
18 McArthur Avenue Ottawa Assessment of Adequacy of Public Services

Project # CW-04-16 Prepared for: Takyan Consulting By:

Arch-Nova Design Inc.

April 2016

Table of Contents

1. Intr	oduction	2
2. Pul	blic Services Capacity	2
	Water Supply	
	Sanitary Sewer	
	rmwater	
3.1	Existing Site Stormwater Services	6
3.2	Proposed Development	6
4. Co	nclusion and Recommendation	8
4.1	Water Supply	8
4.2	Sanitary Sewer	8
4.3	Stormwater	8

Appendix A: Calculations Appendix B: Correspondence

1. Introduction

The subject property is located at 18 McArthur Avenue, Ottawa. The proposed work comprises of a 3-storey+basement apartment building. For the purpose of this report the site is considered to run east-west.

Currently the property is used as a parking lot. A small grass area is located on the south side of the property. Adjacent properties are residential.

The area is serviced by municipal water, sanitary and storm water systems.

18 McArthur Avenue, Ottawa: Location

2. Public Services Capacity

This section of the report will analyze existing municipal services and the potential impact of the proposed building at 18 McArthur Avenue on the existing service capacity.

2.1 Water Supply

¹The following are boundary conditions, HGL, for a hydraulic analysis at 18 McArthur Avenue, connecting to the 152 mm watermain:

Max Day + FF = 108 m assuming a fire flow of 95 L/s

Minimum HGL = 109.6 m

Maximum HGL = 118.4 m, the estimated ground elevation is 56.10 m, the maximum pressure is estimated to be 80.3 psi which is more than 80 psi.

Table 1 presents the City of Ottawa design criteria based on MOE Guidelines.

Design Parameter	Value
Residential Average Apartment	1.8 P/unit
Residential Average Daily Demand	350 L/d/P
² Residential Maximum Daily Demand	2.5 x Average Daily
Residential Maximum Hourly	2.2 x Maximum Daily
Commercial Demand	2.5 L / m2 /d
Commercial Maximum Daily Demand	1.5 x Average Daily
Commercial Maximum Hourly	1.8 x Maximum Daily
Minimum Watermain Size	150mm diameter
Minimum Depth of Cover	2.4m from top of watermain to finished grade
During Peak Hourly Demand operating pressure must remain within	275kPa and 552kPa (40-80 psi; 28-56m)
During fire flow operating pressure must not drop below	140kPa (20 psi; 14 m)

The consumption is expected to be **116.38 I/min (1.93 L/sec)** for peak period. The fire flow for residential spaces was estimated to be 9,000 I/min

¹ City of Ottawa boundary condition information is based on current operation of the city water distribution system (also see Appendix A for complete correspondence information)

² Residential Max. Daily and Max. Hourly peaking factors per MOE Guidelines for Drinking-Water Systems Table 3-3 for 0 to 500 persons.

(150 l/sec)³ however, the Fire Underwriters Survey (FUS) calculation⁴ provided the following:

a. fire flow: 12,000 l/min

b. available fire flow⁵ is 5,700 l/min (95 l/sec) which will require additional fire protection measures including fire separation structures, Siamese fire connection and/or fire extinguishers on each floor.

The table below summarizes the pressure for the designed parameters:

Design Parameter	Anticipated Demand ¹ (L/min)	Boundary Condition ² (m)
Average Daily Demand	8.17	118.4
Max Day + Fire Flow	5,777.58	109.6
Peak Hour	116.38	

 Table 2: Water Demand and Boundary Conditions

³ OBC SectionA.3.2.5.7, Table 2.

⁴ See Appendix A: Calculations

⁵ City of Ottawa: Boundary Conditions, April 2016

2.2 Sanitary Sewer

The estimated outflow for the new building is **0.54 l/sec** (peak flow+wet weather).

Design Parameter	Value ⁶
Residential Average Apartment	1.8 P/unit
Average Daily Demand	350 L/d/per
Peaking Factor	Harmon's Peaking Factor. Max 4.0, Min 2.0
Commercial Space	5L/m2/day
Infiltration and Inflow Allowance	0.28L/s/ha
Sanitary sewers are to be sized employing the Manning's Equation	Q =(1/n)AR ^{2/3} S ^{1/2}
Minimum Sewer Size	200mm diameter
Minimum Manning's 'n'	0.013
Minimum Depth of Cover	2.5m from crown of sewer to grade
Minimum Full Flowing Velocity	0.6m/s
Maximum Full Flowing Velocity	3.0m/s

Existing municipal sewer 450 mm has a capacity of 54.1 l/sec for 0.45% slope and 30% full or 270 l/sec for 80% full.

Detailed calculation of pre and post development flow is presented in Appendix A.

⁶ Extracted from Sections 4 and 6 of the City of Ottawa Sewer Design Guidelines, November 2004.

3. Stormwater

3.1 Existing Site Stormwater Services

Current parking lot is draining toward north and to the street. Small portion of grassed area also drains in the same direction. No other storm water services (i.e. storage, ponds) are on the property.

Surface Type	ID	Area (ha)	Percent of total Area	C	A X C (ha)
Bus Stop	A1	0.00275	6.8%	0.95	0.003
Parking	A2	0.03047	74.9%	0.95	0.029
Green area	A3	0.00746	18.3%	0.70	0.005
TOTAL		0.0407	100.0%		0.037
Weighted C =					0.50

Table 4: Current Drainage Areas

Entire site drains uncontrolled over surface to McArthur Predevelopment C=0.5 is used for the calculation for the post development calculation.

A municipal stormwater service 600 mm is provided on McArthurt Avenue and has capacity of 135 l/sec for slope of 0.6% and 30% full and 671 l/sec for 80% full.

3.2 Proposed Development

The proposed 3-storey building will cover the main part of the property however the flat roof storage is expected to compensate for the pervious areas so the balance between pre and post development run-off is not significantly changed. Also, the main drainage routes, such as the roof drains to the front (McArthur Avenue.) will remain unchanged. There is an increase in impervious surfaces in the area where the existing green area is.

For the purpose of managing the 5 year predevelopment runoff, the uncontrolled postdevelopment runoff was used to determine the controlled runoff from the roof storage. The uncontrolled runoff is calculated to be 2.96 l/sec which leaves 2.93 l/sec for the controlled runoff. The excess of water will be stored on the roof and release under this condition.

