Geotechnical Engineering

Environmental Engineering

Hydrogeology

Geological Engineering

Materials Testing

Building Science

Archaeological Services

Paterson Group Inc.

Consulting Engineers 154 Colonnade Road South Ottawa (Nepean), Ontario Canada K2E 7J5

Tel: (613) 226-7381 Fax: (613) 226-6344 www.patersongroup.ca

patersongroup

Phase II-Environmental Site Assessment

16 and 20 Hamilton Avenue North Ottawa, Ontario

> Prepared For Surface Developments

> > October 22, 2018 Report: PE4341-1

TABLE OF CONTENTS

1.0	INTR	RODUCTION	1
	1.1	Site Description	1
	1.2	Current and Proposed Future Uses	1
	1.3	Applicable Site Condition Standard	1
2.0	BAC	KGROUND INFORMATION	2
	2.1	Physical Setting	2
3.0	SCO	PE OF INVESTIGATION	2
	3.1	Overview of Site Investigation	2
	3.2	Media Investigated	2
	3.3	Phase I Conceptual Site Model	3
	3.4	Deviations from Sampling and Analysis Plan	5
	3.5	Impediments	
4.0	INVE	STIGATION METHOD	5
	4.1	Subsurface Investigation	5
	4.2	Soil Sampling	
	4.3	Field Screening Measurements	6
	4.4	Groundwater Monitoring Well Installation	6
	4.5	Groundwater Sampling	7
	4.6	Analytical Testing	7
	4.7	Residue Management	
	4.8	Elevation Surveying	9
	4.9	Quality Assurance and Quality Control Measures	
5.0	REV	IEW AND EVALUATION	10
	5.1	Geology	
	5.2	Groundwater Elevations, Flow Direction, and Hydraulic Gradient	
	5.3	Fine-Medium Soil Texture	11
	5.4	Soil: Field Screening	11
	5.5	Soil Quality	11
	5.6	Groundwater Quality	14
	5.7	Quality Assurance and Quality Control Results	
	5.8	Phase II Conceptual Site Model	19
6.0		ICLUSIONS	
7.0	STA	TEMENT OF LIMITATIONS	27

List of Figures

Figure 1 - Key Plan Drawing PE4341-1 – Test Hole Location Plan Drawing PE4341-2 – Analytical Testing Plan – Soil Drawing PE4341-3 – Analytical Testing Plan - Groundwater

List of Appendices

Appendix 1 Sampling and Analysis Plan Soil Profile and Test Data Sheets Symbols and Terms Laboratory Certificates of Analysis

Executive Summary

A Phase II-ESA was conducted for 16 and 20 Hamilton Avenue North, Ottawa, Ontario. The focus of the Phase II-ESA was to assess APECs identified in the historical research and to confirm general soil and groundwater quality at the APEC locations.

The Phase II-ESA consisted of the drilling of nine (9) boreholes, and the installation of seven (7) groundwater monitoring wells to assess soil and groundwater quality at the subject site. Four previously existing groundwater monitoring wells were identified on the subject site. No information regarding the construction of these monitoring wells was made available.

Soil samples obtained from the boreholes were screened using visual observations and organic vapour measurements. Based on the screening results, samples were selected for analysis of petroleum hydrocarbons, fractions 1 through 4 (PHCs F1-F4), benzene, toluene, ethylbenzene and xylenes (BTEX), metals, and Polycyclic Aromatic Hydrocarbons (PAHs). Several analysed fill samples contained concentrations of PAHs and Metals in excess of the selected MECP standards. The fill material throughout the subject site is considered to be impacted.

Groundwater samples obtained from BH1, BH2, BH3, BH6, BH8, and BH9 were submitted for analytical testing for a combination of metals, PAHs, BTEX, and PHCs (F1-F4). All the tested parameters in the groundwater samples were in compliance with the selected MECP standards with the exception of several PAH parameters from BH3. Based on the analytical results from the surrounding monitoring wells, the impacted groundwater appears to be localized to the area surrounding BH3.

Recommendations

Soil

During redevelopment of the subject site a remediation program can be undertaken consisting of the excavation and disposal of the impacted material at an approved waste disposal facility.

Groundwater

Any impacted groundwater encountered during excavation work should be removed from site by a licenced pumping contractor or treated using an on-site pump and treat unit during the redevelopment work. If the groundwater monitoring wells are not going to be used in the future, they should be decommissioned by a licensed contractor in accordance with Ontario Regulation 903. However, we recommend that they be maintained for future groundwater monitoring purposes.

1.0 INTRODUCTION

At the request of Surface Developments, Paterson Group conducted a Phase II Environmental Site Assessment of the properties located at 16 and 20 Hamilton Avenue, in the City of Ottawa, Ontario.

1.1 Site Description

Address:	16 and 20 Hamilton Avenue North, Ottawa, Ontario.
Legal Descriptions:	Part Lots 3 and 4, Plan 58 Hamilton West, City of Ottawa, Part Lots 3 and 4, Plan 157 Hamilton West, City of Ottawa
Property Identification Numbers:	04035 0139 and 04035 0137.
Location:	The subject site is located on the west side of Hamilton Avenue North between Wellington Street West and Armstrong Avenue, in Ottawa, Ontario.
Latitude and Longitude:	45° 24' 03" N, 75° 43' 50" W
Configuration:	Rectangular
Site Area:	1,100 m ²

1.2 Current and Proposed Future Uses

16 Hamilton Avenue North is currently a vacant lot used for parking. 20 Hamilton Avenue North is currently a one storey commercial building used as an office for a workers union.

It is Paterson's understanding that the property is to be redeveloped with a mixed use commercial and residential development.

1.3 Applicable Site Condition Standard

The site condition standards for the property were obtained from Table 3 of the document entitled "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act", prepared by the Ontario Ministry of the Environment, Conservation and Parks (MECP), April 2011. The MECP Table 3 Standards are based on the following considerations:

- □ Coarse-grained soil conditions
- □ Full Depth soil conditions
- □ Non-potable groundwater conditions
- Residential land use

Residential Land Use Standards were chosen based on the proposed future land use of the subject site.

2.0 BACKGROUND INFORMATION

2.1 Physical Setting

The subject site is located on the west side of Hamilton Avenue North, between Armstrong Street and Wellington Street West, in the City of Ottawa in a mixed residential and commercial urban area. The subject site is approximately at grade with the adjacent properties with overland flow to the catch basins on Hamilton Avenue North.

3.0 SCOPE OF INVESTIGATION

3.1 Overview of Site Investigation

The subsurface investigation consisted of drilling of nine (9) boreholes on the Phase II ESA property. Boreholes were drilled to the maximum depth of 5.82 m below ground surface. Seven of the boreholes were instrumented with groundwater monitoring wells.

3.2 Media Investigated

During the subsurface investigation, soil and groundwater samples were obtained and submitted for laboratory analysis. There are no water bodies present in, on, or under the Phase II ESA property and as such, sediment sampling was not part of the Phase II ESA. The rationale for sampling and analyzing these media is based on the Contaminants of Potential Concern identified in the Phase I ESA Conceptual Site Model, discussed in Subsection 3.3.

3.3 Phase I Conceptual Site Model

Geological and Hydrogeological Setting

The Geological Survey of Canada website on the Urban Geology of the National Capital Area were consulted as part of this assessment. Based on this information, bedrock in the area of the site consists of interbedded limestone and dolostone of the Gull River Formation. Based on the maps, the thickness of overburden ranges from 3 to 5 m. Overburden consists of glacial till deposits.

Contaminants of Potential Concern

Based on the areas of potential environmental concern on the subject site, the following Contaminants of Potential Concern (CPCs) were targeted:

- PAHs this suite of parameters encompasses various complex hydrocarbons, commonly associated with coal and/or combustion. These parameters are considered to be associated with the former foundry on the subject site.
- Metals (including Hg, Cr VI, and B Hot Water Soluble (where applicable)) this suite of parameters encompasses various metals for which MECP standards exist. These parameters are considered to be associated with the former foundry on the subject site.
- BTEX this suite of parameters includes Benzene, Toluene, Ethylbenzene, and Xylenes (BTEX), associated with fuel oil. These parameters were selected as CPCs for the subject site due to the existing automotive service garage to the south of the subject site. BTEX are considered to be present in both the soil and groundwater.
- Petroleum Hydrocarbons Fractions 1 through 4 (PHCs F1-F4) this suite of parameters encompasses gasoline (Fraction 1), diesel and fuel oil (Fraction 2), and heavy oils (Fractions 3 and 4). These parameters are considered to be associated with the former automotive service garage to the south of the subject site.

Buildings and Structures

The subject site is occupied by a single storey wood framed commercial building located on the southern portion of the subject site. The building is currently used for office purposes. The building is heated and cooled using a natural gas fired rooftop HVAC system.

Water Bodies

No creeks, rivers, streams, lakes or any other water body was identified in a 250m radius. The majority of the study area consists of residential dwellings, commercial businesses, and roads. The Ottawa River is the closest significant water body and is located approximately 1km north of the subject site.

Areas of Natural Significance

A search for areas of natural significance and features within a 250m radius study area was conducted on the Ontario Ministry of Natural Resources (MNR) website and the search did not reveal any areas of natural significance within a 250m radius.

Drinking Water Wells

The search returned 48 water well records within a 250m radius, all of which were drilled between 2007 and 2016. Based on the availability of municipal water, it is assumed that these wells are for groundwater monitoring purposes. The majority of these wells are clustered around an existing retail fuel outlet approximately 55m to the east and a former industrial facility approximately 55m to the subject site. Based on the cross and/or downgradient locations of these well clusters of the wells at these locates are not considered to represent an area of environmental concern to the subject site.

Neighbouring Land Use

Neighbouring land use in a 250m radius is primarily residential and commercial with a City of Ottawa park located directly to the east of the subject site.

Potentially Contaminating Activities and Areas of Potential Environmental Concern

The Areas of Potential Environmental Concern (APEC) identified in the Phase II ESA study area are summarized in Section 4.3 of this report. Other potentially contaminating activities (PCAs) within a 250m radius are not considered to pose an environmental concern to the Phase II ESA Property due to their separation distance and/or location downgradient or cross-gradient of the Phase II ESA property.

Assessment of Uncertainty and/or Absence of Information

A complete historical review as part of a Phase I ESA has yet not been completed for the subject site. However based on prior knowledge of the area, previous Phase I ESA work completed by Paterson for nearby properties, and a brief historical review completed prior to the start of the Phase II ESA program no additional significant environmental concerns are expected to be identified for the subject site.

3.4 Deviations from Sampling and Analysis Plan

The Sampling and Analysis Plan for this project is included in Appendix 1 of this report. No deviations from the Sampling and Analysis Plan were noted.

3.5 Impediments

Two impediments were identified during the Phase II ESA program. Construction on the north side of the subject site prevented drilling immediately adjacent to the north property line and interior walls, sub-slab services, and office finishes provided only limited locations for the placement of the interior boreholes. These impediments are not considered to have significantly affected the conclusions of this report.

4.0 INVESTIGATION METHOD

4.1 Subsurface Investigation

The subsurface investigation was carried out in three stages on June 13, August 10, and September 7, 2018, and consisted of the drilling of nine boreholes on the subject site. The boreholes drilled during the June 13, 2018 field program were placed to address the APECs identified during the historical review. A delineation program was started on August 10, 2018 to complete work on the exterior of the subject site and the interior work was completed on September 7, 2018. Boreholes BH1 to BH7 were drilled using a truck-mounted CME 55 power auger drill rig and boreholes BH8 and BH9, which were located inside the building, were drilled using portable drilling equipment. All drilling occurred under full-time supervision of Paterson personnel. Borehole locations are shown on Drawing PE4341-1 - Test Hole Location Plan, appended to this report.

4.2 Soil Sampling

As part of the subsurface investigation a total of 67 soil samples were obtained from the boreholes by means of split spoon sampling and direct sampling from auger flights. Split spoon samples were taken continuously from ground surface up to 5.82 m below existing grade, within the water table. The depths at which split spoon and auger samples were obtained from the boreholes are shown as "**SS**", and "**AU**" respectively on the Soil Profile and Test Data Sheets, appended to this report.

Site soils consist of a layer of fill material (predominantly clayey topsoil with some demolition debris), and till, over grey limestone. Practical refusal to augering was encountered between 5.0m and 5.82m below the existing grade.

4.3 Field Screening Measurements

All soil samples collected were submitted to a preliminary screening procedure, which included visual screening for colour and evidence of metals, as well as screening with a photo ionization detector (PID). The device's detection limit is 0.1 ppm, with a precision of \pm 0.1 ppm.

The soil vapours were measured by inserting the analyzer probe into the nominal headspace above the soil sample. Samples were then agitated and the peak readings recorded. Vapour readings were largely negligible and varied from 0 ppm to 1.5 ppm. Vapour readings are noted on the Soil Profile and Test Data Sheets in Appendix 1.

Soil samples were selected for analysis based on visual appearance, location, and vapour readings.

4.4 Groundwater Monitoring Well Installation

Seven (7) groundwater monitoring wells were installed during the drilling programs carried out by George Downing Estate Drilling of Hawkesbury, Ontario, under full-time supervision by Paterson personnel. The monitoring wells consisted of 52 mm diameter Schedule 40 threaded PVC riser and screen. An additional two monitoring wells were installed by CCC Drilling of Ottawa, Ontario under the full-time supervision of Paterson personnel. The monitoring wells consisted of 30 mm diameter Schedule 40 threaded PVC riser and screen. A sand pack consisting of silica sand was placed around the screen, and a bentonite seal was placed above the screen to minimize cross-contamination.

Monitoring well construction details are provided on the Soil Profile and Test Data Sheets in Appendix 1.

Four additional monitoring wells were identified onsite by Paterson during the field program. No information was provided for these monitoring wells and the details of their construction is unknown. The location of the monitoring wells by others is shown on Drawing PE4341-1 – Test Hole Location Plan.

A summary of the monitoring well construction details is provided below in Table 1. Borehole elevations were surveyed to a geodetic benchmark with an elevation of 64.86 masl, provided by Farley, Smith and Dennis Surveying Ltd. The location of the benchmark is shown on PE4341-1 Test Hole Location Plan

Table	Table 1: Monitoring Well Construction Details											
Well ID	Ground Surface Elevation	Total Depth (m BGS)	Screened Interval (m BGS)	Sand Pack (m BGS)	Bentonite Seal (m BGS)	Casing Type						
BH1	63.92	5.23	2.23-5.23	1.23-5.23	0.10-1.23	Flushmount						
BH2	64.18	5.61	2.61-5.61	1.61-5.61	0.10-1.61	Flushmount						
BH3	63.81	5.74	2.74-5.74	1.74-5.74	0.10-1.74	Flushmount						
BH4	63.83	5.82	2.82-5.82	1.82-5.82	0.10-1.82	Flushmount						
BH6	63.63	5.00	2.00-5.00	1.75-5.00	0.10-1.75	Flushmount						
BH8	63.96	5.13	2.13-5.13	1.50-5.13	0.10-1.50	Flushmount						
BH9	63.96	5.03	2.03-5.03	1.50-5.03	0.10-1.50	Flushmount						

4.5 Groundwater Sampling

Groundwater sampling protocols were followed using the MECP document entitled "Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario", dated May 1996. Groundwater samples were obtained from each monitoring well, using dedicated sampling equipment. Standing water was purged from each well prior to sampling. Samples were stored in coolers to reduce analyte volatilization during transportation. Details of our standard operating procedure for groundwater sampling are provided in the Sampling and Analysis Plan in Appendix 1.

4.6 Analytical Testing

Based on the guidelines outlined in the Sampling and Analysis Plan appended to this report, the following soil and groundwater samples were submitted for analysis:

Table 2: S	oil Samples Sub	omitte	ed			
	-	Para	meters	s Analy	ysed	
Sample ID	Sample Depth/ Stratigraphic Unit	Metals	PAHs	PHCs	втех	Rationale
June 13, 201	8				•	
BH1-SS2	0.76-1.37m, Fill	Х				Investigate the potentially
BH2-SS2	0.76-1.37m, Fill	Х	Х			deleterious fill material identified
BH3-SS2	0.76-1.37m, Fill		Х			on site.
August 10, 2	018					
BH4-SS3	1.52-2.13m, Glacial Till		Х			Delineate the impacted fill material vertically.
BH5-SS4	2.29-2.90m, Glacial Till		Х	Х	Х	
BH6-SS2	0.76-1.37m, Fill		Х			Delineate the impacted fill
BH7-SS3	1.52-2.13m, Silty Clay		Х			material horizontally.
September 7	, 2018					
BH8-G1	0.41 – 0.53 m, Fill	х				Assess the potentially deleterious fill material identified underneath the building slab.
BH8-SS5	1.83-2.44m, Glacial Till			х	x	Assess the soil near the groundwater table to address the automotive service garage to the south.
BH9-SS1	0.30-0.91m, Fill	Х				Assess the potentially deleterious fill material identified underneath the building slab
BH9-SS4	2.13-2.29m, Glacial Till			х	x	Assess the soil near the groundwater table to address the automotive service garage to the south.

Table 3: Groundwater Samples Submitted									
	Saraanad		rameters	s Analy	sed				
Sample ID	Screened Interval/ Stratigraphic Unit	PAHs	VOCs	Metals	PHCs and BTEX	Rationale			
June 20, 201	June 20, 2018								
BH1-GW1	2.23-5.23m, Glacial Till	х	Х	х		Assess the former use of the property as a foundry and			
BH2-GW1	2.61-5.61m, Glacial Till			х		machine shop			
BH3-GW1	2.74-5.74m, Glacial Till	х	х						
August 15, 2	2018								
BH4-GW1	2.82-5.82m, Glacial Till	Х				Delineate the impacted groundwater identified during			
BH6-GW1	2.00-5.00m, Glacial Till	х				the June 2018 investigation.			
MWB-GW1	Unknown	Х				Delineate the groundwater			
MWD-GW1	Unknown	х				using the existing monitoring wells on site.			
September 2	20, 2018								
BH8-GW1	2.13-5.13m, Glacial Till	Х		Х	Х	Assess the groundwater			
BH9-GW1	2.03-5.03m, Glacial Till	Х		Х	Х	condition underneath the building			

Paracel Laboratories (Paracel), of Ottawa, Ontario, performed the laboratory analysis on the samples submitted for analytical testing. Paracel is a member of the Standards Council of Canada/Canadian Association for Laboratory Accreditation (SCC/CALA). Paracel is accredited and certified by SCC/CALA for specific tests registered with the association.

4.7 Residue Management

Soil cuttings, purge water and fluids from equipment cleaning were retained onsite.

4.8 Elevation Surveying

Paterson completed a borehole elevation survey as part of the field program. The borehole elevations were referenced to a geodetic benchmark located on the east side of Hamilton Avenue North, provided by Farley, Smith and Dennis Surveyors Limited. The benchmark is shown on Drawing PE4341-1 – Test Hole Location Plan.

4.9 Quality Assurance and Quality Control Measures

A summary of quality assurance and quality control (QA/QC) measures, including sampling containers, preservation, labelling, handling, and custody, equipment cleaning procedures, and field quality control measurements is provided in the Sampling and Analysis Plan in Appendix 1.

5.0 REVIEW AND EVALUATION

5.1 Geology

Site geology details are provided in the Soil Profile and Test Data Sheets provided in Appendix 1. Site soils consist of:

- Asphaltic concrete was encountered at surface in each of the exterior boreholes, while concrete was encountered at the interior borehole locations (BH8 and BH9)
- □ Fill material was encountered below the asphaltic concrete/concrete to depths ranging from 0.91 m to 1.52m below grade. The fill consisted primarily of clayey topsoil with some demolition debris.
- □ Native in-situ stiff silty clay was found in some boreholes below the fill material.
- Native in-situ glacial till was encountered either below the clay or below the fill, extending to the inferred bedrock surface at depths ranging from 4.42m to 5.82m below the existing grade.

5.2 Groundwater Elevations, Flow Direction, and Hydraulic Gradient

Groundwater levels were measured using an electronic water level meter. Groundwater levels are summarized below in Table 4. All elevations are relative to a geodetic elevation, provided by Farley Smith and Denis Surveying Ltd.

Table 4: Groundwater Level Measurements										
Borehole Location	Ground Surface Elevation (m)	Water Level Depth (m below grade)	Water Level Elevation (m ASL)	Date of Measurement						
BH1	63.92	3.33	60.59							
BH2	64.18	3.64	60.54							
BH3	63.81	3.19	60.62	Sontombor 20						
BH4	63.83	3.89	59.94	September 20, 2018						
BH6	63.63	3.14	60.49	2010						
BH8	63.96	3.33	60.63							
BH9	63.96	2.67	61.29							

Based on the groundwater elevations from the most recent sampling event, groundwater contour mapping was completed for the subject site. Based on the contour mapping, groundwater flow at the subject site appears to be in the northwestern direction. A horizontal hydraulic gradient of approximately 0.04 m/m was calculated. No free product was observed in the monitoring wells at the subject site. No visual or olfactory indications of contamination were noted during the groundwater monitoring events.

5.3 Fine-Medium Soil Texture

Based on the observed soil conditions at the subject site, fine-medium textured soil standards are not considered to apply to the subject site.

5.4 Soil: Field Screening

Field screening of the soil samples collected during drilling resulted in soil vapour readings of 0 ppm to 1.5 ppm. Field screening results of each individual soil sample are provided on the Soil Profile and Test Data Sheets appended to this report. The field screening results were generally negligible. As a result, soil samples were selected for analytical testing based on visual observations and soil stratigraphy.

5.5 Soil Quality

Three (3) soil samples from the subsurface investigation were submitted for analysis of PHCs and BTEX, four (4) soil samples were submitted for metals, and six (6) were submitted for PAHs, as presented below in the tables below.

Table 5: Analytical Test Results – Soil BTEX/PHCs											
Parameter	MDL	So	il Samples (µg	<u>ı/g)</u>	MECP Table 3						
	(µg/g)	BH5-SS4	BH8-SS5	BH9-SS4	Residential Standards						
Benzene	0.02	nd	nd	nd	0.21						
Ethylbenzene	0.05	nd	nd	nd	2						
Toluene	0.05	nd	nd	nd	2.3						
Xylenes	0.05	nd	nd	nd	3.1						
PHCs F1	7	nd	nd	nd	55						
PHCs F2	4	32	nd	nd	98						
PHCs F3	8	80	nd	9	300						
PHCs F4	PHCs F4 6 82 nd nd 2800										
Notes:											

nd – not detected above the MDL

Low levels of PHC F2, F3, and F4 concentrations were identified in the soil samples analysed. The soil is in compliance with the MECP Table 3 Standards for BTEX and PHCs.

r

Parameter	MDL		Soil Samples (µg/g)							
	(µg/g)	BH1-SS2	BH2-SS2	BH8-G1	BH9-SS1	Table 3 Residentia Standards				
Antimony	1	6.4	1.6	<u>41.1</u>	nd	7.5				
Arsenic	1	5.8	3.8	17.3	1.8	18				
Barium	1	319	212	193	135	390				
Beryllium	0.5	0.7	0.6	nd	0.6	4				
Boron	5	29.7	25.1	37.3	20.6	120				
Cadmium	0.5	nd	nd	0.6	nd	1.2				
Chromium	5	57.1	47.9	43.0	28.3	160				
Chromium (VI)	0.2	NA	NA	nd	nd	8				
Cobalt	1	14.9	10.9	19.5	9.5	22				
Copper	5	54.3	63.8	<u>913</u>	15.8	140				
Lead	1	<u>490</u>	58.2	<u>1070</u>	28.9	120				
Mercury	0.1	<u>0.3</u>	nd	<u>0.6</u>	nd	0.27				
Molybdenum	1	1.2	nd	2.1	nd	6.9				
Nickel	5	39.4	17.5	42.8	15.3	100				
Selenium	1	<u>3.6</u>	<u>2.7</u>	1.7	nd	2.4				
Silver	0.3	nd	nd	0.3	nd	20				
Thallium	1	nd	nd	nd	nd	1				
Uranium	1	nd	nd	nd	nd	23				
Vanadium	10	78.4	71.4	52.1	75.2	86				
Zinc	20	206	97.1	268	50.1	340				

nd – not detected above the MDL

Several metals concentrations exceeding the MECP Table 3 Residential Standards were identified in BH1-SS2, BH2-SS2 and BH8-G1. All of the metals exceedances were identified in the fill material on the subject site. All other metals results were in compliance with the MECP Table 3 Standards.

Table 7:
Analytical Test Results – Soil
PAHs

Parameter	MDL	Soil Samples (µg/g)						MECP
	(µg/g)	BH2-	BH3-	BH4-	BH5-	BH6-	BH7-	Table 3
		SS2	SS2	SS3	SS4	SS2	SS3	Residentia
								Standards
Acenaphthene	0.02	nd	<u>302</u>	nd	nd	nd	0.06	7.9
Acenaphthylene	0.02	nd	<u>nd(16.0)</u>	nd	nd	nd	0.03	0.15
Anthracene	0.02	0.03	<u>451</u>	0.05	0.08	nd	0.20	0.67
Benzo[a]anthracene	0.02	0.05	<u>487</u>	0.02	0.02	nd	0.42	0.5
Benzo[a]pyrene	0.02	0.05	<u>371</u>	0.03	0.02	nd	<u>0.41</u>	0.3
Benzo[b]fluoranthene	0.02	0.06	<u>462</u>	0.02	nd	nd	0.36	0.78
Benzo[g,h,i]perylene	0.02	0.03	<u>171</u>	nd	nd	nd	0.17	6.6
Benzo[k]fluoranthene	0.02	0.03	<u>258</u>	0.02	nd	nd	0.17	0.78
Chrysene	0.02	0.06	<u>511</u>	0.03	0.03	nd	0.48	7
Dibenzo[a,h]anthracene	0.02	nd	<u>58.5</u>	nd	nd	nd	0.05	0.1
Fluoranthene	0.02	0.13	<u>1730</u>	0.05	0.05	nd	<u>1.01</u>	0.69
Fluorene	0.02	nd	<u>386</u>	nd	nd	nd	0.06	62
Indeno[1,2,3-cd]pyrene	0.02	0.03	<u>195</u>	nd	nd	nd	0.15	0.38
Methylnapthalene (1&2)	0.04	nd	<u>268</u>	nd	nd	nd	nd	0.99
Napthalene	0.01	0.04	<u>866</u>	nd	nd	nd	0.02	0.6
Phenanthrene	0.02	0.12	<u>1980</u>	0.05	0.07	nd	0.91	6.2
Pyrene	0.02	0.11	<u>1270</u>	0.04	0.05	nd	0.86	78
Notes: Bold and underlined – V								

MDL – Method Detection Limit

nd – not detected above the MDL

Several PAH concentrations were identified above the MECP Table 3 Standard in BH3-SS2 and BH7-SS3. All PAH concentrations above the MECP Table 3 Standards were identified in the fill material on the subject site. All other PAH results are in compliance with the MECP Table 3 Standard.

5.6 Groundwater Quality

Groundwater samples from the subject site were submitted for a combination of BTEX, PHC, VOCs, Metals, and/or PAH analysis. The groundwater samples were obtained from the screened intervals noted on Table 1. The results of the analytical testing are presented in the tables below.

