Phase Two Environmental Site Assessment

265 Catherine Street Ottawa, Ontario

Prepared for: 11034936 Canada Inc.

September 20, 2021

LOP21-018B

Table of Contents

4	-		4
۱. ۲	Exec	cutive Summary	I
2.	Intro		5
	I. 	Site Description	5
	II. 	Property Ownership	5
	111.	Current and Proposed Future Use	5
2	IV.	Applicable Site Condition Standard	6
3.	Bacl	<pre>kground Information</pre>	/
	I. 	Physical Setting	7
	11.	Past Investigations	7
4.	Sco	pe of Investigation	9
	i.	Overview of Site Investigation	9
	ii.	Media Investigation	11
	iii.	Phase One Conceptual Site Model	12
	iv.	Deviations from Sampling and Analysis Plan	13
	v.	Impediments	14
5.	Inve	stigation Method	14
	i.	General	14
	ii.	Drilling	14
	iii.	Soil Sampling	15
	iv.	Field Screening Measurements	17
	v.	Groundwater: Monitoring Well Installation	17
	vi.	Groundwater: Field Measurement of Water Quality Parameters	18
	vii.	Groundwater: Sampling	18
	viii.	Sediment: Sampling	19
	ix.	Analytical Testing	19
	х.	Residue Management Procedures	19
	xi.	Elevation Surveying	20
	xii.	Quality Assurance and Quality Control Measures	20
6.	Rev	iew and Evaluation	22
	i.	Geology	22
	ii.	Groundwater and Elevations and Flow Direction	23
	iii.	Groundwater: Hydraulic Gradients	27
	iv.	Fine-Medium Soil Texture	27
	v.	Soil Field Screening	28
	vi.	Soil Quality	28
	vii.	Groundwater Quality	31
	viii.	Sediment Quality	33
	ix.	Quality Assurance and Quality Control Results	34
	x.	Phase Two Conceptual Site Model	35
7.	Con	clusions	38
	i.	Signatures	42

8.	Limitations	43
9.	References	44
10.	Appendices	44

List of Figures

Figure 1:	Key Plan
Figure 2:	Site Plan
Figure 3:	Groundwater Flow Interpretation
Figure 4a:	Petroleum Hydrocarbon Soil Exceedances
Figure 4b:	Poly Aromatic Hydrocarbon Soil Exceedances
Figure 4c:	Metals & Inorganics Soil Exceedances
Figure 5a:	Petroleum Hydrocarbon Groundwater Exceedances
Figure 5b:	Metals & Inorganics Groundwater Exceedances

List of Tables

Table 1: Soil Exceedances	2
Table 2: Groundwater Exceedances	3
Table 3: Monitoring Well Construction Details	24
Table 4.a: Groundwater Table Elevations Measured on June 23, 2021	25
Table 4.b: Groundwater Table Elevations Measured on September 4, 2021	
Table 5: Soil Samples Selected for Laboratory Analysis	
Table 6: Soil Exceedances	29
Table 7: Groundwater Samples Selected for Laboratory Analysis	
Table 8: Groundwater Exceedances	
Table 9: Soil Exceedances	
Table 10: Groundwater Exceedances	
Table 11: Soil Exceedances	40
Table 12: Groundwater Exceedances	41
Table 13: Soil Analytical Results	Following Text
Table 14:Groundwater Analytical Results	Following Text

List of Appendices

- Appendix A Sampling and Analysis Plan
- Appendix B Underground Utility Locates
- Appendix C Borehole Logs
- Appendix D Certificates of Equipment Calibration
- Appendix E Laboratory Certificates of Analysis
- Appendix F Site Photographs
- Appendix G Qualifications of Assessors

1. Executive Summary

Lopers & Associates (Lopers) was retained by 11034936 Canada Inc. (Brigil) to complete a Phase Two Environmental Site Assessment (Phase Two ESA) of the commercial property with Civic address No. 265 Catherine Street, Ottawa, Ontario ("Phase Two Property", "Property" or "Site").

This Phase Two ESA is being completed as part of due diligence requirements associated with the submission and filing of a record of site condition (RSC) for the Property, required as part of a change in land use to a more sensitive use. This Phase Two ESA can also be used to support the submission of a Development Application to the City of Ottawa Municipal Planning Department.

Lopers has previously completed a Phase One Environmental Site Assessment (Phase One ESA) (Reference No. LOP21-018A, dated August 20, 2021) for Brigil at the Property. The Phase One ESA identified the presence of three potentially contaminating activities (PCAs) at the Property which were interpreted to represent areas of potential environmental concern (APECs). The presence of a private fuel outlet and associated underground storage tank (UST) represents PCA #1 and is interpreted as APEC #1 for the northeast portion of the Phase One Property. The presence of a service bay (garage), associated historical aboveground storage tank (AST) and suspected UST represents PCA #2 and is interpreted as APEC #2 for the east portion of the Phase One Property. The former presence of residential and commercial structures which historically occupied the majority of the Phase One Property, are suspected to have had their foundations backfilled with poor environmental quality fill material. This fill material (PCA #3) is suspected in areas outside of the current building footprint and represents APEC #3 for the Property.

The contaminants of potential concern associated with fuel storage and fuelling are generally PHCs and BTEXs. Based on historical presence of a service garage at the Property, VOCs are also considered contaminants of potential concern (CPCs) associated with the former service garage operations. The CPCs associated with the historical fill materials are polycyclic aromatic hydrocarbons (PAHs), metals & inorganics. PHCs/BTEXs are also a CPC; considering the date of original development at the Property, there are suspected former heating oil storage tanks associated with the various former residential and commercial properties which now comprise the Phase Two Property.

The scope of work for the Phase Two ESA included drilling five boreholes at the Phase Two Property. Two of the boreholes were instrumented with groundwater monitoring wells with screens installed in the overburden.

Nine soil samples, including two duplicate samples, were submitted for laboratory analysis as part of this Phase Two ESA. The samples were analyzed for a combination of PHCs, BTEXs, volatile organic compounds (VOCs), PAHs, metals and inorganics. Six additional soil samples,

collected and analyzed during historical (2010 & 2020) environmental investigations completed at the Phase Two Property by others, were reviewed and reported as part of this Phase Two ESA.

Groundwater sampling was completed of the two newly installed monitoring wells and six existing groundwater monitoring wells at the Phase Two Property, which were installed as part of historical investigations. A total of 11 groundwater samples, including 8 original samples, 2 duplicate samples and a trip blank, were submitted for laboratory analysis as part of this Phase Two ESA. The samples were analyzed for a combination of PHCs, BTEXs, VOCs, PAHs, metals and inorganics. Three additional groundwater samples, collected and analyzed during historical (2010 & 2020) environmental investigations completed at the Phase Two Property by others, were reviewed and reported as part of this Phase Two ESA.

The applicable sites standard was determined to be the full depth generic site condition standard, in a non-potable groundwater condition, with course textured soil, for residential property use, as specified in Table 3 of the MECP Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, April 15, 2011.

The following soil samples had exceedance concentrations reported compared to their respective Site Condition Standards, as noted in Table 1 as follows:

Exceeding Parameter:				F2 Range PHCs	F3 Range PHCs	Xylenes	Benzo(a)pyrene	Fluoranthene	Vanadium	Sodium Adsorption Ratio	Conductivity
Sample	MECP Table 3 Site Condition Standards		55 ug/g	98 ug/g	300 ug/g	3.1 ug/g	0.3 ug/g	0.69 ug/g	86 ug/g	5 ug/g	700 uS/cm
Location	Sample ID	Sample Depth	Reported Concentration (ug/g)								
BH3-10*	BH3-10-SS2	0.8–1.4 m BGS	77	6230	2450	5.51	-	-	-	-	-
BH6-10*	BH6-10-SS4	2.3–2.9 m BGS	-	1580	-	-	-	-	-	-	-
BH1-20*	BH1-20-SS2	0.8–1.4 m BGS	-	-	-	-	0.49	0.76	-	-	-
BH2-20*	BH2-20-SS2	0.8–1.4 m BGS	-	-	-	-	0.38	-	-	-	-
BH2-21	BH2-21-SS1	0.1–0.6 m BGS	-	-	-	-	-	-	-	-	2540 uS/cm
BH3-21	BH3-21-SS4	1.2–1.8 m BGS	-	-	-	-	-	-	98.6	39.4	7190 uS/cm
BH4-21	BH4-21-SS5	2.4–3.1 m BGS	-	150	-	-	-	-	-	-	-
BH5-21	DUP-2-21	1.2–1.8 m BGS	-	-	-	-	-	-	-	6.07	760 uS/cm
	BH5-21-SS4 DUP-1-21	1.8–2.4 m BGS 1.8–2.4 m BGS	160 108	2530 2750	837 1160		-	-		-	-

Table 1: Soil Exceedances

* - Collected as part of historical investigations by others

The following groundwater samples had exceedance concentrations reported compared to their respective Site Condition Standards, as noted in Table 2 as follows:

Table	2:	Groundwater	Exceedances

	Exceed	ding Parameter:	F2 Range PHCs	F3 Range PHCs	Sodium	Chloride		
Sample	MECP Table 3 S Standa	ite Condition Irds	150 ug/L	500 ug/L	2300 mg/L	2300 mg/L		
Location	Sample ID	Sample Date	Reported Concentration					
BH3-10*	BH3-10-GW1	September 1, 2010	362 ug/L	-	-	-		
BH1(MW)	/) BH1(MW)- 2021GW1 June 2, 2021		663000 ug/L	345000 ug/L	-	-		
	DUP-1-2021GW1	June 2, 2021	686000 ug/L	358000 ug/L	-	-		
BH2-20	BH2-20	June 23, 2021	-	-	-	2400 mg/L		
BH3-20	BH3-20	June 23, 2021	-	-	-	2440 mg/L		
BH4-21	BH4-21-GW1	June 23, 2021	-	-	5230 mg/L	13900 mg/L		
	BH14-21-GW1	June 23, 2021	-	-	5220 mg/L	11900 mg/L		

* - Collected as part of historical investigations by others

All of the other soil and groundwater results for the Phase Two Property are in compliance with the applicable site condition standards. The Phase Two Property is not in compliance with the site condition standards as of the certification date of June 23, 2021.

An environmental remediation program, including the bulk removal and off-site disposal of soil and groundwater in excess of the site condition standards, is recommended for the Phase Two Property. The submission of a record of site condition will be required since there will be a change of land use of the Phase Two Property to a more sensitive use. These tasks can be completed at the time of decommissioning and demolition of existing structures at the Phase Two Property. The Phase Two ESA could then be updated with confirmatory sample results at that time to show compliance with site condition standards.

Given the scope and timeline for the proposed redevelopment and the requirements for specialized construction techniques to complete remediation of the Phase Two Property to meet the site condition standards, it is recommended that remediation be completed in conjunction with redevelopment of the Property. It should be noted that the proposed redevelopment includes excavation for at least two to three levels of underground parking, which is expected to remove the source zone of the petroleum hydrocarbon impacted soil and groundwater on the Phase Two Property.

Preparation of a soil management plan in accordance with O.Reg. 406/19 will be required as part of the management of excess soil generated as part of construction activities. It is recommended that a remedial action plan be prepared to develop a strategy for remediation, including soil and groundwater management, during redevelopment.

2. Introduction

Lopers & Associates (Lopers) was retained by 11034936 Canada Inc. (Brigil) to complete a Phase Two Environmental Site Assessment (Phase Two ESA) of the commercial property with Civic address No. 265 Catherine Street, Ottawa, Ontario ("Phase Two Property", "Property" or "Site"). The location of the Phase Two Property within the City of Ottawa is presented on Figure 1: Key Plan.

i. Site Description

The Phase Two Property has a Civic address of 265 Catherine Street, Ottawa, Ontario. The Property is legally described as Lots 10 to 12 (West Side of Kent Street) and Lots 22 to 28 (South Side of Arlington Avenue) and Lots 22 to 28 (North Side of Catherine Street) on Registered Plan 30, in the City of Ottawa and has a property identifier number of 04122-0408. The boundaries of the Phase Two Property are presented on Figure 2: Site Plan.

Based on approximate dimensions obtained from the City of Ottawa's GIS mapping tool, the Phase Two Property has an approximate area of 10,345m² (1.03 Hectares). The Phase Two Property has a zoning designation of GM [1875] S271, which signifies a general mixed use zone. The Phase Two Property is immediately surrounded by four municipal Right-of-Ways, then residential properties to the north and west, commercial properties to the south and an institution (school) property to the east.

ii. Property Ownership

The Phase Two Property is currently owned by 11034936 Canada Inc., a subsidiary company of Brigil Construction ("Brigil"). This Phase Two ESA was commissioned by Mr. Jean-Luc Rivard, Director of Land Development and Infrastructure for Brigil Construction (Brigil), operating as 11034936 Canada Inc. Brigil has a business address of 98 Rue Lois, Gatineau, Quebec, J8Y 3R7 and a business telephone number of 819-243-7392.

iii. Current and Proposed Future Use

The Phase Two Property is currently vacant; however, the most recent land use was as the Ottawa central bus terminal, which is considered a commercial use.

It is Lopers' understanding that Brigil intends to redevelop the Phase Two Property for residential use, including the current concept for construction of three buildings with adjoining segments ranging from thirty-three to thirty-eight storeys in height, with two to three levels subgrade parking, commercial ground floors and residential units above.

As redevelopment of the Phase Two Property will involve a change in land use to a more stringent use, a record of site condition (RSC) will be required to be filed with the Ministry of Environment, Conservation and Parks (MECP) for the Phase Two Property. This Phase Two ESA

(updated post-remediation) will be used as supporting documentation as part of filing of an RSC.

iv. Applicable Site Condition Standard

Through Ontario Regulation 153/04 (O.Reg. 153/04) the Ministry of Environment, Conservation and Parks (MECP) prescribes the conditions to determine the applicable site condition standard for a property.

The proposed future use of the Phase Two Property is for mixed ground floor commercial and residential use, however residential land use standards have been applied for the purposes of this report as they represent the more environmentally sensitive land use conditions.

The Phase Two Property and all other properties within 250 m of the property boundaries are supplied by the municipal drinking water system. The RSC does not specify agricultural use and there are no wells within 250 m of the property boundaries that are intended for use as a source of water for human consumption or agriculture. As such, the designation of non-potable groundwater setting is determined to be applicable [O.Reg. 153/04, section 35].

The soil and groundwater quality over the full depth of overburden was considered for this Phase Two ESA. The full depth generic site condition standards were selected for comparison for the Phase Two Property [O.Reg. 153/04, sections 36, 37, 38, 39 and 40].

The Phase Two Property is not situated within or adjacent to an area of natural significance and does not include any land within 30 m of an area of natural significance. The pH of the soil was analyzed as part of this Phase Two ESA and was found to range from 7.48 to 7.92. As such, the Phase Two Property is not considered to be an environmentally sensitive area [O.Reg. 153/04, section 41].

A substantial layer of native glacial till, consisting of clayey silty sand and gravel with cobbles and boulders, which would be classified as coarse grained soil, is present underlaying a silty clay unit to full depth to bedrock at the Phase Two Property, while silty sand and gravel fill is present near surface elsewhere at the Property. It is interpreted that greater than 1/3 of the Phase Two Property has coarse grained soil. For the purposes of this Phase Two ESA, the soil conditions are considered to be coarse grained, which provides a more conservative comparison to the MECP site condition standards than the fine-grained values [O.Reg. 153/04, section 42].

Review of the drilling program and borehole/monitoring well logs completed as part of this Phase Two ESA and previous investigations was completed. It was determined that greater than 2/3 of the Phase Two Property has greater than 2 m of overburden soil. The Phase Two Property is not considered a shallow soil property [O.Reg. 153/04, section 43.1].

The Phase Two Property does not include and does not have any land located within 30 m of a water body. The MECP site condition standards for use within 30 m of a water body do not apply [O.Reg. 153/04, section 43.1].

The full depth generic site condition standards, with non-potable groundwater, course textured soil, for residential/parkland/institutional property use, as specified in Table 3 of the MECP Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, April 15, 2011 were determined to be the applicable site condition standards for the Phase Two Property as part of this Phase Two ESA.

i. Physical Setting

No water bodies or areas of natural significance are located at the Phase Two Property or in the Phase One Study Area. There were no areas of natural and scientific interest (ANSIs) or areas of natural significance identified in the Phase One Study Area.

The regional topography in the Phase One Study Area generally slopes gently downward to the north and northeast. The Phase Two Property is generally at grade with the neighbouring properties. The nearest surface water body identified on the mapping is Patterson Creek, located approximately 560 m southeast of the Phase Two Property. The Rideau Canal (man made) is present approximately 850 m east of the Property. The Ottawa River is located approximately 1.8 km north of the Phase Two Property.

The Phase Two Property is 95% covered with impermeable surfaces. Surface water flow is dominated by developed drainage patterns to storm drains, which drain into the municipal stormwater sewer system.

No drinking water wells are located at the Phase Two Property and the Phase One Study Area are serviced by municipally treated drinking water. The Phase Two Property and Study Area are not located in the vicinity of any well-head protection areas or other designation identified by the City of Ottawa in its official plan for the protection of ground water. No private or agricultural water supply wells are located within the Phase One Study Area.

ii. Past Investigations

A Phase One ESA report was prepared concurrently with this Phase Two ESA: "Phase One Environmental Site Assessment, 265 Catherine Street, Ottawa, Ontario" dated August 23, 2021 prepared for 11034936 Canada Inc. by Lopers & Associates. The Phase One ESA identified three potentially contaminating activities (PCAs) at the Phase One Property, which include:

The presence of a private fuel outlet and associated underground storage tank (UST) represents PCA #1 and is interpreted as APEC #1 for the northeast portion of the Phase One Property. The presence of a service bay (garage), associated historical aboveground storage tank (AST) and suspected UST represents PCA #2 and is interpreted as APEC #2 for the east portion of the Phase One Property. The former presence of residential and commercial structures which

historically occupied the majority of the Phase One Property, are suspected to have had their foundations backfilled with poor environmental quality fill material. This fill material (PCA #3) is suspected in areas outside of the current building footprint and represents APEC #3 for the Property.

The contaminants of potential concern (CPCs) associated with fuel storage and fuelling are generally PHCs and BTEXs. Based on historical presence of a service garage at the Property VOCs are also considered CPCs associated with such operations. The CPCs associated with the historical fill materials are polycyclic aromatic hydrocarbons (PAHs), metals & inorganics. PHCs/BTEXs are also a CPC; considering the date of original development at the Property, there are suspected former heating oil storage tanks associated with the various former residential and commercial properties which now comprise the Phase One Property.

Based on the identification of PCAs and APECs at the Phase One Property, a Phase Two Environmental Site Assessment was recommended to be completed to assess the soil groundwater quality in the vicinity of the APECs.

Additional reports and sources were reviewed and/or referenced as part of the aforementioned Phase One ESA, and included:

- "Phase I Environmental Site Assessment, Existing Bus Terminal, 265 Catherine Street, Ottawa, Ontario", dated October 15, 2020, completed by Paterson Group Inc. for Crerar Silverside Corporation.
- "Phase II Environmental Site Assessment, Existing Bus Terminal, 265 Catherine Street, Ottawa, Ontario", dated October 16, 2020, completed by Paterson Group Inc. for Crerar Silverside Corporation.
- "Remedial Action Plan, 265 Catherine Street, Ottawa, Ontario", dated October 15, 2020, completed by completed by Paterson Group Inc. for Crerar Silverside Corporation.
- "Geotechnical Investigation, Proposed Mixed-Use Development, 265 Catherine Street, Ottawa, Ontario", dated October 7, 2020, completed by Paterson Group Inc. for Crerar Silverside Corporation.

These reports confirm the findings of the Phase One ESA completed by Lopers & Associates in 2021 and provide some additional detail of historical investigation work at the Phase Two Property.

There were no discrepancies identified in review of documentation, information or data from previous investigations. As such, previous investigations are considered to be of adequate quality such that they can be relied upon for the purposes of this Phase Two ESA.

4. Scope of Investigation

i. Overview of Site Investigation

This Phase Two ESA was designed to meet the general requirements of O.Reg. 153/04 as amended, with details of scope presented in Lopers' Letter entitled "Proposal for Designated Substance Survey, Phase One and Phase Two Environmental Site Assessments, Record of Site Condition Submission, Remedial Action Plan and Municipal Brownfields Application Proposed Residential Re-development 265 Catherine Street, Ottawa, ON, 265 Catherine Street, Ottawa, ON", dated May 3, 2021, reference No. PRO-018-21-BRIGIL. The scope of work for investigation was discussed with Brigil and sampling and analysis plan (SAP) was prepared to achieve the objectives of the Phase Two ESA; the SAP is provided in Appendix A. For documentation purposes for an RSC for the Phase Two Property, additional effort, including delineation, remediation and reporting will be required. These activities and confirmatory results are expected to be included as an Appendix to a revised version of this September 2021 Phase Two ESA.

Underground utility locates were completed through Ontario 1-Call to identify any active public services on the Phase Two Property. Following the completion of the public locates, USL-1 Underground Service Locators completed scanning of the Phase Two Property proposed drilling locations to locate privately owned underground services prior to initiating the field program. Various underground utility services, including natural gas, electricity, water and sewers were identified at the Phase Two Property. The natural gas, water and sewer services are present in underground trenches which enter the Property from Arlington Avenue to the north and lead to the commercial building. Electricity enters the property through an underground service trench to the southwest of the north commercial building. Copies of the underground locates are provided in Appendix B.

On June 18, 2021, a total of five boreholes (BH1-21 through BH5-21) were drilled at the Phase Two Property. The boreholes were drilled using a truck mounted CME 55 drill rig operated by George Downing Estate Drilling. Soil samples were collected using stainless steel split spoons. Soil samples recovered during the sampling program were screened in the field for volatile vapour concentrations, as well as visual and olfactory observations.

A total of two groundwater monitoring wells (BH4-21, and BH5-21) were installed on the northeast portion of the Phase Two Property. The boreholes which were instrumented with groundwater monitoring wells were drilled to the localized depths of 4.9 m below ground surface (m BGS) and were screened to straddle the shallow groundwater table. When possible, these groundwater monitoring wells were developed on day of drilling by removing at least three well volumes or by purging the wells dry three times.

A total of six existing groundwater monitoring wells were present at the Phase Two Property prior to undertaking the field program for this Phase Two ESA. The existing monitoring wells were installed as part of past investigations by others. Based on the depths of these wells and the depth to bedrock in boreholes in the vicinity of these wells which were drilled as part of this Phase Two ESA, the existing monitoring wells are suspected to have their screens set within the overburden and may also straddle the shallow groundwater table. All of the existing groundwater monitoring wells were developed on May 19, 2021 by removing at least three well volumes.

The locations of the boreholes/monitoring wells drilled/installed as part of this Phase Two ESA as well as existing monitoring wells at the Phase Two Property are presented on Figure 2: Site Plan. The rationale for the placement of the boreholes/monitoring wells is provided below:

- BH1-21 was drilled in the vicinity of the former suspected residential building on the southeast portion of the Phase Two Property. This borehole was placed in a location to assess fill quality in the footprint of this former building (APEC #3). This borehole location was placed adjacent to an existing borehole which was instrumented with a groundwater monitoring well (BH3-20).
- BH2-21 was drilled in the vicinity of a former suspected residential building on the north portion of the Phase Two Property. This borehole was placed in a location to assess fill quality in the footprint of this former building (APEC #3).
- BH3-21 was drilled in the northeast portion of the Phase Two Property. This borehole was placed in a location to assess potential soil contamination from the former private fuel outlet (APEC #1). This borehole location was placed adjacent to an existing borehole which was instrumented with a groundwater monitoring well (BH1(MW)).
- BH4-21 was drilled in the northeast portion of the Phase Two Property. This borehole was placed in a location to assess potential soil and groundwater contamination from the diesel underground storage tank (APEC #1). This borehole was instrumented with a groundwater monitoring well, with its screen installed within soil which was observed to be wet during the drilling/soil sample collection in an attempt to straddle the shallow groundwater table.
- BH5-21 was drilled in the east portion of the Phase Two Property, near the suspected location of a waste oil underground storage tank. This borehole was placed in a location to assess potential soil and groundwater contamination from the associated on-Site service garage (APEC #2). This borehole was instrumented with a groundwater monitoring well, with its screen installed within soil which was observed to be wet during the drilling/soil sample collection in an attempt to straddle the shallow groundwater table.

Soil samples were selected for laboratory analysis of the contaminants of potential concern (CPCs) based on APECs and CPCs identified in the Phase One ESA, as described in Section 3.ii. above as well as field screening observations.

An initial groundwater monitoring and sampling event of the existing groundwater monitoring wells at the Phase Two Property was completed on June 2, 2021. Groundwater monitoring and sampling of the monitoring wells BH1(MW), BH7(MW), BH3-10 and BH1-21 was completed as part of the initial sampling event.

A second groundwater monitoring and sampling event was completed on June 23, 2021 for monitoring wells installed as part of this Phase Two ESA (BH4-21 and BH5-21) as well as select existing groundwater monitoring wells (BH2-20 and BH3-20).

Static groundwater levels were measured prior to disturbance of the water column. During purging, water quality parameters were measured at regular intervals to monitor groundwater quality stabilization; once groundwater quality parameters stabilized (were within approximately 10% on successive readings), groundwater samples were collected. Groundwater samples were selected for laboratory analysis of select CPCs based on APECs and CPCs identified in the Phase One ESA.

An elevation survey was completed of the boreholes/monitoring wells drilled as part of the Phase Two ESA as well as both existing monitoring wells at the Phase Two Property. The boreholes/monitoring wells were surveyed relative to a temporary benchmark of the top spindle of the City of Ottawa fire hydrant located at the northeast corner of the Catherine Street and Kent Street intersection; this benchmark was assigned a reference elevation of 100.000 m ("Site Datum") for the purposes of this Phase Two ESA.

ii. Media Investigation

Based on the finding of the Phase One ESA, the following media were investigated:

Soil quality at the Phase Two Property was investigated through the collection of soil samples at varying depths facilitated by drilling using a truck mounted CME drill rig with stainless steel split spoon sampling.

Groundwater quality at the Phase Two Property was investigated through the installation of new monitoring wells and sampling of the new and existing groundwater monitoring wells. Two new monitoring wells installed as part of the Phase Two ESA were drilled to the localized depths of 4.9 m below ground surface (m BGS) and were screened to straddle the shallow groundwater table. The six existing monitoring wells at the Phase Two Property were suspected to have monitoring well screens installed within the overburden. Groundwater monitoring wells were sampled using a peristaltic pump.

There were no natural surface water bodies at the Phase Two Property, and as such no sediment sampling was completed as part of the Phase Two ESA.

iii. Phase One Conceptual Site Model

The Phase One Property, which has the same location orientation and property boundaries as the Phase Two Property, is located at Civic No. 265 Catherine Street, Ottawa, Ontario and has an approximate area of 1.03 Hectares.

The Phase One Property was undeveloped prior to the early 1900's when residential development of the north, east and west portions of the Property began; the north, east and west portions of the Property were fully developed for residential use between 1928 and 1965. The Barrett Family began purchasing the south-central portion of the Phase One Property, and the property was used as a lumber storage yard and sales office from at least 1912 to 1965. The Phase One Property was redeveloped with a commercial (Ottawa Central Bus Terminal) in 1973, which operated until June of 2021.

The Property is currently vacant and unoccupied. The Property was most recently used as a bus terminal and had leased commercial and office space prior to 2020. 11034936 Canada Inc. (Brigil) purchased the Phase One Property in 2021, and it is understood that the intended future use is for residential purposes, with potential for commercial use on the ground floor and two to three levels of underground parking. The Phase One Property is immediately surrounded by four municipal Right-of-Ways, then residential properties to the north and west, commercial properties to the south and an institution (school) property to the east.

The Phase One Study Area includes the Phase One Property and properties with the boundaries within 250 m of the Phase One Property limits. Based on a review of the Phase One Property and properties in the Phase One Study Area, their associated historical and/or current uses and operations and physical characteristics of the Phase One Study Area, it was determined that an assessment of properties within 250 m of the Phase One property was sufficient to meet the objectives of the scope of this investigation for a Phase One ESA.

No water bodies or areas of natural significance are located at the Phase One Property or in the Phase One Study Area. No drinking water wells are located at the Phase One Property and the Phase One Study Area is serviced by municipally treated non-potable water. Six existing groundwater monitoring wells were present at the Phase One Property; the locations of these wells are presented on Figure 2.

The regional topography in the Phase One Study Area generally slopes downward to the north and northeast. Surface water flow is dominated by developed drainage patterns to storm drains. The Phase One Property is generally at grade with the neighbouring properties. The nearest surface water body identified on the mapping is Patterson Creek, located approximately 560 m southeast of the Phase One Property. The Rideau Canal (man made, flowing north) is present approximately 850 m east of the Property. The Ottawa River, flowing east, is located approximately 1.8 km north of the Phase One Property.

Based on the historical research, the general stratigraphy of the Phase One Property and Phase One Study Area consists of sand and gravel fill, underlain by silty clay, followed by silty sand and gravel (till). The overburden soil is underlain by interbedded limestone and/or shale bedrock, which was encountered at approximately 8 to 12 m below ground surface. Groundwater is expected at a depth of approximately 2 to 5 m BGS with regional flow in a predominantly northeast direction.

The presence of a private fuel outlet and associated underground storage tank (UST) represents PCA #1 and is interpreted as APEC #1 for the northeast portion of the Phase One Property. The presence of a service bay (garage), associated historical aboveground storage tank (AST) and suspected UST represents PCA #2 and is interpreted as APEC #2 for the east portion of the Phase One Property. The former presence of residential and commercial structures which historically occupied the majority of the Phase One Property, are suspected to have had their foundations backfilled with poor environmental quality fill material. This fill material (PCA #3) is suspected in areas outside of the current building footprint and represents APEC #3 for the Property.

The CPCs associated with fuel storage and fuelling are generally PHCs and BTEXs. Based on historical presence of a service garage at the Property VOCs are also considered CPCs associated with such operations. The CPCs associated with the historical fill materials are polycyclic aromatic hydrocarbons (PAHs), metals & inorganics. PHCs/BTEXs are also a CPC; considering the date of original development at the Property, there are suspected former heating oil storage tanks associated with the various former residential and commercial properties which now comprise the Phase One Property.

Forty-seven additional PCAs were identified at neighbouring properties in the Phase One Study Area; however, these PCAs are located significant distances and/or at down- or cross-gradient orientations with respect to the Phase One Property and are not considered to represent APECs for the Phase One Property.

Previous environmental reports were provided which document the presence of contaminant concentrations that exceed the Site Condition Standards at the Phase One Property; the contaminants are associated with the aforementioned APECs.

Underground utility corridors for sanitary and storm sewers, potable water, private electricity and natural gas lines lead to the building, generally from Catherine Street to the south or from Arlington Avenue to the north. The underground utility corridors have the potential to affect contaminant distribution and transport, as they would create preferential pathways for lateral migration.

iv. Deviations from Sampling and Analysis Plan

There were no deviations to the Sampling and Analysis Plan (SAP) as part of this Phase Two ESA.

v. Impediments

There were no impediments encountered as part of this Phase Two ESA.

5. Investigation Method

i. General

The investigation method for this Phase Two ESA involved an assessment of the soil and/or groundwater quality for the associated CPCs in the vicinity of the APECs identified during the Phase One ESA.

Investigation of soil was completed using a truck mounted CME drill rig, with stainless steel split spoons used to recover soil samples. Soil samples were screened in the field for volatile vapour concentrations, as well as visual and olfactory observations. Select soil samples were submitted for laboratory analysis of the CPCs, based on all the indications mentioned above, as well as to capture representative soil and fill layers, for laboratory analysis for the CPCs.

Groundwater was assessed using the groundwater monitoring wells which were installed as part of this Phase Two ESA drilling program and those which had been installed at the Phase Two Property as part of historical previous investigations. The wells selected for monitoring/sampling were purged during the drilling program. Static groundwater levels were measured in the monitoring wells prior to disturbance of the water column on the day of sampling. Groundwater samples were collected using a peristaltic pump using low-flow procedures and were submitted for laboratory analysis for the CPCs.

An elevation survey of the boreholes and groundwater monitoring wells was completed and was referenced to a temporary benchmark, the top of spindle of a fire hydrant located to the northeast of the Kent Street and Catherine Street intersection, to the southeast of the Phase Two Property.

The following sections provide further detailed information regarding the investigation methodology completed as part of the Phase Two ESA.

ii. Drilling

The drilling field program was completed on June 18, 2021 under full-time supervision by Lopers & Associates personnel. Five boreholes were drilled for the Phase Two ESA by the drilling subcontractor George Downing Estate Drilling, located at 410 Principale Rue, Grenville-Sur-la-Rouge, Quebec, JOV 1B0. The drill rig used for the Phase Two ESA was a truck mounted CME drill, equipped with hollow stem augers and stainless-steel split spoons.

Samples were collected using stainless steel split spoons from the near surface to the full depth of drilling. Split spoon samples, collected in 0.6 m segments, were recovered continuously at 0.6 m intervals.

The split spoons, which were the only media to come into contact with the soil samples, were washed using soap and water and a scrub brush between samples to minimize the potential for cross-contamination among samples. The field technician used sterile nitrile gloves, which were changed prior to the handling of each soil sample to further reduce the potential of cross-contamination. The flights of the hollow stem augers were cleaned manually following each borehole.

iii. Soil Sampling

As described above, soil samples were recovered using stainless steel split spoons.

Soil samples were initially collected in Ziploc bags for initial screening as part of sample selection. Soil samples selected for laboratory analysis were collected in dedicated clear glass jars prepared and provided by the analytical laboratory. Soil samples collected for BTEXs/VOCs and the F1 range of PHCs analysis were collected using a dedicated graduated syringe provided by the laboratory and placed directly into a glass vial with a known quantity of methanol preservative. Analytes and associated preservatives were specified on each jar/vial supplied by the laboratory. Each jar/vial sample set was provided with a unique sample identifier, project number and date of sampling in the field.

Detailed soil descriptions of the stratigraphy for each borehole/monitoring are included on the borehole logs provided in Appendix C. Available borehole logs from previous investigations by others at the Phase Two Property have also been included in Appendix C.

Based on the observations of soil samples collected during the Phase Two ESA field program and previous investigations by others, there were six stratigraphic units identified at the Phase Two Property, which include:

Asphalt

A layer of asphalt, approximately 0.05 to 0.15 m in thickness, was encountered at the ground surface in BH1-21, BH2-21, BH4-21 and BH5-21.

Concrete

A layer of concrete, approximately 0.2 m in thickness, was encountered at the ground surface in BH3-21.

Silty Sand and Gravel (Fill)

A layer of silty sand and gravel fill material, ranging from approximately 0.5 to 2.0 m in thickness, was encountered from ground surface, immediately below the asphalt layer, in boreholes BH1-21, BH2-21, BH4-21 and BH5-21 and was present beneath the sand (fill) layer in BH3-21; all of

which were drilled as part of the Phase Two ESA. This material was identified to consist of silty sand and gravel, and was loose to compact and generally grey. This layer was encountered at varying moisture conditions, generally moist to dry at shallow depths becoming moist with depth; it was not expected that the shallow groundwater table was present within the silty sand and gravel (fill) layer.

Evidence of deleterious fill material, including demolition debris, bricks and black staining was observed in BH5-21 (east side) in this unit at approximate depths ranging from 0.2 to 2.1 m BGS.

Sand (Fill)

A layer of sand fill material, ranging from approximately 1.2 to 1.5 m in thickness, was encountered from near the ground surface in BH3-21 and below a thin layer of silty sand and gravel (fill), in boreholes BH1-21, BH2-21 and BH4-21 drilled as part of the Phase Two ESA. This material was identified to consist of clean, poorly graded (uniform grain size) sand, was loose and brown. This layer was encountered at varying moisture conditions, generally moist to dry at shallow depths becoming moist with depth; it was not expected that the shallow groundwater table was present within the sand (fill) layer.

Petroleum hydrocarbon odours, suspected to be associated with the former private fuel outlet and associated diesel UST were observed in BH4-21 (northeast corner) in this unit at approximate depths ranging from 1.2 to 2.1 m BGS, extending beyond the lowest depth of this material.

Silty Clay

A layer of silty clay, at least 2.1 to 2.8 m in thickness, was encountered immediately below the sand fill layer or silty sand and gravel fill layer in BH3-21, BH4-21 and BH5-21 drilled as part of this Phase Two ESA. This material was identified to consist of silty sand and gravel, was firm becoming soft with depth and was generally grey in colour. This layer was encountered at varying moisture conditions, generally moist at shallow depths becoming wet at depths ranging from 2.4 to 3.1 m BGS.

Petroleum hydrocarbon odours, suspected to be associated with the former private fuel outlet and associated diesel UST were observed in BH3-21 and BH4-21 in this unit at approximate depths ranging from 2.0 to 4.4 m BGS. Petroleum hydrocarbon odours, suspected to be associated with the waste oil UST and service garage operations were observed in BH5-21 in this unit at approximate depths ranging from 2.1 to 4.0 m BGS.

Silty Sand and Gravel (Glacial Till)

A layer of silty sand and gravel material, interpreted to be glacial till, was encountered during the 2020 Geotechnical Investigation by Paterson. The glacial till was encountered below the silty clay layer at depths ranging from approximately 4.2 to 9.1 m BGS. This material was described

to consist of grey clayey silty sand with gravel, cobbles and boulders. This layer was described to be found in wet moisture conditions.

The layer was not encountered during the field investigation for this Phase Two ESA, as the depth of investigation for the APEC and CPCs did not warrant investigation to the depths of the glacial till.

iv. Field Screening Measurements

Initial field screening of the soil samples consisted of visual and olfactory observations made at the time of sample collection during the drilling program.

Additional field screening of the soil samples was completed using an RKI Instruments Model Eagle-2 combustible gas detector ("RKI Eagle"). The RKI Eagle used for soil sample screening as part of this Phase Two ESA was obtained from Maxim Environmental and Safety Inc. and was calibrated by Maxim on June 18, 2021. The RKI Eagle is capable of measuring combustible vapours at concentrations ranging from 0 parts per million (PPM) to 50% of the lower explosive limit (LEL). The RKI Eagle is also capable of measuring VOC vapours at concentrations ranging from 0 ppm to 1000 ppm. The readings of the RKI Eagle are shown on the Borehole Logs in Appendix C. Additional equipment and calibration information for the RKI Eagle is provided on the certificate of calibration included in Appendix D.

Where soil samples were selected in a borehole within an APEC and the SAP identified proposed soil analysis in that borehole, the field screening was used as follows to select the appropriate sample for laboratory analysis.

- 1. Select sample with evidence of visual and/or olfactory indications of suspected contamination, such as staining, PHC odours or deleterious fill material.
- 2. Select sample with most significant elevated soil vapour concentration.
- 3. Select sample based on stratigraphy and/or moisture content, as certain CPCs are generally expected to be found in these defined conditions (i.e. fill material at shallow depths or PHC impacts near the groundwater table interface).
- v. Groundwater: Monitoring Well Installation

Installation of monitoring wells in BH4-21 and BH5-21 were completed by George Downing Estate Drilling. The wells were installed using slotted PVC No. 10 monitoring well screens, which were 51 mm in diameter; these screens were installed at depths intended to straddle the shallow groundwater table in each of the aforementioned boreholes. Well screens were 3.0 m in length in both of the monitoring wells installed as part of this Phase Two ESA. The monitoring wells were extended to approximately 0.1 m below the surface grade with PVC riser, also 51 mm in diameter. A threaded PVC end cap was installed at the base of the screen to prevent sediment infiltration, while a J-Plug was installed at the top of the riser to present surface influence. The annular space in each monitoring well was backfilled with clean silica sand up to approximately 0.3 m above the monitoring well screens. A layer of bentonite chips was then used to make a hydraulic seal above the sand pack to near the ground surface. The monitoring wells were completed with aluminum flushmount protective casings, which were backfilled with sand to allow drainage of any surface water which may infiltrate into the casings.

Development of each of the monitoring wells was completed using dedicated Waterra low density polyethylene (LDPE) tubing and a Waterra footvalve. The existing monitoring wells were developed on May 19, 2020 and the new monitoring wells were developed on June 18, 2021 by purging the wells dry at least three times. The wells were left to stabilize for a period of five days prior to groundwater sampling.

vi. Groundwater: Field Measurement of Water Quality Parameters

Measurements of the groundwater quality field parameters were completed to determine stabilization of these parameters prior to sampling. These measurements were completed using a Horiba U-52 groundwater quality measurement device ("Horiba"). The Horiba used for groundwater quality parameter stabilization measurements as part of this Phase Two ESA was obtained from Maxim Environmental and Safety Inc. and was calibrated on May 31, 2021 and June 21, 2021. The Horiba is capable of measuring temperature, pH, conductivity, turbidity, dissolved oxygen and oxidation reduction potential. Additional equipment and calibration information for the Horiba is provided on the certificate of calibration included in Appendix D.

Field measurement of water quality parameters were collected at regular intervals (0 L, 0.5 well volumes, 1 well volume, 2 well volumes, etc.) during purging of the monitoring wells prior to sampling. The Horiba was placed in a flow-through cell and water quality parameters were measured until they were found to stabilize to within approximately 10% of the previous measurements prior to sample collection.

vii. Groundwater: Sampling

An initial groundwater sampling event of the existing groundwater monitoring wells (BH1(MW), MH7(MW), BH3-10 and BH1-20, which were previously installed at the Phase Two Property within the APECs and in close proximity to APEC #1 / #2, was completed on June 2, 2021. A groundwater sampling event of the newly installed groundwater monitoring wells (BH4-21 and BH5-21) and select existing monitoring wells (BH2-20 and BH3-20) was completed on June 23, 2020 (five days after well installation).

All of these monitoring wells have their screens set in the overburden to straddle the shallow aquifer.

Stabilized groundwater levels were measured in each of the groundwater monitoring wells prior to disturbance of the water column prior to sampling. Where free product was encountered, the thickness of the free product was measured using an interface probe and confirmed using a clear plastic bailer. The dedicated Waterra LDPE tubing and footvalve was removed from each

of the monitoring wells and 6 m Waterra LDPE tubing was placed in each of the monitoring wells. The LDPE tubing was connected to a dedicated length of silicon tubing, run through a peristaltic pump set to low flow (approximately 0.2-0.5 L/minute) during purging and sampling while monitoring groundwater level to minimize the drop in head. The monitoring wells were purged on the day of sampling while water quality parameters were measured as noted above.

Groundwater samples were collected in dedicated amber glass bottles and vials or plastic bottles prepared and provided by the analytical laboratory. Analytes and associated preservatives were specified on each bottle by the laboratory. Each bottle sample set was provided with a unique sample identifier, project number and date of sampling in the field. Samples for PHCs, BTEXs, VOCs, PAHs and general chemistry were unfiltered, while metals samples were field filtered using a dedicated 0.45 µm Waterra filter for each sample.

The field technician changed dedicated sterile nitrile gloves prior to initiating work at each monitoring well and changed gloves prior to sample collection to minimize the potential for cross-contamination.

viii. Sediment: Sampling

There were no natural surface water bodies at the Phase Two Property, and as such no sediment sampling was completed as part of the Phase Two ESA.

ix. Analytical Testing

Soil and groundwater analytical testing was conducted by Paracel Laboratories Ltd. (Paracel). Paracel is accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) and the National Institute of Standards and Technology (NIST), Standard Services Division, National Voluntary Laboratory Accreditation Program (NVLAP) for specific environmental and IAQ tests listed in the Scopes of Accreditation registered with each association. For the scope of accreditation under CALA Membership Number 1262, Paracel is accredited for analysis including, but not limited to, metals, organics, conventionals, bacteria, mold, and asbestos in various matrices.

x. Residue Management Procedures

Excess soil cuttings from drilling and monitoring well installations were containerized in steel 205 L drums, which were stored in the in the northeast portion of the Property. These drums were marked with a wax crayon indicating the origin location(s) of the cuttings containerized within each.

Groundwater from well development and purging was initially placed in a graduated plastic bucket for volume measurements and then was transferred to a dedicated plastic 205 L drum, which was stored in the northeast portion of the Property. This drum was marked with a wax crayon indicating the origin location(s) of the water containerized within.

Fluids from equipment cleaning and decontamination were containerized within the purge water drum.

xi. Elevation Surveying

An elevation survey was completed of the boreholes/monitoring wells drilled as part of the Phase Two ESA as well as the two existing monitoring wells at the Phase Two Property. The boreholes/monitoring wells were surveyed relative to a temporary benchmark of the top spindle of the City of Ottawa fire hydrant located at the northeast corner of the Catherine Street and Kent Street intersection; this benchmark was assigned a reference elevation of 100.000 m ("Site Datum") for the purposes of this Phase Two ESA. The reference elevations of each borehole/monitoring well are provided on the borehole logs in Appendix C.

xii. Quality Assurance and Quality Control Measures

Soil samples were collected in dedicated clear glass jars prepared and provided by the analytical laboratory. Soil samples collected for BTEXs/VOCs and the F1 range of PHCs analysis were collected using dedicated graduated syringes provided by the laboratory and placed directly into a glass vial with methanol preservative. Analytes and associated preservatives were specified on each jar/vial by the laboratory. Each jar/vial sample set was provided with a unique sample identifier, project number and date of sampling in the field.

Groundwater samples were collected in dedicated amber glass bottles and vials or plastic bottles prepared and provided by the analytical laboratory. Analytes and associated preservatives were specified on each bottle by the laboratory. Each bottle sample set was provided with a unique sample identifier, project number and date of sampling in the field.

Following sample collection, the soil and groundwater samples were stored in an ice pack chilled cooler to minimize volatilization and begin the cooling process on the day of sampling. On each day of sample collection, following completion of the fieldwork, samples were delivered directly to the analytical laboratory. Standard chain of custody procedures were used to maintain a custody record of soil and groundwater samples between the field technician and the analytical laboratory.

The split spoons, which were the only media to come into contact with the soil samples, were washed using soap and water and a scrub brush between samples to minimize the potential for cross contamination among samples. The field technician used sterile nitrile gloves, which were changed prior to the handling of each soil sample to prevent cross-contamination. The field technician changed dedicated sterile nitrile gloves prior to initiating work at each monitoring well and changed gloves prior to groundwater sample collection to minimize the potential for cross-contamination.

A trip blank water sample for VOCs was submitted for laboratory analysis from the groundwater sampling event completed on June 23, 2021. No detectable VOC concentrations were reported in the trip blank water sample.

The soil samples DUP-1-21 and DUP-2-21 were submitted to the laboratory as blind field duplicate samples of BH5-21-SS4 and BH5-21-SS3, respectively. The ratio of soil duplicate results to original sample results was 0 to 118%, which demonstrates a low to high degree of variability in the analytical results. While some of the soil duplicate ratios observed had higher degrees of variability, it should be noted that where exceedances of the site condition standards were observed for PHCs, they were present in both samples and that the sample results for these parameters are comparable. Additionally, the high degree of heterogeneity in soil samples can attribute to higher levels of variability in analytical ratios. These samples were analyzed for PHCs, VOCs (including BTEXs), PAHs and metals & inorganics, which provide a blind quality assurance and quality control QA/QC validation for all soil parameters analyzed as part of this Phase Two ESA.

The groundwater samples DUP-1-2021GW1 and BH14-21 were submitted to the laboratory as blind field duplicate samples of BH1(MW)-2021GW1 and BH4-21, respectively. The ratio of groundwater duplicate results to original sample results was generally 0 to 19% which meets the required ratio. The groundwater duplicate ratios of PAH parameters was found to range from 0 to 49%; however, the instances of higher variability, the concentrations were generally very low and close to the laboratory method detection limits. The duplicate PAH groundwater sample results are generally comparable. It should be noted that where exceedances of the site condition standards were observed for PHCs, Chloride and Sodium, they were present in both duplicate. These samples were analyzed for PHCs, VOCs (including BTEXs), PAHs and metals & inorganics, which provide a blind quality assurance and quality control QA/QC validation for all groundwater parameters analyzed as part of this Phase Two ESA.

No equipment blank of groundwater was required since the groundwater samples were collected using dedicated tubing.

6. Review and Evaluation

i. Geology

Based on the observations of soil samples collected during the Phase Two ESA field program, and as part of a review of previous subsurface investigations at the Phase Two Property, there were six stratigraphic units identified at the Phase Two Property, which include:

Asphalt

A layer of asphalt, approximately 0.05 to 0.15 m in thickness, was encountered at the ground surface in BH1-21, BH2-21, BH4-21 and BH5-21.

Concrete

A layer of concrete, approximately 0.2 m in thickness, was encountered at the ground surface in BH3-21.

Silty Sand and Gravel (Fill)

A layer of silty sand and gravel fill material, ranging from approximately 0.5 to 2.0 m in thickness, was encountered from ground surface, immediately below the asphalt layer, in boreholes BH1-21, BH2-21, BH4-21 and BH5-21 and was present beneath the sand (fill) layer in BH3-21; all of which were drilled as part of the Phase Two ESA. This material was identified to consist of silty sand and gravel, was loose to compact and generally grey. This layer was encountered at varying moisture conditions, generally moist to dry at shallow depths becoming moist with depth; it was not expected that the shallow groundwater table was present within the silty sand and gravel (fill) layer.

Evidence of deleterious fill material, including demolition debris, bricks and black staining was observed in BH5-21 (northeast corner) in this unit at approximate depths ranging from 0.2 to 2.1 m BGS.

Sand (Fill)

A layer of sand fill material, ranging from approximately 1.2 to 1.5 m in thickness, was encountered from near the ground surface in BH3-21 and below a thin layer of silty sand and gravel (fill), in boreholes BH1-21, BH2-21 and BH4-21 drilled as part of the Phase Two ESA. This material was identified to consist of clean, poorly graded (uniform grain size) sand, was loose and brown. This layer was encountered at varying moisture conditions, generally moist to dry at shallow depths becoming moist with depth; it was not expected that the shallow groundwater table was present within the sand (fill) layer.

Petroleum hydrocarbon odours, suspected to be associated with the former private fuel outlet and associated diesel UST were observed in BH4-21 in this unit at approximate depths ranging from 1.2 to 2.1 m BGS, extending beyond the lowest depth of this material.

Silty Clay

A layer of silty clay, at least 2.1 to 2.8 m in thickness, was encountered immediately below the sand fill layer or silty sand and gravel fill layer in BH3-21, BH4-21 and BH5-21 drilled as part of this Phase Two ESA. This material was identified to consist of silty sand and gravel, was firm becoming soft with depth and was generally grey in colour. This layer was encountered at varying moisture conditions, generally moist at shallow depths becoming wet at depths ranging from 2.4 to 3.1 m BGS.

Petroleum hydrocarbon odours, suspected to be associated with the former private fuel outlet and associated diesel UST were observed in BH3-21 and BH4-21 in this unit at approximate depths ranging from 2.0 to 4.4 m BGS. Petroleum hydrocarbon odours, suspected to be associated with the waste oil UST and service garage operations were observed in BH5-21 in this unit at approximate depths ranging from 2.1 to 4.0 m BGS.

Silty Sand and Gravel (Glacial Till)

A layer of silty sand and gravel material, interpreted to be glacial till, was encountered during the 2020 Geotechnical Investigation by Paterson. The glacial till was encountered below the silty clay layer at depths ranging from approximately 4.2 to 9.1 m BGS. This material was described to consist of grey clayey silty sand with gravel, cobbles and boulders. This layer was described to be found in wet moisture conditions.

The layer was not encountered during the field investigation for this Phase Two ESA, as the depth of investigation for the APEC and CPCs did not warrant investigation to the depths of the glacial till.

Aquifer

The shallow (unconfined) aquifer is the aquifer of interest based on the nature of APECs and PCAs identified for the Phase Two Property. Based on observations and measured groundwater monitoring data collected as part of this investigation, the aquifer is present in the native silty clay geological unit.

Based on moisture contents observed in the soil samples collected as part of this Phase Two ESA it is expected that seasonal and annual variability affect the groundwater table elevation in the shallow aquifer.

ii. Groundwater and Elevations and Flow Direction

Based on the nature of the primary CPCs identified for groundwater at the Phase Two Property (including light non-aqueous phase liquids (LNAPLs)), the screened intervals for the

groundwater monitoring wells installed as part of this Phase Two ESA were selected to straddle the shallow groundwater table within the overburden. Based on previous investigations, it was suspected that existing monitoring wells located within the APECs at the Phase Two Property had monitoring well screens that are also installed within the overburden and at least some would be expected to straddle the shallow groundwater table, and are thus in same aquifer as the 2021 monitoring wells and could be used for supplemental sampling as part of this Phase Two ESA.

