

FINAL REPORT Phase Two Environmental Site Assessment

30 Cleary Avenue, Ottawa Ontario

Attention to: Scott Bentley

Submitted to:

Theia Partners Inc.

Scott Bentley 1554 Carling Avenue, Suite 55 Ottawa, Ontario K1Z 7M4

Submitted by:

WSP Canada Inc. 1931 Robertson Road, Ottawa, Ontario, K2H 5B7

CA0008376.9447-Rev0

November 2023

Distribution List

1 copy (.pdf) - Theia Partners Inc.

1 copy (.pdf) - WSP Canada Inc.

Table of Contents

1.0	EXECUTIVE SUMMARY				
2.0	INTRO	DDUCTION	.1		
	2.1	Site Description	.1		
	2.2	Property Ownership	.2		
	2.3	Current and Proposed Future Uses	.2		
	2.4	Applicable Site Condition Standard	.2		
3.0	BACK	GROUND INFORMATION	.3		
	3.1	Physical Setting	.3		
	3.2	Past Investigations	.3		
4.0	SCOF	PE OF THE INVESTIGATION	.4		
	4.1	Overview of Site Investigation	.4		
	4.2	Media Investigated	.5		
	4.3	Phase One Conceptual Site Model	.5		
	4.3.1	Areas of PCAs Potentially Affecting the Phase One Property	.5		
	4.3.2	Potential Influence of Underground Utilities	.5		
	4.3.3	Regional or Site Specific Geological/Hydrogeological Information	.5		
	4.3.4	Uncertainties Associated with CSM	.6		
	4.4	Impediments	.6		
5.0	INVE	STIGATION METHOD	.6		
	5.1	General	.6		
	5.2	Drilling	.7		
	5.3	Soil: Sampling	.7		
	5.4	Field Screening Measurements	.7		
	5.5	Groundwater: Monitoring Well Installation	.8		
	5.6	Groundwater: Sampling	.8		
	5.7	Analytical Testing	.8		

 5.9 Elevation Surveying		5.8	Residue Management Procedures	8		
 5.10 Quality Assurance and Quality Control Measures 6.0 REVIEW AND EVALUATION 6.1 Geology 6.2 Groundwater: Elevations, Hydraulic Gradients, and Flow Direction 6.3 Coarse Soil Texture and pH 6.4 Soil: Field Screening 6.5 Soil: Quality 6.6 Groundwater: Quality 6.7 Data Quality Review 6.8 Phase Two Conceptual Site Model 7.0 REFERENCES 8.0 LIMITATIONS 9.0 SIGNATURES 		5.9	Elevation Surveying	8		
 6.0 REVIEW AND EVALUATION 6.1 Geology 6.2 Groundwater: Elevations, Hydraulic Gradients, and Flow Direction 6.3 Coarse Soil Texture and pH 6.4 Soil: Field Screening 6.5 Soil: Quality 6.6 Groundwater: Quality 6.7 Data Quality Review 6.8 Phase Two Conceptual Site Model 7.0 REFERENCES 8.0 LIMITATIONS 9.0 SIGNATURES 		5.10	Quality Assurance and Quality Control Measures	9		
 6.1 Geology 6.2 Groundwater: Elevations, Hydraulic Gradients, and Flow Direction 6.3 Coarse Soil Texture and pH 6.4 Soil: Field Screening 6.5 Soil: Quality 6.6 Groundwater: Quality 6.7 Data Quality Review 6.8 Phase Two Conceptual Site Model 7.0 REFERENCES 8.0 LIMITATIONS 9.0 SIGNATURES 	6.0	REVIE	W AND EVALUATION	10		
 6.2 Groundwater: Elevations, Hydraulic Gradients, and Flow Direction 6.3 Coarse Soil Texture and pH 6.4 Soil: Field Screening 6.5 Soil: Quality 6.6 Groundwater: Quality 6.7 Data Quality Review 6.8 Phase Two Conceptual Site Model 7.0 REFERENCES 8.0 LIMITATIONS 9.0 SIGNATURES 		6.1	Geology	10		
 6.3 Coarse Soil Texture and pH 6.4 Soil: Field Screening 6.5 Soil: Quality 6.6 Groundwater: Quality 6.7 Data Quality Review 6.8 Phase Two Conceptual Site Model 7.0 REFERENCES 8.0 LIMITATIONS 9.0 SIGNATURES 		6.2	Groundwater: Elevations, Hydraulic Gradients, and Flow Direction	10		
 6.4 Soil: Field Screening		6.3	Coarse Soil Texture and pH	11		
 6.5 Soil: Quality 6.6 Groundwater: Quality 6.7 Data Quality Review 6.8 Phase Two Conceptual Site Model 7.0 REFERENCES 8.0 LIMITATIONS 9.0 SIGNATURES 		6.4	Soil: Field Screening	11		
 6.6 Groundwater: Quality 6.7 Data Quality Review 6.8 Phase Two Conceptual Site Model		6.5	Soil: Quality	11		
 6.7 Data Quality Review. 6.8 Phase Two Conceptual Site Model. 7.0 REFERENCES. 8.0 LIMITATIONS. 9.0 SIGNATURES. 		6.6	Groundwater: Quality	12		
 6.8 Phase Two Conceptual Site Model 7.0 REFERENCES		6.7	Data Quality Review	12		
7.0 REFERENCES 8.0 LIMITATIONS 9.0 SIGNATURES		6.8	Phase Two Conceptual Site Model	12		
8.0 LIMITATIONS 9.0 SIGNATURES	7.0	REFE	RENCES	20		
9.0 SIGNATURES	8.0	LIMIT	ATIONS	21		
	9.0	SIGNATURES				

TABLES

- Table 1 Summary of Soil Samples Submitted for Analysis
- Table 2 Summary of Groundwater Samples Submitted for Analysis
- Table 3 Soil Analytical Results (BTEX, PHC)
- Table 4 Soil Analytical Results (PAH)
- Table 5 Soil Analytical Results (Metals, Inorganics, and Other Regulated Parameters)
- Table 6 Groundwater Analytical Results (BTEX, PHC)

FIGURES

Figure 1 – Key Plan

- Figure 2 Phase Two Property
- Figure 3 Potentially Contaminating Activities
- Figure 4 Areas of Potential Environmental Concern
- Figure 5 Investigation Locations
- Figure 6 Soil Exceedances

APPENDICES

APPENDIX A Borehole Logs

APPENDIX B Certificates of Analysis

1.0 EXECUTIVE SUMMARY

WSP Canada Inc. (WSP) was retained by Theia Partners Inc. (Theia) to conduct a Phase Two Environmental Site Assessment (Phase Two ESA) of the property located at 30 Cleary Avenue, Ottawa, Ontario ("Site"). The Site location and plan are provided in Figure 1.

WSP previously completed a Phase One Environmental Site Assessment (Phase One ESA) for the Site, the results of which were documented in the report titled "*Phase One Environmental Site Assessment, 30 Cleary Avenue, Ottawa, Ontario*", dated November 2023. Based on the findings of the Phase One ESA, WSP completed this Phase Two ESA investigation.

The analytical results from the sampling and analysis program indicate that the reported concentrations of barium in soil at the Phase Two Property do not meet the applicable Ministry of Environment, Conservation and Parks (MECP) Table 7 site condition standards (residential/institutional land use, coarse textured soil)¹.

The reported results for sodium adsorption ratio (SAR) and electrical conductivity (EC) also exceeded the MECP Table 7 standards. However, both of these exceedances are considered to be due to the application of salt products to the ground for de-icing and safety and are therefore not considered as an exceedance of MECP Table 7 standards as per O. Reg 153/04 section 49.1.

The reported concentrations of all other parameters tested in soil and groundwater were below the Table 7 site condition standards.

The exceedance of barium is considered to be most likely of natural origin. However, given that it is in fill it may be attributed to the importation of fill to the Site. As such, the fill at this location may need to be managed separately from the remaining fill during development. Given the nature of the contaminant which is commonly found across the city at these concentrations in natural soils and the expectation that the fill will likely be excavated to accommodate the development, no further investigation is recommended.

2.0 INTRODUCTION

2.1 Site Description

WSP was retained by Theia to conduct a Phase Two Environmental Site Assessment (Phase Two ESA) of the following property:

Municipal Address	Part of 30 Cleary Avenue, Ottawa
Property Identification Number	04751-0119
Legal Description	Not available
Size of the Phase Two Property	1.09 hectares

Note: legal description obtained from ####.

The location of the Phase Two Property is provided in Figure 1. The boundaries of the Phase Two Property are provided in Figure 2.

¹ Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, Ministry of the Environment, April 15, 2011 (PIBS# 7382e01)

2.2 Property Ownership

The Phase Two Property is owned by the First Unitarian Congregation of Ottawa. Authorization to proceed with this investigation was received on August 1, 2023, from Scott Bentley, Capital Projects Director for Theia Partners Inc., acting on behalf of the Site Owner as the Phase Two ESA Site Representative. The contact information for Scott Bentley is as follows:

Client	Address	Contact Information
Theia Partners Inc.	1554 Carling Ave, Suite 55 Ottawa, Ontario, K1Z 7M4	Telephone: 343-596-7596 bentley@theiapartners.com

2.3 Current and Proposed Future Uses

The Phase Two Property is currently developed with a parking lot (partially gravel, partially paved), reportedly constructed in 1982. The proposed future use of the Phase Two Property is residential.

2.4 Applicable Site Condition Standard

The analytical results were compared to the Table 7 generic site condition standards for shallow soils in a nonpotable groundwater condition (residential property use, coarse soil texture) presented in the MECP document *"Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act*", dated April 15, 2011. The applicable site condition standards were selected based on the following rationale:

- The Phase Two Property and all other properties located, in whole or in part, within 250 metres of the Phase Two Property are supplied by the City of Ottawa municipal drinking water system. No wells were identified that are used or intended for use as a source of potable water.
- The Phase Two Property is not located in an area designated in a municipal official plan as a well-head protection area or other designation identified by the municipality for the protection of ground water.
- More than two thirds of the soil materials are considered to be coarse-textured (Section 6.4).
- The closest permanent water body is the Ottawa River, located 130 metres ("m") north of the Phase Two Property.
- No features have been identified at the Phase Two Property that would meet the conditions of an environmentally sensitive site, as described in Section 41 of O. Reg 153/04.
- The pH of surface soil meets the requirement that $5 \le pH \le 9$ (Section 6.4).
- The intended use of the Phase Two Property is residential.
- The overburden thickness is less than 2 metres over more than two-thirds of the Phase Two Property. The reported depth to water is greater than 3 metres over the entire Phase Two Property.

3.0 BACKGROUND INFORMATION

This section presents the background conditions of the Phase Two Property including a description of the physical setting and a summary of past investigations conducted.

The objectives of the Phase Two ESA were to obtain information about environmental conditions in the soil and groundwater on, in or under the Site. The objectives of this Phase Two ESA were achieved by:

- Developing an understanding of the geological and hydrogeological conditions at the Phase Two Property.
- Conducting field sampling for all contaminants of potential concern ("COPCs") associated with each area of potential environmental concern ("APEC").

3.1 Physical Setting

The nearest surface water body is the Ottawa River, located 130 m north of the Phase Two Property. There are no areas of natural significance within the Phase Two Study area. Land uses surrounding the Phase Two Property include parkland, institutional, residential, and commercial, as shown in Figure 2.

Based on geological mapping, the regional overburden around the Phase Two Property is stone-poor, sandy silt to silty sand-textured till on Paleozoic terrain.

The Phase Two Property is located on a topographic flat area with an elevation of approximately 62 m above sea level (masl). The Site is sloping slightly down to the north from Richmond Rd, with the gravel parking area to the south being higher elevation than the paved portion of the parking area to the north. There are no surface water drainage features on the Site.

3.2 Past Investigations

3.2.1 Phase One ESA

WSP conducted a Phase One ESA entitled, "*Phase One Environmental Site Assessment, 30 Cleary Avenue, Ottawa, Ontario*", dated November 2023, to assess the likelihood of soil and/or groundwater contamination resulting from historical or present activities at the Site and surrounding area. This included a review of available historical information on the Site and surrounding area, interviews with persons familiar with the Site and a Site reconnaissance. The APECs identified in the 2023 Phase One ESA are summarized in the following table:

Area of Potential Environmental Concern (APEC) ¹	Location of APEC on Phase One Property	PCA No. ²	PCA – on- site or off- site	Contaminants of Potential Concern (COPCs) ³	Media Potentially Impacted
APEC-1	Southeast corner of	46,	On-site and	PHCs	Soil and
Southeast gravel parking area	Property.	28,	OTT-SILE	PAHs	Groundwater
 Former railway on-site Multiple gasoline service stations off-site Auto repair shop off-site 		10,		Metals	
APEC-2	Entire Phase One	30	On-site	PHCs	Soil
Entire Phase One Property	Property			BTEX	
 Fill material of unknown quality Application of salt to parking areas for de-icing purposes¹ 				PAHs Metals Inorganics	

Area of Potential Environmental Concern (APEC) ¹	Location of APEC on Phase One Property	PCA No. ²	PCA – on- site or off- site	Contaminants of Potential Concern (COPCs) ³	Media Potentially Impacted
 APEC-3 Southwest corner of Property Multiple gasoline USTs and ASTs off-site Multiple gasoline service stations off-site 	L-shaped section in the southwest corner of the Property, extending halfway up the western boundary and the same distance along a portion of the southern boundary.	28	Off-site	PHCs BTEX	Soil and Groundwater

1 - Based on information gathered through historical information review, WSP understands that the Site is not used, and has not been used, for manufacturing, processing, or bulk storage of salt. Further, Golder understands that salt has been applied to surfaces for the safety of vehicular or pedestrian traffic under conditions of snow or ice or both within the parking lot at the Site. It is therefore the Qualified Person's opinion, as per Section 49(1) of O. Reg. 153/04, as amended, that the site condition standards for electrical conductivity and sodium adsorption ratio are considered not to be exceeded within the Phase Two Property. Salt application to the parking lot has been included as an APEC for completeness.

This report was prepared by a Qualified Person and will be relied upon for the Phase Two investigation.

4.0 SCOPE OF THE INVESTIGATION

4.1 Overview of Site Investigation

The Phase Two ESA investigation activities were completed between carried out over August 24, August 25, September 5, September 29, and October 12, 2023, and included the following tasks:

- Health and Safety Plan: Preparation of a Health and Safety Plan for internal and subcontractor use prior to initiating any field work at the Site.
- Utility Clearances: Coordination of utility clearances with local utility companies along with retaining the services of a private locator to assess for possible services in the areas of the proposed test locations.
- Borehole Advancement and Monitoring Well Installation: The borehole drilling and monitoring well installation program included drilling of nine boreholes and the installation of four groundwater monitoring wells, which were used for groundwater sampling at the Site. The locations of the boreholes and monitoring wells are provided in Figure 5. The monitoring well construction details are presented in Appendix A.
- Soil Sampling: Soil samples were collected on August 24th and 25th, 2023 from six of the boreholes. Selected soil samples were submitted for analysis of the COPCs (Table 1).
- Groundwater Monitoring and Sampling: Groundwater samples were collected on September 5th, 2023, and October 12th, 2023. Groundwater samples were submitted for analysis of the COPCs (Table 2).
- **Surveying**: An elevation survey for boreholes and monitoring wells was completed using a Trimble R8.
- Reporting: WSP compiled and assessed the field and laboratory results from the above noted activities into this report.

The Phase Two investigation was carried out in general accordance with WSP's standard operating procedures, which conform to the requirements of Ontario Regulation 153/04 (O. Reg. 153/04). The data from the Phase Two ESA investigation completed by WSP were incorporated into a single Phase Two ESA report following the Phase Two ESA report format required by O. Reg. 153/04.

There were no impediments or access limitations that in the opinion of the Qualified Person would affect the conclusions of this Phase Two ESA report.

4.2 Media Investigated

The Phase Two ESA included sampling and analysis of soil and groundwater. No sediment was present and therefore sediment sampling was not required. Summaries of the sampling and analysis completed for soil and groundwater are provided in Tables 1 and 2.

4.3 Phase One Conceptual Site Model

The following key Site features (where applicable) are presented in Figures 1, 2, 3 and 4:

As part of the requirements of Part V in Schedule D of O. Reg. 153/04, a phase one conceptual site model (CSM) was developed as part of the review and evaluation.

The phase one CSM consists of a figure and narrative descriptions that are intended to illustrate the results of the Phase One ESA and to provide a basis of further work if required.

The phase one CSM is illustrated in Figures 3 and 4. The narrative is provided below, in accordance with the mandatory requirements of Table 1 of Schedule D.

4.3.1 Areas of PCAs Potentially Affecting the Phase One Property

Refer to Section 7.2 for a description of areas of PCAs identified on the Phase One Property and in the Phase One Study Area. Refer to Section 7.3 for a description of APECs on the Phase One Property based on the identified PCAs.

4.3.2 Potential Influence of Underground Utilities

COPCs have the potential to preferentially migrate in utility backfills at and surrounding the Phase One Property. It is possible that potential impacts associated with off-site PCAs could be intercepted by intervening underground utilities, however; they remain a concern due to their proximity to the Phase One Property and potential for impacts that may extend deeper than utility trenches.

4.3.3 Regional or Site Specific Geological/Hydrogeological Information

Based on the records review the following is likely true of the Phase One Property:

- Based on geological mapping, the Phase One Property overburden is stone-poor, sandy silt to silty sand-textured till on Paleozoic terrain. The thickness of this till ranges from approximately 0.3 1.7 m. Monitoring well records associated with the Phase One Property indicate that unconsolidated material beneath the Phase One Property consists primarily of packed till materials.
- Bedrock is expected to be Middle Ordovician limestone and shale from the Ottawa and Simcoe Groups and the Shadow Lake Formation.

- The Phase One Property is located on a topographic flat area with and elevation of approximately 62 m above sea level (masl). The Site is sloping down to the north from Richmond Rd, with the gravel parking area to the south being higher elevation than the paved portion of the parking area to the north.
- Based on monitoring wells developed as part of this Phase Two ESA, depth to groundwater ranges from approximately 3.39 to 3.59 mbgs.
- There are no permanent surface water bodies or areas of standing water on the Phase One Property. The nearest open water body is the Ottawa River, which is to the north and west of the Property. The closest part of the river to the Site is about 130 metres to the north.
- Surface runoff is directed to five storm sewer manholes located on the Phase One Property.
- Based on topography and orientation of surface water bodies shallow groundwater at the Site is expected to flow toward the northwest. However, shallow groundwater flow on the Phase One Property and in the Phase One Study Area may be variable and influenced by the presence of subsurface utilities. Regional groundwater flow is expected to be toward the Ottawa River, located to the northwest of the Phase One Property.

4.3.4 Uncertainties Associated with CSM

Uncertainties associated with the Phase One ESA are identified in Section 7.3.3 of the Phase One report and can also be considered for the phase one CSM.

Additional uncertainties to consider from the context of the CSM include:

Site utilities and unknown effect of utilities on migration patterns of COPCs.

4.4 Impediments

No physical impediments to the Phase Two ESA investigation were encountered. Access to the Phase Two Property was not denied or restricted.

5.0 INVESTIGATION METHOD

5.1 General

The following sections describe the field investigation methodology employed during the Phase Two ESA. The field work was carried out over August 24, August 25, September 5, September 29, and October 12, 2023

Prior to initiating the field work, WSP developed and implemented Site-specific protocols to protect the health and safety of its employees and subcontractors through the preparation of a Site-specific Health and Safety Plan. An assessment of potential health and safety hazards at the Phase Two Property and those associated with the proposed work was completed each day of the field program. A health and safety tail gate meeting was held with WSP's subcontractors each day prior to completion of the field work. The document was reviewed and signed on-Site by field personnel prior to commencing work. Additionally, prior to any intrusive investigations, including drilling, WSP completed public and private utility clearances.

