

Servicing and Stormwater Management Report – 114 Richmond Road Phase 2A/2B

Project #160400864

September 21, 2023

Prepared for:

Ashcroft Homes

Prepared by:

Stantec Consulting Ltd.

The conclusions in the Report titled Servicing and Stormwater Management Report – 114 Richmond Road Phase 2A/2B 1806 Scott Street Servicing and Stormwater Management Report are Stantec's professional opinion, as of the time of the Report, and concerning the scope described in the Report. The opinions in the document are based on conditions and information existing at the time the scope of work was conducted and do not take into account any subsequent changes. The Report relates solely to the specific project for which Stantec was retained and the stated purpose for which the Report was prepared. The Report is not to be used or relied on for any variation or extension of the project, or for any other project or purpose, and any unauthorized use or reliance is at the recipient's own risk.

Stantec has assumed all information received from Ashcroft Homes (the "Client") and third parties in the preparation of the Report to be correct. While Stantec has exercised a customary level of judgment or due diligence in the use of such information, Stantec assumes no responsibility for the consequences of any error or omission contained therein.

This Report is intended solely for use by the Client in accordance with Stantec's contract with the Client. While the Report may be provided to applicable authorities having jurisdiction and others for whom the Client is responsible, Stantec does not warrant the services to any third party. The report may not be relied upon by any other party without the express written consent of Stantec, which may be withheld at Stantec's discretion.

Prepared by

(signature)

Dustin Thiffault, P.Eng.

Reviewed by

(signature)

Kris Kilborn

Table of Contents

1.0	INTRODUCTION	1.1
2.0	BACKGROUND	2.1
3.0	WATER SERVICING	3.1
3.1	BACKGROUND	3.1
3.2	WATER DEMANDS	3.1
	3.2.1 Potable (Domestic) Water Demands	3.1
	3.2.2 Fire Flow Demands	
	3.2.3 Boundary Conditions	
3.3	PROPOSED WATERMAIN SERVICING AND LAYOUT	
3.4	HYDRAULIC ASSESSMENT	
	3.4.1 Level of Service	
	3.4.2 Model Development	
3.5	HYDRAULIC MODEL RESULTS	
	3.5.1 Average Day Demand (AVDY)	
	3.5.2 Peak Hour Demand (PKHR)	
3.6	3.5.3 Maximum Day Demand + Fire Flow (MXDY + FF) CONCLUSION	
4.0	WASTEWATER SERVICING	
4.1	BACKGROUND	
4.2	DESIGN CRITERIA	
4.3	PROPOSED SERVICING	4.1
5.0	STORMWATER MANAGEMENT	5.1
5.1	OBJECTIVES	
5.2	SWM CRITERIA AND CONSTRAINTS	
5.3	STORMWATER MANAGEMENT	
	5.3.1 Allowable Release Rate	
	5.3.2 Storage Requirements	
	5.3.3 Results	5.5
6.0	GRADING AND DRAINAGE	6.1
7.0	UTILITIES	7.1
8.0	APPROVALS	8.1
9.0	EROSION CONTROL DURING CONSTRUCTION	9.1
10.0	GEOTECHNICAL INVESTIGATION AND ENVIRONMENTAL ASSESSMENT	10.1
11 0	CONCLUSIONS	11 1

Introduction

11.1 11.2 11.3 11.4 11.5 11.6	SANITAR STORMV GRADING UTILITIES	SERVICING	11.1 11.1 11.1
LIST	OF TABLE	S	
		Release Rates	
		ntrol Areas	
		ncontrolled (Non-Tributary) Release Rate	
		ed Tributary Area (3000mm x 1500mm Superpipe)	
		ed Tributary Area (Cistern)	
		ry of Total 5 and 100-Year Event Release Rates ent Structure – Car only Parking Areas	
		ent Structure – Car only Parking Areas ent Structure – Access Lanes and Heavy Truck Parking Areas	
Figure	OF FIGURI 1: Overall OF APPEN	Development Location Plan	1.1
4 DDE	NDIV A	WATER SERVICING	A 4
APPE A.1	NDIX A	Water Demands	
A.1 A.2		Demands (FUS 2020)	
A.3		Conditions	
A.4		Vater Servicing Analysis Results	
4 DDE	NDIV D	: SANITARY SEWER	D 4
APPE B.1	NDIX B	Sewer Design Sheet	
Б. I В.2		nd Report Excerpts (Sanitary Sewer)	
D.Z	Dackgrou	The report Execupies (Garitary Gewer)	В.2
	NDIX C	STORM SEWER	
C.1		wer Design Sheet	
C.2		Rational Method Calculations	
C.3	Backgrou	nd Report Excerpts (Storm Sewer)	C.3
APPE	NDIX D	CITY CORRESPONDENCE & CHECKLIST	D.1

Introduction

1.0 INTRODUCTION

Stantec Consulting Ltd. has been commissioned by Ashcroft Homes to prepare the following servicing study in support of a proposal to develop Phase 2 of the 114 Richmond Road property. The property is situated on the south side of Richmond Road at the southwest quadrant at the intersection of Richmond Road and Leighton Terrace, and terminating at Byron Avenue. The site is located in the City of Ottawa and is indicated in **Figure 1**. The 2.22 ha site was previously convent land. The existing convent building and much of the land has been deemed a heritage site and is to be preserved. The site development plan used for the purpose of this servicing brief consists of three (3) development phases as indicated on **Drawing SP-1**. Phase 1 of the site plan has been previously approved and constructed, and consists of three 9-storey condominium towers and renovation of the existing convent building into a primarily commercial facility. The current site plan for Phase 2A consists of one multi-storey residential building (Building B). The future Phase 2B includes two additional multi-storey residential buildings C and D. The servicing study herein considers ultimate buildout of the development.

Rank Remitted Remitte

Figure 1-1: Overall Development Location Plan

Background

2.0 BACKGROUND

Documents referenced in preparation of the design for the 114 Richmond Road (Phase 2A/2B) Development include:

- Geotechnical Investigation Proposed Residential Development Phases 2– 114 Richmond Road,
 Patersongroup Consulting Engineers, March 20, 2019.
- City of Ottawa Sewer Design Guidelines, City of Ottawa, October 2012.
- City of Ottawa Design Guidelines Water Distribution, City of Ottawa, July 2010.
- Assessment of Adequacy of Public Services Report Proposed Development at 114 Richmond Road, Trow Associates Inc., March 12, 2010.
- 114 Richmond Road Potable Water Servicing Analysis, Stantec Consulting Ltd., August 2011.
- Serviceability Report Ashcroft Homes 114 Richmond Road, Stantec Consulting Ltd., June 26, 2013.

3.0 WATER SERVICING

3.1 BACKGROUND

The site is located within Pressure Zone 1W of the City of Ottawa's Water Distribution System. The proposed development is expected to be serviced from the existing 305 mm diameter PVC and UCI watermain within Byron Avenue. There are existing fire hydrants on Byron Avenue.

3.2 WATER DEMANDS

3.2.1 Potable (Domestic) Water Demands

For each phase of development, water demands were estimated based on the unit mix of the site plan provided by M. David Blakely Architects. Building B is a 9-storey residential mid-rise building with 93 one-bedroom units and 94 two-bedroom units. Building C is a 4-storey residential mid-rise building with a single studio unit, 24 one-bedroom units, 36 two-bedroom units, and a single three-bedroom unit. Building D is a 9-storey residential mid-rise building with 16 studio units, 29 one-bedroom units, 97 two-bedroom units, and 58 rooming units.

The City of Ottawa Water Distribution Guidelines (July 2010), ISTB 2021-03 Technical Bulletin, and Ministry of Environment's Design Guidelines for Drinking Water Systems (2008) were used to determine water demands based on projected population densities for residential areas and peaking factors. The population was estimated using an occupancy of 1.4 persons per unit for studio, rooming, and one-bedroom apartments, 2.1 persons per unit for two-bedroom apartments, and 3.1 persons per unit for three-bedroom apartments.

A daily rate of 280 L/cap/day has been used to estimate average daily (AVDY) potable water demand for the residential units. Maximum day (MXDY) demands were determined by multiplying the AVDY demands by a factor of 2.5 for residential areas, while peak hourly (PKHR) demands were determined by multiplying the MXDY by a factor of 2.2 for residential areas as per ISD-2010-02 Technical Bulletin. The estimated demands for each residential plot are summarized in **Table 3-1** below and detailed in **Appendix A.1**.

Table 3-1: Estimated Water Demands

Block/Building	Total Apartment Units	Population	AVDY (L/s)	MXDY (L/s)	PKHR (L/s)
В	187	327	1.06	2.65	5.84
С	62	114	0.37	0.92	2.03
D	200	325	0.46	2.68	5.78
Total	449	766	2.48	6.21	13.65

3.2.2 Fire Flow Demands

Based on the site plan, the fire flow requirement was calculated in accordance with Fire Underwriters Survey (FUS) methodology. The construction of Buildings B and D were assumed to correspond to Section 3.2.2.42 of the Ontario Building Code (OBC), which denotes a non-combustible construction.

As such, required fire flows for on-site buildings were estimated based on buildings of non-combustible construction type with two-hour fire rated structural members, and considering all vertical openings as fully protected per FUS guidelines. The gross floor area of the largest floor + 25 % of the gross floor area of two additional floors were used in the FUS calculation for the two high-rises, as per Page 22 of the *Fire Underwriters Survey's Water Supply for Public Fire Protection* (2020).

Building C is assumed to correspond to Section 3.2.2.43A of the OBC, which considers structural elements with a minimum 1-hour fire resistance rating. Required fire flows were estimated based on a building of Type IV-B mass timber construction without protected vertical openings. Thus, the sum of the two largest floor areas + 50 % of the gross floor area of up to eight additional floors were used in the FUS calculation.

All three buildings are equipped with a fully supervised sprinkler system to conform to the NFPA 13 standard. The worst-case required fire flows were determined to be for Buildings C and D corresponding to 100 L/s (6,000 L/min). Detailed fire flow calculations per the FUS methodology are included in **Appendix A.2**.

3.2.3 **Boundary Conditions**

The estimated domestic potable water and fire flow demands were supplied as part of a boundary conditions request to City of Ottawa staff. A conservative fire flow requirement of 166.7 L/s was also submitted to ensure any minor potential changes in building layout would not require further boundary condition requests and can be used as a conservative development scenario. **Table 3-2** outlines the boundary conditions provided by the City of Ottawa on March 27, 2023 (See **Appendix A.3** for correspondence).

 Connection
 Byron Avenue

 Min. HGL (m)
 108.4

 Max. HGL (m)
 114.8

 Max Day + Fire Flow (100.0 L/s) (m)
 109.3

 Max Day + Fire Flow (166.7 L/s) (m)
 107.7

Table 3-2: Boundary Conditions

3.3 PROPOSED WATERMAIN SERVICING AND LAYOUT

The proposed development will consist of three residential apartment buildings and an underground parking garage. The site will be serviced by 250mm diameter watermain, which is then downsized to 150mm at

Water Servicing

Node 3 to suit a hydrant connection, fed by connections to the 305mm diameter watermain on Byron Avenue and separated by a valve (see **Drawing SSP-1** and **Figure 3-1**: Proposed Watermain Network).

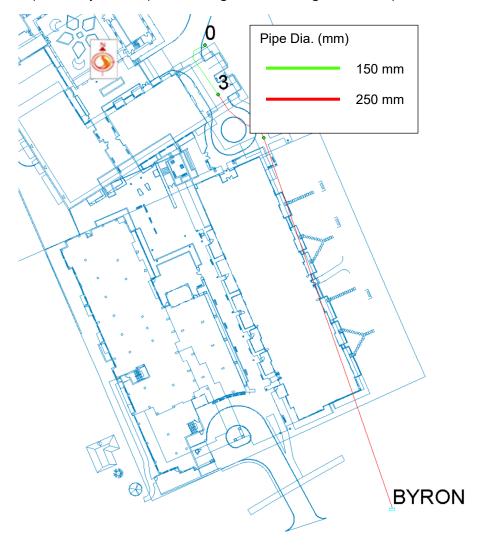


Figure 3-1: Proposed Watermain Network

Two new fire hydrants are proposed to service the site, one of which will be located at the end of the 150 mm watermain. Both fire hydrants are located within 45 m from the fire department connections servicing the building, as per Section 3.2.5.16 of the Ontario Building Code.

3.4 HYDRAULIC ASSESSMENT

3.4.1 Level of Service

Based on the *City of Ottawa Design Guidelines – Water Distribution*, the desired range of pressure under basic day, maximum day and peak hour demands is 345 kPa to 552 kPa (50 psi to 80 psi) and no less than 276 kPa (40 psi) at ground elevation. Furthermore, the maximum pressure at any point in the water distribution should not exceed 689 kPa (100 psi); pressure reducing measures are required to service areas where pressures greater than 552 kPa (80 psi) are anticipated.

3.4.2 Model Development

The proposed watermain within site were modeled in a H2OMAP hydraulic model to simulate the proposed water network. Hazen-Williams coefficients ("C-Factors") were applied to the new watermain in accordance with the City of Ottawa's Water Distribution Design Guidelines and as shown in **Table 3-3** below.

Pipe Diameter (mm)	C-Factor
150	100
200 to 250	110
300 to 600	120
> 600	130

Table 3-3: Proposed Watermain C-Factors

3.5 HYDRAULIC MODEL RESULTS

The H2OMAP hydraulic model was used to simulate the proposed water demand scenarios based on boundary conditions provided by the City of Ottawa. Specifically, the boundary conditions from the 305 mm diameter watermain along Byron Avenue were applied for all three scenarios. The model was tested under average day, peak hour, and maximum day plus fire flow conditions.

3.5.1 Average Day Demand (AVDY)

The hydraulic modeling results indicate that under the average day demands, the pressure in the proposed watermain is estimated at 456kPa (66.1 psi) at the proposed building. This pressure is within the serviceable limit of 276 kPa to 552 kPa (40 psi to 80 psi) as specified in the City of Ottawa Design Guidelines – Water Distribution. Results are shown in **Figure 3-2** below.

Figure 3-2: Pressures (psi) under AVDY Demands

3.5.2 Peak Hour Demand (PKHR)

The hydraulic modeling results indicate that under peak hour demands, the pressure in the proposed watermain ranges from 393 kPa to 392kPa (57.0 psi to 56.9 psi). These pressures are within the serviceable limit of 276 kPa to 552 kPa (40 psi to 80 psi) as specified in the City of Ottawa Design Guidelines – Water Distribution. Figure 3-3

Figure 3-3: Pressures (psi) under PKHR Demands

3.5.3 Maximum Day Demand + Fire Flow (MXDY + FF)

Hydraulic modelling was carried out to determine if the proposed watermain can provide the maximum day and fire flow demands to the proposed development while maintaining a residual pressure of 138 kPa (20 psi) per the City of Ottawa Design Guidelines – Water Distribution. The analysis was accomplished

Water Servicing

using a steady-state maximum day demand scenario along with the automated fire flow simulation feature of H2O Map.

Figure 3-4 illustrates that the proposed watermain can deliver 166.7 L/s of fire flow and meet the critical demand scenario at the specified nodes while maintaining the required residual pressure of 138 kPa (20 psi).

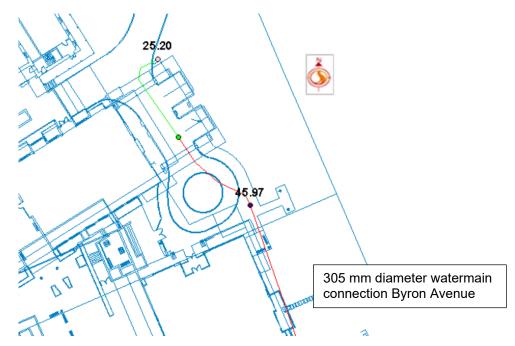


Figure 3-4: Residual pressure (psi) for MXDY+FF Demands

3.6 CONCLUSION

Based on the boundary conditions provided by the City of Ottawa and results of the hydraulic analysis, the proposed water servicing can provide sufficient flow and pressure to satisfy the needs of the development per the Fire Underwriters Survey calculation method while respecting City of Ottawa design guidelines. The proposed water servicing layout will meet the domestic demands of the site. A booster pump to be designed by the buildings' mechanical engineer, will be required to maintain acceptable pressures for the upper storeys of Buildings B and D.

Wastewater Servicing

4.0 WASTEWATER SERVICING

4.1 BACKGROUND

The proposed development includes Phases 2A and 2B of the multi-phased development as indicated in **Figure 1**. The site is located on the south side of Richmond Road and west of Leighton Terrace. Wastewater servicing for Phase 2A/2B of the development will be extended from the 375mm diameter sewer constructed as part of Phase 1 (**Drawing SSP-1**). The sanitary sewer within the development lands discharges to an existing 375mm diameter sanitary sewer running along Richmond Road, which outlets in turn to the 450mm diameter sewer running north on Patricia Avenue.

For detailed information regarding the wastewater servicing for the Phase 1 area, please refer to the Serviceability Report – Ashcroft Homes – 114 Richmond Road (Stantec, June 2013).

4.2 DESIGN CRITERIA

As outlined in the City of Ottawa Sewer Design Guidelines and the MOECP's Design Guidelines for Sewage Works, the following criteria were used to calculate estimated wastewater flow rates and to size the sanitary sewers:

- Minimum Velocity 0.6 m/s (0.8 m/s for upstream sections)
- Maximum Velocity 3.0 m/s
- Manning roughness coefficient for all smooth wall pipes 0.013
- Minimum size 200mm dia. for residential areas, 250mm for commercial areas
- Average Wastewater Generation (Commercial) 28,000L/ha/day
- Average Wastewater Generation (Residential) 280L/cap/day
- Peak Factor (Commercial) 1.5 (if Commercial over 25%+ contributing area, 1.0 otherwise)
- Peak Factor (Residential) Per Harmon's w/ correction factor of 0.8
- Extraneous Flow Allowance 0.33 l/s/ha (conservative value)
- Manhole Spacing 120 m
- Minimum Cover 2.5m

4.3 PROPOSED SERVICING

The proposed site will be serviced by gravity sewers which will direct the wastewater flows from the entire development site (approx. 15.3 L/s with allowance for infiltration) to the existing 375mm diameter sanitary sewer. As basement levels of the proposed underground parking structure lie below the connecting 375mm sewer, drains from these areas will be required to be pumped up to the existing gravity sewer stub. The proposed drainage pattern is detailed on **Drawing SA-1**. A sanitary sewer design sheet for the proposed service lateral is included in **Appendix B.1**. Full port backwater valves are to be installed on all sanitary

Wastewater Servicing

services within the site to prevent any potential surcharge from the downstream sanitary sewer from impacting the proposed property.

As outlined in the Serviceability Report for Phase 1 of the 114 Richmond Road site, an anticipated peak flow rate from the development was determined to be 21.5L/s, which was well within the available capacity within downstream sewers on Patricia Avenue. Based on revised sanitary sewer peak flow parameters per updates to the City's Sewer Design Guidelines, the estimated peak flow rate from the development is well within that of the approved serviceability study (see excerpts in **Appendix B.2**).

Stormwater Management

5.0 STORMWATER MANAGEMENT

5.1 OBJECTIVES

The objective of this stormwater management plan is to determine the measures necessary to control the quantity/quality of stormwater released from the proposed development to criteria established within the previously approved serviceability report for the site, and to provide sufficient detail for approval and construction.

5.2 SWM CRITERIA AND CONSTRAINTS

Criteria were established by combining current design practices outlined by the City of Ottawa Design Guidelines (2012), through the report titled Assessment of Adequacy of Public Services Report" by Trow Associates (March 2010), and through consultation with City of Ottawa staff. The following summarizes the criteria, with the source of each criterion indicated in brackets:

General

- Use of the dual drainage principle (City of Ottawa).
- Wherever feasible and practical, site-level measures should be used to reduce and control the volume and rate of runoff. (City of Ottawa)
- Assess impact of 100-year event outlined in the City of Ottawa Sewer Design Guidelines on major & minor drainage system (City of Ottawa)
- No quality control criteria have been previously identified for the subject site (Stantec, Trow)

Storm Sewer & Inlet Controls

- Size storm sewers to convey 5-year storm event under free-flow conditions using City of Ottawa I-D-F parameters (City of Ottawa).
- Site discharge rates for each storm event to be restricted to 5-year storm event pre-development rates with a maximum pre-development C coefficient of 0.45, and time of concentration of 23.8 minutes (205L/s) (Stantec, Trow).
- Proposed site to discharge the existing 300mm diameter storm sewer within the Daly Avenue ROW at the northern boundary of the subject site (City of Ottawa).
- 100-year Storm HGL to be a minimum of 0.30 m below building foundation footing (City of Ottawa).

Surface Storage & Overland Flow

- Building openings to be a minimum of 0.15m above the 100-year water level (City of Ottawa)
- Maximum depth of flow under either static or dynamic conditions shall be less than 0.35m (City of Ottawa)

Stormwater Management

- Balance of flows in excess of allowable release rate up to and including the 100-year storm event to be detained on-site. (Stantec, Trow)
- Provide adequate emergency overflow conveyance off-site for events beyond the 100-year storm (City of Ottawa)
- Where possible, major flow from the site is to be safely conveyed by surface routing towards Leighton Terrace and Richmond Road. (Stantec)

5.3 STORMWATER MANAGEMENT

The Modified Rational Method was employed to assess the rate and volume of runoff generated during post-development conditions. The site was subdivided into subcatchments (subareas) tributary to stormwater controls as defined by the location of inlet control devices. A summary of subareas and runoff coefficients is provided in **Appendix C.2** and **Drawing SD-1** indicates the stormwater management subcatchments. C coefficient values have been increased by 25% for the post-development 100-year storm event based on MTO Drainage Manual recommendations. Rational method storm sewer design sheets have been supplied as part of **Appendix C.1**.

5.3.1 Allowable Release Rate

Based on prior consultation with City of Ottawa staff during Phase 1 of the development, the peak post-development discharge from the subject site is to be limited to that of the 5-year event discharge under pre-development conditions, to a maximum discharge coefficient C of 0.45 at a time of concentration of 23.8 minutes (see report excerpts in **Appendix C.3**) Peak flow rates have been calculated using the rational method as follows:

Q = 2.78 CiA

Where: Q = peak flow rate, L/s

A = drainage area, ha

I = rainfall intensity, mm/hr (per Ottawa IDF curves)

C = site runoff coefficient

The target release rate for the site is summarized in Table 4 below:

Table 4: Target Release Rates

Design Storm	Target Flow Rate (L/s)
All Events	205

5.3.2 Storage Requirements

The site requires quantity control measures to meet the restrictive stormwater release criteria. It is proposed that rooftop storage via restricted roof release in combination with the subsurface storage pipe constructed in Phase 1, as well as a proposed storage cistern to reduce site peak outflow to target rates.

Stormwater Management

5.3.2.1 Rooftop Storage

It is proposed to retain stormwater on the building rooftops by installing restricted flow roof drains. The following calculations assume the proposed roofs will be equipped with standard Watts Model R1100 Accuflow Roof Drains. Design for Roof A is as per the approved Phase 1 Stormwater Management Report for the development.

Watts Drainage "Accutrol" roof drain weir data has been used to calculate a practical roof release rate and detention storage volume for the rooftops. It should be noted that the "Accutrol" weir has been used as an example only, and that other products may be specified for use, provided that the total roof drain release rate is restricted to match the maximum rate of release indicated in Table 2, and that sufficient roof storage is provided to meet (or exceed) the resulting volume of detained stormwater. Proposed drain release rates have been calculated based on the Accutrol weir setting defined in the table below. Storage volume and controlled release rate are summarized in **Table 5**:

Table 5: Roof Control Areas

Design Storm	Roof Area ID	Depth (mm)	Accutrol Setting (%)	Discharge (L/s)	Volume Stored (m³)
5-Year	ROOF A (Existing)	27	N/A	9.2	44.2
	ROOF B1	111	25% Open	2.5	9.9
	ROOF B2	113	50% Open	2.1	9.9
	ROOF C	112	50% Open	7.1	30.4
	ROOF D1	112	50% Open	5.1	22.6
	ROOF D3	108	25% Open	1.6	5.1
	ROOF D5	110	25% Open	1.6	6.3
100-Year	ROOF A (Existing)	51	N/A	17.4	83.6
	ROOF B1	148	25% Open	2.8	23.0
	ROOF B2	150	50% Open	2.5	22.3
	ROOF C	148	50% Open	8.7	68.7
	ROOF D1	149	50% Open	6.3	51.1
	ROOF D3	145	25% Open	1.9	12.1
	ROOF D5	148	25% Open	1.9	14.6

5.3.2.2 Uncontrolled Catchments

Due to grading constraints, some subcatchments were designed without a storage component. These areas flow offsite uncontrolled to Richmond Road and Byron Avenue, and are not tributary to the on-site storm sewer outlet. Areas that discharge offsite without entering the proposed stormwater management system must be compensated for in areas with controls, as drainage will re-enter storm sewers tributary

Stormwater Management

to Richmond Road further downstream of the site. **Table 6** summarizes the peak uncontrolled 5 and 100-year catchment release rates for areas that are non-tributary to the outlet sewer:

Table 6: Peak Uncontrolled (Non-Tributary) Release Rate

Design Storm	Area ID	Area (ha)	С	Tc (min)	Intensity (mm/hr)	Qrelease (L/s)
5-Year	UNC1	0.09	0.80	10	104.19	20.9
5-Year	UNC2	0.06	0.60	10	104.19	10.4
100-Year	UNC1	0.09	1.00	10	178.56	44.7
100-Year	UNC2	0.06	0.75	10	178.56	22.3

5.3.2.3 Surface Storage

Surface drainage directed to proposed CB 500 is proposed to be restricted prior to further control by the downstream 3000mm x 1500mm superpipe within the previously constructed Phase 1 of the development. Additional control is necessary to ensure peak inflow rates do not cause surcharge of the downstream system. Flow control will be provided by a proposed IPEX Tempest 95mm ICD (slide type) to be installed at the outlet invert of the catch basin. Storage volumes and controlled release rates for the catch basin are summarized below.

Design Storm	Area IDs	Tributary Area (ha)	Design Head (m)	Elevation (m)	Discharge (L/s)	V _{required} (m³)	V _{available} (m³)
5-Year	A4	0.062	0.73	67.32	15.3	0.0	0.5
100-Year	A4	0.062	1.19	68.17	19.6	6.7	7.0

5.3.2.4 Subsurface Storage

Per the modified rational method calculations included as part of **Appendix C.2**, the remainder of the site is to be directed towards either the existing 3000mm x 1500mm storage pipe, or a proposed subsurface cistern sized to meet the target peak discharge rate for the during the 100-year event.

Storage volumes for the existing storage pipe and associated structures were previously determined within the approved development Phase 1 stormwater management report. A change in diameter to the ICD downstream of the superpipe is required to suit the current development plan catchment area and imperviousness.

It is anticipated that the subsurface cistern will be located below the outlet sewer invert elevation and will be required to be pumped to the gravity sewer outlet at the discharge rate specified. Storage volumes and controlled release rates for the two systems are summarized below:

Stormwater Management

Table 7: Controlled Tributary Area (3000mm x 1500mm Superpipe)

Design Storm	Area IDs	Tributary Area (ha)	Design Head (m)	Elevation (m)	Discharge (L/s)	V _{required} (m ³)	V _{available} (m³)
5-Year	A1, A3, A4, EXT2	1.003	0.65	65.96	31.2	120.4	120.5
100-Year	A1, A3, A4, EXT2	1.003	1.67	66.98	50.0	288.3	292.2

Table 8: Controlled Tributary Area (Cistern)

Design Storm	Area IDs	Tributary Area (ha)	Design Head (m)	Discharge (L/s)	V _{required} (m ³)	V _{available} (m³)
5-Year	COURT, A2, B3- B6, D2, D4, EXT1	0.651	-	45.0	49.9	190.0
100-Year	COURT, A2, B3- B6, D2, D4, EXT1	0.651	-	45.0	173.4	190.0

5.3.3 Results

Table 9 demonstrates the proposed stormwater management plan and demonstrates adherence to target peak outflow rates for the site.

Table 9: Summary of Total 5 and 100-Year Event Release Rates

	5-Year Peak Discharge (L/s)	100-Year Peak Discharge (L/s)
Uncontrolled	31	67
Controlled - Roof	29	42
Controlled – Surface / Subsurface	76	94
Total	137	203
Target	205	205

Grading and Drainage

6.0 GRADING AND DRAINAGE

The proposed development including Phase 1 measures approximately 2.23ha in area. The topography across the site is a gradual slope draining from south to north with a difference in elevation of approximately 3m. A detailed grading plan (see **Drawing GP-1**) has been provided to satisfy the stormwater management requirements, adhere to any permissible grade raise restrictions (see **Section 10.0**) for the site, and provide for minimum cover requirements for storm and sanitary sewers where possible. Site grading has been established to provide emergency overland flow routes required for stormwater management in accordance with City of Ottawa requirements.

The subject site maintains emergency overland flow routes for flows deriving from storm events in excess of the maximum design event to the proposed municipal rights-of-way at the southern and northern boundaries of the development, and ultimately to Richmond Road and Byron Avenue as depicted in **Drawing GP-1.** Existing rear yards along the western and eastern boundary of the site that previously drained onto the subject site area will be maintained.

Utilities

7.0 UTILITIES

As the subject site is bound to the east and west by an existing residential area / commercial main street, and by municipal right-of-ways to the north, south, and east, Hydro, Bell, Gas and Cable servicing for the proposed development should be readily available. Pole mounted Hydro infrastructure may exist along the western property line, and will be relocated prior to development. It is anticipated that existing infrastructure will be sufficient to provide a means of distribution for the proposed site. Exact size, location and routing of utilities will be finalized after design circulation.

