

Engineers, Planners & Landscape Architects

Engineering

Land/Site
Development

Municipal
Infrastructure

Environmental/
Water Resources

Traffic/
Transportation

Recreational

Planning

Land/Site
Development

Planning Application
Management

Municipal Planning

Urban Design

Expert Witness
(LPAT)

Wireless Industry

**Landscape
Architecture**

Streetscapes &
Public Amenities

Open Space, Parks &
Recreation

Community &
Residential

Commercial &
Institutional

Environmental
Restoration

2095 Dilworth Road, Kars, ON

Servicing Options and Conceptual Stormwater Management Report

Prepared for: Dilworth Development Inc.

Engineering excellence.

Planning progress.

Liveable landscapes.

2095 DILWORTH ROAD

SERVICING OPTIONS AND CONCEPTUAL STORMWATER MANAGEMENT REPORT

Prepared By:

NOVATECH
Suite 200, 240 Michael Cowpland Drive
Ottawa, Ontario
K2M 1P6

July 17, 2024
Revised: October 21, 2025 (Revised per City comments)

Novatech File: 123081
Ref: R-2024-065

October 21, 2025

City of Ottawa
Development Review, Rural Services
Planning, Real Estate and Economic Development Department
110 av Laurier Avenue West - 4th Floor
Ottawa, ON, K1P 1J1

Attention: Ms. Sarah McCormick, MCIP, RPP, Planner II

Reference: 2095 Dilworth Road, Kars, ON
Servicing Options and Conceptual Stormwater Management Report
Novatech File No.: 123081

Please find enclosed the Servicing Options and Conceptual Stormwater Management Report for the 2095 Dilworth Road property in Kars, within the City of Ottawa.

The report has been prepared to show the proposed servicing and stormwater management concept for the subject site and is submitted in support of a Zoning Amendment Application. This report has been updated based on City comments provided and is re-submitted for approval.

If you have any questions or comments, please do not hesitate to contact us.

Sincerely,

NOVATECH

Cara Ruddle, P.Eng.
Senior Project Manager
Land Development Engineering

TABLE OF CONTENTS

1.0 INTRODUCTION.....	1
2.0 EXISTING DEVELOPMENT	1
3.0 PROPOSED DEVELOPMENT	1
4.0 SITE CONSTRAINTS	1
5.0 SITE SERVICING.....	3
6.0 STORMWATER MANAGEMENT	4
6.1 Stormwater Management Criteria.....	4
6.2 Proposed Stormwater Management.....	4
6.3 Best Management Practices	5
7.0 EROSION AND SEDIMENT CONTROL	5
8.0 CONCLUSIONS.....	6

LIST OF FIGURES

Figure 1	Key Plan
Figure 2	Existing Conditions Plan
Figure 3	Constraints and Setback Pre-Development Area Plan
Figure 4	Constraints and Setback Post-Development Area Plan
Figure 5	Developable Area Plan
Figure 6	Post-Development Stormwater Drainage Plan

LIST OF APPENDICES

Appendix A	Culvert Information
Appendix B	Stormwater Management Calculations
Appendix C	Drawings

1.0 INTRODUCTION

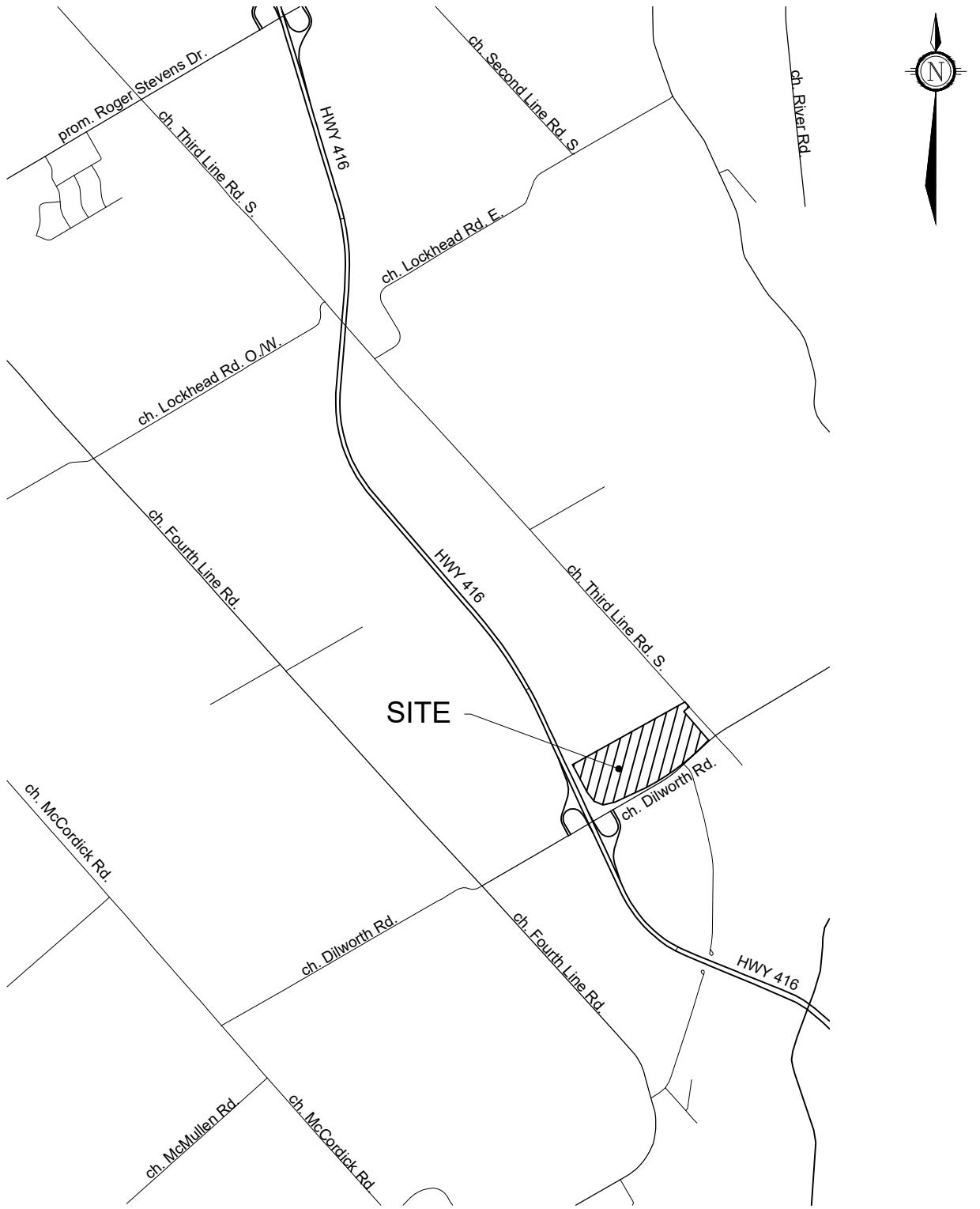
Novatech has been retained by Dilworth Development Inc. to prepare a Servicing Options and Conceptual Stormwater Management Report for the property located at 2095 Dilworth Road in Kars, within the City of Ottawa. The development is located just northeast of the Highway 416/Dilworth exit. **Figure 1** is a Key Plan showing the site location. The purpose of this report is to review the servicing options for the subject site and provide a concept for stormwater management.

2.0 EXISTING DEVELOPMENT

The existing property currently has a two-storey residential dwelling with associated garage/storage buildings and sheds and the remainder of the site is either agricultural or treed area with a few watercourses within the site. The property is approximately 33 hectares in size. The legal description of the property is identified as Part of Lot 35, Concession 3 (North Gower), City of Ottawa, Ontario. The property is bound by the Veterans Memorial Highway 416 to the west, adjacent residential properties along Third Line Road to the east, Dilworth Road to the south, and an undeveloped property to the north. The topography of the site is relatively flat and the site generally drains towards the watercourses within the site area. **Figure 2 Existing Conditions** shows the existing site conditions of the subject property.

3.0 PROPOSED DEVELOPMENT

Dilworth Development Inc. is proposing to rezone areas of the Subject Site from *Rural Countryside – RU* to *Rural Commercial – RC* to permit future commercial and light industrial land uses. The applicants are proposing to rezone the Subject Site for the purposes of marketing it for future development. It is suggested to rezone the other areas from *Rural Countryside – RU* to *Environmental Protection – EP* for the preservation of the Subject Site's rural natural heritage features.


Since the proposed development is unknown at this time, a potential development concept has been prepared for the purpose of this report to demonstrate that the site is serviceable.

4.0 SITE CONSTRAINTS

There are some site constraints noted in the supporting reports that may influence the engineering design of the subject development. These existing constraints are shown on **Figure 3 - Constraints and Setback Pre-Development Plan** and discussed subsequently.

A geotechnical investigation was completed by Englobe Corp. and a report prepared entitled 'Preliminary Geotechnical Investigation Report, Proposed Commercial Development, 2095 Dilworth Road, Kars, ON' dated May 1, 2024 and Revision 1 dated January 6, 2025. The report included the following recommendations.

- Groundwater is anticipated to be less than 2.0 m below ground surface.
- The Geotechnical Consultant assumed an anticipated grade raise of 1.0m which could result in approximately 40mm of settlement. Refer to Englobe letter entitled, "Proposed Commercial Development 1.0 m Grade Raise, 2095 Dilworth Road, Kars, ON", dated July 18, 2024 (provided in Appendix G of the Englobe Report). Lightweight fill and/or preloading may be a consideration for a proposed development on this site.

