APPENDICES

Appendix A : WATER SUPPLY SERVICING

A.1 DOMESTIC WATER DEMAND ESTIMATE

Campanale Homes Block 15 - Domestic Water Demand Estimates

Based on Site Plan from Paul A. Cooper (Architect) Dated July 24, 2019

Population densities as per City Guidelines:

Townhouse (row)	2.7	ppu
3 Bedroom	3.1	рри

Building ID	Area	Population	Daily Demand	Avg Day	Demand	Max Day D	Demand ^{1,2}	Peak Hou	r Demand ^{1, 2}
	(m²)		Rate ³ (L/cap/day or L/m²/day)	(L/min)	(L/s)	(L/min)	(L/s)	(L/min)	(L/s)
Townhouse	-	43	350	10.5	0.18	26.3	0.44	57.8	0.96
3 Bedroom	-	37	350	9.0	0.15	22.6	0.38	49.7	0.83
Commercial	1,361		2.8	2.6	0.04	4.0	0.07	7.1	0.12
Total Site :		80		22.2	0.37	52.8	0.88	114.6	1.91

1 Water demand criteria used to estimate peak demand rates for residential areas are as follows:

maximum daily demand rate = 2.5 x average day demand rate

peak hour demand rate = 2.2 x maximum day demand rate

2 Water demand criteria used to estimate peak demand rates for commercial areas are as follows: maximum daily demand rate = 1.5 x average day demand rate

peak hour demand rate = 1.8 x maximum day demand rate

3 Water demand for commercial units is 28,000 L/ha/d (i.e. 2.8 L/m2/day) under the "other commercial" classification in Table 4.2 in the City of Ottawa Water Distribution Guidelines

A.2 FIRE FLOW REQUIREMENTS PER FUS

FUS Fire Flow Calculation Sheet

Stantec Project #: 160401500 Project Name: Longfields Block 15 Date: 20/9/2019 Fire Flow Calculation #: 1 Description: 16-unit back-to-back townhouse block

Notes: 3-storey tall building with 406 m2 footprint and semi-basement.

Step	Task				Note	S		Value Used	Req'd Fire Flow (L/min)			
1	Determine Type of Construction				Wood Fr	ame		1.5	-			
2	Determine Ground Floor Area of One Unit				-			406	-			
2	Determine Number of Adjoining Units		Includes a	idjacent wo	od frame stru	ictures sepai	ated by 3m or less	1	-			
3	Determine Height in Storeys		Does not	tinclude floo	ors >50% belo	w grade or	open attic space	3	-			
4	Determine Required Fire Flow		(F	F = 220 x C x	A ^{1/2}). Round	to nearest 1	000 L/min	-	12000			
5	Determine Occupancy Charge				Limited Com	bustible		-15%	10200			
					0%							
6	Determine Sprinkler Reduction			I/A	0%	0						
°	Delemine spinker keducion			0%	0							
		% Coverage of Sprinkler System										
		Direction	Exposure Distance (m)	Exposed Length (m)	Exposed Height (Stories)	Length-Height Factor (m x stories)	Construction of Adjacent Wall	-	-			
		North	0 to 3	19.1	3	31-60	Ordinary or Fire Resistive (Blank Wall)	0%				
7	Determine Increase for Exposures (Max. 75%)	East	> 45	31.4	3	91-120	Wood Frame or Non-Combustible	0%	0			
		South	> 45	13.1	3	31-60	Wood Frame or Non-Combustible	0%	0			
		West > 45 31.4 3 91-120 Wood frame or Non-Combustible										
				ded to Nearest 1000L/min		10000						
8	Determine Final Required Fire Flow			ow in L/s		166.7						
°		Required Duration of Fire Flow (hrs)										
					Required V	olume of Fire	e Flow (m ³)		1200			

FUS Fire Flow Calculation Sheet

Stantec Project #: 160401500 Project Name: Longfields Block 15 Date: 20/9/2019 Fire Flow Calculation #: 2 Description: Mixed-use block with commercial space on ground floor, apartments on floors 2 and 3. Notes: 1361 m2 footprint for 11-unit commercial block, 1400 m2 footprint for second storey (12 apartment units), 309 m2 for third storey. Using an adjusted ground floor area of 1025 m2.

Step	Task				Notes	;		Value Used	Req'd Fire Flow (L/min)		
1	Determine Type of Construction			c	Ordinary Con	struction		1	-		
2	Determine Ground Floor Area of One Unit				-			1025	-		
2	Determine Number of Adjoining Units				-			1	-		
3	Determine Height in Storeys		Does not	include floo	rs >50% belov	w grade or c	pen attic space	3	-		
4	Determine Required Fire Flow		(F	= 220 x C x	A ^{1/2}). Round t	to nearest 10	00 L/min	-	12000		
5	Determine Occupancy Charge				Limited Coml	oustible		-15%	10200		
					None			0%			
6	Determine Sprinkler Reduction			/A	0%	0					
°	Delemine spinkler keducijon				0%	0					
				1	0%						
		Direction	Exposure Distance (m)	Exposed Length (m)	Exposed Height (Stories)	Length-Height Factor (m x stories)	Construction of Adjacent Wall	-	-		
		North	20.1 to 30	67.1	3	> 120	Wood Frame or Non-Combustible	10%			
7	Determine Increase for Exposures (Max. 75%)	East	20.1 to 30	17.7	3	31-60	Wood Frame or Non-Combustible	8%	1836		
		South	0 to 3	18.9	3	31-60	Ordinary or Fire Resistive (Blank Wall)	0%	1030		
		West	> 45	42.2	3	> 120	Wood Frame or Non-Combustible	0%			
			Τα	otal Required	d Fire Flow in	L/min, Round	led to Nearest 1000L/min		12000		
8	Determine Final Required Fire Flow			w in L/s		200.0					
ō	Determine rinal kequirea rite How	Required Duration of Fire Flow (hrs)									
					Required Vo	olume of Fire	Flow (m ³)		1800		

A.3 BOUNDARY CONDITIONS

BOUNDARY CONDITIONS

Boundary Conditions For: Longfield Block 15

Date of Boundary Conditions: 2019-Aug-20

Provided Information:

Scenario	Den	nand
	L/min	L/s
Average Daily Demand	22.2	0.4
Maximum Daily Demand	52.8	0.9
Peak Hour	114.6	1.9
Fire Flow #1 Demand	12,000	200.0

Number Of Connections: 1

Location:

BOUNDARY CONDITIONS

Results:

Connection #: 1

Demand Scenario	Head (m)	Pressure ¹ (psi)
Maximum HGL	132.3	55.1
Peak Hour	126.4	46.8
Max Day Plus Fire (12,000) L/min	124.0	43.3

¹Elevation: **93.530 m**

Notes:

1) As per the Ontario Building Code in areas that may be occupied, the static pressure at any fixture shall not exceed 552 kPa (80 psi.) Pressure control measures to be considered are as follows, in order of preference:

- a) If possible, systems to be designed to residual pressures of 345 to 552 kPa (50 to 80 psi) in all occupied areas outside of the public right-of-way without special pressure control equipment.
- b) Pressure reducing valves to be installed immediately downstream of the isolation valve in the home/ building, located downstream of the meter so it is owner maintained.

Disclaimer

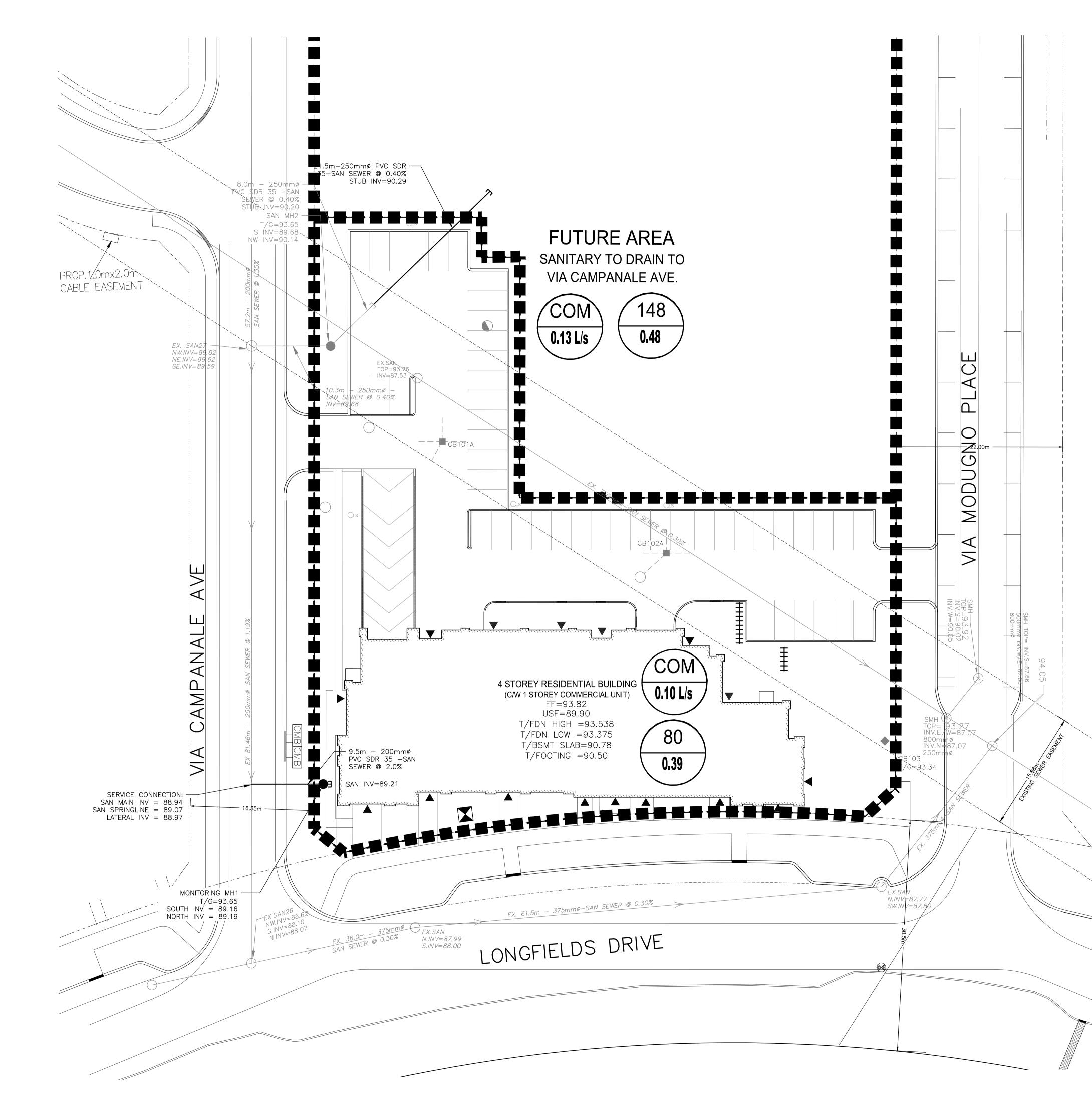
The boundary condition information is based on current operation of the city water distribution system. The computer model simulation is based on the best information available at the time. The operation of the water distribution system can change on a regular basis, resulting in a variation in boundary conditions. The physical properties of watermains deteriorate over time, as such must be assumed in the absence of actual field test data. The variation in physical watermain properties can therefore alter the results of the computer model simulation. Fire Flow analysis is a reflection of available flow in the watermain; there may be additional restrictions that occur between the watermain and the hydrant that the model cannot take into account.