5.2 Drilling

Borehole drilling and monitoring well installation were completed on August 24, August 25, and September 29, 2023, by Downing using a CME-75 truck mounted drill. A power auger was used to bore through fill material at all locations. At locations where bedrock was also drilled (BH23-01, BH23-05, and BH23-07), a rotary diamond drill was used for that portion of the drilling. Nine boreholes were advanced with depths ranging from 1.30 to 7.99 metres below ground surface (mbgs). Drilling depth was based on the geotechnical requirements as the investigation was being conducted in combination with the geotechnical investigation for the development.

5.3 Soil: Sampling

At each borehole location, regular soil samples were collected using a 0.6 m split spoon sampler for field screening (including visual inspection and field measurement of headspace concentration), soil sample collection, and stratigraphic logging by a WSP field supervisor. A portion of each soil sample was placed in a sealed plastic bag, as well as a pre-cleaned laboratory-supplied sample container for potential laboratory analysis. Soil headspace concentrations of samples were measured using a photoionization detector (PID) and a combustible gas detector, calibrated using isobutylene and hexane, respectively, to determine total organic vapour and combustible gas concentrations.

One soil sample representing "worst-case" conditions at each sampling location was selected for laboratory analysis based on the field headspace screening measurements, visual observations (e.g., staining, discoloration and/or free product, if any), and olfactory observations (if any). Soil samples were submitted to the analytical laboratory under chain of custody procedures. A summary of the soil samples submitted for analysis is provided in Table 1.

Geologic descriptions, visual and olfactory observations, and results of field headspace measurements are presented in the borehole logs (Appendix A).

A description of the quality assurance/quality control measures taken to minimize the potential for crosscontamination between sampling locations is provided in Section 5.12.

5.4 Field Screening Measurements

Field measurements of sample headspace concentration were made using the following equipment:

Equipment	Parameters Detected	Detection Limit	Precision	Accuracy	Calibration Standard
RKI Eagle 2	Combustible gas	0-50,000 ppm	NA	±5%	Hexane (100 ppm)
RKI Eagle 2	Total organic vapour	0-2,000 ppm	NA	±5%	Isobutylene (100 ppm)

Instruments were calibrated before use with daily calibration checks.

5.5 Groundwater: Monitoring Well Installation

Monitoring wells were installed in two boreholes (BH23-05 and BH23-07), each adjacent to the off-Site PCAs upgradient of the Phase Two Property to the south-southeast and southwest. A total of four monitoring wells were installed. At both BH23-05 and BH23-07, two wells were installed, one shallower and one deeper to get information on groundwater quality at different depths. Both shallower wells at each location were found to be dry and therefore not sampled from for groundwater. Monitoring wells were constructed of 32 millimetre inside diameter (ID) Schedule 40 polyvinyl chloride (PVC) casings equipped with Schedule 40 PVC well screens (1.5 m in length, #10 slot size). The sand pack surrounding the screen was constructed using #3 silica sand. A bentonite seal consisting of bentonite solids (e.g., Holeplug[™]) was placed above the filter pack with a minimum thickness of 0.6 m. Each monitoring well was completed at ground surface with a flush-mount protective casing set in concrete and the casing was sealed with a PVC j-plug. Monitoring wells were developed on September 5 and 29, 2023. Well construction details are provided in Appendix A.

5.6 Groundwater: Sampling

Groundwater samples were collected from all new monitoring wells on September 5 and October 12, 2023. Depths to water were determined using an electric water level meter. Groundwater monitoring was completed by purging three well volumes of groundwater from each monitoring well using dedicated Waterra[®] inertial samplers and collecting groundwater samples into pre-cleaned laboratory-supplied sample containers.

Groundwater samples were placed in laboratory-prepared containers and stored in a cooler until delivery to the analytical laboratory under chain of custody procedures. A summary of the groundwater samples submitted for analysis is presented in Table 2.

5.7 Analytical Testing

Two analytical laboratories were used during this Phase Two ESA. The contact information for Bureau Veritas Laboratories is: 36 Antares Dr., Nepean, Ontario, K2E 7W5, 613-274-0573. The contact information for AGAT Laboratories is: 1690 Woodward Dr., unit 1630, Ottawa, Ontario, 613-225-8668.

Both analytical laboratories are accredited in accordance with the International Standard ISO/IEC 17025 (General Requirement for the Competence of Testing and Calibration Laboratories, May 5, 2005, as amended) and the standards for proficiency testing developed by the Standards Council of Canada, the Canadian Association for Laboratory Accreditation or another accreditation body accepted by the MECP.

5.8 Residue Management Procedures

All residues produced during the investigation (e.g., soil cuttings from drilling, groundwater from well development purging, wash water from equipment decontamination) were placed in sealed drums and stored at the Phase Two Property for disposal by the owner.

5.9 Elevation Surveying

WSP used a Trimble R8 to complete a geodetic survey of each drilling location. The survey included the location and elevation (both the top of the flush-mounted well cap and the top of the riser pipe) for each monitoring well.

5.10 Quality Assurance and Quality Control Measures

WSP's quality assurance program for environmental investigations was implemented to ensure that analytical data obtained by the investigation were valid and representative. The quality assurance program included the following measures:

- The use of standard operating procedures for all field investigation activities.
- All monitoring wells were developed following installation to remove fine particles from the filter pack and any fluids introduced during drilling.
- Monitoring wells were appropriately purged prior to groundwater sample collection to remove stagnant water from the well bore and improve sample representativeness, minimizing sample agitation and aeration to the extent practicable.
- Daily checks of calibration were completed for field equipment using a standard of known concentration.
- Soil and groundwater samples were handled and stored in accordance with the sample collection and preservation requirement of the MECP "Protocol for Analytical Methods Used in the Assessment of Properties Under Part XV.I of the Environmental Protection Act and Excess Soil Quality", July 1, 2011 (as amended February 19, 2021). Samples were collected directly into pre-cleaned, laboratory-supplied sample containers with the appropriate preservative for the analyte group. Upon collection, samples were placed in insulated coolers with ice for storage and transport to the analytical laboratory under chain of custody protocols.
- Dedicated sampling equipment (tubing and foot valves) and clean disposable Nitrile[™] gloves were used at each sampling location to prevent cross-contamination. All non-dedicated sampling equipment (e.g., water level meters, split spoons) was decontaminated between sampling locations. Sampling equipment in contact with soil, groundwater, or sediment was: cleaned by mechanical means; washed with a phosphate-free, laboratory-grade detergent and, if necessary, an appropriate desorbing wash solution; and thoroughly rinsed with analyte-free water.
- Detailed field records documenting the methods and circumstances of collection for each field sample were prepared at the time of sample collection. Each sample was assigned a unique sample identification number recorded in the field notes, along with the date and time of sample collection, the sample matrix, and the requested analyses.
- The submission of samples to the analytical laboratory in accordance with standard chain of custody procedures.

Date Sampled	Sample Location	Sample ID	Media
August 24, 2023	BH23-01	1-1	Soil
August 24, 2023	BH23-05	5-2	Soil
August 24, 2023	BH23-09	9-2	Soil
August 25, 2023	BH23-03	3-1	Soil

Below is a summary of the soil and groundwater samples.

Date Sampled	Sample Location	Sample ID	Media
August 25, 2023	BH23-04	4-1	Soil
August 25, 2023	BH23-07	7-2	Soil
September 5, 2023	BH23-05	23-05A and 23-05A (field duplicate of 23-05)	Groundwater
October 12, 2023	BH23-07	BH23-07	Groundwater

6.0 REVIEW AND EVALUATION

This section of the report presents a review and evaluation of the results of the drilling, monitoring and sampling activities conducted as part of the Phase Two ESA.

6.1 Geology

The soil and bedrock conditions encountered during the borehole drilling programs are presented in the borehole logs (Appendix A). The following presents a summary of the subsurface soil conditions encountered during the investigation.

In general, the soil conditions encountered in the boreholes consisted of 1-3 inches of asphalt, underlain by a layer of fill material, followed by a layer of native silty sand to clayey silt and glacial till, followed by limestone and shale bedrock. The fill material generally consisted of sand and gravel, which ranged from depths of approximately 0 to 0.86 mbgs. The native soil layer consisted of silty sand to sandy silt mixed with compact glacial till, which ranged from depths of 0.25 to 2.44 mbgs. The limestone and shale bedrock layer was drilled at three borehole locations (BH23-01, BH23-05, and BH23-07) and the start of the bedrock was found at 0.86, 1.93, and 2.43 mbgs, respectively.

6.2 Groundwater: Elevations, Hydraulic Gradients, and Flow Direction

Water level measurements were obtained from two of the on-Site monitoring wells on September 5 (BH23-05) and October 12 (BH23-07), 2023 using a Solinst water level meter. The depth to groundwater ranged from 3.39 mbgs (BH23-05) to 3.59 mbgs (BH23-07). The elevation of the water table was 58.74 meters above sea level (masl) at BH23-05 and 59.79 masl at BH23-07.

The approximate horizontal gradient of the water table between BH23-05 and BH23-07 is 0.015 m/m. As shown on Figure 5, BH23-05 is to the north of BH23-07. Therefore, it can be inferred that the groundwater flow at the Property is northerly.

Any temporary fluctuation in water levels on the Phase Two Property is not anticipated to affect the conclusions of the Phase Two ESA. Seasonal fluctuation in water levels should be expected. Given the limited number of monitoring events, seasonal trends could not be identified; however shallow groundwater water levels are typically highest following the spring recharge and decline throughout the summer and fall months into the winter.

Vertical hydraulic gradients were not determined since the reported concentrations of all COPCs in groundwater met the applicable site condition standards and shallow wells were dry at the time of sampling.

6.3 Coarse Soil Texture and pH

Based on field observations, more than 50% of particles (by mass) in the soil were equal to or greater than 75 µm in mean diameter. Accordingly, soil at the Phase Two Property is considered to be coarse-textured.

Soil samples were collected from surface soil and submitted to AGAT laboratories for pH determination. A summary of the test results is presented below.

Location ID	Sample ID	Sample Depth (mbgs)	Surface/ Subsurface Soil	рН
BH23-01	1-1	0.02-0.3	Surface soil	7.05
BH23-03	3-1	0.06-0.3	Surface soil	7.11
BH23-04	4-1	0.08-0.6	Surface soil	7.20
BH23-05	5-2	0-0.6	Surface soil	7.12
BH23-07	7-2	0.6-1.2	Surface soil	7.16
BH23-09	9-2	0.7-1.3	Surface soil	7.09

The reported pH of all samples of surface soil meets the requirement that 5≤pH≤9.

6.4 Soil: Field Screening

gas vapour ranged from 0 to 85 ppm (highest reading at BH23-07 between 0.6-1.2 mbgs) and organic vapour measurements were 0 ppm at all locations.

6.5 Soil: Quality

A list of soil samples submitted for laboratory analysis is provided in Table 1. The analytical results for soil samples are summarized in Tables 3 to 5. Certificates of analysis are provided in Appendix B.

The reported concentrations of all soil samples met the applicable site condition standards with the exception of the following:

- BH23-01—The reported concentration of barium in soil sample BH23-01 1-1 (410 μg/g) was above the Table 7 standard (390 μg/g).
- BH23-04—The sodium adsorption ratio (SAR) of soil sample BH23-04 4-1 (6.82) was above the Table 7 standard (5).
- BH23-07—The reported electrical conductivity of soil sample BH23-07 7-2 (0.785 mS/cm) was above the Table 7 standard (0.7 mS/cm). The sodium adsorption ratio (SAR) of soil sample BH23-07 7-2 (9.17) was above the Table 7 standard (5).
- BH23-09—The reported electrical conductivity of soil sample BH23-09 9-2 (1.17 mS/cm) was above the Table 7 standard (0.7 mS/cm). The sodium adsorption ratio (SAR) of soil sample BH23-09 9-2 (15.9) was above the Table 7 standard (5).

Sodium adsorption ratio (SAR) and electrical conductivity (EC) are considered to be due to the application of salt products to the ground for de-icing and safety and are therefore not considered as an exceedance of MECP Table 7 standards as per O. Reg 153/04 section 49.1. They are referenced above for consideration with respect to future excavation and off-site management where the EC and SAR may need to be considered.

6.6 Groundwater: Quality

The analytical results for groundwater samples are summarized in Table 6. Certificates of analysis are provided in Appendix B.

The reported concentrations of all groundwater samples met the applicable site condition standards.

In addition to the numerical standards, the MECP sets out aesthetic standards relating to the presence of petroleum hydrocarbon product. Specifically, a property does not meet the site condition standards if there is evidence of free product, including but not limited to, visible petroleum hydrocarbon film or sheen present on groundwater, surface water or in any groundwater or surface water samples. Monitoring for free phase product was conducted during groundwater sample collection. No evidence of free product or sheen in groundwater was observed.

A property does not meet an applicable potable ground water site condition standard unless the qualified person has determined that there is no indication of objectionable petroleum hydrocarbon odour and taste associated with the ground water. There was no evidence of objectionable petroleum hydrocarbon odour or taste associated with groundwater.

6.7 Data Quality Review

The quality assurance assessment of the groundwater field duplicate sample results was conducted according to the MECP document "*Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act and Excess Soil Quality*", March 9, 2004 (amended February 19, 2021) ("Analytical Protocol"). The laboratories' data quality review findings are presented in the Certificates of Analysis, found in Appendix B. WSP calculated the Relative Percent Difference (RPD) between the groundwater duplicate and parent samples, and found the RPD to be within acceptable criteria limits. Based on this review, the analytical data generated during the investigation are valid and may be used in this Phase Two ESA without further qualification.

All certificates of analysis or analytical reports received pursuant to clause 47(2)(b) of O. Reg. 153/04 comply with subsection 47(3). A certificate of analysis or analytical report has been received for each sample submitted for analysis and is provided in Appendix B.

6.8 Phase Two Conceptual Site Model

The Phase Two conceptual site model is presented in the following sections. The location of the Phase Two Property is provided in Figure 1.

POTENTIAL SOURCES OF CONTAMINATION

Potentially Contaminating Activities

Based on the information obtained as part of the Phase One ESA, the following potentially contaminating activities ("PCAs") were identified. The location of each PCA is provided in Figure 3. Given the high volume of PCAs in the

Phase One Study Area, those that have been carried forward in consideration of APECs have been shaded light grey.

Potentially Contaminating Activity	Address	Rationale for Potential Contribution of the PCA to an APEC
From approximately the late 1940s to mid 1960s, a rail track traversed the southeast portion of the Phase One Property, adjacent to a row of northeast-southwest oriented rectangular commercial buildings on the far side of the rail track.	Phase One Property	The PCA is located on the Phase One Property and must be identified as an APEC. (APEC 1)
Fill quality is unknown and therefore of concern. Multiple redevelopments of Site have happened in the past, fill quality not documented.	Phase One Property	The PCA is located on the Phase One Property and must be identified as an APEC. (APEC 2)
Gasoline UST (4540 L) and coal yard - Leafloor Bros Coal and Wood	801 Richmond Rd	PCA is upgradient of Site. Given nature of chemicals used in auto garages, and former storage of coal, PCA is carried
Dave Rennie's Auto Repair shop		forward as contributing to APEC 1.
Fuel Oil UST (9080 L) – Unitarian Church of Ottawa	Unitarian Church of Ottawa (adjacent to east of Property)	UST is cross gradient/downgradient location with respect to groundwater flow direction. As such, PCA is not considered to result in an APEC.
Two gasoline USTs – Gasoline Service Station (unnamed)	775 Richmond Rd	PCA is in close proximity and is upgradient of Site. PCA is carried forward as contributing to APEC 1.
Ottawa Electric Railway – streetcar public transit system. Ran parallel to Richmond Rd, adjacent to Byron Ave.	Between Richmond Rd and Byron Ave	Given distance from the Site and relatively immobile nature of the contaminants associated with this PCA (railway fill), this PCA is not considered to result in an APEC. As well, this infrastructure has been removed as part of the current LRT construction.
Four gasoline storage tanks (total 13,000 gal, unspecified whether AST or UST), three fuel oil tanks (total 1000+ gal, two are USTs), one waste oil tank (1000 gal) – Gasoline Service Station - Sunoco Energy Inc.	75 Cleary Ave	PCA is upgradient of Site with respect to groundwater flow direction. Given high volume of contaminant storage, PCA is carried forward as contributing to APECs 1.
Hydraulic oil leak from crane (Kiewit Eurovia Vinci (KEV))	Kichi Zībī Mīkan Parkway and Cleary Ave	Spill is downgradient of Site with respect to groundwater flow direction. As such, spill is not considered to result in an APEC.
Gasoline ASTs (Sunlight Oil Co.)	851 Richmond Rd	PCA is cross gradient/upgradient of Site with respect to groundwater flow direction. Given large quantities of gasoline USTs, PCA is carried forward as contributing to APECs 3.

Potentially Contaminating Activity	Address	Rationale for Potential Contribution of the PCA to an APEC		
Three gasoline USTs (three 13,620 L tanks) - BP Canada Gas Station				
Two USTs (unknown product type or size) – BP Canada Gas Station	865 Richmond	Based on groundwater flow direction and distance from the Site, this PCA is not considered to result in an APEC.		
Spill - 5L hydraulic oil spill to ground (KEV)				
Spill - 2L diesel exhaust fluid spill to soil (KEV)	Sherbourne Rd and	Given distance from the Site and small		
Spill - 20L hydraulic oil spill to rock floor of tunnel (KEV)	Byron Ave	considered to result in an APEC.		
Spill - 1L diesel spill to soil (KEV)				
Multiple gasoline and fuel oil USTs – Shell Gas Station	747 Richmond Rd	Based on distance from the Site and cross gradient location with respect to groundwater flow direction, these PCAs		
Dry cleaning depot (unnamed)		are not considered to result in an APEC.		
Spill - 0.5L unknown hydrocarbons (KEV)	Just east of 75 Cleary Ave	Given low quantity of spill and distance from Site, spill is not considered to result in an APEC.		
Spill - 20L hydraulic oil to land (Lehigh Hanson Canada ULC)	2122 Wayne Ave	Given low quantity of spill and distance from Site, spill is not considered to result in an APEC.		
Spill - 1L hydraulic oil to soil and rock (KEV)	Byron Park to the east across from 851 Richmond Rd	Given low quantity of spill and distance from Site, spill is not considered to result in an APEC.		
Two USTs (unknown product type or size) – Unnamed Gasoline Service Station	739 Richmond Rd	Based on the distance from the Site and cross gradient location with respect to groundwater flow direction, this PCA is not considered to result in an APEC.		
Spill - 100L diesel to ground (no client name given)		Based on distance from sit and quantity of		
Spill - 20L hydraulic oil to asphalt and walkway (unnamed client)	Clearly Ave and Richmond Rd	spills, these are not considered to result in an APEC. As well, any spill reported in the last 15 years would have required action		
Spill - 1L grease spill (KEV)		by MECP.		
Spill - 5L hydraulic oil to ground (KEV)				
Spill - 2L hydraulic oil to excavated pit with snow melt (KEV)	Near 100 Byron Ave	Given low quantity of spill and distance from Site, spill is not considered to result in an APEC.		
Three gasoline USTs – Capital City Gas Gasoline Service Stations:	875 Richmond Rd	Based on distance from the Site and cross gradient location relative to groundwater		

Potentially Contaminating Activity	Address	Rationale for Potential Contribution of the PCA to an APEC
- Saveway Gas Little Oil Company Ltd.		flow direction, these PCAs are not considered to result in an APEC.
Spill - 1L hydraulic oil spill	Richmond Rd and Redwood Ave	Given low quantity of spill and distance from Site, this spill is not considered to result in an APEC.

Areas of Potential Environmental Concern

The following APECs were identified at the Phase Two Property. The location of each APEC is presented in Figure 4.