Engineers, Planners & Landscape Architects

Suite 200, 240 Michael Cowpland Drive
Ottawa, Ontario, Canada K2M 1P6

Telephone (613) 254-9643
Facsimile (613) 254-5867
Website www.novatech-eng.com

KEY PLAN
LOT 35, CONCESSION 3
CITY OF OTTAWA

2095 DILWORTH ROAD

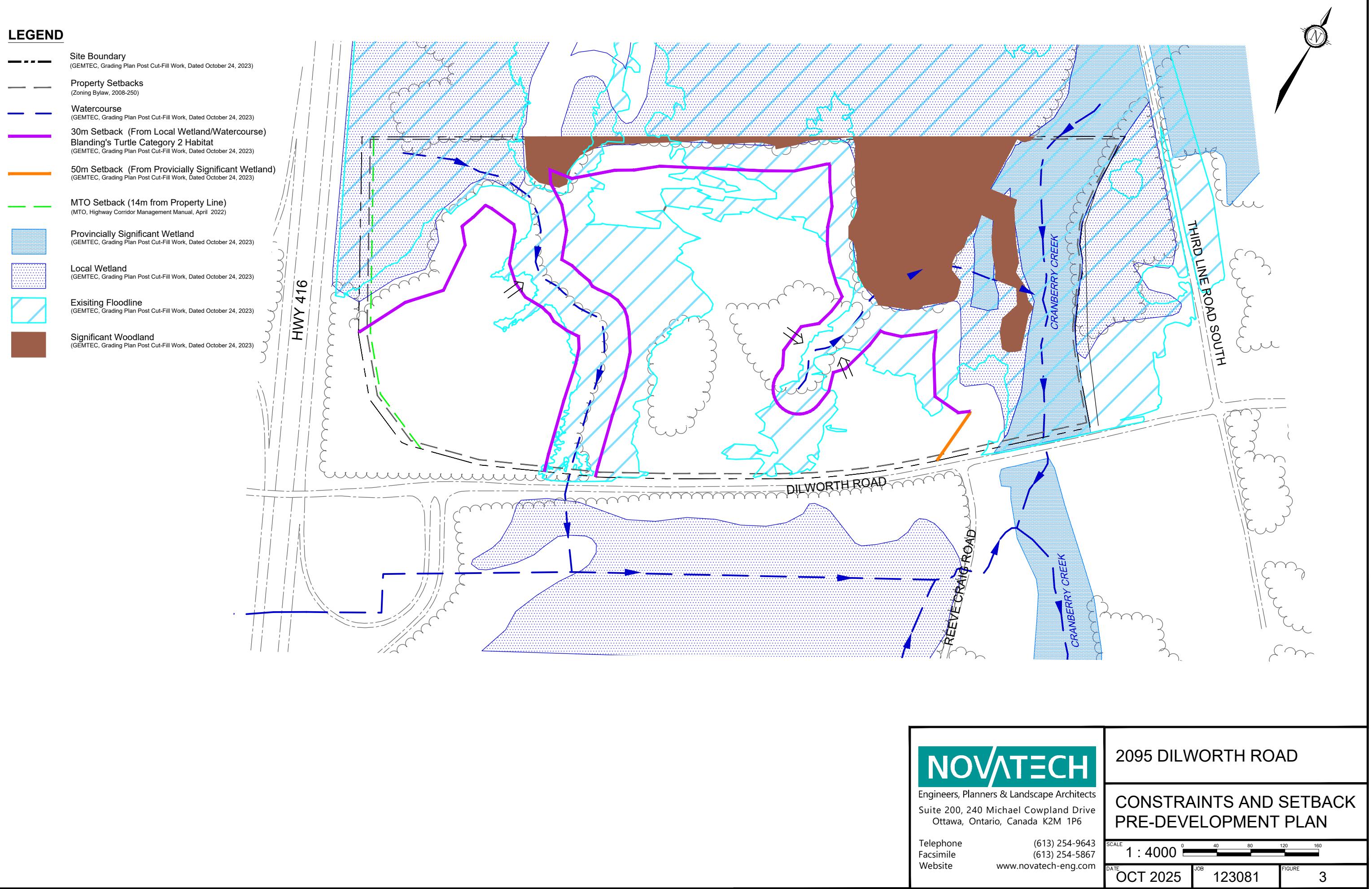
DATE
SEPT 2025

JOB
123081

FIGURE
1

NOVATECH

Engineers, Planners & Landscape Architects
Suite 200, 240 Michael Cowpland Drive
Ottawa, Ontario, Canada K2M 1P6


Telephone (613) 254-9643
Facsimile (613) 254-5867
Website www.novatech-eng.com

2095 DILWORTH ROAD

EXISTING CONDITIONS

SCALE 1 : 4000 0 40 80 120 160

DATE OCT 2025 JOB 123081 FIGURE 2

- The existing soils have low bearing capacity which will need to be considered during the building and foundation design.
- Since the groundwater is less than 2.0m below ground surface, there could be significant dewatering required during building construction depending on the type of foundation proposed. Therefore, it may be required to register on the Environmental Activity and Sector Registry (EASR) or obtain a Permit To Take Water.
- Clay seals should be installed in any underground trenches.
- Adequate slopes and subdrains should be installed to assist with pavement drainage. Geotextile is also recommended below the pavement structure.

An Environmental Impact Statement, Proposed Zoning Amendment, 2095 Dilworth Road, Ottawa, Ontario' was prepared by Gemtec dated May 10, 2024 (Gemtec EIS Report). The Gemtec EIS Report identifies a number of constraints that may impact development. The constraints are described briefly below.

- Watercourses – There are two unnamed watercourses that travel through the subject site which require setbacks. The watercourse within the western portion of the property is assumed to provide fish habitat. The Gemtec EIS Report recommends a minimum setback of 30m (from top of bank) for the watercourse. The setback area shall remain undisturbed and is to be left in a natural state. This 30 m setback will also provide protection of fish habitat.
- Provincially Significant Wetlands (PSW) – A portion of the Cranberry Creek PSW is located within the eastern portion of the property. Local wetlands are also located within the site area. A 50 m setback is recommended from the Cranberry Creek PSW and a 30m setback is recommended from the local wetland area.
- Significant Woodlands – There is a significant woodland area located in the northeastern corner of the property. The Gemtec EIS Report suggests that the 30m setback to the local wetlands will be sufficient to protect significant woodland area.
- Significant Valleylands – There are significant valleylands within the site area but are located within the floodplain areas. The Gemtec EIS Report indicates that the 30m setback to wetland and watercourses is sufficient to protect significant valleyland areas.
- Significant Wildlife Habitat – The Gemtec EIS Report indicates a number of species listed as significant wildlife habitat within the site area. The 30 m and 50 m setbacks to wetlands and PSW will provide sufficient protection for these species and their habitat. Reptile exclusion fencing will be required prior to the commencement of any construction.
- Turtle Habitat – The subject site is within a greater area of known Blanding's Turtle siting's. Therefore, there are areas of Category 1, 2 and 3 Blanding's Turtle Habitat throughout the site. Exclusion fencing will be required prior to the commencement of any construction. And consultation with the MECP will be required through the Overall Benefit Permit process.

Additional site constraints are noted as follows:

- MTO Setback – the site is located adjacent the Highway 416 and a 14m setback from the property line is required from provincial highways.
- Floodplain – The 100-year floodplain for the unnamed watercourses meanders through the site area and is another site constraint. Development is to occur outside the floodplain area and any storage of stormwater needs to be above the 100-year floodplain elevation.

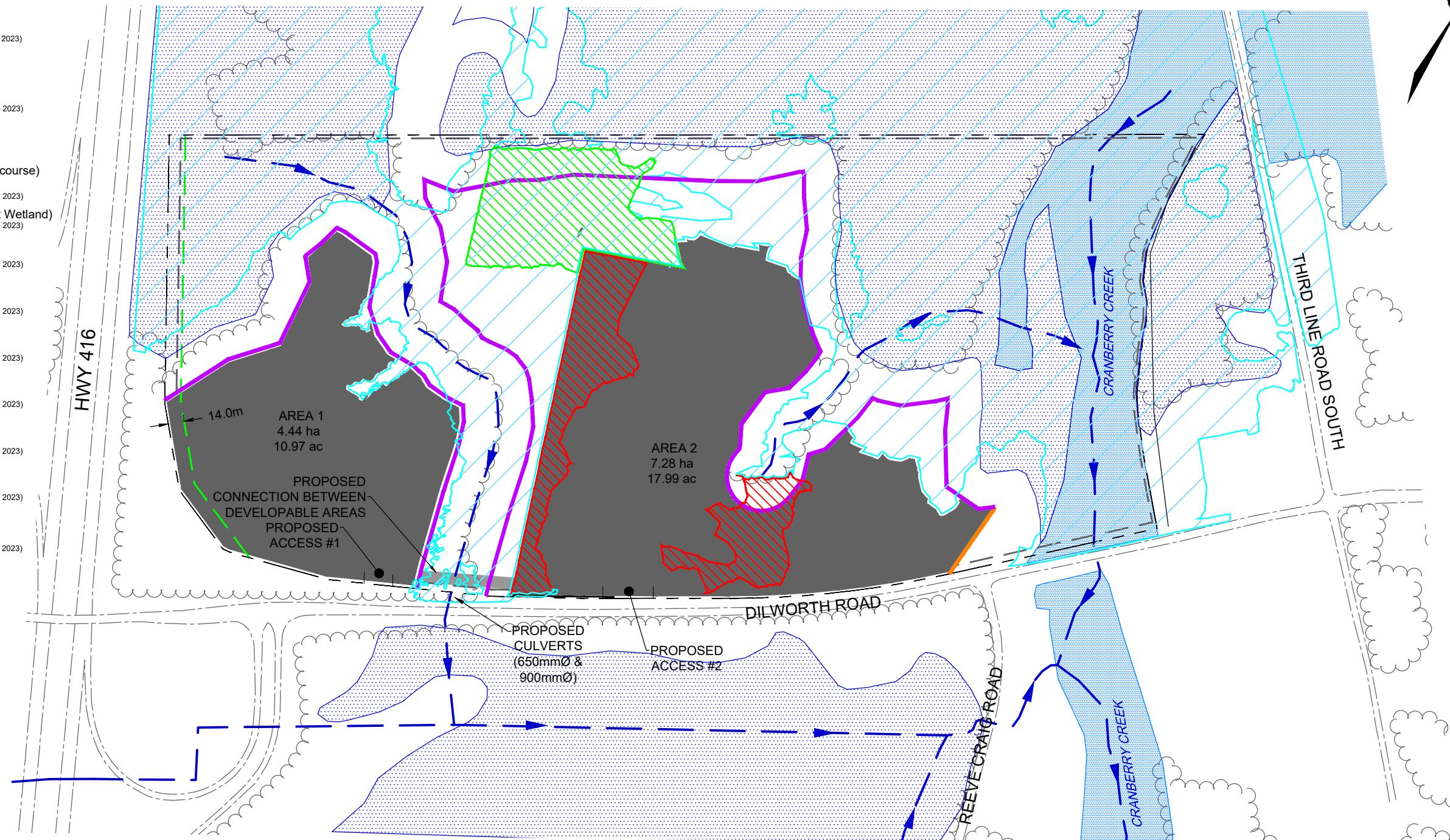
The developable area for this site must abide by each of the constraints and setbacks noted above. In order to increase the developable area a portion of the floodplain area was proposed to be filled and an associated cut area provided in compensation for the fill area. This has been reviewed and approved by the Conservation Authority. **Figure 4 Constraints and Setback Post-Development Plan** shows the revised constraints given the cut and fill areas. **Figure 5** is a simplified plan showing the developable area. This developable area will require approval by the MECP, City of Ottawa, and RVCA.

5.0 SITE SERVICING

As shown in Figure 5, there are 2 developable areas within the total site area. An internal road connection is shown as there is one entrance connection proposed to Dilworth Road. A separate entrance for the western developable area may be too close to the Highway 416 on/off ramps. This internal road connection would require a culvert crossing and a permit from the RVCA has already been obtained for the culvert crossing. Supporting documents are included in Appendix

The site is located well outside the City of Ottawa urban boundary. Municipal services are not proposed or anticipated for the subject site as the closest municipal services are in Manotick, approximately 14-kilometres northeast of the subject property.

Proposed buildings requiring services would be designed with a private well(s) and private sewage system(s).


A hydrogeological study was completed and a report prepared entitled 'Hydrogeological Study Report, 2095 Dilworth Road, Kars, Ontario' prepared by Englobe Corp. dated May 2024 and revised dated February 2025. This report provides information with respect to water quality and quantity for a well to service the site. The Englobe Report provided the following findings:

- There are exceedances with elevated levels of sodium and chloride within the development area closest to Hwy 416. It is understood that the zoning amendment for the subject site is for less sensitive uses where the number of employees would be low and there would not be a reliance on potable water. In general the quality of the groundwater is acceptable for a commercial development. Any observed exceedances such as elevated hardness, sodium, chloride and manganese in the aquifer are not uncommon and can be addressed with a treatment system.
- The report discussed the aquifer testing and pumping rates in relation to less sensitive development. A more detailed analysis would be completed once the proposed development concept has been confirmed through the site plan process.
- Assumptions were made to review a possible septic system to ensure it would comply with MECP Procedure D-5-4. One of the assumptions was a maximum daily sewage discharge of 9000L/day (equivalent to the assumed water demand). Given the assumptions made (including infiltration rates and nitrate input) the septic system would comply with MECP Procedure D-5-4 with respect to nitrate impacts. It is recommended that percolation testing be completed in the area designated for the septic bed. It is also noted that a partially or fully raised system will be required and may be impacted by the grade raise restriction.