Appendix B: WASTEWATER SERVICING

B.1 SANITARY SEWER DESIGN SHEET

Stanted	-	DATE: REVISION: DESIGNED CHECKED	BY:	s Block 15 20/9/20 0 A.J. DT		FILE NUMB	ER:	160401500	DESI (Cit	ARY S GN SH y of Ottav	IEET	R			MIN PEAK F. PEAKING FA PEAKING FA PERSONS /	FACTOR (RES.) ACTOR (RES.) ACTOR (INDUS ACTOR (COMM SINGLE TOWNHOME	= :TRIAL):	4.0 2.0 2.4 1.5 3.4 2.7		AVG. DAILY FL COMMERCIAL INDUSTRIAL (F INDUSTRIAL (L INSTITUTIONAI INFILTRATION	IEAVY) IGHT)	IN	280 28,000 55,000 35,000 28,000 0.33	l/p/day l/ha/day l/ha/day l/ha/day l/ha/day		MINIMUM VE MAXIMUM V MANNINGS I BEDDING CI MINIMUM CO HARMON CO	ELOCITY n LASS DVER	FACTOR		3) m					
LOCATIO	N					RESIDENTIAL	AREA AND P	OPULATION				COMM	ERCIAL	INDU	PERSONS / STRIAL (L)	APARTMENT	RIAL (H)	3.1 INSTITU	ITIONAL	GREEN / U	NUSED	C+I+I	I	NFILTRATION		TOTAL				P	IPE				
AREA ID NUMBER	FROM M.H.	TO M.H.	AREA	SINGLE	UNITS TOWN	APT	POP.	CUMUL AREA	ATIVE POP.	PEAK FACT.	PEAK FLOW	AREA	ACCU. AREA	AREA	ACCU. AREA	AREA	ACCU. AREA	AREA	ACCU. AREA	AREA	ACCU. AREA	PEAK FLOW	TOTAL AREA	ACCU. AREA	INFILT. FLOW	FLOW	LENGTH	DIA	MATERIAL	CLASS	SLOPE	CAP. (FULL)	CAP. V PEAK FLOW	VEL. (FULL)	VEL. (ACT.)
			(ha)					(ha)			(l/s)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(l/s)	(ha)	(ha)	(l/s)	(l/s)	(m)	(mm)			(%)	(l/s)	(%)	(m/s)	(m/s)
BLOCK 15	SITE	SAN 120	0.35	0	16	12	80	0.35	80	4.00	1.0	0.13	0.13	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.1	0.48	0.48	0.2	1.3	7.0	200 200	PVC	SDR 35	1.00	33.4	3.78%	1.05	0.42

B.2 BACKGROUND REPORT EXCERPTS (SANITARY DRAINAGE)

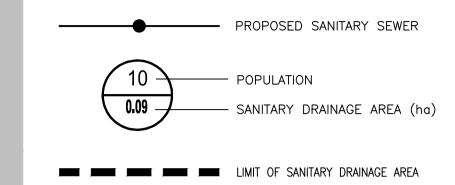

			Nŀ					1									1				
		SUBDIVISIO	^{n:} Longfi	ields \$	Subdiv	vision					IITAF Esigi										DE
											(City o	of Ottav	wa)				AVG. DAIL	Y FLOW / I	PERSON =	350	l/p/day
Stantec		DATE: REVISION	l:			April 8, May 3,											MINIMUM n =	VELOCITY	=	0.60 0.013	
		DESIGNE	D BY:			AF		FILE N	UMBEF	R:	160400	0850					MAX PEA	K FACTOR	=	4.0	
		CHECKED) BY:			TJ\	Ν											K FACTOR		2.0	
																	-	actor Indust actor Comm		2.4 1.5	
LOCATIO	N				RE	SIDENTIAL	AREA A	ND POPU	LATION			CO	MM	IND	UST	11	ISTIT	C+I+I		INFIL	TRATION
STREET	FROM	TO	AREA	ainala	med		POP.	CUMU	LATIVE	PEAK	PEAK	AREA	ACCU.	AREA	ACCU.	AREA	ACCU.	PEAK	TOTAL	ACCU.	INFILT
	M.H.	M.H.	(ha)	single units	density	back to		AREA (ha)	POP.	FACT.	FLOW (I/s)	(ha)	AREA (ha)	(ha)	AREA	(ha)	AREA	FLOW (l/s)	AREA (ha)	AREA (ha)	FLOW
Private	Stub	15	(ha) 0.93	0	units 0	back units 0	317	0.93	317	4.00	5.14	(ha)	0.00	(11a)	(ha) 0.00	(11a)	(ha) 0.00	0.00	0.93	0.93	(l/s) 0.260
Via Verona Ave	15	4	0.04	0	0	0	0	3.87	683	3.90	0.00		0.00		0.22		0.00	0.00	0.04	4.09	0.011
Via Verona Ave	4	2	0.10	0	0	0	0	7.50	937	3.82	0.00		0.00		0.22		0.00	0.00	0.10	7.78	0.028
Via Verona Ave	4	3 2	0.10 0.03	0	0 0	0	0 0	7.56 7.59	937 937	3.82 3.82	0.00		0.00		0.22		0.00	0.00 0.00	0.10	7.78	0.028
Via Verona Ave	2	1	0.03	0	0	0	0	7.71	937 937	3.82	0.00		0.00		0.22		0.00	0.00	0.03	7.93	0.0034
Longfields Drive	1	EX N15b	0.06	0	0	0	0	74.70	5541	3.20	0.00		0.00		0.22		0.00	0.00	0.06	74.92	0.017
Longfields Drive	EX N15b	EX N150	0.00	0	0	0	0	74.70	5541	3.20	0.00		0.00		0.22		0.00	0.00	0.08	74.92	0.017
Longfields Drive	EX N15c	EX N15d	0.16	0	0	0	0	75.03	5541	3.20	0.00		0.00		0.22		0.00	0.00	0.16	75.25	0.045
Via Chianti Grove	25	24	0.03	0	0	0	0	0.03	0				0.00		0.00		0.00	0.00	0.03	0.03	0.008
Via Chianti Grove	24	23	0.16	0	0	0	0	0.19	0				0.00		0.00		0.00	0.00	0.16	0.19	0.045
Private	Stub	23	0.65	0	0	34	92	0.65	92	4.00	1.49		0.00		0.00		0.00	0.00	0.65	0.65	0.182
Via Chianti Grove	23	22	0.04	0	0	0	0	0.88	92	4.00	0.00		0.00		0.00		0.00	0.00	0.04	0.88	0.011
Via Chianti Grove	22	EX N15d	0.02	0	0	0	0	0.90	92	4.00	0.00		0.00		0.00		0.00	0.00	0.02	0.90	0.006
Longfields Drive	EX N15d	EX N17	0.19	0	0	0	0	76.12	5633	3.20	0.00		0.00		0.22		0.00	0.00	0.19	76.34	0.053
Longfields Drive	EX N17	26	0.04	0	0	0	0	76.16	5633	3.20	0.00		0.00		0.22		0.00	0.00	0.04	76.38	0.011
Via Campanale Ave	30	28	0.02	0	0	0	0	0.02	0				0.00		0.00		0.00	0.00	0.02	0.02	0.006
Via Campanale Ave	28	27	0.26	0	0	0	51	0.28	51	4.00	0.83		0.00		0.00		0.00	0.00	0.26	0.28	0.073
Private	Stub	<mark>27</mark>	<mark>0.53</mark>	0	0	0	<mark>168</mark>	<mark>0.53</mark>	<mark>168</mark>	<mark>4.00</mark>	<mark>2.72</mark>	<mark>0.15</mark>	<mark>0.15</mark>		0.00		0.00	<mark>0.14</mark>	<mark>0.68</mark>	0.68	<mark>0.190</mark>
Via Campanale Ave	27	26	0.08	0	0	0	0	0.89	219	4.00	0.00		0.15		0.00		0.00	0.00	0.08	1.04	0.022
Longfields Drive	26	EX N17a	0.07	0	0	0	0	77.12	5852	3.18	0.00		0.15		0.22		0.00	0.00	0.07	77.49	0.020
Longfields Drive	EX N17a	EX N19	0.36	0	0	21	57	77.48	5909	3.18	0.73	0.05	0.20		0.22		0.00	0.05	0.41	77.90	0.115
Longfields Drive	EX N19	EX N310	0.06	0	0	0	0	77.54	5909	3.18	0.00		0.20		0.22		0.00	0.00	0.06	77.96	0.017
Private	Stub	30	0.23	0	0	0	58	0.23	58	4.00	0.94		0.00		0.00		0.00	0.00	0.23	0.23	0.064
Via Campanale Ave	30	29	0.34	0	66	0	205	0.57	263	4.00	3.32	0.05	0.05		0.00		0.00	0.05	0.39	0.62	0.109
Via Campanale Ave	33	32	0.52	0	0	16	43	0.52	43	4.00	0.70		0.00		0.00		0.00	0.00	0.52	0.52	0.146
Via Campanale Ave	32	31	0.53	0	0	18	49	1.05	92	4.00	0.79		0.00		0.00		0.00	0.00	0.53	1.05	0.148

