Original: July, 2018

Updated: January 30, 2025

Venerable Jen Chun Kuan International Buddhist Progress Society of Ottawa-Carleton 6688 Franktown Road Richmond ON, K0A 2Z0

Re: Hydrogeological Assessment, 6688 Franktown Road, Ottawa ON, Addendum 1

Project #: CCO-17-0503

Egis Canada Ltd. ('Egis', previously McIntosh Perry Consulting Engineers) has been retained by Venerable Hui Tzu (the Client) of the International Buddhist Progress Society of Ottawa-Carleton to conduct a Hydrogeological Assessment (Addendum 1) in support of a Site Plan Application for the property located at 6688 Franktown Road in Ottawa, Ontario (the Site).

A Hydrogeological Assessment and Terrain Analysis was previously completed by Egis (previously McIntosh Perry Consulting Engineers) in July of 2018. At the time of the original investigation, the Site consisted of forested land with a cleared portion that would be utilized for the future development of a place of worship. The total area of the Site is approximately 39.89 hectares (ha). Since 2018, a one-storey interim place of worship and associated paved parking lot has been constructed and exists on-Site (Figure 2). It is our understanding that the Client intends to convert the interim facility into a community building with classrooms when the construction of the proposed additional development (a permanent place of worship) is complete. Additionally, the existing well on-Site (well tag #A252856) will service the existing and proposed additional development.

To satisfy the requirements of this Hydrogeological Assessment, Egis is relying on the water quality and quantity data that was collected from an existing drilled on-site water supply well (Test Well 1, TW1) as part of its previous report in 2018. TW1 was pumped for approximately six hours and was sampled twice in 2018. The pumping rate during the pumping test (approximately 92 L/min) is considered more than sufficient to supply the 2018 proposed development. The water quality at this test well was resampled on December 18, 2024, to ensure that there has been no change in water quality since the previous hydrogeological assessment was completed.

This addendum was written to update the previously completed Hydrogeological Assessment and Terrain Analysis completed by Egis in July, 2018.

1.0 HYDROGEOLOGICAL ASSESSMENT (ADDENDUM 1)

1.1 Pre-Consultation

On June 4, 2024, Egis completed a pre-consultation with the City of Ottawa Peer Reviewer to discuss this Hydrogeological Assessment, as it was previously completed in June of 2018. The following items were discussed:

- The existing well (well tag #A252856 previously tested in 2018) can be used to support the proposed on-Site development if an updated groundwater quality sample is collected for the parameters outlined within the City of Ottawa Hydrogeological and Terrain Analysis Guidelines (March, 2021) (HTAG, 2021), including Volatile Organic Compounds (VOCs).
- If the existing above noted well is used for the proposed development, a pumping test will not be required as the pumping test data collected in 2018 was at a flow rate of approximately 92 L/min indicating there are no issues with the proposed flow rate, given that the proposed development has a water demand less than the previously selected pumping rate.

1.2 Updated Water Well Record Review

The MECP's WWIS database indicated 44 water wells that are located within 500 m of the Site. Thirty-eight (38) of these wells are listed as being used solely for domestic purposes, one (1) for livestock, three (3) test holes, one (1) abandoned, and one (1) for deepening an existing well (A0144460). MECP WWIS records are shown on Figure 3, and data are summarized in Appendix B.

Forty-three (43) water supply wells were completed in bedrock at final depths ranging from 15.5 - 85.3 m below ground surface (bgs) with the average depth to bedrock reported to be 5.98 m bgs. One (1) water supply well was completed in the overburden, with a depth of 6.71 m bgs. Driller-reported static water levels were recorded at depths ranging from 0.9 - 58.8 m bgs. Driller-recommended well pumping rates ranged from 11.36 - 344.47 L/min.

TW1 (well tag #A252856), located at 6688 Franktown Road, was used as part of the water supply assessment. Based on the Well Record, TW1 was constructed with 6.71 m of casing, with a total well depth of 60.96 m. The depth to bedrock was reported as 3.05 m and the well yield was reported as 75.71 L/min.

1.3 Static Conditions

Prior to the collection of the groundwater sample, an updated water level was measured in the test well (TW1) on December 18, 2024. The static groundwater level was recorded in metres below top of casing (m btoc). This level was recorded as 4.050 m btoc. Assigning an arbitrary site benchmark of 100.00 m (local) to the top of the casing, the static water elevation in the well was 95.95 m above datum (ad).

Comparatively, the static groundwater level collected at the time of the pumping test on July 13, 2018, was recorded as 4.365 m btoc (95.635 m ad).

1.4 Well Yield and Water Demand

Based on the 6-hour pumping test completed on July 13, 2018 (Appendix A), 33,120 L of groundwater was pumped from the well at a rate of 92 L/min. It is important to note that a maximum drawdown of only 0.415 m btoc was measured at the flow rate of 92 L/min, demonstrating a highly productive well in terms of yield. Additionally, this pumping rate exceeds the total average day demand of 0.10 L/sec (6 L/min), the maximum day demand of 0.15 L/sec (9 L/min) and the peak hour demand of 0.273 L/sec (16.38 L/min) for the proposed development, as per Section 5.3 of the Site Servicing & Stormwater Management Report provided by EXP Services Inc.

The long-term yield calculations (Q20) were previously calculated within the 2018 report using Farvolden and Moell methods. Based on the long-term analysis, the calculated Q20 values were 6,532 L/min and 2,945 L/min, respectively (Appendix A).

Therefore, it is our professional opinion that the yield of TW1 is sufficient to support the existing and proposed additional development.

1.5 Groundwater Sampling

On December 18th, 2024, Egis collected an updated groundwater sample from the existing on-Site well ('TW1'). Previously, groundwater quality samples were collected from TW1 during the pumping test on July 13, 2018 (Appendix A).

The updated groundwater sample was taken from an untreated tap connected to the existing pressure tank. Approximately 1,200 L of groundwater was purged from the well before the field parameters stabilized. Therefore, the groundwater sample collected is representative of a fresh groundwater sample.

Water quality (pH, temperature, conductivity, turbidity, dissolved oxygen, total dissolved solids, residual chlorine) were also monitored and recorded in the field during the test using calibrated instruments (general parameters – Horiba U-52 multimeter and residual chlorine - Hach DR900). The calibration certificate for the Horiba U-52 is saved to Appendix D of this report. Additional visual and olfactory water quality observations of colour and odour were made and are presented in Table 1 appended to this report.

Prior to sample collection, the untreated tap was disinfected with a bleach solution. Residual chlorine was measured using a Hach DR900 colorimeter; the Hach DR900 was zero standardized prior to collecting samples. The instrument was zero standardized prior to reading each sample. Based on instrument calibration and specifications, the value of "0.02 mg/L" is the minimum detection limit for this instrumentation. No residual chlorine was detected within the groundwater sample taken from this well (TW1).

The current groundwater sample was collected unfiltered and unchlorinated, directly into clean bottles supplied by the analytical laboratories (Eurofins, Ottawa, ON). The sample was kept on ice and delivered to Eurofins under strict chain-of-custody procedures. The sample was received by the laboratory within 24 hours of collection.

Eurofins is fully accredited by the Standards Council of Canada/Canadian Association for Laboratory Accreditation (SCC/CALA).

1.6 Groundwater Quality

The Laboratory Certificate of Analysis for the on-site groundwater testing is presented in Appendix C. A summary of field and laboratory results from TW1 are presented in Table 1 and Table 2; for comparison purposes Table 2 also includes the analytical results for the 2018 testing. The sample was collected after flushing 1,200 L of water at TW1. The samples were tested for residual chlorine with a Hach DR900 colorimeter calibrated to detect chlorine residual (free chlorine). Prior to usage, the Hach DR900 was zero calibrated according to the manufacturer's printed instructions.

All analytical results were compared to the Ontario Drinking Water Standards, Objectives, and Guidelines (ODWSOG). Based on the analytical results from samples collected during the test at TW1, the following exceedances of ODWSOG were noted:

- Colour (Aesthetic Objective (AO) of 5 TCU): TW1 (10 TCU); and
- **Hardness** (Operational Guideline (OG) of 80-100 mg/L): TW1 (309 mg/L). Hardness values in excess of 300 mg/L are considered to be very hard as per the HTAG (2021).

It is important to note that hardness concentrations were 259 mg/L (TW1_1) and 327 mg/L (TW1_2) collected in July 2018. Colour concentrations were 3 TCU (TW1_1) and 4 TCU (TW1_2). (Appendix A).

1.7 Water Treatment

Colour exceeds the ODWSOG as outlined above, as well as the Maximum Concentration Considered Reasonably Treatable (MCCRT) of 7 TCU as per the HTAG (2021). It is noted that field measurements of turbidity were recorded at 3.2 NTU after 3 minutes of purging the groundwater and decreased to 0 NTU after 12 minutes of purging. Additionally, the laboratory measurement of turbidity was reported as 1.2 NTU, which are all below the AO of 5 NTU as per the ODWS. All metal parameters (specifically iron (Fe) and manganese (Mn)) which typically can affect colour were below the ODWS. Field observations for colour were recorded as clear. Historically, analytical testing performed 2018, indicated results for colour at 3 and 4 TCU. Therefore, it is unclear why colour exceeds the ODWSOG and the MCCRT as per the HTAG (2021). It is our professional opinion that the colour exceedance does not impact the groundwater quality at TW1.

Currently, a water softener and a UV system are installed at the Site. Both hardness and colour can be treated utilizing the existing water softener.

3.0 CONCLUSIONS

Based on the investigation undertaken above, it is our professional opinion that the aquifer into which the test well was completed within can adequately supply water to the existing and proposed additional development with respect to water quality and water quantity.

The following recommendations should be followed to ensure effective development of the Site with the existing well (TW1 - A0144460):

- Best Management Practices (BMP) for the construction of wells should be followed, per O.Reg. 903:
 Wells and the MECP document entitled "Water Supply Wells: Requirements and Best Practices."
- Hardness can be treated using a conventional water softener.
- Colour can also be treated through water softening, or physical filtration (ie. carbon filter treatment system). Exceedances of colour are not expected to generate any significant impacts to the water quality.
- Currently, a water softener and a UV system are installed at the Site. Both hardness and colour can be treated utilizing the existing water softener.

Closure

We trust that this information is satisfactory for your present requirements. Should you have any questions or require additional information, please do not hesitate to contact the undersigned.

Respectfully submitted,

Egis Canada Ltd.

Report prepared by:

Taylor Christie, B.Sc.

Environmental Scientist

taylor.christie@egis-group.com

Fraser Armstrong, P.Eng

Q.F. ARMSTRONG

Senior Geo-Environmental Engineer

fraser.armstrong@egis-group.com

Tables

Table 1: Summary of Field Parameters
Table 2: Summary of Laboratory Results

Figures

Updated Figure 2: Updated Site Layout

Updated Figure 7: Updated MECP Well Record Locations

Appendices

Appendix A: Hydrogeological Study 6688 Franktown Road (July 2018)

Appendix B: MECP Water Well Record Summary

Appendix C: Laboratory Certificate of Analysis

Appendix D: Certificate of Calibration

Appendix E: Site Plan Area of Development – GRC Architects (December 18, 2024)

References

Site Servicing & Stormwater Management Report, IBPS Temple – 6688 Franktown Road, Ottawa ON, EXP Services Inc., dated December 18, 2024.

Limitations

This report has been prepared, and the work referred to in this report has been undertaken by, Egis for the Client. It is intended for the sole, and exclusive use of the Client with respect to the stated purpose of the work carried out by Egis.

The report may not be relied upon by any other person or entity without the express written consent of Egis. Any use which a third party makes of this report, or any reliance on decisions made based on it, without a Reliance Letter, are the responsibility of such third parties. Egis accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report, or the information contained within it.

The investigation undertaken by Egis with respect to this report and any conclusions or recommendations made in this report reflect Egis' judgment based on the Site conditions observed at the time of the Site investigations, inspections, and/or sampling on the date(s) set out in this report, and on information available at the time of the preparation of this report. Conditions such as ground cover, weather, physical obstructions, etc. may influence conclusions or recommendations made in this report. Egis does not certify or warrant the environmental status of the property.

This report has been prepared for specific application to this Site and it may be based, in part, upon visual observation of the Site, subsurface investigation at discrete locations and depths, and/or specific analysis of specific chemical parameters and materials during a specific time interval, all as described in this report. Unless otherwise stated, the findings cannot be extended to previous or future Site conditions, portions of the Site which were unavailable for direct investigation, Site locations, subsurface or otherwise, which were not investigated directly, or chemical parameters, materials, or analysis which were not addressed or performed. Substances other than those addressed by the investigation described in this report may exist at the Site, substances addressed by the investigation may exist in areas of the Site not investigated, and concentrations of substances addressed which are different than those reported may exist in areas other than the locations from which samples were taken.

If Site conditions or applicable standards change, or if any additional information becomes available at a future date, modifications to the findings, conclusions and recommendations in this report may be necessary.

TABLES

Table 1 Summary of Field Water Quality Parameters

Pumping Test at:	Test Well 1 (TW1): 6688 Franktown Road			Date:		18-Dec-24					
Time Elapsed	Temperature	рН	ORP	Conductivity	Turbdity	DO	TDS	Colour	Odour	Residual Chlorine	Flow Rate
(min)	(°C)		(ORPmv)	(mS/cm)	(NTU)	(mg/L)	(g/L)			(mg/L)	(L/min)
3	10.71	7.78	32	0.684	3.2	5.85	439	Clear	Sulphur	-	20
12	10.01	7.83	54	0.682	0	5.7	436	Clear	Sulphur	-	-
22	10.14	7.79	37	0.649	0	7.2	415	Clear	Sulphur	-	-
32	10.11	7.97	409	0.654	0	5.2	418	Clear	Sulphur	-	-
40	10.09	7.72	160	0.653	0	5.1	418	Clear	Sulphur	<0.02	-
50	10.09	7.72	68.00	0.66	0	5.16	420	Clear	Sulphur	-	-
55	10.09	7.72	68	0.653	0	5.2	417	Clear	Sulphur	-	-
Notes:	Flow rate measured	Flow rate measured with bucket and stop watch									

NOTES:

min Minutes

NTU Nephelometric Turbidity Units mS/cm Millisiemens per centimetre uS/cm Microsiemens per centimetre

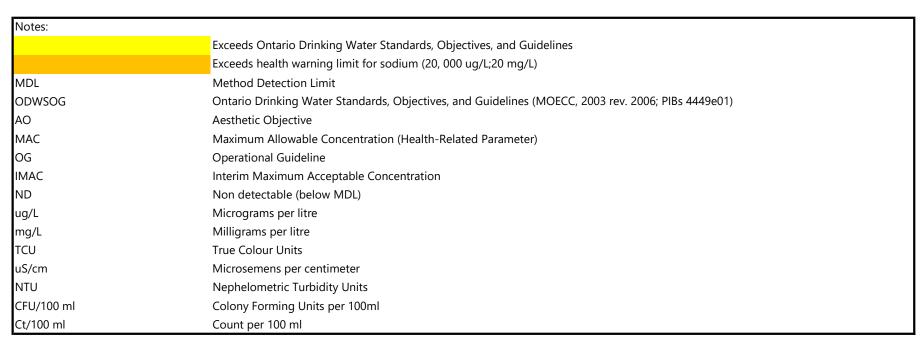
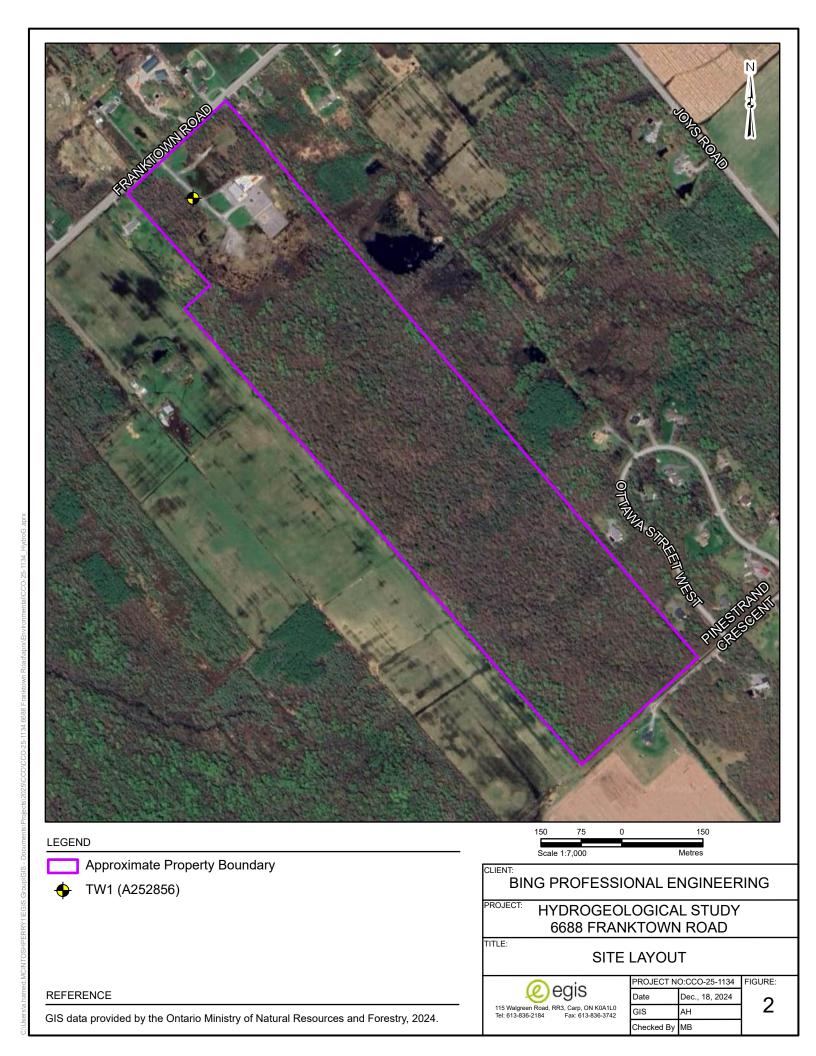
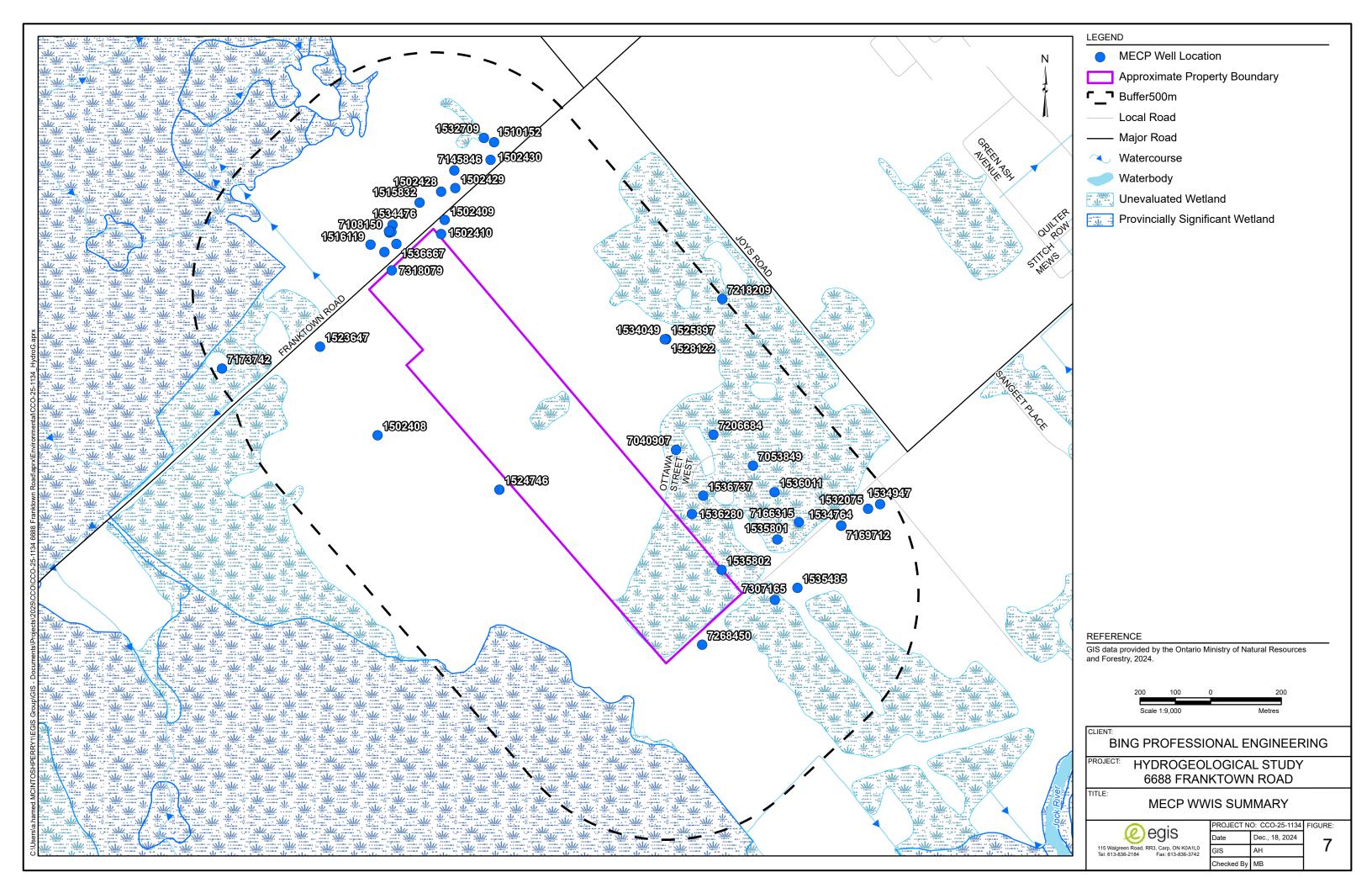

(°C) Degrees celsius g/L Grams per litre ppm Parts per million L/min Litres per minute ORPmV ORP millivolts
- Not analyzed

Table 2 Summary of Laboratory Water Quality Results

G 1 15	T	<u> </u>		<u> </u>			<u> </u>	
Sample ID	-				TW1-1	TW1-2		TW1
Sample Date	Units	ODWSOG	Limit Type	MDL	13-Jul-18	13-Jul-18	MDL	18-Dec-24
Location			- 71		6688 Franktown	6688 Franktown		6688 Franktown
Parameter:					Road - Test Well 1	Road - Test Well 1		Road - Test Well 1
Microbiological Parameters								
E. Coli	ct/100mL	0	MAC	1 CFU/100ml	<1	<1	0 ct/100ml	0
Fecal Coliforms	ct/100mL	-	-	1 CFU/100ml	<1	<1	0 ct/100ml	0
Total Coliforms	ct/100mL ct/1mL	0	MAC	1 CFU/100ml	<1	<1	0 ct/100ml	0
Heterotophic Plate Count General Inorganics	Ct/ ImL	-	-	-	-	-	10 ct/100ml	0
Alkalinity, total	mg/L	30-500	OG	5	325	328	5	279
Ammonia as N	mg/L	-	-	0.01	0.12	0.12	0.02	0.115
Dissolved Organic Carbon	mg/L	5	AO	0.5	2.9	3.2	0.5	4
Colour	TCU	5	AO	2	3	4	2	10
Conductivity	uS/cm	-	-	5	697	834	5	630
Hardness	mg/L	80-100	OG		259	327	1	309
рН	pH Units	6.5-8.5	-	0.1	7.7	7.6	1	7.91
Phenolics	mg/L	-	-	0.001	<0.001	<0.001	0.001	<0.001
Total Dissolved Solids	mg/L	500	AO	10	380	486	1	410
Sulphide	mg/L	0.05	AO	0.02	<0.02	<0.02	0.01	<0.01
Tannin & Lignin	mg/L	-	-	0.1 0.1	0.1	0.1	0.1 0.1	0.1 0.36
Total Kjeldahl Nitrogen Turbidity	mg/L NTU	- 5	- AO	0.1	0.2 1.5	0.2 1.4	0.1	1.2
Anions	INIU	,	AU	0.1	13	1.4	J 0.1	1.4
Chloride	mg/L	250	AO	1	24	65	1	14
Fluoride	mg/L	1.5	MAC	0.1	0.4	0.4	0.1	0.49
Nitrate as N	mg/L	10	MAC	0.1	<0.1	<0.1	0.1	<0.1
Nitrite as N	mg/L	1	MAC	0.05	<0.05	<0.05	0.1	<0.1
Sulphate	mg/L	500	AO 500	1	38	41	1	39
Metals	•							
Mercury	mg/L	0.001	MAC	-	-	-	0.0001	<0.0001
Aluminum	mg/L	0.10	OG	-	-	-	0.01	<0.01
Antimony	mg/L	0.01	MAC	-	-	-	0.0005	<0.01
Arsenic	mg/L	0.01	IMAC	-	-	-	0.001	<0.001
Barium	mg/L	1.00	MAC	-	-	-	0.01	0.1
Beryllium Boron	mg/L mg/L	5.00	- IMAC	-	-	-	0.0005 0.01	<0.0005 0.21
Cadmium	mg/L	0.01	MAC	_	-	-	0.001	<0.0001
Calcium	mg/L	-	-	0.1	55.7	75.4	1	76
Chromium	mg/L	0.05	MAC	-	-	-	0.001	<0.001
Cobalt	mg/L	-		-	-	-	0.0002	<0.0002
Copper	mg/L	1.00	AO	-	-	-	0.001	<0.001
Iron	mg/L	0.30	AO	0.1	0.1	0.1	0.03	0.23
Lead	mg/L	0.10	MAC	-	-	-	0.001	<0.001
Magnesium	mg/L	-	-	0.2	29.2	33.7	1	29
Manganese	mg/L	0.05	AO	0.005	0.006	0.006	0.01	<0.01
Molybdenum	mg/L	-	-	-	-	-	0.005	<0.005
Nickel	mg/L	-	-	-	-	-	0.005	<0.005
Potassium	mg/L	- 0.05	- NAAC	0.1	4.6	4.8	1 0.001	5 <0.001
Selenium Silver	mg/L mg/L	0.05	MAC -	-	<u>-</u>	-	0.001 0.0001	<0.001 <0.0001
Sodium	mg/L	20	AO	0.2	17.6	21.6	1	16
Thallium	mg/L	-	- AU	-	-	-	0.0001	<0.0001
Tin	mg/L	-	-	-	<u> </u>	-	0.0001	<0.01
Titanium	mg/L	-	-	-	-	-	0.01	<0.01
Tungsten	mg/L	-	-	-	-	-	0.002	<0.001
Uranium	mg/L	0.02	MAC	-	-	-	0.001	<0.001
Vanadium	mg/L	-	-	-	-	-	0.001	<0.002
Zinc	mg/L	5	AO	-	-	-	0.01	<0.01
Volatile Organic Compounds								
1,1,1,2-tetrachloroethane	ug/L	-	-	-	-	-	0.5	<0.5
1,1,1-trichloroethane	ug/L	-	-	-	-	-	0.4	<0.4
1,1,2,2-tetrachloroethane	ug/L	-	-	-	-	-	0.5	<0.5
1,1,2-trichloroethane 1,1-dichloroethane	ug/L	-	-	-	-	-	0.4	<0.4
1,1-dichloroethane 1,1-dichloroethylene	ug/L	- 14 (0.014 mg/L)	- MAC	-	-	-	0.4 0.5	<0.4 <0.5
1,2-dichlorobenzene	ug/L ug/L	14 (0.014 mg/L) 200 (0.2 mg/L)	MAC	-	-	-	0.5	<0.5 <0.4
1,2-dichloroethane	ug/L ug/L	5 (0.2 mg/L)	IMAC	_	-	-	0.4	<0.4
1,2-dichloropropane	ug/L	-	-	-	-	-	0.5	<0.5
1,3,5-trimethylbenzene	ug/L	-	-	-	-	-	0.3	<0.3
1,3-dichlorobenzene	ug/L	-	-	-	-	-	0.4	<0.4
1,3-Dichloropropylene (cis+trans)	ug/L	(0.005 (1)	-	-	-	-	0.5	<0.5
1,4-dichlorobenzene	ug/L	5 (0.005 mg/L)	MAC	-	-	-	0.4	<0.4
Acetone Benzene	ug/L	- 1 (0.001 mg/L)	- MAC	-	-	-	5 0.5	<5 <0.5
Bromodichloromethane	ug/L ug/L	i (0.001 IIIg/L)	MAC -	-	-	-	0.5	<0.3
5. STITUTION OF THE CHARLE	l na/r		_		-		0.5	\U.3


Table 2 Summary of Laboratory Water Quality Results


Sample ID					TW1-1	TW1-2		TW1
Sample Date				MDL	13-Jul-18	13-Jul-18		18-Dec-24
Location	Units	ODWSOG	Limit Type		6688 Franktown	6688 Franktown	MDL	6688 Franktown
Parameter:					Road - Test Well 1	Road - Test Well 1		Road - Test Well 1
Bromoform	ug/L	-	-	-	-	-	0.4	<0.4
Bromomethane	ug/L	-	-	-	-	-	0.5	<0.5
c-1,2-Dichloroethylene	ug/L	-	-	-	-	-	0.4	<0.4
c-1,3-Dichloropropylene	ug/L	-	-	-	-	-	0.5	<0.5
Carbon Tetrachloride	ug/L	2 (0.002 mg/L)	MAC	-	-	-	0.2	<0.2
Chloroethane	ug/L	-	-	-	-	-	0.5	<0.5
Chloroform	ug/L	-	-	-	-	-	0.5	<0.5
Dibromochloromethane	ug/L	-	-	-	-	-	0.3	<0.3
Dichlorodifluoromethane	ug/L	-	-	-	-	-	0.5	<0.5
Dichloromethane	ug/L	50 (0.05 mg/L)	MAC	-	-	-	4	<4.0
Ethylbenzene	ug/L	150 (0.15 mg/L)	MAC	-	-	-	0.5	<0.5
Ethylene Dibromide	ug/L	-	-	-	-	-	0.2	<0.2
Hexane	ug/L	-	-	-	-	-	5	<5
m/p-xylene	ug/L	-	-	-	-	-	0.4	<0.4
Methyl Ethyl Ketone (MEK)	ug/L	-	-	-	-	-	2	<2
Methyl Isobutyl Ketone (MIBK)	ug/L	-	-	-	-	-	5	<5
Methyl Tert Butyl Ether (MTBE)	ug/L	15 (0.015 mg/L)	AO	-	-	-	2	<2
Monochlorobenzene	ug/L	80 (0.080 mg/L)	MAC	-	-	-	0.5	<0.5
o-xylene	ug/L	-	-	-	-	-	0.4	<0.4
Styrene	ug/L	-	-	-	-	-	0.5	<0.5
t-1,2-Dichloroethylene	ug/L	-	-	-	-	-	0.4	<0.4
t-1,3-Dichloropropylene	ug/L	-	-	-	-	-	0.5	<0.5
Tetrachloroethylene	ug/L	10 (0.01 mg/L)	MAC	-	-	-	0.3	<0.3
Toluene	ug/L	60 (0.06 mg/L)	MAC	-	-	-	0.4	<0.2
Trichloroethylene	ug/L	5 (0.005 mg/L)	MAC	-	-	-	0.3	<0.3
Trichlorofluoromethane	ug/L	-	-	-	-	-	0.5	<0.5
Vinyl Chloride	ug/L	1 (0.001 mg/L)	MAC	-	-	-	0.2	<0.2
Xylene; total	ug/L	90 (0.090 mg/L)	MAC	-	-	-	0.5	<0.5

FIGURES

APPENDIX A - HYDROGEOLOGICAL STUDY 6688 FRANKTOWN ROAD (JULY 2018)

HYDROGEOLOGICAL STUDY 6688 FRANKTOWN ROAD

Project No.: CP-17-0503

Prepared for:

Bing Professional Engineering Inc.