The private sewage system(s) would be designed based on Ontario Building Code or Ministry of the Environment (MOE) standards, depending on the theoretical design flow of the proposed building. Design flows in excess of 10,000L/day require approval from the MOE.

LEGEND

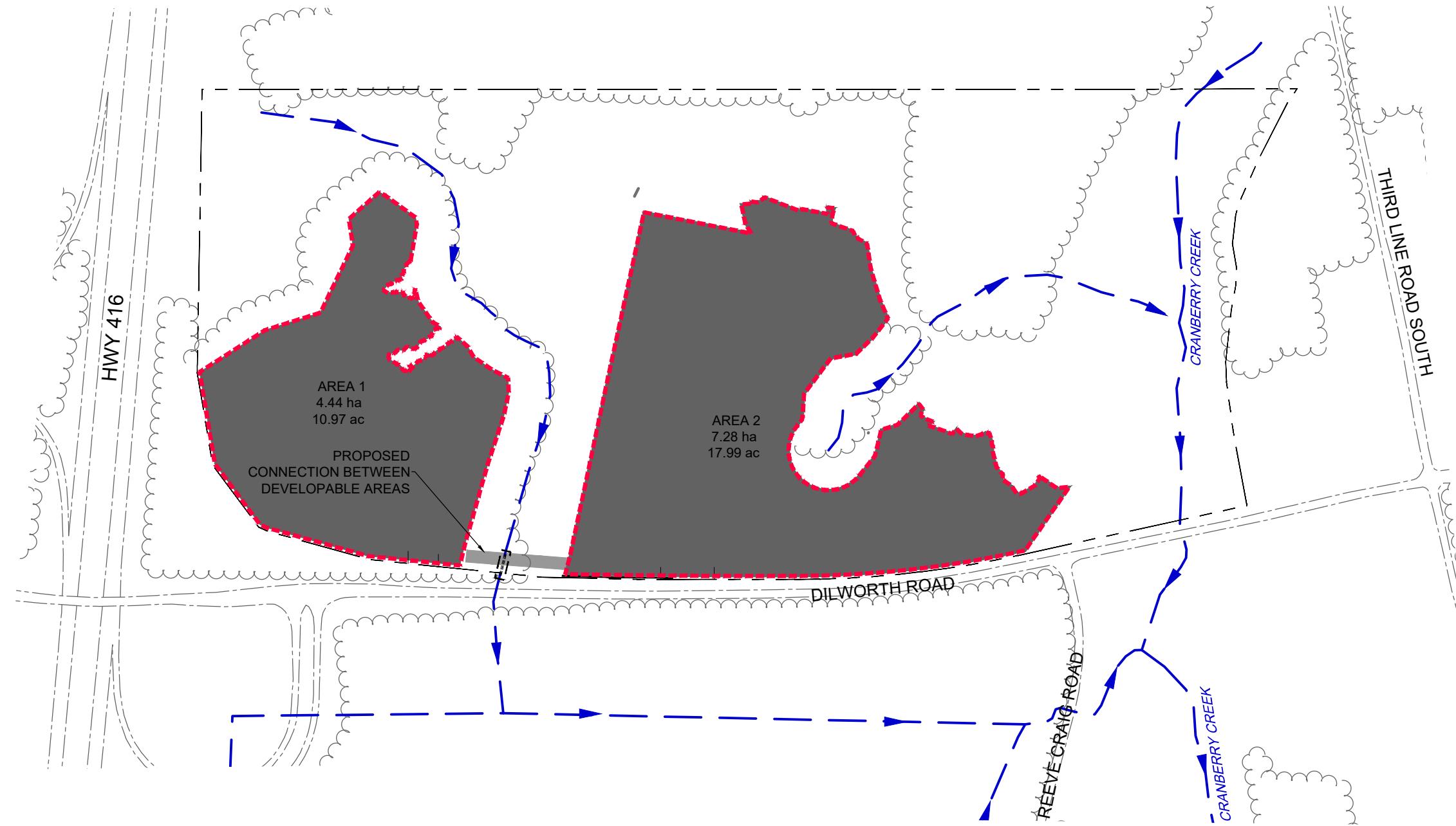
- Site Boundary (GEMTEC, Grading Plan Post Cut-Fill Work, Dated October 24, 2023)
- Property Setbacks (Zoning Bylaw, 2008-250)
- Watercourse (GEMTEC, Grading Plan Post Cut-Fill Work, Dated October 24, 2023)
- MTO Setback (14m from Property Line) (MTO, Highway Corridor Management Manual, April 2022)
- 30m Setback (From Local Wetland/Watercourse) Blanding's Turtle Category 2 Habitat (GEMTEC, Grading Plan Post Cut-Fill Work, Dated October 24, 2023)
- 50m Setback (From Provincially Significant Wetland) (GEMTEC, Grading Plan Post Cut-Fill Work, Dated October 24, 2023)
- Provincially Significant Wetland (GEMTEC, Grading Plan Post Cut-Fill Work, Dated October 24, 2023)
- Local Wetland (GEMTEC, Grading Plan Post Cut-Fill Work, Dated October 24, 2023)
- Proposed Floodline (GEMTEC, Grading Plan Post Cut-Fill Work, Dated October 24, 2023)
- Flood Storage Fill Area (GEMTEC, Grading Plan Post Cut-Fill Work, Dated October 24, 2023)
- Flood Storage Cut Area (GEMTEC, Grading Plan Post Cut-Fill Work, Dated October 24, 2023)
- Significant Woodland (GEMTEC, Grading Plan Post Cut-Fill Work, Dated October 24, 2023)
- Developable Area (GEMTEC, Grading Plan Post Cut-Fill Work, Dated October 24, 2023)
- Revised Floodline due to Cut/Fill Areas

NOVATECH

Engineers, Planners & Landscape Architects
Suite 200, 240 Michael Cowpland Drive
Ottawa, Ontario, Canada K2M 1P6

Telephone (613) 254-9643
Facsimile (613) 254-5867
Website www.novatech-eng.com

2095 DILWORTH ROAD


CONSTRAINTS AND SETBACK
POST-DEVELOPMENT PLAN

SCALE 1 : 4000

DATE OCT 2025

JOB 123081

FIGURE 4

LEGEND

- Site Boundary
(GEMTEC, Grading Plan Post Cut-Fill Work, Dated October 24, 2023)
- Watercourse
(GEMTEC, Grading Plan Post Cut-Fill Work, Dated October 24, 2023)
- Treeline
(GEMTEC, Grading Plan Post Cut-Fill Work, Dated October 24, 2023)
- Developable Area
(GEMTEC, Grading Plan Post Cut-Fill Work, Dated October 24, 2023)

NOVATECH

Engineers, Planners & Landscape Architects
Suite 200, 240 Michael Cowpland Drive
Ottawa, Ontario, Canada K2M 1P6

Telephone (613) 254-9643
Facsimile (613) 254-5867
Website www.novatech-eng.com

2095 DILWORTH ROAD

DEVELOPABLE AREA

SCALE 1 : 4000 0 40 80 120 160
DATE OCT 2025 JOB 123081 FIGURE 5

It should be noted that acceptable separation distances will be required between the floodplain, well and septic systems.

6.0 STORMWATER MANAGEMENT

Stormwater currently sheet drains across the property towards the unnamed watercourses and wetland areas within the property. The proposed development will continue to sheet drain stormwater and outlet to the unnamed tributaries. The stormwater management conceptual design is discussed subsequently.

6.1 Stormwater Management Criteria

Stormwater management design criteria are as follows:

- Quantity control of stormwater is required for storms up to and including the 100-year event controlled to the pre-development 2 year flow rates.
- Quality control of stormwater is required to a 'enhanced' level corresponding to 80% removal of Total Suspended Solids (TSS) is required.

6.2 Proposed Site Quantity Control

Existing drainage patterns will be maintained under post-development conditions. The proposed drainage outlet is as per existing conditions to the two existing road crossing culverts under Dilworth Road. All runoff from the proposed development will continue to drain to unnamed watercourses within the property per existing conditions which then drain to the two road crossing culverts under Dilworth Road. Only the developed portion of the lot is considered in the stormwater management design. The remaining undeveloped portion of the lots will remain per existing conditions.

Stormwater management will be provided individually for each of the proposed developable areas. Quantity control of stormwater can be provided by ponding stormwater on building roofs and in surface detention areas such as grassed swales and in a proposed stormwater management pond. A preliminary grading plan is included that shows preliminary site grading and the stormwater management concept with drainage arrows, swales and pond locations.

6.3. Proposed Site Quality Control

Quality control of stormwater is required to a level of 80% removal of total suspended solids. Quality control will be achieved through the use of grassed ditches and a stormwater management facility. Increased levels of TSS removal in grassed swales is achieved by reducing flow velocities and increasing the density of vegetation. Stormwater ponds achieve high levels of TSS removal by slowing the release rates creating longer retention times of stormwater. Detailed calculations supporting this approach will be included at the detail design stage as part of the site plan application process.

Preliminary stormwater management calculations have been completed for the concept plan including a preliminary drainage area plan, and pond calculations to confirm pond sizes are appropriate and volumes can be obtained given the existing site elevations. These preliminary calculations are included in Appendix A and are summarized below.

Area #	Pond #	Permanent Pool Elevation	Permanent Pool Volume Required	100 Year Active Storage Volume Required	Spill Elevation
Post 1	A	87.75	1205	1812	89.05
Post 2	B	87.75	1300	2612	89.05
Post 3	C	87.75	980	1555	89.05
Post 4	D	87.75	570	731	89.05

In storm events greater than the 100-year storm, stormwater will continue to drain to the unnamed watercourses within the property similar to existing conditions.

The proposed stormwater management ponds would also be used as a water source for fire protection. A dry hydrant would be installed as part of the fire protection system.

6.4 Best Management Practices

The proposed development can use the following stormwater best management practices (BMPs) to mitigate the reduction in groundwater infiltration/recharge resulting from development:

- Surface drainage will sheet drain through the grassed areas and swales and outlet directly to the existing unnamed watercourses within the site where possible.
- Roof leaders will be discharged to the grassed rear yards.
- Construction of swales at minimal slopes where possible.

By implementing stormwater management BMPs as part of the storm drainage design, the impacts of development on the hydrologic cycle can be reduced. The use and implementation of BMPs will be reviewed again during the detailed design process.

7.0 EROSION AND SEDIMENT CONTROL

Temporary erosion and sediment control measures will be implemented during construction in accordance with the Best Management Practices for Erosion and Sediment Control. This includes the following temporary measures:

- Silt fences around the area under construction placed as per OPSS 577 and OPSD 219.110.
- Light duty straw bale check dam per OPSD 219.180.
- Seed or sod the swales as soon as possible to reduce the sediment runoff to Cranberry Creek.

The erosion and sediment control measures are to be installed to the satisfaction of the engineer, the Municipality, and Rideau Valley Conservation Authority prior to construction and will remain in place during construction until vegetation is established. The erosion and sediment control measure will also be subject to regular inspection to ensure measures are operational.