ESIGN PARAMETERS

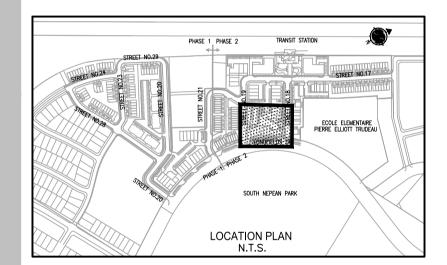
COMMERCIAL		l/s/Ha
INDUSTRIAL	0.40	l/s/Ha
INSTITUTIONAL	0.60	l/s/Ha
INFILTRATION	0.28	l/s/Ha
RESIDENTIAL HARMON PEAKI	NG FAC	TOR
PERSONS/ Ssingle UNIT =	3.4	
PERSONS/ med density unit =	3.1	
PERSONS/ back to back unit =	2.7	

			F	PIPE			
TOTAL	DIST	DIA	SLOPE	CAP.	VE	EL.	Pipe % Full
FLOW				(FULL)	(FULL)	(ACT.)	(Total/Cap.)
(I/s)	(m)	(mm)	(%)	(l/s)	(m/s)	(m/s)	(%)
5.40	1.0	200	0.60	25.92	0.81	0.62	20.83
12.44	22.9	200	0.44	22.08	0.69	0.71	56.34
17.62	47.4	200	0.40	21.12	0.66	0.74	83.43
17.63	13.4	200	0.45	22.40	0.70	0.78	78.71
17.66	63.7	200	1.00	33.60	1.05	1.06	52.56
82.59	20.3	375	0.25	91.20	0.80	0.92	90.56
82.64	56.8	375	0.25	91.20	0.80	0.92	90.61
82.69	52.8	375	0.25	91.20	0.80	0.92	90.67
0.01	11.7	200	0.65	26.88	0.84	0.00	0.04
0.06	97.9	200	0.50	23.68	0.74	0.00	0.25
1.67	11.7	200	0.60	25.92	0.81	0.42	6.44
1.74	21.3	250	0.50	44.37	0.87	0.35	3.92
1.75	4.5	250	1.55	78.03	1.53	0.61	2.24
84.49	61.3	375	0.25	91.20	0.80	0.92	92.64
84.50	13.9	375	0.30	100.32	0.88	0.99	84.23
0.01	11.5	200	0.65	26.88	0.84	0.00	0.04
0.91	80.0	200	0.84	30.72	0.96	0.38	2.96
0.05	10.0	000	0.00	05.00	0.04	0.50	44 77
<mark>3.05</mark>	<mark>10.3</mark>	200	0.60	<mark>25.92</mark>	<mark>0.81</mark>	<mark>0.50</mark>	<mark>11.77</mark>
3.98	58.7	250	1.60	79.56	1.56	0.73	5.00
5.50	50.7	200	1.00	79.50	1.50	0.75	5.00
88.50	22.1	375	0.30	100.32	0.88	1.00	88.22
89.40	61.5	375	0.30	100.32	0.88	1.00	89.11
89.42	23.0	375	0.30	100.32	0.88	1.00	89.13
00172	20.0	0.0	0.00	100.02	0.00		00.10
1.00	10.3	200	0.40	21.12	0.66	0.31	4.73
4.48	88.1	200	0.65	26.88	0.84	0.60	16.67
				0			
0.85	58.3	200	0.65	26.88	0.84	0.34	3.16
1.79	60.0	200	0.40	21.12	0.66	0.38	8.48
-							

		DS STATIO	N BUILDI	NG			:		ARY S		1											DES	IGN PARAME	TERS								
ST C								(Ci	ity of Otta	wa)				MAX PEAK F	,	,	4.0		AVG. DAILY		SON	350	l/p/day					0.60				
	DATE:		September	r 7, 2012				Station E	Building (Block 14	1			MIN PEAK FA	CTOR (RES.	.)=	2.0		COMMERCI	AL.		50,000.00	l/ha/d		MAXIMUM	VELOCITY		3.00	m/s			
	REVISION:		April 2,						• •					PEAKING FA	CTOR (INDU	STRIAL):	2.4		INDUSTRIAL			35,000.00	l/ha/d		MANNINGS	3 n		0.013				
Stantec	DESIGNED BY:		SG	G	FILE NUM	BER:	1604-0085	60						PEAKING FA	CTOR (COM	M., INST.):	1.5		INSTITUTIO	VAL		50,000.00	l/ha/d		BEDDING (CLASS		В				
Stantec	CHECKED BY:		TJ۱	N									1	PERSONS / S	INGLE UNIT		3.4	L .	INFILTRATIO	N		0.28	l/s/Ha		MINIMUM (OVER		2.50	m			
											XML Con	version		PERSONS / T	OWNHOME		2.8	3														
														APPARTMEN	T 2 BEDROC	M	2.1															
														APPARTMEN	T 1 BEDROC	M	1.4															
LOCATION					RESIDENTIA	L AREA AND	POPULATION	I			CC	MM	INE	UST	IN	STIT	GREEN	/ UNUSED	C+I+I		INFILTRATION	1						PIPE				
AREA ID FROM	TO	AREA		UNITS		POP.		ILATIVE	PEAK	PEAK	AREA	ACCU.	AREA	ACCU.	AREA	ACCU.	AREA	ACCU.	PEAK	TOTAL	ACCU.	INFILT.	TOTAL	LENGTH	DIA	MATERIAL	CLASS	SLOPE	CAP.	CAP. V	VE	L.
NUMBER M.H.	M.H.		SINGLE	TOWN	APT.		AREA	POP.	FACT.	FLOW		AREA		AREA		AREA		AREA	FLOW	AREA	AREA	FLOW	FLOW						(FULL)	PEAK FLOW	(FULL)	(ACT.)
		(ha)					(ha)			(l/s)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(l/s)	(ha)	(ha)	(l/s)	(l/s)	(m)	(mm)			(%)	(l/s)	(%)	(m/s)	(m/s)
Station Building Bldg	Campanale Ave	0.43	0	0	<mark>46</mark>	<mark>63</mark>	0.43	<mark>63</mark>	4.00	1.02	<mark>0.12</mark>	0.12	0.00	0.00	0.00	0.00	0.00	0.00	0.10	0.43	<mark>0.43</mark>	0.12	<mark>1.24</mark>	<mark>9.5</mark>	200	PVC	SDR-35	2.00	<mark>47.10</mark>	<mark>2.64</mark>	<mark>1.48</mark>	<mark>0.55</mark>



Stantec Consulting Ltd. 1331 Clyde Avenue Ottawa ON Canada K2C 3G4 Tel. 613.722.4420 Fax. 613.722.2799 www.stantec.com


Copyright Reserved

The Contractor shall verify and be responsible for all dimensions. DO NOT scale the drawing — any errors or omissions shall be reported to Stantec without delay. The Copyrights to all designs and drawings are the property of Stantec. Reproduction or use for any purpose other than that authorized by Stantec is forbidden.

Legend

Notes

4				
7.	Revised per City Comments	SGG	PDM	15.08.17
6.	ISSUED FOR CONSTRUCTION	SGG	TJW	15.05.01
5.	REVISED PER SITE PLAN UPDATE	SGG	TJW	15.04.29
4	REVISED AS PER CITY COMMENTS - 13.07	.02 GBU	TJW	14.01.03
3	ISSUED FOR REVISED SITE PLAN	DT	TJW	13.12.06
2	REVISED BUILDING FOUNDATION LAYOUT	GBU	TJW	13.05.23
1	ISSUED FOR 2ND SUBMISSION	SGG	TJW	13.03.27
0	ISSUED TO CITY FOR APPROVAL	ATR	TJW	12.09.14
Re	vision	By	Appd.	YY.MM.DD
File	Name: 160400850c-SP MJS	S TJW	MJS	10.05.14
	Dwr	n. Chkd.	Dsgn.	YY.MM.DD

Permit-Seal

Client/Project CAMPANALE HOMES (200 - 1187 BANK STREET, OTTAWA, K1S 2X7, (613) 730-7000)

LONGFIELDS BLOCK 14 STATION BUILDING

(613 Longfields Drive, Ottawa)

Title

SANITARY DRAINAGE PLAN

Project No. 160400850C	Scale _{0 2.5} 1:250	7.5 12.5m
Drawing No.	Sheet	Revision
SAN-1	4 _{of} 5	7

