

FUNCTIONAL SERVICING AND STORMWATER MANAGEMENT REPORT

FOR

RICHCRAFT GROUP OF COMPANIES 590 RIDEAU STREET

CITY OF OTTAWA

PROJECT NO.: 16-849

APRIL 2016 – REV 1 © DSEL

FUNCTIONAL SERVICING AND STORMWATER MANAGEMENT REPORT 590 RIDEAU STREET RICHCRAFT GROUP OF COMPANIES

TABLE OF CONTENTS

1.0	INTRODUCTION	1
1.1	Existing Conditions	2
1.2	Required Permits / Approvals	3
1.3	Pre-consultation	3
2.0	GUIDELINES, PREVIOUS STUDIES, AND REPORTS	4
2.1	Existing Studies, Guidelines, and Reports	
3.0	WATER SUPPLY SERVICING	5
3.1	Existing Water Supply Services	5
3.2	Water Supply Servicing Design	5
3.3	Water Supply Conclusion	6
4.0	WASTEWATER SERVICING	7
4.1	Existing Wastewater Services	7
4.2	Wastewater Design	7
4.3	Wastewater Servicing Conclusions	8
5.0	STORMWATER MANAGEMENT	9
5.1	Existing Stormwater Services	9
5.2	Post-development Stormwater Management Target	9
5.3	Proposed Stormwater Management System	10
5.4	Stormwater Servicing Conclusions	11
6.0	UTILITIES	12
7.0	EROSION AND SEDIMENT CONTROL	13
8.0	CONCLUSION AND RECOMMENDATIONS	14

FIGURES

Figure 1	Site	Location
J		

TABLES

Table 1	Water Supply Design Criteria
Table 2	Water Demand and Boundary Conditions Proposed
	Conditions
Table 3	Wastewater Design Criteria
Table 4	Summary of Estimated Peak Wastewater Flow
Table 5	Summary of Existing Peak Storm Flow Rates
Table 6	Stormwater Flow Rate Summary

APPENDICES

Appendix A	Pre-consultation Notes
Appendix B	Water Supply

Appendix C Wastewater Collection Appendix D Stormwater Management

Drawings / Figures Proposed Site Plan

FUNCTIONAL SERVICING AND STORMWATER MANAGEMENT REPORT FOR

590 RIDEAU STREET RICHCRAFT GROUP OF COMPANIES

APRIL 2016 - REV 1

CITY OF OTTAWA PROJECT NO.: 16-849

1.0 INTRODUCTION

David Schaeffer Engineering Limited (DSEL) has been retained to prepare a Functional Servicing and Stormwater Management report in support of the application for Site Plan Control (SPC) at 590 Rideau Street.

The subject property is located within the City of Ottawa urban boundary, in the Rideau-Vanier ward. As illustrated in *Figure 1*, the subject property is bounded by Rideau Street to the north; Besserer Street to the south and Cobourg Street to the west. The subject property measures approximately *0.137ha*.

Figure 1: Site Location

Richcraft are proposing a 7-storey residential/commercial building fronting onto Rideau Street. The proposed development would include approximately 347m² of ground level retail on the 1st level and 2-storeys of underground parking fronting onto Rideau Street. The residential component is comprised of 68 units. A copy of the proposed site plan is included in *Drawings/Figures*.

The objective of this report is to support the application for SPC by providing sufficient detail to demonstrate that the proposed development is supported by existing municipal servicing infrastructure and that the site design conforms to current City of Ottawa design standards.

1.1 Existing Conditions

The existing site currently consists of a public park space. Historical photos indicate that prior to 2012 the subject site consisted of single family homes with retail or commercial use and an asphalt parking area.

A detailed survey of the property was prepared by Annis, O'Sullivan, Vollebekk Ltd, March 31, 2016. The elevations range between *72.16m* and *71.19m* generally sloping from the north-east to south-west of the property.

Sewer and watermain mapping collected from the City of Ottawa indicate that the following services exist across the property frontages within the adjacent municipal right-of-ways:

Rideau Street

- 305mm diameter PVC watermain
- 300mm diameter sanitary sewer
- 375mm diameter sanitary sewer

Charlotte Street

- 150mm diameter watermain
- 300mm diameter storm sewer
- 250mm diameter sanitary sewer

1.2 Required Permits / Approvals

The proposed development is subject to the site plan control approval process. The City of Ottawa must approve the engineering design drawings and reports prior to the issuance of site plan control.

1.3 Pre-consultation

Pre-Consultation was conducted with interested parties at the City of Ottawa via e-mail in March 2016.

Requirements for Stormwater management were reviewed with the City of Ottawa, and included allowable release rate based on a maximum Rational Method Coefficient of 0.50, employing IDF parameters for a 5-year storm with a calculated time of concentration equal to or greater than 10 minutes. Furthermore storms up to and including the City of Ottawa 100-year design event are to be attenuated on site.

As per pre-consultation with the City of Ottawa, the Rational Method Coefficient will be determined based on the historic use of the site. As discussed, the historic use was made up building and asphalt parking lot, essentially 100% impervious surface.

Pre-consultation correspondence, along with the servicing guidelines checklist, is located in *Appendix A*.

2.0 GUIDELINES, PREVIOUS STUDIES, AND REPORTS

2.1 Existing Studies, Guidelines, and Reports

The following studies were utilized in the preparation of this report.

- Ottawa Sewer Design Guidelines, City of Ottawa, SDG002, October 2012 (City Standards)
- Ottawa Design Guidelines Water Distribution
 City of Ottawa, July 2010.
 (Water Supply Guidelines)
 - Technical Bulletin ISD-2010-2
 City of Ottawa, December 15, 2010.
 (ISD-2010-2)
 - Technical Bulletin ISDTB-2014-02
 City of Ottawa, May 27, 2014.
 (ISDTB-2014-02)
- Design Guidelines for Sewage Works, Ministry of the Environment, 2008. (MOE Design Guidelines)
- Stormwater Planning and Design Manual,
 Ministry of the Environment, March 2003.
 (SWMP Design Manual)
- Ontario Building Code Compendium Ministry of Municipal Affairs and Housing Building Development Branch, January 1, 2010 Update (OBC)
- Water Supply for Public Fire Protection
 Fire Underwriters Survey, 1999.
 (FUS)

3.0 WATER SUPPLY SERVICING

3.1 Existing Water Supply Services

The subject property lies within the City of Ottawa 1W pressure zone. A local 300mm diameter watermain exist within the Rideau Street right-of-way. In addition, a 150mm diameter exist within Charlotte Street. An excerpt from the City of Ottawa Pressure Zone map has been included in *Appendix B*.

3.2 Water Supply Servicing Design

Water servicing will be achieved by a single 250mm diameter water service connection from the 300mm diameter watermain within Rideau Street. A 250mm diameter water service has been constructed and stubbed close to the property during the watermain reconstruction within Rideau Street between 2013 and 2015.

Table 1 summarizes the **Water Supply Guidelines** employed in the preparation of the preliminary water demand estimate.

Table 1
Water Supply Design Criteria

Design Parameter	Value
Residential Bachelor/1 Bedroom Apartment	1.4 P/unit
Residential 2 Bedroom Apartment	2.1 P/unit
Residential Average Daily Demand	350 L/d/P
Residential Maximum Daily Demand	4.9 x Average Daily *
Residential Maximum Hourly	7.4 x Average Daily *
Commercial Retail	$2.5 \text{ L/m}^2/\text{d}$
Commercial Office	75 L/9.3m ² /d
Commercial Maximum Daily Demand	1.5 x avg. day
Commercial Maximum Hour Demand	1.8 x max. day
Minimum Watermain Size	150mm diameter
Minimum Depth of Cover	2.4m from top of watermain to finished grade
During normal operating conditions desired	350kPa and 480kPa
operating pressure is within	
During normal operating conditions pressure must	275kPa
not drop below	
During normal operating conditions pressure must	552kPa
not exceed	
During fire flow operating pressure must not drop	140kPa
below	

^{*}Daily average based on Appendix 4-A from Water Supply Guidelines

^{**} Residential Max. Daily and Max. Hourly peaking factors per MOE Guidelines for Drinking-Water Systems Table 3-3 for 0 to 500 persons.

⁻Table updated to reflect ISD-2010-2

Table 2 summarizes the anticipated water supply demand and boundary conditions for the proposed development based on the **Water Supply Guidelines**.

Table 2
Water Demand and Boundary Conditions
Proposed Conditions

Design Parameter	Anticipated Demand ¹ (L/min)	Boundary Condition (m H ₂ O / kPa)		
Average Daily Demand	27.6	46.5	456.2	
Max Day + Fire Flow	133.1 + 5,000 = 5,133.1	40,500 L/mii	n @ 140 kPa	
Peak Hour	201.3	34.0	333.5	
1) Water demand calculation per Water Supply Guidelines . See Appendix B for detailed calculations				

water demand calculation per *water Supply Guidelines*. See *Appendix B* for detailed calculations.
 Boundary conditions supplied by the City of Ottawa for the demands indicated in the correspondence; assumed ground elevation 59m. See *Appendix B*.

The City provided both the anticipated minimum and maximum water pressures, as well as the maximum flow at 140 kPa (20 PSI) indicated by the correspondence in *Appendix B*.

Initial boundary conditions obtained indicate residual pressures within what is recommended in *Table 1*. It is recommended that a pressure check be conducted at during construction to determine if pressure controls are required.

Fire flow requirements are to be determined in accordance with Local Guidelines (*FUS*), City of Ottawa *Water Supply Guidelines*, and the Ontario Building Code.

Using the *FUS* method a conservative estimation of fire flow had been established. Based on information received from *Graziani & Corazza Architects*, the following assumptions were assumed:

- > Type of construction Fire Resistive Construction
- Occupancy type Limited Combustibility
- Sprinkler Protection Supervised Sprinkler System

The above assumptions result in an estimated fire flow of approximately *5,000 L/min*; actual building materials selected will affect the estimated flow, see *Appendix B* for detailed FUS calculations. Approximately *40,500 L/min* flow is available within the municipal system at minimum pressure, sufficient to service the proposed development.

3.3 Water Supply Conclusion

Anticipated water demand under proposed conditions was submitted to the City of Ottawa for establishing boundary conditions. As demonstrated by *Table 2*, based on the City's model, the municipal system is capable of delivering water within the *Water Supply Guidelines* pressure range. Sufficient flow is available at minimum pressure

within the municipal system to provide fire protection for the site. The proposed water supply design conforms to all relevant City Guidelines and Policies.

4.0 WASTEWATER SERVICING

4.1 Existing Wastewater Services

The subject site is tributary to the Interceptor Sewer. An existing 200mm diameter sanitary sewers has been installed, stubbed at the property line, discharging to the 300mm sanitary sewer located within Rideau Street.

The site currently consists of open space and construction staging area, historical uses for the site included asphalt parking lot and single family residence.

4.2 Wastewater Design

The proposed development will use the existing 200mm sanitary sewer stub.

Table 3 summarizes the **City Standards** employed in the design of the proposed wastewater sewer system.

Table 3
Wastewater Design Criteria

Design Parameter	Value		
Residential 1 Bedroom Apartment	1.4 P/unit		
Residential 2 Bedroom Apartment	2.1 P/unit		
Average Daily Demand	350 L/d/per		
Peaking Factor	Harmon's Peaking Factor. Max 4.0, Min 2.0		
Commercial Floor Space	5 L/m ² /d		
Commercial Office Space	75 L/9.3m ² /d		
Infiltration and Inflow Allowance	0.28L/s/ha		
Industrial Peaking Factor	7.0 per City of Ottawa Sewer Design Guidelines Appendix 4B		
Sanitary sewers are to be sized employing the Manning's Equation	$Q = \frac{1}{n} A R^{\frac{2}{3}} S^{\frac{1}{2}}$		
Minimum Sewer Size	200mm diameter		
Minimum Manning's 'n'	0.013		
Minimum Depth of Cover	2.5m from crown of sewer to grade		
Minimum Full Flowing Velocity	0.6m/s		
Maximum Full Flowing Velocity	3.0m/s		
Extracted from Sections 4 and 6 of the City of Ottawa Sewer Design Guidelines, October 2012.			