8.0 CONCLUSIONS

The conclusions of this report are as follows:

- Quantity control of stormwater will be provided to the 2 year pre-development levels through ponding of stormwater on building roofs and at the surface in grassed swales and in a stormwater management pond within each of the development areas.
- Quality control of stormwater will be provided through the installation of a stormwater management ponds.
- An overland flow route will be provided to the unnamed watercourses within the site similar to existing conditions.
- Erosion and sediment control measures will be required during construction.

This report is respectfully submitted for approval. Please contact the undersigned should you have questions or require additional information.

NOVATECH

Prepared by:

Cara Ruddle, P.Eng.
Senior Project Manager
Land Development Engineering

Reviewed by:

A handwritten signature in black ink, appearing to read "Lee Sheets".

Lee Sheets C.E.T.
Director
Land Development & Public Sector
Infrastructure

APPENDIX A
CULVERT INFORMATION

RVCA Letter of Permission —

Ont. Reg. 174/06, S. 28 *Conservation Authorities Act*
1990, As Amended.

Date: November 24, 2023
File: RV6-4923
Contact: eric.lalande@rvca.ca; 613-692-3571 x1137

3889 Rideau Valley Drive
PO Box 599, Manotick ON K4M 1A5
T 613-692-3571 | 1-800-267-3504
F 613-692-0831 | www.rvca.ca

Dilworth Development Inc.
92 Bentley Avenue,
Ottawa, ON K2E 6T9

Permit for: Development and Alteration to a Watercourse
Under Section 28 of the Conservation Authorities Act for grading within the floodplain
to allow for the construction of a driveway access at 2095 Dilworth Drive, Lot 35,
Concession 3, former Township of Rideau, now in the City of Ottawa.
Roll Number: 06141482840103000000

Dear Mr. Griesseier,

The Rideau Valley Conservation Authority has reviewed the application and understands the proposal to be for:

- a) **Installation of a new driveway access within the floodplain**
- b) **Installation of a 900mm and 600mm culvert for watercourse crossing.**

This proposal was reviewed under Ontario Regulation 174/06, the *“Development, Interference with Wetlands, and Alteration to Watercourse and Shorelines”* regulation and the RVCA Development Policies, specifically Section 1.0 General Principles, Section 1.2.6 Minor Works and Section 3.2 Channel Realignment, Road Crossings, Diversions, Dams. The proposal is not expected to impact the control of flooding, pollution, erosion or conservation of land providing conditions are followed.

PERMISSION AND CONDITIONS

By this letter the Rideau Valley Conservation Authority hereby grants you approval to undertake this project as outlined in your permit application but subject to the following conditions:

1. Approval is subject to the understanding of the project as described above and outlined in the application and submitted plans:
 - a) Road and Culvert Plan, Profiles and Details, completed by GEMTEC, Numbered C1, dated October 11, 2023 Project #65007.01
 - b) Access Road Culvert Design Summary, 2095 Dilworth Road, Ottawa, ON dated October 11, 2023, prepared by GEMTEC, project no. 65007.001 -R0
2. The proposed development shall be supervised and certified by a professional engineer to ensure compliance with the approved plans.
3. Work in-water shall not be conducted at times when flows are elevated due to local rain events, storms or seasonal floods.

4. A De-watering Plan and Sediment and Erosion Control Plan must be submitted by the contractor to this office for review prior to construction activities commencing.
5. Any changes to the proposed work must be submitted in writing to the Conservation Authority for review and approval prior to implementation. No conditions are subject to change/revision by the on-site contractor(s).
6. All excavated material not utilized for the purposes of the approved development (if appropriate material) must be removed from the site to a suitable disposal site outside of any 1:100-year floodplain, wetland, and regulated area.
7. No grade changes are permitted other than those explicitly permitted by approved drawings identified in Condition 1.
8. A finished grading plan will be submitted as soon as the work is complete to confirm the final grade of the driveway on the property. A refundable deposit of \$1720 is required to be submitted prior to commencement of the work. Satisfactory review of the finished grading plan and compliance with other conditions of approval will result in the return of the deposit (less 10% administrative fee).
9. Any on-site drainage works should not disrupt natural drainage patterns.
10. The applicant must notify the RVCA two business days prior to project commencement and within two business days of project completion.
11. The existing vegetated buffer consisting of a mixture of native vegetation and non-manicured grasses is to be retained in a natural state and vegetation removal is limited to what is necessary to complete the work. Any vegetation that is removed shall be re-established.
12. The applicant agrees that Authority staff may visit the subject property before, during and after project completion to ensure compliance with the conditions as set out in this letter of permission.
13. Only clean material free from particulate matter may be placed in the water.
14. Silt or debris that has accumulated around the temporary cofferdams should be cautiously removed prior to their withdrawal. No channel modifications or dredging is permitted or implied by this letter.
15. A De-watering Plan and Sediment and Erosion Control Plan must be submitted by the contractor to this office for review prior to construction activities commencing
16. Sediment control will be established to ensure no sediment migration from the site. All grubbing and equipment storage and operation will be limited to the development envelope. All areas located outside the development envelope will be left untouched. No fill including topsoil, sand, etc. will be placed outside the development envelope for any

reason. No equipment will be permitted to disturb area outside the development envelope.

17. Sediment barriers should be used on site in an appropriate method according to the Ontario Provincial Standard Specifications (OPSS) for silt barriers as a minimum. In-water work will require the use of a properly secured silt curtain. Soil type, slope of land, drainage area, weather, predicted sediment load and deposition should be considered when selecting the type of sediment/erosion control.
18. A new application must be submitted should any work as specified in this letter be ongoing or planned for or after November 24, 2025

By this letter the Rideau Valley Conservation Authority assumes no responsibility or liability for any flood, erosion, or slope failure damage which may occur either to your property or the structures on it or if any activity undertaken by you adversely affects the property or interests of adjacent landowners. All other approvals as might be required from the Municipality, and/or other Provincial or Federal Agencies must be obtained prior to initiation of work. This includes but is not limited to the Drainage Act, the Endangered Species Act, the Ontario Water Resources Act, Environmental Protection Act, Public Lands Act, or the Fisheries Act.

This permit is not transferable to subsequent property owners.

Should you have any questions regarding this letter, please contact Eric Lalande, Senior Planner at the contact information listed above.

Terry K. Davidson P.Eng
Conservation Authority S. 28 Signing delegate
O. Reg. 174/06

Owner's Acknowledgement of Conditions

- Pursuant to the provisions of S. 28(12) of the *Conservation Authorities Act* (R.S.O.1990, as amended) any or all of the conditions set out above may be appealed to the Executive Committee of the Conservation Authority in the event that they are not satisfactory or cannot be complied with.
- Failure to comply with the conditions of approval or the scope of the project may result in the cancelling of the permission and/or initiation of legal action under S. 28(16) of the Act.
- Commencement of the work and/or a signed and dated copy of this letter indicates acknowledgement and acceptance of the conditions of the RVCA's approval letter concerning the application and the undertaking and scope of the project.
- Where a permit has been issued pursuant to the *Conservation Authorities Act* (R.S.O.1990, as amended), the person to whom it is issued shall have the permit or a copy of it posted at all times throughout the duration of the project in a conspicuous place on the property in respect of which the permit was issued.

Name: _____ (print)

Signed: _____ Date: _____

October 11, 2023

File: 65007.001 – R0

Dilworth Development Inc.
92 Bentley Avenue
Ottawa, Ontario
K2E 6T9

Attention: Mr. Walter Griesseier,

**Re: Access Road Culvert Design Summary
2095 Dilworth Road, Ottawa, Ontario**

This letter presents a design summary for the proposed access road culvert at 2095 Dilworth Road. The summary has been prepared for submission to the Rideau Valley Conservation Authority (RVCA) as a component of the application for approval to the watercourse crossing application as per requirements of Section 28 of the Conservation Authorities Act and Ontario Regulation 174/06.

The following files are included as attachments to the culvert design summary:

- completed Application for “Development, Interference with Wetlands and Alterations to Shorelines and Watercourses” Ont. Reg. 174/06
- Dilworth Developments Inc. letter of authorization for GEMTEC to act as an agent for submissions to RVCA
- culvert design drawing
- peak flow calculations
- culvert capacity calculations

Culvert Design

The proposed watercourse crossing is located upstream of an existing culvert crossing of Dilworth Road. Although the existing culvert is a 900 mm diameter pipe, the proposed culvert installation will have 2 barrels (900 mm and 600 mm) to ensure the peak design flow can be conveyed without surcharging. It should be noted the field survey indicated a slight reverse grade for the existing culvert with the outlet invert being 0.137 m higher than the inlet. This creates a backwater condition upstream of the culvert, where the new crossing is proposed. The proposed culvert will use this backwater condition to ensure constant flow depth in the new culvert barrels, without the need to countersink the pipe. It will also promote silt/sediment deposition in the bottom of the pipe for fish habitat.

Peak design flow and culvert sizing calculations for the access road culvert are attached to this design summary and include the following:

- proposed culvert details
 - 900 mm and 600 mm Boss 2000 HDPE pipe
 - culvert lengths = 16 m
 - pipe slope = 0.5%
- Q_{100} design flow: 1.05 m³/s
- capacity of proposed culverts: 1.26 m³/s
- minimum access road elevation: 88.1 m (exceeds 87.29 m Regulatory flood elevation)

Site Photo

The following photo shows the proposed crossing location looking upstream while standing above the existing culvert crossing of Dilworth Road.

Erosion and Sediment Control

Erosion and sediment control is to be provided by isolating the work and access area from the watercourse using sediment control fencing. The fencing will be installed prior to site work and will be inspected and repaired on a daily basis. Any water pumped from the worksite during dewatering activities will be discharged to an undisturbed and stable location east of the proposed crossing.

Temporary Water Control During Culvert Installation

The small watercourse has a catchment area of 23.2 hectares and flow is intermittent. It is advised that the culvert installation be performed during relatively dry conditions, when there is little to no flow. Temporary water control will be performed by isolating the worksite from the rest of the stream using sandbags and plastic liners, with pumping to be performed from upstream of the site to the downstream culvert, as required.

Closing

We trust the above information sufficiently describes the prosed watercourse crossing and culvert design. If you have any questions, or require additional information, please contact us at your convenience.

Troy Poirier, P.Eng.

Enclosures

N:\Projects\65000\65007.01\Hydrology Review\65007.001_LTR_Culvert-Summary_2023-10-11_Rev0.docx

Box 599, 3889 Rideau Valley Drive
Manotick, Ontario K4M 1A5
613-692-3571
www.rvca.ca

Application/File #:

Prior to application submission, please contact the
RVCA for pre-consultation or visit www.rvca.ca

Official Use Only
Date Received Stamp

Related Files

Fee

Application for "Development, Interference with Wetlands and Alterations to Shorelines and Watercourses" Ont. Reg. 174/06

Pursuant to Section 28 of the *Conservation Authorities Act* and Ontario Regulation 97/04

The Rideau Valley Conservation Authority will consider your application based on the information you provide below. Any false or misleading statement made on this application will render null and void any permission granted. Complete all relevant sections, date, sign and return the application along with applicable scale drawings and other documents necessary (refer to minimum guideline requirements) as well as application fee "Schedule B."