Predevelopment Runoff:							
Uncontrolled Runoff							
5-year	5.89	l/sec					
100-year	12.63	l/sec					
Controlled Runoff:							
5-year	0.00	l/sec					
100-year	0.00	l/sec					

Postdevelopment Runoff:						
Uncontrolled Runoff						
5-year	2.96	l/sec				
100-year	l/sec					
Controlled Runoff:						
5-year	6.41	l/sec				
100-year	10.98	l/sec				

Controlled allowable runoff							
Controlled Runoff:							
5-year	2.93	l/sec					
100-year 7.55 l/sec							

Table 5: Uncontrolled and Controlled Runoff Summary

The calculation was based on 10 minutes concentration times For both calculations the runoff coefficient is C=0.5. The roof stage-storage calculation is provided in Appendix A.

The drainage system comprises of weeping tiles around the building and a connection to the storm trunk at McArthur Avenue. Details are presented in the Grading and Site Services Plan.

The patio and green space at the back will be graded to route stormwater toward the fron of the property at McArthur Avenue.

4. Conclusion and Recommendation

4.1 Water Supply

The water supply demand calculation is based on the fire flow requirement for residential buildings; it is 12,000 l/min (200 l/sec). The City personnel provided information that only 5,700 l/min is available under condition of residual 20psi. and calculated a pressure of 109.6 m, FUS calculation requires 12,000 l/min which which will require additional fire protection means such as a separation fire walls, Siamese connections and fire extinguishers at each floor.

4.2 Sanitary Sewer

The existing sanitary sewer 450 mm under 0.45% is expected to provide a flow of of 54.1 l/sec for 0.45% slope and 30% full or 270 l/sec for 80% full. Flow from the new building in rate of 0.54 l/sec for the peak wet weather flow will not overload the pipe. The connection from the site will be by gravity (as presented on the plan).

4.3 Stormwater

The stormwater system (weeping system) of the property will be connected to the existing 600 mm pipe. A municipal stormwater service 600 mm is provided at McArthur Avenue and has capacity of 135 l/sec for slope of 0.6% and 30% full and 671 l/sec for 80% full.

There will be no increase in runoff flow as the onsite storage (roof) is proposed.

Drainage area and a storm calculation sheets (pre and post-development) are shown in Appendix A⁷.

⁷ Post Development calculation:

There will be an increased volume of 5.31 m³ which is a result of increased imperviousness. This amount of water will be stored on the roof and released under the predevelopment conditions.

Details are presented in Appendix A.

Based on the information provided by the City of Ottawa, the existing municipal services are adequate and will not be overloaded after the construction of the buildings at 18 McArthur.

Prepared by:

Zoran Mrdja, P.Eng.

Authorized by Professional Engineers of Ontario to provide professional services to public Appendix A: Calculations

Project Number: CV						18 McArthu	r Ave., Ottawa	a	ARCI DESIGI Amhiteo Enginee Consulti	H-NOVA V WC. trune tring ing	
RE-DEVELOPME	<u>NT_</u>										
			The pre-deve	elopment ti	me of conc	entration is	10 m	inutes			
		where:				. 0.814			(1 8201	
			0		Tc + 6.053) 0.014		′35.688 / (Tc +		5.020	
			l ₅ =	104.2	mm/hr		I ₁₀₀ =	178.6 mm/	′hr		
]					
Surface Type	ID	Area (ha)	Percent of total Area	С	A X C (ha)						
Bus Stop	A1	0.00275	6.8%	0.95	0.003	_					
Parking Green area	A2 A3	0.03047	74.9% 18.3%	0.95	0.029		$O_{-} = (2)$.78)*(C)*(I₅)∗(A			
Green area	AJ	0.00740	10.370	0.70	0.005					104.2	x 0.0407
						_	Q _{5pre}	2.78 x 5.89 L/s	0.5%	104.2	× 0.0407
							Spre	0.00 2/3			
						-	0 - 12	.78)*(C)*(I ₁₀₀)•	(A)		
								2.78 x		178.6	x 0.0407
								12.63 L/s	0.0.8	170.0	X 0.0407
						_	∝100pre	12.00 1/3			
TOTAL		0.0407	100.0%		0.037						
Weighted C =					0.50	0.904141					
OST-DEVELOPM		for predevelopm		(City of Ottav	va requiremer	nt)					
<u> </u>			he post-deve	elopment ti	me of conc	entration is	10 m	inutes			
		where:			To 1 6 052	. () 814		225 600 / /Ta		1820	

 $I_5 = 998.071 / (Tc + 6.053)^{0.814}$ $I_5 = 104.2 \text{ mm/hr}$

Surface Type	ID	Area (ha)	Percent of total Area	C	A X C (ha)
Landscape	A1	0.0006	3.3%	0.95	0.001
Landscape	A2	0.0004	2.4%	0.40	0.000
Walkway	A3	0.0029	16.9%	0.70	0.002
Building	A4	0.0000	0.0%	0.00	0.000
Walkway	A5	0.0024	14.1%	0.70	0.002
Walkway	A6	0.0011	6.1%	0.70	0.001
Patio+Bike Rack	A7	0.0024	14.1%	0.70	0.002
Dump Covered	A8	0.0010	5.7%	0.95	0.001
Green area	A9	0.0055	31.9%	0.30	0.002
Walkway	A10	0.0010	5.6%	0.70	0.001
TOTAL		0.0173	100.0%		0.010
Weighted C =					0.59

I₁₀₀ = 1735.688 / (Tc + 6.014) ^{0.820} I₁₀₀ = **178.6 mm/hr**

$Q_{5post} = (2.7)$	′8)*(C)*(I ₅)₊(A	۹)		
Q _{5post} =	2.78 x	0.58	104.2	x 0.0173
Q _{5post} =	2.96 L/s			

Q _{100post} = (2.78)*(C)*(I ₁₀₀).((A)		
Q _{100post} =	2.78 x	0.58	178.6	x 0.0173
Q _{100post} =	5.08 L/s			

