

Phase Two Environmental Site Assessment Zoning By-Law Amendment Application 6158 Rideau Valley Drive Ottawa, Ontario

GEMTEC Project: 100011.082

Submitted to:

Millers Farm 6158 Rideau Valley Drive North Manotick, Ontario K4M 1B3

Phase Two Environmental Site Assessment Zoning By-Law Amendment Application 6158 Rideau Valley Drive Ottawa, Ontario

> September 4, 2024 GEMTEC Project: 100011.082

GEMTEC Consulting Engineers and Scientists Limited 32 Steacie Drive Ottawa, ON, Canada K2K 2A9

September 4, 2024

File: 100011.082

Millers Farm 6158 Rideau Valley Drive North Manotick, Ontario K4M 1B3

Attention: Jaime Mallory, Planner I, Development Review - Rural Services

Re: Phase Two Environmental Site Assessment Zoning By-Law Amendment Application 6158 Rideau Valley Drive Ottawa, Ontario

Enclosed is our Phase Two Environmental Site Assessment report for the above noted project. The report presented herein is based on the scope of work discussed in the proposal dated June 11, 2024. This report was prepared by Mohit Bhargav, M.Sc.E, EIT, and reviewed by Nicole Soucy, M.A.Sc., P.Eng, QP_{ESA}.

We trust this information is sufficient for your current needs. If you have any questions or require further information, please contact the undersigned.

Wolvit Blungar

Mohit Bhargav, M.Sc.E., EIT Environmental Scientist

MB/NS

Enclosures

Nicole Soucy, M.A.Sc., P.Eng, QP_{ESA} Environmental Engineer

N:\Projects\100000\100011.082\05_Technical Work\Phase Two ESA\100011.082_RPT_PhaseTwoESA_2024-09-04-Rev1.docx

EXECUTIVE SUMMARY

GEMTEC Consulting Engineers and Scientists Limited (GEMTEC) was retained by the Owners of 6158 Rideau Valley Drive to carry out a Phase Two Environmental Site Assessment (ESA) for a portion of the property located at 6158 Rideau Valley Drive in Ottawa, Ontario. It is understood that this Phase Two ESA is required to support a minor zoning by-law amendment application with the City of Ottawa.

The proposed area (herein referred to as the 'Site') to be rezoned through a minor zoning by-law amendment application fronts along Rideau Valley Drive up to a municipal drain (McIntyre Scobie Drain). The Site is not considered an enhanced investigation property as defined under Ontario Regulation (O.Reg.) 153/04, as amended. The land use of the Site will not be changing to a more sensitive land use, and therefore it is anticipated the filing of a Record of Site Condition (RSC) under O.Reg. 153/04 will not be required. The Phase Two ESA was carried out in general accordance with O.Reg. 153/04, as amended.

GEMTEC completed a Phase One ESA at the Site in June 2024. The findings of the Phase One ESA are provided under a separate cover entitled:

• Phase One Environmental Site Assessment, Zoning By-Law Amendment Application, 6158 Rideau Valley Drive, Ottawa, Ontario. GEMTEC Project 100011.082.

A Phase Two ESA was recommended to address the three areas of potential of environmental concern (APECs) identified on the Site as part of Phase One ESA (GEMTEC, June 2024). The APECs identified during the Phase One ESA investigation are provided below.

APEC #	APEC	Location of APEC on the Site	PCA	Location of PCA (On- Site and/or Off-Site)	COPCs	Media Potentially Impacted (Soil, Groundwater and/or Sediments)
1	Presence of Oil Water Separator and general maintenance of farm equipment at Structure 7.	Along the western building line of Building Workshop (Structure 7)	OT 1	On-Site	PHC F1-F4, VOCs, PAHs	Soil Groundwater
2	Presence of Aboveground Storage Tanks (ASTs)	Along the western building line of Storage Shed (Structure 3)	28	On-Site	PHC F1-F4, BTEX, PAHs	Soil Groundwater

APEC #	APEC	Location of APEC on the Site	PCA	Location of PCA (On- Site and/or Off-Site)	COPCs	Media Potentially Impacted (Soil, Groundwater and/or Sediments)
3	Bulk Salt Storage	Building footprint of Storage Shed (Structure 9)	48	On-Site	EC, SAR Sodium, Chloride	Soil Groundwater
Notes: 28. Gasoline 48. Salt Manı OT 1: Preser PCA – Poten	and Associated Prod ufacturing, Processin ice of an Oil Water Si tially Contaminating /	ucts Storage in Fixed Tar g and Bulk Storage eparator Activities	nks			

COPCs - Contaminants of Potential Environmental Concern

PHC F1-F4 – Petroleum Hydrocarbons F1-F4

 $\mathsf{BTEX}-\mathsf{Benzene},\,\mathsf{Toluene},\,\mathsf{Ethylbenzene},\,\mathsf{and}\,\,\mathsf{Xylene}$

EC – Electrical Conductivity

SAR – Sodium Adsorption Ratio

VOCs – Volatile Organic Compounds

PAHs – Polycyclic Aromatic Hydrocarbons

Six boreholes (labelled BH24-01 through BH24-06) were advanced by Strata Drilling Group using a Geomachine GM100 to depths ranging between 3.65 m below ground surface (bgs) to 6.10 m bgs as part of the Phase Two ESA investigation on July 18, 2024. The macro core soil samples were obtained at regular depth intervals and logged in the field noting subsurface. Four out of six locations were installed with groundwater monitoring wells (labelled BH/MW24-01, BH/MW24-03, BH/MW24-04, and BH/MW24-05) as part of the investigation.

The subsurface soil conditions encountered in the boreholes generally consisted of brown silty sand with varying amounts of gravel from BH24-01 to BH24-04 whereas the subsurface soil conditions at BH24-05 and BH24-06 consisted of brown silty sand with varying amounts of gravel underlain by silty clay.

A total of ten soil samples were collected and analyzed for one or more of the following contaminants of potential concern (COPCs): Electrical Conductivity (EC), Sodium Adsorption Ratio (SAR), pH, Petroleum Hydrocarbons F1-F4 (PHC F1-F4), Volatile Organic Compounds (VOCs), Polycyclic Aromatic Hydrocarbons (PAHs), Benzene, Toluene, Ethylbenzene, and Xylene (BTEX).

A total of five groundwater samples were collected and analyzed for one or more of the following contaminants of potential concern (COPCs): Sodium, Chloride, PHC F1-F4, VOCs, and PAHs in addition to one field blank and one trip blank submission for PHC F1 and VOCs.

The soil analytical results were compared to Table 2 Full Depth Generic Site Condition Standards (SCS) in a Potable Ground Water Condition for Residential/Parkland/Institutional (RPI) land use with coarse textured soil. The groundwater analytical results were compared to Table 2 Full Depth Generic Site Condition Standards in a Potable Ground Water Condition for All Types of Property Use with coarse textured soil.

No exceedances were reported for soil samples except for SAR sample collected from BH24-01. As per Section 48(2) of O. Reg. 153/04, if two or more samples of soil are taken from sampling points at the same sampling location that are at the same depth under the property, the property meets a standard mentioned in subsection (1) if the average of the sampling results meets the standard and in no other circumstances. Based on this consideration, averaging was applied to the two samples that were collected from BH24-01 i.e., SA5 and SA105. The average value resulting between the two samples is 2.75, and therefore would not be considered an exceedance at the Site.

No exceedances of O.Reg. 347/558 Schedule 4 were identified in the leachate (Toxicity Characteristic Leaching Procedure (TCLP)) sample.

No exceedances for groundwater samples were noted at any of the sampling locations.

Based on the above-noted findings, no additional work is recommended at this time.

TABLE OF CONTENTS

1.0 IN	ITRODUCTION	1
1.1	Site Description	1
1.2	Site Ownership	1
1.3	Current and Proposed Future Uses	2
1.4	Applicable Site Condition Standards	2
1.4 1.4	.1 Soil and Groundwater Standards	
2.0 BA	ACKGROUND INFORMATION	4
2.1	Physical Setting	
2.2	Past Investigations	5
2.2	.1 Phase One Environmental Site Assessment	
		0
3.0 SC	COPE OF THE INVESTIGATION	6
3.1	Overview of the Phase Two ESA Investigation	6
3.2	Media Investigated	7
3.3	Phase One ESA Conceptual Site Model	7
3.4	Deviations from Sampling and Analysis Plan	8
3.5	Impediments	8
4.0 IN	VESTIGATION METHOD	9
4.0 IN 4.1	VESTIGATION METHOD	9
4.0 IN 4.1 4.2	VESTIGATION METHOD General Borehole Drilling	9 9 9
4.0 IN 4.1 4.2 4.3	VESTIGATION METHOD General Borehole Drilling Soil Sampling	9 9 9 10
4.0 IN 4.1 4.2 4.3 4.4	VESTIGATION METHOD General Borehole Drilling Soil Sampling Field Screening Measurements	9 9 9 10 10
4.0 IN 4.1 4.2 4.3 4.4 4.5	VESTIGATION METHOD General Borehole Drilling Soil Sampling Field Screening Measurements Groundwater - Monitoring Well Installation	9 9 9 10 10 11
4.0 IN 4.1 4.2 4.3 4.4 4.5 4.6	VESTIGATION METHOD General Borehole Drilling Soil Sampling Field Screening Measurements Groundwater - Monitoring Well Installation Groundwater - Field Measurements for Water Quality Parameters	9 9 10 10 11 11
4.0 IN 4.1 4.2 4.3 4.4 4.5 4.6 4.7	VESTIGATION METHOD General Borehole Drilling Soil Sampling Field Screening Measurements Groundwater - Monitoring Well Installation Groundwater - Field Measurements for Water Quality Parameters Groundwater - Development, Purging and Sampling	9 9 10 11 11 11
4.0 IN 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8	VESTIGATION METHOD General Borehole Drilling Soil Sampling Field Screening Measurements Groundwater - Monitoring Well Installation Groundwater - Field Measurements for Water Quality Parameters Groundwater - Development, Purging and Sampling Sediment Sampling	9 9 10 10 11 11 11 11
4.0 IN 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9	VESTIGATION METHOD General Borehole Drilling Soil Sampling Field Screening Measurements Groundwater - Monitoring Well Installation Groundwater - Field Measurements for Water Quality Parameters Groundwater - Development, Purging and Sampling Sediment Sampling Laboratory Analytical Program.	9 9 10 11 11 11 11 11 12
4.0 IN 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10	VESTIGATION METHOD General Borehole Drilling Soil Sampling Field Screening Measurements Groundwater - Monitoring Well Installation Groundwater - Field Measurements for Water Quality Parameters Groundwater - Development, Purging and Sampling Sediment Sampling Laboratory Analytical Program. Residue Management.	9 9 10 11 11 11 11 11 12 12
4.0 IN 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10 4.11	VESTIGATION METHOD General Borehole Drilling Soil Sampling Field Screening Measurements Groundwater - Monitoring Well Installation Groundwater - Field Measurements for Water Quality Parameters Groundwater - Development, Purging and Sampling Sediment Sampling Laboratory Analytical Program Residue Management. Surveying	9 9 10 11 11 11 11 12 12 12
4.0 IN 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10 4.11 4.12	VESTIGATION METHOD General Borehole Drilling Soil Sampling Field Screening Measurements Groundwater - Monitoring Well Installation Groundwater - Field Measurements for Water Quality Parameters Groundwater - Development, Purging and Sampling Sediment Sampling Laboratory Analytical Program Residue Management Surveying Quality Assurance / Quality Control Program	9 9 10 11 11 11 11 12 12 12 12
4.0 IN 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10 4.11 4.12 5.0 RE	VESTIGATION METHOD General Borehole Drilling Soil Sampling Field Screening Measurements Groundwater - Monitoring Well Installation Groundwater - Field Measurements for Water Quality Parameters Groundwater - Development, Purging and Sampling Sediment Sampling Laboratory Analytical Program Residue Management Surveying Quality Assurance / Quality Control Program	9 9 10 10 11 11 11 11 12 12 12 12 12 12
4.0 IN 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10 4.11 4.12 5.0 RE 5.1	VESTIGATION METHOD General Borehole Drilling Soil Sampling. Field Screening Measurements. Groundwater - Monitoring Well Installation Groundwater - Field Measurements for Water Quality Parameters Groundwater - Development, Purging and Sampling Sediment Sampling. Laboratory Analytical Program Residue Management. Surveying. Quality Assurance / Quality Control Program EVIEW AND EVALUATION Geology	9 9 10 10 11 11 11 12 12 12 12 12 12 12 13 13
4.0 IN 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10 4.11 4.12 5.0 RE 5.1 5.2	VESTIGATION METHOD General Borehole Drilling Soil Sampling Field Screening Measurements Groundwater - Monitoring Well Installation Groundwater - Field Measurements for Water Quality Parameters Groundwater - Development, Purging and Sampling Sediment Sampling Laboratory Analytical Program Residue Management Surveying Quality Assurance / Quality Control Program EVIEW AND EVALUATION Geology Groundwater - Elevations and Flow Direction	9 9 10 10 11 11 11 11 12 12 12 12 12 12 12 12 13 13 14
4.0 IN 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10 4.11 4.12 5.0 RE 5.1 5.2 5.3	VESTIGATION METHOD General Borehole Drilling Soil Sampling Field Screening Measurements Groundwater - Monitoring Well Installation Groundwater - Field Measurements for Water Quality Parameters Groundwater - Development, Purging and Sampling Sediment Sampling Laboratory Analytical Program Residue Management Surveying Quality Assurance / Quality Control Program EVIEW AND EVALUATION Geology Groundwater - Elevations and Flow Direction Groundwater: Hydraulic Gradients	9 9 10 10 11 11 11 12 12 12 12 12 12 12 13 13 14 14

5.	5	Soil - Field Screening	15
5.	6	Soil - Quality	15
5.	7	Groundwater – Quality	16
5.	8	Sediment - Quality	16
5.	9	Quality Assurance and Quality Control Results	16
5.	10	Phase Two Conceptual Site Model	17
	5.10	0.1 Property Description and History	17
	5.10	0.2 Previous Investigation	18
	5.10	0.3 Potentially Contaminating Activities	18
	5.10	0.4 Area of Potential Environmental Concern	19
	5.10	0.5 Subsurface Structures and Utilities	20
	5.10	0.6 Physical Setting	20
	5.	.10.6.1 Topography	20
	5.	.10.6.2 Stratigraphy – Boreholes	20
	5.	.10.6.3 Depth to Bedrock	21
	5.	.10.6.4 Hydrogeological Characteristics	21
	5.	.10.6.5 Depth to Groundwater	21
	5.	.10.6.6 Environmentally Sensitive Areas	21
	5.	.10.6.7 Shallow Soil Property or Water Body	21
	5.10	J.7 Applicable Site Condition Standards	
	5.10	0.8 Contaminated Media	23
	5.10	0.9 Description of Areas of Contamination on the Site	23
	5.10	D.10 Potential Influence of Utilities on Contaminant Migration	23
	5.10	0.11 Contaminant Migration	24
	5.10	0.12 Meteorological and Climatic Considerations	24
	5.10	0.13 Cross Sections – Lateral and Vertical Distribution of Contaminants	24
6.0	CC	DNCLUSIONS	24
6.	1	Signatures	24
70			05
1.0	ΠE		20
8.0	LIN	MITATION OF LIABILITY	26

NOTE: This document and any attachments are confidential and intended solely for the use of the individual or entity to whom they are addressed. If you have received this document in error, please notify the sender immediately and delete the document from your system. Any unauthorized disclosure, copying, distribution, or reliance on the contents of this document is prohibited. Thank you for your cooperation.

LIST OF TABLES

Table 1.1: Legal Description and Site Information	1
Table 2.1: APECs as per Phase One ESA (GEMTEC, June 2024)	5
Table 4.1: Borehole locations with investigated APECs	9
Table 4.2: RKI Eagle 2 details for field screening	.10
Table 5.1: Monitoring Well details	.14
Table 5.2: Hydraulic gradients between monitoring well sets	.15
Table 5.3: Parent and duplicate samples	.16
Table 5.4: Legal Description and Site Information	.18
Table 5.5: Summary of Potentially Contaminating Activities	.18
Table 5.6: Areas of Potential Environmental Concern	.19

LIST OF APPENDICES

Appendix A	Figures
Appendix B	Borehole Logs
Appendix C	Soil and Groundwater Analytical Data
Appendix D	Certificate of Analysis

1.0 INTRODUCTION

GEMTEC Consulting Engineers and Scientists Limited (GEMTEC) was retained by the Owners of 6158 Rideau Valley Drive to carry out a Phase Two Environmental Site Assessment (ESA) for a portion of the property located at 6158 Rideau Valley Drive in Ottawa, Ontario. It is understood that this Phase Two ESA is required to support a minor zoning by-law amendment application with the City of Ottawa.

The proposed area (herein referred to as the 'Site') to be rezoned through a minor zoning by-law amendment application fronts along Rideau Valley Drive up to a municipal drain (McIntyre Scobie Drain). The Site is not considered an enhanced investigation property as defined under Ontario Regulation (O.Reg.) 153/04, as amended. The land use of the Site will not be changing to a more sensitive land use, and therefore it is anticipated the filing of a Record of Site Condition (RSC) under O.Reg. 153/04 will not be required. The Phase Two ESA was carried out in general accordance with O.Reg. 153/04, as amended.

GEMTEC previously completed a Phase One ESA for the Site titled 'Phase One Environmental Site Assessment, Zoning By-Law Amendment Application, 6158 Rideau Valley Drive, Ottawa, Ontario' dated June 12, 2024. The findings for the Phase One ESA are provided under a separate cover. As summarized in the Phase One ESA, GEMTEC recommended a Phase Two ESA be completed for the Site.

The approximate boundaries and the location of the Site are provided on Figure A.1, Appendix A.

1.1 Site Description

The Site covers an approximate area of 44,400 square metres (m²) and is occupied by nine structures owned and operated by 'Millers Farm and Market'. Based on the available aerial photographs, the Site was first developed sometime circa 1946 considering two structures were present in the southern portion of the Site (current location of Two Storey Barn (Structure 1) and Residential Building (Structure 2)) and the land use at the Site was agricultural. Historical land use in the Phase One Study Area (or Study Area) was predominately agricultural and rural residential with community right of ways (i.e., roadways). The Site features (including structures) are shown in Figure A.2, Appendix A.

1.2 Site Ownership

The details for the Site are summarized in Table 1.1.

Table 1.1: Legal Description and Site Information

	Site Information
Legal Description ¹	PART OF LOT 13, CONCESSION BF, AKA CON ABF, BEING PARTS 2 AND 4 ON 5R6592, EXCEPT PART 1 ON 4R18840, OTTAWA. S/T NS171551

1

Site Information					
PIN	03909-0149 (LT)				
Site Owner	Ronald Miller and Suzzanne Miller				
Site Contact	Mr. David Beveridge				

Note:

1. The legal description provided for the Site also includes the legal description for 6158 Rideau Valley Drive, a much larger land parcel.

1.3 Current and Proposed Future Uses

Currently the Site is occupied by nine structures which are owned by Ronald Miller and Suzzanne Miller and operated as Millers Farm and Market. The Site was used for agricultural purposes historically and the current use encompasses a combination of agricultural activities (including market gardening, chicken coops, and the operation of greenhouses) as well as commercial operations (such as a sales shop, and landscape soil depot). The future land use is not anticipated to change.

1.4 Applicable Site Condition Standards

1.4.1 Soil and Groundwater Standards

Site Condition Standards (SCS) were selected for the Site in accordance with the requirements of O.Reg. 153/04, Record of Site Condition – Part XV.1 of the Environmental Protection Act (O.Reg. 153/04, Ministry of Environment and Climate Change (MECP), October 31, 2011), as amended.

The relevant Site characteristics were considered in the selection of the applicable regulatory criteria are as follows:

- Land Use: The Site is currently used for a combination of agricultural activities (including market gardening, chicken coops, and the operation of greenhouses) as well as commercial operations (such as a sales shop). The future land use is expected to be the same. However, a residential building (Structure 2) is present on-Site. Therefore, the land use for the Site is considered Agricultural or Other Property Use.
- Soil Texture: Based on visual observations made during the Environmental Field Investigation (field program/environmental investigation), coarse grained soils are present on-Site. Coarse textured soil is defined by Section 42(1) of O. Reg.153/04 as 'soil that contains 50 percent or more by mass of particles that are greater than 75 micrometres in mean diameter'. Accordingly, coarse textured soils have been considered applicable for the Site.

- Soil Thickness and Proximity to Water Body: For the purposes of selection of the appropriate provincial standard, Section 43.1 of O. Reg.153/04 identifies specific SCS be applied if any of the following circumstances exist:
 - (a) The property is a shallow soil property (i.e., at least 1/3 or more of the property area contains less than 2 metres depth of overburden); or
 - (b) The property includes all or part of a water body or is adjacent to a water body or includes land that is within 30 metres of a water body.

Based on a review of the surficial and bedrock geology maps of the area, and results obtained from the intrusive investigation, the Site is not considered a shallow soil property as the overburden thickness is greater than 2 m for more than two-thirds of the Site. The property does not include a water body nor is it located within 30 metres of a water body.

- Groundwater Use: The Site and adjacent properties rely on groundwater as a potable source of water. Through review of the Ontario Water Well records, potable domestic wells were identified within 250 m the of the Site. Accordingly, the Site has been considered to be situated within a potable water well zone.
- Environmentally Sensitive Site: Environmental sensitivity is considered in the selection of appropriate provincial standards for comparison. Section 41 of O.Reg.153/04 states that a property is to be considered environmentally sensitive if any of the following are applicable:
 - (1) the property is,
 - (i) within an area of natural significance;
 - (ii) includes or is adjacent to an area of natural significance or part of such an area; or
 - (iii) includes land that is within 30 metres of an area of natural significance or part of such an area;
 - (2) the soil at the property has a pH value as follows:
 - (i) for surface soil, less than 5 or greater than 9;
 - (ii) for sub surface soil, less than 5 or greater than 11; or
 - (3) a qualified person is of the opinion that, given the characteristics of the property and the certifications the qualified person would be required to make in a record of site condition in relation to the property as specified in Schedule A, it is appropriate to apply this section to the property.

Through a review of samples submitted for analysis during the field program, the pH values were within range for surface soil and subsurface soil. Therefore, the Site is not considered to be an environmentally sensitive site. Additionally, no water bodies or Areas of Natural and Scientific Interest (ANSIs) were identified on or within 30 m of the Site. McIntyre Scobie Drain, a municipal drain and not a permanent water body, is present along the west edge of the Site and the Rideau River is present approximately 400 m northeast of the Site.

Based on the review of Site characteristics, the following provincial standards were considered to be applicable to the analytical results obtained during the field investigation:

- Soil: MECP, 2011. Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act. Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition for Agricultural or Other Property Use (Agri) land use with coarse textured soil.
- Groundwater: MECP, 2011. Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act. Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition for All Types of Property Use with coarse textured soil.

1.4.2 Soil Waste Classification

The following provincial standards were considered to be applicable to the soil analytical results obtained during the environmental investigation to confirm off-Site disposal requirements:

• MECP Ontario Regulation (O.Reg.) 347/558 Schedule 4, Leachate Quality Criteria, to evaluate waste classification (hazardous or non-hazardous waste) for on-Site soils.

2.0 BACKGROUND INFORMATION

This section presents the background conditions of the Site including a description of the physical setting and a summary of past investigations conducted.

The objectives of the Phase Two ESA were to obtain information about environmental conditions in the soil and groundwater on, in or under the Site, and to develop the information necessary to complete the Phase Two ESA for the Site. The objectives of this Phase Two ESA were achieved by:

- Developing an understanding of the geological and hydrogeological conditions at the Site; and,
- Conducting field sampling for all contaminants of potential concern (COPCs) associated with the areas of potential environmental concern (APECs) identified in the Phase One ESA (GEMTEC, June 2024).

2.1 Physical Setting

The Site has a relatively flat topography and is at an elevation of approximately 88 metres (m) above sea level (asl). The Site has a topographic high point and gradually slopes either towards Rideau Valley Drive (located to the east of the Site) or McIntyre Scobie Drain (located to the west of the Site). Surrounding local topography generally slopes gradually downwards towards Rideau River which is located approximately 400 m northeast of the Site.

Overburden is generally mapped as fine-textured glaciomarine deposits (i.e., silt and clay, minor sand and gravel) and stone-poor, sandy silt to silty sand-textured till with a thickness ranging from 15 to 25 m. The bedrock is mapped as dolostone, and sandstone of Beekmantown Group.

No provincially significant wetlands (PSWs) or ANSIs were identified on the Site.

The physical setting for the Site is consistent based on GEMTEC's observation during the Phase Two ESA field program.

2.2 Past Investigations

A Phase One ESA was completed by GEMTEC for the Site and is summarized below.

2.2.1 Phase One Environmental Site Assessment

GEMTEC conducted a Phase One ESA titled 'Phase One Environmental Site Assessment, Zoning By-Law Amendment Application, 6158 Rideau Valley Drive, Ottawa, Ontario' dated June 2024 to assess the likelihood of soil and/or groundwater contamination resulting from historical or present activities at the Site and surrounding area. This included a review of available historical information on the Site and surrounding area, interviews with persons familiar with the Site and a Site reconnaissance. Based on this report, several potentially contaminating activities (PCAs) were identified resulting in three APECs at the Site.

Figure A.3, Appendix A illustrates the location of the PCAs and the APECs. The APECs identified in the Phase One ESA (GEMTEC, June 2024) are summarized in Table 2.1.

APEC #	APEC	Location of APEC on the Site	PCA	Location of PCA (On- Site and/or Off-Site)	COPCs	Media Potentially Impacted (Soil, Groundwater and/or Sediments)
1	Presence of Oil Water Separator and general maintenance of farm equipment at Structure 7.	Along the western building line of Building Workshop (Structure 7)	OT 1	On-Site	PHC F1-F4, VOCs, PAHs	Soil Groundwater
2	Presence of Aboveground Storage Tanks (ASTs)	Along the western building line of Storage Shed (Structure 3)	28	On-Site	PHC F1-F4, BTEX, PAHs	Soil Groundwater

Table 2.1: APECs as per Phase One ESA (GEMTEC, June 2024)

APEC #	APEC	Location of APEC on the Site	PCA	Location of PCA (On- Site and/or Off-Site)	COPCs	Media Potentially Impacted (Soil, Groundwater and/or Sediments)
3	Bulk Salt Storage	Building footprint of Storage Shed (Structure 9)	48	On-Site	EC, SAR Sodium, Chloride	Soil Groundwater
Notoe:						

Notes:

28. Gasoline and Associated Products Storage in Fixed Tanks

48. Salt Manufacturing, Processing and Bulk Storage

OT 1: Presence of an Oil Water Separator

PHC F1-F4 – Petroleum Hydrocarbons F1-F4

BTEX - Benzene, Toluene, Ethylbenzene, and Xylene

EC - Electrical Conductivity

SAR – Sodium Adsorption Ratio

VOCs - Volatile Organic Compounds

PAHs – Polycyclic Aromatic Hydrocarbons

3.0 SCOPE OF THE INVESTIGATION

3.1 **Overview of the Phase Two ESA Investigation**

The Phase Two ESA investigation activities were completed between July 18, 2024, and August 2, 2024. The Phase Two ESA included the following tasks:

- Health and Safety Plan: Preparation of a Health and Safety Plan for internal and subcontractor use prior to initiating any field work at the Site;
- Utility Clearances: Coordination of utility clearances with local utility companies along with retaining the services of a private locator to assess for possible services in the areas of the proposed borehole locations;
- Sampling and Analysis Plan (SAP): Preparation of an informal SAP to document the purpose, rationale, number and location of samples to be recovered as part of the Phase Two ESA investigation. More details are available in Section 4.2;
- Borehole Advancement and Monitoring Well Installation: The Phase Two ESA • investigation activities included the drilling of six boreholes and completion of four of the boreholes as monitoring wells. The locations of the boreholes and monitoring well are provided in Figure A.4, Appendix A;
- Soil Sampling: Soil samples were collected on July 18, 2024 from the boreholes. Eight soil samples were submitted for chemical analysis of one or more of the following COPCs:
 - Petroleum Hydrocarbon (PHC) Four Fractions (F1-F4);
 - Volatile Organic Compounds (VOCs);
 - Electrical conductivity (EC);

- Sodium adsorption ratio (SAR);
- pH;
- Polycyclic Aromatic Hydrocarbons (PAHs); and,
- Benzene, Toluene, Ethylbenzene, and Xylene (BTEX).
- Details of COPCs with respect to the sampling locations is available in Section 4.2.
- Groundwater Monitoring and Sampling: Five groundwater samples were collected on August 2, 2024 from the monitoring wells. The groundwater samples were submitted for chemical analysis of one or more of the following COPCs:
 - PAHs;
 - PHC F1-F4;
 - BTEX;
 - VOCs;
 - Sodium and Chloride; and,
 - Field Blank and Trip Blank for PHC F1/VOCs.
 - Details of COPCs with respect to the sampling locations is available in Section 4.2.
- **Surveying:** An elevation survey for boreholes and monitoring wells was completed using a high precision digital GPS (Trimble R10); and,
- **Reporting:** GEMTEC compiled and assessed the field and laboratory results from the above-noted activities into this report.

