

Phase II Environmental Site Assessment

5640 Bank Street, 7107 Marco Street, and 7041 Mitch Owens Road, City of Ottawa, Ontario

Ref: BAE-1241.2

Prepared For Alium Investments Ltd.

July 15th, 2013

BAE & Associates Environmental Inc. RR#1 Oro Station, ON L0L 2E0 Phone 705 715 1881 Fax 705 487 5600 envsol@rogers.com

Providing Environmental Solutions Since 1997!

TABLE OF CONTENTS

- 1.0 **EXECUTIVE SUMMARY**
- 2.0 INTRODUCTION
- 3.0 SCOPE OF WORK
- 4.0 PREVIOUS INVESTIGATIONS
- 5.0 SITE DESCRIPTION
- **USES OF SITE** 6.0
- 7.0 SURROUNDING LAND USE
- 8.0 PHYSICAL SETTING
 - Geology and Physiography 8.1
 - 8.2 Groundwater and Surface Water
 - 8.3 Other Services
- 9.0 PHASE II ESA INVESTIGATIONS
 - Borehole and Monitoring Well Program
 - 9.2 Soil and Groundwater Sampling
 - Investigation Results 9.3
- 10.0 APPLICABLE GOVERNMENT GUIDELINES
- 11.0 LABORATORY CHEMICAL ANALYSES
- 12.0 FIELD and LABORATORY QA/QC
- 13.0 CONCLUSIONS
- 14.0 REFERENCES
- 15.0 LIMITATIONS
- 16.0 QUALIFICATIONS OF ASSESSORS
- Figure 1: Site Location Figure 2: Site Layout Figure 3: Site Survey
- Figure 4: Borehole and Monitoring Well Locations

APPENDIX I Certificates of Analysis

APPENDIX II Field Screening Apparatus

APPENDIX III Project Photographs

APPENDIX IV Borehole Record

LIST OF ACRONYMS AND ABBREVIATIONS

ACM Asbestos Containing Materials AEC Area of Environmental Concern

a.k.a. Also Known As

APEC Area of Potential Environmental Concern

AST Aboveground Storage Tank

BH Borehole

BTEX Benzene, Toluene, Ethylbenzene and Xylenes

CCEA Central Canada Exhibition Association

CFC Chlorofluorocarbon

CNSC Canadian Nuclear Safety Commission

COC Contaminant of Concern

COPC Contaminant of Potential Concern
CSA Canadian Standards Association
CSFL Contaminated Site on Federal Land
CWAC Canadian Women's Army Corporation

CWS Canada Wide Standards
DSS Designated Substance Survey

DSHMS Designated Substance and Hazardous Materials Survey

ESA Environmental Site Assessment

FIP Fire Insurance Plan
FOI Freedom of Information
HCFC Hydro chlorofluorocarbon
HLUI Historical Land Use Inventory

HVAC Heating Ventilation and Air Conditioning

LCP Lead-Containing Paint
masl Metres Above Sea Level
mbgs Metres Below Ground Surface
MOE Ministry of the Environment

MOL Ministry of Labour

MSDS Material Safety Data Sheet

MW Monitoring Well

ODS Ozone Depleting Substance
OHSA Occupational Health and Safety Act
PAH Polycyclic Aromatic Hydrocarbon

PCB Polychlorinated Biphenyls
PHC Petroleum Hydrocarbon
RSC Record of Site Condition
SAR Sodium Absorption Ratio
SCS Site Condition Standard
TPH Total Petroleum Hydrocarbons

TSSA Technical Standards and Safety Authority

UST Underground Storage Tank

UFFI Urea Formaldehyde Foam Insulation

VOC Volatile Organic Compounds

WL Working Level

1.0 EXECUTIVE SUMMARY

BAE and Associates Environmental Inc. (BAE) were retained by *Alium Investments Ltd.* to undertake a Phase II Environmental Site Assessment (ESA) at 5640 Bank Street, 7107 Marco Street, and 7041 Mitch Owens Road, City of Ottawa, Ontario. These investigations were conducted to reveal current environmental conditions for the subject property. A Phase I ESA completed by BAE had determined that a significant amount of fill had been brought onsite and thus a Phase II ESA was recommended.

The current investigation was conducted generally under the guidance of Part XV.1 of the Environmental Protection Act and Ontario Regulation 153/04 (O. Reg. 153/04) - as amended. All analysis was performed in accordance with O. Reg. 153/04 and compared to Part XV.1 of the *Environmental Protection Act* — Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Groundwater Condition (July 2011) Criteria. The specific requirements for carrying out a Phase II ESA are set out in Part VIII of Ontario Regulation 153/04 - as amended by O. Reg. 511 (July, 2011).

The subject 0.275 hectare (0.7 acre) property is located on the southeast corner of Highway #7 West and Costa Road and includes a single storey commercial type building. The 470m² building is of brick, block and concrete construction with flat tar and gravel roof and supported by a slab-on-grade foundation. The building is serviced by municipal utilities (sewer and water), and by commercial natural gas and hydro. There are no environmental concerns for the current onsite operations.

Seven boreholes were advanced up to a depth of 15m below grade level (BGL) using a CME 75 mobile mounted drill rig with a 25cm diameter, hollow stem auger and split-spoon sampler. Three boreholes were developed as groundwater monitoring wells.

Representative soil and groundwater samples were submitted for independent chemical analyses of the Metal, Petroleum Hydrocarbon (PHC), Sodium Adsorption Ratio (SAR) and Volatile Organic Compound (VOC) Parameters. **All analysis results met applicable MOE/EPA Criteria**.

It is the opinion of BAE that the current environmental assessment performed is consistent with and meets MOE/EPA Criteria. The Environmental Site Assessment results do not suggest any chemical contamination associated with the imported fill or current or historical activities at the subject property and has determined that there is no evidence of any offsite impaction, or is likely to impact in the future, any adjacent public

Right of Ways at levels in excess of applicable criteria. **No further environmental investigations are recommended at this time.**

2.0 INTRODUCTION

BAE and Associates Environmental Inc. (BAE) were retained by Alium Investments Ltd. to undertake a Phase II Environmental Site Assessment (ESA) at 5640 Bank Street, 7107 Marco Street, and 7041 Mitch Owens Road, City of Ottawa, Ontario. These investigations were conducted to reveal current environmental conditions for the subject property. A Phase I ESA completed by BAE had determined that a significant amount of fill had been brought onsite and thus a Phase II ESA was recommended.

The current investigation was conducted generally under the guidance of Part XV.1 of the Environmental Protection Act and Ontario Regulation 153/04 (O. Reg. 153/04) - as amended. All analysis was performed in accordance with O. Reg. 153/04 and compared to Part XV.1 of the *Environmental Protection Act* — Table 2: Full Depth Generic Site Condition Standards in a Potable Groundwater Condition (July 2011) Criteria. The specific requirements for carrying out a Phase II ESA are set out in Part VIII of Ontario Regulation 153/04 - as amended by O. Reg. 511 (July, 2011).

3.0 SCOPE OF WORK

The scope of work was completed to determine if there appeared to be any indications of environmental impairment on the property, which could present liability. Phase II ESA investigations were undertaken and included:

- Performing background investigations and reviewing available previous environmental reports;
- Conducting a Borehole/ Monitoring Well Installation and Monitoring Well Access Program in the areas of potential concern to ascertain the subsurface conditions;
- Obtaining and submitting for independent chemical analysis, representative soil and groundwater samples for analyses of the Metal, Petroleum Hydrocarbon (PHC), Sodium Adsorption Ratio (SAR) and Volatile Organic Compound (VOC) Parameters; and,
- Completion of the engineering report with data and conclusions.

4.0 PREVIOUS INVESTIGATIONS

All and any pertinent reports or information were requested by BAE. There were no previous ESAs performed on the subject property with exception to the following.

4.1 Phase I ESA, BAE & Associates Environmental Inc., June 2012

At the request of Alium Investments Ltd., BAE completed a Phase I ESA in June of 2012. Following is a summary of the findings.

BAE & Associates Environmental Inc. (BAE) was retained by Alium Investments Ltd. to prepare a Phase I Environmental Site Assessment (ESA) for 5640 Bank Street, 7107 Marco Street, and 7041 Mitch Owens Road, City of Ottawa, Ontario. These investigations were conducted to reveal any environmental concerns on or near the subject property.

As no Record of Site Condition was required, the terms of reference for the Phase I ESA were prepared and followed in accordance with CSA Standard Z768-01 for Phase I Environmental Site Assessments and generally in accordance with Part XV.1 of the Environmental Protection Act and Ontario Regulation 153/04 (O. Reg. 153/04) as amended.

There were no previous ESAs available for the subject property. The vacant subject 13 hectare (32 acre) Site is located on an irregular parcel of land situated at the northern periphery of the Community of Greely, at the southwest corner of the intersection of Bank Street and Mitch Owens Road. The Site encompasses three municipal addresses - 5640 Bank Street, 7107 Marco Street, and 7041 Mitch Owens Road.

The Site is currently vacant, and was previously utilized as a gravel pit. It is understood that much of the gravel pit has been backfilled with a fill derived from pond excavations at a site near Airport Parkway and Hunt Club Road to the north.

There are no other significant recorded items, soil or groundwater releases within a zone of concern. There are no ACMs, ASTs, landfills, lead, mercury, coal gasification plants, coal tar, UFFIs, USTs, PCBs, solid or liquid waste or improper storage of chemicals currently associated with the subject property. There was no evidence of

staining, stressed vegetation, or odours associated with the subject or neighbouring properties.

In summary, based on the current Phase I ESA findings, the possibility of potential environmental impairment from imported fill does exist. Further testing for Metals, SAR, PHCs and VOCs of the soil and groundwater are recommended to confirm the site is free from environmental liabilities.

5.0 SITE DESCRIPTION

The legal description of the property is *Part of Lot 1, Concession 5, Geographic Township of Osgoode, City of Ottawa.* The Site encompasses three municipal addresses - 5640 Bank Street, 7107 Marco Street, and 7041 Mitch Owens Road.

The subject 13 hectare (32 acre) Site is located on an irregular parcel of land situated at the northern periphery of the Community of Greely, at the southwest corner of the intersection of Bank Street and Mitch Owens Road. The northern portion of the Site has an approximate frontage of 653m on the south side of Mitch Owens Road. The western portion of the Site has an approximate frontage of 200m on the east side of Old Prescott Road. The eastern portion of the Site has an approximate frontage of 150m on the west side of Bank Street. The southern portion of the Site has an approximate frontage of 35m on the north side of Marco Street and 720m backing onto the back of single family residential houses located along Marco Street.

The Site is currently vacant, and was previously utilized as a gravel pit (below water table in the central part of the site). It is understood that much of the gravel pit has been backfilled with a fill derived from pond excavations at a site near Airport Parkway and Hunt Club Road to the north. There are no significant environmental concerns from the current onsite operations. Figure 1 shows the Site location, Figure 2 shows the Site layout, and Figure 3 is the Site Plan of Survey.

7.0 SURROUNDING LAND USE

Information concerning the surrounding land use in the vicinity of the subject property was obtained from documented information as well as several site visits. Properties in close proximity to the site are predominantly used as residential and aggregate extraction. Lands to the south and west of the site are in residential use, lands to the north remain in aggregate extractive use, and lands to the east are undeveloped except for a school to the immediate northeast and some scattered commercial properties.

Visual observation of the adjacent properties, to the extent possible, did not reveal the presence of any structures, equipment or materials of concern. There was no visual evidence any underground tanks adjacent to the subject site. There was no evidence of staining, stressed vegetation, odours or environmental concerns currently associated with any of the neighbouring properties.

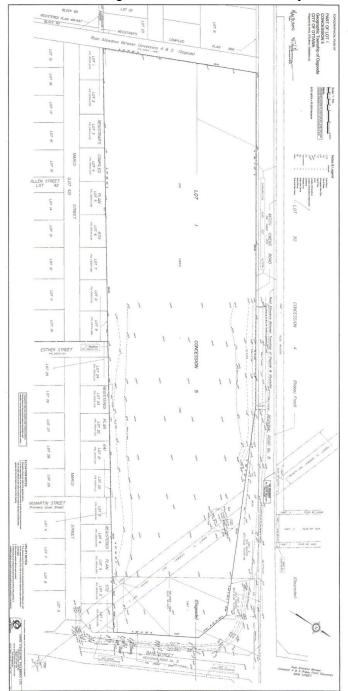


Figure 3: Site Plan of Survey

8.0 PHYSICAL SETTING

The subject lands are located within the North Gower Drumlin Field physiographic region of southern Ontario, a drumlin field occupying much of the southern periphery of the City of Ottawa. According to Ontario Geological Survey Map 2556, the upper soils across the site mainly consist of glaciofluvial ice contact deposits of gravel and sand associated with the mapped abandoned raised beach, with glaciomarine deposits of sand and gravel mapped to the immediate west.

According to local water well records, mainly from wells located at the residential homes to the immediate south and west, the thickness of the undisturbed overburden in the close vicinity of the site is 15 to 27m. The thickest portion of the overburden appears to be along the north-south axis of the mapped abandoned raised beach trending through the centre of the site. The overburden is reported to consist primarily of granular deposits of sand and/or gravel.

8.2 Groundwater and Surface Water

The bedrock is the most commonly utilized source of potable groundwater in the area. Of the 92 reported wells within the same Township lot as the proposed development (i.e. Lot 1, Concession 5, Osgoode), 78 wells (85%) are reported to be completed in the bedrock. The remaining 14 wells are completed in gravel deposits in the lower overburden.

Groundwater is estimated to flow south toward North Castor River which is located approximately 1.5km to the south of the subject property. This information coincides with information taken from aerial photographs, which indicate that, the topography and hence the groundwater flows in the same direction toward this area.

8.3 Other Services

The Site was serviced at the road with hydro, telephone and gas services. Sanitary sewers and municipal water are not available in this area.

9.0 PHASE II ESA INVESTIGATIONS

BAE personnel conducted the Phase II ESA onsite investigations December 11th, 2012. Background information obtained from the BAE Phase I ESA in conjunction with onsite investigations was performed to determine parameters of potential concern for the subject and neighbouring properties. From these investigations it was determined that the potential parameters of concern were Metal, SAR, PHC and VOC Parameters, potentially emanating from previous onsite and offsite operations.

Onsite investigations consisted of a visual inspection of the property and conducting a borehole (BH) drilling and monitoring well (MW) installation program. The Phase II ESA was conducted to ascertain the surficial and subsurface conditions and to assess the need for further investigations. This section of the report describes the methodology and results of the Phase II ESA.

9.1 Borehole and Monitoring Well Installation and Access Program

Seven (7) boreholes were advanced up to a depth of 15m below grade level (BGL) using a CME 75 mobile mounted drill rig with a 25cm diameter, hollow stem auger and split-spoon sampler. Three boreholes were developed as groundwater monitoring wells. Downhole drilling equipment was decontaminated between boreholes and sampling equipment was decontaminated between sampling intervals.

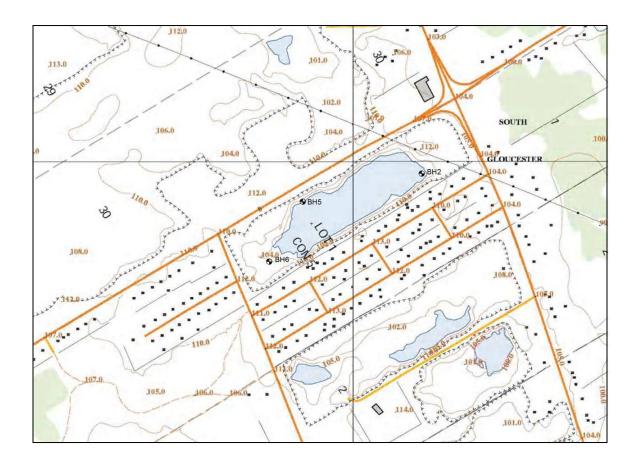
Figure 4 shows the borehole (BH) and monitoring well (MW) locations. Borehole locations were selected to maximise property and proposed structure coverage, as well as determined by site accessibility. Borehole 1 was drilled to a depth of 3.5m at the southeast corner of the property, along the edge that was never exposed during pit operations. Borehole 2 was drilled to a depth of 7.6m to the west of BH #1 just north of the slope that runs along the southern property line. Borehole 3 was drilled to a depth of 7.6m towards the center of the property. Borehole 4 was drilled to a depth of 6.0m along the north edge of the property, to the southwest of the hydro tower. Borehole 5 was drilled to a depth of 9.0m along the north edge, in the west side of the subject property. Borehole 6 was drilled to a depth of 9.0m in the southwest corner of the subject property. Borehole 7 was drilled to a depth of 7.6m along the south side of the property, to the east of Borehole 6.

Water levels were measured in the open boreholes on completion of drilling. In addition, long term groundwater monitoring installations consisting of 19mm diameter PVC (polyvinyl chloride) pipes were installed in Borehole 2, 5 and 6 for subsequent

monitoring. The installation configuration is documented on the corresponding borehole logs.

9.2 Soil and Groundwater Sampling

Soil samples were collected from each borehole for the purpose of subsurface characterisation and field screening and testing. Soil samples were taken at 0.75m intervals and obtained from the split spoon. Each sample was logged with respect to nature, depth, thickness and evidence of impairment. The soil samples were placed in sterile polyethylene soil bags and labelled. The headspace vapours in each soil bag were tested for total petroleum hydrocarbon vapour concentrations using an RKI Eagle, One to Six Gas Portable Monitor and a MiniRae 3000 Portable Handheld VOC Monitor. The RKI Eagle measures total petroleum hydrocarbon vapours in the range of 0ppm to 50,000ppm. The MiniRae 3000 monitors Volatile Organic Compounds (VOCs) using a photo ionization detector (PID) measures VOC vapours in the range of 0ppm to 15,000ppm. All samples registered 0ppm on the Eagle. Samples registered between 1 and 1.8ppm. This field screening process indicated no volatilic gasoline/diesel/solvent impairment in the surface or subsurface soils in these areas.


As a tertiary onsite verification of the soil conditions, four representative samples were removed and tested using the Petroflag Turbidimetric Screening Method For Total Recoverable Petroleum Hydrocarbons in Soil - Official Method US EPA SW-846 Method 9074.

In addition, representative soil and groundwater samples were submitted to ALS for laboratory analysis during the Phase II ESA activities. Each sample was put into sterile, labelled laboratory supplied bottles. While under the care of BAE, the samples were maintained in ice-filled coolers following collection. Samples were submitted under chain-of-custody to ALS for independent chemical analysis.

9.3 Investigation Results

As a tertiary verification of the subsurface conditions, representative soil and groundwater samples were submitted to ALS for independent chemical analysis of the Metal, PHC, SAR and VOC Parameters. As outlined in Section 13 below, all analysis results met applicable MOE/EPA Criteria.

Figure 4: Borehole and Monitoring Well Locations

113.0

102.0

102.0

104.0

104.0

104.0

104.0

104.0

104.0

104.0

104.0

104.0

104.0

104.0

104.0

104.0

104.0

104.0

104.0

104.0

104.0

105.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

106.0

10

Figure 5: Monitoring Well Locations

10.0 APPLICABLE GOVERNMENT GUIDELINES

The current investigation was conducted generally in accordance with Part XV.1 of the Environmental Protection Act and Ontario Regulation 153/04 (O. Reg. 153/04) - as amended by O. Reg. 511 (July, 2011). All analysis was performed in accordance with O. Reg. 153/04 and compared to Part XV.1 of the *Environmental Protection Act* – Table 2: Full Depth Generic Site Condition Standards in a Potable Groundwater Condition (July 2011) Criteria.

The following rationale was used to determine the applicable site criteria:

Site Sensitivity: There were no sensitive environmental receivers identified within 30m of the site. Based on the information gathered during this investigation and previous investigations in the area, there is more than 2 m of overburden at the site.

Land Use: The site was originally developed as commercial. Surrounding land uses are predominantly residential properties, therefore the site will be considered to be commercial land use.

Groundwater Use: The area is not serviced by a municipal water supply. There are several known well users in the area. Based on this situation, the potable groundwater criteria would apply.

