Report Project: 135925-6.4.3

BARRETT LANDS - BLOCK 178 SERVICING BRIEF

ΙΒΙ

Prepared for BARRETT CO-TENANCY by IBI GROUP

May 2022

Table of Contents

1	INTRO	DUCTIC)N	1
	1.1	Guideli	nes and Standards	1
	1.2	Pre-Co	nsultation Meeting	2
	1.3	Enviror	nmental Issues	2
	1.4	Geotec	hnical Concerns	2
2	WATE		RIBUTION	3
	2.1	Existing	g Conditions	3
	2.2	Design	Criteria	3
		2.2.1	Water Demands	3
		2.2.2	System Pressures	3
		2.2.3	Fire Flow Rate	4
		2.2.4	Boundary Conditions	4
		2.2.5	Hydraulic Model	4
	2.3	Propos	ed Water Plan	4
		2.3.1	Hydraulic Analysis	4
		2.3.2	Summary of Results	5
3	WAST	EWATE	R	6
3	WAST 3.1		R g Conditions	
3				6
3		Existing 3.1.1	g Conditions	6 6
3	3.1	Existing 3.1.1	g Conditions Verification of Existing Sanitary Sewer Capacity	6 6 6
3	3.1	Existing 3.1.1 Propos	g Conditions Verification of Existing Sanitary Sewer Capacity ed Sewers	6 6 6
3	3.1 3.2	Existing 3.1.1 Propos 3.2.1 3.2.2	g Conditions Verification of Existing Sanitary Sewer Capacity ed Sewers Design Flow:	6 6 6 6
-	3.1 3.2	Existing 3.1.1 Propos 3.2.1 3.2.2 TORMV	g Conditions Verification of Existing Sanitary Sewer Capacity ed Sewers Design Flow: Population Density:	6 6 6 6 7
-	3.1 3.2 SITE S	Existing 3.1.1 Propos 3.2.1 3.2.2 TORMV Objecti	g Conditions Verification of Existing Sanitary Sewer Capacity ed Sewers Design Flow: Population Density: VATER MANAGEMENT	6 6 6 7 7
-	3.1 3.2 SITE S 4.1	Existing 3.1.1 Propos 3.2.1 3.2.2 TORMV Objecti Existing	g Conditions Verification of Existing Sanitary Sewer Capacity ed Sewers Design Flow: Population Density: VATER MANAGEMENT ve	6 6 6 6 7 7 7
-	3.1 3.2 SITE S 4.1 4.2	Existing 3.1.1 Propos 3.2.1 3.2.2 TORMV Objecti Existing Design	g Conditions Verification of Existing Sanitary Sewer Capacity ed Sewers Design Flow: Population Density: VATER MANAGEMENT ve	6 6 6 7 7 7
-	3.1 3.2 SITE S 4.1 4.2 4.3	Existing 3.1.1 Propos 3.2.1 3.2.2 TORMV Objecti Existing Design	g Conditions Verification of Existing Sanitary Sewer Capacity ed Sewers Design Flow: Population Density: VATER MANAGEMENT ve	6 6 6 7 7 7 8
-	3.1 3.2 SITE S 4.1 4.2 4.3	Existing 3.1.1 Propos 3.2.1 3.2.2 TORMV Objecti Existing Design System	g Conditions	6 6 6 7 7 7 8 8
-	3.1 3.2 SITE S 4.1 4.2 4.3	Existing 3.1.1 Propos 3.2.1 3.2.2 TORMV Objecti Existing Design System 4.4.1 4.4.2	g Conditions	6 6 6 7 7 7 8 8 8
-	 3.1 3.2 SITE S 4.1 4.2 4.3 4.4 	Existing 3.1.1 Propos 3.2.1 3.2.2 TORMV Objecti Existing Design System 4.4.1 4.4.2	g Conditions	6 6 6 7 7 7 8 8 8 8 8

		4.5.3 2 Year Ponding 1	0
		4.5.4 100 year + 20% Stress Test	0
	4.6	Storm Hydraulic Grade Line 1	1
5	SOUR	CE CONTROLS	2
	5.1	General 1	2
	5.2	Lot Grading 1	2
	5.3	Roof Leaders 1	2
	5.4	Vegetation1	2
6	CONVE	EYANCE CONTROLS 1	3
	6.1	General 1	3
	6.2	Flat Vegetated Swales 1	3
	6.3	Catchbasins 1	3
	6.4	Pervious Landscaped Area Drainage 1	3
7	SEDIM	ENT AND EROSION CONTROL PLAN1	4
	7.1	General 1	4
	7.2	Trench Dewatering1	4
	7.3	Bulkhead Barriers 1	4
	7.4	Seepage Barriers 1	4
	7.5	Surface Structure Filters 1	4
	7.6	Stockpile Management 1	5
8	ROADS	S AND NOISE ATTENUATION 1	6
	8.1	Aircraft Sound Levels 1	6
9	SOILS		7
10	RECO	MMENDATIONS	8

ii

List of Appendices

APPENDIX A	
135925-001	AOV Plan of Subdivision for the Barrett Lands Phase 3 Site Plan for Barrett Block 178 General Plan of Services City of Ottawa Pre-Consultation Meeting Notes
APPENDIX B	Water Distribution Model
APPENDIX C	
135925-400	Sanitary Sewer Design Sheet Sanitary Drainage Plan Barret Lands Phase 3 Sanitary Design Sheet Barret Lands Phase 3 Sanitary Drainage Area Plan
APPENDIX D	
135925-500 135925-600	Storm Sewer Design Sheet Storm Drainage Plan Ponding Plan Barret Lands Phase 3 Storm Design Sheet Barret Lands Phase 3 Storm Drainage Area Plan Modified Rational Method on-site SWM calculations Storm HGL Calculations Barret Lands Phase 3 HGL Reference Overflow Depth/Capacity Calculation Temporary Orifice Sizing Sample Runoff Coefficient Calculations
APPENDIX E	
135925-900 135925-200	Erosion and Sediment Control Plan Grading Plan

1 INTRODUCTION

Barrett Lands Block 178 is located in the northern portion of the Leitrim Development Area (LDA) and is part of the Barrett Lands subdivision. IBI Group Professional Services Inc. (IBI Group) has been retained by Barrett Co-Tenancy to provide professional engineering services for Block 178. The subject site is approximately 1.28 ha and consists of 50 townhouse units. The site consists of freehold frontage onto an 8.5m and a 6.0m wide private lane. There will be a common elements agreement in place for the shared elements of the site.

Block 178 is bounded by Barrett Farm Drive to the North, Barrett Lands Phase 3 lands to the west, Cemetery lands to the south and a future commercial to the east. Refer to key plan below for block location.

The proposed servicing design conforms to current City of Ottawa and MECP design criteria, and no pre-consultation meetings were requested from the South Nation Conservation (SNC) or the Ontario Ministry of Environment, Conservation and Parks (MECP).

1.1 Guidelines and Standards

This evaluation takes into consideration the City of Ottawa Sewer Design Guidelines (OSDG) (October 2012), and the February 2014 Technical Bulletin ISDTB-2014-01, the September 2016 Technical Bulletin PIEDTB-2016-01, the June 2018 Technical Bulletin ISTB-2018-04, October 2019 Technical Bulletin 2019-01, and the July Technical Bulletin 2019-02.

It also considers the City of Ottawa Water Distribution Design Guidelines (OWDDG), and the 2010 Technical Bulletin 2010-02, the 2014 Technical Bulletin 2014-02, and the 2018 Technical Bulleting 2018-02.

All specifications are as per current City of Ottawa standards and specifications, and Province of Ontario (OPSS/D) standards, specifications and drawings.

1.2 Pre-Consultation Meeting

The City of Ottawa hosted a virtual pre-consultation meeting on August 18th, 2021. Notes of the meeting are provided in **Appendix A**. There were no major engineering concerns flagged in this meeting. The City of Ottawa Servicing Study Checklist has also been included in **Appendix A**.

1.3 Environmental Issues

There are no environmental issues related to this site, as all environmental concerns were dealt with as part of the applicants Barrett Lands Phase 3 subdivision approval.

All existing watercourses or drainage features associated with this site have been addressed through SNCA permit number 2021-GLO-R234.

1.4 Geotechnical Concerns

Golder was retained by Barrett Co-Tenancy to review the grading plan to ensure that the recommendations with its original report for the subject area. There were no particular design concerns for this development.

2 WATER DISTRIBUTION

2.1 Existing Conditions

There is an existing 250mm watermain in Barrett Farm Drive in Barrett Lands Phase 3 to the north of the site, which is proposed to continue east on Barrett Farm Drive in Barrett Phase 3 to the north east of the site. The proposed development was considered in the water model for the Barrett Phase 2 and 3 development.

2.2 Design Criteria

2.2.1 Water Demands

Block 178 consists of 50 townhouse units. Per unit population density and consumption rates are taken from **Tables 4.1** and **4.2** of the Ottawa Design Guidelines – Water Distribution and are summarized as follows:

•	Semi Detach/Townhouse	2.7 person per unit
•	Average Day Demand	280 l/cap/day
•	Peak Daily Demand	700 l/cap/day
•	Peak Hour Demand	1,540 l/cap/day

A water demand calculation sheet is included in **Appendix B** and the total water demands are summarized as follows:

٠	Average Day	0.45 l/s
•	Maximum Day	1.12 l/s
٠	Peak Hour	2.45 l/s

2.2.2 System Pressures

The 2010 City of Ottawa Water Distribution Guidelines states that the preferred practice for design of a new distribution system is to have normal operating pressures range between 345 kPa (50 psi) and 552 kPa (80 psi) under maximum daily flow conditions. Other pressure criteria identified in the guidelines are as follows:

Minimum Pressure	Minimum system pressure under peak hour demand conditions shall not be less than 276 kPa (40 psi).
Fire Flow	During the period of maximum day demand, the system pressure shall not be less than 140 kPa (20 psi) during a fire flow event.
Maximum Pressure	Maximum pressure at any point in the distribution system in unoccupied areas shall not exceed 689 kPa (100 psi). In accordance with the Ontario Building/Plumbing Code the maximum pressure should not exceed 552 kPa (80 psi) in occupied areas. Pressure reduction controls may be required for buildings where it is not possible/feasible to maintain the system pressure below 552 kPa.

2.2.3 Fire Flow Rate

A Fire Underwriters Survey has been carried out on a representative block to determine the fire flow for the site. The calculations result in a fire flow of 10,000 l/min; a copy of the FUS calculation is included in **Appendix B**.

2.2.4 Boundary Conditions

The City of Ottawa has provided hydraulic boundary conditions two locations in Barrett Lands Phase 3. The City has provided existing condition and SUC Zone reconfiguration boundary conditions. The existing condition has the highest maximum HGL value and is used in the analysis to determine maximum pressure while the SUC Zone reconfiguration value has the lower values for peak hour and fire and is used in the analysis. A copy of the Boundary Condition is included in **Appendix B** and summarized as follows:

	HYDRAULIC HEAD		
CRITERIA	CONNECTION 1 Private Lane @ Barrett Farm Drive	CONNECTION 2 Private Lane @ Barrett Farm Drive	
Max HGL (Basic Day)	154.6 m	154.6 m	
Peak Hour	144.7 m	144.6 m	
Max Day + Fire (10,000 l/m)	121.8 m	125.3 m	

2.2.5 Hydraulic Model

A computer model for the Block 178 water distribution system has been developed using the InfoWater SA program. The model includes the boundary conditions provided by the City of Ottawa and a portion of Barrett Lands Phase 3 watermains.

2.3 Proposed Water Plan

2.3.1 Hydraulic Analysis

The hydraulic model was run under basic day conditions with the existing boundary condition to determine the maximum pressure for the site. The minimum pressure for the site is determined in the peak hour analysis using the SUC Zone reconfiguration boundary condition. There are two fire hydrants in the site and they are represented by nodes S11-515 and S11-520 in the model; the model was run under the max day plus fire (10,000 l/min) SUC Zone Reconfiguration Boundary condition to determine the design fire flow at the hydrant locations. Results of the analysis for the Block 178 site are summarized in Section 2.3.2 and the water model schematic and model results are included in **Appendix B**.

2.3.2 Summary of Results

Results of the hydraulic analysis for Block 178 are summarized as follows:

SCENARIO	EXISTING	SUC
Basic Day Pressure (kPa)	507.6 – 513.48	453.7 – 467.42
Peak Hour Pressure (kPa)	409.63 - 424.27	425.28 - 439.00
Minimum Residual Pressure (kPa)	138.82	298.07

A comparison of the results and design criteria is summarized as follows:

Maximum Pressure	All nodes have basic day pressure below 552 kPa for existing conditions; therefore, pressure reducing control is not required for this site.
Minimum Pressure	All nodes exceed the minimum requirement of 276 kPa during peak hour conditions for the SUC Zone configuration.
Fire Flow	The model was run with a fire flow of 10,000 l/min under the SUC Zone Reconfiguration. The residual pressures at both nodes exceed the minimum requirement of 276 kPa.

3 WASTEWATER

3.1 Existing Conditions

The Leitrim Pump Station is the wastewater outlet for all developed lands within the LDA, including the subject property. In 2002, the City constructed the station, associated forcemains and outlet sewers in Bank Street and Conroy Road. Sewage from the LDA outlets to the Conroy Road Trunk Sewer eventually discharging to a sewage treatment plant located near the Ottawa River. The Barrett Lands Phase 1 report prepared by IBI Group dated March 2017 confirmed that the existing 375mm sewer in Kelly Farm Drive has sufficient capacity for the Barret Lands at Findlay Creek property inclusive of the proposed development.

3.1.1 Verification of Existing Sanitary Sewer Capacity

There is an existing 200mm sanitary sewer in Barrett Farm Drive, which connects to the 375 mm diameter sub-trunk sewer in Kelly Farm Drive. In the previous Barrett Lands Phase 3 report, the design for Block 178 was for 84 apartment units, with an allocated population of 159.6 people, a site area of 1.28 and a total flow of 2.26 L/s, see **Appendix C** for excerpts from the Phase 3 report.

For the subject development, it is proposed to build a total of 50 units – 14 townhomes and 36 back to back townhouse units. The new total proposed population is 135.2 people, area 1.02 Ha and a total flow of 1.99L/s. This represents a total peaking flow decrease of **0.27L/s** when compared to the Phase 3 allocation. The decrease in flow on the existing system from the subject development is considered to have no negative impacts on downstream infrastructure.

3.2 Proposed Sewers

All on-site sewers have been designed to City of Ottawa and MOE design criteria which include but are not limited to the below listed criteria. A copy of the detailed sanitary tributary area plan 400 and the sanitary sewer design sheets are included in **Appendix C** illustrate the population densities and sewers which provide the necessary outlets.

3.2.1 Design Flow:

Average Residential Flow	-	280 l/cap/day
Peak Residential Factor	-	Harmon Formula
Infiltration Allowance	-	0.33 l/sec/Ha
Minimum Pipe Size	-	200mm diameter

3.2.2 Population Density:

Semi-Detached & Townhouse - 2.7 person/unit

4 SITE STORMWATER MANAGEMENT

4.1 Objective

The purpose of this evaluation is to prepare the dual drainage design, including the minor and major system, for the Block 178 development. The design includes the assignment of inlet control devices, on-site storage, maximum depth of surface ponding and hydraulic grade line analysis. The evaluation takes into consideration the City of Ottawa Sewer Design Guidelines (OSDG) (October 2012), the February 2014 Technical Bulletin ISDTB-2014-01, the September 2016 Technical Bulletin PIEDTB-2016-01 and the June 2018 Technical Bulletin ISTB-2018-04.

4.2 Existing Conditions

The subject development is tributary to the Barrett Farm Drive storm sewer, which was approved for construction for the Barrett Lands Phase 3 development. Subsequent to the approval of Phase 3, the stormwater management analysis for Barrett Lands Phase 3 included an updated to the subject sites tributary allocation into the Barrett Farm Drive storm sewer. As part of that approval, a 675mm diameter storm sewer was approved for the subject block. The subject block is referenced as "R11304" in the Barrett Lands Phase 3 design. A copy of the design sheet, and approved drainage area plan for Phase 3 have been included in **Appendix D**.

Additionally, the Barrett Lands Phase 3 stormwater management identified a minor system restriction for this site to be the 5-year modelled flow of **234 I/s**. An excerpt from the Phase 3 report has been included in **Appendix D**.

4.3 Design Criteria

The stormwater system was designed following the principles of dual drainage, making accommodations for both major and minor flow.

Some of the key criteria include the following:

Design Storm

1:2-year return (Ottawa)

(It should be noted that the overall Barrett Lands Site utilized 1:5 year return storm for minor system release from the subject site, further details are provided in Section 4.4 and 4.5.2)

• Rational Method Sewer Sizing

•	Initial Time of Concentration	10 minutes	
•	Runoff Coefficients		
	- Front Yards	C = 0.57	
	- Rear Yards	C = 0.78	
•	Pipe Velocities	0.80 m/s to 3.0 m/s	
•	Minimum Pipe Size	250 mm diameter (200 mm CB Leads)	

A sample calculation of run-off coefficients has been provided in Appendix D. The runoff coefficients used are based on the actual footprint in the site plan. Zoning setbacks do not apply to the site plan. The values calculated are lower than the values used, thus a conservative approach has been provided in this analysis.

4.4 System Concept

According to the Barrett Lands Phase 3 report prepared by IBI Group dated April 2022, the development of the adjacent downstream properties included the expected stormwater servicing needs of the subject property. The existing storm sewers constructed adjacent to the site were oversized to provide the needed capacity for minor storm runoff from the subject site. Minor storm runoff from the subject site will connect to the existing 675 mmØ sewer stub that connects to the existing 1050mmØ trunk storm sewer in Barrett Farm Drive.

4.4.1 Dual Drainage Design

The dual drainage system proposed for the subject site will accommodate both major and minor stormwater runoff. Minor flow from the subject site will be conveyed through the storm sewer network and discharge into the existing 675 mm \emptyset sewer stub that connects to the existing 1050mm \emptyset trunk storm sewer in Barrett Farm Drive.

The balance of the surface flow not captured by the minor system will be conveyed via the major system. Where possible, storage will be provided in surface sags or low points within the roadway. Storage will also be provided within oversized storm pipes. Once the maximum storage is utilized, the excess flow will cascade to the next downstream street sag. Based on Phase 3 information, the 100 year overflow allocation related to the subject development lands is 350 I/s and the 100 year + 20% stress test allocation is 476 I/s. Major flow from street segments will overflow to the major flow block connecting to adjacent Barrett Lands Phase 3 at Delphinium Crescent to the west and to Barrett Farm Drive to the North, once on-site surface ponds have reach capacity.

4.4.2 Proposed Minor System

Using the criteria identified in Section 4.3, the proposed on-site storm sewers were sized accordingly. A detailed storm sewer design sheet and the associated storm sewer drainage area plan is included in **Appendix D**. The general plan of services, depicting all on-site storm sewers can be found in **Appendix A**.

The owner of the site will be responsible for regular maintenance of the on-site sewers, catch basins and inlet control devices (ICDs). Maintenance includes but is not limited to the cost of regular cleaning of the structures and ICDs as necessary. The site owner will also be responsible for replacement of damaged or missing catch basin structures, grates or ICDs as needed.

4.5 Stormwater Management

4.5.1 Water Quality Control

The subject site is part of the larger development referred to as the Leitrim Development Area. The stormwater management strategy was outlined in the following reports:

- Addendum to Leitrim Development Area Stormwater Management Environmental Study Report and Pre-Design Volumes 1 and II (IBI Group, July 2005);
- Design Brief and Amendment to MOE Certificate of Approval Findlay Creek Village Stormwater Facility (IBI Group, July 2005);
- Final Serviceability Report Leitrim Development Area City of Ottawa (IBI Group, March 2007).
- 2016 Final Updated Serviceability Report (Class EA OPA76 Areas 8a, 9a and 9b) Leitrim Development Area (IBI Group, September 2016)

The subject site is part of the drainage area which ultimately discharges into the existing Findlay Creek Village Stormwater Facility. The Findlay Creek Village Stormwater Facility was constructed

in 2006 and provides water quality control to an Enhanced Level of Protection according to MOE Stormwater Management Planning and Design Guidelines (March 2003).

4.5.2 Water Quantity Control

The subject site will be limited to a maximum minor system release rate of **234 L/s** based on the Barrett Lands Phase 3 Servicing Brief, reference information is provided within **Appendix D**. This will be achieved through a combination of inlet control devices (ICD's) at inlet locations, surface storage where possible and underground storage in oversized storm pipes where required.

There are 2 small locations where water is left to discharge uncontrolled from the subject property. The uncontrolled release can be calculated as follows;

Uncontrolled Release, where Quncontrolled = 2.78(C x i100yr x Auncontrolled)

С	=Runoff Coefficient	=0.80
Tc	=Time of Concentration	=10min
i100 _{yr}	=100yr intensity (1735.688 / (Tc + 6.014) ^{0.820}	=178.56
Aunc	=Area uncontrolled	=0.06Ha
Quncont	rolled	=23.83 L/s

The Maximum allowable release rate from the site can be determined by subtracting the Uncontrolled release rate from the minor system restricted flow rate.

 $Q_{max} = Q_{restricted} - Q_{uncontrolled}$ $Q_{max} = 234 L/s - 23.83L/s$ $Q_{max} = 210.17 L/s$

Surface flows in excess of the site's allowable release rate will be stored on site in strategic surface storage areas or oversized underground pipes and gradually released into the minor system to respect the site's allowable release rate. The maximum surface retention depth located within the developed areas will be limited to 300mm during a 1:100 year event as show on the ponding plan located in **Appendix D** and grading plans located in **Appendix E.** Overland flow routes will be provided in the grading to permit emergency overland flow.

The modified rational method was used to evaluate the on-site stormwater management. There are two uncontrolled areas on this site. The flows are calculated above. Therefore, the total restricted flow rate through the minor system will be the design flow rate of **210.17** I/s. This will be achieved by the used of Inlet Control Devices (ICD's) placed in all on-site catchbasins. A summary of the ICD's, their corresponding storage requirements, storage availability, and associated drainage areas has been provided below.

DRAINAGE AREA	ICD RESTRICTED FLOW (L/s)	100 YEAR STORAGE REQUIRED (m ³)	SURFACE STORAGE PROVIDED (m ³)	SUB-SURFACE STORAGE PROVIDED (m ³)	100yr OVERFLOW (m ³)
S20A	15.00	18.68	20.59	0.00	0.00
S10	40.00	16.34	0.32	0.00	16.02*
S4	26.00	30.25	1.16	0.00	29.09
S20B	15.00	3.65	1.41	0.00	2.24
S5	25.00	58.73	1.32	0.00	57.41
S6	55.00	113.37	9.71	0.00	103.66
R6	34.00	129.69	4.38	4.4	120.91*
TOTAL	210.00				136.93

*Overflow only during major storm events, directed to Delphinium Crescent and Barrett Farm Drive with no negative impact on downstream storm sewer system

4.5.3 2 Year Ponding

A review of the 2-year ponding has been completed using the modified rational method. A minimum Tc of 10min has been used. Where volumes are calculated as a negative value, 0.0m3 has been shown. A summary of each drainage area has been provided below.

DRAINAGE AREA	Total 2-Year Ponding Volume (m3)	Comment
S4	0.0	-
S5	0.0	-
S6	0.0	-
S10	0.0	-
S20A	0.22	Negligible volume of ponding during 2-year event
S20B	0.0	-
R6	4.38	This area is controlled at RYCB1, and there is 4.4m3 of sub- surface storage provided in this area. The required ponding is provided underground, not on the street. A 50% reduction to the release rate was considered for this area.

Based on the above, there will be no surface ponding in the 2-year event.

4.5.4 100 year + 20% Stress Test

A cursory review of the 100yr event + 20% has been performed using the modified rational method. The Peak flow from each area during a 100-year event has been increased by 20%. The calculations have been included in **Appendix D**.

A summary of the require storage volumes, and overflow balances is provided below.

DRAINAGE AREA	ICD RESTRICTED FLOW (L/s)	100yr20 STORAGE REQUIRED (m³)	SURFACE STORAGE PROVIDED (m ³)	100yr20 OVERFLOW (m³)
S20A	15.00	25.11	20.59	4.52
S10	40.00	26.53	0.32	26.21*
S4	26.00	40.67	1.16	39.51
S20B	15.00	5.46	1.41	4.05
S5	25.00	81.23	1.32	79.91
S6	55.00	158.95	9.71	149.24
R6	34.00	183.54	4.38	174.76*
TOTAL	210.00			200.97

*Overflow from S10 to Barrett Farm Drive, and from R6 to Delphinium Crescent.

DRAINAGE AREA	100yr20 OVERFLOW (m³)	Time of Concentration	100yr20 OVERFLOW (I/s)	DEPTH (m)
S20A	4.52	15.00	5.02	0.02
S10	26.21*	5.00	87.36*	0.05
S4	39.51	14.00	47.04	0.05
S20B	4.05	6.00	11.24	0.03
S5	79.91	16.00	83.24	0.06
S6	149.24	18.00	138.19	0.05
R6	174.76*	15.00	194.18*	0.09
TOTAL	200.97		281.54	

As noted above, the overland flow from the rear yards (R6) is directed to Barrett Lands Phase 3 lands at Delphinium Crescent to the West. The volume of overflow is 174.76m3. Based on a Tc of 15minutes, this volume can be reverse calculated to 194.18 L/s. Channel cross section was used to determine the depth of flow for each area. Refer to calculation sheet in **Appendix D**.

The stress test overflow from S10 will follow the intended overflow route as identified in the Phase 3 grading design drawings. The volume of overflow is 26.21m3. Based on the Tc of 5minutes, this volume can be reverse calculated to 87.36 L/s. Channel cross section was used to determine the depth of flow for each area. Refer to calculation sheet in **Appendix D**.

4.6 Storm Hydraulic Grade Line

The Barrett Lands Phase 3 report indicates that the 100-year hydraulic grade line (HGL) in Bulkhead 11307N **93.68**, refer to **Appendix D** for the excerpt from the Barrett Lands Phase 3 HGL analysis. The HGL has been extended through the subject site have been calculated as follows:

LOCATION	MH #	USF ELEV (M)	STORM HGL (M)	FREEBOARD (M)
Unit 1-2	MH10	99.36	98.460	0.90
Unit 3	MH 9	99.53	98.520	1.010
Unit 4-18;23-27	MH 8	99.98	98.520	1.460
Unit 19-22;28-37	MH 5	100.43	99.030	1.400
Unit 38-46	MH 4	100.51	99.050	1.460
Unit 47-50	MH 2	100.65	99.340	1.310

All underside of footing elevations have been designed to provide a minimum of 300mm separation between the greater of governing pipe obvert or governing HGL. A copy of the storm HGL analysis for Block 178 is provided in **Appendix D**.

5 SOURCE CONTROLS

5.1 General

On site level or source control management of runoff will be provided to provide quality control for the subject lands. Such controls or mitigative measures are proposed for the development not only for final development but also during construction and build out. Some of these measures are:

- flat lot grading;
- split lot drainage;
- Roof-leaders to vegetated areas;
- vegetation planting; and
- groundwater recharge.

5.2 Lot Grading

There is an elevation difference of approximately 2m from southwest to northeast in Block 178. In accordance with local municipal standards, the parking lots will be graded northeast between 1.5% and 5.0%. Most landscaped area drainage will be directed into a swale drainage system, and connects to the storm sewer system. Typically swales will have slopes larger than 1.5% with subdrains. Copies of the grading plans have been included in **Appendix E**.

5.3 Roof Leaders

This development will consist of stacked homes and apartments. It is proposed that roof leaders from these units be constructed such that runoff is directed to grass areas adjacent to the units. This will promote water quality treatment through settling, absorption, filtration and infiltration and a slow release rate to the conveyance network.

5.4 Vegetation

As with most subdivision agreements, the developer will be required to complete a vegetation and planting program. Vegetation throughout the development including planting along roadsides and within public parks provides opportunities to re-create lost natural habitat.

6 CONVEYANCE CONTROLS

6.1 General

Besides source controls, the development also proposes to use several conveyance control measures to improve runoff quality. These will include:

- flat vegetated swales;
- catchbasin and maintenance hole sumps; and
- pervious rear yard drainage.

6.2 Flat Vegetated Swales

The development will make use of relatively flat vegetated swales where possible to encourage infiltration and runoff treatment.

6.3 Catchbasins

All catchbasins within the development, either rear yard or street, will be constructed with minimum 600 mm deep sumps. These sumps trap pollutants, sand, grit and debris which can be mechanically removed prior to being flushed into the minor pipe system. Both rear yard and street catchbasins will be fabricated to OPSD 705.010 or 705.020. All storm sewer maintenance holes servicing local sewers less than 900 mm diameter shall be constructed with a 300 mm sump as per City standards.

6.4 Pervious Landscaped Area Drainage

Some of the landscaped area swales make use of a filter wrapped perforated drainage pipe constructed below the rear yard swale. This perforated system is designed to provide some ground water recharge and generally reduce both volumetric and pollutant loadings that enter the minor pipe system.

7 SEDIMENT AND EROSION CONTROL PLAN

7.1 General

During construction, existing stream and conveyance systems can be exposed to significant sediment loadings. Although construction is only a temporary situation, it is proposed to introduce a number of mitigative construction techniques to reduce unnecessary construction sediment loadings. These will include:

- groundwater in trench will be pumped into a filter mechanism prior to release to the environment;
- bulkhead barriers will be installed at the nearest downstream manhole in each sewer which connects to an existing downstream sewer;
- seepage barriers will be constructed in any temporary drainage ditches; and
- silt sacks will remain on open surface structure such as manholes and catchbasins until these structures are commissioned and put into use.

7.2 Trench Dewatering

During construction of municipal services, any trench dewatering using pumps will be discharged into a filter trap made up of geotextile filters and straw bales similar in design to the OPSD 219.240 Dewatering Trap. These will be constructed in a bowl shape with the fabric forming the bottom and the straw bales forming the sides. Any pumped groundwater will be filtered prior to release to the existing surface runoff. The contractor will inspect and maintain the filters as needed including sediment removal and disposal and material replacement as needed.

7.3 Bulkhead Barriers

At the first manhole constructed immediately upstream of an existing sewer, a ½ diameter bulkhead will be constructed over the lower half of the outletting sewer. This bulkhead will trap any sediment carrying flows, thus preventing any construction –related contamination of existing sewers. The bulkheads will be inspected and maintained including periodic sediment removal as needed.

7.4 Seepage Barriers

These barriers will consist of both the Light Duty Straw Bale Barrier as per OPSD 219.100 or the Light Duty Silt Fence Barrier as per OPSD 219.110 and will be installed in accordance with the sediment and erosion control drawing. The barriers are typically made of layers of straw bales or geotextile fabric staked in place. All seepage barriers will be inspected and maintained as needed.

7.5 Surface Structure Filters

All catchbasins, and to a lesser degree manholes, convey surface water to sewers. However, until the surrounding surface has been completed these structures will be covered to prevent sediment from entering the minor storm sewer system. Until rear yards are sodded or until streets are asphalted and curbed, all catchbasins and manholes will be equipped with geotextile filter socks. These will stay in place and be maintained during construction and build until it is appropriate to remove them.

7.6 Stockpile Management

During construction of any development similar to that being proposed both imported and native soils are stockpiled. Mitigative measures and proper management to prevent these materials entering the sewer systems is needed.

During construction of the deeper municipal services, water, sewers and service connections, imported granular bedding materials are temporarily stockpiled on site. These materials are however quickly used up and generally before any catchbasins are installed. Street catchbasins are installed at the time of roadway construction and rearyard catchbasins are usually installed after base course asphalt is placed.

Contamination of the environment as a result of stockpiling of imported construction materials is generally not a concern since these materials are quickly used and the mitigative measures stated previously, especially the use of filter fabric in catchbasins and manholes help to manage these concerns.

The roadway granular materials are not stockpiled on site. They are immediately placed in the roadway and have little opportunity of contamination. Lot grading sometimes generates stockpiles of native materials. However, this is only a temporary event since the materials are quickly moved off site.

The construction of this development will involve a substantial rock blasting, breaking and crushing operation. Given the existing topography, a substantial cut and fill operation is required in order to construction a development that meets City Standards. As part of this operation, materials will be manipulated onsite, and provided the sediment and erosion control measures are in place, are generally inconsequential to the surrounding environment.

8 ROADS AND NOISE ATTENUATION

Vehicular access to Block 178 is provided by two private entrances from Barrett Farm Drive.

There are no sidewalks or pathways proposed within the development. Pedestrian access to the site will be via the private roadway.

The site has been designed in order to provide curbside municipal waste disposal.

There are no bus routes proposed within Block 178.

There are no collector streets or nearby noise sources that would trigger an environmental noise assessment.

8.1 Aircraft Sound Levels

As stated in Section 2.1, the site is within the Airport Vicinity Development Zone (AVDZ), the limit of the AVCZ is shown on Figure 2. The site however is outside of the 25 NEF/NEP contour line so the building components and ventilation requirements of Part 6 Prescribed Measures for Aircraft Noise of the Guidelines do not apply. A warning clause is required for the residential units inside the AVDZ.

Warning clause for aircraft noise is as follows:

"Purchasers/tenants are advised that due to the proximity of the airport, noise from the airport and individual aircraft may at times interfere with outdoor or indoor activities".

9 SOILS

Golder Associates Ltd. was retained to prepare a geotechnical investigation for the proposed mixed use development for the Barrett Lands Phase 3. The objectives of the investigation were to prepare a report to:

- Determine the subsoil and groundwater conditions at the site by means of test pits and boreholes and;
- To provide geotechnical recommendations pertaining to design of the proposed development including construction considerations.

The geotechnical report 20442530-100 was prepared by Golder Associates Ltd. in February 2022. The report contains recommendations which include but are not limited to the following:

- The maximum permissible grade raise is 3.5m
- In areas where finished grade exceeds grade raise limits, geotechnical reviews are required
- Fill placed below the foundations to meet OPSS Granular 'A' or Granular 'B' Type II placed in 300 mm lifts compacted to 98% SPMDD.
- Fill for roads to be suitable native material in 300mm lifts compared to 95% SPMDD

Pavement Structure:

LOCAL ROAD	THICKNESS
Asphaltic Concrete	90mm
OPSS Granular A Base	150mm
OPSS Granular B Type II Subbase	400mm

• Pipe bedding and cover; bedding to be minimum 150 mm OPSS Granular 'A' up to spring line of pipe. Cover to be 300 mm OPSS A (PUC and concrete pipes) or sand for concrete pipes. Both bedding and cover to be placed in maximum 225 mm lifts compacted to 95% SPMDD.

In general the grading plan for Block 178 adheres to the grade raise constraints noted above. A copy of the grading plans is included in **Appendix E**. The site does not pose any significant grade raise; thus a grading plan review letter is not required for this development.

10 RECOMMENDATIONS

Water, wastewater and stormwater systems required to develop Barrett Lands Block 178 will be designed in accordance with MOE and City of Ottawa's current level of service requirements.

The use of lot level controls, conveyance controls and end of pipe controls outlined in the report will result in effective treatment of surface stormwater runoff from the site. Adherence to the proposed sediment and erosion control plan during construction will minimize harmful impacts on surface water.