The Phase Two ESA was carried out in general accordance with GEMTEC's standard operating procedures, which conform to the requirements of O. Reg. 153/04.

3.2 Media Investigated

The Phase Two ESA field program included sampling of subsurface soil from boreholes and groundwater from the monitoring wells to address the potential environmental issues identified in the Phase One ESA.

No sediment was present at the Site and, therefore, no sediment sampling was completed.

3.3 Phase One ESA Conceptual Site Model

The following describes the Phase One ESA Conceptual Site Model (CSM) based on the information obtained and reviewed as part of the Phase One ESA (GEMTEC, June 2024).

- The Site is a portion of the property located at 6158 Rideau Valley Drive in Ottawa, Ontario and covers an approximate area of 44,400 m². A total of nine structures are present on the Site and the Site features (including structures) are shown in Figure A.2, Appendix A.
- Based on the available aerial photographs, the Site was first developed sometime circa 1946 considering two structures were present in the southern portion of the Site (current location of Two Storey Barn (Structure 1) and Residential Building (Structure 2)) and the land use at the Site was agricultural. Historical land use in the Phase One Study Area was

predominately agricultural and rural residential with community right of ways (i.e., roadways).

- Current surrounding land uses include agricultural, community, and residential;
- The Site and nearby developed properties are serviced with natural gas and overhead hydro. Groundwater is used as the source of potable water in the study area;
- The elevation of the Site approximately 88 m asl. The Site has a topographic high point and gradually slopes either towards Rideau Valley Drive (located to the east of the Site) or McIntyre Scobie Drain (located to the west of the Site). Surrounding local topography generally slopes gradually downwards towards Rideau River which is located approximately 400 m northeast of the Site.
- Overburden is generally mapped as fine-textured glaciomarine deposits (i.e., silt and clay, minor sand and gravel) and stone-poor, sandy silt to silty sand-textured till with a thickness ranging from 15 to 25 m.
- The bedrock is mapped as dolostone, and sandstone of Beekmantown Group.
- Shallow groundwater direction is interpreted to be to the eastwards towards Rideau River.
- No ANSIs were identified on the Site or within the study area; and,
- Based on the review of records, the interview and the Site reconnaissance completed as part of the Phase One ESA, GEMTEC identified several PCAs resulting in three APECs on the Site. These APECs include:
 - APEC 1 Presence of Oil Water Separator and general maintenance of farm equipment at Structure 7. This APEC is limited to the western building line of Building Workshop (Structure 7). The COPCs are PHC F1-F4, VOCs, and PAHs, in soil and groundwater.
 - APEC 2 Presence of ASTs. This APEC is limited to the western building line of Storage Shed (Structure 3). The COPCs are PHC F1-F4, BTEX, and PAHs in soil and groundwater.
 - APEC 3 Bulk Salt Storage. This APEC is limited to the footprint of Storage Shed (Structure 9). The COPCs are EC and SAR in soil and sodium and chloride groundwater.

3.4 Deviations from Sampling and Analysis Plan

No deviations to the sampling and analysis plan occurred during the Phase Two ESA investigation.

3.5 Impediments

No physical impediments to the Phase Two ESA investigation were encountered.

4.0 INVESTIGATION METHOD

The following sections describe the field investigation methodology employed during the Phase Two ESA. The field work was conducted between July 18, 2024, and August 2, 2024.

4.1 General

Prior to initiating the field work, GEMTEC developed and implemented Site-specific protocols to protect the health and safety of its employees and subcontractors through the preparation of a Site-specific Health and Safety Plan. Additionally, GEMTEC completed public and private utility clearances.

4.2 Borehole Drilling

On July 18, 2024, six boreholes (labelled BH24-01 through BH24-06) were advanced to depths ranging between 3.65 m below ground surface (bgs) and 6.10 m bgs. Borehole locations (with respect to APECs) are provided in Figure A.4, Appendix A.

Boreholes BH24-01 to BH24-06 were advanced using a track mounted Geomachine GM100 supplied and operated by Strata Drilling Group (Strata). During drilling, a macro core soil sampling system utilizing direct-push technology with disposable 5.71 cm (2-1/4 inch) polyvinyl chloride (PVC) tube liners which fit inside a 6.26 cm (3-1/4 inch) outer stainless-steel tube were used to sample the overburden soil. The macro core soil samples were obtained at regular depth intervals and logged in the field noting subsurface. Table 4.1 summarizes the location of boreholes advanced as part of the Phase Two ESA.

Borehole ID	MW Installation Required	APEC Investigated	COPCs - Soil	COPCs – GW
BH/MW24-1	\checkmark	APEC 3	EC, SAR	Sodium, Chloride
BH24-2	х	APEC 3	EC, SAR	
BH/MW24-3	\checkmark	APEC 2	PHC F1-F4, BTEX, PAHs	PHC F1-F4, BTEX, PAHs
BH/MW24-4	\checkmark	APEC 2	PHC F1-F4, BTEX, PAHs	PHC F1-F4, BTEX, PAHs
BH/MW24-5	\checkmark	APEC 1	PHC F1-F4, VOCs, PAHs	PHC F1-F4, VOCs, PAHs
BH24-6	Х	APEC 1	PHC F1-F4, VOCs, PAHs	

Table 4.1: Borehole locations with investigated APECs

notes:

APEC 1 – Presence of Oil Water Separator and general maintenance of farm equipment at Structure 7. APEC 2 – Presence of ASTs. APEC 3 – Bulk Salt Storage. EC – Electrical Conductivity SAR – Sodium Adsorption Ratio PHC F1-F4 – Petroleum Hydrocarbon F1-F4 BTEX – Benzene, Toluene, Ethylbenzene, and Xylene VOCs – Volatile Organic Compounds PAHs – Polycyclic Aromatic Hydrocarbons

4.3 Soil Sampling

Soil samples were collected from the six boreholes following the Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario (MOE, 1996). Soil samples were recovered at regular intervals during drilling and were split in the field into two components. One component was placed into laboratory prepared containers, one preserved with methanol and the other packed with soil for minimal headspace, then stored in a cooler for potential laboratory analysis. The second component was placed inside a plastic bag for field screening, consisting of the soil description, and noting the presence of any staining, odour and/or debris. A gas detector (RKI Eagle 2) was used to measure the total organic vapour and combustible gas concentrations in the headspace in the sealed plastic bag. Clean gloves were worn and changed between each sample to prevent cross contamination.

Geologic descriptions, visual and olfactory observations, and results of field headspace measurements are presented on the Record of Borehole Logs in Appendix B.

4.4 Field Screening Measurements

Field measurements of sample headspace concentration were made using the equipment detailed in Table 4.2.

Equipment	Parameters Detected	Detection Limit	Precision	Accuracy	Calibration Standard
RKI Eggla 2	Combustible gas	0-50,000 ppm	NA	±5%	Hexane (1650 ppm)
nni Eagle 2	Total organic vapour	0-2,000 ppm	NA	±5%	Isobutylene (100 ppm)

Table 4.2: RKI Eagle 2 details for field screening

Hexane readings varied between 0 ppm and 1100 ppm whereas IBL readings varied between 0 ppm and 1 ppm. The results of soil headspace screening measurements are provided in the Record of Borehole Logs in Appendix B.

Soil samples at each sampling location were selected for laboratory analysis based on the field headspace screening measurements, visual observations (e.g., staining, discoloration and/or free product, if any), and olfactory observations (if any). Soil samples were submitted to the analytical laboratory under chain-of-custody procedures. No staining, discoloration or free product was noted during the investigation.

4.5 Groundwater - Monitoring Well Installation

Four groundwater monitoring wells (labelled BH/MW24-1, BH/MW24-3, BH/MW24-4, and BH/MW24-5) were installed by Strata using threaded 51 mm diameter, schedule 40, PVC well screens and riser pipe, which were brought to the Site in sealed plastic bags. The annular space was filled with silica filter sand to at least 0.30 m above the well screen. The monitoring wells were sealed with bentonite from the top of the sand pack and completed as a flushmount for all monitoring wells. The riser pipes were sealed with a J-plug.

4.6 Groundwater - Field Measurements for Water Quality Parameters

The field measurements for the groundwater monitoring wells were taken on July 26, 2024, and August 2, 2024. The measurements included measurement of the water level and the bottom of the monitoring well from the top of the riser pipe using an electronic water level tape.

Physical parameters including pH, temperature, conductivity (EC), dissolved oxygen (DO), and oxidation redox potential (ORP) were monitored during groundwater collection using a Horiba Water Quality Meter.

4.7 Groundwater - Development, Purging and Sampling

Monitoring well development was conducted on July 26, 2024, which included removal of a minimum of three well volumes or to dry three times from each monitoring well. Well development activities were performed using dedicated Waterra® tubing and foot valves.

Monitoring well purging and sampling was conducted on August 2, 2024, which included monitoring well sampling using low flow techniques using a GeoPump peristaltic pump. Physical parameters pH, temperature, EC, DO, and ORP were monitored and stabilized before groundwater sample collection. During purging and sampling, qualitative observations were made of water colour, clarity, and the presence of hydrocarbon sheen or odour. Groundwater samples were collected from the monitoring wells directly into laboratory supplied bottles using a peristaltic pump with disposable tubing.

4.8 Sediment Sampling

No sediment samples were collected as part of this investigation as no surface water bodies were identified at the Site.

4.9 Laboratory Analytical Program

All samples were stored and transported in laboratory supplied coolers with ice. Soil and groundwater samples were submitted to AGAT Laboratories Ltd. (AGAT) of Ottawa, Ontario, for analysis of the COPCs. AGAT is accredited by the Standards Council of Canada (SCC) in cooperation with the Canadian Association of Laboratory Accreditation (CALA) for specific environmental tests listed in the scope of accreditation. The laboratory meets the ISO/IEC 17025 (2017) standards and employs in-house quality assurance and quality control programs to govern sample analysis including the analysis of method blanks, spiked blanks, and the analysis of duplicates (10%) for each sample batch. The details of COPCs with respect to the sampling locations is available in Section 4.2.

4.10 Residue Management

All soil from drilling operations were collected for screening and sampling. Any additional cuttings were stored in soil drums on-Site. Water generated during monitoring well development and sampling was stored in water barrels on-Site. The soil and groundwater drums were disposed off at the Site following receipt and review of soil and groundwater results. All equipment used for sampling was single use and/or disposable, therefore, no wash water was generated during the investigation.

4.11 Surveying

The ground surface elevations at the location of the boreholes (ground surface) and monitoring wells (with elevations from the PVC risers) were determined using a Trimble R10 global positioning system. The coordinates of the boreholes are referenced to NAD83 (CSRS) Epoch 2010, vertical network CGVD28 and are considered to be accurate within the tolerance of the instrument. The locations of the boreholes and monitoring wells advanced on-Site are shown on Figure A.4, Appendix A.

4.12 Quality Assurance / Quality Control Program

GEMTEC's quality assurance program for environmental investigations was implemented to ensure that analytical data obtained by the investigation were valid and representative. The quality assurance program included the following measures:

- The use of standard operating procedures for all field investigation activities;
- Soil samples were handled and stored in accordance with the sample collection and preservation requirement of the MECP "Protocol for Analytical Methods Used in the Assessment of Properties Under Part XV.I of the Environmental Protection Act", July 1, 2011. Samples were collected directly into pre-cleaned, laboratory-supplied sample containers with the appropriate preservative for the analyte group. Upon collection, samples were placed in insulated coolers with ice for storage and transport to the analytical laboratory under chain-of-custody;

- The collection of field duplicate samples at a minimum frequency of one duplicate for every ten samples;
- The monitoring wells were to be developed following installation to remove fine particles from the filter pack and any fluids introduced during drilling;
- Monitoring wells were to be appropriately purged prior to groundwater sample collection to remove stagnant water from the well bore and improve sample representativeness, minimizing sample agitation and aeration to the extent practicable;
- A field blank and a trip blank were collected for PHC F1 and VOCs during the groundwater sampling event;
- Clean disposable Nitrile™ gloves were used at each sampling location to prevent crosscontamination;
- Detailed field records documenting the methods and circumstances of collection for each field sample were prepared at the time of sample collection. Each sample was assigned a unique sample identification number recorded in the field notes, along with the date and time of sample collection, the sample matrix, and the requested analyses; and,
- The submission of samples to the analytical laboratory in accordance with standard chain of custody procedures.

5.0 REVIEW AND EVALUATION

This section of the report presents a review and evaluation of the results of the drilling, monitoring, and sampling activities conducted as part of the Phase Two ESA.

5.1 Geology

The soil conditions encountered during the borehole drilling program are presented in the Record of Borehole Logs provided in Appendix B.

The soil stratigraphy was visually observed and logged during the field investigation. The Record of Borehole Logs indicate the subsurface conditions encountered at the specific locations only. Boundaries between zones on the logs are often not distinct, but rather are transitional and have been interpreted based on observations by trained GEMTEC field personnel. The precision with which subsurface conditions are indicated depends on the method of drilling, the frequency and recovery of samples, the method of sampling, and the uniformity of the subsurface conditions. Subsurface conditions at other than the test locations may vary from the conditions encountered in the boreholes. The following presents an overview of the subsurface conditions encountered in the boreholes advanced as part of this investigation.

The subsurface soil conditions encountered in the boreholes advanced as part of this Phase Two ESA generally consisted of brown silty sand with varying amounts of gravel from BH24-01 to BH24-04 whereas the subsurface soil conditions at BH24-05 and BH24-06 consisted of brown

silty sand with varying amounts of gravel underlain by silty clay. The Record of Borehole Logs are provided in Appendix B.

5.2 Groundwater - Elevations and Flow Direction

Groundwater elevations were calculated based on depth to groundwater measurements collected on August 2, 2024. Groundwater depths were measured directly from the top of each monitoring well riser using an electronic water level tape. Depth measurements were converted to groundwater elevations by subtracting the measured depth from the elevation of the top of each monitoring well riser.

All the monitoring wells were installed to straddle the anticipated water table based on conditions observed during drilling. The well screens were located within the overburden for all the monitoring wells. No free product was identified in and of the monitoring wells.

The location of these monitoring wells is shown in Figure A.4, Appendix A. The details of these monitoring wells are provided in Table 5.1.

MW ID	Soil stratigraphy at Screen	Water Level (m Top of Casing)	Height of riser pipe (m)	Ground Elevation (m)	GW Elevation (m)
MW24-1	Overburden	3.36	0.10	93.43	89.97
MW24-3	Overburden	1.36	0.11	91.17	89.70
MW24-4	Overburden	1.46	0.12	91.41	89.83
MW24-5	Overburden	3.14	0.02	91.61	88.45

Table 5.1: Monitoring Well details

Groundwater elevations ranged from 88.45 and 89.97 m asl on August 2, 2024. The inferred direction of shallow groundwater flow is generally to the southwest based on the interpreted groundwater elevation contours presented in Figure A.5, Appendix A.

Seasonal fluctuation in water levels at the Site should be expected. Considering only one monitoring event was conducted, seasonal trends could not be identified; however, shallow groundwater water levels are typically highest following the spring recharge and decline throughout the summer and fall months into the winter.

5.3 Groundwater: Hydraulic Gradients

The horizontal hydraulic gradient between well sets is presented in Table 5.2. The horizontal hydraulic gradient was estimated for shallow groundwater conditions based on water levels

measured on August 2, 2024, and the inferred groundwater contours are presented in Figure A.5, Appendix A.

MW ID	MW ID	Distance between MWs (m)	Difference in GW elevation (m)	Horizontal Hydraulic Gradient (m/m)
BH/MW24-01	BH/MW24-03	37	0.27	0.0073
BH/MW24-03	BH/MW24-04	10	0.13	0.0130
BH/MW24-04	BH/MW24-05	77	1.38	0.0180
BH/MW24-05	BH/MW24-01	100	1.52	0.0152

Table 5.2: Hydraulic gradients between monitoring well sets

The average horizontal hydraulic gradient for shallow groundwater conditions was 0.0133 m/m. Vertical hydraulic gradient for shallow groundwater conditions were not calculated as nested monitoring wells were not installed at the Site.

5.4 Soil Texture

The predominant soil grain size at the Site was assumed to be coarse-textured based on the observations made during the field investigation.

5.5 Soil - Field Screening

Headspace vapour measurements were conducted on the soil samples collected from each of the boreholes advanced at the Site. The results of headspace vapour measurements are presented in the Record of Borehole Logs in Appendix B.

5.6 Soil - Quality

Soil sampling at the Site was completed during borehole advancement on July 18, 2024. The analytical results of soil samples are presented in Table C.1 and Table C.2, Appendix C. The soil samples were submitted to AGAT for analysis of one or more of the following parameters: EC, SAR, PHC F1-F4, BTEX, VOCs and/or PAHs.

No exceedances were reported for soil samples except for SAR sample collected from BH24-01. As per Section 48(2) of O. Reg. 153/04, if two or more samples of soil are taken from sampling points at the same sampling location that are at the same depth under the property, the property meets a standard mentioned in subsection (1) if the average of the sampling results meets the standard and in no other circumstances. Based on this consideration, averaging was applied to the two samples that were collected from BH24-01 i.e., SA5 and SA105. The average value resulting between the two samples is 2.75, and therefore would not be considered an exceedance at the Site.

Table C.3, Appendix C contains soil analytical data for leachate analysis (Toxicity Characteristic Leaching Procedure (TCLP)). No exceedances of O.Reg. 347/558 Schedule 4 were identified in the TCLP sample submitted.

Laboratory Certificates of Analysis for the soil samples are included in Appendix D.

5.7 Groundwater – Quality

Groundwater sampling at the Site was completed on August 2, 2024. The analytical results of groundwater samples are presented in Table C.4 and Table C.5, Appendix C. The groundwater samples were submitted to AGAT for analysis of one or more of the following parameters: Sodium, Chloride, PHC F1-F4, BTEX, VOCs and/or PAHs. One field blank sample and one trip blank samples were also submitted for PHC F1/VOCs.

No exceedances were identified based on the review of groundwater analytical results to MECP Table 2 All Types of Property Use SCS with coarse-textured soils.

Laboratory Certificates of Analysis for the soil samples are included in Appendix D.

5.8 Sediment - Quality

No sediment samples were collected as part of this investigation.

5.9 Quality Assurance and Quality Control Results

The quality assurance assessment of the field duplicate sample results was conducted according to the MECP document "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act", March 9, 2004 (amended in July 2009 and effective as of July 1, 2011) ("Analytical Protocol").

Three sets of parent and duplicate samples were collected as per Table 5.3.

Table 5.3: Parent and duplicate samples

Date	Media	Sample ID	Duplicate ID
July 18, 2024	Soil	BH24-01 SA5	BH24-01 SA105
July 18, 2024	Soil	BH24-05 SA7	BH24-05 SA107
August 2, 2024	Groundwater	MW-4	MW-104

The analytical results of the parent and duplicate soil samples indicated a satisfactory correlation between the parent and duplicate samples as per the Analytical Protocol except for Conductivity at BH24-01. The inconsistencies identified in the duplicate RPD samples are presumably related to the heterogeneous nature of soil. The calculated RPDs for all of the soil samples and their

duplicates do not suggest inconsistencies in the field collection or the laboratory analysis methods. The Relative Percentage Difference is shown for the parent and the duplicate samples in Table C.6, Appendix C for soil and Table C.7, Appendix C for groundwater.

A certificate of analysis or analytical report has been received for each sample submitted for analysis and is provided in Appendix D. Laboratory QA/QC protocols were within acceptable limits and no analytical flags were provided.

Accordingly, the analytical data generated during the investigation are valid and representative and may be used in this Phase Two ESA without further qualification.

5.10 Phase Two Conceptual Site Model

The Phase Two ESA conceptual site model (CSM) is presented in the following sections.

The Phase Two CSM was prepared in accordance with Schedule E, Part V, Table 1, Section 6, Sub-heading (x) of Ontario Regulation 153/04 (O. Reg. 153/04) and is described in the text below and in the following figures:

- Figure A.1 Site and Study Area Features
- Figure A.2 Site Features
- Figure A.3 Potentially Contaminating Activities and Areas of Potential Environmental Concern
- Figure A.4 Location of Boreholes with respect to APECs
- Figure A.5 Groundwater Flow Direction

5.10.1 Property Description and History

The Site covers an approximate area of 44,400 m² and is occupied by nine structures owned and operated by 'Millers Farm and Market'. Based on the available aerial photographs, the Site was first developed sometime circa 1946 considering two structures were present in the southern portion of the Site (current location of Two Storey Barn (Structure 1) and Residential Building (Structure 2)) and the land use at the Site was agricultural. Historical land use in the Phase One Study Area was predominately agricultural and rural residential with community right of ways (i.e., roadways). The Site features (including structures) are shown in Figure A.2, Appendix A.

Currently the Site is occupied by nine structures which are owned and operated by Millers Farm and Market. The Site was used for agricultural purposes historically and the current use encompasses a combination of agricultural activities (including market gardening, chicken coops, and the operation of greenhouses) as well as commercial operations (such as a sales shop). The future use is not anticipated to change.

The Site and associated Study Area Features are shown on Figure A.1 and Figure A.2, Appendix A. Pertinent identification information for the Site is provided in Table 6.1.

Table 5.4: Legal Description and Site Information

Site Information					
Legal Description ¹	PART OF LOT 13, CONCESSION BF, AKA CON ABF, BEING PARTS 2 AND 4 ON 5R6592, EXCEPT PART 1 ON 4R18840, OTTAWA. S/T NS171551				
PIN	03909-0149 (LT)				
Site Owner	Ronald Miller and Suzzanne Miller				
Site Contact	Mr. David Beveridge				

Note:

1. The legal description provided for the Site also includes the legal description for 6158 Rideau Valley Drive, a much larger land parcel.

5.10.2 Previous Investigation

The following lists the previous reports available for the Site. The Phase One ESA formed the basis for completing this Phase Two ESA.

• Phase One Environmental Site Assessment, Zoning By-Law Amendment Application, 6158 Rideau Valley Drive, Ottawa, Ontario dated June 12, 2024.

5.10.3 Potentially Contaminating Activities

The potentially contaminating activities (PCAs) identified in Phase One ESA (GEMTEC, June 2024) are summarized in Table 6.2.

Table 5.5: Summary of Potentially Contaminating Activities

PCA ID	Type of PCA	Address / Location	Information source	PCA Description	Rationale
28	Presence of ASTs	On-Site	Aerial Photographs Site Recon	Presence of ASTs for fuelling farm equipment	Yes – APEC 1 As per O.Reg 153/04, as amended, on-Site PCA leads to an APEC.
48	Bulk Salt Storage	On-Site	Site Recon	Bulk Salt Storage at a Storage Shed (Building 9)	Yes – APEC 2 As per O.Reg 153/04, as amended, on-Site PCA leads to an APEC.

PCA ID	Type of PCA	Address / Location	Information source	PCA Description	Rationale
OT 1	Presence of Oil Water Separator and general maintenanc e of farm equipment.	On-Site	Site Recon	An oil water separator was identified along the western building line of Building Workshop (Structure 7) where general maintenance of the farm equipment is carried out.	Yes – APEC 3 As per O.Reg 153/04, as amended, on-Site PCA leads to an APEC.

Notes:

28. Gasoline and Associated Products Storage in Fixed Tanks

48. Salt Manufacturing, Processing and Bulk Storage OT 1: Presence of an Oil Water Separator

5.10.4 Area of Potential Environmental Concern

The areas of potential environmental concern (APECs) identified based on the PCAs are summarized in Table 6.3. Figure A.3, Appendix A indicates the location of the APECs.

APEC #	APEC	Location of APEC on the Site	РСА	Location of PCA (On- Site and/or Off-Site)	COPCs	Media Potentially Impacted (Soil, Groundwater and/or Sediments)
1	Presence of Oil Water Separator and general maintenance of farm equipment at Structure 7.	Along the western building line of Building Workshop (Structure 7)	OT 1	On-Site	PHC F1- F4, VOCs, PAHs	Soil Groundwater
2	Presence of ASTs	Along the western building line of Storage Shed (Structure 3)	28	On-Site	PHC F1- F4, BTEX, PAHs	Soil Groundwater
3	Bulk Salt Storage	Building footprint of Storage	48	On-Site	EC, SAR (Sodium, Chloride)	Soil Groundwater

Table 5.6: Areas of Potential Environmental Concern

Shed (Structure 9)

Notes:

28. Gasoline and Associated Products Storage in Fixed Tanks
48. Salt Manufacturing, Processing and Bulk Storage
OT 1: Presence of an Oil Water Separator
PHC F1-F4 – Petroleum Hydrocarbons F1-F4
BTEX – Benzene, Toluene, Ethylbenzene, and Xylene
EC – Electrical Conductivity
SAR – Sodium Adsorption Ratio
VOC – Volatile Organic Compounds
PAH – Polycyclic Aromatic Hydrocarbons

5.10.5 Subsurface Structures and Utilities

Buried utility service locates completed prior to the drilling program indicated public buried utility services are present along Rideau Valley Drive. No underground utility drawings for the Site were provided for review.

5.10.6 Physical Setting

5.10.6.1 Topography

The Site has a relatively flat topography and is at an elevation of approximately 88 m above sea level (m asl). The Site has a topographic high point and gradually slopes either towards Rideau Valley Drive (located to the east of the Site) or McIntyre Scobie Drain (located to the west of the Site). Surrounding local topography generally slopes gradually downwards towards Rideau River which is located approximately 400 m northeast of the Site.

Based on the topography and hydrogeological features, it is anticipated that local shallow groundwater would flow to the eastwards towards Rideau River. Based on the findings of this Phase Two ESA, shallow groundwater was interpreted to flow towards the southwest based on the interpreted groundwater elevation contours presented in Figure A.5, Appendix A.

The physical setting for the Site is consistent based on GEMTEC's observation during the Phase Two ESA field program

5.10.6.2 Stratigraphy – Boreholes

The subsurface soil conditions encountered in the boreholes advanced as part of this Phase Two ESA generally consisted of brown silty sand with varying amounts of gravel from BH24-01 to BH24-04 whereas the subsurface soil conditions at BH24-05 and BH24-06 consisted of brown silty sand with varying amounts of gravel underlain by silty clay. The Record of Borehole Logs are provided in Appendix B.

5.10.6.3 Depth to Bedrock

The presence of bedrock could not be confirmed. Refusal was noted at two locations, BH/MW24-01 and BH24-02, at a depth ranging between 3.65 m bgs and 5.18 m bgs respectively. However, the overburden mapping indicates that the bedrock is anticipated to be at the depth ranging between 15 and 25 m bgs.

5.10.6.4 Hydrogeological Characteristics

Based on the topography of the Study Area, it is expected that the local shallow groundwater flow will trend east. Based on the interpreted groundwater elevation contours for water level measured on August 2, 2024, the inferred direction of shallow groundwater flow is generally to the southwest.

The average horizontal hydraulic gradient for shallow groundwater conditions was 0.0133 m/m. Vertical hydraulic gradient for shallow groundwater conditions were not calculated as nested monitoring wells were not installed at the Site.

5.10.6.5 Depth to Groundwater

Water levels were measured in the monitoring wells which were advanced at the Site. The location of these monitoring wells is shown on Figure A.4, Appendix A. Groundwater elevations ranged from 88.45 and 89.97 m asl on August 2, 2024. The inferred direction of shallow groundwater flow is generally to the southwest based on the interpreted groundwater elevation contours presented in Figure A.5, Appendix A.

