APPENDICES

Appendix A : HYDRAULIC ANALYSIS

A.1 DOMESTIC WATER DEMANDS

Total Site :	1375		334.25	5.57	835.63	13.93	1838.38	30.64

A.2 POTABLE WATER HYDRAULIC ANALYSIS

114 Richmond Road - Potable Water Servicing Analysis

Prepared by:

Stantec Consulting Ltd.

1505 Laperriere Avenue Ottawa ON K1Z 7T1 Canada

Project No. 160400864

April 10, 2013

Executive Summary

The following report identifies and evaluates the proposed water distribution system for a mixeduse development located in the central/western area of the City of Ottawa's water distribution system. The proposed 114 Richmond Road development is located between Richmond Road and Byron Avenue in Zone 1W of the City of Ottawa water distribution system. The current development consists of two phases. Phase 1 features 3 nine-storey mixed-use residential and commercial buildings. Phase 2 includes 2 nine-storey residential buildings and 4 four-storey residential buildings. Phases 1 and 2 will house approximately 1278 people upon completion.

The modeling results show that the proposed water distribution network is capable of servicing the proposed mixed-use development with suitable flows and pressures under typical demands (average day, peak hour) and under emergency fire flow demands (maximum day + fire flow).

Questions or comments regarding the analysis presented may be directed to the undersigned.

STANTEC CONSULTING LTD.

Valerie Hoang, M.A.Sc. Engineer Intern Tel: (613) 722-4420 Fax: (613) 722-2799 Valerie.Hoang@stantec.com

Kevin Alemany, M.A. Sc., P. Eng., Environmental Engineer Tel: (613) 724-4091 Fax: (613) 722-2799 Kevin.Alemany@stantec.com

Table of Contents

EXECUTIVE SUMMARY

1.0	POTABLE WATER ANALYSIS	1.1
1.1	BACKGROUND	1.1
1.2	GROUND ELEVATIONS	1.3
1.3	ALLOWABLE PRESSSURES	1.4
1.4	EXISTING & PROPOSED WATERMAIN NETWORK	1.4
1.5	BOUNDARY CONDITIONS	1.4
1.6	WATER DEMAND	1.5
1.7	HYDRAULIC MODEL RESULTS	1.6
	1.7.1 Average Day	1.7
	1.7.2 Peak Hour	1.8
	1.7.3 Maximum Day + Fire Flow Results	1.9
1.8	SUMMARY OF FINDINGS	1.11
2.0	FIRE FLOW CALCULATIONS	2.1
2.1	FIRE UNDERWRITER'S SURVEY (FUS)	2.1

E.1

1.0 Potable Water Analysis

1.1 BACKGROUND

Stantec Consulting Ltd. (Stantec) has undertaken a hydraulic analysis of the potable water servicing for the proposed 114 Richmond Road development. This predominantly residential development will include multiple mixed-use high-rise buildings as well as a senior condominium development and a senior living facility. An existing heritage building on the site will also be preserved and renovated for residential and commercial use.

The proposed site is located between Richmond Road and Byron Avenue as shown on **Figure 1-1**. It is part of Zone 1W of the City of Ottawa water distribution system. This zone is fed by the Britannia, Lemieux Island and Fleet Street Pumping Stations. Also located in this zone, the Carlington Heights Reservoir provides balancing storage for peak flows and demands.

Figure 1-1: Proposed Development at 114 Richmond Road

Stantec 114 RICHMOND ROAD - POTABLE WATER SERVICING ANALYSIS Potable Water Analysis April 10, 2013

The proposed servicing plan (shown on **Figure 1-2**) includes tying into the existing 300mm diameter watermain on Richmond Road during the first phase of the development and subsequently tying the existing 300mm diameter watermains on Hilson Avenue and Byron Avenue in the second phase of the development. The proposed watermains are to be of 250mm in diameter.

Phase 1 includes 3 mixed-use nine-storey buildings. A total of 291 residential units and 33,352 sq. ft. of commercial space will be created during Phase 1.

Phase 2 will encompass 4 four-storey buildings dedicated to senior living and 2 nine-storey building for residential use. A total of 419 residential units are created during Phase 2.

Stantec 114 RICHMOND ROAD - POTABLE WATER SERVICING ANALYSIS Potable Water Analysis April 10, 2013

The watermain from Richmond Road will supply water to buildings constructed in Phase 1 and the watermains from Hilson Avenue and Byron Avenue will supply water to buildings constructed in Phase 2.

1.2 GROUND ELEVATIONS

The existing ground elevations of the proposed development range from approximately 68.80m and 72.20m. The elevations shown on **Figure 1-3** were interpolated from elevations provided as part of the boundary conditions from the City of Ottawa and assigned to the nodes in the hydraulic model.

Figure 1-3: Ground elevations (m) in area of proposed development

1.3 ALLOWABLE PRESSSURES

The City of Ottawa Water Distribution Design Guidelines state that the design objective for system pressures under normal demand conditions (i.e. average day, maximum day and peak hour) shall remain between the range of 275 to 690 kPa (40 to 100 psi) at the ground elevation in the streets (i.e. at hydrant level). Under emergency fire flow conditions, the minimum pressure in the distribution system is allowed to drop to 140 kPa (20 psi).

1.4 EXISTING & PROPOSED WATERMAIN NETWORK

Potable water supply for Phase 1 will be provided by the existing 300mm diameter watermain on Richmond Road through a 250mm service line. Phase 2 will be serviced off two existing 300mm diameter watermains, one on Hilson Avenue and one on Byron Avenue through 250mm service lines, respectively (**Figure 1-3**).

New watermains were added to the hydraulic model to simulate the proposed distribution system. Hazen-Williams coefficients ("C-Factors") were applied to the new watermain in accordance with the City of Ottawa's Water Distribution Design Guidelines:

Pipe Diameter (mm)	C-Factor
150	100
200 to 300	110
350 to 600	120
> 600	130

 Table 1: C-Factors used for applied watermain based on pipe diameter

1.5 BOUNDARY CONDITIONS

The hydraulic model used for this analysis was created by Stantec. The boundary conditions provided by the City were based on computer model stimulations and are summarized in **Table 2**. Fixed head reservoirs simulating these boundary conditions were placed on Richmond Road, Hilson Avenue, and Byron Avenue near the proposed servicing watermains as shown in **Figure 1-4**.

Table 2: Boundary conditions based on computer model stimulations

Phase	Location	Location AVDY (m) PKHR (m)		MXDY+FF (m)	
1	Richmond Road	114.2	108.5	105.1	
2	Byron Avenue	114.9	108.1	106.1	
2	Hilson Avenue	114.9	108.1	106.1	

Stantec 114 RICHMOND ROAD - POTABLE WATER SERVICING ANALYSIS Potable Water Analysis April 10, 2013

Figure 1-4: Existing and Proposed watermain network pipe diameters

1.6 WATER DEMAND

Water demands for the development were estimated using the City of Ottawa's Water Distribution Design Guidelines. The estimated household size of an average apartment is **1.8 persons**. Therefore, the total projected population for the proposed mixed-use development shall be of **1278 people** for Phase 1 and 2 of development. For residential developments, the average day per capita water demand is **350 L/(cap*d)**. The average day demand of a commercial space of the "Shopping Center" type is **2,500 L/(1,000m²/d)**.

Based on these design guidelines, it is estimated that Phase 1 of the development will generate an average day residential demand of 2.12 L/s while the commercial demand will be equivalent to 0.09 L/s and an overall demand of 2.21 L/s. The average day residential demand for Phase 2 will be 3.06 L/s with no commercial demands. The demand for Phase 2 was allocated such that 50% will be distributed from Hilson Avenue and 50% will be distributed from Byron Avenue.

For maximum daily demand, residential demands were multiplied by a factor of 2.5 times average day demand and commercial demands were multiplied by a factor of 1.5 times average day demand. **Table 3** provides a summary of the demand allocation for various scenarios (see **Figure 1-5** for location of proposed nodes).

Table 3: Population and demand projections for proposed development for Phase 1 and Phase2.

				Demand		Total Demand			
Model			Commercial	Residential	Commercial	AVDY	MXDY	PKHR	
Node	Building	People	Area (sq. ft.)	(L/s)	(L/s)	(L/s)	(L/s)	(L/s)	
J3	А	524	23015	2.12	0.09	2.21	5.44	11.91	
J6	0.5B+0.5C+0.5D	377	0	1.53	0.00	1.53	3.82	8.40	
J8	0.5B+0.5C+0.5D	377	0	1.53	0.00	1.53	3.82	8.40	
					Total	3.74	9.26	20.31	

1.7 HYDRAULIC MODEL RESULTS

The software package used to carry out the analysis was H_2OMAP Water by MWHSoft. The model was tested under three different domestic demand conditions: average day (AVDY), peak hour (PKHR) and one emergency condition: maximum day plus fire (MXDY + FF).

Figure 1-5 provides the IDs of each of the proposed junctions and pipes inputted into the hydraulic model. These IDs are used to present the results in tabular format in the following sections.