Table 8:	
	Test Results – Groundwater
VOCs	

patersongroupOttawaKingstonNorth Bay

	MDI	MDL Groundwater Samples (µg/L)				
Parameter	(µg/L)	BH1-GW1	BH3-GW1	Table 3 Standards		
Acetone	5.0	nd	nd	130000		
Benzene	0.5	nd	nd	44		
Bromodichloromethane	0.5	nd	nd	85000		
Bromoform	0.5	nd	nd	380		
Bromomethane	0.5	nd	nd	5.6		
Carbon Tetrachloride	0.2	nd	nd	0.79		
Chlorobenzene	0.5	nd	nd	630		
Chloroform	0.5	nd	nd	2.4		
Dibromochloromethane	0.5	nd	nd	82000		
Dichlorodifluoromethane	1.0	nd	nd	4400		
1,2-Dichlorobenzene	0.5	nd	nd	4600		
1,3-Dichlorobenzene	0.5	nd	nd	9600		
1,4-Dichlorobenzene	0.5	nd	nd	8		
1,1-Dichloroethane	0.5	nd	nd	320		
1,2-Dichloroethane	0.5	nd	nd	1.6		
1,1-Dichloroethylene	0.5	nd	nd	1.6		
cis-1,2-Dichloroethylene	0.5	nd	nd	1.6		
trans-1,2-Dichloroethylene	0.5	nd	nd	1.6		
1,2-Dichloropropane	0.5	nd	nd	16		
1,3-Dichloropropene	0.5	nd	nd	5.2		
Ethylbenzene	0.5	nd	nd	2300		
Ethylene dibromide	0.2	nd	nd	0.25		
Hexane	1.0	nd	nd	51		
Methyl Ethyl Ketone	5.0	nd	nd	470000		
Methyl Isobutyl Ketone	5.0	nd	nd	140000		
Methyl tert-butyl Ether	2.0	nd	nd	190		
Methylene Chloride	5.0	nd	nd	610		
Styrene	0.5	nd	nd	1300		
1,1,1,2-Tetrachloroethane	0.5	nd	nd	3.3		
1,1,2,2-Tetrachloroethane	0.5	nd	nd	3.2		
Tetrachloroethylene	0.5	nd	nd	1.6		
Toluene	0.5	nd	nd	18000		
1,1,1-Trichloroethane	0.5	nd	nd	640		
1,1,2-Trichloroethane	0.5	nd	nd	4.7		
Trichloroethylene	0.5	nd	nd	1.6		
Trichlorofluromethane	1.0	nd	nd	2500		
Vinyl Chloride	0.5	nd	nd	0.5		
Xylene	0.5	nd	nd	4200		
Notes: MDL – Method Detect nd – not detected abo Bold and underlined	ve the MDL	ands selected MOEO	C standards			

All VOC parameters are in compliance with the selected MECP Table 3 standards.

pat	ersong	roup
Ottawa	Kingston	North Bay

Table 9:
Analytical Test Results – Groundwater
Metals

MDL Groundwater Samples (µg/L)					MECP	
Parameter	MDL (μg/L)	BH1- GW1	BH2- GW1	BH8- GW1	BH9- GW1	Table 3 Standards
Mercury	0.1	nd	nd	nd	nd	0.29
Antimony	0.5	nd	nd	2.4	0.5	20000
Arsenic	1	nd	1	nd	nd	1900
Barium	1	187	175	108	259	29000
Beryllium	0.5	nd	nd	nd	nd	67
Boron	10	127	141	94	148	45000
Cadmium	0.1	nd	nd	nd	nd	2.7
Chromium	1	nd	nd	nd	nd	810
Chromium (VI)	10	NA	NA	nd	nd	140
Cobalt	0.5	0.7	0.8	1.1	nd	66
Copper	0.5	1.6	1.3	7.3	5.1	87
Lead	0.1	nd	nd	0.2	0.2	25
Molybdenum	0.5	1.2	4.2	4.2	1.9	9200
Nickel	1	2	5	6	3	490
Selenium	1	nd	nd	nd	nd	63
Silver	0.1	nd	nd	nd	nd	1.5
Sodium	200	66400	157000	83600	91500	2300000
Thallium	0.1	nd	0.1	nd	nd	510
Uranium	0.1	2.3	3.9	3.7	0.5	420
Vanadium	0.5	0.7	0.7	0.8	nd	250
Zinc	5	nd	nd	10	8	1100
Notes: MDL – Method Detection Limit nd – not detected above the MDL MA – Parameter not analysed						

All metals parameters are in compliance with the selected MECP Standards.

Γ	Table 10:
	Analytical Test Results – Groundwater
	PAHs

PAHs						
	MDL	Groundwater Samples (µg/L)				MECP
Parameter		BH1-	BH3-	BH4-	BH6-	Table 3
	(µg/L)	GW1	GW1	GW1	GW1	Standards
Acenaphthene	0.05	nd	0.48	nd	nd	600
Acenaphthylene	0.05	nd	0.08	nd	nd	1.8
Anthracene	0.01	nd	0.85	nd	nd	2.4
Benzo[a]anthracene	0.01	nd	1.63	nd	nd	4.7
Benzo[a]pyrene	0.01	nd	<u>1.41</u>	nd	nd	0.81
Benzo[b]fluoranthene	0.05	nd	<u>1.66</u>	nd	nd	0.75
Benzo[g,h,i]perylene	0.05	nd	<u>0.76</u>	nd	nd	0.2
Benzo[k]fluoranthene	0.05	nd	<u>0.88</u>	nd	nd	0.4
Chrysene	0.05	nd	<u>1.99</u>	nd	nd	1
Dibenzo[a,h]anthracene	0.05	nd	0.20	nd	nd	0.52
Fluoranthene	0.01	nd	4.70	nd	nd	130
Fluorene	0.05	nd	0.58	nd	nd	400
Indeno[1,2,3-cd]pyrene	0.05	nd	<u>0.72</u>	nd	nd	0.2
Methylnaphthalene (1&2)	0.10	nd	0.28	nd	nd	1800
Napthalene	0.05	nd	0.57	nd	nd	1400
Phenanthrene	0.05	nd	4.20	nd	nd	580
Pyrene	0.01	nd	3.72	nd	nd	68
Notes:						
 MDL – Method Detection Limit Bold and underlined – Value exceeds selected MECP 						
 nd – not detected above the MDL standards 						

Table 10 (continued): Analytical Test Results – Groundwater PAHs

	Groundwater Samples (µg/L)				MECP	
Parameter	MDL (µg/L)	MWB- GW1	MWD- GW1	BH8- GW1	BH9- GW1	Table 3 Standards
Acenaphthene	0.05	nd	nd	nd	nd	600
Acenaphthylene	0.05	nd	nd	nd	nd	1.8
Anthracene	0.01	nd	nd	0.01	nd	2.4
Benzo[a]anthracene	0.01	nd	nd	0.02	nd	4.7
Benzo[a]pyrene	0.01	nd	nd	0.02	nd	0.81
Benzo[b]fluoranthene	0.05	nd	nd	nd	nd	0.75
Benzo[g,h,i]perylene	0.05	nd	nd	nd	nd	0.2
Benzo[k]fluoranthene	0.05	nd	nd	nd	nd	0.4
Chrysene	0.05	nd	nd	0.06	nd	1
Dibenzo[a,h]anthracene	0.05	nd	nd	nd	nd	0.52
Fluoranthene	0.01	nd	nd	0.08	nd	130
Fluorene	0.05	nd	nd	0.08	0.08	400
Indeno[1,2,3-cd]pyrene	0.05	nd	nd	nd	nd	0.2
Methylnaphthalene (1&2)	0.10	nd	nd	nd	0.19	1800
Napthalene	0.05	nd	nd	nd	0.24	1400
Phenanthrene	0.05	nd	nd	0.21	0.17	580
Pyrene	0.01	nd	nd	0.07	nd	68
 Notes: MDL – Method Detection Limit nd – not detected above the MDL Bold and underlined – Value exceeds selected MECP standards 						

PAHs exceeding the MECP Table 3 Standards were identified in BH3-GW1. All other groundwater samples were in compliance with the MECP Table 3 Standards.

Table 11: Analytical Test Results – Groundwater – BTEX and PHCs						
Parameter	MDL	Groundwater	MECP Table			
	(µg/L)	BH8-GW1	BH9-GW1	3 Standards		
Benzene	0.5	nd	nd	44		
Ethylbenzene	0.5	nd	nd	2300		
Toluene	0.5	nd	nd	18000		
Xylenes	0.5	nd	nd	4200		
PHCs F1	25	nd	nd	750		
PHCs F2	100	nd	nd	150		
PHCs F3	100	nd	nd	500		
PHCs F4	100	nd	nd	500		
Notes: MDL – Method Detection Limit nd – not detected above the MDL MDL – Method Detection Limit MDL – Method Detection Limit MDL – Notes: MDL – Method Detection Limit MDL – Notes: MDL – Notes: MDL – Method Detection Limit MDL – Notes: MDL –						

No BTEX or PHC parameters were detected in the groundwater samples. All BTEX and PHC parameters are in compliance with the selected MECP Standards.

The laboratory certificates of analysis are provided in Appendix 1.

5.7 Quality Assurance and Quality Control Results

All samples submitted as part of this Phase II ESA were handled in accordance with the Analytical Protocol with respect to holding time, preservation method, storage requirement, and container type.

As per Subsection 47(3) of O.Reg. 153/04 as amended by O.Reg. 269/11, a Certificate of Analysis has been received for each sample submitted for analysis, and all Certificates of Analysis are appended to this report.

Overall, the quality of the field data collected during this Phase II ESA is considered to be sufficient to meet the overall objectives of this assessment.

5.8 Phase II Conceptual Site Model

The following section has been prepared in accordance with the requirements of O.Reg. 153/04 as amended by O.Reg. 269/11 - Record of Site Condition regulation, made under the Environmental Protection Act. Conclusions and recommendations are discussed in a subsequent section.

Site Description

Potentially Contaminating Activities

Based on the results of the historical review completed for the subject site, several PCAs have been identified at the study site and with a 250m radius of the subject site. The rationale for identifying these PCAs is based on aerial photographs, previous reports for nearby properties, fire insurance plans, and personal interviews. One offsite and three onsite PCAs are considered to have created Areas of Potential Environmental Concern (APECs). The remaining PCAs are located at distances far enough away from the subject property such that they are not considered to have created APECs on site.

Areas of Potential Environmental Concern

Based on the results of the historical review completed for the subject site, three (3) APECs were identified at the subject site, on additional APEC was identified during the field program. The PCAs considered to represent APECs on the subject site are summarized below:

- □ The former on-site foundry; Item 34, Table 2, O.Reg. 153/04 as amended by O.Reg. 269/11 ("Metal Fabrication").
- □ The former on site machine shop; Item 34, Table 2, O.Reg. 153/04 as amended by O.Reg. 269/11 ("Metal Fabrication").
- □ The existing off-site automotive service garage; Item 52, Table 2, O.Reg. 153/04 as amended by O.Reg. 269/11 ("Storage, maintenance, fuelling and repair of equipment, vehicles, and material used to maintain transportation systems").
- □ Fill material; Item 30, Table 2, O.Reg. 153/04 as amended by O.Reg. 269/11 ("Importation of Fill Material of Unknown Quality").

Other PCAs within the Phase I study area are not considered to pose an area of potential environmental concern to the subject site due to their separation distance.

Contaminants of Potential Concern

Metals, PAHs, PHCs, and BTEX in the soil and groundwater were identified as Contaminants of Potential Concern with respect to the subject site.

Subsurface Structures and Utilities

Subsurface utilities on the subject property include electrical utilities, natural gas lines, telephone, cable lines, sewer lines, and water lines. No other subsurface structures were identified.

Physical Setting

Site Stratigraphy

The site stratigraphy, from ground surface to the deepest aquifer or aquitard investigated, is provided in the Soil Profile and Test Data Sheets provided in Appendix 1. Stratigraphy consists of:

□ A layer of fill material was encountered at all borehole locations. The fill was encountered below asphalt (Boreholes BH1 through BH7) or concrete (BH8 and BH9). The fill ranged in thickness from 0.91 m to 1.52 m and consisted primarily clayey topsoil with some demolition debris. Groundwater was not encountered in this layer.

- Native in-situ stiff silty clay was found in some boreholes below the fill material.
- □ Glacial till material was encountered at some boreholes beneath the layer of fill, up to a depth 5.82 m below grade. Groundwater was encountered in this unit between 2.67 and 4.13m below the existing grade.

Hydrogeological Characteristics

Groundwater was encountered in the glacial till unit on the subject site. Groundwater levels from seven (7) monitoring wells were measured at the subject site on September 20, 2018. The most recent groundwater levels indicate that the local groundwater flow is generally in a northwestern direction with a hydraulic gradient of 0.04 m/m.

Approximate Depth to Bedrock

Practical refusal to augering was encountered between 5.00m and 5.83m below the existing grade.

Approximate Depth to Water Table

Depth to the water table at the subject site varies between approximately 2.67 m and 4.13 m below existing grade.

Sections 41 and 43.1 of the Regulation

Section 41 of the Regulation does not apply to the subject site as there are no areas of natural significance or bodies of water located on the subject site or within 30 m of the subject site. The subject site is not considered to be environmentally sensitive.

Section 43.1 of the Regulation does not apply to the subject site.

Fill Placement

It is expected that the fill material is a result of the various former uses of the subject site. The demolition debris within the fill material is considered to be from the previous building on 16 Hamilton Avenue. The fill material is considered to represent an APEC on the subject site.

Proposed Buildings and Other Structures

The proposed development for the subject site includes the demolition of all buildings and the construction of a mixed use development with ground floor retail uses and residential uses on the remaining floors.

Existing Buildings and Structures

The subject site is occupied by a single storey wood framed commercial building located on the southern portion of the subject site. The building is currently used for office purposes. The building is heated and cooled using a natural gas fired rooftop HVAC system.

Water Bodies

No water bodies are present on the subject site or within 250 m of the subject site.

Areas of Natural Significance

No areas of natural significance are present on the subject site or within 250 m of the subject site.

Environmental Condition

Areas Where Contaminants are Present

Suspected impacted soil was encountered across the majority of the subject property. Impacted groundwater was identified near the northern property boundary in BH3. The impacted groundwater appears to be limited to the northern portion of the property.

Types of Contaminants

Based on the potentially contaminating activities representing APECs on the subject property, the contaminants of potential concern (COCs) at the subject site were considered to be PAHs, Metals, PHCs and BTEX. These contaminants are related to the former use of the subject site as a foundry and machine shop as well as the existing automotive service garage on the property to the south.

Contaminated Media

Impacted fill material was identified throughout the subject site. Impacted groundwater was identified on the northern portion of the property.

What Is Known About Areas Where Contaminants Are Present

The source of the impacted fill material is expected to the former use of the subject site as a foundry and machine shop as well as demolition debris related to the removal of the building from 16 Hamilton Avenue. The impacted groundwater is expected to be related to a long term leaching through the fill material on the subject site.

Distribution of Contaminants

The contaminants are considered to be located in the fill material throughout the subject site. A small area of impacted groundwater was identified in the northern portion of the subject site.

Discharge of Contaminants

There is no ongoing discharge of contaminants on the subject site. The discharge of contaminants is suspected to be related to the former use of the site as a foundry and machine shop.

Migration of Contaminants

Approximately the entire the property is covered in an impermeable surface (asphaltic concrete or a building footprint) and as such the migration of contaminants is expected to be minimal.

Climatic and Meteorological Conditions

In general, climatic and meteorological conditions have the potential to affect contaminant distribution. Two ways by which climatic and meteorological conditions may affect contaminant distribution include the downward leaching of contaminants by means of the infiltration of precipitation, and the migration of contaminants via groundwater levels and/or flow, which may fluctuate seasonally. Based on the results of the Phase II ESA and the current site conditions it is expected that downward leaching is no longer an issue.

Potential for Vapour Intrusion

There is no potential for vapour intrusion at the subject site due to the low volatility of the impacted material and the lack of a basement in the existing subject building.

6.0 CONCLUSIONS

Assessment

A Phase II-ESA was conducted for 16 and 20 Hamilton Avenue North, Ottawa, Ontario. The focus of the Phase II-ESA was to assess APECs identified in the historical research and to confirm general soil and groundwater quality at the APEC locations.

The Phase II-ESA consisted of the drilling of nine (9) boreholes, and the installation of seven (7) groundwater monitoring wells to assess soil and groundwater quality at the subject site. Four previously existing groundwater monitoring wells were identified on the subject site. No information regarding the construction of these monitoring wells was made available.

Soil samples obtained from the boreholes were screened using visual observations and organic vapour measurements. Based on the screening results, samples were selected for analysis of petroleum hydrocarbons, fractions 1 through 4 (PHCs F1-F4), benzene, toluene, ethylbenzene and xylenes (BTEX), metals, and Polycyclic Aromatic Hydrocarbons (PAHs). Several analysed fill samples contained concentrations of PAHs and Metals in excess of the selected MECP standards. The fill material throughout the subject site is considered to be impacted.

Groundwater samples obtained from BH1, BH2, BH3, BH6, BH8, and BH9 were submitted for analytical testing for a combination of metals, PAHs, BTEX, and PHCs (F1-F4). All the tested parameters in the groundwater samples were in compliance with the selected MECP standards with the exception of several PAH parameters from BH3. Based on the analytical results from the surrounding monitoring wells, the impacted groundwater appears to be localized to the area surrounding BH3.

Recommendations

Soil

During redevelopment of the subject site a remediation program can be undertaken consisting of the excavation and disposal of the impacted material at an approved waste disposal facility.

Groundwater

Any impacted groundwater encountered during excavation work should be removed from site by a licenced pumping contractor or treated using an on-site pump and treat unit during the redevelopment work.

If the groundwater monitoring wells are not going to be used in the future, they should be decommissioned by a licensed contractor in accordance with Ontario Regulation 903. However, we recommend that they be maintained for future groundwater monitoring purposes.

7.0 STATEMENT OF LIMITATIONS

This Phase II - Environmental Site Assessment report has been prepared in general accordance with O.Reg. 153/04 and meets the requirements of CSA Z769-00. The conclusions presented herein are based on information gathered from a limited sampling and testing program. The test results represent conditions at specific test locations at the time of the field program.

The client should be aware that any information pertaining to soils and all test hole logs are furnished as a matter of general information only and test hole descriptions or logs are not to be interpreted as descriptive of conditions at locations other than those of the test holes themselves.

Should any conditions be encountered at the subject site and/or historical information that differ from our findings, we request that we be notified immediately in order to allow for a reassessment.

This report was prepared for the sole use Surface Developments. Permission and notification from Surface Developments and Paterson will be required to release this report to any other party.

Paterson Group Inc.

Michael Beaudoin, P.Eng., QPesa

Mark S. D'Arcy, P.Eng. QPesa

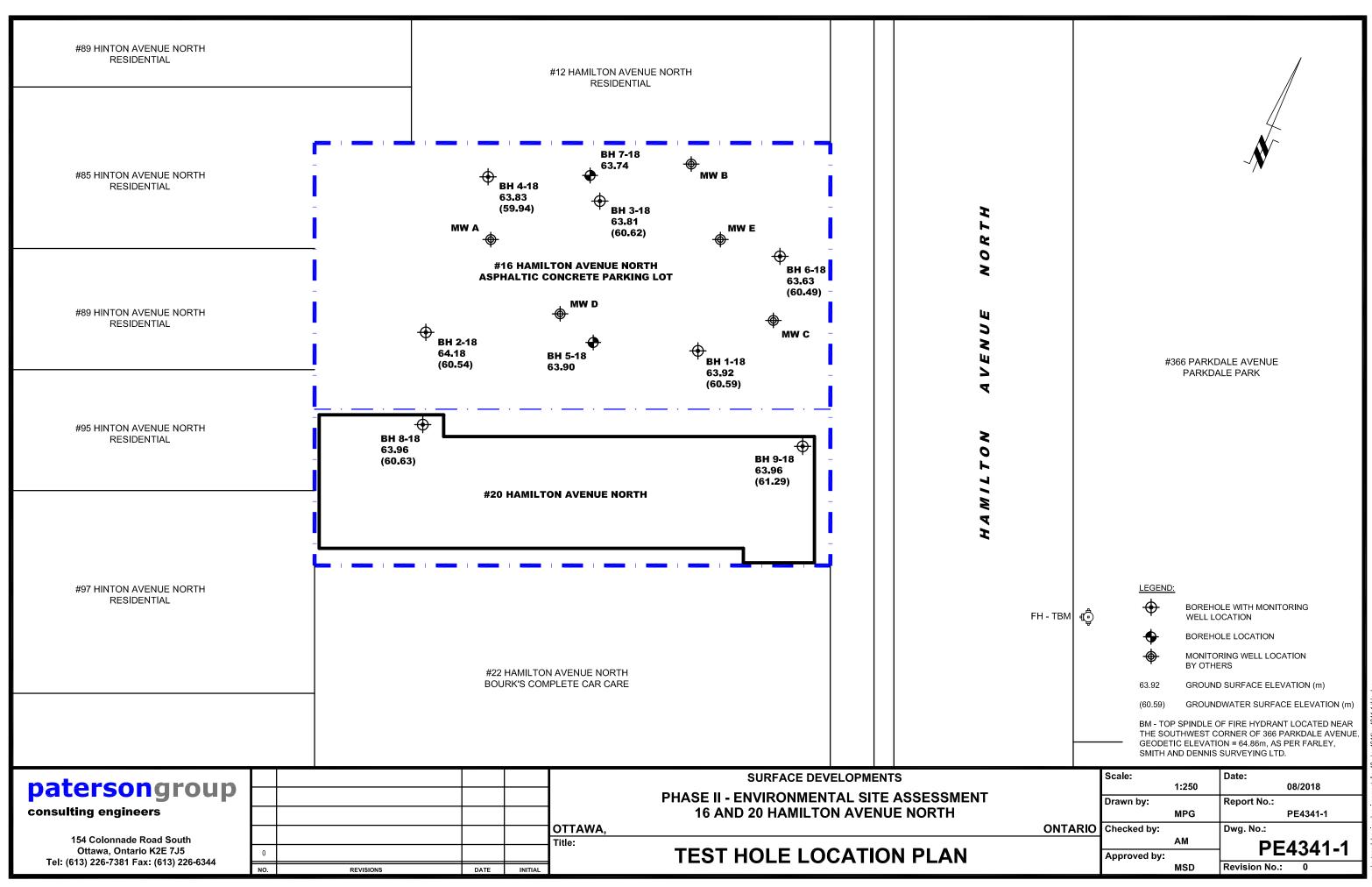
Report Distribution:

- Surface Developments
- Paterson Group

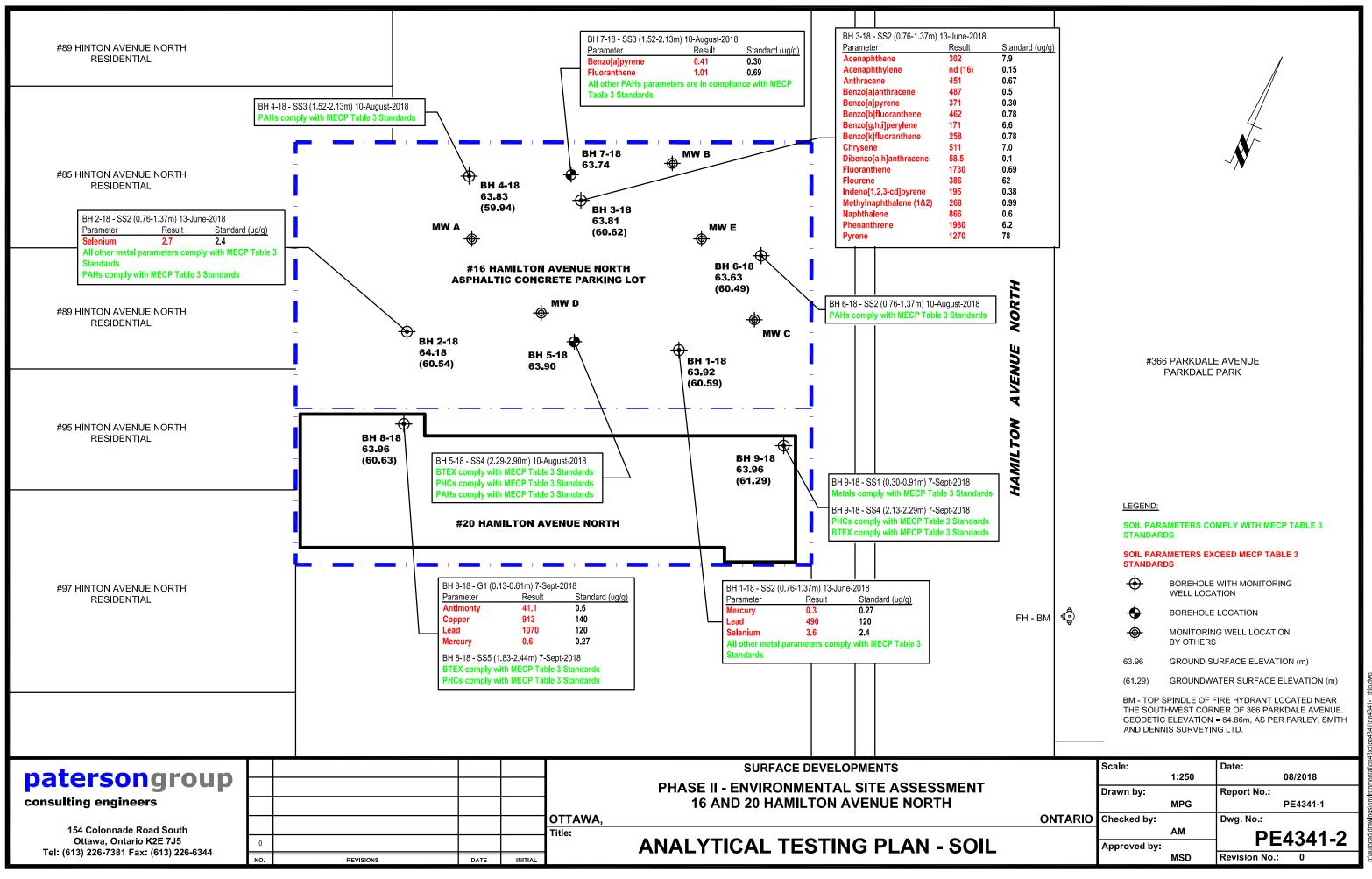
FIGURES

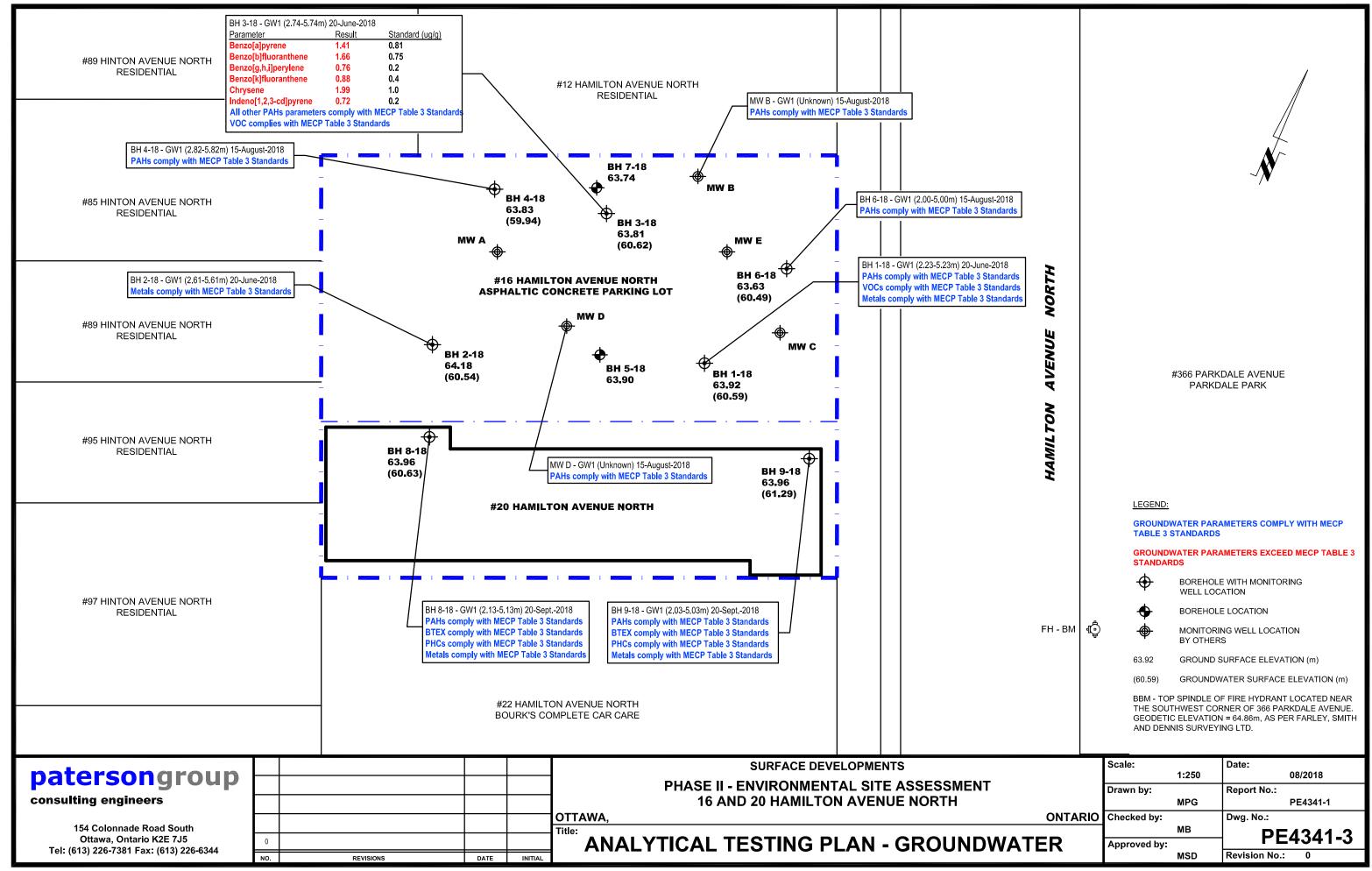
FIGURE 1 – KEY PLAN

DRAWING PE4341-1 – TEST HOLE LOCATION PLAN


DRAWING PE4341-2 – ANALYTICAL TESTING PLAN - SOIL

DRAWING PE4341-3 – ANALYTICAL TESTING PLAN -GROUNDWATER




FIGURE 1 KEY PLAN

patersongroup -

autocad drawings\environmental\pe43xx\pe4341\pe4341-1 thlp.dv

\autocad drawings\environmental\pe43xx\pe4341\pe4341-1 thlp

APPENDIX 1

SAMPLING AND ANALYSIS PLAN

SOIL PROFILE AND TEST DATA SHEETS

SYMBOLS AND TERMS

LABORATORY CERTIFICATES OF ANALYSIS

Geotechnical
EngineeringEnvironmental
EngineeringHydrogeologyGeological
EngineeringMaterials TestingBuilding ScienceArchaeological
Services

Paterson Group Inc.