Depth and Soil Texture Criteria Selection: For this report, the full-depth criteria will be used for comparison of the analytical results.

The coarse textured soil classification will be used for comparison of analytical data. Based on the above information and assumptions, the criteria for this site corresponds to commercial land use criteria for medium to coarse textured soil using the full-depth approach and Part XV.1 of the *Environmental Protection Act* – Table 2: Full Depth Generic Site Condition Standards in a Potable Groundwater Condition (July 2011).

TABLE 1: GROUNDWATER CHEMICAL ANALYSES - VOCs

PARAMETER	CRITERIA*	MDL	MW-1	MW-2	MW-3
Acetone	2700	30	88	<30	<30
Benzene	5	0.50	< 0.50	< 0.50	< 0.50
Bromodichloromethane	16	2.0	<2.0	<2.0	<2.0
Bromoform	25	5.0	<5.0	<5.0	<5.0
Bromomethane	0.89	0.50	< 0.50	< 0.50	< 0.50
Carbon tetrachloride	0.79	0.20	<0.20	<0.20	<0.20
Chlorobenzene	30	0.50	< 0.50	< 0.50	< 0.50
Dibromochloromethane	25	2.0	<2.0	<2.0	<2.0
Chloroform	2.4	1.0	<1.0	<1.0	<1.0
1,2-Dibromoethane	0.2	0.20	<0.20	<0.20	<0.20
1,2-Dichlorobenzene	3	0.50	< 0.50	< 0.50	< 0.50
1,3-Dichlorobenzene	59	0.50	< 0.50	< 0.50	<0.50
1,4-Dichlorobenzene	1	0.50	< 0.50	< 0.50	< 0.50
Dichlorodifluoromethan e	590	2.0	<2.0	<2.0	<2.0

PARAMETER	CRITERIA*	MDL	MW-1	MW-2	MW-3
1,1-Dichloroethane	5	0.50	< 0.50	< 0.50	< 0.50
1,2-Dichloroethane	1.6	0.50	< 0.50	< 0.50	< 0.50
1,1-Dichloroethylene	1.6	0.50	< 0.50	< 0.50	< 0.50
cis-1,2-	1.6	0.50	< 0.50	< 0.50	< 0.50
Dichloroethylene					
trans-1,2-	1.6	0.50	< 0.50	< 0.50	< 0.50
Dichloroethylene					
1,3-Dichloropropene	0.5	0.50	< 0.50	< 0.50	< 0.50
(cis & trans)					
Methylene Chloride	50	5.0	<5.0	<5.0	<5.0
1,2-Dichloropropane	5	0.50	< 0.50	< 0.50	< 0.50
cis-1,3-Dichloropropene		0.30	< 0.30	< 0.30	< 0.30
trans-1,3-		0.30	< 0.30	< 0.30	< 0.30
Dichloropropene					
Ethyl Benzene	2.4	0.50	< 0.50	< 0.50	< 0.50
n-Hexane	51	0.50	< 0.50	< 0.50	< 0.50
Methyl Ethyl Ketone	1800	20	<20	<20	<20
Methyl Isobutyl Ketone	640	20	<20	<20	<20
MTBE	15	2.0	<2.0	<2.0	<2.0
Styrene	5.4	0.50	< 0.50	< 0.50	< 0.50
1,1,1,2-	1.1	0.50	< 0.50	< 0.50	< 0.50
Tetrachloroethane					
1,1,2,2-	1	0.50	< 0.50	< 0.50	< 0.50
Tetrachloroethane					
Tetrachloroethylene	1.6	0.50	< 0.50	< 0.50	< 0.50
Toluene	24	0.50	<0.50	<0.50	<0.50
1,1,1-Trichloroethane	200	0.50	< 0.50	< 0.50	< 0.50
1,1,2-Trichloroethane	4.7	0.50	< 0.50	< 0.50	< 0.50
Trichloroethylene	1.6	0.50	< 0.50	< 0.50	< 0.50
Trichlorofluoromethane	150	5.0	<5.0	<5.0	<5.0
Vinyl chloride	0.5	0.50	< 0.50	<0.50	<0.50
o-Xylene		0.50	< 0.50	< 0.50	< 0.50
m+p-Xylenes		0.50	< 0.50	< 0.50	< 0.50
Xylenes (Total)	300	0.71	<0.71	< 0.71	<0.71

All values in ug/l - ppb - parts per billion MDL- Method Detection Limit, N/V - No Value *Part XV.1 of the *Environmental Protection Act* – Table 2: Full Depth Generic Site Condition Standards in a Potable Groundwater Condition (July 2011)

TABLE 2: GROUNDWATER CHEMICAL ANALYSIS- METALS

PARAMETER	CRITERIA	MDL	MW-3
Antimony (Sb)	6	0.50	< 0.50
Arsenic (As)	25	1.0	1.4
Barium (Ba)	1000	2.0	189
Beryllium (Be)	4	0.50	< 0.50
Boron (B)	5000	10	57
Cadmium (Cd)	2.7	0.10	<0.10
Calcium (Ca)		0.50	105
Chromium (Cr)	50	0.50	< 0.50
Cobalt (Co)	3.8	0.50	1.50
Copper (Cu)	87	1.0	<1.0
Lead (Pb)	10	1.0	<1.0
Magnesium (Mg)		0.50	25.9
Molybdenum (Mo)	70	0.50	1.76
Nickel (Ni)	100	1.0	2.6
Selenium (Se)	10	5.0	<5.0
Silver (Ag)	1.5	0.10	<0.10
Sodium (Na)	490000	5000	24800
Thallium (TI)	2	0.30	< 0.30
Uranium (U)	20	2.0	2.5
Vanadium (V)	6.2	0.50	0.94
Zinc (Zn)	1100	3.0	<3.0
SAR	12	0.03	0.56

All values in ug/l - ppb - parts per billion MDL- Method Detection Limit, N/V - No Value *Part XV.1 of the *Environmental Protection Act* – Table 2: Full Depth Generic Site Condition Standards in a Potable Groundwater Condition (July 2011)

TABLE 3: GROUNDWATER CHEMICAL ANALYSES -PETROLEUM HYDROCARBONS

PARAMETER	MOE/EPA CRITERIA	MDL	MW-1	MW-2
PHCs				
F1 (C6-C10)	25	25	<25	<25
F1-BTEX	25	25	<25	<25
F2 (C10-C16)	100	100	<100	<100
F3 (C16-C34)	250	250	<250	<250
F4 (C34-C50)	250	250	<250	<250
Total PHCs	250	250	<250	<250

All values in ug/l - ppb - parts per billion MDL- Method Detection Limit, N/V - No Value *Part XV.1 of the *Environmental Protection Act* — Table 2: Full Depth Generic Site Condition Standards in a Potable Groundwater Condition (July 2011).

TABLE 4: SOIL CHEMICAL ANALYSIS- METALS

PARAMETER:	*CRITERIA	MDL	BH-3 1.5m	BH-4 1.5m
Antimony (Sb)	50	1.0	<1.0	<1.0
Arsenic (As)	18	1.0	2.2	3.6
Barium (Ba)	670	1.0	62.2	96.7
Beryllium (Be)	10	0.50	0.52	0.67
Cadmium (Cd)	120	5.0	8.0	8.3
Chromium (Cr)	1.9	0.50	< 0.50	< 0.50
Cobalt (Co)	160	1.0	21.3	27.0
Copper (Cu)	100	1.0	8.1	8.6
Lead (Pb)	300	1.0	18.7	17.7
Molybdenum (Mo)	120	1.0	16.0	10.3
Nickel (Ni)	40	1.0	<1.0	<1.0
Selenium (Se)	340	1.0	19.0	20.7
Silver (Ag)	5.5	1.0	<1.0	<1.0
Thallium (TI)	50	0.20	< 0.20	<0.20
Uranium (U)	3.3	0.50	< 0.50	< 0.50
Vanadium (V)	33	1.0	<1.0	<1.0
Zinc (Zn)	86	1.0	31.0	41.5
SAR	5	0.10	0.87	0.41

All values in ug/g - ppm - parts per million, MDL- Method Detection Limit, *Part XV.1 of the *Environmental Protection Act* – Table 2: Full Depth Generic Site Condition Standards in a Potable Groundwater Condition, (July 2011).

TABLE 5: SOIL CHEMICAL ANALYSES - VOCs

PARAMETER	*CRITERIA	MDL	BH5-1.5m
Acetone	28	0.50	< 0.50
Benzene	0.4	0.020	<0.020
Bromodichloromethane	1.9	0.050	< 0.050
Bromoform	1.7	0.050	< 0.050
Bromomethane	0.05	0.050	< 0.050
Carbon tetrachloride	0.71	0.050	< 0.050
Chlorobenzene	2.7	0.050	< 0.050
Dibromochloromethane	2.9	0.050	< 0.050

PARAMETER	*CRITERIA	MDL	BH5-1.5m
Chloroform	0.18	0.050	< 0.050
1,2-Dibromoethane	0.05	0.050	< 0.050
1,2-Dichlorobenzene	1.7	0.050	< 0.050
1,3-Dichlorobenzene	12	0.050	< 0.050
1,4-Dichlorobenzene	0.57	0.050	< 0.050
Dichlorodifluoromethane	25	0.050	< 0.050
1,1-Dichloroethane	0.6	0.050	< 0.050
1,2-Dichloroethane	0.05	0.050	< 0.050
1,1-Dichloroethylene	0.48	0.050	< 0.050
cis-1,2-Dichloroethylene	2.5	0.050	< 0.050
trans-1,2-	2.5	0.050	<0.050
Dichloroethylene			
1,3-Dichloropropene (cis	0.081	0.042	< 0.042
& trans)			
Methylene Chloride	2	0.050	< 0.050
1,2-Dichloropropane	0.68	0.050	< 0.050
cis-1,3-Dichloropropene		0.030	< 0.030
trans-1,3-		0.030	< 0.030
Dichloropropene			
Ethyl Benzene	1.6	0.050	<0.050
n-Hexane	88	0.050	<0.050
Methyl Ethyl Ketone	88	0.50	<0.50
Methyl Isobutyl Ketone	210	0.50	<0.50
MTBE	2.3	0.050	<0.050
Styrene	43	0.050	<0.050
1,1,1,2-	0.11	0.050	< 0.050
Tetrachloroethane			
1,1,2,2-	0.094	0.050	< 0.050
Tetrachloroethane			
Tetrachloroethylene	2.5	0.050	<0.050
Toluene	9	0.20	<0.20
1,1,1-Trichloroethane	12	0.050	<0.050
1,1,2-Trichloroethane	0.11	0.050	<0.050
Trichloroethylene	0.61	0.050	<0.050
Trichlorofluoromethane	5.8	0.050	< 0.050
Vinyl chloride	0.25	0.020	<0.020
o-Xylene		0.020	<0.020

PARAMETER	*CRITERIA	MDL	BH5-1.5m
m+p-Xylenes		0.030	< 0.030
Xylenes (Total)	30	0.050	< 0.050

All values in ug/g - ppm - parts per million, MDL- Method Detection Limit, *Part XV.1 of the *Environmental Protection Act* – Table 2: Full Depth Generic Site Condition Standards in a Potable Groundwater Condition, (July 2011).

TABLE 6: SOIL CHEMICAL ANALYSES -PETROLEUM HYDROCARBONS

PARAMETER	MOE/EPA CRITERIA	MDL	BH3-1.5m
PHCs			
F1 (C6-C10)	65	5	<5
F1-BTEX	65	5	<5
F2 (C10-C16)	250	10	<10
F3 (C16-C34)	2500	50	<50
F4 (C34-C50)	6600	50	57
Total PHCs		50	57

All values in ug/l - ppm - parts per million MDL- Method Detection Limit, N/V - No Value *Part XV.1 of the *Environmental Protection Act* — Table 2: Full Depth Generic Site Condition Standards in a Potable Groundwater Condition (July 2011).

11.0 LABORATORY CHEMICAL ANALYSES

All laboratory analyses were completed by an independent, accredited lab, ALS Laboratory Group of Richmond Hill/ Waterloo, Ontario (ALS). ALS is a CAEAL Registered and Accredited laboratory according to O. Reg. 153/04 section 47 (1) and ALS used the analytical methods as described in *Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act* (MOE 2004, O. Reg. 153/04 section 47 (2). Appendix I of this report contains the detailed laboratory certificates of analyses. All analysis was performed in accordance with O. Reg. 153/04 and compared to Part XV.1 of the *Environmental Protection Act* – Table 2: Full Depth Generic Site Condition Standards in a Potable Groundwater Condition (July 2011). Representative soil and groundwater samples were submitted for the Metal, PHC, SAR and VOC Parameters. **As presented above and in the attached Certificates of Analysis, all analyses met applicable MOE/EPA criteria.**

12.0 FIELD and LABORATORY QA/QC

A strict Quality Assurance/Quality Control (QA/QC) program was implemented and maintained throughout the project to ensure the Site data are representative of the actual Site conditions. The QA/QC program provides a method of documented checks to assess the precision and accuracy of collected data. The QA/QC program includes a set of standard procedures or protocols to be followed throughout the investigations. To this end, BAE field and QA/QC protocols have been developed to meet or exceed those defined in the MOE documents entitled "Guideline for Phase II Environmental Site Assessments in Ontario" (Draft, March 2006) and "Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario" (1996) and Canadian Council of Ministers of the Environment (CCME) "Guidance Manual Sampling, Analysis, and Data Management for Contaminated Sites" (1993). The field QA/QC program included the following components:

- 1) The use of personnel protective equipment including hard hats, safety glasses, safety work boots, and chemically resistant latex/nitrile gloves for sample handling;
- 2) Thorough documentation of all field activities and sample handling practices including field notes, chain of custody forms, memos to file, etc;
- 3) Thorough decontamination of all non-dedicated sampling equipment employed in all investigation phases;
- 4) The use of laboratory analytical protocols and method detection limits that have been established in accordance with regulatory requirements of the Province of Ontario;
- 5) The RKI Eagle was re-calibrated to Hexane during the planning process;
- 6) The Petroflag Turbidimetric Screening Method For Total Recoverable Petroleum Hydrocarbons in Soil Official Method US EPA SW-846 Method 9074 was re-calibrated with the appropriate blanks and standards (each 10 samples) prior to and during usage in the field;
- 7) The MiniRae 3000 Portable Handheld VOC Monitor was calibrated using isobutylene calibration gas prior to use; and,
- 8) The ALS Quality Control Report was provided by ALS at the request of BAE. ALS includes comprehensive QC checks with every analysis to ensure high standards of quality are met. Each QC result has a known or expected target value, which is

compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

13.0 CONCLUSIONS

It is the opinion of BAE that the current environmental assessment performed is consistent with and meets MOE/EPA Criteria. The Environmental Site Assessment results do not suggest any chemical contamination associated with the imported fill or current or historical activities at the subject property and has determined that there is no evidence of any offsite impaction, or is likely to impact in the future, any adjacent public Right of Ways at levels in excess of applicable criteria. **No further environmental investigations are recommended at this time.**

14.0 REFERENCES

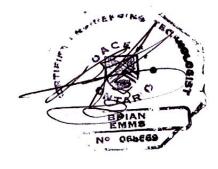
Chapman, L.J. and Putnam, D.F., 1984. "The Physiography of Southern Ontario", Ontario Geological Survey.

Part VIII of Ontario Regulation 153/04 and Part XV.1 of the *Environmental Protection Act* – Table 2: Full Depth Generic Site Condition Standards in a Potable Groundwater Condition (July 2011).

15.0 LIMITATIONS

The statement of limitations associated with the current Phase II ESA is as follows:

- This project and verification assessment was conducted in accordance with generally accepted engineering standards. It is possible that materials other than those described in this report are present at the site. The client acknowledges that no assessment can necessarily identify the existence of all contaminants, potential contaminants or environmental conditions;
- 2. This report was prepared for the sole and exclusive use of Alium Investments Ltd. BAE accepts no responsibility or liability for any loss, damage, expense, fine or any other claim of any nature or type, including any liability or potential liability arising from its own negligence, for any use of this report or reliance on it, in whole or in part, by anyone other than Alium Investments Ltd.;


3. There is no representation, warranty or condition, express or implied, by BAE or its officers, directors, employees or agents that this assessment has identified all contaminants, potential contaminants or environmental conditions at the site or that the site is free from contamination, potential contaminants or environmental conditions other than those noted in this report;

- 4. This assessment has been completed from information and documentation described in this report. We have assumed that any such information and documentation is accurate and complete. We can accept no responsibility or liability for any errors, deficiencies or inaccuracies in this report arising from errors or omissions in the information and documentation provided by others;
- This assessment was based on information and the results of investigations obtained on the dates specified. BAE accepts no responsibility or liability for any changes or potential changes in the condition of the site subsequent to the date of our investigations;
- 6. This assessment pertains only to the site specifically described in this report and not to any adjacent or other property;
- 7. This assessment does not include, nor is it intended to include, any opinion regarding the suitability of any structure on the site for any particular function, or the geotechnical conditions on the site, with the exception of how they may identify with environmental concerns. Inspections do not include compliance with building, gas, electrical or boiler codes, or any other federal, provincial or municipal codes not associated with environmental concerns. Should concerns regarding any parameters other than environmental concerns arise as a result of our investigations, they should be addressed by appropriately qualified professionals;
 - 8. Should any conditions be encountered at the subject site that differs from our findings, we request that we be notified immediately in order to allow for a reassessment.
 - 9. This report is not to be reproduced or released to any other party, other than Alium Investments Ltd. in whole or in part, without the express written consent of BAE.

16.0 QUALIFICATIONS OF ASSESSORS

This investigation was completed by Brian A. Emms, C.E.T. and reviewed by G. Jan Van Iterson, P. Eng. Mr. Van Iterson is registered with the Ministry of Environment as a Qualified Person as per Ontario Regulation 153/04. Jointly, the above have performed hundreds of ESAs and site remediation for various financial institutions, municipal governments, insurance companies, law firms and the private sector.

Respectfully submitted,
BAE & Associates Environmental

Brian A. Emms, C.E.T. Senior Env. Technologist

G. Jan Van Iterson, P. Eng. Associate

APPENDIX I Certificates of Analysis

BRIAN A. EMMS ATTN: BRIAN EMMS RR 1 ORO STATION ORO STATION ON LOL 2E0 Date Received: 11-DEC-12

Report Date: 15-JUL-13 07:47 (MT)

Version: FINAL REV. 2

Client Phone: 705-715-1881

Certificate of Analysis

Lab Work Order #:L1248030Project P.O. #:NOT SUBMITTEDJob Reference:CSTA-002C of C Numbers:131054

Legal Site Desc:

Mathumai Ganeshakumar Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 95 West Beaver Creek Road, Unit 1, Richmond Hill, ON L4B 1H2 Canada | Phone: +1 905 881 9887 | Fax: +1 905 881 8062
ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

Environmental 🚴

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTIER

ANALYTICAL GUIDELINE REPORT

L1248030 CONTD....