Final detail design will be subject to governmental approval prior to construction, including but not limited to the following:

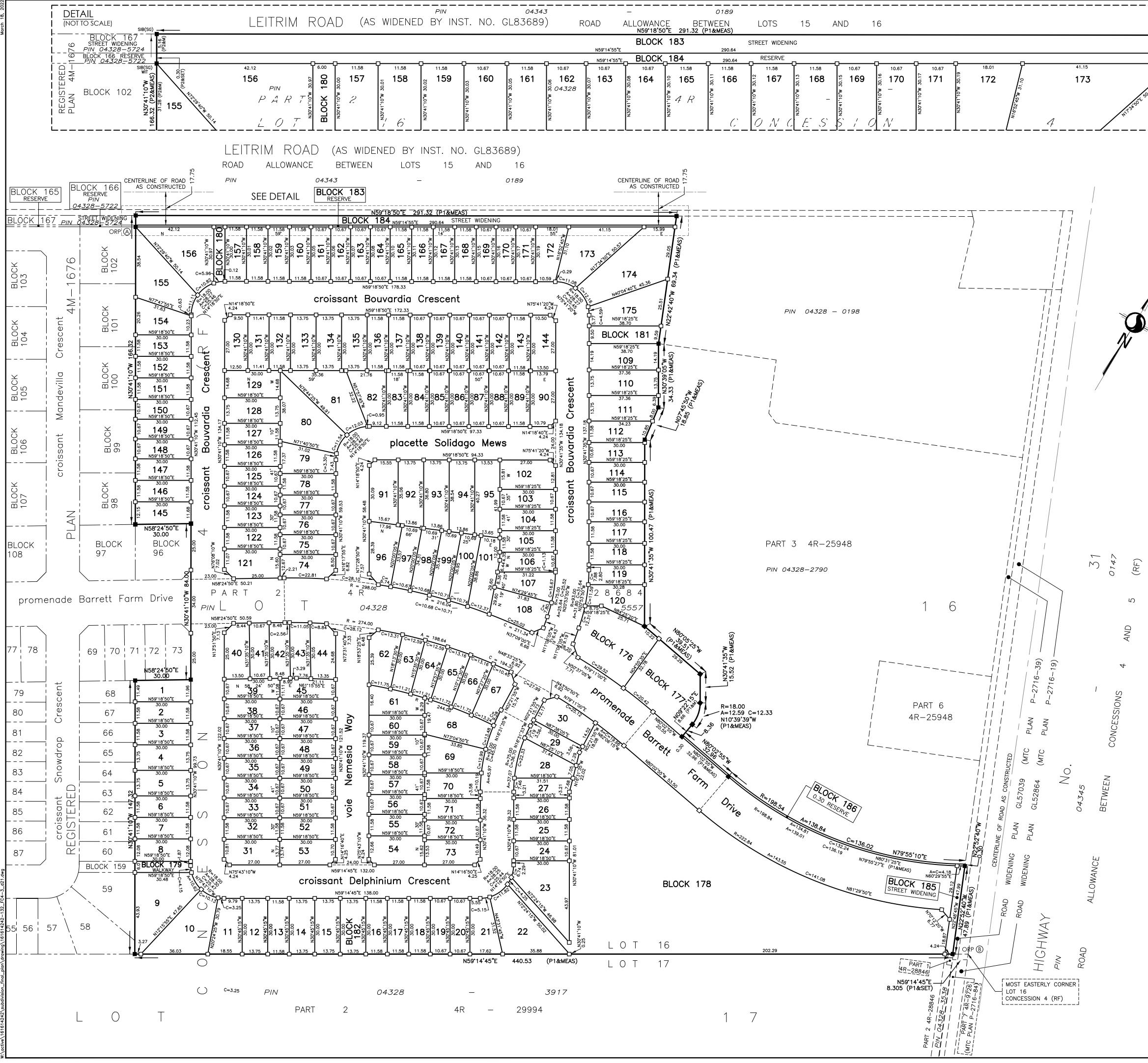
- Block 178 Commence Work Order: City of Ottawa
- ECA for Sewage Works: MOECP Transfer of Review by City of Ottawa
- Block 178 Watermain Approval: City of Ottawa
- Block 178 Commence Work Order (utilities): City of Ottawa

Report prepared by:

Demetrius Yannoulopoulos, P.Eng. Director

Rowling

Ryan Magladry, C.E.T. Project Manager


Chef At

Anton Chetrar, EIT Engineering Intern

https://ibigroup.sharepoint.com/sites/Projects1/135925/Internal Documents/6.0_Technical/6.04_Civil/03_Tech-Reports/Submission #1/CTR-Servicing Brief_2022-05.docx

APPENDIX A

AOV Plan of Subdivision for Barrett Lands Phase 3 Site Plan for Barrett Lands Block 178 135925-001 - General Plan of Services City of Ottawa Pre-Consultation Meeting Notes

				 	PLA	N 4M-	
				 	I CERTIFY	THAT THIS PLA	n is registered in the land registry offic
	87. 88. 				FOR THE	land titles di	VISION OF OTTAWA-CARLETON No.4 AT
					O'CLOC	K ON THE	_ DAY OF, 2022 AND ENTERED
15.99	AS) 69	PIN 043	328 — 0	198	THE PAR	CEL REGISTER F	OR PROPERTY IDENTIFIER
1/4 5557						DNSENTS ARE REGISTERED AS PLAN DOCUMEN	
8684	2.42. (P						
	Ž	(())	- 1	ĺ	NUMBER	OC	·
	J			ا لــــــــــــــــــــــــــــــــــــ			
				IG ACT BY THE	11		REPRESENTATIVE FOR LAND REGISTR
CITY OF OT	TAWA THIS	_ DAY OF		,20		OMPRISED OF ALL C	
					THIS FLAN CC	JMFRISED OF ALL C	F F IIN 04320-3337
					PLANC	of Subdivi	SION of
	PHEN WILLIS, M ANNING, REAL						
	VELOPMENT DE					OF LOT	
							N 4 (RIDEAU FRONT) OF GLOUCESTER)
					•	OF OTTAV	
					Scale 1:10		
					20	0 20	40 60 METRES
					METRIC CO	ONVERSION	
		URVE SCHE			DISTANCES	AND COORDINA	tes shown on this plan are in metres
LOT/BLOG 9	18.00	ARC 10.62	CHORD 10.47	BEARING N60*50'05"W	and can e	BE CONVERTED TO	D FEET BY DIVIDING BY 0.3048
<u> 10 </u>	18.00 18.00	10.26 3.25	10.13 3.25	N85°55'45"E N64°25'10"E	GRID SCAI	LE CONVERSION	<u>I</u>
21 22	18.00 18.00	5.17 12.04	5.15 11.82	N51°01'10"E N23°38'00"E	DISTANCES	ARE GROUND AN	ID CAN BE CONVERTED TO GRID BY MULTIPLYING BY
23	18.00 75.00	6.78 7.46	6.74 7.46	N19*53'40"W N27*50'10"W	THE COMBI	NED SCALE FACT	OR OF 0.999946.
<u>27</u> 28 29	75.00	22.42	22.33	N16 [•] 25 [′] 25 [′] W N05 [•] 06 [′] 50 [′] W	BEARING N	NOTE	
30	274.00	25.13	25.12	N86*47'15"W	BEARINGS A	ARE GRID, DERIVE	d from can-net vrs network gps
42 43	274.00	2.56 11.05	2.56 11.05	N58°40'55"E N60°06'15"E			RIZONTAL CONTROL MONUMENTS 19773035 AND N. 76° 30' WEST LONGITUDE MTM ZONE 9, NAD83
<u>44</u> <u>62</u>	274.00 274.00	8.84 13.31	8.84	N62°11'00"E N70°22'55"E	(ORIGINAL)		
62 63	244.00 274.00	11.75 12.59	11.75 12.59	N70°23'40"E N73°05'30"E		:5006060.42 E:324	
63 64	244.00 274.00	11.21 12.59	11.21 12.59	N73°05'30"E N75°43'25"E	19680191 N	:5033564.26 E:388	064.94
64 65	244.00 274.00	11.21 13.16	11.21 13.16	N75°43'25"E N78°25'00"E			
<u>65</u> 66	244.00	11.72 13.16	11.72 13.16	N78°25'00"E N81°10'05"E			INTS DERIVED FROM THE CAN-NET VRS NETWORK GPS ZONTAL CONTROL MONUMENTS 19773035 AND 1968019
<u> </u>	274.00 244.00 274.00	11.72 10.45	11.72	N81°10'05"E N81°10'05"E N83°38'10"E	CENTRA		0' WEST LONGITUDE MTM ZONE 9, NAD83 (ORIGINAL). IRBAN ACCURACY PER SEC 14(2) OF O.REG. 216/10
67 67 67	244.00	13.24	13.24	N84°05'55"E	ORP ID		NORTHING EASTING
68	93.00	9.28 13.49	9.28 13.48	N05°13'25"W N12°14'20"W			5021294.73 374944.42
69 70	93.00 93.00	13.01 10.19	12.99 10.19	N20°24'00"W N27°32'47"W			5021182.72 375523.14 N THEMSELVES, BE USED TO RE-ESTABLISH CORNERS
74 79	298.00 18.00	22.82 3.31	22.81 3.30	N60°36'30"E N25°25'25"W			N THEMSELVES, BE USED TO RE-ESTABLISH CORNERS INDARIES SHOWN ON THIS PLAN.
<u>80</u> 81	18.00 18.00	11.75 12.27	11.54 12.03	N01°27'40"W N36°45'50"E			
82 96	18.00 298.00	0.95 6.74	0.95	N57°48'05"E N68°51'15"E	LEGEND		
<u>97</u> 98	298.00 298.00	10.67	10.67	N70°31'40"E N72°34'50"E		DENOTES	Found monuments Set monuments (IB)
99	298.00	10.71	10.71	N74°38'15"E N76°41'55"E	IB		UNLESS OTHERWISE STATED IRON BAR
100	298.00 298.00	10.74	10.74 12.37	N78°55'15"E	IBØ SIB		ROUND IRON BAR STANDARD IRON BAR
100 101	75.00	1.13 16.71	1.13 16.67	N30°15'45"W N23°27'00"W	SSIB CC		SHORT STANDARD IRON BAR CUT CROSS
101 106 107		7.81 25.03	7.80 25.02	N14°05'05"W N66°03'00"E	CP WIT		CONCRETE PIN WITNESS
101 106	75.00 298.00		7.88	N28°15'55"W N22°15'50"W	PIN MEAS		PROPERTY IDENTIFICATION NUMBER MEASURED
101 106 107 108 108 119	298.00 93.00	7.88	11 50		PROP	11	PROPORTIONED
101 106 107 108 108 119 120 155	298.00 93.00 93.00 18.00	11.60 11.29	11.59 11.11	N12*43'00"W	011		
101 106 107 108 108 119 120 155 156 173	298.00 93.00 93.00 18.00 18.00 18.00	11.60 11.29 10.99 11.27	11.11 10.82 11.08	N12*43'00"W N22*45'00"E N77*14'40"E	OU SG ORP		ORIGIN UNKNOWN STANTEC GEOMATICS LTD. OBSERVED REFERENCE POINT
101 106 107 108 108 119 120 155 156 173 174 175	298.00 93.00 93.00 18.00 18.00 18.00 18.00 18.00 18.00	11.60 11.29 10.99 11.27 12.40 4.60	11.11 10.82 11.08 12.16 4.59	N12*43'00"W N22*45'00"E N77*14'40"E N65*05'00"W N38*01'00"W	SG ORP P1		STANTEC GEOMATICS LTD. OBSERVED REFERENCE POINT PLAN 4R-28684
101 106 107 108 108 119 120 155 156 173 174	298.00 93.00 93.00 18.00 18.00 18.00 18.00	11.60 11.29 10.99 11.27 12.40	11.11 10.82 11.08 12.16	N12°43'00"W N22°45'00"E N77°14'40"E N65°05'00"W	SG ORP		STANTEC GEOMATICS LTD. OBSERVED REFERENCE POINT
$ \begin{array}{r} 101\\ 106\\ 107\\ 108\\ 108\\ 119\\ 120\\ 155\\ 156\\ 173\\ 174\\ 175\\ 176\\ 176\\ 176\\ 177\\ \end{array} $	298.00 93.00 93.00 18.00 18.00 18.00 18.00 18.00 18.00 93.00 298.00	11.60 11.29 10.99 11.27 12.40 4.60 12.32 29.53 20.43	11.11 10.82 11.08 12.16 4.59 12.31 29.52 20.42	N12*43'00"W N22*45'00"E N77*14'40"E N65*05'00"W N38*01'00"W N14*53'50"W N86*48'55"W N82*00'45"W	SG ORP P1		STANTEC GEOMATICS LTD. OBSERVED REFERENCE POINT PLAN 4R-28684
$ \begin{array}{r} 101 \\ 106 \\ 107 \\ 108 \\ 108 \\ 119 \\ 120 \\ 155 \\ 156 \\ 173 \\ 174 \\ 175 \\ 176 \\ 176 \\ 176 \\ \end{array} $	298.00 93.00 93.00 18.00 18.00 18.00 18.00 18.00 18.00 93.00 298.00	11.60 11.29 10.99 11.27 12.40 4.60 12.32 29.53	11.11 10.82 11.08 12.16 4.59 12.31 29.52	N12*43'00"W N22*45'00"E N77*14'40"E N65*05'00"W N38*01'00"W N14*53'50"W N86*48'55"W	SG ORP P1		STANTEC GEOMATICS LTD. OBSERVED REFERENCE POINT PLAN 4R-28684

THIS IS TO CERTIFY THAT : 1. LOTS 1 to 175, BOTH INCLUSIVE, BLOCKS 176, 177 and 178, THE STREETS, NAMELY promenade Barrett Farm Drive, croissant Bouvardia Crescent, croissant Delphinium

Crescent, voie Nemesia Way and placette Solidago Mews WALKWAYS, NAMELY BLOCKS 179 and 180, ACCESS BLOCKS, NAMELY BLOCKS 181 and 182, RESERVES, NAMELY BLOCKS 183 and 186 and STREET WIDENINGS, NAMELY BLOCKS 184 and 185 HAVE BEEN LAID OUT IN ACCORDANCE WITH OUR INSTRUCTIONS.

2. THE STREETS AND STREET WIDENINGS AND LANES ARE HEREBY DEDICATED TO THE CITY OF OTTAWA AS PUBLIC HIGHWAYS.

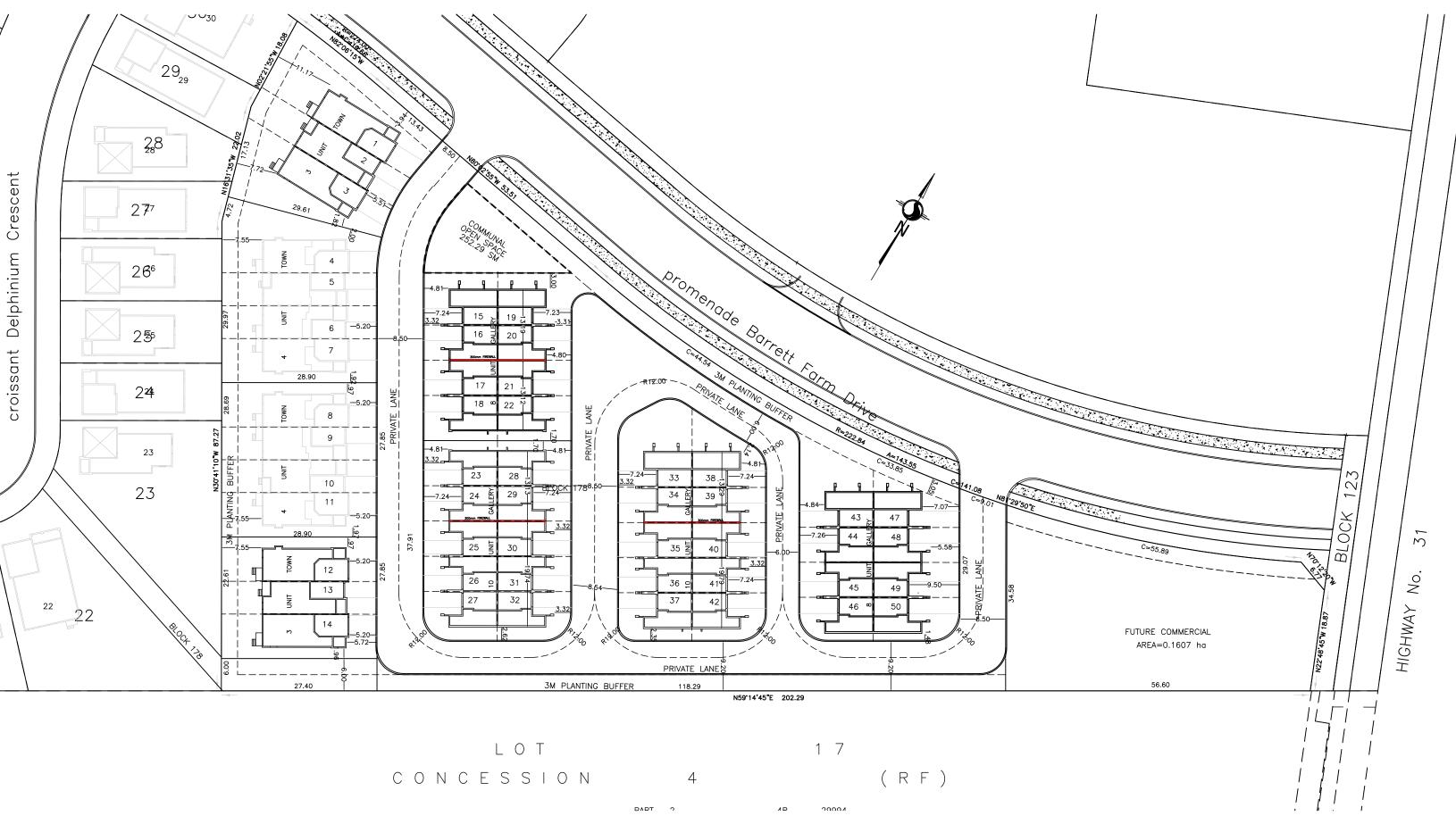
CHRIS TAGGART, PRESIDENT FINDLAY CREEK PROPERTIES (NORTH) LTD. TARTAN HOMES (NORTH LEITRIM) INC. TARTAN LAND (NORTH LEITRIM) INC.

I HAVE THE AUTHORITY TO BIND THE CORPORATION

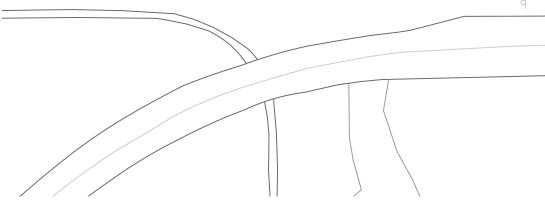
SURVEYOR'S CERTIFICATE I CERTIFY THAT :

1. THIS SURVEY AND PLAN ARE CORRECT AND IN ACCORDANCE WITH THE SURVEYS ACT, THE SURVEYORS ACT AND THE LAND TITLES ACT AND THE REGULATIONS MADE UNDER THEM.

THE SURVEY WAS COMPLETED ON THE DAY OF , 2022



Stantec Geomatics Ltd. CANADA LANDS SURVEYORS ONTARIO LAND SURVEYORS 1331 CLYDE AVENUE, SUITE 300 OTTAWA, ONTARIO, K2C 3G4 TEL. 613.722.4420 FAX. 613.722.2799 stantec.com


FRANCIS LAU

ONTARIO LAND SURVEYOR

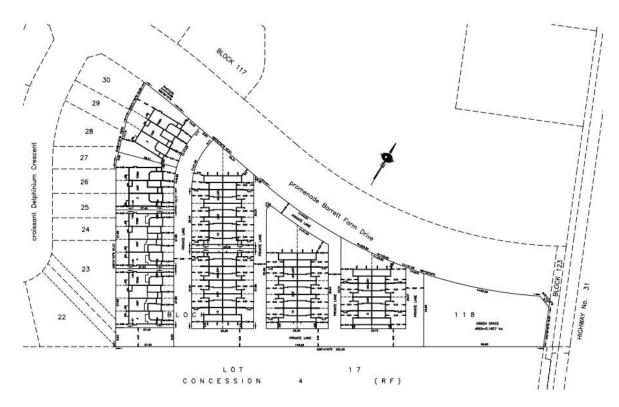
PROJECT No.: 161614242-132 DRAWN: ME CHECKED: * PM: FL FIELD: *

CITY PLAN No. xxxxx

Blk 118, Bank Street at Barrett Farm

Meeting Summary Notes July 27, 2021, Online Teams Meeting *Revised Aug 18, 2021*

Attendees:


- Melissa Cote, Tartan
- Yvonne Mitchell, Planning Student, City of Ottawa
- Tracey Scaramozzino (File Lead, Planner, City of Ottawa)

Not in Attendance:

- Mark Young, Urban Design
- Burl Walker,
- John Sevigny
- Mark Richardson
- Matthew Hayley
- Mike Giampa
- James Holland, SNation

Issue of Discussion:

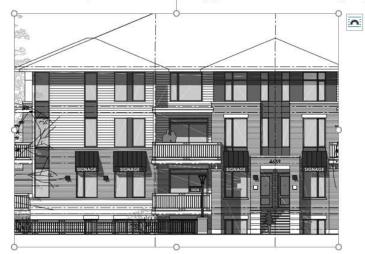
- Vacant site, within Plan of subdivision, Block 118
- PUD, 14 townhouse units, 38 back to back towns;
- Density of 40units/net ha (only half of CDP recommendation of 80 units/ha). The Developer doesn't have a product that provides the recommended density as they are no longer producing the Java product.
- Private laneways of 6m and 8.5m for servicing, utilities, and municipal garbage
- Site plan, Plan of Condo and Private Road Naming Applications are req'd
- The subdivision contemplated 90 units in this area and only 52 are being proposed. Therefore transportation/services should not be an issue

- 1. Official Plan, Current: General Urban Area
- 2. **Official Plan, Draft:** Suburban Transect, no overlays, no designations, Bank St in this area is a minor corridor
 - a. "Recognize this as suburban pattern, but to support the evolution to 15min n'hood"
- 3. Leitrim CDP (from 2005): Mixed Use (intended to be part of core retail along Bank st smaller parcels to provide n'hood uses; larger retail is focused south at existing commercial plaza
 - a. The CDP is not being converted into a secondary plan in the new OP and will remain in effect.

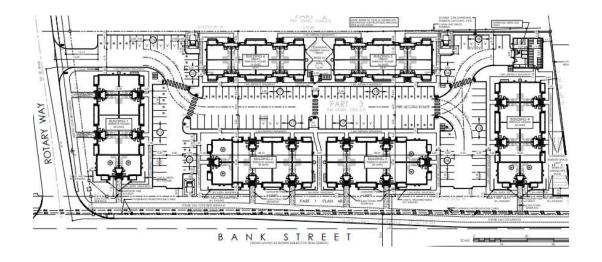
4. Zoning Information: GM12 - General Mixed Use permits residential (apt, PUD, townhouse etc) and non-residential (animal hospital, bank, community centre etc) Subzone 12 permits additional non-residential uses such as bar, cinema, gas bar, theatre, sports arena.

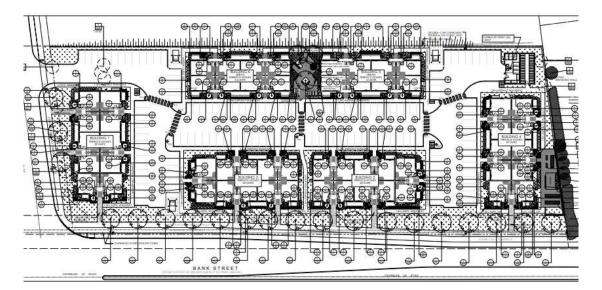
5. Infrastructure/Servicing (John Sevigny):

a. Servicing will be reviewed during Phase 3 of the subdivision, which as of July 26, hasn't been submitted.


6. Initial Planning Comments (Tracey Scaramozzino):

- a. Can density be increased as per the CDP (40u/ha is being provided; 80 u/ha was contemplated in the CDP).
- b. Possibly design open space along Bank St to have sitting area/plantings/soft surfaces, similar to POPS.
- c. Units in general should have higher floor-ceiling hts on ground floor to allow the conversion to commercial units over time.
- d. The 'empty' parcels along Barrett Farm should be nicely designed with trees and perennials and soft surfaces.
- e. The plan of subdivision does not provide guidance for development of this site.
- f. Within Airport Bird Hazard zone
- g. Follow up discussions between Tracey and Melissa:


May 28, 2021, from Melissa: I think there will be a lot of opportunity for trees and other soft landscaping along with a nice sitting area. I will wait to hear what Mark suggests and I'm following up with Tamarack regarding other product type suitable for possible conversion later on.


May 27, 2021 from Tracey: I was also thinking some more about the green spaces on your proposal and am wondering if the green areas fronting Barrett Farm Drive might be nice with a few trees and some perennials - soft surfaces to help with climate change and heat-island effect. The green location on the corner might be nice with a mixture of plantings, sitting areas and soft area - that may or may not be open to the general public like a POPS.....

- h. The almost-approved Glenview project on the east side of Bank St. at Rotary Way has back to back, stacked towns with the ability for future ground floor conversions to commercial (due to higher floor-ceiling hts) and were able to meet the req'd density for 'apts'.
- i. Tracey sent Melissa an example of a design brief, and details from Glenview PUD across the street at Rotary Way that is near approval, as per images below.

Document 7, Elevations sl@wing potential business signage

7. Urban Design Comments (Mark Young):

- 1. A design brief is required. Please see attached terms of reference.
- 2. Early consideration needs to be given to the allowance of street trees, both public and private. The proposed private roadway width of 6.0 m combined with a 4.0 m front yard setback, may present a challenge in the provision of trees. This should be addressed.
- 3. Please provide direction regarding the proposed "Green Space". Is this intended to be public or private?
- 4. Is any visitor parking proposed? Lay-by parking should be considered for visitors within the private development.
- 5. What is the purpose of the 9.0 m block abutting the southern property line? Is this for servicing and a walkway? Please advise.

8. Parks (Burl Walker):

a. Parks issues are being reviewed through the associated subdivision file.

9. Trees (Mark Richardson):

- a. Preserve and protect the healthy trees to create a visual buffer along southern property line.
- b. Tree permit is required prior to any tree removal on site
- c. Submit a TCR with application.

10. Environment (Matthew Hayley): (added August 18, 2021)

- a) They will need to have their TCR address butternut trees (or provide an EIS). Mark R will comment on tree conservation but I would point out that there is an excellent opportunity for tree retention along the southern property line.
- b) Landscaping OP Section 4.9 has some policies addressing energy conservation through design - in partic as ular for this area, I would recommend considering shading along the southern property line adjacent to that lane. This will combat urban heat island and to provide some screening from the adjacent use. Street trees are also important and should be provided.
- c) Integrated Environmental Review (IER) if they are providing a planning rational the IER can be contained within that document as per the TOR for the Planning Rational, otherwise they should have an IER provided.

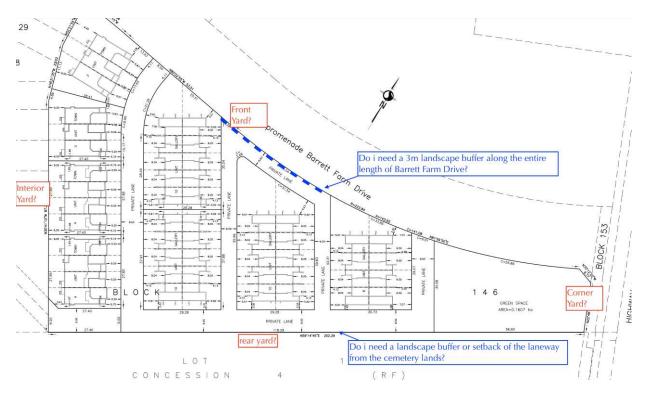
11. Conservation Authority (James Holland, South Nation):

a. All issues are being reviewed through the associated subdivision file.

12. Transportation (Mike Giampa):

a. Comments are outstanding at this time, likely dealt with during the plan of subdivision.

13. Waste Collection


- a. Residential properties will receive City collection on the private streets.
- b. 6m ROW is acceptable for waste collection.

14. General Information

a. Ensure that all plans and studies are prepared as per City guidelines – as available online...

https://ottawa.ca/en/city-hall/planning-and-development/informationdevelopers/development-application-review-process/developmentapplication-submission/guide-preparing-studies-and-plans

Response to August 1, 2021 Questions from Melissa:

1. Front yard? Corner yard? Rear yard? Side yard?

Response: Based on my interpretation of the <u>definitions</u> of each in the zoning bylaw:

- Front yard = Bank Street
- Corner yard = Barrett Farm Drive
- Rear yard = empty residential lot
- Side yard = cemetery lands

2. Do I need a landscape buffer along the entire length of Barret Farm Drive?

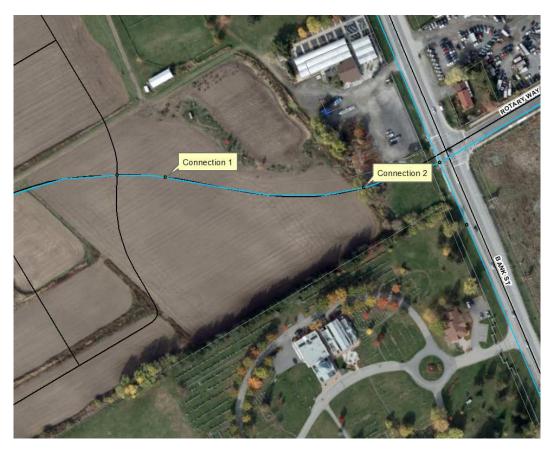
Response: Yes, but this buffer can be <u>passed by</u> driveways or roads. The full landscape buffer requirements under the <u>zoning (GM12)</u> are as follows:

	(i) abutting a street	3 m
(h) Minimum width of landscaped area	(ii) abutting a residential or institutional zone	3 m
	(iii)other cases	No minimum

Based on the above requirement for the GM zone, a 3m landscape buffer would be required around the entire site, as it borders on streets, residential and institutional zones.

- 3. Do I need a landscape buffer or setback of the laneway from the cemetery lands? Response: As per previous question and Table 187 of the applicable <u>zoning (GM12)</u>, a landscape buffer of 3m is required abutting an institutional zone. Regarding setbacks, the interior lot line setback would not apply from the lot line to the laneway but from the proposed townhomes as follows:
 - (d) Minimum interior side yard setbacks
 - (iii) For a residential use building
 - 1. For a building equal or lower than 11m in height = 1.2m
 - 2. For a building higher than 11m in height = 3m

APPENDIX B


Water Distribution Model

Boundary Conditions Findlay Creek Stage 5

Provided Information

Seenaria	Demand		
Scenario	L/min	L/s	
Average Daily Demand	27	0.45	
Maximum Daily Demand	67	1.12	
Peak Hour	147	2.45	
Fire Flow Demand #1	10,000	166.67	

Location

Results – Existing Conditions

Connection 1 – Barrett Farm Dr.

Demand Scenario	Head (m)	Pressure ¹ (psi)
Maximum HGL	154.6	77.1
Peak Hour	144.7	62.9
Max Day plus Fire 1	121.8	30.4

Ground Elevation = 100.4 m

Connection 2 – Barrett Farm Dr.

Demand Scenario	Head (m)	Pressure ¹ (psi)
Maximum HGL	154.6	73.4
Peak Hour	144.6	59.2
Max Day plus Fire 1	125.3	31.7

Ground Elevation = 103.0 m

Results – SUC Zone Reconfiguration

Connection 1 – Barrett Farm Dr.

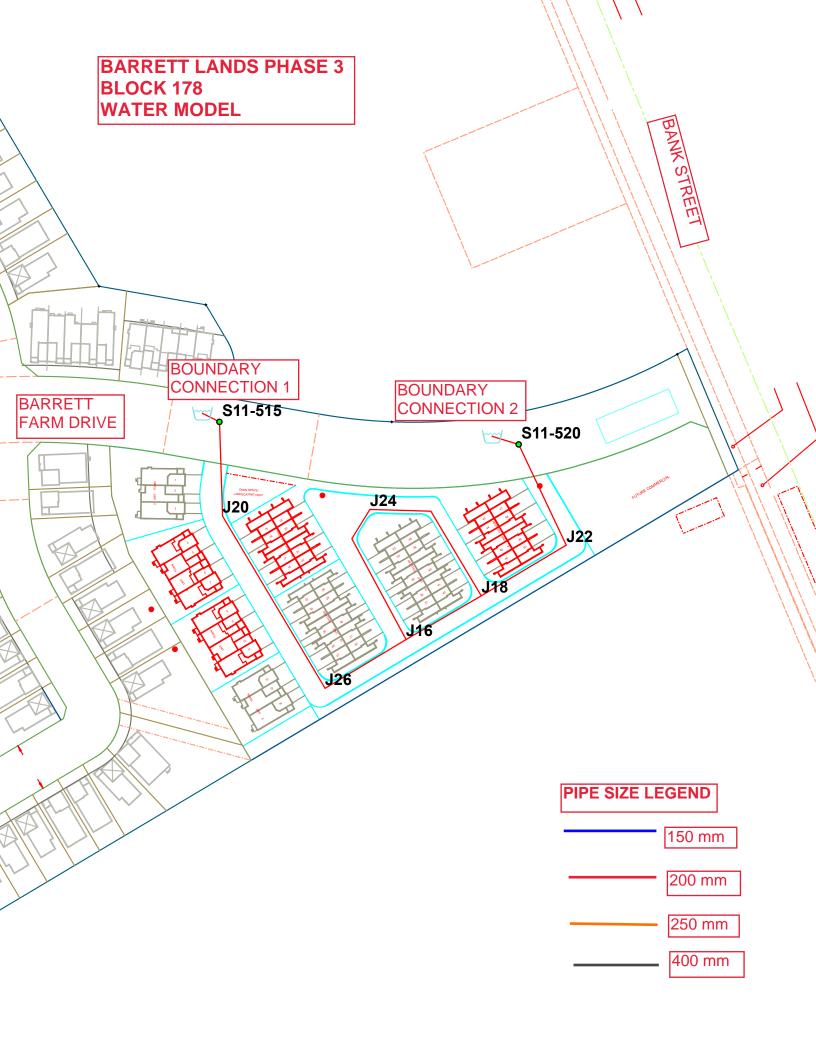
Demand Scenario	Head (m)	Pressure ¹ (psi)	
Maximum HGL	149.1	69.2	
Peak Hour	146.2	65.1	
Max Day plus Fire 1	138.1	53.6	

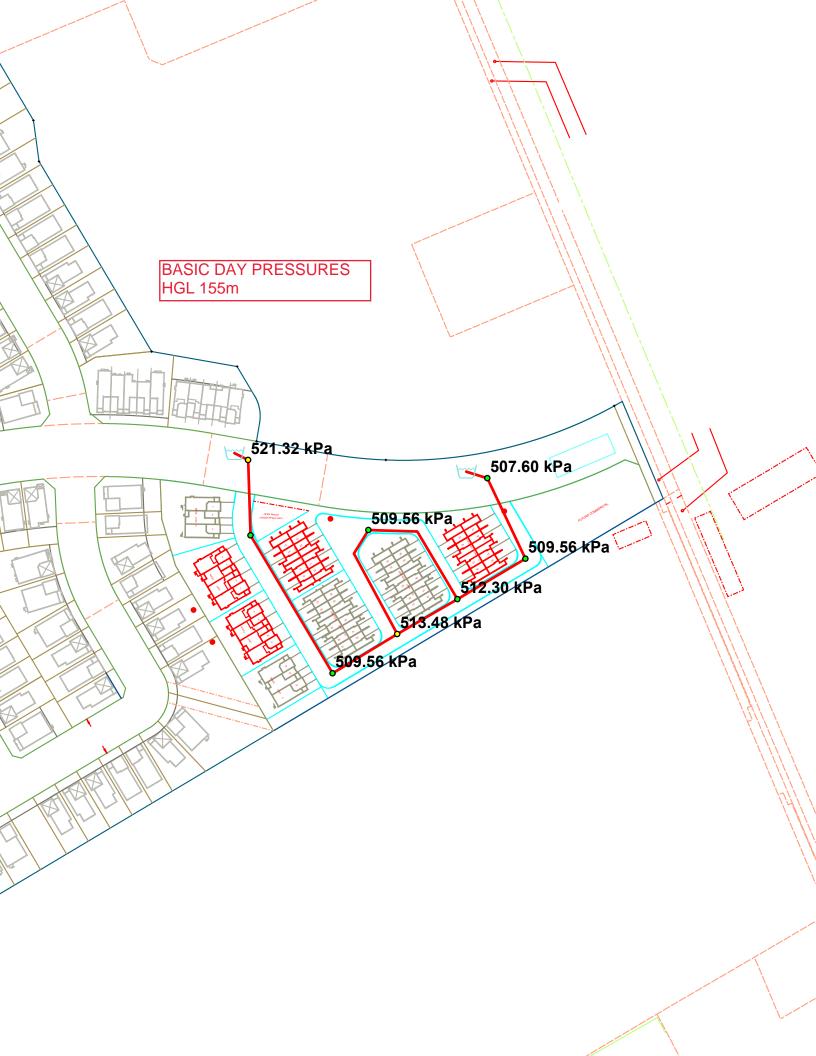
Ground Elevation = 100.4 m

Connection 2 – Barrett Farm Dr.

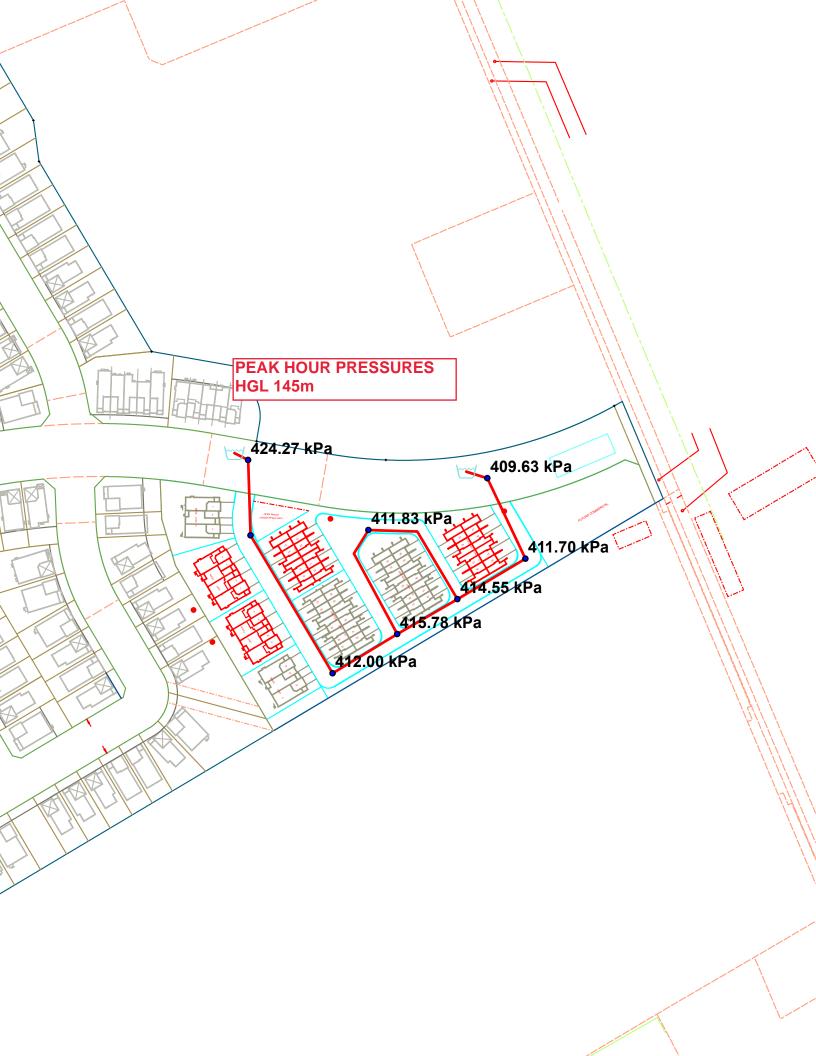
Demand Scenario	Head (m)	Pressure ¹ (psi)
Maximum HGL	149.1	65.6
Peak Hour	146.2	61.4
Max Day plus Fire 1	141.5	54.7

Ground Elevation = 103.0 m

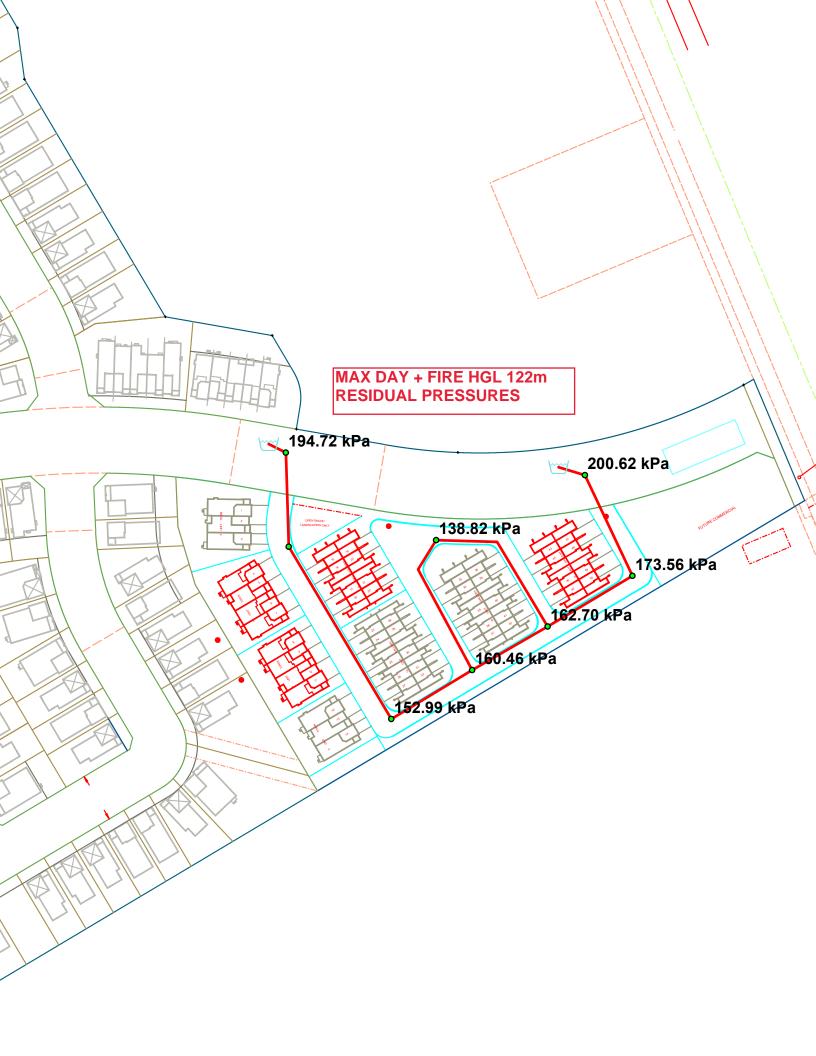

Disclaimer


The boundary condition information is based on current operation of the city water distribution system. The computer model simulation is based on the best information available at the time. The operation of the water distribution system can change on a regular basis, resulting in a variation in boundary conditions. The physical properties of watermains deteriorate over time, as such must be assumed in the absence of actual field test data. The variation in physical watermain properties can therefore alter the results of the computer model simulation. Fire Flow analysis is a reflection of available flow in the watermain; there may be additional restrictions that occur between the watermain and the hydrant that the model cannot take into account.