5.10.6.6 Environmentally Sensitive Areas

No areas of natural significance (ANSIs) were identified on-Site or within the Study Area.

5.10.6.7 Shallow Soil Property or Water Body

The overburden thickness is greater than 2 m for more than two-thirds of the Site. The measured depth to water at the Site ranged from 1.47 to 3.37 m bgs. Therefore, Section 43.1(a) and 43.1(b) of O. Reg. 153/04 do not apply to the Site.

5.10.7 Applicable Site Condition Standards

The analytical results were compared to the Table 2 Full Depth Generic Site Condition Standards (SCS) in a Potable Ground Water Condition for Residential/Parkland/Institutional (RPI) Property Use with coarse textured soil as presented in the Ministry of the Environment, Conservation and Parks (MECP) document "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act" dated April 15, 2011.

The applicable SCS were selected based on the following rationale:

- The Site is currently used for a combination of agricultural activities (including market gardening, chicken coops, and the operation of greenhouses) as well as commercial operations (such as a sales shop). The future land use is expected to be the same. However, a residential building (Structure 2) is present on-Site. Therefore, the land use for the Site is considered Agricultural or Other Property Use.
- Based on visual observations made during the Environmental Field Investigation (field program/environmental investigation), coarse grained soils are present on-Site. Coarse textured soil is defined by Section 42(1) of O. Reg.153/04 as 'soil that contains 50 percent or more by mass of particles that are greater than 75 micrometres in mean diameter'. Accordingly, coarse textured soils have been considered applicable for the Site.
- For the purposes of selection of the appropriate provincial standard, Section 43.1 of O. Reg.153/04 identifies specific SCS be applied if any of the following circumstances exist:
 - (a) The property is a shallow soil property (i.e., at least 1/3 or more of the property area contains less than 2 metres depth of overburden); or
 - (b) The property includes all or part of a water body or is adjacent to a water body or includes land that is within 30 metres of a water body.

Based on a review of the surficial and bedrock geology maps of the area, and results obtained from the intrusive investigation, the Site is not considered a shallow soil property as the overburden thickness is greater than 2 m for more than one-third of the Site. The property does not include a water body nor is it located within 30 metres of a water body.

- The Site and adjacent properties rely on groundwater as a potable source of water. Through review of the Ontario Water Well records, potable domestic wells were identified within 250 m the of the Site. Accordingly, the Site has been considered to be situated within a potable water well zone.
- Environmental sensitivity is considered in the selection of appropriate provincial standards for comparison. Section 41 of O.Reg.153/04 states that a property is to be considered environmentally sensitive if any of the following are applicable:
 - (1) the property is,
 - (i) within an area of natural significance;
 - (ii) includes or is adjacent to an area of natural significance or part of such an area; or
 - (iii) includes land that is within 30 metres of an area of natural significance or part of such an area;
 - (2) the soil at the property has a pH value as follows:
 - (i) for surface soil, less than 5 or greater than 9;
 - (ii) for sub surface soil, less than 5 or greater than 11; or
 - (3) a qualified person is of the opinion that, given the characteristics of the property and the certifications the qualified person would be required to make in a record of

site condition in relation to the property as specified in Schedule A, it is appropriate to apply this section to the property.

Through a review of samples submitted for analysis during the field program, the pH values were within range for surface soil and subsurface soil. Therefore, the Site is not considered to be an environmentally sensitive site. Additionally, no water bodies or Areas of Natural and Scientific Interest (ANSIs) were identified on or within 30 m of the Site. McIntyre Scobie Drain, a municipal drain and not a permanent water body, is present along the west edge of the Site and the Rideau River is present approximately 400 m northeast of the Site.

Based on the review of Site characteristics, the following provincial standards were considered to be applicable to the analytical results obtained during the field investigation:

- Soil: MECP, 2011. Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act. Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition for Agricultural or Other Property Use (Agri) land use with coarse textured soil.
- Groundwater: MECP, 2011. Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act. Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition for All Types of Property Use with coarse textured soil.

The following provincial standards were considered to be applicable to the soil analytical results obtained during the environmental investigation:

o MECP Ontario Regulation (O.Reg.) 347/558 Schedule 4, Leachate Quality Criteria, to evaluate waste classification (hazardous or non-hazardous waste) for on-Site soils.

5.10.8 Contaminated Media

Using MECP accepted averaging techniques, soil and groundwater results satisfied the Table 2 SCS for all soil and groundwater analytical results.

5.10.9 Description of Areas of Contamination on the Site

No areas of soil or groundwater contamination were identified on the Site.

5.10.10 Potential Influence of Utilities on Contaminant Migration

No areas of identified soil and groundwater exceeding the Table 2 SCS were identified at the Site. As such, the potential influence of underground utilities is not an issue at the Site.

5.10.11 Contaminant Migration

Soil impacted with SAR was identified near BH24-01 SA5, which is anticipated to be due to salt storage onsite, however groundwater at this location did not identify any exceedances. Accordingly, contaminant migration is not anticipated to be an issue.

5.10.12 Meteorological and Climatic Considerations

Seasonal fluctuation in water levels on the Site should be expected. Considering only one monitoring event was conducted, seasonal trends could not be identified; however, shallow groundwater water levels are typically highest following the spring recharge and decline throughout the summer and fall months into the winter.

5.10.13 Cross Sections – Lateral and Vertical Distribution of Contaminants

No cross sections were completed considering the absence of the contaminants at the tested locations on the Site.

6.0 CONCLUSIONS

The Phase Two ESA investigated the APECs identified in the Phase One ESA (GEMTEC, June 2024). Based on the results of the soil samples and groundwater samples submitted as part of this Phase Two ESA no impacts were identified. Accordingly, no further work is recommended at this time.

6.1 Signatures

We trust this report provides sufficient information for your present purposes. If you have any questions concerning this report, please do not hesitate to contact our office.

Regards,

Wolvit Bhorgan

Mohit Bhargav, M.Sc.E., EIT Environmental Scientist MB/NS

Nicole Soucy, M.A.Sc., P.Eng, QP_{ESA} Environmental Engineer

7.0 REFERENCES

GEMTEC Consulting Engineers and Scientists Limited. June 2024. Phase One Environmental Site Assessment, Zoning By-Law Amendment Application, 6158 Rideau Valley Drive, Ottawa, Ontario.

Ontario Ministry of the Environment, Conservation and Parks (MECP). Ontario Regulation 153/04, Made under the Environmental Protection Act, Part XV.1 – Records of Site Condition. October 31, 2011 updated January 1, 2014.

Ontario Ministry of the Environment (MOE). Soil, Groundwater and Sediment Standards for use under Part XV.1 of the Environmental Protection Act. April 15, 2011.

Ontario Ministry of the Environment, Laboratory Services Branch (MOE). Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act. March 9, 2004, amended as of July 1, 2011.

Ontario Ministry of the Environment and Climate Change (MOE). Guidance on sampling and analytical methods for use at contaminated sites in Ontario. Revised December 1996.

Geography Network Canada (GNC). October 2004. Ontario Basic Mapping Accessed: December 2020 & January 2021. Available: http://www.geographynetwork.ca/website/obm/viewer.htm.

Google Earth™ Satellite Imagery, 2019.

8.0 LIMITATION OF LIABILITY

This report was prepared for the exclusive use of the Owners of 6158 Rideau Valley Drive. This report may not be relied upon by any other person or entity without the express written consent of GEMTEC Consulting Engineers and Scientists Limited and the Owners of 6158 Rideau Valley Drive. Nothing in this report is intended to provide a legal opinion. Any use which a third party makes of this report, or any reliance on, or decisions to be made based on it, are the responsibilities of such third parties. GEMTEC accepts no responsibility for damages, if any, suffered by any third party (other than as noted above) as a result of decisions made or actions based on this report.

The investigation undertaken by GEMTEC with respect to this report and any conclusions or recommendations made in this report reflect the best judgements of GEMTEC based on the Site conditions observed during the investigations undertaken at the date(s) identified in the report and on the information available at the time the report was prepared. This report has been prepared for the application noted and it is based, in part, on visual observations made at the Site, subsurface investigations at discrete locations and depths and laboratory analyses of specific chemical parameters and material during a specific time interval, all as described in the report. Unless otherwise stated, the findings contained in this report cannot be extrapolated or extended to previous or future Site conditions, portions of the Site that were unavailable for direct investigation, subsurface locations on the Site that were not investigated directly, or chemical parameters, materials or analysis which were not addressed. Chemical parameters other than those addressed by the investigation described in this report may exist in soil and groundwater elsewhere on the Site.

This report provides a professional opinion and therefore no warranty is expressed, implied, or made as to the conclusions, advice and recommendations offered in this report. This report does not provide a legal opinion regarding compliance with applicable laws. With respect to regulatory compliance issues, it should be noted that regulatory statutes and the interpretation of regulatory statutes are subject to change.

Should new information become available during future work, including excavations, borings or other studies, GEMTEC should be requested to review the information and, if necessary, reassess the conclusions presented herein.

Figures

LEGEND

---- APPROXIMATE SITE BOUNDARY

WATERCOURSE

FEATURE ID	DESCRIPTION
1	TWO STOREY BARN (MATERIAL STORAGE)
2	OFFICE BUILDING
3	STORAGE SHED (MATERIAL STORAGE)
4	STORAGE SHED (MATERIAL STORAGE)
5	STORAGE SHED (MATERIAL STORAGE)
6	SALES SHOP
7	BUILDING WORKSHOP
8	GREENHOUSES
9	STORAGE SHED (SALT STORAGE)

GENERAL NOTE(S)

- Coordinate system: NAD83, UTM ZONE 18N, CGVD28
 Distances, elevations, and coordinates are shown in metres unless denoted otherwise
 This drawing is a schematic representation and should not be taken as a substitute for a legal survey.
 Maps Data: Google, @2024 CNES / Airbus, First Base Solutions, Maxar Technologies
 Contains information licensed under the Open Government Licence Ontario

6. Geographic dataset source: Ontario GeoF	Hub		
^{SCALE} 1:1,500			
0 30	60 90m		
DRAWING			
SITE FE	EATURE		
CLIENT			
NOVATECH ENGINEERS, PLANN	ERS & LANDSCAPE ARCHITECT	ſS	
PROJECT PHASI	E TWO		
	SITE ASSESSMENT,		
20NING BY-LAW AME	VALLEY DRIVE		
OTTAWA,	, ONTARIO		
DRAWN BY	CHECKED BY		
S.L.	M.B.		
PROJECT NO.	REVISION NO.		
100011.082	0		
DATE	FIGURE NO.		
AUGUST 2024	FIGURE A.2		
GEENTEC Consulting Engineers AND SCIENTISTS 32 Steacie Drive Ottawa, ON, K2K 2A9 Tel: (613) 836-1422 www.gemtec.ca ottawa@gemtec.ca			

LEGEND

---- APPROXIMATE SITE BOUNDARY

WATERCOURSE

PCA ID	DESCRIPTION
28	GASOLINE AND ASSOCIATED PRODUCTS STORAGE IN FIXED TANKS
48	SALT MANUFACTURING, PROCESSING AND BULK STORAGE
OT1	PRESENCE OF AN OIL WATER SEPARATOR

APEC ID	DESCRIPTION
1	PRESENCE OF OIL WATER SEPARATOR AND GENERAL MAINTENANCE OF FARM EQUIPMENT AT STRUCTURE 7
2	PRESENCE OF ASTS
3	BULK SALT STORAGE

GENERAL NOTE(S)

- Coordinate system: NAD83, UTM ZONE 18N, CGVD28
 Distances, elevations, and coordinates are shown in metres unless denoted otherwise
 This drawing is a schematic representation and should not be taken as a substitute for
 a legal survey.
 Maps Data: Google, @2024 CNES / Airbus, First Base Solutions, Maxar Technologies
 Contains information licensed under the Open Government Licence Ontario
 Geographic dataset source: Ontario GeoHub

^{SCALE} 1:1,500		
0 30	60	90m
DRAWING POTENTIALLY CONTAMI	NATING ACTIVITIES	AND
AREAS OF POTENTIAL EN	IVIRONMENTAL CON	ICERN
CLIENT		
NOVATECH ENGINEERS, PLANN	ERS & LANDSCAPE ARC	HITECTS
PROJECT PHASI ENVIRONMENTALS	E TWO SITE ASSESSMENT,	
ZONING BY-LAW AME		
6158 RIDEAU		
DRAWN BY	CHECKED BY	
S.L.	M.B.	
PROJECT NO.	REVISION NO.	
100011.082	0	
DATE	FIGURE NO.	
AUGUST 2024	FIGURE /	4.3
GEMTE Consulting Engineer and Scientists	32 Steacie I Ottawa, ON, K. Tel: (613) 836 www.gemte ottawa@gem	Drive 2K 2A9)-1422 :c.ca tec.ca

LEGEND

BH/ MW #	- BOREHOLE/ MONITORING WELL ID - GROUND SURFACE ELEVATION, IN METRES
•	BOREHOLE (current investigation by GEMTEC)
•	BOREHOLE/ MONITORING WELL (current investigation by GEMTEC)
	APPROXIMATE SITE BOUNDARY

WATERCOURSE

APEC ID	DESCRIPTION
1	PRESENCE OF OIL WATER SEPARATOR AND GENERAL MAINTENANCE OF FARM EQUIPMENT AT STRUCTURE 7
2	PRESENCE OF ASTS
3	BULK SALT STORAGE

GENERAL NOTE(S)

- Coordinate system: NAD83, UTM ZONE 18N, CGVD28
 Distances, elevations, and coordinates are shown in metres unless denoted otherwise
 This drawing is a schematic representation and should not be taken as a substitute for a legal survey.
 Maps Data: Google, @2024 CNES / Airbus, First Base Solutions, Maxar Technologies
 Contains information licensed under the Open Government Licence Ontario

Geographic dataset	source: Ontario Geol	Hub	
^{SCALE} 1:750			
0	15	30	45m
DRAWING			
BOREHOLE	ELOCATIONS	WITH RES	PECT TO APECS
CLIENT			
NOVATECH EN	GINEERS, PLANN	IERS & LAN	DSCAPE ARCHITECTS
PROJECT	PHAS	E TWO	
E	NVIRONMENTAL	SITE ASSES	SSMENT,
ZONI	NG BY-LAW AME	NDMENT A	PPLICATION
	6158 RIDEAU	VALLEY DR	RIVE
DRAWN BY	UTIAWA		3Y
S.L			M.B.
PROJECT NO.		REVISION N	NO.
10001 [,]	1.082		0
DATE		FIGURE NC).
AUGUS	T 2024	F	IGURE A.4
	SEMTI INSULTING ENGINEE D SCIENTISTS	EC rs	32 Steacie Drive Ottawa, ON, K2K 2A9 Tel: (613) 836-1422 www.gemtec.ca ottawa@gemtec.ca

L	E	G	E	Ν	D

XX.XX	
•	

BH/ MW # 🔫	- BOREHOLE/ MONITORING WELL ID
XX.XX	GROUND SURFACE ELEVATION, IN METRES
	BOREHOLE
$\mathbf{\Psi}$	(current investigation by GEMTEC)
4	
	(current investigation by GEMTEC)
	APPROXIMATE SITE BOUNDARY

WATERCOURSE

APEC ID	DESCRIPTION
1	PRESENCE OF OIL WATER SEPARATOR AND GENERAL MAINTENANCE OF FARM EQUIPMENT AT STRUCTURE 7
2	PRESENCE OF ASTS
3	BULK SALT STORAGE

Contaminants of Concern	MECP Table 2 Agri or Other Property Use -
SAR	5

Notes:

Agri - Agricultural

BOLD

'mbgs' - Metres Below Ground Surface

MECP Table 2 SCS: Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act. Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition, Agriculture or Other Property Use with Coarse textured soils (MECP, 2011).

- Exceeds MECP Table 2 Agri SCS

ENERAL NOTE(S)

- Coordinate system: NAD83, UTM ZONE 18N, CGVD28
 Distances, elevations, and coordinates are shown in metres unless denoted otherwise
 This drawing is a schematic representation and should not be taken as a substitute for a legal survey.
 Maps Data: Google, @2024 CNES / Airbus, First Base Solutions, Maxar Technologies
 Contains information licensed under the Open Government Licence Ontario
 Geographic dataset source: Ontario GeoHub

6. Geographic dataset source	e. Ontano Geor	uu	
^{SCALE} 1:750			
0	15	30	45m
DRAWING			
	SOIL EXC	EEDANCES	
CLIENT			
NOVATECH ENGINE	ERS, PLANN	ERS & LANDSC	APE ARCHITECTS
PROJECT	PHAS	E TWO	
ENVIR	ONMENTAL	SITE ASSESSME	ENT,
ZONING E	BY-LAW AME		CATION
6	158 RIDEAU		
DRAWN BY	011707,	CHECKED BY	
S.L.			M.B.
PROJECT NO.		REVISION NO.	
100011.08	32		0
DATE		FIGURE NO.	
AUGUST 20	024	FIG	URE A.5
	EMTE TING ENGINEE	RS 33 Otta Tel W otta	2 Steacie Drive wa, ON, K2K 2A9 : (613) 836-1422 ww.gemtec.ca awa@gemtec.ca

N:iPROJECTS(10000011.082)06 CIVIL DRAFTING/DESIGNESA TWO R0(100011.082 ESA TWO R0 2024.08 DWG

APPENDIX B

Borehole Logs

CL PR JO LO	RECORD OF BOREHOLE 24-01 CLIENT: Novatech PROJECT: Phase Two Environmental Site Assessment, 6158 Rideau Valley Drive, Ottawa, Ontario JOB#: 100011.082 LOCATION: See Figure A.4, Appendix A														
		SOIL PROFILE					:	SAM	PLE DATA	z					
DEPTH SCALE METRES	BORING METHOI	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	RECOVERY (mm)	BLOWS/0.3m	LABORATORY ANALYSES	COMBUSTIBLE VAPOUR CONCENTRATIO (ppm)	ODOUR	TPH (mg/kg)	мс	ONITORING WELL INSTALLATION AND NOTES	
— 0 		Ground Surface TOPSOIL Loose to compact, brown SILTY SAND, trace gravel	<u>7, 18, 7, 19</u>	93.43 93.23 0.20	1	SS	200	NA		Hex: 5; IBL:	None				
- - - - - - - -					2	SS	1200	NA	рН	Hex: 30; IBL: 0	None			Bentonite seal	
- - - 2 - -	ush mm OD)				3	SS	600	NA		Hex: 25; IBL: 1	None				-
- - - - - - 3	Direct P Casing (155	Compact to dense, brown SILTY SAND,		<u>90.38_</u> 3.05	4	SS	550	NA		Hex: 35; IBL: 0	None				-
- - - - - - - -					5	SS	750	NA	EC, SAR	Hex: 1100; IBL: 0	None			Filter sand 50 millimetre diameter well	-
- - - - -		Loose, brown SILTY SAND, trace gravel		<u>88.86</u>	6	SS	720	NA		Hex: 30; IBL: 1	None				
3/22/24		End of borehole Sampler refusal		<u>88.25</u> 5.18	7	SS	610	NA		Hex: 850; IBL: 0	None				
LOG 100011.082_BHLOGS_2024-08-21.6PJ GEMTEC 2018.GDT 8													GROUN DATE Aug. 02/24	DWATER OBSERVATIONS DEPTH (m) ELEVATION 3.36	(m)
	CONSULTING ENGINEERS AND SCIENTISTS LOGGED: MB CHECKED: NS														

CLI PRI JOE LOC	CLIENT: Novatech PROJECT: Phase Two Environmental Site Assessment, 6158 Rideau Valley Drive, Ottawa, Ontario JOB#: 100011.082 LOCATION: See Figure A.4, Appendix A													
		Т	SOIL PROFILE						SAM	PLE DATA				
DEPTH SCALE METRES			DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	ТҮРЕ	RECOVERY (mm)	BLOWS/0.3m	LABORATORY ANALYSES	COMBUSTIBLE VAPOUR CONCENTRATION (ppm)	ODOUR	TPH (mg/kg)	MONITORING WELL INSTALLATION AND NOTES
- 0 	ect Push	(155mm OD)	Ground Surface Brown sand and gravel, non-cohesive, dry (FILL MATERIAL) Brown SILTY SAND, some gravel, some clay		93.85 92.35 1.50	1	SS	255	NA		Hex: 35; IBL: 0	None		Backfilled with auger cuttings
2 	Dir	Casing			90.20	2	ss	255 610	NA	EC, SAR	Hex: 30; IBL: 0 Hex: 640; IBL: 1	None		
			End of borehole Sampler refusal		3.65									
	Consulting Engineers Consulting Scientists CHECKED: NS													

CLI PR JOI LO	CLIENT: Novatech PROJECT: Phase Two Environmental Site Assessment, 6158 Rideau Valley Drive, Ottawa, Ontario JOB#: 100011.082 LOCATION: See Figure A.4, Appendix A												
DEPTH SCALE METRES	BORING METHOD	SOIL PROFILE	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	ТҮРЕ	RECOVERY (mm)	BLOWS/0.3m	LABORATORY ANALYSES	COMBUSTIBLE VAPOUR CONCENTRATION (ppm)	ODOUR	TPH (mg/kg)	MONITORING WELL INSTALLATION AND NOTES
	Direct Push Casing (155mm OD)	Ground Surface TOPSOIL Grey to brown, SILTY SAND, some gravel, some clay, non-cohesive Loose, grey SILTY SAND, some clay, some gravel, wet End of borehole		91.18 90.93 0.25 87.37 3.81 4.57	1 2 3 4 5 6	SS SS SS SS SS	250 N 1300 N 650 N 750 N 750 N		PAHs, PHC F1-F4, BTEX	Hex: 0; IBL: 0 Hex: 55; IBL: 2 Hex: 65; IBL: 0 Hex: 80; IBL: 0 Hex: 50; IBL: 0	None None None None		Flush Mount Bentonite seal Filter sand 50 millimetre diameter well screen Screen
	GENTEC CONSULTING ENGINEERS AND SCIENTISTS LOGGED: MB CHECKED: NS												

CL PR JO LO	CLIENT: Novatech PROJECT: Phase Two Environmental Site Assessment, 6158 Rideau Valley Drive, Ottawa, Ontario JOB#: 100011.082 LOCATION: See Figure A.4, Appendix A													
		SOIL PROFILE						SAM	PLE DATA	z				
DEPTH SCALE METRES	BORING METHO	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	ТҮРЕ	RECOVERY (mm)	BLOWS/0.3m	LABORATORY ANALYSES	COMBUSTIBLE VAPOUR CONCENTRATIO (ppm)	ODOUR	TPH (mg/kg)	iom /I	NITORING WELL ISTALLATION AND NOTES
— 0 —		Ground Surface Sandy GRAVEL	0 · · 0	91.42										Eluch Mount
-			000		1	SS	350	NA		Hex: 0; IBL: 1	None			
- - - - - - - - -		Brown, SILTY SAND, some gravel, some clay, non-cohesive	001	<u>90.81</u> 0.61	2	SS	1200	NA		Hex: 5; IBL: 1	None			Bentonite seal
- - - 2 -	ict Push 155mm OD)				3	SS	600	NA		Hex: 0; IBL: 0	None			
- - - - - - - - - - - - - - - - - - -	Dire Casing (4	SS	550	NA	рН	Hex: 0; IBL: 0	None			Filter sand 50 millimetre –
					5	SS	750	NA	PAHs, PHC F1-F4, BTEX	Hex: 60; IBL: 0	None			screen
- 4 - - -		End of borehole		<u>86.85</u> 4.57	6	SS	610	NA		Hex: 35; IBL: 0	None			
LOG 100011.082_BHLOGS_2024-08-21.6PJ GEMTEC 2018.GDT 8/22/24													GROUND DATE Aug. 02/24	WATER OBSERVATIONS DEPTH (m) ELEVATION (m) 1.46
	CONSULTING ENGINEERS CONSULTING ENGINEERS CHECKED: NS													

CLI PRO JOE LOC	ENT: DJEC 3#: CATIC	Novatech CT: Phase Two Environmental Site Assessn 100011.082 DN: See Figure A.4, Appendix A	RE	C(/alley	DRE v Drive) ()	F I wa, C	BOREHOLE 2	24-05			SHEET: DATUM: BORING DAT	1 OF 1 CGVD28 E: Jul 18 2024
	D	SOIL PROFILE				;	SAM	PLE DATA	N				
DEPTH SCALE METRES	BORING METHO	DESCRIPTION	STRATA PLOT (m) (m)	NUMBER	ТҮРЕ	RECOVERY (mm)	BLOWS/0.3m	LABORATORY ANALYSES	COMBUSTIBLE VAPOUR CONCENTRATIC (ppm)	ODOUR	TPH (mg/kg)	Ν	IONITORING WELL INSTALLATION AND NOTES
	Direct Push Casine (165mm OD)	Ground Surface GRAVEL Loose to compact, brown SILTY SAND, trace gravel Compact to dense, brown SILTY SAND, trace gravel with some clay Firm, brown SILTY SAND with some clay	91.61 91.61 91.36 91.36 0.25 90.09 1.52 90.09 1.52 88.56 3.05 87.80 97.90 87.80 97.90 87.80 97.80 97.80 90.09 1.52 1.5	1 2 3 4 5	SS SS SS SS SS	457 457 432 432 762	NA NA NA		Hex: 0; IBL: Hex: 0; IBL: 0 Hex: 0; IBL: 1 Hex: 0; IBL: 0	None None None None None			Bentonite seal
		Brown CLAY and SILT with some gravel	0 0 0 87.04 0 87.04 4.57 86.13 5.48	6	SS SS SS	762 635 635		PAHs, PHC F1-F4, VOCs	Hex: 0; IBL: 0 Hex: 20; IBL: 0 Hex: 15; IBL: 0	None			Filter sand 50 millimetre diameter well screen
			<u> </u>									GRO DATE Aug. 02/24	UNDWATER OBSERVATIONS DEPTH (m) ELEVATION (m) 3.14 88.47 88.47
		ONSULTING ENGINEERS ND SCIENTISTS											LOGGED: MB CHECKED: NS

CLIENT: Novatech PROJECT: Phase Two Environmental Site Assessment, 6158 Rideau Valley Drive, Ottawa, Ontario JOB#: 100011.082 LOCATION: See Figure A.4, Appendix A													
	Q	SOIL PROFILE					S	SAM	PLE DATA	Z			
METRES	BORING METHO	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	NUMBER TYPE BLOWS/0.3m BLOWS/0.3m		LABORATORY ANALYSES	COMBUSTIBLE VAPOUR CONCENTRATIO (ppm)	ODOUR	TPH (mg/kg)	MONITORING WELL INSTALLATION AND NOTES	
0 -		Ground Surface SAND and GRAVEL Loose to compact, brown SILTY SAND,		91.70 90.94 0.76	1	SS	381 1	NA		Hex: 15; IBL: 1	None		
1		some clay and trace gravel			2	SS	381	NA 		Hex: 0; IBL: 1	None		
2	n OD)	Loose to compact. brown SILTY SAND		<u>89.42</u> 2.28	3	SS	431	NA		Hex: 0; IBL: 0	None		
1 3	Direct Pus Casing (155mr	and gravel. Asphalt layer noted at 9 feet (2.74 m bgs)		88.65	4	SS	431	NA		Hex: 10; IBL: 0	None		Backfilled with auger cuttings
				0.00	5	SS	762	NA		Hex: 0; IBL: 0	None		
4					6	SS	762	NA		Hex: 0; IBL: 1	None		
5		End of borehole		<u>86.52</u> 5.18	7	SS	457 N	NA	PAHs, PHC F1-F4, VOCs	Hex: 45; IBL: 0	None		
		I SEMTEC DISULTING ENGINEERS	<u>ı </u>							<u> </u>			LOGGED: MB

Г

APPENDIX C

Soil and Groundwater Analytical Data

	MECP Table 2 Agri or	Reporting	Sample ID	BH24-01 SA2	BH24-01 SA5	BH24-01 SA105	BH24-02 SA3	BH24-03 SA5	BH24-04 SA4	BH24-04 SA5	BH24-05 SA7	BH24-05 SA107	BH24-06 SA7
Contaminants of Concern	Other Property Use - Coarse	Detection Limit	Sample Depth (mbgs)	0.20 - 1.50	3.04 - 3.81	3.04 - 3.81	3.04 - 3.65	3.04 - 3.81	2.28 - 3.05	3.04 - 3.96	4.57 - 5.48	4.57 - 5.48	4.57 - 5.18
			Lab ID Sampling Date Units	6086910 07/18/2024	6022137 07/18/2024	6022154 07/18/2024	6022139 07/18/2024	6022148 07/18/2024	6086911 07/18/2024	6022149 07/18/2024	6022150 07/18/2024	6022155 07/18/2024	6022151 07/18/2024
Inorganics - Soil													
Conductivity	1.4	0.005	mS/cm	NA	0.149	0.198	0.406	NA	NA	NA	NA	NA	NA
SAR	5	-	-	NA	5.03	0.479	0.963	NA	NA	NA	NA	NA	NA
рН	Surface Soil: 5-9 Subsurface Soil: 5-11	-	pH units	6.63	NA	NA	NA	NA	6.05	NA	NA	NA	NA
Polycyclic Aromatic Hydroca	rbons - Soil												
Naphthalene	0.6	0.05	μg/g	NA	NA	NA	NA	< 0.05	NA	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	0.15	0.05	μg/g	NA	NA	NA	NA	< 0.05	NA	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthene	7.9	0.05	μg/g	NA	NA	NA	NA	< 0.05	NA	< 0.05	< 0.05	< 0.05	< 0.05
Fluorene	62	0.05	μg/g	NA	NA	NA	NA	< 0.05	NA	< 0.05	< 0.05	< 0.05	< 0.05
Phenanthrene	6.2	0.05	μg/g	NA	NA	NA	NA	< 0.05	NA	< 0.05	< 0.05	< 0.05	< 0.05
Anthracene	0.67	0.05	μg/g	NA	NA	NA	NA	< 0.05	NA	< 0.05	< 0.05	< 0.05	< 0.05
Fluoranthene	0.69	0.05	μg/g	NA	NA	NA	NA	< 0.05	NA	< 0.05	< 0.05	< 0.05	< 0.05
Pyrene	78	0.05	μg/g	NA	NA	NA	NA	< 0.05	NA	< 0.05	< 0.05	< 0.05	< 0.05
Benzo[a]anthracene	0.5	0.05	μg/g	NA	NA	NA	NA	< 0.05	NA	< 0.05	< 0.05	< 0.05	< 0.05
Chrysene	7	0.05	μg/g	NA	NA	NA	NA	< 0.05	NA	< 0.05	< 0.05	< 0.05	< 0.05
Benzo[b]fluoranthene	0.78	0.05	μg/g	NA	NA	NA	NA	< 0.05	NA	< 0.05	< 0.05	< 0.05	< 0.05
Benzo[k]fluoranthene	0.78	0.05	μg/g	NA	NA	NA	NA	< 0.05	NA	< 0.05	< 0.05	< 0.05	< 0.05
Benzo[a]pyrene	0.078	0.05	μg/g	NA	NA	NA	NA	< 0.05	NA	< 0.05	< 0.05	< 0.05	< 0.05
Indeno [1,2,3-cd] pyrene	0.38	0.05	μg/g	NA	NA	NA	NA	< 0.05	NA	< 0.05	< 0.05	< 0.05	< 0.05
Dibenzo[a,h]anthracene	0.1	0.05	μg/g	NA	NA	NA	NA	< 0.05	NA	< 0.05	< 0.05	< 0.05	< 0.05
Benzo[g,h,i]perylene	6.6	0.05	μg/g	NA	NA	NA	NA	< 0.05	NA	< 0.05	< 0.05	< 0.05	< 0.05
1,2-Methylnaphthalene	0.99	0.05	μg/g	NA	NA	NA	NA	< 0.05	NA	< 0.05	< 0.05	< 0.05	< 0.05

Notes:

Agri - Agricultural 'mbgs' - Metres Below Ground Surface 'NS' - No Standard 'NA' - Not Analyzed <' - Non-Detect Sample

MECP Table 2 SCS: Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act. Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition, Agriculture or Other Property Use with Coarse textured soils (MECP, 2011).

