3717 Borrisokane Road

Transportation Impact Assessment

Step 1 Screening Report Step 2 Scoping Report Step 3 Forecasting Report Step 4 Strategy Report (revision 2)

Prepared for:

Caivan Communities 2934 Baseline Road, Suite 302 Ottawa, ON K2H 1B2

Prepared by:

13 Markham Avenue Ottawa, ON K2G 3Z1

August 2021

PN: 2019-43

Table of Contents

1		Screening	. 1
2		Existing and Planned Conditions	1
	2.1	Proposed Development	. 1
	2.2	Existing Conditions	. 3
	2.2	2.1 Area Road Network	. 3
	2.2	2.2 Existing Intersections	. 3
	2.2	2.3 Existing Driveways	. 3
	2.2	2.4 Cycling and Pedestrian Facilities	. 3
	2.2	2.5 Existing Transit	. 4
	2.2	2.6 Existing Area Traffic Management Measures	5
	2.2	2.7 Existing Peak Hour Travel Demand	. 5
	2.2	2.8 Collision Analysis	. 6
	2.3	Planned Conditions	. 6
	2.3	3.1 Changes to the Area Transportation Network	6
	2.3	3.2 Other Study Area Developments	. 8
3		Study Area and Time Periods	. 9
	3.1	Study Area	. 9
	3.2	Time Periods	. 9
	3.3	Horizon Years	. 9
4		Exemption Review	10
5		Development-Generated Travel Demand	10
	5.1	Trip Generation and Mode Shares	10
	5.2	Trip Distribution	11
	5.3	Trip Assignment	11
6		Background Network Travel Demand	12
	6.1	Transportation Network Plans	12
	6.2	Background Growth	12
	6.3	Other Developments	12
7		Demand Rationalization	12
	7.1	2024 Future Background Intersection Operations	
	7.2	2029 Future Background Intersection Operations	
	7.3	Future Total Demand	
8		Development Design	
	8.1	Design for Sustainable Modes	16
	8.2	New Street Networks	17
9		Boundary Street Design	18
10)	Access Intersections Design	
	10.1	Location and Design of Access	
	10.2	Access Intersection Control	
	10.3	Access Intersection Design	18
11	L	Transportation Demand Management	
	11.1	Context for TDM	19

11.2		ed and Opportunity	
11.3		Л Program	
12	Neigh	bourhood Traffic Management	19
12.1		vation Avenue	
12.2	Dur	ndonald Drive	20
13	Trans	it	21
13.1	Rou	te Capacity	21
13.2	Trai	nsit Priority	21
14		w of Network Concept	
15	Netw	ork Intersection Design	21
15.1	Net	work Intersection Control	21
15.2	Net	work Intersection Design	22
15	5.2.1	2024 Future Total Intersection Operations	22
15	5.2.2	2029 Future Total Intersection Operations	23
15	5.2.3	Network Intersection MMLOS	24
16	Sumn	nary of Improvements Indicates and Modifications Options	25
17	Concl	usion	28

List of Figures

Figure 1: Area Context Plan	1
Figure 2: Concept Plan	2
Figure 3: Cycling Network Concept	4
Figure 4: Existing Transit Service	5
Figure 5: Existing Study Area Transit Stops	5
Figure 6: Study Area Collision Records – Representation of 2014-2016	6
Figure 7: Re-Aligned Greenbank Road Cross-Section	
Figure 8: New Site Generation Auto Volumes	. 12
Figure 9: 2024 Future Background Volumes	. 13
Figure 10: 2029 Future Background Volumes	
Figure 11: Future Total 2024 Volumes	
Figure 12: Future Total 2029 Volumes	. 16
Figure 13: Concept Pedestrian Network	. 17
Figure 14: Concept Traffic Calming Plan	. 18

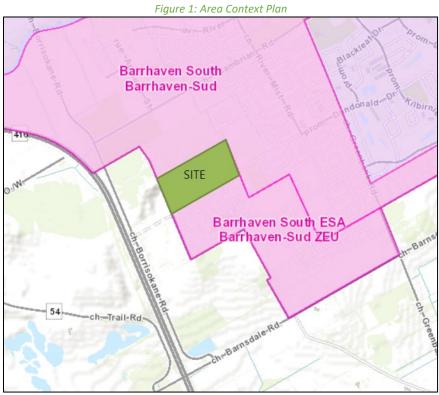
Table of Tables

Fable 1: Exemption Review	10
Fable 2: Trip Generation Person Trip Rates	10
Fable 3: Total Person Trip Rates	10
Cable 4: Mode Share	11
Fable 5: Trip Generation by Mode	11
Fable 6: OD Survey Existing Mode Share South Nepean	11
Fable 7:2024 Future Background Intersection Operations	13

Table 8: 2029 Future Background Intersection Operations	15
Table 9: Elevation Avenue NTM	20
Table 10: Dundonald Drive NTM	20
Table 11: 2024 Future Total Intersection Operations	22
Table 12: 2024 Future Total Stop-control Scenario	23
Table 13: 2029 Future Total Intersection Operations	24
Table 14: Study Area Intersection MMLOS Analysis	25

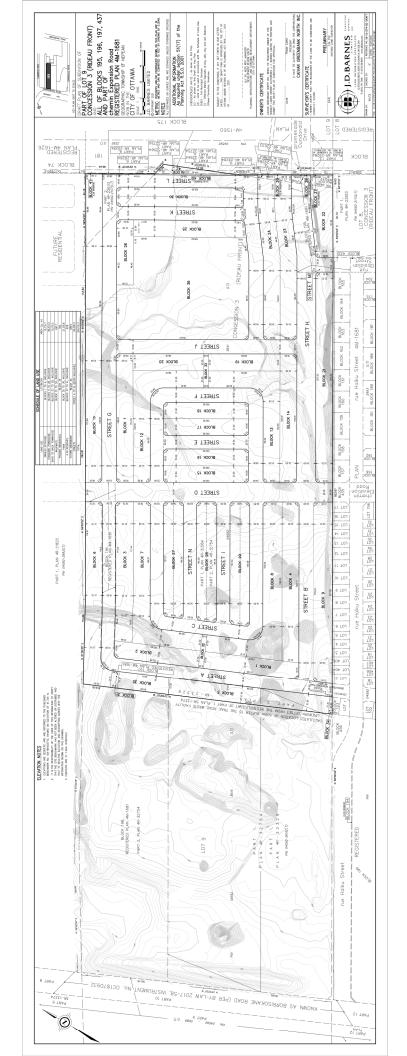
List of Appendices

- Appendix A TIA Screening Form and Certification Form
- Appendix B Apolune Way and Cambrian Road RMA
- Appendix C Signal Warrants
- Appendix D 2024 Future Background Synchro Sheets
- Appendix E 2029 Future Background Synchro Sheets
- Appendix F TDM Checklist
- Appendix G 2024 Future Total Synchro Sheets
- Appendix H 2029 Future Total Synchro Sheets
- Appendix I MMLOS Worksheets


1 Screening

This study has been prepared according to the City of Ottawa's 2017 Transportation Impact Assessment (TIA) Guidelines. Accordingly, a Step 1 Screening Form has been completed and is included as Appendix A, along with the Certification Form for TIA Study PM. As shown in the Screening Form, a TIA is required including the Design Review component and the Network Impact component. The application is for a zoning bylaw amendment and plan of subdivision.

2 Existing and Planned Conditions


2.1 Proposed Development

The proposed residential development, located at 3717 Borrisokane Road, is currently a surrendered sand and gravel pit within the Barrhaven South Urban Expansion Area (UEA). The site is in an area that is currently zoned as a Mineral Extraction Operation Zone (ME2). The current development application would modify the zoning to allow for low-rise residential uses. The proposed residential development will consist of a mixture of 61 detached homes and 589 townhouses. Access to the development lands will be provided to the east of the proposed development along the east-west collector road extension to Dundonald Drive and through the Re-aligned Greenbank Road corridor, and to the north along the planned north-south collector road (Elevation Avenue) to Cambrian Road (at Apolune Way). The development will have active mode connections to the adjacent developments to allow access to shared community services (i.e. parks, schools, etc.). The anticipated full build-out and occupancy horizon is 2024. Figure 1 illustrates the Study Area Context. Figure 2 illustrates the proposed concept plan.

Source: http://maps.ottawa.ca/geoOttawa/ Accessed: May 14, 2020

2.2 Existing Conditions

2.2.1 Area Road Network

Borrisokane Road: Borrisokane Road is a Ministry of Ontario road with a two-lane rural cross-section and a posted speed limit of 80 km/h along the frontage of the site. No sidewalks are provided. North of Cambrian Road, Borrisokane Road is an Arterial Road, and south of Cambrian Road it is a Collector Road. Borrisokane is part of the Veterans Memorial Highway (Highway 416) corridor to the south of Cambrian Road and has a measured 37.5 metre right of way to the north of Cambrian Road.

Cambrian Road: Cambrian Road is a City of Ottawa collector road with a two-lane rural cross-section and a posted speed limit of 70 km/h for approximately 700 metres east of Borrisokane Road and 50 km/h in the remaining Study Area. To the west of Seeley's Bay Street, Cambrian Road has no sidewalks and to the east of Seeley's Bay Street, Cambrian Road has no sidewalks and to the east of Seeley's Bay Street, Cambrian Road has no sidewalks and to the east of Seeley's Bay Street, Cambrian Road has sidewalks. The Ottawa Official Plan reserves a 37.5 metre right-of-way from Cedarview (now Borrisokane Road) to Jockvale Road.

Dundonald Drive: Dundonald Drive is a City of Ottawa collector road with a two-lane urban cross-section and an unposted speed limit of 50 km/h. Sidewalks are present on both sides of the road within the Study Area. The measured right-of-way is 24 metres.

2.2.2 Existing Intersections

There are no existing signalized intersections within a one-kilometre radius of the proposed development, as the Re-Aligned Greenbank Road corridor has not been constructed and the adjacent developments are in various stages of the planning and development process. Therefore, no intersections will be analyzed for the existing horizon and new and planned intersections will be included in the analysis of future horizons.

2.2.3 Existing Driveways

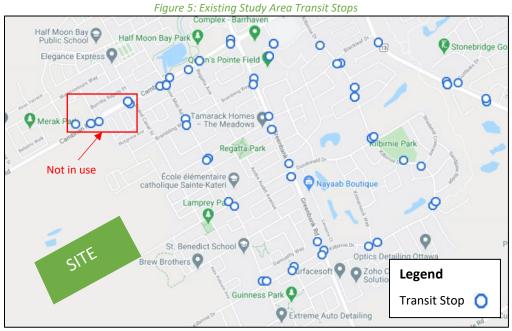
There are no existing driveways within 200 metres of the potential future accesses except for residential driveways along Dundonald Drive, east of Re-Aligned Greenbank Road. These driveways are not expected to provide access to significant traffic generators and would therefore have no impact on this TIA.

2.2.4 Cycling and Pedestrian Facilities

No cycling facilities and very limited pedestrian facilities currently exist along Borrisokane Road or Cambrian Road. As Re-Aligned Greenbank Road has not yet been constructed, no cycling or pedestrian facilities currently exist. Approved cycling infrastructure as part of The City of Ottawa's Ultimate Cycling Network includes plans for local cycling routes along Cambrian Road, Borrisokane Road and Apolune Way / Elevation Avenue (north-south development site collector road). A spine route is also planned for the Re-Aligned Greenbank Road. These approved cycling plans are shown in Figure 3.

Figure 3: Cycling Network Concept

Source: http://maps.ottawa.ca/geoOttawa/Accessed: December 1, 2020


2.2.5 Existing Transit

There is no existing transit service along the boundary roads. East of the subject development, Route 75 and Route 275 run along River Mist Road and Cambrian Road. Figure 4 illustrates the existing transit service and Figure 5 illustrates the existing transit stops.

Source: http://www.octranspo.com/ Accessed: December 1, 2020

Source: http://plan.octranspo.com/plan Accessed: December 1, 2020

2.2.6 Existing Area Traffic Management Measures

There are no existing area traffic management measures within the Study Area.

2.2.7 Existing Peak Hour Travel Demand

There are no existing intersections in the Study Area that will be examined as outlined in Section 2.2.2 above.

2.2.8 Collision Analysis

As illustrated in Figure 6, no significant collisions are noted in the vicinity of the study area. Therefore, no collision analysis has been performed.

Source: https://maps.bikeottawa.ca/collisions/ Accessed: December 1, 2020

2.3 Planned Conditions

2.3.1 Changes to the Area Transportation Network

The planned development is subject to policies outlined in the City of Ottawa's Master Plan and the Barrhaven South Urban Expansion Area Community Design Plan (CDP). Additionally, Development Charges (DC) outlined in the 2019 City of Ottawa Intersection Control Measures By-Law will impact the planned development.

Expected changes to the subject development as outlined in the City of Ottawa's Master Plan are:

- The Re-Aligned Greenbank Road extension, south of Cambrian Road, is located on the east side of the proposed development. This will provide Arterial Road connectivity to the site. The timing of this extension is unknown as it is not included in the City of Ottawa's Transportation Master Plan 2031 Affordable Road Network and is only indicated as a 'Conceptual Arterial Extension' in the Network Concept Plan. The proposed cross-section of Re-Aligned Greenbank Road can be seen in Figure 7.
- A 'Conceptual Future Transit Corridor'. This is shown along the Re-Aligned portion of Greenbank Road, south of Cambrian Road in the Rapid Transit and Priority 2031 Network Concept Plan. This is not shown on the 2031 Affordable Rapid Transit and Priority Network.
- A cycling spine route indicated along the Re-Aligned portion of Greenbank Road, south of Cambrian Road in the Primary Urban Cycling Network map.

Intersection Control Measures outlined in the 2019 Ottawa Development Charges By-Law are expected to be implemented at the following intersections:

- Cambrian Road and Borrisokane Road
- Cambrian Road and Apolune Way

- Old Greenbank Road and Kilbirnie Drive
- Old Greenbank Road and Barnsdale Road

The intersection modification at Apolune Way and Cambrian Road is underway and is expected that these changes will be complete prior to the proposed development's build-out year of 2024. City of Ottawa staff has indicated that signalization of this intersection is anticipated to be warranted in 2024 or 2025 and signal design will be completed as a City project. The planned intersection design can be seen in Appendix B as an excerpt from the RMA completed at the intersection of Apolune Way and Cambrian Road (Stantec, 2019). Correspondence with City of Ottawa staff confirming this approach to the design and signalization timeline of Cambrian Road at Apolune Way / Elevation has also been included in Appendix B.

The subject development is within the Barrhaven South Urban Expansion Area CDP. As such, it is subject to the planning polices outlined in the CDP. Some of the expected changes outlined are:

- Road Network:
 - The subject development proposes the addition of a north-south collector road (Elevation Avenue) and an east-west collector road (Dundonald Drive extension) within the development area which connect to the two development accesses. These collector roads are subject to the City of Ottawa Road Corridor Planning and Design Guidelines. Both collector roads have cycling and pedestrian facilities, and parking facilities and the Elevation Avenue will also include transit.
 - The Re-Aligned Greenbank Road extension will provide arterial road connection to the site. The proposed cross-section of the Re-Aligned Greenbank Road can be seen in Figure 7

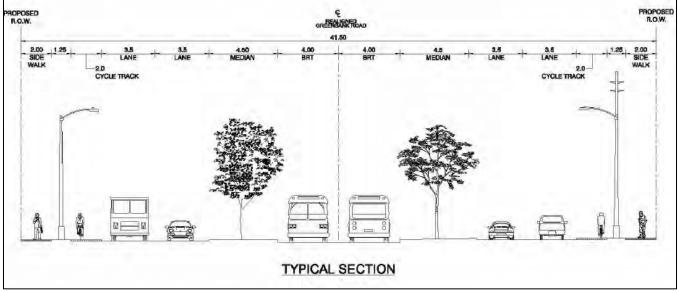


Figure 7: Re-Aligned Greenbank Road Cross-Section

Source: Barrhaven South Urban Expansion Study Area Community Design Plan Transportation Master Study. Accessed: October 3, 2019

- Pedestrian Network:
 - Future sidewalks are proposed on both sides of the Dundonald Drive extension within the proposed development.
- Cycling Network:
 - $\circ~$ A local cycling route is proposed along Dundonald Drive and its connection to the east-west collector road within the proposed development.

- $\circ~$ A cycle track is proposed along Re-Aligned Greenbank Road.
- Transit Network:
 - A BRT route is proposed along Re-Aligned Greenbank Road with a BRT station at the intersection of Dundonald Drive and Re-Aligned Greenbank Road.

2.3.2 Other Study Area Developments

The Meadows Phase 4

Northeast of the proposed development is Phase 4 of the Meadows Tamarack Development and is expected to be built out during 2019. Phase 4 will have 136 townhouse units and 50 single family units This development is anticipated to produce 142 two-way AM peak period auto trips and 171 two-way PM peak period auto trips. (IBI 2018)

The Meadows Phase 5

North of the proposed development is Phase 5 of the Tamarack Development of the Meadows and is expected to be built-out during 2022. Phase 5 will have 221 townhouse units and 125 single family units. This development is anticipated to produce 294 two-way AM peak period auto trips and 334 two-way PM peak period auto trips. (IBI 2018)

3809 Borrisokane Road

South of the proposed development is the 3809 Borrisokane Road development which is expected to be built-out during 2025. This development will include 590 residential units, split between townhouse units and detached home units. 3717 Borrisokane Road will include a connection to 3809 Borrisokane Road and both developments will share an access to Borrisokane Road as part of an interim phase only. Approximately 300 units will use this connection prior to the full build-out in 2025 at which time the connection to Borrisokane Road will be closed. This development is expected to produce 401 two-way AM peak period auto trips and 457 two-way PM peak period auto trips. (CGH 2019).

Half Moon Bay West

North of the proposed development is the Mattamy Development of Half Moon Bay West which is expected to be built-out during 2024. This development will include 552 single family homes and 464 townhomes. Construction has not yet commenced on this subdivision. This development is expected to produce 786 two-way AM peak period auto trips and 1193 two-way PM peak period auto trips. (Stantec 2016).