Sample Details								15-JUL-13 0	
Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed		Guidelir	ne Limits	
1248030-1 MW1									
Sampled By: CLIENT on 11-DEC-12 @ 12:00									
Matrix: WATER						#1	#2	#3	#4
Volatile Organic Compounds									
Acetone	88		30	ug/L	13-DEC-12				
Benzene	<0.50		0.50	ug/L	13-DEC-12				
Bromodichloromethane	<2.0		2.0	ug/L	13-DEC-12				
Bromoform	<5.0		5.0	ug/L ug/L	13-DEC-12				
Bromomethane	<0.50		0.50	ug/L	13-DEC-12				
Carbon tetrachloride	<0.20		0.30	ug/L ug/L	13-DEC-12				
Chlorobenzene	<0.50		0.50	ug/L ug/L	13-DEC-12				
Dibromochloromethane	<2.0		2.0	ug/L	13-DEC-12				
Chloroform	<1.0		1.0		13-DEC-12				
1,2-Dibromoethane	<0.20		0.20	ug/L	13-DEC-12 13-DEC-12				
1,2-Dibromoethane 1,2-Dichlorobenzene	<0.20		0.20	ug/L ug/L	13-DEC-12 13-DEC-12				
1,3-Dichlorobenzene	<0.50		0.50	000000000000000000000000000000000000000	13-DEC-12 13-DEC-12				
1,4-Dichlorobenzene	<0.50		0.50	ug/L	13-DEC-12 13-DEC-12				
	<2.0		2.0	ug/L	13-DEC-12 13-DEC-12				
Dichlorodifluoromethane				ug/L					
1,1-Dichloroethane	<0.50		0.50	ug/L	13-DEC-12				
1,2-Dichloroethane	<0.50		0.50	ug/L	13-DEC-12				
1,1-Dichloroethylene	<0.50		0.50	ug/L	13-DEC-12				
cis-1,2-Dichloroethylene	<0.50		0.50	ug/L	13-DEC-12				
trans-1,2-Dichloroethylene	<0.50		0.50	ug/L	13-DEC-12				
1,3-Dichloropropene (cis & trans)	<0.50		0.50	ug/L	13-DEC-12				
Methylene Chloride	<5.0		5.0	ug/L	13-DEC-12				
1,2-Dichloropropane	<0.50		0.50	ug/L	13-DEC-12				
cis-1,3-Dichloropropene	< 0.30		0.30	ug/L	13-DEC-12				
trans-1,3-Dichloropropene	< 0.30		0.30	ug/L	13-DEC-12			"	
Ethyl Benzene	< 0.50		0.50	ug/L	13-DEC-12				
n-Hexane	<0.50		0.50	ug/L	13-DEC-12				
Methyl Ethyl Ketone	<20		20	ug/L	13-DEC-12				
Methyl Isobutyl Ketone	<20		20	ug/L	13-DEC-12				
MTBE	<2.0		2.0	ug/L	13-DEC-12				
Styrene	<0.50		0.50	ug/L	13-DEC-12				
1,1,1,2-Tetrachloroethane	<0.50		0.50	ug/L	13-DEC-12				
1,1,2,2-Tetrachloroethane	< 0.50		0.50	ug/L	13-DEC-12				
Tetrachloroethylene	<0.50		0.50	ug/L	13-DEC-12				
Toluene	<0.50		0.50	ug/L	13-DEC-12				
1,1,1-Trichloroethane	<0.50		0.50	ug/L	13-DEC-12				
1,1,2-Trichloroethane	<0.50		0.50	ug/L	13-DEC-12				
Trichloroethylene	<0.50		0.50	ug/L	13-DEC-12				
Trichlorofluoromethane	<5.0		5.0	ug/L	13-DEC-12				
Vinyl chloride	<0.50		0.50	ug/L	13-DEC-12				
o-Xylene	< 0.35		0.35	ug/L	13-DEC-12				
m+p-Xylenes	< 0.35		0.35	ug/L	13-DEC-12				
Xylenes (Total)	<0.50		0.50	ug/L	13-DEC-12				
Surrogate: 4-Bromofluorobenzene	83.1		70-130	%	13-DEC-12				
Surrogate: 1,4-Difluorobenzene	93.6		70-130	%	13-DEC-12				
Hydrocarbons									
F1 (C6-C10)	<25		25	ug/L	13-DEC-12				
F1-BTEX	<25		25	ug/L	13-DEC-12				
F2 (C10-C16)	<100		100	ug/L	13-DEC-12				

^{**} Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

* Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

* Ontario Regulation 153/04 - April 15, 2011 Standards = [Suite] - T2-All-Soil-Categories

#2: T2-Soil-Agricultural or Other Property Use (Fine)

^{#1:} T2-Soil-Agricultural or Other Property Use (Coarse)

^{#3:} T2-Soil-Ind/Com/Commu Property Use (Coarse)

ANALYTICAL GUIDELINE REPORT

L1248030 CONTD.... Page 3 of 11

Result	Qualifier	D.L.	Units	Analyzed				
		12		/ indiy20d		Guidelli	ne Limits	
					#1	#2	#3	#4
				=	<i>H</i> 1	#2	#0	11-1
<250		250	ug/L	13-DEC-12				
<250		250	ug/L	13-DEC-12				
<250		250	ug/L	13-DEC-12				
YES			No Unit	13-DEC-12				
61.3		60-140	%	13-DEC-12				
72.6		60-140	%	13-DEC-12				
91.0		60-140	%	13-DEC-12				
					#1	#2	#3	#4
				-				
<30		30	ua/l	13 DEC 12				
			500000000000000000000000000000000000000					
			110000	(62) (53)				
				1000				
100000000000000000000000000000000000000		2000,000,000		200000000000000000000000000000000000000				
100000000000000000000000000000000000000		100,524,000						
< 0.50		50000000	5045-3000	13-DEC-12				
< 0.50		0.50	ug/L	13-DEC-12			1	
< 0.50		0.50	ug/L	13-DEC-12				
<2.0		2.0	ug/L	13-DEC-12				
< 0.50		0.50	ug/L	13-DEC-12				
< 0.50		0.50	ug/L	13-DEC-12				
< 0.50		0.50	ug/L	13-DEC-12				
< 0.50		0.50	ug/L	13-DEC-12				
< 0.50		0.50	ug/L	13-DEC-12				
< 0.50		0.50	ug/L	13-DEC-12				
<5.0		5.0	ug/L	13-DEC-12				
< 0.50		0.50	ug/L	13-DEC-12				
			ug/L					
200000000000000000000000000000000000000		55,000		Street, Street				
200000000000000000000000000000000000000		Contract of the Contract of th		The second of th				
1000		100000000000000000000000000000000000000						
		100000	0.0					
		1 20000	(1) To (1)					
			1000					
			1000					
		ALCOHOLD TO						
and the second second				B (\$10,000 SECTION ACCESS TO 1				
		200 00 20	0.00					
	<250 <250 <250 YES 61.3 72.6 91.0 <30 <0.50 <2.0 <0.50 <2.0 <0.50 <2.0 <0.50 <2.0 <0.50 <2.0 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <	<250 <250 <250 YES 61.3 72.6 91.0 <30 <0.50 <2.0 <5.0 <0.50 <2.0 <1.0 <0.50 <2.0 <1.0 <0.50 <2.0 <1.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50	<250	<250	<250	<250	<250	<250

^{**}Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

**Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

Ontario Regulation 153/04 - April 15, 2011 Standards = [Suite] - T2-All-Soil-Categories

#1: T2-Soil-Agricultural or Other Property Use (Coarse) #3: T2-Soil-Ind/Com/Commu Property Use (Coarse)

#2: T2-Soil-Agricultural or Other Property Use (Fine)

#4: T2-Soil-Ind/Com/Commu Property Use (Fine)

Phase II Environmental one assessment

5640 Bank Street, 7107 Marco Street, and 7041 Mitch Owens Road, City of Ottawa, Ontario

ANALYTICAL GUIDELINE REPORT

L1248030 CONTD....
Page 4 of 11
15-JUL-13 07:47 (MT)

Sample Details Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed		Guidelin	ne Limits	
AND DESCRIPTION OF THE PROPERTY OF THE PROPERT	rtoodit	Qualifici	D.L.	Offico	Analyzed		Odidolli	ic Ellinto	
.1248030-2 MW2									
Sampled By: CLIENT on 11-DEC-12 @ 12:00						#1	#2	#3	#4
Matrix: WATER					_	#1	#2	#3	
Volatile Organic Compounds									
1,1,2-Trichloroethane	< 0.50		0.50	ug/L	13-DEC-12				
Trichloroethylene	< 0.50		0.50	ug/L	13-DEC-12				
Trichlorofluoromethane	<5.0		5.0	ug/L	13-DEC-12				
Vinyl chloride	< 0.50		0.50	ug/L	13-DEC-12				
o-Xylene	< 0.35		0.35	ug/L	13-DEC-12				
m+p-Xylenes	< 0.35		0.35	ug/L	13-DEC-12				
Xylenes (Total)	< 0.50		0.50	ug/L	13-DEC-12				
Surrogate: 4-Bromofluorobenzene	82.4		70-130	%	13-DEC-12				
Surrogate: 1,4-Difluorobenzene	93.1		70-130	%	13-DEC-12				
Hydrocarbons									
F1 (C6-C10)	<25		25	ug/L	13-DEC-12				
F1-BTEX	<25		25	ug/L	13-DEC-12				
F2 (C10-C16)	<100		100	ug/L	13-DEC-12				
F3 (C16-C34)	<250		250	ug/L	13-DEC-12				
F4 (C34-C50)	<250		250	ug/L	13-DEC-12				
Total Hydrocarbons (C6-C50)	<250		250	ug/L	13-DEC-12				
Chrom. to baseline at nC50	YES			No Unit	13-DEC-12				
Surrogate: 2-Bromobenzotrifluoride	63.0		60-140	%	13-DEC-12				
Surrogate: 3,4-Dichlorotoluene	70.3		60-140	%	13-DEC-12				
Surrogate: Octacosane	93.1		60-140	%	13-DEC-12				
_1248030-3 MW3									
Sampled By: CLIENT on 11-DEC-12 @ 12:00									
Matrix: WATER						#1	#2	#3	#4
Metals									
1/60 NO MONTH WAS ANALYSIS	0.50		0.000	0.45	11 050 10	323	12		72
Sodium Adsorption Ratio	0.56		0.030	SAR	14-DEC-12	5	5	12	12
Dissolved Metals									
Antimony (Sb)	< 0.50	SFPL	0.50	ug/L	12-DEC-12				
Arsenic (As)	1.4	SFPL	1.0	ug/L	12-DEC-12				
Barium (Ba)	189	SFPL	2.0	ug/L	12-DEC-12				
Beryllium (Be)	< 0.50	SFPL	0.50	ug/L	12-DEC-12				
Boron (B)	57	SFPL	10	ug/L	12-DEC-12				
Cadmium (Cd)	< 0.10	SFPL	0.10	ug/L	12-DEC-12				
Calcium (Ca)-Dissolved	105	SFPL	0.50	mg/L	12-DEC-12				
Chromium (Cr)	< 0.50	SFPL	0.50	ug/L	12-DEC-12				
Cobalt (Co)	1.50	SFPL	0.50	ug/L	12-DEC-12				
Copper (Cu)	<1.0	SFPL	1.0	ug/L	12-DEC-12				
Lead (Pb)	<1.0	SFPL	1.0	ug/L	12-DEC-12				
Magnesium (Mg)-Dissolved	25.9	SFPL	0.50	mg/L	12-DEC-12				
Molybdenum (Mo)	1.76	SFPL	0.50	ug/L	12-DEC-12				
Nickel (Ni)	2.6	SFPL	1.0	ug/L	12-DEC-12				
Selenium (Se)	<5.0	SFPL	5.0	ug/L	12-DEC-12				
Silver (Ag)	<0.10	SFPL	0.10	ug/L	12-DEC-12				
Sodium (Na)	24800	SFPL	500	ug/L	12-DEC-12				
Thallium (TI)	<0.30	SFPL	0.30	ug/L	12-DEC-12				
	2.5	SFPL	2.0	ug/L	12-DEC-12				
Uranium (U) Vanadium (V)	0.94	SFPL	0.50	ug/L	12-DEC-12				

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Ontario Regulation 153/04 - April 15, 2011 Standards = [Suite] - T2-All-Soil-Categories

#2: T2-Soil-Agricultural or Other Property Use (Fine)

Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

^{#1:} T2-Soil-Agricultural or Other Property Use (Coarse)

^{#3:} T2-Soil-Ind/Com/Commu Property Use (Coarse)

ANALYTICAL GUIDELINE REPORT

L1248030 CONTD.... Page 5 of 11

Sample Details								15-JUL-13 0	(
Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed		Guidelii	ne Limits	
-1248030-3 MW3									
Sampled By: CLIENT on 11-DEC-12 @ 12:00	i:								
Matrix: WATER						#1	#2	#3	#4
Dissolved Metals									
	+0.0	OFF	2.0		40 DEC 40				
Zinc (Zn)	<3.0	SFPL	3.0	ug/L	12-DEC-12				
Volatile Organic Compounds	-00				40 050 40				
Acetone	<30		30	ug/L	13-DEC-12				
Benzene	<0.50		0.50	ug/L	13-DEC-12				
Bromodichloromethane Bromoform	<2.0 <5.0		2.0 5.0	ug/L	13-DEC-12 13-DEC-12				
	<0.50		0.50	ug/L	13-DEC-12				
Bromomethane Carbon tetrachloride	<0.20		0.50	ug/L ug/L	13-DEC-12				
Chlorobenzene	<0.50		0.50		13-DEC-12				
Dibromochloromethane	<2.0		2.0	ug/L	13-DEC-12				
Chloroform	<1.0		1.0	ug/L ug/L	13-DEC-12 13-DEC-12				
1,2-Dibromoethane	<0.20		0.20	ug/L ug/L	13-DEC-12				
1,2-Dibromoethane 1,2-Dichlorobenzene	<0.50		0.20	ug/L ug/L	13-DEC-12				
1,3-Dichlorobenzene	<0.50		0.50	ug/L	13-DEC-12				
1,4-Dichlorobenzene	<0.50		0.50	ug/L	13-DEC-12				
Dichlorodifluoromethane	<2.0		2.0	ug/L	13-DEC-12				
1.1-Dichloroethane	<0.50		0.50	ug/L	13-DEC-12				
1,2-Dichloroethane	<0.50		0.50	ug/L	13-DEC-12				
1,1-Dichloroethylene	<0.50		0.50	ug/L	13-DEC-12				
cis-1,2-Dichloroethylene	<0.50		0.50	ug/L	13-DEC-12				
trans-1,2-Dichloroethylene	<0.50		0.50	ug/L	13-DEC-12				
1,3-Dichloropropene (cis & trans)	<0.50		0.50	ug/L	13-DEC-12				
Methylene Chloride	<5.0		5.0	ug/L	13-DEC-12				
1,2-Dichloropropane	<0.50		0.50	ug/L	13-DEC-12				
cis-1,3-Dichloropropene	<0.30		0.30	ug/L	13-DEC-12				
trans-1,3-Dichloropropene	<0.30		0.30	ug/L	13-DEC-12				
Ethyl Benzene	<0.50		0.50	ug/L	13-DEC-12				
n-Hexane	<0.50		0.50	ug/L	13-DEC-12				
Methyl Ethyl Ketone	<20		20	ug/L	13-DEC-12				
Methyl Isobutyl Ketone	<20		20	ug/L	13-DEC-12				
MTBE	<2.0		2.0	ug/L	13-DEC-12				
Styrene	<0.50		0.50	ug/L	13-DEC-12				
1,1,1,2-Tetrachloroethane	<0.50		0.50	ug/L	13-DEC-12				
1,1,2,2-Tetrachloroethane	< 0.50		0.50	ug/L	13-DEC-12				
Tetrachloroethylene	< 0.50		0.50	ug/L	13-DEC-12				
Toluene	< 0.50		0.50	ug/L	13-DEC-12				
1,1,1-Trichloroethane	< 0.50		0.50	ug/L	13-DEC-12				
1,1,2-Trichloroethane	< 0.50		0.50	ug/L	13-DEC-12				
Trichloroethylene	< 0.50		0.50	ug/L	13-DEC-12				
Trichlorofluoromethane	<5.0		5.0	ug/L	13-DEC-12				
Vinyl chloride	< 0.50		0.50	ug/L	13-DEC-12				
o-Xylene	< 0.35		0.35	ug/L	13-DEC-12				
m+p-Xylenes	< 0.35		0.35	ug/L	13-DEC-12				
Xylenes (Total)	< 0.50		0.50	ug/L	13-DEC-12				
Surrogate: 4-Bromofluorobenzene	83.0		70-130	%	13-DEC-12				
Surrogate: 1,4-Difluorobenzene	93.5		70-130	%	13-DEC-12				
Hydrocarbons									
F1 (C6-C10)	<25		25	ug/L	13-DEC-12				

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

Ontario Regulation 153/04 - April 15, 2011 Standards = [Suite] - T2-All-Soil-Categories #1: T2-Soil-Agricultural or Other Property Use (Coarse)

#2: T2-Soil-Agricultural or Other Property Use (Fine)

^{#3:} T2-Soil-Ind/Com/Commu Property Use (Coarse)

ANALYTICAL GUIDELINE REPORT

L1248030 CONTD.... Page 6 of 11

Sample Details Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed		Guidelin	e Limits	
.1248030-3 MW3									
Sampled By: CLIENT on 11-DEC-12 @ 12:00 Matrix: WATER					<u>_</u>	#1	#2	#3	#4
Hydrocarbons									
F1-BTEX	<25		25	ug/L	13-DEC-12				
Surrogate: 3,4-Dichlorotoluene	77.6		60-140	%	13-DEC-12				
_1248030-4 BH3 - 1.5									
Sampled By: CLIENT on 11-DEC-12 @ 12:00									
Matrix: SOIL						#1	#2	#3	#4
Physical Tests									
% Moisture	17.9		0.10	%	11-DEC-12				
Saturated Paste Extractables	17.5		0.10	70	11-020-12				
SAR	0.87		0.10	SAR	12-DEC-12	5	5	12	12
Calcium (Ca)	18.4		0.10	mg/L	12-DEC-12	3	3	12	12
Magnesium (Mg)	1.62		0.10	mg/L	12-DEC-12				
Sodium (Na)	14.4		0.10	mg/L	12-DEC-12				
Metals									
Antimony (Sb)	<1.0		1.0	ug/g	12-DEC-12	7.5	7.5	40	50
Arsenic (As)	2.2		1.0	ug/g	12-DEC-12	11	11	18	18
Barium (Ba)	62.2		1.0	ug/g	12-DEC-12	390	390	670	670
Beryllium (Be)	0.52		0.50	ug/g	12-DEC-12	4	5	8	10
Boron (B)	8.0		5.0	ug/g	12-DEC-12	120	120	120	120
Cadmium (Cd)	< 0.50		0.50	ug/g	12-DEC-12	1	1	1.9	1.9
Chromium (Cr)	21.3		1.0	ug/g	12-DEC-12	160	160	160	160
Cobalt (Co)	8.1		1.0	ug/g	12-DEC-12	22	22	80	100
Copper (Cu)	18.7		1.0	ug/g	12-DEC-12	140	180	230	300
Lead (Pb)	16.0		1.0	ug/g	12-DEC-12	45	45	120	120
Molybdenum (Mo)	<1.0		1.0	ug/g	12-DEC-12	6.9	6.9	40	40
Nickel (Ni)	19.0		1.0	ug/g	12-DEC-12	100	130	270	340
Selenium (Se)	<1.0		1.0	ug/g	12-DEC-12	2.4	2.4	5.5	5.5
Silver (Ag)	< 0.20		0.20	ug/g	12-DEC-12	20	25	40	50
Thallium (TI)	< 0.50		0.50	ug/g	12-DEC-12	1	1	3.3	3.3
Uranium (U)	<1.0		1.0	ug/g	12-DEC-12	23	23	33	33
Vanadium (V)	31.0		1.0	ug/g	12-DEC-12	86	86	86	86
Zinc (Zn)	53.8		5.0	ug/g	12-DEC-12	340	340	340	340
Hydrocarbons								04000	
F2 (C10-C16)	<10		10	ug/g	14-DEC-12	98	150	230	250
F3 (C16-C34)	<50		50	ug/g	14-DEC-12	300	1300	1700	250
F4 (C34-C50)	57		50	ug/g	14-DEC-12	2800	5600	3300	660
Chrom. to baseline at nC50	YES			No Unit	14-DEC-12				
Surrogate: 2-Bromobenzotrifluoride	73.4		60-140	%	14-DEC-12				
Surrogate: Octacosane	100.9		60-140	%	14-DEC-12				
L1248030-5 BH4 - 1.5									
Sampled By: CLIENT on 11-DEC-12 @ 12:00									
Matrix: SOIL						#1	#2	#3	#4
Widdin.									
Saturated Paste Extractables									

^{**}Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

Ontario Regulation 153/04 - April 15, 2011 Standards = [Suite] - T2-All-Soil-Categories