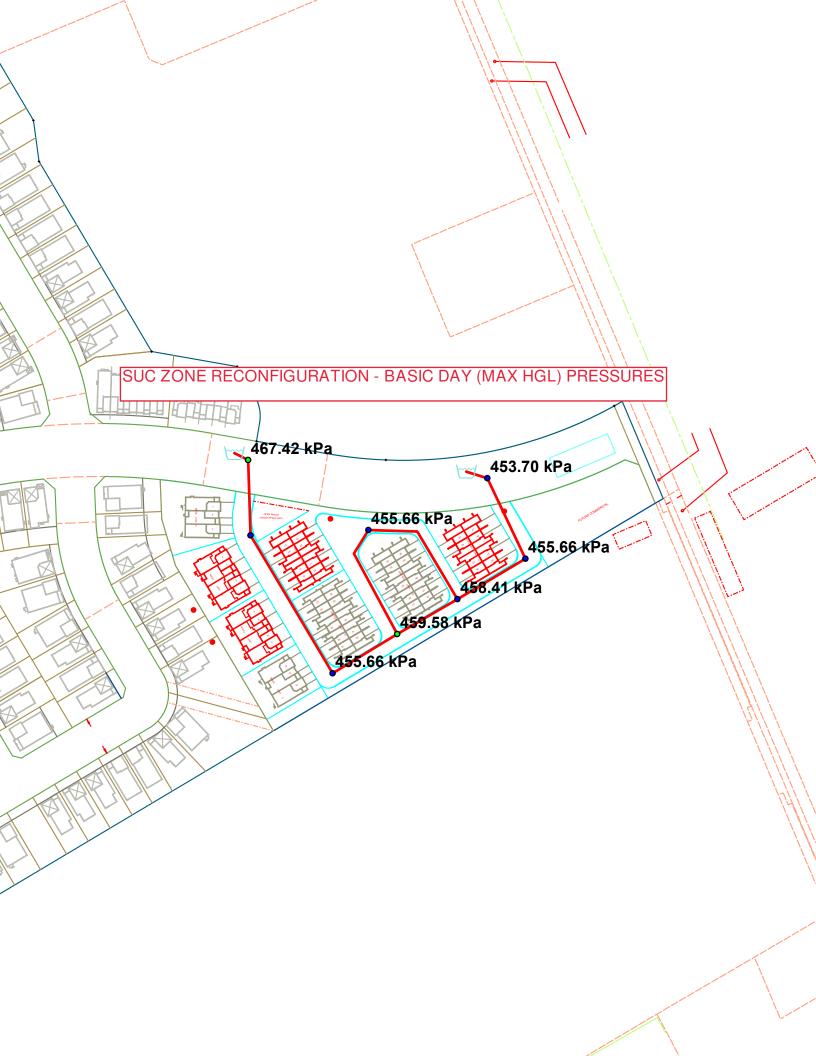
	IBI GROUP	WATE	RMAIN DEMAND CALCULATION SHEET		
IRI	333 PRESTON STREET			FILE:	135925
GROUP	OTTAWA, ON	PROJECT :	BLOCK 146	DATE PRINTED:	09-May-22
	K1S 5N4	LOCATION :	CITY OF OTTAWA	DESIGN:	AC
		DEVELOPER :	TAGGART	PAGE :	1 OF 1
					FIRE


		RESID	ENTIAL	1	NON-RESIDENTIAL			VERAGE D								FIRE	
NODE		UNITS			INDTRL	COMM.	INST.	L	DEMAND (I/S)	D	EMAND (I	/s)	D	EMAND (I	/s)	DEMAND
	SF	SD & TH	OTHER	POP'N	(ha.)	(ha.)	(ha.)	Res.	Non-res.	Total	Res.	Non-res.	Total	Res.	Non-res.	Total	(l/min)
Findlay Creek																	
J20		13		35				0.11	0.00	0.11	0.28	0.00	0.28	0.63	0.00	0.63	
J26		10		27				0.09	0.00	0.09	0.22	0.00	0.22	0.48	0.00	0.48	
J16		8		22				0.07	0.00	0.07	0.18	0.00	0.18	0.39	0.00	0.39	
J18		8		22				0.07	0.00	0.07	0.18	0.00	0.18	0.39	0.00	0.39	
J22		7		19				0.06	0.00	0.06	0.15	0.00	0.15	0.34	0.00	0.34	
J24		4		11				0.04	0.00	0.04	0.09	0.00	0.09	0.19	0.00	0.19	
TOTALS		50		135						0.44			1.10			2.42	

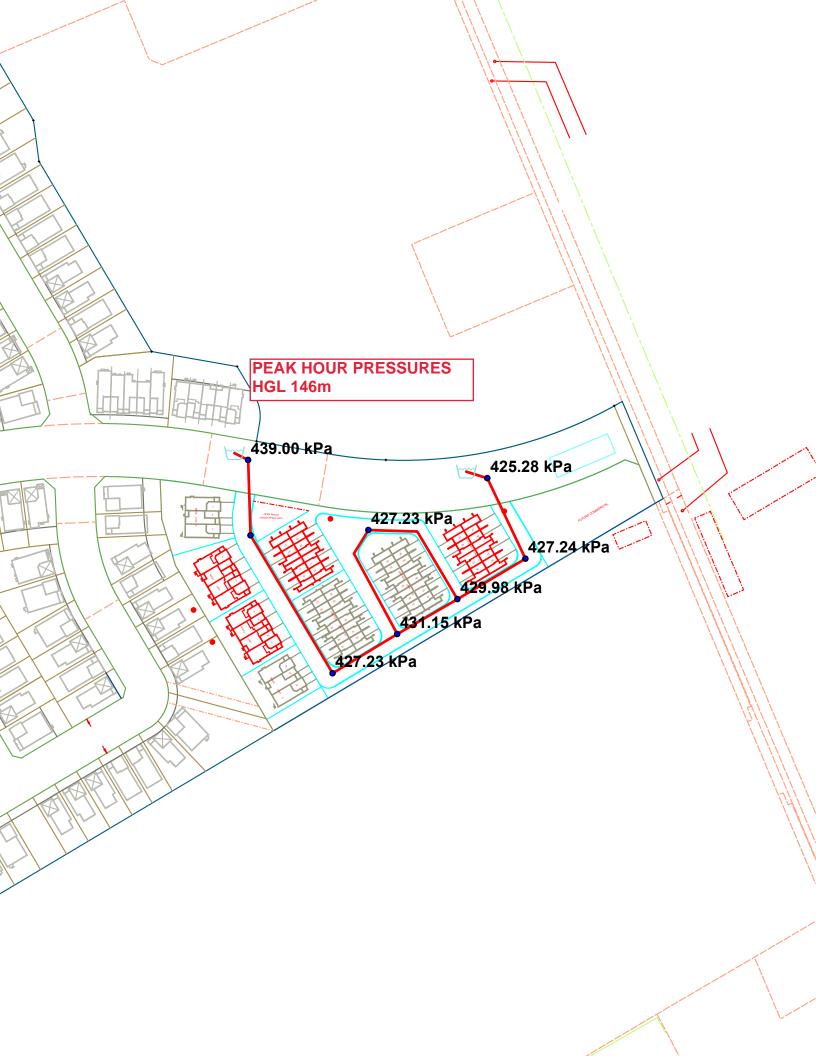
	ASSUMPTIONS			
RESIDENTIAL DENSITIES	AVG. DAILY DEMAND		MAX. HOURLY DEMAND	
- Single Family (SF)	<u>3.4</u> p / p / u - Residential	<u>280</u> I / cap / day	- Residential	<u>1,540</u> I / cap / day
	- ICI	<u>50,000</u> I / ha / day	- ICI	<u>135,000</u> I / ha / day
- Semi Detached (SD) & Townhouse (TH)	<u>2.7</u> p/p/u			
			FIRE FLOW	
- Apartment (APT)	1.8 p/p/u MAX. DAILY DEMAND		- SF, SD, TH & ST	<u>10.000</u> I / min
	- Residential	<u>700</u> I / cap / day		I / min
-Other	<u>66</u> u / p / ha - ICI	<u>75,000</u> I / ha / day	- ICI	<u>13.000</u> I / min


	ID	Demand (L/s)	Elevation (m)	Head (m)	Pressure (kPa)	Water Age (hrs)
1] J16	0.07	102.20	154.60	513.48	0.00
2] J18	0.07	102.32	154.60	512.30	0.00
3] J20	0.11	102.60	154.60	509.56	0.00
4] J22	0.06	102.60	154.60	509.56	0.00
5] J24	0.04	102.60	154.60	509.56	0.00
6] J26	0.09	102.60	154.60	509.56	0.00
7] S11-515	0.00	101.40	154.60	521.32	0.00
8] S11-520	0.00	102.80	154.60	507.60	0.00

	ID	Demand (L/s)	Elevation (m)	Head (m)	Pressure (kPa)	Water Age (hrs)
1] J16	0.39	102.20	144.63	415.78	0.00
2] J18	0.39	102.32	144.62	414.55	0.00
3] J20	0.63	102.60	144.68	412.33	0.00
4] J22	0.40	102.60	144.61	411.70	0.00
5] J24	0.19	102.60	144.63	411.83	0.00
6] J26	0.48	102.60	144.64	412.00	0.00
7] S11-515	0.00	101.40	144.70	424.27	0.00
8	S11-520	0.00	102.80	144.60	409.63	0.00


Peak Hour HGL - Pipe Report

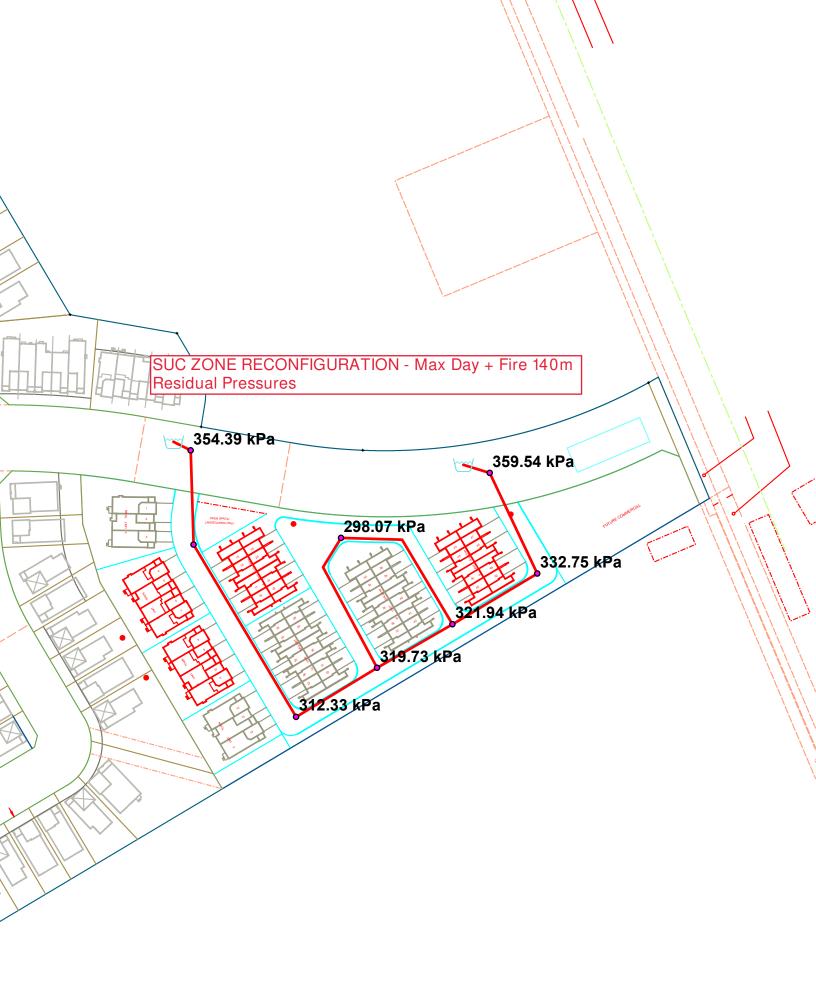
	ID	From Node	To Node	Length (m)	Diameter (mm)	Roughness	Flow (L/s)	Velocity (m/s)	Headloss (m)	HL/1000 (m/k-m)	Status	Flow Reversal Count	Water Age (hrs)
1	P117	RES9000	S11-515	7.01	204.00	110.00	8.03	0.25	0.00	0.54	Open	0	0.00
2	P119	S11-515	J20	34.25	204.00	110.00	8.03	0.25	0.02	0.54	Open	0	0.00
3	P121	J16	J18	31.72	204.00	110.00	4.28	0.13	0.01	0.17	Open	0	0.00
4	P123	J18	J22	35.97	204.00	110.00	5.95	0.18	0.01	0.31	Open	0	0.00
5	P125	J16	J24	54.11	204.00	110.00	2.26	0.07	0.00	0.05	Open	0	0.00
6	P127	J20	J26	72.93	204.00	110.00	7.40	0.23	0.03	0.46	Open	0	0.00
7	P129	J22	S11-520	40.51	204.00	110.00	5.55	0.17	0.01	0.27	Open	0	0.00
8	P131	J24	J18	58.07	204.00	110.00	2.07	0.06	0.00	0.04	Open	0	0.00
9	P133	J26	J16	34.42	204.00	110.00	6.92	0.21	0.01	0.41	Open	0	0.00
10	P135	S11-520	RES9002	10.06	204.00	110.00	5.55	0.17	0.00	0.27	Open	0	0.00


Max Day + Fire HGL - Fireflow Design Report

	ID	Total Demand (L/s)	Hydrant Available Flow (L/s)	Critical Node ID for Design Run	Critical Node Pressure at Available Flow (kPa)	Critical Node Pressure at Fire Demand (kPa)	Critical Pressure for Design Run (kPa)	Hydrant Design Flow (L/s)	Hydrant Pressure at Design Flow (kPa)
1	J16	166.85	202.23	J16	139.96	160.46	139.96	202.23	139.96
2	J18	166.85	207.63	J18	139.96	162.70	139.96	207.63	139.96
3	J20	166.95	230.84	J20	139.96	165.22	139.96	230.84	139.96
4	J22	166.82	240.73	J22	139.96	173.56	139.96	240.73	139.96
5	J24	166.76	165.18	J24	139.96	138.82	139.96	165.18	139.96
6	J26	166.89	189.55	J26	139.96	152.99	139.96	189.55	139.96
7	S11-515	166.67	516.48	J20	141.31	188.41	139.96	516.48	139.96
8	S11-520	166.67	475.36	S11-520	139.96	200.62	139.96	475.37	139.96

SUC Zone Reconfiguration - Basic Day (MAX HGL) Pressure

	ID	Demand (L/s)	Elevation (m)	Head (m)	Pressure (kPa)	Water Age (hrs)
1	J16	0.07	102.20	149.10	459.58	0.00
2	J18	0.07	102.32	149.10	458.41	0.00
3	J20	0.11	102.60	149.10	455.66	0.00
4	J22	0.06	102.60	149.10	455.66	0.00
5	J24	0.04	102.60	149.10	455.66	0.00
6	J26	0.09	102.60	149.10	455.66	0.00
7	S11-515	0.00	101.40	149.10	467.42	0.00
8	S11-520	0.00	102.80	149.10	453.70	0.00



SUC Zone Reconfiguration - Peak Hour Pressures

	ID	Demand (L/s)	Elevation (m)	Head (m)	Pressure (kPa)	Water Age (hrs)
1	J16	0.39	102.20	146.20	431.15	0.00
2	J18	0.39	102.32	146.20	429.98	0.00
3	J20	0.63	102.60	146.20	427.24	0.00
4	J22	0.40	102.60	146.20	427.24	0.00
5	J24	0.19	102.60	146.20	427.23	0.00
6	J26	0.48	102.60	146.20	427.23	0.00
7	S11-515	0.00	101.40	146.20	439.00	0.00
8	S11-520	0.00	102.80	146.20	425.28	0.00

SUC ZONE RECONFIGURATION - PEAK HOUR PRESSURES - Pipe Report

	ID	From Node	To Node	Length (m)	Diameter (mm)	Roughness	Flow (L/s)	Velocity (m/s)	Headloss (m)	HL/1000 (m/k-m)	Status	Flow Reversal Count	Water Age (hrs)
1 [P117	RES9000	S11-515	7.01	204.00	110.00	1.27	0.04	0.00	0.02	Open	0	0.00
2 [P119	S11-515	J20	34.25	204.00	110.00	1.27	0.04	0.00	0.02	Open	0	0.00
3 [P121	J16	J18	31.72	204.00	110.00	-0.24	0.01	0.00	0.00	Open	0	0.00
4 [P123	J18	J22	35.97	204.00	110.00	-0.81	0.02	0.00	0.01	Open	0	0.00
5 [P125	J16	J24	54.11	204.00	110.00	0.01	0.00	0.00	0.00	Open	0	0.00
6 [P127	J20	J26	72.93	204.00	110.00	0.64	0.02	0.00	0.01	Open	0	0.00
7 [P129	J22	S11-520	40.51	204.00	110.00	-1.21	0.04	0.00	0.02	Open	0	0.00
8 [P131	J24	J18	58.07	204.00	110.00	-0.18	0.01	0.00	0.00	Open	0	0.00
9 [P133	J26	J16	34.42	204.00	110.00	0.16	0.01	0.00	0.00	Open	0	0.00
10 [P135	S11-520	RES9002	10.06	204.00	110.00	-1.21	0.04	0.00	0.02	Open	0	0.00

SUC ZONE RECONFIGURATION - Max Day + Fire HGL- Fireflow Design Report

	ID	Total Demand (L/s)	Hydrant Available Flow (L/s)	Critical Node ID for Design Run	Critical Node Pressure at Available Flow (kPa)	Critical Node Pressure at Fire Demand (kPa)	Critical Pressure for Design Run (kPa)	Hydrant Design Flow (L/s)	Hydrant Pressure at Design Flow (kPa)
1	J16	166.85	384.76	J16	139.96	319.73	139.96	384.76	139.96
2	J18	166.85	395.03	J18	139.96	321.94	139.96	395.03	139.96
3	J20	166.95	474.31	J20	139.96	324.74	139.96	474.31	139.96
4	J22	166.82	456.61	J22	139.96	332.75	139.96	456.61	139.96
5	J24	166.76	321.21	J24	139.96	298.07	139.96	321.21	139.96
6	J26	166.89	374.49	J26	139.96	312.33	139.96	374.49	139.96
7	S11-515	166.67	1,016.41	J20	163.59	347.95	139.96	1,016.41	139.97
8	S11-520	166.67	881.04	J22	176.40	359.11	139.96	881.04	139.97

Barrett Block 146 - 10 unit Gallery

Building Floor Area										
		width depth stories Area	18.0 m 13.0 m 3 681.0 m ²							
F = 220C√A										
C A F use	1.5 681 8,612 8,500	m² I/min	C =	1.5 wood frame1.0 ordinary0.8 non-combustile0.6 fire-resistive						
<u>Occupancy Adj</u>	ustment			-25% non-combustile						
Use		-15%		-15% limited combustile 0% combustile +15% free burning						
Adjustment			l/min	+25% rapid burning						
Fire flow		7,225	l/min							
Sprinkler Adjus	tment									
Use		0%	,							
Adjustment		C	l/min							

Exposure Adjustment

		A 11	. =		_
Building	Separation	Adjac	ent Expose		Exposure
Face	(m)	Length	Stories	L*H Factor	Charge *
north	3.3	18.0	3	54	18%
east	18.0	19.5	3	59	13%
south	2 hour rated	firewall			10%
west	19.0	16.0	3	48	13%
Total					54%
Adjustment			3,902	l/min	
Total adjust	ments		3,902	l/min	
Fire flow			11,127	l/min	
Use			11,500	l/min	
			191.7	l/s	

Barrett Block 146 - 10 unit Gallery

Building Floor	Area				
		width depth		8.0 m 9.3 m	
		stories		3	
		Area	1,015	5.3 m ²	
F = 220C√A					
С	1.5			C =	1.5 wood frame
А	1,015	m ²			1.0 ordinary
					0.8 non-combustile
F	10,515				0.6 fire-resistive
use	10,500	l/min			
Occupancy A	<u>djustment</u>				-25% non-combustile
					-15% limited combustile
Use		-15%	, D		0% combustile
					+15% free burning
Adjustment			5 l/min		+25% rapid burning
Fire flow		8,925	l/min		
Sprinkler Adju	<u>stment</u>				
Use		0%	Ď		
Adjustment		C) l/min		

Exposure Adjustment

Building	ding Separation Adjacent Exposed Wall											
J. J	I ' P				Exposure							
Face	(m)	Length	Stories	L*H Factor	Charge *							
north	2 hour rated	firewall			0%							
east	18.0	19.0	3	57	13%							
south	0.0	0.0	0	0	10%							
west	19.0	16.0	3	48	13%							
Total					36%							
Adjustment			3,213	l/min								
Total adjust	ments		3,213	l/min								
Fire flow			12,138	l/min								
Use			12,000	l/min								
			200.0	l/s								

Barrett Block 146 - 8 unit Gallery

Building Floor	<u>Area</u>			
		width depth stories Area	18.0 m 13.0 m 3 702.0 m	2
F = 220C√A				
C A F use	1.5 683 8,624 8,500	m² I/min	C =	1.5 wood frame1.0 ordinary0.8 non-combustile0.6 fire-resistive
Occupancy Ad	<u>iustment</u>			-25% non-combustile
Use		-15%		-15% limited combustile 0% combustile +15% free burning
Adjustment		-1275	l/min	+25% rapid burning
Fire flow		7,225	l/min	
Sprinkler Adjus	tment			
Use		0%		
Adjustment		0	l/min	

Exposure Adjustment

Building	Separation	Adjac	ent Expose	d Wall	Exposure
Face	(m)	Length	Stories	L*H Factor	Charge *
		-		-	
north	2 hour rated	firewall			10%
east	0.0	0.0	0	0	0%
south	3.3	18.0	3	54	18%
west	19.0	20.0	3	60	13%
Total					41%
Adjustment			2,962	l/min	
Total adjust	ments		2,962	l/min	
Fire flow			10,187	l/min	
Use			10,500	l/min	
			175.0	l/s	

Barrett Block 146 - 4 unit Townhome

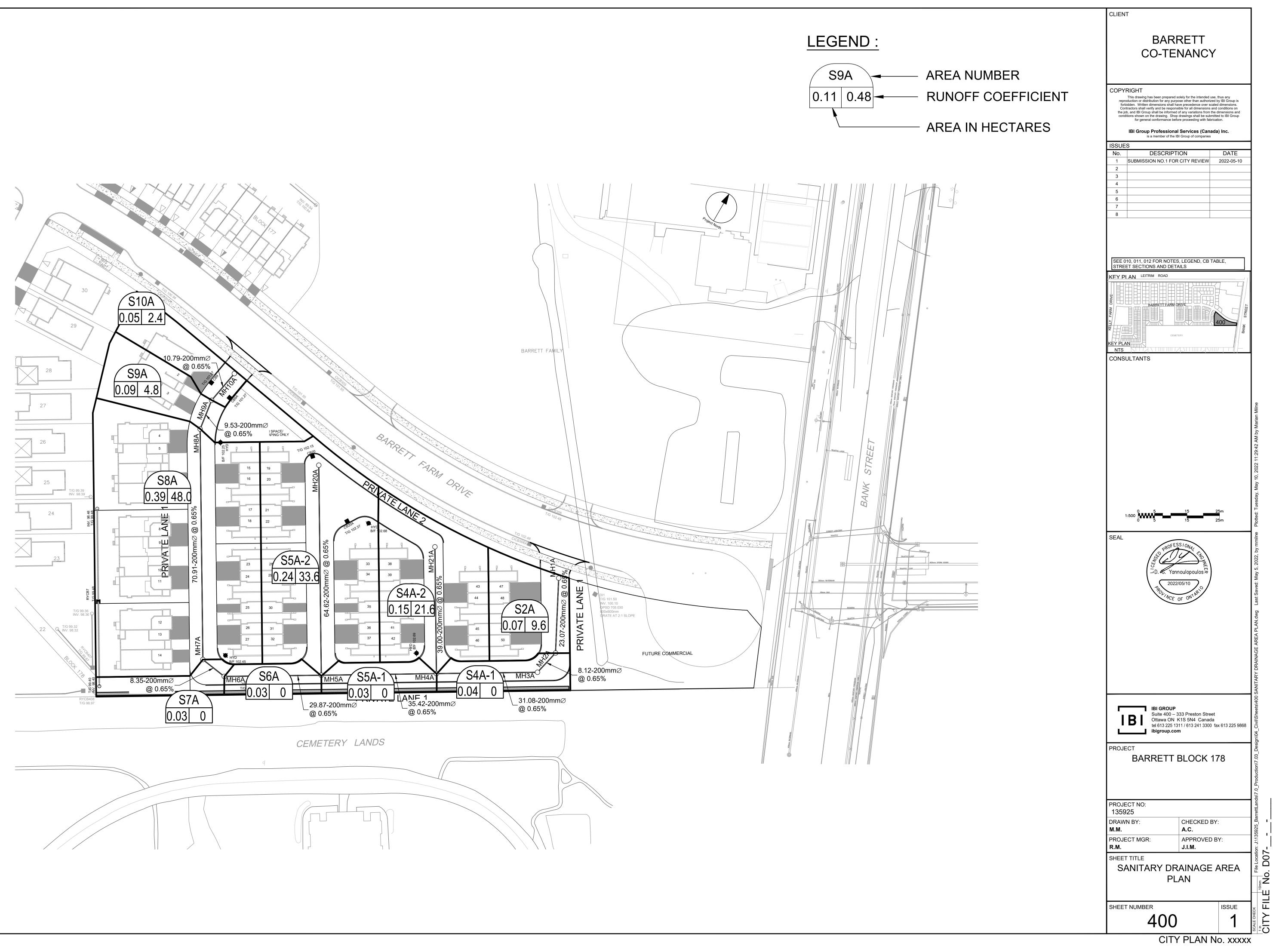
Building Floor A	<u>Area</u>			
	de	idth epth ories rea	15.5 m 12.0 m 3 558.0 m ²	
F = 220C√A				
C A F use	1.5 558 m 7,795 l/r 8,000 l/r	nin	C =	1.5 wood frame1.0 ordinary0.8 non-combustile0.6 fire-resistive
Occupancy Adj	ustment			-25% non-combustile
Use		-15%		-15% limited combustile 0% combustile +15% free burning
Adjustment		-1200 l/ı	min	+25% rapid burning
Fire flow		6,800 l/ı	min	
Sprinkler Adjus	<u>tment</u>			
Use		0%		
Adjustment		0 1/1	min	

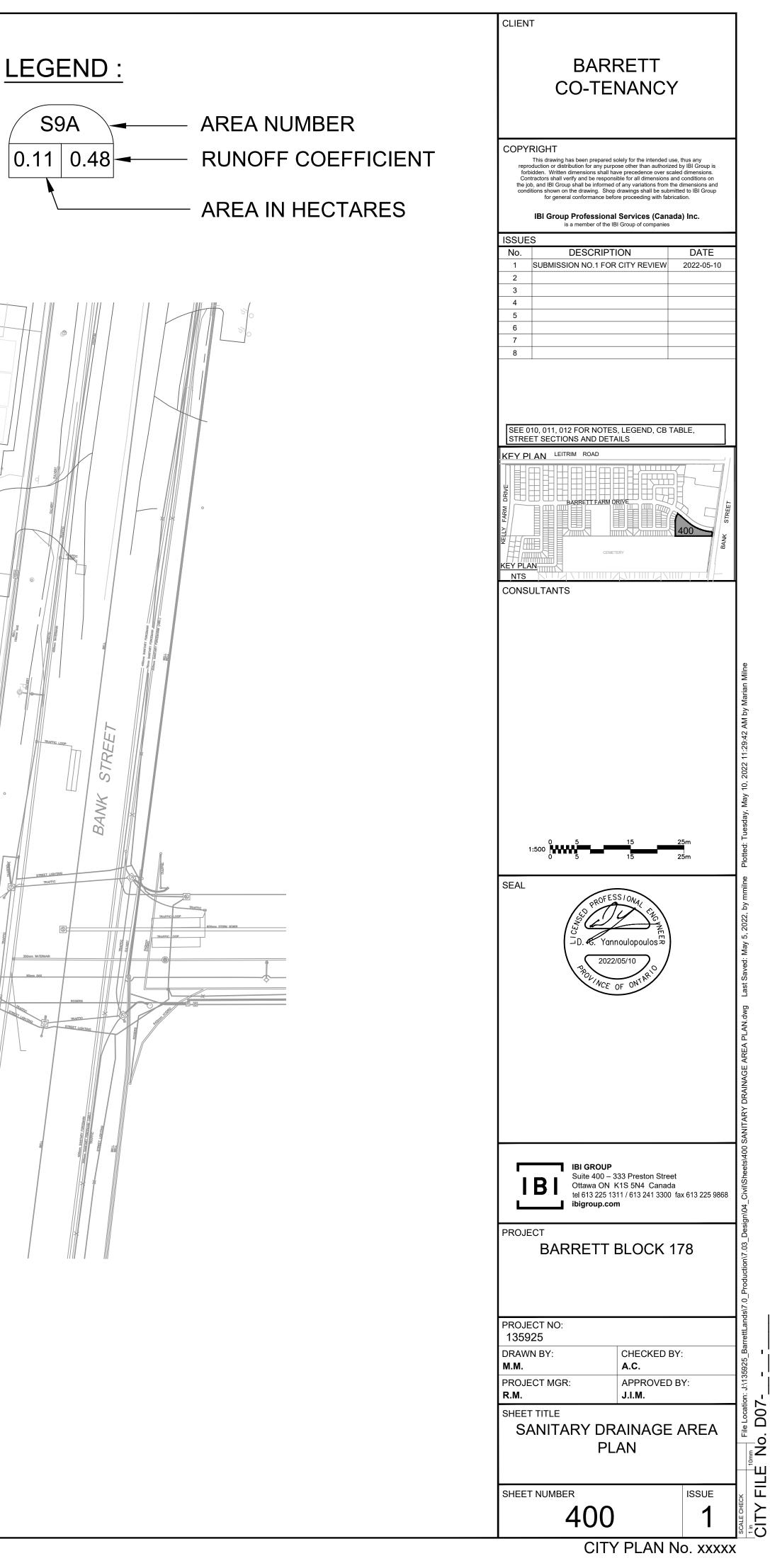
Exposure Adjustment

Building	Separation	Adjace	ent Expose	d Wall	Exposure
Face	(m)	Length	Stories	L*H Factor	Charge *
north	3.3	15.5	3	47	18%
east	19.0	24.5	3	74	14%
south*	2 hour rated	firewall			10%
west	14.5	24.5	3	74	14%
Total					56%
Adjustment			3,808	l/min	
Total adjust	ments		3,808	l/min	
Fire flow			10,608	l/min	
Use			10,500	l/min	
			175.0	l/s	

APPENDIX C

Sanitary Sewer Design Sheet 135925-400 - Sanitary Drainage Plan Barrett Lands Phase 3 Sanitary Design Sheet Barrett Lands Phase 3 Sanitary Drainage Area Plan

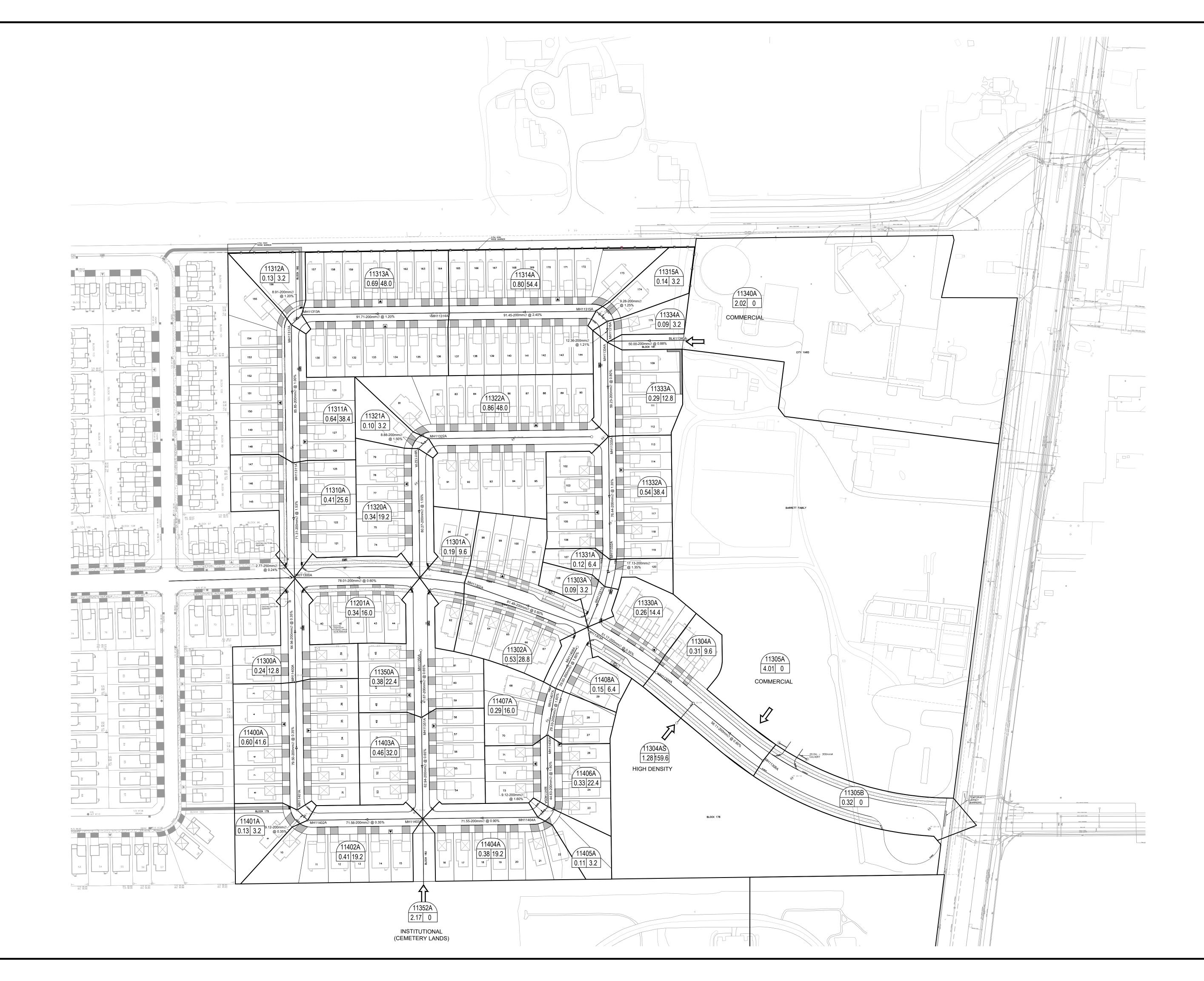



IBI GROUP 400-333 Preston Street Ottawa, Ontario K1S SN4 Canada tel 613 225 1311 fax 613 225 9868 ibigroup.com