Citi Gate's Highway 416 Employment Lands

North of the proposed development is the Citi Gate Corporate Campus. This development will include 32,516 square metres allocated towards a shopping centre, 165,600 square metres allocated towards business parks and 105,000 square metres allocated towards car dealerships. The full build-out year is 2029 with an interim development year of 2019. This development is expected to produce 4267 two-way AM peak period auto trips and 4848 two-way PM peak period auto trips. (Novatech 2012).

Mattamy's Half Moon Bay North Phase 9 (Apartment Block)

North of the proposed development is the Half Moon Bay North Phase 9 development which is expected to be built-out during 2019. This development will consist of 60 stacked townhouses. This development is expected to produce 74 two-way AM peak period auto trips and 80 two-way PM peak period auto trips. (Stantec 2018).

3285 Borrisokane Road

North of the proposed development is 3285 Borrisokane Road which is expected to be built-out during 2020. This development will include 125 single family homes and 75 townhouses. This development is expected to produce 129 two-way AM peak period auto trips and 146 two-way PM peak period auto trips. (Parsons 2018).

3713 Borrisokane Road

Directly west of the proposed development an industrial development which is expected to be built-out during 2022. The development will include approximately 3,250 square metres of general office space and 9,385 square metres of industrial buildings. This development is expected to produce 136 two-way AM peak period auto trips and 188 two-way PM peak period auto trips. (CGH 2019).

Barrhaven South Expansion Lands (Quinn's Pointe 2)

To the southeast of the proposed development is the Minto Development of Quinn's Pointe 2. This development will include 536 single-family dwelling units, 493 townhomes, 100 apartment units, and two elementary schools, anticipated over 2 phases of construction for the horizon years of 2022 and 2025. A total of 749 two-way AM peak period auto trips and 813 two-way PM peak period auto trips are expected from this development (Stantec 2018).

3387 Borrisokane Road

North of Cambrian Road is the Glenview Development of 3387 Borrisokane Road which is expected to be builtout during 2022. The development is expected to have 179 single family units and 109 townhouses. The development is anticipated to produce 137 two-way AM peak period auto trips and 174 two-way PM peak period auto trips. (Stantec 2016)

Half Moon Bay South Phase 5

Southeast of the proposed development is the Mattamy Development of Half Moon Bay South which is expected to be built-out during 2020. The development will consist of 164 single detached home units and 97 townhouse units. This development is expected to produce 180 two-way AM peak period auto trips and 207 two-way PM peak period auto trips. (CGH 2019)

Mattamy's Half Moon Bay North Phases 7,8

North of the proposed development is the Half Moon Bay North Phase 7 and 8 development and is expected to be built-out during 2019. The development will consist of 471 residential units. No TIA is currently available for this development.

3 Study Area and Time Periods

3.1 Study Area

The subject site does not have any existing boundary roads to consider and Re-Aligned Greenbank Road is beyond the study horizons.

The Study will instead focus on the development access to Cambrian Road and the connection to Dundonald Drive.

3.2 Time Periods

As the proposed development is composed entirely of residential units the AM and PM peak hours will be examined.

3.3 Horizon Years

The anticipated build-out year is 2024. As a result, the full build-out plus five years horizon year is 2029.

4 Exemption Review

Table 1 summarizes the exemptions for this TIA.

Module	Element	Explanation	Exempt/Required					
		Explanation	Exempt/ Nequired					
esign Review Component								
	4.1.2 Circulation	Only required for site plans	Exempt					
4.1 Development	and Access	,						
Design	4.2.3 New Street	Only required for plans of subdivision	Required					
	Networks	Only required for plans of subdivision	Required					
	4.2.1 Parking	Only required for site plans	Exempt					
4.2 Deultine	Supply	Only required for site plans	Exempt					
4.2 Parking	4.2.2 Spillover	Only required for site plans where parking	Even we we					
	Parking	supply is 15% below unconstrained demand	Exempt					
Network Impact Comp	oonent							
4.5 Transportation		Not required for site plans expected to have						
Demand	All Elements	fewer than 60 employees and/or students	Required					
Management		on location at any given time	-					
		Only required when the development relies						
4.6 Neighbourhood	4.6.1 Adjacent	on local or collector streets for access and						
Traffic Management	Neighbourhoods	total volumes exceed ATM capacity	Required					
-		thresholds						
		Only required when proposed development						
		generates more than 200 person-trips						
4.8 Network Concept		during the peak hour in excess of equivalent	Required					
		volume permitted by established zoning						

5 Development-Generated Travel Demand

5.1 Trip Generation and Mode Shares

This TIA has been prepared using the vehicle and person trips for the residential components using the TRANS Trip Generation Study Report (2009). Table 2 summarizes the person trip rates for the proposed land uses.

Table 2: Trip Generation Person Trip Rates							
Dwelling Type	Land Use	Peak	Vehicle Trip	Person Trip			
	Code	Hour	Rate	Rates			
Single-Detached Dwellings	210	AM	0.70	1.27			
	(TRANS)	PM	0.90	1.41			
Townhouses	224	AM	0.54	0.98			
	(TRANS)	PM	0.71	1.16			

Using the above Person Trip rates, the total person trip generation has been estimated. Table 3 below illustrates the total person trip generation by dwelling type.

Land Use	Units	AM Peak Hour			PM Peak Hour		
Land Ose		In	Out	Total	In	Out	Total
Single-detached Dwellings	61	22	55	77	52	34	86
Townhouses	589	213	364	577	362	321	683
	Total Person Trips	235	419	654	414	355	769

Using the most recent National Capital Region Origin-Destination (OD Survey), the existing mode shares for South Nepean have been summarized in Table 4.

Table 4: Mode Share						
Travel Mode	South Nepean Mode Share					
Auto Driver	60%					
Auto Passenger	15%					
Transit	15%					
Cyclist	1%					
Pedestrian	9%					
Total	100%					

There are no major transit upgrades (i.e. BRT, transit priority measures, etc.) within the Study Area that are planned to be in place by the study horizons that will be examined in this study. Therefore, the existing mode shares will be carried forward.

Using the above mode shares and the person trip rates, the person trips by mode have been projected. Table 5 summarizes the trip generation by mode.

Table 5. The Generation by Mode							
Travel Mode	Mode Share	In	Out	Total	In	Out	Total
Auto Driver	60%	141	251	392	248	213	462
Auto Passenger	15%	35	63	99	62	53	115
Transit	15%	35	63	99	62	53	115
Cyclist	1%	2	4	7	4	4	8
Pedestrian	9%	21	38	59	37	32	69
Total	100%	235	419	654	414	355	769

As shown above, 392 AM and 462 PM new peak hour two-way vehicle trips are projected as a result of the proposed development.

5.2 Trip Distribution

To understand the travel patterns of the subject development, the OD survey has been reviewed to determine the existing travel patterns that will be applied to the new vehicle trips. Table 6 below summarizes the distribution for South Nepean.

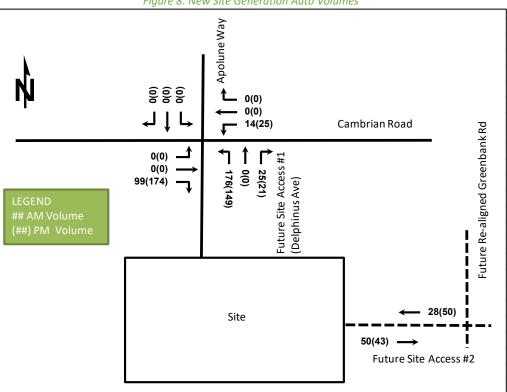

UU	Survey Existing	woue shure so	uι
	To/From	% of Trips	
	North	80%	
	South	5%	
	East	10%	
	West	5%	
	Total	100%	

Table 6: OD Survey Existing Mode Share South Nepean

5.3 Trip Assignment

Using the distribution outlined above, turning movement splits, and access to major transportation infrastructure, the trips generated by the site have been assigned to the Study Area road network. Figure 8 illustrates the new site generated volumes.

Figure 8: New Site Generation Auto Volumes

6 Background Network Travel Demand

6.1 Transportation Network Plans

The transportation network plans were discussed in Section 2.3.1 and are not anticipated to impact to site, trip generation, or distribution.

6.2 Background Growth

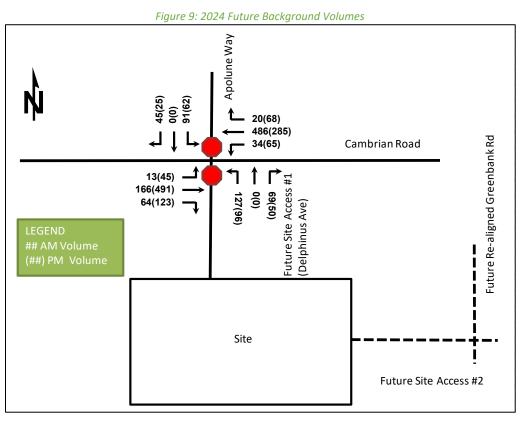
Surrounding development Traffic Impact Assessments have used a 2% traffic growth within the Study Area of this report. As such, an annual background growth of 2% will be used in order to remain consistent with these studies and to capture any growth not already directly considered as discussed in Section 2.3.2.

6.3 Other Developments

The background developments explicitly considered in both the 2024 and 2029 background conditions include the Meadows Phase 4, Meadows Phase 5, Half Moon Bay West, Citi Gate's Highway 416 Employment Lands (Interim-2019), Half Moon Bay North Phase 9, 3713 Borrisokane Road, 3809 Borrisokane Road, and 3285 Borrisokane Road developments. The Citi Gate's Highway 416 Employment Lands (2029) development is only considered in the 2029 background conditions. All background developments are discussed in Section 2.3.2.

7 Demand Rationalization

7.1 2024 Future Background Intersection Operations


Figure 9 illustrates the 2024 future background volumes and Table 7 summarizes the background intersection operations for the study area. Signal warrants have been evaluated at the intersection of Cambrian Road and Apolune Way / Elevation Avenue and are not found to be warranted for the 2024 future background horizon. As

such, the intersection has been assumed to have stop-control on the minor approaches. Signal warrants are provided in Appendix C.

The level of service for unsignalized intersections is based on HCM average delay. The synchro worksheets for the 2024 future background horizon are provided in Appendix D.

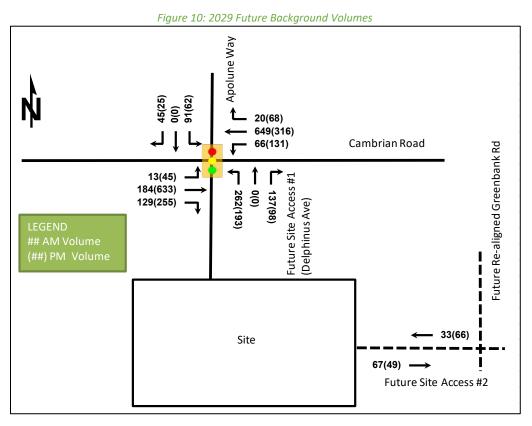
Intersection geometry at Apolune Way and Cambrian Road is based on the RMA prepared by Stantec which has been provided in Appendix B.

Table 7:2024 Future Background Intersection Operations

	Lana		AM Pea	ak Hour		PM Peak Hour				
Intersection	Lane	LOS	V/C	Delay	Q (95 th)	LOS	V/C	Delay	Q (95 th)	
Elevation Ave (Site	EBL	А	0.01	8.4	0.3	А	0.04	8.1	0.9	
	EBT/R	-	-	-	-	-	-	-	-	
	WBL	А	0.03	7.8	0.6	А	0.07	9.0	1.6	
Access #1) /	WBT/R	-	-	-	-	-	-	-	-	
Apolune Way &	NBL	D	0.48	30.1	18.7	F	0.58	52.3	21.8	
Cambrian Rd	NBT/R	А	0.08	9.7	2.0	В	0.09	12.5	2.3	
(Unsignalized)	SBL	D	0.35	26.1	11.5	Е	0.40	43.3	12.3	
	SBT/R	В	0.08	11.8	1.9	В	0.04	10.2	0.8	
	Overall	Α	-	7.0	-	Α	-	7.3	-	

Notes: Saturation flow rate of 1800 veh/h/lane PHF = 1.00

The intersection operations for the 2024 future background horizon generally operate satisfactorily during the peak hours with all v/c ratios below 1.00 and no high delays noted. The exception to this is the northbound left-turn in the PM peak period that operates with a LOS of F. This is expected to be mitigated by the planned


signalization of this intersection by the City of Ottawa when warranted. As such, no mitigation measures are recommended at this time.

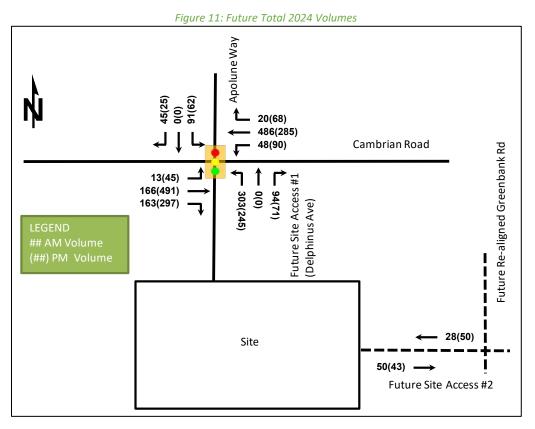
7.2 2029 Future Background Intersection Operations

Figure 10 illustrates the 2029 background horizon volumes and Table 8 summarizes the background intersection operations for the study area. Signal warrants have been evaluated at the intersection of Cambrian Road and Apolune Way / Elevation Avenue and have indicated signalization to be warranted for the 2029 future background horizon. Signal warrants are provided in Appendix C.

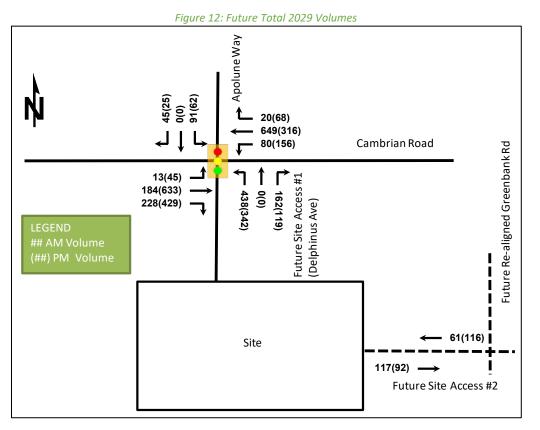
The level of service for signalized intersections is based on HCM 2010 calculations for individual lane movements and HCM 2000 v/c calculations for the overall intersection. The synchro worksheets for the 2029 future background horizon are provided in Appendix E.

The signal timing at the intersection of Cambrian Road and Apolune Way was optimized and Amber Clearance, All Red Clearance, Walk, and Flash Don't Walk times were calculated using the Methodology provided in OTM Book 12-Traffic Signals. The westbound left-turn movement will operate as a protected and permissive turn during the PM peak period. Intersection geometry at Apolune Way and Cambrian Road is based on the RMA prepared by Stantec which has been provided in Appendix B.

1			AM Pea	ak Hour	k Hour PM Peak Hour				
Intersection	Lane	LOS	V/C	Delay	Q (95 th)	LOS	V/C	Delay	Q (95 th)
	EBL	А	0.10	13.5	4.3	А	0.09	11.2	9.4
	EBT/R	А	0.42	12.9	40.4	Е	0.95	42.5	#250.1
	WBL	А	0.17	13.3	12.5	В	0.64	24.7	#27.2
Elevation Ave (Site	WBT/R	D	0.88	32.7	126.7	А	0.35	8.7	45.0
Access#1) / Apolune	NBL	А	0.54	25.0	63.9	А	0.65	49.2	#68.4
Way & Cambrian Rd	NBT/R	А	0.13	0.3	0.0	А	0.15	0.5	0.0
(Signalized)	SBL	А	0.20	19.6	22.6	А	0.22	36.9	22.8
	SBT/R	А	0.06	0.2	0.0	А	0.03	0.1	0.0
	Overall	С	0.71	22.2	-	D	0.84	31.0	-


Table 8: 2029 Future Background Intersection Operations

Notes: Saturation flow rate of 1800 veh/h/lane PHF = 1.00


The intersection operations for the 2029 future background horizon generally operate satisfactorily during the peak hours with all v/c ratios below 1.00 and no high delays noted. During the PM peak, the shared eastbound through/right queue is expected to extend past the eastbound left-turn lane, the shared westbound through / right-turn queue is expected to block the westbound left-turn lane, and the northbound left-turn queue is expected to extend past the northbound left-turn lane. No other capacity issues are noted.

7.3 Future Total Demand

The future total 2024 volumes are illustrated in Figure 11 and the future total 2029 volumes are illustrated in Figure 12.

Volumes developed for the future horizons at the intersection of Cambrian Road and Apolune Way / Elevation Avenue were based on the existing volume conditions at the intersection of Cambrian Road and Borrisokane Road. As such, future horizon volumes were developed using a growth rate of 2%/annum, the background developments listed in Section 6.3, and the proposed development within this report. The trip generation of this development is consistent with the area modal shares as seen in Table 4 and no adjustments are required.

8 Development Design

8.1 Design for Sustainable Modes

The proposed development is a residential subdivision and therefore auto and bicycle parking areas will be within each resident's home.

As discussed in Section 2.3.1 above, the Barrhaven South Urban Expansion Study proposes a local cycling route along the extension of Dundonald Drive. Mixed traffic conditions were initially considered for the extension of Dundonald Drive, however a layer traffic calming measure approach would be required to reduce operating speeds to satisfy the target cycling LOS. Off-road cycling facilities in the form of a multi-use pathway or cycle tracks are recommended instead as both facilities will satisfy cycling and pedestrian LOS targets. Additionally, given the anticipated connections from cycling facilities on the Dundonald Drive extension to the planned multi-use pathway on Elevation Avenue as well as the cycle tracks on the re-aligned Greenbank Road, off-road cycling facilities are more appropriate than mixed-traffic cycling conditions in this context. Two walkway connections within the development, and one on the northwest corner of the development will provide additional active mode connection to the property to the west as well as within the subdivision.