Approvals

8.0 APPROVALS

Environmental Compliance Approvals (ECAs, formerly Certificates of Approval (CofA)) under the Ontario Water Resources Act are expected to be a requirement for Phases 2A/2B of the development as site discharge is routed through existing sewers for Phase 1 of the development forming a separate severed parcel owned by the applicant. Approval was previously obtained for storm and sanitary sewers connecting to Richmond Road / Leighton Terrace as part of Phase 1, and the downstream sewers have been designed with the ability to receive flows from Phases 2A/2B.

Erosion Control During Construction

9.0 EROSION CONTROL DURING CONSTRUCTION

Erosion and sediment controls must be in place during construction. The following recommendations to the contractor will be included in contract documents.

- 1. Implement best management practices to provide appropriate protection of the existing and proposed drainage system and the receiving water course(s).
- 2. Limit extent of exposed soils at any given time.
- 3. Re-vegetate exposed areas as soon as possible.
- 4. Minimize the area to be cleared and grubbed.
- 5. Protect exposed slopes with plastic or synthetic mulches.
- 6. Provide sediment traps and basins during dewatering.
- 7. Install sediment traps (such as SiltSack® by Terrafix) between catch basins and frames.
- 8. Plan construction at proper time to avoid flooding.

The contractor will, at every rainfall, complete inspections and guarantee proper performance. The inspection is to include:

- 9. Verification that water is not flowing under silt barriers.
- 10. Clean and change silt traps at catch basins.

Refer to **Drawing ECDS-1** for the proposed location of silt fences, straw bales and other erosion control structures.

Geotechnical Investigation and Environmental Assessment

10.0 GEOTECHNICAL INVESTIGATION AND ENVIRONMENTAL ASSESSMENT

A geotechnical Investigation Report was prepared by Patersongroup dated March, 2019. The report summarizes the existing soil conditions within the entirety of the development and construction recommendations. For details which are not summarized below, please see the original Paterson report.

Subsurface soil conditions within the subject area were determined from 5 boreholes distributed across the development. In general, soil stratigraphy consisted of topsoil underlain by glacial till, followed by limestone bedrock. Bedrock/inferred bedrock elevations range from depths of 8.7 to 10.7m below ground surface. Groundwater Levels were measured in July 2010, and vary in elevation from 1.02m to 2.22m below ground surface.

No grade raise limitations were identified for the subject site.

The required pavement structure for proposed hard surfaced areas are outlined in Table 7 and 8 below:

Table 10: Pavement Structure – Car only Parking Areas

Thickness (mm)	Material Description
50	Wear Course – HL 3 or Superpave 12.5 Asphaltic Concrete
150	Base – OPSS Granular A Crushed Stone
300	Subbase - OPSS Granular B Type II
-	Subgrade – Either fill, in situ soil, or OPSS Granular B Type I or II material placed over in situ soil or bedrock.

Table 11: Pavement Structure – Access Lanes and Heavy Truck Parking Areas

Thickness (mm)	Material Description
40	Wear Course – HL-3 or Superpave 12.5 Asphaltic Concrete
50	Binder Course – HL-8 or Superpave 19.0 Asphaltic Concrete
150	Base – OPSS Granular A Crushed Stone
400	Subbase - OPSS Granular B Type II
-	Subgrade – Either fill, in situ soil or OPSS Granular B Type I or II material placed over in situ soil or bedrock.

Conclusions

11.0 CONCLUSIONS

11.1 WATER SERVICING

Based on the supplied boundary conditions for existing watermains and hydraulic analysis from the estimated domestic and fire flow demands for the subject site, the proposed servicing in this development can provide sufficient capacity to sustain the required domestic demands and emergency fire flow demands of the proposed site per the Fire Underwriters Survey calculation method while respecting City of Ottawa design guidelines. A booster pump to be designed by the buildings' mechanical engineer, will be required to maintain acceptable pressures for the upper storeys of Buildings B and D.

11.2 SANITARY SERVICING

The proposed sanitary sewer network is sufficiently sized to provide gravity drainage of the site. The proposed development will be serviced by a network of gravity sewers which will direct wastewater flows to the existing 375mm dia. sanitary sewer stub constructed as part of Phase 1. The proposed drainage outlet to the north has sufficient capacity to receive sanitary discharge from the site based on the findings of the Serviceability Report for Phase 1 of the development.

11.3 STORMWATER SERVICING

The proposed stormwater management plan is in compliance with the goals specified previously through consultation with the City of Ottawa for Phase 1 of the development. An on-site subsurface storage cistern, superpipe, and associated ICDs have been proposed to limit peak storm sewer inflows to downstream storm sewers to 205L/s as determined by background reports. The downstream receiving sewer has sufficient capacity to receive runoff volumes from the site based on the findings of the Serviceability Report for Phase 1 of the development.

11.4 GRADING

Grading for the site has been designed to provide an emergency overland flow route as per City requirements and reflects the recommendations made in the Geotechnical Investigation Report prepared by Patersongroup. Erosion and sediment control measures will be implemented during construction to reduce the impact on existing facilities.

11.5 UTILITIES

Utility infrastructure exists within the Richmond Road and Byron Avenue ROWs at the northern and southern boundaries of the proposed site. It is anticipated that existing infrastructure will be sufficient to provide a means of distribution for the entirety of the development. Exact size, location and routing of utilities will be finalized after design circulation.

Conclusions

11.6 APPROVALS/PERMITS

An MECP Environmental Compliance Approval is expected to be required as the Phase 2A/2B site discharges to existing sewers within Phase 1, which is a separate severed parcel under same ownership. Approval was obtained for the receiving storm and sanitary sewers as part of Phase 1. No other approval requirements from other regulatory agencies are anticipated.

APPENDICES

Appendix A WATER SERVICING

A.1 DOMESTIC WATER DEMANDS

Q West Phases 2A/2B - Domestic Water Demand Estimates Based on conceptual development plans from M.David Blakely (2023/03/09)

Ottawa Design Guidelines - Water Distribution	
	'n

Table 4.1 Per Unit Populations										
Studio	1.4	ppu								
1 Bedroom	1.4	ppu								
2 Bedroom	2.1	ppu								
3 Redroom	3.1	ppu								

		Number of		Daily Demand Rate	Avg. Da	y Demand ^{1,2}	Max. Day I	Demand 1, 2	Peak Hour D	emand ^{1, 2}
Development Block/Area ID	Commercial Area (m ²)	Residential Units	Population	(L/cap/day or L/ha/d)	(L/min)	(L/s)	(L/min)	(L/s)	Peak Hour De (L/min) 0.0 139.2 211.1 0.0 1.5 35.9 80.9 3.3	(L/s)
Building B (9 Storeys)										
Studio	-	0	0	280	0.0	0.00	0.0	0.00	0.0	0.00
1 Bedroom	-	93	130	280	25.3	0.42	63.3	1.05	139.2	2.32
2 Bedroom	-	94	197	280	38.4	0.64	96.0	1.60	211.1	3.52
3 Bedroom	-	0	0	280	0.0	0.00	0.0	0.00	0.0	0.00
Building C (4 Storeys)										
Studio	-	1	1	280	0.3	0.00	0.7	0.01	1.5	0.02
1 Bedroom	-	24	34	280	6.5	0.11	16.3	0.27	35.9	0.60
2 Bedroom	-	36	76	280	14.7	0.25	36.8	0.61	80.9	1.35
3 Bedroom	-	1	3	280	0.6	0.01	1.5	0.03	3.3	0.06
Building D (9 Storeys)										
Studio	-	16	22	280	4.4	0.07	10.9	0.18	24.0	0.40
1 Bedroom	-	29	41	280	7.9	0.13	19.7	0.33	43.4	0.72
2 Bedroom	-	97	204	280	39.6	0.7	99.0	1.7	217.8	3.63
Rooming Unit	-	58	58	280	11.3	0.19	28.2	0.47	62.0	1.03
Total Site :	0	449	766	-	148.9	2.48	372.4	6.21	819.2	13.65

Water demand criteria used to estimate peak demand rates for residential areas are as follows: maximum daily demand rate = 2.5 x average day demand rate peak hour demand rate = 2.2 x maximum day demand rate

Water demand criteria used to estimate peak demand rates for commercial areas are as follows:
maximum daily demand rate = 1.5 x average day demand rate
peak hour demand rate = 1.8 x maximum day demand rate

³ Population density for all residential units based on an population densities provided iffable 4.1 - Per Unit Populations of the City of Ottawa Water Distribution Design Guidelines (July 2010).

A.2 FIRE FLOW DEMANDS (FUS 2020)

FUS Fire Flow Calculation Sheet - 2020 FUS Guidelines **Stantec**

Stantec Project #: 160400864
Project Name: Qwest Phase 2A/2B
Date: 3/9/2023
Fire Flow Calculation #: 1
Description: High Rise Residential

Notes: Assumed to correspond to OBC 3.2.2.42 - non-combustible construction

Step	Task		Notes Value Used											
1	Determine Type of Construction		Тур	pe II - Nonc	ombustible C	Construction	/ Type IV-A	- Mass Timbe	er Construct	ion		0.8	-	
2	Determine Effective	Sum of	Largest Floo	or + 25% of T	wo Addition	al Floors		Vertical (Openings Pr	otected?		YES	-	
	Floor Area	1495	1495 1782 1782 1782 1680 1680 1205 1205 1156										-	
3	Determine Required Fire Flow	(F = $220 \times C \times A^{1/2}$). Round to nearest 1000 L/min											9000	
4	Determine Occupancy Charae	Limited Combustible											7650	
			Conforms to NFPA 13											
5	Determine Sprinkler					Standard W	ater Supply					-10%	-3825	
3	Reduction	Fully Supervised										-10%	-3023	
		% Coverage of Sprinkler System										100%		
		Direction	Exposure Distance (m)	Exposed Length (m)	Exposed Height (Stories)	Length-Height Factor (m x stories)	Construction of	Adjacent Wall	Fire	wall / Sprinklere	ed §	-	-	
	Determine Increase	North 10.1 to 20 23 3 61-80		Тур	e V	NO			13%					
6	for Exposures (Max. 75%)	East	> 30	21	2	41-60	Тур	e V		NO		0%	995	
	7 3701	South	3.1 to 10	22.5	9	> 100	Type III-IV - I Oper			YES		0%	773	
		West	10.1 to 20	42	2	81-100	Type III-IV - I Oper		YES			0%		
					Total Requir	ed Fire Flow	in L/min, Ro	unded to Ne	arest 1000L/	min			5000	
7	Determine Final					Total F	Required Fire	Flow in L/s					83.3	
'	Required Fire Flow					Required	Duration of	Fire Flow (hrs	5)				1.75	
						Required	d Volume of I	Fire Flow (m ³	¹)				525	

FUS Fire Flow Calculation Sheet - 2020 FUS Guidelines **Stantec**

Stantec Project #: 160400864
Project Name: Qwest Phase 2A/2B
Date: 3/9/2023
Fire Flow Calculation #: 2
Description: 4-Storey Residential, Group C

 $Notes: Assumed to correspond to OBC\ 3.2.2.43A-considers\ structural\ elements\ with\ minimum\ 1hr\ fire\ resistance\ rating.$

Step	Task					No	otes					Value Used	Req'd Fire Flow (L/min)	
1	Determine Type of Construction				Туре	IV-B Mass Ti	mber Constru	ction				0.9	-	
2	Determine Effective	Sum of Tw	um of Two Largest Floors + 50% of Eight Additional Floors Vertical Openings Protected?											
2	Floor Area	1810	1810	1810	1810				5430	-				
3	Determine Required Fire Flow	(F = 220 x C x A ^{1/2}), Round to nearest 1000 L/min											15000	
4	Determine Occupancy Charge	Limited Combustible											12750	
			Conforms to NFPA 13										-6375	
5	Determine Sprinkler	Standard Water Supply										-10%		
5	Reduction	Fully Supervised										-10%		
		% Coverage of Sprinkler System												
		Direction	Exposure Distance (m)	Exposed Length (m)	Exposed Height (Stories)	Length-Height Factor (m x stories)	Construction of	Adjacent Wall	Fire	Firewall / Sprinklered ?		-	-	
	Determine Increase	North	10.1 to 20	22.6	4	81-100	Type I-II - Protec	ted Openings		YES		0%		
6	for Exposures (Max. 75%)	East	> 30	81	2	> 100	Туре	V		NO		0%	0	
	75/6]	South	> 30	22.6	2	41-60	Туре	٧		NO		0%	U	
		West	10.1 to 20	81	4	> 100	Type I-II - Protec	ted Openings		YES		0%		
					Total Requir	ed Fire Flow	in L/min, Rou	nded to Ne	arest 1000L	/min			6000	
7	Determine Final					Total I	Required Fire F	Flow in L/s					100.0	
'	Required Fire Flow					Required	Duration of F	ire Flow (hr	s)				2.00	
			Required Volume of Fire Flow (m³)										720	

FUS Fire Flow Calculation Sheet - 2020 FUS Guidelines **Stantec**

Stantec Project #: 160400864
Project Name: Qwest Phase 2A/2B
Date: 3/9/2023
Fire Flow Calculation #: 3
Description: High Rise Residential - Retirement Home

Notes: Assumed to correspond to OBC 3.2.2.48A - non-combustible construction

Step	Task					No	ites					Value Used	Req'd Fire Flow (L/min)	
1	Determine Type of Construction		Туј	pe II - Nonc	ombustible (Construction	/ Type IV-A	- Mass Timb	er Construct	ion		0.8	-	
2	Determine Effective	Sum of	Largest Floo	or + 25% of Tv	wo Addition	al Floors		Vertical	Openings Pr	otected?		YES	-	
2	Floor Area	2447	2015	2015	2015	1627	1627	1296	3454.5	-				
3	Determine Required Fire Flow	(F = 220 x C x A ^{1/2}). Round to nearest 1000 L/min											10000	
4	Determine Occupancy Charae	Limited Combustible											8500	
			Conforms to NFPA 13											
5	Determine Sprinkler	Determine Sprinkler Standard Water Supply										-10%	-4250	
3	Reduction	Fully Supervised											-4230	
		% Coverage of Sprinkler System												
		Direction	Exposure Distance (m)	Exposed Length (m)	Exposed Height (Stories)	Length-Height Factor (m x stories)	Construction of	Adjacent Wall	Fire	wall / Sprinklere	ed ?	-	-	
	Determine Increase	North	3.1 to 10	21	9	> 100	Type I-II - Prote	cted Openings		YES		0%		
6	for Exposures (Max. 75%)	East	10.1 to 20	81	12	> 100	Type III-IV - Oper			YES		0%	1275	
	7 3701	South	> 30	37	2	61-80	Тур	e V		NO		0%	12/3	
		West	3.1 to 10	10	2	0-20	Тур	e V		NO		15%		
					Total Requi	red Fire Flow	in L/min, Ro	unded to Ne	earest 1000L/	min			6000	
7	Determine Final					Total I	Required Fire	Flow in L/s					100.0	
'	Required Fire Flow					Required	Duration of	Fire Flow (hr	s)				2.00	
						Required	d Volume of	Fire Flow (m	3)				720	

A.3 BOUNDARY CONDITIONS

Wu, Michael

From: Jhamb, Nishant <nishant.jhamb@ottawa.ca>

Sent: Monday, 27 March, 2023 13:47

To: Kilborn, Kris

Cc: Mottalib, Abdul; Shahzadeh, Serene; Thiffault, Dustin; Sharp, Mike; Wessel, Shawn; Gorni,

Colette

Subject: RE: QWest - Revised Boundary Condition Request (D07-12-18-0080)

Attachments: Q West 2A-2B (114 Richmond Road) March 2023.pdf

Hello Kris,

From the point load perspective there is enough pressure in the 300mm UCI watermain to deliver the required 167L/s. Please note a Multi Hydrant analysis is required to ensure there are enough public hydrants within 150m of the building entrance (along the travel path) to meet this requirement. Please provide a sketch showing the public hydrants within 150m of proposed Building entrances for the multi hydrant analysis

Also Ensure that proposed Siamese connections are within 45 meters of a Fire Hydrant.

Please feel free to reach out if you wish to discuss further.

The following are boundary conditions, HGL, for hydraulic analysis at Q West Phases 2A/2B (zone 1W) assumed to be a dual connection to the 305 mm on Byron Avenue (see attached PDF for location).

Minimum HGL: 108.4 m
Maximum HGL: 114.8 m

Max Day + Fire Flow (100 L/s:) 109.3 m

Max Day + Fire Flow (167 L/s:) 107.7 m (Multi Hydrant analysis required)

These are for current conditions and are based on computer model simulation.

Disclaimer: The boundary condition information is based on current operation of the city water distribution system. The computer model simulation is based on the best information available at the time. The operation of the water distribution system can change on a regular basis, resulting in a variation in boundary conditions. The physical properties of watermains deteriorate over time, as such must be assumed in the absence of actual field test data. The variation in physical watermain properties can therefore alter the results of the computer model simulation.

Thanks

Nishant Jhamb, P.Eng
Project Manager | Gestionnaire de projet
Planning, Real Estate and Economic Development Department

Development Review - Central Branch

City of Ottawa | Ville d'Ottawa

110 Laurier Avenue West Ottawa, ON | 110, avenue. Laurier Ouest. Ottawa (Ontario) K1P 1J1

613.580.2424 ext./poste 23112, nishant.jhamb@ottawa.ca

From: Kilborn, Kris < kris.kilborn@stantec.com>

Sent: March 27, 2023 7:59 AM

To: Jhamb, Nishant <nishant.jhamb@ottawa.ca>

Cc: Mottalib, Abdul <Abdul.Mottalib@ottawa.ca>; Shahzadeh, Serene <Serene.Shahzadeh@stantec.com>; Thiffault,

Dustin <dustin.thiffault@stantec.com>; Sharp, Mike <Mike.Sharp@stantec.com>; Wessel, Shawn

<shawn.wessel@ottawa.ca>; Gorni, Colette <colette.gorni@ottawa.ca>

Subject: RE: QWest - Revised Boundary Condition Request (D07-12-18-0080)

CAUTION: This email originated from an External Sender. Please do not click links or open attachments unless you recognize the source.

ATTENTION : Ce courriel provient d'un expéditeur externe. Ne cliquez sur aucun lien et n'ouvrez pas de pièce jointe, excepté si vous connaissez l'expéditeur.

Good morning Nishant

I am just following up on our request for boundary conditions for the Qwest property. You had mentioned that if may take up to two weeks and we are at that now. Could you follow up And advise.

Sincerely

Kris Kilborn

Principal, Community Development Business Center Practice Leader

Mobile: 613 297-0571 Fax: 613 722-2799 kris.kilborn@stantec.com Stantec

300 - 1331 Clyde Avenue Ottawa ON K2C 3G4

The content of this email is the confidential property of Stantec and should not be copied, modified, retransmitted, or used for any purpose except with Stantec's written authorization. If you are not the intended recipient, please delete all copies and notify us immediately.

OUT OF OFFICE ALERT. I WILL BE OUT OF THE OFFICE ON THURSDAY MARCH 30 AND FRIDAY MARCH 31 FOR A PROCEDURE AND RETURNING ON MONDAY APRIL 3.

The Ottawa office is open however many staff are working remotely. To contact me please use email, or my mobile and leave a message.

Please note our reception is on the 3rd floor.

From: Jhamb, Nishant <nishant.jhamb@ottawa.ca>

Sent: Friday, March 10, 2023 2:20 PM

To: Kilborn, Kris < kris.kilborn@stantec.com >

Cc: Mottalib, Abdul < Abdul. Mottalib@ottawa.ca >; Shahzadeh, Serene < Serene. Shahzadeh@stantec.com >; Thiffault,

Dustin < <u>Dustin.Thiffault@stantec.com</u>>; Sharp, Mike < <u>Mike.Sharp@stantec.com</u>>; Wessel, Shawn

<shawn.wessel@ottawa.ca>; Gorni, Colette <colette.gorni@ottawa.ca>

Subject: RE: QWest - Revised Boundary Condition Reguest (D07-12-18-0080)

Good Afternoon Kris,

I have submitted the request to Water Department, please note it may take up to 2 weeks to receive boundary conditions.

Regards

Nishant Jhamb, P.Eng
Project Manager | Gestionnaire de projet
Planning, Real Estate and Economic Development Department
Development Review - Central Branch
City of Ottawa | Ville d'Ottawa
110 Laurier Avenue West Ottawa, ON | 110, avenue. Laurier Ouest. Ottawa (Ontario) K1P 1J1
613.580.2424 ext./poste 23112, nishant.jhamb@ottawa.ca

From: Gorni, Colette < colette.gorni@ottawa.ca >

Sent: March 10, 2023 9:17 AM

To: Kilborn, Kris <kris.kilborn@stantec.com>; Jhamb, Nishant <nishant.jhamb@ottawa.ca>

Cc: Mottalib, Abdul < Abdul. Mottalib@ottawa.ca >; Shahzadeh, Serene < Serene. Shahzadeh@stantec.com >; Thiffault,

Dustin <dustin.thiffault@stantec.com>; Sharp, Mike <Mike.Sharp@stantec.com>; Wessel, Shawn

<shawn.wessel@ottawa.ca>

Subject: RE: QWest - Revised Boundary Condition Reguest (D07-12-18-0080)

Hi Kris,

Hope all is well with you too. I am forwarding you along to Nishant Jhamb who will assist with this request.

Thanks,

Colette Gorni

Planner II | Urbaniste II
Development Review Central | Services d'examen demandes d'aménagements secteur centre
Planning, Real Estate and Economic Development Department
City of Ottawa | Ville d'Ottawa
613-580-2424, ext./poste 21239
Colette.Gorni@ottawa.ca

From: Kilborn, Kris < kris.kilborn@stantec.com >

Sent: March 09, 2023 3:19 PM

To: Gorni, Colette <colette.gorni@ottawa.ca>

Cc: Mottalib, Abdul < Abdul. Mottalib@ottawa.ca >; Shahzadeh, Serene < Serene. Shahzadeh@stantec.com >; Thiffault,

Dustin < dustin.thiffault@stantec.com >; Sharp, Mike < Mike.Sharp@stantec.com >

Subject: FW: QWest - Revised Boundary Condition Request (D07-12-18-0080)

CAUTION: This email originated from an External Sender. Please do not click links or open attachments unless you recognize the source.

ATTENTION : Ce courriel provient d'un expéditeur externe. Ne cliquez sur aucun lien et n'ouvrez pas de pièce jointe, excepté si vous connaissez l'expéditeur.

Good afternoon Colette and hope all is well.

Stantec is working on the Qwest Site with Ashcroft Homes. As we are preparing for our resubmission to Phase 2 we were hoping that you could send this email and attachments

To the City Infrastructure Reviewer to forward along to the Water Department. I was not entirely sure if Abdul Mottalib was still on this file.

Below is our request for new boundary conditions and appreciate you forwarding along and copying me when you send it.

We are anticipating two separate water service connections for Phases 2A/2B of the Qwest development to the 300mm watermain within Byron Avenue east of the Kensington Avenue intersection and separated by a valve to be cut into the existing watermain per the attached sketch. Previous designs of Qwest had considered a second source of water supply for Phases 2A/2B from plumbing within Phase 1, which has been determined to be very difficult to achieve. As such, we are requesting a revised boundary condition to consider the entirety of Phases 2A/2B serviced from the Byron Avenue main. Plumbing within Phase 2A/2B buildings are to be looped internally to ensure system redundancy.

Demands for Phases 2A/2B are as follows:

Average Day: 2.5L/s
Max Day: 6.2L/s
Peak Hour: 13.7L/s

Required Fire Flow: 6,000L/min (100L/s)

We would also request a boundary condition in consideration of a conservative fire flow of 10,000L/min (167L/s) to ensure available fire flow should any building revisions occur up until site plan approval.

Sincerely

Kris Kilborn

Principal, Community Development Business Center Practice Leader

Mobile: 613 297-0571 Fax: 613 722-2799 kris.kilborn@stantec.com Stantec

300 - 1331 Clyde Avenue Ottawa ON K2C 3G4

The content of this email is the confidential property of Stantec and should not be copied, modified, retransmitted, or used for any purpose except with Stantec's written authorization. If you are not the intended recipient, please delete all copies and notify us immediately.

The Ottawa office is open however many staff are working remotely. To contact me please use email, or my mobile and leave a message.

Please note our reception is on the 3rd floor.

This e-mail originates from the City of Ottawa e-mail system. Any distribution, use or copying of this e-mail or the information it contains by other than the intended recipient(s) is unauthorized. Thank you.

Le présent courriel a été expédié par le système de courriels de la Ville d'Ottawa. Toute distribution, utilisation ou reproduction du courriel ou des renseignements qui s'y trouvent par une personne autre que son destinataire prévu est interdite. Je vous remercie de votre collaboration.

Caution: This email originated from outside of Stantec. Please take extra precaution.

Attention: Ce courriel provient de l'extérieur de Stantec. Veuillez prendre des précautions supplémentaires.

Atención: Este correo electrónico proviene de fuera de Stantec. Por favor, tome precauciones adicionales.

This e-mail originates from the City of Ottawa e-mail system. Any distribution, use or copying of this e-mail or the information it contains by other than the intended recipient(s) is unauthorized. Thank you.

Le présent courriel a été expédié par le système de courriels de la Ville d'Ottawa. Toute distribution, utilisation ou reproduction du courriel ou des renseignements qui s'y trouvent par une personne autre que son destinataire prévu est interdite. Je vous remercie de votre collaboration.

Caution: This email originated from outside of Stantec. Please take extra precaution.

Attention: Ce courriel provient de l'extérieur de Stantec. Veuillez prendre des précautions supplémentaires.

Atención: Este correo electrónico proviene de fuera de Stantec. Por favor, tome precauciones adicionales.

A.4 POTABLE WATER SERVICING ANALYSIS RESULTS

Junction Results - Basic Day

ID	Demand (L/s)	Elevation (m)	Head (m)	Pressure (psi)	Pressure (kPa)
0	0.00	68.26	114.80	66.16	456.16
3	0.00	68.26	114.80	66.16	456.16
7	2.48	68.30	114.80	66.10	455.74

Link Results - Basic Day

ID	FROM	то	Length (m)	Diameter (mm)	Roughness	Flow (L/s)	Velocity (m/s)
11	7	BYRON	120.01	250	110	-2.48	0.05
13	7	3	20.29	250	110	0.00	0.00
15	3	0	20.09	155	100	0.00	0.00

Junction Results - Peak Hour

0 0.00 68.26 108.34 56.97 392.79 3 0.00 68.26 108.34 56.98 392.86 7 13.65 68.30 108.34 56.91 392.38	ID	Demand (L/s)	Elevation (m)	Head (m)	Pressure (psi)	Pressure (kPa)
	0	0.00	68.26	108.34	56.97	392.79
7 13.65 68.30 108.34 56.91 392.38	3	0.00	68.26	108.34	56.98	392.86
	7	13.65	68.30	108.34	56.91	392.38

Link Results - Peak Hour

ID	FROM	то	Length (m)	Diameter (mm)	Roughness	Flow (L/s)	Velocity (m/s)
11	7	BYRON	120.01	250	110	-13.65	0.28
13	7	3	20.29	250	110	0.00	0.00
15	3	0	20.09	155	100	0.00	0.00

Fire Flow Results - Max Day + 166.7 L/s

								Available
	Static Demand	Static Pressure	Static Pressure		Fire Flow	Residual	Available Flow	Pressure
ID	(L/s)	(kPa)	(psi)	Static Head (m)	Demand (L/s)	Pressure (psi)	(L/s)	(psi)
0	0.00	386.45	56.05	107.69	167.00	25.20	181.8	20
7	6.21	386.04	55.99	107.69	167.00	45.97	345.2	20

Appendix B: SANITARY SEWER

B.1 SANITARY SEWER DESIGN SHEET

Q-WEST PHASE 2

DATE: 5/4/2023
REVISION: 2
DESIGNED BY: DT
CHECKED BY: MJS

SANITARY SEWER DESIGN SHEET (City of Ottawa)

FILE NUMBER: 160400864

DESIGN PARAMETERS

MAX PEAK FACTOR (RES.)= 4.0 AVG. DAILY FLOW / PERSON 280 l/p/day MINIMUM VELOCITY 0.60 m/s MIN PEAK FACTOR (RES.)= 2.0 COMMERCIAL 28,000 l/ha/day MAXIMUM VELOCITY 3.00 m/s PEAKING FACTOR (INDUSTRIAL): INDUSTRIAL (HEAVY) 55,000 l/ha/day MANNINGS n 0.013 2.4 1.5 35,000 l/ha/day PEAKING FACTOR (ICI >20%): INDUSTRIAL (LIGHT) BEDDING CLASS В 1 BED 2 BED 3 BED 1.4 INSTITUTIONAL 28,000 l/ha/day MINIMUM COVER 2.50 m 2.1 INFILTRATION 0.33 l/s/Ha HARMON CORRECTION FACTOR 0.8

															3 BED			3.1																	
LOCA	ATION					RESIDENTIA	AL AREA AND	POPULATION				COMM	ERCIAL	INDUS	TRIAL (L)	INDUST	RIAL (H)	INSTITU	JTIONAL	GREEN /	UNUSED	C+I+I		INFILTRATION		TOTAL				PIF	Έ				
AREA ID	FROM	TO	AREA	AP	PARTMENT UN	IITS	POP.	CUMU	LATIVE	PEAK	PEAK	AREA	ACCU.	AREA	ACCU.	AREA	ACCU.	AREA	ACCU.	AREA	ACCU.	PEAK	TOTAL	ACCU.	INFILT.	FLOW	LENGTH	DIA	MATERIAL	CLASS	SLOPE	CAP.	CAP. V	VEL.	VEL.
NUMBER	M.H.	M.H.		1 BED	2 BED	3 BED		AREA	POP.	FACT.	FLOW		AREA		AREA		AREA		AREA		AREA	FLOW	AREA	AREA	FLOW							(FULL)	PEAK FLOW	(FULL)	(ACT.)
			(ha)					(ha)			(I/s)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(l/s)	(ha)	(ha)	(l/s)	(l/s)	(m)	(mm)			(%)	(I/s)	(%)	(m/s)	(m/s)
BLDG B	STUB 1	2	0.50	93	94	0	328	0.50	328	3.45	3.7	0.21	0.21	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.1	0.72	0.72	0.2	4.0	3.5	375	PVC	SDR 35	1.00	162.3	2.47%	1.54	0.53
BLDG C AND D	STUB 2	2	0.79	128	133	1	462	1.30	462	3.39	5.1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	0.79	0.79	0.3	5.3	34.2	250	PVC	SDR 35	1.00	60.6	8.80%	1.22	0.62
	2	1	0.00	0	0	0	0	0.00	789	3.29	8.4	0.00	0.21	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.1	0.00	1.51	0.7	15.3	3.500	375	PVC	SDR 35	1.00	162.3	9.41%	1.539	0.803

B.2 BACKGROUND REPORT EXCERPTS (SANITARY SEWER)

ASHCROFT HOMES 114 RICHMOND RD., OTTAWA, ON. June 26, 2013

3.0 Water Servicing

A Potable Water Servicing Study was prepared by Stantec Consulting on February 12, 2013 and revised on April 10, 2013 to reflect servicing changes. A 250mm watermain connection is proposed within Richmond Road to service phase 1 of the development. The remaining development area will be serviced with a 250mm watermain connection in Hilson Avenue and another 250mm connection in Byron Avenue. The report outlines estimated water demands and residual pressures under average day, maximum day and peak hour demand conditions. The report indicates that minimum pressures are maintained during all demand scenarios. Fire flow calculations as per the Fire Underwriters Survey (FUS) indicate a required fire flow of 250L/s. The hydraulic analysis indicated that the proposed water servicing could provide the required fire flow while meeting minimum pressure requirements of 20psi (140kPa). Due to additional losses in the high rise buildings, additional pumping will be required at these buildings to maintain minimum pressures to each unit.For the detailed report see **Appendix D**.