Consulting Engineers 154 Colonnade Road South Ottawa (Nepean), Ontario Canada K2E 7J5

Tel: (613) 226-7381 Fax: (613) 226-6344 www.patersongroup.ca

patersongroup

Sampling & Analysis Plan

16 and 20 Hamilton Avenue North Ottawa, Ontario

Prepared For

Surface Developments

June 2018 Report: PE4341-SAP

Table of Contents

1.0	SAMPLING PROGRAM	1
2.0	ANALYTICAL TESTING PROGRAM	2
3.0	STANDARD OPERATING PROCEDURES	3
	3.1 Environmental Drilling Procedure	3
	3.2 Monitoring Well Installation Procedure	6
	3.3 Monitoring Well Sampling Procedure	7
4.0	QUALITY ASSURANCE/QUALITY CONTROL (QA/QC)	8
5.0	DATA QUALITY OBJECTIVES	9
6.0	PHYSICAL IMPEDIMENTS TO SAMPLING & ANALYSIS PLAN	

1.0 SAMPLING PROGRAM

Paterson Group Inc. (Paterson) was commissioned by Surface Developments to prepare a Phase II-Environmental Site Assessment (ESA) for the property at 16 and 20 Hamilton Avenue, in the City of Ottawa, Ontario. Based on the historical research completed by Paterson for the subject property, the following subsurface investigation program was developed:

Borehole	Location & Rationale	Proposed Depth & Rationale
BH1	General coverage of property to assess the former	Intercept the groundwater table
BH2	foundry, as identified on the fire insurance plans.	to facilitate the installation of a
BH3		groundwater monitoring well.
BH4	To west of BH3 to delineate soil and groundwater impacts	
BH5	To south of BH3 to delineate soil impacts	Through the fill layer and into the native soil to assess soil quality
BH6	To east of BH3 to delineate soil and groundwater impacts	Intercept the groundwater table to facilitate the installation of a groundwater monitoring well.
BH7	To north of BH3 to delineate soil impacts	Through the fill layer and into the native soil to assess soil quality
BH8	Within existing building footprint to determine if impacted material exists beneath the building slab	Intercept the groundwater table to facilitate the installation of a
BH9	material exists beneath the building slab	groundwater monitoring well

Test hole locations are shown on the Test Hole Location Plan appended to the main report.

At each borehole, split-spoon samples of overburden soils will be obtained at 0.76 m (2'6") intervals until five feet below the water table. All soil samples will be retained, and samples will be selected for submission following a preliminary screening analysis.

If it is considered necessary to drill into bedrock to intercept the groundwater table, boreholes will be advanced into bedrock as required using diamond coring equipment. Rock core samples will be retained for review, but not submitted for analysis.

Following borehole drilling, monitoring wells will be installed in selected boreholes for the measurement of water levels and the collection of groundwater samples.

2.0 ANALYTICAL TESTING PROGRAM

The analytical testing program for soil at the subject site is based on the following general considerations:

- In boreholes where there is visual or olfactory evidence of contamination, or where organic vapour meter or photoionization detector (PID) readings indicate the presence of contamination, the 'worst-case' sample from each borehole should be submitted for comparison with MOE site condition standards.
- In boreholes with evidence of contamination as described above, a sample should be submitted from the stratigraphic unit below the 'worst-case' sample to determine whether the contaminant(s) have migrated downward.
- At least one sample from each borehole should be submitted, in order to delineate the horizontal extent of contamination across the site.
- Parameters analyzed should be consistent with the Contaminants of Potential Concern identified in the Phase I ESA.

The analytical testing program for groundwater at the subject site is based on the following general considerations:

- Groundwater monitoring wells should be installed in all boreholes with visual or olfactory evidence of soil contamination, in stratigraphic units where soil contamination was encountered, where those stratigraphic units are at or below the water table (i.e. a water sample can be obtained).
- Groundwater monitoring well screens should straddle the water table at sites where the contaminants of concern are suspected to be LNAPLs.
- At least one groundwater monitoring well should be installed in a stratigraphic unit below the suspected contamination, where said stratigraphic unit is waterbearing.
- Parameters analyzed should be consistent with the Contaminants of Concern identified in the Phase I ESA and with the contaminants identified in the soil samples.

3.0 STANDARD OPERATING PROCEDURES

3.1 Environmental Drilling Procedure

Purpose

The purpose of environmental boreholes is to identify and/or delineate contamination within the soil and/or to install groundwater monitoring wells in order to identify contamination within the groundwater.

Equipment

The following is a list of equipment that is in addition to regular drilling equipment stated in the geotechnical drilling SOP:

- Glass soil sample jars
- two buckets
- cleaning brush (toilet brush works well)
- dish detergent
- methyl hydrate
- water (if not available on site water jugs available in trailer)
- latex or nitrile gloves (depending on suspected contaminant)
- RKI Eagle organic vapour meter or MiniRae photoionization detector (depending on contamination suspected)

Determining Borehole Locations

If conditions on site are not as suspected, and planned borehole locations cannot be drilled, **call the office to discuss**. Alternative borehole locations will be determined in conversation with the field technician and supervising engineer.

After drilling is completed a plan with the borehole locations must be provided. Distances and orientations of boreholes with respect to site features (buildings, roadways, etc.) must be provided. Distances should be measured using a measuring tape or wheel rather than paced off. Ground surface elevations at each borehole should be surveyed relative to a geodetic benchmark, if one is available, or a temporary site benchmark which can be tied in at a later date if necessary.

Drilling Procedure

The actual drilling procedure for environmental boreholes is the same as geotechnical boreholes (see SOP for drilling and sampling) with a few exceptions as follows:

- Continuous split spoon samples (every 0.6 m or 2') or semi-continuous (every 0.76 m or 2'6") are required.
- Make sure samples are well sealed in plastic bags with no holes prior to screening and are kept cool but unfrozen.
- If sampling for VOCs, BTEX, or PHCs F1, a soil core from each soil sample which may be analyzed must be taken and placed in the laboratory-provided methanol vial.
- Note all and any odours or discolouration of samples.
- Split spoon samplers must be washed between samples.
- If obvious contamination is encountered, continue sampling until vertical extent of contamination is delineated.
- As a general rule, environmental boreholes should be deep enough to intercept the groundwater table (unless this is impossible/impractical - call project manager to discuss).
- If at all possible, soil samples should be submitted to a preliminary screening procedure on site, either using a RKI Eagle, PID, visual observations, etc. depending on type of suspected contamination.

Spoon Washing Procedure

All sampling equipment (spilt spoons, etc.) must be washed between samples in order to prevent cross contamination of soil samples.

- Obtain two buckets of water (preferably hot if available)
- Add a small amount of dish soap to one bucket
- Scrub spoons with brush in soapy water, inside and out, including tip
- Rinse in clean water
- Apply a small amount of methyl hydrate to the inside of the spoon. (A spray bottle or water bottle with a small hole in the cap works well)
- Allow to dry (takes seconds)
- Rinse with distilled water, a spray bottle works well.

The methyl hydrate eliminates any soap residue that may be on the spoon, and is especially important when dealing with suspected VOCs.

Screening Procedure

The RKI Eagle is used to screen most soil samples, particularly where petroleum hydrocarbon contamination is suspected. The MiniRae is used when VOCs are suspected, however it also can be useful for detecting petroleum. These tools are for screening purposes only and cannot be used in place of laboratory testing. Vapour results obtained from the RKI Eagle and the PID are relative and must be interpreted.

Screening equipment should be calibrated on an approximately monthly basis, more frequently if heavily used.

- Samples should be brought to room temperature; this is specifically important in colder weather. Soil must not be frozen.
- Turn instrument on and allow to come to zero calibrate if necessary
- If using RKI Eagle, ensure instrument is in methane elimination mode unless otherwise directed.
- Ensure measurement units are ppm (parts per million) initially. RKI Eagle will automatically switch to %LEL (lower explosive limit) if higher concentrations are encountered.
- Break up large lumps of soil in the sample bag, taking care not to puncture bag.
- Insert probe into soil bag, creating a seal with your hand around the opening.
- Gently manipulate soil in bag while observing instrument readings.
- Record the highest value obtained in the first 15 to 25 seconds
- Make sure to indicate scale (ppm or LEL); also note which instrument was used (RKI Eagle 1 or 2, or MiniRae).
- Jar samples and refrigerate as per Sampling and Analysis Plan.

3.2 Monitoring Well Installation Procedure

Equipment

- 1.5 m x 5 cm threaded sections of Schedule 40 PVC slotted well screen (1.5 m x 3.2 cm if installing in cored hole in bedrock)
- 1.5 m x 5 cm threaded sections of Schedule 40 PVC riser pipe (1.5 m x 3.2 cm if installing in cored hole in bedrock)
- Threaded end-cap
- Slip-cap or J-plug
- Asphalt cold patch or concrete
- Silica Sand
- Bentonite chips (Holeplug)
- Steel flushmount casing

Procedure

- Drill borehole to required depth, using drilling and sampling procedures described above.
- If borehole is deeper than required monitoring well, backfill with bentonite chips to required depth. This should only be done on wells where contamination is not suspected, in order to prevent downward migration of contamination.
- Only one monitoring well should be installed per borehole.
- Monitoring wells should not be screened across more than one stratigraphic unit to prevent potential migration of contaminants between units.
- Where LNAPLs are the suspected contaminants of concern, monitoring wells should be screened straddling the water table in order to capture any free product floating on top of the water table.
- Thread the end cap onto a section of screen. Thread second section of screen if required. Thread risers onto screen. Lower into borehole to required depth. Ensure slip-cap or J-plug is inserted to prevent backfill materials entering well.
- As drillers remove augers, backfill borehole annulus with silica sand until the level of sand is approximately 0.3 m above the top of the screen.
- Backfill with holeplug until at least 0.3 m of holeplug is present above the top of the silica sand.
- Backfill remainder of borehole with holeplug or with auger cuttings (if contamination is not suspected).

 Install flushmount casing. Seal space between flushmount and borehole annulus with concrete, cold patch, or holeplug to match surrounding ground surface.

3.3 Monitoring Well Sampling Procedure

Equipment

- Water level metre or interface probe on hydrocarbon/LNAPL sites
- Spray bottles containing water and methanol to clean water level tape or interface probe
- Peristaltic pump
- Polyethylene tubing for peristaltic pump
- Flexible tubing for peristaltic pump
- Latex or nitrile gloves (depending on suspected contaminant)
- Allen keys and/or 9/16" socket wrench to remove well caps
- Graduated bucket with volume measurements
- Portable pH/Temperature/Conductivity analyzer
- Laboratory-supplied sample bottles

Sampling Procedure

- Locate well and use socket wrench or Allan key to open metal flush mount protector cap. Remove plastic well cap.
- Measure water level, with respect to existing ground surface, using water level meter or interface probe. If using interface probe on suspected NAPL site, measure the thickness of free product.
- Measure total depth of well.
- Clean water level tape or interface probe using methanol and water. Change gloves between wells.
- Calculate volume of standing water within well and record.
- Insert polyethylene tubing into well and attach to peristaltic pump. Turn on peristaltic pump and purge into graduated bucket. Purge at least three well volumes of water from the well. Measure and record field chemistry. Continue to purge, measuring field chemistry after every well volume purged, until appearance or field chemistry stabilizes.
- Note appearance of purge water, including colour, opacity (clear, cloudy, silty), sheen, presence of LNAPL, and odour. Note any other unusual features (particulate matter, effervescence (bubbling) of dissolved gas, etc.).

- Fill required sample bottles. If sampling for metals, attach 75-micron filter to discharge tube and filter metals sample. If sampling for VOCs, use low flow rate to ensure continuous stream of non-turbulent flow into sample bottles. Ensure no headspace is present in VOC vials.
- Replace well cap and flushmount casing cap.

4.0 QUALITY ASSURANCE/QUALITY CONTROL (QA/QC)

The QA/QC program for this Phase II ESA is as follows:

- All non-dedicated sampling equipment (split spoons) will be decontaminated according to the SOPs listed above.
- All groundwater sampling equipment is dedicated (polyethylene and flexible peristaltic tubing is replaced for each well).
- Where groundwater samples are to be analyzed for VOCs, one laboratoryprovided trip blank will be submitted for analysis with every laboratory submission.
- Approximately one (1) field duplicate will be submitted for every ten (10) samples submitted for laboratory analysis. A minimum of one (1) field duplicate per project will be submitted. Field duplicates will be submitted for soil and groundwater samples where possible.
- Where multi-parameter analyzers are used to measure field chemistry, they will be calibrated on an approximately monthly basis, according to frequency of use.

5.0 DATA QUALITY OBJECTIVES

The purpose of setting data quality objectives (DQOs) is to ensure that the level of uncertainty in data collected during the Phase II ESA is low enough that decision-making is not affected, and that the overall objectives of the investigation are met.

The quality of data is assessed by comparing field duplicates with original samples. If the relative percent difference (RPD) between the duplicate and the sample is within 20%, the data are considered to be of sufficient quality so as not to affect decision-making. The RPD is calculated as follows:

$$RPD = \left| \frac{x_1 - x_2}{(x_1 + x_2)/2} \right| \times 100\%$$

Where x_1 is the concentration of a given parameter in an original sample and x_2 is the concentration of that same parameter in the field duplicate sample.

For the purpose of calculating the RPD, it is desirable to select field duplicates from samples for which parameters are present in concentrations above laboratory detection limits, i.e. samples which are expected to be contaminated. If parameters are below laboratory detection limits for selected samples or duplicates, the RPD may be calculated using a concentration equal to the laboratory detection limit.

It is also important to consider data quality in the overall context of the project. For example, if the DQOs are not met for a given sample, yet the concentrations of contaminants in both the sample and the duplicate exceed the MOE site remediation standards by a large margin, the decision-making usefulness of the sample may not be considered to be impaired. The proximity of other samples which meet the DQOs must also be considered in developing the Phase II Conceptual Site Model; often there are enough data available to produce a reliable Phase II Conceptual Site Model even if DQOs are not met for certain individual samples.

These considerations are discussed in the body of the report.

6.0 PHYSICAL IMPEDIMENTS TO SAMPLING & ANALYSIS PLAN

Physical impediments to the Sampling and Analysis plan may include:

- The location of underground utilities
- Poor recovery of split-spoon soil samples
- Insufficient groundwater volume for groundwater samples
- Breakage of sampling containers following sampling or while in transit to the laboratory
- Elevated detection limits due to matrix interference (generally related to soil colour or presence of organic material)
- Elevated detection limits due to high concentrations of certain parameters, necessitating dilution of samples in laboratory
- Drill rig breakdowns
- Winter conditions
- Other site-specific impediments

Site-specific impediments to the Sampling and Analysis plan are discussed in the body of the Phase II ESA report.

patersong	rni	In	Con	sulting	SOIL PROFILE AND TEST DATA							
154 Colonnade Road South, Ottawa, O		-		ineers	Phase II - Environmental Site Assessment 16 and 20 Hamilton Avenue North Ottawa, Ontario							
DATUM BM - Top spindle of fire Parkdale Avenue. Geod REMARKS Surveying Ltd.	hydrant letic elev	locate vation	ed ne = 64.	ar the .86m, a	south	nwest cor	ner of 36	FILE NO. PE4341				
BORINGS BY CME 55 Power Auger				D	ATE	June 13,	2018		HOLE NO.	BH 1-1	18	
	F		SAN	IPLE				Photo I	onization D)etector		
SOIL DESCRIPTION	A PLOT				Ëо	DEPTH (m)	ELEV. (m)		tile Organic R		ing V	
UNDERSIDE OF FOUNDATION	STRATA	ТҮРЕ	NUMBER	% RECOVERY	N VALUE or RQD			Contract	r Explosive	e Limit % 80	Monitoring Well Construction	
Asphaltic concrete0.	05 XX 18 XX	X AU	1			- 0-	-63.92	•				
FILL: Brown clayey topsoil, trace construction debris		ss	2	62	10	1-	-62.92					
<u>1</u> .	52		_									
Very stiff, brown SILTY CLAY 2.	29	SS	3	79	13	2-	-61.92	•		······································		
		ss	4	96	22			•	· · · · · · · · · · · · · · · · · · ·			
		ss	5	42	13	3-	-60.92	•				
GLACIAL TILL: Brown silty sand, some clay, with gravel, cobbles, boulders			0			4-	-59.92					
		ss	6	33	W			• •••••••••••••••••••••••••••••••••••				
	23	ss	7	67	10	5-	-58.92	•				
End of Borehole Practical refusal to augering at 5.23m depth												
(GWL @ 3.33m - Sept. 20, 2018)												
									200 300 Eagle Rdg. as Resp. △ M	(ppm)	⊣ 00	

patersong	ır <i>ı</i>		In	Con	sulting	3	SOII	L PRO	FILE AN	ND TES	T DATA	
154 Colonnade Road South, Ottawa			-		ineers	Phase II - Environmental Site Assessment 16 and 20 Hamilton Avenue North Ottawa, Ontario						
DATUM BM - Top spindle of fi Parkdale Avenue. Ge REMARKS Surveying Ltd.	re hyc odetic	drant c elev	locate vation	ed nea = 64.	ar the 86m, a	south	west cor	ner of 36	6 nd Denis	FILE NO.	PE434 1	1
										HOLE NO.	BH 2-1	18
							June 13,		Photo I	onization E)etector	
SOIL DESCRIPTION		A PLOT				Но	DEPTH (m)	ELEV. (m)		tile Organic R		ing We
UNDERSIDE OF FOUNDATION		STRATA	ТҮРЕ	NUMBER	% RECOVERY	N VALUE or RQD			 Lowe 20 	r Explosive	e Limit % 80	Monitoring Well Construction
Asphaltic concrete	0.08	· ^ . ^ . ^ . ^	8		-		- 0-	-64.18			6 0	
FILL: Crushed stone	0.18		au	1								
FILL: Brown clayey topsoil, trace ash/cinders												
ash/chiders			ss	2	54	6	1-	63.18	•			
	1.52		Δ									
	<u></u>		ss	3	50	9						
Stiff, brown SILTY CLAY			133	3	50	9	2-	62.18				
	_2.29		ss	4	71	50+			•			
	ł											
							3-	61.18				
			ss	5	75	41			•			
GLACIAL TILL: Brown silty sand, some clay, with gravel, cobbles,												
boulders			ss	6	54	9	4-	60.18				
	ł		\square	-		-						
				_		• -						
	k k		SS	7	42	28	5-	-59.18				
			ss	8	36	50+			•			
End of Borehole	<u>5.61</u>	<u>^^^^</u>		-								<u> ∵⊟:</u>
Practical refusal to augering at 5.61m depth												
(GWL @3.64m - Sept. 20, 2018)												
									100 RKI E	200 300 Eagle Rdg.		00
										as Resp. \triangle N		

patersong	۲ ا	In	Con	sulting	SOIL PROFILE AND TEST DATA							
154 Colonnade Road South, Ottawa, O		-		ineers	Phase II - Environmental Site Assessment 16 and 20 Hamilton Avenue North Ottawa, Ontario							
DATUM BM - Top spindle of fire h Parkdale Avenue. Geode REMARKS Surveying Ltd.	ydrant etic elev	locate vation	ed ne = 64	ar the .86m, a	soutl							
BORINGS BY CME 55 Power Auger				D	ATE	June 13,	2018		HOLE NO.	BH 3- ⁻	18	
U U	Ę		SAN	I PLE				Photo I	onization	Detector		
SOIL DESCRIPTION	PLOT			×.	61	DEPTH (m)	ELEV. (m)	Vola	atile Organic I	Rdg. (ppm)	ng V	
	STRATA	ТҮРЕ	NUMBER	% RECOVERY	N VALUE or RQD				er Explosiv		Monitoring Well Construction	
UNDERSIDE OF FOUNDATION Asphaltic concrete 0.0	15 XXX	X		<u></u>	-	- 0-	63.81	20	40 60	80		
FILL: Crushed stone 0.1		X AU	1					•				
FILL: Brown clayey topsoil, trace		8883										
construction debris		$\overline{\mathbf{V}}$				1	-62.81					
		SS	2	38	11		02.01	•				
1.5	2											
		ss	3	50	7						ר <u>ו הההההההההההה</u> היהההההההההההה	
Stiff, brown SILTY CLAY			C		-	2-	61.81					
2.2	9	$\overline{\mathbf{n}}$										
		ss	4	92	26			•····				
		Δ					-60.81					
		$\overline{\mathbf{V}}$				3-	-60.61					
		ss	5	42	10			•				
GLACIAL TILL: Brown silty sand, some clay, with gravel, cobbles,												
boulders		ss	6	50	w	4-59.81						
		\square	0									
						5	-58.81					
						5-	- 30.01					
		ss	7	29	50+			•				
5.7 End of Borehole	′ <u>4 (^^^^^^</u>	\square			,							
Practical refusal to augering at 5.74m depth												
(GWL @ 3.19m - Sept. 20, 2018)												
									200 300 Eagle Rdg. as Besp. ∧ 1		00	

patersongr		In	Con	sulting	3	SOIL	_ PRO	FILE AI	ND TES	T DATA		
154 Colonnade Road South, Ottawa, On		-		ineers	1	Phase II - Environmental Site Assessment 16 and 20 Hamilton Avenue North Ottawa, Ontario						
DATUM BM - Top spindle of fire hy Parkdale Avenue. Geodet REMARKS Surveying Ltd.	drant ic elev	locate ation	ed ne = 64.	ar the .86m, a	sout as p	hwest corr er Farley, S	ner of 36 Smith an	FILE NO.	PE434 ⁻	1		
BORINGS BY CME 55 Power Auger				D	ATE	August 10	0, 2018		HOLE NO.	BH 4- ⁻	18	
<u> </u>	Ц		SAN	IPLE				Photo I	onization [Detector	lell n	
SOIL DESCRIPTION	PLOT			к	61 -	DEPTH (m)	ELEV. (m)	Vola	atile Organic F	ldg. (ppm)	ng V uctio	
	STRATA	ТҮРЕ	NUMBER	% RECOVERY	VALUE r ROD	A A		O Lowe	er Explosive	e Limit %	Monitoring Well Construction	
UNDERSIDE OF FOUNDATION	IS	н	NN	REC	N C)	<u></u>	20	40 60	80	βÜ	
Asphaltic concrete0.05			_			_ 0-	-63.83					
		S AU	1									
FILL: Brown silty sand, some gravel												
		ss	2	46	7	1-62.83						
1.52												
<u></u> <u>1.9</u> 2		$\overline{\mathbf{v}}$									वित्रितित्रितितितितितितितितितितितितितितित	
		ss	3	54	12		2+61.83					
GLACIAL TILL: Brown silty clay with sand and gravel						_	01.00					
		ss	4	79	10							
			T		10							
3.05		7				3-	-60.83					
		ss	5	58	63							
GLACIAL TILL: Grey silty sand		$\overline{\mathbf{v}}$			~~	4-	-59.83					
with gravel, cobbles, boulders, trace clay		ss	6	46	32							
Ciay												
		ss	7	54	19							
		Δ				5-	-58.83					
		∛ss	8	100	50+	-						
					-							
End of Borehole												
Practical refusal to augering at 5.82m depth												
(GWL @ 3.89m - Sept. 20, 2018)												
								100 BKU	200 300 Eagle Rdg.		⊣ 00	
									as Resp. \triangle N			

patersong	rn	In	Con	sulting		SOII	_ PRO		ND TES	T DATA		
154 Colonnade Road South, Ottawa, G		_		ineers	Phase II - Environmental Site Assessment 16 and 20 Hamilton Avenue North Ottawa, Ontario							
DATUM BM - Top spindle of fire Parkdale Avenue. Geoc REMARKS Surveying Ltd.	hydrant etic ele	t locate vation	ed ne = 64	ar the s .86m, a	south is pe	nwest corr er Farley,	ner of 36 Smith ar	6 nd Denis	FILE NO.	PE434 ⁻	1	
BORINGS BY CME 55 Power Auger				DA	TE	August 10	0, 2018		HOLE NO.	BH 5- ⁻	18	
	Ę		SAN	IPLE				Photo I	onization	Detector	'ell	
SOIL DESCRIPTION	PLOT			ĸ	FI .	(m) (n	ELEV. (m)	 Vola 	tile Organic F	Rdg. (ppm)	∧ bu	
	STRATA	ТҮРЕ	NUMBER	* RECOVERY	VALUE r RQD			○ Lowe	er Explosiv	e Limit %	Monitoring Well	
UNDERSIDE OF FOUNDATION	<u>ي</u>		N	REC	z ö		00.00	20	40 60	80	ž	
Asphaltic concrete0.	05	×				- 0-	-63.90					
			1									
FILL: Brown silty sand, some		׊										
pravel, clay, trace organics		17										
		X SS	2	54	22	1-	-62.90					
1.	37											
		17										
tiff, brown SILTY CLAY	Y CLAY SS 3 58 9											
					2-	-61.90				-		
<u>2</u> .	29	1										
		ss	4	62	16							
		1										
						3-	60.90				-	
GLACIAL TILL: Brown to grey silty		1 33	5	15	14							
and with clay, gravel, cobbles,												
oulders		\mathbb{N}				4-	-59.90				-	
		∬ss	6	17	15		00.00					
		17										
		∬SS	7	67	26	5-	-58.90					
5. Ind of Borehole	<u>18 ^^^^</u>	1					00.00					
								100	200 300	400 5	00	
								RKI	Eagle Rdg.	(ppm)		
								L ▲ Full G	as Resp. 🛆 N	Nethane Elim.		