Table C.2: Summary of Soil Analytical Results Petroleum Hydrocarbon Four Fractions and Volatile Organic Compounds Phase Two Environmental Site Assessment 6158 Rideau Valley Drive Ottawa Ontario

			Sample ID	BH24-01 SA5	BH24-01 SA105	BH24-02 SA3	BH24-03 SA5	BH24-04 SA5	BH24-05 SA7	BH24-05 SA107	BH24-06 SA7
Contaminants of Concern	MECP Table 2 Agri or Other Property Use - Coarse	Reporting Detection Limit	Sample Depth (mbgs)	3.04 - 3.81	3.04 - 3.81	3.04 - 3.65	3.04 - 3.81	3.04 - 3.96	4.57 - 5.48	4.57 - 5.48	4.57 - 5.18
			Lab ID Sampling Date Units	6022137 07/18/2024	6022154 07/18/2024	6022139 07/18/2024	6022148 07/18/2024	6022149 07/18/2024	6022150 07/18/2024	6022155 07/18/2024	6022151 07/18/2024
Petroleum Hydrocarbons - Soil											
F1 PHCs (C6-C10)	55	5	μg/g	NA	NA	NA	<5	<5	NA	NA	NA
F1 PHCs (C6-C10) minus BTEX	NS	5	μg/g	NA	NA	NA	<5	<5	NA	NA	NA
F2 PHCs (C10-C16)	98	10	μg/g	NA	NA	NA	<10	<10	NA	NA	NA
F3 PHCs (C16-C34)	300	50	μg/g	NA	NA	NA	<50	<50	NA	NA	NA
F4 PHCs (C34-C50)	2800	50	μg/g	NA	NA	NA	<50	<50	NA	NA	NA
Volatile Organic Compounds - Soil											
Dichlorodifluoromethane	16	0.05	μg/g	NA	NA	NA	NA	NA	< 0.05	<0.05	< 0.05
Vinyl Chloride	0.02	0.02	μg/g	NA	NA	NA	NA	NA	< 0.02	<0.02	<0.02
Bromomethane	0.05	0.05	μg/g	NA	NA	NA	NA	NA	< 0.05	<0.05	< 0.05
Trichlorofluoromethane	4	0.05	μg/g	NA	NA	NA	NA	NA	< 0.05	<0.05	< 0.05
Acetone	16	0.5	μg/g	NA	NA	NA	NA	NA	<0.50	<0.50	<0.50
1,1-Dichloroethylene	0.05	0.05	μg/g	NA	NA	NA	NA	NA	<0.05	<0.05	<0.05
Methylene Chloride	0.1	0.05	μg/g	NA	NA	NA	NA	NA	<0.05	<0.05	<0.05
trans-1,2-Dichloroethylene	0.084	0.05	μg/g	NA	NA	NA	NA	NA	<0.05	<0.05	<0.05
Methyl tert-butyl Ether	0.75	0.05	μg/g	NA	NA	NA	NA	NA	<0.05	<0.05	<0.05
1,1-Dichloroethane	0.47	0.02	μg/g	NA	NA	NA	NA	NA	<0.02	<0.02	<0.02
Methyl Ethyl Ketone	16	0.5	μg/g	NA	NA	NA	NA	NA	<0.50	<0.50	<0.50
cis-1,2-Dichloroethylene	1.9	0.02	μg/g	NA	NA	NA	NA	NA	<0.02	<0.02	<0.02
Chloroform	0.05	0.04	μg/g	NA	NA	NA	NA	NA	< 0.04	< 0.04	< 0.04
1,2-Dichloroethane	0.05	0.03	μg/g	NA	NA	NA	NA	NA	<0.03	< 0.03	<0.03
1,1,1-Trichloroethane	0.38	0.05	μg/g	NA	NA	NA	NA	NA	<0.05	<0.05	<0.05
Carbon Tetrachloride	0.05	0.05	μg/g	NA	NA	NA	NA	NA	<0.05	<0.05	<0.05
Benzene	0.21	0.02	μg/g	NA	NA	NA	<0.02	<0.02	<0.02	<0.02	<0.02
1,2-Dichloropropane	0.05	0.03	μg/g	NA	NA	NA	NA	NA	<0.03	<0.03	<0.03
Trichloroethylene	0.061	0.03	μg/g	NA	NA	NA	NA	NA	<0.03	<0.03	<0.03
Bromodichloromethane	1.5	0.05	μg/g	NA	NA	NA	NA	NA	<0.05	<0.05	<0.05
Methyl Isobutyl Ketone	1.7	0.5	μg/g	NA	NA	NA	NA	NA	<0.50	<0.50	<0.50
1,1,2-Trichloroethane	0.05	0.04	μg/g	NA	NA	NA	NA	NA	<0.04	<0.04	<0.04
Toluene	2.3	0.05	μg/g	NA	NA	NA	<0.05	<0.05	<0.05	<0.05	<0.05
Dibromochloromethane	2.3	0.05	μg/g	NA	NA	NA	NA	NA	<0.05	<0.05	<0.05
Ethylene Dibromide	0.05	0.04	μg/g	NA	NA	NA	NA	NA	<0.04	<0.04	<0.04
Tetrachloroethylene	0.28	0.05	μg/g	NA	NA	NA	NA	NA	<0.05	<0.05	<0.05
1,1,1,2-Tetrachloroethane	0.058	0.04	μg/g	NA	NA	NA	NA	NA	<0.04	<0.04	<0.04
Chlorobenzene	2.4	0.05	μg/g	NA	NA	NA	NA	NA	< 0.05	<0.05	<0.05
Ethylbenzene	1.1	0.05	μg/g	NA	NA	NA	<0.05	<0.05	<0.05	<0.05	<0.05
m/p-Xylene	NS	0.05	μg/g	NA	NA	NA	< 0.05	< 0.05	<0.05	<0.05	<0.05
Bromoform	0.27	0.05	μg/g	NA	NA	NA	NA	NA	<0.05	<0.05	<0.05
Styrene	0.7	0.05	μg/g	NA	NA	NA	NA	NA	<0.05	<0.05	<0.05
1,1,2,2-Tetrachloroethane	0.05	0.05	μg/g	NA	NA	NA	NA	NA	< 0.05	< 0.05	< 0.05
o-Xylene	NS	0.05	μg/g	NA	NA	NA	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
1,3-Dichlorobenzene	4.8	0.05	μg/g	NA	NA	NA	NA	NA	< 0.05	< 0.05	< 0.05
1,4-Dichlorobenzene	0.083	0.05	μg/g	NA	NA	NA	NA	NA	<0.05	<0.05	<0.05
1,2-Dichlorobenzene	1.2	0.05	μg/g	NA	NA	NA	NA	NA	< 0.05	< 0.05	< 0.05
Xylenes, total	3.1	0.05	μg/g	NA	NA	NA	<0.05	<0.05	<0.05	<0.05	<0.05
i, 3-Dichloropropene, total	0.05	0.04	μg/g	NA	NA	NA	NA	NA	<0.04	<0.04	<0.04
Hexane	2.8	0.05	µg/g	NA	NA	NA	NA	NA	<0.05	<0.05	<0.05

Notes:

Agri - Agricultural 'mbgs' - Metres Below Ground Surface

'NS' - No Standard 'NA' - Not Analyzed

<' - Non-Detect Sample

MECP Table 2 SCS: Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act. Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition, Agriculture or Other Property Use with Coarse textured soils (MECP, 2011).

> - Exceeds MECP Table 2 BOLD Agri SCS

Table C.3: Summary of Soil Analytical ResultsToxicity Characteristic Leaching ProcedurePhase Two Environmental Site Assessment6158 Rideau Valley Drive Ottawa Ontario

Contaminants of Concern	O.Reg. 347/558 Schedule 4	Reporting Detection Limit	Sample ID Lab ID Sampling Date Units	TCLP 6022156 07/18/2024
Physical Characteristics				
Flashpoint	NS	NA	Deg C	>100
EPA 1311 - TCLP Leachate Inorgani	cs			
Fluoride	150	0.1	mg/L	0.18
Nitrate + Nitrite (as Nitrogen)	1000	0.7	mg/L	<0.70
Cyanide, free	20	0.05	mg/L	< 0.05
EPA 1311 - TCLP Leachate Metals				
Arsenic	2.5	0.01	mg/L	< 0.010
Barium	100	0.02	mg/L	0.537
Boron	500	0.05	mg/L	< 0.050
Cadmium	0.5	0.01	mg/L	< 0.010
Chromium	5	0.05	mg/L	< 0.050
Lead	5	0.01	mg/L	< 0.010
Mercury	0.1	0.01	mg/L	< 0.01
Selenium	1	0.02	mg/L	<0.020
Silver	5	0.01	mg/L	<0.010
Uranium	10	0.05	mg/L	<0.050
EPA 1311 - TCLP Leachate Volatiles	;			
Benzene	0.5	0.02	mg/L	<0.020
Carbon Tetrachloride	0.5	0.02	mg/L	<0.020
Chlorobenzene	8	0.01	mg/L	< 0.010
Chloroform	10	0.02	mg/L	<0.020
1,2-Dichlorobenzene	20	0.01	mg/L	< 0.010
1,4-Dichlorobenzene	0.5	0.01	mg/L	<0.010
1,2-Dichloroethane	0.5	0.02	mg/L	<0.020
1,1-Dichloroethylene	1.4	0.02	mg/L	<0.020
Methyl Ethyl Ketone (2-Butanone)	200	0.09	mg/L	<0.090
Methylene Chloride	5	0.03	mg/L	< 0.030
Tetrachloroethylene	3	0.05	mg/L	<0.050
Trichloroethylene	5	0.02	mg/L	<0.020
Vinyl Chloride	0.2	0.03	mg/L	< 0.030
EPA 1311 - TCLP Leachate Organics	S			
Benzo[a]pyrene	0.001	0.001	mg/L	< 0.001

Notes:

MDL': Method Detection Limit or Reporting Limit

NS ': No Standard Established

Bold

ND ': Non Detect

1. O.Reg. 347/558 Schedule 4: O.Reg 347 and O. Reg. 558/00: General – Waste Management. Schedule 4: Leachate Quality Criteria. (MECP, 2011)

Exceeds O.Reg 347/558 Schedule 4

Client: 1120974 Ontario Inc Project Number: 100011.082 August 2024

Page 1 of 1

	MECP Table 2		Sample ID	MW-1	MW-3	MW-4	N
Contaminants of Concern	Potable Groundwater - All Reporting Types of Property Detection Limit Uses and Coarse Soil		Screen Interval (m bgs) Lab ID Sampling Date Units	2.13 - 5.18 6050321 08/02/2024	1.52 - 4.57 6050322 08/02/2024	1.52 - 4.57 6050323 08/02/2024	1. 6 08
Metals - Groundwater							
Sodium	490000	50	μg/L	22000	NA	NA	
Chloride	790000	100	μg/L	31100	NA	NA	
Polycyclic Aromatic Hydrocarbons - Grou	Indwater						
Naphthalene	11	0.2	μg/L	NA	<0.20	<0.20	
Acenaphthylene	1	0.2	μg/L	NA	<0.20	<0.20	
Acenaphthene	4.1	0.2	μg/L	NA	<0.20	<0.20	
Fluorene	120	0.2	μg/L	NA	<0.20	<0.20	
Phenanthrene	1	0.1	μg/L	NA	<0.10	<0.10	
Anthracene	2.4	0.1	μg/L	NA	<0.10	<0.10	
Fluoranthene	0.41	0.2	μg/L	NA	<0.20	<0.20	
Pyrene	4.1	0.2	μg/L	NA	<0.20	<0.20	
Benzo[a]anthracene	1	0.2	μg/L	NA	<0.20	<0.20	
Chrysene	0.1	0.1	μg/L	NA	<0.10	<0.10	
Benzo[b]fluoranthene	0.1	0.1	μg/L	NA	<0.10	<0.10	
Benzo[k]fluoranthene	0.1	0.1	μg/L	NA	<0.10	<0.10	
Benzo[a]pyrene	0.01	0.01	μg/L	NA	<0.01	< 0.01	
Indeno[1 2 3-cd]pyrene	0.2	0.2	μg/L	NA	<0.20	<0.20	
Dibenzo[a,h]anthracene	0.2	0.2	μg/L	NA	<0.20	<0.20	
Benzo[ghi]perylene	0.2	0.2	μg/L	NA	<0.20	<0.20	
Methylnaphthalene (1&2)	3.2	0.2	μg/L	NA	<0.20	<0.20	

Notes:

m bgs' - Metres Below Ground Surface

'NA' - Not Analyzed

<' - Non-Detect Sample

MECP Table 2 SCS: Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act. Table 2: Full Depth Generic Site Condition Standards, Potable Ground Water for All Types of Property Use with Coarse textured soils (MECP, 2011).

BOLD	- Exceeds MECP Table 2 All Property Uses
------	--

W-104	MW-5
2 - 4.57	3.05 - 6.10
50324	6050325
02/2024	08/02/2024
NA	NA
NA	NA
<0.20	<0.20
<0.20	<0.20
<0.20	<0.20
<0.20	<0.20
<0.10	<0.10
<0.10	<0.10
<0.20	<0.20
<0.20	<0.20
<0.20	<0.20
<0.10	<0.10
< 0.10	< 0.10
< 0.10	< 0.10
< 0.01	< 0.01
< 0.20	<0.20
< 0.20	<0.20
< 0.20	<0.20
< 0.20	< 0.20

Table C.5: Summary of Groundwater Analytical Results Petroleum Hydrocarbon Four Fractions and Volatile Organic Compounds Phase Two Environmental Site Assessment

6158 Rideau Valley Drive Ottawa Ontario

	MECP Table 2 Potable	Poporting	Sample ID	MW-1	MW-3	MW-4	MW-104	MW-5	Trip Blank	Field Blank
Contaminants of Concern	Types of Property	Detection Limit	(m bas)	2.13 - 5.18	1.52 - 4.57	1.52 - 4.57	1.52 - 4.57	3.05 - 6.10		
	Uses and Coarse Soil		Lab ID Sampling Date Units	6050321 08/02/2024	6050322 08/02/2024	6050323 08/02/2024	6050324 08/02/2024	6050325 08/02/2024	6050326 08/02/2024	6050327 08/02/2024
Petroleum Hydrocarbons - Groundwater										
F1 PHCs (C6-C10)	750	25	μg/L	NA	<25	<25	<25	<25	<25	<25
F1 PHCs (C6-C10) minus BTEX	NS	25	μg/L	NA	<25	<25	<25	<25	<25	<25
F2 PHCs (C10-C16)	150	100	μg/L	NA	<100	<100	<100	<100	NA	NA
F3 PHCs (C16-C34)	500	100	μg/L	NA	<100	<100	<100	<100	NA	NA
F4 PHCs (C34-C50)	500	100	μg/L	NA	<100	<100	<100	<100	NA	NA
Volatile Organic Compounds - Groundwa	ter									
Dichlorodifluoromethane	590	0.4	μg/L	NA	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40
Vinyl Chloride	0.5	0.17	μg/L	NA	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17
Bromomethane	0.89	0.2	μg/L	NA	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Trichlorofluoromethane	150	0.4	μg/L	NA	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40
Acetone	2700	1	μg/L	NA	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1-Dichloroethylene	1.6	0.3	μg/L	NA	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
Methylene Chloride	50	0.3	μg/L	NA	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
trans-1,2-Dichloroethylene	1.6	0.2	μg/L	NA	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Methyl tert-Butyl Ether (MTBE)	15	0.2	μg/L	NA	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
1,1-Dichloroethane	5	0.3	μg/L	NA	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
Methyl Ethyl Ketone (2-Butanone)	1800	1	μg/L	NA	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
cis-1,2-Dichloroethylene	1.6	0.2	μg/L	NA	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Chloroform	2.4	0.2	μg/L	NA	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
1,2-Dichloroethane	1.6	0.2	μg/L	NA	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
1,1,1-Trichloroethane	200	0.3	μg/L	NA	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
Carbon Tetrachloride	0.79	0.2	μg/L	NA	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Benzene	5	0.2	μg/L	NA	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
1,2-Dichloropropane	5	0.2	μg/L	NA	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Trichloroethylene	1.6	0.2	μg/L	NA	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Bromodichloromethane	16	0.2	μg/L	NA	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Methyl Isobutyl Ketone	640	1	μg/L	NA	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1,2-Trichloroethane	4.7	0.2	μg/L	NA	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Toluene	24	0.2	μg/L	NA	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Dibromochloromethane	25	0.1	μg/L	NA	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Ethylene Dibromide	0.2	0.1	μg/L	NA	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Tetrachloroethylene	1.6	0.2	μg/L	NA	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
1,1,1,2-Tetrachloroethane	1.1	0.1	μg/L	NA	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Chlorobenzene	30	0.1	μg/L	NA	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Ethylbenzene	2.4	0.1	μg/L	NA	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
m/p-Xylene	NS	0.2	μg/L	NA	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Bromoform	25	0.1	μg/L	NA	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Styrene	5.4	0.1	μg/L	NA	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
1,1,2,2-Tetrachloroethane	1	0.1	μg/L	NA	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
o-Xylene	NS	0.1	μg/L	NA	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
1,3-Dichlorobenzene	59	0.1	μg/L	NA	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
1,4-Dichlorobenzene	1	0.1	μg/L	NA	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
1,2-Dichlorobenzene	3	0.1	μg/L	NA	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
1,3-Dichloropropene, total	0.5	0.3	μg/L	NA	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
Xylenes, total	300	0.2	μg/L	NA	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Hexane	51	0.2	μg/L	NA	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20

Notes:

m bgs' - Metres Below Ground Surface 'NS' - No Standard 'NA' - Not Analyzed <' - Non-Detect Sample MECP Table 2 SCS: Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act. Table 2: Full Depth Generic Site Condition Standards, Potable Ground Water for All Types of Property Use with Coarse textured soils (MECP, 2011). - Exceeds MECP Table 2 All Property

Uses

Table C.6 Soil Analytical Results - Relative Percent Difference Phase Two Environmental Site Assessment 6158 Rideau Valley Drive Ottawa Ontario

				Sample ID: Laboratory ID: Date Sampled: Sample Depth (mbgs):	BH24-01 SA5 6022137 07/18/2024 3.04 - 3.81	BH24-01 SA105 6022154 07/18/2024 3.04 - 3.81	RPD	BH24-05 SA107 6022155 07/18/2024 4.57 - 5.48	BH24-06 SA7 6022151 07/18/2024 4.57 - 5.18	RPD
	Units	Reporting Limit	5*Reporting Limit	MECP Alert Criteria						
Inorganics (Soil)										
Conductivity (ms/cm)	mS/cm	0.005	0.025	10%	0.149	0.198	28.24%	NA	NA	-
Sodium Adsorption Ratio	N/A	N/A	-	-	5.03	0.479	-	NA	NA	-
Volatile Organic Compounds (Soil)										
Dichlorodifluoromethane	ug/g	0.05	0.25	50%	NA	NA	-	< 0.05	< 0.05	-
Vinyl Chloride	ug/g	0.02	0.1	50%	NA	NA	-	< 0.02	< 0.02	-
Bromomethane	ug/g	0.05	0.25	50%	NA	NA	-	< 0.05	< 0.05	-
Trichlorofluoromethane	ug/g	0.05	0.25	50%	NA	NA	-	< 0.05	< 0.05	-
Acetone	ug/g	0.5	2.5	50%	NA	NA	-	<0.50	< 0.50	-
1.1-Dichloroethylene	ua/a	0.05	0.25	50%	NA	NA	-	< 0.05	< 0.05	-
Methylene Chloride	ua/a	0.05	0.25	50%	NA	NA	-	< 0.05	< 0.05	-
trans-1.2-Dichloroethylene	ua/a	0.05	0.25	50%	NA	NA	-	< 0.05	< 0.05	-
Methyl tert-butyl Ether	ua/a	0.05	0.25	50%	NA	NA	-	< 0.05	< 0.05	-
1.1-Dichloroethane	ua/a	0.02	0.1	50%	NA	NA	-	< 0.02	< 0.02	-
Methyl Ethyl Ketone	ua/a	0.5	2.5	50%	NA	NA	-	< 0.50	< 0.50	-
cis-1.2-Dichloroethylene	ua/a	0.02	0.1	50%	NA	NA	-	< 0.02	< 0.02	-
Chloroform	ua/a	0.04	0.2	50%	NA	NA	-	< 0.04	< 0.04	-
1.2-Dichloroethane	ua/a	0.03	0.15	50%	NA	NA	-	< 0.03	< 0.03	-
1.1.1-Trichloroethane	ug/g	0.05	0.25	50%	NA	NA		<0.05	<0.05	-
Carbon Tetrachloride	ug/g	0.05	0.25	50%	NA	NA		<0.05	<0.05	-
Benzene	-9-9	0.02	0.1	50%	NA	NA		<0.02	<0.02	-
1.2-Dichloropropage	ug/g	0.02	0.15	50%	NA	NA		<0.02	<0.02	-
Trichloroethylene	ug/g	0.03	0.15	50%	NA	NA		<0.00	<0.03	-
Bromodichloromethane	ug/g	0.05	0.25	50%	NA	NA		<0.05	<0.05	-
Methyl Isobutyl Ketone	ug/g	0.5	25	50%	NA	NA		<0.50	<0.50	-
1 1 2-Trichloroethane	ug/g	0.04	0.2	50%	NA	NA		<0.00	<0.00	-
Toluene	ug/g	0.05	0.25	50%	NA	NA		<0.05	<0.05	-
Dibromochloromethane	ug/g	0.05	0.25	50%	NA	NA		<0.05	<0.05	-
Ethylene Dibromide	ug/g	0.04	0.2	50%	NA	NA		<0.00	<0.00	-
Tetrachloroethylene	ug/g	0.05	0.25	50%	NA	NA		<0.05	<0.05	-
1 1 1 2-Tetrachloroethane	ug/g	0.04	0.2	50%	NA	NA		<0.00	<0.00	-
Chlorobenzene	ug/g	0.05	0.25	50%	NA	NA		<0.05	<0.05	-
Ethylbenzene	ug/g	0.05	0.25	50%	NA	NA		<0.05	<0.05	-
m/n-Yvlene	ug/g	0.05	0.25	50%	NA	NA		<0.05	<0.05	
Bromoform	ug/g	0.05	0.25	50%	NA	NA		<0.05	<0.05	
Storepe	ug/g	0.05	0.25	50%	NA	NA		<0.05	<0.05	
1 1 2 2-Tetrachloroethane	ug/g	0.05	0.25	50%	NA	NA		<0.05	<0.05	
o-Yulene	ug/g	0.05	0.25	50%	NA	NA		<0.05	<0.05	
1.3-Dichlorobenzene	ug/g	0.05	0.25	50%	NA	NA		<0.05	<0.05	
1.4-Dichlorobenzene	ug/g	0.05	0.25	50%	NA	NA		<0.05	<0.05	
1.2-Dichlorobenzene	ug/g	0.05	0.25	50%	NA	NA		<0.05	<0.05	
Yulanas total	ug/g	0.05	0.25	50%	NA	NA		<0.05	<0.05	
1 3-Dichloropropene total	ug/g	0.05	0.20	50%	NA	NA		<0.03	<0.03	
Hovono	ug/g	0.04	0.2	50%	NA	NA	-	<0.04	<0.04	-
пехане	ug/g	CU.U	0.20	0U%	INA	INA	-	<0.05	<0.05	-
Notes: 'NA': Not Analyzed]						

 'Noi Analyzeo

 '
 Non Detect

 'm bgs': metres below ground surface

 BOLD
 Exceeds MECP Alert Criteria

Table C.7 Groundwater Analytical Results - Relative Percent Difference Phase Two Environmental Site Assessment 6158 Rideau Valley Drive Ottawa Ontario