Figure 13 illustrates the concept active mode network. The plan incorporates the adjacent developments, planned routes on geoOttawa, the extension of the Barrhaven South Urban Expansion Study Area CDP network, and the above cycling facility recommendations.

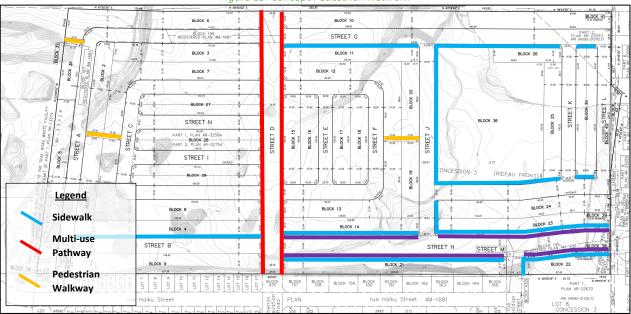


Figure 13: Concept Pedestrian Network

8.2 New Street Networks

The planned street network will include 14.0 metre window roads, 16.5 metre local roadways, and 24.0 metre collector roadways. The local and collector roads will provide parking on one side of the roadway. The local roads are proposed to be posted as 30 km/h and the collector roads are proposed to be posted as 40 km/h. The pedestrian and cycling network are provided in Section 8.1.

To support the pedestrian and cycling connectivity within the subdivision, Figure 14 illustrates the concept traffic calming plan. The plan reduces crossing distances for the pedestrian and cycling network, as well as limits the speed of vehicles entering and exiting the local roads from the collector roads.

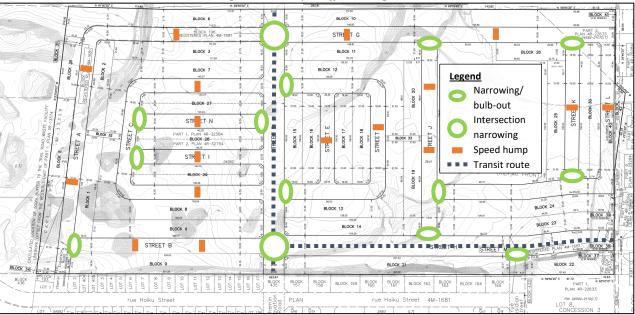


Figure 14: Concept Traffic Calming Plan

The internal road intersections are recommended to be stop-controlled on the minor approaches of all intersections and the intersection of Dundonald Drive and Elevation Avenue operate as an all-way stop-controlled intersection.

9 Boundary Street Design

The Re-aligned Greenbank Road corridor will be a future boundary road to the proposed development however its construction is anticipated to occur outside of the future horizons of this TIA. Any MMLOS analysis will be completed as part of the detailed design of the corridor and is beyond the scope of this study.

10 Access Intersections Design

10.1 Location and Design of Access

Access to the development lands will be provided to the east of the proposed development along the east-west collector road extension to Dundonald Drive and through the Re-aligned Greenbank Road corridor, and to the north along the planned north-south collector road (Elevation Avenue) to Cambrian Road at Apolune Way.

The intersection of Cambrian Road and Apolune Way / Elevation Avenue is considered a study area intersection and is not considered an access intersection.

As the Greenbank corridor is not expected to be re-aligned within the future horizons considered in this study, the MMLOS and capacity analysis will be completed as part of the detailed design of the corridor and is beyond the scope of this study.

10.2 Access Intersection Control

No intersections are located on the boundary of the site and access is provided through collector roadways. Assessment of the network intersections is provided in Section 15.

10.3 Access Intersection Design

No access intersections are considered in this TIA.

11 Transportation Demand Management

11.1 Context for TDM

The mode shares used within the TIA represent this area of the City and have not been altered.

The subject site is not within a design priority or transit-oriented design area.

Total bedrooms within the development is subject to owner purchasing preferences. No age restrictions noted.

11.2 Need and Opportunity

The subject site has been assumed to rely predominately on auto travel and those assumptions have been carried through the analysis. A decrease in the low transit or non-auto mode shares will result in higher volumes along Cambrian Road. Little opportunity is available to shift these modes until major infrastructure projects, such as the Re-aligned Greenbank Road corridor, are complete to increase the transit and active mode network from South Barrhaven to the rest of the City.

11.3 TDM Program

As discussed above, any "suite of post-occupancy TDM measures" are limited in their applicability. It is anticipated that this development will rely predominantly on auto travel and those assumptions have been carried through the analysis. As a result, no TDM measures are recommended at this time beyond those required for zoning and standard subdivision design. The TDM Checklist has been provided in Appendix F.

12 Neighbourhood Traffic Management

Given the developing nature of the area, a higher-level approach was undertaken to perform analysis in this section. As an illustrative process to document the impact of the development on the network concept and the TIA guideline AADT thresholds, the percent area of the development in the total influence area has been compared to the trip generation of the development. The TIA guidelines outline a collector road threshold of 2,500 vehicles per day (AADT), or 300 vehicles in a given peak hour for Neighbourhood Traffic Management review. This will give an indication of whether the road network meets or exceeds the theoretical threshold, discuss the implications of the anticipated traffic within the context of the existing/planned road network and outline if any mitigation measures are required for the adjacent development areas.

12.1 Elevation Avenue

Table 9 summarizes the AADT in the peak direction on the collector road of Elevation Avenue in both the AM and PM peak periods.

		Ineoretica	al Threshold	Site Trip Generation		
	Area (Hectares)	Percentage of Area	Equivalent Volume per AADT Threshold	AADT Volume Generated AM(PM)	Percentage of Theoretical Threshold	
Proposed Development	16.25	28%	700	1970(1980)	79% (79%)	
Area of Influence	58.7	100%	2500	-	-	

Table 9: Elevation Avenue NTM

AADT approximated using 10:1 ratio of peak hour traffic
 AADT calculated as one-way peak direction volumes

As shown above, using this method the overall trip generation is expected to use 79% (79%) of the theoretical TIA AADT threshold of Elevation Avenue. This indicates that while the overall theoretical TIA AADT threshold of Elevation Avenue will not be exceeded within the proposed development, it is likely that it will be exceeded as Elevation Avenue approaches Cambrian Road.

Within the study area context, the road network planning is consistent with the adjacent collector road and arterial road spacing. As such it is expected to serve as planned for within Barrhaven South, similar to River Mist Road and Kilbirnie Drive. The incorporation of the new collector road guidelines and passive traffic calming measures, as outlined within the TIA guidelines, should ensure that the future Elevation Avenue will operate as intended. No additional measures are recommended to accommodate the projected volumes along the corridor. Section 0 presents the intersection operations at Cambrian Road and potential mitigation for the intersection.

Beyond the horizons of this study, Re-Aligned Greenbank Road will provide the additional capacity and may reduce the reliance on Elevation Avenue by vehicular traffic. The addition of the BRT component of the corridor would also provide an alternative travel mode and decrease the peak hour demands. South of the site, the future Barnsdale Road interchange at Highway 417 may also have larger regional travel impacts and the subsequent redistribution of trips may balance directional demands along Elevation Avenue, reducing northbound trips and increasing southbound trips.

12.2 Dundonald Drive

Table 10 summarizes the AADT in the peak direction on the collector road of Dundonald Drive in both the AM and PM peak periods.

		Table 10: I	Dundonald Drive NTM			
		Theoretica	al Threshold	Site Trip Generation		
	Area (Hectares)	Percentage of Area	Equivalent Volume per AADT Threshold	AADT Volume Generated AM(PM)	Percentage of Theoretical Threshold	
Proposed Development	4.06	13%	325	490(490)	20% (20%)	
Area of Influence	30.79	100%	2500	-	-	

 Note:
 1.
 AADT approximated using 10:1 ratio of peak hour traffic
 2.
 AADT calculated as one-way peak direction volumes

As shown above, using this method the overall trip generation is expected to use 20% (20%) of the theoretical TIA AADT threshold of Dundonald Drive. This indicates that while the overall theoretical TIA AADT threshold of Dundonald Drive will not be exceeded within the proposed development, it may be exceeded as Dundonald Drive approaches the existing Greenbank Road depending on the travel patterns of the neighbourhoods between Re-Aligned Greenbank Road and Greenbank Road.

Within the study area context, the collector road network serves to distribute traffic to the adjacent arterial roads and facilitate north-south travel beyond Barrhaven South. As Re-Aligned Greenbank Road is beyond the study horizons, Dundonald Drive approaching Greenbank Road will be required to operate near the theoretical TIA AADT threshold. Once Re-Aligned Greenbank Road is constructed, the demands will decrease and likely be within the ascribed threshold. No additional measures are recommended to accommodate the projected volumes along the corridor.

13 Transit

13.1 Route Capacity

Overall, the forecasted new transit trips would result in approximately one to two buses (single bus, 55-person capacity) being required in the peak direction to accommodate the transit trips generated from the subject site.

While no transit routes currently serve the study area, a transit route along Elevation Avenue from Cambrian Road to Kilbirnie Drive is anticipated to service the development once Elevation Avenue is constructed.

13.2 Transit Priority

No transit priority is required/considered for the study area.

14 Review of Network Concept

Cambrian Road may potentially approach or exceed a single lane capacity in the peak direction by the 2029 background and total future conditions. For example, in the PM peak period the west approach volumes in the shared through/right-turn lane in the 2029 future background horizon is 888 and in the PM peak period the west approach volumes in the shared through/right-turn lane in the 2029 total future horizon is 1061. These volume projections are dependent on surrounding development growth being realized, Re-Aligned Greenbank Road being constructed beyond the study horizon, and on growth proceeding at the same rate. The likely impact of the interim condition is extended queues along Cambrian Road, between Borrisokane Road and Greenbank Road.

The network concept, as identified within the City of Ottawa's Transportation Master Plan Map 10, illustrates extensive improvements within Barrhaven South:

- New Re-Aligned Greenbank Road, from Chapman Mills Drive to Cambrian Road
- Re-Aligned Greenbank Road extension south of Cambrian Road
- Widening of Cambrian Road from the Re-Aligned Greenbank Road to the existing Greenbank Road
- Widening of Jockvale Road from Cambrian Road to Prince of Wales Drive
- Widening of Barnsdale Road between Highway 416 and Prince of Wales Drive
- New interchange at Barnsdale Road and Highway 416

These planned improvements are expected to address the high volumes experienced along Cambrian Road, therefore no changes to the network concept are required.

15 Network Intersection Design

15.1 Network Intersection Control

Signal warrants have been evaluated at the intersection of Cambrian Road and Apolune Way / Elevation Avenue and have found signalization to be warranted for the 2024 future total 2029 future background, and the 2029 future total horizons. Signal warrants are provided in Appendix C.

15.2 Network Intersection Design

15.2.1 2024 Future Total Intersection Operations

The 2024 future total future traffic volumes are illustrated in Figure 9 and the intersection operations are summarized in Table 11.

The level of service for signalized intersections is based on HCM 2010 calculations for individual lane movements and HCM 2000 v/c calculations for the overall intersection. The synchro worksheets for the 2024 future total horizon have been provided in Appendix G.

The signal timing at the intersection of Cambrian Road and Apolune Way was optimized and Amber Clearance, All Red Clearance, Walk, and Flash Don't Walk times were calculated using the Methodology provided in OTM Book 12-Traffic Signals. Intersection geometry at Apolune Way and Cambrian Road is based on the RMA prepared by Stantec which has been provided in Appendix B.

Interestica	Lana	AM Peak Hour				PM Peak Hour				
Intersection	Lane	LOS	V/C	Delay	Q (95 th)	LOS	V/C	Delay	Q (95 th)	
	EBL	А	0.09	16.8	4.7	А	0.10	9.6	8.0	
	EBT/R	А	0.53	17.7	48.7	Е	0.91	31.1	148.0	
Elevation Ave (Site	WBL	А	0.18	17.6	11.5	С	0.71	47.4	#35.6	
Access#1) /	WBT/R	D	0.82	33.9	97.5	А	0.40	11.8	44.0	
Apolune Way &	NBL	А	0.51	19.2	66.1	А	0.59	31.9	#69.1	
Cambrian Rd	NBT/R	А	0.08	0.1	0.0	А	0.09	0.2	0.0	
(Signalized)	SBL	А	0.16	14.2	19.5	А	0.16	23.4	17.9	
	SBT/R	А	0.05	0.1	0.0	А	0.03	0.0	0.0	
	Overall	В	0.64	21.8	-	С	0.78	25.4	-	

Table 11: 2024 Future Total Intersection Operations

Notes: Saturation flow rate of 1800 veh/h/lane PHF = 1.00

The intersection operations for the 2024 future total horizon generally operate satisfactorily during the peak hours with all v/c ratios below 1.00 and no high delays noted. During the PM peak, the shared westbound through/right movement queue is anticipated to extend past the westbound left-turn lane, and the northbound left-turn queue is anticipated to block the northbound through/ right-turn movement. No other capacity issues are noted.

To further illustrate the need for signalization of this intersection, it has also been analyzed as an unsignalized intersection with stop-control on the minor approaches in Table 12.

Interception	Lana	AM Peak Hour				PM Peak Hour			
Intersection	Lane	LOS	V/C	Delay	Q (95 th)	LOS	V/C	Delay	Q (95 th)
Elevation Ave (Site	EBL	А	0.01	8.4	0.0	А	0.04	8.1	0.8
	EBT/R	-	-	-	-	-	-	-	-
	WBL	А	0.04	8	0.8		0.11	9.9	3.0
Access#1) /	WBT/R	-	-	-	-	-	-	-	-
Apolune Way &	NBL	F	1.30	202.3	118.5	F	1.87	476.2	143.3
Cambrian Rd	NBT/R	В	0.12	10.2	3.0	А	0.15	13.9	3.8
(Unsignalized)	SBL	D	0.42	33.5	15.0	Α	0.56	72.3	18.5
	SBT/R	В	0.08	11.8	2.3	А	0.04	10.2	0.8
	Overall	E	-	46.4	-	F	-	73.9	-

Table 12: 2024 Future Total Stop-control Scenario

Saturation flow rate of 1800 veh/h/lane

PHF = 1.00

As shown above, the unsignalized intersection of Cambrian Road and Apolune Way / Elevation Avenue operates with over capacity movements in the 2024 future total horizon.

As such, the City of Ottawa is encouraged to signalize the intersection of Cambrian Road at Apolune Way / Elevation Avenue in 2024.

15.2.2 2029 Future Total Intersection Operations

The 2029 future total future traffic volumes are illustrated in Figure 10 and the intersection operations are summarized in Table 13.

The level of service for signalized intersections is based on HCM 2010 calculations for individual lane movements and HCM 2000 v/c calculations for the overall intersection. The synchro worksheets for the 2029 future total horizon have been provided in Appendix H.

The signal timing at the intersection of Cambrian Road and Apolune Way was optimized and Amber Clearance, All Red Clearance, Walk, and Flash Don't Walk times were calculated using the Methodology provided in OTM Book 12-Traffic Signals. The westbound left-turn movement will operate as a protected and permissive turn during the PM peak period. Intersection geometry at Apolune Way and Cambrian Road is based on the RMA prepared by Stantec which has been provided in Appendix B.

lucke we east a w	Lana		AM Pea	ak Hour			PM Pea	ak Hour	
Intersection	Lane	LOS	V/C	Delay	Q (95 th)	LOS	V/C	Delay	Q (95 th)
	EBL	А	0.13	17.3	5.1	А	0.09	12.4	10.3
	EBT/R	А	0.55	16.3	62.2	F	1.11	91.3	#361.4
	WBL	А	0.29	18.4	18.4	F	1.03	110.4	#67.6
Elevation Ave (Site	WBT/R	D	0.88	36.7	#159.2	А	0.34	9.8	51.8
Access#1) / Apolune	NBL	С	0.78	32.3	#117.6	F	1.12	128.9	#149.5
Way & Cambrian Rd	NBT/R	А	0.15	0.3	0.0	А	0.19	0.6	0.0
	SBL	А	0.18	16.0	18.9	А	0.22	38.4	23.9
	SBT/R	А	0.05	0.1	0.0	А	0.03	0.1	0.0
	Overall	D	0.83	25.5	-	F	1.11	75.2	-
	PM	Peak Miti	gation Mea	sures-East	bound Right	-turn Lane	?		
	EBL	Α	0.13	18.8	5.3	Α	0.12	20.2	13.2
	EBT	А	0.25	16.9	32.5	D	0.90	46.7	172.5
	EBR	А	0.30	3.3	12.0	А	0.64	23.2	85.2
Flowertion Aug (Cito	WBL	А	0.18	16.3	16.8	С	0.77	40.2	#37.7
Elevation Ave (Site	WBT/R	Ε	0.92	43.0	#165.4	А	0.44	17.9	70.2
Access#1) / Apolune Way & Cambrian Rd	NBL	D	0.82	37.2	#122.2	С	0.72	41.3	#119.6
way & cumbrian Ka	NBT/R	А	0.15	0.3	0.0	Α	0.15	0.4	0.0
	SBL	Α	0.19	17.3	19.7	А	0.14	26.1	20.4
	SBT/R	Α	0.06	0.1	0.0	А	0.03	0.0	0.0
	Overall	D	0.87	27.3	-	D	0.81	31.6	-

Table 13: 2029 Future Total Intersection Operations

Notes: Saturation flow rate of 1800 veh/h/lane PHF = 1.00

The intersection operations for the 2029 future total horizon generally operate satisfactorily during the peak hours with all v/c ratios below 1.00 with the exception of the eastbound through/right-turn, westbound left-turn, and northbound left-turn movement in the PM peak period. High delays in the PM peak period are also noted at these movements. During the AM peak, the shared westbound through/right movement queue is anticipated to extend past the westbound left-turn lane and the northbound left-turn queue is anticipated to block the northbound through/right-turn movement. During the PM peak, the shared eastbound through/right queue is expected to extend past the eastbound left-turn lane, the westbound left-turn queue is anticipated to block the westbound through / right-turn, and the northbound left-turn queue is anticipated to block the westbound through / right-turn. No other capacity issues are noted.