The boreholes/monitoring wells were surveyed relative to a temporary benchmark of the top of spindle of the City of Ottawa fire hydrant located at the northeast corner of the Catherine Street and Kent Street intersection, southeast of the Phase Two Property; this benchmark was assigned a reference elevation of 100.000 m ("Site Datum") for the purposes of this Phase Two ESA.

The shallow groundwater aquifer was present within the overburden at the Phase Two Property. Given that the groundwater table was found in the silty clay geological unit in the majority of the monitoring wells at the Phase Two Property, it is inferred that the same shallow aquifer exists across this unit and can be used for a determination of localized groundwater flow direction and hydraulic gradient. It was however, observed that variations in depth to groundwater was observed in monitoring wells on the south portion of the Property; it is suspected that a different groundwater regime may be present in these locations as the subsurface soil at the Property has been significantly disturbed through historical development and redevelopment of the Property. Monitoring well construction details are presented in Table 3 below.

Monitoring Well	Ground Surface Elevation (m RSD)	Top of Piezometer Elevation (m RSD)	Screen Elevation (m RSD)	Sand Pack Elevation (m RSD)	Bentonite Seal (m RSD)
BH1-20*	99.14	99.06	94.11 – 97.16	94.11 – 97.46	97.46 - 98.91
BH2-20*	98.86	98.74	93.76 – 96.81	93.76 – 97.11	97.11 – 98.59
BH3-20*	98.64	98.51	91.52 – 94.57	91.52 – 94.87	94.87 – 98.36
BH4-21	99.02	98.86	94.51 – 97.56	94.51 – 97.86	97.86 - 98.71
BH5-21	99.21	99.05	94.68 – 97.73	94.68 - 98.03	98.03 - 98.90
BH3-10*	99.09	98.97	92.02 - 95.07	92.02 - 95.37	95.37 – 98.90
BH1(MW)	99.06	99.00	94.44 - unknown	unknown	unknown
BH7(MW)	99.05	99.01	96.34 - unknown	unknown	unknown

Table 3: Monitoring Well Construction Details

m RSD - metres Below Referenced to Datum

- Based on field elevation survey and interpreted data from Paterson Group Borehole Logs

On June 23, 2021, following a period of five days for stabilization after drilling and developing the monitoring wells, the groundwater levels were measured and are presented in Table 4.a below. The groundwater table was measured at depths ranging between 2.14 and 4.73 m BGS on June 23, 2021.

Monitoring Well Surface Elevation (m RSD)		Top of Piezometer Elevation (m RSD)	Depth to Groundwater (m below TOP)	Groundwater Table Elevation (m RSD)	Depth to Groundwater (m BGS)	
BH1-20*	99.14	99.06	3.46	95.60	3.54	
BH2-20*	98.86	98.74	3.37	95.37	3.49	
BH3-20*	98.64	98.51	4.60	94.04	4.73	
BH4-21	99.02	98.86	1.99	96.87	2.16	
BH5-21	99.21	99.05	4.11	94.94	4.27	
BH3-10*	99.09	98.97	4.40	94.57	4.53	
BH1(MW)	99.06	99.00	2.12	96.88	2.18	
BH7(MW)	99.05	99.01	2.10	96.91	2.14	

 Table 4.a: Groundwater Table Elevations Measured on June 23, 2021

m RSD – metres Below Referenced to Datum

m BGS – metres below Ground Surface

* – Based on field elevation survey and interpreted data from Paterson Group Borehole Logs

It was inferred that the groundwater level had not stabilized in the monitoring well BH5-21 at the time of the June 23, 2021 groundwater monitoring and sampling event. A follow up groundwater level monitoring of all monitoring wells was completed on September 4, 2021 to collect stabilized groundwater levels; these water levels are summarized in Table 4.b below.

Monitoring Well	Ground Surface Elevation (m RSD)	Top of Piezometer Elevation (m RSD)	Depth to Groundwater (m below TOP)	Groundwater Table Elevation (m RSD)	Depth to Groundwater (m BGS)
BH1-20*	99.14	99.06	3.37	95.82	3.32
BH2-20*	98.86	98.74	3.45	95.29	3.57
BH3-20*	98.64	98.51	4.83	93.68	4.60
BH4-21 99.02		98.86	2.00	96.86**	2.17
BH5-21	99.21	99.05	2.34	96.71**	2.50
BH3-10*	99.09	98.97	4.29	94.68	4.42
BH1(MW)	99.06	99.00	2.12	96.88**	2.18
BH7(MW)	99.05	99.01	2.20	96.81	2.24

 Table 5.b: Groundwater Table Elevations Measured on September 4, 2021

m RSD – metres Below Referenced to Datum

m BGS – metres below Ground Surface

* – Based on field elevation survey and interpreted data from Paterson Group Borehole Logs

** – Groundwater Elevation used for determination of Flow Direction

Three groundwater monitoring well water table elevations are required to triangulate groundwater elevations and determine an approximate groundwater flow direction. The groundwater table elevations in BH4-21, BH5-21 and BH1(MW) were used for a determination of groundwater flow direction. These groundwater monitoring wells were the primary monitoring wells used for assessment of the APECs #1 / #2. Based on the measured groundwater table elevations in these monitoring wells, the local groundwater flow direction on the northeast portion of the Phase Two Property is towards the southeast. The interpreted groundwater Flow Interpretation. This interpreted local groundwater flow direction is reasonable based on the local topography, which includes a local depression to the southeast, where Kent Street crosses Highway 417 via an underpass. As noted in the Phase One ESA however, it is expected that regional groundwater flow is toward the north and northeast in the direction of the Phase Two Property.

The water table elevation measured in the other monitoring wells were not considered for the determination of groundwater flow, as it is suspected these groundwater levels may have been influenced by historical development and redevelopment of the Phase Two Property.

Free product was present in BH1(MW) (northeast corner) during the initial groundwater monitoring and development on May 19, 2021, the approximate product thickness was 15 cm as measured with an interface probe. The presence of this free product was confirmed during the initial groundwater sampling event on June 2, 2021, the approximate thickness was again

measured to be 15 cm as measured with an interface probe and confirmed using a plastic bailer. This monitoring well was skimmed using dedicated peristaltic tubing and a peristaltic pump on low flow prior to sampling on June 2, 2021; approximately 5 L of free product was extracted in a 20 L graduated container. An additional 20 L was purged from BH1(MW) prior to sampling; this water was observed to have an oily sheen, however no further significant free phase product was observed during sampling, which was completed using new dedicated tubing. During subsequent monitoring of BH1(MW) on June 23, 2021 and September 4, 2021, no free product was measured on the groundwater surface, again as recorded with an interface probe.

No observations or indications of free product were observed in any of the other monitoring wells accessed as part of this Phase Two ESA, as measured with an interface probe during water level measurements, and through observations of the purge water during development and sampling of the monitoring wells. Sight to strong petroleum hydrocarbon odours, suspected to consist primarily of diesel fuel, were observed in the groundwater samples collected from BH4-21, BH5-21, BH1(MW) and BH3-10.

Underground utility corridors for sanitary and storm sewers, potable water, private electricity and natural gas lines lead to the building, generally from Catherine Street to the south or from Arlington Avenue to the north. The underground utility corridors have the potential to affect contaminant distribution and transport, as they would create preferential pathways for lateral migration in the areas of identified contaminated soil and groundwater. Based on the depth to groundwater observed in the monitoring wells as part of this investigation, observed between 2.14 and 4.73 m BGS, the potential exists for migration of contaminants through underground utility service trenches (generally approximately 2 to 3 m BGS) during periods of seasonally high groundwater table elevations.

iii. Groundwater: Hydraulic Gradients

The horizontal hydraulic gradient was determined by plotting groundwater contours interpreted from groundwater elevations presented in Table 2 and then by dividing the difference in hydraulic head by the lateral separation distance in the groundwater contours. Based on the measured groundwater elevations in BH4-21, BH5-21 and BH1(MW) the horizontal hydraulic gradient at the northeast portion of the Phase Two Property is approximately 0.007 m/m.

iv. Course Grained Soil Texture

A substantial layer of silty sand and gravel (fill) and a layer of sand (fill), which would be classified as coarse grained soil, is present from near ground surface to approximately 2.1 m BGS, extending down to a silty clay unit at the Phase Two Property. It is interpreted that greater than 1/3 of the Phase Two Property has coarse grained soil. For the purposes of this Phase Two ESA, the soil conditions are considered to be coarse grained, which provides a more conservative comparison to the MECP site condition standards than the fine-grained values.

v. Soil Field Screening

Initial field screening of the soil samples consisted of visual and olfactory observations made at the time of sample collection during the drilling program. Petroleum hydrocarbon odours, suspected to be associated with diesel fuel were observed in BH3-21 at depths ranging from approximately 2 to 3 m BGS and in BH4-21 at depths ranging from approximately 1.2 m 4.4 m BGS. Petroleum hydrocarbon odours, suspected to be associated with operations associated with a former service garage, were observed in BH5-21 at depths ranging from 2.1 to 4.0 m BGS.

Additional field screening of the soil samples was completed using an RKI Eagle gas detector. Combustible soil vapour screening concentrations ranging from 10 to 78 ppm were encountered in soil samples recovered from BH3-21, BH4-21 and BH5-21, collected at the depth intervals discussed above as part of the olfactory observations; these soil vapour screening concentrations were suspected to be indicative of PHC contamination. Combustible soil vapour screening concentrations in the other soil samples were found to range from 0 to 1 ppm, which is low and generally not considered indicative of significant PHC contamination.

vi. Soil Quality

Location and Depth of Soil Samples

The following soil samples, which were collected from the boreholes drilled as part of this Phase Two ESA, were submitted for laboratory analysis.

Sample Location	Sample ID	Sample Depth (m BGS)	Analytical Parameters
BH1-21	BH1-21-SS3	1.2 – 1.8	PAHs, Metals & Inorganics
BH2-21	BH2-21-SS1	0.1 – 0.6	PAHs, Metals & Inorganics
BH3-21	BH3-21-SS4	1.8 – 2.4	PHCs, VOCs, PAHs, Metals & Inorganics
BH4-21	BH4-21-SS5	2.4 - 3.1	PHCs, VOCs
BH4-21	BH4-21-SS8	4.3 - 4.9	PHCs, VOCs
BH5-21	BH5-21-SS3	1.2 – 1.8	PAHs, Metals & Inorganics
Duplicate of BH5-21	DUP-2-21	1.2 – 1.8	PAHs, Metals & Inorganics
BH5-21	BH5-21-SS4	1.8 – 2.4	PHCs, VOCs
Duplicate of BH5-21	DUP-1-21	1.8 – 2.4	PHCs, VOCs

Table 6: Soil Samples Selected for Laboratory Analysis

Comparison of Soil Analytical Results to Applicable Site Conditions Standards

The analytical soil results were compared to the full depth generic site condition standards, with non-potable groundwater, course textured soil, for residential property use, as specified in Table

3 of the MECP Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, April 15, 2011.

The aforementioned soil samples selected for laboratory analysis were submitted to Paracel under chain of custody No. 129117 on June 18, 2021. The laboratory certificate of analysis (Paracel Report # 2125646) is provided in Appendix E. Additional soil samples, collected and analyzed during historical (2010 & 2020) environmental investigations completed at the Phase Two Property by others, were reviewed and reported as part of this Phase Two ESA; these analytical certificates of analysis are also included in Appendix E. The following soil samples had exceedance concentrations reported compared to their respective Site Condition Standards, as noted in Table 6 as follows:

able 7: Soil Exceedances											
Exceeding Parameter:				F2 Range PHCs	F3 Range PHCs	Xylenes	Benzo(a)pyrene	Fluoranthene	Vanadium	Sodium Adsorption Ratio	
Sample	MECP Table 3 Site Condition Standards		55 ug/g	98 ug/g	300 ug/g	3.1 ug/g	0.3 ug/g	0.69 ug/g	86 ug/g	5 ug/g	
Location	Sample ID	Sample Depth	Reported Concentration (ug/g)								
BH3-10*	BH3-10-SS2	0.8–1.4 m BGS	77	6230	2450	5.51	-	-	-	-	
BH6-10*	BH6-10-SS4	2.3–2.9 m BGS	-	1580	-	-	-	-	-	-	
BH1-20*	BH1-20-SS2	0.8–1.4 m BGS	-	-	-	-	0.49	0.76	-	-	
BH2-20*	BH2-20-SS2	0.8–1.4 m BGS	-	-	-	-	0.38	-	-	-	
BH2-21	BH2-21-SS1	0.1–0.6 m BGS	-	-	-	-	-	-	-	-	

Та

* - Collected as part of historical investigations by others

1.2-1.8 m BGS

2.4-3.1 m BGS

1.2-1.8 m BGS

1.8-2.4 m BGS

1.8-2.4 m BGS

BH3-21-SS4

BH4-21-SS5

DUP-2-21

BH5-21-SS4

DUP-1-21

All other soil samples were in compliance with the Site Condition Standards. A full summary of the soil analytical results and comparison to the applicable Site Condition Standards are presented in Table 13: Soil Analytical Results following the text of this report. Spatial depiction of the soil exceedances at the Phase Two Property are depicted on Figure 4.

150

2530

2750

-

160

108

_

_

837

1160

_

_

_

_

_

_

_

-

98.6

_

39.4

6.07

Contaminants of Concern

BH3-21

BH4-21

BH5-21

The presence of a private fuel outlet and associated underground storage tank (UST) represents PCA #1 and is interpreted as APEC #1 for the northeast portion of the Phase One Property. The

Conductivity

700 uS/cm

_

2540 uS/cm 7190

uS/cm

-760

uS/cm

presence of a service bay (garage), associated historical aboveground storage tank (AST) and suspected UST represents PCA #2 and is interpreted as APEC #2 for the east portion of the Phase One Property. The former presence of residential and commercial structures which historically occupied the majority of the Phase One Property, are suspected to have had their foundations backfilled with poor environmental quality fill material. This fill material (PCA #3) is suspected in areas outside of the current building footprint and represents APEC #3 for the Property.

The contaminants of potential concern associated with fuel storage and fuelling are generally PHCs and BTEXs. Based on historical presence of a service garage at the Property, VOCs are also considered contaminants of potential concern (CPCs) associated with the former service garage operations. The CPCs associated with the historical fill materials are polycyclic aromatic hydrocarbons (PAHs), metals & inorganics. PHCs/BTEXs are also a CPC; considering the date of original development at the Property, there are suspected former heating oil storage tanks associated with the various former residential and commercial properties which now comprise the Phase Two Property.

The contaminants of concern for a particular sample were based on the relative location and depth of the sample, visual and/or olfactory observations and combustible vapour screening concentrations.

Contaminants Related to Chemical and Biological Transformations

Contaminants related to chemical and biological transformations were not suspected to be present at the Phase Two Property and were not identified as part of the Phase Two ESA soil analysis.

Soil Serving as a Source of Contaminant Mass Contributing to Groundwater

Based on the analytical results, there may be soil that serves as a source of contaminant mass contributing to groundwater at the Phase Two Property. Soil contamination, namely PHCs was encountered at the northeast and east portions of the Phase Two Property (APEC #1 – former private fuel outlet & APEC #2 – former service garage). There are detectable concentrations of PHCs in these areas of the Phase Two Property and it is suspected that soil serving as a source of contaminant mass is contributing to groundwater quality.

Light or Dense Non-Aqueous Phase Liquids

The analytical soil results indicate the potential presence of light non-aqueous phase liquids (LNAPLs) at the Phase Two Property, given that PHCs were identified in excess of the site condition standards. It should be noted that the concentrations of PHCs and BTEXs which exceed the site condition standards in the soil are not themselves indicative of the suspected presence of LNAPL free product at the Phase Two Property.

The analytical soil results do not indicate the suspected presence of dense non-aqueous phase liquids at the Phase Two Property.

vii. Groundwater Quality

Locations and Sample Depth Interval of Groundwater Samples

The groundwater samples were collected using a peristaltic pump with tubing lowered to between the top and approximate (vertical) center of the water column within each monitoring well and withdrawing the water at low flow rates. The groundwater sample locations, screen depths and parameters analyzed are presented in Table 7 below.

Sample Location	Groundwater Table Elevation (m RSD)	Screen Elevation (m RSD)	Analytical Parameters	
BH1-20*	95.60	94.11 – 97.16	PHCs, BTEXs	
BH2-20*	95.37	93.76 – 96.81	PHCs, VOCs, PAHs, Metals & Inorganics	
BH3-20*	94.04	91.52 – 94.57	PHCs, VOCs, PAHs, Metals & Inorganics	
BH4-21	96.87	94.51 – 97.56	PHCs, VOCs, PAHs, Metals & Inorganics	
Duplicate of BH4-21	96.87	94.51 – 97.56	PHCs, VOCs, PAHs, Metals & Inorganics	
BH5-21	94.94	94.68 – 97.73	PHCs, VOCs, PAHs, Metals & Inorganics	
BH3-10*	94.57	92.02 - 95.07	PHCs, BTEXs	
BH1(MW)	96.88	94.44 - unknown	PHCs, BTEXs	
Duplicate of BH1(MW)	96.88	94.44 - unknown	PHCs, BTEXs	
BH7(MW)	96.91	96.34 - unknown	PHCs, BTEXs	

 Table 8: Groundwater Samples Selected for Laboratory Analysis

m RSD – metres Referenced to Site Datum

Field Filtering

Samples for PHCs, BTEXs, VOCs, PAHs and general chemistry were unfiltered, while metals samples were field filtered using a dedicated 0.45 µm Waterra filter for each sample.

Comparison of Groundwater Analytical Results to Applicable Site Conditions Standards

The analytical groundwater results were compared to the full depth generic site condition standards, with non-potable groundwater, course textured soil, as specified in Table 3 of the MECP Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, April 15, 2011.

The groundwater samples selected for laboratory analysis were submitted to Paracel under chain of custody Nos. 61631 and 132337 on June 2 and June 23, 2021, respectively. The laboratory certificates of analysis (Paracel Report #s 2123416 and 2126398) are provided in Appendix E. Additional groundwater samples, collected and analyzed during historical (2010 & 2020) environmental investigations completed at the Phase Two Property by others, were reviewed and reported as part of this Phase Two ESA; these analytical certificates of analysis are also included in Appendix E. The following groundwater samples had exceedance concentrations reported compared to their respective Site Condition Standards, as noted in Table 8 as follows:

Exceeding Parameter:			F2 Range PHCs	F3 Range PHCs	Sodium	Chloride
Sample	MECP Table 3 Site Condition Standards		150 ug/L	500 ug/L	2300 mg/L	2300 mg/L
Location	Sample ID	Sample Date	Reported Concentration			
BH3-10*	BH3-10-GW1	September 1, 2010	362 ug/L	-	-	-
BH1(MW)	BH1(MW)- 2021GW1 DUB-1-2021GW1	June 2, 2021	663000 ug/L	345000 ug/L	-	-
BH2-20	BH2-20	June 23, 2021			-	- 2400 mg/L
BH3-20	BH3-20	June 23, 2021	-	-	-	2440 mg/L
BH4-21	BH4-21-GW1 BH14-21-GW1	June 23, 2021 June 23, 2021	-	-	5230 mg/L 5220 mg/L	13900 mg/L 11900 mg/L

Table 9: Groundwater Exceedances

* - Collected as part of historical investigations by others

All the other groundwater samples were in compliance with the Site Condition Standards. A full summary of the groundwater analytical results and comparison to the applicable Site Condition Standards are presented in Table 14: Groundwater Analytical Results following the text of this report. Spatial depiction of the groundwater exceedances at the Phase Two Property are depicted on Figure 5.

Contaminants of Concern

The presence of a private fuel outlet and associated underground storage tank (UST) represents PCA #1 and is interpreted as APEC #1 for the northeast portion of the Phase One Property. The presence of a service bay (garage), associated historical aboveground storage tank (AST) and suspected UST represents PCA #2 and is interpreted as APEC #2 for the east portion of the Phase One Property. The former presence of residential and commercial structures which

historically occupied the majority of the Phase One Property, are suspected to have had their foundations backfilled with poor environmental quality fill material. This fill material (PCA #3) is suspected in areas outside of the current building footprint and represents APEC #3 for the Property.

The contaminants of potential concern associated with fuel storage and fuelling are generally PHCs and BTEXs. Based on historical presence of a service garage at the Property VOCs are also considered contaminants of potential concern (CPCs) associated with the former service garage operations. The CPCs associated with the historical fill materials are polycyclic aromatic hydrocarbons (PAHs), metals & inorganics. PHCs/BTEXs are also a CPC; considering the date of original development at the Property, there are suspected former heating oil storage tanks associated with the former various residential and commercial properties which now comprise the Phase Two Property.

The contaminants of concern for a particular sample were based on the relative location and depth of the sample, visual and/or olfactory observations of soil samples collected which could have come into contact with the groundwater table.

Contaminants Related to Chemical and Biological Transformations

Contaminants related to chemical and biological transformations were not suspected to be present at the Phase Two Property and were not identified as part of the Phase Two ESA groundwater analysis.

Soil Serving as a Source of Contaminant Mass Contributing to Groundwater

Based on the groundwater analytical results, there may be soil that serves as a source of contaminant mass contributing to groundwater at the Phase Two Property. Soil contamination, namely PHCs was encountered at the northeast portion of the Phase Two Property (APEC #1 – former private fuel outlet) and in east portion of the Phase Two Property (APEC #2 – former service garage). There are detectable concentrations of PHCs in soil in these areas of the Phase Two Property, and in the instance of APEC #1 there was identified groundwater contamination, and it is suspected that soil serving as a source of contaminant mass is contributing to groundwater quality.

Light or Dense Non-Aqueous Phase Liquids

The analytical groundwater results indicate the potential presence of light non-aqueous phase liquids (LNAPLs) at the Phase Two Property, given that PHCs were identified in excess of the Site Condition Standards and at significant concentrations in the sample (and duplicate) from the monitoring well installed in BH1(MW). As previously noted, free product was present in BH1(MW) during the initial groundwater monitoring and development on May 19, 2021, the approximate product thickness was 15 cm as measured with an interface probe. The presence of this free product was confirmed during the initial groundwater sampling event on June 2, 2021, the approximate thickness was again measured to be 15 cm as measured with an interface
probe and confirmed using a plastic bailer; a photograph of the free product is presented in Appendix F. This monitoring well was skimmed using dedicated peristaltic tubing and a peristaltic pump on low flow prior to sampling on June 2, 2021; approximately 5 L of free product was extracted in a 20 L graduated container. An additional 20 L was purged from BH1(MW) prior to sampling; this water was observed to have an oily sheen, however no further significant free phase product was observed during sampling. Subsequent monitoring of BH1(MW) on June 23, 2021, no free product was measured on the groundwater surface, again as recorded with an interface probe.

A light sheen and/or PHC odours were observed on the purge water recovered from the monitoring wells installed in BH4-21, BH5-21, BH7(MW) and BH3-20.

The analytical groundwater results do not indicate the suspected presence of dense nonaqueous phase liquids at the Phase Two Property.

viii. Sediment Quality

There were no natural surface water bodies at the Phase Two Property, and as such no sediment sampling was completed as part of the Phase Two ESA.

ix. Quality Assurance and Quality Control Results

Duplicate Samples

The soil samples DUP-1-21 and DUP-2-21 were submitted to the laboratory as blind field duplicate samples of BH5-21-SS4 and BH5-21-SS3, respectively. The ratio of soil duplicate results to original sample results was 0 to 118%, which demonstrates a low to high degree of variability in the analytical results. While some of the soil duplicate ratios observed had higher degrees of variability, it should be noted that where exceedances of the site condition standards were observed for PHCs, they were present in both samples and that the sample results for these parameters are comparable. Additionally, the high degree of heterogeneity in soil samples can attribute to higher levels of variability in analytical ratios. These samples were analyzed for PHCs, VOCs (including BTEXs), PAHs and metals & inorganics, which provide a blind quality assurance and quality control QA/QC validation for all soil parameters analyzed as part of this Phase Two ESA.

The groundwater samples DUP-1-2021GW1 and BH14-21 were submitted to the laboratory as blind field duplicate samples of BH1(MW)-2021GW1 and BH4-21, respectively. The ratio of groundwater duplicate results to original sample results was generally 0 to 19% which meets the required ratio. The groundwater duplicate ratios of PAH parameters was found to range from 0 to 49%; however, the instances of higher variability, the concentrations were generally very low and close to the laboratory method detection limits. The duplicate PAH groundwater sample results are generally comparable. It should be noted that where exceedances of the site condition standards were observed for PHCs, Chloride and Sodium, they were present in both duplicate samples and that the sample results for these parameters are comparable in the

duplicate. These samples were analyzed for PHCs, VOCs (including BTEXs), PAHs and metals & inorganics, which provide a blind quality assurance and quality control QA/QC validation for all groundwater parameters analyzed as part of this Phase Two ESA.

Blanks

A trip blank water sample for VOCs was submitted for laboratory analysis from the groundwater sampling event completed on June 23, 2021. No detectable VOC concentrations were reported in the trip blank water sample.

Laboratory Qualifying Statements

The laboratory made qualifying statements regarding the observation of free product in the groundwater sample analyzed from BH1(MW). The laboratory noted that elevated detection limits were presented for the duplicate groundwater sample from BH1(MW) due to dilution required because of high target analyte concentration.

An additional qualifying statement was made by the laboratory regarding sample DUP-1-21: "Sample - F1/BTEX/VOCs (soil) not submitted according to Reg. 153/04, Amended 2011 - not field preserved". Lopers notes that a field preserve sample was submitted to the laboratory for this sample, however, Lopers was informed by the laboratory on June 21, 2021 (three days after sample submission) that the preserved sample vial was broken by laboratory staff. Lopers instructed the laboratory to sub-sample from the accompanying jar for the same sample. Lopers notes, that while the duplicate results (DUP-1-21) do have lower BTEX and PHC F1 concentrations than the original sample (BH5-21-SS4), there were exceedances for PHC F1 in both samples.

The qualifying remarks in certificates of analysis are not expected to impact the validity of any results qualified.

Data Quality

All certificates of analysis were received pursuant to clause 47 (2) (b) of O.Reg. 153/04 and comply with subsection 47 (3) of O.Reg. 153/04.

The overall quality of the field data from the investigation with respect to the data quality objectives, demonstrate that decision-making was not affected, and the overall objectives of the investigation and the assessment were met.

x. Phase Two Conceptual Site Model

The presence of a private fuel outlet and associated underground storage tank (UST) represents PCA #1 and is interpreted as APEC #1 for the northeast portion of the Phase One Property. The presence of a service bay (garage), associated historical aboveground storage tank (AST) and suspected UST represents PCA #2 and is interpreted as APEC #2 for the east portion of the Phase One Property. The former presence of residential and commercial structures which

LOPERS & ASSOCIATES

historically occupied the majority of the Phase One Property, are suspected to have had their foundations backfilled with poor environmental quality fill material. This fill material (PCA #3) is suspected in areas outside of the current building footprint and represents APEC #3 for the Property.

The contaminants of potential concern associated with fuel storage and fuelling are generally PHCs and BTEXs. Based on historical presence of a service garage at the Property VOCs are also considered contaminants of potential concern (CPCs) associated with the former service garage operations. The CPCs associated with the historical fill materials are polycyclic aromatic hydrocarbons (PAHs), metals & inorganics. PHCs/BTEXs are also a CPC; considering the date of original development at the Property, there are suspected former heating oil storage tanks associated with the various former residential and commercial properties which now comprise the Phase One Property.

Underground utility corridors for sanitary and storm sewers, potable water, private electricity and natural gas lines lead to the building, generally from Catherine Street to the south or from Arlington Avenue to the north. The underground utility corridors have the potential to affect contaminant distribution and transport, as they would create preferential pathways for lateral migration in the areas of identified contaminated soil and groundwater. Based on the depth to groundwater observed in the monitoring wells as part of this investigation, observed between 2.14 and 4.73 m BGS, the potential exists for migration of contaminants through underground utility service trenches (generally approximately 2 to 3 m BGS) during periods of seasonally high groundwater table elevations.

The overburden stratigraphy of the Phase Two Property is present in six geological units, including asphalt or concrete layers at ground surface, silty sand and gravel (fill) layer, sand (fill) layer, a native silty clay layer present across the Property and a native silty sand and gravel (glacial till) layer, found below the silty clay across the Property.

The shallow (unconfined) aquifer is the aquifer of interest based on the nature of APECs and PCAs identified for the Phase Two Property. The shallow aquifer was generally present in the native silty clay layer. The aquifer is expected to have a lower permeability than the more porous overlying stratigraphic units such as the silty sand and gravel fill and sand fill. The silty clay layer is expected to have low permeability and retard the lateral movement of groundwater and migration of associated contaminants.

The overburden soil is underlain by interbedded limestone and/or shale bedrock, which was encountered at approximately 8 to 12 m below ground surface.

The groundwater table was measured at depths ranging between 2.14 and 4.73 m BGS. The shallow groundwater aquifer was present within the overburden at the Phase Two Property. Given that the groundwater table was found in the silty clay geological unit in the majority of the monitoring wells at the Phase Two Property, it is inferred that the same shallow aquifer exists across this unit and can be used for a determination of groundwater flow direction and

hydraulic gradient. It was observed that variations in depth to groundwater was observed in monitoring wells on the south portion of the Property; it is suspected that a different groundwater regime may be present in these locations as the subsurface soil at the Property has been significantly disturbed through historical development and redevelopment of the Property. The horizontal hydraulic gradient on the northeast portion of the Phase Two Property was calculated to be approximately 0.007 m/m with a localized groundwater flow direction towards the southeast.

The proposed redevelopment of the Phase Two Property includes the current concept for construction of three building with adjoining segments ranging from thirty-three to thirty-eight storeys in height, with two to three levels subgrade parking, commercial ground floors and residential units above.

The Phase Two Property and all other properties within 250 m of the property boundaries are supplied by Ottawa's municipal potable water supply system. The RSC does not specify agricultural use and there are no wells within 250 m of the property boundaries that are intended for use as a source of water for human consumption or agriculture. As such, the designation of non-potable groundwater setting is determined to be applicable [O.Reg. 153/04, section 35].

The Phase Two Property is not situated within or adjacent to an area of natural significance and does not include any land within 30 m of an area of natural significance. The pH of the soil was analyzed as part of this Phase Two ESA and was found to range from 7.48 to 7.92. As such, the Phase Two Property is not considered to be an environmentally sensitive area [O.Reg. 153/04, section 41].

Review of the drilling program and borehole/monitoring well logs completed as part of this Phase Two ESA and previous investigations was completed. It was determined that greater than 2/3 of the Phase Two Property has greater than 2 m of overburden soil. The Phase Two Property is not considered a shallow soil property [O.Reg. 153/04, section 43.1].

The Phase Two Property does not include and does not have any land located within 30 m of a water body. The MECP site condition standards for use within 30 m of a water body do not apply [O.Reg. 153/04, section 43.1].

The full depth generic site condition standards, with non-potable groundwater, course textured soil, for residential property use, as specified in Table 3 of the MECP Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, April 15, 2011 were determined to be the applicable site condition standards for the Phase Two Property as part of this Phase Two ESA.

The following soil samples had exceedance concentrations reported compared to their respective Site Condition Standards, as noted in Table 9 as follows:

Table 10: Soil Exceedances

	Exce	eding Parameter:	F1 Range PHCs	F2 Range PHCs	F3 Range PHCs	Xylenes	Benzo(a)pyrene	Fluoranthene	Vanadium	Sodium Adsorption Ratio	Conductivity
Sample	MECP Table Sta	3 Site Condition ndards	55 ug/g	98 ug/g	300 ug/g	3.1 ug/g	0.3 ug/g	0.69 ug/g	86 ug/g	5 ug/g	700 uS/cm
Location	Sample ID	Sample Depth			Rep	orted	Conce	ntratio	า (ug/g)	
BH3-10*	BH3-10-SS2	0.8–1.4 m BGS	77	6230	2450	5.51	-	-	-	-	-
BH6-10*	BH6-10-SS4	2.3–2.9 m BGS	-	1580	-	-	-	-	-	-	-
BH1-20*	BH1-20-SS2	0.8–1.4 m BGS	-	-	-	-	0.49	0.76	-	-	-
BH2-20*	BH2-20-SS2	0.8–1.4 m BGS	-	-	-	-	0.38	-	-	-	-
BH2-21	BH2-21-SS1	0.1–0.6 m BGS	-	-	-	-	-	-	-	-	2540 uS/cm
BH3-21	BH3-21-SS4	1.2–1.8 m BGS	-	-	-	-	-	-	98.6	39.4	7190 uS/cm
BH4-21	BH4-21-SS5	2.4–3.1 m BGS	-	150	-	-	-	-	-	-	-
BH5-21	DUP-2-21	1.2–1.8 m BGS	-	-	-	-	-	-	-	6.07	760 uS/cm
	BH5-21-SS4 DUP-1-21	1.8–2.4 m BGS 1.8–2.4 m BGS	160 108	2530 2750	837 1160	-	-	-	-	-	-

* - Collected as part of historical investigations by others

The following groundwater samples had exceedance concentrations reported compared to their respective Site Condition Standards, as noted in Table 10 as follows:

Table 11: Groundwater Exceedance	Table	11:	Groundwater	Exceedances
----------------------------------	-------	-----	-------------	-------------

	Exceed	ding Parameter:	F2 Range PHCs	F3 Range PHCs	Sodium	Chloride
Sample	MECP Table 3 S Standa	ite Condition ards	150 ug/L	500 ug/L	2300 mg/L	2300 mg/L
Location	Sample ID	Sample Date		Reported Con	centration	
BH3-10*	BH3-10-GW1	September 1, 2010	362 ug/L	-	-	-
BH1(MW)	BH1(MW)- 2021GW1	June 2, 2021	663000 ug/L	345000 ug/L	-	-
	DUP-1-2021GW1	June 2, 2021	686000 ug/L	358000 ug/L	-	-
BH2-20	BH2-20	June 23, 2021	-	-	-	2400 mg/L
BH3-20	BH3-20	June 23, 2021	-	-	-	2440 mg/L
BH4-21	BH4-21-GW1	June 23, 2021	-	-	5230 mg/L	13900 mg/L
	BH14-21-GW1	June 23, 2021	-	-	5220 mg/L	11900 mg/L

* - Collected as part of historical investigations by others

All of the other soil and groundwater results for the Phase Two Property are in compliance with the applicable site condition standards. The Phase Two Property is not in compliance with the site condition standards as of the certification date of June 23, 2021.

7. Conclusions

The following soil samples had exceedance concentrations reported compared to their respective Site Condition Standards, as noted in Table 11 as follows:

Table 12: Soil Exceedances

	Exce	eding Parameter:	F1 Range PHCs	F2 Range PHCs	F3 Range PHCs	Xylenes	Benzo(a)pyrene	Fluoranthene	Vanadium	Sodium Adsorption Ratio	Conductivity
Sample	MECP Table Sta	3 Site Condition ndards	55 ug/g	98 ug/g	300 ug/g	3.1 ug/g	0.3 ug/g	0.69 ug/g	86 ug/g	5 ug/g	700 uS/cm
Location	Sample ID	Sample Depth			Rep	ported	Conce	ntratio	า (ug/g)	
BH3-10*	BH3-10-SS2	0.8–1.4 m BGS	77	6230	2450	5.51	-	-	-	-	-
BH6-10*	BH6-10-SS4	2.3–2.9 m BGS	-	1580	-	-	-	-	-	-	-
BH1-20*	BH1-20-SS2	0.8–1.4 m BGS	-	-	-	-	0.49	0.76	-	-	-
BH2-20*	BH2-20-SS2	0.8–1.4 m BGS	-	-	-	-	0.38	-	-	-	-
BH2-21	BH2-21-SS1	0.1–0.6 m BGS	-	-	-	-	-	-	-	-	2540 uS/cm
BH3-21	BH3-21-SS4	1.2–1.8 m BGS	-	-	-	-	-	-	98.6	39.4	7190 uS/cm
BH4-21	BH4-21-SS5	2.4–3.1 m BGS	-	150	-	-	-	-	-	-	-
BH5-21	DUP-2-21	1.2–1.8 m BGS	-	-	-	-	-	-	-	6.07	760 uS/cm
	BH5-21-SS4 DUP-1-21	1.8–2.4 m BGS 1.8–2.4 m BGS	160 108	2530 2750	837 1160	-	-	-	-	-	-

* - Collected as part of historical investigations by others

The following groundwater samples had exceedance concentrations reported compared to their respective Site Condition Standards, as noted in Table 12 as follows:

Tuble 15. Groundmater Exceedances	Table	13:	Groundwater	Exceedances
-----------------------------------	-------	-----	-------------	-------------

	Exceed	ding Parameter:	F2 Range PHCs	F3 Range PHCs	Sodium	Chloride
Sample	MECP Table 3 S Standa	ite Condition ards	150 ug/L	500 ug/L	2300 mg/L	2300 mg/L
Location	Sample ID	Sample Date		Reported Cor	centration	
BH3-10*	BH3-10-GW1	September 1, 2010	362 ug/L	-	-	-
BH1(MW)	BH1(MW)- 2021GW1	June 2, 2021	663000 ug/L	345000 ug/L	-	-
	DUP-1-2021GW1	June 2, 2021	686000 ug/L	358000 ug/L	-	-
BH2-20	BH2-20	June 23, 2021	-	-	-	2400 mg/L
BH3-20	BH3-20	June 23, 2021	-	-	-	2440 mg/L
BH4-21	BH4-21-GW1	June 23, 2021	-	-	5230 mg/L	13900 mg/L
	BH14-21-GW1	June 23, 2021	-	-	5220 mg/L	11900 mg/L

* - Collected as part of historical investigations by others

All of the other soil and groundwater results for the Phase Two Property are in compliance with the applicable site condition standards. The Phase Two Property is not in compliance with the site condition standards as of the certification date of June 23, 2021.

An environmental remediation program, including the bulk removal and off-site disposal of soil and groundwater in excess of the site condition standards, is recommended for the Phase Two Property. The submission of a record of site condition will be required since there will be a change of land use of the Phase Two Property to a more sensitive use. These tasks can be completed at the time of decommissioning and demolition of existing structures at the Phase Two Property. The Phase Two ESA could be then updated with confirmatory sample results at that time to show compliance with site condition standards.

Given the scope and timeline for the proposed redevelopment and the requirements for specialized construction techniques to complete remediation of the Phase Two Property to meet the site condition standards, it is recommended that remediation be completed in conjunction with redevelopment of the Property. It should be noted that the proposed redevelopment includes excavation for at least two to three levels of underground parking, which is expected to remove the source zone of the petroleum hydrocarbon impacted soil and groundwater on the Phase Two Property.

Preparation of a soil management plan in accordance with O.Reg. 406/19 will be required as part of management of excess soil generated as part of construction activities. It is

recommended that a remedial action plan be prepared to develop a strategy for remediation, including soil and groundwater management, during redevelopment.

i. Signatures

The Qualified Person for this study is Mr. Luke Lopers, P. Eng. Mr. Lopers has been a Professional Engineer, registered in Ontario since 2012 and has been working on environmental site assessments since 2006. Mr. Lopers has been an author, project manager and/or peer reviewer for hundreds of Phase One ESAs and Phase Two ESAs as well as previously filed RSCs.

The reviewer for this study is Mr. Don Plenderleith, P.Eng. Mr. Plenderleith is a Professional Engineer registered in Ontario since 1994 and has authored and/or reviewed hundreds of Phase One and Two ESAs in Ontario and the rest of Canada. The qualifications of the assessor/Qualified Person and reviewer are included in Appendix G.

Sincerely,

Luke Lopers, P.Eng., QP_{ESA}

Don Plenderleith, P.Eng., QP_{ESA}

8. Limitations

The findings and conclusions of this Phase Two ESA are based on the information provided and/or reviewed as part of this study.

This Phase Two ESA has been completed with the standard of care generally expected in the industry for a study of this nature.

This Phase Two ESA has been prepared for the sole use of 11034936 Canada Inc. for the purposes of a due diligence assessment of the potential liabilities which may exist at the Phase Two Property. No other party is permitted to rely on the conclusions or findings of this report without the written consent of Lopers & Associates and 11034936 Canada Inc.

Changes to the physical setting of the Phase Two Property, Phase One Study Area and applicable regulations governing Phase One and Two Environmental Site Assessments have the potential to influence the validity of the conclusions and opinions presented in this Phase Two ESA.

9. References

Legal Survey Plan, Annis, O'Sullivan, Vollebekk Ltd., on June 24, 2021.

City of Ottawa, geoOttawa mapping website, Visited May through August, 2021. <u>http://maps.ottawa.ca/geoottawa/</u>

Google Earth, Visited May through August, 2021.

"Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act", produced by the Ontario Ministry of the Environment, dated April 15, 2011.

"Phase One Environmental Site Assessment, 265 Catherine Street, Ottawa, Ontario" dated September 8, 2021 prepared for 11034936 Canada Inc. by Lopers & Associates.

"Phase I - Environmental Site Assessment, Existing Bus Terminal, 265 Catherine Street, Ottawa, Ontario", dated October 15, 2020, completed by Paterson Group Inc. for Crerar Silverside Corporation.

"Phase II Environmental Site Assessment, Existing Bus Terminal, 265 Catherine Street, Ottawa, Ontario", dated October 16, 2020, completed by Paterson Group Inc. for Crerar Silverside Corporation.

"Remedial Action Plan, 265 Catherine Street, Ottawa, Ontario", dated October 15, 2020, completed by completed by Paterson Group Inc. for Crerar Silverside Corporation.

"Geotechnical Investigation, Proposed Mixed-Use Development, 265 Catherine Street, Ottawa, Ontario", dated October 7, 2020, completed by Paterson Group Inc. for Crerar Silverside Corporation.

Paracel Certificate of Analysis - Report # 2125646 - Soil Sample Submission June 18, 2021

Paracel Certificate of Analysis - Report # 2123416 - Groundwater Sample Submission June 2, 2021

Paracel Certificate of Analysis – Report # 2126398 - Groundwater Sample Submission June 23, 2021

Paracel Certificate of Analysis - Report # 1035209 - Soil Sample Submission August 25, 2010

Paracel Certificate of Analysis - Report # 2034610 - Soil Sample Submission August 21, 2020

Paracel Certificate of Analysis – Report # 1036123 - Groundwater Sample Submission September 1, 2010

Paracel Certificate of Analysis - Report # 2036155 - Groundwater Sample Submission August 31, 2020

Paracel Certificate of Analysis – Report # 2036155 - Groundwater Sample Submission September 9, 2020

10. Appendices

- Appendix A Sampling and Analysis Plan
- Appendix B Underground Utility Locates
- Appendix C Borehole Logs
- Appendix D Certificates of Equipment Calibration
- Appendix E Laboratory Certificates of Analysis
- Appendix F Site Photographs
- Appendix G Qualifications of Assessors

Figures

Tables

Table 13: Soil Analytical Results265 Catherine Street, Ottawa, Ontario

			Sample Location:	BH1-21	BH2-21 BH3-21 BH4-21 BH5-21				BH3-10	BH6-10	BH1-20			BH2-20				
			Sample ID:	BH1-21-553	BH2-21-SS1	BH3_21_SS/	BH/1_21_555	BH/1-21-558	BH5-21-552	DIIP_2_21	BH5-21-554	DUP-1-21	BH3-10-SS2**	BH6-10-SS/**	BH1_20_SS2**	BH1_20_SS2**	BH1_20_SS/##	BH2-20-552**
			Sample ID.	DH1-21-333	BH2-21-331	БПЭ-21-334	БП4-21-335	DH4-21-336	БНЭ-21-335	DUP-2-21	BH3-21-334	DUP-1-21	BH3-10-332	BH0-10-334	BH1-20-333	BH1-20-332	BH1-20-334	BHZ-20-332
			Sample Donth	1.2-1.8 m BGS	0.1-0.6 m BGS	1.8-2.4 m BGS	2.4-3.1 m BGS	4.3-4.9 m BGS	1.2-1.8 m BGS	BH5-21-SS3	1.8-2.4 m BGS	BH5-21-SSA	0.8-1.4 m BGS	2.3-2.9 m BGS	1.5-2.1 m BGS	0.8-1.4 m BGS	2.3-2.9 m BGS	0.8-1.4 m BGS
			Sample Depth:	luno 19, 2021	luno 19, 2021	luno 19, 2021	luno 19, 2021	luna 18, 2021	luna 19, 2021	BII3-21-333	luna 19, 2021	BI13-21-334	August 24, 2010	August 24, 2010	August 10, 2020	August 10, 2020	August 10, 2020	August 10, 2020
			Sample Date.	Julie 16, 2021	Julie 18, 2021	Julie 18, 2021	Julie 16, 2021	Julie 16, 2021	Julie 16, 2021	June 18, 2021	Julie 18, 2021	Julie 18, 2021	August 24, 2010	August 24, 2010	August 19, 2020	August 19, 2020	August 19, 2020	August 19, 2020
			MECP Table 3: Residential	2125646-01	2125646-02	2125646-03	2125646-04	2125646-05	2125646-06	2125646-09	2125646-07	2125646-08	1035209-01	1035209-02	2034610-01	2034610-02	2034610-03	2034610-04
		Method Detection Limit	Property Lise Standard															
laramatar	Unite	(MDL)	Coarse Grain Soil															
	Units	(IVIDE)	coarse drain son															
A DUCK (CC C10)	. 1.			1		54	16			1	100	100		10		ND	ND	
1 PHCS (C6-C10)	ug/g	/	55	-	-	51	16	ND	-	-	160	108	11	ND	-	ND	ND	-
2 PHCs (C10-C16)	ug/g	4	98	-	-	/1	150	ND	-	-	2530	2750	6230	1580	-	ND	ND	-
3 PHCs (C16-C34)	ug/g	8	300	-	-	35	60	ND	-	-	837	1160	2450	293	-	ND	ND	-
4 PHCs (C34-C50)	ug/g	6	2800	-	-	ND	16	ND	-	-	21	16	ND	ND	-	ND	ND	
4G PHCs (gravimetric)	ug/g	50	2800	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
volatile Organic Compounds (vOCs)		0.50	10			ND	ND	ND			ND	ND						
lanzana	ug/g	0.50	10	-	-	ND	ND	ND	-	-	ND	ND		-	-	-	ND	-
enzene	ug/g	0.02	0.21	-	-	ND	ND	ND	-	-	ND	ND	ND	ND	-	ND	ND	-
romodicniorometnane	ug/g	0.05	13	-	-	ND	ND	ND	-	-	ND	ND	-	-	-	-	-	-
romotorm	ug/g	0.05	0.27	-	-	ND	ND	ND	-	-	ND	ND	-	-	-	-	-	-
romometnane	ug/g	0.05	0.05	-	-	ND	ND	ND	-	-	ND	ND	-	-	-	-	-	-
arbon Tetrachioride	ug/g	0.05	0.05	-	-	ND	ND	ND	-	-	ND	ND	-	-	-	-	-	-
niorobenzene	ug/g	0.05	2.4	-	-	ND	ND	ND	-	-	ND	ND	-	-	-	-	-	-
nioroform	ug/g	0.05	0.05	-	-	ND	ND	ND	-	-	ND	ND	-	-	-	-	-	-
vibromocniorometnane	ug/g	0.05	9.4	-	-	ND	ND	ND	-	-	ND	ND	-	-	-	-	-	-
	ug/g	0.05	16	-	-	ND	ND	ND	-	-	ND	ND	-	-	-	-	-	-
,2-Dichlorobenzene	ug/g	0.05	3.4	-	-	ND	ND	ND	-	-	ND	ND	-	-	-	-	-	-
,3-Dichlorobenzene	ug/g	0.05	4.8	-	-	ND	ND	ND	-	-	ND	ND	-	-	-	-	-	-
1 Dishlarasthara	ug/g	0.05	0.083	-	-	ND	ND	ND	-	-	ND	ND	-	-	-	-	-	-
	ug/g	0.03	3.5	-	-	ND	ND	ND	-	-	ND	ND	-	-	-	-	-	-
1 Dishlara sthulara	ug/g	0.05	0.05	-	-	ND	ND	ND	-	-	ND	ND	-	-	-	-	-	-
,1-Dichloroethylene	ug/g	0.05	0.05	-	-	ND	ND	ND	-	-	ND	ND	-	-	-	-	-	-
IS-1,2-Dichloroethylene	ug/g	0.03	3.4	-	-	ND	ND	ND	-	-	ND	ND	-	-	-	-	-	-
2 Dishlaraganan	ug/g	0.05	0.084	-	-	ND	ND	ND	-	-	ND	ND	-	-	-	-	-	-
,2-Dichloropropane	ug/g	0.05	0.05	-	-	ND	ND	ND	-	-	ND	ND	-	-	-	-	-	-
IS-1,S-Dichloropropylene	ug/g	0.03		-	-	ND	ND	ND	-	-	ND	ND	-	-	-	-	-	-
2 Dishlaragana tatal	ug/g	0.05	0.05	-	-	ND	ND	ND	-	-	ND	ND	-	-	-	-	-	-
thulbergone	ug/g	0.05	0.05	-	-	ND	0.07	ND	-	-	0.28	ND	-	-	-	-	ND	-
thylens dibramida (dibramathana, 1.2.)	ug/g	0.03	2	-	-	0.5	0.07	ND	-	-	0.56	ND	0.55	ND	-	ND	ND	-
	ug/g	0.05	0.05	-	-	ND	ND	ND	-	-	ND	ND	-	-	-	-	-	-
Acthyl Ethyl Kotopo (2 Butanono)	ug/g	0.03	2.0	-	-	ND	ND	ND	-	-	ND	ND	-	-	-	-	-	-
Aethyl Isobutyl Ketone	ug/g	0.50	17			ND	ND	ND	-		ND	ND		-	-	-		-
Active tort butted other	ug/g	0.50	1.7	-	-	ND	ND	ND	-	-	ND	ND	-	-	-	-	-	-
Asthylana Chlorida	ug/g	0.05	0.75	-	-	ND	ND	ND	-	-	ND	ND	-	-	-	-	-	-
turopo	ug/g	0.05	0.1	-	-	ND	ND	ND	-	-	ND	ND	-	-	-	-	-	-
1 1 2 Totrachloroothano	ug/g	0.05	0.7	-	-	ND	ND	ND	-	-	ND	ND	-	-	-	-	-	-
1.2.2. Totrachloroothano	ug/g	0.05	0.058	-	-	ND	ND	ND	-	-	ND	ND	-	-	-	-	-	-
otrachloroothylopo	ug/g	0.05	0.05	-	-	ND	ND	ND	-	-	ND	ND	-	-	-	-	-	-
etrachioroetriyiene Teluene	ug/g	0.05	0.28	-	-	ND	ND	ND	-	-	ND	ND 0.16	- 0.17	-	-	-	ND	-
1 1-Trichloroethane	ug/g	0.05	2.3		-				-	-		0.10	0.17	UNI	-	טא	טא	-
1 2-Trichloroethane	ug/g	0.05	0.50		-				-	-			-	-	-	-	-	-
richloroothylono	ug/g	0.05	0.05	-	-				-	-			-	-	-	-	-	-
richlorofluoromathana	ug/g	0.05	100.0	-	-				-	-			-	-	-	-	-	-
/invl Chloride	ug/g	0.05	4 0.02		-				-	-			-	-	-	-	-	-
n/n-Yvlene	ug/g	0.02	0.02 MIV		-	0.25	ND			-	0.04	0.24	2 1 /		Ĩ	ND	ND	-
-Xvlene	ug/g	0.05	NV NV	-	-	0.35 ND		ND	-	_	0.54 ND	0.24	2.14 2.27		-		ND	-
	ug/g	0.05	1VV D 1		-	0.25	ND			-	0.04	0.05	2.J/ 5 E1		Ĩ		ND	-
yienes, total	ug/g	0.05	3.1	-	-	0.35	UN	ND	-	-	0.94	0.33	5.51	UNI	-	NU	טא	-