									RESID	ENTIAL					1		ICI A	REAS			INFILT	RATION ALLO	OWANCE		TOTAL	1		PROPO	SED SEWE	R DESIGN		
	LOC	CATION			AREA		UNIT T	YPES		AREA	POPUI	LATION	RES	PEAK			AREA (Ha)		ICI	PEAK	AR	EA (Ha)	FLOW	FIXED FLOW (L/s)	FLOW	CAPACITY	LENGTH	DIA	SLOPE	VELOCITY	AVA	ILABLE
		FROM	T	D v	w/ Units	SF		тн	APT	w/o Units			PEAK	FLOW	INSTITU	UTIONAL	COMMERCIAL	INDUSTRIAL	PEAK	FLOW										(full)	CAP	PACITY
STREET	AREA II	мн	м	н	(Ha)	SF	SD	ін	APT	(Ha)	IND	CUM	FACTOR	(L/s)	IND	CUM	IND CUM	IND CUM	FACTOR	R (L/s)	IND	CUM	(L/s)	IND CUM	(L/s)	(L/s)	(m)	(mm)	(%)	(m/s)	L/s	(%)
Private Lane No.1	S2A	MH14	мн	24	0.07			4			9.6	9.6	3.73	0.12		0.00	0.00	0.00	1.00	0.00	0.07	0.07	0.02	0.00	0.14	27.59	23.07	200	0.65	0.851	27.45	99.50%
Private Lane No.1	02/1	MH2/			0.07			-		-	0.0	9.6	3.73	0.12		0.00	0.00	0.00	1.00	0.00	0.00	0.07	0.02	0.00	0.14	27.59	8.12	200	0.65	0.851	27.45	99.50%
Private Lane No.1		MH3/		••••						0.04	2.4	12.0	3.73	0.12		0.00	0.00	0.00	1.00	0.00	0.00	0.11	0.02	0.00	0.14	27.59	31.08	200	0.65	0.851	27.41	99.34%
Private Lane No. 2	S4A-2			4A	0.15			9			21.6	21.6	3.70	0.26		0.00	0.00	0.00	1.00	0.00	0.15	0.15	0.05	0.00	0.31	27.59	39.00	200	0.65	0.851	27.28	98.88%
Private Lane No. 2	S5A-2	MH20	A MH	5A	0.24			14			33.6	33.6	3.68	0.40		0.00	0.00	0.00	1.00	0.00	0.24	0.24	0.08	0.00	0.48	27.59	64.92	200	0.65	0.851	27.11	98.26%
Private Lane No.1	S5A-1	MH4A	МН	5A						0.03	1.8	35.4	3.67	0.42		0.00	0.00	0.00	1.00	0.00	0.03	0.29	0.10	0.00	0.52	27.59	35.42	200	0.65	0.851	27.07	98.13%
Private Lane No.1	S6A	MH5/	MH	6A						0.03	1.8	70.8	3.63	0.83		0.00	0.00	0.00	1.00	0.00	0.03	0.56	0.18	0.00	1.02	27.59	29.87	200	0.65	0.851	26.57	96.31%
Private Lane No.1	S7A	MH6A	MH	7A	0.03						0.0	70.8	3.63	0.83		0.00	0.00	0.00	1.00	0.00	0.03	0.59	0.19	0.00	1.03	27.59	8.35	200	0.65	0.851	26.56	96.28%
Private Lane No.1	S8A	MH7A			0.39			20			48.0	118.8	3.58	1.38		0.00	0.00	0.00	1.00	0.00	0.39	0.98	0.32	0.00	1.70	27.59	70.91	200	0.65	0.851	25.89	93.83%
Private Lane No.1	S9A	MH8A	MH	9A	0.09			2			4.8	123.6	3.57	1.43		0.00	0.00	0.00	1.00	0.00	0.09	1.07	0.35	0.00	1.78	27.59	9.53	200	0.65	0.851	25.80	93.53%
Private Lane No.1	S10A	MH94	MH'	0A	0.05			1			2.4	126.0	3.57	1.46		0.00	0.00	0.00	1.00	0.00	0.05	1.12	0.37	0.00	1.83	27.59	10.79	200	0.65	0.851	25.76	93.37%
Block 178	11418A	MH10	A MH11	305A							0.0	126.0	3.57	1.46		0.00	0.00	0.00	1.00	0.00	0.00	1.12	0.37	0.00	1.83	20.24	16.00	200	0.35	0.624	18.41	90.97%
Design Parameters:				No	otes:								Designed		AC		No.					R	Revision							Date		
				1.	Mannings o	coefficient	(n) =		0.013								1.					Submission N	No. 1 for City	Review						2022-05-09		
Residential		ICI Are	as		Demand (p		()		L/day	200	L/day							•														
SF 3.2 p/p/u TH/SD 2.4 p/p/u		28,000 L/Ha/day			Infiltration a	I Peaking F			L/s/Ha	2			Checked:		RM																	
APT 1.9 p/p/u		28,000 L/Ha/day		01			ormula = 1+(1		100).0.5))0	.0			D		405005 4	100																
Other 60 p/p/Ha		35,000 L/Ha/day 17000 L/Ha/day	MOE		Commercia	I and Instit	0.8 Correction utional Peak 0%, otherwise	Factors ba	sed on tota	al area,			Dwg. Refe	rence:	135925 - 4	100	File Reference: 135925.00						Date: 2022-05-09						Sheet No: 1 of 1			

SANITARY SEWER DESIGN SHEET

Barrett Lands Block 146 CITY OF OTTAWA Barrett Co-Tenancy



IBI GROUP 400-333 Preston Street Ottawa, Ontario K1S SN4 Canada tel 613 225 1311 fax 613 225 9868 ibigroup.com

h							RESID	ENTIAL					T		ICI AR	EAS			INFILT	RATION ALL	OWANCE		TOTAL	1		PROPO	SED SEWER			
	LOCATIO	N		AREA		UNIT TYP		AREA	POPU	LATION	RES	PEAK	1	AREA	A (Ha)		ICI	PEAK		A (Ha)	FLOW	FIXED FLOW (L/s)	FLOW	CAPACITY	LENGTH	DIA	SLOPE		AVAILA	BLE
STREET	AREA ID	FROM MH	ТО МН	w/ Units (Ha)	SF S	SD	ТН АРТ	w/o Units (Ha)	IND	CUM	PEAK FACTOR	FLOW (L/s)	INSTITUTIONAL IND CUM	COMME		INDUSTRIAL IND CUM	PEAK FACTOR	FLOW (L/s)	IND	CUM	(L/s)	IND CUM	(L/s)	(L/s)	(m)	(mm)	(%)	(full) (m/s)	CAPAC L/s	(%)
	440050	NULL 40000	100054	0.00							0.00	0.00	0.00	1.01	1.01	0.00	4.50	1.05	4.00	4.00	4.40	0.00	0.00	00.50	50.44	000	0.00	0.017	00.40	
Barrett Farm Drive	11305B	MH11306A	MH11305A	0.32					0.0	0.0	3.80	0.00	0.00	4.01	4.01	0.00	1.50	1.95	4.33	4.33	1.43	0.00	3.38	26.50	56.11	200	0.60	0.817	23.13	87.25%
Block 178	11418A	BLK11305AS	MH11305A	1.28			84		159.6	159.6	3.55	1.83	0.00		0.00	0.00	1.00	0.00	1.28	1.28	0.42	0.00	2.26	20.24	16.00	200	0.35	0.624	17.99	88.85%
Barrett Farm Drive	11304A	MH11305A	MH11304A	0.31			4		9.6	169.2	3.54	1.94	0.00		4.01	0.00	1.50	1.95	0.31	5.92	1.95	0.00	5.84	20.24	29.81	200	0.35	0.624		71.13%
Barrett Farm Drive	11330A	MH11304A	MH11303A	0.26			6		14.4	183.6	3.53	2.10	0.00		4.01	0.00	1.50	1.95	0.26	6.18	2.04	0.00	6.09	20.24	51.17	200	0.35	0.624	14.15	69.92%
Bouvardia Crescent	11334A	MH11316A	MH11334A	0.09	1				3.2	3.2	3.76	0.04	0.00		0.00	0.00	1.00	0.00	0.09	0.09	0.03	0.00	0.07	37.64	12.36	200	1.21	1.161		99.82%
Block 120 (City Yard) Bouvardia Crescent	COM2 11333A	BLK11120A MH11334A	MH11334A MH11333A	0.00	4				0.0	0.0	3.80 3.71	0.00	0.00	2.02	2.02 0.00	0.00	1.50	0.98	2.02 0.29	2.02	0.67	0.00	1.65 0.32	32.10 30.60	50.00 59.23	200 200	0.88	0.990	30.45 30.29	94.86% 98.96%
Bouvardia Crescent	11332A	MH11333A	MH11332A	0.54	12				38.4	54.4		0.64	0.00		2.02	0.00	1.00	0.65	0.23	2.65	0.13	0.00	2.17	39.76	76.44	200	1.35	1.226	37.58	94.54%
Bouvardia Crescent	11331A	MH11332A	MH11331A	0.12	2				6.4	60.8	3.64	0.72	0.00		2.02	0.00	1.00	0.65	0.12	2.77	0.91	0.00	2.29	39.76	17.13	200	1.35	1.226		94.25%
Bouvardia Crescent	11303A	MH11331A	MH11303A	0.09	1				3.2	64.0	3.63	0.75	0.00		2.02	0.00	1.50	0.98	0.09	2.86	0.94	0.00	2.68	54.96	27.28	200	2.58	1.695	52.28	95.12%
Delphinium Crescent	11408A	MH11408A	MH11407A	0.15	2				6.4	6.4	6.4 3.75 0.08 0.00 0.00 1.00 0.00 0.15 0.15 0.05 0.00 0.13 43.28 29.0							29.00	200	1.60	1.335		99.71%							
Delphinium Crescent	11407A	MH11407A	MH11406A	0.29	5			_	16.0	22.4	3.70	0.27	0.00		0.00	0.00	1.00	0.00	0.29	0.44	0.15	0.00	0.41	43.28	29.33	200	1.60	1.335		99.04%
Delphinium Crescent Delphinium Crescent	11406A 11405A	MH11406A MH11405A	MH11405A MH11404A	0.33	1				22.4 3.2	44.8 48.0	3.66 3.65	0.53 0.57	0.00		0.00	0.00	1.00 1.00	0.00	0.33 0.11	0.77 0.88	0.25 0.29	0.00	0.79 0.86	43.28 43.28	44.63 9.12	200 200	1.60 1.60	1.335 1.335		98.19% 98.02%
Delphinium Crescent	11404A	MH11404A	MH11403A	0.38	6				19.2	67.2	3.63	0.79	0.00		0.00	0.00	1.00	0.00	0.38	1.26	0.42	0.00	1.21	32.46	71.55	200	0.90	1.001	31.25	96.28%
					7																									
Nemesia Way Nemesia Way	11350A 11403A	MH11351A MH11350A	MH11350A MH11403A	0.38	7 10				22.4 32.0	22.4 54.4	3.70 3.65	0.27 0.64	0.00	+	0.00	0.00	1.00	0.00	0.38	0.38	0.13	0.00	0.39	27.59 27.59	48.50 62.94	200 200	0.65	0.851 0.851		98.57% 96.67%
					10				02.0	04.4	0.00		0.00			0.00	1.00	0.00	0.40	0.04		0.00	0.02	21.00	02.04	200	0.00			
Block 124 (Cemetery)	CEM, 11352A	BLK11352A	MH11403A	0.00					0.0	0.0	3.80	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	27.59	42.00	200	0.65	0.851	27.59	100.00%
																												+	i – – – – – –	
Delphinium Crescent	11402A	MH11403A	MH11402A	0.41	6				19.2	140.8	3.56	1.62	0.00		0.00	0.00	1.00	0.00	0.41	2.51	0.83	0.00	2.45	20.24	71.56	200	0.35	0.624		87.88%
Delphinium Crescent Delphinium Crescent	11401A 11400A	MH11402A MH11401A	MH11401A MH11400A	0.13	1				3.2 41.6	144.0 185.6	3.56 3.53	1.66	0.00		0.00	0.00	1.00	0.00	0.13	2.64	0.87	0.00	2.53	20.24	9.12 79.50	200	0.35	0.624		87.50% 84.24%
Delphinium Crescent	11300A	MH11401A MH11400A	MH11400A MH11300A	0.80	4				12.8	198.4		2.12	0.00		0.00	0.00	1.00		0.60	3.48	1.15	0.00	3.19	20.24	64.94	200	0.35	0.624		83.15%
D	440004			0.50					00.0	070.4	0.47	0.44	0.00		0.00	0.00	4.50	0.00	0.50	40.04	0.44	0.00	0.40	00.50	04.40	000	0.00	0.017	17.05	04.00%
Barrett Farm Drive Barrett Farm Drive	11302A 11301A	MH11303A MH11302A	MH11302A MH11301A	0.53	9				28.8 9.6	276.4 286.0	3.47 3.47	3.11 3.22	0.00		6.03 6.03	0.00	1.50 1.50	2.93 2.93	0.53	10.34	3.41 3.47	0.00	9.46 9.62	26.50 32.46	81.49 27.85	200	0.60	0.817	17.05 22.84	64.32% 70.36%
Darrear ann Drive		MITT1002/1	WITTIGOTA	0.15	5				0.0	200.0	0.41	0.22	0.00		0.00	0.00	1.00	2.00	0.15	10.00	0.47	0.00	5.02	02.40	21.00	200	0.00	1.001	22.04	10.00%
Solidago Mews	11322A	MH11323A	MH11322A	0.86	15				48.0	48.0	3.65	0.57	0.00		0.00	0.00	1.00	0.00	0.86	0.86	0.28	0.00	0.85	49.58	101.40	200	2.10	1.529		98.28%
Solidago Mews Solidago Mews	11321A 11320A	MH11322A MH11321A	MH11321A MH11301A	0.10	6				3.2 19.2	51.2 70.4	3.65 3.63	0.61 0.83	0.00		0.00	0.00	1.00	0.00	0.10 0.34	0.96	0.32	0.00	0.92	41.91 42.60	8.88 80.27	200	1.50 1.55	1.292		97.80% 97.05%
Barrett Farm Drive	11201A	MH11301A	MH11300A	0.34	F				16.0	372.4	3.43	4.14	0.00		6.03	0.00	1.50	2.93	0.34	12.17	4.02	0.00	11.09	26.50	78.01	200	0.60	0.817	15.42	58.17%
Barrett Farm Drive					5				10.0														11.09	20.30						
Bouvardia Crescent	11315A 11314A	MH11316A	MH11315A MH11314A	0.14	1 17				3.2	3.2	3.76	0.04	0.00		0.00	0.00	1.00	0.00	0.14	0.14	0.05	0.00	0.09	38.26	9.28	200	1.25	1.180		99.78%
Bouvardia Crescent Bouvardia Crescent	11314A 11313A	MH11315A MH11314A	MH11314A MH11313A	0.80	17			-	54.4 48.0	57.6 105.6	3.64 3.59	0.68	0.00		0.00	0.00	1.00	0.00	0.80	0.94	0.31	0.00	0.99	53.01 37.48	91.45 91.71	200	2.40	1.635 1.156		98.13% 95.29%
Bouvardia Crescent	11312A	MH11313A	MH11312A	0.13	1				3.2	108.8	3.59	1.26	0.00		0.00	0.00	1.00	0.00	0.13	1.76	0.58	0.00	1.85	37.48	8.91	200	1.20	1.156	35.64	95.08%
Bouvardia Crescent	11311A	MH11312A	MH11311A	0.64	12				38.4	147.2	3.55	1.70	0.00		0.00	0.00	1.00	0.00	0.64	2.40	0.79	0.00	2.49	34.22	85.85	200	1.00	1.055		92.73%
Bouvardia Crescent	11310A	MH11311A	MH11300A	0.41	8				25.6	172.8	3.54	1.98	0.00		0.00	0.00	1.00	0.00	0.41	2.81	0.93	0.00	2.91	42.32	71.31	200	1.53	1.305	39.42	93.13%
Barrett Farm Drive	11205A	MH11300A	MH11204A	0.51	5		8		35.2	778.8	3.29	8.31	0.00		6.03	0.00	1.50	2.93	0.51	18.97	6.26	0.00	17.50	30.39	2.77	250	0.24	0.600	12.89	42.41%
								-																				<u> </u>	 	
																			<u> </u>											
Design Parameters:				Notes: 1. Mannings	coefficient (n) =		0.013				Designed:		AC	ł	No. 1.						Revision No. 1 for City	Review						Date 2021-11-10		
Residential		ICI Areas		2. Demand (per capita):		280 L/day	200	L/day						2.					Submission I	No. 2 for City	Review						2022-02-24	-	
SF 3.2 p/p/u TH/SD 2.4 p/p/u APT 1.9 p/p/u) L/Ha/day) L/Ha/day			al Peaking Factor		0.33 L/s/Ha 4+(P/1000)^0.5))0	.8			Checked:		JIM		3.					Submission I	No. 3 for City	Review						2022-04-06		
Other 60 p/p/Ha) L/Ha/day	MOE Chart		where K = 0.8 C		, ,,	-			Dwg. Refe	rence:	34731 - TBD																	
	17000) L/Ha/day			al and Institutiona ater than 20%, c		ctors based on tota	al area,						Ī		e Reference: 34731-5.7						Date: 2021-11-10						Sheet No: 1 of 1		
				1.5 If gre	eater than 20%, c	unerwise 1	.0				1					04/01-0./						2021-11-10						1 01 1		

SANITARY SEWER DESIGN SHEET

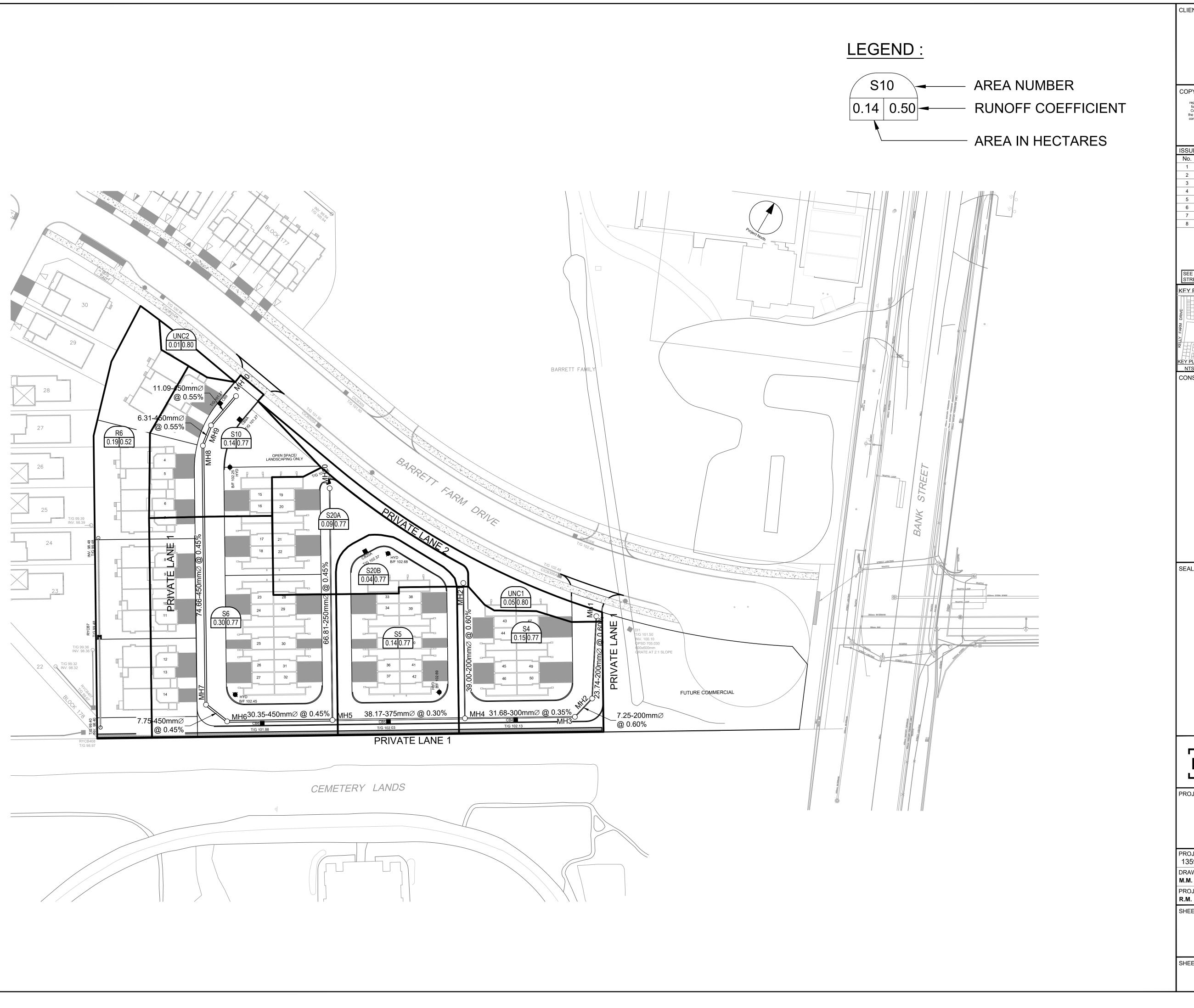
Barrett Lands Phase 3 CITY OF OTTAWA Barrett Co-Tenancy etLands/5.9 Drawings/59civi/loyouts/Phase 3/420-Sanitary Drainage Plan.dwg Layout Name: 420-Sanitary Drainage Plan Plot Style: AlA STANDARD-HALF.CTB Plot Scale: 1:50.8 Plotted At: 2022-02-25 Last Saved By: mmilne Last Saved At: 2022-

0.15 6.4	REA NUME RUNOFF CC	DEFFIC	
SEE 020, 021, 022 FOR NOTES STREET SECTIONS AND DETA	S, LEGEND, CB ⁻ AILS	TABLE,	
			BANK STREET
NTS 14 13 12			
11 10 9			
8 7 6 5			
4 3 2 SUBMISSION NO. 2 FOR CI 1 SUBMISSION NO. 1 FOR CI No. REVISION	TY REVIEW		022:02:28 021:11:10 Date
BARF CO-TEI		(
Ottawa O	8 Preston Stre N K1S 5N4 0 25 1311 fax 6	Canada	
Project Title BARRET	T LAN	DS	
PROFESSION J. I. MOFFATT PROFESSION J. I. MOFFATT PROFUSION DI J. I. MOFFATT			
Drawing Title SANITARY AREA		IAG	E
Scale	10 20		
1:10 Design FHJF	D00 Date NOVEN	/BER 2	2021
Drawn M.M.		J.I.M.	
Project No. 34731	Drawing No.	20	

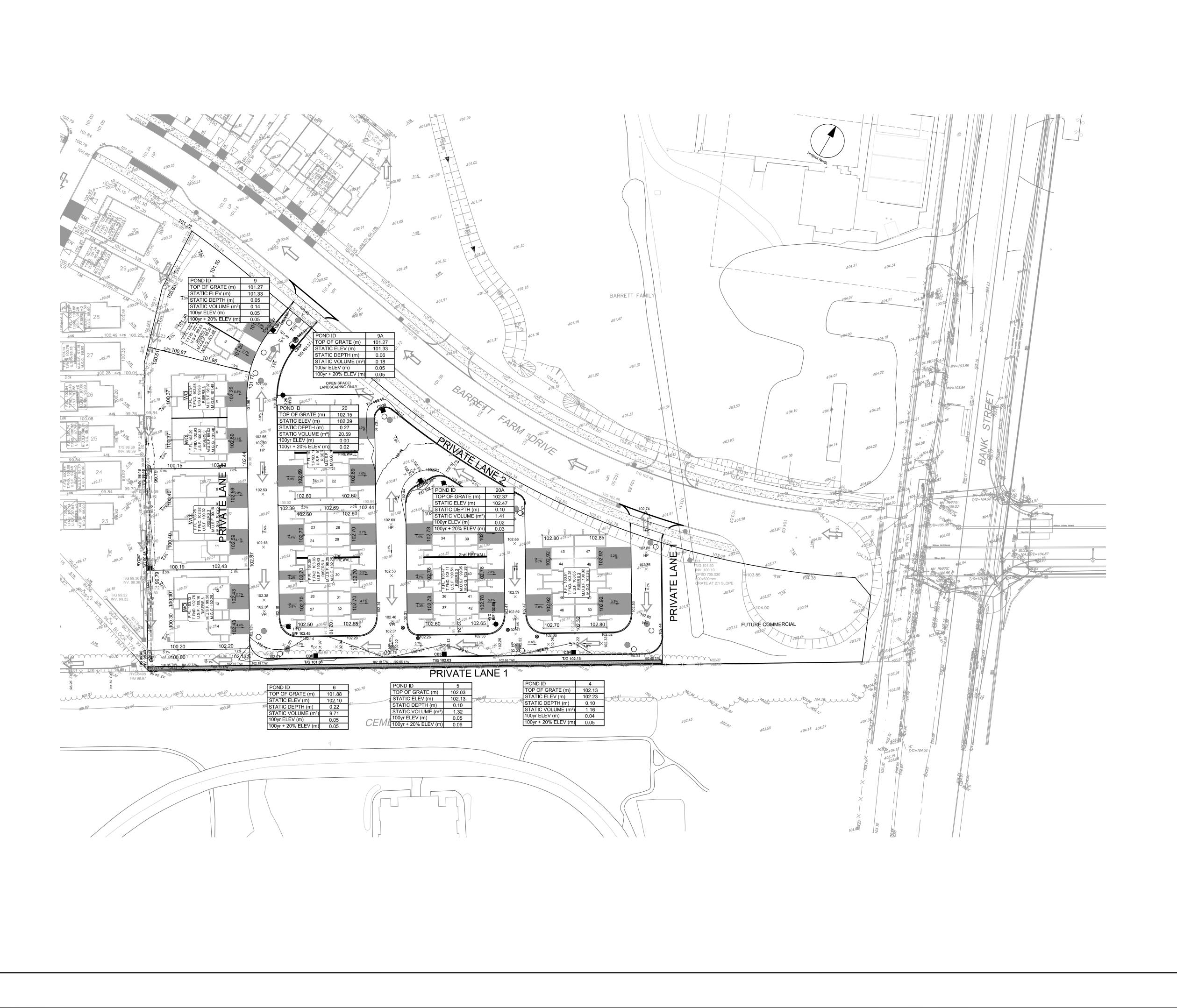
APPENDIX D

Storm Sewer Design Sheet 135925-500 - Storm Drainage Plan 135925-600 - Ponding Plan Barrett Lands Phase 3 Storm Design Sheet Barrett Lands Phase 3 Storm Drainage Area Plan Modified Rational Method on-site SWM calculations On-site Underground Storage System Storm HGL Calculations Barrett Lands Phase 3 HGL Reference Overflow Depth/Capacity Calculation Temporary Orifice Sizing Sample Runoff Coefficient Calculations

IBI GROUP 400-333 Preston Street Ottawa, Ontario K1S 5N4 Canada tel 613 225 1311 fax 613 225 9868 **ibigroup.com**


	LOCATION						A	REA (Ha)												RATIONA	L DESIGN F	FLOW										SEWER	R DATA			
070557		5001		C=	C=	C= (C= (C= C=	C=	C=	C= 0	C= I	ND CUM	INLET	TIM	E T	TOTAL	i (2)	i (5)	i (10) i (100	0) 2 ₁	yr PEAK 5yr PEAI	K 10yr PE	K 100yr PE	K FIXED	DESIGN	CAPACI	Y LENG	ТН	PIPE SIZ	E (mm)	SLOPE	VELOCITY	AVA	L CAP
STREET	AREA ID	FROM	то	0.20	0.30 (.42 0	.50 0.	.52 0.72	2 0.73	0.77	0.85 1.	.00 2.7	'8AC 2.78A	C (min)	IN PI	ΡE		(mm/hr)			nr) (mm/r	hr) FL	yr PEAK 5yr PEAI .OW (L/s) FLOW (L/	s) FLOW (L	/s) FLOW (L/	s) FLOW (L/	s) FLOW (L/	s) (L/s)	(m)	DIA			l (%)	(m/s)	(L/s)	(%)
																																				<u> </u>
Private Lane No.1		MH1	MH2									C	.00 0.00	10.00	0.48	3	10.48	76.81					0.00			0.00	0.00	26.50	23.7	4 200)		0.60	0.817	26.50	100.00%
Private Lane No.1		MH2	MH3									C	.00 0.00	10.48	0.1	5	10.63	74.99					0.00			0.00	0.00	26.50	7.25	200)		0.60	0.817	26.50	100.00%
Private Lane No.1	S4	MH3	MH4							0.15			.32 0.32				11.28	74.46					23.91			26.00							0.35	0.818	33.68	56.44%
Private Lane No. 2		MH21	MH4									C	.00 0.00	10.00	0.80)	10.80	76.81					0.00			0.00	0.00	26.50	39.0	200)		0.60	0.817	26.50	100.00%
Private Lane No. 2	S20A, S20B	MH20	MH5							0.13			.28 0.28				11.36	76.81					21.37			30.00	30.00						0.45	0.821	11.62	27.91%
Private Lane No.1	S5	MH4	MH5							0.14		C	.30 0.62	11.28	0.72	2	12.00	72.22					44.84			51.00	51.00	100.18	38.1	7 375	5		0.30	0.879	49.18	49.09%
Private Lane No.1	S6	MH5	MH6							0.30			.64 1.54				12.42	69.89					107.72			136.00			30.3				0.45	1.215	63.52	31.84%
Private Lane No.1	R6	MH6	MH7				0.	.19					.27 1.82		0.1		12.52	68.62					124.61			170.00)		0.45	1.215	29.52	14.80%
Private Lane No.1		MH7	MH8									C	.00 1.82	12.52	1.02	2	13.55	68.30					124.03			170.00	170.00	199.52	74.6	6 450)		0.45	1.215	29.52	14.80%
Private Lane No.1		MH8	MH9									C	.00 1.82	13.55	0.08	3	13.63	65.42					118.80			170.00	170.00	220.58	6.31	450)		0.55	1.344	50.58	22.93%
Private Lane No.1	S10	MH9	MH10							0.14		C	.30 2.12	13.63	0.14	l I	13.76	65.21					137.96			210.00	210.00	220.58	11.0	9 450)		0.55	1.344	10.58	4.80%
Private Lane No.1		MH10	MH11305A									C	.00 2.12	13.76	0.19)	13.95	64.85					137.19			210.00	210.00	518.80	16.0) 675	j		0.35	1.404	308.80	59.52%
Definitions:				Notes:										Designe	d:	AC)				No.						Revision							Date		
Q = 2.78CiA, where:				1. Man	nnings coef	icient (n)) =	0.0	13					Ŭ							1.				Si	bmission No	0.1 for City Re	view						2022-05-09		
Q = Peak Flow in Litres per Sec	cond (L/s)				U		,	0.02																			<u> </u>									
A = Area in Hectares (Ha)														Checke	1:	RM	Λ																			
i = Rainfall intensity in millimete	ters per hour (mm/hr)																																			
[i = 732.951 / (TC+6.199)^0.8		2 YEAR																																		
[i = 998.071 / (TC+6.053)^0.8		5 YEAR												Dwg. Re	ference:	135	5925-500																			
[i = 1174.184 / (TC+6.014)^0		10 YEAR												-								•	File Reference:					Date:						Sheet No:		
[i = 1735.688 / (TC+6.014)^0	0.820]	100 YEAR																					135925.00					2022-05-09	1					1 of 1		

LEGEND


Black text2 year event curve designBlue text5 year event curve designGreen Text100 year design curve

STORM SEWER DESIGN SHEET

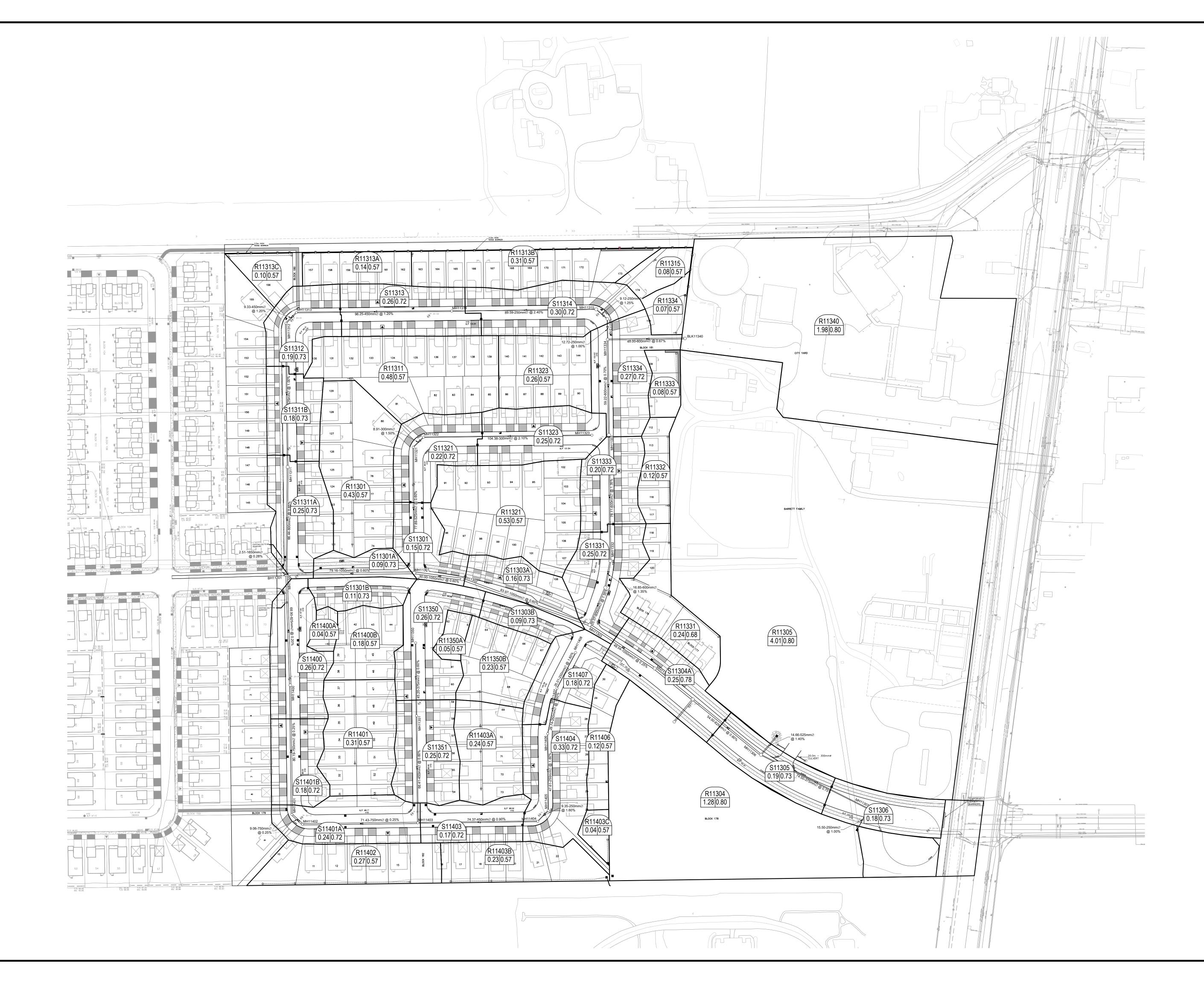
Barrett Lands Block 146 City of Ottawa Barrett Co-Tenancy

CLIENT]
BARRETT CO-TENANCY	
COPYRIGHT This drawing has been prepared solely for the intended use, thus any reproduction or distribution for any purpose other than authorized by IBI Group is forbidden. Written dimensions shall have precedence over scaled dimensions. Contractors shall verify and be responsible for all dimensions and conditions on the job, and IBI Group shall be informed of any variations from the dimensions and conditions shown on the drawing. Shop drawings shall be submitted to IBI Group for general conformance before proceeding with fabrication. IBI Group Professional Services (Canada) Inc.	
is a member of the IBI Group of companies	4
No. DESCRIPTION DATE	
1 SUBMISSION NO.1 FOR CITY REVIEW 2022-05-10 2	-
5 6 7 6 8 6	
SEE 010, 011, 012 FOR NOTES, LEGEND, CB TABLE, STREET SECTIONS AND DETAILS	
KEY PLAN LEITRIM ROAD BARRETI FARM ORIVE CEMETERY KEY PLAN NTS	
CONSULTANTS	arian Milne
1:500 0 5 15 25m 1:500 0 5 15 25m SEAL	Plotted: Tuesday, May 10, 2022 11:29:57 AM by Marian Milne
DEAL PROFESSIONAL PROFESSIONAL TO PROFESSION	File Location: J:\135925_BarrettLands\7.0_Production\7.03_Design\04_Civil\Sheets\500 STORM DRAINAGE AREA PLAN.dwg Last Saved: April 21, 2022, by mmilne DO7
IBI GROUP Suite 400 – 333 Preston Street Ottawa ON K1S 5N4 Canada tel 613 225 1311 / 613 241 3300 fax 613 225 9868 ibigroup.com	Design\04_Civil\Sheets\500 STORM DRAI
BARRETT BLOCK 178	\7.0_Production\7.03_
PROJECT NO:	tLands
	3arrett
DRAWN BY: CHECKED BY: A.C.	5925_B
PROJECT MGR: APPROVED BY:	J:\135
R.M. J.I.M.	ation: 7-
SHEET TITLE STORM DRAINAGE AREA PLAN	S N N N N N N
	┨│Ё
SHEET NUMBER ISSUE	SCALE CHECK
CITY PLAN No. xxxxx	ζ.