Stantec

114 RICHMOND ROAD - POTABLE WATER SERVICING ANALYSIS Potable Water Analysis April 10, 2013

1.7.1 Average Day

Table 4a and **Table 4b** present the model output results for the average day demand analysis. As shown, the typical operating pressures are anticipated to range between 427 kPa (62 psi) and 455 kPa (66 psi) based on the local ground elevations and pipe hydraulic conditions. The resulting pressures are within the allowable pressure range of 40 to 100 psi (275 kPa to 690 kPa) as recommended by the City of Ottawa's Water Distribution Design Guidelines.

Node ID	Demand	Elevation	Head	Pressure	
Noucib	(L/s)	(m)	(m)	(psi)	
J2	0.00	68	114	66	
J3	2.21	69	114	65	
J5	0.00	71	115	62	
J6	1.53	71	115	62	
J7	0.00	70	115	64	Phase 1
J8	1.53	71	115	63	Phase 2

 Table 4a: Average Day Model Node Output Results

Table 4b: Average Day Model Pipe Output Results

Pipe ID	From	To Node	Length	Diameter	Roughness	Flow (L/s)	Velocity (m/s)	Headloss	HL/1000
P1	1	J2	34.22	300	110	2.21	0.03	0.0	0.01
P2	J2	J3	45.97	250	110	2.21	0.05	0.0	0.02
P4	5	J5	10.01	300	110	1.53	0.02	0.0	0.00
P5	J5	J6	24.34	250	110	1.53	0.03	0.0	0.01
P6	7	J7	15.20	300	110	1.53	0.02	0.0	0.00
P8	J7	J8	93.77	250	110	1.53	0.03	0.0	0.01

1.7.2 Peak Hour

Table 5a and **Table 5b** present the model output results for the peak hour demand analysis. As shown in the results, typical operating pressures are anticipated within the range of 365 kPa (53 psi) to 400 kPa (58 psi) based on the local ground elevations and pipe hydraulic conditions. The resultant pressures are within the allowable pressure range of 40 to 100 psi (275 kPa to 690 kPa) as recommended by the City of Ottawa's Water Distribution Design Guidelines.

Table 5a: Peak Hour Model Node Output Results

NedelD	Demand	Elevation	Head	Pressure	
Node ID	(Lpm)	(m)	(m)	(psi)	
J2	0.00	68	108	58	
J3	11.91	69	108	56	
J5	0.00	71	108	53	
J6	8.40	71	108	53	
J7	0.00	70	108	54	Phase 1
J8	8.40	71	108	53	Phase 2

Ding ID	From	To Nodo	Length	Diameter	Doughnoos	Elevy (1 /e)		Headloss	HL/1000
Pipe ID	Node To Node		(m)	(mm)	Roughness	FIOW (L/S)	velocity (m/s)	(m)	(m/km)
P1	1	J2	34.22	300	110	11.91	0.17	0.01	0.17
P2	J2	J3	45.97	250	110	11.91	0.24	0.02	0.41
P4	5	J5	10.01	300	110	8.40	0.12	0.00	0.09
P5	J5	J6	24.34	250	110	8.40	0.17	0.01	0.22
P6	7	J7	15.20	300	110	8.40	0.12	0.00	0.09
P8	J7	J8	93.77	250	110	8.40	0.17	0.02	0.22

Table 3b: Peak Hour Model Pipe Output Results

1.7.3 Maximum Day + Fire Flow Results

The City of Ottawa's design guidelines for water distribution systems require a minimum pressure of 140 kPa (20 psi) to be maintained at all points in the distribution system under a condition of maximum day and fire flow demand.

Historically, the City of Ottawa has used a fire flow of 15,000 L/min (250 L/s) as a fire flow objective for mixed-use & high density residential development for sizing watermains. However as per the 2010 City of Ottawa Design Guidelines for Water Distribution Systems: "When calculating the fire flow requirements and affected pipe sizing, designers shall use the method developed by the Fire Underwriters Survey (FUS)."

In regards to high rise buildings, the FUS guidelines do not have a limitation with respect to a maximum number of floors (i.e. building height) in the calculation. Without a floor limitation, the FUS formula results in fire flow requirements that is much greater than the City's fire flow objective.

In developing FUS fire flow requirements for high rise buildings, it is recommended to consider the definition of a "*building*" per the building code. According to the Ontario Building Code Section 1.1.3.2:

"If portions of a *building* are completely separated by a vertical fire separation, that has a fire-resistance rating of at least 1h and that extends by a vertical fire separation that has a fire-resistance rating of at least 1 h and that extends through all storeys and service spaces of the separate portions, each separated portion may be considered to be a separate building for the purpose of determining building height if each separated portion is not more than three storeys in building height and is used only for residential occupancies, and the unobstructed path of travel for a fire fighter from the nearest street to one entrance to each separated portion is not more than 45m."

The fire flow calculated based on FUS and in accordance to OBC Section 1.1.3.2 (for "*building*" height i.e. 3 floors max with vertical fire separations) was determined to be 10,000 L/min and

Stantec 114 RICHMOND ROAD - POTABLE WATER SERVICING ANALYSIS Potable Water Analysis April 10, 2013

12,000 L/min for Phase 1 and Phase 2, respectively. Sample calculations are included in **Section 2**.

It should be noted for comparison that the calculated FUS fire flows are approximately two times the maximum water supply requirements for sprinkler systems (5678 L/min) per the National Fire Protection Agency guideline NFPA 13.

A hydraulic analysis was carried out using the hydraulic model to determine the anticipated amount of flow that could be provided at each of the nodes in the proposed development under maximum day demands while still maintain a residual pressure of 140 kPa (20 psi). This was accomplished using a steady-state maximum day demand scenario along with the automated fire flow simulation feature of the software.

Table 6a shows the fire flow analysis according to the historical fire flow objective value of 15,000 L/min and **Table 6b** shows the fire flow analysis according to FUS and OBC fire separation. The results presented show that a fire flow of greater than 15,000 L/min is achievable while still maintaining a residual pressure greater than 140kPa (20psi), thereby satisfying both fire flow conditions. For details on FUS and OBC calculation methods see **Section 2**.

 Table 6a: Maximum Day Fire Flow Results Based on the City of Ottawa Objective

	Static Static Static		Fire-Flow	Residual	
	Demand	Pressure	Head	Demand	Pressure
Node ID	(L/s)	(psi)	(m)	(Lpm)	(psi)
J3	5.44	52	105	15,000	41
J6	3.82	50	106	15,000	45
J8	3.82	50	106	15,000	39

Phase 1 Phase 2

Table 6b: Maximum Day Fire Flow Results Based on the FUS and OBC fire separations

Node ID	Static Demand (L/s)	Static Pressure (psi)	Static Head (m)	Fire-Flow Demand (Lpm)	Residual Pressure (psi)
J3	5.44	52	105	10,000	47
J6	3.82	50	106	12,000	47
J8	3.82	50	106	12,000	39

1.8 SUMMARY OF FINDINGS

The proposed mixed-use development is located in an area of the City's water distribution system that has sufficient capacity to provide both the required domestic and emergency fire flows. Based on computer modeling results, the objective fire flow of 15,000 L/min and those based on FUS in accordance with OCB section 1.1.3.2 are achievable for this development using the alignment and sizing of the watermains shown on **Figure 1-3**.

The minimum pressure modeled **365kPa (53 psi)** is within the recommended design guidelines for minimum pressure and the maximum pressure modeled **455 kPa (66 psi)** does not exceed the maximum allowable pressure.

The high-rise buildings will experience additional pressure loss due to the height of the buildings for the nine-storey buildings and will therefore require additional pumping at the building to maintain minimum pressures to each unit.

2.0 Fire Flow Calculations

2.1 FIRE UNDERWRITER'S SURVEY (FUS)

According the FUS (1999), the required fire flow is calculated using the following equation:

Fire Flow =
$$220C\sqrt{A}$$

2.1

Where:

F = required fire flow (L/min) C = coefficient related to the type of construction A= total floor area excluding the basement (m²)

Fire flow can be reduced if the building consists of a sprinkler system and can be reduced **or** increased based on fire hazards of the building and separation between buildings. The calculated fire flow should not exceed 45,000 L/min nor be less than 2,000 L/min.

Although, the buildings are more than three storeys high, the following FUS fire flow calculations are in accordance to the OBC section 1.1.3.2. in which "each separated portion is not more than three *storeys in building height…*".

Figures 2-1, 2-2, 2-2, and **2-4** represent the fire flow calculations for buildings A, B, C, and D, respectively. Fire flow values shown are rounded to the nearest thousandth. In addition, all buildings were classified as ordinary construction and non-combustible for reduction/increases due to factors that affect burning.