Table 13: Soil Analytical Results 265 Catherine Street, Ottawa, Ontario

	Sample Location: BH1-21		BH1-21	BH2-21	BH3-21	BH4	-21	BH5-21			BH3-10	BH6-10		BH1-20		BH2-20		
			Sample ID:	BH1-21-SS3	BH2-21-SS1	BH3-21-SS4	BH4-21-SS5	BH4-21-SS8	BH5-21-SS3	DUP-2-21	BH5-21-SS4	DUP-1-21	BH3-10-SS2**	BH6-10-SS4**	BH1-20-SS3**	BH1-20-SS2**	BH1-20-SS4**	BH2-20-SS2**
				1.2-1.8 m BGS	0.1-0.6 m BGS	1.8-2.4 m BGS	2.4-3.1 m BGS	4.3-4.9 m BGS	1.2-1.8 m BGS	Duplicate of	1.8-2.4 m BGS	Duplicate of	0.8-1.4 m BGS	2.3-2.9 m BGS	1.5-2.1 m BGS	0.8-1.4 m BGS	2.3-2.9 m BGS	0.8-1.4 m BGS
			Sample Depth: Sample Date:	June 18, 2021	August 24, 2010	August 24, 2010	August 19, 2020	August 19, 2020	August 19, 2020	August 19, 2020								
			Laborartory Sample ID:	2125646-01	2125646-02	2125646-03	2125646-04	2125646-05	2125646-06	2125646-09	2125646-07	2125646-08	1035209-01	1035209-02	2034610-01	2034610-02	2034610-03	2034610-04
			MECP Table 3: Residential															
		Method Detection Limit	Property Use Standard															
Parameter	Units	(MDL)	Coarse Grain Soil															
Polycyclic Aromatic Hydrocarbons																		
Acenaphthene	ug/g	0.02	7.9	ND	ND	ND	-	-	0.02	0.03	-	-	-	-	0.04	-	-	0.03
Acenaphthylene	ug/g	0.02	0.15	ND	ND	ND	-	-	ND	0.02	-	-	-	-	0.03	-	-	0.03
Anthracene	ug/g	0.02	0.67	ND	ND	ND	-	-	0.06	0.09	-	-	-	-	0.15	-	-	0.11
Benzo[a]anthracene	ug/g	0.02	0.5	ND	ND	ND	-	-	0.16	0.23	-	-	-	-	0.49	-	-	0.39
Benzo[a]pyrene	ug/g	0.02	0.3	ND	ND	ND	-	-	0.16	0.22	-	-	-	-	0.49	-	-	0.38
Benzolbjfluoranthene	ug/g	0.02	0.78	ND	ND	ND	-	-	0.18	0.25	-	-	-	-	0.51	-	-	0.39
Benzo[g,h,i]perylene	ug/g	0.02	6.6	ND	ND	ND	-	-	0.11	0.14	-	-	-	-	0.26	-	-	0.21
Senzo(k)fluorantnene	ug/g	0.02	0.78	ND	ND	ND	-	-	0.09	0.12	-	-	-	-	0.28	-	-	0.22
Chrysene	ug/g	0.02	7	ND	ND	ND	-	-	0.16	0.22	-	-	-	-	0.44	-	-	0.36
Dibenzola, njantnracene	ug/g	0.02	0.1	ND	ND 0.04	ND	-	-	0.03	0.04	-	-	-	-	0.08	-	-	0.06
Fluoranci	ug/g	0.02	0.89	ND	0.04	0.05	-	-	0.52	0.47	-	-	-	-	0.78	-	-	0.05
ndono[1,2,2,cd]pyropo	ug/g	0.02	0.28	ND	ND	0.05	-	-	0.03	0.04	-	-	-	-	0.04	-	-	0.03
1-Methylpanhthalene	ug/g	0.02	0.99	ND	ND	0.15			0.09	0.12	_		-		0.23 ND		-	0.15
2-Methylnaphthalene	ug/g	0.02	0.99	ND	ND	0.15	_	_	ND	ND	_		_	_	ND	_	_	ND
Methylnaphthalene (1&2)	ug/g	0.04	0.99	ND	ND	0.27	_	-	ND	ND	_	_	-	-	ND	-		ND
Nanhthalene		0.01	0.6	ND	ND	ND	-	-	0.02	0.02	-	-	-	_	0.02	-	-	0.02
Phenanthrene	ug/g	0.02	6.2	ND	0.02	0.22	-	-	0.30	0.36	-	-	-	-	0.32	-	-	0.38
Pyrene	ug/g	0.02	78	ND	0.03	ND	-	-	0.29	0.39	-	-	-	-	0.66	-	-	0.62
Metals	0,0		-									1						
Boron, available	ug/g	0.5	1.5	ND	ND	ND	-	-	1.2	1	-	-	-	-	-	-	-	-
Chromium (VI)	ug/g	0.2	8	0.2	ND	ND	-	-	ND	ND	-	-	-	-	ND	-	-	ND
Mercury	ug/g	0.1	0.27	ND	ND	ND	-	-	0.1	ND	-	-	-	-	ND	-	-	ND
Antimony	ug/g	1.0	7.5	ND	ND	ND	-	-	ND	ND	-	-	-	-	ND	-	-	ND
Arsenic	ug/g	1.0	18	1.2	1.7	3.2	-	-	2.8	2.7	-	-	-	-	3.4	-	-	2.4
Barium	ug/g	1.0	390	29.2	74.4	349	-	-	81.1	72.8	-	-	-	-	228	-	-	55.5
Beryllium	ug/g	0.5	4	ND	ND	0.9	-	-	ND	ND	-	-	-	-	ND	-	-	ND
Boron	ug/g	5.0	120	ND	ND	8.4	-	-	10	9.9	-	-	-	-	5.5	-	-	ND
Cadmium	ug/g	0.5	1.2	ND	ND	ND	-	-	ND	ND	-	-	-	-	ND	-	-	ND
Chromium	ug/g	5.0	160	18.2	8.8	103	-	-	22.8	23.7	-	-	-	-	19.0	-	-	17.9
Cobalt	ug/g	1.0	22	4.1	2.5	21.2	-	-	5.9	6.1	-	-	-	-	4.5	-	-	5.3
Copper	ug/g	5.0	140	6.3	ND	43.4	-	-	15.9	16	-	-	-	-	17.9	-	-	10.9
Lead	ug/g	1.0	120	2.5	9.8	7.1	-	-	28.2	28.7	-	-	-	-	80.6	-	-	36.0
Molybdenum	ug/g	1.0	6.9	ND	1.2	ND	-	-	1	1	-	-	-	-	ND	-	-	ND
Nickel	ug/g	5.0	100	9.5	6.6	56.9	-	-	14.9	15.6	-	-	-	-	22.1	-	-	12.0
Selenium	ug/g	1.0	2.4	ND	ND	ND	-	-	ND	ND	-	-	-	-	ND	-	-	ND
Silver	ug/g	0.3	20	ND	ND	ND	-	-	ND	ND	-	-	-	-	ND	-	-	ND
Iranium	ug/g	1.0	1			ND	-	-			-	-	-	-		-	-	
uranium	ug/g	1.0	23	NU 10 1			-	-		ND 20 1	-		-	-		-	-	UVI ר בר
Vanaululli	ug/g	10.0	340	10.1		110	-	-	21 12 7	20.1 AE 1	-		-	-	25.7	-	-	23.3 AE 4
General Inorganics	ug/g	20.0	340	20.7	טא	119	-	-	42.7	40.1	-	1 - 1	-	-	204	-	-	4.54
SAR	N/A	0.01	5	3,68	0.73	39.4	-	-	4.45	6.07	-	<u> </u>	-	_ 1	- 1		-	-
Conductivity	uS/cm	5	700	517	2540	7190	-	-	497	760	-		-	-	-	-	-	-
Cvanide. free	ug/g	0.03	0.051	ND	ND	ND	-	-	ND	ND	-		-	-	-	-	-	-
pH	pH Units	0.05	NV	7.56	7.86	7.85	-	-	7.92	7.48	-	-	-	-	-	-	-	-

** - Sample analyzed during previous investigations by others

NV - No value listed in MECP site condition standards

- - Not Analyzed

ND - Not detected above laboratory method detection limits Exceeds MECP site condition standards

Table 14: Groundwater Analytical Results

265 Catherine Street, Ottawa, Ontario

			Sample Location:	Sample Location: BH1(MW) BH7(MW) BH3-10		BH1-20		BH2-20 BH3-20-GW		-GW1**		44-41	BH5-21				
			Sample Location.	BH1(MW)-2021GW1	DUP-1-2021GW1 Duplicate of BH1(MW)-2021GW1	BH7(MW)-2021GW1	BH3-GW1**	BH3-10-2021GW1	BH1-GW1	BH1-20-2021GW1	BH2-20	BH3-20-GW1**	внз-20	BH4-21	BH14-21 Duplicate of BH4-21	BH5-21	Trip Blank
			Sample Date: Laborartory Sample ID:	June 2, 2021 2123416-01	June 2, 2021 2123416-05	June 2, 2021 2123416-02	September 1, 2010 1036123-01	June 2, 2021 2123416-03	September 8, 2020 2037189-01	June 2, 2021 2123416-04	June 23, 2021 2126398-01	August 28, 2020 2036155-01	June 23, 2021 2126398-02	June 23, 2021 2126398-03	June 23, 2021 2126398-05	June 23, 2021 2126398-04	June 23, 2021 2126398-06
		Method															
		Detection Limit	MECP Table 3 Standards														
Parameter	Units	(MDL)	Coarse Grain Soil														
Petroluem Hydrocarbons (PHCs)																	
F1 PHCs (C6-C10)	ug/L	25	750	47	56	ND	ND	ND	ND	ND	ND	ND	ND	39	46	25	-
F2 PHCs (C10-C16)	ug/L	100	150	663000	686000	ND	362	ND	ND	ND	ND	ND	ND	ND	ND	ND	-
F3 PHCs (C16-C34)	ug/L	100	500	345000	358000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-
F4 PHCs (C34-C50)	ug/L	100	500	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-
Volatile Organic Compounds (VO	Cs)	5.0	100000			T I		1		r						67.0	
Acetone	ug/L	5.0	130000	-	-	-	ND	-	ND	-	ND	ND	ND	16.0	19.4	67.3	ND
Benzene	ug/L	0.5	44	15.7	15.8	ND	ND	ND	ND	ND	ND	ND	ND	15.5	15.9	ND	ND
Bromoform	ug/L	0.5	280	-	-	-	ND	-	ND	-			ND	ND	ND	ND	ND
Bromomethane	ug/L	0.5	5.6	-	-	-	ND	-	ND	-			ND	ND	ND	ND	ND
Carbon Tetrachloride	ug/L	0.5	0.79		-		ND	-	ND		ND	ND	ND	ND	ND	ND	
Chlorobenzene	ug/L	0.5	630	-	-	-	ND	_	ND	-	ND	ND	ND	7.0	7.2	ND	ND
Chloroform	ug/L	0.5	2.4	-	-	-	ND	-	ND	-	ND	ND	ND	ND	ND	ND	ND
Dibromochloromethane	ug/L	0.5	82000	-	-	-	ND	-	ND	-	ND	ND	ND	ND	ND	ND	ND
Dichlorodifluoromethane	ug/L	1.0	4400	-	-	-	ND	-	ND	-	ND	ND	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	ug/L	0.5	4600	-	-	-	ND	-	ND	-	ND	ND	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	ug/L	0.5	9600	-	-	-	ND	-	ND	-	ND	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	ug/L	0.5	8	-	-	-	ND	-	ND	-	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	ug/L	0.5	320	-	-	-	ND	-	ND	-	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	ug/L	0.5	1.6	-	-	-	ND	-	ND	-	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethylene	ug/L	0.5	1.6	-	-	-	ND	-	ND	-	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethylene	ug/L	0.5	1.6	-	-	-	ND	-	ND	-	ND	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethylene	ug/L	0.5	1.6	-	-	-	ND	-	ND	-	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane	ug/L	0.5	16	-	-	-	ND	-	ND	-	ND	ND	ND	ND	ND	ND	ND
cis-1,3-Dichloropropylene	ug/L	0.5	NV	-	-	-	ND	-	ND	-	ND	ND	ND	ND	ND	ND	ND
trans-1,3-Dichloropropylene	ug/L	0.5	NV	-	-	-	ND	-	ND	-	ND	ND	ND	ND	ND	ND	ND
1,3-Dichloropropene, total	ug/L	0.5	5.2	-	-	-	ND	-	ND	-	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	ug/L	0.5	2300	27.9	28.3	ND	ND	ND	ND	ND	ND	ND	ND	16.5	16.8	ND	ND
Ethylene dibromide (dibromoethane, 2	ug/L	0.2	0.25	-	-	-	ND	-	ND	-	ND	ND	ND	ND	ND	ND	ND
Hexane	ug/L	1.0	51	-	-	-	ND	-	ND	-	ND	ND	ND	ND	ND	ND	ND
Mothyl Isobutyl Ketone (2-Butanone)	ug/L	5.0	470000	-	-	-	ND	-		-		ND	ND	ND	ND	ND	
Methyl tort butyl other	ug/L	5.0	140000	-	-	-	ND	-	ND	-	ND	ND	ND	ND	ND	ND	ND
Methylope Chloride	ug/L	2.0	190 610	-	-	-	ND	-	ND	-			ND	ND	ND	ND	ND
Styrene	ug/L	0.5	1300	-	-	-	ND	-	ND	-			ND	ND	ND	ND	ND
1 1 1 2-Tetrachloroethane	ug/L	0.5	3 3				ND		ND		ND	ND	ND	ND	ND	ND	ND
1 1 2 2-Tetrachloroethane	ug/L	0.5	3.2	-	-	-	ND	_	ND	-	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethylene	ug/L	0.5	1.6	-	-	-	ND	-	ND	-	ND	ND	ND	ND	ND	ND	ND
Toluene	ug/L	0.5	18000	1.0	1.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	ug/L	0.5	640	-	-	-	ND	-	ND	-	ND	ND	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	ug/L	0.5	4.7	-	-	-	ND	-	ND	-	ND	ND	ND	ND	ND	ND	ND
Trichloroethylene	ug/L	0.5	1.6	-	-	-	ND	-	ND	-	ND	ND	ND	ND	ND	ND	ND
Trichlorofluoromethane	ug/L	1.0	2500	-	-	-	ND	-	ND	-	ND	ND	ND	ND	ND	ND	ND
Vinyl Chloride	ug/L	0.5	0.5	-	-	-	ND	-	ND	-	ND	ND	ND	ND	ND	ND	ND
m/p-Xylene	ug/L	0.5	NV	17.0	17.1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
o-Xylene	ug/L	0.5	NV	22.5	22.5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Xylenes, total	ug/L	0.5	4200	39.5	39.6	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Table 14: Groundwater Analytical Results

265 Catherine Street, Ottawa, Ontario

			Sample Location:	В	H1(MW)	BH7(MW)	BH3-	10	BH1-2	20	BH2-20	BH3-20-G	W1**	BH	4-41	BH5-21	
			Sample ID:	BH1(MW)-2021GW1	DUP-1-2021GW1 Duplicate of BH1(MW)-2021GW1	BH7(MW)-2021GW1	BH3-GW1**	BH3-10-2021GW1	BH1-GW1	BH1-20-2021GW1	BH2-20	BH3-20-GW1**	BH3-20	BH4-21	BH14-21 Duplicate of BH4-21	BH5-21	Trip Blank
			Sample Date:	June 2, 2021 2123416-01	June 2, 2021 2123416-05	June 2, 2021 2123416-02	September 1, 2010	June 2, 2021 2123416-03	September 8, 2020 2037189-01	June 2, 2021 2123416-04	June 23, 2021 2126398-01	August 28, 2020 2036155-01	June 23, 2021 2126398-02	June 23, 2021 2126398-03	June 23, 2021 2126398-05	June 23, 2021 2126398-04	June 23, 2021
		Method		2125410 01	2123410 05	2123410 02	1030123 01	2123410 03	2037103-01	2123410 04	2120350 01	2030133 01	2120350 02	2120350 05	2120350 05	2120350 04	2120350 00
		Detection Limit	MFCP Table 3 Standards														
Parameter	Units	(MDL)	Coarse Grain Soil														
Polycyclic Aromatic Hydrocarbons	onits	(11.0 2)															
Acenaphthene	ug/I	0.05	600	-	-	-	-	-	-	-	ND	-	ND	1.09	1.8	ND	-
Acenaphthylene	ug/L	0.05	1.8	-	-	-	-	-	-	_	ND	-	ND	0.11	0.18	ND	-
Anthracene	ug/L	0.01	2.4	-	-	-	-	-	-	-	ND	-	ND	0.19	0.12	ND	-
Benzo[a]anthracene	ug/L	0.01	4.7	-	-	-	-	-	-	-	ND	-	ND	ND	ND	ND	-
Benzo[a]pyrene	ug/L	0.01	0.81	-	-	-	-	-	-	-	ND	-	ND	ND	ND	ND	-
Benzo[b]fluoranthene	ug/L	0.05	0.75	-	-	-	-	-	-	-	ND	-	ND	ND	ND	ND	-
Benzo[g,h,i]perylene	ug/L	0.05	0.2	-	-	-	-	-	-	_	ND	-	ND	ND	ND	ND	-
Benzo[k]fluoranthene	ug/L	0.05	0.4	-	-	-	-	-	-	_	ND	-	ND	ND	ND	ND	-
Chrysene	ug/L	0.05	1	-	-	-	-	-	-	_	ND	-	ND	ND	ND	ND	-
, Dibenzo[a,h]anthracene	ug/L	0.05	0.52	-	-	-	-	-	-	_	ND	-	ND	ND	ND	ND	-
Fluoranthene	ug/L	0.01	130	-	-	-	-	-	-	_	ND	-	ND	0.16	0.13	ND	-
Fluorene	ug/L	0.05	400	-	-	-	-	-	-	-	ND	-	ND	0.98	1.56	0.14	-
Indeno[1.2.3-cd]pyrene	ug/L	0.05	0.2	-	-	-	-	-	-	-	ND	-	ND	ND	ND	ND	-
1-Methylnaphthalene	ug/L	0.05	1800	-	-	-	-	-	-	-	ND	-	ND	36.4	41.2	0.36	-
2-Methylnaphthalene	ug/L	0.05	1800	-	-	-	-	-	-	-	ND	-	ND	2.16	2.36	ND	-
Methylnaphthalene (1&2)	ug/L	0.10	1800	-	-	-	-	-	-	-	ND	-	ND	38.6	43.6	0.36	-
Naphthalene	ug/L	0.05	1400	-	-	-	-	-	-	-	ND	-	ND	1.7	1.93	ND	-
Phenanthrene	ug/L	0.05	580	-	-	-	-	-	-	-	ND	-	ND	1.97	1.76	ND	-
Pvrene	ug/L	0.01	68	-	-	-	-	-	-	-	ND	-	ND	0.15	0.13	0.06	-
Metals	0,		I														
Mercury	ug/L	0.1	0.29	-	-	-	-	-	-	-	ND	-	ND	ND	ND	ND	-
Antimony	ug/L	0.5	20000	-	-	-	-	-	-	-	ND	-	ND	ND	ND	ND	-
Arsenic	ug/L	1	1900	-	-	-	-	-	-	-	1	-	ND	2	2	ND	-
Barium	ug/L	1	29000	-	-	-	-	-	-	-	193	-	291	1970	1910	518	-
Beryllium	ug/L	0.5	67	-	-	-	-	-	-	-	ND	-	ND	ND	ND	ND	-
Boron	ug/L	10	45000	-	-	-	-	-	-	-	66	-	62	98	95	133	-
Cadmium	ug/L	0.1	2.7	-	-	-	-	-	-	-	ND	-	ND	ND	ND	ND	-
Chromium	ug/L	1	810	-	-	-	-	-	-	-	ND	-	ND	ND	ND	ND	-
Chromium (VI)	ug/L	10	140	-	-	-	-	-	-	-	ND	-	ND	ND	ND	ND	-
Cobalt	ug/L	0.5	66	-	-	-	-	-	-	-	ND	-	ND	3.6	3.5	2.3	-
Copper	ug/L	0.5	87	-	-	-	-	-	-	-	1.5	-	1.3	0.8	ND	2.4	-
Lead	ug/L	0.1	25	-	-	-	-	-	-	-	ND	-	ND	0.1	0.1	ND	-
Molybdenum	ug/L	0.5	9200	-	-	-	-	-	-	-	9	-	5.3	3.5	3.4	9	-
Nickel	ug/L	1	490	-	-	-	-	-	-	-	5	-	1	30	30	16	-
Selenium	ug/L	1	63	-	-	-	-	-	-	-	ND	-	ND	ND	ND	ND	-
Silver	ug/L	0.1	1.5	-	-	-	-	-	-	-	ND	-	ND	0.1	ND	ND	-
Sodium	ug/L	200	2300000	-	-	-	-	-	-	-	678000	-	1260000	5230000	5220000	345000	-
Thallium	ug/L	0.1	510	-	-	-	-	-	-	-	ND	-	ND	ND	ND	ND	-
Uranium	ug/L	0.1	420	-	-	-	-	-	-	-	7.3	-	1.1	2.3	2.1	7.1	-
Vanadium	ug/L	0.5	250	-	-	-	-	-	-	-	3.4	-	0.8	4.1	4.3	0.9	-
Zinc	ug/L	5	1100	-	-	-	-	-	-	-	ND	-	ND	ND	5	6	-
General Inorganics																	
Cyanide, free	ug/L	2	66	-	-	-	-	-	-	-	ND	-	ND	ND	ND	ND	-
рН	pH Units	0.1	NV	-	-	-	-	-	-	-	7.5	-	7.0	7.3	7.2	2.6	-
Chloride	mg/L	1	2300	-	-	-	-	-	-	-	2400	-	2440	13900	11900	1240	-

** - Sample analyzed during previous investigations by others

NV - No value listed in MECP site condition standards

- Not Analyzed

ND - Not detected above laboratory method detection limits

ND(250) - Not detected above elevated laboratory method detection limits due to high analyte concentrations. Elevated MDL listed in "()"

Exceeds MECP site condition standards

Appendix A

Sampling and Analysis Plan

Sampling and Analysis Plan

265 Catherine Street Ottawa, Ontario

Prepared for: 11034936 Canada Inc.

5/25/2021

Table of Contents

1.	Bac	kground	1
2.	Plar	nning Site Investigation - Specific Objectives	2
3.	Unc	lerground Utility Service Locates	2
4.	Plar	nning Site Investigation - Specific Requirements	3
	i.	Media for Investigation	3
	ii.	Locations and Depths for Sampling	3
	iii.	Parameters for Laboratory Analysis.	3
5.	Qua	lity Assurance and Quality Control	4
5	.1	Field Equipment Decontamination	4
5	.2	Trip Blanks	4
5	.3	Field Duplicates	5
5	.4	Equipment Calibration	5
5	.5	Data Quality Objectives	5
6.	Star	ndard Operating Procedures	5
6	.1	Borehole Drilling	5
6	.2	Soil Sampling	6
6	.3	Field Soil Screening Measurements	6
6	.4	Monitoring Well Installation	6
6	.5	Elevation Survey	7
6	.6	Monitoring Well Development;	7
6	.7	Field Measurement of Water Quality Indicators	7
6	.8	Groundwater Sampling	7

1. Background

Lopers & Associates (Lopers) was retained by 11034936 Canada Inc. (Brigil) to complete a Phase Two Environmental Site Assessment (Phase Two ESA) of the commercial property with Civic address No. 265 Catherine Street, Ottawa, Ontario ("Phase Two Property", "Property" or "Site").

Lopers has previously completed a Phase One Environmental Site Assessment (Phase One ESA) (Reference No. LOP21-018A, dated August 20, 2021) for Brigil at the Property. The Phase One ESA identified the presence of three potentially contaminating activities (PCAs) at the Property which were interpreted to represent areas of potential environmental concern (APECs). The presence of a private fuel outlet and associated underground storage tank (UST) represents PCA #1 and is interpreted as APEC #1 for the northeast portion of the Phase One Property. The presence of a service bay (garage), associated historical aboveground storage tank (AST) and suspected UST represents PCA #2 and is interpreted as APEC #2 for the east portion of the Phase One Property. The former presence of residential and commercial structures which historically occupied the majority of the Phase One Property, are suspected to have had their foundations backfilled with poor environmental quality fill material. This fill material (PCA #3) is suspected in areas outside of the current building footprint and represents APEC #3 for the Property.

The contaminants of potential concern associated with fuel storage and fuelling are generally PHCs and BTEXs. Based on historical presence of a service garage at the Property, VOCs are also considered contaminants of potential concern (CPCs) associated with the former service garage operations. The CPCs associated with the historical fill materials are polycyclic aromatic hydrocarbons (PAHs), metals & inorganics. PHCs/BTEXs are also a CPC; considering the date of original development at the Property, there are suspected former heating oil storage tanks associated with the various former residential and commercial properties which now comprise the Phase Two Property.

The scope of work for the Phase Two ESA includes drilling five boreholes at the Phase Two Property. At least two of the boreholes will be instrumented with groundwater monitoring wells with screens installed in the overburden. Select existing groundwater monitoring wells at the Phase Two Property, which were installed as part of historical investigations, may also be accessed and sampled to supplement the groundwater quality assessment.

In the event that additional contaminants of APECs are identified during the drilling or sampling fieldwork, additional scope of work will be discussed with BRIGIL to complete the Phase Two ESA.

Planning Site Investigation - Specific Objectives

The following are the specific objectives for planning a site investigation of the Phase Two Environmental Site Assessment, as defined in O.Reg. 153/04.

1. To plan an investigation that will achieve the general objectives of a Phase Two Environmental Site Assessment,

i. through the use of an appropriate and complete information base concerning the Phase Two Property, and

ii. through the conduct of an investigation based both on information obtained before the Phase Two Environmental Site Assessment begins and on the incorporation of information obtained during the Phase Two Environmental Site Assessment.

2. To develop a sampling and analysis plan that will adequately assess all areas of the Phase Two Property where contaminants may be present in land or water on, in or under the Property.

3. To develop a quality assurance program that is designed to effectively limit errors and bias in sampling and analysis through implementation of assessment and control measures that will ensure data are useful, appropriate and accurate in the determination of whether the Phase Two Property, or any record of site condition (RSC) property within it, meets applicable site condition standards and any standards specified in a risk assessment.

3. Underground Utility Service Locates

Prior to completing the Phase Two ESA field investigation activities, public underground locates will be coordinated through Ontario One Call. As it is understood that the Site is undeveloped with no active privately owned underground services or infrastructure, private locates have not been included in this mandate.

The locations of the proposed boreholes will be reviewed in relation to the public underground locates and locations will be modified accordingly if conflicts exist between any location or if the location is in close proximity to an active underground service.

A copy of the public underground locates will be retained by Lopers' field personnel during all excavation components of the fieldwork.

4. Planning Site Investigation - Specific Requirements

The qualified person has ensured the following requirements were met in planning a site investigation. The Phase One conceptual site model for the Phase One Environmental Site Assessment report was used in conjunction with other information in determining:

i. Media for Investigation

Soil and groundwater sampling and analysis for the purpose of assessing environmental quality will be completed as part of the Phase Two ESA.

There are no surface water bodies at the Phase Two Property, as such, sediment and surface water quality sampling and analysis will not be completed as part of this Phase Two ESA.

ii. Locations and Depths for Sampling

A total of five borehole locations have been proposed to provide coverage of the APECs identified at the Phase Two Property. Boreholes will be located in the northeast portion of the Property to assess APECs #1 and #2. A distribution of boreholes will be spread over the remaining areas of the Property, with some to be situated in locations of suspected historical fill placement APEC #3.

Sampling depths will include as a minimum, collection of samples in 0.6 m intervals from the ground surface to native soil conditions within the groundwater table. Borehole/monitoring wells depths are proposed to be drilled to approximately 5 m to intercept the groundwater table in APECs were groundwater quality assessment is required. Boreholes are proposed to be drilled to a depth of approximately 3 m where an assessment of the fill quality is required.

iii. Parameters for Laboratory Analysis.

The parameters for laboratory analysis will be selected based on the contaminants of potential concern for each APEC as well as the field screening observations.

The contaminants of potential concern associated with fuel storage and fuelling are generally PHCs and BTEXs. Based on historical presence of a service garage at the Property, VOCs are also considered contaminants of potential concern (CPCs) associated with the former service garage operations. The CPCs associated with the historical fill materials are polycyclic aromatic hydrocarbons (PAHs), metals & inorganics. PHCs/BTEXs are also a CPC; considering the date of original development at the Property, there are suspected former heating oil storage tanks associated with the various former residential and commercial properties which now comprise the Phase Two Property.

The contaminants of concern for a particular sample will be based on the relative location and depth of the sample, visual and/or olfactory observations and combustible vapour screening concentrations.

Information obtained after the completion of the phase one environmental site assessment shall be used to modify the investigation, as appropriate.

5. Quality Assurance and Quality Control

The qualified person has ensured that there is a quality assurance and quality control program, data quality objectives, standard operating procedures and a description of any physical impediments that interfere with or limit the ability to conduct sampling and analysis.

The quality assurance and quality control program includes the following requirements:

5.1 Field Equipment Decontamination

All non-dedicated sampling and monitoring equipment must be cleaned following each use.

The split spoons, which are the only media to come into contact with the soil samples, will be washed using soap and water and a scrub brush between samples to minimize the potential for cross-contamination among samples. The field technician will use sterile nitrile gloves, which are to be changed prior to the handling of each soil sample to further reduce the potential of cross-contamination. The flights of the hollow stem augers are to be cleaned manually following each borehole.

Water level monitoring equipment, including water level meters and interface probes will be decontaminated with an environmentally safe cleaning solution and rinsed with deionized water between water level readings to prevent cross contamination.

The field technician will change dedicated sterile nitrile gloves prior to initiating work at each monitoring well and change gloves prior to sample collection to minimize the potential for cross-contamination.

5.2 Trip Blanks

Since groundwater samples are to be analyzed for volatile organic compounds (VOCs), one trip blank sample shall be submitted for laboratory analysis with each laboratory submission of groundwater samples.

5.3 Field Duplicates

Sufficient field duplicate samples shall be collected in each medium (soil and groundwater) being sampled, so that at least one field duplicate sample can be submitted for laboratory analysis for every ten samples submitted for laboratory analysis.

At least one field duplicate sample shall be submitted for laboratory analysis for every ten samples submitted for laboratory analysis.

One field duplicate will be submitted from each medium sampled for PHCs, VOCs, PAHs and metals & inorganics which are the parameter suites identified as a contaminants of concern in APECs #1 through #3 as part of the previously prepared Phase One ESA.

5.4 Equipment Calibration

Field screening of the soil samples will be completed using an RKI Instruments Model Eagle-2 combustible gas detector ("RKI Eagle"). The RKI Eagle used for soil sample screening as part of this Phase Two ESA will be obtained from Maxim Environmental and Safety Inc. and will be calibrated prior to use.

Measurements of the groundwater quality field parameters will be completed to determine stabilization of these parameters prior to sampling. These measurements will be completed using Horiba U-52 groundwater quality measurement device ("Horiba"). The Horiba used for groundwater quality parameter stabilization measurements as part of this Phase Two ESA will be obtained from Maxim Environmental and Safety Inc. and will be calibrated prior to use.

5.5 Data Quality Objectives

The data quality objectives for all types of field data collected during the Phase Two Environmental Site Assessment field investigation that set the level of uncertainty in environmental data shall be such that,

- (a) the decision-making is not affected; and
- (b) the overall objectives of the investigation are met.

6. Standard Operating Procedures

Standard operating procedures were developed for all of the following field investigation methods used in the field investigation.

6.1 Borehole Drilling

The drilling field program will be completed under full time supervision of Lopers & Associates personnel. The drilling subcontractor retained for the Phase Two ESA is George Downing Estate

Drilling Ltd., located at 410 Principale Rue, Grenville-Sur-la-Rouge, Quebec, JOV 1B0. The drill rig used for the Phase Two ESA will be a track mounted CME drill, equipped with hollow stem augers and stainless steel split spoons. Operation of the drilling equipment is the responsibility of the drilling subcontractor, who is trained and competent in the operation of this equipment.

The field technician logs the drilling and recovery of soil samples from each borehole, noting the soil type, physical and environmental characteristics at each borehole location on the field borehole logs.

6.2 Soil Sampling

Samples are to be collected from auger cuttings or split spoons at the ground surface for surficial samples (0-0.6 m below ground surface (m BGS)) and then using split spoons for subsequent samples. Split spoon samples are generally not collected from surficial depths, as poor recovery of loose packed fill material does not yield sufficient volume of samples required for field screening or laboratory analysis. Split spoon samples, collected in 0.6 m segments, are to be recovered at continuous 0.76 m intervals; the additional 0.16 m between split spoon samples will be over-drilled to provide undisturbed field measurement of geotechnical parameters (blow counts) and to prevent cave in materials from stratigraphic units above the intended sampling intervals from being collected at unrepresentative depths during sampling.

Soil samples are initially collected in Ziploc bags for initial screening as part of sample selection. Soil samples selected for laboratory analysis are collected in dedicated clear glass jars prepared and provided by the analytical laboratory. Soil samples collected for BTEXs/VOCs and the F1 range of PHCs analysis are collected using a dedicated graduated syringe provided by the laboratory and placed directly into a glass vial with methanol preservative. Analytes and associated preservatives are specified on each jar/vial by the laboratory. Each jar/vial sample set is provided with a unique sample identifier, project number and date of sampling in the field.

6.3 Field Soil Screening Measurements

Initial field screening of the soil samples will consist of visual and olfactory observations made at the time of sample collection during the drilling program.

Additional field screening of the soil samples will be completed using an RKI Instruments Model Eagle-2 combustible gas detector ("RKI Eagle"). The RKI Eagle is capable of measuring combustible vapours at concentrations ranging from 0 parts per million (PPM) to 50% of the lower explosive limit (LEL). The RKI Eagle is also capable of measuring VOC vapours at concentrations ranging from 0 ppm to 1000 ppm.

6.4 Monitoring Well Installation

Installation of monitoring wells in selected boreholes is to be completed by George Downing Estate Drilling Ltd., who is a licensed well driller in accordance with O.Reg. 903. The wells will be installed using slotted PVC No. 10 monitoring well screens, which are 51 mm in diameter; these

screens are to be installed at the base of each of the aforementioned boreholes, directly above the bedrock surface. Well screens can range from 1.5 m to 4.5 m in length. The monitoring wells are extended to approximately 0.15 m below the surface grade with PVC riser, also 51 mm in diameter. A threaded PVC end cap should be installed at the base of the screen to prevent sediment infiltration, while a J-Plug is installed at the top of the riser to present surface influence.

The annular space in each monitoring well is to be backfill with clean silica sand to approximately 0.3 m above the monitoring well screens. A layer of bentonite chips is then used to make a hydraulic seal above the sand pack to near the ground surface. The monitoring wells are to be completed with flushmount aluminum protective casings, which were backfilled with sand to provide drainage from the protective casing.

6.5 Elevation Survey

An elevation survey of all boreholes and monitoring wells will be conducted following the completion of the drilling program. A fixed temporary benchmark should be used as a reference elevation; the top of the spindle of a fire hydrant is preferred for this purpose as geodetic elevations can be obtained for these points. The reference benchmark should be assigned a field site datum of 100.00 m for the purposes of the elevation survey. The ground surface elevation of all boreholes should be surveyed. The top of piezometer of each monitoring well should also be surveyed; this allows for higher accuracy in the interpretation of groundwater elevations.

6.6 Monitoring Well Development;

Groundwater monitoring wells will be developed on the day of drilling using LDPE tubing and a footvalve. At least three and up to ten well volumes will be removed from the monitoring wells in order to remove as much sediment as possible from the wells. In cases where the monitoring well goes dry prior to purging three well volumes, the well should be purged dry a minimum of three times, waiting at least one hour between purging events. The LDPE tubing should be removed from the monitoring wells following well development.

6.7 Field Measurement of Water Quality Indicators

Field measurement of water quality parameters were collected at regular intervals (0 L, 0.5 well volumes, 1 well volume, 2 well volumes, etc.) during purging of the monitoring wells prior to sampling. The Horiba was placed in a flow-through cell and water quality parameters were measured until they were found to stabilize to within approximately 10% of the previous measurements prior to sample collection.

6.8 Groundwater Sampling

Follow a period of stabilization after drilling and monitoring well development (1 week recommended), static groundwater elevations are measured relative to the top of piezometer at
each groundwater monitoring well on the day of sampling, prior to disturbance of the water column.

Following static groundwater elevation measurements, 6 mm LDPE tubing is placed in each of the monitoring wells. The LDPE tubing is connected to silicon tubing, run through a peristaltic pump set to low flow (approximately 0.2-0.5 L/minute) during purging and sampling. The peristaltic pump is used to avoid mixture of sediment into the groundwater column and prevent volatilization during sample collection. The monitoring wells are purged on the day of sampling while water quality parameters were measured and stabilize as noted above.

Groundwater samples are collected in dedicated amber glass bottles and vials or plastic bottles prepared and provided by the analytical laboratory. Analytes and associated preservatives are specified on each bottle by the laboratory. Each bottle sample set will be provided with a unique sample identifier, project number and date of sampling in the field. Samples for PHCs, BTEXs, VOCs, PAHs and general chemistry are unfiltered, while metals samples are to be field filtered using a dedicated 0.45 µm filter for each sample.

LOPERS & ASSOCIATES

Appendix B

Underground Utility Locates

UNDERGROUND SERVICE LOCATORS - PRIM	ATE UTILITY REPORT DATE: 17 JUNE 2021
ONE-CALL SYSTEMS INC.	
775 TAYLOR CREEK DRIVE	PHONE (613) 226-8750
OTTAWA, ON, K4A 0Z9	FAX (613) 226-8677
CUSTOMER: LOPERS & A990C.	REQUESTED BY: LUKE LOPERS
LOCATION OF WORK: 265 CATHERN	LIMITS OF WORK: BOREHOLES
HYDRO H CABLE T.V T.	V STEAM STEAM
BELL B STORM S	AN ELECTRICAL E T COMMUNICATIONS COM
UNIDENTIFIED CABLE UC FIBER OPTIC FO	DC OTHER:
LOCATES ONLY APPLICABLE TO INFO A	BOVE - LOCATES VOID AFTER 20 DAYS
Щ. С.	SKETCH NOT TO SCALE
and a second sec	
The second se	K WAR
XI	W DOLKE
The the second s	HOLEH REFERENCE
il with One 4	NORTH
XI	
11 PUMP NAN DRUMP	STAND
X TAP	
X man interes interes careta M consta	
	BUS
X	and the second se
SAW - S	TATION
X H	
X	
□ ↓ □ □ □	
WORK	
AREA	
USL-1 as a Private utility locator, is not permitted to locate Publicly owned EOR REFERENCE ONLY and under no circumstances shall be used for	utilities. In some cases, Public utilities may be noted on a sketch, but are
Public utilities noted on the USL-1 sketch by referring to the Public utility I	ocate sheets for physical LOCATION AND ACCURACY. USL-1 DOES NOT
 If the proposed work area is on Private property, it does NOT mean that a the proposed dorth of evenue is it is the low the profile October Octob	Il buried utilities are Private. Regardless of when you are digging, and what
COMMENTS:	I (or into-excavation in Quebec) to obtain Public utility locates.
ISL-1 DISCLAIMER - FORM 101. CONTRACTOR IS RESPONSIBLE COMMENCING WORK.	TO ENSURE THEY HAVE PUBLIC UTILITY LOCATES BEFORE
OCATORS NAME: MIKE THIVIERGE	SIGNATURE: MAAMAAA
	and a star fift
OCATE RECEIVED AND REVIEWED BY	Print Name Signature
CAUTION: HAND DIG WITHIN	1.5 METERS OF MARKINGS
hite = Client Yellow = USL-1 Pink = US	FORM #103 January 2016

Luke Lopers

From:	solutions@on1call.com
Sent:	May 28, 2021 3:43 PM
То:	Luke Lopers
Subject:	Request 20212226722
Attachments:	MapSelection_28052021_15400035.jpg

LOCATE REQUEST CONFIRMATION

TICKET #:	REQUEST PRIORITY:	REQUEST TYPE: REGULAR	WORK TO BEGIN DATE:
20212226722	STANDARD		06/04/2021
Update of Ticket #	Project #		Transmit date: 05/28/2021 03:42:54 PM

REQUESTOR'S CONTACT INFORMATION				
Contractor ID#: 343253	Company Phone #: (613) 327-9073			
Contact Name: Luke Lopers	Cell # : (613) 327-9073			
Alternate Contact Name:	Fax #:			
Company name: Lopers & Associates	Email: Luke@Lopers.ca			
Address: 30 Lansfield	Alternate Contact #: (613) 327-9073			

DIG INFORMATION		
Region/County: OTTAWA	Type of work: BORE HOLES	Mark & Fax: YES
Community:	Max Depth: 30.00 FT	Area is not marked: YES
City: OTTAWA	Machine Dig: YES	Area is marked: NO
Address: 265, CATHERINE ST	Hand Dig: YES	Site Meet Req.: NO
	Directional Drilling: NO	Work being done for:
Intersecting Street 1: KENT ST	Public Property: YES	
Intersecting Street 2: LYON ST N	Private Property: YES	

DETAILED DESCRIPTION OF WORK	REMARKS
CORLOT=1 Environmental Drilling for delineation of fuel impacts. Borehole locations subject to chan ge. Future work will also include UST removals. Areas not premarked.	Mark and Email instead of fax.

MEMBERS NOTIFIED: The following owners of underground infrastructure in the area of your excavation site have been notified.

Member name	Station Code	Initial Status
HYDRO OTTAWA (HOT1)	HOT1	Notification sent
PROMARK FOR ENBRIDGE GAS (ENOE01)	ENOE01	Notification sent
CITY OF OTTAWA WATER/SEWER (OTWAWS01)	OTWAWS01	Notification sent
CITY OF OTTAWA TRAFFIC SIGNALS (OTWATS01)	OTWATS01	Notification sent
BLACK AND MC DONALD FOR CITY OF OTTAWA STREET LIGHTS (OTWASL01)	OTWASL01	Notification sent
CLI FOR ROGERS (ROGOTT01)	ROGOTT01	Notification sent
PROMARK FOR BELL CANADA (BCOE01)	BCOE01	Notification sent

MAP SELECTION: Map Selection provided by the excavator through Ontario One Call's map tool or through agent interpretation by ph

IMPORTANT INFORMATION: Please read.

Defining "NC" - Non-Compliant

- Non-compliant members have not met their obligations under section 5 of the Ontario Underground Infrastructure Notification Act.ON1Call has notified these members to ensure they are aware of your excavation. In this circumstance, should the member not respond, the excavator should contact the member directly to obtain their locates or request a status. ON1Call will not be provided with a locate status from the member regarding this ticket and therefore, cannot provide further information at this time.For locate status contact information please refer to our website.

You have a valid locate when...

- You have reviewed your locate request information for accuracy. CONTACT Ontario One Call (ON1Call) IMMEDIATELY if changes are needed and obtain a corrected locate request confirmation.

- You have obtained locates or clearances from all ON1Call members listed in this ticket before beginning your dig.

You've met your obligations when...

- In addition to this locate request, you have DIRECTLY contacted all owners of infrastructure who ARE NOT current members of ON1Call (such as owned buried infrastructure on private property), as well as arranged for contract locates for your private lines on your private property - where applicable. For a list of locate status contacts visit www.on1call.com.

- You respect the marks and instructions provided by the locators and dig with care; the marks and locator instructions MUST MATCH.

- You have obtained any necessary permits from the municipality in whichyou are excavating.

What does "Cleared" mean in the "Initial Status" section?

1. The information that you have provided about your dig will not affect that member's underground infrastructure and they have provided you with a

clearance, if anything about your excavation changes, please ensure that you update your ticket immediately.

What are the images under "Map Selection":

1. A drawing created by an excavator directly within Ontario One Call's web ticket tool, this is expected to be an accurate rendition of the dig site, and it is the excavator's responsibility to ensure the location matches the information they provide under the 'Dig Location' section OR;

2. A drawing created by an Ontario One Call agent, this drawing is based on a verbal description by phone of the area by the excavator. Agents may create drawings that are larger than the proposed dig to minimize risk of interpretation. It is the excavator's responsibility to review these map selections for accuracy. Changes can be made by the excavator through the web ticket tool, to learn how visit www.on1call.com/contractors.

3. All drawings dictate which members are notified.

											Page <u>1</u> of _	4
		.					U	NION GAS EMER	RGENCY	#		
Dror	mark				Prima	ary Locate S	heet	011-909-0888		Doguact	4	
		•	Fax:		т	oll free:	E	Email:		2021222	т 6722	
telec		daucture	613-	723-9277	7 1	-800-371-88	866			NORMAL		
Location of bh	dergiound innas	siluciure	5									
Located:		dra Ot	tawa 🗆 Hu	UBHT	77200	Revised Exca	wation Date	Excavation Da	ate	1	Status STANDARD	
				on Energy	Прес) N	/A	6/4/2021 12:00	0:00 AM		Homeowner	
Desweeted by			Commonw		L 200	mm/dd/yyyy		mm/dd/yyyy			Contractor	
LUKE LOPERS			LOPERS &	ASSOCIATE	ES	(613)-327-907	3 ext.	r ax/email:		ľ	Contractor	•
Appt Date:		Decei	ved Date:			a Addroce:		DINE OF			Project	
Appr Date.	N/A	5/28/2	021 3:47:25	РМ	1ct Int	NULLESS.	203, CATHE	KINE 51	ntore -		1	
mmraaryyyy Type of work:		mmrddr	7994		TSUING	EIS KENT		2101	City:	LIONSIN		
BORE HOLES									OTTAN	MA		
Caller's Rema	ks:	- FAV										
MARK AND EMAI MACH. DIG	L INSTEAD OF	· FAX.										
CORLOT=1 ENV ALSO INCLUDE	RONMENTAL I UST REMOVAL	orillin .s. are	G FOR DELI AS NOT PR	NEATION O EMARKED.	FFUEL	IMPACTS. BOF	REHOLE LOCA	ATIONS SUBJEC	T TO CH	ANGE. FUT	URE WORK WILL	L
-75.695091, 45.4 HOT1 LOOKED	08665, NB_SE		'S::3, NO_PI	AN::613 56	7. BCO	E01, ROGOTTO	1. OTWASL01	OTWATS01. O	TWAWSO	1, ENOE01,	HOT1	
Bell	Gas	Hyo	roOttawa	BIRCH HILI	L Tng	ZAYO	Hydro Dne	360	Eleo	kicon Energy	Videotron	
Mark Clear	Mark Clea 1	ar Ma	rk Clear	Mark (Clear	Mark Clear	Mark Cle	ar Mark Cle	ear Ma	ark Clear	Mark Clea	ar
			SHALL N		KOUT	SIDE THE L	L DCATED AR	EA WITHOU	T OBT/		I OTHER LOC/	ATE
Booordo Dofor	EA. EALA	MIUN	STALL I	IOT MOR		side The Ly	fication	LA MITIO	I ODIA			41 C .
Records Reler	ence.				- ''	Internancy Not	lication					-
_ Map	Network X #	•	•									
_ Byers 🖷	Datapak: Pl		T01832	or		Г	***)anger - Do N	lot Pro	ceed***		
Field Notes:	-	_ LAC	NUTUVIEW	ei			Buried hi	gh voltages o	cables	located w	ithin	
Other:NE18	5,6N0052	-4					the area	a. You must s	send Lo	ocate thro	ugh	
DPT Remarks							If you have	e questions a	about t	he online	form.	
							please call	613-738-641	8. For u	urgent ma	tters	
							involving emer	power outag gencies, call	es and 613-73	after hou	rs	
						L		J	01010			
r					11.000		Apply Sti	cker Here if Re	equired	Case Ma	teriol Torres	
Excavator sh	all notity & l	receiv	e a cleara	ince from	i Utility	prior to ex-	cavation to	N/A	ng: ⊡St	eel(st) eel(st)	stic(PE) Coppe	er(CO)
10		Fligh P	riority Cab				cinity					
Method of Fid	eld Marking	: • P			ags ⊔	Offset Flags	U Other (I	elecom=Orai	nge,Ga	s=Yellow,	Hydro Utt. =	Ked)
valid for 60 days	ocate valid for s, 360 valid for	life of e life of e	xcavation s excavation.	ee attached See disclain	l docum ner for F	ent. Hydro One Facility Owner (- Hydro Ottav Guidelines.	va - Enbridge G	as - Lake	efront Utilitie	s - Elexicon Ener	rgy .
Caution: Any Privately owned	changes to lo services with	cation o in the lo	r nature of v cated area b	work require	e new lo en mark	ed - check with	vator must not service / pro	t work outside the perty owner. For	he Locat or all Loc	ed Area with ate requests	hout a new locat s including remar	te. rks
contact: Ontario One Call at 1-800-400-2255 or www.on1call.com												
Locator Name	E: LACHAPEL	LE BRA	NDEN	Start Tim	ne: 8:	15	Mark	& Fax _ I	Left on	Site	Emailed	
10) #:_ <mark>179</mark> 2			End Tim	ne : <mark>8</mark> :	30	Print:		_N/A	۸		
Da	_{te} 6/7/	202	21	Total Ho	urs:	5MIN	Signatur	8:	_N/	Α		
A copy of the operator due	is Primary I ring work o	Locat	e Sheet a ions, lf sl	and Auxil ketch and	iary L d mar	ocate Shee kings do no	t(s) must l t coincide	be on site at the Excave	nd in ti ator mu	he hands Ist obtain	of the mach	nine te.

This form revised September 2019

This form revised March 2020

This form revised March 2020

This form revised March 2020

Š CANADIAN	NC	ROGER	IS to Shoot	ON 1 Call Ticket # :
Ph: (905)479-56	74 Email: ontario	Primary Loca	a sneet	20212220722
Contractor / Excavator	:		Contact Name :	
opers & Associa [el:	Alt. Phone :	Email :	Luke Lopers	
13-327-9073	613-327-9073	Luke@Lopers.ca	Type of Work :	
un 2 2021	Jun 4 2021	Revised Excavation Date.	BORE HOLES	
ocate Address : 65 CATHERINE ST			City / Municipality : OTTAWA, ONTARIO	
earest Intersection : ENT ST & LYON S	ST N			
ethod of Field Markin	g: Paint 🗆 St	akes 🔲 Flags		
uture work will	also include UST	removals. Areas not p	premarked.//Mark and	Email instead of fax. This locate has multiple work areas
Coaxial Plant	Fibre Optics Plant			which are greater than 100 m apart :
otal Length · T	iotal Length :			
10 m	m length .			
	1 hts tocate 2	apply sticker her	nt/infrastructure (re if required	DINLY I
	ate is VOID after 9	0 days !	of markings The L	ocated Area defined on th
Auxiliary Locate area or nature of	e Sheet(s) contain of work requires a	ns all known ROGER new locate.	S infrastructure. Ar	ny changes to excavation
or an out cable	1-800-265-950	1	Locator's Comments :	
ocator's Name : (Pleas David Stoddard	se Print)			
ate: Jun 10 2021	Start Time : 3:15 PM	End Time: 4:00 PM		
A copy of this	Primary Locate Shee	t and Auxiliary Locate Sh	eet(s) must be on site ar	nd in the hands of the machine
operator di	ing work operations	. Should sketch and mar	kings not coincide, a nev	w locate MUST be obtained.

😤 CANADIAN		ROGERS		ON 1 Call Ticket # :
LOCATORS INC.	Auxili	ary Locate Sheet		20212226722
Ph: (905)479-5674 Ema	il: ontario@canadianloca	ators.com		
Utilities Marked :				
Coaxial Plant 10 m	Fibre Optics Plan	nt m		
Number of Services Marked : (spe	cify building/house numbers)			
NA				
LOCAT	ED AREA CONTAINS A	LL KNOWN ROGE	RS INFRASTRUC	TURE
FROM: S FC OF ARLINGTON AVE		TO: N FC OF CATH	ERINE ST	
FROM :		TO:		
E FC OF LYON ST N Hand dig within 1 m	neter or 3.28 feet as measured horizo	mtally from the field marking	ST s to avoid damaging the unc	derground utilities.
If you dama	age the utilities, you may be held liable	e. For all cut cable, please	e call: 1-800-265-9501 imm	ediately!
L	LOCATED	AREA ALTERED AS PER	ging or vacuum excavation.	
				N
	LOCAT	ED AREA		
	ARL.	INGTON AVE		
1///	S FC	///////////////////////////////////////	1111111	1
////	///////////////////////////////////////	////////	////////	
	///////////////////////////////////////	///////////////////////////////////////	///////////////////////////////////////	1
	///////////////////////////////////////	///////	///////	1
	///////////////////////////////////////	///////////////////////////////////////	///////////////////////////////////////	1
ę	(//////////////////////////////////////	////////		1
Z H	265	CATHERINE ST	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	KEN KEN
ST	///////////////////////////////////////	CRINERINE SI	///////////////////////////////////////	8 4 1
N	///////////////////////////////////////	///////////////////////////////////////	///////////////////////////////////////	rs.
OX	///////////////////////////////////////		25.1M	1
н ///	///////////////////////////////////////	///////////////////////////////////////	///////////////////////////////////////	
	///////////////////////////////////////	12	///////	1
	///////////////////////////////////////	/////2	1.4M	
	///////////////////////////////////////	CAN PO	////////	
///	N FC	///////////////////////////////////////	VIIIII]
	CATH	ERINE ST		
	<i>m</i>	tab ant descent to see b		
LEGEND : R	oad Edge - RE - Propert	y Line — PL —	Tree 🚔 Trans	former TTR Streetlight (
Fibre Optic — FO —	Bldg Line — BL — Lo	ot Line — LL —	Pedestal 🕅 M	anhole 🛞 Hand Hole 🖪
Cable / T.V. — CATV —	North Direction N Face o	f Curb — FC —	Pole 🚫 Catcl	h Basin CB Hydrant [
Railway	Sidewalk SW Driv	veway — DW —	Vatve	North N East
Work Area 🖉 N	leasurement	e Line — FL —	Vault M	South S West \
A copy of this Auxilia	iry Locate Sheet(s) and the	Primary Locate Sheet	must be on site and	in the hands of the
machine operator during	work operations. Should sk	letch and markings no	ot coincide, a new loc	ate MUST be obtained.