Table 4 demonstrates the anticipated peak flow from the proposed development. See **Appendix C** for associated calculations.

Table 4
Summary of Estimated Peak Wastewater Flow

Design Parameter	Total Flow (L/s)
Estimated Average Dry Weather Flow	0.49
Estimated Peak Dry Weather Flow	1.86
Estimated Peak Wet Weather Flow	1.90

The estimated sanitary flow based on the proposed plan provided in *Drawings/Figures* anticipates a peak wet weather flow of *1.90 L/s*.

An analysis of the sanitary sewer fronting the subject site within Rideau Street was completed in March 2012 by Delcan for the City of Ottawa. As per the **Delcan Design Brief**, the subject site is included as part of **SAN 3** drainage area to the sanitary sewer, see **Appendix C** for drainage map. Based on the sanitary analysis prepared by Declan, the most restrictive section of sanitary sewer is located directly upstream of the existing 750mm diameter sanitary sewer east of Chapel Street. The most restrictive section has **50.1 L/s** of residual capacity, see **Appendix C** for excerpt from **Delcan Design Brief**. The analysis was only completed up to the eventual discharge to the existing 750mm diameter sanitary sewer within Chapel Street.

Based on the sanitary analysis included in the **Declan Design Brief**, the controlling section of the local sewer system is located within Rideau Street, east of Chapel Street, with an available residual capacity of **50.1L/s**.

The analysis above indicates that sufficient capacity is available in the local sewers to accommodate the proposed development.

4.3 Wastewater Servicing Conclusions

The site is tributary to the Rideau River Collector sewer; based on the sanitary analysis sufficient capacity is available to accommodate the anticipated **1.90 L/s** peak wet weather flow from the proposed development.

The proposed wastewater design conforms to all relevant *City Standards*.

5.0 STORMWATER MANAGEMENT

5.1 Existing Stormwater Services

Stormwater runoff from the subject property is tributary to the Ottawa River. As such, approvals for proposed development within this area are under the approval authority of the City of Ottawa.

Flows that influence the watershed in which the subject property is located are further reviewed by the principal authority. The subject property is located within the Ottawa River watershed, and is therefore subject to review by the Rideau Valley Conservation Authority (RVCA).

A portion of the subject site's runoff is directed to existing catch basins and assumed to discharge to surrounding municipal sewers. The remainder of the site is directed off-site via overland flow to adjacent properties and the municipal right-of-ways.

Two existing 250mm diameter storm sewers have been extended to the limit of the site during the reconstruction and separation of the Rideau Street combined sewer system.

It is appears that the existing site has no stormwater management controls. Predevelopment runoff rates were generated assuming the original asphalt prior to the landowner converting the lands to park space.

The estimated pre-development peak flows for the 2, 5, and 100-year are summarized in *Table 5*:

Table 5
Summary of Existing Peak Storm Flow Rates

City of Ottawa Design Storm	Estimated Peak Flow Rate (L/s)	
2-year	11.7	
5-year	15.9	
100-year	34.0	

5.2 Post-development Stormwater Management Target

Stormwater management requirements for the proposed development were reviewed with the City of Ottawa, see correspondence in *Appendix A*, where the proposed development is required to:

Control to an allowable release rate based on a Rational Method Coefficient of 0.50, employing the City of Ottawa IDF parameters for a 5-year storm with a calculated time of concentration no less than 10 minutes:

- Attenuate all storms up to and including the City of Ottawa 100-year design event are to be attenuated on site;
- The proposed development does not contemplate surface parking, therefore, quality controls are not required, see correspondence with RVCA in *Appendix A*

Based on the above the allowable release rate for the proposed development is 19.8 L/s.

5.3 Proposed Stormwater Management System

It is proposed to re-use the existing 250mm diameter storm sewer, stubbed at the edge of the site. The existing storm sewers discharge to the existing 375mm diameter storm sewer within Rideau Street. The storm sewer to be used will be selected by the mechanical engineer, based on the internal mechanical layout.

In order to achieve the allowable post-development stormwater runoff release rate identified in *Section 5.2* above, the proposed development will employ flow attenuation using cistern storage. It is proposed to pump stormwater to the allowable release rate form the stormwater storage to the existing 250mm diameter storm sewer stubbed at the property.

Table 6 presents the estimated release rates, storage requirements and available storage for the proposed development.

Table 6
Stormwater Flow Rate Summary

,					
Control Area	5-Year	5-Year	100-Year	100-Year	
	Release Rate	Storage	Release Rate	Storage	
	(L/s)	(m ³)	(L/s)	(m³)	
Unattenuated Areas	4.2	0.0	8.9	0.0	
Attenuated Areas	5.7	18.5	10.9	35.6	
Total	9.9	18.5	19.8	35.6	

As indicated in *Table 6* it is anticipated that *35.6 m*³ of onsite storage will be required to attenuate stormwater runoff to the allowable release rate of *19.8 L/s*. The proposed drainage boundaries and overland flow routes are illustrated by *SWM-1* included with this report.

As discussed in **Section 5.2**, the proposed development does not proposed surface parking, therefore, stormwater quality controls are not required, as per correspondence with the RVCA in **Appendix A**.

5.4 Stormwater Servicing Conclusions

Post development stormwater runoff will be attenuated onsite for storm events up to and including the 1:100 year in accordance with *City Standards*. *35.6 m*³ of onsite storage will be required to attenuate stormwater runoff to the site's allowable release rate.

No on-site quality controls are required as the proposed site plan does not consider any surface parking spaces.

The design of the proposed storm sewer system conforms to all relevant *City Standards*.

FUNCTIONAL SERVICING AND STORMWATER MANAGEMENT REPORT RICHCRAFT GROUP OF COMPANIES APRIL 2016 – REV 1 590 RIDEAU STREET

6.0 UTILITIES

Gas, Bell and Hydro services currently exist within the Rideau Street and Besserer Street right-of-ways. Utility servicing will be coordinated with the individual utility companies prior to site development.

7.0 EROSION AND SEDIMENT CONTROL

Soil erosion occurs naturally and is a function of soil type, climate and topography. The extent of erosion losses is exaggerated during construction where vegetation has been removed and the top layer of soil becomes agitated.

Prior to topsoil stripping, earthworks or underground construction, erosion and sediment controls will be implemented and will be maintained throughout construction.

Silt fence will be installed around the perimeter of the site and will be cleaned and maintained throughout construction. Silt fence will remain in place until the working areas have been stabilized and re-vegetated.

Catch basins will have filter fabric installed under the grate during construction to protect from silt entering the storm sewer system.

A mud mat will be installed at the construction access in order to prevent mud tracking onto adjacent roads.

Erosion and sediment controls must be in place during construction. The following recommendations to the contractor will be included in contract documents.

- Limit extent of exposed soils at any given time.
- Re-vegetate exposed areas as soon as possible.
- Minimize the area to be cleared and grubbed.
- Protect exposed slopes with plastic or synthetic mulches.
- Install silt fence to prevent sediment from entering existing ditches.
- No refueling or cleaning of equipment near existing watercourses.
- Provide sediment traps and basins during dewatering.
- Install filter cloth between catch basins and frames.
- Plan construction at proper time to avoid flooding.

Establish material stockpiles away from watercourses, so that barriers and filters may be installed.

The contractor will, at every rainfall, complete inspections and guarantee proper performance. The inspection is to include:

- Verification that water is not flowing under silt barriers.
- Clean and change filter cloth at catch basins.

8.0 CONCLUSION AND RECOMMENDATIONS

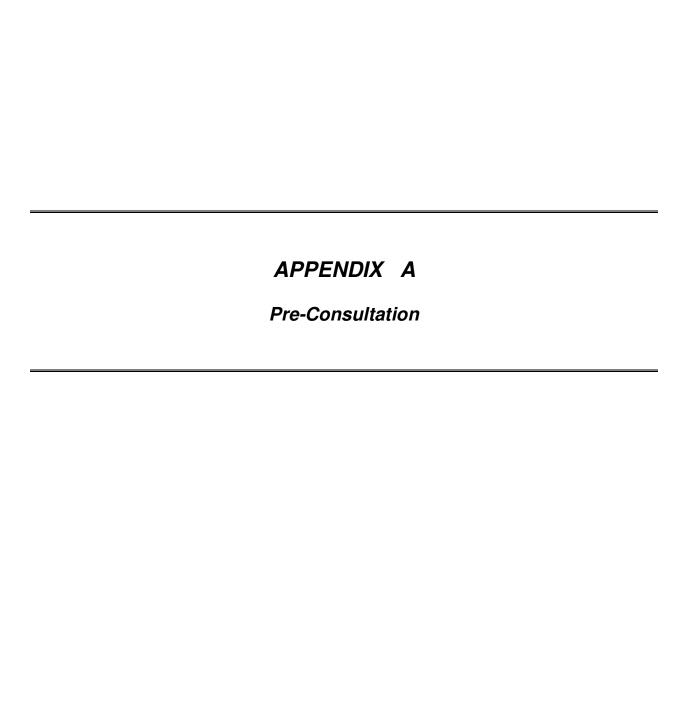
David Schaeffer Engineering Ltd. (DSEL) has been retained to prepare an Assessment of Adequacy of Public Services report in support of the application for a Zoning By-law Amendment (ZBLA) and Site Plan Control (SPC) at 590 Rideau Street. The preceding report outlines the following:

- Based on boundary conditions provided by the City the existing municipal water infrastructure is capable of providing the proposed development with water within the City's required pressure range;
- A pressure check be conducted at the completion of construction to determine if pressure controls are required;
- The FUS method for estimating fire flow indicated approximately *5,000 L/min* is required for the proposed development;
- The proposed development is anticipated to have a peak wet weather flow of **1.90** L/s; Based on the sanitary analysis conducted the existing municipal sewer infrastructure has sufficient capacity to support the development;
- Based on pre-consultation with the City of Ottawa, stormwater quantity controls are required to attenuate peak flow to 19.8 L/s;
- It is proposed that stormwater objectives will be met through storm water retention via subsurface storage, it is anticipated that **35.6** m^3 of onsite storage will be required to attenuate flow to the established release rate above;
- The development does not contemplate any surface parking, therefore, quality controls are not required.

Prepared by,

David Schaeffer Engineering Ltd.

Reviewed by,


David Schaeffer Engineering Ltd.

Per: Steve L. Merrick, EIT.