Figure 2-1: FUS Fire Flow Calculations for Building A

	E	FUS Fire Fl	ow Calculations		Calculations Based on 1	999 Publica	ation "Wate	r Supply for			
					Public Fire Protection " t	oy Fire Und	erwriters' S	urvey (FUS)			
		Stantec Project #	160400864								
		Project Name:	114 Richmond Rd		Fire Flow Cal	culation #:	1				
		Date:	February 12, 2013		Building Type/Descript	ion/Name:	Bldg A				
	Stantec		, , ,		0 // / / /						
	Stantee	Data input by:	Val Hoang								
	Notes:	The proposed but	ilding is a 9 storey high rise								
Table A: Fire Underwriters Survey Determination of Required Fire Flow - Long Method											
								Total			
				Multiplier		Value		Eiro			
Step	Task	Term	Options	Associated	Choose:	value	Unit				
-				with Ontion		Used		Flow			
				with option				(L/min)			
				Framing Mate	erial						
	Choose Frame Coefficient		Wood Frame	1.5							
1	Used for	related to type	Ordinary construction	1]						
1 -	Construction of	of construction	Non-combustible construction	0.8	Ordinary construction	1	m				
1	Unit	(C)	Fire resistive construction (< 2 hrs)	0.7							
			Fire resistive construction (> 2 hrs)	0.6		1 Waite 1 Unit 1 Unit 3 Storeys 3,123 Area In Square Meters (milding) -0.25 N/A -0.3 N/A 0.4 m min limits applied of Fire Flow (hrs, of Fire Flow (milding)					
	Choose Type of			Floor Space A	rea						
	Housing (If TH,		Single Family	1							
²	Linite Dor TU	Type of Housing	Townhouse - indicate # of units	3	Other (Comm, Ind, etc.)	1	Units				
	Block		Other (Comm, Ind, etc.)	1		3 Storeys					
2.2	# of Storeys	Number of Fl	oors/ Storeys in the Unit (do not inclu	ide basement):	3	3	Storeys				
	-		Enter Ground Floor Area (A)) of One Unit Only :	1.041						
	Enter Ground						Area in				
3	Floor Area of One	Measurement	Square Metros (m ²)	0.05250504	Square Metres (m2)	3,123	Square Meters (m ²)				
	Unit	Units	Hectares (ha)	10000	Square meacs (mz)						
	Obtain Required	-				* - / ^ }					
4	Fire Flow without	r r	required Fire Flow(without reduc	tions or increase	s per FUS) (F = 220 * C	* VA)		12,000			
	Reductions		Round to	nearest 1000L/r	nin						
5	Apply Factors		Reductions/Incre	ases Due to Fac	ctors Affecting Burni	ing					
	Affecting Burning						1				
	Cheese	Occupancy	Non-combustible	-0.25							
51	Combustibility of	reduction or	Combustible	-0.15	Non-combustible	-0.25	N/A	9,000			
J.1	Building Contents	surcharge	Eree huming	0 15	Hon combastible	0.25		3,000			
	building contents	surcharge	Ranid huming	0.15							
	Choose Reduction		Complete Automatic Sprinkler	0.23							
5.2	Due to Presence	Sprinkler	Protection	-0.3	Complete Automatic	-0.3	N/A	-2,700			
	of Sprinklers	reduction	None	0	Sprinkler Protection						
	Choose	Exposure	North Side	3.1 to 10.0m	0.2						
5.3	Separation	Distance	East Side	30.1 to 45.0m	0.05	04	m	3,600			
	Distance Between	Between Units	South Side	20.1 to 30.1m	0.1			-,			
	Units		West Side	30.1 to 45.0m	0.05						
		Total	Required Fire Flow, rounded t	to nearest 1000	L/min, with max/m	in limits	applied:	10,000			
	Fire Flow,			То	tal Required Fire Flo	w (abov	e) in L/s:	167			
6	Duration &				Required Duration	of Fire F	low (hrs)	2.00			
	volume				Required Volume	of Fire Fl	ow (m ³)	1,200			

Stantec 114 RICHMOND ROAD - POTABLE WATER SERVICING ANALYSIS Fire Flow Calculations April 10, 2013

Figure 2-2: FUS Fire Flow Calculations for Building B

- 6		FUS Fire Fl	ow Calculations		Calculations Based on 1 Public Fire Protection	999 Publica	ation " <i>Water</i> erwriters' Su	Supply for
						.,		
		Stantec Project #:	160400864					
		Project Name:	114 Richmond Rd		Fire Flow Cal	culation #:	1	
		Date:	February 12, 2013		Building Type/Descript	on/Name:	Bldg B	
	Stantec							
		Data input by:	Val Hoang					
	Notes:	The proposed bu	ilding is a 9 storey high rise					
	Notes.	The proposed ou	numg is a 5 storey night lise.					
	1	Table A: Fire U	nderwriters Survey Determi	nation of Requi	red Fire Flow - Long	Method		
								Total
				Multiplier		Value		Eire
Step	Task	Term	Options	Associated	Choose:	value	Unit	Fire
P	, ask		options			Used	0	Flow
				with Option				/1 /maim)
								(L/min)
				Framing Mate	rial			
	Choose Frame	Coefficient	Wood Frame	1.5				
1	Used for	related to type	Ordinary construction	1				
-	Construction of	of construction	Non-combustible construction	0.8	Ordinary construction	1	m	
	Unit	(C)	Fire resistive construction (< 2 hrs)	07				
			Fire resistive construction (>2 hrs)	0.7				
	Choose Type of			- 0.0				
	Housing (if TH.			Floor Space A	rea			
2	Enter Number of		Single Family	1				
-	Linite Des TH	Type of Housing	Townhouse - indicate # of units	3	Other (Comm, Ind, etc.)	1	Units	
	Plack)		Other (Comm. Ind. etc.)	1				
2.2	BIOCK)	Number of Fl	oors/Storeys in the Unit (do not inclu	de hasement):	2	2		
2.2	# of Storeys	Number of H	oorsy storeys in the onit (do not mat	ac basementy.	3	3	storeys	
			Enter Ground Floor Area (A) of One Unit Only :	1,399			
-	Enter Ground		Square Feet (ft ²)	0.09290304			Area in	
3	Floor Area of One	Measurement		1	Square Metres (m3)	4,197	Square	
	Unit	Units	Square Metres (m)	1	Square Metres (IIIZ)		Meters (m ⁻)	
			Hectares (na)	10000				
	Obtain Required	F	Required Fire Flow(without reduc	tions or increase	s per FUS) (F = 220 * C	* √A)		
4	Fire Flow without			nearest 1000I /n	nin			14,000
	Reductions		Noulu to					
5	Apply Factors Affecting Burning		Reductions/Incre	ases Due to Fac	tors Affecting Burn	ing		
<u> </u>		Occupancy	Non-combustible	-0.25				
	Choose	content hazard	Limited combustible	-0.15				
5.1	Combustibility of	reduction or	Compustible	0.15	Non-combustible	-0.25	N/A	10,500
	Building Contente	surcharge	Eree burning	0.15				,
	eaning contents	sarcinge	Rapid huming	0.15				
	Chasse Deduction		Rapid Durning	0.25				
	choose Reduction	Sprinkler	Complete Automatic Sprinkler		Complete Automatic			
5.2	Due to Presence	reduction	Protection	-0.3	Sprinkler Protection	-0.3	N/A	-3,150
	of Sprinklers		None	0				
	Choose	Exposure	North Side	10.1 to 20.0m	0.15			
5 3	Separation	Distance	East Side	20.1 to 30.1m	0.1	04	m	4 200
3.3	Distance Between	Botwoon Linite	South Side	30.1 to 45.0m	0.05	0.4		-,200
	Units	between Onits	West Side	20.1 to 30.1m	0.1			
		Total	Poquirad Eira Elouu rounded (o nonrect 1000	I Imin with more In	in limits	applied-	12 000
	Obtain Pequired	ισται	nequirea rire riow, rounaea l	o neurest 1000	Lymin, with max/m	in inmits	uppnea:	12,000
_	Fire Flow,			То	tal Required Fire Flo	w (abov	e) in L/s:	200
0	Duration &				Required Duration	of Fire F	low (hrs)	2.50
	Volume				Pequired Volume	of Eira El	ow (m ³ 1	1 200

Figure 2-3: FUS Fire Flow Calculations for Building C

	FUS Fire Fl	ow Calculations	Calculations Based on	1999 Publica	ation " <i>Water</i>	Supply for
	Stantec Project #:	160400864	rubiic rite riotection	by File Oliu	erwitters of	urvey (FOS)
	Project Name:	114 Richmond Rd	Fire Flow C	alculation #:	1	
Stantos	Date:	February 12, 2013	Building Type/Descrip	tion/Name:	Bldg C	
Stantec						
	Data input by:	Val Hoang				
Notes:	The proposed bui	Iding is a 5 storey high rise.				