4.0 Wastewater Servicing

As illustrated on **Drawing SP-1**, a 250mm diameter sanitary sewer exists within Richmond Road which flows easterly towards the intersection of Richmond Road and Leighton Terrace. A 450mm diameter sanitary sewer exists at the intersection of Patricia Avenue and Richmond Road which runs northerly down Patricia Avenue. This existing sanitary sewer is a 450mm diameter pipe with a slope of minimum 1%. Based upon the size and slope of the existing pipe it is determined that this sewer has a flow capacity of 300 l/s. The existing sanitary service lateral from the existing building within the 114 Richmond Road property is currently serviced through this outlet at Patricia Avenue and will be removed.

It is proposed that the development will be constructed in 3 separate phases. The first Phase of the development will consist of construction of three - nine storey mixed use buildings and renovations to the existing 3 storey building. The second phase will consist of construction of 5 buildings consisting of residential and mixed use. The third phase will consist of 1 building with a mix of residential and commercial use. The entire site will be serviced through one connection onto Richmond Road. Residential unit counts and commercial areas were determined from the October 22, 2012 site plan and stats prepared by Roderick Lahey Architects in **Appendix A** of this report.

It is proposed to service the entire development through a new 375mm diameter sanitary sewer connection to Richmond Road. The servicing for the first phase will be connected within the building mechanical room via the 375mm diameter pipe, as illustrated in **Drawing SP-2**. The transition between PVC material and cast iron will occur within the building and will be designed

ASHCROFT HOMES 114 RICHMOND RD., OTTAWA, ON.

SERVICEABILITY REPORT

June 26, 2013

by the mechanical engineer. The cast iron sewer will continue southerly within the Phase 1 building servicing corridor and exit the foundation wall. This 375mm diameter sanitary sewer will be extended within a common trench, with the storm and utilities, along the westerly property edge to service the Phase 2 and 3 developments. The 375mm diameter sewer will be constructed between two existing manholes in Richmond Road, as indicated on Drawing SP-1. It is proposed to install a 1200mm diameter manhole within the Richmond road right of way which will connect to the existing 450mm diameter sanitary through the existing manhole located at the intersection of Patricia Avenue and Richmond Road. As there is insufficient room for the placement of a monitoring manhole for phase 1 commercial, a monitoring port will be placed within the outlet sewer pipe for the commercial areas.

A sanitary drainage area plan and sanitary sewer design sheets were prepared by Novatech Engineering Consultants on behalf of the City of Ottawa in May 2005, which identified the 114 Richmond road property tributary to the Patricia Avenue sanitary sewer. (See **Appendix C**.)

The calculations outlined below represent the flows anticipated for each phase of this development.

Phase 1

The City of Ottawa's Sewer Design Guidelines for commercial development indicate the allocation of capacity in the receiving sanitary sewer required.

Total Site Area = 0.829ha

Peaking Factor Commercial 1.5

Commercial Average Peak Flow = 50000 L/gross ha/d

Commercial Operational Flow = 17000 L/gross ha/d

Infiltration Rate = 0.28 L/s/ha

Total Infiltration Flow = (Area x infiltration rate) = 0.23 L/s

Total Flow = (Peak Flow x Site Area /86400) x Peak Factor + Infiltration Flow

Total Flow as per guidelines = 0.95 L/s.

By implementing the City of Ottawa's sewer design guidelines the following sanitary flows are calculated for the proposed condominium development.

Residential (Apartment) Population = 276 units x 1.8 persons/unit

= 497 people

 $= 497 \times 350 L/c/d$

≈ 2.01 L/s average residential sanitary flow

using a peaking factor of 4;

≈ 8.05 L/s

Total peak sewage flow for commercial and residential Phase 1 ≈ 9.00 L/s

ASHCROFT HOMES 114 RICHMOND RD., OTTAWA, ON. June 26, 2013

SERVICEABILITY REPORT

Phase 2

The City of Ottawa's Sewer Design Guidelines for commercial development indicate the allocation of capacity in the receiving sanitary sewer required.

Total Commercial Area = 0.49ha
Infiltration area = 0.45ha
Peaking Factor Commercial 1.5
Commercial Average Peak Flow = 50000 L/gross ha/d
Commercial Operational Flow = 17000 L/gross ha/d
Infiltration Rate = 0.28 L/s/ha
Total Infiltration Flow = (Area x infiltration rate) = 0.13 L/s
Total Flow = (Peak Flow x Site Area /86400) x Peak Factor + Infiltration Flow
Total Flow as per guidelines = 0.56 L/s.

By implementing the City of Ottawa's sewer design guidelines the following sanitary flows are calculated for the proposed condominium development.

Residential (Apartment)

1 Bedroom:

2 Bedroom:

Total peak sewage flow for commercial and residential Phase 2 ≈ 11.66L/s

ASHCROFT HOMES 114 RICHMOND RD., OTTAWA, ON. June 26, 2013

SERVICEABILITY REPORT

Phase 3

The City of Ottawa's Sewer Design Guidelines for commercial development indicate the allocation of capacity in the receiving sanitary sewer required.

Total Commercial Area = 0.26ha
Infiltration area = 0.26ha
Peaking Factor Commercial 1.5
Commercial Average Peak Flow = 50000 L/gross ha/d
Commercial Operational Flow = 17000 L/gross ha/d
Infiltration Rate = 0.28 L/s/ha
Total Infiltration Flow = (Area x infiltration rate) = 0.07 L/s
Total Flow = (Peak Flow x Site Area /86400) x Peak Factor + Infiltration Flow
Total Flow as per guidelines = 0.30 L/s.

By implementing the City of Ottawa's sewer design guidelines the following sanitary flows are calculated for the proposed condominium development.

Residential (Apartment)

1 Bedroom:

Population 24 units x 1.4 person/unit

= 33.6 persons
(33.6 persons x
350L/p/d)/86400s/day

= 0.14 L/s average residential sanitary flow using a peaking factor of 4;

= 0.54 L/s

Total peak sewage flow for commercial and residential Phase 3 ≈ 0.84L/s

Total anticipated peak flow from phase 1, 2 and 3 is approximately 21.5L/s

A review of the downstream sanitary sewers was completed from the intersection of Patricia Avenue and Richmond Road to the connection to the West Nepean Collector located at the intersection of Island Park Drive and Scott Street (approx 320 metres).

Included in **Appendix C** is a sanitary sewer design sheet that was prepared for the City of Ottawa in 2005 during the reconstruction of Richmond Road. In the design sheet associated sanitary drainage area plan, the proposed site is denoted as area B3.

This information was expanded to include additional sanitary areas on Patricia Avenue to the collector sewer. The estimated sewage flows into the existing manhole at the intersection of

Stantec ASHCROFT HOMES 114 RICHMOND RD., OTTAWA, ON. June 26, 2013

SERVICEABILITY REPORT

Patricia Avenue and Richmond Road are 73 L/sec (existing) + 23 L/sec (114 Richmond Rd). Additional commercial flows and residential flows of 17 L/sec are accumulated along Patricia Avenue.

An existing 450mm & 750mm sanitary sewer is present on Patricia Avenue, with a slope of between 1% and 2%. Based on this the minimum capacity for a 450mm sanitary sewer at 1.0% is 300 L/sec.

The total estimated sewage flows along Patricia Avenue including the new flows from the development of 114 Richmond Road are 111 L/sec. As the capacity of the existing 450mm sanitary sewer is approximately 300 L/sec the receiving sanitary sewer has adequate capacity to convey the necessary flow generated as a result to the proposed development.

Refer to **Appendix C** of this report for sanitary sewer design sheet and drainage areas indicating downstream flows within the 450mm diameter at Patricia Avenue indicating capacity within the receiving sewer for the 114 Richmond Road Development.

STORM SEWER DESIGN SHEET

DESIGNED BY: DHI CHECKED BY: RSC

PROJECT: Richmond Road DEVELOPER: City of Ottawa

2-May-05 DATE: REVISION:

																REVISION		
LUCATION				AREA (ha)		NON	ACCUM	TIME OF	RAINFALL	PEAK				PROPOSED SEWED	SEWED			
STREET	FROM	2	4	R=	뫒	2.78 AR	2.78 AR	Ĺ	INTENETTY									10
	WH	ЖЖ	0.40	9	9					>	5	PIPE SIZE	0 241	GRADE	LENGTH	CAPACITY	HOW I	PLOW PLOW
					New			Ĩ.	(IIII)	ŝ	FIFE	(IIII)	(IIII)	8	Œ	(178)	VELOCITY	(ili
Richmond Road	-	27304 A	0.600			0.67	90	900	12.62		2							
Richmond Road								2000	146.19	erro erro	UK 33	8	65	147	715	116.6	1.66	0.72
(sined for current conditions)	3	7	1.280		0200	182	8	6	2.5	1							1	
Richmond Road	2	27255			0330	673	2.60	10.40	41.22	282		S	E	030	27.5	245.2	1.10	0.42
Leighton Terrace	27219	27255	4.370			4.86	4.86	16 50	70.00	3016	CONC	22	233	0.50	32.7	316.6	1.42	0.38
Michmond Road	27255	27254			1.020	227	006	98.97	02.50	363.9	COMC	225	233	1.62	75.0	569.9	2.55	0.49
111										7	THE COMPANY	200	ano	0830	1284	67.4	新华1.Be 建制设	7.00
Mchmond Road	27252	27723	13.110			14.58	14.58	25.00	06.90	887.8	CONC	202	1007	200	3			
De	1103	27.24			0.60	2.02	16.60	25.00	71.72	11825	CONC	1050	2901	200	2 2	2151.9	177	0.59
Paricia Avenue	27754	EVICT													0.52	7/48/	3.07	0.50
X					0000	000	25.60	25.50	60.10	2192.5	CONC	006	116	121	110.0	2100.6	4.20	200
0.																		
Bend Park Drive	4		7 650		000													T
Island Park Drive					0.080	523	523	24.00	73.15	382.3	CONC	525	533	060	35.0	424.8	96.1	0.31
Richmond Road		,			0.220	0.49	0.49	10.00	122.14	59.8	DR 35	SE	ş	05.0	250	0.89		1
					0.690	153	725	24.31	72.55	526.0	CONC	\$1.9	589	0.45	3	286 d	1.50	600
Picadilly Avenue	•	-	50.0															eco
			W6.7			2.66	2.66	16.50	79.00	210.0	DR 35	450	448	09:0	011	218.1	200	212
Richmond Road	7	6		-	-													
	or	10			o to	900	166	25.29	70.68	700.3	CONC	750	762	0.60	5.0	9368	1.51	g
	2	=			0.130	0.42	10.33	233	70.61	729.4	CONC	750	762	09'0	28.0	9668	1.57	0.24
	=	12			0.200	100	10.84	25.57	70.17	760.8	SONC	750	762	09.0	34.0	9.668	1.97	070
					200	1	STILL STATE	25.86	99.66	786.2	CONC	730	762	09:0	27.0	899.6	197	623
Mayfair Avenue	EXIST	13	2.220			247	2.67	16.50	20.07	1000	25 90							
Maylair Avenie	13	12				000	900	83	79.00	90	20 25	200	*	7.60	23.0	356.1	526	0.39
Richmond Road	2	THE PARTY OF THE P												B) I	TIGEN	390	578	000
	7	I STATES			0.32	12.0	12.00	56.09	69.25	830.9	CONC	006	914	0.60	40.0	1461.2	273	939
Western Avenue	EXIST	EXIST			0000	800	90 5											2
					2000	3	14.00	20.35	36.77	705.2	CONC	006	914	0.50	16.0	1333.9	2.03	0.13
Catalog to disco.															-			
htensity/Duration Curve = 10 years		Italic Text = Exterine	Ities											PAOPE	SSION			
Inlet Time = 10 min. (Minimum)					NOTE: 16	years storm is	used for Richm	and Road and 2	NOIE: 10 years storm is used for Richmond Road and 5 year storm for Local Streets	Local Streets				1	X			
Manning's Coefficient ≈ 0.013	7	Luty Tone - Unite Sized Screen	ler Sized Sewer										2		1	GII	1	
															TO 000	761		
]	5	OEDA! A	R		
														The state of the same of the s				

5/4/2005

Solve Story

Appendix C STORM SEWER

C.1 STORM SEWER DESIGN SHEET

	DATE: REVISION DESIGNE CHECKE	D BY:	2022- :	-05-04 2	FILE NUM		STORM DESIGN (City of 16040086	I SHEET Ottawa)	Γ		DESIGN F I = a / (t+b a = b = c =	1:2 yr 732.951	1:5 yr 998.071	1:10 yr 1174.184 1 6.014	1:100 yr 735.688 6.014	va Guidelin MANNING'S MINIMUM C FIME OF EN	S n = OVER:	0.013 2.00	m min	BEDDING (LASS =	В																	
LOCATION														DRA	INAGE ARE	Α																P	PIPE SELEC	TION					
AREA ID	FROM	TO	AREA	AREA	AREA	AREA	AREA	С	С	С	С	AxC	ACCUM	AxC	ACCUM.	AxC .	ACCUM.	AxC	ACCUM.	T of C	I _{2-YEAR}	I _{5-YEAR}	I _{10-YEAR}	I _{100-YEAR}	Q _{CONTROL}	ACCUM.	Q _{ACT}	LENGTH PI	IPE WIDTH PIP	E	PIPE	MATERIAL	CLASS	SLOPE	Q _{CAP}	% FULL	VEL.	VEL.	TIME OF
NUMBER	M.H.	M.H.	(2-YEAR)	(5-YEAR)	(10-YEAR)	(100-YEAR	(ROOF)	(2-YEAR)	(5-YEAR)	(10-YEAR)	(100-YEAR)	(2-YEAR)	AxC (2YR)	(5-YEAR)	AxC (5YR)	(10-YEAR) A	xC (10YR) (1	100-YEAR) A	AxC (100YR)							Q _{CONTROL}	CIA/360)	OR	DIAMETEI HEIG	нт	SHAPE				(FULL)		(FULL)	(ACT)	FLOW
			(ha)	(ha)	(ha)	(ha)	(ha)	(-)	(-)	(-)	(-)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(min)	(mm/h)	(mm/h)	(mm/h)	(mm/h)	(L/s)	(L/s)	(L/s)	(m)	(mm) (mn	1)	(-)	(-)	(-)	%	(L/s)	(-)	(m/s)	(m/s)	(min)
A2, EXT1	501	BLDG	0.00	0.30	0.00	0.00	0.00	0.00	0.63	0.00	0.00	0.000	0.000	0.188	0.188	0.000	0.000	0.000	0.000	10.00 10.08	76.81	104.19	122.14	178.56	0.0	0.0	54.3	6.8	250 25) C	CIRCULAR	PVC		1.50	74.0	73.36%	1.49	1.43	0.08
A4 A1, EXT2	500 109	109 107	0.00	0.06 0.48	0.00	0.00	0.00	0.00 0.00	0.85 0.43	0.00	0.00 0.00	0.000 0.000	0.000 0.000	0.053 0.208	0.053 0.260	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	10.00 10.24 11.17	76.81 75.88	104.19 102.93	122.14 120.65	178.56 176.37	0.0	0.0 0.0	15.3 74.4	12.7 64.7	200 20 375 37 3000 150	5 C	CIRCULAR	PVC PVC		1.00 1.00	33.3 164.8	45.79% 45.16%	1.05 1.56	0.87 1.30	0.24 0.83
CISTERN, B1, B2, C, D1, D3, D5 ROOF A	3 2	2 MAIN	0.00	0.00	0.00	0.00	0.00 0.25	0.00	0.00 0.00	0.00	0.00	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	10.00 10.45 11.48	76.81 75.13	104.19 101.88	122.14 119.42	178.56 174.56	70.0 9.2	70.0 79.2	70.0 79.2	34.2 64.0	375 37 375 37 600 60	5 C	CIRCULAR	PVC PVC		1.00 0.50	164.8 116.6	42.47% 67.95%	1.56 1.11	1.27 1.03	0.45 1.03

C.2 MODIFIED RATIONAL METHOD CALCULATIONS

File No: **160400864** Project: Q-WEST PHASE 2 Date: 21-Sep-23

SWM Approach: Post-development to Pre-development flows

Post-Development Site Conditions:

Overall Runoff Coefficient for Site and Sub-Catchment Areas

Out	4-1	Rulloll C	oefficient Table		D #			0
	tchment rea		Area	,	Runoff Coefficient			Overall Runoff
Catchment Type	ID / Description		(ha) "A"	,	"C"	"A	x C"	Coefficien
Controlled - Tributary	COURT, B3-6, A2, D2, D4, D6, E		0.446		0.9	0.402		
	0.1	Soft	0.205	0.054	0.2	0.041	0.44000	0.000
	Sub	total		0.651			0.44268	0.680
Controlled - Tributary	A4	Hard	0.058		0.9	0.052		
		Soft	0.004		0.2	0.001		
	Sub	total		0.062			0.0527	0.850
Controlled - Tributary	A1, A3, EXT2	Hard	0.573		0.9	0.516		
,		Soft	0.430		0.2	0.086		
	Sub	total		1.003			0.6018	0.600
Uncontrolled - Non-Tributary	UNC2	Hard	0.034		0.9	0.031		
,		Soft	0.026		0.2	0.005		
	Sub	total		0.06			0.036	0.600
Uncontrolled - Non-Tributary	UNC1	Hard	0.077		0.9	0.069		
Oncomiolica - Non-Tributary	01401	Soft	0.013		0.2	0.003		
	Sub	total	0.0.0	0.09	0.2	0.000	0.072	0.800
Roof	Α	Hard	0.250		0.9	0.225		
Rooi	A	Soft	0.250		0.9	0.225		
	Sub	total	0.000	0.25	0.2	0.000	0.225	0.900
D (D.F.		0.000		0.0	0.004		
Roof	D5	Hard Soft	0.038 0.000		0.9 0.2	0.034 0.000		
	Sub	total	0.000	0.038	0.2	0.000	0.0342	0.900
	Cub	lotal .		0.000			0.0012	0.000
Roof	D3	Hard	0.033		0.9	0.030		
		Soft	0.000		0.2	0.000		
	Sub	total		0.033			0.0297	0.900
Roof	D1	Hard	0.131		0.9	0.118		
		Soft	0.000		0.2	0.000		
	Sub	total		0.131			0.1179	0.900
Roof	С	Hard	0.178		0.9	0.160		
		Soft	0.000		0.2	0.000		
	Sub	total		0.178			0.1602	0.900
Roof	B2	Hard	0.056		0.9	0.050		
		Soft	0.000		0.2	0.000		
	Sub	total		0.056			0.0504	0.900
Roof	B1	Hard	0.059		0.9	0.053		
	5.	Soft	0.000		0.2	0.000		
	Sub	total		0.059	-		0.0531	0.900
Total verall Runoff Coefficient= C:				2.611			1.876	0.72

Total Roof Areas 0.745 ha Total Tributary Surface Areas (Controlled and Uncontrolled) 1.716 ha Total Tributary Area to Outlet 2.461 ha Total Uncontrolled Areas (Non-Tributary) 0.150 ha **Total Site** 2.611 ha

Project #160400864, Q-WEST PHASE 2

Modified Rational Method Calculatons for Storage

5 yr Intensity	$I = a/(t + b)^c$	a =	998.071	t (min)	I (mm/hr)
City of Ottawa		b =	6.053	5	141.18
		c =	0.814	10	104.19
		•		15	83.56
				20	70.25
				25	60.90
				30	53.93
				35	48.52
				40	44.18
				45	40.63
				50	37.65
				55	35.12
				60	32.94

5 YEAR Predevelopment Target Release from Portion of Site

Subdrainage Area: Predevelopment Tributary Area to Outlet 2.6100

Area (ha): C:

Typical Time of Concentration

tc	I (5 yr)	Qtarget
(min)	(mm/hr)	(L/s)
23.8	62.88	205

5 YEAR Modified Rational Method for Entire Site

 Subdrainage Area:
 COURT, B3-6, A2, D2, D4, D6, EXT1

 Area (ha):
 0.65

 C:
 0.68

Controlled - Tributary

tc	I (5 yr)	Qactual	Qrelease	Qstored	Vstored
(min)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m^3)
10	104.19	128.2	45.0	83.2	49.9
20	70.25	86.5	45.0	41.5	49.7
30	53.93	66.4	45.0	21.4	38.5
40	44.18	54.4	45.0	9.4	22.5
50	37.65	46.3	45.0	1.3	4.0
60	32.94	40.5	40.5	0.0	0.0
70	29.37	36.1	36.1	0.0	0.0
80	26.56	32.7	32.7	0.0	0.0
90	24.29	29.9	29.9	0.0	0.0
100	22.41	27.6	27.6	0.0	0.0
110	20.82	25.6	25.6	0.0	0.0
120	19.47	24.0	24.0	0.0	0.0

Building Cistern

	Stage	Head (m)	Discharge (L/s)	Vreq (cu. m)	Vavail (cu. m)	Volume Check
5-year Water Level	-	-	45.0	49.9	190.0	OK

Subdrainage Area:	A4
Area (ha):	0.06

Controlled - Tributary

Area (na):	0.06
C:	0.85

tc	I (5 yr)	Qactual	Qrelease	Qstored	Vstored
(min)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m^3)
10	104.19	15.3	15.3	0.0	0.0
20	70.25	10.3	10.3	0.0	0.0
30	53.93	7.9	7.9	0.0	0.0
40	44.18	6.5	6.5	0.0	0.0
50	37.65	5.5	5.5	0.0	0.0
60	32.94	4.8	4.8	0.0	0.0
70	29.37	4.3	4.3	0.0	0.0
80	26.56	3.9	3.9	0.0	0.0
90	24.29	3.6	3.6	0.0	0.0
100	22.41	3.3	3.3	0.0	0.0
110	20.82	3.1	3.1	0.0	0.0
120	19.47	2.9	2.9	0.0	0.0

Surface Storage Above CB Storage:

Orifice Equation: CdA(2gh)^0.5

Orifice Equation:
Orifice Diameter:
Invert Elevation
T/G Elevation 95.00 66.59 67.97 mm m m m m Where C = 0.572

Max Ponding Depth Downstream W/L 0.00 65.96

CB Storage 0.50

Vreq (cu. m) 0.0 Volume Check OK Stage (cu. m) 0.5 (m) 0.73 5-year Water Level 67.32

Project #160400864, Q-WEST PHASE 2 Modified Rational Method Calculatons for Storage

100 yr Intensity	$I = a/(t + b)^{c}$	a =	1735.688	t (min)	I (mm/hr)
City of Ottawa		b =	6.014	5	242.70
		c =	0.820	10	178.56
				15	142.89
				20	119.95
				25	103.85
				30	91.87
				35	82.58
				40	75.15
				45	69.05
				50	63.95
				55	59.62
				60	55.89

100 YEAR Predevelopment Target Release from Portion of Site

Subdrainage Area: Predevelopment Tributary Area to Outlet

2.6100 Area (ha):

Estimated Time of Concentration after Development

-		
tc	I (100 yr)	Q100yr
(min)	(mm/hr)	(L/s)
23.8	62.88	205

100 YEAR Modified Rational Method for Entire Site

 Subdrainage Area:
 COURT, B3-6, A2, D2, D4, D6, EXT1

 Area (ha):
 0.65

 C:
 0.85

Controlled - Tributary

Controlled - Tributary

	1.//				
tc	I (100 yr)	Qactual	Qrelease	Qstored	Vstored
(min)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m^3)
10	178.56	274.7	45.0	229.7	137.8
20	119.95	184.5	45.0	139.5	167.4
30	91.87	141.3	45.0	96.3	173.4
40	75.15	115.6	45.0	70.6	169.4
50	63.95	98.4	45.0	53.4	160.1
60	55.89	86.0	45.0	41.0	147.5
70	49.79	76.6	45.0	31.6	132.7
80	44.99	69.2	45.0	24.2	116.2
90	41.11	63.2	45.0	18.2	98.5
100	37.90	58.3	45.0	13.3	79.8
110	35.20	54.2	45.0	9.2	60.4
120	32.89	50.6	45.0	5.6	40.3

Building Cistern

	Stage	Head (m)	Discharge (L/s)	Vreq (cu. m)	Vavail (cu. m)	Volume Check
100-year Water Level	-	-	45.0	173.4	190.0	OK

Subdrainage Area: Area (ha): 0.06

tc	I (100 yr)	Qactual	Qrelease	Qstored	Vstored
(min)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m^3)
10	178.56	30.8	19.6	11.2	6.7
20	119.95	20.7	19.6	1.1	1.3
30	91.87	15.8	15.8	0.0	0.0
40	75.15	13.0	13.0	0.0	0.0
50	63.95	11.0	11.0	0.0	0.0
60	55.89	9.6	9.6	0.0	0.0
70	49.79	8.6	8.6	0.0	0.0
80	44.99	7.8	7.8	0.0	0.0
90	41.11	7.1	7.1	0.0	0.0
100	37.90	6.5	6.5	0.0	0.0
110	35.20	6.1	6.1	0.0	0.0

5.7

120 Surface Storage Above CB Storage:

> Where C = 0.572

5.7

Orifice Equation: Q = CdA(2gh)^0.5
Orifice Diameter: 95.00 mm
Invert Elevation 66.59 m
T/G Elevation 67.97 m Max Ponding Depth Downstream W/L 0.20 m 66.98 m

32.89

Surface Storage CB Storage 6.50 0.50

0.0

0.0

Volume Check OK Vreq (cu. m) Stage (m) 1.19 (cu. m) 7.0 100-year Water Level 68.17

Project #160400864, Q-WEST PHASE 2 Modified Rational Method Calculatons for Storage

Subdrainage Area: A1, A3, EXT2 Area (ha): 1.00 C: 0.60 Controlled - Tributary *Includes peak runoff from Area A4. I (5 yr) Qrelease Qstored Vstored (L/s) 189.6 127.8 98.1 80.4 68.5 (L/s) 158.4 96.6 66.9 49.2 37.3 95.0 115.9 **120.4** 118.1 111.9 (mm/hr) 104.19 70.25 53.93 (L/s) 31.2 31.2 31.2 (min) 10 20 30 40 50 60 70 80 90 100 110 31.2 31.2 44.18 37.65 37.65 32.94 29.37 26.56 24.29 22.41 20.82 59.9 53.4 48.3 44.2 40.8 37.9 31.2 31.2 31.2 31.2 31.2 31.2 31.2 28.7 22.2 17.1 13.0 9.6 6.7 103.4 93.4 82.2 70.1 57.4 44.1 120 19.47 31.2 30.4 Storage Within Subsurface Pipe Orifice Equation: CdA(2gh)^0.5 Where C = 0.61 Orifice Equation: Orifice Diameter: Invert Elevation Max Ponding Depth Downstream W/L 135.00 65.31 0.65 65.31 mm 300x1500 Pipe 102.3 3x 2440x3810 Manholes 375mm Pipe 1200 CBMH 18.2 0.0 0.0 m m m Vreq (cu. m) 120.4 Stage Head Discharge Vavail Volume (m) 0.65 (L/s) 31.2 (cu. m) 120.5 5-year Water Level 65.96 Subdrainage Area: Area (ha): C: LINC2 Uncontrolled - Non-Tributary 0.06 Qrelease (L/s) 10.4 I (5 yr) Qactual (L/s) 10.4 7.0 5.4 4.4 3.8 3.3 2.9 2.7 2.4 2.2 2.1 1.9 Vstored (m^3) Qstored (min) (L/s) 20 30 40 50 60 70 80 90 100 110 120 70.25 53.93 7.0 5.4 44.18 37.65 32.94 29.37 4.4 3.8 3.3 2.9 26.56 24.29 2.7 22.41 20.82 19.47 2.4 2.2 2.1 1.9 nage Area: Area (ha): C: Uncontrolled - Non-Tributary 0.09 I (5 yr) Vstored (min) (mm/hr) 104.19 20.9 14.1 10.8 8.8 7.5 6.6 5.9 5.3 4.9 4.5 (L/s) 20.9 (L/s) (m³) 10 20 30 40 50 60 70 80 90 100 110 120 70.25 53.93 44.18 14.1 10.8 8.8 7.5 6.6 37.65 32.94 5.9 5.3 4.9 29.37 26.56 24.29 22.41 4.5 20.82 19.47 4.2 3.9 4.2 3.9 Subdrainage Area: Area (ha): C: Roof 0.25 0.90 Maximum Storage Depth: 150 m I (5 yr) Vstored Qactual Qrelease **Qstored** Depth (min) 10 20 30 40 50 (L/s) 65.2 43.9 33.7 27.6 23.6 (mm) 21.4 26.0 27.2 27.2 26.8 (mm/hr) 104.19 70.25 53.93 44.18 37.65 (L/s) (m³) 34.8 42.2 44.2 43.5 42.4 41.2 39.9 38.6 37.4 36.2 35.2 24.5 18.4 14.5 11.8 9.8 8.3 7.2 6.2 5.5 4.9 9.2 0.00 9.2 9.0 0.00 20.6 18.4 16.6 15.2 14.0 13.0 32.94 29.37 26.56 26.1 25.3 24.6 23.8 0.00 0.00 0.00 0.00 60 70 80 90 100 110 8.0 7.8 7.5 7.3 24.29 22.41 23.0 22.3 0.00 20.82 35.1 Roof Storage Vavail (cu. m) 243.8 Discharge Check 0.00 Depth Discharge (cu. m) 44.2 (mm 5-year Water Level 27.2 (m) 0.03