Appendix C : STORMWATER MANAGEMENT

C.1 STORM SEWER DESIGN SHEET

Stante	F	Longf DATE: REVISION: DESIGNEE CHECKED	BY:	[ase 2) -09-20 1 OC	FILE NU		DESIG	I SEWE N SHEE f Ottawa) 00	т		DESIGN I = a / (t+l a = b = c =	o) ^c 1:2 yr	1:5 yr 998.071	1:10 yr	1:100 yr 1735.688 6.014		G'S n = I COVER:	0.013		BEDDING	CLASS =	В																	
LOCATIO		-										-				AINAGE AR																		PIPE SELE	CTION					
AREA ID		FROM	то	AREA	AREA	AREA	AREA	AREA	С	С	С	С	AxC	ACCUM	AxC	ACCUM.	AxC	ACCUM.	AxC	ACCUM.	T of C	I _{2-YEAR}	I _{5-YEAR}	I _{10-YEAR}	I _{100-YEAR}	Q _{CONTROL}	ACCUM.	Q _{ACT}	LENGTH	PIPE WIDTH	PIPE	PIPE	MATERIAL	CLASS	SLOPE	Q _{CAP}	% FULL	VEL.	VEL.	TIME OF
NUMBER		M.H.	M.H.	(2-YEAR)	(5-YEAR)	(10-YEAF	R) (100-YEAF	R) (ROOF)	(2-YEAR)	(5-YEAR)	(10-YEAR)	(100-YEAR)	(2-YEAR)	AxC (2YR)	(5-YEAR)	AxC (5YR)	(10-YEAR)	AxC (10YR)	(100-YEAR)	AxC (100YR)	R)						Q _{CONTROL}	(CIA/360)	(OR DIAMETEI	HEIGHT	SHAPE				(FULL)		(FULL)	(ACT)	FLOW
				(ha)	(ha)	(ha)	(ha)	(ha)	(-)	(-)	(-)	(-)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(min)	(mm/h)	(mm/h)	(mm/h)	(mm/h)	(L/s)	(L/s)	(L/s)	(m)	(mm)	(mm)	(-)	(-)	(-)	%	(L/s)	(-)	(m/s)	(m/s)	(min)
STM-1		1	2	0.11	0.00	0.00	0.00	0.00	0.90	0.00	0.00	0.00	0.098	0.098	0.000	0.000	0.000	0.000	0.000	0.000	10.00 10.27	76.81	104.19	122.14	178.56	0.0	0.0	20.9	11.6	300	300	CIRCULAR	PVC	•	0.50	68.0	30.78%	0.97	0.71	0.27
STM-2, STM-3		4 3	3 2	0.34 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.90 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.303 0.000	0.303 0.303	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	10.00 10.53 10.90	76.81 74.84	104.19 101.49	122.14 118.96	178.56 173.88	0.0 0.0	0.0 0.0	64.7 63.1	31.7 22.3	300 300	300 300	CIRCULAR CIRCULAR	PVC PVC	-	0.50 0.50	68.0 68.0	95.17% 92.74%	0.97 0.97	1.00 0.99	0.53 0.37
		2	5	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.000	0.401	0.000	0.000	0.000	0.000	0.000	0.000	10.90 11.11	73.51	99.67	116.81	170.73	0.0	0.0	82.0	21.1	450 450	450 450	CIRCULAR	PVC		2.00	420.6	19.49%	2.56	1.66	0.21

C.2 MODIFIED RATIONAL METHOD CALCULATIONS

 File No:
 160401500

 Project:
 Longfields Block 15

 Date:
 20-Sep-19

SWM Approach: Control to 53 L/s/ha

Post-Development Site Conditions:

Overall Runoff Coefficient for Site and Sub-Catchment Areas

		Runoff C	oefficient Table					
Sub-catchn Area Catchment Type	nent ID / Description		Area (ha) "A"		Runoff Coefficient "C"	"A	x C"	Overall Runoff Coefficient
Controlled - Tributary	STM 1	Hard	0.109		0.9	0.098		
	S	Soft ubtotal	0.000	0.109	0.2	0.000	0.0981	0.900
Controlled - Tributary	STM 2	Hard	0.308		0.9	0.277		
		Soft	0.000		0.2	0.000		
	Si	ubtotal		0.308			0.2772	0.900
Controlled - Tributary	STM 3	Hard	0.029		0.9	0.026		
		Soft	0.000		0.2	0.000		
	Si	ubtotal		0.029			0.0261	0.900
Uncontrolled - Non-Tributary	UNC-1	Hard	0.012		0.9	0.010		
		Soft	0.015		0.2	0.003		
	Si	ubtotal		0.027			0.0135	0.500
Uncontrolled - Non-Tributary	UNC-2	Hard	0.003		0.9	0.003		
	0	Soft ubtotal	0.001	0.004	0.2	0.000	0.0032	0.800
	51	udiolai		0.004			0.0032	0.000
Total verall Runoff Coefficient= C:				0.477			0.418	0.88
otal Roof Areas			0.000 h	a				
otal Tributary Surface Areas (Cor otal Tributary Area to Outlet	ntrolled and Uncontro	olled)	0.446 h 0.446 h					
otal Uncontrolled Areas (Non-Tri	butary)		0.031 h	a				
otal Site			0.477 h					