Prepared by:

McIntosh Perry Consulting Engineers Ltd. 115 Walgreen Road Carp, Ontario K0A 1L0

July 2018

Executive Summary

McIntosh Perry Consulting Engineers Ltd. (McIntosh Perry) was retained by Mr. Bingfeng Li of Bing Professional Engineering Inc. (Bing Professional Engineering) to conduct a Hydrogeological Assessment and Terrain Analysis on a parcel of land located at 6688 Franktown Road in Ottawa, Ontario (the Site). The Site currently consists of forested land, with a cleared portion that will be utilized for future development of a place of worship. The total area of the Site is approximately 39.89 hectares (ha), while the proposed development will have a footprint of approximately 2.71 ha.

Ground surface at the Site is generally relatively flat. Regional relief appears to be sloped toward the Richmond Fen (Non-Sensitive Provincially Significant Wetland), which is located approximately 685 m south of the Site. Ground surface elevation at the Site varies between 106 and 113 m asl (above sea level). Drainage in the area of proposed development is interpreted to reflect surface topography, and is likely controlled by ditches along Jinkinson Road. Other areas of the Site likely drain to the south, toward the Richmond Fen. Regional groundwater is interpreted to flow to the south and east, toward the Jock River.

To satisfy the requirements of this hydrogeological assessment, McIntosh Perry tested a newly drilled, on-site water supply well (Test Well 1, TW1) for water quality and quantity. TW1 was pumped for approximately six hours, and was sampled twice during this time. The pumping rate during the pumping test (approximately 92 L/min) is considered more than sufficient to supply the proposed development.

No analyzed parameters in either pre-test or post-test samples (TW1_1 and TW1_2, respectively) exceed Ontario Drinking Water Quality Standards (ODWS). From a quality and quantity perspective, TW1 can supply sufficient water to support development.

On-site soils in the area of the proposed development appear to consist of a thick layer of sand with some areas of silt and clay. Overburden was observed to generally become coarser with depth, and limestone bedrock was encountered between 4.9-5.7 m below ground surface (bgs). Based on the general characterization of overburden in the vicinity of the proposed septic leaching bed, imported fill materials are likely necessary to provide the required vertical separation from groundwater. Further investigation of soil will likely be required to support the MOECP Sewage Works application process.

TABLE OF CONTENTS

1.0	INTRO	ODUCTION
2.0	INVES	STIGATION
2.1	Site	Setting
2.2	Neig	ghbouring Properties and Land Uses2
2.3	Hyd	drology2
2.4	Terr	rain Analysis3
2	.4.1	General3
2	.4.2	On-Site Hand Auger Program
2	.4.3	On-Site Drilling Program
2.5	Вас	kground Geology and Hydrology3
2	.5.1	Ontario Geological Survey (OGS) – Surficial Geology
2	.5.2	Ontario Geological Survey (OGS) – Bedrock Geology4
2.	.5.3	Recharge and Discharge Areas4
2	.5.4	Hydrogeologically Sensitive Areas4
2	.5.5	Water Well Record Review4
2.6	Pote	ential Sources of Contamination4
3.0	METH	HODOLOGY – HYDROGEOLOGICAL ASSESSMENT5
4.0	RESUI	LTS 6
4.1	Stat	tic Conditions6
4.2	Pun	nping Test6
4.3	Wel	Il Yield6
4.4	Trai	nsmissivity
4.5	Lon	g Term Yield7
4.6	Wat	ter Quality7
5.0	WATE	ER TREATMENT8
6.0	SEPTI	C ASSESSMENT9
7.0	CONC	CLUSIONS

8.1	Water Supply	11
8.2	Wastewater Treatment	11
9.0	LIMITATIONS	
10.0	REFERENCES	. 14

TABLES

Table 1	Summary Hand Auger Data
Table 2	Summary of Field Parameters
Table 3	Summary of Laboratory Result
Table 4	Summary of Water Level Data

FIGURES

Figure 1	Site Location
Figure 2	Site Layout
Figure 3	Surrounding Land Use
Figure 4	Terrain Analysis
Figure 5	Bedrock Geology
Figure 6	Surficial Geology
Figure 7	MOECC Water Well Information System Summary

APPENDICES

Appendix A	Site Plan - Susan D. Smith Architect (March, 2018)
Appendix B	MOECC WWIS Data Summary
Appendix C	MOECC Well Record - TW1
Appendix D	Laboratory Certificates of Analysis
Appendix E	Water Level Data and Associated Analyses
Appendix F	Langelier Saturation Index (LSI) and Ryznar Stability Index (RSI) Calculations
Appendix G	Photographic Log
Appendix H	Reasonable Use Assessment

1.0 INTRODUCTION

McIntosh Perry Consulting Engineers Ltd. (McIntosh Perry) was retained by Mr. Bingfeng Li of Bing Professional Engineering Inc. (Bing Professional Engineering) to conduct a Hydrogeological Assessment and Terrain Analysis on a parcel of land located at 6688 Franktown Road in Ottawa, Ontario (the Site). The Site currently consists of forested land, with a cleared portion that will be utilized for the future development of a place of worship. The total area of the Site is approximately 39.89 hectares (ha), while the proposed development will have a footprint of approximately 2.71 ha. Figures 1 and 2 present plans that depict the Site Location and Site Layout.

This work was conducted in general accordance with Ontario Ministry of Environment, Conservation and Parks (MOECP) guidance as follows:

Procedure D-5-5: Technical Guideline for Private Wells: Water Supply Assessment (August 1996)

The Site address is 6688 Franktown Road (Ottawa, Ontario). The planned future use of the Site is as a place of worship, and will consist of two institutional structures and a large paved parking lot with an associated laneway.

The Site is legally described as Part Lot 19, Concession 3 East, Rural Plan 4R-7040; Part 1. A site plan of the proposed severance, prepared by Susan D. Smith Architect (March, 2018), has been submitted under separate cover (Appendix A).

This assessment considers the Site suitability for only the proposed development, which is located in the northwestern portion of the Site. The proposed development is approximately 2.71 ha, leaving a non-developed area of approximately 37.18 ha. This Hydrogeological Assessment addresses the following:

- General site setting information
- Geological and hydrogeological background
- Site specific conditions
- Water treatment options, and wastewater treatment and disposal options

2.0 INVESTIGATION

2.1 Site Setting

The Site is located within the City of Ottawa, and is designated as 'Rural General Industrial' (proposed development area), 'Rural Countryside' (non-developed portion), 'Environmental Protection' (non-developed portion – wetland), and 'Parks and Open Space' (non-developed portion – buried service corridor) in the City of Ottawa Zoning By-Law.

At the present time, the proposed development consists solely of cleared (previously forested) land, and is situated approximately 120 m from an on-site PSW, at its closest point. It is noted that the proposed building footprint is located significantly further from the PSW. The retained (non-developed) portion of the Site consists of forested areas (dry-fresh White Pine/Maple/Oak mixed forest), cultural meadows (buried service easement), and Provincially Significant Wetland (predominantly cattails). Based on a review of aerial photographs available on GeoOttawa, no signs of previous Site development can be seen (earliest photo is 1976). Based on Site conditions observed during fieldwork, it is further unlikely that the Site has seen any contemporary use, other than forest clearing for the gas easement.

The climate is humid continental with cool winters and warm summers. The 1981-2010 mean annual precipitation is approximately 919.5 mm with 175.4 cm as snow, and the mean daily temperature is 6.6 °C (Environment Canada Climate Normals for Ottawa, ON).

2.2 Neighbouring Properties and Land Uses

The Site is bound by forested land and low-density residential rural development to north and east, by agricultural fields to the south, and by a buried service corridor to the west (see Figure 3).

The nearest inhabited building relative to the proposed severance is located adjacent to the Site, at 6700 Franktown Road. Based on a review of MOECP well records, it appears that all serviced development in the area is privately serviced with wells and septic systems.

2.3 Hydrology

Ground surface at the Site is generally relatively flat. Regional relief appears to be sloped toward the Richmond Fen (Non-Sensitive Provincially Significant Wetland), which is located approximately 685 m south of the Site. Ground surface elevation at the Site varies between 106 and 113 m asl (above sea level). Drainage in the area of proposed development is interpreted to reflect surface topography, and is likely controlled by ditches along Jinkinson Road. Other areas of the Site likely drain to the south, toward the Richmond Fen. Regional groundwater is interpreted to flow to the south and east, toward the Jock River.

2.4 Terrain Analysis

2.4.1 General

A combination of hand auger probes and boreholes were advance at various locations throughout the Site to assess the geotechnical characteristics and properties for the on-site overburden and underlying bedrock. In total, seven hand auger and three boreholes were utilized for this assessment.

2.4.2 On-Site Hand Auger Program

Based on a hand auger program carried out by McIntosh Perry personnel on May 2, 2018, shallow on-site soils can be generally described as coarse grained sand, with areas of silt and clay. From a surficial geology perspective, the Site can be delineated into three main zones (see Figure 4):

Zone 1: Medium brown sand, some to trace fines.

Zone 2: Silt and clay, trace sand.

Zone 3: Silty fine sand.

Details of the hand auger program can be found in Table 1.

2.4.3 On-Site Drilling Program

In addition to hand auger holes, McIntosh Perry personnel advanced three geotechnical boreholes (BH18-1, BH18-2, BH18-3) and three monitoring wells (MW18-1, MW18-2, MW18-3) at the Site on May 23-24, 2018 (see Figure 4).

Geotechnical borehole logs describe overburden in the vicinity of the proposed on-site structures as wet sand, with trace to some silt. Overburden was found to be approximately 4.6 - 5.7 m thick, after which point competent limestone bedrock was encountered.

Static water levels taken from MW18-1, MW18-2, and MW18-3 on May 29 and June 1, 2018 indicate that the on-site shallow groundwater gradient is small with groundwater flowing in a southeast direction. The static water levels were 0.3 m bgs for all three borehole locations.

2.5 Background Geology and Hydrology

2.5.1 Ontario Geological Survey (OGS) – Surficial Geology

Data taken from the OGS GIS Downloads website are generally consistent with on-site observations. Geological maps of the area classify the overburden at the Site as coarse-textured glaciomarine deposits, including sand, gravel, and minor silt and clay (see Figure 5). (OGS, 2018)

2.5.2 Ontario Geological Survey (OGS) – Bedrock Geology

Geological maps of the area classify the bedrock under the Site as limestone, dolostone, shale, arkose, and sandstone of the Ottawa Group, Simcoe Group, and/or of the Shadow Lake Formation (see Figure 6). (OGS, 2018)

2.5.3 Recharge and Discharge Areas

Based on a review of topographic data, geological maps, and a site visit, it is our interpretation that the Site is predominantly a groundwater discharge zone. Site drainage appears to be relatively poor in the area of proposed development; while no areas of ponded water were directly observed in the proposed building or laneway footprint, the Site was generally waterlogged during hand auger and drilling activities.

2.5.4 Hydrogeologically Sensitive Areas

The Site has soil thicknesses generally exceeding 4.5 m and there were no observed areas of bedrock outcrop or karst conditions. While the proposed development area appears to be poorly drained, there were no areas of groundwater upwelling or significant discharge noted. The Site is therefore not considered to be a hydrogeologically sensitive area.

2.5.5 Water Well Record Review

Forty-three water wells were located within approximately 500 m of the Site. Thirty-four were listed for water supply purposes, and other wells were for either test or 'other' purposes, or were unlisted. The MOECP Water Well Information System records are shown on Figure 7, and data are summarized in Appendix B.

The total well depths ranged from 6.7 to 85.3 m, with an average depth of 34.7 m. Overburden thickness ranged from 0 to 15.2 m, with the majority of observed overburden thicknesses listed above 3 m. Reported static water levels ranged from 0 (at surface) to 15.2 m bgs.

2.6 Potential Sources of Contamination

A windshield survey of the surrounding area was conducted in combination with a review of maps and zoning information. The Site is located in a predominantly forested area with rural-residential properties and agriculture. None of these uses appear to pose any significant source of contamination to the Site.

The Site and surrounding properties are not connected to the City of Ottawa's wastewater treatment system. As such, there are likely private on-site wastewater systems at nearby developments.

3.0 METHODOLOGY – HYDROGEOLOGICAL ASSESSMENT

McIntosh Perry conducted a detailed hydrogeological investigation at the Site to assess the feasibility of servicing the proposed development. As noted in the above sections, the work generally followed the Guidance of MOECP Procedure D-5-5: Technical Guideline for Private Wells: Water Supply Assessment.

McIntosh Perry tested a newly drilled, on-site water supply well (Test Well 1, TW1), which is believed to be representative of the hydrogeological conditions across the proposed development area. According to the MOECP well record, the well extends approximately 61.0 m bgs, with a 0.159 m (6 ¼ inch) diameter casing extending approximately 6.1 m bgs. The MOECP Well Record for TW1 is included in Appendix C.

The initial estimation of TW1 yield was made based on a 1-hour pumping test completed by the driller (>55 L/min). McIntosh Perry personnel pumped the well at a rate of approximately 92 L/min during a 360 minute pumping test.

The pumping test was conducted at TW1 by McIntosh Perry staff on July 13, 2018. During the testing period, water levels in the well were measured using an electronic water level tape. Water quality (pH, temperature, conductivity, turbidity, dissolved oxygen, and oxidation-reduction potential) was also monitored and recorded in the field during the test, and two samples (TW1_1 and TW1_2) were collected for the 'subdivision supply' suite of parameters, in addition to a select suite of metals.

During the pumping test, turbidity was observed to decrease from 7.36 FNU to 0.0 FNU within the first hour of the test. Initial high turbidity measurements are considered to be a result of drilling the well.

All groundwater samples were collected unfiltered and unchlorinated, directly into clean bottles supplied by the analytical laboratories (Paracel Laboratories Ltd., Ottawa, ON). Chlorine indicator strips were used to ensure no chlorine residual remained in the sampled water. The samples were kept on ice and shipped directly to Paracel under strict chain of custody procedures. All of the samples were received by the laboratory within 12 hours of collection.

Paracel is fully accredited by SCC/CALA, and has accreditation for Ontario Safe Drinking Water Act (OSDWA) testing.

During the pumping test, water level monitoring consisted of manual readings of drawdown and recovery made with an electronic water level tape. Following pump shutoff, water levels were measured in TW1 until approximately 100% recovery was achieved (approximately 10 min post-shutoff).

Drawdown and recovery data from the pumping test were plotted and analyzed using the Cooper-Jacob and Theis Recovery methods, respectively. The hydraulic conductivity (K, m/s) and transmissivity (T, m²/d) of the aquifer were estimated. Storativity cannot be assessed properly without the use of an additional observation well, which was not available at the time of the test.

4.0 RESULTS

A drawdown curve and tabular data from the pumping test at TW1 are available in Appendix D and Table 1, respectively. A summary of recorded groundwater field parameter data and the official Laboratory Certificates of Analysis are available in Tables 2 and 3 and Appendix D, respectively.

4.1 Static Conditions

Prior to the initiation of pumping, water levels were measured in TW1. The static groundwater level was recorded at 4.365 m below top of casing (btoc) at the beginning of the pumping test (t=0). Assigning an arbitrary site benchmark of 100.00 m to the top of the casing, the static water elevation in the well was 95.635 m (local).

No evidence of groundwater discharge was observed in the development area at the time of the pumping test.

4.2 Pumping Test

The pumping test was conducted at TW 1 under the supervision of McIntosh Perry personnel. Water was pumped directly from the test well using a pump and tubing supplied by Air Rock Drilling. The water discharge was directed away from the well, and was allowed to flow overland across the Site. At the time of the pumping test, the weather was approximately 25°C and clear.

All water level measurement data are presented in Table 4, appended to this report.

Based on a short-term pumping test completed by Air Rock Drilling upon completion of the well, it was estimated that a pumping rate exceeding 90 L/min would be sustainable at the well.

On July 13, 2018, following installation of the pumping equipment by Air Rock Drilling, a static water level of 4.365 m btoc was measured in the well. At approximately 08:07, the pump was turned on and the flow rate adjusted to approximately 92 L/min. This pumping rate was maintained with minimal variation for the duration of the test (360 minutes total).

The water level ranged between 95.217 m to 95.625 m local (4.375 to 4.783 m btoc), with a maximum drawdown of 0.418 m observed. 100% recovery was achieved in the well within 10 minutes of pump shut down.

4.3 Well Yield

The pumping test undertaken by McIntosh Perry provides a reasonable indication of the yield of TW1. During this test, approximately 33,120 L of water was pumped from the well, at a rate (92 L/min) that exceeds the estimated peak hourly demand for the development (17.4 L/min).

4.4 Transmissivity

A summary of the well and hydrogeological properties determined during the testing work at the Site are presented in Appendix E. A transmissivity of approximately 734.56 m 2 /d was calculated using the Cooper-Jacob method. Assuming an aquifer thickness of 54.3 m (corresponding to the interval between the bottom of the casing and the bottom of the well) and fully horizontal groundwater flow, a hydraulic conductivity of 1.57 x 10^{-4} m/s was calculated using the Transmissivity equation (T=Kb).

Storativity (S) could not be calculated as other wells for observation purposes were not available for measurement at the time of the pumping test.

4.5 Long Term Yield

The long-term yield (maximum recommended pumping rate) of TW1 was estimated based on the following factors:

- Observations during six-hour pumping test
- Calculated properties
- Details of proposed development

By extrapolating the drawdown data on a semi-logarithmic scale, it is estimated that a conservatively maximum pumping rate of 92 L/min could be sustained for over 100,000 minutes (69 days) of continuous pumping with a maximum drawdown of under 1 m (see Appendix E). It is noted that this situation is inherently conservative, as the pump will cycle on and off on a much shorter time scale, allowing the well to recharge.

The long-term yield (Q20) was also calculated using the Farvolden and the Moell Methods. Based on this analysis the calculated Q20 values are 6,352 L/min and 2,945 L/min, respectively (see Appendix E).

Based on the available information, a long-term sustainable pumping rate of 92 L/min is considered appropriate for the well. This yield is sufficient to supply water to the proposed development at this Site, given that the peak hourly demand is currently estimated at 17.4 L/min.

4.6 Water Quality

Laboratory Certificates of Analysis for on-site groundwater testing are presented in Appendix D. A summary of field and laboratory results from TW1 is presented in Tables 2 and 3. Samples were taken twice during the six-hour test on July 13, 2018. Pre- and post-test samples (TW1_1 and TW1_2, respectively) were taken directly from the on-site pump tubing. Analytical results were compared to the Ontario Drinking Water Standards, Objectives, and Guidelines (ODWS).

Based on the analytical results from July 13, 2018, there are no exceedances of ODWS, including maximum acceptable concentration (MAC) parameters, in TW1_1 or TW1_2.

5.0 WATER TREATMENT

The use of disinfection such as an ultraviolet (UV) system, although not required, may be desired. Based on the observed water quality there should not be any hindrances to UV disinfection.

For aesthetic reasons, water treatment such as softening may be desired. Softening of water can be achieved through reverse osmosis or ion exchange. It is noted that depending on which resin is used in the treatment system, softening with ion exchange will increase the concentrations of sodium or potassium relative to those noted in Table 3.

The Langelier Saturation Index (LSI) and Ryznar Stability Index (RSI) were calculated for TW1 (Appendix F). These results indicate that scale formation is possible, though not likely at the tested temperature. This is to be expected in areas of carbonate bedrock.

6.0 SEPTIC ASSESSMENT

As part of this investigation, an assessment with respect to the Site's ability to be serviced by a private on-site septic system was undertaken. Typically, for individual sites the septic assessment will follow the provision outlined within the MOECP document Procedure D-5-4 Technical Guideline for Individual On-Site Sewage System: Water Quality Risk Assessment (August 1996); however, as it is understood that the proposed development will be serviced by a septic system with a Daily Design Flow that will be greater than 10,000 litres per day(L/d), Procedure D-5-4 is not applicable.

Notwithstanding, the following concerns were considered: Lot Size, System Isolation and Contaminant Attenuation.

Lot Size

The total area for the site is 39.89 ha, with approximately 2.71 ha slated for development. Accordingly, McIntosh Perry is of the opinion that sufficient spatial area exists on the property to accommodate a septic system designed for DDF exceeding 10,000 litres.

System Isolation

As previously outlined McIntosh Perry conducted a hand auger and borehole program to determine overburden depth and soil characterization. Based on this investigation, it was determined that the on-site overburden was 4 m in depth or greater. Static water level at monitoring locations was noted to be in the order of 0.2 to 0.3 m bgs; note the supply aquifer for the area is located in the underlying bedrock.

Referencing MOECP Water Well Records for down gradient users (Pinestrand Crescent) reveals that these users are over 700 m away from the proposed development with supply wells completed into the underlying bedrock. Accordingly, McIntosh Perry is of the opinion that sufficient spatial separation exists between the proposed development and the down gradient users.

Contaminant Attenuation

As the Site is proposed to be serviced with a septic system having a DDF greater than 10,000 L/d, attenuation will be governed through application of Reasonable Use Policies to the satisfaction of the MOECP. By following Guideline B-7: Incorporation of the Reasonable Use Concept into MOEE Groundwater Management, it has been determined that the proposed septic system and current lot size are sufficient to meet the target nitrate concentration. Refer to Appendix H for further details.

7.0 CONCLUSIONS

Based on the investigation undertaken, the following are noted:

- Groundwater users within the area typically utilize aquifer sources contained within the underlying bedrock formation and not the groundwater found within the overburden.
- The groundwater tested for the Site is suitable for potable purposes, as no exceedances of ODWS, including maximum acceptable concentration (MAC) parameters as well as aesthetic objectives (AO) and operational guidelines (OG) were detected through analytical testing.
- The aquifer into which the test well was completed can adequately supply water at the pumping test flow rate (92 L/min) based on observed and extrapolated drawdown and calculations to confirm safe well yield (Farvolden and Moell Methods).
- Langelier Saturation Index (LSI) and Ryznar Stability Index (RSI) calculations indicate that scale
 formation is possible, though not likely at the tested temperature. This is to be expected in areas of
 carbonate bedrock.
- The use of disinfection such as an ultraviolet (UV) system, although not required, may be desired. Based on the observed water quality there should not be any hindrances to UV disinfection.
- Overburden for the Site is of suitable characteristics to support an on-site septic system.
- Spatial separation vertically and horizontally is adequate to provide isolation from septic effluent for the bedrock supply aguifer as well as downgradient users.
- The proposed septic system and current lot size are sufficient to meet the target nitrate concentration as per Reasonable Use concept.

8.0 RECOMMENDATIONS

8.1 Water Supply

Well Construction

- Any newly installed wells should have at least 6.1 m of casing and adhere to all other requirements of O.Reg. 903, as amended.
- Any newly installed test wells should be appropriately developed and tested prior to domestic use.

Water Quality and Treatment

- Water from Test Well 1 meets all applicable health related standards at the present time.
- Field measurements of turbidity ranged from 7.36 to 0.0 FNU within the pumping test period.
- If water softening is desired, this can achieved through reverse osmosis or ion exchange. It is noted that softening with ion exchange will increase the concentration of sodium or potassium depending on which resin is used in the treatment system.

8.2 Wastewater Treatment

Potential Septic Systems

- Approval for on-site septic treatment will be governed by the MOECP as it is understood that the Daily Design Flow proposed system will be greater than 10,000 litres per day.
- Based on the general characterization of overburden in the vicinity of the proposed septic leaching bed, imported fill materials will likely be necessary to provide the required vertical separation from groundwater. Further investigation of soil will likely be required to support the MOECP Sewage Works application process.
- Any septic systems must be constructed with all appropriate setbacks, treatment units and stipulations as per applicable Ontario Regulations.

Potential Lot Layout

This hydrogeological assessment is in support of the proposed development described herein; this
assessment does not address the potential for more than one water well or septic system at the Site.
However, this report does address a sustained peak hourly demand for all proposed on-site
structures associated with the development at the time of writing.

9.0 LIMITATIONS

This report has been prepared and the work referred to in this report has been undertaken by McIntosh Perry Consulting Engineers Ltd. for Bing Professional Engineering Inc. (Bing Professional Engineering). It is intended for the sole and exclusive use of Bing Professional Engineering, their affiliated companies and partners and their respective insurers, agents, employees, advisors, and reviewers. The report may not be relied upon by any other person or entity without the express written consent (Reliance Letter) of McIntosh Perry Consulting Engineers Ltd.

Any use which a third party makes of this report, or any reliance on decisions made based on it, without a reliance letter are the responsibility of such third parties. McIntosh Perry Consulting Engineers Ltd. accept no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

The investigation undertaken by McIntosh Perry Consulting Engineers Ltd. with respect to this report and any conclusions or recommendations made in this report reflect McIntosh Perry Consulting Engineers Ltd. judgment based on the Site conditions observed at the time of the site inspection on the date(s) set out in this report and on information available at the time of the preparation of this report.