SOIL PROFILE AND TEST DATA patersongroup Phase II - Environmental Site Assessment 16 and 20 Hamilton Avenue North 154 Colonnade Road South, Ottawa, Ontario K2E 7J5 Ottawa, Ontario BM - Top spindle of fire hydrant located near the southwest corner of 366 DATUM FILE NO. Parkdale Avenue. Geodetic elevation = 64.86m, as per Farley, Smith and Denis **PE4341** REMARKS Surveying Ltd. HOLE NO. **BH 6-18** BORINGS BY CME 55 Power Auger DATE August 10, 2018 Monitoring Well Construction SAMPLE **Photo Ionization Detector** STRATA PLOT DEPTH ELEV. SOIL DESCRIPTION • Volatile Organic Rdg. (ppm) (m) (m) N VALUE or RQD RECOVERY NUMBER TYPE o/0 Lower Explosive Limit % Ο **UNDERSIDE OF FOUNDATION** 40 80 20 60 0+63.63 Asphaltic concrete 0.05 FILL: Gravel, some silty sand 0.15 AU 1 աներին ներերիներին եներին FILL: Brown silty sand, some gravel 0.91 1 --62.63 SS 2 54 14

Very stiff, brown SILTY CLAY	1.52							
GLACIAL TILL: Brown silty clay,		ss	3	79	20	2-	-61.63	
some sand, gravel, cobbles, boulders		ss	4	42	58			
	_ <u>2.90 (^^^^</u>	ss	5	42	23	3-	-60.63	
GLACIAL TILL: Grey silty sand with gravel, cobbles, boulders,			Ū					
some clay		ss	6	33	7	4-	-59.63	
End of Borehole	_ <u>5.00</u>	ss	7	35	50+	5-	-58.63	
Practical refusal to augering at 5.00m depth								
(GWL @ 3.14m - Sept. 20, 2018)							
								100 200 300 400 500 RKI Eagle Rdg. (ppm) ▲ Full Gas Resp. △ Methane Elim.

patersongi	' NI	In	Con	sulting		SOII	_ PRO	FILE A	ND TES	T DATA		
154 Colonnade Road South, Ottawa, C		-		ineers	Phase II - Environmental Site Assessment 16 and 20 Hamilton Avenue North Ottawa, Ontario							
DATUM BM - Top spindle of fire l Parkdale Avenue. Geode REMARKS Surveying Ltd.	nydrant etic ele	locate	ed ne = 64.	ar the s .86m, a	south as pe	nwest corr er Farley,	ner of 36 Smith ar	6 nd Denis	FILE NO.	PE434 ⁻	1	
BORINGS BY CME 55 Power Auger				DA	ATE	August 10	0, 2018		HOLE NO.	BH 7- ⁻	18	
U	PLOT		SAN	IPLE				Photo I	onization I	Detector	ell	
SOIL DESCRIPTION			<i>c</i> ;	ХХ	Щ. Ы.	DEPTH (m)	ELEV. (m)		tile Organic F		Monitoring Well	
		ТҮРЕ	NUMBER	% RECOVERY	VALUE r RQD			○ Lowe	er Explosiv	e Limit %	onitor	
UNDERSIDE OF FOUNDATION	STRATA		Z	RE	z °	0-	-63.74	20	40 60	80	ž	
Asphaltic concrete0.0)5						00.74					
		B AU	1									
FILL: Brown silty sand, some gravel, trace organics												
		ss	2	67	11	1-	62.74					
		\mathbb{N}^{33}	2	07								
1.5	52											
I am a shift because OIL TV OL AV		ss	3	67	9							
/ery stiff, brown SILTY CLAY		1	_		-	2-	61.74					
2.2	29	× SS	4	33	50+	50+						
GLACIAL TILL: Grey silty sand,		17				3-	-60.74					
some gravel, cobbles, boulders, trace clay		ss	5	83	42							
		1										
		$\overline{\mathbf{h}}$										
		ss	6	71	21	4-	-59.74					
End of Borehole	12 <u>^^^^/</u>	1							·····			
End of Borenole												
										400 5		
									200 300 Eagle Rdg.	(ppm)	00	
										Methane Elim.		

SOIL PROFILE AND TEST DATA patersongroup Phase II - Environmental Site Assessment 16 and 20 Hamilton Avenue North 154 Colonnade Road South, Ottawa, Ontario K2E 7J5 Ottawa, Ontario BM - Top spindle of fire hydrant located near the southwest corner of 366 FILE NO. DATUM Parkdale Avenue. Geodetic elevation = 64.86m, as per Farley, Smith and Denis **PE4341** REMARKS Surveying Ltd. HOLE NO. **BH 8-18** DATE September 7, 2018 BORINGS BY Portable Drill SAMPLE **Photo Ionization Detector** Monitoring Well Construction PLOT DEPTH ELEV. SOIL DESCRIPTION Volatile Organic Rdg. (ppm) (m) (m) RECOVERY N VALUE or RQD STRATA NUMBER TYPE o/0 Lower Explosive Limit % \bigcirc UNDERSIDE OF FOUNDATION 80 20 40 60 0+63.96Concrete Slab 0.13 G 1 FILL: Brown silty sand with gravel, trace slag concrete SS 2 75 0.91 SS 3 100 1 + 62.96SS Grey SILTY CLAY trace gravel 4 36 2+61.96 SS 5 29 2.44 _____ SS 6 89 3+60.96SS 7 31 GLACIAL TILL: Dense, grey silty sand with clay, gravel, cobbles and boulders SS 8 96 4+59.96 SS 9 68 5+58.965.13 End of Borehole Practical refusal to augering at 5.13m depth (GWL @ 3.33m - Sept. 20, 2018)

100

200

RKI Eagle Rdg. (ppm)▲ Full Gas Resp. △ Methane Elim.

300

400

500

patersongr	۲) ا	Ir	Con	sulting	SOIL PROFILE AND TEST DATA								
154 Colonnade Road South, Ottawa, O		_		ineers	16	Phase II - Environmental Site Assessment 16 and 20 Hamilton Avenue North Ottawa, Ontario							
DATUMBM - Top spindle of fire h Parkdale Avenue. GeodeREMARKSSurveying Ltd.	Parkdale Avenue. Geodetic elevation = 64.86m, as per Farle										1		
BORINGS BY Portable Drill				D	ΔTF	Septemb	er 7 201	8	HOLE NO.	BH 9- ⁻	18		
			SVI	/PLE					onization	Detector			
SOIL DESCRIPTION	STRATA PLOT					DEPTH (m)	ELEV. (m)		tile Organic I		ng We		
UNDERSIDE OF FOUNDATION		ТҮРЕ	NUMBER	% RECOVERY	N VALUE or RQD			O Lowe 20	r Explosiv		Monitoring Well Construction		
Concrete Slab		G	1			- 0-	63.96	•					
FILL: Brown silty sand with sand		ss	2	38				•					
		ss	3	96		1-	-62.96						
Brown SILTY CLAY trace sand		ss ss	4	96 100		2-	-61.96						
3.0		ss	6	33		3-	-60.96						
GLACIAL TILL : Dense, grey silty sand with gravel, some cobbles		ss	7	92		4-	-59.96						
5 ((^^^^^) (^^^^) (^^^^) (^^^^) () () () () () () () () () () () () ()	ss	8	96		5	-58.96						
End of Borehole Practical refusal to augeringl at		-				5	- 36.90						
5.03m depth (GWL @ 2.67m - Sept. 20, 2018)													
									200 300 Eagle Rdg. as Resp. △ I		⊣ 00		

SYMBOLS AND TERMS

SOIL DESCRIPTION

Behavioural properties, such as structure and strength, take precedence over particle gradation in describing soils. Terminology describing soil structure are as follows:

Desiccated	-	having visible signs of weathering by oxidation of clay minerals, shrinkage cracks, etc.
Fissured	-	having cracks, and hence a blocky structure.
Varved	-	composed of regular alternating layers of silt and clay.
Stratified	-	composed of alternating layers of different soil types, e.g. silt and sand or silt and clay.
Well-Graded	-	Having wide range in grain sizes and substantial amounts of all intermediate particle sizes (see Grain Size Distribution).
Uniformly-Graded	-	Predominantly of one grain size (see Grain Size Distribution).

The standard terminology to describe the strength of cohesionless soils is the relative density, usually inferred from the results of the Standard Penetration Test (SPT) 'N' value. The SPT N value is the number of blows of a 63.5 kg hammer, falling 760 mm, required to drive a 51 mm O.D. split spoon sampler 300 mm into the soil after an initial penetration of 150 mm.

Relative Density	'N' Value	Relative Density %
Very Loose	<4	<15
Loose	4-10	15-35
Compact	10-30	35-65
Dense	30-50	65-85
Very Dense	>50	>85

The standard terminology to describe the strength of cohesive soils is the consistency, which is based on the undisturbed undrained shear strength as measured by the in situ or laboratory vane tests, penetrometer tests, unconfined compression tests, or occasionally by Standard Penetration Tests.

Consistency	Undrained Shear Strength (kPa)	'N' Value
Very Soft	<12	<2
Soft	12-25	2-4
Firm	25-50	4-8
Stiff	50-100	8-15
Very Stiff	100-200	15-30
Hard	>200	>30

SYMBOLS AND TERMS (continued)

SOIL DESCRIPTION (continued)

Cohesive soils can also be classified according to their "sensitivity". The sensitivity is the ratio between the undisturbed undrained shear strength and the remoulded undrained shear strength of the soil.

Terminology used for describing soil strata based upon texture, or the proportion of individual particle sizes present is provided on the Textural Soil Classification Chart at the end of this information package.

ROCK DESCRIPTION

The structural description of the bedrock mass is based on the Rock Quality Designation (RQD).

The RQD classification is based on a modified core recovery percentage in which all pieces of sound core over 100 mm long are counted as recovery. The smaller pieces are considered to be a result of closely-spaced discontinuities (resulting from shearing, jointing, faulting, or weathering) in the rock mass and are not counted. RQD is ideally determined from NXL size core. However, it can be used on smaller core sizes, such as BX, if the bulk of the fractures caused by drilling stresses (called "mechanical breaks") are easily distinguishable from the normal in situ fractures.

RQD % ROCK QUALITY

90-100	Excellent, intact, very sound
75-90	Good, massive, moderately jointed or sound
50-75	Fair, blocky and seamy, fractured
25-50	Poor, shattered and very seamy or blocky, severely fractured
0-25	Very poor, crushed, very severely fractured

SAMPLE TYPES

SS	-	Split spoon sample (obtained in conjunction with the performing of the Standard
		Penetration Test (SPT))

- TW Thin wall tube or Shelby tube
- PS Piston sample
- AU Auger sample or bulk sample
- WS Wash sample
- RC Rock core sample (Core bit size AXT, BXL, etc.). Rock core samples are obtained with the use of standard diamond drilling bits.

SYMBOLS AND TERMS (continued)

GRAIN SIZE DISTRIBUTION

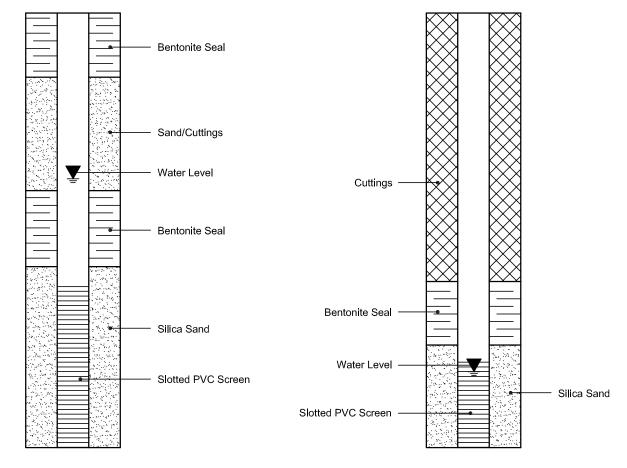
MC% LL PL PI	- - -	Natural moisture content or water content of sample, % Liquid Limit, % (water content above which soil behaves as a liquid) Plastic limit, % (water content above which soil behaves plastically) Plasticity index, % (difference between LL and PL)
Dxx	-	Grain size which xx% of the soil, by weight, is of finer grain sizes These grain size descriptions are not used below 0.075 mm grain size
D10	-	Grain size at which 10% of the soil is finer (effective grain size)
D60	-	Grain size at which 60% of the soil is finer
Сс	-	Concavity coefficient = $(D30)^2 / (D10 \times D60)$
Cu	-	Uniformity coefficient = D60 / D10
Cc and	Cu are	used to assess the grading of sands and gravels:

Well-graded gravels have: 1 < Cc < 3 and Cu > 4Well-graded sands have: 1 < Cc < 3 and Cu > 4Well-graded sands have: 1 < Cc < 3 and Cu > 6Sands and gravels not meeting the above requirements are poorly-graded or uniformly-graded. Cc and Cu are not applicable for the description of soils with more than 10% silt and clay (more than 10% finer than 0.075 mm or the #200 sieve)

CONSOLIDATION TEST

p'o	-	Present effective overburden pressure at sample depth
p'c	-	Preconsolidation pressure of (maximum past pressure on) sample
Ccr	-	Recompression index (in effect at pressures below p'c)
Сс	-	Compression index (in effect at pressures above p'c)
OC Ratio)	Overconsolidaton ratio = p'_c / p'_o
Void Rat	io	Initial sample void ratio = volume of voids / volume of solids
Wo	-	Initial water content (at start of consolidation test)

PERMEABILITY TEST


k - Coefficient of permeability or hydraulic conductivity is a measure of the ability of water to flow through the sample. The value of k is measured at a specified unit weight for (remoulded) cohesionless soil samples, because its value will vary with the unit weight or density of the sample during the test.

SYMBOLS AND TERMS (continued) STRATA PLOT Topsoil Asphalt Peat Sand Silty Sand Fill ∇ Sandy Silt Clay Silty Clay Clayey Silty Sand Glacial Till Shale Bedrock

MONITORING WELL AND PIEZOMETER CONSTRUCTION

PIEZOMETER CONSTRUCTION

RELIABLE.

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

Paterson Group Consulting Engineers

154 Colonnade Road South Nepean, ON K2E 7J5 Attn: Adrian Menyhart

Client PO: 24160 Project: PE4341 Custody: 117231

Report Date: 20-Jun-2018 Order Date: 13-Jun-2018

Order #: 1824400

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID **Client ID** 1824400-01 BH1-SS2 1824400-02 BH2-SS2 1824400-03 BH3-SS2

Approved By:

Dale Robertson, BSc Laboratory Director

Any use of these results implies your agreement that our total liability in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.

Order #: 1824400

Report Date: 20-Jun-2018 Order Date: 13-Jun-2018

Project Description: PE4341

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
Mercury by CVAA	EPA 7471B - CVAA, digestion	14-Jun-18	14-Jun-18
REG 153: Metals by ICP/MS, soil	EPA 6020 - Digestion - ICP-MS	18-Jun-18	19-Jun-18
REG 153: PAHs by GC-MS	EPA 8270 - GC-MS, extraction	14-Jun-18	15-Jun-18
Solids, %	Gravimetric, calculation	15-Jun-18	15-Jun-18

Report Date: 20-Jun-2018 Order Date: 13-Jun-2018

Project Description: PE4341

	Client ID:	BH1-SS2	BH2-SS2	BH3-SS2	-
	Sample Date:	06/13/2018 09:00	06/13/2018 09:00	06/13/2018 09:00	-
	Sample ID:	1824400-01	1824400-02	1824400-03	-
Diversional Objects staniation	MDL/Units	Soil	Soil	Soil	-
Physical Characteristics	0.1 % by Wt.		00.0	01.0	
% Solids	0.1 % Dy Wt.	80.7	88.6	81.0	-
Metals	1.0 ug/g dry	0.4	4.0		
Antimony	1.0 ug/g dry	6.4	1.6	-	-
Arsenic		5.8	3.8	-	-
Barium	1.0 ug/g dry	319	212	-	-
Beryllium	0.5 ug/g dry	0.7	0.6	-	-
Boron	5.0 ug/g dry	29.7	25.1	-	-
Cadmium	0.5 ug/g dry	<0.5	<0.5	-	-
Chromium	5.0 ug/g dry	57.1	47.9	-	-
Cobalt	1.0 ug/g dry	14.9	10.9	-	-
Copper	5.0 ug/g dry	54.3	63.8	-	-
Lead	1.0 ug/g dry	490	58.2	-	-
Mercury	0.1 ug/g dry	0.3	<0.1	-	-
Molybdenum	1.0 ug/g dry	1.2	<1.0	-	-
Nickel	5.0 ug/g dry	39.4	17.5	-	-
Selenium	1.0 ug/g dry	3.6	2.7	-	-
Silver	0.3 ug/g dry	<0.3	<0.3	-	-
Thallium	1.0 ug/g dry	<1.0	<1.0	-	-
Uranium	1.0 ug/g dry	<1.0	<1.0	-	-
Vanadium	10.0 ug/g dry	78.4	71.4	-	-
Zinc	20.0 ug/g dry	206	97.1	-	-
Semi-Volatiles					
Acenaphthene	0.02 ug/g dry	-	<0.02	302 [2]	-
Acenaphthylene	0.02 ug/g dry	-	<0.02	<16.0 [1] [2]	-
Anthracene	0.02 ug/g dry	-	0.03	451 [2]	-
Benzo [a] anthracene	0.02 ug/g dry	-	0.05	487 [2]	-
Benzo [a] pyrene	0.02 ug/g dry	-	0.05	371 [2]	-
Benzo [b] fluoranthene	0.02 ug/g dry	-	0.06	462 [2]	-
Benzo [g,h,i] perylene	0.02 ug/g dry	-	0.03	171 [2]	-
Benzo [k] fluoranthene	0.02 ug/g dry	-	0.03	258 [2]	-
Chrysene	0.02 ug/g dry	-	0.06	511 [2]	-
Dibenzo [a,h] anthracene	0.02 ug/g dry	-	<0.02	58.5 [2]	-
Fluoranthene	0.02 ug/g dry	-	0.13	1730 [2]	-
Fluorene	0.02 ug/g dry	-	<0.02	386 [2]	-
Indeno [1,2,3-cd] pyrene	0.02 ug/g dry	-	0.03	195 [2]	-

Order #: 1824400

Report Date: 20-Jun-2018 Order Date: 13-Jun-2018

Project Description: PE4341

	Client ID: Sample Date:	BH1-SS2 06/13/2018 09:00	BH2-SS2 06/13/2018 09:00	BH3-SS2 06/13/2018 09:00	-
	Sample ID: MDL/Units	1824400-01 Soil	1824400-02 Soil	1824400-03 Soil	-
1-Methylnaphthalene	0.02 ug/g dry	-	<0.02	89.2 [2]	-
2-Methylnaphthalene	0.02 ug/g dry	-	0.02	179 [2]	-
Methylnaphthalene (1&2)	0.04 ug/g dry	-	<0.04	268 [2]	-
Naphthalene	0.01 ug/g dry	-	0.04	866 [2]	-
Phenanthrene	0.02 ug/g dry	-	0.12	1980 [2]	-
Pyrene	0.02 ug/g dry	-	0.11	1270 [2]	-
2-Fluorobiphenyl	Surrogate	-	104%	-	-
Terphenyl-d14	Surrogate	-	108%	-	-

Order #: 1824400

Report Date: 20-Jun-2018

Order Date: 13-Jun-2018

Project Description: PE4341

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Metals									
Antimony	ND	1.0	ug/g						
Arsenic	ND	1.0	ug/g						
Barium	ND	1.0	ug/g						
Beryllium	ND	0.5	ug/g						
Boron	ND	5.0	ug/g						
Cadmium	ND	0.5	ug/g						
Chromium	ND	5.0	ug/g						
Cobalt	ND	1.0	ug/g						
Copper	ND	5.0	ug/g						
Lead	ND	1.0	ug/g						
Mercury	ND	0.1	ug/g						
Molybdenum	ND	1.0	ug/g						
Nickel	ND	5.0	ug/g						
Selenium	ND	1.0	ug/g						
Silver	ND	0.3	ug/g						
Thallium	ND	1.0	ug/g						
Uranium	ND	1.0	ug/g						
Vanadium	ND	10.0	ug/g						
Zinc	ND	20.0	ug/g						
Semi-Volatiles									
Acenaphthene	ND	0.02	ug/g						
Acenaphthylene	ND	0.02	ug/g						
Anthracene	ND	0.02	ug/g						
Benzo [a] anthracene	ND	0.02	ug/g						
Benzo [a] pyrene	ND	0.02	ug/g						
Benzo [b] fluoranthene	ND	0.02	ug/g						
Benzo [g,h,i] perylene	ND	0.02	ug/g						
Benzo [k] fluoranthene	ND	0.02	ug/g						
Chrysene	ND	0.02	ug/g						
Dibenzo [a,h] anthracene	ND	0.02	ug/g						
Fluoranthene	ND	0.02	ug/g						
Fluorene	ND	0.02	ug/g						
Indeno [1,2,3-cd] pyrene	ND	0.02	ug/g						
1-Methylnaphthalene	ND	0.02	ug/g						
2-Methylnaphthalene	ND	0.02	ug/g						
Methylnaphthalene (1&2)	ND	0.04	ug/g						
Naphthalene	ND	0.01	ug/g						
Phenanthrene	ND	0.02	ug/g						
Pyrene	ND	0.02	ug/g		116	50 140			
Surrogate: 2-Fluorobiphenyl	1.55		ug/g		116	50-140			
Surrogate: Terphenyl-d14	1.63		ug/g		122	50-140			

Order #: 1824400

Report Date: 20-Jun-2018

Order Date: 13-Jun-2018

Project Description: PE4341

Method Quality Control: Duplicate

		Reporting		Source		%REC		RPD	
Analyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes
Metals									
Antimony	6.8	1.0	ug/g dry	6.4			5.7	30	
Arsenic	5.7	1.0	ug/g dry	5.8			2.2	30	
Barium	308	1.0	ug/g dry	319			3.6	30	
Beryllium	0.7	0.5	ug/g dry	0.7			1.1	30	
Boron	33.8	5.0	ug/g dry	29.7			12.8	30	
Cadmium	ND	0.5	ug/g dry	ND			0.0	30	
Chromium	55.2	5.0	ug/g dry	57.1			3.4	30	
Cobalt	14.3	1.0	ug/g dry	14.9			4.4	30	
Copper	53.1	5.0	ug/g dry	54.3			2.2	30	
Lead	477	1.0	ug/g dry	490			2.7	30	
Mercury	0.224	0.1	ug/g dry	0.287			24.9	30	
Molybdenum	1.1	1.0	ug/g dry	1.2			3.0	30	
Nickel	35.8	5.0	ug/g dry	39.4			9.6	30	
Selenium	3.3	1.0	ug/g dry	3.6			9.0	30	
Silver	ND	0.3	ug/g dry	ND			0.0	30	
Thallium	ND	1.0	ug/g dry	ND			0.0	30	
Uranium	ND	1.0	ug/g dry	ND			0.0	30	
Vanadium	75.5	10.0	ug/g dry	78.4			3.7	30	
Zinc	201	20.0	ug/g dry	206			2.4	30	
Physical Characteristics									
% Šolids	82.9	0.1	% by Wt.	82.1			0.9	25	
Semi-Volatiles									
Acenaphthene	ND	0.02	ug/g dry	ND				40	
Acenaphthylene	ND	0.02	ug/g dry	ND			0.0	40	
Anthracene	ND	0.02	ug/g dry	ND			0.0	40	
Benzo [a] anthracene	ND	0.02	ug/g dry	ND			0.0	40	
Benzo [a] pyrene	ND	0.02	ug/g dry	ND			0.0	40	
Benzo [b] fluoranthene	ND	0.02	ug/g dry	ND			0.0	40	
Benzo [g,h,i] perylene	ND	0.02	ug/g dry	ND			0.0	40	
Benzo [k] fluoranthene	ND	0.02	ug/g dry	ND			0.0	40	
Chrysene	ND	0.02	ug/g dry	ND			0.0	40	
Dibenzo [a,h] anthracene	ND	0.02	ug/g dry	ND			~ ~	40	
Fluoranthene	0.039	0.02	ug/g dry	0.036			9.2	40	
Fluorene	ND	0.02	ug/g dry	ND				40	
Indeno [1,2,3-cd] pyrene	ND	0.02	ug/g dry	ND			0.0	40	
1-Methylnaphthalene	ND	0.02	ug/g dry	ND				40	
2-Methylnaphthalene	ND	0.02	ug/g dry	ND				40	
Naphthalene	ND	0.01	ug/g dry	ND				40	
Phenanthrene	ND	0.02	ug/g dry	0.022			0.0	40	
Pyrene	0.032	0.02	ug/g dry	0.029		50 1 10	11.6	40	
Surrogate: 2-Fluorobiphenyl	1.69		ug/g dry		111	50-140			
Surrogate: Terphenyl-d14	1.70		ug/g dry		112	50-140			

Report Date: 20-Jun-2018 Order Date: 13-Jun-2018

Project Description: PE4341

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Metals									
Antimony	50.6		ug/L	2.6	96.2	70-130			
Arsenic	52.9		ug/L	2.3	101	70-130			
Barium	179		ug/L	128	103	70-130			
Beryllium	42.7		ug/L	ND	84.8	70-130			
Boron	46.6		ug/L	11.9	69.3	70-130		(QM-07
Cadmium	46.7		ug/L	ND	93.0	70-130			
Chromium	72.0		ug/L	22.8	98.3	70-130			
Cobalt	53.6		ug/L	6.0	95.3	70-130			
Copper	69.2		ug/L	21.7	95.0	70-130			
Lead	232		ug/L	196	71.5	70-130			
Mercury	1.55	0.1	ug/g	0.287	84.2	70-130			
Molybdenum	47.2		ug/L	ND	93.5	70-130			
Nickel	62.7		ug/L	15.8	93.8	70-130			
Selenium	45.8		ug/L	1.4	88.7	70-130			
Silver	45.8		ug/L	ND	91.4	70-130			
Thallium	44.0		ug/L	ND	87.6	70-130			
Uranium	49.8		ug/L	ND	98.9	70-130			
Vanadium	81.1		ug/L	31.3	99.5	70-130			
Zinc	129		ug/L	82.5	93.7	70-130			
Semi-Volatiles			5						
Acenaphthene	0.185	0.02	ug/g	ND	97.3	50-140			
Acenaphthylene	0.177	0.02	ug/g	ND	92.8	50-140			
Anthracene	0.180	0.02	ug/g	ND	94.4	50-140			
Benzo [a] anthracene	0.194	0.02	ug/g	ND	102	50-140			
Benzo [a] pyrene	0.183	0.02	ug/g	ND	96.1	50-140			
Benzo [b] fluoranthene	0.264	0.02	ug/g	ND	138	50-140			
Benzo [g,h,i] perylene	0.176	0.02	ug/g	ND	92.4	50-140			
Benzo [k] fluoranthene	0.254	0.02	ug/g	ND	134	50-140			
Chrysene	0.217	0.02	ug/g	ND	114	50-140			
Dibenzo [a,h] anthracene	0.182	0.02	ug/g	ND	95.8	50-140			
Fluoranthene	0.228	0.02	ug/g	0.036	101	50-140			
Fluorene	0.197	0.02	ug/g	ND	103	50-140			
Indeno [1,2,3-cd] pyrene	0.191	0.02	ug/g	ND	100	50-140			
1-Methylnaphthalene	0.177	0.02	ug/g	ND	93.1	50-140			
2-Methylnaphthalene	0.197	0.02	ug/g	ND	103	50-140			
Naphthalene	0.166	0.01	ug/g	ND	87.0	50-140			
Phenanthrene	0.200	0.02	ug/g	0.022	93.4	50-140			
Pyrene	0.223	0.02	ug/g	0.029	102	50-140			
Surrogate: 2-Fluorobiphenyl	1.62	0.02	ug/g ug/g	0.020	107	50-140			

Qualifier Notes:

Sample Qualifiers :

- 1: Elevated detection limit due to dilution required because of high target analyte concentration.
- 2: Surrogates not available due to extract dilution.