Per: Adam D. Fobert, P.Eng

ST PROFESSIONAL FILE

A. D. FOBER 100090626

DEVELOPMENT SERVICING STUDY CHECKLIST

15-849 20/04/2016

<i>A</i> 1	General Content	
	Executive Summary (for larger reports only).	N/A
\boxtimes	Date and revision number of the report.	Report Cover Sheet
	Location map and plan showing municipal address, boundary, and layout of	Drawings/Figures
	proposed development.	
\boxtimes	Plan showing the site and location of all existing services.	Figure 1
\boxtimes	Development statistics, land use, density, adherence to zoning and official plan, and reference to applicable subwatershed and watershed plans that provide context to applicable subwatershed and watershed plans that provide context to which individual developments must adhere.	Section 1.0
\boxtimes	Summary of Pre-consultation Meetings with City and other approval agencies.	Section 1.3
\boxtimes	Reference and confirm conformance to higher level studies and reports (Master Servicing Studies, Environmental Assessments, Community Design Plans), or in the case where it is not in conformance, the proponent must provide justification and develop a defendable design criteria.	Section 2.1
\boxtimes	Statement of objectives and servicing criteria.	Section 1.0
\boxtimes	Identification of existing and proposed infrastructure available in the immediate area.	Sections 3.1, 4.1, 5.1
	Identification of Environmentally Significant Areas, watercourses and Municipal Drains potentially impacted by the proposed development (Reference can be made to the Natural Heritage Studies, if available).	N/A
\boxtimes	Concept level master grading plan to confirm existing and proposed grades in the development. This is required to confirm the feasibility of proposed stormwater management and drainage, soil removal and fill constraints, and potential impacts to neighbouring properties. This is also required to confirm that the proposed grading will not impede existing major system flow paths.	GP-1
	Identification of potential impacts of proposed piped services on private services (such as wells and septic fields on adjacent lands) and mitigation required to address potential impacts.	N/A
	Proposed phasing of the development, if applicable.	N/A
\boxtimes	Reference to geotechnical studies and recommendations concerning servicing.	Section 1.4
	All preliminary and formal site plan submissions should have the following information: -Metric scale -North arrow (including construction North) -Key plan -Name and contact information of applicant and property owner -Property limits including bearings and dimensions -Existing and proposed structures and parking areas -Easements, road widening and rights-of-way -Adjacent street names	SSP-1
4.2	Development Servicing Report: Water	
	Confirm consistency with Master Servicing Study, if available	N/A

4.2	4.2 Development Servicing Report: Water						
	Confirm consistency with Master Servicing Study, if available	N/A					
\boxtimes	Availability of public infrastructure to service proposed development	Section 3.1					
\boxtimes	Identification of system constraints	Section 3.1					
\boxtimes	Identify boundary conditions	Section 3.1, 3.2					
\boxtimes	Confirmation of adequate domestic supply and pressure	Section 3.3					

DSEL®

\boxtimes	Confirmation of adequate fire flow protection and confirmation that fire flow is calculated as per the Fire Underwriter's Survey. Output should show available fire flow at locations throughout the development.	Section 3.2
	Provide a check of high pressures. If pressure is found to be high, an assessment is required to confirm the application of pressure reducing valves.	N/A
	Definition of phasing constraints. Hydraulic modeling is required to confirm servicing for all defined phases of the project including the ultimate design	N/A
	Address reliability requirements such as appropriate location of shut-off valves	N/A
	Check on the necessity of a pressure zone boundary modification	N/A
\boxtimes	Reference to water supply analysis to show that major infrastructure is capable of delivering sufficient water for the proposed land use. This includes data that shows that the expected demands under average day, peak hour and fire flow conditions provide water within the required pressure range	Section 3.2, 3.3
	Description of the proposed water distribution network, including locations of proposed connections to the existing system, provisions for necessary looping, and appurtenances (valves, pressure reducing valves, valve chambers, and fire hydrants) including special metering provisions.	N/A
	Description of off-site required feedermains, booster pumping stations, and other water infrastructure that will be ultimately required to service proposed development, including financing, interim facilities, and timing of implementation.	N/A
\boxtimes	Confirmation that water demands are calculated based on the City of Ottawa Design Guidelines.	Section 3.2
	Provision of a model schematic showing the boundary conditions locations, streets, parcels, and building locations for reference.	N/A
4.3	Development Servicing Report: Wastewater	
	Summary of proposed design criteria (Note: Wet-weather flow criteria should	
\boxtimes	not deviate from the City of Ottawa Sewer Design Guidelines. Monitored flow data from relatively new infrastructure cannot be used to justify capacity	Section 4.2
	not deviate from the City of Ottawa Sewer Design Guidelines. Monitored flow	Section 4.2 N/A
	not deviate from the City of Ottawa Sewer Design Guidelines. Monitored flow data from relatively new infrastructure cannot be used to justify capacity requirements for proposed infrastructure). Confirm consistency with Master Servicing Study and/or justifications for	
	not deviate from the City of Ottawa Sewer Design Guidelines. Monitored flow data from relatively new infrastructure cannot be used to justify capacity requirements for proposed infrastructure). Confirm consistency with Master Servicing Study and/or justifications for deviations. Consideration of local conditions that may contribute to extraneous flows that are higher than the recommended flows in the guidelines. This includes groundwater and soil conditions, and age and condition of sewers. Description of existing sanitary sewer available for discharge of wastewater from proposed development.	N/A
	not deviate from the City of Ottawa Sewer Design Guidelines. Monitored flow data from relatively new infrastructure cannot be used to justify capacity requirements for proposed infrastructure). Confirm consistency with Master Servicing Study and/or justifications for deviations. Consideration of local conditions that may contribute to extraneous flows that are higher than the recommended flows in the guidelines. This includes groundwater and soil conditions, and age and condition of sewers. Description of existing sanitary sewer available for discharge of wastewater from proposed development. Verify available capacity in downstream sanitary sewer and/or identification of upgrades necessary to service the proposed development. (Reference can be made to	N/A N/A
	not deviate from the City of Ottawa Sewer Design Guidelines. Monitored flow data from relatively new infrastructure cannot be used to justify capacity requirements for proposed infrastructure). Confirm consistency with Master Servicing Study and/or justifications for deviations. Consideration of local conditions that may contribute to extraneous flows that are higher than the recommended flows in the guidelines. This includes groundwater and soil conditions, and age and condition of sewers. Description of existing sanitary sewer available for discharge of wastewater from proposed development. Verify available capacity in downstream sanitary sewer and/or identification of upgrades necessary to service the proposed development. (Reference can be made to previously completed Master Servicing Study if applicable) Calculations related to dry-weather and wet-weather flow rates from the	N/A N/A Section 4.1 Section 4.2
	not deviate from the City of Ottawa Sewer Design Guidelines. Monitored flow data from relatively new infrastructure cannot be used to justify capacity requirements for proposed infrastructure). Confirm consistency with Master Servicing Study and/or justifications for deviations. Consideration of local conditions that may contribute to extraneous flows that are higher than the recommended flows in the guidelines. This includes groundwater and soil conditions, and age and condition of sewers. Description of existing sanitary sewer available for discharge of wastewater from proposed development. Verify available capacity in downstream sanitary sewer and/or identification of upgrades necessary to service the proposed development. (Reference can be made to previously completed Master Servicing Study if applicable)	N/A N/A Section 4.1 Section 4.2 Section 4.2, Appendix C
	not deviate from the City of Ottawa Sewer Design Guidelines. Monitored flow data from relatively new infrastructure cannot be used to justify capacity requirements for proposed infrastructure). Confirm consistency with Master Servicing Study and/or justifications for deviations. Consideration of local conditions that may contribute to extraneous flows that are higher than the recommended flows in the guidelines. This includes groundwater and soil conditions, and age and condition of sewers. Description of existing sanitary sewer available for discharge of wastewater from proposed development. Verify available capacity in downstream sanitary sewer and/or identification of upgrades necessary to service the proposed development. (Reference can be made to previously completed Master Servicing Study if applicable) Calculations related to dry-weather and wet-weather flow rates from the development in standard MOE sanitary sewer design table (Appendix 'C') format.	N/A N/A Section 4.1 Section 4.2
	not deviate from the City of Ottawa Sewer Design Guidelines. Monitored flow data from relatively new infrastructure cannot be used to justify capacity requirements for proposed infrastructure). Confirm consistency with Master Servicing Study and/or justifications for deviations. Consideration of local conditions that may contribute to extraneous flows that are higher than the recommended flows in the guidelines. This includes groundwater and soil conditions, and age and condition of sewers. Description of existing sanitary sewer available for discharge of wastewater from proposed development. Verify available capacity in downstream sanitary sewer and/or identification of upgrades necessary to service the proposed development. (Reference can be made to previously completed Master Servicing Study if applicable) Calculations related to dry-weather and wet-weather flow rates from the development in standard MOE sanitary sewer design table (Appendix 'C') format. Description of proposed sewer network including sewers, pumping stations, and	N/A N/A Section 4.1 Section 4.2 Section 4.2, Appendix C

ii DSEL©

Pumni		
I	ng stations: impacts of proposed development on existing pumping is or requirements for new pumping station to service development.	N/A
Forcen	nain capacity in terms of operational redundancy, surge pressure and	N/A
	um flow velocity.	<u>'</u>
	ication and implementation of the emergency overflow from sanitary	N1/A
	ng stations in relation to the hydraulic grade line to protect against	N/A
	ent flooding. I considerations such as contamination, corrosive environment etc.	N/A
4.4 Devel	opment Servicing Report: Stormwater Checklist	
Descri	otion of drainage outlets and downstream constraints including legality of	Continu F 1
outlets	(i.e. municipal drain, right-of-way, watercourse, or private property)	Section 5.1
	is of available capacity in existing public infrastructure.	Section 5.1, Appendix D
A draw	ring showing the subject lands, its surroundings, the receiving	Drawings /Figures
watero	course, existing drainage patterns, and proposed drainage pattern.	Drawings/Figures
Water	quantity control objective (e.g. controlling post-development peak flows	
to pre-	development level for storm events ranging from the 2 or 5 year event	
deper (deper	ident on the receiving sewer design) to 100 year return period); if other	Continu F 2
objecti	ives are being applied, a rationale must be included with reference to	Section 5.2
hydrol	ogic analyses of the potentially affected subwatersheds, taking into	
	nt long-term cumulative effects.	
Water	Quality control objective (basic, normal or enhanced level of protection	
	on the sensitivities of the receiving watercourse) and storage	Section 5.2
	ements.	
Descri	otion of the stormwater management concept with facility locations and	
-	otions with references and supporting information	Section 5.3
	ck from private sewage disposal systems.	N/A
	course and hazard lands setbacks.	N/A
	I of pre-consultation with the Ontario Ministry of Environment and the	NA
	rvation Authority that has jurisdiction on the affected watershed.	Appendix A
	n consistency with sub-watershed and Master Servicing Study, if	
	able study exists.	N/A
	e requirements (complete with calculations) and conveyance capacity for	
_		Costion F 2
	events (1:5 year return period) and major events (1:100 year return	Section 5.3
period		
	ication of watercourses within the proposed development and how	N1/A
	courses will be protected, or, if necessary, altered by the proposed	N/A
	pment with applicable approvals.	
	ate pre and post development peak flow rates including a description of	
	g site conditions and proposed impervious areas and drainage	Section 5.1, 5.3
	nents in comparison to existing conditions.	
	oposed diversion of drainage catchment areas from one outlet to	N/A
anothe		
	sed minor and major systems including locations and sizes of stormwater	N/A
trunk	sewers, and stormwater management facilities.	
	itity control is not proposed, demonstration that downstream system has	
If quar		
If quar	ate capacity for the post-development flows up to and including the 100-	N/A
If quar adequa year re	ate capacity for the post-development flows up to and including the 100- eturn period storm event.	N/A
If quar adequa year re	ate capacity for the post-development flows up to and including the 100-	N/A

DSEL© iii

\boxtimes	Descriptions of how the conveyance and storage capacity will be achieved for the development.	Section 5.3
	100 year flood levels and major flow routing to protect proposed development from flooding for establishing minimum building elevations (MBE) and overall grading.	N/A
	Inclusion of hydraulic analysis including hydraulic grade line elevations.	N/A
	Description of approach to erosion and sediment control during construction for the protection of receiving watercourse or drainage corridors.	Section 6.0
	Identification of floodplains – proponent to obtain relevant floodplain information from the appropriate Conservation Authority. The proponent may be required to delineate floodplain elevations to the satisfaction of the Conservation Authority if such information is not available or if information does not match current conditions.	N/A
	Identification of fill constraints related to floodplain and geotechnical investigation.	N/A
4.5	Approval and Permit Requirements: Checklist	
\boxtimes	Conservation Authority as the designated approval agency for modification of floodplain, potential impact on fish habitat, proposed works in or adjacent to a watercourse, cut/fill permits and Approval under Lakes and Rivers Improvement Act. The Conservation Authority is not the approval authority for the Lakes and Rivers Improvement ct. Where there are Conservation Authority regulations in place, approval under the Lakes and Rivers Improvement Act is not required, except in cases of dams as defined in the Act.	Section 1.2
	Application for Certificate of Approval (CofA) under the Ontario Water Resources Act.	N/A
	Changes to Municipal Drains.	N/A
	Other permits (National Capital Commission, Parks Canada, Public Works and Government Services Canada, Ministry of Transportation etc.)	N/A
4.6	Conclusion Checklist	
\boxtimes	Clearly stated conclusions and recommendations	Section 8.0
	Comments received from review agencies including the City of Ottawa and information on how the comments were addressed. Final sign-off from the responsible reviewing agency.	
	All draft and final reports shall be signed and stamped by a professional Engineer registered in Ontario	

iv DSEL©

Steve Merrick

From: White, Joshua < Joshua.White@ottawa.ca>

Sent: March-01-16 1:43 PM

To: 'Steve Merrick'

Subject: RE: 590 Rideau - Engineering Pre-consultation

Hi Steve,

I can confirm that the below is correct and meets the Cities requirements for the site.