This report has been prepared for specific application to this site and it is based, in part, upon visual observation of the Site, subsurface investigation at discrete locations and depths, and specific analysis of specific chemical parameters and materials during a specific time interval, all as described in this report. Unless otherwise stated, the findings cannot be extended to previous or future Site conditions, portions of the Site which were unavailable for direct investigation, subsurface locations which were not investigated directly, or chemical parameters, materials or analysis which were not addressed. Substances other than those addressed by the investigation described in this report may exist within the Site, substances addressed by the investigation may exist in areas of the Site not investigated and concentrations of substances addressed which are different than those reported may exist in areas other than the locations from which samples were taken.

If site conditions or applicable standards change or if any additional information becomes available at a future date, modifications to the findings, conclusions and recommendations in this report may be necessary.

We trust that this information is satisfactory for your present requirements. Should you have any questions or require additional information, please do not hesitate to contact the undersigned.

Respectfully submitted,

McIntosh Perry Consulting Engineers Ltd.

Jordan Bowman, B.Sc.

Environmental Scientist

(613) 836-2184 (2280)

j.bowman@mcintoshperry.com

Fraser Armstrong,

Senior Geo-Environmental Engineer

f.armstrong@mcintoshperry.com

18.03.22

Ref.: O:\01 Project - Proposals\2017 Jobs\CP\0CP-17-0503 Bing Proffesional Eng Inc_Proposed Temple SPA_6688 Franktown Road\08 - HydroG\CP-17-0503 Hydrogeological Assessment_6688 Franktown_19.Jul.2018.docx

10.0 REFERENCES

Hantush, M.S. and C.E. Jacob, 1955. Non-steady radial flow in an infinite leaky aquifer, AM. Geophys. Union Trans., vol. 36, no. 1, pp. 95-100.

OGS Earth, 2018. Ontario Ministry of Northern Development, Mines and Forestry, - Ontario Geological Survey Earth – for Google Earth. Overburden classification data for Eastern Ontario.

OGS Earth, 2018. Ontario Ministry of Northern Development, Mines and Forestry, - Ontario Geological Survey Earth – for Google Earth. Bedrock classification data for Eastern Ontario.

Theis, C.V., 1935. The relation between the lowering of the piezometric surface and the rate and duration of discharge of a well using groundwater storage, Trans. Amer. Geophys. Union, Vol. 16, pp. 519-524.

MOE, 1996. Procedure D-5-5 Technical Guideline for Private Wells: Water Supply Assessment.

TABLES

Table 1
Summary of Hand Auger Data
New Development 6688 Franktown Road, Ottawa, Ontario

Hand Auger ID	Soil Description	Depth (m bgs)	Refusal (Y/N)	Depth to Water (m bgs)	
HA1	Topsoil	0.0 - 0.1	N	0.0	
IIAI	Clay	0.1 - 1.1	IV	0.0	
	Topsoil	0.0 - 0.2			
HA2	Medium Br. Sand	0.2 - 0.5	N	0.0	
	Clay	0.5 - 1.1			
	Topsoil	0.0 - 0.1			
HA3	Medium Br. Sand	0.1 - 0.9	N	0.0	
	Clay	0.9 - 1.0			
HA4	Topsoil	0.0 - 0.2	N	0.2	
па4	Medium Br. Sand	0.2 - 1.2	- IN	0.2	
LIAE	Topsoil	0.0 - 0.2	N.	0.3	
HA5	Medium Br. Sand	0.2 - 1.2	N		
HA6	Topsoil	0.0 - 0.2	N.	0.3	
	Fine Br. Sand	0.2 - 1.2	N	0.2	
1147	Topsoil	0.0 - 0.2	N.	0.2	
HA7	Medium Br. Sand	0.2 - 0.8	N	0.2	

NOTES:

m bgs Metres below ground surface

Table 2
Summary of Field Parameters
New Development 6688 Franktown Road, Ottawa, Ontario

Test Well 1

Pumping Test at:	TW1	Date:	13-Jul-18			
Time Elapsed	Turbidity	рН	Conductivity	Temperature	DO	Flow Rate
(min)	(NTU)		(us/cm)	(°C)	(mg/L)	(L/min)
Pump On						92
1	236	7.58	614	12.18	5.74	
2						
3						
4						
5						
9	9.3	7.49	577	8.97	3.83	92
15						
21	2.5	7.02	613	9.04	3.83	
30	1.8	6.92	631	9.06	4.06	
60	1.7	6.80	686	9.14	5.29	
120	2.1	6.77	728	9.16	6.26	
180	0.2	6.77	747	9.22	3.87	
240	0	6.72	727	9.20	3.87	
300	1.8	6.76	762	9.16	3.86	
360	0	6.76	765	9.17	3.85	
Notes:	Flow rate measure	ed with st	opwatch and b	ucket		

NOTES:

min Minutes

FTU Formazin Nephelometric Units ms/cm Millisiemens per centimeter

(°C) Degrees celsius mg/L Milligrams per litre L/min Litres per minute

Table 3 Summary of Laboratory Results New Development, 6688 Franktown Road, Ottawa, ON

Test Well 1

Sample ID					TW 1_1	TW 1_2
Sample Date	Llaita	MDI	ODWOO	Lineit Times	13-Jul-18	13-Jul-18
Location	Units	MDL	ODWSOG	Limit Type	Test \	Well 1
Parameter:						
Microbiological Parameters						
E. Coli	CFU/100 mL	1	0	MAC	<1	<1
Fecal Coliforms	CFU/100 mL	1	-		<1	<1
Total Coliforms	CFU/100 mL	1	0	MAC	<1	<1
Heterotrophic Plate Count	CFU/mL	10	-		-	-
General Inorganics						
Alkalinity, total	mg/L	5	500	OG	325	328
Ammonia as N	mg/L	0.01	-		0.12	0.12
Dissolved Organic Carbon	mg/L	0.5	5	AO	2.9	3.2
Colour*	TCU	2	5	AO	3	4
Conductivity	uS/cm	5	-		697	834
Hardness	mg/L		-		259	327
рН	pH Units	0.1	-		7.7	7.6
Phenolics	mg/L	0.001	-		< 0.001	< 0.001
Total Dissolved Solids	mg/L	10	500	AO	380	486
Sulphide	mg/L	0.02	0.05	AO	< 0.02	< 0.02
Tannin & Lignin	mg/L	0.1	-		0.1	0.1
Total Kjeldahl Nitrogen	mg/L	0.1	-		0.2	0.2
Turbidity*	NTU	0.1	5	AO	1.5	1.4
Anions						
Chloride	mg/L	1	250	AO	24	65
Ruoride	mg/L	0.1	1.5	MAC	0.4	0.4
Nitrate as N	mg/L	0.1	10	MAC	<0.1	<0.1
Nitrite as N	mg/L	0.05	1	MAC	< 0.05	< 0.05
Sulphate	mg/L	1	500	AO	38	41
Metals						
Calcium	ug/L	0.1	-		55.7	75.4
Iron	ug/L	0.1	300	AO	0.1	0.1
Magnesium	ug/L	0.2	-		29.2	33.7
Manganese	ug/L	0.005	50	AO	0.006	0.006
Potassium	ug/L	0.1	-		4.6	4.8
Sodium	ug/L	0.2	200000	AO	17.6	21.6

NOTES:

These parameters were analyzed outside of the accepted holding

time

MDL Method Detection Limit

ODWSOG Ontario Drinking Water Standards, Objectives, and Guidelines

(MOECC, 2003 rev. 2006; PIBs 4449e01)

AO Aesthetic Objective

MAC Maximum Allowable Concentration (Health-Related Parameter)

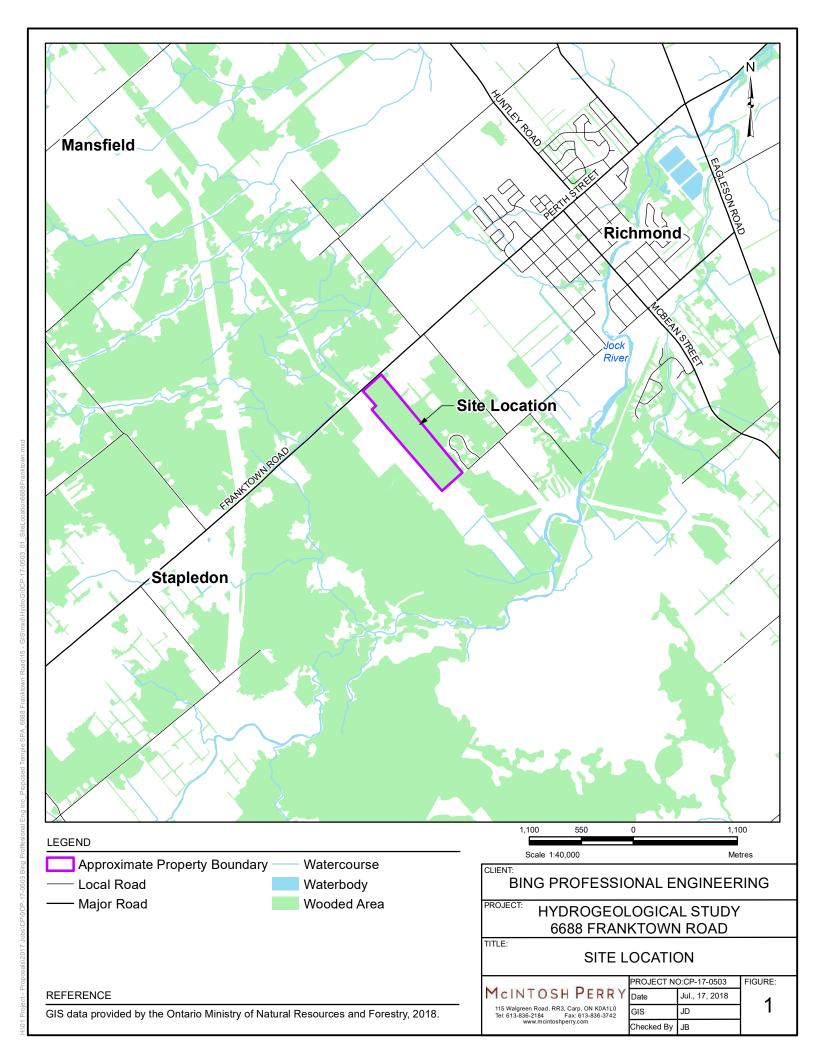
OG Operational Guideline
ND Non detectable (below MDL)

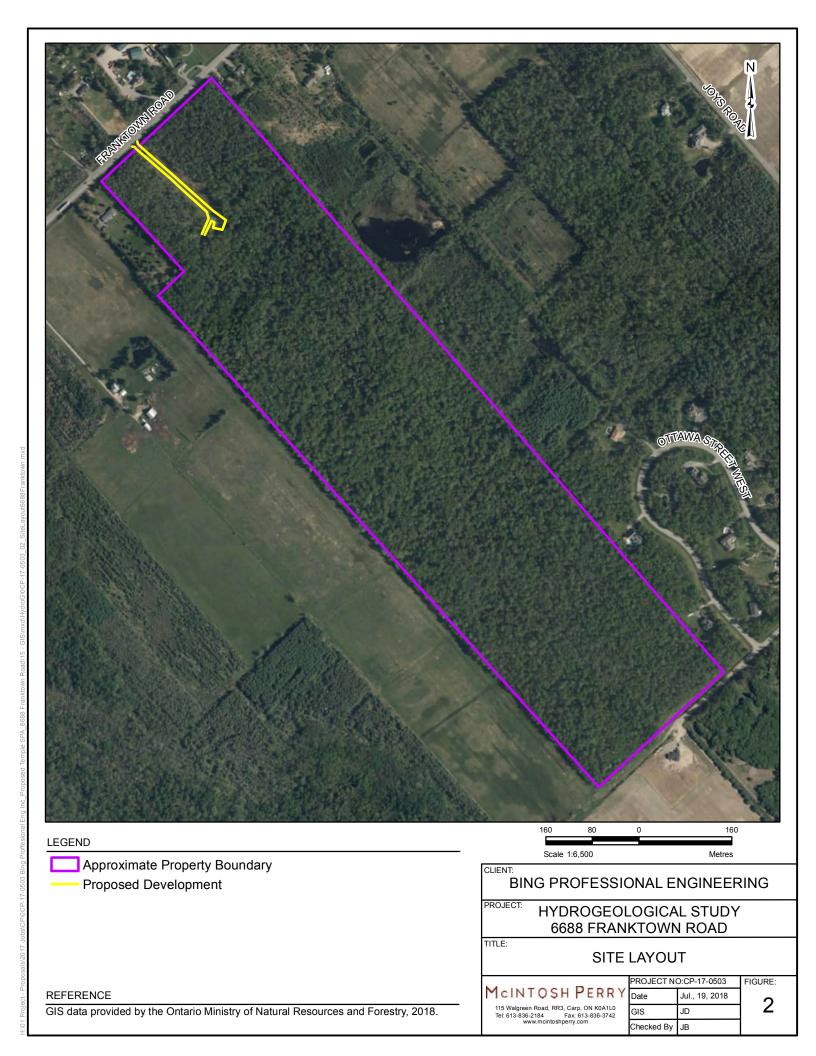
 $\mbox{mg/L}$ Milligrams per litre TCU True Colour Units

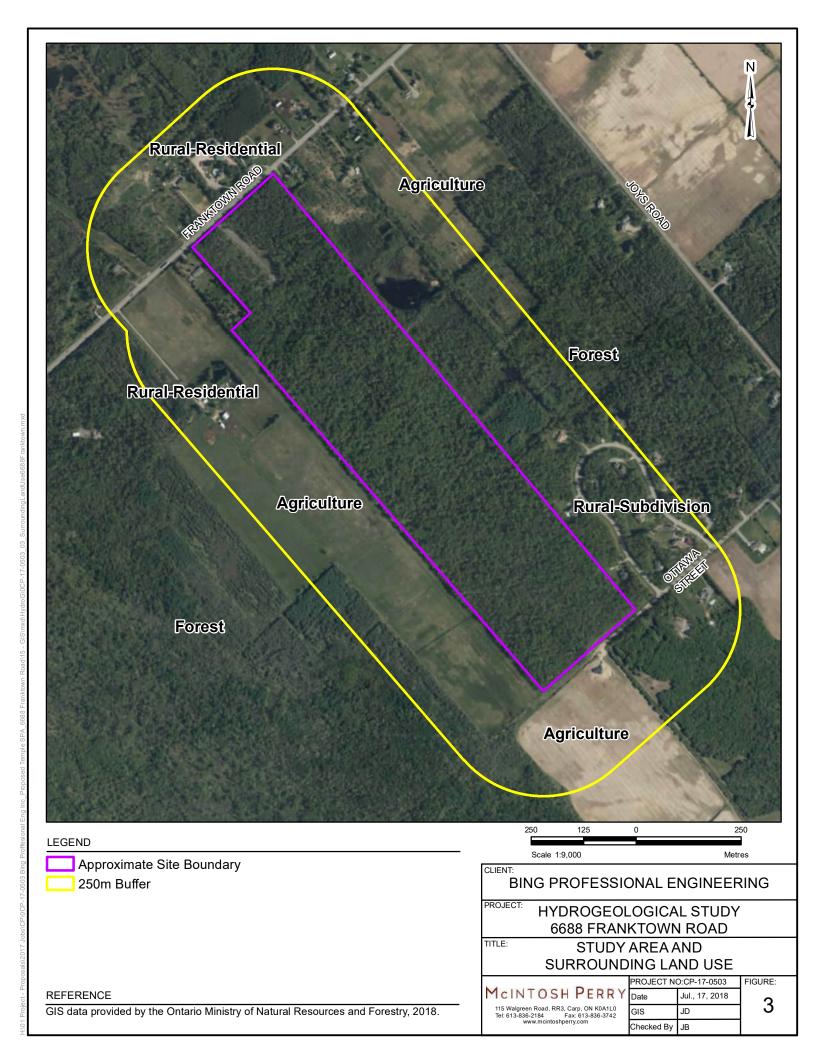
uS cm Microsemens per centimeter NTU Nephelometric Turbidity Units

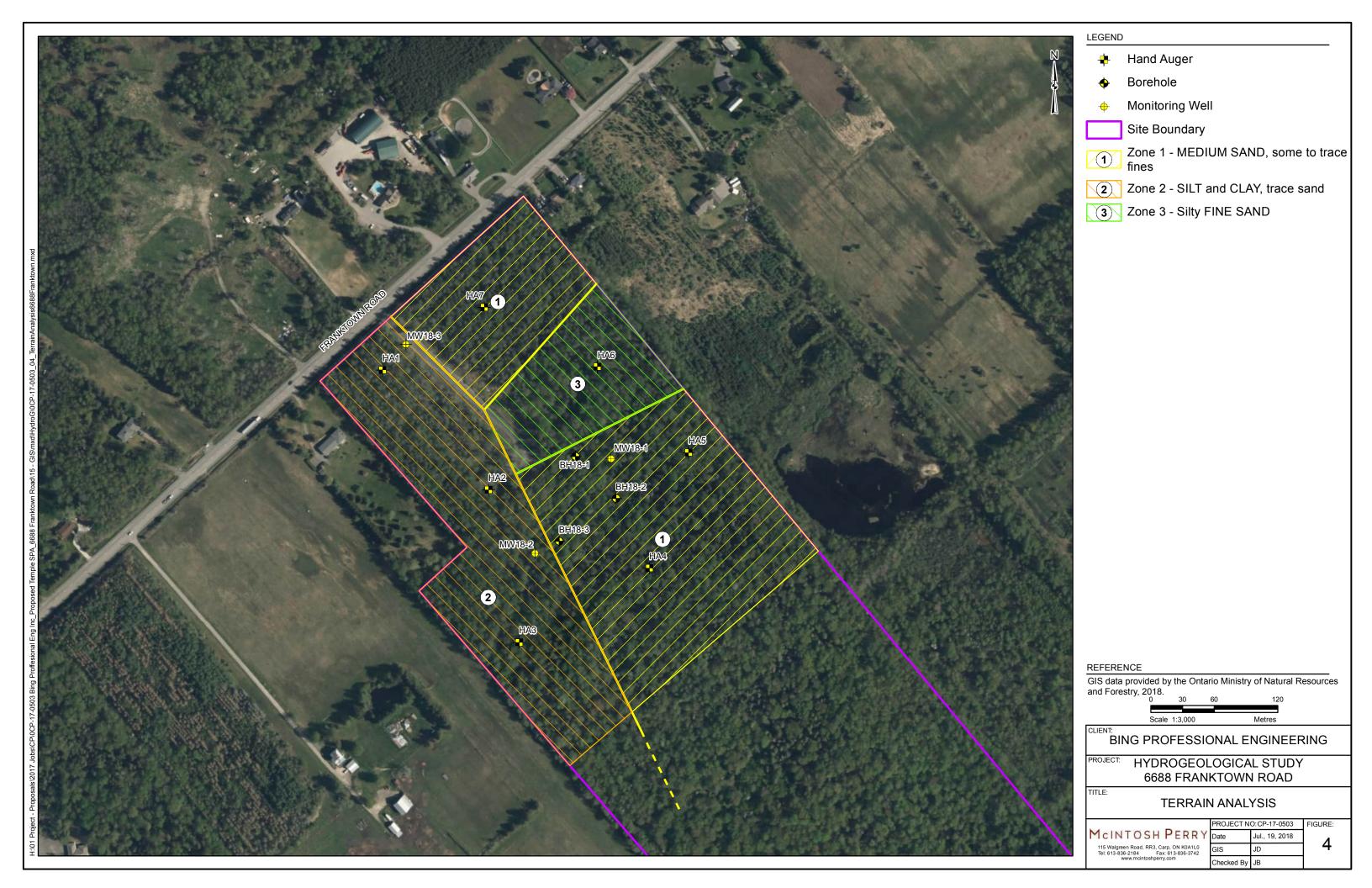
ct/100 mL Number of bacteria-forming colonies per 100 mL

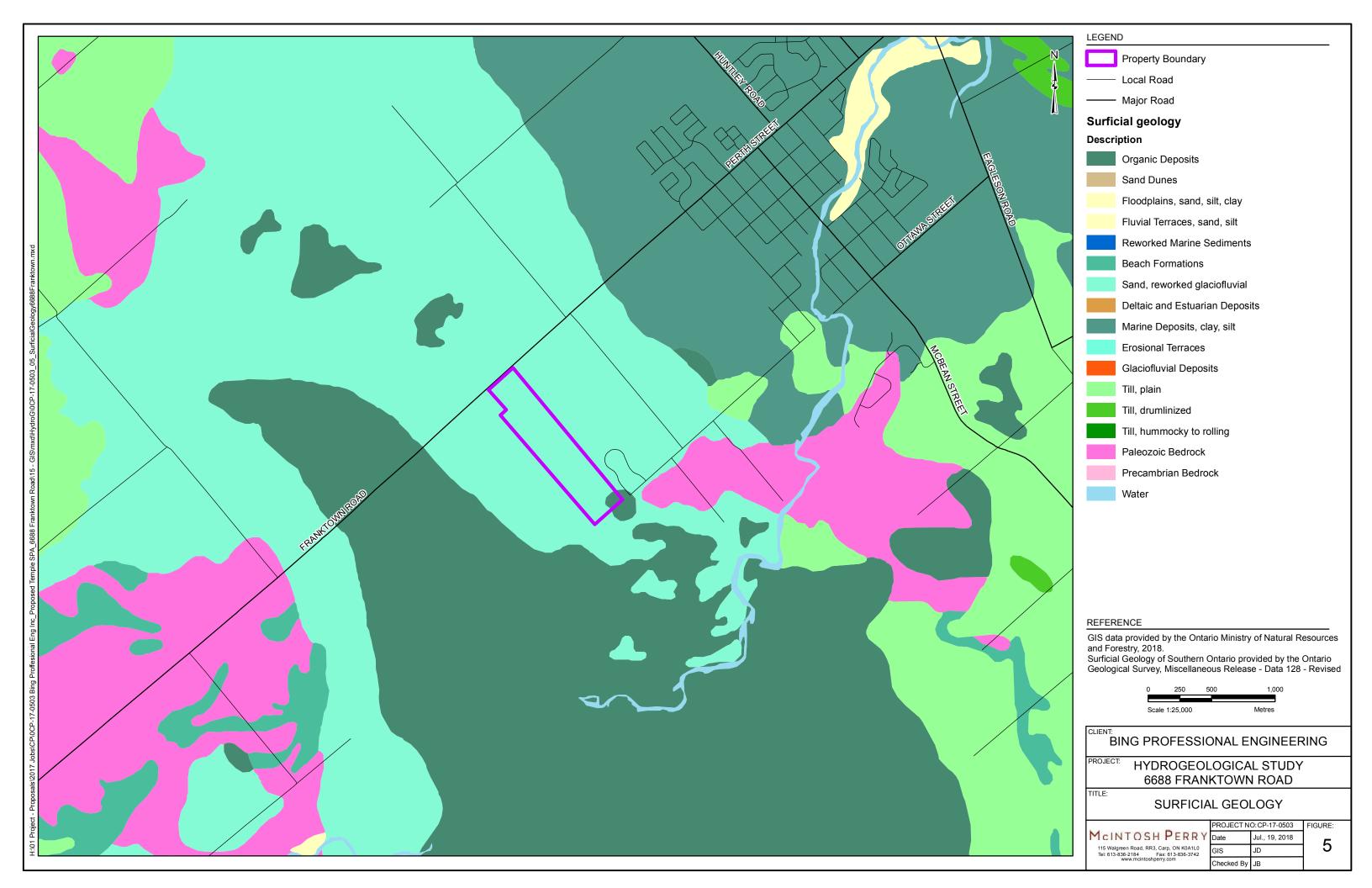
Table 4 Summary of Water Level Data Pumping Test - TW1 - 13-Jul-2018

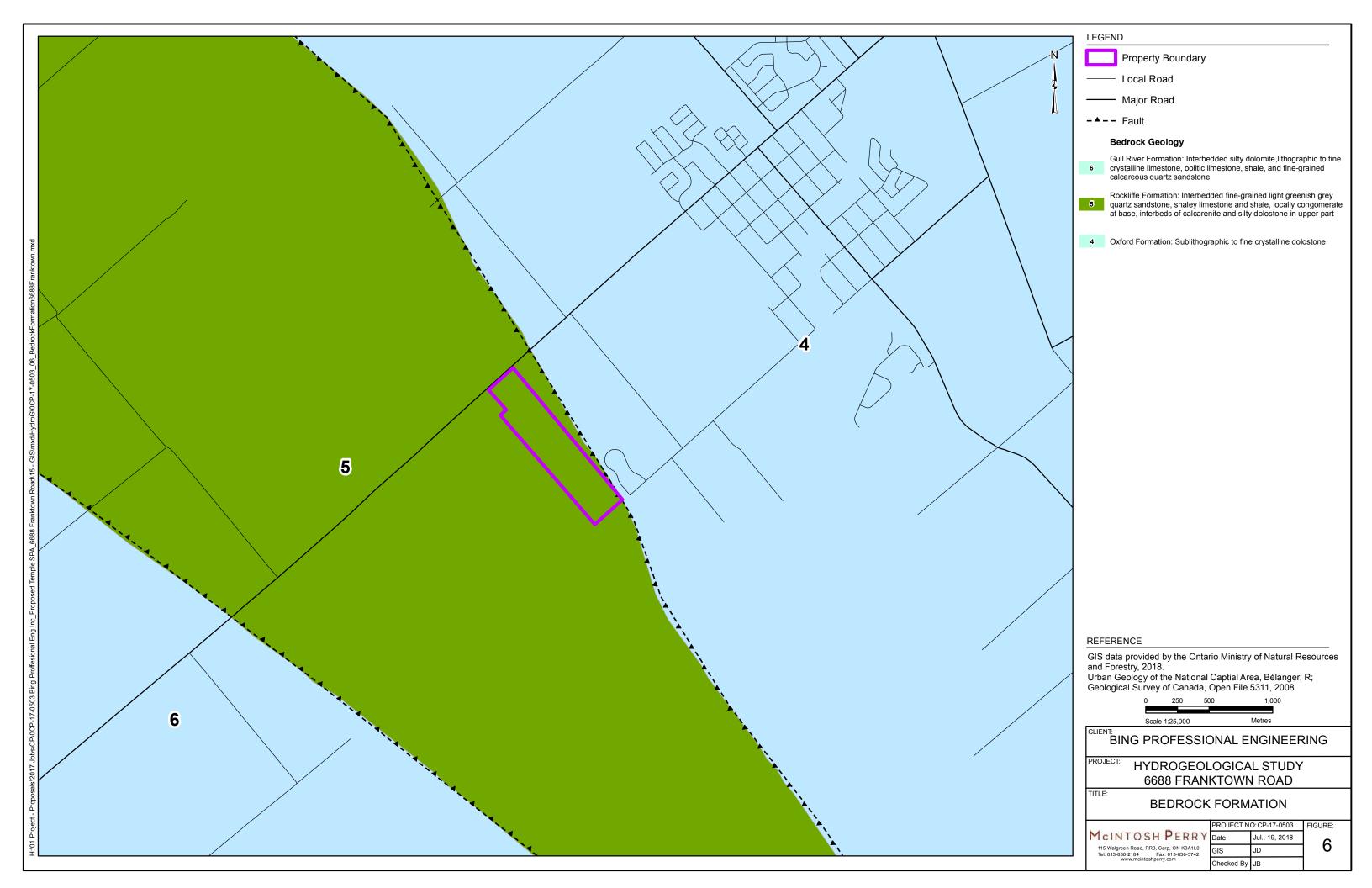

TOC Elevation (assumed)100.000 mStatic Water Level4.365 m BTOCStatic Water Elevation95.635 m95% Recovery Level4.386 m BTOC95% Recovery Elevation95.614 m