PRE-DEVELOPMENT The pre-development time of concentration is 10 minutes where: $l_5 = 998.071 / (Tc + 6.053)^{0.014}$ $l_{100} = 1735.688 / (Tc + 6.014)^{0.020}$ $l_{100} = 178.6 \text{ mm/hr}$ $\overline{l_5 = 104.2 \text{ mm/hr}}$ $l_{100} = 178.6 \text{ mm/hr}$ $l_{100} = 178.6 \text{ mm/hr}$ $\overline{l_{500} area area A3} = 0.0000 = 0.0\% = 0.95 = 0.000$ $0.0\% = 0.95 = 0.000$ $0.0\% = 0.78 \times 0.5\% = 104.2 \times 0.00$ $G_{5pre} = 2.78 \times 0.5\% = 104.2 \times 0.00$ $0.5pre = 0.000 \text{ L/S}$ $0.00pre = (2.78)^* (C)^* (l_{10}) \cdot (A)$ $0.0pre = 2.78 \times 0.5\% = 178.6 \times 0.00$ $0.00pre = 2.78 \times 0.5\% = 178.6 \times 0.00$ $0.0pre = 2.78 \times 0.5\% = 178.6 \times 0.00$ $0.0pre = 2.78 \times 0.5\% = 178.6 \times 0.00$ $0.00pre = 2.78 \times 0.5\% = 178.6 \times 0.00$ $0.00pre = 2.78 \times 0.5\% = 178.6 \times 0.00$ $0.0pre = 2.78 \times 0.5\% = 178.6 \times 0.00$ $0.00pre = 2.78 \times 0.5\% = 178.6 \times 0.00$ $0.00pre = 0.000 \text{ L/S}$	Project Number: C	CW-04-16				18 McArthu	ur Ave., Otta	awa	ARCH-NOVA DEBIGN NC. Architecture Engineering Consulting	-
where: $I_5 = 998.071 / (Tc + 6.053)^{US14}$ $I_{100} = 1735.688 / (Tc + 6.014)^{US20}$ $I_{50} = 104.2 \text{ mm/hr}$ Image: Image	PRE-DEVELOPM	ENT_								
$I_{5} = 998.071 / (Tc + 6.053)^{U.314}$ $I_{5} = 104.2 \text{ mm/hr}$ $I_{100} = 1735.688 / (Tc + 6.014)^{U.320}$			Ţ	The pre-devel	opment tii	me of concentration is	10	minutes		
$I_{5} = 104.2 \text{ mm/hr}$ $I_{10} = 178.6 \text{ mm/hr}$ $I_{100} = 178.6 \text{ mm/hr}$		wh	here:	1 - 9	98 071 / (Tc + 6 053) ^{0.814}	ı –	1735 688 / (Tc + 6	5 014) ^{0.820}	
Surface Type ID Area (ha) Percent of total Area C (ha) Bus Stop A1 0.00000 0.0% 0.95 0.000 Parking A2 0.00000 0.0% 0.95 0.000 Green area A3 0.00000 0.0% 0.70 0.000 Green area A3 0.00000 0.0% 0.000 0.5pre 2.78 x 0.50 Q _{5pre} 0.00 L/s 0.00 L/s <t< td=""><td></td><td></td><td></td><td>0</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>				0						
Surface type ID Area (ha) total Area C (ha) Bus Stop A1 0.0000 0.0% 0.95 0.000 Parking A2 0.00000 0.0% 0.95 0.000 Green area A3 0.00000 0.0% 0.70 0.000 C Image: Constraint of the state of the sta				5	-		100			
Parking A2 0.0000 0.0% 0.95 0.000 Green area A3 0.00000 0.0% 0.70 0.000 Green area A3 0.00000 0.0% 0.000 0.000 0.000 Green area A3 0.00000 0.0% 0.000	Surface Type	ID A	Area (ha)		С					
Green area A3 0.00000 0.0% 0.70 0.000										
Image: Constraint of the second system o	0						Q _{5pre} =	(2.78)*(C)*(I₅)∗(A)		
Image: Constraint of the second system o									0.5% 104.2 x 0.000	00
Image: Constraint of the constr							Q _{5pre} =	0.00 L/s		
Image: Constraint of the constr										
Image: Constraint of the constr										
TOTAL 0.0000 0.0% 0.000 Weighted C = 0.50 0.50 0.50										
TOTAL 0.0000 0.0% 0.000 Weighted C = 0.50									0.5 x 0.000	00
Weighted C = 0.50							Q _{100pre} =	0.00 L/s		
	TOTAL		0.0000	0.0%		0.000				
C=0.5 used for predevelopment calculation (City of Ottawa requirement)	Weighted C =					0.50				
	C=	0.5 used for pr	redevelopm	ent calculation (City of Ottav	va requirement)				
					-					
POST-DEVELOPMENT (CONTROLLED RUNOFF)	POST-DEVELOPI	MENT (CON	NTROLLEI	D RUNOFF)						
<u>.</u>				· · ·						
The post-development time of concentration is 10 minutes			T	ne post-devel	opment ti	me of concentration is	10	minutes		
where:		wh	here:							
$I_5 = 998.071 / (Tc + 6.053)^{0.814}$ $I_{100} = 1735.688 / (Tc + 6.014)^{0.820}$				0						
$I_5 = 104.2 \text{ mm/hr}$ $I_{100} = 178.6 \text{ mm/hr}$				l ₅ =	104.2	mm/hr	I ₁₀₀ =	178.6 mm/hi		

Surface Type	ID	Area (ha)	Percent of total Area	С	A X C (ha)
Landscape	A1	0.0000	0.0%	0.95	0.000
Landscape	A2	0.0000	0.0%	0.40	0.000
Walkway	A3	0.0000	0.0%	0.70	0.000
Building	A4	0.0233	100.0%	0.95	0.022
Walkway	A5	0.0000	0.0%	0.70	0.000
Walkway	A6	0.0000	0.0%	0.70	0.000
Patio+Bike Rack	A7	0.0000	0.0%	0.70	0.000
Dump Covered	A8	0.0000	0.0%	0.95	0.000
Green area	A9	0.0000	0.0%	0.30	0.000
Walkway	A10	0.0000	0.0%	0.70	0.000
TOTAL		0.0233	100.0%		0.022
Weighted C =					0.95