- #1: T2-Soil-Agricultural or Other Property Use (Coarse)

#2: T2-Soil-Agricultural or Other Property Use (Fine)

#3: T2-Soil-Ind/Com/Commu Property Use (Coarse)

ANALYTICAL GUIDELINE REPORT

L1248030 CONTD.... Page 7 of 11

Sample Details	5	0 - 1'5		Limite			15-JUL-13 07:47 (I Guideline Limits			
Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed		Guidelin	e Limits		
.1248030-5 BH4 - 1.5										
Sampled By: CLIENT on 11-DEC-12 @ 12:00						#1	#2	#3	#4	
Matrix: SOIL						#1	#2	#3	77-1	
Saturated Paste Extractables										
SAR	0.41		0.10	SAR	12-DEC-12	5	5	12	12	
Calcium (Ca)	9.91		0.10	mg/L	12-DEC-12					
Magnesium (Mg)	0.84		0.10	mg/L	12-DEC-12					
Sodium (Na)	5.02		0.10	mg/L	12-DEC-12					
Metals										
Antimony (Sb)	<1.0		1.0	ug/g	12-DEC-12	7.5	7.5	40	50	
Arsenic (As)	3.6		1.0	ug/g	12-DEC-12	11	11	18	18	
Barium (Ba)	96.7		1.0	ug/g	12-DEC-12	390	390	670	670	
Beryllium (Be)	0.67		0.50	ug/g	12-DEC-12	4	5	8	10	
Boron (B)	8.3		5.0	ug/g	12-DEC-12	120	120	120	120	
Cadmium (Cd)	<0.50		0.50	ug/g	12-DEC-12	1	1	1.9	1.9	
Chromium (Cr)	27.0		1.0	ug/g	12-DEC-12	160	160	160	160	
Cobalt (Co)	8.6		1.0	ug/g	12-DEC-12	22	22	80	100	
Copper (Cu)	17.7		1.0	ug/g	12-DEC-12	140	180	230	300	
Lead (Pb)	10.3		1.0	ug/g	12-DEC-12	45	45	120	120	
Molybdenum (Mo)	<1.0		1.0	ug/g	12-DEC-12	6.9	6.9	40	40	
Nickel (Ni)	20.7		1.0	ug/g	12-DEC-12	100	130	270	340	
Selenium (Se)	<1.0		1.0	ug/g	12-DEC-12	2.4	2.4	5.5	5.5	
Silver (Ag)	< 0.20		0.20	ug/g	12-DEC-12	20	25	40	50	
Thallium (TI)	< 0.50		0.50	ug/g	12-DEC-12	1	1	3.3	3.3	
Uranium (U)	<1.0		1.0	ug/g	12-DEC-12	23	23	33	33	
Vanadium (V)	41.5		1.0	ug/g	12-DEC-12	86	86	86	86	
Zinc (Zn)	45.7		5.0	ug/g	12-DEC-12	340	340	340	340	
.1248030-6 BH5 - 1.5										
Sampled By: CLIENT on 11-DEC-12 @ 13:00							6379/9405	87900C		
Matrix: SOIL						#1	#2	#3	#4	
Physical Tests										
% Moisture	14.8		0.10	%	11-DEC-12					
% Moisture Volatile Organic Compounds	14.0		0.10	70	11-DEC-12					
Acetone	<0.50		0.50	ug/g	13-DEC-12	16	28	16	28	
Benzene	<0.020		0.020	ug/g ug/g	13-DEC-12	0.21	0.17	0.32	0.4	
Bromodichloromethane	<0.050		0.050	ug/g	13-DEC-12	1.5	1.9	1.5	1.9	
Bromoform	<0.050		0.050	ug/g	13-DEC-12	0.27	0.26	0.61	1.5	
Bromomethane	<0.050		0.050	ug/g	13-DEC-12	0.27	0.26	0.05	0.0	
Carbon tetrachloride	<0.050		0.050	ug/g	13-DEC-12	0.05	0.03	0.03	0.0	
Chlorobenzene	< 0.050		0.050	ug/g ug/g	13-DEC-12	2.4	2.7	2.4	2.7	
Dibromochloromethane	<0.050		0.050	ug/g	13-DEC-12	2.4	2.7	2.4	2.7	
Chloroform	<0.050		0.050	ug/g ug/g	13-DEC-12	0.05	0.17	0.47	0.1	
1,2-Dibromoethane	<0.050		0.050	ug/g ug/g	13-DEC-12	0.05	0.17	0.47	0.1	
1,2-Dibromoetriane 1,2-Dichlorobenzene	<0.050		0.050	ug/g	13-DEC-12	1.2	1.7	1.2	1.7	
1,3-Dichlorobenzene	<0.050		0.050	ug/g ug/g	13-DEC-12	4.8	6	9.6	1.7	
1,0-Dichiolobelizelle	~0.000			ug/g				9.0		
1,4-Dichlorobenzene	< 0.050		0.050	ug/g	13-DEC-12	0.083	0.097	0.2	0.5	

^{**}Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

**Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

Ontario Regulation 153/04 - April 15, 2011 Standards = [Suite] - T2-All-Soil-Categories

#2: T2-Soil-Agricultural or Other Property Use (Fine)

^{#1:} T2-Soil-Agricultural or Other Property Use (Coarse)

^{#3:} T2-Soil-Ind/Com/Commu Property Use (Coarse)

ANALYTICAL GUIDELINE REPORT

L1248030 CONTD.... Page 8 of 11

Sample Details	**********								15-JUL-13 0	
Grouping A	Analyte	Result	Qualifier	D.L.	Units	Analyzed		Guidelir	e Limits	
.1248030-6 BH	5 - 1.5									
Sampled By: CLI	IENT on 11-DEC-12 @ 13:00									-
Matrix: SO	DIL					1	#1	#2	#3	#4
Volatile Organic	Compounds									
1,1-Dichloroeth	nane	< 0.050		0.050	ug/g	13-DEC-12	0.47	0.6	0.47	0.6
1,2-Dichloroeth	nane	< 0.050		0.050	ug/g	13-DEC-12	0.05	0.05	0.05	0.05
1,1-Dichloroeth	nylene	< 0.050		0.050	ug/g	13-DEC-12	0.05	0.05	0.064	0.48
cis-1,2-Dichloro	oethylene	< 0.050		0.050	ug/g	13-DEC-12	1.9	2.5	1.9	2.5
trans-1,2-Dichloroethylene		< 0.050		0.050	ug/g	13-DEC-12	0.084	0.75	1.3	2.5
1,3-Dichloropro	opene (cis & trans)	< 0.042		0.042	ug/g	13-DEC-12	0.05	0.081	0.059	0.08
Methylene Chlo	oride	< 0.050		0.050	ug/g	13-DEC-12	0.1	0.96	1.6	2
1,2-Dichloropro	opane	< 0.050		0.050	ug/g	13-DEC-12	0.05	0.085	0.16	0.68
cis-1,3-Dichloro	opropene	< 0.030		0.030	ug/g	13-DEC-12				
trans-1,3-Dichle	oropropene	< 0.030		0.030	ug/g	13-DEC-12				
Ethyl Benzene	(C)	< 0.050		0.050	ug/g	13-DEC-12	1.1	1.6	1.1	1.6
n-Hexane		< 0.050		0.050	ug/g	13-DEC-12	2.8	34	46	88
Methyl Ethyl Ke	etone	< 0.50		0.50	ug/g	13-DEC-12	16	44	70	88
Methyl Isobutyl	l Ketone	< 0.50		0.50	ug/g	13-DEC-12	1.7	4.3	31	210
MTBE		< 0.050		0.050	ug/g	13-DEC-12	0.75	1.4	1.6	2.3
Styrene		< 0.050		0.050	ug/g	13-DEC-12	0.7	2.2	34	43
1,1,1,2-Tetrach	nloroethane	< 0.050		0.050	ug/g	13-DEC-12	0.058	0.05	0.087	0.11
1,1,2,2-Tetrach	nloroethane	< 0.050		0.050	ug/g	13-DEC-12	0.05	0.05	0.05	0.094
Tetrachloroethylene		< 0.050		0.050	ug/g	13-DEC-12	0.28	2.3	1.9	2.5
Toluene	6)	< 0.20		0.20	ug/g	13-DEC-12	2.3	6	6.4	9
1,1,1-Trichloroe	ethane	< 0.050		0.050	ug/g	13-DEC-12	0.38	3.4	6.1	12
1,1,2-Trichloroe	ethane	< 0.050		0.050	ug/g	13-DEC-12	0.05	0.05	0.05	0.11
Trichloroethyle	ne	< 0.050		0.050	ug/g	13-DEC-12	0.061	0.52	0.55	0.61
Trichlorofluoror	methane	< 0.050		0.050	ug/g	13-DEC-12	4	5.8	4	5.8
Vinyl chloride		< 0.020		0.020	ug/g	13-DEC-12	0.02	0.022	0.032	0.25
o-Xylene		< 0.020		0.020	ug/g	13-DEC-12				
m+p-Xylenes		< 0.030		0.030	ug/g	13-DEC-12				
Xylenes (Total))	< 0.050		0.050	ug/g	13-DEC-12	3.1	25	26	30
Surrogate: 4-Bi	romofluorobenzene	76.2		70-130	%	13-DEC-12				
	-Difluorobenzene	87.9		70-130	%	13-DEC-12				
Hydrocarbons										
F1 (C6-C10)		<5.0		5.0	ug/g	13-DEC-12	55	65	55	65
Surrogate: 3.4-	-Dichlorotoluene	91.3		60-140	%	13-DEC-12				

^{**} Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

Ontario Regulation 153/04 - April 15, 2011 Standards = [Suite] - T2-All-Soil-Categories

#1: T2-Soil-Agricultural or Other Property Use (Coarse)

#2: T2-Soil-Agricultural or Other Property Use (Fine)

#3: T2-Soil-Ind/Com/Commu Property Use (Coarse) #4: T2-Soil-Ind/Com/Commu Property Use (Fine)

CSTA-002

L1248030 CONTD Page 9 of 11 15-JUL-13 07:47 (MT)

Reference Information

Sample Param	eter Quali	fier key liste	d:					
Qualifier	Descripti	on						
SFPL	Sample was Filtered and Preserved at the laboratory							
Methods Liste	ed (if appli	cable):						
ALS Test Code	Э	Matrix	Test Description	Method Reference***				
CA-DIS-WT		Water	Calcium (Ca) - Dissolved	EPA 200.8				
ETL-SAR-CAL	C-WT	Water	Sodium Adsorption Ratio	Calculation				
F1-F4-511-CA	LC-WT	Water	F1-F4 Hydrocarbon Calculated	CCME CWS-PHC DEC-2000 - PUB# 1310-L				

Parameters

Analytical methods used for analysis of CCME Petroleum Hydrocarbons have been validated and comply with the Reference Method for the CWS PHC.

In cases where results for both F4 and F4G are reported, the greater of the two results must be used in any application of the CWS PHC guidelines and the gravimetric heavy hydrocarbons cannot be added to the C6 to C50 hydrocarbons.

In samples where BTEX and F1 were analyzed, F1-BTEX represents a value where the sum of Benzene, Toluene, Ethylbenzene and total Xylenes has been subtracted from F1.

In samples where PAHs, F2 and F3 were analyzed, F2-Naphth represents the result where Naphthalene has been subtracted from F2. F3-PAH represents a result where the sum of Benzo(a)anthracene, Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Dibenzo(a,h)anthracene, Fluoranthene, Indeno(1,2,3-cd)pyrene, Phenanthrene, and Pyrene has been subtracted from F3.

Unless otherwise qualified, the following quality control criteria have been met for the F1 hydrocarbon range:

- 1. All extraction and analysis holding times were met.
- 2. Instrument performance showing response factors for C6 and C10 within 30% of the response factor for toluene.
- 3. Linearity of gasoline response within 15% throughout the calibration range.

Unless otherwise qualified, the following quality control criteria have been met for the F2-F4 hydrocarbon ranges:

- All extraction and analysis holding times were met.
 Instrument performance showing C10, C16 and C34 response factors within 10% of their average.
- 3. Instrument performance showing the C50 response factor within 30% of the average of the C10, C16 and C34 response factors.
- 4. Linearity of diesel or motor oil response within 15% throughout the calibration range.

F1-F4-511-CALC-WT Soil F1-F4 Hydrocarbon Calculated CCME CWS-PHC DEC-2000 - PUB# 1310-S

Parameters
Analytical methods used for analysis of CCME Petroleum Hydrocarbons have been validated and comply with the Reference Method for the CWS PHC.

Hydrocarbon results are expressed on a dry weight basis.

In cases where results for both F4 and F4G are reported, the greater of the two results must be used in any application of the CWS PHC guidelines and the gravimetric heavy hydrocarbons cannot be added to the C6 to C50 hydrocarbons.

In samples where BTEX and F1 were analyzed, F1-BTEX represents a value where the sum of Benzene, Toluene, Ethylbenzene and total Xylenes has been subtracted from F1.

In samples where PAHs, F2 and F3 were analyzed, F2-Naphth represents the result where Naphthalene has been subtracted from F2. F3-PAH represents a result where the sum of Benzo(a)anthracene, Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Dibenzo(a,h)anthracene, Fluoranthene, Indeno(1,2,3-cd)pyrene, Phenanthrene, and Pyrene has been subtracted from F3.

Unless otherwise qualified, the following quality control criteria have been met for the F1 hydrocarbon range:

- 1. All extraction and analysis holding times were met.
- 2. Instrument performance showing response factors for C6 and C10 within 30% of the response factor for toluene.
- 3. Linearity of gasoline response within 15% throughout the calibration range.

Unless otherwise qualified, the following quality control criteria have been met for the F2-F4 hydrocarbon ranges:

- All extraction and analysis holding times were met.
 Instrument performance showing C10, C16 and C34 response factors within 10% of their average
- 3. Instrument performance showing the C50 response factor within 30% of the average of the C10, C16 and C34 response factors.
- 4. Linearity of diesel or motor oil response within 15% throughout the calibration range

E3398/CCME TIER 1-HS F1-HS-511-WT F1-O.Reg 153/04 (July 2011)

Fraction F1 is determined by analyzing by headspace-GC/FID.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

F1-HS-511-WT F1-O.Reg 153/04 (July 2011) E3398/CCME TIER 1-HS

Fraction F1 is determined by extracting a soil or sediment sample as received with methanol, then analyzing by headspace-GC/FID.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

CSTA-002

L1248030 CONTD.... Page 10 of 11 15-JUL-13 07:47 (MT)

Reference Information

F2-F4-511-WT Water F2-F4-O.Reg 153/04 (July 2011) MOE DECPH-E3398/CCME TIER 1

Fractions F2, F3 and F4 are determined by liquid/liquid extraction with a solvent. The solvent recovered from the extracted sample is dried and treated to remove polar material. The extract is then analyzed by GC/FID.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

F2-F4-511-WT Soil F2-F4-O.Reg 153/04 (July 2011) MOE DECPH-E3398/CCME TIER 1

Fractions F2, F3 and F4 are determined by extracting a soil sample with a solvent mix. The solvent recovered from the extracted soil sample is dried and treated to remove polar material. The extract is analyzed by GC/FID.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

MET-R511-WT Water Metals (O. Reg 153/04, 511 EPA 200.8

Amendments)
Ground water samples are filtered and preserved and analyzed by ICP/MS.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).

MET-UG/G-CCMS-WT Soil Metal Scan Collision Cell ICPMS EPA 200.2/6020A

Sample is vigorously digested with nitric and hydrochloric acid. Analysis is conducted by ICP/MS.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

MG-DIS-WT Water Magnesium (Mg) - Dissolved EPA 200.8

MOISTURE-WT Soil % Moisture Gravimetric: Oven Dried

SAR-R511-WT Soil SAR-O.Reg 153/04 (July 2011) SW846 6010C

A dried, disaggregated solid sample is extracted with deionized water, the aqueous extract is separated from the solid, acidified and then analyzed using a ICP/OES.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental

Protection Act (July 1, 2011).

 VOC-1,3-DCP-CALC-WT
 Water
 Regulation 153 VOCs
 SW8260B/SW8270C

 VOC-1,3-DCP-CALC-WT
 Soil
 Regulation 153 VOCs
 SW8260B/SW8270C

 VOC-511-HS-WT
 Water
 VOC by GCMS HS O.Reg
 SW846 8260

 $\begin{array}{c} 153/04 \; (\text{July 2011}) \\ \text{Liquid samples are analyzed by headspace GC/MSD.} \end{array}$

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

VOC-511-HS-WT Water VOC-O.Reg 153/04 (July 2011) SW846 8260

Liquid samples are analyzed by headspace GC/MSD.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

VOC-511-HS-WT Soil VOC-O.Reg 153/04 (July 2011) SW846 8260 (511)

Soil and sediment samples are extracted in methanol and analyzed by headspace-GC/MS.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported)

*** ALS test methods may incorporate modifications from specified reference methods to improve performance.

Chain of Custody numbers:

131054

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

CSTA-002

L1248030 CONTD.... Page 11 of 11 15-JUL-13 07:47 (MT)

Reference Information

Laboratory Definition Code	Laboratory Location	Laboratory Definition Code	Laboratory Location
WT	ALS ENVIRONMENTAL - WATERLOO,		
	ONTARIO, CANADA		

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample mg/kg wwt - milligrams per kilogram based on wet weight of sample mg/kg lwl - milligrams per kilogram based on lipid-adjusted weight mg/L - unit of concentration based on volume, parts per million.

< - Less than.

N.L. - The reporting limit.
N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to fitness for a particular purpose, or non-infringement. ALS assumes no responsibility for errors or omissions in the information.