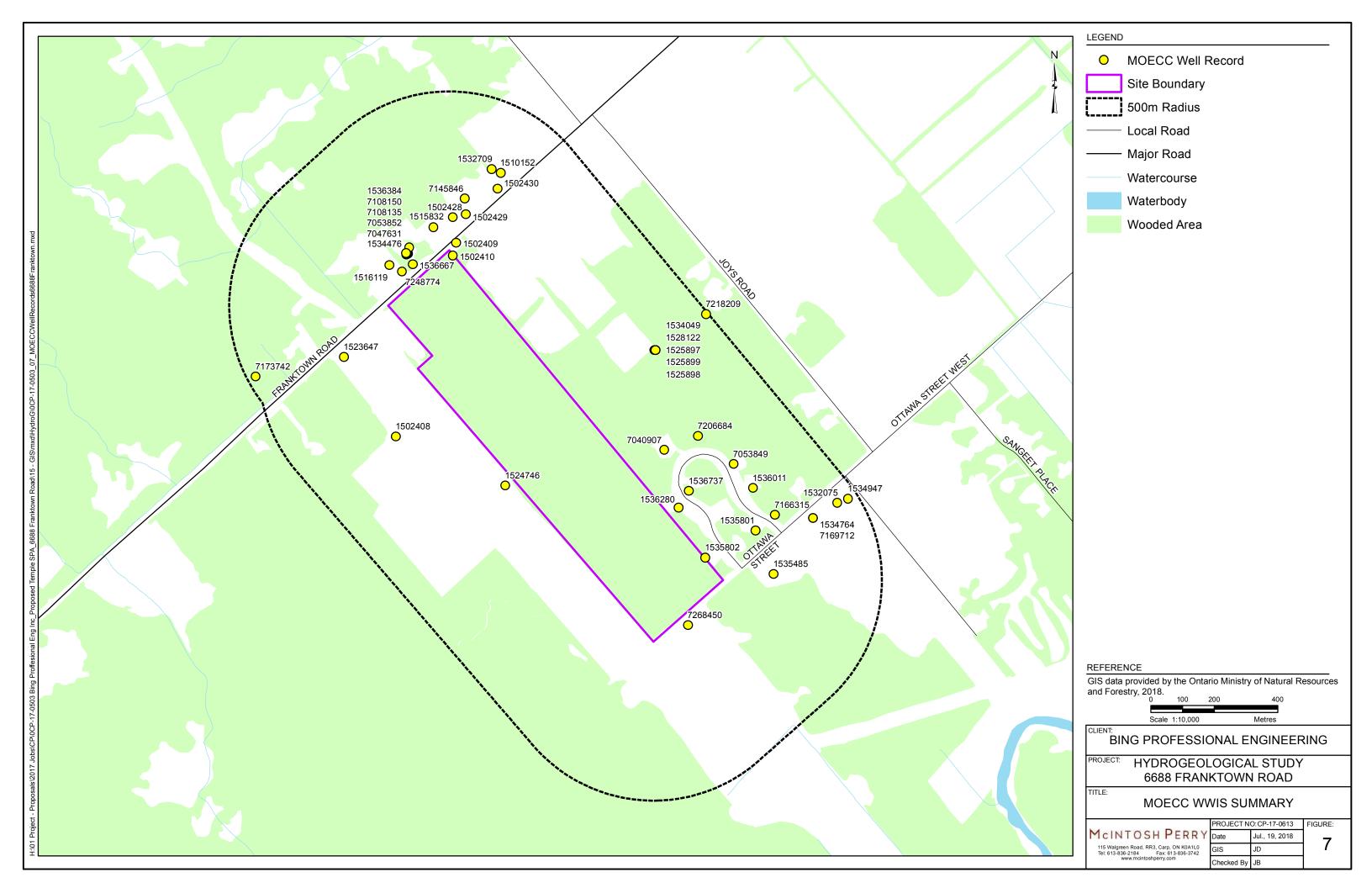

Elapsed Time	24-Hr Time	Water Level (m	Water Level	Drawdown (m)	Notes
(minutes)	24-ni Time	BTOC)	(m ASL)	Drawdown (III)	Notes
0		4.365	95.635	0	
1	08:07	4.709	95.291	0.344	PUMP ON
2		4.716	95.284	0.351	
3		4.726	95.274	0.361	
4		4.733	95.267	0.368	92L/minute at 8:10 am
5		4.737	95.263	0.372	
6		4.740	95.26	0.375	
7		4.740	95.26	0.375	
8		4.744	95.256	0.379	
9		4.745	95.255	0.38	
10		4.745	95.255	0.38	
20		4.758	95.242	0.393	
30		4.761	95.239	0.396	
45		4.765	95.235	0.4	
60		4.769	95.231	0.404	
120		4.779	95.221	0.414	
180		4.783	95.217	0.418	
240		4.780	95.22	0.415	
300		4.748	95.252	0.383	
360	14:07	4.746	95.254	0.381	PUMP OFF
361		4.416	95.584	0.051	
362		4.406	95.594	0.041	
363		4.403	95.597	0.038	
364		4.399	95.601	0.034	
365		4.397	95.603	0.032	
366		4.395	95.605	0.03	
367		4.385	95.615	0.02	
368		4.382	95.618	0.017	
369		4.379	95.621	0.014	
370		4.375	95.625	0.01	

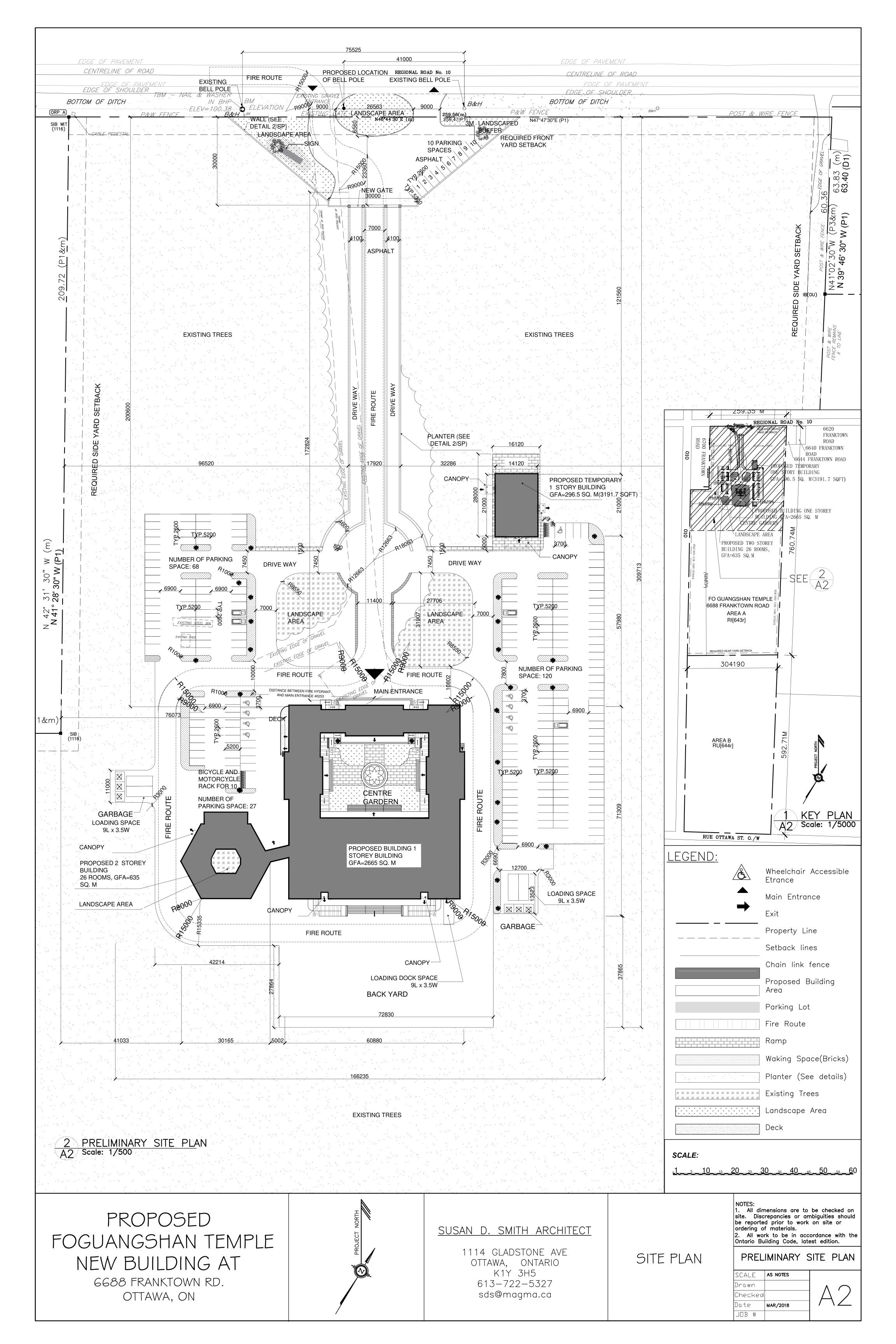

NOTES


TOC: Top of Casing m BTOC: metres below top of casing


FIGURES







APPENDICES

APPENDIX A SITE PLAN

APPENDIX B MOECC WWIS DATA SUMMARY

MOECC WWIS DATA SUMMARY

Well ID	Depth (m)	Depth to Bedrock (m)	Static WL	Status
1534764	36.9	7.9	3.8	Water Supply
1536667	26.2	0		Abandoned-Other
7248774	42.7	0		<null></null>
1535485	22.3	8.2		Water Supply
1502410	6.7	0		Water Supply
1510152	15.5	3.7		Water Supply
1532709	67.1	4.9		Water Supply
1524746	27.4	4.9		Water Supply
7145846	71.9	0		Water Supply
1502409	19.8	2.4		Water Supply
1536384	50	8.2		Water Supply
7108135	30.5	0	7.3	Water Supply
7040907	18.6	3.4	0.8	Water Supply
7169712	61	0		Other Status
1528122	19.2	4.6	1.8	Water Supply
1525897	30.5	11	3.4	Test Hole
1502428	18.3	9.1	4.6	Water Supply
7166315	61.3	0		Water Supply
1536737	24.7	3	2.3	Water Supply
1534049	55.2	8.2	15.2	Water Supply
1536280	21.3	4.3	2.3	Water Supply
7218209	67	0	2.8	<null></null>
1523647	22.9	15.2	1.8	Water Supply
7053852	18.3	0	0.4	Water Supply
7047631	43.3	0	8.6	Water Supply
1535801	18.3	8.2	3.3	Water Supply
1502430	18.3	5.2	4.6	Water Supply
7268450	48.8	0	2.6	<null></null>
7053849	18.3	0	2.8	Water Supply
1502408	18.3	7.9	2.4	Water Supply
1534947	37.5	1.5		Water Supply
1515832	19.5	3.7		Water Supply
1534476	54.9	1.8		Water Supply
7206684	54.9	0		<null></null>
1502429	27.7	2.7		Water Supply
1535802	18.9	7.3		Water Supply
1525899	19.2	1.2		Test Hole
1536011	18.9	4		Water Supply
1516119	32	4.6		Water Supply
1525898	31.4	4.6		Test Hole
7173742	85.3	0		Water Supply
7108150	54.9	0		Water Supply
1532075	36.6	2.7	3	Water Supply

APPENDIX C MOECC WELL RECORD – TW1

CERTIFICATE OF WELL COMPLIANCE

CERTIFY FURTHER that, I am aware of the well drilling requirements, the guidelines, recommendations and regulations of the Ministry of the Environment governing well installations in the Province of Ontario, and the standards specified in any subdivision agreement and hydrogeological report applicable to this site and City Standards. AND DO HEREBY CERTIFY THAT the said well has been drilled, cased, grouted (cement or bentonite) as applicable and constructed in strict conformity with the standards required. Signed this		Len Desauniers_DO HEREBY CERTIFY that I am licensed to drill
Lot/Plan No.) in the City of Ottawa (Geographical Township of Goulbourn 19 Conc 3 Plan# LP-41-7040 SL# Lot-19 Conc 3 Plan	7	wells in the Province of Ontario, and that I have supervised the drilling of a well on the
Lot/Plan No.) in the City of Ottawa (Geographical Township of Goulbourn 19 Conc 3 Plan# LP-41-7040 SL# Lot-19 Conc 3 Plan	f	property of International Duddhist Progress Society of Ottawa
CERTIFY FURTHER that, I am aware of the well drilling requirements, the guidelines, recommendations and regulations of the Ministry of the Environment governing well installations in the Province of Ontario, and the standards specified in any subdivision agreement and hydrogeological report applicable to this site and City Standards. AND DO HEREBY CERTIFY THAT the said well has been drilled, cased, grouted (cement or bentonite) as applicable and constructed in strict conformity with the standards required. Signed this		그는 그는 그는 그는 그를 하는 것이 되었다. 그는 그는 그는 그는 그는 그를 하는 것을 것을 하는 것을 하는 것을 하는 것을 하는 것을 것을 하는 것을 하는 것을 하는 것을 것을 하는 것을 하는 것을
CERTIFY FURTHER that, I am aware of the well drilling requirements, the guidelines, recommendations and regulations of the Ministry of the Environment governing well installations in the Province of Ontario, and the standards specified in any subdivision agreement and hydrogeological report applicable to this site and City Standards. AND DO HEREBY CERTIFY THAT the said well has been drilled, eased, grouted (cement or bentonite) as applicable and constructed in strict conformity with the standards required. Signed this Air Rock Drilling Co.L+d. Well Driller/Company The Engineer on behalf of the landowner set out above Certifies that he/she has inspected the well and it was constructed in accordance with the specifications in O.Reg.903, this report and the Hydrogeological Report with regards to casing length and grouting requirements. SIGNED this day of,]	Lot/Plan No.) in the City of Ottawa (Geographical Township of Soul bourn
CERTIFY FURTHER that, I am aware of the well drilling requirements, the guidelines, recommendations and regulations of the Ministry of the Environment governing well installations in the Province of Ontario, and the standards specified in any subdivision agreement and hydrogeological report applicable to this site and City Standards. AND DO HEREBY CERTIFY THAT the said well has been drilled, eased, grouted (cement or bentonite) as applicable and constructed in strict conformity with the standards required. Signed this Air Rock Drilling Co.L+d. Well Driller/Company The Engineer on behalf of the landowner set out above Certifies that he/she has inspected the well and it was constructed in accordance with the specifications in O.Reg.903, this report and the Hydrogeological Report with regards to casing length and grouting requirements. SIGNED this day of,	- Contraction	LOT 19 CONC 3 PLAN#RP-4R.7040 5/L# Part1
installations in the Province of Ontario, and the standards specified in any subdivision agreement and hydrogeological report applicable to this site and City Standards. AND DO HEREBY CERTIFY THAT the said well has been drilled, cased, grouted (cement or bentonite) as applicable and constructed in strict conformity with the standards required. Signed this	ı	
AND DO HEREBY CERTIFY THAT the said well has been drilled, eased, grouted (cement or bentonite) as applicable and constructed in strict conformity with the standards required. Signed this LTH day of July 2015 Well Drillet/Company The Engineer on behalf of the landowner set out above Certifies that he/she has inspected the well and it was constructed in accordance with the specifications in O.Reg.903, this report and the Hydrogeological Report with regards to casing length and grouting requirements. SIGNED this	1	recommendations and regulations of the Ministry of the Environment governing well
AND DO HEREBY CERTIFY THAT the said well has been drilled, cased, grouted (cement or bentonite) as applicable and constructed in strict conformity with the standards required. Signed this		installations in the Province of Ontario, and the standards specified in any subdivision
(cement or bentonite) as applicable and constructed in strict conformity with the standards required. Signed thisAirRock_Drilling Co.Ltd. Well Drillef/Company The Engineer on behalf of the landowner set out above Certifies that he/she has inspected the well and it was constructed in accordance with the specifications in O.Reg.903, this report and the Hydrogeological Report with regards to casing length and grouting requirements. SIGNED this		agreement and hydrogeological report applicable to this site and City Standards.
(cement or bentonite) as applicable and constructed in strict conformity with the standards required. Signed thisAirRock_Drilling Co.Ltd. Well Drillef/Company The Engineer on behalf of the landowner set out above Certifies that he/she has inspected the well and it was constructed in accordance with the specifications in O.Reg.903, this report and the Hydrogeological Report with regards to casing length and grouting requirements. SIGNED this		
Signed thisAir-Rock_Drilling Co.Ltd. Well Driller/Company The Engineer on behalf of the landowner set out above Certifies that he/she has inspected the well and it was constructed in accordance with the specifications in O.Reg.903, this report and the Hydrogeological Report with regards to casing length and grouting requirements. SIGNED this day of		AND DO HEREBY CERTIFY THAT the said well has been drilled, cased, grouted
Signed this		(cement or bentonite) as applicable and constructed in strict conformity with the
The Engineer on behalf of the landowner set out above Certifies that he/she has inspected the well and it was constructed in accordance with the specifications in O.Reg.903, this report and the Hydrogeological Report with regards to casing length and grouting requirements. SIGNED this		standards required.
the well and it was constructed in accordance with the specifications in O.Reg.903, this report and the Hydrogeological Report with regards to casing length and grouting requirements. SIGNED this	,	Kansy FIZ Air Rock Drilling Co. Ltd.
		the well and it was constructed in accordance with the specifications in O.Reg.903, this report and the Hydrogeological Report with regards to casing length and grouting
\sim 018		
Engineer		Engineer JAGAA

Shaping our future together
Ensemble, formons notre avenir

Glty of Ottawa Client Service Centre 8747 Victoria Street Cuttawa; ON KOA 290 Ville d'Ottawa Centre de service 8243, me Victoria Ottawa, ON - KOA 290 2001

Ontari Measurements reco	O and Cli	ry of the Environments of the Environment of the En		Tag	g#:A25285 A252856	6	r Print Below)	Regulation	1 903 (ter Re	Recor
Well Owner's In	Control of the second s							_				
First Name		Last Name / Oi Inter	rganization nationa l	l Bud	dhist Progress	Soc	E-mail Address	Ollama] [l Constructe Vell Owner
Mailing Address (Street 1950 Scott		me)			Municipality Ottawa		Province ON	Postal Code		Telephone	No. (in	c. area code
Well Location	LONGOL				Ottoma		<u> </u>	1114	72-1-			
Address of Well Loca 6688 Fran			energia esta approximación de la pro-		Township Gaulbourn	A control of		Lot P/L 1	Q	Concessio	n	
County/District/Munic	cipality	en va			City/Town/Village			1111	Provi	nce	Post	al Code
Ottawa-C: UTM Coordinates Zo		2 DAC Nort	hing=200	20 00 1	Richmond Municipal Plan and Sul	olot Nu	mber		Other	ario		
NAD 8 3	18 4			1 1	RP 4R-7040)			Pa		:	
Overburden and B General Colour		ials/Abandon mon Material	ment Seali		ord (see instructions on her Materials	the bac		neral Description			De	pth (mate)
Gerierai Colour	WOSt COITE	Sand v			Clay	+		ioral Decemption			From 0 /	10 '
Grey		Limesto	ne		3.23			. 2		P. Day and	10	73 /
Grey		Limesto							4		73 /	142 /
Grey		Limesto				-					142	1711
Grey		Sandsto	ne			-					171	1947
Grey		Sandsto	ne								194	200′
										.		1
		Annular S	The second of the second	Y. A. C.				Results of We	but the department of	GENERAL VALUE OF	CARROLL CONTRACTOR	2367.5
Depth Set at (m/to) From To		Type of Seala (Material and			Volume Placed (m³/€)	╝	er test of well yield] Clear and sand	free	Time	aw Down Water Leve		Recovery Water Lev
(O' O'	Neat ce	ment			10.9	11	Other, specify		(min) Static	(m/ft)	(min)	(m/ft)
						lf p	umping discontinu	ed, give reason:	Level	14'2"		14.2
	i						mp intake set at (n		1		1	
							150		2	15.4	2	14.2
Method of Co	nstruction		1,827,232	Vell Us	e	Pur	mping rate (Vmin 9	PM)	3	15.4	3	14.2
☐ Cable Tool ☐ Rotary (Conventional	☐ Diamond Diamond	☐ Public		Commer Municipa		Dur	ation of pumping		4	15.4	4	14.2
Rotary (Reverse)	Driving	Livesto	ock 🗍	Test Hole	Monitoring	$\parallel \perp$	1 hrs + 0		5	15:4	- 5	14.2
Boring Air percussion	Digging	☐ Irrigati		Cooling 8	& Air Conditioning	Fina	al water level end	of pumping (m/ft)	10	15.5	10	14.2
Other, specify		_		Stational Security		If flo	wing give rate (Vm	in / GPM)	15	15.5	15	. 14.2
	instruction Re le OR Material	Wall	Depth (<i>n</i> 4	-	Status of Well Water Supply	Rec	commended pump	denth (mft)	20	15.5	20	14.2
Diameter (Galvaniza	ed, Fibreglass, Plastic, Steel)	Thickness (cm(a)	From	To ,	Replacement Well	il .	100		25	15.5	25	14.2
i/a Steel		.188 "	+2′ 2	20 /	Recharge Well	Rec (l/m	ommended pump in (SPM) 20	rate	30	15.5	30	14.2
1/4 Open I	lole		20 / 2	200 ′	☐ Dewatering Well ☐ Observation and/or	i L	Production (Vmin.		40	15.5	40	14.2
-/T					Monitoring Hole		20		50	15.5	50	14.2
	1				(Construction) Abandoned,		veeted? Yes ∏ No		60	15.5%	60	14.2
Co	nstruction Re	cord - Screen	1		Insufficient Supply Abandoned, Poor			Map of We	II Loca	ition		
Mailletel /Diactic Co	aterial livanized, Steel)	Slot No.	Depth (m/		Water Quality Abandoned, other,	Plea	ase provide a ma	p below following	g instru	ctions on th	e back	
(cm/in) (Flastic, Ga	avarized, electr		Eren	To	specify		4	4688		1	2	5_
			>-		Other, specify		~ ·	masury S	N	\ \	Red	<i>خ</i> ل
					-		TRATI	1K 1000	•	لمر	1	
ater found at Depth	Water Deta Kind of Water:	Carried Control of Con	Intested	Ho Depth	ole Diameter (m/ft) Diameter		6	6688 NKTOW NAD	/			
⁷³ (m /b) ☐ Gas	Other, spec			From	to (cm/in)					-vm	1	
found at Depth	Kind of Water:		Intested	0	20 1 974"				-) Am	- ; \	
found at Depth	Kind of Water:	Fresh	ntested	20	200 6 /4"		,	1				\
(m/ 6) □ Gas	Other, speci		Spinist 1	Application			500	X				
siness Name of Well	Contractor	-and vyell 160	ansician int	Well	Contractor's Licence No.			(30)				
Vir Rock Drilling	<u> </u>	70)			119						- 11	
sides araba seedi	HAMARI GALAN			Í	idPalland		ments: HP - 20 GP	M SET @ 10	O FT			
ovince Po	stal Code KUA 2ZU	Business E-r	nail Address r-rock(2)s	ympati	co.ca	100	<u></u>			TO KNOW ME TO A STATE OF		
s.Telephone No. (inc. a	area code) Nam					inforr	mation	ackage Delivered	.	Ministr Audit No. Z	y Use) 7 i	Only SODA
136382170		Hanna, Je	remy	·	•	pack: delive	Date W	Ork Completed	140	-	<u> </u>	ع ن ن ر
Joseph Chan's Licence	No. Signature of	or Technician an	d/or Contrac	tor Date	45,469 mitt ø 7 31 ′ Y Y M M D D	4	20 لاحيًا	18 0 7 Y Y M M D	11			
SE (2014/11)	1///			1.1.	Ministry's Copy		1 1	· [· [IVI [IVI] D	10	ecelved © Queen's P	rinter for	Ontario, 201

APPENDIX D LABORATORY CERTIFICATES OF ANALYSES

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

McIntosh Perry Consulting Eng. (Carp)

115 Walgreen Rd. Carp, ON K0A 1L0 Attn: Justin Cameron

Client PO:

Project: 17-0503 Report Date: 19-Jun-2018 Custody: 42032 Order Date: 15-Jun-2018

Order #: 1824668

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

 Paracel ID
 Client ID

 1824668-01
 Hydro G-BH18-3

 1824668-02
 Hydro G-BH-1R

 1824668-03
 Hydro G-BH-2R

Approved By:

Mark Froto

Mark Foto, M.Sc. Lab Supervisor

Report Date: 19-Jun-2018

Certificate of Analysis

Client: McIntosh Perry Consulting Eng. (Carp)

Order Date: 15-Jun-2018

Client PO: Project Description: 17-0503

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date Analysis Date
Anions	EPA 300.1 - IC	18-Jun-18 18-Jun-18

Report Date: 19-Jun-2018

Order Date: 15-Jun-2018

Certificate of Analysis

Client: McIntosh Perry Consulting Eng. (Carp)

Client PO: Project Description: 17-0503

				_	
	Client ID:	Hydro G-BH18-3	Hydro G-BH-1R	Hydro G-BH-2R	-
	Sample Date:	06/15/2018 13:53	06/15/2018 14:08	06/15/2018 14:20	-
	Sample ID:	1824668-01	1824668-02	1824668-03	-
	MDL/Units	Water	Water	Water	-
Anions					
Nitrate as N	0.1 mg/L	<0.1	<0.1	<0.1	-
Nitrite as N	0.05 mg/L	<0.05	<0.05	<0.05	-

Report Date: 19-Jun-2018

Order Date: 15-Jun-2018

Certificate of Analysis

Client: McIntosh Perry Consulting Eng. (Carp)

Client PO: Project Description: 17-0503

Method Quality Control: Blank

Welliou Quality Control. Dialik									
Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Anions Nitrate as N Nitrite as N	ND ND	0.1 0.05	mg/L mg/L						

Certificate of Analysis

Report Date: 19-Jun-2018 Order Date: 15-Jun-2018 Client: McIntosh Perry Consulting Eng. (Carp) Client PO: **Project Description: 17-0503**

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Anions Nitrate as N Nitrite as N	ND ND	0.1 0.05	mg/L mg/L	ND ND				20 20	

Report Date: 19-Jun-2018

Certificate of Analysis

Client: McIntosh Perry Consulting Eng. (Carp)

Order Date: 15-Jun-2018 Client PO: **Project Description: 17-0503**

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Anions	4.04	0.4		ND	404	04 440			
Nitrate as N	1.04	0.1	mg/L	ND	104	81-112			
Nitrite as N	0.903	0.05	mg/L	ND	90.3	76-117			

Certificate of Analysis

Order #: 1824668

Report Date: 19-Jun-2018 Order Date: 15-Jun-2018

Project Description: 17-0503

Client: McIntosh Perry Consulting Eng. (Carp) Client PO:

Qualifier Notes:

None

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected

MDL: Method Detection Limit

Source Result: Data used as source for matrix and duplicate samples

%REC: Percent recovery.

RPD: Relative percent difference.

TRUSTED RESPONS RELIABLE

Chain of Custody (Lab Use Only)

Nº 42032

Page of

hent Name:	1006										Turnaround Time:					
ontact Name:	Truck			Quote #	5/0						DID	ay		□3	Day	
ddress.	Justin Cameyon 15 Walgreen Road Coup	and keep	110	o PG# +								last.		r) R	egular	
dotes	12 Mailhery Kara Lead			Entail A	Idress - Con-	Date Required:										
elephone:	18-915-3752					A						Require				
Criteria	O. Reg. 153/04 (As Amended) Table	RSC Filing	DO R	leg 558	00 DPWQO D	ICCME DS	UB (Sto	rm) 🗆 S	UB (Sanitar	y) Munici	pality:_		_ 00	Other		
	s (Soil Sed.) GW (Ground Water) SW (Surface Water						0	3		Requ	ired Ar	alyses			_	_
orderes see	der Number: 182468		Air Volume	of Containers	Sample		Witchte (NE	Notite								
F		Matrix	Vir /	Jo #	Date	Time	2	5						_	_	
. 111	Sample ID/Location Name	64	~	Ī	15-Jun 24	1.53	1	1								_
		6W	1	I	4	2 08	10	1								-
	drog- BH-12	6W	7	1	4	2:26	1	1								
7	Bro6-84-2R															_
4																_
5		-														
6	100 pt 10															
7	7/12-12-12-12-12-12-12-12-12-12-12-12-12-1		-	-												
8		-		+												
9					0.10.00											
10	P41 F57			-									Method	of Delivery	19	Ī
Comment	,												U	Jalo	SÀ	
Relinquisho	1 By (Sign) SHALL	Receiv	red by Dr	iver Depo	st.		ved at La	6			Venfi	C		CAC	11.20	t
Religionishe	aby Print: Stoler Hout	Date/I	ime			Date	Time (1015	18 4	103	Date/I	rified	Ber	20	4.5	*
Date Time	15-Jun-8 / 4100 pm	Tempo	rature:		'C	Temp	enture:	10			prive	ruion [by.			