Area of Potential Environmental Concern (APEC) ¹	Location of APEC on Phase One Property	PCA No. ²	PCA – on-site or off-site	Contaminants of Potential Concern (COPCs) ³	Media Potentially Impacted
 APEC-1 Southeast gravel parking area Former railway on-site Multiple gasoline service stations off-site Auto repair shop off-site 	Southeast corner of Property.	46, 28, 10,	On-site and off- site	PHCs BTEX PAHs Metals	Soil and Groundwater
 APEC-2 Entire Phase One Property Fill material of unknown quality Application of salt to parking areas for de-icing purposes¹ 	Entire Phase One Property	30	On-site	PHCs BTEX PAHs Metals Inorganics	Soil
 APEC-3 Southwest corner of Property Multiple gasoline USTs and ASTs off-site Multiple gasoline service stations off-site 	L-shaped section in the southwest corner of the Property, extending halfway up the western boundary and the same distance along a portion of the southern boundary.	28	Off-site	PHCs BTEX	Soil and Groundwater

1 - Based on information gathered through historical information review, WSP understands that the Site is not used, and has not been used, for manufacturing, processing, or bulk storage of salt. Further, Golder understands that salt has been applied to surfaces for the safety of vehicular or pedestrian traffic under conditions of snow or ice or both within the parking lot at the Site. It is therefore the Qualified Person's opinion, as per Section 49(1) of O. Reg. 153/04, as amended, that the site condition standards for electrical conductivity and sodium adsorption ratio are considered not to be exceeded within the Phase Two Property. Salt application to the parking lot has been included as an APEC for completeness.

Subsurface Structures and Utilities

With the exception of sewers and other buried utilities, there are no known below ground structures at the Phase One Property.

PHYSICAL SETTING

Geological Characteristics

In general, the subsurface soil conditions encountered in the boreholes consisted of 1-3 inches of asphalt, underlain by a layer fill material, followed by a layer of native silty sand to clayey silt and glacial till, followed by limestone and shale bedrock. The fill material generally consisted of sand and gravel, which ranged from depths of approximately 0 to 0.86 mbgs. The native soil layer consisted of silty sand to sandy silt mixed with compact glacial till, which ranged from depths of 0.25 to 2.44 mbgs. The limestone and shale bedrock layer was drilled at three borehole locations (BH23-01, BH23-05, and BH23-07) and the start of the bedrock was found at 0.86, 1.93, and 2.43 mbgs, respectively.

Hydrogeological Characteristics

Based on topography and orientation of surface water bodies shallow groundwater at the Site is expected to flow toward the northwest. However, shallow groundwater flow on the Phase One Property and in the Phase One Study Area may be variable and influenced by the presence of subsurface utilities. Regional groundwater flow is expected to be toward the Ottawa River, located to the northwest of the Phase One Property.

The approximate horizontal gradient of the water table between BH23-05 and BH23-07 is 0.015 m/m. As shown on Figure 5, BH23-05 is to the north of BH23-07. Therefore, it can be inferred that the groundwater flow at the Property is northerly.

Depth to groundwater ranges from approximately 3.39 to 3.59 mbgs.

Non-potable Standards (Section 35)

The Phase Two Property, and all other properties located, in whole or in part, within 250 metres of the boundaries of the Property, are supplied by a municipal drinking water system. The intended use of the Property does not include agricultural use.

The Property is not located in an area designated in the municipal official plan as a well-head protection area or other designation identified by the municipality for the protection of groundwater. There are no wells at the Property or one of the properties in the phase one study area that are used or intended for use as a source of water for human consumption or agriculture. According, there is no requirement to submit written notice to the City of Ottawa of the owner's intention to apply non-potable standards.

Environmentally Sensitive Areas (Section 41)

The Qualified Person is not aware of any conditions by which section 41 of the Regulation applies to the Property. No areas of natural significance were identified on or within 30 m of the Property. At the locations tested the pH of surface soil meets the requirement that $5 \le pH \le 9$. Accordingly, Section 41 of O. Reg. 153/04 does not apply to the RSC Property.

Shallow Soil Property or Water Body (Section 43.1)

Bedrock was encountered at depths of 0.86 - 2.43 mbgs. The Property does not include all or part of a water body and is not adjacent to a water body or include land that is within 30 metres of a water body. Accordingly, Section 43.1 of the Regulation does not apply to the Property.

Excess Soil

No soil has been brought from another property and placed on, in or under the Property as part of the Phase Two ESA.

Site Condition Standards

The analytical results were compared to Table 7 site condition standards (residential property use, coarse textured soil) listed in the Ministry of the Environment, Conservation and Parks ("MECP") document *"Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act"*, April 2011.

Proposed Buildings and Other Structures

It is understood that the Property is to be redeveloped as two multi-story residential buildings. It is noted that the proposed development plan is subject to change.

DELINEATION OF CONTAMINANT IMPACTS

APEC Where Contaminants are Present at a Concentration Above the Applicable Site Condition Standard

APEC 1 – The investigation included the collection of one soil sample and one groundwater sample from APEC 1. The reported concentrations of all COPCs met the applicable site condition standards.

APEC 2 – The investigation included the collection of six soil samples and two groundwater samples from APEC 2. The reported concentrations of all COPCs met the applicable site condition standards with the exception of the reported barium concentration at BH23-01.

APEC 3 - The investigation included the collection of two soil samples and one groundwater sample from APEC 3. The reported concentrations of all COPCs met the applicable site condition standards.

Contaminant Distribution

The only contaminant present at levels higher than the applicable site standards was barium at BH23-01.

Potential Reason for Discharge into the Environment at the Site

No discharge of contaminants has occurred on, in or under the Phase Two property which has resulted in impacts at concentrations greater than the applicable site condition standards.

Contaminant Migration

None of the contaminants of potential concern were detected in groundwater samples at concentrations exceeding the applicable site condition standards and therefore contaminant migration in groundwater is not relevant to the Site.

Meteorological and Climatic Considerations

Seasonal fluctuation in water levels on the Site should be expected. Given the limited number of monitoring events seasonal trends could not be identified; however shallow groundwater water levels are typically highest following the spring recharge and decline throughout the summer and fall months into the winter.

POTENTIAL EXPOSURE PATHWAYS AND RECEPTORS

The one barium concentration exceedance at the Site is considered to be most likely of natural origin, therefore potential release and transport mechanisms, exposure pathways and human and ecological receptors are not considered further.

NON-STANDARD DELINEATION

Non-standard delineation conducted in accordance with section 7.1 of Schedule E was not part of preparing the phase two environmental site assessment report.

STANDARDS DEEMED TO BE MET

The reported concentrations of electrical conductivity and sodium adsorption ratio in soil samples collected from BH23-04, BH23-07, and BH23-09 exceed the applicable site condition standards. In accordance with paragraph 1 of section 49.1, the Qualified Person has determined that salt application to surfaces for the safety of vehicular or pedestrian traffic under conditions of snow or ice or both is solely responsible for these exceedances due to the use of the Property as a parking lot for several years.

Accordingly, the applicable site condition standards for electrical conductivity and sodium adsorption ratio in soil are deemed not to be exceeded.

The Phase Two ESA investigated the three APECs identified in the 2023 Phase One ESA.

The reported concentrations of all groundwater samples met the applicable site condition standards. Monitoring for free phase product was conducted during groundwater sample collection. No evidence of free product or sheen in groundwater was observed.

The reported concentrations of all soil samples met the applicable site condition standards with the exception of the following:

- BH23-01—The reported concentration of barium in soil sample BH23-01 1-1 (410 μg/g) was above the Table 7 standard (390 μg/g).
- BH23-04—The sodium adsorption ratio (SAR) of soil sample BH23-04 4-1 (6.82) was above the Table 7 standard (5).
- BH23-07—The reported electrical conductivity of soil sample BH23-07 7-2 (0.785 mS/cm) was above the Table 7 standard (0.7 mS/cm). The sodium adsorption ratio (SAR) of soil sample BH23-07 7-2 (9.17) was above the Table 7 standard (5).
- BH23-09—The reported electrical conductivity of soil sample BH23-09 9-2 (1.17 mS/cm) was above the Table 7 standard (0.7 mS/cm). The sodium adsorption ratio (SAR) of soil sample BH23-09 9-2 (15.9) was above the Table 7 standard (5).

Sodium adsorption ratio (SAR) and electrical conductivity (EC) are considered to be due to the application of salt products to the ground for de-icing and safety and are therefore not considered as an exceedance of MECP Table 7 standards as per O. Reg 153/04 section 49.1. They are referenced above for consideration with respect to future excavation and off-site management where the EC and SAR may need to be considered.

The exceedance of barium is considered to be most likely of natural origin. However, given that it is in fill it may be attributed to the importation of fill to the Site. As such, the fill at this location may need to be managed separately from the remaining fill during development. Given the nature of the contaminant which is commonly found across the city at these concentrations in natural soils and the expectation that the fill will likely be excavated to accommodate the development, no further investigation is recommended.

The data presented in this report follows the O. Reg. 153/04 Phase Two ESA report format.

7.0 **REFERENCES**

- Chapman, L.J. and Putnam, D.F. 2007. Physiography of Southern Ontario; Ontario Geological Survey, Miscellaneous Release — Data 22
- City of Ottawa Conservation Areas website. Accessed 2023.
- ERIS Report obtained by ERIS on behalf of WSP. August 23, 2023.
- WSP Canada Inc., 2023. Phase One Environmental Site Assessment, 30 Cleary Avenue, Ottawa, Ontario.
- Ontario Geological Survey (OGS), 2010. Surficial geology of southern Ontario; Ontario Geological Survey, Miscellaneous Release— Data 128 – Revised.
- Ontario Geological Survey (OGS), 2011. 1:250 000 scale bedrock geology of Ontario; Ontario Geological Survey, Miscellaneous Release---Data 126-Revision 1

Ontario Ministry of Natural Resources. Areas of Natural and Scientific Interest (ANSI) map. Accessed 2023

8.0 LIMITATIONS

This report was prepared for the exclusive use of Theia and First Unitarian Congregation of Ottawa. The report, which specifically includes all tables, figures and appendices, is based on data and information, collected during conducting the Phase Two ESA, and is based solely on the conditions of the property at the time of conducting investigations, supplemented by historical information and data obtained by WSP Canada Inc. as described in this report.

The assessment of environmental conditions at this Site has been made using the results of field screening techniques and chemical analysis of soil and groundwater samples at a limited number of locations. The Site conditions between sampling locations have been inferred based on conditions observed at the sampling locations. Conditions may vary from these sample locations. Additional study, including further investigation, can reduce the inherent uncertainties associated with this type of study. However, it is never possible, even with exhaustive sampling and testing, to dismiss the possibility that part of a Site may be contaminated and remain undetected.

The services performed as described in this report were conducted in a manner consistent with that level of care and skill normally exercised by other members of the engineering and science professions currently practicing under similar conditions, subject to the time limits and financial and physical constraints applicable to the services.

Any use which a third party makes of this report, or any reliance on, or decisions to be made based on it, are the responsibilities of such third parties. WSP Canada Inc. accepts no responsibility for damages, if any, suffered by any third party (other than as noted above) as a result of decisions made or actions based on this report.

The content of this report is based on information collected during the drilling, soil and groundwater sampling activities, our present understanding of the Site conditions, and our professional judgement in light of such information at the time of this report. This report provides a professional opinion and therefore no warranty is expressed, implied, or made as to the conclusions, advice and recommendations offered in this report. This report does not provide a legal opinion regarding compliance with applicable laws. With respect to regulatory compliance issues, it should be noted that regulatory statutes and the interpretation of regulatory statutes are subject to change.

The findings and conclusions of this report are valid only as of the date of this report. If new information is discovered in future work, including excavations, borings or other studies, WSP Canada Inc. should be requested to re-evaluate the conclusions of this report, and to provide amendments as required.

The monitoring wells installed as part of this project have been constructed using licensed drilling/well contractors employing licensed well technicians. It is owner's responsibility to have a licensed well technician properly abandon all monitoring wells, if required.

9.0 SIGNATURES

The undersigned Qualified Person confirms that he/she was responsible for conducting and/or supervising this Phase Two ESA and the associated findings and conclusions.

We trust that you will find the contents of this report satisfactory for your current needs. Should you require clarification of the information provided, please do not hesitate to contact the undersigned.

Signature Page

WSP Canada Inc.

Owen Lloyd-Ellis, BSc., GIT Environmental Scientist

Keith Holmes, MSc, PGeo (ON) Principal Geoscientist

OLE/KPH/ha https://wsponlinecan.sharepoint.com/sites/ca-ca00083769447/shared documents/06. deliverables/4_reports/environmental site assessment/phase two esa/ca0008376.9447_r-rev0-phase two esa_30 cleary ave_nov2023.docx

Tables

Table 1 – Summary of Soil Samples Submitted for Analysis

Sample	Sample ID	Sample Date	Sample Depth (mbgs)	Soil Sample Description		ce Readings	Parameters
Locations			Boptii (iiibgo)		Hexane (ppm)	lsobutylene (ppm)	Andiyzed
BH23-01	1-1	August 24, 2023	0.02-0.3	SAND and GRAVEL, trace silt, angular, brown-grey (FILL)	15	0	
BH23-03	3-1	August 25, 2023	0.06-0.3	SAND and GRAVEL, trace silt, angular, brown-grey (FILL)	0	0	
BH23-04	4-1	August 25, 2023	0.08-0.6	Sandy GRAVEL, trace silt, angular, brown-grey (FILL)	0	0	BTEX, PHC,
BH23-05	5-2	August 24, 2023	0-0.6	SAND and GRAVEL, trace silt, angular, brown-grey (FILL)	65	0	inorganics
BH23-07	7-2	August 25, 2023	0.6-1.2	SAND and GRAVEL, trace silt, angular, brown-grey (FILL)	85	0	Ŭ
BH23-09	9-2	August 24, 2023	0.7-1.3	SAND and GRAVEL, trace silt, angular, brown-grey (FILL)	0	0	

Notes:

mbgs = metres below ground surface ppm = parts per million

Table 2 – Summary of Groundwater Samples Submitted for Analysis

Sample Location	Sample ID	Sample Date	Total Well Depth (mbgs)	Depth to Water (mbgs)	Observations	Parameters Analyzed
BH23-05	23-05A	September 5, 2023	7.57	3.39	Light grey colour, high turbidity, no odour or sheen	BTEX PHC
BH23-07	BH23-07	October 12, 2023	9.55	3.59 Light grey colour, medium turbidity, no odour or sheen		BTEX, THO

Notes:

mbgs = metres below ground surface

Table 3: Soil Analytical Results (BTEX, PHC)

Sample Location		MECD		BH23-01	BH23-03	BH23-04	BH23-05	BH23-07	BH23-09
Sample ID	Units	WEUP	RDL	1-1	3-1	4-1	5-2	7-2	9-2
Date Sampled		Table /		08/24/2023	08/25/2023	08/25/2023	08/24/2023	08/25/2023	08/24/2023
BTEX									
Benzene	µg/g	0.21	0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Toluene	µg/g	2.3	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Ethylbenzene	µg/g	2	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
m & p-Xylene	µg/g	-	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
o-Xylene	µg/g	-	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Xylenes (Total)	µg/g	3.1	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
PHCs									
F1 (C6 - C10)	µg/g	-	5	<5	<5	<5	<5	<5	<5
F1 (C6 to C10) minus BTEX	µg/g	55	5	<5	<5	<5	<5	<5	<5
F2 (C10 to C16)	µg/g	98	10	<10	<10	<10	<10	<10	<10
F2 (C10 to C16) minus Naphthale	µg/g	-	10	<10	<10	<10	<10	<10	<10
F3 (C16 to C34)	µg/g	300	50	123	245	<50	125	<50	92
F3 (C16 to C34) minus PAHs	µg/g	-	50	123	245	<50	125	<50	92
F4 (C34 to C50)	µg/g	2800	50	157	333	<50	<50	<50	<50

Notes:

 μ g/g = microgram per gram.

Results are based on the dry weight of the soil.

Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene and o-Xylene.

Total C6 - C50 results are corrected for BTEX and PAH contributions.

MECP Table 7	Table 7: Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition, coarse soils, residential/industrial land use, of the MECP document "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act", April 2011.
Bolded	Parameter concentration exceeds applicable criteria.
RDL	Laboratory Reported Detection Limit.
<	Indicates parameter analyzed was below laboratory Reported Detection Limit (RDL).
NA	Not applicable.
NV	No value given in standards.

Created by: OLE Checked by: MS

Table 4: Soil Analytical Results (PAH)

Sample Location	MECD			BH23-01	BH23-03	BH23-04	BH23-05	BH23-07	BH23-09
Sample ID	Units	Table 7	RDL	1-1	3-1	4-1	5-2	7-2	9-2
Date Sampled		Table /		08/24/2023	08/25/2023	08/25/2023	08/24/2023	08/25/2023	08/24/2023
Naphthalene	µg/g	0.6	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Acenaphthylene	µg/g	0.15	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Acenaphthene	µg/g	7.9	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Fluorene	µg/g	62	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Phenanthrene	µg/g	6.2	0.05	<0.05	<0.05	0.09	<0.05	0.08	<0.05
Anthracene	µg/g	0.67	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Fluoranthene	µg/g	0.69	0.05	<0.05	<0.05	0.10	0.14	0.17	<0.05
Pyrene	µg/g	78	0.05	<0.05	<0.05	0.15	0.11	0.14	<0.05
Benz(a)anthracene	µg/g	0.5	0.05	<0.05	<0.05	<0.05	<0.05	0.06	<0.05
Chrysene	µg/g	7	0.05	<0.05	<0.05	<0.05	<0.05	0.06	<0.05
Benzo(b)fluoranthene	µg/g	0.78	0.05	<0.05	<0.05	<0.05	<0.05	0.08	<0.05
Benzo(k)fluoranthene	µg/g	0.78	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Benzo(a)pyrene	µg/g	0.3	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-cd)pyrene	µg/g	0.38	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Dibenz(a,h)anthracene	µg/g	0.1	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Benzo(g,h,i)perylene	µg/g	6.6	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
1 and 2 Methlynaphthalene	µg/g	0.99	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05

Notes:

 μ g/g = microgram per gram.

Results are based on the dry weight of the soil.

The result for Benzo(b)Fluoranthene is the total of the Benzo(b)&(j)Fluoranthene isomers because the isomers co-elute on the GC α 2- and 1-Methyl Naphthalene is a calculated parameter. The calculated value is the sum of 2-Methyl Naphthalene and 1-Methyl Naphthalene.

MECP Table 7	Table 7: Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition, coarse soils, residential/industrial land use, of the MECP document "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act", April 2011.
Bolded	Parameter concentration exceeds applicable criteria.
RDL	Laboratory Reported Detection Limit.
"<"	Indicates parameter analyzed was below laboratory Reported Detection Limit (RDL).
NV	No value given in standards.