Joshua White, P.Eng.
Project Manager, Infrastructure Approvals
Development Review, Urban Services, City of Ottawa
Please consider the environment before printing this e-mail.

City of Ottawa | Ville d'Ottawa 613.580.2424 ext./poste 15843 Email: joshua.white@ottawa.ca

ottawa.ca/planning / ottawa.ca/urbanisme

From: Steve Merrick [mailto:smerrick@dsel.ca] **Sent:** Tuesday, March 01, 2016 1:26 PM

To: White, Joshua

Subject: 590 Rideau - Engineering Pre-consultation

Hi Josh,

I believe that you have already been through the pre-consultation process on the above noted project, we just wanted to confirm some of the requirements for the site. I understand that even though the current site is a city park and landscaped that the allowable release rate will be based on the previous land use (100% impervious) and therefore runoff coefficient of 0.50 is acceptable.

We hope you can confirm the criteria for determining the allowable release rate (0.50 RC, calculated Tc, 5-year storm) and confirm if the City has a preferred sanitary outlet (Rideau or Charlotte).

We will be sending over a boundary condition request in the near future.

Steve Merrick, EIT.
Project Coordinator / Junior Designer

DSEL

david schaeffer engineering ltd.

120 Iber Road, Unit 103 Stittsville, ON K2S 1E9

phone: (613) 836-0856 ext. 561

cell: (613) 222-7816 email: smerrick@DSEL.ca

This email, including any attachments, is for the sole use of the intended recipient(s) and may contain private, confidential, and privileged information. Any unauthorized review, use, disclosure, or distribution is prohibited. If you are not the intended recipient, or if this information has been inappropriately forwarded to you, please contact the sender by reply email and destroy all copies of the original.

This e-mail originates from the City of Ottawa e-mail system. Any distribution, use or copying of this e-mail or the information it contains by other than the intended recipient(s) is unauthorized. Thank you.

Le présent courriel a été expédié par le système de courriels de la Ville d'Ottawa. Toute distribution, utilisation ou reproduction du courriel ou des renseignements qui s'y trouvent par une personne autre que son destinataire prévu est interdite. Je vous remercie de votre collaboration.

Steve Merrick

From: Jocelyn Chandler < jocelyn.chandler@rvca.ca>

Sent: April-20-16 9:58 AM
To: Steve Merrick

Subject: RVCA RE: 590 Rideau St - Quality Control Requirements

Hello Steve,

Based on the information you have provided, the development appears to have limited hard surfaces for parking or drive aisles. For the purpose of surface water quality protection, roof top runoff is deemed clean. The RVCA will not be advising that additional quality controls are required on-site provided the site plan reflects the above described condition. Jocelyn.

Jocelyn Chandler M.Pl. MCIP, RPP Planner, RVCA

t) 613-692-3571 x1137

f) 613-692-0831

jocelyn.chandler@rvca.ca

www.rvca.ca

mail: Box 599 3889 Rideau Valley Dr., Manotick, ON K4M 1A5

courier: 3889 Rideau Valley Dr., Nepean, ON K2C 3H1

This message may contain information that is privileged or confidential and is intended for the use of the individual(s) or entity named above. This material may contain confidential or personal information which may be subject to the provisions of the Municipal Freedom of Information & Protection of Privacy Act. If you are not the intended recipient of this email, any use, review, revision, retransmission, distribution, dissemination, copying, printing or otherwise use of, or taking any action in reliance upon this email, is strictly prohibited. If you have received this email in error, please contact the sender and delete the original and any copy of the email and any print out thereof, immediately. Your cooperation is appreciated.

From: Steve Merrick [mailto:smerrick@dsel.ca]

Sent: Tuesday, April 19, 2016 3:22 PM

To: Jocelyn Chandler < jocelyn.chandler@rvca.ca> **Subject:** 590 Rideau St - Quality Control Requirements

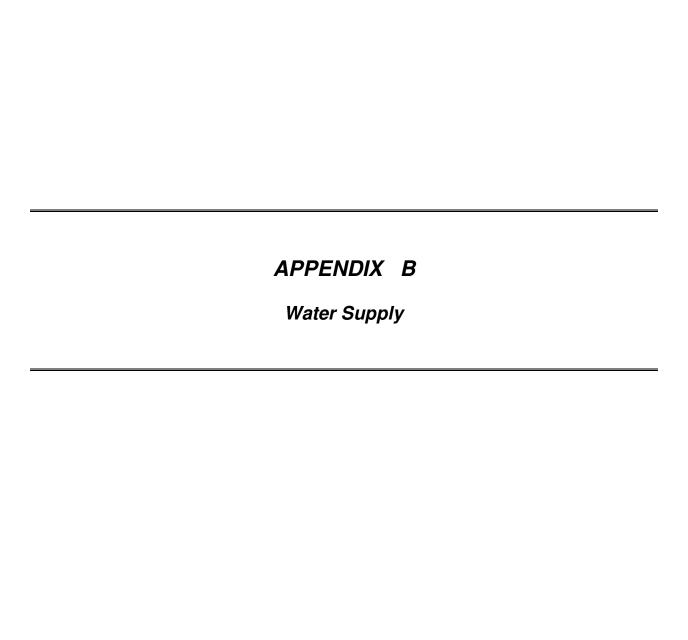
Hi Jocelyn,

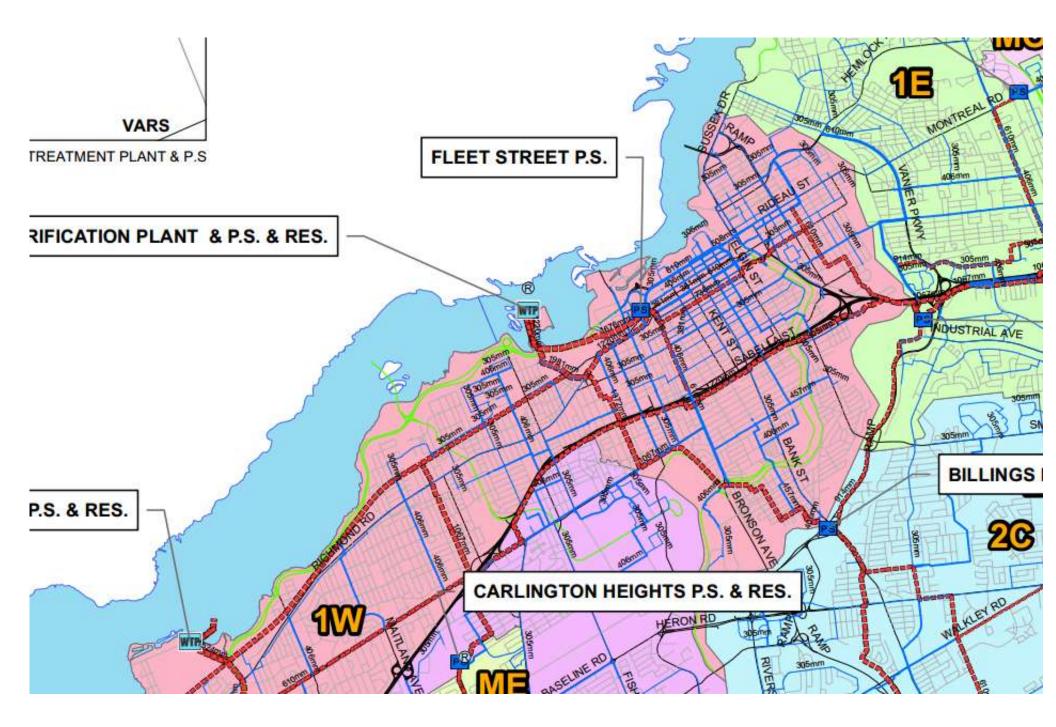
We have been retained to provide our services for a development located at 590 Rideau Street. The proposed development will include a 7 storey residential building with associated underground parking, see attached site plan. The building footprint takes up the majority of the site, flow attenuation is provided by an internal cistern. The storm is directed to a newly separated storm sewer within Rideau and based on best available information, travels approx. 2.5km prior to discharging to the Ottawa River, see sketch below.

We would like to confirm the quality control requirement for the above noted site.

Thanks,

Steve Merrick, EIT.
Project Coordinator / Junior Designer


DSEL


david schaeffer engineering ltd.

120 Iber Road, Unit 103 Stittsville, ON K2S 1E9

phone: (613) 836-0856 ext. 561 **cell**: (613) 222-7816 **email**: smerrick@DSEL.ca

This email, including any attachments, is for the sole use of the intended recipient(s) and may contain private, confidential, and privileged information. Any unauthorized review, use, disclosure, or distribution is prohibited. If you are not the intended recipient, or if this information has been inappropriately forwarded to you, please contact the sender by reply email and destroy all copies of the original.

Steve Merrick

From: White, Joshua <Joshua.White@ottawa.ca>

Sent: March-15-16 2:22 PM

To: 'Steve Merrick'

Subject: FW: 590 Rideau St - Water Boundary Condition

Attachments: 590 Rideau MArch 2016.pdf

Hi Steve,

Please find below the boundary conditions for 590 Rideau St.

Josh

****The following information may be passed on to the consultant, but do NOT forward this e-mail directly.****

The following are boundary conditions, HGL, for hydraulic analysis at 590 Rideau (zone 1W) assumed to be connected to the 305mm on Rideau (see attached PDF for location).

Minimum HGL = 105.5m

Maximum HGL = 118.0m

Available Flow = 675 L/s assuming a residual of 20 psi and a ground elevation of 71.5m

These are for current conditions and are based on computer model simulation.

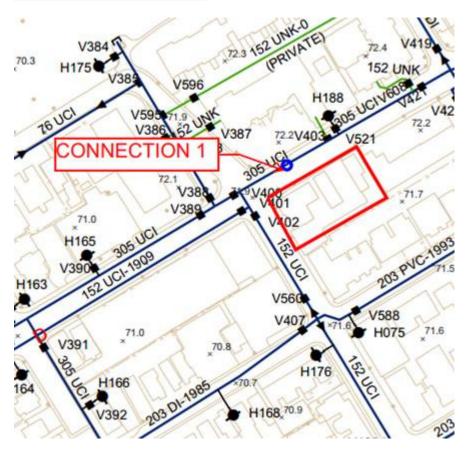
Disclaimer: The boundary condition information is based on current operation of the city water distribution system. The computer model simulation is based on the best information available at the time. The operation of the water distribution system can change on a regular basis, resulting in a variation in boundary conditions. The physical properties of watermains deteriorate over time, as such must be assumed in the absence of actual field test data. The variation in physical watermain properties can therefore alter the results of the computer model simulation.

From: Steve Merrick [mailto:smerrick@dsel.ca]
Sent: Tuesday, March 01, 2016 5:07 PM

To: White, Joshua

Subject: 590 Rideau St - Water Boundary Condition

Hi Josh


We would like to request boundary conditions for the contemplated development of 590 Rideau Street. The proposed development will consist of a 7 storey building totaling 68 residential units. It is proposed to provide a 150mm service connection to the existing 305mm watermain within Rideau Street, see attached sketch.