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

McIntosh Perry Consulting Eng. (Carp)

115 Walgreen Rd. RR# 3 Carp, ON K0A 1L0 Attn: Jordan Bowman

Client PO:

Project: 17-0503 Report Date: 16-Jul-2018 Custody: 6644 Order Date: 13-Jul-2018

Order #: 1828639

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

 Paracel ID
 Client ID

 1828639-01
 TW1-1

 1828639-02
 TW1-2

Approved By:

Dale Robertson, BSc Laboratory Director

Certificate of Analysis

Client: McIntosh Perry Consulting Eng. (Carp)

Order Date: 13-Jul-2018

Client PO:

Project Description: 17-0503

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
Alkalinity, total to pH 4.5	EPA 310.1 - Titration to pH 4.5	16-Jul-18	16-Jul-18
Ammonia, as N	EPA 351.2 - Auto Colour	16-Jul-18	16-Jul-18
Anions	EPA 300.1 - IC	16-Jul-18	16-Jul-18
Colour	SM2120 - Spectrophotometric	16-Jul-18	16-Jul-18
Conductivity	EPA 9050A- probe @25 °C	16-Jul-18	16-Jul-18
Dissolved Organic Carbon	MOE E3247B - Combustion IR, filtration	16-Jul-18	16-Jul-18
E. coli	MOE E3407	13-Jul-18	14-Jul-18
Fecal Coliform	SM 9222D	13-Jul-18	14-Jul-18
Metals, ICP-MS	EPA 200.8 - ICP-MS	16-Jul-18	16-Jul-18
рН	EPA 150.1 - pH probe @25 °C	16-Jul-18	16-Jul-18
Phenolics	EPA 420.2 - Auto Colour, 4AAP	16-Jul-18	16-Jul-18
Subdivision Package	Hardness as CaCO3	16-Jul-18	16-Jul-18
Sulphide	SM 4500SE - Colourimetric	16-Jul-18	16-Jul-18
Tannin/Lignin	SM 5550B - Colourimetric	16-Jul-18	16-Jul-18
Total Coliform	MOE E3407	13-Jul-18	14-Jul-18
Total Dissolved Solids	SM 2540C - gravimetric, filtration	13-Jul-18	16-Jul-18
Total Kjeldahl Nitrogen	EPA 351.2 - Auto Colour, digestion	16-Jul-18	16-Jul-18
Turbidity	SM 2130B - Turbidity meter	16-Jul-18	16-Jul-18

Certificate of Analysis

Client: McIntosh Perry Consulting Eng. (Carp)

Client PO:

Report Date: 16-Jul-2018 Order Date: 13-Jul-2018 **Project Description: 17-0503**

Client ID:	TW1-1	TW1-2	-	-
Sample Date:	07/13/2018 08:20	07/13/2018 14:12	-	-
			-	-
MDL/Units	Dilliking water	Drinking water	-	-
1 CFU/100 mL	ND	ND	-	_
1 CFU/100 mL			-	-
1 CFU/100 mL		 	-	_
	ND	110		
5 mg/L	325	328	-	-
0.01 mg/L	0.12	0.12	-	-
0.5 mg/L	2.9	3.2	-	-
2 TCU	3 [1]	4 [1]	-	-
5 uS/cm	697	834	-	-
mg/L	259	327	-	-
0.1 pH Units	7.7	7.6	-	-
0.001 mg/L	<0.001	<0.001	-	-
10 mg/L	380	486	-	-
0.02 mg/L	<0.02	<0.02	-	-
0.1 mg/L	0.1	0.1	-	-
0.1 mg/L	0.2	0.2	-	-
0.1 NTU	1.5 [1]	1.4 [1]	-	-
•				
1 mg/L	24	65	-	-
0.1 mg/L	0.4	0.4	-	-
0.1 mg/L	<0.1	<0.1	-	-
0.05 mg/L	< 0.05	<0.05	1	-
1 mg/L	38	41	-	-
	55.7	75.4	-	-
	0.1	0.1	-	-
	29.2	33.7	-	-
	0.006	0.006	-	-
0.1 mg/L	4.6	4.8	-	-
0.2 mg/L	17.6	21.6	-	-
	Sample Date: Sample ID: MDL/Units 1 CFU/100 mL 1 CFU/100 mL 1 CFU/100 mL 1 CFU/100 mL 5 mg/L 0.01 mg/L 0.5 mg/L 2 TCU 5 uS/cm mg/L 0.1 pH Units 0.001 mg/L 0.1 mg/L	Sample Date: Sample ID: 1828639-01 MDL/Units Drinking Water 1 CFU/100 mL ND 1 CFU/100 mL ND 1 CFU/100 mL ND 1 CFU/100 mL ND 5 mg/L 325 0.01 mg/L 0.12 0.5 mg/L 2.9 2 TCU 3 [1] 5 uS/cm 697 mg/L 259 0.1 pH Units 7.7 0.001 mg/L <0.001	Sample Date: Sample ID: Sample ID: MDL/Units 07/13/2018 08:20 1828639-01 1828639-02 Drinking Water 07/13/2018 14:12 1828639-02 Drinking Water 1 CFU/100 mL ID: ND	Sample Date: Sample ID: Sample ID: 1828639-01 Drinking Water 07/13/2018 08:20 1828639-02 Drinking Water MDL/Units ND N

Report Date: 16-Jul-2018

Certificate of Analysis

Client: McIntosh Perry Consulting Eng. (Carp

Client: McIntosh Perry Consulting Eng. (Carp)Order Date: 13-Jul-2018Client PO:Project Description: 17-0503

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Anions									
Chloride	ND	1	mg/L						
Fluoride	ND	0.1	mg/L						
Nitrate as N	ND	0.1	mg/L						
Nitrite as N	ND	0.05	mg/L						
Sulphate	ND	1	mg/L						
General Inorganics									
Alkalinity, total	ND	5	mg/L						
Ammonia as N	ND	0.01	mg/L						
Dissolved Organic Carbon	ND	0.5	mg/L						
Colour	ND	2	TČU						
Conductivity	ND	5	uS/cm						
Phenolics	ND	0.001	mg/L						
Total Dissolved Solids	ND	10	mg/L						
Sulphide	ND	0.02	mg/L						
Tannin & Lignin	ND	0.1	mg/L						
Total Kjeldahl Nitrogen	ND	0.1	mg/L						
Turbidity	ND	0.1	NTU						
Metals									
Calcium	ND	0.1	mg/L						
Iron	ND	0.1	mg/L						
Magnesium	ND	0.2	mg/L						
Manganese	ND	0.005	mg/L						
Potassium	ND	0.1	mg/L						
Sodium	ND	0.2	mg/L						
Microbiological Parameters			-						
E. coli	ND	1	CFU/100 mL						
Fecal Coliforms	ND	i	CFU/100 mL						
Total Coliforms	ND	i	CFU/100 mL						

Report Date: 16-Jul-2018

Certificate of Analysis

Client: McIntosh Perry Consulting Eng. (Carp)

Order Date: 13-Jul-2018 Client PO: **Project Description: 17-0503**

Method Quality Control: Duplicate

		Reporting		Source		%REC		RPD	
Analyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes
Anions									
Chloride	23.9	1	mg/L	23.8			0.4	10	
Fluoride	0.44	0.1	mg/L	0.44			1.1	10	
Nitrate as N	ND	0.1	mg/L	ND			0.0	20	
Nitrite as N	ND	0.05	mg/L	ND				20	
Sulphate	38.7	1	mg/L	38.3			0.9	10	
General Inorganics									
Alkalinity, total	319	5	mg/L	325			1.9	14	
Ammonia as N	0.103	0.01	mg/L	0.120			14.7	17.7	
Dissolved Organic Carbon	2.8	0.5	mg/L	2.9			4.8	37	
Colour	3	2	TČU	3			0.0	12	
Conductivity	691	5	uS/cm	697			0.9	11	
pH	7.8	0.1	pH Units	7.7			0.6	10	
Phenolics	ND	0.001	mg/L	ND				10	
Total Dissolved Solids	54.0	10	mg/L	54.0			0.0	10	
Sulphide	1.16	0.04	mg/L	1.18			1.5	10	
Tannin & Lignin	ND	0.1	mg/L	ND			0.0	11	
Total Kjeldahl Nitrogen	0.16	0.1	mg/L	0.17			4.4	10	
Turbidity	1.5	0.1	NTU	1.5			0.7	10	
Metals									
Iron	0.1	0.1	mg/L	0.1			9.6	20	
Magnesium	30.4	0.2	mg/L	29.2			3.9	20	
Manganese	0.007	0.005	mg/L	0.006			3.1	20	
Potassium	4.8	0.1	mg/L	4.6			2.5	20	
Sodium	17.8	0.2	mg/L	17.6			1.3	20	
Microbiological Parameters									
E. coli	ND	1	CFU/100 mL	ND				30	
Fecal Coliforms	ND	1	CFU/100 mL	ND				30	
Total Coliforms	ND	1	CFU/100 mL	ND				30	

Certificate of Analysis

Report Date: 16-Jul-2018 Order Date: 13-Jul-2018 Client: McIntosh Perry Consulting Eng. (Carp) Client PO: **Project Description: 17-0503**

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Anions									
Chloride	33.1	1	mg/L	23.8	92.6	78-112			
Fluoride	1.37	0.1	mg/L	0.44	92.3	73-113			
Nitrate as N	0.97	0.1	mg/L	ND	96.6	81-112			
Nitrite as N	0.911	0.05	mg/L	ND	91.1	76-107			
Sulphate	46.8	1	mg/L	38.3	84.3	75-111			
General Inorganics									
Ammonia as N	0.370	0.01	mg/L	0.120	100	81-124			
Dissolved Organic Carbon	12.6	0.5	mg/L	2.9	97.5	60-133			
Phenolics	0.022	0.001	mg/L	ND	89.9	69-132			
Total Dissolved Solids	106	10	mg/L		106	75-125			
Sulphide	0.50	0.02	mg/L		99.6	79-115			
Tannin & Lignin	1.1	0.1	mg/L	ND	111	71-113			
Total Kjeldahl Nitrogen	2.22	0.1	mg/L	0.17	103	81-126			
Metals									
Calcium	832		ug/L		83.2	80-120			
Iron	872		ug/L		87.2	80-120			
Magnesium	1050		ug/L		105	80-120			
Manganese	49.2		ug/L		98.3	80-120			
Potassium	1160		ug/L		116	80-120			
Sodium	1040		ug/L		104	80-120			

Report Date: 16-Jul-2018

Certificate of Analysis
Client: McIntosh Perry Consulting Eng. (Caro)

Client: McIntosh Perry Consulting Eng. (Carp)Order Date: 13-Jul-2018Client PO:Project Description: 17-0503

Qualifier Notes:

Login Qualifiers:

Samples received submerged in water, possibly melted ice. This condition can compromise sample integrity.

*Applies to samples: TW1-1, TW1-2

Sample Qualifiers:

1: This analysis was conducted after the accepted holding time had been exceeded.

QC Qualifiers:

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

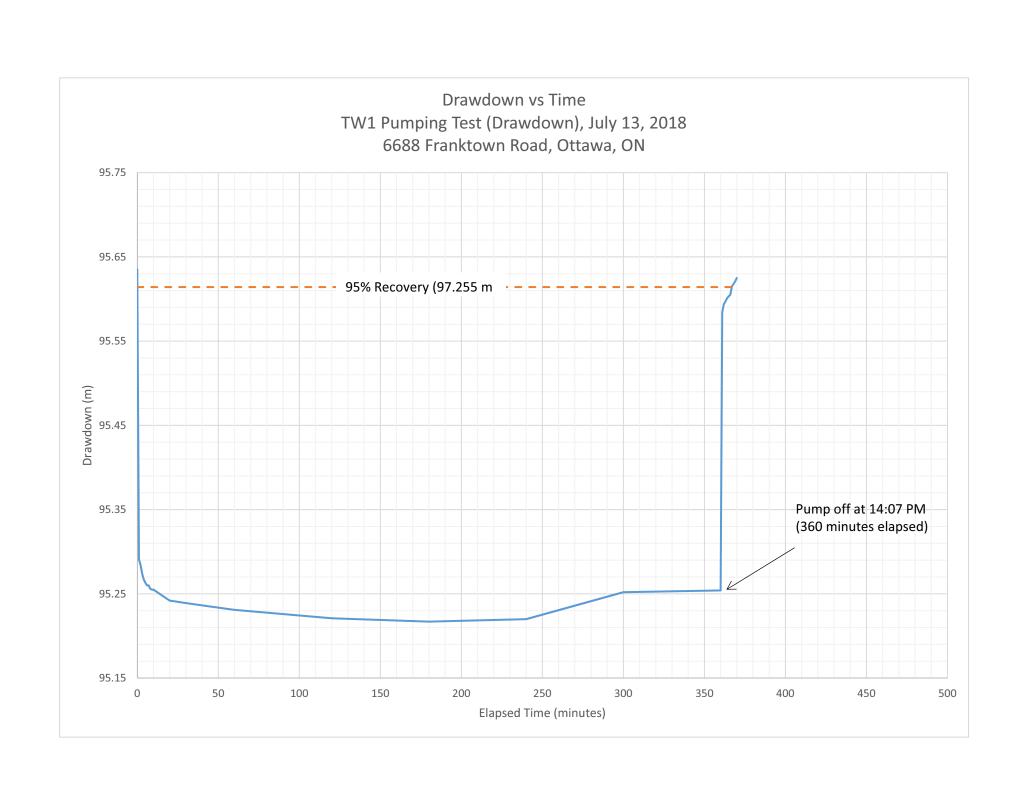
n/a: not applicable ND: Not Detected

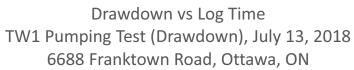
MDL: Method Detection Limit

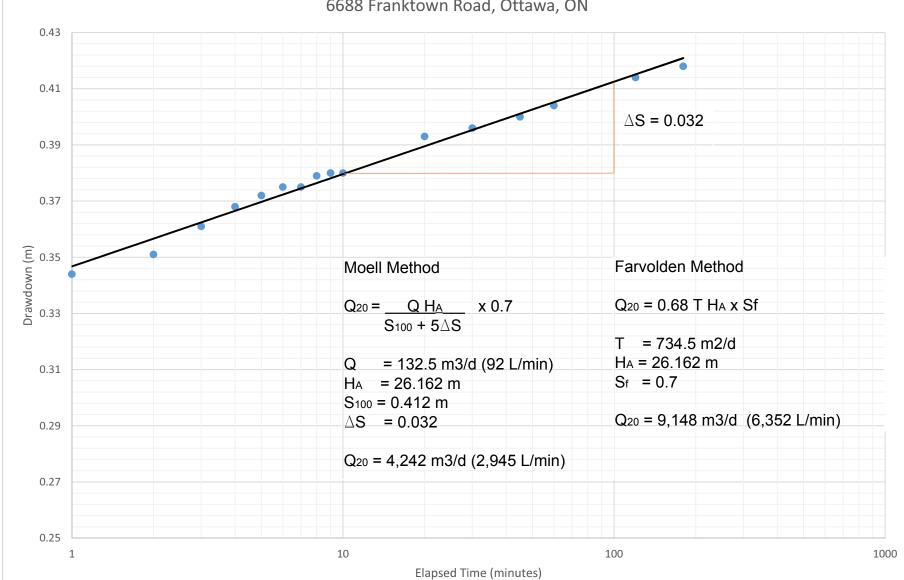
Source Result: Data used as source for matrix and duplicate samples

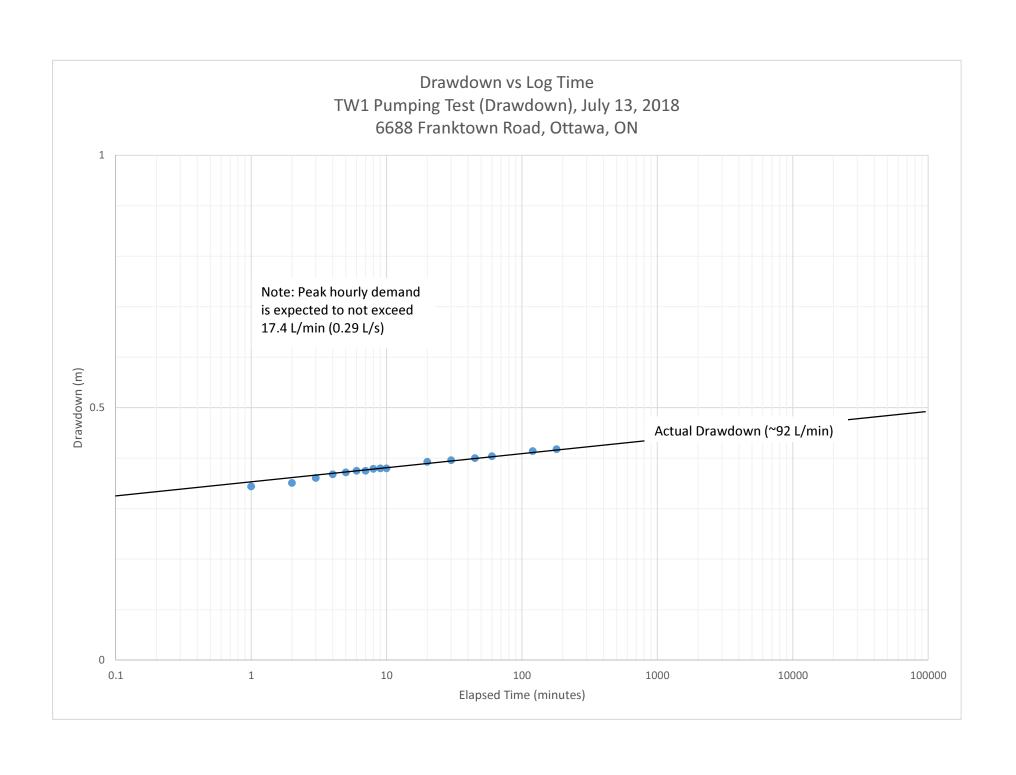
%REC: Percent recovery.

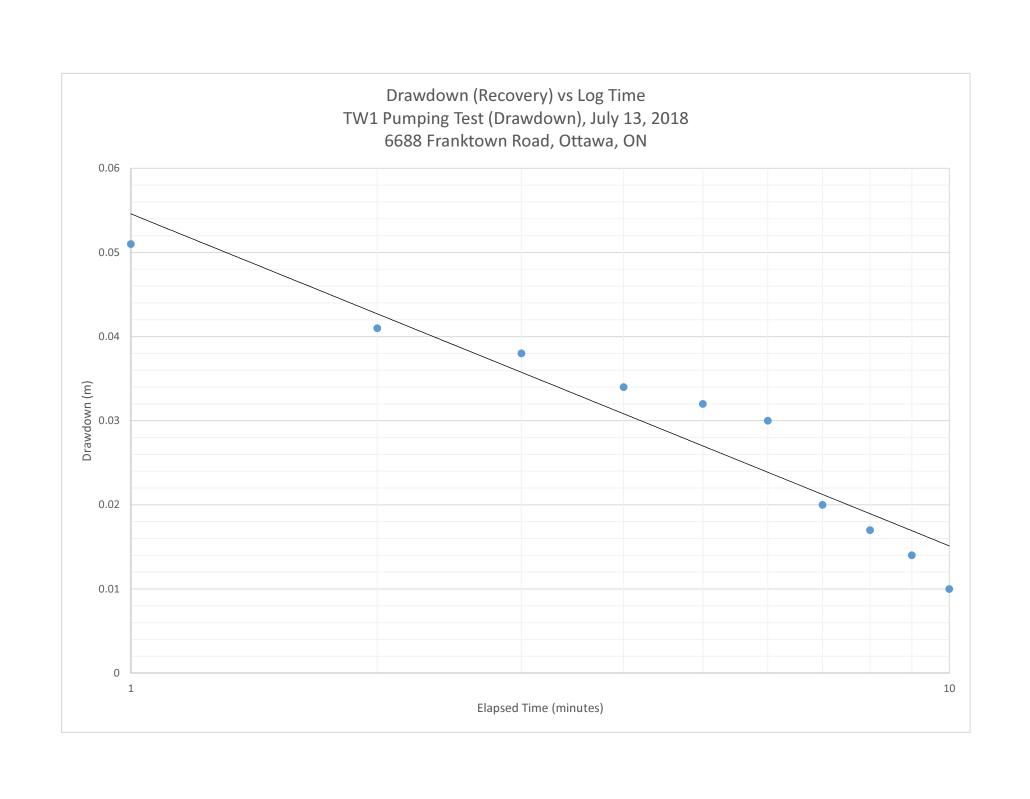
RPD: Relative percent difference.


Paracel III. 1828630


	ABORATORIES	LABO
	r	
)


Project Ref: 17-9507 Waterworks Name: Quote #: 5/0 Waterworks Number: Name: PO #: 17-0503 Address: Signat Fax: Public Health Unit:	P P	PARACE			Blvd. 4J8 3s.com	Paracel Order Number	Ontar	Chain Of Custody Ontario Drinking Water Samples Nº 6644
Name: J. Rowman Quote #: 5/0 Waterworks Number: Name: 115 Walfy Lealth PO#: 17-0503 Address: Signat was Contact: - E-mail: j.bownan(DunChthoffeng.Com. Public Health Unit: Public Health Unit:	Client Name:	Alchor len	Project Ref:		Waterworks Name:			Samples Taken By: S. H.
urs Contact: - E-mail: 17-0503 Address: Signat E-mail: 1.bowner(Durchthoffeng.com. Public Health Unit:	Contact Name:	T. Bowman	Quote #:	5/0	Waterworks Number:		Name:	S. 460K
613229 9528 Fax: J. bowner auchthoffen, com.	Address:	115 Walnes Rd	PO#:	17-0503	Address:		Signature:	
6/3 229 9528 Fax: Public Health Unit:	After Hours Contact:		E-mail:	J. bowmen Suncistaly	eng.com	,		Page of
		613229 9528	Fax:		Public Health Unit:		E1d	□1day □2day □3day □4day


Date/Time: /	Relinquished By (Print):	Relinquished By (Sign):	Comments:	10	9	8	7	6	5	4	ш	2 7	1 7		All info	Are these sa	Have LSN fo	☐ ON REG 243/07	Samples Submitted U	leiepnone:
	By (Print):	By (Sign):	Please Rus		COTT							ξ'	5	LOCATION NAME	rmation must be completed be	Are these samples for human consumption?: 🗆 Yes 🗀 No	Have LSN forms been submitted to MOE/MOHLTC?: ☐ Yes ☐ No ☐ N/A	☐ ON REG 319/08	nder: (Indicate ONLY o	1177 (19)
1	Date/Time:	Received By Driver/Depot:	h Resulta :- So		NOUTH					77.7		ブルノーと	10111	SAMPLEID	All information must be completed before samples will be processed.] Yes □ No	TC?: 🗆 Yes 🗆 No 🗆 N/A	Pother: O DIS	ne) Private Well	rdx.
			mple							1	Ī	7	0	Sample Ty	p E R	DY/D	/P	Repo	Samp	
			8									5	2	Source T	_		- 1	rtable	Sample Type:	
			md		D					H	18	5	2	Reporta	_	_	3_	: Requ	e. R.	
			book	_	R		H			1		1-1	1	Resa	Impi	e	+	iires A	= Raw	
	Date	Redek Lab:	Somple Submorged an the	-	P)			1			13.541.19	7.541.18	DATE		SAMPLE	80	WQI reporting as	R = Raw; T = Treated; D = Distributio	
. 0 1 0 1	Jume: 4 92/	MARCHE CONSTRUCTION OF THE PARTY OF THE PART	water 9		MAGN						2:12	See Soffer	0820	TIME		SAMPLE COLLECTED		on - Y =	Sample Type: R = Raw; T = Treated; D = Distribution; P = Plumbing Source Type: G = Ground Water: S = Surface Water	
	2	2	E N		1	H				H		Ь	00	# of Co	ntair	ners	+	Yes; N	mbin	
	12		Mether In C		+)							20	No	Free/Combi Residu			rine	= No	σα	
	Date	Verit	Copy (But drove		A		T	Т				7	7	Standing S / € (I			ł:			
1000	Date/Time: 13	Verified By:	of die		1			Г				, ·	П	Total Co	W 1		Coli			
	1		Civi.												HPC					1
V 117	18	de	F	I											Lead	1			Required Analyses	rant Trant
	0	8	云	1				L				<u></u>		, ,	THM	1			ired /	I do uny
		4	5-	Hi .								9	q	Subo	li	/.			Inaly	You
	4	1	7	_		-	-	_	_	-		4	4	EC		(ses	L t day
	30		•																	


APPENDIX E WATER LEVEL DATA AND ASSOCIATED ANALYSES

APPENDIX F LANGELIER SATURATION INDEX (LSI) AND RYZNAR STABILITY INDEX (RSI) CALCULATIONS

Langelier Saturation Index (LSI)

If LSI is negative: No potential to scale, the water will dissolve $CaCO_3$ If LSI is positive: Scale can form and $CaCO_3$ precipitation may occur

If LSI is close to zero: Borderline scale potential. Water quality or changes in temperature, or evaporation could change the index.

The LSI is probably the most widely used indicator of cooling water scale potential. It is purely an equilibrium index and deals only with the thermodynamic driving force for calcium carbonate scale formation and growth.

LSI = pH - pH_s

Where:

pH is the measured water pH

 $\mathbf{pH_s}$ is the pH at saturation in calcite or calcium carbonate and is defined as:

 $pH_s = (9.3 + A + B) - (C + D)$

Where:

 $A = (Log_{10} [TDS] - 1) / 10$

 $B = -13.12 \times Log_{10} (^{\circ}C + 273) + 34.55$

 $C = Log_{10} [Ca^{2+} as CaCO_3] - 0.4$

 $D = Log_{10}$ [alkalinity as $CaCO_3$]

TW1_2				
рН	6.76		Α	0.168664
TDS	486		В	2.399298
Hardness	327		С	2.114548
Alkalinity	328		D	2.515874
Temp.	9.17			
pHs =				7.23754
LSI =				-0.47754
RSI=				7.71508

Ryznar Stability Index (RSI)

RSI = 2(pHs) - pH

Where:

pH is the measured water pH

pHs is the pH at saturation in calcite or calcium carbonate

The empirical correlation of the Ryznar stability index can be summarized as follows:

RSI << 6 the scale tendency increases as the index decreases RSI >> 7 the calcium carbonate formation probably does not lead to a protective corrosion inhibitor film

RSI >> 8 mild steel corrosion becomes an increasing problem.

APPENDIX G PHOTOGRAPHIC LOG

Photo 1: Site entrance, view of Franktown Road from MW18-3

Photo 2: On-site construction laneway, view from Franktown Road

Photo 3: On-site cleared area in vicinity of proposed

APPENDIX H REASONABLE USE ASSESSMENT

McINTOSH PERRY

MEMORANDUM

To: Bing Professional Engineering Inc.

From: McIntosh Perry Consulting Engineers Ltd.

Date: July 30, 2018

Re: 6688 Franktown Road Reasonable Use Assessment

McIntosh Perry Consulting Engineers Ltd. (McIntosh Perry) was retained by Mr. Bingfeng Li of Bing Professional Engineering Inc. (Bing Professional Engineering) to conduct a Reasonable Use Assessment on a parcel of land located at 6688 Franktown Road in Ottawa, Ontario (the Site). The Site currently consists of forested land, with a cleared portion that will be utilized for future development of a place of worship. The total area of the Site is approximately 39.89 hectares (ha), while the proposed development will have a footprint of approximately 2.71 ha.

Ground surface at the Site is relatively flat. Drainage in the area of the proposed development is interpreted to reflect surface topography, and is likely controlled by ditches along Jinkinson Road. Other areas of the site likely drain to the south, toward the Richmond Fen. The regional groundwater is interpreted to flow to the south, and slightly east, toward the Jock River.