				Sample ID: Laboratory ID: Date Sampled: Screen Interval (m bqs):	MW-4 6050323 08/02/2024 1.52 - 4.57	MW-104 6050324 08/02/2024 1.52 - 4.57	RPD
Polycyclic Aromatic Hydrocarbons (Groundwater)	Units	Reporting Limit	5*Reporting Limit	MECP Alert Criteria			
Naphthalene	ua/L	0.2	1	30%	<0.20	<0.20	-
Acenaphthylene	µg/L	0.2	1	30%	<0.20	<0.20	-
Acenaphthene	µg/L	0.2	1	30%	<0.20	<0.20	-
Fluorene	µg/L	0.2	1	30%	<0.20	<0.20	-
Phenanthrene	µg/L	0.1	0.5	30%	<0.10	<0.10	-
Anthracene	μg/L	0.1	0.5	30%	<0.10	<0.10	-
Fluoranthene	µg/L	0.2	1	30%	<0.20	<0.20	-
Pyrene	µg/L	0.2	1	30%	<0.20	<0.20	-
Benzo[a]anthracene	µg/L	0.2	1	30%	<0.20	<0.20	-
Chrysene	µg/L	0.1	0.5	30%	<0.10	<0.10	-
Benzo[b]fluoranthene	µg/L	0.1	0.5	30%	<0.10	<0.10	-
Benzo[k]fluoranthene	µg/L	0.1	0.5	30%	<0.10	<0.10	-
Benzo[a]pyrene	µg/L	0.01	0.05	30%	<0.01	<0.01	-
Indeno[1 2 3-cd]pyrene	µg/L	0.2	1	30%	<0.20	<0.20	-
Dibenzo[a,h]anthracene	µg/L	0.2	1	30%	<0.20	<0.20	-
Benzolgnijperviene	µg/L	0.2	1	30%	<0.20	<0.20	-
Methylnaphthalene (1&2)	µg/L	0.2	I	30%	<0.20	<0.20	-
Dichlorodifluoromothano	110/	0.4	0	20%	-0.40	-0.40	
Vinyl Chloride	μg/L	0.4	∠ 0.85	30%	<0.40	<0.40	-
Promomethano	µg/L	0.17	0.85	20%	<0.17	<0.17	-
Trichlorofluoromethane	µg/L	0.4	2	30%	<0.20	<0.20	-
Acetone	µg/L	1	5	30%	<1.0	<1.0	
1 1-Dichloroethylene	ug/L	0.3	15	30%	<0.30	<0.30	
Methylene Chloride	ug/L	0.3	1.5	30%	<0.30	<0.30	-
trans-1.2-Dichloroethylene	ug/l	0.2	1	30%	<0.20	<0.20	-
Methyl tert-Butyl Ether (MTBE)	ug/l	0.2	1	30%	<0.20	<0.20	-
1.1-Dichloroethane	ua/L	0.3	1.5	30%	< 0.30	< 0.30	-
Methyl Ethyl Ketone (2-Butanone)	µg/L	1	5	30%	<1.0	<1.0	-
cis-1,2-Dichloroethylene	µg/L	0.2	1	30%	<0.20	<0.20	-
Chloroform	µg/L	0.2	1	30%	<0.20	<0.20	-
1,2-Dichloroethane	μg/L	0.2	1	30%	<0.20	<0.20	-
1,1,1-Trichloroethane	μg/L	0.3	1.5	30%	<0.30	< 0.30	-
Carbon Tetrachloride	μg/L	0.2	1	30%	<0.20	<0.20	-
Benzene	μg/L	0.2	1	30%	<0.20	<0.20	-
1,2-Dichloropropane	μg/L	0.2	1	30%	<0.20	<0.20	-
Trichloroethylene	μg/L	0.2	1	30%	<0.20	<0.20	-
Bromodichloromethane	μg/L	0.2	1	30%	<0.20	<0.20	-
Methyl Isobutyl Ketone	µg/L	1	5	30%	<1.0	<1.0	-
1,1,2-Trichloroethane	µg/L	0.2	1	30%	<0.20	<0.20	-
Toluene	µg/L	0.2	1	30%	<0.20	<0.20	-
Dibromochloromethane	µg/L	0.1	0.5	30%	<0.10	<0.10	-
Ethylene Dibromide	µg/L	0.1	0.5	30%	<0.10	<0.10	-
1 etrachioroethylene	µg/∟	0.2	I	30%	<0.20	<0.20	-
1,1,1,2-1 etrachioroethane	µg/L	0.1	0.5	30%	<0.10	<0.10	-
Chlorobenzene	µg/L	0.1	0.5	30%	<0.10	<0.10	-
Ethyldenzene	µg/L	0.1	0.5	30%	<0.10	<0.10	-
Bromoform	µg/L	0.1	0.5	30%	<0.20	<0.20	-
Styrane	µg/L	0.1	0.5	30%	<0.10	<0.10	-
1.1.2.2-Tetrachloroethane	μg/L μg/l	0.1	0.5	30%	<0.10	<0.10	-
o-Xvlene	ug/l	0.1	0.5	30%	<0.10	<0.10	-
1 3-Dichlorobenzene	ug/L	0.1	0.5	30%	<0.10	<0.10	_
1.4-Dichlorobenzene	ua/L	0.1	0.5	30%	<0.10	<0.10	-
1,2-Dichlorobenzene	μg/L	0.1	0.5	30%	<0.10	<0.10	-
1.3-Dichloropropene, total	µg/L	0.3	1.5	30%	< 0.30	< 0.30	-
Xylenes, total	µg/L	0.2	1	30%	<0.20	<0.20	-
Hexane	µg/L	0.2	1	30%	<0.20	<0.20	-
Petroleum Hydrocarbons (Groundwater)	1.0						
F1 PHCs (C6-C10)	μg/L	25	125	30%	<25	<25	-
F1 PHCs (C6-C10) minus BTEX	µg/L	25	125	30%	<25	<25	-
F2 PHCs (C10-C16)	μg/L	100	500	30%	<100	<100	-
F3 PHCs (C16-C34)	µg/L	100	500	30%	<100	<100	-
F4 PHCs (C34-C50)	μg/L	100	500	30%	<100	<100	-
Notes:							
< : Non Detect							
III bys : metres below ground surface	de MECR Alort Crit	orio		1			
BULD Excee	US WEUP AIRITURI	ciia					

Client: 1120974 Ontario Inc. Project Number: 100011.082 August 2024

APPENDIX D

Certificate of Analysis

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GEMTEC CONSULTING ENGINEERS AND SCIENTISTS 32 STEACIE DRIVE OTTAWA, ON K2K 2A9 (613) 836-1422 ATTENTION TO: Mohit Bhargav PROJECT: 100011.082 - Bulk Soil Submission AGAT WORK ORDER: 24Z176204 SOIL ANALYSIS REVIEWED BY: Sukhwinder Randhawa, Inorganic Team Lead TRACE ORGANICS REVIEWED BY: Pinkal Patel, Report Reviewer DATE REPORTED: Jul 31, 2024 PAGES (INCLUDING COVER): 23 VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

*Notes

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days after receipt unless a Long Term Storage Agreement is signed and returned. Some specialty analysis may be exempt, please contact your Client Project Manager for details.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
 contained in this document.
- All reportable information is available on request from AGAT Laboratories, in accordance with ISO/IEC 17025:2017, ISO/IEC 17025:2005 (Quebec), DR-12-PALA and/or NELAP Standards.
- This document is signed by an authorized signatory who meets the requirements of the MELCCFP, CALA, CCN and NELAP.
- For environmental samples in the Province of Quebec: The analysis is performed on and results apply to samples as received. A temperature above 6°C upon receipt, as indicated in the Sample Reception Notification (SRN), could indicate the integrity of the samples has been compromised if the delay between sampling and submission to the laboratory could not be minimized.

AGAT Laboratories (V1)

Member of: Association of Professional Engineers and Geoscientists of Alberta
(APEGA)
Western Enviro-Agricultural Laboratory Association (WEALA)
Environmental Services Association of Alberta (ESAA)

Page 1 of 23

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

AGAT WORK ORDER: 24Z176204 PROJECT: 100011.082 - Bulk Soil Submission 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

CLIENT NAME: GEMTEC CONSULTING ENGINEERS AND SCIENTISTS

SAMPLING SITE:6158 Rideau Valley Dr Ottawa ON

O. Reg. 153(511) - ORPs (Soil)

DATE RECEIVED: 2024-07-22

DATE REPORTED: 2024-07-31

ATTENTION TO: Mohit Bhargav

SAMPLED BY:CD

		SAMPLE DES	CRIPTION:	BH24-01 SA5	BH24-02 SA3	BH24-01 SA105
1		SAM	PLE TYPE:	Soil	Soil	Soil
		DATE	SAMPLED:	2024-07-18	2024-07-18	2024-07-18
Parameter	Unit	G / S	RDL	6022137	6022139	6022154
Electrical Conductivity (2:1)	mS/cm	0.47	0.005	0.149	0.406	0.198
Sodium Adsorption Ratio (2:1) (Calc.)	N/A	1	N/A	5.03	0.963	0.479

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 1: Full Depth Background Site Condition Standards - Soil - Agricultural or Other Property Use Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

6022137-6022154 EC was determined on the DI water extract obtained from the 2:1 leaching procedure (2 parts DI water:1 part soil). SAR is a calculated parameter.

Analysis performed at AGAT Toronto (unless marked by *)

AGAT WORK ORDER: 24Z176204 PROJECT: 100011.082 - Bulk Soil Submission

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GEMTEC CONSULTING ENGINEERS AND SCIENTISTS

SAMPLING SITE:6158 Rideau Valley Dr Ottawa ON

SAMPLED BY:CD

ATTENTION TO: Mohit Bhargav

O. Reg. 558 - Metals & Inorganics

DATE RECEIVED: 2024-07-22

	S	AMPLE DES	CRIPTION:	TCLP
		SAM	PLE TYPE:	Soil
		DATES	SAMPLED:	2024-07-18
Parameter	Unit	G / S	RDL	6022156
Arsenic Leachate	mg/L	2.5	0.010	<0.010
Barium Leachate	mg/L	100	0.020	0.537
Boron Leachate	mg/L	500	0.050	<0.050
Cadmium Leachate	mg/L	0.5	0.010	<0.010
Chromium Leachate	mg/L	5	0.050	<0.050
Lead Leachate	mg/L	5	0.010	<0.010
Mercury Leachate	mg/L	0.1	0.01	<0.01
Selenium Leachate	mg/L	1	0.020	<0.020
Silver Leachate	mg/L	5	0.010	<0.010
Uranium Leachate	mg/L	10	0.050	<0.050
Fluoride Leachate	mg/L	150	0.10	0.18
Cyanide Leachate	mg/L	20	0.05	<0.05
(Nitrate + Nitrite) as N Leachate	mg/L	1000	0.70	<0.70

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to O. Reg. 558 - Schedule IV Leachate Quality Criteria

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

Analysis performed at AGAT Toronto (unless marked by *)

DATE REPORTED: 2024-07-31

Certified By:

AGAT WORK ORDER: 24Z176204 PROJECT: 100011.082 - Bulk Soil Submission 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GEMTEC CONSULTING ENGINEERS AND SCIENTISTS

SAMPLING SITE:6158 Rideau Valley Dr Ottawa ON

ATTENTION TO: Mohit Bhargav

SAMPLED BY:CD

					Flash Point Analysis
DATE RECEIVED: 2024-07-22					DATE REPORTED: 2024-07-31
	:	SAMPLE DES	CRIPTION:	TCLP	
		SAM	PLE TYPE:	Soil	
		DATES	SAMPLED:	2024-07-18	
Parameter	Unit	G / S	RDL	6022156	
Flash point (Pensky Martin Closed Cup)	Deg C		NA	>100	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

Analysis performed at AGAT Calgary (unless marked by *)

Jinkal Jota

AGAT WORK ORDER: 24Z176204 PROJECT: 100011.082 - Bulk Soil Submission

ATTENTION TO: Mohit Bhargav

SAMPLED BY:CD

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GEMTEC CONSULTING ENGINEERS AND SCIENTISTS

SAMPLING SITE:6158 Rideau Valley Dr Ottawa ON

O. Reg. 153(511) - PAHs (Soil)

DATE	RECEIVE	D: 2024-07-22

DATE RECEIVED: 2024-07-22									DATE REPORTED: 2024-07-31
		SAMPLE DES	CRIPTION:	BH24-03 SA5	BH24-04 SA5	BH24-05 SA7	BH24-06 SA7	BH24-05 SA10	7
		SAM	PLE TYPE:	Soil	Soil	Soil	Soil	Soil	
		DATES	SAMPLED:	2024-07-18	2024-07-18	2024-07-18	2024-07-18	2024-07-18	
Parameter	Unit	G / S	RDL	6022148	6022149	6022150	6022151	6022155	
laphthalene	µg/g	0.05	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
cenaphthylene	µg/g	0.093	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
cenaphthene	µg/g	0.05	0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	
luorene	µg/g	0.05	0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	
Phenanthrene	µg/g	0.19	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Inthracene	µg/g	0.05	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
luoranthene	µg/g	0.24	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
yrene	µg/g	0.19	0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	
Benzo(a)anthracene	µg/g	0.095	0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	
Chrysene	µg/g	0.18	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Benzo(b)fluoranthene	µg/g	0.3	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Benzo(k)fluoranthene	µg/g	0.05	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Benzo(a)pyrene	µg/g	0.05	0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	
ndeno(1,2,3-cd)pyrene	µg/g	0.11	0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	
Dibenz(a,h)anthracene	µg/g	0.1	0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	
Benzo(g,h,i)perylene	µg/g	0.2	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
-and 1-methyl Naphthalene	µg/g	0.05	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
loisture Content	%		0.1	9.0	14.1	10.3	10.3	9.5	
Surrogate	Unit	Acceptab	le Limits						
Japhthalene-d8	%	50-1	40	70	70	70	75	75	
Acridine-d9	%	50-1	40	105	90	85	115	85	
erphenyl-d14	%	50-1	40	80	75	80	90	80	

RDL - Reported Detection Limit: G / S - Guideline / Standard: Refers to Table 1: Full Depth Background Site Condition Standards - Soil - Agricultural or Other Property Use Comments:

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation. 6022148-6022155 Results are based on the dry weight of the soil.

Note: The result for Benzo(b)Fluoranthene is the total of the Benzo(b)&j)Fluoranthene isomers because the isomers co-elute on the GC column.

2- and 1-Methyl Naphthalene is a calculated parameter. The calculated value is the sum of 2-Methyl Naphthalene and 1-Methyl Naphthalene.

Analysis performed at AGAT Toronto (unless marked by *)

finkal Jata

Certified By:

AGAT WORK ORDER: 24Z176204 PROJECT: 100011.082 - Bulk Soil Submission 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GEMTEC CONSULTING ENGINEERS AND SCIENTISTS

SAMPLING SITE:6158 Rideau Valley Dr Ottawa ON

ATTENTION TO: Mohit Bhargav

SAMPLED BY:CD

O. Reg. 153(511) - PHCs F1 - F4 (with PAHs) (Soil)

DATE RECEIVED: 2024-07-22

		SAMPLE DESC	RIPTION:	BH24-03 SA5	BH24-04 SA5
		SAMPL	E TYPE:	Soil	Soil
		DATE SA	AMPLED:	2024-07-18	2024-07-18
Parameter	Unit	G / S	RDL	6022148	6022149
Benzene	µg/g	0.02	0.02	<0.02	<0.02
Toluene	µg/g	0.2	0.05	<0.05	<0.05
Ethylbenzene	µg/g	0.05	0.05	<0.05	<0.05
m & p-Xylene	µg/g		0.05	<0.05	<0.05
o-Xylene	µg/g		0.05	<0.05	<0.05
Xylenes (Total)	µg/g	0.05	0.05	<0.05	<0.05
F1 (C6 to C10)	µg/g	17	5	<5	<5
F1 (C6 to C10) minus BTEX	µg/g	17	5	<5	<5
F2 (C10 to C16)	µg/g	10	10	<10	<10
F2 (C10 to C16) minus Naphthalene	µg/g		10	<10	<10
F3 (C16 to C34)	µg/g	240	50	<50	<50
F3 (C16 to C34) minus PAHs	µg/g		50	<50	<50
F4 (C34 to C50)	µg/g	120	50	<50	<50
Gravimetric Heavy Hydrocarbons	μg/g	120	50	NA	NA
Moisture Content	%		0.1	9.0	14.1
Surrogate	Unit	Acceptable	Limits		
Toluene-d8	% Recovery	60-14	0	73	71
Terphenyl	%	60-14	0	76	71

Jinkal Jota

DATE REPORTED: 2024-07-31

AGAT WORK ORDER: 24Z176204 PROJECT: 100011.082 - Bulk Soil Submission 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

CLIENT NAME: GEMTEC CONSULTING ENGINEERS AND SCIENTISTS

SAMPLING SITE:6158 Rideau Valley Dr Ottawa ON

ATTENTION TO: Mohit Bhargav

SAMPLED BY:CD

O. Reg. 153(511) - PHCs F1 - F4 (with PAHs) (Soil)

DATE RECEIVED: 2024-07-22 **DATE REPORTED: 2024-07-31** Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 1: Full Depth Background Site Condition Standards - Soil - Agricultural or Other Property Use Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation. 6022148-6022149 Results are based on sample dry weight. The C6-C10 fraction is calculated using toluene response factor. Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene and o-Xylene. C6–C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX. The calculated parameters are non-accredited. The parameters that are components of the calculation are accredited. The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34. Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons > C50 are present. The chromatogram has returned to baseline by the retention time of nC50. Total C6 - C50 results are corrected for BTEX and PAH contributions. C>10 - C16 (F2- Naphthalene) is a calculated parameter. The calculated value is F2 - Naphthalene. C>16 - C34 (F3-PAH) is a calculated parameter. The calculated value is F3-PAH (PAH: sum of Phenanthrene. Benzo(a)anthracene. Benzo(b)fluoranthene. Benzo(k)fluoranthene. Benzo(a)pyrene. Fluoranthene, Dibenzo(a,h)anthracene, Indeno(1,2,3-c,d)pyrene and Pyrene). This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. nC10, nC16 and nC34 response factors are within 10% of their average. C50 response factor is within 70% of nC10 + nC16 + nC34 average. Linearity is within 15%. Extraction and holding times were met for this sample.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

AGAT WORK ORDER: 24Z176204 PROJECT: 100011.082 - Bulk Soil Submission 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GEMTEC CONSULTING ENGINEERS AND SCIENTISTS

SAMPLING SITE:6158 Rideau Valley Dr Ottawa ON

O. Reg. 153(511) - VOCs (Soil)

DATE RECEIVED: 2024-07-22

DATE REPORTED: 2024-07-31

ATTENTION TO: Mohit Bhargav

SAMPLED BY:CD

		SAMPLE DESC	CRIPTION:	BH24-05 SA7	BH24-06 SA7	BH24-05 SA107	
		SAMF	PLE TYPE:	Soil	Soil	Soil	
		DATE S	SAMPLED:	2024-07-18	2024-07-18	2024-07-18	
Parameter	Unit	G / S	RDL	6022150	6022151	6022155	
Dichlorodifluoromethane	µg/g	0.05	0.05	<0.05	<0.05	<0.05	
Vinyl Chloride	ug/g	0.02	0.02	<0.02	<0.02	<0.02	
Bromomethane	ug/g	0.05	0.05	<0.05	<0.05	<0.05	
Trichlorofluoromethane	ug/g	0.05	0.05	<0.05	<0.05	<0.05	
Acetone	ug/g	0.5	0.50	<0.50	<0.50	<0.50	
1,1-Dichloroethylene	ug/g	0.05	0.05	<0.05	<0.05	<0.05	
Methylene Chloride	ug/g	0.05	0.05	<0.05	<0.05	<0.05	
Trans- 1,2-Dichloroethylene	ug/g	0.05	0.05	<0.05	<0.05	<0.05	
Methyl tert-butyl Ether	ug/g	0.05	0.05	<0.05	<0.05	<0.05	
1,1-Dichloroethane	ug/g	0.05	0.02	<0.02	<0.02	<0.02	
Methyl Ethyl Ketone	ug/g	0.5	0.50	<0.50	<0.50	<0.50	
Cis- 1,2-Dichloroethylene	ug/g	0.05	0.02	<0.02	<0.02	<0.02	
Chloroform	ug/g	0.05	0.04	<0.04	<0.04	<0.04	
1,2-Dichloroethane	ug/g	0.05	0.03	<0.03	< 0.03	<0.03	
1,1,1-Trichloroethane	ug/g	0.05	0.05	<0.05	< 0.05	<0.05	
Carbon Tetrachloride	ug/g	0.05	0.05	<0.05	<0.05	<0.05	
Benzene	ug/g	0.02	0.02	<0.02	<0.02	<0.02	
1,2-Dichloropropane	ug/g	0.05	0.03	<0.03	< 0.03	<0.03	
Trichloroethylene	ug/g	0.05	0.03	<0.03	< 0.03	<0.03	
Bromodichloromethane	ug/g	0.05	0.05	<0.05	<0.05	<0.05	
Methyl Isobutyl Ketone	ug/g	0.5	0.50	<0.50	<0.50	<0.50	
1,1,2-Trichloroethane	ug/g	0.05	0.04	<0.04	<0.04	<0.04	
Toluene	ug/g	0.2	0.05	<0.05	< 0.05	<0.05	
Dibromochloromethane	ug/g	0.05	0.05	<0.05	<0.05	<0.05	
Ethylene Dibromide	ug/g	0.05	0.04	<0.04	< 0.04	<0.04	
Tetrachloroethylene	ug/g	0.05	0.05	<0.05	<0.05	<0.05	
1,1,1,2-Tetrachloroethane	ug/g	0.05	0.04	<0.04	< 0.04	<0.04	
Chlorobenzene	ug/g	0.05	0.05	<0.05	<0.05	<0.05	
Ethylbenzene	ug/g	0.05	0.05	<0.05	< 0.05	<0.05	
m & p-Xylene	ug/g		0.05	< 0.05	< 0.05	<0.05	

Certified By:

Jinkal Jouted

AGAT WORK ORDER: 24Z176204 PROJECT: 100011.082 - Bulk Soil Submission

ATTENTION TO: Mohit Bhargav

SAMPLED BY:CD

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GEMTEC CONSULTING ENGINEERS AND SCIENTISTS

SAMPLING SITE:6158 Rideau Valley Dr Ottawa ON

O. Reg. 153(511) - VOCs (Soil)

DATE RECEIVED: 2024-07-22

		SAMPLE DESCR	IPTION:	BH24-05 SA7	BH24-06 SA7	BH24-05 SA107	
		SAMPLI	E TYPE:	Soil	Soil	Soil	
		DATE SA	MPLED:	2024-07-18	2024-07-18	2024-07-18	
Parameter	Unit	G / S	RDL	6022150	6022151	6022155	
romoform	ug/g	0.05	0.05	<0.05	<0.05	<0.05	
tyrene	ug/g	0.05	0.05	<0.05	<0.05	<0.05	
,1,2,2-Tetrachloroethane	ug/g	0.05	0.05	<0.05	< 0.05	<0.05	
-Xylene	ug/g		0.05	<0.05	<0.05	<0.05	
3-Dichlorobenzene	ug/g	0.05	0.05	<0.05	< 0.05	<0.05	
4-Dichlorobenzene	ug/g	0.05	0.05	<0.05	<0.05	<0.05	
2-Dichlorobenzene	ug/g	0.05	0.05	<0.05	<0.05	<0.05	
ylenes (Total)	ug/g	0.05	0.05	<0.05	<0.05	<0.05	
3-Dichloropropene (Cis + Trans)	μg/g	0.05	0.04	<0.04	< 0.04	<0.04	
Hexane	µg/g	0.05	0.05	<0.05	<0.05	<0.05	
loisture Content	%		0.1	10.3	10.3	9.5	
Surrogate	Unit	Acceptable	Limits				
oluene-d8	% Recovery	50-140		83	81	83	
-Bromofluorobenzene	% Recovery	50-140		114	110	112	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 1: Full Depth Background Site Condition Standards - Soil - Agricultural or Other Property Use Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

6022150-6022155 The sample was analyzed using the high level technique. The sample was extracted using methanol, a small amount of the methanol extract was diluted in water and the purge & trap GC/MS analysis was performed. Results are based on the dry weight of the soil.

Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene + o-Xylene.

1,3-Dichloropropene total is a calculated parameter. The calculated value is the sum of Cis-1,3-Dichloropropene and Trans-1,3-Dichloropropene.

The calculated parameters are non-accredited. The parameters that are components of the calculation are accredited.

Analysis performed at AGAT Toronto (unless marked by *)

finkal Jata

DATE REPORTED: 2024-07-31

Certified By:

AGAT WORK ORDER: 24Z176204 PROJECT: 100011.082 - Bulk Soil Submission 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

CLIENT NAME: GEMTEC CONSULTING ENGINEERS AND SCIENTISTS

SAMPLING SITE:6158 Rideau Valley Dr Ottawa ON

SAMPLED BY:CD

ATTENTION TO: Mohit Bhargav

					5
DATE RECEIVED: 2024-07-22					DATE REPORTED: 2024-07-31
	SAMPLE DESCRIPTION: SAMPLE TYPE:		RIPTION:	TCLP	
			LE TYPE:	Soil	
		DATE SAMPLED:		2024-07-18	
Parameter	Unit	G / S	RDL	6022156	
Benzo(a)pyrene Leachate	mg/L	0.001	0.001	<0.001	
Surrogate	Unit	Acceptable	e Limits		
Acridine-d9	%	50-14	40	85	
Naphthalene-d8	%	50-14	40	70	
Terphenyl-d14	%	50-14	40	110	

O. Reg. 558 - Benzo(a)pyrene

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to O. Reg. 558 - Schedule IV Leachate Quality Criteria

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

6022156 The sample was leached according to Regulation 558 protocol. Analysis was performed on the leachate.

Analysis performed at AGAT Toronto (unless marked by *)

Jimkal Jota

AGAT WORK ORDER: 24Z176204 PROJECT: 100011.082 - Bulk Soil Submission 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GEMTEC CONSULTING ENGINEERS AND SCIENTISTS

SAMPLING SITE:6158 Rideau Valley Dr Ottawa ON

ATTENTION TO: Mohit Bhargav

SAMPLED BY:CD

					-
DATE RECEIVED: 2024-07-22					DATE REPORTED: 2024-07-31
	S	AMPLE DES	CRIPTION:	TCLP	
		SAM	PLE TYPE:	Soil	
		DATES	SAMPLED:	2024-07-18	
Parameter	Unit	G / S	RDL	6022156	
Vinyl Chloride Leachate	mg/L	0.2	0.030	<0.030	
1,1 Dichloroethene Leachate	mg/L	1.4	0.020	<0.020	
Dichloromethane Leachate	mg/L	5.0	0.030	<0.030	
Methyl Ethyl Ketone Leachate	mg/L	200	0.090	<0.090	
Chloroform Leachate	mg/L	10.0	0.020	<0.020	
,2-Dichloroethane Leachate	mg/L	0.5	0.020	<0.020	
Carbon Tetrachloride Leachate	mg/L	0.5	0.020	<0.020	
Benzene Leachate	mg/L	0.5	0.020	<0.020	
richloroethene Leachate	mg/L	5.0	0.020	<0.020	
Fetrachloroethene Leachate	mg/L	3.0	0.050	<0.050	
Chlorobenzene Leachate	mg/L	8.0	0.010	<0.010	
,2-Dichlorobenzene Leachate	mg/L	20.0	0.010	<0.010	
1,4-Dichlorobenzene Leachate	mg/L	0.5	0.010	<0.010	
Surrogate	Unit	Acceptab	le Limits		
Toluene-d8	% Recovery	50-1	40	97	
1-Bromofluorobenzene	% Recovery	50-1	40	74	

O. Reg. 558 - VOCs

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to O. Reg. 558 - Schedule IV Leachate Quality Criteria

6022156 Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation. Sample was prepared using Regulation 558 protocol and a zero headspace extractor.