ANALYTICAL GUIDELINE REPORT

L1248030 CONTD....
Page 2 of 11
15-JUL-13 07:47 (MT)

Sample Details Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed		Guidelin	e Limits	
1248030-1 MW1			33						
ampled By: CLIENT on 11-DEC-12 @ 12:00									
Matrix: WATER						#1	#2		
/olatile Organic Compounds									
Acetone	88		30	ug/L	13-DEC-12	2700	2700		
Benzene	< 0.50		0.50	ug/L	13-DEC-12	5	5		
Bromodichloromethane	<2.0		2.0	ug/L	13-DEC-12	16	16		
Bromoform	<5.0		5.0	ug/L	13-DEC-12	25	25		
Bromomethane	< 0.50		0.50	ug/L	13-DEC-12	0.89	0.89		
Carbon tetrachloride	< 0.20		0.20	ug/L	13-DEC-12	0.79	5		
Chlorobenzene	< 0.50		0.50	ug/L	13-DEC-12	30	30		
Dibromochloromethane	<2.0		2.0	ug/L	13-DEC-12	25	25		
Chloroform	<1.0		1.0	ug/L	13-DEC-12	2.4	22		
1,2-Dibromoethane	<0.20		0.20	ug/L	13-DEC-12	0.2	0.2		
1,2-Dichlorobenzene	< 0.50		0.50	ug/L	13-DEC-12	3	3		
1,3-Dichlorobenzene	< 0.50		0.50	ug/L	13-DEC-12	59	59		
1,4-Dichlorobenzene	< 0.50		0.50	ug/L	13-DEC-12	1	1		
Dichlorodifluoromethane	<2.0		2.0	ug/L	13-DEC-12	590	590		
1,1-Dichloroethane	< 0.50		0.50	ug/L	13-DEC-12	5	5		
1,2-Dichloroethane	< 0.50		0.50	ug/L	13-DEC-12	1.6	5		
1,1-Dichloroethylene	< 0.50		0.50	ug/L	13-DEC-12	1.6	14		
cis-1,2-Dichloroethylene	< 0.50		0.50	ug/L	13-DEC-12	1.6	17		
trans-1,2-Dichloroethylene	< 0.50		0.50	ug/L	13-DEC-12	1.6	17		
1,3-Dichloropropene (cis & trans)	< 0.50		0.50	ug/L	13-DEC-12	0.5	0.5		
Methylene Chloride	<5.0		5.0	ug/L	13-DEC-12	50	50		
1,2-Dichloropropane	< 0.50		0.50	ug/L	13-DEC-12	5	5	4	
cis-1,3-Dichloropropene	< 0.30		0.30	ug/L	13-DEC-12				
trans-1,3-Dichloropropene	< 0.30		0.30	ug/L	13-DEC-12				
Ethyl Benzene	< 0.50		0.50	ug/L	13-DEC-12	2.4	2.4		
n-Hexane	< 0.50		0.50	ug/L	13-DEC-12	51	520		
Methyl Ethyl Ketone	<20		20	ug/L	13-DEC-12	1800	1800		
Methyl Isobutyl Ketone	<20		20	ug/L	13-DEC-12	640	640		
MTBE	<2.0		2.0	ug/L	13-DEC-12	15	15		
Styrene	< 0.50		0.50	ug/L	13-DEC-12	5.4	5.4		
1,1,1,2-Tetrachloroethane	< 0.50		0.50	ug/L	13-DEC-12	1.1	1.1		
1,1,2,2-Tetrachloroethane	< 0.50		0.50	ug/L	13-DEC-12	1	1		
Tetrachloroethylene	< 0.50		0.50	ug/L	13-DEC-12	1.6	17		
Toluene	< 0.50		0.50	ug/L	13-DEC-12	24	24		
1,1,1-Trichloroethane	< 0.50		0.50	ug/L	13-DEC-12	200	200		
1,1,2-Trichloroethane	< 0.50		0.50	ug/L	13-DEC-12	4.7	5		
Trichloroethylene	< 0.50		0.50	ug/L	13-DEC-12	1.6	5		
Trichlorofluoromethane	<5.0		5.0	ug/L	13-DEC-12	150	150		
Vinyl chloride	< 0.50		0.50	ug/L	13-DEC-12	0.5	1.7		
o-Xylene	< 0.35		0.35	ug/L	13-DEC-12		192857-0		
m+p-Xylenes	< 0.35		0.35	ug/L	13-DEC-12				
Xylenes (Total)	< 0.50		0.50	ug/L	13-DEC-12	300	300		
Surrogate: 4-Bromofluorobenzene	83.1		70-130	%	13-DEC-12				
Surrogate: 1,4-Difluorobenzene	93.6		70-130	%	13-DEC-12				

^{**} Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

* Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

Ontario Regulation 153/04 - April 15, 2011 Standards = [Suite] - T2-POTABLE-GROUNDWATER-ALL-TYPES-OF-PROPERTY-USE

^{#1:} T2-Ground Water (Coarse Soil)-All Types of Property Use

ANALYTICAL GUIDELINE REPORT

L1248030 CONTD....
Page 3 of 11
15-JUL-13 07:47 (MT)

Sample Details Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed		Guidelin	e Limits	
.1248030-1 MW1					/ many 200		- Curaonii	o Elimio	
Sampled By: CLIENT on 11-DEC-12 @ 12:00									
COURSE A MARCHES ACCIONED CONTROL CONT						#1	#2		
Matrix: WATER									
Hydrocarbons									
F1 (C6-C10)	<25		25	ug/L	13-DEC-12	750	750		
F1-BTEX	<25		25	ug/L	13-DEC-12	750	750		
F2 (C10-C16)	<100		100	ug/L	13-DEC-12	150	150		
F3 (C16-C34)	<250		250	ug/L	13-DEC-12	500	500		
F4 (C34-C50)	<250		250	ug/L	13-DEC-12	500	500		
Total Hydrocarbons (C6-C50)	<250		250	ug/L	13-DEC-12				
Chrom. to baseline at nC50	YES			No Unit	13-DEC-12				
Surrogate: 2-Bromobenzotrifluoride	61.3		60-140	%	13-DEC-12				
Surrogate: 3,4-Dichlorotoluene	72.6		60-140	%	13-DEC-12				
Surrogate: Octacosane	91.0		60-140	%	13-DEC-12				
_1248030-2 MW2									
Sampled By: CLIENT on 11-DEC-12 @ 12:00									
Matrix: WATER						#1	#2		
Volatile Organic Compounds									
Acetone	<30		30	ug/L	13-DEC-12	2700	2700		
Benzene	<0.50		0.50	ug/L	13-DEC-12				
Bromodichloromethane	<2.0		2.0	ug/L	13-DEC-12	5	5		
Bromoform				A	CHORAT COLUMN NODES CONTROL OF	16	16		
	<5.0 <0.50		5.0	ug/L	13-DEC-12	25	25		
Bromomethane			0.50	ug/L	13-DEC-12	0.89	0.89		
Carbon tetrachloride	<0.20		0.20	ug/L	13-DEC-12	0.79	5		
Chlorobenzene	<0.50		0.50	ug/L	13-DEC-12	30	30		
Dibromochloromethane	<2.0		2.0	ug/L	13-DEC-12	25	25		
Chloroform	<1.0		1.0	ug/L	13-DEC-12	2.4	22		
1,2-Dibromoethane	<0.20		0.20	ug/L	13-DEC-12	0.2	0.2		
1,2-Dichlorobenzene	<0.50		0.50	ug/L	13-DEC-12	3	3		
1,3-Dichlorobenzene	< 0.50		0.50	ug/L	13-DEC-12	59	59		
1,4-Dichlorobenzene	<0.50		0.50	ug/L	13-DEC-12	1	1		
Dichlorodifluoromethane	<2.0		2.0	ug/L	13-DEC-12	590	590		
1,1-Dichloroethane	<0.50		0.50	ug/L	13-DEC-12	5	5		
1,2-Dichloroethane	<0.50		0.50	ug/L	13-DEC-12	1.6	5		
1,1-Dichloroethylene	< 0.50		0.50	ug/L	13-DEC-12	1.6	14		
cis-1,2-Dichloroethylene	< 0.50		0.50	ug/L	13-DEC-12	1.6	17		
trans-1,2-Dichloroethylene	<0.50		0.50	ug/L	13-DEC-12	1.6	17		
1,3-Dichloropropene (cis & trans)	<0.50		0.50	ug/L	13-DEC-12	0.5	0.5		
Methylene Chloride	<5.0		5.0	ug/L	13-DEC-12	50	50		
1,2-Dichloropropane	< 0.50		0.50	ug/L	13-DEC-12	5	5		
cis-1,3-Dichloropropene	< 0.30		0.30	ug/L	13-DEC-12				
trans-1,3-Dichloropropene	< 0.30		0.30	ug/L	13-DEC-12				
Ethyl Benzene	< 0.50		0.50	ug/L	13-DEC-12	2.4	2.4		
n-Hexane	< 0.50		0.50	ug/L	13-DEC-12	51	520		
Methyl Ethyl Ketone	<20		20	ug/L	13-DEC-12	1800	1800		
Methyl Isobutyl Ketone	<20		20	ug/L	13-DEC-12	640	640		
MTBE	< 2.0		2.0	ug/L	13-DEC-12	15	15		

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.
 Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

Ontario Regulation 153/04 - April 15, 2011 Standards = [Suite] - T2-POTABLE-GROUNDWATER-ALL-TYPES-OF-PROPERTY-USE

^{#1:} T2-Ground Water (Coarse Soil)-All Types of Property Use

ANALYTICAL GUIDELINE REPORT

L1248030 CONTD....
Page 4 of 11
15-JUL-13 07:47 (MT)

Sample Details Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed		Guidolir	ne Limits	
A CONTRACTOR OF THE PROPERTY O	Result	Quaimer	D.L.	Ulits	Analyzeu		Guidelli	ie Limits	
_1248030-2 MW2									
Sampled By: CLIENT on 11-DEC-12 @ 12:00						#1	#2		
Matrix: WATER						#1	#2		
Volatile Organic Compounds									
Styrene	< 0.50		0.50	ug/L	13-DEC-12	5.4	5.4		
1,1,1,2-Tetrachloroethane	< 0.50		0.50	ug/L	13-DEC-12	1.1	1.1		
1,1,2,2-Tetrachloroethane	< 0.50		0.50	ug/L	13-DEC-12	1	1		
Tetrachloroethylene	< 0.50		0.50	ug/L	13-DEC-12	1.6	17		
Toluene	< 0.50		0.50	ug/L	13-DEC-12	24	24		
1,1,1-Trichloroethane	< 0.50		0.50	ug/L	13-DEC-12	200	200		
1,1,2-Trichloroethane	< 0.50		0.50	ug/L	13-DEC-12	4.7	5		
Trichloroethylene	< 0.50		0.50	ug/L	13-DEC-12	1.6	5		
Trichlorofluoromethane	<5.0		5.0	ug/L	13-DEC-12	150	150		
Vinyl chloride	< 0.50		0.50	ug/L	13-DEC-12	0.5	1.7		
o-Xylene	< 0.35		0.35	ug/L	13-DEC-12				
m+p-Xylenes	< 0.35		0.35	ug/L	13-DEC-12				
Xylenes (Total)	< 0.50		0.50	ug/L	13-DEC-12	300	300		
Surrogate: 4-Bromofluorobenzene	82.4		70-130	%	13-DEC-12				
Surrogate: 1,4-Difluorobenzene	93.1		70-130	%	13-DEC-12				
Hydrocarbons									
F1 (C6-C10)	<25		25	ug/L	13-DEC-12	750	750		
F1-BTEX	<25		25	ug/L	13-DEC-12	750	750		
F2 (C10-C16)	<100		100	ug/L	13-DEC-12	150	150		
F3 (C16-C34)	<250		250	ug/L	13-DEC-12	500	500		
F4 (C34-C50)	<250		250	ug/L	13-DEC-12	500	500		
Total Hydrocarbons (C6-C50)	<250		250	ug/L	13-DEC-12				
Chrom. to baseline at nC50	YES			No Unit	13-DEC-12				
Surrogate: 2-Bromobenzotrifluoride	63.0		60-140	%	13-DEC-12				
Surrogate: 3,4-Dichlorotoluene	70.3		60-140	%	13-DEC-12				
Surrogate: Octacosane	93.1		60-140	%	13-DEC-12				
L1248030-3 MW3									
Sampled By: CLIENT on 11-DEC-12 @ 12:00						2000			
Matrix: WATER						#1	#2		
Metals									
Sodium Adsorption Ratio	0.56		0.030	SAR	14-DEC-12				
Dissolved Metals	0.00								
Antimony (Sb)	< 0.50	SFPL	0.50	ug/L	12-DEC-12	6	6		
Arsenic (As)	1.4	SFPL	1.0	ug/L	12-DEC-12	25	25		
Barium (Ba)	189	SFPL	2.0	ug/L	12-DEC-12	1000	1000		
Beryllium (Be)	<0.50	SFPL	0.50	ug/L	12-DEC-12	4	4		
Boron (B)	57	SFPL	10	ug/L	12-DEC-12	5000	5000		
Cadmium (Cd)	<0.10	SFPL	0.10	ug/L	12-DEC-12	2.7	2.7		
Calcium (Ca)-Dissolved	105	SFPL	0.50	mg/L	12-DEC-12				
Chromium (Cr)	<0.50	SFPL	0.50	ug/L	12-DEC-12	50	50		
Cobalt (Co)	1.50	SFPL	0.50	ug/L	12-DEC-12	3.8	3.8		
Copper (Cu)	<1.0	SFPL	1.0	ug/L	12-DEC-12	87	87		
Lead (Pb)	<1.0	SFPL	1.0	ug/L	12-DEC-12	10	10		
Magnesium (Mg)-Dissolved	25.9	SFPL	0.50	mg/L	12-DEC-12	.0			

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.
 Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

Ontario Regulation 153/04 - April 15, 2011 Standards = [Suite] - T2-POTABLE-GROUNDWATER-ALL-TYPES-OF-PROPERTY-USE

^{#1:} T2-Ground Water (Coarse Soil)-All Types of Property Use

ANALYTICAL GUIDELINE REPORT

L1248030 CONTD....
Page 5 of 11
5-JUL-13 07:47 (MT)

Sample Details		0 ""	5.	11.0		15-JUL-13 07:47 Guideline Limits			
Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed		Guidelin	e Limits	
.1248030-3 MW3									
Sampled By: CLIENT on 11-DEC-12 @ 12:00						#1	#2		
Matrix: WATER						#1	#2		
Dissolved Metals									
Molybdenum (Mo)	1.76	SFPL	0.50	ug/L	12-DEC-12	70	70		
Nickel (Ni)	2.6	SFPL	1.0	ug/L	12-DEC-12	100	100		
Selenium (Se)	<5.0	SFPL	5.0	ug/L	12-DEC-12	10	10		
Silver (Ag)	< 0.10	SFPL	0.10	ug/L	12-DEC-12	1.5	1.5		
Sodium (Na)	24800	SFPL	500	ug/L	12-DEC-12	490000	490000		
Thallium (TI)	< 0.30	SFPL	0.30	ug/L	12-DEC-12	2	2		
Uranium (U)	2.5	SFPL	2.0	ug/L	12-DEC-12	20	20		
Vanadium (V)	0.94	SFPL	0.50	ug/L	12-DEC-12	6.2	6.2		
Zinc (Zn)	<3.0	SFPL	3.0	ug/L	12-DEC-12	1100	1100		
Volatile Organic Compounds									
Acetone	<30		30	ug/L	13-DEC-12	2700	2700		
Benzene	<0.50		0.50	ug/L	13-DEC-12	5	5		
Bromodichloromethane	<2.0		2.0	ug/L	13-DEC-12	16	16		
Bromoform	<5.0		5.0	ug/L	13-DEC-12	25	25		
Bromomethane	<0.50		0.50	ug/L	13-DEC-12	0.89	0.89		
Carbon tetrachloride	< 0.20		0.20	ug/L	13-DEC-12	0.79	5		
Chlorobenzene	< 0.50		0.50	ug/L	13-DEC-12	30	30		
Dibromochloromethane	<2.0		2.0	ug/L	13-DEC-12	25	25		
Chloroform	<1.0		1.0	ug/L	13-DEC-12	2.4	22		
1,2-Dibromoethane	<0.20		0.20	ug/L	13-DEC-12	0.2	0.2		
1,2-Dichlorobenzene	< 0.50		0.50	ug/L	13-DEC-12	3	3		
1,3-Dichlorobenzene	< 0.50		0.50	ug/L	13-DEC-12	59	59	The state of the s	
1,4-Dichlorobenzene	< 0.50		0.50	ug/L	13-DEC-12	1	1		
Dichlorodifluoromethane	<2.0		2.0	ug/L	13-DEC-12	590	590		
1,1-Dichloroethane	<0.50		0.50	ug/L	13-DEC-12	5	5		
1,2-Dichloroethane	< 0.50		0.50	ug/L	13-DEC-12	1.6	5		
1,1-Dichloroethylene	< 0.50		0.50	ug/L	13-DEC-12	1.6	14		
cis-1,2-Dichloroethylene	< 0.50		0.50	ug/L	13-DEC-12	1.6	17		
trans-1,2-Dichloroethylene	< 0.50		0.50	ug/L	13-DEC-12	1.6	17		
1,3-Dichloropropene (cis & trans)	< 0.50		0.50	ug/L	13-DEC-12	0.5	0.5		
Methylene Chloride	<5.0		5.0	ug/L	13-DEC-12	50	50		
1,2-Dichloropropane	< 0.50		0.50	ug/L	13-DEC-12	5	5		
cis-1,3-Dichloropropene	< 0.30		0.30	ug/L	13-DEC-12				
trans-1,3-Dichloropropene	< 0.30		0.30	ug/L	13-DEC-12				
Ethyl Benzene	<0.50		0.50	ug/L	13-DEC-12	2.4	2.4		
n-Hexane	<0.50		0.50	ug/L	13-DEC-12	51	520		
Methyl Ethyl Ketone	<20		20	ug/L	13-DEC-12	1800	1800		
Methyl Isobutyl Ketone	<20		20	ug/L	13-DEC-12	640	640		
MTBE	<2.0		2.0	ug/L	13-DEC-12	15	15		
Styrene	<0.50		0.50	ug/L	13-DEC-12	5.4	5.4		
1,1,1,2-Tetrachloroethane	<0.50		0.50	ug/L	13-DEC-12	1.1	1.1		
1,1,2,2-Tetrachloroethane	<0.50		0.50	ug/L	13-DEC-12	1	1		
Tetrachloroethylene	<0.50		0.50	ug/L	13-DEC-12	1.6	17		
Toluene	< 0.50		0.50	ug/L	13-DEC-12	24	24		

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.
 Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

Ontario Regulation 153/04 - April 15, 2011 Standards = [Suite] - T2-POTABLE-GROUNDWATER-ALL-TYPES-OF-PROPERTY-USE

^{#1:} T2-Ground Water (Coarse Soil)-All Types of Property Use

ANALYTICAL GUIDELINE REPORT

L1248030 CONTD....
Page 6 of 11

Sample Details	-					15-JUL-13 07:47		
Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed		Guideline Limits	
_1248030-3 MW3								
Sampled By: CLIENT on 11-DEC-12 @ 12:00								
Matrix: WATER					_	#1	#2	
Volatile Organic Compounds								
1,1,1-Trichloroethane	< 0.50		0.50	ug/L	13-DEC-12	200	200	
1,1,2-Trichloroethane	< 0.50		0.50	ug/L	13-DEC-12	4.7	5	
Trichloroethylene	< 0.50		0.50	ug/L	13-DEC-12	1.6	5	
Trichlorofluoromethane	<5.0		5.0	ug/L	13-DEC-12	150	150	
Vinyl chloride	< 0.50		0.50	ug/L	13-DEC-12	0.5	1.7	
o-Xylene	< 0.35		0.35	ug/L	13-DEC-12	0.0		
m+p-Xylenes	< 0.35		0.35	ug/L	13-DEC-12			
Xylenes (Total)	< 0.50		0.50	ug/L	13-DEC-12	300	300	
Surrogate: 4-Bromofluorobenzene	83.0		70-130	%	13-DEC-12	000	500	
Surrogate: 1,4-Difluorobenzene	93.5		70-130	%	13-DEC-12			
Hydrocarbons								
F1 (C6-C10)	<25		25	ug/L	13-DEC-12	750	750	
F1-BTEX	<25		25	ug/L	13-DEC-12	750	750	
Surrogate: 3,4-Dichlorotoluene	77.6		60-140	%	13-DEC-12	730	730	
	77.0		00 140	70	10 020-12			+
L1248030-4 BH3 - 1.5								
Sampled By: CLIENT on 11-DEC-12 @ 12:00						#1	#2	
Matrix: SOIL					-	#1	#2	
Physical Tests								
% Moisture	17.9		0.10	%	11-DEC-12			
Saturated Paste Extractables	17.0		0.10	70	11.020.12			
SAR	0.87		0.10	SAR	12-DEC-12			
Calcium (Ca)	18.4		0.10	mg/L	12-DEC-12			1
Magnesium (Mg)	1.62		0.10	mg/L	12-DEC-12			
Sodium (Na)	14.4		0.10	mg/L	12-DEC-12	490	490	
Metals				3				
Antimony (Sb)	<1.0		1.0	ug/g	12-DEC-12			
Arsenic (As)	2.2		1.0	ug/g	12-DEC-12			
Barium (Ba)	62.2		1.0	ug/g	12-DEC-12			
Beryllium (Be)	0.52		0.50	ug/g	12-DEC-12			
Boron (B)	8.0		5.0	ug/g	12-DEC-12			
Cadmium (Cd)	< 0.50		0.50	ug/g	12-DEC-12			
Chromium (Cr)	21.3		1.0	ug/g	12-DEC-12			
Cobalt (Co)	8.1		1.0	ug/g	12-DEC-12			
Copper (Cu)	18.7		1.0	ug/g	12-DEC-12			
Lead (Pb)	16.0		1.0	ug/g	12-DEC-12			
Molybdenum (Mo)	<1.0		1.0	ug/g	12-DEC-12			
Nickel (Ni)	19.0		1.0	ug/g	12-DEC-12			
Selenium (Se)	<1.0		1.0	ug/g	12-DEC-12			
Silver (Ag)	< 0.20		0.20	ug/g	12-DEC-12			
Thallium (TI)	< 0.50		0.50	ug/g	12-DEC-12			
Uranium (U)	<1.0		1.0	ug/g	12-DEC-12			
Vanadium (V)	31.0		1.0	ug/g	12-DEC-12			
Zinc (Zn)	53.8		5.0	ug/g	12-DEC-12			
Hydrocarbons								
F2 (C10-C16)	<10		10	ug/g	14-DEC-12			