As part of the hydrogeological assessment at the site, two samples (TW1_1 and TW1_2) were collected from a newly drilled on-site water supply well (Test Well 1, TW1). The well, TW1, is located slightly south of the proposed driveway location, roughly 100 m east of Franktown Road. The samples were analyzed for the 'subdivision supply' suite of parameters, which includes nitrate, as well as a suite of metals. The nitrate concentration was below the laboratory detection limit (<0.1 mg/L) (see laboratory results attached) in both of the samples collected. The well extends approximately 61.0 m below ground surface, with bedrock detected from 3.05 m below ground surface to 61.0 m below ground surface. The well is believed to be representative of the hydrogeological conditions across the proposed development area.

A concern with rural development is the potential contamination of shallow aquifers with nitrates. As part of the terrain analysis conducted by McIntosh Perry, three monitoring wells (MW18-1, MW18-2, MW18-3) were advanced and sampled at the Site. Note that samples from MW18-1, MW18-2, and MW18-3 are referred to on the Chain of Custody as samples HydroG-BH18-1R, HydroG-BH18-2R, and HydroG-BH18-3, respectively. Each monitoring well was sampled for nitrates and nitrites (see laboratory results attached). The present background concentrations of nitrate on site is less than the laboratory method detection limit (<0.1 mg/L) (see lab results attached). For the purposes of calculating the nitrate dilution, half of the laboratory method detection limit of 0.05 mg/L was used as the background nitrate concentration. There appears to be limited upgradient sources of nitrate to groundwater in the area as most of the surrounding land is forested, and there are no large developments in the surround area on septic systems. Therefore, the potential nitrate contaminant increase form other sources has been determined to be 0 mg/L.

Large subsurface sewage disposal systems (systems with daily design flows greater than 10,000 L/day) are bound by the Ministry of the Environment, Conservation and Parks (MOECP) *Guideline B-7: Incorporation of the Reasonable Use Concept into MOEE Groundwater Management*. The maximum allowable boundary nitrate concentration is a fraction of the relevant drinking water standards. As per Guideline B-7, in this case, the maximum concentration of nitrate in groundwater is a correlation between one quarter of the health-related Ontario Drinking Water Quality Standards (ODWQS) limit for nitrate of 10 mg/L, and the background nitrate concentration. The maximum concentration of nitrate at the property boundary is calculated as follows:

$$Cm = Cb + x (Cr - Cb)$$

Where,

- Cm is the maximum concentration of nitrate that would be acceptable in the groundwater beneath the adjacent property;
- Cb is the background concentration of nitrate in the groundwater before it has been affected by human activity;
- x is 0.25 for health-related parameters, and
- Cr is the maximum concentration of nitrate in accordance with the Ontario water management guideline (ODWQS in this case), as per Guideline B-7.

Therefore,

$$Cm = 0.05 \, mg/L + (0.25)(10 \, mg/L - 0.05 \, mg/L)$$

 $Cm = 2.54 \, mg/L$

The lot size downgradient of the septic system distribution header (approximately 39.67 ha) is sufficiently large enough to accommodate the proposed septic system without increasing the nitrate concentrations above the property boundary nitrate concentration limit of 2.54 mg/L.

The nitrate concentration calculations are as follows (see nitrate concentration calculations attached for further details):

Land Area:

Approximate Land Area Downgradient of the Septic System Distribution Header (A) = 39.67 ha= 396,649.7 m²

Water Surplus:

$$Water Surplus (Ws) = Precipitation - Evapotranspiration$$

Where,

- Precipitation= 943.4 mm/year (Based off of Environment Canada's average yearly precipitation from 1981 to 2010 for the Ottawa MacDonald-Cartier International Airport), and
- Evapotranspiration= 609.52 mm/year (Based off of Thornthwaite Method, "Hydrology & Hydraulic Systems", Gupta).

McINTOSH PERRY 2

Therefore,

$$Ws = 943.4 \, mm/year - 609.52 \, mm/year$$

 $Ws = 333.88 \, mm/year$

Infiltration Factor:

$$Infiltration \ Factor \ (If) = \sum Topographic \ If + Soil \ If + Cover \ If$$

Where,

- Topographic Infiltration Factor for Flat & Rolling Terrain= 0.275;
- Soil Infiltration Factor for Sand and Silt= 0.4, and
- Cover Infiltration Factor for Woodland / Meadow= 0.15 (MOEE Hydrogeological Technical Information Requirements for Land Development Applications, 1995).

Therefore,

$$If = \sum 0.275 + 0.4 + 0.15$$
$$If = 0.825$$

Infiltration:

$$Infiltration (I) = Ws * If$$

$$I = (333.88) * (0.825)$$

$$I = 275.45 \, mm/year = 0.275 \, m/year$$

Dilution Water Available:

Dilution Water Available (Dw) =
$$A * I$$

$$Dw = (396,649.7 \ m^2) * (0.275 \ m/year)$$

$$Dw = 109,256.3 \ m^3/year \ | \frac{1000 \ L}{1 \ m^3} || \frac{1 \ year}{365 \ day} | = 299,332.3 \ L/day$$

Nitrate Concentrations:

$$Cw = Cm - Cp - Co$$

Where.

 Cw is the maximum nitrate concentration originating in the disposal site that can be permitted to reach the adjacent property and not cause Cm to be exceeded;

- Cm is the maximum concentration of nitrate that would be acceptable in the groundwater beneath the adjacent property (2.54 mg/L);
- Cp is the background concentration of nitrate in the groundwater (0.05 mg/L), and
- Co is the potential contaminant increase from other sources (0 mg/L).

Therefore,

$$Cw = 2.54 \, mg/L - 0.05 \, mg/L - 0 \, mg/L$$

 $Cw = 2.49 \, mg/L$

Effluent Nitrate Concentration

$$Effluent\ Nitrate\ Concentration\ (Ce) = \frac{(Cw*Dw) + (Cw*Qe)}{Qe}$$

Where,

Qe= Effluent Loading = 40,320 L/day/lot (Sewage daily design flow)

Using the above equation, the effluent nitrate concentration (Ce) is calculated to be 20.95 mg/L. The typical nitrate concentration in domestic wastewater effluent without tertiary treatment (i.e. treated with a septic tank and leaching bed only) is 40 mg/L. The proposed septic system will consist of Waterloo Biofilters, which are Level IV treatment units which include a recirculation loop. Waterloo Biofilters typically can achieve a nitrate reduction of 50 % to 65 %. A 20.95 mg/L effluent nitrate concentration represents a 47.62 % reduction in nitrate from standard domestic wastewater effluent, which means that a minimum of 47.62 % reduction in nitrate concentration is required to achieve the required nitrate dilution to meet the target nitrate concentration (Cw). Therefore, the nitrate reduction of 50 % to 65% for Waterloo Biofilters is sufficient to meet the required nitrate concentrations.

Conclusions

- The minimum reduction of nitrate is 47.62 % to meet an effluent nitrate concentration of 20.95 mg/L;
- The Waterloo Biofilters typically have a nitrate reduction of 50 % to 65 %, which exceeds the 47.62 % reduction requirement, and
- The current lot is a sufficient size to dilute the nitrogen to the required target nitrate concentration.

McINTOSH PERRY 4

We trust that this information is acceptable and meets the current requirements for your project. Should you have any questions or require additional information, please do not hesitate to contact the undersigned.

Respectively submitted,

Clya Walker

Eliza Walker, EIT McIntosh Perry Consulting Engineers Ltd. 613-836-2184 ext. 2204

e.walker@mcintoshperry.com

Patrick Leblanc, P.Eng., Project Engineer McIntosh Perry Consulting Engineers Ltd. 613-836-2184 ext. 2233 p.leblanc@mcintoshperry.com

h:\01 project - proposals\2017 jobs\cp\0cp-17-0503 bing proffesional eng inc_proposed temple spa_6688 franktown road\09 - septic & sewage design\cp-17-0503 reasonable use assessment_memo_july 30, 2018.docx

McINTOSH PERRY

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

McIntosh Perry Consulting Eng. (Carp)

115 Walgreen Rd. RR# 3 Carp, ON K0A 1L0 Attn: Jordan Bowman

Client PO:

Project: 17-0503 Report Date: 16-Jul-2018 Custody: 6644 Order Date: 13-Jul-2018

Order #: 1828639

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

 Paracel ID
 Client ID

 1828639-01
 TW1-1

 1828639-02
 TW1-2

Approved By:

Dale Robertson, BSc Laboratory Director

Certificate of Analysis

Client: McIntosh Perry Consulting Eng. (Carp)

Order Date: 13-Jul-2018

Client PO:

Project Description: 17-0503

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
Alkalinity, total to pH 4.5	EPA 310.1 - Titration to pH 4.5	16-Jul-18	16-Jul-18
Ammonia, as N	EPA 351.2 - Auto Colour	16-Jul-18	16-Jul-18
Anions	EPA 300.1 - IC	16-Jul-18	16-Jul-18
Colour	SM2120 - Spectrophotometric	16-Jul-18	16-Jul-18
Conductivity	EPA 9050A- probe @25 °C	16-Jul-18	16-Jul-18
Dissolved Organic Carbon	MOE E3247B - Combustion IR, filtration	16-Jul-18	16-Jul-18
E. coli	MOE E3407	13-Jul-18	14-Jul-18
Fecal Coliform	SM 9222D	13-Jul-18	14-Jul-18
Metals, ICP-MS	EPA 200.8 - ICP-MS	16-Jul-18	16-Jul-18
рН	EPA 150.1 - pH probe @25 °C	16-Jul-18	16-Jul-18
Phenolics	EPA 420.2 - Auto Colour, 4AAP	16-Jul-18	16-Jul-18
Subdivision Package	Hardness as CaCO3	16-Jul-18	16-Jul-18
Sulphide	SM 4500SE - Colourimetric	16-Jul-18	16-Jul-18
Tannin/Lignin	SM 5550B - Colourimetric	16-Jul-18	16-Jul-18
Total Coliform	MOE E3407	13-Jul-18	14-Jul-18
Total Dissolved Solids	SM 2540C - gravimetric, filtration	13-Jul-18	16-Jul-18
Total Kjeldahl Nitrogen	EPA 351.2 - Auto Colour, digestion	16-Jul-18	16-Jul-18
Turbidity	SM 2130B - Turbidity meter	16-Jul-18	16-Jul-18

Certificate of Analysis

Client: McIntosh Perry Consulting Eng. (Carp)

Client PO:

Report Date: 16-Jul-2018 Order Date: 13-Jul-2018 **Project Description: 17-0503**

Client ID:	TW1-1	TW1-2	-	-
Sample Date:	07/13/2018 08:20	07/13/2018 14:12	-	-
			-	-
MDL/Units	Dilliking water	Drinking water	-	-
1 CFU/100 mL	ND	ND	-	_
1 CFU/100 mL			-	-
1 CFU/100 mL		+	-	_
	ND	145		
5 mg/L	325	328	-	-
0.01 mg/L	0.12	0.12	-	-
0.5 mg/L	2.9	3.2	-	-
2 TCU	3 [1]	4 [1]	-	-
5 uS/cm	697	834	-	-
mg/L	259	327	-	-
0.1 pH Units	7.7	7.6	-	-
0.001 mg/L	<0.001	<0.001	-	-
10 mg/L	380	486	-	-
0.02 mg/L	<0.02	<0.02	-	-
0.1 mg/L	0.1	0.1	-	-
0.1 mg/L	0.2	0.2	-	-
0.1 NTU	1.5 [1]	1.4 [1]	-	-
•				
1 mg/L	24	65	-	-
0.1 mg/L	0.4	0.4	-	-
0.1 mg/L	<0.1	<0.1	-	-
0.05 mg/L	< 0.05	<0.05	-	-
1 mg/L	38	41	-	-
	55.7	75.4	-	-
	0.1	0.1	-	-
_	29.2	33.7	-	-
	0.006	0.006	-	-
0.1 mg/L	4.6	4.8	-	-
0.2 mg/L	17.6	21.6	-	-
	Sample Date: Sample ID: MDL/Units 1 CFU/100 mL 1 CFU/100 mL 1 CFU/100 mL 5 mg/L 0.01 mg/L 0.5 mg/L 2 TCU 5 uS/cm mg/L 0.1 pH Units 0.001 mg/L 10 mg/L 0.1 mg/L	Sample Date: Sample ID: 1828639-01 MDL/Units Drinking Water 1 CFU/100 mL ND 5 mg/L 325 0.01 mg/L 0.12 0.5 mg/L 2.9 2 TCU 3 [1] 5 uS/cm 697 mg/L 259 0.1 pH Units 7.7 0.001 mg/L 380 0.02 mg/L <0.02	Sample Date: Sample ID: Sample ID: MDL/Units 07/13/2018 08:20 1828639-01 Drinking Water 07/13/2018 14:12 1828639-02 Drinking Water 1 CFU/100 mL 1 CFU/100 mL 1 CFU/100 mL 1 CFU/100 mL ND ND ND ND ND ND 5 mg/L 0.01 mg/L 0.12 0.12 0.5 mg/L 0.5 mg/L 2.9 3.2 2 TCU 3 [1] 4 [1] 5 uS/cm 697 834 mg/L 259 327 0.1 pH Units 7.7 7.6 0.001 mg/L 380 486 0.02 mg/L 380 486 0.02 mg/L 0.02 0.02 0.1 mg/L 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	Sample Date: Sample ID: Sample ID: 1828639-01 Drinking Water 07/13/2018 18:12 - 1828639-02 - 182863639-02 - 1828639-02 - 1828639-02 - 1828639-02 - 1828639-02 - 1828639-02 - 1828639-02 - 18

Report Date: 16-Jul-2018

Certificate of Analysis

Client: McIntosh Perry Consulting Eng. (Carp

Client: McIntosh Perry Consulting Eng. (Carp)Order Date: 13-Jul-2018Client PO:Project Description: 17-0503

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Anions									
Chloride	ND	1	mg/L						
Fluoride	ND	0.1	mg/L						
Nitrate as N	ND	0.1	mg/L						
Nitrite as N	ND	0.05	mg/L						
Sulphate	ND	1	mg/L						
General Inorganics									
Alkalinity, total	ND	5	mg/L						
Ammonia as N	ND	0.01	mg/L						
Dissolved Organic Carbon	ND	0.5	mg/L						
Colour	ND	2	TČU						
Conductivity	ND	5	uS/cm						
Phenolics	ND	0.001	mg/L						
Total Dissolved Solids	ND	10	mg/L						
Sulphide	ND	0.02	mg/L						
Tannin & Lignin	ND	0.1	mg/L						
Total Kjeldahl Nitrogen	ND	0.1	mg/L						
Turbidity	ND	0.1	NTU						
Metals									
Calcium	ND	0.1	mg/L						
Iron	ND	0.1	mg/L						
Magnesium	ND	0.2	mg/L						
Manganese	ND	0.005	mg/L						
Potassium	ND	0.1	mg/L						
Sodium	ND	0.2	mg/L						
Microbiological Parameters			-						
E. coli	ND	1	CFU/100 mL						
Fecal Coliforms	ND	1	CFU/100 mL						
Total Coliforms	ND	i	CFU/100 mL						

Report Date: 16-Jul-2018

Certificate of Analysis

Client: McIntosh Perry Consulting Eng. (Carp)

Order Date: 13-Jul-2018 Client PO: **Project Description: 17-0503**

Method Quality Control: Duplicate

		Reporting		Source		%REC		RPD	
Analyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes
Anions									
Chloride	23.9	1	mg/L	23.8			0.4	10	
Fluoride	0.44	0.1	mg/L	0.44			1.1	10	
Nitrate as N	ND	0.1	mg/L	ND			0.0	20	
Nitrite as N	ND	0.05	mg/L	ND				20	
Sulphate	38.7	1	mg/L	38.3			0.9	10	
General Inorganics									
Alkalinity, total	319	5	mg/L	325			1.9	14	
Ammonia as N	0.103	0.01	mg/L	0.120			14.7	17.7	
Dissolved Organic Carbon	2.8	0.5	mg/L	2.9			4.8	37	
Colour	3	2	TČU	3			0.0	12	
Conductivity	691	5	uS/cm	697			0.9	11	
рН	7.8	0.1	pH Units	7.7			0.6	10	
Phenolics	ND	0.001	mg/L	ND				10	
Total Dissolved Solids	54.0	10	mg/L	54.0			0.0	10	
Sulphide	1.16	0.04	mg/L	1.18			1.5	10	
Tannin & Lignin	ND	0.1	mg/L	ND			0.0	11	
Total Kjeldahl Nitrogen	0.16	0.1	mg/L	0.17			4.4	10	
Turbidity	1.5	0.1	NTU	1.5			0.7	10	
Metals									
Iron	0.1	0.1	mg/L	0.1			9.6	20	
Magnesium	30.4	0.2	mg/L	29.2			3.9	20	
Manganese	0.007	0.005	mg/L	0.006			3.1	20	
Potassium	4.8	0.1	mg/L	4.6			2.5	20	
Sodium	17.8	0.2	mg/L	17.6			1.3	20	
Microbiological Parameters									
E. coli	ND	1	CFU/100 mL	ND				30	
Fecal Coliforms	ND	1	CFU/100 mL	ND				30	
Total Coliforms	ND	1	CFU/100 mL	ND				30	

Certificate of Analysis

Report Date: 16-Jul-2018 Order Date: 13-Jul-2018 Client: McIntosh Perry Consulting Eng. (Carp) Client PO: **Project Description: 17-0503**

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Anions									
Chloride	33.1	1	mg/L	23.8	92.6	78-112			
Fluoride	1.37	0.1	mg/L	0.44	92.3	73-113			
Nitrate as N	0.97	0.1	mg/L	ND	96.6	81-112			
Nitrite as N	0.911	0.05	mg/L	ND	91.1	76-107			
Sulphate	46.8	1	mg/L	38.3	84.3	75-111			
General Inorganics									
Ammonia as N	0.370	0.01	mg/L	0.120	100	81-124			
Dissolved Organic Carbon	12.6	0.5	mg/L	2.9	97.5	60-133			
Phenolics	0.022	0.001	mg/L	ND	89.9	69-132			
Total Dissolved Solids	106	10	mg/L		106	75-125			
Sulphide	0.50	0.02	mg/L		99.6	79-115			
Tannin & Lignin	1.1	0.1	mg/L	ND	111	71-113			
Total Kjeldahl Nitrogen	2.22	0.1	mg/L	0.17	103	81-126			
Metals									
Calcium	832		ug/L		83.2	80-120			
Iron	872		ug/L		87.2	80-120			
Magnesium	1050		ug/L		105	80-120			
Manganese	49.2		ug/L		98.3	80-120			
Potassium	1160		ug/L		116	80-120			
Sodium	1040		ug/L		104	80-120			

Report Date: 16-Jul-2018

Certificate of Analysis
Client: McIntosh Perry Consulting Eng. (Caro)

Client: McIntosh Perry Consulting Eng. (Carp)Order Date: 13-Jul-2018Client PO:Project Description: 17-0503

Qualifier Notes:

Login Qualifiers:

Samples received submerged in water, possibly melted ice. This condition can compromise sample integrity.

*Applies to samples: TW1-1, TW1-2

Sample Qualifiers:

1: This analysis was conducted after the accepted holding time had been exceeded.

QC Qualifiers:

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected

MDL: Method Detection Limit

Source Result: Data used as source for matrix and duplicate samples

%REC: Percent recovery.

RPD: Relative percent difference.

Paracel III: 1828639

P.	ARACE			Blvd. 4J8	Paracel Order Number	Ontar	Chain Of Custody Ontario Drinking Water Samples N0 6644
LAI	LABORATORIES			JS.com			. 1
Client Name:	Plelation learn	Project Ref:	1200-61	Waterworks Name:			Samples Taken By: S. H.
Contact Name:	J. Rowman	Quote #:	5/0	Waterworks Number:		Name:	N.794.5
Address:	115 walnearld	PO #:	17-0503	Address:		Signature:	
After Hours Contact:	· ·	E-mail:	i. bowmen June withoffens, com	leng.com	,		Page of
Telephone:	813 229 9578	Fax:		Public Health Unit:		E11d	□1 day □2 day □3 day □4 day
Samples Submitted L	Samples Submitted Under: (Indicate ONLY one)		Sample Type: R = Raw; T = Treated; D = Distribution; P = Plumbing	= Treated; D = Distr	ibution; P = Plumbing		Required Analyses

Date/Time: / 3	Relinquished By (Print):	Relinquished By (Sign):	Comments: P	10	9 7	8	7	6	5	4	ω	2 Tw	1 7 w	LOCA:	All informatio	Are these samples f	Have LSN forms bee	☐ ON REG 243/07	samples Submitted
3.7.7.7.5	1. Somma		Verse Rus		JIC									LOCATION NAME	n must be completed be	Are these samples for human consumption?: ☐ Yes ☐ No	Have LSN forms been submitted to MOE/MOHLTC?: ☐ Yes	☐ ON REG 319/08	nder: (Indicate ONLY
(Temperature:	Date/Time:	Received By Driver/Depot:	h Repulta:	-	2001	٠						Tw1-2	TW1-1	SAMPLEID	All information must be completed before samples will be processed.	☐ Yes ☐ No	LTC?: Yes No N/A	Pother: O DAS	Prince Well
Ē.		ot:	- Somple		60							7-6	0 6	Sample Tyl	p€:R	7	/p	Reportable: R	Sample
			d ns	_	7		H					7	1/1	Reporta		_	5	ble: R	Type:
			alle		D							1	i	Resa	mple	2		equire	R = R
°C Temperat	Days	RedeWer	Somple Submorged an the	1	Pa				ţ			15.201.10	17.541.18	DATE		SAMPLE COLLECTED	20	Reportable: Requires AWQI reporting as per Regulati	aw;T = Treated; D =
James + 1	81/26 Mg	MAN	Water 9		Jacon L						2:12	See Soffer	0820	TIME				er Regulation - Y = Yes;	Sample Type: R = Raw; T = Treated; D = Distribution; P = Plumbing
°°-	yp_	1	Wester 1-10 Oboster and inference		t							70	& No	# of Co Free/Combi Residu	ined (Chlor g/L		N = No	oing
pH Verified:	Date/Time:	Verified By:	Day for		H	1						7	7	Standing S/⊖(I				_	
ified:	CS ime:	d By:	n druge	-	1)_						-	Ш	Total Co		_	Coli	_	
A	7		Cary:	1		-	\vdash	-	-			-			HPC			_	Re
Ву:	8	a	江	H		-	H	H				-			THM	-	_	\dashv	quire
D	L.	1	1	1				H				0)	Q	Supa	liv	/.			d Ana
1		1	5									4	2	EC		-(Required Analyses
1	4:30																		

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

McIntosh Perry Consulting Eng. (Carp)

115 Walgreen Rd. Carp, ON K0A 1L0 Attn: Justin Cameron

Client PO:

Project: 17-0503 Report Date: 19-Jun-2018 Custody: 42032 Order Date: 15-Jun-2018

Order #: 1824668

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

 Paracel ID
 Client ID

 1824668-01
 Hydro G-BH18-3

 1824668-02
 Hydro G-BH-1R

 1824668-03
 Hydro G-BH-2R

Approved By:

Mark Froto

Mark Foto, M.Sc. Lab Supervisor

Report Date: 19-Jun-2018

Certificate of Analysis

Client: McIntosh Perry Consulting Eng. (Carp)

Order Date: 15-Jun-2018

Client PO: Project Description: 17-0503

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date Analysis Date
Anions	EPA 300.1 - IC	18-Jun-18 18-Jun-18

Report Date: 19-Jun-2018

Order Date: 15-Jun-2018

Certificate of Analysis

Client: McIntosh Perry Consulting Eng. (Carp)

Client PO: Project Description: 17-0503

				_	
	Client ID:	Hydro G-BH18-3	Hydro G-BH-1R	Hydro G-BH-2R	-
	Sample Date:	06/15/2018 13:53	06/15/2018 14:08	06/15/2018 14:20	-
	Sample ID:	1824668-01	1824668-02	1824668-03	-
	MDL/Units	Water	Water	Water	-
Anions					
Nitrate as N	0.1 mg/L	<0.1	<0.1	<0.1	-
Nitrite as N	0.05 mg/L	<0.05	<0.05	<0.05	-

Report Date: 19-Jun-2018

Order Date: 15-Jun-2018

Certificate of Analysis

Client: McIntosh Perry Consulting Eng. (Carp)

Client PO: Project Description: 17-0503

Method Quality Control: Blank

Welliou Quality Control. Dialik									
Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Anions Nitrate as N Nitrite as N	ND ND	0.1 0.05	mg/L mg/L						

Certificate of Analysis

Report Date: 19-Jun-2018 Order Date: 15-Jun-2018 Client: McIntosh Perry Consulting Eng. (Carp) Client PO: **Project Description: 17-0503**

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Anions Nitrate as N Nitrite as N	ND ND	0.1 0.05	mg/L mg/L	ND ND				20 20	

Report Date: 19-Jun-2018

Certificate of Analysis

Client: McIntosh Perry Consulting Eng. (Carp)

Order Date: 15-Jun-2018 Client PO: **Project Description: 17-0503**

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Anions	4.04	0.4		ND	404	04 440			
Nitrate as N	1.04	0.1	mg/L	ND	104	81-112			
Nitrite as N	0.903	0.05	mg/L	ND	90.3	76-117			

Certificate of Analysis

Order #: 1824668

Report Date: 19-Jun-2018 Order Date: 15-Jun-2018

Project Description: 17-0503

Client: McIntosh Perry Consulting Eng. (Carp) Client PO:

Qualifier Notes:

None

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected

MDL: Method Detection Limit

Source Result: Data used as source for matrix and duplicate samples

%REC: Percent recovery.

RPD: Relative percent difference.

TRUSTED RESPONS RELIABLE

Chain of Custody (Lab Use Only)

Nº 42032

Page of

Client Name: 100 F					Project Reference: 17-05-03						Turnaround Time:						
ontact 8	ITCF			Quote #	5/0						DID	ay		□31	3 Day		
ddress.	15 Walgreen Road Coup	ON KOP	110	PO#							□ 2 Day			r) R	← Regular		
dates	12 Mellhery Kara Lead			Emzil A	Idress - Con-	eron B.	mt in	dsh p f	WY.ce	in	1,757,750		90	1000	Duran		
elephor	16 618 · 915 · 3 752											Require					
Crit	eria: 🗆 O. Reg. 153/04 (As Amended) Table [RSC Filing	DO R	leg 558	00 DPWQO D	CCME DS	UB (Sto	rm) 🗆 S	UB (Sanitar	y) Munici	pality:_		_ 00	ther			
	Sype: S (Said Sed.) GW (Ground Water) SW (Surface Water						0	3		Requ	ired Ar	alyses			_		
Paracel Order Number:			Air Volume	of Containers	Sample		Witchte (NE	Notite									
		Matrix	Vir V	Jo #	Date	Time	2	5							-		
-	Hydro 6-8H18-3	64	~	Ī	15-Jun 24	1.53	1	1									
-		6W	1	I	4	2 08	1	1							-		
1	Hidroff - BH - IR	6W	1	1	4	2:26	1	1							/		
3	Hibro6-BH-ZR																
4					1222												
5																	
6																	
7			-	-	, 11 - 13 4 2 3												
8		_	7-2-5	+													
9			-		Starte Co.			+									
10	280 FX					_							Method	of Delivery	13		
Com	ments:												()	Jal	\$à		
Relinq	uished By (Sign) SHAW	Receiv	ed by Dr	wa Depe	st		ved at La	6		-	Venific	C		S. CAR	11.70		
Relini	nished By (Print): 54-46- 440 h.k.	Date/T	ime			Date/	Time (1015	18 4	100	Date/I	rified []	Re	20	4.21		
france?	me 15-Tun-8 / 4100 pm	Tempe	rature:		'C	Temp	enture:	10			prive	III I	10)				

0CP-17-0503 6688 Franktown Poad, Ottawa Ontario Nitrate Loading Calculations

Land Area			39.66497 ha 396649.7 m2	(downgradient)
Water Sur Ws = Preci	olus (Ws) pitation - Evapotranspiration		390049.7 III2	
Precipitation Evapotrans			943.4 mm/yr 609.5239 mm/yr	
Infiltration	Factor (If) per MO⊞ 1995	Ws	333.8761 mm/yr 0.333876 m/yr	
Topo Soil Cover	Flat & Rolling Sand and Sit Woodland / Meadow	If =	0.275 0.4 0.15 0.825	
I=Ws* If		I =	0.275448 m/yr	
Dilution W	ater Avaiable (Dw)			
Dw = A * I		Dw =	109256.3 m3/yr 299332.3 L/day	
Boundary I	d Nitrate Concentration (Cb) Nitrate Concentration (Cm) ate Concentration (Cw)	Ob = Om = Ow =	0.05 mg/L 2.5375 mg/L 2.4875 mg/L	
Effluent Ni	trate Concentration (Ce)			
Ce = (Ow *	Dw) + (Ow * Qe) / Qe			
Effluent Lo	ading (Qe) trate Concentration (Ce)	Qe = Ce =	40320 L/day/Lot 20.95507 mg/L	

Potential Evapotranspiration

Thornthwaite Method, "Hydrology & Hydraulic Systems", Gupta

Etmonth = $1.62 (10*Tm)/I)^a$

where:

 $a = 675*10^{-9}*1^{3} - 771*10^{-7}*1^{2} + 179*10^{-4}*1 + 492*10^{-3}$

 $I = sum (Tm/5)^1.514$ Stn: Ottawa, Ontario (YOW)

Month	Temp C	I	ET (cm)	Daylight	ET (cm)
			unadjusted	Factor	adjusted
January	-10.3				
Feb	-8.1				
March	-2.3				
April	6.3	1.4189	2.8610	1.13	3.2330
Мау	13.3	4.3982	6.4518	1.28	8.2583
June	18.5	7.2487	9.2396	1.29	11.9191
July	21	8.7821	10.6062	1.31	13.8942
Aug	19.8	8.0336	9.9484	1.21	12.0375
Sept	15	5.2767	7.3542	1.04	7.6483
Oct	8	2.0372	3.7105	0.94	3.4879
Nov	1.5	0.1616	0.6001	0.79	0.4741
Dec	-6.2				
1		37.35695	50.7719		60.9524
thus a =		1.0883			

Note: Daylight Factor is an adjustment factor for possible hours of sunshine based on latitude.

