1137-1151 Ogilvie Road & 1111 Cummings Avenue Transportation Impact Assessment

Step 1 Screening Report

Step 2 Scoping Report

Step 3 Strategy Report

Prepared for:

TCU Development Corporation 150 Isabella St, Unit 1207 Ottawa, On K1S 5H3

Prepared by:

6 Plaza Court Ottawa, ON K2H 7W1

April 2025

PN: 2023-139

Table of Contents

1		Scree	ning	. 1
2		Existi	ng and Planned Conditions	. 1
	2.1	Pro	posed Development	. 1
	2.2	Exis	sting Conditions	. 4
	2.2	2.1	Area Road Network	. 4
	2.2	2.2	Existing Intersections	. 4
	2.2	2.3	Existing Driveways	. 5
	2.2	2.4	Cycling and Pedestrian Facilities	. 6
	2.2	2.5	Existing Transit	. 9
	2.2	2.6	Existing Area Traffic Management Measures	10
	2.2	2.7	Existing Peak Hour Travel Demand	10
	2.2	2.8	Collision Analysis	13
	2.3	Plar	nned Conditions	17
	2.3	3.1	Changes to the Area Transportation Network	17
	2.3	3.2	Other Study Area Developments	20
3		Study	/ Area and Time Periods	20
	3.1	Stu	dy Area	20
	3.2	Tim	e Periods	21
	3.3	Hor	rizon Years	21
4		Deve	lopment-Generated Travel Demand	21
	4.1	Мо	de Shares	21
	4.2	Trip	o Generation	22
	4.3	Trip	Distribution	24
	4.4	Trip	o Assignment	24
	4.5	Trip	o Reductions	28
5		Exem	ption Review	34
6		Deve	lopment Design	36
	6.1	Des	sign for Sustainable Modes	36
	6.2	Circ	culation and Access	36
7		Parki	ng	36
	7.1	Par	king Supply	36
8		Boun	dary Street Design	37
9			portation Demand Management	
	9.1		ntext for TDM	
	9.2	Nee	ed and Opportunity	38
	9.3	TDN	M Program	38
10)	Back	ground Network Travel Demands	38
	10.1	Tra	nsportation Network Plans	38
	10.2		kground Growth	
	10.3		er Developments	
11	L		and Rationalization	
	11.1	202	7 Future Background Intersection Operations	40

11.2	2029	Future Background Intersection Operations	42
11.3	3 2034	Future Background Intersection Operations	45
11.4	l Dema	nd Rationalization Conclusions	48
1	1.4.1	Network Rationalization	48
1	1.4.2	Development Rationalization	48
12	Transit.		48
12.1	L Route	Capacity	48
12.2	2 Trans	it Priority	49
13	Access	Intersections Design	49
13.1	L Locati	on and Design of Access	49
13.2	2 Inters	ection Control	50
13.3	B Acces	s Intersection Design	50
1	3.3.1	2027 Future Total Access Intersection Operations – Phase 1	50
1	3.3.2	2029 Future Total Access Intersection Operations (Full Build Out)	51
1	3.3.3	2034 Future Total Access Intersection Operations	52
1	3.3.4	Access Intersection MMLOS	54
1	3.3.5	Recommended Design Elements	54
14	Intersed	ction Design	54
14.1	L Inters	ection Control	54
14.2	2 Inters	ection Design	54
1	4.2.1	2027 Future Total Intersection Operations – Phase 1	54
1	4.2.2	2029 Future Total Intersection Operations – Full Build Out	
1	4.2.3	2034 Future Total Intersection Operations	57
1	4.2.4	Future 2034 Horizon Without Cummings Cycling – Sensitivity Analysis	58
1	4.2.5	Intersection MMLOS	59
1	4.2.6	Recommended Design Elements	60
15	Summa	ry of Improvements Indicated and Modifications Options	60
16	Conclus	ion	65

List of Figures

1
2
3
6
7
7
8
8
9
0
1
4
7

Figure 14: Cyrville TOD Pedestrian Network	19
Figure 15: Cyrville TOD Bicycle Network	19
Figure 16: New Site Generated Auto Volumes – Phase 1	25
Figure 17: New Site Generated Auto Volumes – Full Build Out	26
Figure 18: Pass-by Auto Volumes – Phase 1	27
Figure 19: Pass-by Auto Volumes – Full Build Out	28
Figure 20: Estimated Existing Trip Reductions – Phase 1	29
Figure 21: Estimated Existing Trip Reductions – Full Build Out	
Figure 22: Estimated Existing Pass-By Network Adjustment – Phase 1	31
Figure 23: Estimated Existing Pass-By Network Adjustment – Full Build Out	32
Figure 24: Net Auto Volumes – Phase 1	33
Figure 25: Net Auto Volumes- Full Build Out	34
Figure 26: 2027 Future Background Volumes	40
Figure 27: 2029 Future Background Volumes	43
Figure 28: 2034 Future Background Volumes	46
Figure 29: 2027 Future Total Volumes – Phase 1	
Figure 30: 2029 Future Total Volumes – Full Build Out	
Figure 31: 2034 Future Total Volumes	53

Table of Tables

Table 1: Intersection Count Date	10
Table 2: Existing Intersection Operations	11
Table 3: Study Area Collision Summary, 2018-2022	13
Table 4: Summary of Collision Locations, 2018-2022	14
Table 5: Ogilvie Road at Cummings Avenue Collision Summary	15
Table 6: Donald Street at Cummings Avenue Collision Summary	16
Table 7: Cummings Avenue between Weldon Drive and Ogilvie Road Collision Summary	16
Table 8: TRANS Trip Generation Manual Recommended Mode Shares – Ottawa East	21
Table 9: Proposed Development Mode Shares	21
Table 10: Trip Generation Person Trip Rates	22
Table 11: Person Trip Generation by Peak Period/Hour – Phase 1	22
Table 12: Person Trip Generation by Peak Period/Hour – Full Build Out	22
Table 13: Internal Capture Rates	22
Table 14: Trip Generation by Mode – Phase 1	23
Table 15: Trip Generation by Mode – Full Build Out	24
Table 16: OD Survey Distribution – Ottawa East	24
Table 17: Trip Assignment	25
Table 18: Estimated Existing Primary Auto Trips vs Forecasted Primary Auto Trips	32
Table 19: Exemption Review	34
Table 20: Boundary Street MMLOS Analysis	37
Table 21: TRANS Regional Model Projections – Study Area Growth Rates	39
Table 22: Recommended Area Growth Rates	39
Table 23: 2027 Future Background Intersection Operations	41

Table 24: 2029 Future Background Intersection Operations	43
Table 25: 2034 Future Background Intersection Operations	46
Table 26: Trip Generation by Transit Mode	48
Table 27: Forecasted Site-Generated Transit Ridership	49
Table 28: 2027 Future Total Access Intersection Operations – Phase 1	51
Table 29: 2029 Future Total Access Intersection Operations – Full Build Out	52
Table 30: 2034 Future Total Access Intersection Operations	53
Table 31: 2027 Future Total Intersection Operations – Phase 1	54
Table 32: 2029 Future Total Intersection Operations – Full Build Out	56
Table 33: 2034 Future Total Intersection Operations	57
Table 34: 2034 Future Background Intersection Operations – Without Cummings Cycling Project	59
Table 35: Study Area Intersection MMLOS Analysis	60

List of Appendices

- Appendix A TIA Screening Form and Certification Form
- Appendix B Turning Movement Count Data
- Appendix C Synchro Intersection Worksheets Existing Conditions
- Appendix D Collision Data
- Appendix E City Draft Concepts for Cummings Cycling Project Functional Design
- Appendix F TDM Checklist
- Appendix G Turning Templates
- Appendix H MMLOS Sheets
- Appendix I TRANS Model Plots
- Appendix J Background Developments
- Appendix K Synchro Worksheets -2027 Future Background Horizon
- Appendix L Synchro Worksheets -2029 Future Background Horizon
- Appendix M Synchro Worksheets -2034 Future Background Horizon
- Appendix N Synchro Worksheets -2027 Future Total Horizon
- Appendix O Synchro Worksheets -2029 Future Total Horizon
- Appendix P Synchro Worksheets -2034 Future Total Horizon
- Appendix Q Synchro Worksheets -2034 Sensitivity Analysis

1 Screening

This study has been prepared according to the City of Ottawa's 2017 Transportation Impact Assessment (TIA) Guidelines, incorporating the 2023 Revision to Transportation Impact Assessment Guidelines. Accordingly, a Step 1 Screening Form has been prepared and is included as Appendix A, along with the Certification Form for the TIA Study PM. As shown in the Screening Form, a TIA is required, and this study has been prepared to support a site plan application for the first phase of development and a zoning by-law amendment application for the overall site.

2 Existing and Planned Conditions

2.1 Proposed Development

The site is currently zoned as local commercial (LC6) and within the Cyrville TOD Plan area and design priority area. The overall proposed development includes two 30-storey residential buildings with potential for mixed-use podia, a total of 846 residential units, 8,327 ft² of ground-floor retail space, 483 vehicle parking spaces, and 846 bicycle parking spaces, anticipated to be built out by 2029. The project will be constructed in two phases with Phase 1, located at 1137 Ogilvie Road and 1111 Cummings Avenue, comprising the 30-storey mixed-use building with 436 residential units, 5,846 ft² of retail space, 231 vehicle parking spaces, and 436 bicycle parking spaces, expected to be completed by 2027. The gross floor area (GFA) for the retail space is currently unknown and the total ground floor amenity/commercial allocation has been assumed to be entirely commercial for the purposes of a conservative trip generation. The proposed access configuration includes a full-movement two-way access at the north end of the Cummings Avenue frontage.

The existing site is occupied presently by a commercial building comprising a restaurant and a supermarket, a second commercial building comprising a restaurant, and surrounding surface parking lots. The boundary street of Ogilvie Road is a "Mainstreet within Design Priority Area" corridor.

Figure 1 illustrates the study area context. Figure 2 and Figure 3 illustrate the proposed Phase 1 and full build out concept plans, respectively.

Figure 1: Area Context Plan

Source: http://maps.ottawa.ca/geoOttawa/ Accessed: January 21, 2025

ф

2.2 Existing Conditions

2.2.1 Area Road Network

Aviation Parkway: Aviation Parkway is a federally owned freeway. North of Ogilvie Road, Aviation Parkway is a divided four-lane rural cross-section and has a semi-urban cross-section to the south as it transitions to Highway 417. A mixed-use path (MUP) is present along the west side of the road. The existing right-of-way is 130.0 metres or greater within the study area, and the posted speed limit is 60 km/h.

Cummings Avenue: Cummings Avenue is a collector road north of Donald Street, and a major collector road between Ogilvie Road and Donald Street, with a two-lane urban cross-section and sidewalks on both sides of the road. South of Ogilvie Road, Cummings Avenue is a City of Ottawa arterial road with a two-lane semi-urban cross-section, with a 1.5-metre-wide gravel shoulder on its west side and curbed with a sidewalk on its east side. The posted speed limit is 50 km/h. The City-protected right-of-way is 24.0 metres north of Donald Street, 26.0 metres between Donald Street and Ogilvie Road, and 37.5 metres south of Ogilvie Road. Cummings Avenue south of Donald Street is a truck route.

Ogilvie Road: Ogilvie Road is a City of Ottawa arterial road with a four-lane, divided urban cross-section with curbside bike lanes and sidewalks on both sides of the road. The posted speed limit is 60 km/h and the City-protected right-of-way is 44.5 metres within the study area. Ogilvie Road is a truck route.

Cyrville Road: Cyrville Road is a City of Ottawa collector road north of Cummings Avenue/Labelle Street and an arterial road south of Cummings Avenue/Labelle Street, each with a two-lane cross-section. North of Ogilvie Road, the cross-section includes a curb with a sidewalk on the east side and is uncurbed on the west side. Between Ogilvie Road and Cummings Avenue/Labelle Street, the cross-section is fully urban and includes a sidewalk and curb-side bike lane on each side of the road. South of Cummings Avenue/Labelle Street, the cross-section transitions to an uncurbed condition and includes a paved shoulder and sidewalk on the west side of the road and a MUP on the east side of the road separated by a concrete rumble strip. The posted speed limit is 60 km/h. The City-protected right-of-way is 26.0 metres north of Cummings Avenue and 37.5 metres south of Cummings Avenue/Labelle Street. Cyrville Road is a truck route.

Donald Street: Donald Street is a City of Ottawa major collector road with a two-lane urban cross-section, with sidewalks on both sides of the road and with curbside bike lanes on both sides of the road west of Belgate Way within the study area. On-street parking is permitted on the south side of the road between Findon Gate and Belgate Way. The posted speed limit is 50 km/h, and the existing right-of-way is 26.0 metres. Donald Street is a truck route within the study area.

Labelle Street: Labelle Street is a City of Ottawa major collector road with a two-lane urban cross-section with sidewalks on both sides of the road east of Michael Street N, and on the north side of the road west of Michael Street N. The unposted speed limit is assumed to be 50 km/h, and the right-of-way varies between 20.0 metres and 22.5 metres within the study area.

2.2.2 Existing Intersections

The existing signalized area intersections within 400 metres of the site have been summarized below:

Donald Street at Cummings Avenue

The intersection of Donald Street at Cummings Avenue is a signalized intersection. The northbound approach consists of an auxiliary left-turn lane and a through lane, and the southbound approach consists of a shared through/right-turn lane. The eastbound approach consists

of an auxiliary left-turn lane, and a right-turn lane. No turn restrictions were noted.

- Ogilvie Road at Cyrville Road The intersection of Ogilvie Road at Cyrville Road is a signalized intersection. The northbound approach of Cyrville Road consists of an auxiliary left-turn lane, a shared through/right-turn lane, and a bike lane and the southbound consists of an auxiliary left-turn lane and a shared through/channelized right-turn lane. The eastbound approach consists of two through lanes, a bike lane, and an auxiliary left-turn lane, two through lanes, a bike lane, and an auxiliary left-turn lane. Eastbound left turns are restricted at this intersection.
- Ogilvie Road at Cummings Avenue The intersection of Ogilvie Road at Cummings Avenue is a signalized intersection. The northbound approach consists of an auxiliary left-turn lane and a shared through/channelized right-turn lane, and the southbound approach consists of an auxiliary left-turn lane and a shared through/right-turn lane. The eastbound and westbound approaches each consist of an auxiliary left-turn lane, a through lane, a shared through/right-turn lane, and a bike lane. No turn restrictions were noted.
- Ogilvie Road at Aviation Parkway The intersection of Ogilvie Road at Aviation Parkway is a signalized intersection. The northbound and southbound approaches each consist of an auxiliary left-turn lane, a through lane, and a shared through/channelized right-turn lane and the eastbound and westbound approaches each consist of an auxiliary left-turn lane, two through lanes, a bike lane, and an auxiliary channelized right-turn lane. No turn restrictions were noted.
- Cyrville Road Labelle at Street / The intersection of Cyrville Road at Labelle Street/Cummings Avenue Cummings Avenue is a signalized intersection with the northbound and southbound approaches each consisting of an auxiliary left-turn lane and a shared through/right-turn lane, and the eastbound and westbound approaches each consisting of an auxiliary left-turn lane and a shared through/right-turn lane and a bike lane. No turn restrictions were noted.

2.2.3 Existing Driveways

Driveways to residential land uses exist on both sides of Cummings Avenue north of the proposed site access, and to gas stations, and mid-rise residential land uses and a vacant lot south of the site accesses. On Ogilvie Road, driveways to outdoor recreational, funerary and commercial services, and restaurant land uses and driveways to a gas station are present east of the site accesses, and to a vacant lot and a gas station to the west of the site accesses. Figure 3 illustrates the existing driveways.

Source: http://maps.ottawa.ca/geoOttawa/ Accessed: January 21, 2025

2.2.4 Cycling and Pedestrian Facilities

Figure 5 illustrates the pedestrian facilities in the study area and Figure 6 illustrates the cycling facilities.

Sidewalks are provided along both sides of Cummings Avenue north of Ogilvie Road, Ogilvie Road, Cyrville Road south of Ogilvie Road, Donald Street, and Labelle Street within the study area. Sidewalks are also provided along the east side of Cyrville Road north of Ogilvie Road, of Cummings Avenue south of Ogilvie Road, and along the 1173 Cyrville Road development boundary street of Cummings Avenue.

Cycling facilities include bike lanes along Ogilvie Road, Cyrville Road south of Ogilvie Road, and Donald Street. A multi-use path (MUP) is present along the west side of Aviation Parkway and on the east side of Cyrville Road separated by a concrete rumble strip. Donald Street west of St-Laurent Boulevard, St-Laurent Boulevard between Donald Street and Ogilvie Road, Ogilvie Road, Cyrville Road south of Ogilvie Road, the Aviation Parkway, and the pathway between the Aviation Parkway and Blair Station are Cross-Town Bikeways.

Figure 5: Study Area Pedestrian Facilities

Source: http://maps.ottawa.ca/geoOttawa/ Accessed: January 21, 2025

Source: <u>http://maps.ottawa.ca/geoOttawa/</u> Accessed: January 21, 2025

Pedestrian and cyclist volumes included in study area intersection counts, presented in Section 2.2.7, have been compiled and are illustrated in Figure 7 and Figure 8, respectively.

Figure 7: Existing Pedestrian Volumes

Figure 8: Existing Cyclist Volumes

2.2.5 Existing Transit

Figure 9 illustrates the transit system map in the study area and Figure 10 illustrates transit stops within 400 metres from the site and transit stations within 800 metres from the site. All transit information is from April 30, 2025 and is included for general information purposes and context to the surrounding area.

Within the study area, route #24 travel along Ogilvie Road, and route #20 travels along Donald Street and Cummings Avenue to the north. The frequency of these routes within proximity of the proposed site based on April 30, 2025 service levels are:

- Route #20 30-minute service all day, one hour service after 9:45 PM
- Route #24 15-minute service during peak hours, 30-minute service all day

Additionally, the site is approximately 700-metre walking distance of Cyrville Station and approximately 1.1-kilometres walking distance of St. Laurent LRT station, on the Confederation LRT Line. The LRT line provides 5-minute service during the peak periods, and 10–15-minute service outside of peaks.

Source: http://www.octranspo.com/ Accessed: April 30, 2025

Figure 10: Existing Study Area Transit Stops

Source: http://www.octranspo.com/ Accessed: January 21, 2025

2.2.6 Existing Area Traffic Management Measures

Vertical centreline treatments are present on Cummings Avenue north of Donald Street within the study area, and a centre island is present approximately 60.0 metres north of Cummings Avenue at Donald Street intersection.

2.2.7 Existing Peak Hour Travel Demand

Existing turning movement counts were acquired from the City of Ottawa, The Traffic Specialist, and Ontario Traffic Inc. for the existing study area intersections. Table 1 summarizes the intersection count dates.

Table 1: Intersection Count Date							
Intersection	Count Date	Source					
Donald Street at Cummings Avenue	Thursday, October 26, 2023	The Traffic Specialist					
Ogilvie Road at Cyrville Road	Thursday, October 26, 2023	The Traffic Specialist					
Ogilvie Road at Cummings Avenue	Tuesday, October 31, 2023	Ontario Traffic Inc.					
Ogilvie Road at Aviation Parkway	Thursday, September 28, 2023	City of Ottawa					
Cyrville Road at Cummings Avenue/Labelle Street	Thursday, October 26, 2023	The Traffic Specialist					

Figure 11 illustrates the existing traffic counts and Table 2 summarizes the existing intersection operations. The level of service for signalized intersections is based on volume to capacity ratio (v/c) calculations for individual lane movements and MMLOS Guidelines weighted v/c methodology for the overall intersection, per direction from Transportation Engineering Services. Detailed turning movement count data is included in Appendix B and the Synchro worksheets are provided in Appendix C.

Table 2: Existing Intersection Operations

Intersection	lana	AM Peak Hour			PM Peak Hour				
Intersection	Lane	LOS	V/C	Delay	Q (95 th)	LOS	V/C	Delay	Q (95 th)
	EBL	А	0.21	21.5	13.8	А	0.32	22.9	19.4
Demold Church at	EBR	А	0.44	7.7	13.2	А	0.59	8.0	16.4
Donald Street at	NBL	А	0.37	8.2	26.5	А	0.54	12.7	38.6
Cummings Avenue	NBT	А	0.14	5.6	13.7	А	0.29	7.2	27.9
Signalized	SBT/R	А	0.27	5.2	21.5	А	0.44	7.9	41.6
	Overall	Α	0.40	7.6	-	Α	0.57	9.7	-

Intersection	Lane	AM Peak Hour					PM Peak Hour			
Intersection	Lane	LOS	V/C	Delay	Q (95 th)	LOS	V/C	Delay	Q (95 th	
	EBT	А	0.29	9.2	53.3	А	0.54	16.5	109.4	
	EBR	А	0.15	2.0	8.5	А	0.30	2.5	12.6	
	WBL	А	0.09	2.2	m1.1	А	0.17	24.3	m6.3	
o '' · o · · ·	WBT	А	0.36	1.9	20.3	А	0.39	23.3	m61.2	
Ogilvie Road at	WBR	А	0.16	0.3	m0.4	А	0.19	10.1	m10.5	
Cyrville Road	NBL	D	0.85	81.9	60.3	D	0.89	99.5	#50.2	
Signalized	NBT	С	0.71	57.0	73.2	А	0.57	39.4	75.7	
	SBL	А	0.37	48.6	21.7	С	0.75	59.0	56.2	
	SBT/R	А	0.49	43.6	48.4	D	0.87	55.5	118.2	
	Overall	Α	0.44	18.5	-	Α	0.57	28.3	-	
	EBL	А	0.51	35.1	26.2	D	0.85	68.4	#64.2	
	EBT	А	0.39	16.7	52.8	F	1.10	90.4	#211.9	
	WBL	А	0.31	13.8	m19.8	D	0.84	61.9	m#49.3	
Ogilvie Road at	WBT/R	D	0.83	29.9	m209.8	F	1.09	92.5	m#168	
Cummings Avenue	NBL	А	0.09	40.5	10.7	А	0.15	34.6	16.1	
Signalized	NBT/R	В	0.67	52.2	73.9	E	0.99	80.5	#165.4	
5	SBL	С	0.75	55.4	#58.9	F	1.01	82.8	#108.8	
	SBT/R	A	0.47	33.6	63.3	А	0.49	23.6	80.2	
	Overall	С	0.79	30.0	-	F	1.04	80.1	-	
	EBL	Е	0.95	71.1	#127.8	D	0.82	33.3	m43.9	
	EBT	А	0.44	33.3	72.3	E	0.95	37.6	m85.2	
	EBR	А	0.13	3.3	m5.0	А	0.17	4.9	m1.6	
	WBL	А	0.34	21.7	31.1	E	0.95	76.0	#96.2	
Ogilvie Road at	WBT	А	0.56	39.7	83.8	А	0.60	32.5	94.1	
Aviation Parkway	WBR	А	0.24	3.9	9.7	А	0.34	4.5	16.2	
Signalized	NBL	С	0.80	72.5	81.6	F	1.03	127.3	#90.7	
2	NBT	D	0.82	47.8	108.2	D	0.81	50.7	#79.3	
	SBL	F	1.17	175.5	#100.5	F	1.24	201.1	#89.9	
	SBT	E	0.91	56.6	#111.2	F	1.11	105.7	#129.3	
	Overall	С	0.80	52.6	-	F	1.01	58.7	-	
	EBL	A	0.07	7.9	4.3	A	0.05	10.7	3.2	
	EBT	A	0.28	8.7	29.4	A	0.19	6.5	13.6	
Cyrville Road at	WBL	A	0.25	14.9	25.0	A	0.16	15.8	18.1	
Cummings	WBT	C	0.72	22.8	#137.1	D	0.85	32.6	#164.7	
Avenue/Labelle	NBL	A	0.02	25.8	3.8	A	0.07	22.7	5.5	
Street	NBT	A	0.16	14.5	10.4	A	0.29	13.4	22.6	
Signalized	SBL	D	0.84	70.5	#52.2	A	0.30	23.9	20.5	
	SBE	A	0.21	20.8	16.4	D	0.82	35.8	#152.6	
	Overall	C	0.72	20 .8	10.7	D	0.82	28.5		

Notes: Queue is measured in metres Peak Hour Factor = 0.90 m = metered queue # = volume for the 95th %ile cycle exceeds capacity

The intersection of Ogilvie Road at Cummings Avenue and Ogilvie Road at Aviation Parkway may experience capacity issues during the PM peak hour, however, the remaining study area intersections generally operate satisfactorily.

At the intersection of Ogilvie Road at Cyrville Road, the northbound left movement may be subject to extended queues during the PM peak hour.

The Ogilvie Road at Cummings Avenue intersection may be subject to extended queues on the southbound leftturn movement during the AM peak hour, and on the eastbound left, eastbound through, westbound left, westbound through/right, northbound through/right, and southbound left movements during the PM peak hour. The overall intersection, the eastbound through, westbound through, and southbound left movements are over theoretical capacity and may be subject to high delays during the PM peak hour, and the northbound through/right movement may be subject to high delays during the PM peak hour.

At the intersection of Ogilvie Road and Aviation Parkway during the AM peak hour, the southbound left movement is over theoretical capacity and may be subject to high delays and extended queues, and the eastbound left and southbound through movements may exhibit extended queues. During the PM peak hour, the northbound left, southbound left, and southbound through movements, are all over theoretical capacity and may exhibit high delays and extended queues, and overall intersection is over theoretical capacity. Additionally, the westbound left and northbound through movements may exhibit extended queues during the PM peak hour. A shift of three seconds from the northbound through movement to the southbound left movement during the AM peak hour would address the capacity issues during the AM peak hour and reduce the v/c of all movements to be 1.00 or below.

The Cyrville Road at Cummings Avenue/Labelle Street intersection's westbound through and southbound left may exhibit extended queues during the AM peak hour, and the westbound through and southbound through movements may exhibit extended queues during the PM peak hour.

2.2.8 Collision Analysis

Collision data have been acquired from the City of Ottawa open data website (data.ottawa.ca) for five years prior to the commencement of this TIA for the surrounding study area road network (2018-2022). The latest detailed collision data on record from the City are for a 5-year period one year earlier than the open data the data range (2017-2021). Table 3 summarizes the collision types and conditions in the study area, Figure 12 illustrates the area collisions, and Table 4 summarizes the total collisions for each of the locations analyzed. Collision data are included in Appendix D.

		Number	%
Total C	Collisions	80	100%
	Fatality	0	0%
Classification	Non-Fatal Injury	20	25%
	Property Damage Only	60	75%
	Angle	19	24%
	Rear end	21	26%
Initial Impact Type	Sideswipe	11	14%
	Turning Movement	23	29%
	SMV Other	5	6%
	Other	1	1%
	Dry	51	64%
	Wet	13	16%
Road Surface Condition	Loose Snow	3	4%
Road Surrace Condition	Slush	3	4%
	Packed Snow	5	6%
	Ice	5	6%
Pedestrian Involved		3	4%

Table 3: Study Area Collision Summary, 2018-2022

	Number	%
Total Collisions	80	100%
Cyclists Involved	5	6%

Figure 12: Study Area Collision Records, 2018-2022

	Number	%
Intersections / Segments	80	100%
Ogilvie Rd at Cummings Ave	47	59%
Donald St at Cummings Ave	13	16%
Cummings Ave between Weldon Dr & Ogilvie Rd	10	13%
Ogilvie Rd between Cummings Ave & Beaulieu Pl	4	5%
Cummings Ave between Donald St & Eady Crt	3	4%
Ogilvie Rd between Murdock Gt & Cummings Ave	2	3%
Cummings Ave between Eady Crt & Strathaven Priv	1	1%

Within the study area, three pedestrian collisions and five cyclist collisions were noted between 2018-2022. Three cyclist collisions occurred at the intersection of Ogilvie Road at Cummings Avenue, and one cyclist collision each at the segment of Cummings Avenue between Ogilvie Road and Weldon Drive and of Ogilvie Road between Beaulieu Place Cummings Avenue. Three pedestrian collisions occurred at the intersection of Donald Street at Cummings Avenue. The pedestrian and cyclist collisions at Ogilvie Road at Cummings Avenue, Donald Street at Cummings Avenue, and Cummings Avenue between Ogilvie Road and Weldon Drive will be further discussed in detailed collision reviews for each location below. The cyclist collision, which took place on Ogilvie Road between Beaulieu Place and Cummings Avenue, was an angled collision that occurred in 2018 during dark and dry conditions. No further collision review is required at this location as part of this study.

Table 5, Table 6, and Table 7 summarize the collision types and conditions for the intersections of Ogilvie Road at Cummings Avenue and Ogilvie Road at Donald Street, and the segment of Cummings Avenue between Weldon Drive and Ogilvie Road, respectively.

		Number	%
Total (Collisions	47	100%
	Fatality	0	0%
Classification	Non-Fatal Injury	10	21%
	Property Damage Only	37	79%
	Angle	6	13%
Initial Impact Type	Rear end	16	34%
	Sideswipe	8	17%
	Turning Movement	16	34%
	Other	1	2%
	Dry	31	66%
	Wet	6	13%
Road Surface Condition	Loose Snow	3	6%
	Packed Snow	4	9%
	Ice	3	6%
Pedestrian Involved	Pedestrian Involved		0%
Cyclists Involved		3	6%

Table 5: Ogilvie Road at Cummings Avenue Collision 3	Summary
--	---------

The Ogilvie Road at Cummings Avenue intersection had a total of 47 collisions during the 2018-2022 time period, with 37 involving property damage only and the remaining ten having non-fatal injuries. The collision types are most represented by rear end and turning movement with 16 collisions each, sideswipe with eight, angle with six, and other with one. Rear end collisions and sideswipe collisions are typically associated with congestion. Weather conditions are not considered to affect collisions at this location.

From the 2017-2021 detailed data, turning movement and angle collisions were observed on all approaches at the intersection. A high proportion of the collisions involving eastbound and southbound vehicles were associated with the left-turn on these approaches or the U-turn on the eastbound approach, where eastbound left-turning vehicles were typically in conflict with westbound through vehicles, and southbound left-turning vehicles were typically in conflict with northbound through or right-turning vehicles. The frequency of left turn collisions may be indicative of drivers pushing gaps in the traffic stream in congested conditions, especially given these collisions cluster around the AM, PM, and mid-day peaks. All sideswipe collisions involved lane changes on the east and west legs. No patterns have been observed for the remaining collision types. Although the 2018-2022 collision data included three cyclist collisions, a more detailed review of the 2017-2021 data included four cyclist collisions at the intersection of Ogilvie Road at Cummings Avenue. Collisions involving cyclist from these data occurred in daylight and in clear conditions and were the exclusive result of westbound right-turning motorists in conflict with cyclists making the westbound through movement.

The City's Cycling Safety Review of High-Volume Intersections (March 2020) completed a review of this intersection for pedestrian and cycling-related observations and movements. This report suggests improvements such as the removal of the northbound right-turn channel, the addition of a westbound right-turn lane, and signal phasing changes. Ultimately a protected intersection configuration was suggested to help address a variety of collisions noted at Ogilvie Road at Cummings Avenue intersection. These improvements are understood to be planned for implementation by 2027 as part of the Cumming Cycling (Donald to Cyrville) active transportation

project. No interim mitigations on Cummings Avenue are required, and no interim changes to the arterial Ogilvie Road are identified or recommended.

	-	Number	%
Total (Collisions	13	100%
Classification	Fatality	0	0%
	Non-Fatal Injury	4	31%
	Property Damage Only	9	69%
	Angle	2	15%
	Rear end	3	23%
Initial Impact Type	Sideswipe	1	8%
	Turning Movement	3	23%
	SMV Other	4	31%
	Dry	6	46%
Road Surface Condition	Wet	4	31%
Road Surface Condition	Slush	1	8%
	Ice	2	15%
Pedestrian Involved	Pedestrian Involved		23%
Cyclists Involved		0	0%

Table 6: Donald Street at Cummings Avenue Collision Summary

The Donald Street at Cummings Avenue intersection had a total of 13 collisions during the 2018-2022 time period, with nine involving property damage only and the remaining four having non-fatal injuries. The collision types are most represented by SMV other with four collisions, which included the three pedestrian collisions, followed by rear end and turning movement with three collisions each, two angle collisions, and one sideswipe collisions.

From the 2017-2021 detailed data, two pedestrian collisions were noted, both in dark conditions. One collision occurred in snow as a driver was making an eastbound right turn and one occurred in rain as a driver was making a northbound left turn. This intersection is included in the planned active transportation infrastructure project entitled Cummings Cycling (Donald to Cyrville) which will be implementing a forthcoming design for upgrades along the Cummings Avenue corridor, including at its intersection with Donald Street. No interim mitigations are required, and no further review of collisions at this location is required as part of this study.

		Number	%
Total C	ollisions	10	100%
	Fatality	0	0%
Classification	Non-Fatal Injury	1	10%
	Property Damage Only	9	90%
to bight have a set There a	Angle	8	80%
Initial Impact Type	Turning Movement	2	20%
	Dry	7	70%
Road Surface Condition	Wet	2	20%
	Packed Snow	1	10%
Pedestrian Involved		0	0%
Cyclists Involved		1	10%

Table 7: Cummings Avenue between Weldon Drive and Ogilvie Road Collision Summary

The segment of Cummings Avenue between Weldon Drive and Ogilvie Road had a total of ten collisions during the 2018-2022 time period, with nine involving property damage only and the remaining one having non-fatal injuries. The collision types are most represented by angle with eight collisions, followed by two turning movement collisions.

From the 2017-2021 detailed data, all angle collisions involved eastbound vehicles, 88% of which were turning left, in conflict with northbound and southbound through vehicles in equal proportions. Based on the collisions' coordinates, these appear to be situated in proximity to the Ogilvie Road intersection and related to the gas station on the corner. As part of the concept plan for the intersection of Cummings Avenue at Ogilvie Road from the Cycling Safety Review of High-Volume Intersections, a median is proposed on the southbound approach of Cummings Avenue, and therefore the eastbound left-turn from the gas station will be physical restricted in the future conditions.

The collision involving a cyclist occurred during daylight hours as a cyclist made an eastbound left-turn movement while an automobile was making the northbound through movement. This collision is related to the gas station and would also be physically restricted in the future conditions. No further review of collisions at this location is required as part of this study.

2.3 Planned Conditions

2.3.1 Changes to the Area Transportation Network

2.3.1.1 2023 Transportation Master Plan (TMP) – Part 1

The 2023 TMP – Part 1 includes cycling facilities on Cummings Avenue from Donald Street to Cyrville Road and missing links on Donald Street at Elaine Drive and signage and pavement marking for bike lanes, where feasible, on Ogilvie Road. Figure 13 illustrates the cycling and pedestrian plans in the 2023 TMP – Part 1.

Figure 13: 2023 Transportation Master Plan – Part 1

Source: http://maps.ottawa.ca/geoOttawa/ Accessed: January 21, 2025

2.3.1.2 Transportation Master Plan (2013)

Within the Transportation Master Plan, the Road Network's Network Concept diagram shows Cyrville Road between St Laurent Boulevard and Lemieux Street as a new or widened collector, and Cyrville Road south of Lemieux Street as widened arterials. Within the Affordable Network diagram, these sections are shown as segments for phase 3 widening (2026-2031). The scope of the work per the Affordable Network is the urbanization of the existing two-lane rural cross-section of Cyrville Road between Star Top Road and St Laurent Boulevard, and the widening of Coventry Road from two lanes to four between Belfast Road and the Shopping Centre – outside of the study area.

Within the Rapid Transit and Transit Priority Network's Network Concept diagram, isolated transit priority measures are shown along Ogilvie Road, however these are not included in the Affordable Network. Both Networks include an isolated measures transit priority corridor along St. Laurent Boulevard west of the study area.

2.3.1.3 Ottawa Cycling Plan (2013)

The Ottawa Cycling Plan P2-11 includes a MUP connection from St. Laurent Station to the Aviation Pathway as part of the TOD projects, and this link is scheduled for implementation between 2020 and 2025.

Additionally, within the Ottawa Cycling Plan, P1-39 includes shared use lanes on Donald Street within the study area and have been completed.

2.3.1.4 Cummings Cycling (Donald to Cyrville)

The City's Cycling Safety Review of High-Volume Intersections (2020) included a review of Ogilvie Road at Cummings Avenue intersection for pedestrian and cycling-related observations and movements. The study recommended a variety of improvements, such as the removal of the northbound right-turn channel, the addition of a westbound right-turn lane, signal phasing changes, and ultimately a protected intersection configuration.

This work has been included in a planned active transportation infrastructure project entitled Cummings Cycling (Donald to Cyrville). The scope of work is the evaluation of dedicated cycling facilities on Cummings Avenue, either as cycletracks or bike lanes. The scope of work at the intersection of Cummings Avenue at Ogilvie Road is a fully protected intersection, tying into existing bike lanes on Ogilvie Road east and west of the intersection. Construction of this project has been assumed to commence in 2027 and to be completed by 2029.

Excerpts from City draft concept plans from the functional design exercise for the intersections of Cummings Avenue at Ogilvie Road, at Donald Street, and at Cyrville Road are provided in Appendix E.

2.3.1.5 Cyrville TOD Plan

The Cyrville TOD plan outlines a future sidewalk on the west side of Cummings Avenue south of Ogilvie Road and future shared-use lanes along Cummings Avenue. It is noted that the sidewalk on the west side of Cummings Avenue south of Ogilvie Road will be implemented as part of roadway modifications for the 1098 Ogilvie Road / 1178 Cummings Avenue development. Figure 14 and Figure 15 illustrate the Cyrville pedestrian and cycling TOD plans, respectively.

Figure 14: Cyrville TOD Pedestrian Network

Source: https://ottawa.ca/en/transit-oriented-development-tod-plans Accessed: October 24, 2023

2.3.1.6 Coventry Road Widening EA

The study of Coventry Road widening between St. Laurent Shopping Centre West Access and Belfast Road is planned and is understood to be commencing shortly. The EA study will offer an opportunity to improve the public realm and enhance connectivity for pedestrians and cyclists. The project timeline is unknown, and it is assumed that it will be completed beyond the study horizon years.

2.3.1.7 St-Laurent Boulevard Transit Priority Corridor EA

The study of the St-Laurent Boulevard Transit Priority Corridor, between Hemlock Road and Innes Road/Industrial Avenue, is ongoing. The EA study will explore options to enhance transit service efficiency and the travel environment for all modes. Since the timing of implementation is currently unknown, it is assumed that it will occur beyond the study horizon years.

2.3.2 Other Study Area Developments

1098 Ogilvie Road, 1178 Cummings Avenue

The proposed development application includes a site plan for a two-phase development, comprising three residential towers and one hotel for 850 residential dwelling units and 175 hotel rooms. The development is expected to generate 148 new AM peak hour two-way auto trips and 130 new PM peak hour two-way auto trips. The development is currently under construction. (Parsons, 2020)

1298 Ogilvie Road

The proposed development application includes a site plan for seven townhome buildings comprising 78 residential units. The development is expected to generate 39 new AM peak hour two-way auto trips and 40 new PM peak hour two-way auto trips. The trip generation trigger was not met, and negligible impact is anticipated on road network. The build-out horizon is assumed to be 2025. (Parsons, 2018)

1155 Joseph Cyr Street, 1082 Cyrville Road

The proposed development application includes a zoning amendment and site plan for the construction of a sixstorey mixed-use building comprising 116 residential dwelling units and 1,425 ft² of ground floor retail. The development is currently under construction. The development is expected to generate eight new AM and nine new PM two-way peak-hour auto trips. (CGH, 2020)

1209 St Laurent Boulevard, 1200 Lemieux Street

The proposed development includes a site plan application to construct two 30-storey residential buildings including 644 units to be built by 2026. The development is expected to generate 35 new AM peak hour two-way auto trips and 38 new PM peak hour two-way auto trips. (CGH, 2022)

1125 - 1149 Cyrville Road

The proposed development application includes a site plan to construct two residential buildings with a total of 354 units. The development is expected to generate 22 new AM and 21 new PM two-way peak-hour auto trips. The development is currently under construction. (Stantec, 2021)

1184-1196 Cummings Avenue

The proposed development application includes a zoning amendment and site plan for redeveloping existing residential units into a mid-rise apartment building totaling 188 units. The development is anticipated to be built out by 2026 and to generate 17 new AM and 17 new PM two-way auto trips. (CGH, 2023)

3 Study Area and Time Periods

3.1 Study Area

The study area will include the intersections of:

- Cyrville Road at:
 - Ogilvie Road
 - Labelle Street/Cummings Avenue

- Ogilvie Road at:
 - Cummings Avenue
 - Aviation Parkway
- Cummings Avenue at:
 - Donald Street
 - Site Access (future conditions)

The boundary roads will be Cummings Avenue and Ogilvie Road and no screenlines are present within proximity to the site.

3.2 Time Periods

As the proposed development is composed primarily of residential units the AM and PM peak hours will be examined.

3.3 Horizon Years

The Phase 1 build-out year is anticipated to be 2027, and the anticipated Phase 2 build out year is 2029. As a result, the full build out plus five years horizon year is 2034.

4 Development-Generated Travel Demand

4.1 Mode Shares

Examining the mode shares recommended in the TRANS Trip Generation Manual (2020) for the subject district, derived from the most recent National Capital Region Origin-Destination survey (OD Survey), the existing average district mode shares by land use for Ottawa East have been summarized in Table 8.

Travel Mode	Multi-Unit	(High-Rise)	Commercia	l Generator
	AM	PM	AM	PM
Auto Driver	40%	40%	57%	55%
Auto Passenger	7%	14%	10%	18%
Transit	38%	28%	15%	11%
Cycling	2%	3%	1%	1%
Walking	13%	15%	17%	15%
Total	100%	100%	100%	100%

Table 8: TRANS Trip Generation Manual Recommended Mode Shares – Ottawa East

Being within the Cyrville TOD Plan area, which is approximately 700-metre walking distance from Cyrville Station, a higher transit mode is considered achievable at this location. A 15% shift to the transit mode from the auto mode is proposed for residential land use, and a 5% shift to the transit mode from the auto mode is proposed for commercial land use. The proposed modified mode share targets are summarized in Table 9.

Table 9: Proposed Development Mode Shares							
	Multi-Unit	(High-Rise)	Commercial Generator				
Travel Mode	AM	PM	AM	PM			
Auto Driver	25%	25%	52%	50%			
Auto Passenger	7%	7% 14%		18%			
Transit	53%	43%	20%	16%			
Cycling	2%	3%	1%	1%			
Walking	13%	13% 15%		15%			
Total	100%	100%	100%	100%			

4.2 Trip Generation

This TIA has been prepared using the vehicle and person trip rates for the residential dwellings using the TRANS Trip Generation Manual (2020) and the vehicle trip rates and derived person trip rates for commercial component from the ITE Trip Generation Manual 10th Edition (2017) using the City-prescribed conversion factor of 1.28. Table 10 summarizes the person trip rates for the proposed residential land uses for each peak period and the person trip rates for the non-residential land uses by peak hour.

Land Use Land Use Peak Code Period			Vehicle Trip Rate	Person Trip Rates
Multi Unit High Rico	221 & 222	AM	-	0.80
Multi-Unit High-Rise	(TRANS)	PM	-	0.90
Land Use	Land Use	Peak	Vehicle Trip	Person Trip
	Code	Hour	Rate	Rates
Strip Retail Plaza	Code 822	Hour AM	Rate 2.36	Rates 3.02

Table 10: Trip Generation Person Trip Rates

Using the above person trip rates, the total person trip generation has been estimated. Table 11 and Table 12 summarize the total person trip generation for the residential land uses and for the non-residential land uses for Phase 1 and full build out, respectively.

Table 11: Person	Trip	Generation by	Peak	Period/Hou	ır – Phase 1

Land Use	Units	AM Peak Period			PM Peak Period		
Land Ose	Units	In	Out	Total	In	Out	Total
Multi-Unit (High-Rise)	436	108	241	349	227	165	392
Land Use	GEA	AM Peak Hour			PM Peak Hour		
Land Use	GFA	In	Out	Total	In	Out	Total
Strip Retail Plaza (<40k sq. ft.)	5,846 sq. ft	11	7	18	25	25	49

Table 12: Person Trip Generation by Peak Period/Hour – Full Build Out

	Linite	AM Peak Period			PM Peak Period		
Land Use	Units	In	Out	Total	In	Out	Total
Multi-Unit (High-Rise)	846	210	467	677	441	320	761
Lond Has	CEA		AM Peak Hour		PM Peak Hour		r
Land Use	GFA	In	Out	Total	In	Out	Total
Strip Retail Plaza (<40k sq. ft.)	8,327 sq. ft	15	10	25	35	35	70

Internal capture rates from the ITE Trip Generation Handbook 3rd Edition have been assigned to the development's retail component for mixed-use developments. The rates summarized in Table 13 represent the percentage of trips to/from the retail use based on the residential component.

Table 13: Internal Capture Rates						
Land Use	Α	М	PM			
Land Use	In	Out	In	Out		
Residential to/from Shopping Centre	17%	14%	10%	26%		

Typical pass-by reductions applied to the retail land use's trip generation are 40%, which is derived from the recommended value presented in the ITE Trip Generation Manual 11th Edition (2021) for the most similar land use with a recommended rate, "Retail (40k – 150k sq. ft)." The subject development is one quadrant of an intersection with an arterial as the major roadway and with a major collector/arterial as the minor roadway. Given this proximity, and that the site access is onto the lower classification roadway, the application of the pass-by

percentage to Cummings Avenue would not fully capture the expected pass-by component of the site trips. Due to this context, the analysis will forgo the application of diverted trips and will apply the 40% pass-by from both Ogilvie Road at Cummings Avenue.

Using the above mode share targets for a LRT area, the internal capture and pass-by rates, and the person trip rates, the person trips by mode have been projected. Trip generation by peak hour has been forecasted using the prescribed peak period conversion factors presented in the TRANS Trip Generation Manual (2020) for the residential component. Table 14 and Table 15 summarize the residential trip generation and the non-residential trip generation by mode and peak hour for Phase 1 and full build out, respectively.

		TUDIE 14	,		Mode – Pho			_	
			AM Peak Hour				PM Pea	ak Hour	1
Travel Mode		Mode Share	In	Out	Total	Mode Share	In	Out	Total
Multi-Unit (High-Rise)	Auto Driver	25%	13	29	42	25%	25	18	43
	Auto Passenger	7%	4	8	12	14%	14	10	24
	Transit	53%	31	70	102	43%	46	33	79
	Cycling	2%	1	3	4	3%	3	2	6
ΣΞ	Walking	13%	8	18	26	15%	18	13	31
	Total	100%	57	128	186	100%	106	76	183
) K)	Auto Driver	52%	3	2	5	50%	7	5	12
40	Auto Passenger	10%	1	1	2	18%	4	3	7
Strip Retail Plaza (<40k)	Transit	20%	2	1	3	16%	4	3	7
	Cycling	1%	0	0	0	1%	0	0	0
ail	Walking	17%	2	1	3	15%	3	3	6
Ret	Total	100%	8	5	13	100%	18	14	32
ip I	Internal Capture	varies	-2	-1	-3	varies	-3	-7	-10
Str	Pass-by	40%	-2	-1	-3	40%	-4	-4	-8
	Auto Driver	-	16	31	47	-	32	23	55
	Auto Passenger	-	5	9	14	-	18	13	31
	Transit	-	33	71	105	-	50	36	86
Total	Cycling	-	1	3	4	-	3	2	6
	Walking	-	10	19	29	-	21	16	37
	Total	-	65	133	199	-	124	90	215
	Internal Capture	varies	-2	-1	-3	varies	-3	-7	-10
	Pass-by	40%	-2	-1	-3	40%	-4	-4	-8

Table 14: Trip Generation by Mode – Phase 1

As shown above, a total of 47 AM and 55 PM new peak hour two-way vehicle trips are projected as a result of the proposed development.

		Table 15:		,	de – Full Bı					
		AM Peak Hour				PM Peak Hour				
Travel Mode		Mode Share	In	Out	Total	Mode Share	In	Out	Total	
Multi-Unit (High-Rise)	Auto Driver	25%	25	56	81	25%	48	35	84	
	Auto Passenger	7%	7	16	23	14%	27	20	47	
	Transit	53%	61	136	197	43%	89	65	154	
	Cycling	2%	2	5	8	3%	6	5	11	
	Walking	13%	16	35	51	15%	34	25	59	
	Total	100%	111	248	360	100%	204	150	355	
Strip Retail Plaza (<40k)	Auto Driver	52%	4	3	7	50%	10	8	18	
	Auto Passenger	10%	1	1	2	18%	6	5	11	
za (Transit	20%	2	2	4	16%	5	4	9	
Pla	Cycling	1%	0	0	0	1%	0	0	0	
ail I	Walking	17%	2	2	4	15%	5	4	9	
Ret	Total	100%	9	8	17	100%	26	21	47	
ip I	Internal Capture	varies	-3	-1	-4	varies	-4	-9	-13	
Str	Pass-by	40%	-2	-2	-4	40%	-6	-5	-11	
	Auto Driver	-	29	59	88	-	58	43	102	
	Auto Passenger	-	8	17	25	-	33	25	58	
	Transit	-	63	138	201	-	94	69	163	
Total	Cycling	-	2	5	8	-	6	5	11	
	Walking	-	18	37	55	-	39	29	68	
	Total	-	120	256	377	-	230	171	402	
	Internal Capture	varies	-3	-1	-4	varies	-6	-5	-11	
	Pass-by	40%	-2	-2	-4	40%	-4	-9	-13	

Table 15: Trip Generation by Mode – Full Build Out

As shown above, a total of 88 AM and 102 PM new peak hour two-way vehicle trips are projected as a result of the proposed development.

4.3 Trip Distribution

To understand the travel patterns of the subject development, the OD Survey has been reviewed to determine the travel for the residential component, and these patterns were applied based on the build-out of Ottawa East. Table 16 below summarizes the distributions.

Table 16: OD Survey Distribution – Ottawa East					
To/From	Residential % of Trips				
North	15%				
South	20%				
East	15%				
West	50%				
Total	100%				

4.4 Trip Assignment

Using the distribution outlined above, turning movement splits, and access to major transportation infrastructure, the trips generated by the site have been assigned to the study area road network. Table 17 summarizes the proportional assignment to the study area roadways. Figure 16 and Figure 17 illustrates the new site generated volumes for Phase 1 and the full build out, respectively. Figure 18 and Figure 19 illustrate the pass-by volumes.

1137-1151 Ogilvie Road & 1111 Cummings Avenue Transportation Impact Assessment

Table 17: Trip Assignment						
To/From	Via					
North	10% Donald St (N)					
North	5% Cummings Ave (N)					
	5% Aviation Pkwy (S)					
South	5% Cummings Ave (S)					
	10% Ogilvie Rd (W)					
East	10% Ogilvie Rd (E)					
EdSL	5% Cyrville Rd (E)					
West	50% Ogilvie Rd (W)					
Total	100%					

Figure 16: New Site Generated Auto Volumes – Phase 1

4.5 Trip Reductions

The existing supermarket is approximately 6,390 sq. ft, and the existing restaurant is approximately 8,855 sq. ft on the 1137 Ogilvie Road parcel for Phase 1. The existing restaurant is approximately 5,995 sq. ft on the 1151 Ogilvie Road parcel for Phase 2. All are closed during the AM peak hour. Using the ITE trip generation rates for the land use of Supermarket (ITE 850), High-Turnover (Sit-Down) Restaurant (ITE 932), pass-by rate of 24% for supermarket, pass-by rate of 43% for restaurant, and commercial generator mode shares for Ottawa East, the estimated trip generation of the existing site during the PM peak hour is 63 two-way primary vehicle trips at 1137 Ogilvie Road and 1111 Cummings Avenue and 21 two-way primary vehicle trips at 1151 Ogilvie Road. The trip assignment of the estimated reduced volumes, based on the commercial land use and the build-out of Ottawa East, is illustrated in Figure 20 and Figure 21. The existing property has additional accesses beyond the one proposed as part of the redevelopment. Accounting for this existing access configuration, and the estimated passby adjustment, consistent with the proportional assignment used for the proposed development, for the existing

land use on the network for Phase 1 and full build out are illustrated in Figure 22 and Figure 23. Table 18 compares the estimated existing primary auto trips and forecasted site-generated primary auto trips for Phase 1 and full build out.

Figure 21: Estimated Existing Trip Reductions – Full Build Out

Figure 22: Estimated Existing Pass-By Network Adjustment – Phase 1

 Table 18: Estimated Existing Primary Auto Trips vs Forecasted Primary Auto Trips

		AM Pe	ak Hour		PM Peak Hour				
Scenario	Mode Share	In	Out	Total	Mode Share	In	Out	Total	
Existing (Phase 1 area)	57%	0	0	0	55%	35	28	63	
Proposed (Phase 1)	Varies	16	31	47	Varies	32	23	55	
Difference	-	+16	+31	+47	-	-3	-5	-8	
Existing (Full Build Out area)	57%	0	0	0	55%	48	36	84	
Proposed (Full Build Out)	Varies	29	59	88	Varies	58	43	102	
Difference	-	+29	+59	+88	-	+10	+7	+18	

As shown above, the proposed redevelopment is anticipated to generate 47 new additional two-way AM peak hour vehicles and eight fewer two-way PM peak hour vehicles from the existing use for Phase 1, and 88 additional two-way AM peak hour vehicles and 18 additional two-way PM peak hour vehicles from the existing use for full build out. Figure 24 and Figure 25 illustrates the net auto volumes for Phase 1 and full build out, respectively.

5 Exemption Review

Table 19 summarizes the exemptions for this TIA.

		Table 19: Exemption Review			
Module	Element	Explanation	Exempt/Required		
Site Design and TDM					
Development Design	4.1.2 Circulation and Access	Only required for site plan and zoning by- law applications	Required		
Development Design	4.1.3 New Street Networks	Only required for plans of subdivision	Exempt		
Parking	4.2.1 Parking Supply	Only required for site plan and zoning by- law applications	Required		
Boundary Street Design		All applications	Required		

Module	Element	Explanation	Exempt/Required
ransportation	All Elements	Only required when the development	Required
Demand		generates more than 60 person-trips	
Vanagement			
Network Impact			
	All Elements	Only required when one or more other	Required
Background Network		Network Impact Modules are triggered	
Fravel Demand		when the development generates more	
		than 75 auto or transit trips	
		Only required when one or more other	Required
Demand		Network Impact Modules when the	
Rationalization		development generates more than 75 auto	
	4.6.1 Adjacent	trips If the development meets all of the	Evemnt
	4.6.1 Adjacent Neighbourhoods	following criteria along the route(s) site	Exempt
	Reignbournoous	generated traffic is expected to utilize	
		between an arterial road and the site's	
		access:	
		1. Access to Collector or Local;	
		 Significant sensitive land use 	
		presence" exists, where there is at	
		least two of the following adjacent to	
		the subject street segment:	
		 School (within 250m walking 	
		distance);	
		• Park;	
		Retirement / Older Adult Facility	
		(i.e. long-term care and retirement	
Neighbourhood		homes);	
Traffic Calming		 Licenced Child Care Centre; 	
		 Community Centre; or 	
		 50%, or greater, of adjacent 	
		property along the route(s) is	
		occupied by residential	
		lands and a minimum of 10	
		occupied residential units are	
		present on the route.	
		3. Application is for Zoning By-Law	
		Amendment or Draft Plan of	
		Subdivision;	
		4. At least 75 site-generated auto trips;	
		5. Site Trip Infiltration is expected. Site	
		traffic will increase peak hour vehicle	
		volumes along the route by 50% or	
		more.	
	4.7.1 Transit Route	Only required when the development	Required
	Capacity	generates more than 75 transit trips	
Transit	4.7.2 Transit	Only required when the development	Required
	Priority	generates more than 75 auto trips	
	Requirements		

Module	Element	Explanation	Exempt/Required
Network Concept		Only required when proposed development generates more than 200 person-trips during the peak hour in excess of equivalent volume permitted by established zoning	Exempt
Intersection Design	4.4.1-2/4.9.1 Intersection Control	Only required when the development generates more than 75 auto trips	Required
	4.4.3/4.9.2 Intersection Design	Only required when the development generates more than 75 auto trips	Required

6 Development Design

6.1 Design for Sustainable Modes

The proposed development is two residential buildings with the possibility of ground floor retail. Vehicle parking located in three parking levels below grade and with a drop-off loop located on the surface within laybys along the aisle. Bicycle parking is located within the parking levels accessed via ramp with a maximum 16.4% grade, and within surface racks. Elevators are additionally provided from the parking levels for cyclists' ease of use. The parking ramp is located within the Phase 1 building.

Existing sidewalks are present along Cummings Avenue and Ogilvie Road, and hard surface connections to these facilities from the building entrances are proposed for each phase.

The infrastructure TDM checklist is provided in Appendix F.

6.2 Circulation and Access

Vehicle access is provided via a 6.7-metre-wide two-way full-movement access on Cummings Avenue. To facilitate access by loading, garbage, and fire services trucks, the southern curb-return radius between the access and Cummings Avenue is recommended to be 6.0 metres. The access connects to the underground parking ramp, a drop-off loop, and the loading areas. Para Transpo vehicles can circulate the internal drive aisles, and board and alight passengers along the southern curb line onto the depressed unit-paver area for both phases. Garbage collection will occur in the depressed unit-paver loading area adjacent to the Phase 1 building, and emergency services can access the site drive aisles and make a three-point turn to egress. Turning templates are provided in Appendix G.

7 Parking

7.1 Parking Supply

The site is currently proposed to include a total of 483 vehicle parking spaces below grade for the overall site, with 231 spaces within the Phase 1 area and 252 spaces within the Phase 2 area.

The Zoning By-Law requires a minimum parking provision is 411 vehicle parking spaces for residents and 60 vehicle parking spaces for visitors for the overall site and 212 vehicle parking spaces for residents and 30 vehicle parking spaces for visitors for Phase 1. Therefore, the required parking provision for the residential component from the Zoning By-Law is 471 for the overall site and 242 for Phase 1.

The site is located within 600 metres of Cyrville Station and is located in the Cyrville Hub and Design Priority Area and on the Ogilvie Road Mainstreet Corridor. Considering other planning context for the site parking, it is noted

that no minimum parking provision would be required for a lot across the street on Ogilvie Road at its intersection with Cummings Avenue, and the draft Zoning By-Law proposes the elimination of parking minima in the City. Therefore, despite presently considering a higher quantity, the proponent is pursuing a minimum parking ratio of 0.3 spaces per residential unit for the site through the rezoning.

The Zoning By-Law requires a maximum vehicle parking provision for developments located within 600 metres of a rapid transit station. A maximum parking ratio of 1.5 spaces per dwelling unit for the residential component including visitor spaces is required, resulting in a total of 1,269 spaces for the overall site and 654 parking spaces for Phase 1. Therefore, the parking spaces proposed for the residential component of the development fall below the maximum permitted by the Zoning By-Law.

Regarding the potential commercial component, a minimum parking ratio of 1.25 spaces per 100 m² of gross floor area would required if a ground floor retail component is above 500 m² in area, and a resulting total of seven retail parking would be required for the overall site and in Phase 1. Additionally, a maximum parking ratio of 1.0 space per 100 m² of gross floor area for the retail component is required, resulting in a total of eight commercial spaces for the overall site and five commercial parking spaces for Phase 1.

The site proposes a total of 846 bicycle parking spaces as part of the overall site and 436 as part of Phase 1. Twenty-four of the bicycle parking spaces will be provided within surface racks for the overall site and 16 will be within surface racks for Phase 1. The minimum bicycle parking provision from the Zoning By-Law is 423 residential spaces and three commercial retail spaces for the overall site and 218 residential spaces and two commercial retail spaces for Phase 1. The site is proposed to provide bicycle parking at one space per residential unit, and thus the minimum bicycle parking provision is met for both the overall site and Phase 1.

Boundary Street Design 8

Table 20 summarizes the MMLOS analysis for the boundary streets of Cummings Avenue and Ogilvie Road. Given that the Cummings Cycling (Donald to Cyrville) project is anticipated to be completed by 2029, it will be considered in future conditions. The boundary street analysis is based on the policy area of "Within 600m of a rapid transit station," and the MMLOS worksheets has been provided in Appendix H.

	TUL	ne 20: Bou	naary Stree	et IVIIVILOS	Analysis				
Segment		Pedest	rian LOS	Bicyc	le LOS	Trans	it LOS	Truc	k LOS
		PLOS	Target	BLOS	Target	TLOS	Target	TrLOS	Target
Ociluia Read	Ex.	E	А	D	С	D	D	А	D
Ogilvie Road	Fut.	D	А	А	С	D	D	А	D
	Ex.	F	А	E	В	N/A	N/A	В	D
Cummings Avenue	Fut.	С	Α	А	В	N/A	N/A	В	D

able 20: Boundary Street MMLOS Analys	able	20:	Boundary	Street	MMLOS	Analys
---------------------------------------	------	-----	----------	--------	-------	--------

Ogilvie Road and Cummings Avenue will not meet the pedestrian LOS targets in the existing or future conditions. To meet the theoretical PLOS targets, the operating speeds on both roadways would need to be reduced to 30 km/h.

Ogilvie Road and Cummings Avenue do not meet the bicycle LOS target in the existing conditions, although both boundary streets will meet the bicycle LOS target in the future conditions once the Cummings Cycling (Donald to Cyrville) project is completed.

Given the roadway speeds are not changing, no changes are proposed to the boundary streets as part of this study.

9 Transportation Demand Management

9.1 Context for TDM

The mode shares used within the TIA represent a shift from auto modes to transit modes based on its proximity to Cyrville Station. Overall, the modal shares are likely to be achieved and supporting TDM measures should be provided.

The subject site is within the Cyrville TOD design priority area.

The total bedroom count within the development is subject to the final unit breakdown. No age restrictions are noted.

9.2 Need and Opportunity

The subject site has been assumed to rely predominantly on transit ridership with the proximity to the Cyrville Station, and those assumptions have been carried through the analysis. The redevelopment of the existing site is expected to have a modest increase in traffic beyond the existing site during the AM peak hour and a minor increase during the PM peak hour, at full build out. The volumes are not anticipated to directly impact any existing or forecasted capacity concerns, which mitigate the risks of a higher auto mode than forecast. Moreover, impacts on area auto delays and capacity stemming from the fully protected left-turn phases to improve cycling safety are anticipated to further drive transit adoption, enabled by the site's proximity to Cyrville Station.

Overall, the modal shares are likely to be achieved and supporting TDM measures should be provided to encourage shifts towards sustainable mode.

9.3 TDM Program

The "suite of post occupancy TDM measures" has been summarized in the TDM checklists for the residential land uses. The checklist is provided in Appendix F. The key TDM measures recommended include:

- Display local area maps with walking and cycling routes, and transit route information and schedules at major entrances
- Provide a multimodal travel option information package to new residents
- Contract with providers to install carshare spaces
- Inclusion of a 1-year Presto card for first time apartment rental, with a set time frame for this offer (e.g. 6-months) from the initial opening of the site
- Unbundle parking cost from purchase/rental costs

10 Background Network Travel Demands

10.1 Transportation Network Plans

The transportation network plans were discussed in Section 2.3. Cummings Cycling (Donald to Cyrville) is anticipated to be completed by 2029 and will be included in 2029 and 2034 future horizons. Both Cyrville Road widening and St-Laurent Boulevard Transit Priority Corridor projects are assumed to be beyond 2031, and the proposed changes are not anticipated to impact the study area traffic volumes and travel patterns given the pre-existing regional and local demands on the study area road network.

10.2 Background Growth

A review of the background projections from the City's TRANS Regional Model for the 2011 and 2031 horizons was completed to determine the background growth for each of the study area roadways. The background TRANS model growth rates are summarized in Table 21 and the TRANS model plots are provided in Appendix I.

TRAN	S Rate	
Eastbound	Westbound	
0.47%	0.27%	
6.90%	-0.85%	
Northbound	Southbound	
0.50%	1.00%	
0.42%	1.57%	
2.74%	3.66%	
	Eastbound 0.47% 6.90% Northbound 0.50% 0.42%	

Table 21: TRANS Perional	Model Projections	Study Arac	Crowth Patas
Table 21: TRANS Regional	would frojections	- Study Alet	GIOWIN RULES

In general, the growth rates in the study area derived from the two TRANS model horizons are projected to be positive along all roadways with the exception of the westbound Labelle Street during the AM peak hour. Growth rates derived from the TRANS model horizons will be applied to the mainline and major turning movements for the appropriate roads during the AM peak hour, rounded to the nearest 0.25%, and reversed for the PM peak hour. In the case of Aviation Parkway, given that low residual capacity is available, a constrained growth rate will be applied, consistent with the fact that the existing volumes are higher than the volumes forecast within the 2031 model. Additionally, during the PM peak hour, growth on Labelle Street westbound will be taken from the northbound Cyrville Road rate. This rate will be used as the 2011 AM eastbound volumes are low and the low absolute increase in vehicles result in a large relative increase associated with the high growth rate. Table 22 summarizes the recommended growth rates to be considered within the study area.

Chroat	AM Pea	ak Hour	PM Peak Hour							
Street	Eastbound	Westbound	Eastbound	Westbound						
Ogilvie Rd	0.50%	0.25%	0.25%	0.50%						
Labelle St	7.00%	0.00%	0.00%	1.50%						
	Northbound	Southbound	Northbound	Southbound						
Cummings Ave	0.50%	1.00%	1.00%	0.50%						
Cyrville Rd	0.50%	1.50%	1.50%	0.50%						
Aviation Pkwy	1.00%	1.25%	1.25%	1.00%						

Table 22: Recommended Area Growth Rates

10.3 Other Developments

The background developments explicitly considered in the background conditions include:

- 1098 Ogilvie Road, 1178 Cummings Avenue
- 1155 Joseph Cyr Street, 1082 Cyrville Road
- 1209 St Laurent Boulevard, 1200 Lemieux Street
- 1125 1149 Cyrville Road
- 1184-1196 Cummings Avenue

The background development volumes within the study area have been provided in Appendix J.

11 Demand Rationalization

11.1 2027 Future Background Intersection Operations

The existing study area volumes have been balanced for the future background conditions. Figure 26 illustrates the 2027 background volumes and Table 23 summarizes the 2027 background intersection operations. The level of service for signalized intersections is based on volume to v/c calculations for individual lane movements and MMLOS Guidelines weighted v/c methodology for the overall intersection, per direction from Transportation Engineering Services. The synchro worksheets for the 2027 future background horizon are provided in Appendix K.

Intercention	Lanc		AM Pe	ak Hour		PM Peak Hour					
Intersection	Lane	LOS	V/C	Delay	Q (95 th)	LOS	V/C	Delay	Q (95 th)		
	EBL	А	0.19	21.2	12.8	А	0.29	22.4	17.7		
	EBR	А	0.44	7.7	13.3	А	0.59	8.0	16.3		
Donald Street at	NBL	А	0.36	8.0	25.5	А	0.50	11.4	35.1		
Cummings Avenue	NBT	А	0.13	5.6	12.8	А	0.28	7.1	26.2		
Signalized	SBT/R	А	0.25	5.1	19.8	А	0.41	7.5	37.1		
	Overall	Α	0.39	7.4	-	Α	0.55	9.3	-		
	EBT	А	0.28	8.8	52.2	А	0.51	15.0	103.8		
	EBR	А	0.15	2.0	8.4	А	0.28	2.4	12.1		
	WBL	А	0.08	4.7	m3.1	А	0.15	22.6	m6.9		
Ogilvie Road at Cyrville Road <i>Signalized</i>	WBT	А	0.35	4.9	51.1	А	0.37	20.6	m70.6		
	WBR	А	0.14	0.6	1.2	А	0.17	9.2	m12.1		
	NBL	D	0.81	77.2	56.6	D	0.83	87.4	#45.3		
	NBT	В	0.69	56.5	68.3	А	0.57	40.7	71.1		
	SBL	А	0.33	47.2	19.9	В	0.70	55.9	49.3		
	SBT/R	А	0.47	43.6	45.2	D	0.84	54.1	105.6		
	Overall	Α	0.43	18.8	-	Α	0.60	26.4	-		
	EBL	А	0.24	13.1	13.1	С	0.75	53.1	#57.1		
	EBT	А	0.39	16.9	52.1	D	0.90	39.5	#119.7		
	WBL	А	0.25	13.6	m16.3	С	0.79	57.1	m#52.2		
Ogilvie Road at	WBT	А	0.57	20.4	74.1	D	0.90	47.6	m#140.		
Cummings Avenue	NBL	А	0.29	45.5	26.6	А	0.26	37.9	22.9		
Signalized	NBT/R	В	0.70	53.8	77.7	D	0.86	58.8	#110.3		
5	SBL	В	0.70	51.4	50.9	D	0.82	43.6	#68.3		
	SBT/R	А	0.49	35.5	68.6	А	0.50	26.0	77.9		
	Overall	Α	0.59	26.4	-	D	0.87	44.3	-		
	EBL	D	0.83	50.7	#98.0	C	0.74	33.6	m54.0		
	EBT	A	0.40	31.4	68.7	D	0.86	35.1	m94.1		
	EBR	A	0.13	3.6	m5.7	A	0.16	4.5	m2.5		
	WBL	A	0.29	20.4	28.4	D	0.86	56.5	#77.2		
Ogilvie Road at	WBT	A	0.49	37.1	76.1	A	0.55	31.3	86.5		
Aviation Parkway	WBR	A	0.21	2.6	6.5	A	0.31	4.5	15.5		
Signalized	NBL	C	0.78	71.0	75.3	E	0.97	112.8	#84.9		
g	NBT	C	0.79	47.5	98.5	C	0.75	48.0	73.1		
	SBL	F	1.05	142.8	#89.3	F	1.11	162.9	#80.6		
	SBT	D	0.88	53.1	#99.6	F	1.04	83.9	#116.1		
	Overall	C	0.74	47.1	-	E	0.93	50.7	_		
	EBL	A	0.06	7.8	3.9	A	0.03	10.0	3.0		
	EBT	A	0.26	8.5	27.2	A	0.16	6.2	12.7		
Cyrville Road at	WBL	A	0.20	14.6	22.5	A	0.10	14.5	17.4		
Cummings	WBT	B	0.66	20.3	#111.7	C	0.14	23.9	#150.2		
Avenue/Labelle	NBL	A	0.00	25.8	3.4	A	0.08	23.3	5.3		
Street	NBL	A	0.02	15.1	12.8	A	0.33	17.4	27.3		
Signalized	SBL	D	0.21	68.9	# 50.7	A	0.35	22.5	17.9		
Signallea	SBL	A	0.84	24.8	22.3	D	0.28	35.9	#118.8		
	301	н	0.20	24.0	22.3	U	0.01	55.5	π110.0		

Table 23: 2027 Future Background Intersection Operations

Saturation flow rate of 1800 veh/h/lane

Delay = average vehicle delay in seconds

m = metered queue

Queue is measured in metres Peak Hour Factor = 1.00

= volume for the 95th %ile cycle exceeds capacity

Notes:

During both the AM and PM peak hours, the study area intersections at the 2027 future background horizon operate similarly to the existing conditions. No additional capacity issues were noted. The incremental improvement to the intersection operations is predominantly a result of the peak hour factor adjustment to 1.00 for forecasted conditions.

At the intersection of Ogilvie Road at Aviation Parkway, a shift of one second from the northbound movement to the southbound left movement during the AM peak hour would address capacity issues during the AM peak hour, and a shift of one second from the eastbound/westbound movements to the northbound left/southbound left turn movements and one second from the eastbound/westbound/westbound through movements to the northbound reduce the v/c of all movements to be 1.00 or below.

The westbound approach at the intersection of Ogilvie Road at Cummings Avenue have been balanced based on a comparison with the remainder of the study area. The outlier intersection count was the intersection of Ogilvie Road at Cummings Avenue, resulting in reductions to algin with the adjacent intersection counts.

11.2 2029 Future Background Intersection Operations

The existing study area volumes have been balanced for the future background conditions. As noted in Section 2.3.1.4, the Cummings Cycling (Donald to Cyrville) is assumed to be completed by 2029 and will be considered at this horizon. The future geometries of the study area intersections along Cummings Avenue, as shown in Section 2.3.1.4, will be included in the modeled conditions. At the intersection of Ogilvie Road at Cummings Avenue, fully protected left-turn phases will be assumed for all left-turn movements based on the recommendations in the City's Cycling Safety Review of High-Volume Intersections (2020). Figure 27 illustrates the 2029 background volumes and Table 24 summarizes the 2029 background intersection operations. The level of service for signalized intersections is based on volume to v/c calculations for individual lane movements and MMLOS Guidelines weighted v/c methodology for the overall intersection, per direction from Transportation Engineering Services. The synchro worksheets for the 2029 future background horizon are provided in Appendix L.

Table 24: 2029 Future Background Intersection Operations Intersection Operations

Intersection	Lana		AM Pea	ak Hour		PM Peak Hour				
intersection	Lane	LOS	V/C	Delay	Q (95 th)	LOS	V/C	Delay	Q (95 th)	
	EBL	А	0.19	21.3	12.8	А	0.29	22.4	17.7	
	EBR	А	0.46	7.8	13.4	А	0.59	8.0	16.3	
Donald Street at Cummings Avenue	NBL	А	0.41	8.9	26.0	А	0.52	11.9	36.5	
Signalized	NBT	А	0.15	5.8	13.0	А	0.28	7.1	26.7	
Signalized	SBT/R	А	0.29	5.5	20.3	А	0.42	7.7	38.5	
	Overall	Α	0.43	7.9	-	Α	0.56	9.4	-	

Intersection	Lane		AM Pe	PM Peak Hour					
Intersection	Lane	LOS	V/C	Delay	Q (95 th)	LOS	V/C	Delay	Q (95 th
	EBT	А	0.28	8.9	53.4	А	0.51	15.2	105.1
	EBR	А	0.15	2.0	8.5	А	0.28	2.4	12.2
	WBL	А	0.08	3.8	m1.6	А	0.15	4.1	m0.9
0.11 . 0	WBT	А	0.35	3.4	15.2	А	0.38	3.3	m9.7
Ogilvie Road at	WBR	А	0.14	0.2	m0.0	А	0.17	0.1	m0.0
Cyrville Road	NBL	D	0.82	78.6	57.7	D	0.85	90.5	#46.8
Signalized	NBT/R	В	0.69	56.5	68.8	А	0.58	40.9	72.6
	SBL	А	0.33	47.2	19.9	С	0.71	56.7	49.6
	SBT/R	А	0.47	43.7	45.9	D	0.84	54.0	106.2
	Overall	Α	0.43	18.3	-	Α	0.54	21.7	-
	EBL	А	0.56	78.6	32.7	Е	0.97	112.3	#82.8
	EBT	А	0.52	28.4	68.3	F	1.03	85.6	#186.1
	WBL	В	0.62	83.9	m41.7	Е	0.99	102.9	m#65.
Ogilvie Road at	WBT/R	С	0.71	32.6	m157.6	F	1.06	77.4	m#160
Cummings Avenue	NBL	А	0.53	74.2	30.6	В	0.65	86.0	#34.1
Signalized	NBT/R	С	0.78	66.2	84.8	E	0.98	86.4	#144.7
	SBL	С	0.79	80.1	#72.3	F	1.09	129.6	#124.7
	SBT/R	А	0.57	46.3	81.9	В	0.62	38.3	105.6
	Overall	С	0.72	43.3	-	F	1.04	83.9	-
	EBL	D	0.86	62.2	#155.1	С	0.76	12.0	m9.6
	EBT	А	0.41	51.7	89.8	D	0.86	26.4	m125.
	EBR	А	0.13	12.0	m11.8	А	0.16	3.2	m3.6
	WBL	А	0.30	20.7	28.4	D	0.86	56.9	#77.6
Ogilvie Road at	WBT	А	0.49	37.3	76.6	А	0.56	31.6	87.3
Aviation Parkway	WBR	А	0.21	2.6	6.5	А	0.31	4.5	15.5
Signalized	NBL	С	0.78	71.0	75.3	E	0.97	112.8	#84.9
-	NBT	С	0.79	47.3	100.5	С	0.77	49.1	74.9
	SBL	F	1.05	142.8	#89.3	F	1.11	162.9	#80.6
	SBT	D	0.88	53.8	#104.6	F	1.06	89.3	#120.1
	Overall	С	0.74	51.6	-	Е	0.93	48.1	-
	EBL	A	0.06	7.2	3.8	A	0.03	10.4	3.0
	EBT	A	0.28	9.1	28.4	A	0.17	6.7	12.8
Cyrville Road at	WBL	A	0.22	14.5	21.9	A	0.15	15.6	18.1
Cummings	WBT	В	0.70	22.7	#124.2	D	0.82	31.9	#166.8
Avenue/Labelle	NBL	A	0.02	26.0	3.3	A	0.07	23.5	5.3
Street	NBT	A	0.26	28.9	20.7	A	0.33	18.7	30.4
Signalized	SBL	D	0.90	83.3	#53.2	A	0.26	22.8	18.6
	SBE	A	0.31	29.2	25.6	D	0.20	36.5	#127.9
	Overall	C	0.31	26.7		D	0.81	28.6	
Saturation flo	w rate of 1800 v				Delay = averag		1	_0.0	1

Notes: Queue is measured in metres Peak Hour Factor = 1.00 m = metered queue
= volume for the 95th %ile cycle exceeds capacity

During both the AM and PM peak hours, the study area intersections at the 2029 future background horizon operate similarly to the 2027 future background conditions with the exception of the intersection of Ogilvie Road at Cummings Avenue.

At the Ogilvie Road at Cummings Avenue intersection, the overall intersection, the eastbound through, westbound through/right, and southbound left movements are over theoretical capacity and may be subject to high delays

during the PM peak hour. The degradation in operations is due primarily to the introduction of fully protected left-turn phases planned as part of the Cummings Cycling project. The v/c on the eastbound left turn and westbound left turn movements are approaching their theoretical capacity, and southbound left turn movement is over theoretical capacity during the PM peak hours, each where there was a high degree of residual capacity in the 2027 background conditions. It is recommended that the City review the signal timing at this intersection as part of the Cummings Cycling project.

Similarly to 2027 future background conditions at the intersection of Ogilvie Road at Aviation Parkway, a shift of one second from the northbound movement to the southbound left movement during the AM peak hour would address capacity issues at the intersection. A shift of one second from the eastbound/westbound movements to the northbound left turn movements, and two seconds from the eastbound/westbound through movements to the northbound/southbound through movements during the PM peak hour would reduce the v/c of all movements to be 1.00 or below at the intersection.

11.3 2034 Future Background Intersection Operations

The existing study area volumes have been balanced for the future background conditions. Figure 28 illustrates the 2034 background volumes and Table 25 summarizes the 2034 background intersection operations. The level of service for signalized intersections is based on volume to v/c calculations for individual lane movements and HCM 2000 v/c calculations for the overall intersection. The synchro worksheets for the 2034 future background horizon are provided in Appendix M.

Table 25: 2034 Future Background Intersection Operations

Intersection	Lane		AM Pea	ak Hour		PM Peak Hour					
intersection	Lane	LOS	V/C	Delay	Q (95 th)	LOS	V/C	Delay	Q (95 th)		
	EBL	А	0.19	21.3	12.8	А	0.29	22.4	17.7		
Damald Church at	EBR	А	0.46	7.8	13.5	А	0.59	8.0	16.4		
Donald Street at	NBL	А	0.42	9.2	26.9	А	0.55	12.7	40.0		
Cummings Avenue Signalized	NBT	А	0.16	5.8	13.3	А	0.30	7.2	28.3		
Signunzeu	SBT/R	А	0.30	5.6	21.3	А	0.43	7.8	39.9		
	Overall	Α	0.44	8.0	-	Α	0.57	9.6	-		

Intersection	Lane		AM Pe	ak Hour			PM Pe	ak Hour	
mersection	Lane	LOS	V/C	Delay	Q (95 th)	LOS	V/C	Delay	Q (95 th
	EBT	А	0.30	9.2	56.3	А	0.53	15.6	108.8
	EBR	А	0.16	2.0	8.6	А	0.29	2.4	12.3
	WBL	А	0.08	3.8	m1.5	А	0.15	4.2	m0.9
	WBT	А	0.36	3.3	15.3	А	0.38	3.4	m9.8
Ogilvie Road at	WBR	А	0.14	0.2	m0.0	А	0.17	0.1	m0.0
Cyrville Road	NBL	D	0.85	82.3	59.4	D	0.90	101.2	#50.5
Signalized	NBT	В	0.70	56.6	70.4	А	0.60	41.3	76.2
	SBL	А	0.34	47.2	19.9	С	0.73	59.0	50.4
	SBT/R	А	0.48	44.3	47.8	D	0.85	54.3	108.7
	Overall	Α	0.44	18.6	-	Α	0.56	22.6	-
	EBL	А	0.57	79.6	32.4	F	1.01	121.5	#84.0
	EBT/R	А	0.55	29.8	74.2	F	1.07	96.2	#194.8
	WBL	В	0.64	83.0	m43.1	F	1.06	115.1	m#74.8
Ogilvie Road at	WBT/R	С	0.73	32.8	m161.2	F	1.04	70.7	m#155.
Cummings Avenue	NBL	А	0.53	74.2	30.6	В	0.65	86.0	#34.1
Signalized	NBT/R	С	0.80	68.3	89.0	F	1.07	108.8	#164.1
	SBL	С	0.79	80.1	#72.3	F	1.12	141.3	#126.8
	SBT/R	А	0.60	46.9	86.0	В	0.64	39.7	110.0
	Overall	С	0.74	44.0	-	F	1.08	89.8	-
	EBL	E	0.94	76.8	#168.3	D	0.82	14.7	m10.4
	EBT	А	0.44	53.7	91.7	D	0.87	26.7	m121.2
	EBR	А	0.14	12.3	m12.2	А	0.16	3.3	m3.3
	WBL	А	0.32	21.5	28.4	D	0.88	61.0	#79.7
Ogilvie Road at	WBT	А	0.53	38.8	77.7	А	0.58	32.1	90.0
Aviation Parkway	WBR	А	0.22	2.7	6.5	А	0.32	4.6	15.5
Signalized	NBL	С	0.78	71.0	75.3	E	0.97	112.8	#84.9
	NBT	С	0.78	45.8	105.6	D	0.81	51.8	#80.0
	SBL	F	1.05	142.8	#89.3	F	1.11	162.9	#80.6
	SBT	D	0.88	53.1	#117.7	F	1.11	107.3	#130.1
	Overall	С	0.78	53.3	-	Е	0.96	52.2	-
	EBL	А	0.06	7.2	3.8	А	0.04	10.6	3.0
	EBT	А	0.29	9.3	29.8	А	0.18	6.8	13.0
Cyrville Road at	WBL	А	0.23	14.6	21.9	А	0.17	16.2	19.1
Cummings	WBT	С	0.72	23.6	#129.4	D	0.90	40.2	#179.3
Avenue/Labelle	NBL	А	0.02	26.0	3.3	А	0.07	23.6	5.4
Street	NBT	А	0.36	30.7	26.7	А	0.35	20.7	36.8
Signalized	SBL	E	0.95	94.9	#56.6	А	0.24		18.7
	SBT	А	0.34	29.7	28.1	D	0.81	9 2.4 5 4.2 8 3.4 7 0.1 0 101.2 0 41.3 3 59.0 5 54.3 6 22.6 1 121.5 7 96.2 6 115.1 4 70.7 5 86.0 7 108.8 2 141.3 4 39.7 8 89.8 2 14.7 7 26.7 6 3.3 8 61.0 8 32.1 2 4.6 7 112.8 1 51.8 1 162.9 1 107.3 6 52.2 4 10.6 8 6.8 7 16.2 0 40.2 7 23.6 5 20.7 4 22.2 <t< td=""><td>#142.2</td></t<>	#142.2
	Overall	С	0.75	28.8	_	D	0.85		-

Notes: Queue is measured in metres Peak Hour Factor = 1.00

= volume for the 95^{th} %ile cycle exceeds capacity

During both the AM and PM peak hours, the study area intersections at the 2034 future background horizon operate similarly to the 2029 future background conditions.

At the intersection of Ogilvie Road at Cummings Avenue, the overall intersection, the eastbound left, eastbound through/right, westbound left, westbound through/right, northbound through/right, and southbound left movements are over theoretical capacity and may be subject to high delays during the PM peak hour. As noted in

2029 future background conditions, these capacity issues are driven by the fully protected left-turn phases planned as part of the Cummings Cycling project. It is recommended that the City review the signal timing at this intersection as part of the Cummings Cycling project.

Similar to 2029 future background conditions at the intersection of Ogilvie Road at Aviation Parkway, a shift of one second from the northbound movement to the southbound left movement would address capacity issues during the AM peak hour. A shift of one second from the eastbound/westbound movements to the northbound left/southbound left turn movements, and two seconds from the eastbound/westbound through movements to the northbound reduce the v/c of all movements to be 1.00 or below at the intersection.

11.4 Demand Rationalization Conclusions

11.4.1 Network Rationalization

The existing conditions identify capacity issues at the intersections of Ogilvie Road at Cummings Avenue and Ogilvie Road at Aviation Parkway. As previously noted, the capacity issues at the intersection of Ogilvie Road at Cummings Avenue in both 2029 and 2034 horizons are driven by the fully protected left-turn phases planned as part of the Cycling Safety Review of High-Volume Intersections (2020) and Cummings Cycling project. While these phases will improve cycling safety conditions at the intersection, they will reduce auto capacity as these two objectives trade-off with each other with this treatment. Ultimately, the elective reduction to auto capacity on behalf of the City in achieving its priorities for the corridor must not constrain the ability to develop the surrounding lands.

11.4.2 Development Rationalization

Given that residual capacity is available during the AM peak hour and only 16 new two-way PM trips are forecast by the proposed site overall development, and that a reduction in traffic is forecast for Phase 1, it is expected that the network will accommodate the proposed development. The development is proposed as being transitoriented, and the mode shares are consistent with this assumption and the expected competitiveness of the transit mode for the subject study area. Any capacity issues introduced at the adjacent intersection to the site of Ogilvie Road at Cummings Avenue is anticipated to further drive the adoption of transit by future site users. No further rationalization for site traffic or modal share selection is required.

12 Transit

12.1 Route Capacity

In Section 5.1 the trip generation by mode was estimated, including an estimate of the number of transit trips that will be generated by the proposed development. Table 26 summarizes the transit trip generation for Phase 1 and full build out.

			20. mp dene	AM Peak Hou		PM Peak Hour			
Horizon	Travel Mode	Mode Share	In	Out	Total	In	Out	Total	
Phase 1	Transit	Varies	33	71	105	50	36	86	
Full Build Out	Transit	Varies	63	138	201	94	69	163	

Table 26: Trip Generation by Transit Mode

The proposed development is anticipated to generate an additional 105 AM and 86 PM peak hour two-way transit trips at Phase 1 and 201 AM and 163 PM peak hour two-way transit trips at full build out. From the trip distribution

found in section 4.3, these values can be further broken down. Table 27 summarizes forecasted site-generated transit ridership trips by direction and the equivalent bus loads for Phase 1 and full build out.

			ak Hour		ak Hour	ansit Ridership	Annewimete Fewigelant Deak
Horizon	Direction	In	Out	In	Out	Service Type	Approximate Equivalent Peak Hour/Direction Bus Loads
	North	5	11	8	5	Bus	A fifth of a standard bus
Phase 1	South	7	14	10	7	Bus	A quarter of a standard bus
Phase 1	East	5	11	8	5	Bus, LRT	A fifth of a standard bus
	West	17	36	25	18	Bus, LRT	Three fifths of a standard bus
	North	9	21	14	10	Bus	A quarter of a standard bus
	South	13	28	19	14	Bus	Half of a standard bus
Full Build Out	East	9	21	14	10	Bus, LRT	A quarter of a standard bus
	West	32	69	47	35	Bus, LRT	One and a quarter of a standard bus

Table 27: Forecasted Site-Generated Transit Ridership

12.2 Transit Priority

Examining the study area intersection delays, negligible impacts are noted on the transit movements and no decrease in transit LOS at the study area intersections are noted as a result of forecasted site-generated traffic.

13 Access Intersections Design

13.1 Location and Design of Access

The site access is proposed to be two-way and to permit full movements. The access is located approximately 5.0 metres from the northern property line, and approximately 61.0 metres from the protected Ogilvie Road right-of-way. It is also located approximately 73.0 metres from the existing edge of the curb along Ogilvie Road. The access meets the minimum offset of 60 metres from the Ogilvie Road right-of-way and three-metre offset from the adjacent property line from the Private Approach By-Law. The location of the access meets the Private Approach By-Law location requirements, however the northern curb return radius is noted to be approximately one metre beyond the extension of the property line at the roadway edge. This curb radius does not conflict with the existing land use or impact the ability to locate any future access on the adjacent site with the appropriate separation and the location is recommended to be approved.

The access is proposed to be 6.7-metres-wide both in its typical dimension and at the right-of-way line. Accounting for the curb returns, at the roadway edge, the access is proposed to be 16.8 metres and is recommended to be 17.7 metres with a 6.0-metre curb return radius on the south side of the access. The maximum width of a two-way access from the Private Approach By-Law is 9.0 metres. This width is noted within the By-Law to apply to both the street (right-of-way) line as well as the roadway edge, however its application at the roadway edge is not possible to meet given the minimum driveway width of 6.0 metres from the Zoning By-Law, combined with City Standard SC7.1. Therefore, the proposed driveway width is recommended to be approved, and a 6.0-metre curb return radius is recommended to be provided on the south side of the access.

The throat length to the first on-site conflict of the underground ramp is 25.4 metres and meets the suggested minimum throat length per TAC of 25 metres for apartment developments of over 200 units accessing a collector road. It is noted that if the southern curb return radius were increased to 6.0 metres, the throat length would be 24.5 metres, but it is noted that the same quantity of vehicle storage on the access is provided irrespective of curb radii, and it is recommended that the access throat be approved in either condition.

13.2 Intersection Control

The site access will have a stop-control on the minor approach.

13.3 Access Intersection Design

13.3.1 2027 Future Total Access Intersection Operations – Phase 1

Figure 29 illustrates the 2027 future total volumes and Table 28 summarizes the 2027 future total access intersection operations. Synchro 11 has been used to model the unsignalized intersections and HCM 2010 methodology was used for unsignalized intersection operations. The synchro worksheets have been provided in Appendix N.

Interretien	Lana		AM Pe	ak Hour		PM Peak Hour					
Intersection	Lane	LOS	V/C	Delay	Q (95 th)	LOS	V/C	Delay	Q (95 th)		
• · •	WBL/R	В	0.07	13.2	1.5	С	0.09	17.7	2.3		
Cummings Avenue	NBT/R	-	-	-	-	-	-	-	-		
at Access 1	SBL/T	А	0.00	8.1	0.0	А	0.01	8.7	0.0		
Unsignalized	Overall	Α	-	0.5	-	Α	-	0.4	-		
Notes: Saturation flo	w rate of 1800 v	/eh/h/lane			m = metered o	lueue					
Queue is mea	sured in metres			# = volume for the 95th %ile cycle exceeds capacity							
D I. I					/ .						

Table 28: 2027 Future Total Access Intersection Operations – Phase 1

Peak Hour Factor = 1.00 Delay = average driver delay in seconds v/c = volume to capacity ratio

The access intersection is anticipated to operate well at the 2027 future total horizon. No capacity, delay, or queuing issues are forecast. It is noted that 95th percentile queues on the southbound approach of the intersection of Ogilvie Road at Cummings Avenue extend past the site access during both peak hours. Gaps in southbound traffic during the heaviest periods may be limited to ends of each southbound phase and to courtesy gaps. This access location is considered the best solution for the parcel which is on the corner of the intersection of arterial road and a major collector road. The proposed access location is an improvement above the existing access configuration of the parcels of two (2) two-way full-movement accesses on Cummings Avenue and one two-way right-in/right-out access on Ogilvie Road.

13.3.2 2029 Future Total Access Intersection Operations (Full Build Out)

Figure 30 illustrates the 2029 future total volumes and Table 29 summarizes the 2029 future total access intersection operations. Synchro 11 has been used to model the unsignalized intersections and HCM 2010 methodology was used for unsignalized intersection operations. The synchro worksheets have been provided in Appendix O.

Figure 30: 2029 Future Total Volumes – Full Build Out

Table 29: 2029 Future Total Access Intersection Operations – Full Build Out

		,	ak Hour		PM Peak Hour				
Lane	LOS	V/C	Delay	Q (95 th)	LOS	V/C	Delay	Q (95 th)	
WBL/R	В	0.13	14.0	3.8	С	0.17	19.6	4.5	
NBT/R	-	-	-	-	-	-	-	-	
SBL/T	А	0.00	8.2	0.0	А	0.01	8.8	0.0	
Overall	Α	-	1.0	-	Α	-	0.8	-	
(NBT/R SBL/T Overall	WBL/R B NBT/R - SBL/T A	WBL/R B 0.13 NBT/R - - SBL/T A 0.00 Overall A -	WBL/R B 0.13 14.0 NBT/R - - - SBL/T A 0.00 8.2 Overall A - 1.0	WBL/R B 0.13 14.0 3.8 NBT/R - - - - SBL/T A 0.00 8.2 0.0 Overall A - 1.0 -	WBL/R B 0.13 14.0 3.8 C NBT/R - > >	WBL/R B 0.13 14.0 3.8 C 0.17 NBT/R -	WBL/R B 0.13 14.0 3.8 C 0.17 19.6 NBT/R - 0.8	

Notes: Saturation flow rate of 1800 veh/h/lane Queue is measured in metres Peak Hour Factor = 1.00 Delay = average driver delay in seconds

m = metered queue # = volume for the 95th %ile cycle exceeds capacity

v/c = volume to capacity ratio

The access intersection is anticipated to operate well at the 2029 future total horizon, and similarly to the 2027 access intersection conditions with the addition of the Phase 2 traffic.

13.3.3 2034 Future Total Access Intersection Operations

Figure 31 illustrates the 2034 future total volumes and Table 30 summarizes the 2034 future total access intersection operations. Synchro 11 has been used to model the unsignalized intersections and HCM 2010

Figure 31: 2034 Future Total Volumes 92(96) 207(324 ا لـ Don 56(87) 195(310) 1 424(642) 4(9) € 9(6) € ⁵²⁽⁴³⁾ Į Ļ Site Access #1 ÎΓ 27(55) 393(592) ž 145(142) 163(252) 179(266) 318(327) 370(424) 162(146) Ł 134(149) 875(790) 175(238) £ 125(220) 838(799) 105(189) 545(716) 35(35) ا لہ L 119(231) л Ogilvie 687(1087) — 154(274) — 379(314) 526(1099) 92(104) ካ 1 ቦ ⊥ ٦ 1 83(173) ⊥ Ľ Ľ 691(1056) 13(27) 219(163) 510(379) 210(176) 90(188) 163(214) 200(261) 63(61) -٦ C_{yrville} Labelle

methodology was used for unsignalized intersection operations. The synchro worksheets have been provided in Appendix P.

Table 30: 2034 Future Total Access Intersection Operations

Intersection	Lana		AM Pea	ak Hour		PM Peak Hour				
Intersection	Lane	LOS	V/C	Delay	Q (95 th)	LOS	V/C	Delay	Q (95 th)	
	WBL/R	В	0.14	14.2	3.8	С	0.17	20.4	4.5	
Cummings Avenue	NBT/R	-	-	-	-	-	-	-	-	
at Access 1 Unsignalized	SBL/T	А	0.00	8.2	0.0	А	0.01	8.9	0.0	
Unsignalizea	Overall	Α	-	1.0	-	Α	-	0.8	-	

Notes: Saturation flow rate of 1800 veh/h/lane Queue is measured in metres Peak Hour Factor = 1.00 Delay = average driver delay in seconds m = metered queue # = volume for the 95th %ile cvr

= volume for the 95th %ile cycle exceeds capacity v/c = volume to capacity ratio

The access intersection is anticipated to operate well at the 2034 future total horizon and similar to the 2029 access intersection conditions.

13.3.4 Access Intersection MMLOS

Based upon the projected volumes, the site access will have stop-control on the minor approach.

13.3.5 Recommended Design Elements

The access is recommended to comply with SC36.1 with a continuous depressed sidewalk and cycletrack if built out after the improvements.

14 Intersection Design

14.1 Intersection Control

No change to the existing signalized control is recommended for the network intersections.