CLIENT	
BARRETT	
CO-TENANCY	
COPYRIGHT This drawing has been prepared solely for the intended use, thus any reproduction or distribution for any purpose other than authorized by IBI Group is forbidden. Written dimensions shall have precedence over scaled dimensions.	
Contractors shall verify and be responsible for all dimensions and conditions on the job, and IBI Group shall be informed of any variations from the dimensions and conditions shown on the drawing. Shop drawings shall be submitted to IBI Group for general conformance before proceeding with fabrication.	
IBI Group Professional Services (Canada) Inc. is a member of the IBI Group of companies	
No. DESCRIPTION DATE 1 SUBMISSION NO.1 FOR CITY REVIEW 2022-05-10 2	
2 3 4	
5 6 7	
8	
SEE 010, 011, 012 FOR NOTES, LEGEND, CB TABLE, STREET SECTIONS AND DETAILS	
KEY PLAN LEITRIM ROAD	
BARRETT FARM DRIVE	
CONSULTANTS	
	in Milne
	/ by Maria
	2022 11:30:19 AM by Marian Milne
1:500 0 5 15 25m 0 5 15 25m	
SEAL	Plotted: Tuesday, May 10,
D. 45. Yannoulopoulos	otted: Tues
2022/05/10 PROLINCE OF ONTARIO	022, by mi
	I: May 9, 2
	ast Savec
	N.dwg L
	JDING PL
	File Location: J:\135925_BarrettLands\7.0_Production\7.03_Design\04_Civil\Sheets\600 PONDING PLAN.dwg Last Saved: May 9, 2022, by mmilne . D07
IBI GROUP Suite 400 – 333 Preston Street Ottawa ON K1S 5N4 Canada tel 613 225 1311 / 613 241 3300 fax 613 225 9868	Civil\Sheet
ibigroup.com	esign\04_(
BARRETT BLOCK 178	on\7.03_D
)_Producti
PROJECT NO:	ttLands\7.0
135925 DRAWN BY: CHECKED BY: M.M. A.C.)25_Barret
N.M.A.C.PROJECT MGR:APPROVED BY:R.M.J.I.M.	on: J:\1356 ,
SHEET TITLE PONDING PLAN	File Location: No. D07-
	Nome Nome Nome Nome Nome Nome Nome Nome
SHEET NUMBER ISSUE	
600 1	CITY F
CITY PLAN No. xxxxx	

IBI GROUP 400-333 Preston Street Ottawa, Ontario K1S 5N4 Canada tel 613 225 1311 fax 613 225 9868

ibigroup.com


	LOCATION					AREA (Ha)			1					RA		SIGN FLOW										SEWER DATA				
				C= C=	C= C=	· · ·	C= C=	= C= C=		INLET	TIME	TOTAL	i (2)				r PEAK 5	5yr PEAK 10yr	r PEAK 100vr F	PEAK FIXED	DESIGN	CAPACITY	LENGTH	PI	PE SIZE (m			VELOCITY	AVAIL C	,AP (2vr)
STREET	AREA ID	FROM	то	0.20 0.30	C= C= 0.42 0.57	0.68 0.72 0	0.73 0.7	8 0.80 1.00	2.78AC 2.78AC	(min)	IN PIPE	(min)	(mm/hr)	(mm/hr)	(mm/hr)	(mm/hr) FL	OW (L/s) FI	5yr PEAK 10yr LOW (L/s) FLOV	W (L/s) FLOW	(L/s) FLOW (L/s)) FLOW (L/s)	(L/s)	(m)	DIA	W	н	(%)	(m/s)	(L/s)	(%)
														· · ·																
-		514								10.00	0.01	10.01			1 1 0 0 0	100.10													10.01	
Temporary	Area 9	DI1	MH11307		0.24				0.28 0.28			12.21		94.70	110.96			00.00	45.4	3	45.43	62.04	15.50				1.00	1.224	16.61	26.77%
Barrett Farm Drive	S11306	MH11307	MH11306			0.19			0.38 0.66	10.00	0.89	10.89	76.81	104.19	122.14	178.56		68.82			114.26	158.41	74.50	375		++	0.75	1.389	44.15	27.87%
Barrett Family	R11305	DI2	MH11306					4.01	8.92 8.92	12 00	0.14	12 14	69 89	94.70	110.96	162.13 6	523 33				623.33	821.24	14.66	750		++	0.50	1.801	197 92	24.10%
Temporary	111000	DI2	MH11306					4.01	See Barrett Fami				00.00	04.70	110.00	102.10	20.00				348.22	530.86	14.66	525		++	1.40	2.376	182.64	34.40%
Temporary	Culvert	Ditch	Ditch						See culvert desig		<u> </u>										34.08	109.29	20.00	300			4.00	1.498	75.21	68.82%
Barrett Farm Drive		MH11306	MH11305						0.00 8.92			12.57	69.47	94.12		161.14 6					698.95	,	54.50	825			0.60	2.102	461.01	39.74%
Barrett Farm Drive	S11305	MH11306	MH11305			(0.09		0.18 0.84	12.14	0.43	12.57	69.47	94.12	110.28	161.14		79.36			698.95	1,159.96	54.50	825			0.60	2.102	461.01	39.74%
Damatt Fame Duive	R11304		MH11305					4.00		40.00	0.05	40.05	<u> </u>	04.70	440.00	162.13 ⁻	100.07				198.97	400.47	40.00	075		++	- 0.05	4 4 0 7	000 50	E4.000/
Barrett Farm Drive	RTI304	BLK11305	IVIH I 1305					1.28	2.85 2.85	12.00	0.25	12.25	69.89	94.70	110.96	102.13	198.97				198.97	438.47	18.00	675		++	0.25	1.187	239.50	54.62%
Barrett Farm Drive		MH11305	MH11304						0.00 11.76	12.57	0.36	12.92	68.18	92.34	108.18	158.06 8	302.08				820.82	1,274.02	30.40	1050		++	0.20	1.425	453.20	35.57%
Barrett Farm Drive	S11305	MH11305	MH11304			(0.10		0.20 0.20		0.36	12.92	<u>68.18</u>	92.34		158.06		18.74			820.82	1,274.02	30.40	1050		++	0.20	1.425	453.20	35.57%
																														,,
Barrett Farm Drive		MH11304	MH11303						0.00 11.76	12.92	0.51	13.43	67.15	90.93	106.52	155.62	789.98				917.90	1,424.40	48.54	1050			0.25	1.594	506.50	35.56%
Barrett Farm Drive	S11304A	MH11304	MH11303				0.2	25	0.54 1.39	12.57	0.51	13.08	68.18	92.34	108.18	158.06		127.91			917.90	1,424.40	48.54	1050			0.25	1.594	506.50	35.56%
				_																						∔]		<u>ا</u>
Bouvardia Crescent	R11334	MH11316	MH11334	┨──┤───	0.03			4.00	0.05 0.05	10.00	0.17	10.17	76.81	104.19			3.65				3.65	62.04	12.72	250		++	1.00	1.224		94.11%
Block 120 Bouwardia Croscopt	R11340	BLK11340	MH11334 MH11333	+	0.08	0.07		1.98	4.40 4.40	12.00	0.45	12.45	69.89 68.54	94.70			307.78				307.78	524.32	48.00	600 600		+	0.67	1.796	216.54	41.30%
Bouvardia Crescent Bouvardia Crescent	S11334, R11333 R11332, S11333	MH11334 MH11333	MH11333 MH11332		0.08	0.27			0.67 5.12	12.45 12.98	0.54	12.98 13.49	68.54 66.98	92.84 90.70		158.92 3 155.22 3	350.80 382.36		<u> </u>		350.80 382.36	535.93 744.26	59.22 78.11	600 600		++	0.70	1.836 2.550	185.14 361.90	34.54% 48.63%
Bouvardia Crescent	R11331, S11331	MH11332	MH11331		-	0.24 0.25			0.95 6.66	13.49	0.51	13.60	65.57	88.76		151.88 4					436.87	744.20	16.85	600		++	1.35	2.550	307.39	41.30%
Bouvardia Crescent		MH11331	MH11303			0.20			0.00 6.66		0.16					151.18					434.90		25.07			++	1.35	2.550	309.36	41.57%
Barrett Farm Drive		MH11303	MH11302						0.00 18.43	13.77	0.57	14.33	64.84	87.76	102.80	150.16 1	,194.83				1,360.93	2,206.67	83.97	1050			0.60	2.469	845.73	38.33%
Barrett Farm Drive	S11303A, S11303B	MH11303	MH11302			(0.25		0.51 1.89	13.77	0.57	14.33	64.84	87.76	102.80	150.16		166.10			1,360.93	2,206.67	83.97	1050			0.60			38.33%
																														·
Barrett Farm Drive		MH11302	MH11301						0.00 18.43		0.20	14.54	63.38	85.77	100.46	146.72 1					1,330.37	2,206.67	30.00	1050		<u> </u>	0.60	2.469		39.71%
Barrett Farm Drive		MH11302	MH11301						0.00 1.89	14.33	0.20	14.54	63.38	85.77	100.46	146.72		162.33			1,330.37	2,206.67	30.00	1050			0.60	2.469	876.29	39.71%
Salidaga Mawa	R11323, S11323	MU11202	MH11322		0.26	0.25			0.01 0.01	10.00	0.97	10.97	76.01	104.10	100.14	179.56	70.09				70.09	146 10	104.20	200		++	2.10	2.004	76 10	52.07%
Solidago Mews Solidago Mews	R11323, S11323	MH11323 MH11322	MH11322 MH11321		0.26	0.25			0.91 0.91 0.00 0.91	10.00 10.87	0.87	10.87 10.96	76.81 73.62	104.19 99.82	122.14 116.99	178.56 170.99	67.17				70.08 67.17	146.19 123.55	104.38 8.91	300 300		++	2.10	2.004 1.693	76.12 56.38	45.63%
Solidago Mews	R11321, S11321, S11301	MH11321	MH11301		0.53	0.22 (0 15		1.58 2.50		0.83	11.79		99.40		170.27	-				183.08		77.89			++	0.60	1.555		47.32%
condago mono					0.00	0.22	0.10		1.00 2.00	10.00	0.00	11.70	10.02	00.10	110.00	110.21	100.00				100.00	011.00	11.00	020		++			101.10	
Barrett Farm Drive		MH11301	MH11300						0.00 20.92	14.54	0.53	15.07	62.88	85.08	99.65	145.53 1	,315.81				1,569.35	2,206.67	79.16	1050			0.60	2.469	637.32	28.88%
Barrett Farm Drive	R11301, S11301A, S11301B	MH11301	MH11300		0.43	(0.20		1.09 2.98	14.54	0.53	15.07	62.88	85.08	99.65	145.53		253.54			1,569.35	2,206.67	79.16	1050			0.60	2.469	637.32	28.88%
																														,/
Bouvardia Crescent	R11315	MH11316	MH11315		0.14				0.22 0.22	10.00	0.11	10.11	76.81	104.19		178.56					17.04	69.36	9.12	250			1.25	1.369	52.32	75.43%
Bouvardia Crescent	S11314	MH11315	MH11314			0.30			0.60 0.82	10.11	0.79	10.90	76.38	103.61	121.46		62.81				62.81	96.11	89.59	250			2.40	1.897	33.30	34.65%
Bouvardia Crescent Bouvardia Crescent	R11313A, R11313B, S11313 R11313C	MH11314 MH11313	MH11313 MH11312		0.44	0.26			1.222.040.162.20	10.90	0.81	11.71 11.78	73.52 70.82	99.68 95.97		170.74 · 164.33 ·	149.98				149.98 155.69	325.82 325.82	96.25	450 450		++	1.20	1.985	175.84	53.97% 52.22%
Bouvardia Crescent	R11313C R11311, S11312, S11311B	MH11313 MH11312	MH11312 MH11311		0.10		0.37		0.16 2.20 1.51 3.71	11.71	0.00	12.53	70.82	95.97			261.81				261.81	448.66	9.33 89.18	450 525		++	1.20	1.985 2.008	170.13 186.85	41.65%
Bouvardia Crescent	S11311, S11312, S11311A	MH11312	MH11300		0.40		0.25		0.51 4.22		0.74	13.07	68.30	92.51		158.36					288.04		66.44	600		++	0.85	2.000	302.52	
							0.20			12100	0.00	10.01	00.00	02101	100100						200101		00111			++			002.02	
Delphinium Crescent		MH11408	MH11407						0.00 0.00	10.00	0.27	10.27	76.81	104.19	122.14	178.56	0.00				0.00	78.47	25.01	250			1.60	1.549	78.47	100.00%
Delphinium Crescent	S11407	MH11407	MH11406			0.18			0.36 0.36	10.27	0.31	10.58	75.79	102.79	120.49	176.14	27.31				27.31	78.47	28.74	250			1.60	1.549	51.17	65.20%
Delphinium Crescent	R11406	MH11406	MH11405		0.17				0.27 0.63	10.58	0.51	11.09	74.65	101.23			47.01				47.01	78.47	47.61	250			1.60	1.549	31.47	40.10%
Delphinium Crescent		MH11405	MH11404						0.00 0.63	11.09	0.10	11.19	72.86	98.76			45.88				45.88	78.47	9.35	250			1.60	1.549	32.60	41.54%
Delphinium Crescent	S11404	MH11404	MH11403		0.48	0.49			1.74 2.37	11.19	0.72	11.91	72.51	98.29	115.19	168.35 ´	171.94				171.94	282.17	74.37	450			0.90	1.719	110.23	39.07%
Nomosia Way	S11350, R11350A, R11350B	MH11350	MH11351	- − −	0.28			_	0.92 0.92	10.00	0.61	10.61	76.81	104.19	122.14	178.56	70.97				70.97	141.68	15 00	97F		++	0.60	1.040	70.71	49.91%
Nemesia Way Nemesia Way	S11350, R11350A, R11350B S11351	MH11350 MH11351	MH11351 MH11403		0.28	0.24			0.92 0.92 0.50 1.42	10.00	0.61	10.61	76.81 74.55	104.19			106.20				106.20	230.39	45.20 66.41	375 450		++	0.60	1.243 1.403		49.91% 53.90%
	011001		101111403			0.20			0.00 1.42	10.01	0.13	11.00	ι - τ.00	101.10	110.73	110.20					100.20	200.00	JU.T I			++	0.00	1.100	127.13	00.0070
Delphinium Crescent	S11401A, R11402	MH11403	MH11402	1	0.27	0.24			0.91 4.70	11.91	0.93	12.85	70.17	95.07	111.40	162.78	330.05				330.05	580.71	71.43	750		<u>├</u> ───┼	0.25	1.273	250.66	43.16%
Delphinium Crescent		MH11402	MH11401	1					0.00 4.70	12.85	0.12	12.97	67.36	91.22			316.86				316.86	580.71	9.06	750		<u>├</u> ───┼	0.25	1.273	263.84	45.44%
Delphinium Crescent	S11401B, R11401	MH11401	MH11400		0.31	0.18			0.85 5.56	12.97	1.05	14.02	67.03	90.76	106.33	155.33	372.35				372.35	580.71	80.19	750			0.25	1.273	208.36	35.88%
Delphinium Crescent	S11400, R11400A, R11400B	MH11400	MH11300		0.22	0.26			0.87 6.42	14.02	0.95	14.96	64.19	86.88	101.76	148.63 4	112.39				412.39	669.70	68.90	825			0.20	1.214		38.42%
				_	+					,																∔				T
Barrett Farm Drive		MH11300	EX Blkhd	┨──┤───	+ $+$ $+$				0.00 31.57		0.02		61.60			142.50 1		240.24			2,192.79		2.51	1650			0.24	2.110	2465.42	52.93%
Barrett Farm Drive		MH11300	EX Blkhd	┨──┤───					0.00 2.98	15.07	0.02	15.09	61.60	83.33	97.58	142.50		248.31			2,192.79	4,658.21	2.51	1650		+	0.24	2.110	2465.42	52.93%
					+ $+$ $+$	+ + + + + + + + + + + + + + + + + + +			┨───┤────					<u> </u>					<u> </u>			┨────┤				++				′
Definitions:			I	Notes:						Designed:		AC		<u> </u>		No.					Revision							Date		
Q = 2.78CiA, where:					coefficient (n) =	0.013				_ sugned.					-	1.				Submission No. ²		ew						2021-11-10		
Q = Peak Flow in Litres per	Second (L/s)					0.024										2.				Submission No.2						<u> </u>		2022-02-24		
A = Area in Hectares (Ha)										Checked:		JIM				3.				Submission No.3								2022-04-06		
i = Rainfall intensity in milli	meters per hour (mm/hr)																				· · · · ·									
[i = 732.951 / (TC+6.199		2 YEAR		1																										
)^0.814]	5 YEAR								Dwg. Refe	erence:	34731-520																		
[i = 998.071 / (TC+6.053	· -																													
[i = 998.071 / (TC+6.053 [i = 1174.184 / (TC+6.01 [i = 1735.688 / (TC+6.01	4)^0.816]	10 YEAR 100 YEAR															File Refe 34731-					Date: 2021-11-10						Sheet No: 1 of 1		

Black text2 year event curve designBlue text5 year event curve design (Barrett Farm Drive)Green Text100 year design curve

STORM SEWER DESIGN SHEET

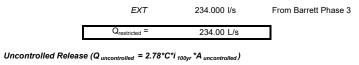
Barrett Lands Phase 3 City of Ottawa Barrett Co-Tenancy ttLands\5.9 Drawings\59civil\layouts\Phase 3\520-Storm Drainage Plan.dwg Layout Name: Storm Drainage Plan Plot Style: AIA STANDARD-HALF.CTB Plot Scale: 1:50.8 Plotted At: 2022-02-25 Last Saved By: mmilne Last Saved At: 2022-

0.18 0.69	AREA NUMBER RUNOFF COEFFICIENT AREA IN HECTARES					
SEE 020, 021, 022 FOR NOTES STREET SECTIONS AND DET LEITRIM ROAD WY ATTAL MARY NTS 14 13						
12 11 10 9 8 7 6 5 4 3 2 SUBMISSION NO. 2 FOR C 1 SUBMISSION NO. 1 FOR C No. REVISION	ITY REVIEW J.I.M. 2021:11:10 S By Date					
CO-TE IBI GROU 400 – 33 Ottawa C tel 613 22	ibigroup.com					
25FSS/QL	PHASE 3					
J. I. MOFFATT 2022/02/28 PROLINCE OF ONTARIO						
	Drawing Title STORM DRAINAGE AREA PLAN					
Scale	10 20 000					
Design FHJF Drawn	Date NOVEMBER 2021 Checked					
M.M. Project No.	J.I.M. Drawing No.					
34731	520 # 18627					

IBI GROUP 400-333 Preston Street Ottawa, Ontario K1S 5N4 Canada tel 613 225 1311 fax 613 225 9868 BI ibigroup.com

DESIGI CHECI

STORMWATER MANAGEMENT


Formulas and Descriptions

Г

$$\begin{split} i_{2yr} &= 1.2 \text{ year Intensity} = 732.951 \ / \ (T_c + 6.199)^{0.810} \\ i_{5yr} &= 1.5 \ \text{year Intensity} = 998.071 \ / \ (T_c + 6.053)^{0.814} \end{split}$$
 i_{100yr} = 1:100 year Intensity = 1735.688 / (T_c+6.014)^{0.820} T_c = Time of Concentration (min) C = Average Runoff Coefficient A = Area (Ha)Q = Flow = 2.78CiA (L/s)

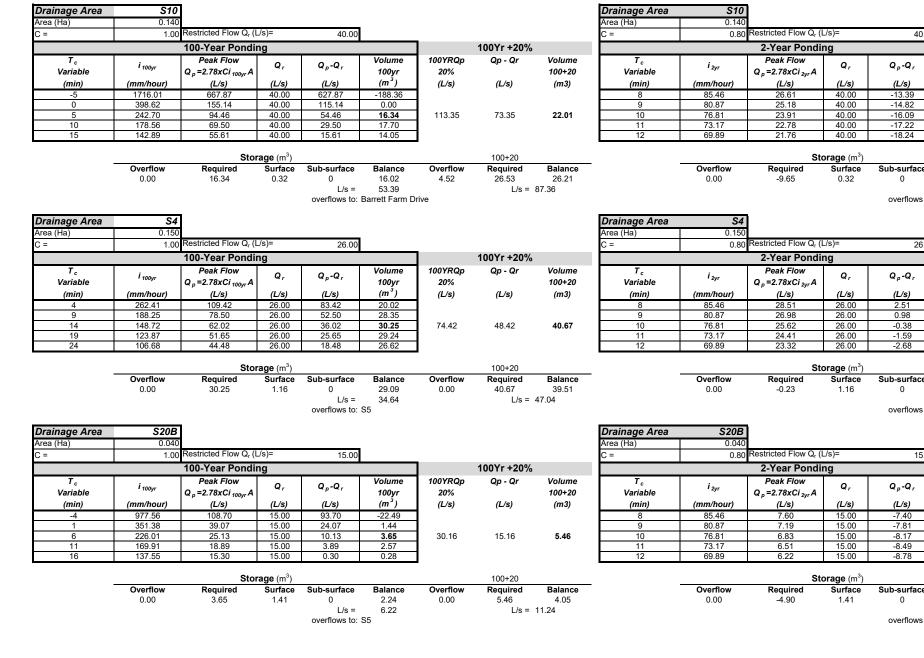
Maximum Allowable Release Rate

Restricted Flowrate (based on 85 L/s/Ha)

C =	0.8
T _c =	10 min
i _{100yr} =	178.56 mm/hr
A _{uncontrolled} =	0.06 Ha
Q uncontrolled =	23.83 L/s

Maximum Allowable Release Rate (Q max allowable = Q restricted - Q uncontrolled)

Q max allowable = 210.17 L/s


MODIFIED RATIONAL METHOD (100-Year, 100-Year +20% & 2-Year Ponding)

Drainage Area	S20A	Π							Drainage Area	S20A	1			
Area (Ha)	0.09	0							Area (Ha)	0.090)			
C =	1.0	0 Restricted Flow Q _r (I	_/s)=	15.00					C =	0.80	Restricted Flow Q _r (I	_/s)=	15.00	
		100-Year Pondi	ng				100Yr +20%	6			2-Year Pondi	ng		
T _c Variable	i _{100yr}	Peak Flow Q _p =2.78xCi _{100yr} A	Q,	Q _p -Q _r	Volume 100yr	100YRQp 20%	Qp - Qr	Volume 100+20	T _c Variable	i _{2yr}	Peak Flow Q _p =2.78xCi _{2yr} A	Q,	Q _p -Q _r	Volume 2yr
(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m³)	(L/s)	(L/s)	(m3)	(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m ³)
5	242.70	60.72	15.00	45.72	13.72				8	85.46	17.11	15.00	2.11	1.01
10	178.56	44.68	15.00	29.68	17.81				9	80.87	16.19	15.00	1.19	0.64
15	142.89	35.75	15.00	20.75	18.68	42.90	27.90	25.11	10	76.81	15.37	15.00	0.37	0.22
20	119.95	30.01	15.00	15.01	18.01				11	73.17	14.65	15.00	-0.35	-0.23
25	103.85	25.98	15.00	10.98	16.47]			12	69.89	13.99	15.00	-1.01	-0.73
		Stor	age (m ³)				100+20				Ste	orage (m ³)		
	Overflow	Required	Surface	Sub-surface	Balance	Overflow	Required	Balance		Overflow	Required	Surface	Sub-surface	Balance
	0.00	18.68	20.59	0	0.00	0.00	25.11	4.52		0.00	0.22	20.59	0	0.00
				L/s =	0.00			5.02						
				overflows to:	S10								overflows to:	S10

	OVERFLOW SU	OVERFLOW SUMMARY TABLE					
Area ID	Overflow to	2year	100year	100ye			
S10	Barrett Farm Drive		53.39				
R6	Delphinium Cres.		134.35				
		-	-				
<u>Total</u>			187.74				
Barrett Phase	3 allowance		350				

PROJECT: 3a	arrett Block 146
DATE:	2022-04-30
FILE:	135925-6.4.4
REV #:	1
SIGNED BY:	AC
HECKED BY:	RM

/ear+20%	
87.36	
194.18	
281.54	
476	

40.00						
"-Q,	Volume					
p=•••r	2yr					
L/s)	(m ³)					
3.39	-6.43					
4.82	-8.00					
6.09	-9.65					
7.22	-11.36					
8.24	-13.13					

surface	Balance
0	0.00

overflows to: Barrett Farm Dr

26.00	
"-Q,	Volume
p=∝ar	2yr
L/s)	(m ³)
2.51	1.20
).98	0.53
0.38	-0.23
1.59	-1.05
2.68	-1.93

overflows to: S5

15.00	1
" -Q ,	Volume
p-cer	2yr
L/s)	(m ³)
7.40	-3.55
7.81	-4.21
8.17	-4.90
3.49	-5.60
8.78	-6.32

surface	Balance
0	0.00

overflows to: S5

Area (Ha) C =	0.140	Restricted Flow Q _r (L	/s)=	25.00					Area (Ha) C =	0.140) Restricted Flow Q _r (I	/s)=	25.00	1
, -	1.00	100-Year Pondi	,	23.00			100Yr +20%		C -	0.00	2-Year Pondi		23.00	L
T		Peak Flow	ig	r	Volume	100YRQp		Volume	T		Peak Flow	ng	(Volun
T _c Variable	i _{100yr}	$Q_p = 2.78 \times Ci_{100yr} A$	Q,	$Q_p - Q_r$	100yr	20%	Qp - Qr	100+20	T _c Variable	i _{2yr}	$Q_p = 2.78 \times Ci_{2yr} A$	Q,	$Q_p - Q_r$	
(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m ³)	(L/s)	(1.(2)		(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	2yr (m ³
6	226.01	87.96	25.00	62.96	22.67	(L/S)	(L/s)	(m3)	8	85.46	26.61	25.00	1.61	0.77
11	169.91	66.13	25.00	41.13	27.14				9	80.87	25.18	25.00	0.18	0.10
16	137.55	53.53	25.00	28.53	27.39	64.24	39.24	37.67	10	76.81	23.91	25.00	-1.09	-0.6
21	116.30	45.26	25.00	20.26	25.53				11	73.17	22.78	25.00	-2.22	-1.4
26	101.18	39.38	25.00	14.38	22.43				12	69.89	21.76	25.00	-3.24	-2.3
		Stor	age (m ³)				100+20				Ste	orage (m ³)		
-	Overflow	Required	Surface	Sub-surface	Balance	Overflow	Required	Balance	-	Overflow	Required	Surface	Sub-surface	Balan
	31.33	58.73	1.32	0	57.41	43.56	81.23	79.91		0.00	-0.65	78.75	0	0.00
				L/s =	59.80		L/s =	83.24						00
				overflows to:	50								overflows to:	50
Drainage Area	S6	1							Drainage Area	S6	1			
Area (Ha)	0.300								Area (Ha)	0.300				
) =		Restricted Flow Q _r (L	_/s)=	55.00					C =		Restricted Flow Q _r (I	L/s)=	55.00	1
·		100-Year Pondi		00.00		1	100Yr +20%			0.00	2-Year Pondi		00.00	L
T _c		Peak Flow			Volume	100YRQp	Qp - Qr	Volume	T _c		Peak Flow			Volu
Variable	i _{100yr}	Q _p =2.78xCi _{100yr} A	Q,	$Q_p - Q_r$	100yr	20%	•	100+20	Variable	l _{2yr}	Q _p =2.78xCi _{2yr} A	Q,	$Q_p - Q_r$	2yı
(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m ³)	(L/s)	(L/s)	(m3)	(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m ⁻³
8	199.20	166.13	55.00	111.13	53.34		1 -7	1 9	8	85.46	57.02	55.00	2.02	0.9
13	155.11	129.36	55.00	74.36	58.00				9	80.87	53.96	55.00	-1.04	-0.5
18	128.08	106.82	55.00	51.82	55.97	128.19	73.19	79.04	10	76.81	51.24	55.00	-3.76	-2.2
23	109.68	91.47	55.00	36.47	50.33				11	73.17	48.82	55.00	-6.18	-4.0
28	96.27	80.29	55.00	25.29	42.49				12	69.89	46.63	55.00	-8.37	-6.0
		Stor	rage (m ³)				100+20				Ste	orage (m ³)		
	Overflow	Required	Surface	Sub-surface	Balance	Overflow	Required	Balance	-	Overflow	Required	Surface	Sub-surface	Balar
	57.41	113.37	9.71	0 L/s =	103.66 95.98	79.91	158.95	149.24 138.19		0.00	-2.25	9.71	0	0.0
				overflows to:			L/S -	130.19					overflows to:	R6
Drainage Area	R6	1							Drainage Area	R6	ו			
Area (Ha)		Restricted Flow Q _r (L	_/s)=	34.00					Area (Ha)	0.170				
) =	0.68	50% Restricted Flow	v Q _r (L/s)=	17.00					C =	0.68	Restricted Flow Q _r (I	L/s)=	17.00	
		100-Year Pondi	ng				100Yr +20%				2-Year Pondi	ng		
T _c	i _{100yr}	Peak Flow	Q,	$Q_p - Q_r$	Volume	100YRQp	Qp - Qr	Volume	T _c	i _{2yr}	Peak Flow	Q,	$Q_p - Q_r$	Volu
Variable		$Q_p = 2.78 \times Ci_{100yr} A$	(1.(-)	(1. (-)	100yr (m³)	20%	(1. (-)	100+20	Variable		$Q_p = 2.78 \times Ci_{2yr} A$	(1.1-)	(1.1-)	2yı (m ³
(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	. ,	(L/s)	(L/s)	(m3)	(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	-
5 10	242.70 178.56	78.00 57.38	17.00 17.00	61.00 40.38	18.30 24.23	_			8	85.46 80.87	27.46 25.99	17.00 17.00	10.46 8.99	5.0 4.8
15	142.89	45.92	17.00	28.92	24.23	55.11	38.11	34.30	10	76.81	24.68	17.00	7.68	4.6
20	119.95	38.55	17.00	21.55	25.86				10	73.17	23.51	17.00	6.51	4.3
25	103.85	33.37	17.00	16.37	24.56				12	69.89	22.46	17.00	5.46	3.9
		Stor	age (m ³)			_	100+20				St	orage (m ³)		
	Overflow	Required	Surface	Sub-surface	Balance	Overflow	Required	Balance	-	Overflow	Required	Surface	Sub-surface	Balar
	103.66	129.69	4.38	4.4	120.91	149.24	183.54	174.76		0.00	4.61	4.38	4.4	0.0
				L/s = overflows to:	134.35 Delphinium Cr	es.	L/s =	194.18					overflows to:	Delphini

https://ibigroup.sharepoint.com/sites/Projects1/135925/Internal Documents/6.0_Technical/6.04_Civil/04_Design-Analysis/Submission No.1/CCS_swm

IBI GROUP 400-333 Preston Street Ottawa, Ontario K1S 5N4 Canada tel 613 225 1311 fax 613 225 9868 ibigroup.com
 PROJECT:
 Barrett Block 146

 DATE:
 2022-05-09

 FILE:
 135925-6.4.4

 REV #:
 1

 DESIGNED BY:
 AC

 CHECKED BY:
 RM

UNDERGROUND STORAGE CALCULATIONS - BARRETT BLOCK 146

Pipe Storage	Area R6				
From	То	Length	Diameter	X-sec Area	Volume
ECB1	RYCB1	28.60	250	0.049	1.40
RYCB1	ECB2	26.01	250	0.049	1.28
				Total	2.68

Structure St	orage		Area 3				
	Base	Тор		Height	diameter	X-sec Area	Volume
ECB 1	98.4	30	99.48	1.00	300	0.071	0.07
ECB2	98.4	00	99.40	1.00	300	0.071	0.07
RYCB1	98.0	30	99.48	1.40	1200	1.131	1.58
						Total	1.72