Monthly temperature from Environment Canada

Input data from user
Set value
Calculated by worksheet

McIntosh Perry Consulting Engineers Ltd.

Nitrate Dilution calculations_ubly 2018.xlsx

APPENDIX B - MECP WATER WELL RECORD SUMMARY

WELL_ID	COMPLETED	WELL DEPTH (m)	STATIC WATER LEVEL (m)	DEPTH TO BEDROCK (m)	BORE_HOLE_ID	FINAL STATUS	USE1	GEOLOGY	COLOR	FORMATION_T OP_DEPTH	FORMATION_EN	UNITS OF MEASUREMENT
7047631	04-Jul-07	43.3	8.6	1.52	23047631	Water Supply	Domestic	CLAY,SANDY,		0	1.52	m
7047631	04-Jul-07				23047631	Water Supply	Domestic	LIMESTONE,,		1.52	43.28	m
7053849	13-Nov-07	18.3	2.8	4.27	23053849	Water Supply	Domestic	SAND,GRAVEL,		0	4.27	m
7053849	13-Nov-07				23053849	Water Supply	Domestic	LIMESTONE,,	GREY	4.27	18.29	m
1502408	10-Jan-62	18.3	2.4	7.9	10024451	Water Supply	Livestock	CLAY,,		0	2	ft
1502408	10-Jan-62				10024451	Water Supply	Livestock	MEDIUM SAND,,		2	26	ft
1502408	10-Jan-62				10024451	Water Supply	Livestock	LIMESTONE,,	GREY	26	60	ft
1502409	15-Aug-64	19.8	1.2	2.4	10024452	Water Supply	Domestic	CLAY,TOPSOIL,		0	8	ft
1502409	15-Aug-64				10024452	Water Supply	Domestic	SANDSTONE,,		8	65	ft
1502410	12-Jun-67	6.7	2.4	-	10024453	Water Supply	Domestic	TOPSOIL,BOULD ERS,		0	6.10	ft
1502410	12-Jun-67				10024453	Water Supply	Domestic	GRAVEL,,		6.10	6.71	ft
1502428	16-Jun-48	18.3	4.6	9.1	10024471	Water Supply	Domestic	GRAVEL,,		0	30	ft
1502428	16-Jun-48				10024471	Water Supply	Domestic	LIMESTONE,,		30	60	ft
1502429	28-Jul-58	27.7	27.7	2.7	10024472	Water Supply	Domestic	CLAY,,		0	9	ft
1502429	28-Jul-58				10024472	Water Supply	Domestic	LIMESTONE,,		9	91	ft
1502430	24-Nov-60	18.3	4.6	5.2	10024473	Water Supply	Domestic	MEDIUM SAND,,	RED	0	17	ft
1502430	24-Nov-60				10024473	Water Supply	Domestic	LIMESTONE,,	GREY	17	60	ft
1510152	22-Jul-69	15.5	15.2	3.7	10032181	Water Supply	Domestic	MEDIUM SAND,,	BROWN	0	12	ft
1510152	22-Jul-69				10032181	Water Supply	Domestic	LIMESTONE,,	GREY	12	51	ft
1515832	18-Nov-76	19.5	18.9	3.7	10037772	Water Supply	Domestic	SAND,,	GREY	0	12	ft
1515832	18-Nov-76				10037772	Water Supply	Domestic	LIMESTONE,,	GREY	12	64	ft
1516119	27-Jul-77	32	1.8	4.6	10038054	Water Supply	Domestic	SAND,,	GREY	0	15	ft
1516119	27-Jul-77				10038054	Water Supply	Domestic	LIMESTONE,,	GREY	15	105	ft
1523647	10-Apr-89	22.9	1.8	15.2	10045421	Water Supply	Domestic	CLAY,,	GREY	0	50	ft
1523647	10-Apr-89				10045421	Water Supply	Domestic	LIMESTONE,,	GREY	50	75	ft
1524746	26-Jul-90	27.4	3	4.9	10046494	Water Supply	Domestic	SAND,PACKED,	BROWN	0	3	ft
1524746	26-Jul-90				10046494	Water Supply	Domestic	SAND,PACKED,	GREY	3	16	ft
1524746	26-Jul-90				10046494	Water Supply	Domestic	LIMESTONE,ME DIUM-GRAINED,	GREY	16	90	ft
1525897	01-Oct-91	30.5	3.4	11	10047632	Test Hole	Domestic	SAND,,	GREY	0	6	ft
1525897	01-Oct-91				10047632	Test Hole	Domestic	HARDPAN,GRAV EL,FRACTURED	GREY	6	36	ft
1525897	01-Oct-91				10047632	Test Hole	Domestic	LIMESTONE,,	GREY	36	100	ft
1525898	01-Oct-91	31.4	3.7	4.6	10047633	Test Hole	Domestic	SAND,,	GREY	0	6	ft
1525898	01-Oct-91				10047633	Test Hole	Domestic	HARDPAN,FRACT URED,GRAVEL	GREY	6	15	ft
1525898	01-Oct-91				10047633	Test Hole	Domestic	LIMESTONE,,	GREY	15	103	ft
1525899	01-Oct-91	19.2	3.7	1.2	10047634	Test Hole	Domestic	SAND,,	GREY	0	4	ft
1525899	01-Oct-91				10047634	Test Hole	Domestic	ROCK,FRACTURE D,	GREY	4	8	ft

			STATIC WATER	DEPTH TO						FORMATION_T	FORMATION_EN	UNITS OF
WELL_ID	COMPLETED	WELL DEPTH (m)	LEVEL (m)	BEDROCK (m)	BORE_HOLE_ID	FINAL STATUS	USE1	GEOLOGY	COLOR	OP_DEPTH	_	MEASUREMENT
1525899	01-Oct-91				10047634	Test Hole	Domestic	LIMESTONE,,	GREY	8	63	ft
1528122	05-Jun-94	19.2	1.8	4.6	10049661	Water Supply	Domestic	CLAY,FILL,	GREY	0	3	ft
1528122	05-Jun-94				10049661	Water Supply	Domestic	SAND,,	RED	3	6	ft
1528122	05-Jun-94				10049661	Water Supply	Domestic	HARDPAN,,	GREY	6	15	ft
1528122	05-Jun-94				10049661	Water Supply	Domestic	LIMESTONE,,	GREY	15	63	ft
1532075	25-May-01	36.6	3	2.7	10516525	Water Supply	Domestic	SAND,,		0	9	ft
1532075	25-May-01				10516525	Water Supply	Domestic	LIMESTONE,,	GREY	9	120	ft
1532709	11-Mar-02	67.1	1.8	4.9	10523837	Water Supply	Domestic	SAND,,		0	16	ft
1532709	11-Mar-02				10523837	Water Supply	Domestic	LIMESTONE,,	GREY	16	176	ft
1532709	11-Mar-02				10523837	Water Supply	Domestic	SANDSTONE,,	GREY	176	220	ft
1534049	26-Aug-03	55.2	15.2	8.2	10543164	Water Supply	Domestic	SAND,,	GREY	0	27	ft
1534049	26-Aug-03				10543164	Water Supply	Domestic	LIMESTONE,,	GREY	27	170	ft
1534049	26-Aug-03				10543164	Water Supply	Domestic	SANDSTONE,,	WHITE	170	181	ft
1535485	18-Mar-05	22.3	2.3	8.2	11316024	Water Supply	Domestic	CLAY,PACKED,	BROWN	0	1.82	m
1535485	18-Mar-05				11316024	Water Supply	Domestic	SAND,DRY, SAND,BOULDERS	BROWN	1.82	3.65	m
1535485	18-Mar-05				11316024	Water Supply	Domestic	,WATER- BEARING	GREY	3.65	8.22	m
1535485	18-Mar-05				11316024	Water Supply	Domestic	LIMESTONE,LAY ERED,	GREY	8.22	22.25	m
1534476	22-Dec-03	54.9	3.8	1.8	11104751	Water Supply	Domestic	TOPSOIL,FILL,	BLACK	0	1.83	m
1534476	22-Dec-03				11104751	Water Supply	Domestic	LIMESTONE,SAN DSTONE,	GREY	1.83	54.86	m
1534764	03-Jun-04	36.9	3.8	7.9	11172516	Water Supply	Domestic	SAND,GRAVEL,FI LL		0	2.4	m
1534764	03-Jun-04				11172516	Water Supply	Domestic	SAND,CLAY,	GREY	2.4	7.9	m
1534764	03-Jun-04				11172516	Water Supply	Domestic	LIMESTONE,,	GREY	7.9	36.9	m
1534947	05-Jul-04	37.5	3.8	1.5	11172699	Water Supply	Domestic	TOPSOIL,STONES ,PACKED	BROWN	0	1.52	m
1534947	05-Jul-04				11172699	Water Supply	Domestic	LIMESTONE,LAY ERED,HARD	GREY	1.52	37.48	m
1535801	22-Aug-05	18.3	3.3	8.2	11316340	Water Supply	Domestic	SAND,GRAVEL,		0	8.23	m
1535801	22-Aug-05				11316340	Water Supply	Domestic	LIMESTONE,,	GREY	8.23	18.29	m
1535802	25-Aug-05	18.9	4.8	7.3	11316341	Water Supply	Domestic	SAND,,		0	7.31	m
1535802	25-Aug-05				11316341	Water Supply	Domestic	LIMESTONE,,	GREY	7.31	18.9	m
1536011	26-Oct-05	18.9	3.7	4	11316550	Water Supply	Domestic	SAND,,		0	4.1	m
1536011	26-Oct-05				11316550	Water Supply	Domestic	LIMESTONE,,	GREY	4.1	18.9	m
1536280	10-Mar-06	21.3	2.3	4.3	11550346	Water Supply	Domestic	SAND,CLAY,		0	4.26	m
1536280	10-Mar-06				11550346	Water Supply	Domestic	LIMESTONE,,	GREY	4.26	21.33	m
1536384	21-Apr-06	50	1.3	8.2	11550450	Water Supply	Domestic	SAND,BOULDERS		0	8.23	m
1536384	21-Apr-06				11550450	Water Supply	Domestic	LIMESTONE,,	GREY	8.23	36.57	m
1536384	21-Apr-06				11550450	Water Supply	Domestic	SANDSTONE,,	GREY	36.57	49.98	m
1536667	22-Jun-06	26.2	-	3.7	11691761	Abandoned-Other		"		0	26.21	m
1536737	06-Sep-06	24.7	2.3	3	11691831	Water Supply	Domestic	SAND,,		0	3.05	m

WELL_ID	COMPLETED	WELL DEPTH (m)	STATIC WATER LEVEL (m)	DEPTH TO BEDROCK (m)	BORE_HOLE_ID	FINAL STATUS	USE1	GEOLOGY	COLOR	FORMATION_T OP_DEPTH	FORMATION_EN	UNITS OF MEASUREMENT
1536737	06-Sep-06				11691831	Water Supply	Domestic	LIMESTONE,,		3.05	24.69	m
7040907	24-Dec-06	18.6	0.9	3.4	11763343	Water Supply	Domestic	SAND,BOULDERS		0	3.35	m
7040907	24-Dec-06				11763343	Water Supply	Domestic	LIMESTONE,,	GREY	3.35	18.59	m
7108135	03-Jun-08	30.5	7.3	0.91	1001657826	Water Supply	Domestic	SAND,,		0	0.91	m
7108135	03-Jun-08				1001657826	Water Supply	Domestic	LIMESTONE,,	GREY	0.91	30.47	m
7108150	28-May-08	54.9	6.9	13.41	1001658004	Water Supply	Domestic	SAND,GRAVEL,B OULDERS		0	13.41	m
7108150	28-May-08				1001658004	Water Supply	Domestic	LIMESTONE,,	GREY	13.41	47.24	m
7108150	28-May-08				1001658004	Water Supply	Domestic	SANDSTONE,,	GREY	47.24	54.86	m
7145846	19-Mar-10	71.9	2	6.7	1002987488	Water Supply	Domestic	SAND,,	BROWN	0	22	ft
7145846	19-Mar-10				1002987488	Water Supply	Domestic	LIMESTONE,,	GREY	22	172	ft
7145846	19-Mar-10				1002987488	Water Supply	Domestic	SANDSTONE,,	GREY	172	236	ft
7166315	27-Jun-11	61.3	5.2	11.6	1003541650	Water Supply	Domestic	CLAY,STONES,PA CKED	BROWN	0	6	ft
7166315	27-Jun-11				1003541650	Water Supply	Domestic	CLAY,SAND,PAC KED	GREY	6	38	ft
7166315	27-Jun-11				1003541650	Water Supply	Domestic	LIMESTONE,SAN DSTONE,HARD	GREY	38	184	ft
7166315	27-Jun-11				1003541650	Water Supply	Domestic	SANDSTONE,,HA RD	GREY	184	201	ft
7169712	02-Aug-11	61	58.8	3.7	1003577881	Other Status		,,		0	12	ft
7169712	02-Aug-11				1003577881	Other Status		LIMESTONE,,	GREY	12	161	ft
7169712	02-Aug-11				1003577881	Other Status		SANDSTONE,,	WHITE	161	200	ft
7173742	25-Nov-11	85.3	3.7	21.9	1003622203	Water Supply	Domestic	CLAY,,	BLUE	0	48	ft
7173742	25-Nov-11				1003622203	Water Supply	Domestic	SAND,,	RED	48	68	ft
7173742	25-Nov-11				1003622203	Water Supply	Domestic	GRAVEL,,		68	72	ft
7173742	25-Nov-11				1003622203	Water Supply	Domestic	LIMESTONE,,	GREY	72	253	ft
7173742	25-Nov-11				1003622203	Water Supply	Domestic	LIMESTONE,,	GREY	253	263	ft
7173742	25-Nov-11				1003622203	Water Supply	Domestic	SANDSTONE,,	WHITE	263	272	ft
7173742	25-Nov-11				1003622203	Water Supply	Domestic	SANDSTONE,,	WHITE	272	280	ft
7206684	16-Jul-13	54.9	1.5	4.3	1004535762	Water Supply	Domestic	SAND,,		0	14	ft
7206684	16-Jul-13				1004535762	Water Supply	Domestic	LIMESTONE,,	GREY	14	102	ft
7206684	16-Jul-13				1004535762	Water Supply	Domestic	LIMESTONE,,	GREY	102	154	ft
7206684	16-Jul-13				1004535762	Water Supply	Domestic	LIMESTONE,,	GREY	154	172	ft
7206684	16-Jul-13				1004535762	Water Supply Water Supply	Domestic	LIMESTONE,,	GREY	172	180	ft
7218209	13-Mar-13	67	2.8	4.57	1004734784	Water Supply	Domestic	SAND,,DRY	BROWN	0	2.43	m
7 2 10 2 0 3	13-IVIG1-13	07	2.0	7.37	1004/24/04	νναιει συμμιγ	Domestic	JANU, UNI	DIVOVAIA	0	2.43	111
7218209	13-Mar-13				1004724784	Water Supply	Domestic	TOPSOIL,,SANDY	GREY	2.43	4.57	m
7218209	13-Mar-13				1004724784	Water Supply	Domestic	LIMESTONE,,HA RD	GREY	4.57	42.66	m
7218209	13-Mar-13				1004724784	Water Supply	Domestic	SANDSTONE,,HA RD	GREY	42.66	67.05	m
7248774	03-Aug-15	42.7	4.3	4.9	1005699380	Water Supply	Domestic	CLAY,,		0	16	ft

WELL_ID	COMPLETED	WELL DEPTH (m)	STATIC WATER	DEPTH TO	BORE_HOLE_ID	FINAL STATUS	USE1	GEOLOGY	COLOR	_	FORMATION_EN	
			LEVEL (m)	BEDROCK (m)						OP_DEPTH	D_DEPTH	MEASUREMENT
7248774	03-Aug-15				1005699380	Water Supply	Domestic	LIMESTONE,,	GREY	16	100	ft
7248774	03-Aug-15				1005699380	Water Supply	Domestic	SANDSTONE,LIM ESTONE,	WHITE	100	130	ft
7248774	03-Aug-15				1005699380	Water Supply	Domestic	SANDSTONE,LIM ESTONE,	WHITE	130	140	ft
7268450	03-Jun-16	48.8	2.6	11.9	1006196544	Water Supply	Domestic	SAND,,		0	39	ft
7268450	03-Jun-16				1006196544	Water Supply	Domestic	SANDSTONE,LIM ESTONE,	GREY	39	138	ft
7268450	03-Jun-16				1006196544	Water Supply	Domestic	SANDSTONE,LIM ESTONE,	GREY	138	146	ft
7268450	03-Jun-16				1006196544	Water Supply	Domestic	SANDSTONE,LIM ESTONE,	GREY	146	152	ft
7268450	03-Jun-16				1006196544	Water Supply	Domestic	SANDSTONE,LIM ESTONE,	GREY	152	160	ft
7307165	02-Oct-17	35	2.9	7.01	1006998312	Water Supply	Domestic	SAND,STONES,D RY	BROWN	0	1.82	m
7307165	02-Oct-17				1006998312	Water Supply	Domestic	SAND,,WATER- BEARING	WHITE	1.82	7.01	m
7307165	02-Oct-17				1006998312	Water Supply	Domestic	LIMESTONE,,ME DIUM GRAVEL	GREY	7.01	35.05	m
7318079	11-Jul-18	61	4.3	3	1007285584	Water Supply	Domestic	CLAY,SANDY,		0	10	ft
7318079	11-Jul-18				1007285584	Water Supply	Domestic	LIMESTONE,,	GREY	10	200	ft
						,		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
	MIN	6.7	0.9	0.91								
	MAX	85.3	58.8	21.9								
	AVG			6.00								

WELL_ID	COMPLETED	NELL DEPTH (m)	TATIC WATER LEVEL (m)	DEPTH TO BEDROCK (m)	BORE_HOLE_ID FI	INAL STATUS	USE1	PUMP TEST	PUMPING RATE	RECOM RATE	WATER STATE AFTER TEST	PUMP METHOD	PUMPING DURATION (h)
7047631	04-Jul-07	43.3	8.6	1.52	23047631 Water Su	pply Domest	ic	8.56,24.72,36.57 m	56.78 LPM	56.78LPM	CLOUDY	PUMP	1 h
7053849	13-Nov-07	18.3	2.8	4.27	23053849 Water Su	pply Domest	ic	2.8,6.27,12.19 m	91 LPM	91LPM	No information	PUMP	1 h
1502408	10-Jan-62	18.3	2.4	7.9	10024451 Water Su	pply Livestoc	:k	8,10,20 ft	8 GPM	10GPM	CLOUDY	PUMP	1 h
1502409	15-Aug-64	19.8	1.2	2.4	10024452 Water Su	pply Domest	ic	4,28,52 ft	10 GPM	5GPM	CLEAR	PUMP	0 h
1502410	12-Jun-67	6.7	2.4	-	10024453 Water Su	pply Domest	ic	8,12,18 ft	5 GPM	5GPM	CLEAR	PUMP	1 h
1502428	16-Jun-48	18.3	4.6	9.1	10024471 Water Su			15,, ft	GPM	3GPM	CLEAR	PUMP	1 h
1502429	28-Jul-58	27.7	27.7	2.7	10024472 Water Su				100 GPM	No information	CLEAR	PUMP	0.5 h
1502430	24-Nov-60	18.3	4.6	5.2	10024473 Water Su			15,20,20 ft	1 GPM	5GPM	CLEAR	PUMP	0.5 h
1510152	22-Jul-69	15.5	15.2	3.7	10032181 Water Su			0,20,25 ft	20 GPM	10GPM	CLEAR	BAILER	1 h
1515832	18-Nov-76 27-Jul-77	19.5	18.9 1.8	3.7 4.6	10037772 Water Su			0,50,50 ft	6 GPM 20 GPM	5GPM 10GPM	CLOUDY	PUMP PUMP	1 h 1 h
1516119 1523647	10-Apr-89	32 22.9	1.8	15.2	10038054 Water Su 10045421 Water Su			6,25,25 ft 6,30,30 ft	20 GPM	10GPM	CLOUDY	PUMP	1 h
1524746	26-Jul-90	27.4	3	4.9	10045421 Water Su			10,40,75 ft	20 GPM	5GPM	CLEAR	PUMP	1 h
1525897	01-Oct-91	30.5	3.4	11	10047632 Test Hole			11,60,50 ft	50 GPM	50GPM	CLOUDY	PUMP	1 h
1525898	01-Oct-91	31.4	3.7	4.6	10047633 Test Hole			12,80,80 ft	15 GPM	15GPM	CLOUDY	PUMP	1 h
1525899	01-Oct-91	19.2	3.7	1.2	10047634 Test Hole			12,60,60 ft	6 GPM	6GPM	CLOUDY	PUMP	1 h
1528122	05-Jun-94	19.2	1.8	4.6	10049661 Water Su			6,40,40 ft	20 GPM	15GPM	CLOUDY	PUMP	1 h
1532075	25-May-01	36.6	3	2.7	10516525 Water Su		ic	10,110,110 ft	10 GPM	10GPM	CLOUDY	PUMP	1 h
1532709	11-Mar-02	67.1	1.8	4.9	10523837 Water Su	pply Domest	ic	6,100,100 ft	30 GPM	30GPM	CLOUDY	PUMP	1 h
1534049	26-Aug-03	55.2	15.2	8.2	10543164 Water Su	pply Domest	ic	50,170,170 ft	5 GPM	5GPM	CLOUDY	PUMP	1 h
1535485	18-Mar-05	22.3	2.3	8.2	11316024 Water Su	pply Domest	ic	2.31,2.98,7.61 m	54.6 LPM	45.5LPM	CLEAR	PUMP	1 h
1534476	22-Dec-03	54.9	3.8	1.8	11104751 Water Su	pply Domest	ic	3.8,43,30.5 m	75.7 LPM	189.3LPM	CLEAR	PUMP	1 h
1534764	03-Jun-04	36.9	3.8	7.9	11172516 Water Su	pply Domest	ic	m	68.25 LPM	68.25LPM	CLEAR	PUMP	1 h
1534947	05-Jul-04	37.5	3.8	1.5	11172699 Water Su	pply Domest	ic	3.82,5.68,22.85 m		45.5LPM	CLEAR	PUMP	1 h
1535801	22-Aug-05	18.3	3.3	8.2	11316340 Water Su	pply Domest	ic	3.31,3.47,10.97 m		91LPM	CLOUDY	PUMP	1 h
1535802	25-Aug-05	18.9	4.8	7.3	11316341 Water Su	pply Domest	ic	4.77,10.67,15.24 m	91 LPM	91LPM	CLOUDY	PUMP	1 h
1536011	26-Oct-05	18.9	3.7	4	11316550 Water Su	pply Domest	ic	3.74,9.37,15.2 m	91 LPM	91LPM	CLOUDY	PUMP	1 h
1536280	10-Mar-06	21.3	2.3	4.3	11550346 Water Su	pply Domest	ic	2.26,3.66,15.23 m	91 LPM	91LPM	CLOUDY	PUMP	1 h
1536384	21-Apr-06	50	1.3	8.2	11550450 Water Su		ic	1.3,2.04,42.67 m	91 LPM	91LPM	CLOUDY	PUMP	1 h
1536667	22-Jun-06	26.2	-	3.7	11691761 Abandon	ed		-	-	-	No information	No information	No information
1536737	06-Sep-06	24.7	2.3	3	11691831 Water Su	pply Domest		m	30.28 LPM	30.28LPM	CLOUDY	PUMP	1 h
7040907	24-Dec-06	18.6	0.9	3.4	11763343 Water Su	pply Domest	ic	0.86,1.86,15.24 m		91LPM	CLOUDY	PUMP	1 h
7108135	03-Jun-08	30.5	7.3	0.91	1001657826 Water Su	pply Domest		7.32,7.64,24.38 m		91LPM	No information	No information	1 h
7108150	28-May-08	54.9	6.9	13.41	1001658004 Water Su			6.93,17.6,30.47 m		91GPM	No information	No information	1 h
7145846	19-Mar-10	71.9	2	6.7	1002987488 Water Su			6.6,6.7,100 ft		20GPM	OTHER	No information	1 h
7166315	27-Jun-11	61.3	5.2	11.6	1003541650 Water Su			16.9,37.4,120 ft	17 GPM	10GPM	CLEAR	No information	1 h
7169712	02-Aug-11	61	58.8	3.7	1003577881 Other Sta	tus Deepen Well	ing of Existing	-	-	-	No information	No information	No information
7173742	25-Nov-11	85.3	3.7	21.9	1003622203 Water Su			12,95.333,150 ft		16GPM	No information	No information	1 h
7206684	16-Jul-13	54.9	1.5	4.3	1004535762 Water Su	pply Domest	ic	4.8,8.3,100 ft	15 GPM	15GPM	No information	No information	1 h
7218209	13-Mar-13	67	2.8	4.57	1004724784 Water Su	pply Domest	ic	2.75,5.8,15.23 m		45.5LPM	CLEAR	No information	1 h
7248774	03-Aug-15	42.7	4.3	4.9	1005699380 Water Su	pply Domest	ic	14.25,43.67,120 ft	20 GPM	20GPM	No information	No information	1 h

WELL_ID	COMPLETED	WELL DEPTH (m)	STATIC WATER LEVEL (m)	DEPTH TO BEDROCK (m)	BORE_HOLE_ID	FINAL STATUS	USE1	PUMP TEST	PUMPING RATE	RECOM RATE	WATER STATE AFTER TEST	PUMP METHOD	PUMPING DURATION (h)
7268450	03-Jun-16	48.8	2.6	11.9	1006196544	Water Supply	Domestic	8.583,9,100 ft	20 GPM	20GPM	No information	No information	1 h
7307165	02-Oct-17	35	2.9	7.01	1006998312	Water Supply	Domestic	2.9,4.15,15.23 m	54.6 LPM	45.5LPM	CLEAR	No information	1 h
7318079	11-Jul-18	61	4.3	3	1007285584	Water Supply	Domestic	14.2,15.5,100 ft	20 GPM	20GPM	No information	No information	1 h

APPENDIX C - LABORATORY CERTIFICATE OF ANALYSIS

Client: Egis Canada Ltd.

115 Walgreen Rd., R.R. #3

Carp, ON K0A 1L0

Attention: Ms. Rebecca Leduc

PO#:

Invoice to: EGIS Canada Ltd. Page 1 of 13

Report Number: 3013373

Date Submitted: 2024-12-18

Date Reported: 2024-12-27

Project: 25-1134

COC #: 918293

Dear Rebecca Leduc:

Report Comments:

Please find attached the analytical results for y	your samples. If yo	ou have any questions rega	arding this report, r	please do not hesitate to call (613-727-5692

APPROVAL:	
	Addrine Thomas, Inorganics Supervisor

All analysis is completed at Eurofins Environment Testing Canada Inc. (Ottawa, Ontario) unless otherwise indicated.