An eastbound right-turn lane will help improve the discussed capacity issues and is shown as a mitigation measure. With the implemented mitigation measure, the intersection operations for the 2029 future total horizon generally operate satisfactorily during the peak hours with all v/c ratios below 1.00 and no high delays noted. During the AM peak, the shared westbound through/right movement queue is anticipated to extend past the westbound left-turn lane and the northbound left-turn queue is anticipated to block the northbound through / right-turn movement. During the PM peak, the westbound left-turn queue is anticipated to block the northbound through / right-turn movement and the northbound left-turn queue is anticipated to block the northbound through / right-turn movement. No other capacity issues are noted.

15.2.3 Network Intersection MMLOS

Table 14 summarizes the MMLOS analysis for the network intersection. The 2024 future, 2029 future and 2029 future with the suggested mitigation measure conditions have been evaluated in three rows. The future configuration of Cambrian Road is based on the RMA plans and the future configuration of Elevation Avenue is in

line with the collector road guidelines and will have a multi-use pathway. The multi-use pathway is expected to travel through the intersection of Cambrian Road, however as the presence of cycling facilities on Apolune Way is currently unknown it has been assumed that Apolune Way will be mixed traffic. Where applicable, AM and PM peak results have been displayed separately (AM(PM)). The MMLOS worksheets have been provided in Appendix I.

Intersection	Pedestrian LOS		Bicycle LOS		Transit LOS		Truck LOS		Auto LOS	
Intersection	PLOS	Target	BLOS	Target	TLOS	Target	TrLOS	Target	ALOS	Target
Elevation Ave (Site Access#1) / Apolune Way & Cambrian Rd <i>(2024)</i>	С	С	E	В	<mark>E</mark> (D)	D	-	No Target	C(C)	D
Elevation Ave (Site Access#1) / Apolune Way & Cambrian Rd <i>(2029)</i>	С	С	E	В	E(F)	D	-	No Target	C (F)	D
Elevation Ave (Site Access#1) / Apolune Way & Cambrian Rd (2029 Mitigation Measure)	D	С	E	В	F(E)	D	-	No Target	C(C)	D

Table 14: Study Area Intersection MMLOS Analysis

The target levels of service in a developing community were used to evaluate the study area intersection. The pedestrian LOS meets the target for the intersection for both the 2024 and 2029 future horizons. With the addition of the eastbound right-turn lane, the pedestrian LOS does not meet the target due to the resulting increase in pedestrian crossing distance. The bicycle LOS is limited due to mixed traffic conditions on the north approach, and high vehicle operating speeds and bike lane configuration on the east and west approaches and as such, does not meet the target. Transit LOS is limited due to signal delays and does not meet the target except during the PM peak in 2024. Auto LOS meets the outlined target in most cases. As no truck LOS target is provided for developing communities, it was not evaluated.

Given the limitations of the MMLOS framework, the pedestrian LOS cannot be achieved with the proposed addition of an eastbound right-turn lane at the intersection of Cambrian Road and Apolune Way / Elevation Avenue. The posted speed limit on Cambrian Road would need to be reduced to less than 40km/h and cycle tracks would need to be provided along Cambrian Road in order to meet the bicycle LOS. No mitigation measures are proposed for the transit LOS.

16 Summary of Improvements Indicates and Modifications Options

The following summarizes the analysis and results presented in this TIA report:

Proposed Site and Screening

- The proposed site includes a mixture of 61 detached homes and 589 townhouses
- Access to the development will be provided to the east of the proposed development along the east-west collector road extension to Dundonald Drive, and to the north along the planned north-south collector, Elevation Avenue
- The development is proposed to be completed as a single phase by 2024

- A TIA is required including the Design Review component and the Network Impact Component as determined by the TIA Screening
- The application for the proposed site is for a Zoning By-Law Amendment and plan of subdivision

Existing Conditions

- Cambrian Road and Dundonald Drive are both collector roads
- Cambrian Road does not have sidewalks to the west of Seeley's Bay Street and Dundonald Drive has sidewalks on both sides
- On the study area roadways, cycling conditions are classified as mixed traffic conditions
- The existing transit routes #75 and 275 stop on Cambrian Road, however no existing transit service runs along the boundary roads
- There are no existing intersections in the study area

Development Generated Travel Demand

- The proposed development is forecasted to generate 654 people two-way trips during the AM peak and 769 people two-way trips during the PM peak
- Based on the area mode shares, a total of 392 two-way vehicle trips will be generated during the AM peak and 462 two-way vehicle trips during the PM peak
- The distribution of the site trips is estimated to be 80% to the north, 5% to the south, 10% to the east, and 5% to the west

Background Conditions

- The background developments of The Meadows Phase 4, The Meadows Phase 5, 3809 Borrisokane Road, Half Moon Bay West, Citi Gate's Highway 416 Employment Lands, Mattamy's Half Moon Bay North Phase 9, 3285 Borrisokane Road and 3713 Borrisokane Road were included within the background conditions, including a 2.0% background growth
- Large volumes generated by adjacent developments are noted
- Signalization of Cambrian Road and Apolune Way/Elevation Avenue is warranted in the 2029 future background horizon
- The northbound left-turn for the intersection of Cambrian Road and Apolune Way/Elevation Avenue in the PM peak period of the 2024 future background horizon operates with a LOS of F
- No operational issues are noted in the 2029 future background horizon for the intersection of Cambrian Road and Apolune Way/Elevation Avenue

Development Design

- Elevation Avenue will be a collector road provided in the north-south direction and the extension of Dundonald Drive in the east-west direction within the development with 24.0 metre right-of-way and the remaining development roads are 16.5 metre local roads, 14.0 metre window roads, and 8.5 metre lanes
- Sidewalks are proposed on both sides of the collector roads, sidewalk connections are proposed in the vicinity of the park and other primary connections
- A multi-use pathway is proposed on the Elevation Avenue and off-road cycling facilities are proposed on the extension of Dundonald Drive
- Two pedestrian walkway connections within, and one on the northwest corner of the development will provide additional active mode connection to the property to the west as well as within the subdivision

• Traffic calming measures are recommended to reduce pedestrian crossing distances where sidewalks are provided, reduce turning speeds from the collector roads to local roads, and encourage the posted speed limits of 30 km/h on local roads and 40 km/h on the collector roads

Boundary Street Design

• The Re-aligned Greenbank Road corridor will be a future boundary road to the proposed development however its construction is anticipated to occur outside of the future horizons of this TIA. As such, there are no existing or future boundary roads that will be considered.

Access Intersection Design

• No access intersections were considered in this TIA

TDM

- The lack of supporting infrastructure limits the potential for TDM measures to reduce the auto reliance anticipated for the proposed development
- Beyond the study horizons, the transit network along Re-Aligned Greenbank Road and the associated cycling and pedestrian networks will begin to produce the connectivity required to see a mode shift from the proposed development
- No TDM measures are recommended at this time beyond those required for zoning and standard subdivision design

Neighbourhood Traffic Management

- The TIA thresholds are met for both Elevation Avenue and Dundonald Drive
- The Re-Aligned Greenbank Road corridor will provide the additional capacity required

Transit

- No transit service is provided on the boundary road network
- A transit route along Elevation Avenue from Cambrian Road to Kilbirnie Drive will service this development beginning in the 2024 horizon
- To meet minimum area transit use, approximately one to two bus trips, or equivalent capacity, would be required to support the proposed development during the AM and PM peak hours

Network Intersection Design

- Intersection geometry at Apolune Way and Cambrian Road is based on the RMA prepared by Stantec
- Signalization of Cambrian Road and Apolune Way/Elevation Avenue is warranted in the 2024 and 2029 future total horizons
- No operational issues are noted in the 2024 future total horizon for the intersection of Cambrian Road and Apolune Way/Elevation Avenue
- Based on the volumes at the 2029 future total horizon, an eastbound right-turn lane should be considered for the 2029 horizon year
- The study area intersection will not meet a combination of pedestrian, bicycle, or transit MMLOS targets due to road widths, mixed traffic conditions, high vehicle operating speeds, and intersection delays
- In order to meet the bicycle LOS, the posted speed limit on Cambrian Road would need to be reduced to less than 40km/h and cycle tracks would need to be proposed on Apolune Way

17 Conclusion

The proposed residential development at 3717 Borrisokane Road is recommended to proceed from a transportation perspective.

Prepared By:

asince Robin Marinac, EIT.

Robin Marinac, EIT. Transportation Engineering Intern

Andrew Harte, P.Eng. Senior Transportation Engineer

Appendix A

TIA Screening Form and PM Certification Form

City of Ottawa 2017 TIA Guidelines Step 1 - Screening Form	Date: Project Number: Project Reference:	09-Aug-21 2019-43 Caivan Drummond Lands			
1.1 Description of Proposed Development					
Municipal Address	3717 Borrisokane Road				
Description of Location	CON 3RF PT LOT 9 RP 5R-6254 PTS;9 & 10 RD WIDENING	; PART 2 LESS RP 5R-13374			
Land Use Classification	ME2-Mineral Extraction Opera Expansion Area (Residential Us	•			
Development Size	589 townhouse units, 61 detag	ched housing units			
Accesses	Access provided through adjacent properties, Dundonald Drive and new north-south collector road				
Phase of Development	Single Phase				
Buildout Year	2024				
TIA Requirement	Full TIA	Required			
1.2 Trip Generation Trigger					
Land Use Type	Townhomes or apartments				
Development Size	589 Units				
Trip Generation Trigger	Yes				
1.3 Location Triggers					
Does the development propose a new driveway to a boundary street that is					
designated as part of the City's Transit Priority, Rapid Transit or Spine Bicycle Networks?	e No				
Is the development in a Design Priority Area (DPA) or Transit-oriented Development (TOD) zone?	No				
Location Trigger	No				

1.4. Safety Triggers	
Are posted speed limits on a boundary street 80 km/hr or greater?	Yes
Are there any horizontal/vertical curvatures on a boundary street limits sight	Νο
lines at a proposed driveway?	NU
Is the proposed driveway within the area of influence of an adjacent traffic	
signal or roundabout (i.e. within 300 m of intersection in rural conditions, or	No
within 150 m of intersection in urban/ suburban conditions)?	
Is the proposed driveway within auxiliary lanes of an intersection?	No
Does the proposed driveway make use of an existing median break that	Νο
serves an existing site?	NO
Is there is a documented history of traffic operations or safety concerns on	Νο
the boundary streets within 500 m of the development?	NO
Does the development include a drive-thru facility?	No
Safety Trigger	Yes

TIA Plan Reports

On 14 June 2017, the Council of the City of Ottawa adopted new Transportation Impact Assessment (TIA) Guidelines. In adopting the guidelines, Council established a requirement for those preparing and delivering transportation impact assessments and reports to sign a letter of certification.

Individuals submitting TIA reports will be responsible for all aspects of development-related transportation assessment and reporting, and undertaking such work, in accordance and compliance with the City of Ottawa's Official Plan, the Transportation Master Plan and the Transportation Impact Assessment (2017) Guidelines.

By submitting the attached TIA report (and any associated documents) and signing this document, the individual acknowledges that s/he meets the four criteria listed below.

CERTIFICATION

- 1. I have reviewed and have a sound understanding of the objectives, needs and requirements of the City of Ottawa's Official Plan, Transportation Master Plan and the Transportation Impact Assessment (2017) Guidelines;
- 2. I have a sound knowledge of industry standard practice with respect to the preparation of transportation impact assessment reports, including multi modal level of service review;
- 3. I have substantial experience (more than 5 years) in undertaking and delivering transportation impact studies (analysis, reporting and geometric design) with strong background knowledge in transportation planning, engineering or traffic operations; and
- 4. I am either a licensed¹ or registered² professional in good standing, whose field of expertise [check $\sqrt{}$ appropriate field(s)] is either transportation engineering $\sqrt{}$ or transportation planning \Box .

^{1,2} License of registration body that oversees the profession is required to have a code of conduct and ethics guidelines that will ensure appropriate conduct and representation for transportation planning and/or transportation engineering works.

City Of Ottawa Infrastructure Services and Community Sustainability Planning and Growth Management 110 Laurier Avenue West, 4th fl. Ottawa, ON K1P 1J1 Tel. : 613-580-2424 Fax: 613-560-6006 Ville d'Ottawa Services d'infrastructure et Viabilité des collectivités Urbanisme et Gestion de la croissance 110, avenue Laurier Ouest Ottawa (Ontario) K1P 1J1 Tél.: 613-580-2424 Télécopieur: 613-560-6006 Dated at <u>Ottawa</u> this <u>20</u> day of <u>September</u>, 2018. (City)

Name:

Andrew Harte

(Please Print)

Professional Title:

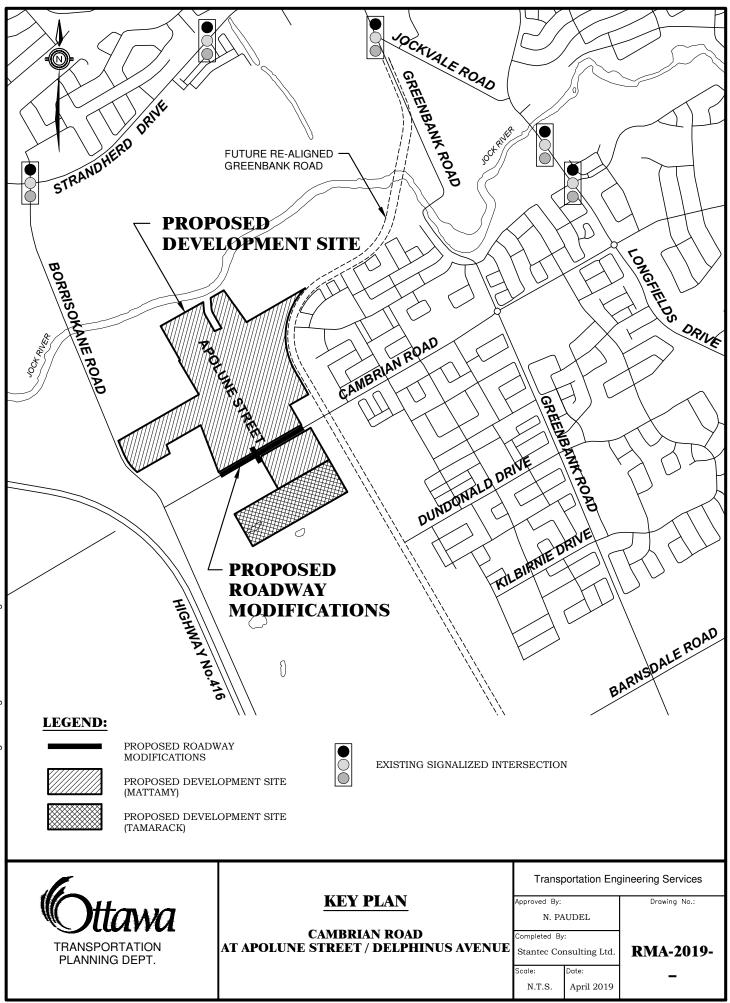
Professional Engineer

Signature of Individual certifier that s/he meets the above four criteria

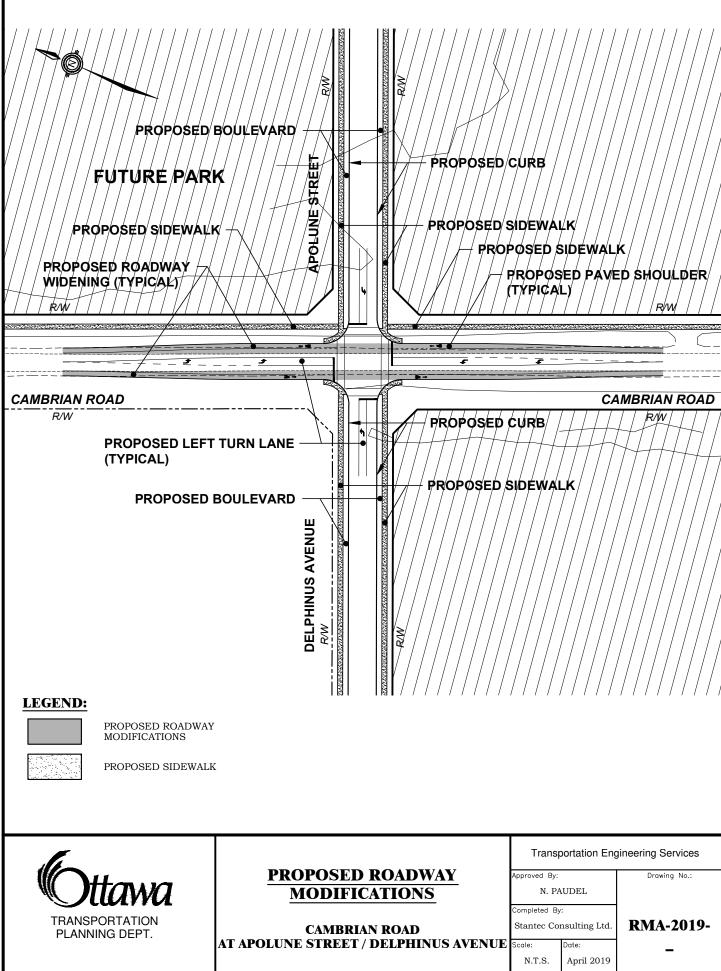
Office Contact Information (I	Please Print)
--------------------------------------	---------------

