248	3221	1498	3248	3349	1498	0	3187	4764	1469	0	1674
Flt Permitted	0.950	0221	1400	0.950	00-0	1400	U	0.950	+104	1400	0	0.950
Satd. Flow (perm)	3206	3221	1459	3220	3349	1443	0	3176	4764	1425	0	1671
Right Turn on Red	5200	JZZ I	Yes	5220	0049	Yes	U	5170	4704	Yes	U	1071
Satd. Flow (RTOR)			193			193				144		
Link Speed (k/h)		60	190		60	199			60	144		
Link Distance (m)		165.4			149.1				308.9			
Travel Time (s)		9.9			8.9				18.5			
	15	9.9	10	10	0.9	15		5	10.0	10		10
Confl. Peds. (#/hr) Confl. Bikes (#/hr)	10		5	10		10		5		5		10
	1 00	1 00	1.00	1 00	1 00	1.00	1 00	1 00	1 00	1.00	1 00	1.00
Peak Hour Factor	1.00	1.00		1.00	1.00		1.00	1.00	1.00		1.00	1.00 1%
Heavy Vehicles (%)	1%	5%	1%	1%	1%	1%	2%	3%	2%	3%	2%	
Adj. Flow (vph)	278	177	179	74	182	191	18	322	1630	126	4	150
Shared Lane Traffic (%)	070	477	470	74	400	404	0	240	4000	400	•	454
Lane Group Flow (vph)	278	177	179	74	182	191	0	340	1630	126	0	154
Enter Blocked Intersection	No	No	No	Yes	Yes	Yes	No	No	No	No	No	No
Lane Alignment	L NA	Left	R NA	L NA	Left	R NA	R NA	L NA	Left	R NA	R NA	L NA
Median Width(m)		11.5			10.5				10.5			
Link Offset(m)		0.0			0.0				0.0			
Crosswalk Width(m)		5.0			5.0				5.0			
Two way Left Turn Lane												
Headway Factor	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09
Number of Detectors	1	2	1	1	2	1	1	1	2	1	1	1
Detector Template	Left	Thru	Right	Left	Thru	Right	Left	Left	Thru	Right	Left	Left
Leading Detector (m)	2.0	10.0	2.0	2.0	10.0	2.0	2.0	2.0	10.0	2.0	2.0	2.0
Trailing Detector (m)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Position(m)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Size(m)	2.0	0.6	2.0	2.0	0.6	2.0	2.0	2.0	0.6	2.0	2.0	2.0
Detector 1 Type	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	Cl+Ex	Cl+Ex	CI+Ex	Cl+Ex	CI+Ex	CI+Ex	CI+Ex
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 2 Position(m)		9.4			9.4				9.4			
Detector 2 Size(m)		0.6			0.6				0.6			
Detector 2 Type		CI+Ex			CI+Ex				Cl+Ex			
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0				0.0			
Turn Type	Prot	NA	Perm	Prot	NA	Perm	Prot	Prot	NA	Perm	Prot	Prot
Protected Phases	7	4		3	8		5	5	2		1	1
Permitted Phases	,		4	Ū	<u> </u>	8	Ū.	Ū	-	2		
Detector Phase	7	4	4	3	8	8	5	5	2	2	1	1
	1	т .	T		0	0	5	5	4	4	1	1

		~
	*	-
Lane Group	SBT	SBR
Lane Configurations	<u> </u>	1
Traffic Volume (vph)	955	200
Future Volume (vph)	955	200
Ideal Flow (vphpl)	1800	1800
Storage Length (m)		100.0
Storage Lanes		1
Taper Length (m)		
Lane Util. Factor	0.91	1.00
Ped Bike Factor	0.01	0.98
Frt		0.850
Fit Protected		0.000
Satd. Flow (prot)	4718	1483
Flt Permitted	4/10	1403
	1710	1440
Satd. Flow (perm)	4718	1449
Right Turn on Red		Yes
Satd. Flow (RTOR)		200
Link Speed (k/h)	60	
Link Distance (m)	318.9	
Travel Time (s)	19.1	
Confl. Peds. (#/hr)		5
Confl. Bikes (#/hr)		5
Peak Hour Factor	1.00	1.00
Heavy Vehicles (%)	3%	2%
Adj. Flow (vph)	955	200
Shared Lane Traffic (%)		
Lane Group Flow (vph)	955	200
Enter Blocked Intersection	No	No
Lane Alignment	Left	RNA
Median Width(m)	7.0	
Link Offset(m)	0.0	
Crosswalk Width(m)	5.0	
	5.0	
Two way Left Turn Lane	4 00	4 00
Headway Factor	1.09	1.09
Number of Detectors	2	1
Detector Template	Thru	Right
Leading Detector (m)	10.0	2.0
Trailing Detector (m)	0.0	0.0
Detector 1 Position(m)	0.0	0.0
Detector 1 Size(m)	0.6	2.0
Detector 1 Type	CI+Ex	CI+Ex
Detector 1 Channel		
Detector 1 Extend (s)	0.0	0.0
Detector 1 Queue (s)	0.0	0.0
Detector 1 Delay (s)	0.0	0.0
Detector 2 Position(m)	9.4	0.0
Detector 2 Size(m)	0.6	
Detector 2 Type	CI+Ex	
Detector 2 Channel		
	0.0	
Detector 2 Extend (s)	0.0	D
Turn Type	NA	Perm
Protected Phases	6	
Permitted Phases		6
Detector Phase	6	6
Switch Phase		

J.Audia, Novatech

2: March & Terry Fox PM Peak Hour

	٦	-	\rightarrow	1	-	•	₹	1	1	1	L.	5
_ane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SE
/linimum Initial (s)	5.0	10.0	10.0	5.0	10.0	10.0	5.0	5.0	10.0	10.0	5.0	5
/linimum Split (s)	11.8	42.0	42.0	11.8	42.0	42.0	11.4	11.4	32.4	32.4	11.4	11
otal Split (s)	20.0	48.0	48.0	14.0	42.0	42.0	26.0	26.0	50.0	50.0	18.0	18
otal Split (%)	15.4%	36.9%	36.9%	10.8%	32.3%	32.3%	20.0%	20.0%	38.5%	38.5%	13.8%	13.8
/laximum Green (s)	13.2	41.0	41.0	7.2	35.0	35.0	19.6	19.6	43.6	43.6	11.6	11
ellow Time (s)	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3
All-Red Time (s)	3.1	3.3	3.3	3.1	3.3	3.3	2.7	2.7	2.7	2.7	2.7	2
ost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0		0
otal Lost Time (s)	6.8	7.0	7.0	6.8	7.0	7.0		6.4	6.4	6.4		6
.ead/Lag	Lead	Lag	Lag	Lead	Lag	Lag	Lead	Lead	Lag	Lag	Lead	Lea
ead-Lag Optimize?												
ehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3
Recall Mode	None	None	None	None	None	None	None	None	C-Max	C-Max	None	Nor
Valk Time (s)		7.0	7.0		7.0	7.0			7.0	7.0		
lash Dont Walk (s)		28.0	28.0		28.0	28.0			19.0	19.0		
Pedestrian Calls (#/hr)		15	15		15	15			10	10		
Act Effct Green (s)	13.1	29.4	29.4	7.0	20.7	20.7		17.9	53.2	53.2		16
Actuated g/C Ratio	0.10	0.23	0.23	0.05	0.16	0.16		0.14	0.41	0.41		0.1
/c Ratio	0.85	0.24	0.37	0.43	0.34	0.49		0.78	0.84	0.19		0.7
Control Delay	77.1	50.8	14.0	67.3	48.0	9.2		73.1	28.1	1.8		83
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0		0
otal Delay	77.1	50.8	14.0	67.3	48.0	9.2		73.1	28.1	1.8		83
.OS	E	D	В	E	D	A		E	С	A		
Approach Delay		51.9			34.6				33.8			
pproach LOS		D			С				С			
Queue Length 50th (m)	31.4	22.5	5.2	8.8	22.0	0.0		42.5	63.8	1.1		36
Queue Length 95th (m)	#53.7	31.4	27.6	16.2	26.6	16.0			m#164.9	m1.5		#81
nternal Link Dist (m)		141.4			125.1				284.9			
Furn Bay Length (m)	95.0		60.0	75.0		75.0		130.0		85.0		110
Base Capacity (vph)	329	1015	592	179	901	529		480	1949	668		2
Starvation Cap Reductn	0	0	0	0	0	0		0	0	0		
Spillback Cap Reductn	0	0	0	0	0	0		0	0	0		
Storage Cap Reductn	0	0	0	0	0	0		0	0	0		
Reduced v/c Ratio	0.84	0.17	0.30	0.41	0.20	0.36		0.71	0.84	0.19		0.7
ntersection Summary												
rea Type:	Other											
Cycle Length: 130												
Actuated Cycle Length: 130												
Offset: 0 (0%), Referenced to	phase 2:NBT	and 6:SB	T, Start of	Green								
latural Cycle: 130												
Control Type: Actuated-Coord	linated											
laximum v/c Ratio: 0.85												
ntersection Signal Delay: 34.					tersection							
ntersection Capacity Utilization	on 92.7%			IC	U Level of	Service F						
nalysis Period (min) 15												
95th percentile volume ex			nay be lon	ger.								
Queue shown is maximum												
n Volume for 95th percentil	e queue is m	etered by u	ipstream s	ignal.								
Splits and Phases: 2: Marcl	h & Terry Fox	,										