TICKET #: 20212226722

8200 Dixie Rd East Bldg., 2nd Floor Brampton, Ontario, L6T OC1 Tel.: (855) 232-0342 Fax.: (905) 780-7379

ROGERS LOCATE SERVICE

LOCATE CONFIRMATION

LOCATOR:	CLI	Phone: 905-479-5674
	And strength and a second se	

CONFIRMATION DATE: 2021-06-02 2:08:03PI Station Code: ROGOTT01

Requested by Company: Lopers & Associates		
Contact Name: Luke Lopers	Ph: 6133279073	Fax:
Dig Site Location and Details		
Municipality: OTTAWA	Call Date: 2021-05-28 3:32:19PM	Start Date: 2021-06-04 12:00:00
Address: 265 CATHERINE ST	Intersection: KENT ST	
Type of Work: BORE HOLES		

Remarks (Additional Dig Information):

CORLOT=1 Environmental Drilling for delineation of fuel impacts. Borehole locations subject to change. Future work will also include UST removals. Areas not premarked.

Important Comments to Excavator: ***HIGH RISK FIBER IN LIMITS OF LOCATE***

> YOU WILL BE LIABLE FOR ANY DAMAGES TO ROGERS FACILITIES IF EXCAVATING/ DIGGING PRIOR TO RECEIVING A COMPLETED LOCATE OR CLEARANCE NUMBER FROM ROGERS OR IT'S AGENTS.

PLEASE CALL ROGERS LOCATE SERVICES AT (800) 738-7893. IF THERE ARE ANY CHANGES TO THIS LOCATE REQUEST. LOCATES AND CLEARANCES ARE VALID FOR 90 DAYS ONLY.

CAUTION: Stakes and or markings may disappear or be displaced. Should the sketches and markings not coincide. a new stake out must be obtained.

FOR ALL CUT CABLES CALL 1-800-265-9501

TICKET #: 20212226722

8200 Dixie Rd East Bldg., 2nd Floor Brampton, Ontario, L6T OC1 Tel.: (855) 232-0342 Fax.: (905) 780-7379

ROGERS LOCATE SERVICE

LOCATE CONFIRMATION

LOCATOR:	CLI	Phone: 905-479-5674
	And strength and a second se	

CONFIRMATION DATE: 2021-06-02 2:08:03PI Station Code: ROGOTT01

Requested by Company: Lopers & Associates		
Contact Name: Luke Lopers	Ph: 6133279073	Fax:
Dig Site Location and Details		
Municipality: OTTAWA	Call Date: 2021-05-28 3:32:19PM	Start Date: 2021-06-04 12:00:00
Address: 265 CATHERINE ST	Intersection: KENT ST	
Type of Work: BORE HOLES		

Remarks (Additional Dig Information):

CORLOT=1 Environmental Drilling for delineation of fuel impacts. Borehole locations subject to change. Future work will also include UST removals. Areas not premarked.

Important Comments to Excavator: ***HIGH RISK FIBER IN LIMITS OF LOCATE***

> YOU WILL BE LIABLE FOR ANY DAMAGES TO ROGERS FACILITIES IF EXCAVATING/ DIGGING PRIOR TO RECEIVING A COMPLETED LOCATE OR CLEARANCE NUMBER FROM ROGERS OR IT'S AGENTS.

PLEASE CALL ROGERS LOCATE SERVICES AT (800) 738-7893. IF THERE ARE ANY CHANGES TO THIS LOCATE REQUEST. LOCATES AND CLEARANCES ARE VALID FOR 90 DAYS ONLY.

CAUTION: Stakes and or markings may disappear or be displaced. Should the sketches and markings not coincide. a new stake out must be obtained.

FOR ALL CUT CABLES CALL 1-800-265-9501

Luke Lopers

From:Barabas, Karoly <karoly.barabas@ottawa.ca>Sent:May 28, 2021 4:05 PMTo:Luke LopersSubject:20212226722

20212226722

This Ontario One Ticket is ****Clear** of Underground City of Ottawa / Ville d'Ottawa Traffic Lights Infrastucture in Proposed Work Area ******

"Locates are Valide for 60 Days"

<u>Ce billet Ontario One est ** **libre** de toute infrastructure souterraine de la ville d'Ottawa pour les feux de signalisation dans la zone de travail proposée **</u>

"Les habitants sont valides pendant 60 jours"

Charly (Karoly) Barabas City of Ottawa Traffic U/G Utilities Investigator Cell: (613)868-3850 Email: <u>Karoly.barabas@ottawa.ca</u> Mon-Fri 7h00 to 15h30

ı

ī

This e-mail originates from the City of Ottawa e-mail system. Any distribution, use or copying of this e-mail or the information it contains by other than the intended recipient(s) is unauthorized. Thank you.

Le présent courriel a été expédié par le système de courriels de la Ville d'Ottawa. Toute distribution, utilisation ou reproduction du courriel ou des renseignements qui s'y trouvent par une personne autre que son destinataire prévu est interdite. Je vous remercie de votre collaboration.

Service Request	1452531	Lagan Case	ID: 202122267221							
Source:	Contractor	Created By: Ga Maxpusr								
Priority:		Reported By:								
Status	RESOLVED	Initiated: 2021-May-28 3:43 PM								
Location Information										
Address	265 CATHERINE ST	Rang	e:		Unit:					
Between Streets	KENT ST / LYON ST N			Municip	oality: 00					
	Intersect 1:KENT ST Intersect 2:LYON ST N Door Numbers:- Municipality:	1								
	the property owner an Please note: City of O localisations de la vill	an the road. The service ad are not the responsib Ottawa locates are valid le d'Ottawa sont valable	bility of The City of for sixty (60) days. es pendant soixante	Ottawa. S'il-vous (60) jours.	-plaît notez: les					
Requestor Information		Dhanaa								
Name: Luke	2 Lopers	Phones		Cally	6122270072					
City NED		Res:	6122270072	Cell:	01332/90/3					
Dostal Code: K2G	EAN	Bus: Eav:	01332/90/3	EXL						
Postal Code: N20	5v6 O m									
Call Back & Other Assig	jnments									
Responsibilities										
-										
Service Request		Work Order #	Work Order							
Service Request		Work Order #	Work Order							

	Structure ID	District	Descriptio	n Locatior	n		Qualifier	Unit
	Structures							
	Amount Cha	arge to Cu	stomer:		Category:			
	Finish Date: 2	2021-Jun-0	2		Classification:	LOCATES - PR	ROVIDE	
Start Date:			4	Appointment lime:	SD			

Service Request Details

LP : LOCATES - PROVIDE		
Attribute Description	Values	Comments
ON1CALL LOCATE ADDRESS	Street Range:265- Street:CATHERINE ST Intersect 1:KENT ST Intersect 2:LYON ST N Door Numbers:- Municipality:	
IF THERE IS AN ADDRESS NUMBEF		
ARE YOU A HOMEOWNER, CONTRA	CONTRACTOR	
WHO ARE YOU WORKING FOR?		
WHAT IS THE CALLER'S TITLE?	Principal	
WHAT IS YOUR COMPANY NAME?	Lopers & Associates	
PLEASE PROVIDE A CONTACT PHONE NUMBER	6133279073	
PLEASE PROVIDE AN ALTERNATE C		
PLEASE PROVIDE CONTACT PHONE INFORMATION FOR PERSON ON SITE	6133279073	
PLEASE PROVIDE A FAX NUMBER		
PLEASE PROVIDE AN EMAIL ADDRI	Luke@Lopers.ca	
WHAT TYPE OF WORK ARE YOU DOING?	BORE HOLES	
WHERE ARE YOU WORKING ON THE PROPERTY?	CORLOT=1 Environmental Drilling for delineation of fuel impacts. Borehole locations subject to change. Future work will also include UST removals. Areas not premarked.	
HOW DEEP ARE YOU DIGGING/ EXCAVATING?	9.144000	
WHAT IS THE UNIT OF MEASURE Y	METERS	
ARE YOU DIGGING BY HAND OR B'	Mach. Dig;Hand Dig	
WILL THERE BE DIRECTIONAL DRI		
IS THE AREA MARKED OUT?	Area Not Marked;Mark + Fax;	
IS A SITE MEETING REQUIRED?		
EXTRA MARKING INSTRUCTIONS?	Mark and Email instead of fax.	
EXCAVATION ON PUBLIC PROPERT	Publ. Prop.;Priv. Prop	
WHAT DATE IS THE WORK STARTI	2021-06-04	
OTHER AGENCIES ALSO NOTIFIED	BCOE01; ROGOTT01; OTWASL01; OTWATS01; OTWAWS01; ENOE01; HOT1;	
WHAT TYPE OF REQUEST, IF NOT (
IF NOT ORIGINAL, THE PREVIOUS		
FURTHER COMMENTS:		

Ontario One Call TF

City of Ottawa Street Light Locate

Black&McDonald

NOTICE OF INTENT TO EXCAN	ATE Header Code:	STANDAF	RD
Ticket No: 20212226722	Request Type:	NORMAL	
Original Call Date: 05/28/ Work To Begin Date: 06/04/	2021 3:43:05 PM 2021		
Company: LOPERS	& ASSOCIATES		
Contact Name: LUKE LC Contact Phone: (613)-327)PERS 7-9073 ext. •	Pager: Cell:	(613)-327-9073 ext.
Fax: Alternate Contact:		Alt. Phone:	(613)-327-9073 ext.
Place: OTTAWA Street: 265 CATHER Nearest Intersecting Street: Second Intersecting Street:	INE ST KENT ST LYON ST N		

Subdivision: OTTAWA

Additional Dig Information:

MARK AND EMAIL INSTEAD OF FAX. CORLOT=1 ENVIRONMENTAL DRILLING FOR DELINEATION OF FUEL IMPACTS. BOREHOLE LOCATIONS SUBJECT TO CHANGE. FUTURE WORK WILL ALSO INCLUDE UST REMOVALS. AREAS NOT PREMARKED. NO_PLAN::613 567

VVO/ JOB #: 8AM-6PM Type Of Work: BORE HOLES

Remarks:

-75.695091 45.408665 NB_SEGMENTS::3 BCOE01 ROGOTT01 OTWASL01 OTWATS01 OTWAWS01 ENOE01 HOT1

Appendix C

Borehole Logs

patersongroup

Consulting Engineers

SOIL PROFILE AND TEST DATA

Phase I - II Environmental Site Assessment 265 Catherine Street Ottawa, Ontario

28 Concourse Gate, Unit 1, Ottawa, ON K2E 7T7

DATU

RE	MA	R	(S

М	TBM - Finished floor level at gate 2. Assumed elevation = 100.00m.
RKS	

FILE NO.	
	PE2073

0		
		-
	КН	- - -

BORINGS BY CME 45 Power Aug	er			D	ATE 2	24 Aug 10	I		HOLE NO.	BH 3	
SOIL DESCRIPTION	РГОТ		SAN	IPLE		DEPTH	ELEV.	Pen. R • 5	esist. Blov 0 mm Dia.	ws/0.3m Cone	d Well
	STRATA	TYPE	IUMBER	% COVERY	VALUE Pr ROD	(11)	(11)	○ Lowe	r Explosiv	e Limit %	Construct
GROUND SURFACE			Ч	RE	z °	0-	-00 82	20	40 60	80	Σ_
Concrete	_ <u>0.60 (*****</u>	₿ AU	1				55.0Z				<u>Milili</u> Sumu
FILL: Grey-brown sand	1.45	ss	2	50	10	1-	-98.82				
FILL: Brown silty sand with gravel, cobbles and boulders	_ 2.21	ss	3	58	23	2-	-97.82	·····			
		ss	4	100	2	3-	-96.82				
		ss	5	92							
Stiff, grey SILTY CLAY		ss	6	92		4-	-95.82	À	······	······	
		ss	7	92		5-	-94.82		••••••		
		x ss	8	92		6-	-93.82		•••••••••••••••••••••••••••••••••••••••		
	_ 6.70	x ss	9	92		7-	-92 82				
								·			
						8-	-91.82				+ + + + + + + + + + + + + + + + + + + +
						9-	-90.82				
						10-	-89.82	· · · · · · · · · · · · · · · · · · ·			
 End of Borehole	_11.13					11-	-88.82				متعبطيليت
Practical refusal to augering @ 11.13m depth											
(GWL @ 5.30m-Sept. 16/10)											
								100 Gasted ▲ Full Ga	200 300 ch 1314 Rd as Resp. △ 1) 400 5 Ig. (ppm) Methane Elim.	00

patersongroup

SOIL PROFILE AND TEST DATA

▲ Undisturbed △ Remoulded

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Preliminary Geotechnical Investigation Prop. High-Rise Building - 265 Catherine Street Ottawa, Ontario

DATUM Geodetic									FILE NO.	PG549	8
REMARKS						A 140			HOLE NO	^{).} BH 1-20)
BORINGS BY CME-55 Low Clearance			C 4 4		DATE	August 19	9, 2020	Dam D			,
SOIL DESCRIPTION	PLOT		SAN			DEPTH (m)	ELEV. (m)	Pen. R ● 5	esist. Bi 0 mm Dia	ows/0.3m a. Cone	g Well tion
		ТҮРЕ	NUMBER	RECOVER'	N VALUE or RQD			0 V 20	Vater Cor	ntent %	
Asphaltic concrete 0.1	0	Å AU	1			0-	-68.62				
FILL: Brown silty sand0.6	3										
FILL Prown cilty cond with group		x ss	2	75	50+	1-	-67.62				
cobbles and debris (wood, bricks)	9	ss	3	58	18	2-	-66.62				
Compact, brown SILTY SAND	5	ss	4	75	2	3-	-65.62				
		ss	5	100	Р			A			
		ss	6	100	P	4-	-64.62 -63.62				
sand seams						6-	-62.62				
7.0		x ss	7	38	P	7-	-61.62				
orey SILTY CLAY , trace silty sand	2	ss	8	100	2	8-	-60.62				
9.7	5	ss	9	100	2	9-	-59.62				
End of Borehole											
(GWL @ 4.60m - Sept. 1, 2020)											
								20 Shea	40 é ar Streng	50 80 th (kPa)	100

patersongroup

SOIL PROFILE AND TEST DATA

 \blacktriangle Undisturbed \triangle Remoulded

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Preliminary Geotechnical Investigation Prop. High-Rise Building - 265 Catherine Street Ottawa, Ontario

DATUM Geodetic									FILE	NO.	PG54	498		
				_		A	0000		HOL	E NO.	BH 2	-20		
BORINGS BY CIVIE-55 Low Clearance				D	ALE	August T	9,2020							
SOIL DESCRIPTION	PLOT		SAN			DEPTH (m)	ELEV. (m)	Pen. Re ● 5	esist. 0 mm	Blov Dia.	ws/0.3n Cone	ה	g Well	tion
	TRATA	TYPE	UMBER	COVER!	VALUE r ROD			• v	/ater	Conte	ent %		nitorin	Instruct
GROUND SURFACE	0		Z	RE	z ^o	0	69.46	20	40	60	80		ž	ပိ
Asphaltic concrete0.10		₩ AU	1				-00.40						الال	
FILL - Brown silty cand with gravel		ss	2	54	16	1-	-67.46							
trace wood and brick			2	10	0									
2.13	3 B B B B B B B B B B B B B B B B B B B	1 33	3	10	9	2-	-66.46							
		ss	4	100	4									
		1 <u>7</u>				3-	-65.46							
		ss	5	100	2									
			•	100		4-	-64.46							
		1 22	6	100	4									
		ss	7	100	2		00.40							
Brown SILTY CLAY, trace brown sitty cand						5-	-63.46						E	
Sity Saliu		ss	8	100	3									
		$\overline{\mathcal{N}}$				6-	-62.46							
		ss	9	100	4									
						7-	-61.46							
		ss	10	100	2	8-	-60.46							
							50.40							
GLACIAL TILL: Grey clayey silty				50	_	9-	-59.46							
sand with gravel, cobbles and 9.75		1 22	11	58	3									
Dynamic Cone Penetration Test						10-	-58.46			····				
Inferred GLACIAL TILL 10.82														
End of Borehole		-								•				
Practical DCPT refusal at 10.84m depth.														
(BH dry - Sept. 1, 2020)														
								20	40	:: 60	80	 1(0	
								Shea	ar Stre	ength	(kPa)			

patersongroup Consulting Engineers

SOIL PROFILE AND TEST DATA

Shear Strength (kPa)

△ Remoulded

▲ Undisturbed

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Preliminary Geotechnical Investigation Prop. High-Rise Building - 265 Catherine Street Ottawa, Ontario

DATUM Geodetic									FILE N	o. PG5	498	
REMARKS									HOLE	^{NO.} рц э	20	
BORINGS BY CME-55 Low Clearance	Drill			D	ATE /	August 19	9, 2020			БПЗ	-20	
SOIL DESCRIPTION	РГОТ		SAN	IPLE		DEPTH (m)	ELEV.	Pen. Re ● 50	esist. E 0 mm C	Blows/0.3ı Dia. Cone	n =	g Well ion
	TRATA	ЗТРЕ	MBER	% COVERY	VALUE ROD	(,	(,	0 N	/ater C	ontent %		nitoring
GROUND SURFACE	L'S		Ŋ	REC	N O			20	40	60 80	:	Ω ΩΩ
Asphaltic concrete0.10 FILL: Brown silty sand with silty clay0.60 and crushed stone		AU	1			0-	-68.11					
Loose to compact, brown SILTY SAND, some organics		ss	2	38	9	1-	-67.11					
<u>2.13</u>		ss	3	67	13	2-	-66.11					
		ss	4	100	2	3-	-65 11		• • • • • • • • • • • • •	· · · · · · · · · · · · · · · · · · ·		
Stiff, grey SILTY CLAY with sandy silt		ss	5	100	2		00.11			· · · · · · · · · · · · · · · · · · ·		
4.42		ss	6	100	Ρ	4-	-64.11	Δ				¥
GLACIAL TILL: Compact, grey sandy silt with some clay, gravel and cobbles		ss	7	42	11	5-	-63.11					
		ss	8	62	4	6-	-62.11					
sand with gravel, cobbles and boulders		ss	8	46	7	_	01.11					
7.49 End of Borehole		_				/-	-61.11		<u></u>			
Practical refusal to augering at 7.49m depth.												
(GWL @ 4.26m - August 28, 2020)												
								20	40	60 80	⊣ 100)

LOPERS & ASSOCIATES

Appendix D

Certificates of Equipment Calibration

bes not preclude the	cifications. This do	Manufacturer's spe Necks in order to er	ed to be operating within the pre-use sensor response ch	dicated above is now certific egular maintenance and p	The instrument inc
itute of Standards and	to the National Insti	rd and is traceable	ered to be a certified standa available upon request.	as standard used is conside). Certificate of Analysis is	The calibration ga Technology (NIST
400 & 1000 PPM	100 PPM	100 ppm	100 PPM	lsobutylene lot # 1395011	VOC
10 & 50% LEL nse Enabled" Mode	15% LEL " Methane Respo	1650 ppm	15% LEL	Hexane lot # 1404511	Combustible
ation" Mode	"Methane Elimin				
	Verification Only	<500 PPM	50% LEL	Methane lot # 1248610	Combustible
10 & 50% LEL 1ation" Mode	15% LEL "Methane Elimir	1650 ppm	15% LEL	Hexane lot # 1404511	Combustible
ALARM LEVEL SETTINGS	INSTRUMENT SPAN SETTING	READING PRIOR TO ADJUSTMENT	CALIBRATION GAS CONCENTRATION	<u>CALIBRATION</u> GAS STANDARD	SENSOR
7, 2021	Calibration: June 1	Date of	Serial Number: E2H106	t Model: EAGLE-2	Instrument
anufacturer's publishec	∠ ed following the M	ALIBRATIO	Isted below has been insp	nents Model EAGLE-2 as d methods.	The RKI Instrum specifications and
(613)-224-4747	Phone:		SAFETY INC.	7IRONMENTAL AND Rd, UNIT # 9 , K2E 7R4	MAXIM ENV 148 Colonnade F Nepean, Ontario,

operating condition. re T

Certified:

ENVIRONMENTAL AND SAFETY INC. "Exceptional Customer Service!"

Certificate of Calibration HORIBA U-52 Serial Number 77A08VAS has been calibrated per the Manufacturers published instructions, using NIST traceable solutions and standards. 2, 2-Point pH Cond. Turb, DO **ORP** 4.00, 7.00 4.49 uS/cm 0, 100 NTU 8.91 mg/L @ 21 DegC 240mV pH 4.0 Lot #0GK004 Zero checked Zero checked Sodium Sulfite Zero Exp11/22 pH 7.0 Lot# 0GE815 Cond.Standard StableCal Standard, Oakton Zero Oxygen **ORP** Test Exp.05/2022 Lot#1GC833 100 NTU Solution Lot# 709016 Solution Exp. 03/2022 Lot#A1007 Exp.01/2022 240 mV Exp.01/2023 Lot # Lot Solutions ref. to NIST SRM's #5235Exp 04/2025 May 31, 2021 Calibrated

RENTALS, SALES, SERVICE, SUPPORT

9 - 170 AMBASSADOR DR., MISSISSAUGA, ONTARIO L5T 2H9 PHONE: (905) 670-1304 TOLL FREE: (888) 285-2324 E-MAIL: SALES@MAXIMENVIRONMENTAL.COM

9 - 148 COLONNADE RD., OTTAWA, ONTARIO K2E 7R4 PHONE: (613) 224-4747 TOLL FREE: (888) 285-2324 E-MAIL: SALES@MAXIMENVIRONMENTAL.COM

WWW.MAXIMENVIRONMENTAL.COM

ENVIRONMENTAL AND SAFETY INC. "Exceptional Customer Service!"

Certificate of Calibration

HORIBA U-52 Serial Number VDUY18TR has been calibrated per the Manufacturers published instructions, using NIST traceable solutions and standards.

RENTALS, SALES, SERVICE, SUPPORT

9 - 170 AMBASSADOR DR., MISSISSAUGA, ONTARIO L5T 2H9 PHONE: (905) 670-1304 TOLL FREE: (888) 285-2324 E-MAIL: SALES@MAXIMENVIRONMENTAL.COM

9 - 148 COLONNADE RD., OTTAWA, ONTARIO K2E 7R4 PHONE: (613) 224-4747 TOLL FREE: (888) 285-2324 E-MAIL: SALES@MAXIMENVIRONMENTAL.COM

WWW.MAXIMENVIRONMENTAL.COM

LOPERS & ASSOCIATES

Appendix E

Laboratory Certificates of Analysis

RELIABLE.

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

Lopers & Associates

30 Lansfield Way Ottawa, ON K2G 3V8 Attn: Luke Lopers

Client PO: Project: LOP21-018 Custody: 129117

Report Date: 24-Jun-2021 Order Date: 18-Jun-2021

Order #: 2125646

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID	Client ID
2125646-01	BH1-21-SS3
2125646-02	BH2-21-SS1
2125646-03	BH3-21-SS4
2125646-04	BH4-21-SS5
2125646-05	BH4-21-SS8
2125646-06	BH5-21-SS3
2125646-07	BH5-21-SS4
2125646-08	DUP-1-21
2125646-09	DUP-2-21

Approved By:

Mark Foto

Mark Foto, M.Sc. Lab Supervisor

Any use of these results implies your agreement that our total liability in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.

Certificate of Analysis Client: Lopers & Associates Client PO:

Analysis Summary Table

Report Date: 24-Jun-2021 Order Date: 18-Jun-2021

Project Description: LOP21-018

Analysis	Method Reference/Description	Extraction Date	Analysis Date
Boron, available	MOE (HWE), EPA 200.7 - ICP-OES	23-Jun-21	23-Jun-21
Chromium, hexavalent - soil	MOE E3056 - Extraction, colourimetric	21-Jun-21	23-Jun-21
Conductivity	MOE E3138 - probe @25 °C, water ext	22-Jun-21	23-Jun-21
Cyanide, free	MOE E3015 - Auto Colour, water extraction	21-Jun-21	23-Jun-21
Mercury by CVAA	EPA 7471B - CVAA, digestion	23-Jun-21	23-Jun-21
pH, soil	EPA 150.1 - pH probe @ 25 °C, CaCl buffered ext.	23-Jun-21	23-Jun-21
PHC F1	CWS Tier 1 - P&T GC-FID	22-Jun-21	23-Jun-21
PHCs F2 to F4	CWS Tier 1 - GC-FID, extraction	21-Jun-21	23-Jun-21
REG 153: Metals by ICP/MS, soil	EPA 6020 - Digestion - ICP-MS	23-Jun-21	23-Jun-21
REG 153: PAHs by GC-MS	EPA 8270 - GC-MS, extraction	21-Jun-21	22-Jun-21
REG 153: VOCs by P&T GC/MS	EPA 8260 - P&T GC-MS	22-Jun-21	24-Jun-21
SAR	Calculated	22-Jun-21	23-Jun-21
Solids, %	Gravimetric, calculation	22-Jun-21	22-Jun-21

OTTAWA • MISSISSAUGA • HAMILTON • CALGARY • KINGSTON • LONDON • NIAGARA • WINDSOR • RICHMOND HILL

Client PO:

Order #: 2125646

Report Date: 24-Jun-2021 Order Date: 18-Jun-2021

Project Description: LOP21-018

	Client ID: Sample Date:	BH1-21-SS3 18-Jun-21 09:00	BH2-21-SS1 18-Jun-21 09:00	BH3-21-SS4 18-Jun-21 09:00	BH4-21-SS5 18-Jun-21 09:00
	Sample ID:	2120040-01 Soil	2125040-02 Soil	2125040-03 Soil	2123040-04 Soil
Physical Characteristics	MDE/Onits				
% Solids	0.1 % by Wt.	84.0	96.2	60.2	85.1
General Inorganics			ł	•	
SAR	0.01 N/A	3.68	0.73	39.4	-
Conductivity	5 uS/cm	517	2540	7190	-
Cyanide, free	0.03 ug/g dry	<0.03	<0.03 <0.03		-
рН	0.05 pH Units	7.56	7.56 7.86 7.85		-
Metals					
Antimony	1.0 ug/g dry	<1.0	<1.0	<1.0 <1.0	
Arsenic	1.0 ug/g dry	1.2	1.7	3.2	-
Barium	1.0 ug/g dry	29.2	74.4	349	-
Beryllium	0.5 ug/g dry	<0.5	<0.5	0.9	-
Boron	5.0 ug/g dry	<5.0	<5.0	8.4	-
Boron, available	0.5 ug/g dry	<0.5	<0.5	<0.5 <0.5	
Cadmium	0.5 ug/g dry	<0.5	<0.5 <0.5		-
Chromium	5.0 ug/g dry	18.2	8.8 103		-
Chromium (VI)	0.2 ug/g dry	0.2	<0.2 <0.2		-
Cobalt	1.0 ug/g dry	4.1	2.5	21.2	-
Copper	5.0 ug/g dry	6.3	<5.0	43.4	-
Lead	1.0 ug/g dry	2.5	9.8	7.1	-
Mercury	0.1 ug/g dry	<0.1	<0.1	<0.1	-
Molybdenum	1.0 ug/g dry	<1.0	1.2	<1.0	-
Nickel	5.0 ug/g dry	9.5	6.6	56.9	-
Selenium	1.0 ug/g dry	<1.0	<1.0	<1.0	-
Silver	0.3 ug/g dry	<0.3	<0.3	<0.3	-
Thallium	1.0 ug/g dry	<1.0	<1.0	<1.0	-
Uranium	1.0 ug/g dry	<1.0	<1.0	<1.0	-
Vanadium	10.0 ug/g dry	18.1	<10.0	98.6	-
Zinc	20.0 ug/g dry	20.7	<20.0	119	-
Volatiles			-	-	
Acetone	0.50 ug/g dry	-	-	<0.50	<0.50
Benzene	0.02 ug/g dry	-	-	<0.02	<0.02
Bromodichloromethane	0.05 ug/g dry	-	-	<0.05	<0.05
Bromoform	0.05 ug/g dry	-	-	<0.05	<0.05
Bromomethane	0.05 ug/g dry	-	-	<0.05	<0.05
Carbon Tetrachloride	0.05 ug/g dry	-	-	<0.05	<0.05

Order #: 2125646

Report Date: 24-Jun-2021 Order Date: 18-Jun-2021

Project Description: LOP21-018

	Client ID:	BH1-21-SS3	BH2-21-SS1	BH3-21-SS4	BH4-21-SS5
	Sample Date:	18-Jun-21 09:00	18-Jun-21 09:00	18-Jun-21 09:00	18-Jun-21 09:00
	Sample ID:	2125040-01 Soil	2125040-02 Soil	2125040-05 Soil	2125040-04 Soil
Chlorobenzene	0.05 ug/g dry	-	-	<0.05	<0.05
Chloroform	0.05 ug/g dry	_	_	<0.05	< 0.05
Dibromochloromethane	0.05 ug/g dry	-	-	<0.05	<0.05
Dichlorodifluoromethane	0.05 ug/g dry	-	-	<0.05	<0.05
1,2-Dichlorobenzene	0.05 ug/g dry	-	-	<0.05	<0.05
1,3-Dichlorobenzene	0.05 ug/g dry	-	-	<0.05	<0.05
1,4-Dichlorobenzene	0.05 ug/g dry	-	-	<0.05	<0.05
1,1-Dichloroethane	0.05 ug/g dry	-	-	<0.05	<0.05
1,2-Dichloroethane	0.05 ug/g dry	-	-	<0.05	<0.05
1,1-Dichloroethylene	0.05 ug/g dry	-	-	<0.05	<0.05
cis-1,2-Dichloroethylene	0.05 ug/g dry	-	-	<0.05	<0.05
trans-1,2-Dichloroethylene	0.05 ug/g dry	-	-	<0.05	<0.05
1,2-Dichloropropane	0.05 ug/g dry	-	-	<0.05	<0.05
cis-1,3-Dichloropropylene	0.05 ug/g dry	-	-	<0.05	<0.05
trans-1,3-Dichloropropylene	0.05 ug/g dry	-	-	<0.05	<0.05
1,3-Dichloropropene, total	0.05 ug/g dry	-	-	<0.05	<0.05
Ethylbenzene	0.05 ug/g dry	-	-	0.50	0.07
Ethylene dibromide (dibromoethane, 1,2-)	0.05 ug/g dry	-	-	<0.05	<0.05
Hexane	0.05 ug/g dry	-	-	<0.05	<0.05
Methyl Ethyl Ketone (2-Butanone)	0.50 ug/g dry	-	-	<0.50	<0.50
Methyl Isobutyl Ketone	0.50 ug/g dry	-	-	<0.50	<0.50
Methyl tert-butyl ether	0.05 ug/g dry	-	-	<0.05	<0.05
Methylene Chloride	0.05 ug/g dry	-	-	<0.05	<0.05
Styrene	0.05 ug/g dry	-	-	<0.05	<0.05
1,1,1,2-Tetrachloroethane	0.05 ug/g dry	-	-	<0.05	<0.05
1,1,2,2-Tetrachloroethane	0.05 ug/g dry	-	-	<0.05	<0.05
Tetrachloroethylene	0.05 ug/g dry	-	-	<0.05	<0.05
Toluene	0.05 ug/g dry	-	-	<0.05	<0.05
1,1,1-Trichloroethane	0.05 ug/g dry	-	-	<0.05	<0.05
1,1,2-Trichloroethane	0.05 ug/g dry	-	-	<0.05	<0.05
Trichloroethylene	0.05 ug/g dry	-	-	<0.05	<0.05
Trichlorofluoromethane	0.05 ug/g dry	-	-	<0.05	<0.05
Vinyl chloride	0.02 ug/g dry	-	-	<0.02	<0.02
m,p-Xylenes	0.05 ug/g dry	-	-	0.35	<0.05
o-Xylene	0.05 ug/g dry	-	-	<0.05	<0.05

Order #: 2125646

Report Date: 24-Jun-2021 Order Date: 18-Jun-2021

Project Description: LOP21-018

	Client ID: Sample Date: Sample ID: MDI /Units	BH1-21-SS3 18-Jun-21 09:00 2125646-01 Soil	BH2-21-SS1 18-Jun-21 09:00 2125646-02 Soil	BH3-21-SS4 18-Jun-21 09:00 2125646-03 Soil	BH4-21-SS5 18-Jun-21 09:00 2125646-04 Soil
Xylenes, total	0.05 ug/g dry	-	-	0.35	<0.05
4-Bromofluorobenzene	Surrogate	-	-	94.3%	95.8%
Dibromofluoromethane	Surrogate	-	-	93.5%	93.8%
Toluene-d8	Surrogate	-	-	105%	103%
Hydrocarbons					
F1 PHCs (C6-C10)	7 ug/g dry	-	-	51	16
F2 PHCs (C10-C16)	4 ug/g dry	-	- 71		150
F3 PHCs (C16-C34)	8 ug/g dry	-	-	35	60
F4 PHCs (C34-C50)	6 ug/g dry	-	-	<6	16
Semi-Volatiles			•		
Acenaphthene	0.02 ug/g dry	<0.02	<0.02	0.04	-
Acenaphthylene	0.02 ug/g dry	<0.02	<0.02	<0.02	-
Anthracene	0.02 ug/g dry	<0.02	<0.02 <0.02		-
Benzo [a] anthracene	0.02 ug/g dry	<0.02	<0.02 <0.02		-
Benzo [a] pyrene	0.02 ug/g dry	<0.02	<0.02	<0.02	-
Benzo [b] fluoranthene	0.02 ug/g dry	<0.02	<0.02	<0.02	-
Benzo [g,h,i] perylene	0.02 ug/g dry	<0.02	<0.02	<0.02	-
Benzo [k] fluoranthene	0.02 ug/g dry	<0.02	<0.02	<0.02	-
Chrysene	0.02 ug/g dry	<0.02	<0.02	<0.02	-
Dibenzo [a,h] anthracene	0.02 ug/g dry	<0.02	<0.02	<0.02	-
Fluoranthene	0.02 ug/g dry	<0.02	0.04	<0.02	-
Fluorene	0.02 ug/g dry	<0.02	<0.02	0.05	-
Indeno [1,2,3-cd] pyrene	0.02 ug/g dry	<0.02	<0.02	<0.02	-
1-Methylnaphthalene	0.02 ug/g dry	<0.02	<0.02	0.15	-
2-Methylnaphthalene	0.02 ug/g dry	<0.02	<0.02	0.07	-
Methylnaphthalene (1&2)	0.04 ug/g dry	<0.04	<0.04	0.22	-
Naphthalene	0.01 ug/g dry	<0.01	<0.01	<0.01	-
Phenanthrene	0.02 ug/g dry	<0.02	0.02	0.22	-
Pyrene	0.02 ug/g dry	<0.02	0.03	<0.02	-
2-Fluorobiphenyl	Surrogate	77.6%	79.7%	68.9%	-
Terphenyl-d14	Surrogate	108%	93.8%	92.8%	-

Order #: 2125646

Report Date: 24-Jun-2021

Order Date: 18-Jun-2021

Project Description: LOP21-018

	Client ID:	BH4-21-SS8	BH5-21-SS3	BH5-21-SS4	DUP-1-21
	Sample Date:	18-Jun-21 09:00	18-Jun-21 09:00	18-Jun-21 09:00	18-Jun-21 09:00
	Sample ID:	2125646-05	2125646-06	2125646-07	2125646-08
Physical Characteristics	MDL/Units	5011	5011	501	Soli
	0.1 % by Wt.	60.7	03.5	95.6	82.0
General Inorganics		00.7	90.0	65.0	02.0
SAR	0.01 N/A	-	4 45	-	-
Conductivity	5 uS/cm	_	497	_	-
Cyanide, free	0.03 ug/g dry	-	<0.03	-	-
рН	0.05 pH Units	- 7.92		-	-
Metals					
Antimony	1.0 ug/g dry	-	<1.0	-	-
Arsenic	1.0 ug/g dry	-	2.8	-	-
Barium	1.0 ug/g dry	-	81.1	-	-
Beryllium	0.5 ug/g dry	-	<0.5	-	-
Boron	5.0 ug/g dry	-	10.0	-	-
Boron, available	0.5 ug/g dry	-	1.2	-	-
Cadmium	0.5 ug/g dry	-	<0.5	-	-
Chromium	5.0 ug/g dry	-	22.8	-	-
Chromium (VI)	0.2 ug/g dry	-	<0.2	-	-
Cobalt	1.0 ug/g dry	-	5.9	-	-
Copper	5.0 ug/g dry	-	15.9	-	-
Lead	1.0 ug/g dry	-	28.2	-	-
Mercury	0.1 ug/g dry	-	0.1	-	-
Molybdenum	1.0 ug/g dry	-	1.0	-	-
Nickel	5.0 ug/g dry	-	14.9	-	-
Selenium	1.0 ug/g dry	-	<1.0	-	-
Silver	0.3 ug/g dry	-	<0.3	-	-
Thallium	1.0 ug/g dry	-	<1.0	-	-
Uranium	1.0 ug/g dry	-	<1.0	-	-
Vanadium	10.0 ug/g dry	-	27.0	-	-
Zinc	20.0 ug/g dry	-	42.7	-	-
Volatiles	I				
Acetone	0.50 ug/g dry	<0.50	-	<0.50	<0.50
Benzene	0.02 ug/g dry	<0.02	-	<0.02	<0.02
Bromodichloromethane	0.05 ug/g dry	<0.05	-	<0.05	<0.05
Bromoform	0.05 ug/g dry	<0.05	-	<0.05	<0.05
Bromomethane	0.05 ug/g dry	<0.05	-	<0.05	<0.05
Carbon Tetrachloride	0.05 ug/g dry	<0.05	-	<0.05	<0.05

Order #: 2125646

Report Date: 24-Jun-2021 Order Date: 18-Jun-2021

Project Description: LOP21-018

	Client ID: Sample Date: Sample ID:	BH4-21-SS8 18-Jun-21 09:00 2125646-05	BH5-21-SS3 18-Jun-21 09:00 2125646-06	BH5-21-SS4 18-Jun-21 09:00 2125646-07	DUP-1-21 18-Jun-21 09:00 2125646-08
	MDL/Units	Soil	Soil	Soil	Soil
Chlorobenzene	0.05 ug/g dry	<0.05	-	<0.05	<0.05
Chloroform	0.05 ug/g dry	<0.05	-	<0.05	<0.05
Dibromochloromethane	0.05 ug/g dry	<0.05	-	<0.05	<0.05
Dichlorodifluoromethane	0.05 ug/g dry	<0.05	-	<0.05	<0.05
1,2-Dichlorobenzene	0.05 ug/g dry	<0.05	-	<0.05	<0.05
1,3-Dichlorobenzene	0.05 ug/g dry	<0.05	-	<0.05	<0.05
1,4-Dichlorobenzene	0.05 ug/g dry	<0.05	-	<0.05	<0.05
1,1-Dichloroethane	0.05 ug/g dry	<0.05	-	<0.05	<0.05
1,2-Dichloroethane	0.05 ug/g dry	<0.05	-	<0.05	<0.05
1,1-Dichloroethylene	0.05 ug/g dry	<0.05	-	<0.05	<0.05
cis-1,2-Dichloroethylene	0.05 ug/g dry	<0.05	-	<0.05	<0.05
trans-1,2-Dichloroethylene	0.05 ug/g dry	<0.05	-	<0.05	<0.05
1,2-Dichloropropane	0.05 ug/g dry	<0.05	-	<0.05	<0.05
cis-1,3-Dichloropropylene	0.05 ug/g dry	<0.05	-	<0.05	<0.05
trans-1,3-Dichloropropylene	0.05 ug/g dry	<0.05	-	<0.05	<0.05
1,3-Dichloropropene, total	0.05 ug/g dry	<0.05	-	<0.05	<0.05
Ethylbenzene	0.05 ug/g dry	<0.05	-	0.38	<0.05
Ethylene dibromide (dibromoethane, 1	0.05 ug/g dry	<0.05	-	<0.05	<0.05
Hexane	0.05 ug/g dry	<0.05	-	<0.05	<0.05
Methyl Ethyl Ketone (2-Butanone)	0.50 ug/g dry	<0.50	-	<0.50	<0.50
Methyl Isobutyl Ketone	0.50 ug/g dry	<0.50	-	<0.50	<0.50
Methyl tert-butyl ether	0.05 ug/g dry	<0.05	-	<0.05	<0.05
Methylene Chloride	0.05 ug/g dry	<0.05	-	<0.05	<0.05
Styrene	0.05 ug/g dry	<0.05	-	<0.05	<0.05
1,1,1,2-Tetrachloroethane	0.05 ug/g dry	<0.05	-	<0.05	<0.05
1,1,2,2-Tetrachloroethane	0.05 ug/g dry	<0.05	-	<0.05	<0.05
Tetrachloroethylene	0.05 ug/g dry	<0.05	-	<0.05	<0.05
Toluene	0.05 ug/g dry	<0.05	-	<0.05	0.16
1,1,1-Trichloroethane	0.05 ug/g dry	<0.05	-	<0.05	<0.05
1,1,2-Trichloroethane	0.05 ug/g dry	<0.05	-	<0.05	<0.05
Trichloroethylene	0.05 ug/g dry	<0.05	-	<0.05	<0.05
Trichlorofluoromethane	0.05 ug/g dry	<0.05	-	<0.05	<0.05
Vinyl chloride	0.02 ug/g dry	<0.02	-	<0.02	<0.02
m,p-Xylenes	0.05 ug/g dry	<0.05	-	0.94	0.24
o-Xylene	0.05 ug/g dry	<0.05	-	<0.05	0.09

Order #: 2125646

Report Date: 24-Jun-2021 Order Date: 18-Jun-2021

Project Description: LOP21-018

	Client ID: Sample Date: Sample ID: MDL/Units	BH4-21-SS8 18-Jun-21 09:00 2125646-05 Soil	BH5-21-SS3 18-Jun-21 09:00 2125646-06 Soil	BH5-21-SS4 18-Jun-21 09:00 2125646-07 Soil	DUP-1-21 18-Jun-21 09:00 2125646-08 Soil
Xylenes, total	0.05 ug/g dry	<0.05	-	0.94	0.33
4-Bromofluorobenzene	Surrogate	98.6%	-	108%	106%
Dibromofluoromethane	Surrogate	92.4%	-	96.4%	127%
Toluene-d8	Surrogate	104%	-	103%	100%
Hydrocarbons			ł		
F1 PHCs (C6-C10)	7 ug/g dry	<7	-	160	108
F2 PHCs (C10-C16)	4 ug/g dry	<4	-	2530	2750
F3 PHCs (C16-C34)	8 ug/g dry	<8	-	837	1160
F4 PHCs (C34-C50)	6 ug/g dry	<6	- 21		16
Semi-Volatiles					
Acenaphthene	0.02 ug/g dry	-	0.02	-	-
Acenaphthylene	0.02 ug/g dry	-	<0.02	-	-
Anthracene	0.02 ug/g dry	-	0.06	0.06 -	
Benzo [a] anthracene	0.02 ug/g dry	-	0.16 -		-
Benzo [a] pyrene	0.02 ug/g dry	-	0.16	0.16 -	
Benzo [b] fluoranthene	0.02 ug/g dry	-	0.18	-	-
Benzo [g,h,i] perylene	0.02 ug/g dry	-	0.11	-	-
Benzo [k] fluoranthene	0.02 ug/g dry	-	0.09	-	-
Chrysene	0.02 ug/g dry	-	0.16	-	-
Dibenzo [a,h] anthracene	0.02 ug/g dry	-	0.03	-	-
Fluoranthene	0.02 ug/g dry	-	0.32	-	-
Fluorene	0.02 ug/g dry	-	0.03	-	-
Indeno [1,2,3-cd] pyrene	0.02 ug/g dry	-	0.09	-	-
1-Methylnaphthalene	0.02 ug/g dry	-	<0.02	-	-
2-Methylnaphthalene	0.02 ug/g dry	-	<0.02	-	-
Methylnaphthalene (1&2)	0.04 ug/g dry	-	<0.04	-	-
Naphthalene	0.01 ug/g dry	-	0.02	-	-
Phenanthrene	0.02 ug/g dry	-	0.30	-	-
Pyrene	0.02 ug/g dry	-	0.29	-	-
2-Fluorobiphenyl	Surrogate	-	84.2%	-	-
Terphenyl-d14	Surrogate	_	87.3%	-	-

Client PO:

Report Date: 24-Jun-2021

Order Date: 18-Jun-2021

Project Description: LOP21-018

	Client ID:	DUP-2-21	-	-	-
	Sample Date:	18-Jun-21 09:00	-	-	-
	Sample ID:	2125646-09	-	-	-
Physical Characteristics	MDL/Units	501	-	-	-
% Solids	0.1 % by Wt.	92.6	_	_	_
General Inorganics		02.0			
SAR	0.01 N/A	6.07	-	-	-
Conductivity	5 uS/cm	760	-	-	-
Cyanide, free	0.03 ug/g dry	<0.03	-	-	-
рН	0.05 pH Units	7.48	-	-	-
Metals					
Antimony	1.0 ug/g dry	<1.0	-	-	-
Arsenic	1.0 ug/g dry	2.7	-	-	-
Barium	1.0 ug/g dry	72.8	-	-	-
Beryllium	0.5 ug/g dry	<0.5	-	-	-
Boron	5.0 ug/g dry	9.9	-	-	-
Boron, available	0.5 ug/g dry	1.0	-	-	-
Cadmium	0.5 ug/g dry	<0.5	-	-	-
Chromium	5.0 ug/g dry	23.7	-	-	-
Chromium (VI)	0.2 ug/g dry	<0.2	-	-	-
Cobalt	1.0 ug/g dry	6.1	-	-	-
Copper	5.0 ug/g dry	16.0	-	-	-
Lead	1.0 ug/g dry	28.7	-	-	-
Mercury	0.1 ug/g dry	<0.1	-	-	-
Molybdenum	1.0 ug/g dry	1.0	-	-	-
Nickel	5.0 ug/g dry	15.6	-	-	-
Selenium	1.0 ug/g dry	<1.0	-	-	-
Silver	0.3 ug/g dry	<0.3	-	-	-
Thallium	1.0 ug/g dry	<1.0	-	-	-
Uranium	1.0 ug/g dry	<1.0	-	-	-
Vanadium	10.0 ug/g dry	28.1	-	-	-
Zinc	20.0 ug/g dry	45.1	-	-	-
Semi-Volatiles	I		[[
Acenaphthene	0.02 ug/g dry	0.03	-	-	-
Acenaphthylene	0.02 ug/g dry	0.02	-	-	-
Anthracene	0.02 ug/g dry	0.09	-	-	-
Benzo [a] anthracene	0.02 ug/g dry	0.23	-	-	-
Benzo [a] pyrene	0.02 ug/g dry	0.22	-	-	-
Benzo [b] fluoranthene	0.02 ug/g dry	0.25	-	-	-

Report Date: 24-Jun-2021 Order Date: 18-Jun-2021

Project Description: LOP21-018

	-		-		
	Client ID:	DUP-2-21	-	-	-
	Sample Date:	18-Jun-21 09:00	-	-	-
	Sample ID:	2125646-09	-	-	-
	MDL/Units	Soil	-	-	-
Benzo [g,h,i] perylene	0.02 ug/g dry	0.14	-	-	-
Benzo [k] fluoranthene	0.02 ug/g dry	0.12	-	-	-
Chrysene	0.02 ug/g dry	0.22	-	-	-
Dibenzo [a,h] anthracene	0.02 ug/g dry	0.04	-	-	-
Fluoranthene	0.02 ug/g dry	0.47	-	-	-
Fluorene	0.02 ug/g dry	0.04	-	-	-
Indeno [1,2,3-cd] pyrene	0.02 ug/g dry	0.12	-	-	-
1-Methylnaphthalene	0.02 ug/g dry	<0.02	-	-	-
2-Methylnaphthalene	0.02 ug/g dry	<0.02	-	-	-
Methylnaphthalene (1&2)	0.04 ug/g dry	<0.04	-	-	-
Naphthalene	0.01 ug/g dry	0.02	-	-	-
Phenanthrene	0.02 ug/g dry	0.36	-	-	-
Pyrene	0.02 ug/g dry	0.39	-	-	-
2-Fluorobiphenyl	Surrogate	89.6%	-	-	-
Terphenyl-d14	Surrogate	105%	-	-	-

Order #: 2125646

Report Date: 24-Jun-2021

Order Date: 18-Jun-2021

Project Description: LOP21-018

Method Quality Control: Blank

		Reporting		Source	Source		%REC		
Analyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes
General Inorganics									
Conductivity	ND	5	uS/cm						
Cvanide, free	ND	0.03	ua/a						
Hydrocarbons			- 5 5						
		7	ug/g						
F2 PHCs (C10-C16)	9	4	ug/g ug/g						
F3 PHCs (C16-C34)	ND	8	ug/g						
F4 PHCs (C34-C50)	ND	6	ug/g						
Metals									
Antimony	ND	1.0	ug/g						
Arsenic	ND	1.0	ug/g						
Barium	ND	1.0	ug/g						
Beryllium	ND	0.5	ug/g						
Boron, available	ND	0.5	ug/g						
Boron	ND	5.0	ug/g						
	ND	0.5	ug/g						
Chromium (VI)		0.2	ug/g						
Cobalt		5.0	ug/g						
Copper	ND	5.0	ug/g ug/g						
Lead	ND	1.0	ug/g						
Mercury	ND	0.1	ug/g						
Molybdenum	ND	1.0	ug/g						
Nickel	ND	5.0	ug/g						
Selenium	ND	1.0	ug/g						
Silver	ND	0.3	ug/g						
Thallium	ND	1.0	ug/g						
	ND	1.0	ug/g						
Vanadium	ND	10.0	ug/g						
Semi-Volatiles	ND	20.0	ug/g						
		0.02	uala						
		0.02	ug/g						
Anthracene	ND	0.02	ug/g						
Benzo [a] anthracene	ND	0.02	ug/g						
Benzo [a] pyrene	ND	0.02	ug/g						
Benzo [b] fluoranthene	ND	0.02	ug/g						
Benzo [g,h,i] perylene	ND	0.02	ug/g						
Benzo [k] fluoranthene	ND	0.02	ug/g						
Chrysene	ND	0.02	ug/g						
Dibenzo [a,h] anthracene	ND	0.02	ug/g						
Fluorannene		0.02	ug/g						
Indeno [1 2 3-cd] pyrene		0.02	ug/g						
1-Methylnaphthalene	ND	0.02	ug/g ug/g						
2-Methylnaphthalene	ND	0.02	ua/a						
Methylnaphthalene (1&2)	ND	0.04	ug/g						
Naphthalene	ND	0.01	ug/g						
Phenanthrene	ND	0.02	ug/g						
Pyrene	ND	0.02	ug/g						
Surrogate: 2-Fluorobiphenyl	1.14		ug/g		85.3	50-140			
Surrogate: Terphenyl-d14	1.48		ug/g		111	50-140			
Volatiles									
Acetone	ND	0.50	ug/g						
Benzene	ND	0.02	ug/g						
Bromodichloromethane	ND	0.05	ug/g						
Bromotorm	ND	0.05	ug/g						
Bromomethane	ND	0.05	ug/g						