Created by: OLE Checked by: MS

wsp

Table 5: Soil Analytical Results (Metals, Inorganics, and Other Regulated Parameters)

Sample Location				BH23-01	BH23-03	BH23-04	BH23-05	BH23-07	BH23-09
Sample ID	Units	MECP Table 7	RDL	1-1	3-1	4-1	5-2	7-2	9-2
Date Sampled				08/24/2023	08/25/2023	08/25/2023	08/24/2023	08/25/2023	08/24/2023
Metals									
Antimony	µg/g	7.5	0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8
Arsenic	µg/g	18	1	1	<1	2	3	3	1
Barium	µg/g	390	2	410	313	271	154	378	118
Beryllium	µg/g	4	0.5	<0.5	<0.5	<0.5	0.8	0.7	<0.5
Boron	µg/g	120	5	44	41	43	40	36	33
Boron (Hot Water Soluble)	µg/g	1.5	0.1	<0.10	<0.10	0.23	0.36	0.10	0.27
Cadmium	µg/g	1.2	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Chromium	µg/g	160	5	12	10	18	37	26	21
Cobalt	µg/g	22	0.8	4.7	4.2	8.1	14.8	11.7	8.3
Copper	µg/g	140	1	5.9	4.3	12.7	34.6	67.3	15.9
Lead	µg/g	120	1	13	6	13	38	37	14
Molybdenum	µg/g	6.9	0.5	<0.5	<0.5	0.8	0.6	1.0	<0.5
Nickel	µg/g	100	1	6	5	12	32	21	14
Selenium	µg/g	2.4	0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8
Silver	µg/g	20	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Thallium	µg/g	1	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Uranium	µg/g	23	0.5	<0.50	<0.50	<0.50	0.57	0.85	0.60
Vanadium	µg/g	86	2	18.7	17.5	17.9	31.1	34.9	28.4
Zinc	µg/g	340	5	12	8	34	72	116	58
Inorganics and Other Regulated Par	rameters								
Chromium, Hexavalent	µg/g	8	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Mercury	µg/g	0.27	0.1	<0.10	<0.10	<0.10	<0.10	0.25	<0.10
Cyanide, WAD	µg/g	-	0.04	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040
Electrical Conductivity (2:1)	mS/cm	0.7	0.01	0.263	0.276	0.512	0.571	0.785	1.17
Sodium Adsorption Ratio (2:1) (Calc.)	NA	5	NA	1.26	1.12	6.82	4.94	9.17	15.9
pH, 2:1 CaCl2 Extraction	pH Units	-	NA	7.05	7.11	7.20	7.12	7.16	7.09

Notes:

µg/g = microgram per gram.

mS/cm = millisiemens per centimeter.

Electrica Conductivity was determined on the DI water extract obtained from the 2:1 leaching procedure (2 parts DI water:1 part soil). Sodium Adsorption Ratio is a calculated parameter.

pH was determined on the 0.01M CaCl2 extract prepared at 2:1 ratio.

MECP Table 7	Table 7: Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition, coarse soils, residential/industrial land use, of the MECP document "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act", April 2011.
Bolded	Parameter concentration exceeds applicable criteria.
RDL	Laboratory Reported Detection Limit.
NA	Not applicable.
<	Indicates parameter analyzed was below laboratory Reported Detection Limit (RDL).

Created by: OLE Checked by: MS

Table 6: Groundwater Analytical Results (BTEX, PHC)

Sample Location				BH	123-05	BH23-07
Sample ID	Units	MECP Table 7	RDL	23-05A	23-05A DUP (Field Duplicate)	BH23-07
Date Sampled				09/05/2023	09/05/2023	10/12/2023
ВТЕХ						
Benzene	µg/L	0.5	0.2	<0.20	<0.20	<0.20
Toluene	µg/L	320	0.2	<0.20	<0.20	<0.20
Ethylbenzene	µg/L	54	0.1	<0.10	<0.10	<0.20
m & p-Xylene	µg/L	-	0.2	<0.20	<0.20	<0.20
o-Xylene	µg/L	-	0.1	<0.10	<0.10	<0.40
Xylenes (Total)	µg/L	72	0.2	<0.20	<0.20	<0.40
РНС						
F1 (C6 - C10)	µg/L	-	25	<25	<25	<25
C6 - C10 (F1 minus BTEX)	µg/L	420	25	<25	<25	<25
F2 (C10 to C16)	µg/L	150	100	<100	<100	<100
F3 (C16 to C34)	µg/L	500	100	<100	<100	<200
F4 (C34 to C50)	μg/L	500	100	<100	<100	<200

Notes:

vsp

 μ g/L = microgram per litre.

Total C6-C50 results are corrected for BTEX contribution.

Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene and o-Xylene. Fractions 1-4 are quantified with the contribution of PAHs. Under Ontario Regulation 153/04, results are considered valid without determining the PAH contribution if not requested by the client.

MECP Table 7	Table 7: Generic Site Condition Standards for Shallow Soils in a Non- Potable Ground Water Condition, coarse soils, of the MECP document "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act", April 2011.
Bolded	Parameter concentration exceeds applicable criteria.
<	Indicates parameter analyzed was below laboratory Reported Detection Limit (RDL).
-	Criteria not defined or chemical not analyzed.
RDL	Laboratory Reported Detection Limit.
NA	Not applicable.
NV	No value given in standards.

Created by: OLE Checked by: MS

Figures

LEGEND

- ROADWAY

TOPOGRAPHIC CONTOUR, METRES

WATERBODY

PHASE TWO SITE

PHASE TWO STUDY AREA (250 m)

NOTE(S) 1. ALL LOCATIONS ARE APPROXIMATE

REFERENCE(S) 1. CONTAINS INFORMATION LICENSED UNDER THE OPEN GOVERNMENT LICENCE - ONTARIO 2. IMAGERY: CITY OF OTTAWA, 2022 3. COORDINATE SYSTEM: NAD 1983 MTM 9

CLIENT THEIA PARTNERS INC.

PROJECT PHASE TWO ENVIRONMENTAL SITE ASSESSMENT 30 CLEARY AVENUE, OTTAWA, ONTARIO

TITLE

PHASE TWO STUDY AREA

115

CONSULTANT	

YYYY-MM-DD		2023-11-10	
DESIGNED			
PREPARED		MG	
REVIEWED		OLE	
APPROVED		KPH	
	REV.		FIGURE
	0		2

LEGEND

POTENTIALLY CONTAMINATING ACTIVITY (PCA) LOCATION

ROADWAY

WATERBODY

PHASE TWO SITE

PHASE TWO STUDY AREA (250 m)

PCA	PCA	Description
ID	Category	Description
1	46	Rail tracks
2	30	Fill of unknown quality
3	28	Gasoline UST
4	10	Auto repair shop
5	28	Fuel oil UST
6	28	Two gasoline USTs - Gas station
7	46	Ottawa Electric Railway
8	28	Multiple gasoline and oil tanks - Gas station
9	28	Gasoline USTs and ASTs
10	28	Two USTs - Gas Station
11	28	Multiple gasoline and fuel oil USTs
12	37	Dry cleaning depot
13	28	Two USTs - Gas station
14	28	Three gasoline USTs - Multiple gas stations

NOTE(S) 1. ALL LOCATIONS ARE APPROXIMATE 2. SEVERAL SPILLS WERE NOTED IN THE PHASE ONE STUDY AREA THAT ARE NOT MAPPED, BUT THESE SPILLS ARE NOT CONSIDERED PCAS OR AS RESULTING IN AN APEC.

REFERENCE(S) 1. CONTAINS INFORMATION LICENSED UNDER THE OPEN GOVERNMENT LICENCE - ONTARIO 2. IMAGERY: CITY OF OTTAWA, 2022 3. COORDINATE SYSTEM: NAD 1983 MTM 9

CLIENT THEIA PARTNERS INC.

PROJECT

PHASE TWO ENVIRONMENTAL SITE ASSESSMENT 30 CLEARY AVENUE, OTTAWA, ONTARIO TITLE

POTENTIALLY CONTAMINATING ACTIVITIES

CONSULTANT

115 PROJECT NO. CONTRO CA0008376.9447 0003 CONTROL

YYYY-MM-DD	2023-	11-10
DESIGNED		
PREPARED	MG	
REVIEWED	OLE	
APPROVED	KPH	
	REV.	FIGURE
	0	3

LEGEND

- ROADWAY

PHASE TWO SITE

AREA OF POTENTIAL ENVIRONMENTAL CONCERN (APEC) LOCATION

- APEC 1
- APEC 2 (SITE-WIDE)
- APEC 3

APEC ID	PCA Category	Description of PCAs attributing to APEC
		PCA 1: Former railway on-site
	10 29 46	PCA 3, 6, 8: Multiple gasoline service
APECI	10, 20, 40	stations and USTs/ASTs
		PCA 4: Auto repair shop off-site
APEC 2	30	PCA 2: Fill material of unknown quality
	29	PCA 9, 10: Multiple gasoline service stations
AFEC 3	20	and USTs/ASTs

NOTE(S) 1. ALL LOCATIONS ARE APPROXIMATE

REFERENCE(S) 1. CONTAINS INFORMATION LICENSED UNDER THE OPEN GOVERNMENT LICENCE - ONTARIO 2. IMAGERY: CITY OF OTTAWA, 2022 3. COORDINATE SYSTEM: NAD 1983 MTM 9

CLIENT THEIA PARTNERS INC.

PROJECT PHASE TWO ENVIRONMENTAL SITE ASSESSMENT 30 CLEARY AVENUE, OTTAWA, ONTARIO

AREAS OF POTENTIAL ENVIRONMENTAL CONCERN

CONSULTANT

115	
PROJECT NO.	CONTROL
CA0008376.9447	0003

YYYY-MM-DD		2023-11-10	
DESIGNED			
PREPARED		MG	
REVIEWED		OLE	
APPROVED		KPH	
	REV.		FIGURE
	0		4

 \bullet

BOREHOLE/MONITORING WELL LOCATION

ROADWAY

PHASE TWO SITE

NOTE(S) 1. ALL LOCATIONS ARE APPROXIMATE

REFERENCE(S) 1. CONTAINS INFORMATION LICENSED UNDER THE OPEN GOVERNMENT LICENCE - ONTARIO 2. IMAGERY: CITY OF OTTAWA, 2022 3. COORDINATE SYSTEM: NAD 1983 MTM 9

CLIENT THEIA PARTNERS INC.

PROJECT

PHASE TWO ENVIRONMENTAL SITE ASSESSMENT 30 CLEARY AVENUE, OTTAWA, ONTARIO

TITL

INVESTIGATION LOCATIONS

115	
PROJECT NO.	CONTROL
CA0008376.9447	0003

YYYY-MM-DD		2023-11-10	
DESIGNED			
PREPARED		MG	
REVIEWED		OLE	
APPROVED		KPH	
	REV.		FIGURE
	0		5

APPROVED

KPH

REV.

0

FIGURE

PROJECT NO. CONTROL CA0008376.9447 0003

APPENDIX A

Borehole Logs

	PROJECT: CA0008376.9447 RECORD OF BOREHOLE: BH23-07 SHEET 1 OF 1																		
	LOCATION: N 5025623.43; E 439573.43 BORING DATE: August 25, 2023 DATUM: Geodetic																		
	SPT	DCP	T HAMMER: MASS, 64kg; DROP, 760mm					DR	ILL RIG	: CME 7	75			1			ŀ	IAMME	ER TYPE: AUTOMATIC
ALE	م ا م	THOD	SOIL PROFILE	Ŀ	I	SAI	MPLI	ES	HEAD VAPO ND = N	SPACE C JR CON	CENTRA	TIBLE TIONS [F	PPM]⊕	HYDR/	AULIC CO k, cm/s	FIVITY,	_ I		PIEZOMETER
DEPTH SC	MEIKE	BORING ME	DESCRIPTION	STRATA PLO	ELEV. DEPTH (m)	NUMBER	ТҮРЕ	BLOWS/0.3r	HEAD: CONC ND = N	SPACE C ENTRAT Not Detect	DO 3 DRGANIC TONS [Pl tted 00 3	VAPOU PM]					NT WI 80	ADDITIOI LAB. TES ⁻	OR STANDPIPE INSTALLATION GRAIN SIZE DISTRIBUTION (%)
F	•	-	GROUND SURFACE FILL - (SP/GP) SAND and GRAVEL.		63.38 0.00	1A		•	51										GR SA SI CL Cuttings 🕅 🕅 -
	1	er ow Stem)	trace silt; brown to grey, angular; (non-cohesive, moist, Ioose // (SM) - SILTY SAND, some clay, some gravel; grey to black, cobbles and boulders, contains organic matter (GLACIAL TILL); moist, compact	<u>*************************************</u>	0.15	1B 2	SS SS	16 € 25 [0					Bentonite
		Power Aug 204 mm Diam. (Holl	- fine grained SAND; moist to wet	A 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		3	ss	7 (שא םא ND	€				0					32 mm Diam. PVC #10 4 Slot Screen
	2			1 4 4 4 4 4 2 4 4 4 4 2 4 4 4 4 2 4 4 4 4	60.94	4	SS	50/ 0.23		•				0					
	3 4 5 6 7 8		END OF BOREHOLE Auger Refusal Note(s): 1. Borehole dry upon completion of drilling.		2.44														
005 S:\CLENIS\IHEIA PAKINEKS\ULIAV	9																		
GIA-BHS	DEPTH SCALE LOGGED: OB 1:50 CHECKED: AKP																		

P		T: CA0008376.9447	R	RECO	DRI	D C)F E	30RE	EHOL	.E:	BH2	23-07	7A					SHEET 1 OF 1
		BORING DATE: September 29, 2023 T/DCPT HAMMER: MASS, 64kg; DROP, 760mm DRILL RIG: CME 75													10.0404			
															ER TIPE. AUTOWATIC			
DEPTH SCALE METRES	BORING METHOI	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	BI OWS/0.3m	SHI Cu,	SISTANCE 20 EAR STRI kPa 20	E, BLOWS	/0.3m 50 8 1 nat V. + rem V. ⊕ 50 8	Q - ● U - ○ 30	10 W. Wp 2	k, cm/s 10 ⁻⁶ 10 ATER CO 0 4	0 ⁻⁵ 10 DNTENT <u>OW</u> 0 6	0 ⁻⁴ 10 PERCE		ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION GRAN SZE DISTRIBUTION (%)
TISUTELA PARTNERSIOTTAWA 30 CLEARY AVEO2 DATAVGINTOTTAWA 30 CLEARY AVE.GPJ GAL-MIS.GDT 1/13/23		GROUND SURFACE FILL - (SP/GP) SAND and GRAVEL, trace silt; brown to grey, angular; non-cohesive, moist, loose (SM) - SILTY SAND, some clay, some gravel; grey to black, cobbles and boulders, contains organic matter (GLACIAL TILL); moist, compact - fine grained SAND; moist to wet END OF BOREHOLE Auger Refusal Note(s): 1. Borehole dry upon completion of drilling. 2. Groundwater level measured at a depth of 3.59 m on October 12, 2023. Borehole continued on Record Drillhole BH23-07A	<u>tanitanitanitanitanitanitani ang ang ang ang ang ang ang ang ang ang</u>	DEPTH (m) 63.38 0.00 0.15				kPa		rem V. Φ 30 ε		Wp					ADC	GRAN SIZE DISTRIBUTION (%) GR SA SI CL Bentonite Cuttings Oct. 12, 2023 Bentonite
A-BHS 005 S:VCLIEN	EPTH S	SCALE						 \\'	<u> </u> \]								L	DGGED: OB
1	1:50 CHECKED: AKP																	

	PR	OJEC	T: CA0008376.9447		REC	OF	RD) C)F B	ORE	HO	E:	BH	123-0)1					SHEET 1 OF 2
	LU		IN: N 5025707.68; E 439473.01					BC		ATE: A	ugust 24	4, 2023								DATUM: Geodetic
	SP	I/DCP	THAMMER: MASS, 64kg; DROP, 760mm					DR										ŀ	наммі Т	ER TYPE: AUTOMATIC
E E	ES LL	ETHOD	SOIL PROFILE	ы		SA	MPL	ES E	VAPO ND = 1	UR CON	CENTRA	TIONS [F	PPM]⊕	1	k, cm/s	010000	0 ⁻⁴ 1	0-3 I	TING	PIEZOMETER
C HTH	METRI	IN G MI	DESCRIPTION	TA PL	ELEV.	MBER	ΥΡΕ	NS/0.3	HEAD	SPACE (R П	w	ATER C	ONTENT	PERCE	ŇT	B. TES	STANDPIPE
ЦС	2	BOR		STRA	(m)	NN	F	BLO	ND = 1	Not Detec 00 2	ted 30	00 40	00	Wi 2	0 4		I 50 8	WI 30	[₹₹]	GRAIN SIZE DISTRIBUTION (%)
_	0	TÊ			59.91															GR SA SI CL
F		Auger ow Ster	FILL - (SP/GP) SAND and GRAVEL,		0:03	1	SS	9 [Ð											-
Ē		Power /	(PAVEMENT STRUCTURE); non-cohesive, moist, loose						ND											-
Ē		nn Diar	Borehole continued on Record Drillhole	₩	59.05	2	SS	50/ 0.05												
-	1	204 r	BH23-01																	
Ē																				-
Ē																				-
F	2																			-
E																		-		
F																			-	
F																		-		
E	3															-				
-																				-
																				-
	4																			-
																				-
5																				-
	5																			-
	-																			-
																				-
2 																				-
F	6																			
																				-
																				-
	7																			-
																				-
																				-
																				-
	8																			
																				-
																				-
	9																			_
																				-
																				-
2	10																			-
, ,		ртн 9		•	•					114							•		·	
	1:	50									"								СН	ECKED: AKP

	PR	OJE	CT: CA0008376.9447		REC	O	RD) C)F	D	R	RIL	L	H	OI	_E		BH23-01								SH	IEET 2 OF 2
	LO	CATI	ON: N 5025707.68 ;E 439473.01				D	RILL	_INC D	g da Rilli	ATE _ RI	ig: /	Aug CN	just 1E 7	24, 75	202	23									DA	TUM: Geodetic
╞						<u> </u>	DF	RILL	ING	i CC	DNT	RA	СТС	DR:	Do	wnir	ng	NOTE									
	SCALE RES	RECOR	DESCRIPTION	LIC LOG	ELEV.	V No.	ETURN		L	тно		OGI	Fo CAL	r ab Al	bre ND (viati SEO	ons TEC	s, symbols and descri CHNICAL ROCK DES	ption CRIP	s ref TION	er to	RMI	NOL	.0G	Y	URES	PIEZOMETER
	DEPTH	RILLING		SYMBO	DEPTH (m)	RUN	LUSH RE	TOT COR	AL E %	SOL CORE	Y ID E %	R.Q %	.D.	FRA IND PE	CT. EX R	DIP w.i CORE AXIS	r.t. E S	DISCONTINUITY DATA		Jr Ja	uoo	WE EF IN	ATH- RING DEX	Dia Poir Ir (M	ametral nt Load ndex MPa)	FEAT	
ŀ		ā	Cont'd from Record of Borehole BH23-01		59.05		ш. 	88	98	888	52	883	50	192 192	50	-88	6	DESCRIPTION			۲ آ	W2 W3	W5 W5	W6	4 0		
Ē	- 1		Fresh, thinly to medium bedded, grey, fine to medium grained, faintly porous, strong LIMESTONE bedrock with slightly		0.86																						
ŀ			weathered to fresh, porous, fine grained, medium strong, black shale																								вС
						1																					BC
F	- 2																										
F													_														UCS=198 MPa
	- 3																										
ŀ	0					2																					BC
-	- 4																										
5/23		tary Drill																									
1 10/26		S N	ž			3																					
ISS.GD	- 5																										BC
GAL-M																											
E.GPJ																											
AV AV	- 6																										
						4																					
4WA_3(7																										
	- /																										
						5																					
E/02 D/	- 8	\vdash	END OF DRILLHOLE	Ħ	52.01 7.90	-															+	+	+		+	\vdash	
RY AVI			Note(s):																								
			drilling.																								
WA 30	- 9																										
8/0118																											
KINER																											
EIA PA	- 10																										
HINN																											
S:/CLIEI																											
.K 046		L																									
GIA-RC	DE 1 :	:PTH 50	SCALE								1	1	7													LC CHE	ogged: Ob Ecked: Akp