Contact Information (please print clearly)

Property Owner's Name(s): **Dilworth Developments Inc. (President: Walter Griesseier)**

Mailing Address (Street, P.O. Box)	92 Bentley Avenue	City	Ottawa, ON	Postal Code	K2E 6T9
------------------------------------	-------------------	------	------------	-------------	---------

Telephone: Home	Work	613-223-4900	Mobile
-----------------	------	--------------	--------

E-mail	walterg@louconmetal.com
--------	-------------------------

Agent's Name: **Troy Poirier, P.Eng. (GEMTEC Consulting Engineers and Scientists)**

** Property owner's letter of authorization required*

Mailing address (Street, P.O. Box)	191 Doak Road	City	Fredericton, NB	Postal Code	E3C 2E6
------------------------------------	---------------	------	-----------------	-------------	---------

Telephone: Home	n/a	Work	506-453-1025	Mobile	506-461-8474
-----------------	-----	------	--------------	--------	--------------

E-mail	troy.poirier@gemtec.ca
--------	------------------------

Location of Proposed Works

Property Assessment Roll Number (From Property Tax Notice, required)	0614.1482.840.10300.0000
--	--------------------------

Municipal Street Address	2095 Dilworth Road
--------------------------	--------------------

Municipality	Ottawa	Former Municipality	Rideau	Watercourse/Drain	Cranberry Creek
--------------	--------	---------------------	--------	-------------------	-----------------

Lot	35	Concession	3	Registered Plan Number	Sub-lot
-----	----	------------	---	------------------------	---------

Culvert Identification Number

Description of Works (please check each that apply)

<input type="checkbox"/> Placement of fill, site alteration, changes in land elevation	<input type="checkbox"/> Construction of a structure (building, septic system, pools)
<input type="checkbox"/> Pond construction, cleanout and/or repair	<input checked="" type="checkbox"/> Watercourse crossing (culvert or bridge)
<input type="checkbox"/> Dam re-construction/repair	<input type="checkbox"/> Bank protection
<input type="checkbox"/> Dredging	<input checked="" type="checkbox"/> Alteration to a watercourse or shoreline
<input type="checkbox"/> Drainage works and ditching	<input type="checkbox"/> Other _____
<input type="checkbox"/> Interference with a wetland	

What is the purpose of the work? _____

Installation of a new culvert crossing of a small watercourse within the Regulation Limit. This culvert is needed to access lands on the west side of the watercourse and outside the current Regulation Limit.

Proposed Starting Date	September 01, 2023	Completion Date	December 31, 2023
------------------------	---------------------------	-----------------	--------------------------

Existing use of land **Agricultural**

(i.e., residential, commercial, vacant)

Commercial

Proposed use of land

Details (e.g. Permit Number, Application Number)

Previous RVCA application on this property?

yes no Cut fill application (RV6-0122)

Planning approval required? (e.g. site plan approval or re-zoning, minor variance)

yes no _____

Applications made to other agencies? (e.g., MNRF, MOECC, Parks Canada, DFO)

yes no _____

Municipal Building Permit required?

yes no _____

Septic application/permits required?

yes no _____

Is fill remaining on site? (If the answer is "no" you must specify an address where the fill is to be removed to:)

yes no address _____

Submission Requirements and Terms

Digital transmission of PDFs are: **USB/flash drive, CD or email (development@rvca.ca)**

- Applications must be submitted digitally with one hard copy to scale.
- Permits or Approvals granted by the Rideau Valley Conservation Authority are non-transferable.
- Permits, approvals, etc. may be required from other agencies prior to undertaking the proposed work. Rideau Valley Conservation Authority permission, if granted for the proposed work, does not exempt the owner/agent from complying with any or all other laws, statutes, ordinances, directives, regulations, approvals, etc. that may affect the property or the use of same.
- Fees paid are for application processing only; the RVCA reserves the right to refuse permission based on policy provisions and the applicant's right to a hearing under Section 28(12) of the Act.
- Section 28 (20) Conservation Authorities Act — An officer appointed by the RVCA may enter on private property, other than a dwelling or building, if the entry is for the purpose of considering a request related to the property for permission that is required by a regulation. By signing this form consent is being granted.
- Cancellation fee may apply to applications that have been accepted.

* I/we the undersigned hereby certify to the best of my/our knowledge and belief that all of the above-noted, attached and/or supporting documentation information is correct and true. I/we further solemnly declare that I/we have read and fully understand the contents of this application and specifically the terms and conditions, and the declaration which is written below.

By signing this application, consent is given to the Rideau Valley Conservation Authority, its employees and authorized representatives to access the property for the purposes of obtaining information and monitoring any approved works pursuant to Section 28(20) of the Act.

Owner's name: Walter Griesseier

Date: 2023, 08, 25

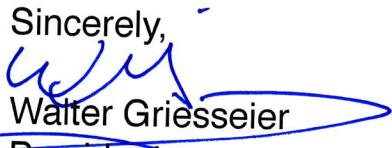
Authorized Agent: Troy Poirier, P.Eng.

Letter of Authorization from owner must be attached if agent is signing off on all works

Notice of Collection

Pursuant to the municipal Freedom of Information and Protection of Privacy Act, the personal information contained on this form is collected under the Authority of the Conservation Authorities Act, R.S.O. 1990, Chapter C. 27, and O Regulation 174/06 RVCA Regulation of Development, Interference with Wetlands and Alteration to Shorelines and Watercourses. This information is used to access applications and where approved issue permits. Information on this form will be disclosed to government and municipal agencies for review and comments and may be disclosed to members of the public through the Freedom of Information process.

Dilworth Developments Inc
2095 Dilworth Rd
Kars, Ontario


January 13 2022

To whom it may concern,

Dilworth Developments is the owner of 2095 Dilworth Rd and hereby authorizes Troy Poirier from Gemtech to act as our agent for any and all submission of all relevant permits required for the said property with the Rideau Valley Conservation Authority.

Please do not hesitate to contact me should you have any questions.

Sincerely,

Walter Griesseier

President

Dilworth Developments

613-223-4900

Walterg@loucommetal.com

Peak Runoff Estimate for Culvert at 2095 Dilworth Road

Use Ottawa CDA Station to Estimate Local Rainfall Rates

Rainfall Intensity - Ottawa CDA Climate Station 6105978

Rainfall Interpolation Eqn: $R = A * T^B$ (R =mm/hr; T = hrs)

Return Period (years)	2	5	10	25	50	100
Coefficient (A)	21.6	27.7	31.8	36.9	40.8	44.5
Exponent (B)	-0.711	-0.697	-0.691	-0.685	-0.682	-0.679

Peak Runoff and Time of Concentration Equations

Rational Equation (Peak Runoff)

$$Q = 0.0028 ciA$$

i = intensity (mm/hr)

A = area (ha)

Q = peak flow (m^3/s)

Bransby Williams (Time of Concentration)

$$Tc = 0.605 L / (S^{0.2} * A^{0.1})$$

Tc = time of concentration (hrs)

L = drainage length (km)

S = drainage slope (%)

A = catchment area (km^2)

Runoff Coeff.	Catchment Area (ha)	Drainage Length (km)	Drainage Slope (%)	Time of Concentration (hrs)
0.25	23.2	0.6	0.2	0.58

Peak Runoff Estimates - Current Conditions

Return Period (years)	Rainfall Intensity (mm/hr)	Peak Flow (m^3/s)
2	31.8	0.52
5	40.5	0.66
10	46.4	0.75
25	53.6	0.87
50	59.2	0.96
100	64.4	1.05

CULVERT SIZING CHECK

Project : 65007.001 - 2095 Dilworth Road

Capacity Check for Non-Embedded Culverts

Q₁₀₀ Design Flow 1.05 m³/s

Combined Culvert Capacity 1.26 m³/s

Barrel #1: 900 mm HDPE

barrel diameter	0.9 m
barrel length	16.0 m
barrel slope	0.005 m/m
Manning's "n"	0.012
discharge coefficient "Cd"	0.5
inlet loss coefficient "Ke"	0.5
headwater depth ratio	1.0 (1 = full pipe)
headwater depth	0.9 m
tailwater depth	0.80 m

INLET CONTROL

Discharge capacity 0.95 m³/s

OUTLET CONTROL

Discharge capacity 0.88 m³/s

Outlet Control Governs

Discharge Coefficients "Cd"

thin walled projecting	0.50
flush headwall	0.60
cylinder inlet	0.67
socket inlet	0.70
bellmouth inlet	0.97

(after C.D. Smith, 1985)

Inlet Loss Coefficients "Ke"

thin walled projecting	1.00
flush headwall	0.50
cylinder inlet	0.30
socket inlet	0.20
bellmouth inlet	0.10

(after C.D. Smith, 1985)

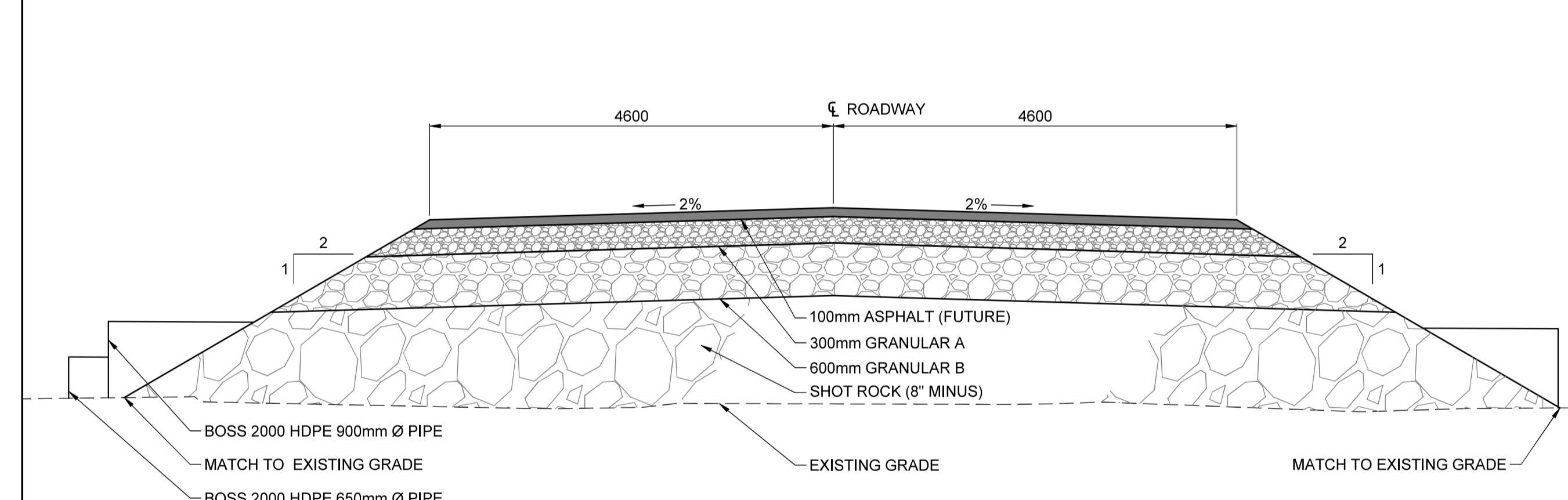
Barrel #2: 600 mm HDPE

barrel diameter	0.6 m
barrel length	16.0 m
barrel slope	0.005 m/m
Manning's "n"	0.012
discharge coefficient "Cd"	0.5
inlet loss coefficient "Ke"	0.5
headwater depth ratio	1.5 (1.5 = surcharged)
headwater depth	0.9 m
tailwater depth	0.80 m