Q _{5post} =	2.78 x	0.95	104.2	x 0.0233
Q _{5post} =	6.41 L/s			

$Q_{100post} = (2.78)^*(C)^*(I_{100})_*(A)$

 $Q_{5post} = (2.78)^*(C)^*(I_5)_*(A)$

Q _{100post} =	2.78 x	0.95	178.6	x 0.0233
Q _{100post} =	10.98 L/s			

ALLOWABLE RUNOFF

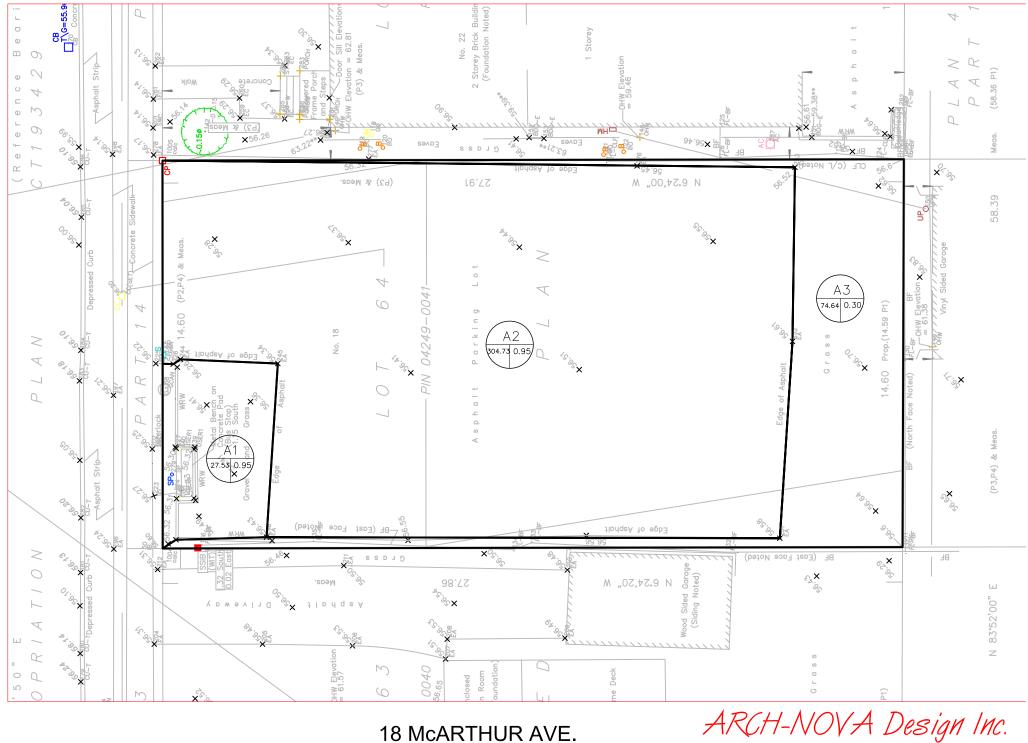
Predevelopm	ent Runo	ff:
Uncontrolled	Runoff	
5-year	5.89	l/sec
100-year	12.63	l/sec
Controlled Ru	unoff:	
5-year	0.00	l/sec
100-year	0.00	l/sec

ARCH-NOVA	- Ale
Architecture	
Engineering Consulting	
consulting	

Postdevelopm	nent Run	off:
Uncontrolled	Runoff	
5-year	2.96	l/sec
100-year	5.08	l/sec
Controlled Ru	inoff:	
5-year	6.41	l/sec
100-year	10.98	l/sec

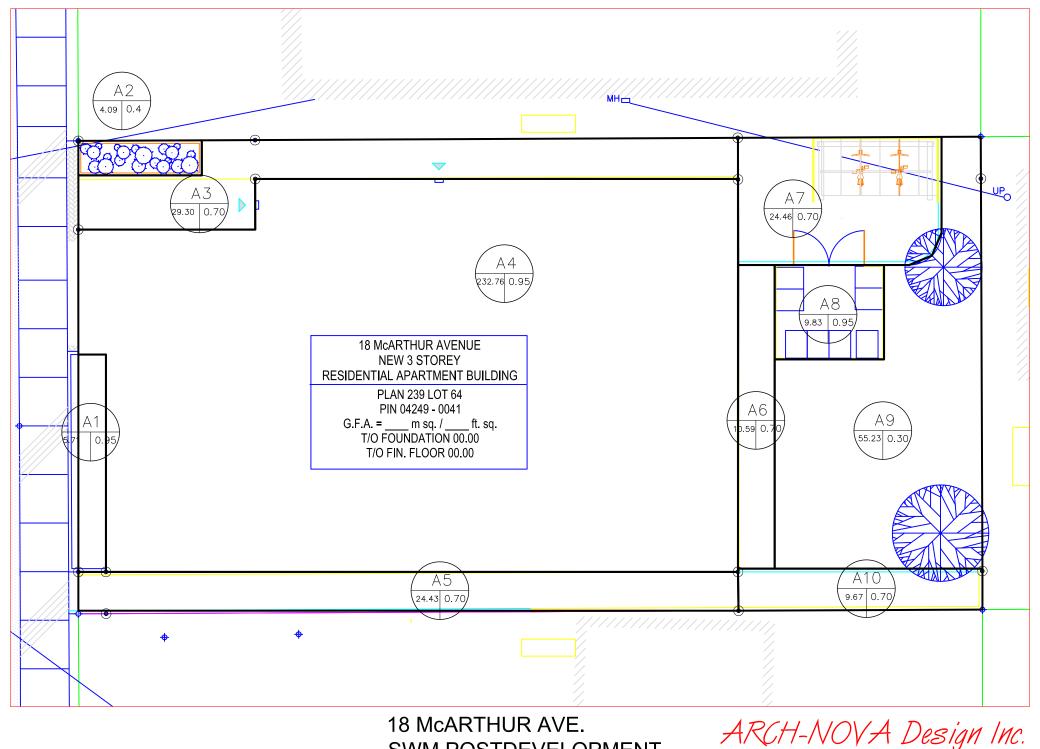
Controlled allowable runoff

Controlled R	unoff:	
5-year 100-year	2.93	l/sec
100-year	7.55	l/sec


Comment:

		-	s (5-Year St	torm)			Storag	e Volume	s (100-Year	Storm)	
Project: 18 M	IcArthur Ave	nue									
	Tc =	10	(mins)				Tc =	10	(mins)		
	$C_{AVG} =$	0.95	(dimmensionle	ss)			$C_{AVG} =$	0.95	(dimmensionle	ss)	
	Area =	0.0233	(hectares)				Area =	0.0233	(hectares)		
	Storm =	5	(year)				Storm =	100	(year)		
R	Release Rate =	2.93	(L/sec)			R	Release Rate =	2.93	(L/sec)		
Ti	ime Interval =	5	(mins)			Ti	ime Interval =	5	(mins)		
	Rainfall						Rainfall				
Duration	Intensity	Peak Flow	Release Rate	Storage Rate	Storage	Duration	Intensity	Peak Flow	Release Rate	Storage Rate	Stora
(min)	(mm/hr)	(L/sec)	(L/sec)	(L/sec)	(m ³)	(min)	(mm/hr)	(L/sec)	(L/sec)	(L/sec)	(m ³)
1	204	1.3	2.93			1	351	2.2	2.93		
6	132	4.9	2.93	1.92	0.69	6	226	8.3	2.93	5.40	1.95
11	99	6.1	2.93	3.17	2.09	11	170	10.4	2.93	7.51	4.96
16	80	4.9	2.93	2.01	1.93	16	138	8.5	2.93	5.52	5.30
21	68	4.2	2.93	1.26	1.58	21	116	7.1	2.93	4.22	5.31
26	59	3.6	2.93	0.72	1.12	26	101	6.2	2.93	3.29	5.1
31	53	3.2	2.93	0.31	0.58	31	90	5.5	2.93	2.59	4.82
36	48	2.9	2.93	-0.01	-0.01	36	81	5.0	2.93	2.05	4.4
41	43	2.7	2.93	-0.26	-0.65	41	74	4.5	2.93	1.61	3.9
46	40	2.5	2.93	-0.47	-1.31	46	68	4.2	2.93	1.25	3.4
51	37	2.3	2.93	-0.65	-1.99	51	63	3.9	2.93	0.94	2.8
56	35	2.1	2.93	-0.80	-2.69	56	59	3.6	2.93	0.69	2.3
61	33	2.0	2.93	-0.93	-3.41	61	55	3.4	2.93	0.46	1.6
66	31	1.9	2.93	-1.04	-4.14	66	52	3.2	2.93	0.27	1.0
71	29	1.8	2.93	-1.14	-4.88	71	49	3.0	2.93	0.10	0.4
76	28	1.7	2.93	-1.23	-5.63	76	47	2.9	2.93	-0.06	-0.2
81	26	1.6	2.93	-1.31	-6.39	81	45	2.7	2.93	-0.19	-0.9
86	25	1.5	2.93	-1.39	-7.15	86	43	2.6	2.93	-0.31	-1.6
91	24	1.5	2.93	-1.45	-7.92	91	41	2.5	2.93	-0.43	-2.3
96	23	1.4	2.93	-1.51	-8.70	96	39	2.4	2.93	-0.53	-3.0
101	22	1.4	2.93	-1.56	-9.48	101	38	2.3	2.93	-0.62	-3.7
106	21	1.3	2.93	-1.61	-10.27	106	36	2.2	2.93	-0.70	-4.4
111	21	1.3	2.93	-1.66	-11.06	111	35	2.1	2.93	-0.78	-5.2
116	20	1.2	2.93	-1.70	-11.85	116	34	2.1	2.93	-0.86	-5.9
121	19	1.2	2.93	-1.74	-12.65	121	33	2.0	2.93	-0.92	-6.7
126	19	1.2	2.93	-1.78	-13.45	126	32	1.9	2.93	-0.99	-7.4
131	18	1.1	2.93	-1.81	-14.25	131	31	1.9	2.93	-1.04	-8.2
136	18	1.1	2.93	-1.85	-15.06	136	30	1.8	2.93	-1.10	-8.9
otes	1	1	1			Notes	1		1	1	

2) Rainfall Intensity, I = 998.071 / (Tc + 6.053)^A0.814 (5 year, City of Ottawa) 3) Peak Flow = Duration/Tc x 2.78 x C x I x A (Duration < Tc) 4) Peak Flow = 2.78 x C x I x A (Duration > Tc) 5) Storage = Duration x Storage Rate


2) Rainfall Intensity, I = 1735.688 / (Tc + 6.014)^0.820 (100 year, City of Ottawa) 3) Peak Flow = Duration/Tc x 2.78 x C x I x A (Duration < Tc) 4) Peak Flow = 2.78 x C x I x A (Duration > Tc) 5) Storage = Duration x Storage Rate

18 McARTHUR AVE. SWM PREDEVELOPMENT

45 Banner Road NEPEAN ON K2H 8X5 613-829-5722 contact@archnova.ca

SWM POSTDEVELOPMENT

45 Banner Road NEPEAN ON K2H 8X5 613-829-5722 contact@archnova.ca

FUS Fire Flow Calculations

Project: 18 McArthur Avenue , Ottawa

Calculations Based on 1999 Publication "Water Supply for Public

Fire Protection " by Fire Underwriters' Survey (FUS) Project Name: 18 McArthur Avenue, Ottawa

Fire Flow Calculation #: 1

Date: March 29, 2016

Building Type/Description/Name:Apartment Building

Data input by: Zoran Mrdja, P.Eng. Table A: Fire Underwriters Survey Determination of Required Fire Flow - Long Method