Ø1	Tø ş (R)	🗸 @3	₩ Ø4	
8s 5/	0 s	14 s	48 s	
* Ø5	🚽 🕂 Ø6 (R)	<u>∕</u> ≉ _{Ø7}	 Ø8	
6 s	42 s	20 s	42 s	

	L	7
	*	•
Lane Group	SBT	SBR
Minimum Initial (s)	10.0	10.0
Minimum Split (s)	32.4	32.4
Total Split (s)	42.0	42.0
Total Split (%)	32.3%	32.3%
Maximum Green (s)	35.6	35.6
Yellow Time (s)	3.7	3.7
All-Red Time (s)	2.7	2.7
Lost Time Adjust (s)	0.0	0.0
Total Lost Time (s)	6.4	6.4
Lead/Lag	Lag	Lag
Lead-Lag Optimize?		- 3
Vehicle Extension (s)	3.0	3.0
Recall Mode	C-Max	C-Max
Walk Time (s)	7.0	7.0
Flash Dont Walk (s)	19.0	19.0
Pedestrian Calls (#/hr)	10	10
Act Effct Green (s)	51.8	51.8
Actuated g/C Ratio	0.40	0.40
v/c Ratio	0.51	0.29
Control Delay	23.6	1.8
Queue Delay	0.0	0.0
Total Delay	23.6	1.8
LOS	20.0 C	1.0 A
Approach Delay	27.3	~
Approach LOS	21.3 C	
Queue Length 50th (m)	34.0	0.0
Queue Length 95th (m)	40.1	4.3
Internal Link Dist (m)	294.9	4.3
Turn Bay Length (m)	294.9	100.0
Base Capacity (vph)	1878	697
		097
Starvation Cap Reductn	0	-
Spillback Cap Reductn	0	0 0
Storage Cap Reductn	0 51	-
Reduced v/c Ratio	0.51	0.29
Intersection Summary		