14.2 Intersection Design

14.2.1 2027 Future Total Intersection Operations – Phase 1

Figure 29 in Section 13.3.1 illustrates the 2027 future total volumes and Table 31 below summarizes the 2027 future total network intersection operations. The level of service for signalized intersections is based on v/c calculations for individual lane movements and MMLOS Guidelines weighted v/c methodology for the overall intersection, per direction from Transportation Engineering Services. The synchro worksheets have been provided in Appendix N.

lutere etter			AM Pe	ak Hour			PM Pe	ak Hour	
Intersection	Lane	LOS	V/C	Delay	Q (95 th)	LOS	V/C	Hour Delay 22.4 8.0 11.2 7.0 7.5 9.2 15.1 2.4 20.8 9.2 87.4 40.7 55.9 54.1 26.4 39.2 56.7 48.3 38.0 58.6 43.2 26.2 44.5	Q (95 th)
	EBL	А	0.19	21.3	12.8	А	0.29	22.4	17.7
Daniel d'Anna tat	EBR	А	0.46	7.9	13.3	А	0.58	8.0	16.2
Donald Street at	NBL	А	0.41	8.9	26.1	А	0.49	11.2	33.9
Cummings Avenue	NBT	А	0.15	5.8	13.0	А	0.27	7.0	25.7
Signalized	SBT/R	А	0.28	5.4	20.0	А	0.40	7.5	36.6
	Overall	Α	0.43	7.8	-	Α	0.54	Delay 22.4 8.0 11.2 7.0 7.5 9.2 15.1 2.4 22.6 20.8 9.2 87.4 40.7 55.9 54.1 26.4 56.3 39.2 56.7 48.3 38.0 58.6 43.2 26.2	-
	EBT	А	0.28	8.8	53.2	А	0.51	15.1	104.7
	EBR	А	0.15	2.0	8.4	А	0.28	2.4	12.1
	WBL	А	0.08	5.2	m3.3	А	0.15	22.6	m6.9
	WBT	А	0.36	5.4	56.0	А	0.37	20.8	m70.9
Ogilvie Road at	WBR	А	0.14	0.7	1.3	А	0.17	9.2	m11.9
Cyrville Road Signalized	NBL	D	0.81	77.5	56.6	D	0.83	87.4	#45.3
Signunzeu	NBT	В	0.69	56.7	68.3	А	0.57	40.7	71.1
	SBL	А	0.33	47.3	19.9	В	0.70	55.9	49.3
	SBT/R	А	0.47	43.7	45.2	D	0.84	54.1	105.6
	Overall	Α	0.43	18.8	-	Α	0.60	Delay 22.4 8.0 11.2 7.0 7.5 9.2 15.1 2.4 22.6 20.8 9.2 87.4 40.7 55.9 54.1 26.4 56.3 39.2 56.7 48.3 38.0 58.6 43.2 26.2	-
	EBL	А	0.28	15.0	16.5	С	0.78	56.3	#64.0
	EBT	А	0.39	17.0	52.1	D	0.90	39.2	#116.2
	WBL	А	0.25	13.6	m16.4	С	0.79	56.7	m#52.1
Ogilvie Road at	WBT/R	А	0.57	20.4	m74.0	E	0.91	48.3	m#141.2
Cummings Avenue	NBL	А	0.29	45.8	26.7	А	0.26	38.0	22.9
Signalized	NBT/R	В	0.70	54.4	78.6	D	0.86	58.6	#109.8
	SBL	С	0.73	54.0	#54.8	D	0.81	43.2	#67.5
	SBT/R	А	0.54	36.5	74.9	А	0.52	39.2 9 56.7 1 48.3 5 38.0 5 58.6 1 43.2 2 26.2	79.5
	Overall	Α	0.60	26.9	-	D	0.87	44.5	-

Table 31: 2027 Future Total Intersection Operations – Phase 1

lute ve esti e u	Lana		AM Pe	ak Hour			PM Pe	ak Hour	
Intersection	Lane	LOS	V/C	Delay	Q (95 th)	LOS	V/C	33.3 34.9 4.6 56.0 31.3 4.5 115.5 48.0 162.9 83.9 50.8 10.0 6.2 14.6 23.9 23.2 17.6 22.3	Q (95 th
	EBL	D	0.83	50.5	#98.7	С	0.74	33.3	m54.0
	EBT	А	0.40	31.3	69.3	D	0.86	34.9	m94.0
	EBR	А	0.14	3.6	m5.7	А	0.16	4.6	m2.5
	WBL	А	0.30	20.4	28.4	D	0.86	56.0	#77.0
Ogilvie Road at	WBT	А	0.49	37.1	76.4	А	0.55	31.3	85.8
Aviation Parkway	WBR	А	0.21	2.6	6.5	А	0.31	4.5	15.5
Signalized	NBL	С	0.78	71.0	75.7	E	0.98	115.5	#85.9
	NBT	С	0.79	47.4	98.5	С	0.75	48.0	73.1
	SBL	F	1.05	142.8	#89.3	F	1.11	162.9	#80.6
	SBT	D	0.88	53.2	#99.6	F	1.04	83.9	#116.
	Overall	С	0.74	47.0	-	E	0.93	50.8	-
	EBL	А	0.06	7.8	3.9	А	0.03	10.0	3.0
	EBT	А	0.26	8.5	27.2	А	0.16	6.2	12.7
Cyrville Road at	WBL	А	0.22	14.6	22.5	А	0.14	14.6	17.4
Cummings	WBT	В	0.67	20.4	#112.4	С	0.74	23.9	#149.
Avenue/Labelle	NBL	А	0.02	25.8	3.4	А	0.08	23.2	5.3
Street	NBT	А	0.21	15.3	13.1	А	0.33	17.6	27.7
Signalized	SBL	D	0.84	69.9	#51.3	А	0.25	22.3	17.4
	SBT	А	0.28	24.9	22.8	D	0.81	35.9	#119.
	Overall	В	0.69	23.0	-	С	0.76	25.0	-
	w rate of 1800 v sured in metres				Delay = averag m = metered g		ay in seconds		

Notes: Queue is measured in metres Peak Hour Factor = 1.00

m = metered queu

= volume for the 95^{th} %ile cycle exceeds capacity

During both the AM and PM peak hours, the study area intersections operate similarly to the 2027 future background conditions. Negligible impacts are noted at the intersection of Ogilvie Road at Cummings Avenue and no additional capacity issues have been noted at any study area intersection.

Similar to 2027 future background conditions at the intersection of Ogilvie Road at Aviation Parkway, a shift of one second from northbound through movement to the southbound left movement during the AM peak hour would address the capacity issues during the AM peak hour, a shift of one second from eastbound/westbound phase to northbound left/southbound left turn phase, and one second from eastbound/westbound through movements to northbound/southbound movements during the PM peak hour would reduce the v/c of all movements to be 1.00 or below.

14.2.2 2029 Future Total Intersection Operations – Full Build Out

Figure 30 in Section 13.3.2 illustrates the 2029 future total volumes and Table 32 below summarizes the 2029 future total network intersection operations. The level of service for signalized intersections is based on v/c calculations for individual lane movements and MMLOS Guidelines weighted v/c methodology for the overall intersection, per direction from Transportation Engineering Services. The synchro worksheets have been provided in Appendix O.

1			AM Pe	ak Hour			PM Pe	ak Hour	
Intersection	Lane	LOS	V/C	Delay	Q (95 th)	LOS	V/C	Delay	Q (95 th)
	EBL	А	0.19	21.3	12.8	А	0.29	22.4	17.7
	EBR	А	0.46	7.8	13.5	А	0.58	8.0	16.3
Donald Street at	NBL	А	0.42	9.1	26.9	А	0.51	11.6	35.5
Cummings Avenue	NBT	А	0.16	5.8	13.2	А	0.28	7.1	26.3
Signalized	SBT/R	А	0.29	5.5	20.3	А	0.41	7.6	37.8
	Overall	Α	0.44	7.9	-	Α	0.55	9.3	-
	EBT	А	0.29	9.0	55.0	А	0.52	15.3	107.7
	EBR	А	0.15	2.0	8.5	А	0.28	2.4	12.2
	WBL	А	0.08	4.6	m2.0	А	0.15	4.7	m1.1
	WBT	А	0.37	4.1	20.3	А	0.38	3.9	m11.5
Ogilvie Road at	WBR	А	0.14	0.2	m0.0	А	0.17	0.1	m0.0
Cyrville Road	NBL	D	0.82	78.6	57.7	D	0.85	90.5	#46.8
Signalized	NBT	В	0.69	56.5	68.8	А	0.58	40.9	72.6
	SBL	А	0.33	47.2	19.9	С	0.71	56.7	49.6
	SBT/R	А	0.47	43.7	45.9	D	0.84	54.0	106.2
	Overall	Α	0.44	18.3	-	Α	0.55	21.8	-
	EBL	В	0.65	83.5	#45.1	F	1.04	127.4	#89.9
	EBT	А	0.52	28.8	69.2	F	1.04	87.4	#188.3
	WBL	В	0.62	84.1	m41.7	E	0.99	103.2	m#65.0
Ogilvie Road at	WBT	С	0.76	35.3	m158.3	F	1.07	80.5	m#161.4
Cummings Avenue	NBL	А	0.53	74.2	30.6	В	0.64	83.6	#33.5
Signalized	NBT/R	С	0.78	66.8	85.8	E	0.98	87.0	#145.1
	SBL	D	0.82	83.3	#78.7	F	1.06	121.0	#120.3
	SBT/R	В	0.67	50.1	97.0	В	0.66	39.7	112.6
	Overall	С	0.76	45.7	-	F	1.05	85.3	-
	EBL	D	0.86	62.2	#154.9	С	0.76	11.8	m9.8
	EBT	А	0.41	51.9	90.5	D	0.86	26.4	m125.9
	EBR	А	0.14	12.5	m11.8	А	0.16	3.3	m4.0
	WBL	А	0.30	20.7	28.4	D	0.86	56.7	#77.2
Ogilvie Road at	WBT	А	0.50	37.4	77.0	А	0.56	31.5	86.6
Aviation Parkway	WBR	А	0.21	2.6	6.5	А	0.31	4.5	15.5
Signalized	NBL	С	0.78	71.0	75.7	E	0.98	116.9	#86.3
	NBT	С	0.79	47.3	100.5	С	0.77	49.1	74.9
	SBL	F	1.05	142.8	#89.3	F	1.11	162.9	#80.6
	SBT	D	0.89	54.0	#104.6	F	1.06	89.3	#120.1
	Overall	С	0.75	51.7	-	E	0.93	48.3	-
	EBL	А	0.06	7.8	3.9	А	0.03	10.5	3.0
	EBT	А	0.27	9.0	28.3	А	0.17	6.7	12.8
Cyrville Road at	WBL	А	0.23	15.0	22.8	А	0.15	15.7	18.1
Cummings	WBT	С	0.71	23.6	#128.9	D	0.82	31.9	#166.0
Avenue/Labelle	NBL	А	0.02	26.6	3.4	А	0.07	23.5	5.3
Street	NBT	А	0.24	15.4	14.1	А	0.34	18.9	31.1
Signalized	SBL	Е	0.93	90.0	#56.0	А	0.25	22.6	18.1
	SBT	А	0.32	30.0	27.1	D	0.81	36.4	#128.6
	Overall	С	0.73	27.3	-	D	0.81	28.6	-

Table 32: 2029 Future Total Intersection Operations – Full Build Out

Notes:

Saturation flow rate of 1800 veh/h/lane

Queue is measured in metres Peak Hour Factor = 1.00 Delay = average vehicle delay in seconds

m = metered queue # = volume for the 95th %ile cycle exceeds capacity

0

During both the AM and PM peak hours, the study area intersections operate similarly to the 2029 future background conditions. The eastbound let movement at the Ogilvie Road at Cummings Avenue intersection during PM peak hour is anticipated to be over theoretical capacity as it was approaching its theoretical capacity in the background conditions based on the planned intersection changes and due to the net increase of 11 vehicles from the site pushing it over capacity. The increase in these 11 vehicles is on the order of a daily variation in traffic, and it is recommended that the City review the signal timing at this intersection as part of the Cummings Cycling project.

Similar to 2029 future background conditions at the intersection of Ogilvie Road at Aviation Parkway, a shift of one second from the northbound through movement to the southbound left movement during the AM peak hour, a shift of one second from the eastbound/westbound through movements to the northbound left/southbound left turn movements, and two seconds from the eastbound/westbound through movements to the northbound through movements during the PM peak hour would reduce the v/c of all movements to be 1.00 or below.

14.2.3 2034 Future Total Intersection Operations

Figure 31 in Section 13.3.3 illustrates the 2034 future total volumes and Table 33 below summarizes the 2034 future total access intersection operations. The level of service for signalized intersections is based on v/c calculations for individual lane movements and MMLOS Guidelines weighted v/c methodology for the overall intersection, per direction from Transportation Engineering Services. The synchro worksheets have been provided in Appendix P.

Internetion	Lana		AM Pea	ak Hour			PM Pe	ak Hour	
Intersection	Lane	LOS	V/C	Delay	Q (95 th)	LOS	V/C	Delay Delay 22.4 8.0 12.4 7.2 7.7 9.5 15.8 2.4 4.9 4.0 0.1 101.2 41.3 59.0 54.3 22.6	Q (95 th)
	EBL	А	0.19	21.2	12.8	А	0.29	22.4	17.7
Develd Chuest et	EBR	А	0.46	7.8	13.5	А	0.59	8.0	16.4
Donald Street at	NBL	А	0.43	9.4	28.0	А	0.54	12.4	39.0
Cummings Avenue Signalized	NBT	А	0.16	5.9	13.7	А	0.29	7.2	27.9
Signunzeu	SBT/R	А	0.30	5.7	21.6	А	0.42	7.7	39.2
	Overall	Α	0.44	8.0	-	Α	0.57	9.5	-
	EBT	А	0.30	9.3	57.9	А	0.54	15.8	111.3
	EBR	А	0.16	2.0	8.6	А	0.29	2.4	12.3
	WBL	А	0.08	4.6	m1.8	А	0.16	4.9	m1.0
Osibile Deed at Consille	WBT	А	0.38	4.0	20.4	А	0.39	4.0	m11.6
Ogilvie Road at Cyrville	WBR	А	0.14	0.2	m0.0	А	0.17	0.1	m0.0
Road Signalized	NBL	D	0.84	80.8	59.3	D	0.90	101.2	#50.5
Signulized	NBT	В	0.69	56.2	70.4	А	0.60	41.3	76.2
	SBL	А	0.33	46.8	19.9	С	0.73	59.0	50.4
	SBT/R	А	0.48	44.1	47.8	D	0.85	54.3	108.7
	Overall	Α	0.45	18.4	-	Α	0.57	22.6	-

Table 33: 2034 Future Total Intersection Operations

	lare		AM Pe	ak Hour			PM Pe	ak Hour	
Intersection	Lane	LOS	V/C	Delay	Q (95 th)	LOS	V/C	Delay 137.7 98.4 115.5 72.8 83.6 109.5 131.6 41.3 91.0 14.4 26.8 3.4 60.2 32.0 4.6 116.9 51.8 162.9 107.3 52.4 10.6 6.8 16.2 40.0 23.6 20.9 22.1 36.3 32.0	Q (95 th)
	EBL	В	0.66	84.9	#44.3	F	1.07	137.7	#91.5
	EBT	А	0.55	30.2	75.0	F	1.07	98.4	#196.7
	WBL	В	0.64	83.1	m43.1	F	1.06	115.5	m#75.2
Ogilvie Road at	WBT	С	0.78	35.6	m162.0	F	1.04	72.8	m#156.
Cummings Avenue	NBL	А	0.53	74.2	30.6	В	0.64	83.6	#33.5
Signalized	NBT/R	D	0.81	68.7	90.3	F	1.07	109.5	#165.0
	SBL	D	0.82	83.3	#78.7	F	1.09	131.6	#122.4
	SBT/R	В	0.69	50.8	101.4	В	0.68	41.3	117.7
	Overall	С	0.78	46.4	-	F	1.07	91.0	-
	EBL	E	0.95	77.2	#121.4	D	0.81	14.4	m10.5
	EBT	А	0.45	53.8	93.0	D	0.87	26.8	m121.4
	EBR	А	0.14	12.8	m12.6	А	0.16	3.4	m3.6
	WBL	А	0.32	21.5	28.4	D 0.88 60.2	60.2	#79.3	
Osilvia Deed at Aviation	WBT	А	0.53	38.9	78.0	А	0.57	7 137.7 7 98.4 6 115.5 4 72.8 4 83.6 7 109.5 9 131.6 8 41.3 7 91.0 1 14.4 7 26.8 6 3.4 8 60.2 7 32.0 2 4.6 8 116.9 1 51.8 1 162.9 1 107.3 6 52.4 4 10.6 8 6.8 7 16.2 0 40.0 7 23.6 6 20.9 4 22.1 1 36.3 5 32.0	89.3
Ogilvie Road at Aviation	WBR	А	0.22	2.7	6.5	А	0.32		15.5
Parkway Signalized	NBL	С	0.78	71.0	75.7	E	0.98	116.9	#86.3
	NBT	С	0.78	45.8	105.6	D	0.81	51.8	#80.0
	SBL	F	1.05	142.8	#89.3	F	1.11	162.9	#80.6
	SBT	D	0.89	53.2	#117.7	F	1.11	Delay 137.7 98.4 115.5 72.8 83.6 109.5 131.6 41.3 91.0 14.4 26.8 3.4 60.2 32.0 4.6 116.9 51.8 162.9 107.3 52.4 10.6 6.8 16.2 40.0 23.6 20.9 22.1 36.3 32.0 ds	#130.1
	Overall	С	0.78	53.4	-	E	0.96	137.7 98.4 115.5 72.8 83.6 109.5 131.6 41.3 91.0 14.4 26.8 3.4 60.2 32.0 4.6 116.9 51.8 162.9 107.3 52.4 10.6 6.8 16.2 40.0 23.6 20.9 22.1 36.3 32.0	-
	EBL	А	0.07	7.9	3.9	А	0.04	10.6	3.0
	EBT	А	0.29	9.3	29.7	А	0.18	6.8	13.0
Currellia Decedent	WBL	А	0.23	15.2	22.9	А	0.17	16.2	19.1
Cyrville Road at	WBT	С	0.73	24.5	#134.3	D	0.90	40.0	#178.6
Cummings Avenue/Labelle Street	NBL	А	0.02	26.6	3.4	А	0.07	23.6	5.4
Signalized	NBT	А	0.31	15.1	17.0	А	0.36	20.9	37.9
Signulized	SBL	E	0.97	100.9	#59.3	А	0.24	22.1	18.2
	SBT	А	0.35	30.4	29.5	D	0.81		#142.9
	Overall	С	0.76	28.9	-	D	0.85	32.0	-
lotes: Queue is me	low rate of 180 easured in met factor = 1.00		9		m = metere	d queue	delay in secor 6ile cycle exce		

During both the AM and PM peak hours, the study area intersection operates similar to 2034 future background conditions. No additional capacity issues have been noted.

Similar to 2032 future background conditions at the intersection of Ogilvie Road at Aviation Parkway, a shift of one second from the northbound through movement to the southbound left movement during the AM peak hour, a shift of one second from the eastbound/westbound through movements to the northbound left/southbound left turn movements, and three seconds from the eastbound/westbound/westbound through movements to the northbound through movements during the PM peak hour would reduce the v/c of all movements to be 1.00 or below at this intersection.

14.2.4 Future 2034 Horizon Without Cummings Cycling – Sensitivity Analysis

Given the expected impacts of the left-turn lanes associated with cycling improvements at the intersection of Ogilvie Road at Cummings Avenue, the operations at this intersection for the 2034 future horizons will be evaluated to determine the impacts specifically associated with site traffic, absent these improvements. The intersection operations for this sensitivity analysis for the 2034 future background horizon and 2034 future total horizon are summarized in Table 34. The level of service for signalized intersections is based on v/c calculations

for individual lane movements and MMLOS Guidelines weighted v/c methodology for the overall intersection, per direction from Transportation Engineering Services. The synchro worksheets have been provided in Appendix Q.

Intersection	Lana	AM Peak Hour				PM Peak Hour			
	Lane	LOS	V/C	Delay	Q (95 th)	LOS	V/C	Delay	Q (95 th)
	EBL	А	0.25	13.9	14.1	С	0.80	60.3	#58.8
	EBT	А	0.41	17.6	57.6	E	0.98	51.5	#150.8
Future Background	WBL	А	0.28	13.7	m17.2	D	0.90	70.4	m#55.9
2034	WBT	А	0.58	20.8	m77.4	Е	0.95	53.9	m#141.4
Osilvia Deed at	NBL	А	0.29	45.7	26.7	А	0.25	37.0	23.0
Ogilvie Road at Cummings Avenue	NBT/R	С	0.74	56.9	83.5	Е	0.93	68.2	#138.6
Signalized	SBL	С	0.73	54.4	#54.0	D	0.86	48.6	#81.0
Signunzeu	SBT/R	А	0.53	37.5	75.7	А	0.52	25.8	84.9
	Overall	В	0.61	27.4	-	Е	0.94	52.3	-
Future Total	EBL	А	0.33	17.4	20.9	D	0.84	65.4	#66.3
	EBT	А	0.41	17.8	59.0	E	0.98	52.9	#152.6
	WBL	А	0.28	13.6	m17.2	D	0.90	70.1	m#56.0
	WBT	В	0.61	21.7	m77.5	Е	0.96	55.4	m#141.7
Ogilvie Road at	NBL	А	0.31	46.5	27.0	А	0.25	37.2	23.0
Cummings Avenue 2034 Signalized	NBT/R	С	0.74	57.3	84.8	Е	0.93	68.5	#139.6
	SBL	С	0.78	59.3	#61.1	D	0.84	45.8	#76.9
	SBT/R	В	0.61	39.6	88.2	А	0.55	26.4	90.3
	Overall	В	0.64	28.7	-	Е	0.94	53.2	-
	ration flow rate of use is measured in		lane			verage vehicl red queue	e delay in seco	onds	

Table 34: 2034 Future Backaround Intersection Operations – Without Cumminas Cyclina Proiect

Peak Hour Factor = 1.00

= volume for the 95th %ile cycle exceeds capacity

For both scenarios, the peak hours are forecasted to operate similarly to the 2027 future background conditions, indicating minimal impact from the subject site traffic on the intersection operations.

During the AM peak hour with the addition of site traffic, the eastbound left movement and southbound through/right movements have the greatest increase in v/c, 0.08 v/c each. The LOS change will be a shift from LOS A to B for the westbound through and southbound through/right movements.

During the PM peak hour with the addition of site traffic, an increase of 0.04 v/c on the eastbound left movement and an increase of 0.03 v/c on the southbound right movement are noted. The only change in the LOS would be the eastbound left movement, due to the background being at 0.80 v/c (LOS C) and changing to 0.84 v/c (LOS D).

Overall, the site traffic will have negligible impacts to the intersection and is not contributing to operational issues from future City intersection modifications.

14.2.5 Intersection MMLOS

Table 35 summarizes the MMLOS analysis for the study area intersections. Given that Cummings Cycling (Donald to Cyrville) project is anticipated to be completed by 2029, it will be considered in future conditions. The intersection analysis for Donald Street at Cummings Avenue is based on the lane use of "General Urban Area", and other study area intersections are based on the policy area of "within 600 metres of a rapid transit station". Where intersection conditions are the same in the existing and future conditions, they will be presented in one row. The MMLOS worksheets has been provided in Appendix H.

Intersection		Pedestrian LOS		Bicycle LOS		Transit LOS		Truck LOS		Auto LOS	
		PLOS	Target	BLOS	Target	TLOS	Target	TrLOS	Target	ALOS	Target
Donald St at Cummings Ave	Ex.	F	С	E	D	n/a	n/a	E	D	А	D
	Fut.	F		А				E		А	
Ogilvie Rd at Cyrville Rd	Ex./Fut.	F	А	F	А	D	D	D	D	В	E
Ogilvie Rd at	Ex.	F	•	F	۸	F	D	E	D	F	Е
Cummings Ave	Fut.	E	A	А	A	F		U	E		F
Ogilvie Rd at Aviation Pkwy	Ex./Fut.	F	А	F	А	E	D	В	D	F/E	E
Cyrville Rd at Cummings Ave/Labelle St	Ex.	F	А	E	A	n/a	n/a	E	D	D	E
	Fut.	E		А				E		E	

Table 35: Study Area Intersection MMLOS Analysis

The pedestrian MMLOS targets are not met at all study area intersections and will not be in the future. As is typical for arterial roads, the crossing distance does not permit the targets to be met. Similarly, the crossing distance on the west leg of the Donald Street at Cummings Avenue intersection does not permit targets to be met in the future. To meet pedestrian LOS targets, the maximum crossing distance on all pedestrian crossings would need to be reduced to three lane-widths at the intersection of Donald Street at Cummings Avenue and two lane-widths at other study area intersections.

The bicycle MMLOS targets are not met at all study area intersections in the existing conditions. The intersections along Cummings Avenue will meet bicycle MMLOS targets once the Cummings Cycling (Donald to Cyrville) project is completed. To meet the bicycle MMLOS targets at the intersection of Ogilvie Road at Cyrville Road and Ogilvie Road at Aviation Parkway, the left-turn configurations would need to be two-stage or include turn boxes.

The transit LOS targets will not be met at the intersections of Ogilvie Road at Cummings Avenue and at Aviation Parkway, and the delay would need to be reduced to below 30 seconds for the eastbound through and westbound through transit movements at the intersection.

The truck MMLOS targets are not met at the intersections along Cummings Avenue. To meet the truck MMLOS targets at the intersections, the larger than 15 metres effective corner radius would be required.

Given the City is upgrading the Cummings Avenue corridor, it is understood that the forthcoming designs will meet its preferred balance of MMLOS trade-offs for the study area. No mitigations or modifications are required to support the subject development.

14.2.6 Recommended Design Elements

Consistent with the draft functional design from the Cummings Cycling project, the access is recommended to comply with City Standard SC36.1 giving the future cycle tracks and sidewalks across the access.

As noted in both the background and future total horizons, signal timing adjustments are recommended at the intersection of Ogilvie Road at Aviation Parkway, and it is recommended that the City review the signal timing the intersection of Ogilvie Road at Cummings Avenue as part of the Cummings Cycling project.

15 Summary of Improvements Indicated and Modifications Options

The following summarizes the analysis and results presented in this TIA report:

Proposed Site and Screening

- The existing site is within the Cyrville TOD Plan area and design priority area
- The proposed development includes two 30-storey mixed-use buildings with potential for mixed-use podia with a total of 846 residential units, 8,327 ft² of ground-floor retail space, 483 vehicle parking spaces, and 846 bicycle parking spaces
- The project will be constructed in two phases, with Phase 1, located at 1137 Ogilvie Road and 1111 Cummings Avenue, featuring a 30-storey mixed-use building with 436 residential units, 5,846 ft² of retail space, 231 vehicle parking spaces, and 436 bicycle parking spaces, expected to be completed by 2027. Phase 2, located at 1151 Ogilvie Road, will complete the development by 2029
- The total ground floor amenity/commercial allocation has been assumed to be entirely commercial for the purpose of a conservative trip generation
- The proposed access configuration comprises a two-way full-movement access at the north end of the Cummings Avenue frontage
- The trip generation, location, and safety triggers were met for the TIA Screening
- This study has been prepared to support a site plan application for the first phase of development and a zoning by-law amendment application for the overall site

Existing Conditions

- Sidewalks are provided along both sides of Cummings Avenue north of Ogilvie Road, Ogilvie Road, Cyrville Road south of Ogilvie Road, Donald Street, and Labelle Street within the study area
- Sidewalks are also provided along the east side of Cyrville Road north of Ogilvie Road, of Cummings Avenue south of Ogilvie Road, and along the 1173 Cyrville Road development boundary street of Cummings Avenue
- Bike lanes are present along Ogilvie Road, Cyrville Road south of Ogilvie Road, and Donald Street
- A multi-use path (MUP) is present along the west side of Aviation Parkway and on the east side of Cyrville Road separated by a concrete rumble strip
- During both the AM and PM peak hours, the study area intersections generally operate satisfactorily, with the exception of the intersections of Ogilvie Road at Cummings Avenue and Ogilvie Road at Aviation Parkway which may experience capacity issues during the PM peak hour
- Three turning movement collisions involving cyclists were noted at the intersection of Ogilvie Road at Cummings Avenue between 2018 and 2022 and conditions are expected to be improved with the fully-protected intersection upgrades planned for implementation starting in 2027
- Three collisions involving pedestrians were noted at the intersection of Donald Street at Cummings between 2018 and 2022, and this intersection is included in the planned Cummings Cycling (Donald to Cyrville) active transportation infrastructure project

Planned Conditions

- Cycling facilities on Cummings Avenue from Donald Street to Cyrville Road, missing links on Donald Street at Elaine Drive, and signage and pavement marking for bike lanes, where feasible, on Ogilvie Road are identified in the 2023 TMP Part 1
- The construction of the Cummings Cycling project including the protected intersection of Ogilvie Road at Cummings Avenue is anticipated to be completed by 2029
- The Coventry Road widening and St-Laurent Boulevard Transit Priority Corridor are assumed to occur beyond the study horizon years

Development Generated Travel Demand

- The proposed development Phase 1 is forecasted produce 199 two-way people trips during the AM peak hour and 215 two-way people trips during the PM peak hour
- Of the forecasted Phase 1 people trips, 47 two-way trips will be vehicle trips during the AM peak hour and 55 two-way trips will be vehicle trips during the PM peak hour
- Of the forecasted Phase 1 people trips, 105 two-way transit trips during the AM peak hour and 86 twoway transit trips during the PM peak hour were noted
- The proposed development full build out is forecasted produce 377 two-way people trips during the AM peak hour and 402 two-way people trips during the PM peak hour
- Of the forecasted full build out people trips, 88 two-way trips will be vehicle trips during the AM peak hour and 102 two-way trips will be vehicle trips during the PM peak hour
- Of the forecasted full build out people trips, 201 two-way transit trips during the AM peak hour and 163 two-way transit trips during the PM peak hour were noted
- The proposed redevelopment is anticipated to generate 47 new additional AM peak hour vehicles and eight fewer PM peak hour vehicles from the existing use for Phase 1 and 88 new additional AM peak hour vehicles and 18 new additional PM peak hour vehicles from the existing use for full build out beyond the existing use
- Of the forecasted trips, 15% are anticipated to travel north and the east, 20% to the south, and 50% to the west

Development Design

- The proposed development is a two residential buildings with the possibility of ground floor retail
- Vehicle parking located in three parking levels below grade and with a drop-off loop located on the surface
- A total of 24 bicycle parking spaces are located external to the building and the remainder of bicycle parking spaces are located in the parking levels below grade
- Existing sidewalks are present along Cummings Avenue and Ogilvie Road, and hard surface connections to these facilities from the building entrances are proposed
- Vehicle access is provided via a two-way full-movement access on Cummings Avenue
- The access connects to the underground parking ramp, a drop-off loop, and the loading areas
- Garbage collection will occur in the depressed unit-paver loading area, and emergency services can access the site drive aisles

Parking

- The site is currently proposed to include a total of 483 vehicle parking spaces for the overall site with 231 spaces within Phase 1 and 252 spaces within Phase 2
- The site provides a total of 846 bicycle parking spaces for the overall site and 436 as part of Phase 1, including 24 spaces external to the building for the overall site and 16 will be within surface racks for Phase 1
- The proposed parking meets the minimum vehicle and bicycle parking and maximum vehicle parking provisions from the Zoning By-Law for both the overall site and Phase 1
- Given the site is within 600 metres of Cyrville Station and is located in the Cyrville Hub and Design Priority Area and on the Ogilvie Road Mainstreet Corridor, sites across the street have no minimum parking

provision, the draft zoning by-law does not require a minimum parking rate, the proponent is pursuing a minimum parking ratio of 0.3 spaces per unit for the site through the rezoning

Boundary Street Design

- Ogilvie Road and Cummings Avenue do not meet the pedestrian LOS targets
- To meet theoretical PLOS targets, the operating speeds on both roadways would need to be reduced to 30 km/h
- Ogilvie Road and Cummings Avenue do not meet the bicycle LOS target in the existing conditions, but both boundary streets will meet the bicycle LOS target in the future conditions once the Cummings Cycling (Donald to Cyrville) project is completed
- Given the roadway speeds are not changing, no changes are proposed to the boundary streets as part of this study

TDM

- Supportive TDM measures recommended to be included within the proposed development include:
 - Display local area maps with walking and cycling routes, and transit route information and schedules at major entrances
 - Provide a multimodal travel option information package to new residents
 - Contract with providers to install carshare spaces
 - Inclusion of a 1-year Presto card for first time apartment rental, with a set time frame for this offer (e.g. 6-months) from the initial opening of the site
 - Unbundle parking cost from purchase/rental costs

Background Conditions

- Growth rates derived from the 2011 and 2031 TRANS models have been peak-directionally applied to mainline volumes and major turning movements throughout the study area along with explicit background development volumes
- The study area intersections at the 2027 future background horizon are forecast to operate similarly to the existing conditions with incremental improvements resulting from the peak hour factor increasing to 1.00 for modeled conditions, and the intersection of Ogilvie Road at Aviation Parkway is anticipated to have capacity issues during both peak hours, which are anticipated to be mitigable by signal timing changes
- The study area intersections at the 2029 future background horizon are forecast to operate similarly the 2027 background conditions with the exception of the intersection of Ogilvie Road at Cummings Avenue, which is anticipated to be subject to a number of capacity issues during the PM peak hour on account of the recommended changes associated with the Cumming Cycling project, and it is recommended that the City review signal timing as part of this project
- The study area intersections at the 2029 future background horizon are forecast to operate similarly the 2027 background conditions
- The City has elected to improve cycling conditions at the intersection of Ogilvie Road at Cummings Avenue, which necessarily will trade-off with auto capacity and the resultant reduction in capacity should not limit area development
- The subject development is transit-oriented and is associated with a low increase in volumes above the existing uses, and thus no rationalization for the background traffic demands or development mode share selection is required

Transit

- The proposed development is anticipated to generate ridership increases on the order of a fifth of a standard bus to three fifths of a standard bus in a peak hour per peak direction at Phase 1, and on the order of a quarter of a standard bus to one and one quarter standard buses per peak hour per peak direction at full build out, and these demands are largely expected to be accommodated by LRT
- Examining the study area intersection delays, negligible impacts are noted on the transit movements and no decrease in transit LOS at the study area intersections are noted as a result of forecasted site-generated traffic

Intersection Design

- The site access meets the Private Approach By-Law provisions, and its curb return is noted to be approximately one metre the extension of the adjacent property line at the roadway edge, however this does not impact the existing site or constrain future development
- The throat length functionally meets the TAC suggested minimum values under the recommended configuration
- The site access will have a stop-control on the minor approach
- The site accesses are anticipated to operate well, however gaps in southbound traffic during the heaviest periods may be limited to ends of each southbound phase and to courtesy gaps
- The site accesses are recommended to comply with City Standard SC36.1 and it is recommended that the proposed site access configuration be approved
- The study area intersections at all future total horizons operate similarly to their corresponding future background horizons, with the 11 eastbound left turns at the 2029 future total horizon pushing the movement over its theoretical capacity, however it is noted this capacity was mostly consumed by the fully protected left-turn phases
- The site traffic operational impacts are considered negligible overall and not contributing to operational issues from future City intersection modifications
- Network intersection pedestrian LOS targets will not be met at any intersection due to crossing distances of over two lane widths
- Cycling LOS targets will be met in the future conditions along Cummings Avenue due to the Cummings Cycling upgrades
- Transit LOS and auto LOS will not be met at the intersections of Ogilvie Road at Cummings Avenue, and Truck LOS will only be met at the intersections of Ogilvie Road at Cyrville Road and Ogilvie Road at Aviation Parkway
- Given the City is upgrading the Cummings Avenue corridor, it is understood that the forthcoming designs will meet its preferred balance of MMLOS trade-offs for the study area and no mitigations or modifications are required to support the subject development

16 Conclusion

It is recommended that, from a transportation perspective, the proposed development applications proceed.

Prepared By:

sh

John Kingsley Transportation Engineering Intern

Reviewed By:

Andrew Harte, P.Eng. Senior Transportation Engineer

Appendix A

TIA Screening Form and PM Certification Form

City of Ottawa 2023 Revisions to 2017 TIA Guidelines	Date:	20-Feb-25
Step 1 - Screening Form	Project Number:	2023-139
	Project Reference:	1137 Ogilvie

1.1 Description of Proposed Development					
Municipal Address	1137-1151 Ogilvie Road, 1111 Cummings Avenue				
Description of Location	Northeast quadrant of Ogilvie Rd @ Cummings Ave				
	intersection				
Land Use Classification	Local Commercial (LC6)				
Development Size	825 apartment units				
Accesses	One full moves onto Cummings Avenue				
Phase of Development	Two phases				
Buildout Year	2029				
TIA Requirement	Full TIA Required				

1.2 Trip Generation Trigger					
Land Use Type	Multi-Family (High-Rise)				
Development Size	825 Units				
Trip Generation Trigger	Yes				

1.3 Location Triggers		
Does the development propose a new driveway to a boundary street that is designated as part of the Transit Priority Network, Rapid Transit network or Cross-Town Bikeways?	No	
Is the development in a Hub, a Protected Major Transit Station Area (PMTSA), or a Design Priority Area (DPA)?	Yes	Cyrville TOD
Location Trigger	Yes	

1.4. Safety Triggers		
Are posted speed limits on a boundary street 80 km/hr or greater?	No	
Are there any horizontal/vertical curvatures on a boundary street limits	No	
sight lines at a proposed driveway?		
Is the proposed driveway within the area of influence of an adjacent traffic		
signal or roundabout (i.e. within 300 m of intersection in rural conditions,	Yes	
or within 150 m of intersection in urban/ suburban conditions)?		
Is the proposed driveway within auxiliary lanes of an intersection?	Yes	
Does the proposed driveway make use of an existing median break that	Yes	
serves an existing site?	105	
Is there is a documented history of traffic operations or safety concerns on	Maria	
the boundary streets within 500 m of the development?	Yes	Collisions at the intersection of
		Ogilvie Rd at Cummings Ave
Does the development include a drive-thru facility?	No	
Safety Trigger	Yes	

TIA Plan Reports

On April 14, 2022, the Province's Bill 109 received Royal Assent providing legislative direction to implement the More Homes for Everyone Act, 2022 aiming to increase the supply of a range of housing options to make housing more affordable. Revisions have been made to the TIA guidelines to comply with Bill 109 and streamline the process for applicants and staff.

Individuals submitting TIA reports will be responsible for all aspects of development-related transportation assessment and reporting, and undertaking such work, in accordance and compliance with the City of Ottawa's Official Plan, the Transportation Master Plan and the Transportation Impact Assessment (2017) Guidelines.

By submitting the attached TIA report (and any associated documents) and signing this document, the individual acknowledges that they meet the four criteria listed below.

CERTIFICATION

I have reviewed and have a sound understanding of the objectives, needs and requirements of the City of Ottawa's Official Plan, Transportation Master Plan and the Transportation Impact Assessment (2017) Guidelines; (Update effective July 2023)

I have a sound knowledge of industry standard practice with respect to the preparation of transportation impact assessment reports, including multi modal level of service review;

I have substantial experience (more than 5 years) in undertaking and delivering transportation impact studies (analysis, reporting and geometric design) with strong background knowledge in transportation planning, engineering or traffic operations; and

I am either a licensed or registered¹ professional in good standing, whose field of expertise

is either transportation engineering

or transportation planning.

¹ License of registration body that oversees the profession is required to have a code of conduct and ethics guidelines that will ensure appropriate conduct and representation for transportation planning and/or transportation engineering works.

City Of Ottawa Planning, Real Estate and Economic Development 110 Laurier Avenue West, 4th fl. Ottawa, ON K1P 1J1 Tel. : 613-580-2424 Fax: 613-560-6006

_{Dated at} Ottawa	_ this <u>17</u>	_{day of} August	, <u>20 23 _</u> .
(City)			

Name : Andrew Harte

Professional title: Senior Transportation Engineer / Vice-President Ottawa

Signature of individual certifier that s/he/they meet the above criteria

Office Con	tact Information (Please Print)
Address:	6 Plaza Court
City / Posta	I Code: Ottawa, K2H 7W1
Telephone ,	/ Extension: 613-697-3797
Email Addre	andrew.harte@cghtransportation.com

Stamp

Revision Date: June 2023

Turning Movement Counts

Project #23-352 - CGH Transportation

Intersection Count Report

Intersection:	Ogilvie Rd & Cummings Ave
Municipality:	Ottawa
Count Date:	Tuesday, Oct 31, 2023
Site Code:	2335200001
Count Categories:	Cars, Trucks, Bicycles, Pedestrians
Count Period:	07:00-10:00, 11:30-13:30, 15:00-18:00
Weather:	Clear
Comments:	

Traffic Count Map

Intersection:	Ogilvie Rd & Cummings Ave
Site Code:	2335200001
Municipality:	Ottawa
Count Date:	Oct 31, 2023

Traffic Count Summary

Ogilvie Rd & Cummings Ave Ottawa Oct 31, 2023

		North	Appr	oach T	otals			South	Appr	oach T	otals		
		Include	s Cars, 1	rucks, B	icycles			Include	s Cars, 1	Frucks, B	icycles		
Hour	Left	Thru	Right	U-Turn	Total	Peds	Left	Thru	Right	U-Turn	Total	Peds	Tota
07:00 - 08:00	129	96	105	0	330	7	17	78	51	0	146	6	476
08:00 - 09:00	167	109	101	0	377	27	17	124	77	0	218	8	595
09:00 - 10:00	191	111	120	0	422	13	30	112	84	0	226	9	648
					В	REAK							
11:30 - 12:00	84	76	40	0	200	5	20	79	66	0	165	3	365
12:00 - 13:00	236	145	93	0	474	13	46	149	144	0	339	20	813
13:00 - 13:30	104	56	31	0	191	5	17	53	70	0	140	4	331
					В	REAK							
15:00 - 16:00	278	168	119	0	565	10	54	195	173	0	422	15	987
16:00 - 17:00	273	192	137	0	602	38	35	204	202	0	441	12	1043
17:00 - 18:00	247	144	77	0	468	12	52	195	139	0	386	19	854
GRAND TOTAL	1709	1097	823	0	3629	130	288	1189	1006	0	2483	96	6112

Ontario Traffic Inc. Traffic Monitoring • Services & Products

Traffic Count Summary

 Intersection:
 Oglivie Rd & Cummings Ave

 Site Code:
 2335200001

 Municipality:
 Ottawa

 Count Date:
 Oct 31, 2023

Ogilvie Rd - Traffic Summary West Approach Totals East Approach Totals Includes Cars, Trucks, Bicycles Includes Cars, Trucks, Bicycles Hour Left Thru Right U-Turn Total Peds Left Thru Right U-Turn Total Peds Total 07:00 - 08:00 0 1359 08:00 - 09:00 09:00 - 10:00 78 617 81 517 4 618 BREAK 11:30 - 12:00 64 304 12:00 - 13:00 114 630 61 277 13:00 - 13:30 BREAK 99 736 6 1090 116 915 12 1072 15:00 - 16:00 4 1173 11 1229 16:00 - 17:00 94 561 5 1127 17:00 - 18:00 839 5543 1546 24 7952 263 756 5887 175 49 6867 79 14819 **GRAND TOTAL**

 Intersection:
 Oglivie Rd & Cummings Ave

 Site Code:
 2335200001

 Municipality:
 Ottawa

 Count Date:
 Oct 31, 2023

			Cars				Т	rucks				Bi	cycles			
Start Time	•	1	-	J	Total	•	1	-	1	Total	•	1	-	1	Total	Total Peds
07:00	28	22	15	0	65	1	0	0	0	1	0	0	0	0	0	0
07:15	20	24	25	0	69	1	0	0	0	1	0	0	0	0	0	1
07:30	37	19	28	0	84	2	1	0	0	3	1	0	0	0	1	3
07:45	36	30	37	0	103	2	0	0	0	2	1	0	0	0	1	3
08:00	32	25	24	0	81	1	0	0	0	1	0	0	0	0	0	
08:15	47	27	26	0	100	1	1	0	0	2	0	1	0	0	1	10
08:30	42	24	28	0	94	0	0	1	0	1	1	0	0	0	1	7
08:45	40	31	22	0	93	3	0	0	0	3	0	0	0	0	0	2
09:00 09:15	59 51	25 28	32 26	0	116 105	1	1	1	0	3	1	0	1	0	2	3
09:15	36	26	36	0	96	1	1	1	0	3	1	0	0	0	1	3
09:30	39	31	23	0	93	0	0	0	0	0	0	0	0	0	0	5
SUBTOTAL	467	310	322	0	1099	15	5	3	0	23	5	1	1	0	7	47

Traffic Count Data

 Intersection:
 Oglvie Rd & Cummings Ave

 Site Code:
 2335200001

 Municipality:
 Ottawa

 Count Date:
 Oct 31, 2023

								th Ap								
			Cars				T	rucks				Bi	cycles			
tart Time	-	1		1	Total	-	1	-	ŋ	Total	-	1		1	Total	Total Peds
11:30	35	41	17	0	93	4	0	2	0	6	0	0	0	0	0	
11:45	43	35	20	0	98	0	0	1	0	1	2	0	0	0	2	
12:00	59	46	18	0	123	2	1	0	0	3	0	0	0	0	0	
12:15	64	27	24	0	115	0	1	0	0	1	0	0	0	0	0	
12:30	50	37	27	0	114	0	2	0	0	2	0	0	0	0	0	
12:45	61	31	22	0	114	0	0	2	0	2	0	0	0	0	0	
13:00	50 54	22 32	11 19	0	83 105	0	1	0	0	2	0	0	0	0	0	
13:15 SUBTOTAL	416	271	158	0	845	6	6	6	0	18	2	0	0	0	2	2

 Intersection:
 Oglivie Rd & Cummings Ave

 Site Code:
 2335200001

 Municipality:
 Ottawa

 Count Date:
 Oct 31, 2023

			Cars	-				rucks	-			DI	cycles	-		
tart Time	- 🕇			ŋ	Total	•	1		ŋ	Total	•	1		ŋ	Total	Total Peds
15:00	60	41	32	0	133	1	0	2	0	3	0	0	0	0	0	3
15:15	75	35	31	0	141	0	2	2	0	4	0	0	0	0	0	2
15:30	70	36	26	0	132	2	0	0	0	2	0	0	0	0	0	0
15:45	68	54	26	0	148	2	0	0	0	2	0	0	0	0	0	5
16:00	60	48	32	0	140	3	0	0	0	3	0	0	0	0	0	4
16:15 16:30	76 54	48 46	35 32	0	159 132	1	0	0	0	3	0	0	0	0	0	20
16:30	54	40	32	0	162	1	0	0	0	1	0	0	0	0	0	7
10:45	78	40	23	0	102	1	0	0	0	1	0	0	0	0	0	4
17:15	64	33	25	0	122	1	0	0	0	1	0	0	0	0	0	
17:30	49	42	17	0	108	0	0	1	0	1	0	0	0	0	0	0
17:45	54	29	11	0	94	0	0	0	0	0	0	0	0	0	0	2
SUBTOTAL	785	500	327	0	1612	13	3	6	0	22	0	1	0	0	1	60
	105	500	521		1012	15	5	0								
GRAND TOTAL	1668	1081	807	0	3556	34	14	15	0	63	7	2	1	0	10	130

Traffic Count Data

 Intersection:
 Oglivie Rd & Cummings Ave

 Site Code:
 2335200001

 Municipality:
 Ottawa

 Count Date:
 Oct 31, 2023

Kart Time I	Arr. Interview Image: State Image: Stat				Cars				T	rucks				Bi	cycles			
O7:15 5 21 11 0 37 1 3 2 0 6 0<	O7:15 5 21 11 0 37 1 3 2 0 6 0<	Start Time	-	1	-	1	Total	-	1		1	Total	-	1	•	1	Total	Total Peds
OT30 2 19 6 0 27 0 3 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 <td>OT30 2 19 6 0 27 0 3 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0<td>07:00</td><td>5</td><td>11</td><td>14</td><td>0</td><td>30</td><td>0</td><td>0</td><td>3</td><td>0</td><td>3</td><td>0</td><td>0</td><td>1</td><td>0</td><td>1</td><td>1</td></td>	OT30 2 19 6 0 27 0 3 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 <td>07:00</td> <td>5</td> <td>11</td> <td>14</td> <td>0</td> <td>30</td> <td>0</td> <td>0</td> <td>3</td> <td>0</td> <td>3</td> <td>0</td> <td>0</td> <td>1</td> <td>0</td> <td>1</td> <td>1</td>	07:00	5	11	14	0	30	0	0	3	0	3	0	0	1	0	1	1
07:45 4 20 14 0 38 0<	07:45 4 20 14 0 38 0<	07:15	5	21	11	0		1	3	2	0	6	0	0	0	0	0	3
08:00 1 35 12 0 48 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0<	08:00 1 35 12 0 48 0 1 0 1 0 0 0 0 0 1 08:10 4 24 14 0 42 0																	
08:15 4 24 14 0 42 0<	08:15 4 24 14 0 42 0<																	2
08:30 4 33 26 0 63 0 1 1 0 2 0<	08:30 4 33 26 0 63 0 1 1 0 2 0<																	1
08:45 8 28 22 0 58 0 2 2 0 4 0<	08:45 8 28 22 0 58 0 2 2 0 4 0 0 0 0 0 1 09:00 14 21 22 0 57 0 1 2 0 3 0																	5
09:00 14 21 22 0 57 0 1 2 0 3 0	09:00 14 21 22 0 57 0 1 2 0 3 0																	1
09:15 4 29 22 0 55 0 0 1 0 0 0 0 0 2 09:30 8 32 17 0 57 0 1 4 0 5 0 0 0 0 0 0 2 09:45 3 27 16 0 46 1 1 0 2 0 0 0 0 0 2	09:15 4 29 22 0 55 0 0 1 0 0 0 0 0 22 23 23 27 17 0 57 0 1 4 0 5 0 0 0 0 0 0 0 22 09:30 8 32 17 0 57 0 1 4 0 5 0 0 0 0 2 2 0 0 0 0 2 2 0 0 0 0 2 2 0 0 0 0 2 2 0 0 0 0 2 2 0 0 0 0 0 2 2 0 0 0 0 0 0 2 2 0 0 0 0 0 2 2 0 0 0 0 0 2 2 0																	
09:30 8 32 17 0 57 0 1 4 0 5 0 0 0 0 2 09:45 3 27 16 0 46 1 1 0 0 2 0 0 0 0 0 2 2	09:30 8 32 17 0 57 0 1 4 0 5 0 0 0 0 2 09:45 3 27 16 0 46 1 1 0 0 2 0 0 0 0 2 2																	
09:45 3 27 16 0 46 1 1 0 0 2 0 0 0 0 0 2	09:45 3 27 16 0 46 1 1 0 0 2 0 0 0 0 0 2																	
SUBTOTAL 62 300 196 0 558 2 13 15 0 30 0 1 1 0 2 23	SUBTOTAL 62 300 196 0 558 2 13 15 0 30 0 1 1 0 2 23																	
		SUBTOTAL	62	300	196	0	558	2	13	15	0	30	0	1	1	0	2	23

 Intersection:
 Oglivie Rd & Cummings Ave

 Site Code:
 2335200001

 Municipality:
 Ottawa

 Count Date:
 Oct 31, 2023

			Cars				Ti	rucks				Bi	cycles			
art Time	•			<u>n</u>	Total	•	1		<u>n</u>	Total	•	1		<u>n</u>	Total	Total Peds
11:30	8	43	34	0	85	0	3	1	0	4	0	0	0	0	0	2
11:45	12	32	31	0	75	0	0	0	0	0	0	1	0	0	1	1
12:00	14	42	37	0	93	0	3	0	0	3	0	0	0	0	0	5
12:15	9	30	40	0	79	0	0	0	0	0	0	0	0	0	0	3
12:30	16 7	37 36	37 30	0	90 73	0	0	0	0	1	0	0	0	0	0	6
12:45 13:00	6	24	26	0	56	0	0	0	0	0	1	0	0	0	1	1
13:15	10	24	40	0	79	0	0	4	0	4	0	0	0	0	0	3
SUBTOTAL	82	273	275	0	630	0	7	5	0	12	1	1	0	0	2	27

Traffic Count Data

Intersection:	Ogilvie Rd & Cummings Ave
Site Code:	2335200001
Municipality:	Ottawa
Count Date:	Oct 31, 2023

	_		Cars	0		_		rucks	0				cycles	Ω		
art Time			26	<u> </u>	Total	1				Total		-	P		Total	Total Peds
15:00	8	58	36	0	102		0	0	0	1	0	0	0	0	0	6
15:15	22	61	38	0	121	0	0	0	0	0	0	0	0	0	0	4
15:30	9	42	58	0	109 84	1	0	0	0	1	1	0	0	0	1	2
15:45 16:00	9	33 48	39 52	0		0	0	2	0	3	0	0	0	0	0	3
16:15	10	55	50	0		0	1	0	0	1	0	0	0	0	0	7
16:30	7	42	54	0	103	0	1	0	0	1	0	0	0	0	0	3
16:45	9	57	46	0		0	0	0	0	0	0	0	0	0	0	1
17:00	11	50	45	0	106	0	0	0	0	0	0	0	0	0	0	5
17:15	12	49	45	0	106	0	0	0	0	0	0	0	0	0	0	5
17:30	12	48	30	0	90	0	1	0	0	1	0	0	0	0	0	5
17:45	17	47	19	0	83	0	0	0	0	0	0	0	0	0	0	4
SUBTOTAL	138	590	512	0	1240	2	4	2	0	8	1	0	0	0	1	46
GRAND TOTAL	282	1163	983	0	2428	4	24	22	0	50	2	2	1	0	5	96

 Intersection:
 Ogl/vie Rd & Cummings Ave

 Site Code:
 2335200001

 Municipality:
 Ottawa

 Count Date:
 Oct 31, 2023

			Cars				Т	rucks				Bi	cycles			
Start Time	-	1		1	Total	•	1		1	Total	•	1		1	Total	Total Peds
07:00	14	71	20	1	106	0	2	0	0	2	0	1	0	0	1	7
07:15	22	136	32	0	190	0	4	0	0	4	0	1	0	0	1	3
07:30	14	144	23	1	182	1	1	2	0	4	0	3	0	0	3	13
07:45	25	203	34	1	263	1	6	1	0	8	0	3	0	0	3	6
08:00	22	255	42	0	319	0	6	3	0	9	0	0	0	0	0	16
08:15	30	240	50	0	320	0	6	1	0	7	0	2	0	0	2	12
08:30	28 25	256	55	0	339	1	5	0	0	6	0	2	0	0	2	16
08:45	25	261 141	57 35	0	343 196	2	6 5	1	0	9 6	0	3	0	0	3	8
09:00 09:15	19	171	49	0	239	0	11	1	0	12	0	0	0	0	0	9
09:15	17	143	49	0	202	0	4	1	0	5	0	1	0	0	1	7
09:45	22	139	42	0	202	0	2	2	0	4	0	0	0	0	0	2
SUBTOTAL	258	2160	480	3	2901	5	58	13	0	76	0	16	0	0	16	106

Traffic Count Data

 Intersection:
 Oglivie Rd & Cummings Ave

 Site Code:
 2335200001

 Municipality:
 Ottawa

 Count Date:
 Oct 31, 2023

Start Time I <thi< th=""><th></th><th></th><th></th><th>Cars</th><th></th><th></th><th></th><th>T</th><th>rucks</th><th></th><th></th><th></th><th>Bi</th><th>cycles</th><th></th><th></th><th></th></thi<>				Cars				T	rucks				Bi	cycles			
11:45 32 147 44 2 225 1 3 1 0 5 0 12 12 14 44 2 2 2 0 0 6 0 0 0 0 0 0 0 0 0 12 12 12 13 3 0 0 6 0	Start Time	-	1	•	ŋ	Total	-	1		n	Total	-	1	·	9	Total	Total Peds
12:00 28 169 52 1 250 2 1 1 0 4 0 <td< td=""><td>11:30</td><td>31</td><td>152</td><td>36</td><td>0</td><td>219</td><td>0</td><td>2</td><td>1</td><td>0</td><td>3</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>4</td></td<>	11:30	31	152	36	0	219	0	2	1	0	3	0	0	0	0	0	4
12:15 27 166 46 1 240 2 3 1 0 6 0 1 1 3 0 0 6 0 2 0 0 2 6 1 2 1 1 3 0 0 6 0 2 0 0 2 6 1 2 1 3 0 0 6 0 2 0 0 0 0 0 1 4 1 3 0 1 1 0 2 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 <th< td=""><td>11:45</td><td>32</td><td>147</td><td>44</td><td>2</td><td>225</td><td>1</td><td>3</td><td>1</td><td>0</td><td>5</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>3</td></th<>	11:45	32	147	44	2	225	1	3	1	0	5	0	0	0	0	0	3
12:30 21 144 42 2 209 3 3 0 0 6 0 2 0 0 2 6 12:45 30 139 42 3 214 1 3 0 0 4 0 0 0 0 0 4 13:00 24 133 39 0 196 0 2 0 0 0 0 0 0 1 13:15 34 141 52 0 227 3 1 1 0 5 0 0 0 0 0 0 0 0 5	12:00	28	169		1			1	1								
12:45 30 139 42 3 214 1 3 0 0 4 0 0 0 0 0 4 13:00 24 133 39 0 196 0 2 0 0 0 0 0 0 0 0 2 13 13 1 1 0 5 0 0 0 0 0 0 2 1 1 1 1 0 5 0 0 0 0 0 0 0 1 2 1 1 0 5 0 0 0 0 0 0 1 1 0 5 0									1							_	
13:00 24 133 39 0 196 0 2 0 0 2 0 0 0 0 2 13:15 34 141 52 0 227 3 1 1 0 5 0 0 0 0 0 5																	
13:15 34 141 52 0 227 3 1 1 0 5 0 0 0 0 0 5						_											
								2	0								
SUBTOTAL 227 1191 353 9 1780 12 18 5 0 35 0 2 0 0 2 34								1	1								
	SUBTOTAL	227	1191	353	9	1/80	12	18	5	0	35	0	2	0	0	2	34

 Intersection:
 Oglivie Rd & Cummings Ave

 Site Code:
 2335200001

 Municipality:
 Ottawa

 Count Date:
 Oct 31, 2023

tart Time			Cars				T	rucks				Bi	cycles			
15:00	-	1	•	1	Total	-	1	•	1	Total	-	1		1	Total	Total Peds
	20	170	60	3	253	0	3	1	0	4	0	0	1	0	1	33
15:15	29	185	57	1	272	1	5	2	0	8	0	3	0	0	3	13
15:30	19	190	70	1	280	1	0	0	0	1	0	1	0	0	1	12
15:45	28	171	58	1	258	1	7	0	0	8	0	1	0	0	1	10
16:00	38	213	52	2	305	1	5	3	0	9	0	2	2	0	4	6
16:15	37	185	49	1	272	3	4	0	0	7	0	4	0	0	4	9
16:30	30	197	64	0	291	3	3	0	0	6	0	2	0	0	2	10
16:45	32	176	54	1	263	0	6	0	0	6	0	4	0	0	4	4
17:00	25	152	69	1	247	0	2	0	0	2	0	3	1	0	4	5
17:15	27	127	60	0	214	1	2	1	0	4	0	5	1	0	6	6
17:30	23	144	43	1	211	0	2	0	0	2	0	1	1	0	2	7
17:45	18	122	46	0	186	0	0	0	0	0	0	1	0	0	1	8
SUBTOTAL	326	2032	682	12	3052	11	39	7	0	57	0	27	6	0	33	123
GRAND TOTAL	811	5383	1515	24	7733	28	115	25	0	168	0	45	6	0	51	263

Traffic Count Data

 Intersection:
 Ogl/vie Rd & Cummings Ave

 Site Code:
 2335200001

 Municipality:
 Ottawa

 Count Date:
 Oct 31, 2023

West Approach - Ogilvie Rd Trucks Cars Bicycles Total Total Total Total Total Total Total Peds Start Time 07:00 16 79 2 0 97 0 7 0 0 7 0 0 0 0 0 13 118 1 0 132 0 2 2 0 4 07:15 0 0 0 0 147 07:30 10 135 2 0 3 0 0 0 0 0 0 17 163 0 182 07:45 2 1 3 0 0 0 19 124 1 145 08:00 1 1 0 0 0 0 2 08:15 16 128 7 0 151 2 0 19 148 3 0 170 08:30 1 3 0 0 4 0 11 0 0 11 08:45 12 163 1 0 176 0 10 1 9 0 0 09:00 22 150 0 1 173 7 0 0 0 6 19 130 2 2 153 0 09:15 3 0 0 0 3 0 09:30 22 98 4 0 124 0 0 0 1 1 5 2 0 14 113 8 1 136 2 0 0 0 2 09:45 0 0 0 0 0 SUBTOTAL 199 1549 33 5 1786 10 49 0 29 5 0 64 0 29 0

 Intersection:
 Ogilvie Rd & Cummings Ave

 Site Code:
 2335200001

 Municipality:
 Ottawa

 Count Date:
 Oct 31, 2023

			Cars				T	rucks				Bio	cycles			
Start Time	-	1		<u>n</u>	Total	•	1		<u>n</u>	Total	•	1		<u>n</u>	Total	Total Peds
11:30	17	151	5	1	174	1	4	1	0	6	0	2	0	0	2	C
11:45	20	160	9	0	189	1	4	1	0	6	0	0	0	0	0	5
12:00	30	159	7	1	197	0	1	0	0	1	0	0	0	0	0	6
12:15	19	181	5	0	205	0	1	0	0	1	0	0	0	0	0	1
12:30	14	160	7	2	183	0	4	1	0	5	0	0	0	0	0	5
12:45	21	172 145	7	6	206	1	6	0	0	7	0	1	0	0	1	-
13:00 13:15	17 19	145	6 8	2	170 203	0	5	0	0	5 1	0	0	0	0	0	2
SUBTOTAL	157	1300	54	16	1527	3	24	3	0	30	0	3	0	0	3	21

Traffic Count Data

Intersection: Site Code:	Ogilvie Rd & Cummings Ave 2335200001
Municipality:	Ottawa
Count Date:	Oct 31, 2023

West Approach - Ogilvie Rd Trucks Cars Bicycles Start Time 🔄 🕇 🖻 🗘 Total 🔄 🕇 🖻 🗘 Total 🔄 🕇 🖻 🗘 Total Total Peds 27 202 6 7 242 15:00 1 8 1 0 10 0 2 0 0 2 31 220 5 3 259 15:15 0 5 0 0 0 0 15:30 28 257 9 2 296 1 5 0 0 0 0 0 0 246 15:45 28 210 8 0 4 0 0 7 0 291 16:00 35 249 0 0 0 0 6 0 6 16:15 30 224 5 264 5 45 289 5 3 342 16:30 0 8 0 0 8 0 2 0 16:45 34 263 9 3 309 0 0 17:00 32 292 10 1 335 0 0 2 2 24 228 7 2 261 17:15 0 0 34 233 17:30 3 0 270 0 0 0 0 0 3 3 Ο 17:45 34 203 4 2 243 1 1 0 0 2 0 1 0 0 382 2870 78 28 3358 SUBTOTAL 5 47 0 54 0 16 0 16 GRAND TOTAL 738 5719 165 49 6671 18 120 10 0 148 0 48 0 0 48 79

Peak Hour Diagram

Peak Hour Diagram

Comments

Peak Hour Diagram

Transportation Services - Traffic Services

Turning Movement Count - Study Results AVIATION PKWY @ OGILVIE RD

Survey Date: Thursday, September 28, 2023 WO No: Start Time: 07:00 Device: Miovision **Full Study Peak Hour Diagram** AVIATION PKWY Ν [≵] l 🕴 w E ♣ * S Total (5√2) **4** 26 Heavy ☆‡ Vehicles Cars OGILVIE RD U t 17 1117 + Full Study F t Peak Hour: G 16:00 17:00 ₩ **→** + F **r** តា Cars ₫ 轪 Heavy Vehicles Total * **I**t

November 7, 2023

Turning Movement Count - Peak Hour Diagram

Transportation Services - Traffic Services
 Turning Movement Count - Peak Hour Diagram
 AVIATION PKWY @ OGILVIE RD

Survey Date: Thursday, September 28, 2023
WO No: 412

2023-Nov-07

2023-Nov-07

Transportation Services - Traffic Services

Turning Movement Count - Peak Hour Diagram

Transportation Services - Traffic Services

Turning Movement Count - Study Results

Survey D	ate: Ţ	hursd	ay, Se	ptemb	er 28,	2023						wo	No:			41	205		
Start Tin	ne: C	7:00										Dev	ice:			Mio	vision		
				F	- ull :	Stud	v Sı	umma	arv (8	B HF	R Sta	nda	rd)						
Survey Da	ate:	Thurso	day, Se				,		Total C				'					T Facto	or
		2023					1	Vorthbou	nd: 2		Sout	hbound	9						
								Eastbour	nd: 2	2	Wes	tbound:	14				1.00		
			AVIA	tion f	PKWY				_			00	GILVIE	RD					
	No	rthbou	nd		So	uthbou	und			E	astbou	und		V	/estbo	und			_
Period	LT	ST	RT	NB TOT	LT	ST	RT	SB TOT	STR TOT	LT	ST	RT	EB TOT	LT	ST	RT	WB TOT	STR TOT	Grane Tota
07:00 08:00	150	404	186	740	122	247	205	574	1314	317	321	67	705	107	409	116	632	1337	265
08:00 09:00	200	416	204	820	175	306	242	723	1543	320	510	67	897	109	540	137	786	1683	322
09:00 10:00	134	257	105	496	148	238	176	562	1058	229	479	62	770	93	490	102	685	1455	251
11:30 12:30	110	204	85	399	158	223	246	627	1026	199	724	77	1000	105	624	156	885	1885	291
12:30 13:30	108	230	74	412	135	227	206	568	980	224	665	87	976	111	559	155	825	1801	278
15:00 16:00	152	324	94	570	191	427	294	912	1482	240	892	110	1242	232	732	262	1226	2468	395
16:00 17:00	166	331	163	660	146	380	293	819	1479	272	1059	96	1427	231	673	220	1124	2551	403
17:00 18:00	136	267	138	541	155	319	195	669	1210	247	967	123	1337	181	604	198	983	2320	353
Sub Total	1156	2433	1049	4638	1230	2367	1857	5454	10092	2048	5617	689	8354	1169	4631	1346	7146	15500	2559
U Turns				2				9	11				22				14	36	47
Total	1156	2433	1049	4640	1230	2367	1857	5463	10103	2048	5617	689	8376	1169	4631	1346	7160	15536	25639
EQ 12Hr	1607	3382	1458	6450	1710	3290	2581	7594	14043	2847	7808	958	11643	1625	6437	1871	9952	21595	3563
Note: These v	values a	are calcu	ilated by	y multipl	ying the	totals b	by the a	ppropriat	e expans	sion fac	tor.			1.39					
AVG 12Hr	1607	3382	1458	6450	1710	4310	3381	7594	14043	2847	7808	958	11643	1625	6437	1871	9952	21595	35638
Note: These v	volumes	are cal	culated	by multi	plying t	he Equi	valent 1	2 hr. tota	ls by the	AADT	factor.			1.00					
AVG 24Hr	2105	4430	1910	8450	2240	5646	4429	9948	18396	3730	10228	1255	15252	2129	8432	2451	13037	28289	4668
Note: These v	volumes	are cal	culated	by multi	inlvina t	he Aver	ana Dai	ly 12 hr	totale by	12 to 2	4 evnan	sion fac	tor	1.31					

2023-Nov-07

6	Ha	wa		Tra	ans	роі	rtati	on	Ser	vic	es -	Tra	offic	: Se	rvio	ces				
T	лия	VVIA			Т	urn	ing	Mov	eme	ent (Cou	nt - 3	Stud	dy R	esu	lts				
							AVIA	ATIC)n p	νKW	Y @) O	SILV	'IE F	RD					
Surv	ey Dat	te: TI	nursd	ay, Se	ptem	iber 2	8, 202	23						wo	No:			4	1205	
Star	t Time	e: 07	7:00											Dev	ice:			Mi	ovisior	ı
							F	ull S	tud	v 1!	5 Mi	nute	Inc			s				
				Ανίατ		PKW			- cuu	,				ILVIE						
		N	orthbo	und		So	outhbou	ind			E	astbour	nd		W	estbour	nd			
Time	Period	LT	ST	RT	N TOT	LT	ST	RT	s тот	STR TOT	LT	ST	RT	Е ТОТ	LT	ST	RT	w тот	STR TOT	Grand Total
07:00	07:15	32	93	3 45 170 24 45 32 101 271 63 64 12 139 23 73 25 121 260 5 5 48 163 28 55 41 124 287 64 63 11 138 14 95 29 138 276 5														531		
07:15	07:30 07:45	40 29	75 111	5 48 163 28 55 41 124 287 64 63 11 138 14 95 29 138 276 11 37 177 36 64 55 155 332 89 95 21 206 37 104 37 179 385														563 717		
07:30	07:45	29 49	111	1 37 177 36 64 55 155 332 89 95 21 206 37 104 37 179 385 7 25 56 231 34 83 77 194 425 101 99 23 223 33 137 25 195 418 8														843		
08:00	08:15	47	113	1 37 177 36 64 55 155 332 89 95 21 206 37 104 37 179 385 7 25 56 231 34 83 77 194 425 101 99 23 223 33 137 25 195 418 8														799		
08:15	08:30	52	107	53	212	37	99	66	203	415	94	138	15	248	23	133	26	182	430	845
08:30	08:45	55	112	54	221	48	63	66	178	399	73	144	16	233	27	118	34	179	412	811
08:45	09:00	46	84	41	171	50	66	42	158	329	82	138	12	232	23	154	37	214	446	775
09:00	09:15	40	70	37	147	41	77	59	177	324	66	137	14	218	24	123	33	181	399	723
09:15 09:30	09:30 09:45	39 33	70 67	27	136 123	37 42	55 57	34 40	126 139	262 262	62 48	106 131	20 15	188 194	19 29	130 118	20 28	169 176	357 370	619 632
09:45	10:00	22	50	18	90	28	49	40	120	202	53	105	13	171	23	119	20	162	333	543
11:30	11:45	26	55	24	105	36	44	48	128	233	49	175	19	243	23	149	42	214	457	690
11:45	12:00	28	52	24	104	39	64	60	164	268	52	164	15	231	25	152	43	220	451	719
12:00	12:15	27	45	22	94	47	60	69	176	270	44	195	18	259	26	152	31	209	468	738
12:15	12:30	29	52	15	96	36	55	69	160	256	54	190	25	272	31	171	40	243	515	771
12:30	12:45	29 22	61 57	18	108	33 45	50 63	47	130	238	43 71	169	21	233 269	31	163	34 40	229	462	700 720
12:45 13:00	13:00 13:15	22	57	19 15	98 103	45 29	58	48 51	156 138	254 241	61	169 163	28 17	269	19 33	137 136	40 37	197 207	466 449	690
13:15	13:30	29	53	22	103	29	56	60	130	241	49	164	21	242	28	123	44	195	449	676
15:00	15:15	37	86	15	138	44	101	75	220	358	56	183	25	265	63	185	64	313	578	936
15:15	15:30	48	68	24	140	47	85	71	205	345	65	245	38	349	59	215	60	335	684	1029
15:30	15:45	31	96	22	149	51	124	79	254	403	52	199	28	280	64	164	61	290	570	973
15:45	16:00	36	74	33	143	49	117	69	236	379	67	265	19	351	46	168	77	291	642	1021
16:00	16:15	34	77	27	138	40	109	82	231	369	58	243	16	318	51	172	58	281	599	968
16:15 16:30	16:30 16:45	35 42	79 86	42 49	156 177	43 31	87 91	77 76	207 199	363 376	63 68	275 264	23 29	362 361	66 70	163 169	45 55	274 294	636 655	999 1031
16:30	16:45	42 55	89	49 45	189	31	91	58	183	370	83	264	29	388	44	169	62	294	663	1031
17:00	17:15	33	85	36	154	36	91	57	184	338	72	258	33	363	62	143	48	253	616	954
17:15	17:30	40	61	26	127	37	84	44	165	292	65	255	32	357	48	179	53	281	638	930
17:30	17:45	28	64	39	131	35	79	46	161	292	65	224	33	322	41	147	49	237	559	851
17:45	18:00	35	57	37	130	47	65	48	160	290	45	230	25	302	30	135	48	215	517	807
Total:		1156	2433	1049	4640	1230	2367	1857	5463	10103	2048	5617	689	8376	1169	4631	1346	7160	15536	25,639

Note: U-Turns are included in Totals.

Transportation Services - Traffic Services

Turning Movement Count - Study Results AVIATION PKWY @ OGILVIE RD

Survey Da	te: Thursday,	September 28, 2	2023		WO No:		41205
Start Time	07:00				Device:	N	liovision
			Full Study	Cyclist V	olume		
		AVIATION PKW		,	OGILVIE RD		
Time Period	Northbound	Southbound	Street Total	Eastbound	Westbound	Street Total	Grand Total
07:00 07:15	0	3	3	1	1	2	5
07:15 07:30	2	4	6	3	5	8	14
07:30 07:45	0	2	2	4	6	10	12
07:45 08:00	0	1	1	12	3	15	16
08:00 08:15	2	5	7	11	1	12	19
08:15 08:30	0	4	4	6	2	8	12
08:30 08:45	1	5	6	10	4	14	20
08:45 09:00	3	0	3	8	3	11	14
09:00 09:15	0	3	3	10	1	11	14
09:15 09:30	0	0	0	3	2	5	5
09:30 09:45	1	0	1	5	1	6	7
09:45 10:00	0	0	0	3	0	3	3
11:30 11:45	0	2	2	1	0	1	3
11:45 12:00	0	1	1	1	2	3	4
12:00 12:15	0	2	2	0	3	3	5
12:15 12:30	2	3	5	5	2	7	12
12:30 12:45	0	4	4	2	4	6	10
12:45 13:00	0	0	0	2	4	6	6
13:00 13:15	0	0	0	3	0	3	3
13:15 13:30	0	1	1	1	3	4	5
15:00 15:15	1	1	2	0	7	7	9
15:15 15:30	4	0	4	1	6	7	11
15:30 15:45	5	1	6	3	4	7	13
15:45 16:00	1	3	4	3	1	4	8
16:00 16:15	1	0	1	4	3	7	8
16:15 16:30	2	1	3	5	2	7	10
16:30 16:45	1	1	2	4	11	15	17
16:45 17:00	2	0	2	3	10	13	15
17:00 17:15	5	6	11	4	12	16	27
17:15 17:30	1	3	4	4	7	11	15
17:30 17:45	0	7	7	6	5	11	18
17:45 18:00	3	2	5	4	5	9	14
Total	37	65	102	132	120	252	354

November 7, 2023

Otto	Т	ransportat	ion Se	rvices - Tra	ffic Servic	es	
	, , , , , , , , , , , , , , , , , , ,	Turning	Movem	ent Count - S	Study Resu	lts	
		AVI	ATION F	PKWY @ OG	ILVIE RD		
Survey Dat	te: Thursday.	September 28, 202	23		WO No:		41205
Start Time					Device:		Miovision
otart mite		-	ULL CAUN	. Dodootrior			MIOVISION
		F AVIATION PKW		ly Pedestriar	OGILVIE RD		
		AVIATION PKW	ř		OGILVIE RD		
Time Period (NB Approach (E or W Crossing)	SB Approach (E or W Crossing)	Total	EB Approach (N or S Crossing)	WB Approach (N or S Crossing)	Total	Grand Total
07:00 07:15	1	1	2	0	0	0	2
07:15 07:30	2	1	3	1	0	1	4
07:30 07:45	5	2	7	1	1	2	9
07:45 08:00	3	0	3	2	0	1	4
08:15 08:30	1 3	3	4	0	0	2	6
08:30 08:45	3	4	7	1	0	1	8
08:45 09:00	5	1	6	1	0	1	7
09:00 09:15	3	1	4	0	1	1	5
09:15 09:30	10	1	11	2	0	2	13
09:30 09:45	5	2	7	2	0	2	9
09:45 10:00	1	2	3	1	1	2	5
11:30 11:45	0	3	3	1	9	10	13
11:45 12:00	3	2	5	0	1	1	6
12:00 12:15	1	4	5	2	0	2	7
12:15 12:30	1	5	6	2	0	2	8
12:30 12:45 12:45 13:00	6	4 3	10	1	0	1	11
12:45 13:00	5	4	9	0	0	3	12
13:15 13:30	4	4	9	2	2	4	12
15:00 15:15	3	3	6	2	1	3	9
15:15 15:30	2	4	6	0	1	1	7
15:30 15:45	6	3	9	0	5	5	14
15:45 16:00	1	2	3	2	5	7	10
16:00 16:15	3	3	6	0	0	0	6
16:15 16:30	5	7	12	3	3	6	18
16:30 16:45	6	0	6	1	0	1	7
16:45 17:00	7	5	12	2	0	2	14
17:00 17:15	6	5	11	0	1	1	12
17:15 17:30	5	3	8	2	1	3	11
17:30 17:45	4	4	8	2	0	2	10
17:45 18:00	2	5		0	0	0	
Total	118	94	212	36	33	69	281

Transportation Services - Traffic Services

Turning Movement Count - Study Results AVIATION PKWY @ OGILVIE RD

Survey Dat			ay, Se	ptem	ber 2	8, 202	23						wo	No:			4	1205	
Start Time	: 07	7:00											Dev	ice:			Mie	ovisior	ı
						F	ull S	Stud	v He	avv	Veł	nicle	s						
			Ανίατ	ION I	PKW								ILVIE	RD					
	N	orthbo				outhbou	ind			-	astbour				estbour	hd			
Time Period		ST	RT	N	LT	ST	RT	S	STR	LT	ST	RT	Е ТОТ	LT	ST	RT	W	STR	Grand
07:00 07:15	LT 1	1	0	тот 3	0	1	0	TOT 4	TOT 7	2	7	0	101	0	2	0	тот 9	TOT 21	Total 14
07:15 07:30	0	0	0	0	0	0	0	4	0	2	3	0	8	0	5	0	8	16	8
07:30 07:45	0	1	0	3	0	0	0	2	5	1	7	0	9	2	1	0	0 10	10	8 12
07:45 08:00	2	2	0	9	1	2	0	5	14	0	3	0	8	3	3	0	10	19	12
08:00 08:15	0	2	2	8	0	3	2	8	14	1	1	0	。 11	1	7	0	11	22	10
08:15 08:30	1	2	2	8 7	0	0	1	5	10	1	7	0	13	1	3	0	13	26	19
08:30 08:45	0	3	2	2	0	0	0	1	3	0	7	0	9	0	2	0	10	19	19
08:45 09:00	2	2	0	4	0	0	2	4	8	0	9	0	9 15	0	2	0	11	26	17
09:00 09:15	0	3	1	4	0	0	0	4	。 11	1	4	2	15	1	8	0	14	20	20
09:15 09:30	0	5	0	11	1	2	0	9	20	1	5	2	13	2	5	0	13	26	20
09:30 09:45	5	0	1	8	0	2	2	5	13	1	8	0	19	0	3	0	12	31	23
09:45 10:00	1	0	0	2	0	0	2	3	5	0	5	1	13	0	4	1	10	23	14
11:30 11:45	0	1	0	1	0	0	0	5	6	2	7	0	12	0	3	2	12	24	15
11:45 12:00	1	1	0	6	0	3	1	6	12	1	4	1	10	0	2	0	6	16	14
12:00 12:15	2	1	0	6	0	3	1	5	11	0	3	0	13	0	7	0	10	23	17
12:15 12:30	0	0	0	3	0	1	0	1	4	0	1	2	5	0	2	0	3	8	6
12:30 12:45	3	2	1	7	0	1	1	5	12	1	2	0	7	0	0	0	3	10	11
12:45 13:00	1	1	1	7	1	3	1	6	13	0	4	1	9	0	2	0	8	17	15
13:00 13:15	1	3	0	9	0	1	0	5	14	1	5	1	10	3	2	0	10	20	17
13:15 13:30	1	1	0	5	0	1	1	5	10	2	2	0	11	2	5	0	9	20	15
15:00 15:15	1	2	0	7	0	0	2	5	12	1	10	3	20	1	3	0	14	34	23
15:15 15:30	0	1	1	5	0	1	0	2	7	0	6	1	15	1	8	0	16	31	19
15:30 15:45	0	1	0	3	0	1	0	2	5	0	2	0	4	1	2	0	5	9	7
15:45 16:00	1	0	0	3	2	0	0	2	5	0	4	0	11	2	6	0	14	25	15
16:00 16:15	0	3	2	9	0	2	2	8	17	0	5	1	11	1	3	1	12	23	20
16:15 16:30	0	0	0	3	0	1	1	2	5	0	3	0	6	2	2	0	7	13	9
16:30 16:45	2	0	0	4	0	0	1	1	5	0	2	1	8	1	2	0	5	13	9
16:45 17:00	2	0	0	5	0	2	1	5	10	2	3	1	10	0	1	0	4	14	12
17:00 17:15	3	0	1	7	0	3	1	4	11	0	3	0	8	0	1	0	5	13	12
17:15 17:30	1	2	0	5	0	0	0	2	7	0	2	2	7	0	2	0	4	11	9
17:30 17:45	1	0	0	5	0	2	0	2	7	0	1	2	5	0	1	0	2	7	7
17:45 18:00	0	0	1	4	0	3	0	3	7	0	1	0	3	0	2	0	4	7	7
Total: None	32	39	14	168	5	38	22	126	294	18	136	21	330	24	101	4	284	614	454

November 7, 2023

	awa	Т	urning Mov AVIATIO	ement Cou N PKWY @			
Survey D	Date: Thursd	av. Septem	ber 28. 2023		wo) No:	41205
	me: 07:00	<i></i>	-,		De	vice:	Miovision
otart m	07.00		F				IVIIOVISION
				tudy 15 Mir			
			AVIATION F	PKWY	00	GILVIE RD	
	Time I	Period	Northbound U-Turn Total	Southbound U-Turn Total	Eastbound U-Turn Total	Westbound U-Turn Total	Total
	07:00	07:15	0	0	0	0	0
	07:15	07:30	0	0	0	0	0
	07:30	07:45	0	0	1	1	2
	07:45	08:00	1	0	0	0	1
	08:00	08:15	0	1	0	0	1
	08:15	08:30	0	1	1	0	2
	08:30	08:45	0	1	0	0	1
	08:45	09:00	0	0	0	0	0
	09:00	09:15	0	0	1	1	2
	09:15	09:30	0	0	0	0	0
	09:30	09:45	0	0	0	1	1
	09:45	10:00	0	0	0	1	1
	11:30	11:45	0	0	0	0	0
	11:45	12:00	0	1	0	0	1
	12:00	12:15	0	0	2	0	2
	12:15	12:30	0	0	3	1	4
	12:30	12:45	0	0	0	1	1
	12:45	13:00	0	0	1	1	2
	13:00	13:15 13:30	0	0	1 0	0	2
	15:00	15:15	0	0	1	1	2
	15:00	15:15	0	2	1	1	4
	15:30	15:45	0	0	1	1	2
	15:45	16:00	0	1	0	0	1
	16:00	16:15	0	0	1	0	1
	16:15	16:30	0	0	1	0	1
	16:30	16:45	0	1	0	0	1
	16:45	17:00	0	0	0	0	0
	17:00	17:15	0	0	0	0	0
	17:15	17:30	0	0	5	1	6
	17:30	17:45	0	1	0	0	1
	17:45	18:00	1	0	2	2	5

Turning Movement Count Summary Report Including Peak Hours, AADT and Expansion Factors All Vehicles Except Bicycles

Cumm	ings	s Av	enu	e &	Dor	nalo	l Sti	reet													Ot	tawa	, ON
Survey Da	ite:	Thurs	iday, C	Octob	er 26,	2023	5					Start	Time	:		0700			AAD)T Fa	ctor:		0.9
Weather Al	N:	Overc	ast 14º	С		Su	irvey	Dura	tion:	8	Hrs.	Surv	ey Ho	urs:		0700	-1000	, 1130)-133	0&1	500-1	800	
Weather PI	И:	Overc	ast 17º	С								Surv	eyor(s	s):		T. Ca	rmod	y					
		Do	nald	St.				N/A				C	umm	ning	s Av	/e.	С	umm	ning	s Av	ve.		
		Ea	stbou	nd		Westbound							Nor	thbou	ind			Sou	thbo	und			
Time Period	LT	ST	RT	UT	E/B Tot	LT ST RT UT W/B Street Total						LT	ST	RT	UT	N/B Tot	LT	ST	RT	UT	S/B Tot	Street Total	Grand Total
0700-0800	42		104	0	146						146	107	114		0	221		202	47	0	249	470	616
0800-0900	54		160	0	214						214	224	154		0	378		186	89	0	275	653	867
0900-1000	60		180		240	-					240		124		0		_	177	79	0	256	582	822
1130-1230	_		236	-	293	_					293	231	156	_	0		_	175	_	0	257	644	937
1230-1330	72		228	0	300						300	201	172		0	373		150	82	0	232	605	905
1500-1600	87		268	0	355						355	287	241		0	528		242	92	0	334	862	1217
1600-1700	89		269	1	359						359	227	284		0	511		285	92	0	377	888	1247
1700-1800	120		257	0	377						377	287	262		0	549		249	79	0	328	877	1254
Totals	581		1702	1	2284						2284	1766	1507		0	3273		1666	642	0	2308	5581	7865

Equivalent 12 & 24-hour Vehicle Volumes Including the Annual Average Daily Traffic (AADT) Factor Applicable to the Day and Month of the Turning Movement Count

Expansion factors are applied exclusively to standard weekday 8-hour turning movement counts

conducted during the hours of 0700h - 1000h, 1130h - 1330h and 1500h - 1800h

Equ. 12 Hr	808	Equiva 0			ehicle vo 3175	lumes. O	These v O	volume: 0	s are c 0		ing the 8 2095	tals by the 8 0 4549	expans 2316	or of 1.39 0 3208	7758	10932
AADT 12-hr	727		erage dai 2129	ly 12- 1	hour veh 2857	icle vol O	umes. 1 O	Гhese v О	olume 0		ultiplyin 1885		tals by 2084	0 2887 0 2887	.9 6982	9839
AADT 24 Hr	24 - 952	Hour A 0		ese vo 2	olumes a 3743	re calcu O	ilated by 0	y multi 0	plying 0		hour veh 2470	umes by the 0 5364	24 expa 2730	ctor of 1.31 0 3782	9146	12889

AADT and expansion factors provided by the City of Ottawa

AM Peak Ho	our Fac	ctor 🗖		0.	91									High	est	Hourl	y Vehi	icle Vo	lume	Betv	veen ()700h 8	1000h
AM Peak Hr	LT	ST	RT	UT	Total	LT	ST	RT	UT	Total	Str. Tot.	LT	ST	RT	UT	Total	LT	ST	RT	UT	Total	Str. Tot.	Gr. Tot.
0815-0915	56	0	166	0	222	0	0	0	0	0	222	225	147	0	0	372	0	184	92	0	276	648	870
OFF Peak H	our Fa	ctor	•	0.	90									High	est	Hourl	y Vehi	icle Vo	lume	Betv	veen 1	130h 8	1330h
OFF Peak Hr	LT	ST	RT	UT	Total	LT	ST	RT	UT	Total	Str. Tot.	LT	ST	RT	UT	Total	LT	ST	RT	UT	Total	Str. Tot.	Gr. Tot.
1145-1245	66	0	241	0	307	0	0	0	0	0	307	228	161	0	0	389	0	183	79	0	262	651	958
PM Peak Ho	our Fac	tor 🗖		0.	94									High	est	Hourl	y Vehi	icle Vo	lume	Betv	veen 1	500h 8	1800h
PM Peak Hr	LT	ST	RT	UT	Total	LT	ST	RT	UT	Total	Str. Tot.	LT	ST	RT	UT	Total	LT	ST	RT	UT	Total	Str. Tot.	Gr. Tot.
1545-1645	86	0	279	1	366	0	0	0	0	0	366	246	267	0	0	513	0	301	96	0	397	910	1276

Comments:

OC Transpo and Para Transpo buses, private buses and school buses comprise 44.86% of the heavy vehicle traffic.

Notes:

1. Includes all vehicle types except bicycles, electric bicycles, and electric scooters.

2. When expansion and AADT factors are applied, the results will differ slightly due to rounding.

Printed on: 11/1/2023 Prepared by: thetrafficspecialist@gmail.com

		Do	nald	St.				N/A			(Cumi	nings	s Ave			Cumr	nings	s Ave		
		Ea	stbou	nd			W	estbou	ind			No	rthbou	und			Sou	uthbou	ind		
Time Period	LT	ST	RT	UT	EB Tot	LT	ST	RT	UT	WB Tot	LT	ST	RT	UT	NB Tot	LT	ST	RT	UT	SB Tot	GR Tot
0700-0800	6		3	0	9						8	5		0	13		4	5	0	9	31
0800-0900	2		7	0	9						5	8		0	13		3	6	0	9	31
0900-1000	5		2	0	7						3	8		0	11		10	4	0	14	32
1130-1230	5		4	0	9						3	4		0	7		5	3	0	8	24
1230-1330	3		5	0	8						3	0		0	3		8	2	0	10	21
1500-1600	5		3	0	8						2	6		0	8		8	3	0	11	27
1600-1700	5		7	0	12						4	7		0	11		7	3	0	10	33
1700-1800	5		2	0	7						1	3		0	4		2	2	0	4	15
Totals	36		33	0	69						29	41		0	70		47	28	0	75	214

Comments:

OC Transpo and Para Transpo buses, private buses and school buses comprise 44.86% of the heavy vehicle traffic.

Prepared by: thetrafficspecialist@gmail.com

Summary: Heavy Vehicles

Printed on: 11/1/2023

Turning Movement Count TRUSTED TRAFFIC DATA All Buses Summary (FHWA Class 4 ONLY) Flow Diagram Cummings Avenue & Donald Street Ottawa, ON **Buses ONLY** Thursday, October 26, 2023 Ave. (Transit, Intercity, School Buses & Other Buses). Bus totals <u>ARE</u> included in the all vehicles summary, heavy 80 0700-1000, 1130-1330 & 1500-1800 sbu 46 8 Hour Survey vehicle summary & flow City of Ottawa Ward ► 11 diagrams. **Donald St** Total bus volume. all approaches. (A + B + C) 27 All Buses 66 comprise 9 6 1.22% of Total Traffic and 39 44.86% of the Heavy Vehicle Traffic → 39 (B) All Pedestrian Crossings Ave 48 19 Cummings 23 23 (C) 8 例料林林 46 Total 111

		Do	nald	St.				N/A			(Cumr	nings	s Ave			Cumr	nings	Ave		
		Ea	stbou	nd			W	estbou	Ind			No	rthbou	und			So	uthbou	ind		
Time Period	LT	ST	RT	UT	EB Tot	LT	ST	RT	UT	WB Tot	LT	ST	RT	UT	NB Tot	LT	ST	RT	UT	SB Tot	GR To
0700-0800	5		1	0	6						3	3		0	6		1	4	0	5	17
0800-0900	2		5	0	7						0	3		0	3		0	4	0	4	14
0900-1000	2		1	0	3						0	1		0	1		4	3	0	7	1'
1130-1230	4		0	0	4						0	1		0	1		0	3	0	3	1
1230-1330	2		1	0	3						0	0		0	0		2	2	0	4	
1500-1600	4		2	0	6						1	5		0	6		2	3	0	5	17
1600-1700	4		2	0	6						0	6		0	6		1	2	0	3	1:
1700-1800	4		0	0	4						0	0		0	0		1	2	0	3	
Totals	27		12	0	39						4	19		0	23		11	23	0	34	96

249

Comments:

OC Transpo and Para Transpo buses, private buses and school buses comprise 44.86% of the heavy vehicle traffic.

		Do	nald	રુા.				N/A				Cum	nings	s Ave			Cumr	nings	s Ave	•	
		Ea	stbou	nd			We	estbou	ınd			No	rthbou	ınd			So	uthbou	und		-
Time Period	LT	ST	RT	UT	EB Tot	LT	ST	RT	UT	WB Tot	LT	ST	RT	UT	NB Tot	LT	ST	RT	UT	SB Tot	GR Tot
0700-0800	0		6	0	6						3	0		0	3		4	0	0	4	13
0800-0900	1		4	0	5						3	0		0	3		4	1	0	5	13
0900-1000	0		0	0	0						1	2		0	3		1	1	0	2	5
1130-1230	0		0	0	0						0	2		0	2		1	3	0	4	6
1230-1330	0		0	0	0						0	1		0	1		0	1	0	1	2
1500-1600	1		3	0	4						3	1		0	4		2	0	0	2	10
1600-1700	3		3	0	6						4	3		0	7		0	2	0	2	15
1700-1800	1		0	0	1						6	0		0	6		2	1	0	3	10
Totals	6		16	0	22						20	9		0	29		14	9	0	23	74

Comments:

OC Transpo and Para Transpo buses, private buses and school buses comprise 44.86% of the heavy vehicle traffic.

Printed on: 11/1/2023

Prepared by: thetrafficspecialist@gmail.com

Summary: Bicycles

Printed on: 11/1/2023

0800-0900

0900-1000

1130-1230

1230-1330

1500-1600

1600-1700

1700-1800

Totals

Comments:

OC Transpo and Para Transpo buses, private buses and school buses comprise 44.86% of the heavy vehicle traffic.

Summary: Pedestrian Crossings

Turning Movement Count Summary Report Including Peak Hours, **AADT and Expansion Factors** All Vehicles Except Bicycles

Cummi	ing	s Av	eni	le/L	.abe	lle	Stre	et &	Су	rvill	e Ro	bad									Ot	tawa	, ON
Survey Da	te:	Thurs	day,	Octo	ber 26	, 202	3					Star	t Time	:		0700			AAD	T Fa	ctor:		0.9
Weather AM	Λ:	Overc	ast 14	₽ C		S	urvey	Dura	tion:	8	Hrs.	Surv	ey Ho	ours:		0700-	1000,	1130	-1330	8 15	500-18	300	
Weather PM	/ :	Overc	ast 17	″° C								Surv	veyor(s):		T. Ca	rmody	,					
		Cyr	ville	Rd.			Cyr	ville	Rd.				Lat	oelle	St.		Cu	umm	ing	s Av	e.		
		Ea	stbou	nd			We	stbou	nd				No	rthbou	ind			Sou	thbou	ind			
Time Period	LT	ST	RT	UT	E/B Tot	LT	ST	RT	UT	W/B Tot	Street Total	LT	ST	RT	UT	N/B Tot	LT	ST	RT	UT	S/B Tot	Street Total	Grand Total
0700-0800	11	155	24	0	190	71	228	106	0	405	595	1	8	31	0	40	113	21	8	0	142	182	77
0800-0900	20	205	39	0	264	104	359	155	0	618	882	6	14	26	0	46	125	43	21	0	189	235	111
0900-1000	17	210	25	0	252	40	227	152	0	419	671	1	16	29	0	46	155	20	18	0	193	239	91
1130-1230	48	295	21	0	364	54	244	203	0	501	865	11	28	41	0	80	180	37	30	0	247	327	119
1230-1330	46	315	19	0	380	45	223	188	0	456	836	8	16	22	0	46	180	37	35	0	252	298	113
1500-1600	71	404	13	0	488	72	238	229	0	539	1027	7	45	45	0	97	223	42	27	0	292	389	141
1600-1700	60	476	17	0	553	70	299	259	0	628	1181	10	52	68	0	130	215	46	32	0	293	423	160
1700-1800	81	367	14	0	462	71	241	232	0	544	1006	3	23	29	0	55	168	27	18	0	213	268	127
Totals	354	2427	172	0	2953	527	2059	1524	0	4110	7063	47	202	291	0	540	1359	273	189	0	1821	2361	942

Equivalent 12 & 24-hour Vehicle Volumes Including the Annual Average Daily Traffic (AADT) Factor Applicable to the Day and Month of the Turning Movement Count

Expansion factors are applied exclusively to standard weekday 8-hour turning movement counts

conducted during the hours of 0700h - 1000h, 1130h - 1330h and 1500h - 1800h

		Equiva	alent 12-	-hour	vehicle	volume	s. Thes	e volum	es are	calcula	ated by n	nultiply	ing the	8-hour	totals b	by the 8	i ➡12 e	xpansio	on facto	or of 1.	39		
Equ. 12 Hr	492	3374	239	0	4105	733	2862	2118	0	5713	9818	65	281	404	0	751	1889	379	263	0	2531	3282	13099
		A۱	verage o	daily 1	2-hour	vehicle	volume	es. These	e volu	mes are	calculat	ted by ı	multiply	ing the	equiva	lent 12	-hour to	tals by	the AA	DT fac	tor of: ().9	
AADT 12-hr	443	3036	215	0	3694	659	2576	1907	0	5142	8836	59	253	364	0	676	1700	342	236	0	2278	2954	11789
	24	-Hour A	ADT. T	hese	volume	s are ca	lculate	d by mul	tiplyin	ng the a	verage d	laily 12	hour ve	hicle vo	olumes	by the	12 +24	1 expan	ision fa	ctor of	1.31		
AADT 24 Hr	580	3977	282	0	4839	864	3374	2498	0	6736	11575	77	331	477	0	885	2227	447	310	0	2984	3869	15444

AADT and expansion factors provided by the City of Ottawa

AM Peak Ho	our Fa	ctor 🗖		0.	91									Hig	hes	t Hour	ly Vehi	cle Vo	lume	Betv	veen (700h 8	1000h
AM Peak Hr	LT	ST	RT	UT	Total	LT	ST	RT	UT	Total	Str. Tot.	LT	ST	RT	UT	Total	LT	ST	RT	UT	Total	Str. Tot.	Gr. Tot.
0745-0845	21	201	37	0	259	111	367	158	0	636	895	5	13	31	0	49	127	41	20	0	188	237	1132
OFF Peak H	our Fa	actor	•	0.	95									Hig	hes	t Hour	ly Vehi	cle Vo	lume	Betv	veen 1	130h &	. 1330h
OFF Peak Hr	LT	ST	RT	UT	Total	LT	ST	RT	UT	Total	Str. Tot.	LT	ST	RT	UT	Total	LT	ST	RT	UT	Total	Str. Tot.	Gr. Tot.
1200-1300	51	317	22	0	390	53	237	192	0	482	872	11	24	41	0	76	190	35	34	0	259	335	1207
PM Peak Ho	our Fao	ctor 🗖		0.	96									Hig	hes	t Hour	ly Vehi	cle Vo	lume	Betv	veen 1	500h 8	1800h
PM Peak Hr	LT	ST	RT	UT	Total	LT	ST	RT	UT	Total	Str. Tot.	LT	ST	RT	UT	Total	LT	ST	RT	UT	Total	Str. Tot.	Gr. Tot.
1600-1700	60	476	17	0	553	70	299	259	0	628	1181	10	52	68	0	130	215	46	32	0	293	423	1604

Comments:

OC Transpo and Para Transpo buses, private buses and school buses comprise 12.22% of the heavy vehicle traffic.

Notes:

1. Includes all vehicle types except bicycles, electric bicycles, and electric scooters.

2. When expansion and AADT factors are applied, the results will differ slightly due to rounding.

Printed on: 11/1/2023

Prepared by: thetrafficspecialist@gmail.com

Summary: All Vehicles

a 5 ----

Printed on: 11/1/2023

Prepared by: thetrafficspecialist@gmail.com

Summary: Heavy Vehicles

Comments:

OC Transpo and Para Transpo buses, private buses and school buses comprise 12.22% of the heavy vehicle traffic.

Prepared by: thetrafficspecialist@gmail.com

Summary: Buses Only

Turning Movement Count Bicycle Summary Flow Diagram

Ottawa, ON

Cummings Avenue/Labelle Street & Cyrville Road

Time Period	LI	SI	RI	UI	EB Iot	LI	SI	RI	01	WB lot	LI	SI	RI	UI	NB 1 ot	LI	SI	RI	UI	SBIot	GR Iot
0700-0800	0	4	1	0	5	1	0	0	0	1	0	0	1	0	1	1	0	0	0	1	8
0800-0900	0	2	0	0	2	0	3	1	0	4	0	0	0	0	0	3	0	0	0	3	9
0900-1000	0	2	0	0	2	0	2	0	0	2	0	0	0	0	0	0	0	0	0	0	4
1130-1230	0	4	0	0	4	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	5
1230-1330	0	1	0	0	1	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	2
1500-1600	0	2	0	0	2	0	2	1	0	3	0	0	1	0	1	1	0	0	0	1	7
1600-1700	0	12	0	0	12	1	2	0	0	3	1	1	2	0	4	0	0	0	0	0	19
1700-1800	0	2	0	0	2	0	2	2	0	4	0	0	0	0	0	2	0	0	0	2	8
Totals	0	29	1	0	30	2	13	4	0	19	1	1	4	0	6	7	0	0	0	7	62

Comments:

OC Transpo and Para Transpo buses, private buses and school buses comprise 12.22% of the heavy vehicle traffic.