Analysis performed at AGAT Toronto (unless marked by *)

Imkal Jota

Page 11 of 23

Exceedance Summary

AGAT WORK ORDER: 24Z176204 PROJECT: 100011.082 - Bulk Soil Submission 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GEMTEC CONSULTING ENGINEERS AND SCIENTISTS

ATTENTION TO: Mohit Bhargav

SAMPLEID	SAMPLE TITLE	GUIDELINE	ANALYSIS PACKAGE	PARAMETER	UNIT	GUIDEVALUE	RESULT
6022137	BH24-01 SA5	ON T1 S AG	O. Reg. 153(511) - ORPs (Soil)	Sodium Adsorption Ratio (2:1) (Calc.)	N/A	1	5.03

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

Quality Assurance

Soil Analysis

CLIENT NAME: GEMTEC CONSULTING ENGINEERS AND SCIENTISTS

PROJECT: 100011.082 - Bulk Soil Submission

SAMPLING SITE:6158 Rideau Valley Dr Ottawa ON

AGAT WORK ORDER: 24Z176204

ATTENTION TO: Mohit Bhargav

SAMPLED BY:CD

				001		11 y 31.	5									
RPT Date: Jul 31, 2024				DUPLICATE			REFERENCE MATERIAL			METHOD	BLAN	SPIKE	MATRIX SPIKE		IKE	
PARAMETER	Batch	Sample	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured	Acceptable Limits		Becovery	Acceptable Limits		Becovery	Acce Lir	ptable mits
	Baten	ld	Dup #1	Dup #2	111 0		Value	Lower	Upper	Theodycity	Lower	Upper	necovery	Lower	Upper	
O. Reg. 153(511) - ORPs (Soil)																
Electrical Conductivity (2:1)	6022139 60	022139	0.406	0.378	7.1%	< 0.005	109%	80%	120%							
Sodium Adsorption Ratio (2:1) (Calc.)	6032971		0.323	0.348	7.5%	NA										
Comments: NA signifies Not Applic	able.															
O. Reg. 153(511) - ORPs (Soil)																
Sodium Adsorption Ratio (2:1) (Calc.)	6022139 60	022139	0.963	0.965	0.2%	NA										
Comments: NA signifies Not Applic	able.															
O. Reg. 558 - Metals & Inorganic	s															
Arsenic Leachate	6022156 60	022156	<0.010	<0.010	NA	< 0.010	93%	70%	130%	109%	80%	120%	114%	70%	130%	
Barium Leachate	6022156 60	022156	0.537	0.552	2.8%	< 0.020	98%	70%	130%	101%	80%	120%	103%	70%	130%	
Boron Leachate	6022156 60	022156	<0.050	<0.050	NA	< 0.050	92%	70%	130%	97%	80%	120%	105%	70%	130%	
Cadmium Leachate	6022156 60	022156	<0.010	<0.010	NA	< 0.010	99%	70%	130%	107%	80%	120%	121%	70%	130%	
Chromium Leachate	6022156 60	022156	<0.050	<0.050	NA	< 0.050	97%	70%	130%	100%	80%	120%	96%	70%	130%	
Lead Leachate	6022156 60	022156	<0.010	<0.010	NA	< 0.010	93%	70%	130%	95%	80%	120%	97%	70%	130%	
Mercury Leachate	6022156 60	022156	<0.01	<0.01	NA	< 0.01	108%	70%	130%	101%	80%	120%	112%	70%	130%	
Selenium Leachate	6022156 60	022156	<0.020	<0.020	NA	< 0.020	97%	70%	130%	118%	80%	120%	122%	70%	130%	
Silver Leachate	6022156 60	022156	<0.010	<0.010	NA	< 0.010	94%	70%	130%	102%	80%	120%	106%	70%	130%	
Uranium Leachate	6022156 60	022156	<0.050	<0.050	NA	< 0.050	95%	70%	130%	98%	80%	120%	97%	70%	130%	
Fluoride Leachate	6023492		0.24	0.24	NA	< 0.10	107%	90%	110%	109%	90%	110%	109%	70%	130%	
Cyanide Leachate	6022156 60	022156	<0.05	<0.05	NA	< 0.05	105%	70%	130%	96%	80%	120%	93%	70%	130%	
(Nitrate + Nitrite) as N Leachate	6015768		<0.70	<0.70	NA	< 0.70	102%	80%	120%	110%	80%	120%	102%	70%	130%	

Comments: NA signifies Not Applicable.

Duplicate NA: results are under 5X the RDL and will not be calculated.

Page 13 of 23

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

Quality Assurance

CLIENT NAME: GEMTEC CONSULTING ENGINEERS AND SCIENTISTS

PROJECT: 100011.082 - Bulk Soil Submission

SAMPLING SITE:6158 Rideau Valley Dr Ottawa ON

AGAT WORK ORDER: 24Z176204

ATTENTION TO: Mohit Bhargav SAMPLED BY:CD

Trace Organics Analysis

							· · ·								
RPT Date: Jul 31, 2024			DUPLICATE				REFERENCE MATERIAL			METHOD	BLAN	SPIKE	MAT	RIX SP	IKE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured	Acce Lii	eptable nits	Recovery	Acce Lii	ptable nits	Recovery	Acceptable Limits	
		iu.					Value	Lower	Upper		Lower	Upper		Lower	Upper
O. Reg. 153(511) - PHCs F1 - F4 (with PAHs) (S	ioil)													
Benzene	6022731		<0.02	<0.02	NA	< 0.02	91%	60%	140%	80%	60%	140%	86%	60%	140%
Toluene	6022731		<0.05	<0.05	NA	< 0.05	114%	60%	140%	109%	60%	140%	126%	60%	140%
Ethylbenzene	6022731		<0.05	<0.05	NA	< 0.05	98%	60%	140%	104%	60%	140%	124%	60%	140%
m & p-Xylene	6022731		<0.05	<0.05	NA	< 0.05	110%	60%	140%	115%	60%	140%	107%	60%	140%
o-Xylene	6022731		<0.05	<0.05	NA	< 0.05	115%	60%	140%	118%	60%	140%	128%	60%	140%
F1 (C6 to C10)	6022731		<5	<5	NA	< 5	102%	60%	140%	87%	60%	140%	109%	60%	140%
F2 (C10 to C16)	6022149 602	22149	< 10	< 10	NA	< 10	110%	60%	140%	107%	60%	140%	122%	60%	140%
F3 (C16 to C34)	6022149 602	22149	< 50	< 50	NA	< 50	109%	60%	140%	122%	60%	140%	126%	60%	140%
F4 (C34 to C50)	6022149 602	22149	< 50	< 50	NA	< 50	74%	60%	140%	109%	60%	140%	88%	60%	140%
O. Reg. 153(511) - PAHs (Soil)															
Naphthalene	6022149 602	22149	<0.05	<0.05	NA	< 0.05	76%	50%	140%	85%	50%	140%	83%	50%	140%
Acenaphthylene	6022149 602	22149	<0.05	<0.05	NA	< 0.05	80%	50%	140%	85%	50%	140%	93%	50%	140%
Acenaphthene	6022149 602	22149	<0.05	<0.05	NA	< 0.05	81%	50%	140%	78%	50%	140%	83%	50%	140%
Fluorene	6022149 602	22149	<0.05	<0.05	NA	< 0.05	85%	50%	140%	75%	50%	140%	75%	50%	140%
Phenanthrene	6022149 602	22149	<0.05	<0.05	NA	< 0.05	85%	50%	140%	75%	50%	140%	75%	50%	140%
Anthracene	6022149 602	22149	<0.05	<0.05	NA	< 0.05	69%	50%	140%	78%	50%	140%	83%	50%	140%
Fluoranthene	6022149 602	22149	< 0.05	< 0.05	NA	< 0.05	90%	50%	140%	75%	50%	140%	78%	50%	140%
Pyrene	6022149 602	22149	< 0.05	< 0.05	NA	< 0.05	90%	50%	140%	75%	50%	140%	75%	50%	140%
Benzo(a)anthracene	6022149 602	22149	<0.05	<0.05	NA	< 0.05	78%	50%	140%	80%	50%	140%	78%	50%	140%
Chrysene	6022149 602	22149	<0.05	<0.05	NA	< 0.05	106%	50%	140%	70%	50%	140%	73%	50%	140%
Benzo(b)fluoranthene	6022149 602	22149	<0.05	<0.05	NA	< 0.05	70%	50%	140%	83%	50%	140%	73%	50%	140%
Benzo(k)fluoranthene	6022149 602	22149	< 0.05	< 0.05	NA	< 0.05	76%	50%	140%	75%	50%	140%	70%	50%	140%
Benzo(a)pyrene	6022149 602	22149	< 0.05	< 0.05	NA	< 0.05	66%	50%	140%	83%	50%	140%	103%	50%	140%
Indeno(1,2,3-cd)pyrene	6022149 602	22149	<0.05	<0.05	NA	< 0.05	88%	50%	140%	85%	50%	140%	98%	50%	140%
Dibenz(a,h)anthracene	6022149 602	22149	<0.05	<0.00	NA	< 0.05	84%	50%	140%	83%	50%	140%	93%	50%	140%
Benzo(g,h,i)perylene	6022149 602	22149	<0.05	<0.05	NA	< 0.05	103%	50%	140%	80%	50%	140%	85%	50%	140%
O. Reg. 153(511) - VOCs (Soil)															
Dichlorodifluoromethane	6023749		<0.05	<0.05	NA	< 0.05	78%	50%	140%	109%	50%	140%	119%	50%	140%
Vinyl Chloride	6023749		<0.02	<0.02	NA	< 0.02	116%	50%	140%	121%	50%	140%	103%	50%	140%
Bromomethane	6023749		<0.05	<0.05	NA	< 0.05	122%	50%	140%	96%	50%	140%	120%	50%	140%
Trichlorofluoromethane	6023749		<0.05	<0.05	NA	< 0.05	88%	50%	140%	104%	50%	140%	117%	50%	140%
Acetone	6023749		<0.50	<0.50	NA	< 0.50	69%	50%	140%	107%	50%	140%	109%	50%	140%
1,1-Dichloroethylene	6023749		<0.05	<0.05	NA	< 0.05	100%	50%	140%	106%	60%	130%	91%	50%	140%
Methylene Chloride	6023749		<0.05	<0.05	NA	< 0.05	87%	50%	140%	99%	60%	130%	110%	50%	140%
Trans- 1,2-Dichloroethylene	6023749		<0.05	<0.05	NA	< 0.05	105%	50%	140%	85%	60%	130%	105%	50%	140%
Methyl tert-butyl Ether	6023749		<0.05	<0.05	NA	< 0.05	94%	50%	140%	98%	60%	130%	95%	50%	140%
1,1-Dichloroethane	6023749		<0.02	<0.02	NA	< 0.02	91%	50%	140%	100%	60%	130%	95%	50%	140%
Methyl Ethyl Ketone	6023749		<0.50	<0.50	NA	< 0.50	96%	50%	140%	106%	50%	140%	117%	50%	140%
	NCE REPORT	(V1)											F	Page 14	of 23

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Quality Assurance

CLIENT NAME: GEMTEC CONSULTING ENGINEERS AND SCIENTISTS

PROJECT: 100011.082 - Bulk Soil Submission

SAMPLING SITE:6158 Rideau Valley Dr Ottawa ON

AGAT WORK ORDER: 24Z176204 ATTENTION TO: Mohit Bhargav SAMPLED BY:CD

Trace Organics Analysis (Continued)

RPT Date: Jul 31, 2024			DUPLICATE				REFERE		TERIAL	METHOD	BLAN	SPIKE	МАТ	ATRIX SPIKE		
PARAMETER	Batch	Sample	Dup #1	Dun #2	RPD	Method Blank	Measured	Acce Lir	ptable nits	Becoverv	Acce Lir	ptable nits	Becoverv	Acceptable Limits		
	Duton	ld	Dup "	54p #2	1.1.2		Value	Lower	Upper		Lower	Upper		Lower	Upper	
Cis- 1,2-Dichloroethylene	6023749		<0.02	<0.02	NA	< 0.02	87%	50%	140%	87%	60%	130%	92%	50%	140%	
Chloroform	6023749		<0.04	<0.04	NA	< 0.04	107%	50%	140%	80%	60%	130%	105%	50%	140%	
1,2-Dichloroethane	6023749		<0.03	<0.03	NA	< 0.03	105%	50%	140%	106%	60%	130%	107%	50%	140%	
1,1,1-Trichloroethane	6023749		<0.05	<0.05	NA	< 0.05	83%	50%	140%	89%	60%	130%	74%	50%	140%	
Carbon Tetrachloride	6023749		<0.05	<0.05	NA	< 0.05	78%	50%	140%	85%	60%	130%	70%	50%	140%	
Benzene	6023749		<0.02	<0.02	NA	< 0.02	90%	50%	140%	88%	60%	130%	111%	50%	140%	
1,2-Dichloropropane	6023749		<0.03	<0.03	NA	< 0.03	93%	50%	140%	93%	60%	130%	108%	50%	140%	
Trichloroethylene	6023749		<0.03	<0.03	NA	< 0.03	96%	50%	140%	103%	60%	130%	105%	50%	140%	
Bromodichloromethane	6023749		<0.05	<0.05	NA	< 0.05	83%	50%	140%	92%	60%	130%	79%	50%	140%	
Methyl Isobutyl Ketone	6023749		<0.50	<0.50	NA	< 0.50	102%	50%	140%	107%	50%	140%	102%	50%	140%	
1,1,2-Trichloroethane	6023749		<0.04	<0.04	NA	< 0.04	93%	50%	140%	108%	60%	130%	106%	50%	140%	
Toluene	6023749		<0.05	<0.05	NA	< 0.05	94%	50%	140%	104%	60%	130%	96%	50%	140%	
Dibromochloromethane	6023749		<0.05	<0.05	NA	< 0.05	67%	50%	140%	78%	60%	130%	74%	50%	140%	
Ethylene Dibromide	6023749		<0.04	<0.04	NA	< 0.04	83%	50%	140%	91%	60%	130%	88%	50%	140%	
Tetrachloroethylene	6023749		<0.05	<0.05	NA	< 0.05	88%	50%	140%	78%	60%	130%	90%	50%	140%	
1,1,1,2-Tetrachloroethane	6023749		<0.04	<0.04	NA	< 0.04	68%	50%	140%	76%	60%	130%	74%	50%	140%	
Chlorobenzene	6023749		<0.05	<0.05	NA	< 0.05	88%	50%	140%	96%	60%	130%	93%	50%	140%	
Ethylbenzene	6023749		<0.05	<0.05	NA	< 0.05	84%	50%	140%	97%	60%	130%	89%	50%	140%	
m & p-Xylene	6023749		<0.05	<0.05	NA	< 0.05	85%	50%	140%	99%	60%	130%	91%	50%	140%	
Bromoform	6023749		<0.05	<0.05	NA	< 0.05	73%	50%	140%	73%	60%	130%	75%	50%	140%	
Styrene	6023749		<0.05	<0.05	NA	< 0.05	76%	50%	140%	88%	60%	130%	81%	50%	140%	
1,1,2,2-Tetrachloroethane	6023749		<0.05	<0.05	NA	< 0.05	96%	50%	140%	103%	60%	130%	83%	50%	140%	
o-Xylene	6023749		<0.05	<0.05	NA	< 0.05	87%	50%	140%	98%	60%	130%	93%	50%	140%	
1,3-Dichlorobenzene	6023749		<0.05	<0.05	NA	< 0.05	75%	50%	140%	89%	60%	130%	86%	50%	140%	
1,4-Dichlorobenzene	6023749		<0.05	<0.05	NA	< 0.05	75%	50%	140%	86%	60%	130%	85%	50%	140%	
1,2-Dichlorobenzene	6023749		<0.05	<0.05	NA	< 0.05	76%	50%	140%	85%	60%	130%	81%	50%	140%	
n-Hexane	6023749		<0.05	<0.05	NA	< 0.05	90%	50%	140%	76%	60%	130%	98%	50%	140%	
O. Reg. 558 - VOCs																
Vinyl Chloride Leachate	6024642		<0.030	<0.030	NA	< 0.030	108%	50%	140%	79%	50%	140%	95%	50%	140%	
1,1 Dichloroethene Leachate	6024642		<0.020	<0.020	NA	< 0.020	115%	50%	140%	112%	60%	130%	106%	50%	140%	
Dichloromethane Leachate	6024642		<0.030	<0.030	NA	< 0.030	114%	50%	140%	116%	60%	130%	105%	50%	140%	
Methyl Ethyl Ketone Leachate	6024642		<0.090	<0.090	NA	< 0.090	102%	50%	140%	110%	50%	140%	91%	50%	140%	
Chloroform Leachate	6024642		<0.020	<0.020	NA	< 0.020	110%	50%	140%	96%	60%	130%	108%	50%	140%	
1,2-Dichloroethane Leachate	6024642		<0.020	<0.020	NA	< 0.020	111%	50%	140%	98%	60%	130%	107%	50%	140%	
Carbon Tetrachloride Leachate	6024642		<0.020	<0.020	NA	< 0.020	110%	50%	140%	88%	60%	130%	112%	50%	140%	
Benzene Leachate	6024642		<0.020	<0.020	NA	< 0.020	108%	50%	140%	115%	60%	130%	96%	50%	140%	
Trichloroethene Leachate	6024642		<0.020	<0.020	NA	< 0.020	114%	50%	140%	92%	60%	130%	104%	50%	140%	
Tetrachloroethene Leachate	6024642		<0.050	<0.050	NA	< 0.050	111%	50%	140%	111%	60%	130%	113%	50%	140%	
Chlorobenzene Leachate	6024642		<0.010	<0.010	NA	< 0.010	113%	50%	140%	111%	60%	130%	108%	50%	140%	

AGAT QUALITY ASSURANCE REPORT (V1)

Page 15 of 23

Quality Assurance

CLIENT NAME: GEMTEC CONSULTING ENGINEERS AND SCIENTISTS

PROJECT: 100011.082 - Bulk Soil Submission

AGAT WORK ORDER: 24Z176204

ATTENTION TO: Mohit Bhargav

SAMPLING SITE:6158 Rideau Valley Dr Ottawa ON

SAMPLED BY:CD

100% 80% 120%

Trace Organics Analysis (Continued)

RPT Date: Jul 31, 2024	RPT Date: Jul 31, 2024						REFERE	NCE MA	TERIAL	METHOD	BLAN	SPIKE	MATRIX SPIKE			
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured	Acceptable Limits		Recovery	Acceptable Limits		Recovery	Acce	ptable nits	
		Ia		·			value	Lower	Upper		Lower	Upper		Lower	Upper	
1,2-Dichlorobenzene Leachate	6024642		<0.010	<0.010	NA	< 0.010	105%	50%	140%	102%	60%	130%	99%	50%	140%	
1,4-Dichlorobenzene Leachate	6024642		<0.010	<0.010	NA	< 0.010	111%	50%	140%	106%	60%	130%	105%	50%	140%	
O. Reg. 558 - Benzo(a)pyrene Benzo(a)pyrene Leachate	6022156 6	022156	<0.001	<0.001	NA	< 0.001	85%	50%	140%	95%	50%	140%	98%	50%	140%	

Comments: When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

Flash Point Analysis					
Flash Point (Deg C) (Cgy)	4111	butanol	35	35	0.0%

Comments: Duplicate NA: results are less than 5X the RDL and RDP will not be calculated. The sample spikes and dups are not from the same sample ID.

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Certified By:

Page 16 of 23

Method Summary

CLIENT NAME: GEMTEC CONSULTING ENGINEERS AND SCIENTISTS

PROJECT: 100011.082 - Bulk Soil Submission

AGAT WORK ORDER: 24Z176204 ATTENTION TO: Mohit Bhargav

SAMPLED BY:CD

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Soil Analysis			
Electrical Conductivity (2:1)	INOR-93-6075	modified from MSA PART 3, CH 14 and SM 2510 B	PC TITRATE
Sodium Adsorption Ratio (2:1) (Calc.)	INOR-93-6007	modified from EPA 6010D & Analytical Protocol	ICP/OES
Arsenic Leachate	MET-93-6103	EPA 1311 & modified from EPA 6020E	ICP-MS
Barium Leachate	MET-93-6103	EPA 1311 & modified from EPA 6020E	ICP-MS
Boron Leachate	MET-93-6103	EPA 1311 & modified from EPA 6020E	ICP-MS
Cadmium Leachate	MET-93-6103	EPA 1311 & modified from EPA 6020E	ICP-MS
Chromium Leachate	MET-93-6103	EPA 1311 & modified from EPA 6020E	ICP-MS
Lead Leachate	MET-93-6103	EPA 1311 & modified from EPA 6020E	ICP-MS
Mercury Leachate	MET-93-6103	EPA 1311 & modified from EPA 6020E	ICP-MS
Selenium Leachate	MET-93-6103	EPA 1311 & modified from EPA 6020E	ICP-MS
Silver Leachate	MET-93-6103	EPA 1311 & modified from EPA 6020E	ICP-MS
Uranium Leachate	MET-93-6103	EPA 1311 & modified from EPA 6020E	ICP-MS
Fluoride Leachate	INOR-93-6000	EPA SW 846-1311; SM 4500F-C	ION SELECTIVE ELECTRODE
Cyanide Leachate	INOR-93-6052	EPA 1311 modified from MOE 3015 SM 4500 CN-I,G387	SEGMENTED FLOW ANALYSIS
(Nitrate + Nitrite) as N Leachate	INOR-93-6053	EPA SW 846-1311 & modified from SM 4500 - NO3- I	LACHAT FIA

Method Summary

CLIENT NAME: GEMTEC CONSULTING ENGINEERS AND SCIENTISTS PROJECT: 100011.082 - Bulk Soil Submission

SAMPLING SITE:6158 Rideau Valley Dr Ottawa ON

AGAT WORK ORDER: 24Z176204

ATTENTION TO: Mohit Bhargav

SAMPLING SITE:6158 Rideau Valley Dr	Ottawa ON	SAMPLED BY:CD									
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE								
Trace Organics Analysis		1									
Flash point (Pensky Martin Closed Cup)	TO 2210	ASTM D93	Pensky Martin Closed Cup								
Naphthalene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS								
Acenaphthylene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS								
Acenaphthene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS								
Fluorene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS								
Phenanthrene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS								
Anthracene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS								
Fluoranthene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS								
Pyrene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS								
Benzo(a)anthracene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS								
Chrysene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS								
Benzo(b)fluoranthene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS								
Benzo(k)fluoranthene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS								
Benzo(a)pyrene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS								
Indeno(1,2,3-cd)pyrene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS								
Dibenz(a,h)anthracene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS								
Benzo(g,h,i)perylene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS								
2-and 1-methyl Naphthalene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS								
Naphthalene-d8	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS								
Acridine-d9	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS								
Terphenyl-d14	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS								
Moisture Content	VOL-91-5009	modified from CCME Tier 1 Method	BALANCE								
Benzene	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/MS								
Toluene	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/MS								
Ethylbenzene	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/MS								
m & p-Xylene	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/MS								
o-Xylene	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/MS								
Xylenes (Total)	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/MS								
F1 (C6 to C10)	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/FID								
F1 (C6 to C10) minus BTEX	VOL-91-5009	modified from CCME Tier 1 Method	P&T GC/FID								
Toluene-d8	VOL-91-5009	modified from EPA SW-846 5030C & 8260D	(P&T)GC/MS								
F2 (C10 to C16)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID								
F2 (C10 to C16) minus Naphthalene	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID								

AGAT METHOD SUMMARY (V1)

Method Summary

CLIENT NAME: GEMTEC CONSULTING ENGINEERS AND SCIENTISTS

PROJECT: 100011.082 - Bulk Soil Submission

AGAT WORK ORDER: 24Z176204 ATTENTION TO: Mohit Bhargav

SAMPLING SITE:6158 Rideau Valley Dr 0	Ottawa ON	SAMPLED BY:CD						
PARAMETER	ARAMETER AGAT S.O.P LITERATURE REFERENCE		ANALYTICAL TECHNIQUE					
F3 (C16 to C34)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID					
F3 (C16 to C34) minus PAHs	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID					
F4 (C34 to C50)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID					
Gravimetric Heavy Hydrocarbons	VOL-91-5009	modified from CCME Tier 1 Method	BALANCE					
Terphenyl	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID					
Dichlorodifluoromethane	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS					
Vinyl Chloride	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS					
Bromomethane	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS					
Trichlorofluoromethane	luoromethane VOL-91-5002 modified from EPA SW-846 5035 & 8260D		(P&T)GC/MS					
Acetone	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS					
1,1-Dichloroethylene	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS					
Methylene Chloride	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS					
Trans- 1,2-Dichloroethylene	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS					
Methyl tert-butyl Ether	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS					
1,1-Dichloroethane	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS					
Methyl Ethyl Ketone	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS					
Cis- 1,2-Dichloroethylene	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS					
Chloroform	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS					
1,2-Dichloroethane	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS					
1,1,1-Trichloroethane	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS					
Carbon Tetrachloride	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS					
Benzene	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS					
1,2-Dichloropropane	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS					
Trichloroethylene	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS					
Bromodichloromethane	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS					
Methyl Isobutyl Ketone	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS					
1,1,2-Trichloroethane	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS					
Toluene	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS					
Dibromochloromethane	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS					
Ethylene Dibromide	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS					

Method Summary

CLIENT NAME: GEMTEC CONSULTING ENGINEERS AND SCIENTISTS PROJECT: 100011.082 - Bulk Soil Submission

SAMPLING SITE:6158 Rideau Valley Dr Ottawa ON

AGAT WORK ORDER: 24Z176204

ATTENTION TO: Mohit Bhargav

SAMPLING SITE:6158 Rideau Valley	Dr Ottawa ON	SAMPLED BY:CD									
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE								
Tetrachloroethylene	hloroethylene VOL-91-5002 modified from E 8260D modified from E		(P&T)GC/MS								
1,1,1,2-Tetrachloroethane	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS								
Chlorobenzene	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS								
Ethylbenzene	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS								
m & p-Xylene	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS								
Bromoform	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS								
Styrene	rene VOL-91-5002		(P&T)GC/MS								
1,1,2,2-Tetrachloroethane	oroethane VOL-91-5002 modified from EPA SW-846 5035 & 8260D		(P&T)GC/MS								
o-Xylene	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS								
1,3-Dichlorobenzene	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS								
1,4-Dichlorobenzene	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS								
1,2-Dichlorobenzene	obenzene VOL-91-5002 modified from EPA SW-846 5035 & 8260D		(P&T)GC/MS								
Xylenes (Total)	al) VOL-91-5002 modified from EPA SW-846 5035 & 8260D		(P&T)GC/MS								
1,3-Dichloropropene (Cis + Trans)	loropropene (Cis + Trans) VOL-91-5002 modified from E 8260D		(P&T)GC/MS								
n-Hexane	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS								
Toluene-d8	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS								
4-Bromofluorobenzene	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS								
Benzo(a)pyrene Leachate	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS								
Acridine-d9	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS								
Naphthalene-d8	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS								
Terphenyl-d14	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS								
Vinyl Chloride Leachate	VOL-91-5001	EPA 1311, modified from EPA 5030C & EPA 8260D	(P&T)GC/MS								
1,1 Dichloroethene Leachate	VOL-91-5001	EPA 1311, modified from EPA 5030C & EPA 8260D	(P&T)GC/MS								
Dichloromethane Leachate	VOL-91-5001	EPA 1311, modified from EPA 5030C & EPA 8260D	(P&T)GC/MS								
Methyl Ethyl Ketone Leachate	VOL-91-5001	EPA 1311, modified from EPA 5030C & EPA 8260D	(P&T)GC/MS								
Chloroform Leachate	VOL-91-5001	EPA 1311, modified from EPA 5030C & EPA 8260D	(P&T)GC/MS								
1,2-Dichloroethane Leachate	VOL-91-5001	EPA 1311, modified from EPA 5030C & EPA 8260D	(P&T)GC/MS								
Carbon Tetrachloride Leachate	VOL-91-5001	EPA 1311, modified from EPA 5030C & EPA 8260D	(P&T)GC/MS								

Method Summary

CLIENT NAME: GEMTEC CONSULTING ENGINEERS AND SCIENTISTS PROJECT: 100011.082 - Bulk Soil Submission

SAMPI ING SITE:6158 Rideau Valley Dr Ottawa ON

AGAT WORK ORDER: 24Z176204 **ATTENTION TO: Mohit Bhargav**

SAMPLING SITE:6158 Rideau Valle	ey Dr Ottawa ON	SAMPLED BY:CD	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Benzene Leachate	VOL-91-5001	EPA 1311, modified from EPA 5030C & EPA 8260D	(P&T)GC/MS
Trichloroethene Leachate	VOL-91-5001	EPA 1311, modified from EPA 5030C & EPA 8260D	(P&T)GC/MS
Tetrachloroethene Leachate	VOL-91-5001	EPA 1311, modified from EPA 5030C & EPA 8260D	(P&T)GC/MS
Chlorobenzene Leachate	VOL-91-5001	EPA 1311, modified from EPA 5030C & EPA 8260D	(P&T)GC/MS
1,2-Dichlorobenzene Leachate	VOL-91-5001	EPA 1311, modified from EPA 5030C & EPA 8260D	(P&T)GC/MS
1,4-Dichlorobenzene Leachate	VOL-91-5001	EPA 1311, modified from EPA 5030C & EPA 8260D	(P&T)GC/MS
Toluene-d8	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
4-Bromofluorobenzene	VOL-91- 5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS

GEMTEC Consulting Engineers and Scientists Limited

Sampled

July 18/24

Allel an

Please note: If quotation number is not provided, client will be billed full price for analysis.