Step	Task	Term	Options	Multiplier Associated with Option	Choose:	Value Used	Unit	Total Fire Flow (L/min)
				Framing Materia	al			
		Coefficient related to	Wood Frame	1.50				
1	Choose Frame Used	type of construction	Ordinary construction	1.00				
	for Construction of Unit	(C)	Non-combustible construction	0.80	Ordinary Construction			
			Fire resistive construction (< 2 hrs)	0.70				
			Fire resistive construction (> 2 hrs)	0.60		1.00	m	
	Choose Type of			Floor Space Are	a			
2	Housing (if TH, Enter		Single Family	1				
2	Number of Units Per		Townhouse - indicate # of units	1	Other (Comm, ind)	1	Units	
	TH Block)	Type of Housing	Other (Comm, Ind, etc.)	1				
2.2	# of Storeys	Number of Floors/ St	oreys in the Unit (do not include baseme	nt):	1	1	Storeys	
	" or otorojo	Enter Ground Floor	Area (A) of One Unit Only :				0.0.030	
	Enter Ground Floor					_	Area in	
3	Area of One Unit	Measurement	Square Feet (ft2)	0.093	(971	Square	
		Units	Square Metres (m2)	1	Square Metres (m2)		Meters (m2)	
	Obtain Required Fire		Hectares (ha) ow(without reductions or increa	10000				
								6,85
5	Reductions Apply Factors	Reductions/Incre	eases Due to Factors Affecting I	Burning				6,855
5			5	5				6,85
5	Apply Factors	Occupancy content	Non-combustible	-0.25				6,85
-	Apply Factors	Occupancy content hazard reduction or	Non-combustible Limited combustible	5	Careboatible			6,85
5 5.1	Apply Factors Affecting Burning	Occupancy content	Non-combustible Limited combustible Combustible	-0.25 -0.15 0	Combustible		N/A	6,85
-	Apply Factors Affecting Burning Choose Combustibility	Occupancy content hazard reduction or	Non-combustible Limited combustible Combustible Free burning	-0.25 -0.15 0 0.15	Combustible	0.00	N/A	
-	Apply Factors Affecting Burning Choose Combustibility of Building Contents	Occupancy content hazard reduction or surcharge	Non-combustible Limited combustible Combustible Free burning Rapid burning	-0.25 -0.15 0	Combustible	0.00	N/A	
5.1	Apply Factors Affecting Burning Choose Combustibility of Building Contents Choose Reduction Due	Occupancy content hazard reduction or surcharge	Non-combustible Limited combustible Combustible Free burning Rapid burning Complete Automatic Sprinkler	-0.25 -0.15 0 0.15 0.25				
	Apply Factors Affecting Burning Choose Combustibility of Building Contents Choose Reduction Due to Presence of	Occupancy content hazard reduction or surcharge	Non-combustible Limited combustible Combustible Free burning Rapid burning Complete Automatic Sprinkler Protection	-0.25 -0.15 0 0.15	Combustible None	0.00	N/A N/A	
5.1	Apply Factors Affecting Burning Choose Combustibility of Building Contents Choose Reduction Due to Presence of Sprinklers	Occupancy content hazard reduction or surcharge	Non-combustible Limited combustible Combustible Free burning Rapid burning Complete Automatic Sprinkler Protection None	-0.25 -0.15 0 0.15 0.25 -0.3 0	None			
5.1 5.2	Apply Factors Affecting Burning Choose Combustibility of Building Contents Choose Reduction Due to Presence of Sprinklers Choose Separation	Occupancy content hazard reduction or surcharge	Non-combustible Limited combustible Combustible Free burning Rapid burning Complete Automatic Sprinkler Protection None North Side	-0.25 -0.15 0 0.15 0.25 -0.3 0 20.1-30 m	None 0.10	0.00	N/A	
5.1	Apply Factors Affecting Burning Choose Combustibility of Building Contents Choose Reduction Due to Presence of Sprinklers Choose Separation Distance Between	Occupancy content hazard reduction or surcharge	Non-combustible Limited combustible Combustible Free burning Rapid burning Complete Automatic Sprinkler Protection None North Side East Side	-0.25 -0.15 0.15 0.25 -0.3 0 20.1-30 m 3.1-10.0 m	None 0.10 0.20			
5.1 5.2	Apply Factors Affecting Burning Choose Combustibility of Building Contents Choose Reduction Due to Presence of Sprinklers Choose Separation	Occupancy content hazard reduction or surcharge Sprinkler reduction	Non-combustible Limited combustible Combustible Free burning Rapid burning Complete Automatic Sprinkler Protection None North Side	-0.25 -0.15 0 0.15 0.25 -0.3 0 20.1-30 m	None 0.10	0.00	N/A	
5.1 5.2	Apply Factors Affecting Burning Choose Combustibility of Building Contents Choose Reduction Due to Presence of Sprinklers Choose Separation Distance Between	Occupancy content hazard reduction or surcharge Sprinkler reduction Exposure Distance Between Units	Non-combustible Limited combustible Combustible Free burning Rapid burning Complete Automatic Sprinkler Protection None None None East Side South Side East Side	-0.25 -0.15 0 0.15 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3	None 0.10 0.20 0.20 0.20 0.20	0.00	N/A	4,79
5.1 5.2 5.3	Apply Factors Affecting Burning Choose Combustibility of Building Contents Choose Reduction Due to Presence of Sprinklers Choose Separation Distance Between Units Obtain Required	Occupancy content hazard reduction or surcharge Sprinkler reduction Exposure Distance Between Units Total Required F Total Required F	Non-combustible Limited combustible Combustible Free burning Rapid burning Complete Automatic Sprinkler Protection Norne North Side East Side South Side Fire Flow, rounded to nearest 10 Fire Flow (above) in L/s:	-0.25 -0.15 0 0.15 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3	None 0.10 0.20 0.20 0.20 0.20	0.00	N/A	4,790 12,000 200
5.1	Apply Factors Affecting Burning Choose Combustibility of Building Contents Choose Reduction Due to Presence of Sprinklers Choose Separation Distance Between Units	Occupancy content hazard reduction or surcharge Sprinkler reduction Exposure Distance Between Units Total Required F Total Required F Required Duratio	Non-combustible Limited combustible Combustible Free burning Rapid burning Complete Automatic Sprinkler Protection Norn Norn Side East Side South Side East Side South Side Tire Flow, rounded to nearest 10 Fire Flow (above) in L/s: on of Fire Flow (hrs)	-0.25 -0.15 0 0.15 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3	None 0.10 0.20 0.20 0.20 0.20	0.00	N/A	4,790 12,000 200 2.00
5.1 5.2 5.3 6	Apply Factors Affecting Burning Choose Combustibility of Building Contents Choose Reduction Due to Presence of Sprinklers Choose Separation Distance Between Units Obtain Required Fire Flow, Duration & Volume	Occupancy content hazard reduction or surcharge Sprinkler reduction Exposure Distance Between Units Total Required F Required Duratic Required Volum	Non-combustible Limited combustible Combustible Free burning Rapid burning Complete Automatic Sprinkler Protection None North Side East Side South Side West Side Tire Flow, rounded to nearest 10 Fire Flow (above) in L/s: on of Fire Flow (hrs) e of Fire Flow (m ³)	-0.25 -0.15 0 0.15 0.25 -0.3 0 20.1-30 m 3.1-10.0 m 3.1-10.0 m 3.1-10.0 m	None 0.10 0.20 0.20 0.20 limits applied:	0.00	N/A	6,855 4,796 12,000 200 2.00 1440
5.1 5.2 5.3 6	Apply Factors Affecting Burning Choose Combustibility of Building Contents Choose Reduction Due to Presence of Sprinklers Choose Separation Distance Between Units Obtain Required Fire Flow, Duration & Volume	Occupancy content hazard reduction or surcharge Sprinkler reduction Exposure Distance Between Units Total Required F Required Duratic Required Volum	Non-combustible Limited combustible Combustible Free burning Rapid burning Complete Automatic Sprinkler Protection Norn Norn Side East Side South Side East Side South Side Tire Flow, rounded to nearest 10 Fire Flow (above) in L/s: on of Fire Flow (hrs)	-0.25 -0.15 0 0.15 0.25 -0.3 0 20.1-30 m 3.1-10.0 m 3.1-10.0 m 3.1-10.0 m	None 0.10 0.20 0.20 0.20 limits applied:	0.00	N/A	4.799 12,000 200 2.00