	PR		T: CA0008376.9447 N: N 5025681 49: E 439478 54		REC	OF	RD	C)F B	ORE	HO	LE:	BH	123-0)2					SHEET 1 OF 1
	90		T HAMMER: MASS 64kg: DPOP 760mm					BO		ATE: A	ugust 2	5, 2023							10000	DATUM: Geodetic
╞	55					SAL			HEAD	SPACE C	OMBUS	TIBLE		HYDR	AULIC C	ONDUC	IVITY.			ER TIFE. AUTOMATIC
	ES	ЕТНОГ	SOIL PROFILE	ō		SAI		цо Цо	VAPOU ND = N	JR CON lot Detec	CENTRA ted	TIONS [00 4	PPM] ⊕ 00	1	k, cm/s 0 ⁻⁶ 1	0 ⁻⁵ 1	0 ⁻⁴ 1	0-3	NAL	PIEZOMETER OR
i i i	METR	DRING M	DESCRIPTION	RATA PL	ELEV. DEPTH	NUMBER	ТҮРЕ	OWS/0.3		SPACE C ENTRAT	RGANIC	C VAPOL PM]	JR	W	ATER C	ONTENT	PERCE	NT WI	ADDITIC AB. TES	STANDPIPE INSTALLATION
ŀ	-	BC		STI	(m)	-	_	BL	1	0 20	00 <u>3</u>	00 4	00	2	20 4	ю е	60 8	30		DISTRIBUTION (%)
-	0				60.22 0:09		_													
-		Auger (Hollow Stem	FILL - (SP) gravely SAND, trace slit; brown to grey, angular (PAVEMENT STRUCTURE); non-cohesive, moist, compact,		59.46	1	SS	24 🧲	ND					0						
	1	Power 204 mm Diam.	(SM) SILTY SAND, trace clay, trace gravel; grey to brown (GLACIAL TILL); non-cohesive, moist to wet, loose		58.75	2	SS	8						0						
E			END OF BOREHOLE Auger Refusal	-d.if 44	1.47															-
-	2		Note(s):																	-
F	2		1. Borehole dry upon completion of drilling																	
Ē			uning.																	-
Ē		3																		
F	3																			
Ē		3																		
6/23																				-
T 10/2	4																			-
S.GD																				-
AL-M																				-
- I G																				-
	5																			-
																				-
A 30	6																			-
NA -	0																			Ξ
																				-
																				-
02 0	7																			-
AVE																				
EARY																				-
	R																			-
NA N	0																			
																				-
VERS																				-
	9																			-
TS/TF																				-
	10																			-
15 S:\(10																			
TA-BHS 00	DE 1:	PTH S 50	CALE							19									CH	DGGED: OB ECKED: AKP

	PR	OJEC [.] CATIO	T: CA0008376.9447 N: N 5025657.83: E 439481.27	I	REC	OF	RD	C)F B	ORE	EHO	LE:	Bŀ	123-0)3					SHEET 1 OF 1
	SD.							BO		ATE: A	August 2	5, 2023						L		
	51								HEAD			TIBLE		HYDR	AULIC C	ONDUC.	TIVITY.			
	S	ETHOE	SOIL PROFILE	5		SAI		<u>Е</u> З Е	VAPO ND = N	UR CON	CENTRA		PPM] ⊕	1	k, cm/s	0 ⁻⁵ 1	0 ⁻⁴ 1	0 ⁻³	TING	PIEZOMETER
	AETRE	NG ME	DESCRIPTION	LA PL	ELEV.	ABER	ΓPE	VS/0.3	HEAD	SPACE (VAPOL		w	ATER C	I ONTENT	PERCE	ŇT	DITIO 3. TES	STANDPIPE
	2	BORI		STRAI	DEPTH (m)	NN	F	BLOW	ND = N	ENTRA Not Dete	ted	-M]	<u>о</u>	W				WI	AB	GRAIN SIZE DISTRIBUTION (%)
	0		GROUND SURFACE		60.59						00 3	4			4					GR SA SI CL
F	0		ASPHALT FILL - (SP/GP) SAND and GRAVEL,		8:88															-
Ē		Stem)	trace silt; brown to grey, angular (PAVEMENT STRUCTURE);			1	ss	16) ND					þ						47 45 (8)
Ē		lollow 5	non-cohesive, moist, compact (SP) SAND, trace to some silt, fine		59.92 0.67															-
E	1	ower A	grained; brown; moist to wet, loose			2	ss	76	Ð											-
-		4 mm 4							ND											-
Ē		20	(SM/GP) SILTY SAND and GRAVEL;		59.07 1.52			50/-	- 											-
Ē			dark to brown, contains organic matters (GLACIAL TILL); moist, very dense	<u>pri</u>	58.76 1.83	3	55	0.25												
Ē	2		END OF BOREHOLE Auger Refusal																	
F			Note(s):																	
Ē			 Borehole dry upon completion of drilling. 																	-
-	3	3 1. Borehole dry upon completion of drilling.																		
Ē		3 1. Borehole dry upon completion of drilling.																		
- 53																				-
0/26/:																				-
	4																			-
MIS.0																				-
GAL-																				-
.GPJ																				-
	5																			
EARY																				-
																				-
AN N	6																			-
ATTO																				-
																				-
ATA(-
- L	7																			
AVE																				-
EARY																				
	p																			-
MA MA	U																			
																				-
ERS/																				
ARTN	9																			
A ■ ■																				-
LENT.																				-
S:\CL	10																			-
900 S				1								<u> </u>	<u> </u>	<u> </u>						
A-BH(DE	PTH S	CALE							11.	2								L	OGGED: OB
Б	1:	50																	CH	ECKED: ARP

F		JEC ⁻	Г: CA0008376.9447 N: N 5025645.99; E 439508.24		REC	O	RD) ()F B	ORE	EHO	LE:	Bŀ	123-(04					SHEET 1 OF 1
ş	SPT	/DCP	T HAMMER: MASS. 64ka: DROP. 760mm					DF	RING D	: CME	August 2 75	5, 2023						ł	HAMME	DATUM: Geodetic
	Т	D	SOIL PROFILE			SÆ	MPI	FS	HEAD	SPACE (COMBUS	TIBLE		HYDR	AULIC C	ONDUC	TIVITY,	т		
SCALE	2	IETHO		OT		~		ي چ	VAPO ND = 1 1	UR CON Not Deter 00 2	CENTRA cted 00 3	TIONS [F 00 40	PPM] ⊕ 00	1	k, cm/s 0 ⁻⁶ 1	0 ⁻⁵ 1	0 ⁻⁴ 1	0 ⁻³	STING	PIEZOMETER OR
DEPTH (BORING M	DESCRIPTION	TRATA PI	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.	HEAD CONC ND = 1	SPACE (ENTRATION OF THE SECTION OF	DRGANIO FIONS [P cted	i Vapou PM]	IR D	w w	ATER C		PERCE	NT WI	ADDITIO LAB. TE	STANDPIPE INSTALLATION GRAIN SIZE
		8	GROUND SURFACE	ŝ	61 15				1	00 2	00 3	00 40	00		20 4	40 (50 E	30		GR SA SI CL
Ē	0	(me	ASPHALT FILL - (GP) sandy GRAVEL, trace silt:	***	0.00															
		r Auger (Hollow Ste	brown to grey, angular (PAVEMENT STRUCTURE); non-cohesive, moist, dense		co 20	1	ss	32	ND					0						
	1	204 mm Diam.	(SM) SILTY SAND, trace clay, trace gravel; brown with black bedding (GLACIAL TILL); moist, very dense		0.76	2	ss	14						0						-
Ē	ŀ	_	END OF BOREHOLE Auger Refusal	14 B.	1.37															
F			Note(s):																	
F	2		1. Borehole dry upon completion of																	-
Ē			unning.																	
Ē																				
E	3																	-		
Ē																				
Ę																				
	4																			-
5																				
2-	_																			
	5																			-
	6																			-
	7																			
	°																			-
				1																
	9			1																-
				1																
				1																
	10			1																-
	DEF	TH S	CALE	1	1	<u> </u>	<u> </u>	<u> </u>		119				1	1	1		I	L L(OGGED: OB
1	1:5	0																	СН	ECKED: AKP

	PR	OJEC ⁻	T: CA0008376.9447		REC	OF	RD	C)F B	ORE	HO	LE:	BH	123-0)5					SHEET 1 OF 2
	ED.		N. N 5025011.77, E 439505.11					BO		ATE: A	ugust 24	4, 2023							IVVVV	DATUM: Geodetic
┢	0					SA	MDL		HEADS	SPACE C	OMBUS	TIBLE		HYDRA	AULIC CO	ONDUC	FIVITY,			
DEPTH SCALE	METRES	BORING METHO	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	ТҮРЕ	BLOWS/0.3m	VAPOU ND = N 10 HEADS CONC ND = N 10	JR CON lot Detection SPACE C ENTRAT lot Detection 20 2	CENTRA ted DO 31 PRGANIC IONS [PI ted DO 31	TIONS [F 20 40 2 VAPOU 2 M] 20 40	PPM] ⊕ 00 IR □	10 W. Wp 2	k, cm/s 0 ⁻⁶ 10 ATER CO 0 4	0 ⁻⁵ 1 DNTENT <u>OW</u> 0 6	0 ⁻⁴ 1 PERCE	0 ³ L NT WI 80	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION GRAIN SIZE DISTRIBUTION (%)
-	0		GROUND SURFACE		62.13 0.00															GR SA SI CL
	1	Power Auger Diam. (Hollow Stem)	(PAVEMENT STRUCTURE); (PAVEMENT STRUCTURE); (non-cohesive, moist, dense (SM) SILTY SAND, some gravel, trace clay; light brown (GLACIAL TILL); moist, compact	<u>م که </u>	61.88 0.25	2	SS SS	42 [21 [þ						Bentonite
		204 mm	 rock fragments, ground-up, bedrock; weathered rock 	6	60.20	3	SS	50/ 0.13	 .ND											Slot 4 4 5 Slot 4 4 6 5 Screen 'B' 4 4 6 5 1 4 4 6 7 1 4 7 6 7 1 4 7 7 1 7 7 7 7
suentsitheia Partnersiottawa 30_CLEary Ave/02_Data/GINT/OTTawa 30_CLEary Ave.GPJ_GAL-MIS/GDT_10/26/23	- 3 4 5 6 7 8 9		BH23-05																	
GTA-BHS 005	DE 1 :	PTH S	CALE	<u> </u>)					<u> </u>		Lı CH	DGGED: OB ECKED: AKP

Р	RO	JEC	T: CA0008376.9447		REC	O	RD) C)F	D	R		L	Н	C	.E		BH23-0	5							SH	IEET :	2 OF 2	
L			DN: N 5025611.77 ;E 439503.11				D	RILL	INC. D	g dø Rilli	ATE L RI	: A G:	Aug CIV	ust 2 1E 7	24, 2 5	2023	3									DA	TUM:	Geodetic	
			TION: -90 AZIMUTH:	1		1	DF	RILLI T	ING	CC	DNT	RAC	СТС	DR:	Dov	vnin	ng												
CALE		ECOR		SLOG		ö	RN		Ш	тно		GIG	Fo	r abl AN	brev	iatio	ons, TFC	NOTE: symbols and des	script	ions re RIPTIC	efer t	o =RN	IINO	1.00	γ	KES			
PTH SC METRE		ING RI	DESCRIPTION	ABOLIC	DEPTH	RUN N	H RETU	RE	co	VER	Y	R.Q.	D.	FRAC		Pwr		DISCONTINUITY DAT	A			W	EATH	- Di Po)iametr	EATUF		PIEZOMI	ETER
DEI		DRILL		SYN	(m)		FLUS	TOT COR	42 98 98	SOL CORE	.ID 5 % 5 %	% 808	20	PEF 2920	R 20	AXIS	06	TYPE AND SURFAC DESCRIPTION	E	Jr J	a loop	1 7 7 7 7	NDEX	M6	Index (MPa) ∾ ≁ ∞				
- :	2		Cont'd from Record of Borehole BH23-05 Fresh, thinly to medium bedded, grey, fine to medium grained, faintly porous.		60.20 1.93											\prod				+							BC/L	32 mm Diam.	
-			strong LIMESTONE bedrock with slightly weathered to fresh, porous, fine grained,																									Slot Screen 'B'	
Ē			medium strong, black snale			1																						Sand	
	3																											Σ	
Ē																													
Ē																													
Ē				Ħ																									
Ē	•					2								TH														Bentonite	
E																													
È	, Dri	ore																									UCS	5=187 MPa	
- :		NQ																											
07/0																													
						3																							
	6																												
																												Silica Sand	
5 																													
	7																											32 mm	-
						4																					DC.	PVC #10 Slot	
	3		END OF DRILLHOLE	臣	54.16 7.97																								
			Note(s):																										
			1. Groundwater measured in Screen 'B' at 0.90 m depth upon completion of																										-
			drilling. 2 Groundwater measured in Screen 'A'																										
			at 3.03 m depth upon completion of drilling.																										-
																													-
																													-
																													-
																													-
	1																												
																													-
0 0 0																													-
	EP'	TH S	SCALE	•			1			,)											LC	GGEI	D: OB	
1	: 50)									-	-	1	1												CHE	ECKEI): AKP	

LO	CA	ECT TIOI	F: CA0008376.9447 N: N 5025623.60; E 439532.36	I	REC	OF	۲D	во	RING DATE:	August 2	L E: 5, 2023	BH	123-()6					SHEET 1 OF 1 DATUM: Geodetic
SP	T/D	CP	T HAMMER: MASS, 64kg; DROP, 760mm					DR	ILL RIG: CM	75							ŀ	HAMME	er type: automation
METRES	BORING METHOD		SOIL PROFILE	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE A	BLOWS/0.3m	HEADSPACI VAPOUR CC ND = Not De 100 HEADSPACI CONCENTR ND = Not De 100	COMBUS NCENTRA ected 200 3 I ORGANIC ATIONS [P ected 200 3	TIBLE TIONS [I 00 4/ C VAPOU PM]	PPM] ⊕ 00 IR 00 00	HYDR. 1 ¹ W W	AULIC C(k, cm/s D ⁶ 1(ATER C(D		PERCE	NT WI	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION GRAIN SIZE DISTRIBUTION (%)
0	wer Auger	am. (Hollow Stem)	GROUND SURFACE ASPHALT FILL - (GP) sandy GRAVEL, trace silt; brown to grey, angular (PAVEMENT STRUCTURE); non-cohesive, moist, dense		61.98 0.00 0.13 61.17	1	SS	65€	D ND				0						gr sa si cl
1	PG	204 mm Di	(GWOR) SILT SAND and GroveL, grey to brown, cobbles and boulders, contains strong petroleum odor (GLACIAL TILL); moist, compact -rock fragments END OF BOREHOLE Auger Refusal Note(s):	A CAN A CAN	60.48 1.50	2	SS SS	23 50/ 0.20					0						38 41 (21)
3			Auger Refusal Note(s): 1. Borehole dry upon completion of drilling.																
4																			
6																			
7																			
8																			
10																			

PR	OJ	ECT	CA0008376.9447		REC	0	RD) ()F B	OR	EHOI	E:	BH	123-0)7				SHEET 1 OF 1
LO	CA	noi	N: N 5025623.43; E 439573.43					BC	RING [DATE: A	August 2	5, 2023							DATUM: Geodetic
SP	T/D		THAMMER: MASS, 64kg; DROP, 760mm			-		DR		CME	75			11/00					ER TYPE: AUTOMATIC
SALE			SOIL PROFILE	5		SA	MPL	.ES	VAPC	UR CON	CENTRA	TIONS [F	PPM] 🕀	HIDR	k, cm/s	40 ⁻⁴		ING	PIEZOMETER
TH SC IETRE			DESCRIPTION	A PLC	ELEV.	IBER	ЪЕ	'S/0.3n	HEAD	SPACE (DRGANIC	VAPOU	R	W	ATER CON	TENT PERC	ENT	. TES1	
DEP				TRAT	DEPTH (m)	NUN	₽	BLOW	CONO ND =	ENTRA Not Dete	TIONS [PI	PM]		Wp		0 ^W	WI	ADI	GRAIN SIZE
			GROUND SURFACE	0	63.38				1	00 2	00 3	0 40	00	2	0 40	60	80		GR SA SI CL
-			FILL - (SP/GP) SAND and GRAVEL, trace silt; brown to grey, angular;		0.00	1A		•	ND										Cuttings 💥 🖉 -
-			\non-cohesive, moist, loose // (SM) - SILTY SAND, some clay, some			1B	SS	16 (0					Bentonite
-		em)	gravel; grey to black, cobbles and boulders, contains organic matter				-												Silica
- 1	ger	ollow St	(GLACIAL HEL), MOISI, COMPACE			2	SS	25 [÷									
-	wer Au	am. (Ho					-												
-	P	mm Di			;	3	SS	7 [ŧ				0					32 mm
-		204	fine grained SAND: moiet to wat																PVC #10 - Slot - Screen -
- 2 -			- The grained SAND, moist to wet	1.2 N		4	SS	50/ 0.23		₽				0					
F			Image: Second																
Ē			END OF BOREHOLE 2.44 Auger Refusal 2.44 Note(s): 1																
- - 3		END OF BOREHOLE 2.44 Auger Refusal 2.44 Note(s): 1. Borehole dry upon completion of drilling																	-
-		END OF BOREHOLE Auger Refusal 2.44 Note(s): 1. Borehole dry upon completion of drilling.																-	
-																			-
-																			-
- 4																			-
-																			-
-																			-
-																			-
- 5																			
-																			-
-																			-
- 6																			-
-																			-
-																			
-																			
- 7 -																			-
-																			-
-																			-
- 8																			
E																			-
F																			-
F																			-
- 9																			-
E																			-
E																			
F																			-
- 10																			_
	<u> </u>			•			<u>.</u>			110					<u> </u>	I			
DE 1 ·	50	п S(JALE								יוי	r						L CH	UGGED: UB IECKED: AKP
L	55										-							01	

PR		T: CA0008376.9447	REC	ORD	O	F BOI	REHOL	.E:	BH2	23-07A				SHEET 1 OF 1
SP	T/DCF	T HAMMER' MASS 64kg DROP 760mm			BO DR	RING DAT	TE: CMF 75						HAMMF	DATUM: Geodetic
	0	SOIL PROFILE		SAMP	LES	DYNAMI	C PENETRAT	ON	1	HYDRAULIC	CONDUCTI	VITY, T		
DEPTH SCALE METRES	BORING METHO	DESCRIPTION	(m) (m) (m) (m)	NUMBER	BLOWS/0.3m	RESISTA 20 SHEAR S Cu, kPa 20	NCE, BLOWS	%0.3m 60 80 ⊢ ⊢ nat V. + rem V. ⊕ 60 80	- 00 - 0	k, cm/s 10 ⁻⁶ WATER (Wp	10 ⁻⁵ 10 ⁻ CONTENT F	4 10 ³ PERCENT WI 80	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION GRAIN SZE DISTRIBUTION (%)
— 0			×××			Ī		Ĭ			Ĭ			GR SA SI CL
		FILL - (SF/GF) SAND and GRAVEL, trace sill; brown to grey, angular; non-cohesive, moist, loose (SM) - SILTY SAND, some clay, some gravel; grey to black, cobbles and boulders, contains organic matter (GLACIAL TILL); moist, compact - fine grained SAND; moist to wet		5										Bentonite
		END OF BOREHOLE Auger Refusal Note(s): 1. Borehole dry upon completion of drilling.	لا مان فر مان فر مان فر مان فر مان با مان با لا مان و مان موجد مواله مواله مواله مواله مو لا موال موال موال مواله مواله مواله مواله مواله مواله مواله مواله											
4		Borehole continued on Record Drillhole BH23-07A												Bentonite
														-
- / - - - - - - - - - - - - - - - - - -														-
- 9 - 9 														-
DE 1:	I PTH S 50	I CALE	<u> </u>			V	\ \ }					I	СН	DGGED: OB ECKED: ^{AKP}