Stormwater Management Calculations

	yr Intensi	ity	$I = a/(t + b)^{c}$	a =	998.071	t (min)	l (mm/hr)
	ity of Otta		1 - a/(t + b)	a= b=	6.053	t (min) 10	104.19
	ity of Otte	ina		C =	0.814	20	70.25
						30	53.93
						40 50	44.18 37.65
						60	32.94
						70	29.37
						80	26.56
						90	24.29
						100 110	22.41 20.82
						120	19.47
	5 YEA	R Predev	elopment Ta	arget Releas	e from Por	tion of Site	9
	age Area: Area (ha):	Predevelop 0.48		y Area to Outl	et		
	C:	0.20					
	ontrol to 5						
	Jnit Rate	Area	Q100yr				
-	(L/s/ha) 53	(ha) 0.48	(L/s) 25.4				
<u> </u>	00	0.10	20.4				
5	5 YEAR N	lodified R	ational Met	hod for Enti	re Site		
Subdraina		STM 1				Controll	ed - Tributary
А	vrea (ha): C:	0.109 0.90					
	tc (min)	l (5 yr) (mm/hr)	Qactual (L/s)	Qrelease (L/s)	Qstored (L/s)	Vstored (m ³)	
	10	104.2	28.4	5.4	23.0	13.8	
	20 30	70.3 53.9	19.2 14.7	5.4 5.4	13.7 9.3	16.5 16.7	
	40	44.2	14.7	5.4	6.6	15.9	
	50	37.7	10.3	5.4	4.9	14.6	
	60	32.9	9.0	5.4	3.6	12.8	
	80	26.6	7.2	5.4	1.8	8.8	
	100 120	22.4 19.5	6.1 5.3	5.4 5.3	0.7 0.0	4.2 0.0	
	140	17.3	4.7	4.7	0.0	0.0	
	160	15.6	4.2	4.2	0.0	0.0	
	180	14.2	3.9	3.9	0.0	0.0	
ige: S	urface Sto	rage Above	e CB				
Ori	ifice Type	LMF 70					
Invert	ifice Type Elevation	91.82	m				
Invert T/G	ifice Type Elevation Elevation	91.82 93.20	m				
Invert T/G Max Pondi	ifice Type Elevation Elevation ing Depth	91.82 93.20 0.20	m m				
Invert T/G Max Pondi	ifice Type Elevation Elevation	91.82 93.20	m				
Invert T/G Max Pondi	ifice Type Elevation Elevation ing Depth	91.82 93.20 0.20	m m m Head	Discharge	Vreq	Vavail	Volume
Invert T/G Max Pondi Downstr	ifice Type Elevation Elevation ing Depth ream W/L	91.82 93.20 0.20 86.93 Stage	m m Head (m)	(L/s)	(cu. m)	(cu. m)	Check
Invert T/G Iax Pondi Downstr	ifice Type Elevation Elevation ing Depth ream W/L	91.82 93.20 0.20 86.93	m m m Head				
Invert T/G Max Pondi Downstr 5-year Wa Subdraina	ifice Type Elevation Elevation ing Depth ream W/L ater Level	91.82 93.20 0.20 86.93 Stage 93.40 STM 2	m m Head (m)	(L/s)	(cu. m)	(cu. m) 28.8	Check
Invert T/G Max Pondi Downstr 5-year Wa Subdraina	ifice Type Elevation Elevation ing Depth ream W/L	91.82 93.20 0.20 86.93 Stage 93.40	m m Head (m)	(L/s)	(cu. m)	(cu. m) 28.8	Check OK
Invert T/G Max Pondi Downstr 5-year Wa	ifice Type Elevation Elevation ing Depth ream W/L ater Level ater Level nge Area: rrea (ha): C: tc	91.82 93.20 0.20 86.93 Stage 93.40 STM 2 0.308 0.90 I (5 yr)	m m Head (m) 1.58 Qactual	(L/s) 5.4 Qrelease	(cu. m) 16.7 Qstored	(cu. m) 28.8 Controll	Check OK
Invert T/G Max Pondi Downstr 5-year Wa	ifice Type Elevation Elevation ing Depth ream W/L ater Level age Area: trea (ha): C: tc (min)	91.82 93.20 0.20 86.93 Stage 93.40 STM 2 0.308 0.90 I (5 yr) (mm/hr)	m m Head (m) 1.58 Qactual (L/s)	(L/s) 5.4 Qrelease (L/s)	(cu. m) 16.7 Qstored (L/s)	(cu. m) 28.8 Controll	Check OK
Invert T/G lax Pondi Downstr 5-year Wa	ifice Type Elevation Elevation ing Depth ream W/L ater Level ater Level nge Area: rrea (ha): C: tc	91.82 93.20 0.20 86.93 Stage 93.40 STM 2 0.308 0.90 I (5 yr)	m m Head (m) 1.58 Qactual	(L/s) 5.4 Qrelease	(cu. m) 16.7 Qstored	(cu. m) 28.8 Controll Vstored (m^3)	Check OK
Invert T/G lax Pondi Downstr 5-year Wa	fice Type Elevation Elevation ing Depth ream W/L ater Level ater Level trea (ha): C: tc (min) 10 20 30	91.82 93.20 0.20 86.93 Stage 93.40 STM 2 0.308 0.90 I (5 yr) (mm/hr) 104.2 70.3 53.9	m m Head (m) 1.58 Qactual (L/s) 80.3 54.1 41.6	(L/s) 5.4 Qrelease (L/s) 14.0 14.0 14.0	(cu. m) 16.7 Qstored (L/s) 66.3 40.1 27.6	(cu. m) 28.8 Controll (m^3) 39.8 48.2 49.6	Check OK
Invert T/G lax Pondi Downstr 5-year Wa	fice Type Elevation Elevation ing Depth ream W/L ater Level trea (ha): C: tc (min) 10 20 30 40	91.82 93.20 0.20 86.93 Stage 93.40 STM 2 0.308 0.90 (mm/hr) 104.2 70.3 53.9 44.2	m m Head (m) 1.58 Qactual (L/s) 80.3 54.1 41.6 34.0	(L/s) 5.4 Qrelease (L/s) 14.0 14.0 14.0	(cu. m) 16.7 Qstored (L/s) 66.3 40.1 27.6 20.0	(cu. m) 28.8 Controll Vstored (m^3) 39.8 48.2 49.6 48.1	Check OK
Invert T/G Max Pondi Downstr 5-year Wa	fice Type Elevation Elevation ing Depth earn W/L ater Level age Area: trea (ha): C: tc (min) 10 20 30 40 50	91.82 93.20 0.20 86.93 Stage 93.40 STM 2 0.308 0.90 I (5 yr) (mm/hr) 104.2 70.3 53.9 44.2 7.7	m m Head (m) 1.58 Qactual (Us) 80.3 54.1 41.6 34.0 229.0	(L/s) 5.4 (L/s) 14.0 14.0 14.0 14.0 14.0	(cu. m) 16.7 Qstored (L/s) 66.3 40.1 27.6 20.0 15.0	(cu. m) 28.8 Controll (m^3) 39.8 48.2 49.6 48.1 45.0	Check OK
Invert T/G Max Pondi Downstr 5-year Wa ubdraina	fice Type Elevation Elevation ing Depth ream W/L ater Level trea (min) 10 20 40 50 60	91.82 93.20 0.20 86.93 Stage 93.40 STM 2 0.308 0.90 1(5 yr) (mm/hr) 104.2 70.3 53.9 44.2 37.7 32.9	m m Head (m) 1.58 Qactual (L/s) 80.3 54.1 41.6 34.0 25.4	(L/s) 5.4 Qrelease (L/s) 14.0 14.0 14.0 14.0 14.0	(cu. m) 16.7 Qstored (L/s) 66.3 40.1 27.6 20.0 15.0 11.4	(cu. m) 28.8 Controll (m^3) 39.8 48.2 49.6 48.1 45.0 41.0	Check OK
Invert T/G Max Pondi Downstr 5-year Wa ubdraina	fice Type Elevation Ing Depth ream W/L ater Level ater Level trea (ha): C: tc (min) 10 20 30 40 50 60 80	91.82 93.20 0.20 86.93 Stage 93.40 STM 2 0.308 0.90 I (5 yr) (mm/hr) 104.2 70.3 53.9 44.2 37.7 32.9 26.6	m m Head (m) 1.58 Qactual (L/s) 80.3 54.1 41.6 34.0 39.0 25.5	(L/s) 5.4 Qrelease (L/s) 14.0 14.0 14.0 14.0 14.0 14.0 14.0	(cu. m) 16.7 Qstored (L/s) 66.3 40.1 27.6 20.0 15.0 15.0 11.4 6.5	(cu. m) 28.8 Controll Vstored (m*3) 39.8 48.2 49.6 48.1 45.0 41.0 31.0	Check OK
Invert T/G Max Pondi Downstr 5-year Wa ubdraina	fice Type Elevation Elevation ing Depth eam W/L ater Level ter Level trea (ha): C: tc (min) 10 20 30 30 40 50 60 80 100	91.82 93.20 0.20 86.93 Stage 93.40 93.40 STM 2 0.308 0.90 1(5 yr) (mm/hr) 104.2 70.3 53.9 44.2 37.7 32.9 26.6 22.4	m m Head (m) 1.58 Qactual (L(s) 84.1 41.6 34.0 29.0 25.4 20.5 17.3	(L/s) 5.4 Qrelease (L/s) 14.0 14.0 14.0 14.0 14.0	(cu. m) 16.7 Qstored (L/s) 66.3 40.1 27.6 20.0 15.0 11.4 6.5 3.3	(cu. m) 28.8 Controll (m^3) 39.8 48.2 49.6 48.1 45.0 41.0 31.0 31.0 19.6	Check OK
Invert T/G lax Pondi Downstr 5-year Wa	fice Type Elevation Ing Depth ream W/L ater Level ater Level trea (ha): C: tc (min) 10 20 30 40 50 60 80	91.82 93.20 0.20 86.93 Stage 93.40 STM 2 0.308 0.90 1(5 yr) (mm/hr) 104.2 70.3 53.9 44.2 37.7 32.9 26.6	m m Head (m) 1.58 Qactual (L/s) 84.1 41.6 34.0 29.0 25.4 20.5 25.4 20.5 25.4 21.7.3 15.0	(L/s) 5.4 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14	(cu. m) 16.7 Qstored (L/s) 66.3 40.1 27.6 20.0 15.0 15.0 11.4 6.5	(cu. m) 28.8 Controll Vstored (m*3) 39.8 48.2 49.6 48.1 45.0 41.0 31.0	Check OK
Invert T/G Max Pondi Downstr 5-year Wa	fice Type Elevation IElevation ing Depth ream W/L ater Level uge Area: c: tc (min) 10 20 30 40 50 60 80 100 120 140 160	91.82 93.20 0.20 86.93 Stage 93.40 STM 2 0.308 0.90 I (5 yr) (mm/hr) 104.2 37.7 32.9 26.6 22.4 19.5 17.3 15.6	m m Head (m) 1.58 Cactual (L/s) 80.3 54.1 41.6 34.0 29.0 29.0 29.0 29.0 29.0 29.0 29.1 51.5 15.0 13.3 12.0	(L/s) 5.4 Qrelease (L/s) 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0	(cu. m) 16.7 Qstored (L/s) 66.3 40.1 27.6 20.0 15.0 11.4 6.5 3.3 1.0 0.0	(cu. m) 28.8 Controlli Vstored (m^3) 39.8 48.2 49.6 48.1 45.0 41.0 31.0 9.6 7.2 0.0	Check OK