Subdra	tc (min) 10 20 30 40 50 60 70 80 90 110	A1, A3, EXT 1.00 0.75 I (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11	Qactual (L/s) 393.0 270.4 208.0 170.1 144.8 126.5	Qrelease (L/s) 50.0 50.0 50.0 50.0	*Includes Qstored (L/s) 343.0 220.5 158.0	Controlle peak runoff fr Vstored (m^3) 205.8 264.5	ed - Tributar rom Area A4	
Storage:	tc (min) 10 20 30 40 50 60 70 80 90 100 110	0.75 I (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99	(L/s) 393.0 270.4 208.0 170.1 144.8 126.5	50.0 50.0 50.0 50.0 50.0	Qstored (L/s) 343.0 220.5	Vstored (m^3) 205.8	rom Area A	4.
Storage:	(min) 10 20 30 40 50 60 70 80 90 100 110	(mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99	(L/s) 393.0 270.4 208.0 170.1 144.8 126.5	50.0 50.0 50.0 50.0 50.0	(L/s) 343.0 220.5	(m^3) 205.8		
Storage:	10 20 30 40 50 60 70 80 90 100 110	178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99	393.0 270.4 208.0 170.1 144.8 126.5	50.0 50.0 50.0 50.0	343.0 220.5	205.8		
Storage:	20 30 40 50 60 70 80 90 100	119.95 91.87 75.15 63.95 55.89 49.79 44.99	270.4 208.0 170.1 144.8 126.5	50.0 50.0 50.0	220.5			
Storage:	40 50 60 70 80 90 100 110	91.87 75.15 63.95 55.89 49.79 44.99	208.0 170.1 144.8 126.5	50.0 50.0				
Storage:	50 60 70 80 90 100 110	63.95 55.89 49.79 44.99	144.8 126.5		130.0	284.4		
Storage:	60 70 80 90 100 110	55.89 49.79 44.99	126.5		120.1	288.3		
Storage:	70 80 90 100 110	49.79 44.99		50.0	94.8	284.4		
Storage:	80 90 100 110	44.99	112.7	50.0 50.0	76.5 62.7	275.6 263.4		
Storage:	100 110	41.11	101.8	50.0	51.9	248.9		
Storage:	110		93.1	50.0	43.1	232.6		
itorage:		37.90	85.8	50.0	35.8	214.9		
torage:	120	35.20 32.89	79.7 74.5	50.0 50.0	29.7 24.5	196.1 176.3		
torage:				30.0	24.5	170.5		
	Storage Wit	thin Subsurfa	ice Pipe					
	ce Equation: ce Diameter:	Q = CdA(2g 135.00		Where C =	0.61	0x1500 Pipe	235.8	
	ert Elevation	65.31			3x 2440x381		46.6	
Max Po	onding Depth nstream W/L	1.67 65.31	m		3	75mm Pipe 1200 CBMH	9.0 0.8	
Down	iisticaiii w/L							_
		Stage	Head (m)	Discharge (L/s)	Vreq (cu. m)	Vavail (cu. m)	Volume Check	
100-year	Water Level	66.98	1.67	50.0	288.3	292.2	OK	
Subdra	inage Area:	UNC2 0.06			Un	ncontrolled - N	Non-Tributar	ry
	Area (ha): C:	0.75						
	tc	I (100 yr)	Qactual	Qrelease	Qstored	Vstored		
	(min)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m^3)		
	10	178.56	22.3	22.3				
	20 30	119.95 91.87	15.0 11.5	15.0 11.5				
	40	75.15	9.4	9.4				
	50	63.95	8.0	8.0				
	60	55.89	7.0	7.0				
	70	49.79	6.2	6.2				
	80 90	44.99 41.11	5.6 5.1	5.6 5.1				
	100	37.90	4.7	4.7				
	110	35.20	4.4	4.4				
	120	32.89	4.1	4.1				
Subdra	inage Area: Area (ha):	UNC1 0.09			Un	ncontrolled - N	Non-Tributar	ry
	C:	1.00						
	tc (min)	l (100 yr) (mm/hr)	Qactual (L/s)	Qrelease (L/s)	Qstored (L/s)	Vstored (m^3)		
	10	178.56	44.7	44.7	(2.0)	(0)		
	20	119.95	30.0	30.0				
	30 40	91.87 75.15	23.0	23.0				
	50	75.15 63.95	18.8 16.0	18.8 16.0				
	60	55.89	14.0	14.0				
	70	49.79	12.5	12.5				
	80	44.99	11.3	11.3				
	90	41.11	10.3	10.3				
	100 110	37.90 35.20	9.5 8.8	9.5 8.8				
	120	32.89	8.2	8.2				
Subdra	inage Area:	A					Roo	of
	Area (ha):	0.25 1.00		N	Maximum Sto	rage Depth:	15	0 mr
	C:		Qactual	Qrelease (L/s)	Qstored (L/s)	Vstored (m^3)	Depth (mm)	
	tc	I (100 yr) (mm/hr)	(L/s)		110.3	66.2	40.7	— 0.
		I (100 yr) (mm/hr) 178.56	(L/s) 124.1	13.8			49.3	
	tc (min) 10 20	(mm/hr) 178.56 119.95	124.1 83.4	16.6	66.7	80.1		
	tc (min) 10 20 30	(mm/hr) 178.56 119.95 91.87	124.1 83.4 63.8	16.6 17.4	46.5	83.6	51.5	0.
	tc (min) 10 20 30 40	(mm/hr) 178.56 119.95 91.87 75.15	124.1 83.4 63.8 52.2	16.6 17.4 17.4	46.5 34.8	83.6 83.6	51.5 51.5	0.0
	tc (min) 10 20 30 40 50	(mm/hr) 178.56 119.95 91.87 75.15 63.95	124.1 83.4 63.8 52.2 44.4	16.6 17.4 17.4 17.1	46.5 34.8 27.4	83.6 83.6 82.1	51.5 51.5 50.5	0.0
	tc (min) 10 20 30 40 50 60	(mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89	124.1 83.4 63.8 52.2 44.4 38.8	16.6 17.4 17.4 17.1 16.6	46.5 34.8 27.4 22.2	83.6 83.6 82.1 80.0	51.5 51.5 50.5 49.2	0.0 0.0 0.0
	tc (min) 10 20 30 40 50	(mm/hr) 178.56 119.95 91.87 75.15 63.95	124.1 83.4 63.8 52.2 44.4 38.8 34.6	16.6 17.4 17.4 17.1 16.6 16.1	46.5 34.8 27.4 22.2 18.5	83.6 83.6 82.1 80.0 77.6	51.5 51.5 50.5 49.2 47.7	0. 0. 0. 0.
	tc (min) 10 20 30 40 50 60 70	(mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79	124.1 83.4 63.8 52.2 44.4 38.8	16.6 17.4 17.4 17.1 16.6	46.5 34.8 27.4 22.2	83.6 83.6 82.1 80.0	51.5 51.5 50.5 49.2	0. 0. 0. 0.
	tc (min) 10 20 30 40 50 60 70 80 90 100	(mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11 37.90	124.1 83.4 63.8 52.2 44.4 38.8 34.6 31.3 28.6 26.3	16.6 17.4 17.4 17.1 16.6 16.1 15.6 15.1 14.6	46.5 34.8 27.4 22.2 18.5 15.6 13.5 11.7	83.6 83.6 82.1 80.0 77.6 75.1 72.7 70.3	51.5 51.5 50.5 49.2 47.7 46.2 44.7 43.3	0. 0. 0. 0. 0.
	tc (min) 10 20 30 40 50 60 70 80 90 100 110	(mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11 37.90 35.20	124.1 83.4 63.8 52.2 44.4 38.8 34.6 31.3 28.6 26.3 24.5	16.6 17.4 17.4 17.1 16.6 16.1 15.6 15.1 14.6	46.5 34.8 27.4 22.2 18.5 15.6 13.5 11.7	83.6 83.6 82.1 80.0 77.6 75.1 72.7 70.3 68.1	51.5 51.5 50.5 49.2 47.7 46.2 44.7 43.3 41.9	0. 0. 0. 0. 0. 0.
	tc (min) 10 20 30 40 50 60 70 80 90 100	(mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11 37.90	124.1 83.4 63.8 52.2 44.4 38.8 34.6 31.3 28.6 26.3	16.6 17.4 17.4 17.1 16.6 16.1 15.6 15.1 14.6	46.5 34.8 27.4 22.2 18.5 15.6 13.5 11.7	83.6 83.6 82.1 80.0 77.6 75.1 72.7 70.3	51.5 51.5 50.5 49.2 47.7 46.2 44.7 43.3	0. 0. 0. 0. 0. 0.
torage:	tc (min) 10 20 30 40 50 60 70 80 90 100 110	(mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11 37.90 35.20 32.89	124.1 83.4 63.8 52.2 44.4 38.8 34.6 31.3 28.6 26.3 24.5	16.6 17.4 17.4 17.1 16.6 16.1 15.6 15.1 14.6	46.5 34.8 27.4 22.2 18.5 15.6 13.5 11.7	83.6 83.6 82.1 80.0 77.6 75.1 72.7 70.3 68.1	51.5 51.5 50.5 49.2 47.7 46.2 44.7 43.3 41.9	0.4 0.4 0.4 0.4 0.4 0.4 0.4
Storage:	tc (min) 10 20 30 40 50 60 70 80 90 100 110 120	(mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11 37.90 35.20 32.89	124.1 83.4 63.8 52.2 44.4 38.8 34.6 31.3 28.6 26.3 24.5	16.6 17.4 17.4 17.1 16.6 16.1 15.6 15.1 14.6	46.5 34.8 27.4 22.2 18.5 15.6 13.5 11.7	83.6 83.6 82.1 80.0 77.6 75.1 72.7 70.3 68.1	51.5 51.5 50.5 49.2 47.7 46.2 44.7 43.3 41.9	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Project #160400864, Q-WEST PHASE 2