QC Qualifiers :

QM-07 : The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on other acceptable QC.

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference.

Soil results are reported on a dry weight basis when the units are denoted with 'dry'. Where %Solids is reported, moisture loss includes the loss of volatile hydrocarbons.

					Para	cel II	D: 1	824	140	0						
GPARACEL	RE	USTE SPOI	NSIV	E .								ქ. 3	1000	(L	ab Use (ustody Duly) 231
LABORATORIES LTD.	HE	LIAB	LE .					3	e. pa	accie	paraco	in the second		Paį	ge 🖵 (of +
Sic			-	Project Reference	: dy	1A	1	PE	42	41				Turn	aroun	d Time:
Tient Name: Patusa Group				Quote #	1	14/6	~	1.6	10	1			DI Da	ay		🗆 3 Day
ontact Name: ADKIAN MENYF	#14			PO #	Ą	41	60	0								6 1
deress: 154 Colonnade AD	5			Email Address:	-	1	-			1			- 2 D	S		Regular
1) (a) - 2/ 0.05	1				amen	1 ho	urt	C	ſ	ste	Jan	pilour	Date I	Requi	red:	
riteria: DO. Reg. 153/04 (As Amended) Table] DRSC I	iling C	1 (). Reg	. 558/00	D PWQO D	CCME II SU	B (Stor	rm) C	SUB	(Sar	uitary)	Munic	ipality:		_ 0	Other:	
fatrix Type: S (Soil/Sed.) GW (Ground Water) SW (Surface Water) S						Req	juired	Ana	lyse	\$						
Paracel Order Number:		1				EX		Τ	T							
18244(X)	rix	Air Volume	of Containers	Sample	e Taken	S F1-F4+BTEX	S.	ts ats hv tCP	2		B (HWS)					
Sample ID/Location Name	Matrix	Air	# of	Date	Time	PHCs	VOCS	PAHs Menals	He	CrVI	B ()	-		51	1	
1 100000 844552	S		1	JUNE B	bra			1	1		_	_	- 7	50	mi-	
2 RH2 - 552 /	5		12.	(11)	(1)	_		1	1	1	_	-	_		/	
3 843-552	S		1	(1)	(0)			1	+	-	_	-	9	V		1.00
4 BH3 - 553 C	5		28	f (11)	(nj	/		+	+	-	-		- 1	a un	n!-	1 vial-
5					-	-		+	+	+	-	-		-	+	
6			-			+	$\left \right $	+	+	+		+	-	-	+	
7 HOLD	-	-	-			-	+	+	+	+		-	_	1	+	
8	_	-	-			-	$\left \right $	+	+	+		-	-	1	+	
9	-	-	-			+	+	+	+	+			-	-	1	
10						_		_	-	-				Metho	d of Del	ivery:
Comments:														10	rac	el
Relinquished By (Sign):	Recei	vel by D		Traise		eived at 1	Lab: IEA	Rr	1	Q	okr	1Ai	ified By:	Ø		- sout
Relinquished By (Print) Adven Meur	Date	Time:	3/0	6/18 1	4.10 Date	e/Timer	IVIN	13	101	r	05.		Verified []	OG/	14	55-24
Date Time: TUHE 13 2018	Temp	crature:	/	C	M. Tem	sperature	: d.v.	1			_	[pi1	(durent 1	off.		and the second second

Chain of Custody (Env) - Rev 0.7 Feb. 2016

RELIABLE.

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

Paterson Group Consulting Engineers

154 Colonnade Road South Nepean, ON K2E 7J5 Attn: Adrian Menyhart

Client PO: 24108 Project: PE4341 Custody: 116635

Report Date: 27-Jun-2018 Order Date: 21-Jun-2018

Order #: 1825681

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID	Client ID
1825681-01	BH1-GW1
1825681-02	BH2-GW1
1825681-03	BH3-GW1

Approved By:

Dale Robertson, BSc Laboratory Director

Any use of these results implies your agreement that our total liability in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.

Order #: 1825681

Report Date: 27-Jun-2018 Order Date: 21-Jun-2018

Project Description: PE4341

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
Mercury by CVAA	EPA 245.2 - Cold Vapour AA	25-Jun-18	27-Jun-18
Metals, ICP-MS	EPA 200.8 - ICP-MS	27-Jun-18	27-Jun-18
REG 153: PAHs by GC-MS	EPA 625 - GC-MS, extraction	26-Jun-18	26-Jun-18
REG 153: VOCs by P&T GC/MS	EPA 624 - P&T GC-MS	22-Jun-18	23-Jun-18

Report Date: 27-Jun-2018 Order Date: 21-Jun-2018

	Client ID: Sample Date: Sample ID: MDL/Units	BH1-GW1 06/20/2018 00:00 1825681-01 Water	BH2-GW1 06/20/2018 00:00 1825681-02 Water	BH3-GW1 06/20/2018 00:00 1825681-03 Water	
Metals	MDL/Onits	Water	Water	Water	_
Mercury	0.1 ug/L	<0.1	<0.1	-	-
Antimony	0.5 ug/L	<0.5	<0.5	-	_
Arsenic	1 ug/L	<1	1	-	_
Barium	1 ug/L	187	175	-	-
Beryllium	0.5 ug/L	<0.5	<0.5	-	-
Boron	10 ug/L	127	141	-	-
Cadmium	0.1 ug/L	<0.1	<0.1	-	-
Chromium	1 ug/L	<1	<1	-	-
Cobalt	0.5 ug/L	0.7	0.8	-	-
Copper	0.5 ug/L	1.6	1.3	-	_
Lead	0.1 ug/L	<0.1	<0.1	-	-
Molybdenum	0.5 ug/L	1.2	4.2	-	_
Nickel	1 ug/L	2	5	-	_
Selenium	1 ug/L	<1	<1	-	-
Silver	0.1 ug/L	<0.1	<0.1	-	-
Sodium	200 ug/L	66400	157000	-	-
Thallium	0.1 ug/L	<0.1	0.1	-	-
Uranium	0.1 ug/L	2.3	3.9	-	-
Vanadium	0.5 ug/L	0.7	0.7	-	-
Zinc	5 ug/L	<5	<5	-	-
Volatiles					
Acetone	5.0 ug/L	<5.0	-	<5.0	-
Benzene	0.5 ug/L	<0.5	-	<0.5	-
Bromodichloromethane	0.5 ug/L	<0.5	-	<0.5	-
Bromoform	0.5 ug/L	<0.5	-	<0.5	-
Bromomethane	0.5 ug/L	<0.5	-	<0.5	-
Carbon Tetrachloride	0.2 ug/L	<0.2	-	<0.2	-
Chlorobenzene	0.5 ug/L	<0.5	-	<0.5	-
Chloroform	0.5 ug/L	<0.5	-	<0.5	-
Dibromochloromethane	0.5 ug/L	<0.5	-	<0.5	-
Dichlorodifluoromethane	1.0 ug/L	<1.0	-	<1.0	-
1,2-Dichlorobenzene	0.5 ug/L	<0.5	-	<0.5	-
1,3-Dichlorobenzene	0.5 ug/L	<0.5	-	<0.5	-
1,4-Dichlorobenzene	0.5 ug/L	<0.5	-	<0.5	-
1,1-Dichloroethane	0.5 ug/L	<0.5	-	<0.5	-

Order #: 1825681

Report Date: 27-Jun-2018 Order Date: 21-Jun-2018

	Client ID:		BH2-GW1]
	Sample Date:	BH1-GW1 06/20/2018 00:00	06/20/2018 00:00	BH3-GW1 06/20/2018 00:00	-
	Sample ID:	1825681-01	1825681-02	1825681-03	-
[MDL/Units	Water	Water	Water	-
1,2-Dichloroethane	0.5 ug/L	<0.5	-	<0.5	-
1,1-Dichloroethylene	0.5 ug/L	<0.5	-	<0.5	-
cis-1,2-Dichloroethylene	0.5 ug/L	<0.5	-	<0.5	-
trans-1,2-Dichloroethylene	0.5 ug/L	<0.5	-	<0.5	-
1,2-Dichloropropane	0.5 ug/L	<0.5	-	<0.5	-
cis-1,3-Dichloropropylene	0.5 ug/L	<0.5	-	<0.5	-
trans-1,3-Dichloropropylene	0.5 ug/L	<0.5	-	<0.5	-
1,3-Dichloropropene, total	0.5 ug/L	<0.5	-	<0.5	-
Ethylbenzene	0.5 ug/L	<0.5	-	<0.5	-
Ethylene dibromide (dibromoethar	0.2 ug/L	<0.2	-	<0.2	-
Hexane	1.0 ug/L	<1.0	-	<1.0	-
Methyl Ethyl Ketone (2-Butanone)	5.0 ug/L	<5.0	-	<5.0	-
Methyl Isobutyl Ketone	5.0 ug/L	<5.0	-	<5.0	-
Methyl tert-butyl ether	2.0 ug/L	<2.0	-	<2.0	-
Methylene Chloride	5.0 ug/L	<5.0	-	<5.0	-
Styrene	0.5 ug/L	<0.5	-	<0.5	-
1,1,1,2-Tetrachloroethane	0.5 ug/L	<0.5	-	<0.5	-
1,1,2,2-Tetrachloroethane	0.5 ug/L	<0.5	-	<0.5	-
Tetrachloroethylene	0.5 ug/L	<0.5	-	<0.5	-
Toluene	0.5 ug/L	<0.5	-	<0.5	-
1,1,1-Trichloroethane	0.5 ug/L	<0.5	-	<0.5	-
1,1,2-Trichloroethane	0.5 ug/L	<0.5	-	<0.5	-
Trichloroethylene	0.5 ug/L	<0.5	-	<0.5	-
Trichlorofluoromethane	1.0 ug/L	<1.0	-	<1.0	-
Vinyl chloride	0.5 ug/L	<0.5	-	<0.5	-
m,p-Xylenes	0.5 ug/L	<0.5	-	<0.5	-
o-Xylene	0.5 ug/L	<0.5	-	<0.5	-
Xylenes, total	0.5 ug/L	<0.5	-	<0.5	-
4-Bromofluorobenzene	Surrogate	108%	-	102%	-
Dibromofluoromethane	Surrogate	112%	-	114%	-
Toluene-d8	Surrogate	93.6%	-	93.7%	-
Semi-Volatiles					
Acenaphthene	0.05 ug/L	<0.05	-	0.48	-
Acenaphthylene	0.05 ug/L	<0.05	-	0.08	-
Anthracene	0.01 ug/L	<0.01	-	0.85	-
Benzo [a] anthracene	0.01 ug/L	<0.01	-	1.63	-

Order #: 1825681

Report Date: 27-Jun-2018 Order Date: 21-Jun-2018

	-				
	Client ID:	BH1-GW1	BH2-GW1	BH3-GW1	-
	Sample Date:	06/20/2018 00:00 1825681-01	06/20/2018 00:00 1825681-02	06/20/2018 00:00 1825681-03	-
	Sample ID:				-
r	MDL/Units	Water	Water	Water	-
Benzo [a] pyrene	0.01 ug/L	<0.01	-	1.41	-
Benzo [b] fluoranthene	0.05 ug/L	<0.05	-	1.66	-
Benzo [g,h,i] perylene	0.05 ug/L	<0.05	-	0.76	-
Benzo [k] fluoranthene	0.05 ug/L	<0.05	-	0.88	-
Chrysene	0.05 ug/L	<0.05	-	1.99	-
Dibenzo [a,h] anthracene	0.05 ug/L	<0.05	-	0.20	-
Fluoranthene	0.01 ug/L	<0.01	-	4.70	-
Fluorene	0.05 ug/L	<0.05	-	0.58	-
Indeno [1,2,3-cd] pyrene	0.05 ug/L	<0.05	-	0.72	-
1-Methylnaphthalene	0.05 ug/L	<0.05	-	0.11	-
2-Methylnaphthalene	0.05 ug/L	<0.05	-	0.16	-
Methylnaphthalene (1&2)	0.10 ug/L	<0.10	-	0.28	-
Naphthalene	0.05 ug/L	<0.05	-	0.57	-
Phenanthrene	0.05 ug/L	<0.05	-	4.20	-
Pyrene	0.01 ug/L	<0.01	-	3.72	-
2-Fluorobiphenyl	Surrogate	89.8%	-	77.7%	-
Terphenyl-d14	Surrogate	112%	-	106%	-

Order #: 1825681

Report Date: 27-Jun-2018

Order Date: 21-Jun-2018

Project Description: PE4341

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Metals									
Mercury	ND	0.1	ug/L						
Antimony	ND	0.5	ug/L						
Arsenic	ND	1	ug/L						
Barium	ND	1	ug/L						
Beryllium	ND	0.5	ug/L						
Boron	ND	10	ug/L						
Cadmium	ND	0.1	ug/L						
Chromium	ND	1	ug/L						
Cobalt	ND	0.5	ug/L						
Copper	ND	0.5	ug/L						
Lead	ND	0.1	ug/L						
Molybdenum	ND	0.5	ug/L						
Nickel	ND	1	ug/L						
Selenium	ND	1	ug/L						
Silver	ND	0.1	ug/L						
Sodium	ND	200	ug/L						
Thallium	ND	200	ug/L ug/L						
Uranium	ND	0.1							
	ND		ug/L						
Vanadium	ND ND	0.5	ug/L						
Zinc Somi Volotiloo	ND	5	ug/L						
Semi-Volatiles Acenaphthene	ND	0.05	ug/l						
Acenaphthylene	ND	0.05	ug/L						
Acenaphinylene	ND	0.05	ug/L						
			ug/L						
Benzo [a] anthracene	ND	0.01	ug/L						
Benzo [a] pyrene	ND	0.01	ug/L						
Benzo [b] fluoranthene	ND	0.05	ug/L						
Benzo [g,h,i] perylene	ND	0.05	ug/L						
Benzo [k] fluoranthene	ND	0.05	ug/L						
Chrysene	ND	0.05	ug/L						
Dibenzo [a,h] anthracene	ND	0.05	ug/L						
Fluoranthene	ND	0.01	ug/L						
Fluorene	ND	0.05	ug/L						
Indeno [1,2,3-cd] pyrene	ND	0.05	ug/L						
1-Methylnaphthalene	ND	0.05	ug/L						
2-Methylnaphthalene	ND	0.05	ug/L						
Methylnaphthalene (1&2)	ND	0.10	ug/L						
Naphthalene	ND	0.05	ug/L						
Phenanthrene	ND	0.05	ug/L						
Pyrene	ND	0.01	ug/L		70 -	50 4 40			
Surrogate: 2-Fluorobiphenyl	15.9		ug/L		79.5	50-140			
Surrogate: Terphenyl-d14	14.4		ug/L		71.8	50-140			
Volatiles									
Acetone	ND	5.0	ug/L						
Benzene	ND	0.5	ug/L						
Bromodichloromethane	ND	0.5	ug/L						
Bromoform	ND	0.5	ug/L						
Bromomethane	ND	0.5	ug/L						
Carbon Tetrachloride	ND	0.2	ug/L						
Chlorobenzene	ND	0.5	ug/L						
Chloroform	ND	0.5	ug/L						
Dibromochloromethane	ND	0.5	ug/L						
Dichlorodifluoromethane	ND	1.0	ug/L						
1.2-Dichlorobenzene	ND	0.5	ug/L						
1.3-Dichlorobenzene	ND	0.5	ug/L						
1,4-Dichlorobenzene	ND	0.5	ug/L						
1,1-Dichloroethane	ND	0.5	ug/L						
1,2-Dichloroethane	ND	0.5	ug/L						
1,1-Dichloroethylene	ND	0.5	ug/L						
.,		0.0	~g/ L						

Order #: 1825681

Report Date: 27-Jun-2018

Order Date: 21-Jun-2018

Project Description: PE4341

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
cis-1,2-Dichloroethylene	ND	0.5	ug/L						
trans-1,2-Dichloroethylene	ND	0.5	ug/L						
1.2-Dichloropropane	ND	0.5	ug/L						
cis-1,3-Dichloropropylene	ND	0.5	ug/L						
trans-1,3-Dichloropropylene	ND	0.5	ug/L						
1,3-Dichloropropene, total	ND	0.5	ug/L						
Ethylbenzene	ND	0.5	ug/L						
Ethylene dibromide (dibromoethane	ND	0.2	ug/L						
Hexane	ND	1.0	ug/L						
Methyl Ethyl Ketone (2-Butanone)	ND	5.0	ug/L						
Methyl Isobutyl Ketone	ND	5.0	ug/L						
Methyl tert-butyl ether	ND	2.0	ug/L						
Methylene Chloride	ND	5.0	ug/L						
Styrene	ND	0.5	ug/L						
1,1,1,2-Tetrachloroethane	ND	0.5	ug/L						
1,1,2,2-Tetrachloroethane	ND	0.5	ug/L						
Tetrachloroethylene	ND	0.5	ug/L						
Toluene	ND	0.5	ug/L						
1,1,1-Trichloroethane	ND	0.5	ug/L						
1,1,2-Trichloroethane	ND	0.5	ug/L						
Trichloroethylene	ND	0.5	ug/L						
Trichlorofluoromethane	ND	1.0	ug/L						
Vinyl chloride	ND	0.5	ug/L						
m,p-Xylenes	ND	0.5	ug/L						
o-Xylene	ND	0.5	ug/L						
Xylenes, total	ND	0.5	ug/L						
Surrogate: 4-Bromofluorobenzene	83.6		ug/L		104	50-140			
Surrogate: Dibromofluoromethane	82.5		ug/L		103	50-140			
Surrogate: Toluene-d8	74.5		ug/L		93.2	50-140			

Order #: 1825681

Report Date: 27-Jun-2018

Order Date: 21-Jun-2018

Project Description: PE4341

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Metals									
Mercury	ND	0.1	ug/L	ND			0.0	20	
Antimony	ND	0.5	ug/L	ND			0.0	20	
Arsenic	ND	1	ug/L	ND			0.0	20	
Barium	20.6	1	ug/L	21.3			3.3	20	
Beryllium	ND	0.5	ug/L	ND			0.0	20	
Boron	23	10	ug/L	27			17.7	20	
Cadmium	ND	0.1	ug/L	ND			0.0	20	
Chromium	ND	1	ug/L	ND			0.0	20	
Cobalt	ND	0.5	ug/L	ND			0.0	20	
Copper	1.32	0.5	ug/L	1.31			1.1	20	
Lead	0.10	0.1	ug/L	ND			0.0	20	
Molybdenum	0.98	0.5	ug/L	0.89			10.3	20	
Nickel	ND	1	ug/L	ND			0.0	20	
Selenium	ND	1	ug/L	ND			0.0	20	
Silver	ND	0.1	ug/L	ND			0.0	20	
Sodium	15200	200	ug/L	15600			3.0	20	
Thallium	ND	0.1	ug/L	ND			0.0	20	
Uranium	ND	0.1	ug/L	ND			0.0	20	
Vanadium	ND	0.5	ug/L	ND			0.0	20	
Zinc	5	5	ug/L	5			0.6	20	
Volatiles	0	0	ug/L	Ũ			0.0	20	
Acetone	ND	5.0	ug/L	ND				30	
Benzene	ND	0.5	ug/L	ND				30	
Bromodichloromethane	ND	0.5	ug/L	ND				30	
Bromoform	ND	0.5	ug/L	ND				30	
Bromomethane	ND	0.5	ug/L	ND				30	
Carbon Tetrachloride	ND	0.2	ug/L	ND				30	
Chlorobenzene	ND	0.5	ug/L	ND				30	
Chloroform	ND	0.5	ug/L	ND				30	
Dibromochloromethane	ND	0.5	ug/L	ND				30	
Dichlorodifluoromethane	ND	1.0	ug/L	ND				30	
1,2-Dichlorobenzene	ND	0.5	ug/L	ND				30	
1.3-Dichlorobenzene	ND	0.5	ug/L	ND				30	
1,4-Dichlorobenzene	ND	0.5	ug/L	ND				30	
1,1-Dichloroethane	ND	0.5	ug/L	ND				30	
1,2-Dichloroethane	ND	0.5	ug/L	ND				30	
1,1-Dichloroethylene	ND	0.5	ug/L	ND				30	
cis-1,2-Dichloroethylene	ND	0.5	ug/L	ND				30	
trans-1,2-Dichloroethylene	ND	0.5	ug/L	ND				30	
1,2-Dichloropropane	ND	0.5	ug/L	ND				30	
cis-1,3-Dichloropropylene	ND	0.5	ug/L	ND				30	
trans-1,3-Dichloropropylene	ND	0.5	ug/L	ND				30	
Ethylbenzene	ND	0.5	ug/L	ND				30	
Ethylene dibromide (dibromoethane	ND	0.2	ug/L	ND				30	
Hexane	ND	1.0	ug/L	ND				30	
Methyl Ethyl Ketone (2-Butanone)	ND	5.0	ug/L	ND				30	
Methyl Isobutyl Ketone	ND	5.0	ug/L	ND				30	
Methyl tert-butyl ether	ND	2.0	ug/L	ND				30	
Methylene Chloride	ND	5.0	ug/L	ND				30	
Styrene	ND	0.5	ug/L	ND				30	
1,1,1,2-Tetrachloroethane	ND	0.5	ug/L	ND				30	
1,1,2,2-Tetrachloroethane	ND	0.5	ug/L	ND				30	
Tetrachloroethylene	ND	0.5	ug/L	ND				30	
Toluene	ND	0.5	ug/L	ND				30	
1,1,1-Trichloroethane	ND	0.5	ug/L	ND				30	
1,1,2-Trichloroethane	ND	0.5	ug/L	ND				30	
Trichloroethylene	ND	0.5	ug/L	ND				30	
Trichlorofluoromethane	ND	1.0	ug/L	ND				30	
		-	- 3/						

Order #: 1825681

Report Date: 27-Jun-2018 Order Date: 21-Jun-2018

Project Description: PE4341

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Vinyl chloride	ND	0.5	ug/L	ND				30	
m,p-Xylenes	ND	0.5	ug/L	ND				30	
o-Xylene	ND	0.5	ug/L	ND				30	
Surrogate: 4-Bromofluorobenzene	83.1		ug/L		104	50-140			
Surrogate: Dibromofluoromethane	92.2		ug/L		115	50-140			
Surrogate: Toluene-d8	75.2		ug/L		94.0	50-140			

Order #: 1825681

Report Date: 27-Jun-2018

Order Date: 21-Jun-2018

Project Description: PE4341

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Metals									
Mercury	2.99	0.1	ug/L	ND	99.7	70-130			
Antimony	48.4		ug/L		96.8	80-120			
Arsenic	53.2		ug/L		106	80-120			
Barium	46.5		ug/L		93.0	80-120			
Beryllium	49.2		ug/L		98.3	80-120			
Boron	49		ug/L		98.5	80-120			
Cadmium	51.0		ug/L		102	80-120			
Chromium	51.6		ug/L		103	80-120			
Cobalt	50.6		ug/L		101	80-120			
Copper	50.7		ug/L		101	80-120			
Lead	45.0		ug/L		90.0	80-120			
Molybdenum	49.7		ug/L		99.5	80-120			
Nickel	50.7		ug/L		101	80-120			
Selenium	50.4		ug/L		101	80-120			
Silver	50.4		ug/L		101	80-120			
Sodium	1010		ug/L		101	80-120			
Thallium	45.9		ug/L		91.7	80-120			
Uranium	51.7		ug/L		103	80-120			
Vanadium	51.9		ug/L		104	80-120			
Zinc	50		ug/L		99.6	80-120			
Semi-Volatiles			Ū						
Acenaphthene	5.04	0.05	ug/L		101	50-140			
Acenaphthylene	4.67	0.05	ug/L		93.5	50-140			
Anthracene	4.34	0.01	ug/L		86.8	50-140			
Benzo [a] anthracene	4.27	0.01	ug/L		85.4	50-140			
Benzo [a] pyrene	4.95	0.01	ug/L		99.0	50-140			
Benzo [b] fluoranthene	5.90	0.05	ug/L		118	50-140			
Benzo [g,h,i] perylene	4.75	0.05	ug/L		94.9	50-140			
Benzo [k] fluoranthene	5.28	0.05	ug/L		106	50-140			
Chrysene	5.11	0.05	ug/L		102	50-140			
Dibenzo [a,h] anthracene	5.05	0.05	ug/L		101	50-140			
Fluoranthene	4.73	0.01	ug/L		94.6	50-140			
Fluorene	4.66	0.05	ug/L		93.2	50-140			
Indeno [1,2,3-cd] pyrene	5.20	0.05	ug/L		104	50-140			
1-Methylnaphthalene	4.31	0.05	ug/L		86.2	50-140			
2-Methylnaphthalene	4.67	0.05	ug/L		93.4	50-140			
Naphthalene	4.49	0.05	ug/L		89.9	50-140			
Phenanthrene	4.58	0.05	ug/L		91.6	50-140			
Pyrene	4.88	0.01	ug/L		97.5	50-140			
Surrogate: 2-Fluorobiphenyl	13.2		ug/L		65.9	50-140			
Volatiles			<u>J</u> .		-	-			
Acetone	68.1	5.0	ug/L		68.1	50-140			
Benzene	27.0	0.5	ug/L		67.6	60-130			
Bromodichloromethane	29.4	0.5	ug/L		73.5	60-130			
Bromoform	35.0	0.5	ug/L		87.6	60-130			
Bromomethane	35.5	0.5	ug/L		88.7	50-140			
Carbon Tetrachloride	30.9	0.2	ug/L		77.2	60-130			
Chlorobenzene	31.4	0.5	ug/L		78.4	60-130			
Chloroform	30.8	0.5	ug/L		77.0	60-130			
Dibromochloromethane	34.2	0.5	ug/L		85.4	60-130			
Dichlorodifluoromethane	31.4	1.0	ug/L		78.4	50-140			
	.								