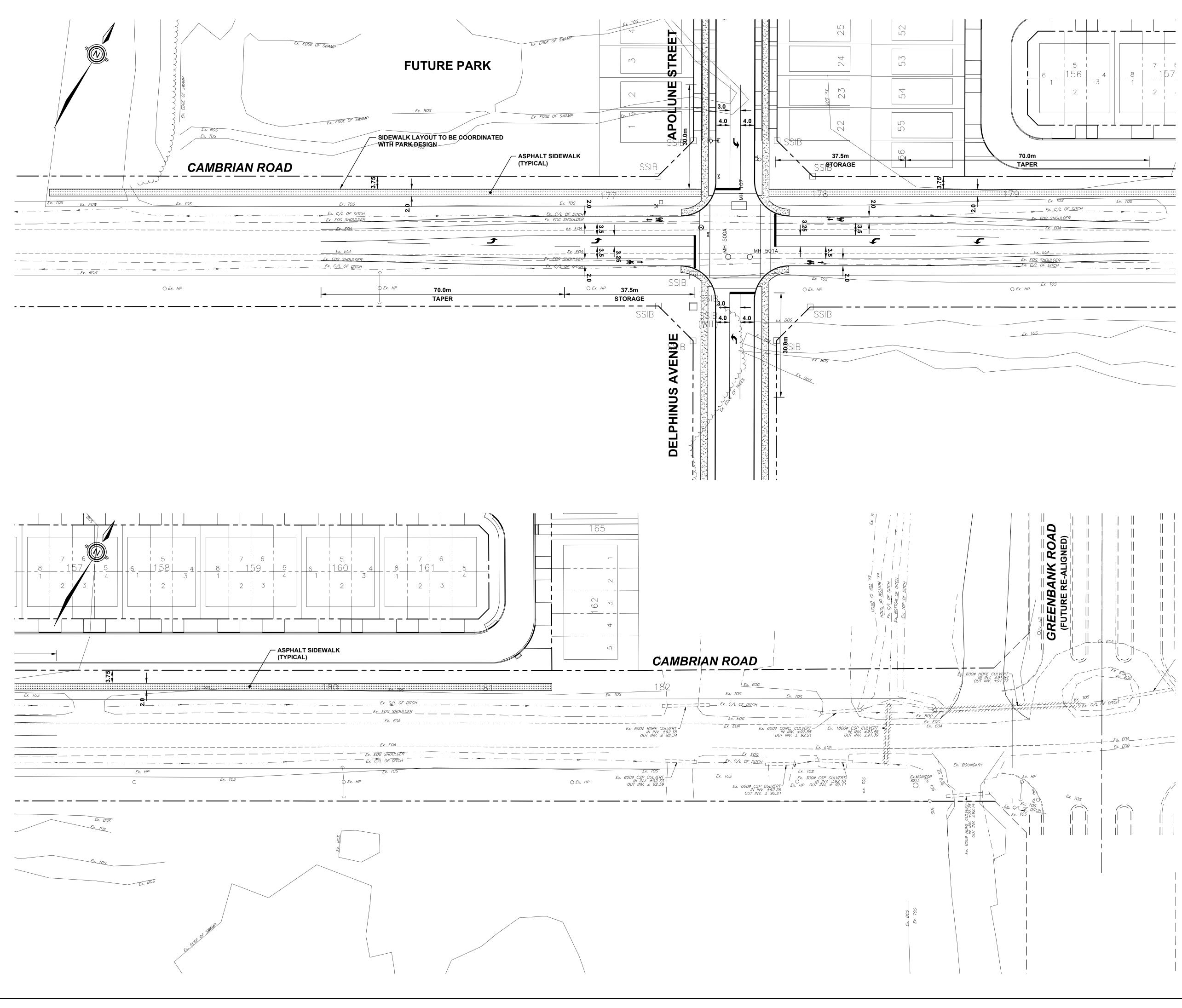
Address: 13 Markham Avenue

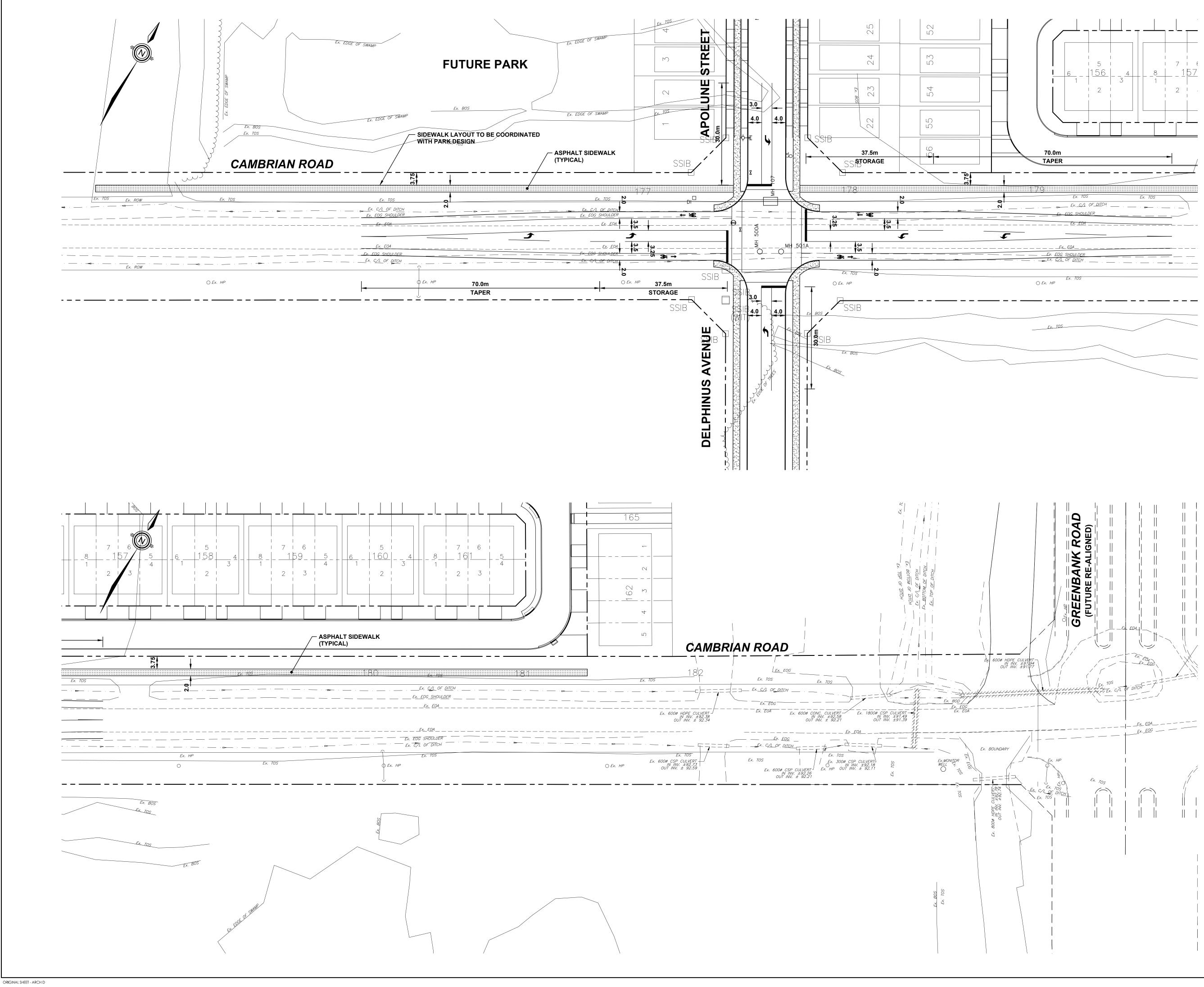
City / Postal Code: Ottawa / K2G 3Z1


Telephone / Extension: (613) 697-3797

E-Mail Address: Andrew.Harte@CGHTransportation.com




Appendix B


Apolune Way and Cambrian Road RMA

2019-04-03 1:40 PM v:\01-636\active\163601240\design\drawing\01240-01-rma1.dwg

Stantec Consulting Ltd. 400 - 1331 Clyde Avenue Ottawa ON Tel. 613.722.4420 www.stantec.com

Copyright Reserved

The Contractor shall verify and be responsible for all dimensions. DO NOT scale the drawing - any errors or omissions shall be reported to Stantec without delay. The Copyrights to all designs and drawings are the property of Stantec. Reproduction or use for any purpose other than that authorized by Stantec is forbidden.

Consultants

Legend

Notes

3.	REVISED PER COMMENTS		J.B.		19.04.03
2.	REVISED PER COMMENTS		J.B.		18.12.18
1.	ISSUED FOR CLIENT REVIEW		J.B.		18.12.10
Issu	ued		Ву	Appd.	YY.MM.DD
File	Name: 01240-01-ggl	G.R.L.	J.B.	J.B.	18.11.28
		Dwn.	Chkd.	Dsgn.	YY.MM.DD

Permit-Seal

Client/Project MATTAMY HALF MOON BAY WEST

TAMARACK MEADOWS PHASE 5 AND 6

Ottawa, Ontario

Title ROADWAY MODIFICATIONS CAMBRIAN RD. AT APOLUNE ST./DELPHINUS AVE. FUNCTIONAL DESIGN PLAN Project No. Scale 1-636-01240 Drawing No. Sheet Revision 01 1 of 1

Signal Warrants

Cambrian Road @ Apolune Way / Delphinus Avenue 2024 FB

Justification #7

		Minimum R	equirement	Minimum R	Requirement				
Justification	Description	1 Lane Highway		2 or More Lanes		Sectional		Entire %	Signal
		Free Flow	Restr. Flow	Free Flow	Restr. Flow	Numerical	%	Little 10	
	A. Vehicle volume, all approaches ehicular (average hour)		720	600	900	606	126%	118%	No
	B. Vehicle volume, along minor streets (average hour)	120	170	120	170	141	118%	110%	NO
	A. Vehicle volumes, major street (average hour)	480	720	600	900	465	97%		
2. Delay to Cross Traffic B. Combined vehicle and pedestrian volume crossing artery from minor streets (average hour)		50	75	50	75	94	188%	97%	No

Notes

1. Refer to OTM Book 12, pg 88, Nov 2007

2. Lowest section percentage governs justification

3. Average hourly volumes estimated from peak hour volumes, AHV = PM/2 or (AM + PM) / 4

Cambrian Road @ Apolune Way / Delphinus Avenue 2029 FB

Justification #7

		Minimum R	equirement	Minimum R	Requirement				
Justification	Description	1 Lane Highway		2 or More Lanes		Sectional		Entire %	Signal
		Free Flow	Restr. Flow	Free Flow	Restr. Flow	Numerical	%	Little 10	
1. Minimum Vehicular	A. Vehicle volume, all approaches (average hour)	480	720	600	900	856	178%	178%	Yes
	B. Vehicle volume, along minor streets (average hour)	120	170	120	170	228	190%	178%	res
	A. Vehicle volumes, major street (average hour)	480	720	600	900	627	131%		
2. Delay to Cross Traffic	B. Combined vehicle and pedestrian volume crossing artery from minor streets (average hour)	50	75	50	75	152	304%	131%	No

Notes

1. Refer to OTM Book 12, pg 88, Nov 2007

2. Lowest section percentage governs justification

3. Average hourly volumes estimated from peak hour volumes, AHV = PM/2 or (AM + PM) / 4

Cambrian Road @ Apolune Way / Delphinus Avenue 2024 FT

Justification #7

			equirement	Minimum R	Requirement				
Justification	Description	1 Lane Highway		2 or More Lanes		Sectional		Entire %	Signal
		Free Flow	Restr. Flow	Free Flow	Restr. Flow	Numerical	%	Little 10	
1. Minimum Vehicular	A. Vehicle volume, all approaches (average hour)	480	720	600	900	772	161%	161%	Yes
	B. Vehicle volume, along minor streets (average hour)	120	170	120	170	231	193%	101%	res
	A. Vehicle volumes, major street (average hour)	480	720	600	900	541	113%		
	B. Combined vehicle and pedestrian volume crossing artery from minor streets (average hour)	50	75	50	75	173	346%	113%	No

Notes

1. Refer to OTM Book 12, pg 88, Nov 2007

2. Lowest section percentage governs justification

3. Average hourly volumes estimated from peak hour volumes, AHV = PM/2 or (AM + PM) / 4

Cambrian Road @ Apolune Way / Delphinus Avenue 2029 FT

Justification #7

		Minimum R	equirement	Minimum R	Requirement				
Justification	Description	1 Lane Highway		2 or More Lanes		Sectional		Entire %	Signal
		Free Flow	Restr. Flow	Free Flow	Restr. Flow	Numerical	%	Little 70	
1. Minimum Vehicular	A. Vehicle volume, all approaches icular (average hour)		720	600	900	1021	213%	213%	Voc
	B. Vehicle volume, along minor streets (average hour)	120	170	120	170	318	265%	215%	Yes
	A. Vehicle volumes, major street (average hour)	480	720	600	900	703	146%		
2. Delay to Cross Traffic B. Combined vehicle and pedestrian volume crossing artery from minor streets (average hour)		50	75	50	75	231	462%	146%	No

Notes

1. Refer to OTM Book 12, pg 88, Nov 2007

2. Lowest section percentage governs justification

3. Average hourly volumes estimated from peak hour volumes, AHV = PM/2 or (AM + PM) / 4

Appendix D

2024 Future Background Synchro Sheets

HCM 2010 TWSC	2024 FB AM
1: Delphinus Ave/Site Access #1/Apolune Way & Cambrian Rd	3717 Borrisokane Rd

						_						_
Intersection												
Int Delay, s/veh	7											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	٦	¢Î,		1	f,		٦	¢Î		1	ţ,	
Traffic Vol, veh/h	13	166	64	34	486	20	127	0	69	91	0	45
Future Vol, veh/h	13	166	64	34	486	20	127	0	69	91	0	45
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	375	-	-	375	-	-	300	-	-	300	-	-
Veh in Median Storage	,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	100	100	100	100	100	100	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	13	166	64	34	486	20	127	0	69	91	0	45
Major/Minor	Major1		1	Major2	_		Minor1		_	Minor2		
Conflicting Flow All	506	0	0	230	0	0	811	798	198	823	820	496
Stage 1	-	-	-	-	-	-	224	224	-	564	564	-
Stage 2			-	-			587	574		259	256	
Critical Hdwy	4 12	-	-	4 12	-	-	7 12	6.52	6 22	7 12	6 52	6 22
Critical Hdwy Stg 1	-	-	-	-	-	-	6.12	5.52	-	6.12	5.52	-
Critical Hdwy Stg 2	-	-	-	-	-	-	6.12	5.52	-	6.12	5.52	-
Follow-up Hdwy	2.218	-	-	2.218	-	-	3.518	4.018	3.318	3.518	4.018	3.318
Pot Cap-1 Maneuver	1059	-	-	1338	-	-	298	319	843	292	310	574
Stage 1	-	-	-	-	-	-	779	718	-	510	508	-
Stage 2	-	-	-	-	-	-	496	503	-	746	696	-
Platoon blocked, %		-	-		-	-						
Mov Cap-1 Maneuver	1059	-	-	1338	-	-	267	307	843	260	299	574
Mov Cap-2 Maneuver	-	-	-	-	-	-	267	307	-	260	299	-
Stage 1	-	-	-	-	-	-	770	709	-	504	495	-
Slage 2	-	-	-	-	-	-	445	490	-	677	688	-
Approach	EB	_		WB	_		NB		_	SB	_	
HCM Control Delay, s	0.5			0.5			22.9			21.4		
HCM LOS	0.0			0.0			C			C		
							Ŭ			Ŭ		
Minor Lane/Major Mvm	ıt I	NBLn1	NBI n2	EBL	EBT	EBR	WBL	WBT	WRP	SBLn1	SBI n2	
Capacity (veh/h)	n I	267	843	1059	EDI	LDIX	1338	-	NUK	260	574	
HCM Lane V/C Ratio				0.012	-	-	0.025	-			0.078	
HCM Control Delay (s)		30.1	9.7	8.4		-	7.8	-	-	26.1	11.8	
HCM Lane LOS		30.1 D	9.7 A	0.4 A	-	-	7.0 A	-	-	20.1 D	11.0 B	
HCM 95th %tile Q(veh)		2.4	0.3	0	-	-	0.1	-	-	1.5	0.3	
now sour whe d(ven		2.4	0.5	0	-	-	0.1	-	-	1.0	0.3	

HCM 2010 TWSC	2024 FB PM
1: Delphinus Ave/Site Access #1/Apolune Way & Cambrian Rd	3717 Borrisokane Rd

Intersection												
Int Delay, s/veh	7.3											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	4Î		1	f)		7	4		7	4Î	
Traffic Vol, veh/h	45	491	123	65	285	68	96	0	50	62	0	25
Future Vol, veh/h	45	491	123	65	285	68	96	0	50	62	0	25
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	375	-	-	375	-	-	300	-	-	300	-	-
Veh in Median Storage	,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	100	100	100	100	100	100	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	45	491	123	65	285	68	96	0	50	62	0	25
Maior/Minor	Major1			Major2			Minor1			Minor2		
Conflicting Flow All	353	0	0	614	0	0	1105	1126	553	1117	1153	319
Stage 1		-	-	- 10	-	-	643	643		449	449	
Stage 2							462	483		668	704	
Critical Hdwy	4 12	-	-	4 12			7 12	6.52	6 22	7 12	6 52	6 22
Critical Hdwy Stg 1		-	-		-	-	6.12	5.52		6.12	5.52	-
Critical Hdwy Stg 2	-	-	-	-	-	-	6.12	5.52	-	6.12	5.52	-
Follow-up Hdwy	2 2 1 8	-		2.218					3 3 18		4 018	3 3 18
Pot Cap-1 Maneuver	1206	-	-	965	-	-	188	205	533	185	197	722
Stage 1	-	-		-			462	468		589	572	-
Stage 2	-	-	-	-	-	-	580	553	-	448	440	-
Platoon blocked, %			-		-							
Mov Cap-1 Maneuver	1206	-	-	965	-	-	167	184	533	154	177	722
Mov Cap-2 Maneuver		-	-	-	-	-	167	184	-	154	177	-
Stage 1	-	-	-	-	-	-	445	451	-	567	534	
Stage 2	-	-	-	-	-	-	522	516	-	391	424	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0.6			14			38.7			33.8		
HCM LOS	0.0			1.7			50.7 E			00.0		
							L			U		
Minor Lane/Major Mvm	, †	NBLn1		EBL	FBT	EBR	WBL	WBT	WRD	SBLn1	SBI n2	
Capacity (veh/h)		167	533	1206	LDI	LDIN	965	VUDI	VUDI	154	722	
		0.575	0.094	0.037		-	0.067	-	-	0.403		
HCM Lane V/C Ratio		0.575 52.3	12.5	0.037	-	-	0.067	-	-	43.3	10.2	
HCM Control Delay (s) HCM Lane LOS		52.3 F	12.5 B	0.1 A	-	-	9 A	-	-	43.3 E	10.Z	
		F 3	0.3	0.1	-	-	0.2	-	-	1.8	0.1	
HCM 95th %tile Q(veh)	3	0.3	0.1	-	-	0.2	-	-	1.8	0.1	