Lane Configurations T		٦	-	\mathbf{r}	4	←	•	₹Ĩ	1	Ť	1	L	1
Traffic Volume (pyh) 24 22 175 380 22 45 16 72 1933 23 12 11 ideal Flow (vphp) 1800	Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL
Traffic Volume (uph) 24 22 175 350 22 45 16 72 1933 23 12 11 Ideal Flow (uphp) 1800	Lane Configurations	1	•	1	ሻሻ	ĥ			2	A 16			٦ ۲
Future Voume (wh) 24 22 175 350 22 45 16 72 193 23 12 11 Storage Length (m) 350 600 850 1800 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>45</td><td>16</td><td></td><td></td><td>23</td><td>12</td><td>15</td></td<>							45	16			23	12	15
Ideal Flow (vphp) 1800 <td></td> <td>15</td>													15
Shorage Langth (m) 35.0 60.0 85.0 55.0 165.0 0.0 155.0 Taper Length (m) 50.0 95.0 40.0 25.1 Care Ubil, Factor 1.00 1.00 0.97 1.00 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.950													
Shrağe insis 1 1 2 0 1 0 10 Tape Lengh (m) 50.0 40.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 1.00 0.95 0.95 0.95 0.95 0.95 0.950 1.050 <td></td> <td></td> <td>1000</td> <td></td> <td></td> <td>1000</td> <td></td> <td>1000</td> <td></td> <td>1000</td> <td></td> <td>1000</td> <td></td>			1000			1000		1000		1000		1000	
Taper Length (m) 50.0 95.0 40.0 25.5 Taper Length (m) 50.0 100 100 0.95 0.95 100 0.95 0.95 100 0.95 0.95 100 0.95 0.95 100 0.95 0.95 100 0.95 0.950													1
Lane Bulk Factor 1.00 1.00 0.97 1.00 1.00 0.95 1.00 0.95 0.95 0.95 1.00 1.03 1.00 1.00 1.03 1.00							Ū		•		Ū		
Ped Bike Factor 0.99 0.98 0.99 0.99 1.00 1.00 1.00 Fit 0.850 0.950 0.950 0.950 0.950 0.950 0.950 0.950 Satid. Flow (prot) 1674 1695 1443 3244 1459 0 0 1641 3007 0 0 1645 Satid. Flow (perm) 1664 1995 1449 3214 1459 0 0 1641 3007 0 0 1645 Satid. Flow (RTOR) 137 45 1			1 00	1 00		1 00	1 00	0.95		0.95	0.95	0.95	
Fit 0.850 0.890 0.950 0.950 FIP rotected 0.950 0.950 0.950 0.950 Stadt Flow (prot) 1674 1695 1483 3248 1459 0 0 1645 3307 0 0 1648 Stadt Flow (prom) 1664 1995 1449 3214 1459 0 0 1641 3307 0 0 1648 Right Tum on Red Yes Yes Yes Yes Yes Yes Yes 177 45 1 1 177 36.7 Conf. Neas (Hrh) 50 50 5			1.00				1.00	0.00			0.00	0.00	
FIP Protected 0.950 0.950 0.950 0.950 0.953 Satd, Flow (prot) 1674 1695 1483 3248 1459 0 0 1645 3307 0 0 1685 Satd, Flow (prot) 1664 1695 1449 3214 1459 0 0 1641 3007 0 1642 Satd, Flow (prot) 1664 1695 1449 3214 1459 0 0 1641 3007 0 1642 Link Speed (pth) 50 50 60 0 1613 17.4 5 <td></td> <td>0.55</td> <td></td> <td></td> <td>0.55</td> <td></td> <td></td> <td></td> <td>1.00</td> <td></td> <td></td> <td></td> <td>1.00</td>		0.55			0.55				1.00				1.00
Satid Flow (prof) 1674 1695 1483 3248 1459 0 0 1645 307 0 0 1645 FIP Parmited 0.950 0.950 0.950 0.950 0.950 0.950 0.950 Satid Flow (perm) 1664 1695 1449 0 0 1641 307 0 1642 Righ Turu on Red Yes Yes Yes Yes Yes Yes Yes 1642 Satid Flow (PCR) 153 17.4 5 <t< td=""><td></td><td>0.050</td><td></td><td>0.000</td><td>0.050</td><td>0.033</td><td></td><td></td><td>0.050</td><td>0.330</td><td></td><td></td><td>0.050</td></t<>		0.050		0.000	0.050	0.033			0.050	0.330			0.050
FI Permitad 0.950 0.950 0.950 0.950 0.950 Satd, Flow (perm) 1664 1695 1449 3214 1459 0 0 1641 3307 0 0 1642 Satd, Flow (RTOR) 137 45 1			1605	1/00		1/50	٥	٥		2207	٥	٥	
Satid Flow (perm) 1664 1695 1449 3214 1459 0 0 1641 3307 0 0 1644 Righ Turn on Red Yes	ů,		1095	1403		1409	U	0		3307	U	0	
Right Tum on Red Yes Yes Yes Satd. Flow (RTOR) 137 45 1 Link Speed (kh) 50 60 60 Link Distance (m) 212.6 241.6 610.9 Tavel Time (s) 15.3 17.4 36.7 Confl. Peds. (#hr) 5 5 5 5 Peak Hour Factor 1.00			1005	1110		1450	0	0		2207	0	0	
Sand Flow (RTOR) 137 45 1 Link Speed (kh) 50 50 60 111 Link Distance (m) 212.6 241.6 610.9 153 17.4 36.7 Confl. Peds. (#hr) 5 <		1004	1095		3214	1459		U	1041	3307		U	1048
Link Speed (kh) 50 50 60 Link Distance (m) 212.6 241.6 610.9 Travel Time (s) 15.3 17.4 36.7 Confl. Bikes (#hr) 5 5 5 5 5 Peak Hour Factor 1.00						15	res			4	res		
Link Distance (m) 212.6 241.6 610.9 Travel Time (s) 15.3 17.4 36.7 Confl. Feds. (#hr) 5 5 5 5 Peak Hour Factor 1.00 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01			50	137									
Travel Time (s) 15.3 17.4 36.7 Confl. Picks (#hr) 5<													
Confl. Peds. (#hr) 5 7													
Conf. Bikes (#hr) 5 5 5 Peak Hour Factor 1.00 <td></td> <td></td> <td>15.3</td> <td></td> <td></td> <td>17.4</td> <td></td> <td></td> <td></td> <td>36.7</td> <td></td> <td></td> <td></td>			15.3			17.4				36.7			
Peak Hour Factor 1.00		5			5				5				5
Heavy Vehicles (%) 1% 5% 2% 1% 6% 9% 2% 3% 2% 6% 2% 3% 2% 6% 2% 3% 2% 6% 2% 3% 2% 6% 2% 3% 2% 6% 2% 3% 2% 6% 2% 3% 2% 6% 2% 3% 2% 6% 2% 3% 2% 6% 2% 3% 2% 6% 2% 3% 2% 6% 2% 3% 2% 6% 2% 3% 2% 1													
Adj. Flow (vph) 24 22 175 350 22 45 16 72 1933 23 12 15 Shared Lane Trafic (%) Lane Group Flow (vph) 24 22 175 350 67 0 0 88 1956 0 0 22 175 350 67 0 0 88 1956 0 0 22 175 350 67 0 0 88 1956 0 0 22 175 350 67 0 0 88 1956 0 0 22 175 10													
Shared Lane Traffic (%) Lane Group Flow (vph) 24 22 175 350 67 0 0 88 1956 0 0 72 Enter Blocked Intersection No No </td <td></td> <td>3%</td>													3%
Lane Group Flow (vph) 24 22 175 350 67 0 0 88 1956 0 0 27 Enter Blocked Intersection No N		24	22	175	350	22	45	16	72	1933	23	12	15
Enter Blocked Intersection No													
Lane Alignment L NA Left R NA L NA L NA Left R NA L NA Left R NA L NA L NA Left R NA L NA L NA L NA Left R NA L NA L NA Left R NA L NA <thl na<="" th=""> L NA L NA</thl>											-		27
Median Width(m) 7.0 10.5 17.5 Link Offset(m) 0.0 1.09 1.		No	No				No	No	No				No
Link Offset(m) 0.0 0.0 0.0 Crosswalk Width(m) 5.0 5.0 5.0 Two way Left Tum Lane		L NA		R NA	L NA		R NA	R NA	L NA		R NA	R NA	L NA
Crosswalk Width(m) 5.0 5.0 5.0 Two way Left Turn Lane													
Two way Left Turn Lane Headway Factor 1.09 1.00 1.00 1.00 1.00													
Headway Factor 1.09<	Crosswalk Width(m)		5.0			5.0				5.0			
Number of Detectors 1 2 1 1 1 2 1 1 1 2 1 1	Two way Left Turn Lane												
Detector Template Left Thru Right Left Thru Left Thru Left Left Left Thru Left Left Left Thru Left Left Left Thru Left Left <thleft< th=""> Left Left<td>Headway Factor</td><td>1.09</td><td>1.09</td><td>1.09</td><td>1.09</td><td></td><td>1.09</td><td>1.09</td><td>1.09</td><td>1.09</td><td>1.09</td><td>1.09</td><td>1.09</td></thleft<>	Headway Factor	1.09	1.09	1.09	1.09		1.09	1.09	1.09	1.09	1.09	1.09	1.09
Leading Detector (m) 2.0 10.0 2.0 2.0 10.0 2.0 2.0 10.0 2.0 2.0 10.0 2.0 2.0 10.0 2.0 2.0 10.0 2.0 2.0 10.0 2.0 2.0 10.0 2.0 2.0 10.0 0.	Number of Detectors	1	2	1	1	2		1	1	2		1	1
Trailing Detector (m) 0.0	Detector Template	Left	Thru	Right	Left	Thru		Left	Left	Thru		Left	Left
Detector 1 Position(m) 0.0	Leading Detector (m)	2.0	10.0	2.0	2.0	10.0		2.0	2.0	10.0		2.0	2.0
Detector 1 Size(m) 2.0 0.6 2.0 2.0	Trailing Detector (m)	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0		0.0	0.0
Detector 1 Size(m) 2.0 0.6 2.0 2.0	Detector 1 Position(m)	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0		0.0	0.0
Detector 1 Type CI+Ex		2.0	0.6	2.0	2.0	0.6		2.0	2.0	0.6		2.0	2.0
Detector 1 Channel Detector 1 Extend (s) 0.0 <													CI+Ex
Detector 1 Extend (s) 0.0													
Detector 1 Queue (s) 0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0		0.0	0.0
Detector 1 Delay (s) 0.0													0.0
Detector 2 Position(m) 9.4 9.4 9.4 Detector 2 Size(m) 0.6 0.6 0.6 Detector 2 Type CI+Ex CI+Ex CI+Ex Detector 2 Channel 0.0 0.0 0.0 Detector 2 Extend (s) 0.0 0.0 0.0 Turn Type Prot NA Perm Prot NA Prot Prot Protected Phases 7 4 3 8 5 5 2 1 1 Detector Phase 7 4 3 8 5 5 2 1 1													0.0
Detector 2 Size(m) 0.6 0.6 0.6 Detector 2 Type CI+Ex CI+Ex CI+Ex Detector 2 Channel 0.0 0.0 0.0 Detector 2 Extend (s) 0.0 0.0 0.0 Turn Type Prot NA Perm Prot NA Prot Prot Prot Protected Phases 7 4 3 8 5 5 2 1 1 Permitted Phases 4 3 8 5 5 2 1 1													
Detector 2 Type Cl+Ex Cl+Ex Detector 2 Channel 0.0 0.0 0.0 Detector 2 Extend (s) 0.0 0.0 0.0 Turn Type Prot NA Perm Prot NA Prot Prot Protected Phases 7 4 3 8 5 5 2 1 1 Permitted Phases 4 3 8 5 5 2 1 1													
Detector 2 Extend (s) 0.0 0.0 0.0 Turn Type Prot NA Perm Prot NA Prot	()												
Detector 2 Extend (s) 0.0 0.0 0.0 Turn Type Prot NA Perm Prot NA Prot Prot NA Prot			<u>. </u>			^				^			
Turn Type Prot NA Perm Prot NA Prot Prot NA Prot			0.0			0.0				0.0			
Protected Phases 7 4 3 8 5 5 2 1 1 Permitted Phases 4 4 4 5 5 2 1 1 Detector Phase 7 4 4 3 8 5 5 2 1 1		Prot		Perm	Prot			Prot	Prot			Prot	Prot
Permitted Phases 4 Detector Phase 7 4 3 8 5 5 2 1 1													1
Detector Phase 7 4 4 3 8 5 5 2 1 1		1	7	1	5	U		5	5	2		I	1
		7	Λ		2	Q		5	5	n		1	1
	Switch Phase	1	4	4	5	U		5	0	2		1	1