Printed on: 11/1/2023

Turning Movement Count Pedestrian Crossings Summary and Flow Diagram

Time Period	West Side Crossing	East Side Crossing	Street	South Side Crossing	North Side Crossing	Street	Grand
Time Periou	Cyrville Rd.	Cyrville Rd.	Total	Labelle St.	Cummings Ave.	Total	Total
0700-0800	0	4	4	1	2	3	7
0800-0900	2	2	4	4	4	8	12
0900-1000	2	0	2	2	6	8	10
1130-1230	3	8	11	1	10	11	22
1230-1330	5	9	14	8	7	15	29
1500-1600	0	15	15	0	10	10	25
1600-1700	2	18	20	10	16	26	46
1700-1800	8	15	23	5	21	26	49
Totals	22	71	93	31	76	107	200

Comments:

OC Transpo and Para Transpo buses, private buses and school buses comprise 12.22% of the heavy vehicle traffic.

Prepared by: thetrafficspecialist@gmail.com

Summary: Pedestrian Crossings

Diagrams, Maps and Photographs

Cyrville Road & Ogilvie Road

Thursday, October 26, 2023

Printed on: 11/1/2023

thetrafficspecialist@gmail.com

Diagrams, Maps and Photographs

ACCURATE TRUSTED TRAFFIC DATA

Turning Movement Count Summary Report Including Peak Hours, AADT and Expansion Factors All Vehicles Except Bicycles

Equivalent 12 & 24-hour Vehicle Volumes including the Annual Average Daily Traffic (AADT) Factor Applicable to the Day and Month of the Turning Movement Count

Expansion factors are applied exclusively to standard <u>weekday</u> 8-hour turning movement counts

conducted during the hours of 0700h - 1000h, 1130h - 1330h and 1500h - 1800h

Equ. 12 Hr	6		juiva 69		-hou 1			e volum 1500		ted by mu 18380				on facto 1183	9 3934	7156	25536
AADT 12-hr	5	68		•	daily 1	hour v 8584		s. These 1350	e volu 9	calculate 16542				the AAI 1065	or of: (3540		22982
AADT 24 Hr	: 7			AADT. 1 2314		olumes 1246		i by mu l 1768		erage dai 21670					1.31 4638	8437	30107

AADT and expansion factors provided by the City of Ottawa

AM Peak Ho	our Fa	ctor <	•	0.	.93									Hig	nest	Hourly	y Vehi	cle Vo	lume	Betv	veen (700h 8	1000h
AM Peak Hr	LT	ST	RT	UT	Total	LT	ST	RT	UT	Total	Str. Tot.	LT	ST	RT	UT	Total	LT	ST	RT	UT	Total	Str. Tot.	Gr. Tot.
0800-0900	0	576	135	0	711	34	740	134	0	908	1619	149	187	26	0	362	47	105	43	1	196	558	2177
OFF Peak H	our Fa	actor	•	0.	.97									Higl	nest	Hourly	y Vehi	cle Vo	lume	Betv	veen 1	130h 8	1330h
OFF Peak Hr	LT	ST	RT	UT	Total	LT	ST	RT	UT	Total	Str. Tot.	LT	ST	RT	UT	Total	LT	ST	RT	UT	Total	Str. Tot.	Gr. Tot.
1200-1300	2	668	207	0	877	41	589	151	0	781	1658	94	151	36	0	281	105	145	136	0	386	667	2325
PM Peak Ho	our Fa	ctor 🗖	•	0.	.95									Hig	nest	Hourly	y Vehi	cle Vo	lume	Betv	veen 1	500h 8	1800h
PM Peak Hr	LT	ST	RT	UT	Total	LT	ST	RT	UT	Total	Str. Tot.	LT	ST	RT	UT	Total	LT	ST	RT	UT	Total	Str. Tot.	Gr. Tot.
1615-1715	1	966	255	0	1222	32	703	149	1	885	2107	91	233	24	0	348	147	243	140	0	530	878	2985

Comments:

OC Transpo and Para Transpo buses, private buses and school buses comprise 33.16% of the heavy vehicle traffic. The east side pedestrian crossings totals include all pedestrians crossing Ogilvie Road between Cyrville Road & the pedestrian pathway to the Ogilvie Court townhouses as the origin & destination of all pedestrians crossings to and from this pathway is the OC Transpo bus stop on the southeast corner of Cyrville Road & Ogilvie Road.

Notes:

1. Includes all vehicle types except bicycles, electric bicycles, and electric scooters.

2. When expansion and AADT factors are applied, the results will differ slightly due to rounding.

Printed on: 11/1/2023

Prepared by: thetrafficspecialist@gmail.com

Summary: All Vehicles

a to ====

OC Transpo and Para Transpo buses, private buses and school buses comprise 33.16% of the heavy vehicle traffic. The east side pedestrian crossings totals include all pedestrians crossing Ogilvie Road between Cyrville Road & the pedestrian pathway to the Ogilvie Court townhouses as the origin & destination of all pedestrians crossings to and from this pathway is the OC Transpo bus stop on the southeast corner of Cyrville Road & Ogilvie Road.

Printed on: 11/1/2023

Prepared by: thetrafficspecialist@gmail.com

Summary: Heavy Vehicles

-		Eas	stbou	und			We	stbo	und			Nor	thbo	und			Sou	thbo	und		-
Time Period	LT	ST	RT	UT	EB Tot	LT	ST	RT	UT	WB Tot	LT	ST	RT	UT	NB Tot	LT	ST	RT	UT	SB Tot	GR To
0700-0800	0	8	1	0	9	2	6	2	0	10	1	1	0	0	2	1	0	1	0	2	23
0800-0900	0	8	3	0	11	3	10	1	0	14	3	1	8	0	12	1	1	1	0	3	40
0900-1000	0	4	0	0	4	0	7	0	0	7	0	1	0	0	1	0	3	2	0	5	1
1130-1230	0	7	3	0	10	1	8	1	0	10	1	0	0	0	1	1	1	0	0	2	23
1230-1330	0	5	1	0	6	0	4	0	0	4	0	0	0	0	0	1	0	1	0	2	1
1500-1600	0	16	2	0	18	0	14	1	0	15	0	0	1	0	1	1	0	0	0	1	3
1600-1700	0	9	1	0	10	0	8	0	0	8	0	1	0	0	1	0	2	0	0	2	21
1700-1800	0	7	3	0	10	0	7	1	0	8	0	0	0	0	0	0	1	1	0	2	20
Totals	0	64	14	0	78	6	64	6	0	76	5	4	9	0	18	5	8	6	0	19	191

Comments:

OC Transpo and Para Transpo buses, private buses and school buses comprise 33.16% of the heavy vehicle traffic. The east side pedestrian crossings totals include all pedestrians crossing Oglivie Road between Cyrville Road & the pedestrian pathway to the Oglivie Court townhouses as the origin & destination of all pedestrians crossings to and from this pathway is the OC Transpo bus stop on the southeast corner of Cyrville Road & Oglivie Road.

Printed on: 11/1/2023

Prepared by: thetrafficspecialist@gmail.com

Summary: Buses Only

Turning Movement Count Bicycle Summary Flow Diagram

Ottawa, ON

Cyrville Road & Ogilvie Road

		Og	jilvie F	۲d.			00	jilvie F	Rd.			Су	rville l	Rd.			Су	rville l	Rd.		1
		Ea	stbou	nd			We	estbou	ind		-	No	rthbou	Ind			So	uthbou	und		
Time Period	LT	ST	RT	UT	EB Tot	LT	ST	RT	UT	WB Tot	LT	ST	RT	UT	NB Tot	LT	ST	RT	UT	SB Tot	GR To
0700-0800	0	9	2	0	11	0	7	0	0	7	0	1	1	0	2	1	3	2	0	6	26
0800-0900	0	15	3	0	18	0	12	0	0	12	2	1	1	0	4	1	1	1	0	3	37
0900-1000	0	6	1	0	7	0	1	0	0	1	0	1	1	0	2	1	1	0	0	2	12
1130-1230	0	2	1	0	3	0	4	1	0	5	1	0	0	0	1	3	2	0	0	5	14
1230-1330	0	4	1	0	5	2	4	1	0	7	0	2	0	0	2	1	0	0	0	1	1:
1500-1600	0	3	3	0	6	0	7	0	0	7	1	1	0	0	2	0	1	0	0	1	10
1600-1700	0	8	7	0	15	0	8	0	0	8	3	2	0	0	5	0	7	0	0	7	35
1700-1800	0	10	1	0	11	1	5	0	0	6	1	6	0	0	7	1	0	0	0	1	2
Totals	0	57	19	0	76	3	48	2	0	53	8	14	3	0	25	8	15	3	0	26	18

Comments:

OC Transpo and Para Transpo buses, private buses and school buses comprise 33.16% of the heavy vehicle traffic. The east side pedestrian crossings totals include all pedestrians crossing Oglivie Road between Cyrville Road & the pedestrian pathway to the Oglivie Court townhouses as the origin & destination of all pedestrians crossings to and from this pathway is the OC Transpo bus stop on the southeast corner of Cyrville Road & Oglivie Road.

Printed on: 11/1/2023

Summary: Bicycles

Turning Movement Count Pedestrian Crossings Summary and Flow Diagram

Time Period	West Side Crossing	East Side Crossing	Street	South Side Crossing	North Side Crossing	Street	Grand
Time Period	Ogilvie Rd.	Ogilvie Rd.	Total	Cyrville Rd.	Cyrville Rd.	Total	Total
0700-0800	3	24	27	10	10	20	47
0800-0900	4	103	107	5	6	11	118
0900-1000	2	16	18	3	7	10	28
1130-1230	3	18	21	7	6	13	34
1230-1330	10	16	26	13	12	25	51
1500-1600	5	19	24	21	10	31	55
1600-1700	14	26	40	18	38	56	96
1700-1800	4	36	40	21	19	40	80
Totals	45	258	303	98	108	206	509

Comments:

OC Transpo and Para Transpo buses, private buses and school buses comprise 33.16% of the heavy vehicle traffic. The east side pedestrian crossings totals include all pedestrians crossing Ogilvie Road between Cyrville Road & the pedestrian pathway to the Ogilvie Court townhouses as the origin & destination of all pedestrians crossings to and from this pathway is the OC Transpo bus stop on the southeast corner of Cyrville Road & Ogilvie Road.

Printed on: 11/1/2023

Prepared by: thetrafficspecialist@gmail.com

Summary: Pedestrian Crossings

Appendix C

Synchro Intersection Worksheets – Existing Conditions

Lanes, Volumes, Timings
1: Cummings Ave & Donald

	۶	\mathbf{r}	1	Ť	Ť	4
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	٦	1	7	↑	f,	
Traffic Volume (vph)	56	166	225	147	184	92
Future Volume (vph)	56	166	225	147	184	92
Satd. Flow (prot)	1626	1455	1658	1695	1640	0
Fit Permitted	0.950		0.574			
Satd. Flow (perm)	1626	1455	1002	1695	1640	0
Satd. Flow (RTOR)		184			62	
Lane Group Flow (vph)	62	184	250	163	306	0
Turn Type	Perm	Perm	Perm	NA	NA	5
Protected Phases				2	6	
Permitted Phases	4	4	2	2	5	
Detector Phase	4	4	2	2	6	
Switch Phase		-	2	2	5	
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	
Minimum Split (s)	22.0	22.0	39.9	39.9	39.9	
Total Split (s)	22.0	22.0	39.9	39.9	39.9	
Total Split (%)	35.5%	35.5%	64.5%	64.5%	64.5%	
Yellow Time (s)	35.5%	35.5%	04.5% 3.3	04.5% 3.3	04.5% 3.3	
All-Red Time (s)	3.3 2.7	3.3 2.7	3.6	3.6	3.6	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	_
Total Lost Time (s)	6.0	6.0	6.9	6.9	6.9	
Lead/Lag	0.0	0.0	0.9	0.9	0.9	
Lead-Lag Optimize?						
Recall Mode	None	None	Мах	Max	Max	_
Act Effct Green (s)	10.2	10.2	37.5	37.5	37.5	
Actuated g/C Ratio	0.18	0.18	0.67	0.67	0.67	
v/c Ratio	0.18	0.18	0.67	0.67	0.67	
Control Delav	21.5	7.7	8.2	5.6	5.2	_
Queue Delay	0.0	0.0	0.0	0.0	0.0	_
Total Delay	21.5	7.7	8.2	5.6	5.2	
LOS	C	A	A	A	A 5.2	_
Approach Delay	11.2			7.2		
Approach LOS	B	0.0	44.0	A	A	
Queue Length 50th (m)	5.4	0.0	11.9	6.5	10.2	
Queue Length 95th (m)	13.8	13.2	26.5	13.7	21.5	
Internal Link Dist (m)	296.9		00.0	237.9	259.3	
Turn Bay Length (m)	60.0	E 4 -	60.0	440-	1110	
Base Capacity (vph)	465	547	671	1135	1119	
Starvation Cap Reductn	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	
Reduced v/c Ratio	0.13	0.34	0.37	0.14	0.27	
Intersection Summary						
Cycle Length: 61.9						
Actuated Cycle Length: 55.9	9					
Natural Cycle: 65	- 					
Control Type: Actuated-Unc	coordinated					
Maximum v/c Ratio: 0.44						

Synchro 11 Report Page 1

01/22/2025

Lanes, Volumes, Timings 1: Cummings Ave & Donald		01/22/2025
Intersection Signal Delay: 7.6	Intersection LOS: A	
Intersection Capacity Utilization 54.1%	ICU Level of Service A	
Analysis Period (min) 15		

Splits and Phases: 1: Cummings Ave & Donald

₫ ø2	✓ Ø4	
39.9 s	22 s	
↓ Ø6		
39.9 s		

Scenario 1 1137 Ogilvie AM Peak Hour Existing

Synchro 11 Report Page 2

Lanes, Volumes, Timings	
2: Cyrville Rd & Ogilvie Rd	

	≯	-	\mathbf{r}	4	+		-	1	1	1	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations		^	1	٦	^	1	1	ĥ		۲	¢Î	
Traffic Volume (vph)	0	576	135	34	740	134	149	187	26	48	105	43
Future Volume (vph)	0	576	135	34	740	134	149	187	26	48	105	43
Satd. Flow (prot)	0	3252	1427	1551	3316	1455	1580	1592	0	1566	1570	C
Flt Permitted				0.395			0.573			0.418		
Satd. Flow (perm)	0	3252	1338	638	3316	1301	947	1592	0	687	1570	C
Satd. Flow (RTOR)			150			149		6			17	
Lane Group Flow (vph)	0	640	150	38	822	149	166	237	0	53	165	(
Turn Type		NA	Perm	Perm	NA	Perm	Perm	NA		Perm	NA	
Protected Phases		2			6			8			4	
Permitted Phases			2	6		6	8			4		
Detector Phase		2	2	6	6	6	8	8		4	4	
Switch Phase												
Minimum Initial (s)		10.0	10.0	10.0	10.0	10.0	10.0	10.0		10.0	10.0	
Minimum Split (s)		32.2	32.2	32.2	32.2	32.2	47.1	47.1		47.1	47.1	
Total Split (s)		80.0	80.0	80.0	80.0	80.0	50.0	50.0		50.0	50.0	
Total Split (%)		61.5%	61.5%	61.5%	61.5%	61.5%	38.5%	38.5%		38.5%	38.5%	
Yellow Time (s)		3.7	3.7	3.7	3.7	3.7	3.7	3.7		3.7	3.7	
All-Red Time (s)		2.5	2.5	2.5	2.5	2.5	3.4	3.4		3.4	3.4	
Lost Time Adjust (s)		0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Lost Time (s)		6.2	6.2	6.2	6.2	6.2	7.1	7.1		7.1	7.1	
Lead/Lag												
Lead-Lag Optimize?												
Recall Mode		C-Max	C-Max	C-Max	C-Max	C-Max	None	None		None	None	
Act Effct Green (s)		89.7	89.7	89.7	89.7	89.7	27.0	27.0		27.0	27.0	
Actuated g/C Ratio		0.69	0.69	0.69	0.69	0.69	0.21	0.21		0.21	0.21	
v/c Ratio		0.29	0.15	0.09	0.36	0.16	0.85	0.71		0.37	0.49	
Control Delay		9.2	2.0	2.2	1.9	0.3	81.9	57.0		48.6	43.6	
Queue Delay		0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Delay		9.2	2.0	2.2	1.9	0.3	81.9	57.0		48.6	43.6	
LOS		А	А	А	А	А	F	E		D	D	
Approach Delay		7.9			1.7			67.3			44.8	
Approach LOS		A			А			E			D	
Queue Length 50th (m)		29.8	0.0	0.4	3.9	0.0	41.5	55.9		11.8	33.9	
Queue Length 95th (m)		53.3	8.5	m1.1	20.3	m0.4	60.3	73.2		21.7	48.4	
Internal Link Dist (m)		113.5			313.9			407.2			190.6	
Turn Bay Length (m)				62.0		71.0	50.0			82.0		
Base Capacity (vph)		2244	970	440	2288	944	312	529		226	529	
Starvation Cap Reductn		0	0	0	0	0	0	0		0	0	
Spillback Cap Reductn		0	0	0	0	0	0	0		0	0	
Storage Cap Reductn		0	0	0	0	0	0	0		0	0	
Reduced v/c Ratio		0.29	0.15	0.09	0.36	0.16	0.53	0.45		0.23	0.31	
Intersection Summary Cycle Length: 130												
Actuated Cycle Length: 130												
Offset: 10 (8%), Referenced	to phase	2:EBT an	d 6:WBTI	., Start of	Green							
Natural Cycle: 80												
Control Type: Actuated-Coo	rdinated											

Synchro 11 Report Page 3

01/22/2025

Lanes, Volumes, Timings 2: Cyrville Rd & Ogilvie Rd

Maximum v/c Ratio: 0.85		
Intersection Signal Delay: 18.5	Intersection LOS: B	
Intersection Capacity Utilization 70.1%	ICU Level of Service C	
Analysis Period (min) 15		

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 2: Cyrville Rd & Ogilvie Rd

● → Ø2 (R)	↓ ™ø4	
80 s	50 s	
Ø6 (R)	Ø8	
80 s	50 s	

Scenario 1 1137 Ogilvie AM Peak Hour Existing

	≯	-	\mathbf{i}	1	+		1	1	1	1	÷.	*
ane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SE
ane Configurations	٦	≜ 1≱		5	≜ 1≯		3	¢Î		<u> </u>	ĥ	
raffic Volume (vph)	72	598	13	108	1042	209	17	124	77	167	109	1
Future Volume (vph)	72	598	13	108	1042	209	17	124	77	167	109	1
Satd, Flow (prot)	1580	3265	0	1642	3168	0	1658	1545	0	1642	1602	
It Permitted	0.091			0.339			0.613			0.373		
Satd. Flow (perm)	151	3265	0	577	3168	0	1065	1545	0	619	1602	
Satd. Flow (RTOR)		2	-		26	-		22			38	
ane Group Flow (vph)	80	678	0	120	1390	0	19	224	0	186	233	
Furn Type	pm+pt	NA	-	pm+pt	NA	-	Perm	NA	-	pm+pt	NA	
Protected Phases	5	2		1	6			8		7	4	
Permitted Phases	2	_		6	-		8	-		4		
Detector Phase	5	2		1	6		8	8		7	4	
Switch Phase	Ŭ	-						,				
Vinimum Initial (s)	5.0	10.0		5.0	10.0		10.0	10.0		5.0	10.0	
Vinimum Split (s)	9.7	24.7		9.7	24.7		36.6	36.6		9.3	36.6	
Fotal Split (s)	11.0	71.0		11.0	71.0		36.6	36.6		11.4	48.0	
Fotal Split (%)	8.5%	54.6%		8.5%	54.6%		28.2%	28.2%		8.8%	36.9%	
fellow Time (s)	3.7	3.7		3.7	3.7		3.3	3.3		3.3	3.3	
All-Red Time (s)	1.0	2.0		1.0	2.0		3.3	3.3		1.0	3.3	
ost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Fotal Lost Time (s)	4.7	5.7		4.7	5.7		6.6	6.6		4.3	6.6	
_ead/Lag	Lead	Lag		Lead	Lag		Lag	Lag		Lead	0.0	
_ead-Lag Optimize?	Yes	Yes		Yes	Yes		Yes	Yes		Yes		
Recall Mode	None	C-Max		None	C-Max		None	None		None	None	
Act Effct Green (s)	75.7	68.5		75.9	68.6		26.8	26.8		40.5	38.2	
Actuated g/C Ratio	0.58	0.53		0.58	0.53		0.21	0.21		0.31	0.29	
/c Ratio	0.51	0.39		0.31	0.83		0.09	0.67		0.75	0.47	
Control Delay	35.1	16.7		13.8	29.9		40.5	52.2		55.4	33.6	
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Fotal Delay	35.1	16.7		13.8	29.9		40.5	52.2		55.4	33.6	
_OS	D	10.7 B		B	20.0 C		40.5 D	52.2 D		55.4 E	00.0 C	
Approach Delay	U	18.7		D	28.7		U	51.3		L	43.3	
Approach LOS		10.7 B			20.7 C			51.5 D			43.3 D	
Queue Length 50th (m)	7.7	45.3		13.6	180.2		3.9	46.6		35.6	39.3	
Queue Length 95th (m)	26.2	52.8			m209.8		10.7	73.9		#58.9	63.3	
nternal Link Dist (m)	20.2	313.9		11113.0	393.6		10.7	302.0		#30.3	237.9	
Furn Bay Length (m)	80.0	010.0		100.0	333.0		34.0	302.0		153.0	201.0	
Base Capacity (vph)	157	1720		388	1683		245	373		248	536	
Starvation Cap Reductn	0	0		0	0		240	0		240	0	
Spillback Cap Reductn	0	0		0	0		0	0		0	0	
Storage Cap Reductin	0	0		0	0		0	0		0	0	
Reduced v/c Ratio	0.51	0.39		0.31	0.83		0.08	0.60		0.75	0.43	
	0.01	0.39		0.31	0.03		0.00	0.00		0.75	0.43	
ntersection Summary												
Actuated Cycle Length: 130 Offset: 110 (85%), Reference		e 2'FBTI	and 6·W	BTI Sta	rt of Green	1						

Synchro 11 Report Page 5

 3: Cummings Ave & Ogilvie Rd
 01/22/2025

 Maximum v/c Ratio: 0.83
 Intersection Signal Delay: 30.0
 Intersection LOS: C

 Intersection Capacity Utilization 92.5%
 ICU Level of Service F
 Analysis Period (min) 15

 # 95th percentile volume exceeds capacity, queue may be longer.
 Queue shown is maximum after two cycles.
 m

 w Volume for 95th percentile queue is metered by upstream signal.
 m
 Second Second

Splits and Phases: 3: Cummings Ave & Ogilvie Rd

Lanes, Volumes, Timings

√ Ø1 ↓ → Ø2 (R)	₩ Ø4
11s 71s	48 s
▶ Ø5 U 100 (R)	₩Ø7 1 Ø8
11s 71s	11.4 s 36.6 s

Scenario 1 1137 Ogilvie AM Peak Hour Existing

Synchro 11 Report Page 6

4: Aviation & Ogilvie Rd

	≯	+	*	4	Ļ	•	•	Ť	1	1	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations	٦	† †	1	٦	† †	1	3	≜ †}		5	ŧ₽	
Traffic Volume (vph)	340	471	78	119	523	125	204	457	219	162	323	27
Future Volume (vph)	340	471	78	119	523	125	204	457	219	162	323	27
Satd. Flow (prot)	1658	3252	1483	1626	3283	1483	1658	3153	0	1658	3087	
Flt Permitted	0.273			0.435			0.950			0.950		
Satd. Flow (perm)	476	3252	1483	745	3283	1483	1658	3153	0	1658	3087	1
Satd. Flow (RTOR)			164			164		63			147	
Lane Group Flow (vph)	378	523	87	132	581	139	227	751	0	180	667	
Turn Type	pm+pt	NA	Perm	pm+pt	NA	Perm	Prot	NA		Prot	NA	
Protected Phases	5	2		1	6		7	4		3	8	
Permitted Phases	2		2	6		6						
Detector Phase	5	2	2	1	6	6	7	4		3	8	
Switch Phase												
Minimum Initial (s)	5.0	10.0	10.0	5.0	10.0	10.0	5.0	10.0		5.0	10.0	
Minimum Split (s)	9.7	34.1	34.1	9.7	34.1	34.1	10.9	30.1		10.9	30.1	
Total Split (s)	20.0	47.0	47.0	20.0	47.0	47.0	32.9	45.0		18.0	30.1	
Total Split (%)	15.4%	36.2%	36.2%	15.4%	36.2%	36.2%	25.3%	34.6%		13.8%	23.2%	
Yellow Time (s)	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7		3.7	3.7	
All-Red Time (s)	1.0	2.4	2.4	1.0	2.4	2.4	2.2	2.4		2.2	2.4	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Lost Time (s)	4.7	6.1	6.1	4.7	6.1	6.1	5.9	6.1		5.9	6.1	
Lead/Lag	Lead	Lag	Lag	Lead	Lag	Lag	Lead	Lag		Lead	Lag	
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		Yes	Yes	
Recall Mode	None	C-Max	C-Max	None	C-Max	C-Max	None	None		None	None	
Act Effct Green (s)	63.5	47.7	47.7	53.7	40.9	40.9	22.2	36.1		12.1	26.0	
Actuated q/C Ratio	0.49	0.37	0.37	0.41	0.31	0.31	0.17	0.28		0.09	0.20	
v/c Ratio	0.95	0.44	0.13	0.34	0.56	0.24	0.80	0.82		1.17	0.91	
Control Delay	71.1	33.3	3.3	21.7	39.7	3.9	72.5	47.8		175.5	56.6	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Delay	71.1	33.3	3.3	21.7	39.7	3.9	72.5	47.8		175.5	56.6	
LOS	E	С	А	С	D	А	E	D		F	E	
Approach Delay		45.1			31.0			53.5			81.9	
Approach LOS		D			С			D			F	
Queue Length 50th (m)	~91.1	52.5	0.8	18.7	65.1	0.0	56.1	84.7		~54.7	69.4	
Queue Length 95th (m)	#127.8	72.3	m5.0	31.1	83.8	9.7	81.6	108.2		#100.5	#111.2	
Internal Link Dist (m)		393.6			270.9			298.0			298.9	
Turn Bay Length (m)	80.0		65.0	50.0		60.0	100.0			110.0		
Base Capacity (vph)	397	1192	647	433	1032	578	344	987		154	735	
Starvation Cap Reductn	0	0	0	0	0	0	0	0		0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0		0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0		0	0	
Reduced v/c Ratio	0.95	0.44	0.13	0.30	0.56	0.24	0.66	0.76		1.17	0.91	
Intersection Summary Cycle Length: 130 Actuated Cycle Length: 130 Offset: 105 (81%), Referen Natural Cycle: 105 Control Type: Actuated-Coo	ced to phas	e 2:EBTL	. and 6:W	BTL, Sta	rt of Gree	n						

Synchro 11 Report Page 7

01/22/2025

Lanes, Volumes, Timings 4: Aviation & Ogilvie Rd		01/22/202		
Maximum v/c Ratio: 1.17				
Intersection Signal Delay: 52.6	Intersection LOS: D			
Intersection Capacity Utilization 84.9%	ICU Level of Service E			
Analysis Period (min) 15				
~ Volume exceeds capacity, queue is theoretically	infinite.			
Queue shown is maximum after two cycles.				
# 95th percentile volume exceeds capacity, queue may be longer.				
Queue shown is maximum after two cycles.				
m Volume for 95th percentile queue is metered by	upstream signal.			

Splits and Phases: 4: Aviation & Ogilvie Rd

Ø1	🚽 🗘 🖉 2 (R)	Ø3	1 Ø4
20 s	47 s	18 s	45 s
	🔮 🖉 Ø6 (R)	* Ø7	
20 s	47 s	32.9 s	30.1 s

Scenario 1 1137 Ogilvie AM Peak Hour Existing

Synchro 11 Report Page 8
Lanes, Volumes, Timings 5: Labelle St/Cummings Ave & Cyrville Rd

	≯	-	$\mathbf{\hat{z}}$	4	+	*	1	1	1	1	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	5	4Î		٦	ĥ		۲	4Î		٦	4Î	
Traffic Volume (vph)	21	201	37	111	367	158	5	13	31	127	41	20
Future Volume (vph)	21	201	37	111	367	158	5	13	31	127	41	20
Satd. Flow (prot)	1537	1635	0	1610	1586	0	1658	1358	0	1610	1528	0
Flt Permitted	0.237			0.596			0.713			0.560		
Satd. Flow (perm)	380	1635	0	994	1586	0	1230	1358	0	834	1528	0
Satd. Flow (RTOR)		19			31			34			22	
Lane Group Flow (vph)	23	264	0	123	584	0	6	48	0	141	68	0
Turn Type	pm+pt	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases	5	2			6			8			4	
Permitted Phases	2			6			8			4		
Detector Phase	5	2		6	6		8	8		4	4	
Switch Phase												
Minimum Initial (s)	5.0	10.0		10.0	10.0		10.0	10.0		10.0	10.0	
Minimum Split (s)	11.3	34.3		34.3	34.3		22.5	22.5		22.5	22.5	
Total Split (s)	15.0	42.0		42.0	42.0		23.0	23.0		23.0	23.0	
Total Split (%)	17.6%	49.4%		49.4%	49.4%		27.1%	27.1%		27.1%	27.1%	
Yellow Time (s)	3.7	3.7		3.7	3.7		3.3	3.3		3.3	3.3	
All-Red Time (s)	2.6	2.6		2.6	2.6		2.2	2.2		2.2	2.2	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)	6.3	6.3		6.3	6.3		5.5	5.5		5.5	5.5	
Lead/Lag	Lead			Lag	Lag		Lag	Lag		Lag	Lag	
Lead-Lag Optimize?	Yes			Yes	Yes		Yes	Yes		Yes	Yes	
Recall Mode	None	Max		Max	Max		None	None		None	None	
Act Effct Green (s)	40.9	40.9		36.2	36.2		14.5	14.5		14.5	14.5	
Actuated q/C Ratio	0.56	0.56		0.50	0.50		0.20	0.20		0.20	0.20	
v/c Ratio	0.07	0.28		0.25	0.72		0.02	0.16		0.84	0.21	
Control Delay	7.9	8.7		14.9	22.8		25.8	14.5		70.5	20.8	
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Delay	7.9	8.7		14.9	22.8		25.8	14.5		70.5	20.8	
LOS	A	A		В	С		С	В		E	С	
Approach Delay		8.7			21.4			15.7			54.3	
Approach LOS		A			С			В			D	
Queue Length 50th (m)	1.4	16.9		8.2	50.8		0.6	1.4		16.7	4.7	
Queue Length 95th (m)	4.3	29.4		25.0	#137.1		3.8	10.4		#52.2	16.4	
Internal Link Dist (m)		407.2			322.8			177.3			302.0	
Turn Bay Length (m)	98.0			67.0			35.0			38.0		
Base Capacity (vph)	355	1166		496	808		301	358		204	391	
Starvation Cap Reductn	0	0		0	0		0	0		0	0	
Spillback Cap Reductn	0	0		0	0		0	0		0	0	
Storage Cap Reductn	0	0		0	0		0	0		0	0	
Reduced v/c Ratio	0.06	0.23		0.25	0.72		0.02	0.13		0.69	0.17	
Intersection Summary												
Cycle Length: 85	-											
Actuated Cycle Length: 72.	5											
Natural Cycle: 75												
Control Type: Semi Act-Uno	coord											
Maximum v/c Ratio: 0.84												

Scenario 1 1137 Ogilvie AM Peak Hour Existing

Synchro 11 Report Page 9

01/22/2025

Lanes, Volumes, Timings 5: Labelle St/Cummings Ave & Cyrville Rd

01/22/2025

Lane Group	Ø3	Ø7
Lane Configurations		
Traffic Volume (vph)		
Future Volume (vph)		
Satd. Flow (prot)		
Flt Permitted		
Satd. Flow (perm)		
Satd. Flow (RTOR)		
Lane Group Flow (vph)		
Turn Type		
Protected Phases	3	7
Permitted Phases		
Detector Phase		
Switch Phase		
Minimum Initial (s)	1.0	1.0
Minimum Split (s)	3.0	3.0
Total Split (s)	5.0	5.0
Total Split (%)	6%	6%
Yellow Time (s)	2.0	2.0
All-Red Time (s)	0.0	0.0
Lost Time Adjust (s)		
Total Lost Time (s)		
Lead/Lag	Lead	Lead
Lead-Lag Optimize?	Yes	Yes
Recall Mode	Max	Max
Act Effct Green (s)		
Actuated q/C Ratio		
v/c Ratio		
Control Delay		
Queue Delay		
Total Delay		
LOS		
Approach Delay		
Approach LOS		
Queue Length 50th (m)		
Queue Length 95th (m)		
Internal Link Dist (m)		
Internal Link Dist (m) Turn Bay Length (m)		
Internal Link Dist (m) Turn Bay Length (m) Base Capacity (vph)		
Internal Link Dist (m) Turn Bay Length (m) Base Capacity (vph) Starvation Cap Reductn		
Internal Link Dist (m) Turn Bay Length (m) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn		
Internal Link Dist (m) Turn Bay Length (m) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn		
Internal Link Dist (m) Turn Bay Length (m) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn		

Scenario 1 1137 Ogilvie AM Peak Hour Existing

Lanes, Volumes, Timings 5: Labelle St/Cummings Ave & Cyr	ville Rd	C	1/22/202
Intersection Signal Delay: 23.7	Intersection LOS: C		
Intersection Capacity Utilization 64.6%	ICU Level of Service C		
Analysis Period (min) 15			
# 95th percentile volume exceeds capacity, queue	e may be longer.		
Queue shown is maximum after two cycles.			
Splits and Phases: 5: Labelle St/Cummings Ave	& Cyrville Rd		
		● ø₃ ↓ ∞ ₉₄	
42 s		5 s 23 s	
≁ _{Ø5} √ Ø6		●ø7 * ↑ø8	
15 s 42 s		5 s 23 s	

Lanes, Volumes, Timings 01/22/2025 1: Cummings Ave & Donald ≯ t ŧ ~ * ᡝ Lane Group EBL EBR NBL NBT SBT SBR Lane Configurations × - 7 1. • Traffic Volume (vph) 87 246 267 301 96 279 Future Volume (vph) 87 279 246 267 301 96 Satd. Flow (prot) 1595 1469 1658 1728 1684 0 Flt Permitted 0.950 0.495 Satd. Flow (perm) 1595 1469 864 1728 1684 Satd. Flow (RTOR) 310 40 Lane Group Flow (vph) 97 310 273 297 441 Turn Type Perm Perm Perm NA NA Protected Phases 2 6 Permitted Phases 4 4 2 Detector Phase 4 4 2 2 6 Switch Phase 10.0 10.0 Minimum Initial (s) 10.0 1.0 1.0 39.9 Minimum Split (s) 22.0 22.0 7.9 7.9 Total Split (s) 22.0 22.0 39.9 39.9 39.9 35.5% 35.5% 64.5% 64.5% 64.5% Total Split (%) 3.3 Yellow Time (s) 3.3 3.3 3.3 3.3 All-Red Time (s) 2.7 2.7 3.6 3.6 3.6 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 Total Lost Time (s) 6.0 6.0 6.9 6.9 6.9 Lead/Lag Lead-Lag Optimize? Recall Mode None None Max Max Max Act Effct Green (s) 33.0 33.0 33.0 10.8 10.8 Actuated g/C Ratio 0.19 0.19 0.58 0.58 0.58 v/c Ratio 0.32 0.59 0.54 0.29 0.44 Control Delay 22.9 7.9 8.0 12.7 7.2 Queue Delay 0.0 0.0 0.0 0.0 0.0 Total Delay 22.9 12.7 8.0 7.2 7.9 LOS С В А Α Α Approach Delay 11.6 9.8 7.9 Approach LOS В Α Α Queue Length 50th (m) 8.7 0.0 14.3 12.8 18.8 38.6 Queue Length 95th (m) 19.4 16.4 27.9 41.6 Internal Link Dist (m) 296.3 237.9 259.3 Turn Bay Length (m) 60.0 60.0 503 Base Capacity (vph) 450 637 1007 997 Starvation Cap Reductn 0 0 0 0 0 Spillback Cap Reductn 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 Reduced v/c Ratio 0.44 0.22 0.49 0.54 0.29 Intersection Summary Cycle Length: 61.9 Actuated Cycle Length: 56.7 Natural Cycle: 65 Control Type: Actuated-Uncoordinated Maximum v/c Ratio: 0.59

Scenario 1 1137 Ogilvie AM Peak Hour Existing

Synchro 11 Report Page 11 Scenario 1 1137 Ogilvie Road PM Peak Hour Existing

Lanes, Volumes, Timings 1: Cummings Ave & Donald		01/22/2025
Intersection Signal Delay: 9.7	Intersection LOS: A	
Intersection Capacity Utilization 62.1%	ICU Level of Service B	
Analysis Period (min) 15		
Splits and Phases: 1: Cummings Ave & Donald		
< ↑ ø2	✓ Ø4	
39.9 s	22 s	
↓ ø6		
20.0 e		

	≯	-	\rightarrow	-	-		1	†	1	1	÷.	*
ane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SE
ane Configurations		^	1	ሻ	^	1	<u></u>	4Î		5	4Î	
Fraffic Volume (vph)	0	967	255	33	703	149	91	233	24	147	243	1
Future Volume (vph)	0	967	255	33	703	149	91	233	24	147	243	1
Satd. Flow (prot)	0	3316	1455	1658	3316	1483	1658	1718	0	1658	1635	
It Permitted				0.208			0.227			0.433		_
Satd. Flow (perm)	0	3316	1366	361	3316	1333	395	1718	0	754	1635	
Satd. Flow (RTOR)			283			166		5			27	
ane Group Flow (vph)	0	1074	283	37	781	166	101	286	0	163	426	
Turn Type		NA	Perm	Perm	NA	Perm	Perm	NA		Perm	NA	
Protected Phases		2			6			8			4	
Permitted Phases			2	6		6	8			4		
Detector Phase		2	2	6	6	6	8	8		4	4	
Switch Phase												
linimum Initial (s)		10.0	10.0	10.0	10.0	10.0	10.0	10.0		10.0	10.0	
/linimum Split (s)		32.2	32.2	32.2	32.2	32.2	47.1	47.1		47.1	47.1	
Total Split (s)		70.0	70.0	70.0	70.0	70.0	50.0	50.0		50.0	50.0	
Total Split (%)		58.3%	58.3%	58.3%	58.3%	58.3%	41.7%	41.7%		41.7%	41.7%	
fellow Time (s)		3.7	3.7	3.7	3.7	3.7	3.7	3.7		3.7	3.7	
All-Red Time (s)		2.5	2.5	2.5	2.5	2.5	3.4	3.4		3.4	3.4	_
ost Time Adjust (s)		0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Lost Time (s)		6.2	6.2	6.2	6.2	6.2	7.1	7.1		7.1	7.1	
_ead/Lag		0.2	0.2	0.2	0.2	0.2						
ead-Lag Optimize?												
Recall Mode		C-Max	C-Max	C-Max	C-Max	C-Max	None	None		None	None	
Act Effct Green (s)		72.0	72.0	72.0	72.0	72.0	34.7	34.7		34.7	34.7	
Actuated g/C Ratio		0.60	0.60	0.60	0.60	0.60	0.29	0.29		0.29	0.29	
/c Ratio		0.54	0.30	0.17	0.39	0.19	0.89	0.57		0.75	0.87	
Control Delay		16.5	2.5	24.3	23.3	10.1	99.5	39.4		59.0	55.5	
Queue Delay		0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Delay		16.5	2.5	24.3	23.3	10.1	99.5	39.4		59.0	55.5	
.OS		B	2.0 A	24.0 C	20.0 C	B	55.5 F	D		E	E	
Approach Delay		13.6	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Ŭ	21.1	5		55.1		-	56.5	
Approach LOS		B			21.1 C			55.1 E			50.5 E	
Queue Length 50th (m)		75.4	0.0	5.4	62.1	10.1	22.5	55.9		34.5	89.1	
Queue Length 95th (m)		109.4	12.6	m6.3	m61.2	m10.5	#50.2	75.7		56.2	118.2	
nternal Link Dist (m)		113.8	12.0	110.0	313.9	1110.5	#30.2	407.0		50.2	190.4	
Furn Bay Length (m)		110.0		62.0	010.0	71.0	50.0	401.0		82.0	100.4	
Base Capacity (vph)		1990	932	216	1990	866	141	617		269	601	
Starvation Cap Reductn		0	0	0	0	000	0	017		203	001	
Spillback Cap Reductn		0	0	0	0	0	0	0		0	0	
Storage Cap Reductn		0	0	0	0	0	0	0		0	0	
Reduced v/c Ratio		0.54	0.30	0.17	0.39	0.19	0.72	0.46		0.61	0.71	
		0.04	0.00	0.17	0.00	0.13	0.12	0.40		0.01	0.71	
ntersection Summary												
Cycle Length: 120												
Actuated Cycle Length: 120 Offset: 20 (17%), Referenced												

Scenario 1 1137 Ogilvie Road PM Peak Hour Existing

Scenario 1 1137 Ogilvie Road PM Peak Hour Existing

Maximum v/c Ratio: 0.89		
Intersection Signal Delay: 28.3	Intersection LOS: C	
Intersection Capacity Utilization 79.6%	ICU Level of Service D	
Analysis Period (min) 15		
# 95th percentile volume exceeds capacity, queue	e may be longer.	
Queue shown is maximum after two cycles.		
m Volume for 95th percentile queue is metered by	upstream signal.	

Ø2 (R)	₩ø4
70 s	50 s
● ● Ø6 (R)	<\$ [™] Ø8
70 s	50 s

Lane Configurations N A N		≯	-	\mathbf{r}	-	+		1	†	1	- \	÷.	
Traffic Volume (vph) 155 1047 27 148 801 224 35 204 202 273 19 Future Volume (vph) 155 1047 27 148 801 224 35 204 202 273 19 Satd. Flow (prot) 1658 3294 0 1510 3120 0 1658 1526 0 252 162 Satd. Flow (prot) 178 3294 0 173 3120 0 946 1526 0 252 162 Satd. Flow (prot) 172 1193 0 164 1139 0 39 451 0 303 35 Turn Type pm+pt NA pm+pt NA pm+pt N Permited N pm+pt N Detector Phases 5 2 1 6 8 7 Statistics 10.0 10.0 5.0 10.0 10.0 10.0 5.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10	ane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	
Traffic Volume (vph) 155 1047 27 148 801 224 35 204 202 273 19 Future Volume (vph) 155 1047 27 148 801 224 35 204 202 273 19 Satd. Flow (prot) 1658 3294 0 1510 3120 0 1658 1526 0 252 162 Satd. Flow (prot) 178 3294 0 173 3120 0 946 1526 0 252 162 Satd. Flow (prot) 172 1193 0 164 1139 0 39 451 0 303 35 Turn Type pm+pt NA pm+pt NA pm+pt N Permited N pm+pt N Detector Phases 5 2 1 6 8 7 Statistics 10.0 10.0 5.0 10.0 10.0 10.0 5.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10	ane Configurations	3	≜ t}		<u> </u>	≜ 1≽		ሻ	1.		۲.	eî	
Satd. Flow (prot) 1658 3294 0 1610 3120 0 1658 1526 0 1658 1526 FIt Permitted 0.102 0.102 0.544 0.147 Satd. Flow (perm) 178 3294 0 173 3120 0 946 1526 0 252 162 Satd. Flow (perm) 172 1133 0 164 1139 0 39 451 0 303 36 Tum Type pm+pt NA perm NA Permited 303 36 7 Detector Phase 5 2 1 6 8 8 7 Switch Phase 5 2 1 6 8 8 7 Switch Phase 5 2 1 15.0 45.0 10.0 10.0 10.0 20.0 6 33.3 3.3 3.3 3.3 3.3	Fraffic Volume (vph)	155		27	148		224	35		202	273	192	
It Permitted 0.102 0.102 0.544 0.147 Satd. Flow (perm) 178 3294 0 173 3120 0 946 1526 0 252 182 Satd. Flow (perm) 172 1193 0 164 1139 0 39 451 0 303 36 Turn Type pm+pt NA pm+pt NA Perm NA pm+pt NA Protected Phases 5 2 1 6 8 7 Permitted Phases 5 2 1 6 8 7 Switch Phase 5 2 1 6 8 8 7 Switch Phase 50 10.0 5.0 10.0 10.0 10.0 10.0 10.0 10.0 2.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	Future Volume (vph)	155	1047	27	148	801	224	35	204	202	273	192	
Satd. Flow (perm) 178 3294 0 173 3120 0 946 1526 0 252 162 Satd. Flow (RTOR) 2 32 41 33 33 33 Lane Group Flow (vph) 172 1193 0 164 1139 0 39 451 0 303 36 Turn Type pm+pt NA pm+pt NA Perm NA pm+pt N Protected Phases 5 2 1 6 8 8 7 Permitted Phases 5 2 1 6 8 8 7 Switch Phase 5 2 1 6 8 8 7 Minimum Initial (s) 15.0 45.0 15.0 45.0 40.0 40.0 40.0 20.0 60 16.1 16.3 50.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	Satd. Flow (prot)	1658	3294	0	1610	3120	0	1658	1526	0	1658	1623	
Satd. Flow (RTOR) 2 32 41 33 Lane Group Flow (vph) 172 1193 0 164 1139 0 39 451 0 303 36 Tum Type pm+pt NA pm+pt NA Perm NA pm+pt N Protiteded Phases 5 2 1 6 8 7 Permited Phases 5 2 1 6 8 7 Detector Phase 5 2 1 6 8 7 Minimum Initial (s) 5.0 10.0 5.0 10.0 10.0 10.0 0.0 0.0 0.0 0.0 10.0 2.0 10.3 3.3 3.3 3.3 10.5 3.0 10.3 3.3 1.0 3.3 1.0 3.3 1.0 3.3 1.0 3.3 1.0 3.3 1.0 3.3 1.0 3.3 1.0 3.3 1.0 3.3 1.0 3.3 1.0	It Permitted	0.102			0.102			0.544			0.147		
	Satd. Flow (perm)	178	3294	0	173	3120	0	946	1526	0	252	1623	
Turn Type pm+pt NA pm+pt NA perm NA pm+pt N Protected Phases 5 2 1 6 8 7 Demitted Phases 2 6 8 4 2 Detector Phase 5 2 1 6 8 8 7 Switch Phase 5 2 1 6 8 8 7 Minimum Split (s) 5.0 10.0 5.0 10.0 10.0 10.0 20.0 60 Total Split (s) 15.0 45.0 15.0 45.0 40.0 40.0 20.0 60 Total Split (s) 1.0 2.0 1.0 2.0 3.3	Satd. Flow (RTOR)		2			32			41			39	
Protected Phases 5 2 1 6 8 7 Permitted Phases 2 6 8 4 Detector Phase 5 2 1 6 8 7 Detector Phase 5 2 1 6 8 8 7 Switch Phase 5 2 1 6 8 8 7 Minimum Initial (s) 5.0 10.0 5.0 10.0 10.0 10.0 20.0 60 Total Split (s) 15.0 45.0 15.0 45.0 40.0 40.0 20.0 60 Total Split (s) 1.0 2.0 1.0 2.0 3.3 3.3 1.6.7% 50.0' Yellow Time (s) 3.7 3.7 3.7 3.7 3.3 3.3 1.0 3. Lead/Lag Lead Lag Lead Lag Lead Lead/Lag Lead Lead/Lag 0.46 0.4 61.9 9.25 34.6 80.5 82.8 23. Lead/Lag Optimize? Yes Yes Yes	ane Group Flow (vph)	172	1193	0	164	1139	0	39	451	0	303	365	
Permitted Phases 2 6 8 4 Detector Phase 5 2 1 6 8 7 Switch Phase	Furn Type	pm+pt	NA		pm+pt	NA		Perm	NA		pm+pt	NA	
Detector Phase 5 2 1 6 8 8 7 Switch Phase	Protected Phases	5	2		1	6			8		7	4	
Switch Phase Image: Switch Phase	Permitted Phases												
Minimum Initial (s) 5.0 10.0 5.0 10.0 10.0 10.0 10.0 5.0 10.0 Minimum Split (s) 9.7 24.7 9.7 24.7 36.6 36.6 9.3 36.7 Total Split (s) 15.0 45.0 15.0 45.0 40.0 40.0 20.0 60.7 Total Split (%) 12.5% 37.5% 12.5% 33.3% 33.3% 16.7% 50.0 Yellow Time (s) 1.0 2.0 1.0 2.0 3.3 3.3 3.3 3.3 All-Red Time (s) 1.0 2.0 1.0 2.0 3.3 3.3 1.0 3. Lead-Iag Optimize(s) 4.7 5.7 4.7 5.7 6.6 6.6 4.3 6. Lead-Lag Optimize? Yes		5	2		1	6		8	8		7	4	
Minimum Split (s) 9.7 24.7 9.7 24.7 36.6 36.6 9.3 36. Total Split (s) 15.0 45.0 15.0 45.0 40.0 20.0 60. Total Split (s) 12.5% 37.5% 12.5% 37.5% 33.3% 33.3% 16.7% 50.0' Vellow Time (s) 3.7 3.7 3.7 3.7 3.3 3.4 3.4 5.6 6.6 4.3 6 6.6 4.0	Switch Phase												
Total Split (s) 15.0 45.0 15.0 45.0 40.0 40.0 20.0 60. Total Split (%) 12.5% 37.5% 12.5% 37.5% 33.3% 16.7% 50.0' Yellow Time (s) 3.7 3.7 3.7 3.7 3.3 3.3 3.3 3.3 Lead Time (s) 1.0 2.0 1.0 2.0 3.3 3.3 1.0 3. Lead Time (s) 4.7 5.7 4.7 5.7 6.6 6.6 4.3 6. Lead/Lag Lead Lag Lead Lag Lead Lag Lead Lead/Lag Optimize? Yes Yes Yes Yes Yes Yes Yes Yes Recall Mode None C-Max None	Vinimum Initial (s)	5.0	10.0		5.0	10.0		10.0	10.0		5.0	10.0	
Total Split (%) 12.5% 37.5% 12.5% 37.5% 33.3% 33.3% 16.7% 50.0° Yellow Time (s) 3.7 3.7 3.7 3.7 3.3 1.0 3. 3.3 1.0 3. 3.3 1.0 3. 3.3 1.0 3. 3.3 1.0 3. 3.3 1.0 0.3 0.0<	Vinimum Split (s)											36.6	
Yellow Time (s) 3.7 3.7 3.7 3.7 3.3		15.0										60.0	
All-Red Time (s) 1.0 2.0 1.0 2.0 3.3 3.3 1.0 3. Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Lost Time (s) 4.7 5.7 4.7 5.7 6.6 6.6 4.3 6. Lead/Lag Lead Lag Lag Lag Lag Lead Lag Lead Lead-Lag Optimize? Yes Yes Yes Yes Yes Yes Yes Recall Mode None C-Max None C-Max None None None Act Effct Green (s) 50.6 39.3 50.6 39.3 33.4 33.4 55.7 53. Actuated g/C Ratio 0.42 0.33 0.42 0.33 0.28 0.28 0.46 0.4 Control Delay 68.4 90.4 61.9 92.5 34.6 80.5 82.8 23. Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0												50.0%	
Lost Time Adjust (s) 0.0	Yellow Time (s)	3.7	3.7		3.7	3.7		3.3	3.3		3.3	3.3	
Total Lost Time (s) 4.7 5.7 4.7 5.7 6.6 6.6 4.3 6. Lead/Lag Lead Lag Lead Lag	All-Red Time (s)	1.0	2.0		1.0	2.0		3.3	3.3			3.3	
Lead/Lag Lead Lag Lead Lead Lag Lead Lead None Yes												0.0	
Lead-Lag Optimize? Yes												6.6	
Recall Mode None C-Max None C-Max None													
Act Effct Green (s) 50.6 39.3 50.6 39.3 33.4 33.4 55.7 53. Actuated g/C Ratio 0.42 0.33 0.42 0.33 0.28 0.28 0.46 0.44 v/c Ratio 0.85 1.10 0.84 1.09 0.15 0.99 1.01 0.44 Control Delay 68.4 90.4 61.9 92.5 34.6 80.5 82.8 23. Queue Delay 0.0													
Actuated g/C Ratio 0.42 0.33 0.42 0.33 0.28 0.28 0.46 0.4 V/c Ratio 0.85 1.10 0.84 1.09 0.15 0.99 1.01 0.4 Control Delay 68.4 90.4 61.9 92.5 34.6 80.5 82.8 23. Queue Delay 0.0												None	
v/c Ratio 0.85 1.10 0.84 1.09 0.15 0.99 1.01 0.4 Control Delay 68.4 90.4 61.9 92.5 34.6 80.5 82.8 23 Queue Delay 0.0												53.4	
Control Delay 68.4 90.4 61.9 92.5 34.6 80.5 82.8 23. Queue Delay 0.0 </td <td></td> <td>0.44</td> <td></td>												0.44	
Queue Delay 0.0 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.49</td><td></td></th<>												0.49	
Total Delay 68.4 90.4 61.9 92.5 34.6 80.5 82.8 23. LOS E F E F C F F Approach Delay 87.6 88.7 76.8 50. Approach LOS F F C P P Queue Length 50th (m) 20.7 ~169.6 31.7 ~148.7 6.9 98.3 ~51.6 53. Queue Length 95th (m) #64.2 #211.9 m#49.2 m#168.7 16.1 #165.4 #108.8 80. Internal Link Dist (m) 313.9 393.6 302.0 237. Turn Bay Length (m) 80.0 100.0 34.0 153.0 Base Capacity (vph) 202 1080 196 1043 263 454 300 74 Starvation Cap Reductn 0 0 0 0 0 0 Starvation Cap Reductn 0 0 0 0 Starvation Cap Reductn 0 0 0 0 0 0 0	,											23.6	
LOS E F E F C F F Approach Delay 87.6 88.7 76.8 50 Approach LOS F F E 20 Queue Length 50th (m) 20.7 ~169.6 31.7 ~148.7 6.9 98.3 ~51.6 53.3 Queue Length 95th (m) #64.2 #211.9 m#49.2 m#168.7 16.1 #165.4 #108.8 80. Internal Link Dist (m) 313.9 393.6 302.0 237. Turm Bay Length (m) 80.0 100.0 34.0 153.0 Base Capacity (vph) 202 1080 196 1043 263 454 300 74 Starvation Cap Reductn 0 0 0 0 0 0 Spillback Cap Reductn 0 0 0 0 Spillback Cap Reductn 0 0 0 0 0 0 0 0 0 0 0 0 0 Spillback Cap Reductn 0												0.0	
Approach Delay 87.6 88.7 76.8 50. Approach LOS F F E E Cueue Length 50th (m) 20.7 ~169.6 31.7 ~148.7 6.9 98.3 ~51.6 53. Queue Length 50th (m) #64.2 #21.9 m#49.2 m#168.7 16.1 #165.4 #108.8 80. Internal Link Dist (m) 313.9 393.6 302.0 223.7 Turn Bay Length (m) 80.0 100.0 34.0 153.0 Base Capacity (vph) 202 1080 196 104.3 263 454 300 74 Starvation Cap Reductn 0 0 0 0 0 0 50 Storage Cap Reductn 0												23.6	
Approach LOS F F E Queue Length 50th (m) 20.7 ~169.6 31.7 ~148.7 6.9 98.3 ~51.6 53 Queue Length 50th (m) #64.2 #211.9 m#49.2 m#168.7 16.1 #165.4 #108.8 80 Internal Link Dist (m) 313.9 393.6 302.0 237 Turn Bay Length (m) 80.0 100.0 34.0 153.0 Base Capacity (vph) 202 1080 196 1043 263 454 300 74 Starvation Cap Reductn 0 </td <td></td> <td>E</td> <td></td> <td></td> <td>E</td> <td></td> <td></td> <td>С</td> <td></td> <td></td> <td>F</td> <td>С</td> <td></td>		E			E			С			F	С	
Queue Length 50th (m) 20.7 ~169.6 31.7 ~148.7 6.9 98.3 ~51.6 53.3 Queue Length 95th (m) #64.2 #211.9 m#49.2 m#168.7 16.1 #165.4 #108.8 80 Internal Link Dist (m) 313.9 393.6 302.0 237. Tum Bay Length (m) 80.0 100.0 34.0 153.0 Base Capacity (vph) 202 1080 196 1043 263 454 300 74 Starvation Cap Reducth 0 0 0 0 0 0 0 Starvation Cap Reducth 0 0 0 0 0 Starvation Cap Reducth 0 0 0 0 0 0 0 0 0 0 0 0 0 Storage Cap Reducth 0												50.5	
Queue Length 95th (m) #64.2 #211.9 m#49.2 m#168.7 16.1 #165.4 #108.8 80. Internal Link Dist (m) 313.9 393.6 302.0 237. Turn Bay Length (m) 80.0 100.0 34.0 153.0 Base Capacity (vph) 202 1080 196 1043 263 454 300.0 74 Starvation Cap Reducth 0 0 0 0 0 0 50 Spillback Cap Reducth 0												D	
Internal Link Dist (m) 313.9 393.6 302.0 237. Turn Bay Length (m) 80.0 100.0 34.0 153.0 Base Capacity (vph) 202 1080 196 1043 263 454 300 74 Starvation Cap Reductn 0 0 0 0 0 0 0 50												53.2	
Turn Bay Length (m) 80.0 100.0 34.0 153.0 Base Capacity (vph) 202 1080 196 1043 263 454 300 74 Starvation Cap Reductn 0 <		#64.2			m#49.2 r			16.1			#108.8	80.2	
Base Capacity (vph) 202 1080 196 1043 263 454 300 74 Starvation Cap Reductn 0			313.9			393.6			302.0			237.9	
Starvation Cap Reductn 0													
Spillback Cap Reductn 0												743	
Storage Cap Reductn 0		-	-		-	-		-	-		-	0	
Reduced v/c Ratio 0.85 1.10 0.84 1.09 0.15 0.99 1.01 0.4 Intersection Summary												0	
Intersection Summary												0	
	Reduced v/c Ratio	0.85	1.10		0.84	1.09		0.15	0.99		1.01	0.49	
Cycle Length: 120	ntersection Summary												
Oyolo Longui. 120	Cycle Length: 120												
Actuated Cycle Length: 120	Actuated Cycle Length: 120												

Scenario 1 1137 Ogilvie Road PM Peak Hour Existing

Synchro 11 Report Page 4

Scenario 1 1137 Ogilvie Road PM Peak Hour Existing

Maximum v/c Ratio: 1.10		
Intersection Signal Delay: 80.1	Intersection LOS: F	
Intersection Capacity Utilization 100.6%	ICU Level of Service G	
Analysis Period (min) 15		
~ Volume exceeds capacity, queue is theoretically i	nfinite.	
Queue shown is maximum after two cycles.		
# 95th percentile volume exceeds capacity, queue	may be longer.	
Queue shown is maximum after two cycles.		
m Volume for 95th percentile queue is metered by	upstream signal.	

Ø1	🛛 🕂 🗤 🖉 🖉 🖉	↓ Ø4	
15 s	45 s	60 s	
	🛡 🔽 Ø6 (R)	Ø7	Ø8
15 s	45 s	20 s	40 s

	≯	-	\mathbf{r}	4	-		1	1	1	1	Ļ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SB
Lane Configurations	1	^	1	٦	^	1	ሻ	At≽		ሻ	≜ 1≽	
Traffic Volume (vph)	274	1059	96	231	673	220	166	331	163	146	380	29
Future Volume (vph)	274	1059	96	231	673	220	166	331	163	146	380	29
Satd. Flow (prot)	1658	3316	1469	1658	3316	1483	1658	3153	0	1658	3100	
Flt Permitted	0.250			0.088			0.950			0.950		
Satd. Flow (perm)	436	3316	1469	154	3316	1483	1658	3153	0	1658	3100	
Satd. Flow (RTOR)			136			244		63			142	
Lane Group Flow (vph)	304	1177	107	257	748	244	184	549	0	162	748	
Turn Type	pm+pt	NA	Perm	pm+pt	NA	Perm	Prot	NA		Prot	NA	
Protected Phases	5	2		1	6		7	4		3	8	
Permitted Phases	2		2	6		6						
Detector Phase	5	2	2	1	6	6	7	4		3	8	
Switch Phase												
Minimum Initial (s)	5.0	10.0	10.0	5.0	10.0	10.0	5.0	10.0		5.0	10.0	
Minimum Split (s)	9.7	34.1	34.1	9.7	34.1	34.1	10.9	30.1		12.2	30.1	
Total Split (s)	20.0	51.0	51.0	20.0	51.0	51.0	18.9	30.1		18.9	30.1	
Total Split (%)	16.7%	42.5%	42.5%	16.7%	42.5%	42.5%	15.8%	25.1%		15.8%	25.1%	
Yellow Time (s)	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7		3.5	3.7	
All-Red Time (s)	1.0	2.4	2.4	1.0	2.4	2.4	2.2	2.4		3.7	2.4	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		2.2	2.4	
Total Lost Time (s)	4.7	6.1	6.1	4.7	6.1	6.1	5.9	6.1		9.4	8.5	
Lead/Lag	Lead	Lag	Lag	Lead	Lag	Lag	Lead	Lag		Lead	Lag	
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		Yes	Yes	
Recall Mode	None	C-Max	C-Max	None	C-Max	C-Max	None	None		None	None	
Act Effct Green (s)	61.2	44.9	44.9	62.0	45.3	45.3	13.0	24.0		9.5	21.6	
Actuated g/C Ratio	0.51	0.37	0.37	0.52	0.38	0.38	0.11	0.20		0.08	0.18	
v/c Ratio	0.82	0.95	0.17	0.95	0.60	0.34	1.03	0.81		1.24	1.11	
Control Delay	33.3	37.6	4.9	76.0	32.5	4.5	127.3	50.7		201.1	105.7	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Delay	33.3	37.6	4.9	76.0	32.5	4.5	127.3	50.7		201.1	105.7	
LOS	С	D	А	E	С	А	F	D		F	F	
Approach Delay		34.6			36.0			69.9			122.7	
Approach LOS		С			D			E			F	
Queue Length 50th (m)	49.2	91.2	1.9	45.6	74.1	0.0	~46.2	58.3		~47.2	~90.7	
Queue Length 95th (m)	m43.9	m85.2	m1.6	#96.2	94.1	16.2	#90.7	#79.3		#89.9	#129.3	
Internal Link Dist (m)		393.6			260.7			297.6			298.7	
Turn Bay Length (m)	80.0		65.0	50.0		60.0	100.0			110.0		
Base Capacity (vph)	379	1240	634	271	1252	712	179	681		131	674	
Starvation Cap Reductn	0	0	0	0	0	0	0	0		0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0		0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0		0	0	
Reduced v/c Ratio	0.80	0.95	0.17	0.95	0.60	0.34	1.03	0.81		1.24	1.11	
Intersection Summary Cycle Length: 120 Actuated Cycle Length: 120)											

Scenario 1 1137 Ogilvie Road PM Peak Hour Existing

Synchro 11 Report Page 6

Scenario 1 1137 Ogilvie Road PM Peak Hour Existing

4: Aviation & Ogilvie Rd		01/22/202
Maximum v/c Ratio: 1.24		
Intersection Signal Delay: 58.7	Intersection LOS: E	
Intersection Capacity Utilization 96.1%	ICU Level of Service F	
Analysis Period (min) 15		
~ Volume exceeds capacity, queue is theoretically	infinite.	
Queue shown is maximum after two cycles.		
# 95th percentile volume exceeds capacity, queue	may be longer.	
Queue shown is maximum after two cycles.		
m Volume for 95th percentile queue is metered by	upstream signal.	

Splits and Phases: 4: Aviation & Ogilvie Rd

√ Ø1	🖉 🔶 🖉 2 (R)	Ø3	1 ø₄	
20 s	51 s	18.9 s	30.1 s	
	🖉 🖉 Ø6 (R)	1 Ø7	↓ Ø8	
20 s	51 s	18.9 s	30.1s	

	≯	-	\mathbf{r}	1	-		-	†	1	- \ _	Ļ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SB
Lane Configurations	3	ţ,		5	4Î		5	ĥ		5	4Î	
Traffic Volume (vph)	10	52	68	70	299	259	10	52	68	60	476	1
Future Volume (vph)	10	52	68	70	299	259	10	52	68	60	476	1
Satd. Flow (prot)	1658	1387	0	1595	1573	0	1658	1442	0	1445	1734	
Flt Permitted	0.172			0.671			0.312			0.433		
Satd. Flow (perm)	300	1387	0	1102	1573	0	544	1442	0	575	1734	
Satd. Flow (RTOR)		76			49			69			2	
Lane Group Flow (vph)	11	134	0	78	620	0	11	134	0	67	548	
Turn Type	pm+pt	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases	5	2			6			8			4	
Permitted Phases	2			6			8			4		
Detector Phase	5	2		6	6		8	8		4	4	
Switch Phase												
Minimum Initial (s)	5.0	10.0		10.0	10.0		10.0	10.0		10.0	10.0	
Minimum Split (s)	11.3	34.3		34.3	34.3		22.5	22.5		22.5	22.5	
Total Split (s)	15.0	43.0		43.0	43.0		37.0	37.0		37.0	37.0	
Total Split (%)	15.0%	43.0%		43.0%	43.0%		37.0%	37.0%		37.0%	37.0%	
Yellow Time (s)	3.7	3.7		3.7	3.7		3.3	3.3		3.3	3.3	
All-Red Time (s)	1.0	2.6		2.6	2.6		2.2	2.2		2.2	2.2	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)	4.7	6.3		6.3	6.3		5.5	5.5		5.5	5.5	
Lead/Lag	Lead			Lag	Lag		Lag	Lag		Lag	Lag	
Lead-Lag Optimize?	Yes			Yes	Yes		Yes	Yes		Yes	Yes	
Recall Mode	None	Max		Max	Max		None	None		None	None	
Act Effct Green (s)	40.5	38.9		36.8	36.8		23.2	23.2		31.6	31.6	
Actuated g/C Ratio	0.49	0.47		0.45	0.45		0.28	0.28		0.38	0.38	
v/c Ratio	0.05	0.19		0.16	0.85		0.07	0.29		0.30	0.82	
Control Delay	10.7	6.5		15.8	32.6		22.7	13.4		23.9	35.9	
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Delay	10.7	6.5		15.8	32.6		22.7	13.4		23.9	35.9	
LOS	В	А		В	С		С	В		С	D	
Approach Delay		6.8			30.8			14.1			34.6	
Approach LOS		A			С			В			С	
Queue Length 50th (m)	0.8	4.8		6.6	73.3		1.1	6.8		6.8	71.7	
Queue Length 95th (m)	3.2	13.6		18.1	#164.7		5.5	22.6		20.5	#152.7	
Internal Link Dist (m)		407.0			322.8			177.5			302.0	
Turn Bay Length (m)	98.0			67.0			35.0			38.0		
Base Capacity (vph)	318	902		492	730		209	596		220	666	
Starvation Cap Reductn	0	0		0	0		0	0		0	0	
Spillback Cap Reductn	0	0		0	0		0	0		0	0	
Storage Cap Reductn	0	0		0	0		0	0		0	0	
Reduced v/c Ratio	0.03	0.15		0.16	0.85		0.05	0.22		0.30	0.82	
Intersection Summary												
Cycle Length: 100												
Actuated Cycle Length: 82.3	}											
Natural Cycle: 90												

Scenario 1 1137 Ogilvie Road PM Peak Hour Existing

Synchro 11 Report Page 8

Scenario 1 1137 Ogilvie Road PM Peak Hour Existing

Lanes, Volumes, Timings	
5: Labelle St/Cummings Ave & Cyrville Rd	01/22/2025

Lane Configurations Traffic Volume (vph) Future Volume (vph) Satd. Flow (prot) Fit Permitted Satd. Flow (prot) Fit Permitted Satd. Flow (RTOR) Lane Group Flow (vph) Turn Type Protected Phases Detector Phase Switch Phase Minimum Initial (s) 1.0 Minimum Split (s) 3.0 Total Split (s) 5.0 Lead/Lag Lead-Lag Detime (s) 0.0 Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead Lad-Lag Optimize? Yes Recall Mode None Act Effct Green (s) Actuated g/C Ratio V/c Ratio Control Delay Queue Delay Total Delay LOS Approach LOS Queue Length 50th (m) Internal Link Dist (m) Turn Bay Length (m) Base Capacity (vph) Starvation Cap Reductn Storage Cap Reductn Storage Cap Reductn Reduced V/c Ratio Intersection Summary	Group	Ø3	Ø7
Future Volume (vph) Satd. Flow (prot) Fit Permitted Satd. Flow (prot) Lane Group Flow (vph) Turm Type Protected Phases Detector Phase Switch Phase Minimum Initial (s) 1.0 Minimum Split (s) 1.0 Minimum Split (s) 1.0 Total Split (s) 1.0 Total Split (s) 1.0 Total Split (s) 1.0 Lead/Lag Lead/Lag Lead/Lag Lead/Lag Optimize? Yelsow Actuated g/C Ratio v/c Ratio Vc Ratio Control Delay Queue Delay Cost Approach LOS Queue Length 50th (m) Internal Link Dist (m) Turm Bay Length (m) Base Capacity (vph) Starvation Cap Reductn Storage Cap Reductn Storage Cap Reductn Storage Cap Reductn Storage Cap Reductn Storage Cap Reductn Storage Cap Reductn			
Satd. Flow (prot) Fit Permitted Satd. Flow (prot) Satd. Flow (RTOR) Lane Group Flow (vph) Turn Type Protected Phases Detector Phase Switch Phase Minimum Initial (s) Minimum Split (s) South Phase Minimum Split (s) Total Split (s) Total Split (s) Total Split (s) Cotal Split (s) Cotal Split (s) Total Split (s) Cotal Split (s) Cotal Split (s) Cotal Split (s) Cotal Split (s) Cotal Lost Time Adjust (s) Total Lost Time (s) Lead-Lag Optimize? Recall Mode Actuated g/C Ratio Vic Ratio Control Delay Cotar Delay LOS Approach LoS Approach LoS Queue Length 95th (m) Internal Link Dist (m) Turm Bay Length (m) Base Capacity (vph) Starvation Cap Reductn Storage Cap Reductn Storage Cap Reductn Reduced v/c Ratio	Volume (vph)		
Fit Permitted Satd. Flow (perm) Satd. Flow (perm) Satd. Flow (RTOR) Lane Group Flow (vph) Turn Type Protected Phases Detector Phase Switch Phase Minimum Initial (s) Minimum Split (s) Total Lost Time (s) Lead/Lag Lead Lead-Lag Optimize? Yes Recall Mode None Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (m) Internal Link Dist (m) Turm Bay Length (m) Base Capacity (vph) Starvation Cap Reductn Storage Cap Reductn Reduced v/c Ratio	Volume (vph)		
Fit Permitted Satd. Flow (perm) Satd. Flow (perm) Satd. Flow (RTOR) Lane Group Flow (vph) Turn Type Protected Phases Detector Phase Switch Phase Minimum Initial (s) Minimum Split (s) Total Lost Time (s) Lead/Lag Lead Lead-Lag Optimize? Yes Recall Mode None Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (m) Internal Link Dist (m) Turm Bay Length (m) Base Capacity (vph) Starvation Cap Reductn Storage Cap Reductn Reduced v/c Ratio	low (prot)		
Satd. Flow (RTOR) Lane Group Flow (vph) Turm Type Protected Phases 3 Premitted Phases 5 Detector Phase Switch Phase Minimum Initial (s) 1.0 Minimum Split (s) 3.0 Total Split (s) 5.0 Total Split (s) 2.0 All-Red Time (s) 0.0 Lost Time Adjust (s) Total Lost Time (s) Lead-Lag Optimize? Yes Recall Mode None ActLated g/C Ratio v/c Ratio v/c Ratio Control Delay Queue Delay Total Dolay LOS Queue Length S0th (m) Internal Link Dist (m) Turm Bay Length (m) Base Capacity (vph) Starvation Cap Reductn Storage Cap Reductn Storage Cap Reductn			
Satd. Flow (RTOR) Lane Group Flow (vph) Turm Type Protected Phases 3 Premitted Phases 5 Detector Phase Switch Phase Minimum Initial (s) 1.0 Minimum Split (s) 3.0 Total Split (s) 5.0 Total Split (s) 2.0 All-Red Time (s) 0.0 Lost Time Adjust (s) Total Lost Time (s) Lead-Lag Optimize? Yes Recall Mode None ActLated g/C Ratio v/c Ratio v/c Ratio Control Delay Queue Delay Total Dolay LOS Queue Length S0th (m) Internal Link Dist (m) Turm Bay Length (m) Base Capacity (vph) Starvation Cap Reductn Storage Cap Reductn Storage Cap Reductn	low (perm)		
Turn Type Turn Type Protected Phases 3 Permitted Phases Detector Phase Switch Phase Minimum Initial (s) 1.0 Minimum Split (s) 3.0 Total Split (s) 5.0 Total Split (s) 5.0 Total Split (s) 5.0 Total Split (s) 0.0 Lost Time (s) 2.0 All-Red Time (s) 0.0 Lost Time (s) LeadLag Lead/Lag Dptimize? Yes Recall Mode None Act Effct Green (s) Actuated g/C Ratio v/c Ratio V/c Ratio V/c Ratio UOS Approach Lols Queue Delay Total Delay LOS Approach LOS Queue Length 50th (m) Internal Link Dist (m) Turm Bay Length (m) Base capacity (vph) Starvation Cap Reductn Storage Cap Reductn Storage Cap Reductn Storage Cap Reductn			
Turn Type Turn Type Protected Phases 3 Permitted Phases Detector Phase Switch Phase Minimum Initial (s) 1.0 Minimum Split (s) 3.0 Total Split (s) 5.0 Total Split (s) 5.0 Total Split (s) 5.0 Total Split (s) 0.0 Lost Time (s) 2.0 All-Red Time (s) 0.0 Lost Time (s) LeadLag Lead/Lag Dptimize? Yes Recall Mode None Act Effct Green (s) Actuated g/C Ratio v/c Ratio V/c Ratio V/c Ratio UOS Approach Lols Queue Delay Total Delay LOS Approach LOS Queue Length 50th (m) Internal Link Dist (m) Turm Bay Length (m) Base capacity (vph) Starvation Cap Reductn Storage Cap Reductn Storage Cap Reductn Storage Cap Reductn			
Protected Phases 3 Permitted Phases Detector Phase Switch Phase Minimum Initial (s) 1.0 Minimum Initial (s) 1.0 Minimum Split (s) 3.0 Total Split (s) 5.0 Total Split (s) 5.0 All-Red Time (s) 2.0 All-Red Time (s) 0.0 Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead Lead/Lag Optimize? Yes Recall Mode None Act Lated g/C Ratio v/c Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach LoS Queue Length 50th (m) Internal Link Dist (m) Internal Link Dist (m) Turm Bay Length (m) Base Capacity (vph) Starvation Cap Reductn Storage Cap Reductn Storage Cap Reductn			
Permitted Phases Detector Phase Switch Phase Minimum Initial (s) 1.0 Minimum Split (s) 3.0 Total Split (s) 5.0 Total Split (%) 5% Yellow Time (s) 2.0 All-Red Time (s) 0.0 Lost Time Adjust (s) Lost Time Adjust (s) Lead/Lag Detimize? Yes Recall Mode None Act EftG Green (s) Actuated g/C Ratio Vic Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach Delay Approach Delay Approach Delay Approach Delay Approach Delay Coueue Length 95th (m) Internal Link Dist (m) Turm Bay Length (m) Base Capacity (vph) Starvation Cap Reductn Storage Cap Reductn Storage Cap Reductn		3	7
Detector Phase Switch Phase Switch Phase Minimum Initial (s) Minimum Split (s) Total Cast Time (s) Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead Lead/Lag Lead Lead/Lag Detimize? Yes Recall Mode None Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Cost Delay Total Delay LOS Approach Delay Approach LOS Queue Length 95th (m) Internal Link Dist (m) Turm Bay Length (m) Base Capacity (wph) Starvation Cap Reductn Storage Cap Reductn Reduced v/c Ratio		-	
Minimum Initial (s) 1.0 Minimum Split (s) 3.0 Total Split (s) 5.0 Loal Time (s) 2.0 All-Red Time (s) 0.0 Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Optimize? Yes Recall Mode None Actuated g/C Ratio v/c Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay LOS Queue Length 95th (m) Internal Link Dist (m) Turm Bay Length (m) Base Capacity (vph) Starvation Cap Reductn Storage Cap Reductn Storage Cap Reductn Storage Cap Reductn Reduced v/c Ratio			
Minimum Initial (s) 1.0 Minimum Split (s) 3.0 Total Split (s) 5.0 Loal Time (s) 2.0 All-Red Time (s) 0.0 Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Optimize? Yes Recall Mode None Actuated g/C Ratio v/c Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay LOS Queue Length 95th (m) Internal Link Dist (m) Turm Bay Length (m) Base Capacity (vph) Starvation Cap Reductn Storage Cap Reductn Storage Cap Reductn Storage Cap Reductn Reduced v/c Ratio	Phase		
Minimum Split (s) 3.0 Total Split (s) 5.0 Total Split (s) 5.0 Total Split (s) 5% Yellow Time (s) 2.0 All-Red Time (s) 0.0 Load Time Adjust (s) Total Lost Time (s) Lead/Lag Lead Lead/Lag Lead Lead/Lag Ves Recall Mode None Act Effct Green (s) Act Effct Green (s) Act Effct Green (s) Queue Delay Total Delay Queue Delay Total Delay Queue Length SOth (m) Queue Length SOth (m) Internal Link Dist (m) Turn Bay Length (m) Barvation Cap Reductn Storage Cap Reductn Storage Cap Reductn Storage Cap Reductn Reduced v/c Ratio		10	1.0
Total Split (s) 5.0 Total Split (%) 5% Yellow Time (s) 2.0 All-Red Time (s) 0.0 Lost Time Adjust (s) Total Lost Time (s) Lead.Lag Optimize? Yes Recall Mode None Act Effct Green (s) Actuated q/C Ratio v/c Ratio Vc Ratio Uove Delay Total Delay LOS Approach LoS Queue Delay Total Delay LOS Approach LoS Queue Length 95th (m) Internal Link Dist (m) Tum Bay Length (m) Base capacity (vph) Starvation Cap Reductn Storage Cap Reductn Storage Cap Reductn Reduced v/c Ratio			3.0
Total Split (%) 5% Yellow Time (s) 2.0 All-Red Time (s) 0.0 Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead Lead/Lag Optimize? Yes Recall Mode None Act Laft Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach LOS Queue Length 50th (m) Internal Link Dist (m) Internal Link Dist (m) Turm Bay Length (m) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Storage Cap Reductn Reduced v/c Ratio			5.0
Yellow Time (s) 2.0 All-Red Time (s) 0.0 Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead Lead/Lag Detimize? Yes Recall Mode None Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach Delay Approach Delay Approach Delay Approach Delay Approach Delay Queue Length 50th (m) Internal Link Dist (m) Turn Bay Length (m) Internal Link Dist (m) Starvation Cap Reductn Storage Cap Reductn Reduced v/c Ratio			5%
All-Red Time (s) 0.0 Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead Lead/Lag Optimize? Yes Recall Mode None Act Effct Green (s) Acteffct Green (s) Actuated g/C Ratio v/c Ratio Vic Ratio Queue Delay Total Delay Queue Delay Total Delay Approach Delay Approach Dolay Approach LOS Queue Length 50th (m) Internal Link Dist (m) Turm Bay Length (m) Base Capacity (wph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio			2.0
Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead Lag Optimize? Yes Recall Mode None Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (m) Internal Link Dist (m) Tum Bay Length (m) Base Capacity (vph) Starvation Cap Reductn Storage Cap Reductn Storage Cap Reductn Reduced v/c Ratio			0.0
Total Lost Time (s) Lead/Lag Lead/Lag Lead/Lag Optimize? Yes Recall Mode None Actuated gOtimize? Yes Recall Mode None Actuated gOt Ratio v/c v/c Ratio Outrol Delay Control Delay Total Delay LOS Approach Lolay Approach Delay Oueue Length 95th (m) Internal Link Dist (m) Turm Bay Length (m) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio Storage Cap Reductn		0.0	0.0
Lead/Lag Lead Lead-Lag Optimize? Yes Recall Mode None Act Effct Green (s) Actated g/C Ratio v/c Ratio Outrol Delay Queue Delay Total Delay Total Delay Delay LOS Approach Delay Queue Length 50th (m) Internal Link Dist (m) Turm Bay Length (m) Internal Link Dist (m) Starvation Cap Reductn Spilback Cap Reductn Storage Cap Reductn Reduced v/c Ratio			
Lead-Lag Optimize? Yes Recall Mode None Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach Delay Approach LOS Queue Length 50th (m) Queue Length 95th (m) Internal Link Dist (m) Turn Bay Length (m) Base Capacity (vph) Starvation Cap Reductn Storage Cap Reductn Storage Cap Reductn Reduced v/c Ratio		beal	Lead
Recall Mode None Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach Delay Control Delay Total Delay Dotal Delay LOS Queue Length 50th (m) Queue Length 95th (m) Internal Link Dist (m) Turm Bay Length (m) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio			Yes
Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (m) Gueue Length 50th (m) Internal Link Dist (m) Turn Bay Length (m) Base Capacity (vph) Starvation Cap Reductn Storage Cap Reductn Storage Cap Reductn Reduced v/c Ratio			Max
Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (m) Queue Length 95th (m) Internal Link Dist (m) Turn Bay Length (m) Base Capacity (vph) Starvation Cap Reductn Storage Cap Reductn Storage Cap Reductn Reduced v/c Ratio		None	INICIA
v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (m) Queue Length 95th (m) Internal Link Dist (m) Turm Bay Length (m) Base Capacity (vph) Starvation Cap Reductn Storage Cap Reductn Storage Cap Reductn Reduced v/c Ratio			
Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (m) Internal Link Dist (m) Turn Bay Length (m) Base Capacity (vph) Starvation Cap Reductn Storage Cap Reductn Storage Cap Reductn Reduced v/c Ratio			
Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (m) Queue Length 95th (m) Internal Link Dist (m) Turn Bay Length (m) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio			
Total Delay LOS Approach Delay Approach LOS Queue Length 50th (m) Internal Link Dist (m) Turn Bay Length (m) Base Capacity (vph) Starvation Cap Reductn Storage Cap Reductn Storage Cap Reductn Reduced v/c Ratio			
LOS Approach Delay Approach LOS Queue Length 50th (m) Queue Length 95th (m) Internal Link Dist (m) Turn Bay Length (m) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Storage Cap Reductn			
Approach Delay Approach LOS Queue Length 50th (m) Queue Length 95th (m) Internal Link Dist (m) Turn Bay Length (m) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio	ciay		
Approach LOS Queue Length 50th (m) Queue Length 95th (m) Internal Link Dist (m) Turn Bay Length (m) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio	ah Dalau		
Queue Length 50th (m) Queue Length 95th (m) Internal Link Dist (m) Turn Bay Length (m) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio			
Queue Length 95th (m) Internal Link Dist (m) Turn Bay Length (m) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio			
Internal Link Dist (m) Turn Bay Length (m) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio			
Turn Bay Length (m) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio			
Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio			
Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio			
Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio			
Storage Cap Reductn Reduced v/c Ratio			
Reduced v/c Ratio			
Intersection Summary	eu vic Ralio		
	ction Summary		

 Lanes, Volumes, Timings
 01/22/2025

 5: Labelle St/Cummings Ave & Cyrville Rd
 01/22/2025

 Intersection Signal Delay: 28.6
 Intersection LOS: C

 Intersection Capacity Utilization 71.8%
 ICU Level of Service C

interesedent suparity summaries in the rest	
Analysis Period (min) 15	
# 95th percentile volume exceeds capacity, queue may be long	jer.
Queue shown is maximum after two cycles.	