		Table A: Fire U	nderwriters Survey Determir	nation of Requi	red Fire Flow - Long	Method		
Step	Task	Term	Options	Multiplier Associated with Option	Choose:	Value Used	Unit	Total Fire Flow (L/min)
				Framing Mate	erial			
	Choose Frame	Coefficient	Wood Frame	1.5				
1	Used for	related to type	Ordinary construction	1				
-	Construction of	of construction	Non-combustible construction	0.8	Ordinary construction	1	m	
	Unit	(C)	Fire resistive construction (< 2 hrs)	0.7				
			Fire resistive construction (>2 hrs)	0.6				
	Choose Type of			Floor Space A	rea			
	Housing (if TH,		Single Family	1				
2	Linite Por TU	Type of Housing	Townhouse - indicate # of units	3	Other (Comm, Ind, etc.)	1	Units	
	Block)		Other (Comm, Ind, etc.)	1				
2.2	# of Storevs	Number of Fl	oors/ Storeys in the Unit (do not inclu	de basement):	3	3	Storeys	
			Enter Ground Floor Area (A)	of One Unit Only :	1.635		-	
	Enter Ground			0.00200204	1,000		Area in	
3	Floor Area of One	Measurement	Square Feet (ft)	0.09290304	Square Metros (m2)	4,905	Square	
	Unit	Units	Square Metres (m.)	10000	Square Metres (112)		Meters (m ²)	
4	Obtain Required Fire Flow without Reductions	P	Required Fire Flow(without reduc Round to	tions or increase nearest 1000L/n	s per FUS) (F = 220 * C nin	* vA)		15,000
5	Apply Factors Affecting Burning		Reductions/Increa	ases Due to Fac	ctors Affecting Burn	ing		
		Occupancy	Non-combustible	-0.25				
	Choose	content hazard	Limited combustible	-0.15				
5.1	Combustibility of	reduction or	Combustible	0	Non-combustible	-0.25	N/A	11,250
	Building Contents	surcharge	Free burning	0.15				
	Chaose Peduction		Rapid burning	0.25				
5.2	Due to Presence	Sprinkler	Protection	-03	Complete Automatic	-03	N/A	-3.375
	of Sprinklers	reduction	None	0.5	Sprinkler Protection	0.0		2,210
	Choose	F	North Side	30.1 to 45.0m	0.05			
E 2	Separation	Exposure	East Side	45.1m or greater	0	0.2	~	2 350
3.5	Distance Between	Between Linits	South Side	10.1 to 20.0m	0.15	0.2	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	4200
	Units		West Side	45.1m or greater	0			
	Obtain Required	Total	Required Fire Flow, rounded t	o nearest 1000	L/min, with max/m	in limits	applied:	10,000
6	Fire Flow,			То	tal Required Fire Flo	w (abov	e) in L/s:	167
5	Duration &				Required Duration	of Fire F	low (hrs)	2.00
	volume				Required Volume	of Fire Fl	ow (m ³)	1,200

Stantec 114 RICHMOND ROAD - POTABLE WATER SERVICING ANALYSIS Fire Flow Calculations April 10, 2013

Figure 2-4: FUS Fire Flow Calculations for Building D

9	FUS Fire Fl	ow Calculations	Calculations Based on 1999 Publ Public Fire Protection " by Fire U	cation " <i>Wate</i> derwriters' S	er Supply for Survey (FUS)
	Stantec Project #:	160400864			,
	Project Name:	114 Richmond Rd	Fire Flow Calculation	#: 1	
	Date:	February 12, 2013	Building Type/Description/Nam	e: Bldg D	
Stantec					
	Data input by:	Val Hoang			
Notes:	The proposed bui	lding is a 9 storey high rise.			

	1	Table A: Fire U	Inderwriters Survey Determir	nation of Requi	red Fire Flow - Long	Method		
Step	Task	Term	Options	Multiplier Associated with Option	Choose:	Value Used	Unit	Total Fire Flow (L/min)
			•	Framing Mate	erial			
	Choose Frame	Coefficient	Wood Frame	1.5				
1	Used for	related to type	Ordinary construction	1				
-	Construction of	of construction	Non-combustible construction	0.8	Ordinary construction	1	m	
	Unit	(C)	Fire resistive construction (< 2 hrs)	0.7				
			Fire resistive construction (> 2 hrs)	0.6				
	Choose Type of			Floor Space A	rea			
,	Housing (If TH,		Single Family	1				
2	Linits Per TH	Type of Housing	Townhouse - indicate # of units	3	Other (Comm, Ind, etc.)	1	Units	
	Block)		Other (Comm, Ind, etc.)	1				
2.2	# of Storeys	Number of Fl	oors/ Storeys in the Unit (do not inclu	de basement):	3	3	Storeys	
			Enter Ground Floor Area (A)	of One Unit Only :	1.732			
	Enter Ground		Squara East (ft ²)	0.09290304			Area in	
3	Floor Area of One	Measurement	Square Metres (m^2)	1	Square Metres (m2)	5,196	Square	
	Unit	Units	Hectares (ha)	10000			Meters (m.)	
4	Obtain Required Fire Flow without Reductions	F	Required Fire Flow(without reduc Round to	tions or increase nearest 1000L/n	s per FUS) (F = 220 * C nin	* vA)		16,000
5	Apply Factors Affecting Burning		Reductions/Increa	ases Due to Fac	ctors Affecting Burn	ing		
		Occupancy	Non-combustible	-0.25				
	Choose	content hazard	Limited combustible	-0.15				
5.1	Combustibility of	reduction or	Combustible	0	Non-combustible	-0.25	N/A	12,000
	Building Contents	surcharge	Free burning Rapid burning	0.15				
	Choose Reduction		Complete Automatic Sprinkler	0.25				
5.2	Due to Presence	Sprinkler	Protection	-0.3	Complete Automatic	-0.3	N/A	-3.600
	of Sprinklers	reduction	None	0	Sprinkler Protection		,	·
	Choose	Exposure	North Side	30.1 to 45.0m	0.05			
5 2	Separation	Distance	East Side	45.1m or greater	0	0.2	m	2 400
313	Distance Between	Between Units	South Side	30.1 to 45.0m	0.05	0.2	,	4.00
<u> </u>	Units		West Side	20.1 to 30.1m	0.1			
	Obtain Paguirad	Total	Required Fire Flow, rounded t	o nearest 1000	L/min, with max/m	in limits	applied:	11,000
	Fire Flow,			То	tal Required Fire Flo	ow (abov	e) in L/s:	183
5	Duration &				Required Duration	of Fire Fi	low (hrs)	2.25
	Volume				Required Volume	of Fire Fl	ow (m ³)	1,485
								-

Appendix B: SANITARY SEWER

B.1 SANITARY SEWER DESIGN SHEET

		SUBDIVISI	Q-WEST	PHASE 2				9	SANIT			2											DESIGN P	ARAMETERS											
S									(Ci	ty of Otta	wa)				MAX PEAK F	ACTOR (RES)=	4.0		AVG. DAILY F	FLOW / PERS	ON	280	l/p/day		MINIMUM VE	ELOCITY		0.60	m/s					
		DATE:		1/4/2	2019										MIN PEAK FA	ACTOR (RES.)	=	2.0		COMMERCIA	AL.		28,000	l/ha/day		MAXIMUM V	ELOCITY		3.00	m/s					
		REVISIO	N:	1	1										PEAKING FA	CTOR (INDUS	TRIAL):	2.4		INDUSTRIAL	(HEAVY)		55,000	l/ha/day		MANNINGS	n		0.013						
		DESIGNE	ED BY:	D	т	FILE NUN	IBER:	160400864	1						PEAKING FA	CTOR (ICI >20	0%):	1.5		INDUSTRIAL	(LIGHT)		35,000	l/ha/day		BEDDING C	LASS		F	3					
Stant	ec	CHECKE	D BY:	M	IS										PERSONS /	SINGLE		3.4		INSTITUTION	AL		28.000	l/ha/dav					2.50) m					
															PERSONS /			27			N		0.33	l/s/Ha				ACTOR	0.8	,					
																		2.7					0.00	barria.		HARMON C	URRECTION	ACTOR	0.0						
			-												PERSONS//			1.0					-												
LOCA	TION					RESIDENTI	AL AREA AND	POPULATION				СОММ	ERCIAL	INDUS	TRIAL (L)	INDUST	RIAL (H)	INSTITU	TIONAL	GREEN /	UNUSED	C+I+I		INFILTRATION		TOTAL				PI	PE				
AREA ID	FROM	TO	AREA		UNITS		POP.	CUMU	LATIVE	PEAK	PEAK	AREA	ACCU.	AREA	ACCU.	AREA	ACCU.	AREA	ACCU.	AREA	ACCU.	PEAK	TOTAL	ACCU.	INFILT.	FLOW	LENGTH	DIA	MATERIAL	CLASS	SLOPE	CAP.	CAP. V	VEL.	VEL.
NUMBER	M.H.	M.H.		SINGLE	TOWN	APT		AREA	POP.	FACT.	FLOW		AREA		AREA		AREA		AREA		AREA	FLOW	AREA	AREA	FLOW							(FULL)	PEAK FLOW	(FULL)	(ACT.)
			(ha)					(ha)			(l/s)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(l/s)	(ha)	(ha)	(l/s)	(l/s)	(m)	(mm)			(%)	(l/s)	(%)	(m/s)	(m/s)
SITE	STUB	1	0.00	0	0	764	1375	0.00	1375	3.17	14.1	0.38	0.38	0.00	0.00	0.00	0.00	0.00	0.00	1.84	1.84	0.1	2.22	2.22	0.7	15.0	16.0	375	PVC	SDR 35	1.14	173.3	8.63%	1.64	0.84
	1	2	0.00	0	0	0	0	0.00	1375	3.17	14.1	0.00	0.38	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.84	0.1	0.00	2.22	0.7	15.0	69.1	375	PVC	SDR 35	2.00	229.5	6.52%	2.18	1.02
																												375							

B.2 BACKGROUND REPORT EXCERPTS (SANITARY SEWER)

ASHCROFT HOMES 114 RICHMOND RD., OTTAWA, ON. June 26, 2013

3.0 Water Servicing

A Potable Water Servicing Study was prepared by Stantec Consulting on February 12, 2013 and revised on April 10, 2013 to reflect servicing changes. A 250mm watermain connection is proposed within Richmond Road to service phase 1 of the development. The remaining development area will be serviced with a 250mm watermain connection in Hilson Avenue and another 250mm connection in Byron Avenue. The report outlines estimated water demands and residual pressures under average day, maximum day and peak hour demand conditions. The report indicates that minimum pressures are maintained during all demand scenarios. Fire flow calculations as per the Fire Underwriters Survey (FUS) indicate a required fire flow of 250L/s. The hydraulic analysis indicated that the proposed water servicing could provide the required fire flow while meeting minimum pressure requirements of 20psi (140kPa). Due to additional losses in the high rise buildings, additional pumping will be required at these buildings to maintain minimum pressures to each unit.For the detailed report see **Appendix D**.