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.
 Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

Ontario Regulation 153/04 - April 15, 2011 Standards = [Suite] - T2-POTABLE-GROUNDWATER-ALL-TYPES-OF-PROPERTY-USE

^{#1:} T2-Ground Water (Coarse Soil)-All Types of Property Use

ANALYTICAL GUIDELINE REPORT

L1248030 CONTD.... Page 7 of 11

STA-002 Sample Details						15-JUL-13			(101
Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed		Guidelir	ne Limits	
L1248030-4 BH3 - 1.5									
Sampled By: CLIENT on 11-DEC-12 @ 12:00									
Matrix: SOIL						#1	#2		
Hydrocarbons									
F3 (C16-C34)	<50		50	ug/g	14-DEC-12				
F4 (C34-C50)	57		50	ug/g	14-DEC-12				
Chrom. to baseline at nC50	YES			No Unit	14-DEC-12				
Surrogate: 2-Bromobenzotrifluoride	73.4		60-140	%	14-DEC-12				
Surrogate: Octacosane	100.9		60-140	%	14-DEC-12				
L1248030-5 BH4 - 1.5									
Sampled By: CLIENT on 11-DEC-12 @ 12:00									
Matrix: SOIL						#1	#2		
Saturated Paste Extractables									
SAR	0.41		0.10	SAR	12-DEC-12				
Calcium (Ca)	9.91		0.10	mg/L	12-DEC-12 12-DEC-12				
Magnesium (Mg)	0.84		0.10	mg/L	12-DEC-12				
Sodium (Na)	5.02		0.10	mg/L	12-DEC-12	490	490		
Metals	0.02		0.10	mg/L	12 020 12	430	430		
Antimony (Sb)	<1.0		1.0	ug/g	12-DEC-12				
Arsenic (As)	3.6		1.0	ug/g	12-DEC-12				
Barium (Ba)	96.7		1.0	ug/g	12-DEC-12				
Beryllium (Be)	0.67		0.50	ug/g	12-DEC-12				
Boron (B)	8.3		5.0	ug/g	12-DEC-12				
Cadmium (Cd)	< 0.50		0.50	ug/g	12-DEC-12				
Chromium (Cr)	27.0		1.0	ug/g	12-DEC-12				
Cobalt (Co)	8.6		1.0	ug/g	12-DEC-12				
Copper (Cu)	17.7		1.0	ug/g	12-DEC-12				
Lead (Pb)	10.3		1.0	ug/g	12-DEC-12				
Molybdenum (Mo)	<1.0		1.0	ug/g	12-DEC-12				
Nickel (Ni)	20.7		1.0	ug/g	12-DEC-12				
Selenium (Se)	<1.0		1.0	ug/g	12-DEC-12				
Silver (Ag)	<0.20		0.20	ug/g	12-DEC-12				
Thallium (TI)	<0.50		0.50	ug/g	12-DEC-12				
Uranium (U)	<1.0		1.0	ug/g	12-DEC-12				
Vanadium (V) Zinc (Zn)	41.5 45.7		1.0 5.0	ug/g ug/g	12-DEC-12 12-DEC-12				
	70./		0.0	ug/g	12-010-12				
L1248030-6 BH5 - 1.5									
Sampled By: CLIENT on 11-DEC-12 @ 13:00 Matrix: SOIL						#1	#2		
Physical Tests									
% Moisture	14.8		0.10	%	11-DEC-12				
Volatile Organic Compounds	17.0		0.10	/0	11-020-12				
Acetone	<0.50		0.50	ug/g	13-DEC-12				
Benzene	<0.020		0.020	ug/g	13-DEC-12				
Bromodichloromethane	< 0.050		0.050	ug/g	13-DEC-12				
Bromoform	< 0.050		0.050	ug/g	13-DEC-12				
Bromomethane	< 0.050		0.050	ug/g	13-DEC-12				
Carbon tetrachloride	< 0.050		0.050	ug/g	13-DEC-12				
Chlorobenzene	< 0.050		0.050	ug/g	13-DEC-12				

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Ontario Regulation 153/04 - April 15, 2011 Standards = [Suite] - T2-POTABLE-GROUNDWATER-ALL-TYPES-OF-PROPERTY-USE

Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

^{- #1:} T2-Ground Water (Coarse Soil)-All Types of Property Use

ANALYTICAL GUIDELINE REPORT

L1248030 CONTD....
Page 8 of 11

Sample Details Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed		Guidelir	e Limits	
.1248030-6 BH5 - 1.5			2						
Sampled By: CLIENT on 11-DEC-12 @ 13:00	0								
Matrix: SOIL						#1	#2		
Volatile Organic Compounds									
Dibromochloromethane	< 0.050		0.050	ug/g	13-DEC-12				
Chloroform	<0.050		0.050	ug/g	13-DEC-12				
1,2-Dibromoethane	<0.050		0.050	ug/g	13-DEC-12				
1,2-Dichlorobenzene	<0.050		0.050	ug/g	13-DEC-12				
1,3-Dichlorobenzene	<0.050		0.050	ug/g	13-DEC-12				
1,4-Dichlorobenzene	<0.050		0.050	ug/g	13-DEC-12				
Dichlorodifluoromethane	<0.050		0.050	ug/g	13-DEC-12				
1,1-Dichloroethane	<0.050		0.050	ug/g	13-DEC-12				
1,2-Dichloroethane	< 0.050		0.050	ug/g	13-DEC-12				
1,1-Dichloroethylene	< 0.050		0.050	ug/g	13-DEC-12				
cis-1,2-Dichloroethylene	<0.050		0.050	ug/g	13-DEC-12				
trans-1,2-Dichloroethylene	<0.050		0.050	ug/g	13-DEC-12				
1,3-Dichloropropene (cis & trans)	< 0.042		0.042	ug/g	13-DEC-12				
Methylene Chloride	<0.050		0.050	ug/g	13-DEC-12				
1,2-Dichloropropane	<0.050		0.050	ug/g	13-DEC-12				
cis-1,3-Dichloropropene	< 0.030		0.030	ug/g	13-DEC-12				
trans-1,3-Dichloropropene	<0.030		0.030	ug/g	13-DEC-12				
Ethyl Benzene	<0.050		0.050	ug/g	13-DEC-12				
n-Hexane	<0.050		0.050	ug/g	13-DEC-12				
Methyl Ethyl Ketone	<0.50		0.50	ug/g	13-DEC-12				
Methyl Isobutyl Ketone	<0.50		0.50	ug/g	13-DEC-12				
MTBE	<0.050		0.050	ug/g	13-DEC-12				
Styrene	<0.050		0.050	ug/g	13-DEC-12				
1,1,1,2-Tetrachloroethane	<0.050		0.050	ug/g	13-DEC-12			1	
1,1,2,2-Tetrachloroethane	<0.050		0.050	ug/g	13-DEC-12				
Tetrachloroethylene	<0.050		0.050	ug/g	13-DEC-12				
Toluene	<0.20		0.20	ug/g	13-DEC-12				
1,1,1-Trichloroethane	<0.050		0.050	ug/g	13-DEC-12				
1,1,2-Trichloroethane	<0.050		0.050	ug/g	13-DEC-12				
Trichloroethylene	<0.050		0.050	ug/g	13-DEC-12				
Trichlorofluoromethane	<0.050		0.050	ug/g	13-DEC-12				
Vinyl chloride	<0.020		0.020	ug/g	13-DEC-12				
o-Xylene	<0.020		0.020	ug/g	13-DEC-12				
m+p-Xylenes	<0.030		0.030	ug/g	13-DEC-12				
Xylenes (Total)	<0.050		0.050	ug/g	13-DEC-12				
Surrogate: 4-Bromofluorobenzene	76.2		70-130	%	13-DEC-12				
Surrogate: 1,4-Difluorobenzene	87.9		70-130	%	13-DEC-12				
Hydrocarbons	3		- ,00						
F1 (C6-C10)	<5.0		5.0	ug/g	13-DEC-12				
Surrogate: 3,4-Dichlorotoluene	91.3		60-140	www.	13-DEC-12				
	91.3		00-140	70	13-DEC-12				

^{**} Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

* Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

Ontario Regulation 153/04 - April 15, 2011 Standards = [Suite] - T2-POTABLE-GROUNDWATER-ALL-TYPES-OF-PROPERTY-USE

^{#1:} T2-Ground Water (Coarse Soil)-All Types of Property Use

CSTA-002

L1248030 CONTD.... Page 9 of 11 15-JUL-13 07:47 (MT)

Reference Information

Sample Parameter	Qualifier	key	listed:
------------------	-----------	-----	---------

Qualifier	Description
SFPL	Sample was Filtered and Preserved at the laboratory
N 1	A-4 (F

Methods Listed (if applicable):							
ALS Test Code	Matrix	Test Description	Method Reference***				
CA-DIS-WT	Water	Calcium (Ca) - Dissolved	EPA 200.8				
ETL-SAR-CALC-WT	Water	Sodium Adsorption Ratio	Calculation				
F1-F4-511-CALC-WT	Water	F1-F4 Hydrocarbon Calculated	CCME CWS-PHC DEC-2000 - PUB# 1310-L				

Parameters

Analytical methods used for analysis of CCME Petroleum Hydrocarbons have been validated and comply with the Reference Method for the CWS PHC.

In cases where results for both F4 and F4G are reported, the greater of the two results must be used in any application of the CWS PHC guidelines and

the gravimetric heavy hydrocarbons cannot be added to the C6 to C50 hydrocarbons.

In samples where BTEX and F1 were analyzed, F1-BTEX represents a value where the sum of Benzene, Toluene, Ethylbenzene and total Xylenes has been subtracted from F1.

In samples where PAHs, F2 and F3 were analyzed, F2-Naphth represents the result where Naphthalene has been subtracted from F2. F3-PAH represents a result where the sum of Benzo(a)anthracene, Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Dibenzo(a,h)anthracene, Fluoranthene, Indeno(1,2,3-cd)pyrene, Phenanthrene, and Pyrene has been subtracted from F3.

Unless otherwise qualified, the following quality control criteria have been met for the F1 hydrocarbon range:

- All extraction and analysis holding times were met.
- 2. Instrument performance showing response factors for C6 and C10 within 30% of the response factor for toluene.
- 3. Linearity of gasoline response within 15% throughout the calibration range.

Unless otherwise qualified, the following quality control criteria have been met for the F2-F4 hydrocarbon ranges:

- 1. All extraction and analysis holding times were met.
- Instrument performance showing C10, C16 and C34 response factors within 10% of their average.
 Instrument performance showing the C50 response factor within 30% of the average of the C10, C16 and C34 response factors.
- 4. Linearity of diesel or motor oil response within 15% throughout the calibration range

F1-F4 Hydrocarbon Calculated CCME CWS-PHC DEC-2000 - PUB# 1310-S

Parameters

Analytical methods used for analysis of CCME Petroleum Hydrocarbons have been validated and comply with the Reference Method for the CWS PHC.

Hydrocarbon results are expressed on a dry weight basis

In cases where results for both F4 and F4G are reported, the greater of the two results must be used in any application of the CWS PHC guidelines and the gravimetric heavy hydrocarbons cannot be added to the C6 to C50 hydrocarbons.

In samples where BTEX and F1 were analyzed, F1-BTEX represents a value where the sum of Benzene, Toluene, Ethylbenzene and total Xylenes has

been subtracted from F1.

In samples where PAHs, F2 and F3 were analyzed, F2-Naphth represents the result where Naphthalene has been subtracted from F2. F3-PAH represents a result where the sum of Benzo(a)anthracene, Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Dibenzo(a,h)anthracene, Fluoranthene, Indeno(1,2,3-cd)pyrene, Phenanthrene, and Pyrene has been subtracted from F3.

Unless otherwise qualified, the following quality control criteria have been met for the F1 hydrocarbon range:

- 1. All extraction and analysis holding times were met.
- Instrument performance showing response factors for C6 and C10 within 30% of the response factor for toluene.
 Linearity of gasoline response within 15% throughout the calibration range.

Unless otherwise qualified, the following quality control criteria have been met for the F2-F4 hydrocarbon ranges:

- 1. All extraction and analysis holding times were met.
- 2. Instrument performance showing C10, C16 and C34 response factors within 10% of their average.

 3. Instrument performance showing the C50 response factor within 30% of the average of the C10, C16 and C34 response factors.
- 4. Linearity of diesel or motor oil response within 15% throughout the calibration range

F1-O.Reg 153/04 (July 2011) Water E3398/CCME TIER 1-HS

Fraction F1 is determined by analyzing by headspace-GC/FID.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

F1-HS-511-WT Soil F1-O.Reg 153/04 (July 2011) E3398/CCME TIER 1-HS

Fraction F1 is determined by extracting a soil or sediment sample as received with methanol, then analyzing by headspace-GC/FID.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

CSTA-002

L1248030 CONTD.... Page 10 of 11 15-JUL-13 07:47 (MT)

Reference Information

F2-F4-511-WT Water F2-F4-O.Reg 153/04 (July 2011) MOE DECPH-E3398/CCME TIER 1

Fractions F2, F3 and F4 are determined by liquid/liquid extraction with a solvent. The solvent recovered from the extracted sample is dried and treated to remove polar material. The extract is then analyzed by GC/FID.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

F2-F4-511-WT Soil F2-F4-O.Reg 153/04 (July 2011) MOE DECPH-E3398/CCME TIER 1

Fractions F2, F3 and F4 are determined by extracting a soil sample with a solvent mix. The solvent recovered from the extracted soil sample is dried and treated to remove polar material. The extract is analyzed by GC/FID.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

MET-R511-WT Water Metals (O. Reg 153/04, 511 EPA 200.8

Amendments)
Ground water samples are filtered and preserved and analyzed by ICP/MS.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).

MET-UG/G-CCMS-WT Soil Metal Scan Collision Cell ICPMS EPA 200.2/6020A

Sample is vigorously digested with nitric and hydrochloric acid. Analysis is conducted by ICP/MS.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

MG-DIS-WT Water Magnesium (Mg) - Dissolved EPA 200.8

MOISTURE-WT Soil % Moisture Gravimetric: Oven Dried

SAR-R511-WT Soil SAR-O.Reg 153/04 (July 2011) SW846 6010C

A dried, disaggregated solid sample is extracted with deionized water, the aqueous extract is separated from the solid, acidified and then analyzed using a ICP/OES.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental

Protection Act (July 1, 2011).

 VOC-1,3-DCP-CALC-WT
 Water
 Regulation 153 VOCs
 SW8260B/SW8270C

 VOC-1,3-DCP-CALC-WT
 Soil
 Regulation 153 VOCs
 SW8260B/SW8270C

 VOC-511-HS-WT
 Water
 VOC by GCMS HS O.Reg
 SW846 8260

153/04 (July 2011) Liquid samples are analyzed by headspace GC/MSD.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

VOC-511-HS-WT Water VOC-O.Reg 153/04 (July 2011) SW846 8260

Liquid samples are analyzed by headspace GC/MSD.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

VOC-511-HS-WT Soil VOC-O.Reg 153/04 (July 2011) SW846 8260 (511)

Soil and sediment samples are extracted in methanol and analyzed by headspace-GC/MS.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

*** ALS test methods may incorporate modifications from specified reference methods to improve performance.

Chain of Custody numbers:

131054

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

CSTA-002

L1248030 CONTD.... Page 11 of 11 15-JUL-13 07:47 (MT)

Reference Information

Laboratory Definition Code	Laboratory Location	Laboratory Definition Code	Laboratory Location
WT	ALS ENVIRONMENTAL - WATERLOO, ONTARIO, CANADA		

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample mg/kg wwt - milligrams per kilogram based on wet weight of sample mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight mg/L - unit of concentration based on volume, parts per million.

< - Less than. D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to fitness for a particular purpose, or non-infringement. ALS assumes no responsibility for errors or omissions in the information.

BAE	

							Carc# unougo	0
60 NORTHLAND ROAD, UNIT 1	AD, UNIT 1		CHAIN OF CUSTODY / ANALYTICAL SERVICES REQUEST FORM	NALYTICAL	SERVICE	S REQUEST FORM	Page Lof L	
WATEKLOO, ON NZV ZBS Dhone: (519) 886-6910	700	More In TAT Out	abuse all TAT Duested material le in fuelness dave which exclude	exclude	Specify date	Service requested		
Fav. (519) 886.9047			Note, all IAI Cuoted material is it trasmess substituted by pm	past 3:00 pm	required	5 day (regular)	Next day TAT (100%)	
Toll Free: 1-800-668-9878	9878 Enutronmental		or Saturday/Sunday begin the next day.		4 12/1	3-4 day (25%)	Same day TAT (200%)	
COMPANY NAME	BAK- Euns	CRITERIA	Criteria on report YES VO		ANALYS	ANALYSIS REQUEST	PLEASE INDICATE FILTERED,	ŒĐ,
OFFICE	Oro Station	Reg 153/04 🖸	Reg 511/09 (2) 8 9				KESEKVED OK BOTT < (F, P, F/P)	
PROJECT MANAGER	100		PWQO.				L1248036	36
7/6/	1001 FAX	REPORT	REPORT FORMAT/DISTRIBUTION	1.	46		ENTERED BY: MG4	PC
19	05/	EMAIL /	FAX BOTH	J '	15-		DATE/TIME ENTERED:	6
QUOTATION #	# Od	PDF	7	S.	د د		7 2 3	1
SAMPL	NG INFORMATION	EMAIL 1	ensolver of elsion) () () () () () () () () () () () () () () (12		BIN #	
Sample Date/Time	3dAL			7/	f3			-
Date (dd-mm-vv) ()	Time (24hr) COMP COMP COMP	SAMPLE DESC	SAMPLE DESCRIPTION TO APPEAR ON REPORT	1 1	W		COMMENTS	LAB ID
	7	MWI		7 7				-0
-	/	MNZ			-			100
	1	MWS	4	7 016	7			14
		6H3.	1.5	7	7 /			ż
	7	1314	1.05	1.0				9-
>	008	848	1.5	2				3
SPECIAL IN	SPECIAL INSTRUCTIONS/COMMENTS	1000年の日の日の日の日	THE QUESTIONS BELOW MUST BE ANSWERED FORWATER SAMPLES (CHECK Yes OR No.)	VERED FORWATER'S	AMPLES (CHEC	K Yes OR No.)	SAMPLE CON	TION
Some soft in	GW-Sample	Are any sample If yes, an author Is the water sam	Are any samples taken from a regulated DW System? If yes, an authorized drinking water COC MUST be used for this submission. Is the water sampled intended to be potable for human consumption?	d for this submiss n consumption?	ion.	Yes II No 🛠	TED	Sin Sin
-	The state of the		RECEIVED 8Y:			DATE & TIME	OBSERVATIONS	17.7
RELINQUISHED BY:	No.	DATE & TIME	RECEIVED AT LABITS 1	FILE		18/20-12-12 M	14:15 If yes add SIF	010
Notes)		The state of supplied by an alucie and lab workload at time of submission.	newkload at time of	ubmission. 3.	Any known or suspected haza	3. Any known or suspected hazards relating to a sample must be noted on the	oted on the

5040 Bank Street, / 107 Marco Street, and 7041 Millon Owens Hoad, City of Ottawa, Onland

APPENDIX II Field Screening Apparatus

Environmental Protection Development September 2001 Agency Washington, DC 20460

Innovative Technology Verification Report

Field Measurement
Technologies for Total
Petroleum Hydrocarbons in Soil
Dexsil® Corporation
PetroFLAG™ System

EPA/600/R-01/092 September 2001

Innovative Technology Verification Report

Dexsil® Corporation PetroFLAG™ System

Prepared by
Tetra Tech EM Inc.
200 East Randolph Drive, Suite 4700
Chicago, Illinois 60601
Contract No. 68-C5-0037
Dr. Stephen Billets
Characterization and Monitoring Branch
Environmental Sciences Division
Las Vegas, Nevada 89193-3478
National Exposure Research Laboratory
Office of Research and Development
U.S. Environmental Protection Agency

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

Office of Research and Development Washington, DC 20460

ENVIRONMENTAL TECHNOLOGY VERIFICATION PROGRAM VERIFICATION STATEMENT

TECHNOLOGY TYPE: FIELD MEASUREMENT DEVICE
APPLICATION: MEASUREMENT OF TOTAL PETROLEUM HYDROCARBONS

TECHNOLOGY NAME: PetroFLAGTM SYSTEM COMPANY: DEXSIL® CORPORATION ADDRESS: ONE HAMDEN PARK DRIVE

HAMDEN, CT 06517 WEB SITE: http://www.dexsil.com TELEPHONE: (203) 288-3509

VERIFICATION PROGRAM DESCRIPTION

The U.S. Environmental Protection Agency (EPA) created the Superfund Innovative Technology Evaluation (SITE) and Environmental Technology Verification (ETV) Programs to facilitate deployment of innovative technologies through performance verification and information dissemination. The goal of these programs is to further environmental protection by substantially accelerating the acceptance and use of improved and cost-effective technologies. These programs assist and inform those involved in design, distribution, permitting, and purchase of environmental technologies. This document summarizes results of a demonstration of the PetroFLAGTM System developed by Dexsil® Corporation (Dexsil).