	PR LO		T: CA0008376.9447 IN: N ;E TION: -90° AZIMUITH:	R	RECO	DR	D	0	F ۲		.IN RIG	GD. GD. GC.	H ATI	0 E: 5 75	LI	E:		BH2	3-07	Α					Sł D/	HEET ATUM:	1 OF 1 Geodetic	
	DEPTH SCALE METRES	DRILLING RECORD	DESCRIPTION	SYMBOLIC LOG	ELEV. DEPTH (m)	RUN No.	FLUSH RETURN				TR .00	ACT		R: [abb ANI NDE) PER			ons,	NOTE , symbols a CHNICAL R DISCONTINU DISCONTINU TYPE ANI DESC	E: COCK DE JITY DATA D SURFACE RIPTION	criptio ESCRI	ns re PTIO	fer to N TE		iametra int Loa Index (MPa)	FEATURES		PIEZOME	ETER
0 CLEARY AVE02 DATAGINTOTTAWA 30 CLEARY AVE GPJ GAL-MISS.GDT 10/26/23	LLAGO - 5 - 6 - 7 - 8 - 9 - 10 - 11		Contd from Record of Borehole BH23-07A Fresh, thinly to medium bedded, grey, fine to medium grained, faintly porous, strong LIMESTONE bedrock with slightly weathered to fresh, porous, fine grained, black shale END OF DRILLHOLE		9.94	2 2 3 4 A																		Index (MPa)			Bentonite Silica Sand Jam. PVC #10 Slot Soreen	E VER VER VER VER VER VER VER VER VER VE
CK 046 S:\CLIENTS\THEIA_PARTNERS\OTTAWA_30_C	- 13 - 14																											
GTA-R(DE 1:	:PTHS 50	JUALE							1			2]										L(CH	JGGEI ECKEI	D: OB D: AKP	

		DJEC	T: CA0008376.9447		REC	OF	RD) C)F B	ORE	EHO	LE:	BH	123-0)8					SHEET 1 OF 1
	-00	CATIC	N: N 5025623.80; E 439505.34					BC	RING D	ATE: A	August 2	5, 2023								DATUM: Geodetic
	SPT	/DCF	T HAMMER: MASS, 64kg; DROP, 760mm					DR	ILL RIG	: CME	75							ŀ	IAMMI	ER TYPE: AUTOMATIC
ALE	,	THOD	SOIL PROFILE	F	1	SAI	MPL	ES	HEADS VAPOU ND = N	SPACE (UR CON Not Dete	COMBUS CENTRA cted	TIBLE TIONS [I	PPM] 🕀	HYDR.	AULIC C k, cm/s	ONDUC"	ΓΙVITΥ,	. [ING ING	PIEZOMETER
DEPTH SC		BORING ME	DESCRIPTION	STRATA PLO	ELEV. DEPTH (m)	NUMBER	ТҮРЕ	BLOWS/0.3n	HEADS CONC ND = N	00 2 SPACE (ENTRA Not Dete	00 3 L DRGANIC FIONS [PI cted 00 3	00 4 2 VAPOL PM]	00 JR 00	1 W W	0° 1 ATER C p		0 ^{~*} 1 PERCE	03 NT WI	ADDITION LAB. TEST	OR STANDPIPE INSTALLATION GRAIN SIZE DISTRIBUTION (%)
	0	_	GROUND SURFACE		61.74															GR SA SI CL
-		er Auger . (Hollow Stem)	FILL - (GP) sandy GRAVEL, trace silt; brown to grey, angular (PAVEMENT STRUCTURE); non-cohesive, moist, very dense		0.00 61.04	1	SS	71 [ם € אס	*				0						37 41 (22)
-	1	204 mm Diam	(SM/GP) SILTY SAND and GRAVEL; dark to brown, contains organic matter, rootlets and rock fragments (GLACIAL TILL); moist, very dense		0.70 60.44	2	SS SS	42 50/						0						
E			END OF BOREHOLE Auger Refusal		1.30			0.00												-
F			Note(s):																	-
-	2		1. Borehole dry upon completion of drilling.																	
F	ariling.														-					
F	3																			
E	3 aniing.																			
Ē																				-
1 1 1																				-
10/26																				-
1.60	4																			
- L																				
																				-
	5																			-
Α - -																				_
CLEA																				-
A 30																				-
AN -	0																			-
2 - Z -																				-
																				-
	7																			
AVE																				
EAKY																				
	8																			
	-																			
																				-
PARI	9																			
⊒ - -																				-
																				-
	10																			-
.s																				
GTA-BHS (DEF 1 : 5	РТН S	CALE							114									LI CH	DGGED: OB ECKED: AKP

	PR	OJECT	F: CA0008376.9447	I	RECO	OR	D	OF I	BORI	EHO	LE:	BH	123-0)9					SHEET 1 OF 1	
			N: N 5025685.05; E 439517.69				E		DATE:	August 2	4, 2023								DATUM: Geodeti	ic A TIO
	SP		THAMMER: MASS, 64kg; DROP, 760mm						G: CME								ŀ	наммі І	ER TYPE: AUTOMA	ATIC
	S	ETHOD	SOIL PROFILE	5		SAM	PLE		OUR CON	CENTRA		PPM]⊕	11	k, cm/s	015 1	∩ ⁻⁴ 1	•]	TING	PIEZOMETE	R
i III	METRE	NG ME	DESCRIPTION	TA PL(ELEV.	MBER		HEA	DSPACE				W	ATER C	ONTENT	PERCE	NT	DITIO	STANDPIPE	E DN
Ĺ		BOR		STRA	(m)	۲			Not Dete	cted	00 40	00	Wp 2	0 4	<u>— О^W</u> ю е	ا 30 ق	WI 80	F A	GRAIN SIZE DISTRIBUTION (%)	
_	0		GROUND SURFACE		59.68 0.00														GR SA SI CL	
F			FILL - (SP/GP) SAND and GRAVEL, trace silt; brown to grey, angular	×	0:06 59.43 0.25	1A		, ∎ND					ο							-
F		v Stem	(PAVEMENT STRUCTURE); non-cohesive, moist, compact			1B		ັ€ ND												-
Ē		er Auger . (Hollo	FILL - (SP) SAND, some silt; brown to grey, angular; non-cohesive, moist, loose																	-
Ē	1	Powe m Diam			58 38	2		ND												-
Ē		204 m	TOPSOIL - (SM/ML) SILTY SAND to sandy SILT; black, contains rootlets and		<u>1.30</u> 1.40	3A														-
Ē			\organic matter; non-cohesive / (SP/GP) SAND and GRAVEL, some silt;		57.81	3B	3	°€⊒ ND											41 39 (20)	-
F	2		TILL); non-cohesive, moist, dense		1.87															. .
Ē			Note(s):																	-
Ē			1. Borehole dry upon completion of drilling																	-
Ē	3		uning.																	-
Ē																				-
1 1 1																				-
10/26																				-
S.GDT	4																			-
AL-MIS																				-
PJ G																				-
- I -	5																			-
ARY /																				-
																				-
VA_30	6																			-
ATTO																				-
																				-
DATA																				-
E\02	7																			-
₹¥_AV																				-
CLEAF																				-
	8																			-
TAW																				-
RS/01																				-
RTNE	9																			-
A PA	-																			-
S/THE																				-
LIENT																				-
0 S:\C	10																			-
HS 00		ртне	CALE	.				_1	119			1	1		1	1	1			
GTA-B	1:	50							••									СН	ECKED: AKP	

APPENDIX B

Certificates of Analysis

CLIENT NAME: WSP CANADA INC. 1931 ROBERTSON ROAD OTTAWA, ON K2H5B7 (613) 592-9600 ATTENTION TO: Keith Holmes PROJECT: CA0008376.9447 AGAT WORK ORDER: 23Z063895 SOIL ANALYSIS REVIEWED BY: Sukhwinder Randhawa, Lab Team Leader TRACE ORGANICS REVIEWED BY: Neli Popnikolova, Senior Chemist DATE REPORTED: Sep 08, 2023 PAGES (INCLUDING COVER): 13 VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

*Notes

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days after receipt unless a Long Term Storage Agreement is signed and returned. Some specialty analysis may be exempt, please contact your Client Project Manager for details.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
 contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.
- For environmental samples in the Province of Quebec: The analysis is performed on and results apply to samples as received. A temperature above 6°C upon receipt, as indicated in the Sample Reception Notification (SRN), could indicate the integrity of the samples has been compromised if the delay between sampling and submission to the laboratory could not be minimized.

AGAT Laboratories (V1)

ľ

Member of: Association of Professional Engineers and Geoscientists of Alberta	
(APEGA)	
Mestern Francisco Aprile utility and Laboratory Association (M/FALA)	

Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

Page 1 of 13

AGAT WORK ORDER: 23Z063895 PROJECT: CA0008376.9447

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: WSP CANADA INC.

SAMPLING SITE:30 Cleary

ATTENTION TO: Keith Holmes

SAMPLED BY:

			О.	Reg. 153(511) - Metal	s & Inorgan	ics (Soil)			
DATE RECEIVED: 2023-08-31								ſ	DATE REPORTE	D: 2023-09-08
Parameter	Unit	SAMPLE DES SAMI DATE S	CRIPTION: PLE TYPE: SAMPLED: BDI	1-1 Soil 2023-08-24 12:00 5256368	3-1 Soil 2023-08-25 12:00 5256369	4-1 Soil 2023-08-25 12:00 5256370	5-2 Soil 2023-08-24 12:00 5256371	7-2 Soil 2023-08-25 12:00 5256372	9-2 Soil 2023-08-24 12:00 5256373	
Antimony		7.5	0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	
Arsenic	µg/g	18	1	1	<1	2	3	3	1	
Barium	ua/a	390	2.0	410	313	271	154	378	118	
Beryllium	µq/q	4	0.5	<0.5	<0.5	<0.5	0.8	0.7	<0.5	
Boron	μg/g	120	5	44	41	43	40	36	33	
Boron (Hot Water Soluble)	μg/g	1.5	0.10	<0.10	<0.10	0.23	0.36	0.10	0.27	
Cadmium	μg/g	1.2	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
Chromium	μg/g	160	5	12	10	18	37	26	21	
Cobalt	µg/g	22	0.8	4.7	4.2	8.1	14.8	11.7	8.3	
Copper	µg/g	140	1.0	5.9	4.3	12.7	34.6	67.3	15.9	
Lead	µg/g	120	1	13	6	13	38	37	14	
Molybdenum	µg/g	6.9	0.5	<0.5	<0.5	0.8	0.6	1.0	<0.5	
Nickel	µg/g	100	1	6	5	12	32	21	14	
Selenium	µg/g	2.4	0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	
Silver	µg/g	20	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
Thallium	µg/g	1	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
Uranium	µg/g	23	0.50	<0.50	<0.50	<0.50	0.57	0.85	0.60	
Vanadium	µg/g	86	2.0	18.7	17.5	17.9	31.1	34.9	28.4	
Zinc	µg/g	340	5	12	8	34	72	116	58	
Chromium, Hexavalent	µg/g	8	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	
Cyanide, WAD	µg/g	0.051	0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	
Mercury	μg/g	0.27	0.10	<0.10	<0.10	<0.10	<0.10	0.25	<0.10	
Electrical Conductivity (2:1)	mS/cm	0.7	0.005	0.263	0.276	0.512	0.571	0.785	1.17	
Sodium Adsorption Ratio (2:1) (Calc.)	N/A	5	N/A	1.26	1.12	6.82	4.94	9.17	15.9	
pH, 2:1 CaCl2 Extraction	pH Units	5.0-9.0	NA	7.05	7.11	7.20	7.12	7.16	7.09	

Certified By:

AGAT WORK ORDER: 23Z063895 PROJECT: CA0008376.9447 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: WSP CANADA INC.

SAMPLING SITE:30 Cleary

ATTENTION TO: Keith Holmes

SAMPLED BY:

O. Reg. 153(511) - Metals & Inorganics (Soil)

DATE RECEIVED: 2023-08-31

DATE REPORTED: 2023-09-08

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Soil - Residential/Parkland/Institutional Property Use - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

5256368-5256373 EC was determined on the DI water extract obtained from the 2:1 leaching procedure (2 parts DI water:1 part soil). pH was determined on the 0.01M CaCl2 extract prepared at 2:1 ratio. SAR is a calculated parameter.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

AGAT WORK ORDER: 23Z063895 PROJECT: CA0008376.9447

O Reg. 153(511) - PAHs (Soil)

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: WSP CANADA INC.

SAMPLING SITE:30 Cleary

ATTENTION TO: Keith Holmes

SAMPLED BY:

				0.110	9. 100(011)	1 AN3 (00	"'			
DATE RECEIVED: 2023-08-31								I	DATE REPORTED): 2023-09-08
		SAMPLE DES	CRIPTION:	1-1	3-1	4-1	5-2	7-2	9-2	
		SAM	PLE TYPE:	Soil	Soil	Soil	Soil	Soil	Soil	
		DATES	SAMPLED:	2023-08-24 12:00	2023-08-25 12:00	2023-08-25 12:00	2023-08-24 12:00	2023-08-25 12:00	2023-08-24 12:00	
Parameter	Unit	G / S	RDL	5256368	5256369	5256370	5256371	5256372	5256373	
Naphthalene	µg/g	0.6	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Acenaphthylene	µg/g	0.15	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Acenaphthene	μg/g	7.9	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Fluorene	μg/g	62	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Phenanthrene	μg/g	6.2	0.05	<0.05	<0.05	0.09	<0.05	0.08	<0.05	
Anthracene	μg/g	0.67	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Fluoranthene	μg/g	0.69	0.05	<0.05	<0.05	0.10	0.14	0.17	<0.05	
Pyrene	μg/g	78	0.05	<0.05	<0.05	0.15	0.11	0.14	<0.05	
Benz(a)anthracene	μg/g	0.5	0.05	<0.05	<0.05	<0.05	<0.05	0.06	<0.05	
Chrysene	μg/g	7	0.05	<0.05	<0.05	<0.05	<0.05	0.06	<0.05	
Benzo(b)fluoranthene	μg/g	0.78	0.05	<0.05	<0.05	<0.05	<0.05	0.08	<0.05	
Benzo(k)fluoranthene	μg/g	0.78	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Benzo(a)pyrene	μg/g	0.3	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Indeno(1,2,3-cd)pyrene	µg/g	0.38	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Dibenz(a,h)anthracene	μg/g	0.1	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Benzo(g,h,i)perylene	μg/g	6.6	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
1 and 2 Methlynaphthalene	μg/g	0.99	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Moisture Content	%		0.1	2.9	2.8	4.3	12.6	9.4	14.8	
Surrogate	Unit	Acceptab	le Limits							
Naphthalene-d8	%	50-1	140	90	85	85	90	85	75	
Acridine-d9	%	50-1	140	75	95	115	95	70	90	
Terphenyl-d14	%	50-1	140	70	75	75	80	95	90	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Soil - Residential/Parkland/Institutional Property Use - Coarse Textured Soils

Guideline values are for general in the fitter only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

5256368-5256373 Results are based on the dry weight of the soil.

Note: The result for Benzo(b)Fluoranthene is the total of the Benzo(b)&j)Fluoranthene isomers because the isomers co-elute on the GC column. 2- and 1-Methyl Naphthalene is a calculated parameter. The calculated value is the sum of 2-Methyl Naphthalene and 1-Methyl Naphthalene.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

NPopukoloj

AGAT WORK ORDER: 23Z063895 PROJECT: CA0008376.9447 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: WSP CANADA INC.

SAMPLING SITE:30 Cleary

ATTENTION TO: Keith Holmes

SAMPLED BY:

O. Reg. 153(511) - PHCs F1 - F4 (with PAHs) (Soil)

DATE RECEIVED: 2023-08-31								Ι	DATE REPORTE	D: 2023-09-08
	S	SAMPLE DESC SAMF	CRIPTION: PLE TYPE:	1-1 Soil 2023-08-24	3-1 Soil 2023-08-25	4-1 Soil 2023-08-25	5-2 Soil 2023-08-24	7-2 Soil 2023-08-25	9-2 Soil 2023-08-24	
Parameter	Unit	G/S	RDL	12:00 5256368	12:00 5256369	12:00 5256370	12:00 5256371	12:00 5256372	12:00 5256373	
Benzene	µg/g	0.21	0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	
Toluene	µg/g	2.3	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Ethylbenzene	µg/g	2	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
m & p-Xylene	µg/g		0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
o-Xylene	μg/g		0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Xylenes (Total)	µg/g	3.1	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
F1 (C6 - C10)	µg/g	55	5	<5	<5	<5	<5	<5	<5	
F1 (C6 to C10) minus BTEX	μg/g	55	5	<5	<5	<5	<5	<5	<5	
F2 (C10 to C16)	μg/g	98	10	<10	<10	<10	<10	<10	<10	
F2 (C10 to C16) minus Naphthalene	μg/g		10	<10	<10	<10	<10	<10	<10	
F3 (C16 to C34)	μg/g	300	50	123	245	<50	125	<50	92	
F3 (C16 to C34) minus PAHs	µg/g		50	123	245	<50	125	<50	92	
F4 (C34 to C50)	μg/g	2800	50	157	333	<50	<50	<50	<50	
Gravimetric Heavy Hydrocarbons	μg/g	2800	50	NA	NA	NA	NA	NA	NA	
Moisture Content	%		0.1	2.9	2.8	4.3	12.6	9.4	14.8	
Surrogate	Unit	Acceptabl	e Limits							
Toluene-d8	% Recovery	60-1	40	78	78	80	80	85	78	
Terphenyl	%	60-1	40	82	78	73	64	74	89	

Certified By:

NPopukolof

AGAT WORK ORDER: 23Z063895 PROJECT: CA0008376.9447

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: WSP CANADA INC.

SAMPLING SITE:30 Cleary

ATTENTION TO: Keith Holmes

SAMPLED BY:

O. Reg. 153(511) - PHCs F1 - F4 (with PAHs) (Soil)

DATE RECEIVED: 2023-08-31 Comments: RDL - Reported Detection Limit: G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Soil -Residential/Parkland/Institutional Property Use - Coarse Textured Soils Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation. 5256368-5256373 Results are based on sample dry weight.

The C6-C10 fraction is calculated using toluene response factor.

Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene and o-Xylene.

C6–C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX.

The calculated parameters are non-accredited. The parameters that are components of the calculation are accredited.

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons > C50 are present. The chromatogram has returned to baseline by the retention time of nC50.

Total C6 - C50 results are corrected for BTEX and PAH contributions.

C>10 - C16 (F2- Naphthalene) is a calculated parameter. The calculated value is F2 - Naphthalene.

C>16 - C34 (F3-PAH) is a calculated parameter. The calculated value is F3-PAH (PAH: sum of Phenanthrene, Benzo(a)anthracene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene, Fluoranthene, Dibenzo(a,h)anthracene, Indeno(1,2,3-c,d)pyrene and Pyrene).

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

NPopukoloj

DATE REPORTED: 2023-09-08

Exceedance Summary

AGAT WORK ORDER: 23Z063895 PROJECT: CA0008376.9447

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: WSP CANADA INC.

ATTENTION TO: Keith Holmes

SAMPLEID	SAMPLE TITLE	GUIDELINE	ANALYSIS PACKAGE	PARAMETER	UNIT	GUIDEVALUE	RESULT
5256368	1-1	ON T3 S RPI CT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Barium	µg/g	390	410
5256370	4-1	ON T3 S RPI CT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Sodium Adsorption Ratio (2:1) (Calc.)	N/A	5	6.82
5256372	7-2	ON T3 S RPI CT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Electrical Conductivity (2:1)	mS/cm	0.7	0.785
5256372	7-2	ON T3 S RPI CT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Sodium Adsorption Ratio (2:1) (Calc.)	N/A	5	9.17
5256373	9-2	ON T3 S RPI CT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Electrical Conductivity (2:1)	mS/cm	0.7	1.17
5256373	9-2	ON T3 S RPI CT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Sodium Adsorption Ratio (2:1) (Calc.)	N/A	5	15.9

Quality Assurance

CLIENT NAME: WSP CANADA INC.