Modified Rational Method	Calculatons for Storage

20 70.25 23.0 5.1 18.0 21.6 110.2 00 30 53.93 17.7 5.1 12.6 22.6 112.0 00 40 44.18 14.5 5.1 9.4 22.5 111.8 0 50 37.65 12.3 5.1 7.3 21.8 110.6 0 60 32.94 10.8 5.0 5.8 20.8 108.9 0 70 29.37 9.6 5.0 4.7 19.6 106.9 0 80 26.56 8.7 4.9 3.8 18.4 104.8 0 90 24.29 8.0 4.8 3.1 17.0 102.5 0 100 22.41 7.3 4.7 2.6 15.6 100.2 0 110 20.82 6.8 4.6 2.2 14.4 97.0 0	Subura	inage Area: Area (ha): C:	D5 0.04 0.90		N	Maximum Sto	rage Depth:	Roc 15	of iO mm
20		(min)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m^3)	(mm)	
30 33.33 5.1 1.6 3.5 6.3 110.3 0.6 0.6 0.0 0.6 0.0 0.5 0.0 0									
Storage: Storage:									
60 32.94 3.1 1.6 1.5 5.5 105.6 100.2 100 20.56 2.5 1.6 0.9 4.5 100.2 100 90 24.29 2.3 1.6 0.9 4.5 100.2 100 100 22.41 2.1 1.5 0.6 3.6 91.7 30 100 12.41 2.1 1.5 0.6 3.6 91.7 30 110 10.92 2.0 1.5 0.5 3.6 91.7 30 110 10.92 2.0 1.5 0.5 3.6 91.7 30 110 10.94 1.9 1.5 0.4 2.7 83.1 100 12.7 83.1 100									
Total									
Storage Roof Stor									
Storage: Roof Storage Storage Storage: Roof Storage Roof S									
110		90	24.29						
Storage: Roof Storage									
Storage: Roof Storage									
Depth		120	19.47	1.9	1.5	0.4	2.7	83.1	0.0
Depth	Storage:	Roof Storag	ne.						
Company Comp	3								
Subdrainage Area: D3									
Area (ha)	5-year	Water Level							
Temple	Subdra	Area (ha):	0.03		N	Maximum Sto	rage Depth:		
(min) (mm/hr) (L/s) (L/s) (M-3) (mm) (Mm/hr) (L/s) (L/s) (M-3) (mm/hr) (L/s) (M-3) (mm/hr) (L/s) (M-3) (mm/hr) (M-3) (M-3) (mm/hr) (M-3) (_
10									
20									ᆜᇧ
30									
40									
Storage: Roof Storage Storage Roof Storage Roof Storage Roof Storage Storage Roof Storage Roof Storage Roof Storage Storage Roof Sto		40	44.18	3.6	1.6	2.0	4.9	106.4	
TO									
Storage Roof Stor									
90									
100									
110									
Storage: Roof Storage									
Depth Head Discharge Vreq Vavail Discharge (mm) (m) (m) (L/s) (cu. m) (cu. m) (cu. m) Check		120	19.47	1.6	1.4	0.2	1.5	71.8	0.0
Subdrainage Area: D1	Storage:	Roof Storag	је						
Subdrainage Area: D1			Depth	Head	Discharge	Vreq	Vavail	Discharge	
Subdrainage Area: D1	_								_
Area (ha): 0.13	5-year	vvater Level	107.9	0.11	1.0	5.1	13.2	0.0	_
10	Subdra	Area (ha):	0.13		N	Maximum Sto	rage Depth:		
20	Subdra	Area (ha): C:	0.13 0.90		Qrelease	Qstored	Vstored	15 Depth	
30	Subdra	Area (ha): C: tc (min)	0.13 0.90 I (5 yr) (mm/hr)	(L/s)	Qrelease (L/s)	Qstored (L/s)	Vstored (m^3)	Depth (mm)	i0 mm
Storage: Roof Storage Depth (mm) Head (mm) Cls) Cls (mm) Cls (mm)	Subdra	Area (ha): C: tc (min)	0.13 0.90 I (5 yr) (mm/hr) 104.19	(L/s) 34.2	Qrelease (L/s)	Qstored (L/s) 29.3	Vstored (m^3) 17.6	Depth (mm) 103.5	0.0
Company Comp	Subdra	Area (ha): C: tc (min) 10 20	0.13 0.90 I (5 yr) (mm/hr) 104.19 70.25	(L/s) 34.2 23.0	Qrelease (L/s) 4.8 5.1	Qstored (L/s) 29.3 18.0	Vstored (m^3) 17.6 21.6	Depth (mm) 103.5 110.2	0.0 0.0
To 29.37 9.6 5.0 4.7 19.6 106.9 0.08	Subdra	tc (min) 10 20 30 40	0.13 0.90 I (5 yr) (mm/hr) 104.19 70.25 53.93 44.18	(L/s) 34.2 23.0 17.7 14.5	Qrelease (L/s) 4.8 5.1 5.1 5.1	Qstored (L/s) 29.3 18.0 12.6 9.4	Vstored (m^3) 17.6 21.6 22.6 22.5	Depth (mm) 103.5 110.2 112.0 111.8	0.0 0.0 0.0
Storage Roof Storage	Subdra	Area (ha):	0.13 0.90 I (5 yr) (mm/hr) 104.19 70.25 53.93 44.18 37.65	(L/s) 34.2 23.0 17.7 14.5 12.3	Qrelease (L/s) 4.8 5.1 5.1 5.1 5.1	Qstored (L/s) 29.3 18.0 12.6 9.4 7.3	Vstored (m^3) 17.6 21.6 22.6 22.5 21.8	Depth (mm) 103.5 110.2 112.0 111.8 110.6	0.0 0.0 0.0 0.0
90	Subdra	Area (ha): C: tc (min) 10 20 30 40 50 60	0.13 0.90 I (5 yr) (mm/hr) 104.19 70.25 53.93 44.18 37.65 32.94	(L/s) 34.2 23.0 17.7 14.5 12.3 10.8	Qrelease (L/s) 4.8 5.1 5.1 5.1 5.1 5.1	Qstored (L/s) 29.3 18.0 12.6 9.4 7.3 5.8	Vstored (m^3) 17.6 21.6 22.6 22.5 21.8 20.8	Depth (mm) 103.5 110.2 112.0 111.8 110.6 108.9	0.0 0.0 0.0 0.0 0.0 0.0
100	Subdra	tc (min) 10 20 30 40 50 60 70	0.13 0.90 I (5 yr) (mm/hr) 104.19 70.25 53.93 44.18 37.65 32.94 29.37	(L/s) 34.2 23.0 17.7 14.5 12.3 10.8 9.6	Qrelease (L/s) 4.8 5.1 5.1 5.1 5.1 5.0 5.0	Qstored (L/s) 29.3 18.0 12.6 9.4 7.3 5.8 4.7	Vstored (m^3) 17.6 21.6 22.6 22.5 21.8 20.8 19.6	Depth (mm) 103.5 110.2 112.0 111.8 110.6 108.9 106.9	0.0 0.0 0.0 0.0 0.0 0.0
110	Subdra	tc (min) 10 20 30 40 50 60 70 80	0.13 0.90 I (5 yr) (mm/hr) 104.19 70.25 53.93 44.18 37.65 32.94 29.37 26.56	(L/s) 34.2 23.0 17.7 14.5 12.3 10.8 9.6 8.7	Qrelease (L/s) 4.8 5.1 5.1 5.1 5.1 5.0 5.0 4.9	Qstored (L/s) 29.3 18.0 12.6 9.4 7.3 5.8 4.7 3.8	Vstored (m^3) 17.6 21.6 22.6 22.5 21.8 20.8 19.6 18.4	Depth (mm) 103.5 110.2 112.0 111.8 110.6 108.9 106.9 104.8	0.0 0.0 0.0 0.0 0.0 0.0 0.0
Note	Subdra	Area (ha):	0.13 0.90 I (5 yr) (mm/hr) 104.19 70.25 53.93 44.18 37.65 32.94 29.37 26.56 24.29	(L/s) 34.2 23.0 17.7 14.5 12.3 10.8 9.6 8.7 8.0	Qrelease (L/s) 4.8 5.1 5.1 5.1 5.1 5.0 4.9 4.8	Qstored (L/s) 29.3 18.0 12.6 9.4 7.3 5.8 4.7 3.8 3.1	Vstored (m^3) 17.6 21.6 22.6 22.5 21.8 20.8 19.6 18.4 17.0	Depth (mm) 103.5 110.2 112.0 111.8 110.6 108.9 106.9 104.8 102.5	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Depth Head Discharge Vreq Vavail Discharge (nm) (m) (nm) (n	Subdra	Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90 100	0.13 0.90 I (5 yr) (mm/hr) 104.19 70.25 53.93 44.18 37.65 32.94 29.37 26.56 24.29 22.41	(L/s) 34.2 23.0 17.7 14.5 12.3 10.8 9.6 8.7 8.0 7.3	Qrelease (L/s) 4.8 5.1 5.1 5.1 5.1 5.0 4.9 4.8 4.7	Qstored (L/s) 29.3 18.0 12.6 9.4 7.3 5.8 4.7 3.8 3.1 2.6 2.2	Vstored (m^3) 17.6 21.6 22.6 22.5 21.8 20.8 19.6 18.4 17.0 15.6	Depth (mm) 103.5 110.2 112.0 111.8 110.6 108.9 106.9 104.8 102.5 100.2	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Stypear Water Level	Subdra	Area (ha):	0.13 0.90 I (5 yr) (mm/hr) 104.19 70.25 53.93 44.18 37.65 32.94 29.37 26.56 24.29 22.41 20.82	(L/s) 34.2 23.0 17.7 14.5 12.3 10.8 9.6 8.7 8.0 7.3 6.8	Qrelease (L/s) 4.8 5.1 5.1 5.1 5.1 5.0 5.0 4.9 4.8 4.7 4.6	Qstored (L/s) 29.3 18.0 12.6 9.4 7.3 5.8 4.7 3.8 3.1 2.6 2.2	Vstored (m/3) 17.6 21.6 22.6 22.5 21.8 20.8 19.6 18.4 17.0 15.6 14.4	Depth (mm) 103.5 110.2 112.0 111.8 110.6 108.9 104.8 102.5 100.2 97.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Subdrainage Area: C		Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90 100 110 120	0.13 0.90 I (5 yr) (mm/hr) 104.19 70.25 53.93 44.18 37.65 32.94 29.37 26.56 24.29 22.41 20.82 19.47	(L/s) 34.2 23.0 17.7 14.5 12.3 10.8 9.6 8.7 8.0 7.3 6.8	Qrelease (L/s) 4.8 5.1 5.1 5.1 5.1 5.0 5.0 4.9 4.8 4.7 4.6	Qstored (L/s) 29.3 18.0 12.6 9.4 7.3 5.8 4.7 3.8 3.1 2.6 2.2	Vstored (m/3) 17.6 21.6 22.6 22.5 21.8 20.8 19.6 18.4 17.0 15.6 14.4	Depth (mm) 103.5 110.2 112.0 111.8 110.6 108.9 104.8 102.5 100.2 97.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Subdrainage Area: C		Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90 100 110 120	0.13 0.90 1(5 yr) (mm/hr) 104.19 70.25 53.93 44.18 37.65 32.94 29.37 26.56 24.29 22.41 20.82 19.47 3e	(L/s) 34.2 23.0 17.7 14.5 12.3 10.8 9.6 8.7 8.0 7.3 6.8 6.4	Qrelease (L/s) 4.8 5.1 5.1 5.1 5.0 5.0 4.9 4.8 4.7 4.6 4.5	Qstored (Us) 29.3 18.0 12.6 9.4 4.7 3.8 3.1 2.6 2.2 1.8	Vstored (m^3) 17.6 21.6 22.6 22.5 21.8 20.8 19.6 18.4 17.0 15.6 14.4 13.3	Depth (mm) 103.5 110.2 112.0 111.8 110.6 108.9 104.8 102.5 97.0 93.8	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Area (ha): 0.18	Storage:	Area (ha):	0.13 0.90 (mm/hr) 104.19 70.25 53.93 44.18 37.65 32.94 29.37 26.56 24.29 22.41 20.82 19.47	(L/s) 34.2 23.0 17.7 14.5 12.3 10.8 9.6 8.7 8.0 7.3 6.8 6.4 Head (m)	Qrelease (L/s) 4.8 5.1 5.1 5.1 5.0 4.9 4.8 4.7 4.6 4.5	Qstored (L/s) 29.3 18.0 12.6 9.4 7.3 5.8 4.7 3.8 3.1 2.6 2.2 1.8	Vstored (m*3) 17.6 21.6 22.6 22.5 21.8 20.8 19.6 18.4 17.0 15.6 14.4 13.3	Depth (mm) 103.5 110.2 112.0 111.8 110.6 108.9 106.9 104.8 102.5 100.2 97.0 93.8 Discharge Check	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
(min) (min/hr) (L/s) (L/s) (L/s) (m^3) (mm)	Storage: 5-year	Area (ha):	0.13 0.90 ((mm/hr) 104.19 70.25 53.93 44.18 37.65 32.94 29.37 26.56 24.29 22.41 20.82 19.47 39 Depth (mm) 112.0	(L/s) 34.2 23.0 17.7 14.5 12.3 10.8 9.6 8.7 8.0 7.3 6.8 6.4 Head (m)	Qrelease (L/s) 4.8 5.1 5.1 5.1 5.0 4.9 4.8 4.7 4.6 4.5	Qstored (L/s) 29.3 18.0 12.6 9.4 7.3 5.8 4.7 3.8 3.1 2.6 2.2 1.8	Vstored (m*3) 17.6 21.6 22.6 22.5 21.8 20.8 19.6 18.4 17.0 15.6 14.4 13.3	Depth (mm) 103.5 110.2 112.0 111.8 110.6 108.9 106.9 104.8 102.5 100.2 97.0 93.8 Discharge Check 0.0	0.0 mm 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
20	Storage: 5-year	Area (ha):	0.13 0.90 1 (5 yr) (mm/hr) 104.19 70.25 53.93 44.18 37.65 32.94 29.37 26.56 24.29 22.41 20.82 19.47 ge Depth (mm) 112.0	(L/s) 34.2 23.0 17.7 14.5 12.3 10.8 9.6 8.7 8.0 7.3 6.8 6.4 Head (m)	Qrelease (L/s) 4.8 5.1 5.1 5.1 5.1 5.0 4.9 4.8 4.7 4.6 4.5 Discharge (L/s) 5.1	Qstored (L/s) 29.3 18.0 12.6 9.4 7.3 5.8 4.7 2.6 1.8 Vreq (cu. m) 22.6	Vstored (m*3) 17.6 21.6 22.5 22.5 21.8 20.8 19.6 15.6 14.4 17.0 Vavail (cu. m) 52.4	Depth (mm) 103.5 110.2 112.0 111.8 110.6 108.9 104.8 100.2 97.0 97.0 97.8 Discharge Check 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
30 53,93 24.0 7.1 16.9 30.4 111.6 0.0 40 44.18 19.7 7.1 12.6 30.1 111.2 0.0 50 37.65 16.8 7.1 9.7 29.1 110.0 0.0 60 32.94 14.7 7.0 7.7 27.7 108.2 0.0 70 29.37 13.1 6.9 6.2 26.0 106.1 0.0 80 26.56 11.8 6.8 5.0 24.2 103.8 0.0 90 24.29 10.8 6.7 4.1 22.3 101.5 0.0 100 22.41 10.0 6.6 3.4 20.5 98.7 0.0 110 22.41 10.0 6.6 3.4 20.5 98.7 0.0 110 20.82 9.3 6.4 2.9 18.8 95.4 0.0 120 19.47 8.7 6.3 2.4 17.2 92.1 0.0 Storage: Roof Storage	Storage: 5-year	Area (ha):	0.13 0.90 I (5 yr) (mm/hr) 104.19 70.25 53.93 44.18 37.65 32.94 29.37 26.56 24.29 22.41 20.82 21.94 27 39 C C 0.18 0.90 I (5 yr) (mm/hr)	(L/s) 34.2 23.0 17.7 14.5 12.3 10.8 9.6 8.7 8.0 7.3 6.8 6.4 Head (m) 0.11	Qrelease (L/s) 4.8 5.1 5.1 5.1 5.1 5.0 5.0 4.9 4.8 4.7 4.6 4.5 Discharge (L/s) Qrelease (L/s)	Qstored (L/s) 29.3 18.0 29.3 18.0 12.6 9.4 7.3 5.8 4.7 3.8 3.1 2.6 2.2 1.8 Vreq (cu. m) 22.6 Asximum Sto	Vstored (m*3) 17.6 21.6 22.5 21.8 20.8 19.6 14.4 17.0 15.6 14.4 13.3 Vavail (cu. m) 52.4 Vstored (m*3)	Depth (mm) 103.5 110.2 112.0 111.8 110.6 108.9 104.8 102.5 100.2 97.0 93.8 Discharge Check 0.0 Depth (mm)	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
40	Storage: 5-year	Area (ha):	0.13 0.90 I (5 yr) (mm/hr) 104.19 704.19 705.53.93 44.18 37.65 32.94 29.37 26.56 22.41 29.37 26.56 22.441 20.82 21.41 20.82 21.41 20.82 20.82 19.47 Je Depth (mm) 112.0 C C 0.18 0.90 I (5 yr) (mm/hr) 104.19	(L/s) 34.2 23.0 17.7 14.5 12.3 10.8 9.6 8.7 8.0 7.3 6.8 6.4 Head (m) 0.11	Qrelease (L/s) 4.8 5.1 5.1 5.1 5.0 5.0 4.9 4.8 4.7 4.6 4.5 Discharge ((L/s) 5.1	Qstored (L/s) 29.3 18.0 12.6 9.4 7.3 3.8 3.1 2.6 2.2 1.8 Vreq (cu. m) 22.6 Qstored (L/s) 39.6	Vstored (m*3) 17.6 21.6 22.5 21.8 20.8 19.6 18.4 17.0 15.6 14.4 13.3 Vavail (cu. m) 52.4 Vstored (m*3) 23.8	Depth (mm) 103.5 110.2 111.2 111.8 110.6 108.9 104.8 100.2 97.0 93.8 Discharge Check 0.0 Roc 15 Depth (mm) 103.3	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
50 37.65 16.8 7.1 9.7 29.1 110.0 00 60 32.94 14.7 7.0 7.7 27.7 103.2 0 70 29.37 13.1 6.9 6.2 26.0 106.1 00 80 26.56 11.8 6.8 5.0 24.2 103.8 00 90 24.29 10.8 6.7 4.1 22.3 101.5 01 100 22.41 10.0 6.6 3.4 20.5 98.7 00 110 20.82 9.3 6.4 2.9 18.8 95.4 00 120 19.47 8.7 6.3 2.4 17.2 92.1 0.0 Storage: Roof Storage	Storage: 5-year	Area (ha):	0.13 0.90 I (5 yr) (mm/hr) 104.19 704.19 704.55 53.93 44.18 37.65 32.94 29.37 26.56 24.29 22.41 20.82 21.41 20.82 21.41 20.82 20.81 20.82 20.81 20.82 20.81 20.82 20.81 20.82 20.81 20.82 20.81 20.82 20.81 20.82 20.81 20.82	(L/s) 34.2 23.0 17.7 14.5 12.3 10.8 9.6 8.7 7.3 6.8 6.4 Head (m) 0.11 Qactual (L/s) 46.4 31.3	Qrelease (L/s) 4.8 5.1 5.1 5.1 5.1 5.0 5.0 4.9 4.8 4.7 4.6 4.5 Discharge (L/s) 5.1	Qstored (L/s) 29.3 18.0 12.6 9.4 7.3 5.8 4.7 3.8 3.1 2.6 2.2 1.8 Vreq (cu. m) 22.6 Qstored (L/s) 39.6 24.2	Vstored (m*3) 17.6 21.6 22.5 21.8 20.8 19.6 18.4 17.0 15.6 14.4 13.3 Vavail (cu. m) 52.4 Vstored (m*3) 23.8 29.1	Depth (mm) 103.5 110.2 1110.6 110.8 110.6 108.9 104.8 102.5 100.2 97.0 93.8 Discharge Check 0.0 Roc 15	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
60 32.94 14.7 7.0 7.7 27.7 108.2 00 70 29.37 13.1 6.9 6.2 26.0 106.1 00 80 26.56 11.8 6.8 5.0 24.2 103.8 90 24.29 10.8 6.7 4.1 22.3 101.5 00 100 22.41 10.0 6.6 3.4 20.5 98.7 00 110 20.82 9.3 6.4 2.9 18.8 95.4 00 120 19.47 8.7 6.3 2.4 17.2 92.1 00 Storage: Roof Storage Depth Head Discharge Vreq Vavail Discharge	Storage: 5-year	Area (ha):	0.13 0.90 1 (5 yr) (mm/hr) 104.19 70.25 73.93 44.18 37.85 32.94 29.37 26.56 24.29 22.41 20.82 19.47 pe Depth (mm) 112.0 C 0.18 0.90 1 (5 yr) (mm/hr) 104.19 70.25 53.93	(L/s) 34.2 23.0 17.7 14.5 12.3 10.8 9.6 8.7 8.0 7.3 6.8 6.4 Head (m) 0.11 Qactual (L/s) 46.4 31.3 24.0	Qrelease (L/s) 4.8 5.1 5.1 5.1 5.1 5.1 5.0 5.0 4.9 4.8 4.7 4.6 4.5	Qstored (L/s) 29.3 18.0 12.6 59.4 7.3 5.8 4.7 3.8 3.1 2.6 2.2 1.8 Vreq (cu. m) 22.6 Qstored (L/s) 39.6 24.2 16.9	Vstored (m*3) 17.6 21.6 22.5 21.8 19.6 18.4 17.0 15.6 14.4 13.3 Vavail (cu. m) 52.4 Vstored (m*3) 23.8 29.1 30.4	Depth (mm) 103.5 110.2 112.0 111.8 110.6 108.9 104.8 102.5 100.2 97.0 93.8 Discharge Check 0.0 Depth (mm) 103.3 109.9 111.6	0.0 mm 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
70 29.37 13.1 6.9 6.2 26.0 106.1 00 80 26.56 11.8 6.8 5.0 24.2 103.8 0 90 24.29 10.8 6.7 4.1 22.3 101.5 00 100 22.41 10.0 6.6 3.4 20.5 98.7 00 110 20.82 9.3 6.4 2.9 18.8 95.4 00 120 19.47 8.7 6.3 2.4 17.2 92.1 00 Storage: Roof Storage Depth Head Discharge Vreq Vavail Discharge	Storage: 5-year	Area (ha):	0.13 0.90 1 (5 yr) (mm/hr) 104.19 70.25 53.93 44.18 37.65 32.94 29.37 26.56 24.29 22.41 20.82 119.47 Depth (mm) 112.0 C 0.18 0.90 1 (5 yr) (mm/hr) 104.19 70.25 53.93 44.18 37.65	(L/s) 34.2 23.0 17.7 14.5 12.3 10.8 9.6 8.7 7.3 6.8 6.4 Head (m) 0.11 Qactual (L/s) 46.4 31.3 24.0 19.7	Qrelease (L/s) 4.8 5.1 5.1 5.1 5.1 5.0 5.0 4.9 4.8 4.7 4.6 4.5 Discharge (L/s) 5.1	Qstored (L/s) 12.6 9.4 7.3 18.0 12.6 9.4 7.3 3.1 2.6 6.1 18.0 19.0	Vstored (m*3) 17.6 21.6 22.6 22.5 21.8 20.8 19.6 18.4 17.0 15.6 14.4 13.3 Vavail (cu. m) 52.4 Vstored (m*3) 23.8 29.1 30.4 30.1	Depth (mm) 103.5 110.2 112.0 111.8 110.6 108.9 104.8 100.5 100.2 97.0 97.0 93.8 Discharge Check 0.0 Depth (mm) 103.5 109.9 111.8	0.0 mm 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
90 24,29 10.8 6.7 4.1 22.3 101.5 0.0 100 22.41 10.0 6.6 3.4 20.5 98.7 00 110 20.82 9.3 6.4 2.9 18.8 95.4 00 120 19.47 8.7 6.3 2.4 17.2 92.1 0.0 Storage: Roof Storage Depth Head Discharge Vieq Vavail Discharge	Storage: 5-year	Area (ha):	0.13 0.90 I (5 yr) (mm/hr) 104.19 70.25 53.93 44.18 37.65 32.94 29.37 26.56 24.29 22.41 20.82 219.47 39 C 0.18 0.90 I (5 yr) (mm/hr) 104.19 70.25 53.93 44.18 37.65 32.94 44.18 37.65	(L/s) 34.2 23.0 17.7 14.5 12.3 10.8 9.6 8.7 8.0 7.3 6.8 6.4 Head (m) 0.11 Qactual (L/s) 46.4 31.3 24.0 19.7 16.8 14.7	Qrelease (L/s) A A A A A A A A A	Qstored (L/s) 29.3 18.0 12.6 9.4 7.3 8.4 7.5 8.4 7.5 8.5 9.4 7.5 9.4 7.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.7 7.7 7.7 9.5 9.7 7.7 9.5 9.7 7.7 9.5 9.7 7.7 9.5 9.7 7.7 9.5 9.7 7.7 9.5 9.7 7.7 9.5 9.7 7.7 9.5 9.7 7.7 9.5 9.7 9.7 9.5 9.7	Vstored (m*3) 17.6 21.6 22.5 21.8 20.8 19.6 18.4 17.0 15.6 14.4 13.3 Vavail (cu. m) 52.4 Vstored (m*3) 23.8 29.1 30.4 30.1 29.1 27.7	Depth (mm) 103.5 110.2 112.0 111.8 110.6 108.9 104.8 100.5 100.2 97.0 93.8 Discharge Check 0.0 Depth (mm) 103.3 109.9 111.8 111.2 111.0 108.2	0.0 mm 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
100	Storage: 5-year	Area (ha):	0.13 0.90 I (5 yr) (mm/hr) 104.19 70.25 53.93 44.18 37.65 32.94 29.37 26.56 24.29 22.41 20.82 24.19 19.47 ge C 0.18 0.90 I (5 yr) (mm/hr) 104.19 104.19 73.93 44.18 0.90 105.393 44.18 0.90 105.393 44.19 76.55 53.93 44.19 76.55 53.93 44.19 76.55 53.93	(L/s) 34.2 23.0 17.7 14.5 12.3 10.8 9.6 8.7 7.8 0 6.8 6.4 Head (m) 0.11 Qactual (L/s) 46.4 31.3 24.0 19.7 16.8 14.7 13.1	Qrelease (L/s) A:8 5.1 5.1 5.1 5.1 5.1 5.1 5.0 5.0 4.9 4.8 4.7 4.6 4.5	Qstored (L/s) 29.3 18.0 12.6 9.4 7.3 5.8 4.7 3.8 3.1 2.6 2.2 1.8	Vstored (m*3) 17.6 21.6 22.5 21.8 19.6 22.5 18.4 17.0 15.6 14.4 13.3 Vavail (cu. m) 52.4 Vstored (m*3) 23.8 29.1 30.4 30.1 29.1 27.7 26.0	Depth (mm) 103.5 110.2 112.0 111.8 110.6 108.9 104.8 102.5 100.2 97.0 93.8 Discharge Check 0.0 Depth (mm) 103.3 109.9 111.6 111.2 110.0 108.2 110.0 108.2	0.0 mm 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
110 20,82 9.3 6.4 2.9 18.8 95.4 0.0 120 19.47 8.7 6.3 2.4 17.2 92.1 0.0 Storage: Roof Storage Depth Head Discharge Vreq Vavail Discharge	Storage: 5-year	Area (ha):	0.13 0.90 I (5 yr) (mm/hr) 104.19 70.25 53.93 44.18 37.65 32.94 29.37 26.56 0.18 0.90 I (5 yr) (mm/hr) 112.0 I (5 yr) (mm/hr) 70.25 53.93 44.18 37.65 32.94 29.37 26.56	(L/s) 34.2 23.0 17.7 14.5 12.3 10.8 9.6 8.7 8.0 7.3 6.8 6.4 Head (m) 0.11 Qactual (L/s) 46.4 31.3 24.0 16.8 14.7 13.1 11.8	Qrelease (L/s) 4.8 5.1 5.1 5.1 5.1 5.0 5.0 4.9 4.8 4.7 4.6 4.5 Discharge (L/s) 5.1 A Qrelease (L/s) 6.8 7.1 7.1 7.1 7.1 7.0 6.9 6.8	Qstored (L/s) 29.3 18.0 12.6 9.4 7.3 3.8 3.1 2.6 2.2 1.8 Vreq (cu. m) 22.6 Qstored (L/s) 39.6 24.2 16.9 12.6 9.7 7.7 6.2 5.0	Vstored (m*3) 17.6 21.6 22.5 21.8 19.6 18.4 17.0 15.6 14.4 13.3 Vavail (cu. m) 52.4 Vstored (m*3) 23.8 29.1 30.4 30.1 29.1 20.1 22.7.7 26.0 24.2	Depth (mm) 103.5 110.2 111.2 0 111.8 110.6 108.9 104.8 102.5 100.2 97.0 93.8 Discharge Check 0.0 Depth (mm) 103.3 109.9 111.6 111.2 110.0 108.2 110.0 108.2	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
120 19.47 8.7 6.3 2.4 17.2 92.1 0.0 Storage Depth Head Discharge Vreq Vavail Discharge	Storage: 5-year	Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90 100 110 120 Roof Storag Water Level inage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90	0.13 0.90 I (5 yr) (mm/hr) 104.19 70.25 3.93 44.18 20.82 22.41 20.82 22.41 20.82 22.41 19.47 39 C 0.18 0.90 I (5 yr) (mm/hr) 104.19 70.25 53.93 44.18 37.65 32.94 29.37 26.56	(L/s) 34.2 23.0 17.7 14.5 12.3 10.8 9.6 8.7 7.8 6.8 6.4 Head (m) 0.11 Qactual (L/s) 46.4 31.3 24.0 19.7 16.8 14.7 13.1 11.8	Qrelease (L/s) 4.8 5.1 5.1 5.1 5.1 5.1 5.1 5.0 5.0 4.9 4.8 4.7 4.6 4.5	Qstored (L/s) 29.3 18.0 12.6 9.4 7.3 5.8 4.7 3.8 3.1 6.2.2 1.8 Vreq (cu. m) 22.6 Qstored (L/s) 39.6 24.2 16.9 12.6 9.7 7.7 7.7 6.2 5.0 4.1	Vstored (m*3) 17.6 21.6 22.5 21.8 20.8 19.6 18.4 17.0 15.6 14.4 13.3 Vavail (cu. m) 52.4 Vstored (m*3) 23.8 29.1 30.4 30.1 22.7 26.0 24.2 22.3	Depth (mm) 103.5 110.2 111.8 110.6 108.9 104.8 102.5 100.2 97.0 93.8 Discharge Check 0.0 Depth (mm) 103.3 109.9 111.6 111.2 110.0 108.2 110.0 108.2 111.6 111.2 110.0 108.2 110.0 108.2 110.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Storage: Roof Storage Depth Head Discharge Vreq Vavail Discharge	Storage: 5-year	Area (ha):	0.13 0.90 I (5 yr) (mm/hr) 104.19 704.19 704.19 705.53,93 44.18 37.65 32.94 29.37 26.56 24.29 19.47 104.19 112.0 Depth (mm) 112.0 I (5 yr) (mm/hr) 104.19 70.25 53.93 44.18 37.65 32.94 29.37 26.56 24.29 26.26 26.26 26.26 27 26.26 26.	(L/s) 34.2 23.0 17.7 14.5 12.3 10.8 9.6 8.7 8.0 7.3 6.8 6.4 Head (m) 0.11 Qactual (L/s) (L/s) 14.6 14.7 13.1 11.8 10.8	Qrelease (L/s) 4.8 5.1 5.1 5.1 5.1 5.1 5.1 5.0 5.0 4.9 4.8 4.7 4.6 4.5	Qstored (L/s) 29.3 18.0 12.6 19.4 7.3 18.0 12.6 19.4 7.3 18.0 12.6 19.4 7.3 18.0 12.6 19.1 19.1 19.1 19.1 19.1 19.1 19.1 19	Vstored (m*3) 17.6 21.6 22.5 21.8 19.6 18.4 17.0 15.6 14.4 13.3 Vavail (cu. m) 52.4 Vstored (m*3) 23.8 29.1 30.4 29.1 27.7 26.0 24.2 22.3 20.5	Depth (mm) 103.5 110.2 111.2 111.2 111.8 110.6 108.9 106.9 104.8 102.5 100.2 97.0 93.8 Discharge Check 0.0 Pepth (mm) 103.3 109.9 111.6 111.2 110.0 108.2 106.15 110.3 109.9 111.6 111.2 110.0 108.2 106.15 103.8 101.5 98.7	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Depth Head Discharge Vreq Vavail Discharge	Storage: 5-year	Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90 100 Roof Storag Water Level inage Area: Area (ha): C: tc (min) 10 20 30 40 40 50 60 70 80 90 100 100 100 100 100 100 100 110	0.13 0.90 I (5 yr) (mm/hr) 104.19 704.15 53.93 44.18 37.65 32.94 29.37 26.56 24.29 22.41 20.82 19.47 Depth (mm) 112.0 C 0.18 0.90 I (5 yr) (mm/hr) 104.19 70.25 53.93 44.18 37.65 32.94 29.37 26.56 24.29 22.41 20.82 22.41	(L/s) 34.2 23.0 17.7 14.5 12.3 10.8 9.6 8.7 7.8 6.8 6.4 Head (m) 0.11 Cactual (L/s) 46.4 31.3 24.0 19.7 16.8 10.8 10.8 10.8 10.8 10.9 9.3	Qrelease (L/s) 4.8 5.1 5.1 5.1 5.1 5.1 5.0 5.0 4.9 4.7 4.6 4.5 5.1	Qstored (L/s) 29.3 18.0 12.6 9.4 7.3 5.8 4.7 3.8 3.1 2.6 2.2 1.8 Vreq (cu. m) 22.6 Qstored (L/s) 39.6 24.2 16.9 12.6 9.7 7.7 6.2 5.0 4.1 3.4 2.9	Vstored (m*3) 17.6 21.6 22.5 21.8 20.8 19.6 18.4 17.0 15.6 14.4 13.3 Vavail (cu. m) 52.4 Vstored (m*3) 23.8 29.1 29.1 30.4 30.1 29.1 22.7 7.26.0 24.2 22.3 20.5 18.8	Depth (mm) 103.5 110.2 1110.6 108.9 104.8 102.5 100.2 97.0 93.8 Discharge Check 0.0 Depth (mm) 103.3 109.9 111.6 111.2 110.0 108.2 110.6 110.9 109.9 111.6 111.5 109.9 111.5 110.7 108.7 95.4	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
	Storage: 5-year Subdra	Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90 100 120 Roof Storag Water Level inage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90 100 100 70 80 90 100 100 100 100 110 120	0.13 0.90 I (5 yr) (mm/hr) 104.19 704.25 53.93 44.18 37.65 32.94 29.37 26.56 24.29 22.41 20.82 19.47 Ge Depth (mm) 112.0 C 0.18 0.90 I (5 yr) (mm/hr) 104.19 70.25 53.93 44.18 37.65 33.94 44.18 37.65 33.93 44.18 37.65 33.94 44.19 29.37 26.56 24.29 22.41 20.82 19.47	(L/s) 34.2 23.0 17.7 14.5 12.3 10.8 9.6 8.7 7.8 6.8 6.4 Head (m) 0.11 Cactual (L/s) 46.4 31.3 24.0 19.7 16.8 10.8 10.8 10.8 10.8 10.9 9.3	Qrelease (L/s) 4.8 5.1 5.1 5.1 5.1 5.1 5.0 5.0 4.9 4.7 4.6 4.5 5.1	Qstored (L/s) 29.3 18.0 12.6 9.4 7.3 5.8 4.7 3.8 3.1 2.6 2.2 1.8 Vreq (cu. m) 22.6 Qstored (L/s) 39.6 24.2 16.9 12.6 9.7 7.7 6.2 5.0 4.1 3.4 2.9	Vstored (m*3) 17.6 21.6 22.5 21.8 20.8 19.6 18.4 17.0 15.6 14.4 13.3 Vavail (cu. m) 52.4 Vstored (m*3) 23.8 29.1 29.1 30.4 30.1 29.1 22.7 7.26.0 24.2 22.3 20.5 18.8	Depth (mm) 103.5 110.2 1110.6 108.9 104.8 102.5 100.2 97.0 93.8 Discharge Check 0.0 Depth (mm) 103.3 109.9 111.6 111.2 110.0 108.2 110.6 110.9 109.9 111.6 111.5 109.9 111.5 110.7 108.7 95.4	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