PROGRAM OPERATION

Under the SITE and ETV Programs, with the full participation of the technology developers, the EPA evaluates and documents the performance of innovative technologies by developing demonstration plans, conducting field tests, collecting and analyzing demonstration data, and preparing reports. The technologies are evaluated under rigorous quality assurance (QA) protocols to produce well-documented data of known quality. The EPA National Exposure Research Laboratory, which demonstrates field sampling, monitoring, and measurement technologies, selected Tetra Tech EM Inc. as the verification organization to assist in field testing seven field measurement devices for total petroleum hydrocarbons (TPH) in soil. This demonstration was funded by the SITE Program.

DEMONSTRATION DESCRIPTION

In June 2000, the EPA conducted a field demonstration of the PetroFLAGTM System and six other field measurement devices for TPH in soil. This verification statement focuses on the PetroFLAGTM System; a similar statement has been prepared for each of the other six devices. The performance and cost of the PetroFLAGTM System were compared to those of an off-site laboratory reference method, "Test Methods for Evaluating Solid Waste" (SW-846) Method 8015B (modified). To verify a wide range of performance attributes, the demonstration had both primary and secondary objectives. The primary objectives included (1) determining the method detection limit, (2) evaluating the accuracy and precision of TPH measurement, (3) evaluating the effect of interferents, and (4) evaluating the effect of moisture content on TPH measurement for each device. Additional primary objectives were to measure sample throughput and estimate TPH measurement costs. Secondary objectives included (1) documenting the skills and training

required to properly operate the device, (2) documenting the portability of the device, (3) evaluating the device's durability, and (4) documenting the availability of the device and associated spare parts.

The PetroFLAGTM System was demonstrated by using it to analyze 66 soil environmental samples, 79 soil performance evaluation (PE) samples, and 36 liquid PE samples. In addition to these 181 samples, 10 extract duplicates prepared using the environmental samples were analyzed. The environmental samples were collected in four areas contaminated with gasoline, diesel, or other petroleum products, and the PE samples were obtained from a commercial provider. Dexsil chose not to analyze soil samples collected in a fifth area because Dexsil believed that the natural organic material in the area would adversely impact the PetroFLAGTM System's ability to accurately measure TPH. In addition, Dexsil chose not to analyze low- and medium-concentration-range weathered gasoline soil PE samples because according to Dexsil, the PetroFLAGTM System was not sensitive to weathered gasoline concentrations of less than 1,000 milligrams per kilogram. Collectively, the environmental and PE samples provided the different matrix types and the different levels and types of petroleum hydrocarbon contamination needed to perform a comprehensive evaluation of the PetroFLAGTM System. A complete description of the demonstration and a summary of its results are available in the "Innovative Technology Verification Report: Field Measurement Devices for Total Petroleum Hydrocarbons in Soil—Dexsil® Corporation.

TECHNOLOGY DESCRIPTION

The PetroFLAGTM System manufactured by Dexsil is based on emulsion turbidimetry, which involves measurement of the light scattered by an emulsion. With the PetroFLAGTM System, a proprietary, nonpolar, organic solvent mixture composed of alcohols, primarily methanol, is used to extract petroleum hydrocarbons from soil samples. A proprietary developer solution that is polar in nature and that acts as an emulsifier is added to a sample extract in order to precipitate the aromatic and aliphatic hydrocarbons and form uniformly sized micelles. Light at a wavelength of 585 nanometers is passed through the emulsion, and the amount of light scattered by the emulsion at a 90-degree angle is measured using a turbidimeter. The TPH concentration in the emulsion is then determined by comparing the turbidity reading for the emulsion to that for a reference standard or to a standard calibration curve. According to Dexsil, the TPH concentration thus measured is a function of the mean molecular weight of the hydrocarbons present in the sample. During the demonstration, extraction of petroleum hydrocarbons in a given soil sample was typically completed by adding 10 milliliters (mL) of proprietary methanol mixture extraction solvent to 10 grams of the sample. To form an emulsion, 2 mL of sample extract was then decanted into a vial containing 4 mL of developer solution. The emulsion was analyzed using the PetroFLAGTM Analyzer (turbidimeter) to obtain a direct measurement of the TPH concentration in the soil sample.

VERIFICATION OF PERFORMANCE

To ensure data usability, data quality indicators for accuracy, precision, representativeness, completeness, and comparability were assessed for the reference method based on project-specific QA objectives. Although the reference method results generally exhibited a negative bias, based on the results for the data quality indicators, the reference method results were considered to be of adequate quality. The bias was considered to be significant primarily for low- and medium concentration- range soil samples containing diesel, which made up only 13 percent of the total number of samples analyzed during the demonstration. The reference method recoveries observed during the demonstration were typical of the

recoveries obtained by most organic analytical methods for environmental samples. In general, the user should exercise caution when evaluating the accuracy of a field measurement device by comparing it to reference methods because the reference methods themselves may have limitations. Key demonstration findings are summarized below for the primary objectives.

Method Detection Limit: Based on the TPH results for seven low-concentration-range diesel soil PE samples, the method detection limits were determined to be 20 and 6.32 milligrams per kilogram for the PetroFLAGTM System and reference method, respectively.

Accuracy and Precision: Seventy-one of 97 PetroFLAGTM System results (73 percent) used to draw conclusions regarding whether the TPH concentration in a given sampling area or sample type exceeded a specified action level agreed with those of the reference method; 26 PetroFLAGTM System conclusions were false positives. There were no false negatives. Of 91 PetroFLAGTM System results used to assess measurement bias, 11 were within 30 percent, 9 were within 30 to 50 percent, and 71 were not within 50 percent of the reference method results; 82 PetroFLAG™ System results were biased high, and 9 were biased low. For soil environmental samples, the PetroFLAGTM System results were statistically (1) the same as the reference method results for one of the four sampling areas and (2) different from the reference method results for three of the sampling areas. For soil PE samples, the PetroFLAGTM System results were statistically (1) the same as the reference method results for high concentration- range diesel samples and (2) different from the reference method results for blank samples, high-concentration range weathered gasoline samples, and low- and medium-concentration-range diesel samples. For liquid PE samples, the PetroFLAGTM System results were statistically different from the reference method results for both weathered gasoline and diesel samples. The PetroFLAGTM System results correlated highly with the reference method results for one of the four sampling areas and diesel soil PE samples (the square of the correlation coefficient [R2] values were greater than 0.90, and F-test probability values were less than 5 percent). The PetroFLAGTM System results correlated moderately with the reference method results for two of the four sampling areas (R2 values were 0.84 and 0.86, and F-test probability values were less than 5 percent). The PetroFLAGTM System results correlated weakly with the reference method results for one of the four sampling areas and weathered gasoline soil PE samples (R2 values were 0.42 and 0.10, respectively, and F-test probability values were greater than 5 percent). Comparison of the PetroFLAGTM System and reference method median relative standard deviations (RSD) showed that the PetroFLAGTM System and the reference method exhibited similar overall precision. Specifically, the median RSD ranges were 6 to 19 percent and 5.5 to 16 percent for the PetroFLAGTM System and reference method, respectively. The analytical precision was about the same for the PetroFLAGTM System (a median relative percent difference of 5) and reference method (a median relative percent difference of 4).

Effect of Interferents: The PetroFLAGTM System showed a mean response of less than 5 percent for neat methyl-tert-butyl ether (MTBE) and tetrachloroethene (PCE) and for soil spiked with humic acid. The device's mean responses for neat Stoddard solvent; turpentine; and 1,2,4-trichlorobenzene were 42.5, 103, and 16 percent, respectively. The reference method showed varying mean responses for MTBE (39 percent); PCE (17.5 percent); Stoddard solvent (85 percent); turpentine (52 percent); 1,2,4-trichlorobenzene (50 percent); and humic acid (0 percent). For the demonstration, MTBE and Stoddard solvent were included in the definition of TPH.

Effect of Moisture Content: The PetroFLAGTM System showed a statistically significant decrease (17 percent) in TPH results when the soil moisture content was increased from 9 to 16 percent for weathered gasoline soil PE samples; the reference method TPH results were unaffected. Both PetroFLAGTM System and reference method TPH results were unaffected when the soil moisture content was increased from less than 1 to 9 percent for diesel soil PE samples.

Measurement Time: From the time of sample receipt, Dexsil required 50 hours, 40 minutes, to prepare a draft data package containing TPH results for 181 samples and 10 extract duplicates compared to 30 days for the reference method, which was used to analyze 199 samples and 13 extract duplicates.

Key demonstration findings are summarized below for the secondary objectives.

Skill and Training Requirements: The PetroFLAGTM System can be operated by one person with basic wet chemistry skills. The sample analysis procedure for the device can be learned in the field with a few practice attempts.

Portability: The PetroFLAG[™] System is battery-operated and requires no alternating current power source. The device can be easily moved between sampling areas in the field, if necessary.

Durability and Availability of the Device: All items in the PetroFLAGTM System are available from Dexsil. During a 6-month warranty period, Dexsil will supply replacement parts for the device by overnight courier service at no cost. During the demonstration, none of the device's reusable items malfunctioned or was damaged.

In summary, during the demonstration, the PetroFLAGTM System exhibited the following desirable characteristics of a field TPH measurement device: (1) good precision, (2) lack of sensitivity to interferents that are not petroleum hydrocarbons (PCE and humic acid), (3) low measurement costs, and (4) ease of use. In addition, the PetroFLAGTM System exhibited moderate sample throughput. Based on action level conclusions and statistical correlations, the PetroFLAGTM System TPH results compared well with those of the reference method; however, the device exhibited a high bias, and its TPH results were determined to be statistically different from those of the reference method. In addition, turpentine and 1,2,4-trichlorobenzene biased the device's TPH results high. Moreover, an increase in soil moisture content biased the device's TPH results low for weathered gasoline soil PE samples. Collectively, the demonstration findings indicated that the user should exercise caution when considering the device for a specific field TPH measurement application.

Original signed by

Gary J. Foley, Ph.D.
Director
National Exposure Research Laboratory
Office of Research and Development

P001-0102

ONE TO SIX GAS PORTABLE MONITOR

Gas Detection For Life

EAGLE™ Model

Features

- Simultaneous detection of up to 6 different gases
- Over 250 gas monitoring configurations
- Widest range of gas sensors available
- PPM / LEL hydrocarbon detection
- Powerful long-life pump with 125' range
- · Low flow pump shut off and alarm
- Methane elimination switch for environmental use
- . Security "Adjustment Lockout Switch"
- Up to 30 hours of continuous operation
- IR Sensors available for CO₂,
- % LEL CH₄, and 0-100% volume CH₄
 Transformer testing version available
- Alkaline or Ni-Cad capability
- Ergonomic RFI/EMI/Chemical resistant case
- Datalogging option
- Autocalibration
- Intrinsically safe design, CSA/NRTL & UL Classified (most versions)

RKI is proud to produce the most versatile portable gas detector on the market. The EAGLE is a powerful instrument that does more than offer standard confined space protection. The EAGLE also provides detection combinations never before offered in a portable gas monitor featuring the industry's widest selection of high quality, long life and field proven sensors.

The EAGLE's ergonomic design offers easy access to controls such as autocalibration, alarm silence, demand zero, peak hold and a wide variety of other features. Each channel has 2 alarm levels plus TWA and STEL alarms for toxic channels. Alarm levels are adjustable and can be latching or self resetting.

Standard features on the EAGLE are not available on other competitive units. These features include PPM/LEL hydrocarbon detection and a methane elimination switch for environmental applications. For quick response and recovery, the EAGLE has a strong internal pump which can draw samples from over 125 feet. The EAGLE will continuously operate for over 30 hours on alkaline batteries or 18 hours on Ni-Cads. Many accessories such as long hoses, special probes, datalogging, continuous operation adapters, remote alarms and strobes, dilution fittings, internal hydrophobic filter, etc, are available to help satisfy almost any application. Rugged, weatherproof, easy to operate and maintain, the EAGLE is the industry's answer to portable gas detection.

RKI Instruments, Inc. • 1855 Whipple Rd. Hayward, CA 94544 • Phone (800) 754-5165 • (510) 441-5656 • Fax (510) 441-5650

World Leader In Gas Detection & Sensor Technology www.rkiinstruments.com

EAGLE™ Model

Weatherproof, chemical resistant, RFI/EMI coated high impact polycarbonate-polyester blend. Can be set in rain or into 2.5" of wate without damage. Ergonomically balanced with rugged top mounted

Dimensions 10.5" L x 5.9" W 7" H

Weight 5 lbs

Catalytic combustion, electrochemical cell, galvanic cell, and infrared. Detection Principle

2 years under normal conditions. Sensor Life

Powerful, long-life pump (over 6,000 hours) can draw samples over Sampling 125 feet. Flow rate approximately 2.0 SCFH. Method

4 x 20 LCD readout with backlighting. Viewed through window in case top. Displays readings & status of all channels simultaneously. 2 alarms per channel plus TWA and STEL alarms. Fully adjustable

Alarms for levels, latching or self reset and silenceable

Alarm Method Buzzer 85dB at 30 cm, dual high intensity LED's, and flashing display.

6 external push buttons for operation, demand zero, and autocalibration. Buttons also access LEL/ppm, alarm silence, peak hold, TWA /

STEL values, battery status and many other features. 30 hours minimum using alkaline batteries, or 18 hours using Ni-Continuous

Operating Hours Size D batteries, 4 alkaline or Ni-Cad. Charger has alkaline recogni-**Power Source** tion to prevent battery damage if charging is attempted with alkalines.

Operating Temp. & Humidity -10°C to 40°C (14°F to 104°F), 0 to 95% RH, non-condensing.

Indication Maximum variance +/- 5% of full scale Accuracy 30 seconds to 90% (for most gases). Response

Cads

Time

Intrinsically Safe, Class I, Division 1, Groups A, B, C and D. Safety Design CSA / NRTL & UL Classified (most versions).

Shoulder strap, alkaline batteries, hydrophobic probe and 5 foot hose (for special toxic gas versions, shorter teflon hose used without

• Datalogging of up to 4 gases (No datalogging possible on 5 or 6 Optional gas versions or versions with more than 2 toxic sensors).

Remote alarm

Dilution fitting (50/50)

Ni-Cad batteries

Battery charger, 115 VAC, 220 VAC, or 12 VDC

Continous Operation Adapter, 115 VAC or 12 VDC

· Extension Probes

Internal Hydrophobic Filter (strongly recommended)

Warranty One year material and workmanship.

Gases & Detectable Ranges

Gases & Detectal	ne Ranges
Standard Confined S	pace Gases
Hydrocarbons (CH ₄ , std)	0 - 100% LEL 0 - 50,000 ppm
Oxygen (O ₂)	0 - 40% Vol.
Carbon Monoxide (CO)	0 - 500 ppm
Hydrogen Sulfide (H ₂ S)	0 - 100 ppm
Super Toxics and O	ther Gases
Ammonia (NH ₃)	0 - 75 ppm
Arsine (AsH ₃)	0 - 1 ppm 0 - 200 ppb
Carbon Dioxide (CO ₂) (I R Sensor)	0 - 5,000 ppm 0 - 10,000 ppm 0 - 5% Vol. 0 - 20% Vol. 0 - 50% Vol.
Chlorine (Cl ₂)	0 - 3 ppm
Fluorine (F ₂)	0 - 5 ppm
Hydrogen Fluoride (HF)	0 - 9 ppm
Hydrogen Chloride (HCI)	0 - 5 ppm
Hydrogen Cyanide (HCN)	0 - 30 ppm
Methane (CH ₄) (IR Sensor)	0 - 100% LEL 0 - 100% Vol.
Nitrogen Dioxide (NO ₂)	0 - 15 ppm
Nitric Oxide (NO)	0 - 100 ppm
Ozone (O ₃)	0 - 1 ppm
Phosphine (PH ₃)	0 - 1 ppm
Silane (SiH ₄)	0 - 15 ppm
Sulfur Dioxide (SO ₂)	0 - 30 ppm

The EAGLE can be provided with up to 6 gas sensors (2 Toxics maximum from "super toxics" list). Please specify gas combination when ordering

Special Features

- Low Flow alarm shuts pump off to avoid damage to instrument.
- Hydrophobic filter disc in probe.
 Internal dust filter (or optional internal
- hydrophobic filter). Quick autocalibration using 4 in 1
- calibration gas standard. Single gas calibration capability.
- Methane elimination switch for environmental applications
- "Adjustment Lockout Switch" for added security.
 Confirmation beep (silenceable).
- Backlight, automatic for alarms and by demand with adjustable time.
- Meets EPA Method 21 protocol for fugitive emissions testing.

RKI Instruments, Inc.

Standard

Accessories

1855 Whipple Road Hayward, CA 94544

Toll Free: (800) 754-5165 (510) 441-5656 Phone: Fax: (510) 441-5650 mail4rki@rkiinstruments.com

www.rkiinstruments.com

Authorized Distributor:

MiniRAE 3000

Portable Handheld VOC Monitor

The MiniRAE 3000 is the most advanced handheld volatile organic compound (VOC) monitor on the market. Its photoionization detector's (PID) extended range of 0 to 15,000 ppm makes it an ideal instrument for applications from industrial hygiene to leak detection and HazMat.

The RF modem allows real-time data transmissions with a base controller located up to 500 feet away from the MiniRAE 3000 (or two miles with optional RAELink3 portable modem). A personal computer can be used as the base station for a MiniRAE 3000 system. The standard ProRAE Remote software is capable of monitoring the input of up to 64 remotely located monitors, including MiniRAE 3000, AreaRAE, etc.