Order #: 2125646

Report Date: 24-Jun-2021

Order Date: 18-Jun-2021

Project Description: LOP21-018

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%RFC	%REC Limit	RPD	RPD Limit	Notes
Orahan Tahadhladda	ND	0.05		riooun					
	ND	0.05	ug/g						
Chlorobenzene	ND	0.05	ug/g						
Chiorotorm	ND	0.05	ug/g						
Dibromocniorometnane	ND	0.05	ug/g						
Dichlorodifluoromethane	ND	0.05	ug/g						
1,2-Dichlorobenzene	ND	0.05	ug/g						
1,3-Dichlorobenzene	ND	0.05	ug/g						
1,4-Dichlorobenzene	ND	0.05	ug/g						
1,1-Dichloroethane	ND	0.05	ug/g						
1,2-Dichloroethane	ND	0.05	ug/g						
1,1-Dichloroethylene	ND	0.05	ug/g						
cis-1,2-Dichloroethylene	ND	0.05	ug/g						
trans-1,2-Dichloroethylene	ND	0.05	ug/g						
1,2-Dichloropropane	ND	0.05	ug/g						
cis-1,3-Dichloropropylene	ND	0.05	ug/g						
trans-1,3-Dichloropropylene	ND	0.05	ug/g						
1,3-Dichloropropene, total	ND	0.05	ug/g						
Ethylbenzene	ND	0.05	ug/g						
Ethylene dibromide (dibromoethane, 1,2	ND	0.05	ug/g						
Hexane	ND	0.05	ug/g						
Methyl Ethyl Ketone (2-Butanone)	ND	0.50	ug/g						
Methyl Isobutyl Ketone	ND	0.50	ug/g						
Methyl tert-butyl ether	ND	0.05	ug/g						
Methylene Chloride	ND	0.05	ug/g						
Styrene	ND	0.05	ug/g						
1,1,1,2-Tetrachloroethane	ND	0.05	ug/g						
1,1,2,2-Tetrachloroethane	ND	0.05	ug/g						
Tetrachloroethylene	ND	0.05	ug/g						
Toluene	ND	0.05	ug/g						
1,1,1-Trichloroethane	ND	0.05	ug/g						
1,1,2-Trichloroethane	ND	0.05	ug/g						
Trichloroethylene	ND	0.05	ug/g						
Trichlorofluoromethane	ND	0.05	ug/g						
Vinyl chloride	ND	0.02	ug/g						
m.p-Xylenes	ND	0.05	ug/g						
o-Xvlene	ND	0.05	ug/g						
Xvlenes, total	ND	0.05	ug/g						
Surrogate: 4-Bromofluorobenzene	7.95		uq/q		99.4	50-140			
Surrogate: Dibromofluoromethane	8.14		ua/a		102	50-140			
Surrogate: Toluene-d8	8.15		ug/g		102	50-140			

Method Quality Control: Duplicate

	Reporting		Source		%REC		RPD	RPD		
Analyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes	
General inorganics										
SAR	1.23	0.01	N/A	1.41			13.6	30		
Conductivity	429	5	uS/cm	427			0.5	5		
Cyanide, free	ND	0.03	ug/g dry	ND			NC	35		
pH	7.58	0.05	pH Units	7.56			0.3	2.3		
Hydrocarbons										
F1 PHCs (C6-C10)	ND	7	ug/g dry	ND			NC	40		
F2 PHCs (C10-C16)	143	4	ug/g dry	71			NC	30		
F3 PHCs (C16-C34)	78	8	ug/g dry	35			NC	30		
F4 PHCs (C34-C50)	ND	6	ug/g dry	ND			NC	30		
Metals										
Antimony	ND	1.0	ug/g dry	ND			NC	30		
Arsenic	4.7	1.0	ug/g dry	4.6			3.2	30		
Barium	46.7	1.0	ug/g dry	46.6			0.2	30		
Beryllium	0.5	0.5	ug/g dry	0.5			5.8	30		
Boron, available	1.83	0.5	ug/g dry	1.62			12.4	35		
Boron	6.0	5.0	ug/g dry	6.0			0.0	30		
Cadmium	ND	0.5	ug/g dry	ND			NC	30		
Chromium (VI)	ND	0.2	ug/g dry	ND			NC	35		
Chromium	15.3	5.0	ug/g dry	14.9			3.1	30		
Cobalt	5.2	1.0	ug/g dry	5.1			2.4	30		
Copper	13.2	5.0	ug/g dry	12.8			3.2	30		
Lead	13.6	1.0	ug/g dry	12.7			6.9	30		
Mercury	ND	0.1	ug/g dry	ND			NC	30		
Molybdenum	ND	1.0	ug/g dry	ND			NC	30		
Nickel	10.1	5.0	ug/g dry	9.9			1.9	30		
Selenium	ND	1.0	ug/g dry	ND			NC	30		
Silver	ND	0.3	ug/g dry	ND			NC	30		
Thallium	ND	1.0	ug/g dry	ND			NC	30		
Uranium	ND	1.0	ug/g dry	ND			NC	30		
Vanadium	27.5	10.0	ug/g dry	26.9			2.0	30		
Zinc	54.9	20.0	ug/g dry	54.2			1.3	30		
Physical Characteristics										
% Solids	93.4	0.1	% by Wt.	93.2			0.2	25		
Semi-Volatiles										
Acenaphthene	ND	0.02	ug/g dry	ND			NC	40		
Acenaphthylene	ND	0.02	ug/g dry	ND			NC	40		
Anthracene	ND	0.02	ug/g dry	ND			NC	40		
Benzo [a] anthracene	ND	0.02	ug/g dry	ND			NC	40		
Benzo [a] pyrene	ND	0.02	ug/g dry	ND			NC	40		
Benzo [b] fluoranthene	ND	0.02	ug/g dry	ND			NC	40		
Benzo [g,h,i] perylene	ND	0.02	ug/g dry	ND			NC	40		
Benzo [k] fluoranthene	ND	0.02	ug/g dry	ND			NC	40		
Chrysene	ND	0.02	ug/g dry	ND			NC	40		
Dibenzo [a,h] anthracene	ND	0.02	ug/g dry	ND			NC	40		
Fluoranthene	ND	0.02	ug/g dry	ND			NC	40		
Fluorene	ND	0.02	ug/g dry	ND			NC	40		
Indeno [1,2,3-cd] pyrene	ND	0.02	ug/g dry	ND			NC	40		
1-Methylnaphthalene	ND	0.02	ug/g dry	ND			NC	40		
2-Methylnaphthalene	ND	0.02	ug/g dry	ND			NC	40		
Naphthalene	ND	0.01	ug/g dry	ND			NC	40		
Pnenanthrene	ND	0.02	ug/g dry	ND			NC	40		
Pyrene	ND	0.02	ug/g dry	ND	60 F	50 1 10	NC	40		
Surroyate: Z-Fluoropipnenyi	1.09		ug/g ary		00.5	50-140				
Sunogate: Terphenyl-a14	1.50		ug/g ary		94.3	50-140				
volatiles										

Report Date: 24-Jun-2021

Order Date: 18-Jun-2021

Project Description: LOP21-018

Order #: 2125646

Report Date: 24-Jun-2021

Order Date: 18-Jun-2021

Project Description: LOP21-018

Method Quality Control: Duplicate

		Reporting		Source	Source %REC			RPD		
Analyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes	
Acetone	ND	0.50	ug/g dry	ND			NC	50		
Benzene	ND	0.02	ug/g dry	ND			NC	50		
Bromodichloromethane	ND	0.05	ug/g dry	ND			NC	50		
Bromoform	ND	0.05	ug/g dry	ND			NC	50		
Bromomethane	ND	0.05	ug/g dry	ND			NC	50		
Carbon Tetrachloride	ND	0.05	ug/g dry	ND			NC	50		
Chlorobenzene	ND	0.05	ug/g dry	ND			NC	50		
Chloroform	ND	0.05	ug/g dry	ND			NC	50		
Dibromochloromethane	ND	0.05	ug/g dry	ND			NC	50		
Dichlorodifluoromethane	ND	0.05	ug/g dry	ND			NC	50		
1,2-Dichlorobenzene	ND	0.05	ug/g dry	ND			NC	50		
1,3-Dichlorobenzene	ND	0.05	ug/g dry	ND			NC	50		
1,4-Dichlorobenzene	ND	0.05	ug/g dry	ND			NC	50		
1,1-Dichloroethane	ND	0.05	ug/g dry	ND			NC	50		
1,2-Dichloroethane	ND	0.05	ug/g dry	ND			NC	50		
1,1-Dichloroethylene	ND	0.05	ug/g dry	ND			NC	50		
cis-1,2-Dichloroethylene	ND	0.05	ug/g dry	ND			NC	50		
trans-1.2-Dichloroethylene	ND	0.05	ua/a drv	ND			NC	50		
1.2-Dichloropropane	ND	0.05	ua/a drv	ND			NC	50		
cis-1.3-Dichloropropylene	ND	0.05	ua/a drv	ND			NC	50		
trans-1.3-Dichloropropylene	ND	0.05	ua/a drv	ND			NC	50		
Ethylbenzene	ND	0.05	ua/a drv	ND			NC	50		
Ethylene dibromide (dibromoethane, 1.2	ND	0.05	ua/a drv	ND			NC	50		
Hexane	ND	0.05	ua/a drv	ND			NC	50		
Methyl Ethyl Ketone (2-Butanone)	ND	0.50	ua/a drv	ND			NC	50		
Methyl Isobutyl Ketone	ND	0.50	ua/a drv	ND			NC	50		
Methyl tert-butyl ether	ND	0.05	ua/a drv	ND			NC	50		
Methylene Chloride	ND	0.05	ua/a drv	ND			NC	50		
Styrene	ND	0.05	ua/a dry	ND			NC	50		
1 1 1 2-Tetrachloroethane	ND	0.05	ua/a dry	ND			NC	50		
1 1 2 2-Tetrachloroethane	ND	0.05	ug/g dry	ND			NC	50		
	ND	0.05	ua/a dry	ND			NC	50		
Toluene	ND	0.05	ug/g dry	0.053			NC	50		
1 1 1-Trichloroethane	ND	0.05	ua/a dry	ND			NC	50		
1 1 2-Trichloroethane	ND	0.05	ua/a dry	ND			NC	50		
Trichloroethylene	ND	0.05	ua/a dry	ND			NC	50		
Trichlorofluoromethane	ND	0.05	ug/g dry	ND			NC	50		
Vipyl chloride		0.00	ug/g dry				NC	50		
m n Yylenes	0 153	0.02	ug/g dry	0.138			10.3	50		
o-Xvlene	ND	0.05	ug/g dry	ND			NC	50		
Surrogate: 4-Bromofluorobenzene	0.20	0.00	ug/g diy		00 2	50-140	NO	50		
Surrogate: Dibromofluoromethane	0.05		ug/g diy		07.6	50 140				
	9.00		ug/g ury		97.0	50-140				
Surrogate: Toluene-av	9.47		ug/g ary		102	50-140				

Order #: 2125646

Report Date: 24-Jun-2021 Order Date: 18-Jun-2021

Project Description: LOP21-018

Method Quality Control: Spike

	Decult	Reporting	L Los Star	Source	0/ DE0	%REC	DDD	RPD	Neter
Analyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes
General Inorganics									
Cyanide, free	0.282	0.03	ug/g	ND	94.0	70-130			
Hydrocarbons									
F1 PHCs (C6-C10)	210	7	ua/a	ND	105	80-120			
F2 PHCs (C10-C16)	176	4	ua/a	71	78.8	60-140			
F3 PHCs (C16-C34)	332	8	ua/a	35	91.2	60-140			
F4 PHCs (C34-C50)	181	6	ug/g	ND	87.8	60-140			
Metals			00						
Antimony	50.5	1.0	ua/a	ND	100	70-130			
Arsenic	55.0	1.0	ua/a	1.8	106	70-130			
Barium	71.9	1.0	ug/g	18 7	106	70-130			
Bervllium	51.4	0.5	ua/a	ND	102	70-130			
Boron, available	4.53	0.5	ua/a	1.62	58.2	70-122			QM-07
Boron	49.2	5.0	ua/a	ND	93.6	70-130			
Cadmium	52.6	0.5	ua/a	ND	105	70-130			
Chromium (VI)	5.3	0.2	ua/a	ND	90.0	70-130			
Chromium	60.0	5.0	ua/a	5.9	108	70-130			
Cobalt	54.9	1.0	ua/a	2.0	106	70-130			
Copper	56.2	5.0	ua/a	5.1	102	70-130			
Lead	54.9	1.0	ua/a	5.1	99.6	70-130			
Mercury	1.52	0.1	ua/a	ND	101	70-130			
Molvbdenum	52.1	1.0	ua/a	ND	104	70-130			
Nickel	55.8	5.0	ug/g	ND	104	70-130			
Selenium	49.1	1.0	uq/q	ND	97.7	70-130			
Silver	43.1	0.3	ug/g	ND	86.1	70-130			
Thallium	51.7	1.0	ug/g	ND	103	70-130			
Uranium	51.2	1.0	ug/g	ND	102	70-130			
Vanadium	66.0	10.0	ug/g	10.8	110	70-130			
Zinc	73.4	20.0	ug/g	21.7	103	70-130			
Semi-Volatiles									
Acenaphthene	0.152	0.02	ug/g	ND	76.6	50-140			
Acenaphthylene	0.128	0.02	ug/g	ND	64.5	50-140			
Anthracene	0.152	0.02	ug/g	ND	76.3	50-140			
Benzo [a] anthracene	0.125	0.02	ug/g	ND	63.0	50-140			
Benzo [a] pyrene	0.146	0.02	ug/g	ND	73.7	50-140			
Benzo [b] fluoranthene	0.169	0.02	ug/g	ND	85.3	50-140			
Benzo [g,h,i] perylene	0.141	0.02	ug/g	ND	71.1	50-140			
Benzo [k] fluoranthene	0.159	0.02	ug/g	ND	79.9	50-140			
Chrysene	0.160	0.02	ug/g	ND	80.6	50-140			
Dibenzo [a,h] anthracene	0.142	0.02	ug/g	ND	71.7	50-140			
Fluoranthene	0.139	0.02	ug/g	ND	70.0	50-140			
Fluorene	0.136	0.02	ug/g	ND	68.3	50-140			
Indeno [1,2,3-cd] pyrene	0.133	0.02	ug/g	ND	67.2	50-140			
1-Methylnaphthalene	0.154	0.02	ug/g	ND	77.4	50-140			
2-Methylnaphthalene	0.168	0.02	ug/g	ND	84.6	50-140			
Naphthalene	0.166	0.01	ug/g	ND	83.8	50-140			
Phenanthrene	0.143	0.02	ug/g	ND	72.2	50-140			
Pyrene	0.141	0.02	ug/g	ND	71.0	50-140			
Surrogate: 2-Fluorobiphenyl	1.28		ug/g		80.5	50-140			

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Surrogate: Terphenyl-d14	1.45		ug/g		91.4	50-140			
Volatiles									
Acetone	10.8	0.50	ua/a	ND	108	50-140			
Benzene	3.49	0.02	ug/g	ND	87.3	60-130			
Bromodichloromethane	3.90	0.05	ug/g	ND	97.6	60-130			
Bromoform	4.24	0.05	ug/g	ND	106	60-130			
Bromomethane	3.50	0.05	ug/g	ND	87.4	50-140			
Carbon Tetrachloride	3.56	0.05	ug/g	ND	89.0	60-130			
Chlorobenzene	3.95	0.05	ug/g	ND	98.7	60-130			
Chloroform	3.63	0.05	ug/g	ND	90.7	60-130			
Dibromochloromethane	4.53	0.05	ug/g	ND	113	60-130			
Dichlorodifluoromethane	3.61	0.05	ug/g	ND	90.2	50-140			
1,2-Dichlorobenzene	3.85	0.05	ug/g	ND	96.3	60-130			
1,3-Dichlorobenzene	3.85	0.05	ug/g	ND	96.3	60-130			
1,4-Dichlorobenzene	3.79	0.05	ug/g	ND	94.6	60-130			
1,1-Dichloroethane	3.56	0.05	ug/g	ND	88.9	60-130			
1,2-Dichloroethane	3.68	0.05	ug/g	ND	92.1	60-130			
1,1-Dichloroethylene	3.52	0.05	ug/g	ND	87.9	60-130			
cis-1,2-Dichloroethylene	3.48	0.05	ug/g	ND	87.1	60-130			
trans-1,2-Dichloroethylene	3.37	0.05	ug/g	ND	84.3	60-130			
1,2-Dichloropropane	3.54	0.05	ug/g	ND	88.4	60-130			
cis-1,3-Dichloropropylene	4.37	0.05	ug/g	ND	109	60-130			
trans-1,3-Dichloropropylene	3.95	0.05	ug/g	ND	98.8	60-130			
Ethylbenzene	3.88	0.05	ug/g	ND	97.1	60-130			
Ethylene dibromide (dibromoethane, 1,2-	3.72	0.05	ug/g	ND	93.1	60-130			
Hexane	3.52	0.05	ug/g	ND	88.1	60-130			
Methyl Ethyl Ketone (2-Butanone)	8.67	0.50	ug/g	ND	86.7	50-140			
Methyl Isobutyl Ketone	8.64	0.50	ug/g	ND	86.4	50-140			
Methyl tert-butyl ether	9.49	0.05	ug/g	ND	94.9	50-140			
Methylene Chloride	3.54	0.05	ug/g	ND	88.6	60-130			
Styrene	3.75	0.05	ug/g	ND	93.7	60-130			
1,1,1,2-Tetrachloroethane	3.63	0.05	ug/g	ND	90.9	60-130			
1,1,2,2-Tetrachloroethane	4.34	0.05	ug/g	ND	108	60-130			
Tetrachloroethylene	3.70	0.05	ug/g	ND	92.5	60-130			
Toluene	4.04	0.05	ug/g	ND	101	60-130			
1,1,1-Trichloroethane	4.00	0.05	ug/g	ND	100	60-130			
1,1,2-Trichloroethane	3.59	0.05	ug/g	ND	89.8	60-130			
Trichloroethylene	3.68	0.05	ug/g	ND	92.0	60-130			
Trichlorofluoromethane	3.35	0.05	ug/g	ND	83.8	50-140			
Vinyl chloride	3.70	0.02	ug/g	ND	92.5	50-140			
m,p-Xylenes	8.45	0.05	ug/g	ND	106	60-130			
o-Xylene	4.19	0.05	ug/g	ND	105	60-130			
Surrogate: 4-Bromofluorobenzene	8.47		ug/g		106	50-140			
Surrogate: Dibromofluoromethane	8.66		ug/g		108	50-140			
Surrogate: Toluene-d8	8.00		ug/g		100	50-140			

OTTAWA • MISSISSAUGA • HAMILTON • CALGARY • KINGSTON • LONDON • NIAGARA • WINDSOR • RICHMOND HILL

Report Date: 24-Jun-2021

Order Date: 18-Jun-2021

Project Description: LOP21-018

Qualifier Notes:

Login Qualifiers :

Sample - F1/BTEX/VOCs (soil) not submitted according to Reg. 153/04, Amended 2011 - not field preserved Applies to samples: DUP-1-21

QC Qualifiers :

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference. NC: Not Calculated

Soil results are reported on a dry weight basis when the units are denoted with 'dry'. Where %Solids is reported, moisture loss includes the loss of volatile hydrocarbons.

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.

- F1 range corrected for BTEX.

- F2 to F3 ranges corrected for appropriate PAHs where available.
- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.
- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.
- When reported, data for F4G has been processed using a silica gel cleanup.

Order #: 2125646

\sim																	
	P	'arac	cel I	D: 2	125646		Pa	arace	Ord	er Nu	ımber			Chair	Of C	ustody	
PARALEI	-							(Lal	b Use	e Onl	y)			(La	ab Use (Only)	
LABORATORIES LTD						m	0	10	~	_				No	12	9117	
Client Name: / 200 alt	20		Proje	act Daf			d	1	-5	62	£6) + + 1	
Contact Name:	S		Proje	ect Ker	LOP21-01	0								Р	age	of	
Address:	//		00.4	.e #:										Turn	around	Time	
30 Lansheld Way, Ot,	taug		PO #	1									🗆 1 d	ay		🗆 3 d	lay
elephone: (12 727 0-07			E-ma	10: 	lolon	e							🗆 2 da	ау		K Reg	gular
613-367-7073				h	they hope	is, ca						D	ate Req	uired:		-	
Regulation 153/04 Othe	r Regulation	N	Matrix	Type:	S (Soil/Sed.) GW (G	round Water)											
J Table 1 Res/Park Med/Fine REG 558	D PWQO	1	SW (Su	urface V	Water) SS (Storm/Sa	nitary Sewer)						Re	quired	Analysi	s		
Table 2 Ind/Comm Coarse CCME	□ misa			P (P	'aint) A (Air) O (Oti	her)						Τ	T				Γ
Table Agri/Other	SU - Storm			Jers			BTEX			4			5				
	~		nme	ontair	Sample	Taken	1-F44			by IC			sh i				
Sample ID/Location Name		latrix	ir Vol	of Co			- S	Ccs	Hs	etals		HWS)	ship				
1 BUI-21-583		5	4	#	Date 1	Time	4	Ş	PA	ž	BH 2	8	*				
2 BH2 - 21 - 58/		S	-	1	JUNE 10/21		-		X	_	_	-	X				
3 BUZ 21-SS11		5		2	9.57				Ą	-	_	-	X				
BUU-21-555		5		2			X	Х	X	-	-		X				
BUU-21-558		0		2			X	X	_	_	-				$ \rightarrow$		
5 BUS-21-583	1	5		\leq			X	X	-9	_	+						
1 845-71-584	×	5		-					X	+	+		×		_		
Dup-1-71		5		4	2		X	X		+	+	Ц				\downarrow	
Dup-2-21		5		/	8				4	_	+		X			\rightarrow	
0		0		6	V		X	X	_	-	-					\downarrow	
nments:				6							142.00						
											Met	hod al	fDeliver	1:		Ð	
inquistieer By (Sign)	Received By Dri	ver/Deg	pot:		1	Received at Lab:	6	75-			Veri	fied By	<i>c</i>	PID	20	\$6X	
inquished By (Pring):	Date/Time:					Date/Time:	A	CG.	'n				1	Æ	Jan	^	
e/Time: 1820-14/4CPM	Temperature:				00	JUN 1	8,20	21	16	14	Date	/Time	Ju	ne (8,202	1 17	:(5
					Devision 0.0	emperature: 0)0-g	0	С		pH V	erifie	d: 🗋	Ву:			
					Hevision 3.0										Supplementation of the local division of the	And in case of the local data and the	And in case of the local division of the loc

TRUSTED. **RESPONSIVE.** RELIABLE.

OTTAWA 🖲 NIAGARA FALLS 🖲 MISSISSAUGA SARNIA

Certificate of Analysis

Paterson Group Consulting Engineers

28 Concourse Gate, Unit 1 Nepean, ON K2E 7T7 Attn: Mark D'Arcy

Phone: (613) 226-7381 Fax: (613) 226-6344

Client PO: 9112	Report Date: 31-Aug-2010
Project: PE2073	Order Date: 26-Aug-2010
Custody: 77029	Order #: 1035209

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID Client ID

1035209-01 BH3-SS2 1035209-02 BH6-SS4

Approved By:

Dale Robertson, BSc Laboratory Director

Any use of these results implies your agreement that our total liability in connection with this work, however arising shall be limited to the amount paid by you for this work, and that our employees or agents shall not under circumstances be liable to you in connection with this work

Client: Paterson Group Consulting Engineers

Client PO: 9112

Project Description: PE2073

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date Analysis Date
BTEX	EPA 8260 - P&T GC-MS	27-Aug-10 29-Aug-10
CCME PHC F1	CWS Tier 1 - P&T GC-FID	27-Aug-10 29-Aug-10
CCME PHC F2 - F4	CWS Tier 1 - GC-FID, extraction	27-Aug-10 29-Aug-10
Solids, %	Gravimetric, calculation	27-Aug-10 27-Aug-10

P: 1-800-749-1947 E: paracel@paracellabs.com

WWW.PARACELLABS.COM

OTTAWA 300-2319 St. Laurent Blvd. Ottawa, ON K1G 4JB MISSISSAUGA

NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

SARNIA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 123 Christina St. N. Sarnia, ON N7T 5T7 Report Date: 31-Aug-2010 Order Date:26-Aug-2010

Order #: 1035209

Order #: 1035209

Report Date: 31-Aug-2010 Order Date:26-Aug-2010

Client: Paterson Group Consulting Engineers

Client PO: 9112		Project Descript	ion: PE2073		
	Client ID: Sample Date: Sample ID:	BH3-SS2 24-Aug-10 1035209-01	BH6-SS4 25-Aug-10 1035209-02	- - -	- - -
	MDL/Units	Soll	Soll	-	-
Physical Characteristics					
% Solids	0.1 % by Wt.	88.7	62.1	-	-
Volatiles					
Benzene	0.03 ug/g dry	<0.03	<0.03	-	-
Ethylbenzene	0.05 ug/g dry	0.55	<0.05	-	-
Toluene	0.05 ug/g dry	0.17	<0.05	-	-
m,p-Xylenes	0.05 ug/g dry	3.14	<0.05	-	-
o-Xylene	0.05 ug/g dry	2.37	<0.05	-	-
Xylenes, total	0.10 ug/g dry	5.51	<0.10	-	-
Toluene-d8	Surrogate	102%	102%	-	-
Hydrocarbons					
F1 PHCs (C6-C10)	10 ug/g dry	77	<10	-	-
F2 PHCs (C10-C16)	10 ug/g dry	6230	1580	-	-
F3 PHCs (C16-C34)	10 ug/g dry	2450	293	-	-
F4 PHCs (C34-C50)	10 ug/g dry	<10	<10	-	-

P: 1-800-749-1947 E: paracel@paracellabs.com OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 MISSISSAUGA

6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 3 of 7

WWW.PARACELLABS.COM

Client: Paterson Group Consulting Engineers

Client PO: 9112

Project Description: PE2073

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	10	ug/g						
F2 PHCs (C10-C16)	ND	10	ug/g						
F3 PHCs (C16-C34)	ND	10	ug/g						
F4 PHCs (C34-C50)	ND	10	ug/g						
Volatiles									
Benzene	ND	0.03	ug/g						
Ethylbenzene	ND	0.05	ug/g						
Toluene	ND	0.05	ug/g						
m,p-Xylenes	ND	0.05	ug/g						
o-Xylene	ND	0.05	ug/g						
Xylenes, total	ND	0.10	ug/g						
Surrogate: Toluene-d8	8.11		ug/g		101	76-118			

P: 1-800-749-1947 E: paracel@paracellabs.com

WWW.PARACELLABS.COM

OTTAWA 300-2319 St. Laurent Blvd. Ottawa, ON K1G 4JB

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

Report Date: 31-Aug-2010 Order Date:26-Aug-2010

Order #: 1035209

SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 4 of 7

Client: Paterson Group Consulting Engineers

Client PO: 9112

Project Description: PE2073

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hvdrocarbons									
F1 PHCs (C6-C10)	1350	10	ug/g dry	1240			8.1	32	
F2 PHCs (C10-C16)	ND	10	ug/g dry	ND				50	
F3 PHCs (C16-C34)	37	10	ug/g dry	32			13.4	50	
F4 PHCs (C34-C50)	25	10	ug/g dry	23			7.7	50	
Volatiles									
Benzene	11.9	0.03	ug/g dry	15.6			26.9	50	
Ethylbenzene	56.6	0.05	ug/g dry	70.1			21.3	34	
Toluene	79.0	0.05	ug/g dry	109			32.0	32	
m,p-Xylenes	136	0.05	ug/g dry	170			21.8	35	
o-Xylene	82.8	0.05	ug/g dry	101			20.2	50	
Surrogate: Toluene-d8	9.65		ug/g dry	ND	97.3	76-118			

Order #: 1035209

Report Date: 31-Aug-2010 Order Date:26-Aug-2010

P: 1-800-749-1947 E: paracel@paracellabs.com

WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4JB NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA SARNIA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 Sarnia, ON N7T 5T7

Page 5 of 7

Client: Paterson Group Consulting Engineers

Client PO: 9112

Project Description: PE2073

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	99	10	ug/g	ND	98.9	80-120			
F2 PHCs (C10-C16)	69	10	ug/g	ND	85.7	61-129			
F3 PHCs (C16-C34)	174	10	ug/g	ND	87.1	61-129			
F4 PHCs (C34-C50)	132	10	ug/g	ND	110	61-129			
Volatiles									
Benzene	0.841	0.03	ug/g	ND	90.0	55-141			
Ethylbenzene	2.51	0.05	ug/g	ND	113	61-139			
Toluene	10.0	0.05	ug/g	ND	92.9	54-136			
m,p-Xylenes	7.13	0.05	ug/g	ND	106	61-139			
o-Xylene	3.09	0.05	ug/g	ND	114	60-142			
Surrogate: Toluene-d8	8.13		ug/g		102	76-118			

Order #: 1035209

Report Date: 31-Aug-2010 Order Date:26-Aug-2010

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4JB

NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 6 of 7

P: 1-800-749-1947 E: paracel@paracellabs.com

WWW, PARACELLABS, COM

Client: Paterson Group Consulting Engineers

Client PO: 9112

Project Description: PE2073

Sample and QC Qualifiers Notes

None

Sample Data Revisions

None

Work Order Revisions/Comments:

None

Other Report Notes:

n/a: not applicable

MDL: Method Detection Limit

Source Result: Data used as source for matrix and duplicate samples

%REC: Percent recovery.

RPD: Relative percent difference.

Soil results are reported on a dry weight basis when the units are denoted with 'dry'.

Where %Solids is reported, moisture loss includes the loss of volatile hydrocarbons.

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.

- F1 range corrected for BTEX.
- F2 to F3 ranges corrected for appropriate PAHs where available.
- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.
- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.

Report Date: 31-Aug-2010 Order Date:26-Aug-2010

P: 1-800-749-1947 E: paracel@paracellabs.com OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3

WWW.PARACELLABS.COM

OPARACEL LABORATORIES LTD.	TR RE RE	USTEL SPON LIABL	D. SIVE. E.					300-2319 Otta	St. Laurent Blvd wa, ON K1G 4J8 t: 613-731-9577 800-749-1947	Chain	of Cust	ody	
OTTAWA ◉ NIAGARA FALLS ◎ MISSISS	SAUGA	● SA	RNIA			Reg. Drinking W	/ater	e: paracel@	f: 613-731-9064 paracellabs.com	Nº.	77029	}	
Client Name: PATERSON GROUP	Project	Ref:	E 20	173		Waterworks Nam	e:			Pag	e) of 1		
Contact Name: Mark D'Arcy	Quote #	Juote # N/A Waterworks Number:								Sam	inle Taken by		
Address: 28 Concourse Gate Unit #1	PO#	9117	2			Address:				Print Name:	Ren. N	ind.	
	E-mail	Address:	a mb	200 002	MODIA	After hours Cont	act:			Signature)			
Telephone: 613-226-6344	Fax:	uncy	e pup	sig	oup.coc	Public Health Ur	iit:			TATILL	day [12 day]	Dag	
Matrix Types: S-Soil/Sed. GW-Ground Water SW-	-Surface	Water	SS-Stor	m/Sanita	ary Sewer 1	DW-Drinking	Water RD	W-Regulate	d Drinking Wa	ter P - Paint	A-Air O-Oth	her	
Samples submitted under: (Indicate ONLY one) 0. Reg 153 (511) Table 0. Reg 170/03 0. Reg 318/08 CCME 0. Reg 243/07 0. Reg 319/08 Other:	🗌 Privat	e well	Type of I Location	DW Sampl Types: S	e: R = Raw; = Surface Wa	Γ = Treated; D = ter; G = Ground	Distribution Water	\wedge	Requi	red Analyses			
Paracel Order Number 1035209	Matrix	Air Volume	/pe of Sample	of Containers	Sam	ple Taken	ee / Combined lorine Residual mg/L	CISCF, HOF4					
Sample ID / Location Name			T	#	Date	Time	L R	E					
1 BH3-SS2	5			1	Aug. 24 12	blu.							
2 BHO - SS4	5			1	Aug. 25/2	66							
3					3								
4													
5													
6									-				
7													
8													
9		1											
10													
Comments:					1.12			Preservati Verified b	on Verification:	рН Т	'emperature		
Relinquished By (Print & Sign) Boom Doherty & DIJ	Receiv	ed By	1	tuc	26/10	Received	Lab Use Only		Verified	IN.			
Date/Time: Aug. 25/2010- 9:00	Date/T	ime:	12.2	25	~//0	Date/Time:	Hoss	6111	By: Date/Tim	e: Di	35	10	
ChainOfCustody Rev 2.0, January 2010						/	<u> </u>	2:37	3p-	HUC	4:410	n	

RELIABLE.

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

Paterson Group Consulting Engineers

154 Colonnade Road South Nepean, ON K2E 7J5 Attn: Mark D'Arcy

Client PO: 30693 Project: PE2703 Custody: 128097

Report Date: 27-Aug-2020 Order Date: 21-Aug-2020

Order #: 2034610

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID	Client ID
2034610-01	BH1-20-SS2
2034610-02	BH1-20-SS3
2034610-03	BH1-20-SS4
2034610-04	BH2-20-SS2

Approved By:

Dale Robertson, BSc Laboratory Director

Any use of these results implies your agreement that our total liability in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
BTEX by P&T GC-MS	EPA 8260 - P&T GC-MS	24-Aug-20	24-Aug-20
Chromium, hexavalent - soil	MOE E3056 - Extraction, colourimetric	22-Aug-20	27-Aug-20
Mercury by CVAA	EPA 7471B - CVAA, digestion	25-Aug-20	25-Aug-20
PHC F1	CWS Tier 1 - P&T GC-FID	24-Aug-20	24-Aug-20
PHCs F2 to F4	CWS Tier 1 - GC-FID, extraction	22-Aug-20	24-Aug-20
REG 153: Metals by ICP/MS, soil	EPA 6020 - Digestion - ICP-MS	25-Aug-20	25-Aug-20
REG 153: PAHs by GC-MS	EPA 8270 - GC-MS, extraction	21-Aug-20	22-Aug-20
Solids, %	Gravimetric, calculation	24-Aug-20	25-Aug-20

OTTAWA • MISSISSAUGA • HAMILTON • CALGARY • KINGSTON • LONDON • NIAGARA • WINDSOR • RICHMOND HILL

Order #: 2034610

Report Date: 27-Aug-2020 Order Date: 21-Aug-2020

Project Description: PE2703

Client: Paterson Group Consulting Engineers

Client PO: 30693

Report Date: 27-Aug-2020

Order Date: 21-Aug-2020

Project Description: PE2703

	Client ID: Sample Date: Sample ID:	BH1-20-SS2 19-Aug-20 09:00 2034610-01	BH1-20-SS3 19-Aug-20 09:00 2034610-02	BH1-20-SS4 19-Aug-20 09:00 2034610-03	BH2-20-SS2 19-Aug-20 09:00 2034610-04
	MDL/Units	Soil	Soil	Soil	Soil
Physical Characteristics					
% Solids	0.1 % by Wt.	91.4	83.7	60.7	91.8
Metals					
Antimony	1.0 ug/g dry	<1.0	-	-	<1.0
Arsenic	1.0 ug/g dry	3.4	-	-	2.4
Barium	1.0 ug/g dry	228	-	-	55.5
Beryllium	0.5 ug/g dry	<0.5	-	-	<0.5
Boron	5.0 ug/g dry	5.5	-	-	<5.0
Cadmium	0.5 ug/g dry	<0.5	-	-	<0.5
Chromium	5.0 ug/g dry	19.0	-	-	17.9
Chromium (VI)	0.2 ug/g dry	<0.2	-	-	<0.2
Cobalt	1.0 ug/g dry	4.5	-	-	5.3
Copper	5.0 ug/g dry	17.9	-	-	10.9
Lead	1.0 ug/g dry	80.6	-	-	36.0
Mercury	0.1 ug/g dry	<0.1	-	-	<0.1
Molybdenum	1.0 ug/g dry	<1.0	-	-	<1.0
Nickel	5.0 ug/g dry	22.1	-	-	12.0
Selenium	1.0 ug/g dry	<1.0	-	-	<1.0
Silver	0.3 ug/g dry	<0.3	-	-	<0.3
Thallium	1.0 ug/g dry	<1.0	-	-	<1.0
Uranium	1.0 ug/g dry	<1.0	-	-	<1.0
Vanadium	10.0 ug/g dry	23.7	-	-	23.3
Zinc	20.0 ug/g dry	204	-	-	45.4
Volatiles					
Benzene	0.02 ug/g dry	-	<0.02	<0.02	-
Ethylbenzene	0.05 ug/g dry	-	<0.05	<0.05	-
Toluene	0.05 ug/g dry	-	<0.05	<0.05	-
m,p-Xylenes	0.05 ug/g dry	-	<0.05	<0.05	-
o-Xylene	0.05 ug/g dry	-	<0.05	<0.05	-
Xylenes, total	0.05 ug/g dry	-	<0.05	<0.05	-
Toluene-d8	Surrogate	-	117%	118%	-
Hydrocarbons					
F1 PHCs (C6-C10)	7 ug/g dry	-	<7	<7	-
F2 PHCs (C10-C16)	4 ug/g dry	-	<4	<4	-
F3 PHCs (C16-C34)	8 ug/g dry	-	<8	<8	-
F4 PHCs (C34-C50)	6 ug/g dry	-	<6	<6	-

Client: Paterson Group Consulting Engineers

Client PO: 30693

Report Date: 27-Aug-2020 Order Date: 21-Aug-2020

Project Description: PE2703

	Client ID:	BH1-20-SS2	BH1-20-SS3	BH1-20-SS4	BH2-20-SS2
	Sample Date:	19-Aug-20 09:00	19-Aug-20 09:00	19-Aug-20 09:00	19-Aug-20 09:00
	Sample ID:	2034610-01	2034610-02	2034610-03	2034610-04
	MDL/Units	Soil	Soil	Soil	Soil
Semi-Volatiles	•		-		
Acenaphthene	0.02 ug/g dry	0.04	-	-	0.03
Acenaphthylene	0.02 ug/g dry	0.03	-	-	0.03
Anthracene	0.02 ug/g dry	0.15	-	-	0.11
Benzo [a] anthracene	0.02 ug/g dry	0.49	-	-	0.39
Benzo [a] pyrene	0.02 ug/g dry	0.49	-	-	0.38
Benzo [b] fluoranthene	0.02 ug/g dry	0.51	-	-	0.39
Benzo [g,h,i] perylene	0.02 ug/g dry	0.26	-	-	0.21
Benzo [k] fluoranthene	0.02 ug/g dry	0.28	-	-	0.22
Chrysene	0.02 ug/g dry	0.44	-	-	0.36
Dibenzo [a,h] anthracene	0.02 ug/g dry	0.08	-	-	0.06
Fluoranthene	0.02 ug/g dry	0.76	-	-	0.65
Fluorene	0.02 ug/g dry	0.04	-	-	0.03
Indeno [1,2,3-cd] pyrene	0.02 ug/g dry	0.25	-	-	0.19
1-Methylnaphthalene	0.02 ug/g dry	<0.02	-	-	<0.02
2-Methylnaphthalene	0.02 ug/g dry	<0.02	-	-	<0.02
Methylnaphthalene (1&2)	0.04 ug/g dry	<0.04	-	-	<0.04
Naphthalene	0.01 ug/g dry	0.02	-	-	0.02
Phenanthrene	0.02 ug/g dry	0.32	-	-	0.38
Pyrene	0.02 ug/g dry	0.66	-	-	0.62
2-Fluorobiphenyl	Surrogate	87.0%	-	-	92.7%
Terphenyl-d14	Surrogate	78.4%	-	-	92.3%

Order #: 2034610

Report Date: 27-Aug-2020

Order Date: 21-Aug-2020

Project Description: PE2703

Method Quality Control: Blank

• • •		Reporting		Source		%REC		RPD	
Analyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	7	ua/a						
F2 PHCs (C10-C16)	ND	4	ug/g						
F3 PHCs (C16-C34)	ND	8	ug/g						
F4 PHCs (C34-C50)	ND	6	ug/g						
Metals		0							
		4.0	,						
Antimony	ND	1.0	ug/g						
Arsenic	ND	1.0	ug/g						
Banum		1.0	ug/g						
Beron		0.5	ug/g						
Cadmium		0.5	ug/g						
Chromium (VII)		0.3	ug/g						
Chromium	ND	5.0	ug/g						
Cobalt	ND	1.0	ug/g						
Copper	ND	5.0	ug/g						
Lead	ND	1.0	ua/a						
Mercury	ND	0.1	ua/a						
Molvbdenum	ND	1.0	ua/a						
Nickel	ND	5.0	ug/g						
Selenium	ND	1.0	ug/g						
Silver	ND	0.3	ug/g						
Thallium	ND	1.0	ug/g						
Uranium	ND	1.0	ug/g						
Vanadium	ND	10.0	ug/g						
Zinc	ND	20.0	ug/g						
Semi-Volatiles									
Acenaphthene	ND	0.02	ug/g						
Acenaphthylene	ND	0.02	ug/g						
Anthracene	ND	0.02	ug/g						
Benzo [a] anthracene	ND	0.02	ug/g						
Benzo [a] pyrene	ND	0.02	ug/g						
Benzo [b] fluoranthene	ND	0.02	ug/g						
Benzo [g,h,i] perylene	ND	0.02	ug/g						
Benzo [k] fluoranthene	ND	0.02	ug/g						
Chrysene	ND	0.02	ug/g						
Dibenzo [a,h] anthracene	ND	0.02	ug/g						
Fluoranthene	ND	0.02	ug/g						
Fluorene	ND	0.02	ug/g						
Indeno [1,2,3-cd] pyrene	ND	0.02	ug/g						
2 Methylnaphthalana		0.02	ug/g						
2-Methylnaphthalene (182)		0.02	ug/g						
Nanhthalene		0.04	ug/g						
Phenanthrene	ND	0.01	ug/g						
Pyrene	ND	0.02	ug/g						
Surrogate: 2-Eluorobinhenvl	1 15	0.02	ug/g		86.5	50-140			
Surrogate: Ternhenvl-d14	1 15		ua/a		86.2	50-140			
Volatiles	1.10		ug, g		00.2	00 / 10			
Bonzono		0.02							
		0.02	ug/g						
		0.05	ug/g						
m n-Xvlenes		0.05	ug/g						
n-Xvlene	ND	0.05	ug/g						
Xvlenes, total	ND	0.05	na/a						
Surrogate: Toluene-d8	3,79	0.00	ua/a		118	50-140			
			3' 3						

Client PO: 30693

Method Quality Control: Duplicate

Report Date: 27-Aug-2020

Order Date: 21-Aug-2020

Project Description: PE2703

			Source		%REC				
Analyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes
Hydrocarbons									
		7	ug/g dp/	ND			NC	40	
F_{2} PHCs (C10 C16)		1	ug/g dry	ND			NC	30	
$F_2 PHC_2 (C16 C24)$		•	ug/g dry				NC	20	
$F_{2} = F_{1} = F_{2} = F_{2$		0	ug/g dry	ND			NC	30	
P4 PHOS (C54-C50)	ND	0	ug/g ury	ND			NC	30	
Wetas									
Antimony	ND	1.0	ug/g dry	1.3			NC	30	
Arsenic	11.6	1.0	ug/g dry	11.5			0.5	30	
Barium	371	1.0	ug/g dry	390			5.1	30	
Beryllium	1.2	0.5	ug/g dry	1.2			0.3	30	
Boron	14.5	5.0	ug/g dry	14.4			0.7	30	
Cadmium	ND	0.5	ug/g dry	0.5			NC	30	
Chromium (VI)	ND	0.2	ug/g dry	ND			NC	35	
Chromium	26.2	5.0	ug/g dry	27.1			3.3	30	
Cobalt	9.0	1.0	ug/g dry	9.2			2.8	30	
Copper	56.2	5.0	ug/g dry	59.7			6.0	30	
Lead	359	1.0	ug/g dry	317			12.3	30	
Mercury	ND	0.1	ug/g dry	ND			NC	30	
Molybdenum	2.4	1.0	ug/g dry	2.6			7.6	30	
Nickel	24.9	5.0	ug/g dry	25.0			0.3	30	
Selenium	ND	1.0	ug/g dry	ND			NC	30	
Silver	ND	0.3	ug/g dry	ND			NC	30	
Thallium	ND	1.0	ug/g dry	ND			NC	30	
Uranium	ND	1.0	ug/g dry	ND			NC	30	
Vanadium	31.4	10.0	ug/g dry	31.2			0.4	30	
Zinc	284	20.0	ug/g dry	309			8.2	30	
Physical Characteristics									
% Solids	88.6	0.1	% by Wt.	84.4			4.8	25	
Semi-Volatiles									
Acenaphthene	ND	0.40	ug/g dry	ND			NC	40	GEN09
Acenaphthylene	ND	0.40	ug/g dry	ND			NC	40	GEN09
Anthracene	ND	0.40	ug/g dry	ND			NC	40	GEN09
Benzo [a] anthracene	0.608	0.40	ug/g dry	0.826			30.4	40	
Benzo [a] pyrene	0.694	0.40	ug/g dry	1.01			37.1	40	
Benzo [b] fluoranthene	1.02	0.40	ug/g dry	1.18			15.0	40	
Benzo [g,h,i] perylene	0.518	0.40	ug/g dry	0.701			30.0	40	
Benzo [k] fluoranthene	0.493	0.40	ug/g dry	0.609			21.1	40	
Chrysene	0.714	0.40	ug/g dry	0.985			32.0	40	
Dibenzo [a,h] anthracene	ND	0.40	ug/g dry	ND			NC	40	GEN09
Fluoranthene	1.97	0.40	ug/g dry	2.23			12.5	40	
Fluorene	ND	0.40	ug/g dry	ND			NC	40	GEN09
Indeno [1,2,3-cd] pyrene	0.483	0.40	ug/g dry	0.718			39.2	40	
1-Methylnaphthalene	ND	0.40	ug/g dry	ND			NC	40	GEN09
2-Methylnaphthalene	ND	0.40	ug/g dry	ND			NC	40	GEN09
Naphthalene	0.204	0.20	ug/g dry	0.269			27.3	40	
Phenanthrene	1.06	0.40	ug/g dry	1.29			19.9	40	
Pyrene	1.65	0.40	ug/g dry	2.24			30.4	40	
Surrogate: 2-Fluorobiphenyl	1.41		ug/g dry		90.6	50-140			
Surrogate: Terphenyl-d14	1.54		ug/g dry		99.5	50-140			
Volatiles									
Benzene	ND	0.02	ug/g dry	ND			NC	50	
Ethylbenzene	ND	0.05	ug/g dry	ND			NC	50	
Toluene	ND	0.05	ug/g dry	ND			NC	50	
m,p-Xylenes	ND	0.05	ug/g dry	ND			NC	50	
o-Xylene	ND	0.05	ug/g dry	ND			NC	50	
Surrogate: Toluene-d8	4.49		ug/g dry		117	50-140			

Report Date: 27-Aug-2020 Order Date: 21-Aug-2020

Project Description: PE2703

Method Quality Control: Spike												
Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes			
Hydrocarbons												
F1 PHCs (C6-C10)	161	7	ua/a	ND	80.4	80-120						
F2 PHCs (C10-C16)	97	4	ua/a	ND	89.7	60-140						
F3 PHCs (C16-C34)	287	8	ua/a	ND	108	60-140						
F4 PHCs (C34-C50)	179	6	ua/a	ND	106	60-140						
Metals			00									
Antimony	46.0	1.0	ua/a	ND	90.9	70-130						
Arsenic	55.7	1.0	ua/a	4.6	102	70-130						
Barium	201	1.0	ua/a	156	89.8	70-130						
Bervllium	50.3	0.5	9-9 ua/a	0.5	99.6	70-130						
Boron	49.8	5.0	ua/a	5.7	88.0	70-130						
Cadmium	48.2	0.5	ua/a	ND	95.9	70-130						
Chromium (VI)	0.1	0.2	ug/g	ND	48.0	70-130			QM-05			
Chromium	62.6	5.0	uq/q	10.8	103	70-130						
Cobalt	53.9	1.0	ug/g	3.7	100	70-130						
Copper	71.7	5.0	ug/g	23.9	95.8	70-130						
Lead	169	1.0	ug/g	127	84.3	70-130						
Mercury	1.48	0.1	ug/g	ND	98.8	70-130						
Molybdenum	51.3	1.0	ug/g	1.0	100	70-130						
Nickel	60.0	5.0	ug/g	10.0	100	70-130						
Selenium	47.6	1.0	ug/g	ND	94.7	70-130						
Silver	49.6	0.3	ug/g	ND	99.2	70-130						
Thallium	48.2	1.0	ug/g	ND	96.1	70-130						
Uranium	52.0	1.0	ug/g	ND	103	70-130						
Vanadium	64.6	10.0	ug/g	12.5	104	70-130						
Zinc	164	20.0	ug/g	123	81.5	70-130						
Semi-Volatiles												
Acenaphthene	0.152	0.02	ua/a	ND	90.9	50-140						
Acenaphthylene	0.136	0.02	ua/a	ND	81.4	50-140						
Anthracene	0.141	0.02	ua/a	ND	84.7	50-140						
Benzo [a] anthracene	0.122	0.02	ug/g	ND	73.1	50-140						
Benzo [a] pyrene	0.129	0.02	ug/g	ND	77.6	50-140						
Benzo [b] fluoranthene	0.174	0.02	ug/g	ND	104	50-140						
Benzo [g,h,i] perylene	0.133	0.02	ug/g	ND	79.9	50-140						
Benzo [k] fluoranthene	0.159	0.02	ug/g	ND	95.4	50-140						
Chrysene	0.146	0.02	ug/g	ND	87.7	50-140						
Dibenzo [a,h] anthracene	0.138	0.02	ug/g	ND	82.9	50-140						
Fluoranthene	0.150	0.02	ug/g	ND	89.8	50-140						
Fluorene	0.142	0.02	ug/g	ND	85.3	50-140						
Indeno [1,2,3-cd] pyrene	0.140	0.02	ug/g	ND	84.0	50-140						
1-Methylnaphthalene	0.146	0.02	ug/g	ND	87.4	50-140						
2-Methylnaphthalene	0.161	0.02	ug/g	ND	96.4	50-140						
Naphthalene	0.161	0.01	ug/g	ND	96.9	50-140						
Phenanthrene	0.146	0.02	ug/g	ND	87.7	50-140						
Pyrene	0.147	0.02	ug/g	ND	88.5	50-140						
Surrogate: 2-Fluorobiphenyl	1.02		ug/g		76.5	50-140						
Surrogate: Terphenyl-d14	1.36		ug/g		102	50-140						
Volatiles												
Benzene	3.00	0.02	ug/g	ND	75.0	60-130						

Report Date: 27-Aug-2020

Order Date: 21-Aug-2020

Project Description: PE2703

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Ethylbenzene	3.94	0.05	ug/g	ND	98.6	60-130			
Toluene	3.92	0.05	ug/g	ND	98.0	60-130			
m,p-Xylenes	8.15	0.05	ug/g	ND	102	60-130			
o-Xylene	4.31	0.05	ug/g	ND	108	60-130			
Surrogate: Toluene-d8	2.95		ug/g		92.2	50-140			

tuanner notes.

QC Qualifiers :

GEN09 : Elevated detection limits due to the nature of the sample matrix.

QM-05: The spike recovery was outside acceptance limits for the matrix spike due to matrix interference.

QS-02 : Spike level outside of control limits. Analysis batch accepted based on other QC included in the batch.

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference. NC: Not Calculated

Soil results are reported on a dry weight basis when the units are denoted with 'dry'. Where %Solids is reported, moisture loss includes the loss of volatile hydrocarbons.

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.
- F1 range corrected for BTEX.
- F2 to F3 ranges corrected for appropriate PAHs where available.
- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.
- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.
- When reported, data for F4G has been processed using a silica gel cleanup.

PARA LABORATORI	CEL ES LTD	Pa	arac	el II): 2()34610	m	Par 20	(Lab	Orde Use	r Nur Only	nber		C	hain (Lai Nº	Of Cu o Use C 12	istor nly) 809	dy 7	
Client Name: Paterson				Proje PE	ct Ref:	3									Pa	ige /	of /		
Contact Name: Maric D'Arcy				Quot	e #:								+		Turna	round	Time		
Address: 154 (010 nna)e Telephone: 613 226 7381				PO #: 30(E-mai	593 1: xrcy	0 faterson g ro	UP, Ca						Da	□ 1 day □ 2 day te Requ	/ / uired:			3 day Regu	y ılar
Regulation 153/04	Other R	Regulation		Antriv	Duno:	E/Soil/Sod) GW/G	and Materia						-	1					-
Table 1 Res/Park Med/Fine	e 🗆 REG 558	PWQ0		SW (Su	rface V	Vater) SS (Storm/Sa	nitary Sewer)						Rec	uired A	Inalysis	;			
Table 2 Ind/Comm Coarse	CCME				P (P	aint) A (Air) O (Ot	her)					Т	Т						
Table 3 Agri/Other	□ SU - Sani Mun:	SU - Storm		e	tainers	Sample	Taken	F4+BTEX			/ ICP								
For RSC: 🗆 Yes 🕅 No	Other:		ž	olun	Cont			-E1-			yd sle	1	NS)		·, ·				
Sample ID/Location	on Name		Mat	Air \	to #	Date	Time	- DHG	NO NO	PAH	Meta	E Hg	B (H)						
1 BH1-20-552			5		1	AUD 19 2010			Ħ	7	7				-	+	+	+	-
2 BH1-27-553			5		2	Aug is 2000		J	\square	×		+	+		-+		+	+	-
3 BH1-20-554			4	-	2	AUD 10 2020		Ĵ	$\left \right $		+	+	Η		\rightarrow	-+	+	+	-1
4 342-20-552			5		1	Aug 12 and		+	$\left \cdot \right $	1	+		+	\vdash	-+		+	-	-1
5			-		-	1109 19 2020		+-	$\left \right $	4		1	+		\rightarrow	+	+	+	_1
6								-	$\left \right $	_	+	+	+			_	+	-	_
7										_	+	+	\vdash			_	+	\downarrow	_
8								_		_	+	_				\square	\perp	\downarrow	_
9								_		_	_	-	\square				\downarrow	_	_
10								_		_	_	+					\perp	\perp	_
Comments:												_							
												Me	thod of	Delivery	I: EL	1	1 Vice	-	
Relinquished By (Sign):		Received By Dri	ver/De	pot:	5	- mailine	Received at Lab:	Ant.		0	1	Ves	ified B	1:	de	00		e C	-
Relinquished By (Print):		Date/Time:			Ula	OUSE .	DANTING	PUIN	n	9	n	mal .	o/T:		Ð	Sm			
Date/Time: ATO 21/2	020	Zemperature:	1/0	8/	20	7:11	Temperature:	9 20	<u>مل</u> مل	0	4,	12	e/ rime	Avg	21	1020	16	5:19	
119 -1 /-	• • •					- P.H.	4	0,4		ç		pn	a Gi Illi G		υγ,				

Chain of Custody (Env.) xlsx

Revision 3.0

RELIABLE.