Order #: 1825681

Report Date: 27-Jun-2018 Order Date: 21-Jun-2018

Project Description: PE4341

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
1,2-Dichlorobenzene	33.4	0.5	ug/L		83.4	60-130			
1,3-Dichlorobenzene	33.6	0.5	ug/L		83.9	60-130			
1,4-Dichlorobenzene	34.7	0.5	ug/L		86.8	60-130			
1,1-Dichloroethane	30.0	0.5	ug/L		75.0	60-130			
1,2-Dichloroethane	30.0	0.5	ug/L		75.1	60-130			
1,1-Dichloroethylene	34.8	0.5	ug/L		87.0	60-130			
cis-1,2-Dichloroethylene	33.3	0.5	ug/L		83.2	60-130			
trans-1,2-Dichloroethylene	35.2	0.5	ug/L		88.1	60-130			
1,2-Dichloropropane	27.1	0.5	ug/L		67.8	60-130			
cis-1,3-Dichloropropylene	29.0	0.5	ug/L		72.6	60-130			
trans-1,3-Dichloropropylene	31.2	0.5	ug/L		78.0	60-130			
Ethylbenzene	27.9	0.5	ug/L		69.8	60-130			
Ethylene dibromide (dibromoethane	35.4	0.2	ug/L		88.6	60-130			
Hexane	34.6	1.0	ug/L		86.5	60-130			
Methyl Ethyl Ketone (2-Butanone)	66.4	5.0	ug/L		66.4	50-140			
Methyl Isobutyl Ketone	57.8	5.0	ug/L		57.8	50-140			
Methyl tert-butyl ether	68.1	2.0	ug/L		68.1	50-140			
Methylene Chloride	36.7	5.0	ug/L		91.8	60-130			
Styrene	28.3	0.5	ug/L		70.8	60-130			
1,1,1,2-Tetrachloroethane	34.9	0.5	ug/L		87.2	60-130			
1,1,2,2-Tetrachloroethane	36.4	0.5	ug/L		91.0	60-130			
Tetrachloroethylene	36.7	0.5	ug/L		91.6	60-130			
Toluene	30.5	0.5	ug/L		76.2	60-130			
1,1,1-Trichloroethane	30.1	0.5	ug/L		75.2	60-130			
1,1,2-Trichloroethane	32.8	0.5	ug/L		81.9	60-130			
Trichloroethylene	25.6	0.5	ug/L		64.1	60-130			
Trichlorofluoromethane	31.7	1.0	ug/L		79.2	60-130			
Vinyl chloride	33.8	0.5	ug/L		84.6	50-140			
m,p-Xylenes	60.2	0.5	ug/L		75.2	60-130			
o-Xylene	28.3	0.5	ug/L		70.8	60-130			

Qualifier Notes:

None

Sample Data Revisions None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference.

Report Date: 27-Jun-2018 Order Date: 21-Jun-2018 Project Description: PE4341

GPARACEL	TRUS RESP	TED . ONSIV	Ε.	Para	acel I							(Lab	of Custo Use Only) 1663	
LABORATORIES L	I RELIA	ABLE .							÷			Page	4 of	
D			Project Reference:	Pé	434	11						Turnar	ound Tir	ne:
Client Name: PATERSON ON	OUP		Quote #		12						🗆 1 D	ay	03	3 Day
Contact Name: AD RIAN MEN	YHMRT		PO #	241	08						- 21	los r	5	Regular
Address: 154 COLONNADE AL	1 (Email Address:	1	1	1					Deta	ray Required		(cguiai
Telephone: 613-276 -7'	381		an	enghan	-TC	pat	ersa	ngi	oup-	an	Date			
Image: Second control of the second control	RSC Filing CI O.	Reg. 558/00	DPWQO CC	ME C SUB	(Storm) DS	UB (S	antary) Munk	ipaiity:		U 0/1		
Matrix Type: S (Soil:Sed.) GW (Ground Water) SW (Surface V	Vater) 55 (Storm Sanita	ary Sewer) P	(Paint) A (Air) O (Oth	er)	Requi	ired A	naly	ses						
Paracel Order Number: [82568]		Air Volume # of Containers	Sample T		PHCs F1-F4+BTEX	PAHs	Metals by ICP	Hg CrVI	B (HWS)					
Sample ID/Location Name	-	Air # o	Date	Time	Hd	PA I	NI I	Cr.	2	+		+		1
1 8HI-GUI	Gul	5	JWE 20 18	PH	1	1	Ľ	-	++				-	-
2 B11 2 - GW1	GW	2		-	++	1	-	-		-	-			-
3 Bit 3 - Gul	GW	2			H	-	H		H					
4					H	+	H	-	tt					
5		-			++	+	H							
6		-			Ħ	+								
7					Ħ	1								
8					T									
9					T									
10 Comments:													"Delivery:	
Relinquished By (Sign)	Received b	by Driver De	1 Frank	Receiv	ed at La	hy	lu	X	5:1		erified By:	100	- app	
Relinquished By (Print) AD R (W M-	Date/Time	21/0	6/18 4 1	5 Date/T	lime: crature:	19.	211 Grc	0	0 11	And the second second	Verified N	LHY: 2	and the	fritter
Date/Time: UNE 21 10/6	Temperatu	ine.									anii 19-45 (* 1923)			

Chain of Custody (Env) - Rev 0.7 Feb. 2016

RELIABLE.

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

Paterson Group Consulting Engineers

154 Colonnade Road South Nepean, ON K2E 7J5 Attn: Mark D'Arcy

Client PO: 24859 Project: PE4341 Custody: 44419

Report Date: 22-Aug-2018 Order Date: 16-Aug-2018

Order #: 1833529

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID	Client ID
1833529-01	BH4-SS3
1833529-02	BH5-SS4
1833529-03	BH6-SS2
1833529-04	BH7-SS3

Approved By:

Mark Foto

Mark Foto, M.Sc. Lab Supervisor

Any use of these results implies your agreement that our total liability in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
BTEX by P&T GC-MS	EPA 8260 - P&T GC-MS	20-Aug-18	21-Aug-18
PHC F1	CWS Tier 1 - P&T GC-FID	20-Aug-18	21-Aug-18
PHCs F2 to F4	CWS Tier 1 - GC-FID, extraction	17-Aug-18	21-Aug-18
REG 153: PAHs by GC-MS	EPA 8270 - GC-MS, extraction	17-Aug-18	20-Aug-18
Solids, %	Gravimetric, calculation	20-Aug-18	20-Aug-18

Order #: 1833529

Report Date: 22-Aug-2018 Order Date: 16-Aug-2018

Report Date: 22-Aug-2018 Order Date: 16-Aug-2018

	Client ID: Sample Date: Sample ID:	BH4-SS3 08/10/2018 09:00 1833529-01	BH5-SS4 08/10/2018 09:00 1833529-02	BH6-SS2 08/10/2018 09:00 1833529-03	BH7-SS3 08/10/2018 09:00 1833529-04
	MDL/Units	Soil	Soil	Soil	Soil
Physical Characteristics					1
% Solids	0.1 % by Wt.	77.7	89.3	77.5	76.7
Volatiles			1	1	1
Benzene	0.02 ug/g dry	-	<0.02	-	-
Ethylbenzene	0.05 ug/g dry	-	<0.05	-	-
Toluene	0.05 ug/g dry	-	<0.05	-	-
m,p-Xylenes	0.05 ug/g dry	-	<0.05	-	-
o-Xylene	0.05 ug/g dry	-	<0.05	-	-
Xylenes, total	0.05 ug/g dry	-	<0.05	-	-
Toluene-d8	Surrogate	-	85.2%	-	-
Hydrocarbons			1		
F1 PHCs (C6-C10)	7 ug/g dry	-	<7	-	-
F2 PHCs (C10-C16)	4 ug/g dry	-	32	-	-
F3 PHCs (C16-C34)	8 ug/g dry	-	80	-	-
F4 PHCs (C34-C50)	6 ug/g dry	-	82	-	-
Semi-Volatiles					
Acenaphthene	0.02 ug/g dry	<0.02	<0.02	<0.02	0.06
Acenaphthylene	0.02 ug/g dry	<0.02	<0.02	<0.02	0.03
Anthracene	0.02 ug/g dry	0.05	0.08	<0.02	0.20
Benzo [a] anthracene	0.02 ug/g dry	0.02	0.02	<0.02	0.42
Benzo [a] pyrene	0.02 ug/g dry	0.03	0.02	<0.02	0.41
Benzo [b] fluoranthene	0.02 ug/g dry	0.02	<0.02	<0.02	0.36
Benzo [g,h,i] perylene	0.02 ug/g dry	<0.02	<0.02	<0.02	0.17
Benzo [k] fluoranthene	0.02 ug/g dry	0.02	<0.02	<0.02	0.17
Chrysene	0.02 ug/g dry	0.03	0.03	<0.02	0.48
Dibenzo [a,h] anthracene	0.02 ug/g dry	<0.02	<0.02	<0.02	0.05
Fluoranthene	0.02 ug/g dry	0.05	0.05	<0.02	1.01
Fluorene	0.02 ug/g dry	<0.02	<0.02	<0.02	0.06
Indeno [1,2,3-cd] pyrene	0.02 ug/g dry	<0.02	<0.02	<0.02	0.15
1-Methylnaphthalene	0.02 ug/g dry	<0.02	<0.02	<0.02	<0.02
2-Methylnaphthalene	0.02 ug/g dry	<0.02	<0.02	<0.02	<0.02
Methylnaphthalene (1&2)	0.04 ug/g dry	<0.04	<0.04	<0.04	<0.04
Naphthalene	0.01 ug/g dry	<0.01	<0.01	<0.01	0.02
Phenanthrene	0.02 ug/g dry	0.05	0.07	<0.02	0.91
Pyrene	0.02 ug/g dry	0.04	0.05	<0.02	0.86
2-Fluorobiphenyl	Surrogate	89.3%	86.9%	76.6%	82.1%
Terphenyl-d14	Surrogate	105%	104%	97.4%	100%

Order #: 1833529

Report Date: 22-Aug-2018

Order Date: 16-Aug-2018

Project Description: PE4341

Method Quality Control: Blank

Hydrocarbons F1 PIGs (C6-C10) ND 7 ug/g F2 PIGS (C10-C16) ND 4 ug/g F3 PIGS (C16-C34) ND 8 ug/g F4 PIGS (C34-C50) ND 6 ug/g Acenaphthene ND 0.02 ug/g Acenaphthene ND 0.02 ug/g Benzo [a] privene ND 0.02 ug/g Benzo [b] fluoranthene ND 0.02 ug/g Chrysene ND 0.02 ug/g Chrysene ND 0.02 ug/g Fluorente ND 0.02 ug/g Fluorente ND 0.02 ug/g Fluoranthene ND 0.02 ug/g Fluoranthene ND 0.02 ug/g Pioranthene N	Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
FI PHCs (C6-C10) ND 7 ug/g F2 PHCs (C16-C34) ND 8 ug/g F4 PHCs (C34-C30) ND 6 ug/g Semi-Volatiles	Hvdrocarbons									
F2 PHCs (C10-C16) ND 4 ug/g F3 PHCs (C16-C34) ND 8 ug/g Semi-Volatiles ND 0.02 ug/g Acenaphthene ND 0.02 ug/g Acenaphthylene ND 0.02 ug/g Anthracene ND 0.02 ug/g Benzo [a] anthracene ND 0.02 ug/g Benzo [a] anthracene ND 0.02 ug/g Benzo [a] iluoranthene ND 0.02 ug/g Benzo [a] intracene ND 0.02 ug/g Benzo [a, h] anthracene ND 0.02 ug/g Chrysene ND 0.02 ug/g Dibenzo [a, h] anthracene ND 0.02 ug/g Indeno [1,2,3-cd] pyrene ND 0.02 ug/g Phorathylinaphthalene ND 0.02 ug/g Apptintalene ND 0.02 ug/g Pyrene ND 0.02 ug/g Pyrene ND 0.02 ug/g Pyrene ND <td></td> <td>ND</td> <td>7</td> <td>ua/a</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		ND	7	ua/a						
F3 PHCs (C16-C34) ND 8 ug/g F4 PHCs (C34-C50) ND 6 ug/g Acenaphthene ND 0.02 ug/g Acenaphthene ND 0.02 ug/g Anthracene ND 0.02 ug/g Benzo [a] anthracene ND 0.02 ug/g Benzo [a] pyrene ND 0.02 ug/g Benzo [a] pyrene ND 0.02 ug/g Benzo [a] pyrene ND 0.02 ug/g Benzo [g], i] perylene ND 0.02 ug/g Benzo [a] difuranthene ND 0.02 ug/g Chrysene ND 0.02 ug/g Chrysene ND 0.02 ug/g Fluoranthene ND 0.02 ug/g Fluoranthene ND 0.02 ug/g Promanthene ND 0.02 ug/g Photenational ND 0.02 ug/g Photenationaphthalene ND 0.02 ug/g Photenationene ND 0.02 ug/g										
F4 PHCs (C34-C50) ND 6 ug/g Semi-Volatiles ND 0.02 ug/g Acenaphthylene ND 0.02 ug/g Acenaphthylene ND 0.02 ug/g Anthracene ND 0.02 ug/g Benzo [a] anthracene ND 0.02 ug/g Benzo [a] pyrene ND 0.02 ug/g Benzo [a] pyrene ND 0.02 ug/g Benzo [a] pyrene ND 0.02 ug/g Benzo [a] hil perylene ND 0.02 ug/g Benzo [a] hil perylene ND 0.02 ug/g Benzo [a,h] anthracene ND 0.02 ug/g Fluoranthene ND 0.02 ug/g Fluoranthene ND 0.02 ug/g Fluoranthene ND 0.02 ug/g Picene ND 0.02 ug/g Picene ND 0.02 ug/g Picene ND 0.02 ug/g Pyrene ND 0.02 ug/g <tr< td=""><td></td><td>ND</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr<>		ND								
Acenaphthene ND 0.02 ug/g Acenaphthylene ND 0.02 ug/g Anthracene ND 0.02 ug/g Benzo [a] anthracene ND 0.02 ug/g Benzo [a] pyrene ND 0.02 ug/g Benzo [a] pyrene ND 0.02 ug/g Benzo [g, h.i] perylene ND 0.02 ug/g Benzo [g, h.i] perylene ND 0.02 ug/g Benzo [g, h.i] perylene ND 0.02 ug/g Dibenzo [a, h] anthracene ND 0.02 ug/g Dibenzo [a, h] anthracene ND 0.02 ug/g Fluoranthene ND 0.02 ug/g Fluoranthene ND 0.02 ug/g Indeno [1,2,3-cd] pyrene ND 0.02 ug/g 1-Methylnaphthalene ND 0.02 ug/g Pyrene ND 0.02 ug/g Rapthhalene (182) ND 0.01 ug/g Surrogate	F4 PHCs (C34-C50)	ND	6							
Acenaphthylene ND 0.02 ug/g Anthracene ND 0.02 ug/g Benzo [a] anthracene ND 0.02 ug/g Benzo [a] anthracene ND 0.02 ug/g Benzo [a] pyrene ND 0.02 ug/g Benzo [b] fluoranthene ND 0.02 ug/g Benzo [a,h] perylene ND 0.02 ug/g Benzo [a,h] anthracene ND 0.02 ug/g Chrysene ND 0.02 ug/g Fluoranthene ND 0.02 ug/g Fluoranthene ND 0.02 ug/g Indeno [1,2,3-cd] pyrene ND 0.02 ug/g Indeno [1,2,3-cd] pyrene ND 0.02 ug/g Porene ND 0.02 ug/g Methylinaphthalene ND 0.02 ug/g Surrogate: 2-Fluorobiphenyl 1.14 ug/g 113 50-140 Surrogate: Terphenyl-d14 1.51 ug/g 113	Semi-Volatiles									
Acenaphthylene ND 0.02 ug/g Anthracene ND 0.02 ug/g Benzo [a] anthracene ND 0.02 ug/g Benzo [a] anthracene ND 0.02 ug/g Benzo [a] pyrene ND 0.02 ug/g Benzo [g],h.j] perylene ND 0.02 ug/g Benzo [g,h.j] perylene ND 0.02 ug/g Benzo [a,h] anthracene ND 0.02 ug/g Dibenzo [a,h] anthracene ND 0.02 ug/g Fluoranthene ND 0.02 ug/g Fluoranthene ND 0.02 ug/g Indeno [1,2,3-cd] pyrene ND 0.02 ug/g Indeno [1,2,3-cd] pyrene ND 0.02 ug/g Porene ND 0.02 ug/g Indeno [1,2,3-cd] pyrene ND 0.02 ug/g Puthylinaphthalene ND 0.02 ug/g Surrogate: 2-Fluorobiphenyl 1.14 ug/g 113 50-140	Acenaphthene	ND	0.02	ua/a						
Anthracene ND 0.02 ug/g Benzo [a] anthracene ND 0.02 ug/g Benzo [b] fluoranthene ND 0.02 ug/g Benzo [g,h,i] perylene ND 0.02 ug/g Benzo [g,h,i] perylene ND 0.02 ug/g Benzo [g,h] fluoranthene ND 0.02 ug/g Chrysene ND 0.02 ug/g Dibenzo [a,h] anthracene ND 0.02 ug/g Fluoranthene ND 0.02 ug/g Fluorene ND 0.02 ug/g Indeno [1,2,3-cd] pyrene ND 0.02 ug/g 1-Methylnaphthalene ND 0.02 ug/g 2-Methylnaphthalene ND 0.02 ug/g Prena ND 0.02 ug/g Phenanthrene ND 0.02 ug/g Pyrene ND 0.02 ug/g Surrogate: 2-Fluorobiphenyl 1.14 ug/g 85.8 50-140		ND	0.02							
Benzo [a] anthracene ND 0.02 ug/g Benzo [a] pyrene ND 0.02 ug/g Benzo [g, hi] perylene ND 0.02 ug/g Benzo [g, hi] perylene ND 0.02 ug/g Benzo [g, hi] perylene ND 0.02 ug/g Benzo [g, hi] thoranthene ND 0.02 ug/g Dibenzo [a, h] anthracene ND 0.02 ug/g Dibenzo [a, h] anthracene ND 0.02 ug/g Fluoranthene ND 0.02 ug/g Fluoranthene ND 0.02 ug/g Indeno [1,2,3-cd] pyrene ND 0.02 ug/g Indeno [1,2,3-cd] pyrene ND 0.02 ug/g I-Methylnaphthalene ND 0.02 ug/g Pyrene ND 0.02 ug/g Methylnaphthalene ND 0.02 ug/g Pyrene ND 0.02 ug/g Surrogate: 2-Fluorobiphenyl 1.14 ug/g 85.8 <td< td=""><td>Anthracene</td><td>ND</td><td>0.02</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	Anthracene	ND	0.02							
Benzo [a] pyrene ND 0.02 ug/g Benzo [b] fluoranthene ND 0.02 ug/g Benzo [k], il perylene ND 0.02 ug/g Benzo [k] fluoranthene ND 0.02 ug/g Chrysene ND 0.02 ug/g Dibenzo [a, h] anthracene ND 0.02 ug/g Fluoranthene ND 0.02 ug/g Fluorene ND 0.02 ug/g Indeno [1,2,3-cd] pyrene ND 0.02 ug/g 1-Methylnaphthalene ND 0.02 ug/g 2-Methylnaphthalene ND 0.02 ug/g Pyrene ND 0.02 ug/g Phenanthrene ND 0.02 ug/g Pyrene ND 0.02 ug/g Surrogate: 2-Fluorobiphenyl 1.14 ug/g 85.8 50-140 Surrogate: Terphenyl-d14 1.51 ug/g 113 50-140 Volatiles ug/g 113	Benzo [a] anthracene	ND	0.02							
Benzo [b] fluoranthene ND 0.02 ug/g Benzo [g,h,i] perylene ND 0.02 ug/g Benzo [k] fluoranthene ND 0.02 ug/g Chrysene ND 0.02 ug/g Dibenzo [a,h] anthracene ND 0.02 ug/g Fluoranthene ND 0.02 ug/g Fluorene ND 0.02 ug/g Indeno [1,2,3-cd] pyrene ND 0.02 ug/g 1-Methylnaphthalene ND 0.02 ug/g 2-Methylnaphthalene ND 0.02 ug/g Phenanthrene ND 0.02 ug/g Phenanthrene ND 0.02 ug/g Surrogate: 2-Fluorobiphenyl 1.14 ug/g 113 Surrogate: Terphenyl-d14 1.51 ug/g 113 Surrogate: Terphenyl-d14 1.51 ug/g 113 Benzene ND 0.05 ug/g Benzene ND 0.05 ug/g Toluene <td>Benzo [a] pyrene</td> <td>ND</td> <td>0.02</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Benzo [a] pyrene	ND	0.02							
Benzo [g,h.i] perylene ND 0.02 ug/g Benzo [k] fluoranthene ND 0.02 ug/g Chrysene ND 0.02 ug/g Dibenzo [a,h] anthracene ND 0.02 ug/g Fluoranthene ND 0.02 ug/g Fluorene ND 0.02 ug/g Indeno [1,2,3-cd] pyrene ND 0.02 ug/g 1-Methylnaphthalene ND 0.02 ug/g 2-Methylnaphthalene (1&2) ND 0.02 ug/g Naphthalene ND 0.02 ug/g Pyrene ND 0.02 ug/g Surrogate: 2-Fluorobiphenyl 1.14 ug/g 85.8 50-140 Surrogate: Terphenyl-d14 1.51 ug/g 113 50-140 Surrogate: Terphenyl-d14 1.51 ug/g 113 50-140 Surrogate: Terphenyl-d14 1.51 ug/g 113 50-140 Surrogate: Terphenyl-d14 1.51 ug/g 50-140 110 <td>Benzo [b] fluoranthene</td> <td>ND</td> <td>0.02</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Benzo [b] fluoranthene	ND	0.02							
Benzo [k] fluoranthene ND 0.02 ug/g Chrysene ND 0.02 ug/g Dibenzo [a,h] anthracene ND 0.02 ug/g Fluoranthene ND 0.02 ug/g Fluorene ND 0.02 ug/g Indeno [1,2,3-cd] pyrene ND 0.02 ug/g 2-Methylinaphthalene ND 0.02 ug/g 2-Methylinaphthalene ND 0.02 ug/g Phenanthrene ND 0.02 ug/g Phenanthrene ND 0.02 ug/g Phenanthrene ND 0.02 ug/g Surrogate: 2-Fluorobiphenyl 1.14 ug/g 85.8 50-140 Surrogate: Terphenyl-d14 1.51 ug/g 113 50-140 Surrogate: Terphenyl-d14 1.51 ug/g 113 50-140 Surrogate: Terphenyl-d14 0.05 ug/g 113 50-140 Surrogate: Terphenyl-d14 0.05 ug/g 113 50-140 <	Benzo [g,h,i] perylene	ND	0.02							
Dibenzo [a,h] anthracene ND 0.02 ug/g Fluoranthene ND 0.02 ug/g Fluorene ND 0.02 ug/g Indeno [1,2,3-cd] pyrene ND 0.02 ug/g 1-Methylnaphthalene ND 0.02 ug/g 2-Methylnaphthalene ND 0.02 ug/g 2-Methylnaphthalene ND 0.02 ug/g Methylnaphthalene ND 0.02 ug/g Phenanthrene ND 0.01 ug/g Phenanthrene ND 0.02 ug/g Surrogate: 2-Fluorobiphenyl 1.14 ug/g 13 Surrogate: Terphenyl-d14 1.51 ug/g 113 Surrogate: Terphenyl-d14 1.51 ug/g 113 Benzene ND 0.05 ug/g Ethylbenzene ND 0.05 ug/g Toluene ND 0.05 ug/g m,p-Xylenes ND 0.05 ug/g o-Xylene	Benzo [k] fluoranthene	ND	0.02							
Fluoranthené ND 0.02 ug/g Fluorene ND 0.02 ug/g Indeno [1,2,3-cd] pyrene ND 0.02 ug/g 1-Methylnaphthalene ND 0.02 ug/g 2-Methylnaphthalene ND 0.02 ug/g Methylnaphthalene ND 0.02 ug/g Methylnaphthalene ND 0.01 ug/g Phenanthrene ND 0.02 ug/g Pyrene ND 0.02 ug/g Surrogate: 2-Fluorobiphenyl 1.14 ug/g 85.8 50-140 Surrogate: Terphenyl-d14 1.51 ug/g 113 50-140 Volatiles E ND 0.02 ug/g Benzene ND 0.02 ug/g 113 50-140 Volatiles ND 0.05 ug/g 113 50-140 Benzene ND 0.05 ug/g 113 50-140 Volatiles ND 0.05 ug/g 113 50-140 Surogate: Terphenyl-d14 1.51 ug/g	Chrysene			ug/g						
Fluorene ND 0.02 ug/g Indeno [1,2,3-cd] pyrene ND 0.02 ug/g 1-Methylnaphthalene ND 0.02 ug/g 2-Methylnaphthalene ND 0.02 ug/g Methylnaphthalene ND 0.02 ug/g Methylnaphthalene (1&2) ND 0.04 ug/g Naphthalene ND 0.02 ug/g Pyrene ND 0.02 ug/g Surrogate: 2-Fluorobiphenyl 1.14 ug/g 85.8 50-140 Surrogate: Terphenyl-d14 1.51 ug/g 113 50-140 Volatiles E ND 0.05 ug/g Benzene ND 0.02 ug/g Toluene ND 0.05 ug/g m,p-Xylenes ND 0.05 ug/g vylenes, total ND 0.05 ug/g	Dibenzo [a,h] anthracene	ND								
Indeno [1,2,3-cd] pyrene ND 0.02 ug/g 1-Methylnaphthalene ND 0.02 ug/g 2-Methylnaphthalene ND 0.02 ug/g Methylnaphthalene ND 0.02 ug/g Methylnaphthalene (1&2) ND 0.04 ug/g Naphthalene ND 0.02 ug/g Phenanthrene ND 0.02 ug/g Pyrene ND 0.02 ug/g Surrogate: 2-Fluorobiphenyl 1.14 ug/g 85.8 50-140 Surrogate: Terphenyl-d14 1.51 ug/g 113 50-140 Volatiles Benzene ND 0.02 ug/g 113 50-140 Volatiles ND 0.05 ug/g 113 50-140 114 113 50-140 Volatiles ND 0.05 ug/g 113 50-140 114 115 113 50-140 114 115 115 115 115 115 115 115	Fluoranthene			ug/g						
1-Methylnaphthalene ND 0.02 ug/g 2-Methylnaphthalene ND 0.02 ug/g Methylnaphthalene (1&2) ND 0.04 ug/g Naphthalene ND 0.01 ug/g Phenanthrene ND 0.02 ug/g Pyrene ND 0.02 ug/g Surrogate: 2-Fluorobiphenyl 1.14 ug/g 85.8 50-140 Surrogate: Terphenyl-d14 1.51 ug/g 113 50-140 Volatiles ND 0.02 ug/g 113 50-140 Benzene ND 0.02 ug/g 113 50-140 Velatiles ND 0.02 ug/g 113 50-140 Benzene ND 0.02 ug/g 113 50-140 Volatiles ND 0.05 ug/g 113 50-140 Toluene ND 0.05 ug/g 113 50-140 o-Xylene ND 0.05 ug/g 113 50-140 Volatiles ND 0.05 ug/g 113 <td>Fluorene</td> <td>ND</td> <td></td> <td>ug/g</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Fluorene	ND		ug/g						
2-Methylnaphthalene ND 0.02 ug/g Methylnaphthalene (1&2) ND 0.04 ug/g Naphthalene ND 0.01 ug/g Phenanthrene ND 0.02 ug/g Pyrene ND 0.02 ug/g Surrogate: 2-Fluorobiphenyl 1.14 ug/g 85.8 50-140 Surrogate: Terphenyl-d14 1.51 ug/g 113 50-140 Volatiles ND 0.02 ug/g 113 50-140 Benzene ND 0.02 ug/g 113 50-140 Volatiles ND 0.02 ug/g 113 50-140 Benzene ND 0.02 ug/g 113 50-140 Toluene ND 0.05 ug/g 113 50-140 Toluene ND 0.05 ug/g 113 50-140 o-Xylenes ND 0.05 ug/g 113 50-140 Polos5 ug/g ND				ug/g						
Methylnaphthalene (1&2) ND 0.04 ug/g Naphthalene ND 0.01 ug/g Phenanthrene ND 0.02 ug/g Pyrene ND 0.02 ug/g Surrogate: 2-Fluorobiphenyl 1.14 ug/g 85.8 50-140 Surrogate: Terphenyl-d14 1.51 ug/g 113 50-140 Volatiles ND 0.02 ug/g 113 50-140 Benzene ND 0.02 ug/g 113 50-140 Volatiles ND 0.05 ug/g 113 50-140 Benzene ND 0.05 ug/g 113 50-140 Volatiles ND 0.05 ug/g 113 50-140 Benzene ND 0.05 ug/g 113 50-140 Toluene ND 0.05 ug/g 113 50-140 m.p-Xylenes ND 0.05 ug/g 113 50-140 m.p-Xylenes, total										
Naphthalene ND 0.01 ug/g Phenanthrene ND 0.02 ug/g Pyrene ND 0.02 ug/g Surrogate: 2-Fluorobiphenyl 1.14 ug/g 85.8 50-140 Surrogate: Terphenyl-d14 1.51 ug/g 113 50-140 Volatiles Benzene ND 0.02 ug/g 113 50-140 Toluene ND 0.02 ug/g 113 50-140 m.p-Xylenes ND 0.05 ug/g 113 50-140 Volatiles ND 0.05 ug/g 113 50-140 Velatiles ND 0.05 ug/g 113 50-140				ug/g						
Phenanthrene ND 0.02 ug/g Pyrene ND 0.02 ug/g Surrogate: 2-Fluorobiphenyl 1.14 ug/g 85.8 50-140 Surrogate: Terphenyl-d14 1.51 ug/g 113 50-140 Volatiles ND 0.02 ug/g 113 50-140 Benzene ND 0.02 ug/g 113 50-140 Toluene ND 0.05 ug/g 113 50-140 m,p-Xylenes ND 0.05 ug/g 113 50-140 Volatiles ND 0.05 ug/g 113 50-140										
Pyrene ND 0.02 ug/g Surrogate: 2-Fluorobiphenyl 1.14 ug/g 85.8 50-140 Surrogate: Terphenyl-d14 1.51 ug/g 113 50-140 Volatiles Surrogate: ND 0.02 ug/g 113 50-140 Volatiles Surrogate: ND 0.02 ug/g 113 50-140 Volatiles Surrogate: ND 0.02 ug/g 113 50-140 Volatiles ND 0.05 ug/g 113 50-140 Volatiles ND 0.05 ug/g 113 50-140 Volatiles ND 0.05 ug/g 113 50-140 Benzene ND 0.05 ug/g 113 50-140 Toluene ND 0.05 ug/g 113 50-140 m.p-Xylenes ND 0.05 ug/g 113 50-140 Xylenes, total ND 0.05 ug/g 113 113 <										
Surrogate: 2-Fluorobiphenyl 1.14 ug/g 85.8 50-140 Surrogate: Terphenyl-d14 1.51 ug/g 113 50-140 Volatiles Benzene ND 0.02 ug/g 113 50-140 Benzene ND 0.02 ug/g 113 50-140 Toluene ND 0.05 ug/g 113 50-140 mp-Xylenes ND 0.05 ug/g 113 50-140 Volatiles ND 0.05 ug/g 113 50-140 Wold ND 0.05 ug/g 113 50-140 Wold ND 0.05 ug/g 113 50-140 Benzene ND 0.05 ug/g 113 50-140 Toluene ND 0.05 ug/g 113 10 o-Xylene ND 0.05 ug/g 113 10 Xylenes, total ND 0.05 ug/g 113 <th113< th=""> 10 </th113<>				ug/g						
Surrogate: Terphenyl-d14 1.51 ug/g 113 50-140 Volatiles Image: Surrogate state			0.02							
Volatiles ND 0.02 ug/g Benzene ND 0.05 ug/g Ethylbenzene ND 0.05 ug/g Toluene ND 0.05 ug/g m,p-Xylenes ND 0.05 ug/g o-Xylene ND 0.05 ug/g Xylenes, total ND 0.05 ug/g				ug/g						
Benzene ND 0.02 ug/g Ethylbenzene ND 0.05 ug/g Toluene ND 0.05 ug/g m,p-Xylenes ND 0.05 ug/g o-Xylene ND 0.05 ug/g Xylenes, total ND 0.05 ug/g	Surrogate: Terphenyl-d14	1.51		ug/g		113	50-140			
Ethylbenzene ND 0.05 ug/g Toluene ND 0.05 ug/g m,p-Xylenes ND 0.05 ug/g o-Xylene ND 0.05 ug/g Xylenes, total ND 0.05 ug/g	Volatiles									
Ethylbenzene ND 0.05 ug/g Toluene ND 0.05 ug/g m,p-Xylenes ND 0.05 ug/g o-Xylene ND 0.05 ug/g Xylenes, total ND 0.05 ug/g	Benzene	ND	0.02	ug/g						
Toluene ND 0.05 ug/g m,p-Xylenes ND 0.05 ug/g o-Xylene ND 0.05 ug/g Xylenes, total ND 0.05 ug/g	Ethylbenzene	ND	0.05							
m,p-Xylenes ND 0.05 ug/g o-Xylene ND 0.05 ug/g Xylenes, total ND 0.05 ug/g	Toluene	ND	0.05							
o-Xylene ND 0.05 ug/g Xylenes, total ND 0.05 ug/g	m,p-Xylenes	ND	0.05							
Xylenes, total ND 0.05 ug/g	o-Xylene	ND	0.05							
	Xylenes, total	ND	0.05							
	Surrogate: Toluene-d8	6.06				75.7	50-140			