Splits and Phases: 5: Labelle St/Cummings Ave & Cyrville Rd

		● @ : ↓>Ø4
43 s		5 s 37 s
	₹_Ø6	● _{\$} , ↑ ^{\$} \$
15 s	43 s	5 s 37 s

Scenario 1 1137 Ogilvie Road PM Peak Hour Existing

Synchro 11 Report Page 10

Scenario 1 1137 Ogilvie Road PM Peak Hour Existing

Collision Data

Hand Hand <th< th=""><th>Accident Date</th><th>Accident Year</th><th>Accident Time</th><th>Location</th><th>Environment Condition</th><th>Light</th><th>Traffic Control</th><th>Traffic Control Condition</th><th>Classification Of Accident</th><th>Initial Impact Type</th><th>Road Surface Condition</th><th># Vehicles</th><th># Motorcycles</th><th># Bicycles</th><th># Pedestrians</th></th<>	Accident Date	Accident Year	Accident Time	Location	Environment Condition	Light	Traffic Control	Traffic Control Condition	Classification Of Accident	Initial Impact Type	Road Surface Condition	# Vehicles	# Motorcycles	# Bicycles	# Pedestrians
Here BARSHere <b< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0</td><td></td><td></td><td></td><td>0</td><td>0</td><td>0</td><td>0</td></b<>								0				0	0	0	0
Hart Hart Hart H								0				0	0	0	0
Hale Hale <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0</td><td></td><td></td><td></td><td>0</td><td>0</td><td>0</td><td>0</td></th<>								0				0	0	0	0
Alter <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0</td><td></td><td></td><td></td><td>0</td><td>0</td><td>0</td><td>0</td></th<>								0				0	0	0	0
AleA								0				0	ő	ő	0
ABAD								0				0	0	1	0
MathM	2018-09-19	2018	17:07		01 - Clear	01 - Daylight	01 - Traffic signal	0		05 - Turning movement	01 - Dry	0	0	1	0
matrixmatr								0				0	0	0	0
No. No. No. No. No.								0				0	0	0	0
Bit Bit <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0</td> <td></td> <td></td> <td></td> <td>0</td> <td>0</td> <td>0</td> <td>0</td>								0				0	0	0	0
AllA								0				0	0	0	0
Sec. Sec. <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0</td><td></td><td></td><td></td><td>0</td><td>0</td><td>0</td><td>0</td></t<>								0				0	0	0	0
310 310 CMMCAR & SULPE (COUNT) 0.100<								0				0	0	0	0
NHO-5NHO <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0</td><td></td><td></td><td></td><td>0</td><td>0</td><td>ō</td><td>0</td></th<>								0				0	0	ō	0
	2019-03-13	2019	18:40	CUMMINGS AVE @ OGILVIE RD (0009923)	03 - Snow	07 - Dark	01 - Traffic signal	0	03 - P.D. only	02 - Angle	05 - Packed snow	0	0	0	0
Bit of the stateBit								0				0	0	0	0
								0				0	0	0	0
No.N								0				0	0	0	0
No.N								0				0	0	0	0
No.N								0				0	0	0	0
1000100010001000000000000000000000000000000000000								0				0	0	0	0
	2019-11-16	2019	21:55	CUMMINGS AVE @ OGILVIE RD (0009923)	01 - Clear	07 - Dark	01 - Traffic signal	0	03 - P.D. only	03 - Rear end	06 - Ice	0	0	0	0
	2019-11-25	2019	9:53		01 - Clear	01 - Daylight		0	03 - P.D. only	03 - Rear end	01 - Dry	0	0	0	0
								0				0	0	0	0
								0				0	0	0	0
No. 97.38CMAMMSA M ² 6000018 (000003)0.1-Serve0.								0				0	0	0	0
								0				0	0	0	0
1928 19.2 1.2.2. CMMMES AF & GAUSE 1000221 0.1.0.1.0.1.0.1.0.1.0.1.0.1.0.1.0.1.0.1								0				0	0	0	0
bit bit controls contr	2020-08-01	2020						0				0	0	0	0
1919-34 19.79 UMMMS AV © 0000030 0. UMMMS AV © 0000030 0brain type 0brain ty	2020-10-11			CUMMINGS AVE @ OGILVIE RD (0009923)	01 - Clear	01 - Daylight	01 - Traffic signal	0	03 - P.D. only		01 - Dry	0	0	0	0
b21 17.7 CUMMES AF \$ \$ \$CUM ED [00023] 0 Conf. B 0 Conf. B<	2020-12-11	2020	18:16	CUMMINGS AVE @ OGILVIE RD (0009923)	01 - Clear	07 - Dark	01 - Traffic signal	0	03 - P.D. only	04 - Sideswipe	01 - Dry	0	0	0	0
1010 0.000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.0000000								0				0	0	0	0
19.29 19.39 19.49 CumMins AM* group (1000023) 0.10.40 0.10.40 0.1.40.40 <								0				0	0	0	0
bit bit< <								0				0	0	0	0
10.21 1.4.6 CMANNES AF 2 GOUNTE (000923) 0.1.7.0.1.8.g 0.1.7.0.1.8.g </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0</td> <td></td> <td></td> <td></td> <td>0</td> <td>0</td> <td>0</td> <td>0</td>								0				0	0	0	0
121:12-12 121:12 121:12-12 1								0				0	0	0	0
1022-047 10.20 UMMINSA VE GOLVERD (00023) 0.2-Mel 0.2-Mel 0.2-Mel 0.2-Mel 0.2-Mel 0.4-Mel 0.2-Mel 0.4-Mel 0.4-M								0				0	0	ō	0
222 06-25 202 15.0 CMMMRS XP @ GMUE NE (000921) 0.1-Gar 0.1-ongingt	2022-04-07	2022	16:30	CUMMINGS AVE @ OGILVIE RD (0009923)	02 - Rain	01 - Daylight	01 - Traffic signal	0	03 - P.D. only		02 - Wet	0	0	1	0
222-07-13 2022 11.5 CLMMMSX 47 @ GULVE RD (000923) G1 - Gar w 0.10- Parke ready 0 D2. New feld hypy 0.1- Rear ready 0 D2. New feld hypy D2. New fe								0				0	1	0	0
2022-102 2022 10.20 CMMMIDS AVE © DGUNETE (000923) 0.1 - Clear 0.1 - Traffic signal 0 0.2 - Mon-Matel Negrov 0.5 - Loning 0.6 - Loning 0.1 - Traffic signal 0 0.2 - Mon-Matel Negrov 0.5 - Loning 0.6 - Loning 0.6 - Loning 0.0 - Loning 0								0				0	0	0	0
Differ Differ <thdiffer< th=""> <thdiff< th=""> Differ<td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0</td><td></td><td></td><td></td><td>0</td><td>0</td><td>0</td><td>0</td></thdiff<></thdiffer<>								0				0	0	0	0
D216 0-30 D218 H.37 CUMMINS AVE © DONLDT (000595) D1-Clear D1-Draft, spal D D1-Draft, spal D. D1-Draft, spal D D1-Draft, spal D. D1-Draft, spal D D1-Draft, spal								0				0	0	0	0
Dills 0-17 Dills Dills 0-17 Dills 0-17 Dills 0-17 Dills 0-17 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0</td> <td></td> <td></td> <td></td> <td>0</td> <td>0</td> <td>0</td> <td>0</td>								0				0	0	0	0
Disl 1-25 Disl 2-45 CUMMINGS AVE © DOMAD T (000989) OP - Foreing Ram OP - Tork Teging Ram OP - Soft Cardinal Stress Ram OP - Soft Cardinal Stres Ram OP - Soft Cardin Stress Ram <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0</td><td></td><td></td><td></td><td>0</td><td>0</td><td>0</td><td>0</td></t<>								0				0	0	0	0
2019 0 1.30 10.30 UMMINGS AVE @ DOMAD DT (000936) 0.1 - Clark 0.1 - Traffic signal 0 0.3 - P.D. only 0.2 - Apple 0.1 - Traffic signal 0 0.3 - P.D. only 0.2 - Apple 0.1 - Traffic signal 0 0.3 - P.D. only 0.2 - Apple 0.1 - Traffic signal 0 0.2 - Apple 0.1 - Apple 0.1 - Traffic signal 0 0.2 - Apple 0.1 - Apple 0.1 - Traffic si								0				0	0	ō	0
2020 1-10 2020 20-54 UMMINGS AVE @ DOMAD DT (000936) 01 - Frade signal 0 0.2 - Non-frad linght 07 - Non' wich er 0.0 - Non-frade linght 07 - Non' wich er 0.0 - Non-frade linght 07 - Non' wich er 0.0 - Non-frade linght 07 - Non' wich er 0.0 - Non-frade linght			10:30					0		03 - Rear end	01 - Dry	0	0	0	0
2020 0-11 2020 14.4 CUMMINGS AVE © DOMAD DT (000936) 0.1 cher 0.1 - Traffe signal 0 0.1 - P.O. m./ 0.1 - Sear and 0.1 - Ory 0.1 - Sear and								0				0	0	0	0
2020 05:12 2020 21:14 CUMMINGS AVE @ DOMAD ST (DO0958) 0.1 - Clar 0.5 - Data 0.1 - Traffe signal 0 0.1 - P.D. englar 0.1 - Dry 0.1 - Dry <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0</td><td></td><td></td><td></td><td>0</td><td>0</td><td>0</td><td>1</td></t<>								0				0	0	0	1
2221-10-15 2021 5.56 UMMMINGS AVE @ DOMAD 5T (000936) 02-Rain 07-Dark 01-Traffe: signal 0 02-Non-Kala jany 07-Solv other 02-Weit 0 0-Home 02-Home 02								0				0	0	0	0
2221-12-02 2021 15.35 CUMMINGS AVE © DOMAD ST (000938) 0.1 - Claw 0.1 - During (ragin) 0 0.1 - P.During 0.5 - Tuming movement 0.0 - Wet 0 0.1 - P.During 0.5 - Tuming movement 0.0 - Wet 0 0.0 - Wet 0 0.0 - Wet 0.0 - Wet 0 0.0 - Wet 0.0								0				0	0	0	0
D221-12-20 D201 15.95 CLMMMINGS AVE @ DOMADD TO (000936) 00-5 - South @ DOMADD TO (000000) 00-5 - South @ DOMADD TO (0000000) 00-5 - South @ DOMADD TO (0000000) 00-5 - South @ DOMADD TO (0000000) 00-5 - South @ DOMADD TO (00000000) 00-5 - South @ DOMADD TO (0000000) 00-5 - South @ DOMADD TO (00000000) <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0</td><td></td><td></td><td></td><td>0</td><td>0</td><td>0</td><td>1</td></t<>								0				0	0	0	1
2022 0 1-13 2022 22.25 UMMINGS AVE @DOMMINGS AVE @DOMMINGS TAPUTODION BE_IZA/UQ 0.1 - Clear 0.1 - Traffic signal 0 0.2 - Non-fail night 0.0 - Ano-fail night								0				0	ő	ő	0
Object-16 <	2022-01-13	2022	22:25		01 - Clear	07 - Dark		0	02 - Non-fatal injury		02 - Wet	0	0	0	1
2015 10-25 2019 21.38 UMMMOS AVE box 061/VE RD A WELDON RG ZA7UQ) 01 - Clear 07 - Dark 10 - No control 0 03 - P.D. only 02 - Angle 01 - Ony 0 - Ony 0 - Ony 0 <	2018-02-21	2018		CUMMINGS AVE btwn OGILVIE RD & WELDON DR (3ZA7UQ)	01 - Clear	01 - Daylight	10 - No control	0	03 - P.D. only	02 - Angle	05 - Packed snow	0	0	0	0
2019-10-5 2019 12.55 CUMMINDS AVE New OGLIVE RD & VELDON RD _ ZZ/UQ) 0.1 - Clear 0.7 - Dark 10 - No control 0 0.3 - P.D. only 0.2 - Angle 0.1 - Ony								0				0	0	0	0
2019-11-27 2019 17-40 UMMINDS AVE how GGUVE BD & WELDON BE_IZAZUQ) 02-Rain 07 - Dark 10 - No control 0 03 - P.D. only 02 - Angle 02 - Mark 0 02 2020 P-07 200 15.00 UMMINDS AVE how GGUVE BD & WELDON BE_IZAZUQ) 01 - Clear 01 - Dright 10 - No control 0 03 - P.D. only 02 - Angle 01 - Dright 0 03 - P.D. only 02 - Angle 01 - Dright 0 02 - P.D. only 02 - Angle 0 0 0 02 - P.D. only 02 - Angle 01 - Dright 0 03 - P.D. only 02 - Angle 01 - Dright 0 02 - P.D. only 02 - Angle 01 - Dright 0 0 0 - P.D. only 02 - Angle 01 - Dright 0 02 - P.D. only 02 - Angle 01 - Dright 0 02 - P.D. only 02 - Angle 01 - Dright 0 02 - P.D. only 02 - Angle 01 - Dright 0 02 - D.D. only 02 - Angle 01 - Dright 0 02 - D.D. only 02 - Angle 01 - Dright 0 02 - D.D. only 02 - D.D. only 02 - D.D.D								0				0	0	0	0
Cold Point Cold MMMMS AVE New OGLIVE RD & WELDON RD _ ZA/DQI Di-Clear Di-Daylight Di-No control Di-No control Di-Pic ontrol Di-Pic ontro Di-Pic ontrol Di-Pic ontrol<								0				0	0	0	0
22020 0-07 2020 15:00 UMMINDS AVE Now GOLVE BD & VELDON BD _ 227/UQ) 01 - Clear 01 - Drylet 10 - No control 0 03 - P.D. only 0 Org 0 0 0 2020 0-07 2020 15:00 UMMINDS AVE Now GOLVE BD & VELDON BD _ 227/UQ) 01 - Clear 01 - Drylet 10 - No control 0 03 - P.D. only 0 Org 0 0 2021 0-520 2021 14.25 UMMINDS AVE Now GOLVE BD & VELDON BD _ 227/UQ) 01 - Clear 01 - Drylet 10 - No control 0 03 - P.D. only 02 - Angle 01 - Org 0 0 2021 0-520 2021 14.25 UMMINDS AVE Now GOLVE BD & VELDON BC _ 227/UQ) 01 - Clear 01 - Drylet 10 - No control 0 03 - P.D. only 02 - Angle 01 - Org 0 0 2021 0-525 2018 6.50 GOLVE BD & WELDON PG & 227/UQ) 01 - Clear 07 - Dork 10 - No control 0 02 - Non-fail Injung 02 - Angle 01 - Org 0 0 0 0 0 0.0000 0.0000 0.0000 0.0000								0				0	0	0	0
2021-01:10 2021 11:53 CUMMINGS AVE bits of GUVE BD & VELODIN DB _ 227/00 01- Clear 01- Daylight 10- No control 0 02-Non-fail injuny 05- Turning movement 01- Dry 0 0 2021-652 2021 14.25 CLMMAINGS AVE bits on GGUVE BD & WELDON DB _ 237/00 01- Clear 01- Daylight 10- No control 0 02- Non-fail injuny 02- Angle 01- Dry 0 0 2021-68-05 2021 17.29 CLMMAINGS AVE bits an GGUVE BD & WELDON DB _ 237/00 01- Clear 01- Daylight 10- No control 0 03- P.D. only 02- Angle 01- Dry 0 0 2021-68-05 2019 6.50 OGUVE RD bits BALUEU PA & CMMINGS AVE _ 547000) 01- Clear 07- Dink 10- No control 0 02- Non-fail injuny 03- Rear and 04- Sub 0 0 2021-69-14 2021 Uninkow ME BALUEU PA & CMMINGS AVE _ 547000) 01- Clear 07- Dark 10- No control 0 03- P.D. only 07- Angle 01- Onj 0 0 0 0 0 02- Onj 03- Rear and								0				0	0	0	0
O221-05-20 O211 14.25 CUMMINDS AVE Ethom GOLVE RD & WELDON DR _ ZAZ/UQ) 01- Clear 01- Dav/gitt 10- No control 0 03- P.D. only 02- Angle 01- Only 0 0 0221-05-20 2018 650 CUMMINDS AVE Ethom GOLVE RD A WELDON DR _ ZAZ/UQ) 01- Clear 01- Dav/gitt 10- No control 0 03- P.D. only 02- Angle 01- Only 0 0 2018-10-25 2018 650 OCUVE RD Ethom BALULEU P.R. & CUMMINGS XVE _ SAPOD) 01- Clear 07- Dav/gitt 10- No control 0 03- P.D. only 02- Angle 01- Only 0 0 2015-05-25 2018 650 OCUVE RD Ethom BALULEU P.R. & CUMMINGS XVE _ SAPOD) 01- Clear 07- Only 10- No control 0 03- P.D. only 03- Rear onl 01- Only 0 0 2015-05-24 2018 Unhunos SCUMMINGS XVE _ SAPOD) 01- Clear 07- Only 0 0-No-chailinging 03- Rear onl 01- Only 0 0 0-No-chailinging 03- Rear onl 01- Only 0 020- So-10 03- Samot MOL NONE								0				0	0	0	0
2021-06-05 2021 17.29 UMMMOS AVE Etwo rollive RD & VELDON RD [_2Z/UQ] 01 - Clear 01 - Daylight 10 - No control 0 03 - PD only 02 - Angle 01 - Ony 0 0 2015-05-2 2018 650 OCILIVE RD DAMINGS AVE (_54POD) 01 - Clear 07 - Dark 10 - No control 0 03 - PD only 02 - Angle 01 - Ony 0 0 2019-06-09 2019 14.14 ODIVE RD DAMINGS AVE (_54POD) 01 - Daylight 10 - No control 0 03 - PD only 03 - PD only 04 - Slush 0 0 2019-06-07 2019 14.14 ODIVE RD DAMINGS AVE (_54POD) 01 - Clear 01 - Unknown 0 03 - PD only 07 - SMV Other 04 - Slush 0 0 2012-05-42 2012 Unhown OGILVE RD DAMINGS AVE (_54POD) 01 - Clear 07 - Dark 10 - No control 0 04 - North-fail Injury 03 - Rear end 01 - Ony 0 0 2016-02-09 2018 10.14 UMININGS AVE (_54POD) 01 - Clear 01 - Daylight 10 - No co								0				0	0	1	0
2019-04-09 2019 14.14 OGILVE RD bitwin BALULEU P. & CUMMINGS AVE (_S4PODD) 03 - Snow 01 - Daylight 10 - No control 0 03 - P.D. only 03 - Rear end 04 - Slash 0 0 2019-04-09 2011 Unknown OGILVE RD bitwin BALULEU P. & CUMMINGS AVE (_S4PODD) 01 - Oeylight 10 - No control 0 03 - P.D. only 07 - SMV Other 01 - Ory 0 0 2012-05-12 2021 22.180 OGILVE RD bitwin BALULEU P. & ACUMMINGS AVE (_S4PODD) 01 - Clear 07 - Dark 10 - No control 0 03 - P.D. only 07 - SMV Other 01 - Opy 0 0 2016-02-09 2018 10.14 CUMMINGS AVE Extra LOVCY RT & STATUTAVEN RW (_STSTM) 01 - Clear 01 - Daylight 10 - No control 0 02 - Non-faal injury 03 - Rear end 01 - Opy 0 0 2016-02-09 2018 10.14 CUMINIGS AVE Extra LOVCY RT & STATUTAVEN RW (_STSTM) 01 - Clear 01 - Daylight 10 - No control 0 02 - Non-faal injury 05 - Tuming movement 04 - Slash 0 0 2016-02-09 <td< td=""><td></td><td></td><td></td><td>CUMMINGS AVE btwn OGILVIE RD & WELDON DR (3ZA7UQ)</td><td></td><td></td><td></td><td>0</td><td></td><td></td><td></td><td>0</td><td>0</td><td>0</td><td>0</td></td<>				CUMMINGS AVE btwn OGILVIE RD & WELDON DR (3ZA7UQ)				0				0	0	0	0
2022-69-14 2021 Unknow OGUVER Db Kum BEAULUE V & CUMMINGS XVE_STROD) 0.1 - Clear 0.1 - Unknow 1.9 - Mo control 0 0.3 - P.D. only 0.7 - SW other 0.1 - Ory 0 0 0.202 2021-05-28 2023 COLIVE Db Kum BEAULUE V & CUMMINGS XVE_STROD) 0.1 - Clear 0' - Dark 10 - Mo control 0 0.2 - Non-faal injury 0.3 - Rear end 0.1 - Ory 0 0 2016-02-05 2018 10.14 CUMMINGS XVE Ebma EADUC CITA STRATHAVEN RIV [SSTPTM] 0.1 - Clear 0.1 - Day(injt 10 - No control 0 0.2 - Non-faal injury 0.5 - Turnit gmovement 0.4 - Side strathavent 0 0.2 - Non-faal injury 0.5 - Turnit gmovement 0.4 - Side strathavent 0 0.0 - Non-faal injury 0.5 - Turnit gmovement 0.4 - Side strathavent 0.0 - Non-faal injury 0.5 - Turnit gmovement 0.4 - Side strathavent 0.0 - Non-faal injury 0.5 - Turnit gmovement 0.4 - Side strathavent 0.0 - Non-faal injury 0.5 - Turnit gmovement 0.4 - Side strathavent 0.0 - Non-faal injury 0.5 - Turnit gmovement 0.4 - Side strathavent 0.0 - Non-faal injury 0.5 - Turnit gmovement 0.4 - Side stratha								0				0	0	1	0
2022-05-28 2023 22:38 OOLIVE RD brann BEAULERUPE, & CLIMMINGS AVE SKR (= \$47000) 01 - Clear 07 - Oark 10 - No control 0 02-Non-fatal injury 03-Rear end 01 - Dry 0 0 2016-02-09 2018 10:44 CLIMMINGS AVE brann EADVICET & STAT HAVEN RRV (_SISTM) 01 - Clear 01 - Daylight 10 - No control 0 02 - Non-fatal injury 03-Rear end 01 - Dry 0 0 2016-02-09 2018 10:44 CLIMMINGS AVE brann EADVICET & STAT HAVEN RRV (_SISTM) 01 - Clear 01 - No control 0 02 - Non-fatal injury 03-Rear end 04 - Silash 0 0 2019 19:30 CLIMMINGS AVE brann EADVICET & SISTM1 01 - Clear 07 - Dark 10 - No control 0 03 - PD. only 04 - Silash 0 0								0				0	0	0	0
2018-02-09 2018 10.14 CUMMINGS AVE blvm EADY CRT & STRATHAVEN PRV [SISTPH] 01 - Clear 01 - Daylight 10 - No control 0 02 - Non-fatal injury 05 - Turning movement 04 - Such 0 0 0 2019-03-01 2019 19:30 CUMMINGS AVE blvm EADY CRT & STRATHAVEN PRV [_SISTPH] 01 - Clear 07 - Dark 10 - No control 0 03 - P.D. only 04 - Sidewipe 02 - Wet 0 0								0				0	0	0	0
2019-03-01 2019 19:30 CUMMINGS AVE blvm FADY CRT & STRATHAVEN PRIV (0				0	0	0	0
								ő				0	ő	0	ő
				CUMMINGS AVE blwn EADY CRT & STRATHAVEN PRIV (SJ9TPH)				0				ō	0	ő	0
2020-01-10 2020 18:00 OGILVIE RD btwn CIJMMINGS AVE & MURDOCK GT (_328N9A) 01 - Clear 07 - Dark 10 - No control 0 03 - P.D. only 04 - Sideswipe 01 - Dry 0 0				OGILVIE RD btwn CUMMINGS AVE & MURDOCK GT (3ZBN9A)				0				0	0	0	0
2020-08-06 2020 17:14 OGLIVER.D btwn CUMMINGS AVE & MURDOCK GT (_32BN9A) 01 - Clear 01 - Daylight 10 - No control 0 02 - Non-fatal injury 02 - Angle 01 - Dry 0 0								0				0	0	0	0
2018-09-16 2018 17:44 CUMMINGS AVE btwn DONALD ST & EADY CRT (32805T) 01 - Clear 01 - Daylight 10 - No control 0 02 - Non-fatal injury 02 - Angle 01 - Dry 0 0	2018-09-16	2018	17:44	CUMMINGS AVE DIWN DONALD ST & EADY CRT (3ZBO9T)	01 - Clear	01 - Daylight	10 - No control	0	02 - Non-fatal injury	02 - Angle	01 - Dry	0	0	0	0

From: January 1, 2017 To: December 31, 2021

Location: CUMM	INGS AVE @	DONALD ST							
Traffic Control: Tra	ffic signal						Total Collisions:	: 17	
Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuve	r Vehicle type	First Event	No. Ped
2017-Jan-09, Mon,19:20	Clear	Turning movement	P.D. only	Dry	North	Turning left	Unknown	Other motor vehicle	0
					South	Going ahead	Automobile, station wagon	Other motor vehicle	
2017-Apr-20, Thu,13:05	Clear	Turning movement	Non-fatal injury	Dry	North	Turning left	Automobile, station wagon	Other motor vehicle	0
					South	Going ahead	Automobile, station wagon	Other motor vehicle	
2017-Aug-07, Mon,16:06	Clear	Rear end	Non-fatal injury	Dry	East	Going ahead	Automobile, station wagon	Other motor vehicle	0
					East	Stopped	Automobile, station wagon	Other motor vehicle	
2017-Aug-08, Tue,13:20	Clear	Rear end	P.D. only	Dry	South	Going ahead	Passenger van	Other motor vehicle	0
					South	Stopped	Automobile, station wagon	Other motor vehicle	
2017-Nov-26, Sun,21:00	Drifting Snow	Angle	P.D. only	Ice	North	Unknown	Tow truck	Other motor vehicle	0
					East	Unknown	Automobile, station wagon	Other motor vehicle	
2018-Feb-25, Sun,10:00	Clear	Angle	P.D. only	Ice	South	Turning right	Automobile, station wagon	Other motor vehicle	0
					East	Going ahead	Automobile, station wagon	Other motor vehicle	
2018-Apr-30, Mon,14:37	Clear	Rear end	P.D. only	Dry	East	Turning right	Pick-up truck	Other motor vehicle	0
					East	Turning right	Automobile, station wagon	Other motor vehicle	
2018-Sep-17, Mon,10:12	Clear	Turning movement	Non-fatal injury	Dry	North	Turning left	Automobile, station wagon	Other motor vehicle	0
					South	Going ahead	Automobile, station wagon	Other motor vehicle	
2018-Nov-25, Sun,02:45	Freezing Rain	SMV other	P.D. only	Ice	East	Turning right	Automobile, station wagon	Skidding/sliding	0
2019-Jul-13, Sat,10:30	Clear	Rear end	P.D. only	Dry	East	Unknown	Unknown	Other motor vehicle	0
					East	Stopped	Automobile, station wagon	Other motor vehicle	
2019-Jul-22, Mon,15:16	Clear	Angle	P.D. only	Dry	East	Turning right	Automobile, station wagon	Other motor vehicle	0
					South	Going ahead	Automobile, station wagon	Other motor vehicle	
2020-Jan-10, Fri,20:54	Snow	SMV other	Non-fatal injury	Wet	East	Turning right	Automobile, station wagon	Pedestrian	1
2020-Jan-11, Sat,14:44	Clear	Rear end	P.D. only	Dry	North	Unknown	Automobile, station wagon	Other motor vehicle	0
					North	Unknown	Automobile, station wagon	Other motor vehicle	

December 01, 2023

Page 1 of 2

Ottawa

Transportation Services - Traffic Services Collision Details Report - Public Version

From: January 1, 2017 To: December 31, 2021

.ocation: CUMM	INGS AVE @	DONALD ST							
raffic Control: Tra	ffic signal						Total Collisions:	17	
ate/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuve	er Vehicle type	First Event	No. Ped
2020-Jun-12, Fri,21:14	Clear	Sideswipe	P.D. only	Dry	South	Overtaking	Automobile, station wagon	Other motor vehicle	0
					South	Stopped	Pick-up truck	Other motor vehicle	
					North	Stopped	Automobile, station wagon	Other motor vehicle	
2021-Oct-15, Fri,05:56	Rain	SMV other	Non-fatal injury	Wet	North	Turning left	Pick-up truck	Pedestrian	1
021-Dec-02, Thu,15:35	Clear	Turning movement	P.D. only	Wet	North	Turning left	Automobile, station wagon	Other motor vehicle	0
					South	Going ahead	Passenger van	Other motor vehicle	
2021-Dec-20, Mon, 16:59	Snow	Turning movement	P.D. only	Slush	South	Turning right	Automobile, station wagon	Other motor vehicle	0
					South	Going ahead	Automobile, station wagon	Other motor vehicle	

From: January 1, 2017 To: December 31, 2021

Location: CUMM	INGS AVE @	OGILVIE RD							
Traffic Control: Trai	ffic signal						Total Collisions:	54	
Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuve	r Vehicle type	First Event	No. Ped
2017-Jan-30, Mon,19:00	Clear	Rear end	P.D. only	Dry	West	Slowing or stopping	g Automobile, station wagon	Other motor vehicle	0
					West	Stopped	Automobile, station wagon	Other motor vehicle	
2017-Feb-08, Wed, 16:20	Clear	Rear end	P.D. only	Loose snow	South	Slowing or stopping	g Automobile, station wagon	Other motor vehicle	0
					South	Slowing or stopping	g Automobile, station wagon	Other motor vehicle	
					South	Slowing or stopping	g Automobile, station wagon	Other motor vehicle	
2017-Feb-15, Wed,08:17	Snow	Turning movement	P.D. only	Loose snow	East	Making "U" turn	Automobile, station wagon	Other motor vehicle	0
					West	Slowing or stopping	g Pick-up truck	Other motor vehicle	
2017-Mar-02, Thu, 15:28	Clear	Rear end	P.D. only	Dry	North	Going ahead	Automobile, station wagon	Other motor vehicle	0
					North	Going ahead	Automobile, station wagon	Other motor vehicle	
2017-Mar-08, Wed, 10:45	Clear	Rear end	Non-fatal injury	Dry	West	Slowing or stopping	g Automobile, station wagon	Other motor vehicle	0
					West	Stopped	Automobile, station wagon	Other motor vehicle	
2017-Aug-02, Wed, 12:40	Clear	Turning movement	P.D. only	Dry	South	Turning left	Automobile, station wagon	Other motor vehicle	0
					North	Turning right	Automobile, station wagon	Other motor vehicle	
2017-Aug-03, Thu,07:50	Clear	Turning movement	Non-fatal injury	Dry	West	Turning right	Automobile, station wagon	Cyclist	0
					West	Going ahead	Bicycle	Other motor vehicle	
2017-Aug-27, Sun,00:11	Clear	Angle	P.D. only	Dry	South	Going ahead	Police vehicle	Other motor vehicle	0
					East	Going ahead	Automobile, station wagon	Other motor vehicle	
2017-Sep-08, Fri,08:37	Rain	Rear end	P.D. only	Wet	North	Unknown	Automobile, station wagon	Other motor vehicle	0
					North	Stopped	Automobile, station wagon	Other motor vehicle	
2017-Sep-12, Tue, 12:30	Clear	Rear end	P.D. only	Dry	East	Slowing or stopping	g Automobile, station wagon	Other motor vehicle	0
					East	Stopped	Delivery van	Other motor vehicle	
2017-Sep-20, Wed, 14:47	Clear	Sideswipe	Non-fatal injury	Dry	West	Changing lanes	Automobile, station wagon	Other motor vehicle	0
					West	Going ahead	Motorcycle	Other motor vehicle	

December 01, 2023

Page 1 of 5

Ottawa

Transportation Services - Traffic Services Collision Details Report - Public Version

From:	January 1	2017	To:	December 31.	2021
110111.	January 1	, 2017	10.	December 01,	2021

woffin Controls Tro	ffic signal						Total Callisiana	54	
raffic Control: Tra	nic signal						Total Collisions:	54	
ate/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuve	r Vehicle type	First Event	No. Ped
2017-Oct-27, Fri,11:30	Clear	Turning movement	Non-fatal injury	Dry	West	Turning right	Automobile, station wagon	Cyclist	0
					West	Going ahead	Bicycle	Other motor vehicle	
2018-Mar-24, Sat,18:25	Clear	Rear end	Non-fatal injury	Dry	North	Going ahead	Automobile, station wagon	Other motor vehicle	0
					North	Turning right	Passenger van	Other motor vehicle	
2018-Apr-12, Thu,11:01	Clear	Sideswipe	P.D. only	Dry	West	Changing lanes	Automobile, station wagon	Other motor vehicle	0
					West	Going ahead	Unknown	Other motor vehicle	
2018-May-05, Sat,18:14	Clear	Angle	P.D. only	Dry	South	Going ahead	Automobile, station wagon	Other motor vehicle	0
					East	Going ahead	Automobile, station wagon	Other motor vehicle	
					North	Stopped	Automobile, station wagon	Other motor vehicle	
2018-May-25, Fri,15:00	Clear	Sideswipe	P.D. only	Dry	West	Changing lanes	Automobile, station wagon	Other motor vehicle	0
					West	Going ahead	Automobile, station wagon	Other motor vehicle	
2018-Jun-11, Mon,18:00	Clear	Turning movement	P.D. only	Dry	South	Turning left	Automobile, station wagon	Other motor vehicle	0
					North	Turning right	Automobile, station wagon	Other motor vehicle	
2018-Jul-23, Mon,09:30	Clear	Rear end	P.D. only	Dry	West	Going ahead	Automobile, station wagon	Other motor vehicle	0
					West	Stopped	Automobile, station wagon	Other motor vehicle	
2018-Aug-20, Mon,17:00	Clear	Turning movement	Non-fatal injury	Dry	West	Turning right	Automobile, station wagon	Cyclist	0
					West	Going ahead	Bicycle	Other motor vehicle	
2018-Sep-19, Wed, 17:07	Clear	Turning movement	P.D. only	Dry	West	Turning right	Automobile, station wagon	Cyclist	0
					West	Going ahead	Bicycle	Other motor vehicle	
2018-Oct-10, Wed, 15:15	Clear	Turning movement	P.D. only	Dry	West	Turning left	Automobile, station wagon	Other motor vehicle	0
					East	Going ahead	Automobile, station wagon	Other motor vehicle	
2018-Nov-21, Wed, 16:10	Clear	Turning movement	P.D. only	Packed snow	East	Turning left	Automobile, station wagon	Other motor vehicle	0
				0.1011	West	Going ahead	Automobile, station wagon	Other motor vehicle	

From: January 1, 2017 To: December 31, 2021

Location: CUMM	INGS AVE @	OGILVIE RD							
Traffic Control: Tra	ffic signal						Total Collisions:	54	
Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuve	r Vehicle type	First Event	No. Ped
2018-Dec-08, Sat,18:00	Snow	Sideswipe	P.D. only	Loose snow	East	Changing lanes	Automobile, station wagon	Other motor vehicle	0
					East	Turning right	Automobile, station wagon	Other motor vehicle	
2019-Jan-11, Fri,16:08	Clear	Sideswipe	P.D. only	Dry	East	Changing lanes	Automobile, station wagon	Other motor vehicle	0
					East	Turning right	Automobile, station wagon	Other motor vehicle	
2019-Jan-23, Wed,12:30	Snow	Sideswipe	P.D. only	Packed snow	East	Changing lanes	Delivery van	Other motor vehicle	0
					East	Going ahead	Automobile, station wagon	Other motor vehicle	
2019-Jan-28, Mon,09:30	Clear	Other	P.D. only	Wet	South	Reversing	Pick-up truck	Other motor vehicle	0
					North	Stopped	Passenger van	Other motor vehicle	
2019-Feb-09, Sat,16:15	Clear	Rear end	P.D. only	Ice	West	Going ahead	Automobile, station wagon	Other motor vehicle	0
					West	Stopped	Automobile, station wagon	Other motor vehicle	
2019-Mar-06, Wed,09:59	Clear	Rear end	Non-fatal injury	Wet	East	Slowing or stopping	g Pick-up truck	Other motor vehicle	0
					East	Stopped	Automobile, station wagon	Other motor vehicle	
2019-Mar-13, Wed,18:40	Snow	Angle	P.D. only	Packed snow	West	Turning right	Automobile, station wagon	Other motor vehicle	0
					South	Stopped	Automobile, station wagon	Other motor vehicle	
2019-Mar-25, Mon,11:00	Clear	Rear end	P.D. only	Dry	West	Turning right	Automobile, station wagon	Other motor vehicle	0
					West	Turning right	Automobile, station wagon	Other motor vehicle	
2019-May-12, Sun,13:19	Clear	Turning movement	P.D. only	Dry	East	Turning left	Automobile, station wagon	Other motor vehicle	0
					West	Going ahead	Automobile, station wagon	Other motor vehicle	
2019-Jun-27, Thu,12:51	Clear	Angle	P.D. only	Dry	East	Turning left	Automobile, station wagon	Other motor vehicle	0
					North	Stopped	Automobile, station wagon	Other motor vehicle	
2019-Jul-20, Sat,13:47	Clear	Rear end	P.D. only	Dry	West	Unknown	Unknown	Other motor vehicle	0
					West	Stopped	Automobile, station wagon	Other motor vehicle	

December 01, 2023

Page 3 of 5

Ottawa

Transportation Services - Traffic Services Collision Details Report - Public Version

From: January 1, 2017 To: D	December 31, 2021
-----------------------------	-------------------

Traffic Control: Tra	iffic signal						Total Collisions:	54	
ate/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuve	r Vehicle type	First Event	No. Ped
2019-Jul-30, Tue,12:30	Rain	Angle	P.D. only	Wet	East	Turning left	Automobile, station wagon	Other motor vehicle	0
					South	Stopped	Automobile, station wagon	Other motor vehicle	
2019-Aug-01, Thu,18:04	Clear	Rear end	P.D. only	Dry	West	Slowing or stopping	g Pick-up truck	Other motor vehicle	0
					West	Stopped	Automobile, station wagon	Other motor vehicle	
					East	Stopped	Automobile, station wagon	Other motor vehicle	
2019-Aug-11, Sun,15:12	Clear	Rear end	P.D. only	Dry	West	Going ahead	Automobile, station wagon	Other motor vehicle	0
					West	Stopped	Automobile, station wagon	Other motor vehicle	
2019-Nov-16, Sat,21:55	Clear	Rear end	P.D. only	Ice	North	Unknown	Unknown	Other motor vehicle	0
					North	Stopped	Automobile, station wagon	Other motor vehicle	
					North	Stopped	Automobile, station wagon	Other motor vehicle	
2019-Nov-25, Mon,09:53	Clear	Rear end	P.D. only	Dry	East	Going ahead	Automobile, station wagon	Other motor vehicle	0
					East	Stopped	Automobile, station wagon	Other motor vehicle	
2020-Jan-06, Mon,07:45	Snow	Turning movement	P.D. only	Ice	East	Turning left	Automobile, station wagon	Other motor vehicle	0
					West	Going ahead	Automobile, station wagon	Other motor vehicle	
2020-Jan-10, Fri,12:23	Clear	Rear end	P.D. only	Dry	West	Unknown	Unknown	Other motor vehicle	0
					West	Stopped	Pick-up truck	Other motor vehicle	
2020-Jan-11, Sat,14:55	Snow	Turning movement	P.D. only	Loose snow	North	Going ahead	Unknown	Other motor vehicle	0
					South	Turning left	Automobile, station wagon	Other motor vehicle	
2020-Feb-07, Fri,17:45	Snow	Sideswipe	P.D. only	Loose snow	West	Changing lanes	Automobile, station wagon	Other motor vehicle	0
					West	Going ahead	Automobile, station wagon	Other motor vehicle	
2020-Mar-06, Fri,07:38	Snow	Rear end	P.D. only	Wet	East	Turning left	Pick-up truck	Other motor vehicle	0
					East	Turning left	Automobile, station wagon	Other motor vehicle	
2020-Jul-13, Mon,18:04	Clear	Turning movement	P.D. only	Dry	East	Turning left	Automobile, station wagon	Other motor vehicle	0
					West	Going ahead	Automobile, station wagon	Other motor vehicle	

From: January 1, 2017 To: December 31, 2021

Location: CUMM	INGS AVE @	OGILVIE RD							
Traffic Control: Trai	ffic signal						Total Collisions	54	
Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuve	r Vehicle type	First Event	No. Ped
2020-Aug-01, Sat,15:22	Clear	Turning movement	P.D. only	Dry	South	Turning left	Unknown	Other motor vehicle	0
					North	Going ahead	Automobile, station wagon	Other motor vehicle	
2020-Oct-11, Sun,15:40	Clear	Rear end	P.D. only	Dry	East	Going ahead	Automobile, station wagon	Other motor vehicle	0
					East	Stopped	Pick-up truck	Other motor vehicle	
2020-Dec-11, Fri,18:16	Clear	Sideswipe	P.D. only	Dry	East	Changing lanes	Pick-up truck	Other motor vehicle	0
					East	Going ahead	Automobile, station wagon	Other motor vehicle	
2021-Feb-24, Wed,17:58	Snow	Turning movement	Non-fatal injury	Packed snow	East	Turning left	Pick-up truck	Other motor vehicle	0
					West	Going ahead	Automobile, station wagon	Other motor vehicle	
2021-Jun-06, Sun,17:47	Clear	Angle	Non-fatal injury	Dry	West	Going ahead	Automobile, station wagon	Other motor vehicle	0
					South	Going ahead	Automobile, station wagon	Other motor vehicle	
2021-Jun-08, Tue,18:01	Clear	Rear end	P.D. only	Dry	West	Going ahead	Automobile, station wagon	Other motor vehicle	0
					West	Stopped	Pick-up truck	Other motor vehicle	
2021-Aug-20, Fri,19:40	Clear	Turning movement	P.D. only	Dry	South	Turning left	Delivery van	Other motor vehicle	0
					North	Going ahead	Pick-up truck	Other motor vehicle	
2021-Sep-30, Thu,23:10	Clear	Angle	Non-fatal injury	Dry	West	Going ahead	Passenger van	Other motor vehicle	0
					North	Turning left	Police vehicle	Other motor vehicle	
2021-Nov-06, Sat,14:42	Clear	Turning movement	Non-fatal injury	Dry	East	Making "U" turn	Automobile, station wagon	Other motor vehicle	0
					West	Going ahead	Automobile, station wagon	Other motor vehicle	
2021-Dec-02, Thu,12:19	Rain	Turning movement	P.D. only	Wet	West	Turning left	Pick-up truck	Other motor vehicle	0
					East	Going ahead	Automobile, station wagon	Other motor vehicle	

December 01, 2023

Page 5 of 5

Ottawa

Transportation Services - Traffic Services Collision Details Report - Public Version

From	January 1,	2017	To	December 31.	2021
TTOIL.	January I,	2017	10.	December 31,	2021

Traffic Control: No	control						Total Collisions:	: 11	
ate/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuve	er Vehicle type	First Event	No. Ped
2017-Mar-08, Wed,09:19	Clear	Rear end	P.D. only	Wet	North	Slowing or stoppin	g Automobile, station wagon	Other motor vehicle	0
					North	Slowing or stoppin	g Automobile, station wagon	Other motor vehicle	
					North	Stopped	Automobile, station wagon	Other motor vehicle	
2018-Feb-21, Wed,16:40	Clear	Angle	P.D. only	Packed snow	East	Turning left	Automobile, station wagon	Other motor vehicle	0
					South	Going ahead	Automobile, station wagon	Other motor vehicle	
2018-Jun-16, Sat,14:44	Clear	Angle	P.D. only	Dry	East	Turning left	Automobile, station wagon	Other motor vehicle	0
					South	Going ahead	Automobile, station wagon	Other motor vehicle	
2019-Oct-25, Fri,21:38	Clear	Angle	P.D. only	Dry	East	Turning left	Automobile, station wagon	Other motor vehicle	0
					North	Going ahead	Passenger van	Other motor vehicle	
2019-Nov-05, Tue,18:55	Clear	Angle	P.D. only	Dry	East	Turning right	Unknown	Other motor vehicle	0
					South	Stopped	Automobile, station wagon	Other motor vehicle	
2019-Nov-27, Wed, 17:40	Rain	Turning movement	P.D. only	Wet	South	Turning left	Automobile, station wagon	Other motor vehicle	0
					South	Going ahead	Passenger van	Other motor vehicle	
2020-Feb-24, Mon,16:11	Clear	Angle	P.D. only	Wet	East	Turning left	Automobile, station wagon	Other motor vehicle	0
					North	Going ahead	Automobile, station wagon	Other motor vehicle	
					South	Slowing or stoppin	g Automobile, station wagon	Other motor vehicle	
2020-Jul-07, Tue,15:00	Clear	Angle	P.D. only	Dry	East	Turning left	Pick-up truck	Other motor vehicle	0
					North	Going ahead	Delivery van	Other motor vehicle	
2021-Jan-10, Sun,11:53	Clear	Turning movement	Non-fatal injury	Dry	North	Turning left	Passenger van	Other motor vehicle	0
					South	Going ahead	Automobile, station wagon	Other motor vehicle	
2021-May-20, Thu, 14:25	Clear	Angle	P.D. only	Dry	East	Turning left	Bicycle	Other motor vehicle	0
					North	Going ahead	Automobile, station wagon	Cyclist	

From: January 1, 2017 To: December 31, 2021

							Tion. January	I, 2017 IO. December	51, 2021
Location: CUMM	INGS AVE btw	n WELDON DR	& OGILVIE RD						
Traffic Control: No control Total Collisions: 11									
Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuve	r Vehicle type	First Event	No. Ped
2021-Aug-05, Thu,17:29	Clear	Angle	P.D. only	Dry	East South	Turning left Going ahead	Pick-up truck Pick-up truck	Other motor vehicle Other motor vehicle	0

December 01, 2023

Page 2 of 2

Appendix E

City Draft Concepts for Cummings Cycling Project Functional Design

Ogilvie Road at Cummings Avenue intersection

Donald Street at Cummings Avenue intersection

Cyrville Road at Cummings Avenue intersection

TDM Checklist

TDM-Supportive Development Design and Infrastructure Checklist City of Ottawa Version 1.0 (30 June 2017) City of Ottawa

TDM-Supportive Development Design and Infrastructure Checklist: Non-Residential Developments (office, institutional, retail or industrial)

TDM-Supportive Development Design and Infrastructure Checklist Version 1.0 (30 June 2017)

	TDM-s	supportive design & infrastructure measures: Non-residential developments	Check if completed & add descriptions, explanations or plan/drawing references
REQUIRED	1.2.3	Provide sidewalks of smooth, well-drained walking surfaces of contrasting materials or treatments to differentiate pedestrian areas from vehicle areas, and provide marked pedestrian crosswalks at intersection sidewalks (see Official Plan policy 4.3.10)	
REQUIRED	1.2.4	Make sidewalks and open space areas easily accessible through features such as gradual grade transition, depressed curbs at street corners and convenient access to extra-wide parking spaces and ramps (see Official Plan policy 4.3.10)	
REQUIRED	1.2.5	Include adequately spaced inter-block/street cycling and pedestrian connections to facilitate travel by active transportation. Provide links to the existing or planned network of public sidewalks, multi-use pathways and on-road cycle routes. Where public sidewalks and multi-use pathways intersect with roads, consider providing traffic control devices to give priority to cyclists and pedestrians (see Official Plan policy 4.3.11)	
BASIC	1.2.6	Provide safe, direct and attractive walking routes from building entrances to nearby transit stops	
BASIC	1.2.7	Ensure that walking routes to transit stops are secure, visible, lighted, shaded and wind-protected wherever possible	
BASIC	1.2.8	Design roads used for access or circulation by cyclists using a target operating speed of no more than 30 km/h, or provide a separated cycling facility	
	1.3	Amenities for walking & cycling	
BASIC	1.3.1	Provide lighting, landscaping and benches along walking and cycling routes between building entrances and streets, sidewalks and trails	
BASIC	1.3.2	Provide wayfinding signage for site access (where required, e.g. when multiple buildings or entrances exist) and egress (where warranted, such as when directions to reach transit stops/stations, trails or other common destinations are not obvious)	

 TDM-Supportive Development Design and Infrastructure Checklist
 City of Ottawa

 Version 1.0 (30 June 2017)
 City of Ottawa

	TDM-s	upportive design & infrastructure measures: Non-residential developments	Check if completed & add descriptions, explanations or plan/drawing references
	2.	WALKING & CYCLING: END-OF-TRIP FACILI	TIES
	2.1	Bicycle parking	
REQUIRED	2.1.1	Provide bicycle parking in highly visible and lighted areas, sheltered from the weather wherever possible (see Official Plan policy 4.3.6)	
REQUIRED	2.1.2	Provide the number of bicycle parking spaces specified for various land uses in different parts of Ottawa; provide convenient access to main entrances or well- used areas (see Zoning By-law Section 111)	
REQUIRED	2.1.3	Ensure that bicycle parking spaces and access aisles meet minimum dimensions; that no more than 50% of spaces are vertical spaces; and that parking racks are securely anchored (see Zoning By-law Section 111)	
BASIC	2.1.4	Provide bicycle parking spaces equivalent to the expected number of commuter cyclists (assuming the cycling mode share target is met), plus the expected peak number of customer/visitor cyclists	
BETTER	2.1.5	Provide bicycle parking spaces equivalent to the expected number of commuter and customer/visitor cyclists, plus an additional buffer (e.g. 25 percent extra) to encourage other cyclists and expression adequate capacity in peak cycling season	
	2.2	Secure bicycle parking	
REQUIRED	2.2.1	Where more than 50 bicycle parking spaces are provided for a single office building, locate at least 25% of spaces within a building/structure, a secure area (e.g. supervised parking lot or enclosure) or bicycle lockers (<i>see Zoning By-law Section 111</i>)	
BETTER	2.2.2	Provide secure bicycle parking spaces equivalent to the expected number of commuter cyclists (assuming the cycling mode share target is met)	
	2.3	Shower & change facilities	
BASIC	2.3.1	Provide shower and change facilities for the use of active commuters	
BETTER	2.3.2	In addition to shower and change facilities, provide dedicated lockers, grooming stations, drying racks and laundry facilities for the use of active commuters	
	2.4	Bicycle repair station	
BETTER	2.4.1	Provide a permanent bike repair station, with commonly used tools and an air pump, adjacent to the main bicycle parking area (or secure bicycle parking area, if provided)	

TDM-Supportive Development Design and Infrastructure Checklist Version 1.0 (30 June 2017)

	TDM-s	upportive design & infrastructure measures: Non-residential developments	Check if completed & add descriptions, explanations or plan/drawing references
	3.	TRANSIT	
	3.1	Customer amenities	
BASIC	3.1.1	Provide shelters, lighting and benches at any on-site transit stops	
BASIC	3.1.2	Where the site abuts an off-site transit stop and insufficient space exists for a transit shelter in the public right-of-way, protect land for a shelter and/or install a shelter	
BETTER	3.1.3	Provide a secure and comfortable interior waiting area by integrating any on-site transit stops into the building	
	4.	RIDESHARING	
	4.1	Pick-up & drop-off facilities	
BASIC	4.1.1	Provide a designated area for carpool drivers (plus taxis and ride-hailing services) to drop off or pick up passengers without using fire lanes or other no-stopping zones	
	4.2	Carpool parking	
BASIC	4.2.1	Provide signed parking spaces for carpools in a priority location close to a major building entrance, sufficient in number to accommodate the mode share target for carpools	
BETTER	4.2.2	At large developments, provide spaces for carpools in a separate, access-controlled parking area to simplify enforcement	
	5.	CARSHARING & BIKESHARING	
	5.1	Carshare parking spaces	
BETTER	5.1.1	Provide carshare parking spaces in permitted non- residential zones, occupying either required or provided parking spaces (see <i>Zoning By-law Section 94</i>)	
	5.2	Bikeshare station location	
BETTER	5.2.1	Provide a designated bikeshare station area near a major building entrance, preferably lighted and sheltered with a direct walkway connection	

TDM-Supportive Development Design and Infrastructure Checklist Version 1.0 (30 June 2017) City of Ottawa

	TDM-s	supportive design & infrastructure measures: Non-residential developments	Check if completed & add descriptions, explanations or plan/drawing references
	6.	PARKING	
	6.1	Number of parking spaces	
REQUIRED	6.1.1	Do not provide more parking than permitted by zoning, nor less than required by zoning, unless a variance is being applied for	
BASIC	6.1.2	Provide parking for long-term and short-term users that is consistent with mode share targets, considering the potential for visitors to use off-site public parking	
BASIC	6.1.3	Where a site features more than one use, provide shared parking and reduce the cumulative number of parking spaces accordingly (see Zoning By-law Section 104)	
BETTER	6.1.4	Reduce the minimum number of parking spaces required by zoning by one space for each 13 square metres of gross floor area provided as shower rooms, change rooms, locker rooms and other facilities for cyclists in conjunction with bicycle parking (see Zoning By-law Section 111)	
	6.2	Separate long-term & short-term parking areas	
BETTER	6.2.1	Separate short-term and long-term parking areas using signage or physical barriers, to permit access controls and simplify enforcement (i.e. to discourage employees from parking in visitor spaces, and vice versa)	
	7.	OTHER	
	7.1	On-site amenities to minimize off-site trips	
BETTER	7.1.1	Provide on-site amenities to minimize mid-day or mid-commute errands	

TDM-Supportive Development Design and Infrastructure Checklist Version 1.0 (30 June 2017) City of Ottawa

TDM-Supportive Development Design and Infrastructure Checklist: *Residential Developments (multi-family or condominium)*

	TDM-s	upportive design & infrastructure measures: Residential developments	Check if completed & add descriptions, explanations or plan/drawing references
	1.	WALKING & CYCLING: ROUTES	
	1.1	Building location & access points	
BASIC	1.1.1	Locate building close to the street, and do not locate parking areas between the street and building entrances	\square
BASIC	1.1.2	Locate building entrances in order to minimize walking distances to sidewalks and transit stops/stations	
BASIC	1.1.3	Locate building doors and windows to ensure visibility of pedestrians from the building, for their security and comfort	\square
	1.2	Facilities for walking & cycling	
EQUIRED	1.2.1	Provide convenient, direct access to stations or major stops along rapid transit routes within 600 metres; minimize walking distances from buildings to rapid transit; provide pedestrian-friendly, weather-protected (where possible) environment between rapid transit accesses and building entrances; ensure quality linkages from sidewalks through building entrances to integrated stops/stations (see Official Plan policy 4.3.3)	
EQUIRED	1.2.2	Provide safe, direct and attractive pedestrian access from public sidewalks to building entrances through such measures as: reducing distances between public sidewalks and major building entrances; providing walkways from public streets to major building entrances; within a site, providing walkways along the front of adjoining buildings, between adjacent buildings, and connecting areas where people may congregate, such as courtyards and transit stops; and providing weather protection through canopies, colonnades, and other design elements wherever possible (see Official Plan policy 4.3.12)	

TDM-Supportive Development Design and Infrastructure Checklist Version 1.0 (30 June 2017)

City of Ottawa

	TDM-s	upportive design & infrastructure measures: Residential developments	Check if completed & add descriptions, explanations or plan/drawing references
REQUIRED	1.2.3	Provide sidewalks of smooth, well-drained walking surfaces of contrasting materials or treatments to differentiate pedestrian areas from vehicle areas, and provide marked pedestrian crosswalks at intersection sidewalks (see Official Plan policy 4.3.10)	
REQUIRED	1.2.4	Make sidewalks and open space areas easily accessible through features such as gradual grade transition, depressed curbs at street corners and convenient access to extra-wide parking spaces and ramps (see Official Plan policy 4.3.10)	
REQUIRED	1.2.5	Include adequately spaced inter-block/street cycling and pedestrian connections to facilitate travel by active transportation. Provide links to the existing or planned network of public sidewalks, multi-use pathways and on-road cycle routes. Where public sidewalks and multi-use pathways intersect with roads, consider providing traffic control devices to give priority to cyclists and pedestrians (see Official Plan policy 4.3.11)	
BASIC	1.2.6	Provide safe, direct and attractive walking routes from building entrances to nearby transit stops	
BASIC	1.2.7	Ensure that walking routes to transit stops are secure, visible, lighted, shaded and wind-protected wherever possible	
BASIC	1.2.8	Design roads used for access or circulation by cyclists using a target operating speed of no more than 30 km/h, or provide a separated cycling facility	
	1.3	Amenities for walking & cycling	
BASIC	1.3.1	Provide lighting, landscaping and benches along walking and cycling routes between building entrances and streets, sidewalks and trails	
BASIC	1.3.2	Provide wayfinding signage for site access (where required, e.g. when multiple buildings or entrances exist) and egress (where warranted, such as when directions to reach transit stops/stations, trails or other common destinations are not obvious)	

TDM-Supportive Development Design and Infrastructure Checklist Version 1.0 (30 June 2017)

	TDM-s	upportive design & infrastructure measures: Residential developments	Check if completed & add descriptions, explanations or plan/drawing references
	2.	WALKING & CYCLING: END-OF-TRIP FACILI	TIES
	2.1	Bicycle parking	
EQUIRED	2.1.1	Provide bicycle parking in highly visible and lighted areas, sheltered from the weather wherever possible (see Official Plan policy 4.3.6)	
EQUIRED	2.1.2	Provide the number of bicycle parking spaces specified for various land uses in different parts of Ottawa; provide convenient access to main entrances or well- used areas (see Zoning By-law Section 111)	\square
EQUIRED	2.1.3	Ensure that bicycle parking spaces and access aisles meet minimum dimensions; that no more than 50% of spaces are vertical spaces; and that parking racks are securely anchored (see Zoning By-law Section 111)	
BASIC	2.1.4	Provide bicycle parking spaces equivalent to the expected number of resident-owned bicycles, plus the expected peak number of visitor cyclists	
	2.2	Secure bicycle parking	
EQUIRED	2.2.1	Where more than 50 bicycle parking spaces are provided for a single residential building, locate at least 25% of spaces within a building/structure, a secure area (e.g. supervised parking lot or enclosure) or bicycle lockers (see Zoning By-law Section 111)	
BETTER	2.2.2	Provide secure bicycle parking spaces equivalent to at least the number of units at condominiums or multi- family residential developments	
	2.3	Bicycle repair station	
BETTER	2.3.1	Provide a permanent bike repair station, with commonly used tools and an air pump, adjacent to the main bicycle parking area (or secure bicycle parking area, if provided)	
	3.	TRANSIT	
	3.1	Customer amenities	
BASIC	3.1.1	Provide shelters, lighting and benches at any on-site transit stops	
BASIC	3.1.2	Where the site abuts an off-site transit stop and insufficient space exists for a transit shelter in the public right-of-way, protect land for a shelter and/or install a shelter	
BETTER	3.1.3	Provide a secure and comfortable interior waiting area by integrating any on-site transit stops into the building	

 TDM-Supportive Development Design and Infrastructure Checklist
 City of Ottawa

 Version 1.0 (30 June 2017)
 City of Ottawa

	TDM-s	supportive design & infrastructure measures: Residential developments	Check if completed & add descriptions, explanations or plan/drawing references
	4.	RIDESHARING	
BASIC	4.1 4.1.1	Pick-up & drop-off facilities Provide a designated area for carpool drivers (plus taxis and ride-hailing services) to drop off or pick up passengers without using fire lanes or other no-stopping zones	
	5.	CARSHARING & BIKESHARING	
	5.1	Carshare parking spaces	
BETTER	5.1.1	Provide up to three carshare parking spaces in an R3, R4 or R5 Zone for specified residential uses (see Zoning By-law Section 94)	
	5.2	Bikeshare station location	
BETTER	5.2.1	Provide a designated bikeshare station area near a major building entrance, preferably lighted and sheltered with a direct walkway connection	
	6.	PARKING	
	6.1	Number of parking spaces	
REQUIRED	6.1.1	Do not provide more parking than permitted by zoning, nor less than required by zoning, unless a variance is being applied for	
BASIC	6.1.2	Provide parking for long-term and short-term users that is consistent with mode share targets, considering the potential for visitors to use off-site public parking	
BASIC	6.1.3	Where a site features more than one use, provide shared parking and reduce the cumulative number of parking spaces accordingly (see Zoning By-law Section 104)	
BETTER	6.1.4	Reduce the minimum number of parking spaces required by zoning by one space for each 13 square metres of gross floor area provided as shower rooms, change rooms, locker rooms and other facilities for cyclists in conjunction with bicycle parking (see Zoning By-law Section 111)	
	6.2	Separate long-term & short-term parking areas	
BETTER	6.2.1	Provide separate areas for short-term and long-term parking (using signage or physical barriers) to permit access controls and simplify enforcement (i.e. to discourage residents from parking in visitor spaces, and vice versa)	

City of Ottawa

TDM Measures Checklist

Version 1.0 (30 June 2017)

City of Ottawa

TDM Measures Checklist:

Non-Residential Developments (office, institutional, retail or industrial)

	TDM	measures: Non-residential developments	Check if proposed & add descriptions
	1.	TDM PROGRAM MANAGEMENT	
	1.1	Program coordinator	
BASIC ★	1.1.1	Designate an internal coordinator, or contract with an external coordinator	
	1.2	Travel surveys	
BETTER	1.2.1	Conduct periodic surveys to identify travel-related behaviours, attitudes, challenges and solutions, and to track progress	
	2.	WALKING AND CYCLING	
	2.1	Information on walking/cycling routes & destin	ations
BASIC	2.1.1	Display local area maps with walking/cycling access routes and key destinations at major entrances	\checkmark
	2.2	Bicycle skills training	
		Commuter travel	
BETTER ★	2.2.1	Offer on-site cycling courses for commuters, or subsidize off-site courses	
	2.3	Valet bike parking	
		Visitor travel	
BETTER	2.3.1	Offer secure valet bike parking during public events when demand exceeds fixed supply (e.g. for festivals, concerts, games)	

	TDM	measures: Non-residential developments	Check if proposed & add descriptions
	3.	TRANSIT	
	3.1	Transit information	
BASIC	3.1.1	Display relevant transit schedules and route maps at entrances	\checkmark
BASIC	3.1.2	Provide online links to OC Transpo and STO information	
BETTER	3.1.3	Provide real-time arrival information display at entrances	
	3.2	Transit fare incentives	
		Commuter travel	
BETTER	3.2.1	Offer preloaded PRESTO cards to encourage commuters to use transit	
BETTER ★	3.2.2	Subsidize or reimburse monthly transit pass purchases by employees	
		Visitor travel	
BETTER	3.2.3	Arrange inclusion of same-day transit fare in price of tickets (e.g. for festivals, concerts, games)	
	3.3	Enhanced public transit service	
		Commuter travel	
BETTER	3.3.1	Contract with OC Transpo to provide enhanced transit services (e.g. for shift changes, weekends)	
		Visitor travel	
BETTER	3.3.2	Contract with OC Transpo to provide enhanced transit services (e.g. for festivals, concerts, games)	
	3.4	Private transit service	
		Commuter travel	
BETTER	3.4.1	Provide shuttle service when OC Transpo cannot offer sufficient quality or capacity to serve demand (e.g. for shift changes, weekends)	
		Visitor travel	
BETTER	3.4.2	Provide shuttle service when OC Transpo cannot offer sufficient quality or capacity to serve demand (e.g. for festivals, concerts, games)	

City of Ottawa

	TDM measures: Non-residential developments		Check if proposed & add descriptions	
	4.	RIDESHARING		
	4.1	Ridematching service		
		Commuter travel		
BASIC ★	4.1.1	Provide a dedicated ridematching portal at OttawaRideMatch.com		
	4.2	Carpool parking price incentives		
		Commuter travel		
BETTER	4.2.1	Provide discounts on parking costs for registered carpools		
	4.3	Vanpool service		
		Commuter travel		
BETTER	4.3.1	Provide a vanpooling service for long-distance commuters		
	5.	CARSHARING & BIKESHARING		
	5.1	Bikeshare stations & memberships		
BETTER	5.1.1	Contract with provider to install on-site bikeshare station for use by commuters and visitors		
		Commuter travel		
BETTER	5.1.2	Provide employees with bikeshare memberships for local business travel		
	5.2	Carshare vehicles & memberships		
		Commuter travel		
BETTER	5.2.1	Contract with provider to install on-site carshare vehicles and promote their use by tenants		
BETTER	5.2.2	Provide employees with carshare memberships for local business travel		
	6.	PARKING		
	6.1	Priced parking		
		Commuter travel		
BASIC ★	6.1.1	Charge for long-term parking (daily, weekly, monthly)		
BASIC	6.1.2	Unbundle parking cost from lease rates at multi-tenant sites		
		Visitor travel		
BETTER	6.1.3	Charge for short-term parking (hourly)		

TDM Measures Checklist

Version 1.0 (30 June 2017)

	TDM	measures: Non-residential developments	Check if proposed & add descriptions
	7.	TDM MARKETING & COMMUNICATIONS	
	7.1	Multimodal travel information	
		Commuter travel	
BASIC ★	7.1.1	Provide a multimodal travel option information package to new/relocating employees and students	
		Visitor travel	
ETTER ★	7.1.2	Include multimodal travel option information in invitations or advertising that attract visitors or customers (e.g. for festivals, concerts, games)	
	7.2	Personalized trip planning	
		Commuter travel	
ETTER ★	7.2.1	Offer personalized trip planning to new/relocating employees	
	7.3	Promotions	
		Commuter travel	
ETTER	7.3.1	Deliver promotions and incentives to maintain awareness, build understanding, and encourage trial of sustainable modes	
	8.	OTHER INCENTIVES & AMENITIES	
	8.1	Emergency ride home	
		Commuter travel	
ETTER ★	8.1.1	Provide emergency ride home service to non-driving commuters	
	8.2	Alternative work arrangements	
		Commuter travel	
ASIC ★	8.2.1	Encourage flexible work hours	
ETTER	8.2.2	Encourage compressed workweeks	
ETTER ★	8.2.3	Encourage telework	
	8.3	Local business travel options	
		Commuter travel	
BASIC ★	8.3.1	Provide local business travel options that minimize the need for employees to bring a personal car to work	
	8.4	Commuter incentives	
		Commuter travel	
ETTER	8.4.1	Offer employees a taxable, mode-neutral commuting allowance	
	8.5	On-site amenities	
		Commuter travel	
ETTER	8.5.1	Provide on-site amenities/services to minimize	

City of Ottawa

TDM Measures Checklist

Version 1.0 (30 June 2017)

City of Ottawa

TDM Measures Checklist:

Residential Developments (multi-family, condominium or subdivision)

	TDM	measures: Residential developments	Check if proposed & add descriptions
	1.	TDM PROGRAM MANAGEMENT	
	1.1	Program coordinator	
BASIC ★	1.1.1	Designate an internal coordinator, or contract with an external coordinator	
	1.2	Travel surveys	
BETTER	1.2.1	Conduct periodic surveys to identify travel-related behaviours, attitudes, challenges and solutions, and to track progress	
	2.	WALKING AND CYCLING	
	2.1	Information on walking/cycling routes & des	tinations
BASIC	2.1.1	Display local area maps with walking/cycling access routes and key destinations at major entrances (multi-family, condominium)	
	2.2	Bicycle skills training	
BETTER	2.2.1	Offer on-site cycling courses for residents, or subsidize off-site courses	

	TDM	measures: Residential developments	Check if proposed & add descriptions
	3.	TRANSIT	
	3.1	Transit information	
BASIC	3.1.1	Display relevant transit schedules and route maps at entrances (<i>multi-family, condominium</i>)	
BETTER	3.1.2	Provide real-time arrival information display at entrances (multi-family, condominium)	
	3.2	Transit fare incentives	
BASIC ★	3.2.1	Offer PRESTO cards preloaded with one monthly transit pass on residence purchase/move-in, to encourage residents to use transit	
BETTER	3.2.2	Offer at least one year of free monthly transit passes on residence purchase/move-in	
	3.3	Enhanced public transit service	
BETTER ★	3.3.1	Contract with OC Transpo to provide early transit services until regular services are warranted by occupancy levels (<i>subdivision</i>)	
	3.4	Private transit service	
BETTER	3.4.1	Provide shuttle service for seniors homes or lifestyle communities (e.g. scheduled mall or supermarket runs)	
	4.	CARSHARING & BIKESHARING	
	4.1	Bikeshare stations & memberships	
BETTER	4.1.1	Contract with provider to install on-site bikeshare station (<i>multi-family</i>)	
BETTER	4.1.2	Provide residents with bikeshare memberships, either free or subsidized (multi-family)	
	4.2	Carshare vehicles & memberships	
BETTER	4.2.1	Contract with provider to install on-site carshare vehicles and promote their use by residents	Y
BETTER	4.2.2	Provide residents with carshare memberships, either free or subsidized	
	5.	PARKING	
	5.1	Priced parking	
BASIC ★	5.1.1	Unbundle parking cost from purchase price (condominium)	
BASIC 🖈	5.1.2	Unbundle parking cost from monthly rent (multi-family)	

	TDM	measures: Residential developments	Check if proposed & add descriptions
	6. TDM MARKETING & COMMUNICATIONS		S
	6.1	Multimodal travel information	
BASIC 🖈	6.1.1	Provide a multimodal travel option information package to new residents	
	6.2	Personalized trip planning	
BETTER	6.2.1	Offer personalized trip planning to new residents	

Turning Templates

MMLOS Sheets

Multi-Modal Level of Service - Segments Form

Consultant Scenario Comments	CGH Transportation Inc Existing/Future		Project Date	1137 Ogilvie Road & 1111 Cummings Avenue 2024-11-07					
SEGMENTS			Ogilvie Rd Existing	Ogilvie Rd Future	Cummings Ave Existing	Cummings Ave Future			
Pedestrian	Sidewalk Width Boulevard Width Avg Daily Curb Lane Traffic Volume Operating Speed On-Street Parking <u>Exposure to Traffic PLoS</u> Effective Sidewalk Width Pedestrian Volume <u>Crowding PLoS</u> Level of Service		1.5 m > 2 m > 3000 > 60 km/h no E -	≥ 2 m > 2 m > 3000 > 60 km/h no D	1.5 m < 0.5 m > 3000 > 50 to 60 km/h no F -	≥ 2 m > 2 m > 3000 > 50 to 60 km/h no C - -	-		
Bicycle	Type of Cycling Facility Number of Travel Lanes Operating Speed # of Lanes & Operating Speed LoS Bike Lane (+ Parking Lane) Width Bike Lane Width LoS Bike Lane Blockages Blockage LoS Median Refuge Width (no median = < 1.8 m) No. of Lanes at Unsignalized Crossing Sidestreet Operating Speed Unsignalized Crossing - Lowest LoS Level of Service	E	Curbside Bike Lane ≥ 3 each direction >50 to 70 km/h D ≥1.5 to <1.8 m B Rare A A - - - D	Physically Separated	Mixed Traffic 2-3 lanes total ≥ 50 to 60 km/h 	Physically Separated	-		
Transit	Facility Type Friction or Ratio Transit:Posted Speed Level of Service Truck Lane Width	D	Mixed Traffic Vt/Vp ≥ 0.8 D ≤ 3.5 m	Mixed Traffic $\forall t / \forall p \ge 0.8$ D $\le 3.5 \text{ m}$	- > 3.7 m	- > 3.7 m	-		
Truck	Travel Lanes per Direction Level of Service	В	> 1 A	> 1 A	1 B	1 B	-		
Auto	Level of Service			Not Ap	plicable				

Multi-Modal Level of Service - Intersections Form

Consultant	CGH Transportation Inc	Project	1137 Ogilvie Road & 1111 Cummings Avenue
Scenario	Existing/Future	Date	2025-04-21
Comments			

	INTERSECTIONS	Donal	d Street at Cummi	ngs Avenue	(Existing)	Dona	Id Street at Cumm	ings Avenue	(Future)		Ogilvie Road a	at Cyrville Road		Ogilvi	e Road at Cumm	ings Avenue (E	xisiting)
	Crossing Side	NORTH	SOUTH	EAST	WEST	NORTH	SOUTH	EAST	WEST	NORTH	SOUTH	EAST	WEST	NORTH	SOUTH	EAST	WEST
	Lanes	3	3	EAGT	6	3	3	EAOT	6	9	6	10+	10+	5	7	10+	8
	Median	No Median - 2.4 m	No Median - 2.4 m		No Median - 2.4 m	No Median - 2.4 m	No Median - 2.4 m		No Median - 2.4 m	No Median - 2.4 m	No Median - 2.4 m			No Median - 2.4 m	No Median - 2.4 m	No Median - 2.4 m	No Median - 2.4 m
	Conflicting Left Turns	Permissive	Permissive		Permissive	Permissive	Permissive		Permissive	No left turn / Prohib.	Permissive	Permissive	Permissive	Protected/ Permissive	Protected/ Permissive	Protected/ Permissive	Permissive
	Conflicting Right Turns	No right turn	Permissive or yield control		Permissive or yield control	No right turn	Permissive or yield control		Permissive or yield control	Permissive or yield control	Permissive or yield control	Permissive or yield control	Permissive or yield control	Permissive or yield control	Permissive or yield control	Permissive or yield control	Permissive or yield control
	Right Turns on Red (RToR) ?	RTOR allowed	RTOR prohibited		RTOR allowed	RTOR allowed	RTOR prohibited		RTOR allowed	RTOR allowed	RTOR allowed	RTOR allowed	RTOR allowed	RTOR allowed	RTOR allowed	RTOR allowed	RTOR allowed
	Ped Signal Leading Interval?	No	No		No	No	No		No	No	No	No	No	No	No	No	No
ian	Right Turn Channel	No Channel	No Right Turn		No Channel	No Channel	No Right Turn		No Channel	Conventional with Receiving Lane	No Channel	No Channel	No Channel	No Channel	Conv'tl without Receiving Lane	No Channel	No Channel
str	Corner Radius	10-15m	No Right Turn		10-15m	10-15m	No Right Turn		10-15m	5-10m	5-10m	>25m	>25m	10-15m	15-25m	5-10m	5-10m
Pede	Crosswalk Type	Std transverse markings	Std transverse markings		Std transverse markings	Std transverse markings	Std transverse markings		Std transverse markings	Std transverse markings	Std transverse markings	Std transverse markings	Std transverse markings	Std transverse markings	Std transverse markings	Std transverse markings	Std transverse markings
	PETSI Score	75	83		20	75	83		20	-19	21	-48	-48	37	6	-44	-11
	Ped. Exposure to Traffic LoS	В	В	-	F	В	В	-	F	#N/A	F	#N/A	#N/A	E	F	#N/A	F
	Cycle Length	62	62		62	62	62		62	130	130	120	120	130	130	120	120
	Effective Walk Time	33	14		7	33	14		7	30	30	27	27	18	6	27	27
	Average Pedestrian Delay	7	19		24	7	19		24	38	38	36	36	48	59	36	36
	Pedestrian Delay LoS	А	В	-	С	A	В	-	С	D	D	D	D	E	E	D	D
		В	В	-	F	В	В	-	F	#N/A	F	#N/A	#N/A	E	F	#N/A	F
	Level of Service		F				F				1#	N/A			1#	N/A	
	Approach From	NORTH	SOUTH	EAST	WEST	NORTH	SOUTH	EAST	WEST	NORTH	SOUTH	EAST	WEST	NORTH	SOUTH	EAST	WEST
	Bicycle Lane Arrangement on Approach	Mixed Traffic	Mixed Traffic		Mixed Traffic	Mixed Traffic	Curb Bike Lane, Cycletrack or MUP		Curb Bike Lane, Cycletrack or MUP	Mixed Traffic	Curb Bike Lane, Cycletrack or MUP	Curb Bike Lane, Cycletrack or MUP	Curb Bike Lane, Cycletrack or MUP	Mixed Traffic	Mixed Traffic	Pocket Bike Lane	Curb Bike Lane, Cycletrack or MUP
	Right Turn Lane Configuration				> 50 m				> 50 m			Not Applicable	Not Applicable				
	Right Turning Speed				≤ 25 km/h				≤ 25 km/h			Not Applicable	Not Applicable				
٩	Cyclist relative to RT motorists	#N/A	#N/A	-	#VALUE!	#N/A	Not Applicable	-	Not Applicable	#N/A	Not Applicable	Not Applicable	Not Applicable	#N/A	#N/A	#N/A	Not Applicable
, Acl	Separated or Mixed Traffic	Mixed Traffic	Mixed Traffic	-	Mixed Traffic	Mixed Traffic	Separated	-	Separated	Mixed Traffic	Separated	Separated	Separated	Mixed Traffic	Mixed Traffic	Separated	Separated
Bicycle	Left Turn Approach		One lane crossed		One lane crossed		2-stage, LT box		2-stage, LT box	One lane crossed	1 lane crossed	≥ 2 lanes crossed		One lane crossed		≥ 2 lanes crossed	≥ 2 lanes crossed
	Operating Speed		> 50 to < 60 km/h		> 50 to < 60 km/h		> 50 to < 60 km/h		> 50 to < 60 km/h	≥ 60 km/h	≥ 60 km/h	≥ 60 km/h		> 50 to < 60 km/h	> 50 to < 60 km/h	≥ 60 km/h	≥ 60 km/h
	Left Turning Cyclist	-	E	-	E	-	A	-	A	F	E	F	-	E	E	F	F
	Level of Service	#N/A	#N/A	-	#VALUE!	#N/A	Α	-	Α	#N/A	E	- F	-	#N/A	#N/A	#N/A	F
			#N/	/ A			#N/	Ά			#1	N/A			#1	N/A	
sit	Average Signal Delay											≤ 30 sec	≤ 20 sec			> 40 sec	> 40 sec
ans		-	-	-	-	-	-	-	-	-	-	D	С	-	-	F	F
Tra	Level of Service		-				-					D				F	
	Effective Corner Radius				10 - 15 m				10 - 15 m	< 10 m	< 10 m	> 15 m	> 15 m	10 - 15 m	> 15 m	10 - 15 m	10 - 15 m
Truck	Number of Receiving Lanes on Departure from Intersection				1				1	≥2	≥2	1	1	≥2	≥2	1	1
Ĕ		-	-	-	E	-	-	-	E	D	D	С	С	В	Α	E	E
	Level of Service		E				E					D				E	
0	Volume to Capacity Ratio		0.0 - 0	0.60			0.0 - 0	0.60			0.61	- 0.70			>	1.00	
Auto	Level of Service		А				А					В				F	

Ogilvi	ie Road at Cumr	mings Avenue (F	uture)	Cyrville Road	at Cummings A	venue/Labelle S	treet (Existing)	Cyrville Road	d at Cummings /	Avenue/Labelle S	Street (Future)		Ogilvie Road at .	Aviation Parkwa	у
NORTH	SOUTH	EAST	WEST	NORTH	SOUTH	EAST	WEST	NORTH	SOUTH	EAST	WEST	NORTH	SOUTH	EAST	
4	4	6	6	6	7	5	5	5	5	4	4	10+	10+	10+	
No Median - 2.4 m	No Median - 2.4 m	No Median - 2.4 m	No Median - 2.4 m	No Median - 2.4 m	No Median - 2.4 m	No Median - 2.4 m	No Median - 2.4 m	No Median - 2.4 m	No Median - 2.4 m	No Median - 2.4 m	No Median - 2.4 m	No I			
Protected	Protected	Protected	Protected	Protected/ Permissive	Permissive	Permissive	Permissive	Protected/ Permissive	Permissive	Permissive	Permissive	Protected/ Permissive	Protected/ Permissive	Protected	
Permissive or yield control	Permissive or yield control	Permissive or yield control	Permissive or yield control	Permissive or yield control	Permissive or yield control	Permissive or yield control	Permissive or yield control	Permissive or yield control	Protected	Permissive or yield control	Protected	Permissive or yield control	Permissive or yield control	Permissive or yield control	Perr
RTOR prohibited	RTOR prohibited	RTOR prohibited	RTOR prohibited	RTOR allowed	RTOR allowed	RTOR allowed	RTOR allowed	RTOR prohibited	RTOR allowed	RTOR prohibited	RTOR allowed	RTOR allowed	RTOR allowed	RTOR allowed	R
No	No	No	No	Yes	Yes	No	No	Yes	Yes	No	No	No	No	No	
No Channel	No Channel	No Channel	No Channel	No Channel	No Channel	No Channel	No Channel	No Channel	No Channel	No Channel	No Channel	Conv'tl without Receiving Lane	Conv'tl without Receiving Lane	Smart Channel	Sr
10-15m	10-15m	10-15m	10-15m	5-10m	15-25m	10-15m	10-15m	5-10m	15-25m	10-15m	10-15m	15-25m	15-25m	15-25m	
Zebra stripe hi-vis markings	Zebra stripe hi-vis markings	Zebra stripe hi-vis markings	Zebra stripe hi-vis markings	Std transverse markings	Std transverse markings	Std transverse markings	Std transverse markings	Zebra stripe hi-vis markings	Zebra stripe hi-vis markings	Zebra stripe hi-vis markings	Zebra stripe hi-vis markings	Std transverse markings	Std transverse markings	Std transverse markings	St
67	67	34	34	23	4	37	37	46	45	59	61	-43	-43	-33	
С	С	E	E	F	F	E	E	D	D	D	С	#N/A	#N/A	#N/A	
130	130	120	120	85	85	85	85	85	85	85	85	120	120	130	
18	6	27	27	8	8	15	15	8	8	15	15	7	7	24	
48	59	36	36	35	35	29	29	35	35	29	29	53	53	43	
E	E	D	D	D	D	С	с	D	D	С	С	E	E	E	-
E	E	E	E	F	F	E	E	D	D	D	С	#N/A	#N/A	#N/A	
		E				F				D			#1	1/A	
NORTH	SOUTH	EAST	WEST	NORTH	SOUTH	EAST	WEST	NORTH	SOUTH	EAST	WEST	NORTH	SOUTH	EAST	
Curb Bike Lane, Cycletrack or MUP	Mixed Traffic	Mixed Traffic	Curb Bike Lane, Cycletrack or MUP	Mixed Traffic	Mixed Traffic	Pocket Bike Lane	Poo								
														> 50 m Introduced right turn lane >25 to 30 km/h	> 50 rię
Not Applicable	Not Applicable	Not Applicable	Not Applicable	#N/A	#N/A	Not Applicable	#N/A	#N/A	D						
Separated	Separated	Separated	Separated	Mixed Traffic	Mixed Traffic	Separated	Separated	Separated	Separated	Separated	Separated	Mixed Traffic	Mixed Traffic	Separated	
2-stage, LT box	2-stage, LT box	2-stage, LT box	2-stage, LT box	One lane crossed	One lane crossed	1 lane crossed	1 lane crossed	2-stage, LT box	2-stage, LT box	2-stage, LT box	2-stage, LT box	≥ 2 lanes crossed	≥ 2 lanes crossed	≥ 2 lanes crossed	≥2
> 50 to < 60 km/h	> 50 to < 60 km/h	≥ 60 km/h	≥ 60 km/h	> 50 to < 60 km/h	> 50 to < 60 km/h	≥ 60 km/h	≥ 60 km/h	> 50 to < 60 km/h	> 50 to < 60 km/h	≥ 60 km/h	≥ 60 km/h	≥ 60 km/h	≥ 60 km/h	≥ 60 km/h	
A	A	A	A	E	E	E	E	A	A	A	Α	F	F	F	
A	A	A	Α	#N/A	#N/A	E	E	A	A	Α	A	#N/A	#N/A	F	
	1	Α			#N	1/A				Α			#N	1/A	
		> 40 sec	> 40 sec											≤ 40 sec	
-	-	F	F	-	-	-	-	-	-	-	-	-	-	E	
		F				-				-				E	
10 - 15 m	> 15 m	10 - 15 m	> 15 m	10 - 15 m	10 - 15 m	10 - 15 m	10 - 15 m	10 - 15 m	> 15 m	> 15 m	10 - 15 m				
≥2	≥2	1	1	1	1	1	1	1	1	1	1	≥2	≥2	≥2	
В	В	E	E	С	E	С	E	E	E	E	E	Α	Α	В	
		E				E				E				В	
	> '	1.00			0.81	- 0.90			0.91	- 1.00			0.91	- 1.00	
		F				D				E				E	

ay	
	WEST
	10+
n	No Median - 2.4 m
	Protected
d	Permissive or yield control
	RTOR allowed
	No
	Smart Channel
	10-15m
	Std transverse markings
	-31
_	#N/A
	#N/A 130
	130 24
	43
	E
Т	#N/A
_	
	WEST
•	Pocket Bike Lane
d	> 50 m Introduced
	right turn lane
_	≤ 25 km/h
	D
	Separated
ł	≥ 2 lanes crossed
	≥ 60 km/h
	F
	F
	≤ 40 sec
	E
	> 15 m
	≥2
	Α

TRANS Model Plots

Background Developments

1155 Joseph Cyr Road & 1082 Cyrville Road Transportation Impact Assessment

6 Background Network Travel Demands

6.1 Transportation Network Plans

The transportation network plans were discussed in Section 2.3. None of the listed projects will have a notable impact on the study area traffic volumes and travel patterns.

6.2 Background Growth

A review of the background projections from the City's TRANS Regional Model for the 2011 and 2031 horizons was completed to determine the background growth for each of the study area roadways. Table 15 summarizes the results of the model, and the projections are provided in Appendix E.

1209 St Laurent Boulevard & 1200 Lemieux Street Transportation Impact Assessment

6 Background Network Travel Demands

6.1 Transportation Network Plans

The transportation network plans were discussed in Section 2.3. The widening of Cyrville Road is assumed to be beyond 2031, and none of the proposed changes are considered to have any notable impact on the study area traffic volumes and travel patterns.

6.2 Background Growth

CIGIH

A review of the background projections from the City's TRANS Regional Model for the 2011 and 2031 horizons was completed to determine the background growth for each of the study area roadways. The background TRANS model growth rates are summarized in Table 15 and the TRANS model plots are provided in Appendix E.

1184-1196 Cummings Avenue Transportation Impact Assessment

6 Background Network Travel Demands

6.1 Transportation Network Plans

The transportation network plans were discussed in Section 2.3 and will not have any notable impact on the study area traffic volumes and travel patterns.

6.2 Background Growth

A review of the background projections from the City's TRANS Regional Model for the 2011 and 2031 horizons was completed to determine the background growth for each of the study area roadways. The volumes along Donald Street are significantly underestimated when compared to traffic counts and should not be considered for the area. The background TRANS model growth rates are summarized in Table 15 and the TRANS model plots are provided in Appendix E.

PARSONS

3.2. BACKGROUND NETWORK TRAVEL DEMANDS

3.2.1. TRANSPORTATION NETWORK PLANS See Section 2.1.3.

3.2.2. BACKGROUND GROWTH

The following background traffic growth through the immediate study area (summarized in **Table 15**) was calculated based on historical traffic count data (years 2001, 2009, and 2018) provided by the City of Ottawa at the Ogilvie/Cyrville intersection. Detailed background traffic growth analysis is included as Appendix E.

	Table 15: Ogilvie/Cyrville Historical Background Growth (2001 - 2018)											
Time Period Percent Annual Change												
nine Period	North Leg	South Leg East Leg		West Leg	Overall							
8 hrs	2.20%	0.80%	1.24%	1.02%	1.23%							
AM Peak	2.75%	2.53%	1.72%	1.97%	2.07%							
PM Peak	1.25%	0.37%	0.45%	0.54%	0.58%							

As shown in **Table 15**, the Ogilvie/Cyrville intersection has experienced an approximate 0.5% to 2% annual increase overall in vehicle traffic within recent years. To account for area development within the surrounding area, a 1% per annum growth factor was applied to existing traffic volumes along the arterial roadways, namely St. Laurent Boulevard, Ogilvie Road, Cyrville Road, Cummings Avenue and Aviation Parkway. Background traffic volumes for the 2022 built-out horizon year, 2024 built-out horizon year and 2029 (5-years beyond site build-out) are depicted within **Figure 8**, **Figure 9**, and **Figure 10**, respectively.

1125-1149 CYRVILLE ROAD TRANSPORTATION IMPACT ASSESSMENT Foreasting Report 13 Odober 2021

25

٣

Appendix K

Synchro Worksheets -2027 Future Background Horizon

Lanes, Volumes, Timings
1: Cummings Ave & Donald

	≯	*	•	Ť	ţ	~
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	<u> </u>	1	5	1	1	0.5.1
Traffic Volume (vph)	56	186	245	152	192	92
Future Volume (vph)	56	186	245	152	192	92
Satd. Flow (prot)	1626	1455	1658	1695	1642	0
Flt Permitted	0.950	1100	0.586	1000	1012	5
Satd. Flow (perm)	1626	1455	1023	1695	1642	0
Satd. Flow (RTOR)	.020	186			60	5
Lane Group Flow (vph)	56	186	245	152	284	0
Turn Type	Perm	Perm	Perm	NA	NA	5
Protected Phases	i viili	i viili	1 0111	2	6	
Permitted Phases	4	4	2	2	0	
Detector Phase	4	4	2	2	6	
Switch Phase	4	4	2	2	0	
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	
Minimum Split (s)	22.0	22.0	39.9	39.9	39.9	
	22.0	22.0	39.9	39.9	39.9	
Total Split (s)	35.5%	35.5%	39.9 64.5%	39.9 64.5%	39.9 64.5%	
Total Split (%) Yellow Time (s)	35.5%	35.5% 3.3	04.5% 3.3	64.5% 3.3	64.5% 3.3	
	3.3 2.7	3.3 2.7	3.3 3.6	3.3	3.3	
All-Red Time (s)						
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.0	6.0	6.9	6.9	6.9	_
Lead/Lag						
Lead-Lag Optimize?	Non-	Nen-	Mair	Marr	Max	
Recall Mode	None	None	Max	Max		
Act Effct Green (s)	10.2	10.2	37.3	37.3	37.3	
Actuated g/C Ratio	0.18	0.18	0.67	0.67	0.67	
v/c Ratio	0.19	0.44	0.36	0.13	0.25	
Control Delay	21.2	7.7	8.0	5.6	5.1	
Queue Delay	0.0	0.0	0.0	0.0	0.0	
Total Delay	21.2	7.7	8.0	5.6	5.1	
LOS	С	A	A	A	А	
Approach Delay	10.8			7.1	5.1	
Approach LOS	В			A	A	
Queue Length 50th (m)	4.9	0.0	11.5	6.0	9.2	
Queue Length 95th (m)	12.8	13.3	25.5	12.8	19.8	
Internal Link Dist (m)	296.9			237.9	259.3	
Turn Bay Length (m)	60.0		60.0			
Base Capacity (vph)	467	551	685	1135	1119	
Starvation Cap Reductn	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	
Reduced v/c Ratio	0.12	0.34	0.36	0.13	0.25	
Intersection Summary						
Cycle Length: 61.9		_		_	_	_
Actuated Cycle Length: 55.7	,					
Natural Cycle: 65	o o relin o t					
Control Type: Actuated-Unc	oordinated					
Maximum v/c Ratio: 0.44						

Synchro 11 Report Page 1

01/30/2025

Lanes, Volumes, Timings 1: Cummings Ave & Donald		01/30/2025
Intersection Signal Delay: 7.4	Intersection LOS: A	
Intersection Capacity Utilization 55.7%	ICU Level of Service B	

Analysis Period (min) 15

Splits and Phases: 1: Cummings Ave & Donald

✓ ø2		✓ Ø4	
39.9 s		22 s	
↓ ø6			
39.9 s			

Scenario 1 1137 Ogilvie AM Peak Hour 2027 Future Background

Lanes, Volumes, Timings	
2: Cyrville Rd & Ogilvie Rd	

z. Cyrville IXu & Ogi		4									01/0	
	≯	-	\mathbf{i}	4	+		1	1	1	1	÷.	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations			1	٦		1	٦	ef 👘		ሻ	ef (
Traffic Volume (vph)	0	629	143	35	809	134	159	193	28	48	110	43
Future Volume (vph)	0	629	143	35	809	134	159	193	28	48	110	43
Satd. Flow (prot)	0	3252	1427	1551	3316	1455	1580	1588	0	1566	1575	0
Flt Permitted				0.401			0.595			0.442		
Satd. Flow (perm)	0	3252	1338	647	3316	1301	984	1588	0	727	1575	0
Satd. Flow (RTOR)			143			134		6			16	
Lane Group Flow (vph)	0	629	143	35	809	134	159	221	0	48	153	0
Turn Type		NA	Perm	Perm	NA	Perm	Perm	NA		Perm	NA	
Protected Phases		2			6			8			4	
Permitted Phases			2	6		6	8			4		
Detector Phase		2	2	6	6	6	8	8		4	4	
Switch Phase												
Minimum Initial (s)		10.0	10.0	10.0	10.0	10.0	10.0	10.0		10.0	10.0	
Minimum Split (s)		32.2	32.2	32.2	32.2	32.2	47.1	47.1		47.1	47.1	
Total Split (s)		80.0	80.0	80.0	80.0	80.0	50.0	50.0		50.0	50.0	
Total Split (%)		61.5%	61.5%	61.5%	61.5%	61.5%	38.5%	38.5%		38.5%	38.5%	
Yellow Time (s)		3.7	3.7	3.7	3.7	3.7	3.7	3.7		3.7	3.7	
All-Red Time (s)		2.5	2.5	2.5	2.5	2.5	3.4	3.4		3.4	3.4	
Lost Time Adjust (s)		0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Lost Time (s)		6.2	6.2	6.2	6.2	6.2	7.1	7.1		7.1	7.1	
Lead/Lag												
Lead-Lag Optimize?												
Recall Mode		C-Max	C-Max	C-Max	C-Max	C-Max	None	None		None	None	
Act Effct Green (s)		90.7	90.7	90.7	90.7	90.7	26.0	26.0		26.0	26.0	
Actuated g/C Ratio		0.70	0.70	0.70	0.70	0.70	0.20	0.20		0.20	0.20	
v/c Ratio		0.28	0.15	0.08	0.35	0.14	0.81	0.69		0.33	0.47	
Control Delay		8.8	2.0	4.7	4.9	0.6	77.2	56.5		47.2	43.6	
Queue Delay		0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Delay		8.8	2.0	4.7	4.9	0.6	77.2	56.5		47.2	43.6	
LOS		A	A	A	А	А	E	E		D	D	
Approach Delay		7.6			4.3			65.2			44.4	
Approach LOS		A			A			E			D	
Queue Length 50th (m)		28.1	0.0	0.9	10.8	0.0	39.6	52.0		10.7	31.5	
Queue Length 95th (m)		52.2	8.4	m3.1	51.1	1.2	56.6	68.3		19.9	45.2	
Internal Link Dist (m)		113.5			313.9			407.2			190.6	
Turn Bay Length (m)				62.0		71.0	50.0			82.0		
Base Capacity (vph)		2268	976	451	2312	947	324	528		239	530	
Starvation Cap Reductn		0	0	0	0	0	0	0		0	0	
Spillback Cap Reductn		0	0	0	0	0	0	0		0	0	
Storage Cap Reductn		0	0	0	0	0	0	0		0	0	
Reduced v/c Ratio		0.28	0.15	0.08	0.35	0.14	0.49	0.42		0.20	0.29	
Intersection Summary												
Cycle Length: 130												
Actuated Cycle Length: 130												
Offset: 10 (8%), Referenced	to phase 2	2:EBT an	d 6:WBTI	., Start of	Green							
Natural Cycle: 80			_	_					_	_	_	
Control Type: Actuated-Coor	dinated											

Synchro 11 Report Page 3

01/30/2025

Lanes, Volumes, Timings 2: Cyrville Rd & Ogilvie Rd

Maximum v/c Ratio: 0.81		
Intersection Signal Delay: 18.8	Intersection LOS: B	
Intersection Capacity Utilization 71.8%	ICU Level of Service C	
Analysis Period (min) 15		

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 2: Cyrville Rd & Ogilvie Rd

● → Ø2 (R)	↓ ™ø4	
80 s	50 s	
Ø6 (R)	Ø8	
80 s	50 s	

Scenario 1 1137 Ogilvie AM Peak Hour 2027 Future Background

01/30/2025

	≯	-	$\mathbf{\hat{v}}$	4	+	*	1	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT
Lane Configurations	٦	≜ †}		ሻ	≜ î≽		1	¢Î
Traffic Volume (vph)	65	651	13	99	808	170	63	147
Future Volume (vph)	65	651	13	99	808	170	63	147
Satd. Flow (prot)	1580	3265	0	1642	3162	0	1658	1551
Flt Permitted	0.219			0.339			0.606	
Satd. Flow (perm)	364	3265	0	577	3162	0	1053	1551
Satd. Flow (RTOR)		2			27			22
Lane Group Flow (vph)	65	664	0	99	978	0	63	235
Turn Type	pm+pt	NA		pm+pt	NA		Perm	NA
Protected Phases	5	2		1	6			8
Permitted Phases	2			6			8	
Detector Phase	5	2		1	6		8	8
Switch Phase								
Minimum Initial (s)	5.0	10.0		5.0	10.0		10.0	10.0
Minimum Split (s)	9.7	24.7		9.7	24.7		36.6	36.6
Total Split (s)	11.0	71.0		11.0	71.0		36.6	36.6
Total Split (%)	8.5%	54.6%		8.5%	54.6%		28.2%	28.2%
Yellow Time (s)	3.7	3.7		3.7	3.7		3.3	3.3
All-Red Time (s)	1.0	2.0		1.0	2.0		3.3	3.3
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0
Total Lost Time (s)	4.7	5.7		4.7	5.7		6.6	6.6
Lead/Lag	Lead	Lag		Lead	Lag		Lag	Lag
Lead-Lag Optimize?	Yes	Yes		Yes	Yes		Yes	Yes
Recall Mode	None	C-Max		None	C-Max		None	None
Act Effct Green (s)	75.6	68.4		76.6	70.6		26.9	26.9
Actuated g/C Ratio	0.58	0.53		0.59	0.54		0.21	0.21
v/c Ratio	0.24	0.39		0.25	0.57		0.29	0.70
Original Datas	40.4	40.0		40.0	00.4		45.5	F2 0

Lanes, Volumes, Timings

Lanes, Volumes, Timings 3: Cummings Ave & Ogilvie Rd

Maximum v/c Ratio: 0.70		
Intersection Signal Delay: 26.4	Intersection LOS: C	
Intersection Capacity Utilization 84.8%	ICU Level of Service E	
Analysis Period (min) 15		

m Volume for 95th percentile queue is metered by upstream signal.

Scenario 1 1137 Ogilvie AM Peak Hour 2027 Future Background

Splits and Phases: 3: Cummings Ave & Ogilvie Rd

€ Ø1 U = Ø2 (R)	₩ø4
11s 71s	48 s
✓ Ø5 🕊 🕶 Ø6 (R)	₩ 07 1 08
11s 71s	11.4s 36.6 s

Total Split (%)	0.0%	54.0%	0.0%	04.0%	20.2%	20.2%	0.0%	30.9%	
Yellow Time (s)	3.7	3.7	3.7	3.7	3.3	3.3	3.3	3.3	
All-Red Time (s)	1.0	2.0	1.0	2.0	3.3	3.3	1.0	3.3	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	4.7	5.7	4.7	5.7	6.6	6.6	4.3	6.6	
Lead/Lag	Lead	Lag	Lead	Lag	Lag	Lag	Lead		
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes		
Recall Mode	None	C-Max	None	C-Max	None	None	None	None	
Act Effct Green (s)	75.6	68.4	76.6	70.6	26.9	26.9	40.6	38.3	
Actuated g/C Ratio	0.58	0.53	0.59	0.54	0.21	0.21	0.31	0.29	
v/c Ratio	0.24	0.39	0.25	0.57	0.29	0.70	0.70	0.49	
Control Delay	13.1	16.9	13.6	20.4	45.5	53.8	51.4	35.5	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	13.1	16.9	13.6	20.4	45.5	53.8	51.4	35.5	
LOS	В	В	В	С	D	D	D	D	
Approach Delay		16.6		19.8		52.1		42.0	
Approach LOS		В		В		D		D	
Queue Length 50th (m)	6.0	44.9	11.7	63.5	13.3	49.5	32.0	43.5	
Queue Length 95th (m)	13.1	52.1	m16.3	74.1	26.6	77.7	50.9	68.6	
Internal Link Dist (m)		313.9		393.6		302.0		237.9	
Turn Bay Length (m)	80.0		100.0		34.0		153.0		
Base Capacity (vph)	271	1718	391	1728	243	374	241	535	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.24	0.39	0.25	0.57	0.26	0.63	0.70	0.46	
Intersection Summary									
Cycle Length: 130									
Actuated Cycle Length: 130									
Offset: 110 (85%), Referenc	ed to phas	e 2:EBTL	and 6:WBTL, Star	t of Greer	า				
Natural Cycle: 85									
Control Type: Actuated-Cool	rdinated								

Scenario 1 1137 Ogilvie AM Peak Hour 2027 Future Background

01/30/2025

SBT SBR

59 137

137 109

1614

1614

32

246

NA

4

 \succ

SBL

0.354

0 169

pm+pt

7 4

4

7

5.0 10.0

9.3 36.6

11.4 48.0 8.8% 36.9%

NBR

88 169

88 169

0 1642

0 588

~

109

0

0

0

Synchro 11 Report Page 6

01/30/2025

4: Aviation & Ogilvie Rd

	≯	-	\mathbf{r}	4	+	•	•	1	1	1	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations	ľ	<u></u>	1	1	<u></u>	1	1	∱î ≽		ľ	≜ †₽	
Traffic Volume (vph)	354	502	89	119	532	125	209	476	219	162	339	29
Future Volume (vph)	354	502	89	119	532	125	209	476	219	162	339	291
Satd. Flow (prot)	1658	3252	1483	1626	3283	1483	1658	3160	0	1658	3087	(
Flt Permitted	0.316			0.459			0.950			0.950		
Satd. Flow (perm)	551	3252	1483	786	3283	1483	1658	3160	0	1658	3087	(
Satd. Flow (RTOR)			164			164		59			148	
Lane Group Flow (vph)	354	502	89	119	532	125	209	695	0	162	630	(
Turn Type	pm+pt	NA	Perm	pm+pt	NA	Perm	Prot	NA		Prot	NA	
Protected Phases	5	2		1	6		7	4		3	8	
Permitted Phases	2		2	6		6						
Detector Phase	5	2	2	1	6	6	7	4		3	8	
Switch Phase												
Minimum Initial (s)	5.0	10.0	10.0	5.0	10.0	10.0	5.0	10.0		5.0	10.0	
Minimum Split (s)	9.7	34.1	34.1	9.7	34.1	34.1	10.9	30.1		10.9	30.1	
Total Split (s)	20.0	47.0	47.0	20.0	47.0	47.0	32.9	45.0		18.0	30.1	
Total Split (%)	15.4%	36.2%	36.2%	15.4%	36.2%	36.2%	25.3%	34.6%		13.8%	23.2%	
Yellow Time (s)	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7		3.7	3.7	
All-Red Time (s)	1.0	2.4	2.4	1.0	2.4	2.4	2.2	2.4		2.2	2.4	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Lost Time (s)	4.7	6.1	6.1	4.7	6.1	6.1	5.9	6.1		5.9	6.1	
Lead/Lag	Lead	Lag	Lag	Lead	Lag	Lag	Lead	Lag		Lead	Lag	
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		Yes	Yes	
Recall Mode	None	C-Max	C-Max	None	C-Max	C-Max	None	None		None	None	
Act Effct Green (s)	65.8	50.1	50.1	55.4	43.3	43.3	21.1	34.3		12.1	25.2	
Actuated g/C Ratio	0.51	0.39	0.39	0.43	0.33	0.33	0.16	0.26		0.09	0.19	
v/c Ratio	0.83	0.40	0.13	0.29	0.49	0.21	0.78	0.79		1.05	0.88	
Control Delay	50.7	31.4	3.6	20.4	37.1	2.6	71.0	47.5		142.8	53.1	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Delay	50.7	31.4	3.6	20.4	37.1	2.6	71.0	47.5		142.8	53.1	
LOS	D	С	А	С	D	A	E	D		F	D	
Approach Delay		36.0			29.0			52.9			71.4	
Approach LOS		D			С			D			E	
Queue Length 50th (m)	76.2	49.2	0.9	16.3	58.6	0.0	51.7	77.8		~45.2	63.4	
Queue Length 95th (m)	#98.0	68.7	m5.7	28.4	76.1	6.5	75.3	98.5		#89.3	#99.6	
Internal Link Dist (m)		393.6			270.9			298.0			298.9	
Turn Bay Length (m)	80.0		65.0	50.0		60.0	100.0			110.0		
Base Capacity (vph)	428	1254	672	461	1093	602	344	986		154	723	
Starvation Cap Reductn	0	0	0	0	0	0	0	0		0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0		0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0		0	0	
Reduced v/c Ratio	0.83	0.40	0.13	0.26	0.49	0.21	0.61	0.70		1.05	0.87	
Intersection Summary Cycle Length: 130 Actuated Cycle Length: 130 Offset: 105 (81%), Reference Natural Cycle: 95 Control Type: Actuated-Coc	ced to phas	e 2:EBTL	. and 6:W	'BTL, Sta	rt of Gree	n						

Synchro 11 Report Page 7

01/30/2025

Lanes, Volumes, Timings 4: Aviation & Ogilvie Rd		01/30/202
Maximum v/c Ratio: 1.05		
Intersection Signal Delay: 47.1	Intersection LOS: D	
Intersection Capacity Utilization 87.2%	ICU Level of Service E	
Analysis Period (min) 15		
~ Volume exceeds capacity, queue is theoretically	infinite.	
Queue shown is maximum after two cycles.		
# 95th percentile volume exceeds capacity, queue	may be longer.	
Queue shown is maximum after two cycles.		
m Volume for 95th percentile queue is metered by	upstream signal.	