CGH Tranportation Page 1 08-09-2021 RM CGH Tranportation Page 1

Appendix E

2029 Future Background Synchro Sheets

	٦	-	\mathbf{r}	1	-	•	1	Ť	۲	1	Ŧ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBI
ane Configurations	۲	¢Î		۲.	ĥ		٦	4		٦	¢Î	
Traffic Volume (vph)	13	184	129	66	649	20	262	0	137	91	0	4
Future Volume (vph)	13	184	129	66	649	20	262	0	137	91	0	4
Satd. Flow (prot)	1602	1637	0	1602	1738	0	1565	1567	0	1565	1567	
Flt Permitted	0.171			0.513			0.728			0.669		
Satd. Flow (perm)	288	1637	0	865	1738	0	1199	1567	0	1102	1567	
Satd. Flow (RTOR)		59			3			698			217	
ane Group Flow (vph)	13	313	0	66	669	0	262	137	0	91	45	
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases		2			6			8			4	
Permitted Phases	2			6			8			4		
Detector Phase	2	2		6	6		8	8		4	4	
Switch Phase												
Vinimum Initial (s)	10.0	10.0		10.0	10.0		10.0	10.0		10.0	10.0	
Vinimum Split (s)	23.7	23.7		23.7	23.7		30.4	30.4		30.4	30.4	
Total Split (s)	53.0	53.0		53.0	53.0		37.0	37.0		37.0	37.0	
Total Split (%)	58.9%	58.9%		58.9%	58.9%		41.1%	41.1%		41.1%	41.1%	
Yellow Time (s)	4.2	4.2		4.2	4.2		3.3	3.3		3.3	3.3	
All-Red Time (s)	1.5	1.5		1.5	1.5		2.6	2.6		2.6	2.6	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)	5.7	5.7		5.7	5.7		5.9	5.9		5.9	5.9	
Lead/Lag												
_ead-Lag Optimize?												
Recall Mode	None	None		None	None		Max	Max		Max	Max	
Act Effct Green (s)	33.9	33.9		33.9	33.9		31.5	31.5		31.5	31.5	
Actuated g/C Ratio	0.44	0.44		0.44	0.44		0.41	0.41		0.41	0.41	
//c Ratio	0.10	0.42		0.17	0.88		0.54	0.13		0.20	0.06	
Control Delay	13.5	12.9		13.3	32.7		25.0	0.3		19.6	0.2	
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Delay	13.5	12.9		13.3	32.7		25.0	0.3		19.6	0.2	
OS	В	В		В	С		С	A		В	A	
Approach Delay		13.0			31.0			16.5			13.2	
Approach LOS		B		5.0	C		00 5	В		0.4	B	
Queue Length 50th (m)	1.1 4.3	23.4		5.6 12.5	84.0		28.5 63.9	0.0		8.4 22.6	0.0	
Queue Length 95th (m)	4.3	40.4		12.5	126.7		63.9	0.0		22.6	0.0	
nternal Link Dist (m)	27.5	519.1		27 F	354.3		20.0	415.4		20.0	383.2	
Turn Bay Length (m)	37.5	1020		37.5	1000		30.0	1050		30.0	700	
Base Capacity (vph)	178 0	1039 0		537 0	1080 0		489 0	1052 0		450 0	768 0	
Starvation Cap Reductn	0	0		0	0		0	0		0	0	
Spillback Cap Reductn	0	0		0	0		0	0		0	0	
Storage Cap Reductn Reduced v/c Ratio	0.07	0.30		0.12	0.62		0.54	0.13		0.20	0.06	
	0.07	0.30		0.12	0.02		0.04	0.13		0.20	0.00	
ntersection Summary												
Cycle Length: 90												
Actuated Cycle Length: 77.: Natural Cycle: 65	2											

CGH Transportation Page 1

Lanes, Volumes, Timings <u>1: Delphinus Ave/Site Access #1/A</u>	polune Way & Cambrian Rd	2029 FB AM 3717 Borrisokane Rd
Intersection Signal Delay: 22.2	Intersection LOS: C	
Intersection Capacity Utilization 88.7%	ICU Level of Service E	
Analysis Period (min) 15		

Splits and Phases: 1: Delphinus Ave/Site Access #1/Apolune Way & Cambrian Rd

	₩Ø4
53 s	37 s
₩ Ø6	≤ ¶ _{Ø8}
53 s	37 s

08-09-2021 RM

Lane Configurations Y L Y L Y L Y L Y L Y L Y L Y L Y L Y L Y L Y L Y L Y L Y L K		٦	-+	\mathbf{r}	1	+	•	1	1	۲	1	Ŧ	1
Traffic Volume (vph) 45 633 255 131 316 68 193 0 98 62 0 Future Volume (vph) 45 633 255 131 316 68 193 0 98 62 0 Future Volume (vph) 45 633 255 131 316 68 193 0 98 62 0 Stadl Flow (prot) 1602 1670 0 1602 1698 0 1565 1567 0 1565 1567 TI Permitted 0.534 0.096 0.741 0.694 Stadl Flow (prot) 31 21 343 595 Stadl Flow (prot) 45 888 0 131 384 0 193 98 0 62 25 Tum Type Perm NA prm-tp NA Perm NA Perm NA Protected Phases 2 1 6 8 4 4 Protected Phases 2 2 1 6 8 4 4 Permitted Phases 2 2 1 6 8 4 4 Permitted Phase 4 4 Permitted Phase 2 2 1 6 8 8 4 4 Permitted Phase 3 2 2 1 6 8 8 4 4 Permitted Phase 4 2 2 1 6 8 8 4 4 Permitted Phase 4 2 2 1 6 8 8 4 4 Permitted Phase 4 2 2 1 6 8 8 4 4 Permitted Phase 4 2 2 1 6 8 8 4 4 Permitted Phase 4 2 2 1 6 8 8 4 4 Permitted Phase 4 2 2 1 6 8 8 4 4 Permitted Phase 4 2 2 1 6 8 8 4 4 Permitted Phase 4 2 2 1 6 8 8 4 4 Permitted Phase 4 2 2 1 6 8 8 4 4 Permitted Phase 4 2 2 1 6 8 8 4 4 Permitted Phase 4 2 2 1 6 8 8 4 4 Permitted Phase 4 2 2 1 6 8 8 4 4 Permitted Phase 4 2 2 1 6 8 8 4 4 Permitted Phase 4 2 2 1 6 8 8 4 4 Permitted Phase 4 2 2 1 6 8 8 8 4 4 Permitted Phase 4 2 2 1 6 8 8 8 4 4 Permitted Phase 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SB
Future Volume (vph) 45 633 255 131 316 68 193 0 98 62 0 Said , Flow (prot) 1602 1670 0 1602 1698 0 1565 1567 0 1565 1567 0 1565 1567 0 1565 1567 0 1565 1567 0 1565 1567 0 1565 1567 0 1565 1567 0 1565 1567 0 1565 1567 0 1565 1567 0 1565 1567 0 1565 1567 0 1565 1567 0 1565 1567 167 0 1565 1567 0 1565 1567 0 1565 1567 0 1565 1567 0 1565 1567 0 1565 1567 150 150 150 150 150 150 150 150 150 150 150 150 150 </td <td>ane Configurations</td> <td>ň</td> <td>ĥ</td> <td></td> <td>۲</td> <td>ĥ</td> <td></td> <td>۲</td> <td>12</td> <td></td> <td>5</td> <td>¢Î,</td> <td></td>	ane Configurations	ň	ĥ		۲	ĥ		۲	12		5	¢Î,	
Said. Flow (prot) 1602 1670 0 1602 1698 0 1565 1567 1567 1567 1567 1567 1567 1567 1567 1567 150<	Traffic Volume (vph)	45	633	255	131	316	68	193	0	98	62	0	2
Termitted 0.534 0.096 0.741 0.694 Satd. Flow (perm) 900 1670 0 162 1698 0 1220 1567 0 1143 1567 Satd. Flow (prm) 45 888 0 131 384 0 193 98 0 62 25 fum Type Perm NA A 40 DA DA <td< td=""><td>Future Volume (vph)</td><td>45</td><td>633</td><td>255</td><td>131</td><td>316</td><td>68</td><td>193</td><td>0</td><td>98</td><td>62</td><td>0</td><td>2</td></td<>	Future Volume (vph)	45	633	255	131	316	68	193	0	98	62	0	2
Said. Flow (perm) 900 1670 0 162 1698 0 1220 1567 0 1143 1567 Said. Flow (RTOR) 31 21 343 595 595 ane Group Flow (vph) 45 888 0 131 384 0 193 98 0 62 25 Furnt Type Perm NA pm+pt NA Perm NA Perm NA Premitted Phases 2 6 8 4 4 Switch Phase	Satd. Flow (prot)	1602	1670	0	1602	1698	0	1565	1567	0	1565	1567	
Satd. Flow (RTOR) 31 21 343 595 ane Group Flow (vph) 45 888 0 131 384 0 193 98 0 62 25 Irm Type Perm NA pm+pt NA Perm NA Perm NA Protected Phases 2 1 6 8 4 4 Permited Phases 2 2 1 6 8 4 4 Switch Phase 100 10.0 10	It Permitted	0.534			0.096			0.741			0.694		
Lane Group Flow (vph) 45 888 0 131 384 0 193 98 0 62 25 furn Type Perm NA pm+pt NA Perm Perm NA Perm NA Perminuts A DA	Satd. Flow (perm)	900	1670	0	162	1698	0	1220	1567	0	1143	1567	
Turn Type Perm NA pm-pt NA Perm NA Perm NA Protected Phases 2 1 6 8 4 4 Permitted Phases 2 2 6 8 4 4 Permitted Phases 2 2 1 6 8 8 4 4 Permitted Phase 2 2 1 6 8 8 4 4 Witch Phase 2 2 1 6 8 8 4 4 Witch Phase 2 2 1 6 8 8 4 4 Vinimum Initial (s) 10.0	Satd. Flow (RTOR)		31			21			343			595	
Protected Phases 2 1 6 8 4 Permitted Phases 2 6 8 4 Detector Phase 2 2 1 6 8 4 Switch Phase 2 2 1 6 8 8 4 Switch Phase 2 2 1 6 8 8 4 4 Switch Phase 23.7 23.7 9.5 23.7 30.4 30.	ane Group Flow (vph)	45	888	0	131	384	0	193	98	0	62	25	
Protected Phases 2 1 6 8 4 Permited Phases 2 6 8 4 Detector Phase 2 2 1 6 8 8 4 Switch Phase 2 2 1 6 8 8 4 4 Switch Phase 2 2 1 6 8 8 4 4 Switch Phase 23.7 23.7 9.5 23.7 30.4	Furn Type	Perm	NA		pm+pt	NA		Perm	NA		Perm	NA	
Detector Phase 2 2 1 6 8 8 4 4 Switch Phase 100 10.0 10.0 10.0 10.0 10.0 10.0 Minimum Initial (s) 10.0 10.0 10.0 10.0 10.0 10.0 10.0 Minimum Split (s) 23.7 23.7 9.5 23.7 30.4	Protected Phases		2			6			8			4	
Switch Phase Minimum Initial (s) 10.0 73.0 30.4 <t< td=""><td>Permitted Phases</td><td>2</td><td></td><td></td><td>6</td><td></td><td></td><td>8</td><td></td><td></td><td>4</td><td></td><td></td></t<>	Permitted Phases	2			6			8			4		
Winimum Initial (s) 10.0 10.0 5.0 10.0 10.0 10.0 10.0 10.0 Minimum Split (s) 23.7 23.7 3.7 3.0.4 30.4 30.4 30.4 Total Split (s) 69.0 69.0 10.0 79.0 31.0 31.0 31.0 31.0 Total Split (s) 62.7% 62.7% 9.1% 71.8% 28.2%	Detector Phase	2	2		1	6		8	8		4	4	
Minimum Split (s) 23.7 23.7 9.5 23.7 30.4 30.													
Vinimum Split (s) 23.7 23.7 9.5 23.7 30.4 30.4 30.4 30.4 30.4 Total Split (s) 69.0 69.0 10.0 79.0 31.0 31.0 31.0 31.0 31.0 31.0 70.0	Vinimum Initial (s)	10.0	10.0		5.0	10.0		10.0	10.0		10.0	10.0	
Total Split (s) 69.0 69.0 10.0 79.0 31.0 31.0 31.0 31.0 31.0 31.0 31.0 31.0 10.0 10.0 79.0 31.0		23.7	23.7		9.5	23.7		30.4	30.4		30.4	30.4	
Total Split (%) 62.7% 9.1% 71.8% 28.2%									31.0				
Yellow Time (s) 4.2 4.2 2.0 4.2 3.3 3.3 3.3 3.3 3.3 All-Red Time (s) 1.5 1.5 1.0 1.5 2.6 3.6 3.7 3.5 3.7 3.5 3.6 3.6 3.7 3.5 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6													
All-Red Time (s) 1.5 1.5 1.0 1.5 2.6													
Lost Time Adjust (s) 0.0													
Total Lost Time (s) 5.7 5.7 3.0 5.7 5.9 5.0 6.7													
Lead/Lag Lag Lag Lag Lead cead-Lag Optimize? Yes Yes Yes Recall Mode None None None None Nane Max Max Max Act Effet Green (s) 57.1 57.1 69.7 67.0 25.3 26.3 26.3 26.3 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>													
Lead-Lag Optimize? Yes Yes Yes Recall Mode None None None None Max						0.1		0.0	0.0		0.0	0.0	
Recall Mode None None None None Max													
Act Effct Green (s) 57.1 57.1 69.7 67.0 25.3 25.3 25.3 25.3 Actuated g/C Ratio 0.55 0.55 0.67 0.64 0.24 0.024 0.24 0.024 0.24 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.03 Control Delay 11.2 42.5 24.7 8.7 49.2 0.5 36.9 0.1 Costo 0.0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0						None		Max	Max		Max	Max	
Actuated g/C Ratio 0.55 0.55 0.67 0.64 0.22 0.03 0.03 0.01 0.00 0.0													
v/c Ratio 0.09 0.95 0.64 0.35 0.65 0.15 0.22 0.03 Control Delay 11.2 42.5 24.7 8.7 49.2 0.5 36.9 0.1 Dueue Delay 0.0													
Control Delay 11.2 42.5 24.7 8.7 49.2 0.5 36.9 0.1 Queue Delay 0.0 <td></td>													
Dueue Delay 0.0 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>													
Total Delay 11.2 42.5 24.7 8.7 49.2 0.5 36.9 0.1 .OS B D C A D A D A Approach Delay 41.0 12.8 32.8 26.3 Approach Delay 26.3 Approach Delay 11.2 12.8 32.8 26.3 Approach LOS D B C C C C C Queue Length 50th (m) 4.1 156.6 8.5 30.1 38.2 0.0 10.9 0.0 Queue Length 95th (m) 9.4 #250.1 #27.2 45.0 #68.4 0.0 22.8 0.0 Itrim Bay Length (m) 37.5 37.5 30.0													
LOS B D C A D A D A Approach Delay 41.0 12.8 32.8 226.3 Approach LOS D B C C C Queue Length 50th (m) 4.1 156.6 8.5 30.1 38.2 0.0 10.9 0.0 Queue Length 50th (m) 9.4 #250.1 #27.2 45.0 #68.4 0.0 22.8 0.0 Queue Length 95th (m) 9.4 #250.1 #27.2 45.0 #68.4 0.0 22.8 0.0 Aueue Length 10kb (m) 519.1 354.3 4115.4 383.2 1 38ae Capacity (vph) 551 1036 206 1212 296 640 277 831 Starvation Cap Reductn 0													
Approach Delay 41.0 12.8 32.9 26.3 Approach LOS D B C C Dueue Length 50th (m) 4.1 156.6 8.5 30.1 38.2 0.0 10.9 0.0 Dueue Length 50th (m) 9.4 #250.1 #27.2 45.0 #68.4 0.0 22.8 0.0 nternal Link Dist (m) 519.1 37.5 30.0 30.0 383.2 Turn Bay Length (m) 37.5 37.5 30.0 30.0 38.3 Sase Capacity (vph) 551 1036 206 1212 296 640 277 831 Starvation Cap Reductn 0													
Approach LOS D B C C Queue Length 50th (m) 4.1 156.6 8.5 30.1 38.2 0.0 10.9 0.0 Queue Length 95th (m) 9.4 #250.1 #27.2 45.0 #68.4 0.0 22.8 0.0 Queue Length 95th (m) 519.1 354.3 415.4 383.2 100 Turm Bay Length (m) 37.5 37.5 30.0 30.0 33.0 33.2 33.2 33.2 33.2 33.0 33.2 33.2 33.2 33.2 33.2 33.0 33.2 33.0 33.2 33.2 33.0 33.2		0			Ŭ			U			5		
Dueue Length 50th (m) 4.1 156.6 8.5 30.1 38.2 0.0 10.9 0.0 Dueue Length 95th (m) 9.4 #250.1 #27.2 45.0 #68.4 0.0 22.8 0.0 ntemal Link Dist (m) 519.1 354.3 415.4 383.2 10.9 0.0 ntm Bay Length (m) 37.5 37.5 30.0 30.0 30.0 Starvation Cap Reductn 0													
Dueue Length 95th (m) 9.4 #250.1 #27.2 45.0 #68.4 0.0 22.8 0.0 ntemal Link Dist (m) 519.1 354.3 415.4 383.2 Turn Bay Length (m) 37.5 37.5 30.0 30.0 Jase Capacity (vph) 551 1036 206 1212 296 640 277 831 Starvation Cap Reductn 0		41	_		8.5			38.2			10.9	-	
Internal Link Dist (m) 519.1 354.3 415.4 383.2 furm Bay Length (m) 37.5 37.5 30.0 30.0 Base Capacity (vph) 551 1036 206 1212 296 640 277 831 Starvation Cap Reductn 0 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>													
Turn Bay Length (m) 37.5 37.5 30.0 30.0 Jase Capacity (vph) 551 1036 206 1212 296 640 277 831 Starvation Cap Reductn 0 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>22.0</td><td></td><td></td></t<>											22.0		
Base Capacity (vph) 551 1036 206 1212 296 640 277 831 Starvation Cap Reductn 0		37.5	010.1		37.5	001.0		30.0	110.1		30.0	000.2	
Starvation Cap Reductn 0			1036			1212			640			831	
Spillback Cap Reductin 0													
Storage Cap Reductn 0													
Reduced v/c Ratio 0.08 0.86 0.64 0.32 0.65 0.15 0.22 0.03 Intersection Summary Cycle Length: 110						-							
ntersection Summary Cycle Length: 110													
Cycle Length: 110		0.00	0.00		0.04	0.02		0.00	0.10		0.22	0.00	
Actuated Cycle Length: 104	Cycle Length: 110												
	Vatural Cycle: 90												

CGH Transportation Page 1 08-09-2021 RM

Lanes, Volumes, Timings 1: Delphinus Ave/Site Access #1/Ap	2029 FB PM 3717 Borrisokane Rd	
Intersection Signal Delay: 31.0	Intersection LOS: C	
Intersection Capacity Utilization 90.2%	ICU Level of Service E	
Analysis Period (min) 15		
# 95th percentile volume exceeds capacity, queue	e may be longer.	
Queue shown is maximum after two cycles.		