J.Audia, Novatech

	Ļ	~
	•	000
Lane Group	SBT	SBR
Lane configurations	† 1,	10
Traffic Volume (vph)	1465	16
Future Volume (vph)	1465	16
Ideal Flow (vphpl)	1800	1800
Storage Length (m)		0.0
Storage Lanes		0
Taper Length (m)		
Lane Util. Factor	0.95	0.95
Ped Bike Factor	1.00	
Frt	0.998	
Flt Protected		
Satd. Flow (prot)	3307	0
Flt Permitted		
Satd. Flow (perm)	3307	0
Right Turn on Red		Yes
Satd. Flow (RTOR)	1	
Link Speed (k/h)	60	
Link Distance (m)	382.6	
Travel Time (s)	23.0	
Confl. Peds. (#/hr)	20.0	5
Confl. Bikes (#/hr)		5
Peak Hour Factor	1.00	1.00
	2%	3%
Heavy Vehicles (%)		
Adj. Flow (vph)	1465	16
Shared Lane Traffic (%)	1 10 1	^
Lane Group Flow (vph)	1481	0
Enter Blocked Intersection	No	No
Lane Alignment	Left	R NA
Median Width(m)	17.5	
Link Offset(m)	0.0	
Crosswalk Width(m)	5.0	
Two way Left Turn Lane		
Headway Factor	1.09	1.09
Number of Detectors	2	
Detector Template	Thru	
Leading Detector (m)	10.0	
Trailing Detector (m)	0.0	
Detector 1 Position(m)	0.0	
Detector 1 Size(m)	0.0	
	0.6 Cl+Ex	
Detector 1 Type	CI+EX	
Detector 1 Channel		
Detector 1 Extend (s)	0.0	
Detector 1 Queue (s)	0.0	
Detector 1 Delay (s)	0.0	
Detector 2 Position(m)	9.4	
Detector 2 Size(m)	0.6	
Detector 2 Type	CI+Ex	
Detector 2 Channel		
Detector 2 Extend (s)	0.0	
Turn Type	NA	
Protected Phases	6	
Permitted Phases		
Detector Phase	6	
Switch Phase	<u> </u>	

J.Audia, Novatech

la 🖒	L#	1	1	1	ŧ	*	+	4	\mathbf{r}	-	٦	
SBU SBL	SBU	NBR	NBT	NBL	NBU	WBR	WBT	WBL	EBR	EBT	EBL	Lane Group
5.0 5.0	5.0		10.0	5.0	5.0		10.0	5.0	10.0	10.0	5.0	Minimum Initial (s)
12.0 12.0	12.0		26.8	12.0	12.0		36.5	11.5	36.5	36.5	11.5	Minimum Split (s)
	12.0		59.0	15.0	15.0		42.7	22.5	36.5	36.5	16.3	Total Split (s)
	9.2%		45.4%	11.5%	11.5%		32.8%	17.3%	28.1%	28.1%	12.5%	Total Split (%)
5.0 5.0			53.2	8.0	8.0		36.2	16.0	30.0	30.0	9.8	Maximum Green (s)
3.7 3.7			3.7	3.7	3.7		3.3	3.3	3.3	3.3	3.3	Yellow Time (s)
3.3 3.3			2.1	3.3	3.3		3.2	3.2	3.2	3.2	3.2	All-Red Time (s)
0.0	0.0		0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	Lost Time Adjust (s)
7.0			5.8	7.0			6.5	6.5	6.5	6.5	6.5	Total Lost Time (s)
	Lead		Lag	Lead	Lead		Lag	Lead	Lag	Lag	Lead	Lead/Lag
2000	Loud		Lag	Loud	Loud		Yes	Loud	Lag	Lag	Yes	Lead-Lag Optimize?
3.0 3.0	30		3.0	3.0	3.0		3.0	3.0	3.0	3.0	3.0	Vehicle Extension (s)
	None		C-Max	None	None		None	None	None	None	None	Recall Mode
	NONE		7.0	None	NULLE		7.0	NONE	7.0	7.0	None	Walk Time (s)
			14.0				23.0		23.0	23.0		Flash Dont Walk (s)
			5				23.0		23.0	25.0		Pedestrian Calls (#/hr)
6.6			72.4	11.7			27.9	15.9	14.6	14.6	7.4	Act Effct Green (s)
0.05			0.56	0.09			0.21	0.12	0.11	0.11	0.06	
												Actuated g/C Ratio
0.32			1.06	0.59 73.3			0.19	0.88	0.62	0.12	0.25	v/c Ratio
67.6			69.0				19.0	80.1	23.3	49.3	64.4	Control Delay
0.0			0.0	0.0			0.0	0.0	0.0	0.0	0.0	Queue Delay
67.6			69.0	73.3			19.0	80.1	23.3	49.3	64.4	Total Delay
E			E	E			В	F	С	D	E	LOS
			69.2				70.3			30.3		Approach Delay
			E	10.0			E	10.1	<u> </u>	C		Approach LOS
6.5			~273.1	19.9			4.6	42.4	8.7	4.9	5.5	Queue Length 50th (m)
m13.2			#371.3	#49.7			14.3	#65.9	25.7	10.8	13.6	Queue Length 95th (m)
			586.9				217.6			188.6		Internal Link Dist (m)
155.0				165.0				85.0	60.0		35.0	Turn Bay Length (m)
84			1840	148			438	399	439	391	126	Base Capacity (vph)
0			0	0			0	0	0	0	0	Starvation Cap Reductn
0			0	0			0	0	0	0	0	Spillback Cap Reductn
0			0	0			0	0	0	0	0	Storage Cap Reductn
0.32			1.06	0.59			0.15	0.88	0.40	0.06	0.19	Reduced v/c Ratio
												Intersection Summary
											Other	
											Other	Area Type: Cycle Length: 130
								of Croop	DT Clark	DT and G	d ta phaga 2:N	Actuated Cycle Length: 130
								of Green	SBT, Start	BT and 0.3	a to phase 2.1	Offset: 61 (47%), Referenced
											ulia a ta d	Natural Cycle: 150
											dinated	Control Type: Actuated-Coord
												Maximum v/c Ratio: 1.06
							tersection					Intersection Signal Delay: 58.0
						Service F	U Level of	IC			10N 95.8%	Intersection Capacity Utilization
									- C - 11	· · · · · · ·	· · ·	Analysis Period (min) 15
									nfinite.			 Volume exceeds capacity,
												Queue shown is maximum
								ger.	nay be lon			
								ianal	notre ene -			
								ignai.	ipstream s	elered by L	ile queue is m	in volume for 95th percentile
										ty, queue r les.	xceeds capaci n after two cyc ile queue is m	Queue shown is maximum # 95th percentile volume exit Queue shown is maximum m Volume for 95th percentile Solits and Phases: 3: Marel

Splits and Phases: 3: March & Solandt

4 _{Ø1}	Ø2 (R)	√ Ø3	⊸ ⊅04
12 s	59 s	22.5 s	36.5 s
* Ø5	🛡 🕈 Ø6 (R)	▶ _{Ø7}	Ø8
15 s	56 s	16.3 s 42	2.7 s

	T
	•
Lane Group	SBT
Minimum Initial (s)	10.0
Minimum Split (s)	26.8
Total Split (s)	56.0
Total Split (%)	43.1%
Maximum Green (s)	50.2
Yellow Time (s)	3.7
All-Red Time (s)	2.1
Lost Time Adjust (s)	0.0
Total Lost Time (s)	5.8
Lead/Lag	Lag
Lead-Lag Optimize?	
Vehicle Extension (s)	3.0
Recall Mode	C-Max
Walk Time (s)	7.0
Flash Dont Walk (s)	14.0
Pedestrian Calls (#/hr)	5
Act Effct Green (s)	62.0
Actuated g/C Ratio	0.48
v/c Ratio	0.94
Control Delay	43.0
Queue Delay	0.0
Total Delay	43.0
LOS	D
Approach Delay	43.5
Approach LOS	D
Queue Length 50th (m)	178.1
Queue Length 95th (m)	#261.1
Internal Link Dist (m)	358.6
Turn Bay Length (m)	000.0
Base Capacity (vph)	1578
Starvation Cap Reductn	0
Spillback Cap Reductn	0
Storage Cap Reductn	0
Reduced v/c Ratio	0.94
	0.94
Intersection Summary	