Note:

No Information, No input required.

The most current FUS document should be referenced before design to ensure that the above figures are consistent with the intent of the Guideline. The basement of the building will be used as a gathering/dining area and it is recommended to be equiped with sprinkler system

Water Supply Design Criteria

Design Parameter	Value			
Residential Average Apartment	1.8 P/unit			
Residential Average Daily Demand	350 L/d/P			
Residential Maximum Daily Demand	9.5 x Average Daily *			
Residential Maximum Hourly	1.5 x Maximum Daily *			
Commercial Demand	2.5 L / m2 /d			
Commercial Maximum Daily Demand	1.5 x Average Daily			
Commercial Maximum Hourly	1.8 x Maximum Daily			
Minimum Watermain Size	150mm diameter			
Minimum Depth of Cover	2.4m from top of watermain to finished grade			
must remain within	275kPa and 552kPa (40-80 psi; 28-56m)			
During fire flow operating pressure must not drop below	140kPa (20 psi; 14 m)			
* Residential Max. Daily and Max. Hourly peaking factors per MOE Guidelines for Drinking-Water Systems Table 3-3 for 0 to 500 persons.				

18 McArthur Avenue, Ottawa New Development

Domestic Demand

Type of Housing	Per / Unit	Units	Рор
Single Family	3.4		0
Semi-detached	2.7		0
Townhouse	2.7		0
Apartment			0
Bachelor	1.4		0
1 Bedroom	1.4	0	0
2 Bedroom	2.1	0	0
3 Bedroom	3.1		0
4 Bedroom	4.2	8	34

	Рор	Avg. Daily		Max Day		Peak Hour	
		m³/d	L/min	m³/d	L/min	m³/d	L/min
Total Domestic Demand	34	11.76	8.17	111.72	77.58	167.58	116.38

Institutional / Commercial / Industrial Demand

				Avg. [Daily	Мах	Day	Peak	Hour
Property Type	Unit	Rate	Units	m³/d	L/min	m³/d	L/min	m³/d	L/min
Commercial floor space	2.5	L/m2/d	0	0.00	0.00	0.00	0.00	0.00	0.00
Office	75.0	L/9.3m2/d							
Restaurant*	125.0	L/seat/d							
Industrial -Light	35,000.0	L/gross ha/d							
Industrial -Heavy	55,000.0	L/gross ha/d							
		Total I/	C/I Demand	0.00	0.00	0.00	0.00	0.00	0.00

	Total Demand	11.76	8.17	111.72	77.58	167.58	116.38
* Estimated number of seats at 1seat per 9.3m ²							

18 McArthur Avenue, Ottawa New Development

Water Demand and Boundary Conditions

Proposed Conditions

Design Parameter	Anticipated Demand ¹ (L/min)	Boundary Condition ² (kPa)				
Average Daily Demand	8.17					
Max Day + Fire Flow	5,777.58	108				
Peak Hour	116.38	108.3				
¹⁾ Water demand calculation per Water Supply Guidelines. See Appendix B for detailed calculations.						
²⁾ Boundary conditions supplied by the City of Ottawa. See Appendix B for						

correspondence with the City.

Wastewater Design Criteria

Design Parameter	Value			
Residential Average Apartment	1.8 P/unit			
Average Daily Demand	350 L/d/per			
Peaking Factor	Harmon's Peaking Factor. Max 4.0, Min 2.0			
Commercial Space	5L/m2/day			
Infiltration and Inflow Allowance	0.28L/s/ha			
Sanitary sewers are to be sized employing the Manning's	$O = (1/2) A D^{2/3} O^{1/2}$			
Equation	$Q = (1/n)AR^{2/3}S^{1/2}$			
Minimum Sewer Size	200mm diameter			
Minimum Manning's 'n'	0.013			
Minimum Depth of Cover	2.5m from crown of sewer to grade			
Minimum Full Flowing Velocity	0.6m/s			
Maximum Full Flowing Velocity	3.0m/s			
Extracted from Sections 4 and 6 of the City of Ottawa Sewer Design Guidelines, November 2004.				