Key Features

- · Proven PID technology The patented sensor provides the following unique features:
- 3-second response time
- Extended range up to 15,000 ppm with improved linearity
- Humidity compensation with integral humidity and temperature sensors
- · Real-time wireless data transmission with built-in RF modem or Bluetooth
- Designed for simple service Easy access to lamp and sensor in seconds without tools
- Big graphic display for easy overview of gas type, Correction Factor and concentration
- · Field-interchangeable battery pack replaced in seconds without tools
- · Integrated flashlight for better view in dark conditions
- · User-friendly screens, including dataplot chart view
- Integrated RAE Systems Correction Factors list for more than 200 compounds to measure more chemicals than any other PID
- Multi-language support with 12 languages encoded
- · Rugged housing withstands use in harsh environments
- IP67 waterproof design for easy cleaning and decontamination in water
- Strong protective removable rubber boot

Additional Advantages

- · View real-time sensor data and alarm status at headquarters or command center
- · Automatic lamp type recognition
- . Duty-cycling™ lamp and sensor autocleaning technology
- Tough, flexible inlet Flexi-Probe™
- 3 large keys operable with 3 layers of gloves
- Strong, built-in sample pump draws up to 100 feet (30m) horizontally or vertically
- · Loud, 95dB audible alarm
- · Bright red flashing visual alarm
- · Interchangeable drop-in Lithium-Ion and alkaline battery packs
- · Charging cradle doubles as an external battery charger
- Compatible with AutoRAE™ calibration
- · ProRAE Remote software simultaneously controls and displays readings for up to 64 remote detectors
- · License-free, ISM band RF transmission with communication range up to 500 feet (2 miles with optional RAELink3 modem)
- Optional RAELink3 modem provides GPS capability to track and display readings from remote detectors and provide up to 2 miles' long-distance transmission
- Datalogging with up to 6 months of data at one-minute intervals
- · 3-year 10.6 eV lamp warranty

Wireless

www.raesystems.com

MiniRAE 3000

Specifications*

Detector Specifications

Size	10" L x 3.0" W x 2.5" H (25.5 cm x 7.6 cm x 6.4 cm)
Weight	26 oz (738 g)
Sensors	Photoionization sensor with standard 10.6 eV or optional 9.8 eV or 11.7 eV lamps
Battery	 Rechargeable, external field-replaceable Lithium-lon battery pack
	Alkaline battery adapter
Operating Hours	16 hours of operation (12 hours with alkaline battery)
Display Graphic	4 lines, 28 x 43 mm, with LED backlight for enhanced display readability
Keypad	1 operation and 2 programming keys, 1 flashlight on/off
Direct Readout	Instantaneous reading • VOCs as ppm by volume • High values • STEL and TWA • Battery and shutdown voltage Date, time, temperature
Alarms	95dB at 12" (30 cm) buzzer and flashing red LED to indicate exceeded preset limits High: 3 beeps and flashes per second Low: 2 beeps and flashes per second STEL and TWA: 1 beep and flash per second Alarms latching with manual override or automatic reset Additional diagnostic alarm and display message for low battery and pump stall
EMI/RFI	Highly resistant to EMI/RFI. Compliant with EMC directive (2004/108/EC); R & TTE directive (1999/5/EC)
IP Rating	IP67 unit off and without flexible probe IP65 unit running
Datalogging	Standard 6 months at one-minute intervals
Calibration	Two-point or three-point calibration for zero and span. Calibration memory for 8 calibration gases, alarm limits, span values and calibration dates
Sampling Pump	Internal, integrated flow rate at 500 cc/mn Sample from 100' (30m) horizontally and vertically
Low Flow Alarm	Auto pump shutoff at low-flow condition
Communication	Download data and upload instrument set-up from PC through charging cradle or optional Bluetooth™ Wireless data transmission through built-in RF modem
Frequency	902 to 928 MHz (license-free), 2.400 to 2.4835 GHz (license-free), 433 MHz, 869 MHz
RF Range	Up to 500' (152m; 900 MHz, 433 Mhz, 869 Mhz), extendable with RAELink3 Repeater to 2 miles (3.2km)
Hazard Area Approval	US and Canada:
Temperature	-4° to 122° F (-20° to 50° C)
Humidity	0% to 95% relative humidity (non-condensing)
Attachments	Durable bright yellow rubber boot
Warranty	3 years for 10.6 eV lamp, 1 year for pump, battery, sensor and instrument

Specifications are subject to change

Sensor Specifications

Gas Monitor	Range	Resolution	Response Time T90
VOCs	0 to 999.9 ppm	0.1 ppm	<3s
	1000 to 15,000 ppm	1 ppm	< 3 s

Monitor only includes:

- MiniRAE 3000 Monitor, Model PGM-7320
- Wireless communication module built in, as specified
- . Datalogging with ProRAE Studio Package for Windows™ 98, 2000, NT, ME & XP
- · Charging/download adapter
- RAE UV lamp, as specified
- Flex-I-Probe™
- External filter
- Rubber boot
- · Alkaline battery adapter
- Lamp-cleaning kit
- Tool kit
- Operation CD-ROM
- · Operation & Maintenance manual
- Soft leather case

Monitor with accessories kit adds:

- · Hard transport case with pre-cut foam padding
- · Charging/download cradle
- 5 Porous metal filters and O-rings
- · Organic vapor zeroing kit
- · Gas outlet port adapter and tubing

Optional calibration kit adds:

- 100 ppm isobutylene calibration gas, 34L
- · Calibration regulator and flow controller

Optional Guaranteed Cost of Ownership Program:

- 4-year repair and replacement guarantee
- · Annual maintenance service

USA/Canada Europe/Russia +45 8652 5155 Middle East/Australia +971 4 3639 427 RAE Systems Inc. 3775 North First Street San Jose, CA 95134 USA raesales@raesystems.com

China +86 10 58858788

Asia +852 2669 0828

www.raesystems.com

DS-1018-02

Solinst

Interface Meter

Model 122 Data Sheet

Interface Meter

Model 122

Solinst Oil/Water Interface Meters give clear and accurate measurements of product level and thickness in wells and tanks

Determination of both light (floating) non-aqueous phase liquids (LNAPL) and dense (sinking) non-aqueous phase liquids (DNAPL) is quick and easy. The factory-sealed probes are pressure proof and tapes are available in a range of lengths from 65- $1000\ \text{ft}$ (20 - $300\ \text{m}$).

The 5/8" (16 mm) diameter P1 Probe allows easy access through tight spaces and into narrow wells. The Probe is designed for use in various monitoring applications.

Hazardous Locations Use

The Model 122 Interface Meter has been approved by the Canadian Standards Association (CSA) for use in explosive environments. It is suitable for use in hazardous locations Class I, Groups C&D.

The grounding strap is a safety essential when the meter is used in potentially explosive environments. It also ensures that the electronics are properly protected.

Operating Principles

 $\label{eq:product} \textbf{Product} \ (\mbox{Non-conductive liquid}) = \mbox{Steady light and tone}$

Water (Conductive liquid) = Intermittent light and tone

To detect liquids, Solinst Interface Meters use an infra-red beam and detector. When the probe enters a liquid the beam is refracted away from the detector which activates an audible tone and light. If the liquid is a non-conductive

oil/product the signals are steady. If the liquid is water (conductive liquid greater than 50 µS/cm), the conductivity of the water completes a conductivity circuit. This overrides the infra-red circuit, and the tone and light are intermittent.

Both sensors use exactly the same zero point, giving accuracy as good as 1/200 ft or 1.0 mm. The high accuracy enables the sensors to detect the slightest sheen of oil on the surface of the water; this is indicated by a rapid intermittent tone.

Accurate, Reliable, Robust

- · Designed for rugged field use
- Stable electronics with automatic circuitry testing
- · Tape uses stranded stainless steel conductors:
 - non-stretch; does not corrode
 - resists kinking and breaks
 - easy to repair and splice
- · Sturdy free-standing reel with carrying handle

High Quality Design

The state-of-the-art electronics include automatic circuitry testing when the 'On' button is used; $120\ \text{hours}$ of on-time battery life; clear signals; and high accuracy.

Infra-red refraction is used to detect liquids and conductivity to distinguish water. Both optical and electronic sensors are precisely aligned at the same zero point. A steady light and tone indicate product. Water is indicated by intermittent signals.

The factory sealed probe does not need to be accessed by the user. An integral stainless steel shield protects the sensors. It is set permanently into place, yet allows for easy cleaning.

The circuits are powered by 2 standard 9V batteries which are housed in easy-access drawers in the faceplate of the reel.

Features

- Sensor accuracy to 1/200 ft or 1.0 mm
- Certified intrinsically safe
- 5/8" (16 mm) diameter probe
- · Easy access batteries: minimum 120 hours of life
- Automatic shut off after 10 minutes
- Inexpensive, simple repairs
- 3 year warranty

 $^{\scriptsize @}$ Solinst is a registered trademark of Solinst Canada Ltd.

High Quality Groundwater and Surface Water Monitoring Instrumentation

Solinst

Interface Meter

The 122 Mini is a convenient small version of the Solinst Interface Meter, small enough to fit in a backpack. A custom carrying bag is also an option. The Mini is available in 65 ft or 20 m lengths.

The 5/8" (16 mm) diameter probe is attached to narrow 1/4" (6 mm) tape, which is accurately marked each 1/100 ft or millimeter. Enhanced electronics allow operation for up to 300 hours of on-time, using one 9V battery.

Obtaining Product Measurements

To measure the thickness of a product layer, lower the probe into the well until the signals activate. If there is an oil/product layer on the top of the water (LNAPL), the light and tone will be steady, indicating an air/product interface.

Read the depth off the permanently marked tape. Lower the probe further into the water, where the signals become intermittent, then pull back up and take a reading at the product/water interface. The thickness of the product layer is then determined by subtracting the first reading from the

If there is only water in the well and no product, there will only be intermittent (water) signals.

The presence or absence of dense (sinking) non-aqueous layers (DNAPL) is determined by continuing to lower the probe to the bottom of the well.

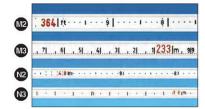
If the steady tone and light return, this indicates a non-conductive liquid.

Measure the depth and continue lowering the probe until it touches bottom and the tape goes slack.

To determine the thickness of the DNAPL layer, subtract the first reading from the bottom depth.

Model 122 P1 and 122M Probes

Probes


122 P1: 5/8" diameter (16 mm) stainless steel. The beam is emitted from within a cone-shaped tip made from rigid polyurethane. The tip is protected by an integral stainless steel shield. This probe is excellent for the vast majority of product monitoring situations.

 $122M\ Probe: 5/8"$ diameter (16 mm) stainless steel. Similar to the P1 but shorter.

Tape

The easy-to-read markings on the tape are permanently heat-stamped into the tape. The dog bone shaped tape avoids adherence to wet surfaces in wells. It is resistant to most chemicals, and the smooth surface of the tape is easy to decontaminate, and easy to handle.

M2 Feet and tenths: with markings every 1/100 ft.
M3 Meters and centimeters: with markings every mm.
N2 and N3 As above, but on the narrow 1/4" (6 mm) tape for the 122 Mini Interface Meter.

Standard Equipment

Each standard meter is provided with a grounding clip, cleaning brush, a convenient carrying bag with shoulder strap, and a tape guide/datum.

The tape guide may be used to provide support for the reel on the well casing. It acts as a datum allowing repeatably accurate measurements; ensures that the probe hangs in the centre of the well; and protects the tape from damage.

It is essential to use the grounding clip to ensure safety and proper function of the electronics in all applications.

Printed in Canada September 2, 2009 For further information contact: Solinst Canada Ltd.
Fax: +1 (905) 873-1992; (800) 516-9081 Tel: +1 (905) 873-2255; (800) 661-2023
35 Todd Road, Georgetown, Ontario Canada L7G 4R8

APPENDIX III Project Photographs

Borehole #1

Test Pit #1

Borehole #4

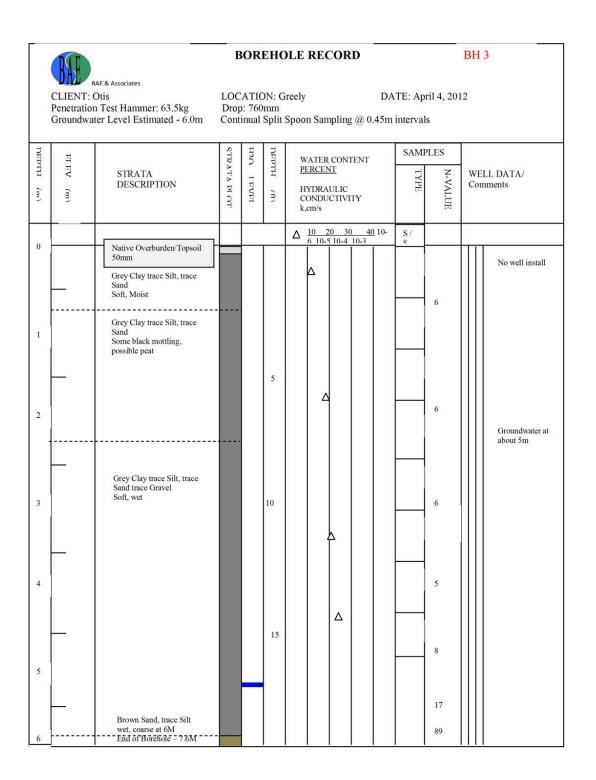
Borehole #3

Borehole #6

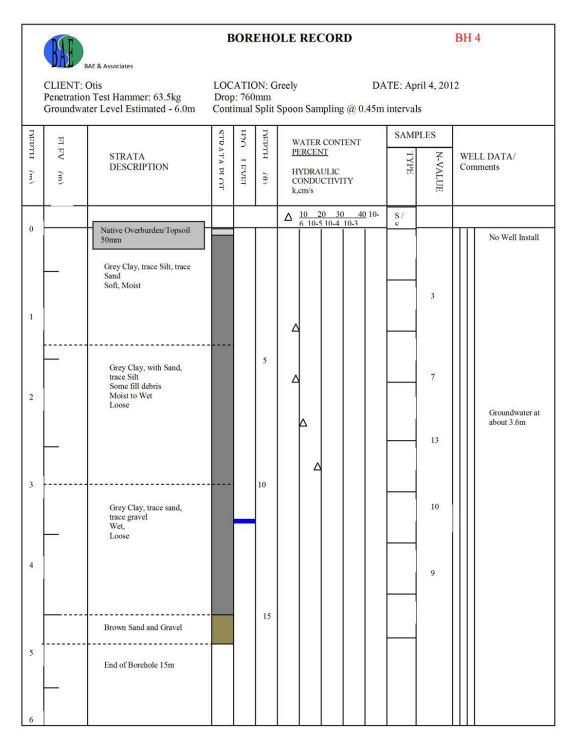
Monitoring Well #1

Borehole #7

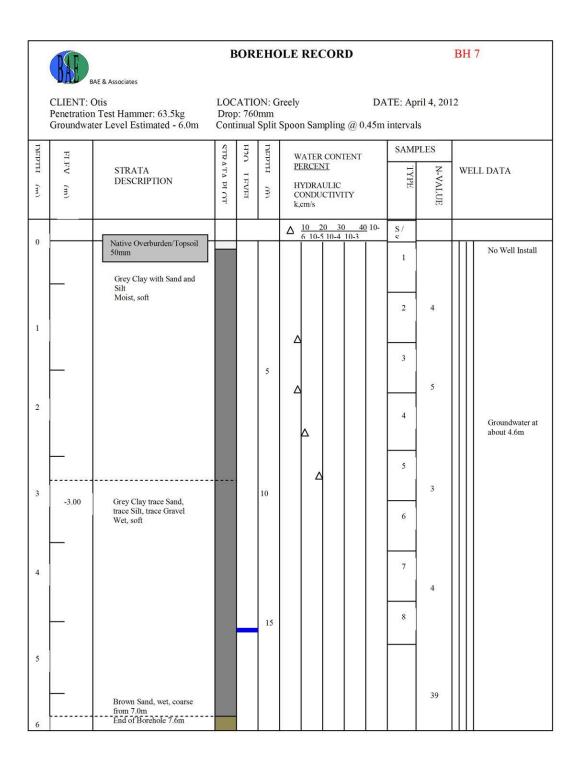
APPENDIX IV Borehole Records



		\$0% (asc)	E	BOR	ЕНС	OLE RECORD			ВН	1
	CLIENT:	& Associates Otis n Test Hammer: 63.5kg ter Level Estimated - 6.0m	Drop	: 760	mm	Spoon Sampling @ 0.45	OATE: Ap		12	
DEPTH (m)	ELEV(m)	STRATA DESCRIPTION	STRATA DI OT	HAU LEARL	DEPTH (#)	WATER CONTENT PERCENT HYDRAULIC CONDUCTIVITY k,cm/s	SAM:	PLES N-VALUE		LL DATA/ mments
0		Native Overburden/Topsoil				Δ 10 20 30 40 10-6 10-5 10-4 10-3	S/S			
1		Grey Clay – moist, firm, mixed with gravel						8		No Well Install
		Sand trace silt, mixed with rocks/gravel/boulders Moist to Wet			5	Δ		13		
2		Sand with boulders, trace Silt						71		Groundwater not observed, borehole terminated due to clay shale layer
3		Brown Sand and gravel Clay Shale Borehole Terminated 3.5m			10					
4										
5					15					
6										


	RA		E	BOR	ЕНС	DLE R	ECOF	RD			ВН	12
	CLIENT: 0	& Associates Otis n Test Hammer: 63,5kg ter Level Estimated - 6,0m	Drop	: 760	mm	reely Spoon S	Samplin	D g @ 0.45n		oril 4, 201 ls	12	
DEPTH (m)	ELEV(m)	STRATA DESCRIPTION	STRATA PI OT	IAAA 1 OCH	DEPTH (#)	PER HYL	ER CON CENT PRAULIC DUCTIV		SAM.	i i i i i i i i i i i i i i i i i i i		ELL DATA/ mments
0		Native Overburden/Topsoil				$\Delta \frac{10}{6}$	20 3 10-5 10-4	0 40 10- 10-3	S/			Ţ.
		50mm Clay with Silt and Sand				Δ				5		MW #3 Well installed at 20ft
1		Grey Clay trace sand, trace silt Moist				15				5		
2		Becoming Wet			5		Δ			7		
	L						Δ			6		Groundwater at about 5.8m
3				*	10					2		
4		Grey Clay Some Sand and Gravel Grey Clay and Silt with Sand								4		
		and the second s			15					2		
5		Brown Sand and Gravel End of Borehole 7.6m								156		

. Doto Barik Olioci, 7 for ivialoc Olioci, and 70t1 ivilion Owelle fload, Oily of Oliawa, Oliianc


	RIF	ì	В	OR	ЕНС	OLE RECORD			BH 5
1	CLIENT: O Penetration Groundwat	BAE & Associates Otis n Test Hammer: 63.5kg ter Level Estimated - 6.0m	Drop	: 760	mm	Spoon Sampling @ 0.45n	170	oril 4, 201 ls	12
DEPTH (m)	ELEV (m)	STRATA DESCRIPTION	STRATA PLOT	HAU LEARL	DEPTH (#)	WATER CONTENT PERCENT HYDRAULIC CONDUCTIVITY k,cm/s	SAM HAYT		WELL DATA/ Comments
						Δ 10 20 30 40 10- 6 10-5 10-4 10-3	S/		
0	_	Native Overburden/Topsoil 50mm Grey Clay, trace Sand, trace Gravel Moist, soft				Δ		5	MW #2 Well installed at 8.2m
2		Grey Clay, with Sand, trace Silt, trace Gravel			5	Δ		2	Groundwater at about 4.3m
3		Grey Clay with Sand, trace Silt Soft, Moist			10	Δ		3	
5	_				15	Δ		3	
6		Brown/Grey Sand Coarse, Wet from 7.9m End of Borehole 9.0m						32	

5640 Bank Street, 7107 Marco Street, and 7041 Mitch Owens Road, City of Ottawa, Ontario

			Е	BOR	EHC	OLE RECORD			BH 6
	CLIENT: 0	NAE & Associates Otis n Test Hammer: 63.5kg ter Level Estimated - 6.0m	Drop	: 760	mm	Spoon Sampling @ 0.45m		oril 4, 201 ls	12
DEPTH (m)	FIFV (m)	STRATA DESCRIPTION	STRATA DI OT	I EVEI	DEPTH (#)	WATER CONTENT PERCENT HYDRAULIC CONDUCTIVITY k,cm/s	SAM HAY!	PLES N-VALUE	WELL DATA/ Comments
2 3	-3.00	Native Overburden/Topsoil 50mm Grey Clay, trace Sand, trace Silt Moist, soft Grey Clay, trace Silt, trace Sand Wet, soft			5	Δ 10 20 30 40 10- 6 10-5 10-4 10-3	S/ e	2	MW #1 Well installed at 9.0m Groundwater at about 7.9m
5		Grey Sand, with Silt, trace Gravel from 6.4m Grey Clay and Silt with gravel from 7.7m Brown Sand, Coarse from 8.8m. End of Borchole 9.0			15	Δ		36	