4.0 Wastewater Servicing

As illustrated on **Drawing SP-1**, a 250mm diameter sanitary sewer exists within Richmond Road which flows easterly towards the intersection of Richmond Road and Leighton Terrace. A 450mm diameter sanitary sewer exists at the intersection of Patricia Avenue and Richmond Road which runs northerly down Patricia Avenue. This existing sanitary sewer is a 450mm diameter pipe with a slope of minimum 1%. Based upon the size and slope of the existing pipe it is determined that this sewer has a flow capacity of 300 l/s. The existing sanitary service lateral from the existing building within the 114 Richmond Road property is currently serviced through this outlet at Patricia Avenue and will be removed.

It is proposed that the development will be constructed in 3 separate phases. The first Phase of the development will consist of construction of three - nine storey mixed use buildings and renovations to the existing 3 storey building. The second phase will consist of construction of 5 buildings consisting of residential and mixed use. The third phase will consist of 1 building with a mix of residential and commercial use. The entire site will be serviced through one connection onto Richmond Road. Residential unit counts and commercial areas were determined from the October 22, 2012 site plan and stats prepared by Roderick Lahey Architects in **Appendix A** of this report.

It is proposed to service the entire development through a new 375mm diameter sanitary sewer connection to Richmond Road. The servicing for the first phase will be connected within the building mechanical room via the 375mm diameter pipe, as illustrated in **Drawing SP-2**. The transition between PVC material and cast iron will occur within the building and will be designed

by the mechanical engineer. The cast iron sewer will continue southerly within the Phase 1 building servicing corridor and exit the foundation wall. This 375mm diameter sanitary sewer will be extended within a common trench, with the storm and utilities, along the westerly property edge to service the Phase 2 and 3 developments. The 375mm diameter sewer will be constructed between two existing manholes in Richmond Road, as indicated on Drawing SP-1. It is proposed to install a 1200mm diameter manhole within the Richmond road right of way which will connect to the existing 450mm diameter sanitary through the existing manhole located at the intersection of Patricia Avenue and Richmond Road. As there is insufficient room for the placement of a monitoring manhole for phase 1 commercial, a monitoring port will be placed within the outlet sewer pipe for the commercial areas.

A sanitary drainage area plan and sanitary sewer design sheets were prepared by Novatech Engineering Consultants on behalf of the City of Ottawa in May 2005, which identified the 114 Richmond road property tributary to the Patricia Avenue sanitary sewer. (See **Appendix C**.)

The calculations outlined below represent the flows anticipated for each phase of this development.

Phase 1

The City of Ottawa's Sewer Design Guidelines for commercial development indicate the allocation of capacity in the receiving sanitary sewer required.

Total Site Area = 0.829ha Peaking Factor Commercial 1.5 Commercial Average Peak Flow = 50000 L/gross ha/d Commercial Operational Flow = 17000 L/gross ha/d Infiltration Rate = 0.28 L/s/ha Total Infiltration Flow = (Area x infiltration rate) = 0.23 L/s Total Flow = (Peak Flow x Site Area /86400) x Peak Factor + Infiltration Flow Total Flow as per guidelines = 0.95 L/s.

By implementing the City of Ottawa's sewer design guidelines the following sanitary flows are calculated for the proposed condominium development.

Residential (Apartment)	Population	= 276 units x 1.8 persons/unit = 497 people
	≈ 2.01 L/s av using a peak ≈ 8.05 L/s	= 497 x 350 L/c/d verage residential sanitary flow king factor of 4;

Total peak sewage flow for commercial and residential Phase 1 ≈ 9.00 L/s

Stantec ASHCROFT HOMES 114 RICHMOND RD., OTTAWA, ON. June 26, 2013

Phase 2

The City of Ottawa's Sewer Design Guidelines for commercial development indicate the allocation of capacity in the receiving sanitary sewer required.

Total Commercial Area = 0.49ha Infiltration area = 0.45ha Peaking Factor Commercial 1.5 Commercial Average Peak Flow = 50000 L/gross ha/d Commercial Operational Flow = 17000 L/gross ha/d Infiltration Rate = 0.28 L/s/ha Total Infiltration Flow = (Area x infiltration rate) = 0.13 L/s Total Flow = (Peak Flow x Site Area /86400) x Peak Factor + Infiltration Flow Total Flow as per guidelines = 0.56 L/s.

By implementing the City of Ottawa's sewer design guidelines the following sanitary flows are calculated for the proposed condominium development.

Residential (Apartment)

1 Bedroom:

Population	282 units	x 1.4 pers	on/unit
=	394.8	persons	
	(394.8 pe	rsons x	
	350L/p/d)/86400s/0	day
=	1.60	L/s	average residential sanitary flow
	using a pe	eaking fact	or of 4;
=	6.40	L/s	

2 Bedroom:

Population 138 units x 2.1 person/unit = 289.8 (193.2 persons x 350L/p/d)/86400s/day = 1.17 using a peaking factor of 4; = 4.70 L/s

Total peak sewage flow for commercial and residential Phase $2 \approx 11.66 L/s$

Phase 3

The City of Ottawa's Sewer Design Guidelines for commercial development indicate the allocation of capacity in the receiving sanitary sewer required.

Total Commercial Area = 0.26ha Infiltration area = 0.26ha Peaking Factor Commercial 1.5 Commercial Average Peak Flow = 50000 L/gross ha/d Commercial Operational Flow = 17000 L/gross ha/d Infiltration Rate = 0.28 L/s/ha Total Infiltration Flow = (Area x infiltration rate) = 0.07 L/s Total Flow = (Peak Flow x Site Area /86400) x Peak Factor + Infiltration Flow Total Flow as per guidelines = 0.30 L/s.

By implementing the City of Ottawa's sewer design guidelines the following sanitary flows are calculated for the proposed condominium development.

Residential (Apartment)

1 Bedroom:

Population	24 units x	1.4 perso	n/unit												
=	33.6	persons													
	(33.6 pers	ions x													
	350L/p/d)/86400s/day														
=	0.14	L/s	average residential sanitary flow												
	using a pe	aking fact	or of 4;												
=	0.54	L/s													

Total peak sewage flow for commercial and residential Phase 3 ~ 0.84L/s

Total anticipated peak flow from phase 1, 2 and 3 is approximately 21.5L/s

A review of the downstream sanitary sewers was completed from the intersection of Patricia Avenue and Richmond Road to the connection to the West Nepean Collector located at the intersection of Island Park Drive and Scott Street (approx 320 metres).

Included in **Appendix C** is a sanitary sewer design sheet that was prepared for the City of Ottawa in 2005 during the reconstruction of Richmond Road. In the design sheet associated sanitary drainage area plan, the proposed site is denoted as area B3.

This information was expanded to include additional sanitary areas on Patricia Avenue to the collector sewer. The estimated sewage flows into the existing manhole at the intersection of

Patricia Avenue and Richmond Road are 73 L/sec (existing) + 23 L/sec (114 Richmond Rd). Additional commercial flows and residential flows of 17 L/sec are accumulated along Patricia Avenue.

An existing 450mm & 750mm sanitary sewer is present on Patricia Avenue, with a slope of between 1% and 2%. Based on this the minimum capacity for a 450mm sanitary sewer at 1.0% is 300 L/sec.

The total estimated sewage flows along Patricia Avenue including the new flows from the development of 114 Richmond Road are 111 L/sec. As the capacity of the existing 450mm sanitary sewer is approximately 300 L/sec the receiving sanitary sewer has adequate capacity to convey the necessary flow generated as a result to the proposed development.

Refer to **Appendix C** of this report for sanitary sewer design sheet and drainage areas indicating downstream flows within the 450mm diameter at Patricia Avenue indicating capacity within the receiving sewer for the 114 Richmond Road Development.