Invert Ar Pond Downstr year Wa bdrainan A	fince Type Elevation ing Depth ream W/L ater Level trea (ha): c: tc (min) 10 20 30 40 40 50 60 60 80 100 120 140 180	91.82 93.20 0.20 86.93 Stage 93.40 STM 2 0.308 0.90 I (5 yr) (mm/hr) 104.2 70.3 53.9 26.6 22.4 19.5 17.3 15.6 14.2	m m Head (m) 1.58 Qactual (L/s) 80.3 80.3 84.1 41.6 34.0 25.4 34.0 25.4 13.3 15.0 13.3 15.0 13.3 12.0 10.9	(L/s) 5.4 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14	(cu, m) 16.7 Qstored (L/s) 66.3 40.1 27.6 20.0 15.0 11.4 6.5 3.3 1.0 0.0	(cu. m) 28.8 Controll Vstored (m*3) 39.8 48.2 49.6 48.1 45.0 41.0 31.0 19.6 7.2 0.0	Check OK
Invert T/G Max Pondi Downstr 5-year Wa Gubdraina A	fice Type Elevation Elevation ing Depth earm W/L ater Level trea (ha): c: tc (min) 10 20 30 40 50 60 80 100 120 140 160 180 urface Sto	91.82 93.20 0.20 86.93 Stage 93.40 STM 2 0.308 0.90 1 (5 yr) (mm/hr) 104.2 77.3 53.9 44.2 37.7 32.9 26.6 22.4 19.5 17.3 15.6 14.2 rage Above	m m Head (m) 1.58 80.3 80.3 80.3 80.3 80.4 80.3 80.4 80.3 80.4 80.3 80.4 80.3 80.4 80.4 80.4 80.4 80.4 80.4 80.4 80.4	(L(s)) 5.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7	(cu. m) 16.7 Qstored (L/s) 66.3 40.1 27.6 20.0 15.0 11.4 6.5 3.3 1.0 0.0 0.0 0.0	(cu. m) 28.8 Controlli Vstored (m^3) 39.8 48.2 49.6 48.1 45.0 41.0 31.0 9.6 7.2 0.0	Check OK
Invert T/G Max Pondid Source Source Subdraina A	fice Type Elevation ing Depth Hearn W/L ater Level ter Level ter (min) 10 20 20 40 40 40 40 40 40 40 40 40 40 40 40 40	91.82 93.20 0.20 86.93 Stage 93.40 0.308 0.90 1(5 yr) (mm/hr) 104.2 70.3 53.9 44.2 70.3 77.7 32.9 26.6 22.4 19.5 17.3 15.6 14.2 rrage Above CdA(2gh)'	m m Head (m) 1.58 Qactual (L/s) 80.3 54.1 41.6 34.0 25.4 20.5 17.3 15.0 13.3 12.0 10.9 20.5	(L/s) 5.4 Qrelease (L/s) 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0	(cu. m) 16.7 Qstored (L/s) 66.3 40.1 27.6 20.0 15.0 11.4 6.5 3.3 1.0 0.0	(cu. m) 28.8 Controlli Vstored (m^3) 39.8 48.2 49.6 48.1 45.0 41.0 31.0 9.6 7.2 0.0	Check OK
Invert TrG Max Pondind Downstr 5-5-year Wa Subdraina A Confice I	fice Type Elevation ing Depth Elevation ing Depth atter Level atter Level (min) 10 10 20 30 40 50 60 80 80 120 120 140 140 180 120 20 30 40 50 60 80 80 80 80 80 80 80 80 80 80 80 80 80	91.82 93.20 0.20 86.93 Stage 93.40 93.40 93.40 93.40 93.40 93.40 93.40 93.40 93.40 93.40 93.40 93.40 93.40 93.40 93.40 93.40 93.40 93.40 145 yr) 104.2 77.3 15.6 14.2 75	m m Head (m) 1.58 80.3 54.1 41.6 34.0 29.0 25.4 20.5 17.3 15.0 13.3 12.0 10.9 9 CB	(L(s)) 5.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7	(cu. m) 16.7 Qstored (L/s) 66.3 40.1 27.6 20.0 15.0 11.4 6.5 3.3 1.0 0.0 0.0 0.0	(cu. m) 28.8 Controlli Vstored (m^3) 39.8 48.2 49.6 48.1 45.0 41.0 31.0 9.6 7.2 0.0	Check OK
Invert T/G Max Pondind 5-year Wa Subdraina A C C Orifice I Orifice I Orifice I Invert	fice Type Elevation ing Depth Hearn W/L ater Level ter Level ter (min) 10 20 20 40 40 40 40 40 40 40 40 40 40 40 40 40	91.82 93.20 0.20 86.93 Stage 93.40 0.308 0.90 1(5 yr) 104.2 70.3 53.9 44.2 77.3 32.9 26.6 22.4 19.5 17.3 15.6 14.2 rrage Above CdA(2gh)' 75 91.78	m m Head (m) 1.58 Qactual (L/s) 80.3 54.1 41.6 34.0 25.4 20.5 17.3 15.0 13.3 12.0 10.9 20.5	(L(s)) 5.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7	(cu. m) 16.7 Qstored (L/s) 66.3 40.1 27.6 20.0 15.0 11.4 6.5 3.3 1.0 0.0 0.0 0.0	(cu. m) 28.8 Controlli Vstored (m^3) 39.8 48.2 49.6 48.1 45.0 41.0 31.0 9.6 7.2 0.0	Check OK
Invert T/G Max Pondind 5-year Wa Subdraina A A C Confice I Orifice I Orifice I Invert T/G	fice Type Elevation ing Depth Hearn W/L Levention atter Level geg Araa: C: C: C: C: C: C: C: C: C: C: C: C: C:	91.82 93.20 0.20 86.93 Stage 93.40 STM 2 0.308 0.90 1 (5 yr) 104.2 70.3 53.9 44.2 43.7 70.3 53.9 44.2 44.2 44.2 70.3 53.9 44.2 44.2 70.3 53.9 44.2 44.2 70.3 53.9 44.2 44.2 70.3 53.9 44.2 70.3 53.9 44.2 70.3 53.9 44.2 70.3 53.9 44.2 70.3 53.9 44.2 70.3 53.9 44.2 70.3 53.9 44.2 70.3 70.3 70.3 70.3 70.3 70.3 70.3 70.3	m m Head (m) 1.58 Qactual (L/s) 80.3 54.1 41.6 34.0 25.4 34.0 25.4 13.3 15.0 13.3 15.0 13.3 12.0 10.9 e CB V0.5 mm m m m	(L(s)) 5.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7	(cu. m) 16.7 Qstored (L/s) 66.3 40.1 27.6 20.0 15.0 11.4 6.5 3.3 1.0 0.0 0.0 0.0	(cu. m) 28.8 Controlli Vstored (m^3) 39.8 48.2 49.6 48.1 45.0 41.0 31.0 9.6 7.2 0.0	Check OK
Invert T/G Max Pondind 5-year Wa Subdraina A A C Confice I Orifice I Orifice I Invert T/G	fice Type Elevation ing Depth Elevation and Will ater Level (min) 10 10 20 30 40 50 60 80 80 80 120 120 140 150 60 80 80 80 80 80 80 80 80 80 80 80 80 80	91.82 93.20 86.93 Stage 93.40 93.40 93.40 93.40 93.40 93.40 93.40 93.40 93.40 93.40 93.94 104.2 70.3 53.9 44.2 77.3 32.9 44.2 77.3 32.9 28.6 6 14.2 77.3 15.6 14.2 77.7 77.5 77.5 77.5 77.5 77.5 77.5 77	m m Head (m) 1.58 80.3 54.1 41.6 34.0 29.0 25.4 20.5 17.3 15.0 13.3 12.0 10.9 9 CB v0.5 mm m m	(L(s)) 5.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7	(cu. m) 16.7 Qstored (L/s) 66.3 40.1 27.6 20.0 15.0 11.4 6.5 3.3 1.0 0.0 0.0 0.0	(cu. m) 28.8 Controlli Vstored (m^3) 39.8 48.2 49.6 48.1 45.0 41.0 31.0 9.6 7.2 0.0	Check OK
Invert T/G Jaax Pondin Downstr 5-year Wa ubdraina A A C C Orlifice I Orlifice I Orlifice I I Nert T/G A X Pondi	fice Type Elevation ing Depth Hearn W/L Levention atter Level geg Araa: C: C: C: C: C: C: C: C: C: C: C: C: C:	91.82 93.20 0.20 86.93 Stage 93.40 STM 2 0.308 0.90 1 (5 yr) 104.2 70.3 53.9 44.2 43.7 70.3 53.9 44.2 44.2 44.2 70.3 53.9 44.2 44.2 70.3 53.9 44.2 44.2 70.3 53.9 44.2 44.2 70.3 53.9 44.2 70.3 53.9 44.2 70.3 53.9 44.2 70.3 53.9 44.2 70.3 53.9 44.2 70.3 53.9 44.2 70.3 53.9 70.5 70.5 70.5 70.5 70.5 70.5 70.5 70.5	m m Head (m) 1.58 Qactual (L/s) 80.3 54.1 41.6 34.0 25.4 34.0 25.4 13.3 15.0 13.3 15.0 13.3 12.0 10.9 e CB V0.5 mm m m m	(L(s)) 5.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7	(cu. m) 16.7 Qstored (L/s) 66.3 40.1 27.6 20.0 15.0 11.4 6.5 3.3 1.0 0.0 0.0 0.0	(cu. m) 28.8 Controlli Vstored (m^3) 39.8 48.2 49.6 48.1 45.0 41.0 31.0 9.6 7.2 0.0	Check OK
Invert	fice Type Elevation ing Depth Hearn W/L Levention atter Level geg Araa: C: C: C: C: C: C: C: C: C: C: C: C: C:	91.82 93.20 0.20 86.93 Stage 93.40 STM 2 0.308 0.90 I (5 yr) (mm/hr) 104.2 70.3 53.9 44.2 37.7 32.9 26.6 22.4 19.5 17.3 15.6 14.2 yrage Aboot 75 91.78 93.16 0.26 91.00	m m Head (m) 1.58 80.3 80.3 80.3 80.3 80.3 80.3 80.4 80.3 80.4 80.3 80.4 80.3 80.4 80.3 80.4 80.4 80.4 80.4 80.4 80.4 80.4 80.4	(L(s)) 5.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7	(cu. m) 16.7 Qstored (L/s) 66.3 40.1 27.6 20.0 15.0 0.0 0.0 0.0 0.572	(cu. m) 28.8 Controll Vstored (m*3) 39.8 48.2 49.6 48.1 45.0 31.0 19.6 19.0 0.0 0.0 0.0	Check OK ed - Tributary