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

Lopers & Associates

30 Lansfield Way Ottawa, ON K2G 3V8 Attn: Luke Lopers

Client PO: Project: LOP21-018 Custody: 61631

Report Date: 9-Jun-2021 Order Date: 3-Jun-2021

Order #: 2123416

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID **Client ID** 2123416-01 BH1 (MW)- 2021GW1 2123416-02 BH7 (MW)- 2021GW1 2123416-03 BH3-10- 2021GW1 2123416-04 BH1-20- 2021GW1 2123416-05 DUP-1-2021GW1

Approved By:

Mark Foto

Mark Foto, M.Sc. Lab Supervisor

Any use of these results implies your agreement that our total liability in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.

Order #: 2123416

Report Date: 09-Jun-2021 Order Date: 3-Jun-2021

Project Description: LOP21-018

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
BTEX by P&T GC-MS	EPA 624 - P&T GC-MS	5-Jun-21	5-Jun-21
PHC F1	CWS Tier 1 - P&T GC-FID	4-Jun-21	5-Jun-21
PHCs F2 to F4	CWS Tier 1 - GC-FID, extraction	8-Jun-21	9-Jun-21

Order #: 2123416

Report Date: 09-Jun-2021

Order Date: 3-Jun-2021

Project Description: LOP21-018

	Client ID:	BH1 (MW)- 2021GW1	BH7 (MW)- 2021GW1	BH3-10- 2021GW1	BH1-20- 2021GW1
	Sample Date:	02-Jun-21 09:00	02-Jun-21 09:00	02-Jun-21 09:00	02-Jun-21 09:00
	Sample ID:	2123416-01	2123416-02	2123416-03	2123416-04
	MDL/Units	Water	Water	Water	Water
Volatiles					
Benzene	0.5 ug/L	15.7	<0.5	<0.5	<0.5
Ethylbenzene	0.5 ug/L	27.9	<0.5	<0.5	<0.5
Toluene	0.5 ug/L	1.0	<0.5	<0.5	<0.5
m,p-Xylenes	0.5 ug/L	17.0	<0.5	<0.5	<0.5
o-Xylene	0.5 ug/L	22.5	<0.5	<0.5	<0.5
Xylenes, total	0.5 ug/L	39.5	<0.5	<0.5	<0.5
Toluene-d8	Surrogate	87.7%	85.7%	86.2%	87.1%
Hydrocarbons					
F1 PHCs (C6-C10)	25 ug/L	47	<25	<25	<25
F2 PHCs (C10-C16)	100 ug/L	663000 [2]	<100	<100	<100
F3 PHCs (C16-C34)	100 ug/L	345000 [2]	<100	<100	<100
F4 PHCs (C34-C50)	100 ug/L	<2000 [1] [2]	<100	<100	<100
	Client ID:	DUP-1- 2021GW1	-	-	-
	Sample Date:	02-Jun-21 09:00	-	-	-
	Sample ID:	2123416-05	-	-	-
Valatilaa	MDL/Units	Walei	-	-	-
	0.5 µg/l	45.0			
Benzene	0.5 ug/L	15.8	-	-	-
Ethylbenzene	0.5 ug/L	28.3	-	-	-
Toluene	0.5 ug/L	1.0	-	-	-
m,p-Xylenes	0.5 ug/L	17.1	-	-	-
o-Xylene	0.5 ug/L	22.5	-	-	-
Xylenes, total	0.5 ug/L	39.6	-	-	-
Toluene-d8	Surrogate	85.9%	-	-	-
Hydrocarbons					
F1 PHCs (C6-C10)	25 ug/L	56	-	-	-
F2 PHCs (C10-C16)	100 ug/L	686000 [2]	-	-	-
F3 PHCs (C16-C34)	100 ug/L	358000 [2]	-	-	-
F4 PHCs (C34-C50)	100 ug/L	<2000 [1] [2]	-	-	-

Order #: 2123416

Report Date: 09-Jun-2021

Order Date: 3-Jun-2021

Project Description: LOP21-018

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	25	ug/L						
F2 PHCs (C10-C16)	ND	100	ug/L						
F3 PHCs (C16-C34)	ND	100	ug/L						
F4 PHCs (C34-C50)	ND	100	ug/L						
Volatiles									
Benzene	ND	0.5	ug/L						
Ethylbenzene	ND	0.5	ug/L						
Toluene	ND	0.5	ug/L						
m,p-Xylenes	ND	0.5	ug/L						
o-Xylene	ND	0.5	ug/L						
Xylenes, total	ND	0.5	ug/L						
Surrogate: Toluene-d8	71.0		ug/L		88.8	50-140			

Order #: 2123416

Report Date: 09-Jun-2021 Order Date: 3-Jun-2021

Project Description: LOP21-018

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	25	ug/L	ND			NC	30	
Volatiles									
Benzene	ND	0.5	ug/L	ND			NC	30	
Ethylbenzene	ND	0.5	ug/L	ND			NC	30	
Toluene	ND	0.5	ug/L	ND			NC	30	
m,p-Xylenes	ND	0.5	ug/L	ND			NC	30	
o-Xylene	ND	0.5	ug/L	ND			NC	30	
Surrogate: Toluene-d8	75.0		ug/L		93.8	50-140			

Report Date: 09-Jun-2021 Order Date: 3-Jun-2021

Project Description: LOP21-018

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	1730	25	ug/L	ND	86.3	68-117			
F2 PHCs (C10-C16)	1360	100	ug/L	ND	85.2	60-140			
F3 PHCs (C16-C34)	3380	100	ug/L	ND	86.3	60-140			
F4 PHCs (C34-C50)	1790	100	ug/L	ND	72.1	60-140			
Volatiles									
Benzene	37.7	0.5	ug/L	ND	94.3	60-130			
Ethylbenzene	43.7	0.5	ug/L	ND	109	60-130			
Toluene	44.2	0.5	ug/L	ND	110	60-130			
m,p-Xylenes	90.8	0.5	ug/L	ND	114	60-130			
o-Xylene	36.9	0.5	ug/L	ND	92.3	60-130			
Surrogate: Toluene-d8	62.6		ug/L		78.2	50-140			

Sample Qualifiers :

1: Elevated detection limit due to dilution required because of high target analyte concentration.

2: Free product was observed in the sample container.

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference. NC: Not Calculated

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.

- F1 range corrected for BTEX.

- F2 to F3 ranges corrected for appropriate PAHs where available.

- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.

- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.

- When reported, data for F4G has been processed using a silica gel cleanup.

OTTAWA - MISSISSAUGA - HAMILTON - CALGARY - KINGSTON - LONDON - NIAGARA - WINDSOR - RICHMOND HILL

Report Date: 09-Jun-2021 Order Date: 3-Jun-2021 Project Description: LOP21-018

Client Name: Lo ZERS & ASSOCIATES						Paracel Order Number (Lab Use Only) 2 (234)(6		Chain Of Custody (Lab Use Only) N° 61631		ü ustody Only) 1
Contact Name: LOPERS & ASSOCIATES	Pro	oject Ref:	LOP21-	018					Page	of
Address: Luke Lopess	Qu	ote #:							Turnaroun	d Time
30 Lansfield Way Othersa	ON SO	#:						🗆 1 da	ý	🗆 3 day
Telephone (3-327-9073) Call me please		Luk	<e@lc< td=""><td>opers.</td><td>Ca</td><td></td><td></td><td>□ 2 da Date Regi</td><td>y uired:</td><td>Regula</td></e@lc<>	opers.	Ca			□ 2 da Date Regi	y uired:	Regula
REG 153/04 REG 406/19 Other Regulation Table 1 Res/Park Med/Fine REG,558 PWQO Table 2 Ind/Comm Coarse CCME MISA	Matri SW (x Type: Surface P (I	S (Soil/Sed.) GW (Gr Water) SS (Storm/Sar Paint) A (Air) O (Oth	round Water) nitary Sewer) er)			1	Required Ana	lysis	
Table 3 Agri/Other SU-Sani SU-Storm Table Mun: For RSC: Yes No Other:	atrix Volume	of Containers	Sample	Taken	Co Broxs					
$\frac{1}{1} \frac{BHI}{BHI} (N(\mu)) = 20210111$	Σ Ř	*	Date	Time	æ					
2 BH7 (MW) = 2021(1)	GW	2	June 2, 2021		X					
3 BH3-10-20216W	CW	2								
4 BH - 20 - 2021(40)	CL)	2								
5 DUP-1 - 2021 GW1	RW	$\frac{1}{2}$	T		\mathbb{H}					
6	000	5	V							
7					++					
8					++					
9										
10								+		
comments: Some Samples were noted to have for purging product, and from Please Roart	ec pro Samole	duct IDs	- > Sample	collected	afk	2021	Meth	od of Delivery:	, R	×
With Change Received By Dr	iver/Depot:	/	R	Ceived at Lab:	Ima	Du	Verifi	ed By:	RE	2
telinquished By (Print): Luke Lopes Date/Time:	21.6	.3	830	Times 9	(R)	12	LLQ Date/	Time: Tran	210 2	1 17.17
Jate/Time: 2 2521 AQ 11 Temperature:		-	Vac I	emperature 6	K	Id	11	Juil	5,00	1 13-30

RELIABLE.

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

Lopers & Associates

30 Lansfield Way Ottawa, ON K2G 3V8 Attn: Luke Lopers

Client PO: Project: LOP21-018 Custody: 132337

Report Date: 29-Jun-2021 Order Date: 23-Jun-2021

Order #: 2126398

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID	Client ID
2126398-01	BH2-20
2126398-02	BH3-20
2126398-03	BH4-21
2126398-04	BH5-21
2126398-05	BH14-21
2126398-06	Trip Blank

Approved By:

Mark Foto

Mark Foto, M.Sc. Lab Supervisor

Any use of these results implies your agreement that our total liability in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.

Analysis Summary Table

Report Date: 29-Jun-2021 Order Date: 23-Jun-2021

Project Description: LOP21-018

Analysis	Method Reference/Description	Extraction Date	Analysis Date
Anions	EPA 300.1 - IC	24-Jun-21	25-Jun-21
Chromium, hexavalent - water	MOE E3056 - colourimetric	25-Jun-21	25-Jun-21
Cyanide, free	MOE E3015 - Auto Colour	28-Jun-21	28-Jun-21
Mercury by CVAA	EPA 245.2 - Cold Vapour AA	28-Jun-21	28-Jun-21
Metals, ICP-MS	EPA 200.8 - ICP-MS	25-Jun-21	25-Jun-21
рН	EPA 150.1 - pH probe @25 °C	24-Jun-21	24-Jun-21
PHC F1	CWS Tier 1 - P&T GC-FID	25-Jun-21	26-Jun-21
PHCs F2 to F4	CWS Tier 1 - GC-FID, extraction	28-Jun-21	29-Jun-21
REG 153: PAHs by GC-MS	EPA 625 - GC-MS, extraction	28-Jun-21	28-Jun-21
REG 153: VOCs by P&T GC/MS	EPA 624 - P&T GC-MS	25-Jun-21	26-Jun-21

Client PO:

Order #: 2126398

Report Date: 29-Jun-2021 Order Date: 23-Jun-2021

Project Description: LOP21-018

	Client ID: Sample Date:	BH2-20 23-Jun-21 09:00	BH3-20 23-Jun-21 09:00	BH4-21 23-Jun-21 09:00	BH5-21 23-Jun-21 09:00
	Sample ID:	2126398-01	2126398-02	2126398-03	2126398-04 Cround Water
General Inorganics	MDL/Units	Ground Water	Gibunu Water	Ground Water	Glound Water
Cyanide, free	2 ug/L	<2	<2	<2	<2
pH	0.1 pH Units	7.5	7.0	7.3	2.6
Anions	ļļ				-
Chloride	1 mg/L	2400	2440	13900	1240
Metals					
Mercury	0.1 ug/L	<0.1	<0.1	<0.1	<0.1
Antimony	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Arsenic	1 ug/L	1	<1	2	<1
Barium	1 ug/L	193	291	1970	518
Beryllium	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Boron	10 ug/L	66	62	98	133
Cadmium	0.1 ug/L	<0.1	<0.1	<0.1	<0.1
Chromium	1 ug/L	<1	<1	<1	<1
Chromium (VI)	10 ug/L	<10	<10	<10	<10
Cobalt	0.5 ug/L	<0.5	<0.5	3.6	2.3
Copper	0.5 ug/L	1.5	1.3	0.8	2.4
Lead	0.1 ug/L	<0.1	<0.1	0.1	<0.1
Molybdenum	0.5 ug/L	9.0	5.3	3.5	9.0
Nickel	1 ug/L	5	1	30	16
Selenium	1 ug/L	<1	<1	<1	<1
Silver	0.1 ug/L	<0.1	<0.1	0.1	<0.1
Sodium	200 ug/L	678000	1260000	5230000	345000
Thallium	0.1 ug/L	<0.1	<0.1	<0.1	<0.1
Uranium	0.1 ug/L	7.3	1.1	2.3	7.1
Vanadium	0.5 ug/L	3.4	0.8	4.1	0.9
Zinc	5 ug/L	<5	<5	<5	6
Volatiles					
Acetone	5.0 ug/L	<5.0	<5.0	16.0	67.3
Benzene	0.5 ug/L	<0.5	<0.5	15.5	<0.5
Bromodichloromethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Bromoform	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Bromomethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Carbon Tetrachloride	0.2 ug/L	<0.2	<0.2	<0.2	<0.2
Chlorobenzene	0.5 ug/L	<0.5	<0.5	7.0	<0.5
Chloroform	0.5 ug/L	<0.5	<0.5	<0.5	<0.5

Order #: 2126398

Report Date: 29-Jun-2021

Order Date: 23-Jun-2021

Project Description: LOP21-018

	Client ID: Sample Date:	BH2-20 23-Jun-21 09:00	BH3-20 23-Jun-21 09:00	BH4-21 23-Jun-21 09:00	BH5-21 23-Jun-21 09:00
	Sample ID:	2126398-01	2126398-02	2126398-03	2126398-04
	MDL/Units	Ground Water	Ground Water	Ground Water	Ground Water
Dibromochloromethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Dichlorodifluoromethane	1.0 ug/L	<1.0	<1.0	<1.0	<1.0
1,2-Dichlorobenzene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,3-Dichlorobenzene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,4-Dichlorobenzene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,1-Dichloroethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,2-Dichloroethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,1-Dichloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
cis-1,2-Dichloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
trans-1,2-Dichloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,2-Dichloropropane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
cis-1,3-Dichloropropylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
trans-1,3-Dichloropropylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,3-Dichloropropene, total	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	0.5 ug/L	<0.5	<0.5	16.5	<0.5
Ethylene dibromide (dibromoethane, 1,2-)	0.2 ug/L	<0.2	<0.2	<0.2	<0.2
Hexane	1.0 ug/L	<1.0	<1.0	<1.0	<1.0
Methyl Ethyl Ketone (2-Butanone)	5.0 ug/L	<5.0	<5.0	<5.0	<5.0
Methyl Isobutyl Ketone	5.0 ug/L	<5.0	<5.0	<5.0	<5.0
Methyl tert-butyl ether	2.0 ug/L	<2.0	<2.0	<2.0	<2.0
Methylene Chloride	5.0 ug/L	<5.0	<5.0	<5.0	<5.0
Styrene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,1,1,2-Tetrachloroethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,1,2,2-Tetrachloroethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Tetrachloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Toluene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,1,1-Trichloroethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,1,2-Trichloroethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Trichloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Trichlorofluoromethane	1.0 ug/L	<1.0	<1.0	<1.0	<1.0
Vinyl chloride	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
m,p-Xylenes	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
o-Xylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Xylenes, total	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
4-Bromofluorobenzene	Surrogate	105%	104%	103%	102%
Dibromofluoromethane	Surrogate	118%	117%	118%	115%

Client PO:

Order #: 2126398

Report Date: 29-Jun-2021 Order Date: 23-Jun-2021

Project Description: LOP21-018

	Client ID: Sample Date: Sample ID:	BH2-20 23-Jun-21 09:00 2126398-01	BH3-20 23-Jun-21 09:00 2126398-02	BH4-21 23-Jun-21 09:00 2126398-03	BH5-21 23-Jun-21 09:00 2126398-04
	MDL/Units	Ground Water	Ground Water	Ground Water	Ground Water
Ioluene-d8	Surrogate	102%	103%	102%	104%
Hydrocarbons	05 11		i		
F1 PHCs (C6-C10)	25 ug/L	<25	<25	39	25
F2 PHCs (C10-C16)	100 ug/L	<100	<100	<100	<100
F3 PHCs (C16-C34)	100 ug/L	<100	<100	<100	<100
F4 PHCs (C34-C50)	100 ug/L	<100	<100	<100	<100
Semi-Volatiles					
Acenaphthene	0.05 ug/L	<0.05	<0.05	1.09	<0.05
Acenaphthylene	0.05 ug/L	<0.05	<0.05	0.11	<0.05
Anthracene	0.01 ug/L	<0.01	<0.01	0.19	<0.01
Benzo [a] anthracene	0.01 ug/L	<0.01	<0.01	<0.01	<0.01
Benzo [a] pyrene	0.01 ug/L	<0.01	<0.01	<0.01	<0.01
Benzo [b] fluoranthene	0.05 ug/L	<0.05	<0.05	<0.05	<0.05
Benzo [g,h,i] perylene	0.05 ug/L	<0.05	<0.05	<0.05	<0.05
Benzo [k] fluoranthene	0.05 ug/L	<0.05	<0.05	<0.05	<0.05
Chrysene	0.05 ug/L	<0.05	<0.05	<0.05	<0.05
Dibenzo [a,h] anthracene	0.05 ug/L	<0.05	<0.05	<0.05	<0.05
Fluoranthene	0.01 ug/L	<0.01	<0.01	0.16	<0.01
Fluorene	0.05 ug/L	<0.05	<0.05	0.98	0.14
Indeno [1,2,3-cd] pyrene	0.05 ug/L	<0.05	<0.05	<0.05	<0.05
1-Methylnaphthalene	0.05 ug/L	<0.05	<0.05	36.4	0.36
2-Methylnaphthalene	0.05 ug/L	<0.05	<0.05	2.16	<0.05
Methylnaphthalene (1&2)	0.10 ug/L	<0.10	<0.10	38.6	0.36
Naphthalene	0.05 ug/L	<0.05	<0.05	1.70	<0.05
Phenanthrene	0.05 ug/L	<0.05	<0.05	1.97	<0.05
Pyrene	0.01 ug/L	<0.01	<0.01	0.15	0.06
2-Fluorobiphenyl	Surrogate	104%	105%	99.9%	107%
Terphenyl-d14	Surrogate	114%	115%	112%	111%

Order #: 2126398

Report Date: 29-Jun-2021

Order Date: 23-Jun-2021

Project Description: LOP21-018

	Client ID:	BH14-21	Trip Blank	-	-
	Sample Date:	23-Jun-21 09:00	21-Jun-21 09:00	-	-
	Sample ID:	Ground Water	Ground Water	-	-
General Inorganics	MDE/Onits				
Cyanide, free	2 ug/L	<2	-	-	-
рН	0.1 pH Units	7.2	-	-	-
Anions					
Chloride	1 mg/L	11900	-	-	-
Metals	· · ·				
Mercury	0.1 ug/L	<0.1	-	-	-
Antimony	0.5 ug/L	<0.5	-	-	-
Arsenic	1 ug/L	2	-	-	-
Barium	1 ug/L	1910	-	-	-
Beryllium	0.5 ug/L	<0.5	-	-	-
Boron	10 ug/L	95	-	-	-
Cadmium	0.1 ug/L	<0.1	-	-	-
Chromium	1 ug/L	<1	-	-	-
Chromium (VI)	10 ug/L	<10	-	-	-
Cobalt	0.5 ug/L	3.5	-	-	-
Copper	0.5 ug/L	<0.5	-	-	-
Lead	0.1 ug/L	0.1	-	-	-
Molybdenum	0.5 ug/L	3.4	-	-	-
Nickel	1 ug/L	30	-	-	-
Selenium	1 ug/L	<1	-	-	-
Silver	0.1 ug/L	<0.1	-	-	-
Sodium	200 ug/L	5220000	-	-	-
Thallium	0.1 ug/L	<0.1	-	-	-
Uranium	0.1 ug/L	2.1	-	-	-
Vanadium	0.5 ug/L	4.3	-	-	-
Zinc	5 ug/L	5	-	-	-
Volatiles					
Acetone	5.0 ug/L	19.4	<5.0	-	-
Benzene	0.5 ug/L	15.9	<0.5	-	-
Bromodichloromethane	0.5 ug/L	<0.5	<0.5	-	-
Bromoform	0.5 ug/L	<0.5	<0.5	-	-
Bromomethane	0.5 ug/L	<0.5	<0.5	-	-
Carbon Tetrachloride	0.2 ug/L	<0.2	<0.2	-	-
Chlorobenzene	0.5 ug/L	7.2	<0.5	-	-
Chloroform	0.5 ug/L	<0.5	<0.5	-	-

Order #: 2126398

Report Date: 29-Jun-2021 Order Date: 23-Jun-2021

Project Description: LOP21-018

	Client ID: Sample Date: Sample ID: MDI /Units	BH14-21 23-Jun-21 09:00 2126398-05 Ground Water	Trip Blank 21-Jun-21 09:00 2126398-06 Ground Water	- - - -	- - - -
Dibromochloromethane	0.5 ug/L	<0.5	<0.5	-	-
Dichlorodifluoromethane	1.0 ug/L	<1.0	<1.0	-	-
1,2-Dichlorobenzene	0.5 ug/L	<0.5	<0.5	-	-
1,3-Dichlorobenzene	0.5 ug/L	<0.5	<0.5	-	-
1,4-Dichlorobenzene	0.5 ug/L	<0.5	<0.5	-	-
1,1-Dichloroethane	0.5 ug/L	<0.5	<0.5	-	-
1,2-Dichloroethane	0.5 ug/L	<0.5	<0.5	-	-
1,1-Dichloroethylene	0.5 ug/L	<0.5	<0.5	-	-
cis-1,2-Dichloroethylene	0.5 ug/L	<0.5	<0.5	-	-
trans-1,2-Dichloroethylene	0.5 ug/L	<0.5	<0.5	-	-
1,2-Dichloropropane	0.5 ug/L	<0.5	<0.5	-	-
cis-1,3-Dichloropropylene	0.5 ug/L	<0.5	<0.5	-	-
trans-1,3-Dichloropropylene	0.5 ug/L	<0.5	<0.5	-	-
1,3-Dichloropropene, total	0.5 ug/L	<0.5	<0.5	-	-
Ethylbenzene	0.5 ug/L	16.8	<0.5	-	-
Ethylene dibromide (dibromoethane, 1	0.2 ug/L	<0.2	<0.2	-	-
Hexane	1.0 ug/L	<1.0	<1.0	-	-
Methyl Ethyl Ketone (2-Butanone)	5.0 ug/L	<5.0	<5.0	-	-
Methyl Isobutyl Ketone	5.0 ug/L	<5.0	<5.0	-	-
Methyl tert-butyl ether	2.0 ug/L	<2.0	<2.0	-	-
Methylene Chloride	5.0 ug/L	<5.0	<5.0	-	-
Styrene	0.5 ug/L	<0.5	<0.5	-	-
1,1,1,2-Tetrachloroethane	0.5 ug/L	<0.5	<0.5	-	-
1,1,2,2-Tetrachloroethane	0.5 ug/L	<0.5	<0.5	-	-
Tetrachloroethylene	0.5 ug/L	<0.5	<0.5	-	-
Toluene	0.5 ug/L	<0.5	<0.5	-	-
1,1,1-Trichloroethane	0.5 ug/L	<0.5	<0.5	-	-
1,1,2-Trichloroethane	0.5 ug/L	<0.5	<0.5	-	-
Trichloroethylene	0.5 ug/L	<0.5	<0.5	-	-
Trichlorofluoromethane	1.0 ug/L	<1.0	<1.0	-	-
Vinyl chloride	0.5 ug/L	<0.5	<0.5	-	-
m,p-Xylenes	0.5 ug/L	<0.5	<0.5	-	-
o-Xylene	0.5 ug/L	<0.5	<0.5	-	-
Xylenes, total	0.5 ug/L	<0.5	<0.5	-	-
4-Bromofluorobenzene	Surrogate	102%	107%	-	-

Order #: 2126398

Report Date: 29-Jun-2021

Order Date: 23-Jun-2021

Project Description: LOP21-018

	Client ID: Sample Date: Sample ID: MDL/Units	BH14-21 23-Jun-21 09:00 2126398-05 Ground Water	Trip Blank 21-Jun-21 09:00 2126398-06 Ground Water	- - - -	- - - -
Dibromofluoromethane	Surrogate	117%	114%	-	-
Toluene-d8	Surrogate	104%	103%	-	-
Hydrocarbons	<u> </u>				
F1 PHCs (C6-C10)	25 ug/L	46	-	-	-
F2 PHCs (C10-C16)	100 ug/L	<100	-	-	-
F3 PHCs (C16-C34)	100 ug/L	<100	-	-	-
F4 PHCs (C34-C50)	100 ug/L	<100	-	-	-
Semi-Volatiles					
Acenaphthene	0.05 ug/L	1.80	-	-	-
Acenaphthylene	0.05 ug/L	0.18	-	-	-
Anthracene	0.01 ug/L	0.12	-	-	-
Benzo [a] anthracene	0.01 ug/L	<0.01	-	-	-
Benzo [a] pyrene	0.01 ug/L	<0.01	-	-	-
Benzo [b] fluoranthene	0.05 ug/L	<0.05	-	-	-
Benzo [g,h,i] perylene	0.05 ug/L	<0.05	-	-	-
Benzo [k] fluoranthene	0.05 ug/L	<0.05	-	-	-
Chrysene	0.05 ug/L	<0.05	-	-	-
Dibenzo [a,h] anthracene	0.05 ug/L	<0.05	-	-	-
Fluoranthene	0.01 ug/L	0.13	-	-	-
Fluorene	0.05 ug/L	1.56	-	-	-
Indeno [1,2,3-cd] pyrene	0.05 ug/L	<0.05	-	-	-
1-Methylnaphthalene	0.05 ug/L	41.2	-	-	-
2-Methylnaphthalene	0.05 ug/L	2.36	-	-	-
Methylnaphthalene (1&2)	0.10 ug/L	43.6	-	-	-
Naphthalene	0.05 ug/L	1.93	-	-	-
Phenanthrene	0.05 ug/L	1.76	-	-	-
Pyrene	0.01 ug/L	0.13	-	-	-
2-Fluorobiphenyl	Surrogate	109%	-	-	-
Terphenyl-d14	Surrogate	111%	-	-	-

Order #: 2126398

Report Date: 29-Jun-2021

Order Date: 23-Jun-2021

Project Description: LOP21-018

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Anions									
Chloride	ND	1	mg/L						
General Inorganics									
Cvanide, free	ND	2	ua/L						
Hydrocarbons									
E1 PHCs (C6-C10)	ND	25	ua/l						
F2 PHCs (C10-C16)	ND	100	ug/L ug/L						
F3 PHCs (C16-C34)	ND	100	ug/L						
F4 PHCs (C34-C50)	ND	100	ug/L						
Metals									
Mercury	ND	0.1	ug/L						
Antimony	ND	0.5	ug/L						
Arsenic	ND	1	ug/L						
Bervilium	ND	0.5	ug/L						
Boron	ND	10	ug/L						
Cadmium	ND	0.1	ug/L						
Chromium (VI)	ND	10	ug/L						
Chromium	ND	1	ug/L						
Copper		0.5	ug/L						
Lead	ND	0.0	ug/L						
Molybdenum	ND	0.5	ug/L						
Nickel	ND	1	ug/L						
Selenium	ND	1	ug/L						
Silver	ND	0.1	ug/L						
Socium		200	ug/L						
Uranium	ND	0.1	ug/L ug/L						
Vanadium	ND	0.5	ug/L						
Zinc	ND	5	ug/L						
Semi-Volatiles									
Acenaphthene	ND	0.05	ug/L						
Acenaphthylene	ND	0.05	ug/L						
Anthracene Banza (a) anthracena	ND	0.01	ug/L						
Benzo [a] antifacene Benzo [a] nyrene		0.01	ug/L ug/l						
Benzo [b] fluoranthene	ND	0.05	ug/L						
Benzo [g,h,i] perylene	ND	0.05	ug/L						
Benzo [k] fluoranthene	ND	0.05	ug/L						
Chrysene	ND	0.05	ug/L						
Dibenzo [a,n] antiracene		0.05	ug/L						
Fluorene	ND	0.05	ug/L ug/L						
Indeno [1,2,3-cd] pyrene	ND	0.05	ug/L						
1-Methylnaphthalene	ND	0.05	ug/L						
2-Methylnaphthalene	ND	0.05	ug/L						
Methylnaphthalene (1&2)		0.10	ug/L						
Phenanthrene	ND	0.05	ug/L						
Pyrene	ND	0.01	ug/L						
Surrogate: 2-Fluorobiphenyl	19.9		ug/L		99.7	50-140			
Surrogate: Terphenyl-d14	21.7		ug/L		109	50-140			
Volatiles									
Acetone	ND	5.0	ug/L						
Benzene	ND	0.5	ug/L						
Bromodichloromethane	ND	0.5	ug/L						
DIVINUIUIII	IND	0.0	ug/L						

Order #: 2126398

Report Date: 29-Jun-2021

Order Date: 23-Jun-2021

Project Description: LOP21-018

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Bromomethane	ND	0.5	ua/l						
Carbon Tetrachloride	ND	0.2	ug/L						
Chlorobenzene	ND	0.5	ug/L						
Chloroform	ND	0.5	ug/L						
Dibromochloromethane	ND	0.5	ug/L						
Dichlorodifluoromethane	ND	1.0	ug/L						
1.2-Dichlorobenzene	ND	0.5	ug/L						
1.3-Dichlorobenzene	ND	0.5	ug/L						
1.4-Dichlorobenzene	ND	0.5	ug/L						
1.1-Dichloroethane	ND	0.5	ug/L						
1.2-Dichloroethane	ND	0.5	ug/L						
1.1-Dichloroethylene	ND	0.5	ug/L						
cis-1.2-Dichloroethvlene	ND	0.5	ug/L						
trans-1,2-Dichloroethylene	ND	0.5	ug/L						
1,2-Dichloropropane	ND	0.5	ug/L						
cis-1,3-Dichloropropylene	ND	0.5	ug/L						
trans-1,3-Dichloropropylene	ND	0.5	ug/L						
1,3-Dichloropropene, total	ND	0.5	ug/L						
Ethylbenzene	ND	0.5	ug/L						
Ethylene dibromide (dibromoethane, 1,2	ND	0.2	ug/L						
Hexane	ND	1.0	ug/L						
Methyl Ethyl Ketone (2-Butanone)	ND	5.0	ug/L						
Methyl Isobutyl Ketone	ND	5.0	ug/L						
Methyl tert-butyl ether	ND	2.0	ug/L						
Methylene Chloride	ND	5.0	ug/L						
Styrene	ND	0.5	ug/L						
1,1,1,2-Tetrachloroethane	ND	0.5	ug/L						
1,1,2,2-Tetrachloroethane	ND	0.5	ug/L						
Tetrachloroethylene	ND	0.5	ug/L						
Toluene	ND	0.5	ug/L						
1,1,1-Trichloroethane	ND	0.5	ug/L						
1,1,2-Trichloroethane	ND	0.5	ug/L						
Trichloroethylene	ND	0.5	ug/L						
Trichlorofluoromethane	ND	1.0	ug/L						
Vinyl chloride	ND	0.5	ug/L						
m,p-Xylenes	ND	0.5	ug/L						
o-Xylene	ND	0.5	ug/L						
Xylenes, total	ND	0.5	ug/L						
Surrogate: 4-Bromofluorobenzene	82.1		ug/L		103	50-140			
Surrogate: Dibromofluoromethane	85.7		ug/L		107	50-140			
Surrogate: Toluene-d8	82.8		ug/L		103	50-140			

Methyl Ethyl Ketone (2-Butanone)

Methyl Isobutyl Ketone

Methyl tert-butyl ether

Method Quality Control: Duplicate

		Reporting		Source		%REC		RPD	
Analyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes
Anions									
Chlorido		1	ma/l	11000			NC	10	
Chionae	ND	I	mg/L	11900			NC	10	
General Inorganics									
Cyanide, free	ND	2	ug/L	ND			NC	20	
рН	8.0	0.1	pH Units	8.0			0.5	3.3	
Hydrocarbons									
F1 PHCs (C6-C10)	ND	25	ug/L	ND			NC	30	
Metals			U U						
Moroup		0.1	ug/l				NC	20	
Antimony		0.1	ug/L				NC	20	
Arsenic		0.5	ug/L				NC	20	
Barium	23.0	1	ug/L	24.1			4.5	20	
Bervllium	20.0 ND	0.5	ug/L				NC	20	
Boron	21	10	ug/L	20			49	20	
Cadmium		0.1	ug/L				NC	20	
Chromium (VI)	ND	10	ug/L	ND			NC	20	
Chromium	ND	1	ug/L	ND			NC	20	
Cobalt	ND	0.5	ua/L	ND			NC	20	
Copper	1.15	0.5	ua/L	1.08			6.1	20	
Lead	ND	0.1	ug/L	ND			NC	20	
Molybdenum	2.23	0.5	ug/L	2.02			10.2	20	
Nickel	ND	1	ug/L	ND			NC	20	
Selenium	ND	1	ug/L	ND			NC	20	
Silver	ND	0.1	ug/L	ND			NC	20	
Sodium	16400	200	ug/L	14300			13.7	20	
Thallium	ND	0.1	ug/L	ND			NC	20	
Uranium	ND	0.1	ug/L	ND			NC	20	
Vanadium	ND	0.5	ug/L	ND			NC	20	
Zinc	9	5	ug/L	10			12.2	20	
Volatiles									
Acetone	ND	5.0	ug/L	ND			NC	30	
Benzene	ND	0.5	ug/L	ND			NC	30	
Bromodichloromethane	ND	0.5	ug/L	ND			NC	30	
Bromoform	ND	0.5	ug/L	ND			NC	30	
Bromomethane	ND	0.5	ug/L	ND			NC	30	
Carbon Tetrachloride	ND	0.2	ug/L	ND			NC	30	
Chlorobenzene	ND	0.5	ug/L	ND			NC	30	
Chloroform	ND	0.5	ug/L	ND			NC	30	
Dibromochloromethane	ND	0.5	ug/L	ND			NC	30	
Dichlorodifluoromethane	ND	1.0	ug/L	ND			NC	30	
1,2-Dichlorobenzene	ND	0.5	ug/L	ND			NC	30	
1,3-Dichlorobenzene	ND	0.5	ug/L	ND			NC	30	
1,4-Dichlorobenzene	ND	0.5	ug/L	ND			NC	30	
1,1-Dichloroethane	ND	0.5	ug/L	ND			NC	30	
1,2-Dichloroethane	ND	0.5	ug/L	ND			NC	30	
1,1-Dichloroethylene	ND	0.5	ug/L	ND			NC	30	
cis-1,2-Dichloroethylene	ND	0.5	ug/L	ND			NC	30	
		0.5	ug/L				NC	30	
i, 2-Dichloropropane		0.5	ug/L				NC	30	
cis- i, o-Dichloropropylene		0.5	ug/L				NC	30	
		0.5	ug/L					3U 20	
Ethylope dibromide (dibromoethane, 1.2		0.5	ug/L					30	
Hexane		1.0	ug/L				NC	30	
			~9, L						

Order #: 2126398

Report Date: 29-Jun-2021

Order Date: 23-Jun-2021

Project Description: LOP21-018

ug/L

ug/L

ug/L

ND

ND

ND

ND

ND

ND

5.0

5.0

2.0

NC

NC

NC

30

30 30

Order #: 2126398

Report Date: 29-Jun-2021 Order Date: 23-Jun-2021

Project Description: LOP21-018

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Methylene Chloride	ND	5.0	ug/L	ND			NC	30	
Styrene	ND	0.5	ug/L	ND			NC	30	
1,1,1,2-Tetrachloroethane	ND	0.5	ug/L	ND			NC	30	
1,1,2,2-Tetrachloroethane	ND	0.5	ug/L	ND			NC	30	
Tetrachloroethylene	ND	0.5	ug/L	ND			NC	30	
Toluene	ND	0.5	ug/L	ND			NC	30	
1,1,1-Trichloroethane	ND	0.5	ug/L	ND			NC	30	
1,1,2-Trichloroethane	ND	0.5	ug/L	ND			NC	30	
Trichloroethylene	ND	0.5	ug/L	0.53			NC	30	
Trichlorofluoromethane	ND	1.0	ug/L	ND			NC	30	
Vinyl chloride	ND	0.5	ug/L	ND			NC	30	
m,p-Xylenes	ND	0.5	ug/L	ND			NC	30	
o-Xylene	ND	0.5	ug/L	ND			NC	30	
Surrogate: 4-Bromofluorobenzene	83.6		ug/L		104	50-140			
Surrogate: Dibromofluoromethane	85.3		ug/L		107	50-140			
Surrogate: Toluene-d8	81.7		ug/L		102	50-140			