TOTAL AREA 2 4.41

STORM HYDRAULIC GRADE LINE DESIGN SHEET PROJECT TITLE CITY OF OTTAWA DEVELOPPER

JOB #:	352925 - 6.04
DATE:	2022-05-09
DESIGN:	AC
CHECKED:	RM
REV #:	1

FRICTION LOSS	FROM	TO	PIPE	MANNING F	Formula - F	LOWING FULL				
Block 146	MH 10	MH 9	ID	DIA	Area	Perim.	Slope	Hyd.R.	Vel.	Q
BIOCK 146	10	9	_	(m)	(m2)	(m)	(%)	пуа.к. (m)	(m/s)	(l/s)
INVERT ELEVATION (m)	98.030	98.091		0.45	0.16	1.41	0.550	0.11	1.33	211.34
OBVERT ELEVATION (m)	98.480	98.541		HYDRAULIO		18.26		0.11	1.55	211.54
	90.400	90.041	450	-		FLOW RATIO (C		1		
DIAMETER (mm)	-				OW TO FULL OW DEPTH =					
LENGTH (m)			11.1	DESIGN FL	OW DEPTH =		0.365			
FLOW (I/s)			210.00							
HGL (m) ***	96.430	96.490	0.060		Head loss in	manhole simplifie	ed method p. 7	71 (MWDM)		
			-		fig1 7 1 Krat	tio = 0.75 for 45 b	ends		K∟=0.75	
		0.067	-		•		cildo			
MANHOLE COEF K= 0.75	5 LOSS (m)	0.067	_		Velocity = FI			1.32	m/s	
					HL = K∟ * \	/^2/ 2g				
TOTAL HGL (m)		98.456								
MAX. SURCHARGE (mm)		-85		J						
FRICTION LOSS	FROM	TO	PIPE			LOWING FULL				
	MH	MH	ID	IVIAININING F	ORMULA - F					
Block 146	9	8		DIA	Area	Perim.	Slope	Hyd.R.	Vel.	Q
		-		(m)	(m2)	(m)	(%)	(m)	(m/s)	(l/s)
INVERT ELEVATION (m)	98.121	98.156		0.45	0.16	1.41	0.550	0.11	1.34	212.23
OBVERT ELEVATION (m)	98.571	98.606		HYDRAULIC		1.05		<u> </u>		
DIAMETER (mm)			450			FLOW RATIO (C		i i		
LENGTH (m)	1		6.3		OW DEPTH =		0.302			
	╢────			STORIE			0.002	Ц		
FLOW (I/s)	<u></u>		170.00	4						
HGL (m) ***	98.456	98.478	0.022		Head loss in	manhole simplifie	ed method p. 7	71 (MWDM)		
					fig1.7.1, Kra	tio = 0.75 for 45 b	ends		K∟=0.75	
MANHOLE COEF K= 0.75	5 LOSS (m)	0.044			Velocity = FI	ow / Area =		1.07	m/s	
		0.011	=		HL = KL * \					
	╬────┼	00.500	_			v 2/29				
TOTAL HGL (m)	╉	98.522	_							
MAX. SURCHARGE (mm)		-84								
				-						
	1 <u></u>									
FRICTION LOSS	FROM MH	TO MH	PIPE ID	MANNING F	FORMULA - F	LOWING FULL				
Block 146	8	7		DIA	Area	Perim.	Slope	Hyd.R.	Vel.	Q
				(m)	(m2)	(m)	(%)	(m)	(m/s)	(l/s)
INVERT ELEVATION (m)	98.186	98.522		0.45						191.17
	08 626				0.16	1.41	0.450	0.11	1.20	
OBVERT ELEVATION (m)	98.636	98.972		HYDRAULIO	SLOPE =	0.44	%	0.11	1.20	
OBVERT ELEVATION (m) DIAMETER (mm)	90.030	98.972	450	DESIGN FL	C SLOPE = OW TO FULL	0.44 FLOW RATIO (C	% 0.889	0.11	1.20	
	90.030	98.972	450 74.7	DESIGN FL	SLOPE =	0.44 FLOW RATIO (C	%	0.11	1.20	
DIAMETER (mm)	90.030	98.972		DESIGN FL	C SLOPE = OW TO FULL	0.44 FLOW RATIO (C	% 0.889	0.11	1.20	
DIAMETER (mm) LENGTH (m) FLOW (l/s)			74.7 170.00	DESIGN FL	C SLOPE = OW TO FULL OW DEPTH =	0.44 FLOW RATIO (C	0.889 0.329		1.20	
DIAMETER (mm) LENGTH (m) FLOW (l/s)	98.536	98.972 98.787	74.7	DESIGN FL	C SLOPE = OW TO FULL OW DEPTH = Head loss in	0.44 FLOW RATIO (C manhole simplifie	0.889 0.329	71 (MWDM)		
DIAMETER (mm) LENGTH (m) FLOW (l/s) HGL (m) ****	98.522	98.787	74.7 170.00	DESIGN FL	C SLOPE = OW TO FULL OW DEPTH = Head loss in straight throu	0.44 FLOW RATIO (C manhole simplifie	0.889 0.329	71 (MWDM)	K∟=0.05	
DIAMETER (mm) LENGTH (m) FLOW (l/s)	98.522		74.7 170.00	DESIGN FL	C SLOPE = OW TO FULL OW DEPTH = Head loss in straight throu Velocity = FI	0.44 FLOW RATIO (C manhole simplifie Jgh ow / Area =	0.889 0.329	71 (MWDM)	K∟=0.05	
DIAMETER (mm) LENGTH (m) FLOW (l/s) HGL (m) *** MANHOLE COEF K= 0.05	98.522	98.787	74.7 170.00	DESIGN FL	C SLOPE = OW TO FULL OW DEPTH = Head loss in straight throu	0.44 FLOW RATIO (C manhole simplifie Jgh ow / Area =	0.889 0.329	71 (MWDM)	K∟=0.05	
DIAMETER (mm) LENGTH (m) FLOW (l/s) HGL (m) *** MANHOLE COEF K= 0.05 TOTAL HGL (m)	98.522	98.787	74.7 170.00	DESIGN FL	C SLOPE = OW TO FULL OW DEPTH = Head loss in straight throu Velocity = FI	0.44 FLOW RATIO (C manhole simplifie Jgh ow / Area =	0.329	71 (MWDM)	K∟=0.05	
DIAMETER (mm) LENGTH (m) FLOW (l/s) HGL (m) *** MANHOLE COEF K= 0.05	98.522	98.787	74.7 170.00	DESIGN FL	C SLOPE = OW TO FULL OW DEPTH = Head loss in straight throu Velocity = FI	0.44 FLOW RATIO (C manhole simplifie Jgh ow / Area =	0.329	71 (MWDM)	K∟=0.05	
DIAMETER (mm) LENGTH (m) FLOW (l/s) HGL (m) *** MANHOLE COEF K= 0.05 TOTAL HGL (m)	98.522	98.787 0.003 98.851	74.7 170.00	DESIGN FL	C SLOPE = OW TO FULL OW DEPTH = Head loss in straight throu Velocity = FI	0.44 FLOW RATIO (C manhole simplifie Jgh ow / Area =	0.329	71 (MWDM)	K∟=0.05	
DIAMETER (mm) LENGTH (m) FLOW (l/s) HGL (m) **** MANHOLE COEF K= 0.05 TOTAL HGL (m) MAX. SURCHARGE (mm)	98.522	98.787 0.003 98.851 -121	74.7 170.00 0.266	DESIGN FL	C SLOPE = OW TO FULL OW DEPTH = Head loss in straight throu Velocity = FI HL = KL * V	0.44 FLOW RATIO (C manhole simplifie ugh ow / Area = /^2/ 2g	0.329	71 (MWDM)	K∟=0.05	
DIAMETER (mm) LENGTH (m) FLOW (l/s) HGL (m) *** MANHOLE COEF K= 0.05 TOTAL HGL (m)	98.522	98.787 0.003 98.851	74.7 170.00	DESIGN FL	C SLOPE = OW TO FULL OW DEPTH = Head loss in straight throu Velocity = FI HL = KL * V	0.44 FLOW RATIO (C manhole simplifie Jgh ow / Area =	0.329	71 (MWDM)	K∟=0.05	
DIAMETER (mm) LENGTH (m) FLOW (l/s) HGL (m) **** MANHOLE COEF K= 0.05 TOTAL HGL (m) MAX. SURCHARGE (mm)	98.522 98.522 5 LOSS (m) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	98.787 0.003 98.851 -121 TO	74.7 170.00 0.266	DESIGN FL DESIGN FL	SLOPE = OW TO FULL OW DEPTH = Head loss in straight throu Velocity = FI HL = KL * V	0.44 FLOW RATIO (C manhole simplifie igh ow / Area = /^2/ 2g LOWING FULL Perim.	% 0 0.889 0.329 ed method p. 7 Slope	71 (MWDM) 1.07 Hyd.R.	KL=0.05 m/s	Q
DIAMETER (mm) LENGTH (m) FLOW (I/s) HGL (m) **** MANHOLE COEF K= 0.05 TOTAL HGL (m) MAX_SURCHARGE (mm) FRICTION LOSS Block 146	98.522 98.522 LOSS (m) FROM MH 7	98.787 0.003 98.851 -121 TO MH 6	74.7 170.00 0.266	DESIGN FL DESIGN FL MANNING F DIA (m)	C SLOPE = OW TO FULL OW DEPTH = Head loss in straight throu Velocity = FI HL = KL * V FORMULA - F Area (m2)	0.44 FLOW RATIO (C manhole simplifie ugh ow / Area = /^2/ 2g LOWING FULL Perim. (m)	% 0 0.889 0.329 ed method p. 7 Slope (%)	71 (MWDM) 1.07 Hyd.R. (m)	KL=0.05 m/s Vel. (m/s)	(l/s)
DIAMETER (mm) LENGTH (m) FLOW (I/s) HGL (m) **** MANHOLE COEF K= 0.05 TOTAL HGL (m) MAX. SURCHARGE (mm) FRICTION LOSS Block 146 INVERT ELEVATION (m)	98.522 98.522 0 0	98.787 0.003 98.851 -121 TO MH 6 98.587	74.7 170.00 0.266	DESIGN FL DESIGN FL MANNING F DIA (m) 0.45	C SLOPE = OW TO FULL OW DEPTH = Head loss in straight throv Velocity = FI HL = KL * V FORMULA - F Area (m2) 0.16	0.44 FLOW RATIO (C manhole simplifie ugh ow / Area = /^2/ 2g LOWING FULL Perim. (m) 1.41	% 0 0.889 0.329 ed method p. 7 Slope (%) 0.450	71 (MWDM) 1.07 Hyd.R.	KL=0.05 m/s	
DIAMETER (mm) LENGTH (m) FLOW (l/s) HGL (m) **** MANHOLE COEF K= 0.05 TOTAL HGL (m) MAX. SURCHARGE (mm) FRICTION LOSS Block 146 INVERT ELEVATION (m) OBVERT ELEVATION (m)	98.522 98.522 LOSS (m) FROM MH 7	98.787 0.003 98.851 -121 TO MH 6	74.7 170.00 0.266	DESIGN FL DESIGN	C SLOPE = OW TO FULL OW DEPTH = Head loss in straight throv Velocity = FI HL = KL * V ORMULA - F Area (m2) 0.16 C SLOPE =	0.44 FLOW RATIO (C manhole simplifie ugh ow / Area = /^2/ 2g LOWING FULL Perim. (m) 1.41 0.25	% 0 0.889 0.329 ed method p. 7 Slope (%) 0.450 5 %	1.07 1.07 Hyd.R. (m) 0.11	KL=0.05 m/s Vel. (m/s)	(l/s)
DIAMETER (mm) LENGTH (m) FLOW (l/s) HGL (m) **** MANHOLE COEF K= 0.05 TOTAL HGL (m) MAX. SURCHARGE (mm) FRICTION LOSS Block 146 INVERT ELEVATION (m) OBVERT ELEVATION (m) DIAMETER (mm)	98.522 98.522 0 0	98.787 0.003 98.851 -121 TO MH 6 98.587	74.7 170.00 0.266 PIPE ID 450	DESIGN FL DESIGN FL DESIGN FL DESIGN FL DIA (m) 0.45 HYDRAULIO DESIGN FL	C SLOPE = OW TO FULL OW DEPTH = Head loss in straight throw Velocity = FI HL = KL * V FORMULA - F Area (m2) 0.16 C SLOPE = OW TO FULL	0.44 FLOW RATIO (C manhole simplifie Jgh ow / Area = /^2/ 2g LOWING FULL Perim. (m) 1.41 0.25 FLOW RATIO (C	% 0 0.889 0.329 ad method p. 7 Slope (%) 0.450 % 0.0450	1.07 1.07 Hyd.R. (m) 0.11	KL=0.05 m/s Vel. (m/s)	(l/s)
DIAMETER (mm) LENGTH (m) FLOW (l/s) HGL (m) **** MANHOLE COEF K= 0.05 TOTAL HGL (m) MAX. SURCHARGE (mm) FRICTION LOSS Block 146 INVERT ELEVATION (m) OBVERT ELEVATION (m)	98.522 98.522 0 0	98.787 0.003 98.851 -121 TO MH 6 98.587	74.7 170.00 0.266	DESIGN FL DESIGN FL DESIGN FL DESIGN FL DIA (m) 0.45 HYDRAULIO DESIGN FL	C SLOPE = OW TO FULL OW DEPTH = Head loss in straight throv Velocity = FI HL = KL * V ORMULA - F Area (m2) 0.16 C SLOPE =	0.44 FLOW RATIO (C manhole simplifie Jgh ow / Area = /^2/ 2g LOWING FULL Perim. (m) 1.41 0.25 FLOW RATIO (C	% 0 0.889 0.329 ed method p. 7 Slope (%) 0.450 5 %	1.07 1.07 Hyd.R. (m) 0.11	KL=0.05 m/s Vel. (m/s)	(l/s)
DIAMETER (mm) LENGTH (m) FLOW (l/s) HGL (m) **** MANHOLE COEF K= 0.05 TOTAL HGL (m) MAX. SURCHARGE (mm) FRICTION LOSS Block 146 INVERT ELEVATION (m) OBVERT ELEVATION (m) DIAMETER (mm)	98.522 98.522 0 0	98.787 0.003 98.851 -121 TO MH 6 98.587	74.7 170.00 0.266 PIPE ID 450	DESIGN FL DESIGN FL DESIGN FL DESIGN FL DIA (m) 0.45 HYDRAULIO DESIGN FL	C SLOPE = OW TO FULL OW DEPTH = Head loss in straight throw Velocity = FI HL = KL * V FORMULA - F Area (m2) 0.16 C SLOPE = OW TO FULL	0.44 FLOW RATIO (C manhole simplifie Jgh ow / Area = /^2/ 2g LOWING FULL Perim. (m) 1.41 0.25 FLOW RATIO (C	% 0 0.889 0.329 ad method p. 7 Slope (%) 0.450 % 0.0450	1.07 1.07 Hyd.R. (m) 0.11	KL=0.05 m/s Vel. (m/s)	(l/s)
DIAMETER (mm) LENGTH (m) FLOW (l/s) HGL (m) **** MANHOLE COEF K= 0.05 TOTAL HGL (m) MAX. SURCHARGE (mm) FRICTION LOSS Block 146 INVERT ELEVATION (m) OBVERT ELEVATION (m) DIAMETER (mm) LENGTH (m) FLOW (l/s)	98.522 98.522 5 LOSS (m) 1 1 98.552 99.002	98.787 0.003 98.851 -121 TO MH 6 98.587 99.037	74.7 170.00 0.266 PIPE ID 450 7.8 136.00	DESIGN FL DESIGN FL DESIGN FL DESIGN FL DIA (m) 0.45 HYDRAULIO DESIGN FL	SLOPE = OW TO FULL OW DEPTH = Head loss in straight throu Velocity = FI HL = KL * V FORMULA - F Area (m2) 0.16 C SLOPE = OW TO FULL OW DEPTH =	0.44 FLOW RATIO (C manhole simplifie ugh ow / Area = /^2/ 2g LOWING FULL Perim. (m) 1.41 0.25 FLOW RATIO (C	% 0 0.889 0.329 ed method p. 7 Slope (%) 0.450 5% 0 0.450 5% 0 0.279	Hyd.R. (m) 0.11	KL=0.05 m/s Vel. (m/s)	(l/s)
DIAMETER (mm) LENGTH (m) FLOW (l/s) HGL (m) *** MANHOLE COEF K= 0.05 TOTAL HGL (m) MAX. SURCHARGE (mm) FRICTION LOSS Block 146 INVERT ELEVATION (m) OBVERT ELEVATION (m) DIAMETER (mm) LENGTH (m) FLOW (l/s)	98.522 98.522 0 0	98.787 0.003 98.851 -121 TO MH 6 98.587	74.7 170.00 0.266 PIPE ID 450 7.8	DESIGN FL DESIGN FL DESIGN FL DESIGN FL DIA (m) 0.45 HYDRAULIO DESIGN FL	SLOPE = OW TO FULL OW DEPTH = Head loss in straight throu Velocity = FI HL = KL * 1 FORMULA - F Area (m2) 0.16 C SLOPE = OW TO FULL OW DEPTH = Head loss in	0.44 FLOW RATIO (C manhole simplifie igh ow / Area = /^2/ 2g LOWING FULL Perim. (m) 1.41 0.25 FLOW RATIO (C manhole simplifie	% 0 0.889 0.329 ed method p. 7 Slope (%) 0.450 5% 0 0.450 5% 0 0.279	Hyd.R. (m) 0.11	KL=0.05 m/s	(l/s)
DIAMETER (mm) LENGTH (m) FLOW (l/s) HGL (m) **** MANHOLE COEF K= 0.05 TOTAL HGL (m) MAX. SURCHARGE (mm) FRICTION LOSS Block 146 INVERT ELEVATION (m) OBVERT ELEVATION (m) DIAMETER (mm) LENGTH (m) FLOW (l/s)	98.522 98.522 5 LOSS (m) 1 1 98.552 99.002	98.787 0.003 98.851 -121 TO MH 6 98.587 99.037	74.7 170.00 0.266 PIPE ID 450 7.8 136.00	DESIGN FL DESIGN FL DESIGN FL DESIGN FL DIA (m) 0.45 HYDRAULIO DESIGN FL	SLOPE = OW TO FULL OW DEPTH = Head loss in straight throu Velocity = FI HL = KL * V FORMULA - F Area (m2) 0.16 C SLOPE = OW TO FULL OW DEPTH =	0.44 FLOW RATIO (C manhole simplifie igh ow / Area = /^2/ 2g LOWING FULL Perim. (m) 1.41 0.25 FLOW RATIO (C manhole simplifie	% 0 0.889 0.329 ed method p. 7 Slope (%) 0.450 5% 0 0.450 5% 0 0.279	Hyd.R. (m) 0.11	KL=0.05 m/s Vel. (m/s)	(l/s)
DIAMETER (mm) LENGTH (m) FLOW (l/s) HGL (m) **** MANHOLE COEF K= 0.05 TOTAL HGL (m) MAX. SURCHARGE (mm) FRICTION LOSS Block 146 INVERT ELEVATION (m) OBVERT ELEVATION (m) DIAMETER (mm) LENGTH (m) FLOW (l/s)	98.522 98.522 5 LOSS (m) 1 1 98.552 99.002 98.552 99.002 98.851	98.787 0.003 98.851 -121 TO MH 6 98.587 99.037	74.7 170.00 0.266 PIPE ID 450 7.8 136.00	DESIGN FL DESIGN FL DESIGN FL DESIGN FL DIA (m) 0.45 HYDRAULIO DESIGN FL	SLOPE = OW TO FULL OW DEPTH = Head loss in straight throu Velocity = FI HL = KL * 1 FORMULA - F Area (m2) 0.16 C SLOPE = OW TO FULL OW DEPTH = Head loss in	0.44 FLOW RATIO (C manhole simplifie ugh ow / Area = /^2/ 2g LOWING FULL Perim. (m) 1.41 0.25 FLOW RATIO (C FLOW RATIO (C manhole simplifie ugh	% 0 0.889 0.329 ed method p. 7 Slope (%) 0.450 5% 0 0.450 5% 0 0.279	Hyd.R. (m) 0.11	KL=0.05 m/s	(l/s)
DIAMETER (mm) LENGTH (m) FLOW (l/s) HGL (m) **** MANHOLE COEF K= 0.05 TOTAL HGL (m) MAX. SURCHARGE (mm) FRICTION LOSS Block 146 INVERT ELEVATION (m) OBVERT ELEVATION (m) DIAMETER (mm) LENGTH (m) FLOW (l/s) HGL (m) ***	98.522 98.522 5 LOSS (m) 1 1 98.552 99.002 98.851	98.787 0.003 98.851 -121 TO MH 6 98.587 99.037 98.868	74.7 170.00 0.266 PIPE ID 450 7.8 136.00	DESIGN FL DESIGN FL DESIGN FL DESIGN FL DIA (m) 0.45 HYDRAULIO DESIGN FL	SLOPE = OW TO FULL OW DEPTH = Head loss in straight throu Velocity = FI HL = KL * V ORMULA - F Area (m2) 0.16 C SLOPE = OW TO FULL OW DEPTH = Head loss in straight throu	0.44 FLOW RATIO (C manhole simplifie ugh ow / Area = /^2/ 2g LOWING FULL Perim. (m) 1.41 0.25 FLOW RATIO (C manhole simplifie ugh ow / Area =	% 0 0.889 0.329 ed method p. 7 Slope (%) 0.450 5% 0 0.450 5% 0 0.279	1.07 Hyd.R. (m) 0.11	KL=0.05 m/s	(l/s)
DIAMETER (mm) LENGTH (m) FLOW (I/s) HGL (m) **** MANHOLE COEF K= 0.05 TOTAL HGL (m) MAX. SURCHARGE (mm) FRICTION LOSS Block 146 INVERT ELEVATION (m) OBVERT ELEVATION (m) DIAMETER (mm) LENGTH (m) FLOW (I/s) HGL (m) *** MANHOLE COEF K= 0.05	98.522 98.522 5 LOSS (m) 1 1 98.552 99.002 98.851	98.787 0.003 98.851 -121 TO MH 6 98.587 99.037 98.868 98.868	74.7 170.00 0.266 PIPE ID 450 7.8 136.00	DESIGN FL DESIGN FL DESIGN FL DESIGN FL DIA (m) 0.45 HYDRAULIO DESIGN FL	SLOPE = OW TO FULL OW DEPTH = Head loss in straight throu Velocity = FI HL = KL * V ORMULA - F Area (m2) 0.16 SLOPE = OW TO FULL OW DEPTH = Head loss in straight throu Velocity = FI	0.44 FLOW RATIO (C manhole simplifie ugh ow / Area = /^2/ 2g LOWING FULL Perim. (m) 1.41 0.25 FLOW RATIO (C manhole simplifie ugh ow / Area =	% 0 0.889 0.329 ed method p. 7 Slope (%) 0.450 5% 0 0.450 5% 0 0.279	1.07 Hyd.R. (m) 0.11	KL=0.05 m/s	(l/s)
DIAMETER (mm) LENGTH (m) FLOW (I/s) HGL (m) **** MANHOLE COEF K= 0.05 TOTAL HGL (m) MAX. SURCHARGE (mm) FRICTION LOSS Block 146 INVERT ELEVATION (m) OBVERT ELEVATION (m) DIAMETER (mm) LENGTH (m) FLOW (I/s) HGL (m) ****	98.522 98.522 5 LOSS (m) 1 1 98.552 99.002 98.851	98.787 0.003 98.851 -121 TO MH 6 98.587 99.037 98.868	74.7 170.00 0.266 PIPE ID 450 7.8 136.00	DESIGN FL DESIGN FL DESIGN FL DESIGN FL DIA (m) 0.45 HYDRAULIO DESIGN FL	SLOPE = OW TO FULL OW DEPTH = Head loss in straight throu Velocity = FI HL = KL * V ORMULA - F Area (m2) 0.16 SLOPE = OW TO FULL OW DEPTH = Head loss in straight throu Velocity = FI	0.44 FLOW RATIO (C manhole simplifie ugh ow / Area = /^2/ 2g LOWING FULL Perim. (m) 1.41 0.25 FLOW RATIO (C manhole simplifie ugh ow / Area =	% 0 0.889 0.329 ed method p. 7 Slope (%) 0.450 5% 0 0.450 5% 0 0.279	1.07 Hyd.R. (m) 0.11	KL=0.05 m/s	(l/s)

STORM HYDRAULIC GRADE LINE DESIGN SHEET PROJECT TITLE CITY OF OTTAWA DEVELOPPER

JOB #: 352925 - 6.04 DATE: 2022-05-09 DESIGN: AC CHECKED: RM REV #: 1

				REV #: 1
FRICTION LOSS	EROM	ТО	PIPE	
NOTION LOSS	FROM MH	MH	ID	MANNING FORMULA - FLOWING FULL
llock 146	6	5		DIA Area Perim. Slope Hyd.R. Vel. Q
IVERT ELEVATION (m)	00.017	00 750	_	(m) (m2) (m) (%) (m) (m/s) (l/s) 0.45 0.16 1.41 0.450 0.11 1.20 190.7
DBVERT ELEVATION (m)	98.617 99.067	98.753 99.203	-	HYDRAULIC SLOPE = 0.53 %
IAMETER (mm)	99.007	99.203	450	DESIGN FLOW TO FULL FLOW RATIO (Q. 0.713
ENGTH (m)			30.4	DESIGN FLOW TO FOLL FLOW NATIO (G) 0.713
LOW (I/s)			136.00	
	00.070	09.020		Lead loss in mericals simulified method n. 71 (MM/DM)
IGL (m) ***	98.870	98.939	0.069	Head loss in manhole simplified method p. 71 (MWDM)
			_	
ANHOLE COEF K= 0.05	LOSS (m)	0.002		Velocity = Flow / Area = 0.86 m/s
				HL = KL * V^2/ 2g
TOTAL HGL (m)		99.032		
IAX. SURCHARGE (mm)		-171		
RICTION LOSS	FROM	ТО	PIPE	MANNING FORMULA - FLOWING FULL
	MH	MH	ID	
Block 146	5	4		DIA Area Perim. Slope Hyd.R. Vel. Q
				(m) (m2) (m) (%) (m) (m/s) (l/s)
VERT ELEVATION (m)	98.848	98.963		0.375 0.11 1.18 0.300 0.09 0.87 96.19
BVERT ELEVATION (m)	99.223	99.338		HYDRAULIC SLOPE = 0.32 %
			375 38.2	DESIGN FLOW TO FULL FLOW RATIO (Q. 0.530 IDESIGN FLOW DEPTH = 0.191
ENGTH (m)				
LOW (I/s)			51.00	
IGL (m) ***	99.032	99.064	0.032	Head loss in manhole simplified method p. 71 (MWDM)
				straight through K∟=0.05
IANHOLE COEF K= 0.05	LOSS (m)	0.001		Velocity = Flow / Area = 0.46 m/s
				$HL = K_{L} * V^{2}/2g$
OTAL HGL (m)		99.154		
MAX. SURCHARGE (mm)		-184		
				-
	EROM	то	DIDE	
RICTION LOSS	FROM MH	TO MH	PIPE ID	MANNING FORMULA - FLOWING FULL
	FROM MH 5	ТО МН 20	PIPE ID	
	MH	MH		
Block 146	MH 5 99.013	MH 20 99.314		DIA Area Perim. Slope Hyd.R. Vel. Q (m) (m2) (m) (%) (m) (m/s) (l/s) 0.25 0.05 0.79 0.450 0.06 0.81 39.90
NVERT ELEVATION (m)	MH 5	MH 20		DIA Area Perim. Slope Hyd.R. Vel. Q (m) (m2) (m) (%) (m) (m/s) (l/s) 0.25 0.05 0.79 0.450 0.06 0.81 39.90 HYDRAULIC SLOPE = 0.66 % I I 100.00
NVERT ELEVATION (m) DBVERT ELEVATION (m) DIAMETER (mm)	MH 5 99.013	MH 20 99.314	1D 250	DIA Area Perim. Slope Hyd.R. Vel. Q (m) (m2) (m) (%) (m) (m/s) (l/s) 0.25 0.05 0.79 0.450 0.06 0.81 39.90 HYDRAULIC SLOPE = 0.66 %
Slock 146 NVERT ELEVATION (m) BBVERT ELEVATION (m) DIAMETER (mm) ENGTH (m)	MH 5 99.013	MH 20 99.314	250 66.8	DIA Area Perim. Slope Hyd.R. Vel. Q (m) (m2) (m) (%) (m) (m/s) (l/s) 0.25 0.05 0.79 0.450 0.06 0.81 39.90 HYDRAULIC SLOPE = 0.66 % I I 100.00
Slock 146 NVERT ELEVATION (m) JBVERT ELEVATION (m) DIAMETER (mm) ENGTH (m) ENGTH (m)	MH 5 99.013	MH 20 99.314	1D 250	DIA Area Perim. Slope Hyd.R. Vel. Q (m) (m2) (m) (%) (m) (m/s) (l/s) 0.25 0.05 0.79 0.450 0.06 0.81 39.90 HYDRAULIC SLOPE = 0.66 %
Slock 146 NVERT ELEVATION (m) DBVERT ELEVATION (m) DIAMETER (mm) ENGTH (m) 'LOW (l/s)	MH 5 99.013	MH 20 99.314	250 66.8	DIA Area Perim. Slope Hyd.R. Vel. Q (m) (m2) (m) (%) (m) (m/s) (l/s) 0.25 0.05 0.79 0.450 0.06 0.81 39.90 HYDRAULIC SLOPE = 0.66 %
Slock 146 NVERT ELEVATION (m) DBVERT ELEVATION (m) DIAMETER (mm) ENGTH (m) 'LOW (l/s)	MH 5 99.013 99.263	MH 20 99.314 99.564	1D 250 66.8 30.00	DIA Area Perim. Slope Hyd.R. Vel. Q (m) (m2) (m) (%) (m) (m/s) (l/s) 0.25 0.05 0.79 0.450 0.06 0.81 39.90 HYDRAULIC SLOPE = 0.66 %
Slock 146 NVERT ELEVATION (m) DBVERT ELEVATION (m) DIAMETER (mm) ENGTH (m) FLOW (l/s) HGL (m) ***	MH 5 99.013 99.263	MH 20 99.314 99.564	1D 250 66.8 30.00	DIA Area Perim. Slope Hyd.R. Vel. Q (m) (m2) (m) (%) (m) (m/s) (l/s) 0.25 0.05 0.79 0.450 0.06 0.81 39.90 HYDRAULIC SLOPE = 0.66 %
Slock 146 NVERT ELEVATION (m) DBVERT ELEVATION (m) DIAMETER (mm) ENGTH (m) FLOW (l/s) HGL (m) ***	MH 5 99.013 99.263 99.032	MH 20 99.314 99.564 99.202	1D 250 66.8 30.00	DIA Area Perim. Slope Hyd.R. Vel. Q (m) (m2) (m) (%) (m) (m/s) (l/s) 0.25 0.05 0.79 0.450 0.06 0.81 39.90 HYDRAULIC SLOPE = 0.66 % Image: Comparison of the structure of the structur
Slock 146 NVERT ELEVATION (m) DBVERT ELEVATION (m) DIAMETER (mm) ENGTH (m) *LOW (l/s) iGL (m) **** MANHOLE COEF K= 0.05	MH 5 99.013 99.263 99.032	MH 20 99.314 99.564 99.202	1D 250 66.8 30.00	DIA Area Perim. Slope Hyd.R. Vel. Q (m) (m2) (m) (%) (m) (m/s) (l/s) 0.25 0.05 0.79 0.450 0.06 0.81 39.90 HYDRAULIC SLOPE = 0.66 %
Slock 146 NVERT ELEVATION (m) DBVERT ELEVATION (m) DIAMETER (mm) ENGTH (m) 'LOW (l/s) IGL (m) **** MANHOLE COEF 'OTAL HGL (m)	MH 5 99.013 99.263 99.032	MH 20 99.314 99.564 99.202 0.001	1D 250 66.8 30.00	DIA Area Perim. Slope Hyd.R. Vel. Q (m) (m2) (m) (%) (m) (m/s) (l/s) 0.25 0.05 0.79 0.450 0.06 0.81 39.90 HYDRAULIC SLOPE = 0.66 %
Slock 146 NVERT ELEVATION (m) DBVERT ELEVATION (m) DIAMETER (mm) ENGTH (m) LOW (l/s) IGL (m) MANHOLE COEF K= 0.05 OTAL HGL (m) MAX. SURCHARGE (mm)	MH 5 99.013 99.263 99.032 UOSS (m)	MH 20 99.314 99.564 99.202 0.001 99.474 -90	250 66.8 30.00 0.170	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$
Slock 146 NVERT ELEVATION (m) DBVERT ELEVATION (m) DIAMETER (mm) ENGTH (m) LOW (l/s) IGL (m) *** MANHOLE COEF K= 0.05 OTAL HGL (m) MAX. SURCHARGE (mm)	MH 5 99.013 99.263 99.032 LOSS (m) LOSS (m)	MH 20 99.314 99.564 99.202 0.001 99.474 -90 TO	ID 250 66.8 30.00 0.170 PIPE	DIA Area Perim. Slope Hyd.R. Vel. Q (m) (m2) (m) (%) (m) (m/s) (l/s) 0.25 0.05 0.79 0.450 0.06 0.81 39.90 HYDRAULIC SLOPE = 0.66 %
Slock 146 NVERT ELEVATION (m) JBVERT ELEVATION (m) DIAMETER (mm) ENGTH (m) 'LOW (l/s) HGL (m) *** MANHOLE COEF COTAL HGL (m) MAX. SURCHARGE (mm)	MH 5 99.013 99.263 99.032 UOSS (m) COSS (m) FROM MH	MH 20 99.314 99.564 99.202 0.001 99.474 -90 TO MH	250 66.8 30.00 0.170	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$
NVERT ELEVATION (m) BVERT ELEVATION (m) IAMETER (mm) ENGTH (m) LOW (l/s) IGL (m) TANHOLE COEF K= 0.05 OTAL HGL (m) IAX. SURCHARGE (mm)	MH 5 99.013 99.263 99.032 LOSS (m) LOSS (m)	MH 20 99.314 99.564 99.202 0.001 99.474 -90 TO	ID 250 66.8 30.00 0.170 PIPE	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$
NVERT ELEVATION (m) DBVERT ELEVATION (m) DBVERT ELEVATION (m) NAMETER (mm) ENGTH (m) LOW (l/s) IGL (m) *** MANHOLE COEF VANHOLE COEF K OTAL HGL (m) IAX. SURCHARGE (mm) RICTION LOSS	MH 5 99.013 99.263 99.032 UOSS (m) COSS (m) FROM MH	MH 20 99.314 99.564 99.202 0.001 99.474 -90 TO MH	ID 250 66.8 30.00 0.170 PIPE	DIA Area Perim. Slope Hyd.R. Vel. Q (m) (m2) (m) (%) (m) (m/s) (l/s) 0.25 0.05 0.79 0.450 0.06 0.81 39.90 HYDRAULIC SLOPE = 0.66 % 0.06 0.81 39.90 DESIGN FLOW TO FULL FLOW RATIO (Q. 0.752 0.51 0.51 0.752 DESIGN FLOW DEPTH = 0.160 0.160 0.81 39.90 Head loss in manhole simplified method p. 71 (MWDM) straight through KL=0.05 Velocity = Flow / Area = 0.61 m/s HL = KL * V^2/ 2g MANNING FORMULA - FLOWING FULL MANNING FORMULA - FLOWING FULL Q
NVERT ELEVATION (m) BVERT ELEVATION (m) BVERT ELEVATION (m) IAMETER (mm) ENGTH (m) LOW (l/s) GL (m) *** IANHOLE COEF K= 0.05 OTAL HGL (m) IAX. SURCHARGE (mm) RICTION LOSS Jock 146 VVERT ELEVATION (m)	MH 5 99.013 99.263 99.032 UOSS (m) UOSS (m) FROM MH 4	MH 20 99.314 99.564 99.202 0.001 0.001 99.474 -90 TO MH 21	ID 250 66.8 30.00 0.170 PIPE ID PIPE	DIA Area Perim. Slope Hyd.R. Vel. Q (m) (m2) (m) (%) (m) (m/s) (l/s) 0.25 0.05 0.79 0.450 0.06 0.81 39.90 HYDRAULIC SLOPE = 0.66 % Image: Constraint of the straight through 0.752 Image: Constraint of the straight of the straight through KL=0.05 KL=0.05 Velocity = Flow / Area = 0.61 m/s HL = KL * V^2/ 2g Image: Constraint of the straight of the strai
NVERT ELEVATION (m) BVERT ELEVATION (m) BVERT ELEVATION (m) DIAMETER (mm) ENGTH (m) LOW (l/s) IGL (m) **** MANHOLE COEF K= 0.05 OTAL HGL (m) MAX. SURCHARGE (mm) RICTION LOSS BIOCK 146 NVERT ELEVATION (m) DBVERT ELEVATION (m)	MH 5 99.013 99.263 99.032 UOSS (m) UOSS (m) FROM MH 4 99.198	MH 20 99.314 99.564 99.202 0.001 0.001 99.474 -90 TO MH 21 99.432	ID 250 66.8 30.00 0.170 PIPE ID 200	DIA Area Perim. Slope Hyd.R. Vel. Q (m) (m2) (m) (%) (m) (m/s) (l/s) 0.25 0.05 0.79 0.450 0.06 0.81 39.90 HYDRAULIC SLOPE = 0.66 %
Slock 146 NVERT ELEVATION (m) JBVERT ELEVATION (m) DIAMETER (mm) ENGTH (m) 'LOW (I/s) HGL (m) 'HANHOLE COEF MANHOLE COEF MAX. SURCHARGE (mm) MAX. SURCHARGE (mm) RICTION LOSS Slock 146 NVERT ELEVATION (m) DBVERT ELEVATION (m) DIAMETER (mm) ENGTH (m)	MH 5 99.013 99.263 99.032 UOSS (m) UOSS (m) FROM MH 4 99.198	MH 20 99.314 99.564 99.202 0.001 0.001 99.474 -90 TO MH 21 99.432	ID 250 66.8 30.00 0.170 PIPE ID 200 39.0	DIA Area Perim. Slope Hyd.R. Vel. Q (m) (m2) (m) (%) (m) (m/s) (l/s) 0.25 0.05 0.79 0.450 0.06 0.81 39.90 HYDRAULIC SLOPE = 0.66 % Image: Constraint of the straight through 0.752 Image: Constraint of the straight of the straight through KL=0.05 KL=0.05 Velocity = Flow / Area = 0.61 m/s HL = KL * V^2/ 2g Image: Constraint of the straight of the strai
Block 146 NVERT ELEVATION (m) DBVERT ELEVATION (m) DIAMETER (mm) LENGTH (m) FLOW (l/s) 4GL (m) #ANHOLE COEF K= 0.05 OTAL HGL (m) #AX. SURCHARGE (mm) *RICTION LOSS Block 146 NVERT ELEVATION (m) DBVERT ELEVATION (m) DAMETER (mm) ENGTH (m) ENGTH (m)	MH 5 99.013 99.263 99.032 UOSS (m) UOSS (m) FROM MH 4 99.198	MH 20 99.314 99.564 99.202 0.001 0.001 99.474 -90 TO MH 21 99.432	ID 250 66.8 30.00 0.170 PIPE ID 200	DIA Area Perim. Slope Hyd.R. Vel. Q (m) (m2) (m) (%) (m) (m/s) (l/s) 0.25 0.05 0.79 0.450 0.06 0.81 39.97 HYDRAULIC SLOPE = 0.66 % 0.06 0.81 39.97 DESIGN FLOW TO FULL FLOW RATIO (Q. 0.752 0.55 0.79 0.450 0.06 0.81 39.97 DESIGN FLOW TO FULL FLOW RATIO (Q. 0.752 0.55 0.7752 0.55 0.7752 0.56 0.7752 DESIGN FLOW DEPTH = 0.160 KL=0.05 Velocity = Flow / Area = 0.61 m/s HL = KL * V^2/ 2g MANNING FORMULA - FLOWING FULL Max Max Vel. Q (m) (m2) (m) (%) (m) (m/s) (Vis) 0.2 0.03 0.63 0.600 0.05 0.81 25.33 HYDRAULIC SLOPE = 0.00 % 0 0.002 0.002 0.002 0.002
Block 146 NVERT ELEVATION (m) DBVERT ELEVATION (m) DIAMETER (mm) .ENGTH (m) *** MANHOLE COEF K= MANHOLE COEF K= 0.05 TOTAL HGL (m) MAX. SURCHARGE (mm) *RICTION LOSS Block 146 NVERT ELEVATION (m) DBVERT ELEVATION (m) DBVERT ELEVATION (m) JIAMETER (mm) .ENGTH (m) *LOW (l/s)	MH 5 99.013 99.263 99.032 UOSS (m) UOSS (m) FROM MH 4 99.198	MH 20 99.314 99.564 99.202 0.001 0.001 99.474 -90 TO MH 21 99.432	ID 250 66.8 30.00 0.170 PIPE ID 200 39.0	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$
Block 146 NVERT ELEVATION (m) DBVERT ELEVATION (m) DIAMETER (mm) .ENGTH (m) *** MANHOLE COEF K= MANHOLE COEF K= 0.05 TOTAL HGL (m) MAX. SURCHARGE (mm) *RICTION LOSS Block 146 NVERT ELEVATION (m) DBVERT ELEVATION (m) DBVERT ELEVATION (m) JIAMETER (mm) .ENGTH (m) *LOW (l/s)	MH 5 99.013 99.263 99.032 LOSS (m) LOSS (m) FROM MH 4 99.198 99.398	MH 20 99.314 99.564 99.202 0.001 99.474 -90 TO MH 21 99.432 99.632	ID 250 66.8 30.00 0.170 PIPE ID 200 39.0 0.00	DIA Area Perim. Slope Hyd.R. Vel. Q (m) (m2) (m) (%) (m) (m/s) (l/s) 0.25 0.05 0.79 0.450 0.06 0.81 39.97 HYDRAULIC SLOPE = 0.66 % 0.06 0.81 39.97 DESIGN FLOW TO FULL FLOW RATIO (Q. 0.752 0.55 0.79 0.450 0.06 0.81 39.97 DESIGN FLOW TO FULL FLOW RATIO (Q. 0.752 0.55 0.7752 0.55 0.7752 0.56 0.7752 DESIGN FLOW DEPTH = 0.160 KL=0.05 Velocity = Flow / Area = 0.61 m/s HL = KL * V^2/ 2g MANNING FORMULA - FLOWING FULL Max Max Vel. Q (m) (m2) (m) (%) (m) (m/s) (Vs) 0.2 0.03 0.63 0.600 0.05 0.81 25.35 HYDRAULIC SLOPE = 0.00 % 0.002 0.002 0.002 0.002
Block 146 NVERT ELEVATION (m) DBVERT ELEVATION (m) DIAMETER (mm) ENGTH (m) FLOW (l/s) IGL (m) *** MANHOLE COEF KENCHARGE (mm) TRICTION LOSS Block 146 NVERT ELEVATION (m) DBVERT ELEVATION (m) DBVERT ELEVATION (m) DBVERT ELEVATION (m) DBAMETER (mm) ENGTH (m) FLOW (l/s) IGL (m)	MH 5 99.013 99.263 99.032 LOSS (m) LOSS (m) FROM MH 4 99.198 99.398	MH 20 99.314 99.564 99.202 0.001 99.474 -90 TO MH 21 99.432 99.632	ID 250 66.8 30.00 0.170 PIPE ID 200 39.0 0.00	DIA Area Perim. Slope Hyd.R. Vel. Q (m) (m2) (m) (%) (m) (m/s) (l/s) 0.25 0.05 0.79 0.450 0.06 0.81 39.90 HYDRAULIC SLOPE = 0.66 % 0.06 0.81 39.90 DESIGN FLOW TO FULL FLOW RATIO (Q. 0.752 0.51 0.51 0.51 DESIGN FLOW TO FULL FLOW RATIO (Q. 0.752 0.66 0.66 0.66 0.66 DESIGN FLOW TO FULL FLOW RATIO (Q. 0.752 0.51 0.60 0.81 39.90 Head loss in manhole simplified method p. 71 (MWDM) straight through KL=0.05 Velocity = Flow / Area = 0.61 m/s HL = KL * V^2/ 2g HL = KL * V^2/ 2g MANNING FORMULA - FLOWING FULL Q (m) (m/s) (Vis) 0.2 0.03 0.63 0.600 0.05 0.81 25.33 HYDRAULIC SLOPE = 0.00 % 0 0 0 0 0 0 25.33 DESIGN
Block 146 NVERT ELEVATION (m) DBVERT ELEVATION (m) DIAMETER (mm) LENGTH (m) FLOW (l/s) IGL (m) *** MANHOLE COEF K= 0.05 OTAL HGL (m) MAX. SURCHARGE (mm) FRICTION LOSS Block 146 NVERT ELEVATION (m) DBVERT ELEVATION (m) DBVERT ELEVATION (m) DAMETER (mm) LENGTH (m) LOW (l/s) IGL (m)	MH 5 99.013 99.263 99.032 LOSS (m) LOSS (m) FROM MH 4 99.198 99.398 99.398	MH 20 99.314 99.564 99.564 99.202 0.001 99.474 -90 TO MH 21 99.432 99.632 99.632	ID 250 66.8 30.00 0.170 PIPE ID 200 39.0 0.00	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$
Block 146 NVERT ELEVATION (m) DBVERT ELEVATION (m) DIAMETER (mm) LENGTH (m) *** MANHOLE COEF K= 0.05 FOTAL HGL (m) #AX. SURCHARGE (mm) *RICTION LOSS Block 146 NVERT ELEVATION (m) DIAMETER (mm) LENGTH (m) -ENGTH (m) -ENGTH (m) -EUQU (//s) -GL (m) ***	MH 5 99.013 99.263 99.032 LOSS (m) LOSS (m) FROM MH 4 99.198 99.398 99.398	MH 20 99.314 99.564 99.564 99.202 0.001 99.474 -90 TO MH 21 99.432 99.632 99.632	ID 250 66.8 30.00 0.170 PIPE ID 200 39.0 0.00	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$
NANHOLE COEF K= 0.05 FOTAL HGL (m) MAX. SURCHARGE (mm) FRICTION LOSS Slock 146 NVERT ELEVATION (m) DBVERT ELEVATION (m) DBVERT ELEVATION (m) DDAMETER (mm)	MH 5 99.013 99.263 99.032 LOSS (m) LOSS (m) FROM MH 4 99.198 99.398 99.398	MH 20 99.314 99.564 99.202 0.001 99.474 -90 TO MH 21 99.432 99.632 99.632 99.632	ID 250 66.8 30.00 0.170 PIPE ID 200 39.0 0.00	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$