Method Quality Control: Duplicate

Hydrocarbons	
FÍ PHCs (C6-C10) ND 7 ug/g dry ND 40	
F2 PHCs (C10-C16) 644 4 ug/g dry 1340 70.2 30 QR-04	
F3 PHCs (C16-C34) 354 8 ug/g dry 674 62.2 30 QR-04	
F4 PHCs (C34-C50) ND 6 ug/g dry ND 30	
Physical Characteristics	
% Šolids 79.9 0.1 % by Wt. 77.3 3.3 25	
Semi-Volatiles	
Acenaphthene ND 0.02 ug/g dry ND 40	
Acenaphthylene ND 0.02 ug/g dry ND 0.0 40	
Anthracene ND 0.02 ug/g dry ND 0.0 40	
Benzo [a] anthracene ND 0.02 ug/g dry ND 0.0 40	
Benzo [a] pyrene ND 0.02 ug/g dry ND 40	
Benzo [b] fluorantheneND0.02ug/g dryND40	
Benzo [g,h,i] perylene ND 0.02 ug/g dry ND 40	
Benzo [k] fluorantheneND0.02ug/g dryND40	
Chrysene ND 0.02 ug/g dry ND 0.0 40	
Dibenzo [a,h] anthracene ND 0.02 ug/g dry ND 40	
Fluoranthene ND 0.02 ug/g dry ND 0.0 40	
Fluorene ND 0.02 ug/g dry ND 40	
Indeno [1,2,3-cd] pyrene ND 0.02 ug/g dry ND 40	
1-Methylnaphthalene ND 0.02 ug/g dry ND 40	
2-Methylnaphthalene ND 0.02 ug/g dry ND 40	
Naphthalene ND 0.01 ug/g dry ND 40	
Phenanthrene ND 0.02 ug/g dry ND 0.0 40	
Pyrene ND 0.02 ug/g dry ND 0.0 40	
Surrogate: 2-Fluorobiphenyl 0.817 ug/g dry 51.2 50-140	
Surrogate: Terphenyl-d14 1.52 ug/g dry 95.4 50-140	
Volatiles	
Benzene ND 0.02 ug/g dry ND 50	
Ethylbenzene ND 0.05 ug/g dry ND 50	
Toluene ND 0.05 ug/g dry ND 50	
m,p-Xylenes ND 0.05 ug/g dry ND 50	
o-Xylene ND 0.05 ug/g dry ND 50	
Surrogate: Toluene-d8 8.97 ug/g dry 87.1 50-140	

Report Date: 22-Aug-2018

Order Date: 16-Aug-2018

Method Quality Control: Spike

Report Date: 22-Aug-2018

Order Date: 16-Aug-2018

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	176	7	ug/g		87.9	80-120			
F2 PHCs (C10-C16)	88	4	ug/g		110	80-120			
F3 PHCs (C16-C34)	200	8	ug/g		102	80-120			
F4 PHCs (C34-C50)	147	6	ug/g	ND	105	60-140			
Semi-Volatiles									
Acenaphthene	0.183	0.02	ug/g	ND	91.9	50-140			
Acenaphthylene	0.157	0.02	ug/g	ND	78.5	50-140			
Anthracene	0.157	0.02	ug/g	ND	78.9	50-140			
Benzo [a] anthracene	0.134	0.02	ug/g	ND	67.3	50-140			
Benzo [a] pyrene	0.170	0.02	ug/g	ND	85.2	50-140			
Benzo [b] fluoranthene	0.135	0.02	ug/g	ND	67.5	50-140			
Benzo [g,h,i] perylene	0.126	0.02	ug/g	ND	63.1	50-140			
Benzo [k] fluoranthene	0.118	0.02	ug/g	ND	59.0	50-140			
Chrysene	0.186	0.02	ug/g	ND	93.4	50-140			
Dibenzo [a,h] anthracene	0.120	0.02	ug/g	ND	60.2	50-140			
Fluoranthene	0.144	0.02	ug/g	ND	72.0	50-140			
Fluorene	0.155	0.02	ug/g	ND	77.7	50-140			
Indeno [1,2,3-cd] pyrene	0.136	0.02	ug/g	ND	68.2	50-140			
1-Methylnaphthalene	0.188	0.02	ug/g	ND	94.4	50-140			
2-Methylnaphthalene	0.202	0.02	ug/g	ND	101	50-140			
Naphthalene	0.193	0.01	ug/g	ND	97.0	50-140			
Phenanthrene	0.190	0.02	ug/g	ND	95.2	50-140			
Pyrene	0.155	0.02	ug/g	ND	77.8	50-140			
Surrogate: 2-Fluorobiphenyl	1.21		ug/g		75.6	50-140			
Volatiles									
Benzene	3.38	0.02	ug/g		84.6	60-130			
Ethylbenzene	3.41	0.05	ug/g		85.4	60-130			
Toluene	3.09	0.05	ug/g		77.2	60-130			
m,p-Xylenes	7.29	0.05	ug/g		91.1	60-130			
o-Xylene	3.65	0.05	ug/g		91.2	60-130			

Qualifier Notes:

QC Qualifiers :

QR-04 : Duplicate results exceeds RPD limits due to non-homogeneous matrix.

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference.

Soil results are reported on a dry weight basis when the units are denoted with 'dry'. Where %Solids is reported, moisture loss includes the loss of volatile hydrocarbons.

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.

- F1 range corrected for BTEX.
- F2 to F3 ranges corrected for appropriate PAHs where available.
- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.
- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.

OPARACEL LABORATORIES LTD.				cel ID: 18			a, Ont 00-74	t. Laurent Blv ario K1G 4J 9-1947 paracellabs.	8	1	V₽	hain of C (Lab Use C 4441	edy)	
											Р	age 🔔 c	f	
Client Name: PATERSON GROUP			Project Re	eference:	6	100	1141				Tu	rnaround	Time:	
Contact Name: Hellow MAN.	Om	cy	Quote #								ay		🗆 3 Day	-
Address: 154 COLONNAUE MU	C		PO#		248	59				a 2 D	ay		Regul	lar
Telephone:	. \	,	Email Ad	dress	node	a.	P 4	teroy	in in	Date 1	Require	ed:		
Criteria: 0. Reg. 153/04 (As Amended) Table	C Filing	DOF	leg 558/0	0 DPWQO L	CCME D	SUB (Sto	rm) 🗆 SUI	3 (Sanitary)	Municip		,		ar	
Matrix Type: S (Soil Sed.) GW (Ground Water) SW (Surface Water) SS									Requi		alyses			
Paracel Order Number:			z				5	1						Γ
1833599.	rix	Air Volume	of Containers	Sample	Taken	A FI	ic/sr							
Sample ID/Location Name	Matrix	Air	to #	Date	Time	0	P							
1 BHY - 553			1	1		1 /					250			,
2 BHS - 554			a			1		_		-	250	m1+1	-16N	
3 845-555 * HOLD			V			1	-	_			-1	V	_	
4 BH6-552			1			-		-		-	957	mit	_	-
5 BH7 - 553			1			1		_					_	
6 BH7 - 555 KHOND			V			1						V	_	-
7						_		_						-
8														-
9							x			1.53	~			-
Comments: Received EXTra Sample = S - Sample date on Javy + Via	iomple U re	e to	on i Aua	tor road 10,8018.	2 BH7	-558	(2507	HOW ML) AU	610,2	018.	KS L	Mythod of D		
Relinquished By (Sign)	Received	d by Driv	ver/Depol:	Tour	0	yed at Lab	TORN	Den	MA	Verified	M	De	2	/
Relinquished By (Print):	Date Tin Tempera		108	18 3	30 Date	rinac f()	A Street Street Street	018 04	1.50		ne: [A fied]	my 16/1	8 73	MP

Chain of Custody (Blank) - Rev 0.4 Feb 2016

RELIABLE.

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

Paterson Group Consulting Engineers

154 Colonnade Road South Nepean, ON K2E 7J5 Attn: Mark D'Arcy

Client PO: 24858 Project: PE4341 Custody: 44418

Report Date: 22-Aug-2018 Order Date: 16-Aug-2018

Order #: 1833532

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID	Client ID
1833532-01	BH4-GW1
1833532-02	BH6-GW1
1833532-03	MWB-GW1
1833532-04	MWD-GW1

Approved By:

Mark Foto

Mark Foto, M.Sc. Lab Supervisor

Any use of these results implies your agreement that our total liability in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.

Order #: 1833532

Report Date: 22-Aug-2018 Order Date: 16-Aug-2018

Project Description: PE4341

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
REG 153: PAHs by GC-MS	EPA 625 - GC-MS, extraction	21-Aug-18	21-Aug-18

Order #: 1833532

Report Date: 22-Aug-2018 Order Date: 16-Aug-2018

	Client ID:	BH4-GW1	BH6-GW1	MWB-GW1	MWD-GW1
	Sample Date:	08/15/2018 09:00	08/15/2018 09:00	08/15/2018 09:00	08/15/2018 09:00
	Sample ID:	1833532-01	1833532-02	1833532-03	1833532-04
	MDL/Units	Water	Water	Water	Water
Semi-Volatiles			1	1	-
Acenaphthene	0.05 ug/L	<0.05	<0.05	<0.05	<0.05
Acenaphthylene	0.05 ug/L	<0.05	<0.05	<0.05	<0.05
Anthracene	0.01 ug/L	<0.01	<0.01	<0.01	<0.01
Benzo [a] anthracene	0.01 ug/L	<0.01	<0.01	<0.01	<0.01
Benzo [a] pyrene	0.01 ug/L	<0.01	<0.01	<0.01	<0.01
Benzo [b] fluoranthene	0.05 ug/L	<0.05	<0.05	<0.05	<0.05
Benzo [g,h,i] perylene	0.05 ug/L	<0.05	<0.05	<0.05	<0.05
Benzo [k] fluoranthene	0.05 ug/L	<0.05	<0.05	<0.05	<0.05
Chrysene	0.05 ug/L	<0.05	<0.05	<0.05	<0.05
Dibenzo [a,h] anthracene	0.05 ug/L	<0.05	<0.05	<0.05	<0.05
Fluoranthene	0.01 ug/L	<0.01	<0.01	<0.01	<0.01
Fluorene	0.05 ug/L	<0.05	<0.05	<0.05	<0.05
Indeno [1,2,3-cd] pyrene	0.05 ug/L	<0.05	<0.05	<0.05	<0.05
1-Methylnaphthalene	0.05 ug/L	<0.05	<0.05	<0.05	<0.05
2-Methylnaphthalene	0.05 ug/L	<0.05	<0.05	<0.05	<0.05
Methylnaphthalene (1&2)	0.10 ug/L	<0.10	<0.10	<0.10	<0.10
Naphthalene	0.05 ug/L	<0.05	<0.05	<0.05	<0.05
Phenanthrene	0.05 ug/L	<0.05	<0.05	<0.05	<0.05
Pyrene	0.01 ug/L	<0.01	<0.01	<0.01	<0.01
2-Fluorobiphenyl	Surrogate	77.1%	97.7%	85.6%	69.7%
Terphenyl-d14	Surrogate	121%	125%	117%	131%

Order #: 1833532

Report Date: 22-Aug-2018

Order Date: 16-Aug-2018

Project Description: PE4341

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Semi-Volatiles									
Acenaphthene	ND	0.05	ug/L						
Acenaphthylene	ND	0.05	ug/L						
Anthracene	ND	0.01	ug/L						
Benzo [a] anthracene	ND	0.01	ug/L						
Benzo a pyrene	ND	0.01	ug/L						
Benzo [b] fluoranthene	ND	0.05	ug/L						
Benzo [g,h,i] perylene	ND	0.05	ug/L						
Benzo [k] fluoranthene	ND	0.05	ug/L						
Chrysene	ND	0.05	ug/L						
Dibenzo [a,h] anthracene	ND	0.05	ug/L						
Fluoranthene	ND	0.01	ug/L						
Fluorene	ND	0.05	ug/L						
Indeno [1,2,3-cd] pyrene	ND	0.05	ug/L						
1-Methylnaphthalene	ND	0.05	ug/L						
2-Methylnaphthalene	ND	0.05	ug/L						
Methylnaphthalene (1&2)	ND	0.10	ug/L						
Naphthalene	ND	0.05	ug/L						
Phenanthrene	ND	0.05	ug/L						
Pyrene	ND	0.01	ug/L						
Surrogate: 2-Fluorobiphenyl	13.9		ug/L		69.6	50-140			
Surrogate: Terphenyl-d14	29.6		ug/L		148	50-140			

Method Quality Control: Spike

Report Date: 22-Aug-2018

Order Date: 16-Aug-2018

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Semi-Volatiles									
Acenaphthene	4.32	0.05	ug/L		86.3	50-140			
Acenaphthylene	3.64	0.05	ug/L		72.9	50-140			
Anthracene	4.45	0.01	ug/L		89.0	50-140			
Benzo [a] anthracene	4.67	0.01	ug/L		93.4	50-140			
Benzo [a] pyrene	3.73	0.01	ug/L		74.6	50-140			
Benzo [b] fluoranthene	5.78	0.05	ug/L		116	50-140			
Benzo [g,h,i] perylene	3.71	0.05	ug/L		74.1	50-140			
Benzo [k] fluoranthene	5.78	0.05	ug/L		116	50-140			
Chrysene	6.05	0.05	ug/L		121	50-140			
Dibenzo [a,h] anthracene	3.66	0.05	ug/L		73.2	50-140			
Fluoranthene	4.12	0.01	ug/L		82.4	50-140			
Fluorene	3.81	0.05	ug/L		76.3	50-140			
Indeno [1,2,3-cd] pyrene	4.10	0.05	ug/L		81.9	50-140			
1-Methylnaphthalene	4.47	0.05	ug/L		89.4	50-140			
2-Methylnaphthalene	4.73	0.05	ug/L		94.6	50-140			
Naphthalene	4.07	0.05	ug/L		81.4	50-140			
Phenanthrene	4.68	0.05	ug/L		93.7	50-140			
Pyrene	4.21	0.01	ug/L		84.2	50-140			
Surrogate: 2-Fluorobiphenyl	13.4		ug/L		67.1	50-140			

Qualifier Notes:

None

Sample Data Revisions None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference.

GPARACEL LABORATORIES LTD.				acel ID			,	wa, Ontario 800-749-19		N	0 4	n of Cus ab Use Oul 14418	(y) 8	
Client Name: PATERSON GOLON	0		Project	t Reference:		·D=	434	1				of		
Contact Name: MHIN O'HILCY			Quote	ll .		C	939			□ 1 Day				
Address:			PO #		24	65	8					1	□ 3 Day	
Telephone	(l_1)	S.	Email.	Address:						- Day		[Regu	lar
Telephone: Criteria: ☐ O. Reg. 153/04 (As Amended) Table 3. □ R:				m	lavi	y@	pate	Tarji	ory-a	Date Re				
	1					OME D	SUB (Stori	n) 🗆 SUB (S	anitary) Munic	ipality:		CODE CONTRACT		
Matrix Type: S (Seal Sed.) GW (Ground Water) SW (Surface Water) SS	8 (Storm S	Sanitary So	ewer) P (Paint) A (Air	0 (Other)				Req	uired Anal	yses			
Paracel Order Number:		Γ	GLS							T	Т	1	T	Г
1833532	ix	Air Volume	of Containers	Sa	mple Tal	ien.	H							÷
Sample ID/Location Name	Matrix	Air '	# of	Date		Time	PA							
1 344-6W.	GW		1	AUGIS	<		-					-	+	
2 845-601+	1			1			10				-	-	-	
3 BH6-GW1			1				1							-
4 MWB-GWI			1				-					-	1	
5 MWD - GWI			1				/						1	
6												1		
> BH3 - GWI X HOLY							/							
8 .												-		_
9												1		-
10												1		
Conuments:											100	d of Deliv		
telinquished By (Sfgr).	Receive	d by Driv		Teau	16	Record	d at Lab:	'chn G	olemati	Venhed By	(A	e	1	/
telinquished By (Print): 11 KI KT M	Date Tir		e/0	8/18	33			6,2918	15.50	Date/Time:	Ing 9	5/18	7:4	62
Date Time: WG 16 Dave	Tempera	ature:	~ ~	C.	Pr	Temper	ature: 🔍 🖉	_]°C		pH Verified	4 By:			1

RELIABLE.