	Storage: 5-year Subdra	Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90 100 120 Roof Storag Water Level inage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90 100 100 100 70 80 90 100 100 100 110 120	0.13 0.90 I (5 yr) (mm/hr) 104.19 70.25 53.93 44.18 37.65 32.94 29.37 26.56 24.29 22.41 20.82 19.47 09 C C 0.18 0.90 I (5 yr) (mm/hr) 104.19 70.25 53.93 44.18 37.65 32.94 29.37 26.56 24.29 22.41	(L/s) 34.2 34.2 23.0 17.7 14.5 12.3 10.8 9.6 8.7 8.0 7.3 6.8 6.4 Head (m) 0.11 Qactual (L/s) 46.4 31.3 24.0 19.7 16.8 10.8 10.8 10.8 10.8 10.8 10.8	Qrelease (L/s) 4.8 5.1 5.1 5.1 5.1 5.0 5.0 4.9 4.8 4.7 4.6 4.5 Discharge (L/s) 5.1 A. Qrelease (L/s) 6.8 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1	Qstored (L/s) 29.3 18.0 12.6 9.4 7.3 3.8 3.1 2.6 2.2 1.8 Vreq (cu. m) 22.6 Qstored (L/s) 39.6 24.2 16.9 12.6 9.7 7.7 6.2 5.0 4.1 3.4 2.9 2.4	Vstored (m*3) 17.6 21.6 22.5 21.8 20.8 19.6 18.4 17.0 15.6 14.4 13.3 Vavail (cu. m) 52.4 Vstored (m*3) 23.8 29.1 30.4 30.1 29.1 30.4 22.3 24.2 22.3 20.5 18.8 17.2	Depth (mm) 103.5 110.2 111.2 111.8 110.6 108.9 104.8 100.5 100.2 97.0 93.8 Discharge Check 0.0 Depth (mm) 103.3 109.9 111.8 111.2 110.0 111.2 110.0 111.2 110.0 110.2 110.0 110.2 110.0 110.2 110.0	0.0 mm 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Modified F	60400864 Rational N	lethod Cal	culatons	for Storage	1			
Subdrai	inage Area: Area (ha): C:	D5 0.04 1.00		N	laximum Sto	rage Depth:	Root 150	f) mm
	tc (min)	l (100 yr) (mm/hr)	Qactual (L/s)	Qrelease (L/s)	Qstored (L/s)	Vstored (m^3)	Depth (mm)	
	10	178.56	18.9	1.8	17.1	10.3	130.7	0.00
	20	119.95	12.7	1.8	10.8	13.0 14.1	141.4 145.7	0.00
	30 40	91.87 75.15	9.7 7.9	1.9 1.9	7.8 6.1	14.1	145.7	0.00
	50	63.95	6.8	1.9	4.9	14.6	147.8	0.00
	60	55.89	5.9	1.9	4.0	14.5	147.3	0.00
	70	49.79	5.3	1.9	3.4	14.2	146.3	0.00
	80 90	44.99 41.11	4.8 4.3	1.9 1.8	2.9 2.5	13.9 13.5	144.9 143.2	0.00
	100	37.90	4.0	1.8	2.3	13.0	143.2	0.00
	110	35.20	3.7	1.8	1.9	12.5	139.4	0.00
	120	32.89	3.5	1.8	1.7	12.0	137.4	0.00
Storage:	Roof Storag	je						
		Depth	Head	Discharge	Vreq	Vavail	Discharge	1
100-year	Water Level	(mm) 147.8	(m) 0.15	(L/s) 1.9	(cu. m) 14.6	(cu. m) 15.2	Check 0.0	_
Subdrai	inage Area:	D3					Roof	f
	Area (ha): C:	0.03 1.00		N	laximum Sto	rage Depth:	150) mm
	tc (min)	l (100 yr) (mm/hr)	Qactual (L/s)	Qrelease (L/s)	Qstored (L/s)	Vstored (m^3)	Depth (mm)	1
	10	178.56	16.4	1.8	14.6	8.8	130.1	0.00
	20	119.95	11.0	1.8	9.2	11.0	140.1	0.00
	30	91.87	8.4	1.9	6.6	11.8	143.9	0.00
	40	75.15	6.9	1.9	5.0	12.1	145.0	0.00
	50 60	63.95 55.89	5.9 5.1	1.9 1.9	4.0 3.3	12.0 11.8	144.7 143.7	0.00
	70	49.79	4.6	1.8	2.7	11.0	143.7	0.00
	80	44.99	4.0	1.8	2.7	11.4	140.2	0.00
	90	41.11	3.8	1.8	2.0	10.6	138.1	0.00
	100	37.90	3.5	1.8	1.7	10.0	135.8	0.00
	110 120	35.20 32.89	3.2 3.0	1.8 1.8	1.4 1.2	9.5 9.0	133.4 131.0	0.00
			3.0	1.0	1.2	9.0	131.0	0.00
Storage:	Roof Storag		Used	Dischaus	1/	\/i	Disabassa	7
		Depth (mm)	Head (m)	Discharge (L/s)	Vreq (cu. m)	Vavail (cu. m)	Discharge Check	
100-year	Water Level	145.0	0.14	1.9	12.1	13.2	0.0	
Suhdrai								
Judural	inage Area: Area (ha): C:	D1 0.13 1.00		M	laximum Sto	rage Depth:	Root 150	f) mm
- Culvui Gi	Area (ha): C:	0.13 1.00	Qactual	Qrelease	Qstored	Vstored	150 Depth	
- Casul al	Area (ha): C: tc (min)	0.13 1.00 I (100 yr) (mm/hr)	(L/s)	Qrelease (L/s)	Qstored (L/s)	Vstored (m^3)	Depth (mm)) mm
oudui di	Area (ha): C: tc (min)	0.13 1.00 I (100 yr) (mm/hr) 178.56	(L/s) 65.0	Qrelease (L/s)	Qstored (L/s) 59.3	Vstored (m^3) 35.6	Depth (mm) 131.0	0.00
oudui di	Area (ha): C: tc (min) 10 20	0.13 1.00 I (100 yr) (mm/hr) 178.56 119.95	(L/s) 65.0 43.7	Qrelease (L/s) 5.7 6.1	Qstored (L/s) 59.3 37.6	Vstored (m^3) 35.6 45.2	Depth (mm) 131.0 141.8	0.00 0.00
ousur al	Area (ha): C: tc (min) 10 20 30	0.13 1.00 I (100 yr) (mm/hr) 178.56 119.95 91.87	(L/s) 65.0 43.7 33.5	Qrelease (L/s) 5.7 6.1 6.2	Qstored (L/s) 59.3 37.6 27.3	Vstored (m^3) 35.6 45.2 49.1	Depth (mm) 131.0 141.8 146.2	0.00 0.00 0.00
Subur al	Area (ha): C: tc (min) 10 20	0.13 1.00 I (100 yr) (mm/hr) 178.56 119.95	(L/s) 65.0 43.7	Qrelease (L/s) 5.7 6.1	Qstored (L/s) 59.3 37.6	Vstored (m^3) 35.6 45.2	Depth (mm) 131.0 141.8	0.00 0.00
Subural	Area (ha): C: tc (min) 10 20 30 40 50 60	0.13 1.00 I (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89	(L/s) 65.0 43.7 33.5 27.4 23.3 20.4	Qrelease (L/s) 5.7 6.1 6.2 6.2 6.3 6.3	Qstored (L/s) 59.3 37.6 27.3 21.1 17.0 14.1	Vstored (m^3) 35.6 45.2 49.1 50.7 51.1 50.8	Depth (mm) 131.0 141.8 146.2 148.1 148.5 148.2	0.00 0.00 0.00 0.00
Susual	Area (ha): C: tc (min) 10 20 30 40 50 60 70	0.13 1.00 I (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79	(L/s) 65.0 43.7 33.5 27.4 23.3 20.4 18.1	Qrelease (L/s) 5.7 6.1 6.2 6.2 6.3 6.3 6.3	Qstored (L/s) 59.3 37.6 27.3 21.1 17.0 14.1 11.9	Vstored (m ² 3) 35.6 45.2 49.1 50.7 51.1 50.8 50.0	Depth (mm) 131.0 141.8 146.2 148.1 148.5 148.5 148.2 147.3	0.00 0.00 0.00 0.00 0.00 0.00
Susual	Area (ha): C: tc (min) 10 20 30 40 50 60 70 80	0.13 1.00 I (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99	(L/s) 65.0 43.7 33.5 27.4 23.3 20.4 18.1 16.4	Qrelease (L/s) 5.7 6.1 6.2 6.2 6.3 6.3 6.2 6.2	Qstored (L/s) 59.3 37.6 27.3 21.1 17.0 14.1 11.9 10.2	Vstored (m^3) 35.6 45.2 49.1 50.7 51.1 50.8 50.0 49.0	Depth (mm) 131.0 141.8 146.2 148.1 148.5 148.5 148.2 147.3 146.1	0.00 0.00 0.00 0.00 0.00 0.00 0.00
Susual	Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90	0.13 1.00 I (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11	(L/s) 65.0 43.7 33.5 27.4 23.3 20.4 18.1 16.4 15.0	Qrelease (L/s) 5.7 6.1 6.2 6.2 6.3 6.3 6.2 6.2 6.1	Qstored (L/s) 59.3 37.6 27.3 21.1 17.0 14.1 11.9 10.2 8.8	Vstored (m^3) 35.6 45.2 49.1 50.7 51.1 50.8 50.0 49.0 47.7	Depth (mm) 131.0 141.8 146.2 148.1 148.5 148.2 147.3 146.1 144.7	0.00 0.00 0.00 0.00 0.00 0.00
Susual	Area (ha): C: tc (min) 10 20 30 40 50 60 70 80	0.13 1.00 I (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99	(L/s) 65.0 43.7 33.5 27.4 23.3 20.4 18.1 16.4	Qrelease (L/s) 5.7 6.1 6.2 6.2 6.3 6.3 6.2 6.2	Qstored (L/s) 59.3 37.6 27.3 21.1 17.0 14.1 11.9 10.2	Vstored (m^3) 35.6 45.2 49.1 50.7 51.1 50.8 50.0 49.0	Depth (mm) 131.0 141.8 146.2 148.1 148.5 148.5 148.2 147.3 146.1	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
Sasaran	Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90 100	0.13 1.00 1 (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11 37.90	(L/s) 65.0 43.7 33.5 27.4 23.3 20.4 18.1 16.4 15.0 13.8	Qrelease (L/s) 5.7 6.1 6.2 6.3 6.3 6.2 6.2 6.1 6.1	Qstored (L/s) 59.3 37.6 27.3 21.1 17.0 14.1 11.9 10.2 8.8 7.7	Vstored (m^3) 35.6 45.2 49.1 50.7 51.1 50.8 50.0 49.0 47.7 46.3	Depth (mm) 131.0 141.8 146.2 148.5 148.2 147.3 146.1 144.7	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
Storage:	Area (ha):	0.13 1.00 I (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11 37.90 35.20 32.89	(L/s) 65.0 43.7 33.5 27.4 23.3 20.4 18.1 16.4 15.0 13.8 12.8	Qrelease (L/s) 5.7 6.1 6.2 6.2 6.3 6.3 6.2 6.2 6.1 6.1	Qstored (L/s) 59.3 37.6 27.3 21.1 17.0 14.1 11.9 10.2 8.8 7.7 6.8	Vstored (m^3) 35.6 45.2 49.1 50.7 51.1 50.8 50.0 49.0 47.7 46.3 44.8	Depth (mm) 131.0 141.8 146.2 148.1 148.5 148.2 147.3 146.1 144.7 143.1 141.4	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
	Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90 100 110 120	0.13 1.00 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11 37.90 32.89	(L/s) 65.0 43.7 33.5 27.4 23.3 20.4 18.1 16.4 15.0 13.8 12.8 12.0	Qrelease (L/s) 5.7 6.1 6.2 6.2 6.3 6.3 6.2 6.2 6.1 6.1 6.0 Discharge	Qstored (L/s) 59.3 37.6 27.3 21.1 17.0 14.1 11.9 10.2 8.8 7.7 6.8 6.0	Vstored (m*3) 35.6 45.2 49.1 50.7 51.1 50.8 50.0 49.0 47.7 46.3 44.8 43.2	Depth (mm) 131.0 141.8 146.2 148.1 148.5 148.2 147.3 146.1 144.7 143.6 Discharge	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
Storage:	Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90 100 110 120	0.13 1.00 I (100 yr) (mm/hr) 178.56 91.87 75.15 63.95 55.89 44.79 44.99 41.11 37.90 35.20 32.89	(L/s) 65.0 43.7 33.5 27.4 23.3 20.4 18.1 16.4 15.0 13.8 12.8	Orelease (L/s) 5.7 6.1 6.2 6.2 6.3 6.2 6.2 6.1 6.1 6.0 6.0	Qstored (L/s) 59.3 37.6 27.3 21.1 17.0 14.1 11.9 10.2 8.8 7.7 6.8 6.0	Vstored (m^3) 35.6 45.2 49.1 50.7 51.1 50.8 50.0 49.0 47.7 46.3 44.8 43.2	Depth (mm) 131.0 141.8 146.2 148.1 148.5 148.2 147.3 146.1 144.7 143.1 141.4 139.6	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
Storage: 100-year ¹	Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90 100 110 120 Roof Storag	0.13 1.00 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11 37.90 35.20 32.89 ge Depth (mm) 148.5	(L/s) 65.0 43.7 33.5 27.4 23.3 20.4 18.1 16.4 15.0 13.8 12.8 12.0	Qrelease (L/s) 5.7 6.1 6.2 6.3 6.3 6.2 6.1 6.0 6.0 Discharge (L/s) 6.3	Qstored (L/s) 59.3 57.6 27.3 21.1 17.0 14.1 11.9 10.2 8.8 7.7 6.8 6.0 Vreq (cu. m) 51.1	Vstored (m*3) 35.6 45.2 49.1 50.7 51.1 50.8 50.0 49.0 47.7 46.3 44.8 43.2 Vavail (cu. m) 52.4	Depth (mm) 131.0 141.8 146.2 148.1 148.5 148.2 147.3 146.1 144.7 143.1 141.4 139.6 Discharge Check 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
Storage: 100-year ¹	Area (ha):	0.13 1.00 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11 37.90 35.20 32.89 ge Depth (mm) 148.5	(L/s) 65.0 43.7 43.7 33.5 27.4 23.3 20.4 18.1 16.4 15.0 13.8 12.0 Head (m) 0.15	Qrelease (L/s) 5.7 6.1 6.2 6.3 6.3 6.2 6.1 6.1 6.0 6.0 Discharge (L/s) 6.3	Qstored (L/s) 59.3 37.6 59.3 37.6 17.0 14.1 11.9 10.2 8.8 6.0 Vreq (cu. m) 51.1	Vstored (m*3) 35.6 45.2 49.1 50.7 51.1 50.8 50.0 47.7 46.3 44.8 43.2 Vavail (cu. m) 52.4	Depth (mm) 131.0 141.8 146.2 148.1 148.5 148.2 147.3 146.1 144.7 143.1 141.4 139.6 Discharge Check 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
Storage: 100-year ¹	Area (ha):	0.13 1.00 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11 37.90 35.20 32.89 ge Depth (mm) 148.5	(L/s) (E/s)	Qrelease (L/s) Crelease (L/s) Crelease (L/s) Qrelease (L/s) Qrel	Qstored (L/s) 59.3 37.6 59.3 37.6 27.3 21.1 17.0 14.1 11.9 10.2 8.8 6.0 Vreq (cu. m) 51.1	Vstored (m*3) 35.6 45.2 49.1 50.7 51.1 50.8 50.0 49.0 47.7 46.3 44.8 43.2 Vavail (cu. m) 52.4	Depth (mm) 131.0 141.8 146.2 148.1 148.5 148.2 147.3 146.1 144.7 143.1 141.4 139.6 Discharge Check 0.0 Rood 150 Depth (mm)	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
Storage: 100-year ¹	Area (ha):	0.13 1.00 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11 37.90 35.20 32.89 99 Depth (mm) 148.5	(L/s) 65.0 43.7 43.7 33.5 27.4 23.3 20.4 18.1 16.4 15.0 13.8 12.0 Head (m) 0.15	Qrelease (L/s) 5.7 6.1 6.2 6.3 6.2 6.1 6.0 6.0	Qstored (L/s) 59.3 37.6 59.3 21.1 17.0 14.1 11.9 10.2 8.8 6.0 Vreq (cu. m) 51.1 Laximum Sto	Vstored (m*3) 35.6 45.2 49.1 50.7 51.1 50.8 50.0 49.0 47.7 46.3 44.8 43.2 Vavail (cu. m) 52.4 Vstored (m*3) 48.2	Depth (mm) 131.0 141.8 146.2 148.1 148.5 148.2 147.3 146.1 144.4 139.6 Discharge Check 0.0 Root 150 Depth (mm) 130.8	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
Storage: 100-year ¹	Area (ha):	0.13 1.00 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11 37.90 35.20 32.89 ge Depth (mm) 148.5 C 0.18 1.00 I (100 yr) (mm/hr) 178.56	(L/s) 65.0 43.7 43.7 33.5 27.4 23.3 20.4 18.1 16.4 15.0 13.8 12.0 Head (m) 0.15	Qrelease (L/s) Crelease (L/s) Crelease (L/s) Qrelease (L/s) Crelease (L/s) Crel	Qstored (L/s) 59.3 37.6 59.3 37.6 27.3 21.1 17.0 14.1 11.9 10.2 8.8 6.0 Vreq (cu. m) 51.1 4ximum Sto	Vstored (m*3) 35.6 45.2 49.1 50.7 51.1 50.8 50.0 49.0 47.7 46.3 44.8 43.2 Vavail (cu. m) 52.4 Vstored (m*3) 48.2 61.1	Depth (mm) 131.0 141.8 146.2 148.1 148.5 148.2 147.3 146.1 144.7 143.1 141.4 139.6 Discharge Check 0.0 Depth (mm) 130.8 140.8	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Storage: 100-year ¹	Area (ha):	0.13 1.00 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 44.99 44.19 32.89 92 10 Depth (mm) 148.5 C 0.18 1.00 I (100 yr) (mm/hr) 178.56 119.95 91.87	(L/s) 65.0 43.7 43.7 33.5 27.4 23.3 20.4 18.1 16.4 15.0 13.8 12.8 12.0 Head (m) 0.15 Qactual (L/s)	Qrelease (L/s) 5.7 6.1 6.2 6.3 6.2 6.1 6.0 6.0 6.0	Qstored (L/s) 37.6 59.3 37.6 27.3 21.1 17.0 14.1 11.9 10.2 8.8 7.7 6.8 6.0 Vreq (cu. m) 51.1 Qstored (L/s) 80.4 50.9 36.8	Vstored (m*3) 35.6 45.2 49.1 50.7 51.1 50.8 50.0 49.0 47.7 46.3 44.8 43.2 Vavail (cu. m) 52.4 Vstored (m*3) 48.2 61.1 66.3 66.3	Depth (mm) 131.0 141.8 146.2 148.1 148.5 148.2 147.3 146.1 144.7 143.7 143.1 141.4 139.6 Discharge Check 0.0 Rooti	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
Storage: 100-year ¹	Area (ha):	0.13 1.00 yr) (mm/hr) 178.56 119.95 63.95 63.95 63.95 44.99 44.11 37.90 35.20 32.89 ge Depth (mm) 148.5 C 0.18 1.00 I (100 yr) (mm/hr) 178.56 119.95 91.87 75.15	(L/s) 65.0 43.7 43.7 33.5 27.4 23.3 20.4 18.1 16.4 15.0 13.8 12.0 Head (m) 0.15 Qactual (L/s) 88.4 59.4 45.5 37.2	Qrelease (L/s) Control Control	Vreq (cu. m) 51.1 Qstored (L/s) 80.4 Qstored (Cl.s) 80.4 Qstored (Cl.s) 80.4 Qstored (L/s) 80.4 80.9 80.8 80.9 Qstored (L/s) 80.9 80.8 80.9 80.9 80.9 80.9 80.9 80.9 80.9 80.9 80.9 80.9	Vstored (m*3) 35.6 45.2 49.1 50.7 51.1 50.8 50.0 49.0 47.7 46.3 44.8 43.2 Vavail (cu. m) 52.4 Vstored (m*3) 48.2 61.1 66.3 68.3 68.3	Depth (mm) 131.0 141.8 146.2 148.5 148.2 148.1 148.5 148.2 147.3 146.1 144.7 143.1 141.4 139.6 Discharge Check 0.0 Root 150 Depth (mm) 130.8 141.6 145.9 147.6	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Storage: 100-year ¹	Area (ha):	0.13 1.00 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 44.99 44.19 32.89 92 10 Depth (mm) 148.5 C 0.18 1.00 I (100 yr) (mm/hr) 178.56 119.95 91.87	(L/s) 65.0 43.7 43.7 33.5 27.4 23.3 20.4 18.1 16.4 15.0 13.8 12.8 12.0 Head (m) 0.15 Qactual (L/s)	Qrelease (L/s) 5.7 6.1 6.2 6.3 6.2 6.1 6.0 6.0 6.0	Qstored (L/s) 37.6 59.3 37.6 27.3 21.1 17.0 14.1 11.9 10.2 8.8 7.7 6.8 6.0 Vreq (cu. m) 51.1 Qstored (L/s) 80.4 50.9 36.8	Vstored (m*3) 35.6 45.2 49.1 50.7 51.1 50.8 50.0 49.0 47.7 46.3 44.8 43.2 Vavail (cu. m) 52.4 Vstored (m*3) 48.2 61.1 66.3 66.3	Depth (mm) 131.0 141.8 146.2 148.1 148.5 148.2 147.3 146.1 144.7 143.7 143.1 141.4 139.6 Discharge Check 0.0 Rooti	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
Storage: 100-year ¹	Area (ha):	0.13 1.00 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11 37.90 35.20 32.89 ge Depth (mm) 148.5 C 0.18 1.00 178.56 119.95 91.87 75.15 63.95	(L/s) 65.0 43.7 43.7 33.5 27.4 23.3 20.4 18.1 16.4 15.0 13.8 12.8 12.0 Head (m) 0.15 Qactual (L/s) 88.4 59.4 45.5 37.2 31.6 27.7 24.6	Qrelease (L/s) S.7 6.1 6.2 6.3 6.2 6.1 6.0 6.0 6.0	Qstored (L/s) 59.3 37.6 59.3 37.6 27.3 21.1 17.0 14.1 11.9 10.2 8.8 6.0 Vreq (cu. m) 51.1 daximum Sto Qstored (L/s) 80.4 50.9 36.8 28.5 22.9	Vstored (m*3) 35.6 45.2 49.1 50.7 51.1 50.8 50.0 47.7 46.3 44.8 43.2 Vavail (cu. m) 52.4 Vstored (m*3) 48.2 61.1 66.3 68.7 68.7	Depth (mm) 131.0 141.8 146.2 148.1 148.5 148.2 147.3 146.1 141.4 139.6 Check 0.0 Depth (mm) 130.8 141.9 145.9 147.9 147.9 147.9 147.9 147.9 147.9 147.9	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Storage: 100-year ¹	Area (ha):	0.13 1.00 yr) (mm/hr) 178.56 191.87 75.15 63.95 55.89 49.79 44.99 41.11 37.90 35.20 32.89 Depth (mm) 148.5 C C 0.18 1.00 I(100 yr) (mm/hr) 178.56 63.95 55.89 49.79 44.99 44.99 44.91	(L/s) 65.0 43.7 43.7 43.3 527.4 23.3 20.4 18.1 16.4 15.0 13.8 12.0 Head (m) 0.15 Qactual (L/s) 88.4 59.4 45.5 37.2 31.6 27.7 24.6 22.3	Qrelease (L/s) 5.7 6.1 6.2 6.3 6.2 6.1 6.0 6.0	Qstored (L/s) 59.3 37.6 59.3 37.6 27.3 21.1 17.0 14.1 111.9 10.2 8.8 6.0 Vreq (cu. m) 51.1 laximum Sto Qstored (L/s) 80.4 50.9 36.8 28.5 22.9 16.0 13.6	Vstored (m*3) 35.6 45.2 49.1 50.7 51.1 50.8 50.0 49.0 47.7 46.3 44.8 43.2 Vavail (cu. m) 52.4 Vstored (m*3) 48.2 61.1 66.3 68.3 68.3 68.2 67.0 65.5	Depth (mm) 131.0 141.8 146.2 143.1 148.5 148.2 147.3 146.1 144.7 143.1 144.7 143.6 Discharge Check 0.0 Root 150 Depth (mm) 130.8 141.6 145.9 147.6 147.5 146.2	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
Storage: 100-year ¹	Area (ha):	0.13 1.00 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 44.79 44.111 37.90 35.20 32.89 ge Depth (mm) 148.5 C 0.18 1.00 I (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 44.99 44.91	(L/s) 65.0 43.7 43.7 33.5 27.4 23.3 20.4 18.1 16.4 15.0 13.8 12.0 Head (m) 0.15 Qactual (L/s) 88.4 59.4 45.5 37.2 31.6 27.7 24.6 22.3 20.3	Qrelease (L/s) Color Col	Qstored (L/s) 37.6 59.3 37.6 59.3 37.6 27.3 321.1 17.0 14.1 11.9 6.8 6.0	Vstored (m*3) 35.6 45.2 49.1 50.7 51.1 50.8 50.0 49.0 47.7 46.3 44.8 43.2 Vavail (cu. m) 52.4 varied (m*3) 48.2 61.1 66.3 68.3 68.7 68.2 67.0 65.5 63.7	Depth (mm) 131.0 141.8 146.2 148.1 148.5 148.2 147.3 146.1 143.1 141.4 139.6 Discharge Check 0.0 Depth (mm) 130.8 141.6 145.9 147.5 146.5 147.9 147.5 146.5 145.2 145.2	0.000 0.000
Storage: 100-year ¹	Area (ha):	0.13 1.00 yr) (mm/hr) 178.56 119.59 91.87 75.15 63.95 55.89 44.99 41.11 37.90 32.89 ge Depth (mm) 148.5 C 0.18 1.00 I (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 44.11 37.90 37.90	(L/s) 65.0 43.7 43.7 43.7 43.3 527.4 23.3 20.4 18.1 16.4 15.0 13.8 12.8 12.0 Head (m) 0.15 Qactual (L/s) 88.4 59.4 45.5 37.2 31.6 22.3 20.3 18.8	Qrelease (L/s) 5.7 6.1 6.2 6.3 6.2 6.1 6.0 6.0 6.0	Qstored (L/s) 37.6 59.3 37.6 27.3 21.1 17.0 14.1 111.9 10.2 8.8 7.7 6.8 6.0 Vreq (cu. m) 51.1	Vstored (m*3) 35.6 45.2 49.1 50.7 51.1 50.8 50.0 49.0 47.7 46.3 44.8 43.2 Vavail (cu. m) 52.4 Vstored (m*3) 48.2 61.1 66.3 68.3 68.3 68.3 68.7 68.5 63.7 61.6 63.7 61.6	Depth (mm) 131.0 141.8 146.2 148.1 148.5 148.2 147.3 146.1 144.7 143.1 144.7 143.6 Discharge Check 0.0 Roof 150 Depth (mm) 130.8 141.6 145.9 147.6 147.9 147.6 145.2 143.7	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
Storage: 100-year ¹	Area (ha):	0.13 1.00 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 44.79 44.111 37.90 35.20 32.89 ge Depth (mm) 148.5 C 0.18 1.00 I (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 44.99 44.91	(L/s) 65.0 43.7 43.7 33.5 27.4 23.3 20.4 18.1 16.4 15.0 13.8 12.0 Head (m) 0.15 Qactual (L/s) 88.4 59.4 45.5 37.2 31.6 27.7 24.6 22.3 20.3	Qrelease (L/s) Color Col	Qstored (L/s) 37.6 59.3 37.6 59.3 37.6 27.3 321.1 17.0 14.1 11.9 6.8 6.0	Vstored (m*3) 35.6 45.2 49.1 50.7 51.1 50.8 50.0 49.0 47.7 46.3 44.8 43.2 Vavail (cu. m) 52.4 varied (m*3) 48.2 61.1 66.3 68.3 68.7 68.2 67.0 65.5 63.7	Depth (mm) 131.0 141.8 146.2 148.1 148.5 148.2 147.3 146.1 143.1 141.4 139.6 Discharge Check 0.0 Depth (mm) 130.8 141.6 145.9 147.5 146.5 147.9 147.5 146.5 145.2 145.2	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
Storage: 100-year \u00e4 Subdrai	Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90 100 110 120 Roof Storag Water Level inage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 70 80 90 100 110 120 100 100 100 100 100 110 120	0.13 1.00 yr) (mm/hr) 178.56 119.95 55.89 49.79 44.99 41.11 37.90 35.20 32.89 Depth (mm) 148.5 C 0.18 1.00 I(100 yr) (mm/hr) 178.56 1.99 91.87 75.15 63.95 55.89 49.79 44.111 37.90 35.20 32.89	(L/s) 65.0 43.7 43.7 33.5 27.4 23.3 20.4 18.1 16.4 15.0 13.8 12.0 Head (m) 0.15 Qactual (L/s) 88.4 59.4 45.5 37.2 31.6 22.3 18.8 12.0	Qrelease (L/s) Color Col	Qstored (L/s) 37.6 59.3 37.6 59.3 37.6 17.0 14.1 11.0 2 8.8 6.0 17.7 6.8 6.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17	Vstored (m*3) 35.6 45.2 49.1 50.7 51.1 50.8 50.0 49.0 47.7 46.3 44.8 43.2 Vavail (cu. m) 52.4 Vstored (m*3) 48.2 61.1 66.3 68.3 68.7 68.6 68.7 61.6 59.5 761.6 59.5	Depth (mm) 131.0 141.8 146.2 148.1 148.5 148.2 147.3 146.1 144.7 143.1 141.4 139.6 Discharge Check 0.0 Root 150 Depth (mm) 130.8 141.6 145.9 147.6 147.9 147.9 145.9 147.9 145.9 147.9 145.9 147.9 148.5 146.5 145.9 147.9 142.0 140.3	0.000 0.000
Storage: 100-year ¹	Area (ha):	0.13 1.00 yr) (mm/hr) 178.56 119.95 55.89 49.79 44.99 41.11 37.90 35.20 32.89 Depth (mm) 148.5 C 0.18 1.00 I(100 yr) (mm/hr) 178.56 119.95 91.87 55.89 44.99 41.11 37.90 32.89 98	(L/s) 65.0 43.7 43.7 43.3 527.4 23.3 20.4 18.1 16.4 15.0 13.8 12.0 Head (m) 0.15 Qactual (L/s) 88.4 59.4 45.5 37.2 31.6 27.7 24.6 22.3 20.3 18.8 18.4 16.3	Qrelease (L/s) 5.7 6.1 6.2 6.3 6.2 6.1 6.0 6.0 6.0	Qstored (L/s) 59.3 37.6 59.3 37.6 27.3 21.1 17.0 14.1 111.9 10.2 8.8 6.0 Vreq (cu. m) 51.1 11.1 11.1 11.1 11.1 11.1 11.1 11.	Vstored (m*3) 35.6 45.2 49.1 50.7 51.1 50.8 50.0 49.0 47.7 46.3 44.8 43.2 Vavail (cu. m) 52.4 Vstored (m*3) 48.2 61.1 66.3 68.3 68.7 61.6 65.5 63.7 61.7 65.5 57.3	Depth (mm) 131.0 141.8 141.8 148.1 148.5 148.2 148.1 148.5 148.3 146.1 144.7 143.1 144.7 143.1 141.4 139.6 Discharge Check 0.0 Root 150 Depth (mm) 130.8 141.6 145.9 147.6 147.9 148.5 146.5 146.5 146.5 145.2 143.7 142.0 140.3 138.4	0.000 0.000
Storage: 100-year \u00e4 Subdrai	Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90 100 110 120 Roof Storag Water Level inage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 70 80 90 100 110 120 100 100 100 100 100 110 120	0.13 1.00 yr) (mm/hr) 178.56 119.56 119.57 55.89 49.79 44.99 41.11 37.90 35.20 32.89 Depth (mm) 148.5 C 0.18 1.00 I(100 yr) (mm/hr) 178.56 63.95 55.89 49.79 44.11 779.03 75.15 63.95 55.89 49.79 44.11 778.56 63.95 55.89 49.79 44.11 37.90 35.20 32.89	(L/s) 65.0 43.7 43.7 33.5 27.4 23.3 20.4 18.1 16.4 15.0 13.8 12.0 Head (m) 0.15 Qactual (L/s) 88.4 59.4 45.5 37.2 31.6 22.3 18.8 12.0	Qrelease (L/s) Color Col	Qstored (L/s) 37.6 59.3 37.6 59.3 37.6 17.0 14.1 11.0 2 8.8 6.0 17.7 6.8 6.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17	Vstored (m*3) 35.6 45.2 49.1 50.7 51.1 50.8 50.0 49.0 47.7 46.3 44.8 43.2 Vavail (cu. m) 52.4 Vstored (m*3) 48.2 61.1 66.3 68.3 68.7 68.6 68.7 61.6 59.5 761.6 59.5	Depth (mm) 131.0 141.8 146.2 148.1 148.5 148.2 147.3 146.1 144.7 143.1 141.4 139.6 Discharge Check 0.0 Root 150 Depth (mm) 130.8 141.6 145.9 147.6 147.9 147.9 145.9 147.9 145.9 147.9 145.9 147.9 148.5 146.5 145.9 147.9 142.0 140.3	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
Storage: 100-year \ Subdrai Subdrai	Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90 100 110 120 Roof Storag Water Level inage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 70 80 90 100 110 120 100 100 100 100 100 110 120	0.13 1.00 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 44.99 41.11 37.90 35.20 0.18 1.00 0.18 1.00 178.56 119.95 91.87 75.15 63.95 91.87 75.15 63.95 91.87 75.15 63.95 91.87 75.15 91.87 75.15 91.87 91	(L/s) 65.0 43.7 43.7 43.7 43.7 27.4 23.3 20.4 18.1 16.4 15.0 13.8 12.8 12.0 Head (m) 0.15 Qactual (L/s) 88.4 59.4 45.5 37.2 24.6 22.3 24.6 22.3 18.8 17.4 16.3	Qrelease (L/s) 6.1 6.2 6.3 6.2 6.1 6.0 6.0 6.0 6.0 6.3 6.3 6.2 6.1 6.0 6.3	Qstored (L/s) 59.3 37.6 59.3 37.6 27.3 21.1 17.0 14.1 11.9 10.2 8.8 7.7 6.8 6.0 Colored (cu. m) 51.1 Colored (L/s) 80.4 50.9 36.8 28.5 22.9 18.9 16.0 13.6 11.8 10.3 9.0 8.0	Vstored (m*3) 35.6 45.2 49.1 50.7 51.1 50.8 50.8 50.0 47.7 46.3 44.8 43.2 Vavail (cu. m) 52.4 Vavail 66.3 68.7 68.2 67.0 65.5 63.7 61.6 59.5 57.3 Vavail	Depth (mm) 131.0 141.8 146.2 148.1 148.5 148.2 147.3 146.1 143.1 141.4 139.6 Discharge Check 0.0 Depth (mm) 130.8 141.6 145.9 147.9 147.6 145.2 148.2 148.5 148.5 148.6 Discharge	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0