Splits and Phases: 1: Delphinus Ave/Site Access #1/Apolune Way & Cambrian Rd

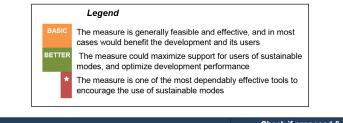
✓ Ø1	₩Ø4
10 s 69 s	31 s
↓ Ø6	≦ † _{Ø8}
79 s	31 s

CGH Transportation Page 2

TDM Checklist

TDM Measures Checklist Version 1.0 (30 June 2017)

City of Ottawa


TDM Measures Checklist

Version 1.0 (30 June 2017)

City of Ottawa

TDM Measures Checklist:

Residential Developments (multi-family, condominium or subdivision)

	TDM	measures: Residential developments	Check if proposed & add descriptions
	1.	TDM PROGRAM MANAGEMENT	
	1.1	Program coordinator	
BASIC ★	1.1.1	Designate an internal coordinator, or contract with an external coordinator	
	1.2	Travel surveys	
BETTER	1.2.1	Conduct periodic surveys to identify travel-related behaviours, attitudes, challenges and solutions, and to track progress	
	2.	WALKING AND CYCLING	
	2.1	Information on walking/cycling routes & des	tinations
BASIC	2.1.1	Display local area maps with walking/cycling access routes and key destinations at major entrances (multi-family, condominium)	
	2.2	Bicycle skills training	
BETTER	2.2.1	Offer on-site cycling courses for residents, or	

	TDM	measures: Residential developments	Check if proposed & add descriptions
	3.	TRANSIT	
	3.1	Transit information	
BASIC	3.1.1	Display relevant transit schedules and route maps at entrances (<i>multi-family, condominium</i>)	
BETTER	3.1.2	Provide real-time arrival information display at entrances (<i>multi-family, condominium</i>)	
	3.2	Transit fare incentives	
BASIC	★ 3.2.1	Offer PRESTO cards preloaded with one monthly transit pass on residence purchase/move-in, to encourage residents to use transit	\checkmark
BETTER	3.2.2	Offer at least one year of free monthly transit passes on residence purchase/move-in	
	3.3	Enhanced public transit service	
BETTER	★ 3.3.1	Contract with OC Transpo to provide early transit services until regular services are warranted by occupancy levels (<i>subdivision</i>)	\triangleleft
	3.4	Private transit service	
BETTER	3.4.1	Provide shuttle service for seniors homes or lifestyle communities (e.g. scheduled mall or supermarket runs)	
	4.	CARSHARING & BIKESHARING	
	4.1	Bikeshare stations & memberships	
BETTER	4.1.1	Contract with provider to install on-site bikeshare station (<i>multi-family</i>)	
BETTER	4.1.2	Provide residents with bikeshare memberships, either free or subsidized (<i>multi-family</i>)	
	4.2	Carshare vehicles & memberships	
BETTER	4.2.1	Contract with provider to install on-site carshare vehicles and promote their use by residents	
BETTER	4.2.2	Provide residents with carshare memberships, either free or subsidized	
	5.	PARKING	
	5.1	Priced parking	
BASIC	* 5.1.1	Unbundle parking cost from purchase price (condominium)	
BASIC	* 5.1.2	Unbundle parking cost from monthly rent (multi-family)	

TDM Measures Checklist Version 1.0 (30 June 2017)

City of Ottawa

	TDM	measures: Residential developments	Check if proposed & add descriptions
	6.	TDM MARKETING & COMMUNICATION	S
	6.1	Multimodal travel information	
BASIC	★ 6.1.1	Provide a multimodal travel option information package to new residents	\checkmark
	6.2	Personalized trip planning	
BETTER	★ 6.2.1	Offer personalized trip planning to new residents	

2024 Future Total Synchro Sheets

	٦	\rightarrow	$\mathbf{\hat{v}}$	1	+	•	٩	t	1	1	Ŧ	4
_ane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SB
ane Configurations	۲	f,		٦	ĥ		٦	¢Î,		٦	¢Î	
Traffic Volume (vph)	13	166	163	48	486	20	303	0	94	91	0	4
Future Volume (vph)	13	166	163	48	486	20	303	0	94	91	0	4
Satd. Flow (prot)	1602	1616	0	1602	1735	0	1565	1567	0	1565	1567	
Flt Permitted	0.238			0.452			0.728			0.696		
Satd. Flow (perm)	401	1616	0	762	1735	0	1199	1567	0	1146	1567	
Satd. Flow (RTOR)		73			3			687			275	
ane Group Flow (vph)	13	329	0	48	506	0	303	94	0	91	45	
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases		2			6			8			4	
Permitted Phases	2			6			8			4		
Detector Phase	2	2		6	6		8	8		4	4	
Switch Phase												
Vinimum Initial (s)	10.0	10.0		10.0	10.0		10.0	10.0		10.0	10.0	
Vinimum Split (s)	23.7	23.7		23.7	23.7		30.4	30.4		30.4	30.4	
Total Split (s)	47.0	47.0		47.0	47.0		43.0	43.0		43.0	43.0	
Total Split (%)	52.2%	52.2%		52.2%	52.2%		47.8%	47.8%		47.8%	47.8%	
Yellow Time (s)	4.2	4.2		4.2	4.2		3.3	3.3		3.3	3.3	
All-Red Time (s)	1.5	1.5		1.5	1.5		2.6	2.6		2.6	2.6	
_ost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)	5.7	5.7		5.7	5.7		5.9	5.9		5.9	5.9	
_ead/Lag												
_ead-Lag Optimize?												
Recall Mode	None	None		None	None		Max	Max		Max	Max	
Act Effct Green (s)	26.9	26.9		26.9	26.9		37.5	37.5		37.5	37.5	
Actuated g/C Ratio	0.35	0.35		0.35	0.35		0.49	0.49		0.49	0.49	
//c Ratio	0.09	0.53		0.18	0.82		0.51	0.08		0.16	0.05	
Control Delay	16.8	17.7		17.6	33.9		19.2	0.1		14.2	0.1	
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Delay	16.8	17.7		17.6	33.9		19.2	0.1		14.2	0.1	
LOS	В	В		В	С		В	A		В	Α	
Approach Delay		17.7			32.5			14.7			9.5	
Approach LOS		В			С			В			A	
Queue Length 50th (m)	1.2	27.8		4.6	64.1		27.4	0.0		6.7	0.0	
Queue Length 95th (m)	4.7	48.7		11.5	97.5		66.1	0.0		19.5	0.0	
nternal Link Dist (m)	07.5	519.1		07.5	354.3			415.4		00.0	383.2	
Turn Bay Length (m)	37.5	0.40		37.5	050		30.0	1100		30.0	011	
Base Capacity (vph)	219	919		418	953		591	1120		564	911	
Starvation Cap Reductn	0	0		0	0		0	0		0	0	
Spillback Cap Reductn	0	0		0	0		0	0		0	0	
Storage Cap Reductn	0	0		0	0		0	0		0	0	
Reduced v/c Ratio	0.06	0.36		0.11	0.53		0.51	0.08		0.16	0.05	
ntersection Summary												
Cycle Length: 90												
Actuated Cycle Length: 76.1 Natural Cycle: 60												

CGH Tranportation Page 1

Lanes, Volumes, Timings 1: Delphinus Ave/Site Access #1/Ap	polune Way & Cambrian Rd	2024 FT AM 3717 Borrisokane Rd
Intersection Signal Delay: 21.8	Intersection LOS: C	
Intersection Capacity Utilization 75.4%	ICU Level of Service D	
Analysis Period (min) 15		

Splits and Phases: 1: Delphinus Ave/Site Access #1/Apolune Way & Cambrian Rd

	₩Ø4
47 s	43 s
★ Ø6	<\$ [↑] <i>Ø</i> 8
47 s	43 s

08-09-2021 RM

	٦	-	\mathbf{r}	1	+	*	1	Ť	1	1	+	1
ane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SB
ane Configurations	۲	¢Î		۲.	4Î		٦	4		٦	¢Î	
Fraffic Volume (vph)	45	491	297	90	285	68	245	0	71	62	0	2
Future Volume (vph)	45	491	297	90	285	68	245	0	71	62	0	2
Satd. Flow (prot)	1602	1646	0	1602	1694	0	1565	1567	0	1565	1567	
It Permitted	0.500			0.147			0.741			0.711		
Satd. Flow (perm)	843	1646	0	248	1694	0	1220	1567	0	1171	1567	
Satd. Flow (RTOR)		58			23			366			582	
ane Group Flow (vph)	45	788	0	90	353	0	245	71	0	62	25	
furn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases		2			6			8			4	
Permitted Phases	2			6			8			4		
Detector Phase	2	2		6	6		8	8		4	4	
Switch Phase												
/inimum Initial (s)	10.0	10.0		10.0	10.0		10.0	10.0		10.0	10.0	
/linimum Split (s)	23.7	23.7		23.7	23.7		30.4	30.4		30.4	30.4	
Total Split (s)	58.0	58.0		58.0	58.0		32.0	32.0		32.0	32.0	
otal Split (%)	64.4%	64.4%		64.4%	64.4%		35.6%	35.6%		35.6%	35.6%	
(ellow Time (s)	4.2	4.2		4.2	4.2		3.3	3.3		3.3	3.3	
All-Red Time (s)	1.5	1.5		1.5	1.5		2.6	2.6		2.6	2.6	
ost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)	5.7	5.7		5.7	5.7		5.9	5.9		5.9	5.9	
ead/Lag	0.1	0.1		0.1	0.1		0.0	0.0		0.0	0.0	
ead-Lag Optimize?												
Recall Mode	None	None		None	None		Max	Max		Max	Max	
Act Effct Green (s)	40.0	40.0		40.0	40.0		26.6	26.6		26.6	26.6	
Actuated g/C Ratio	0.51	0.51		0.51	0.51		0.34	0.34		0.34	0.34	
/c Ratio	0.10	0.91		0.71	0.40		0.59	0.09		0.16	0.03	
Control Delay	9.6	31.1		47.4	11.8		31.9	0.2		23.4	0.0	
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Delay	9.6	31.1		47.4	11.8		31.9	0.2		23.4	0.0	
.OS	0.0 A	C		н.н D	B		01.0 C	A		23.4 C	A	
Approach Delay	A	30.0		U	19.0		0	24.8		0	16.7	
Approach LOS		C			10.0 B			24.0 C			B	
Queue Length 50th (m)	3.2	92.3		9.5	27.5		30.6	0.0		6.5	0.0	
Queue Length 95th (m)	8.0	148.0		#35.6	44.0		#69.1	0.0		17.9	0.0	
nternal Link Dist (m)	0.0	519.1		#33.0	354.3		#03.1	415.4		11.5	383.2	
Furn Bay Length (m)	37.5	515.1		37.5	004.0		30.0	410.4		30.0	JUJ.Z	
Base Capacity (vph)	572	1136		168	1158		413	773		397	915	
Starvation Cap Reductn	0	0		0	0		413	0		0	915	
Spillback Cap Reductn	0	0		0	0		0	0		0	0	
Storage Cap Reductn	0	0		0	0		0	0		0	0	
Reduced v/c Ratio	0.08	0.69		0.54	0.30		0.59	0.09		0.16	0.03	
	0.00	0.03		0.54	0.50		0.00	0.05		0.10	0.05	
ntersection Summary												
Cycle Length: 90												
Actuated Cycle Length: 78.4 Natural Cycle: 75	+											

CGH Tranportation Page 1

Lanes, Volumes, Timings <u>1: Delphinus Ave/Site Access #1/A</u>	polune Way & Cambrian Rd	2024 FT PM 3717 Borrisokane Rd
Intersection Signal Delay: 25.4	Intersection LOS: C	
Intersection Capacity Utilization 90.1%	ICU Level of Service E	
Analysis Period (min) 15		
# 95th percentile volume exceeds capacity, queue	e may be longer.	
Queue shown is maximum after two cycles.		

Splits and Phases: 1: Delphinus Ave/Site Access #1/Apolune Way & Cambrian Rd

	₩ø4
58 s	32 s
₹ ø6	
58 s	32 s

08-09-2021 RM

HCM	2010	TWSC	

1: Delphinus Ave/Site Access #1/Apolune Way & Cambrian Rd

2024 FT AM -Stop Control 3717 Borrisokane Rd

Intersection													
Int Delay, s/veh	46.4												
Vovement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
ane Configurations	1			7	ţ,		5	ţ,		5	1+		
raffic Vol. veh/h	13		163	48	486	20	303	0	94	91	0	45	
iture Vol. veh/h	13		163	48	486	20	303	0	94	91	0	45	
onflicting Peds, #/hr	0		0	40	400	0	0	0	0	0	0	40	
an Control	Free	-	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop	
T Channelized	-		None	-	-	None	- Si0p	Stop -	None	Stop -	Stop -	None	
	375		None -	375	-	None -	300	-	None -	300	-	None	
torage Length			-	5/5	0	-	- 300	0	-	- 300	0	-	
eh in Median Storage		· ·									0		
Grade, %	-	•	-	-	0	-	-	0	-	-	•	-	
eak Hour Factor	100		100	100	100	100	100	100	100	100	100	100	
eavy Vehicles, %	2		2	2	2	2	2	2	2	2	2	2	
Ivmt Flow	13	166	163	48	486	20	303	0	94	91	0	45	
	M.:4			4	_		Min			Min	_		_
1	Major1			Major2			Minor1	070		Minor2	0.17	40.0	
onflicting Flow All	506		0	329	0	0	889	876	248	913	947	496	
Stage 1	-	-	-	-	-	-	274	274	-	592	592	-	
Stage 2	-		-	-	-	-	615	602	-	321	355	-	
ritical Hdwy	4 12	-	-	4 12	-	-	7 12	6 52	6 22	7 12	6 52	6 22	
ritical Hdwy Stg 1	-	-	-	-	-	-	6.12	5.52	-	6.12	5.52	-	
ritical Hdwy Stg 2	-	-	-	-	-	-	6.12	5.52	-	6.12	5.52	-	
ollow-up Hdwy	2.218	-	-	2.218	-	-	3.518	4.018	3.318	3.518	4.018	3.318	
ot Cap-1 Maneuver	1059	-	-	1231	-	-	~ 264	287	791	254	261	574	
Stage 1	-	-	-	-	-	-	732	683	-	493	494	-	
Stage 2	-	-	-	-	-	-	479	489	-	691	630	-	
atoon blocked. %		-	-		-	-							
ov Cap-1 Maneuver	1059	-	-	1231	-	-	~ 234	272	791	215	248	574	
ov Cap-2 Maneuver	-		-	1201	-	-	~ 234	272	-	215	248	-	
Stage 1			_		-	_	723	675	-	487	475	-	
Slage 2		-					424	470		601	622	-	
Slaye 2	-	-	-	-	-	-	424	410	-	001	022	-	
pproach	EB			WB			NB			SB			
ICM Control Delay, s	0.3			0.7			156.8			26.3		_	
	0.3			0.7			100.0 F			20.3 D			
ICM LOS							г			U			
/inor Lane/Major Mvm	nt	NBLn11	NBI n?	EBL	EBT	EBR	WBL	WBT	WRP	SBLn1	SBI n2		
Capacity (veh/h)	n.	234	791	1059	-	LDIX -	1231	-	-	215	574		
			0.119				0.039			0.423			
CM Lane V/C Ratio				0.012	-		0.039	-	-				
CM Control Delay (s)		202.3	10.2					-	-		11.8		
ICM Lane LOS		F	В	A	-	-	A	-	-	D	B		
ICM 95th %tile Q(veh)	15.8	0.4	0	-	-	0.1	-	-	2	0.3		
lotes													
: Volume exceeds ca	pacity	\$: De	elay exc	eeds 3	00s	+: Com	putatio	n Not D	efined	*: All	major	volume i	in platoo