woulled	160401500 Rational I		alculatons	for Storage	e		
	100 yr Inte	ncity	I = a/(t + b)	a =	1735.688	t (min)	l (mm/hr)
	City of Otta		u ((· b)	a = b =	6.014	10	178.56
	ony of ou	uwa		c =	0.820	20	119.95
						30	91.87
						40	75.15
						50	63.95
						60	55.89
						70 80	49.79
						80 90	44.99 41.11
						100	37.90
						110	35.20
						120	32.89
Subdra				Target Releas		rtion of Si	te
	Control to 5	3 L/s/ha					
	Unit Rate	Area	Q100yr	1			
	(L/s/ha)	(ha)	(L/s)				
	53	0.48	25.4]			
	100 YEAR	Modified	Rational M	ethod for En	tire Site		
Subdra	inage Area:	STM 1				Controll	ed - Tributary
	Area (ha):	0.109					,
	C:	1.00					
	t-	1 (100)	Operation	Orologoa	Ontered	Veterad	Occill
	tc (min)	l (100 yr) (mm/hr)	Qactual (L/s)	Qrelease (L/s)	Qstored (L/s)	Vstored (m ³)	Qspill (L/s)
	10	178.6	54.1	5.6	48.0	28.8	0.5
	20	120.0	36.3	5.6	24.0	28.8	6.8
	30	91.9	27.8	5.6	16.0	28.8	6.3
	40	75.1	22.8	5.6	12.0	28.8	5.2
	50	64.0	19.4	5.6	9.6	28.8	4.2
	60	55.9	16.9	5.6	8.0	28.8	3.4
	80	45.0	13.6	5.6	6.0	28.8	2.0
	100	37.9	11.5	5.6	4.8	28.8	1.1
	120	32.9	10.0	5.6	4.0	28.8	0.4
	140	29.2	8.8	5.6	3.2	27.3	0.0
	160 180	26.2 23.9	8.0 7.2	5.6 5.6	2.4 1.7	22.7 17.9	0.0 0.0
	100	23.5	1.2	5.0	1.7	17.5	0.0
Storage:	Surface Sto	orage Above	СВ				
	Orifice Type	LMF 70					
	ert Elevation	91.82					
	G Elevation	93.20					
	nding Depth stream W/L	0.30 91.00					
DOWI		91.00					
		Stage	Head	Discharge	Vreq	Vavail	Volume
		•	(m)	(L/s)	(cu. m)	(cu. m)	Check
100-year	Water Level	93.50	1.68	5.6	28.8	28.8	OK
						0.00	
	· · · ·	07110				o	
Subdra	inage Area:	STM 2				Controll	ed - Tributary
	Area (ha):						
	C ·	0.308					
	C:	1.00					
	tc	1.00 I (100 yr)	Qactual	Qrelease	Qstored	Vstored	Qspill
	tc (min)	1.00 I (100 yr) (mm/hr)	(L/s)	(L/s)	(L/s)	(m^3)	(L/s)
	tc (min) 10	1.00 I (100 yr) (mm/hr) 178.6	(L/s) 153.4	(L/s) 15.1	(L/s) 103.3	(m^3) 62.0	(L/s) 35.0
	tc (min) 10 20	1.00 I (100 yr) (mm/hr) 178.6 120.0	(L/s) 153.4 109.5	(L/s) 15.1 15.1	(L/s) 103.3 51.7	(m^3) 62.0 62.0	(L/s) 35.0 42.7
	tc (min) 10 20 30	1.00 I (100 yr) (mm/hr) 178.6 120.0 91.9	(L/s) 153.4 109.5 84.9	(L/s) 15.1 15.1 15.1	(L/s) 103.3 51.7 34.4	(m^3) 62.0 62.0 62.0	(L/s) 35.0 42.7 35.3
	tc (min) 10 20 30 40	1.00 I (100 yr) (mm/hr) 178.6 120.0 91.9 75.1	(L/s) 153.4 109.5 84.9 69.5	(L/s) 15.1 15.1 15.1 15.1 15.1	(L/s) 103.3 51.7 34.4 25.8	(m^3) 62.0 62.0 62.0 62.0	(L/s) 35.0 42.7 35.3 28.6
	tc (min) 10 20 30 40 50	1.00 I (100 yr) (mm/hr) 178.6 120.0 91.9 75.1 64.0	(L/s) 153.4 109.5 84.9	(L/s) 15.1 15.1 15.1 15.1 15.1 15.1	(L/s) 103.3 51.7 34.4	(m^3) 62.0 62.0 62.0 62.0 62.0	(L/s) 35.0 42.7 35.3 28.6 23.2
	tc (min) 10 20 30 40	1.00 I (100 yr) (mm/hr) 178.6 120.0 91.9 75.1	(L/s) 153.4 109.5 84.9 69.5 59.0	(L/s) 15.1 15.1 15.1 15.1 15.1	(L/s) 103.3 51.7 34.4 25.8 20.7	(m^3) 62.0 62.0 62.0 62.0	(L/s) 35.0 42.7 35.3 28.6
	tc (min) 10 20 30 40 50 60	1.00 I (100 yr) (mm/hr) 178.6 120.0 91.9 75.1 64.0 55.9	(L/s) 153.4 109.5 84.9 69.5 59.0 51.2	(L/s) 15.1 15.1 15.1 15.1 15.1 15.1 15.1	(L/s) 103.3 51.7 34.4 25.8 20.7 17.2	(m*3) 62.0 62.0 62.0 62.0 62.0 62.0	(L/s) 35.0 42.7 35.3 28.6 23.2 18.9
	tc (min) 10 20 30 40 50 60 80 100 120	1.00 (mm/hr) 178.6 120.0 91.9 75.1 64.0 55.9 45.0 37.9 32.9	(L/s) 153.4 109.5 84.9 69.5 59.0 51.2 40.6 33.6 28.5	(L/s) 15.1 15.1 15.1 15.1 15.1 15.1 15.1 15.	(L/s) 103.3 51.7 34.4 25.8 20.7 17.2 12.9 10.3 8.6	(m^3) 62.0 62.0 62.0 62.0 62.0 62.0 62.0 62.0	(L/s) 35.0 42.7 35.3 28.6 23.2 18.9 12.5 8.1 4.8
	tc (min) 10 20 30 40 50 60 80 100 120 140	1.00 i (100 yr) (mm/hr) 178.6 120.0 91.9 75.1 64.0 55.9 45.0 37.9 32.9 29.2	(L/s) 153.4 109.5 84.9 69.5 59.0 51.2 40.6 33.6 28.5 25.0	(L/s) 15.1 15.1 15.1 15.1 15.1 15.1 15.1 15.	(L/s) 103.3 51.7 34.4 25.8 20.7 17.2 12.9 10.3 8.6 7.4	(m^3) 62.0 62.0 62.0 62.0 62.0 62.0 62.0 62.0	(L/s) 35.0 42.7 35.3 28.6 23.2 18.9 12.5 8.1 4.8 2.5
	tc (min) 10 20 30 40 50 60 80 100 120 140 160	1.00 (100 yr) (mm/hr) 178.6 120.0 91.9 75.1 64.0 55.9 45.0 37.9 32.9 29.2 26.2	(L/s) 153.4 109.5 84.9 69.5 59.0 51.2 40.6 33.6 28.5 25.0 22.5	(L/s) 15.1 15.1 15.1 15.1 15.1 15.1 15.1 15.	(L/s) 103.3 51.7 34.4 25.8 20.7 17.2 12.9 10.3 8.6 7.4 6.5	(m^3) 62.0 62.0 62.0 62.0 62.0 62.0 62.0 62.0	(L/s) 35.0 42.7 35.3 28.6 23.2 18.9 12.5 8.1 4.8 2.5 0.9
Storago	tc (min) 10 20 30 40 50 60 80 100 120 140 140 160 180	1.00 1 (100 yr) (mm/hr) 178.6 120.0 91.9 75.1 64.0 55.9 45.0 37.9 32.9 29.2 26.2 23.9	(L/s) 153.4 109.5 84.9 69.5 59.0 51.2 40.6 33.6 28.5 25.0 22.5 20.5	(L/s) 15.1 15.1 15.1 15.1 15.1 15.1 15.1 15.	(L/s) 103.3 51.7 34.4 25.8 20.7 17.2 12.9 10.3 8.6 7.4	(m^3) 62.0 62.0 62.0 62.0 62.0 62.0 62.0 62.0	(L/s) 35.0 42.7 35.3 28.6 23.2 18.9 12.5 8.1 4.8 2.5
Storage:	tc (min) 10 20 30 40 50 60 80 100 120 140 160 180 Surface Sto	1.00 1 (100 yr) (mm/hr) 178.6 128.0 91.9 75.1 64.0 37.9 32.9 29.2 26.2 23.9 yrage Above	(L/s) 153.4 109.5 84.9 69.5 59.0 51.2 40.6 33.6 28.5 25.0 22.5 20.5 CB	(L/s) 15.1 15.1 15.1 15.1 15.1 15.1 15.1 15.	(L/s) 103.3 51.7 34.4 25.8 20.7 17.2 12.9 10.3 8.6 7.4 6.5 5.3	(m^3) 62.0 62.0 62.0 62.0 62.0 62.0 62.0 62.0	(L/s) 35.0 42.7 35.3 28.6 23.2 18.9 12.5 8.1 4.8 2.5 0.9
Orific	tc (min) 10 20 30 40 50 60 80 100 120 140 160 180 Surface Sto xe Equation:	1.00 1 (100 yr) (mm/hr) 178.6 120.0 91.9 75.1 64.0 55.9 45.0 37.9 32.9 29.2 26.2 23.9 vrage Above Q = CdA(2g	(L/s) 153.4 109.5 84.9 69.5 59.0 51.2 40.6 33.6 28.5 25.0 22.5 20.5 CB h)^0.5	(L/s) 15.1 15.1 15.1 15.1 15.1 15.1 15.1 15.	(L/s) 103.3 51.7 34.4 25.8 20.7 17.2 12.9 10.3 8.6 7.4 6.5	(m^3) 62.0 62.0 62.0 62.0 62.0 62.0 62.0 62.0	(L/s) 35.0 42.7 35.3 28.6 23.2 18.9 12.5 8.1 4.8 2.5 0.9
Orific	tc (min) 10 20 30 40 60 80 100 120 140 160 180 Surface Sto surface Sto surface sto surface sto	1.00 1 (100 yr) (mm/hr) 178.6 120.0 91.9 75.1 64.0 55.9 45.0 64.0 55.9 29.2 23.9 26.2 23.9 orage Above Q = CdA(2g 75	(L/s) 153.4 109.5 84.9 69.5 59.0 51.2 40.6 33.6 28.5 25.0 22.5 20.5 CB h)^0.5 mm	(L/s) 15.1 15.1 15.1 15.1 15.1 15.1 15.1 15.	(L/s) 103.3 51.7 34.4 25.8 20.7 17.2 12.9 10.3 8.6 7.4 6.5 5.3	(m^3) 62.0 62.0 62.0 62.0 62.0 62.0 62.0 62.0	(L/s) 35.0 42.7 35.3 28.6 23.2 18.9 12.5 8.1 4.8 2.5 0.9
Orific	tc (min) 10 20 30 40 60 80 100 120 140 160 180 Surface Stc ve Equation: ve Diameter: art Elevation	1.00 1 (100 yr) (mm/hr) 178.6 120.0 91.9 75.1 64.0 55.9 45.0 37.9 32.9 29.2 26.2 23.9 prage Above Q = CdA(2g 75 91.78	(L/s) 153.4 109.5 59.0 59.0 51.2 40.6 33.6 28.5 25.0 22.5 CB h)^0.5 mm	(L/s) 15.1 15.1 15.1 15.1 15.1 15.1 15.1 15.	(L/s) 103.3 51.7 34.4 25.8 20.7 17.2 12.9 10.3 8.6 7.4 6.5 5.3	(m^3) 62.0 62.0 62.0 62.0 62.0 62.0 62.0 62.0	(L/s) 35.0 42.7 35.3 28.6 23.2 18.9 12.5 8.1 4.8 2.5 0.9
Orific Orific Inve	tc (min) 10 20 30 40 50 60 80 100 120 140 160 180 Surface Sto ce Equation: ce Diameter: ert Elevation G Elevation	1.00 1 (100 yr) (mm/hr) 178.6 120.0 91.9 75.1 64.0 55.9 45.0 37.9 29.2 26.2 23.9 orage Above Q = CdA(2g 75 91.78 93.16	(L/s) 153.4 109.5 84.9 69.5 59.0 51.2 40.6 28.5 25.0 22.5 20.5 CB h)^0.5 mm m	(L/s) 15.1 15.1 15.1 15.1 15.1 15.1 15.1 15.	(L/s) 103.3 51.7 34.4 25.8 20.7 17.2 12.9 10.3 8.6 7.4 6.5 5.3	(m^3) 62.0 62.0 62.0 62.0 62.0 62.0 62.0 62.0	(L/s) 35.0 42.7 35.3 28.6 23.2 18.9 12.5 8.1 4.8 2.5 0.9
Orific Orific Inve Ti Max Po	tc (min) 10 20 30 40 50 60 80 100 120 140 160 180 Surface Sto ce Equation: ce Equation: ce Diameter: et Elevation G Elevation dig Depti	1.00 1 (100 yr) (mm/hr) 178.6 120.0 91.9 75.1 64.0 55.9 55.9 55.9 28.2 23.9 29.2 28.2 23.9 orage Above Q = C4ACg 91.78 93.16 0.30	(L/s) 153.4 109.5 84.9 69.5 59.0 51.2 40.6 28.5 25.0 22.5 20.5 CB h)^0.5 mm mm m	(L/s) 15.1 15.1 15.1 15.1 15.1 15.1 15.1 15.	(L/s) 103.3 51.7 34.4 25.8 20.7 17.2 12.9 10.3 8.6 7.4 6.5 5.3	(m^3) 62.0 62.0 62.0 62.0 62.0 62.0 62.0 62.0	(L/s) 35.0 42.7 35.3 28.6 23.2 18.9 12.5 8.1 4.8 2.5 0.9
Orific Orific Inve Ti Max Po	tc (min) 10 20 30 40 50 60 80 100 120 140 160 180 Surface Sto ce Equation: ce Diameter: ert Elevation G Elevation	1.00 1 (100 yr) (mm/hr) 178.6 120.0 91.9 75.1 64.0 55.9 45.0 37.9 29.2 26.2 23.9 orage Above Q = CdA(2g 75 91.78 93.16	(L/s) 153.4 109.5 84.9 69.5 59.0 51.2 40.6 28.5 25.0 22.5 20.5 CB h)^0.5 mm mm m	(L/s) 15.1 15.1 15.1 15.1 15.1 15.1 15.1 15.	(L/s) 103.3 51.7 34.4 25.8 20.7 17.2 12.9 10.3 8.6 7.4 6.5 5.3	(m^3) 62.0 62.0 62.0 62.0 62.0 62.0 62.0 62.0	(L/s) 35.0 42.7 35.3 28.6 23.2 18.9 12.5 8.1 4.8 2.5 0.9
Orific Orific Inve Ti Max Po	tc (min) 10 20 30 40 50 60 80 100 120 140 160 180 Surface Sto ce Equation: ce Equation: ce Diameter: et Elevation G Elevation dig Depter	1.00 1 (100 yr) (mm/hr) 178.6 120.0 91.9 75.1 64.0 55.9 55.9 55.9 28.2 23.9 29.2 28.2 23.9 orage Above Q = C4ACg 91.78 93.16 0.30	(L/s) 153.4 109.5 84.9 69.5 59.0 51.2 40.6 28.5 25.0 22.5 20.5 CB h)^0.5 mm mm m	(US) 15.1	(L/s) 103.3 51.7 34.4 25.8 20.7 17.2 12.9 10.3 8.6 7.4 6.5 5.3	(m^3) 62.0 62.0 62.0 62.0 62.0 62.0 62.0 62.0	(Lis) 35.0 42.7 35.3 28.6 23.2 8.1 12.5 8.1 4.8 2.5 8.1 4.8 2.5 0.9 0.0
Orific Orific Inve T, Max Po Down	tc (min) 10 20 30 40 50 60 80 100 120 140 160 180 Surface Sto ce Equation: ce Equation: ce Diameter: et Elevation G Elevation dig Depter	1.00 1 (100 yr) (mm/hr) 178.6 120.0 91.9 75.1 64.0 55.9 45.0 37.9 32.9 23.9 2	(Us) 153.4 109.5 84.9 69.5 59.0 51.2 40.6 33.6 28.5 25.0 22.5 20.5 CB h)^0.5 mm m m m	(L(s) 15.1	(Us) 103.3 51.7 34.4 25.8 20.7 17.2 12.9 10.3 8.6 7.4 6.5 5.3 0.61	(m^3) 62.0 62.0 62.0 62.0 62.0 62.0 62.0 62.0	(Lis) 35.0 42.7 35.3 28.6 23.2 8.1 4.8 2.5 8.1 4.8 2.5 0.9 0.0