Project #160400864, Q-WEST PHASE 2 Modified Rational Method Calculatons for Storage

Subdra	inage Area: Area (ha): C:	B2 0.06 0.90		N	Maximum Sto	orage Depth:	Roc 15	of O mm
	tc	l (5 yr)	Qactual	Qrelease	Qstored	Vstored	Depth	T
	(min)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m^3)	(mm)	
	10	104.19	14.6	1.9	12.7	7.6	103.8	0.00
	20	70.25	9.8	2.0	7.8	9.4	110.8	0.00
	30	53.93	7.6	2.1	5.5	9.9	112.9	0.00
	40 50	44.18 37.65	6.2 5.3	2.1 2.0	4.1 3.2	9.9 9.7	113.0 112.1	0.00
	60	32.94	4.6	2.0	2.6	9.7	110.6	0.00
	70	29.37	4.0	2.0	2.0	8.9	108.8	0.00
	80	26.56	3.7	2.0	1.7	8.4	106.8	0.00
	90	24.29	3.4	2.0	1.5	7.8	104.7	0.00
	100	22.41	3.1	1.9	1.2	7.3	102.6	0.00
	110	20.82	2.9	1.9	1.0	6.7	100.4	0.00
	120	19.47	2.7	1.9	0.9	6.2	97.4	0.00
Storage:	Roof Storag	je						
	ĺ	Depth	Head	Discharge	Vreq	Vavail	Discharge	7
		(mm)	(m)	(L/s)	(cu. m)	(cu. m)	Check	
5-year	Water Level	113.0	0.11	2.1	9.9	22.4	0.0	_
Subdra	inage Area: Area (ha): C:	B1 0.06 0.90		N	Maximum Sto	orage Depth:	Roc 15	of O mm
	tc	l (5 yr)	Qactual	Qrelease	Qstored	Vstored	Depth	T
	(min)	(mana/law)						
		(mm/hr)	(L/s)	(L/s)	(L/s)	(m^3)	(mm)	
	10	104.19	15.4	2.4	13.0	7.8	103.0	0.00
	10 20	104.19 70.25	15.4 10.4	2.4	13.0 7.9	7.8 9.5	103.0 109.4	0.00
	10 20 30	104.19 70.25 53.93	15.4 10.4 8.0	2.4 2.5 2.5	13.0 7.9 5.5	7.8 9.5 9.9	103.0 109.4 110.8	0.00
	10 20 30 40	104.19 70.25 53.93 44.18	15.4 10.4 8.0 6.5	2.4 2.5 2.5 2.5	13.0 7.9 5.5 4.1	7.8 9.5 9.9 9.7	103.0 109.4 110.8 110.3	0.00
	10 20 30 40 50	104.19 70.25 53.93 44.18 37.65	15.4 10.4 8.0 6.5 5.6	2.4 2.5 2.5 2.5 2.5 2.4	13.0 7.9 5.5 4.1 3.1	7.8 9.5 9.9 9.7 9.3	103.0 109.4 110.8 110.3 108.8	0.00 0.00 0.00
	10 20 30 40 50	104.19 70.25 53.93 44.18 37.65 32.94	15.4 10.4 8.0 6.5 5.6 4.9	2.4 2.5 2.5 2.5 2.5 2.4 2.4	13.0 7.9 5.5 4.1 3.1 2.4	7.8 9.5 9.9 9.7 9.3 8.8	103.0 109.4 110.8 110.3 108.8 106.6	0.00 0.00 0.00 0.00
	10 20 30 40 50 60 70	104.19 70.25 53.93 44.18 37.65 32.94 29.37	15.4 10.4 8.0 6.5 5.6 4.9 4.3	2.4 2.5 2.5 2.5 2.4 2.4 2.4	13.0 7.9 5.5 4.1 3.1 2.4 1.9	7.8 9.5 9.9 9.7 9.3 8.8 8.1	103.0 109.4 110.8 110.3 108.8 106.6 104.2	0.00 0.00 0.00 0.00 0.00
	10 20 30 40 50 60 70 80	104.19 70.25 53.93 44.18 37.65 32.94 29.37 26.56	15.4 10.4 8.0 6.5 5.6 4.9 4.3 3.9	2.4 2.5 2.5 2.5 2.4 2.4 2.4 2.4	13.0 7.9 5.5 4.1 3.1 2.4 1.9	7.8 9.5 9.9 9.7 9.3 8.8 8.1 7.4	103.0 109.4 110.8 110.3 108.8 106.6 104.2 101.5	0.00 0.00 0.00 0.00 0.00
	10 20 30 40 50 60 70 80 90	104.19 70.25 53.93 44.18 37.65 32.94 29.37 26.56 24.29	15.4 10.4 8.0 6.5 5.6 4.9 4.3 3.9 3.6	2.4 2.5 2.5 2.5 2.4 2.4 2.4 2.4 2.3	13.0 7.9 5.5 4.1 3.1 2.4 1.9 1.5	7.8 9.5 9.9 9.7 9.3 8.8 8.1 7.4 6.7	103.0 109.4 110.8 110.3 108.8 106.6 104.2 101.5 98.1	0.00 0.00 0.00 0.00 0.00 0.00
	10 20 30 40 50 60 70 80 90	104.19 70.25 53.93 44.18 37.65 32.94 29.37 26.56 24.29 22.41	15.4 10.4 8.0 6.5 5.6 4.9 4.3 3.9 3.6 3.3	2.4 2.5 2.5 2.5 2.4 2.4 2.4 2.4 2.3 2.3	13.0 7.9 5.5 4.1 3.1 2.4 1.9 1.5 1.2	7.8 9.5 9.9 9.7 9.3 8.8 8.1 7.4 6.7 6.0	103.0 109.4 110.8 110.3 108.8 106.6 104.2 101.5 98.1 93.9	0.00 0.00 0.00 0.00 0.00 0.00
	10 20 30 40 50 60 70 80 90	104.19 70.25 53.93 44.18 37.65 32.94 29.37 26.56 24.29	15.4 10.4 8.0 6.5 5.6 4.9 4.3 3.9 3.6	2.4 2.5 2.5 2.5 2.4 2.4 2.4 2.4 2.3	13.0 7.9 5.5 4.1 3.1 2.4 1.9 1.5	7.8 9.5 9.9 9.7 9.3 8.8 8.1 7.4 6.7	103.0 109.4 110.8 110.3 108.8 106.6 104.2 101.5 98.1	0.00 0.00 0.00 0.00 0.00 0.00
Storage:	10 20 30 40 50 60 70 80 90 100 110	104.19 70.25 53.93 44.18 37.65 32.94 29.37 26.56 24.29 22.41 20.82 19.47	15.4 10.4 8.0 6.5 5.6 4.9 4.3 3.9 3.6 3.3 3.1	2.4 2.5 2.5 2.5 2.4 2.4 2.4 2.4 2.3 2.3 2.3	13.0 7.9 5.5 4.1 3.1 2.4 1.9 1.5 1.2 1.0 0.8	7.8 9.5 9.9 9.7 9.3 8.8 8.1 7.4 6.7 6.0 5.3	103.0 109.4 110.8 110.3 108.8 106.6 104.2 101.5 98.1 93.9 89.6	0.00 0.00 0.00 0.00 0.00 0.00 0.00
Storage:	10 20 30 40 50 60 70 80 90 100 110	104.19 70.25 53.93 44.18 37.65 32.94 29.37 26.56 24.29 22.41 20.82 19.47	15.4 10.4 8.0 6.5 5.6 4.9 4.3 3.9 3.6 3.3 3.1	2.4 2.5 2.5 2.5 2.4 2.4 2.4 2.4 2.3 2.3 2.3	13.0 7.9 5.5 4.1 3.1 2.4 1.9 1.5 1.2 1.0 0.8	7.8 9.5 9.9 9.7 9.3 8.8 8.1 7.4 6.7 6.0 5.3	103.0 109.4 110.8 110.3 108.8 106.6 104.2 101.5 98.1 93.9 89.6	0.00 0.00 0.00 0.00 0.00 0.00 0.00
Storage:	10 20 30 40 50 60 70 80 90 100 110	104.19 70.25 53.93 44.18 37.65 32.94 29.37 26.56 24.29 22.41 20.82 19.47	15.4 10.4 8.0 6.5 5.6 4.9 4.3 3.9 3.6 3.3 3.1 2.9	2.4 2.5 2.5 2.5 2.4 2.4 2.4 2.3 2.3 2.3 2.2	13.0 7.9 5.5 4.1 3.1 2.4 1.9 1.5 1.2 1.0 0.8	7.8 9.5 9.9 9.7 9.3 8.8 8.1 7.4 6.7 6.0 5.3 4.6	103.0 109.4 110.8 110.3 108.8 106.6 104.2 101.5 98.1 93.9 89.6 85.5	0.00 0.00 0.00 0.00 0.00 0.00 0.00
Storage: 5-year	10 20 30 40 50 60 70 80 90 100 110	104.19 70.25 53.93 44.18 37.65 32.94 29.37 26.56 24.29 22.41 20.82 19.47	15.4 10.4 8.0 6.5 5.6 4.9 4.3 3.9 3.6 3.3 3.1 2.9	2.4 2.5 2.5 2.5 2.4 2.4 2.4 2.3 2.3 2.3 2.2	13.0 7.9 5.5 4.1 3.1 2.4 1.9 1.5 1.2 1.0 0.8 0.6	7.8 9.5 9.9 9.7 9.3 8.8 8.1 7.4 6.7 6.0 5.3 4.6	103.0 109.4 110.8 110.3 108.8 106.6 104.2 101.5 98.1 93.9 89.6 85.5	0.0 0.0 0.0 0.0 0.0 0.0
	10 20 30 40 50 60 70 80 90 100 110 120 Roof Storag	104.19 70.25 53.93 44.18 37.65 32.94 29.37 26.56 24.29 22.41 20.82 19.47	15.4 10.4 8.0 6.5 5.6 4.9 4.3 3.9 3.6 3.3 3.1 2.9	2.4 2.5 2.5 2.5 2.4 2.4 2.4 2.3 2.3 2.3 2.2	13.0 7.9 5.5 4.1 3.1 2.4 1.9 1.5 1.2 1.0 0.8 0.6	7.8 9.5 9.9 9.7 9.3 8.8 8.1 7.4 6.7 6.0 5.3 4.6	103.0 109.4 110.8 110.3 108.8 106.6 104.2 101.5 98.1 93.9 89.6 85.5	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
5-year	10 20 30 40 50 60 70 80 90 100 110 120 Roof Storag	104.19 70.25 53.93 44.18 37.65 32.94 29.37 26.56 24.29 22.41 20.82 19.47 ge	15.4 10.4 8.0 6.5 5.6 4.9 4.3 3.9 3.6 3.3 3.1 2.9 Head (m) 0.11	2.4 2.5 2.5 2.5 2.4 2.4 2.4 2.4 2.3 2.3 2.3 2.2 Discharge ((L/s)) 2.5	13.0 7.9 5.5 4.1 3.1 2.4 1.9 1.5 1.2 1.0 0.8 0.6 Vreq (cu. m) 9.9	7.8 9.9 9.9 9.3 8.8 1.7.4 6.0 5.3 4.6 Vavail (cu. m)	103.0 109.4 110.8 110.3 108.8 106.6 104.2 101.5 98.1 93.9 89.6 85.5	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
5-year	10 20 30 40 50 60 70 80 100 1120 Roof Storaç Water Level	104.19 70.25 53.93 44.18 37.65 32.94 29.37 26.56 24.29 22.41 20.82 19.47 ge Depth (mm) 110.8	15.4 10.4 8.0 6.5 5.6 4.9 4.3 3.9 3.6 3.3 3.1 2.9 Head (m) 0.11	2.4 2.5 2.5 2.5 2.4 2.4 2.4 2.3 2.3 2.3 2.2 Discharge (L/s) 2.5	13.0 7.9 5.5 4.1 3.1 2.4 1.5 1.2 1.0 0.8 0.6	7.8 9.9 9.7 9.3 8.8 8.1 7.4 6.7 6.0 5.3 4.6 Vavail (cu. m) 23.6	103.0 109.4 110.8 110.3 108.8 106.6 104.2 101.5 98.1 98.9 89.6 85.5 Discharge Check 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
5-year	10 20 30 40 50 60 70 80 90 100 1120 Roof Storag	104.19 70.25 53.93 44.18 37.65 32.94 29.37 26.56 24.29 22.41 20.82 19.47 ge Depth (mm) 110.8	15.4 10.4 8.0 6.5 6.6 4.9 4.3 3.9 3.6 3.3 3.1 2.9 Head (m) 0.11	2.4 2.5 2.5 2.5 2.4 2.4 2.4 2.4 2.3 2.3 2.3 2.2 Discharge (L/s) 2.5 2.461 105 0.150	13.0 7.9 5.5 4.1 3.1 2.4 1.5 1.2 1.0 0.8 0.6 Vreq (cu. m) 9.9	7.8 9.9 9.9 9.3 8.8 1.7.4 6.0 5.3 4.6 Vavail (cu. m)	103.0 109.4 110.8 110.3 108.8 106.6 104.2 101.5 98.1 98.9 89.6 85.5 Discharge Check 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
5-year	10 20 30 40 50 60 70 80 90 100 1120 Roof Storag	104.19 70.25 53.93 44.18 37.65 32.94 29.37 26.56 24.29 22.41 20.82 19.47 ge Depth (mm) 110.8	15.4 10.4 8.0 6.5 5.6 4.9 4.3 3.9 3.6 3.3 3.1 2.9 Head (m) 0.11	2.4 2.5 2.5 2.5 2.4 2.4 2.4 2.4 2.3 2.3 2.3 2.2 Discharge (Us) 2.5 2.461 105 0.150 31	7.9 7.5 4.1 2.4 1.5 1.2 1.0 0.8 0.6 Vreq (cu. m) 9.9	7.8 9.9 9.7 9.3 8.8 8.1 7.4 6.7 6.0 5.3 4.6 Vavail (cu. m) 23.6	103.0 109.4 110.8 110.3 108.8 106.6 104.2 101.5 98.1 98.9 89.6 85.5 Discharge Check 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00
5-year	10 20 30 40 50 60 70 80 90 100 1120 Roof Storag	104.19 70.25 53.93 44.18 37.65 32.94 29.37 26.56 24.29 19.47 20.82 19.47 July 20.82 19.47 July 20.82 Transparence of the control of the contr	15.4 10.4 8.0 6.5 6.6 4.9 4.3 3.9 3.6 3.3 3.1 2.9 Head (m) 0.111	2.4 2.5 2.5 2.5 2.4 2.4 2.4 2.4 2.3 2.3 2.3 2.2 Discharge (L/s) 2.5 2.4611 105 0.150 31	13.0 7.9 5.5 4.1 3.1 2.4 1.5 1.2 1.0 0.8 0.6 Vreq (cu. m) 9.9	7.8 9.9 9.7 9.3 8.8 8.1 7.4 6.7 6.0 5.3 4.6 Vavail (cu. m) 23.6	103.0 109.4 110.8 110.3 108.8 106.6 104.2 101.5 98.1 98.9 89.6 85.5 Discharge Check 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
5-year	10 20 30 40 50 60 70 80 90 100 1120 Roof Storag	104.19 70.25 53.93 44.18 37.65 32.94 29.37 26.56 24.29 19.47 20.82 19.47 July 20.82 19.47 July 20.82 Transparence of the control of the contr	15.4 10.4 8.0 6.5 5.6 4.9 4.3 3.9 3.6 3.3 3.1 2.9 Head (m) 0.11	2.4 2.5 2.5 2.5 2.4 2.4 2.4 2.4 2.3 2.3 2.3 2.2 Discharge (Us) 2.5 2.461 105 0.150 31	13.0 7.9 5.5 4.1 3.1 2.4 1.5 1.2 1.0 0.8 0.6 Vreq (cu. m) 9.9	7.8 9.9 9.7 9.3 8.8 8.1 7.4 6.7 6.0 5.3 4.6 Vavail (cu. m) 23.6	103.0 109.4 110.8 110.3 108.8 106.6 104.2 101.5 98.1 98.9 89.6 85.5 Discharge Check 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0

Project #160400864, Q-WEST PHASE 2

Subdrain	nage Area:	B2					Roo	of
	Area (ha):	0.06		M	avimum St	orage Depth:		ار 0 mm
	C:	1.00		IV	axiiiuiii Si	nage Deptil.	13	0 111111
	0.	1.00						
	tc (min)	l (100 yr) (mm/hr)	Qactual (L/s)	Qrelease (L/s)	Qstored (L/s)	Vstored (m^3)	Depth (mm)	
ų.	10	178.56	27.8	2.3	25.5	15.3	131.2	0.0
	20	119.95	18.7	2.4	16.2	19.5	142.3	0.0
	30	91.87	14.3	2.5	11.8	21.3	147.0	0.0
	40	75.15	11.7	2.5	9.2	22.0	149.1	0.0
	50	63.95	10.0	2.5	7.4	22.3	149.8	0.0
	60	55.89	8.7	2.5	6.2	22.3	149.6	0.0
	70	49.79	7.8	2.5	5.2	22.0	149.0	0.0
	80	44.99	7.0	2.5	4.5	21.6	148.0	0.0
	90	41.11	6.4	2.5	3.9	21.2	146.7	0.0
	100	37.90	5.9	2.5	3.4	20.6	145.3	0.0
	110	35.20	5.5	2.4	3.0	20.0	143.7	0.0
	120	32.89	5.1	2.4	2.7	19.4	142.1	0.0
torage:	Roof Storag	je						
		Depth	Head	Discharge	Vreq	Vavail	Discharge	
400	/	(mm)	(m)	(L/s)	(cu. m)	(cu. m)	Check	-
100-year v	Vater Level	149.8	0.15	2.5	22.3	22.4	0.0	
Subdrair	nage Area:	B1					Roo	
	Area (ha): C:	0.06 1.00		M	aximum Sto	orage Depth:	15	0 mm
г	tc		Qactual	Qrelease	0-4	Mataurd	Donath	_
	(min)	I (100 yr) (mm/hr)	(L/s)	(L/s)	Qstored (L/s)	Vstored (m^3)	Depth (mm)	
L	10	178.56	29.3	2.7	26.6	16.0	130.8	0.0
	20	119.95	19.7	2.8	16.9	20.3	141.7	0.0
	30	91.87	15.1	2.8	12.3	22.1	146.2	0.0
	40	75.15	12.3	2.8	9.5	22.8	148.0	0.0
	50	63.95	10.5	2.8	7.7	23.0	148.5	0.0
	60	55.89	9.2	2.8	6.3	22.8	148.1	0.0
	70	49.79	8.2	2.8	5.4	22.5	147.2	0.0
	80	44.99	7.4	2.8	4.6	22.0	145.9	0.0
	90	41.11	6.7	2.8	4.0	21.4	144.4	0.0
	100	37.90	6.2	2.8	3.4	20.7	142.7	0.0
	110	35.20	5.8	2.8	3.0	19.9	140.8	0.0
	120	32.89	5.4	2.7	2.7	19.2	138.8	0.0
torage:	Roof Storag	je						
	j	Depth	Head	Discharge	Vreq	Vavail	Discharge	٦
		(mm)	(m)	(L/s)	(cu. m)	(cu. m)	Check	
100-year V	Vater Level	148.5	0.15	2.8	23.0	23.6	0.0	_
		ge Depth	Head	Discharge	Vreq	Var (cu.	vail . m)	vail Discharge
SUMMARY T	O OUTLET			_		Vrequired	Vavailable*	
	To		butary Area ow to Sewer	2.461 136		0		0 m
	Total 1		butary Area ncontrolled	0.150 67	ha L/s			

Project #160400864, Q-WEST PHASE 2 Roof Drain Design Sheet, Area A Standard Zurn Model Z-105-5 Control-Flo Single Notch Roof Drain

Rating Curve					Volume Estimation				
Elevation	Discharge Rate	Outlet Discharge	Storage	Elevation	Area	Volume	e (cu. m)	Water Depth	
(m)	(cu.m/s)	(cu.m/s)	(cu. m)	(m)	(sq. m)	Increment	Accumulated	(m)	
0.000	0.0000	0.0000	0	0.000	0	0	0	0.000	
0.025	0.0004	0.0084	41	0.025	1625	41	41	0.025	
0.050	0.0008	0.0169	81	0.050	1625	41	81	0.050	
0.075	0.0012	0.0253	122	0.075	1625	41	122	0.075	
0.100	0.0015	0.0338	163	0.100	1625	41	163	0.100	
0.125	0.0019	0.0422	203	0.125	1625	41	203	0.125	
0.150	0.0023	0.0507	244	0.150	1625	41	244	0.150	

Drawdown Estimate							
Total	Total						
Volume	Time	Vol	Detention				
(cu.m)	(sec)	(cu.m)	Time (hr)				
0.0	0.0	0.0	0				
40.6	2404.4	40.6	0.66789				
81.3	1602.9	40.6	1.11316				
121.9	1202.2	40.6	1.4471				
162.5	961.8	40.6	1.71426				
203.1	801.5	40.6	1.93689				

Rooftop Storage Summary

Total Building Area (sq.m) 2500 Assume Available Roof Area (sq. 65% 1625 Roof Imperviousness 0.99 Roof Drain Requirement (sq.m/Notch) 232 22 Number of Roof Notches* 0.15 Max. Allowable Depth of Roof Ponding (m) Max. Allowable Storage (cu.m) 244 Estimated 100 Year Drawdown Time (h) 1.1

Calculation Results

sults	5yr	100yr	Available
Qresult (cu.m/s)	0.009	0.017	-
Depth (m)	0.027	0.051	0.150
Volume (cu.m)	44.2	83.6	243.8
Draintime (hrs)	0.7	1.1	

From Zurn Drain Catalogue

Head (m) L/m	nin	L/s	Notch Rating
0.051	15.5	0.00076	232

^{*} As per Ontario Building Code section OBC 7.4.10.4.(2)(c).

^{*} Note: Number of drains can be reduced if multiple-notch drain used.

Project #160400864, Q-WEST PHASE 2 Roof Drain Design Sheet, Area B1 **Standard Watts Accuflow Drain**

	Rating Curve				Volume Estimation			
Elevation	Discharge Rate	Outlet Discharge	Storage	Elevation	Area	Volume	e (cu. m)	Water Depth
(m)	(cu.m/s)	(cu.m/s)	(cu. m)	(m)	(sq. m)	Increment	Accumulated	(m)
0.000	0.0000	0.0000	0	0.000	0	0	0	0.000
0.025	0.0003	0.0009	0	0.025	13	0	0	0.025
0.050	0.0006	0.0019	1	0.050	52	1	1	0.050
0.075	0.0007	0.0021	3	0.075	118	2	3	0.075
0.100	0.0008	0.0024	7	0.100	210	4	7	0.100
0.125	0.0009	0.0026	14	0.125	328	7	14	0.125
0.150	0.0009	0.0028	24	0.150	472	10	24	0.150

Drawdown Estimate								
Total	Total							
Volume	Time	Vol	Detention					
(cu.m)	(sec)	(cu.m)	Time (hr)					
0.0	0.0	0.0	0					
8.0	404.1	8.0	0.11225					
2.8	974.9	2.1	0.38306					
6.9	1708.7	4.0	0.8577					
13.5	2561.0	6.7	1.56908					
23.5	3502.1	9.9	2.54188					

Roofto	p Storage	Summary	

Total Building Area (sq.m)		590
Assume Available Roof Area (sq.	80%	472
Roof Imperviousness		0.99
Roof Drain Requirement (sq.m/Notch)		232
Number of Roof Notches*		3
Max. Allowable Depth of Roof Ponding (m)		0.15
Max. Allowable Storage (cu.m)		24
Estimated 100 Year Drawdown Time (h)		2.5

^{*} As per Ontario Building Code section OBC 7.4.10.4.(2)(c).

From Watts Drain Catalogue

Head (m) L/s								
	Open	0.75	0.5	0.25	Closed			
0.025	0.3155	0.3155	0.3155	0.3155	0.3155			
0.05	0.6309	0.6309	0.6309	0.6309	0.3155			
0.075	0.9464	0.8675	0.7886	0.7098	0.3155			
0.1	1.2618	1.1041	0.9464	0.7886	0.3155			
0.125	1.5773	1.3407	1.1041	0.8675	0.3155			
0.15	1.8927	1.5773	1.2618	0.9464	0.3155			

Calculation Res

sults	5yr	100yr	Available
Qresult (cu.m/s)	0.002	0.003	-
Depth (m)	0.111	0.148	0.150
Volume (cu.m)	9.9	23.0	23.6
Draintime (hrs)	1.2	2.5	

^{*} Note: Number of drains can be reduced if multiple-notch drain used.

Project #160400864, Q-WEST PHASE 2 Roof Drain Design Sheet, Area B2 **Standard Watts Accuflow Drain**

Rating Curve					Volume E			
Elevation	Discharge Rate	Outlet Discharge	Storage	Elevation	Area	Volume	(cu. m)	Water Depth
(m)	(cu.m/s)	(cu.m/s)	(cu. m)	(m)	(sq. m)	Increment	Accumulated	(m)
0.000	0.0000	0.0000	0	0.000	0	0	0	0.000
0.025	0.0003	0.0006	0	0.025	12	0	0	0.025
0.050	0.0006	0.0013	1	0.050	50	1	1	0.050
0.075	0.0008	0.0016	3	0.075	112	2	3	0.075
0.100	0.0009	0.0019	7	0.100	199	4	7	0.100
0.125	0.0011	0.0022	13	0.125	311	6	13	0.125
0.150	0.0013	0.0025	22	0.150	448	9	22	0.150

22

2.9

Drawdown Estimate									
Total	Total								
Volume	Time	Vol	Detention						
(cu.m)	(sec)	(cu.m)	Time (hr)						
0.0	0.0	0.0	0						
0.7	575.3	0.7	0.15981						
2.7	1249.2	2.0	0.50682						
6.5	2027.3	3.8	1.06995						
12.9	2864.8	6.3	1.86573						
22.3	3739.5	9.4	2.90448						

0.3155

0.1 1.2618 1.1041 **0.9464** 0.7886

0.125 1.5773 1.3407 **1.1041** 0.8675 0.3155

0.15 1.8927 1.5773 **1.2618** 0.9464 0.3155

Rooftop Storage Summary From Watts Drain Catalogue Total Building Area (sq.m) 560 Head (m) L/s Assume Available Roof Area (sq. 80% 448 Open 0.75 0.5 0.25 Closed Roof Imperviousness 0.99 Roof Drain Requirement (sq.m/Notch) 232 2 Number of Roof Notches* 0.15 * As per Ontario Building Code section OBC 7.4.10.4.(2)(c).

Max. Allowable Depth of Roof Ponding (m)

Estimated 100 Year Drawdown Time (h)

Max. Allowable Storage (cu.m)

Calculation Results	5yr	100yr	Available
Qresult (cu.m/s)	0.002	0.003	-
Depth (m)	0.113	0.150	0.150
Volume (cu.m)	9.9	22.3	22.4
Draintime (hrs)	1.5	2.9	

^{*} Note: Number of drains can be reduced if multiple-notch drain used.

Project #160400864, Q-WEST PHASE 2 Roof Drain Design Sheet, Area C Standard Watts Accuflow Drain

	Rating	Curve						
Elevation	Discharge Rate	Outlet Discharge	Storage	Elevation	Area	Volume	e (cu. m)	Water Depth
(m)	(cu.m/s)	(cu.m/s)	(cu. m)	(m)	(sq. m)	Increment	Accumulated	(m)
0.000	0.0000	0.0000	0	0.000	0	0	0	0.000
0.025	0.0003	0.0022	0	0.025	40	0	0	0.025
0.050	0.0006	0.0044	3	0.050	158	2	3	0.050
0.075	0.0008	0.0055	9	0.075	356	6	9	0.075
0.100	0.0009	0.0066	21	0.100	633	12	21	0.100
0.125	0.0011	0.0077	41	0.125	989	20	41	0.125
0.150	0.0013	0.0088	71	0.150	1424	30	71	0.150

Drawdown Estimate									
Total	Total								
Volume	Time	Vol	Detention						
(cu.m)	(sec)	(cu.m)	Time (hr)						
0.0	0.0	0.0	0						
2.3	522.5	2.3	0.14513						
8.6	1134.5	6.3	0.46027						
20.8	1841.1	12.2	0.97169						
40.9	2601.7	20.1	1.69439						
70.9	3396.1	30.0	2.63774						

Rooftop Storage Summary			-						
				From Wa	tts Drain (Catalogue			
Total Building Area (sq.m)		1780		Head (m)	L/s				
Assume Available Roof Area (sq.	80%	1424			Open	0.75	0.5	0.25	Closed
Roof Imperviousness		0.99		0.025	0.3155	0.3155	0.3155	0.3155	0.3155
Roof Drain Requirement (sq.m/Notch)		232		0.05	0.6309	0.6309	0.6309	0.6309	0.3155
Number of Roof Notches*		7		0.075	0.9464	0.8675	0.7886	0.7098	0.3155
Max. Allowable Depth of Roof Ponding (m)		0.15	* As per Ontario Building Code section OBC 7.4.10.4.(2)(c).	0.1	1.2618	1.1041	0.9464	0.7886	0.3155
Max. Allowable Storage (cu.m)		71		0.125	1.5773	1.3407	1.1041	0.8675	0.3155
Estimated 100 Year Drawdown Time (h)		2.6		0.15	1.8927	1.5773	1.2618	0.9464	0.3155

^{*} Note: Number of drains can be reduced if multiple-notch drain used.

Calculation Results	5vr	100yr	Available
Qresult (cu.m/s)		0.009	-
Depth (m)	0.112	0.148	0.150
Volume (cu.m)	30.4	68.7	71.2
Draintime (hrs)	1.3	2.6	

Project #160400864, Q-WEST PHASE 2 Roof Drain Design Sheet, Area D1 Standard Watts Accuflow Drain

	Rating	Curve			Volume E	stimation		
Elevation	Discharge Rate	Outlet Discharge	Storage	Elevation	Area	Volume	e (cu. m)	Water Depth
(m)	(cu.m/s)	(cu.m/s)	(cu. m)	(m)	(sq. m)	Increment	Accumulated	(m)
0.000	0.0000	0.0000	0	0.000	0	0	0	0.000
0.025	0.0003	0.0016	0	0.025	29	0	0	0.025
0.050	0.0006	0.0032	2	0.050	116	2	2	0.050
0.075	0.0008	0.0039	7	0.075	262	5	7	0.075
0.100	0.0009	0.0047	16	0.100	466	9	16	0.100
0.125	0.0011	0.0055	30	0.125	728	15	30	0.125
0.150	0.0013	0.0063	52	0.150	1048	22	52	0.150

2.7

Drawdown Estimate									
Total	Total								
Volume	Time	Vol	Detention						
(cu.m)	(sec)	(cu.m)	Time (hr)						
0.0	0.0	0.0	0						
1.7	538.3	1.7	0.14953						
6.3	1168.9	4.6	0.47424						
15.3	1897.0	9.0	1.00117						
30.1	2680.6	14.8	1.74579						
52.2	3499.1	22.1	2.71776						

0.15 1.8927 1.5773 **1.2618** 0.9464 0.3155

Rooftop Storage Summary			_						
			_	From Wa	tts Drain (Catalogue			
Total Building Area (sq.m)		1310		Head (m)	L/s				
Assume Available Roof Area (sq.	80%	1048			Open	0.75	0.5	0.25	Closed
Roof Imperviousness		0.99		0.025	0.3155	0.3155	0.3155	0.3155	0.3155
Roof Drain Requirement (sq.m/Notch)		232		0.05	0.6309	0.6309	0.6309	0.6309	0.3155
Number of Roof Notches*		5		0.075	0.9464	0.8675	0.7886	0.7098	0.3155
Max. Allowable Depth of Roof Ponding (m)		0.15	* As per Ontario Building Code section OBC 7.4.10.4.(2)(c).	0.1	1.2618	1.1041	0.9464	0.7886	0.3155
Max Allowable Storage (cu m)		52		0 125	1 5773	1 3407	1 1041	0.8675	0.3155

^{*} Note: Number of drains can be reduced if multiple-notch drain used.

Estimated 100 Year Drawdown Time (h)

Calculation Results	5yr	100yr	Available
Qresult (cu.m/s	0.005	0.006	-
Depth (m)	0.112	0.149	0.150
Volume (cu.m)	22.6	51.1	52.4
Draintime (hrs)	1.4	2.7	

Project #160400864, Q-WEST PHASE 2 Roof Drain Design Sheet, Area D3 Standard Watts Accuflow Drain

	Rating Curve				Volume Estimation			
Elevation	levation Discharge Rate Outlet Discharge Storag		Storage	Elevation	Area	Volume (cu. m)		Water Depth
(m)	(cu.m/s)	(cu.m/s)	(cu. m)	(m)	(sq. m)	Increment	Accumulated	(m)
0.000	0.0000	0.0000	0	0.000	0	0	0	0.000
0.025	0.0003	0.0006	0	0.025	7	0	0	0.025
0.050	0.0006	0.0013	0	0.050	29	0	0	0.050
0.075	0.0007	0.0014	2	0.075	66	1	2	0.075
0.100	0.0008	0.0016	4	0.100	117	2	4	0.100
0.125	0.0009	0.0017	8	0.125	183	4	8	0.125
0.150	0.0009	0.0019	13	0.150	264	6	13	0.150

Drawdown Estimate							
Total	Total						
Volume	Time	Vol	Detention				
(cu.m)	(sec)	(cu.m)	Time (hr)				
0.0	0.0	0.0	0				
0.4	339.0	0.4	0.09417				
1.6	818.0	1.2	0.32138				
3.9	1433.6	2.3	0.7196				
7.6	2148.6	3.7	1.31643				
13.1	2938.2	5.6	2.13259				

Rooftop Storage Summary			_						
			_	From Wa	tts Drain (Catalogue			
Total Building Area (sq.m)		330		Head (m)	L/s				
Assume Available Roof Area (sq.	80%	264			Open	0.75	0.5	0.25	Closed
Roof Imperviousness		0.99		0.025	0.3155	0.3155	0.3155	0.3155	0.3155
Roof Drain Requirement (sq.m/Notch)		232		0.05	0.6309	0.6309	0.6309	0.6309	0.3155
Number of Roof Notches*		2		0.075	0.9464	0.8675	0.7886	0.7098	0.3155
Max. Allowable Depth of Roof Ponding (m)		0.15	* As per Ontario Building Code section OBC 7.4.10.4.(2)(c).	0.1	1.2618	1.1041	0.9464	0.7886	0.3155
Max. Allowable Storage (cu.m)		13		0.125	1.5773	1.3407	1.1041	0.8675	0.3155
Estimated 100 Year Drawdown Time (h)		2.0		0.15	1.8927	1.5773	1.2618	0.9464	0.3155

^{*} Note: Number of drains can be reduced if multiple-notch drain used.