INLET CONTROL

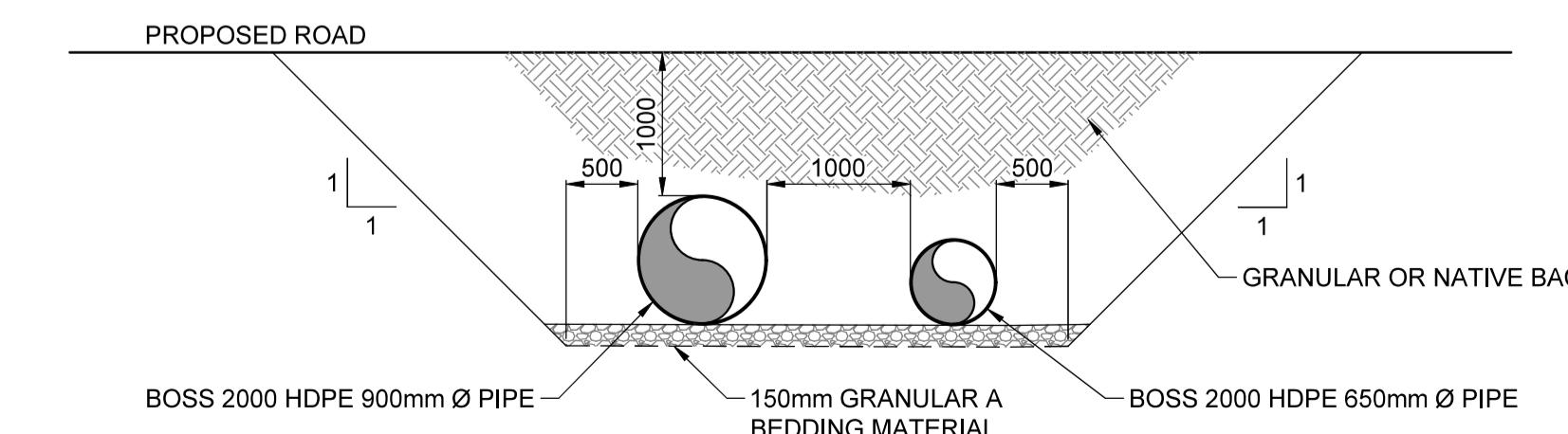
Discharge capacity 0.49 m³/s

OUTLET CONTROL


Discharge capacity 0.37 m³/s

Outlet Control Governs Design

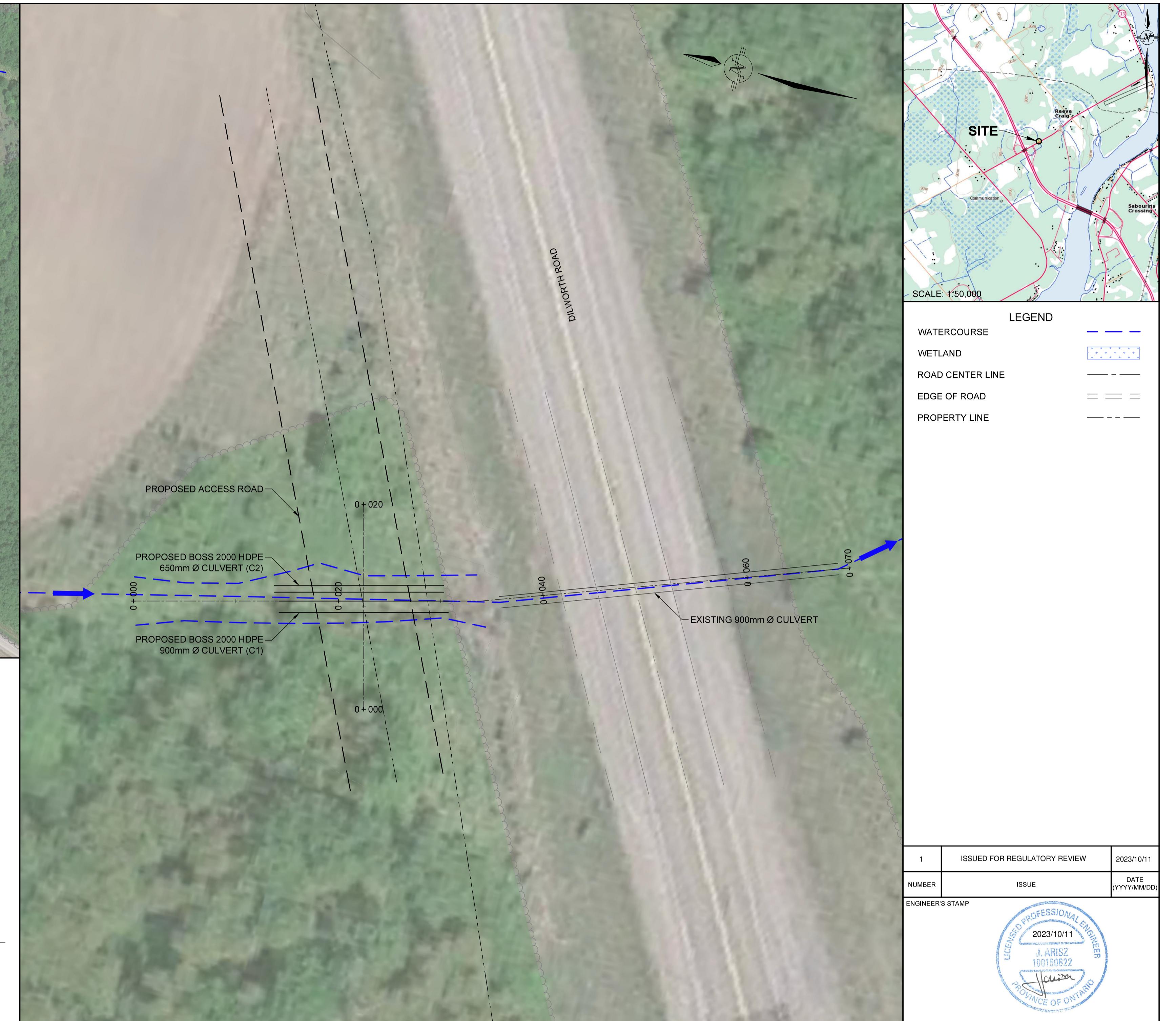
KEY PLAN


SCALE: 1:2500

NOTE:
1. ALL DIMENSIONS SHOWN IN MILLIMETERS

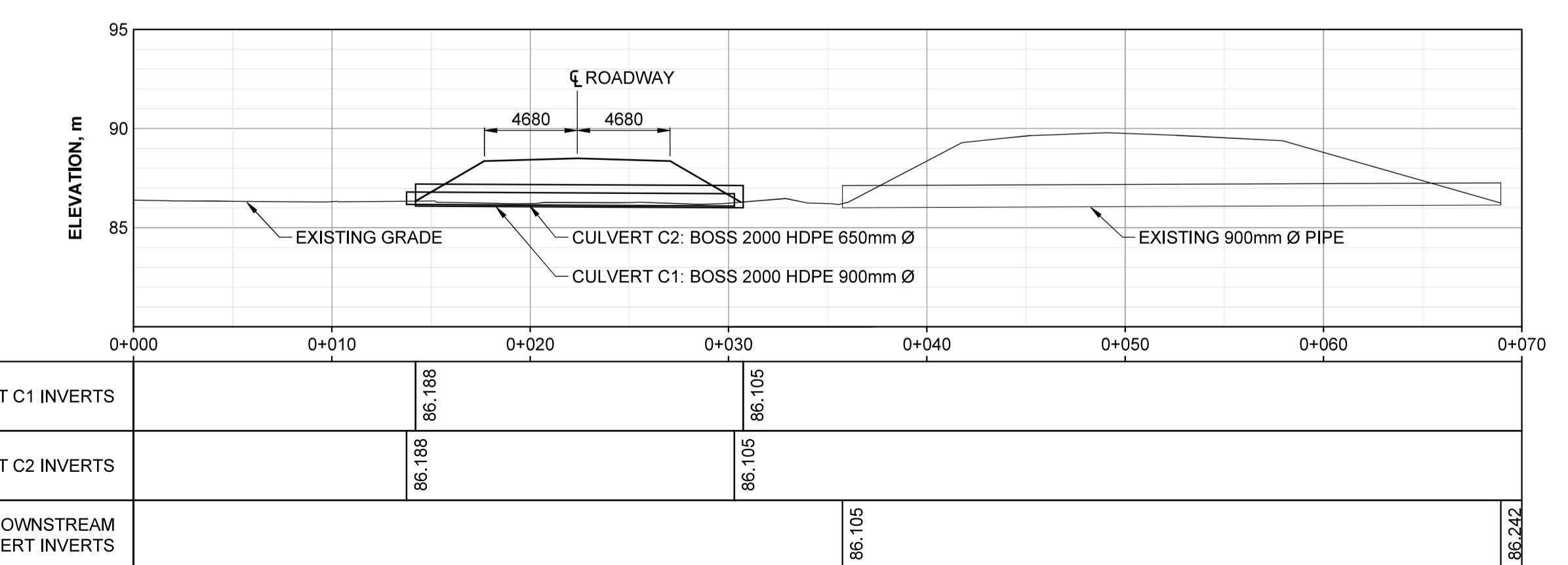
TYPICAL ROADWAY SECTION

SCALE: 1:5



NOTE:
1. ALL DIMENSIONS SHOWN IN MILLIMETERS

TYPICAL CUI VFRT CROSS SECTION AND BACKFILL



SCALE: 1:5

PARTIAL PLAN VIEW

SCALE:

STREAM PROFILE VIEW

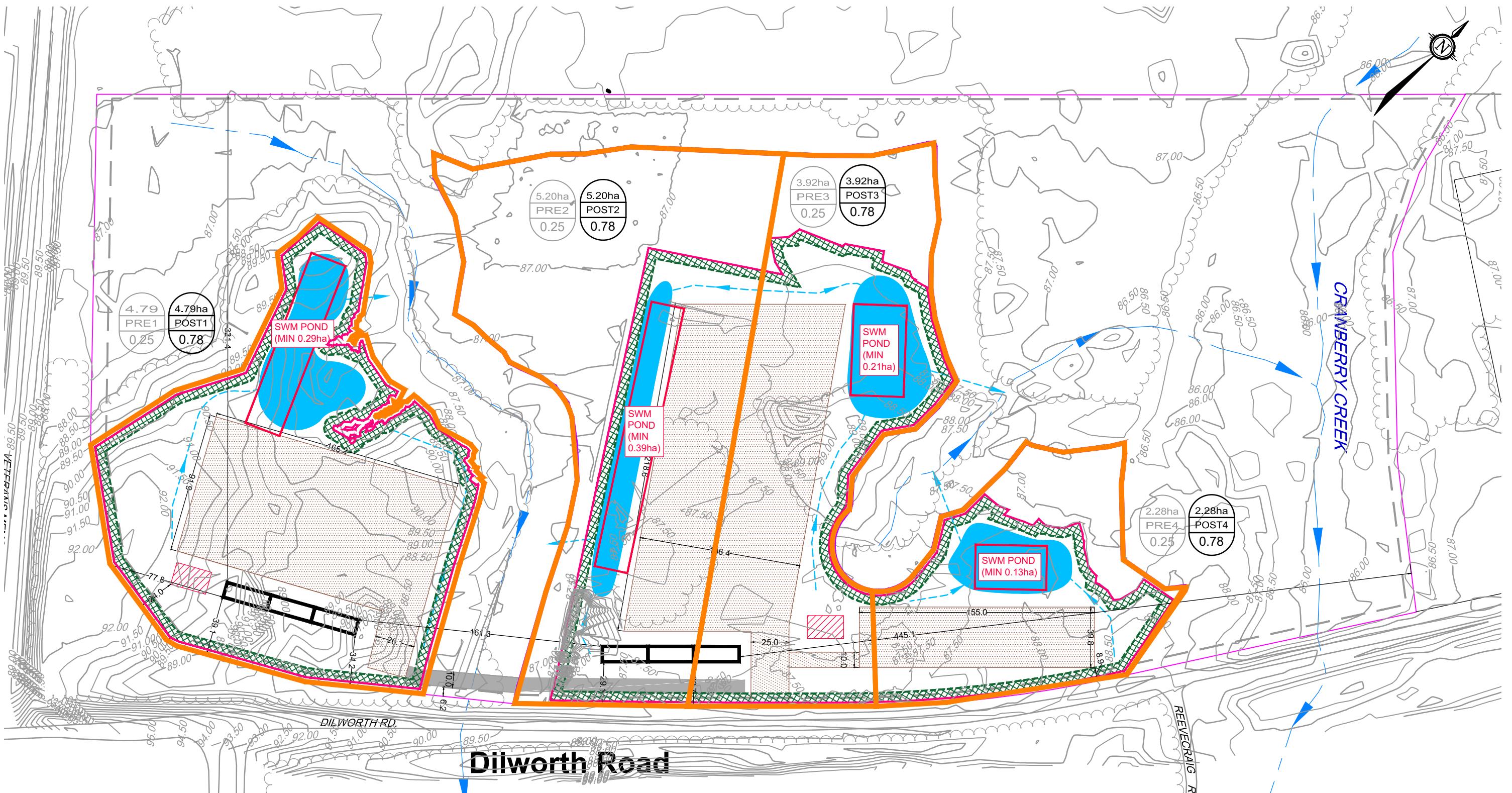
SCALE:

The map shows a green and blue shaded terrain with contour lines. A red line with arrows indicates a path or route. A yellow circle marks the 'SITE' on the red line. Other labeled locations include 'Reeve', 'Craig', 'Communication', and 'Sabourins Crossing'. A compass rose is in the top right corner. A scale bar at the bottom left indicates 0,000.

LEGEND

COURSE	
DO	
INTER LINE	
ROAD	
TRY LINE	

ISSUED FOR REGULATORY REVIEW	2023/10/11
ISSUE	DATE (YYYY/MM/DD)


BY TP	CHECKED BY HA
----------	------------------

CLOSED ROAD AND CULVERT PROFILES AND DETAILS

ANSWER

007.01	SHEET NO. C1
--------	-----------------

APPENDIX B
Stormwater Management Calculations

LEGEND

PRE / POST DEVELOPMENT DRAINAGE AREA

MINIMUM POND SIZE REQUIRED

DRAINAGE AREA (ha)
PRE1 4.82ha
0.25 AREA ID
RUNOFF COEFFICIENT

NOVATECH

Engineers, Planners & Landscape Architects
Suite 200, 240 Michael Cowpland Drive
Ottawa, Ontario, Canada K2M 1P6

Telephone (613) 254-9643
Facsimile (613) 254-5867
Website www.novatech-eng.com

2095 DILLWORTH ROAD

PRE / POST DEVELOPMENT DRAINAGE AREAS

SCALE 1 : 2500

DATE OCT 2025

JOB 1253081

FIGURE SWM

PRE -1 Runoff Coefficient "C"

Area	Surface	Ha	"C"	C _{avg}	*C ₁₀₀
Total	Hard	N/A	0.90		
4.79	Soft	N/A	0.20	0.25	0.31

Runoff Coefficient Equation

$$C = (A_{\text{hard}} \times 0.9 + A_{\text{soft}} \times 0.2)/A_{\text{Tot}}$$

$$*C = (A_{\text{hard}} \times 1.0 + A_{\text{soft}} \times 0.25)/A_{\text{Tot}}$$

* Runoff Coefficient increases by 25% up to a maximum value of 1.00 for the 100-year event

PRE -2 Runoff Coefficient "C"

Area	Surface	Ha	"C"	C _{avg}	*C ₁₀₀
Total	Hard	N/A	0.90		
5.20	Soft	N/A	0.20	0.25	0.31

PRE -3 Runoff Coefficient "C"

Area	Surface	Ha	"C"	C _{avg}	*C ₁₀₀
Total	Hard	N/A	0.90		
3.92	Soft	N/A	0.20	0.25	0.31

PRE -4 Runoff Coefficient "C"

Area	Surface	Ha	"C"	C _{avg}	*C ₁₀₀
Total	Hard	N/A	0.90		
2.28	Soft	N/A	0.20	0.25	0.31

Pre-Development (uncontrolled)

Outlet Options	Area (ha)	Q _{2 Year} (L/s)	Q _{5 Year} (L/s)	Q _{100 Year} (L/s)
PRE1	4.79	224.9	304.6	651.7
PRE2	5.20	98.0	131.5	279.2
PRE3	3.92	158.3	214.0	457.1
PRE4	2.28	112.9	153.0	327.5

PRE-1 TC Rainfall Intensity (2 Year Event)	Tc= 13 min I ₂ = 67.56 mm/hr	PRE-3 TC Rainfall Intensity (2 Year Event)	Tc= 17 min I ₂ = 58.09 mm/hr
Rainfall Intensity (5 Year Event)	I ₅ = 91.50 mm/hr	Rainfall Intensity (5 Year Event)	I ₅ = 78.53 mm/hr
Rainfall Intensity (10 Year Event)	I ₁₀ = 107.20 mm/hr	Rainfall Intensity (10 Year Event)	I ₁₀ = 91.94 mm/hr
Rainfall Intensity (25 Year Event)	I ₂₅ = 126.93 mm/hr	Rainfall Intensity (25 Year Event)	I ₂₅ = 108.81 mm/hr
Rainfall Intensity (50 Year Event)	I ₅₀ = 141.62 mm/hr	Rainfall Intensity (50 Year Event)	I ₅₀ = 121.38 mm/hr
Rainfall Intensity (100 Year Event)	I ₁₀₀ = 156.61 mm/hr	Rainfall Intensity (100 Year Event)	I ₁₀₀ = 134.23 mm/hr

PRE-2 TC Rainfall Intensity (2 Year Event)	Tc= 52 min I ₂ = 27.11 mm/hr	PRE-4 TC Rainfall Intensity (2 Year Event)	Tc= 12 min I ₂ = 71.25 mm/hr
Rainfall Intensity (5 Year Event)	I ₅ = 36.40 mm/hr	Rainfall Intensity (5 Year Event)	I ₅ = 96.55 mm/hr
Rainfall Intensity (10 Year Event)	I ₁₀ = 42.50 mm/hr	Rainfall Intensity (10 Year Event)	I ₁₀ = 113.15 mm/hr
Rainfall Intensity (25 Year Event)	I ₂₅ = 50.16 mm/hr	Rainfall Intensity (25 Year Event)	I ₂₅ = 134.00 mm/hr
Rainfall Intensity (50 Year Event)	I ₅₀ = 55.89 mm/hr	Rainfall Intensity (50 Year Event)	I ₅₀ = 149.52 mm/hr
Rainfall Intensity (100 Year Event)	I ₁₀₀ = 61.81 mm/hr	Rainfall Intensity (100 Year Event)	I ₁₀₀ = 165.35 mm/hr

TABLE C8: Time of Concentration (Uplands Overland Flow Method)

Area ID	Overland Flow						Channel Flow			Overall	
	Length (m)	Elevation U/S (m)	Elevation D/S (m)	Slope (%)	Velocity (Uplands) (m/s)	Travel Time (min)	Length (m)	Velocity (Uplands) (m/s)	Travel Time (min)	Time of Concentration (min)	Time to Peak (min)
PRE-1	230	92.25	87.75	2.0%	0.30	12.8	560	N/A	N/A	13	9
PRE-2	220	87.25	87.00	0.1%	0.07	52.4	561	N/A	N/A	52	35
PRE-3	100	87.50	87.30	0.2%	0.10	16.7	562	N/A	N/A	17	11
PRE-4	125	87.50	86.60	0.7%	0.18	11.6	563	N/A	N/A	12	8

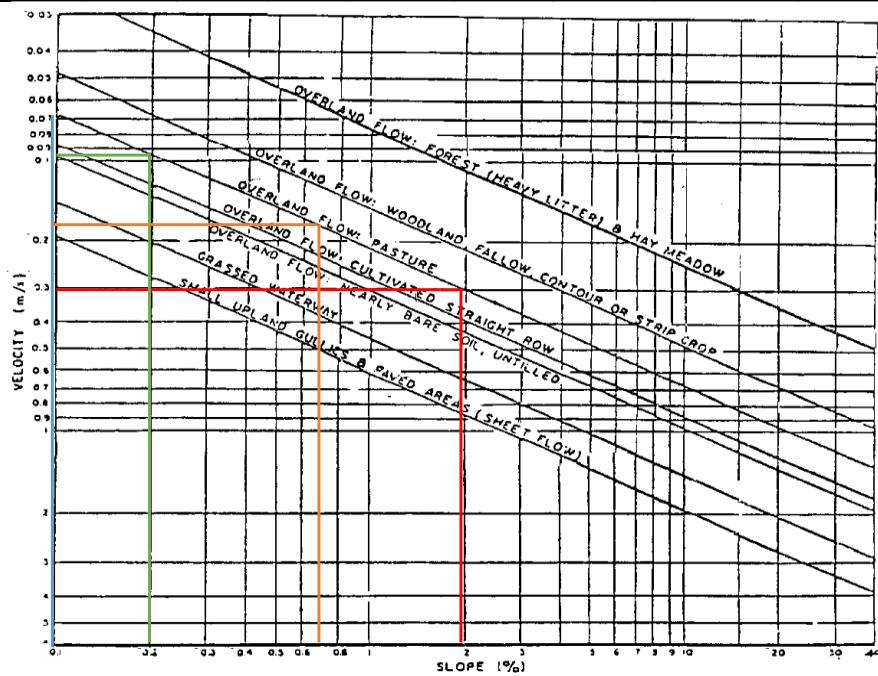


Figure A.5.2: Upland Method for Estimating Time of Concentration
 (SCS National Engineering Handbook, 1971)

POND 'A'**Post-Development Runoff Coefficient "C"**

Area	Surface	Ha	"C"	C _{avg}	*C ₁₀₀
Total	HARD	3.59	0.95		
4.79	SOFT	1.20	0.25	0.78	0.97

QUANTITY STORAGE REQUIREMENT - 100 YEAR

4.79 =Area (ha)

0.97 = C

Return Period	Time (min)	Intensity (mm/hr)	Flow Q (L/s)	Allowable Runoff (L/s)	Net Flow to be Stored (L/s)	Storage Req'd (m ³)
100 YEAR	40	75.15	969.38	224.9	744.48	1786.75
	45	69.05	890.76	224.9	665.86	1797.81
	50	63.95	825.01	224.9	600.11	1800.34
	55	59.62	769.15	224.9	544.25	1796.03
	60	55.89	721.04	224.9	496.14	1786.12