We hope that you can provide the maximum flow from the existing connection point at a minimum pressure of 140 kPa (20 PSI) as we do not have sufficient building information to provide an estimate of fire flow based on the FUS at this

time. Once information is available we will calculate fire flow as per the FUS and compare to the provided maximum flow rate.

The anticipated water demands are summarized below:

	L/min	L/s
Avg. Daily	27.6	0.46
Max Day	133.1	2.22
Peak Hour	201.3	3.35

Steve Merrick, EIT.
Project Coordinator / Junior Designer

DSEL

david schaeffer engineering ltd.

120 Iber Road, Unit 103 Stittsville, ON K2S 1E9

phone: (613) 836-0856 ext. 561

cell: (613) 222-7816 email: smerrick@DSEL.ca

This email, including any attachments, is for the sole use of the intended recipient(s) and may contain private, confidential, and privileged information. Any unauthorized review, use, disclosure, or distribution is prohibited. If you are not the intended recipient, or if this information has been inappropriately forwarded to you, please contact the sender by reply email and destroy all copies of the original.

This e-mail originates from the City of Ottawa e-mail system. Any distribution, use or copying of this e-mail or the information it contains by other than the intended recipient(s) is unauthorized. Thank you.

Le présent courriel a été expédié par le système de courriels de la Ville d'Ottawa. Toute distribution, utilisation ou reproduction du courriel ou des renseignements qui s'y trouvent par une personne autre que son destinataire prévu est interdite. Je vous remercie de votre collaboration.

Water Demand Design Flows per Unit Count City of Ottawa - Water Distribution Guidelines, July 2010

Domestic Demand

Type of Housing	Per / Unit	Units	Pop
Single Family	3.4		0
Semi-detached	2.7		0
Townhouse	2.7		0
Apartment			0
Bachelor	1.4	10	14
1 Bedroom	1.4	37	52
2 Bedroom	2.1	21	45
3 Bedroom	3.1		0
Average	1.8		0

	Pop	Avg. Daily		Max Day		Peak Hour	
		m³/d	L/min	m³/d	L/min	m³/d	L/min
Total Domestic Demand	111	38.9	27.0	190.4	132.2	287.5	199.6

Institutional / Commercial / Industrial Demand

			Avg. D	Daily	Max	Day	Peak I	lour
Property Type	Unit Rate	Units	m³/d	L/min	m³/d	L/min	m³/d	L/min
Commercial floor space	2.5 L/m ² /d	347	0.87	0.6	1.3	0.9	2.3	1.6
Office	75 L/9.3m²/d		0.00	0.0	0.0	0.0	0.0	0.0
Industrial - Light	35,000 L/gross ha/d		0.00	0.0	0.0	0.0	0.0	0.0
Industrial - Heavy	55,000 L/gross ha/d		0.00	0.0	0.0	0.0	0.0	0.0
	Total I/C	I Demand	0.9	0.6	1.3	0.9	2.3	1.6
	Tota	I Demand	39.7	27.6	191.7	133.1	289.8	201.3

Richcraft Group of Companies 590 Rideau Street FUS-Fire Flow Demand

Fire Flow Estimation per Fire Underwriters Survey

Water Supply For Public Fire Protection - 1999

Fire Flow Required

1. Base Requirement

 $F=220C\sqrt{A}$ L/min Where **F** is the fire flow, **C** is the Type of construction and **A** is the Total floor area

Type of Construction: Fire-Resistive Construction

C 0.6 Type of Construction Coefficient per FUS Part II, Section 1
 A 1233.3 m² Total floor area based on FUS Part II section 1

Fire Flow 4635.6 L/min

5000.0 L/min rounded to the nearest 1,000 L/min

Adjustments

2. Reduction for Occupancy Type

Limited Combustible -15%

Fire Flow 4250.0 L/min

3. Reduction for Sprinkler Protection

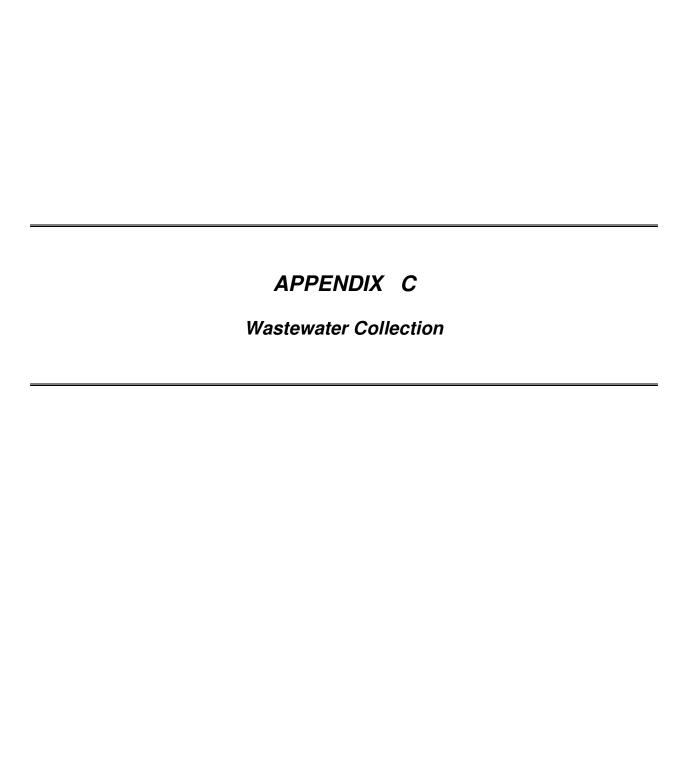
Sprinklered -50%

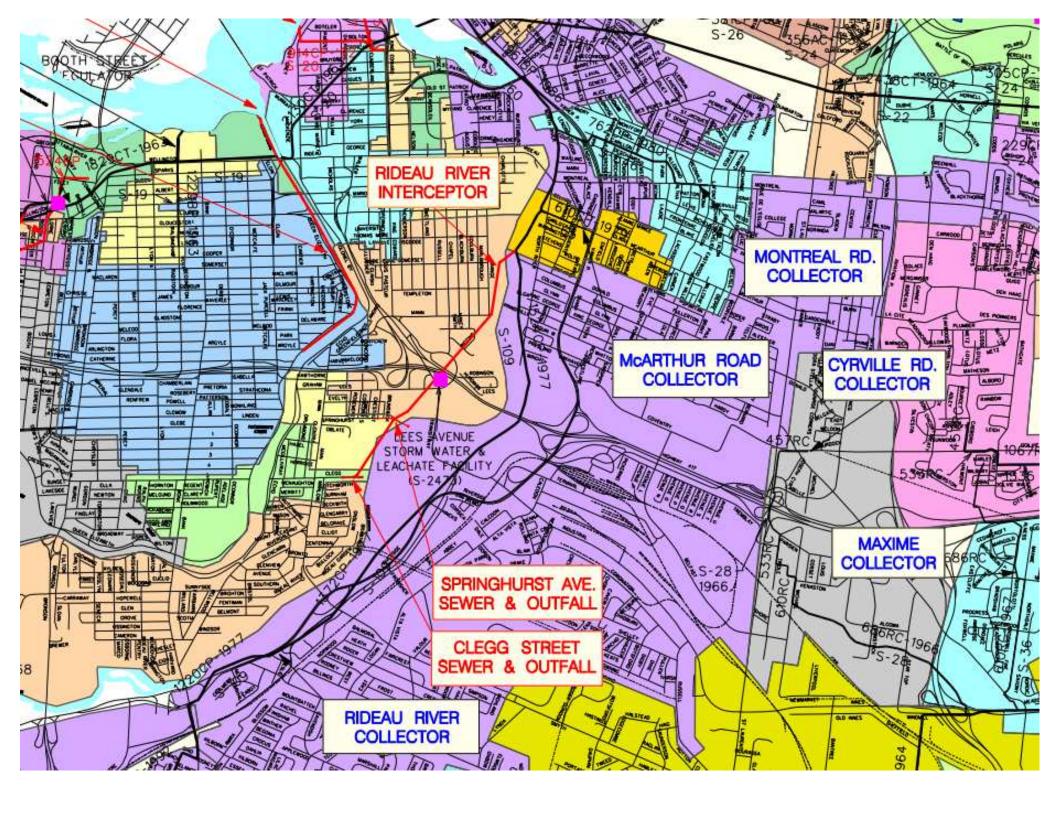
Reduction -2125 L/min

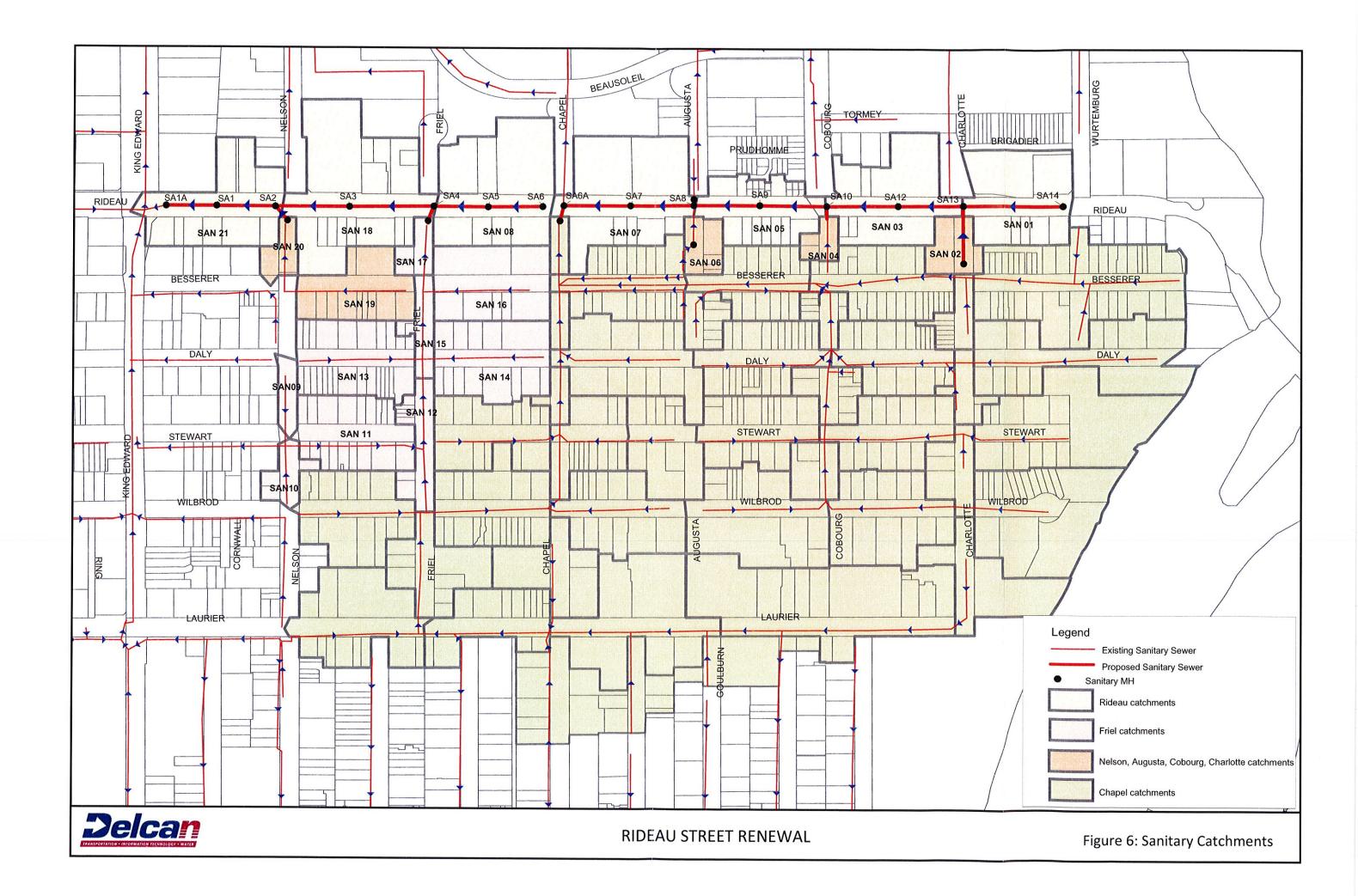
4. Increase for Separation Distance

N 20.1m-30m 10% S 3.1m-10m 20% E 0m-3m 25% W 20.1m-30m 10% % Increase 65%

65% value not to exceed 75% per FUS Part II, Section 4


Increase 2762.5 L/min


Total Fire Flow


Fire Flow 4887.5 L/min		fire flow not to exceed 45,000 L/min nor be less than 2,000 L/min per FUS Section 4
	5000.0 L/min	rounded to the nearest 1,000 L/min