	DESIGNED BY : DHI	and an analysis

PROJECT: Richmond Road DEVELOPER: City of Ottawa

STORM SEWER DESIGN SHEET

Induction Induction <t< th=""><th>CHECKED BY</th><th>: RSC</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>DATE: BEVISION.</th><th>2-May-05</th><th></th></t<>	CHECKED BY	: RSC															DATE: BEVISION.	2-May-05	
Title Bit D Image D <thd< th=""> D <thd< th=""><th>LOCATION</th><th></th><th></th><th></th><th>A REA (ho)</th><th></th><th></th><th></th><th></th><th></th><th>1 DEAU</th><th></th><th></th><th></th><th></th><th></th><th>NOTOTA</th><th></th><th></th></thd<></thd<>	LOCATION				A REA (ho)						1 DEAU						NOTOTA		
matrix matrix<	-						AIGNI	ACCUM	TIME	RAINFALL	MOL				PROPOSEI	D SEWER			
Matrix 1 700 000 100 <th></th> <th>WIH WH</th> <th>P HW</th> <th></th> <th>- X - C</th> <th>2</th> <th>2.78 AR</th> <th>2.78 AR</th> <th>CONC</th> <th><i>FIISNEINI</i></th> <th>8</th> <th>TYPE OF</th> <th>PIPE SIZE</th> <th>CI Balla</th> <th>GRADE</th> <th>HIDNET</th> <th>CAPACITY</th> <th>FULL</th> <th>TIME OF</th>		WIH WH	P HW		- X - C	2	2.78 AR	2.78 AR	CONC	<i>FIISNEINI</i>	8	TYPE OF	PIPE SIZE	CI Balla	GRADE	HIDNET	CAPACITY	FULL	TIME OF
Implementation 1 7					000	0970			Ĵ	(mm/hr)	(k)	Balla	(1111)	(1111)	8	(III)	U.A.D	VELOCITY	Į
Universitie 1 701 100 101 701 100 701 101 7																			
Weet lead 1	Richmond Read	-	27304 A	0,600			5	l											Γ
Image: brow the state of the state							/0.0	0.67	10.00	122.14	815	DR 35	900	299	1.47	715	116.6	1.66	0.72
Businetial 3 70	Richmond Road (sized for current conditions)	•	~	1 280		0000						T	T						
Elefont 213	Richmond Read	2	27255	201		0.400	1971	1.87	10.00	122.14	228.3	CONC	525	533	0:30	2/2	245.2		
Important 733 734 7	Leighton Terrace	27219	27255	4 270		0:230	6.73	2.60	10.42	119.61	311.2	CONC	525	533	050	32.7	316.6		120
Internation 721 <th< td=""><th>Richmond Road</th><td>27255</td><td>27754</td><td></td><td></td><td></td><td>4.86</td><td>4.86</td><td>16.50</td><td>79.00</td><td>383.9</td><td>CONC</td><td>525</td><td>533</td><td>1.62</td><td>052</td><td>540.0</td><td>3 55</td><td></td></th<>	Richmond Road	27255	27754				4.86	4.86	16.50	79.00	383.9	CONC	525	533	1.62	052	540.0	3 55	
Methode 723 723 723 723 723 723 723 723 723 723 723 723 724						1.020	227	9.00	16.50	92.50	832.1	CONC.	(peop)	đĩp	0.80	178-1	674	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1,00
Method Total Total <t< td=""><th>Hilson Avenue</th><td>27252</td><td>27253</td><td>13.110</td><td></td><td></td><td>072</td><td></td><td>20.00</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Hilson Avenue	27252	27253	13.110			072		20.00										
Officient Zig Dir Dir <thdir< th=""> Dir <thdir< th=""> <thdir<< td=""><th>Bichmond Road</th><td>27253</td><td>27254</td><td></td><td></td><td>0.010</td><td>2.02</td><td>1</td><td>20.00</td><td>00.90</td><td>867.8</td><td>CONC</td><td>1050</td><td>1067</td><td>0.57</td><td>85.0</td><td>2151.9</td><td>241</td><td>629</td></thdir<<></thdir<></thdir<>	Bichmond Road	27253	27254			0.010	2.02	1	20.00	00.90	867.8	CONC	1050	1067	0.57	85.0	2151.9	241	629
Effective 234 Corr 1 <th1< th=""> 1 1 <</th1<>	per							Annr	2.00	11.12	11825	Sak	1050	1067	0.93	0'26	2748.7	3.07	950
7 1	Futricia Avenue	27254	EXIST			0000	800	35.60	76.60										
Built Methin 1 2 400 10	x						ALC A	20.00	0007	00710	21925	CONC	906	914	1.24	110.0	2100.6	3.20	0.57
Build Methone 6 5 400 731 343 CONC 53 540 600 53 640 53 63	p. 1						T												
Market for the formation of a bia	beaud Park Drive			1010								1							Γ
Manual frame 2 7 0 023 033 123 233 133 233<	(Unter for future conditions) Jeland Park Trice		, ,			0.080	523	523	24.00	73.15	382.3	CONC	525	533	06.0	35.0	424.B	8	131
min min <th>Richmand Broot</th> <td></td> <td>_</td> <td></td> <td></td> <td>0.220</td> <td>0.49</td> <td>0.49</td> <td>10.00</td> <td>122.14</td> <td>59.8</td> <td>DR 35</td> <td>300</td> <td>200</td> <td>50</td> <td>4.15</td> <td>ł</td> <td></td> <td></td>	Richmand Broot		_			0.220	0.49	0.49	10.00	122.14	59.8	DR 35	300	200	50	4.15	ł		
Techniki Artener 8 7 290 54 266 560 700 710 700 <th< td=""><th></th><td>n</td><td>-</td><td></td><td></td><td>0.690</td><td>153</td><td>7.25</td><td>24.31</td><td>72.55</td><td>526.0</td><td>CONC</td><td>Y.S</td><td>100</td><td>210</td><td>1</td><td>1997</td><td>160</td><td>650</td></th<>		n	-			0.690	153	7.25	24.31	72.55	526.0	CONC	Y.S	100	210	1	1997	160	650
manual participant i	Blendille A	,												8	Curris and a		260.4	1.59	860
Hetmenel Ruet 7 9 0 0 91 229 705 <th>The second se</th> <td></td> <td>-</td> <td>2390</td> <td></td> <td></td> <td>2.66</td> <td>2.66</td> <td>16.50</td> <td>79.00</td> <td>210.0</td> <td>DR 35</td> <td>\$</td> <td>248</td> <td>960</td> <td>4</td> <td></td> <td>-</td> <td>Ţ</td>	The second se		-	2390			2.66	2.66	16.50	79.00	210.0	DR 35	\$	248	960	4		-	Ţ
manual g j <j< th=""> j<j< th=""> j<j< th=""> j<j< th=""> j<j< th=""> j<j<j< th=""> j<j<j<j<j<j<j<j<j<j<j<j<j<j<j<j<j<j<j<< td=""><th>Richmond Brad</th><td></td><td>ľ</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td>A11-0</td><td>718.1</td><td></td><td>013</td></j<j<j<j<j<j<j<j<j<j<j<j<j<j<j<j<j<j<<></j<j<></j<></j<></j<></j<></j<>	Richmond Brad		ľ												-	A11-0	718.1		013
mining n n 0.10 0.23 0.23 724 CONC 720 0.20 0.20 0.21 0.20 0.21 0.20 0.21 0.20 0.21 0.20 0.21 0.20 0.21 0.20 0.21 0.20 0.21 0.20 0.21 0.20 0.21 0.20 0.21 0.20 0.21 0.20 220 <th< td=""><th></th><td></td><td>⊳ ;</td><td></td><td></td><td></td><td>000</td><td>166</td><td>25.29</td><td>70.68</td><td>5007</td><td>CONC</td><td>750</td><td>762</td><td>590</td><td>-</td><td>, ere</td><td></td><td></td></th<>			⊳ ;				000	166	25.29	70.68	5007	CONC	750	762	590	-	, ere		
Image: black of the state of the s		× :				0.190	0.42	10.33	25.33	70.61	729.4	CONC	741	5	200	me	899.0	5	B
1 1		2	=			0.230	0.51	10.84	25.57	70.17	760.8	CONC	750	167	000	1.02	0.648	5	R
Warpitir Answer EXX3 13 220 24 247 750			3			0200	0.44	11.29	25.86	69.66	786.2	CONC	750	762	990	04	0.440	1.5	
Mythir Arman mont mont mont 247 246 249	Mayfair Avenue	EVICT	:													2	0.440	<u>}</u>	5
mining control is bot of the control	Maylair Avenue	1	2 2	1777			2.47	2.47	16.50	79.00	195.0	DR35	450	\$	1.60	53.0	356.1	2.26	0.0
Retirem deted 12 EXXET 0.32 0.71 12.00 26.00 69.25 88.00 CONC 900 914 0.00 400 133.39 2.23 0.30 Wettern Avenue EXXET EXXET 0.000 0.00 26.36 58.17 78.23 CONC 900 914 0.0 133.39 2.03 0.30 Wettern Avenue EXXET 0.000 0.00 17.00 26.36 58.17 78.23 CONC 900 914 0.0 133.39 2.03 0.31 0 = 2.78 verter EXXET 78.53 58.77 78.53 58.77 78.53 7.00 914 0.50 133.39 2.03 0.31 0 = 2.78 verter Inition Curve = 10 ymm. (Minimum) Inition Curve = 10 ymm. (Minimum) Inition Curve = 10 ymm. (Minimum) NOTE: 10 years storm is wet for Hold and 3 year storm for Local Street And FE Scient Street And VE E Scient Street And VE E Scient Street And VE E Scient Street Manningo Coefficiant = 0.013 .ting Trow = Unbals storm NOTE: 10 years storm is weed			•				0.00	000	16.50	79.00	9	DR 35	450	4	1.60	10.0	356.1	12	190
Wetern Annue EXX EXX <t< td=""><th>Richmond Read</th><td>12</td><td>EXCIST</td><td></td><td></td><td>137</td><td>121</td><td>W St</td><td>20.70</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Richmond Read	12	EXCIST			137	121	W St	20.70										
Matern Arease EXXT							110	14.00	50107	57.69	61158	CONC	ĝ	914	0.60	40.0	1461.2	223	050
0-12/18/4 Pre- de 2/18/4 Pre- Income / 2/18/4 Pre- Pre- Amonge Coefficient = 0.013 Austry Tome = Under Steers Amonge Coefficient = 0.013 Austry Tome = 0.013 Austry Tome = 0.013 Austry Tome = 0.013 Austry Tome = 0.013	Western Avenue	EXIST	EUST			0.000	000	12 00	76.20	14 es									
0=2.78% AFTR Interior Curve = 10 years Inter Time = 10 min. (Minimum) Manings Coefficient = 0.013 Array Tome = Under Staret Array Tome = Under Staret									0.Cmm	1/100	TCN	CONC	8	914	0.50	16.0	6'EEEI	2.03	61.0
Interview / Durations Curve = 10 years India Tea = Existing NOTE: 10 years storm is used for Richmond Read and 5 year storm for Local Streets PROFESSION, Annualy Coefficient = 0.013 Aury Team = Under Storets Streets Coefficient = 0.013 Aury Team = Under Storet Streets Coefficient = 0.013 Aury Team = Under Streets Coefficient = 0.013 Aury Team = Under Storet Streets Coefficient = 0.013 Aury Team = Under Storet Streets Coefficient = 0.013 Aury Team = Under Storet Streets Coefficient = 0.013 Aury Team = Under Storet Streets Coefficient = 0.013 Aury Team = Under Storet Streets Coefficient = 0.013 Aury Team = Under Storet Streets Coefficient = 0.013 Aury Team = Under Storet Streets Coefficient = 0.013 Aury Team = Under Storet Streets Coefficient = 0.013 Aury Team =	Q=2.78*A *1*R					100 E						and the second se			N.			-	T
med Tars = 10 mb. (Minimus) Manings Coefficient = 0.013 Lary Tars = Under Greet Screet	Intentity / Duration Curve = 10 years	N	talle Text = Eth	ting		NOTE: 10	years storm is 1	and for Richmy	and Road and 4	T was stress for				4	PROFE	NOISC			
	Mamina's Coefficient = 0.013		A CONTRACTOR OF		- The operation of the									1. A	0.5	X	E	1	
		4	Hay I core = Utal	d bizot wwe	The state of the s									A.			GIN		
																ALL DATE			