Method Quality Control: Spike

Anions Berline 8.91 1 mg/L ND 98.1 85-115 Cyandie, free 29.8 2 ug/L ND 99.3 70-130 Hydrocarbons 1 122 PLS (50-501) 2070 25 ug/L ND 104 68-117 12 PLS (50-501) 1870 100 ug/L ND 104 68-140 12 PLS (50-501) 230 100 ug/L ND 114 60-140 12 PLS (50-501) 230 100 ug/L ND 118 70-150 Antimory 3.55 0.1 ug/L ND 103 80-120 Astinony 3.54 0.5 ug/L ND 108 80-120 Berylum 52.8 0.5 ug/L ND 104 80-120 Commum (VI) 165 10 ug/L ND 104 80-120 Commum (VI) 165 10.5 ug/L ND 100 82-120	Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Chloride8.9.11mg/LND88.185.115uuuuuuCynalde, free0.2820.2ND93.270.130Hydra (GC-10)270250ug/LND1048-117F 2 PHG2 (GC-10)230100ug/LND1048-140F 2 PHG2 (GC-34-C50)230100ug/LND11480.140F4 PHG2 (GC-34-C50)2500.1ug/LND10380.120Merany550.1ug/LND10380.120Antimony54.40.5ug/LND10380.120Antimony54.91ug/LND10480.120Antimony54.91ug/LND10480.120Antimony54.91ug/LND10480.120Barkun74.91ug/LND10480.1201Charmium (VI)1850.1ug/LND10480.120Charmium (VI)1850.1ug/LND10180.120Cobalt6.21ug/LND10180.120Cobalt6.31ug/LND10180.120Cobalt6.31ug/LND10180.120Cobalt6.31ug/LND10180.120Cobalt6.3<	Anions									
General horganicsVariableCyanide, free29.82.8gpLND99.370.130F1 PHC6 (C160-C10)207025.5ugLND10460-140F3 PHC6 (C160-C34)4160100ugLND10760-140F3 PHC6 (C160-C34)4160100ugLND11460-140F3 PHC6 (C160-C34)4160100ugLND11460-140F4 PHC5 (C160-C34)15.50.1ugLND11870.130Antimory55.50.1ugLND10380-120Antimory55.40.5ugLND10680-120Berginum52.80.5ugLND10680-120Berginum52.80.5ugLND10680-120Codentum51.810ugLND10680-120Codentum (V1)18510ugLND10480-120Codentum (V1)18610ugLND10580-120Codentum (V1)18610ugLND10180-120Codentum (V2)18610ugLND10080-120Codentum (V2)18610ugLND10080-120Codentum (V2)18610ugLND10080-120Codentum (V2)18610ugLND10080-120Codentum (V2)18610ugLND10080	Chloride	8.91	1	mg/L	ND	89.1	85-115			
Comparing Dynamic (C)29.82ug/LND99.370.130HydrocatoonsF1 PK26 (C5-C10)27025ug/LND10460.140F2 PK26 (C10 C16)1670100ug/LND10460.140F2 PK26 (C16 C34)1400100ug/LND11460.140F3 PK26 (C16 C34)2830100ug/LND11380.120Metals550.1ug/LND10880.120Antimony51.40.5ug/LND10680.120Antimony51.40.5ug/LND10680.120Barium74.91ug/L20.110480.120Barium74.91ug/LND10680.120Company51.80.1ug/LND10680.120Barium74.91ug/LND10480.120Company51.80.1ug/LND10580.120Company7110ug/LND10580.120Company52.31ug/LND10880.120Company60.10.5ug/LND10880.120Company50.21ug/LND10180.120Company50.51ug/LND10380.120Company50.51ug/LND10880.120Company50.5 <td< td=""><td>General Inorganics</td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	General Inorganics			-						
Contaction C <thc< th=""> C C C</thc<>	Cvanide free	29.8	2	ua/l	ND	99.3	70-130			
ryotucatorsryotucato	Hudrosorbono	20.0	2	ug/L	ND	00.0	10 100			
P Prick (cb-Ch (D) 20/0 25 upL ND 104 60-140 F3 PHCs (C16-C56) 1670 100 upL ND 117 60-140 F3 PHCs (C16-C54) 4180 100 upL ND 114 60-140 F4 PHCs (C16-C54) 4180 100 upL ND 113 60-140 Mentary 3.55 0.1 upL ND 103 80-120 Arsenic 53.4 1 upL ND 106 80-120 Barylinn 52.8 0.5 upL ND 104 80-120 Cadmium 51.8 0.1 upL ND 104 80-120 Cadmium 51.8 0.1 upL ND 104 80-120 Cobalt 52.3 1 upL ND 104 80-120 Cobalt 52.4 0.5 upL 100 80-120 Cobalt 52.5 10.4 upL ND		0070					00.447			
Part Max No. No	F1 PHCs (C6-C10)	2070	25	ug/L	ND	104	68-117			
r-p-rhc. (cl/b-C.4) 4100 100 10pL ND 101/4 60-140 Mercury 3.55 0.1 upL ND 114 60-140 Mercury 3.55 0.1 upL ND 118 70-130 Antimony 51.4 0.5 upL ND 106 80-120 Baryun 52.8 0.5 upL 24.1 102 80-120 Baryun 52.8 0.5 upL ND 104 80-120 Chomum 51.8 0.1 upL ND 104 80-120 Chomum 51.8 0.1 upL ND 104 80-120 Chomum 52.3 1 upL ND 105 80-120 Cobalt 52.4 0.5 upL ND 100 80-120 Cobalt 50.4 0.5 upL ND 100 80-120 Selenum 50.5 1 upL ND 100<	F2 PHCs (C10-C16)	1670	100	ug/L	ND	104	60-140			
Prepression 2.00 10.0 10.0 10.0 10.0 10.0 10.0 Metals Mercuny 3.55 0.1 ugl. ND 118 70.130 Antimony 51.4 0.5 ugl. ND 10.6 80-120 Barium 74.9 1 ugl. ND 10.6 80-120 Barium 74.9 1 ugl. ND 10.4 80-120 Commum (V1) 185 0.1 ugl. ND 10.4 80-120 Chomium (V1) 185 0.1 ugl. ND 10.4 80-120 Cobert 52.4 0.5 ugl. ND 10.5 80-120 Cobert 52.4 0.5 ugl. ND 10.6 80-120 Cobert 52.4 0.5 ugl. ND 10.6 80-120 Stiver 50.5 1 ugl. ND 10.6 80-120 Steinum 50.5 <td>F3 PHCs (C16-C34)</td> <td>4180</td> <td>100</td> <td>ug/L</td> <td></td> <td>107</td> <td>60-140</td> <td></td> <td></td> <td></td>	F3 PHCs (C16-C34)	4180	100	ug/L		107	60-140			
Material Mercary 3.55 0.1 upL ND 118 70-130 Antimony 51.4 0.5 upL ND 103 80-120 Arisenic 53.4 1 upL ND 104 80-120 Beryllium 62.8 0.5 upL ND 104 80-120 Beryllium 52.8 0.5 upL ND 104 80-120 Cadmium 51.8 0.1 upL ND 104 80-120 Chromium (VI) 185 10 upL ND 104 80-120 Cobatt 52.4 0.5 upL ND 104 80-120 Cobatt 52.4 0.5 upL ND 100 80-120 Nobdenum 49.9 0.5 upL ND 100 80-120 Nobdenum 63.0 0.1 upL ND 100 80-120 Soliver 50.2 0.1 upL <	F4 PHCs (C34-C50)	2830	100	ug/L	ND	114	60-140			
Mercury 3.55 0.1 upL ND ND 70-130 Arsenic 53.4 1 upL ND 108 80-120 Arsenic 53.4 1 upL ND 106 80-120 Barium 74.9 1 upL 24.1 106 80-120 Corrent 71 10 upL 20 104 80-120 Cadmium 51.8 0.1 upL ND 104 80-120 Chromium (VI) 185 10 upL ND 104 80-120 Cobalt 62.3 1 upL ND 105 80-120 Cobalt 62.4 0.5 upL ND 88.7 80-120 Cobalt 0.1 upL ND 100 80-120 101 Soldurn 49.9 0.5 upL ND 101 80-120 Soldurn 50.2 0.1 upL ND 80.120 <	Metals									
Antimony 514 0.5 ug/L ND 103 80-120 Arsenic 534 1 ug/L ND 106 80-120 Barjum 52.8 0.5 ug/L ND 106 80-120 Beryllum 52.8 0.5 ug/L ND 104 80-120 Cadmium 51.8 0.1 ug/L ND 104 80-120 Chromium (VI) 155 10 ug/L ND 104 80-120 Cobatt 52.3 1 ug/L ND 104 80-120 Cobatt 52.4 0.5 ug/L ND 88.7 80-120 Lead 44.4 0.1 ug/L ND 80.8 80-120 Nackel 50.5 1 ug/L ND 80-120 10 Selenium 50.5 1 ug/L ND 80-120 10 Selenium 50.5 1 ug/L ND 80-120 10 Selenium 50.5 1 ug/L ND 80-120 </td <td>Mercury</td> <td>3.55</td> <td>0.1</td> <td>ug/L</td> <td>ND</td> <td>118</td> <td>70-130</td> <td></td> <td></td> <td></td>	Mercury	3.55	0.1	ug/L	ND	118	70-130			
Arsenic 53.4 1 ugl, ND 106 80-120 Beryllum 52.8 0.5 ugl, ND 106 80-120 Boron 71 10 ugl, 20 80-120 Cadmium 51.8 0.1 ugl, ND 104 80-120 Chronium (V) 185 10 ugl, ND 92.5 70-130 Cobalt 52.4 0.5 ugl, ND 80-120 104 80-120 Cobalt 52.4 0.5 ugl, ND 80.7 80-120 104 80-120 104 80-120 104 80-120 104 80-120 104 80-120 104 80-120 104 80-120 104 80-120 104 80-120 104 80-120 104 80-120 104 80-120 104 80-120 104 80-120 104 80-120 104 80-120 104 80-120 104 80-120 104 104 104 104 104 104 104 104 104 104 </td <td>Antimony</td> <td>51.4</td> <td>0.5</td> <td>ug/L</td> <td>ND</td> <td>103</td> <td>80-120</td> <td></td> <td></td> <td></td>	Antimony	51.4	0.5	ug/L	ND	103	80-120			
Barlum 74.9 1 ug/L 24.1 102 60-120 Born 71 10 ug/L ND 104 80-120 Cadmium 51.8 0.1 ug/L ND 104 80-120 Chromium (V) 185 10 ug/L ND 92.5 70-130 Cobalt 52.3 1 ug/L ND 104 80-120 Cobalt 52.4 0.5 ug/L ND 104 80-120 Cobalt 0.5 ug/L ND 104 80-120 0.00 Lead 44.4 0.1 ug/L ND 100 80-120 Nickel 50.4 1 ug/L ND 101 80-120 Solum 60.5 1 ug/L ND 101 80-120 Solum 26600 200 ug/L ND 80-120 QM-07 Thallum 48.3 0.1 ug/L ND 80-120	Arsenic	53.4	1	ug/L	ND	106	80-120			
Beryllium 52.8 0.5 ug/L ND 106 80-120 Cadmium 51.8 0.1 ug/L ND 104 80-120 Cadmium (VI) 185 10 ug/L ND 104 80-120 Chromium (VI) 185 10 ug/L ND 105 80-120 Cobalt 52.4 0.5 ug/L ND 105 80-120 Cobalt 52.4 0.5 ug/L ND 88.1 80-120 Cobalt 50.4 0.5 ug/L ND 88.7 80-120 Nickel 50.4 1 ug/L ND 80-120 95.8 80-120 Selenium 50.2 0.1 ug/L ND 80-120 95.1 80-120 Solum 26600 200 ug/L ND 85.1 80-120 Selenium 43.1 0.1 ug/L ND 86.1 80-120 Uranium 43.1 0.1<	Barium	74.9	1	ug/L	24.1	102	80-120			
Boron 71 10 ug/L 20 104 80-120 Cadmium 1185 10 ug/L ND 92.5 70-130 Chromium (VI) 185 10 ug/L ND 104 80-120 Chromium 52.3 1 ug/L ND 105 80-120 Copper 50.1 0.5 ug/L 1.08 88.1 80-120 Lead 44.4 0.1 ug/L ND 88.7 80-120 Nickel 50.4 1 ug/L ND 88.1 80-120 Selenium 50.2 0.1 ug/L ND 80-120 MO-70 Solum 53.1 0.5 ug/L ND 80	Beryllium	52.8	0.5	ug/L	ND	106	80-120			
Cadmium 51.8 0.1 ug/L ND 104 80-120 Chromium (V) 156 10 ug/L ND 104 80-120 Chromium (V) 52.3 1 ug/L ND 105 80-120 Cobalt 52.4 0.5 ug/L 108 89.1 80-120 Cobalt 44.4 0.1 ug/L ND 88.7 80-120 Lead 44.4 0.1 ug/L ND 88.7 80-120 Nickel 50.4 1 ug/L ND 100 80-120 Selenium 50.5 1 ug/L ND 100 80-120 Sodium 2600 20.1 ug/L ND 100 80-120 Sodium 48.3 0.1 ug/L ND 80-120 QM-07 Thallium 48.3 0.1 ug/L ND 86.1 80-120 Vanadium 51.0 0.1 ug/L ND	Boron	71	10	ug/L	20	104	80-120			
Chromium (V) 185 10 ug/L ND 92.5 70-130 Chromium 52.4 0.5 ug/L ND 105 80-120 Cobalt 52.4 0.5 ug/L ND 98.1 80-120 Copper 60.1 0.5 ug/L ND 88.7 80-120 Lead 44.4 0.1 ug/L ND 100 80-120 Nickel 50.4 1 ug/L ND 100 80-120 Selenium 50.5 1 ug/L ND 100 80-120 Soltium 26600 200 ug/L ND 100 80-120 Soltium 26600 200 ug/L ND 96.5 80-120 Vanadum 53.1 0.5 ug/L ND	Cadmium	51.8	0.1	ug/L	ND	104	80-120			
Chromium 52.3 1 ug/L ND 104 80-120 Copper 50.1 0.5 ug/L ND 80-120 Copper 50.1 0.5 ug/L ND 88.7 80-120 Lead 44.4 0.1 ug/L 2.02 95.8 80-120 Nickel 50.4 1 ug/L ND 100 80-120 Silver 50.2 0.1 ug/L ND 101 80-120 Sodium 26600 200 ug/L ND 96.5 80-120 Vanadium 48.3 0.1 ug/L ND 96.5 80-120 Vanadium 43.1 0.5 ug/L ND 96.5 80-120 Vanadium 53.1 0.5 ug/L ND 96.5 80-120 Zinc 57 5 ug/L ND 96.5 80-120 Vanadium 4.65 0.05 ug/L ND 95.5 5	Chromium (VI)	185	10	ug/L	ND	92.5	70-130			
Cobait 52.4 0.5 ug/L ND 105 801-120 Copper 50.1 0.5 ug/L ND 88.7 80-120 Lead 44.4 0.1 ug/L ND 88.7 80-120 Nickel 50.4 1 ug/L ND 100 80-120 Silver 50.2 0.1 ug/L ND 101 80-120 Sodium 26600 200 ug/L ND 100 80-120 Uranium 48.3 0.1 ug/L ND 100 80-120 Uranium 43.1 0.1 ug/L ND 80-120 QM-07 Tanium 43.1 0.1 ug/L ND 86.1 80-120 Vanadium 53.1 0.5 ug/L ND 86.1 80-120 Vanadium 43.1 0.1 ug/L ND 86.1 80-120 Vanadium 43.1 0.1 ug/L ND <t< td=""><td>Chromium</td><td>52.3</td><td>1</td><td>ug/L</td><td>ND</td><td>104</td><td>80-120</td><td></td><td></td><td></td></t<>	Chromium	52.3	1	ug/L	ND	104	80-120			
Copper 50.1 0.5 ug/L 1.08 98.1 80-120 Lead 44.4 0.1 ug/L ND 86.7 80-120 Nickel 50.4 1 ug/L ND 100 80-120 Selenium 50.2 0.1 ug/L ND 100 80-120 Sodium 26600 200 ug/L ND 101 80-120 Sodium 26600 200 ug/L ND 96.5 80-120 Vanadum 43.3 0.1 ug/L ND 96.5 80-120 Vanadum 53.1 0.5 ug/L ND 86.1 80-120 Vanadum 53.1 0.5 ug/L ND 86.1 80-120 Zinc 57 5 ug/L ND 86.1 80-120 Semivolitis ug/L ND 96.5 80-120 Zinc 57 5 ug/L ND 80-10 80-120<	Cobalt	52.4	0.5	ug/L	ND	105	80-120			
Lead 44.4 0.1 ug/L ND 88.7 80-720 Molybdenum 49.9 0.5 ug/L 2.02 95.8 80-120 Nickel 50.4 1 ug/L ND 100 80-120 Selenium 50.5 1 ug/L ND 101 80-120 Solur 26600 200 ug/L ND 96.5 80-120 Common 26600 200 ug/L ND 96.5 80-120 Vanadium 48.3 0.1 ug/L ND 96.5 80-120 Vanadium 43.1 0.1 ug/L ND 96.5 80-120 Zinc 57 5 ug/L ND 94.2 80-120 Semi-Volatiles - - 80.1 80-120 Anthracene 4.66 0.05 ug/L ND 94.2 80-120 Benzo [a] phyracene 5.80 0.01 ug/L ND 95.	Copper	50.1	0.5	ug/L	1.08	98.1	80-120			
Motyoenum 44.9 0.5 ug/L 2.02 95.8 30-120 Nickel 50.4 1 ug/L ND 100 80-120 Selenium 50.5 1 ug/L ND 101 80-120 Silver 50.2 0.1 ug/L ND 100 80-120 Sodium 26600 200 ug/L 14300 123 80-120 QM-07 Thallium 43.1 0.1 ug/L ND 80.1 80-120 QM-07 Vanadium 43.1 0.1 ug/L ND 86.1 80-120 Zinc 57 5 ug/L ND 94.2 80-120 Semi-Volatiles Acenaphthene 4.66 0.05 ug/L ND 93.3 50-140 Acenaphthene 4.66 0.05 ug/L ND 95.5 50-140 Benzo [a] anthracene 4.78 0.01 ug/L ND 116 50-140 <	Lead	44.4	0.1	ug/L	ND	88.7	80-120			
Nicket 30.4 1 ug/L ND 100 60-120 Selenium 50.5 1 ug/L ND 101 80-120 Silver 50.2 0.1 ug/L ND 101 80-120 Sodium 26600 200 ug/L 14300 123 80-120 QM-07 Thallum 48.3 0.1 ug/L ND 86.1 80-120 QM-07 Vanadium 43.1 0.1 ug/L ND 86.1 80-120 QM-07 Zinc 57 5 ug/L ND 94.2 80-120 Semi-Volatiles	Molybdenum	49.9	0.5	ug/L	2.02	95.8	80-120			
Selenului 30.5 1 ug/L ND 101 80-120 Silver 50.2 0.1 ug/L ND 100 80-120 Sodium 26600 200 ug/L ND 96.5 80-120 Thallium 48.3 0.1 ug/L ND 96.5 80-120 Vanadium 43.1 0.1 ug/L ND 96.5 80-120 Zinc 57 5 ug/L ND 96.5 80-120 Semi-Volatiles 57 5 ug/L ND 94.2 80-120 Semi-Volatiles 4.66 0.05 ug/L ND 93.3 50-140 Acenaphthylene 4.13 0.05 ug/L ND 95.5 50-140 Anthracene 4.76 0.01 ug/L ND 101 50-140 Benzo [a] anthracene 5.05 0.01 ug/L ND 101 50-140 Benzo [b] fluoranthene		50.4	1	ug/L		100	80-120			
Silver 50.2 0.1 ug/L ND ND 100 80-120 Sodium 26600 200 ug/L 14300 123 80-120 QM-07 Thallium 48.3 0.1 ug/L ND 96.5 80-120 Vanadium 53.1 0.5 ug/L ND 106 80-120 Zinc 57 5 ug/L ND 916 80-120 Semi-Volatiles Acenaphthene 4.66 0.05 ug/L ND 93.3 50-140 Acenaphthene 4.66 0.05 ug/L ND 95.5 50-140 Acenaphthene 4.78 0.01 ug/L ND 95.2 50-140 Benzo [a] pyrene 5.05 0.01 ug/L ND 101 50-140 Benzo [b] fluoranthene 5.05 0.05 ug/L ND 116 50-140 Benzo [b] fluoranthene 6.54 0.05 ug/L ND 1	Selenium	50.5	0.1	ug/L		101	80-120			
Soutiani 2000 200 ug/L 14300 123 60-120 Curvery Thallium 43.3 0.1 ug/L ND 96.5 80-120 Vanadium 53.1 0.5 ug/L ND 106 80-120 Zinc 57 5 ug/L 10 94.2 80-120 Semi-Volatiles	Silver	50.2	0.1	ug/L	ND 14200	100	00-120			NA 07
Trianum 40.3 0.1 ug/L ND 80.3 00140 Uranium 43.1 0.1 ug/L ND 86.1 80-120 Zinc 57 5 ug/L ND 94.2 80-120 Semi-Volatiles	Thallium	20000	200	ug/L	14300 ND	06.5	80 120		,	2101-07
Variadium 43.1 0.1 0.1 0.01 0.0.1 0.01.20 Variadium 53.1 0.5 0.9/L ND 106 80-120 Zinc 57 5 0.9/L 10 94.2 80-120 Semi-Volatiles		40.5	0.1	ug/L		90.J 86.1	80 120			
Variation53.15.34g/L1010.060-120Zinc575ug/L1094.280-120Semi-VolatilesAcenaphthene4.660.05ug/LND93.350-140Acenaphthylene4.130.05ug/LND95.550-140Anthracene4.780.01ug/LND95.550-140Benzo [a] anthracene4.760.01ug/LND95.250-140Benzo [a] pyrene5.050.01ug/LND10150-140Benzo [b] fluoranthene5.800.05ug/LND11650-140Benzo [g, h,i] perylene4.250.05ug/LND13150-140Benzo [g, h,i] perylene6.540.05ug/LND10450-140Benzo [g, h,i] perylene4.870.05ug/LND10450-140Dibenzo [a, h] anthracene4.870.05ug/LND97.450-140Fluorente4.180.05ug/LND86.050-140Fluorene4.180.05ug/LND83.750-140Indeno [1,2,3-cd] pyrene4.780.05ug/LND85.550-1401-Methylnaphthalene4.450.05ug/LND88.950-1401-Methylnaphthalene4.500.05ug/LND88.950-140	Vanadium	43.1	0.5	ug/L		106	80-120			
Semi-Volatiles Acenaphthene 4.66 0.05 ug/L ND 93.3 50-140 Acenaphthylene 4.13 0.05 ug/L ND 82.6 50-140 Anthracene 4.78 0.01 ug/L ND 95.5 50-140 Benzo [a] anthracene 4.76 0.01 ug/L ND 95.2 50-140 Benzo [a] pyrene 5.05 0.01 ug/L ND 101 50-140 Benzo [a] pyrene 5.80 0.05 ug/L ND 116 50-140 Benzo [g,h,i] perylene 4.25 0.05 ug/L ND 116 50-140 Benzo [g,h,i] perylene 4.25 0.05 ug/L ND 131 50-140 Benzo [g,h] anthracene 5.19 0.05 ug/L ND 131 50-140 Dibenzo [a,h] anthracene 4.87 0.05 ug/L ND 97.4 50-140 Fluoranthene 4.30 0.01 ug/L ND 86.0 50-140 Fluoranthene 4.30 0.05 ug/L <td>Zinc</td> <td>57</td> <td>5</td> <td>ug/L</td> <td>10</td> <td>94.2</td> <td>80-120</td> <td></td> <td></td> <td></td>	Zinc	57	5	ug/L	10	94.2	80-120			
Acenaphthene4.660.05ug/LND93.350-140Acenaphthylene4.130.05ug/LND82.650-140Anthracene4.780.01ug/LND95.550-140Benzo [a] anthracene4.760.01ug/LND95.250-140Benzo [a] pyrene5.050.01ug/LND10150-140Benzo [b] fluoranthene5.800.05ug/LND11650-140Benzo [g,h,i] perylene4.250.05ug/LND13150-140Benzo [g,h,i] perylene6.540.05ug/LND13150-140Benzo [a,h] anthracene5.190.05ug/LND10450-140Dibenzo [a,h] anthracene4.870.05ug/LND97.450-140Fluoranthene4.300.01ug/LND83.750-140Fluoranthene4.780.05ug/LND83.750-140Indeno [1,2,3-cd] pyrene4.780.05ug/LND83.750-1401-Methylnaphthalene4.790.05ug/LND85.950-1402-Methylnaphthalene4.790.05ug/LND85.950-1402-Methylnaphthalene4.790.05ug/LND85.950-1402-Methylnaphthalene4.500.05ug/LND95.850-1403-Mathylnaphthalene4.500.05ug/LND95.850-1	Somi Valatilaa	57	5	ug/L	10	34.2	00-120			
Acenaptitiene4.660.05Ug/LND93.350-140Acenaphthylene4.130.05ug/LND82.650-140Antracene4.780.01ug/LND95.550-140Benzo [a] anthracene4.760.01ug/LND10150-140Benzo [a] pyrene5.050.01ug/LND10150-140Benzo [b] fluoranthene5.800.05ug/LND11650-140Benzo [g,h,i] perylene4.250.05ug/LND13150-140Benzo [k] fluoranthene6.540.05ug/LND13150-140Chrysene5.190.05ug/LND97.450-140Dibenzo [a,h] anthracene4.870.05ug/LND86.050-140Fluoranthene4.870.05ug/LND83.750-140Fluoranthene4.870.05ug/LND83.750-140Fluoranthene4.880.05ug/LND83.750-140Fluoranthene4.180.05ug/LND83.750-140Indeno [1,2,3-cd] pyrene4.780.05ug/LND88.950-140I-Methylnaphthalene4.450.05ug/LND88.950-1402-Methylnaphthalene4.500.05ug/LND95.850-140Ander Malanee4.500.05ug/LND95.850-140Anthylnaphthal	Semi-volatiles		0.05				=0.440			
Acenaphthylene4.130.05Ug/LND82.650-140Anthracene4.780.01ug/LND95.550-140Benzo [a] anthracene4.760.01ug/LND95.250-140Benzo [a] pyrene5.050.01ug/LND10150-140Benzo [b] fluoranthene5.800.05ug/LND11650-140Benzo [g,h,i] perylene4.250.05ug/LND85.150-140Benzo [k] fluoranthene6.540.05ug/LND13150-140Chrysene5.190.05ug/LND10450-140Dibenzo [a,h] anthracene4.870.05ug/LND97.450-140Fluoranthene4.870.05ug/LND86.050-140Fluoranthene4.880.05ug/LND86.050-140Fluoranthene4.180.05ug/LND83.750-140Indeno [1,2,3-cd] pyrene4.780.05ug/LND88.950-1401-Methylnaphthalene4.450.05ug/LND88.950-1402-Methylnaphthalene4.500.05ug/LND95.850-140Naphthalene4.500.05ug/LND96.050-1401-Methylnaphthalene4.500.05ug/LND96.850-1402-Methylnaphthalene4.500.05ug/LND96.050-1401	Acenaphthene	4.66	0.05	ug/L	ND	93.3	50-140			
Antmacene4.780.010g/LND95.550-140Benzo [a] anthracene4.760.01ug/LND95.250-140Benzo [a] pyrene5.050.01ug/LND10150-140Benzo [b] fluoranthene5.800.05ug/LND11650-140Benzo [g,h,i] perylene4.250.05ug/LND85.150-140Benzo [g,h,i] perylene6.540.05ug/LND13150-140Benzo [a,h] anthracene5.190.05ug/LND10450-140Dibenzo [a,h] anthracene4.870.05ug/LND97.450-140Fluoranthene4.300.01ug/LND86.050-140Fluoranthene4.180.05ug/LND83.750-140Indeno [1,2,3-cd] pyrene4.780.05ug/LND95.550-1401-Methylnaphthalene4.450.05ug/LND88.950-140Naphthalene4.500.05ug/LND95.850-140		4.13	0.05	ug/L	ND	82.6	50-140			
Benzo [a] pyrene4.760.01ug/LND95.250-140Benzo [a] pyrene5.050.01ug/LND10150-140Benzo [b] fluoranthene5.800.05ug/LND11650-140Benzo [g,h,i] perylene4.250.05ug/LND85.150-140Benzo [k] fluoranthene6.540.05ug/LND13150-140Chrysene5.190.05ug/LND10450-140Dibenzo [a,h] anthracene4.870.05ug/LND97.450-140Fluoranthene4.300.01ug/LND83.750-140Fluorene4.180.05ug/LND83.750-140Indeno [1,2,3-cd] pyrene4.780.05ug/LND88.950-1402-Methylnaphthalene4.790.05ug/LND88.950-140Naphthalene4.500.05ug/LND95.850-140	Anthracene	4.78	0.01	ug/L		95.5	50-140			
Benzo [b] fluoranthene 5.05 0.01 ug/L ND 101 50-140 Benzo [b] fluoranthene 5.80 0.05 ug/L ND 116 50-140 Benzo [g,h,i] perylene 4.25 0.05 ug/L ND 85.1 50-140 Benzo [k] fluoranthene 6.54 0.05 ug/L ND 131 50-140 Chrysene 5.19 0.05 ug/L ND 104 50-140 Dibenzo [a,h] anthracene 4.87 0.05 ug/L ND 97.4 50-140 Fluoranthene 4.30 0.01 ug/L ND 86.0 50-140 Fluorene 4.18 0.05 ug/L ND 83.7 50-140 Indeno [1,2,3-cd] pyrene 4.78 0.05 ug/L ND 95.5 50-140 1-Methylnaphthalene 4.45 0.05 ug/L ND 88.9 50-140 2-Methylnaphthalene 4.50 0.05 ug/L ND 95.8 50-140 Naphthalene 4.50 0.05 ug/L ND 95.0 <td></td> <td>4.70</td> <td>0.01</td> <td>ug/L</td> <td></td> <td>95.2</td> <td>50-140</td> <td></td> <td></td> <td></td>		4.70	0.01	ug/L		95.2	50-140			
Benzo [g,h,i] perylene 4.25 0.05 ug/L ND 116 50-140 Benzo [g,h,i] perylene 4.25 0.05 ug/L ND 131 50-140 Benzo [k] fluoranthene 6.54 0.05 ug/L ND 131 50-140 Chrysene 5.19 0.05 ug/L ND 104 50-140 Dibenzo [a,h] anthracene 4.87 0.05 ug/L ND 97.4 50-140 Fluoranthene 4.30 0.01 ug/L ND 86.0 50-140 Fluorene 4.18 0.05 ug/L ND 83.7 50-140 Indeno [1,2,3-cd] pyrene 4.78 0.05 ug/L ND 95.5 50-140 1-Methylnaphthalene 4.45 0.05 ug/L ND 88.9 50-140 2-Methylnaphthalene 4.50 0.05 ug/L ND 95.8 50-140 Naphthalene 4.50 0.05 ug/L ND 95.8 50-140	Benzo [a] pyrene	5.05	0.01	ug/L		101	50-140			
Benzo [k] fluoranthene 4.25 0.05 ug/L ND 50-140 Benzo [k] fluoranthene 6.54 0.05 ug/L ND 131 50-140 Chrysene 5.19 0.05 ug/L ND 104 50-140 Dibenzo [a,h] anthracene 4.87 0.05 ug/L ND 97.4 50-140 Fluoranthene 4.30 0.01 ug/L ND 86.0 50-140 Fluorene 4.18 0.05 ug/L ND 83.7 50-140 Indeno [1,2,3-cd] pyrene 4.78 0.05 ug/L ND 95.5 50-140 1-Methylnaphthalene 4.45 0.05 ug/L ND 88.9 50-140 2-Methylnaphthalene 4.50 0.05 ug/L ND 95.8 50-140	Benzo [b] huorantinene	5.00 4.25	0.05	ug/L		95.1	50-140			
Derizo (x) indominience 0.04 0.05 ug/L ND 101 50-140 Chrysene 5.19 0.05 ug/L ND 104 50-140 Dibenzo [a,h] anthracene 4.87 0.05 ug/L ND 97.4 50-140 Fluoranthene 4.30 0.01 ug/L ND 86.0 50-140 Fluorene 4.18 0.05 ug/L ND 83.7 50-140 Indeno [1,2,3-cd] pyrene 4.78 0.05 ug/L ND 95.5 50-140 1-Methylinaphthalene 4.45 0.05 ug/L ND 88.9 50-140 2-Methylinaphthalene 4.50 0.05 ug/L ND 95.8 50-140 Naphthalene 4.50 0.05 ug/L ND 95.8 50-140	Benzo [k] fluoranthene	4.25	0.05	ug/L		131	50 140			
Dibenzo [a,h] anthracene 4.87 0.05 ug/L ND 104 50-140 Fluoranthene 4.30 0.01 ug/L ND 86.0 50-140 Fluorene 4.18 0.05 ug/L ND 83.7 50-140 Indeno [1,2,3-cd] pyrene 4.78 0.05 ug/L ND 95.5 50-140 1-Methylnaphthalene 4.45 0.05 ug/L ND 95.8 50-140 2-Methylnaphthalene 4.50 0.05 ug/L ND 95.8 50-140		5 10	0.05	ug/L		104	50 140			
Fluoranthene 4.30 0.01 ug/L ND 86.0 50-140 Fluoranthene 4.30 0.01 ug/L ND 83.7 50-140 Fluoranthene 4.18 0.05 ug/L ND 83.7 50-140 Indeno [1,2,3-cd] pyrene 4.78 0.05 ug/L ND 95.5 50-140 1-Methylnaphthalene 4.45 0.05 ug/L ND 88.9 50-140 2-Methylnaphthalene 4.50 0.05 ug/L ND 95.8 50-140	Dibenzo [a b] anthracene	5.19 4.87	0.05	ug/L		97.4	50-140			
Fluorene 4.18 0.05 ug/L ND 83.7 50-140 Indeno [1,2,3-cd] pyrene 4.78 0.05 ug/L ND 95.5 50-140 1-Methylnaphthalene 4.45 0.05 ug/L ND 88.9 50-140 2-Methylnaphthalene 4.79 0.05 ug/L ND 95.8 50-140 Naphthalene 4.50 0.05 ug/L ND 95.8 50-140	Fluoranthene	4.30	0.00	ug/L		86.0	50-140			
Indexist Index	Fluorene	4.50 4 18	0.05	ug/L		83.7	50-140			
1-Methylnaphthalene 4.45 0.05 ug/L ND 88.9 50-140 2-Methylnaphthalene 4.79 0.05 ug/L ND 95.8 50-140 Naphthalene 4.50 0.05 ug/L ND 90.0 50-140	Indeno [1 2 3-cd] pyrene	4 78	0.05	ug/L		95.5	50-140			
2-Methylnaphthalene 4.79 0.05 ug/L ND 95.8 50-140 Naphthalene 4.50 0.05 ug/L ND 90.0 50-140	1-Methylnaphthalene	4.45	0.05	ug/L	ND	88.9	50-140			
Naphthalene 4.50 0.05 ug/L ND 90.0 50-140	2-Methylnaphthalene	4.79	0.05	ug/L	ND	95.8	50-140			
	Naphthalene	4.50	0.05	ua/L	ND	90.0	50-140			

Report Date: 29-Jun-2021

Order Date: 23-Jun-2021

Project Description: LOP21-018

Method Quality Control: Spike

Report Date: 29-Jun-2021

Order Date: 23-Jun-2021

Project Description: LOP21-018

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Phenanthrene	4.59	0.05	ug/L	ND	91.7	50-140			
Pyrene	4.38	0.01	ug/L	ND	87.7	50-140			
Surrogate: 2-Fluorobiphenyl	19.4		ug/L		97.1	50-140			
Surrogate: Terphenyl-d14	22.9		ug/L		114	50-140			
Volatiles									
Acetone	112	5.0	ug/L	ND	112	50-140			
Benzene	36.0	0.5	ug/L	ND	89.9	60-130			
Bromodichloromethane	41.2	0.5	ug/L	ND	103	60-130			
Bromoform	43.7	0.5	ug/L	ND	109	60-130			
Bromomethane	40.0	0.5	ug/L	ND	99.9	50-140			
Carbon Tetrachloride	41.0	0.2	ug/L	ND	103	60-130			
Chlorobenzene	38.2	0.5	ug/L	ND	95.5	60-130			
Chloroform	38.0	0.5	ug/L	ND	95.0	60-130			
Dibromochloromethane	40.2	0.5	ug/L	ND	101	60-130			
Dichlorodifluoromethane	41.6	1.0	ug/L	ND	104	50-140			
1,2-Dichlorobenzene	36.3	0.5	ug/L	ND	90.7	60-130			
1,3-Dichlorobenzene	36.4	0.5	ug/L	ND	91.0	60-130			
1,4-Dichlorobenzene	35.8	0.5	ug/L	ND	89.5	60-130			
1,1-Dichloroethane	37.1	0.5	ug/L	ND	92.7	60-130			
1,2-Dichloroethane	38.0	0.5	ug/L	ND	94.9	60-130			
1,1-Dichloroethylene	33.4	0.5	ug/L	ND	83.5	60-130			
cis-1,2-Dichloroethylene	36.1	0.5	ug/L	ND	90.2	60-130			
trans-1,2-Dichloroethylene	37.2	0.5	ug/L	ND	92.9	60-130			
1,2-Dichloropropane	34.8	0.5	ug/L	ND	87.1	60-130			
cis-1,3-Dichloropropylene	41.0	0.5	ug/L	ND	102	60-130			
trans-1,3-Dichloropropylene	45.6	0.5	ug/L	ND	114	60-130			
Ethylbenzene	35.9	0.5	ug/L	ND	89.8	60-130			
Ethylene dibromide (dibromoethane, 1.2	38.3	0.2	ua/L	ND	95.8	60-130			
Hexane	43.4	1.0	ug/L	ND	108	60-130			
Methyl Ethyl Ketone (2-Butanone)	84.9	5.0	ug/L	ND	84.9	50-140			
Methyl Isobutyl Ketone	83.0	5.0	ua/L	ND	83.0	50-140			
Methyl tert-butyl ether	99.2	2.0	ua/L	ND	99.2	50-140			
Methylene Chloride	32.4	5.0	ua/L	ND	80.9	60-130			
Styrene	39.5	0.5	ua/L	ND	98.7	60-130			
1.1.1.2-Tetrachloroethane	36.4	0.5	ua/L	ND	91.0	60-130			
1.1.2.2-Tetrachloroethane	33.8	0.5	ua/L	ND	84.4	60-130			
Tetrachloroethylene	37.5	0.5	ua/L	ND	93.8	60-130			
Toluene	38.9	0.5	ug/L	ND	97.3	60-130			
1 1 1-Trichloroethane	38.7	0.5	ug/l	ND	96.8	60-130			
1 1 2-Trichloroethane	36.4	0.5	ug/L	ND	90.9	60-130			
	39.3	0.5	ug/L	ND	98.3	60-130			
Trichlorofluoromethane	33.1	1.0	ug/L	ND	82.8	60-130			
Vinvl chloride	39.2	0.5	ug/L	ND	98.0	50-140			
m.p-Xvlenes	75.7	0.5	ua/l	ND	94 6	60-130			
o-Xvlene	37 7	0.5	ua/l	ND	94.2	60-130			
Surrogate: 4-Bromofluorobenzene	86.5	0.0			108	50-140			
Surrogate: Dibromofluoromethane	91.7		ua/L		115	50-140			
Surrogate: Toluene-d8	80.7		ug/L		101	50-140			

QC Qualifiers :

QM-07 : The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on other acceptable QC.

Sample Data Revisions

None

Work Order Revisions / Comments:

Insufficient volume in general chemistry bottle. Sub-sampled from PAH and PHC for additional sample.

Other Report Notes:

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference. NC: Not Calculated

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.

- F1 range corrected for BTEX.

- F2 to F3 ranges corrected for appropriate PAHs where available.

- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.
- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.
- When reported, data for F4G has been processed using a silica gel cleanup.

	CEL TRUS RESP ES LTD. RELI	T E D O N S A B L	IV E.	E ,		acel ID: 2	126	398 	8					Chai (1 Nº	n Of ab Use 13	Custo Only) 233	ody 37	
Client Name: LOPERS ASSOCI	ATES		Proje	ct Ref:	LOP21-018	13	5			12					Page	of		-
Contact Name: Luke Lepers		¥ - 1954	Quot	e #:	14 V			3	- /	Ţ	Ĩ.			Turi	naroui	nd Tim	ne	j.
30 Lensfreld Way, O.	Hawa		PO #: E-mai	il:		190		i. Al	i. N	10	â		□ 1 d	ay av			🗆 3 da	ay zular
Telephone: 613-327-9073		202		Lu	he @ Lopers.	ca						D	ate Rec	quired:				
Regulation 153/04	Other Regulation	N	Aatrix	Type:	S (Soil/Sed.) GW (Gr	round Water)			2,0	975	a la A la		4					
Table 1 🛛 Res/Park 🗌 Med/Fine	e 🗆 REG 558 🔹 PWQO		SW (Su	rface	Water) SS (Storm/Sar	nitary Sewer)		sher-s-				Re	equired	Analy	sis			
Table 2 Ind/Comm Coarse Coarse				P (I	Paint) A (Air) O (Oth	ier)												
Table 3 LAgri/Other	SU - Sani SU - Storm	1		Jers	DARY OLD		+BTE	2		4	eir)	/ 8	100	1916	12-3	1.51	2.95	
Eor BSC: N Yes D No	Mun:		ume	ontair	Sample	Taken	1-F4			by IC		1.1	-		U.S.	a de		
Sample ID/Locatio	D Other:	latrix	ir Vol	of Co	Data	-	- for F	SCS	AHS	etals	b0 -	IN IN	et a					
1 RU2 - 2 3	in name	2	4	#	Date	lime	ā	× V	à	Σ	Ĩ	5 0	2-	hant	Section.	- 101-10	43.1	
2 6/12 20	an an an Araba (Araba). Na shina da citata (Araba)	60		1	VUNE 23,2021	an a	X		Å	+	_	+	X		2			1
3 Bild 01	in a constant place in the second	60	1.1.1	1	interiori rentinger- de t 1	an Maria ang ang ang ang ang ang ang ang ang an	X	Ŋ.	X		-		X	1.00				
4 RUC 21	<u> </u>	GW		1			X	$\sum_{i=1}^{n}$	X				X				237	
- DHS-21		GW		9		2	X	X	X	;			X	Ú.	<u>Ľ.</u>			
BH14-21		Cω		9			Х	X	X	_			X					
· Irip Blank		GW		2	V			X					ļ					
/	and the second second			138		<u>l</u> a tra			-), i		
8																		
9					n in the second se	$a^{(2)} = a^{(2)}$		2									~\$ ₆ .	
10	1														*		2	
Metals have been	field filturd				gen 28 i 196 in Roch		yd (*	400			Me	thod	of Delive		, F	lox.		
eling shar by (size):	Received By Dr	river/De	pot:		· · · · · · · · · · · · · · · · · · ·	Received at lab:	51	2	-		Ve	rified	te	X	2			
ate/Time:	Date/Time:				°c 1	Date/Time: 23	21	1 0	15	:2	Da	Tin	hei	24	210	12	:05	for
Chain of Custody (Env.) xlsx	1 21V711				Bavision 3.0		0				рн	verit	ied:	бү:	10	C		

TRUSTED. **RESPONSIVE.** RELIABLE.

p: 1-800-749-1947 e: paracel@paracellabs.com

www.paracellabs.com

OTTAWA 🖲 NIAGARA FALLS 🖲 MISSISSAUGA SARNIA

Certificate of Analysis

Paterson Group Consulting Engineers

28 Concourse Gate, Unit 1 Nepean, ON K2E 7T7 Attn: Luke Lopers

Phone: (613) 226-7381 Fax: (613) 226-6344

Client PO: 9151	Report Date: 8-Sep-2010
Project: PE2073	Order Date: 1-Sep-2010
Custody: 71568	Order #: 1036123

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Client ID Paracel ID 1036123-01 BH3-GW1

Mark Fiste Approved By:

Mark Foto, M.Sc. For Dale Robertson, BSc Laboratory Director

Any use of these results implies your agreement that our total liabilty in connection with this work, however arising shall be limited to the amount paid by you for this work, and that our employees or agents shall not under circumstances be liable to you in connection with this work

Certificate of Analysis Client: Paterson Group Consulting Engineers Client PO: 9151

Project Description: PE2073

Order #: 1036123

Report Date: 08-Sep-2010 Order Date:1-Sep-2010

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date Analysis Date
CCME PHC F1	CWS Tier 1 - P&T GC-FID	3-Sep-10 7-Sep-10
CCME PHC F1 to F4 + VOC	[CALC]	2-Sep-10 7-Sep-10
CCME PHC F2 - F4	CWS Tier 1 - GC-FID, extraction	2-Sep-10 3-Sep-10
VOCs	EPA 624 - P&T GC-MS	3-Sep-10 7-Sep-10

P: 1-800-749-1947 E: paracel@paracellabs.com

WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4JB NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 2 of 8

Order #: 1036123

Certificate of Analysis Client: Paterson Group Consulting Engineers

Client PO: 9151

Project Description: PE2073

Report Date: 08-Sep-2010 Order Date:1-Sep-2010

	Client ID: Sample Date: Sample ID:	BH3-GW1 01-Sep-10 1036123-01			- -
Valatilaa	MDL/Units	Water	-	-	-
Volatiles	0.5 µg/l	-0.5	1	i	
Benzene	0.3 ug/L	<0.5	-	-	-
Bromodicniorometnane	0.4 ug/L	<0.4	-	-	-
Bromotorm	0.3 ug/L	<0.5	-	-	-
Bromomethane	0.7 ug/L	<0.7	-	-	-
Carbon Tetrachloride	0.5 ug/L	<0.5	-	-	-
Chlorobenzene	0.4 ug/L	<0.4	-	-	-
Chloroethane	1.0 ug/L	<1.0	-	-	-
Chloroform	0.5 ug/L	<0.5	-	-	-
Chloromethane	3.0 ug/L	<3.0	-	-	-
Dibromochloromethane	0.5 ug/L	<0.5	-	-	-
1,2-Dibromoethane	1.0 ug/L	<1.0	-	-	-
1,2-Dichlorobenzene	0.4 ug/L	<0.4	-	-	-
1,3-Dichlorobenzene	0.4 ug/L	<0.4	-	-	-
1,4-Dichlorobenzene	0.4 ug/L	<0.4	-	-	-
1,1-Dichloroethane	0.5 ug/L	<0.5	-	-	-
1,2-Dichloroethane	0.5 ug/L	<0.5	-	-	-
1,1-Dichloroethylene	0.5 ug/L	<0.5	-	-	-
cis-1,2-Dichloroethylene	0.4 ug/L	<0.4	-	-	-
trans-1,2-Dichloroethylene	1.0 ug/L	<1.0	-	-	-
1,2-Dichloroethylene, total	1.4 ug/L	<1.4	-	-	-
1,2-Dichloropropane	0.5 ug/L	<0.5	-	-	-
cis-1,3-Dichloropropylene	0.4 ug/L	<0.4	-	-	-
trans-1,3-Dichloropropylene	0.5 ug/L	<0.5	-	-	-
1,3-Dichloropropene, total	0.9 ug/L	<0.9	-	-	-
Ethylbenzene	0.5 ug/L	<0.5	-	-	-
Methylene Chloride	4.0 ug/L	<4.0	-	-	-
Styrene	0.4 ug/L	<0.4	-	-	-
1,1,1,2-Tetrachloroethane	0.5 ug/L	<0.5	-	-	-
1,1,2,2-Tetrachloroethane	0.6 ug/L	<0.6	-	-	-
Tetrachloroethylene	0.5 ug/L	<0.5	-	-	-
Toluene	0.5 ug/L	<0.5	-	-	-
1,1,1-Trichloroethane	0.4 ug/L	<0.4	-	-	-
1,1,2-Trichloroethane	0.6 ug/L	<0.6		-	

WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 3 of 8

Order #: 1036123

Report Date: 08-Sep-2010 Order Date:1-Sep-2010

Certificate of Analysis Client: Paterson Group Consulting Engineers

Client PO: 9151		Project Description	on: PE2073		
	Client ID:	BH3-GW1	-	-	-
	Sample Date:	01-Sep-10	-	-	-
	Sample ID:	1036123-01	-	-	-
	MDL/Units	Water	-	-	-
Trichloroethylene	0.4 ug/L	<0.4	-	-	-
Trichlorofluoromethane	1.0 ug/L	<1.0	-	-	-
1,3,5-Trimethylbenzene	0.5 ug/L	<0.5	-	-	-
Vinyl chloride	0.4 ug/L	<0.4	-	-	-
m,p-Xylenes	0.5 ug/L	<0.5	-	-	-
o-Xylene	0.5 ug/L	<0.5	-	-	-
Xylenes, total	1.0 ug/L	<1.0	-	-	-
4-Bromofluorobenzene	Surrogate	98.3%	-	-	-
Dibromofluoromethane	Surrogate	104%	-	-	-
Toluene-d8	Surrogate	98.4%	-	-	-
Hydrocarbons	· · ·		<u>.</u>	<u>.</u>	<u>.</u>
F1 PHCs (C6-C10)	200 ug/L	<200	-	-	-
F2 PHCs (C10-C16)	100 ug/L	362	-	-	-
F3 PHCs (C16-C34)	100 ug/L	<100	-	-	-
F4 PHCs (C34-C50)	100 ug/L	<100	-	-	-
F1 + F2 PHCs	300 ug/L	362	-	-	-
F3 + F4 PHCs	200 ug/L	<200	-	-	-

P: 1-800-749-1947 E: paracel@paracellabs.com

WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 4 of 8

Certificate of Analysis

Client: Paterson Group Consulting Engineers Client PO: 9151

Project Description: PE2073

Order #: 1036123

Report Date: 08-Sep-2010

Order Date:1-Sep-2010

Method	Quality	Control: Blank	

Analyte	Result	Reporting	Linite	Source	%PEC	%REC	RDU	RPD Limit	Notes
,	rtoout	Liitiit	Units	Result	/iiiiiii	Linin	N D	Linin	10100
Hydrocarbons									
F1 PHCs (C6-C10)	ND	200	ug/L						
F2 PHCs (C10-C16)	ND	100	ug/L						
F3 PHCs (C16-C34)	ND	100	ug/L						
F4 PHCs (C34-C50)	ND	100	ug/L						
Volatiles									
Benzene	ND	0.5	ug/L						
Bromodichloromethane	ND	0.4	ug/L						
Bromoform	ND	0.5	ug/L						
Bromomethane	ND	0.7	ug/L						
Carbon Tetrachloride	ND	0.5	ug/L						
Chlorobenzene	ND	0.4	ug/L						
Chloroethane	ND	1.0	ug/L						
Chloroform	ND	0.5	ug/L						
Chloromethane	ND	3.0	ug/L						
Dibromochloromethane	ND	0.5	ug/L						
1,2-Dibromoethane	ND	1.0	ug/L						
1,2-Dichlorobenzene	ND	0.4	ug/L						
1,3-Dichlorobenzene	ND	0.4	ug/L						
1,4-Dichlorobenzene	ND	0.4	ug/L						
1,1-Dichloroethane	ND	0.5	ug/L						
1,2-Dichloroethane	ND	0.5	ug/L						
1,1-Dichloroethylene	ND	0.5	ug/L						
cis-1,2-Dichloroethylene	ND	0.4	ug/L						
trans-1,2-Dichloroethylene	ND	1.0	ug/L						
1,2-Dichloroethylene, total	ND	1.4	ug/L						
1,2-Dichloropropane	ND	0.5	ug/L						
cis-1,3-Dichloropropylene	ND	0.4	ug/L						
trans-1,3-Dichloropropylene	ND	0.5	ug/L						
1,3-Dichloropropene, total	ND	0.9	ug/L						
Ethylbenzene	ND	0.5	ug/L						
Methylene Chloride	ND	4.0	ug/L						
Styrene	ND	0.4	ug/L						
1,1,1,2-Tetrachloroethane	ND	0.5	ug/L						
1,1,2,2-Tetrachloroethane	ND	0.6	ug/L						
Tetrachloroethylene	ND	0.5	ug/L						
Toluene	ND	0.5	ug/L						
1,1,1-Trichloroethane	ND	0.4	ug/L						
1,1,2-Trichloroethane	ND	0.6	ug/L						
Trichloroethylene	ND	0.4	ug/L						
Trichlorofluoromethane	ND	1.0	ug/L						
1,3,5-Trimethylbenzene	ND	0.5	ug/L						
Vinyl chloride	ND	0.4	ug/L						
m,p-Xylenes	ND	0.5	ug/L						
o-Xylene	ND	0.5	ug/L						
Xylenes, total	ND	1.0	ug/L						
Surrogate: 4-Bromofluorobenzene	82.3		ug/L		103	83-134			
Surrogate: Dibromofluoromethane	79.3		ug/L		99.1	78-124			
Surrogate: Toluene-d8	70.9		ug/L		88.6	76-118			

P: 1-800-749-1947 E: PARACEL@PARACELLABS.COM WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3

SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 5 of 8

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Client PO: 9151

Project Description: PE2073

Order #: 1036123 Report Date: 08-Sep-2010

Order Date:1-Sep-2010

Method Quality Control: Duplicate Г

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	200	ug/L	ND				32	
Volatiles			0						
		0.5	ug/l					20	
Bromodichloromothano		0.5	ug/L					20	
Bromoform		0.4	ug/L					25	
Bromomothano		0.5	ug/L					20	
Carbon Totrachlorido		0.7	ug/L					25	
Chlorobonzono		0.5	ug/L					25	
Chloroothana		0.4	ug/L					20	
Chloroform		1.0	ug/L					20	
Chloromothana		0.5	ug/L					19	
Dibromochloromothono		3.0	ug/L	ND				20	
1.2 Dibromocthono		0.5	ug/L					20	
		1.0	ug/L	ND				20	
1,2-Dichlorobenzene		0.4	ug/L	ND				20	
1,3-Dichlorobenzene		0.4	ug/L					20	
1,4-Dichloroothono	ND	0.4	ug/L	ND				20	
1, 1-Dichloroethane		0.5	ug/L	ND				21	
1,2-Dichloroethalle		0.5	ug/L					20	
r, r-Dichloroethylene	ND	0.5	ug/L	ND				21	
cis-i,2-Dichloroethylene	ND	0.4	ug/L	ND				20	
trans-1,2-Dichloroethylene	ND	1.0	ug/L	ND				25	
1,2-Dichloropropane	ND	0.5	ug/L	ND				25	
cis-1,3-Dichloropropylene	ND	0.4	ug/L	ND				25	
trans-1,3-Dicnioropropylene	ND	0.5	ug/L	ND				25	
Ethyldenzene	ND	0.5	ug/L	ND				35	
Nietnylene Chloride	ND	4.0	ug/L	ND				25	
Styrene	ND	0.4	ug/L	ND				25	
1,1,1,2-Tetrachloroethane	ND	0.5	ug/L	ND				25	
1,1,2,2-1 etrachioroethane	ND	0.6	ug/L	ND				25	
Teluene	ND	0.5	ug/L	ND				31	
I oluene	ND	0.5	ug/L	ND				30	
	ND	0.4	ug/L	ND				25	
	ND	0.6	ug/L	ND				25	
	ND	0.4	ug/L	ND				30	
	ND	1.0	ug/L	ND				25	
1,3,5- I rimethylbenzene	ND	0.5	ug/L	ND				20	
vinyi chloride	ND	0.4	ug/L	ND				25	
m,p-xyienes	ND	0.5	ug/L	ND				34	
o-xyiene	ND	0.5	ug/L	ND	100	00 40 4		32	
Surrogate: 4-Bromotiuorobenzene	82.3		ug/L	ND	103	83-134			
Surrogate: Dibromotiuoromethane	81.7		ug/L	ND	102	78-124			
Surrogate: Toluene-d8	71.0		ug/L	ND	88.8	76-118			

P: 1-800-749-1947 E: PARACEL@PARACELLABS.COM

WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3

SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 6 of 8

Certificate of Analysis

Client: Paterson Group Consulting Engineers Client PO: 9151

Method Quality Control: Spike

Project Description: PE2073

Report Date: 08-Sep-2010

Order #: 1036123

Order Date:1-Sep-2010

Arrah ta		Reporting		Source		%REC		RPD	
Analyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	1800	200	ua/l	ND	89.8	68-117			
F2 PHCs (C10-C16)	1520	100	ug/L	ND	95.2	61-129			
E3 PHCs (C16-C34)	3920	100	ug/L	ND	98.0	61-129			
F4 PHCs (C34-C50)	2900	100	ug/L	ND	121	61-129			
Volatilos			9						
Benzene	35.1	0.5	ua/l		877	55-1/1			
Bromodichloromethane	36.0	0.5	ug/L		90.0	52-130			
Bromoform	30.0	0.4	ug/L		08.8	52-139			
Bromomethane	11 G	0.5	ug/L		104	32-170			
Carbon Tetrachloride	41.0	0.7	ug/L		104	49-149			
Chlorobenzene	34.6	0.0	ug/L		86.4	64-137			
Chloroethane	20.1	1.0	ug/L		72.6	30-152			
Chloroform	36.1	0.5	ug/L	ND	90.3	58-138			
Chloromethane	42.6	3.0	ug/L	ND	106	24-163			
Dibromochloromethane	38.6	0.5	ug/L	ND	96.6	61-153			
1 2-Dibromoethane	38.7	1.0	ug/L	ND	96.7	61-145			
1 2-Dichlorobenzene	33.5	0.4	ug/L	ND	83.6	60-150			
1.3-Dichlorobenzene	32.9	0.4	ug/L	ND	82.2	62-149			
1 4-Dichlorobenzene	34.2	0.4	ug/L	ND	85.5	63-132			
1 1-Dichloroethane	35.0	0.5	ug/l	ND	87.5	51-156			
1.2-Dichloroethane	38.5	0.5	ug/L	ND	96.3	50-140			
1.1-Dichloroethylene	32.0	0.5	ug/L	ND	80.0	43-153			
cis-1.2-Dichloroethylene	39.4	0.4	ug/L	ND	98.6	58-145			
trans-1.2-Dichloroethylene	43.6	1.0	ug/L	ND	109	51-145			
1.2-Dichloropropane	33.7	0.5	ug/L	ND	84.2	56-136			
cis-1,3-Dichloropropylene	38.0	0.4	ug/L	ND	95.1	54-141			
trans-1,3-Dichloropropylene	42.5	0.5	ug/L	ND	106	61-140			
Ethylbenzene	31.6	0.5	ug/L	ND	79.0	61-139			
Methylene Chloride	33.2	4.0	ug/L	ND	83.0	58-149			
Styrene	28.3	0.4	ug/L	ND	70.6	63-143			
1,1,1,2-Tetrachloroethane	41.7	0.5	ug/L	ND	104	61-148			
1,1,2,2-Tetrachloroethane	38.1	0.6	ug/L	ND	95.2	50-157			
Tetrachloroethylene	32.0	0.5	ug/L	ND	79.9	51-145			
Toluene	36.8	0.5	ug/L	ND	92.0	54-136			
1,1,1-Trichloroethane	36.2	0.4	ug/L	ND	90.4	55-140			
1,1,2-Trichloroethane	39.4	0.6	ug/L	ND	98.6	63-144			
Trichloroethylene	36.9	0.4	ug/L	ND	92.2	52-135			
Trichlorofluoromethane	36.9	1.0	ug/L	ND	92.2	37-155			
1,3,5-Trimethylbenzene	32.6	0.5	ug/L	ND	81.5	61-151			
Vinyl chloride	41.3	0.4	ug/L	ND	103	31-159			
m,p-Xylenes	65.1	0.5	ug/L	ND	81.4	61-139			
o-Xylene	33.0	0.5	ug/L	ND	82.6	60-142			
Surrogate: 4-Bromofluorobenzene	77.6		ug/L		97.0	83-134			
Surrogate: Dibromofluoromethane	75.3		ug/L		94.1	78-124			
Surrogate: Toluene-d8	81.2		ug/L		102	76-118			

P: 1-800-749-1947 E: PARACEL@PARACELLABS.COM WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3

SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 7 of 8

Certificate of Analysis Client: Paterson Group Consulting Engineers

Client PO: 9151

Project Description: PE2073

Report Date: 08-Sep-2010 Order Date:1-Sep-2010

Sample and QC Qualifiers Notes

None

Sample Data Revisions

None

Work Order Revisions/Comments:

None

Other Report Notes:

n/a: not applicable

MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples

%REC: Percent recovery.

RPD: Relative percent difference.

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.

- F1 range corrected for BTEX.
- F2 to F3 ranges corrected for appropriate PAHs where available.
- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.

- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.

P: 1-800-749-1947 E: paracel@paracellabs.com

WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4JB NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

SARNIA

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3

123 Christina St. N. Sarnia, ON N7T 5T7

Page 8 of 8

OTTAWA © NIAGARA FALLS © MISSIS	TRUS RESF RELLA	ONSINABLE .	VE.		D	aa Drinkina W	don	300 e: pa	-2319 St. Laur Ottawa, ON I t: 613-7 800-7 f: 613-7 racel@paracell	ent Blvd K1G 4J8 31-9577 49-1947 31-9064 abs.com	Chain Nº	(lab use only) 7156	tody 8
ient Name:	Project I	Ref:		i.	W	aterworks Name	iter				D	and of 1	,
ontact Name:	Quote #	520	13		W	aterworks Numb	er:				1.		
Idress:	PO# @	2	. ,		A	ddress:					Drint Name:	imple Taken by:	
28 Concourse Gate	Email	7/5 Address	/			Ree house Course					C:	yler Rob.	,hson
	C-mail 7	erse	pak	songn	supra A	Iter nours Conta	ct:				Signature:		
elephone: 226-7381	Fax:	226	634	4	P	ablic Health Uni	t:				TAT: []	1-day [] 2-day [Reg.
Matrix Types: S-Soil/Sed. GW-Ground Water S	SW-Surface	Water	SS-Stor	m/Sanita	ary Sewer D	W-Drinking V	Water RD	W-Reg	ulated Drinl	king Wa	ter P - Pain	A-Air O-O)ther
mples submitted under; (Indicate ONLY one) (O. Reg 153 (511) Table ☐ □ O. Reg 170/03 □ O. Reg 31 CCME □ O. Reg 243/07 □ O. Reg 319/08 □ Oti	18/08 🗌 Private her:	e well	Type of Location	DW Sampl Types: S	e: R = Raw; T = Surface Wate	= Treated; D = E ; G = Ground	Distribution Water			Requ	ired Analys	ës	
1036123	Matrix	Air Volume	ype of Sample	of Containers	Samp	e Taken	Free / Combined hlorine Residual mg/L	HCS	1005				
Sample ID / Location Name			T	#	Date	Time	40	2	<i>,</i>				
1 BH3-GWI	GW			3	September	1,2010		X	X				
2													
3													
4													-
5				3									-
6													+
7													
0												3	_
0													
9													_
Comments:) [1		Ver	ervation Ver	ification:	pH	I emperature	
Relinquished By (Print & Sign):	Receiv Driver Date/T	ed By - /Depot:-	3:40	2	10	Received at Lab:	Lab Use On	ly:		Verified By: Date/Tir	A Gl	1	

RELIABLE.

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

Paterson Group Consulting Engineers

154 Colonnade Road South Nepean, ON K2E 7J5 Attn: Mark D'Arcy

Client PO: 30715 Project: PE2073 Custody: 128120

Report Date: 4-Sep-2020 Order Date: 31-Aug-2020

Order #: 2036155

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID 2036155-01

Client ID BH3-20-GW1

Approved By:

Dale Robertson, BSc Laboratory Director

Any use of these results implies your agreement that our total liability in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.