Notes:

- -Type of construction, Occupancy Type and Sprinkler Protection information provided by Graziani & Corazza Architects
- -Calculations based on Fire Underwriters Survey Part II

 $\frac{\textbf{Formulas}}{Q(d)=Q(p)+Q(c)+Q(l)} \quad \text{(L/s)}$

SANITARY SEWER DESIGN SHEET

RIDEAU STREET - KING EDWARD AVENUE to WURTEMBURG STREET & CHARLOTTE STREET - RIDEAU STREET to BESSERER STREET

Q(d) = Peak Design Flow (L/s) Q(p) = Peak Population Flow (L/s)

Q(c) = Commercial and Institutional Flow (L/s)

Q(I) = Peak Extraneous Flow (L/s)

Q(p)=PQM/86.4 (L/s)

P = Population Q= Average Daily Flow per Capita (Lpcd) M = Peak Factor

Q(I)=IA (L/s)

A = Area (ha)

I = Unit of Peak Extraneous flow (L/s/ha)

M=[1+(14/4+(P/1000)^0.5)]*K (Harmon formula)

K = Correction Factor

Design Flow Rates (based	on monitoring data)	Peaking Factors		
		"K" correction factor (Residential)	0.40	(based on monitoring data)
Residential	300 Lpcd	Commercial/Institutional	1.5	
Commercial (COMM)	17,000 L/ha/day	per perspective de la contractiva del la contractiva del la contractiva de la contractiva de la contractiva de la contractiva del la contractiva de la contractiva del la contractiva d		
Institutional (INST)	10,000 L/ha/day	Residential Densities		
Industrial (INDUS)	10,000 L/ha/day	Туре	Person/Unit	
Extraneous (as per City des	sign guidelines)	Single Family (SF)	3.4	
Infiltration	0.28 L/s/ha	Multi Unit Townhomes (MLT)	2.7	
Foundation	3.00 L/s/ha	Apartment (APT)	1.8	

Mannings n = 0.013
Minimum Velocity (full) = 0.60 m/sec

						RE	ESIDENTIAL	FLOW					INDUSTRIA	L/COMMERCIA	LINSTITUTIO	NAL (ICI) ARE	A FLOW				EXTRA	ANEOUS FL			PEAK DESIGN								
STREET	FROM	то	AREA	UNIT	COUNT			AVERAG			сомм	INDUS	INST		CCUMULATE		AVERAGE		PEAK		ACCUM			PEAK	FLOW			ETER SLO	_	PACITY		LOCITY	
	STREET (MH)	STREET (MH)	ID	SF	APT M	POP LT (person		FLOW s) L/s	FACTOR	R FLOW L/s	AREA ha	AREA ha	AREA ha	ha	INDUS AREA	INST AREA	FLOW L/s	FACTOR	FLOW L/s	AREA ha	AREA ha	INFILT. L/s	FOUND. L/s	FLOW L/s	Q(d) L/s	OF PIPE	(mm) (nom.) (Q (full)	Q(d) /Q((%)	m/sec	actual m/sec	REMARKS
				1 1	7	Li (percon	(person	5, 25		1				,,,,												- · · · ·	()			1			
RIDEAU	WURTEMBURG (SA14)	CHARLOTTE (SA13)	SAN 0	0	115 (0 207	207	0.7	1.6	1.2	0.31	0.00	0.00	0.31	0.00	0.00	0.1	1.50	0.1	1.07	1.07	0.3	3.2	3.5	4.8	PVC	300	305 0.7	84.4	5.63	1.16	0.53	
CHARLOTTE	CHARLOTTE S. (SA33)	RIDEAU (SA13)	SAN 0	0	10 (0 18	18	0.1	1.6	0.1	0.15	0.00	0.00	0.15	0.00	0.00	0.0	1.50	0.0	0.30	0.30	0.1	0.9	1.0	1.1	PVC	250	254 1.0	62.0	1.82	1.22	0.45	NEW SEWER SOUTH (Min Diameter)
																												-				-	
RIDEAU	CHARLOTTE (SA13)	RIDEAU (SA12)	SAN 0	0	216	0 389	614	2.1	1.6	3.3	0.44	0.00	0.00	0.90	0.00	0.00	0.2	1.50	0.3	1.14	2.51	0.7	7.5	8.2	11.8	PVC	300	305 1.6	127.6	9.28	1.75	0.93	
RIDEAU	RIDEAU (SA12)	COBOURG (SA10)					614	2.1	1.6	3.3	3 , , , , , ,			0.90	0.00	0.00	0.2	1.50	0.3	- 201	2.51	0.7	7.5	8.2	11.8	PVC	300	305 1.8	135.3	8.75	1.85	0.98	
	COBOURG South	RIDEAU (SA10)	SAN 0	0	0 1	1 3	3	0.0	1.6	0.0	0.03	0.00	0.00	0.03	0.00	0.00	0.0	1.50	0.0	0.15	0.15	0.0	0.5	0.5	0.5	PVC	250	254 2.5	99.3	0.52	1.96	0.63	CAPTURE EXISTING SEWER SOUTI
RIDEAU	COBOURG (SA10)	RIDEAU (SA9)	SAN 0	0	6 8	8 32	649	2.3	1.6	3.5	0.39	0.00	0.00	1.32	0.00	0.00	0.3	1.50	0.4	0.77	3.43	1.0	10.3	11.3	15.2	PVC	300	305 0.4	70.1	21.64	0.92	0.61	
RIDEAU	RIDEAU (SA9)	AUGUSTA (SA8)			100		649	2.3	1.6	3.5			Mark X	1.32	0.00	0.00	0.3	1.50	0.4		3.43	1.0	10.3	11.3	15.2	PVC	300	305 0.4	69.0	21.99	0.92	0.61	
Y																																	
	AUGUSTA S. (SA38806	RIDEAU (SA8)	SAN 0	1	0 2	2 9	9	0.0	1.6	0.1	0.07	0.00	0.00	0.07	0.00	0.00	0.0	1.50	0.0	0.24	0.24	0.1	0.7	0.8	0.9	PVC	250	254 2.1	89.9	0.95	1.77	0.57	CAPTURE EXISTING SEWER SOUTH
RIDEAU	AUGUSTA (SA8)	RIDEAU (SA7)	SAN 0	0	0 (0 0	658	_	1.6	3.6	0.77	0.00	0.37	2.16	0.00	0.37	0.5	1.50	0.7	1.48	5.15	1.4	15.5	16.9	21.2	PVC	300	305 0.5	71.3	29.67	0.98	0.70	
RIDEAU	RIDEAU (SA7)	CHAPEL (SA6a)					658	2.3	1.6	3.6	4 7 7			2.16	0.00	0.37	0.5	1.50	0.7		5.15	1.4	15.5	16.9	21.2	PVC	300	305 0.5	71.3	29.67	0.98	0.70	MOST
												-																					RESTRIC
CHAPEL	CHAPEL South	RIDEAU (SA6a)	Chapel	S 185	1361 58	87 4,664	4,664	16.2	1.3	21.2	1.05	0.00	1.06	1.05	0.00	1.06	0.3	1.50	0.5	33.59	33.59	9.4	100.8	110.2	131.9	CONC		762 1.9	1626.0				INCENTAL EXIOTIN
	RIDEAU (SA6a)	CHAPEL North (Exist)					5,322			23.8				3.21	0.00	1.43	8.0	1.50	1.2		38.74	10.8		127.1	152.1	CONC	750				4.41		Existing Outlet S SECTION
			- -	_LL	L				_L	-L	L		L=====			L	l ======	L		L====								:== - L==			L		50.1 L/S
																																	CAPACIT
RIDEAU	CHAPEL (SA6)	RIDEAU (SA5)	SAN 0	0	370	0 666	666	2.3	1.6	3.6	0.71	0.00	0.00	0.71	0.00	0.00	0.1	1.50	0.2	1.49	1.49	0.4	4.5	4.9	8.7	PVC	300	305 1.5	123.6	7.05	1.69	0.85	
RIDEAU	RIDEAU (SA5)	FRIEL (SA4)			4		666	2.3	1.6	3.6	1 5 5 5			0.71	0.00	0.00	0.1	1.50	0.2	-	1.49	0.4	4.5	4.9	8.7	PVC	300	305 3.0	174.7	4.99	2.39	1.10	7
	FRIEL South	RIDEAU (SA4)		_	0 (_	0				0.00	0.00	0.00	0.00	0.00	0.00				0.16	0.16												
	FRIEL South		SAN 1		0 1	100					0.00	0.00	0.00	0.00	0.00	0.00				0.23	0.39												
	FRIEL South		SAN 1		14 3		_				0.00	0.00	0.00	0.00	0.00	0.00				0.87	1.26												
	FRIEL South		SAN 1		0 5	5 17					0.04	0.00	0.00	0.04	0.00	0.00				0.40	1.66												
	FRIEL South		SAN 1		6 3	22 198900	2 20/2/2017			-	0.00	0.00	0.00	0.04	0.00	0.00		_		0.95	2.61												
	FRIEL South			0		7 242			_		0.00	0.00	0.00	0.04	0.00	0.00		-		0.98	3.59										_		
	FRIEL South	* * *	20000000	0	200	100	277.000	_		-	0.00	0.00	0.00	0.04	0.00	0.00		-		0.25	3.84												
	FRIEL South		_	0		3 415				Na Salasan	0.00	0.00	0.00	0.04	0.00	0.00				0.95	4.79			TO SUCH T		Name and Address of the Address of t							
	FRIEL South (SA31)	RIDEAU (SA4)	SAN 1	2000	0 (0 0	952		1.5	5.0	0.03	0.00	0.00	0.07	0.00	0.00	0.0		0.0	0.18	4.97	1.4	14.9	16.3	21.4	PVC	- Company	305 3.2			2.47		
RIDEAU	FRIEL (SA4)	RIDEAU (SA3)	SAN 1	0	10 (0 18	10000	-	1.5	8.3	0.97	0.00	0.32	1.75	0.00	0.32	0.4	1.50	0.6	1.87	8.33	2.3		27.3	36.2	PVC	10000	305 3.0	2 2000	32203990	2.39		
RIDEAU	RIDEAU (SA3)	NELSON (SA2)					1636	5.7	1.5	8.3				1.75	0.00	0.32	0.4	1.50	0.6		8.33	2.3	25.0	27.3	36.2	PVC	300	305 1.3	115.0	31.47	1.58	1.15	
,	NELCON C II	DIDEATI (OAO)	CANA		46 6	7 400	400	_	-	+	0.00	0.00	0.00	0.00	0.00	0.00		-		0.70	0.70								+	_	+	+	
	NELSON South	RIDEAU (SA2)			46 2 0 9	_		0.7	1.0	1.1	0.00	0.00	0.00	0.00	0.00	0.00	0.0	1.50	0.0	0.73		0.3	2.0	20	4.1	DVO	300	305 5.8	242.0	1.00	2.00	4.00	CAPTURE EXISTING SEWER SOUTH
DIDEAL	NELSON (SA3)		SAN 2	No. Section 1	0 0	Contract of the Contract of th			1.6	1.1	0.00	0.00	0.00	0.00	0.00	0.00	0.0	- Charles and the Control of the Con	0.0	(E00400000)	0.92	0.3	31.2	3.0	44.1	PVC	The state of the s	200	1 1 1 1 1 1 1 1 1 1		3.33	and the same of the same of	CAPTURE EXISTING SEVER SOUT
RIDEAU	NELSON (SA2)	RIDEAU (SA1) K. EDWARD (Ex. SA1a)	SAN 2	0	0 (0				9.2	0.83	0.00	0.00	2.58	0.00	0.32	0.5	1.50	0.8	1,14	10.39	2.9			44.1	PVC			- Carrier	54.20	1.11		
RIDEAU	RIDEAU (SA1)	K. EDWARD (Ex. SA1a) K. EDWARD (Ex. SA1)	-		-		1829 1829		1.4	9.2				2.58	0.00	0.32	0.5	1.50	0.8		10.39	2.9	31.2	34.1	44.1	PVC		305 0.6 305 0.4			1.11		Existing Outlet Source
	N. EUWARD (Ex. SATa)	N. EDWARD (Ex. SAT)	-	\perp			1029	0.4	1.4	9.2				2.56	0.00	0.32	0.5	1.50	0.8		10.39	2.9	31.2	34.1	44.1	PVC	300	0.4	4 66.9	65.87	0.92	0.85	Existing Outlet Sewer