Calculation Results		5yr	100yr	Available
Qresult (cu.m/s)	0.002	0.002	-
Depth (m)		0.108	0.145	0.150
Volume (cu.m)	5.1	12.1	13.2
Draintime	e (hrs)	0.9	2.0	

Project #160400864, Q-WEST PHASE 2 Roof Drain Design Sheet, Area D5 **Standard Watts Accuflow Drain**

	Rating Curve				Volume Estimation			
Elevation	levation Discharge Rate Outlet Discharge S		Storage	Elevation	Area	Area Volume (cu. m)		Water Depth
(m)	(cu.m/s)	(cu.m/s)	(cu. m)	(m)	(sq. m)	Increment	Accumulated	(m)
0.000	0.0000	0.0000	0	0.000	0	0	0	0.000
0.025	0.0003	0.0006	0	0.025	8	0	0	0.025
0.050	0.0006	0.0013	1	0.050	34	0	1	0.050
0.075	0.0007	0.0014	2	0.075	76	1	2	0.075
0.100	0.0008	0.0016	5	0.100	135	3	5	0.100
0.125	0.0009	0.0017	9	0.125	211	4	9	0.125
0.150	0.0009	0.0019	15	0.150	304	6	15	0.150

Drawdown Estimate							
Total	Total						
Volume	Time	Vol	Detention				
(cu.m)	(sec)	(cu.m)	Time (hr)				
0.0	0.0	0.0	0				
0.5	390.4	0.5	0.10844				
1.8	941.9	1.3	0.37008				
4.4	1650.8	2.6	0.82863				
8.7	2474.1	4.3	1.51589				
15.1	3383.4	6.4	2.45571				

Rooftop Storage Summary	
Total Building Area (sq.m)	380

Assume Available Roof Area (sq. 80% 304 Roof Imperviousness 0.99 Roof Drain Requirement (sq.m/Notch) 232 Number of Roof Notches* 2 Max. Allowable Depth of Roof Ponding (m) 0.15 Max. Allowable Storage (cu.m) 15 Estimated 100 Year Drawdown Time (h) 2.4

From Watts Drain Catalogue

Head (m) L/s								
	Open	0.75	0.5	0.25	Closed			
0.025	0.3155	0.3155	0.3155	0.3155	0.3155			
0.05	0.6309	0.6309	0.6309	0.6309	0.3155			
0.075	0.9464	0.8675	0.7886	0.7098	0.3155			
0.1	1.2618	1.1041	0.9464	0.7886	0.3155			
0.125	1.5773	1.3407	1.1041	0.8675	0.3155			
0.15	1.8927	1.5773	1.2618	0.9464	0.3155			

Calculation Res

9	sults	5yr	100yr	Available
	Qresult (cu.m/s)	0.002	0.002	-
	Depth (m)	0.110	0.148	0.150
	Volume (cu.m)	6.3	14.6	15.2
	Draintime (hrs)	1.1	2.4	

^{*} As per Ontario Building Code section OBC 7.4.10.4.(2)(c).

^{*} Note: Number of drains can be reduced if multiple-notch drain used.

C.3 BACKGROUND REPORT EXCERPTS (STORM SEWER)

5.0 Stormwater Management and Servicing

The stormwater management (SWM) criteria for 114 Richmond Road were established in a report titled "Assessment of Adequacy of Public Services Report" prepared by Trow Associates Inc. and dated March 12, 2010. This report indicated a 5-year predevelopment release rate of 194.3L/s based on a site area of 2.21ha and a pre-development runoff coefficient of 0.45. (see **Appendix C** for Excerpts from Trow's report). As per the City of Ottawa's request in an email received September 6, 2011, the allowable release rate has been revised to reflect a calculated time of concentration of 23.8 minutes, based on existing site conditions. Note that the proposed site also receives external drainage from neighbouring properties. These external flows will be captured and conveyed by the proposed system. The target rate for the site is therefore **205 L/s** when external drainage areas are included.

This SWM analysis will demonstrate that the proposed development meets the above criteria, as well as the following:

- Maximum permitted hydraulic grade line (HGL) to be a minimum of 0.30 m below building foundation will be addressed through installation of pumps.
- Size storm sewers to convey 5 year storm event under free-flow conditions using 2004
 City of Ottawa I-D-F parameters (City of Ottawa). Due to servicing restrictions on the
 west side of the site, the sewers connecting to Richmond Road are sized to convey the
 100 year restricted release rate from roof tops and the underground storm reservoir.
- All flows in excess of the allowable release rate, up to and including the 100-year storm, are to be detained onsite.
- Where possible, maximum ponding depth of 0.30 m (*City of Ottawa*). Note that due to grading restrictions a depression exists within the treed area that is to be preserved and cannot be regraded. No overland flow route is available from this area and as such maximum ponding depths of 0.3m cannot be achieved.
- Standing water depths at parking lot sags not to cause surface flooding on any building or structure (City of Ottawa)
- Subdrains required in swales where longitudinal gradient is less than 1.5% (City of Ottawa)
- Where possible, major flow from the site is to be safely conveyed by surface routing towards Leighton Terrace and Richmond Road. A depression exists currently within the treed area that is to be preserved and cannot be regraded. Due to elevation changes across the site no overland flow route can be provided at this location. Flows in this area will be captured in a catchbasin and conveyed through the proposed storm sewers but no overland flow route can be provided.

Appendix D CITY CORRESPONDENCE & CHECKLIST

Servicing study guidelines for development applications

4. Development Servicing Study Checklist

The following section describes the checklist of the required content of servicing studies. It is expected that the proponent will address each one of the following items for the study to be deemed complete and ready for review by City of Ottawa Infrastructure Approvals staff.

The level of required detail in the Servicing Study will increase depending on the type of application. For example, for Official Plan amendments and re-zoning applications, the main issues will be to determine the capacity requirements for the proposed change in land use and confirm this against the existing capacity constraint, and to define the solutions, phasing of works and the financing of works to address the capacity constraint. For subdivisions and site plans, the above will be required with additional detailed information supporting the servicing within the development boundary.

4.1 General Content

- NAD Executive Summary (for larger reports only).
 - Date and revision number of the report.
 - Location map and plan showing municipal address, boundary, and layout of proposed development.
 - Plan showing the site and location of all existing services.
 - ☑ Development statistics, land use, density, adherence to zoning and official plan, and reference to applicable subwatershed and watershed plans that provide context to which individual developments must adhere.
 - ☑ Summary of Pre-consultation Meetings with City and other approval agencies.
 - Reference and confirm conformance to higher level studies and reports (Master Servicing Studies, Environmental Assessments, Community Design Plans), or in the case where it is not in conformance, the proponent must provide justification and develop a defendable design criteria.
 - ☑ Statement of objectives and servicing criteria.
 - ☑ Identification of existing and proposed infrastructure available in the immediate area.
- NA Identification of Environmentally Significant Areas, watercourses and Municipal Drains potentially impacted by the proposed development (Reference can be made to the Natural Heritage Studies, if available).
- Concept level master grading plan to confirm existing and proposed grades in the development. This is required to confirm the feasibility of proposed stormwater management and drainage, soil removal and fill constraints, and potential impacts to neighbouring properties. This is also required to confirm that the proposed grading will not impede existing major system flow paths.
- NA Identification of potential impacts of proposed piped services on private services (such as wells and septic fields on adjacent lands) and mitigation required to address potential impacts.
 - ☑ Proposed phasing of the development, if applicable.

- ☑ Reference to geotechnical studies and recommendations concerning servicing.
- All preliminary and formal site plan submissions should have the following information:
 - Metric scale
 - North arrow (including construction North)
 - Key plan
 - Name and contact information of applicant and property owner
 - Property limits including bearings and dimensions
 - Existing and proposed structures and parking areas
 - Easements, road widening and rights-of-way
 - Adjacent street names

4.2 Development Servicing Report: Water

- ☑ Confirm consistency with Master Servicing Study, if available
- Availability of public infrastructure to service proposed development
- ☑ Identification of system constraints
- ☑ Identify boundary conditions
- ☑ Confirmation of adequate domestic supply and pressure
- Confirmation of adequate fire flow protection and confirmation that fire flow is calculated as per the Fire Underwriter's Survey. Output should show available fire flow at locations throughout the development.
- ☑ Provide a check of high pressures. If pressure is found to be high, an assessment is required to confirm the application of pressure reducing valves.
- ☑ Definition of phasing constraints. Hydraulic modeling is required to confirm servicing for all defined phases of the project including the ultimate design
- Address reliability requirements such as appropriate location of shut-off valves
- ☑ Check on the necessity of a pressure zone boundary modification.
- Reference to water supply analysis to show that major infrastructure is capable of delivering sufficient water for the proposed land use. This includes data that shows that the expected demands under average day, peak hour and fire flow conditions provide water within the required pressure range

- Description of the proposed water distribution network, including locations of proposed connections to the existing system, provisions for necessary looping, and appurtenances (valves, pressure reducing valves, valve chambers, and fire hydrants) including special metering provisions.
- Description of off-site required feedermains, booster pumping stations, and other water infrastructure that will be ultimately required to service proposed development, including financing, interim facilities, and timing of implementation.
- ☑ Confirmation that water demands are calculated based on the City of Ottawa Design Guidelines.
- Provision of a model schematic showing the boundary conditions locations, streets, parcels, and building locations for reference.

4.3 Development Servicing Report: Wastewater

- Summary of proposed design criteria (Note: Wet-weather flow criteria should not deviate from the City of Ottawa Sewer Design Guidelines. Monitored flow data from relatively new infrastructure cannot be used to justify capacity requirements for proposed infrastructure).
- ☑ Confirm consistency with Master Servicing Study and/or justifications for deviations.
- ☑ Consideration of local conditions that may contribute to extraneous flows that are higher than the recommended flows in the guidelines. This includes groundwater and soil conditions, and age and condition of sewers
- Description of existing sanitary sewer available for discharge of wastewater from proposed development.
- ☑ Verify available capacity in downstream sanitary sewer and/or identification of upgrades necessary to service the proposed development. (Reference can be made to previously completed Master Servicing Study if applicable)
- ☑ Calculations related to dry-weather and wet-weather flow rates from the development in standard MOE sanitary sewer design table (Appendix 'C') format.
- ☑ Description of proposed sewer network including sewers, pumping stations, and forcemains.
- Discussion of previously identified environmental constraints and impact on servicing (environmental constraints are related to limitations imposed on the development in order to preserve the physical condition of watercourses, vegetation, soil cover, as well as protecting against water quantity and quality).
 - ☑ Pumping stations: impacts of proposed development on existing pumping stations or requirements for new pumping station to service development.
- NA Forcemain capacity in terms of operational redundancy, surge pressure and maximum flow velocity.
- NA⊠ Identification and implementation of the emergency overflow from sanitary pumping stations in relation to the hydraulic grade line to protect against basement flooding.
 - ☑ Special considerations such as contamination, corrosive environment etc.

4.4 Development Servicing Report: Stormwater Checklist

- Description of drainage outlets and downstream constraints including legality of outlets (i.e. municipal drain, right-of-way, watercourse, or private property)
- Analysis of available capacity in existing public infrastructure.
- A drawing showing the subject lands, its surroundings, the receiving watercourse, existing drainage patterns, and proposed drainage pattern.
- Water quantity control objective (e.g. controlling post-development peak flows to pre-development level for storm events ranging from the 2 or 5 year event (dependent on the receiving sewer design) to 100 year return period); if other objectives are being applied, a rationale must be included with reference to hydrologic analyses of the potentially affected subwatersheds, taking into account long-term cumulative effects.
- Water Quality control objective (basic, normal or enhanced level of protection based on the sensitivities of the receiving watercourse) and storage requirements.
- Description of the stormwater management concept with facility locations and descriptions with references and supporting information.
- NA Set-back from private sewage disposal systems.
- NAM Watercourse and hazard lands setbacks.
 - Record of pre-consultation with the Ontario Ministry of Environment and the Conservation Authority that has jurisdiction on the affected watershed.
 - ☑ Confirm consistency with sub-watershed and Master Servicing Study, if applicable study exists.
 - Storage requirements (complete with calculations) and conveyance capacity for minor events (1:5 year return period) and major events (1:100 year return period).
- NAN Identification of watercourses within the proposed development and how watercourses will be protected, or, if necessary, altered by the proposed development with applicable approvals.
 - ☑ Calculate pre and post development peak flow rates including a description of existing site conditions and proposed impervious areas and drainage catchments in comparison to existing conditions.
 - ☑ Any proposed diversion of drainage catchment areas from one outlet to another.
 - Proposed minor and major systems including locations and sizes of stormwater trunk sewers, and stormwater management facilities.
 - If quantity control is not proposed, demonstration that downstream system has adequate capacity for the post-development flows up to and including the 100 year return period storm event.
- NA Identification of potential impacts to receiving watercourses
- NA Identification of municipal drains and related approval requirements.
 - ☑ Descriptions of how the conveyance and storage capacity will be achieved for the development.
 - 100 year flood levels and major flow routing to protect proposed development from flooding for establishing minimum building elevations (MBE) and overall grading.

- ☑ Inclusion of hydraulic analysis including hydraulic grade line elevations.
- Description of approach to erosion and sediment control during construction for the protection of receiving watercourse or drainage corridors.
- Identification of floodplains proponent to obtain relevant floodplain information from the appropriate Conservation Authority. The proponent may be required to delineate floodplain elevations to the satisfaction of the Conservation Authority if such information is not available or if information does not match current conditions.
- NA Identification of fill constraints related to floodplain and geotechnical investigation.

4.5 Approval and Permit Requirements: Checklist

The Servicing Study shall provide a list of applicable permits and regulatory approvals necessary for the proposed development as well as the relevant issues affecting each approval. The approval and permitting shall include but not be limited to the following:

- Conservation Authority as the designated approval agency for modification of floodplain, potential impact on fish habitat, proposed works in or adjacent to a watercourse, cut/fill permits and Approval under Lakes and Rivers Improvement Act. The Conservation Authority is not the approval authority for the Lakes and Rivers Improvement Act. Where there are Conservation Authority regulations in place, approval under the Lakes and Rivers Improvement Act is not required, except in cases of dams as defined in the Act.
- NA Application for Certificate of Approval (CofA) under the Ontario Water Resources Act.
- NA ☑ Changes to Municipal Drains.
 - Other permits (National Capital Commission, Parks Canada, Public Works and Government Services Canada, Ministry of Transportation etc.)

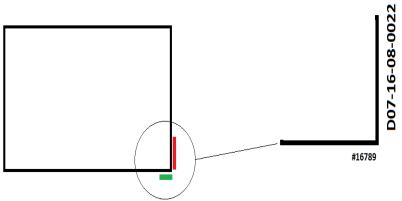
4.6 Conclusion Checklist

- ☑ Clearly stated conclusions and recommendations
- Comments received from review agencies including the City of Ottawa and information on how the comments were addressed. Final sign-off from the responsible reviewing agency.
- All draft and final reports shall be signed and stamped by a professional Engineer registered in Ontario

400 - 1331 Clyde Avenue, Ottawa ON K2C 3G4

April 23, 2020 File: 160400864

Attention: Shawn Wessel, Project Manager


City of Ottawa Development Review

Dear Shawn,

Reference: 114 Richmond Road City Comments - D07-12-18-0080

General:

1. Place City of Ottawa project # D07 # on all plans using **BOLD BLACK TEXT** as per this sample where the D07 # is shown as **D07-16-08-0022**.

For the purpose of this application, this file number is D07-12-18-0080. In addition, the Plan number (for GIS & Data Mgmt) will be **# 18016** for this project.

R/ Text added to drawings as indicated.

2. Please refer to City of Ottawa website portal **for "Guide to preparing Studies and Plans"** at <a href="https://ottawa.ca/en/city-hall/planning-and-development/information-developers/development-application-review-process/development-application-submission/guide-preparing-studies-and-plans.

R/ Noted

3. Please ensure you are using the current guidelines, bylaws and standards including materials of construction, disinfection and all relevant reference to OPSS/D and AWWA guidelines - all current and as amended, such as:

Reference: 114 Richmond Road City Comments – D07-12-18-0080

<u>City of Ottawa Sewer Design Guidelines</u> (**CoOSDG**) complete with ISTDB 2012-01, 2014-01, 2016-01, 2018-01 & 2019-02 technical bulletin updates as well as current Sewer, Landscape, Road Standard Detail Drawings as well as Sewer Material Specifications (MS Docs). Sewer Connection (2003-513) & Sewer Use (2003-514) By-Laws.

<u>City of Ottawa Water Distribution Design Guidelines</u> (**CoOWDDG**) complete with ISTDB 2010-02, 2014-02 & 2018-02 technical bulletin updates as well as current Watermain/ Services Material Specifications (MS Docs) as well as Water and Road Standard Detail Drawings. Water (2018-167) By-Law

Ensure to include version date and add "(as amended)" when referencing all standards, detail drwaings, by-Laws and guidelines.

R/ Noted

4. All plans or reports stamped or noted with "NOT FOR CONSTRUCTION" to be removed prior to review, if applicable. Suggested that "Preliminary Drawings" and/or "Subject to Approval" or similar wording is used in its place.

R/ Noted

5. A gas pressure release station is required now for buildings that exceed 12 units. Be sure to include this on the Grading, Site Servicing, SWM and Landscape plans.

Gas Blow Off Station.pdf

R/ Pressure release station to be included on composite utility plan drawings.

6. Water services greater than 19 mm require a Water Data Card. Please complete card and submit when completed, <u>once design has been finalized</u> and in preparation for Commence Work Notification and Water Permit Application.

2019 Water Data Card.xls

R/ Noted & will be submitted after approval.

Site Servicing & Stormwater Management Report, prepared by Stantec Consulting Ltd., dated April 1, 2019:

- 1. Revise the report and plans in the report based upon your changes to the plans as mentioned below. Review and revise accordingly.
 - R/ Revised as per below.
- 2. Please see the attached city guidelines and add a completed checklist with the report.

April 23, 2020 Shawn Wessel, Project Manager Page 3 of 7

Reference: 114 Richmond Road City Comments – D07-12-18-0080

R/ Checklist added to report appendices.

3. Please speak to pumping sanitary to 375 mm Ø sanitary sewer pipe extension from building as per the corresponding **Site Servicing Plan**, Dwg SSP-1, prepared by Stantec Consulting Ltd., revision 1 dated April 1, 2019

R/ Note added to report section 4.3.

- 4. Re: Water and FUS
 - why the demands in Appendix A don't match the ones in section 3.2 of the report?

 R/ Demands shown in the appendices were confirmed to match section 3.2
 - confirm if redundancy (looped watermain, service separated by valve, ..) will be provided considering that number of units at each connection exceeds 50?
 P/ Further clarification highlighting second connection added to report. Internal water and the provided service is a second connection.
 - R/ Further clarification highlighting second connection added to report. Internal watermain looping previously identified in section 3.1 of the report.
 - Are hydrants being proposed on this site? If not, what's the distance from the furthest proposed building to the nearest existing hydrant?
 - R/ On-site fire hydrants serviced by building internal plumbing added to plan and have been placed to be within 45m of building fire department connections.
 - This report speaks to provided fire flow results at nodes J3, J8 and J6 (as per Fig 1-5 in Appendix A). Please confirmed what the resulting pressure would be at the furthest building? Why hasn't the model been extended to the furthest buildings?
 - R/ The model was originally prepared considering separate connections to serve Phases 1 and 2 without interconnection between the two phases, with dead-end junction J3 corresponding to the point of entry to the building at Phase 1, and junctions J8 and J6 corresponding to the property line at Byron in Phase 2. With internal looping of the development, head losses across the development are effectively minimized, with potential to provide the required fire flows at any location along the proposed site.
- 5. Report references Geotechnical Investigation Report. Please ensure the most recent report is sited. **R/ Reference revised.**
- 6. Please demonstrate that you have taken into account redudancy for this proposed connection due to the base flow of the building being greater than 50 m³/d (0.58 l/s) as per Ottawa Design Guidelines Water Distribution 2010 (as ammended), Section 4.3.1.
 - We understand that the existing water service from Phase I (off Richmond Road) is to feed Phase II-A development.
 - R/ See response to Comment 4 above.
- 7. Please clearly show where outlet is for Cistern that is proposed to be pumped.
 - R/ Cistern outlet clearly identified within note on Drawing SSP-1.
- 8. The Geotechnical Investigation Report dated March 20, 2019
 Indicates that a subfloor drainage system, consisting of lines of perforted drainage pipe subdrains connected to a positive outlet should be provided. Reference this in your report.
 - R/ As stated in the geotechnical report section 6.1, "The perimeter drainage pipe should direct water to the sump pit(s) within the lower basement area". These sump pits are expected to be pumped as the basement is well below existing sewer depth. As noted on the servicing plan, a storm stub has been identified as the outlet location for the pumped footing drain. Refer to mecahnical drawings for internal plumbing details.
- This report did not discuss the quality control measures for stormwater runoff, which is a requirement for a SWM report. Please add a quality control section and add information regarding local RVCA concerns on this issue for this site.

April 23, 2020 Shawn Wessel, Project Manager Page 4 of 7

Reference: 114 Richmond Road City Comments – D07-12-18-0080

R/ No quality controls were identified at Phase 1 of the development, with ultimate buildout of Phase 2 clearly indicated at time of approval. Sign-off will be obtained from the RVCA to confirm assumptions made during Phase 1.

10. Provide Flow Control Roof Drainage Declaration as per Ontario Building Code (OBC) Section 7.4.10.4. Alternatively, provide a stamped and sealed memo that confirms the new roof will be designed with flow control drains to meet the Stormwater Management objectives with roof spill scuppers and in accordance with the requirements of clause 7.4.10.4 of the latest edition of the Ontario Building code, as ammended.

R/ A roof flow control declaration is to be provided by the building mechanical engineer for the current submission and under separate cover.

- 11. It is recommended that a pressurized drainpipe type material be used for the roof drain leader pipe in the event of surcharge in the system.
 - R. Consideration of pressure pipe highlighted to building mechanical consultant.
- 12. Neither the report, nor the plans, speak to the footing drains and how they will be integrated into the site service design. Footing drains are to be independently connected unless utilizing a pumping system with electrical and pump backup with an integrated ICD. Revise report and drawings as necessary.
 - R/ Footing drains assumed to be pumped, and to discharge into storm sewer upstream of ex MH2 and downstream of the proposed cistern to remain uncontrolled. Details of the connection to occur within building footprint per building mechanical consultant design.
- 13. In the body of the report provide HWL for the site in regard to the required storage that was determined. R/ Water elevation added to table 4 of the report. Cistern water elevation dependent on design of cistern by others.
- 14. Underground storage is mentioned and taking into account for the SWM for this site in this report. Provide information on type of underground storage system including product name and model, number of chambers, chamber configuration, confirm invert of chamber system, top of chamber system, required cover over system and details, interior bottom slope (for self cleansing), chart of storage values, length, width and height, capacity etc.
 - R/ Building cistern is to be pumped, with maximum release rate and minimum volume as specified on Drawing SD-1, and elsewhere within the report/drawings. Remaining design elements are under purview of building mechanical consultant please refer to mechanical design for details.
- 15. Above and below ground storage is permitted although uses ½ Peak Flow Rate or is modeled. Please confirm that this has been accounted for and/or revise.
 - R/ The rationale provided within this comment is applicable in consideration of a gravity controlled ICD or otherwise where peak outflow rate varies by head in the storage tank. As the cistern is expected to be pumped out at a constant rate to the peak value specified in the report, the average release rate equates directly to the peak release rate. No further increase in required volume is justified.

Rationale:

The Modified Rational Method for storage computation in the Sewer Design Guidelines was originally intended to be used for above ground storage (i.e. parking lot) where the change in head over the orifice varied from 1.5 m to 1.2 m (assuming a 1.2 m deep CB and a max ponding depth of 0.3 m). This change

April 23, 2020 Shawn Wessel, Project Manager Page 5 of 7

Reference: 114 Richmond Road City Comments – D07-12-18-0080

in head was small and hence the release rate fluctuated little, therefore there was no need to use an average release rate.

When underground storage is used, the release rate fluctuates from a maximum peak flow based on maximum head down to a release rate of zero. This difference is large and has a significant impact on storage requirements. We therefore require that an average release rate be used to estimate the required volume. Alternatively, the consultant may choose to use a submersible pump in the design to ensure a constant release rate.

In the event that there is differing opinion from the designer's perspective regarding the required storage, The City will require that the designer demonstrate their rationale utilizing dynamic modelling, that will then be reviewed by City modellers in the Water Resources Group.

Note that the above, including roof areas (all SWM Storage) will added to upcoming revised Sewer Design Guidelines to account for underground/surface storage, which is now widely used.

- 16. What will be the actual underground storage provided during the major (100 year) and minor (2 year) storm events?
 - R/ Please see V(required) columns of previously provided Tables 4 and 5 within the report for storage within the 5 and 100 year event.
- 17. Provide a cross section of underground chamber system showing invert and obvert/top, major and minor HWLs, top of ground, system volume provided during major and minor events. Provide manufacturer specifications if applicable.
 - R/ Please see response to comment 14 above.
- 18. Report should reference roof drainage area and approiate plan showing drainage area and roof drain locations.
 - R/ Assumed number of roof drains and attributed drainage area previously noted in calculations within appendix C and storm drainage area plan SD-1. Location of roof drains and individual drainage areas subject to roof design by others to overall peak release rates noted within the schedule of roof release rates on drawing SD-1. Please see response to above comment 10.

Plan Specific Comments:

Grading Plan, Dwg GP-1, prepared by Stantec Consulting Ltd., revision 1 dated April 1, 2019;

- 1. Provide a Note: Contractor is responsible to keep the roads free and clean from mud or debris. **R/ Note added to drawing.**
- 2. Please provide top and bottom retaining wall elevations on Phase I part of property (West property line). Is this part of the retaining wall already built? If so, please use a different layer or appropriate identify the existing vs proposed wall area.
 - R/ Additional elevations shown, with linetype adjusted to demonstrate previously constructed wall.
- 3. No water ponding against building or on public lands. Finish grade at foundation wall of proposed 6-storey building (N/W corner) has same grade as top of curb in roadway. Please ensure this does not occur at any other location on site.
 - R/ Grade adjusted to ensure emergency overland flow path progresses away from building edge.

Reference: 114 Richmond Road City Comments – D07-12-18-0080

4. Indicate if you will have ponding at the proposed CB and CBMH's. You should show the ponding on the plans. Revise if applicable.

R/ No surface ponding is proposed with the exception of area A4 (CB 500). Ponding area shown on drawing GP-1.

Site Servicing Plan, Dwg SSP-1, prepared by Stantec Consulting Ltd., revision 1 dated April 1, 2019:

- 1. See notes above regarding SWM report.
 - R/ See responses above regarding SWM report.
- 2. Revise all that is required and ensure these revisions are captured in the Servicing and Stormwater Management Report.
 - R/ Revised as noted.
- 3. Back flow valves for service lateral connections are to be shown on the plans.
 - R/ Backflow valves are internal to proposed building, and will form part of building permit application package to meet building code requirements.

Storm Drainage Area Plan. Dwg SD-1, prepared by Stantec Consulting Ltd., revision 1 dated April 1, 2019:

- 1. See notes above regarding SWM report.
 - R/ See responses above regarding SWM report.
- 2. Revise all that is required and ensure these revisions are captured in the Servicing and Stormwater Management Report.
 - R/ Revised as noted.
- 3. Show all ponding area (particularly at CBs and CBMHs) relative to 5 and 100-year storm event(s) if applicable. Ensure this information is in the Servicing and Stormwater Management Report.

 R/ Ponding area note revised for CB 500.
- 4. Provide information on type of underground storage system including product name and model, number of chambers, chamber configuration, confirm invert of chamber system, top of chamber system, required cover over system and details, etc., interior bottom slope (for self cleansing), chart of storage values, width and height, capacity etc.
 - R/ See responses above relating to subsurface storage cistern. Subsurface storage pipe for drainage areas A1, A3, EXT2, A4 is existing, and detailed on previously approved Phase 1 drawings.

Erosion & Sediment Control Plan, Dwg EC/DS-1, prepared by Stantec Consulting Ltd., revision 1 dated April 1, 2019:

- Provide a Note: Contractor is responsible to keep the roads free and clean from mud or debris.
 R/ Additional note added to plan.
- 2. Insert the following opening paragraph in Notes, "The contractor shall implement best management practices, to provide for protection of the area drainage system and the receiving watercourse, during construction activities. The contractor acknowledges that failure to implement appropriate erosion and sediment control measures may be subject to penalties imposed by any applicable regulatory agency."
 - R/ Additional note added to plan.
- 3. Provide North Arrow on plan.
 - R/ Revised as noted.
- 4. Silt fence should be extended along property line to northern development limits at east side of property.
 - R/ Revised as noted.

April 23, 2020 Shawn Wessel, Project Manager Page 7 of 7

Reference: 114 Richmond Road City Comments – D07-12-18-0080

Roof Drainage Plan:

- Not provided. Please submit a plan of proposed roof drainage or revise SWM or Site Plan accordingly.
 R/ Not provided please see responses to servicing and stormwater management report above.
- 2. Provide roof drain type with specified opening setting and/or controlled Q.
 - R/ Assumed roof drain type and release rates previously provided within section 5.3.2.1, and calculations within Appendix C
- 3. Provide 2, 5 and 100 year storm event flood plain area on roof.
 - R/ Assumed ponding areas noted on previously provided calculations within Appendix C. Note that assumed ponding regions are subject to roof design by others to be designed to meet SWM objectives based on flow control roof drainage declaration see responses to servicing report comments above.
- 4. Provide scupper locations with outlet elevation.
 - R / Scupper locations to be designed by others at time of building permit application to meet building code requirements & those identified within the flow control roof drainage declaration.

Regards,

Stantec Consulting Ltd.

Kris Kilborn

Associate, Community Development Phone: 613 724 4337 Fax: 613 722 2799 kris.kilborn@stantec.com

dak w:\active\160400864_114_richmond_road\design\drawing\phase 2 submission\comments\let_114 richmond rd_city comments_04_23_2020.docx