Chain of Custody Record

Mohit Bhargav

32 Staecie Drive

mohit.bhargav@gemtec.ca

Chris.dionne@gemtec.ca

100011.082 - Bulk Soil Submission

6158 Rideau Valley Dr Ottawa, ON

Kanata, ON

K2K 2A9

CD

Sample Identification

rint Name and Sign):

Report Information:

Project Information:

Involce Information:

BH24-01 SA5

BH24-02 SA3

BH24-03 SA5

BH24-04 SA5

BH24-05 SA7

BH24-06 SA7

BH24-01 SA105

BH24-05 SA107

Company:

Contact:

Address:

Phone:

1. Email:

2. Email:

Project:

Site Location:

Sampled By: AGAT Quote #:

Company:

Contact:

Address:

Email:

1.

2.

з.

4.

5.

6.

7.

8.

9.

10.

11.

Samples Ralingu

Document(D) DN-78-1511.000

Reports to be sent to:

orato	ories	Has	ave feedbac can here for quick surve	ra y!		N Ph: 905.7	! Aississa '12.510 w	5835 uga, C 0 Fax ebcar	Coope Intario : 905 th.aga	ers Ave b L4Z 712.9 atlabs	enue 1Y2 5122 .com		L W	abora	er #:	Use 24	Only ZI	76	204	ł		_
this is a Di	inking Water s	ample, pleas	se use Drinkij	ng Water Chain of	Custody Form (po	table water	consum	ed by h	uman	5)		2	C A	ooler Qı rrival Te	uantity: mperat	tures:	Z	29	22	712	2.9	8
nd Scienti	sts Limited		(Please ch		ilrements:								CN	ustody : lotes:	Seal Int	act:		s 3		10	, Phy	/A
			- 🛛 🗹 Reg - Table	ulation 153/04	Table - Interte	Dne							Turnaround Time (TAT) Required:									
				d/Com es/Park	Regulation 5	58		Regional Reg	on ter Ou	ality			Rush TAT (Rush survharger Apphy)									
ax:			- IZA	griculture ture (Check One)			Obj	ective	is (PW	QO)			3 Business 2 Business Next Business									
				parse	CCME		U Oth	er							ays			Days		Day	. Dusin	000
				ne	l l			Indical	te One	_				a	R Date	Requir	ea (R	usn Surc	narges i	мау Аррі	y):	
			Reco	ord of Site Co	ndition?	Ce	ortifica	ate o	f An	e on alysi	l Is			-	Pleas	e provi	de pri	or notific	ation for	rush TA	Г	
N				Yes 🛛	No	E	Yes	5		No	5			*7.	AT is ex	clusive v anah	of we	ekends i	and stat	utory ho	idays COM	
			-				1 0	. Reg 1	.53	-1	-	4	-	O. Reg	O. Re	g 406	315,					Ŷ
J, client will be	Sample Matrix Legend Bill To Same: Yes I No I Bill To Same: Yes I No I Bill To Same: Yes I Sample Matrix Legend GW GU GU		2010	ield Fittered - Metals, Hg, CrVI, C	& Inorganics	. П CrVI, П Нg, П HWSB	1-F4 PHCs				oclors	Disposel Characterization TCLP: M&i ⊡VOCs ⊡ABNs ⊡B(a)P⊡PC5	on 406 SPLP Reinwater Leach Metais □ VOCs □ SVOCs	on 406 Characterization Packag IS Metals, BTEX, F1-F4	ity: 🗆 Moisture 🔲 Sulphide	SAR			1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	y Hazardous or High Concentration		
ate	Time	# of Containers	Sample	Com	ments/	Y/N	Metals	Metals -	ЗТЕХ, F	90	AHS	CBs	CBs: A	andfill I	Regulation	Regulation of the second of th	Corrosiv	EC/(Potential
18/24	AM	3	S	oposial	100 00010																	
8/24	AM PM	3	s																			
8/24	AM PM	3	S																1			
.8/24	AM PM	3	S			-	-											_				_
18/24	PM	3	S				-		-				-			-						_
18/24	PM	3	S			_	-					_										_
18/24	PM	3	S			_	-	-	-		[7]			-	-				-			_
18/24	PM	3	3						-		M	_	-	-	-							-
	PM							-	-	-		_		-	-	-	-					_
	PM						-															
	Date	Time		Samples Received By (F	rint Name and Sign):						Dete	I.		Tim	0							=
	1.0 -7		1								100											

AGAT Copy-White AGAT Copy Yellow Client (Copy

Plnk

Any and all products and/or services provided by AGAT Labs are pursuant to the terms and conditions as set forth at wow additable.com/termsandconditions unless otherwise agreed in a current written contractual document.

Date Issued: Mar 30, 2023.

Document ID 0/8-78-1511.022

Report Inform company:		f d If this is a f	Drinking Water a	sample, plea	ee use Drink	ing Water Chain of Custody Form	potable water	consum	ed by h	umans)			4	Arrival Te	mpera	tures:	2	7.91	22.7 7.6	172	89
Report Information: company: GEMTEC Consulting Engineers and Scientists Limited contact: Mohit Bhargav iddress: 32 Staccie Drive Kanata, ON Kanata, ON 'hone: K2K 2A9 eports to be sent to: mohit.bhargav@gemtec.ca Email: Chris.dionne@gemtec.ca 'toject Information: Chris.dionne@gemtec.ca roject: 100011.082 - TCLP Submission itte Location: 6158 Rideau Valley Dr Ottawa, ON sampled By: CD GAT Quote #: PO: Please note: If quotation number is not provided, ellent will be billed full price for ensitysis. No D Company: Datapti Differention:				Reg (Plosso Tall B Soll Te Soll Te Soll Te Soll Te Soll Te Soll Te Soll Te Soll Te Soll Te Soll Te	(Please check all applicable baxes) □ Regulation 153/04 □ Regulation 406 Table Indicate One □ Ind/Com □ Regulation 558 □ Res/Park ☑ Regulation 558 Soll Texture (check One) □ CCME □ Coarse □ CCME □ Is this submission for a Record of Site Condition? ☑ Yes □ No Sample Matrix Legend GW Ground Water 0 Oll P Paint S Soll			3 Sewer Use Sanitary Storm Prov. Water Quality Objectives (PWQO) Other Indicate One Report Guideline on Certificate of Analysis ☑ Yes No				Custody Seal Intact: Yes No My Notes: Turnaround Time (TAT) Required: Regular TAT S 5 to 7 Business Days Rush TAT (Rush Burcharges Apply) 3 Business 2 Business Days Days Days Days Day OR Date Required (Rush Surcharges May Apply): Please provide prior notification for rush TAT *TAT is exclusive of weekends and statutory holidays For 'Same Day' analysis, please contact your AGAT CPM							Land Stress		
contact: ddress: imail: Sam;	ple Identification	Date	Time	# of Containers	Sample	Soll Sediment Surface Water Comments/	X Field Filtered - Me	Metals & Inorganics	Metals - 🗆 CrVI, 🗆 Hg, 🛛	BTEX, F1-F4 PHCs	AHS	oCBs	CBs: Aroclors	andfill Disposal Characte CLP: ISI M&I ISVOG I ABI	Regulation 406 SPLP Ra	Regulation 406 Characte 34, ICPMS Metals, BTEX,	Corrosivity: Moisture	Flashpoint			otentially Hazardous or Hig
BH21-USA	TLLP	July 18/24	AM	3	S				-			F		X				X			
-			AM										1-1				i r				
			AM PM																		
			AM																		
				1							10										
			AM PM			-					1.0	1									
			AM PM AM PM		-		- V(_			_	2 C		
			AM PM AM PM																		
			AM PM AM PM AM PM AM PM																		
			AM PM PM AM PM AM PM AM																		
			AM PM AM PM AM PM AM PM AM AM																		

AGAT
Copy-
White
-
-AGAT
Copy
Yellow
_
Cllent
Copy -
Ink

Any and all products and/or services provided by AGAT Labs are pursuant to the terms and conditions as set forth at www.agattabs.com/termsandconditions unless otherwise agreed in a current written contractual document.

Date Issued Mar 30, 2023 Page 23 of 23

CLIENT NAME: GEMTEC CONSULTING ENGINEERS AND SCIENTISTS 32 STEACIE DRIVE OTTAWA, ON K2K 2A9 (613) 836-1422 ATTENTION TO: Mohit Bhargav PROJECT: 100011.082 AGAT WORK ORDER: 24Z181357 TRACE ORGANICS REVIEWED BY: Neli Popnikolova, Senior Chemist WATER ANALYSIS REVIEWED BY: Amanjot Bhela, Lab Operation Manager DATE REPORTED: Aug 12, 2024 PAGES (INCLUDING COVER): 14 VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

Disclaimer:

*Notes

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days after receipt unless a Long Term Storage Agreement is signed and returned. Some specialty analysis may be exempt, please contact your Client Project Manager for details.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
 contained in this document.
- All reportable information is available on request from AGAT Laboratories, in accordance with ISO/IEC 17025:2017, ISO/IEC 17025:2005 (Quebec), DR-12-PALA and/or NELAP Standards.
- This document is signed by an authorized signatory who meets the requirements of the MELCCFP, CALA, CCN and NELAP.
- For environmental samples in the Province of Quebec: The analysis is performed on and results apply to samples as received. A temperature above 6°C upon receipt, as indicated in the Sample Reception Notification (SRN), could indicate the integrity of the samples has been compromised if the delay between sampling and submission to the laboratory could not be minimized.

AGAT Laboratories (V1)

Member of: Association of Professional Engineers and Geoscientists of Alberta
(APEGA)
Western Enviro-Agricultural Laboratory Association (WEALA)
Environmental Services Association of Alberta (ESAA)

Page 1 of 14

AGAT WORK ORDER: 24Z181357 PROJECT: 100011.082 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GEMTEC CONSULTING ENGINEERS AND SCIENTISTS

SAMPLING SITE:RVD

ATTENTION TO: Mohit Bhargav

SAMPLED BY:Chris Dionne

O. Reg. 153(511) - PAHs (Water

DATE RECEIVED: 2024-08-02

		SAMPLE DESCR	RIPTION:	MW-3	MW-4	MW-104	MW-5
		SAMPL	E TYPE:	Water	Water	Water	Water
		DATE SA	MPLED:	2024-08-02	2024-08-02	2024-08-02	2024-08-02
Parameter	Unit	G / S	RDL	6050322	6050323	6050324	6050325
Naphthalene	μg/L	7	0.20	<0.20	<0.20	<0.20	<0.20
Acenaphthylene	μg/L	1	0.20	<0.20	<0.20	<0.20	<0.20
Acenaphthene	μg/L	4.1	0.20	<0.20	<0.20	<0.20	<0.20
Fluorene	μg/L	120	0.20	<0.20	<0.20	<0.20	<0.20
Phenanthrene	μg/L	0.1	0.10	<0.10	<0.10	<0.10	<0.10
Anthracene	μg/L	0.1	0.10	<0.10	<0.10	<0.10	<0.10
Fluoranthene	μg/L	0.4	0.20	<0.20	<0.20	<0.20	<0.20
Pyrene	μg/L	0.2	0.20	<0.20	<0.20	<0.20	<0.20
Benzo(a)anthracene	μg/L	0.2	0.20	<0.20	<0.20	<0.20	<0.20
Chrysene	μg/L	0.1	0.10	<0.10	<0.10	<0.10	<0.10
Benzo(b)fluoranthene	μg/L	0.1	0.10	<0.10	<0.10	<0.10	<0.10
3enzo(k)fluoranthene	μg/L	0.1	0.10	<0.10	<0.10	<0.10	<0.10
Benzo(a)pyrene	μg/L	0.01	0.01	<0.01	<0.01	<0.01	<0.01
ndeno(1,2,3-cd)pyrene	μg/L	0.2	0.20	<0.20	<0.20	<0.20	<0.20
Dibenz(a,h)anthracene	μg/L	0.2	0.20	<0.20	<0.20	<0.20	<0.20
Benzo(g,h,i)perylene	μg/L	0.2	0.20	<0.20	<0.20	<0.20	<0.20
2-and 1-methyl Napthalene	μg/L	2	0.20	<0.20	<0.20	<0.20	<0.20
Sediment				1	1	3	3
Surrogate	Unit	Acceptable	Limits				
Naphthalene-d8	%	50-140	0	82	78	81	87
Acridine-d9	%	50-140	0	85	68	74	55
Ferphenyl-d14	%	50-140	0	73	73	73	72

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 1: Full Depth Background Site Condition Standards - Ground Water - All Types of Property Uses Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

6050322-6050325 Sediment parameter is comment only based on visual inspection of the sample prior to extraction and is not an accredited test.

Legend: 1 = no sediment present; 2 = sediment present; 3 = sediment present in trace amount

Note: The result for Benzo(b)Fluoranthene is the total of the Benzo(b)&(j)Fluoranthene isomers because the isomers co-elute on the GC column.

2- and 1-Methyl Naphthalene is a calculated parameter. The calculated value is the sum of 2-Methyl Naphthalene and 1-Methyl Naphthalene. The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

NPopukolog

DATE REPORTED: 2024-08-10

AGAT WORK ORDER: 24Z181357 PROJECT: 100011.082 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GEMTEC CONSULTING ENGINEERS AND SCIENTISTS

SAMPLING SITE:RVD

ATTENTION TO: Mohit Bhargav

SAMPLED BY:Chris Dionne

O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Water)

DATE RECEIVED: 2024-08-02

		SAMPLE DES	CRIPTION:	MW-3	MW-4	MW-104	MW-5
		SAM	PLE TYPE:	Water	Water	Water	Water
		DATE	SAMPLED:	2024-08-02	2024-08-02	2024-08-02	2024-08-02
Parameter	Unit	G / S	RDL	6050322	6050323	6050324	6050325
F1 (C6 to C10)	μg/L	420	25	<25	<25	<25	<25
F1 (C6 to C10) minus BTEX	μg/L	420	25	<25	<25	<25	<25
F2 (C10 to C16)	μg/L	150	100	<100	<100	<100	<100
F2 (C10 to C16) minus Naphthalene	μg/L		100	<100	<100	<100	<100
F3 (C16 to C34)	μg/L	500	100	<100	<100	<100	<100
F3 (C16 to C34) minus PAHs	μg/L		100	<100	<100	<100	<100
F4 (C34 to C50)	μg/L	500	100	<100	<100	<100	<100
Gravimetric Heavy Hydrocarbons	μg/L		500	NA	NA	NA	NA
Sediment				1	1	1	1
Surrogate	Unit	Acceptat	ole Limits				
Toluene-d8	%	50-	140	103	102	105	101
Terphenyl	% Recovery	60-	140	72	75	68	81

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 1: Full Depth Background Site Condition Standards - Ground Water - All Types of Property Uses

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

6050322-6050325 The C6-C10 fraction is calculated using toluene response factor.

C6–C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX. The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present. The chromatogram has returned to baseline by the retention time of nC50.

Total C6 - C50 results are corrected for BTEX and PAH contributions.

C>10 - C16 (F2- Naphthalene) is a calculated parameter. The calculated value is F2 - Naphthalene.

C>16 - C34 (F3-PAH) is a calculated parameter. The calculated value is F3-PAH (PAH: sum of Phenanthrene, Benzo(a)anthracene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene, Fluoranthene, Dibenzo(a,h)anthracene, Indeno(1,2,3-c,d)pyrene and Pyrene).

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Sediment parameter is comment only based on visual inspection of the sample prior to extraction and is not an accredited test. Legend: 1 = no sediment present; 2 = sediment present; 3 = sediment present in trace amounts

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

NPopukoloj

DATE REPORTED: 2024-08-10

AGAT WORK ORDER: 24Z181357 PROJECT: 100011.082 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GEMTEC CONSULTING ENGINEERS AND SCIENTISTS

SAMPLING SITE:RVD

ATTENTION TO: Mohit Bhargav

SAMPLED BY:Chris Dionne

O. Reg. 153(511) - PHCs F1/BTEX (Water)

DATE RECEIVED: 2024-08-02

	S	AMPLE DESCR	IPTION:	Trip Blank	Field Blank
		SAMPLI	E TYPE:	Water	Water
		DATE SA	MPLED:	2024-08-02	2024-08-02
Parameter	Unit	G / S	RDL	6050326	6050327
Benzene	μg/L	0.5	0.20	<0.20	<0.20
Toluene	μg/L	0.8	0.20	<0.20	<0.20
Ethylbenzene	μg/L	0.5	0.10	<0.10	<0.10
m & p-Xylene	μg/L		0.20	<0.20	<0.20
o-Xylene	μg/L		0.10	<0.10	<0.10
Xylenes (Total)	μg/L	72	0.20	<0.20	<0.20
F1 (C6 to C10)	μg/L	420	25	<25	<25
F1 (C6 to C10) minus BTEX	μg/L	420	25	<25	<25
Surrogate	Unit	Acceptable Limits			
Toluene-d8	% Recovery	60-140		102	104

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 1: Full Depth Background Site Condition Standards - Ground Water - All Types of Property Uses Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

6050326-6050327 The C6-C10 fraction is calculated using Toluene response factor.

Total C6-C10 results are corrected for BTEX contributions.

Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene and o-Xylene.

C6–C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX.

The calculated parameters are non-accredited. The parameters that are components of the calculation are accredited.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor.

Extraction and holding times were met for this sample.

NA = Not Applicable

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

NPopukolof

DATE REPORTED: 2024-08-08

AGAT WORK ORDER: 24Z181357 PROJECT: 100011.082

O. Reg. 153(511) - VOCs (with PHC) (Water)

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GEMTEC CONSULTING ENGINEERS AND SCIENTISTS

SAMPLING SITE:RVD

ATTENTION TO: Mohit Bhargav

SAMPLED BY:Chris Dionne

DATE RECEIVED: 2024-08-02								I	DATE REPORTED: 202	4-08-08
		SAMPLE DESC	RIPTION:	MW-3	MW-4	MW-104	MW-5	Trip Blank	Field Blank	
		SAMP	LE TYPE:	Water	Water	Water	Water	Water	Water	
		DATE S	AMPLED:	2024-08-02	2024-08-02	2024-08-02	2024-08-02	2024-08-02	2024-08-02	
Parameter	Unit	G / S	RDL	6050322	6050323	6050324	6050325	6050326	6050327	
Dichlorodifluoromethane	μg/L	590	0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	
Vinyl Chloride	μg/L	0.5	0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	
Bromomethane	μg/L	0.89	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Trichlorofluoromethane	μg/L	150	0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	
Acetone	μg/L	2700	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
1,1-Dichloroethylene	μg/L	0.5	0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	
Methylene Chloride	μg/L	5	0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	
trans- 1,2-Dichloroethylene	μg/L	1.6	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Methyl tert-butyl ether	μg/L	15	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
1,1-Dichloroethane	μg/L	0.5	0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	
Methyl Ethyl Ketone	μg/L	400	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
cis- 1,2-Dichloroethylene	μg/L	1.6	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Chloroform	μg/L	2	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
1,2-Dichloroethane	μg/L	0.5	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
1,1,1-Trichloroethane	μg/L	0.5	0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	
Carbon Tetrachloride	μg/L	0.2	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Benzene	μg/L	0.5	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
1,2-Dichloropropane	μg/L	0.5	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Trichloroethylene	μg/L	0.5	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Bromodichloromethane	μg/L	2	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Methyl Isobutyl Ketone	μg/L	640	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
1,1,2-Trichloroethane	μg/L	0.5	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Toluene	μg/L	0.8	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Dibromochloromethane	μg/L	2	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	
Ethylene Dibromide	μg/L	0.2	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	
Tetrachloroethylene	μg/L	0.5	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
1,1,1,2-Tetrachloroethane	μg/L	1.1	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	
Chlorobenzene	μg/L	0.5	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	
Ethylbenzene	μg/L	0.5	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	
m & p-Xylene	μg/L		0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	

Certified By:

NPopukolof

AGAT WORK ORDER: 24Z181357 PROJECT: 100011.082 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GEMTEC CONSULTING ENGINEERS AND SCIENTISTS

SAMPLING SITE:RVD

ATTENTION TO: Mohit Bhargav

SAMPLED BY:Chris Dionne

DATE RECEIVED: 2024-08-02								[DATE REPORTED	: 2024-08-08
		SAMPLE DES	CRIPTION:	MW-3	MW-4	MW-104	MW-5	Trip Blank	Field Blank	
		SAM	PLE TYPE:	Water	Water	Water	Water	Water	Water	
		DATE	SAMPLED:	2024-08-02	2024-08-02	2024-08-02	2024-08-02	2024-08-02	2024-08-02	
Parameter	Unit	G / S	RDL	6050322	6050323	6050324	6050325	6050326	6050327	
Bromoform	μg/L	5	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	
Styrene	μg/L	0.5	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	
1,1,2,2-Tetrachloroethane	μg/L	0.5	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	
o-Xylene	μg/L		0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	
,3-Dichlorobenzene	μg/L	0.5	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	
,4-Dichlorobenzene	μg/L	0.5	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	
1,2-Dichlorobenzene	μg/L	0.5	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	
1,3-Dichloropropene	μg/L	0.5	0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	
Kylenes (Total)	μg/L	72	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
n-Hexane	μg/L	5	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Surrogate	Unit	Acceptab	le Limits							
Toluene-d8	% Recovery	50-	140	103	102	105	101	102	104	
4-Bromofluorobenzene	% Recovery	50-	140	98	97	101	99	101	100	

O. Reg. 153(511) - VOCs (with PHC) (Water)

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 1: Full Depth Background Site Condition Standards - Ground Water - All Types of Property Uses Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

6050322-6050327 Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene and o-Xylene.

1,3-Dichloropropene total is a calculated parameter. The calculated value is the sum of Cis-1,3-Dichloropropene and Trans-1,3-Dichloropropene.

The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

NPopukolof

AGAT WORK ORDER: 24Z181357 PROJECT: 100011.082

CLIENT NAME: GEMTEC CONSULTING ENGINEERS AND SCIENTISTS

SAMPLING SITE:RVD

ATTENTION TO: Mohit Bhargav

SAMPLED BY:Chris Dionne

O. Reg. 153(511) - ORPs (Water)

DATE RECEIVED: 2024-08-02

DATE RECEIVED: 2024-08-02					DATE REPORTED: 2024-08-07
		SAMPLE DES	CRIPTION:	MW-1	
		SAM	PLE TYPE:	Water	
		DATES	SAMPLED:	2024-08-02	
Parameter	Unit	G / S	RDL	6050321	
Dissolved Sodium	μg/L	490000	50	22000	
Chloride	μg/L	790000	100	31100	

RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 1: Full Depth Background Site Condition Standards - Ground Water - All Types of Property Uses Comments: Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

Quality Assurance

CLIENT NAME: GEMTEC CONSULTING ENGINEERS AND SCIENTISTS

PROJECT: 100011.082

SAMPLING SITE:RVD

AGAT WORK ORDER: 24Z181357 ATTENTION TO: Mohit Bhargav SAMPLED BY:Chris Dionne

Trace Organics Analysis

				9		····									
RPT Date:			C	UPLICAT	E		REFERE		TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured	Acce Lii	eptable nits	Recovery	Acce Lir	eptable nits	Recovery	Acce Lir	ptable nits
		Ia					Value		Upper		Lower	Upper		Lower	Upper
O. Reg. 153(511) - PHCs F1 - F4 (with PAHs	and VOC)	(Water)					•							
F1 (C6 to C10)	6050327	6050327	<25	<25	NA	< 25	93%	60%	140%	80%	60%	140%	84%	60%	140%
F2 (C10 to C16)	6050277		< 100	< 100	NA	< 100	118%	60%	140%	77%	60%	140%	90%	60%	140%
F3 (C16 to C34)	6050277		< 100	< 100	NA	< 100	95%	60%	140%	74%	60%	140%	85%	60%	140%
F4 (C34 to C50)	6050277		< 100	< 100	NA	< 100	67%	60%	140%	65%	60%	140%	88%	60%	140%
O. Reg. 153(511) - VOCs (with PH	C) (Water))													
Dichlorodifluoromethane	6050327	6050327	<0.40	<0.40	NA	< 0.40	62%	50%	140%	66%	50%	140%	107%	50%	140%
Vinvl Chloride	6050327	6050327	< 0.17	< 0.17	NA	< 0.17	113%	50%	140%	109%	50%	140%	112%	50%	140%
Bromomethane	6050327	6050327	<0.20	<0.20	NA	< 0.20	74%	50%	140%	74%	50%	140%	80%	50%	140%
Trichlorofluoromethane	6050327	6050327	<0.40	< 0.40	NA	< 0.40	81%	50%	140%	93%	50%	140%	80%	50%	140%
Acetone	6050327	6050327	<1.0	<1.0	NA	< 1.0	94%	50%	140%	97%	50%	140%	86%	50%	140%
1.1-Dichloroethvlene	6050327	6050327	<0.30	<0.30	NA	< 0.30	106%	50%	140%	86%	60%	130%	97%	50%	140%
Methylene Chloride	6050327	6050327	< 0.30	< 0.30	NA	< 0.30	93%	50%	140%	92%	60%	130%	92%	50%	140%
trans- 1.2-Dichloroethylene	6050327	6050327	<0.20	<0.20	NA	< 0.20	103%	50%	140%	89%	60%	130%	96%	50%	140%
Methyl tert-butyl ether	6050327	6050327	<0.20	<0.20	NA	< 0.20	87%	50%	140%	79%	60%	130%	70%	50%	140%
1,1-Dichloroethane	6050327	6050327	<0.30	<0.30	NA	< 0.30	102%	50%	140%	80%	60%	130%	85%	50%	140%
Methyl Ethyl Ketone	6050327	6050327	<1.0	<1.0	NA	< 1.0	98%	50%	140%	86%	50%	140%	84%	50%	140%
cis- 1,2-Dichloroethylene	6050327	6050327	<0.20	<0.20	NA	< 0.20	96%	50%	140%	77%	60%	130%	86%	50%	140%
Chloroform	6050327	6050327	<0.20	<0.20	NA	< 0.20	102%	50%	140%	82%	60%	130%	55%	50%	140%
1.2-Dichloroethane	6050327	6050327	<0.20	<0.20	NA	< 0.20	85%	50%	140%	74%	60%	130%	105%	50%	140%
1,1,1-Trichloroethane	6050327	6050327	<0.30	<0.30	NA	< 0.30	99%	50%	140%	81%	60%	130%	72%	50%	140%
Carbon Tetrachloride	6050327	6050327	<0.20	<0.20	NA	< 0.20	77%	50%	140%	62%	60%	130%	56%	50%	140%
Benzene	6050327	6050327	<0.20	<0.20	NA	< 0.20	102%	50%	140%	81%	60%	130%	77%	50%	140%
1,2-Dichloropropane	6050327	6050327	<0.20	<0.20	NA	< 0.20	96%	50%	140%	77%	60%	130%	79%	50%	140%
Trichloroethylene	6050327	6050327	<0.20	<0.20	NA	< 0.20	106%	50%	140%	84%	60%	130%	87%	50%	140%
Bromodichloromethane	6050327	6050327	<0.20	<0.20	NA	< 0.20	93%	50%	140%	75%	60%	130%	69%	50%	140%
Methyl Isobutyl Ketone	6050327	6050327	<1.0	<1.0	NA	< 1.0	109%	50%	140%	108%	50%	140%	104%	50%	140%
1,1,2-Trichloroethane	6050327	6050327	<0.20	<0.20	NA	< 0.20	98%	50%	140%	83%	60%	130%	86%	50%	140%
Toluene	6050327	6050327	<0.20	<0.20	NA	< 0.20	104%	50%	140%	87%	60%	130%	63%	50%	140%
Dibromochloromethane	6050327	6050327	<0.10	<0.10	NA	< 0.10	75%	50%	140%	63%	60%	130%	63%	50%	140%
Ethylene Dibromide	6050327	6050327	<0.10	<0.10	NA	< 0.10	95%	50%	140%	83%	60%	130%	79%	50%	140%
Tetrachloroethylene	6050327	6050327	<0.20	<0.20	NA	< 0.20	103%	50%	140%	86%	60%	130%	88%	50%	140%
1,1,1,2-Tetrachloroethane	6050327	6050327	<0.10	<0.10	NA	< 0.10	75%	50%	140%	77%	60%	130%	99%	50%	140%
Chlorobenzene	6050327	6050327	<0.10	<0.10	NA	< 0.10	102%	50%	140%	85%	60%	130%	87%	50%	140%
Ethylbenzene	6050327	6050327	<0.10	<0.10	NA	< 0.10	102%	50%	140%	84%	60%	130%	72%	50%	140%
m & p-Xylene	6050327	6050327	<0.20	<0.20	NA	< 0.20	106%	50%	140%	87%	60%	130%	59%	50%	140%
Bromoform	6050327	6050327	<0.10	<0.10	NA	< 0.10	67%	50%	140%	74%	60%	130%	78%	50%	140%
Styrene	6050327	6050327	<0.10	<0.10	NA	< 0.10	98%	50%	140%	79%	60%	130%	81%	50%	140%
1,1,2,2-Tetrachloroethane	6050327	6050327	<0.10	<0.10	NA	< 0.10	93%	50%	140%	83%	60%	130%	72%	50%	140%
o-Xylene	6050327	6050327	<0.10	<0.10	NA	< 0.10	104%	50%	140%	85%	60%	130%	59%	50%	140%