PERMENANT POOL VOLUME REQUIRED PER MOE TABLE 3.2

1205

P.P. Depth	1.5 m	<---Input
Active Depth (100yr)	1 m	
side slopes	4 :1	
freeboard	0.3 m	
pathway	0 m	

	Length (m)	Width (m)	
Bottom	97	1.625	
Perm Pool	109	13.625	<---Input
100yr	117	21.625	
Freeboard +0.3m	119.4	24.025	
Pond Block +5m	119.4	24.025	

P.P. Volume	1,232 m ³
100yr Volume:	2,008 m ³
Footprint:	0.29 ha

POND 'B'**Post-Development Runoff Coefficient "C"**

Area	Surface	Ha	"C"	C _{avg}	*C ₁₀₀
Total	HARD	3.90	0.95		
5.20	SOFT	1.30	0.25	0.78	0.97

QUANTITY STORAGE REQUIREMENT - 100 YEAR

5.20 =Area (ha)

0.97 = C

Return Period	Time (min)	Intensity (mm/hr)	Flow Q (L/s)	Allowable Runoff (L/s)	Net Flow to be Stored (L/s)	Storage Req'd (m ³)
100 YEAR	115	34.01	476.22	98.0	378.22	2609.71
	120	32.89	460.67	98.0	362.67	2611.21
	125	31.86	446.20	98.0	348.20	2611.51
	130	30.90	432.71	98.0	334.71	2610.71
	135	30.00	420.08	98.0	322.08	2608.88

PERMENANT POOL VOLUME REQUIRED PER MOE TABLE 3.2

1300

P.P. Depth	1.5 m	<---Input
Active Depth (100yr)	1 m	
side slopes	4 :1	
freeboard	0.3 m	
pathway	0 m	

	Length (m)	Width (m)	
Bottom	156	-0.8	
Perm Pool	168	11.2	<---Input
100yr	176	19.2	
Freeboard +0.3m	178.4	21.6	
Pond Block +5m	178.4	21.6	

P.P. Volume	1,318 m ³
100yr Volume:	2,630 m ³
Footprint:	0.39 ha

POND 'C'**Post-Development Runoff Coefficient "C"**

Area	Surface	Ha	"C"	C _{avg}	*C ₁₀₀
Total	HARD	2.94	0.95	0.78	0.97
3.92	SOFT	0.98	0.25		

QUANTITY STORAGE REQUIREMENT - 100 YEAR

3.92 =Area (ha)

0.97 = C

Return Period	Time (min)	Intensity (mm/hr)	Flow Q (L/s)	Allowable Runoff (L/s)	Net Flow to be Stored (L/s)	Storage Req'd (m ³)
100 YEAR	45	69.05	728.97	158.3	570.67	1540.81
	50	63.95	675.17	158.3	516.87	1550.60
	55	59.62	629.45	158.3	471.15	1554.80
	60	55.89	590.08	158.3	431.78	1554.42
	65	52.65	555.79	158.3	397.49	1550.22

PERMENANT POOL VOLUME REQUIRED PER MOE TABLE 3.2

980

P.P. Depth	1.5 m	<---Input
Active Depth (100yr)	1 m	
side slopes	4 :1	
freeboard	0.3 m	
pathway	0 m	

	Length (m)	Width (m)	
Bottom	38	13	
Perm Pool	50	25	<---Input
100yr	58	33	
Freeboard +0.3m	60.4	35.4	
Pond Block +5m	60.4	35.4	

P.P. Volume	1,308 m ³
100yr Volume:	1,582 m ³
Footprint:	0.21 ha

POND 'D'**Post-Development Runoff Coefficient "C"**

Area	Surface	Ha	"C"	C _{avg}	*C ₁₀₀
Total	HARD	1.71	0.95	0.78	0.97
2.28	SOFT	0.57	0.25		

QUANTITY STORAGE REQUIREMENT - 100 YEAR

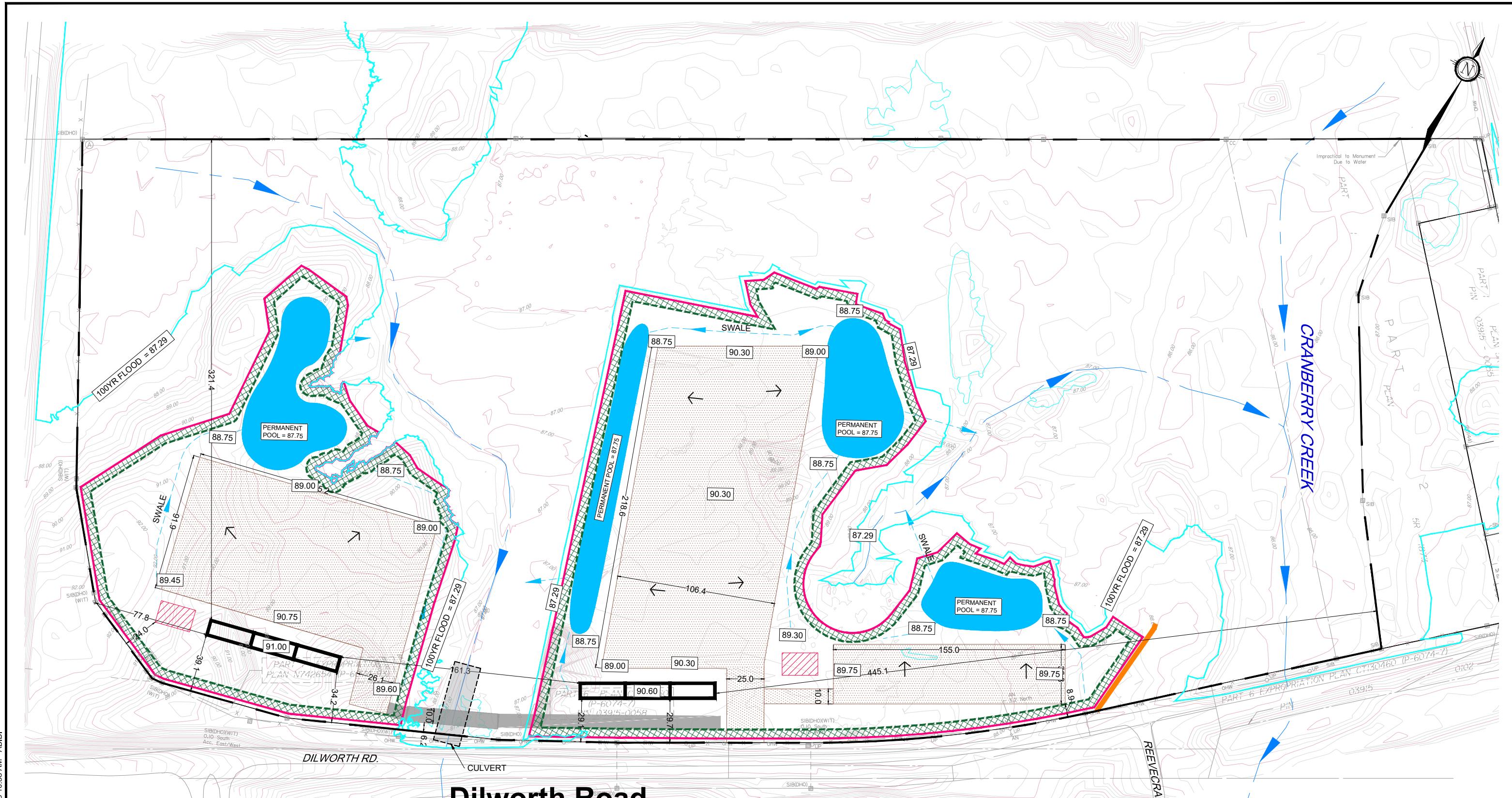
2.28 =Area (ha)

0.97 = C

Return Period	Time (min)	Intensity (mm/hr)	Flow Q (L/s)	Allowable Runoff (L/s)	Net Flow to be Stored (L/s)	Storage Req'd (m ³)
100 YEAR	20	119.95	736.53	158.3	578.23	693.88
	25	103.85	637.65	158.3	479.35	719.03
	30	91.87	564.10	158.3	405.80	730.44
	35	82.58	507.06	158.3	348.76	732.39
	40	75.15	461.42	158.3	303.12	727.48

PERMENANT POOL VOLUME REQUIRED PER MOE TABLE 3.2

570


P.P. Depth	1.5 m	<---Input
Active Depth (100yr)	1 m	
side slopes	4 :1	
freeboard	0.3 m	
pathway	0 m	

	Length (m)	Width (m)	
Bottom	24	6	
Perm Pool	36	18	<---Input
100yr	44	26	
Freeboard +0.3m	46.4	28.4	
Pond Block +5m	46.4	28.4	

P.P. Volume	594 m ³
100yr Volume:	896 m ³
Footprint:	0.13 ha

STORMWATER MANAGEMENT POND SUMMARY					
POND ID	STREAM INV.	PERMENANAT POOL ELEV	100YR VOLUME ACTIVE STORAGE (m3)	PERMENANT POOL VOLUME (m3)	POND AREA REQUIRED (ha)
A	87.00	87.75	2008	1232	0.29
B	87.00	87.75	2630	1318	0.39
C	87.00	87.75	1582	1308	0.21
D	87.00	87.75	896	594	0.13

APPENDIX C
Drawings

LEGEND

Site Boundary
(GEMTEC, Grading Plan Post Cut-Fill Work, Dated October 24, 2023)

30m Setback (From Local Wetland/Watercourse)
(GEMTEC, Grading Plan Post Cut-Fill Work, Dated October 24, 2023)

100YR FLOODPLAIN (ELEVATION = 87.29)
(GEMTEC, Cut Fill Balance Analysis, Dated December 22, 2021)

Watercourse
(GEMTEC, Grading Plan Post Cut-Fill Work, Dated October 24, 2023)

PRELIMINARY GRADE

DIRECTION OF FLOW ARROW

Treeline
(GEMTEC, Grading Plan Post Cut-Fill Work, Dated October 24, 2023)

Proposed Internal Connection Driveway

6.0m Access Allowance

91.00

←

30m

100YR FLOODPLAIN (ELEVATION = 87.29)

Watercourse

PRELIMINARY GRADE

DIRECTION OF FLOW ARROW

Treeline

Proposed Internal Connection Driveway

6.0m Access Allowance

NOVATECH

Engineers, Planners & Landscape Architects
Suite 200, 240 Michael Cowpland Drive
Ottawa, Ontario, Canada K2M 1P6

Telephone (613) 254-9643
Facsimile (613) 254-5867
Website www.novatech-eng.com


CITY OF OTTAWA
2095 DILWORTH ROAD

CONCEPTUAL GRADING & SERVICING PLAN

E 0 25 50 75 100

1 : 2500

OCT 2025 | 123081 | GR

Engineers, Planners & Landscape Architects
Suite 200, 240 Michael Cowpland Drive
Ottawa, Ontario, Canada K2M 1P6

Telephone (613) 254-9643
Facsimile (613) 254-5867
Website www.novatech-eng.com

**CITY OF OTTAWA
2095 DILWORTH ROAD
CONCEPTUAL EROSION
SEDIMENT CONTROL PLAN**

SCALE 1 : 2500

DATE NOV 2025 JOB 123081 FIGURE ESC