TABLE 5

Richcraft Group of Companies 590 Rideau Road Proposed Conditions

Wastewater Design Flows per Unit Count City of Ottawa Sewer Design Guidelines, 2012

Site Area 0.137 ha

Extraneous Flow Allowances

Infiltration / Inflow 0.04 L/s

Unit Rate	Units	Pop
3.4		0
2.7		0
2.7		0
2.3		0
1.4	10	14
1.4	37	52
2.1	21	45
3.1		0
1.8		0
	3.4 2.7 2.7 2.3 1.4 1.4 2.1 3.1	3.4 2.7 2.7 2.3 1.4 10 1.4 37 2.1 21 3.1

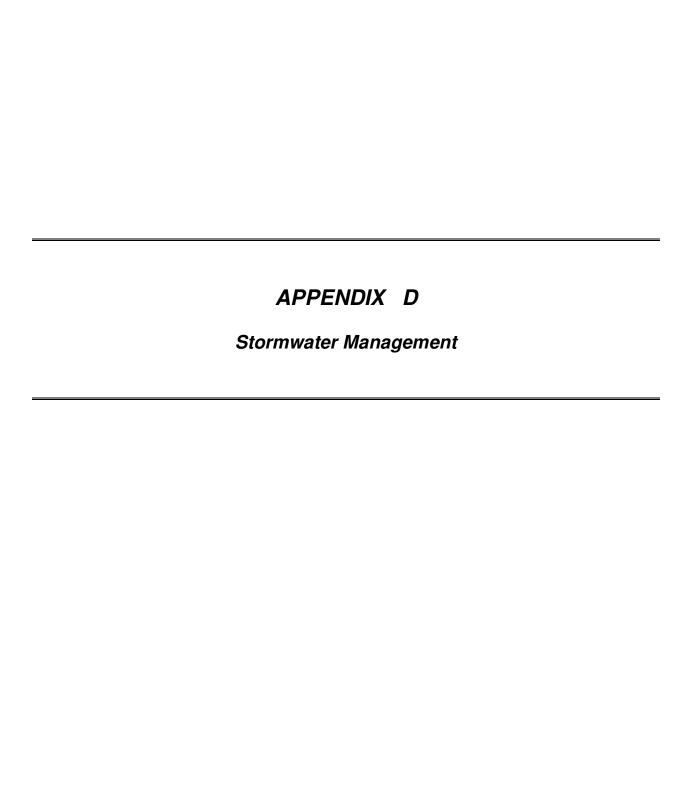
Total Pop 111

Average Domestic Flow 0.45 L/s

Peaking Factor 4.00

Peak Domestic Flow 1.80 L/s

Institutional / Commercial / Industrial Contributions


Unit I	Rate	No. of Units	Avg Wastewater (L/s)
5	L/m ² /d	347	0.04
900	L/bed/d		0.00
70	L/student/d		0.00
35,000	L/gross ha/d		0.00
55,000	L/gross ha/d		0.00
	5 900 70 35,000	5 L/m²/d 900 L/bed/d 70 L/student/d 35,000 L/gross ha/d 55,000 L/gross ha/d	5 L/m²/d 347 900 L/bed/d 70 L/student/d 35,000 L/gross ha/d

Average I/C/I Flow	0.04
Peak Institutional / Commercial Flow	0.06
Peak Industrial Flow**	0.00
Peak I/C/I Flow	0.06

^{*} assuming a 12 hour commercial operation

^{**} peak industrial flow per City of Ottawa Sewer Design Guidelines Appendix 4B

Total Estimated Average Dry Weather Flow Rate	0.49 L/s
Total Estimated Peak Dry Weather Flow Rate	1.86 L/s
Total Estimated Peak Wet Weather Flow Rate	1.90 L/s

Richcraft Group of Companies 590 Rideau Street Existing Conditions

Estimated Peak Stormwater Flow Rate City of Ottawa Sewer Design Guidelines, 2012

Existing Drainage Charateristics From Internal Site

0.1370 ha
0.40 Rational Method runoff coefficient
30 m
72.15 m
71.48 m
2.2 %
10 min

1) Time of Concentration per Federal Aviation Administration

$$t_c = \frac{1.8(1.1 - C)L^{0.5}}{S^{0.333}}$$

tc. in minutes

C, rational method coefficient, (-)

L, length in ft

S, average watershed slope in %

Estimated Peak Flow

	2-year	5-year	100-year	
i	76.8	104.2	178.6	mm/hr
Q	11.7	15.9	34.0	L/s

Richcraft Group of Companies 590 Rideau Street Proposed Site Conditions

Stormwater - Proposed Development City of Ottawa Sewer Design Guidelines, 2012

Target Flow Rate

Area 0.137 ha

C 0.50 Rational Method runoff coefficient

 t_c 10.0 min

5-year

i 104.2 mm/hr **Q** 19.8 L/s

Estimated Post Development Peak Flow from Unattenuated Areas

Total Area

0.02 ha

C 0.80 Rational Method runoff coefficient

		5-year					100-year				
	t _c	i	Q _{actual}	Q _{release}	Q _{stored}	V _{stored}	i	Q _{actual}	Q _{release}	Q _{stored}	V _{stored}
L	(min)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m³)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m³)
ſ	10.0	104.2	4.2	4.2	0.0	0.0	178.6	8.9	8.9	0.0	0.0

Estimated Post Development Peak Flow from Attenuated Areas

BLDG Area 0.093

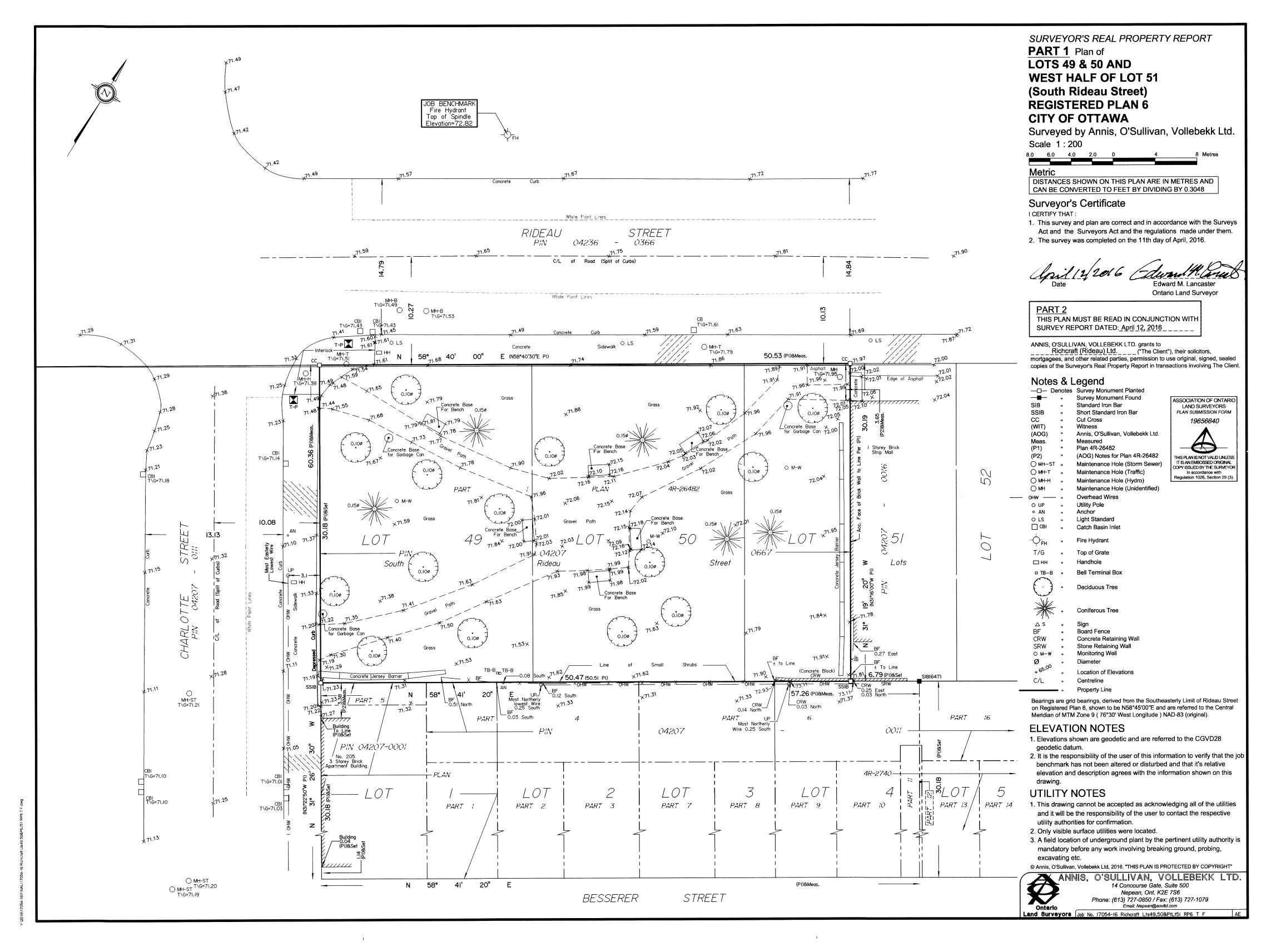
C 0.9

A1 Area 0.027 C 0.85

0.00

Total Area 0.12 ha


0.89 Rational Method runoff coefficient


	5-year					100-year				
t _c	i	Q _{actual}	Q _{release}	Q _{stored}	V_{stored}	i	Q _{actual}	Q _{release}	Q _{stored}	V _{stored}
(min)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m ³)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m³)
10	104.2	30.9	5.7	25.2	15.1	178.6	59.5	10.9	48.6	29.2
15	83.6	24.8	5.7	19.1	17.2	142.9	47.6	10.9	36.7	33.1
20	70.3	20.8	5.7	15.1	18.2	120.0	40.0	10.9	29.1	34.9
25	60.9	18.0	5.7	12.4	18.5	103.8	34.6	10.9	23.7	35.6
30	53.9	16.0	5.7	10.3	18.5	91.9	30.6	10.9	19.7	35.5
35	48.5	14.4	5.7	8.7	18.2	82.6	27.5	10.9	16.6	34.9
40	44.2	13.1	5.7	7.4	17.7	75.1	25.0	10.9	14.2	34.0
45	40.6	12.0	5.7	6.3	17.1	69.1	23.0	10.9	12.1	32.7
50	37.7	11.2	5.7	5.5	16.4	64.0	21.3	10.9	10.4	31.3
55	35.1	10.4	5.7	4.7	15.5	59.6	19.9	10.9	9.0	29.6
60	32.9	9.8	5.7	4.1	14.6	55.9	18.6	10.9	7.7	27.8
65	31.0	9.2	5.7	3.5	13.6	52.6	17.5	10.9	6.7	25.9
70	29.4	8.7	5.7	3.0	12.5	49.8	16.6	10.9	5.7	23.9
75	27.9	8.3	5.7	2.5	11.5	47.3	15.8	10.9	4.9	21.8
80	26.6	7.9	5.7	2.2	10.3	45.0	15.0	10.9	4.1	19.7
85	25.4	7.5	5.7	1.8	9.2	43.0	14.3	10.9	3.4	17.4
90	24.3	7.2	5.7	1.5	8.0	41.1	13.7	10.9	2.8	15.2
95	23.3	6.9	5.7	1.2	6.7	39.4	13.1	10.9	2.2	12.8
100	22.4	6.6	5.7	0.9	5.5	37.9	12.6	10.9	1.7	10.4
105	21.6	6.4	5.7	0.7	4.2	36.5	12.2	10.9	1.3	8.0
110	20.8	6.2	5.7	0.4	2.9	35.2	11.7	10.9	0.8	5.5