IBI GROUP

		STORM HYDRAU	LIC GRADE	LINE DESIGN	SHEET			JOB #:	352925 - 6.04	
IBI		PROJECT TITLE						DATE:	2022-05-09	
GROUP		CITY OF OTTAW	Α					DESIGN:	AC	
GROUI		DEVELOPPER						CHECKED:		
								REV #:	1	
FRICTION LOSS	FROM	TO	PIPE	MANNING F	ORMULA - FI	LOWING FULL				
Block 146	MH	MH	ID	DIA	A	Denim	Olere e	L Lb of D) (-1	0
BIOCK 146	4	3	-	DIA (m)	Area (m2)	Perim. (m)	Slope (%)	Hyd.R. (m)	Vel. (m/s)	Q (I/s)
INVERT ELEVATION (m)	99.058	99.168	-	0.3	0.07	0.94	0.350	0.08	0.81	56.95
OBVERT ELEVATION (m)	99.358	99.468		HYDRAULIC		0.49		0.00	0.01	30.33
DIAMETER (mm)	33.550	33.400	300		-	FLOW RATIO (C		11 11		
LENGTH (m)			31.7		OW DEPTH =	· · · ·	0.141			
FLOW (I/s)			26.00					1		
HGL (m) ***	99.154	99.177	0.023		Head loss in	manhole simplifie	d method p. 7	71 (MWDM)		1
					straight throu	Jah		. ,	K∟=0.05	
MANHOLE COEF K= 0.05	LOSS (m)	0.000			Velocity = Flo	•		0.37	m/s	
					HL = K∟ * \	√^2/ 2g				
TOTAL HGL (m)		99.309	Ī							4
MAX. SURCHARGE (mm)		-159	7							

		= 0								
FRICTION LOSS	FROM	то	PIPE	MANNING F	ORMULA - FI	LOWING FULL				
	MH	MH	ID							
Block 146	3	2		DIA	Area	Perim.	Slope	Hyd.R.	Vel.	Q
				(m)	(m2)	(m)	(%)	(m)	(m/s)	(l/s)
INVERT ELEVATION (m)	99.298	99.342		0.2	0.03	0.63	0.600	0.05	0.81	25.54
OBVERT ELEVATION (m)	99.498	99.542		HYDRAULIC	SLOPE =	0.48	%			
DIAMETER (mm)			200	DESIGN FLO	OW TO FULL	FLOW RATIO (Q	0.000			
LENGTH (m)			7.3	DESIGN FLO	OW DEPTH =		0.002			
FLOW (I/s)			0.00							
HGL (m) ***	99.309	99.309	0.000	1	Head loss in	manhole simplifie	d method p. 7	1 (MWDM)		
					straight throu	ugh			K∟=0.05	
MANHOLE COEF K= 0.05	LOSS (m)	0.000			Velocity = Fle	ow / Area =		0.00	m/s	
					HL = K∟ * \	√^2/ 2g				
TOTAL HGL (m)		99.344								
MAX. SURCHARGE (mm)		-198		J						

FRICTION LOSS	FROM	FROM TO PIPE MANNING FORMULA - FLOWING FULL								
	MH	MH	ID							
Block 146	2	1		DIA	Area	Perim.	Slope	Hyd.R.	Vel.	Q
				(m)	(m2)	(m)	(%)	(m)	(m/s)	(l/s)
INVERT ELEVATION (m)	99.372	99.514		0.2	0.03	0.63	0.600	0.05	0.81	25.35
OBVERT ELEVATION (m)	99.572	99.714		HYDRAULIC	SLOPE =	0.72				
DIAMETER (mm)			200	DESIGN FL	OW TO FULL	l				
LENGTH (m)			23.7	DESIGN FLOW DEPTH = 0.002						
FLOW (I/s)			0.00					4		
HGL (m) ***	99.344	99.344	0.000		Head loss in	manhole simplifie	d method p. 7	'1 (MWDM)		
					straight throu	ıgh			K∟=0.05	
MANHOLE COEF K= 0.05	LOSS (m)	0.000			Velocity = Flo	0.00	0.00 m/s			
			1		HL = K∟ * \	/^2/ 2g				
TOTAL HGL (m)		99.516								
MAX. SURCHARGE (mm)		-198	71							

		STORM HYDRAULIC GRADE LINE (1)									
			100 YEAR 3 H	IOUR CHICAG	iO	100 YEAR 3 HOUR CHICAGO + 20%					
XPSWMM NODE	USF (M)		NT SANITARY	ANNUAL EV	ENT SANITARY		NT SANITARY	ANNUAL EVENT SANITARY			
		F HGL (M)*	LOW USF-HGL	F HGL (M)*	LOW USF-HGL (M)	F HGL (M)*	LOW USF-HGL	F HGL (M)*	LOW USF-HGL (M)		
MH11300	95.63	93.91	(M) 1.72	93.91	1.72	93.96	(M) 1.67	93.96	1.67		
MH11301	96.58	94.96	1.62	94.96	1.62	94.96	1.62	94.96	1.62		
MH11302	97.98	94.90	2.28	94.90 95.70	2.28	94.90	2.27	95.71	2.27		
MH11302	97.98	96.23	2.28	96.23	2.20	96.23	2.27	96.23	2.27		
MH11303	99.07	96.36		96.36			2.44		2.44		
			2.87		2.87	96.36	-	96.36			
MH11305	99.28	96.43	2.85	96.43	2.85	96.43	2.85	96.43	2.85		
MH11311	96.38	94.90	1.48	94.90	1.48	94.90	1.48	94.90	1.48		
MH11312	97.28	95.85	1.43	95.85 96.13	1.43	95.85	1.43	95.85	1.43		
MH11313	97.48		96.13 1.35		1.35	96.13	1.35	96.13	1.35		
MH11314	98.63	97.27	1.36	97.27	1.36	97.27	1.36	97.27	1.36		
MH11315	100.93	99.51	1.42	99.51	1.42	99.51	1.42	99.51	1.42		
MH11316	100.93	99.60	1.33	99.60	1.33	99.60	1.33	99.60	1.33		
MH11321	97.63	96.11	1.52	96.11	1.52	96.11	1.52	96.11	1.52		
MH11322	97.88	96.61	1.27	96.61	1.27	96.61	1.27	96.61	1.27		
MH11323	100.08	98.80	1.28	98.80	1.28	98.80	1.28	98.80	1.28		
MH11331	98.93	97.60	1.33	97.60	1.33	97.60	1.33	97.60	1.33		
MH11332	98.93	97.73	1.21	97.73	1.21	97.73	1.21	97.73	1.21		
MH11333	100.38	98.71	1.67	98.71	1.67	98.71	1.67	98.71	1.67		
MH11334	100.88	99.24	1.64	99.24	1.64	99.24	1.64	99.24	1.64		
MH11350	96.48	95.77	0.71	95.77	0.71	95.77	0.71	95.77	0.71		
MH11351	96.63	95.42	1.21	95.42	1.21	95.42	1.21	95.42	1.21		
MH11400	95.43	94.56	0.87	94.56	0.87	94.59	0.84	94.59	0.84		
MH11401	96.03	94.85	1.18	94.85	1.18	94.89	1.14	94.89	1.14		
MH11402	95.78	94.89	0.89	94.89	0.89	94.94	0.84	94.94	0.84		
MH11403	96.01	95.06	0.95	95.06	0.95	95.11	0.90	95.11	0.90		
MH11404	96.73	95.62	1.11	95.62	1.11	95.63	1.10	95.63	1.10		
MH11405	97.13	96.03	1.10	96.03	1.10	96.03	1.10	96.03	1.10		
MH11406	97.68	96.77	0.91	96.77	0.91	96.77	0.91	96.77	0.91		
MH11407	98.08	97.23	0.85	97.23	0.85	97.23	0.85	97.23	0.85		
MH11408	98.73	97.49	1.24	97.49	1.24	97.49	1.24	97.49	1.24		

Table 5.10 Storm Hydraulic Grade Line - Local Sewers within Barrett Lands Phase 3 for the 100 Year 3 Hour Chicago and 100 Year 3 Hour Chicago increased by 20% Storm Events

(1) HGL results were obtained from the XPSWMM models entitled 34738-202002-RARE-3CHI100.out, 34738-202002-ANN-3CHI100.out, 34738-202002-ANN-3CHI120.out and enclosed as part of the digital submission.

sarrett Block 146 sarrett Co-Tenancy			2022-05-06	
itch S6 lew Ditch Section Required 1:1	00 yr. flow = 95.98 l/s	Length = 17.26 m 0.096 Cu m/sec		
rom Seelye use n = hoose: slope S =	0.013 (Channels) 12.17 %	Up Stream Ditch btm=	area= 102.10 wp=	
Ditch Bottom	0.00 metres	Dn Stream Ditch Btm =	100.00	
Ditch slopes Water depth	20.00 :1	Difference =	2.10 Top Bank = 100.15	
water deptn heck Ditch Capacity (Q)		eded to carry 0.13 Cu. M/sec)	Free Board = 0.10	
Q =	0.097 Cu M/sec	and Velocity = 2.20 M		
itch S6 ew Ditch Section Required 1:1 rom Seelye use n =	00 yr. +20% flow = 138.19 l/s 0.013 (Channels)	Length = 17.26 m 0.138 Cu m/sec		
noose: slope S =	12.17 %	Up Stream Ditch btm=	area= 102.10 wp=	
Ditch Bottom Ditch slopes	0.00 metres 20.00 :1	Dn Stream Ditch Btm = Difference =	100.00 2.10	
Water depth		eded to carry 0.13 Cu. M/sec)	Top Bank = 100.15	
heck Ditch Capacity (Q) Q =	0.141 Cu M/sec	and Velocity = 2.41 M		
itch S10		Length = 38.00 m		
ew Ditch Section Required 1:1 rom Seelye use n =	0.013 (Channels)	0.053 Cu m/sec	area=	
noose: slope S = Ditch Bottom	0.89 % 0.00 metres	Up Stream Ditch btm= Dn Stream Ditch Btm =	101.44 wp= 101.10	
Ditch slopes	33.00 :1	Difference =	0.34	
Water depth heck Ditch Capacity (Q)		eded to carry 0.13 Cu. M/sec)	Top Bank = 101.25 Free Board = 0.10	
Q =	0.054 Cu M/sec	and Velocity = 0.63 M		
tch S10 aw Ditch Section Required 1:1	00 yr. +20% flow = 47.04 l/s	Length = 38.00 m 0.047 Cu m/sec		
rom Seelye use n =	0.013 (Channels)		area=	
oose: slope S = Ditch Bottom	0.89 % 0.00 metres	Up Stream Ditch btm= Dn Stream Ditch Btm =	101.44 wp= 101.10	
Ditch slopes Water depth	33.00 :1	Difference =	0.34 Top Bank = 101.25	
heck Ditch Capacity (Q)		eded to carry 0.13 Cu. M/sec)	Free Board = 0.10	
Q =	0.049 Cu M/sec	and Velocity = 0.61 M		
tch S20 aw Ditch Section Required 1:1	00 vr. flow = 0 1/s	Length = 26.64 m 0.000 Cu m/sec		
rom Seelye use n =	0.013 (Channels)		area=	
oose: slope S = Ditch Bottom	3.72 % 0.00 metres	Up Stream Ditch btm= Dn Stream Ditch Btm =	102.39 wp= 101.40	
Ditch slopes Water depth	33.00 :1	Difference = eded to carry 0.13 Cu. M/sec)	0.99 Top Bank = 101.55	
neck Ditch Capacity (Q)			Free Board = 0.15	
Q =	0.000 Cu M/sec	and Velocity = 0.02 M	5	
tch S20 Dish Sector Deviced 4.4	00	Length = 26.64 m		
ew Ditch Section Required 1:1 rom Seelye use n =	00 yr. +20% flow = 5.02 l/s 0.013 (Channels)	0.005 Cu m/sec	area=	
oose: slope S = Ditch Bottom	3.72 % 0.00 metres	Up Stream Ditch btm= Dn Stream Ditch Btm =	102.39 wp= 101.40	
Ditch slopes	33.00 :1	Difference =	0.99	
Water depth neck Ditch Capacity (Q)	0.016 metres (depth nee	eded to carry 0.13 Cu. M/sec)	Top Bank = 101.55 Free Board = 0.13	
Q =	0.005 Cu M/sec	and Velocity = 0.59 M	5 0.13	
itch S20B		Length = 37.00 m		
tch S20B ew Ditch Section Required 1:1 rom Seelye use n =	00 yr. flow = 6.22 l/s 0.013 (Channels)	0.006 Cu m/sec	area=	
oose: slope S =	0.86 %	Up Stream Ditch btm=	102.47 wp=	
Ditch Bottom Ditch slopes	0.00 metres 33.00 :1	Dn Stream Ditch Btm = Difference =	102.15 0.32	
Water depth heck Ditch Capacity (Q)		eded to carry 0.13 Cu. M/sec)	Top Bank = 102.3 Free Board = 0.13	
Q =	0.006 Cu M/sec	and Velocity = 0.36 M		
itch S20B		Length = 37.00 m		_
ew Ditch Section Required 1:1 rom Seelye use n =	00 yr. +20% flow = 11.24 l/s 0.013 (Channels)	0.011 Cu m/sec	area=	
ioose: slope S =	0.86 %	Up Stream Ditch btm=	102.47 wp=	
			102.15	
Ditch Bottom Ditch slopes	0.00 metres 33.00 :1	Dn Stream Ditch Btm = Difference =	0.32	
Ditch Bottom Ditch slopes Water depth	33.00 :1		0.32 Top Bank = 102.3	
Ditch Bottom Ditch slopes Water depth	33.00 :1	Difference =	0.32 Top Bank = 102.3 Free Board = 0.12	
Ditch Bottom Ditch slopes Water depth heck Ditch Capacity (Q) Q =	33.00 :1 0.028 metres (depth nee	Difference = aded to carry 0.13 Cu. M/sec) and Velocity = 0.42 M	0.32 Top Bank = 102.3 Free Board = 0.12	
Ditch Bottom Ditch Stopes Water depth reck Ditch Capacity (Q) Q = tch S5 w Ditch Section Required 1:1	33.00 :1 0.028 metres (depth nee 0.011 Cu M/sec 00 yr. flow = 59.8 l/s	Difference = eded to carry 0.13 Cu. M/sec)	0.32 Top Bank = 102.3 Free Board = 0.12	
Ditch Bottom Ditch slopes Water depth neck Ditch Capacity (Q) Q = tch S5 tw Ditch Section Required 1:1 om Seelye use n = cose: slope S =	33.00 :1 0.028 metres (depth new 0.011 Cu M/sec 00 yr: flow = 59.8 l/s 0.013 (Channels) 1.20 %	Difference = aded to carry 0.13 Cu. Misec) and Velocity = 0.42 Mi Length = 21.30 m 0.060 Cu misec Up Stream Ditch bim=	0.32 Top Bank = 102.3 Free Board = 0.12 s area= 102.47 wp=	
Ditch Bottom Ditch stopes Water depth heck Ditch Capacity (Q) Q = tch S5 we Ditch Section Required 1:1 om Seelye use n = coose: stope S = Ditch Bottom	33.00 :1 0.028 metres (depth new 0.011 Cu M/sec 00 yr. flow = 59.8 l/s 0.013 (Channels)	Difference = eded to carry 0.13 Cu. Misec) and Velocity = 0.42 M Length = 21.30 m 0.060 Cu misec Up Stream Ditch btm= Dn Stream Ditch btm =	0.32 Top Bank = 102.3 Free Board = 0.12 s area= 102.47 wp= 102.15	
Dich Bottom Dich slopes Water depth Heck Dich Capacity (Q) Q = tch S5 w Dich Section Required 1:1 om Seelye use n = w Dich Bottom Dich slopes = Dich Bottom Dich slopes Water depth	33.00 :1 0.022 metres (depth nee 0.011 Cu M/sec 00 yr: flow = 59.8 l/s 0.013 (Channels) 1.20 % 0.00 metres 33.00 :1	Difference = aded to carry 0.13 Cu: Misec) and Velocity = 0.42 Mi Length = 21.30 m 0.060 Cu misec Up Stream Ditch bim=	0.32 Top Bank = 102.3 Free Board = 0.12 * 102.47 wp= 102.15 0.32 Top Bank = 102.3	
Dich Bottom Dich slopes Water depth Heck Dich Capacity (Q) Q = tch S5 w Dich Section Required 1:1 om Seelye use n = w Dich Bottom Dich slopes = Dich Bottom Dich slopes Water depth	33.00 :1 0.022 metres (depth nee 0.011 Cu M/sec 00 yr: flow = 59.8 l/s 0.013 (Channels) 1.20 % 0.00 metres 33.00 :1	Difference = and Velocity = 0.42 M/ Length = 21.30 m 0.060 Cu m/sc Up Stream Ditch btm= Dn Stream Ditch Btm = Difference =	0.32 Top Bark = 102.3 Free Board = 0.12 5 102.47 wp= 102.15 0.32 Top Bark = 102.3 Free Board = 0.10	
Dich Bottom Dich Nopes Water depth exck Ditch Capacity (Q) Q = w Dich Socion Required 1:1 mo Seelye use n = Dich Bottom Dich Slopes Water depth exck Dich Capacity (Q) Q = tch S5	33.00 :1 0.028 matres (depth nee 0.011 Cu Mhec 00 yr, flow = 59.8 l/s 0.013 (Channels) 1.20 % 0.00 metres 33.00 :1 0.051 metres (depth nee 0.063 Cu Mhec	Difference = and Velocity = 0.42 Mi and Velocity = 0.42 Mi Length = 2.10 mi Up Stream Dich Bhrm = Difference = Difference = Difference = and Velocity = 0.73 Mi Length = 2.130 mi	0.22 Top Bark = 102.3 Free Board = 0.12 102.47 102.47 0.25 0.25 Top Bark = 102.3 Free Board = 0.10 5	
Dich Bottom Dich Stopes Water depth leeck Ditch Capacity (Q) Q = tch S5 wo Dich Section Required 1:1 om Seelye use n = once: stope S = Dich Bottom Dich Stopes Water depth leeck Ditch Capacity (Q) Q = tch S5	33.00 :1 0.028 metres (depth ner 0.011 Cu Mixec 00 yr. flow = 50.8 l/s 0.013 (Channels) 1.20 % 0.00 metres 33.00 :1 0.651 metres (depth ner 0.063 Cu Mixec 0.063 Cu Mixec	Difference = and Velocity = 0.42 MJ Length = 21.30 m 0.000 Cur mice 0.000 Cur mice by Sheara Dick bitms 0.000 Cur mice Difference 0.000 Cur mice and Velocity = 0.73 MI	0.22 Top Bank = 102.3 Free Board = 0.12 102.47 102.45 0.2 Top Bank = 102.3 Free Board = 0.10 5	
Dick foldom Dick hopes Water depth neck Dith Appart(r) with 5 with 5 with 6 with Section Request 11 om 5 early use n = cocce: slop 6 is Dich foldom Dich foldom Dich foldom Dick foldom Dich foldom Dick foldom Dick foldom Dick foldom	33.00 :1 0.028 metres (depth nor 0.011 Cu Misec 00 yr. Row 18 8 16 0.013 (Channels) 1.20 % 0.00 metres 33.00 :1 0.051 metres 33.00 :1 0.051 metres (depth nor 0.053 Cu Misec 00 yr. 420% Row = 83.24 16 0.013 (Channels) 1.20 %	Difference = and Velocity = 0.42 M and Velocity = 0.42 M Length = 113 Dm 0.000 Comisso 0.000 Comisso Model of Length = 0.73 M Length = 213 Dm 0.003 Comisso 0.003 Comisso Length = 213 Dm 0.003 Comisso 0.003 Comisso Up Steam Delash Itim 0.003 Comisso	0.2 Top Bark = 0.2.3 Free Board = 0.2 102.47 exp= 102.47 exp= 0.32 3.2 Top Bark = 0.2.3 Free Board = 0.10 3.2 5 5 5 5 5 5 5 5 5 5 5 5 5	
Dich Botom Dich Hotops Water deph Nater Staff O = O = Dich Capasity (C) Staff Water Staff Dich Staff Dich Botom	33.00 :1 0.028 metres (depth nec 0.011 Cu Missec 0.013 (Chamels) 1.20 % 0.003 (Chamels) 1.20 % 0.006 metres (depth nec 0.063 Cu Missec 0.063 Cu Missec 0.063 Cu Missec 0.007 +20% files = 83.24 lis 0.013 (Chamels) 1.20 % 0.013 (Chamels) 0.013 (Chamels) 1.20 % 0.013 (Chamels) 0.013 (Chamels) 0.014 (Chamels) 0.014 (Chamels) 0.014 (Chamels) 0.014 (Chamels) 0.015 (Chamels) 0.015 (Chamels) 0.015 (Chamels) 0.014	Difference = and Velocity = 0.42 Mill Length 1: 2130 million 0.000 Cumhles 0.000 Cumhles Up Stream Diabh Bitm = Difference = Difference = 0.010 Cumhles Difference = 0.73 Million Difference = 0.73 Million Length = 1.23 million 0.003 Cumhles 1.30 million	0.2 Top Bark = 102.3 Yee Board = 0.12 102.47 wp= 102.47 wp= 102.5 0.22 Top Bark = 102.3 Pree Board = 0.12 9 xma= 102.47 wp= 102.47 wp=	
Dich Bottom Dich Hotops Water deph Act Dich Capardy (C) Act State State State State State Dich Alopes State Dich Alopes State Dich Alopes State Ach Alopes State Dich Alopes State Ach Alopes State Charles State State State State State State State State State State Dich Alopes State State State State State State State Dich Alopes State	33.00 1 0.028 miles (depth ne 0.011 Cu Miles 0.011 Cu Miles 0.013 (Channels) 1.20 % 0.00 miles 0.063 Cu Miles 0.063 Cu Miles 0.063 Cu Miles 0.063 Cu Miles 0.013 (Channels) 1.20 % 0.013 (Channels) 1.20 %	Difference = and Velocity = 0.42 M Length = 21 J0 m 0.050 Curr milece 0.050 Curr milece Up Seram Duch thim = Difference = Difference = 0.17 JM Length = 21 J0 m Difference = 0.17 JM Length = 21 J0 m Length = 21 J0 m Difference = 0.17 JM Up Seram Duch thim = 0.053 Curr milece Up Seram Duch thim = 0.058 Curr milece	0.2 Top Bark = 0.2.3 Free Board = 0.2.3 102.47 wp= 102.47 wp= 102.15 0.22 Top Bark = 0.10.3 s 102.47 wp= 102.47 wp= 102.47 wp= 102.27 wp= 102.47 wp= 102.3 https://doi.org/10.1000	
Dich Bottom Dich Hotops Water deph Act Dich Capardy (C) Act State State State State State Dich Alopes State Dich Alopes State Dich Alopes State Ach Alopes State Dich Alopes State Ach Alopes State Charles State State State State State State State State State State Dich Alopes State State State State State State State Dich Alopes State	33.00 1 0.028 meters (depth net 0.011 Cu M/tec 0.011 Cu M/tec 0.013 (Channels) 1.20 % 0.00 meters 3.00 1 0.053 Cu M/tec 0.053 Cu M/tec 0.053 Cu M/tec 0.053 Cu M/tec 0.053 Cu M/tec 1.20 % 0.013 (Channels) 1.20 % 0.013 (Channels) 1.20 %	Difference = and Velocity = 0.42 M and Velocity = 0.42 M Lengt = 213 an 0.000 Correlation 0.000 Correlation Difference = 0.000 Correlation and Velocity = 0.73 M 0.053 Correlation 0.053 Correlation 0.055 Correlation 0.050 Correlation Difference = 0.050 Correlation	0.22 Top Bark = 0.23 Free Board = 0.23 102.47 102.47 Top Bark = 0.23 Top Bark = 0.23 Top Bark = 0.03 Top Bark = 0.03 Top Bark = 0.23 Free Board = 0.23 Free Board = 0.23	
Dich Bottom Dich Bottom Dich Hops Waler depth d = <	33.00 1 0.028 miles (digith net 0.011 Cu Miles 0.011 Cu Miles 0.013 (Channels) 1.20 % 0.00 miles 0.063 Cu Miles 0.053 Cu Miles 0.053 Cu Miles 0.053 Cu Miles 0.033 (Channels) 1.20 % 0.03 (Channels) 1.20 % 0.03 miles 3.300 1 0.047 miles (digith net	Difference = and Velocity = 0.42 M Length = 2130 m 0000 Camboo Dash bitm 0000 Camboo Dash bitm Difference = 0.73 M 0.083 Camboo Dash bitm 0.083 Camboo Dash bitm Difference = 0.73 M 0.083 Camboo Dash bitm 0.083 Camboo Dash bitm Difference = 0.083 Camboo Dash bitm Difference = 0.084 Dash bitm Difference = 0.79 M	0.22 Top Bark = 0.23 Free Board = 0.23 102.47 102.47 Top Bark = 0.23 Top Bark = 0.23 Top Bark = 0.03 Top Bark = 0.03 Top Bark = 0.23 Free Board = 0.23 Free Board = 0.23	
Dich Bottom Dich Bottom Dich Capadity (C) 0 = 0 = bit 55 Tere Dich Stocken Request 11 mossely: use n = Dich Bottom	33.00 1 0.028 metres (signh ne 0.011 Cu Minec 00 yr. flow = 50.8 16 0.03 (Channels) 1.20 % 0.061 metres 3.300 1 0.061 metres 0.063 Cu Minec 0.063 Cu Minec 0.063 Cu Minec 0.064 Cu Minec 0.064 Cu Minec	Difference = and Velocity = 0.42 Mill Length = 2130 million Ubby Experiment 0800 Comments Ubby Stream Dubb thim Difference = Difference = 0.73 Million Ubby Stream Dubb thim 0.083 Comments Ubby Stream Dubb thim 0.083 Comments Ubby Stream Dubb thim Difference =	0.2 Top Bark = 02.3 Free Board = 02.3 Free Board = 02.3 Top Bark = 0.3 Top Bark	
Dich Bottom Dich Hotops Water depth Ge 3	33.00 1 0.028 million (dight) net 0.021 follow 30.8 (s) 0.011 Cu Milvec 00 yr, folw = 50.8 (s) 0.013 (Channels) 1.20 % 0.003 Cu Milvec 0.033 Cu Milvec 0.033 Cu Milvec 0.033 Cu Milvec 0.043 Cu Milvec	Difference = det learny 01 Lo. Marcel and Velocity = 0.42 M und Velocity = 0.42 M Up Stream Diach bitm Biotic currisor 13.0 m Up Stream Diach bitm Biotic currisor 0.73 M and Velocity = 0.73 M Lengt = 2.130 m Up Stream Diach bitm Biotic currisor 0.73 LM and Velocity = 0.73 LM Difference = 130 m Difference = 0.630 Cur milection Difference = 0.630 Currisor Difference = 0.630 Currisor Difference = 0.71 M Difference = 0.72 M and Velocity = 0.73 M	0.22 Top Bark = 0.23 Free Board = 0.23 102.47 102.47 Top Bark = 0.23 Top Bark = 0.23 Top Bark = 0.03 Top Bark = 0.03 Top Bark = 0.23 Free Board = 0.23 Free Board = 0.23	
Dich Bottom Dich Bottom Dich Alexandri (D) d = <tr td=""></tr>	33.00 1 0.028 metres (depth net 0.011 Cu Minec 0.011 Cu Minec 0.011 Cu Minec 0.03 (Channels) 1.20 % 0.0013 (Channels) 1.20 % 0.055 (metres 3.20 1 0.055 (metres 3.20 1 0.055 (cu Minec 0.056 (cu Min	Difference = and Velocity = 0.42 M Length = 213 D 0.000 Cur Hose 0.000 Cur Hose Ups Seam Dich bitm: D Difference = 0.73 M and Velocity = 0.73 M Using Cur Hose 0.083 Cur Hose Up Seam Dich bitm: 0.083 Cur Hose Difference = 0.013 Cur Hose Up Seam Dich bitm: 0.033 Cur Hose Up Seam Dich bitm: 0.033 Cur Hose Difference = 0.033 Cur Hose Up Seam Dich bitm: 0.73 M Difference = 0.73 M Outs Cur Hose 0.033 Cur Hose Difference = 0.73 M Difference = 0.73 M Difference = 0.73 M Difference = 0.73 M Difference = 0.74 M Difference = 0.74 M Difference = 0.73 M Difference = 0.73 M Difference = 0.74 M Difference = 0.74 M Difference = 0.74 M	0.22 Top Bark = 0.23 Free Board = 0.23 102.47 102.47 Top Bark = 0.010 5 102.47 Top Bark = 0.010 5 102.47 Top Bark = 0.010 5 102.47 Top Bark = 0.023 Top Bark =	
Dich Bottom Dich Holpes Water daph det Dieh Capady (C) de - ten 55 ter Dich Stackon Floragent 11 molessity sure n = Dich Holpes 35 Dich Holpes 35 Dich Holpes 45 de 26 ter Dich Stackon Floragent 11 molessity sure n = Dich Holpes 45 de 26 ter Dich Stackon Floragent 11 molessity sure n = Dich Holpes 35 Dich Holpes 35 Dich Holpes 45 Dich	33.00 1 0.029 million (dight) for 0.021 million (dight) for 0.011 Cu Million 0.011 Cu Million 0.013 (Channels) 1.20 % 0.003 Cu Million 0.003 Cu Million 0.003 Cu Million 0.003 Cu Million 0.007 million for 0.007 million (dight) no 0.007 (Channels) 1.20 % 0.001 (Channels) 0.001 (Channels)	Difference = and Velocity = 0.42 M and Velocity = 0.42 M 0.000 Car milec 0.000 Car milec Use years Dock how to be them to b	0.2 Top Bark = 0.2.3 Free Board = 0.2.3 Free Board = 0.2.3 Top Bark = 0.2.3 Top Bark = 0.02.3 Top Bark = 0.02.3 Top Bark = 0.02.3 Free Board = 0.00 To 2.15 0.2 Top Bark = 0.00 Top B	
Dich Bottom Dich Holpes Water daph det Dieh Capady (C) de - ten 55 ter Dich Stackon Floragent 11 molessity sure n = Dich Holpes 35 Dich Holpes 35 Dich Holpes 45 de 26 ter Dich Stackon Floragent 11 molessity sure n = Dich Holpes 45 de 26 ter Dich Stackon Floragent 11 molessity sure n = Dich Holpes 35 Dich Holpes 35 Dich Holpes 45 Dich	33.00 1 0.029 million (dight) for 0.021 million (dight) for 0.011 Cu Million 0.011 Cu Million 0.013 (Channels) 1.20 % 0.003 Cu Million 0.003 Cu Million 0.003 Cu Million 0.003 Cu Million 0.007 million for 0.007 million (dight) no 0.007 (Channels) 1.20 % 0.001 (Channels) 0.001 (Channels)	Difference = and Velocity = 0.42 M and Velocity = 0.42 M up develop = 213 Dm 0.000 comise 0.000 comise up Stream Dath there 0.73 M 0.000 comise 0.013 Our Mixee up Stream Dath there 0.73 M 0.003 Comise 0.003 Comise up Stream Dath Bitm = 0.03 Downson Defense = 0.030 Comise up Stream Dath Bitm = 0.050 Comise Difference = 0.70 M Difference = 0.70 M 0.050 Comise 0.70 M Up Stream Dath Bitm = 0.70 M Difference = 0.70 M 0.050 Comise 0.70 M Up Stream Dath Bitm = 0.70 M Difference = 0.70 M 0.050 Comise 0.70 M <	0.22 Top Bark = 0.23 Free Board = 0.23 12.47 102.3 102.47 102.47 102.3 102.47 102.47 102.3 102.47 102.47 102.3 102.47 102.47 102.47 102.3 102.47 102.47 102.5 102.3 102.47 102.48 102.	
Dich Botom Dich Hotors Dich Hotors (C) (C) G = C the AS the AS th	33.00 1 0.029 miles: (dight net 0.011 Cu Miles: 0.021 miles: (dight net 0.031 (Cu Miles: 0.031 (Channels) 1.20 % 0.033 Cu Miles: 0.033 Cu Miles: 0.033 Cu Miles: 0.033 Cu Miles: 0.035 Cu Miles: 0.035 Cu Miles: 0.035 Cu Miles: 0.035 Cu Miles: 0.035 Cu Miles: 0.031 (Channels) 1.20 % 0.031 (Channels) 0.031 (Channels) 0.031 (Channels) 1.00 % 0.031 (Channels) 0.031 (Channels) 1.00 % 0.031 (Channels) 1.00 % 0.031 (Channels) 1.00 % 0.031 (Channels) 1.00 % 0.031 (Channels) 1.00 % 0.031 (Channels) 0.031 (Channels) 0.041 (Channels) 0.051 (Channels) 0.0	Difference = and Velocity = 0.42 M and Velocity = 0.42 M Uengt = 213 an 0.000 Correlation 0.000 Correlation Difference = 0.000 Correlation Difference = 0.23 M and Velocity = 0.23 M 0.053 Correlation 0.053 Correlation Difference = 0.01 M	0.22 Top Bark = 0.23 Free Board = 0.23 12.47 102.3 102.47 102.47 102.3 102.47 102.47 102.3 102.47 102.47 102.3 102.47 102.47 102.47 102.3 102.47 102.47 102.5 102.3 102.47 102.48 102.	
Lick Bottom Dick hotoss Dick hotoss Marrier Span Dick hotoss d =	33.00 1 0.028 meters (signth net 0.021 meters (signth net 0.011 Cu Minec 00 yr, flow - 90.8 lis 0.013 (Channels) 1.20 % 0.00 meters 33.00 1 0.052 meters 33.00 1 0.052 (Minec 0.052 (Minec 0.052 (Minec 0.053 (Channels) 1.00 % 0.054 Cu Minec 0.054 Cu Minec 0.053 (Channels) 1.00 % 0.054 (signth net 0.054 (signth net 0.054 (signth net 0.053 (Channels) 1.00 % 0.00 meters 33.00 1 0.001 (Channels) 1.00 % 0.001 (Channels) 0.001 (Channels) 0.001 (Channels) 1.00 % 0.001 (Channels) 0.001 (Channels	Difference = and Velocity = 0.4.2 M and Velocity = 0.42 M Using 1 2130 m 0.000 Commission 0.000 Commission Using seam Data Bitm = 0.000 Commission Defence = 0.000 Commission and Velocity = 0.73 M 0.083 Commission 0.083 Commission Using seam Data bitm = 0.083 Commission 0.085 Commission 0.035 Commission using seam Data bitm = 0.035 Commission 0.085 Commission 0.035 Commission 0.085 Commission 0.035 Commission 0.085 Commission 0.083 Commission 0.085 Commission Defence = 0.085 Commission 0.085 Commission 0.085 Commission Defence =	0.22 Top Bank = 0.23 Free Board = 0.23 102.47 102.47 102.47 102.47 Top Bank = 0.03 102.47 102.47 Top Bank = 0.03 Free Board = 0.23 Free Board = 0.23 Fre	
Dich Bottom Dich Bottom Dich Capadry (C) A C C Start Start Tere Dich Starter Request 1:1 Dich Starter Starter Dich Starer Dich Starer	33.00 1 0.028 metres (sight net 0.011 Cu Minec 0.011 Cu Minec 0.011 Cu Minec 0.011 Cu Minec 0.011 Cu Minec 0.053 Cu Minec 0.053 Cu Minec 0.053 Cu Minec 0.054 Cu Minec 0.055 Cu Minec 0.055 Cu Minec	Difference = and Velocity = 0.42 M Length = 2130 m 0.000 Combet Mem 0.000 Combet Mem Unsystem Dish Mem 0.000 Combet Mem Difference = 0.010 Mem and Velocity = 0.73 M 0.083 Combets Mem 0.083 Combets Difference = 0.033 Combets 0.085 Combets Mem 0.083 Combets Difference = 0.010 Mem and Velocity = 0.74 M 0.085 Combets Mem 0.050 Mem Difference = 0.010 Mem 0.050 Combets 0.050 Mem 0.050 Combets 0.050 Mem 0.050 Combets 0.050 Mem 0.050 Combets 0.050 Mem 0.051 Combets 0.050 Mem 0.047 Combets 0.050 Mem 0.047 Combets 0.050 Mem	0.22 Top Bark = 0.23 Free Board = 0.23 12.47 102.3 102.47 102.47 102.3 102.47 102.47 102.3 102.47 102.47 102.3 102.47 102.47 102.47 102.3 102.47 102.47 102.5 102.3 102.47 102.48 102.	
Dich Bottom Dich Hotops Dich Hotops (C) Ca = Ca =	33.00 1 0.028 million (signification (significatity)))))))))))))))))))))))))))))))))))	Difference = and Velocity = 0.42 M and Velocity = 0.42 M Unget = 213 an 0.080 ComMerci 0.090 ComMerci Distance Dath them Distance Distance Dath them 0.010 ComMerci Distance Dath them 0.73 M 0.081 ComMerci 0.73 M 0.082 ComMerci 0.73 M 0.083 ComMerci 0.83 M 0.085 ComMerci 0.73 M Difference = 0.10 m Difference = 0	0.2.7 Top Bark = 0.2.3 Free Board = 0.2.3 Free Board = 0.2.4 102.47 wp= 0.3 Top Bark = 0.2.3 Free Board = 0.2.3 Free Board = 0.2.3 Top Bark = 0.2.3 Free Board = 0.2.3 Top Bark = 0.2.3 Free Board	
Lick Bottom Dick Bottom Dick Bottom Dick Bottom Dick Bottom Dick Bottom d = d	33.00 1 0.028 metres (signh net 0.011 Cu Minec 0.011 Cu Minec 0.011 Cu Minec 1.20 % 0.00 metres 3.300 1 0.051 metres (signh net 0.053 Cu Minec 0.053 Cu Minec 0.053 Cu Minec 0.054 Cu Minec 0.055 Cu Minec 0.054 Cu Minec 0.055 Cu Minec 0.054 Cu Minec 0.054 Cu Minec 0.054 Cu Minec 0.054 Cu Minec 0.055	Difference = and Velocity = 0.42 M Length = 2130 m 0.000 Combet Mem 0.000 Combet Mem Unsystem Dish Mem 0.000 Combet Mem Difference = 0.010 Mem and Velocity = 0.73 M 0.083 Combets Mem 0.083 Combets Difference = 0.033 Combets 0.085 Combets Mem 0.083 Combets Difference = 0.010 Mem and Velocity = 0.74 M 0.085 Combets Mem 0.050 Mem Difference = 0.010 Mem 0.050 Combets 0.050 Mem 0.050 Combets 0.050 Mem 0.050 Combets 0.050 Mem 0.050 Combets 0.050 Mem 0.051 Combets 0.050 Mem 0.047 Combets 0.050 Mem 0.047 Combets 0.050 Mem	0.22 Top Bark = 0.2.3 Free Board = 0.2.3 102.47 102.47 Top Bark = 0.2.3 Free Board = 0.2.3 Top Bark = 0.2.3 Free Board = 0.2.3 Top Bark = 0.0.3 102.47 102.57 0.22 Top Bark = 0.0.3 Free Board = 0.0.3 Top Bark = 0.0.3 Free Board = 0.0.3 Top Bark = 0.0.3 Free Board = 0.0	
Dich Botom Dich Hotopes Dich Hotopes Dich Hotopes Dich Capadry (C) O a 2 ter Dahl Sector Request 1:1 mostly users 1 Dich Hotopes Dich	33.00 1 0.028 million (signification) 0.021 follow 30.8 follow 0.011 Cu Million 0.011 Cu Million 0.013 (Channels) 1.20 % 0.003 Cu Million 0.003 Cu Million 0.003 Cu Million 0.004 Cu Million 0.013 (Channels) 1.20 % 0.013 (Channels) 1.20 % 0.013 (Channels) 1.20 % 0.013 (Channels) 1.20 % 0.013 (Channels) 1.20 % 0.013 (Channels) 1.00 % 0.01 % 0.	Difference = and Velocity = 0.42 M and Velocity = 0.42 M Up: Stream Duch them 113 Dm Bit Difference = 113 Dm Up: Stream Duch them 0.50 Mm Difference = 123 Dm Bit Difference = 123 Dm Difference = 213 Dm Difference = 0.73 M Difference = 0.73 DM Difference = 0.73 DM Difference = 0.73 DM Difference = 0.74 MM Difference = 0.74 DM Difference = 0.74 MM Difference =	0.2 Top Bark = 0.2.3 Free Board = 0.2.3 Top Bark = 0.2.3 Top B	
Dich Bottom Dich Hotpes Mar dight Acquered (r) d = d = d = d = d = d = d = d =	33.00 1 0.028 metres (signh net 0.011 Cu Minec 0.011 Cu Minec 0.011 Cu Minec 1.20 % 0.00 metres 3.300 1 0.051 metres (signh net 0.053 Cu Minec 0.053 Cu Minec 0.053 Cu Minec 0.054 Cu Minec 0.055 Cu Minec 0.054 Cu Minec 0.055 Cu Minec 0.054 Cu Minec 0.054 Cu Minec 0.054 Cu Minec 0.054 Cu Minec 0.055	Difference = ded to carry 01 10 c. Maxel; and Velocity = 0.42 M 2000 cm/sec Up Steam Duch bitm Bits carry 01 10 G. Maxel; 0.42 M 2000 cm/sec Up Steam Duch bitm Construction of the carry 01 10 G. Maxel; 0.73 M 2000 cm/sec and Velocity = 0.73 M 2000 cm/sec 0.73 M 2000 cm/sec and Velocity = 0.73 M 2000 cm/sec 0.73 M 2000 cm/sec bit Steam Duch bitm De Steam Duch bitm Dufference = 0.70 M 2000 cm/sec dot stary 01 G. Maxel; 0.70 M 2000 cm/sec 0.70 M 2000 cm/sec dot stary 01 G. Maxel; 0.70 M 2000 cm/sec 0.70 M 2000 cm/sec dot stary 01 G. Maxel; 0.70 M 2000 cm/sec 0.70 M 2000 cm/sec dot stary 01 G. Maxel; 0.70 M 2000 cm/sec 0.70 M 2000 cm/sec dot stary 01 G. Maxel; 0.70 M 2000 cm/sec 0.70 M 2000 cm/sec dot stary 01 G. Maxel; 0.70 M 2000 cm/sec 0.70 M 2000 cm/sec dot stary 01 G. Maxel; 0.70 M 2000 cm/sec 0.70 M 2000 cm/sec dot stary 01 G. Maxel; 0.70 M 2000 cm/sec 0.70 M 2000 cm/sec dot stary 01 G. Maxel; 0.70 M 2000 cm/sec 0.70 M 2000 cm/sec dot stary 01 G. Maxel; 0.70 M 2000 cm/sec	0.2 Top Bark = 0.2.3 Free Board = 0.2.3 Top Bark = 0.2.3 Top B	
bich Bottom Dich Hotopes Dich Hotopes de 2 de 2 d	33.00 1 0.029 miles: (sighth net 0.011 Cu Milesc 0.011 Cu Milesc 0.011 Cu Milesc 0.031 (Channels) 1.20 % 0.00 mitres 33.00 1 0.95 mitres (sighth net 0.05 / r.20% flow = 81.94 (sighth net 0.054 Cu Milesc 0.036 Cu Milesc 0.030 mitres 3.300 1 0.048 mitres (sighth net 0.036 Cu Milesc 0.036 Cu Milesc 0.030 mitres 3.300 1 0.048 mitres (sighth net 0.049 mitres (sighth net 0.040 mitres (sighth net 0.0	Difference = and Velocity = 0.42 M and Velocity = 0.42 M Up: Stream Duch them 113 Dm Bit Difference = 113 Dm Up: Stream Duch them 0.50 Mm Difference = 123 Dm Bit Difference = 123 Dm Difference = 213 Dm Difference = 0.73 M Difference = 0.73 DM Difference = 0.73 DM Difference = 0.73 DM Difference = 0.74 MM Difference = 0.74 DM Difference = 0.74 MM Difference =	0.2 Top Bark = 0.2.3 Free Board = 0.2.3 Top Bark = 0.2.3 Top B	
bich Bottom Dich Hotops Dich Hotops Dich Hotops Dich Hotops Dich Hotops Dich Hotops Her Dahl Sector Request 11 mosely user 1 Dich Hotops Dich Hotops D	33.00 1 0.022 miles: (sight net 0.011 Cu Milec 0.011 Cu Milec 0.011 Cu Milec 0.011 Cu Milec 0.013 Cu Milec 0.053 Cu Milec 0.053 Cu Milec 0.053 Cu Milec 0.053 Cu Milec 0.054 Cu Milec 0.054 Cu Milec 0.054 Cu Milec 0.054 Cu Milec 0.055 Cu Milec 0.055 Cu Milec 0.055 Cu Milec 0.055 Cu Milec 0.056 Cu Mil	Difference = and Velocity = 0.42 M Length = 21.30 m 0.000 Common Head 0.000 Common Usy Steam Dubb them 0.01 M Defense = 0.13 M def dot any 0.10 Co. Musec) 0.01 M and Velocity = 0.13 M Defense = 0.03 Common 0.080 Common = 0.03 Common def Velocity = 0.20 M 0.03 Common 0.000 Mm 0.040 Common 0.000 Mm 0.050 Common 0.000 Mm 0.0	0.2 Top Bark = 0.2.3 Free Board = 0.2.3 Free Board = 0.2.3 Top Bark = 0.2.3 Top	
Dich Botsm Dich Botsm Dich Aloges Water deph heck Dieh Capadry (c) a c = c = 2015 ten Dich Sectors Request 1:1 monoses: dispes 5 = Dich Botsm Dich Bots	33.00 1 0.028 million (sight) net 0.021 for 40.8 16 0.011 Cu Million 0.021 (Channels) 1.20 % 0.003 Cu Million 0.063 Cu Million 0.063 Cu Million 0.063 Cu Million 0.064 Cu Million 0.013 (Channels) 1.20 % 0.013 (Channels) 1.20 % 0.013 (Channels) 1.00 % 0.013 (Channels) 0.013 (Channels) 0.014 (Channels)	Difference = and Velocity = 0.42 M and Velocity = 0.42 M Up, Stream Duch bitm = 0.13 Dm Bit Common E 0.13 Dm Up, Stream Duch bitm = 0.13 Dm Bit Common E 0.13 Dm Up, Stream Duch bitm = 0.13 Dm and Velocity = 0.73 M Up, Stream Duch bitm = 0.13 Dm Difference = 0.13 Dm Difference = 0.70 M Difference = 0.05 Om/Mac Difference = 0.05 Om/Mac Difference = 0.05 Om/Mac Difference = 0.04 M Differen	0.2.3 Top Bark = 0.2.3 Free Board = 0.2.3 Free Board = 0.2.3 102.47 102.47 102.47 102.47 102.47 Top Bark = 0.2.3 Free Board = 0.0.3 102.47 102.47 102.47 Top Bark = 0.0.3 Free Board = 0.0.3 Free Board = 0.0.3 Top Bark = 0.0.3 Free Board = 0.0.3 Top Bark = 0.0.3 Top Bark = 0.0.3 Free Board = 0.0.3 Top Bark = 0.0.3	
bich Bottom Dich Hotops Dich Hotops	33.00 1 0.028 metres (signth net 0.011 Cu Minec 0.011 Cu Minec 0.011 Cu Minec 0.013 (Channels) 1.20 % 0.001 (Channels) 1.20 % 0.0013 (Channels) 1.20 % 0.013 (Channels) 1.20 % 0.013 (Channels) 1.20 % 0.013 (Channels) 1.20 % 0.013 (Channels) 1.20 % 0.013 (Channels) 1.00 % 0.013 (Channels) 1.00 % 0.013 (Channels) 1.00 % 0.001 metres 3.300 1 0.045 Cu Minec 0.013 (Channels) 1.00 % 0.001 metres 3.300 1 0.044 Cu Minec 0.013 (Channels) 1.00 % 0.001 metres 3.300 1 0.001 metres 3.300 1 0.001 metres 3.300 1 0.001 metres 3.300 1 0.001 % 0.001 metres 3.000 1 0.013 (Channels) 0.013 (C	Difference = and Velocity = 0.42 M Length = 213 dm 0.000 Cur whose 0.000 Cur whose up Steam Duch them Do Steam Duch them Difference = 0.7 M and Velocity = 0.7 M 0.083 Cur whose 0.030 Cur whose 0.083 Cur whose 0.050 Cur whose 0.085 Cur whose 0.040 Cur whose 0.095 Cur whose 0.040 Cur whose 0.014 Cur whose <t< td=""><td>0.23 Top Bank = 0.23 Free Board = 0.23 102.47 102.47 102.47 102.47 102.47 102.47 102.47 Top Bank = 0.03 102.47 102.47 Top Bank = 0.03 Free Board = 0.03 102.47 Top Bank = 0.03 Free Board = 0.03 102.47 Top Bank = 0.03 Free Board = 0.03 Top Bank = 0.03 Free Board = 0.03 Top Bank = 0.03 Free Board = 0.03 Top Bank = 0.03 To</td><td></td></t<>	0.23 Top Bank = 0.23 Free Board = 0.23 102.47 102.47 102.47 102.47 102.47 102.47 102.47 Top Bank = 0.03 102.47 102.47 Top Bank = 0.03 Free Board = 0.03 102.47 Top Bank = 0.03 Free Board = 0.03 102.47 Top Bank = 0.03 Free Board = 0.03 Top Bank = 0.03 Free Board = 0.03 Top Bank = 0.03 Free Board = 0.03 Top Bank = 0.03 To	
bich Botom Dich Botom Dich Botom Dich Botom Dich Botom Dich Botom Dich Botom Botom Botom Botom Botom Dich Botom Dich Botom Di	33.00 1 0.028 metes: (sighth net 0.011 Cu Minec 0.011 Cu Minec 0.011 Cu Minec 0.013 (Channels) 1.20 % 0.003 metes 3.300 1 0.053 Cu Minec 0.013 (Channels) 1.20 % 0.013 (Channels) 0.013 (Channels) 0.013 (Channels) 0.013 (Channels) 0.013 (Channels) 0.013 (Channels) 0.030 metes 3.300 metes 0.036 Cu Minec 0.036 Cu Minec 0.036 Cu Minec 0.036 (Cu Minec 0.037 metes (sighth net 0.031 (Channels) 0.130 (Channels) 0.130 (Channels) 0.130 (Channels) 0.130 (Channels) 0.130 (Channels) 0.031 (Channels)	Difference = and Velocity = 0.42 M Length = 213.0 m 0.000 Co-mited 0.000 Co-mited Ung Stream Diab hitter 0.000 Co-mited Difference = 0.010 Co-mited and Velocity = 0.73 M 0.083 Co-mited 0.73 M 0.083 Co-mited 0.030 Co-mited 0.083 Co-mited 0.030 Co-mited 0.085 Co-mited 0.010 Co-mited 0.086 Co-mited 0.010 Co-mited 0.087 Co-mited 0.010 Co-mited 0.084 Co-mited 0.010 Co-mited 0.015 Co-mite	0.20 Free Board = 0.2.3 0.2.2 0.2.2 102.47 Free Board = 0.2.3 0.2.2 102.47 0.2.5 0.32 7 0.32 0.32 0.32 7 0.32 0.32 7 0.32 7 0.32 0.32 7 0.32 7 0.2.6 0.32 7 0.2.7 7 0.2.6 0.32 7 7 0.0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
bich Bottom Dich Hotpes Water deph Act 2 Act 2	33.00 1 0.028 metres (signth net 0.011 Cu Minec 0.011 Cu Minec 0.011 Cu Minec 0.013 (Channels) 1.20 % 0.001 (Channels) 1.20 % 0.0013 (Channels) 1.20 % 0.013 (Channels) 1.20 % 0.013 (Channels) 1.20 % 0.013 (Channels) 1.20 % 0.013 (Channels) 1.20 % 0.013 (Channels) 1.00 % 0.013 (Channels) 1.00 % 0.013 (Channels) 1.00 % 0.001 metres 3.300 1 0.045 Cu Minec 0.013 (Channels) 1.00 % 0.001 metres 3.300 1 0.044 Cu Minec 0.013 (Channels) 1.00 % 0.001 metres 3.300 1 0.001 metres 3.300 1 0.001 metres 3.300 1 0.001 metres 3.300 1 0.001 % 0.001 metres 3.000 1 0.013 (Channels) 0.013 (C	Billemone = ded Velocity = 0.42 M and Velocity = 0.42 M Unget = 13.9 m 0.000 Comber 0.000 Comber Unget = 0.000 Comber Unget = 0.13 Comber Unget = 0.01 Comb	0.20 Free Board = 0.2.3 0.2.2 0.2.2 102.47 Free Board = 0.2.3 0.2.2 102.47 0.2.5 0.32 7 0.32 0.32 0.32 7 0.32 0.32 7 0.32 7 0.32 0.32 7 0.32 7 0.2.6 0.32 7 0.2.7 7 0.2.6 0.32 7 7 0.0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
Lick Bolom Dick Bolom	33.00 1 0.028 meters (signth net 0.011 Cu Minec 0.011 Cu Minec 0.011 Cu Minec 0.011 Cu Minec 0.011 Cu Minec 0.011 Cuannels) 1.20 % 0.00 meters 33.00 1 0.051 meters (signth net 0.051 Channels) 1.00 % 0.013 (Channels) 1.00 % 0.031 Cu Minec 0.034 Cu Minec 0.034 Cu Minec 0.035 Cu Minec 0.037 meters (signth net 0.044 meters (signth net 0.037 Cu Minec 0.037 Cu Minec 0.037 Cu Minec 0.037 Cu Minec 0.037 meters (signth net 0.038 Cu Minec 0.037 meters (signth net 0.037 meters (signth net 0.037 meters (signth net 0.037 meters (signth net 0.037 meters (signth net 0.036 Cu Minec 0.037 meters (signth net 0.037 meters (signth net 0.030 Cu Minec 0.030 Cu Minec 0.037 meters (signth net 0.030 Cu Minec 0.030 Cu Minec 0.037 meters (signth net 0.030 Cu Minec 0.030 Cu Minec 0.037 meters (signth net 0.037 meters (signth net 0.030 Cu Minec 0.030 Cu Minec 0.0	Difference = and Velocity = 0.42 M and Velocity = 0.42 M Uengt = 213 or 0.000 Correlation 0.000 Correlation Difference = 0.000 Correlation Difference = 0.13 Or and Velocity = 0.23 M Length = 2.13 Or 0.083 Correlation 0.03 Correlation Difference = 0.01 Or Difference = 0.01 Or 0.055 Correlation 0.02 Or and Velocity = 0.01 Or Difference = 0.01 Or 0.055 Correlation 0.02 Or debt Di carry 0.1 Or. Mixec) 0.02 Or Mixec Difference = 0.01 Or 0.05 Correlation 0.02 Or Mixec Difference = 0.02 Or Mixec Difference = 0.03 Or Mixec and Velocity = 0.04 Mixec Difference	0.22 Free Board = 0.2.3 Free Board = 0.2.3 102.47	
Dich Bolsm Dich Bolsm Dich Bolsm Dich Stops (1) Dich Stops (2) Dich Stops (2) Dich Stops Dich Stops Di	33.00 1 0.028 million (sight) net 0.011 Cu Million 0.021 (Channels) 1.20 % 0.003 million (sight) net 0.003 Cu Million 0.003 Cu Million 0.003 Cu Million 0.007 million (sight) net 0.003 Cu Million 0.013 (Channels) 1.20 % 0.007 million (sight) net 0.013 (Channels) 1.20 % 0.007 million (sight) net 0.013 (Channels) 1.20 % 0.007 million (sight) net 0.013 (Channels) 1.00 % 0.007 million (sight) net 0.013 (Channels) 1.00 % million 0.013 (Channels) 0.013 (Channels) 0.000 million 0.000 million 0.0000 million 0.000 million 0.000 m	Difference = and Velocity = 0.42 M and Velocity = 0.42 M Uengt = 213 or 0.000 Correlation 0.000 Correlation Difference = 0.000 Correlation Difference = 0.13 Or and Velocity = 0.23 M Length = 2.13 Or 0.083 Correlation 0.03 Correlation Difference = 0.01 Or Difference = 0.01 Or 0.055 Correlation 0.02 Or and Velocity = 0.01 Or Difference = 0.01 Or 0.055 Correlation 0.02 Or debt Di carry 0.1 Or. Mixec) 0.02 Or Mixec Difference = 0.01 Or 0.05 Correlation 0.02 Or Mixec Difference = 0.02 Or Mixec Difference = 0.03 Or Mixec and Velocity = 0.04 Mixec Difference	0.22 Free Board = 0.2.3 Free Board = 0.2.3 102.47	
bich Bottom Dich Hotom Dich Hotom Dich Hotom (a) a (b) a (b) a (c) a (33.00 1 0.022 million (signification (significatity)))))))))))))))))))))))))))))))))))	Difference = and Velocity = 0.42 M Lengt = 213 G 0.080 Combine 0.080 Combine District (Combine) 0.080 Combine District (Combine) 0.080 Combine District (Combine) 0.21 M District (Combine) 0.23 M Out (Combine) 0.23 M District (Combine) 0.23 M District (Combine) 0.083 Combine District (Combine) 0.07 M Difference = 0.01 On Difference = 0.02 On the Difference = 0.01 On Difference = 0.01 On Difference = 0.01 On the Difference = 0.01 On the Difference = 0.01	0.22 Free Board = 0.2.3 Free Board = 0.2.3 102.47	
bich Boltom Dich Holtom Dich Holpos Dich Holpos (a) $a = -$ (b) $a = -$ (b) $a = -$ (c)	33.00 1 0.028 million (signification (significatio	Difference = and Velocity = 0.42 M and Velocity = 0.42 M Using = 21.30 m Difference = 0.000 Convesce Difference = 0.21 M Difference = 0.01 Converse Difference = 0.02 Converse Difference = 0.01 Converse 0.025 Converse 0.02 Converse Difference = 0.01 Converse Difference = 0.02 Converse Using = 2.01 M Difference = 0.02 Converse Using = 2.04 M Difference = 0.04 Converse Using = 0.04 M 0.04 Converse 0.03 Converse Using = 0.04 M Difference = 0.04 M Using = 0.04 M Difference = <	0.22 plant = 0.2.3 Free Board = 0.2.3 102.47 wp= 102.47 wp= 102.47 mp= 102.47 mp= 10	
bich Bolom Dich Bolom Dich Bolom (Carlow Carlow (Carlow Carlow (Carlow Carlow (Carlow Carlow (Carlow Carlow (Carlow Carlow Ca	33.00 1 0.028 million (signification (significatio	DBernone = and Velocity = 0.42 M Length = 2130 m 0.05 Our Hear 0.05 M Up, Stream Dach bitm 0.07 M Up, Stream Dach bitm 0.07 M 0.05 Constreme 0.05 M 0.05 More 0.05 M	0.20 Free Board = 0.2.3 Free Board = 0.2.3 0.2 102.47 102.47 102.47 102.47 102.47 102.47 102.47 102.47 102.47 0.25 102.47 102.5 10.3 102.47 102.47 102.47 102.47 102.5 10.3 102.47 102.47 102.47 102.5 10.3 102.47 102.47 102.5 10.3 102.47 102.47 102.5 102.47 102.15 10.3 10.3 10.3 10.3 10.3 10.3 10.3 10.3	