Certificate of Analysis Client: Paterson Group Consulting Engineers Client PO: 30715 Report Date: 04-Sep-2020

Order #: 2036155

Order Date: 31-Aug-2020

Project Description: PE2073

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
PHC F1	CWS Tier 1 - P&T GC-FID	1-Sep-20	2-Sep-20
PHCs F2 to F4	CWS Tier 1 - GC-FID, extraction	4-Sep-20	4-Sep-20
REG 153: VOCs by P&T GC/MS	EPA 624 - P&T GC-MS	1-Sep-20	2-Sep-20

Client PO: 30715

Certificate of Analysis Client: Paterson Group Consulting Engineers

Report Date: 04-Sep-2020

Order Date: 31-Aug-2020

Project Description: PE2073

	Client ID:	BH3-20-GW1	-	-	-
	Sample Date:	28-Aug-20 09:00	-	-	-
	Sample ID:	2036155-01	-	-	-
	MDL/Units	Water	-	-	-
Volatiles					
Acetone	5.0 ug/L	<5.0	-	-	-
Benzene	0.5 ug/L	<0.5	-	-	-
Bromodichloromethane	0.5 ug/L	<0.5	-	-	-
Bromoform	0.5 ug/L	<0.5	-	-	-
Bromomethane	0.5 ug/L	<0.5	-	-	-
Carbon Tetrachloride	0.2 ug/L	<0.2	-	-	-
Chlorobenzene	0.5 ug/L	<0.5	-	-	-
Chloroform	0.5 ug/L	<0.5	-	-	-
Dibromochloromethane	0.5 ug/L	<0.5	-	-	-
Dichlorodifluoromethane	1.0 ug/L	<1.0	-	-	-
1,2-Dichlorobenzene	0.5 ug/L	<0.5	-	-	-
1,3-Dichlorobenzene	0.5 ug/L	<0.5	-	-	-
1,4-Dichlorobenzene	0.5 ug/L	<0.5	-	-	-
1,1-Dichloroethane	0.5 ug/L	<0.5	-	-	-
1,2-Dichloroethane	0.5 ug/L	<0.5	-	-	-
1,1-Dichloroethylene	0.5 ug/L	<0.5	-	-	-
cis-1,2-Dichloroethylene	0.5 ug/L	<0.5	-	-	-
trans-1,2-Dichloroethylene	0.5 ug/L	<0.5	-	-	-
1,2-Dichloropropane	0.5 ug/L	<0.5	-	-	-
cis-1,3-Dichloropropylene	0.5 ug/L	<0.5	-	-	-
trans-1,3-Dichloropropylene	0.5 ug/L	<0.5	-	-	-
1,3-Dichloropropene, total	0.5 ug/L	<0.5	-	-	-
Ethylbenzene	0.5 ug/L	<0.5	-	-	-
Ethylene dibromide (dibromoethane, 1,2-)	0.2 ug/L	<0.2	-	-	-
Hexane	1.0 ug/L	<1.0	-	-	-
Methyl Ethyl Ketone (2-Butanone)	5.0 ug/L	<5.0	-	-	-
Methyl Isobutyl Ketone	5.0 ug/L	<5.0	-	-	-
Methyl tert-butyl ether	2.0 ug/L	<2.0	-	-	-
Methylene Chloride	5.0 ug/L	<5.0	-	-	-
Styrene	0.5 ug/L	<0.5	-	-	-
1,1,1,2-Tetrachloroethane	0.5 ug/L	<0.5	-	-	-
1,1,2,2-Tetrachloroethane	0.5 ug/L	<0.5	-	-	-
Tetrachloroethylene	0.5 ug/L	<0.5	-	-	-
Toluene	0.5 ug/L	<0.5	-	-	-
1,1,1-Trichloroethane	0.5 ug/L	<0.5	-	-	-

Certificate of Analysis Client: Paterson Group Consulting Engineers Client PO: 30715

Report Date: 04-Sep-2020 Order Date: 31-Aug-2020

Project Description: PE2073

	Client ID:	BH3-20-GW1	-	-	-
	Sample Date:	28-Aug-20 09:00	-	-	-
	Sample ID:	2036155-01	-	-	-
	MDL/Units	Water	-	-	-
1,1,2-Trichloroethane	0.5 ug/L	<0.5	-	-	-
Trichloroethylene	0.5 ug/L	<0.5	-	-	-
Trichlorofluoromethane	1.0 ug/L	<1.0	-	-	-
Vinyl chloride	0.5 ug/L	<0.5	-	-	-
m,p-Xylenes	0.5 ug/L	<0.5	-	-	-
o-Xylene	0.5 ug/L	<0.5	-	-	-
Xylenes, total	0.5 ug/L	<0.5	-	-	-
4-Bromofluorobenzene	Surrogate	119%	-	-	-
Dibromofluoromethane	Surrogate	76.2%	-	-	-
Toluene-d8	Surrogate	119%	-	-	-
Hydrocarbons					
F1 PHCs (C6-C10)	25 ug/L	<25	-	-	-
F2 PHCs (C10-C16)	100 ug/L	<100	-	-	-
F3 PHCs (C16-C34)	100 ug/L	<100	-	-	-
F4 PHCs (C34-C50)	100 ug/L	<100	-	-	-

Г

Certificate of Analysis Client: Paterson Group Consulting Engineers Client PO: 30715

Method Quality Control: Blank

Report Date: 04-Sep-2020

Order Date: 31-Aug-2020

Project Description: PE2073

		Reporting		Source		%REC		RPD	
Analyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes
Hydrocarbons									
E1 PHCs (C6-C10)	ND	25	ua/l						
F2 PHCs (C10-C16)	ND	100	ug/L						
F3 PHCs (C16-C34)	ND	100	ug/L						
F4 PHCs (C34-C50)	ND	100	ug/L						
Volatiles	ND	100	G9/L						
Acetone	ND	5.0	ua/l						
Benzene	ND	0.5	ug/L						
Bromodichloromethane	ND	0.5	ug/L						
Bromoform	ND	0.5	ug/L						
Bromomethane	ND	0.5	ug/L						
Carbon Tetrachloride	ND	0.2	ug/L						
Chlorobenzene	ND	0.5	ug/L						
Chloroform	ND	0.5	ug/L						
Dibromochloromethane	ND	0.5	ug/L						
Dichlorodifluoromethane	ND	1.0	ug/L						
1 2-Dichlorobenzene	ND	0.5	ug/L						
1.3-Dichlorobenzene	ND	0.5	ug/L						
1 4-Dichlorobenzene	ND	0.5	ug/L						
1 1-Dichloroethane	ND	0.5	ug/L						
1 2-Dichloroethane	ND	0.5	ug/L						
1 1-Dichloroethylene	ND	0.5	ug/L						
cis-1 2-Dichloroethylene	ND	0.5	ug/L						
trans-1 2-Dichloroethylene	ND	0.5	ug/L						
1 2-Dichloropropane	ND	0.5	ug/L						
cis-1 3-Dichloropropylene	ND	0.5	ug/L						
trans-1 3-Dichloropropylene	ND	0.5	ug/L						
1.3-Dichloropropene total	ND	0.5	ug/L						
Ethylbenzene	ND	0.5	ug/L						
Ethylene dibromide (dibromoethane, 1.2)	ND	0.2	ug/L						
Hexane	ND	1.0	ug/L						
Methyl Ethyl Ketone (2-Butanone)	ND	5.0	ua/L						
Methyl Isobutyl Ketone	ND	5.0	ua/L						
Methyl tert-butyl ether	ND	2.0	ua/L						
Methylene Chloride	ND	5.0	ua/L						
Styrene	ND	0.5	ua/L						
1.1.1.2-Tetrachloroethane	ND	0.5	ua/L						
1.1.2.2-Tetrachloroethane	ND	0.5	ua/L						
Tetrachloroethylene	ND	0.5	ua/L						
Toluene	ND	0.5	ua/L						
1.1.1-Trichloroethane	ND	0.5	ua/L						
1.1.2-Trichloroethane	ND	0.5	ua/L						
Trichloroethylene	ND	0.5	ua/L						
Trichlorofluoromethane	ND	1.0	ua/L						
Vinvl chloride	ND	0.5	ua/L						
m.p-Xvlenes	ND	0.5	ua/L						
o-Xylene	ND	0.5	ug/L						
Xylenes, total	ND	0.5	ug/L						
Surrogate: 4-Bromofluorobenzene	97.5		ug/L		122	50-140			
Surrogate: Dibromofluoromethane	66.0		ua/L		82.5	50-140			
Surrogate: Toluene-d8	96.0		ug/L		120	50-140			

Method Quality Control: Duplicate

Report Date: 04-Sep-2020

Order Date: 31-Aug-2020
Project Description: PE2073

		Reporting		Source		%REC		RPD	
Analyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	25	ug/L	ND			NC	30	
Volatiles			0						
Acetone	ND	5.0	ua/L	ND			NC	30	
Benzene	ND	0.5	ua/L	ND			NC	30	
Bromodichloromethane	ND	0.5	ua/L	ND			NC	30	
Bromoform	ND	0.5	ug/L	ND			NC	30	
Bromomethane	ND	0.5	ug/L	ND			NC	30	
Carbon Tetrachloride	ND	0.2	ug/L	ND			NC	30	
Chlorobenzene	ND	0.5	ug/L	ND			NC	30	
Chloroform	ND	0.5	ug/L	ND			NC	30	
Dibromochloromethane	ND	0.5	ug/L	ND			NC	30	
Dichlorodifluoromethane	ND	1.0	ug/L	ND			NC	30	
1,2-Dichlorobenzene	ND	0.5	ug/L	ND			NC	30	
1,3-Dichlorobenzene	ND	0.5	ug/L	ND			NC	30	
1,4-Dichlorobenzene	ND	0.5	ug/L	ND			NC	30	
1,1-Dichloroethane	ND	0.5	ug/L	ND			NC	30	
1,2-Dichloroethane	ND	0.5	ug/L	ND			NC	30	
1,1-Dichloroethylene	ND	0.5	ug/L	ND			NC	30	
cis-1,2-Dichloroethylene	ND	0.5	ug/L	ND			NC	30	
trans-1,2-Dichloroethylene	ND	0.5	ug/L	ND			NC	30	
1,2-Dichloropropane	ND	0.5	ug/L	ND			NC	30	
cis-1,3-Dichloropropylene	ND	0.5	ug/L	ND			NC	30	
trans-1,3-Dichloropropylene	ND	0.5	ug/L	ND			NC	30	
Ethylbenzene	ND	0.5	ug/L	ND			NC	30	
Ethylene dibromide (dibromoethane, 1,2-	ND	0.2	ug/L	ND			NC	30	
Hexane	ND	1.0	ug/L	ND			NC	30	
Methyl Ethyl Ketone (2-Butanone)	ND	5.0	ug/L	ND			NC	30	
Methyl Isobutyl Ketone	ND	5.0	ug/L	ND			NC	30	
Methyl tert-butyl ether	ND	2.0	ug/L	ND			NC	30	
Methylene Chloride	ND	5.0	ug/L	ND			NC	30	
Styrene	ND	0.5	ug/L	ND			NC	30	
1,1,1,2-Tetrachloroethane	ND	0.5	ug/L	ND			NC	30	
1,1,2,2-Tetrachloroethane	ND	0.5	ug/L	ND			NC	30	
Tetrachloroethylene	ND	0.5	ug/L	ND			NC	30	
Toluene	ND	0.5	ug/L	ND			NC	30	
1,1,1-Trichloroethane	ND	0.5	ug/L	ND			NC	30	
1,1,2-Trichloroethane	ND	0.5	ug/L	ND			NC	30	
Irichloroethylene	ND	0.5	ug/L	ND			NC	30	
Irichlorofluoromethane	ND	1.0	ug/L	ND			NC	30	
Vinyl chloride	ND	0.5	ug/L	ND			NC	30	
m,p-xylenes	ND	0.5	ug/L	ND			NC	30	
o-xyiene	ND	0.5	ug/L	ND	46.4	50 4 40	NC	30	
Surrogate: 4-Bromotluorobenzene	99.1		ug/L		124	50-140			
Surrogate: Dibromofluoromethane	62.4		ug/L		78.0	50-140			
Surrogate: Toluene-d8	91.0		ug/L		114	50-140			

Method Quality Control: Spike

Report Date: 04-Sep-2020

Order Date: 31-Aug-2020

Project Description: PE2073

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	2040	25	ug/L	ND	102	68-117			
F2 PHCs (C10-C16)	1690	100	ug/L	ND	105	60-140			
F3 PHCs (C16-C34)	4620	100	ug/L	ND	118	60-140			
F4 PHCs (C34-C50)	2990	100	ug/L	ND	121	60-140			
Volatiles									
Acetone	73.6	5.0	ug/L	ND	73.6	50-140			
Benzene	25.7	0.5	ug/L	ND	64.3	60-130			
Bromodichloromethane	30.6	0.5	ug/L	ND	76.4	60-130			
Bromoform	32.7	0.5	ug/L	ND	81.7	60-130			
Bromomethane	28.6	0.5	ug/L	ND	71.5	50-140			
Carbon Tetrachloride	25.8	0.2	ug/L	ND	64.4	60-130			
Chlorobenzene	28.9	0.5	ug/L	ND	72.2	60-130			
Chloroform	32.7	0.5	ug/L	ND	81.7	60-130			
Dibromochloromethane	30.8	0.5	ug/L	ND	77.0	60-130			
Dichlorodifluoromethane	32.5	1.0	ug/L	ND	81.2	50-140			
1,2-Dichlorobenzene	26.4	0.5	ug/L	ND	66.0	60-130			
1,3-Dichlorobenzene	28.5	0.5	ug/L	ND	71.2	60-130			
1,4-Dichlorobenzene	24.0	0.5	ug/L	ND	60.1	60-130			
1,1-Dichloroethane	27.7	0.5	ug/L	ND	69.3	60-130			
1,2-Dichloroethane	28.1	0.5	ug/L	ND	70.2	60-130			
1,1-Dichloroethylene	34.8	0.5	ug/L	ND	86.9	60-130			
cis-1,2-Dichloroethylene	35.2	0.5	ug/L	ND	88.1	60-130			
trans-1,2-Dichloroethylene	35.4	0.5	ug/L	ND	88.5	60-130			
1,2-Dichloropropane	26.0	0.5	ug/L	ND	65.1	60-130			
cis-1,3-Dichloropropylene	31.0	0.5	ug/L	ND	77.5	60-130			
trans-1,3-Dichloropropylene	35.1	0.5	ug/L	ND	87.8	60-130			
Ethylbenzene	28.0	0.5	ug/L	ND	69.9	60-130			
Ethylene dibromide (dibromoethane, 1,2	27.0	0.2	ug/L	ND	67.5	60-130			
Hexane	27.2	1.0	ug/L	ND	68.0	60-130			
Methyl Ethyl Ketone (2-Butanone)	68.2	5.0	ug/L	ND	68.2	50-140			
Methyl Isobutyl Ketone	56.2	5.0	ug/L	ND	56.2	50-140			
Methyl tert-butyl ether	54.1	2.0	ug/L	ND	54.1	50-140			
Methylene Chloride	25.0	5.0	ug/L	ND	62.5	60-130			
Styrene	29.3	0.5	ug/L	ND	73.4	60-130			
1,1,1,2-Tetrachloroethane	27.7	0.5	ug/L	ND	69.3	60-130			
1,1,2,2-Tetrachloroethane	25.6	0.5	ug/L	ND	64.0	60-130			
Tetrachloroethylene	29.1	0.5	ug/L	ND	72.8	60-130			
Toluene	44.9	0.5	ug/L	ND	112	60-130			
1,1,1-Trichloroethane	27.4	0.5	ug/L	ND	68.4	60-130			
1,1,2-Trichloroethane	44.1	0.5	ug/L	ND	110	60-130			
Trichloroethylene	28.7	0.5	ug/L	ND	71.8	60-130			
Trichlorofluoromethane	24.4	1.0	ug/L	ND	61.0	60-130			
Vinyl chloride	27.0	0.5	ug/L	ND	67.6	50-140			
m,p-Xylenes	59.5	0.5	ug/L	ND	74.4	60-130			
o-Xylene	27.9	0.5	ug/L	ND	69.8	60-130			
Surrogate: 4-Bromofluorobenzene	82.9		ug/L		104	50-140			
Surrogate: Dibromotiuoromethane	72.2		ug/L		90.2	50-140			
Surrogate: Toluene-ao	90.8		ug/L		113	50-140			

Qualifier Notes:

None

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference. NC: Not Calculated

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.

- F1 range corrected for BTEX.

- F2 to F3 ranges corrected for appropriate PAHs where available.

- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.

- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.

- When reported, data for F4G has been processed using a silica gel cleanup.

G PARACE	P T.D.	arac	el II): 2(036155		Par 20	icel Or (Lab U	der N se Or	umbe ly)	er		Chair (L N	n Of (ab Use	Custo only) 281	20	
Client Name: PATERSON			Projec	t Ref: .	PE 2073								1	oage_/	of	/	
Contact Name: MARK DARC	4		Quote	#:			_						Turr	arou	nd Tim	e	
Address:	S OTTAWA,		PO #:	30	715								day		[∃ 3 d	ay
Telephone:	ONT.			10	ARCIQP	ATERSON	G	201	P. C	م		2 Date Re	day autrod		١	₫ Reg	şular
(613) 226 - 7381			. ¹ .										quireu.			-	_
Regulation 153/04	Other Regulation	N	1atrix 1	ype:	S (Soil/Sed.) GW (G	round Water)					R	equire	d Analy	sis			
Table 1 Res/Park Med/Fine REG	558 🗆 PWQO		SW (Su	rface V P (P	Vater) SS (Storm/Sa aint) A (Air) O (Oth	nitary Sewer) ner)			_	T				1			
Table 2 Ind/Comm Coarse CCM	E I MISA	-		1	l		-							1			
Table 3 Agri/Other SU-	Sani 🗌 SU - Storm			iners	Sample	Taken	4-8-		2	2							
	ir:	×	Inme	Conta	oumpie	- unen	F1-F		de hu			VS)					
Sample ID/Location Name		Matri	Air Vo	t of 0	Date	Time	PHCs	VOCS	PAHS	Hg	Ī	B (H)					
1 RH3-20-GW1		GW		3	AUG 28/20		N	V			Ħ		1				1
2					11111 20 20		+		┢	\top	Ħ		+				
3							+	$\left \right $			$\left \right $	╧	+				
4		-						$\left \right $	┢				+				
5			-				+	$\left \right $	┢	1		+			-		
6								Ħ		\top		┢		1			
7				1.1					┢								
8				2				Ħ								-	
9													-				
10																	
Comments:				1							Meth	d of Del	ivery:	VP	Box		
Relinquished By (Sign):	Received By C	river/D	epot:			Received at Lab	e d	Ba	m		Verifi	d By:	A	7em	T 11		
Relinquished By (Print): DOMINIC LANDR	-J Date/Time:			- 25		Date/Time: Av	531	20	18:	15	Date/	lime: {	ept	1,20	20	12:	14
Date/Time: AUG 3151/2020	Temperature:				°C	Temperature:	20.	3 °	С		pH Ve	rified: C] Ву				

Chain of Custody (Env.) xlsx

Revision 3.0

RELIABLE.

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

Paterson Group Consulting Engineers

154 Colonnade Road South Nepean, ON K2E 7J5 Attn: Mark D'Arcy

Client PO: 30739 Project: PE2073 Custody: 128124

Report Date: 11-Sep-2020 Order Date: 9-Sep-2020

Order #: 2037189

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID 2037189-01

Client ID BH1-GW1

Approved By:

Dale Robertson, BSc Laboratory Director

Any use of these results implies your agreement that our total liability in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.

Report Date: 11-Sep-2020

Order #: 2037189

Order Date: 9-Sep-2020

Project Description: PE2073

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
PHC F1	CWS Tier 1 - P&T GC-FID	9-Sep-20	10-Sep-20
PHCs F2 to F4	CWS Tier 1 - GC-FID, extraction	10-Sep-20	10-Sep-20
REG 153: VOCs by P&T GC/MS	EPA 624 - P&T GC-MS	9-Sep-20	10-Sep-20

Client PO: 30739

Certificate of Analysis Client: Paterson Group Consulting Engineers

Report Date: 11-Sep-2020

Order Date: 9-Sep-2020

Project Description: PE2073

	Client ID:	BH1-GW1	-	-	-
	Sample Date:	08-Sep-20 15:00	-	-	-
	Sample ID:	2037189-01	-	-	-
Valatilaa	MDL/Units	vvater	-	-	-
	5 0 ug/l	.5.0	1		
Acetone	0.5 ug/L	<5.0	-	-	-
Benzene	0.5 ug/L	<0.5	-	-	-
Bromodichloromethane	0.5 ug/L	<0.5	-	-	-
Bromoform	0.5 ug/L	<0.5	-	-	-
Bromomethane	0.5 ug/L	<0.5	-	-	-
Carbon Tetrachloride	0.2 ug/L	<0.2	-	-	-
Chlorobenzene	0.5 ug/L	<0.5	-	-	-
Chloroform	0.5 ug/L	<0.5	-	-	-
Dibromochloromethane	0.5 ug/L	<0.5	-	-	-
Dichlorodifluoromethane	1.0 ug/L	<1.0	-	-	-
1,2-Dichlorobenzene	0.5 ug/L	<0.5	-	-	-
1,3-Dichlorobenzene	0.5 ug/L	<0.5	-	-	-
1,4-Dichlorobenzene	0.5 ug/L	<0.5	-	-	-
1,1-Dichloroethane	0.5 ug/L	<0.5	-	-	-
1,2-Dichloroethane	0.5 ug/L	<0.5	-	-	-
1,1-Dichloroethylene	0.5 ug/L	<0.5	-	-	-
cis-1,2-Dichloroethylene	0.5 ug/L	<0.5	-	-	-
trans-1,2-Dichloroethylene	0.5 ug/L	<0.5	-	-	-
1,2-Dichloropropane	0.5 ug/L	<0.5	-	-	-
cis-1,3-Dichloropropylene	0.5 ug/L	<0.5	-	-	-
trans-1,3-Dichloropropylene	0.5 ug/L	<0.5	-	-	-
1,3-Dichloropropene, total	0.5 ug/L	<0.5	-	-	-
Ethylbenzene	0.5 ug/L	<0.5	-	-	-
Ethylene dibromide (dibromoethane, 1,2-)	0.2 ug/L	<0.2	-	-	-
Hexane	1.0 ug/L	<1.0	-	-	-
Methyl Ethyl Ketone (2-Butanone)	5.0 ug/L	<5.0	-	-	-
Methyl Isobutyl Ketone	5.0 ug/L	<5.0	-	-	-
Methyl tert-butyl ether	2.0 ug/L	<2.0	-	-	-
Methylene Chloride	5.0 ug/L	<5.0	-	-	-
Styrene	0.5 ug/L	<0.5	-	-	-
1,1,1,2-Tetrachloroethane	0.5 ug/L	<0.5	-	-	-
1,1,2,2-Tetrachloroethane	0.5 ug/L	<0.5	-	-	-
Tetrachloroethylene	0.5 ug/L	<0.5	-	-	-
Toluene	0.5 ug/L	<0.5	-	-	-
1,1,1-Trichloroethane	0.5 ug/L	<0.5	-	-	-

Report Date: 11-Sep-2020 Order Date: 9-Sep-2020

Project Description: PE2073

	Client ID:	BH1-GW1	-	-	-
	Sample Date:	08-Sep-20 15:00	-	-	-
	Sample ID:	2037189-01	-	-	-
	MDL/Units	Water	-	-	-
1,1,2-Trichloroethane	0.5 ug/L	<0.5	-	-	-
Trichloroethylene	0.5 ug/L	<0.5	-	-	-
Trichlorofluoromethane	1.0 ug/L	<1.0	-	-	-
Vinyl chloride	0.5 ug/L	<0.5	-	-	-
m,p-Xylenes	0.5 ug/L	<0.5	-	-	-
o-Xylene	0.5 ug/L	<0.5	-	-	-
Xylenes, total	0.5 ug/L	<0.5	-	-	-
4-Bromofluorobenzene	Surrogate	101%	-	-	-
Dibromofluoromethane	Surrogate	99.2%	-	-	-
Toluene-d8	Surrogate	104%	-	-	-
Hydrocarbons	•				
F1 PHCs (C6-C10)	25 ug/L	<25	-	-	-
F2 PHCs (C10-C16)	100 ug/L	<100	-	-	-
F3 PHCs (C16-C34)	100 ug/L	<100	-	-	-
F4 PHCs (C34-C50)	100 ug/L	<100	-	-	-

Г

Certificate of Analysis Client: Paterson Group Consulting Engineers Client PO: 30739

Method Quality Control: Blank

Report Date: 11-Sep-2020

Order Date: 9-Sep-2020

Project Description: PE2073

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	25	ug/L						
F2 PHCs (C10-C16)	ND	100	ug/L						
F3 PHCs (C16-C34)	ND	100	ug/L						
F4 PHCs (C34-C50)	ND	100	ug/L						
Volatiles			0						
Acetone	ND	5.0	ug/L						
Benzene	ND	0.5	ug/L						
Bromodichloromethane	ND	0.5	ug/L						
Bromoform	ND	0.5	ug/L						
Bromomethane	ND	0.5	ug/L						
Carbon Tetrachloride	ND	0.2	ug/L						
Chlorobenzene	ND	0.5	ug/L						
Chloroform	ND	0.5	ug/L						
Dibromochloromethane	ND	0.5	ug/L						
Dichlorodifluoromethane	ND	1.0	ug/L						
1,2-Dichlorobenzene	ND	0.5	ug/L						
1,3-Dichlorobenzene	ND	0.5	ug/L						
1,4-Dichlorobenzene	ND	0.5	ug/L						
1,1-Dichloroethane	ND	0.5	ug/L						
1,2-Dichloroethane	ND	0.5	ug/L						
1,1-Dichloroethylene	ND	0.5	ug/L						
cis-1,2-Dichloroethylene	ND	0.5	ug/L						
trans-1,2-Dichloroethylene	ND	0.5	ug/L						
1,2-Dichloropropane	ND	0.5	ug/L						
cis-1,3-Dichloropropylene	ND	0.5	ug/L						
trans-1,3-Dichloropropylene	ND	0.5	ug/L						
1,3-Dichloropropene, total	ND	0.5	ug/L						
Ethylbenzene	ND	0.5	ug/L						
Ethylene dibromide (dibromoethane, 1,2-	ND	0.2	ug/L						
Hexane	ND	1.0	ug/L						
Methyl Ethyl Ketone (2-Butanone)	ND	5.0	ug/L						
Methyl Isobutyl Ketone	ND	5.0	ug/L						
Methyl tert-butyl ether	ND	2.0	ug/L						
Methylene Chloride	ND	5.0	ug/L						
Styrene	ND	0.5	ug/L						
1,1,1,2-Tetrachloroethane	ND	0.5	ug/L						
1,1,2,2-Tetrachloroethane	ND	0.5	ug/L						
Tetrachloroethylene	ND	0.5	ug/L						
Toluene	ND	0.5	ug/L						
1,1,1-Trichloroethane	ND	0.5	ug/L						
1,1,2-Trichloroethane	ND	0.5	ug/L						
Trichloroethylene	ND	0.5	ug/L						
Trichlorofluoromethane	ND	1.0	ug/L						
Vinyl chloride	ND	0.5	ug/L						
m,p-Xylenes	ND	0.5	ug/L						
o-Xylene	ND	0.5	ug/L						
Xylenes, total	ND	0.5	ug/L						
Surrogate: 4-Bromofluorobenzene	81.7		ug/L		102	50-140			
Surrogate: Dibromofluoromethane	76.9		ug/L		96.1	50-140			
Surrogate: Toluene-d8	83.9		ug/L		105	50-140			

Method Quality Control: Duplicate

Report Date: 11-Sep-2020

Order Date: 9-Sep-2020

Project Description: PE2073

		Reporting		Source		%REC		RPD	
Analyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	25	ug/L	ND			NC	30	
Volatiles			5						
Acetone	ND	5.0	ug/l	ND			NC	30	
Benzene		0.5	ug/L	ND			NC	30	
Bromodichloromethane		0.5	ug/L				NC	30	
Bromoform	ND	0.5	ug/L	ND			NC	30	
Bromomethane	ND	0.5	ug/L	ND			NC	30	
Carbon Tetrachloride	ND	0.0	ug/L	ND			NC	30	
Chlorobenzene	ND	0.5	ug/L	ND			NC	30	
Chloroform	13.1	0.5	ug/L	13.1			0.5	30	
Dibromochloromethane	ND	0.5	ug/L				NC	30	
Dichlorodifluoromethane	ND	1.0	ug/L	ND			NC	30	
1 2-Dichlorobenzene		0.5	ug/L	ND			NC	30	
1.3-Dichlorobenzene		0.5	ug/L				NC	30	
1.4-Dichlorobenzene		0.5	ug/L	ND			NC	30	
1 1-Dichloroethane		0.5	ug/L	ND			NC	30	
1 2-Dichloroethane		0.5	ug/L	ND			NC	30	
1 1-Dichloroethylene	ND	0.5	ug/L	ND			NC	30	
cis-1 2-Dichloroethylene		0.5	ug/L	ND			NC	30	
trans-1.2-Dichloroethylene		0.5	ug/L	ND			NC	30	
1 2-Dichloropropage	ND	0.5	ug/L	ND			NC	30	
cis-1 3-Dichloropropulene	ND	0.5	ug/L	ND			NC	30	
trans-1.3-Dichloropropylene		0.5	ug/L	ND			NC	30	
Ethylbenzene	ND	0.5	ug/L	ND			NC	30	
Ethylene dibromide (dibromoethane, 1.2.	ND	0.0	ug/L	ND			NC	30	
Hexane	ND	1.0	ug/L	ND			NC	30	
Methyl Ethyl Ketone (2-Butanone)	ND	5.0	ug/L	ND			NC	30	
Methyl Isobutyl Ketone	ND	5.0	ug/L	ND			NC	30	
Methyl tert-butyl ether	ND	2.0	ug/L	ND			NC	30	
Methylene Chloride	ND	5.0	ug/L	ND			NC	30	
Styrene	ND	0.5	ug/L	ND			NC	30	
1 1 1 2-Tetrachloroethane	ND	0.5	ug/L	ND			NC	30	
1 1 2 2-Tetrachloroethane	ND	0.5	ug/L	ND			NC	30	
Tetrachloroethylene	ND	0.5	ug/L	ND			NC	30	
Toluene	ND	0.5	ug/L	ND			NC	30	
1 1 1-Trichloroethane	ND	0.5	ug/L	ND			NC	30	
1 1 2-Trichloroethane	ND	0.5	ug/L	ND			NC	30	
Trichloroethylene	ND	0.5	ug/L	ND			NC	30	
Trichlorofluoromethane	ND	1.0	ug/L	ND			NC	30	
Vinyl chloride	ND	0.5	ug/L	ND			NC	30	
m n-Xvlenes		0.5	ug/L	ND			NC	30	
o-Xvlene	ND	0.5	ug/L				NC	30	
Surrogate: 4-Bromofluorobenzene	82 3	0.0	ug/L		103	50-140	110	00	
Surrogate: Dibromofluoromethane	QC 1		ug/L		100	50-140			
Surrogate: Distornonuolonielinane	00.1		ug/L		104	50-140			
Surroyale. Toluene-ao	o3.4		ug/L		104	50-140			

Method Quality Control: Spike

Report Date: 11-Sep-2020

Order Date: 9-Sep-2020

Project Description: PE2073

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	1900	25	ug/L	ND	95.0	68-117			
F2 PHCs (C10-C16)	1660	100	ug/L	ND	104	60-140			
F3 PHCs (C16-C34)	4100	100	ug/L	ND	105	60-140			
F4 PHCs (C34-C50)	2700	100	ug/L	ND	109	60-140			
Volatiles			0						
Acetone	90.3	5.0	ua/L	ND	90.3	50-140			
Benzene	39.3	0.5	ug/l	ND	98.3	60-130			
Bromodichloromethane	38.4	0.5	ug/l	ND	96.1	60-130			
Bromoform	38.3	0.5	ug/l	ND	95.6	60-130			
Bromomethane	41.0	0.5	ug/L	ND	103	50-140			
Carbon Tetrachloride	41.6	0.2	ug/l	ND	104	60-130			
Chlorobenzene	41.4	0.5	ug/L	ND	103	60-130			
Chloroform	40.7	0.5	ug/l	ND	102	60-130			
Dibromochloromethane	40.0	0.5	ug/L	ND	100	60-130			
Dichlorodifluoromethane	40.0	1.0	ug/L	ND	120	50-140			
1 2-Dichlorobenzene	41.9	0.5	ug/L	ND	105	60-130			
1.3-Dichlorobenzene	42.9	0.5	ug/L	ND	107	60-130			
1 4-Dichlorobenzene	42.6	0.5	ug/L	ND	107	60-130			
1 1-Dichloroethane	39.7	0.5	ug/L	ND	99.3	60-130			
1.2-Dichloroethane	37.8	0.5	ug/L	ND	94.6	60-130			
1 1-Dichloroethylene	40.4	0.5	ug/L		101	60-130			
cis-1 2-Dichloroethylene	40.4	0.5	ug/L		112	60-130			
trans_1_2_Dichloroethylene	30.0	0.5	ug/L	ND	00.8	60-130			
1 2 Dichloropropage	30.3	0.5	ug/L	ND	08.2	60 130			
cis 1.3 Dichloropropylene	36.0	0.5	ug/L		90.Z	60 130			
trans 1.3 Dichloropropylene	34.1	0.5	ug/L		85.4	60 130			
Ethylbonzone	30.2	0.5	ug/L		09.4	60 130			
Ethylope dibromide (dibromoethene, 1.2	20.6	0.0	ug/L		90.1	60 120			
	13.0	1.0	ug/L		108	60 130			
Methyl Ethyl Ketone (2 Butanone)	43.4	5.0	ug/L		07.2	50 140			
Methyl Isobutyl Ketone	02.1	5.0	ug/L	ND	02.1	50 140			
Methyl tert butyl ether	92.1	2.0	ug/L		92.1	50 140			
Methylene Chloride	90.2	2.0	ug/∟		90.2	60 120			
Stropo	30.0 /1 0	0.5	ug/L		97.0 105	60 130			
1 1 1 2 Tetrachloroethane	41.9	0.5	ug/L		103	60 130			
	40.0	0.5	ug/L		71 /	60 130			
Tetrachloroethylene	20.0	0.5	ug/L		102	60 130			
Toluono	41.0	0.5	ug/L		102	60 130			
1 1 1 Trichloroothono	40.7	0.5	ug/L		102	60 120			
1,1,2 Trichloroethane	40.8	0.5	ug/L		03.7	60 130			
	37.5	0.5	ug/∟		93.7 110	60 120			
Trichlorofluoromothono	47.7	0.5	ug/∟	ND	119	60 120			
	44.4	1.0	ug/∟	ND	107	50 140			
	43.0	0.5	ug/L		107	50-140			
	01.4	0.5	ug/L		102	60 420			
U-Aylelle Surragata: A Bramafluarahan-ana	40.0	0.5	ug/L	ND	102	50 4 40			
Surrogate: 4-Diomonuolobenzene Surrogate: Dibromofluoromethene	03.0 83.1		ug/L		104	50-140 50-140			
Surrogate: Toluene-d8	81.8		ua/l		102	50-140			
	01.0		~ 3' -						

Qualifier Notes:

None

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference. NC: Not Calculated

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.

- F1 range corrected for BTEX.

- F2 to F3 ranges corrected for appropriate PAHs where available.

- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.

- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.

- When reported, data for F4G has been processed using a silica gel cleanup.

	CEL es ltd	Pa	Paracel ID: 2037189 (Lab Use Only) m 237/39							ber	Chain Of Custody (Lab Use Only) N° 128124						
Client Name: PATERSON	-			Projec	ct Ref: .	PE 2073	$\frac{3.55}{2}$	7	- 21	-		-	1	<u>-</u>	Page /	of /	-
Contact Name: MARK D'AR	-01			Quote	2 #:				1			1		Tu	narour	d Time	
Address:	S OTTA	wa,		PO #:	30:	739				,			🗆 1 day			🛛 3 day	
157 Coconmitte more		5.07.		E-mail	1	1	Come Office	Com.	.0 (~			16:	2 day			Regular
Telephone: (613) 226 - 7:	381				m	narcyer	ATEIOON	Grow	4.0	.0-			Date	Required	: :		1
Regulation 153/04	Other Re	egulation	N	latrix T	vpe:	S (Soil/Sed.) GW (Ground Water						-				
Table 1 Res/Park Med/Fine	REG 558	D PWQO		SW (Su	rface V	Vater) SS (Storm/Sa	anitary Sewer)						Requir	ed Anal	ysis		
Table 2 Ind/Comm Coarse	CCME	MISA			P (P	aint) A (Air) O (Ot	her)			Τ	Τ	Τ			1		1
Table 3 🗌 Agri/Other	🗆 SU - Sani	SU - Storm			ers			18									2
Table	Mun:			ami	ntain	Sample	e Taken	L-F4+			by ICI						
For RSC: Yes V No	Other:		atrix	Volu	of Co			CS E1	S .	Hs	etals	=	HWS]				
Sample ID/Locatio	n Name		ŝ	Air	#	Date	Time	H	9	A 1	Σ Å	βĘ	8	_		-	
BHI-GWI		-	Grus	>	3	SEPT. 08/20	3:000		\mathbb{N}								
2																	
3						-	-								· · ·		
4																	
5																	
6																	
7																	
8																	
9																1	1
10																, , I	
comments: Relinquished By (Sign):		Received By Dri	ver/Der	pot:			Red ved at Lab			~	1	Meth 1	od of De	elivery:	Cours	IER	
Kyry			M	14	Tar	ISE	Junee	dyn	1	20	kn	OL		4	5	-	-
ate/Time:	UDRY	Date/Time:	9/0	9/	TO	11:43 CAH	Temperature:	202) °C	đ	.2	pH V	Time:	9- BV	9-2	201	13/4
hain of Custody (Env.) visy						Devision 0.0		014	100	-							

Revision 3.0

LOPERS & ASSOCIATES

Appendix F

Site Photographs

Photograph 1: View of the free product present on top of the water column in BH1(MW) prior to well development and sampling on June 2, 2021.

LOPERS & ASSOCIATES

Appendix G

Qualifications of Assessors

PROFILE

Mr. Lopers is an environmental engineer with over 12 years of experience in environmental engineering specializing in due diligence investigations. Mr. Lopers has extensive experience in Phase I and II Environmental Site Assessments; environmental remediation, and investigations; record of site condition submissions; asset inventory, designated substance surveys and abatement projects; environmental expertise on legal issues; and coordination of various monitoring programs (groundwater, surface water, air).

Mr. Lopers has participated in various Property Condition and Building Envelope mandates at various residential and commercial properties throughout Ontario.

Mr. Lopers has a strong commitment to health and safety, having experience leading a regional health and safety committee as a certified employee representative. Mr. Lopers has extensive training including OSHA 40-hour HAZWOPER, ASP Health and Safety on Construction Sites in Quebec, Ontario Working at Heights, Emergency First Aid/CPR and WHMIS.

CONTACT

EMAIL: Luke@Lopers.ca

LUKE LOPERS Principal LOPERS & ASSOCIATES

EDUCATION

University of Waterloo, B.A.Sc., Honours Environmental Engineering Management Science Option Designation - 2002 - 2008

PROFESSIONAL EXPERIENCE

Lopers & Associates, Principal, Project Manager, Senior Environmental Engineer

Ottawa, Ontario - 2020–Present

Responsible for the management, coordination, supervision, completion and delivery of Phase I/1 and II/2 Environmental Site Assessments, Environmental Remediation Programs, Environmental litigation support, Designated Substance Surveys, scope of work development, cost estimates and proposals

GHD Limited, Project Manager, Senior Environmental Engineer Ottawa, Ontario - 2013–2020

Responsible for the management, senior technical review, coordination, supervision, completion and delivery of Phase I/1 and II/2 Environmental Site Assessments, Environmental Remediation Programs, Environmental litigation support, Designated Substance Surveys, scope of work development, cost estimates and proposals Office Safety Captain and Joint Health and Safety Committee team leader

Paterson Group Inc., Project Manager, Environmental Engineer Ottawa, Ontario - 2009–2013

Responsible for supervision, completion and review for Phase I/1 and II/2 Environmental Site Assessments, Environmental Remediation Programs, Designated Substance Surveys

NEXT Environmental Inc., Site Investigation Staff

Burnaby, British Columbia - 2008–2009 Responsible for fieldwork and reporting for Stage/Phase I and II Environmental Site Assessments, Environmental Remediation Programs

PROFESSIONAL DESIGNATIONS

Licensed Professional Engineer (P.Eng.) with Professional Engineers Ontario (PEO) since 2012

Qualified Person (QP), Environmental Site Assessments with Ontario Ministry of the Environment, Conservation and Parks

PROJECT EXPERIENCE

Environmental Site Assessments

Project Engineer/Manager Phase 1 Environmental Site Assessment | Various Clients | Ontario, Quebec and British Columbia | 2006-2020

Project Engineer/Manager Phase Two Environmental Site Assessments | Various Clients | Various Locations | 2008-2020

Project Manager Phase One, Phase Two Environmental Site Assessments, Environmental Delineation Quality Assurance Program | Costco Wholesale | Ottawa, ON | 2014-2019

Environmental Remediation Programs

Project Engineer Underground Fuel Storage Tank Removals and Environmental Remediation Programs in Vicinity of Active Underground Services | Ottawa, ON | 2010, 2012 Project Engineer/Manager for Phase I Environmental Site Assessments in support of acquisition/divestiture/regulatory requirements for various properties in Ontario, Quebec and British Columbia, including the following:

- Canadian Tire Retail Store and Gas Bar, CTR 417 2560 Princess Street, Kingston, Ontario
- Former Automotive Dealership and Service Garage, North Vancouver, British Columbia
- Former Philips Cable Plant, Brockville, Ontario
- Former Cornwall Cotton Mill, Cornwall, Ontario
- Retail Fuel Outlet and Automotive Service Garage, Ottawa, Ontario
- Jack Garland Airport Land, North Bay, Ontario
- Various Commercial/Residential Properties, Ontario and British Columbia
- Various Residential Properties, Ontario, Quebec and British Columbia
- Rochester Heights (811, 818 Gladstone Avenue), Ottawa, Ontario

Project Engineer/Manager for the following field investigation and/or regulatory reporting requirements for Phase II ESAs and other Site Investigations:

- Proposed Canadian Tire Development, CTR 693P Terry Fox Drive at Eagleson Road, Stittsville, Ontario
- Former Retail/Private Fuel Outlets, Ottawa/North Bay/Vancouver, Canada
- Operational/Former Industrial Facilities, Ottawa/Cornwall/Sarnia/Brockville/Gananoque, Ontario
- Existing Dry Cleaning Facilities, Ottawa/Arnprior, Ontario
 - Automotive Service Garages, Ottawa/Vancouver, Canada
- Various Commercial/Residential Properties, Eastern Ontario
- Tetrachloroethylene Groundwater Plume, Commercial Property, Ottawa, Ontario
- Rochester Heights (811, 818 Gladstone Avenue), Ottawa, Ontario

Project Manager for the completion of a Phase One ESA for the potential acquisition of a commercial property. Upon discovery of APECs at the Site and significant data gaps in previous investigations, completed a Phase Two ESA to evaluate soil and groundwater quality at the Site. Further oversight of original owner's environmental consultants was completed to ensure adequate delineation and characterization of a dNAPL groundwater plume at the Site, present at significant depths in shale bedrock, which originated as a result of a former on-Site dry-cleaning operation.

Project Engineer for removal of underground heating oil storage tanks adjacent to residential buildings. Completed excavation supervision of contaminated soil around and below active underground services, including hydro, water and natural gas infrastructure at residential properties. Activities included oversight of removal of petroleum, impacted soil, and field screening and collection of confirmatory soil and groundwater samples for petroleum hydrocarbon analysis. Prepared Phase I, II and III Environmental Site Assessment reports. Project Engineer Retail Fuel Outlet Decommissioning and Remediation | Ottawa, ON | 2012

Project Engineer/Manager Former Fuel Outlet Investigation and Remediation | Merrickville, ON | 2016-2017

Record of Site Conditions

Project Manager/Engineer Residential Redevelopment | Environmental Remediation Program and Record of Site Condition Submission | Ottawa | 2015

Project Manager/Engineer Industrial Development | Environmental Assessment and Record of Site Condition Submission | Township of Edwardsburgh/Cardinal | 2015

Excess Soil Management

Project Engineer/Manager Management of Excess Soil | CTREL, Brigil, Ottawa Community Housing Corporation | Ottawa and Pembroke, Ontario | 2016, 2018

Designated Substance Surveys

Project Manager

Designated Substance Surveys and Hazardous Building Materials Assessment | Ottawa, Pembroke, Southeastern Ontario | 2010-2020

Environmental Litigation Support

Project Manager, Field Engineer, Expert Witness Ottawa, Ontario | 2014-2020 Project Engineer for UST removal and confirmatory soil sampling at former ESSO gas station in Ottawa, Ontario. Activities included oversight of removal of USTs and product lines, oversight of removal of petroleum-impacted soil and groundwater encountered and backfilling operations, and field screening and collection of confirmatory soil and groundwater samples for petroleum hydrocarbon analysis.

Project Engineer for confirmatory soil and groundwater sampling following UST removal at former Shell gas station. Activities included oversight of removal of petroleum-impacted soil, pumping of groundwater encountered and backfilling operations, and field screening and collection of confirmatory soil and groundwater samples for petroleum hydrocarbon analysis. Additional borehole/monitoring well drilling also completed.

Project Manager for delineation of soil contamination and groundwater sampling for a former automotive garage and gas station property in Ottawa, Ontario. Presented and implemented remedial action plan to remediate on-Site contamination. Directed staff in collection of post remediation confirmatory soil and groundwater samples for contaminants of concern. Prepared remediation closure report and record of site condition supporting documentation for submission to the Ministry of the Environment and Climate Change.

Project Manager for environmental assessments for a proposed industrial business park, in an existing industrial area within the Township of Edwardsburgh/Cardinal, Ontario. Prepared environmental assessment reports and record of site condition supporting documentation for submission to the Ministry of the Environment and Climate Change.

Project Engineer/Manager for sampling, analytical testing, development of soil management plans and monitoring during removal of excess soil generated as part of construction activities, including the following properties/facilities:

- Rochester Heights (811, 818 Gladstone Avenue), Ottawa, Ontario
- Residential redevelopment, 121 Parkdale Avenue, Ottawa, Ontario
- CTR 079, 1104 Pembroke Street East, Pembroke, Ontario
- CTR 297, 2010 Ogilvie Road, Ottawa, Ontario

Project Manager for asbestos containing material (ACM) surveys, designated substance surveys (DSSs), Hazardous Building Materials Assessments (HBMAs) or mould assessments at the following sites:

- DSSs at various municipal facilities for the City of Pembroke, Pembroke, Ontario. Preparation of Asbestos Management Plan.
- HBMAs at various institutional buildings for the Catholic District School Board of Eastern Ontario, Southeastern Ontario.
- DSSs and ACM surveys at various residential, buildings (dwellings and apartment buildings) for private residential clients, Ottawa, Ontario.
- DSS and abatement oversight during demolition, residential buildings (townhouses) for Ottawa Community Housing Corporation, 818 Gladstone Avenue, Ottawa, Ontario.

Project Manager, Field Engineer and Expert Witness for a fuel spill, remediation program, groundwater monitoring program and litigation review for redevelopment of a residential property adjacent to a central heating plant at an institutional facility.

Education

BEng Geological Engineering, École Polytechnique de Montreal, Montreal, Quebec, 1990

MSc Geophysics, University of British Columbia, Vancouver, British Columbia, 1983

BSc Geophysics, Honours, University of British Columbia, Vancouver, British Columbia, 1980

Certifications

Registered as PMP with Project Management Institute since 2012, requalified in 2018

Qualified Person (QP) for Environmental Site Assessments with Ontario Ministry of Environment and Conservation and Parks

Professional Affiliations

Licensed as P.Eng. with the Professional Engineers of Ontario (PEO) since 1994

Licensed as Ing. with l'Ordre des ingénieurs du Québec (OIQ), 1992

Licensed as P.Eng. with NAPEG (NWT and Nunavut), since 2009.

Licensed as P.Eng with Engineers Yukon since 2018

Federal Clearance Level

Secret ID # 95251065

DON PLENDERLEITH

Senior Environmental Engineer and Project Manager

PROFESSIONAL SUMMARY

Mr. Plenderleith has been an environmental engineer for 30 years. From 1990 to 2000 he worked at specialty firms in Montreal and Ottawa where he gained field and reporting experience in site assessment and remediation of retail fuel outlets and railway yards. In 1991 and 1992 he worked on a CIDA sponsored project to assess additional water resource potential in two provinces in Indonesia. He worked for Golder for 19 years on projects in Ottawa, the North and overseas.

His expertise covers all steps in contaminated site management: Phase I, II and III environmental site assessments (ESAs), risk assessments, remedial options evaluations, remedial action plans, tender plans and specifications, remediation project oversight, long-term monitoring and project closure. He has largely concentrated on federal sites since 2002 and was Golder's initial point of contact on the Environmental Standing Offer Agreement with PSPC in the National Capital over that time.

Don led Golder's national client service team for Federal government and was responsible to Golder's management for maintaining strong relations with the federal government. Locally, he provided project management and technical direction of a variety of environmental projects from the Ottawa office. Don mentored several junior professionals. His site portfolio included: military bases, Northern sites, navigational sites, correctional facilities, research labs, commercial buildings and Canadian embassies abroad. On several multi-year projects (Kingston Penitentiary and Connaught Ranges landfill) he directed all steps of site management from initial investigations, through to site closure.

Don is equally experienced at providing strategic and portfolio-level assistance to clients as well as site-specific level work. He has written contaminated sites management plans for several federal Departments. He helped to develop components of the FCSAP project manager's tool kit and has trained federal project managers in its use. He has provided program-level assistance to the FCSAP Secretariat for funding demand forecasting and long-term strategy and risk management. For nine years he led a multi-disciplinary team that performed contaminated site liability peer reviews for the Office of the Auditor General of Canada.

Don completed his engineering degree in French and is licensed to practice in Quebec. He frequently coordinates the French language component at bilingual meetings and workshops.

PROJECT EXPERIENCE – STANDING OFFER MANAGER

Public Services and Procurement Canada, National Capital Region, Environmental Engineering Standing Offer (2002-2019).

Phase I, II, and III and

Remediation at Pittsburgh

Penitentiary for PSPC/CSC

Institution and Kingston

near Kingston, Ontario

Don managed Golder's Environmental Standing Offer Agreement (SOA) with PSPC in the National Capital Region from 2002 to 2019. He was the first point of contact with PSPC for new call-ups. He formed project teams from the approved resources and reviewed the work plans under each call-up. He was responsible and accountable for Golder's overall project performance to PSPC.

PROJECT EXPERIENCE – SENIOR PROJECT MANAGER

Environmental Site Assessment, Remediation Planning and Implementation for the Pittsburgh Institution and Kingston Penitentiary, Kingston, Ontario from 2007 to 2015 - Don was the Senior Project Manager and project reviewer for the Phase I, II and III of contaminated sites on two similar projects at these federal penitentiaries. Don performed project management and provided technical direction during the full suite of services from site assessment through to remediation. Federal project management tools, and FCSAP technical tools (GOST) were used to assist with procedural compliance. Don assisted PSPC with the tender specification for both remediation projects and performed on-site supervision during the fast-track remediation work at Pittsburgh. Don also performed senior review of the draft and final reports.

Peer Review and Liability Review of US Steel Site in Hamilton Harbour for PSPC and Transport Canada (July-August 2016)

Contaminated Site Reporting and Review for Department of National Defence Ottawa, Ontario, Canada Don was the Senior Project Manager for a Peer Review of reports pertaining to the US Steel site on Hamilton Harbour that the Hamilton Port Authority (HPA) was considering purchasing. TC requested the peer review and liability review in its oversight role over the HPA. Don brought a senior expert in at steel industry at Golder onto the project team. With his input some important gaps in the previous site assessments, management plans and liability estimates were identified to TC.

Don has managed several projects for DND's Director General Environment, related to the financial reporting of DND's contaminated sites. He managed the EcoNet validation project in 2006, in which the systems and procedures by which site cost and liability information are input to DND's Contaminated Site database, Econet. Several of DND's major projects being run out of headquarters were reviewed in that exercise. In 2008 he assisted DND by producing the 2008 update of their Contaminated Sites Management Plan (CSMP) for Treasury Board submission. Nine divisional CSMPs were reviewed, summarized and incorporated into the departmental CSMP.

PROGRAM LEVEL WORK – FEDERAL CONTAMINATED SITES

Project Management Tools for Contaminated Sites, Ottawa, Ontario, Canada Mr. Plenderleith developed two of the FCSAP Project Management Tools: Status Reporting and Project Risk Management. He has provided training in the tools to federal project managers country-wide. He has delivered training sessions at RPIC National Contaminated Sites workshops on several occasions on the PM Tools, the Sustainable Development Tool (SDAT), and Guidance Tool for Selection of Technologies Tools (GOST).

Assistance to FCSAP for program-level Risk Management, PWGSC/ECCC Ottawa, Ontario Don has led a team at Golder that provided assistance to the FCSAP Secretariat from 2013 to 2019 in the areas of cost projections for funding demand estimates. He devised a method of projecting the costs of unassessed sites based on closure costs of similar sites. This tool was used to estimate the funding demand for FCSAP Phase III and past Phase III. Don assisted the Secretariat with Long-Term Strategic planning for FSCAP post 2020 when the 15-year program is due to sunset.

Secondments to Federal Departments Mr. Plenderleith has been seconded from Golder to the Department of Foreign Affairs and International Trade (now Global Affairs Canada "GAC") on three occasions to develop their Contaminated Sites Management Plans and to fill in while GAC was staffing their full-time environmental engineer position. Through these secondments he has developed a greater understanding of the role of federal custodians in managing their programs.

PROJECT EXPERIENCE – NORTHERN SITES

 DEW Line Site Monitoring, Baffin Region, DND (2015-19)
 Mr. Plenderleith was the project director of Golder's DEW Line Monitoring contract with DND from four years 2015 to 2019. He was responsible for overall program quality and liaison with the client and management of Inuit subcontractors. The project was multi-disciplinary, involving geotechnical and environmental components. Mr. Plenderleith has developed a very positive working relationship with the hamlet of Qikiqtarjuaq and the Inuit staff from that community, many of whom have returned to work with Golder every year. All Inuit Participation Targets were exceeded.
 Tundra Mine Remediation Monitoring PSPC/INAC (2016-2018)

Don was the Senior project director for Golder's Remediation Monitoring of Tundra Mine (NWT) for PSPC and INAC. This project is multi-disciplinary involving surface water and groundwater environmental monitoring and aquatic monitoring for the final stages of the remediation of Tundra Mine. Don has reviewed the monthly and annual monitoring reports produced for the Water Licence. His earlier experience with the RAP for Tundra has been valuable on this project. Remedial Options Review and Remedial Action Planning Former Water Tanker Base, Inuvik Airport, NWT 2010-12 From 2010 to 2012, Mr. Plenderleith was the technical director for the Phase III ESA detailed site assessment and remediation planning of the former Water Tanker Base at the Inuvik Airport in NWT. The work included determining the contaminants of concern, delineation of contaminated soil and seasonal groundwater areas, and assessing remedial options. The remedial action plan reviewed chemical oxidation and removal & disposal options within the constraints of northern work season, and the distance to a disposal facility. Descriptions, costs, advantages and limitations were provided for several options. GNWT performed the remediation with own forces.