6: March & Site Access/Nokia Access PM Peak Hour

											2037 100	
	٦	-	$\mathbf{\hat{z}}$	4	-	*	1	Ť	1	1	Ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	- h	4		ካ	4		<u>۲</u>		1	<u> </u>	4 4 16	
Traffic Volume (vph)	68	3	186	236	2	402	154	1574	204	95	1044	43
Future Volume (vph)	68	3	186	236	2	402	154	1574	204	95	1044	43
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Storage Length (m)	65.0		0.0	65.0		0.0	75.0		100.0	75.0		0.0
Storage Lanes	1		0	1		0	1		1	1		0
Taper Length (m)	20.0			25.0			50.0			50.0		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	1.00	1.00	0.91	0.91
Ped Bike Factor				0.99	0.97				0.94			
Frt		0.852			0.851				0.850		0.994	
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1658	1487	0	1674	1457	0	1658	3283	1498	1674	4691	0
Flt Permitted	0.140			0.498			0.178			0.067		
Satd. Flow (perm)	244	1487	0	870	1457	0	311	3283	1409	118	4691	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		162			131				197		6	
Link Speed (k/h)		50			50			60			60	
Link Distance (m)		126.2			167.8			227.7			308.9	
Travel Time (s)		9.1			12.1			13.7			18.5	
Confl. Peds. (#/hr)		•••		10		10			10	10		
Confl. Bikes (#/hr)						5			5			
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles (%)	2%	2%	2%	1%	2%	1%	2%	3%	1%	1%	3%	2%
Adj. Flow (vph)	68	3	186	236	2	402	154	1574	204	95	1044	43
Shared Lane Traffic (%)	00	Ū	100	200	2	102	101	107.1	201	00	1011	10
Lane Group Flow (vph)	68	189	0	236	404	0	154	1574	204	95	1087	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	L NA	Left	RNA	L NA	Left	RNA	Left	Left	Right	Left	Left	Right
Median Width(m)		3.5	11111		3.5	11101	Lon	7.0	ragin	Lon	7.0	rugin
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		5.0			5.0			5.0			5.0	
Two way Left Turn Lane		0.0			0.0			0.0			0.0	
Headway Factor	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09
Number of Detectors	1.03	2	1.00	1.05	2	1.00	1.00	2	1.00	1.00	2	1.00
Detector Template	Left	Thru		Left	Thru		Left	Thru	Right	Left	Thru	
Leading Detector (m)	2.0	10.0		2.0	10.0		2.0	10.0	2.0	2.0	10.0	
Trailing Detector (m)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Detector 1 Position(m)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Detector 1 Size(m)	2.0	0.0		2.0	0.6		2.0	0.0	2.0	2.0	0.6	
Detector 1 Type	CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	
Detector 1 Channel								CI+EX				
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
				0.0						0.0		
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	_
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Detector 2 Position(m)		9.4			9.4			9.4			9.4	
Detector 2 Size(m)		0.6			0.6			0.6			0.6	
Detector 2 Type		CI+Ex			CI+Ex			CI+Ex			CI+Ex	
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0	-		0.0	
Turn Type	pm+pt	NA		pm+pt	NA		pm+pt	NA	Perm	pm+pt	NA	
Protected Phases	7	4		3	8		5	2		1	6	
Permitted Phases	4			8			2		2	6		
Detector Phase	7	4		3	8		5	2	2	1	6	
Switch Phase												

J.Audia, Novatech

6: March & Site Access/Nokia Access PM Peak Hour

	۶	+	\rightarrow	•	←		•	1	1	1	ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT V	VBR	NBL	NBT	NBR	SBL	SBT	SB
Minimum Initial (s)	5.0	10.0		5.0	10.0		5.0	10.0	10.0	5.0	10.0	
Vinimum Split (s)	11.5	38.5		11.5	38.5		11.4	23.8	23.8	11.4	23.8	
Total Split (s)	12.0	39.0		12.0	39.0		20.0	67.0	67.0	12.0	59.0	
Total Split (%)	9.2%	30.0%		9.2%	30.0%		15.4%	51.5%	51.5%	9.2%	45.4%	
Maximum Green (s)	5.5	32.5		5.5	32.5		13.6	61.2	61.2	5.6	53.2	
Yellow Time (s)	3.3	3.3		3.3	3.3		3.7	3.7	3.7	3.7	3.7	
All-Red Time (s)	3.2	3.2		3.2	3.2		2.7	2.1	2.1	2.7	2.1	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.5	6.5		6.5	6.5		6.4	5.8	5.8	6.4	5.8	
Lead/Lag	Lead	Lag		Lead	Lag		Lead	Lag	Lag	Lead	Lag	
Lead-Lag Optimize?	Yes	Yes		Yes	Yes			Ŭ	Ū		Ŭ	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0	
Recall Mode	None	None		None	None		None	C-Max	C-Max	None	C-Max	
Walk Time (s)		7.0			7.0			7.0	7.0		7.0	
Flash Dont Walk (s)		25.0			25.0			11.0	11.0		11.0	
Pedestrian Calls (#/hr)		10			10			10	10		10	
Act Effct Green (s)	32.7	27.2		34.0	29.6		75.4	65.7	65.7	67.1	61.3	
Actuated g/C Ratio	0.25	0.21		0.26	0.23		0.58	0.51	0.51	0.52	0.47	
v/c Ratio	0.56	0.43		0.90	0.94		0.53	0.95	0.25	0.69	0.49	
Control Delay	49.6	11.9		78.2	62.6		13.1	16.9	1.0	65.5	26.8	
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Total Delay	49.6	11.9		78.2	62.6		13.1	16.9	1.0	65.5	26.8	
LOS	D	В		E	E		В	В	A	E	C	
Approach Delay		21.9		_	68.4		2	14.9	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	-	29.9	
Approach LOS		C			E			B			C	
Queue Length 50th (m)	11.0	4.9		42.5	65.1		1.0	~211.0	4.6	14.8	27.4	
Queue Length 95th (m)	20.9	22.9		#76.8	#117.2		m3.4	m196.7	m0.0	m#39.0	73.8	
Internal Link Dist (m)		102.2			143.8			203.7			284.9	
Turn Bay Length (m)	65.0	102.2		65.0	110.0		75.0	200.1	100.0	75.0	201.0	
Base Capacity (vph)	121	493		261	462		326	1658	809	138	2213	
Starvation Cap Reductn	0	0		0	0		0	0	000	0	0	
Spillback Cap Reductn	0	0		0	0		0	Ũ	0	Ŭ Ŭ	0 0	
Storage Cap Reductn	0	0		0	0		0	0	0	0	0	
Reduced v/c Ratio	0.56	0.38		0.90	0.87		0.47	0.95	0.25	0.69	0.49	
Intersection Summary												
Area Type:	Other											
Cycle Length: 130												
Actuated Cycle Length: 130												
Offset: 108 (83%), Referenceo Natural Cycle: 130	d to phase 2:1	NBTL and 6	S:SBTL, Star	t of Gre	en							
Control Type: Actuated-Coord	linated											
Maximum v/c Ratio: 0.95	indica											
Intersection Signal Delay: 28.3	3			In	ntersection LOS	e C						
Intersection Capacity Utilization					CU Level of Ser							
Analysis Period (min) 15	JI 104.170					100 0	1					
 Volume exceeds capacity, 	queue is the	orotically in	finito									
Queue shown is maximum			in inc.									
# 95th percentile volume exc			av ha longo	r								
Queue shown is maximum			ay be longe	1.								
m Volume for 95th percentile			ostream sigr	nal.								
Splits and Phases: 6: March	h & Site Acce	ss/Nokia A	ccess									
\							√ ø3		24			
Ø1 Ø P (R)							▼ Ø3		Ø4			