n = friction coefficient R = hydraulic radius = A/wetted perimetre (wp) in m

IBI GROUP 400-333 Preston Street Ottawa, Ontario K1S 5N4 Canada tel 613 225 1311 fax 613 225 9868 ibigroup.com PROJECT: BARRETT BLOCK 146 DATE: 2022-04-28 FILE: 135925.6.04 REV #: 1 DESIGNED BY: Anton Chetrar CHECKED BY: Ryan Magladry

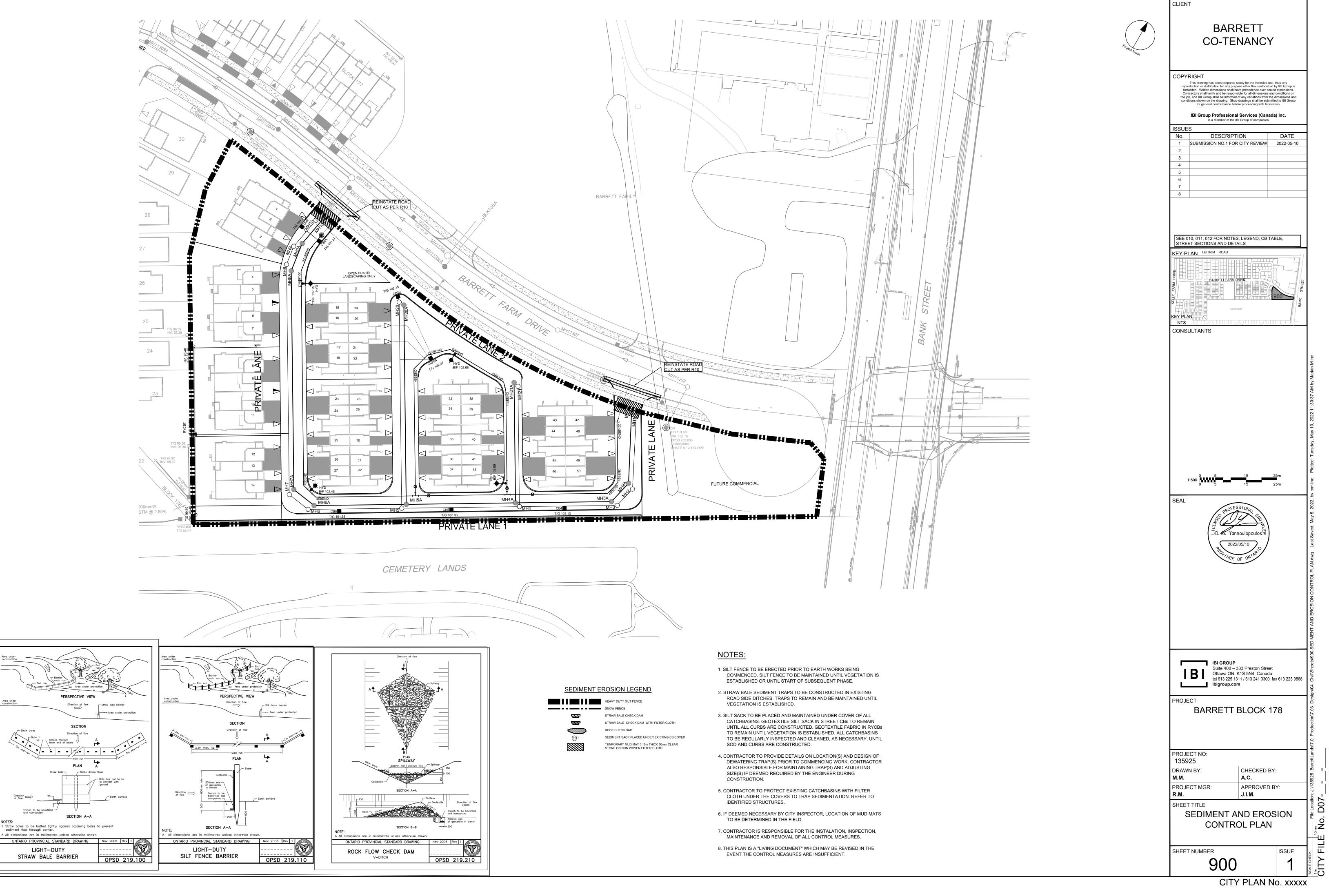
TEMPORARY ICD ORIFICE SIZING

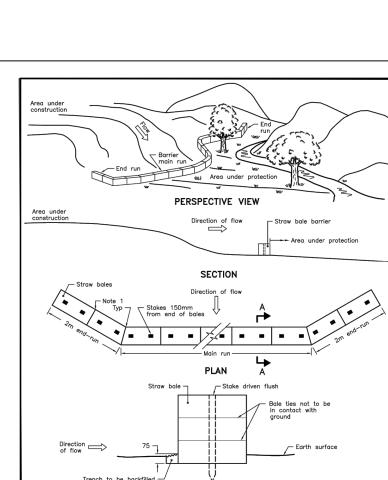
Orifice coefficients								
Cv = 0.60								
Cv =	0.65							

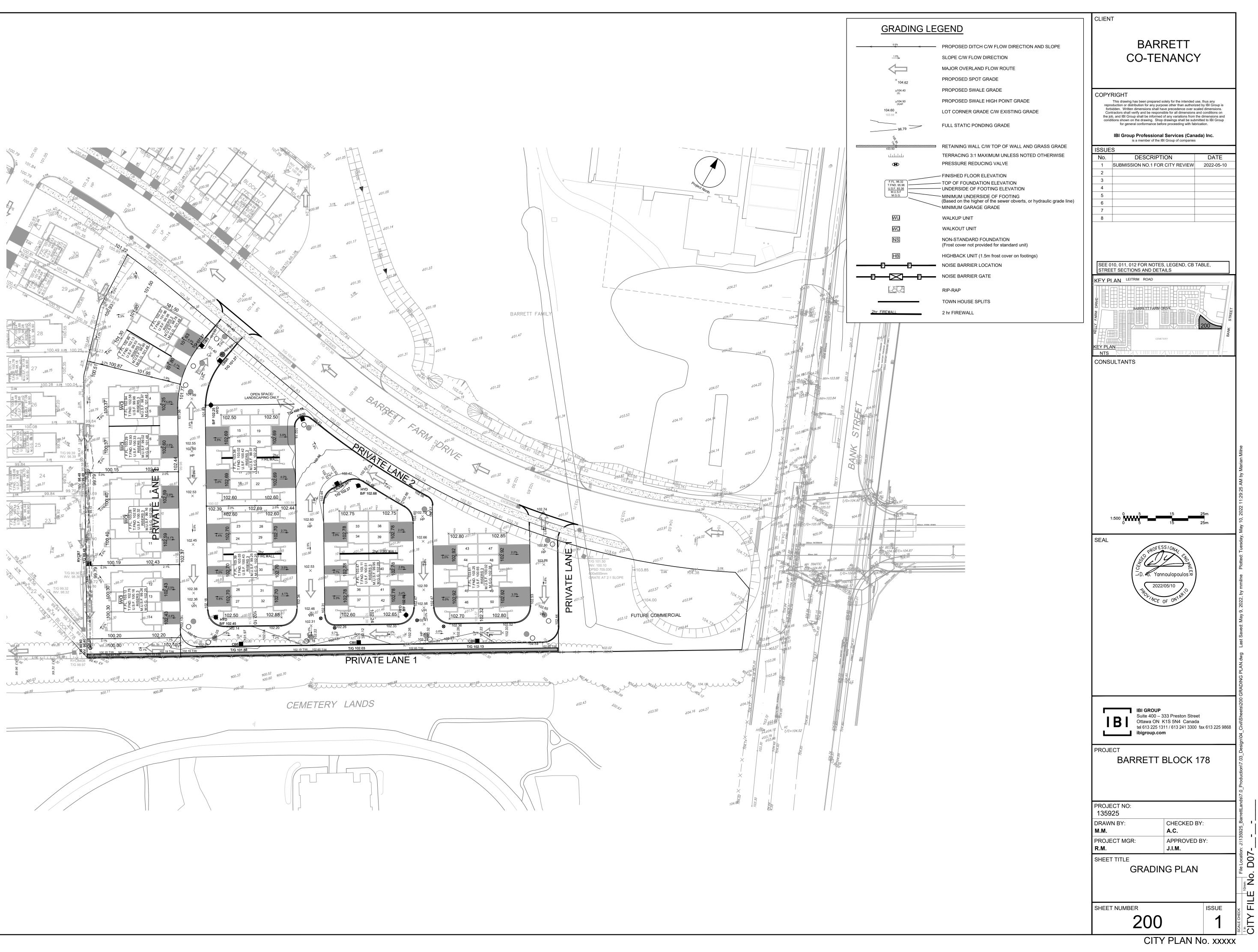
		<u>'</u>						oretical	Recommended		
	Invert	Diameter	Centre ICD	Max. Pond Elevation	Hydraulic Slope Target Flow		Orifice	Actual Flow	Orifice	Actual Flow	
	(m)	(mm)	(m)	(m)	(m)	(I/s)	(m)	(l/s)	(m)	(I/s)	
SANITARY MH	95.810	200	95.910	101.40	2.000	1.99	0.0230	1.99	0.075	21.14	
STORM MH	96.180	675	96.518	101.40	2.000	136.00	0.1905	136.40	0.190	135.68	

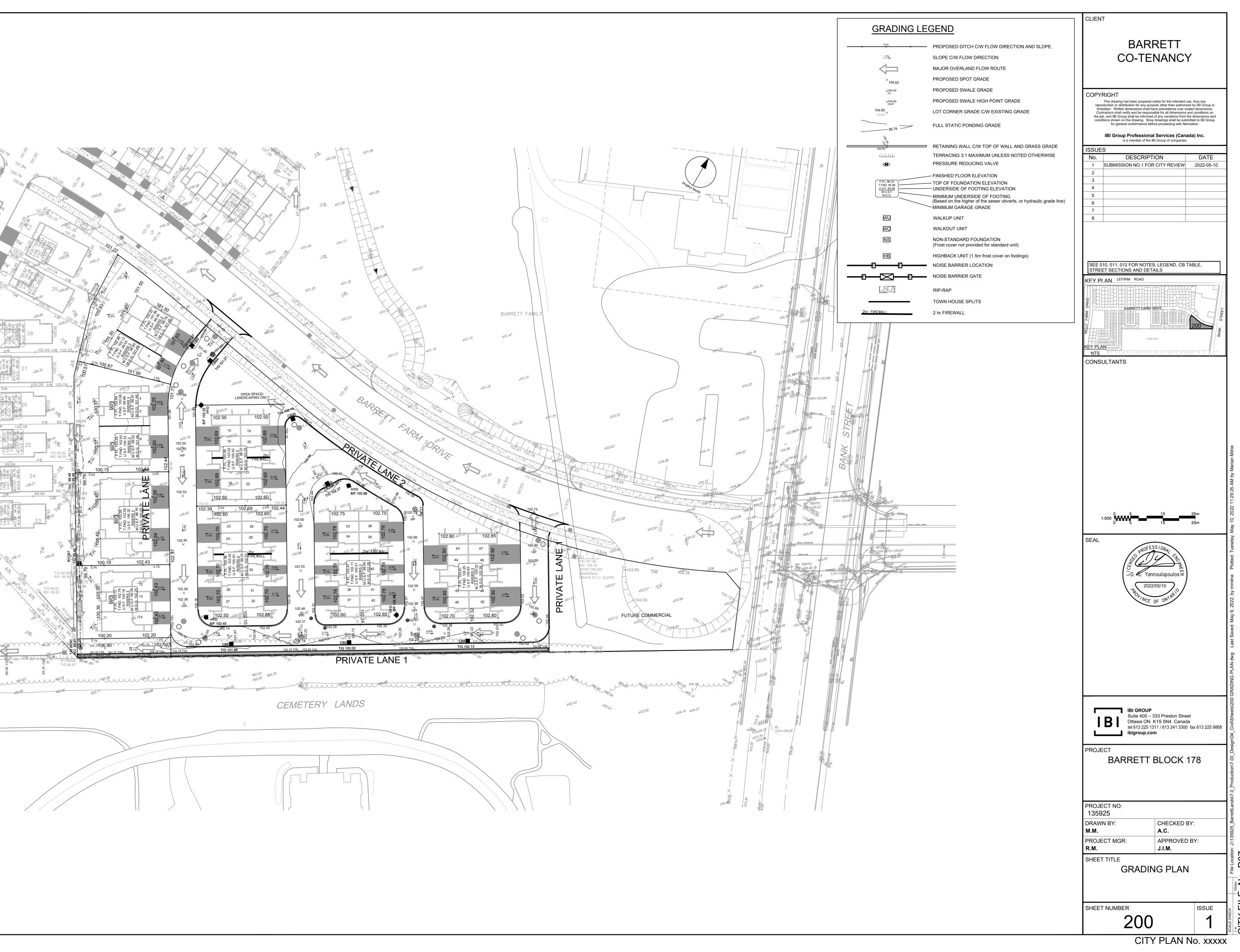
* minimum orifice size to be 0.075m

IBI Group 400-333 Preston Street Ottawa, Ontario K1S 5N4


Run-off Coefficients


PROJECT: Barrett Block 146 **DATE:** 2022-04-22 CLIENT: Barrett Co-Tennancy FILE: 135925.6.4


Г							S2&R3						
			В	АСК ТО ВАС	CK	T	OWNS - REA	٨R	TOV	VNS - FRONT			
			GRASS	ROOF	ASPHALT	GRASS	ROOF	ASPHALT	GRASS	ROOF	ASPHALT		
			255.00	1121.00		492.00	400.00		380.00	1601.00			
L.													
—													
			255.00	1121.00		492.00	400.00		380.00	1601.00			
TOTAL (m ²)			1376.00			892.00			1981.00				
Runoff Coefficient (C) :			0.2	0.9	0.9	0.2	0.9	0.9	0.2	0.9	0.9		
Ave. Runoff Coefficient (C):			•	0.77		ł	0.51			0.77			
Runoff Coefficient Used(C):				0.77			0.52			0.77			


APPENDIX E

135925-900 - Erosion and Sediment Control Plan 135925-200 - Grading Plan