AGAT QUALITY ASSURANCE REPORT (V1)

Page 8 of 14

Quality Assurance

CLIENT NAME: GEMTEC CONSULTING ENGINEERS AND SCIENTISTS

PROJECT: 100011.082 SAMPLING SITE:RVD

AGAT WORK ORDER: 24Z181357 ATTENTION TO: Mohit Bhargav SAMPLED BY:Chris Dionne

Trace Organics Analysis (Continued)

		-			-	-			-							
RPT Date:			0	UPLICAT	E		REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	MATRIX SPIKE		
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured	Acceptable Limits		Recoverv	Acce Lir	ptable nits	Recoverv	Acce Lir	ptable nits	
		Id					value	Lower Upper],	Lower	Upper],	Lower	Upper	
1,3-Dichlorobenzene	6050327	6050327	<0.10	<0.10	NA	< 0.10	104%	50%	140%	84%	60%	130%	92%	50%	140%	
1,4-Dichlorobenzene	6050327	6050327	<0.10	<0.10	NA	< 0.10	104%	50%	140%	85%	60%	130%	94%	50%	140%	
1,2-Dichlorobenzene	6050327	6050327	<0.10	<0.10	NA	< 0.10	100%	50%	140%	84%	60%	130%	90%	50%	140%	
n-Hexane	6050327	6050327	<0.20	<0.20	NA	< 0.20	80%	50%	140%	75%	60%	130%	75%	50%	140%	
O. Reg. 153(511) - PAHs (Water)																
Naphthalene	6050324	6050324	<0.20	<0.20	NA	< 0.20	105%	50%	140%	97%	50%	140%	106%	50%	140%	
Acenaphthylene	6050324	6050324	<0.20	<0.20	NA	< 0.20	96%	50%	140%	88%	50%	140%	94%	50%	140%	
Acenaphthene	6050324	6050324	<0.20	<0.20	NA	< 0.20	89%	50%	140%	113%	50%	140%	94%	50%	140%	
Fluorene	6050324	6050324	<0.20	<0.20	NA	< 0.20	90%	50%	140%	112%	50%	140%	92%	50%	140%	
Phenanthrene	6050324	6050324	<0.10	<0.10	NA	< 0.10	88%	50%	140%	111%	50%	140%	86%	50%	140%	
Anthracene	6050324	6050324	<0.10	<0.10	NA	< 0.10	77%	50%	140%	118%	50%	140%	96%	50%	140%	
Fluoranthene	6050324	6050324	<0.20	<0.20	NA	< 0.20	91%	50%	140%	115%	50%	140%	86%	50%	140%	
Pyrene	6050324	6050324	<0.20	<0.20	NA	< 0.20	88%	50%	140%	112%	50%	140%	86%	50%	140%	
Benzo(a)anthracene	6050324	6050324	<0.20	<0.20	NA	< 0.20	113%	50%	140%	98%	50%	140%	103%	50%	140%	
Chrysene	6050324	6050324	<0.10	<0.10	NA	< 0.10	120%	50%	140%	95%	50%	140%	85%	50%	140%	
Benzo(b)fluoranthene	6050324	6050324	<0.10	<0.10	NA	< 0.10	102%	50%	140%	76%	50%	140%	94%	50%	140%	
Benzo(k)fluoranthene	6050324	6050324	<0.10	<0.10	NA	< 0.10	133%	50%	140%	109%	50%	140%	111%	50%	140%	
Benzo(a)pyrene	6050324	6050324	<0.01	<0.01	NA	< 0.01	94%	50%	140%	81%	50%	140%	72%	50%	140%	
Indeno(1,2,3-cd)pyrene	6050324	6050324	<0.20	<0.20	NA	< 0.20	70%	50%	140%	94%	50%	140%	91%	50%	140%	
Dibenz(a,h)anthracene	6050324	6050324	<0.20	<0.20	NA	< 0.20	81%	50%	140%	70%	50%	140%	75%	50%	140%	
Benzo(g,h,i)perylene	6050324	6050324	<0.20	<0.20	NA	< 0.20	86%	50%	140%	79%	50%	140%	87%	50%	140%	

Comments: When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

Certified By:

NPopukok

AGAT QUALITY ASSURANCE REPORT (V1)

Page 9 of 14

Quality Assurance

CLIENT NAME: GEMTEC CONSULTING ENGINEERS AND SCIENTISTS

PROJECT: 100011.082

SAMPLING SITE:RVD

AGAT WORK ORDER: 24Z181357

ATTENTION TO: Mohit Bhargav SAMPLED BY:Chris Dionne

Water Analysis

	······														
RPT Date:			DUPLICATE				REFERENCE MATERIAL			METHOD BLANK SPIKE			MATRIX SPIKE		
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured	Acceptable Limits		Recovery	Acceptable Limits		Recovery	Acceptable Limits	
		Ia					Value		Upper		Lower	Upper		Lower	Upper
O. Reg. 153(511) - ORPs (Water)															
Dissolved Sodium	6055636		12200	12000	1.7%	< 50	101%	70%	130%	106%	80%	120%	104%	70%	130%
Chloride	6048432		102000	103000	1.0%	< 100	95%	70%	130%	100%	80%	120%	103%	70%	130%

Certified By:

AGAT QUALITY ASSURANCE REPORT (V1)

Page 10 of 14

Method Summary

CLIENT NAME: GEMTEC CONSULTING ENGINEERS AND SCIENTISTS

PROJECT: 100011.082

AGAT WORK ORDER: 24Z181357 **ATTENTION TO: Mohit Bhargav**

SAMPLING SITE:RVD		SAMPLED BY:Chris Dionne							
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE						
Trace Organics Analysis									
Naphthalene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS						
Acenaphthylene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS						
Acenaphthene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS						
Fluorene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS						
Phenanthrene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS						
Anthracene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS						
Fluoranthene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS						
Pyrene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS						
Benzo(a)anthracene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS						
Chrysene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS						
Benzo(b)fluoranthene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS						
Benzo(k)fluoranthene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS						
Benzo(a)pyrene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS						
Indeno(1,2,3-cd)pyrene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS						
Dibenz(a,h)anthracene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS						
Benzo(g,h,i)perylene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS						
2-and 1-methyl Napthalene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS						
Naphthalene-d8	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS						
Acridine-d9	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS						
Terphenyl-d14	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS						
Sediment			N/A						
F1 (C6 to C10)	VOL-91-5010	modified from MOE PHC-E3421	(P&T)GC/FID						
F1 (C6 to C10) minus BTEX	VOL-91-5010	modified from MOE PHC-E3421	P&T GC/FID						
Toluene-d8	VOL-91- 5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
F2 (C10 to C16)	VOL-91-5010	modified from MOE PHC-E3421	GC/FID						
F2 (C10 to C16) minus Naphthalene	VOL-91-5010	modified from MOE PHC-E3421	GC/FID						
F3 (C16 to C34)	VOL-91-5010	modified from MOE PHC-E3421	GC/FID						
F3 (C16 to C34) minus PAHs	VOL-91-5010	modified from MOE PHC-E3421	GC/FID						
F4 (C34 to C50)	VOL-91-5010	modified from MOE PHC-E3421	GC/FID						
Gravimetric Heavy Hydrocarbons	VOL-91-5010	modified from MOE PHC-E3421	BALANCE						
Terphenyl	VOL-91-5010	modified from MOE PHC-E3421	GC/FID						
Benzene	VOL-91-5010	modified from EPA SW-846 5030C & 8260D	(P&T)GC/MS						

Method Summary

CLIENT NAME: GEMTEC CONSULTING ENGINEERS AND SCIENTISTS

PROJECT: 100011.082

SAMPLING SITE:RVD

AGAT WORK ORDER: 24Z181357 ATTENTION TO: Mohit Bhargav

SAMPLED BY:Chris Dionne

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Toluene	VOL-91-5010	modified from EPA SW-846 5030C & 8260D	(P&T)GC/MS
Ethylbenzene	VOL-91-5010	modified from EPA SW-846 5030C & 8260D	(P&T)GC/MS
m & p-Xylene	VOL-91-5010	modified from EPA SW-846 5030C & 8260D	(P&T)GC/MS
o-Xylene	VOL-91-5010	modified from EPA SW-846 5030C & 8260D	(P&T)GC/MS
Xylenes (Total)	VOL-91-5010	modified from EPA SW-846 5030C & 8260D	(P&T)GC/MS
F1 (C6 to C10)	VOL-91-5010	modified from MOE E3421	(P&T)GC/FID
F1 (C6 to C10) minus BTEX	VOL-91-5010	modified from MOE E3421	(P&T)GC/FID
Toluene-d8	VOL-91-5010	modified from MOE PHC-E3421	(P&T)GC/MS
Dichlorodifluoromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Vinyl Chloride	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Bromomethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Trichlorofluoromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Acetone	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1-Dichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Methylene Chloride	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
trans- 1,2-Dichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Methyl tert-butyl ether	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1-Dichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Methyl Ethyl Ketone	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
cis- 1,2-Dichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Chloroform	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,2-Dichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1,1-Trichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Carbon Tetrachloride	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Benzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,2-Dichloropropane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Trichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Bromodichloromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Methyl Isobutyl Ketone	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS

Method Summary

CLIENT NAME: GEMTEC CONSULTING ENGINEERS AND SCIENTISTS

PROJECT: 100011.082

AGAT WORK ORDER: 24Z181357 **ATTENTION TO: Mohit Bhargav**

SAMPLING SITE:RVD		SAMPLED BY:Chris Dionne AGAT S.O.P LITERATURE REFERENCE ANALYTICAL TECH							
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE						
1,1,2-Trichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
Toluene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
Dibromochloromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
Ethylene Dibromide	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
Tetrachloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
1,1,1,2-Tetrachloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
Chlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
Ethylbenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
m & p-Xylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
Bromoform	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
Styrene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
1,1,2,2-Tetrachloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
o-Xylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
1,3-Dichlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
1,4-Dichlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
1,2-Dichlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
1,3-Dichloropropene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
Xylenes (Total)	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
n-Hexane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
Toluene-d8	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
4-Bromofluorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
Water Analysis									
Dissolved Sodium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP/MS						
Chloride	INOR-93-6004	modified from SM 4110 B	ION CHROMATOGRAPH						

Mohit Bhargar

100011.082

RVD

Chris Dionne

Sample Identification

613-857-4926 506-897-042

32 Staecie Drive

Ottawa, ON

mohi

GEMTEC Consulting Engineers and Scientists Limited

bhar you wormter. cu

Samoled

Please note: If quotation number is not provided, client will be billed full price for analysis

diune as center ca nicole son y by com

Chain of Custody Record

Report Information:

Project Information:

Involce Information:

Mur-

101-3

Company:

Contact:

Address:

Phone:

1, Email:

2. Email:

Project:

Site Location:

Sampled By: AGAT Quote #:

Company:

Contact:

Address:

Email:

1

2.

Reports to be sent to:

		exce		58	35 Coo	oers A	venue		Labo	ratory	Use	Only	10	~	
ratories	Have feedba Scan here fo quick surve	yi	Mi Ph: 905.71	ississaug 2.5100 web	a, Onta Fax: 90 earth.a	rio L4 5.712 gatlat	IZ 1Y2 15129 s.com	2	Work O	rder #: Quantity	24	218	6135)t	
his is a Drinking Water sample	, please use Drinki	ng Water Chain of Custody Form (po	table water (consumed	by huma	ns)			Arrival	Tempera	tures:	13.	612	3.01	3.8
d Scientists Limited	(Please p	ulatory Requirements: meck all applicable bores) tulation 153/04	106	Sewer	Use				Custody Seal Intact: DYes No DAVA Notes: bagged ice						
	Tabl	eTableTable	One		Region				Regula	rouna Ir TAT	IIme	NO:51	o 7 Busin	irea:	
K:		es/Park Regulation 5	58 [Prov. \	Nater Q	uality		- 11	Rush T	AT (Rush	Burcharge	Apply)			
mtec.cu ca: nicole, soncy @	Soll Tex	Soll Texture (check One)							3 Business 2 Business Days Days Days Days Day						ext Business ay poly):
	Is 1 Rec	this submission for a ord of Site Condition? Yes ID No	Re Cer	port G tificate Yes	uideli of Ai	ne o naly:] N	n sis Io			Pleas TAT is ex	e provid clusive	ie prior of week	notificatio	on for rush I statutory i	TAT Iolidays
				O. Re	g 153	1		-4	O, Re	ame Da	y' analy	/sis, plea	ase conta	act your AG	
Bill To Same: Yes 🔽 1	No □ GW 0 P 5 SD SW SW	Ground Water Oil Paint Soil Sediment Surface Water	Field Filtered - Metals, Hg, CrV	ls & Inorganics	IS - L CrVI, L HB, L HW5B , F1-F4 PHCs				: Arociors 🗖 III Disposal Characterization TCLP: Diaxi Diame Diame Diame Dia	ation 406 SPLP Rainwater Leach	ation 406 Characterization Packs PMS Metals, BTEX, F1-F4	sivity: Molsture Sulphide	hloride	PHCS FI/VOU	dally Hazardous or High Concentratio
te Time # o bled Sampled Contai	ners Matrix	Comments/ Special Instructions	Y/N	Meta	BTEX	Voc	PAHs	PCBs	Land TCIP	Regul	Regul pH, IC	Corro	2	2	Potent
2/24 AM AM AM 7 AM 7	6W 2 GW 2 GW				××	X	XX							×	
	Gu				K	R	AX ()								
PM A AM 3 PM 3 AM	- GVV -						$\langle $							X	
AM PM															
AM															
PM	Time	Symples Received By (Print Name and Sign):					Data		17	me					
- Aku 224 0802 24	1345 Time TShOO Time	Sarmilas Refaired By Print Hains and Silant Sarmilas Recolled By Print Haind and Sign):	5		_		Data	3/08	24	3h 8=3	BUA	Л №:	Page	of	1

16
3. MW-4
1. MW-104
5. MW-5
6. Trie Blank
7. F. elil Blank
8.
9.
10.
11.
Samples Relinquished By (Print Name and Si Relinguas Relinquished By (Print Name and Si Samples Relinquished By (Print Name and Si

Any and all products and/or services provided by AGAT Labs are pursuant to the terms and conditions as set forth at www.agardabs.com/termsandconditions unless otherwise agreed in a current written contractual document.

CLIENT NAME: GEMTEC CONSULTING ENGINEERS AND SCIENTISTS 32 STEACIE DRIVE OTTAWA, ON K2K 2A9 (613) 836-1422 ATTENTION TO: Mohit Bhargav PROJECT: 100011.082 AGAT WORK ORDER: 24Z186946 SOIL ANALYSIS REVIEWED BY: Nivine Basily, Inorganic Team Lead DATE REPORTED: Aug 20, 2024 PAGES (INCLUDING COVER): 5 VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

otes	

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days after receipt unless a Long Term Storage Agreement is signed and returned. Some specialty analysis may be exempt, please contact your Client Project Manager for details.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
 contained in this document.
- All reportable information is available on request from AGAT Laboratories, in accordance with ISO/IEC 17025:2017, ISO/IEC 17025:2005 (Quebec), DR-12-PALA and/or NELAP Standards.
- This document is signed by an authorized signatory who meets the requirements of the MELCCFP, CALA, CCN and NELAP.
- For environmental samples in the Province of Quebec: The analysis is performed on and results apply to samples as received. A temperature above 6°C upon receipt, as indicated in the Sample Reception Notification (SRN), could indicate the integrity of the samples has been compromised if the delay between sampling and submission to the laboratory could not be minimized.

AGAT Laboratories (V1)

Member of: Association of Professional Engineers and Geoscientists of Alberta
(APEGA)
Western Enviro-Agricultural Laboratory Association (WEALA)
Environmental Services Association of Alberta (ESAA)

Page 1 of 5

AGAT WORK ORDER: 24Z186946 PROJECT: 100011.082

CLIENT NAME: GEMTEC CONSULTING ENGINEERS AND SCIENTISTS

SAMPLING SITE:

ATTENTION TO: Mohit Bhargav

SAMPLED BY:

O. Reg. 153(511) - ORPs (Soil)										
DATE RECEIVED: 2024-08-19						DATE REPORTED: 2024-08-20				
	S	AMPLE DES	CRIPTION:	BH24-01 SA2	BH24-04 SA4					
		SAM	PLE TYPE:	Soil	Soil					
		DATE	SAMPLED:	2024-07-18	2024-07-18					
Parameter	Unit	G / S	RDL	6086910	6086911					
pH, 2:1 CaCl2 Extraction	pH Units		NA	6.63	6.05					

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

6086910-6086911 pH was determined on the 0.01M CaCl2 extract obtained from 2:1 leaching procedure (2 parts extraction fluid:1 part wet soil). pH analysis performed outside recommended holding time. Analysis performed at AGAT Toronto (unless marked by *)

http://www.agatlabs.com

Quality Assurance

CLIENT NAME: GEMTEC CONSULTING ENGINEERS AND SCIENTISTS

PROJECT: 100011.082

SAMPLING SITE:

AGAT WORK ORDER: 24Z186946

ATTENTION TO: Mohit Bhargav

SAMPLED BY:

				50	I Ana	alysis	S								
RPT Date: Aug 20, 2024		DUPLICATE				REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	МАТ	RIX SPI	KE	
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured	Acceptable Limits		Recovery	Acceptable Limits		Recoverv	Acceptable Limits	
		Id					value	Lower	Upper]	Lower	Upper	···· ,	Lower	Upper
O. Reg. 153(511) - ORPs (Soil)															

3.7%

.

-

6.88

pH, 2:1 CaCl2 Extraction 6086910 6086910 6.63

NA 118% 80% 120%

Comments: NA signifies Not Applicable.

pH duplicates QA acceptance criteria was met relative as stated in Table 5-15 of Analytical Protocol document.

AGAT QUALITY ASSURANCE REPORT (V1)

Page 3 of 5

Method Summary

CLIENT NAME: GEMTEC CONSULTING ENGINEERS AND SCIENTISTS

PROJECT: 100011.082

SAMPLING SITE:

AGAT WORK ORDER: 24Z186946 ATTENTION TO: Mohit Bhargav

SAMPLED BY:

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Soil Analysis			
pH, 2:1 CaCl2 Extraction	INOR-93-6075	modified from EPA 9045D, MCKEAGUE 3.11 E3137	PC TITRATE

Chain of Custody Record

GEMTEC

5068970427

100011.082

MF

CD

Sample Identification

Mohit Bhargay

32 Steacie Drive

Ottawa, Ontario K2K 2A9

mohit.bhargav@gemtec.ca

Fax:

PO:

Date

Sampled

July 18, 24

L

Bill To Same: Yes 🔲 No 🗖

of

Containers

S

Time

Sampled

AM

1

AM

AM PM

AM

AM

AM

AM

AM

AM

AM

Please note: If guotation number is not provided, client will be billed full price for analysis.

Report Information:

Project Information:

Invoice Information:

BH24-01 SA2

BHZY - OY SAY

Company:

Contact:

Address:

Phone:

1. Email:

2. Email:

Proiect:

Site Location:

Sampled By:

AGAT Quote #:

Company:

Contact:

Address:

Email:

1.

2.

З.

4.

5.

6.

7.

8.

9.

Copy - Client I Yellow Copy - AGAT I White Copy- AGAT

Pink

Reports to be sent to:

Have feedback? Scan here for a quick survey!

Regulatory Regulrements:

Is this submission for a Record

of Site Condition (RSC)?

D No

SW

Comments/

Special Instructions

R

Regulation 153/04 Regulation 406

If this is a Drinking Water sample, please use Drinking Water Chain of Custody Form (potable water consumed by hi

(Please check all applicable boxes)

Table Indicate One

Ind/Com

Res/Park

Agriculture

Coarse

□ Yes

Paint

Soil

GW

0 liO

P

S

Sample

Matrix

Soil

1

Legal Sample

Sample Matrix Legend

Ground Water SD

1x250 ml

Fine

Soil Texture (Check One)

Table ______

Ind/Com

Res/Park

Agriculture

CCME

Sediment

Surface Water

Rock/Shale

Regulation 558

5835 C Mississauga, O Ph: 905.712.5100 Fax: webeart

Report Guld

Certificate of

□ Yes

200

Fleid Filtered - Metals, Hg, CrVI,

Y/N

iss .2	5 5issau .5100 we	5835 (uga, O D Fax: ebeart	Coope ntari 905 h aga	ers Av o L4 .712. atlabs	venue Z 1Y2 .5122 s.com		La Wor	bo rk Oi oler	r atory rder #: Quantity	y Use 25	0n -\` a -	Z	18(equ cel	16 pag	- Jus
:01	nsume	ed by h	uman	5)			Arri Dej Cus Not	val oot 1 stody tes:	lempera empera y Seal Ir	atures: atures: ntact:]Yes		3-8 □No	3	1 7]N/A
_] Sew □Sa	ver Us anitary	e	Storn	n		Tur	na	round	l Tim	e (T	AT)	Requ	ilred:		
	-	Regio	n				Reg	gula	r TAT			5 to	7 Bus	iness Day	s	
_	Prov Obje	v. Wate ective:	er Qu s (PW	ality (QO)			Rus	h T	AT (Rush	Surcharg	es App	oly)				
_	Othe	er					0		3 Busin Davs	ess		2 Bi Day	usines: s	° 🗆	Next Bus Day	iness
-		Indicate	e Orie		_	-			OR Dat	e Requi	red (Rush	Surcha	arges May	Apply):	
Þ	oort	Guld	ielir	IO O	n			â	ASAP	_						8
t	lfica	te o	f An	alys	ile -			*	Plea TAT Is e	exclusive	ide p e of v	<mark>vrior n</mark> veeke	otificat nds an	ti on for ru s nd statutor	sh TAT ry holiday:	s
	Yes	5			0	-										
æ						_		or ::		ay' ana	lysis	, plea	se con	tact your	AGAT CS	R
ŀ	0.	Reg 1	53				0.	or 's Reg	406	ay' ana	lysis	, plea	se con	tact your	AGAT CS	R (N/A
	Metals & Inorganics	Recals - CrM, CHg, CHWSB	BTEX, F1-F4 PHCs	voc	Patts	PCBs: Arodors	Regulation 406 Characterization Package	EC, SAR	Regulation 406 SPLP Rainweter Leach 90 mSPLP: C Metals C VOCs C SVOCa COC		Corroshrity: C Moisture C Sulphide	Hd	se con	tact your	AGAT CS	Potentially Hazardous or High Concentration (Y/N)
	Metals & Inorganics	Reg 1 GW, CH & CH & BWSB	BTEX, F1-F4 PHCs	voc	Patts	PCBs: Arodors	Regulation 406 Characterization Package	BC, SAR	Regulation 406 SPLP Rainwater Leach 900 mSPLP: Dimetals D VOCs D SVOCs Doc	Landin Disposal Characterization TCLP: 0.0 BSB TCLP: CIMAL CIVON CLARNE CIRCUP CIPOSA BSB SU TCLP: CIMAL CIVON CLARNE CIRCAPT CIPOSA	Corroshrity: C Moisture C Sulphide	hes Hd	se con	tact your		Potentially Hazardous or High Concentration (Y/N)
	Metals & Inorganica	Metals - CCM, CHg, CHWSB	ETEX. F1-F4 PHCs E2	voc	Patts	PCBs: Arodors	Regulation 406 Characterization Package	EC, SAR	Regulation 406 SPLP Rainweter Leach 900 mSPLP: Dimetals DV0Cs Doc 000	Landfill Disposal Characterization TCLP: 5,0 TCLP: CIMAI CIVOS CLARNA CIR(A)PCDPOSA 238 B B B CIVOS CLARNA CIR(A)PCDPOSA 238 B B CIVOS CLARNA CIRCUMATION CIRCUMAT	Corroshity: C Moisture C Sulphide	Hd 🛛	se con			Potentially Hazardous or High Concentration (Y/N)
	Metais & Inorganics		BTEK, F1-F4 PHCs	voc	Patts	PCBs: Arodors	Regulation 406 Characterization Package	EC, SAR	Regulation 406 SPLP Rainwater Leach 909 mSPLP: Climetala Civoca Cloco 900	Landm Disposal Characterization TCJP: 200 1000 1000 1000 1000 1000 1000 1000	Corroshity: C Moisture C Sulphide	Hd 2				Potentially Hazardous or High Concentration (Y/N)
	Metais & Inorganica	Reg 1. BANHC 3HC 1W2 CH 1 AG	ESC F1-F4 PHCs		Patts	PCBs: Arodors	Regulation 406 Characterization Package	Back State	Regulation 466 SPLP Rainwester Leach 90th mSPLF: C Metala CVOCG C SVOCG COC		Corroshrity: C Moisture C Sulphide	Hd 2				Potentially Hazardous or High Concentration (Y/N)
	Metals & Inorganics	Reg 1. BSMHC "HE" O'M' OHE"	6750, F1-F4 PHCs	voc	PAHS	PCBs: Arodors	Regulation 406 Characterization Package pH, Metals, BTDV, F1.F4	Beg -	Regulation 40 65 SPLP Rainweter Leach 900 miles miles my 200 miles 100 miles		Corroshity: C Moisture C Suphide	Hd 2				Potentially Hazardous or High Concentration (Y/N)
	Metals & Inorganica	Reg 1/	ETEC F1-F4 PHCs 52	voc	Patts	PCBs: Arodors	Regulation 406 Characterization Package	Beg d	Regulation 466 SPLP Rainweater Leach and March March Constant Constant And Constant		Corroshity: D Moisture D Sulphide	Hd 2				Potentially Hazardous or High Concentration (Y/N)

10.	AM PM			
11.	AM PM			
Samples Relinquished By (Print Name and Sign)	Date Time	Stimples Bapsived By (Print Name and Sign):	Date Og to lat	Time
Mohit Bhargav	19 Aug 2024	(unterno	0019129	IZNYU
Samples Relinquished By (Print Name and Sign):	19/24 Thr	Summar Resource Hu Prat Name and Sign)	Aug 20	The Page 1 of 1
Samilles Rélinquisted By (Print Name 1993 Sign):	Data Time	Samples Ricelved By (Print Name and Sign)	Data	Time N ^o *
		and conditions on oot forth at unser established com	Anomendand Mans uplace otherwise adreed in a cur	rent written contractual document Date issued Jan 18, 2024

Document ID DIV-78-1511 023

Any and all products and/or services provided by AGAT Labs are pursuant to the terms and conditions as set forth at www.agatiaba.com/termsandconditions unless otherwise agreed in a current written contractual document.

Page 5 of 5

experience • knowledge • integrity

civil geotechnical environmental structural field services materials testing

civil géotechnique environnement structures surveillance de chantier service de laboratoire des matériaux