 Ø1
 Ø2(R)
 Ø3
 Ø4

 12s
 67s
 12s
 39s

 Ø5
 Ø6(R)
 Ø7
 Ø8

 20s
 59s
 12s
 39s

4: Innovation/Flamborough & Terry Fox PM Peak Hour

Fulure Volme (vph) 71 398 37 101 534 126 110 64 77 50 50 50 62 Storage Largin (m) 75.0 120.0 110.0 130.0 20.0 0.0 30.0 0.0 Storage Largin (m) 50.0 1 1 1 1 1 1 0 1 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.950 0.55 5 5 5 5 5 5 5 5 5 <th></th> <th>2037 100</th> <th></th>												2037 100	
Lane Configurations N A F N D N D Taffer Volume (rph) 71 398 37 101 534 126 110 64 75 50 50 62 Future Volume (rph) 1800		٦	-	$\mathbf{\hat{z}}$	4	+	•	1	Ť	1	1	Ŧ	~
Traffic Volume (voh) 71 398 37 101 534 126 110 64 75 50 50 62 ideal Row (vohp) 1800	Lane Group		EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Traffic Volume (rph) 71 338 37 101 534 126 110 64 75 50 50 62 ideal Flow (rph) 1100 1800	Lane Configurations	<u>۲</u>	•	1	ሻ	•	1	- h	4		ካ	1 2	
ideal Flow (vphp) 1800 <td>Traffic Volume (vph)</td> <td>71</td> <td>398</td> <td>37</td> <td>101</td> <td></td> <td>126</td> <td>110</td> <td></td> <td>75</td> <td>50</td> <td></td> <td>62</td>	Traffic Volume (vph)	71	398	37	101		126	110		75	50		62
Shorage Length (m) 75.0 120.0 11.0 130.0 220.0 0.0 30.0 0.0 Taper Length (m) 50.0 80.0 50.0 15.0 10.0 <	Future Volume (vph)	71	398	37	101	534	126	110	64	75	50	50	62
Shorage Lanes 1 1 1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 1 1 <	Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Taper Length (m) 50.0 80.0 50.0 15.0 Lane UIL Factor 1.00 1	Storage Length (m)	75.0		120.0	110.0		130.0	220.0		0.0	30.0		0.0
Lane ULF actor 1.00		1		1	1		1	1		0	1		0
Lane ULF, Factor 1.00	Taper Length (m)	50.0			80.0			50.0			15.0		
Ped Bik Factor 0.96 0.99 0.95 0.95 0.99 0.95 Fit 0.850 0.950 0.950 0.917 0.917 Satid, Flow (prot) 1556 1745 1498 1674 1544 0.950 0.950 Satid, Flow (prot) 1556 1745 1449 1674 1544 0.980 1485 0 Satid, Flow (perm) 672 1745 1440 818 1762 1429 1066 154 0.990 1485 0 980 1485 0 980 1485 0 980 1485 0 980 1485 0 980 1485 0 980 1485 0 980 1485 0 980 1485 0 980 1485 0 980 1485 1485 161 10 100 100 100 100 100 100 100 100 100 100 100 100 100 100 110		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Fri 0.850 0.850 0.950 0.950 0.950 Satd, Flow (prot) 1566 1745 1498 1642 1762 1498 1674 1544 0 1674 1485 0 Satd, Flow (prot) 1626 1745 1440 1818 1762 1429 1666 1544 0 980 1485 0 Right Turn on Red Yes												0.95	
File Protected 0.950 0.950 0.950 0.950 0.950 Satd, Flow (prot) 1566 1745 1498 1674 1544 0 1674 1485 0 Satd, Flow (prot) 672 1745 1448 1762 129 1086 1544 0 980 1485 0 Satd, Flow (prot) 672 1745 1440 818 1762 1429 1086 1544 0 980 1485 0 Satd, Flow (prot) 672 78 78 768 763 753 5													
Satid Flow (prof) 1666 1745 1498 1642 1762 1498 1674 1544 0 1674 1485 0 FIP Parmitted 0.408 0.476 0.646 0.561 0.561 0.561 0.561 0.561 0.561 0.561 0.561 0.561 0.561 0.561 0.561 0.561 0.561 0.561 0.561 0.53 0.53 0.51 0.50 53 0.50 50		0.950			0.950			0.950			0.950		
FIP Permittad 0.408 0.476 0.646 0.561 Satd, Flow (perm) 672 1745 1440 818 1762 1429 1086 1544 0 9800 1485 0 Satd, Flow (RTOR) 78 126 50 53 50 <td< td=""><td></td><td></td><td>1745</td><td>1498</td><td></td><td>1762</td><td>1498</td><td></td><td>1544</td><td>0</td><td></td><td>1485</td><td>0</td></td<>			1745	1498		1762	1498		1544	0		1485	0
Satid Flow (perm) 672 1745 1440 818 1762 1429 1086 1544 0 980 1485 0 Righ Turn on Red Yes Yes Yes Yes Yes Yes Yes Satid Flow (RTOR) 78 126 50 53 51 50 <	. ,									•			
Right Turn on Red Yes Yes Yes Yes Yes Yes Satd, Flow (RTOR) 78 126 50 53 11. 11. Speed (kh) 60 50 <			1745	1440		1762	1429		1544	0		1485	0
Sand Tes 126 50 53 Link Speed (kh) 60 60 50 50 Link Distance (m) 508.2 294.0 547.1 313.7 Travel Time (s) 30.5 17.6 39.4 22.6 Confl. Pets, (#hr) 5 5 5 5 5 25 Confl. Bikes (#hr) 5 15 10 100 <td< td=""><td></td><td>0.2</td><td></td><td></td><td>0.0</td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td></td<>		0.2			0.0					-			
Link Speed (kh) 60 60 50 50 Link Distance (m) 508.2 294.0 547.1 313.7 Travel Time (s) 30.5 17.6 39.4 22.6 Confl. Bikes (#hn) 5 5 5 25 5 5 22.6 Confl. Bikes (#hn) 5 5 10 100 1.00									50	100		53	100
Link Distance (m) 508.2 294.0 547.1 313.7 Travel Time (s) 30.5 17.6 39.4 22.6 Confl. Peds, (#hr) 5 5 5 25 5 5 25 Confl. Peds, (#hr) 5 5 10 100 1.			60	10		60	120						
Travel Time (s) 30.5 17.6 39.4 22.6 Confl. Rikes (#hr) 5 5 5 25 5 25													
Confl. Peds. (#/trr) 5 5 5 5 25 5 5 25 5 5 25 5 5 25 5 5 25 5 5 25 5 5 25 5 5 25 5 5 25 5 5 25 5 5 25 5 5 25 5 70 100													
Confl. Bikes (#hr) 5 15 10 10 Peak Hour Factor 1.00 <td></td> <td>5</td> <td>00.0</td> <td>5</td> <td>5</td> <td>17.0</td> <td>5</td> <td>25</td> <td>00.4</td> <td>5</td> <td>5</td> <td>22.0</td> <td>25</td>		5	00.0	5	5	17.0	5	25	00.4	5	5	22.0	25
Peak Hour Factor 1.00		0			0			20			0		
Heavy Vehicles (%) 8% 2% 1% 3% 1% 1% 1% 2% 5% 1% 1% 8% Adj. Flow (vph) 71 398 37 101 534 126 110 64 75 50 50 62 Shared Lane Traffic (%) 71 398 37 101 534 126 110 139 0 50 112 0 Enter Blocked Intersection No		1 00	1 00		1 00	1 00		1.00	1 00		1 00	1.00	
Adj. Flow (vph) 71 398 37 101 534 126 110 64 75 50 50 62 Shared Lane Traffic (%) Lane Group Flow (vph) 71 398 37 101 534 126 110 139 0 50 112 0 Enter Blocked Intersection No													
Shared Lane Traffic (%) Image: Constraint of Constraints													
Enter Blocked Intersection No No <th< td=""><td>Shared Lane Traffic (%)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	Shared Lane Traffic (%)												
Lane Alignment L NA Left R NA Median Width(m) 3.5	,												
Median Width(m) 3.5 3.5 3.5 3.5 3.5 Link Offset(m) 0.0 0.0 0.0 0.0 0.0 Crosswalk Width(m) 5.0 5.0 5.0 5.0 Two way Left Turn Lane													
Link Offset(m) 0.0 0.0 0.0 0.0 0.0 Crosswalk Width(m) 5.0 5.0 5.0 5.0 5.0 Two way Left Turn Lane		L NA		R NA	L NA		R NA	L NA		R NA	L NA		R NA
Crosswalk Width(m) 5.0 5.0 5.0 Two way Left Turn Lane													
Two way Left Turn Lane Headway Factor 1.09 1.00													
Headway Factor 1.09 1.00 1.00 1.00<			5.0			5.0			5.0			5.0	
Number of Detectors 1 2 1 10 10 10	Two way Left Turn Lane												
Detector Template Left Thru Right Left Thru Right Left Thru Left Thru Leading Detector (m) 2.0 10.0 2.0 2.0 10.0 2.0 10.0 Trailing Detector (m) 0.0	Headway Factor	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09
Leading Detector (m) 2.0 10.0 2.0 10.0 2.0 10.0 2.0 10.0 2.0 10.0 Trailing Detector (m) 0.0	Number of Detectors	1	2	1	1	2	1	1	2		1	2	
Trailing Detector (m) 0.0	Detector Template	Left	Thru	Right	Left	Thru	Right	Left	Thru		Left	Thru	
Detector 1 Position(m) 0.0	Leading Detector (m)	2.0	10.0	2.0	2.0	10.0	2.0	2.0	10.0		2.0	10.0	
Detector 1 Size(m) 2.0 0.6 Cl+Ex Detector 0.0 Detector Detector 2 Size(m) <td>Trailing Detector (m)</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td></td> <td>0.0</td> <td>0.0</td> <td></td>	Trailing Detector (m)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Detector 1 Type CI+Ex	Detector 1 Position(m)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Detector 1 Type Cl+Ex	Detector 1 Size(m)	2.0	0.6	2.0	2.0	0.6	2.0	2.0	0.6		2.0	0.6	
Detector 1 Extend (s) 0.0		CI+Ex	CI+Ex	CI+Ex	Cl+Ex	CI+Ex	CI+Ex	CI+Ex	Cl+Ex		CI+Ex	CI+Ex	
Detector 1 Queue (s) 0.0	Detector 1 Channel												
Detector 1 Queue (s) 0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Detector 1 Delay (s) 0.0	Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Detector 2 Position(m) 9.4 9.4 9.4 9.4 Detector 2 Size(m) 0.6 0.6 0.6 0.6 Detector 2 Size(m) 0.6 0.6 0.6 0.6 Detector 2 Type CI+Ex CI+Ex CI+Ex CI+Ex Detector 2 Channel 0.0 0.0 0.0 0.0 Turn Type pm+pt NA Perm Perm NA Protected Phases 5 2 1 6 8 4 Permitted Phases 2 2 1 6 8 8 4 Detector Phase 5 2 1 6 6 8 4 4													
Detector 2 Size(m) 0.6 0.6 0.6 0.6 Detector 2 Type CI+Ex CI+Ex CI+Ex CI+Ex Detector 2 Channel 0.0 0.0 0.0 0.0 Detector 2 Extend (s) 0.0 0.0 0.0 0.0 Turn Type pm+pt NA Perm Perm NA Protected Phases 5 2 1 6 8 4 Permitted Phases 2 2 6 6 8 4 4													
Detector 2 Type Cl+Ex Cl+Ex Cl+Ex Cl+Ex Detector 2 Channel 0.0 0.0 0.0 0.0 Detector 2 Extend (s) 0.0 0.0 0.0 0.0 Turn Type pm+pt NA Perm Perm NA Perm NA Protected Phases 5 2 1 6 8 4 Permitted Phases 2 2 6 6 8 4 Detector Phase 5 2 1 6 6 8 4													
Detector 2 Extend (s) 0.0 0.0 0.0 0.0 Turn Type pm+pt NA Perm Perm NA Perm NA Protected Phases 5 2 1 6 8 4 Permitted Phases 2 2 6 6 8 4 Detector Phase 5 2 1 6 6 8 4 4	()												
Detector 2 Extend (s) 0.0 0.0 0.0 0.0 Turn Type pm+pt NA Perm Perm Perm NA Perm NA Protected Phases 5 2 1 6 8 4 Permitted Phases 2 2 6 6 8 4 Detector Phase 5 2 1 6 8 8 4													
Turn Type pm+pt NA Perm pm+pt NA Perm Perm NA Perm			0.0			0.0			0.0			0.0	
Protected Phases 5 2 1 6 8 4 Permitted Phases 2 2 6 6 8 4 Detector Phase 5 2 2 1 6 8 8 4 4		pm+nt		Perm	pm+nt		Perm	Perm			Perm		
Permitted Phases 2 2 6 8 4 Detector Phase 5 2 1 6 8 8 4 4											. 0/11		
Detector Phase 5 2 2 1 6 6 8 8 4 4			2	2		U	6	8	U		4	т	
			2			6			8			4	
	Switch Phase	J	2	2	1	U	U	U	U		4	4	