Splits and Phases: 4: Aviation & Ogilvie Rd

Ø1	🛡 🗘 (R)	Ø3	₿ø4
20 s	47 s	18 s	45 s
_ ≯ _{Ø5}	♥ ♥ Ø6 (R)	1 Ø7	
20 s	47 s	32.9 s	30.1 s

Scenario 1 1137 Ogilvie AM Peak Hour 2027 Future Background

Lanes, Volumes, Timings 5: Labelle St/Cummings Ave & Cyrville Rd

	≯	+	*	4	Ŧ	*	-	†	1	1	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	4Î		5	ħ		3	4		5	4Î	
Traffic Volume (vph)	21	209	37	111	374	163	5	23	41	137	70	20
Future Volume (vph)	21	209	37	111	374	163	5	23	41	137	70	20
Satd. Flow (prot)	1537	1635	0	1610	1584	0	1658	1392	0	1610	1570	0
Flt Permitted	0.273			0.606		-	0.699			0.552		
Satd. Flow (perm)	437	1635	0	1011	1584	0	1206	1392	0	824	1570	0
Satd. Flow (RTOR)		19			32			41			15	-
Lane Group Flow (vph)	21	246	0	111	537	0	5	64	0	137	90	0
Turn Type	pm+pt	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases	5	2			6			8			4	
Permitted Phases	2			6			8			4		
Detector Phase	5	2		6	6		8	8		4	4	
Switch Phase												
Minimum Initial (s)	5.0	10.0		10.0	10.0		10.0	10.0		10.0	10.0	
Minimum Split (s)	11.3	34.3		34.3	34.3		22.5	22.5		22.5	22.5	
Total Split (s)	15.0	42.0		42.0	42.0		23.0	23.0		23.0	23.0	
Total Split (%)	17.6%	49.4%		49.4%	49.4%		27.1%	27.1%		27.1%	27.1%	
Yellow Time (s)	3.7	3.7		3.7	3.7		3.3	3.3		3.3	3.3	
All-Red Time (s)	2.6	2.6		2.6	2.6		2.2	2.2		2.2	2.2	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)	6.3	6.3		6.3	6.3		5.5	5.5		5.5	5.5	
Lead/Lag	Lead			Lag	Lag		Lag	Lag		Lag	Lag	
Lead-Lag Optimize?	Yes			Yes	Yes		Yes	Yes		Yes	Yes	
Recall Mode	None	Max		Max	Max		None	None		None	None	
Act Effct Green (s)	40.9	40.9		36.3	36.3		14.5	14.5		14.5	14.5	
Actuated g/C Ratio	0.56	0.56		0.50	0.50		0.20	0.20		0.20	0.20	
v/c Ratio	0.06	0.26		0.22	0.66		0.02	0.21		0.84	0.28	
Control Delay	7.8	8.5		14.6	20.3		25.8	15.1		68.9	24.8	
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Delay	7.8	8.5		14.6	20.3		25.8	15.1		68.9	24.8	
LOS	A	A		В	С		С	В		E	С	
Approach Delay		8.5			19.3			15.9			51.4	
Approach LOS		A			В			В			D	
Queue Length 50th (m)	1.3	15.5		7.3	44.3		0.5	2.3		16.1	7.7	
Queue Length 95th (m)	3.9	27.2		22.5	#111.7		3.4	12.8		#50.7	22.3	
Internal Link Dist (m)		407.2			322.8			177.3			302.0	
Turn Bay Length (m)	98.0			67.0			35.0			38.0		
Base Capacity (vph)	380	1167		505	808		295	372		202	396	
Starvation Cap Reductn	0	0		0	0		0	0		0	0	
Spillback Cap Reductn	0	0		0	0		0	0		0	0	
Storage Cap Reductn	0	0		0	0		0	0		0	0	
Reduced v/c Ratio	0.06	0.21		0.22	0.66		0.02	0.17		0.68	0.23	
Intersection Summary Cycle Length: 85 Actuated Cycle Length: 72.5 Natural Cycle: 75 Control Type: Semi Act-Unco Maximum v/c Ratio: 0.84	ord											

Scenario 1 1137 Ogilvie AM Peak Hour 2027 Future Background

Synchro 11 Report Page 9

01/30/2025

Lanes, Volumes, Timings 5: Labelle St/Cummings Ave & Cyrville Rd

01/30/2025

Lane Configurations Traffic Volume (vph) Stutre Volume (vph) Satd. Flow (prot) Flt Permitted Satd. Flow (prot) Satd. Flow (prot) Lane Group Flow (vph) Turn Type Protected Phases Permitted Phases Detector Phase Switch Phase Swit	3 1.0 3.0 5.0 6% 2.0	7 1.0 3.0 5.0 6%
Traffic Volume (vph) Future Volume (vph) Satd. Flow (prot) Fit Permitted Satd. Flow (perm) Satd. Flow (RTOR) Lane Group Flow (vph) Turn Type Protected Phases Detector Phase Detector Phase Switch Phase Minimum Split (s) Total Split	1.0 3.0 5.0 6%	1.0 3.0 5.0
Satd. Flow (prot) Fit Permitted Satd. Flow (perm) Satd. Flow (PTOR) Lane Group Flow (vph) Turn Type Protected Phases Permitted Phases Detector Phase Bernitted Phases Detector Phase Switch Phase Minimum Split (s) Total Split (s) Total Split (s) Total Split (s) All-Red Time (s)	1.0 3.0 5.0 6%	1.0 3.0 5.0
Fit Permitted Satd. Flow (perm) Satd. Flow (RTOR) Lane Group Flow (vph) Turn Type Protected Phases Permitted Phases Detector Phase Switch Phase Minimum Split (s) Total Split (s) Total Split (s) Total Split (s) Total Split (s) All-Red Time (s)	1.0 3.0 5.0 6%	1.0 3.0 5.0
Satd. Flow (perm) Satd. Flow (RTOR) Lane Group Flow (vph) Turn Type Protected Phases Permitted Phases Detector Phase Switch Phase Minimum Initial (s) Minimum Split (s) Total Split (s) Total Split (s) Total Split (s) All-Red Time (s)	1.0 3.0 5.0 6%	1.0 3.0 5.0
Satd. Flow (RTOR) Lane Group Flow (vph) Turn Type Protected Phases Detector Phase Switch Phase Switch Phase Minimum Initial (s) Minimum Split (s) Total Split (s) Total Split (s) Total Split (s) All-Red Time (s)	1.0 3.0 5.0 6%	1.0 3.0 5.0
Lane Group Flow (vph) Turn Type Protected Phases Permitted Phases Detector Phase Switch Phase Switch Phase Minimum Split (s) Minimum Split (s) Total Split (s) Total Split (%) Yellow Time (s) All-Red Time (s)	1.0 3.0 5.0 6%	1.0 3.0 5.0
Turn Type Protected Phases Permitted Phases Detector Phase Switch Phase Minimum Split (s) Minimum Split (s) Total Split (s) Total Split (s) Patlow Time (s) All-Red Time (s)	1.0 3.0 5.0 6%	1.0 3.0 5.0
Protected Phases Permitted Phases Detector Phase Minimum Initial (s) Minimum Split (s) Total Split (s) Total Split (%) Yellow Time (s) All-Red Time (s)	1.0 3.0 5.0 6%	1.0 3.0 5.0
Permitted Phases Detector Phase Switch Phase Minimum Initial (s) Minimum Split (s) Total Split (s) Total Split (%) Yellow Time (s) All-Red Time (s)	1.0 3.0 5.0 6%	1.0 3.0 5.0
Detector Phase Switch Phase Minimum Initial (s) Minimum Split (s) Total Split (%) Yellow Time (s) All-Red Time (s)	3.0 5.0 6%	3.0 5.0
Switch Phase Minimum Initial (s) Minimum Split (s) Total Split (s) Total Split (%) Yellow Time (s) All-Red Time (s)	3.0 5.0 6%	3.0 5.0
Minimum Initial (s) Minimum Split (s) Total Split (s) Total Split (%) Yellow Time (s) All-Red Time (s)	3.0 5.0 6%	3.0 5.0
Minimum Split (s) Total Split (s) Total Split (%) Yellow Time (s) All-Red Time (s)	3.0 5.0 6%	3.0 5.0
Total Split (s) Total Split (%) Yellow Time (s) All-Red Time (s)	5.0 6%	5.0
Total Split (%) Yellow Time (s) All-Red Time (s)	6%	
Total Split (%) Yellow Time (s) All-Red Time (s)		60/
Yellow Time (s) All-Red Time (s)	2.0	0%
All-Red Time (s)		2.0
ost Time Adjust (s)	0.0	0.0
Total Lost Time (s)		
Lead/Lag	Lead	Lead
Lead-Lag Optimize?	Yes	Yes
Recall Mode	Max	Max
Act Effct Green (s)		
Actuated q/C Ratio		
v/c Ratio		
Control Delay		
Queue Delay		
Total Delay		
LOS		
Approach Delay		
Approach LOS		
Queue Length 50th (m)		
Queue Length 95th (m)		
Internal Link Dist (m)		
Turn Bay Length (m)		
Base Capacity (vph)		
Starvation Cap Reductn		
Spillback Cap Reductn		
Storage Cap Reductn		
Reduced v/c Ratio		
Intersection Summary		

Scenario 1 1137 Ogilvie AM Peak Hour 2027 Future Background

5: Labelle St/Cummings Ave & Cyr	Intersection LOS: C		01/30/2025
Intersection Signal Delay: 22.7 Intersection Capacity Utilization 65.9%	ICU Level of Service C		
Analysis Period (min) 15	ICO LEVELOI SELVICE C		
# 95th percentile volume exceeds capacity, queu	e may be longer.		
Queue shown is maximum after two cycles.			
Splits and Phases: 5: Labelle St/Cummings Ave	& Cyrville Rd		
-4 ₀₂		9 03 1 04	
42 s		5 s 23 s	
≁ ₀₅ ★ ₀₆		a n a 8	

na Craun	≯		_	- †	-↓-	-	
ne Group	EBL	EBR	NBL	NBT	SBT	SBR	
ne Configurations	3	1	5	^	î,		
affic Volume (vph)	87	309	265	279	309	96	
ture Volume (vph)	87	309	265	279	309	96	
td. Flow (prot)	1595	1469	1658	1728	1685	0	
Permitted	0.950		0.524				
td. Flow (perm)	1595	1469	914	1728	1685	0	
td. Flow (RTOR)		309			39		
ne Group Flow (vph)	87	309	265	279	405	0	
rn Type	Perm	Perm	Perm	NA	NA		
otected Phases				2	6		
rmitted Phases	4	4	2				
etector Phase	4	4	2	2	6		
vitch Phase							
nimum Initial (s)	10.0	10.0	1.0	1.0	10.0		
nimum Split (s)	22.0	22.0	7.9	7.9	39.9		
tal Split (s)	22.0	22.0	39.9	39.9	39.9		
tal Split (%)	35.5%	35.5%	64.5%	64.5%	64.5%		
llow Time (s)	3.3	3.3	3.3	3.3	3.3		
-Red Time (s)	2.7	2.7	3.6	3.6	3.6		
st Time Adjust (s)	0.0	0.0	0.0	0.0	0.0		
al Lost Time (s)	6.0	6.0	6.9	6.9	6.9		
ad/Lag							
ad-Lag Optimize?							
ecall Mode	None	None	Max	Max	Max		
t Effct Green (s)	10.8	10.8	33.0	33.0	33.0		
tuated g/C Ratio	0.19	0.19	0.58	0.58	0.58		
Ratio	0.29	0.59	0.50	0.28	0.41		
ontrol Delay	22.4	8.0	11.4	7.1	7.5		
ieue Delay	0.0	0.0	0.0	0.0	0.0		
tal Delay	22.4	8.0	11.4	7.1	7.5		
S	С	А	В	А	А		
proach Delay	11.2			9.2	7.5		
proach LOS	В			A	A		
ieue Length 50th (m)	7.8	0.0	13.3	11.9	16.7		
eue Length 95th (m)	17.7	16.3	35.1	26.2	37.1		
ernal Link Dist (m)	296.3			237.9	259.3		
rn Bay Length (m)	60.0		60.0				
se Capacity (vph)	450	637	532	1007	997		
arvation Cap Reductn	0	0	0	0	0		
illback Cap Reductn	0	0	0	0	0		
orage Cap Reductn	0	0	0	0	0		
duced v/c Ratio	0.19	0.49	0.50	0.28	0.41		
ersection Summary							
cle Length: 61.9							
tuated Cycle Length: 56.	7						
itural Cycle: 65							

Scenario 1 1137 Ogilvie Road PM Peak Hour 2027 Future Background

Lanes, Volumes, Timings		
1: Cummings Ave & Donald		01/30/2025
Intersection Signal Delay: 9.3	Intersection LOS: A	
Intersection Capacity Utilization 63.7%	ICU Level of Service B	
Analysis Period (min) 15		
• • • •		
Splits and Phases: 1: Cummings Ave & Donald		
Splits and Phases: 1: Cummings Ave & Donald	× 04	
 	Ø4 22 s	

	≯	-	\mathbf{r}	1	-		1	1	1	- \	÷.	-
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SB
Lane Configurations			1	٦		1	۲.	f,		٦	f,	
Traffic Volume (vph)	0	1037	265	35	757	149	100	243	26	147	250	14
Future Volume (vph)	0	1037	265	35	757	149	100	243	26	147	250	14
Satd. Flow (prot)	0	3316	1455	1658	3316	1483	1658	1718	0	1658	1637	
Flt Permitted				0.225			0.254			0.444		
Satd. Flow (perm)	0	3316	1366	391	3316	1333	442	1718	0	773	1637	
Satd. Flow (RTOR)			265			149		5			26	
Lane Group Flow (vph)	0	1037	265	35	757	149	100	269	0	147	390	
Turn Type		NA	Perm	Perm	NA	Perm	Perm	NA		Perm	NA	
Protected Phases		2			6			8			4	
Permitted Phases			2	6		6	8			4		
Detector Phase		2	2	6	6	6	8	8		4	4	
Switch Phase												
Vinimum Initial (s)		10.0	10.0	10.0	10.0	10.0	10.0	10.0		10.0	10.0	
Vinimum Split (s)		32.2	32.2	32.2	32.2	32.2	47.1	47.1		47.1	47.1	
Total Split (s)		70.0	70.0	70.0	70.0	70.0	50.0	50.0		50.0	50.0	
Total Split (%)		58.3%	58.3%	58.3%	58.3%	58.3%	41.7%	41.7%		41.7%	41.7%	
Yellow Time (s)		3.7	3.7	3.7	3.7	3.7	3.7	3.7		3.7	3.7	
All-Red Time (s)		2.5	2.5	2.5	2.5	2.5	3.4	3.4		3.4	3.4	
Lost Time Adjust (s)		0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Lost Time (s)		6.2	6.2	6.2	6.2	6.2	7.1	7.1		7.1	7.1	
Lead/Lag												
Lead-Lag Optimize?												
Recall Mode		C-Max	C-Max	C-Max	C-Max	C-Max	None	None		None	None	
Act Effct Green (s)		74.0	74.0	74.0	74.0	74.0	32.7	32.7		32.7	32.7	
Actuated g/C Ratio		0.62	0.62	0.62	0.62	0.62	0.27	0.27		0.27	0.27	
//c Ratio		0.51	0.28	0.15	0.37	0.17	0.83	0.57		0.70	0.84	
Control Delay		15.0	2.4	22.6	20.6	9.2	87.4	40.7		55.9	54.1	
Queue Delay		0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Delay		15.0	2.4	22.6	20.6	9.2	87.4	40.7		55.9	54.1	
LOS		В	A	С	С	A	F	D		E	D	
Approach Delay		12.5			18.9			53.4			54.6	
Approach LOS		В			В			D			D	
Queue Length 50th (m)		67.2	0.0	4.6	59.3	5.8	22.2	53.6		31.1	81.5	
Queue Length 95th (m)		103.8	12.1	m6.9	m70.6	m12.1	#45.3	71.1		49.3	105.6	
Internal Link Dist (m)		113.8			313.9			407.0			190.4	
Turn Bay Length (m)				62.0		71.0	50.0			82.0		
Base Capacity (vph)		2046	944	241	2046	879	158	617		276	601	
Starvation Cap Reductn		0	0	0	0	0	0	0		0	0	
Spillback Cap Reductn		0	0	0	0	0	0	0		0	0	
Storage Cap Reductn		0	0	0	0	0	0	0		0	0	
Reduced v/c Ratio		0.51	0.28	0.15	0.37	0.17	0.63	0.44		0.53	0.65	
ntersection Summary												
Cycle Length: 120												
Actuated Cycle Length: 120												

Synchro 11 Report Page 3

Scenario 1 1137 Ogilvie Road PM Peak Hour 2027 Future Background

Maximum v/c Ratio: 0.84		
Intersection Signal Delay: 26.4	Intersection LOS: C	
Intersection Capacity Utilization 81.6%	ICU Level of Service D	
Analysis Period (min) 15		
# 95th percentile volume exceeds capacity, queue	may be longer.	
Queue shown is maximum after two cycles.		
m Volume for 95th percentile queue is metered by	upstream signal.	

→ Ø2 (R)	₩ @4
70 s	50 s
● ● Ø6 (R)	⊲ ¶ _{Ø8}
70 s	50 s

	≯	-	\mathbf{i}	1	-		1	1	1	1	+	-
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	S
Lane Configurations	1	≜î ≽		ሻ	≜ †⊅		٦	Þ		<u>۲</u>	f,	
Traffic Volume (vph)	162	1017	27	163	786	226	61	175	176	274	228	1
Future Volume (vph)	162	1017	27	163	786	226	61	175	176	274	228	1
Satd. Flow (prot)	1658	3294	0	1610	3118	0	1658	1525	0	1658	1643	
Flt Permitted	0.105			0.094			0.551			0.231		
Satd. Flow (perm)	183	3294	0	159	3118	0	958	1525	0	392	1643	
Satd. Flow (RTOR)		2			33			42			29	
Lane Group Flow (vph)	162	1044	0	163	1012	0	61	351	0	274	350	
Turn Type	pm+pt	NA		pm+pt	NA		Perm	NA		pm+pt	NA	
Protected Phases	5	2		1	6			8		7	4	
Permitted Phases	2			6			8			4		
Detector Phase	5	2		1	6		8	8		7	4	
Switch Phase												
Minimum Initial (s)	5.0	10.0		5.0	10.0		10.0	10.0		5.0	10.0	
Minimum Split (s)	9.7	24.7		9.7	24.7		36.6	36.6		9.3	36.6	
Total Split (s)	15.0	45.0		15.0	45.0		40.0	40.0		20.0	60.0	
Total Split (%)	12.5%	37.5%		12.5%	37.5%		33.3%	33.3%		16.7%	50.0%	
Yellow Time (s)	3.7	3.7		3.7	3.7		3.3	3.3		3.3	3.3	
All-Red Time (s)	1.0	2.0		1.0	2.0		3.3	3.3		1.0	3.3	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)	4.7	5.7		4.7	5.7		6.6	6.6		4.3	6.6	
Lead/Lag	Lead	Lag		Lead	Lag		Lag	Lag		Lead		
Lead-Lag Optimize?	Yes	Yes		Yes	Yes		Yes	Yes		Yes		
Recall Mode	None	C-Max		None	C-Max		None	None		None	None	
Act Effct Green (s)	54.2	42.4		54.7	42.6		29.5	29.5		51.8	49.5	
Actuated g/C Ratio	0.45	0.35		0.46	0.36		0.25	0.25		0.43	0.41	
v/c Ratio	0.75	0.90		0.79	0.90		0.26	0.86		0.82	0.50	
Control Delay	53.1	39.5		57.1	47.6		37.9	58.8		43.6	26.0	
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Delay	53.1	39.5		57.1	47.6		37.9	58.8		43.6	26.0	
LOS	D	D		E	D		D	E		D	С	
Approach Delay		41.3			48.9			55.7			33.7	
Approach LOS		D			D			E			С	
Queue Length 50th (m)	15.1	38.5		30.7	98.6		11.5	70.1		42.4	54.2	
Queue Length 95th (m)	#57.1	#119.7		m#52.2 r	m#140.8		22.9	#110.3		#68.3	77.9	
Internal Link Dist (m)		313.9			393.6			302.0			237.9	
Turn Bay Length (m)	80.0			100.0			34.0			153.0		
Base Capacity (vph)	219	1164		209	1128		266	454		334	747	
Starvation Cap Reductn	0	0		0	0		0	0		0	0	
Spillback Cap Reductn	0	0		0	0		0	0		0	0	
Storage Cap Reductn	0	0		0	0		0	0		0	0	
Reduced v/c Ratio	0.74	0.90		0.78	0.90		0.23	0.77		0.82	0.47	
Intersection Summary												
Cycle Length: 120												
Actuated Cycle Length: 120 Offset: 46 (38%), Reference)											

Maximum v/c Ratio: 0.90		
Intersection Signal Delay: 44.3	Intersection LOS: D	
Intersection Capacity Utilization 99.0%	ICU Level of Service F	
Analysis Period (min) 15		
# 95th percentile volume exceeds capacity, queue	may be longer.	
Queue shown is maximum after two cycles.		
m Volume for 95th percentile queue is metered by	upstream signal.	

√ Ø1	🚽 🍊 Ø2 (R)		
15 s	45 s	60 s	
▶ Ø5	●	Ø7	1 Ø8
15 s	45 s	20 s	40 s

	≯	-	\mathbf{r}	4	-		1	1	1	- \	Ļ	-
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SI
Lane Configurations	1	<u></u>	1	ľ	^	1	ľ	≜ 1,		1	≜ 1,	
Traffic Volume (vph)	288	1084	102	231	696	220	173	348	163	146	395	3
Future Volume (vph)	288	1084	102	231	696	220	173	348	163	146	395	3
Satd. Flow (prot)	1658	3316	1469	1658	3316	1483	1658	3157	0	1658	3100	
Flt Permitted	0.278			0.100			0.950			0.950		
Satd. Flow (perm)	485	3316	1469	175	3316	1483	1658	3157	0	1658	3100	
Satd. Flow (RTOR)			136			220		58			141	
Lane Group Flow (vph)	288	1084	102	231	696	220	173	511	0	146	700	
Turn Type	pm+pt	NA	Perm	pm+pt	NA	Perm	Prot	NA		Prot	NA	
Protected Phases	5	2		1	6		7	4		3	8	
Permitted Phases	2		2	6		6						
Detector Phase	5	2	2	1	6	6	7	4		3	8	
Switch Phase												
Minimum Initial (s)	5.0	10.0	10.0	5.0	10.0	10.0	5.0	10.0		5.0	10.0	
Minimum Split (s)	9.7	34.1	34.1	9.7	34.1	34.1	10.9	30.1		12.2	30.1	
Total Split (s)	20.0	51.0	51.0	20.0	51.0	51.0	18.9	30.1		18.9	30.1	
Total Split (%)	16.7%	42.5%	42.5%	16.7%	42.5%	42.5%	15.8%	25.1%		15.8%	25.1%	
Yellow Time (s)	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7		3.5	3.7	
All-Red Time (s)	1.0	2.4	2.4	1.0	2.4	2.4	2.2	2.4		3.7	2.4	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		2.2	2.4	
Total Lost Time (s)	4.7	6.1	6.1	4.7	6.1	6.1	5.9	6.1		9.4	8.5	
Lead/Lag	Lead	Lag	Lag	Lead	Lag	Lag	Lead	Lag		Lead	Lag	
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		Yes	Yes	
Recall Mode	None	C-Max	C-Max	None	C-Max	C-Max	None	None		None	None	
Act Effct Green (s)	61.6	45.7	45.7	61.6	45.7	45.7	13.0	24.0		9.5	21.6	
Actuated g/C Ratio	0.51	0.38	0.38	0.51	0.38	0.38	0.11	0.20		0.08	0.18	
v/c Ratio	0.74	0.86	0.16	0.86	0.55	0.31	0.97	0.75		1.11	1.04	
Control Delay	33.6	35.1	4.5	56.5	31.3	4.5	112.8	48.0		162.9	83.9	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Delay	33.6	35.1	4.5	56.5	31.3	4.5	112.8	48.0		162.9	83.9	
LOS	С	D	А	E	С	А	F	D		F	F	
Approach Delay		32.6			31.3			64.4			97.5	
Approach LOS		С			С			E			F	
Queue Length 50th (m)	43.9	81.5	1.5	36.0	67.6	0.0	41.2	53.5		~39.4	~78.3	
Queue Length 95th (m)	m54.0	m94.1	m2.5	#77.2	86.5	15.5	#84.9	73.1		#80.6	#116.1	
Internal Link Dist (m)		393.6			260.7			297.6			298.7	
Turn Bay Length (m)	80.0		65.0	50.0		60.0	100.0			110.0		
Base Capacity (vph)	401	1262	643	279	1263	701	179	677		131	673	
Starvation Cap Reductn	0	0	0	0	0	0	0	0		0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0		0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0		0	0	
Reduced v/c Ratio	0.72	0.86	0.16	0.83	0.55	0.31	0.97	0.75		1.11	1.04	
Intersection Summary												
Cycle Length: 120												
Actuated Cycle Length: 120												

Lanes, Volumes, Timings 4: Aviation & Ogilvie Rd		01/30/2025
		0110012020
Maximum v/c Ratio: 1.11		
Intersection Signal Delay: 50.7	Intersection LOS: D	
Intersection Capacity Utilization 98.1%	ICU Level of Service F	
Analysis Period (min) 15		
~ Volume exceeds capacity, queue is theoretically	infinite.	
Queue shown is maximum after two cycles.		
# 95th percentile volume exceeds capacity, queue	may be longer.	
Queue shown is maximum after two cycles.		
m Volume for 95th percentile queue is metered by	upstream signal.	

Splits and Phases: 4: Aviation & Ogilvie Rd

√ Ø1	🚽 📥 🛛 🖉 🖉	Ø3	0 4
20 s	51 s	18.9 s	30.1 s
	🕊 🕈 🖉 Ø6 (R)	Ø 7	↓ Ø8
20 s	51 s	18.9 s	30.1 s

	≯	_	\sim	1	-		•	1	1		1	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	
Lane Configurations		101 1	LDIX	<u></u>	1	WDIN		101 1	NDIN	<u>, 000</u>	1001 \$	
Traffic Volume (vph)	10	53	68	74	311	274	10	73	68	62	457	
Future Volume (vph)	10	53	68	74	311	274	10	73	68	62	457	
Satd. Flow (prot)	1658	1387	0	1595	1573	0	1658	1486	0	1445	1737	
Flt Permitted	0.241	1007	0	0.679	10/0	0	0.283	1400	0	0.536	1151	
Satd. Flow (perm)	421	1387	0	1114	1573	0	494	1486	0	714	1737	
Satd. Flow (RTOR)	-12-1	68	v	1114	50	0	-10-1	49	Ū	7.14	1	
Lane Group Flow (vph)	10	121	0	74	585	0	10	141	0	62	468	
Turn Type	pm+pt	NA	0	Perm	NA	0	Perm	NA	0	Perm	NA	
Protected Phases	5	2		1 Cilli	6		1 CIIII	8		1 Cilli	4	
Permitted Phases	2	2		6	0		8	0		4	т	
Detector Phase	5	2		6	6		8	8		4	4	
Switch Phase	5	4		0	- 0		0	0		4	-	
Minimum Initial (s)	5.0	10.0		10.0	10.0		10.0	10.0		10.0	10.0	
Vinimum Split (s)	11.3	34.3		34.3	34.3		22.5	22.5		22.5	22.5	
Total Split (s)	15.0	43.0		43.0	43.0		37.0	37.0		37.0	37.0	
Total Split (%)	15.0%	43.0%		43.0%	43.0%		37.0%	37.0%		37.0%	37.0%	
Yellow Time (s)	3.7	43.0 %		43.0 %	43.0 %		3.3	3.3		3.3	3.3	
All-Red Time (s)	1.0	2.6		2.6	2.6		2.2	2.2		2.2	2.2	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)	4.7	6.3		6.3	6.3		5.5	5.5		5.5	5.5	
Lead/Lag	Lead	0.0		Lag	Lag		Lag	Lag		Lag	Lag	
Lead-Lag Optimize?	Yes			Yes	Yes		Yes	Yes		Yes	Yes	
Recall Mode	None	Max		Max	Max		None	None		None	None	
Act Effct Green (s)	40.6	39.0		37.1	37.1		20.4	20.4		25.4	25.4	
Actuated g/C Ratio	0.53	0.51		0.49	0.49		0.27	0.27		0.33	0.33	
v/c Ratio	0.03	0.16		0.14	0.74		0.08	0.33		0.26	0.81	
Control Delay	10.0	6.2		14.5	23.9		23.3	17.4		22.5	35.9	
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Delay	10.0	6.2		14.5	23.9		23.3	17.4		22.5	35.9	
LOS	A	A		В	20.0 C		20.0 C	B		C	D	
Approach Delay		6.5		5	22.8		Ŭ	17.7		Ŭ	34.4	
Approach LOS		A			C			B			C	
Queue Length 50th (m)	0.7	3.7		5.4	56.6		1.0	9.9		6.1	57.4	
Queue Length 95th (m)	3.0	12.7		17.4	#150.2		5.3	27.3		17.9	#118.8	
Internal Link Dist (m)	0.0	407.0		11.4	322.8		0.0	177.5		11.0	302.0	
Turn Bay Length (m)	98.0	10110		67.0	022.0		35.0			38.0	002.0	
Base Capacity (vph)	392	970		541	790		206	648		297	725	
Starvation Cap Reductn	0	0		0	0		0	0		0	0	
Spillback Cap Reductn	0	0		0	0		0	0		0	0	
Storage Cap Reductn	0	0		0	0		0	0		0	0	
Reduced v/c Ratio	0.03	0.12		0.14	0.74		0.05	0.22		0.21	0.65	
Intersection Summary												
Cycle Length: 100												
Actuated Cycle Length: 76.	4											

Scenario 1 1137 Ogilvie Road PM Peak Hour 2027 Future Background

Lanes, Volumes, Timings	
5: Labelle St/Cummings Ave & Cyrville Rd	01/30/2025

Lane Configurations Traffic Volume (vph) Future Volume (vph) Satd. Flow (prot) Fit Permitted Satd. Flow (prot) Fit Permitted Satd. Flow (RTOR) Lane Group Flow (vph) Turn Type Protected Phases Detector Phase Switch Phase Minimum Initial (s) 1.0 Minimum Split (s) 3.0 Total Split (s) 5.0 Lead/Lag Lead-Lag Detime (s) 0.0 Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead Lad-Lag Optimize? Yes Recall Mode None Act Effct Green (s) Actuated g/C Ratio V/c Ratio Control Delay Queue Delay Total Delay LOS Approach LOS Queue Length 50th (m) Internal Link Dist (m) Turn Bay Length (m) Base Capacity (vph) Starvation Cap Reductn Storage Cap Reductn Storage Cap Reductn Reduced V/c Ratio Intersection Summary	Group	Ø3	Ø7
Future Volume (vph) Satd. Flow (prot) Fit Permitted Satd. Flow (prot) Lane Group Flow (vph) Turm Type Protected Phases Detector Phase Switch Phase Minimum Initial (s) 1.0 Minimum Split (s) 1.0 Minimum Split (s) 1.0 Total Split (s) 1.0 Total Split (s) 1.0 Total Split (s) 1.0 Lead/Lag Lead/Lag Lead/Lag Lead/Lag Optimize? Yelsow Actuated g/C Ratio v/c Ratio Vc Ratio Control Delay Queue Delay Cost Approach LOS Queue Length 50th (m) Internal Link Dist (m) Turm Bay Length (m) Base Capacity (vph) Starvation Cap Reductn Storage Cap Reductn Storage Cap Reductn Storage Cap Reductn Storage Cap Reductn Storage Cap Reductn Storage Cap Reductn			
Satd. Flow (prot) Fit Permitted Satd. Flow (prot) Satd. Flow (RTOR) Lane Group Flow (vph) Turn Type Protected Phases Detector Phase Switch Phase Minimum Initial (s) Minimum Split (s) South Phase Minimum Split (s) Total Split (s) Total Split (s) Total Split (s) Cotal Split (s) Cotal Split (s) Total Split (s) Cotal Split (s) Cotal Split (s) Cotal Split (s) Cotal Split (s) Cotal Lost Time Adjust (s) Total Lost Time (s) Lead-Lag Optimize? Recall Mode Actuated g/C Ratio Vic Ratio Control Delay Cotar Delay LOS Approach LoS Approach LoS Queue Length 95th (m) Internal Link Dist (m) Turm Bay Length (m) Base Capacity (vph) Starvation Cap Reductn Storage Cap Reductn Storage Cap Reductn Reduced v/c Ratio	Volume (vph)		
Fit Permitted Satd. Flow (perm) Satd. Flow (perm) Satd. Flow (RTOR) Lane Group Flow (vph) Turn Type Protected Phases Detector Phase Switch Phase Minimum Initial (s) Minimum Split (s) Total Lost Time (s) Lead/Lag Lead Lead-Lag Optimize? Yes Recall Mode None Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (m) Internal Link Dist (m) Turm Bay Length (m) Base Capacity (vph) Starvation Cap Reductn Storage Cap Reductn Reduced v/c Ratio	Volume (vph)		
Fit Permitted Satd. Flow (perm) Satd. Flow (perm) Satd. Flow (RTOR) Lane Group Flow (vph) Turn Type Protected Phases Detector Phase Switch Phase Minimum Initial (s) Minimum Split (s) Total Lost Time (s) Lead/Lag Lead Lead-Lag Optimize? Yes Recall Mode None Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (m) Internal Link Dist (m) Turm Bay Length (m) Base Capacity (vph) Starvation Cap Reductn Storage Cap Reductn Reduced v/c Ratio	low (prot)		
Satd. Flow (RTOR) Lane Group Flow (vph) Turm Type Protected Phases 3 Premitted Phases 5 Detector Phase Switch Phase Minimum Initial (s) 1.0 Minimum Split (s) 3.0 Total Split (s) 5.0 Total Split (s) 2.0 All-Red Time (s) 0.0 Lost Time Adjust (s) Total Lost Time (s) Lead-Lag Optimize? Yes Recall Mode None ActLated g/C Ratio v/c Ratio v/c Ratio Control Delay Queue Delay Total Dolay LOS Queue Length S0th (m) Internal Link Dist (m) Turm Bay Length (m) Base Capacity (vph) Starvation Cap Reductn Storage Cap Reductn Storage Cap Reductn			
Satd. Flow (RTOR) Lane Group Flow (vph) Turm Type Protected Phases 3 Premitted Phases 5 Detector Phase Switch Phase Minimum Initial (s) 1.0 Minimum Split (s) 3.0 Total Split (s) 5.0 Total Split (s) 2.0 All-Red Time (s) 0.0 Lost Time Adjust (s) Total Lost Time (s) Lead-Lag Optimize? Yes Recall Mode None ActLated g/C Ratio v/c Ratio v/c Ratio Control Delay Queue Delay Total Dolay LOS Queue Length S0th (m) Internal Link Dist (m) Turm Bay Length (m) Base Capacity (vph) Starvation Cap Reductn Storage Cap Reductn Storage Cap Reductn	low (perm)		
Turn Type Turn Type Protected Phases 3 Permitted Phases Detector Phase Switch Phase Minimum Initial (s) 1.0 Minimum Split (s) 3.0 Total Split (s) 5.0 Total Split (s) 5.0 Total Split (s) 5.0 Total Split (s) 0.0 Lost Time (s) 2.0 All-Red Time (s) 0.0 Lost Time (s) LeadLag Lead/Lag Dptimize? Yes Recall Mode None Act Effct Green (s) Actuated g/C Ratio v/c Ratio V/c Ratio V/c Ratio UOS Approach Lols Queue Delay Total Delay LOS Approach LOS Queue Length 50th (m) Internal Link Dist (m) Turm Bay Length (m) Base capacity (vph) Starvation Cap Reductn Storage Cap Reductn Storage Cap Reductn Storage Cap Reductn			
Turn Type Turn Type Protected Phases 3 Permitted Phases Detector Phase Switch Phase Minimum Initial (s) 1.0 Minimum Split (s) 3.0 Total Split (s) 5.0 Total Split (s) 5.0 Total Split (s) 5.0 Total Split (s) 0.0 Lost Time (s) 2.0 All-Red Time (s) 0.0 Lost Time (s) LeadLag Lead/Lag Dptimize? Yes Recall Mode None Act Effct Green (s) Actuated g/C Ratio v/c Ratio V/c Ratio V/c Ratio UOS Approach Lols Queue Delay Total Delay LOS Approach LOS Queue Length 50th (m) Internal Link Dist (m) Turm Bay Length (m) Base capacity (vph) Starvation Cap Reductn Storage Cap Reductn Storage Cap Reductn Storage Cap Reductn			
Protected Phases 3 Permitted Phases Detector Phase Switch Phase Minimum Initial (s) 1.0 Minimum Initial (s) 1.0 Minimum Split (s) 3.0 Total Split (s) 5.0 Total Split (s) 5.0 All-Red Time (s) 2.0 All-Red Time (s) 0.0 Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead Lead/Lag Optimize? Yes Recall Mode None Act Lated g/C Ratio v/c Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach LoS Queue Length 50th (m) Internal Link Dist (m) Internal Link Dist (m) Turm Bay Length (m) Base Capacity (vph) Starvation Cap Reductn Storage Cap Reductn Storage Cap Reductn			
Permitted Phases Detector Phase Switch Phase Minimum Initial (s) 1.0 Minimum Split (s) 3.0 Total Split (s) 5.0 Total Split (%) 5% Yellow Time (s) 2.0 All-Red Time (s) 0.0 Lost Time Adjust (s) Lost Time Adjust (s) Lead/Lag Detimize? Yes Recall Mode None Act EftG Green (s) Actuated g/C Ratio Vic Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach Delay Approach Delay Approach Delay Approach Delay Approach Delay Coueue Length 95th (m) Internal Link Dist (m) Turm Bay Length (m) Base Capacity (vph) Starvation Cap Reductn Storage Cap Reductn Storage Cap Reductn		3	7
Detector Phase Switch Phase Switch Phase Minimum Initial (s) Minimum Split (s) Total Cast Time (s) Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead Lead/Lag Lead Lead/Lag Detimize? Yes Recall Mode None Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Cost Delay Total Delay LOS Approach Delay Approach LOS Queue Length 95th (m) Internal Link Dist (m) Turm Bay Length (m) Base Capacity (wph) Starvation Cap Reductn Storage Cap Reductn Reduced v/c Ratio		-	
Minimum Initial (s) 1.0 Minimum Split (s) 3.0 Total Split (s) 5.0 Loal Time (s) 2.0 All-Red Time (s) 0.0 Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Optimize? Yes Recall Mode None Actuated g/C Ratio v/c Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay LOS Queue Length 95th (m) Internal Link Dist (m) Turm Bay Length (m) Base Capacity (vph) Starvation Cap Reductn Storage Cap Reductn Storage Cap Reductn Storage Cap Reductn Reduced v/c Ratio			
Minimum Initial (s) 1.0 Minimum Split (s) 3.0 Total Split (s) 5.0 Loal Time (s) 2.0 All-Red Time (s) 0.0 Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Optimize? Yes Recall Mode None Actuated g/C Ratio v/c Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay LOS Queue Length 95th (m) Internal Link Dist (m) Turm Bay Length (m) Base Capacity (vph) Starvation Cap Reductn Storage Cap Reductn Storage Cap Reductn Storage Cap Reductn Reduced v/c Ratio	Phase		
Minimum Split (s) 3.0 Total Split (s) 5.0 Total Split (s) 5.0 Total Split (s) 5% Yellow Time (s) 2.0 All-Red Time (s) 0.0 Load Time Adjust (s) Total Lost Time (s) Lead/Lag Lead Lead/Lag Lead Lead/Lag Ves Recall Mode None Act Effct Green (s) Act Effct Green (s) Act Effct Green (s) Queue Delay Total Delay Queue Delay Total Delay Queue Length SOth (m) Queue Length SOth (m) Internal Link Dist (m) Turn Bay Length (m) Barvation Cap Reductn Storage Cap Reductn Storage Cap Reductn Storage Cap Reductn Reduced v/c Ratio		10	1.0
Total Split (s) 5.0 Total Split (%) 5% Yellow Time (s) 2.0 All-Red Time (s) 0.0 Lost Time Adjust (s) Total Lost Time (s) Lead.Lag Optimize? Yes Recall Mode None Act Effct Green (s) Actuated q/C Ratio v/c Ratio Vc Ratio Uove Delay Total Delay LOS Approach LoS Queue Delay Total Delay LOS Approach LoS Queue Length 95th (m) Internal Link Dist (m) Tum Bay Length (m) Base capacity (vph) Starvation Cap Reductn Storage Cap Reductn Storage Cap Reductn Reduced v/c Ratio			3.0
Total Split (%) 5% Yellow Time (s) 2.0 All-Red Time (s) 0.0 Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead Lead/Lag Optimize? Yes Recall Mode None Act Laft Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach LOS Queue Length 50th (m) Internal Link Dist (m) Internal Link Dist (m) Turm Bay Length (m) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Storage Cap Reductn Reduced v/c Ratio			5.0
Yellow Time (s) 2.0 All-Red Time (s) 0.0 Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead Lead/Lag Detimize? Yes Recall Mode None Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach Delay Approach Delay Approach Delay Approach Delay Approach Delay Queue Length 50th (m) Internal Link Dist (m) Turn Bay Length (m) Internal Link Dist (m) Starvation Cap Reductn Storage Cap Reductn Reduced v/c Ratio			5%
All-Red Time (s) 0.0 Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead Lead/Lag Optimize? Yes Recall Mode None Act Effct Green (s) Acteffct Green (s) Actuated g/C Ratio v/c Ratio Vic Ratio Queue Delay Total Delay Queue Delay Total Delay Approach Delay Approach Dolay Approach LOS Queue Length 50th (m) Internal Link Dist (m) Turm Bay Length (m) Base Capacity (wph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio			2.0
Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead Lag Optimize? Yes Recall Mode None Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (m) Internal Link Dist (m) Tum Bay Length (m) Base Capacity (vph) Starvation Cap Reductn Storage Cap Reductn Storage Cap Reductn Reduced v/c Ratio			0.0
Total Lost Time (s) Lead/Lag Lead/Lag Lead/Lag Optimize? Yes Recall Mode None Actuated gOtimize? Yes Recall Mode None Actuated gOt Ratio v/c v/c Ratio Outrol Delay Control Delay Total Delay LOS Approach Lolay Approach Delay Oueue Length 95th (m) Internal Link Dist (m) Turm Bay Length (m) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio Storage Cap Reductn		0.0	0.0
Lead/Lag Lead Lead-Lag Optimize? Yes Recall Mode None Act Effct Green (s) Actated g/C Ratio v/c Ratio Outrol Delay Queue Delay Total Delay Total Delay Delay LOS Approach Delay Queue Length 50th (m) Internal Link Dist (m) Turm Bay Length (m) Internal Link Dist (m) Starvation Cap Reductn Spilback Cap Reductn Storage Cap Reductn Reduced v/c Ratio			
Lead-Lag Optimize? Yes Recall Mode None Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach Delay Approach LOS Queue Length 50th (m) Queue Length 95th (m) Internal Link Dist (m) Turn Bay Length (m) Base Capacity (vph) Starvation Cap Reductn Storage Cap Reductn Storage Cap Reductn Reduced v/c Ratio		beal	Lead
Recall Mode None Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach Delay Control Delay Total Delay Dotal Delay LOS Queue Length 50th (m) Queue Length 95th (m) Internal Link Dist (m) Turm Bay Length (m) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio			Yes
Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (m) Gueue Length 50th (m) Internal Link Dist (m) Turn Bay Length (m) Base Capacity (vph) Starvation Cap Reductn Storage Cap Reductn Storage Cap Reductn Reduced v/c Ratio			Max
Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (m) Queue Length 95th (m) Internal Link Dist (m) Turn Bay Length (m) Base Capacity (vph) Starvation Cap Reductn Storage Cap Reductn Storage Cap Reductn Reduced v/c Ratio		None	INICIA
v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (m) Queue Length 95th (m) Internal Link Dist (m) Turm Bay Length (m) Base Capacity (vph) Starvation Cap Reductn Storage Cap Reductn Storage Cap Reductn Storage Cap Reductn			
Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (m) Internal Link Dist (m) Turn Bay Length (m) Base Capacity (vph) Starvation Cap Reductn Storage Cap Reductn Storage Cap Reductn Reduced v/c Ratio			
Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (m) Queue Length 95th (m) Internal Link Dist (m) Turn Bay Length (m) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio			
Total Delay LOS Approach Delay Approach LOS Queue Length 50th (m) Internal Link Dist (m) Turn Bay Length (m) Base Capacity (vph) Starvation Cap Reductn Storage Cap Reductn Storage Cap Reductn Reduced v/c Ratio			
LOS Approach Delay Approach LOS Queue Length 50th (m) Queue Length 95th (m) Internal Link Dist (m) Turn Bay Length (m) Base Capacity (vph) Starvation Cap Reductn Storage Cap Reductn Storage Cap Reductn Reduced v/c Ratio			
Approach Delay Approach LOS Queue Length 50th (m) Queue Length 95th (m) Internal Link Dist (m) Turn Bay Length (m) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio	ciay		
Approach LOS Queue Length 50th (m) Queue Length 95th (m) Internal Link Dist (m) Turn Bay Length (m) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio	ah Dalau		
Queue Length 50th (m) Queue Length 95th (m) Internal Link Dist (m) Turn Bay Length (m) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio			
Queue Length 95th (m) Internal Link Dist (m) Turn Bay Length (m) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio			
Internal Link Dist (m) Turn Bay Length (m) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio			
Turn Bay Length (m) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio			
Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio			
Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio			
Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio			
Storage Cap Reductn Reduced v/c Ratio			
Reduced v/c Ratio			
Intersection Summary	eu vic Ralio		
	ction Summary		

Lanes, Volumes, Timings 5: Labelle St/Cummings Ave & Cyr	ville Rd	01/30/2025
Intersection Signal Delay: 25.0	Intersection LOS: C	
Intersection Capacity Utilization 93.0%	ICU Level of Service F	
Analysis Period (min) 15		
# 95th percentile volume exceeds capacity, queue	e may be longer.	

95th percentile volume exceeds capacity, qu Queue shown is maximum after two cycles.

Splits and Phases: 5: Labelle St/Cummings Ave & Cyrville Rd

		● @ : ↓ • Ø4
43 s		5 s 37 s
<u>∕</u> ∕ _{Ø5}	₹_Ø6	
15 s	43 s	5 s 37 s

Scenario 1 1137 Ogilvie Road PM Peak Hour 2027 Future Background

Scenario 1 1137 Ogilvie Road PM Peak Hour 2027 Future Background

Appendix L

Synchro Worksheets -2029 Future Background Horizon

Lanes, Volumes, Timings
1: Cummings Ave & Donald

	≯	\mathbf{i}	1	Ť	ţ	1
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	٦	1	ň	↑	¢î	
Traffic Volume (vph)	56	189	247	153	196	92
Future Volume (vph)	56	189	247	153	196	92
Satd. Flow (prot)	1626	1455	1658	1695	1644	0
Flt Permitted	0.950		0.583			
Satd. Flow (perm)	1626	1455	1017	1695	1644	0
Satd. Flow (RTOR)		189			58	
Lane Group Flow (vph)	56	189	247	153	288	0
Turn Type	Perm	Perm	Perm	NA	NA	,
Protected Phases				2	6	
Permitted Phases	4	4	2	_	, in the second s	
Detector Phase	4	4	2	2	6	
Switch Phase		-	2	2	0	
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	
Minimum Split (s)	22.0	22.0	39.9	39.9	39.9	
Total Split (s)	22.0	22.0	39.9	39.9	39.9	
Total Split (%)	35.5%	35.5%	64.5%	64.5%	64.5%	
Yellow Time (s)	35.5%	35.5%	04.5% 3.3	04.5% 3.3	04.5% 3.3	
All-Red Time (s)	2.7	2.7	3.6	3.6	3.6	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.0	6.0	6.9	6.9	6.9	
Lead/Lag	0.0	0.0	0.9	0.9	0.9	
Lead-Lag Optimize?						
Recall Mode	None	None	Мах	Max	Max	
Act Effct Green (s)	10.2	10.2	34.1	34.1	34.1	
Actuated g/C Ratio	0.18	0.18	0.60	0.60	0.60	
v/c Ratio	0.18	0.18	0.60	0.60	0.60	
Control Delav	21.3	7.8	8.9	5.8	5.5	
	21.3	7.8 0.0	0.0	5.8 0.0	5.5 0.0	
Queue Delay	21.3	7.8	0.0 8.9	0.0 5.8	0.0 5.5	
Total Delay						
LOS	C	A	A	A	A	
Approach Delay	10.9			7.7	5.5	
Approach LOS	B		44 7	A	A	
Queue Length 50th (m)	4.9	0.0	11.7	6.0	9.5	
Queue Length 95th (m)	12.8	13.4	26.0	13.0	20.3	
Internal Link Dist (m)	296.9			237.9	259.3	
Turn Bay Length (m)	60.0		60.0			
Base Capacity (vph)	454	542	605	1009	1003	
Starvation Cap Reductn	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	
Reduced v/c Ratio	0.12	0.35	0.41	0.15	0.29	
Intersection Summary						
Cycle Length: 61.9						
Actuated Cycle Length: 57.3	3					
Natural Cycle: 65						
Control Type: Actuated-Unc	coordinated					
Maximum v/c Ratio: 0.46						

Synchro 11 Report Page 1

01/31/2025

Lanes, Volumes, Timings 1: Cummings Ave & Donald		01/31/2025
Intersection Signal Delay: 7.9	Intersection LOS: A	
Intersection Capacity Utilization 56.1%	ICU Level of Service B	
Analysis Period (min) 15		

Splits and Phases: 1: Cummings Ave & Donald

< ↑ ø2	✓ Ø4	
39.9 s	22 s	
↓ Ø6		
39.9 s		

Scenario 1 1137 Ogilvie AM Peak Hour 2029 Future Background

Lanes, Volumes, Timings	
2: Cyrville Rd & Ogilvie Rd	

	۶	-	\mathbf{i}	4	+		1	1	1	1	.↓	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations		<u></u>	1	1	††	1	1	eî Î		ľ	eî Î	
Traffic Volume (vph)	0	641	146	35	818	134	161	195	28	48	112	43
Future Volume (vph)	0	641	146	35	818	134	161	195	28	48	112	43
Satd. Flow (prot)	0	3252	1427	1551	3316	1455	1580	1589	0	1566	1575	(
Flt Permitted				0.395			0.591			0.439		
Satd. Flow (perm)	0	3252	1338	638	3316	1301	977	1589	0	722	1575	(
Satd. Flow (RTOR)			146			134		6			16	
Lane Group Flow (vph)	0	641	146	35	818	134	161	223	0	48	155	(
Turn Type		NA	Perm	Perm	NA	Perm	Perm	NA		Perm	NA	
Protected Phases		2			6			8			4	
Permitted Phases			2	6		6	8			4		
Detector Phase		2	2	6	6	6	8	8		4	4	
Switch Phase												
Minimum Initial (s)		10.0	10.0	10.0	10.0	10.0	10.0	10.0		10.0	10.0	
Minimum Split (s)		32.2	32.2	32.2	32.2	32.2	47.1	47.1		47.1	47.1	
Total Split (s)		80.0	80.0	80.0	80.0	80.0	50.0	50.0		50.0	50.0	
Total Split (%)		61.5%	61.5%	61.5%	61.5%	61.5%	38.5%	38.5%		38.5%	38.5%	
Yellow Time (s)		3.7	3.7	3.7	3.7	3.7	3.7	3.7		3.7	3.7	
All-Red Time (s)		2.5	2.5	2.5	2.5	2.5	3.4	3.4		3.4	3.4	
Lost Time Adjust (s)		0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Lost Time (s)		6.2	6.2	6.2	6.2	6.2	7.1	7.1		7.1	7.1	
Lead/Lag												
Lead-Lag Optimize?												
Recall Mode		C-Max	C-Max	C-Max	C-Max	C-Max	None	None		None	None	
Act Effct Green (s)		90.6	90.6	90.6	90.6	90.6	26.1	26.1		26.1	26.1	
Actuated q/C Ratio		0.70	0.70	0.70	0.70	0.70	0.20	0.20		0.20	0.20	
v/c Ratio		0.28	0.15	0.08	0.35	0.14	0.82	0.69		0.33	0.47	
Control Delay		8.9	2.0	3.8	3.4	0.2	78.6	56.5		47.2	43.7	
Queue Delay		0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Delay		8.9	2.0	3.8	3.4	0.2	78.6	56.5		47.2	43.7	
LOS		A	A	A	А	А	E	E		D	D	
Approach Delay		7.6			3.0			65.8			44.5	
Approach LOS		A			А			E			D	
Queue Length 50th (m)		28.8	0.0	1.1	13.0	0.0	40.2	52.5		10.7	31.9	
Queue Length 95th (m)		53.4	8.5	m1.6	15.2	m0.0	57.7	68.8		19.9	45.9	
Internal Link Dist (m)		113.5			313.9			407.2			190.6	
Turn Bay Length (m)				62.0		71.0	50.0			82.0		
Base Capacity (vph)		2265	976	444	2309	946	322	528		238	530	
Starvation Cap Reductn		0	0	0	0	0	0	0		0	0	
Spillback Cap Reductn		0	0	0	0	0	0	0		0	0	
Storage Cap Reductn		0	0	0	0	0	0	0		0	0	
Reduced v/c Ratio		0.28	0.15	0.08	0.35	0.14	0.50	0.42		0.20	0.29	
Intersection Summary Cycle Length: 130												
Actuated Cycle Length: 130												
Offset: 10 (8%), Referenced t	to phase	2:EBT an	d 6:WBTI	., Start of	Green							
Natural Cycle: 80												
	dinated											

Synchro 11 Report Page 3

01/31/2025

Lanes, Volumes, Timings 2: Cyrville Rd & Ogilvie Rd

Maximum v/c Ratio: 0.82		
Intersection Signal Delay: 18.3	Intersection LOS: B	
Intersection Capacity Utilization 72.0%	ICU Level of Service C	
Analysis Period (min) 15		

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 2: Cyrville Rd & Ogilvie Rd

	₩ Ø4
80 s	50 s
Ø6 (R)	<
80 s	50 s

Scenario 1 1137 Ogilvie AM Peak Hour 2029 Future Background

01/31/2025

	۶	-	~	4	-	×	•	Ť	~	1	Ļ	-
ane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SB
ane Configurations	٦	≜ 1₽		۲	≜ î⊳		3	f,		5	î,	
Fraffic Volume (vph)	65	663	13	100	817	170	63	150	88	169	144	10
Future Volume (vph)	65	663	13	100	817	170	63	150	88	169	144	10
Satd. Flow (prot)	1580	3265	0	1642	3159	0	1658	1549	0	1642	1616	TC.
Fit Permitted	0.950	5205	0	0.950	0100	0	0.950	1040	0	0.950	1010	
Satd. Flow (perm)	1546	3265	0	1609	3159	0	1649	1549	0	1553	1616	
Satd. Flow (RTOR)	1040	2	0	1003	5155	0	1043	1040	0	1000	1010	
ane Group Flow (vph)	65	676	0	100	987	0	63	238	0	169	253	
Turn Type	Prot	NA	0	Prot	907 NA	0	Prot	NA	0	Prot	NA	
		2		1	NA 6		3	NA 8		7	1NA 4	
Protected Phases Permitted Phases	5	2		1	0		3	0		1	4	
	-	0		4	0		2	0		7		
Detector Phase	5	2		1	6		3	8		7	4	
Switch Phase		10.0			10.0			10.0			40.0	
Ainimum Initial (s)	5.0	10.0		5.0	10.0		5.0	10.0		5.0	10.0	
/linimum Split (s)	9.7	25.7		9.7	25.7		9.5	37.1		9.3	37.1	
fotal Split (s)	15.0	49.2		20.7	54.9		15.1	37.1		23.0	45.0	
Total Split (%)	11.5%	37.8%		15.9%	42.2%		11.6%	28.5%		17.7%	34.6%	
(ellow Time (s)	3.7	3.7		3.7	3.7		3.3	3.3		3.3	3.3	
All-Red Time (s)	1.0	3.0		1.0	3.0		1.0	3.8		1.0	3.8	
ost Time Adjust (s).	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
fotal Lost Time (s)	4.7	6.7		4.7	6.7		4.3	7.1		4.3	7.1	
.ead/Lag	Lead	Lag		Lead	Lag		Lead	Lag		Lead	Lag	
ead-Lag Optimize?	Yes	Yes		Yes	Yes		Yes	Yes		Yes	Yes	
Recall Mode	None	C-Max		None	C-Max		None	None		None	None	
Act Effct Green (s)	9.6	51.7		12.7	57.1		9.3	25.8		16.9	35.5	
Actuated g/C Ratio	0.07	0.40		0.10	0.44		0.07	0.20		0.13	0.27	
//c Ratio	0.56	0.52		0.62	0.71		0.53	0.78		0.79	0.57	
Control Delay	78.6	28.4		83.9	32.6		74.2	66.2		80.1	46.3	
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Delay	78.6	28.4		83.9	32.6		74.2	66.2		80.1	46.3	
.0S	E	С		F	C		E	E		F	D	
Approach Delay	-	32.8			37.3		_	67.9			59.9	
Approach LOS		C			D			67.5 E			E	
Queue Length 50th (m)	16.5	52.1		27.1	130.7		15.7	57.6		41.9	56.1	
Queue Length 95th (m)	32.7	68.3			m157.6		30.6	84.8		#72.3	81.9	
nternal Link Dist (m)	JZ.1	313.9		11141.7	393.6		30.0	302.0		#12.5	237.9	
Furn Bay Length (m)	80.0	010.0		100.0	000.0		34.0	502.0		153.0	201.0	
Base Capacity (vph)	129	1300		202	1387		137	357		236	471	
Starvation Cap Reductn	0	0		202	0		0	0		230	4/1	
	0	0		0	0		0	0		0	0	
Spillback Cap Reductn		-		-	-			-		-	-	
Storage Cap Reductn	0	0		0	0		0	0		0	0	
Reduced v/c Ratio	0.50	0.52		0.50	0.71		0.46	0.67		0.72	0.54	
ntersection Summary												
Cycle Length: 130												
Actuated Cycle Length: 130												
Offset: 0 (0%), Referenced	to phase 2	EBT and	S:WBT, S	Start of G	reen							
latural Cycle: 95												

Synchro 11 Report Page 5

 3: Cummings Ave & Ogilvie Rd
 01/31/2025

 Maximum v/c Ratio: 0.79
 Intersection LOS: D

 Intersection Signal Delay: 43.3
 Intersection LOS: D

 Intersection Capacity Utilization 84.3%
 ICU Level of Service E

 Analysis Period (min) 15
 # 95th percentile volume exceeds capacity, queue may be longer.

 Queue shown is maximum after two cycles.
 m

 volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 3: Cummings Ave & Ogilvie Rd

Lanes, Volumes, Timings

Scenario 1 1137 Ogilvie AM Peak Hour 2029 Future Background

Lanes, Volumes, Timings
4: Aviation & Ogilvie Rd
-

Lane Configurations Y		≯	-	\mathbf{r}	4	-	*	•	1	1	1	÷.	-
Traffic Volume (vph) 361 507 89 119 535 125 209 485 219 162 348 Future Volume (vph) 361 507 89 119 535 125 209 485 219 162 348 Future Volume (vph) 361 507 89 119 535 125 209 485 219 162 348 Satd Flow (perm) 546 3252 1483 1626 3183 1658 3160 0 1658 3087 Satd Flow (perm) 546 3252 1483 772 3283 1483 1658 3160 0 1658 3087 Satd Flow (perm) 361 507 89 119 535 125 209 704 0 162 646 Turn Type pm+pt NA Perm Prot NA Prot NA Prot NA Protected Phases 5 2 2 1 6 6 7 4 3 8 Minimum Initia (s) </th <th>ane Group</th> <th>EBL</th> <th>EBT</th> <th></th> <th>WBL</th> <th></th> <th></th> <th>NBL</th> <th>NBT</th> <th>NBR</th> <th>SBL</th> <th>SBT</th> <th>SB</th>	ane Group	EBL	EBT		WBL			NBL	NBT	NBR	SBL	SBT	SB
Traffic Volume (vph) 361 507 89 119 535 125 209 485 219 162 348 Future Volume (vph) 361 507 89 119 535 125 209 485 219 162 348 Satd. Flow (prot) 1658 3252 1483 1652 3283 1483 1658 3160 0 1658 3087 Satd. Flow (prot) 164 164 164 57 147 Lane Group Flow (vph) 361 507 89 119 535 125 209 704 0 162 646 Protected Phases 5 2 1 6 7 4 3 8 Permitted Phases 5 2 2 1 6 7 4 3 8 Otector Phase 5 2 2 1 6 6 7 4 3 8 Winimum Initia (s) 5.0	ane Configurations	ň	^	1	1	^	1	1	¢۴		1	A1⊅	
Said. Flow (prof.) 1658 3252 1483 1626 3283 1483 1658 3160 0 1658 3087 I'R Permitted 0.313 0.451 0.950 0.950 0.950 Said. Flow (perm) 546 3252 1483 772 3283 1483 1658 3160 0 1658 3087 Said. Flow (perm) 546 3252 1483 772 3283 1483 1658 3160 0 1658 3087 Said. Flow (perm) 361 507 89 119 535 125 209 704 0 162 646 Verottede Phases 5 2 1 6 7 4 3 8 Verotted Phase 5 2 2 1 6 6 7 4 3 8 Verotted Phase 5 2 2 1 10 10 10 10 10 10 10 147 <td>Fraffic Volume (vph)</td> <td>361</td> <td></td> <td>89</td> <td>119</td> <td></td> <td>125</td> <td>209</td> <td></td> <td>219</td> <td>162</td> <td></td> <td>29</td>	Fraffic Volume (vph)	361		89	119		125	209		219	162		29
Fit Permitted 0.313 0.451 0.950 0.950 Said. Flow (perm) 546 3252 1483 772 3283 1483 1658 3160 0 1658 3087 said. Flow (perm) 361 507 89 119 535 125 209 704 0 162 646 furn Type pm+pt NA Perm Prot NA Prot NA Prot NA Permitted Phases 5 2 1 6 6 7 4 3 8 Permitted Phases 5 2 2 6 6 7 4 3 8 Victor Phase 5 2 2 1 6 6 7 4 3 8 Otal Split (s) 9.7 34.1 34.1 9.7 34.1 34.1 10.9 30.1 10.9 30.1 foral Split (s) 20.0 47.0 47.0 32.9	Future Volume (vph)	361	507	89	119	535	125	209	485	219	162	348	29
Said. Flow (perm) 546 3252 1483 772 3283 1483 1658 3160 0 1658 3087 and. Flow (RTOR) 164 164 164 57 147 ane Group Flow (vph) 361 507 89 119 535 125 209 704 0 162 646 Furn Type pm+pt NA Perm Prot NA Prot NA Permitted Phases 2 2 6 6 7 4 3 8 Permitted Phases 5 2 2 1 6 6 7 4 3 8 Switch Phase 5 2 2 1 6 6 7 4 3 8 Vilnimum Spit (s) 9.7 3.4.1 3.4.1 9.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7	Satd. Flow (prot)	1658	3252	1483	1626	3283	1483	1658	3160	0	1658	3087	
Satd. Flow (RTOR) 164 164 57 147 care Group Flow (vph) 361 507 89 119 535 125 209 704 0 162 646 furn Type pm+pt NA Perm Prot NA Prot NA Prot NA Protected Phases 2 2 6 6 7 4 3 8 Optector Phase 5 2 2 1 6 6 7 4 3 8 Winimum Initial (s) 5.0 10.0 10.0 5.0 10.0 10.0 5.0 10.0 10.0 30.1 10.9 30.1 folal Split (s) 20.0 47.0 20.0 47.0 32.9 45.0 18.0% 22.2% folal Split (s) 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3	-It Permitted	0.313			0.451			0.950			0.950		
Satd. Flow (RTOR) 164 164 57 147 arae Group Flow (vph) 361 507 89 119 535 125 209 704 0 162 646 Protected Phases 5 2 1 6 7 4 3 8 Permited Phases 2 2 6 6 7 4 3 8 Detector Phase 5 2 2 1 6 6 7 4 3 8 Winimum Initial (s) 5.0 10.0 10.0 5.0 10.0 10.0 5.0 10.0 10.0 30.1 10.9 30.1 10.9 30.1 10.0 30.1 10.0 30.1 10.0 30.1 10.0 30.1 10.0 30.1 10.0 30.1 10.0 30.1 10.0 30.1 10.0 10.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Satd. Flow (perm)	546	3252	1483	772	3283	1483	1658	3160	0	1658	3087	
Turn Type pm+pt NA Perm pm+pt NA Perm Prot NA Prot NA Protected Phases 5 2 1 6 7 4 3 8 Permitted Phases 2 2 6 6 7 4 3 8 Detector Phase 5 2 2 1 6 6 7 4 3 8 Witch Phase 5 2 2 1 6 6 7 4 3 8 Witch Phase 97 34.1 34.1 97 34.1 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 24 24 22 24 22 24 22 24 22 24 22 24 22 24 22 24 22 24 22 24 22 24 22 24 22 <				164			164		57			147	
Particated Phases 5 2 1 6 7 4 3 8 Permitted Phases 2 2 6 6 6 6 6 6 6 6 6 6 7 4 3 8 8 Solution Phase 5 2 2 1 6 6 7 4 3 8 Solution Phase 5 2 2 1 6 6 7 4 3 8 Winimum Split (s) 9.7 34.1 34.1 9.7 34.1 10.9 30.1 10.9 30.1 10.9 30.1 10.9 30.1 10.9 30.1 10.9 30.1 10.9 30.1 10.9 30.1 10.9 30.1 10.9 30.1 10.9 30.1 10.9 30.1 10.9 30.1 10.9 30.1 10.9 30.1 10.9 30.1 10.9 30.1 10.9 30.1 10.9 30.1 10.9	ane Group Flow (vph)	361	507	89	119	535	125	209	704	0	162	646	
Protected Phases 5 2 1 6 7 4 3 8 Permitted Phases 2 2 6 6 6 6 6 7 4 3 8 Switch Phase 5 2 2 1 6 6 7 4 3 8 Minimum Initial (s) 5.0 10.0 10.0 5.0 10.0 5.0 10.0 5.0 10.0 5.0 10.0 10.9 30.1 10.9 10.1	Turn Type	pm+pt	NA	Perm	pm+pt	NA	Perm	Prot	NA		Prot	NA	
Detector Phase 5 2 2 1 6 6 7 4 3 8 Writch Phase Jimimum Initial (s) 5.0 10.0 10.0 5.0 10.0 10.0 5.0 10.0 Jimimum Split (s) 9.7 34.1 34.1 9.7 34.1 34.1 14.1 10.9 30.1 10.9 30.1 Total Split (s) 20.0 47.0 47.0 20.0 47.0 47.0 32.9 45.0 18.0 30.1 Total Split (s) 15.4% 36.2% 36.2% 36.2% 25.3% 34.6% 13.8% 23.2% Vil-Red Time (s) 1.0 2.4 2.4 2.2 2.4 2.2 2.4 2.2 2.4 2.2 2.4 2.2 2.4 2.2 2.4 2.2 2.4 2.2 2.4 2.2 2.4 2.2 2.4 2.2 2.4 2.2 2.4 2.2 2.4 2.2 2.4 2.2 2.4 2.2	Protected Phases		2			6		7	4		3	8	
betector Phase 5 2 2 1 6 6 7 4 3 8 wintch Phase inimum Initial (s) 5.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 <t< td=""><td>Permitted Phases</td><td>2</td><td></td><td>2</td><td>6</td><td></td><td>6</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Permitted Phases	2		2	6		6						
Inimum Initial (s) 5.0 10.0 10.0 5.0 10.0 5.0 10.0 5.0 10.0 5.0 10.0 5.0 10.0 Inimum Split (s) 9.7 34.1 34.1 9.7 34.1 10.9 30.1 10.9 30.1 Iotal Split (s) 20.0 47.0 20.0 47.0 32.9 45.0 18.0 30.1 Iotal Split (%) 15.4% 36.2% 36.2% 25.3% 34.6% 13.8% 23.2% fellow Time (s) 1.0 2.4 2.4 2.4 2.2 2.4 <td< td=""><td></td><td></td><td>2</td><td></td><td></td><td>6</td><td></td><td>7</td><td>4</td><td></td><td>3</td><td>8</td><td></td></td<>			2			6		7	4		3	8	
Inimum Initial (s) 5.0 10.0 10.0 5.0 10.0 5.0 10.0 5.0 10.0 5.0 10.0 5.0 10.0 Inimum Split (s) 9.7 34.1 34.1 9.7 34.1 10.9 30.1 10.9 30.1 Iotal Split (s) 20.0 47.0 20.0 47.0 32.9 45.0 18.0 30.1 Iotal Split (%) 15.4% 36.2% 36.2% 25.3% 34.6% 13.8% 23.2% fellow Time (s) 1.0 2.4 2.4 2.4 2.2 2.4 <td< td=""><td>Switch Phase</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	Switch Phase												
Jinimum Split (s) 9.7 34.1 34.1 9.7 34.1 10.9 30.1 10.9 30.1 Total Split (s) 20.0 47.0 47.0 20.0 47.0 32.9 45.0 18.0 30.1 Total Split (s) 15.4% 36.2% 36.2% 15.4% 36.2% 25.3% 34.6% 13.8% 23.2% Icolar Split (s) 1.0 2.4 2.4 1.0 2.4 2.4 2.2		5.0	10.0	10.0	5.0	10.0	10.0	5.0	10.0		5.0	10.0	
Total Split (s) 20.0 47.0 47.0 20.0 47.0 47.0 32.9 45.0 18.0 30.1 total Split (%) 15.4% 36.2% 36.2% 15.4% 36.2% 25.3% 34.6% 13.8% 23.2% (ellow Time (s) 3.7													
Total Split (%) 15.4% 36.2% 36.2% 15.4% 36.2% 36.2% 25.3% 34.6% 13.8% 23.2% Vellow Time (s) 3.7 3.6 71.0 0.0 0.0 0.0 <td></td>													
fellow Time (s) 3.7													
NI-Red Time (s) 1.0 2.4 2.4 1.0 2.4 2.4 2.2 2.4													
ost Time Adjust (s) 0.0													
Otal Lost Time (s) 4.7 6.1 6.1 4.7 6.1 6.1 5.9 6.1 5.9 6.1 cead/Lag Lead Lag													
Lead Lag Lag <thlag< th=""> <thlag< th=""></thlag<></thlag<>													
ead-Lag Optimize? Yes													
Recall Mode None C-Max C-Max None C-Max C-Max C-Max None None <td></td>													
Act Effct Green (s) 652 49.5 49.5 55.1 43.0 43.0 21.1 34.8 12.1 25.8 Act Leffct Green (s) 0.50 0.38 0.38 0.42 0.33 0.33 0.16 0.27 0.09 0.20 v/c Ratio 0.86 0.41 0.13 0.30 0.49 0.21 0.78 0.79 1.05 0.88 Outrol Delay 62.2 51.7 12.0 20.7 37.3 2.6 71.0 47.3 142.8 53.8 Queue Delay 0.0<													
Actuated g/C Ratio 0.50 0.38 0.38 0.42 0.33 0.33 0.16 0.27 0.09 0.20 /c Ratio 0.86 0.41 0.13 0.30 0.49 0.21 0.78 0.79 1.05 0.88 Control Delay 62.2 51.7 12.0 20.7 37.3 2.6 71.0 47.3 142.8 53.8 Queue Delay 0.0													
Vic Ratio 0.86 0.41 0.13 0.30 0.49 0.21 0.78 0.79 1.05 0.88 Control Delay 62.2 51.7 12.0 20.7 37.3 2.6 71.0 47.3 142.8 53.8 Dueue Delay 0.0													
Control Delay 62.2 51.7 12.0 20.7 37.3 2.6 71.0 47.3 142.8 53.8 Jueue Delay 0.0 0.													
Queue Delay 0.0 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>													
Total Delay 62.2 51.7 12.0 20.7 37.3 2.6 71.0 47.3 142.8 53.8 .OS E D B C D A E D F D Approach Delay 52.0 29.2 52.7 71.6 Pyproach LOS D C D E D B M11.8 28.4 76.6 6.5 75.3 100.5 #89.3 #104.6 D D D D D D D D D D D <t< td=""><td>,</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	,												
LOS E D B C D A E D F D Approach Delay 52.0 29.2 52.7 71.6 E D E D E D E D E D E D E D E D D E D D E D D E D D E D Use Use Length 50th (m) 92.3 71.4 2.7 16.7 59.0 0.0 51.7 78.5 ~45.2 65.3 Dueue Length 95th (m) #155.1 89.8 m11.8 28.4 76.6 6.5 75.3 100.5 #89.3 #104.6 Internal Link Dist (m) 393.6 270.9 298.0 298.9 100.0 Internal Link Dist (m) 422 1239 666 454 1085 599 344 985 154 734 Starvation Cap Reductn 0 0 0 0 0 0 0 0 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>													
pproach Delay 52.0 29.2 52.7 71.6 Approach LOS D C D E Jueue Length 50th (m) 92.3 71.4 2.7 16.7 59.0 0.0 51.7 78.5 ~45.2 65.3 Jueue Length 50th (m) 92.3 71.4 2.7 16.7 59.0 0.0 51.7 78.5 ~45.2 65.3 Jueue Length 95th (m) #155.1 89.8 m11.8 28.4 76.6 6.5 75.3 100.5 #89.3 #104.6 thermail Link Dist (m) 393.6 270.9 298.0 298.9 298.9 Turn Bay Length (m) 80.0 65.0 50.0 60.0 100.0 110.0 Jase Capacity (vph) 422 1239 666 454 1085 599 344 985 154 734 Starvation Cap Reductn 0 0 0 0 0 0 0 0 0 0 0 0 0 0 </td <td></td>													
byproach LOS D C D E Jueue Length 50th (m) 92.3 71.4 2.7 16.7 59.0 0.0 51.7 78.5 ~45.2 65.3 Jueue Length 95th (m) #155.1 89.8 m11.8 28.4 76.6 6.5 75.3 100.5 #89.3 #104.6 Itemal Link Dist (m) 393.6 270.9 298.0 298.9 298.9 Turn Bay Length (m) 80.0 65.0 50.0 60.0 100.0 110.0 Jase Capacity (vph) 422 1239 666 454 1085 599 344 985 154 734 Starvation Cap Reductn 0<		E	-	D	U		A	E	-		F		
Jueue Length 50th (m) 92.3 71.4 2.7 16.7 59.0 0.0 51.7 78.5 ~45.2 65.3 Jueue Length 95th (m) #155.1 89.8 m11.8 28.4 76.6 6.5 75.3 100.5 #89.3 #104.6 nternal Link Dist (m) 393.6 270.9 298.0 298.9 298.9 um Bay Length (m) 80.0 65.0 50.0 60.0 100.0 110.0 lase Capacity (vph) 422 1239 666 454 1085 599 344 985 154 734 larvation Cap Reductn 0													
Dueue Length 95th (m) #155.1 89.8 m11.8 28.4 76.6 6.5 75.3 100.5 #89.3 #104.6 nternal Link Dist (m) 393.6 270.9 298.0 298.9 <t< td=""><td></td><td>00.0</td><td>-</td><td>07</td><td>16.7</td><td></td><td>0.0</td><td>E4 7</td><td></td><td></td><td>45.0</td><td></td><td></td></t<>		00.0	-	07	16.7		0.0	E4 7			45.0		
Internal Link Dist (m) 393.6 270.9 298.0 298.9 furn Bay Length (m) 80.0 65.0 50.0 60.0 100.0 110.0 sase Capacity (vph) 422 1239 666 454 1085 599 344 985 154 734 starvation Cap Reductn 0													
Turn Bay Length (m) 80.0 65.0 50.0 60.0 100.0 110.0 Jase Capacity (vph) 422 1239 666 454 1085 599 344 985 154 734 Starvation Cap Reductn 0 <td></td> <td>#155.1</td> <td></td> <td>m11.8</td> <td>28.4</td> <td></td> <td>0.5</td> <td>/5.3</td> <td></td> <td></td> <td>#89.3</td> <td></td> <td></td>		#155.1		m11.8	28.4		0.5	/5.3			#89.3		
Jase Capacity (vph) 422 1239 666 454 1085 599 344 985 154 734 Jarvation Cap Reductn 0		00.0	393.0	05.0	50.0	270.9	CO 0	400.0	290.0		440.0	290.9	
Xtarvation Cap Reductn 0			4000			4005			005			70.4	
Dillback Cap Reductn 0													
Storage Cap Reductn 0 0 0 0 0 0 0 0 0 0			-			-		-	-				
		-	-	-	-	-		-	-		-		
Reduced V/c Ratio 0.86 0.41 0.13 0.26 0.49 0.21 0.61 0.71 1.05 0.88													
	Reduced v/c Ratio	0.86	0.41	0.13	0.26	0.49	0.21	0.61	0.71		1.05	0.88	
	Actuated Cycle Length: 130 Offset: 105 (81%), Reference		e 2:EBTL	and 6:W	BTL, Sta	rt of Gree	n						
ctuated Cycle Length: 130)ffset: 105 (81%), Referenced to phase 2:EBTL and 6:WBTL, Start of Green	latural Cycle: 95												
offset: 105 (81%), Referenced to phase 2:EBTL and 6:WBTL, Start of Green	ontrol Type: Actuated-Cod	ordinated											

Synchro 11 Report Page 7

01/31/2025

4: Aviation & Ogilvie Rd		01/31/2025
Maximum v/c Ratio: 1.05		
Intersection Signal Delay: 51.6	Intersection LOS: D	
Intersection Capacity Utilization 88.2%	ICU Level of Service E	
Analysis Period (min) 15		
~ Volume exceeds capacity, queue is theoretically	infinite.	
Queue shown is maximum after two cycles.		
# 95th percentile volume exceeds capacity, queue	may be longer.	
Queue shown is maximum after two cycles.		
m Volume for 95th percentile queue is metered by	upstream signal.	

Splits and Phases: 4: Aviation & Ogilvie Rd

Ø 1	🚽 🔶 💯 2 (R)	₩ø3	↑ ø4
20 s	47 s	18 s	45 s
	🛡 🕈 Ø6 (R)	1 Ø7	↓ Ø8
20 s	47 s	32.9 s	30.1s

Scenario 1 1137 Ogilvie AM Peak Hour 2029 Future Background
Lanes, Volumes, Timings
5: Labelle St/Cummings Ave & Cvrville Rd

	≯	-	$\mathbf{\hat{z}}$	4	-	*	1	1	1	1	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ኘ	4Î		٦	eî.		1	4Î		٦	4Î	
Traffic Volume (vph)	21	213	37	111	378	165	5	24	47	140	75	20
Future Volume (vph)	21	213	37	111	378	165	5	24	47	140	75	20
Satd. Flow (prot)	1537	1636	0	1610	1581	0	1658	1373	0	1610	1574	0
Flt Permitted	0.282			0.604			0.695			0.539		
Satd. Flow (perm)	451	1636	0	1005	1581	0	1199	1373	0	799	1574	0
Satd. Flow (RTOR)		18										
Lane Group Flow (vph)	21	250	0	111	543	0	5	71	0	140	95	0
Turn Type	pm+pt	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases	5	2			6			8			4	
Permitted Phases	2			6			8			4		
Detector Phase	5	2		6	6		8	8		4	4	
Switch Phase												
Minimum Initial (s)	5.0	10.0		10.0	10.0		10.0	10.0		10.0	10.0	
Minimum Split (s)	11.3	34.8		34.8	34.8		22.5	22.5		22.5	22.5	
Total Split (s)	15.0	42.0		42.0	42.0		23.0	23.0		23.0	23.0	
Total Split (%)	17.6%	49.4%		49.4%	49.4%		27.1%	27.1%		27.1%	27.1%	
Yellow Time (s)	3.7	3.7		3.7	3.7		3.3	3.3		3.3	3.3	
All-Red Time (s)	1.0	3.1		3.1	3.1		3.2	3.2		3.2	3.2	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)	4.7	6.8		6.8	6.8		6.5	6.5		6.5	6.5	
Lead/Lag	Lead			Lag	Lag		Lag	Lag		Lag	Lag	
Lead-Lag Optimize?	Yes			Yes	Yes		Yes	Yes		Yes	Yes	
Recall Mode	None	Max		Max	Max		None	None		None	None	
Act Effct Green (s)	41.8	39.7		35.6	35.6		14.1	14.1		14.1	14.1	
Actuated g/C Ratio	0.58	0.55		0.49	0.49		0.20	0.20		0.20	0.20	
v/c Ratio	0.06	0.28		0.22	0.70		0.02	0.26		0.90	0.31	
Control Delay	7.2	9.1		14.5	22.7		26.0	28.9		83.3	29.2	
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Delay	7.2	9.1		14.5	22.7		26.0	28.9		83.3	29.2	
LOS	A	A		В	С		С	С		F	С	
Approach Delay		9.0			21.3			28.7			61.4	
Approach LOS		A			С			С			E	
Queue Length 50th (m)	1.2	16.2		7.5	49.5		0.5	7.5		17.0	10.1	
Queue Length 95th (m)	3.8	28.4		21.9	#124.2		3.3	20.7		#53.2	25.6	
Internal Link Dist (m)		407.2			322.8			177.3			302.0	
Turn Bay Length (m)	98.0			67.0			35.0			38.0		
Base Capacity (vph)	417	1153		494	778		276	316		184	362	
Starvation Cap Reductn	0	0		0	0		0	0		0	0	
Spillback Cap Reductn	0	0		0	0		0	0		0	0	
Storage Cap Reductn	0	0		0	0		0	0		0	0	
Reduced v/c Ratio	0.05	0.22		0.22	0.70		0.02	0.22		0.76	0.26	
Intersection Summary Cycle Length: 85 Actuated Cycle Length: 72.3 Natural Cycle: 75 Control Type: Semi Act-Uncc Maximum v/c Ratio: 0.90	ord											

Scenario 1 1137 Ogilvie AM Peak Hour 2029 Future Background

Synchro 11 Report Page 9

01/31/2025

Lanes, Volumes, Timings 5: Labelle St/Cummings Ave & Cyrville Rd

01/31/2025

Lane Group	Ø3	Ø7
Lane Configurations		
Traffic Volume (vph)		
Future Volume (vph)		
Satd. Flow (prot)		
Flt Permitted		
Satd. Flow (perm)		
Satd. Flow (RTOR)		
Lane Group Flow (vph)		
Turn Type		
Protected Phases	3	7
Permitted Phases		
Detector Phase		
Switch Phase		
Minimum Initial (s)	1.0	1.0
Minimum Split (s)	3.0	3.0
Total Split (s)	5.0	5.0
Total Split (%)	6%	6%
Yellow Time (s)	2.0	2.0
All-Red Time (s)	0.0	0.0
Lost Time Adjust (s)		
Total Lost Time (s)		
Lead/Lag	Lead	Lead
Lead-Lag Optimize?	Yes	Yes
Recall Mode	Max	Max
Act Effct Green (s)		
Actuated g/C Ratio		
v/c Ratio		
Control Delay		
Queue Delay		
Total Delay		
LOS		
Approach Delay		
Approach LOS		
Queue Length 50th (m)		
Queue Length 95th (m)		
Internal Link Dist (m)		
Internal Link Dist (m)		
Internal Link Dist (m) Turn Bay Length (m)		
Internal Link Dist (m) Turn Bay Length (m) Base Capacity (vph)		
Internal Link Dist (m) Turn Bay Length (m) Base Capacity (vph) Starvation Cap Reductn		
Internal Link Dist (m) Turn Bay Length (m) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn		

Scenario 1 1137 Ogilvie AM Peak Hour 2029 Future Background

5: Labelle St/Cummings Ave & Cyrvill Intersection Signal Delay: 26.7	Intersection LOS: C		01/31/202
Intersection Signal Delay, 26.7	ICU Level of Service C		
Analysis Period (min) 15	ICO LEVELOI SELVICE C		
# 95th percentile volume exceeds capacity, queue m	ay be longer.		
Queue shown is maximum after two cycles.			
Splits and Phases: 5: Labelle St/Cummings Ave & C	Syrville Rd		
 ø2		●ø3 ↓ ø4	
42 s		5s 23s	
<u>▶</u>			
[™] Ø5 👘 Ø6		Ø7 Ø8	

	≯	\mathbf{x}	-	†	÷.	1	
ane Group	EBL	EBR	NBL	NBT	SBT	SBR	
ane Configurations	3	1	ሻ	4	ĥ		
raffic Volume (vph)	87	311	270	284	320	96	
uture Volume (vph)	87	311	270	284	320	96	
Satd. Flow (prot)	1595	1469	1658	1728	1687	0	
It Permitted	0.950		0.516				
Satd. Flow (perm)	1595	1469	900	1728	1687	0	
Satd. Flow (RTOR)		311			37		
ane Group Flow (vph)	87	311	270	284	416	0	
urn Type	Perm	Perm	Perm	NA	NA		
Protected Phases				2	6		
Permitted Phases	4	4	2				
Detector Phase	4	4	2	2	6		
Switch Phase							
/inimum Initial (s)	10.0	10.0	1.0	1.0	10.0		
/linimum Split (s)	22.0	22.0	7.9	7.9	39.9		
otal Split (s)	22.0	22.0	39.9	39.9	39.9		
otal Split (%)	35.5%	35.5%	64.5%	64.5%	64.5%		
ellow Time (s)	3.3	3.3	3.3	3.3	3.3		
NI-Red Time (s)	2.7	2.7	3.6	3.6	3.6		
ost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0		
otal Lost Time (s)	6.0	6.0	6.9	6.9	6.9		
.ead/Lag							
ead-Lag Optimize?							
Recall Mode	None	None	Max	Max	Max		
Act Effct Green (s)	10.8	10.8	33.0	33.0	33.0		
ctuated g/C Ratio	0.19	0.19	0.58	0.58	0.58		
/c Ratio	0.29	0.59	0.52	0.28	0.42		
Control Delay	22.4	8.0	11.9	7.1	7.7		
Queue Delay	0.0	0.0	0.0	0.0	0.0		
otal Delay	22.4	8.0	11.9	7.1	7.7		
.0S	С	A	В	A	А		
Approach Delay	11.1			9.4	7.7		
pproach LOS	В			A	Α		
Queue Length 50th (m)	7.8	0.0	13.8	12.1	17.5		
Queue Length 95th (m)	17.7	16.3	36.5	26.7	38.5		
nternal Link Dist (m)	296.3			237.9	259.3		
urn Bay Length (m)	60.0		60.0				
Base Capacity (vph)	450	638	524	1007	998		
starvation Cap Reductn	0	0	0	0	0		
pillback Cap Reductn	0	0	0	0	0		
torage Cap Reductn	0	0	0	0	0		
Reduced v/c Ratio	0.19	0.49	0.52	0.28	0.42		
ntersection Summary							
Cycle Length: 61.9							
Actuated Cycle Length: 56.	7						
latural Cycle: 65							

Scenario 1 1137 Ogilvie Road PM Peak Hour 2029 Future Background

1: Cummings Ave & Donald			01/31/2025
Intersection Signal Delay: 9.4	Intersection LOS: A		
Intersection Capacity Utilization 64.6%	ICU Level of Service C		
Analysis Period (min) 15			
Splits and Phases: 1: Cummings Ave & Donald			
39.9 s		22 s	
▼ Ø6			

	≯	-	\mathbf{r}	1	-		1	1	1	1	÷.	-
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	S
Lane Configurations		<u></u>	1	ľ	^	1	<u>۲</u>	eî		ľ	ĥ	
Traffic Volume (vph)	0	1046	268	35	768	149	102	248	26	147	252	1
Future Volume (vph)	0	1046	268	35	768	149	102	248	26	147	252	1
Satd. Flow (prot)	0	3316	1455	1658	3316	1483	1658	1718	0	1658	1637	
Flt Permitted				0.221			0.253			0.437		
Satd. Flow (perm)	0	3316	1366	384	3316	1333	440	1718	0	761	1637	
Satd. Flow (RTOR)			268			149		5			26	
Lane Group Flow (vph)	0	1046	268	35	768	149	102	274	0	147	392	
Turn Type		NA	Perm	Perm	NA	Perm	Perm	NA		Perm	NA	
Protected Phases		2			6			8			4	
Permitted Phases			2	6		6	8			4		
Detector Phase		2	2	6	6	6	8	8		4	4	
Switch Phase												
Minimum Initial (s)		10.0	10.0	10.0	10.0	10.0	10.0	10.0		10.0	10.0	
Minimum Split (s)		32.2	32.2	32.2	32.2	32.2	47.1	47.1		47.1	47.1	
Total Split (s)		70.0	70.0	70.0	70.0	70.0	50.0	50.0		50.0	50.0	
Total Split (%)		58.3%	58.3%	58.3%	58.3%	58.3%	41.7%	41.7%		41.7%	41.7%	
Yellow Time (s)		3.7	3.7	3.7	3.7	3.7	3.7	3.7		3.7	3.7	
All-Red Time (s)		2.5	2.5	2.5	2.5	2.5	3.4	3.4		3.4	3.4	
Lost Time Adjust (s)		0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Lost Time (s)		6.2	6.2	6.2	6.2	6.2	7.1	7.1		7.1	7.1	
Lead/Lag												
Lead-Lag Optimize?												
Recall Mode		C-Max	C-Max	C-Max	C-Max	C-Max	None	None		None	None	
Act Effct Green (s)		73.9	73.9	73.9	73.9	73.9	32.8	32.8		32.8	32.8	
Actuated g/C Ratio		0.62	0.62	0.62	0.62	0.62	0.27	0.27		0.27	0.27	
v/c Ratio		0.51	0.28	0.15	0.38	0.17	0.85	0.58		0.71	0.84	
Control Delay		15.2	2.4	4.1	3.3	0.1	90.5	40.9		56.7	54.0	
Queue Delay		0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Delay		15.2	2.4	4.1	3.3	0.1	90.5	40.9		56.7	54.0	
LOS		В	А	А	A	A	F	D		E	D	
Approach Delay		12.6			2.8			54.3			54.7	
Approach LOS		В			A			D			D	
Queue Length 50th (m)		68.5	0.0	0.8	8.7	0.0	22.7	54.7		31.2	81.8	
Queue Length 95th (m)		105.1	12.2	m0.9	m9.7	m0.0	#46.8	72.6		49.6	106.2	
Internal Link Dist (m)		113.8			313.9			407.0			190.4	
Turn Bay Length (m)				62.0		71.0	50.0			82.0		
Base Capacity (vph)		2041	943	236	2041	877	157	617		272	601	
Starvation Cap Reductn		0	0	0	0	0	0	0		0	0	
Spillback Cap Reductn		0	0	0	0	0	0	0		0	0	
Storage Cap Reductn		0	0	0	0	0	0	0		0	0	
Reduced v/c Ratio		0.51	0.28	0.15	0.38	0.17	0.65	0.44		0.54	0.65	
Intersection Summary												
Cycle Length: 120												
Actuated Cycle Length: 120												

Synchro 11 Report Page 3

Scenario 1 1137 Ogilvie Road PM Peak Hour 2029 Future Background

Maximum v/c Ratio: 0.85		
Intersection Signal Delay: 21.7	Intersection LOS: C	
Intersection Capacity Utilization 81.7%	ICU Level of Service D	
Analysis Period (min) 15		
# 95th percentile volume exceeds capacity, queue	may be longer.	
Queue shown is maximum after two cycles.		
m Volume for 95th percentile queue is metered by	upstream signal.	

/ → Ø2 (R)	
70 s	50 s
● ● Ø6 (R)	
70 s	50 s

	≯	-	\mathbf{r}	4	-		1	1	1	1	÷.	-
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SE
Lane Configurations	<u> </u>	≜1 ≽		5	≜ †₽		٦	1.		5	4Î	
Traffic Volume (vph)	162	1026	27	164	797	226	61	185	179	274	241	12
Future Volume (vph)	162	1026	27	164	797	226	61	185	179	274	241	12
Satd. Flow (prot)	1658	3294	0	1610	3118	0	1658	1519	0	1658	1646	
Flt Permitted	0.950			0.950			0.950			0.950		
Satd. Flow (perm)	1626	3294	0	1593	3118	0	1651	1519	0	1589	1646	
Satd. Flow (RTOR)		2										
Lane Group Flow (vph)	162	1053	0	164	1023	0	61	364	0	274	363	
Turn Type	Prot	NA		Prot	NA		Prot	NA		Prot	NA	
Protected Phases	5	2		1	6		3	8		7	4	
Permitted Phases												
Detector Phase	5	2		1	6		3	8		7	4	
Switch Phase												
Minimum Initial (s)	5.0	10.0		5.0	10.0		5.0	10.0		5.0	10.0	
Minimum Split (s)	9.7	25.7		9.7	25.7		9.5	34.1		9.3	37.1	
Total Split (s)	16.8	43.8		17.0	44.0		11.5	36.6		22.6	47.7	
Total Split (%)	14.0%	36.5%		14.2%	36.7%		9.6%	30.5%		18.8%	39.8%	
Yellow Time (s)	3.7	3.7		3.7	3.7		3.5	3.3		3.3	3.3	
All-Red Time (s)	1.0	3.0		1.0	3.0		1.0	3.8		1.0	3.8	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)	4.7	6.7		4.7	6.7		4.5	7.1		4.3	7.1	
Lead/Lag	Lead	Lag		Lead	Lag		Lead	Lag		Lead	Lag	
Lead-Lag Optimize?	Yes	Yes		Yes	Yes		Yes	Yes		Yes	Yes	
Recall Mode	None	C-Max		None	C-Max		None	None		None	None	
Act Effct Green (s)	12.1	37.1		12.3	37.3		6.8	29.5		18.3	42.9	
Actuated g/C Ratio	0.10	0.31		0.10	0.31		0.06	0.25		0.15	0.36	
v/c Ratio	0.97	1.03		0.99	1.06		0.65	0.98		1.09	0.62	
Control Delay	112.3	85.6		102.9	77.4		86.0	86.4		129.6	38.3	
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Delay	112.3	85.6		102.9	77.4		86.0	86.4		129.6	38.3	
LOS	F	F		F	E		F	F		F	D	
Approach Delay		89.2			80.9			86.4			77.5	
Approach LOS		F			F			F			E	
Queue Length 50th (m)	39.8	~121.4		40.0	~138.4		14.3	85.4		~72.3	72.2	
Queue Length 95th (m)	#82.8	#186.1		m#65.6 r	n#160.3		#34.1	#144.7		#124.7	105.6	
Internal Link Dist (m)		313.9			393.6			302.0			237.9	
Turn Bay Length (m)	80.0			100.0			34.0			153.0		
Base Capacity (vph)	167	1019		165	969		96	373		252	588	
Starvation Cap Reductn	0	0		0	0		0	0		0	0	
Spillback Cap Reductn	0	0		0	0		0	0		0	0	
Storage Cap Reductn	0	0		0	0		0	0		0	0	
Reduced v/c Ratio	0.97	1.03		0.99	1.06		0.64	0.98		1.09	0.62	
Intersection Summary												
Cycle Length: 120												
Actuated Cycle Length: 120												

Scenario 1 1137 Ogilvie Road PM Peak Hour 2029 Future Background

3: Cummings Ave & Ogilvie Rd		01/31/2025
Maximum v/c Ratio: 1.09		
Intersection Signal Delay: 83.9	Intersection LOS: F	
Intersection Capacity Utilization 99.7%	ICU Level of Service F	
Analysis Period (min) 15		
~ Volume exceeds capacity, queue is theoretically	rinfinite.	
Queue shown is maximum after two cycles.		
# 95th percentile volume exceeds capacity, queue	e may be longer.	
Queue shown is maximum after two cycles.		
m Volume for 95th percentile queue is metered by	upstream signal.	

Splits and Phases: 3: Cummings Ave & Ogilvie Rd

Ø1	■ → Ø2 (R)	↑ Ø3 ↓ Ø4
17 s	43.8 s	11.5 s 47.7 s
		▶ø7 1 ø8
16.8 s	44 s	22.6 s 36.6 s

	≯	-	\mathbf{i}	-	-		1	1	1	- \	+	-
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	S
Lane Configurations	۲	^	1	٦	^	1	۲	≜ 1}		٦	A1⊅	
Traffic Volume (vph)	295	1089	102	231	702	220	173	357	163	146	403	
Future Volume (vph)	295	1089	102	231	702	220	173	357	163	146	403	
Satd. Flow (prot)	1658	3316	1469	1658	3316	1483	1658	3160	0	1658	3100	
Flt Permitted	0.272			0.099			0.950			0.950		
Satd. Flow (perm)	475	3316	1469	173	3316	1483	1658	3160	0	1658	3100	
Satd. Flow (RTOR)			136			220		55			142	
Lane Group Flow (vph)	295	1089	102	231	702	220	173	520	0	146	714	
Turn Type	pm+pt	NA	Perm	pm+pt	NA	Perm	Prot	NA		Prot	NA	
Protected Phases	5	2		1	6		7	4		3	8	
Permitted Phases	2		2	6		6						
Detector Phase	5	2	2	1	6	6	7	4		3	8	
Switch Phase												
Minimum Initial (s)	5.0	10.0	10.0	5.0	10.0	10.0	5.0	10.0		5.0	10.0	
Minimum Split (s)	9.7	34.1	34.1	9.7	34.1	34.1	10.9	30.1		12.2	30.1	
Total Split (s)	20.0	51.0	51.0	20.0	51.0	51.0	18.9	30.1		18.9	30.1	
Total Split (%)	16.7%	42.5%	42.5%	16.7%	42.5%	42.5%	15.8%	25.1%		15.8%	25.1%	
Yellow Time (s)	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7		3.5	3.7	
All-Red Time (s)	1.0	2.4	2.4	1.0	2.4	2.4	2.2	2.4		3.7	2.4	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		2.2	2.4	
Total Lost Time (s)	4.7	6.1	6.1	4.7	6.1	6.1	5.9	6.1		9.4	8.5	
Lead/Lag	Lead	Lag	Lag	Lead	Lag	Lag	Lead	Lag		Lead	Lag	
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		Yes	Yes	
Recall Mode	None	C-Max	C-Max	None	C-Max	C-Max	None	None		None	None	
Act Effct Green (s)	61.7	45.7	45.7	61.5	45.5	45.5	13.0	24.0		9.5	21.6	
Actuated g/C Ratio	0.51	0.38	0.38	0.51	0.38	0.38	0.11	0.20		0.08	0.18	
v/c Ratio	0.76	0.86	0.16	0.86	0.56	0.31	0.97	0.77		1.11	1.06	
Control Delay	12.0	26.4	3.2	56.9	31.6	4.5	112.8	49.1		162.9	89.3	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Delay	12.0	26.4	3.2	56.9	31.6	4.5	112.8	49.1		162.9	89.3	
LOS	В	С	A	E	С	А	F	D		F	F	
Approach Delay		21.9			31.5			65.0			101.8	
Approach LOS		С			С			E			F	
Queue Length 50th (m)	10.2	132.5	3.9	36.3	68.3	0.0	41.2	55.2		~39.4	~81.7	
Queue Length 95th (m)	m9.6	m125.6	m3.6	#77.6	87.3	15.5	#84.9	74.9		#80.6	#120.1	
Internal Link Dist (m)		393.6			260.7			297.6			298.7	
Turn Bay Length (m)	80.0		65.0	50.0		60.0	100.0			110.0		
Base Capacity (vph)	397	1261	642	279	1257	699	179	676		131	674	
Starvation Cap Reductn	0	0	0	0	0	0	0	0		0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0		0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0		0	0	
Reduced v/c Ratio	0.74	0.86	0.16	0.83	0.56	0.31	0.97	0.77		1.11	1.06	
Intersection Summary												
Cycle Length: 120												
Actuated Cycle Length: 120												

Scenario 1 1137 Ogilvie Road PM Peak Hour 2029 Future Background

Scenario 1 1137 Ogilvie Road PM Peak Hour 2029 Future Background

4: Aviation & Ogilvie Rd		01/31/202
Maximum v/c Ratio: 1.11		
Intersection Signal Delay: 48.1	Intersection LOS: D	
Intersection Capacity Utilization 98.7%	ICU Level of Service F	
Analysis Period (min) 15		
~ Volume exceeds capacity, queue is theoretically	infinite.	
Queue shown is maximum after two cycles.		
# 95th percentile volume exceeds capacity, queue	may be longer.	
Queue shown is maximum after two cycles.		
m Volume for 95th percentile queue is metered by	upstream signal.	

Splits and Phases: 4: Aviation & Ogilvie Rd

√ Ø1	🚽 🕹 Ø2 (R)	Ø3	1 ø₄	
20 s	51 s	18.9 s	30.1 s	
	🖉 🖉 Ø6 (R)	1 Ø7	↓ Ø8	
20 s	51 s	18.9 s	30.1s	

	٠		~	~	-			1	1	1	1	
	-	-	•	•		~	7	-	-		+	-
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	S
ane Configurations	٦	4Î			- î>		<u>۲</u>	¢Î		ሻ	ĥ	
Traffic Volume (vph)	10	54	68	77	317	279	10	81	68	63	470	
Future Volume (vph)	10	54	68	77	317	279	10	81	68	63	470	
Satd. Flow (prot)	1658	1382	0	1595	1567	0	1658	1493	0	1445	1738	
FIt Permitted	0.218			0.679			0.294			0.540		
Satd. Flow (perm)	380	1382	0	1110	1567	0	513	1493	0	713	1738	
Satd. Flow (RTOR)		68						43				
Lane Group Flow (vph)	10	122	0	77	596	0	10	149	0	63	481	
Turn Type	pm+pt	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases	5	2			6			8			4	
Permitted Phases	2			6			8			4		
Detector Phase	5	2		6	6		8	8		4	4	
Switch Phase												
Vinimum Initial (s)	5.0	10.0		10.0	10.0		10.0	10.0		10.0	10.0	
Vinimum Split (s)	11.3	34.8		34.8	34.8		23.5	23.5		23.5	23.5	
Total Split (s)	15.0	43.0		43.0	43.0		37.0	37.0		37.0	37.0	
Total Split (%)	15.0%	43.0%		43.0%	43.0%		37.0%	37.0%		37.0%	37.0%	
Yellow Time (s)	3.7	3.7		3.7	3.7		3.3	3.3		3.3	3.3	
All-Red Time (s)	1.0	3.1		3.1	3.1		3.2	3.2		3.2	3.2	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)	4.7	6.8		6.8	6.8		6.5	6.5		6.5	6.5	
Lead/Lag	Lead			Lag	Lag		Lag	Lag		Lag	Lag	
Lead-Lag Optimize?	Yes			Yes	Yes		Yes	Yes		Yes	Yes	
Recall Mode	None	Max		Max	Max		None	None		None	None	
Act Effct Green (s)	40.6	38.4		36.5	36.5		21.9	21.9		27.0	27.0	
Actuated q/C Ratio	0.52	0.49		0.46	0.46		0.28	0.28		0.34	0.34	
//c Ratio	0.03	0.17		0.15	0.82		0.07	0.33		0.26	0.81	
Control Delay	10.4	6.7		15.6	31.9		23.5	18.7		22.8	36.5	
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Delay	10.4	6.7		15.6	31.9		23.5	18.7		22.8	36.5	
LOS	B	A		B	C		C	В		C	D	
Approach Delay	5	7.0		5	30.1		Ŭ	19.0		Ŭ	34.9	
Approach LOS		A			C			B			C	
Queue Length 50th (m)	0.7	4.3		6.4	74.0		1.0	11.7		6.3	61.1	
Queue Length 95th (m)	3.0	12.8		18.1	#166.8		5.3	30.4		18.6	#127.9	
Internal Link Dist (m)	5.0	407.0		10.1	322.8		5.5	177.5		10.0	302.0	
Turn Bay Length (m)	98.0	407.0		67.0	JZZ.0		35.0	111.5		38.0	302.0	
Base Capacity (vph)	363	928		514	725		200	608		278	677	
Starvation Cap Reductn	0	920		0	0		200	000		210	0//	
Spillback Cap Reductn	0	0		0	0		0	0		0	0	
Storage Cap Reductn	0	0		0	0		0	0		0	0	
Reduced v/c Ratio	0.03	0.13		0.15	0.82		0.05	0.25		0.23	0.71	
ntersection Summary												
Cycle Length: 100												
Actuated Cycle Length: 78.8												

Scenario 1 1137 Ogilvie Road PM Peak Hour 2029 Future Background

Scenario 1 1137 Ogilvie Road PM Peak Hour 2029 Future Background

Lanes, Volumes, Timings	
5: Labelle St/Cummings Ave & Cyrville Rd	01/31/2025

Lane Configurations Traffic Volume (vph) Future Volume (vph) Satd. Flow (prot)		
Traffic Volume (vph) Future Volume (vph)		
Future Volume (vph)		
Cotd. Flow (prot)		
Salo, Flow (DIOL)		
Flt Permitted		
Satd. Flow (perm)		
Satd. Flow (RTOR)		
Lane Group Flow (vph)		
Turn Type		
Protected Phases	3	7
Permitted Phases		
Detector Phase		
Switch Phase		
Minimum Initial (s)	1.0	1.0
Minimum Split (s)	3.0	3.0
Total Split (s)	5.0	5.0
Total Split (%)	5%	5%
Yellow Time (s)	2.0	2.0
All-Red Time (s)	0.0	0.0
Lost Time Adjust (s)	0.0	0.0
Total Lost Time (s)		
Lead/Lag	Lead	Lead
Lead-Lag Optimize?	Yes	Yes
Recall Mode	None	Max
Act Effct Green (s)		
Actuated g/C Ratio		
v/c Ratio		
Control Delay		
Queue Delay		
Total Delay		
LOS		
Approach Delay		
Approach LOS		
Queue Length 50th (m)		
Queue Length 95th (m)		
Internal Link Dist (m)		
Turn Bay Length (m)		
Base Capacity (vph)		
Starvation Cap Reductn		
Spillback Cap Reductn		
Storage Cap Reductn		
Reduced v/c Ratio		
Intersection Summary		

Lanes, Volumes, Timings 5: Labelle St/Cummings Ave & Cyr	ville Rd	01/31/2025
Intersection Signal Delay: 28.6	Intersection LOS: C	
Intersection Capacity Utilization 96.4%	ICU Level of Service F	
Analysis Period (min) 15		
# 95th percentile volume exceeds capacity, queue	e may be longer.	