18 McArthur Avenue, Ottawa New Development

Sanitary Sewer Post Development Outflow

Site Area			0.0405 ha
Extraneous Flow Allowance	<i>s</i> Infiltration / In	flow	0.01134 L/s
Domestic Contributions			
Unit Type	Unit Rate	Units	Рор
Single Family	3.4		0
Semi-detached and duplex	2.7		0
Duplex	2.3		0
Townhouse	2.7		0
Apartment			
Bachelor	1.4		0
1 Bedroom	1.4		0
2 Bedroom	2.1		0
3 Bedroom	3.1		0
4 Bedroom	4.2	8	33.6
	Tota	al Population	33.6
	0.14 L/s		
	4.00		
	Peak Do	mestic Flow	0.54 L/s

Institutional / Commercial / Industrial Contributions

Property Type	Unit Rate	No. of Units	Avg Wastewater (L/s)
Commercial floor space	5 L/m2/d		0
Hospitals	900 L/bed/d		
School	70 L/student/d		
Industrial - Light	35,000 L/gross ha/d		
Industrial - Heavy	55,000 L/gross ha/d		
	Ave	erage I/C/I Flow	0
	Peak Institutional / Co	mmercial Flow	

Total Estimated Average Dry Weather Flow Rate	0.14
Total Estimated Peak Dry Weather Flow Rate	0.54
Total Estimated Peak Wet Weather Flow Rate	0.56

Arch-Nova Desing Inc.

Appendix B: Correspondence

From: Wu, John <John.Wu@ottawa.ca> Sent: April 6, 2016 9:52 AM To: gordana@archnova Subject: RE: 18 McArthur: Boundary Conditions Attachments: 18 McArthur April 2016.pdf

Here is the result: The following are boundary conditions, HGL, for hydraulic analysis at 18 McArthur (zone 1E) assumed to be connected to the 152mm on McArthur (see attached PDF for location). Minimum HGL = 109.6m Maximum HGL = 118.4m; the maximum pressure is estimated to be more than 80 psi. A pressure check at completion of construction is recommended to determine if pressure control is required. Available flow = 95 L/s assuming a residual of 20 psi and a ground elevation of 56.1m

These are for current conditions and are based on computer model simulation. Disclaimer: The boundary condition information is based on current operation of the city water distribution system. The computer model simulation is based on the best information available at the time. The operation of the water distribution system can change on a regular basis, resulting in a variation in boundary conditions. The physical properties of watermains deteriorate over time, as such must be assumed in the absence of actual field test data. The variation in physical watermain properties can therefore alter the results of the computer model simulation.

```
John
```

From: gordana@archnova [mailto:gordana@archnova.ca] Sent: Friday, April 01, 2016 12:13 PM To: Wu, John Cc: zoran@archnova.ca Subject: RE: 18 McArthur: Boundary Conditions

Hi John,

Could you please be more specific? With our other projects it is maximum a week.

Thanks,

Gordana Mrdja, B.Sc.Arch. Arch-Nova Design Inc. 45 Banner Road Nepean, ON, K2H 8X5 613-829-5722 gordana@archnova.ca

From: Wu, John [mailto:John.Wu@ottawa.ca] Sent: Friday, April 1, 2016 11:46 AM To: gordana@archnova <gordana@archnova.ca> Subject: RE: 18 McArthur: Boundary Conditions I don't know. Maybe in two weeks.

From: gordana@archnova [mailto:gordana@archnova.ca] Sent: Friday, April 01, 2016 11:44 AM To: Wu, John Cc: zoran@archnova.ca Subject: RE: 18 McArthur: Boundary Conditions

Thank you John on prompt response!

When can we expect it back? Regards,

Gordana Mrdja, B.Sc.Arch. Arch-Nova Design Inc. 45 Banner Road Nepean, ON, K2H 8X5 613-829-5722 gordana@archnova.ca

From: Wu, John [mailto:John.Wu@ottawa.ca] Sent: Friday, April 1, 2016 11:16 AM To: gordana@archnova <gordana@archnova.ca> Subject: RE: 18 McArthur: Boundary Conditions

I was on sick leave, just back today. I will send it out.

John

From: gordana@archnova [mailto:gordana@archnova.ca] Sent: Friday, April 01, 2016 11:11 AM To: Wu, John Cc: zoran@archnova.ca Subject: FW: 18 McArthur: Boundary Conditions

Good morning John,

Would you please advise when can we expect boundary conditions for the 18 McArthur. I am forwarding you again attached documents and an email that our engineer Zoran Mrdja has sent to you few days ago (please see below).

I would appreciate a timeline as we need it for project planning. If you need anything else from us in order to provide us with the boundary conditions, please advise.

Kind regards,

Gordana Mrdja, B.Sc.Arch.

Arch-Nova Design Inc. 45 Banner Road Nepean, ON, K2H 8X5 613-829-5722 gordana@archnova.ca

From: zoran@archnova [mailto:zoran@archnova.ca] Sent: March 29, 2016 11:12 PM To: 'Wu, John' <John.Wu@ottawa.ca> Subject: 18 McArthur: Boundary Conditions

Hello John,

Please could you provide the boundary conditions for the location of 18 McArthur Avenue. The owner is planning to construct a new apartment building at this location. Attached are the water and sewer calculations, FUS fire flow calculation and the site plan for proposed development.

Type of development: apartment building (basement + 3 story) Average daily demand: 0.14 l/s Maximum daily demand: 1.29 l/s. Maximum hourly daily demand: 1.94 l/s. Fire flow: 200 l/sec

This e-mail originates from the City of Ottawa e-mail system. Any distribution, use or copying of this e-mail or the information it contains by other than the intended recipient(s) is unauthorized. Thank you.


Le présent courriel a été expédié par le système de courriels de la Ville d'Ottawa. Toute distribution, utilisation ou reproduction du courriel ou des renseignements qui s'y trouvent par une personne autre que son destinataire prévu est interdite. Je vous remercie de votre collaboration.

This e-mail originates from the City of Ottawa e-mail system. Any distribution, use or copying of this e-mail or the information it contains by other than the intended recipient(s) is unauthorized. Thank you.

Le présent courriel a été expédié par le système de courriels de la Ville d'Ottawa. Toute distribution, utilisation ou reproduction du courriel ou des renseignements qui s'y trouvent par une personne autre que son destinataire prévu est interdite. Je vous remercie de votre collaboration.

This e-mail originates from the City of Ottawa e-mail system. Any distribution, use or copying of this e-mail or the information it contains by other than the intended recipient(s) is unauthorized. Thank you.

Le présent courriel a été expédié par le système de courriels de la Ville d'Ottawa. Toute distribution, utilisation ou reproduction du courriel ou des renseignements qui s'y trouvent par une personne autre que son destinataire prévu est interdite. Je vous remercie de votre collaboration.