PROJECT: CA0008376.9447

SAMPLING SITE:30 Cleary

AGAT WORK ORDER: 23Z063895 ATTENTION TO: Keith Holmes SAMPLED BY:

Soil Analysis

						-									
RPT Date: Sep 08, 2023			C	UPLICAT	E		REFERE	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured	Acce Lir	ptable nits	Recovery	Acce Lir	ptable nits	Recovery	Acce Lin	ptable nits
		IC					value	Lower	Upper		Lower	Upper		Lower	Upper
O. Reg. 153(511) - Metals & Inor	ganics (Soil))													
Antimony	5254967		<0.8	<0.8	NA	< 0.8	128%	70%	130%	112%	80%	120%	98%	70%	130%
Arsenic	5254967		5	5	0.0%	< 1	124%	70%	130%	111%	80%	120%	122%	70%	130%
Barium	5254967		52.2	52.4	0.4%	< 2.0	115%	70%	130%	110%	80%	120%	112%	70%	130%
Beryllium	5254967		<0.5	<0.5	NA	< 0.5	108%	70%	130%	106%	80%	120%	108%	70%	130%
Boron	5254967		26	26	0.0%	< 5	104%	70%	130%	108%	80%	120%	104%	70%	130%
Boron (Hot Water Soluble)	5255206		0.32	0.31	NA	< 0.10	111%	60%	140%	96%	70%	130%	97%	60%	140%
Cadmium	5254967		<0.5	<0.5	NA	< 0.5	86%	70%	130%	107%	80%	120%	104%	70%	130%
Chromium	5254967		16	16	NA	< 5	106%	70%	130%	108%	80%	120%	105%	70%	130%
Cobalt	5254967		5.4	5.3	1.9%	< 0.8	113%	70%	130%	110%	80%	120%	106%	70%	130%
Copper	5254967		13.8	13.9	0.7%	< 1.0	101%	70%	130%	104%	80%	120%	97%	70%	130%
Lead	5254967		30	29	3.4%	< 1	108%	70%	130%	103%	80%	120%	102%	70%	130%
Molybdenum	5254967		0.7	0.7	NA	< 0.5	121%	70%	130%	115%	80%	120%	117%	70%	130%
Nickel	5254967		10	10	0.0%	< 1	110%	70%	130%	109%	80%	120%	106%	70%	130%
Selenium	5254967		<0.8	<0.8	NA	< 0.8	92%	70%	130%	113%	80%	120%	116%	70%	130%
Silver	5254967		<0.5	<0.5	NA	< 0.5	121%	70%	130%	111%	80%	120%	109%	70%	130%
Thallium	5254967		<0.5	<0.5	NA	< 0.5	106%	70%	130%	106%	80%	120%	105%	70%	130%
Uranium	5254967		<0.50	0.52	NA	< 0.50	113%	70%	130%	101%	80%	120%	102%	70%	130%
Vanadium	5254967		38.4	37.5	2.4%	< 2.0	111%	70%	130%	109%	80%	120%	109%	70%	130%
Zinc	5254967		70	72	2.8%	< 5	107%	70%	130%	112%	80%	120%	122%	70%	130%
Chromium, Hexavalent	5258905		<0.2	<0.2	NA	< 0.2	93%	70%	130%	94%	80%	120%	87%	70%	130%
Cyanide, WAD	5258909		<0.040	<0.040	NA	< 0.040	90%	70%	130%	96%	80%	120%	97%	70%	130%
Mercury	5254967		<0.10	<0.10	NA	< 0.10	116%	70%	130%	107%	80%	120%	108%	70%	130%
Electrical Conductivity (2:1)	5254926		0.233	0.213	9.0%	< 0.005	110%	80%	120%						
Sodium Adsorption Ratio (2:1) (Calc.)	5264540		2.70	2.85	5.4%	NA									
pH, 2:1 CaCl2 Extraction	5259332		6.40	6.57	2.6%	NA	101%	80%	120%						

Comments: NA signifies Not Applicable.

pH duplicates QA acceptance criteria was met relative as stated in Table 5-15 of Analytical Protocol document.

Duplicate NA: results are under 5X the RDL and will not be calculated.

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Page 8 of 13

Quality Assurance

CLIENT NAME: WSP CANADA INC.

PROJECT: CA0008376.9447

SAMPLING SITE:30 Cleary

AGAT WORK ORDER: 23Z063895 ATTENTION TO: Keith Holmes SAMPLED BY:

Trace Organics Analysis

					-		-								
RPT Date: Sep 08, 2023			C	UPLICAT	E		REFERE	NCE MA	TERIAL	METHOD	BLANK	SPIKE	МАТ	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured	Acce Lir	ptable nits	Recoverv	Acce Lir	ptable nits	Recoverv	Acce Lin	ptable nits
		Id					value	Lower	Upper		Lower	Upper		Lower	Upper
O. Reg. 153(511) - PHCs F1 - F4 (with PAHs)	(Soil)													
Benzene	5258912		<0.02	<0.02	NA	< 0.02	108%	60%	140%	105%	60%	140%	95%	60%	140%
Toluene	5258912		<0.05	<0.05	NA	< 0.05	107%	60%	140%	103%	60%	140%	70%	60%	140%
Ethylbenzene	5258912		<0.05	<0.05	NA	< 0.05	99%	60%	140%	94%	60%	140%	112%	60%	140%
m & p-Xylene	5258912		<0.05	<0.05	NA	< 0.05	102%	60%	140%	96%	60%	140%	83%	60%	140%
o-Xylene	5258912		<0.05	<0.05	NA	< 0.05	106%	60%	140%	97%	60%	140%	75%	60%	140%
F1 (C6 - C10)	5258912		<5	<5	NA	< 5	103%	60%	140%	98%	60%	140%	96%	60%	140%
F2 (C10 to C16)	5254956		<10	<10	NA	< 10	98%	60%	140%	95%	60%	140%	85%	60%	140%
F3 (C16 to C34)	5254956		<50	<50	NA	< 50	97%	60%	140%	92%	60%	140%	97%	60%	140%
F4 (C34 to C50)	5254956		<50	<50	NA	< 50	88%	60%	140%	97%	60%	140%	92%	60%	140%
O. Reg. 153(511) - PAHs (Soil)															
Naphthalene	5256368 5	5256368	<0.05	<0.05	NA	< 0.05	94%	50%	140%	83%	50%	140%	90%	50%	140%
Acenaphthylene	5256368 5	5256368	<0.05	<0.05	NA	< 0.05	100%	50%	140%	80%	50%	140%	90%	50%	140%
Acenaphthene	5256368 5	5256368	<0.05	<0.05	NA	< 0.05	107%	50%	140%	83%	50%	140%	90%	50%	140%
Fluorene	5256368 5	5256368	<0.05	<0.05	NA	< 0.05	111%	50%	140%	98%	50%	140%	93%	50%	140%
Phenanthrene	5256368 5	5256368	<0.05	<0.05	NA	< 0.05	91%	50%	140%	85%	50%	140%	95%	50%	140%
Anthracene	5256368 5	5256368	<0.05	<0.05	NA	< 0.05	107%	50%	140%	103%	50%	140%	98%	50%	140%
Fluoranthene	5256368 5	5256368	<0.05	<0.05	NA	< 0.05	105%	50%	140%	85%	50%	140%	73%	50%	140%
Pyrene	5256368 5	5256368	<0.05	<0.05	NA	< 0.05	104%	50%	140%	78%	50%	140%	78%	50%	140%
Benz(a)anthracene	5256368 5	5256368	<0.05	<0.05	NA	< 0.05	105%	50%	140%	80%	50%	140%	110%	50%	140%
Chrysene	5256368 5	5256368	<0.05	<0.05	NA	< 0.05	92%	50%	140%	85%	50%	140%	103%	50%	140%
Benzo(b)fluoranthene	5256368 5	5256368	<0.05	<0.05	NA	< 0.05	89%	50%	140%	118%	50%	140%	73%	50%	140%
Benzo(k)fluoranthene	5256368 5	5256368	<0.05	<0.05	NA	< 0.05	103%	50%	140%	80%	50%	140%	93%	50%	140%
Benzo(a)pyrene	5256368 5	5256368	<0.05	<0.05	NA	< 0.05	72%	50%	140%	105%	50%	140%	78%	50%	140%
Indeno(1,2,3-cd)pyrene	5256368 5	5256368	<0.05	<0.05	NA	< 0.05	88%	50%	140%	115%	50%	140%	115%	50%	140%
Dibenz(a,h)anthracene	5256368 5	5256368	<0.05	<0.05	NA	< 0.05	76%	50%	140%	80%	50%	140%	73%	50%	140%
Benzo(g,h,i)perylene	5256368 5	5256368	<0.05	<0.05	NA	< 0.05	108%	50%	140%	90%	50%	140%	93%	50%	140%

Comments: When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

Certified By:

NPopukoli

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Page 9 of 13

Method Summary

CLIENT NAME: WSP CANADA INC.

PROJECT: CA0008376.9447

AGAT WORK ORDER: 23Z063895

ATTENTION TO: Keith Holmes

SAMPLING SITE:30 Cleary		SAMPLED BY:	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Soil Analysis		1	
Antimony	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Arsenic	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Barium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Beryllium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Boron	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Boron (Hot Water Soluble)	MET-93-6104	modified from EPA 6010D and MSA PART 3, CH 21	ICP/OES
Cadmium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Chromium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Cobalt	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Copper	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Lead	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Molybdenum	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Nickel	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Selenium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Silver	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Thallium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Uranium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Vanadium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Zinc	MET 93 -6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Chromium, Hexavalent	INOR-93-6068	modified from EPA 3060 and EPA 7196	SPECTROPHOTOMETER
Cyanide, WAD	INOR-93-6052	modified from ON MOECC E3015, SM 4500-CN- I, G-387	SEGMENTED FLOW ANALYSIS
Mercury	MET-93-6103	modified from EPA 7471B and SM 3112 B	ICP-MS
Electrical Conductivity (2:1)	INOR-93-6075	modified from MSA PART 3, CH 14 and SM 2510 B	PC TITRATE
Sodium Adsorption Ratio (2:1) (Calc.)	INOR-93-6007	modified from EPA 6010D & Analytical Protocol	ICP/OES
pH, 2:1 CaCl2 Extraction	INOR-93-6075	modified from EPA 9045D, MCKEAGUE 3.11 E3137	PC TITRATE

Method Summary

CLIENT NAME: WSP CANADA INC.

PROJECT: CA0008376.9447

AGAT WORK ORDER: 23Z063895

ATTENTION TO: Keith Holmes SAMPLED BY:

SAMPLING SITE:30 Cleary		SAMPLED BY:	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Trace Organics Analysis			
Naphthalene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Acenaphthylene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Acenaphthene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Fluorene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Phenanthrene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Anthracene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Fluoranthene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Pyrene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Benz(a)anthracene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Chrysene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Benzo(b)fluoranthene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Benzo(k)fluoranthene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Benzo(a)pyrene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Indeno(1,2,3-cd)pyrene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Dibenz(a,h)anthracene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Benzo(g,h,i)perylene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
1 and 2 Methlynaphthalene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Naphthalene-d8	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Acridine-d9	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Terphenyl-d14	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Moisture Content	VOL-91-5009	modified from CCME Tier 1 Method	BALANCE
Benzene	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/MS
Toluene	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/MS
Ethylbenzene	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/MS
m & p-Xylene	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/MS
o-Xylene	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/MS
Xylenes (Total)	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/MS
F1 (C6 - C10)	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/FID
F1 (C6 to C10) minus BTEX	VOL-91-5009	modified from CCME Tier 1 Method	P&T GC/FID
Toluene-d8	VOL-91-5009	modified from EPA SW-846 5030C & 8260D	(P&T)GC/MS
F2 (C10 to C16)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
F2 (C10 to C16) minus Naphthalene	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
F3 (C16 to C34)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID

AGAT METHOD SUMMARY (V1)

Method Summary

CLIENT NAME: WSP CANADA INC.

PROJECT: CA0008376.9447

SAMPLING SITE:30 Cleary

AGAT WORK ORDER: 23Z063895 ATTENTION TO: Keith Holmes SAMPLED BY:

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
F3 (C16 to C34) minus PAHs	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
F4 (C34 to C50)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
Gravimetric Heavy Hydrocarbons	VOL-91-5009	modified from CCME Tier 1 Method	BALANCE
Terphenyl	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID

Pink Copy - Client 1 Yellow Copy - AGAT | White Copy- AGAT

Chain of Custody Recor	aborat d If this is a l	Ories	r sample, ple	Have feed! Scan here quick sur ase use Drii	back? e for a rvey!	Ph: ody Form (potab	Mi 905.71 le water d	5 ssissa 2.510 we	5835 (uga, O O Fax: ebeart ed by hi	Coopers ntario 905.7 h.agatl umans)	s Avenu L4Z 11 12.512 abs.co	ie 2 2 m	Labo Work O Cooler Arrival	orator order #: Quantity Tempera	y Use (237 y: On atures:	0nly -063 e -ba	2995 2995	- - - - - - - - - - - - - - - - - - -	<u>ce</u> . 2.5
Report Information: V Company: V Contact: Ke Address: V Phone: Ke Reports to be sent to: Ke 1. Email: Ke 2. Email: V Project Information: V Project: CA COOD S Site Location: 30 C Sampled By: V	Fax: Pro	es olacsi 1447	Qusp.	Re (Pleas T Soil ' Soil '	gulatory Requirem se check all applicable boxes) Regulation 153/04 Table Ind/Com Ind/Com Agriculture Agriculture Texture (check one) Coarse Fine Is this submission for Cord of Site Condition Yes	nents: Regulation 406 able Indicate One Regulation 558 CCME	Re Cer	Sev Solution Prov Obje Other port	Regioio Regioio v. Wate ectives er Guid te of	er Quali s (PWQ) one eline f Anal	orm ty D) on ysis NO		Custod Notes: Turna Regula Rush 1	y Seal Ir round ar TAT TAT (Rush 3 Busin Days OR Datu Plea *TAT is e Same Da	I Time Surcharges eSS e Require se provid xclusive o ay' analy:	(TAT) R (TAT)	equired equired Business I ness incharges N fication for s and state contact y	o Days Days May App! Trush TAI utory hol Dour AGAT	: Business y): r idays
AGAT Quote #: Please note: If quotation number. Invoice Information: Company: Contact: Address: Email:	PO:Bi	ie billed full price fo	/es 🗌 No [Sar GW 0 P S SD SW	mple Matrix Legend Ground Water Oil Paint Soil Sediment Surface Water		rield Filtered - Metals, Hg, CrVI, DOC	& Inorganics	Reg 15	1-F4 PHCs			ociors 🗆 Disposal Characterization TCLP: 📊 O M&I ("UND": 🗆 AANS 🗖 BAANS 🗍 BAANS 🔤 👼	on 406 SPLP Rainwater Leach 0 Metals D VOCs D SVOCs 2	on 406 Characterization Package 80 15 Metals, BTEX, F1-F4	ity: Moisture Sulphide			y Hazardous or High Concentration (Y/N)
Sample Identification 1. 11 2. 31 3. 4-1 4. 5-2 5. 7-1 6. 9-2 7. 8. 9. 10. 11. Samples Refination of Steps:	Date Sampled <i>レイーターひ</i> <i>フィーターひ</i> <i>レイーターし</i> <i>レイーターし</i> <i>レイーターし</i>	Time Sampled	# of Containers M	Sample Matrix S	Comments Special Instruct	e and Side	Y/N	Metals.	Metals -	RTEX, F	Parts	PCBS		SPLP: 0	Regulati PH, ICPV	Corrosiv			Potentially
Samples Reinquished By (Print Name and Sign): Samples Keinquished By (Reint Name and Sign): Samples Keinquished By (Reint Name and Sign): Any and all products	and/or services provide	Date Date Date	Time	to the terms a	Samples Received By (Print Nam Samples Received By (Print Nam Samples Received By (Print Nam and conditions as set forth at g	e and Sign): e and Sign): e and Sign): vww.agatlabs.com	n/termsa	indcond	ditions	AU SC unless c	ba Da Da therwis	e agreed		IM3 IM3 Ime t written c	C A contractual	Pag Nº: T document.	je - 14 Pag	of 70:	36

CLIENT NAME: WSP CANADA INC. 1931 ROBERTSON ROAD OTTAWA, ON K2H5B7 (613) 592-9600 ATTENTION TO: Keith Holmes PROJECT: CA0008376.9447 Cleary Dev AGAT WORK ORDER: 23Z065219 TRACE ORGANICS REVIEWED BY: Pinkal Patel, Report Reviewer DATE REPORTED: Sep 08, 2023 PAGES (INCLUDING COVER): 6 VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

*Notes	

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days after receipt unless a Long Term Storage Agreement is signed and returned. Some specialty analysis may be exempt, please contact your Client Project Manager for details.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.
- For environmental samples in the Province of Quebec: The analysis is performed on and results apply to samples as received. A temperature above 6°C upon receipt, as indicated in the Sample Reception Notification (SRN), could indicate the integrity of the samples has been compromised if the delay between sampling and submission to the laboratory could not be minimized.

AGAT Laboratories (V1)

ľ

Member of: Association of Professional Engineers and Geoscientists of Alberta
(APEGA)
Western Enviro-Agricultural Laboratory Association (WEALA)
Environmental Services Association of Alberta (ESAA)

Page 1 of 6

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

Certificate of Analysis

AGAT WORK ORDER: 23Z065219 PROJECT: CA0008376.9447 Cleary Dev 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

ATTENTION TO: Keith Holmes

SAMPLED BY:Olivia Dale

O. Reg. 153(511) - PHCs F1 - F4 (Water)

DATE RECEIVED: 2023-09-05

SAMPLING SITE:30 Cleary

CLIENT NAME: WSP CANADA INC.

	S	SAMPLE DESCRIPTION:	23-05A	Field Dupe	
		SAMPLE TYPE:	Water	Water	
		DATE SAMPLED:	2023-09-05	2023-09-05	
			10:00	10:00	
Parameter	Unit	G/S RDL	5263884	5263958	
Benzene	μg/L	0.20	<0.20	<0.20	
Toluene	μg/L	0.20	<0.20	<0.20	
Ethylbenzene	μg/L	0.10	<0.10	<0.10	
m & p-Xylene	μg/L	0.20	<0.20	<0.20	
o-Xylene	μg/L	0.10	<0.10	<0.10	
Xylenes (Total)	μg/L	0.20	<0.20	<0.20	
F1 (C6 - C10)	μg/L	25	<25	<25	
C6 - C10 (F1 minus BTEX)	μg/L	25	<25	<25	
F2 (C10 to C16)	μg/L	100	<100	<100	
F3 (C16 to C34)	μg/L	100	<100	<100	
F4 (C34 to C50)	μg/L	100	<100	<100	
Gravimetric Heavy Hydrocarbons	μg/L	500	NA	NA	
Sediment			2	2	
Surrogate	Unit	Acceptable Limits			
Toluene-d8	% Recovery	60-140	81.5	81.2	
Terphenyl	% Recovery	60-140	79	69	

Jinkal Jota

DATE REPORTED: 2023-09-08

Certified By:

Certificate of Analysis

AGAT WORK ORDER: 23Z065219 PROJECT: CA0008376.9447 Cleary Dev 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

ATTENTION TO: Keith Holmes

SAMPLED BY:Olivia Dale

O. Reg. 153(511) - PHCs F1 - F4 (Water)

DATE RECEIVED: 2023-09-05

SAMPLING SITE:30 Cleary

CLIENT NAME: WSP CANADA INC.

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

5263884-5263958 The C6-C10 fraction is calculated using Toluene response factor.

Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene and o-Xylene.

C6–C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX.

The calculated parameters are non-accredited. The parameters that are components of the calculation are accredited.

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and nC34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16 - C50 and are only determined if the chromatogram of the C34 - C50 Hydrocarbons indicated that hydrocarbons > C50 are present.

The chromatogram has returned to baseline by the retention time of nC50.