Queue shown is maximum after two cycles.

Splits and Phases: 5: Labelle St/Cummings Ave & Cyrville Rd

 ø2		●ø: ↓ Ø4	
43 s		5 s 37 s	
<u>_</u> ∕∕ _{Ø5}	♥ Ø6	● _Ø ; ↑ _{Ø8}	
15 s	43 s	5 s 37 s	

Scenario 1 1137 Ogilvie Road PM Peak Hour 2029 Future Background

Scenario 1 1137 Ogilvie Road PM Peak Hour 2029 Future Background

Appendix M

Synchro Worksheets -2034 Future Background Horizon

Lanes, Volumes, Timings
1: Cummings Ave & Donald

	۶	\mathbf{i}	1	Ť	ţ	1
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	۲	1	5	↑	4Î	
Traffic Volume (vph)	56	192	253	157	206	92
Future Volume (vph)	56	192	253	157	206	92
Satd. Flow (prot)	1626	1455	1658	1695	1647	0
Flt Permitted	0.950		0.578			,
Satd. Flow (perm)	1626	1455	1009	1695	1647	0
Satd. Flow (RTOR)		192			56	,
Lane Group Flow (vph)	56	192	253	157	298	0
Turn Type	Perm	Perm	Perm	NA	NA	v
Protected Phases				2	6	
Permitted Phases	4	4	2	2	5	
Detector Phase	4	4	2	2	6	
Switch Phase	4	4	2	2	0	
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	
Minimum Split (s)	22.0	22.0	39.9	39.9	39.9	
	22.0	22.0	39.9	39.9	39.9	
Total Split (s)	35.5%	35.5%	39.9 64.5%	39.9 64.5%	39.9 64.5%	
Total Split (%)	35.5%	35.5%	64.5% 3.3	64.5% 3.3	64.5% 3.3	
Yellow Time (s)						
All-Red Time (s)	2.7	2.7	3.6	3.6	3.6	
Lost Time Adjust (s)	0.0 6.0	0.0 6.0	0.0 6.9	0.0 6.9	0.0 6.9	
Total Lost Time (s)	6.0	6.0	6.9	6.9	6.9	
Lead/Lag						
Lead-Lag Optimize?	Mana	Maria	Maria	Maria	Maria	
Recall Mode	None	None	Max	Max	Max	
Act Effct Green (s)	10.2	10.2	33.8	33.8	33.8	
Actuated g/C Ratio	0.18	0.18	0.59	0.59	0.59	
v/c Ratio	0.19	0.46	0.42	0.16	0.30	
Control Delay	21.3	7.8	9.2	5.8	5.6	
Queue Delay	0.0	0.0	0.0	0.0	0.0	
Total Delay	21.3	7.8	9.2	5.8	5.6	
LOS	С	A	A	A	A	
Approach Delay	10.9			7.9	5.6	
Approach LOS	В			A	A	
Queue Length 50th (m)	4.9	0.0	12.0	6.2	10.2	
Queue Length 95th (m)	12.8	13.5	26.9	13.3	21.3	
Internal Link Dist (m)	296.9			237.9	259.3	
Turn Bay Length (m)	60.0		60.0			
Base Capacity (vph)	456	546	599	1006	1000	
Starvation Cap Reductn	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	
Reduced v/c Ratio	0.12	0.35	0.42	0.16	0.30	
Internetion Commons						
Intersection Summary						
Cycle Length: 61.9						
Actuated Cycle Length: 57						
Natural Cycle: 65						
Control Type: Actuated-Unc	coordinated					
Maximum v/c Ratio: 0.46						

Synchro 11 Report Page 1

01/31/2025

Lanes, Volumes, Timings 1: Cummings Ave & Donald		01/31/2025
Intersection Signal Delay: 8.0	Intersection LOS: A	
Intersection Capacity Utilization 57.0%	ICU Level of Service B	
Analysis Period (min) 15		

Splits and Phases: 1: Cummings Ave & Donald

↑ ø2		✓ Ø4	
39.9 s		22 s	
↓ Ø6			
39.9 s			

Scenario 1 1137 Ogilvie AM Peak Hour 2034 Future Background

Lanes, Volumes, Timings	
2: Cyrville Rd & Ogilvie Rd	

	≯	-	\mathbf{i}	4	-		•	1	1	1	÷.	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		<u></u>	1	1	^	1	1	¢Î		ľ	eî	
Traffic Volume (vph)	0	670	154	35	840	134	164	200	28	48	118	43
Future Volume (vph)	0	670	154	35	840	134	164	200	28	48	118	43
Satd. Flow (prot)	0	3252	1427	1551	3316	1455	1580	1592	0	1566	1580	C
Flt Permitted				0.382			0.579			0.431		
Satd. Flow (perm)	0	3252	1338	617	3316	1301	957	1592	0	708	1580	C
Satd. Flow (RTOR)			154			134		6			15	
Lane Group Flow (vph)	0	670	154	35	840	134	164	228	0	48	161	C
Turn Type		NA	Perm	Perm	NA	Perm	Perm	NA		Perm	NA	
Protected Phases		2			6			8			4	
Permitted Phases			2	6		6	8			4		
Detector Phase		2	2	6	6	6	8	8		4	4	
Switch Phase												
Minimum Initial (s)		10.0	10.0	10.0	10.0	10.0	10.0	10.0		10.0	10.0	
Minimum Split (s)		32.2	32.2	32.2	32.2	32.2	47.1	47.1		47.1	47.1	
Total Split (s)		80.0	80.0	80.0	80.0	80.0	50.0	50.0		50.0	50.0	
Total Split (%)		61.5%	61.5%	61.5%	61.5%	61.5%	38.5%	38.5%		38.5%	38.5%	
Yellow Time (s)		3.7	3.7	3.7	3.7	3.7	3.7	3.7		3.7	3.7	
All-Red Time (s)		2.5	2.5	2.5	2.5	2.5	3.4	3.4		3.4	3.4	
Lost Time Adjust (s)		0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Lost Time (s)		6.2	6.2	6.2	6.2	6.2	7.1	7.1		7.1	7.1	
Lead/Lag		0.2	0.2	0.2	0.2	0.2						
Lead-Lag Optimize?												
Recall Mode		C-Max	C-Max	C-Max	C-Max	C-Max	None	None		None	None	
Act Effct Green (s)		90.3	90.3	90.3	90.3	90.3	26.4	26.4		26.4	26.4	
Actuated g/C Ratio		0.69	0.69	0.69	0.69	0.69	0.20	0.20		0.20	0.20	
v/c Ratio		0.30	0.16	0.08	0.36	0.14	0.85	0.70		0.34	0.48	
Control Delay		9.2	2.0	3.8	3.3	0.2	82.3	56.6		47.2	44.3	
Queue Delay		0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Delay		9.2	2.0	3.8	3.3	0.2	82.3	56.6		47.2	44.3	
LOS		A	2.0 A	A	A	A	62.0 F	E		-17.2 D	-+1.0 D	
Approach Delay		7.8	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2.9			67.4		U	45.0	
Approach LOS		7.0 A			2.5 A			E				
Queue Length 50th (m)		31.0	0.0	1.0	13.0	0.0	41.1	53.7		10.7	33.5	
Queue Length 95th (m)		56.3	8.6	m1.5	15.3	m0.0	59.4	70.4		19.9	47.8	
Internal Link Dist (m)		113.5	0.0	111.5	313.9	1110.0	55.4	407.2		10.0	190.6	
Turn Bay Length (m)		110.0		62.0	010.0	71.0	50.0	101.2		82.0	100.0	
Base Capacity (vph)		2257	975	428	2302	944	315	529		233	531	
Starvation Cap Reductn		0	0	420	0	0	0	0		0	0	
Spillback Cap Reductn		0	0	0	0	0	0	0		0	0	
Storage Cap Reductn		0	0	0	0	0	0	0		0	0	
Reduced v/c Ratio		0.30	0.16	0.08	0.36	0.14	0.52	0.43		0.21	0.30	
Intersection Summary												
Cycle Length: 130												
Actuated Cycle Length: 130		0 EDT	1014/07	01 1 7	0							
Offset: 10 (8%), Referenced	to phase	2:EBT an	d 6:WBTI	., Start of	Green							
Natural Cycle: 80												_
Control Type: Actuated-Coor	rdinated											

Synchro 11 Report Page 3

01/31/2025

Lanes, Volumes, Timings 2: Cyrville Rd & Ogilvie Rd

Maximum v/c Ratio: 0.85		
Intersection Signal Delay: 18.6	Intersection LOS: B	
Intersection Capacity Utilization 72.4%	ICU Level of Service C	
Analysis Period (min) 15		

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 2: Cyrville Rd & Ogilvie Rd

● → Ø2 (R)	↓ ™ø4	
80 s	50 s	
Ø6 (R)	Ø8	
80 s	50 s	

Scenario 1 1137 Ogilvie AM Peak Hour 2034 Future Background

01/31/2025

	≯	-	\mathbf{i}	1	+		1	†	1	- \	÷.	-
_ane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SB
ane Configurations	٦	≜ †⊅		ሻ	¢β		3	4Î		5	ţ,	
Traffic Volume (vph)	65	692	13	105	839	170	63	160	90	169	157	10
Future Volume (vph)	65	692	13	105	839	170	63	160	90	169	157	10
Satd. Flow (prot)	1580	3265	0	1642	3164	0	1658	1553	0	1642	1623	
It Permitted	0.950			0.950			0.950			0.950		
Satd. Flow (perm)	1546	3265	0	1610	3164	0	1649	1553	0	1555	1623	
Satd. Flow (RTOR)		1										
ane Group Flow (vph)	65	705	0	105	1009	0	63	250	0	169	266	
Turn Type	Prot	NA		Prot	NA		Prot	NA		Prot	NA	
Protected Phases	5	2		1	6		3	8		7	4	
Permitted Phases												
Detector Phase	5	2		1	6		3	8		7	4	
Switch Phase												
/inimum Initial (s)	5.0	10.0		5.0	10.0		5.0	10.0		5.0	10.0	
/inimum Split (s)	9.7	25.7		9.7	25.7		9.5	37.1		9.3	37.1	
Total Split (s)	15.0	48.8		21.1	54.9		15.1	37.1		23.0	45.0	
Total Split (%)	11.5%	37.5%		16.2%	42.2%		11.6%	28.5%		17.7%	34.6%	
(ellow Time (s)	3.7	3.7		3.7	3.7		3.3	3.3		3.3	3.3	
All-Red Time (s)	1.0	3.0		1.0	3.0		1.0	3.8		1.0	3.8	
ost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
otal Lost Time (s)	4.7	6.7		4.7	6.7		4.3	7.1		4.3	7.1	
_ead/Lag	Lead	Lag		Lead	Lag		Lead	Lag		Lead	Lag	
ead-Lag Optimize?	Yes	Yes		Yes	Yes		Yes	Yes		Yes	Yes	
Recall Mode	None	C-Max		None	C-Max		None	None		None	None	
Act Effct Green (s)	9.4	51.1		13.1	56.9		9.3	26.2		16.9	35.8	
Actuated g/C Ratio	0.07	0.39		0.10	0.44		0.07	0.20		0.13	0.28	
//c Ratio	0.57	0.55		0.64	0.73		0.53	0.80		0.79	0.60	
Control Delay	79.6	29.8		83.0	32.8		74.2	68.3		80.1	46.9	
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Delay	79.6	29.8		83.0	32.8		74.2	68.3		80.1	46.9	
.0S	E	С		F	С		E	E		F	D	
Approach Delay		34.0			37.6			69.5			59.8	
Approach LOS		С			D			E			E	
Queue Length 50th (m)	16.8	54.3		28.5	134.2		15.7	61.0		41.9	59.5	
Queue Length 95th (m)	32.4	74.2		m43.1	m161.2		30.6	89.0		#72.3	86.0	
nternal Link Dist (m)		313.9			393.6			302.0			237.9	
furn Bay Length (m)	80.0			100.0			34.0			153.0		
Base Capacity (vph)	127	1283		207	1386		137	358		236	473	
Starvation Cap Reductn	0	0		0	0		0	0		0	0	
Spillback Cap Reductn	0	0		0	0		0	0		0	0	
Storage Cap Reductn	0	0		0	0		0	0		0	0	
Reduced v/c Ratio	0.51	0.55		0.51	0.73		0.46	0.70		0.72	0.56	
ntersection Summary Cycle Length: 130 Inctuated Cycle Length: 130 Offset: 0 (0%), Referenced t Iatural Cycle: 95	o phase 2	EBT and (6:WBT, S	itart of G	reen							

Synchro 11 Report Page 5

 3: Cummings Ave & Ogilvie Rd
 01/31/2025

 Maximum v/c Ratio: 0.80
 Intersection LOS: D

 Intersection Signal Delay: 44.0
 Intersection LOS: D

 Intersection Capacity Utilization 85.0%
 ICU Level of Service E

 Analysis Period (min) 15
 # 95th percentile volume exceeds capacity, queue may be longer.

 Queue shown is maximum after two cycles.
 m

 w
 Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 3: Cummings Ave & Ogilvie Rd

Lanes, Volumes, Timings

√ Ø1	∎ →1Ø2 (R)	↑ Ø3 ↓ Ø4	
21.1 s	48.8 s	15.1 s 45 s	
	← ●6 (R)	Ø7	Ø8
15 s	54.9 s	23 s 37.1	S

Scenario 1 1137 Ogilvie AM Peak Hour 2034 Future Background

4: Aviation & Ogilvie Rd
4. Multion & Oginie Rd

Lane Configurations <u>す 朴朴 だ す 朴朴 だ す 朴</u> ֆ <u>朴</u> ֆ Traffic Volume (vph) 379 520 89 119 542 125 209 510 219 162 370 3		۶	-	\mathbf{i}	4	-		1	1	1	1	Ļ	~
Traffic Volume (vph) 379 520 89 119 542 125 209 510 219 162 370 3 Future Volume (vph) 379 520 89 119 542 125 209 510 219 162 370 3 Satd. Flow (prot) 1668 3252 1483 1626 3283 1483 1658 3166 0 1658 3087 Satd. Flow (prot) 520 3252 1483 741 3283 1483 1658 3166 0 1658 3087 Satd. Flow (prot) 379 520 89 119 542 125 209 729 0 162 688 Turn Type pm+pt NA Perm Perm NA NA NA NA NA NA NA NA	ane Group	EBL			WBL			NBL		NBR	SBL	SBT	SBI
Future Volume (vph) 379 520 88 119 542 125 209 510 219 162 370 3 Satd. Flow (prot) 1658 3252 1483 1626 3283 1483 1658 3166 0 1658 3087 Satd. Flow (prot) 520 3252 1483 741 3283 1483 1658 3166 0 1658 3087 Lane Group Flow (ph) 379 520 89 119 542 125 209 729 0 162 688 Turn Type pm+pt NA Perm pm+pt NA Perm Prot NA Prot NA Permitted Phases 5 2 2 1 6 6 7 4 3 8 Switch Phase 5 2 2 1 6 6 7 4 3 8 Switch Phase 10 0.0 10.0 10.0	ane Configurations	ኘ		1	٦	- † †	1	1	≜1 ≱		٦	At≽	
Said. Flow (prof.) 1658 3252 1483 1626 3283 1483 1658 3166 0 1658 3087 ift Permitted 0.298 0.433 0.950 0.950 0.950 0.950 Said. Flow (perm) 520 3252 1483 1143 1648 52 146 Jane Group Flow (vph) 379 520 89 119 542 125 209 729 0 162 688 Virun Type pm+pt NA Perm Prot NA Perm to NA Perm to NA Perm to NA Perm to NA Perm thot NA Perm thot NA Perm to NA Perm to NA Perm to NA Perm to NA NA Perm to NA	Traffic Volume (vph)	379		89	119		125	209		219	162		31
Fit Permitted 0.298 0.433 0.950 0.950 0.950 Satd. Flow (perm) 520 3252 1483 741 3283 1483 1668 3166 0 1658 3087 Satd. Flow (prm) 379 520 89 119 542 125 209 729 0 162 688 Turn Type pm+pt NA Perm Prot NA Perm Prot NA Perm NA Perm NA Perm Prot NA Permitted NA Perm Prot NA Perm Prot NA Permitted NA PA NA NA NA NA NA NA NA NA NA	Future Volume (vph)	379	520	89	119	542	125	209	510	219	162	370	31
Satd. Flow (perm) 520 3252 1483 741 3283 1483 1658 3166 0 1658 3087 Satd. Flow (RTOR) 164 164 164 52 146 ane Group Flow (vph) 379 520 89 119 542 125 209 729 0 162 688 Furn Type pm+pt NA Perm mm+pt NA Perm Prot NA Prot NA Permitted Phases 2 2 6 6 7 4 3 8 Permitted Phase 5 2 2 1 6 6 7 4 3 8 Solicit Phase 5 2 2 1 6 6 7 4 3 8 30.1 Total Split (s) 9.0 10.0 47.0 20.0 47.0 47.0 32.9 45.0 18.0 30.1 Total Split (s) 10.0 2.4	Satd. Flow (prot)	1658	3252	1483	1626	3283	1483	1658	3166	0	1658	3087	
Satd. Flow (RTOR) 164 164 52 146 Lane Group Flow (vph) 379 520 89 119 542 125 209 729 0 162 688 Tum Type pm+pt NA Perm Protected Phases 5 2 1 6 7 4 3 8 Permited Phases 2 2 6 6 7 4 3 8 Switch Phase 5 2 2 1 6 6 7 4 3 8 Switch Phase 5 2 2 1 6 6 7 4 3 8 Minimum Split (s) 9.7 34.1 34.1 9.7 34.1 10.9 30.1 10.9 30.1 10.9 30.1 10.9 30.1 10.9 30.1 10.9 30.1 10.9 30.1 10.9 30.1 10.9 4.2 2.2 2.4 2.2 2.4	Flt Permitted	0.298			0.433			0.950			0.950		
Lane Group Flow (vph) 379 520 89 119 542 125 209 729 0 162 688 furn Type pm+pt NA Perm Prot NA Prot NA Protected Phases 5 2 1 6 7 4 3 8 Permitted Phases 5 2 2 6 6 7 4 3 8 Switch Phase 5 2 2 1 6 6 7 4 3 3 8 Winimum Initial (s) 5.0 10.0 10.0 5.0 10.0 10.0 5.0 10.0 10.0 10.0 16.0 30.1 10.9 30.1 10.9 30.1 10.9 30.1 10.9 30.1 10.9 30.1 10.9 30.1 10.1 2.4 2.4 2.2 2.3% 34.6% 13.8% 23.2% % felow Time (s) 3.7 3.7 3.7 3.7	Satd. Flow (perm)	520	3252	1483	741	3283	1483	1658	3166	0	1658	3087	
Turn Type pm+pt NA Perm Prot NA Prot NA Parentited Phases 5 2 1 6 7 4 3 8 Permitted Phases 2 2 6 6 7 4 3 8 Detector Phase 5 2 2 1 6 6 7 4 3 8 Switch Phase 5 2 2 1 6 6 7 4 3 8 Winimum Split (\$) 9.7 34.1 34.1 9.7 34.1 9.4 10.9 30.1 10.9 30.1 Total Split (\$) 10.7 47.0 20.0 47.0 47.0 32.9 45.0 18.0 30.1 Total Split (\$) 1.0 2.4 2.4 1.0 2.4 2.4 2.2 2.4 2.2 2.4 2.2 2.4 2.2 2.4 2.2 2.4 2.2 2.4 2.2 </td <td>Satd. Flow (RTOR)</td> <td></td> <td></td> <td>164</td> <td></td> <td></td> <td>164</td> <td></td> <td>52</td> <td></td> <td></td> <td>146</td> <td></td>	Satd. Flow (RTOR)			164			164		52			146	
Protected Phases 5 2 1 6 7 4 3 8 Permited Phases 2 2 6 6	ane Group Flow (vph)	379	520	89	119	542	125	209	729	0	162	688	
Protected Phases 5 2 1 6 7 4 3 8 Permitted Phases 2 2 6 6		pm+pt	NA	Perm	pm+pt	NA	Perm	Prot	NA		Prot	NA	
Detector Phase 5 2 2 1 6 6 7 4 3 8 Switch Phase Switch Phase Suinimum Initial (s) 5.0 10.0 10.0 5.0 10.0 5.0 10.0 10.0 5.0 10.0 10.0 5.0 10.0 10.0 5.0 10.0 10.0 5.0 10.0 10.0 5.0 10.0 10.0 5.0 10.0 10.0 5.0 10.0 10.0 5.0 10.0 10.0 5.0 10.0 10.0 5.0 10.0 10.0 5.0 10.0 10.0 5.0 10.0 10.0 10.0 3.7			2			6		7	4		3	8	
Detector Phase 5 2 2 1 6 6 7 4 3 8 Witch Phase Simium Initial (s) 5.0 10.0 10.0 5.0 10.0 5.0 10.0 Minimum Split (s) 9.7 34.1 34.1 9.7 34.1 34.1 10.9 30.1 10.9 30.1 Total Split (s) 20.0 47.0 47.0 20.0 47.0 47.0 32.9 45.0 18.0 30.1 Total Split (s) 15.4% 36.2% 15.4% 36.2% 25.3% 34.6% 13.8% 22.2% (ellow Time (s) 1.0 2.4 2.4 1.0 2.4 2.4 2.2 2.4 2.2 2.4 2.2 2.4 2.2 2.4 2.2 2.4 2.2 2.4 2.2 2.4 2.2 2.4 2.2 2.4 2.2 2.4 2.2 2.4 2.2 2.4 2.2 2.4 2.2 2.4 2.2 <td< td=""><td>Permitted Phases</td><td>2</td><td></td><td>2</td><td>6</td><td></td><td>6</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	Permitted Phases	2		2	6		6						
Minimum Initial (s) 5.0 10.0 10.0 5.0 10.0 5.0 10.0 10.0 5.0 10.0 Minimum Split (s) 9.7 34.1 34.1 9.7 34.1 10.9 30.1 10.9 30.1 Total Split (s) 20.0 47.0 20.0 47.0 20.0 47.0 32.9 45.0 18.0 30.1 Total Split (s) 15.4% 36.2% 36.2% 25.3% 34.6% 13.8% 22.2% Cellav Time (s) 1.0 2.4 2.4 1.0 2.4 2.2 2.4			2			6		7	4		3	8	
Winimum Initial (s) 5.0 10.0 10.0 5.0 10.0 5.0 10.0 10.0 5.0 10.0 Minimum Split (s) 9.7 34.1 34.1 9.7 34.1 10.9 30.1 10.9 30.1 Total Split (s) 20.0 47.0 20.0 47.0 20.0 47.0 32.9 45.0 18.0 30.1 Total Split (s) 15.4% 36.2% 36.2% 36.2% 25.3% 34.6% 13.8% 22.2% Yellow Time (s) 1.0 2.4 2.4 1.0 2.4 2.2	Switch Phase												
Vinimum Split (s) 9.7 34.1 34.1 9.7 34.1 34.1 9.7 34.1 10.9 30.1 10.9 30.1 Total Split (s) 20.0 47.0 47.0 20.0 47.0 32.9 45.0 18.0 30.1 Total Split (s) 15.4% 36.2% 15.4% 36.2% 25.3% 34.6% 13.8% 23.2% Vellow Time (s) 3.7		5.0	10.0	10.0	5.0	10.0	10.0	5.0	10.0		5.0	10.0	
Total Split (s) 20.0 47.0 47.0 20.0 47.0 32.9 45.0 18.0 30.1 Total Split (%) 15.4% 36.2% 15.4% 36.2% 25.3% 34.6% 13.8% 23.2% Yellow Time (s) 3.7													
Total Split (%) 15.4% 36.2% 36.2% 36.2% 36.2% 36.2% 25.3% 34.6% 13.8% 23.2% Vellow Time (s) 3.7 <td></td>													
Yellow Time (s) 3.7													
All-Red Time (s) 1.0 2.4 2.4 1.0 2.4 2.4 2.2 2.4 2.2 2.4 cost Time Adjust (s) 0.0													
Lost Time Adjust (s) 0.0													
Total Lost Time (s) 4.7 6.1 6.1 4.7 6.1 6.1 5.9 6.1 5.9 6.1 Lead/Lag Lead Lag													
Lead Lag Lag <thlag< th=""> <thlag< td="" thr<=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thlag<></thlag<>													
Lead-Lag Optimize? Yes	· · · · · · · · · · · · · · · · · · ·												
Recall Mode None C-Max C-Max C-Max C-Max C-Max None None <td></td>													
Act Effct Green (s) 63.0 47.3 47.3 53.1 40.9 40.9 21.1 37.0 12.1 27.9 Actuated g/C Ratio 0.48 0.36 0.36 0.41 0.31 0.31 0.16 0.28 0.09 0.21 //c Ratio 0.94 0.44 0.14 0.32 0.53 0.22 0.78 0.78 1.05 0.88 Control Delay 76.8 53.7 12.3 21.5 38.8 2.7 71.0 45.8 142.8 53.1 Queue Delay 0.0<													
Actuated g/C Ratio 0.48 0.36 0.36 0.41 0.31 0.31 0.16 0.28 0.09 0.21 v/c Ratio 0.94 0.44 0.14 0.32 0.53 0.22 0.78 0.78 1.05 0.88 Control Delay 76.8 53.7 12.3 21.5 38.8 2.7 71.0 45.8 142.8 53.1 Queue Delay 0.0 <td></td>													
v/c Ratio 0.94 0.44 0.14 0.32 0.53 0.22 0.78 0.78 1.05 0.88 Control Delay 76.8 53.7 12.3 21.5 38.8 2.7 71.0 45.8 142.8 53.1 Queue Delay 0.0													
Control Delay 76.8 53.7 12.3 21.5 38.8 2.7 71.0 45.8 142.8 53.1 Queue Delay 0.0 0.													
Queue Delay 0.0 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>													
Total Delay 76.8 53.7 12.3 21.5 38.8 2.7 71.0 45.8 142.8 53.1 LOS E D B C D A E D F D Approach Delay 58.8 30.4 51.4 70.2 Approach LOS E C D E 2 Queue Length 50th (m) 97.9 73.4 2.7 16.7 59.9 0.0 51.7 82.7 ~45.2 72.1 Queue Length 95th (m) #168.3 91.7 m12.2 28.4 77.7 6.5 75.3 105.6 #89.3 #117.7 Internal Link Dist (m) 393.6 270.9 298.0 298.9 100.0 110.0 Base Capacity (vph) 403 1183 644 432 1032 578 344 983 154 778 Starvation Cap Reductn 0 0 0 0 0 0 0 0 0 0 0 <td>,</td> <td></td>	,												
LOS E D B C D A E D F D Approach Delay 58.8 30.4 51.4 70.2 Approach LOS E C D E 20.2 20.2 72.1 Queue Length 50th (m) 97.9 73.4 2.7 16.7 59.9 0.0 51.7 82.7 ~45.2 72.1 Queue Length 95th (m) #168.3 91.7 m12.2 28.4 77.7 6.5 75.3 105.6 #89.3 #11.7.7 Imm Bay Length (m) 80.0 65.0 50.0 60.0 100.0 110.0 Base Capacity (vph) 403 1183 644 432 1032 578 344 983 154 778 Starvation Cap Reductn 0 <td></td> <td>••</td> <td></td>												••	
Approach Delay 58.8 30.4 51.4 70.2 Approach LOS E C D E Queue Length 50th (m) 97.9 73.4 2.7 16.7 59.9 0.0 51.7 82.7 ~45.2 72.1 Queue Length 50th (m) #168.3 91.7 m12.2 28.4 77.7 6.5 75.3 105.6 #89.3 #117.7 Internal Link Dist (m) 393.6 270.9 298.0 298.9 110.0 Base Capacity (vph) 403 1183 644 432 1032 578 344 983 154 778 Starvation Cap Reductn 0													
Approach LOS E C D E Queue Length 50th (m) 97.9 73.4 2.7 16.7 59.9 0.0 51.7 82.7 ~45.2 72.1 Queue Length 95th (m) #168.3 91.7 m12.2 28.4 77.7 6.5 75.3 105.6 #89.3 #117.7 nternal Link Dist (m) 393.6 270.9 298.0 298.9 298.9 Furn Bay Length (m) 80.0 65.0 50.0 60.0 100.0 110.0 Base Capacity (vph) 403 1183 644 432 1032 578 344 983 154 778 Starvation Cap Reductn 0		E	-	D	U	-	A	E	-		г	-	
Dueue Length 50th (m) 97.9 73.4 2.7 16.7 59.9 0.0 51.7 82.7 ~45.2 72.1 Dueue Length 95th (m) #168.3 91.7 m12.2 28.4 77.7 6.5 75.3 105.6 #89.3 #117.7 nternal Link Dist (m) 393.6 270.9 298.0 298.9 100.0 110.0 Base Capacity (vph) 403 1183 644 432 1032 578 344 983 154 778 Starvation Cap Reductn 0													
Dueue Length 95th (m) #168.3 91.7 m12.2 28.4 77.7 6.5 75.3 105.6 #89.3 #117.7 nternal Link Dist (m) 393.6 270.9 298.0 298.9 Turn Bay Length (m) 80.0 65.0 50.0 60.0 100.0 110.0 Base Capacity (vph) 403 1183 644 432 1032 578 344 983 154 778 Starvation Cap Reductn 0		07.0		0.7	40.7		0.0	E4 7			45.0		
Internal Link Dist (m) 393.6 270.9 298.0 298.9 Turn Bay Length (m) 80.0 65.0 50.0 60.0 100.0 110.0 Base Capacity (vph) 403 1183 644 432 1032 578 344 983 154 778 Starvation Cap Reductn 0	• • • • •												
Furn Bay Length (m) 80.0 65.0 50.0 60.0 100.0 110.0 Jase Capacity (vph) 403 1183 644 432 1032 578 344 983 154 778 Starvation Cap Reductn 0 <td></td> <td>#168.3</td> <td></td> <td>m12.2</td> <td>28.4</td> <td></td> <td>0.5</td> <td>/5.3</td> <td></td> <td></td> <td>#89.3</td> <td></td> <td></td>		#168.3		m12.2	28.4		0.5	/5.3			#89.3		
Base Capacity (vph) 403 1183 644 432 1032 578 344 983 154 778 Starvation Cap Reductn 0 <td>()</td> <td>00.0</td> <td>393.0</td> <td>05.0</td> <td>50.0</td> <td>270.9</td> <td>00.0</td> <td>400.0</td> <td>298.0</td> <td></td> <td>440.0</td> <td>298.9</td> <td></td>	()	00.0	393.0	05.0	50.0	270.9	00.0	400.0	298.0		440.0	298.9	
Starvation Cap Reductn 0			4400			4000			000			770	
Spillback Cap Reductn 0													
Storage Cap Reductn 0 0 0 0 0 0 0 0 0 0 0			-	-				-	-				
		-				-		-	-		-	-	
Reduced v/c Ratio 0.94 0.44 0.14 0.28 0.53 0.22 0.61 0.74 1.05 0.88													
	Reduced v/c Ratio	0.94	0.44	0.14	0.28	0.53	0.22	0.61	0.74		1.05	0.88	
Actuated Cycle Length: 130		ced to phas	e 2:EBTL	and 6:W	BTL, Sta	rt of Gree	n						
Actuated Cycle Length: 130 Offset: 105 (81%), Referenced to phase 2:EBTL and 6:WBTL, Start of Green	Vatural Cycle: 95												
Offset: 105 (81%), Referenced to phase 2:EBTL and 6:WBTL, Start of Green		ordinated											

Synchro 11 Report Page 7

01/31/2025

Lanes, Volumes, Timings 4: Aviation & Ogilvie Rd		01/31/2025
Maximum v/c Ratio: 1.05		
Intersection Signal Delay: 53.3	Intersection LOS: D	
Intersection Capacity Utilization 90.8%	ICU Level of Service E	
Analysis Period (min) 15		
~ Volume exceeds capacity, queue is theoretically	infinite.	
Queue shown is maximum after two cycles.		
# 95th percentile volume exceeds capacity, queue	may be longer.	
Queue shown is maximum after two cycles.		
m Volume for 95th percentile queue is metered by	upstream signal.	

Splits and Phases: 4: Aviation & Ogilvie Rd

Ø1	₩ → Ø2 (R)	Ø3	¶ø₄
20 s	47 s	18 s	45 s
	♥ ♥ Ø6 (R)	▲ Ø7	↓ Ø8
20 s	47 s	32.9 s	30.1 s

Scenario 1 1137 Ogilvie AM Peak Hour 2034 Future Background

Lawaa Malawaa T insin wa
Lanes, Volumes, Timings
5: Labelle St/Cummings Ave & Cvrville Rd

	≯	+	\mathbf{F}	4	+	*	•	†	1	1	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	5	ĥ		5	¢Î,		<u> </u>	4Î		٦	ĥ	
Traffic Volume (vph)	21	224	37	111	388	169	5	32	65	147	86	20
Future Volume (vph)	21	224	37	111	388	169	5	32	65	147	86	20
Satd. Flow (prot)	1537	1638	0	1610	1581	0	1658	1368	0	1610	1584	0
Flt Permitted	0.271			0.598			0.689			0.527		
Satd. Flow (perm)	433	1638	0	995	1581	0	1188	1368	0	786	1584	0
Satd. Flow (RTOR)		17										
Lane Group Flow (vph)	21	261	0	111	557	0	5	97	0	147	106	0
Turn Type	pm+pt	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases	5	2			6			8			4	
Permitted Phases	2			6			8			4		
Detector Phase	5	2		6	6		8	8		4	4	
Switch Phase												
Minimum Initial (s)	5.0	10.0		10.0	10.0		10.0	10.0		10.0	10.0	
Minimum Split (s)	11.3	34.8		34.8	34.8		22.5	22.5		22.5	22.5	
Total Split (s)	15.0	42.0		42.0	42.0		23.0	23.0		23.0	23.0	
Total Split (%)	17.6%	49.4%		49.4%	49.4%		27.1%	27.1%		27.1%	27.1%	
Yellow Time (s)	3.7	3.7		3.7	3.7		3.3	3.3		3.3	3.3	
All-Red Time (s)	1.0	3.1		3.1	3.1		3.2	3.2		3.2	3.2	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)	4.7	6.8		6.8	6.8		6.5	6.5		6.5	6.5	
Lead/Lag	Lead			Lag	Lag		Lag	Lag		Lag	Lag	
Lead-Lag Optimize?	Yes			Yes	Yes		Yes	Yes		Yes	Yes	
Recall Mode	None	Max		Max	Max		None	None		None	None	
Act Effct Green (s)	41.8	39.7		35.6	35.6		14.3	14.3		14.3	14.3	
Actuated g/C Ratio	0.58	0.55		0.49	0.49		0.20	0.20		0.20	0.20	
v/c Ratio	0.06	0.29		0.23	0.72		0.02	0.36		0.95	0.34	
Control Delay	7.2	9.3		14.6	23.6		26.0	30.7		94.9	29.7	
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Delay	7.2	9.3		14.6	23.6		26.0	30.7		94.9	29.7	
LOS	A	A		В	С		С	С		F	С	
Approach Delay		9.2			22.1			30.5			67.6	
Approach LOS		A			С			С			E	
Queue Length 50th (m)	1.2	17.1		7.5	51.5		0.5	10.5		18.1	11.4	
Queue Length 95th (m)	3.8	29.8		21.9	#129.4		3.3	26.7		#56.6	28.1	
Internal Link Dist (m)		407.2			322.8			177.3			302.0	
Turn Bay Length (m)	98.0			67.0			35.0			38.0		
Base Capacity (vph)	408	1151		488	776		273	314		180	364	
Starvation Cap Reductn	0	0		0	0		0	0		0	0	
Spillback Cap Reductn	0	0		0	0		0	0		0	0	
Storage Cap Reductn	0	0		0	0		0	0		0	0	
Reduced v/c Ratio	0.05	0.23		0.23	0.72		0.02	0.31		0.82	0.29	
Intersection Summary Cycle Length: 85												
Actuated Cycle Length: 72.5												
Natural Cycle: 75												
Control Type: Semi Act-Unco	ord											
Maximum v/c Ratio: 0.95	Joiu											
maximum vio radio. 0.00												

Scenario 1 1137 Ogilvie AM Peak Hour 2034 Future Background

Synchro 11 Report Page 9

01/31/2025

Lanes, Volumes, Timings 5: Labelle St/Cummings Ave & Cyrville Rd

01/31/2025

Lane Group	Ø3	Ø7
Lane Configurations		
Traffic Volume (vph)		
Future Volume (vph)		
Satd. Flow (prot)		
Flt Permitted		
Satd. Flow (perm)		
Satd. Flow (RTOR)		
Lane Group Flow (vph)		
Turn Type		
Protected Phases	3	7
Permitted Phases		
Detector Phase		
Switch Phase		
Minimum Initial (s)	1.0	1.0
Minimum Split (s)	3.0	3.0
Total Split (s)	5.0	5.0
Total Split (%)	6%	6%
Yellow Time (s)	2.0	2.0
All-Red Time (s)	0.0	0.0
Lost Time Adjust (s)		
Total Lost Time (s)		
Lead/Lag	Lead	Lead
Lead-Lag Optimize?	Yes	Yes
Recall Mode	Max	Max
Act Effct Green (s)		
Actuated g/C Ratio		
v/c Ratio		
Control Delay		
Queue Delay		
Total Delay		
LOS		
Approach Delay		
Approach LOS		
Queue Length 50th (m)		
Queue Length 95th (m)		
Internal Link Dist (m)		
Turn Bay Length (m)		
Base Capacity (vph)		
Base Capacity (vph) Starvation Cap Reductn		
Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn		
Base Capacity (vph) Starvation Cap Reductn		

Scenario 1 1137 Ogilvie AM Peak Hour 2034 Future Background

5: Labelle St/Cummings Ave & Cyrvill Intersection Signal Delay: 28.8	Intersection LOS: C		
Intersection Capacity Utilization 67.6%	ICU Level of Service C		
Analysis Period (min) 15			
95th percentile volume exceeds capacity, queue ma	ay be longer.		
Queue shown is maximum after two cycles.	, ,		
Splits and Phases: 5: Labelle St/Cummings Ave & C	yrville Rd		
-4 ₀₂		📕 🖉 🖉 🖉 🖉	
42 s		5 s 23 s	
1		■	
		Ø7 Ø8	

	≯	\mathbf{i}	1	†	-↓-	1	
ane Group	EBL	EBR	NBL	NBT	SBT	SBR	
ane Configurations	1	1	5	^	î,		
raffic Volume (vph)	87	314	283	299	328	96	
uture Volume (vph)	87	314	283	299	328	96	
Satd. Flow (prot)	1595	1469	1658	1728	1687	0	
It Permitted	0.950		0.509				
Satd. Flow (perm)	1595	1469	888	1728	1687	0	
Satd. Flow (RTOR)		314			36		
ane Group Flow (vph)	87	314	283	299	424	0	
urn Type	Perm	Perm	Perm	NA	NA		
Protected Phases				2	6		
Permitted Phases	4	4	2				
Detector Phase	4	4	2	2	6		
Switch Phase							
/inimum Initial (s)	10.0	10.0	1.0	1.0	10.0		
/inimum Split (s)	22.0	22.0	7.9	7.9	39.9		
otal Split (s)	22.0	22.0	39.9	39.9	39.9		
otal Split (%)	35.5%	35.5%	64.5%	64.5%	64.5%		
ellow Time (s)	3.3	3.3	3.3	3.3	3.3		
All-Red Time (s)	2.7	2.7	3.6	3.6	3.6		
ost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0		
otal Lost Time (s)	6.0	6.0	6.9	6.9	6.9		
.ead/Lag							
ead-Lag Optimize?							
Recall Mode	None	None	Max	Max	Max		
Act Effct Green (s)	10.8	10.8	33.0	33.0	33.0		
Actuated g/C Ratio	0.19	0.19	0.58	0.58	0.58		
/c Ratio	0.29	0.59	0.55	0.30	0.43		
Control Delay	22.4	8.0	12.7	7.2	7.8		
Queue Delay	0.0	0.0	0.0	0.0	0.0		
otal Delay	22.4	8.0	12.7	7.2	7.8		
.0S	С	А	В	A	А		
Approach Delay	11.1			9.9	7.8		
Approach LOS	В			A	А		
Queue Length 50th (m)	7.8	0.0	14.9	12.9	18.1		
Queue Length 95th (m)	17.7	16.4	40.0	28.3	39.9		
nternal Link Dist (m)	296.3			237.9	259.3		
urn Bay Length (m)	60.0		60.0				
Base Capacity (vph)	450	640	517	1006	997		
Starvation Cap Reductn	0	0	0	0	0		
Spillback Cap Reductn	0	0	0	0	0		
Storage Cap Reductn	0	0	0	0	0		
Reduced v/c Ratio	0.19	0.49	0.55	0.30	0.43		
ntersection Summary							
Cycle Length: 61.9							
Actuated Cycle Length: 56.7							
latural Cycle: 65							

Scenario 1 1137 Ogilvie Road PM Peak Hour 2034 Future Background

Lanes, Volumes, Timings			
1: Cummings Ave & Donald			01/31/2025
Intersection Signal Delay: 9.6	Intersection LOS: A		
Intersection Capacity Utilization 65.8%	ICU Level of Service C		
Analysis Period (min) 15			
Splits and Phases: 1: Cummings Ave & Donald			
[™] ¶ø₂		< ✓ Ø4	
39.9 s		22 s	
↓ ø6			
39.9 s			

	≯	-	\mathbf{r}	1	-		1	†	1	- \	+	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SB
Lane Configurations		<u></u>	1	٦	^	1	۲	¢Î		٦	eî	
Traffic Volume (vph)	0	1069	274	35	777	149	107	261	26	147	259	14
Future Volume (vph)	0	1069	274	35	777	149	107	261	26	147	259	14
Satd. Flow (prot)	0	3316	1455	1658	3316	1483	1658	1718	0	1658	1639	
Flt Permitted				0.213			0.247			0.419		
Satd. Flow (perm)	0	3316	1366	370	3316	1333	430	1718	0	730	1639	
Satd. Flow (RTOR)			274			149		5			25	
Lane Group Flow (vph)	0	1069	274	35	777	149	107	287	0	147	399	
Turn Type		NA	Perm	Perm	NA	Perm	Perm	NA		Perm	NA	
Protected Phases		2			6			8			4	
Permitted Phases			2	6		6	8			4		
Detector Phase		2	2	6	6	6	8	8		4	4	
Switch Phase												
Minimum Initial (s)		10.0	10.0	10.0	10.0	10.0	10.0	10.0		10.0	10.0	
Minimum Split (s)		32.2	32.2	32.2	32.2	32.2	47.1	47.1		47.1	47.1	
Total Split (s)		70.0	70.0	70.0	70.0	70.0	50.0	50.0		50.0	50.0	
Total Split (%)		58.3%	58.3%	58.3%	58.3%	58.3%	41.7%	41.7%		41.7%	41.7%	
Yellow Time (s)		3.7	3.7	3.7	3.7	3.7	3.7	3.7		3.7	3.7	
All-Red Time (s)		2.5	2.5	2.5	2.5	2.5	3.4	3.4		3.4	3.4	
Lost Time Adjust (s)		0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Lost Time (s)		6.2	6.2	6.2	6.2	6.2	7.1	7.1		7.1	7.1	
Lead/Lag												
Lead-Lag Optimize?												
Recall Mode		C-Max	C-Max	C-Max	C-Max	C-Max	None	None		None	None	
Act Effct Green (s)		73.5	73.5	73.5	73.5	73.5	33.2	33.2		33.2	33.2	
Actuated g/C Ratio		0.61	0.61	0.61	0.61	0.61	0.28	0.28		0.28	0.28	
v/c Ratio		0.53	0.29	0.15	0.38	0.17	0.90	0.60		0.73	0.85	
Control Delay		15.6	2.4	4.2	3.4	0.1	101.2	41.3		59.0	54.3	
Queue Delay		0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Delay		15.6	2.4	4.2	3.4	0.1	101.2	41.3		59.0	54.3	
LOS		В	A	A	A	A	F	D		E	D	
Approach Delay		12.9			2.9			57.5			55.6	
Approach LOS		В			A			E			E	
Queue Length 50th (m)		71.5	0.0	0.7	8.7	0.0	24.2	57.5		31.3	83.6	
Queue Length 95th (m)		108.8	12.3	m0.9	m9.8	m0.0	#50.5	76.2		50.4	108.7	
Internal Link Dist (m)		113.8			313.9			407.0			190.4	
Turn Bay Length (m)				62.0		71.0	50.0			82.0		
Base Capacity (vph)		2029	942	226	2029	873	153	617		260	602	
Starvation Cap Reductn		0	0	0	0	0	0	0		0	0	
Spillback Cap Reductn		0	0	0	0	0	0	0		0	0	
Storage Cap Reductn		0	0	0	0	0	0	0		0	0	
Reduced v/c Ratio		0.53	0.29	0.15	0.38	0.17	0.70	0.47		0.57	0.66	
Intersection Summary												
Cycle Length: 120												
Actuated Cycle Length: 120												

Scenario 1 1137 Ogilvie Road PM Peak Hour 2034 Future Background

Maximum v/c Ratio: 0.90		
Intersection Signal Delay: 22.6	Intersection LOS: C	
Intersection Capacity Utilization 82.5%	ICU Level of Service E	
Analysis Period (min) 15		
# 95th percentile volume exceeds capacity, queue	e may be longer.	
Queue shown is maximum after two cycles.		
m Volume for 95th percentile queue is metered by	upstream signal.	

● 🐨 Ø2 (R)	
70 s	50 s
Ø6 (R)	<\$ [†] <i>ø</i> 8
70 s	50 s

Protected Phases 5 Permitted Phases 5 Detector Phase 5 Switch Phase 10 Minimum Initial (s) 5.0 10 Minimum Split (s) 9.7 25 Total Split (s) 16.4 43 Total Split (s) 13.7% 36.2 Yellow Time (s) 3.7 3 All-Red Time (s) 1.0 3 Lost Time Adjust (s) 0.0 0 Total Lost Time (s) 4.7 6 Lead/Lag Lead Lag Optimize? Yes Recall Mode None C-M. Act Effct Green (s) Actuated g/C Ratio 0.10 0.1 Vic Ratio 1.01 1.1 Control Delay 121.5 96	P N 19 27 18 19 27 18 19 27 18 19 27 18 0 161 0.95 2 2 6 0 18 Pro 2 2 2 2 2 2 .0 5.1 7 .0 5.1 7 .0 5.1 7 .0 5.1 7 .0 5.1 7 .0 1.1 0.0 .7 3. 0.0 .7 4. 18. .9 Lear 14. .0 0.1 1. .0 0.1 1. .0 0.1 1. .1 .1 1. .2 .2 .2	+	WBR 226 226 0 0	NBL 61 61 61 61 1651 7 8 9.50 9.51 1.5 9.6% 3.5 1.0 0.0 0.50 9.6% 3.5 1.0 0.0 0.5 Lead Yes None	NBT 213 213 1530 1530 401 NA 8 8 10.0 34.1 36.6 30.5% 3.3 3.8 0.0 7.1 Lag Yes None	NBR 188 188 0 0	SBL 274 274 1658 0.950 1592 274 Prot 7 5.0 9.3 22.0 18.3% 3.3 1.0 0.0 4.3 Lead Yes	SBT 252 252 1648 1648 374 NA 4 10.0 37.1 47.1 39.3% 3.8 0.0 7.1 Lag Yes	
Traffic Volume (vph) 162 10 Future Volume (vph) 162 10 Satd. Flow (prot) 1658 324 FIP Permitted 0.950 344 Satd. Flow (perm) 1626 324 Satd. Flow (perm) 1626 324 Satd. Flow (perm) 1626 324 Lane Group Flow (vph) 162 10 Turn Type Prot N Protected Phases 5 9 Detector Phase 5 5 Switch Phase 5 16.4 43 Total Split (s) 16.4 43 76.3 Total Split (s) 16.4 43 76.2 Total Split (s) 16.4 43 76.2 Yellow Time (s) 3.7 3 3 Al-Red Time (s) 1.0 3 Lost Time (s) 1.7 Gad/Lag Lead/Lag Lead/Lag Yes Yr Recall Mode None C-M 3 Actuated g(C Ratio </th <th>19 27 18: 19 27 18: 19 27 18: 19 27 18: 24 0 161 0.95: 0 159: 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 3 - - .0 5.1 - .7 9: - .4 18. - .0 0.1 - .0 0.1 - .0 0.1 - .0 0.1 - .0 - - .0 0.1 - .0 - -</th> <th>806 806 806 806 807 3119 83119 1032 91032 1032 10102 1032 10102 1003 10103 1003 10100 1000</th> <th>226 0</th> <th>61 61 1658 0.950 1651 61 Prot 1651 3 3 5.0 9.5 9.6% 3.5 11.5 9.6% 3.5 1.0 0.0 0.4 5.5 2.8% 9.5% 1.0 0.9 5% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0</th> <th>213 213 1530 1530 401 NA 8 8 10.0 34.1 36.6 30.5% 3.3 3.8 0.0 7.1 Lag Yes</th> <th>188 0 0</th> <th>274 274 1658 0.950 1592 274 Prot 7 7 7 7 5.0 9.3 22.0 18.3% 3.3 1.0 0.0 0.0 4.3 Lead</th> <th>252 252 1648 1648 374 NA 4 10.0 37.1 47.1 39.3% 3.3 3.8 0.0 7.1 Lag</th> <th></th>	19 27 18: 19 27 18: 19 27 18: 19 27 18: 24 0 161 0.95: 0 159: 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 3 - - .0 5.1 - .7 9: - .4 18. - .0 0.1 - .0 0.1 - .0 0.1 - .0 0.1 - .0 - - .0 0.1 - .0 - -	806 806 806 806 807 3119 83119 1032 91032 1032 10102 1032 10102 1003 10103 1003 10100 1000	226 0	61 61 1658 0.950 1651 61 Prot 1651 3 3 5.0 9.5 9.6% 3.5 11.5 9.6% 3.5 1.0 0.0 0.4 5.5 2.8% 9.5% 1.0 0.9 5% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0	213 213 1530 1530 401 NA 8 8 10.0 34.1 36.6 30.5% 3.3 3.8 0.0 7.1 Lag Yes	188 0 0	274 274 1658 0.950 1592 274 Prot 7 7 7 7 5.0 9.3 22.0 18.3% 3.3 1.0 0.0 0.0 4.3 Lead	252 252 1648 1648 374 NA 4 10.0 37.1 47.1 39.3% 3.3 3.8 0.0 7.1 Lag	
Future Volume (vph) 162 10. Satd. Flow (prot) 1658 324 Satd. Flow (perm) 1626 324 Satd. Flow (RTOR) 100 100 Lane Group Flow (vph) 162 100 Turn Type Prot N Protected Phases 5 5 Detector Phase 5 5 Switch Phase 5 100 Minimum Split (s) 16.4 43 Total Split (%) 13.7% 36.2 Yellow Time (s) 1.0 3 Lost Time (s) 1.0 3 Lost Time (s) 1.0 3 Lead/Lag Lead/Lag Lead/Lag Lead/Lag Optimize? Yes Y Act Effct Green (s) 1.1 76 Act Effct Green (s) 1.1 78 Queue Delay 0.0	19 27 18: 04 0 1611 0.959 0 1597 2 - - 76 0 18: IA Proc - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 0 5.1 - .7 9: - .4 18. % % 15.0% - .0 0.1 1. .0 0.1 - .7 4. - .8g Lear - .7 13. - 1. .7 13. - 1.	a 806 b 3119 c 3119 c 1032 c NA d 66 c 10.02 c 70.0 c 37.5% c 3.0 c 0.0.0 c 6.74 c C-Max c C-Max d 38.3	226 0	61 1658 0.950 1651 Prot 3 3 5.0 9.5 11.5 9.6% 3.5 1.0 0.0 4.5 Lead Yes None	213 1530 401 NA 8 8 10.0 34.1 36.6 30.5% 3.3 3.8 0.0 7.1 Lag Yes	188 0 0	274 1658 0.950 1592 274 Prot 7 7 7 5.0 9.3 22.0 18.3% 3.3 1.0 0.0 4.3 5 Lead	252 1648 1648 374 NA 4 10.0 37.1 47.1 39.3% 3.3 3.8 0.0 7.1 Lag	
Satd. Flow (prot) 1658 32! FIP Permitted 0.950 Satd. Flow (perm) 1626 32! Satd. Flow (perm) 1626 32! Satd. Flow (RTOR) Satd. Flow (RTOR) Satd. Flow (Prot) 162 10' Lane Group Flow (vph) 162 10' Turn Type Prot N Protected Phases 5 Setther Phase 5 Switch Phase Satd. Flow (perm) 13.7% 36.2 Minimum Initial (s) 5.0 10 Minimum Split (s) 9.7 25 Total Split (s) 16.4 43 Total Split (%) 13.7% 36.2 Vellow Time (s) 3.7 3 All-Red Time (s) 1.0 3 Lost Time Adjust (s) 0.0 0.0 Total Lost Time (s) 4.7 6 Lead/Lag Optimize? Yes Yes Yes Yes Yes Actuated g/C Ratio 0.10 0.1 1.1 36 Actuated g/C Ratio 0.10 0.0 C Queue Delay 0.0 <	04 0 161 0.94 0 159 2 2 76 0 18' /A Pro 2 2 2 2 2 2 2 2 .0 5.1 7 9.2 3 .0 15.9 7 3.3 15.0° .0 1.1 0.0 0.1 1.4 .0 1.1 0.0 0.1 1.4 .0 1.1 0.0 0.1 1.4 .0 1.1 0.1 0.1 1.4 .0 1.1 0.1 1.4 1.4 .0 1.1 0.1 1.4 1.4 .0 1.1 1.4 1.4 1.4 1.4 .0 1.1 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4	3119 3119 1032 1032 1032 NA 6 6 7 25.7 45.0 37.5% 7 3.70 3.0 0.007 6.7 45.0 6 6.7 6 6.7 7 3.19 3.0 0.00 7 6.7 4.23 38.3 3.38.3 38.3	0	1658 0.950 1651 61 Prot 3 3 3 5.0 9.55 11.5 9.6% 3.5 1.0 0.0 4.5 Lead Yes None	1530 1530 401 NA 8 10.0 34.1 36.6 30.5% 3.3 3.8 0.0 7.1 Lag Yes	0	1658 0.950 1592 274 Prot 7 7 5.0 9.3 22.0 18.3% 3.3 1.0 0.0 0.0 0.0 0.0	1648 1648 374 NA 4 10.0 37.1 47.1 39.3% 3.3 3.8 0.0 7.1 Lag	
Fit Permitted 0.950 Satd. Flow (perm) 1626 324 Satd. Flow (RTOR) Lane Group Flow (vph) 162 101 Lane Group Flow (vph) 162 101 Turn Type Prot N Protected Phases 5 Permitted Phases 5 Setter Phase 5 Detector Phase 5 Switch Phase 5 100 Minimum Initial (s) 5.0 100 Minimum Split (s) 9.7 25 Total Split (s) 16.4 43 Total Split (s) 16.4 43 103 341-Red Time (s) 1.0 3 Lost Time Adjust (s) 0.0 00 Total Lost Time (s) 4.7 66 Lead/Lag Lead/Lag Lead/Lag Lead/Lag Lead/Lag Yes Act Effct Green (s) 11.7 36 Actuated g(C Ratio 0.10 0.0 0 0 1.1 1.4 2.5 96 LOS F Approach Delay 121.5 96 LOS F Approach Delay <td>0.95 04 0 159 2 2 2 2 2 2 2 .0 5.1 .7 9. .4 18. % 15.0 .7 9. .4 18. % 15.0 .0 .1. .0 0.1 .1. .0 0.0 .1. .0 0.1 .3 .3 .4 18. % 15.9 .2 .3 .4 18. % 15.9 .4 18. % 15.9 .7 9. .4 18. .5 1. .7 9. .4 1. .5 1. .7 9. .5 1. .5 1.</td> <td>3 3119 3 3119 3 1032 t NA 6 6 1 6 0 10.0 7 25.7 0 45.0 5 37.5% 7 3.7 0 3.0 0 0.0 0 0.0 0 0.0 7 6.7 1 Lag 5 Yes 6 C-Max 3 38.3 38.3</td> <td>0</td> <td>0.950 1651 61 Prot 3 3 5.0 9.5 11.5 9.6% 3.5 1.0 0.0 4.5 Lead Yes None</td> <td>1530 401 NA 8 8 10.0 34.1 36.6 30.5% 3.3 3.8 0.0 7.1 1 Lag Yes</td> <td>0</td> <td>0.950 1592 274 Prot 7 7 5.0 9.3 22.0 18.3% 3.3 1.0 0.0 0.4.3 Lead</td> <td>1648 374 NA 4 10.0 37.1 47.1 39.3% 3.3 3.8 0.0 7.1 Lag</td> <td></td>	0.95 04 0 159 2 2 2 2 2 2 2 .0 5.1 .7 9. .4 18. % 15.0 .7 9. .4 18. % 15.0 .0 .1. .0 0.1 .1. .0 0.0 .1. .0 0.1 .3 .3 .4 18. % 15.9 .2 .3 .4 18. % 15.9 .4 18. % 15.9 .7 9. .4 18. .5 1. .7 9. .4 1. .5 1. .7 9. .5 1. .5 1.	3 3119 3 3119 3 1032 t NA 6 6 1 6 0 10.0 7 25.7 0 45.0 5 37.5% 7 3.7 0 3.0 0 0.0 0 0.0 0 0.0 7 6.7 1 Lag 5 Yes 6 C-Max 3 38.3 38.3	0	0.950 1651 61 Prot 3 3 5.0 9.5 11.5 9.6% 3.5 1.0 0.0 4.5 Lead Yes None	1530 401 NA 8 8 10.0 34.1 36.6 30.5% 3.3 3.8 0.0 7.1 1 Lag Yes	0	0.950 1592 274 Prot 7 7 5.0 9.3 22.0 18.3% 3.3 1.0 0.0 0.4.3 Lead	1648 374 NA 4 10.0 37.1 47.1 39.3% 3.3 3.8 0.0 7.1 Lag	
Satd. Flow (perm) 1626 324 Satd. Flow (RTOR) Lane Group Flow (vph) 162 107 Lane Group Flow (vph) 162 107 Type Proto N Protected Phases 5 Switch Phase 5 Switch Phase 5 Detector Phase 5 Switch Phase 5 100 Minimum Split (s) 9.7 25 Total Split (s) 16.4 43 7 36.2 Yellow Time (s) 3.7 34.Red Time (s) 1.0 3 Lost Time Adjust (s) 0.0 0 0 0 0 10 Act Effict Green (s) 1.1.7 36 2 Yellow Time (s) 1.0 3 Lost Time Adjust (s) 0.0 0 0 0 0 0 Catal Lead/Lag Detime (s) 1.1 7 8 Y Act Effict Green (s) 1.1.7 36 1.01 1.1 1.2 96 1.05 96 1.05 96 1.05 96	04 0 159: 2	3119 1032 1032 NA 6 6 0 10.0 25.7 45.0 0 37.5% 7 3.7 0 0.00 7 6.7 4.28 C-Max 8 C-Max 38.3 38.3		1651 61 Prot 3 3 5.0 9.5 11.5 9.6% 3.5 1.0 0.0 4.5 Lead Yes None	401 NA 8 10.0 34.1 36.6 30.5% 3.3 3.8 0.0 7.1 Lag Yes		1592 274 Prot 7 5.0 9.3 22.0 18.3% 3.3 1.0 0.0 0 4.3 Lead	374 NA 4 10.0 37.1 47.1 39.3% 3.3 3.8 0.0 7.1 Lag	
Satd. Flow (RTOR) Lane Group Flow (vph) 162 10' Turn Type Prot N Protected Phases 5 5 Permitted Phases 5 5 Detector Phase 5 5 Switch Phase 5 5 Minimum Initial (s) 5.0 10 Minimum Split (s) 9.7 25 Total Split (%) 13.7% 36.2 Yellow Time (s) 1.0 3 All-Red Time (s) 1.0 3 Lost Time Adjust (s) 0.0 00 Total Lost Time (s) 4.7 6 Lead/Lag Lead La Actuated g/C Ratio 0.10 0.1 Actitated g/C Ratio 0.10 0.1 Vic Ratio 1.01 1.1 25 Queue Delay 0.0 0 0 Total Delay 121.5 96 LOS F Approach Delay 92 Approach Delay 99 34	2 6 0 18 1A Pro 2 2 2 .0 5.1 .7 9. .4 18.1 % 15.09 .7 3. .0 1.1 .0 0.1 .7 4. .8 .9 .7 4. .0 .0 .1 .0 .7 .0 .1 .0 .1 .0 .1 .0 .7 .0 .1 .0 .1 .0 .1 .0 .7 .0 .1 .0 .7 .3 .0 .7 .0 .7 .0 .7 .0 .1 .0 .7 .3 .0 .7 .3 .0 .7 .3 .0 .7 .3 .0 .7 .3 .0 .7 .3 .0 .1 .0 .7 .3 .0 .7 .3 .0 .7 .3 .0 .7 .3 	 1032 NA 6 10.0 25.7 37.5% 37.5% 3.0 0.0 0.0 6.7 Lag S Yes C-Max 38.3 		61 Prot 3 3 5.0 9.5 11.5 9.6% 3.5 1.0 0.0 0 4.5 Lead Yes None	401 NA 8 10.0 34.1 36.6 30.5% 3.3 3.8 0.0 7.1 Lag Yes		274 Prot 7 5.0 9.3 22.0 18.3% 3.3 1.0 0.0 4.3 Lead	374 NA 4 10.0 37.1 47.1 39.3% 3.3 3.8 0.0 7.1 Lag	
Lane Group Flow (vph) 162 10' Turn Type Prot N Protected Phases 5 5 Permitted Phases 5 5 Detector Phase 5 5 Switch Phase 5 5 Minimum Initial (s) 9.7 25 Total Split (s) 16.4 43 Total Split (%) 13.7% 36.2 Vellow Time (s) 3.7 3 All-Red Time (s) 1.0 3 Lost Time Adjust (s) 0.0 0 Total Lost Time (s) 4.7 6 Lead/Lag Lead Lag Actuated g/C Ratio 0.10 0.1 Actuated g/C Ratio 0.10 0.1 Vic Ratio 1.01 1.1 Control Delay 121.5 96 LOS F Approach Delay 99 Approach Delay 99 Approach Delay 99	6 0 18 IA Pro 2 2 2 2 .0 5.5 .7 9. .4 18.9 % 15.0% .7 3. .0 1.1 .0 0.1 .7 4. .8g Leaa .8g Leaa .8s Ye .7 13.3 .31 0.1	10.02 10.0	0	Prot 3 3 5.0 9.5 11.5 9.6% 3.5 1.0 0.0 4.5 Lead Yes None	NA 8 10.0 34.1 36.6 30.5% 3.3 3.8 0.0 7.1 Lag Yes	0	Prot 7 7 5.0 9.3 22.0 18.3% 3.3 1.0 0.0 4.3 Lead	NA 4 10.0 37.1 47.1 39.3% 3.3 3.8 0.0 7.1 Lag	
Turn Type Prot N Turn Type Protected Phases 5 Permitted Phases 5 Detector Phase 5 Switch Phase 5 Minimum Spitt (s) 9.7 Total Spitt (s) 16.4 All Red Time (s) 1.0 All-Red Time (s) 1.0 Lost Time Adjust (s) 0.0 0 Total Lost Time (s) 4.7 66 Lead/Lag Lead Lead Lead Act Effct Green (s) 1.1.7 36 25 Actated gQtimize? Yes Yr 47 Recall Mode None C-M 44 Acted Effct Green (s) 1.1.7 36 25 Actuated g/C Ratio 0.10 0.0 00 00 V/c Ratio 1.01 1.1 1.6 1.0 1.1 1.6 Queue Delay 0.0 0 0 0 0 0 0 Queue Delay 1.21.5 96	IA Prc 2 2 2 3 .0 5.1 .7 9.9 .4 18.1 % 15.09 .7 3. .0 1.1 .0 0.1 .0 0.1 .7 4. .8g Lease .9s Ye .8x Nom .7 13.2 .31 0.1	10.02 10.0	0	Prot 3 3 5.0 9.5 11.5 9.6% 3.5 1.0 0.0 4.5 Lead Yes None	NA 8 10.0 34.1 36.6 30.5% 3.3 3.8 0.0 7.1 Lag Yes	0	Prot 7 7 5.0 9.3 22.0 18.3% 3.3 1.0 0.0 4.3 Lead	NA 4 10.0 37.1 47.1 39.3% 3.3 3.8 0.0 7.1 Lag	
Protected Phases 5 Permitted Phases 5 Detector Phase 5 Switch Phase 5 Minimum Initial (s) 5.0 10 Minimum Split (s) 9.7 25 Total Split (s) 16.4 43 Total Split (%) 13.7% 36.2 Yellow Time (s) 3.7 3 All-Red Time (s) 1.0 3 Lost Time Adjust (s) 0.0 00 Total Lost Time (s) 4.7 6 Lead/Lag Lead Lat Actuated g/C Ratio 0.10 0.1 Act Effct Green (s) 11.7 36 Actuated g/C Ratio 0.10 0.1 Vic Ratio 1.01 1.1 Control Delay 121.5 96 LOS F Approach Delay 99 Approach LOS F 39	2 2 .0 5.1 .7 9: .4 18.0 % 15.0 .7 3. .0 11. .0 0.1 .7 4. .ag Lea .s Ye ax Non .7 13. .31 0.1	6 1 0.0 1 25.7 1 45.0 5 37.5% 7 3.7 0 3.0 0 0.0 1 Lag 5 Yes 6 C-Max 3 38.3 3		3 5.0 9.5 11.5 9.6% 3.5 1.0 0.0 4.5 Lead Yes None	8 10.0 34.1 36.6 30.5% 3.3 3.8 0.0 7.1 Lag Yes		7 5.0 9.3 22.0 18.3% 3.3 1.0 0.0 4.3 Lead	4 10.0 37.1 47.1 39.3% 3.3 3.8 0.0 7.1 Lag	
Permitted Phases Detector Phase 5 Switch Phase 5 Winimum Initial (s) 5.0 10 Minimum Split (s) 9.7 25 Total Split (s) 16.4 43 Total Split (%) 13.7% 36.2 Vellow Time (s) 3.7 3 All-Red Time (s) 1.0 3 Lost Time Adjust (s) 0.0 00 Total Lost Time (s) 4.7 6 Lead/Lag Lead Lat Actuated g/C Ratio 0.10 0.1 Actuated g/C Ratio 0.10 0.1 Vic Ratio 1.01 1.1 Control Delay 121.5 96 LOS F Approach Delay 99 Approach Delay 99 99 40	2 .0 5.1 .7 9: .4 18. % 15.0% .7 3. .0 1.1 .0 0. .7 4. ag Lea as Ye ax Nom .7 13. 31 0.1	 1 6 10.0 25.7 45.0 37.5% 3.7 3.0 0.00 6.7 H Lag S Yes C-Max 38.3 38.3 		3 5.0 9.5 11.5 9.6% 3.5 1.0 0.0 4.5 Lead Yes None	8 10.0 34.1 36.6 30.5% 3.3 3.8 0.0 7.1 Lag Yes		7 5.0 9.3 22.0 18.3% 3.3 1.0 0.0 4.3 Lead	4 10.0 37.1 47.1 39.3% 3.3 3.8 0.0 7.1 Lag	
Detector Phase 5 Switch Phase 5 Minimum Initial (s) 5.0 10 Minimum Spitt (s) 9.7 25 Total Split (s) 16.4 43 Total Split (s) 13.7% 36.2 Vellow Time (s) 3.7 3 All-Red Time (s) 1.0 3 Lost Time Adjust (s) 0.0 0 Total Lost Time (s) 4.7 6 Lead/Lag Lead Lead Atle Cffc Green (s) 11.7 36 Actuated g/C Ratio 0.10 0.0 V/c Ratio 1.01 1.1 Control Delay 121.5 96 LOS F Approach Delay 99 Approach Delay 99 97 96	.0 5. .7 9: .4 18. % 15.0 .7 3. .0 1.1. .0 0. .7 4. ag Leau as Ye ax Nom .7 13. 31 0.1) 10.0 25.7 37.5% 7 3.7 3.0 0 0.0 7 6.7 1 Lag 5 Yes 2 C-Max 38.3		5.0 9.5 11.5 9.6% 3.5 1.0 0.0 4.5 Lead Yes None	10.0 34.1 36.6 30.5% 3.3 3.8 0.0 7.1 Lag Yes		5.0 9.3 22.0 18.3% 3.3 1.0 0.0 4.3 Lead	10.0 37.1 47.1 39.3% 3.3 3.8 0.0 7.1 Lag	
Switch Phase Minimum Initial (s) 5.0 10 Minimum Split (s) 9.7 25 Total Split (s) 16.4 43 Total Split (s) 10.6 43 Total Split (s) 10.0 36.2 All-Red Time (s) 1.0 3 Lost Time (s) 1.0 3 Lead/Lag Lead/Lag Lead/Lag Lead/Lag Optimize? Yes Yr Recall Mode None C-Mi Act Effct Green (s) 1.1.7 36 Act Effct Green (s) 1.1.7 36 Queue Delay 0.10 0.10 v/c Ratio 1.01 1.1 Control Delay 121.5 96 LOS F Approach Delay 99 Approach Delay 99 4pproach Delay 99	.0 5. .7 9: .4 18. % 15.0 .7 3. .0 1.1. .0 0. .7 4. ag Leau as Ye ax Nom .7 13. 31 0.1) 10.0 25.7 37.5% 7 3.7 3.0 0 0.0 7 6.7 1 Lag 5 Yes 2 C-Max 38.3		5.0 9.5 11.5 9.6% 3.5 1.0 0.0 4.5 Lead Yes None	10.0 34.1 36.6 30.5% 3.3 3.8 0.0 7.1 Lag Yes		5.0 9.3 22.0 18.3% 3.3 1.0 0.0 4.3 Lead	10.0 37.1 47.1 39.3% 3.3 3.8 0.0 7.1 Lag	
Minimum Initial (s) 5.0 10 Minimum Split (s) 9.7 25 Total Split (s) 16.4 43 Total Split (%) 13.7% 36.2 Yellow Time (s) 3.7 3 All-Red Time (s) 1.0 3 Lost Time Adjust (s) 0.0 0 Total Lost Time (s) 4.7 6 Lead/Lag Lead Lat Recall Mode None C-M. Actuated g/C Ratio 0.10 0.1 //c Ratio 1.01 1.1 Control Delay 121.5 96 LOS F Approach Delay 99 Approach Delay 99 99 99	.7 9: .4 18.0 % 15.0 .7 3: .0 1.1 .0 0.1 .7 4: .8g Lear .8s Ye .8x Nom .7 13: .31 0.1	25.7 45.0 37.5% 3.7 3.0 0.00 6.7 Lag S Yes C-Max 38.3		9.5 11.5 9.6% 3.5 1.0 0.0 4.5 Lead Yes None	34.1 36.6 30.5% 3.3 3.8 0.0 7.1 Lag Yes		9.3 22.0 18.3% 3.3 1.0 0.0 4.3 Lead	37.1 47.1 39.3% 3.3 3.8 0.0 7.1 Lag	
Minimum Split (s) 9.7 25 Total Split (s) 16.4 43 Total Split (s) 13.7% 36.2 Vallow Time (s) 3.7 3 All-Red Time (s) 1.0 3 Lost Time Adjust (s) 0.0 0 Total Lost Time (s) 4.7 6 Lead/Lag Lead Lat Lead-Lag Optimize? Yes Y Recall Mode None C-M Actuated g/C Ratio 0.10 0.1 Vic Ratio 1.01 1.1 Control Delay 121.5 96 LOS F Approach Delay 99 Approach Delay 99 99 30	.7 9: .4 18.0 % 15.0 .7 3: .0 1.1 .0 0.1 .7 4: .8g Lear .8s Ye .8x Nom .7 13: .31 0.1	25.7 45.0 37.5% 3.7 3.0 0.00 6.7 Lag S Yes C-Max 38.3		9.5 11.5 9.6% 3.5 1.0 0.0 4.5 Lead Yes None	34.1 36.6 30.5% 3.3 3.8 0.0 7.1 Lag Yes		9.3 22.0 18.3% 3.3 1.0 0.0 4.3 Lead	37.1 47.1 39.3% 3.3 3.8 0.0 7.1 Lag	
Total Split (s) 16.4 43 Total Split (%) 13.7% 36.2 Yellow Time (s) 3.7 34.1 All-Red Time (s) 1.0 3 Lost Time Adjust (s) 0.0 0 Total Lost Time (s) 4.7 66 Lead/Lag Lead Lead Lead/Lag Optimize? Yes Yr Recall Mode None C-M. Act Effct Green (s) 1.1.7 36 Actuated g/C Ratio 0.10 0.10 v/c Ratio 1.01 1.1 Control Delay 121.5 96 LOS F Approach Delay 99 Approach Delay 99 99 39	.4 18.0 % 15.09 .7 3. .0 1.1 .0 0.0 .7 4. ag Leax ss Yee ax Nonm. .7 13.3 31 0.1	 45.0 37.5% 3.7 3.0 0.0 0.0 7 6.7 4 Lag S Yes 2 C-Max 38.3 		11.5 9.6% 3.5 1.0 0.0 4.5 Lead Yes None	36.6 30.5% 3.3 3.8 0.0 7.1 Lag Yes		22.0 18.3% 3.3 1.0 0.0 4.3 Lead	47.1 39.3% 3.3 3.8 0.0 7.1 Lag	
Total Split (%) 13.7% 36.2 Yellow Time (s) 3.7 3 All-Red Time (s) 1.0 3 Lost Time Adjust (s) 0.0 0 Total Lost Time (s) 4.7 6 Lead/Lag Optimize? Yes Yr Recall Mode None C-M Act Laded g/C Ratio 0.10 0.0 Control Delay 121.5 96 Queue Delay 0.0 0 Total Delay 121.5 96 LOS F Approach Delay 99 Approach LOS F 30	% 15.0% .7 3. .0 1.1. .0 0. .7 4. .ag Lea .ss Ye ax Nom .7 13. .31 0.1	37.5% 3.7 3.0 0 0.0 7 6.7 4 Lag 8 Yes 8 C-Max 38.3		9.6% 3.5 1.0 0.0 4.5 Lead Yes None	30.5% 3.3 3.8 0.0 7.1 Lag Yes		18.3% 3.3 1.0 0.0 4.3 Lead	39.3% 3.3 3.8 0.0 7.1 Lag	
Yellow Time (s) 3.7 3 All-Red Time (s) 1.0 3 Lost Time Adjust (s) 0.0 0 Itotal Lost Time (s) 4.7 6 Lead/Lag Lead Lat Recall Mode None C-Mi Act Effct Green (s) 11.7 36 Actuated g/C Ratio 0.10 0.1 Control Delay 121.5 96 Queue Delay 0.0 0 Total Delay 121.5 96 LOS F Approach Delay 99 Approach Delay 99 99 99	.7 3. .0 1.1 .0 0.1 .7 4. ag Leaa es Ye ax Non .7 13. .31 0.1	3.7 3.0 0.0 0.0 1 1 2 2 3 4 2 4 5 7 6.7 1 2 3 4 5 7 6.7 1 1 2 2 3 3 3 3 3 3 3 3 3 3 3 3		3.5 1.0 0.0 4.5 Lead Yes None	3.3 3.8 0.0 7.1 Lag Yes		3.3 1.0 0.0 4.3 Lead	3.3 3.8 0.0 7.1 Lag	
All-Red Time (s) 1.0 3 Lost Time Adjust (s) 0.0 0 Total Lost Time (s) 4.7 6 Lead/Lag Lead Lead Lead/Lag Optimize? Yes Y Recall Mode None C-Mix Act Effct Green (s) 11.7 36 Actuated g/C Ratio 0.10 0.1 V/c Ratio 1.01 1.1 Control Delay 121.5 96 LOS F Approach Delay 99 Approach Delay 121.5 96	.0 1.1 .0 0.1 .7 4.2 ag Lear es Ye ax Non .7 13.3 31 0.1	0 3.0 0 0.0 7 6.7 1 Lag 5 Yes 2 C-Max 3 38.3		1.0 0.0 4.5 Lead Yes None	3.8 0.0 7.1 Lag Yes		1.0 0.0 4.3 Lead	3.8 0.0 7.1 Lag	
All-Red Time (s) 1.0 3 Lost Time Adjust (s) 0.0 0 Total Lost Time (s) 4.7 6 Lead/Lag Lead Lead Lead/Lag Optimize? Yes Y Recall Mode None C-Mix Act Effct Green (s) 11.7 36 Actuated g/C Ratio 0.10 0.1 V/c Ratio 1.01 1.1 Control Delay 121.5 96 LOS F Approach Delay 99 Approach Delay 121.5 96	.0 0.1 .7 4. ag Lea es Ye ax Non .7 13. 31 0.1	0 0.0 6.7 Lag S Yes C-Max 3 38.3		0.0 4.5 Lead Yes None	0.0 7.1 Lag Yes		0.0 4.3 Lead	0.0 7.1 Lag	
Total Lost Time (s) 4.7 6 Lead/Lag Optimize? Yes Yr Yr Recall Mode None C-M Act affect Green (s) 11.7 36 Actuated g/C Ratio 0.10 0.0 yr/c Ratio 1.01 1.1 Control Delay 12.15 96 Queue Delay 0.0 0 10 Total Delay 121.5 96 LOS F Approach Delay 99 Approach LOS 99	.7 4.: ag Lea es Ye ax Non .7 13.: 31 0.1	6.7 Lag Yes C-Max 3 38.3		4.5 Lead Yes None	7.1 Lag Yes		4.3 Lead	7.1 Lag	
Total Lost Time (s) 4.7 6 Lead/Lag Lead Lag Lead Lead-Lag Optimize? Yes Yr Recall Mode None C-M Act Effct Green (s) 11.7 36 Actuated g/C Ratio 0.10 0.0 v/c Ratio 1.01 1.1 Control Delay 121.5 96 LOS F Approach Delay 99 Approach Delay 99 Approach LOS 99	ag Leau es Ye ax Nonu .7 13.1 31 0.1	Lag Yes C-Max 38.3		Lead Yes None	Lag Yes		Lead	Lag	
Lead-Lag Optimize? Yes Yr Recall Mode None C-Min Act Effct Green (s) 11.7 36 Act Effct Green (s) 0.10 0.10 v/c Ratio 0.10 0.11 Control Delay 121.5 96 Queue Delay 0.0 0 Total Delay 121.5 96 LOS F Approach Delay 99 Approach Delay 99 97 96	es Ye ax Non .7 13. 31 0.1	S Yes C-Max 3 38.3		Yes None	Yes				
Recall Mode None C-M. Act Effct Green (s) 11.7 36 Actuated g/C Ratio 0.10 0.1 Vic Ratio 1.01 1.1 Control Delay 121.5 96 Queue Delay 0.0 0 Total Delay 121.5 96 LOS F Approach Delay 99 Approach LOS S F	ax Non .7 13. 31 0.1	C-Max 38.3		None			Yes	Yes	
Recall Mode None C-M. Act Effct Green (s) 11.7 36 Actuated g/C Ratio 0.10 0.1 Vic Ratio 1.01 1.1 Control Delay 121.5 96 Queue Delay 0.0 0 Total Delay 121.5 96 LOS F Approach Delay 99 Approach LOS S F	.7 13.3 31 0.1	38.3			Mono				
Act Effct Green (s) 11.7 36 Actuated g/C Ratio 0.10 0.1 v/c Ratio 1.01 1.1 Control Delay 121.5 96 Queue Delay 0.0 0 Total Delay 121.5 96 LOS F Approach Delay 99 Approach LOS S 5	31 0.1				INDITE		None	None	
Actuated g/C Ratio 0.10 0.1 V/c Ratio 1.01 1.1 Control Delay 121.5 96 Queue Delay 0.0 0 Total Delay 121.5 96 LOS F Approach Delay 99 Approach LOS 99		0.32		6.8	29.5		17.7	42.3	
Control Delay 121.5 96 Queue Delay 0.0 0 Total Delay 121.5 96 LOS F Approach Delay 99 Approach Delay 99 99 99				0.06	0.25		0.15	0.35	
Queue Delaý 0.0 C Total Delay 121.5 96 LOS F Approach Delay 99 Approach LOS	07 1.0	5 1.04		0.65	1.07		1.12	0.64	
Queue Delay 0.0 C Total Delay 121.5 96 LOS F Approach Delay 99 Approach LOS	.2 115.	70.7		86.0	108.8		141.3	39.7	
Total Delay 121.5 96 LOS F Approach Delay 99 Approach LOS	.0 0.0			0.0	0.0		0.0	0.0	
LOS F Approach Delay 99 Approach LOS	.2 115.	70.7		86.0	108.8		141.3	39.7	
Approach Delay 99 Approach LOS	F I			F	F		F	D	
Approach LOS		77.6			105.8			82.6	
	F	E			F			F	
		5 ~137.0		14.3	~104.3		~74.4	75.6	
Queue Length 95th (m) #84.0 #194		3 m#155.4		#34.1	#164.1		#126.8	110.0	
Internal Link Dist (m) 313		393.6		104.1	302.0		1120.0	237.9	
Turn Bay Length (m) 80.0	100.0			34.0	002.0		153.0	20110	
Base Capacity (vph) 161 100				96	376		244	581	
Starvation Cap Reductn 0) 0		0	0		0	0	
Spillback Cap Reductn 0	-) 0		0	0		0	0	
Storage Cap Reductn 0	0			0	0		0	0	
Reduced v/c Ratio 1.01 1.0		-		0.64	1.07		1.12	0.64	
	1.0	1.04		0.04	1.01		1.12	0.04	
Intersection Summary									
Cycle Length: 120 Actuated Cycle Length: 120									

Scenario 1 1137 Ogilvie Road PM Peak Hour 2034 Future Background

3: Cummings Ave & Ogilvie Rd		01/31/202
Maximum v/c Ratio: 1.12		
Intersection Signal Delay: 89.8	Intersection LOS: F	
Intersection Capacity Utilization 103.5%	ICU Level of Service G	
Analysis Period (min) 15		
~ Volume exceeds capacity, queue is theoretically	infinite.	
Queue shown is maximum after two cycles.		
# 95th percentile volume exceeds capacity, queue	may be longer.	
Queue shown is maximum after two cycles.		
m Volume for 95th percentile queue is metered by	upstream signal.	

Splits and Phases: 3: Cummings Ave & Ogilvie Rd

√ Ø1	∎ → Ø2 (R)	↑ Ø3 ↓ Ø4	
18 s	43.4 s	11.5 s 47.1 s	
	← ● Ø6 (R)	Ø7	¶ø8
16.4 s	45 s	22 s	36.6 s

Lane Group		-	¥ .	- F				†	1	- *	+	•
	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	S
Lane Configurations	1	††	1	ľ	^	1	<u>۲</u>	≜ 1,		1	≜ 1,	
Traffic Volume (vph)	314	1102	102	231	720	220	173	379	163	146	424	3
Future Volume (vph)	314	1102	102	231	720	220	173	379	163	146	424	3
Satd. Flow (prot)	1658	3316	1469	1658	3316	1483	1658	3166	0	1658	3100	
Flt Permitted	0.261			0.093			0.950			0.950		
Satd. Flow (perm)	455	3316	1469	162	3316	1483	1658	3166	0	1658	3100	
Satd. Flow (RTOR)			136			220		50			142	
Lane Group Flow (vph)	314	1102	102	231	720	220	173	542	0	146	751	
Turn Type	pm+pt	NA	Perm	pm+pt	NA	Perm	Prot	NA		Prot	NA	
Protected Phases	5	2		1	6		7	4		3	8	
Permitted Phases	2		2	6		6						
Detector Phase	5	2	2	1	6	6	7	4		3	8	
Switch Phase												
Vinimum Initial (s)	5.0	10.0	10.0	5.0	10.0	10.0	5.0	10.0		5.0	10.0	
Vinimum Split (s)	9.7	34.1	34.1	9.7	34.1	34.1	10.9	30.1		12.2	30.1	
Total Split (s)	20.0	51.0	51.0	20.0	51.0	51.0	18.9	30.1		18.9	30.1	
Total Split (%)	16.7%	42.5%	42.5%	16.7%	42.5%	42.5%	15.8%	25.1%		15.8%	25.1%	
Yellow Time (s)	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7		3.5	3.7	
All-Red Time (s)	1.0	2.4	2.4	1.0	2.4	2.4	2.2	2.4		3.7	2.4	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		2.2	2.4	
Total Lost Time (s)	4.7	6.1	6.1	4.7	6.1	6.1	5.9	6.1		9.4	8.5	
Lead/Lag	Lead	Lag	Lag	Lead	Lag	Lag	Lead	Lag		Lead	Lag	
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		Yes	Yes	
Recall Mode	None	C-Max	C-Max	None	C-Max	C-Max	None	None		None	None	
Act Effct Green (s)	61.9	45.6	45.6	61.3	45.3	45.3	13.0	24.0		9.5	21.6	
Actuated g/C Ratio	0.52	0.38	0.38	0.51	0.38	0.38	0.11	0.20		0.08	0.18	
//c Ratio	0.82	0.87	0.16	0.88	0.58	0.32	0.97	0.81		1.11	1.11	
Control Delay	14.7	26.7	3.3	61.0	32.1	4.6	112.8	51.8		162.9	107.3	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Delay	14.7	26.7	3.3	61.0	32.1	4.6	112.8	51.8		162.9	107.3	
LOS	В	С	А	E	С	А	F	D		F	F	
Approach Delay		22.7			32.6			66.5			116.3	
Approach LOS		С			С			E			F	
Queue Length 50th (m)	12.0	136.4	4.0	37.5	70.6	0.0	41.2	59.0		~39.4	~91.5	
Queue Length 95th (m)	m10.4	m121.2	m3.3	#79.7	90.0	15.5	#84.9	#80.0		#80.6	#130.1	
nternal Link Dist (m)		393.6			260.7			297.6			298.7	
Turn Bay Length (m)	80.0		65.0	50.0		60.0	100.0			110.0		
Base Capacity (vph)	389	1260	642	274	1251	696	179	673		131	674	
Starvation Cap Reductn	0	0	0	0	0	0	0	0		0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0		0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0		0	0	
Reduced v/c Ratio	0.81	0.87	0.16	0.84	0.58	0.32	0.97	0.81		1.11	1.11	
ntersection Summary												
Cycle Length: 120 Actuated Cycle Length: 120												

Scenario 1 1137 Ogilvie Road PM Peak Hour 2034 Future Background

Scenario 1 1137 Ogilvie Road PM Peak Hour 2034 Future Background

4: Aviation & Ogilvie Rd		01/31/202
Maximum v/c Ratio: 1.11		
Intersection Signal Delay: 52.2	Intersection LOS: D	
Intersection Capacity Utilization 100.2%	ICU Level of Service G	
Analysis Period (min) 15		
 Volume exceeds capacity, queue is theoretically in 	nfinite.	
Queue shown is maximum after two cycles.		
# 95th percentile volume exceeds capacity, queue r	nay be longer.	
Queue shown is maximum after two cycles.		
m Volume for 95th percentile queue is metered by u	ıpstream signal.	

Splits and Phases: 4: Aviation & Ogilvie Rd

√ Ø1	🚽 🚓 🛛 🖉 🖉 🖉	Ø3	↑ ø4	
20 s	51s	18.9 s	30.1 s	
	🛡 💞 Ø6 (R)	1 07	↓ Ø8	
20 s	51 s	18.9 s	30.1 s	

	≯	-	\mathbf{x}		-		•	†	1	- \	1 L	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	
Lane Configurations	3	1>		3	¢Î		۲	1>		٦	¢Î	
Traffic Volume (vph)	10	55	68	82	334	293	10	104	68	64	505	
Future Volume (vph)	10	55	68	82	334	293	10	104	68	64	505	
Satd. Flow (prot)	1658	1383	0	1595	1568	0	1658	1525	0	1445	1739	
Flt Permitted	0.176		-	0.678		-	0.267		-	0.540		
Satd. Flow (perm)	307	1383	0	1109	1568	0	466	1525	0	719	1739	
Satd. Flow (RTOR)		68						34				
Lane Group Flow (vph)	10	123	0	82	627	0	10	172	0	64	516	
Turn Type	pm+pt	NA	-	Perm	NA	-	Perm	NA	-	Perm	NA	
Protected Phases	5	2			6			8			4	
Permitted Phases	2	_		6	-		8	-		4		
Detector Phase	5	2		6	6		8	8		4	4	
Switch Phase	0	-		0			0	J				
Minimum Initial (s)	5.0	10.0		10.0	10.0		10.0	10.0		10.0	10.0	
Vinimum Split (s)	11.3	34.8		34.8	34.8		23.5	23.5		23.5	23.5	
Total Split (s)	15.0	43.0		43.0	43.0		37.0	37.0		37.0	37.0	
Total Split (%)	15.0%	43.0%		43.0%	43.0%		37.0%	37.0%		37.0%	37.0%	
Yellow Time (s)	3.7	3.7		3.7	3.7		3.3	3.3		3.3	3.3	
All-Red Time (s)	1.0	3.1		3.1	3.1		3.2	3.2		3.2	3.2	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)	4.7	6.8		6.8	6.8		6.5	6.5		6.5	6.5	
Lead/Lag	Lead	0.0		Lag	Lag		Lag	Lag		Lag	Lag	
Lead-Lag Optimize?	Yes			Yes	Yes		Yes	Yes		Yes	Yes	
Recall Mode	None	Max		Max	Max		None	None		None	None	
Act Effct Green (s)	40.5	38.4		36.3	36.3		24.8	24.8		29.8	29.8	
Actuated g/C Ratio	0.50	0.47		0.45	0.45		0.30	0.30		0.37	0.37	
v/c Ratio	0.04	0.47		0.43	0.40		0.07	0.35		0.24	0.81	
Control Delay	10.6	6.8		16.2	40.2		23.6	20.7		22.2	36.3	
Queue Delay	0.0	0.0		0.0	40.2		0.0	0.0		0.0	0.0	
Total Delay	10.6	6.8		16.2	40.2		23.6	20.7		22.2	36.3	
LOS	10.0 B	0.0 A		10.2 B	40.2 D		23.0 C	20.7 C		22.2 C	50.5 D	
Approach Delay	D	7.1		D	37.4		U	20.8		U	34.7	
Approach LOS		7.1 A			57.4 D			20.0 C			54.7 C	
Queue Length 50th (m)	0.8	4.6		7.1	83.5		1.0	15.6		6.5	67.4	
Queue Length 95th (m)	3.0	13.0		19.1	#179.3		5.4	36.8		18.7	#142.2	
Internal Link Dist (m)	5.0	407.0		19.1	322.8		0.4	177.5		10.7	302.0	
Turn Bay Length (m)	98.0	407.0		67.0	322.0		35.0	111.0		38.0	302.0	
		897		494	699		35.0 174	594			652	
Base Capacity (vph) Starvation Cap Reductn	323 0	897		494	099		0	594 0		270 0	652 0	
Spillback Cap Reductn	0	0		0	0		0	0		0	0	
Storage Cap Reductn	0	0		0	0		0	0		0	0	
Reduced v/c Ratio	0.03	0.14		0.17	0.90		0.06	0.29		0.24	0.79	
Teuuceu V/C Ralio	0.03	0.14		0.17	0.90		0.06	0.29		0.24	0.79	
Intersection Summary												
Cycle Length: 100												
Actuated Cycle Length: 81. Natural Cycle: 90	5											

Scenario 1 1137 Ogilvie Road PM Peak Hour 2034 Future Background

Scenario 1 1137 Ogilvie Road PM Peak Hour 2034 Future Background

Lanes, Volumes, Timings	
5: Labelle St/Cummings Ave & Cyrville Rd	01/31/2025

Lane Configurations Traffic Volume (vph) Future Volume (vph) Satd. Flow (prot)		
Traffic Volume (vph) Future Volume (vph)		
Future Volume (vph)		
Cotd. Flow (prot)		
Salo, Flow (DIOL)		
Flt Permitted		
Satd. Flow (perm)		
Satd. Flow (RTOR)		
Lane Group Flow (vph)		
Turn Type		
Protected Phases	3	7
Permitted Phases		
Detector Phase		
Switch Phase		
Minimum Initial (s)	1.0	1.0
Minimum Split (s)	3.0	3.0
Total Split (s)	5.0	5.0
Total Split (%)	5%	5%
Yellow Time (s)	2.0	2.0
All-Red Time (s)	0.0	0.0
Lost Time Adjust (s)	0.0	0.0
Total Lost Time (s)		
Lead/Lag	Lead	Lead
Lead-Lag Optimize?	Yes	Yes
Recall Mode	None	Max
Act Effct Green (s)		
Actuated g/C Ratio		
v/c Ratio		
Control Delay		
Queue Delay		
Total Delay		
LOS		
Approach Delay		
Approach LOS		
Queue Length 50th (m)		
Queue Length 95th (m)		
Internal Link Dist (m)		
Turn Bay Length (m)		
Base Capacity (vph)		
Starvation Cap Reductn		
Spillback Cap Reductn		
Storage Cap Reductn		
Reduced v/c Ratio		
Intersection Summary		

Lanes, Volumes, Timings 5: Labelle St/Cummings Ave & Cyrville Rd 01/31/2025 Intersection Signal Delay: 32.0 Intersection Capacity Utilization 100.2% Intersection LOS: C ICU Level of Service G Analysis Period (min) 15 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

Splits and Phases: 5: Labelle St/Cummings Ave & Cyrville Rd

		●@: ↓>Ø4	
43 s		5 s 37 s	
≯ _{∅5} 🐓	26	●a; 1 ø8	
15 s 43 s		5 s 37 s	

Scenario 1 1137 Ogilvie Road PM Peak Hour 2034 Future Background

Scenario 1 1137 Ogilvie Road PM Peak Hour 2034 Future Background

Appendix N

Synchro Worksheets -2027 Future Total Horizon

	۶	7	1	Ť	Ŧ	1	
ane Group	EBL	EBR	NBL	NBT	SBT	SBR	
ane Configurations	ň	1	٦	1	î,		
Fraffic Volume (vph)	56	188	248	154	193	92	
Future Volume (vph)	56	188	240	154	193	92	
						92	
Satd. Flow (prot)	1626	1455	1658	1695	1642	U	
It Permitted	0.950		0.585	1005	1010	•	
Satd. Flow (perm)	1626	1455	1021	1695	1642	0	
Satd. Flow (RTOR)		188			59	-	
ane Group Flow (vph)	56	188	248	154	285	0	
Furn Type	Perm	Perm	Perm	NA	NA		
Protected Phases				2	6		
Permitted Phases	4	4	2				
Detector Phase	4	4	2	2	6		
Switch Phase							
dinimum Initial (s)	10.0	10.0	10.0	10.0	10.0		
dinimum Split (s)	22.0	22.0	39.9	39.9	39.9		
Total Split (s)	22.0	22.0	39.9	39.9	39.9		
Total Split (%)	35.5%	35.5%	64.5%	64.5%	64.5%		
(ellow Time (s)	3.3	3.3	3.3	3.3	3.3		
All-Red Time (s)	2.7	2.7	3.6	3.6	3.6		
ost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0		
Fotal Lost Time (s)	6.0	6.0	6.9	6.9	6.9		
	0.0	0.0	0.9	0.9	0.9		
ead/Lag							
ead-Lag Optimize?							
Recall Mode	None	None	Max	Max	Max		
Act Effct Green (s)	10.3	10.3	34.3	34.3	34.3		
Actuated g/C Ratio	0.18	0.18	0.60	0.60	0.60		
//c Ratio	0.19	0.46	0.41	0.15	0.28		
Control Delay	21.3	7.9	8.9	5.8	5.4		
Queue Delay	0.0	0.0	0.0	0.0	0.0		
Total Delay	21.3	7.9	8.9	5.8	5.4		
.OS	С	А	А	А	А		
Approach Delay	10.9			7.7	5.4		
Approach LOS	B			A	A		
Queue Length 50th (m)	4.9	0.0	11.7	6.0	9.4		
Queue Length 95th (m)	12.8	13.3	26.1	13.0	20.0		
nternal Link Dist (m)	296.9	10.0	20.1	155.2	259.3		
Furn Bay Length (m)	60.0		60.0	100.2	200.0		
Base Capacity (vph)	453	541	609	1011	1003		
Starvation Cap Reductn	453	0	009	0	0		
Spillback Cap Reductn	0	0	0	0	0		
Storage Cap Reductn	0	0	0	0	0		
Reduced v/c Ratio	0.12	0.35	0.41	0.15	0.28		
ntersection Summary							
Cycle Length: 61.9							
Actuated Cycle Length: 57	5						
Vatural Cycle: 65							
Control Type: Actuated-Und	coordinated						
/aximum v/c Ratio: 0.46							

Synchro 11 Report Page 1

Scenario 1 1137 Ogilvie AM Peak Hour 2027 Future Total

Synchro 11 Report Page 2

Lanes, Volumes, Timings 1: Cummings Ave & Donald		04-25-2025
Intersection Signal Delay: 7.8	Intersection LOS: A	
Intersection Capacity Utilization 56.0%	ICU Level of Service B	
Analysis Period (min) 15		

Splits and Phases: 1: Cummings Ave & Donald

1 ø2	× 04
19.9 s	22 s
↓ Ø6	J
19.9 s	

											04-2	5-2025
	٠	+	1	1	Ļ	•	1	t	1	*	ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		† †	1	7	† †	1	7	ĥ		1	ĥ	
Traffic Volume (vph)	0	639	143	35	828	134	159	193	28	48	110	43
Future Volume (vph)	0	639	143	35	828	134	159	193	28	48	110	43
Satd. Flow (prot)	0	3252	1427	1551	3316	1455	1580	1588	0	1566	1575	0
Flt Permitted				0.396			0.595			0.442		
Satd. Flow (perm)	0	3252	1338	639	3316	1301	984	1588	0	727	1575	0
Satd. Flow (RTOR)			143			134		6			16	
Lane Group Flow (vph)	0	639	143	35	828	134	159	221	0	48	153	0
Turn Type	-	NA	Perm	Perm	NA	Perm	Perm	NA		Perm	NA	-
Protected Phases		2			6			8			4	
Permitted Phases		_	2	6		6	8			4		
Detector Phase		2	2	6	6	6	8	8		4	4	
Switch Phase		-	-	, i	•	•	, i	, v				
Minimum Initial (s)		10.0	10.0	10.0	10.0	10.0	10.0	10.0		10.0	10.0	
Minimum Split (s)		32.2	32.2	32.2	32.2	32.2	47.1	47.1		47.1	47.1	
Total Split (s)		80.0	80.0	80.0	80.0	80.0	50.0	50.0		50.0	50.0	
Total Split (%)		61.5%	61.5%	61.5%	61.5%	61.5%	38.5%	38.5%		38.5%	38.5%	
Yellow Time (s)		3.7	3.7	3.7	3.7	3.7	3.7	3.7		3.7	3.7	
All-Red Time (s)		2.5	2.5	2.5	2.5	2.5	3.4	3.4		3.4	3.4	
Lost Time Adjust (s)		0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Lost Time (s)		6.2	6.2	6.2	6.2	6.2	7.1	7.1		7.1	7.1	
Lead/Lag		0.2	0.2	0.2	0.2	0.2	7.1	7.1		1.1	7.1	
Lead-Lag Optimize?												
Recall Mode		C-Max	C-Max	C-Max	C-Max	C-Max	None	None		None	None	
Act Effct Green (s)		90.7	90.7	90.7	90.7	90.7	26.0	26.0		26.0	26.0	
Actuated g/C Ratio		0.70	0.70	0.70	0.70	0.70	0.20	0.20		0.20	0.20	
v/c Ratio		0.28	0.15	0.08	0.36	0.14	0.81	0.69		0.33	0.47	
Control Delay		8.8	2.0	5.2	5.4	0.7	77.5	56.7		47.3	43.7	
Queue Delay		0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Delay		8.8	2.0	5.2	5.4	0.7	77.5	56.7		47.3	43.7	
LOS		A	A	A	A	A	E	E		D	D	
Approach Delay		7.6		,,	4.7			65.4		-	44.5	
Approach LOS		A			A			E			D	
Queue Length 50th (m)		28.5	0.0	1.0	12.6	0.0	39.7	52.1		10.8	31.5	
Queue Length 95th (m)		53.2	8.4	m3.3	56.4	1.3	56.6	68.3		19.9	45.2	
Internal Link Dist (m)		113.5	0.1	more	313.9		00.0	407.2		1010	190.6	
Turn Bay Length (m)				62.0	0.010	71.0	50.0			82.0		
Base Capacity (vph)		2269	977	446	2314	948	324	528		239	530	
Starvation Cap Reductn		0	0	0	0	0	0	0_0		0	0	
Spillback Cap Reductn		0	Ŭ	Ő	0	0	Ŭ,	0		0	Ŭ	
Storage Cap Reductn		0	0	0	0	0	0	0		0	0	
Reduced v/c Ratio		0.28	0.15	0.08	0.36	0.14	0.49	0.42		0.20	0.29	
Intersection Summary Cycle Length: 130 Actuated Cycle Length: 130 Offset: 10 (8%), Referenced to Natural Cycle: 80 Control Type: Actuated-Coord		2:EBT an	d 6:WBTI	., Start of	Green							

Synchro 11 Report Page 3

2: Cyrville Rd & Ogilvie Rd		04-25-2025
Maximum v/c Ratio: 0.81		
Intersection Signal Delay: 18.8	Intersection LOS: B	
Intersection Capacity Utilization 71.8%	ICU Level of Service C	
Analysis Period (min) 15		

Splits and Phases: 2: Cyrville Rd & Ogilvie Rd

₩Ø2 (R)	● Ø4	8112
80 s	50 s	
₩ Ø6 (R)	↑ø8	
80 s	FO c	

Scenario 1 1137 Ogilvie AM Peak Hour 2027 Future Total

	۶	-	7	1	-	*	1	1	1	1	Ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SB
Lane Configurations	۲	†]>		٦	†]>		1	ţ,		7	î.	
Traffic Volume (vph)	76	650	13	99	807	173	63	149	88	175	140	12
Future Volume (vph)	76	650	13	99	807	173	63	149	88	175	140	12
Satd. Flow (prot)	1580	3265	0	1642	3161	0	1658	1551	0	1642	1603	
Flt Permitted	0.218			0.340			0.594			0.351		
Satd. Flow (perm)	363	3265	0	579	3161	0	1032	1551	0	583	1603	(
Satd. Flow (RTOR)		2			28			21			37	
Lane Group Flow (vph)	76	663	0	99	980	0	63	237	0	175	269	(
Turn Type	pm+pt	NA		pm+pt	NA		Perm	NA		pm+pt	NA	
Protected Phases	5	2		1	6			8		7	4	
Permitted Phases	2			6			8			4		
Detector Phase	5	2		1	6		8	8		7	4	
Switch Phase												
Vinimum Initial (s)	5.0	10.0		5.0	10.0		10.0	10.0		5.0	10.0	
Vinimum Split (s)	9.7	24.7		9.7	24.7		36.6	36.6		9.3	36.6	
Total Split (s)	11.0	71.0		11.0	71.0		36.6	36.6		11.4	48.0	
Total Split (%)	8.5%	54.6%		8.5%	54.6%		28.2%	28.2%		8.8%	36.9%	
Yellow Time (s)	3.7	3.7		3.7	3.7		3.3	3.3		3.3	3.3	
All-Red Time (s)	1.0	2.0		1.0	2.0		3.3	3.3		1.0	3.3	
ost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Fotal Lost Time (s)	4.7	5.7		4.7	5.7		6.6	6.6		4.3	6.6	
_ead/Lag	Lead	Lag		Lead	Lag		Lag	Lag		Lead		
ead-Lag Optimize?	Yes	Yes		Yes	Yes		Yes	Yes		Yes		
Recall Mode	None	C-Max		None	C-Max		None	None		None	None	
Act Effct Green (s)	75.6	68.4		76.6	70.5		27.0	27.0		40.7	38.4	
Actuated g/C Ratio	0.58	0.53		0.59	0.54		0.21	0.21		0.31	0.30	
/c Ratio	0.28	0.39		0.25	0.57		0.29	0.70		0.73	0.54	
Control Delay	15.0	17.0		13.6	20.4		45.8	54.4		54.0	36.5	
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Delay	15.0	17.0		13.6	20.4		45.8	54.4		54.0	36.5	
LOS	В	В		В	С		D	D		D	D	
Approach Delay		16.7			19.8			52.6			43.4	
Approach LOS		В			В			D			D	
Queue Length 50th (m)	7.0	45.0		11.7	63.5		13.3	50.3		33.2	48.1	
Queue Length 95th (m)	16.5	52.1		m16.4	m74.0		26.7	78.6		#54.8	74.9	
nternal Link Dist (m)		313.9			393.6			302.0			58.8	
Turn Bay Length (m)	80.0			100.0			34.0					
Base Capacity (vph)	270	1718		392	1727		238	374		239	535	
Starvation Cap Reductn	0	0		0	0		0	0		0	0	
Spillback Cap Reductn	0	0		0	0		0	0		0	0	
Storage Cap Reductn	0	0		0	0		0	0		0	0	
Reduced v/c Ratio	0.28	0.39		0.25	0.57		0.26	0.63		0.73	0.50	
Intersection Summary Cycle Length: 130 Actuated Cycle Length: 130 Offset: 110 (85%), Referen Natural Cycle: 85		e 2:EBTL	and 6:W	BTL, Sta	rt of Greer	1						

Synchro 11 Report Page 5

3: Cummings Ave & Ogilvie Rd		04-25-202
Maximum v/c Ratio: 0.73		
Intersection Signal Delay: 26.9	Intersection LOS: C	
Intersection Capacity Utilization 85.5%	ICU Level of Service E	
Analysis Period (min) 15		
# 95th percentile volume exceeds capacity, queue	e may be longer.	
Queue shown is maximum after two cycles.		
m Volume for 95th percentile queue is metered by	/ upstream signal.	