Certificate of Analysis

Paterson Group Consulting Engineers

154 Colonnade Road South Nepean, ON K2E 7J5 Attn: Mike Beaudoin

Client PO: 24987 Project: PE4341 Custody: 44447

Report Date: 20-Sep-2018 Order Date: 14-Sep-2018

Order #: 1838005

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID	Client ID
1838005-01	BH8-18-G1
1838005-02	BH8-18-SS5
1838005-03	BH9-18-SS1
1838005-04	BH9-18-SS4

Approved By:

Dale Robertson, BSc Laboratory Director

Any use of these results implies your agreement that our total liability in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
BTEX by P&T GC-MS	EPA 8260 - P&T GC-MS	19-Sep-18	20-Sep-18
Chromium, hexavalent - soil	MOE E3056 - Extraction, colourimetric	17-Sep-18	18-Sep-18
Mercury by CVAA	EPA 7471B - CVAA, digestion	18-Sep-18	19-Sep-18
PHC F1	CWS Tier 1 - P&T GC-FID	19-Sep-18	20-Sep-18
PHCs F2 to F4	CWS Tier 1 - GC-FID, extraction	17-Sep-18	18-Sep-18
REG 153: Metals by ICP/MS, soil	EPA 6020 - Digestion - ICP-MS	18-Sep-18	19-Sep-18
Solids, %	Gravimetric, calculation	20-Sep-18	20-Sep-18

Order #: 1838005

Report Date: 20-Sep-2018 Order Date: 14-Sep-2018

Order #: 1838005

Report Date: 20-Sep-2018 Order Date: 14-Sep-2018

	Client ID: Sample Date: Sample ID:	BH8-18-G1 09/07/2018 09:00 1838005-01 Soil	BH8-18-SS5 09/07/2018 09:00 1838005-02 Soil	BH9-18-SS1 09/13/2018 09:00 1838005-03 Soil	BH9-18-SS4 09/13/2018 09:00 1838005-04 Soil
Physical Characteristics	MDL/Units	3011	301	3011	3011
% Solids	0.1 % by Wt.	94.8	76.9	87.6	88.4
Metals		94.0	70.9	07.0	00.4
Antimony	1.0 ug/g dry	41.1	-	<1.0	-
Arsenic	1.0 ug/g dry	17.3	-	1.8	-
Barium	1.0 ug/g dry	193	_	135	-
Beryllium	0.5 ug/g dry	<0.5	-	0.6	-
Boron	5.0 ug/g dry	37.3	-	20.6	-
Cadmium	0.5 ug/g dry	0.6	_	<0.5	_
Chromium	5.0 ug/g dry	43.0		28.3	-
Chromium (VI)	0.2 ug/g dry	<0.2		<0.2	-
Cobalt	1.0 ug/g dry	19.5		9.5	
Copper	5.0 ug/g dry	913	-	15.8	-
· ·	1.0 ug/g dry		-	28.9	-
Lead	0.1 ug/g dry	1070	-		-
Mercury	1.0 ug/g dry	0.6	-	<0.1	-
Molybdenum		2.1	-	<1.0	-
Nickel	5.0 ug/g dry	42.8	-	15.3	-
Selenium	1.0 ug/g dry	1.7	-	<1.0	-
Silver	0.3 ug/g dry	0.3	-	<0.3	-
Thallium	1.0 ug/g dry	<1.0	-	<1.0	-
Uranium	1.0 ug/g dry	<1.0	-	<1.0	-
Vanadium	10.0 ug/g dry	52.1	-	75.2	-
Zinc	20.0 ug/g dry	268	-	50.1	-
Volatiles					
Benzene	0.02 ug/g dry	-	<0.02	-	<0.02
Ethylbenzene	0.05 ug/g dry	-	<0.05	-	<0.05
Toluene	0.05 ug/g dry	-	<0.05	-	<0.05
m,p-Xylenes	0.05 ug/g dry	-	<0.05	-	<0.05
o-Xylene	0.05 ug/g dry	-	<0.05	-	<0.05
Xylenes, total	0.05 ug/g dry	-	<0.05	-	<0.05
Toluene-d8	Surrogate	-	89.5%	-	92.8%
Hydrocarbons			I		1
F1 PHCs (C6-C10)	7 ug/g dry	-	<7	-	<7
F2 PHCs (C10-C16)	4 ug/g dry	-	<4	-	<4
F3 PHCs (C16-C34)	8 ug/g dry	-	<8	-	9
F4 PHCs (C34-C50)	6 ug/g dry	-	<6	-	<6

Order #: 1838005

Report Date: 20-Sep-2018

Order Date: 14-Sep-2018

Project Description: PE4341

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	7	ug/g						
F2 PHCs (C10-C16)	ND	4	ug/g						
F3 PHCs (C16-C34)	ND	8	ug/g						
F4 PHCs (C34-C50)	ND	6	ug/g						
Metals									
Antimony	ND	1.0	ug/g						
Arsenic	ND	1.0	ug/g						
Barium	ND	1.0	ug/g						
Beryllium	ND	0.5	ug/g						
Boron	ND	5.0	ug/g						
Cadmium	ND	0.5	ug/g						
Chromium (VI)	ND	0.2	ug/g						
Chromium	ND	5.0	ug/g						
Cobalt	ND	1.0	ug/g						
Copper	ND	5.0	ug/g						
Lead	ND	1.0	ug/g						
Mercury	ND	0.1	ug/g						
Molybdenum	ND	1.0	ug/g						
Nickel	ND	5.0	ug/g						
Selenium	ND	1.0	ug/g						
Silver	ND	0.3	ug/g						
Thallium	ND	1.0	ug/g						
Uranium	ND	1.0	ug/g						
Vanadium	ND	10.0	ug/g						
Zinc	ND	20.0	ug/g						
Volatiles									
Benzene	ND	0.02	ug/g						
Ethylbenzene	ND	0.05	ug/g						
Toluene	ND	0.05	ug/g						
m,p-Xylenes	ND	0.05	ug/g						
o-Xylene	ND	0.05	ug/g						
Xylenes, total	ND	0.05	ug/g						
Surrogate: Toluene-d8	2.84		ug/g		88.9	50-140			

Order #: 1838005

Report Date: 20-Sep-2018

Order Date: 14-Sep-2018

Project Description: PE4341

Method Quality Control: Duplicate

Analyte		Reporting Limit		Source		%REC	DDC	RPD	Nistas
	Result	LIIIII	Units	Result	%REC	Limit	RPD	Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	7	ug/g dry	ND				40	
F2 PHCs (C10-C16)	ND	4	ug/g dry	ND				30	
F3 PHCs (C16-C34)	ND	8	ug/g dry	ND				30	
F4 PHCs (C34-C50)	ND	6	ug/g dry	ND				30	
Metals			00 ,						
Antimony	ND	1.0	ug/g dry	ND			0.0	30	
Arsenic	2.3	1.0	ug/g dry	2.3			3.0	30	
Barium	88.8	1.0	ug/g dry	84.9			4.5	30	
Beryllium	ND	0.5	ug/g dry	0.5			0.0	30	
Boron	8.9	5.0	ug/g dry	9.3			3.6	30	
Cadmium	ND	0.5	ug/g dry	0.6			0.0	30	
Chromium (VI)	ND	0.2	ug/g dry	ND			••••	35	
Chromium	28.6	5.0	ug/g dry	28.1			1.8	30	
Cobalt	7.9	1.0	ug/g dry	7.7			1.9	30	
Copper	39.1	5.0	ug/g dry	37.8			3.6	30	
Lead	35.7	1.0	ug/g dry	34.0			5.1	30	
Mercury	ND	0.1	ug/g dry	ND			0.0	30	
Molybdenum	ND	1.0	ug/g dry	ND			0.0	30	
Nickel	20.0	5.0	ug/g dry	19.7			1.8	30	
Selenium	ND	1.0	ug/g dry	ND			0.0	30	
Silver	0.6	0.3	ug/g dry	0.6			0.3	30	
Thallium	ND	1.0	ug/g dry	ND			0.0	30	
Uranium	ND	1.0	ug/g dry	ND			0.0	30	
Vanadium	25.1	10.0	ug/g dry	24.3			3.2	30	
Zinc	86.3	20.0	ug/g dry	83.4			3.4	30	
Physical Characteristics									
% Solids	68.6	0.1	% by Wt.	67.0			2.3	25	
Volatiles									
Benzene	ND	0.02	ug/g dry	ND				50	
Ethylbenzene	ND	0.05	ug/g dry	ND				50	
Toluene	ND	0.05	ug/g dry	ND				50	
m,p-Xylenes	ND	0.05	ug/g dry	ND				50	
o-Xylene	ND	0.05	ug/g dry	ND				50	
Surrogate: Toluene-d8	3.53		ug/g dry		96.5	50-140			

Order #: 1838005

Report Date: 20-Sep-2018

Order Date: 14-Sep-2018

Project Description: PE4341

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	171	7	ug/g		85.3	80-120			
F2 PHCs (C10-C16)	99	4	ug/g	ND	110	60-140			
F3 PHCs (C16-C34)	274	8	ug/g	ND	125	60-140			
F4 PHCs (C34-C50)	189	6	ug/g	ND	136	60-140			
Metals									
Antimony	34.8		ug/L	ND	69.4	70-130		C	QM-07
Arsenic	36.9		ug/L	ND	72.0	70-130			
Barium	79.4		ug/L	34.0	90.9	70-130			
Beryllium	39.4		ug/L	ND	78.4	70-130			
Boron	41.1		ug/L	ND	74.7	70-130			
Cadmium	36.0		ug/L	ND	71.6	70-130			
Chromium (VI)	2.1	0.2	ug/g	ND	34.5	70-130		C	QM-01
Chromium	51.6		ug/L	11.2	80.8	70-130			
Cobalt	43.0		ug/L	3.1	79.8	70-130			
Copper	54.5		ug/L	15.1	78.8	70-130			
Lead	56.9		ug/L	13.6	86.6	70-130			
Mercury	1.49	0.1	ug/g	ND	99.4	70-130			
Molybdenum	35.6		ug/L	ND	70.8	70-130			
Nickel	47.8		ug/L	7.9	79.8	70-130			
Selenium	35.2		ug/L	ND	70.3	70-130			
Silver	34.5		ug/L	ND	68.5	70-130		C	QM-07
Thallium	43.2		ug/L	ND	86.3	70-130			
Uranium	43.2		ug/L	ND	85.9	70-130			
Vanadium	50.8		ug/L	ND	82.2	70-130			
Zinc	70.2		ug/L	33.4	73.7	70-130			
Volatiles									
Benzene	3.90	0.02	ug/g		97.5	60-130			
Ethylbenzene	2.76	0.05	ug/g		69.0	60-130			
Toluene	2.88	0.05	ug/g		71.9	60-130			
m,p-Xylenes	5.09	0.05	ug/g		63.6	60-130			
o-Xylene	2.85	0.05	ug/g		71.2	60-130			
Surrogate: Toluene-d8	2.43		ug/g		75.8	50-140			

Qualifier Notes:

QC Qualifiers :

- QM-01 : The spike recovery for this QC sample is outside of established control limits due to sample matrix interference.
- QM-07: The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on other acceptable QC.

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference.

Soil results are reported on a dry weight basis when the units are denoted with 'dry'. Where %Solids is reported, moisture loss includes the loss of volatile hydrocarbons.

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.

- F1 range corrected for BTEX.

- F2 to F3 ranges corrected for appropriate PAHs where available.

- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.

- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.

GPARACEL LABORATORIES LTD		RUST ESPC ELIA				acel II					1	V₀	(Lab)	of Cust Use Outy 447		
Client Name: O	_		Project	Reference: Or	110111					_				of /	_	
Client Name: PATERSON Contact Name: IA 14 - Row -			Quote	F C	4341				-		E I D		irnaro		10010013	
Contact Name: MIKE BERMDOIN			PO#	24987					-	_	DID	ay			3 Day	
154 Colonnalle			Email	Address							0 2 D	ay		9	Regul	lar
154 Colonnale Telephone: (213-226-728)			W	beaudoin	Cpate.	(sonc	jron	pic	4		Date I	Requir	red:			
Criteria 20. Reg. 153/04 (As Amended) Table _	RSC Filing	□0.	Reg 55	8/00 D PWQO	D CCME D	SUB (Sto	cm) 🗆	SUB (Sa	nitary)	Munici	A			Other:		
Matrix Type: S (Soil Sed.) GW (Ground Water) SW (Surface Water)	SS (Storm S	anitary Se	wer) P (Paint) A (Air) O (O	ther)	T				Requ	ired An	alyses)			
Paracel Order Number: 1838005	rix	Air Volume	of Containers	Sample	Taken	65-5	Tex	Cetal.	CR VZ							
Sample ID/Location Name	Matrix	Air	10 #	Date	Time	14	\$	16	0	75						
1 BH8-10-55261	5		1	Set 7/12				4	×	<		-	250	mr		
2 BATE-10-555	5		2	ηĮ,		X	L						1200	DH	vial	
3 Patg-18-551	5		/	50 15/15				x	×	r			25	mi		
4 1349-18-554	S		2	11		X	4						257	mi	-148	41-
5					_											1
6	_															
7																
8																
9																
10																
Comments:												_	Meinod	of Delive	ry /	
Relinquished By (Sign)	Receive	d by Driv	er/Depo	Tease 9/18 4	Ropen	ed at Lab:	A		DUN	and the second second	Venfied	21	Ces	K	3	10
Reinquished By (Print): MULEB.			10	2/18 4	Date/I	ine N		2418	05.	00	Date/Tur		Al	pt	171	18
Date Time: Chain of Custody (Blank) - Rev 0.4 Feb 2016	Tempera	ature:	-	. /	Tempe	rature: 🖁	¢,0 1	5			pH Verif	icd []	BY:	VIE		7

RELIABLE.

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

Paterson Group Consulting Engineers

154 Colonnade Road South Nepean, ON K2E 7J5 Attn: Mike Beaudoin

Client PO: 24977 Project: PE4341 Custody: 118575

Report Date: 1-Oct-2018 Order Date: 21-Sep-2018

Order #: 1838687

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID Client ID 1838687-01 BH8-18-GW1 1838687-02 BH9-18-GW1

Approved By:

Mark Foto

Mark Foto, M.Sc. Lab Supervisor

Any use of these results implies your agreement that our total liability in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
BTEX by P&T GC-MS	EPA 624 - P&T GC-MS	27-Sep-18	27-Sep-18
Chromium, hexavalent - water	MOE E3056 - colourimetric	24-Sep-18	24-Sep-18
Mercury by CVAA	EPA 245.2 - Cold Vapour AA	24-Sep-18	24-Sep-18
Metals, ICP-MS	EPA 200.8 - ICP-MS	27-Sep-18	28-Sep-18
PHC F1	CWS Tier 1 - P&T GC-FID	25-Sep-18	27-Sep-18
PHCs F2 to F4	CWS Tier 1 - GC-FID, extraction	24-Sep-18	24-Sep-18
REG 153: PAHs by GC-MS	EPA 625 - GC-MS, extraction	25-Sep-18	25-Sep-18

Report Date: 01-Oct-2018 Order Date: 21-Sep-2018

Order #: 1838687

Report Date: 01-Oct-2018

Order Date: 21-Sep-2018

Project Description: PE4341

	Client ID: Sample Date: Sample ID: MDL/Units	BH8-18-GW1 09/20/2018 09:00 1838687-01 Water	BH9-18-GW1 09/20/2018 09:00 1838687-02 Water		
Metals	WDL/OIIItS	Wator	Wator		
Mercury	0.1 ug/L	<0.1	<0.1	-	-
Antimony	0.5 ug/L	2.4	0.5	-	-
Arsenic	1 ug/L	<1	<1	-	_
Barium	1 ug/L	108	259	-	-
Beryllium	0.5 ug/L	<0.5	<0.5	-	-
Boron	10 ug/L	94	148	-	-
Cadmium	0.1 ug/L	<0.1	<0.1	-	_
Chromium	1 ug/L	<1	<1	-	-
Chromium (VI)	10 ug/L	<10	<10	-	-
Cobalt	0.5 ug/L	1.1	<0.5	-	-
Copper	0.5 ug/L	7.3	5.1	-	-
Lead	0.1 ug/L	0.2	0.2	-	-
Molybdenum	0.5 ug/L	4.2	1.9	-	-
Nickel	1 ug/L	6	3	-	-
Selenium	1 ug/L	<1	<1	-	-
Silver	0.1 ug/L	<0.1	<0.1	-	-
Sodium	200 ug/L	83600	91500	-	-
Thallium	0.1 ug/L	<0.1	<0.1	-	-
Uranium	0.1 ug/L	3.7	0.5	-	-
Vanadium	0.5 ug/L	0.8	<0.5	-	-
Zinc	5 ug/L	10	8	-	-
Volatiles			•		
Benzene	0.5 ug/L	<0.5	<0.5	-	-
Ethylbenzene	0.5 ug/L	<0.5	<0.5	-	-
Toluene	0.5 ug/L	<0.5	<0.5	-	-
m,p-Xylenes	0.5 ug/L	<0.5	<0.5	-	-
o-Xylene	0.5 ug/L	<0.5	<0.5	-	-
Xylenes, total	0.5 ug/L	<0.5	<0.5	-	-
Toluene-d8	Surrogate	97.2%	96.5%	-	-
Hydrocarbons	25 ug/L		i i	i	
F1 PHCs (C6-C10)	_	<25	<25	-	-
F2 PHCs (C10-C16)	100 ug/L	<100	<100	-	-
F3 PHCs (C16-C34)	100 ug/L	<100	<100	-	-
F4 PHCs (C34-C50) Semi-Volatiles	100 ug/L	<100	<100	-	-

Semi-Volatiles

Order #: 1838687

Report Date: 01-Oct-2018 Order Date: 21-Sep-2018

	Client ID: Sample Date:	BH8-18-GW1 09/20/2018 09:00	BH9-18-GW1 09/20/2018 09:00	-	-
	Sample ID:	1838687-01	1838687-02	-	-
	MDL/Units	Water	Water	-	-
Acenaphthene	0.05 ug/L	<0.05	<0.05	-	-
Acenaphthylene	0.05 ug/L	<0.05	<0.05	-	-
Anthracene	0.01 ug/L	0.01	<0.01	-	-
Benzo [a] anthracene	0.01 ug/L	0.02	<0.01	-	-
Benzo [a] pyrene	0.01 ug/L	0.02	<0.01	-	-
Benzo [b] fluoranthene	0.05 ug/L	<0.05	<0.05	-	-
Benzo [g,h,i] perylene	0.05 ug/L	<0.05	<0.05	-	-
Benzo [k] fluoranthene	0.05 ug/L	<0.05	<0.05	-	-
Chrysene	0.05 ug/L	0.06	<0.05	-	-
Dibenzo [a,h] anthracene	0.05 ug/L	<0.05	<0.05	-	-
Fluoranthene	0.01 ug/L	0.08	<0.01	-	-
Fluorene	0.05 ug/L	0.08	0.08	-	-
Indeno [1,2,3-cd] pyrene	0.05 ug/L	<0.05	<0.05	-	-
1-Methylnaphthalene	0.05 ug/L	<0.05	0.06	-	-
2-Methylnaphthalene	0.05 ug/L	<0.05	0.14	-	-
Methylnaphthalene (1&2)	0.10 ug/L	<0.10	0.19	-	-
Naphthalene	0.05 ug/L	<0.05	0.24	-	-
Phenanthrene	0.05 ug/L	0.21	0.17	-	-
Pyrene	0.01 ug/L	0.07	<0.01	-	-
2-Fluorobiphenyl	Surrogate	75.7%	82.4%	-	-
Terphenyl-d14	Surrogate	101%	99.0%	-	-

Order #: 1838687

Report Date: 01-Oct-2018

Order Date: 21-Sep-2018

Project Description: PE4341

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	25	ug/L						
F2 PHCs (C10-C16)	ND	100	ug/L						
F3 PHCs (C16-C34)	ND	100	ug/L						
F4 PHCs (C34-C50)	ND	100	ug/L						
Metals			Ū						
Mercury	ND	0.1	ug/L						
Antimony	ND	0.5	ug/L						
Arsenic	ND	1	ug/L						
Barium	ND	1	ug/L						
Beryllium	ND	0.5	ug/L						
Boron	ND	10	ug/L						
Cadmium	ND	0.1	ug/L						
Chromium (VI)	ND	10	ug/L						
Chromium	ND	1	ug/L						
Cobalt	ND	0.5	ug/L						
Copper	ND	0.5	ug/L						
Lead	ND	0.1	ug/L						
Molybdenum	ND	0.5	ug/L						
Nickel Selenium	ND ND	1	ug/L						
Selenium Silver	ND ND	1 0.1	ug/L						
Sodium	ND	200	ug/L ug/L						
Thallium	ND	0.1	ug/L						
Uranium	ND	0.1	ug/L						
Vanadium	ND	0.5	ug/L						
Zinc	ND	5	ug/L						
Semi-Volatiles		-	-9-						
Acenaphthene	ND	0.05	ug/L						
Acenaphthylene	ND	0.05	ug/L						
Anthracene	ND	0.01	ug/L						
Benzo [a] anthracene	ND	0.01	ug/L						
Benzo a pyrene	ND	0.01	ug/L						
Benzo [b] fluoranthene	ND	0.05	ug/L						
Benzo [g,h,i] perylene	ND	0.05	ug/L						
Benzo [k] fluoranthene	ND	0.05	ug/L						
Chrysene	ND	0.05	ug/L						
Dibenzo [a,h] anthracene	ND	0.05	ug/L						
Fluoranthene	ND	0.01	ug/L						
	ND	0.05	ug/L						
Indeno [1,2,3-cd] pyrene	ND	0.05	ug/L						
1-Methylnaphthalene 2-Methylnaphthalene	ND ND	0.05 0.05	ug/L ug/L						
Methylnaphthalene (1&2)	ND	0.00	ug/L						
Naphthalene	ND	0.05	ug/L						
Phenanthrene	ND	0.05	ug/L						
Pyrene	ND	0.01	ug/L						
Surrogate: 2-Fluorobiphenyl	17.6		ug/L		88.0	50-140			
Surrogate: Terphenyl-d14	20.8		ug/L		104	50-140			
Volatiles			-						
Benzene	ND	0.5	ug/L						
Ethylbenzene	ND	0.5	ug/L						
Toluene	ND	0.5	ug/L						
m,p-Xylenes	ND	0.5	ug/L						
o-Xylene	ND	0.5	ug/L						
Xylenes, total	ND	0.5	ug/L						
Surrogate: Toluene-d8	77.5		ug/L		96.9	50-140			

Order #: 1838687

Report Date: 01-Oct-2018

Order Date: 21-Sep-2018

Project Description: PE4341

Method Quality Control: Duplicate

		Reporting		Source		%REC		RPD	
Analyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	25	ug/L	ND				30	
Metals									
Mercury	ND	0.1	ug/L	ND			0.0	20	
Antimony	ND	0.5	ug/L	ND			0.0	20	
Arsenic	ND	1	ug/L	ND			0.0	20	
Barium	ND	1	ug/L	ND			0.0	20	
Beryllium	ND	0.5	ug/L	ND			0.0	20	
Boron	ND	10	ug/L	ND			0.0	20	
Cadmium	ND	0.1	ug/L	ND			0.0	20	
Chromium (VI)	ND	10	ug/L	ND				20	
Chromium	ND	1	ug/L	ND			0.0	20	
Cobalt	ND	0.5	ug/L	ND			0.0	20	
Copper	ND	0.5	ug/L	ND			0.0	20	
Lead	ND	0.1	ug/L	ND			0.0	20	
Molybdenum	ND	0.5	ug/L	ND			0.0	20	
Nickel	ND	1	ug/L	ND			0.0	20	
Selenium	ND	1	ug/L	ND			0.0	20	
Silver	ND	0.1	ug/L	ND			0.0	20	
Sodium	ND	200	ug/L	ND			0.0	20	
Thallium	ND	0.1	ug/L	ND			0.0	20	
Uranium	ND	0.1	ug/L	ND			0.0	20	
Vanadium	ND	0.5	ug/L	ND			0.0	20	
Zinc	ND	5	ug/L	ND			0.0	20	
Volatiles									
Benzene	ND	0.5	ug/L	ND				30	
Ethylbenzene	ND	0.5	ug/L	ND				30	
Toluene	ND	0.5	ug/L	ND				30	
m,p-Xylenes	ND	0.5	ug/L	ND				30	
o-Xylene	ND	0.5	ug/L	ND				30	
Surrogate: Toluene-d8	82.6		ug/L		103	50-140			

Method Quality Control: Spike

Report Date: 01-Oct-2018 Order Date: 21-Sep-2018

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	1960	25	ug/L		98.0	68-117			
F2 PHCs (C10-C16)	1580	100	ug/L		98.8	60-140			
F3 PHCs (C16-C34)	3790	100	ug/L		96.7	60-140			
F4 PHCs (C34-C50)	2090	100	ug/L		84.3	60-140			
Metals									
Mercury	3.03	0.1	ug/L	ND	101	70-130			
Antimony	44.2		ug/L	ND	88.5	80-120			
Arsenic	47.3		ug/L	ND	94.5	80-120			
Barium	44.7		ug/L	ND	89.3	80-120			
Beryllium	47.5		ug/L	ND	95.0	80-120			
Boron	41		ug/L	ND	82.4	80-120			
Cadmium	49.0		ug/L	ND	98.0	80-120			
Chromium (VI)	197	10	ug/L	ND	98.5	70-130			
Chromium	43.4		ug/L	ND	86.3	80-120			
Cobalt	41.4		ug/L	ND	82.8	80-120			
Copper	41.7		ug/L	ND	83.4	80-120			
Lead	43.3		ug/L	ND	86.6	80-120			
Molybdenum	39.2		ug/L	ND	78.5	80-120		(QS-02
Nickel	43.2		ug/L	ND	86.1	80-120			
Selenium	50.0		ug/L	ND	99.9	80-120			
Silver	42.1		ug/L	ND	84.2	80-120			
Sodium	859		ug/L	ND	82.0	80-120			
Thallium	43.1		ug/L	ND	86.1	80-120			
Uranium	40.1		ug/L	ND	80.3	80-120			
Vanadium	43.4		ug/L	ND	86.8	80-120			
Zinc	50		ug/L	ND	98.4	80-120			
Semi-Volatiles			•						
Acenaphthene	4.65	0.05	ug/L		92.9	50-140			
Acenaphthylene	4.03	0.05	ug/L		80.5	50-140			
Anthracene	3.86	0.01	ug/L		77.2	50-140			
Benzo [a] anthracene	3.49	0.01	ug/L		69.8	50-140			
Benzo [a] pyrene	3.17	0.01	ug/L		63.4	50-140			
Benzo [b] fluoranthene	4.85	0.05	ug/L		97.0	50-140			
Benzo [g,h,i] perylene	3.14	0.05	ug/L		62.8	50-140			
Benzo [k] fluoranthene	5.71	0.05	ug/L		114	50-140			
Chrysene	4.15	0.05	ug/L		83.0	50-140			
Dibenzo [a,h] anthracene	3.79	0.05	ug/L		75.8	50-140			
Fluoranthene	4.15	0.01	ug/L		82.9	50-140			
Fluorene	4.01	0.05	ug/L		80.2	50-140			
Indeno [1,2,3-cd] pyrene	3.70	0.05	ug/L		74.1	50-140			
1-Methylnaphthalene	4.59	0.05	ug/L		91.8	50-140			
2-Methylnaphthalene	5.09	0.05	ug/L		102	50-140			
Naphthalene	4.74	0.05	ug/L		94.8	50-140			
Phenanthrene	4.03	0.05	ug/L		80.6	50-140			
Pyrene	4.09	0.01	ug/L		81.9	50-140			
Surrogate: 2-Fluorobiphenyl	18.3		ug/L		91.4	50-140			
Volatiles									
Benzene	36.4	0.5	ug/L		91.0	60-130			
Ethylbenzene	37.0	0.5	ug/L		92.4	60-130			
Toluene	38.8	0.5	ug/L		97.0	60-130			

Report Date: 01-Oct-2018 Order Date: 21-Sep-2018

Project Description: PE4341

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
m,p-Xylenes o-Xylene	81.9 40.0	0.5 0.5	ug/L ug/L		102 100	60-130 60-130			

Qualifier Notes:

QC Qualifiers :

QS-02 : Spike level outside of control limits. Analysis batch accepted based on other QC included in the batch.

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference.

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.

- F1 range corrected for BTEX.

- F2 to F3 ranges corrected for appropriate PAHs where available.

- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.

- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.

GPARACEL LABORATORIES LTD	1		-	acel ID: 1					5 () F	Ottaw): 1-8	319 3 a, Or 00-74	St. Lau ntario 19-194	rent Blvd. K1G 4J8 7 cellabs.com			(Lab U	Custoc se Only) 8575	
Client Name: ATERGEN GLOWP Contact Name: MIKE BEAMOON	_			Project Reference Quote #	e: <i>P</i> E4	541								1	Tı Day		nd Tim	
Addresse 154 COLONNIADE RN S Telephone: 1013-226-7301 Criteria: 20. Reg. 153/04 (As Amended) Table _ IRSC	Filing C			Email Address: mbtai D D PWQO D								Muni	cipality: _	02	2 Day		₽R	egular
Matrix Type: S (Soil/Sed.) GW (Ground Water) SW (Surface Water) :	SS (Storm'S	Sanitary S	šewer) P	(Paint) A (Air) O	(Other)	Red	quir	ed A	naly	ses	_							
Paracel Order Number: (88687.	rix	Air Volume	of Containers	Sample Taken		PHCs F1-F4+BTEX VOCs PAHs			Is by ICP			WS)						
Sample ID/Location Name	Matrix	Air	社	Date	Time	PHC	VOCs	PAHs	Metals by	1-lip	CrVI	B (HWS)						
1 × BHB-18-GW1	bw		\$7	Supt 20/10		×		X	×	x	×							-
2 × 1449-18-6W1	6W		7	Sept 20/18		×		×	×	×	*		_					1
3	-		-								_	-	_			_		
4	-		-							-	_	_	_	-	_	_		
5	-		-				_	_		-	_	-		_	\perp		_	
6	-		-				_			-	_	-	-	-	+	_	_	
8	-	_	-				_	_	_	+	+	_	_	-	+	-	-	
9	-					+	_	_		+	+	+		-	+	_		
10						+	_			-	+	+		-	+		-	
Comments: X PAH bottles ID are HULD EXTRA IL Better Relinquished By (Sign): Mik B.	B H BH BH Received	9-1	2)	bepx.	tao e Raceit			d'j	00	Ju	6	c.	PB Verifi	m	Met	thod of Del Part	1	2
Relinquished By (Print): MIKE B.	Date/Tin	10: 7	1/0	9/18 3	HO Date/T	ime:	5e	121	.18	2	-	10	2 Date/1	Time.	म	597	110	128
Date/Time:	Tempera	ture:	"(rature:			'C		1			rified [diy.	2	2	220

Chain of Custody (Env) - Rev 0.7 Feb. 2016