Eurofins Environment Testing Canada Inc. (Ottawa, Ontario) is accredited by CALA, Canadian Association for Laboratory Accreditation to ISO/IEC 17025 for tests which appear on the scope of accreditation. The scope is available at: https://directory.cala.ca/.

Eurofins Environment Testing Canada Inc. (Ottawa, Ontario) is licensed by the Ontario Ministry of the Environment, Conservation, and Parks (MECP) for specific tests in drinking water (license #2318). A copy of the license is available upon request.

Eurofins Environment Testing Canada Inc. (Ottawa, Ontario) is accredited by the Ontario Ministry of Agriculture, Food, and Rural Affairs for specific tests in agricultural soils.

Please note: Field data, where presented on the report, has been provided by the client and is presented for informational purposes only. Guideline values listed on this report are provided for ease of use (informational purposes) only. Eurofins recommends consulting the official provincial or federal guideline as required. Unless otherwise stated, measurement uncertainty is not taken into account when determining guideline or regulatory exceedances.

Eurofins_multisample(L)44.rpt

Environment Testing

Client: Egis Canada Ltd.

115 Walgreen Rd., R.R. #3

Carp, ON K0A 1L0

Attention: Ms. Rebecca Leduc

PO#:

Invoice to: EGIS Canada Ltd.

Report Number: 3013373

Date Submitted: 2024-12-18

Date Reported: 2024-12-27

Project: 25-1134

COC #: 918293

				Lab I.D. Sample Matrix Sample Type Sampling Date Sample I.D.	1754616 GW 2024-12-18 TW1
Group	Analyte	MRL	Units	Guideline	
Anions	Cl	1	mg/L	AO 250	14
	F	0.10	mg/L	MAC 1.5	0.49
	N-NO2	0.10	mg/L	MAC 1.0	<0.10
	N-NO3	0.10	mg/L	MAC 10.0	<0.10
	SO4	1	mg/L	AO 500	39
General Chemistry	Alkalinity as CaCO3	5	mg/L	OG 30-500	279
	Colour (Apparent)	2	TCU	AO 5	10*
	Conductivity	5	uS/cm		630
	DOC	0.5	mg/L	AO 5	4.0
	pН	1.00		6.5-8.5	7.91
	Phenols	0.001	mg/L		<0.001
	S2-	0.01	mg/L	AO 0.05	<0.01
	Tannin & Lignin	0.1	mg/L		0.1
	TDS (COND - CALC)	1	mg/L	AO 500	410
	Turbidity	0.1	NTU	AO 5	1.2
Hardness	Hardness as CaCO3	1	mg/L	OG 80-100	309*
Indices/Calc	Ion Balance	0.01			1.03
Metals	Ag	0.0001	mg/L		<0.0001
	Al	0.01	mg/L	OG 0.1	<0.01
	As	0.001	mg/L	IMAC 0.01	<0.001
	В	0.01	mg/L	IMAC 5.0	0.21
	Ва	0.01	mg/L	MAC 1.0	0.10
	Be	0.0005	mg/L		<0.0005
	Ca	1	mg/L		76
	Cd	0.0001	mg/L	MAC 0.005	<0.0001

Guideline = ODWSOG

Results relate only to the parameters tested on the samples submitted. Methods references and/or additional QA/QC information available on request.

^{* =} Guideline Exceedence

Environment Testing

Client: Egis Canada Ltd.

115 Walgreen Rd., R.R. #3

Carp, ON K0A 1L0

Attention: Ms. Rebecca Leduc

PO#:

Invoice to: EGIS Canada Ltd.

 Report Number:
 3013373

 Date Submitted:
 2024-12-18

 Date Reported:
 2024-12-27

 Project:
 25-1134

 COC #:
 918293

				Lab I.D. Sample Matrix Sample Type Sampling Date Sample I.D.	1754616 GW 2024-12-18 TW1
Group	Analyte	MRL	Units	Guideline	
Metals	Со	0.0002	mg/L		<0.0002
	Cr	0.001	mg/L	MAC 0.05	<0.001
	Cu	0.001	mg/L	AO 1	<0.001
	Fe	0.03	mg/L	AO 0.3	0.23
	Hg	0.0001	mg/L	MAC 0.001	<0.0001
	K	1	mg/L		5
	Mg	1	mg/L		29
	Mn	0.01	mg/L	AO 0.05	<0.01
	Мо	0.005	mg/L		<0.005
	Na	1	mg/L	AO 200	16
	Ni	0.005	mg/L		<0.005
	Pb	0.001	mg/L	MAC 0.010	<0.001
	Sb	0.0005	mg/L	IMAC 0.006	<0.0005
	Se	0.001	mg/L	MAC 0.05	<0.001
	Sn	0.01	mg/L		<0.01
	Sr	0.001	mg/L		2.60
	Ti	0.01	mg/L		<0.01
	TI	0.0001	mg/L		<0.0001
	U	0.001	mg/L	MAC 0.02	<0.001
	V	0.001	mg/L		<0.001
	W	0.002	mg/L		<0.002
	Zn	0.01	mg/L	AO 5	<0.01
Microbiology	Escherichia Coli	0	ct/100mL	MAC 0	0
	Faecal Coliforms	0	ct/100mL		0
	Heterotrophic Plate Count	0	ct/1mL		0

Guideline = ODWSOG

* = Guideline Exceedence

Results relate only to the parameters tested on the samples submitted. Methods references and/or additional QA/QC information available on request.

Environment Testing

Client: Egis Canada Ltd.

115 Walgreen Rd., R.R. #3

Carp, ON K0A 1L0

Attention: Ms. Rebecca Leduc

PO#:

Invoice to: EGIS Canada Ltd.

Report Number: 3013373

Date Submitted: 2024-12-18

Date Reported: 2024-12-27

Project: 25-1134

COC #: 918293

				Lab I.D. Sample Matrix Sample Type Sampling Date Sample I.D.	1754616 GW 2024-12-18 TW1
Group	Analyte	MRL	Units	Guideline	
Microbiology	Total Coliforms	0	ct/100mL	MAC 0	0
Nutrients	N-NH3	0.020	mg/L		0.115
	Total Kjeldahl Nitrogen	0.100	mg/L		0.360
VOCs Surrogates	1,2-dichloroethane-d4	0	%		103
	4-bromofluorobenzene	0	%		76
	Toluene-d8	0	%		122
Volatiles	1,1,1,2-tetrachloroethane	0.5	ug/L		<0.5
	1,1,1-trichloroethane	0.4	ug/L		<0.4
	1,1,2,2-tetrachloroethane	0.5	ug/L		<0.5
	1,1,2-trichloroethane	0.4	ug/L		<0.4
	1,1-dichloroethane	0.4	ug/L		<0.4
	1,1-dichloroethylene	0.5	ug/L	MAC 14	<0.5
	1,2-dichlorobenzene	0.4	ug/L	MAC 200	<0.4
	1,2-dichloroethane	0.5	ug/L	IMAC 5	<0.5
	1,2-dichloropropane	0.5	ug/L		<0.5
	1,3,5-trimethylbenzene	0.3	ug/L		<0.3
	1,3-dichlorobenzene	0.4	ug/L		<0.4
	1,3-Dichloropropylene (cis+trans)	0.5	ug/L		<0.5
	1,4-dichlorobenzene	0.4	ug/L	MAC 5	<0.4
	Acetone	5	ug/L		<5
	Benzene	0.5	ug/L	MAC 1	<0.5
	Bromodichloromethane	0.3	ug/L		<0.3
	Bromoform	0.4	ug/L		<0.4
	Bromomethane	0.5	ug/L		<0.5
	c-1,2-Dichloroethylene	0.4	ug/L		<0.4

Guideline = ODWSOG

* = Guideline Exceedence

Results relate only to the parameters tested on the samples submitted. Methods references and/or additional QA/QC information available on request.

Environment Testing

Client: Egis Canada Ltd.

115 Walgreen Rd., R.R. #3

Carp, ON K0A 1L0

Attention: Ms. Rebecca Leduc

PO#:

Invoice to: EGIS Canada Ltd.

Report Number: 3013373

Date Submitted: 2024-12-18

Date Reported: 2024-12-27

Project: 25-1134

COC #: 918293

				Lab I.D. Sample Matrix Sample Type Sampling Date Sample I.D.	1754616 GW 2024-12-18 TW1
Group	Analyte	MRL	Units	Guideline	
Volatiles	c-1,3-Dichloropropylene	0.5	ug/L		<0.5
	Carbon Tetrachloride	0.2	ug/L	MAC 2	<0.2
	Chloroethane	0.5	ug/L		<0.5
	Chloroform	0.5	ug/L		<0.5
	Dibromochloromethane	0.3	ug/L		<0.3
	Dichlorodifluoromethane	0.5	ug/L		<0.5
	Dichloromethane	4.0	ug/L	MAC 50	<4.0
	Ethylbenzene	0.5	ug/L	MAC 140	<0.5
	Ethylene Dibromide	0.2	ug/L		<0.2
	Hexane	5	ug/L		<5
	m/p-xylene	0.4	ug/L		<0.4
	Methyl Ethyl Ketone (MEK)	2	ug/L		<2
	Methyl Isobutyl Ketone (MIBK)	5	ug/L		<5
	Methyl Tert Butyl Ether (MTBE)	2	ug/L	AO 15	<2
	Monochlorobenzene	0.5	ug/L	MAC 80	<0.5
	o-xylene	0.4	ug/L		<0.4
	Styrene	0.5	ug/L		<0.5
	t-1,2-Dichloroethylene	0.4	ug/L		<0.4
	t-1,3-Dichloropropylene	0.5	ug/L		<0.5
	Tetrachloroethylene	0.3	ug/L	MAC 10	<0.3
	Toluene	0.4	ug/L	MAC 60	<0.4
	Trichloroethylene	0.3	ug/L	MAC 5	<0.3
	Trichlorofluoromethane	0.5	ug/L		<0.5
	Vinyl Chloride	0.2	ug/L	MAC 1	<0.2
	Xylene; total	0.5	ug/L	MAC 90	<0.5

Guideline = ODWSOG

Results relate only to the parameters tested on the samples submitted. Methods references and/or additional QA/QC information available on request.

^{* =} Guideline Exceedence

Environment Testing

Client: Egis Canada Ltd.

115 Walgreen Rd., R.R. #3

Carp, ON K0A 1L0

Attention: Ms. Rebecca Leduc

PO#:

Invoice to: EGIS Canada Ltd.

 Report Number:
 3013373

 Date Submitted:
 2024-12-18

 Date Reported:
 2024-12-27

 Project:
 25-1134

 COC #:
 918293

QC Summary

An	alyte	Blank		QC % Rec	QC Limits
Run No 470279 Method AMBCOLM1	Analysis/Extraction Date 20	024-12-19 An	alyst	LV	
Escherichia Coli					
Faecal Coliforms					
Heterotrophic Plat	te Count				
Total Coliforms					
Run No 470314 Method EPA 350.1	Analysis/Extraction Date 20	024-12-19 An	alyst	SKH	
N-NH3		<0.020 mg/L		109	80-120
Run No 470322 Method SM5530D/EP/	Analysis/Extraction Date 20)24-12-19 A n	alyst	IP	
Phenols		<0.001 mg/L		105	50-120
Run No 470323 Method C SM2130B	Analysis/Extraction Date 20	024-12-19 A n	alyst	МВ	
Turbidity		<0.1 NTU		103	70-130
Run No 470360 Method EPA 200.8	Analysis/Extraction Date 20	024-12-19 An	alyst	AaN	
Silver		<0.0001 mg/L		112	80-120
Aluminum		<0.01 mg/L		113	80-120

Guideline = ODWSOG

* = Guideline Exceedence

Results relate only to the parameters tested on the samples submitted. Methods references and/or additional QA/QC information available on request.

Environment Testing

Client: Egis Canada Ltd.

115 Walgreen Rd., R.R. #3

Carp, ON K0A 1L0

Attention: Ms. Rebecca Leduc

PO#:

Invoice to: EGIS Canada Ltd.

Report Number: 3013373

Date Submitted: 2024-12-18

Date Reported: 2024-12-27

Project: 25-1134

COC #: 918293

QC Summary

Analyte	Blank	QC % Rec	QC Limits
Arsenic	<0.001 mg/L	99	80-120
Boron (total)	<0.01 mg/L	101	80-120
Barium	<0.01 mg/L	97	80-120
Beryllium	<0.0005 mg/L	104	80-120
Cadmium	<0.0001 mg/L	101	80-120
Cobalt	<0.0002 mg/L	109	80-120
Chromium Total	<0.001 mg/L	97	80-120
Copper	<0.001 mg/L	109	80-120
Iron	<0.03 mg/L	100	80-120
Mercury	<0.0001 mg/L	103	80-120
Manganese	<0.01 mg/L	108	80-120
Molybdenum	<0.005 mg/L	107	80-120
Nickel	<0.005 mg/L	112	80-120
Lead	<0.001 mg/L	109	80-120
Antimony	<0.0005 mg/L	82	80-120
Selenium	<0.001 mg/L	97	80-120
Sn	<0.01 mg/L	92	80-120
Strontium	<0.001 mg/L	98	80-120

Guideline = ODWSOG

* = Guideline Exceedence

Results relate only to the parameters tested on the samples submitted. Methods references and/or additional QA/QC information available on request.

Environment Testing

Client: Egis Canada Ltd.

115 Walgreen Rd., R.R. #3

Carp, ON K0A 1L0

Attention: Ms. Rebecca Leduc

PO#:

Invoice to: EGIS Canada Ltd.

 Report Number:
 3013373

 Date Submitted:
 2024-12-18

 Date Reported:
 2024-12-27

 Project:
 25-1134

 COC #:
 918293

QC Summary

Analyte	Blank	QC % Rec	QC Limits
Titanium	<0.01 mg/L	100	80-120
Thallium	<0.0001 mg/L	107	80-120
Uranium	<0.001 mg/L	98	80-120
Vanadium	<0.001 mg/L	102	80-120
W	<0.002 mg/L	95	80-120
Zinc	<0.01 mg/L	108	80-120
Run No 470425 Analysis/Extraction Date 20 Method SM 4110)24-12-23 Ana	alyst IP	
Chloride	<1 mg/L	100	90-110
N-NO2	<0.10 mg/L	106	90-110
N-NO3	<0.10 mg/L	99	90-110
SO4	<1 mg/L	100	90-110
Run No 470446 Analysis/Extraction Date 20 Method C SM4500-S2-D)24-12-23 Ana	alyst AsA	
S2-	<0.01 mg/L	87	80-120
Run No 470468 Analysis/Extraction Date 20 Method EPA 351.2	024-12-23 A na	alyst SKH	
Total Kjeldahl Nitrogen	<0.100 mg/L	98	70-130

Guideline = ODWSOG

* = Guideline Exceedence

Results relate only to the parameters tested on the samples submitted. Methods references and/or additional QA/QC information available on request.

Environment Testing

Client: Egis Canada Ltd.

115 Walgreen Rd., R.R. #3

Carp, ON K0A 1L0

Attention: Ms. Rebecca Leduc

PO#:

Invoice to: EGIS Canada Ltd.

Report Number: 3013373

Date Submitted: 2024-12-18

Date Reported: 2024-12-27

Project: 25-1134

COC #: 918293

QC Summary

Analyte	Blank	QC % Rec	QC Limits
Run No 470469 Analysis/Extraction Date 20 Method SM2320,2510,4500H/F	24-12-23 An	alyst AsA	
Alkalinity (CaCO3)	<5 mg/L	99	90-110
Conductivity	<5 uS/cm	100	90-110
F	<0.10 mg/L	107	90-110
pH	31.15 III.g. 2	99	90-110
·	un No 470472 Analysis/Extraction Date 2024-12-23 Ana		
DOC	<0.5 mg/L	99	80-120
Run No 470473 Analysis/Extraction Date 20 Method C SM2120C	124-12-24 An a	alyst AsA	•
Colour (Apparent)	<2 TCU	105	90-110
Run No 470478 Analysis/Extraction Date 2024-12-24 An Method M SM3120B-3500C		alyst ZS	
Calcium	<1 mg/L	98	90-110
Potassium	<1 mg/L	103	87-113
Magnesium	<1 mg/L	94	76-124
Sodium	<1 mg/L	99	82-118

Guideline = ODWSOG

* = Guideline Exceedence

Results relate only to the parameters tested on the samples submitted. Methods references and/or additional QA/QC information available on request.

Environment Testing

Client: Egis Canada Ltd.

115 Walgreen Rd., R.R. #3

Carp, ON K0A 1L0

Attention: Ms. Rebecca Leduc

PO#:

Invoice to: EGIS Canada Ltd.

Report Number: 3013373

Date Submitted: 2024-12-18

Date Reported: 2024-12-27

Project: 25-1134

COC #: 918293

QC Summary

Analyte	Blank	QC % Rec	QC Limits
Run No 470480 Analysis/Extraction Date 20 Method C SM2340B)24-12-24 A na	ilyst ZS	
Hardness as CaCO3			
Ion Balance			
TDS (COND - CALC)			
Run No 470483 Analysis/Extraction Date 20 Method C SM5550B)24-12-24 A na	ilyst AsA	
Tannin & Lignin	<0.1 mg/L	90	80-120
Run No 470537 Analysis/Extraction Date 20 Method EPA 8260)24-12-20 Ana	ilyst HS	
Tetrachloroethane, 1,1,1,2-	<0.5 ug/L	116	60-130
Trichloroethane, 1,1,1-	<0.4 ug/L	113	60-130
Tetrachloroethane, 1,1,2,2-	<0.5 ug/L	85	60-130
Trichloroethane, 1,1,2-	<0.4 ug/L	109	60-130
Dichloroethane, 1,1-	<0.4 ug/L	101	60-130
Dichloroethylene, 1,1-	<0.5 ug/L	112	60-130
Dichlorobenzene, 1,2-	<0.4 ug/L	98	60-130
Dichloroethane, 1,2-	<0.5 ug/L	120	60-130
Dichloropropane, 1,2-	<0.5 ug/L	87	60-130

Guideline = ODWSOG

* = Guideline Exceedence

Results relate only to the parameters tested on the samples submitted. Methods references and/or additional QA/QC information available on request.

Environment Testing

Client: Egis Canada Ltd.

115 Walgreen Rd., R.R. #3

Carp, ON K0A 1L0

Attention: Ms. Rebecca Leduc

PO#:

Invoice to: EGIS Canada Ltd.

 Report Number:
 3013373

 Date Submitted:
 2024-12-18

 Date Reported:
 2024-12-27

 Project:
 25-1134

 COC #:
 918293

QC Summary

Analyte	Blank	QC % Rec	QC Limits
1,3,5-trimethylbenzene	<0.3 ug/L	89	60-130
Dichlorobenzene, 1,3-	<0.4 ug/L	93	60-130
Dichlorobenzene, 1,4-	<0.4 ug/L	102	60-130
Acetone	<5 ug/L	103	60-130
Benzene	<0.5 ug/L	99	60-130
Bromodichloromethane	<0.3 ug/L	121	60-130
Bromoform	<0.4 ug/L	118	60-130
Bromomethane	<0.5 ug/L	88	60-130
Dichloroethylene, 1,2-cis-	<0.4 ug/L	99	60-130
Dichloropropene,1,3-cis-	<0.5 ug/L	76	60-130
Carbon Tetrachloride	<0.2 ug/L	120	60-130
Chloroethane	<0.5 ug/L	106	60-130
Chloroform	<0.5 ug/L	112	60-130
Dibromochloromethane	<0.3 ug/L	113	60-130
Dichlorodifluoromethane	<0.5 ug/L	99	60-130
Methylene Chloride	<4.0 ug/L	97	60-130
Ethylbenzene	<0.5 ug/L	102	60-130
Ethylene dibromide	<0.2 ug/L	119	60-130

Guideline = ODWSOG

* = Guideline Exceedence

Results relate only to the parameters tested on the samples submitted. Methods references and/or additional QA/QC information available on request.

Environment Testing

Client: Egis Canada Ltd.

115 Walgreen Rd., R.R. #3

Carp, ON K0A 1L0

Attention: Ms. Rebecca Leduc

PO#:

Invoice to: EGIS Canada Ltd.

 Report Number:
 3013373

 Date Submitted:
 2024-12-18

 Date Reported:
 2024-12-27

 Project:
 25-1134

 COC #:
 918293

QC Summary

Analyte	Blank	QC % Rec	QC Limits	
Hexane (n)	<5 ug/L	83	60-130	
m/p-xylene	<0.4 ug/L	102	60-130	
Methyl Ethyl Ketone	<2 ug/L	110	60-130	
Methyl Isobutyl Ketone	<5 ug/L	118	60-130	
Methyl tert-Butyl Ether (MTBE)	<2 ug/L	109	60-130	
Chlorobenzene	<0.5 ug/L	114	60-130	
o-xylene	<0.4 ug/L	92	60-130	
Styrene	<0.5 ug/L	103	60-130	
Dichloroethylene, 1,2-trans-	<0.4 ug/L	93	60-130	
Dichloropropene,1,3-trans-	<0.5 ug/L	91	60-130	
Tetrachloroethylene	<0.3 ug/L	127	60-130	
Toluene	<0.4 ug/L	104	60-130	
Trichloroethylene	<0.3 ug/L	99	60-130	
Trichlorofluoromethane	<0.5 ug/L	123	60-130	
Vinyl Chloride	<0.2 ug/L	107	60-130	
Run No 470540 Analysis/Extraction Date 2024-12-27 Analyst H S Method EPA 8260				
Xylene Mixture				

Guideline = ODWSOG

* = Guideline Exceedence

Results relate only to the parameters tested on the samples submitted. Methods references and/or additional QA/QC information available on request.

Environment Testing

Client: Egis Canada Ltd.

115 Walgreen Rd., R.R. #3

Carp, ON K0A 1L0

Attention: Ms. Rebecca Leduc

PO#:

Invoice to: EGIS Canada Ltd.

 Report Number:
 3013373

 Date Submitted:
 2024-12-18

 Date Reported:
 2024-12-27

 Project:
 25-1134

 COC #:
 918293

QC Summary

Analyte	Blank	QC % Rec	QC Limits	
Run No 470541 Analysis/Extraction Date 2024-12-27 Analyst H S				
Method EPA 8260				
Dichloropropene,1,3-				

Guideline = ODWSOG

* = Guideline Exceedence

Results relate only to the parameters tested on the samples submitted. Methods references and/or additional QA/QC information available on request.

APPENDIX D - CERTIFICATE OF CALIBRATION

CERTIFICATE OF CALIBRATION

The HORIBA Instrument listed below has been inspected and calibrated following the Manufacturer's specifications and methods.

Instrument Model:	HORIBA U-52	Serial Number:	X8RGLCRY	Calibration Date: D	ecember 11, 2024
2-POINT pH	CONDUCTIVITY	TURBIDITY	DISSOLVED OXYGEN	OXIDIZATION-REDUCTION POTENTIAL	TEMPERATURE
4.00 pH, 7.00 pH	4.49mS/cm ZERO CHECKED	0 & 100 NTU	8.26 mg/L @ 25.0 DegC SODIUM SULFITE ZERO	240mV	Fisher Scientific s/n 230606647
AutoCal 4.00 pH Solution LOT # 4GI0133	AutoCal Solution LOT # 4GI0133	AutoCal Solution LOT# 4GI0133	Oakton Zero Solution LOT# 805004	Hanna ORP LOT # 9289	
Expiry Date: September 1, 2025	Expiry Date: September 1, 2025	Expiry Date: September 1, 2025	Expiry Date: June 1, 2026	Expiry Date: October 1, 2028	
pH 7.00 LOT # 4GF0046	@25 DegC LOT # 4GI0133	Turb. 100 NTU LOT # A4152			
Expiry Date: June 1, 2026		Expiry Date: June 1, 2026			

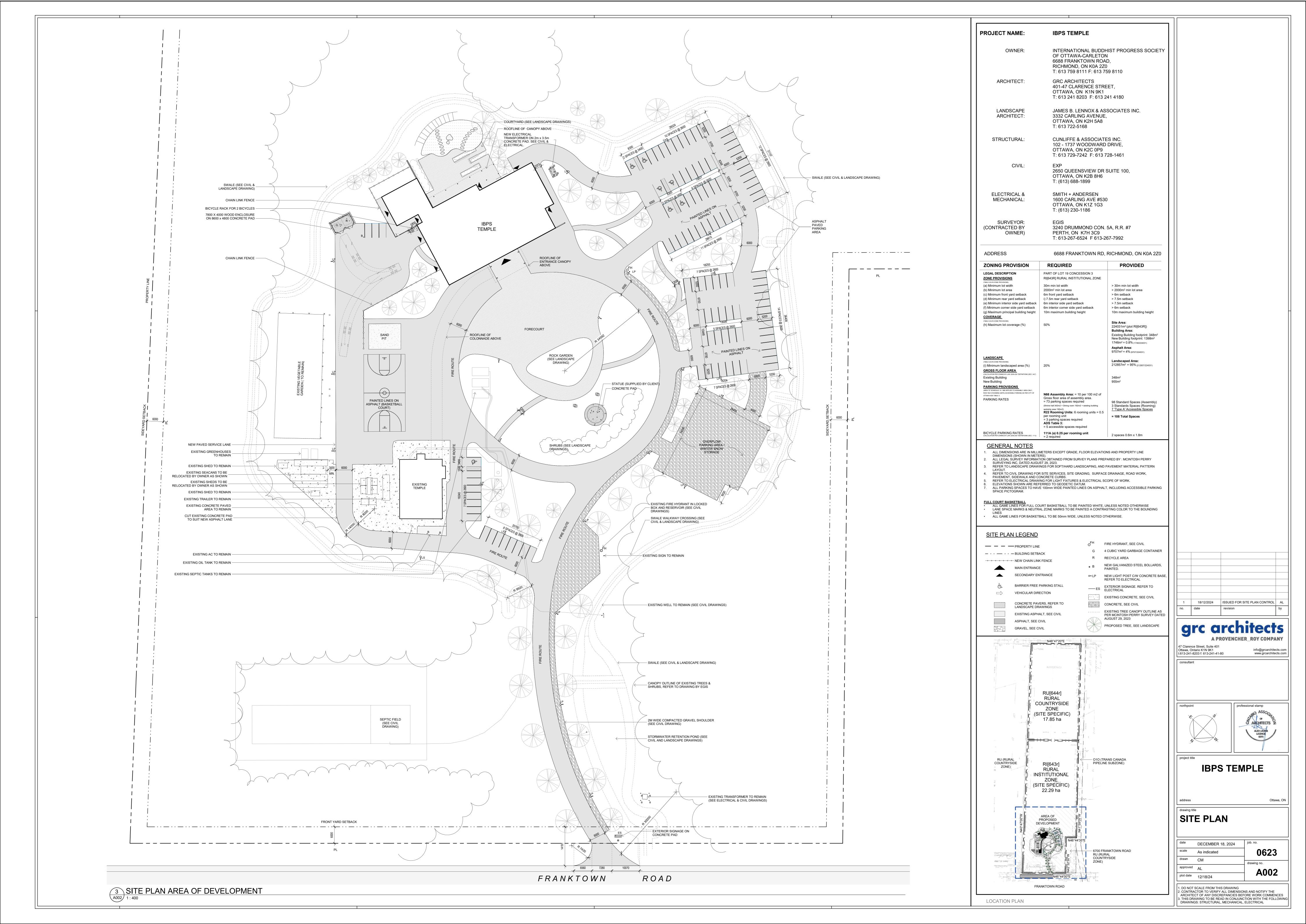
The calibration standard used is considered to be a certified standard and is traceable to the National Institute of Standards and Technology (NIST). Certificate of Analysis is available upon request.

The instrument indicated above is now certified to be operating within the Manufacturer's specifications. This does not eliminate the requirement for regular maintenance and pre-use sensor response checks in order to ensure continued complete and accurate operating condition.

Certified By: Jason Ashe

MAXIM Environmental and Safety Inc.

sales@maximenvironmental.com www.maximenvironmental.com



APPENDIX E - SITE PLAN AREA OF DEVELOPMENT- GRC ARCHITECTS (DECEMBER 18, 2024)