Splits and Phases: 3: Cummings Ave & Ogilvie Rd

🖌 Ø1 🖕 📥 Ø2 (R)	Ø4
11s 71s	48 s
≁ø5 ↓ ₩ø6 (R)	₩ø7 1 ø8
	11.4 5 26.6 5

Scenario 1 1137 Ogilvie AM Peak Hour 2027 Future Total

Lanes, Volumes, Ti 4: Aviation & Ogilvie	•										04-2	25-2025
	٨	+	1	4	Ļ	•	1	t	1	*	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	2	††	1	1	^	1	7	*		7	*	
Traffic Volume (vph)	354	505	91	119	534	125	210	476	219	162	339	291
Future Volume (vph)	354	505	91	119	534	125	210	476	219	162	339	291
Satd. Flow (prot)	1658	3252	1483	1626	3283	1483	1658	3160	0	1658	3087	0
Flt Permitted	0.315			0.456			0.950			0.950		
Satd. Flow (perm)	550	3252	1483	780	3283	1483	1658	3160	0	1658	3087	0
Satd. Flow (RTOR)			164			164		59			148	
Lane Group Flow (vph)	354	505	91	119	534	125	210	695	0	162	630	0
Turn Type	pm+pt	NA	Perm	pm+pt	NA	Perm	Prot	NA		Prot	NA	
Protected Phases	5	2		1	6		7	4		3	8	
Permitted Phases	2		2	6		6						
Detector Phase	5	2	2	1	6	6	7	4		3	8	
Switch Phase												
Minimum Initial (s)	5.0	10.0	10.0	5.0	10.0	10.0	5.0	10.0		5.0	10.0	
Minimum Split (s)	9.7	34.1	34.1	9.7	34.1	34.1	10.9	30.1		10.9	30.1	
Total Split (s)	20.0	47.0	47.0	20.0	47.0	47.0	32.9	45.0		18.0	30.1	
Total Split (%)	15.4%	36.2%	36.2%	15.4%	36.2%	36.2%	25.3%	34.6%		13.8%	23.2%	
Yellow Time (s)	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7		3.7	3.7	
All-Red Time (s)	1.0	2.4	2.4	1.0	2.4	2.4	2.2	2.4		2.2	2.4	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Lost Time (s)	4.7	6.1	6.1	4.7	6.1	6.1	5.9	6.1		5.9	6.1	
Lead/Lag	Lead	Lag	Lag	Lead	Lag	Lag	Lead	Lag		Lead	Lag	
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		Yes	Yes	
Recall Mode	None	C-Max	C-Max	None	C-Max	C-Max	None	None		None	None	
Act Effct Green (s)	65.8	50.1	50.1	55.4	43.3	43.3	21.2	34.3		12.1	25.2	
Actuated g/C Ratio	0.51	0.39	0.39	0.43	0.33	0.33	0.16	0.26		0.09	0.19	
v/c Ratio	0.83	0.40	0.14	0.30	0.49	0.21	0.78	0.79		1.05	0.88	
Control Delay	50.5	31.3	3.6	20.4	37.1	2.6	71.0	47.4		142.8	53.2	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Delay	50.5	31.3	3.6	20.4	37.1	2.6	71.0	47.4		142.8	53.2	
LOS	D	С	А	С	D	A	E	D		F	D	
Approach Delay		35.8			29.0			52.9			71.5	
Approach LOS		D			С			D			E	
Queue Length 50th (m)	76.1	49.7	0.9	16.3	58.8	0.0	52.0	77.8		~45.2	63.4	
Queue Length 95th (m)	#98.7	69.3	m5.7	28.4	76.4	6.5	75.7	98.5		#89.3	#99.6	
Internal Link Dist (m)		393.6			270.9			298.0			298.9	
Turn Bay Length (m)	80.0		65.0	50.0		60.0	100.0			110.0		
Base Capacity (vph)	427	1253	672	459	1092	602	344	986		154	723	
Starvation Cap Reductn	0	0	0	0	0	0	0	0		0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0		0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0		0	0	
Reduced v/c Ratio	0.83	0.40	0.14	0.26	0.49	0.21	0.61	0.70		1.05	0.87	
Intersection Summary Cycle Length: 130 Actuated Cycle Length: 130 Offset: 105 (81%), Referenc Natural Cycle: 95 Control Type: Actuated-Coo		se 2:EBTL	. and 6:W	BTL, Sta	rt of Gree	n						

Synchro 11 Report Page 7 Lanes, Volumes, Timings

4: Aviation & Ogilvie Rd
04-25-2025

Maximum v/c Ratio: 1.05
Intersection Signal Delay: 47.0
Intersection LOS: D
Intersection Capacity Utilization 87.3%
ICU Level of Service E
Analysis Period (min) 15

Volume exceeds capacity, queue is theoretically infinite.
Queue shown is maximum after two cycles.
95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 4: Aviation & Ogilvie Rd

√ Ø1	🚽 🚣 🛛 🖉 (R)	1 03	14
20 s	47 s	18 s 45 s	
▶ _{Ø5}	● ◆ Ø6 (R)	1 Ø7	↓ Ø8
20 s	47 s	32,9 s	30.1 s

Scenario 1 1137 Ogilvie AM Peak Hour 2027 Future Total

5: Labelle St/Cumm	ings A	ve & C	yrville	04-25-20								
	٠	-	7	1	-	*	1	Ť	1	1	ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	1×		٦	1.		٦	1×		٦	Þ	
Traffic Volume (vph)	21	209	37	111	374	164	5	24	41	139	72	20
Future Volume (vph)	21	209	37	111	374	164	5	24	41	139	72	20
Satd. Flow (prot)	1537	1635	0	1610	1584	0	1658	1396	0	1610	1571	0
Flt Permitted	0.272			0.606			0.697			0.552		
Satd. Flow (perm)	435	1635	0	1011	1584	0	1203	1396	0	825	1571	0
Satd. Flow (RTOR)		19			32			41			15	
Lane Group Flow (vph)	21	246	0	111	538	0	5	65	0	139	92	0
Turn Type	pm+pt	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases	5	2			6			8			4	
Permitted Phases	2			6			8			4		
Detector Phase	5	2		6	6		8	8		4	4	
Switch Phase												
Minimum Initial (s)	5.0	10.0		10.0	10.0		10.0	10.0		10.0	10.0	
Minimum Split (s)	11.3	34.3		34.3	34.3		22.5	22.5		22.5	22.5	
Total Split (s)	15.0	42.0		42.0	42.0		23.0	23.0		23.0	23.0	
Total Split (%)	17.6%	49.4%		49.4%	49.4%		27.1%	27.1%		27.1%	27.1%	
Yellow Time (s)	3.7	3.7		3.7	3.7		3.3	3.3		3.3	3.3	
All-Red Time (s)	2.6	2.6		2.6	2.6		2.2	2.2		2.2	2.2	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)	6.3	6.3		6.3	6.3		5.5	5.5		5.5	5.5	
Lead/Lag	Lead			Lag	Lag		Lag	Lag		Lag	Lag	
Lead-Lag Optimize?	Yes			Yes	Yes		Yes	Yes		Yes	Yes	
Recall Mode	None	Max		Max	Max		None	None		None	None	
Act Effct Green (s)	40.9	40.9		36.3	36.3		14.6	14.6		14.6	14.6	
Actuated g/C Ratio	0.56	0.56		0.50	0.50		0.20	0.20		0.20	0.20	
v/c Ratio	0.06	0.26		0.22	0.67		0.02	0.21		0.84	0.28	
Control Delay	7.8	8.5		14.6	20.4		25.8	15.3		69.9	24.9	
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Delay	7.8	8.5		14.6	20.4		25.8	15.3		69.9	24.9	
LOS	А	А		В	С		С	В		E	С	
Approach Delay		8.5			19.4			16.0			52.0	
Approach LOS		А			В			В			D	
Queue Length 50th (m)	1.3	15.5		7.3	44.4		0.5	2.4		16.4	8.0	
Queue Length 95th (m)	3.9	27.2		22.5	#112.4		3.4	13.1		#51.3	22.8	
Internal Link Dist (m)		407.2			322.8			177.3			302.0	
Turn Bay Length (m)	98.0			67.0			35.0			38.0		
Base Capacity (vph)	379	1166		505	808		294	373		202	396	
Starvation Cap Reductn	0	0		0	0		0	0		0	0	
Spillback Cap Reductn	0	0		0	0		0	0		0	0	
Storage Cap Reductn	0	0		0	0		0	0		0	0	
Reduced v/c Ratio	0.06	0.21		0.22	0.67		0.02	0.17		0.69	0.23	
Intersection Summary Cycle Length: 85 Actuated Cycle Length: 72.5 Natural Cycle: 75 Control Type: Semi Act-Uncc Maximum v/c Ratio: 0.84	bord											

Lanes, Volumes, Timings

Synchro 11 Report Page 9 Lanes, Volumes, Timings 5: Labelle St/Cummings Ave & Cyrville Rd

Lane Group	Ø3	Ø7
Lane Configurations		
Traffic Volume (vph)		
Future Volume (vph)		
Satd. Flow (prot)		
Flt Permitted		
Satd. Flow (perm)		
Satd. Flow (RTOR)		
Lane Group Flow (vph)		
Turn Type		
Protected Phases	3	7
Permitted Phases		
Detector Phase		
Switch Phase		
Minimum Initial (s)	1.0	1.0
Minimum Split (s)	3.0	3.0
Total Split (s)	5.0	5.0
Total Split (%)	6%	6%
Yellow Time (s)	2.0	2.0
All-Red Time (s)	0.0	0.0
Lost Time Adjust (s)		
Total Lost Time (s)		
Lead/Lag	Lead	Lead
Lead-Lag Optimize?	Yes	Yes
Recall Mode	Max	Max
Act Effct Green (s)		
Actuated g/C Ratio		
v/c Ratio		
Control Delay		
Queue Delay		
Total Delay		
LOS		
Approach Delay		
Approach LOS		
Queue Length 50th (m)		
Queue Length 95th (m)		
Internal Link Dist (m)		
Turn Bay Length (m)		
Base Capacity (vph)		
Starvation Cap Reductn		
Spillback Cap Reductn		
ophibuok oup Reducin		
Storage Can Reductn		
Storage Cap Reductn		
Storage Cap Reductn Reduced v/c Ratio		

Scenario 1 1137 Ogilvie AM Peak Hour 2027 Future Total

Synchro 11 Report Page 10

04-25-2025

5: Labelle St/Cummings Ave & Cy	ville Rd		04-25-202
Intersection Signal Delay: 23.0	Intersection LOS: C		
Intersection Capacity Utilization 66.1%	ICU Level of Service C		
Analysis Period (min) 15			
# 95th percentile volume exceeds capacity, queu	e may be longer.		
Queue shown is maximum after two cycles.	, ,		
Splits and Phases: 5: Labelle St/Cummings Ave	& Cyrville Rd	0 3 1 04	
42 s	5	s <mark>2</mark> 3 s	
+ +		A 🔸	
Ø5 Ø6		Ø7 Ø8	

	1	*	Ť	1	4	Ŧ	
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	¥		Ĩ.			41	
Traffic Volume (vph)	28	5	380	16	2	404	
Future Volume (vph)	28	5	380	16	2	404	
Satd. Flow (prot)	1640	0	1736	0	0	3316	
Flt Permitted	0.959						
Satd. Flow (perm)	1640	0	1736	0	0	3316	
Lane Group Flow (vph)	33	0	396	0	0	406	
Sign Control	Stop		Free			Free	
Intersection Summary							
Control Type: Unsignalized							
Intersection Capacity Utiliza	ition 32.1%			IC	U Level o	of Service /	

HCM 2010 TWSC	
---------------	--

6: Cummings Ave & Access #1

04-25-2025

Intersection			_			
Int Delay, s/veh	0.5					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Y	_	1+			41
Traffic Vol, veh/h	28	5	380	16	2	404
Future Vol, veh/h	28	5	380	16	2	404
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-		-	None
Storage Length	0	-	-	-	90	-
Veh in Median Storage		-	0	-		0
Grade, % Peak Hour Factor	0 100	-	0	-	- 100	0 100
	100	100 2	100 2	100 2	100	100
Heavy Vehicles, %	28	2	380		2	404
Mvmt Flow	28	5	380	16	2	404
Major/Minor	Minor1	1	Major1		Major2	
Conflicting Flow All	594	388	0	0	396	0
Stage 1	388	-	-	-	-	-
Stage 2	206	-	-	-	-	-
Critical Hdwy	6.63	6.23	-	-	4.13	-
Critical Hdwy Stg 1	5.43	-	-	-	-	-
Critical Hdwy Stg 2	5.83	-	-	-	-	-
Follow-up Hdwy	3.519		-	-	2.219	-
Pot Cap-1 Maneuver	452	659	-	-	1161	-
Stage 1	685	-	-	-	-	-
Stage 2	809	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver	451	659	-	-	1161	-
Mov Cap-2 Maneuver	451	-	-	-	-	-
Stage 1	685	-	-	-	-	-
Stage 2	807	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	13.2		0		0	
HCM LOS	13.2 B		0		0	
	5					
Minor Lane/Major Mvm	nt	NBT		VBLn1	SBL	SBT
Capacity (veh/h)		-	-	474	1161	-
HCM Lane V/C Ratio		-			0.002	-
HCM Control Delay (s)		-	-	13.2	8.1	0
HCM Lane LOS		-	-	В	A	A
HCM 95th %tile Q(veh)	-		0.2	0	-

	۶	7	1	Ť	Ļ	1	
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	5	1	5	•	100	0.511	
Traffic Volume (vph)	87	305	261	276	306	96	
Future Volume (vph)	87	305	261	276	306	96	
Satd. Flow (prot)	1595	1469	1658	1728	1685	0	
Flt Permitted	0.950		0.526	0			
Satd. Flow (perm)	1595	1469	918	1728	1685	0	
Satd. Flow (RTOR)		305			39	-	
Lane Group Flow (vph)	87	305	261	276	402	0	
Turn Type	Perm	Perm	Perm	NA	NA	-	
Protected Phases				2	6		
Permitted Phases	4	4	2				
Detector Phase	4	4	2	2	6		
Switch Phase			_	_	-		
Minimum Initial (s)	10.0	10.0	1.0	1.0	10.0		
Minimum Split (s)	22.0	22.0	7.9	7.9	39.9		
Total Split (s)	22.0	22.0	39.9	39.9	39.9		
Total Split (%)	35.5%	35.5%	64.5%	64.5%	64.5%		
Yellow Time (s)	3.3	3.3	3.3	3.3	3.3		
All-Red Time (s)	2.7	2.7	3.6	3.6	3.6		
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0		
Total Lost Time (s)	6.0	6.0	6.9	6.9	6.9		
Lead/Lag							
Lead-Lag Optimize?							
Recall Mode	None	None	Max	Max	Max		
Act Effct Green (s)	10.7	10.7	33.0	33.0	33.0		
Actuated g/C Ratio	0.19	0.19	0.58	0.58	0.58		
v/c Ratio	0.29	0.58	0.49	0.27	0.40		
Control Delay	22.4	8.0	11.2	7.0	7.5		
Queue Delay	0.0	0.0	0.0	0.0	0.0		
Total Delay	22.4	8.0	11.2	7.0	7.5		
LOS	С	А	В	А	А		
Approach Delay	11.2			9.0	7.5		
Approach LOS	В			А	А		
Queue Length 50th (m)	7.8	0.0	13.0	11.8	16.5		
Queue Length 95th (m)	17.7	16.2	33.9	25.7	36.6		
Internal Link Dist (m)	296.3			143.5	259.3		
Turn Bay Length (m)	60.0		60.0				
Base Capacity (vph)	450	634	534	1007	998		
Starvation Cap Reductn	0	0	0	0	0		
Spillback Cap Reductn	0	0	0	0	0		
Storage Cap Reductn	0	0	0	0	0		
Reduced v/c Ratio	0.19	0.48	0.49	0.27	0.40		
Intersection Summary							
Cycle Length: 61.9	7						
Actuated Cycle Length: 56. Natural Cycle: 65							
	coordinated						
Control Type: Actuated-Un Maximum v/c Ratio: 0.58	Loorumated						
waximum v/c Ratio: 0.58							
cenario 1 1137 Ogilvie Ro	ad PM Pea	k Hour 2	027 Eutur	a Tota			

Scenario 1 1137 Ogilvie AM Peak Hour 2027 Future Total

Synchro 11 Report Page 13 Scenario 1 1137 Ogilvie Road PM Peak Hour 2027 Future Total

Lanes, Volumes, Timings 1: Cummings Ave & Donald

> Synchro 11 Report Page 1

04-25-2025

Lanes, Volumes, Timings 1: Cummings Ave & Donald		04-25-202
Intersection Signal Delay: 9.2	Intersection LOS: A	
Intersection Capacity Utilization 63.3%	ICU Level of Service B	
Analysis Period (min) 15		
Splits and Phases: 1: Cummings Ave & Donald	1	24
39.9 s	22 s	
↓ Ø6		

	٠	-+	>	1	-	*	1	Ť	1	1	Ţ	-
ane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SB
ane Configurations		^	1	٦	† †	1	٢	ţ,		٦	ĥ	
Fraffic Volume (vph)	0	1044	265	35	761	149	100	243	26	147	250	14
uture Volume (vph)	0	1044	265	35	761	149	100	243	26	147	250	14
Satd. Flow (prot)	0	3316	1455	1658	3316	1483	1658	1718	0	1658	1637	
It Permitted				0.222			0.254			0.444		
Satd. Flow (perm)	0	3316	1366	386	3316	1333	442	1718	0	773	1637	
Satd. Flow (RTOR)			265			149		5			26	
ane Group Flow (vph)	0	1044	265	35	761	149	100	269	0	147	390	
Furn Type		NA	Perm	Perm	NA	Perm	Perm	NA		Perm	NA	
Protected Phases		2			6			8			4	
Permitted Phases			2	6		6	8			4		
Detector Phase		2	2	6	6	6	8	8		4	4	
Switch Phase												
Minimum Initial (s)		10.0	10.0	10.0	10.0	10.0	10.0	10.0		10.0	10.0	
/linimum Split (s)		32.2	32.2	32.2	32.2	32.2	47.1	47.1		47.1	47.1	
Total Split (s)		70.0	70.0	70.0	70.0	70.0	50.0	50.0		50.0	50.0	
Total Split (%)		58.3%	58.3%	58.3%	58.3%	58.3%	41.7%	41.7%		41.7%	41.7%	
fellow Time (s)		3.7	3.7	3.7	3.7	3.7	3.7	3.7		3.7	3.7	
All-Red Time (s)		2.5	2.5	2.5	2.5	2.5	3.4	3.4		3.4	3.4	
.ost Time Adjust (s)		0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Lost Time (s)		6.2	6.2	6.2	6.2	6.2	7.1	7.1		7.1	7.1	
_ead/Lag												
ead-Lag Optimize?		0.14-11	0.11-11	0.14-14	0.14-11	0.14-11	Mana	Mana		Maria	News	
Recall Mode		C-Max	C-Max	C-Max	C-Max	C-Max	None	None		None	None	
Act Effct Green (s)		74.0	74.0	74.0	74.0	74.0	32.7	32.7		32.7	32.7	
Actuated g/C Ratio		0.62	0.62 0.28	0.62	0.62 0.37	0.62 0.17	0.27 0.83	0.27 0.57		0.27 0.70	0.27 0.84	
Control Delay		0.51 15.1	2.4	0.15 22.6	20.8	9.2	87.4	40.7		55.9	0.64 54.1	
			0.0	0.0	20.8	9.2		40.7			0.0	
Queue Delay		0.0				9.2	0.0			0.0		
Total Delay		15.1	2.4	22.6	20.8		87.4	40.7		55.9	54.1	
-OS		10 F	A	С	C	A	F	D		E	D 54.6	
Approach Delay		12.5			19.0			53.4				
Approach LOS		B	0.0	10	B	F 7	22.2	D		24.4	D	
Queue Length 50th (m)		67.8	0.0	4.6	60.0	5.7	22.2	53.6		31.1	81.5	
Queue Length 95th (m)		104.7	12.1	m6.9	m70.7	m11.9	#45.3	71.1		49.3	105.6	
nternal Link Dist (m)		113.8		00.0	313.9	74.0	50.0	407.0		00.0	190.4	
Furn Bay Length (m)		0040	044	62.0	0040	71.0	50.0	047		82.0	004	
Base Capacity (vph)		2046	944	238	2046	879	158	617		276	601	
Starvation Cap Reductn		0	0	0	0	0	0	0		0	0	
Spillback Cap Reductn		0	0	0	0	0	0	0		0	0	
Storage Cap Reductn		0 0.51	0 0.28	0 15	0 0.37	0 17	0 0.63	0 0.44		0 0.53	0 0.65	
Reduced v/c Ratio		0.51	0.28	0.15	0.37	0.17	0.03	0.44		0.53	0.05	
ntersection Summary												
Cycle Length: 120												
Actuated Cycle Length: 120												
Offset: 20 (17%), Reference	d to phase	2:EBT a	nd 6:WB1	L, Start o	of Green							
latural Cycle: 80												

Synchro 11 Report Page 2

Maximum v/c Ratio: 0.84		
Intersection Signal Delay: 26.4	Intersection LOS: C	
Intersection Capacity Utilization 81.6%	ICU Level of Service D	
Analysis Period (min) 15		
# 95th percentile volume exceeds capacity, queue	e may be longer.	
Queue shown is maximum after two cycles.		
m Volume for 95th percentile gueue is metered by	/ upstream signal.	

→ Ø2 (R)	Ø4	
70 s	50 s	
📌 Ø6 (R)	▲ øs	
70 s	50 s	

	٠	-	7	1	←	*	1	1	1	4	ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SB
Lane Configurations	5	* 1>		٦	† 1>		٦	eî (5	f,	
Traffic Volume (vph)	171	1015	27	163	781	233	61	174	176	273	227	13
Future Volume (vph)	171	1015	27	163	781	233	61	174	176	273	227	13
Satd. Flow (prot)	1658	3294	0	1610	3112	0	1658	1525	0	1658	1637	
Flt Permitted	0.102			0.095			0.547			0.232		
Satd. Flow (perm)	178	3294	0	161	3112	0	951	1525	0	394	1637	
Satd. Flow (RTOR)		2			35			42			31	
Lane Group Flow (vph)	171	1042	0	163	1014	0	61	350	0	273	358	
Turn Type	pm+pt	NA		pm+pt	NA		Perm	NA		pm+pt	NA	
Protected Phases	5	2		1	6			8		7	4	
Permitted Phases	2			6			8			4		
Detector Phase	5	2		1	6		8	8		7	4	
Switch Phase		_			-			-				
Minimum Initial (s)	5.0	10.0		5.0	10.0		10.0	10.0		5.0	10.0	
Minimum Split (s)	9.7	24.7		9.7	24.7		36.6	36.6		9.3	36.6	
Total Split (s)	15.0	45.0		15.0	45.0		40.0	40.0		20.0	60.0	
Total Split (%)	12.5%	37.5%		12.5%	37.5%		33.3%	33.3%		16.7%	50.0%	
Yellow Time (s)	3.7	3.7		3.7	3.7		3.3	3.3		3.3	3.3	
All-Red Time (s)	1.0	2.0		1.0	2.0		3.3	3.3		1.0	3.3	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)	4.7	5.7		4.7	5.7		6.6	6.6		4.3	6.6	
Lead/Lag	Lead	Lag		Lead	Lag		Lag	Lag		Lead	0.0	
Lead-Lag Optimize?	Yes	Yes		Yes	Yes		Yes	Yes		Yes		
Recall Mode	None	C-Max		None	C-Max		None	None		None	None	
Act Effct Green (s)	54.6	42.4		54.4	42.3		29.5	29.5		51.8	49.5	
Actuated g/C Ratio	0.46	0.35		0.45	0.35		0.25	0.25		0.43	0.41	
v/c Ratio	0.78	0.90		0.79	0.00		0.26	0.86		0.81	0.52	
Control Delay	56.3	39.2		56.7	48.3		38.0	58.6		43.2	26.2	
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		40.2	0.0	
Total Delay	56.3	39.2		56.7	48.3		38.0	58.6		43.2	26.2	
LOS	50.5 E	00.2 D		50.7 E	40.5 D		00.0 D	50.0 E		43.2 D	20.2 C	
Approach Delay	L	41.6		L	49.5		U	55.6		D	33.5	
Approach LOS		41.0 D			49.0 D			55.6 E			55.5 C	
Queue Length 50th (m)	17.3	38.3		30.7	98.6		11.5	69.8		42.3	55.7	
Queue Length 95th (m)	#64.0	#116.2		50.7 m#52.1 r			22.9	#109.8		42.3 #67.5	79.5	
Internal Link Dist (m)	#04.0	313.9		m#52.11	393.6		22.9	302.0		#07.5	79.5	
Turn Bay Length (m)	80.0	515.9		100.0	393.0		34.0	302.0			70.4	
	221	1164		209	1118		264	454		335	745	
Base Capacity (vph)	221	0		209	0		204	454		335 0	745	
Starvation Cap Reductn	-	0		0	0		0	0		0	0	
Spillback Cap Reductn	0						-					
Storage Cap Reductn Reduced v/c Ratio	0 0.77	0 0.90		0 0.78	0 0.91		0 0.23	0 0.77		0 0.81	0 0.48	
	0.77	0.90		0.78	0.91		0.23	0.77		0.81	0.48	
Intersection Summary												
Cycle Length: 120												
Actuated Cycle Length: 120 Offset: 46 (38%), Reference												

Synchro 11 Report Page 4 Scenario 1 1137 Ogilvie Road PM Peak Hour 2027 Future Total

Maximum v/c Ratio: 0.91		
Intersection Signal Delay: 44.5	Intersection LOS: D	
Intersection Capacity Utilization 99.6%	ICU Level of Service F	
Analysis Period (min) 15		
# 95th percentile volume exceeds capacity, queue	e may be longer.	
Queue shown is maximum after two cycles.		
m Volume for 95th percentile queue is metered by	/ upstream signal.	

1 Ø1	🚽 千 Ø2 (R)	₩ Ø4	
15 s	45 s	60 s	
	🖉 🖉 Ø6 (R)	→ Ø7 ● ↑ Ø8	
15 s	45 s	20 s 40 s	

	٠		7	1	-	*	1	Ť	1	1	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations	5	† †	1	٦	† †	1	7	†		٦	* 1>	
Traffic Volume (vph)	288	1080	103	231	692	220	175	348	163	146	395	305
Future Volume (vph)	288	1080	103	231	692	220	175	348	163	146	395	305
Satd. Flow (prot)	1658	3316	1469	1658	3316	1483	1658	3157	0	1658	3100	(
Flt Permitted	0.280			0.101			0.950			0.950		
Satd. Flow (perm)	489	3316	1469	176	3316	1483	1658	3157	0	1658	3100	(
Satd. Flow (RTOR)			136			220		58			141	
Lane Group Flow (vph)	288	1080	103	231	692	220	175	511	0	146	700	(
Turn Type	pm+pt	NA	Perm	pm+pt	NA	Perm	Prot	NA		Prot	NA	
Protected Phases	5	2		1	6		7	4		3	8	
Permitted Phases	2		2	6		6						
Detector Phase	5	2	2	1	6	6	7	4		3	8	
Switch Phase												
Minimum Initial (s)	5.0	10.0	10.0	5.0	10.0	10.0	5.0	10.0		5.0	10.0	
Minimum Split (s)	9.7	34.1	34.1	9.7	34.1	34.1	10.9	30.1		12.2	30.1	
Total Split (s)	20.0	51.0	51.0	20.0	51.0	51.0	18.9	30.1		18.9	30.1	
Total Split (%)	16.7%	42.5%	42.5%	16.7%	42.5%	42.5%	15.8%	25.1%		15.8%	25.1%	
Yellow Time (s)	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7		3.5	3.7	
All-Red Time (s)	1.0	2.4	2.4	1.0	2.4	2.4	2.2	2.4		3.7	2.4	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		2.2	2.4	
Total Lost Time (s)	4.7	6.1	6.1	4.7	6.1	6.1	5.9	6.1		9.4	8.5	
Lead/Lag	Lead	Lag	Lag	Lead	Lag	Lag	Lead	Lag		Lead	Lag	
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		Yes	Yes	
Recall Mode	None	C-Max	C-Max	None	C-Max	C-Max	None	None		None	None	
Act Effct Green (s)	61.5	45.7	45.7	61.7	45.7	45.7	13.0	24.0		9.5	21.6	
Actuated g/C Ratio	0.51	0.38	0.38	0.51	0.38	0.38	0.11	0.20		0.08	0.18	
v/c Ratio	0.74	0.86	0.16	0.86	0.55	0.31	0.98	0.75		1.11	1.04	
Control Delay	33.3	34.9	4.6	56.0	31.3	4.5	115.5	48.0		162.9	83.9	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Delay	33.3	34.9	4.6	56.0	31.3	4.5	115.5	48.0		162.9	83.9	
LOS	C	C	A	E	С	A	F	D		F	F	
Approach Delay		32.5			31.1			65.2			97.5	
Approach LOS		C			С			E			F	
Queue Length 50th (m)	43.7	81.0	1.6	35.9	67.1	0.0	41.7	53.5		~39.4	~78.3	
Queue Length 95th (m)	m54.0	m94.0	m2.5	#77.0	85.8	15.5	#85.9	73.1		#80.6	#116.1	
Internal Link Dist (m)		393.6			260.7			297.6			298.7	
Turn Bay Length (m)	80.0		65.0	50.0		60.0	100.0			110.0		
Base Capacity (vph)	403	1262	643	280	1263	701	179	677		131	673	
Starvation Cap Reductn	0	0	0	0	0	0	0	0		0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0		0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0		0	0	
Reduced v/c Ratio	0.71	0.86	0.16	0.82	0.55	0.31	0.98	0.75		1.11	1.04	
Intersection Summary Cycle Length: 120 Actuated Cycle Length: 120 Offset: 50 (42%), Reference Natural Cycle: 100		2:EBTL	and 6:WB	TL, Start	of Green							

Synchro 11 Report Page 6

Scenario 1 1137 Ogilvie Road PM Peak Hour 2027 Future Total

Maximum v/c Ratio: 1.11		
ntersection Signal Delay: 50.8	Intersection LOS: D	
Intersection Capacity Utilization 98.1%	ICU Level of Service F	
Analysis Period (min) 15		
 Volume exceeds capacity, queue is theoretically 	infinite.	
Queue shown is maximum after two cycles.		
# 95th percentile volume exceeds capacity, queue	may be longer.	
Queue shown is maximum after two cycles.		

Splits and Phases: 4: Aviation & Ogilvie Rd

1 Ø1	Ø2 (R)	1 03	tø₄	
20 s	51s	18.9 s	30.1 s	
♪ _{Ø5}	🚽 🕈 Ø6 (R)	1 07	↓ Ø8	
20 s	51s	18.9 s	30.1 s	

	٠	-	7	1	-	*	1	Ť	1	1	ţ	-
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SB
Lane Configurations	1	ħ		5	ţ,		٦	ţ,		٦	¢ĵ,	
Traffic Volume (vph)	10	53	68	74	311	272	10	75	68	60	458	1
Future Volume (vph)	10	53	68	74	311	272	10	75	68	60	458	1
Satd. Flow (prot)	1658	1387	0	1595	1573	0	1658	1489	0	1445	1737	
Flt Permitted	0.242			0.679			0.284			0.536		
Satd. Flow (perm)	422	1387	0	1114	1573	0	496	1489	0	714	1737	
Satd. Flow (RTOR)		68			50			48			1	
Lane Group Flow (vph)	10	121	0	74	583	0	10	143	0	60	469	
Turn Type	pm+pt	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases	5	2			6			8			4	
Permitted Phases	2			6			8			4		
Detector Phase	5	2		6	6		8	8		4	4	
Switch Phase												
Minimum Initial (s)	5.0	10.0		10.0	10.0		10.0	10.0		10.0	10.0	
Minimum Split (s)	11.3	34.3		34.3	34.3		22.5	22.5		22.5	22.5	
Total Split (s)	15.0	43.0		43.0	43.0		37.0	37.0		37.0	37.0	
Total Split (%)	15.0%	43.0%		43.0%	43.0%		37.0%	37.0%		37.0%	37.0%	
Yellow Time (s)	3.7	3.7		3.7	3.7		3.3	3.3		3.3	3.3	
All-Red Time (s)	1.0	2.6		2.6	2.6		2.2	2.2		2.2	2.2	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)	4.7	6.3		6.3	6.3		5.5	5.5		5.5	5.5	
Lead/Lag	Lead			Lag	Lag		Lag	Lag		Lag	Lag	
Lead-Lag Optimize?	Yes			Yes	Yes		Yes	Yes		Yes	Yes	
Recall Mode	None	Max		Max	Max		None	None		None	None	
Act Effct Green (s)	40.6	39.0		37.1	37.1		20.5	20.5		25.6	25.6	
Actuated g/C Ratio	0.53	0.51		0.48	0.48		0.27	0.27		0.33	0.33	
v/c Ratio	0.03	0.16		0.14	0.74		0.08	0.33		0.25	0.81	
Control Delay	10.0	6.2		14.6	23.9		23.2	17.6		22.3	35.9	
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Delay	10.0	6.2		14.6	23.9		23.2	17.6		22.3	35.9	
LOS	10.0 A	0.2 A		B	20.0 C		20.2 C	В		22.0 C	D	
Approach Delay	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	6.5			22.8		0	17.9		0	34.3	
Approach LOS		0.5 A			22.0 C			н.з В			04.0 C	
Queue Length 50th (m)	0.7	3.7		5.4	56.6		1.0	10.2		5.9	57.6	
Queue Length 95th (m)	3.0	12.7		17.4	#149.1		5.3	27.7		17.4	#119.6	
Internal Link Dist (m)	5.0	407.0		17.4	322.8		0.0	177.5		17.4	302.0	
Turn Bay Length (m)	98.0	407.0		67.0	522.0		35.0	111.5		38.0	302.0	
Base Capacity (vph)	392	969		540	789		206	648		297	724	
Starvation Cap Reductn		909		040	0		200	048		297	0	
Spillback Cap Reductn	0	0		0	0		0	0		0	0	
Storage Cap Reductin	0	0		0	0		0	0		0	0	
Reduced v/c Ratio	0.03	0.12		0.14	0.74		0.05	0.22		0.20	0.65	
	0.03	0.12		0.14	0.74		0.05	0.22		0.20	0.05	
Intersection Summary												
Cycle Length: 100												
Actuated Cycle Length: 76.5	5											
Natural Cycle: 90												
Control Type: Semi Act-Unc	oord											

Scenario 1 1137 Ogilvie Road PM Peak Hour 2027 Future Total

Synchro 11 Report Page 8

Scenario 1 1137 Ogilvie Road PM Peak Hour 2027 Future Total

Lanes, Volumes, Timings	
5: Labelle St/Cummings Ave & Cyrville Rd	04-25-2025

Lane Configurations Traffic Volume (vph) Future Volume (vph) Satd. Flow (prot) Fit Permitted Satd. Flow (prot) Fit Permitted Satd. Flow (RTOR) Lane Group Flow (vph) Turn Type Protected Phases Permitted Phases Detector Phase Switch Phase Swi	3 1.0 3.0 5.0 5% 2.0	7
Traffic Volume (vph) Future Volume (vph) Satd. Flow (prot) Fit Permitted Satd. Flow (perm) Satd. Flow (PTOR) Lane Group Flow (vph) Turn Type Protected Phases Detector Phase Switch Phase Minimum Initial (s) Minimum Split (s) Total Split (%) Yellow Time (s) All-Red Time (s) Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead	1.0 3.0 5.0 5% 2.0	1.0
Future Volume (vph) Satd. Flow (prot) Fit Permitted Satd. Flow (perm) Satd. Flow (RTOR) Lane Group Flow (vph) Turn Type Protected Phases Permitted Phases Detector Phase Switch Phase Minimum Initial (s) Minimum Split (s) Total Split (s) Total Split (s) Total Split (s) Total Split (s) All-Red Time (s) Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead-Lag Optimize? Recall Mode Act Eftct Green (s) Actuated g/C Ratio	1.0 3.0 5.0 5% 2.0	1.0
Satd. Flow (prot) Fit Permitted Satd. Flow (perm) Satd. Flow (RTOR) Lane Group Flow (vph) Turn Type Protected Phases Permitted Phases Detector Phase Switch Phase	1.0 3.0 5.0 5% 2.0	1.0
Fit Permitted Satd. Flow (perm) Satd. Flow (RTOR) Lane Group Flow (vph) Turn Type Protected Phases Permitted Phases Detector Phase Switch Phase Switch Phase Minimum Initial (s) Minimum Split (s) Total Split (%) Yellow Time (s) All-Red Time (s) Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead/Lag Lead-Lag Optimize? Recall Mode Act Eftct Green (s) Actuated g/C Ratio	1.0 3.0 5.0 5% 2.0	1.0
Satd. Flow (RTOR) Lane Group Flow (vph) Turn Type Protected Phases Permitted Phases Detector Phase Switch Phase Minimum Initial (s) Minimum Split (s) Total Split (s) Total Split (s) Yellow Time (s) All-Red Time (s) Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead/Lag Lead-Lag Optimize? Recall Mode Act EftC Green (s) Actuated g/C Ratio	1.0 3.0 5.0 5% 2.0	1.0
Satd. Flow (RTOR) Lane Group Flow (vph) Turn Type Protected Phases Permitted Phases Detector Phase Switch Phase Minimum Initial (s) Minimum Split (s) Total Split (s) Total Split (s) Yellow Time (s) All-Red Time (s) Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead-Lag Optimize? Recall Mode Act Eftct Green (s) Actuated g/C Ratio	1.0 3.0 5.0 5% 2.0	1.0
Lane Group Flow (vph) Turn Type Protected Phases Detector Phases Switch Phase Switch Phase Switch Phase Minimum Initial (s) Minimum Split (s) Total Split (s) Total Split (s) Total Split (s) Yellow Time (s) All-Red Time (s) Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead-Lag Optimize? Recall Mode Act Eftct Green (s) Actuated g/C Ratio	1.0 3.0 5.0 5% 2.0	1.0
Turn Type Protected Phases Permitted Phases Detector Phase Switch Phase Minimum Initial (s) Minimum Split (s) Total Split (%) Yellow Time (s) All-Red Time (s) Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead-Lag Optimize? Recall Mode Act Effct Green (s) Actuated g/C Ratio	1.0 3.0 5.0 5% 2.0	1.0
Protected Phases Permitted Phases Detector Phase Switch Phase Minimum Initial (s) Minimum Split (s) Total Split (%) Yellow Time (s) All-Red Time (s) Lost Time (s) Lost Time (s) Lead/Lag Lead/Lag Lead-Lag Optimize? Recall Mode Act EftC Green (s) Actuated g/C Ratio	1.0 3.0 5.0 5% 2.0	1.0
Permitted Phases Detector Phase Switch Phase Minimum Initial (s) Minimum Split (s) Total Split (s) Total Split (%) Yellow Time (s) All-Red Time (s) Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead-Lag Optimize? Recall Mode Act EftG Green (s) Actuated g/C Ratio	3.0 5.0 5% 2.0	
Switch Phase Minimum Initial (s) Minimum Split (s) Total Split (%) Yellow Time (s) All-Red Time (s) Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead-Lag Optimize? Recall Mode Act Eftct Green (s) Actuated g/C Ratio	3.0 5.0 5% 2.0	
Switch Phase Minimum Initial (s) Minimum Split (s) Total Split (%) Yellow Time (s) All-Red Time (s) Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead-Lag Optimize? Recall Mode Act Eftct Green (s) Actuated g/C Ratio	3.0 5.0 5% 2.0	
Minimum Initial (s) Minimum Split (s) Total Split (%) Yellow Time (s) All-Red Time (s) Lost Time Agiust (s) Total Lost Time (s) Lead/Lag Lead-Lag Optimize? Recall Mode Act Eftct Green (s) Actuated g/C Ratio	3.0 5.0 5% 2.0	
Minimum Split (s) Total Split (s) Total Split (%) Yellow Time (s) All-Red Time (s) Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead-Lag Optimize? Recall Mode Act Eft Green (s) Actuated g/C Ratio	3.0 5.0 5% 2.0	
Total Split (s) Total Split (%) Yellow Time (s) All-Red Time (s) Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead-Lag Optimize? Recall Mode Act Effct Green (s) Actuated g/C Ratio	5.0 5% 2.0	
Total Split (%) Yellow Time (s) All-Red Time (s) Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead-Lag Optimize? Recall Mode Act Effct Green (s) Actuated g/C Ratio	5% 2.0	5.0
Yellow Time (s) All-Red Time (s) Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead-Lag Optimize? Recall Mode Act Effct Green (s) Actuated g/C Ratio	2.0	5%
All-Red Time (s) Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead-Lag Optimize? Recail Mode Act Effct Green (s) Actuated g/C Ratio		2.0
Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead-Lag Optimize? Recall Mode Act Effct Green (s) Actuated g/C Ratio	0.0	0.0
Total Lost Time (s) Lead/Lag Lead-Lag Optimize? Recall Mode Act Effct Green (s) Actuated g/C Ratio	2.0	
Lead/Lag Lead-Lag Optimize? Recall Mode Act Effct Green (s) Actuated g/C Ratio		
Lead-Lag Optimize? Recall Mode Act Effct Green (s) Actuated g/C Ratio	Lead	Lead
Recall Mode Act Effct Green (s) Actuated g/C Ratio	Yes	Yes
Act Effct Green (s) Actuated g/C Ratio	None	Max
Actuated g/C Ratio		
WC Ralio		
Control Delay		
Queue Delay		
Total Delay		
LOS		
Approach Delay		
Approach LOS		
Queue Length 50th (m)		
Queue Length 95th (m)		
Internal Link Dist (m)		
Turn Bay Length (m)		
Base Capacity (vph)		
Starvation Cap Reductn		
Spillback Cap Reductn		
Storage Cap Reductn		
Reduced v/c Ratio		
Intersection Summary		

5: Labelle St/Cummings Ave & Cyr		
ntersection Signal Delay: 25.0	Intersection LOS: C	
ntersection Capacity Utilization 92.9%	ICU Level of Service F	
Analysis Period (min) 15		
# 95th percentile volume exceeds capacity, queue	may be longer.	
Queue shown is maximum after two cycles.		

A ₀₂		0 4	N1-1
43 s		5 s <mark>3</mark> 7 s	
♪ ø5	₹ø6	●ø; ¶øs	
	25.4		

Scenario 1 1137 Ogilvie Road PM Peak Hour 2027 Future Total

	1	•	Ť	1	4	Ŧ	
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	Y		4			41	
Traffic Volume (vph)	24	3	554	31	5	618	
Future Volume (vph)	24	3	554	31	5	618	
Satd. Flow (prot)	1645	0	1733	0	0	3316	
FIt Permitted	0.957						
Satd. Flow (perm)	1645	0	1733	0	0	3316	
Lane Group Flow (vph)	27	0	585	0	0	623	
Sign Control	Stop		Free			Free	
Intersection Summary							
Control Type: Unsignalized							
ntersection Capacity Utiliza	tion 42.8%			IC	U Level o	of Service	A

HCM 2010 TWSC
6: Cummings Ave & Accss#1

Intersection						
Int Delay, s/veh	0.4					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Y	WDIN	1	NDIX	ODL	41
Traffic Vol, veh/h	24	3	554	31	5	618
Future Vol. veh/h	24	3	554	31	5	618
Conflicting Peds, #/hr	24	0	0	0	0	010
Sign Control	•	Stop	Free	Free	Free	Free
RT Channelized	Stop	None			Free -	None
			-			
Storage Length	0	-	-	-	90	-
Veh in Median Storage		-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	24	3	554	31	5	618
Major/Minor	Minor1	Ν	Major1		Major2	
Conflicting Flow All	889	570	0	0	585	0
Stage 1	570	- 510	-	-	- 305	-
Stage 2	319	-				-
	6.63			-		
Critical Hdwy		6.23	-	-	4.13	-
Critical Hdwy Stg 1	5.43	-	-	-	-	-
Critical Hdwy Stg 2	5.83	-	-	-	-	-
Follow-up Hdwy	3.519		-		2.219	-
Pot Cap-1 Maneuver	298	520	-	-	988	-
Stage 1	565	-	-	-	-	-
Stage 2	710	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver	296	520	-	-	988	-
Mov Cap-2 Maneuver	296	-		-	-	-
Stage 1	565	-		-	-	-
Stage 2	704			-		
Stage 2	704	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	17.7		0		0.1	
HCM LOS	С					
Minor Lane/Major Mvr	nt	NBT		WBLn1	SBL	SBT
	nu					
Capacity (veh/h)		-	-	311	988	-
HCM Lane V/C Ratio		-	-	0.087		-
HCM Control Delay (s)	-	-	17.7	8.7	0
HCM Lane LOS		-	-	С	Α	Α
HCM 95th %tile Q(veh	1)	-	-	0.3	0	-

Synchro 11 Report Page 12 Scenario 1 1137 Ogilvie Road PM Peak Hour 2027 Future Total

Synchro 11 Report Page 13

04-25-2025

Appendix O

Synchro Worksheets -2029 Future Total Horizon

Lanes, Volumes, Timings
1: Cummings Ave & Donald

	≯	\mathbf{r}	1	Ť	Ť	~
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	5	1	ň	↑	4Î	
Traffic Volume (vph)	56	192	253	156	197	92
Future Volume (vph)	56	192	253	156	197	92
Satd. Flow (prot)	1626	1455	1658	1695	1644	0
Flt Permitted	0.950		0.583			
Satd. Flow (perm)	1626	1455	1017	1695	1644	0
Satd. Flow (RTOR)		192			58	
Lane Group Flow (vph)	56	192	253	156	289	0
Turn Type	Perm	Perm	Perm	NA	NA	
Protected Phases				2	6	
Permitted Phases	4	4	2			
Detector Phase	4	4	2	2	6	
Switch Phase						
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	
Minimum Split (s)	22.0	22.0	39.9	39.9	39.9	
Total Split (s)	22.0	22.0	39.9	39.9	39.9	
Total Split (%)	35.5%	35.5%	64.5%	64.5%	64.5%	
Yellow Time (s)	3.3	3.3	3.3	3.3	3.3	
All-Red Time (s)	2.7	2.7	3.6	3.6	3.6	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.0	6.0	6.9	6.9	6.9	
Lead/Lag						
Lead-Lag Optimize?						
Recall Mode	None	None	Max	Max	Max	
Act Effct Green (s)	10.2	10.2	33.8	33.8	33.8	
Actuated g/C Ratio	0.18	0.18	0.59	0.59	0.59	
v/c Ratio	0.19	0.46	0.42	0.16	0.29	
Control Delay	21.3	7.8	9.1	5.8	5.5	
Queue Delay	0.0	0.0	0.0	0.0	0.0	
Total Delay	21.3	7.8	9.1	5.8	5.5	
LOS	21.0 C	A	A	A	A	
Approach Delay	10.9	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		7.9	5.5	
Approach LOS	B			A	A	
Queue Length 50th (m)	4.9	0.0	12.0	6.1	9.6	
Queue Length 95th (m)	12.8	13.5	26.9	13.2	20.3	
Internal Link Dist (m)	296.9	.0.0	20.0	155.2	259.3	
Turn Bay Length (m)	60.0		60.0	100.2	200.0	
Base Capacity (vph)	456	546	603	1006	999	
Starvation Cap Reductn	0	0	000	0	0	
Spillback Cap Reductn	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	
Reduced v/c Ratio	0.12	0.35	0.42	0.16	0.29	
	0.12	0.00	0.12	0.10	0.20	
Intersection Summary						
Cycle Length: 61.9						
Actuated Cycle Length: 57						
Natural Cycle: 65						
Control Type: Actuated-Unc	oordinated					
Maximum v/c Ratio: 0.46						

Synchro 11 Report Page 1

02-18-2025

Lanes, Volumes, Timings 02-18-2025 1: Cummings Ave & Donald 02-18-2025 Intersection Signal Delay: 7.9 Intersection LOS: A

Intersection Signal Delay. 7.9	Intersection LOS. A
Intersection Capacity Utilization 56.5%	ICU Level of Service B
Analysis Period (min) 15	

Splits and Phases: 1: Cummings Ave & Donald

1 ø2		-√ Ø4	
39.9 s		22 s	
↓ Ø6			
39.9 s			

Scenario 1 1137 Ogilvie AM Peak Hour 2029 Future Total

2: Cyrville Rd & Ogilvie Rd

	≯	-	\mathbf{r}	4	+	*	•	1	1	1	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations		^	1	٦	^	1	1	¢Î,		٦	ĥ	
Traffic Volume (vph)	0	658	146	35	853	134	161	195	28	48	112	43
Future Volume (vph)	0	658	146	35	853	134	161	195	28	48	112	43
Satd. Flow (prot)	0	3252	1427	1551	3316	1455	1580	1589	0	1566	1575	(
Flt Permitted				0.388			0.591			0.439		
Satd. Flow (perm)	0	3252	1338	626	3316	1301	977	1589	0	722	1575	(
Satd. Flow (RTOR)			146			134		6			16	
Lane Group Flow (vph)	0	658	146	35	853	134	161	223	0	48	155	(
Turn Type		NA	Perm	Perm	NA	Perm	Perm	NA		Perm	NA	
Protected Phases		2			6			8			4	
Permitted Phases			2	6		6	8			4		
Detector Phase		2	2	6	6	6	8	8		4	4	
Switch Phase												
Minimum Initial (s)		10.0	10.0	10.0	10.0	10.0	10.0	10.0		10.0	10.0	
Minimum Split (s)		32.2	32.2	32.2	32.2	32.2	47.1	47.1		47.1	47.1	
Total Split (s)		80.0	80.0	80.0	80.0	80.0	50.0	50.0		50.0	50.0	
Total Split (%)		61.5%	61.5%	61.5%	61.5%	61.5%	38.5%	38.5%		38.5%	38.5%	
Yellow Time (s)		3.7	3.7	3.7	3.7	3.7	3.7	3.7		3.7	3.7	
All-Red Time (s)		2.5	2.5	2.5	2.5	2.5	3.4	3.4		3.4	3.4	
Lost Time Adjust (s)		0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Lost Time (s)		6.2	6.2	6.2	6.2	6.2	7.1	7.1		7.1	7.1	
Lead/Lag												
Lead-Lag Optimize?												
Recall Mode		C-Max	C-Max	C-Max	C-Max	C-Max	None	None		None	None	
Act Effct Green (s)		90.6	90.6	90.6	90.6	90.6	26.1	26.1		26.1	26.1	
Actuated g/C Ratio		0.70	0.70	0.70	0.70	0.70	0.20	0.20		0.20	0.20	
v/c Ratio		0.29	0.15	0.08	0.37	0.14	0.82	0.69		0.33	0.47	
Control Delay		9.0	2.0	4.6	4.1	0.2	78.6	56.5		47.2	43.7	
Queue Delay		0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Delay		9.0	2.0	4.6	4.1	0.2	78.6	56.5		47.2	43.7	
LOS		A	A	A	А	А	E	E		D	D	
Approach Delay		7.7			3.6			65.8			44.5	
Approach LOS		A			A			E			D	
Queue Length 50th (m)		29.8	0.0	1.3	17.5	0.0	40.2	52.5		10.7	31.9	
Queue Length 95th (m)		55.0	8.5	m2.0	20.3	m0.0	57.7	68.8		19.9	45.9	
Internal Link Dist (m)		113.5			313.9			407.2			190.6	
Turn Bay Length (m)				62.0		71.0	50.0			82.0		
Base Capacity (vph)		2265	976	436	2309	946	322	528		238	530	
Starvation Cap Reductn		0	0	0	0	0	0	0		0	0	
Spillback Cap Reductn		0	0	0	0	0	0	0		0	0	
Storage Cap Reductn		0	0	0	0	0	0	0		0	0	
Reduced v/c Ratio		0.29	0.15	0.08	0.37	0.14	0.50	0.42		0.20	0.29	
Intersection Summary Cycle Length: 130 Actuated Cycle Length: 130 Offset: 10 (8%), Referenced Natural Cycle: 80		2:EBT ar	id 6:WBT	L, Start o	f Green							
Control Type: Actuated-Coo	rdinated											

Synchro 11 Report Page 3

02-18-2025

Lanes, Volumes, Timings 2: Cyrville Rd & Ogilvie Rd

Maximum v/c Ratio: 0.82		
Intersection Signal Delay: 18.3	Intersection LOS: B	
Intersection Capacity Utilization 72.0%	ICU Level of Service C	
Analysis Period (min) 15		

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 2: Cyrville Rd & Ogilvie Rd

Scenario 1 1137 Ogilvie AM Peak Hour 2029 Future Total

, ➡ Ø2 (R)	₩ø4
80 s	50 s
Ø6 (R)	≪ ¶ø8
80 s	50 s

Synchro 11 Report Page 4

02-18-2025
3: Cummings Ave & Ogilvie Rd	Lanes, Volumes, Timings
	3: Cummings Ave & Ogilvie Rd

	۶	-	$\mathbf{\hat{z}}$	4	-	*	•	1	1	1	÷.	-
ane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SB
ane Configurations	ľ	≜ †î≽		ľ	A1⊅		1	¢Î		ľ	eî Î	
raffic Volume (vph)	83	662	13	100	816	175	63	153	88	179	150	14
uture Volume (vph)	83	662	13	100	816	175	63	153	88	179	150	1
Satd. Flow (prot)	1580	3265	0	1642	3157	0	1658	1550	0	1642	1598	
It Permitted	0.950			0.950			0.950			0.950		
Satd. Flow (perm)	1546	3265	0	1609	3157	0	1650	1550	0	1554	1598	
atd. Flow (RTOR)		2										
ane Group Flow (vph)	83	675	0	100	991	0	63	241	0	179	295	
urn Type	Prot	NA		Prot	NA		Prot	NA		Prot	NA	
Protected Phases	5	2		1	6		3	8		7	4	
Permitted Phases	, i i i i i i i i i i i i i i i i i i i	-			v		Ŭ	Ŭ				
etector Phase	5	2		1	6		3	8		7	4	
witch Phase	0	_			5		5	5			,	
linimum Initial (s)	5.0	10.0		5.0	10.0		5.0	10.0		5.0	10.0	
linimum Split (s)	9.7	25.7		9.7	25.7		9.5	37.1		9.3	37.1	
otal Split (s)	15.0	49.2		20.7	54.9		15.1	37.1		23.0	45.0	
otal Split (%)	11.5%	37.8%		15.9%	42.2%		11.6%	28.5%		17.7%	34.6%	
ellow Time (s)	3.7	3.7		3.7	42.2 /0		3.3	3.3		3.3	3.3	
II-Red Time (s)	1.0	3.0		1.0	3.0		1.0	3.8		1.0	3.8	
ost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
	4.7	6.7		4.7	6.7		4.3	7.1		4.3	7.1	
otal Lost Time (s)										4.3 Lead		
ead/Lag	Lead	Lag		Lead	Lag		Lead	Lag			Lag	
ead-Lag Optimize?	Yes	Yes		Yes	Yes		Yes	Yes		Yes	Yes	
Recall Mode	None	C-Max		None	C-Max		None	None		None	None	
ct Effct Green (s)	10.5	51.3		12.7	53.6		9.3	25.9		17.2	35.9	
ctuated g/C Ratio	0.08	0.39		0.10	0.41		0.07	0.20		0.13	0.28	
/c Ratio	0.65	0.52		0.62	0.76		0.53	0.78		0.82	0.67	
Control Delay	83.5	28.8		84.1	35.3		74.2	66.8		83.3	50.1	
ueue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
otal Delay	83.5	28.8		84.1	35.3		74.2	66.8		83.3	50.1	
OS	F	С		F	D		E	E		F	D	
pproach Delay		34.8			39.7			68.3			62.6	
pproach LOS		С			D			E			E	
Queue Length 50th (m)	21.1	51.7		27.2	132.9		15.7	58.5		44.7	67.7	
Queue Length 95th (m)	#45.1	69.2		m41.7	m158.3		30.6	85.8		#78.7	97.0	
nternal Link Dist (m)		313.9			393.6			302.0			58.8	
urn Bay Length (m)	80.0			100.0			34.0					
ase Capacity (vph)	133	1290		202	1301		137	357		236	465	
starvation Cap Reductn	0	0		0	0		0	0		0	0	
pillback Cap Reductn	0	0		0	0		0	0		0	0	
Storage Cap Reductn	0	0		0	0		0	0		0	0	
Reduced v/c Ratio	0.62	0.52		0.50	0.76		0.46	0.68		0.76	0.63	
ntersection Summary Cycle Length: 130 Inctuated Cycle Length: 130 Offset: 0 (0%), Referenced t Iatural Cycle: 105	o phase 2	:EBT and	6:WBT, S	Start of G	reen							

Synchro 11 Report Page 5

02-18-2025

Lanes, Volumes, Timings 3: Cummings Ave & Ogilvie Rd		02-18-2025
		02-10-2020
Maximum v/c Ratio: 0.82		
Intersection Signal Delay: 45.7	Intersection LOS: D	
Intersection Capacity Utilization 85.7%	ICU Level of Service E	
Analysis Period (min) 15		
# 95th percentile volume exceeds capacity, queue	e may be longer.	
Queue shown is maximum after two cycles.		
m Volume for 95th percentile queue is metered by	upstream signal.	

Splits and Phases: 3: Cummings Ave & Ogilvie Rd

1		•	1
♥ Ø1 20.7 s	49.2 s	15.1s 4	▼ Ø4 5s
	← ● Ø6 (R)	07	1 ø8
15 s	54.9 s	23 s	37.1 s

Scenario 1 1137 Ogilvie AM Peak Hour 2029 Future Total

Lanes, Volumes, Timings
4: Aviation & Ogilvie Rd

the th		۶	-	$\mathbf{\hat{z}}$	4	-	•	1	1	1	1	Ļ	~
Traffic Volume (vph) 381 513 92 119 538 125 210 485 219 162 348 2 add Flow (vph) 361 513 92 119 538 125 210 485 219 162 348 2 add Flow (vph) 361 513 92 1483 1626 3283 1483 1658 3160 0 1658 3087 sadd Flow (perm) 543 3252 1483 765 3283 1483 1658 3160 0 1658 3087 ane Group Flow (vph) 361 513 92 119 538 125 210 704 0 162 74 3 8 Vencted Phases 5 2 2 1 6 6 7 4 3 8 Venctor Phase 5 2 2 1 6 6 7 4 3 8 Vinintum Split (Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SB
Traffic Volume (vph) 361 513 92 119 538 125 210 485 219 162 348 2 Titure Volume (vph) 361 513 92 119 538 125 210 485 219 162 348 2 Stad. Flow (port) 1658 3252 1483 1656 3160 0 1658 3087 Stad. Flow (perm) 543 3252 1483 1656 3283 1483 1658 3160 0 1658 3087 Stad. Flow (perm) 361 513 92 119 538 125 210 704 0 182 646 Um Type pm+pt NA Perm Prot NA Perm Prot NA Perm Prot NA Perm Prot NA Perm 100 10.0 <td>Lane Configurations</td> <td>۲</td> <td>44</td> <td>1</td> <td>5</td> <td>44</td> <td>1</td> <td>3</td> <td>≜1≽</td> <td></td> <td>۲</td> <td>≜1≽</td> <td></td>	Lane Configurations	۲	44	1	5	44	1	3	≜1 ≽		۲	≜1 ≽	
Said. Flow (prot) 1658 3252 1483 1626 3283 1483 1658 3160 0 1658 3087 ift Permitted 0.311 0.447 0.950 0.950 0.950 0.950 said. Flow (perm) 543 3252 1483 1658 3160 0 1658 3087 said. Flow (perm) 361 513 92 119 538 125 210 704 0 162 646 'um Type pm+pt NA Perm Perm NA Perm NA Prot NA Protected Phases 2 2 6 6 7 4 3 8 Winch Phase 30.0 10.0 5.0 10.0 10.0 5.0 10.0 10.0 5.0 10.0 10.0 5.0 10.0 140.9 30.1 10.9 30.1 10.9 30.1 10.9 30.1 10.9 30.1 10.9 30.1 10.9	Fraffic Volume (vph)	361						210		219	162		29
iit Permitted 0.311 0.447 0.457 0.950 0.950 0.950 Stadt - Flow (perm) 543 3252 1483 765 3283 1483 1658 3160 0 1658 3087 stadt - Flow (roph) 361 513 92 119 538 125 210 704 0 162 646 'um Type pm+pt NA Perm Prot NA Prot NA Prot NA 'otected Phases 5 2 1 6 7 4 3 8 Permitted Phases 5 2 2 1 6 6 7 4 3 8 Voitch Phase 5 2 2 1 6 6 7 4 3 8 Jotal Split (s) 9.7 34.1 34.1 9.7 34.1 34.1 9.1 9.3 30.1 10.9 30.1 10.9 30.1 10.9 30.1 10.9 30.1 10.9 30.1 10.9 30.1 10.9 30.1<	uture Volume (vph)	361	513	92	119	538	125	210	485	219	162	348	29
iit Permitted 0.311 0.447 0.950 0.950 stadt. Flow (perm) 543 3252 1483 765 3283 1483 1658 3160 0 158 3087 stadt. Flow (prom) 361 513 92 119 538 125 210 704 0 162 646 furm Type pm+pt NA Perm pm+pt NA Perm Prot NA Prot NA Permitted Phases 5 2 2 1 6 6 7 4 3 8 Permitted Phases 5 2 2 1 6 6 7 4 3 8 Victor Phase 5 2 2 1 6 6 7 4 3 8 Joial Split (s) 9.7 34.1 34.1 9.7 34.1 34.1 9.1 9.3 10.9 30.1 10.9 30.1 Total Split (s) 20.0 47.0 47.0 32.2 2.4 2.2 2.4 2.2 2.	Satd. Flow (prot)	1658	3252	1483	1626	3283	1483	1658	3160	0	1658	3087	
Said. Flow (RTOR) 101 164 164 57 147 are Group Flow (vph) 361 513 92 119 538 125 210 704 0 162 646 um Type pm+pt NA Perm Prot NA Prot NA Protected Phases 5 2 1 6 7 4 3 8 Vertocted Phases 5 2 2 6 6 7 4 3 8 Witch Phase 5 2 2 1 6 6 7 4 3 8 Vitch Phase 5 2 2 1 6 6 7 4 3 8 Vitch Phase 5 2 2 1 6 6 7 4 3 8 30.1 10.9 30.1 10.9 30.1 10.9 30.1 10.9 30.1 10.9 30.1 10.9 <td< td=""><td>It Permitted</td><td>0.311</td><td></td><td></td><td>0.447</td><td></td><td></td><td>0.950</td><td></td><td></td><td>0.950</td><td></td><td></td></td<>	It Permitted	0.311			0.447			0.950			0.950		
Said. Flow (RTOR) 164 164 57 147 are Group Flow (vph) 361 513 92 119 538 125 210 704 0 162 646 Vim Type pm+pt NA Perm Prot NA Perm NA NA	Satd, Flow (perm)		3252	1483	765	3283	1483	1658	3160	0	1658	3087	
ane Group Flow (vph) 361 513 92 119 538 125 210 704 0 162 646 Yum Type pm+pt NA Perm pm+pt NA Perm Prot NA Prot NA Protected Phases 5 2 2 6 6 7 4 3 8 Permitted Phases 5 2 2 6 6 7 4 3 8 Switch Phase 5 2 2 1 6 6 7 4 3 8 Minimum Initial (s) 5.0 10.0 10.0 5.0 10.0 10.0 30.1 10.9 30.1 10.9 30.1 10.9 30.1 10.9 30.1 10.9 30.1 10.9 30.1 10.9 30.1 10.9 30.1 10.9 30.1 10.9 30.1 10.9 30.1 10.9 30.1 10.9 30.1 10.9 30.1				164			164		57			147	
Turn Type pm+pt NA Perm Prot NA Prot NA Protected Phases 5 2 1 6 7 4 3 8 Permitted Phases 2 2 6 6 -		361	513		119	538		210		0	162		
Protected Phases 5 2 1 6 7 4 3 8 Permitted Phases 2 2 6 6		pm+pt	NA	Perm	pm+pt	NA	Perm	Prot	NA		Prot	NA	
Permitted Phases 2 2 6 6 Detector Phase 5 2 2 1 6 6 7 4 3 8 Switch Phase Inimum Initial (s) 5.0 10.0 10.0 5.0 10.0 5.0 10.0 5.0 10.0 5.0 10.0 10.0 5.0 10.0 10.0 30.1 10.9 30.1 10.18 <td></td> <td></td> <td></td> <td></td> <td></td> <td>6</td> <td></td> <td>7</td> <td>4</td> <td></td> <td>3</td> <td>8</td> <td></td>						6		7	4		3	8	
Detector Phase 5 2 2 1 6 6 7 4 3 8 Witch Phase Minimum Initial (s) 5.0 10.0 10.0 5.0 10.0 5.0 10.0 Minimum Split (s) 9.7 34.1 34.1 9.7 34.1 34.1 10.9 30.1 10.9 30.1 Total Split (s) 20.0 47.0 47.0 20.0 47.0 32.9 45.0 18.0 30.1 Total Split (s) 15.4% 36.2% 15.4% 36.2% 36.2% 34.5% 13.8% 22.2% (ellow Time (s) 1.0 2.4 2.4 1.0 2.4 2.4 2.2 2.4 2.2 2.4 2.2 2.4 2.2 2.4 2.2 2.4 2.2 2.4 2.2 2.4 2.2 2.4 2.2 2.4 2.2 2.4 2.2 2.4 2.2 2.4 2.2 2.4 2.2 2.4 2.2 2.4 <td< td=""><td>Permitted Phases</td><td></td><td>-</td><td>2</td><td></td><td>Ŭ</td><td>6</td><td></td><td></td><td></td><td>Ū</td><td>Ŭ</td><td></td></td<>	Permitted Phases		-	2		Ŭ	6				Ū	Ŭ	
Switch Phase Source S	Detector Phase		2	2		6		7	4		3	8	
Minimum Initial (s) 5.0 10.0 10.0 5.0 10.0 5.0 10.0 5.0 10.0 Minimum Split (s) 9.7 34.1 34.1 9.7 34.1 10.9 30.1 10.9 30.1 forlal Split (s) 20.0 47.0 47.0 20.0 36.2% 36.2% 36.2% 36.2% 36.2% 36.2% 34.6% 13.8% 22.2% forlal Split (%) 15.4% 36.2% 36.2% 36.2% 36.2% 25.3% 34.6% 13.8% 22.2% (ellow Time (s) 1.0 2.4 2.4 1.0 2.4 2.2 2.4 2.2 2.4 2.2 2.4 2.2 2.4 2.2 2.4 2.2 2.4 2.2 2.4 2.2 2.4 2.2 2.4 2.2 2.4 2.2 2.4 2.4 2.2 2.4 2.2 2.4 2.2 2.4 2.2 2.4 2.2 2.4 2.2 2.4 2.2 2.4		Ű	-	-		Ű	Ŭ				Ŭ	Ű	
Minimum Split (s) 9.7 34.1 34.1 9.7 34.1 34.1 10.9 30.1 10.9 30.1 fold Split (s) 20.0 47.0 47.0 20.0 47.0 32.9 45.0 18.0 30.1 Total Split (%) 15.4% 36.2% 36.2% 36.2% 36.2% 25.3% 34.6% 13.8% 23.2% (ellow Time (s) 3.7		5.0	10.0	10.0	50	10.0	10.0	5.0	10.0		5.0	10.0	
Total Split (s) 20.0 47.0 47.0 20.0 47.0 32.9 45.0 18.0 30.1 Total Split (%) 15.4% 36.2% 15.4% 36.2% 25.3% 34.6% 13.8% 23.2% (ellow Time (s) 3.7													
Total Split (%) 15.4% 36.2% 36.2% 36.2% 36.2% 36.2% 25.3% 34.6% 13.8% 22.2% (ellow Time (s) 3.7 <td></td>													
Yellow Time (s) 3.7													
NI-Red Time (s) 1.0 2.4 2.4 1.0 2.4 2.4 2.2 2.4 2.2 2.4 Lost Time Adjust (s) 0.0 0													
Lost Time Adjust (s) 0.0													
total Lost Time (s) 4.7 6.1 6.1 4.7 6.1 6.1 5.9 6.1 5.9 6.1 ead/Lag Lead Lag													
Lead Lag Lag <thlag< th=""> <thlag< td="" thr<=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thlag<></thlag<>													
Lead-Lag Optimize? Yes													
Recall Mode None C-Max C-Max C-Max C-Max C-Max None None <td></td>													
Act Effct Green (s) 65.2 49.5 55.1 42.9 42.9 21.2 34.8 12.1 25.7 Act used g/C Ratio 0.50 0.38 0.38 0.42 0.33 0.03 0.07 0.09 0.20 v/c Ratio 0.86 0.41 0.14 0.30 0.50 0.21 0.78 0.79 1.05 0.89 Ontrol Delay 62.2 51.9 12.5 20.7 37.4 2.6 71.0 47.3 142.8 54.0 Queue Delay 0.0 <td></td>													
Actuated g/C Ratio 0.50 0.38 0.38 0.42 0.33 0.33 0.16 0.27 0.09 0.20 /c Ratio 0.86 0.41 0.14 0.30 0.50 0.21 0.78 0.79 1.05 0.89 Control Delay 62.2 51.9 12.5 20.7 37.4 2.6 71.0 47.3 142.8 54.0 Jueue Delay 0.0 52.7 <td></td>													
Vic Ratio 0.86 0.41 0.14 0.30 0.50 0.21 0.78 0.79 1.05 0.89 Control Delay 62.2 51.9 12.5 20.7 37.4 2.6 71.0 47.3 142.8 54.0 Queue Delay 0.0													
Control Delay 62.2 51.9 12.5 20.7 37.4 2.6 71.0 47.3 142.8 54.0 Queue Delay 0.0 0.													
Queue Delay 0.0 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>													
Total Delay 62.2 51.9 12.5 20.7 37.4 2.6 71.0 47.3 142.8 54.0 OS E D B C D A E D F D Approach Delay 52.0 29.3 52.7 71.8 P P D E D S1.0 16.5 75.7 10.5 #83.3<#104.6													
OS E D B C D A E D F D Approach Delay 52.0 29.3 52.7 71.8 Approach LOS D C D D E D E D E D E D E D E D E D E D E D E D C D C D E D B C D S 72.7 71.8 Dueue Length 50th (m) 92.5 72.4 2.9 16.7 59.4 0.0 52.0 78.5 ~45.2 65.3 Jueue Length 50th (m) 930.6 270.9 298.0 298.9 100.0 110.0 Sase Capacity (vph) 421 1238 666 452 1083 599 344 985 154 734 Starvation Cap Reductn 0 0 0 0 0 0 0 0 0 0 0 </td <td></td> <td>••</td> <td></td>												••	
Approach Delay 52.0 29.3 52.7 71.8 Approach LOS D C D E Dueue Length 50th (m) 92.5 72.4 2.9 16.7 59.4 0.0 52.0 78.5 ~45.2 65.3 Dueue Length 50th (m) 92.5 72.4 2.9 16.7 59.4 0.0 52.0 78.5 ~45.2 65.3 Dueue Length 50th (m) #154.9 90.5 m11.8 28.4 77.0 6.5 75.7 100.5 #89.3 #104.6 I'um Bay Length (m) 80.0 65.0 50.0 60.0 100.0 110.0 Starvation Cap Reductn 0													
Importance LOS D C D E Dueue Length 50th (m) 92.5 72.4 2.9 16.7 59.4 0.0 52.0 78.5 ~45.2 66.3 Dueue Length 95th (m) #154.9 90.5 m11.8 28.4 77.0 6.5 75.7 100.5 #89.3 #104.6 Itemal Link Dist (m) 393.6 270.9 298.0 298.9 298.9 Turn Bay Length (m) 80.0 65.0 50.0 60.0 100.0 110.0 Jase Capacity (vph) 421 1238 666 452 1083 599 344 985 154 734 Starvation Cap Reductn 0		E		D	U		A	E			Г		
Dueue Length 50th (m) 92.5 72.4 2.9 16.7 59.4 0.0 52.0 78.5 ~45.2 65.3 Jueue Length 95th (m) #154.9 90.5 m11.8 28.4 77.0 6.5 75.7 100.5 #89.3 #104.6 Internal Link Dist (m) 393.6 270.9 298.0 298.9 298.9 'um Bay Length (m) 80.0 65.0 50.0 60.0 100.0 110.0 Jase Capacity (vph) 421 1238 666 452 1083 599 344 985 154 734 Starvation Cap Reductn 0													
Queue Length 95th (m) #154.9 90.5 m11.8 28.4 77.0 6.5 75.7 100.5 #89.3 #104.6 nternal Link Dist (m) 393.6 270.9 298.0 298.9 298.9 298.9 298.9 110.0 38ase Capacity (vph) 421 1238 666 452 1083 599 344 985 154 734 Starvation Cap Reductn 0	PP 111 11	00 F		2.0	16.7		0.0	F2 0			15.0		
Internal Link Dist (m) 393.6 270.9 298.0 298.9 Turn Bay Length (m) 80.0 65.0 50.0 60.0 100.0 110.0 Sase Capacity (vph) 421 1238 666 452 1083 599 344 985 154 734 Saravation Cap Reductn 0													
Turn Bay Length (m) 80.0 65.0 50.0 60.0 100.0 110.0 Stare Capacity (vph) 421 1238 666 452 1083 599 344 985 154 734 Starvation Cap Reductn 0 <td></td> <td>#104.9</td> <td></td> <td>1111.0</td> <td>20.4</td> <td></td> <td>0.0</td> <td>15.1</td> <td></td> <td></td> <td>#09.3</td> <td></td> <td></td>		#104.9		1111.0	20.4		0.0	15.1			#09.3		
Base Capacity (vph) 421 1238 666 452 1083 599 344 985 154 734 Starvation Cap Reductn 0 <td></td> <td>00.0</td> <td>393.0</td> <td>05.0</td> <td>50.0</td> <td>270.9</td> <td>CO 0</td> <td>400.0</td> <td>290.0</td> <td></td> <td>440.0</td> <td>290.9</td> <td></td>		00.0	393.0	05.0	50.0	270.9	CO 0	400.0	290.0		440.0	290.9	
Starvation Cap Reductn 0			1000			1000			0.05			704	
Spillback Cap Reductn 0													
Storage Cap Reductn 0		-	-	-	-	-	-	-	-		-	-	
Reduced v/c Ratio 0.86 0.41 0.14 0.26 0.50 0.21 0.61 0.71 1.05 0.88													
													_
		0.86	0.41	0.14	0.26	0.50	0.21	0.61	0.71		1.05	0.88	
Offset: 105 (81%), Referenced to phase 2:EBTL and 6:WBTL, Start of Green	latural Cycle: 95 Control Type: Actuated-Co				, 50								

Synchro 11 Report Page 7

02-18-2025

Lanes, Volumes, Timings 4: Aviation & Ogilvie Rd		02-18-202
Maximum v/c Ratio: 1.05		
Intersection Signal Delay: 51.7	Intersection LOS: D	
Intersection Capacity Utilization 88.3%	ICU Level of Service E	
Analysis Period (min) 15		
~ Volume exceeds capacity, queue is theoretically	infinite.	
Queue shown is maximum after two cycles.		
# 95th percentile volume exceeds capacity, queue	may be longer.	
Queue shown is maximum after two cycles.		
m Volume for 95th percentile queue is metered by	upstream signal.	

Splits and Phases: 4: Aviation & Ogilvie Rd

Ø 1	🚽 💠 🛛 2 (R)	Ø3	↑ Ø4
20 s	47 s	18 s 45	5 s 🛛 🚽 🖌
	● ● Ø6 (R)	▲ Ø7	↓ Ø8
20 s	47 s	32.9 s	30.1 s

Lanes, Volumes, Timings 5: Labelle St/Cummings Ave & Cyrville Rd

	≯	-	\mathbf{F}	*	+	*	1	1	1	1	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	٦	eî.		۲	ĥ		1	4Î		٦	4Î	
Traffic Volume (vph)	21	213	37	111	378	166	5	25	47	143	78	20
Future Volume (vph)	21	213	37	111	378	166	5	25	47	143	78	20
Satd. Flow (prot)	1537	1636	0	1610	1580	0	1658	1377	0	1610	1576	0
Flt Permitted	0.264			0.604			0.694			0.538		
Satd. Flow (perm)	422	1636	0	1005	1580	0	1197	1377	0	797	1576	0
Satd. Flow (RTOR)		18						47				
Lane Group Flow (vph)	21	250	0	111	544	0	5	72	0	143	98	0
Turn Type	pm+pt	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases	5	2			6			8			4	
Permitted Phases	2			6			8			4		
Detector Phase	5	2		6	6		8	8		4	4	
Switch Phase												
Minimum Initial (s)	5.0	10.0		10.0	10.0		10.0	10.0		10.0	10.0	
Minimum Split (s)	11.3	34.8		34.8	34.8		23.5	23.5		22.5	22.5	
Total Split (s)	15.0	42.0		42.0	42.0		23.5	23.5		23.0	23.0	
Total Split (%)	17.5%	49.1%		49.1%	49.1%		27.5%	27.5%		26.9%	26.9%	
Yellow Time (s)	3.7	3.7		3.7	3.7		3.3	3.3		3.3	3.3	
All-Red Time (s)	2.6	3.1		3.1	3.1		3.2	3.2		3.2	3.2	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)	6.3	6.8		6.8	6.8		6.5	6.5		6.5	6.5	
Lead/Lag	Lead			Lag	Lag		Lag	Lag		Lag	Lag	
Lead-Lag Optimize?	Yes			Yes	Yes		Yes	Yes		Yes	Yes	
Recall Mode	None	Max		Max	Max		None	None		None	None	
Act Effct Green (s)	40.8	40.3		35.7	35.7		14.2	14.2		14.2	14.2	
Actuated g/C Ratio	0.56	0.55		0.49	0.49		0.19	0.19		0.19	0.19	
v/c Ratio	0.06	0.27		0.23	0.71		0.02	0.24		0.93	0.32	
Control Delay	7.8	9.0		15.0	23.6		26.6	15.4		90.0	30.0	
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Delay	7.8	9.0		15.0	23.6		26.6	15.4		90.0	30.0	
LOS	А	A		В	С		С	В		F	С	_
Approach Delay		8.9			22.1			16.1			65.6	
Approach LOS		A			С			В			E	
Queue Length 50th (m)	1.3	16.2		7.5	49.7		0.5	2.6		17.5	10.5	
Queue Length 95th (m)	3.9	28.3		22.8	#128.9		3.4	14.1		#56.0	27.1	
Internal Link Dist (m)	00.0	407.2		07.0	322.8		05.0	177.3		00.0	302.0	
Turn Bay Length (m)	98.0	1115		67.0	774		35.0	000		38.0	074	_
Base Capacity (vph)	370	1145		491	771		282	360		188	371	
Starvation Cap Reductn	0	0		0	0		0	0		0	0	_
Spillback Cap Reductn	0	0		0	0		0	0		0	0	
Storage Cap Reductn Reduced v/c Ratio	-	-		0.23	0.71		-	0.20		-	-	_
	0.06	0.22		0.23	0.71		0.02	0.20		0.76	0.26	
Intersection Summary												
Cycle Length: 85.5												
Actuated Cycle Length: 73												
Natural Cycle: 75												
Control Type: Semi Act-Unc	oord											
Maximum v/c Ratio: 0.93												

Scenario 1 1137 Ogilvie AM Peak Hour 2029 Future Total

Synchro 11 Report Page 9

02-18-2025

Lanes, Volumes, Timings 5: Labelle St/Cummings Ave & Cyrville Rd

02-18-2025

ane Group	Ø3	Ø7
ane Configurations		
Fraffic Volume (vph)		
Future Volume (vph)		
Satd. Flow (prot)		
-It Permitted		
Satd. Flow (perm)		
Satd. Flow (RTOR)		
ane Group Flow (vph)		
Furn Type		
Protected Phases	3	7
Permitted Phases		
Detector Phase		
Switch Phase		
Vinimum Initial (s)	1.0	1.0
Vinimum Split (s)	3.0	3.0
Total Split (s)	5.0	5.0
Total Split (%)	6%	6%
Yellow Time (s)	2.0	2.0
All-Red Time (s)	0.0	0.0
ost Time Adjust (s)		
Total Lost Time (s)		
_ead/Lag	Lead	Lead
_ead-Lag Optimize?	Yes	Yes
Recall Mode	Max	Max
Act Effct Green (s)		
Actuated g/C Ratio		
//c Ratio		
Control Delay		
Queue Delay		
Total Delay		
-OS		
Approach Delay		
Approach LOS		
Queue Length 50th (m)		
Queue Length 95th (m)		
nternal Link Dist (m)		
Furn Bay Length (m)		
Base Capacity (vph)		
Starvation Cap Reductn		
Spillback Cap Reductn		
Storage Cap Reductn		
Reduced v/c Ratio		
ntersection Summary		

Scenario 1 1137 Ogilvie AM Peak Hour 2029 Future Total

ntersection Signal Delay: 27.3	Intersection LOS: C	
ntersection Capacity Utilization 67.9%	ICU Level of Service C	
Analysis Period (min) 15		
95th percentile volume exceeds capacity, queue	e may be longer.	
Queue shown is maximum after two cycles.		
Splits and Phases: 5: Labelle St/Cummings Ave	& Cvrville Rd	

eø7 **1**ø8

5 s 🛛 🗅

HCM 2010 TWSC 6: Cummings Ave & Access #1

1

Intersection Int Delay, s/veh

Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	۰Y		4Î			- 4 ↑
Traffic Vol, veh/h	52	9	383	27	4	411
Future Vol, veh/h	52	9	383	27	4	411
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	90	-
Veh in Median Storage		-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	52	9	383	27	4	411
Major/Minor	Minort		Viciant		Maior	
	Minor1		Major1		Major2	
Conflicting Flow All	611	397	0	0	410	0
Stage 1	397	-	-	-	-	-
Stage 2	214	-	-	-	-	-
Critical Hdwy	6.63	6.23		-		-
Critical Hdwy Stg 1	5.43	-	-	-	-	-
Critical Hdwy Stg 2	5.83	-		-	-	
Follow-up Hdwy		3.319	-		2.219	-
Pot Cap-1 Maneuver	441	652	-		1147	-
Stage 1	678	-	-	-	-	-
Stage 2	802	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver	439	652		-	1147	-
Mov Cap-2 Maneuver	439	-	-	-	-	-
Stage 1	678				-	-
Stage 2	798	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	14	_	0	_	0.1	_
HCM LOS	14 B		0		0.1	
	В					
Minor Lane/Major Mvn	nt	NBT	NBRV	VBLn1	SBL	SBT
Capacity (veh/h)		-	-	461	1147	-
HCM Lane V/C Ratio				0 132	0.003	

Minor Lane/Major Mvmt	NBT	NBRW	/BLn1	SBL	SBT	
Capacity (veh/h)	-	-	461	1147	-	
HCM Lane V/C Ratio	-	-	0.132	0.003	-	
HCM Control Delay (s)	-	-	14	8.2	0	
HCM Lane LOS	-	-	В	Α	A	
HCM 95th %tile Q(veh)	-	-	0.5	0	-	

Scenario 1 1137 Ogilvie AM Peak Hour 2029 Future	Гotal
--	-------

<u>م</u>

₹ø6

Scenario 1 1137 Ogilvie AM Peak Hour 2029 Future Total

Synchro 11 Report Page 13

02-18-2025

Lanes, Volumes, Timings	
1: Cummings Ave & Donald	

	≯	\mathbf{F}	•	1	Ļ	1	
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	5	1	5	↑	4Î		
Traffic Volume (vph)	87	307	267	281	316	96	
Future Volume (vph)	87	307	267	281	316	96	
Satd, Flow (prot)	1595	1469	1658	1728	1687	0	
Flt Permitted	0.950		0.519			, v	
Satd. Flow (perm)	1595	1469	906	1728	1687	0	
Satd. Flow (RTOR)	1000	307	000		38	v	
Lane Group Flow (vph)	87	307	267	281	412	0	
Turn Type	Perm	Perm	Perm	NA	NA	v	
Protected Phases	1 Onn	T OITIT	T OIIII	2	6		
Permitted Phases	4	4	2	2	0		
Detector Phase	4	4	2	2	6		
Switch Phase	4	4	2	2	0		
Minimum Initial (s)	10.0	10.0	1.0	1.0	10.0		
Minimum Split (s)	22.0	22.0	7.9	7.9	39.9		
Total Split (s)	22.0	22.0	39.9	39.9	39.9		
Total Split (%)	35.5%	35.5%	64.5%	64.5%	64.5%		
Yellow Time (s)	3.3	3.3	3.3	3.3	3.3		
All-Red Time (s)	2.7	2.7	3.6	3.6	3.6		
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0		
Total Lost Time (s)	6.0	6.0	6.9	6.9	6.9		
Lead/Lag	0.0	0.0	0.9	0.9	0.9		
Lead-Lag Optimize?							
Recall Mode	None	None	Мах	Мах	Max		
	10.7	10.7	33.0	33.0	33.0		
Act Effct Green (s)	0.19	0.19	0.58	0.58	0.58		
Actuated g/C Ratio	0.19	0.19	0.50	0.38	0.38		
	22.4	0.56		7.1	7.6		
Control Delay	22.4	8.0 0.0	11.6 0.0	0.0	7.6 0.0		
Queue Delay	22.4	8.0	11.6	7.1	7.6		
Total Delay							
LOS Approach Dalau	C 11.2	A	В	A 9.3	A 7.6	_	
Approach Delay							
Approach LOS	B	0.0	40.5	A	A	_	
Queue Length 50th (m)	7.8	0.0	13.5	12.0 26.3	17.2 37.8		
Queue Length 95th (m)	17.7	16.3	35.5				
Internal Link Dist (m)	296.3		00.0	143.5	259.3		
Turn Bay Length (m)	60.0	625	60.0	1007	000		
Base Capacity (vph)	450	635	527	1007	999		
Starvation Cap Reductn	0	0	0	0	0		
Spillback Cap Reductn	0	0	0	0	0		
Storage Cap Reductn	0	0	0	0	0		
Reduced v/c Ratio	0.19	0.48	0.51	0.28	0.41		
Intersection Summary							
Cycle Length: 61.9							
Actuated Cycle Length: 56.	7						
Natural Cycle: 65							
Control Type: Actuated-Und	coordinated						
Maximum v/c Ratio: 0.58							

02-18-2025

Lanes, Volumes, Timings 1: Cummings Ave & Donald

Intersection Signal Delay: 9.3	Intersection LOS: A	
Intersection Capacity Utilization 64.2%	ICU Level of Service C	
Analysis Period (min) 15		

Splits and Phases: 1: Cummings Ave & Donald

-	¢2		Ø4	
39.	9 s		22 s	
ļ	Ø6			
39.	9 s			

Scenario 1 1137 Ogilvie Road PM Peak Hour 2034 Future Total

02-18-2025

Lanes, Volumes, Timings
2: Cyrville Rd & Ogilvie Rd

Lane Group Lane Configurations Traffic Volume (vph) Future Volume (vph) Satd. Flow (port) Fit Permitted Satd. Flow (perm) Satd. Flow (RTOR) Lane Group Flow (vph) Tum Type Protected Phases Permitted Phases	EBL 0 0 0	EBT ↑↑ 1064	EBR	WBL	WBT							
Traffic Volume (vph) Future Volume (vph) Satd. Flow (prot) Fit Permitted Satd. Flow (perm) Satd. Flow (PTOR) Lane Group Flow (vph) Tum Type Protected Phases	0		*			WBR	NBL	NBT	NBR	SBL	SBT	SBR
Future Volume (vph) Satd. Flow (port) Fit Permitted Satd. Flow (perm) Satd. Flow (prm) Lane Group Flow (vph) Tum Type Protected Phases	0	1064	- C	٦	<u>†</u> †	1	1	4Î		<u> </u>	f,	
Satd. Flow (prot) Fit Permitted Satd. Flow (perm) Satd. Flow (RTOR) Lane Group Flow (vph) Turn Type Protected Phases			268	35	781	149	102	248	26	147	252	140
Fit Permitted Satd. Flow (perm) Satd. Flow (RTOR) Lane Group Flow (vph) Turn Type Protected Phases	0	1064	268	35	781	149	102	248	26	147	252	140
Satd. Flow (perm) Satd. Flow (RTOR) Lane Group Flow (vph) Turn Type Protected Phases		3316	1455	1658	3316	1483	1658	1718	0	1658	1637	0
Satd. Flow (RTOR) Lane Group Flow (vph) Turn Type Protected Phases				0.216			0.253			0.437		
Lane Group Flow (vph) Turn Type Protected Phases	0	3316	1366	375	3316	1333	440	1718	0	761	1637	0
Turn Type Protected Phases			268			149		5			26	
Protected Phases	0	1064	268	35	781	149	102	274	0	147	392	0
		NA	Perm	Perm	NA	Perm	Perm	NA		Perm	NA	
Permitted Phases		2			6			8			4	
i ommuou i nuoco			2	6		6	8			4		
Detector Phase		2	2	6	6	6	8	8		4	4	
Switch Phase												
Minimum Initial (s)		10.0	10.0	10.0	10.0	10.0	10.0	10.0		10.0	10.0	
Minimum Split (s)		32.2	32.2	32.2	32.2	32.2	47.1	47.1		47.1	47.1	
Total Split (s)		70.0	70.0	70.0	70.0	70.0	50.0	50.0		50.0	50.0	
Total Split (%)		58.3%	58.3%	58.3%	58.3%	58.3%	41.7%	41.7%		41.7%	41.7%	
Yellow Time (s)		3.7	3.7	3.7	3.7	3.7	3.7	3.7		3.7	3.7	
All-Red Time (s)		2.5	2.5	2.5	2.5	2.5	3.4	3.4		3.4	3.4	
Lost Time Adjust (s)		0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Lost Time (s)		6.2	6.2	6.2	6.2	6.2	7.1	7.1		7.1	7.1	
Lead/Lag												
Lead-Lag Optimize?												
Recall Mode		C-Max	C-Max	C-Max	C-Max	C-Max	None	None		None	None	
Act Effct Green (s)		73.9	73.9	73.9	73.9	73.9	32.8	32.8		32.8	32.8	
Actuated g/C Ratio		0.62	0.62	0.62	0.62	0.62	0.27	0.27		0.27	0.27	
v/c Ratio		0.52	0.28	0.15	0.38	0.17	0.85	0.58		0.71	0.84	
Control Delay		15.3	2.4	4.7	3.9	0.1	90.5	40.9		56.7	54.0	
Queue Delay		0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Delay		15.3	2.4	4.7	3.9	0.1	90.5	40.9		56.7	54.0	
LOS		В	А	А	A	A	F	D		E	D	
Approach Delay		12.7			3.3			54.3			54.7	
Approach LOS		В			A			D			D	
Queue Length 50th (m)		70.1	0.0	0.9	10.5	0.0	22.7	54.7		31.2	81.8	
Queue Length 95th (m)		107.7	12.2	m1.1	m11.5	m0.0	#46.8	72.6		49.6	106.2	
Internal Link Dist (m)		113.8			313.9			407.0			190.4	
Turn Bay Length (m)				62.0		71.0	50.0			82.0		
Base Capacity (vph)		2041	943	230	2041	877	157	617		272	601	
Starvation Cap Reductn		0	0	0	0	0	0	0		0	0	
Spillback Cap Reductn		0	0	0	Ő	0	0	0		0	Ő	
Storage Cap Reductn		0	0	0	0	0	0	0		0	0	
Reduced v/c Ratio		0.52	0.28	0.15	0.38	0.17	0.65	0.44		0.54	0.65	
Intersection Summary Cycle Length: 120 Actuated Cycle Length: 120 Offset: 20 (17%), Referenced t	o phase	e 2:EBT a	nd 6:WB	TL, Start (of Green							
Natural Cycle: 80 Control Type: Actuated-Coordi												

Synchro 11 Report Page 3

02-18-2025

Lanes, Volumes, Timings								
2: Cyrville Rd & Ogilvie Rd		02-18-2025						
Maximum v/c Ratio: 0.85								
Intersection Signal Delay: 21.8	Intersection LOS: C							
Intersection Capacity Utilization 82.0%	ICU Level of Service E							
Analysis Period (min) 15								
# 95th percentile volume exceeds capacity, queue may be longer.								
Queue shown is maximum after two cycles.								
m Volume for 95th percentile queue is metered by	upstream signal.							