98002-3/Richmond Road/5-10year STORM

5/4/2005

O'SALNU - JUNIT

2018/05

PR.O

Appendix C : STORM SEWER

C.1 STORM SEWER DESIGN SHEET

			Q-WEST	PHASE 2			, ,	STORM	SEWE	R		DESIGN	PARAME	TERS																										
	Stantec					_	1	DESIGN	SHEE	1		I = a / (t+	b)°		(As per C	City of Otta	awa Guide	elines, 201	2)																					
		DATE:		2019-	04-01			(City of	Ottawa)				1:2 yr	1:5 yr	1:10 yr	1:100 yr																								
		REVISION	l: D D)/		-							a =	732.951	998.071	1174.184	1735.688	MANNING	G'S n =	0.013		BEDDING	CLASS =	В																	
		DESIGNE			1	FILE NUN	IBER:	16040086	4			b =	6.199	6.053	6.014	6.014		COVER:	2.00	m																				
	100471011	CHECKEL	JBT:	M	15							с =	0.810	0.814	0.816	0.820	TIME OF	ENIRY	10	min									r						TION					
		EROM	то						c	c	c	c	Avc	ACCUM				ACCUM	A × C	ACCUM	TofC					0	ACCUM	0	LENGT			DIDE			SLOPE	0	94 ELU I	VE	VE	
		MH	мн	(2-VEAR)	(5-VEAR)	(10-VEAR)	(100-VEAR)		(2-VEAR)	(5-VEAR)	(10-VEAR)	(100-VEAR)	(2-VEAR)		(5-VEAR)	ACCOW.				ACCOM.	2)	2-YEAR	5-YEAR	10-YEAR	100-YEAR	CONTROL	ACCOM.	(CIA/360)	LENGT			SHAPE	WATERIAL	CLASS	SLOPE	(ELILL)	% FULL	(ELILL)	(ACT)	FLOW
	NOMBER	WI.11.	WI.11.	(12-112AR) (ha)	(ba)	(ha)	(100-12AR) (ha)	(ha)	(-)	(-)	(-)	(-)	(2-12AR) (ha)	(ha)	(b=12AR) (ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(min)	(mm/h)	(mm/h)	(mm/h)	(mm/h)	(L/s)	(L/s)	(U/4/500) (L/s)	(m)	(mm)	(mm)	(-)	(-)	(-)	%	(L/s)	(-)	(m/s)	(m/s)	(min)
				. ,	. /	()	. ,	()	.,	,,,	.,		. ,	. ,	. ,	()	. ,	()	• •	, ,	. ,	, ,	, ,	. ,	, , ,	, ,	• •	. ,		. ,	, ,	.,		.,,		. ,		. ,	. ,	
	A2, EXT1	502	200	0.00	0.22	0.00	0.00	0.00	0.00	0.58	0.00	0.00	0.000	0.000	0.128	0.128	0.000	0.000	0.000	0.000	10.00	76.81	104.19	122.14	178.56	0.0	0.0	36.9	57.0	250	250	CIRCULAR	PVC		1.00	60.4	61.10%	1.22	1.10	0.86
																					10.86																			
	A5	501	200	0.00	0.10	0.00	0.00	0.00	0.00	0.90	0.00	0.00	0.000	0.000	0.090	0.090	0.000	0.000	0.000	0.000	10.00	76.81	104.19	122.14	178.56	0.0	0.0	26.0	24.7	200	200	CIRCULAR	PVC	-	1.00	33.3	78.20%	1.05	1.03	0.40
																					10.40																			
		200	STUD	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.000	0.000	0.000	0.219	0.000	0.000	0.000	0.000	10.96	72.65	00.96	117.04	171.06	0.0	0.0	60.2	9.4	275	275		PV/C		1.00	164.9	26 60%	1.56	1 22	0.12
		200	3108	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.000	0.000	0.000	0.210	0.000	0.000	0.000	0.000	10.98	73.05	99.00	117.04	171.00	0.0	0.0	00.5	0.4	375	375	CIRCOLAR	FVC		1.00	104.0	30.00 %	1.50	1.22	0.12
	A4	500	109	0.00	0.05	0.00	0.00	0.00	0.00	0.90	0.00	0.00	0.000	0.000	0.045	0.045	0.000	0.000	0.000	0.000	10.00	76.81	104.19	122.14	178.56	0.0	0.0	13.0	12.7	200	200	CIRCULAR	PVC		1.00	33.3	39.10%	1.05	0.83	0.25
	A1, EX12	109	3	0.00	0.48	0.00	0.00	0.00	0.00	0.43	0.00	0.00	0.000	0.000	0.207	0.252	0.000	0.000	0.000	0.000	10.25	72.85	98.75	120.58	1/0.27	0.0	0.0	184.6	16.5	375 450	450	CIRCULAR	CONCRETE		4.40	623.9	43.67%	3.80	2.78	0.84
	<u> </u>	100	5	0.00	0.02	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.000	0.000	0.421	0.075	0.000	0.000	0.000	0.000	11.19	72.00	30.75	115.75	103.15	0.0	0.0	104.0	10.5	525	525	OIRCODEAR	CONCILLE		4.40	020.0	23.3370	5.00	2.70	0.10
COURT1-	3, ROOF B,C,D, A2, A5, EXT1	CISTERN	2	0.00	0.00	0.00	0.00	0.50	0.00	0.00	0.00	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	10.00	76.81	104.19	122.14	178.56	67.6	67.6	67.6	18.8	375	375	CIRCULAR	PVC		1.13	175.2	38.58%	1.66	1.31	0.24
	RUUF A	2	IVIAIIN	0.00	0.00	0.00	0.00	0.25	0.00	0.00	0.00	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	10.24	75.90	102.94	120.67	176.40	9.2	/0.8	70.8	64.5	375 600	375 600	CIRCULAR	PVC		0.50	110.0	65.89%	1.11	1.03	1.05
																					11.23									000	000									

C.2 MODIFIED RATIONAL METHOD CALCULATIONS

160400864 Q-WEST PHASE 2 01-Apr-19

Post-Development Site Conditions:

Overall Runoff Coefficient for Site and Sub-Catchment Areas

Runoff Coefficient Table								
Sub-catchment Area	Area (ha)	Runoff Coefficient		Overall Runoff				
Catchment Type ID / Description	"A"	"C"	"A x C"	Coefficient				
<u> </u>								
Total Overall Runoff Coefficient= C:	2.61	0	1.948	0.75				
				0.10				
Total Roof Areas Total Tributary Surface Areas (Controlled and Uncontrolled)	0.750 ha 1.710 ha							
Total Tributary Area to Outlet	2.460 ha							
Total Uncontrolled Areas (Non-Tributary)	0.150 ha							
Total Site	2.610 ha							

Stormwater Management Calculations

Modified Rational Method Calculatons for Storage	Modified Rational Method Calculatons for Storage
5 yr Intensity t (min) I (mm/hr) City of Ottawa	100 yr Intensity t (min) I (mm/hr) City of Ottawa
5 VEAD Bradevalopment Target Balases from Parties of Site	100 YEAP Prodevelopment Target Poloase from Portion of Site
Subdrainage Area: Area (ha): C:	Subdrainage Area: Area (ha): C:
tc I (5 yr) Qtarget (min) (mm/hr) (L/s) 205	tc I (5 yr) Qtarget (min) (mm/hr) (L/s) 205
5 YEAR Modified Rational Method for Entire Site	100 YEAR Modified Rational Method for Entire Site
Subdrainage Area: Area (ha): C:	Subdrainage Area: Area (ha): C:
tc I (5 yr) Qactual Qrelease Qstored Vstored (min) (mm/hr) (L/s) (L/s) (M*3) 4.0	tc I (100 yr) Qactual Qrelease Qstored Vstored (min) (mm/hr) (L/s) (L/s) (L/s) (m^3) 13.0
Subdrainage Area: Area (na): C: Tc I (5 yr) Qactual Qrelease Qstored Vstored (L/s) (L/s) (L/s) (m^3)	Subdrainage Area: Area (ha): C: It i (100 yr) Qactual Qrelease Qstored Vstored (min) (mm/hr) (LJs) (LJs) (LJs) (m^3)

Stormwater Management Calculations

drainage Area: Area (ha): C:		Subdrainage Area: Area (ha): C:
tc I (5 yr) Qactual	Qrelease Qstored Vstored	tc I (100 yr) Qactual Qrelease Qstored Vstored
(min) (mm/hr) (L/s)	(L/s) (L/s) (m^3)	(min) (mm/nr) (Us) (Us) (Us) (m*3)
	106.7	271.3
		, I I
drainage Area:		Subdrainage Area:
Area (ha): C:		Area (ha): C:
tc I (5 yr) Qactual (min) (mm/hr) (L/s)	Qrelease Qstored Vstored (L/s) (L/s) (m^3)	tc I (100 yr) Qactual Qrelease Qstored Vstored (min) (mm/hr) (L/s) (L/s) (L/s) (m^3)
	69.8	
		222.4
drainage Area: Area (ha):		Subdrainage Area: Area (ha):
C: tc I(5 vr) Qactual	Orelease Ostored Vstored Depth	C:
(min) (mm/hr) (L/s)	(L/s) (L/s) (m^3) (mm)	(min) (mm/hr) (L/s) (L/s) (L/s) (m^3)
	33.4	78.4
drainage Area:		Subdrainage Area:
Area (ha): C:		Area (ha): C:
tc I (5 yr) Qactual (min) (mm/hr) (L/s)	QreleaseQstoredVstoredDepth(L/s)(L/s)(m^3)(mm)	tc I (100 yr) Qactual Qrelease Qstored Vstored (min) (mm/hr) (L/s) (L/s) (L/s) (m^3)
	27.6	
	27.0	65.7

Stormwater Management Calculations

Project #160400864, Q-WEST PHASE 2

Modified	Rational	Method	Calculatons	for Storage

odified Rati	ional N	Method Ca	alculatons	for Storag	je				Г	Modified	Rational	Method Ca	alculatons	for Storag	e		
Subdrainage Are	e Area: ea (ha):									Subdra	inage Area Area (ha)	и к					
	C:							_			c	:					
(r	tc min)	l (5 yr) (mm/hr)	Qactual (L/s)	Qrelease (L/s)	Qstored (L/s)	(m^3)	Depth (mm)				tc (min)	l (100 yr) (mm/hr)	Qactual (L/s)	Qrelease (L/s)	(L/s)	(m ³)	Dep (mn
						17.9										41.0	
																41.0	
Subdrainage Are	e Area: ea (ha): C:									Subdra	inage Area Area (ha) C	1: 1: 2:					
(r	tc min)	l (5 yr) (mm/hr)	Qactual (L/s)	Qrelease (L/s)	Qstored (L/s)	Vstored (m^3)	Depth (mm)				tc (min)	l (100 yr) (mm/hr)	Qactual (L/s)	Qrelease (L/s)	Qstored (L/s)	Vstored (m ³)	Dep (mr
						44.2										83.6	
	i							_									
								_									
MMARY TO C	OUTLET	r								SUMMARY	TO OUTLE	T					
		Tri Total 5yr Fle	butary Area								т	Tri otal 100yr Flo	butary Area				
	Tota	Non-Tri	butary Area								Total	Non-Tri	butary Area				
	rota	i syr Flow u	Total Area								rotar	looyr Flow U	Total Area				
		То	tal 5yr Flow									Total	100yr Flow				

Project #160400864, Q-WEST PHASE 2 Roof Drain Design Sheet, Area RFA Standard Zurn Model Z-105-5 Control-Flo Single Notch Roof Drain

Rating Curve			Volume E	stimation		

Drawdown Estimate

Rooftop Storage Summary

From Zurn Drain Catalogue

Calculation Results		5yr	100yr	Available

Project #160400864, Q-WEST PHASE 2 Roof Drain Design Sheet, Area RFB Watts 'Accutrol' Single Notch Roof Drain

Rating Curve			Volume Estimation				
	Rating	Rating Curve	Rating Curve	Rating Curve	Rating Curve Volume E	Rating Curve Volume Estimation	Rating Curve Volume Estimation

Rooftop Storage Summary

From Watts Drain Catalogue

Calculation Results		5yr	100yr	Available

Project #160400864, Q-WEST PHASE 2 Roof Drain Design Sheet, Area RFC Watts 'Accutrol' Single Notch Roof Drain

Rooftop Storage Summary

From Watts Drain Catalogue

Calculation Results		5yr	100yr	Available

Project #160400864, Q-WEST PHASE 2 Roof Drain Design Sheet, Area RFD Watts 'Accutrol' Single Notch Roof Drain

Rating Curve			Volume Estimation				
	Rating	Rating Curve	Rating Curve	Rating Curve	Rating Curve Volume E	Rating Curve Volume Estimation	Rating Curve Volume Estimation

Rooftop Storage Summary

From Watts Drain Catalogue

Calculation Results		5yr	100yr	Available

C.3 BACKGROUND REPORT EXCERPTS (STORM SEWER)

Stantec ASHCROFT HOMES 114 RICHMOND RD., OTTAWA, ON. June 26, 2013

5.0 Stormwater Management and Servicing

The stormwater management (SWM) criteria for 114 Richmond Road were established in a report titled "Assessment of Adequacy of Public Services Report" prepared by Trow Associates Inc. and dated March 12, 2010. This report indicated a 5-year predevelopment release rate of 194.3L/s based on a site area of 2.21ha and a pre-development runoff coefficient of 0.45. (see **Appendix C** for Excerpts from Trow's report). As per the City of Ottawa's request in an email received September 6, 2011, the allowable release rate has been revised to reflect a calculated time of concentration of 23.8 minutes, based on existing site conditions. Note that the proposed site also receives external drainage from neighbouring properties. These external flows will be captured and conveyed by the proposed system. The target rate for the site is therefore **205 L/s** when external drainage areas are included.

This SWM analysis will demonstrate that the proposed development meets the above criteria, as well as the following:

- Maximum permitted hydraulic grade line (HGL) to be a minimum of 0.30 m below building foundation will be addressed through installation of pumps.
- Size storm sewers to convey 5 year storm event under free-flow conditions using 2004 City of Ottawa I-D-F parameters *(City of Ottawa).* Due to servicing restrictions on the west side of the site, the sewers connecting to Richmond Road are sized to convey the 100 year restricted release rate from roof tops and the underground storm reservoir.
- All flows in excess of the allowable release rate, up to and including the 100-year storm, are to be detained onsite.
- Where possible, maximum ponding depth of 0.30 m (*City of Ottawa*). Note that due to grading restrictions a depression exists within the treed area that is to be preserved and cannot be regraded. No overland flow route is available from this area and as such maximum ponding depths of 0.3m cannot be achieved.
- Standing water depths at parking lot sags not to cause surface flooding on any building or structure (*City of Ottawa*)
- Subdrains required in swales where longitudinal gradient is less than 1.5% (*City of Ottawa*)
- Where possible, major flow from the site is to be safely conveyed by surface routing towards Leighton Terrace and Richmond Road. A depression exists currently within the treed area that is to be preserved and cannot be regraded. Due to elevation changes across the site no overland flow route can be provided at this location. Flows in this area will be captured in a catchbasin and conveyed through the proposed storm sewers but no overland flow route can be provided.