08-09-2021 RM

CGH Tranportation Page 1

HCM 2010 TWSC	
1: Delphinus Ave/Site Access #1/Apolune Way & Cambrian Rd	

2024 FT PM-Stop Control 3717 Borrisokane Rd

Intersection												
nt Delay, s/veh	73.6											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	3	ĥ		5	¢Î,		3	4		ኘ	ţ,	
Traffic Vol, veh/h	45	491	297	90	285	68	245	0	71	62	0	25
Future Vol. veh/h	45	491	297	90	285	68	245	0	71	62	0	25
Conflicting Peds, #/hr	0	0	0	0	0	0	0	Ő	0	0	Ő	0
Sian Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None		- 0100	None
Storage Length	375	-	-	375	-	-	300	-	-	300		None
Veh in Median Storage		0	-	- 515	0	-	- 500	0	-	- 500	0	-
Grade. %	,# -	0	-	-	0		-	0	-		0	-
	400	100		100				-		-		
Peak Hour Factor	100		100		100	100	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	45	491	297	90	285	68	245	0	71	62	0	25
	Vajor1			Major2			Minor1			Minor2		
Conflicting Flow All	353	0	0	788	0	0	1242	1263	640	1264	1377	319
Stage 1	-	-	-	-	-	-	730	730	-	499	499	-
Stage 2	-	-	-	-	-	-	512	533	-	765	878	-
Critical Hdwy	4 12	-	-	4 12	-	-	7 12	6 52	6 22	7 12	6 52	6 22
Critical Hdwy Stg 1	-	-	-	-	-	-	6.12	5.52	-	6.12	5.52	-
Critical Hdwy Stg 2	-	-	-	-	-	-	6.12	5.52	-	6.12	5.52	-
Follow-up Hdwy	2.218	-	-	2.218	-	-	3.518	4.018	3.318	3.518	4.018	3.318
Pot Cap-1 Maneuver	1206	-	-	831	-	-	~ 152	170	475	146	145	722
Stage 1	-			-	-	-	414	428	-	554	544	-
Stage 2	-	-	-	-	-	-	545	525	-	396	366	-
Platoon blocked, %					-	-						
Mov Cap-1 Maneuver	1206	_	-	831	-	-	~ 131	146	475	111	125	722
Mov Cap-2 Maneuver	1200	_	-	-	-		~ 131	146	-	111	125	
Stage 1				-	-	-	399	412	-	534	485	-
Stage 1				- 2			469	468		324	352	
Stage 2	-	-	-	-	-	-	403	400	-	J24	JJZ	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0.4		_	2		0	372.3		_	54.5		
HCM LOS	0.4			2		1	572.5 F			04.0 F		
HOM LUS							F			г		
Minor Lane/Major Mvm	nt	NBLn1	NBI n2	EBL	EBT	EBR	WBL	WBT	WRP	SBLn1	SBI n2	
Capacity (veh/h)		131	475	1206		LUK -	831	-	WDR -	111	722	_
HCM Lane V/C Ratio			0.149	0.037			0 108	-	-			
HCM Control Delay (s)	(6 476.2	13.9	8.1			9.9			72.3	10.2	
HCM Lane LOS		9470.2 F	13.9 B	0.1 A	-	-	9.9 A	-	-	72.5 F	10.2 B	
		г 19.1	0.5	0.1	-	-	0.4	-	-	2.6	0.1	
HCM 95th %tile Q(veh))	19.1	0.0	0.1	-	-	0.4	-	-	2.0	0.1	
Notes												
Yolume exceeds cap				eeds 3	00-		and the firms	n Not D	- Contract	*. All		volume

08-09-2021 RM

CGH Tranportation Page 1

2029 Future Total Synchro Sheets

1: Delphinus Ave/Sit			10.0								1	
	≯	-	1	1	-	~	1	1		*	÷	-
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SE
ane Configurations	۳.	↑	1	۳.	4Î		ሻ	12		٦	€Î,	
Traffic Volume (vph)	45	633	429	156	316	68	342	0	119	62	0	
Future Volume (vph)	45	633	429	156	316	68	342	0	119	62	0	
Satd. Flow (prot)	1602	1745	1483	1602	1698	0	1565	1567	0	1565	1567	
Flt Permitted	0.534			0.129			0.741			0.681		
Satd. Flow (perm)	900	1745	1483	218	1698	0	1220	1567	0	1122	1567	
Satd. Flow (RTOR)			112		14			282			523	
_ane Group Flow (vph)	45	633	429	156	384	0	342	119	0	62	25	
Turn Type	Perm	NA	Perm	pm+pt	NA		Perm	NA		Perm	NA	
Protected Phases		2		1	6			8			4	
Permitted Phases	2		2	6			8			4		
Detector Phase	2	2	2	1	6		8	8		4	4	
Switch Phase												
Vinimum Initial (s)	10.0	10.0	10.0	5.0	10.0		10.0	10.0		10.0	10.0	
Vinimum Split (s)	23.7	23.7	23.7	9.0	23.7		30.4	30.4		30.4	30.4	
Total Split (s)	61.0	61.0	61.0	11.0	72.0		48.0	48.0		48.0	48.0	
Total Split (%)	50.8%	50.8%	50.8%	9.2%	60.0%		40.0%	40.0%		40.0%	40.0%	
rellow Time (s)	4.2	4.2	4.2	3.0	4.2		3.3	3.3		3.3	3.3	
All-Red Time (s)	1.5	1.5	1.5	1.0	1.5		2.6	2.6		2.6	2.6	
ost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)	5.7	5.7	5.7	4.0	5.7		5.9	5.9		5.9	5.9	
_ead/Lag	Lag	Lag	Lag	Lead								
_ead-Lag Optimize?	Yes	Yes	Yes	Yes								
Recall Mode	None	None	None	None	None		Max	Max		Max	Max	
Act Effct Green (s)	44.3	44.3	44.3	57.1	55.4		42.4	42.4		42.4	42.4	
Actuated g/C Ratio	0.40	0.40	0.40	0.52	0.51		0.39	0.39		0.39	0.39	
v/c Ratio	0.12	0.90	0.64	0.77	0.44		0.72	0.15		0.14	0.03	
Control Delay	20.2	46.7	23.2	40.2	17.9		41.3	0.4		26.1	0.0	
Queue Delay	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	
Total Delay	20.2	46.7	23.2	40.2	17.9		41.3	0.4		26.1	0.0	
LOS	С	D	С	D	B		D	A		С	A	
Approach Delay		36.5			24.3			30.7			18.6	
Approach LOS	5.9	D	53.3	10.0	C 48.0		62.7	C 0.0		8.7	B 0.0	
Queue Length 50th (m)		123.2	53.3 85.2	16.8	46.0			0.0		0.7 20.4	0.0	
Queue Length 95th (m)	13.2	172.5	00.Z	#37.7			#119.6			20.4		
nternal Link Dist (m)	37.5	519.1	15.0	37.5	354.3		30.0	415.4		30.0	383.2	
Turn Bay Length (m)	457	887	809	203	1041		472	779		434	927	
Base Capacity (vph) Starvation Cap Reductn	457	007	009	203	041		472	0		434	921	
Spillback Cap Reductn	0	0	0	0	0		0	0		0	0	
Storage Cap Reductn	0	0	0	0	0		0	0		0	0	
Reduced v/c Ratio	0.10	0.71	0.53	0.77	0.37		0.72	0.15		0.14	0.03	
	0.10	0.71	0.00	0.11	0.57		0.72	0.15		0.14	0.05	
ntersection Summary Cycle Length: 120												
Actuated Cycle Length: 109.5 Natural Cycle: 80												
Vatural Cycle: 00 Control Type: Actuated-Uncod	ordinator											
Maximum v/c Ratio: 0.90	anatet											

CGH Transportation Page 1

Lanes, Volumes, Timings <u>1: Delphinus Ave/Site Access #1/A</u> j	oolune Way & Cambrian Rd	2029 FT PM-Mitigation 3717 Borrisokane Rd
Intersection Signal Delay: 31.6	Intersection LOS: C	
Intersection Capacity Utilization 84.0%	ICU Level of Service E	
Analysis Period (min) 15		
# 95th percentile volume exceeds capacity, queue	e may be longer.	
Queue shown is maximum after two cycles.		

Splits and Phases: 1: Delphinus Ave/Site Access #1/Apolune Way & Cambrian Rd

✓ Ø1	₩Ø4
11s 61s	48 s
₩ Ø6	≪¶ ø8
72 s	48 s

08-09-2021 RM

MMLOS Worksheets

Crossing Side Mark Notifit Softh EAT West Notifit SOfth EAT West Markan No S		INTERSECTIONS	Cambrian Roa	d and Apolune V	Nay / Delphinus	Ave (2024 AM)		(2024	4 PM)	
Median Ano Median - 2.4 No Median - 2.		Crossing Side	NORTH	SOUTH	EAST	WEST	NORTH	SOUTH	EAST	WEST
Ordingright Ture Prifitable of yield outbool Prifitabl										
United problem Control Control Control Control Control Control Right Tunts on Red (RTGR)? RTGR aboved NG Channel No N		Conflicting Left Turns	Permissive	Permissive	Permissive	Permissive				
Ped Signal Landing Internal? No No No No No Right Turn Channel No		Conflicting Right Turns								
Right Lum Ohumel No Channel N		Right Turns on Red (RToR) ?	RTOR allowed	RTOR allowed	RTOR allowed	RTOR allowed				
$ \begin{tabular}{ c c c c c } \hline Perfect Second in the second integration of the second integration integrati$		Ped Signal Leading Interval?	No	No	No	No				
$ \begin{tabular}{ c c c c c } \hline Perfect Second matrix frame in the second$	ian	Right Turn Channel	No Channel	No Channel	No Channel	No Channel				
$ \begin{tabular}{ c c c c c } \hline Perfect Second matrix frame in the second$	str	Corner Radius	10-15m	10-15m	10-15m	10-15m				
$ \begin{tabular}{ c c c c } \hline Perfect Second matrix frame in the second m$	ede	Crosswalk Type								
Special constraints of the second se		PETSI Score	70	70	70	70				
		Ped. Exposure to Traffic LoS	С	С	С	С	-	-	-	-
Average Pedestrian Delay LoS -		· · ·								
Pedestrian Delay LoS										
Level of Service C C C C C C C C -										
$ \begin{array}{ c c c c c } \hline I \ I \ I \ I \ I \ I \ I \ I \ I \ I$		Pedestrian Delay LoS					-	-	-	-
$ \begin{array}{ $		Loval of Someion	С	С	С	С	-	-	-	-
Bicycle Lane Arrangement on Approach Mixed Traffic Curb Bike Lane, Cycletrack or MUP Curb Bike Lane, Cycletrack or MUP Right Turn Lane Configuration ≤ 50 m Not Applicable Not Applicable Not Applicable Right Turning Speed ≤ 25 km/h Not Applicable Not Applicable Not Applicable Cycletrack or MUP Separated Separated Separated Separated Separated or Mixed Traffic Mixed Traffic Separated Separated Separated Left Turning Cyclist B B E E - Left Turning Cyclist B B E E - - Level of Service D B E E - - Verage Signal Delay ≤ 10 sec ≤ 20 sec ≤ 20 sec ≤ 30 sec ≤ 30 sec ≤ 30 sec Term Intersection Effective Corner Radius Number of Receiving Lanes on Departure - - - - Mumber of Receiving Lanes on Departure - - - - - - Effective Corner Radius Number of Service - - -		Level of Service		(C				-	
$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		Approach From	NORTH	SOUTH	EAST	WEST	NORTH	SOUTH	EAST	WEST
Rght Tuming Speed $\leq 25 km/h$ Not Applicable Not		Bicycle Lane Arrangement on Approach	Mixed Traffic							
Or Cyclist relative to RT motoristsDNot ApplicableNot Applicable<		Right Turn Lane Configuration	≤ 50 m	Not Applicable	Not Applicable	Not Applicable				
Separated or Mixed TrafficMixed TrafficSeparatedSeparatedSeparated $1 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = $		Right Turning Speed	≤ 25 km/h	Not Applicable	Not Applicable	Not Applicable				
Operating Speed > 40 to ≤ 50 km/h > 40 to ≤ 50 km/h ≥ 60 km/h ≥ 6	ø	Cyclist relative to RT motorists	D	Not Applicable	Not Applicable	Not Applicable	-		-	-
Operating Speed > 40 to ≤ 50 km/h > 40 to ≤ 50 km/h ≥ 60 km/h ≥ 6	ycl	Separated or Mixed Traffic	Mixed Traffic	Separated	Separated	Separated	-	-	-	-
$ \frac{1}{1} 1$	Bic	Left Turn Approach	No lane crossed	No lane crossed	1 lane crossed	1 lane crossed				
$ \frac{1}{10000000000000000000000000000000000$		Operating Speed	> 40 to ≤ 50 km/h	> 40 to ≤ 50 km/h	≥ 60 km/h	≥ 60 km/h				
Level of ServiceEImage: Signal Delay $\leq 10 \sec$ $\leq 20 \sec$ $\leq 40 \sec$ $\leq 20 \sec$ $\leq 30 \sec$ <td></td> <td>Left Turning Cyclist</td> <td>В</td> <td>В</td> <td></td> <td>E</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td>		Left Turning Cyclist	В	В		E	-	-	-	-
Image: signal dataImage: signal dataImag			D	В	E	E	-	-	-	-
Image: Problem in the service B C E C C D C D Image: Problem in the section Image: Problemi		Level of Service		E	E				-	
File Effective Corner Radius Number of Receiving Lanes on Departure from Intersection Image: Content of Service Level of Service Image: Content of Service	ц.	Average Signal Delay	≤ 10 sec	≤ 20 sec	≤ 40 sec	≤ 20 sec	≤ 20 sec	≤ 30 sec	≤ 20 sec	≤ 30 sec
File Effective Corner Radius Number of Receiving Lanes on Departure from Intersection Image: Content of Service Level of Service Image: Content of Service	nsi		В	С	E	С	С	D	С	D
Number of Receiving Lanes on Departure from Intersection Number of Receiving Lanes on Departure Level of Service Image: Comparison of the service	Tra	Level of Service		E	=			I	כ	
Level of Service	ck	Number of Receiving Lanes on Departure								
Level of Service	LT.		-	-	-	-	-	-	-	-
Volume to Capacity Ratio 0.71 - 0.80 0.71 - 0.80 Level of Service C C		Level of Service			-				-	
The service C	0	Volume to Capacity Ratio		0.71	- 0.80			0.71	- 0.80	
	Auto			(C			(C	

Cambrian Roa	d and Apolune V	Nay / Delphinus	Ave (2029 AM)		(202	9 PM)		Cambrian Roa	ad and Apolune Mitig	Way / Delphinus ated)	Ave (2029 AM
NORTH	SOUTH	EAST	WEST	NORTH	SOUTH	EAST	WEST	NORTH	SOUTH	EAST	WEST
3	3	3	3					3	3	3	4
No Median - 2.4 m	No Median - 2.4 m	No Median - 2.4 m	No Median - 2.4 m					No Median - 2.4 m	No Median - 2.4 m	No Median - 2.4 m	No Median - 2.4 m
Permissive	Protected/ Permissive	Permissive	Permissive					Permissive	Protected/ Permissive	Permissive	Permissive
Permissive or yield control	Permissive or yield control	Permissive or yield control	Permissive or yield control					Permissive or yield control	Permissive or yield control	Permissive or yield control	Permissive or yield control
RTOR allowed	RTOR allowed	RTOR allowed	RTOR allowed					RTOR allowed	RTOR allowed	RTOR allowed	RTOR allowed
No	No	No	No					No	No	No	No
No Channel	No Channel	No Channel	No Channel					No Channel	No Channel	No Channel	No Channel
10-15m	10-15m	10-15m	10-15m					10-15m	10-15m	10-15m	10-15m
Std transverse markings	Std transverse markings	Std transverse markings	Std transverse markings					Std transverse markings	Std transverse markings	Std transverse markings	Std transverse markings
70	70	70	70					70	70	70	53
С	С	С	С	-	-	-	-	С	С	С	D
-	-	-	-	-	-	-	-	-	-	-	-
С	С	С	С	-	-	-	-	С	С	С	D
	()			-	-			[)	-
NORTH	SOUTH	EAST	WEST	NORTH	SOUTH	EAST	WEST	NORTH	SOUTH	EAST	WEST
Mixed Traffic	Curb Bike Lane, Cycletrack or MUP	Curb Bike Lane, Cycletrack or MUP	Curb Bike Lane, Cycletrack or MUP					Mixed Traffic	Curb Bike Lane, Cycletrack or MUP	Curb Bike Lane, Cycletrack or MUP	Curb Bike Lane, Cycletrack or MUP
≤ 50 m	Not Applicable	Not Applicable	Not Applicable					≤ 50 m	Not Applicable	Not Applicable	Not Applicable
≤ 25 km/h	Not Applicable	Not Applicable	Not Applicable					≤ 25 km/h	Not Applicable	Not Applicable	Not Applicable
D	Not Applicable	Not Applicable	Not Applicable	-	-	-	-	D	Not Applicable	Not Applicable	Not Applicable
Mixed Traffic	Separated	Separated	Separated	-	-	-	-	Mixed Traffic	Separated	Separated	Separated
No lane crossed	No lane crossed	1 lane crossed	1 lane crossed					No lane crossed	No lane crossed	1 lane crossed	1 lane crossed
> 40 to ≤ 50 km/h	> 40 to ≤ 50 km/h	≥ 60 km/h	≥ 60 km/h					> 40 to ≤ 50 km/h	> 40 to ≤ 50 km/h	≥ 60 km/h	≥ 60 km/h
B	В	E	E	-	-	-	-	В	В	E	E
D	В	E	E	-	-	-	-	D	В	E	E
	E	E				-				Ξ	
≤ 20 sec	≤ 30 sec	≤ 40 sec	≤ 20 sec	≤ 30 sec	> 40 sec	≤ 40 sec	> 40 sec	≤ 20 sec	≤ 30 sec	> 40 sec	≤ 10 sec
С	D	E	С	D	F	E	F	С	D	F	В
	E	E				F				F	
-	-	-	-	-	-	-	-	-	-	-	-
		-				-				-	
	0.71	- 0.80			>	1.00			0.71	- 0.80	
		b				F				c	

	(2029 PM	Mitigated)	
NORTH	SOUTH	EAST	WEST
-	-	-	-
-		-	-
		_	_
-		-	
		-	
NORTH	SOUTH	EAST	WEST
-	-	-	-
-	-	-	-
-	-	-	-
-	-	-	-
		-	
≤ 20 sec	≤ 30 sec	≤ 30 sec	≤ 40 sec
С	D	D	E
		E	
_			_
		-	
	0.71	- 0.80	
		C	