Splits and Phases: 2: Cyrville Rd & Ogilvie Rd

🐨 Ø2 (R)	Ø4
70 s	50 s
Ø6 (R)	≪¶ø8
70 s	50 s

3: Cumminas Ave & Oailvie Rd	Lanes, Volumes, Timings	
<u></u>	3: Cummings Ave & Ogilvie	Rd

	≯	-	\mathbf{r}	4	+	*	-	1	1	1	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	5	¢γ		ሻ	≜ 1≽		3	¢Î,		5	4Î	
Traffic Volume (vph)	173	1033	27	164	790	238	61	186	179	266	241	142
Future Volume (vph)	173	1033	27	164	790	238	61	186	179	266	241	142
Satd, Flow (prot)	1658	3294	0	1610	3107	0	1658	1520	0	1658	1634	C
Flt Permitted	0.950			0.950			0.950			0.950		
Satd. Flow (perm)	1626	3294	0	1593	3107	0	1651	1520	0	1589	1634	C
Satd. Flow (RTOR)		2										
Lane Group Flow (vph)	173	1060	0	164	1028	0	61	365	0	266	383	C
Turn Type	Prot	NA		Prot	NA		Prot	NA		Prot	NA	
Protected Phases	5	2		1	6		3	8		7	4	
Permitted Phases												
Detector Phase	5	2		1	6		3	8		7	4	
Switch Phase												
Minimum Initial (s)	5.0	10.0		5.0	10.0		5.0	10.0		5.0	10.0	
Minimum Split (s)	9.7	25.7		9.7	25.7		9.5	36.6		9.3	36.6	
Total Split (s)	16.8	43.8		17.0	44.0		11.5	36.6		22.6	47.7	
Total Split (%)	14.0%	36.5%		14.2%	36.7%		9.6%	30.5%		18.8%	39.8%	
Yellow Time (s)	3.7	3.7		3.7	3.7		3.3	3.3		3.3	3.3	
All-Red Time (s)	1.0	3.0		1.0	3.0		1.0	3.8		1.0	3.8	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)	4.7	6.7		4.7	6.7		4.3	7.1		4.3	7.1	
Lead/Lag	Lead	Lag		Lead	Lag		Lead	Lag		Lead	Lag	
Lead-Lag Optimize?	Yes	Yes		Yes	Yes		Yes	Yes		Yes	Yes	
Recall Mode	None	C-Max		None	C-Max		None	None		None	None	
Act Effct Green (s)	12.1	37.1		12.3	37.3		7.0	29.5		18.3	42.9	
Actuated g/C Ratio	0.10	0.31		0.10	0.31		0.06	0.25		0.15	0.36	
v/c Ratio	1.04	1.04		0.99	1.07		0.64	0.98		1.06	0.66	
Control Delay	127.4	87.4		103.2	80.5		83.6	87.0		121.0	39.7	
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Delay	127.4	87.4		103.2	80.5		83.6	87.0		121.0	39.7	
LOS	F	F		F	F		F	F		F	D	
Approach Delay		93.1			83.6			86.5			73.0	
Approach LOS		F			F			F			E	
Queue Length 50th (m)	~44.4	~123.6		40.1	~140.3		14.3	85.7		~68.4	77.6	
Queue Length 95th (m)	#89.9	#188.3		m#65.0 ı	n#161.4		#33.5	#145.1		#120.3	112.6	
Internal Link Dist (m)		313.9			393.6			302.0			70.4	
Turn Bay Length (m)	80.0			100.0			34.0					
Base Capacity (vph)	167	1019		165	965		99	373		252	583	
Starvation Cap Reductn	0	0		0	0		0	0		0	0	
Spillback Cap Reductn	0	0		0	0		0	0		0	0	
Storage Cap Reductn	0	0		0	0		0	0		0	0	
Reduced v/c Ratio	1.04	1.04		0.99	1.07		0.62	0.98		1.06	0.66	
Intersection Summary												
Cycle Length: 120)											
Actuated Cycle Length: 120			CANDT (Nort of C								
Offset: 0 (0%), Referenced	to phase 2	EBI and	0:WB1, 8	start of G	reen							
Natural Cycle: 145												
Control Type: Actuated-Coo	ordinated											

Synchro 11 Report Page 5

02-18-2025

3: Cummings Ave & Ogilvie Rd		02-18-2025
Maximum v/c Ratio: 1.07		
Intersection Signal Delay: 85.3	Intersection LOS: F	
Intersection Capacity Utilization 100.2%	ICU Level of Service G	
Analysis Period (min) 15		
~ Volume exceeds capacity, queue is theoretically	infinite.	
Queue shown is maximum after two cycles.		
# 95th percentile volume exceeds capacity, queue	may be longer.	
Queue shown is maximum after two cycles.		
m Volume for 95th percentile queue is metered by	upstream signal.	

Splits and Phases: 3: Cummings Ave & Ogilvie Rd

Lanes, Volumes, Timings

√ Ø1	→Ø2 (R)	↑ Ø3 ↓ Ø4	
17 s	43.8 s	11.5 s 47.7 s	
∕× _{Ø5}	← Ø6 (R)	b Ø7	1 Ø8
16.8 s	44 s	22.6 s	36.6 s

Lanes, Volumes, Timings
4: Aviation & Ogilvie Rd

	۶	-	\mathbf{r}	4	+	*	•	1	1	1	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	5	† †	1	5	† †	1	٦	≜ †}		٦	≜ †⊅	
Traffic Volume (vph)	295	1086	104	231	698	220	176	357	163	146	403	311
Future Volume (vph)	295	1086	104	231	698	220	176	357	163	146	403	311
Satd. Flow (prot)	1658	3316	1469	1658	3316	1483	1658	3160	0	1658	3100	0
Flt Permitted	0.275			0.100			0.950			0.950		
Satd. Flow (perm)	480	3316	1469	175	3316	1483	1658	3160	0	1658	3100	0
Satd. Flow (RTOR)			136			220		55			142	
Lane Group Flow (vph)	295	1086	104	231	698	220	176	520	0	146	714	0
Turn Type	pm+pt	NA	Perm	pm+pt	NA	Perm	Prot	NA		Prot	NA	
Protected Phases	5	2		1	6		7	4		3	8	
Permitted Phases	2	_	2	6	-	6	-	-		-	-	
Detector Phase	5	2	2	1	6	6	7	4		3	8	
Switch Phase	-	_	_		-	-						
Minimum Initial (s)	5.0	10.0	10.0	5.0	10.0	10.0	5.0	10.0		5.0	10.0	
Minimum Split (s)	9.7	34.1	34.1	9.7	34.1	34.1	10.9	30.1		12.2	30.1	
Total Split (s)	20.0	51.0	51.0	20.0	51.0	51.0	18.9	30.1		18.9	30.1	
Total Split (%)	16.7%	42.5%	42.5%	16.7%	42.5%	42.5%	15.8%	25.1%		15.8%	25.1%	
Yellow Time (s)	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7		3.5	3.7	
All-Red Time (s)	1.0	2.4	2.4	1.0	2.4	2.4	2.2	2.4		3.7	2.4	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		2.2	2.4	
Total Lost Time (s)	4.7	6.1	6.1	4.7	6.1	6.1	5.9	6.1		9.4	8.5	
Lead/Lag	Lead	Lag	Lag	Lead	Lag	Lag	Lead	Lag		Lead	Lag	
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		Yes	Yes	
Recall Mode	None	C-Max	C-Max	None	C-Max	C-Max	None	None		None	None	
Act Effct Green (s)	61.7	45.7	45.7	61.5	45.5	45.5	13.0	24.0		9.5	21.6	
Actuated g/C Ratio	0.51	0.38	0.38	0.51	0.38	0.38	0.11	0.20		0.08	0.18	
v/c Ratio	0.76	0.86	0.16	0.86	0.56	0.31	0.98	0.77		1.11	1.06	
Control Delay	11.8	26.4	3.3	56.7	31.5	4.5	116.9	49.1		162.9	89.3	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Delay	11.8	26.4	3.3	56.7	31.5	4.5	116.9	49.1		162.9	89.3	
LOS	В	С	A	E	С	A	F	D		F	F	
Approach Delay		21.9			31.4			66.2			101.8	
Approach LOS		C			С			E			F	
Queue Length 50th (m)	10.1	132.3	4.2	36.0	67.8	0.0	42.0	55.2		~39.4	~81.7	
Queue Length 95th (m)	m9.8	m125.9	m4.0	#77.2	86.6	15.5	#86.3	74.9		#80.6	#120.1	
Internal Link Dist (m)		393.6			260.7			297.6			298.7	
Turn Bay Length (m)	80.0		65.0	50.0		60.0	100.0			110.0		
Base Capacity (vph)	399	1261	642	279	1257	699	179	676		131	674	
Starvation Cap Reductn	0	0	0	0	0	0	0	0		0	0	
Spillback Cap Reductn	0	Ő	0	0	Ő	0	0	0		0	Ű	
Storage Cap Reductn	0	0	0	0	0	0	0	0		0	0	
Reduced v/c Ratio	0.74	0.86	0.16	0.83	0.56	0.31	0.98	0.77		1.11	1.06	
Intersection Summary Cycle Length: 120 Actuated Cycle Length: 120 Offset: 50 (42%), Reference Natural Cycle: 110 Control Type: Actuated-Coor		e 2:EBTL	and 6:WE	3TL, Starl	t of Greer	1						

Synchro 11 Report Page 7

02-18-2025

Lanes, Volumes, Timings 4: Aviation & Ogilvie Rd		02-18-2025
Maximum v/c Ratio: 1.11		02.10.2020
Intersection Signal Delay: 48.3	Intersection LOS: D	
Intersection Capacity Utilization 98.8%	ICU Level of Service F	
Analysis Period (min) 15		
~ Volume exceeds capacity, queue is theoretically	infinite.	
Queue shown is maximum after two cycles.		
# 95th percentile volume exceeds capacity, queue	may be longer.	
Queue shown is maximum after two cycles.		
m Volume for 95th percentile queue is metered by	upstream signal.	

Splits and Phases: 4: Aviation & Ogilvie Rd

Ø 1	Ø2 (R)		Ø3	¶ø4	
20 s	51 s		18.9 s	30.1s	
	Ø6 (R)		1 07	↓ ø8	
20 s	51 s		18.9 s	30.1s	

Lanes, Volumes, Timings 5: Labelle St/Cummings Ave & Cyrville Rd

	≯	-	\mathbf{F}	4	+	*	1	1	1	1	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	<u> </u>	f,		5	ĥ		1	4Î		۲.	¢Î	
Traffic Volume (vph)	10	54	68	77	317	277	10	84	68	61	472	11
Future Volume (vph)	10	54	68	77	317	277	10	84	68	61	472	11
Satd. Flow (prot)	1658	1382	0	1595	1568	0	1658	1497	0	1445	1738	0
Flt Permitted	0.220			0.679			0.292			0.539		
Satd. Flow (perm)	384	1382	0	1110	1568	0	510	1497	0	712	1738	0
Satd. Flow (RTOR)		68						42				
Lane Group Flow (vph)	10	122	0	77	594	0	10	152	0	61	483	0
Turn Type	pm+pt	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases	5	2			6			8			4	
Permitted Phases	2			6			8			4		
Detector Phase	5	2		6	6		8	8		4	4	
Switch Phase												
Minimum Initial (s)	5.0	10.0		10.0	10.0		10.0	10.0		10.0	10.0	
Minimum Split (s)	9.7	30.8		30.8	30.8		22.5	22.5		22.5	22.5	
Total Split (s)	15.0	43.0		43.0	43.0		37.0	37.0		37.0	37.0	
Total Split (%)	15.0%	43.0%		43.0%	43.0%		37.0%	37.0%		37.0%	37.0%	
Yellow Time (s)	3.7	3.7		3.7	3.7		3.3	3.3		3.3	3.3	
All-Red Time (s)	1.0	3.1		3.1	3.1		3.2	3.2		3.2	3.2	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)	4.7	6.8		6.8	6.8		6.5	6.5		6.5	6.5	
Lead/Lag	Lead			Lag	Lag		Lag	Lag		Lag	Lag	
Lead-Lag Optimize?	Yes			Yes	Yes		Yes	Yes		Yes	Yes	
Recall Mode	None	Max		Max	Max		None	None		None	None	
Act Effct Green (s)	40.6	38.5		36.5	36.5		22.1	22.1		27.1	27.1	
Actuated g/C Ratio	0.51	0.49		0.46	0.46		0.28	0.28		0.34	0.34	
v/c Ratio	0.03	0.17		0.15	0.82		0.07	0.34		0.25	0.81	
Control Delay	10.5	6.7		15.7	31.9		23.5	18.9		22.6	36.4	
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Delay	10.5	6.7		15.7	31.9		23.5	18.9		22.6	36.4	
LOS	В	A		В	С		С	В		С	D	
Approach Delay		7.0			30.0			19.2			34.9	
Approach LOS		A			С			В			С	
Queue Length 50th (m)	0.8	4.4		6.4	73.9		1.0	12.2		6.1	61.4	
Queue Length 95th (m)	3.0	12.8		18.1	#166.0		5.3	31.1		18.1	#128.6	
Internal Link Dist (m)		407.0			322.8			177.5			302.0	
Turn Bay Length (m)	98.0			67.0			35.0			38.0		
Base Capacity (vph)	364	926		512	724		198	608		277	676	
Starvation Cap Reductn	0	0		0	0		0	0		0	0	
Spillback Cap Reductn	0	0		0	0		0	0		0	0	
Storage Cap Reductn	0	0		0	0		0	0		0	0	
Reduced v/c Ratio	0.03	0.13		0.15	0.82		0.05	0.25		0.22	0.71	
Intersection Summary Cycle Length: 100 Actuated Cycle Length: 79 Natural Cycle: 90 Control Type: Semi Act-Unc Maximum v/c Ratio: 0.82	oord											

Scenario 1 1137 Ogilvie Road PM Peak Hour 2034 Future Total

Synchro 11 Report Page 9

02-18-2025

Lanes, Volumes, Timings 5: Labelle St/Cummings Ave & Cyrville Rd

02-18-2025

Lane Group	Ø3	Ø7
Lane Configurations		
Traffic Volume (vph)		
Future Volume (vph)		
Satd. Flow (prot)		
Flt Permitted		
Satd. Flow (perm)		
Satd. Flow (RTOR)		
Lane Group Flow (vph)		
Turn Type		
Protected Phases	3	7
Permitted Phases	-	-
Detector Phase		
Switch Phase		
Minimum Initial (s)	1.0	1.0
Minimum Split (s)	3.0	3.0
Total Split (s)	5.0	5.0
Total Split (%)	5%	5%
Yellow Time (s)	2.0	2.0
All-Red Time (s)	0.0	0.0
Lost Time Adjust (s)	0.0	0.0
Total Lost Time (s)		
Lead/Lag	Lead	Lead
Lead-Lag Optimize?	Yes	Yes
Recall Mode	None	Max
Act Effct Green (s)		max
Actuated g/C Ratio		
v/c Ratio		
Control Delay		
Queue Delay		
Total Delay		
LOS		
Approach Delay		
Approach LOS		
Queue Length 50th (m)		
Queue Length 95th (m)		
Internal Link Dist (m)		
Turn Bay Length (m)		
Base Capacity (vph)		
Starvation Cap Reductn		
Spillback Cap Reductn		
Storage Cap Reductn		
Reduced v/c Ratio		
Intersection Summary		

Scenario 1 1137 Ogilvie Road PM Peak Hour 2034 Future Total

tersection Capacity Utilization 96.4%		
	ICU Level of Service F	
nalysis Period (min) 15		
95th percentile volume exceeds capacity, queue ma	y be longer.	
Queue shown is maximum after two cycles.		

Ø; ¶Ø8 5 s 37 s HCM 2010 TWSC 6: Cummings Ave & Accss#1

02-18-2025

Intersection			_			
Int Delay, s/veh	0.8					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
		WDR		NDK	SDL	
Lane Configurations Traffic Vol, veh/h	₩ 43	6	↑ 564	55	9	41 631
	43	6 6	564	55	9	631
Future Vol, veh/h Conflicting Peds, #/hr	43	0	564 0	55	9	031
Sign Control	Stop	Stop	Free	Free	Free	Free
	- · · · P	- · · · P	Free -			
RT Channelized	- 0		-	None	-	None
Storage Length	-	-		-	90	
Veh in Median Storage			0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	43	6	564	55	9	631
Major/Minor	Minor1	1	Major1		Major2	
Conflicting Flow All	926	592	0	0	619	0
Stage 1	592	-	-	-	-	-
Stage 2	334					
Critical Hdwy	6.63	6.23	-	-	4.13	-
Critical Hdwy Stg 1	5.43				-	
Critical Hdwy Stg 2	5.83	-	-	-		-
Follow-up Hdwy	3.519		-		2.219	
Pot Cap-1 Maneuver	283	505			959	-
Stage 1	552		-			-
Stage 2	698	-		-		-
	090	-	-	-	-	
Platoon blocked, %	070	505	-	-	050	-
Mov Cap-1 Maneuver	279	505	-	-	959	-
Mov Cap-2 Maneuver	279	-	-	-		-
Stage 1	552				-	
Stage 2	688	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	19.6		0		0.2	
HCM LOS	C		, v		0.2	
	Ū					
Miner Long/Maier Mun		NDT		VBLn1	SBL	SBT
Minor Lane/Major Mvn	nt	NBT	INBRI			
Capacity (veh/h)		-		295	959	-
HCM Lane V/C Ratio		-	-	0.166		-
HCM Control Delay (s))	-	-	19.6	8.8	0.1
HCM Lane LOS		-	-	С	A	A
HCM 95th %tile Q(veh	I)	-	-	0.6	0	-

₩Ø6

▶ 05

Scenario 1 1137 Ogilvie Road PM Peak Hour 2034 Future Total

Appendix P

Synchro Worksheets -2034 Future Total Horizon

Lanes, Volumes, Timings
1: Cummings Ave & Donald

	≯	\mathbf{F}	•	Ť	Ļ	1
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	٦	1	7	1	ĵ,	
Traffic Volume (vph)	56	195	259	160	207	92
Future Volume (vph)	56	195	259	160	207	92
Satd. Flow (prot)	1626	1455	1658	1695	1647	0
Flt Permitted	0.950		0.578			
Satd. Flow (perm)	1626	1455	1009	1695	1647	0
Satd. Flow (RTOR)		195			55	
Lane Group Flow (vph)	56	195	259	160	299	0
Turn Type	Perm	Perm	Perm	NA	NA	
Protected Phases				2	6	
Permitted Phases	4	4	2			
Detector Phase	4	4	2	2	6	
Switch Phase			_			
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	
Minimum Split (s)	22.0	22.0	39.9	39.9	39.9	
Total Split (s)	22.0	22.0	39.9	39.9	39.9	
Total Split (%)	35.5%	35.5%	64.5%	64.5%	64.5%	
Yellow Time (s)	3.3	3.3	3.3	3.3	3.3	
All-Red Time (s)	2.7	2.7	3.6	3.6	3.6	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.0	6.0	6.9	6.9	6.9	
Lead/Lag	0.0	0.0	0.0	0.0	0.0	
Lead-Lag Optimize?						
Recall Mode	None	None	Мах	Max	Max	
Act Effct Green (s)	10.3	10.3	33.7	33.7	33.7	
Actuated g/C Ratio	0.18	0.18	0.59	0.59	0.59	
v/c Ratio	0.10	0.46	0.43	0.16	0.30	
Control Delay	21.2	7.8	9.4	5.9	5.7	
Queue Delay	0.0	0.0	0.0	0.0	0.0	
Total Delay	21.2	7.8	9.4	5.9	5.7	
LOS	21.2 C	7.0 A	3.4 A	J.5 A	J.7 A	
Approach Delay	10.8	A	A	8.0	5.7	
Approach LOS	B			0.0 A	J.7 A	
Queue Length 50th (m)	4.9	0.0	12.5	6.3	10.2	
Queue Length 95th (m)	12.8	13.5	28.0	13.7	21.6	
Internal Link Dist (m)	296.9	10.0	20.0	155.2	259.3	
Turn Bay Length (m)	296.9		60.0	100.2	209.0	
Base Capacity (vph)	457	549	597	1004	998	
Starvation Cap Reductn	457	549 0	0	0	990	
Spillback Cap Reductn	0	0	0	0	0	
Storage Cap Reductin	0	0	0	0	0	
Reduced v/c Ratio	0.12	0.36	0.43	0.16	0.30	
Neudeu VIC Nalio	0.12	0.30	0.43	0.10	0.50	
Intersection Summary						
Cycle Length: 61.9						
Actuated Cycle Length: 56.9	9					
Natural Cycle: 65						
Control Type: Actuated-Unc	coordinated					
Maximum v/c Ratio: 0.46						

Synchro 11 Report Page 1

02-18-2025

Lanes, Volumes, Timings 1: Cummings Ave & Donald		02-18-2025
Intersection Signal Delay: 8.0	Intersection LOS: A	
Intersection Capacity Utilization 57.4%	ICU Level of Service B	

Analysis Period (min) 15

Splits and Phases: 1: Cummings Ave & Donald

1 g2		✓ Ø4	
39.9 s		22 s	
↓ Ø6			
39.9 s			

Lanes, Volumes, Timings	
2: Cyrville Rd & Ogilvie Rd	

	۶	-	\mathbf{i}	4	+	•	1	1	1	1	÷.	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations		- † †	1	٦	- † †	1	1	¢Î		٦	eî	
Traffic Volume (vph)	0	687	154	35	875	134	164	200	28	48	118	43
Future Volume (vph)	0	687	154	35	875	134	164	200	28	48	118	43
Satd. Flow (prot)	0	3252	1427	1551	3316	1455	1580	1592	0	1566	1580	C
Flt Permitted				0.374			0.580			0.433		
Satd. Flow (perm)	0	3252	1338	604	3316	1301	959	1592	0	712	1580	C
Satd. Flow (RTOR)			154			134		6			15	
Lane Group Flow (vph)	0	687	154	35	875	134	164	228	0	48	161	C
Turn Type		NA	Perm	Perm	NA	Perm	Perm	NA		Perm	NA	
Protected Phases		2			6			8			4	
Permitted Phases			2	6		6	8			4		
Detector Phase		2	2	6	6	6	8	8		4	4	
Switch Phase												
Minimum Initial (s)		10.0	10.0	10.0	10.0	10.0	10.0	10.0		10.0	10.0	
Minimum Split (s)		32.2	32.2	32.2	32.2	32.2	47.1	47.1		47.1	47.1	
Total Split (s)		80.0	80.0	80.0	80.0	80.0	50.0	50.0		50.0	50.0	
Total Split (%)		61.5%	61.5%	61.5%	61.5%	61.5%	38.5%	38.5%		38.5%	38.5%	
Yellow Time (s)		3.7	3.7	3.7	3.7	3.7	3.7	3.7		3.7	3.7	
All-Red Time (s)		2.5	2.5	2.5	2.5	2.5	3.4	3.4		3.4	3.4	
Lost Time Adjust (s)		0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Lost Time (s)		6.2	6.2	6.2	6.2	6.2	7.1	7.1		7.1	7.1	
Lead/Lag												
Lead-Lag Optimize?												
Recall Mode		C-Max	C-Max	C-Max	C-Max	C-Max	None	None		None	None	
Act Effct Green (s)		90.1	90.1	90.1	90.1	90.1	26.6	26.6		26.6	26.6	
Actuated g/C Ratio		0.69	0.69	0.69	0.69	0.69	0.20	0.20		0.20	0.20	
v/c Ratio		0.30	0.16	0.08	0.38	0.14	0.84	0.69		0.33	0.48	
Control Delay		9.3	2.0	4.6	4.0	0.2	80.8	56.2		46.8	44.1	
Queue Delay		0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Delay		9.3	2.0	4.6	4.0	0.2	80.8	56.2		46.8	44.1	
LOS		A	A	A	A	A	F	E		D	D	
Approach Delay		7.9			3.6			66.5			44.7	
Approach LOS		A			A			E			D	
Queue Length 50th (m)		32.2	0.0	1.3	17.4	0.0	40.9	53.5		10.7	33.4	
Queue Length 95th (m)		57.9	8.6	m1.8	20.4	m0.0	59.3	70.4		19.9	47.8	
Internal Link Dist (m)		113.5			313.9			407.2			190.6	
Turn Bay Length (m)				62.0		71.0	50.0			82.0		
Base Capacity (vph)		2253	974	418	2298	942	316	529		234	531	
Starvation Cap Reductn		0	0	0	0	0	0	0		0	0	
Spillback Cap Reductn		0	0	0	0	0	0	0		0	0	
Storage Cap Reductn		0	0	0	0	0	0	0		0	0	
Reduced v/c Ratio		0.30	0.16	0.08	0.38	0.14	0.52	0.43		0.21	0.30	
Intersection Summary Cycle Length: 130 Actuated Cycle Length: 130												
Offset: 10 (8%), Referenced Natural Cycle: 80	to phase	2:EBT ar	Id 6:WBT	L, Start o	f Green							
Control Type: Actuated-Coo	rdinated											

Synchro 11 Report Page 3

02-18-2025

Lanes, Volumes, Timings 2: Cyrville Rd & Ogilvie Rd

Maximum v/c Ratio: 0.84		
Intersection Signal Delay: 18.4	Intersection LOS: B	
Intersection Capacity Utilization 72.4%	ICU Level of Service C	
Analysis Period (min) 15		

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 2: Cyrville Rd & Ogilvie Rd

● → Ø2 (R)	↓ ™ø4	
80 s	50 s	
Ø6 (R)	Ø8	
80 s	50 s	

Scenario 1 1137 Ogilvie AM Peak Hour 2034 Future Total

02-18-2025

3: Cummings Ave & Ogilvie Rd

	≯	-	$\mathbf{\hat{z}}$	1	-	*	•	1	1	1	÷.	-
ane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SB
ane Configurations	1	A1⊅		1	A1⊅		1	¢Î		ľ	eî	
raffic Volume (vph)	83	691	13	105	838	175	63	163	90	179	163	14
uture Volume (vph)	83	691	13	105	838	175	63	163	90	179	163	14
Satd. Flow (prot)	1580	3265	0	1642	3159	0	1658	1556	0	1642	1604	
It Permitted	0.950			0.950			0.950			0.950		
Satd. Flow (perm)	1547	3265	0	1610	3159	0	1650	1556	0	1555	1604	
Satd. Flow (RTOR)		1										
ane Group Flow (vph)	83	704	0	105	1013	0	63	253	0	179	308	
urn Type	Prot	NA		Prot	NA	-	Prot	NA	-	Prot	NA	
Protected Phases	5	2		1	6		3	8		7	4	
Permitted Phases	0	2			Ŭ		Ŭ	0				
etector Phase	5	2		1	6		3	8		7	4	
Switch Phase	Ū	2			v		Ŭ	Ū				
finimum Initial (s)	5.0	10.0		5.0	10.0		5.0	10.0		5.0	10.0	
/inimum Split (s)	9.7	25.7		9.7	25.7		9.5	37.1		9.3	37.1	
otal Split (s)	15.0	48.8		21.1	54.9		15.1	37.1		23.0	45.0	
otal Split (%)	11.5%	40.0		16.2%	42.2%		11.6%	28.5%		23.0	45.0 34.6%	
		37.5%						20.5%				
ellow Time (s)	3.7			3.7	3.7		3.3			3.3	3.3	
II-Red Time (s)	1.0	3.0		1.0	3.0		1.0	3.8		1.0	3.8	_
ost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
otal Lost Time (s)	4.7	6.7		4.7	6.7		4.3	7.1		4.3	7.1	
.ead/Lag	Lead	Lag		Lead	Lag		Lead	Lag		Lead	Lag	
ead-Lag Optimize?	Yes	Yes		Yes	Yes		Yes	Yes		Yes	Yes	
Recall Mode	None	C-Max		None	C-Max		None	None		None	None	
Act Effct Green (s)	10.3	50.7		13.1	53.4		9.3	26.2		17.2	36.2	
ctuated g/C Ratio	0.08	0.39		0.10	0.41		0.07	0.20		0.13	0.28	
/c Ratio	0.66	0.55		0.64	0.78		0.53	0.81		0.82	0.69	
Control Delay	84.9	30.2		83.1	35.6		74.2	68.7		83.3	50.8	
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
otal Delay	84.9	30.2		83.1	35.6		74.2	68.7		83.3	50.8	
.OS	F	С		F	D		E	E		F	D	
Approach Delay		36.0			40.1			69.8			62.7	
opproach LOS		D			D			E			E	
Queue Length 50th (m)	21.4	54.1		28.5	136.3		15.7	61.8		44.7	71.3	
Queue Length 95th (m)	#44.3	75.0		m43.1	m162.0		30.6	90.3		#78.7	101.4	
nternal Link Dist (m)		313.9			393.6			302.0			58.8	
urn Bay Length (m)	80.0			100.0			34.0					
Base Capacity (vph)	131	1273		207	1298		137	359		236	467	
starvation Cap Reductn	0	0		0	0		0	0		0	0	
Spillback Cap Reductn	Ű	0		0	0		0	0		0	0	
Storage Cap Reductn	0	0		0	0		0	0		0	0	
Reduced v/c Ratio	0.63	0.55		0.51	0.78		0.46	0.70		0.76	0.66	
tersection Summary cycle Length: 130 ctuated Cycle Length: 130		:EBT and										

Synchro 11 Report Page 5

02-18-2025

 3: Cummings Ave & Ogilvie Rd
 02-18-2025

 Maximum v/c Ratio: 0.82
 Intersection Signal Delay: 46.4
 Intersection LOS: D

 Intersection Capacity Utilization 86.5%
 ICU Level of Service E
 Analysis Period (min) 15

 # 95th percentile volume exceeds capacity, queue may be longer.
 Queue shown is maximum after two cycles.
 Maximum of the exceeds capacity users and signal.

Splits and Phases: 3: Cummings Ave & Ogilvie Rd

Lanes, Volumes, Timings

Ø1	∎ →Ø2 (R)	↑ ø3	Ø4
21.1 s	48.8 s	15.1 s 45 s	s
	← ●6 (R)	Ø7	1 Ø8
15 s	54.9 s	23 s	37.1 s

Scenario 1 1137 Ogilvie AM Peak Hour 2034 Future Total

Lanes, Volumes, Timings
4: Aviation & Ogilvie Rd

	۶	-	$\mathbf{\hat{z}}$	4	+	*	•	1	1	1	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SB
Lane Configurations	ሻ	^	1	ሻ	^	1	3	A1⊅		5	≜1 ≽	
Traffic Volume (vph)	379	526	92	119	545	125	210	510	219	162	370	31
Future Volume (vph)	379	526	92	119	545	125	210	510	219	162	370	31
Satd. Flow (prot)	1658	3252	1483	1626	3283	1483	1658	3166	0	1658	3087	
Flt Permitted	0.296			0.429			0.950			0.950		
Satd. Flow (perm)	517	3252	1483	734	3283	1483	1658	3166	0	1658	3087	
Satd, Flow (RTOR)			164			164		52			146	
ane Group Flow (vph)	379	526	92	119	545	125	210	729	0	162	688	
Turn Type	pm+pt	NA	Perm	pm+pt	NA	Perm	Prot	NA		Prot	NA	
Protected Phases	5	2		1	6		7	4		3	8	
Permitted Phases	2	-	2	6	Ŭ	6				Ű	Ŭ	
Detector Phase	5	2	2	1	6	6	7	4		3	8	
Switch Phase		_	_		-	-				-	-	
Vinimum Initial (s)	5.0	10.0	10.0	5.0	10.0	10.0	5.0	10.0		5.0	10.0	
Vinimum Split (s)	9.7	34.1	34.1	9.7	34.1	34.1	10.9	30.1		10.9	30.1	
Fotal Split (s)	20.0	47.0	47.0	20.0	47.0	47.0	32.9	45.0		18.0	30.1	
Fotal Split (%)	15.4%	36.2%	36.2%	15.4%	36.2%	36.2%	25.3%	34.6%		13.8%	23.2%	
fellow Time (s)	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7		3.7	3.7	
All-Red Time (s)	1.0	2.4	2.4	1.0	2.4	2.4	2.2	2.4		2.2	2.4	
ost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Fotal Lost Time (s)	4.7	6.1	6.1	4.7	6.1	6.1	5.9	6.1		5.9	6.1	
_ead/Lag	Lead	Lag	Lag	Lead	Lag	Lag	Lead	Lag		Lead	Lag	
_ead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		Yes	Yes	
Recall Mode	None	C-Max	C-Max	None	C-Max	C-Max	None	None		None	None	
Act Effct Green (s)	63.0	47.3	47.3	53.1	40.9	40.9	21.2	37.0		12.1	27.9	
Actuated g/C Ratio	0.48	0.36	0.36	0.41	0.31	0.31	0.16	0.28		0.09	0.21	
//c Ratio	0.40	0.30	0.30	0.41	0.51	0.31	0.78	0.20		1.05	0.89	
Control Delav	77.2	53.8	12.8	21.5	38.9	2.7	71.0	45.8		142.8	53.2	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	45.0		0.0	0.0	
Total Delay	77.2	53.8	12.8	21.5	38.9	2.7	71.0	45.8		142.8	53.2	
_OS	E	55.0 D	12.0 B	21.J C	50.9 D	2.1 A	71.0 E	4J.0		F	55.2 D	
Approach Delay	E	58.9	D	U	30.5	A	E	51.4		Г	70.3	
Approach LOS		50.9 E			30.5 C			D			70.3 E	
Queue Length 50th (m)	98.0	74.5	2.9	16.7	60.3	0.0	F2 0	82.7		~45.2	72.1	
Queue Length 95th (m)	#121.4	93.0	2.9 m12.6	28.4	78.0	6.5	52.0 75.7	105.6		~45.2 #89.3	#117.7	
	#121.4	393.6	1112.0	20.4	270.9	0.0	15.1	298.0		#09.3	298.9	
nternal Link Dist (m)	80.0	393.0	65.0	50.0	270.9	60.0	100.0	290.0		110.0	290.9	
Furn Bay Length (m)	401	1182	643	50.0 430	1032	578	344	983		110.0	777	_
Base Capacity (vph)												
Starvation Cap Reductn	0	0	0	0	0	0	0	0		0	0	_
Spillback Cap Reductn	0	0	0	0	0	0	0	0		0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0		0	0	_
Reduced v/c Ratio	0.95	0.45	0.14	0.28	0.53	0.22	0.61	0.74		1.05	0.89	
ntersection Summary Cycle Length: 130 Actuated Cycle Length: 130)											
Offset: 105 (81%), Referent Natural Cycle: 95 Control Type: Actuated-Coc		se 2:EBTI	and 6:W	/BTL, Sta	rt of Gree	n						

Synchro 11 Report Page 7

02-18-2025

Lanes, Volumes, Timings 4: Aviation & Ogilvie Rd		02-18-2025
Maximum v/c Ratio: 1.05		
Intersection Signal Delay: 53.4	Intersection LOS: D	
Intersection Capacity Utilization 90.9%	ICU Level of Service E	
Analysis Period (min) 15		
~ Volume exceeds capacity, queue is theoretically	infinite.	
Queue shown is maximum after two cycles.		
# 95th percentile volume exceeds capacity, queue	may be longer.	
Queue shown is maximum after two cycles.		
m Volume for 95th percentile queue is metered by	upstream signal.	

Splits and Phases: 4: Aviation & Ogilvie Rd

Ø1	₩ ₩ 102 (R)	1 03	♦ Ø4
20 s	47 s	18 s	45 s
	🛡 💞 Ø6 (R)	▲ Ø7	↓ Ø8
20 s	47 s	32.9 s	30.1 s

Lanes, Volumes, Timings 5: Labelle St/Cummings Ave & Cyrville Rd

	≯	-	\mathbf{F}	*	+	*	1	1	1	1	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ኘ	f,		5	4Î		<u> </u>	4Î		ሻ	ĥ	
Traffic Volume (vph)	21	224	37	111	388	170	5	33	65	150	89	20
Future Volume (vph)	21	224	37	111	388	170	5	33	65	150	89	20
Satd. Flow (prot)	1537	1638	0	1610	1580	0	1658	1372	0	1610	1585	0
Flt Permitted	0.252			0.598			0.687			0.528		
Satd. Flow (perm)	403	1638	0	995	1580	0	1185	1372	0	787	1585	0
Satd. Flow (RTOR)		17						65				
Lane Group Flow (vph)	21	261	0	111	558	0	5	98	0	150	109	0
Turn Type	pm+pt	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases	5	2			6			8			4	
Permitted Phases	2			6			8			4		
Detector Phase	5	2		6	6		8	8		4	4	
Switch Phase												
Minimum Initial (s)	5.0	10.0		10.0	10.0		10.0	10.0		10.0	10.0	
Minimum Split (s)	11.3	34.8		34.8	34.8		23.5	23.5		22.5	22.5	
Total Split (s)	15.0	42.0		42.0	42.0		23.5	23.5		23.0	23.0	
Total Split (%)	17.5%	49.1%		49.1%	49.1%		27.5%	27.5%		26.9%	26.9%	
Yellow Time (s)	3.7	3.7		3.7	3.7		3.3	3.3		3.3	3.3	
All-Red Time (s)	2.6	3.1		3.1	3.1		3.2	3.2		3.2	3.2	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)	6.3	6.8		6.8	6.8		6.5	6.5		6.5	6.5	
Lead/Lag	Lead			Lag	Lag		Lag	Lag		Lag	Lag	
Lead-Lag Optimize?	Yes			Yes	Yes		Yes	Yes		Yes	Yes	
Recall Mode	None	Max		Max	Max		None	None		None	None	
Act Effct Green (s)	40.8	40.3		35.6	35.6		14.4	14.4		14.4	14.4	
Actuated g/C Ratio	0.56	0.55		0.49	0.49		0.20	0.20		0.20	0.20	
v/c Ratio	0.07	0.29		0.23	0.73		0.02	0.31		0.97	0.35	
Control Delay	7.9	9.3		15.2	24.5		26.6	15.1		100.9	30.4	
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Delay	7.9	9.3		15.2	24.5		26.6	15.1		100.9	30.4	
LOS	A	A		В	С		С	В		F	С	
Approach Delay		9.1			23.0			15.7			71.3	
Approach LOS		A			С			В			E	
Queue Length 50th (m)	1.3	17.2		7.5	51.7		0.5	3.4		18.6	11.8	
Queue Length 95th (m)	3.9	29.7		22.9	#134.3		3.4	17.0		#59.3	29.5	
Internal Link Dist (m)		407.2			322.8			177.3			302.0	
Turn Bay Length (m)	98.0			67.0			35.0			38.0		
Base Capacity (vph)	361	1142		484	769		278	372		185	372	
Starvation Cap Reductn	0	0		0	0		0	0		0	0	
Spillback Cap Reductn	0	0		0	0		0	0		0	0	
Storage Cap Reductn	0	0		0	0		0	0		0	0	
Reduced v/c Ratio	0.06	0.23		0.23	0.73		0.02	0.26		0.81	0.29	
Intersection Summary												
Cycle Length: 85.5												
Actuated Cycle Length: 73.2												
Natural Cycle: 75												
Control Type: Semi Act-Unco	oord											
Maximum v/c Ratio: 0.97												

Scenario 1 1137 Ogilvie AM Peak Hour 2034 Future Total

Synchro 11 Report Page 9

02-18-2025

Lanes, Volumes, Timings 5: Labelle St/Cummings Ave & Cyrville Rd

02-18-2025

Lane Group	Ø3	Ø7
Lane Configurations		
Traffic Volume (vph)		
Future Volume (vph)		
Satd. Flow (prot)		
Flt Permitted		
Satd. Flow (perm)		
Satd. Flow (RTOR)		
Lane Group Flow (vph)		
Turn Type		
Protected Phases	3	7
Permitted Phases		
Detector Phase		
Switch Phase		
Minimum Initial (s)	1.0	1.0
Minimum Split (s)	3.0	3.0
Total Split (s)	5.0	5.0
Total Split (%)	6%	6%
Yellow Time (s)	2.0	2.0
All-Red Time (s)	0.0	0.0
Lost Time Adjust (s)		
Total Lost Time (s)		
Lead/Lag	Lead	Lead
Lead-Lag Optimize?	Yes	Yes
Recall Mode	Max	Max
Act Effct Green (s)		
Actuated g/C Ratio		
v/c Ratio		
Control Delay		
Queue Delay		
Total Delay		
LOS		
Approach Delay		
Approach LOS		
Queue Length 50th (m)		
Queue Length 50th (m) Queue Length 95th (m)		
Queue Length 50th (m) Queue Length 95th (m) Internal Link Dist (m)		
Queue Length 50th (m) Queue Length 95th (m) Internal Link Dist (m) Turn Bay Length (m)		
Queue Length 50th (m) Queue Length 95th (m) Internal Link Dist (m) Turn Bay Length (m) Base Capacity (vph)		
Queue Length 50th (m) Queue Length 95th (m) Internal Link Dist (m) Turn Bay Length (m) Base Capacity (vph) Starvation Cap Reductn		
Queue Length 50th (m) Queue Length 95th (m) Internal Link Dist (m) Turn Bay Length (m) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn		
Queue Length 50th (m) Queue Length 95th (m) Internal Link Dist (m) Turn Bay Length (m) Base Capacity (vph) Starvation Cap Reductn		

Scenario 1 1137 Ogilvie AM Peak Hour 2034 Future Total

Lanes, Volumes, Timings 5: Labelle St/Cummings Ave & Cyr	ville Rd	02-18-202
Intersection Signal Delay: 28.9	Intersection LOS: C	
Intersection Capacity Utilization 69.1%	ICU Level of Service C	
Analysis Period (min) 15		
95th percentile volume exceeds capacity, queue	e may be longer.	
Queue shown is maximum after two cycles.	, ,	
Splits and Phases: 5: Labelle St/Cummings Ave	& Cyrville Rd	
		● ø3 ↓ [™] ø4
42 s		5 s 23 s
▶ _{ø5} ★ _{ø6}		●ø7 ¶ø8
15 s 42 s		5 s 23.5 s

6: Cummings Ave	& Acces	IS # I					02-18-202
	4	*	1	1	1	Ļ	
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	Y		4Î			41	
Traffic Volume (vph)	52	9	393	27	4	424	
Future Volume (vph)	52	9	393	27	4	424	
Satd. Flow (prot)	1640	0	1729	0	0	3316	
Flt Permitted	0.959						
Satd. Flow (perm)	1640	0	1729	0	0	3316	
Lane Group Flow (vph)	61	0	420	0	0	428	
Sign Control	Stop		Free			Free	
Intersection Summary							
Control Type: Unsignalized							
Intersection Capacity Utiliza	ation 33.8%			IC	U Level o	of Service A	
Analysis Period (min) 15							

HCM 2010 TWSC	
6: Cummings Ave & Access #1	02-18-2025

Intersection						
Int Delay, s/veh	1					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	VVBL	WDR		NDR	SDL	
		0	}	07	4	41
Traffic Vol, veh/h	52	9	393	27	4	424
Future Vol, veh/h	52	9	393	27	4	424
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	90	-
Veh in Median Storage		-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	52	9	393	27	4	424
Major/Minor	Minor1	N	Major1		Major2	
Conflicting Flow All	627	407	0	0	420	0
		407	-	-	420	-
Stage 1	407					
Stage 2	220	-	-	-	-	-
Critical Hdwy	6.63	6.23	-	-	4.13	-
Critical Hdwy Stg 1	5.43	-	-	-	-	-
Critical Hdwy Stg 2	5.83	-		-	-	-
Follow-up Hdwy	3.519		-		2.219	-
Pot Cap-1 Maneuver	431	643	-		1137	-
Stage 1	671	-	-	-	-	-
Stage 2	796	-		-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver	429	643	-	-	1137	-
Mov Cap-2 Maneuver	429	-	-	-	-	-
Stage 1	671	-	-	-	-	-
Stage 2	792	-	-	-	-	-
, in gr						
Annroach	WB		NB		SB	
Approach						
HCM Control Delay, s	14.2		0		0.1	
HCM LOS	В					
Minor Lane/Major Mvm	nt	NBT	NBRV	WBLn1	SBL	SBT
Capacity (veh/h)		-		451	1137	
HCM Lane V/C Ratio			-			-
HCM Control Delay (s)		-	-	14.2	8.2	0
HCM Lane LOS				14.2 B	0.2 A	A
	`	-				A
HCM 95th %tile Q(veh)		-	0.5	0	

Synchro 11 Report Page 13

	≯	\mathbf{x}	•	1	÷.	1	
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	۲	1	۲	1	î,		
Traffic Volume (vph)	87	310	280	296	324	96	
Future Volume (vph)	87	310	280	296	324	96	
Satd. Flow (prot)	1595	1469	1658	1728	1687	0	
Flt Permitted	0.950		0.512		1001	, i i i i i i i i i i i i i i i i i i i	
Satd. Flow (perm)	1595	1469	893	1728	1687	0	
Satd. Flow (RTOR)	1000	310	000		37	Ŭ	
Lane Group Flow (vph)	87	310	280	296	420	0	
Turn Type	Perm	Perm	Perm	NA	NA	Ŭ	
Protected Phases	T OIL	T OIIII	T OIIII	2	6		
Permitted Phases	4	4	2	2	Ū		
Detector Phase	4	4	2	2	6		
Switch Phase			2	2	Ū		
Minimum Initial (s)	10.0	10.0	1.0	1.0	10.0		
Minimum Split (s)	22.0	22.0	7.9	7.9	39.9		
Total Split (s)	22.0	22.0	39.9	39.9	39.9		
Total Split (%)	35.5%	35.5%	64.5%	64.5%	64.5%		
Yellow Time (s)	3.3	3.3	3.3	3.3	3.3		
All-Red Time (s)	2.7	2.7	3.6	3.6	3.6		
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0		
Total Lost Time (s)	6.0	6.0	6.9	6.9	6.9		
Lead/Lag	0.0	0.0	0.5	0.5	0.5		
Lead-Lag Optimize?							
Recall Mode	None	None	Max	Max	Max		
Act Effct Green (s)	10.8	10.8	33.0	33.0	33.0		
Actuated g/C Ratio	0.19	0.19	0.58	0.58	0.58		
v/c Ratio	0.29	0.59	0.54	0.29	0.42		
Control Delay	22.4	8.0	12.4	7.2	7.7		
Queue Delay	0.0	0.0	0.0	0.0	0.0		
Total Delay	22.4	8.0	12.4	7.2	7.7		
LOS	C	A	B	A	A		
Approach Delay	11.1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	5	9.7	7.7		
Approach LOS	В			A	A		
Queue Length 50th (m)	7.8	0.0	14.6	12.8	17.7		
Queue Length 95th (m)	17.7	16.4	39.0	27.9	39.2		
Internal Link Dist (m)	296.3		00.0	143.5	259.3		
Turn Bay Length (m)	60.0		60.0	110.0	200.0		
Base Capacity (vph)	450	637	520	1007	998		
Starvation Cap Reductn	0	0	0	0	0		
Spillback Cap Reductn	Ű	0	0	0	0		
Storage Cap Reductn	0	0	0	0	0		
Reduced v/c Ratio	0.19	0.49	0.54	0.29	0.42		
Intersection Summary							
Cycle Length: 61.9							
Actuated Cycle Length: 56.	7						
Natural Cycle: 65							
Control Type: Actuated-Une	coordinated	1					
Maximum v/c Ratio: 0.59							

Scenario 1 1137 Ogilvie Road PM Peak Hour 2034 Future Total

Lanes, Volumes, Timings

Lanes, Volumes, Timings 1: Cummings Ave & Donald		02-18-2025
Intersection Signal Delay: 9.5	Intersection LOS: A	
Intersection Capacity Utilization 65.4%	ICU Level of Service C	
Analysis Period (min) 15		
Splits and Phases: 1: Cummings Ave & Donald	\$ø4	
39.9 s	22 s	
↓ ø6		
39.9 s		

	≯	-	\mathbf{r}	1	+		1	1	1	1	Ļ	-
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SB
Lane Configurations		^	1	ሻ	^	1	٦	4Î		ኘ	4Î	
Traffic Volume (vph)	0	1087	274	35	790	149	107	261	26	147	259	14
Future Volume (vph)	0	1087	274	35	790	149	107	261	26	147	259	14
Satd. Flow (prot)	0	3316	1455	1658	3316	1483	1658	1718	0	1658	1639	
Flt Permitted				0.208			0.247			0.419		
Satd. Flow (perm)	0	3316	1366	361	3316	1333	430	1718	0	730	1639	
Satd. Flow (RTOR)			274			149		5			25	
Lane Group Flow (vph)	0	1087	274	35	790	149	107	287	0	147	399	
Turn Type		NA	Perm	Perm	NA	Perm	Perm	NA		Perm	NA	
Protected Phases		2			6			8			4	
Permitted Phases			2	6		6	8			4		
Detector Phase		2	2	6	6	6	8	8		4	4	
Switch Phase												
Minimum Initial (s)		10.0	10.0	10.0	10.0	10.0	10.0	10.0		10.0	10.0	
Minimum Split (s)		32.2	32.2	32.2	32.2	32.2	47.1	47.1		47.1	47.1	
Total Split (s)		70.0	70.0	70.0	70.0	70.0	50.0	50.0		50.0	50.0	
Total Split (%)		58.3%	58.3%	58.3%	58.3%	58.3%	41.7%	41.7%		41.7%	41.7%	
Yellow Time (s)		3.7	3.7	3.7	3.7	3.7	3.7	3.7		3.7	3.7	
All-Red Time (s)		2.5	2.5	2.5	2.5	2.5	3.4	3.4		3.4	3.4	
Lost Time Adjust (s)		0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Lost Time (s)		6.2	6.2	6.2	6.2	6.2	7.1	7.1		7.1	7.1	
Lead/Lag												
Lead-Lag Optimize?												
Recall Mode		C-Max	C-Max	C-Max	C-Max	C-Max	None	None		None	None	
Act Effct Green (s)		73.5	73.5	73.5	73.5	73.5	33.2	33.2		33.2	33.2	
Actuated g/C Ratio		0.61	0.61	0.61	0.61	0.61	0.28	0.28		0.28	0.28	
v/c Ratio		0.54	0.29	0.16	0.39	0.17	0.90	0.60		0.73	0.85	
Control Delay		15.8	2.4	4.9	4.0	0.1	101.2	41.3		59.0	54.3	
Queue Delay		0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Delay		15.8	2.4	4.9	4.0	0.1	101.2	41.3		59.0	54.3	
LOS		В	A	A	A	A	F	D		E	D	
Approach Delay		13.1			3.4			57.5			55.6	
Approach LOS		В			A			E			E	
Queue Length 50th (m)		73.3	0.0	0.9	10.4	0.0	24.2	57.5		31.3	83.6	
Queue Length 95th (m)		111.3	12.3	m1.0	m11.6	m0.0	#50.5	76.2		50.4	108.7	
Internal Link Dist (m)		113.8	12.0		313.9			407.0		00.1	190.4	
Turn Bay Length (m)		110.0		62.0	0.0.0	71.0	50.0			82.0	100.1	
Base Capacity (vph)		2029	942	220	2029	873	153	617		260	602	
Starvation Cap Reductn		0	0	0	0	0	0	0		0	0	
Spillback Cap Reductn		0	0	0	0	0	0	0		0	0	
Storage Cap Reductn		0	0	0	0	0	0	0		0	0	
Reduced v/c Ratio		0.54	0.29	0.16	0.39	0.17	0.70	0.47		0.57	0.66	
Intersection Summary Cycle Length: 120												
Actuated Cycle Length: 120 Actuated Cycle Length: 120 Offset: 20 (17%), Referenced												

Synchro 11 Report Page 3

2: Cyrville Rd & Ogilvie Rd		02-18-2025
Maximum v/c Ratio: 0.90		
Intersection Signal Delay: 22.6	Intersection LOS: C	
Intersection Capacity Utilization 83.0%	ICU Level of Service E	
Analysis Period (min) 15		
# 95th percentile volume exceeds capacity, queue	e may be longer.	
Queue shown is maximum after two cycles.		
m Volume for 95th percentile queue is metered by	upstream signal.	

Splits and Phases: 2: Cyrville Rd & Ogilvie Rd

• • Ø2	(R)	₩ Ø4
70 s		50 s
, † ø∈	(R)	≜ 1 Ø8
70 s		50 s

	≯		~	~	-			†	-	1	1	
	-	-	•	×.		~	7			*	+	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	ę
Lane Configurations	1	↑ ĵ≽		โ	↑ ⊅		ሻ	ef 👘		ሻ	î≽	
Traffic Volume (vph)	173	1056	27	189	799	238	61	214	188	266	252	
Future Volume (vph)	173	1056	27	189	799	238	61	214	188	266	252	
Satd. Flow (prot)	1658	3294	0	1610	3112	0	1658	1531	0	1658	1638	
Flt Permitted	0.950			0.950			0.950			0.950		
Satd. Flow (perm)	1627	3294	0	1594	3112	0	1651	1531	0	1592	1638	
Satd. Flow (RTOR)		2										
Lane Group Flow (vph)	173	1083	0	189	1037	0	61	402	0	266	394	
Turn Type	Prot	NA		Prot	NA		Prot	NA		Prot	NA	
Protected Phases	5	2		1	6		3	8		7	4	
Permitted Phases												
Detector Phase	5	2		1	6		3	8		7	4	
Switch Phase												
Minimum Initial (s)	5.0	10.0		5.0	10.0		5.0	10.0		5.0	10.0	
Minimum Split (s)	9.7	25.7		9.7	25.7		9.5	36.6		9.3	36.6	
Total Split (s)	16.4	43.4		18.0	45.0		11.5	36.6		22.0	47.1	
Total Split (%)	13.7%	36.2%		15.0%	37.5%		9.6%	30.5%		18.3%	39.3%	
Yellow Time (s)	3.7	3.7		3.7	3.7		3.3	3.3		3.3	3.3	
All-Red Time (s)	1.0	3.0		1.0	3.0		1.0	3.8		1.0	3.8	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)	4.7	6.7		4.7	6.7		4.3	7.1		4.3	7.1	
Lead/Lag	Lead	Lag		Lead	Lag		Lead	Lag		Lead	Lag	
Lead-Lag Optimize?	Yes	Yes		Yes	Yes		Yes	Yes		Yes	Yes	
Recall Mode	None	C-Max		None	C-Max		None	None		None	None	
Act Effct Green (s)	11.7	36.7		13.3	38.3		7.0	29.5		17.7	42.3	
Actuated g/C Ratio	0.10	0.31		0.11	0.32		0.06	0.25		0.15	0.35	
v/c Ratio	1.07	1.07		1.06	1.04		0.64	1.07		1.09	0.68	
Control Delay	137.7	98.4		115.5	72.8		83.6	109.5		131.6	41.3	
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Delay	137.7	98.4		115.5	72.8		83.6	109.5		131.6	41.3	
LOS	F	F		F	E		F	F		F	D	
Approach Delay		103.8			79.4			106.1			77.7	
Approach LOS		F			E			F			E	
Queue Length 50th (m)	~45.8	~134.5		~49.8	~138.7		14.3	~104.8		~70.4	81.1	
Queue Length 95th (m)	#91.5	#196.7		m#75.2 r			#33.5	#165.0		#122.4	117.7	
Internal Link Dist (m)		313.9			393.6			302.0			70.4	
Turn Bay Length (m)	80.0			100.0			34.0					
Base Capacity (vph)	161	1008		178	993		99	376		244	577	
Starvation Cap Reductn	0	0		0	0		0	0		0	0	
Spillback Cap Reductn	0	0		0	0		0	0		0	0	
Storage Cap Reductn	0	0		0	0		0	0		0	0	
Reduced v/c Ratio	1.07	1.07		1.06	1.04		0.62	1.07		1.09	0.68	
Intersection Summary												

Offset: 0 (0%), Referenced to phase 2:EBT and 6:WBT, Start of G Natural Cycle: 145 Control Type: Actuated-Coordinated

Scenario 1 1137 Ogilvie Road PM Peak Hour 2034 Future Total

Synchro 11 Report Page 5

Lanes, Volumes, Timings 3: Cummings Ave & Ogilvie Rd		02-18-2025
Maximum v/c Ratio: 1.09		
Intersection Signal Delay: 91.0	Intersection LOS: F	
Intersection Capacity Utilization 103.3%	ICU Level of Service G	
Analysis Period (min) 15		
 Volume exceeds capacity, queue is theoretically 	/ infinite.	
Queue shown is maximum after two cycles.		
# 95th percentile volume exceeds capacity, queue	e may be longer.	
Queue shown is maximum after two cycles.		
m Volume for 95th percentile queue is metered by	upstream signal.	

Splits and Phases: 3: Cummings Ave & Ogilvie Rd

Ø 1	∎ →Ø2 (R)	▲ ø3	↓ Ø4	
18 s	43.4 s	11.5 s	47.1s	
	← ● Ø6 (R)	Ø7	1 Ø8	
16.4 s	45 s	22 s	36.6 s	

	≯	-	\mathbf{x}	1	-		•	†	1	- \	↓	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	S
Lane Configurations	1	<u></u>	1	٦	<u></u>	1	۲	A		٦	A1⊅	
Traffic Volume (vph)	314	1099	104	231	716	220	176	379	163	146	424	3
Future Volume (vph)	314	1099	104	231	716	220	176	379	163	146	424	3
Satd. Flow (prot)	1658	3316	1469	1658	3316	1483	1658	3166	0	1658	3100	
Flt Permitted	0.263			0.094			0.950			0.950		
Satd. Flow (perm)	459	3316	1469	164	3316	1483	1658	3166	0	1658	3100	
Satd. Flow (RTOR)			136			220		50			142	
Lane Group Flow (vph)	314	1099	104	231	716	220	176	542	0	146	751	
Turn Type	pm+pt	NA	Perm	pm+pt	NA	Perm	Prot	NA		Prot	NA	
Protected Phases	5	2		1	6		7	4		3	8	
Permitted Phases	2		2	6		6						
Detector Phase	5	2	2	1	6	6	7	4		3	8	
Switch Phase	-											
Minimum Initial (s)	5.0	10.0	10.0	5.0	10.0	10.0	5.0	10.0		5.0	10.0	
Minimum Split (s)	9.7	34.1	34.1	9.7	34.1	34.1	10.9	30.1		12.2	30.1	_
Total Split (s)	20.0	51.0	51.0	20.0	51.0	51.0	18.9	30.1		18.9	30.1	
Total Split (%)	16.7%	42.5%	42.5%	16.7%	42.5%	42.5%	15.8%	25.1%		15.8%	25.1%	
Yellow Time (s)	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7		3.5	3.7	
All-Red Time (s)	1.0	2.4	2.4	1.0	2.4	2.4	2.2	2.4		3.7	2.4	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		2.2	2.4	
Total Lost Time (s)	4.7	6.1	6.1	4.7	6.1	6.1	5.9	6.1		9.4	8.5	
Lead/Lag	Lead	Lag	Lag	Lead	Lag	Lag	Lead	Lag		Lead	Lag	
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		Yes	Yes	
Recall Mode	None	C-Max	C-Max	None	C-Max	C-Max	None	None		None	None	
Act Effct Green (s)	62.0	45.6	45.6	61.2	45.3	45.3	13.0	24.0		9.5	21.6	
Actuated g/C Ratio	0.52	45.0	45.6	01.2	45.5	45.5	0.11	0.20		9.5	0.18	
v/c Ratio		0.30	0.36	0.88	0.58	0.38	0.11	0.20		1.11	1.11	
	0.81											
Control Delay	14.4	26.8	3.4 0.0	60.2	32.0	4.6	116.9	51.8		162.9	107.3	
Queue Delay	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	_
Total Delay	14.4	26.8	3.4	60.2	32.0	4.6	116.9	51.8		162.9	107.3	
LOS	В	С	A	E	C	A	F	D		F	F	_
Approach Delay		22.6			32.4			67.7			116.3	
Approach LOS		С			С			E			F	
Queue Length 50th (m)	12.1	136.3	4.3	37.3	70.1	0.0	42.0	59.0		~39.4	~91.5	
Queue Length 95th (m)	m10.5	m121.4	m3.6	#79.3	89.3	15.5	#86.3	#80.0		#80.6	#130.1	
Internal Link Dist (m)		393.6			260.7			297.6			298.7	
Turn Bay Length (m)	80.0		65.0	50.0		60.0	100.0			110.0		
Base Capacity (vph)	391	1260	642	275	1251	696	179	673		131	674	
Starvation Cap Reductn	0	0	0	0	0	0	0	0		0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0		0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0		0	0	
Reduced v/c Ratio	0.80	0.87	0.16	0.84	0.57	0.32	0.98	0.81		1.11	1.11	
Intersection Summary												
Cycle Length: 120												

Scenario 1 1137 Ogilvie Road PM Peak Hour 2034 Future Total

Synchro 11 Report Page 6 Scenario 1 1137 Ogilvie Road PM Peak Hour 2034 Future Total

Control Type: Actuated-Coordinated

Lanes, Volumes, Timings					
4: Aviation & Ogilvie Rd		02-18-2025			
Maximum v/c Ratio: 1.11					
Intersection Signal Delay: 52.4	Intersection LOS: D				
Intersection Capacity Utilization 100.3%	ICU Level of Service G				
Analysis Period (min) 15					
~ Volume exceeds capacity, queue is theoretically in	nfinite.				
Queue shown is maximum after two cycles.					
# 95th percentile volume exceeds capacity, queue may be longer.					
Queue shown is maximum after two cycles.					

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 4: Aviation & Ogilvie Rd

Ø1	🛛 🗘 🖉 🖉 🖉	Ø3	1	Ø4
20 s	51 s	18.9 s	30.1	S
	🕈 🖉 Ø6 (R)	1 Ø7	↓	Ø8
20 s	51 s	18.9 s	30.1	s

	≯		\mathbf{r}	-	-		•	†	-	- \ _	Ļ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SB
Lane Configurations	3	f,		ň	ĥ		5	ĥ		ň	f,	
Traffic Volume (vph)	10	55	68	82	334	291	10	107	68	62	507	1
Future Volume (vph)	10	55	68	82	334	291	10	107	68	62	507	1
Satd. Flow (prot)	1658	1383	0	1595	1568	0	1658	1529	0	1445	1739	
Flt Permitted	0.177		-	0.678		-	0.265		-	0.538		
Satd. Flow (perm)	309	1383	0	1109	1568	0	462	1529	0	717	1739	
Satd. Flow (RTOR)		68						33				
Lane Group Flow (vph)	10	123	0	82	625	0	10	175	0	62	518	1
Turn Type	pm+pt	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases	5	2			6			8			4	
Permitted Phases	2	_		6	-		8	-		4	-	
Detector Phase	5	2		6	6		8	8		4	4	
Switch Phase	-	_		-	-		-	-				
Minimum Initial (s)	5.0	10.0		10.0	10.0		10.0	10.0		10.0	10.0	
Minimum Split (s)	9.7	30.8		30.8	30.8		22.5	22.5		22.5	22.5	
Total Split (s)	15.0	43.0		43.0	43.0		37.0	37.0		37.0	37.0	
Total Split (%)	15.0%	43.0%		43.0%	43.0%		37.0%	37.0%		37.0%	37.0%	
Yellow Time (s)	3.7	3.7		3.7	3.7		3.3	3.3		3.3	3.3	
All-Red Time (s)	1.0	3.1		3.1	3.1		3.2	3.2		3.2	3.2	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)	4.7	6.8		6.8	6.8		6.5	6.5		6.5	6.5	
Lead/Lag	Lead	0.0		Lag	Lag		Lag	Lag		Lag	Lag	
Lead-Lag Optimize?	Yes			Yes	Yes		Yes	Yes		Yes	Yes	
Recall Mode	None	Max		Max	Max		None	None		None	None	
Act Effct Green (s)	40.4	38.3		36.3	36.3		24.9	24.9		29.9	29.9	
Actuated g/C Ratio	0.50	0.47		0.44	0.44		0.31	0.31		0.37	0.37	
v/c Ratio	0.04	0.18		0.17	0.90		0.07	0.36		0.24	0.81	
Control Delay	10.6	6.8		16.2	40.0		23.6	20.9		22.1	36.3	
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Delay	10.6	6.8		16.2	40.0		23.6	20.9		22.1	36.3	
LOS	В	A		В	D		C	C		С	D	
Approach Delay		7.1			37.3		Ű	21.1		Ű	34.8	
Approach LOS		A			D			С			C	
Queue Length 50th (m)	0.8	4.6		7.1	82.9		1.0	16.1		6.3	67.9	
Queue Length 95th (m)	3.0	13.0		19.1	#178.6		5.4	37.9		18.2	#142.9	
Internal Link Dist (m)		407.0			322.8			177.5			302.0	
Turn Bay Length (m)	98.0			67.0			35.0			38.0		
Base Capacity (vph)	324	895		493	697		173	594		268	651	
Starvation Cap Reductn	0	0		0	0		0	0		0	0	
Spillback Cap Reductn	0	0		0	0		0	0		0	0	
Storage Cap Reductn	0	0		0	0		0	0		0	0	
Reduced v/c Ratio	0.03	0.14		0.17	0.90		0.06	0.29		0.23	0.80	
Intersection Summary												
Cycle Length: 100												
Actuated Cycle Length: 81.6												_
Natural Cycle: 90												
Control Type: Semi Act-Unco	and											

Scenario 1 1137 Ogilvie Road PM Peak Hour 2034 Future Total

Synchro 11 Report Page 8 Scenario 1 1137 Ogilvie Road PM Peak Hour 2034 Future Total

Lanes, Volumes, Timings

Lanes, Volumes, Timings	
5: Labelle St/Cummings Ave & Cyrville Rd	02-18-2025

Lane Group	Ø3	Ø7
Lane Configurations		
Traffic Volume (vph)		
Future Volume (vph)		
Satd. Flow (prot)		
Flt Permitted		
Satd. Flow (perm)		
Satd. Flow (RTOR)		
Lane Group Flow (vph)		
Turn Type		
Protected Phases	3	7
Permitted Phases	-	-
Detector Phase		
Switch Phase		
Minimum Initial (s)	1.0	1.0
Minimum Split (s)	3.0	3.0
Total Split (s)	5.0	5.0
Total Split (%)	5%	5%
Yellow Time (s)	2.0	2.0
All-Red Time (s)	0.0	0.0
Lost Time Adjust (s)	0.0	0.0
Total Lost Time (s)		
Lead/Lag	Lead	Lead
Lead-Lag Optimize?	Yes	Yes
Recall Mode	None	Max
Act Effct Green (s)	None	INICIA
Actuated g/C Ratio		
v/c Ratio		
Control Delay		
Queue Delay		
Total Delay		
LOS		
Approach Delay		
Approach LOS		
Queue Length 50th (m)		
Queue Length 95th (m)		
Internal Link Dist (m)		
Turn Bay Length (m)		
Base Capacity (vph)		
Starvation Cap Reductn		
Spillback Cap Reductn Storage Cap Reductn		
Reduced v/c Ratio		
Reduced V/C Ralio		
Intersection Summary		

Lanes, Volumes, Timings 5: Labelle St/Cummings Ave & Cyrv	illo Dd	02-18-2025
5. Labelle St/Cultillings Ave & Cyrv		02-10-2023
Intersection Signal Delay: 32.0	Intersection LOS: C	
Intersection Capacity Utilization 100.2%	ICU Level of Service G	
Analysis Period (min) 15		
# 95th percentile volume exceeds capacity, queue	may be longer.	

Queue shown is maximum after two cycles.

Splits and Phases: 5: Labelle St/Cummings Ave & Cyrville Rd

			Ø5 ♥ Ø4
43 s		5 s	37 s
	₩ Ø6	۲	a. 1 Ø8
15 s	43 s	5s	37 s

Scenario 1 1137 Ogilvie Road PM Peak Hour 2034 Future Total

Scenario 1 1137 Ogilvie Road PM Peak Hour 2034 Future Total

Lanes, Volumes, T 6: Cummings Ave		#1					02-18-202
	4	*	1	1	1	ţ	
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	Y		•			-f†	
Traffic Volume (vph)	43	6	592	55	9	642	
Future Volume (vph)	43	6	592	55	9	642	
Satd. Flow (prot)	1643	0	1726	0	0	3312	
Flt Permitted	0.958					0.999	
Satd. Flow (perm)	1643	0	1726	0	0	3312	
Lane Group Flow (vph)	49	0	647	0	0	651	
Sign Control	Stop		Free			Free	
Intersection Summary							
Control Type: Unsignalized							
Intersection Capacity Utiliza	ation 46.4%			IC	U Level	of Service	A
Analysis Period (min) 15							

HCM 2010 TWSC 6: Cummings Ave & Accss#1

Int Delay, s/veh 0.8 Average WBL WBR NBT NBR SBL SBT ane Configurations Y ↑	Internetion						
Averment WBL WBR NBR NBR SBL SBT rane Configurations Y + - +	Intersection	0.0					
Ane Configurations Y A A rardfic Vol, veh/h 43 6 592 55 9 642 viture Vol, veh/h 43 6 592 55 9 642 viture Vol, veh/h 43 6 592 55 9 642 conflicting Peds, #/hr 0 0 0 0 0 0 Storage Length 0 - 0 - 90 - 0 Yorage, % 0 - 0 - 0 - 0 Yorage Length 0 - 0 - - 0 Yeak Hour Factor 100 100 100 100 100 100 Yeak Hour Factor 100 100 100 100 100 100 Yeak Hour Factor 100 100 100 100 100 100 Yeak Hour Factor 100 100 100 100 100 100	init Delay, s/ven	0.8					
Traffic Vol, veh/h 43 6 592 55 9 642 viture Vol, veh/h 43 6 592 55 9 642 viture Vol, veh/h 43 6 592 55 9 642 vonflicting Peds, #/hr 0 0 0 0 0 Sign Control Stop Stop Free Free Free Red Amnelized - None - 90 - Storage Length 0 - - 90 - Grade, % 0 - 0 - 0 Grade, % 0 - 0 - 0 Yehin Median Storage, # 0 - 0 - 0 Park Hour Factor 100 100 100 100 100 Idear/Minor Minor1 Major1 Major2 Zonflicting Flow All 959 620 0 0 647 Conflicting Flow All 959 620 0 0 647 Conflicting Flow All 959 620 0 0 647 Conflicting Flow All 959 620 0 0 647 Conf	Movement		WBR		NBR	SBL	SBT
Liture Vol, veh/h 43 6 592 55 9 642 Conflicting Peds, #/hr 0 <td>Lane Configurations</td> <td>Y</td> <td></td> <td>↑</td> <td></td> <td></td> <td>-{1</td>	Lane Configurations	Y		↑			-{1
Conflicting Peds, #/hr 0	Traffic Vol, veh/h	43	6	592	55	9	642
Sign Control Stop Stop Free	Future Vol, veh/h	43	6	592	55	9	642
None None None None None None Vit Channelized 0 - - 90 - (eh in Median Storage, # 0 - 0 - 0 rade, % 0 - 0 - 0 rade, % 0 - 0 - 0 reak Hour Factor 100 100 100 100 100 reavy Vehicles, % 2 2 2 2 2 2 Anjor/Minor Minor1 Major1 Major2 2 2 2 2 Conflicting Flow All 959 620 0 0 647 0 Stage 1 623 6.23 - - - - Stage 1 535 - - - - - Oldwup Hdwy Stg 5.83 - - - - - Stage 1 535 - - - - - Stage 1 535 - - - -	Conflicting Peds, #/hr	0	0	0	0	0	0
Storage Length 0 - - 90 - Veh in Median Storage, # 0 - 0 - 0 - 0 Grade, % 0 - 0 - 0 - 0 Grade, % 0 100	Sign Control	Stop	Stop	Free	Free	Free	Free
Algor/Minor Minor Major Major Major Algor/Minor Minor 100 100 100 100 Algor/Minor Minor Major Major 2	RT Channelized			-	None	-	None
Brade, % 0 - 0 - 0 - 0 Yeak Hour Factor 100 100 100 100 100 100 100 leavy Vehicles, % 2	Storage Length	0	-	-	-	90	-
Brade, % 0 - 0 - 0 - 0 Peak Hour Factor 100 100 100 100 100 100 100 leavy Vehicles, % 2		e,# 0	-	0		-	0
Peak Hour Factor 100	Grade, %			0			0
Avm Flow 43 6 592 55 9 642 Algor/Minor Minor1 Major1 Major2 Major2 Conflicting Flow All 959 620 0 0 647 0 Stage 1 620 - - - - - - Stage 2 339 - - - - - - Stage 2 339 - - - - - - Stage 1 553 - - - - - - Voltcap 1 Maneuver 270 487 - 937 - Stage 1 535 - - - - - - Vol Cap-1 Maneuver 266 - - - - - - Stage 1 535 - - - - - - Vol Cap-1 Maneuver 266 - -	Peak Hour Factor	100	100	100	100	100	100
Avm Flow 43 6 592 55 9 642 Algor/Minor Minor1 Major1 Major2 Major2 Conflicting Flow All 959 620 0 0 647 0 Stage 1 620 - - - - - - Stage 2 339 - - - - - - Stage 2 339 - - - - - - Stage 1 553 - - - - - - Voltcap 1 Maneuver 270 487 - 937 - Stage 1 535 - - - - - - Vol Cap-1 Maneuver 266 - - - - - - Stage 1 535 - - - - - - Vol Cap-1 Maneuver 266 - -	Heavy Vehicles, %	2	2	2	2	2	2
Algor/Minor Minor1 Major1 Major2 Conflicting Flow All 959 620 0 647 0 Stage 1 620 - - - - - Stage 1 620 - - - - - - Stage 2 339 - - - - - - Critical Hdwy Stg 1 5.43 - - - - - - Ollow-up Hdwy Stg 2 5.83 -	Mymt Flow						
Conflicting Flow All 959 620 0 647 0 Stage 1 620 -		- 10		002		- 0	012
Conflicting Flow All 959 620 0 647 0 Stage 1 620 -							
Stage 1 620 -							
Stage 2 339 -	Conflicting Flow All		620	0	0	647	0
Dritical Hdwy 6.63 6.23 - - 4.13 - Critical Hdwy 5.43 -	Stage 1		-	-	-	-	-
Dritical Hdwy Stg 1 5.43 -	Stage 2	339	-	-	-	-	-
Witcal Hdwy Stg 2 5.83 -	Critical Hdwy	6.63	6.23	-	-	4.13	-
Vitical Hdwy Stg 2 5.83 -	Critical Hdwy Stg 1	5.43	-	-	-	-	-
Violow-up Howy 3.519 3.319 - - 2.219 - Yot Cap-1 Maneuver 270 487 - 937 - Stage 1 535 - - - - - Stage 2 694 - - - - - - Platoon blocked, % - - - - - - - Aov Cap-1 Maneuver 266 487 - 937 - - Aov Cap-2 Maneuver 266 - - - - - - Stage 1 535 - Stage 1 535 - - - - - Stage 1 <	Critical Hdwy Stg 2		-	-			-
Weight of the second	Follow-up Hdwy	3.519	3.319	-		2.219	
Stage 1 535 -				-			-
Stage 2 694 -		535	-	-		-	
Platoon blocked, % -			-	-		-	-
Mov Cap-1 Maneuver 266 487 - 937 - Aov Cap-2 Maneuver 266 - <td></td> <td>501</td> <td></td> <td></td> <td></td> <td></td> <td></td>		501					
Nov Cap-2 Maneuver 266 -		266	487	-		937	
Stage 1 535 -							
Stage 2 684 -							
Vpproach WB NB SB ICM Control Delay, s 20.4 0 0.2 ICM LOS C 0 0.2 Inor Lane/Major Mvmt NBT NBRWBLn1 SBL SBT Japacity (veh/h) - - 282 937 - ICM Lane V/C Ratio - - 0.174 0.01 -				-			-
ICM Control Delay, s 20.4 0 0.2 ICM LOS C C Inior Lane/Major Mvmt NBT NBRWBLn1 SBL SBT Japacity (veh/h) - - 282 937 - ICM Lane V/C Ratio - - 0.174 0.01 -	Staye Z	004		-		-	
ICM Control Delay, s 20.4 0 0.2 ICM LOS C C Inior Lane/Major Mvmt NBT NBRWBLn1 SBL SBT Japacity (veh/h) - - 282 937 - ICM Lane V/C Ratio - - 0.174 0.01 -							
ICM LOS C Alinor Lane/Major Mvmt NBT NBRWBLn1 SBL SBT Capacity (veh/h) - 282 937 - ICM Lane V/C Ratio - 0.174 0.01 -	Approach	WB		NB		SB	
ICM LOS C Alinor Lane/Major Mvmt NBT NBRWBLn1 SBL SBT Capacity (veh/h) - 282 937 - ICM Lane V/C Ratio - 0.174 0.01 -	HCM Control Delay, s	20.4		0		0.2	
Alinor Lane/Major Mvmt NBT NBRWBLn1 SBL SBT Capacity (veh/h) - - 282 937 - ICM Lane V/C Ratio - - 0.174 0.01 -	HCM LOS						
Capacity (veh/h) - - 282 937 - ICM Lane V/C Ratio - - 0.174 0.01 -							
Capacity (veh/h) - - 282 937 - ICM Lane V/C Ratio - - 0.174 0.01 -	Maral and Maria M		NDT			0.02	ODT
ICM Lane V/C Ratio 0.174 0.01 -		nt		NRK/			
				-			
CM Control Delay (s) 20.4 8.9 0.1			-	-			
)	-	-			
	HCM Lane LOS		-	-	-		A
ICM 95th %tile Q(veh) 0.6 0 -	HCM 95th %tile Q(veh	1)	-	-	0.6	0	-

Scenario 1 1137 Ogilvie Road PM Peak Hour 2034 Future Total

Synchro 11 Report Page 13

02-18-2025

Appendix Q

Synchro Worksheets -2034 Sensitivity Analysis

Lanes, Volumes, Timings	
3: Cummings Ave & Ogilvie Rd	

2034 Future Background-Sensitivity AM Peak Hour

	۶	→	Y	1	+	×	1	1	1	1	ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	٦	1 1		7	41		٦	4		1	ĥ	-
Traffic Volume (vph)	65	692	13	105	839	170	63	160	90	169	157	109
Future Volume (vph)	65	692	13	105	839	170	63	160	90	169	157	109
Satd, Flow (prot)	1580	3266	0	1642	3167	0	1658	1557	0	1642	1624	0
FIt Permitted	0.208			0.319			0.595			0.329		
Satd. Flow (perm)	346	3266	0	544	3167	0	1034	1557	0	548	1624	0
Satd. Flow (RTOR)		2			26			20			28	
Lane Group Flow (vph)	65	705	0	105	1009	0	63	250	0	169	266	0
Turn Type	pm+pt	NA		pm+pt	NA		Perm	NA		pm+pt	NA	
Protected Phases	5	2		1	6			8		7	4	
Permitted Phases	2			6			8			4		
Detector Phase	5	2		1	6		8	8		7	4	
Switch Phase												
Minimum Initial (s)	5.0	10.0		5.0	10.0		10.0	10.0		5.0	10.0	
Minimum Split (s)	9.7	24.7		9.7	24.7		36.6	36.6		9.3	36.6	
Total Split (s)	11.0	71.0		11.0	71.0		36.6	36.6		11.4	48.0	
Total Split (%)	8.5%	54.6%		8.5%	54.6%		28.2%	28.2%		8.8%	36.9%	
Yellow Time (s)	3.7	3.7		3.7	3.7		3.3	3.3		3.3	3.3	
All-Red Time (s)	1.0	2.0		1.0	2.0		3.3	3.3		1.0	3.3	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)	4.7	5.7		4.7	5.7		6.6	6.6		4.3	6.6	
Lead/Lag	Lead	Lag		Lead	Lag		Lag	Lag		Lead		
Lead-Lag Optimize?	Yes	Yes		Yes	Yes		Yes	Yes		Yes		
Recall Mode	None	C-Max		None	C-Max		None	None		None	None	
Act Effct Green (s)	75.3	68.2		76.4	70.4		27.1	27.1		40.8	38.5	
Actuated q/C Ratio	0.58	0.52		0.59	0.54		0.21	0.21		0.31	0.30	
v/c Ratio	0.25	0.41		0.28	0.58		0.29	0.74		0.73	0.53	
Control Delay	13.9	17.6		13.7	20.8		45.7	56.9		54.4	37.5	
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Delay	13.9	17.6		13.7	20.8		45.7	56.9		54.4	37.5	
LOS	В	В		В	С		D	E		D	D	
Approach Delay		17.3			20.1			54.7			44.1	
Approach LOS		В			С			D			D	
Queue Length 50th (m)	6.1	48.4		12.5	67.1		13.3	54.1		32.0	49.2	
Queue Length 95th (m)	14.1	57.6		m17.2	m77.4		26.7	83.5		#54.0	75.7	
Internal Link Dist (m)		313.9			393.6			302.0			237.9	
Turn Bay Length (m)	80.0			100.0			34.0			153.0		
Base Capacity (vph)	261	1713		373	1725		238	374		231	536	
Starvation Cap Reductn	0	0		0	0		0	0		0	0	
Spillback Cap Reductn	0	0		0	0		0	0		0	0	
Storage Cap Reductn	0	0		0	0		0	0		0	0	
Reduced v/c Ratio	0.25	0.41		0.28	0.58		0.26	0.67		0.73	0.50	
Intersection Summary Cycle Length: 130 Actuated Cycle Length: 130												
Offset: 110 (85%), Reference Natural Cycle: 85 Control Type: Actuated-Coc	ced to phas	se 2:EBTL	and 6:W	/BTL, Sta	rt of Gree	n						

Scenario 1 1137 Ogilvie AM Peak Hour 2034 Future Background-Sensitivity

Synchro 11 Report Page 1

Lanes, Volumes, Timings 3: Cummings Ave & Ogilvie Rd		2034 Future Background-Sensitivity AM Peak Hour
Maximum v/c Ratio: 0.74		
Intersection Signal Delay: 27.4	Intersection LOS: C	
Intersection Capacity Utilization 85.8%	ICU Level of Service	E
Analysis Period (min) 15		
# 95th percentile volume exceeds capacity, queue m	ay be longer.	
Queue shown is maximum after two cycles.		
m Volume for 95th percentile queue is metered by up	ostream signal.	

Splits and Phases: 3: Cummings Ave & Ogilvie Rd

Ø1 02 (R)	↓ Ø4
11s 71s	48 s
≠ ø5 • ₩ ø6 (R)	₩Ø7 1 Ø8
11s 71s	11.4s 36.6 s

Scenario 1 1137 Ogilvie AM Peak Hour 2034 Future Background-Sensitivity

	٦	-	7	1	-	*	1	1	1	1	Ŧ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations	2	*		7	*		7	ĥ		7	ĥ	
Traffic Volume (vph)	162	1049	27	189	806	226	61	213	188	274	252	12
Future Volume (vph)	162	1049	27	189	806	226	61	213	188	274	252	12
Satd. Flow (prot)	1658	3294	0	1610	3120	0	1658	1539	0	1658	1649	(
Flt Permitted	0.100			0.097			0.539			0.187		
Satd. Flow (perm)	175	3294	0	164	3120	0	937	1539	0	319	1649	(
Satd. Flow (RTOR)		2			32			37			26	
Lane Group Flow (vph)	162	1076	0	189	1032	0	61	401	0	274	374	
Turn Type	pm+pt	NA		pm+pt	NA		Perm	NA		pm+pt	NA	
Protected Phases	5	2		1	6			8		7	4	
Permitted Phases	2			6			8			4		
Detector Phase	5	2		1	6		8	8		7	4	
Switch Phase												
Minimum Initial (s)	5.0	10.0		5.0	10.0		10.0	10.0		5.0	10.0	
Minimum Split (s)	9.7	24.7		9.7	24.7		36.6	36.6		9.3	36.6	
Total Split (s)	15.0	45.0		15.0	45.0		40.0	40.0		20.0	60.0	
Total Split (%)	12.5%	37.5%		12.5%	37.5%		33.3%	33.3%		16.7%	50.0%	
Yellow Time (s)	3.7	3.7		3.7	3.7		3.3	3.3		3.3	3.3	
All-Red Time (s)	1.0	2.0		1.0	2.0		3.3	3.3		1.0	3.3	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)	4.7	5.7		4.7	5.7		6.6	6.6		4.3	6.6	
Lead/Lag	Lead	Lag		Lead	Lag		Lag	Lag		Lead		
Lead-Lag Optimize?	Yes	Yes		Yes	Yes		Yes	Yes		Yes		
Recall Mode	None	C-Max		None	C-Max		None	None		None	None	
Act Effct Green (s)	51.5	40.1		53.5	41.1		31.5	31.5		53.8	51.5	
Actuated g/C Ratio	0.43	0.33		0.45	0.34		0.26	0.26		0.45	0.43	
v/c Ratio	0.80	0.98		0.90	0.95		0.25	0.93		0.86	0.52	
Control Delay	60.3	51.5		70.4	53.9		37.0	68.2		48.6	25.8	
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Delay	60.3	51.5		70.4	53.9		37.0	68.2		48.6	25.8	
LOS	E	D		E	D		D	E		D	С	
Approach Delay		52.7			56.4			64.1			35.5	
Approach LOS		D			E			E			D	
Queue Length 50th (m)	16.7	39.3		38.3	101.9		11.1	83.1		40.4	57.2	
Queue Length 95th (m)	#58.8	#150.8		m#55.9 r			23.0	#138.6		#81.0	84.9	
Internal Link Dist (m)		313.9			393.6			302.0			237.9	
Turn Bay Length (m)	80.0			100.0			34.0			153.0		
Base Capacity (vph)	206	1101		210	1090		260	455		318	748	
Starvation Cap Reductn	0	0		0	0		0	0		0	0	
Spillback Cap Reductn	0	Ő		Ő	Û		Ű	Ő		0	Ű	
Storage Cap Reductn	0	0		0	0		0	0		0	0	
Reduced v/c Ratio	0.79	0.98		0.90	0.95		0.23	0.88		0.86	0.50	
Intersection Summary												
Cycle Length: 120												
Actuated Cycle Length: 120)											

Scenario 1 1137 Ogilvie Road PM Peak Hour 2034 Future Background-Sensitivity

 Lanes, Volumes, Timings
 2034 Future Background-Sensitivity

 3: Cummings Ave & Ogilvie Rd
 PM Peak Hour

 Maximum v/c Ratio: 0.98
 Intersection Signal Delay: 52.3
 Intersection LOS: D

 Intersection Capacity Utilization 102.3%
 ICU Level of Service G

 Analysis Period (min) 15
 #

 9 Sth percentile volume exceeds capacity, queue may be longer.
 Queue shown is maximum after two cycles.

 m
 Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 3: Cummings Ave & Ogilvie Rd

√ Ø1	🚽 📥 🖉 2 (R)	↓ Ø4	1.2.2
15 s	45 s	60 s	
♪ øs	🖉 🗸 🖉 Ø6 (R)	→ Ø7 ●	
15 s	45 8	20 s 40 s	

Scenario 1 1137 Ogilvie Road PM Peak Hour 2034 Future Background-Sensitivity

Lanes, Volumes, T 3: Cummings Ave		ie Rd						2034	Futur	e Tota	I- Sens AM Pea	
	۶	-	Y	1	+	*	1	t	1	1	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	1	†]>		٦	†]>		7	ţ,		٦	ţ,	
Traffic Volume (vph)	83	691	13	105	838	175	63	163	90	179	163	145
Future Volume (vph)	83	691	13	105	838	175	63	163	90	179	163	145
Satd. Flow (prot)	1580	3266	0	1642	3162	0	1658	1560	0	1642	1605	0
Flt Permitted	0.199			0.325			0.555			0.325		
Satd. Flow (perm)	331	3266	0	554	3162	0	964	1560	0	541	1605	0
Satd. Flow (RTOR)		2			27			20			36	
Lane Group Flow (vph)	83	704	0	105	1013	0	63	253	0	179	308	0
Turn Type	pm+pt	NA		pm+pt	NA		Perm	NA		pm+pt	NA	
Protected Phases	5	2		1	6			8		7	4	
Permitted Phases	2			6			8			4		
Detector Phase	5	2		1	6		8	8		7	4	
Switch Phase												
Minimum Initial (s)	5.0	10.0		5.0	10.0		10.0	10.0		5.0	10.0	
Minimum Split (s)	9.7	24.7		9.7	24.7		36.6	36.6		9.3	36.6	
Total Split (s)	11.0	71.0		11.0	71.0		36.6	36.6		11.4	48.0	
Total Split (%)	8.5%	54.6%		8.5%	54.6%		28.2%	28.2%		8.8%	36.9%	
Yellow Time (s)	3.7	3.7		3.7	3.7		3.3	3.3		3.3	3.3	
All-Red Time (s)	1.0	2.0		1.0	2.0		3.3	3.3		1.0	3.3	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)	4.7	5.7		4.7	5.7		6.6	6.6		4.3	6.6	
Lead/Lag	Lead	Lag		Lead	Lag		Lag	Lag		Lead		
Lead-Lag Optimize?	Yes	Yes		Yes	Yes		Yes	Yes		Yes		
Recall Mode	None	C-Max		None	C-Max		None	None		None	None	
Act Effct Green (s)	75.3	68.1		75.5	68.2		27.2	27.2		40.9	38.6	
Actuated g/C Ratio	0.58	0.52		0.58	0.52		0.21	0.21		0.31	0.30	
v/c Ratio	0.33	0.41		0.28	0.61		0.31	0.74		0.78	0.61	
Control Delay	17.4	17.8		13.6	21.7		46.5	57.3		59.3	39.6	
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Delay	17.4	17.8		13.6	21.7		46.5	57.3		59.3	39.6	
LOS	В	В		В	С		D	E		E	D	
Approach Delay		17.8			20.9			55.2			46.9	
Approach LOS		В			С			E			D	
Queue Length 50th (m)	7.9	48.1		12.4	67.2		13.4	54.9		34.1	58.1	
Queue Length 95th (m)	20.9	59.0		m17.2	m77.5		27.0	84.8		#61.1	88.2	
Internal Link Dist (m)		313.9			393.6			302.0			58.8	
Turn Bay Length (m)	80.0			100.0			34.0					
Base Capacity (vph)	252	1711		374	1670		222	375		229	535	
Starvation Cap Reductn	0	0		0	0		0	0		0	0	
Spillback Cap Reductn	0	0		0	0		0	0		0	0	
Storage Cap Reductn	0	0		0	0		0	0		0	0	
Reduced v/c Ratio	0.33	0.41		0.28	0.61		0.28	0.67		0.78	0.58	
Intersection Summary Cycle Length: 130 Actuated Cycle Length: 130 Offset: 110 (85%), Reference Natural Cycle: 85 Control Type: Actuated-Coc	ced to phas	se 2:EBTL	and 6:W	BTL, Sta	rt of Greer	1						

Scenario 1 1137 Ogilvie AM Peak Hour 2034 Future Total- Sensitivity

 Lanes, Volumes, Timings
 2034 Future Total- Sensitivity

 3: Cummings Ave & Ogilvie Rd
 AM Peak Hour

 Maximum v/c Ratio: 0.78
 Intersection LOS: C

 Intersection Signal Delay: 28.7
 Intersection LOS: C

 Intersection Capacity Utilization 87.3%
 ICU Level of Service E

 Analysis Period (min) 15
 #

 # 95th percentile volume exceeds capacity, queue may be longer.
 Queue shown is maximum after two cycles.

 m
 Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 3: Cummings Ave & Ogilvie Rd

✓ Ø1 Ø1 Ø2 (R)	04	
11s 71s	48 s	
▶ø5 • ∞6 (R)	₩Ø7 Ø8	
11s 71s	11.45 36.65	

Scenario 1 1137 Ogilvie AM Peak Hour 2034 Future Total- Sensitivity

	•	-	7	1	-	*	1	1	1	1	Ŧ	~
ane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
ane Configurations.	7	*		7	*		7	ĥ		7	ĥ	
raffic Volume (vph)	173	1056	27	189	799	238	61	214	188	266	252	142
uture Volume (vph)	173	1056	27	189	799	238	61	214	188	266	252	142
Satd. Flow (prot)	1658	3294	0	1610	3112	0	1658	1539	0	1658	1639	(
It Permitted	0.100			0.098			0.529			0.186		
Satd. Flow (perm)	175	3294	0	166	3112	0	920	1539	0	317	1639	(
Satd. Flow (RTOR)		2			34			37			30	
ane Group Flow (vph)	173	1083	0	189	1037	0	61	402	0	266	394	(
Turn Type	pm+pt	NA		pm+pt	NA		Perm	NA		pm+pt	NA	
Protected Phases	5	2		1	6			8		7	4	
Permitted Phases	2			6			8			4		
Detector Phase	5	2		1	6		8	8		7	4	
Switch Phase												
/linimum Initial (s)	5.0	10.0		5.0	10.0		10.0	10.0		5.0	10.0	
/linimum Split (s)	9.7	24.7		9.7	24.7		36.6	36.6		9.3	36.6	
otal Split (s)	15.0	45.0		15.0	45.0		40.0	40.0		20.0	60.0	
otal Split (%)	12.5%	37.5%		12.5%	37.5%		33.3%	33.3%		16.7%	50.0%	
ellow Time (s)	3.7	3.7		3.7	3.7		3.3	3.3		3.3	3.3	
All-Red Time (s)	1.0	2.0		1.0	2.0		3.3	3.3		1.0	3.3	
ost Time Adjust (s).	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
otal Lost Time (s)	4.7	5.7		4.7	5.7		6.6	6.6		4.3	6.6	
.ead/Lag	Lead	Lag		Lead	Lag		Lag	Lag		Lead		
.ead-Lag Optimize?	Yes	Yes		Yes	Yes		Yes	Yes		Yes		
Recall Mode	None	C-Max		None	C-Max		None	None		None	None	
Act Effct Green (s)	51.6	40.0		53.3	40.9		31.5	31.5		53.8	51.5	
Actuated g/C Ratio	0.43	0.33		0.44	0.34		0.26	0.26		0.45	0.43	
/c Ratio	0.84	0.98		0.90	0.96		0.25	0.93		0.84	0.55	
Control Delay	65.4	52.9		70.1	55.4		37.2	68.5		45.8	26.4	
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
otal Delay	65.4	52.9		70.1	55.4		37.2	68.5		45.8	26.4	
.OS	E	D		E	E		D	E		D	С	
Approach Delay		54.6			57.7			64.3			34.2	
Approach LOS		D			E			E			С	
Queue Length 50th (m)	19.0	~39.7		38.3	102.3		11.1	83.5		39.0	60.8	
Queue Length 95th (m)	#66.3	#152.6		m#56.0 r			23.0	#139.6		#76.9	90.3	
nternal Link Dist (m)		313.9			393.6			302.0			70.4	
urn Bay Length (m)	80.0			100.0			34.0					
Base Capacity (vph)	206	1100		210	1082		256	455		317	746	
Starvation Cap Reductn	0	0		0	0		0	0		0	0	
Spillback Cap Reductn	0	0		0	0		0	0		0	0	
Storage Cap Reductn	0	0		0	0		0	0		0	0	
Reduced v/c Ratio	0.84	0.98		0.90	0.96		0.24	0.88		0.84	0.53	
ntersection Summary												
Cycle Length: 120												
Actuated Cycle Length: 120												

Lanes, Volumes, Timings 3: Cummings Ave & Ogilvie Rd		2034 Future Total-Sensitivity PM Peak Hour
Maximum v/c Ratio: 0.98		
Intersection Signal Delay: 53.2	Intersection LOS: D	
Intersection Capacity Utilization 102.0%	ICU Level of Service G	
Analysis Period (min) 15		
~ Volume exceeds capacity, queue is theoretically in	nfinite.	
Queue shown is maximum after two cycles.		
# 95th percentile volume exceeds capacity, queue n	nay be longer.	
Queue shown is maximum after two cycles.		
m Volume for 95th percentile queue is metered by u	ipstream signal.	

Splits and Phases: 3: Cummings Ave & Ogilvie Rd

1 Ø1	102 (R)	Ø4	
15 s	45 s	60 s	
≯ _{Ø5}	9 🗸 Ø6 (R)	▶ Ø7 ♦	
15 s	45 s	20 s 40 s	