J.Audia, Novatech

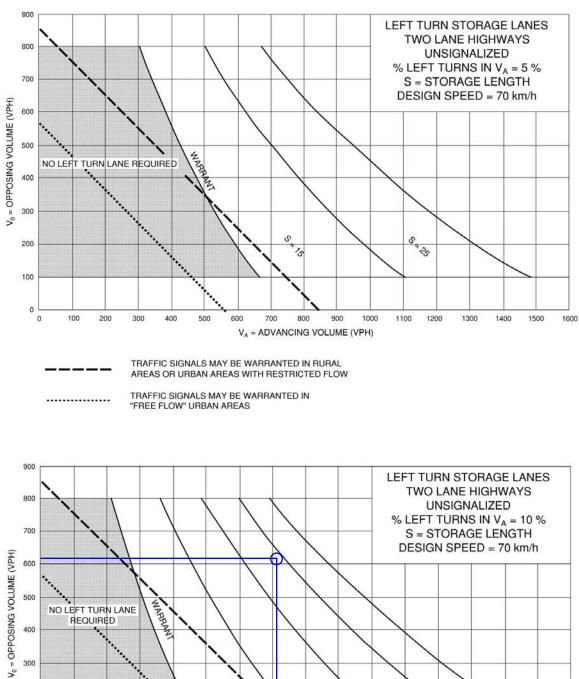
4: Innovation/Flamborough & Terry Fox PM Peak Hour

	٦	-	\mathbf{r}	4	-	•	1	1	1	1	Ļ	•
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	S
Minimum Initial (s)	5.0	10.0	10.0	5.0	10.0	10.0	10.0	10.0		10.0	10.0	
Minimum Split (s)	11.0	27.9	27.9	11.0	27.9	27.9	36.3	36.3		36.3	36.3	
Total Split (s)	12.0	66.0	66.0	12.0	66.0	66.0	52.0	52.0		52.0	52.0	
Total Split (%)	9.2%	50.8%	50.8%	9.2%	50.8%	50.8%	40.0%	40.0%		40.0%	40.0%	
Maximum Green (s)	6.0	60.1	60.1	6.0	60.1	60.1	45.7	45.7		45.7	45.7	
Yellow Time (s)	3.7	3.7	3.7	3.7	3.7	3.7	3.3	3.3		3.3	3.3	
All-Red Time (s)	2.3	2.2	2.2	2.3	2.2	2.2	3.0	3.0		3.0	3.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Lost Time (s)	6.0	5.9	5.9	6.0	5.9	5.9	6.3	6.3		6.3	6.3	
Lead/Lag	Lead	Lag	Lag	Lead	Lag	Lag						
_ead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0	
Recall Mode	None	C-Max	C-Max	None	C-Max	C-Max	None	None		None	None	
Nalk Time (s)		7.0	7.0		7.0	7.0	7.0	7.0		7.0	7.0	
Flash Dont Walk (s)		15.0	15.0		15.0	15.0	23.0	23.0		23.0	23.0	
Pedestrian Calls (#/hr)		3	3		3	3	3	3		3	3	
Act Effct Green (s)	92.4	85.3	85.3	94.7	88.2	88.2	18.8	18.8		18.8	18.8	
Actuated g/C Ratio	0.71	0.66	0.66	0.73	0.68	0.68	0.14	0.14		0.14	0.14	
//c Ratio	0.13	0.35	0.04	0.16	0.45	0.12	0.71	0.52		0.35	0.43	
Control Delay	5.8	12.5	0.1	8.1	19.1	6.5	74.8	38.1		54.3	30.7	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Delay	5.8	12.5	0.1	8.1	19.1	6.5	74.8	38.1		54.3	30.7	
LOS	A	B	A	A	B	A	E	D		D	С	
Approach Delay		10.6			15.5			54.3			38.0	
Approach LOS	25	B	0.0	0.0	B		05.0	D		10.0	D	
Queue Length 50th (m)	3.5	37.7	0.0	8.8	68.0	4.4	25.3	19.6		10.9	12.7	
Queue Length 95th (m)	10.0	74.4	0.3	m19.8	115.7	m15.4	39.7	34.8		20.4	26.6	
nternal Link Dist (m)	75.0	484.2	100.0	110.0	270.0	120.0	000.0	523.1		20.0	289.7	
Turn Bay Length (m)	75.0 527	1145	120.0 972	110.0 644	1196	130.0 1010	220.0 381	575		30.0 344	556	
Base Capacity (vph)												
Starvation Cap Reductn	0	0	0	0	0	0	0	0		0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0		0	0	
Storage Cap Reductn Reduced v/c Ratio	0 0.13	0 0.35	0 0.04	0 0.16	0 0.45	0 0.12	0 0.29	0 0.24		0 0.15	0 0.20	
ntersection Summary												
Area Type:	Other											
Cycle Length: 130												
Actuated Cycle Length: 130												
Offset: 66 (51%), Referenced	to phase 2:E	BTL and 6	:WBTL, St	art of Gree	en							
Natural Cycle: 80												
Control Type: Actuated-Coord	inated											
Maximum v/c Ratio: 0.71												
ntersection Signal Delay: 22.0					tersection							
ntersection Capacity Utilizatio	on 80.3%			IC	CU Level o	f Service D)					
Analysis Period (min) 15												
m Volume for 95th percentile	e queue is mo	etered by ι	ipstream s	ignal.								
Splits and Phases: 4: Innov	ation/Flambo	rough & Te	erry Fox									
		-				:0	1					