5-year Q_{attenuated} 5.73 L/s 100-year Q_{attenuated} 10.90 L/s 5-year Max. Storage Required 18.5 m³ 100-year Max. Storage Required 35.6 m³

Summary of Release Rates and Storage Volumes

Control Area	5-Year	5-Year Storage	100-Year Release Rate	100-Year Storage
	Release Rate (L/s)	Storage (m³)	Release Rate (L/s)	Storage (m³)
Unattenuated Areas	4.2	0.0	8.9	0.0
Attenutated Areas	5.7	18.5	10.9	35.6
Total	9.9	18.5	19.8	35.6

GENERAL NOTES

- 1. For landscaping, refer to landscape drawings.
- 2. For proposed grading, refer to landscape drawings.
- 3. All perimeter existing information indicated taken from survey.
- 4. All work to be done in conformance with the 2012 Ontario Building Code. [O.B.C., as amended]
- Land to be conveyed to the city free and clear of all encumbrnaces at a nominal cost for lane widening purposes at no expense to the city.

LIST OF DRAWINGS

A101 CONTEXT PLAN & STATISTICS A102 SITE PLAN A201 UNDERGROUND PLANS A301 GROUND FLOOR PLAN A302 2ND – 7TH FLOORS PLANS

A401 ELEVATIONS


Graziani + Corazza Architects Inc. is not responsible for the accuracy of survey, structural, mechanical, electrical, etc., engineering information shown on this drawing. Refer to the appropriate engineering drawings before proceeding with the work. Construction must conform to all applicable codes and requirements of the authorities having jurisdiction. Unless otherwise noted, no investigation has been undertaken or reported on by this office in regards to the environmental condition of this site. This drawing is not to be used for construction purposes until countersigned by the Architect.

This drawing is not to be scaled. All architectural symbols indicated on this drawing are graphic representation's only.

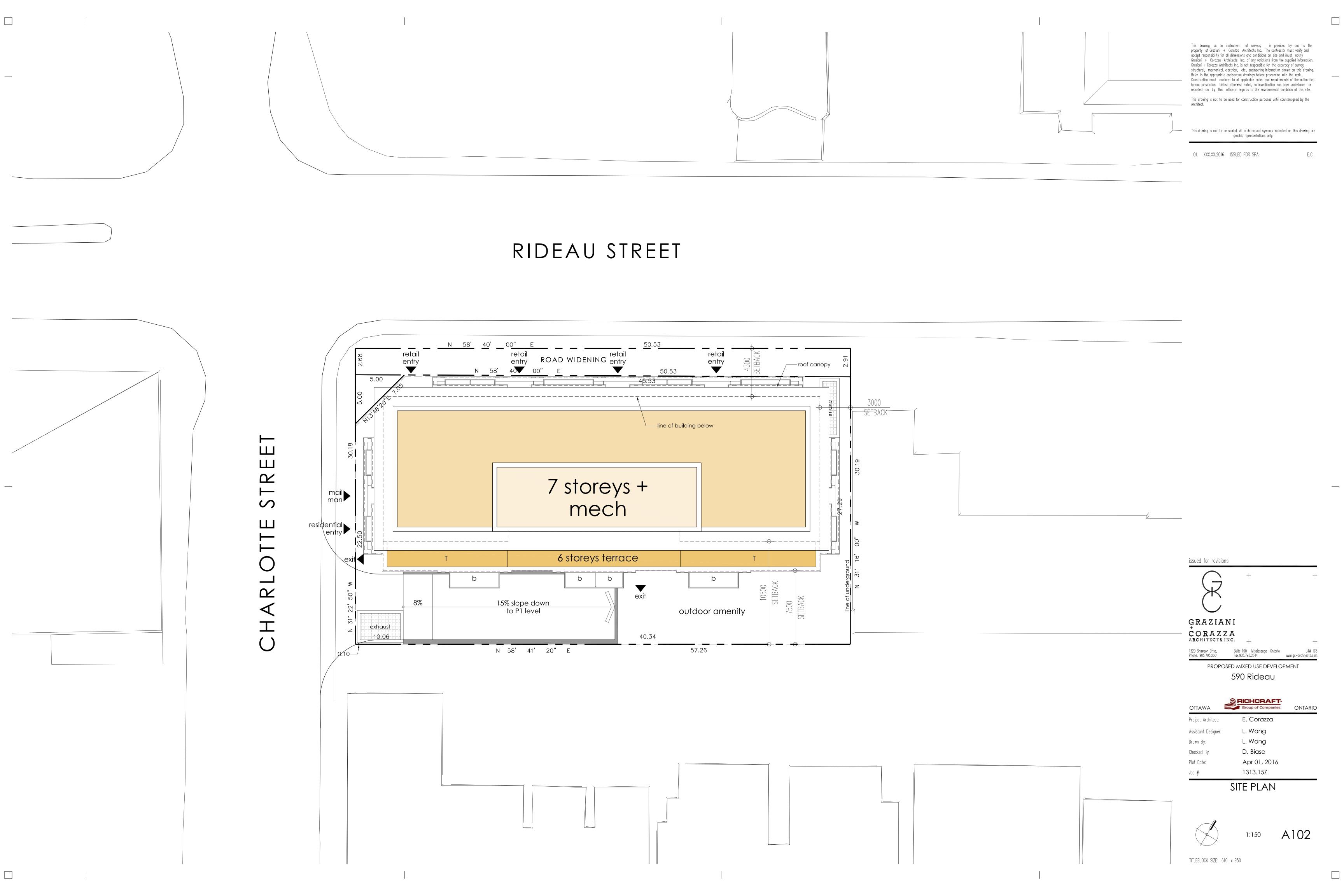
This drawing, as an instrument of service, is provided by and is the property of Graziani + Corazza Architects Inc. The contractor must verify and accept responsibility for all dimensions and conditions on site and must notify

Graziani + Corazza Architects Inc. of any variations from the supplied information.

01. XXX.XX.2016 ISSUED FOR SPA

SURVEY INFORMATION PLAN OF SURVEY OF LOTS 49, 50 AND THE WEST HALF OF LOT 51 (South Rideau Street) REGISTERED PLAN 6 CITY OF OTTAWA ANNIS, O'SULLIVAN, VOLLEBEKK LTD. ONTARIO LAND SURVEYOR SUITE 500 14 CONCOURSE GATE NEPEAN, ONTARIO K2E 7S6 TEL (613) 727-0850 FAX (613) 727-1079

	REQUIRED	PROVIDED	
1. SITE AREA		± 1,525 m2 ± 16,413 ft2 ± 0.38 ha ± 0.15 ac	
2. G.F.A.		GROUND ± 377 m2 ± 4,058 ft2 2ND - 3RD ± 1,405 m2 ± 15,126 ft2 4TH ± 668 m2 ± 7,188 ft2 5TH - 6TH ± 1,336 m2 ± 14,377 ft2 7TH ± 520 m2 ± 5,595 ft2	
		TOTAL G.F.A. ± 4,306 m2 ± 46,344 ft.	
3. F.S.I.	MAXIMUM F.S.I. = 3	2.82	
4. BUILDING HEIGHT	MAXIMUM PERMITTED HEIGHT 22 m AND NO GREATER THAN 7 STOREYS	7 STOREYS 28.5 m 24.5 m + 4 m MECH. (FROM GROUND FLOOR TO TOP OF ROOF SLAB)	
5. UNIT COUNT		GROUND = 0 u 2ND - 3RD (12 u/fir x 2 firs) = 24 u 4TH = 12 u 5TH - 6TH (12 u/fir x 2 firs) = 24 u 7TH = 8 u TOTAL UNITS 68 u	
C LINIT DDEAL/DOWN			
6. UNIT BREAKDOWN		STUDIO = 10 u (15%) 1B = 14 u (20%) 1B+D = 23 u (34%) 2B = 19 u (28%) 2B+D = 2 u (3%)	
		TOTAL UNITS 68 u	
7. AMENITY	AS PER URBAN EXCEPTION 1697:	INDOOR OUTDOOR	
i.) INDOOR i.) OUTDOOR	A MINIMUM OF 18.5 m2 TOTAL AMENITY AREA MUST BE PROVIDED FOR EACH DWELLING UNIT, OF WHICH HALF MUST BE PROVIDED AS UNCOVERED OUTDOOR AMENITY AREA 9.25 x 68 = 629 m2 9.25 x 68 = 629 m2	GROUND ± 202 m2 GROUND ± 182 r 2ND-3RD ± 191 r 4TH ± 121 r 5TH-6TH ± 169 r 7TH ± 165 r SUBTOTAL ± 828 r	
	TOTAL REQUIRED ± 1,258 m2	TOTAL PROVIDED ± 1,030 m2	
8. PARKING i.) RESIDENTS 0.5 SPACES/UNIT	= 0.5 x 68 u = 34 SPACES	P2 = 29 sp P1 = 5 sp	
	34 SPACES	34 SPACES	
ii.) Visitors None for first 12 Units and 0.2 Spaces/Unit For Next 300 Units	= 0.2 x 56 u = 11.2 = 11 SPACES	P1 = 11 sp	
TON NEXT 300 ONITS	11 SPACES	11 SPACES	
iii.) RETAIL 2.5 SPACES/100 m2	= 2.5/100 x 347 m2 = 8.675 = 9 SPACES	P1 = 9 sp	
	9 SPACES	9 SPACES	
	TOTAL REQUIRED 54 SPACES	TOTAL PROVIDED 54 SPACES	
9. BIKE STORAGE i.) RESIDENTS 0.5 SPACES/UNIT	= 0.5 x 68 u = 34 SPACES	GROUND = 34 sp	
	34 SPACES	34 SPACES	
iii.) RETAIL 1 SPACES/250 m2	= 1/250 x 347 m2 = 1.39 = 1 SPACES	GROUND = 1 sp	
	1 SPACES	1 SPACES	
	TOTAL REQUIRED 35 SPACES	TOTAL PROVIDED 35 SPACES	
 10. SETBACKS i.) NORTH FRONT YARD i.) EAST INTERIOR SIDE YARD i.) SOUTH REAR YARD 	2 m Minimum above 6 storeys 3 m Minimum above 6 storeys where The Max. Building height is more than 16 m 7.5 m Minimum 10.5 m Minimum above 6 storeys where The Max. Building height is more than 16 m	2 m BELOW 4 STOREYS 4 m ABOVE 4 STOREYS 3 m 7.5 m BELOW 6 STOREYS 10.5 m ABOVE 6 STOREYS	
i.) WEST CORNER SIDE YARD	1 m MINIMUM	1 m	


PROPOSED MIXED USE DEVELOPMENT 590 Rideau

OTTAWA	RICHCRAFT Group of Companies	ONTA
Project Architect:	E. Corazza	
Assistant Designer:	L. Wong	
Drawn By:	L. Wong	
Checked By:	D. Biase	
Plot Date:	Apr 01, 2016	
Job #	1313.15Z	

CONTEXT PLAN & STATISTICS

TITLEBLOCK SIZE: 610 x 950