Total C6-C50 results are corrected for BTEX contribution.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 $\,$ nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Fractions 1-4 are quantified with the contribution of PAHs. Under Ontario Regulation 153/04, results are considered valid without determining the PAH contribution if not requested by the client. NA = Not Applicable

Sediment parameter is comment only based on visual inspection of the sample prior to extraction and is not an accredited test. Legend: 1 = no sediment present; 2 = sediment present; 3 = sediment present in trace amounts

Analysis performed at AGAT Toronto (unless marked by *)

Jimkal Jorta

DATE REPORTED: 2023-09-08

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

Quality Assurance

CLIENT NAME: WSP CANADA INC.

PROJECT: CA0008376.9447 Cleary Dev

SAMPLING SITE:30 Cleary

AGAT WORK ORDER: 23Z065219 ATTENTION TO: Keith Holmes

SAMPLED BY:Olivia Dale

Trace Organics Analysis

					•		•								
RPT Date: Sep 08, 2023			C	UPLICAT	E		REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	IKE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured	Acce Lir	ptable nits	Recovery	Acce Lir	ptable nits	Recovery	Acce	ptable mits
		lu					value	Lower	Upper		Lower	Upper		Lower	Upper
O. Reg. 153(511) - PHCs F1 - F4 (Water)														
Benzene	5267377		0.66	0.75	NA	< 0.20	86%	60%	140%	75%	60%	140%	101%	60%	140%
Toluene	5267377		0.23	0.22	NA	< 0.20	81%	60%	140%	82%	60%	140%	97%	60%	140%
Ethylbenzene	5267377		2.59	2.92	12.0%	< 0.10	81%	60%	140%	75%	60%	140%	84%	60%	140%
m & p-Xylene	5267377		0.59	0.64	NA	< 0.20	81%	60%	140%	85%	60%	140%	98%	60%	140%
o-Xylene	5267377		<0.10	<0.10	NA	< 0.10	83%	60%	140%	76%	60%	140%	102%	60%	140%
F1 (C6 - C10)	5267377		36	36	NA	< 25	104%	60%	140%	101%	60%	140%	89%	60%	140%
F2 (C10 to C16)	5257469		< 100	< 100	NA	< 100	112%	60%	140%	75%	60%	140%	88%	60%	140%
F3 (C16 to C34)	5257469		< 100	< 100	NA	< 100	107%	60%	140%	62%	60%	140%	75%	60%	140%
F4 (C34 to C50)	5257469		< 100	< 100	NA	< 100	75%	60%	140%	90%	60%	140%	78%	60%	140%

Comments: When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

Certified By:

Imkal Jata

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Page 4 of 6

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

Method Summary

CLIENT NAME: WSP CANADA INC. PROJECT: CA0008376.9447 Cleary Dev

AGAT WORK ORDER: 23Z065219 ATTENTION TO: Keith Holmes

SAMPLING SITE:30 Cleary		SAMPLED BY:O	livia Dale
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Trace Organics Analysis	· ·		
Benzene	VOL-91-5010	modified from MOE PHC-E3421	(P&T)GC/MS
Toluene	VOL-91-5010	modified from MOE PHC-E3421	(P&T)GC/MS
Ethylbenzene	VOL-91-5010	modified from MOE PHC-E3421	(P&T)GC/MS
m & p-Xylene	VOL-91-5010	modified from MOE PHC-E3421	(P&T)GC/MS
o-Xylene	VOL-91-5010	modified from MOE PHC-E3421	(P&T)GC/MS
Xylenes (Total)	VOL-91-5010	modified from MOE PHC-E3421	(P&T)GC/MS
F1 (C6 - C10)	VOL-91-5010	modified from MOE PHC-E3421	(P&T)GC/FID
C6 - C10 (F1 minus BTEX)	VOL - 5010	MOE E3421	(P&T)GC/MS
Toluene-d8	VOL-91-5010	modified from MOE PHC-E3421	(P&T)GC/MS
F2 (C10 to C16)	VOL-91-5010	modified from MOE PHC-E3421	GC/FID
F3 (C16 to C34)	VOL-91-5010	modified from MOE PHC-E3421	GC/FID
F4 (C34 to C50)	VOL-91-5010	modified from MOE PHC-E3421	GC/FID
Gravimetric Heavy Hydrocarbons	VOL-91-5010	modified from MOE PHC-E3421	BALANCE
Terphenyl	VOL-91-5010	modified from MOE PHC-E3421	GC/FID
Sediment			N/A

ow Copy - AGAT | White Copy- AGAT

Pink Copy - Client 1

鬰 醋 Have feedback? Scan here for a 恣

Work Order #: 237065219

Laboratory Use Only

Nº:

Page 6 of 6

quirements: aves; 4 Regulation 4: Table Indicate C Regulation 5: CCME sion for a COME >ondition? No egend Regulation 5:	06 578 Re Cer	Sev S Prov Obja Oth Prov Obja Ves	Region A. Water (ectives (Indicate Or Guidel te of A	Duality WQO)	n	R	Custody Notes: Curnard Regular Rush TA	Seal Inta Leth Dund T TAT IT (Rush Sur Business ays R Date B	inct: [ime (1 rcharges App	TAT) Requi	INO	
4 Regulation 4 Table Indicate C Regulation 5: CCME Sion for a CCME NO egend	06)ne 58 Cen	Sev Sev Prov Obje Oth Poth Poth Poth Poth Sev Sev Sev Sev Sev Sev Sev Sev Sev Sev	Region A. Water 4 ectives (F er Guidel te of A	Duality WQO)	n 1	R	iurnar Regular Rush TA D D 0	Dund T TAT T (Rush Sur Business ays	Time (1	TAT) Requi	ired: less Days	
Regulation 5: CCME CCME NO	58 Re Cer	Prov Obje	A Water of A	Quality WQO)	1	R	cush TA	Rush Sur Business ays	rcharges Apj	5 to 7 Busin	ess Days	
CCME	Re Cer	other other	er Indicate Or Guidei te of A	ne or nalys	1		□ ³ □ □	Business ays				
sion for a Condițion? D No egend	Re Cer	eport rtifica Yes	Indicate Or Guidei te of A	ne oi nalys	1		0	R Date R	· 🗆	2 Business Days	Day Next	Busines
egend	Cer	Yes	te of A	ne o nalys	1			a baton	equired ((Rush Surchar	ges May Apply	·):
egend	00	0	274	N C	0			Please AT is excl ime Day'	provide p usive of v analysis	prior notificatio weekends and 9, please cont a	on for rush TAT statutory holic	days CPM
		0.	Reg 153				0, Reg 558	O. Reg	406			un .
mments/	Field Fittered - Met	als & Inorganics	als - 🗆 CrVI, 🗆 Hg, 🗆 X. F1-F4 PHCs		un de	s: Arociors	Jfill Disposal Characteri : □ M&I □ VOCs □ ABNs	Jation 406 SPLP Rainv P:□ Metals □ VOCs □ Potion A06 Chambrid	Ilation 400 unaracteriz CPMS Metals, BTEX, F1 osivity: D Moisture C			
Il Instructions	Y/N	Met	BTE	, voc	PAH	82	TCLP	SPLI	pH, I Corr	3		Onter
		100	×			E T		100			din .	
								-				
lt	2					ng		ri#			in a state	
100 Con 10	1 B	anh.				-1				ant -		
	4 36	Parette-			10	E.		0000		The	0.00	005
	1000	ACD/			3			01.11			- 12:5	
	_	-	3	-		1994		200	_			
						121		tat.		-		
				6-1	Date OQ	05/2	3 11	h30		_tt		
	d By (Print Name and Sign):	d By (Print Name and Sign):	d By (Print Name and Sign):	d By (Print Name and Sign):	d By (Print Name and Sign):	d By (Print Name and Sign):	d By (Print Name and Sign):	d By (Print Name and Sign):	d By (Print Name and Sign):	d By (Print Name and Sign): Date 09 105/23 Time Date 11 h30 Time Time Time Time Time Time Time Time Time Time Time	d By (Print Name and Sign): Law (print Name and Sign): Law (print Name and Sign): Date 09 05/23 IIIh30 Time 2 Pade	d By (Print Name and Sign): Date Date Date Time Time Date Date Date Date Date Date Date Dat

Any and all products and/or services provided by AGAT Labs are pursuant to the terms and conditions as set forth at www.agatlabs.com/termsandconditions unless otherwise agreed in a current written contractual document.

Your Project #: CA0008376.9447 Site Location: 30 CLEAR Your C.O.C. #: 958730-01-01

Attention: Keith Holmes

WSP Canada Inc. 1931 Robertson Rd Ottawa, ON CANADA K2H 5B7

> Report Date: 2023/10/18 Report #: R7867060 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C3V8008 Received: 2023/10/12, 15:48

Sample Matrix: Water # Samples Received: 1

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Petroleum Hydro. CCME F1 & BTEX in Water (1)	1	N/A	2023/10/17	CAM SOP-00315	CCME PHC-CWS m
Petroleum Hydrocarbons F2-F4 in Water (1, 2)	1	2023/10/16	2023/10/16	CAM SOP-00316	CCME PHC-CWS m

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCCFP, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) This test was performed by Bureau Veritas Mississauga, 6740 Campobello Rd , Mississauga, ON, L5N 2L8

(2) All CCME PHC results met required criteria unless otherwise stated in the report. The CWS PHC methods employed by Bureau Veritas conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following "Alberta Environment's Interpretation of the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Validation of Performance-Based Alternative Methods September 2003". Documentation is available upon request. Modifications from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data reported using validated cold solvent extraction instead of Soxhlet extraction.

Your Project #: CA0008376.9447 Site Location: 30 CLEAR Your C.O.C. #: 958730-01-01

Attention: Keith Holmes

WSP Canada Inc. 1931 Robertson Rd Ottawa, ON CANADA K2H 5B7

> Report Date: 2023/10/18 Report #: R7867060 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C3V8008 Received: 2023/10/12, 15:48

Encryption Key

Katherine Szozda Katherine Project Manager 18 Oct 2023 18:04:32

Please direct all questions regarding this Certificate of Analysis to: Katherine Szozda, Project Manager Email: Katherine.Szozda@bureauveritas.com Phone# (613)274-0573 Ext:7063633

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

WSP Canada Inc. Client Project #: CA0008376.9447 Site Location: 30 CLEAR Sampler Initials: ON

O.REG 153 PHCS, BTEX/F1-F4 (WATER)

Bureau Veritas ID		XGV818		
Sampling Data		2023/10/12		
Sampling Date		14:10		
COC Number		958730-01-01		
	UNITS	BH23-07	RDL	QC Batch
BTEX & F1 Hydrocarbons				
Benzene	ug/L	<0.20	0.20	8982633
Toluene	ug/L	<0.20	0.20	8982633
Ethylbenzene	ug/L	<0.20	0.20	8982633
o-Xylene	ug/L	<0.20	0.20	8982633
p+m-Xylene	ug/L	<0.40	0.40	8982633
Total Xylenes	ug/L	<0.40	0.40	8982633
F1 (C6-C10)	ug/L	<25	25	8982633
F1 (C6-C10) - BTEX	ug/L	<25	25	8982633
F2-F4 Hydrocarbons				
F2 (C10-C16 Hydrocarbons)	ug/L	<100	100	8984184
F3 (C16-C34 Hydrocarbons)	ug/L	<200	200	8984184
F4 (C34-C50 Hydrocarbons)	ug/L	<200	200	8984184
Reached Baseline at C50	ug/L	Yes		8984184
Surrogate Recovery (%)				
1,4-Difluorobenzene	%	95		8982633
4-Bromofluorobenzene	%	111		8982633
D10-o-Xylene	%	95		8982633
D4-1,2-Dichloroethane	%	96		8982633
o-Terphenyl	%	93		8984184
RDL = Reportable Detection I	imit			
QC Batch = Quality Control B	atch			

Petroleum Hydrocarbons F2-F4 in Water

WSP Canada Inc. Client Project #: CA0008376.9447 Site Location: 30 CLEAR Sampler Initials: ON

2023/10/16

(Kent) Maolin Li

TEST SUMMARY

Bureau Veritas ID: Sample ID:	XGV818 BH23-07					Collected: Shipped:	2023/10/12
Matrix:	Water					Received:	2023/10/12
Test Description		Instrumentation	Patch	Extracted	Data Analyzad	Analyst	
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Petroleum Hvdro, CCME	F1 & BTEX in Water	HSGC/MSFD	8982633	N/A	2023/10/17	Domnica A	ndronescu

8984184

2023/10/16

GC/FID

WSP Canada Inc. Client Project #: CA0008376.9447 Site Location: 30 CLEAR Sampler Initials: ON

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1 12.7°C

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

WSP Canada Inc. Client Project #: CA0008376.9447 Site Location: 30 CLEAR Sampler Initials: ON

			Matrix	Spike	SPIKED	BLANK	Method I	Blank	RPI)
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
8982633	1,4-Difluorobenzene	2023/10/17	94	70 - 130	94	70 - 130	94	%		
8982633	4-Bromofluorobenzene	2023/10/17	111	70 - 130	118	70 - 130	109	%		
8982633	D10-o-Xylene	2023/10/17	96	70 - 130	95	70 - 130	94	%		
8982633	D4-1,2-Dichloroethane	2023/10/17	86	70 - 130	94	70 - 130	92	%		
8984184	o-Terphenyl	2023/10/16	99	60 - 130	98	60 - 130	96	%		
8982633	Benzene	2023/10/17	93	50 - 140	87	50 - 140	<0.20	ug/L	NC	30
8982633	Ethylbenzene	2023/10/17	107	50 - 140	96	50 - 140	<0.20	ug/L	NC	30
8982633	F1 (C6-C10) - BTEX	2023/10/17					<25	ug/L	NC	30
8982633	F1 (C6-C10)	2023/10/17	107	60 - 140	95	60 - 140	<25	ug/L	NC	30
8982633	o-Xylene	2023/10/17	97	50 - 140	93	50 - 140	<0.20	ug/L	NC	30
8982633	p+m-Xylene	2023/10/17	108	50 - 140	102	50 - 140	<0.40	ug/L	NC	30
8982633	Toluene	2023/10/17	94	50 - 140	88	50 - 140	<0.20	ug/L	NC	30
8982633	Total Xylenes	2023/10/17					<0.40	ug/L	NC	30
8984184	F2 (C10-C16 Hydrocarbons)	2023/10/17	109	60 - 130	106	60 - 130	<100	ug/L	NC	30
8984184	F3 (C16-C34 Hydrocarbons)	2023/10/17	111	60 - 130	112	60 - 130	<200	ug/L	NC	30
8984184	F4 (C34-C50 Hydrocarbons)	2023/10/17	111	60 - 130	110	60 - 130	<200	ug/L	NC	30

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

WSP Canada Inc. Client Project #: CA0008376.9447 Site Location: 30 CLEAR Sampler Initials: ON

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Anastassia Hamanov, Scientific Specialist

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

() HEMAN	www.BVNA.com 6740 Camp Phone: 905	obello Road, -817-5700	, Mississ Fax: 90	sauga, O 05-817-1)ntario 5779	LSN 2L8 Toll Fre	re: 800-563-62	56								C	HAIN	OF (CUST OC -	ODY 0001	RECO 4v3	RD	CR	ive	d	ir	1 0)ttawa Page	1	of
Invoice Inform	mation Invoice to (requires report)	-	-	Report	Inform	ation (if	differs from in	voice)						_		Pro	lact In	(ormat	lon			_				10	0	-+ 02 16.	10	
Company :	IWSP	Company:	1					(dicci)				Quota	tion #:	Т		rioj	Ject in	ormat	ion							12	-0	oct-23 15:	48	
Contact	KRIH HOMARS	Contact	-								-	20.0	/ AFE#-	t				-		_		-	-	Ka	the	rir	ne f	Szozda		
Street	19212 11 10 1 20	Street	1									Projer	* #-		r.A.	100	0-	27	1 1	210	12		11	Ш						
City:	Haus Prov. CAL Postal	Address:				Prov	_	Post	tal	T		cito #		-	140	200	10.	241	000	140	1 +	_			C.	5 V	8	108	~	
Phone:	1613 - 597 - 91000	Phone:	1		-	1		Cod	e:			Site L	wation		20	17	1.00					-	٨	117			EN	11 1268	C	
Email:	Kaill D hallward Die	Email:										Site Lo	ocation	+	-0	6	140	sci-					-	.1 V	-		EI	NV-1508		
Copies:	PALITA P. Normesterop.	Copier:	-									Provin	ice: led By:	-	51:	is.d	3	No	10				-							
Table	Regulatory Crit	eria fCME teg 558* *min 3 day MISA PWQO	TA1	Reg Sani Stor	406, Ta itary Se rm Sew Mon er:	ible: iwe: Byla ier Bylaw iicipality	w		2	1.2	0	3	6 7		8 9	10	11	12	13	14 1	5 16	17	18	19	20	21	22	Regular Tu S to 7 Day Rush Turn Surd	naround Tir around Tim harges appl	me (TAT) 10 Day e (TAT) Y
200 A 10	AND USE AND A CONTRACT OF A CONTRACT OF A	LING UNTIE	DECEMPR DECEMPR de Samp	s): IV TO BL	JREAU Time	veritaş e (24hr)		VENED	15ERVED	RATION SEQUIRED			metals and increase	Press and all all all all all all all all all al	metals motals	IC										TAINERS SUBMITT	D NOT ANALYZE	Same Day		1 Day 3 Day
	Sample Identification	77	MINE	DD	нн	INM	Matrix	IE OF BIL	214 (113)	AB FALD	TUNE	5.14	0G		eg 153 r	Hd										OF CON	21- CTC	Date Required:		MM
1	3423-07	123	10	12	14	10	GW	T	14	-	X	u	2 4	-	2 8 2	X		-	+	+	+	1-		-	+	1	¥		omn:ents	
2				1	1			T					1	T					1	+	+	1		-	+	1				
3			-		1	1		1			-	-+	-	1	1	+		-	+	+	+	1		+	+	+	+			
			1	+	1	1		+-	-			-	+	t	+-			-	+	+	+	-		+	+	-	-+			
5					1			+	-				-+-	+		-	-	-	-+		+	-			+	-				
						-		-					-	-				_	_					_	_	_	_			
			-		ļ			1.	-																					
7								1																						
8								1																						
,	1							1	T					1	1	1		1	1	-	+			+	-	+				
0	_ 1 ²		1	1				1-	1-1		1	+		+	-	-	-	+	+	+	+	+-	\vdash	-+	+	+	-			
1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			+	\vdash			+-	-		-	+	-	+-	+					+	+-			-	+	+	-			
			-	-	-			-						-	-			-	-		+			-	-	-	-			
State Ma	DEPUTITE A COVER TO AN A REPORT	ing Manager	California and	August 1		A designed	Sec		-			and the second																		
CONTRACTOR OF CONTRACTOR	TERMINE WORKED TO IN WRITING, WORK SUBMITTED ON THE	AS CHAIN OF	AILABLE	FOR VIE	BIECT 1	AT WWW	AU VERITAS ST	ERMS	D TER	ONDIT	Na on Ica sic	IDITION OR BY	NS SIGI	NING	OF THIS	S CHAIN	USTEC	ABON	Y DOC	UMEN	A COP	NOWL	EDGM	ENT A	ID AC	CEPT	ANCE	OF OUR TERMS AN	D CONDITIO	NS WHICH A
LAD C leal present leal intact Cooling media Ref	SE ONLY Ves No rc 16 / 6 a present rc 100 1 2 linquished by: (Signature/ Print) v	5 7	Seal pr Seal in Coolin	LAB US resent stact ig media	preser Time	nt	Yes	No	ceived	c bv: (5	1 I	2	ح ا	3	8	Seal p Seal i Coolid	presen intact ng mer	LAB U t dia pre	SE ON	LY		Y	es	No	e	°C		1 2 Special i	3	Temperatu reading b
Oliv	ia Dale allerende 23	10 1	21	5	0	0	<u>1 Samu</u> 2 -	el	Du	10	1	18	ml'	th	12	20	23	3	1	0	1	23	HI] !	5	42	3				C