√ Ø1	🚽 📥 Ø2 (R)		
12 s	66 s	52.s	
▶ Ø5	● ♥ Ø6 (R)	↑ø8	
12 s	66 s	52 s	

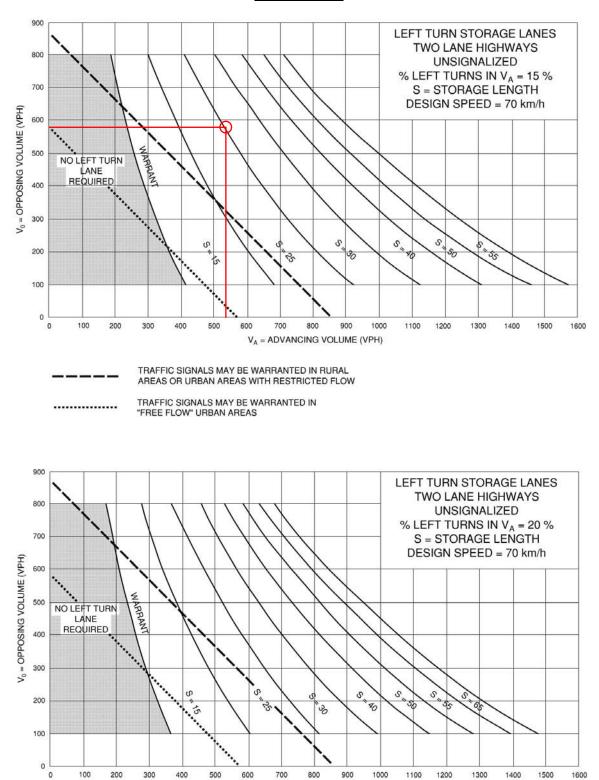
J.Audia, Novatech

	≯	+	\mathbf{F}	4	╉	*	•	†	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			÷	
Traffic Volume (veh/h)	19	0	87	0	0	0	107	6	0	0	22	20
Future Volume (Veh/h)	19	0	87	0	0	0	107	6	0	0	22	20
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	19	0	87	0	0	0	107	6	0	0	22	20
Pedestrians		10										
Lane Width (m)		3.5										
Walking Speed (m/s)		1.0										
Percent Blockage		1										
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC, conflicting volume	262	262	42	339	272	6	52			6		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	262	262	42	339	272	6	52			6		
tC, single (s)	7.1	6.5	6.2	7.1	6.5	6.2	4.1			4.1		
tC, 2 stage (s)												
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	97	100	91	100	100	100	93			100		
cM capacity (veh/h)	645	594	1019	530	586	1080	1532			1622		
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total	106	0	113	42								
Volume Left	19	0	107	0								
Volume Right	87	0	0	20								
cSH	923	1700	1532	1622								
Volume to Capacity	0.11	0.01	0.07	0.00								
Queue Length 95th (m)	2.7	0.0	1.6	0.0								
Control Delay (s)	9.4	0.0	7.2	0.0								
Lane LOS	А	А	А									
Approach Delay (s)	9.4	0.0	7.2	0.0								
Approach LOS	А	А										
Intersection Summary												
Average Delay			6.9									
Intersection Capacity Utilization			26.7%	IC	U Level of	Service			А			
Analysis Period (min)			15									


7: Site Access & Terry Fox PM Peak Hour

	-	\mathbf{i}	•	←	•	1
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	ţ,		5	44	¥	
Traffic Volume (veh/h)	579	29	59	652	43	84
Future Volume (Veh/h)	579	29	59	652	43	84
Sign Control	Free			Free	Stop	
Grade	0%			0%	0%	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	579	29	59	652	43	84
Pedestrians					10	
Lane Width (m)					3.5	
Walking Speed (m/s)					1.0	
Percent Blockage					1	
Right turn flare (veh)						
Median type	Raised			Raised		
Median storage veh)	1			1		
Upstream signal (m)				166		
pX, platoon unblocked					0.97	
vC, conflicting volume			618		1048	604
vC1, stage 1 conf vol					604	
vC2, stage 2 conf vol					444	
vCu, unblocked vol			618		986	604
tC, single (s)			4.1		6.8	6.9
tC, 2 stage (s)					5.8	
tF (s)			2.2		3.5	3.3
p0 queue free %			94		88	81
cM capacity (veh/h)			956		353	440
Direction, Lane #	EB 1	WB 1	WB 2	WB 3	NB 1	
Volume Total	608	59	326	326	127	
Volume Left	0	59	0	0	43	
Volume Right	29	0	0	0	84	
cSH	1700	956	1700	1700	406	
Volume to Capacity	0.36	0.06	0.19	0.19	0.31	
Queue Length 95th (m)	0.0	1.4	0.0	0.0	9.2	
Control Delay (s)	0.0	9.0	0.0	0.0	17.8	
Lane LOS		А			С	
Approach Delay (s)	0.0	0.7			17.8	
Approach LOS					С	
Intersection Summary						
Average Delay			1.9			
Intersection Capacity Utilization			55.5%	IC	U Level of	Service
Analysis Period (min)			15			

		•			1	1		
	1	~	1	1	►	ŧ		
Movement	WBL	WBR	NBT	NBR	SBL	SBT		
Lane Configurations	¥		4Î			र्स		
Traffic Volume (veh/h)	13	6	8	17	22	30		
Future Volume (Veh/h)	13	6	8	17	22	30		
Sign Control	Stop	Ŭ	Free			Free		
Grade	0%		0%			0%		
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00		
Hourly flow rate (vph)	13	6	1.00	1.00	22	30		
Pedestrians	10	0	0	17	22	30		
Lane Width (m)	3.5							
Walking Speed (m/s)	1.0							
Percent Blockage	1							
Right turn flare (veh)								
Median type			None			None		
Median storage veh)								
Upstream signal (m)								
pX, platoon unblocked								
vC, conflicting volume	100	26			35			
vC1, stage 1 conf vol								
vC2, stage 2 conf vol								
vCu, unblocked vol	100	26			35			
tC, single (s)	6.4	6.2			4.1			
tC, 2 stage (s)								
tF (s)	3.5	3.3			2.2			
p0 queue free %	99	99			99			
cM capacity (veh/h)	879	1042			1567			
					1007			
Direction, Lane #	WB 1	NB 1	SB 1					
Volume Total	19	25	52					
Volume Left	13	0	22					
Volume Right	6	17	0					
cSH	925	1700	1567					
Volume to Capacity	0.02	0.01	0.01					
Queue Length 95th (m)	0.4	0.0	0.3					
Control Delay (s)	9.0	0.0	3.2					
Lane LOS	А		А					
Approach Delay (s)	9.0	0.0	3.2					
Approach LOS	A		•					
Intersection Summary								
			3.5					
Average Delay								
Intersection Capacity Utilization			19.6%	IC	CU Level of S	ervice		
Analysis Period (min)			15					


APPENDIX P

Left Turn Lane Warrants

Exhibit 9A-10

WARRANT S S S S S V_A = ADVANCING VOLUME (VPH)

V_A = ADVANCING VOLUME (VPH)

Exhibit 9A-11