Stormwater Management Calculations

Project #160401500, Longfields Block 15 Modified Rational Method Calculatons for Storage

Subdrainage Area:	STM 3				Controlle	ed - Tributary
Area (ha): C:	0.029 0.90					
tc (min)	l (5 yr) (mm/hr)	Qactual (L/s)	Qrelease (L/s)	Qstored (L/s)	Vstored (m^3)	
10	104.2	7.6	3.8	3.7	2.2	
20	70.3	5.1	3.8	1.3	1.5	
30 40	53.9 44.2	3.9 3.2	3.8 3.2	0.1 0.0	0.1 0.0	
40 50	37.7	2.7	2.7	0.0	0.0	
60	32.9	2.4	2.4	0.0	0.0	
80	26.6	1.9	1.9	0.0	0.0	
100	22.4	1.6	1.6	0.0	0.0	
120	19.5	1.4	1.4	0.0	0.0	
140	17.3	1.3	1.3	0.0	0.0	
160	15.6	1.1	1.1	0.0	0.0	
180	14.2	1.0	1.0	0.0	0.0	
•	rage Above	СВ				
Orifice Type	LMF 60					
Invert Elevation	91.80 93.18	m m				
T/G Elevation Max Ponding Depth	93.18	m				
Downstream W/L	91.00	m				
r I	Stage	Head	Discharge	Vreq	Vavail	Volume
	-	(m)	(L/s)	(cu. m)	(cu. m)	Check
5-year Water Level	93.21	1.41	3.8	2.2	22.9	OK
Subdrainage Area:	UNC-1			Und	controlled - N	lon-Tributary
Area (ha): C:	0.027 0.50					
tc (min)	I (5 yr)	Qactual	Qrelease	Qstored	Vstored	
(min) 10	(mm/hr) 104.2	(L/s) 3.9	(L/s) 3.9	(L/s)	(m^3)	
20	70.3	3.9 2.6	3.9 2.6			
30	53.9	2.0	2.0			
40	44.2	1.7	1.7			
50	37.7	1.4	1.4			
60	32.9	1.2	1.2			
70	29.4	1.1	1.1			
80	26.6	1.0	1.0			
90	24.3	0.9	0.9			
100	22.4	0.8	0.8			
110 120	20.8 19.5	0.8 0.7	0.8 0.7			
	UNC-2			Line		le e Telle de es
Subdrainage Area: Area (ha):	0.004			Und	Jontrollea - N	Ion-Tributary
C:	0.90					
		0	Oral	0-11	N-4-	
tc (min)	l (5 yr) (mm/hr)	Qactual (L/s)	Qrelease (L/s)	Qstored (L/s)	Vstored (m ³)	
10	104.2	1.0	1.0	,		
20	70.3	0.7	0.7			
30	53.9	0.5	0.5			
40	44.2	0.4	0.4			
50 60	37.7 32.9	0.4 0.3	0.4 0.3			
60 70	32.9 29.4	0.3	0.3			
80	29.4	0.3	0.3			
90	20.0	0.2	0.2			
100	22.4	0.2	0.2			
110	20.8	0.2	0.2			
120	19.5	0.2	0.2			
SUMMARY TO OUTLET						
ı	Fotal 5yr Flo	butary Area ow to Sewer Farget	0.138 23.3 25.4	L/s		
Total	5yr Flow U 5yr Major S	butary Area ncontrolled ystem Flow tream ROW Target	0.004 5.0 0.0 5.0 69.0	L/s L/s L/s		

Project #160401500, Longfields Block 15 Modified Rational Method Calculatons for Storage

s) 0 0 0 0 0 0 0 0 0 0 0 0 0	Qspil (L/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Vstored (m^3) 6.1 6.6 5.8 4.5 2.9 1.1	tored L/s) 10.2 5.5 3.2	(L/s) (4.2	Qactual (L/s) 14.4	l (100 yr) (mm/hr)	tc	
0 0 0 0 0 0 0 0 0 0 0 0 0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	6.6 5.8 4.5 2.9	5.5				(min)	
0 0 0 0 0 0 0 0 0	0.0 0.0 0.0 0.0 0.0 0.0 0.0	5.8 4.5 2.9				178.6	10	
0 0 0 0 0 0 0 0	0.0 0.0 0.0 0.0 0.0 0.0	4.5 2.9	3.2		9.7	120.0	20	
D D D D D D D	0.0 0.0 0.0 0.0 0.0	2.9			7.4	91.9	30	
0 0 0 0 0 0	0.0 0.0 0.0 0.0		1.9 1.0		6.1	75.1	40 50	
0 0 0 0	0.0 0.0 0.0				5.2	64.0		
0 0 0 0	0.0	0.0	0.3		4.5 3.6	55.9 45.0	60 80	
0 0 0	0.0	0.0	0.0			45.0 37.9	100	
0		0.0	0.0		3.1 2.7	37.9	120	
0		0.0	0.0		2.4	29.2	140	
	0.0	0.0	0.0		2.4	29.2	160	
U	0.0	0.0	0.0		1.9	20.2	180	
	0.0	0.0	0.0	1.9	1.9	23.9	100	
					СВ	orage Above	Surface Sto	Storage:
						LMF 60	Orifice Type	(
						91.80 93.18	ert Elevation	
							G Elevation nding Depth	
						91.00	stream W/L	
-	Velo	Veuc	1000	iachara- `	Herd	Che		
	Volum Check	Vavail (cu. m)	/req u.m)	ischarge \ (L/s) (c	Head (m)	Stage		
	OK	22.9	6.6	4.2	1.68	93.48	Water Level	100-vear \
	0.0	16.32						
autor :	op T-15	ontrolled - N				UNC-1		B ₁ , b ₁
outary	on- I ribu	ontrolled - N	Und			0.027	nage Area: Area (ha):	Subdrai
						0.63	C:	
		Vstored	tored		Qactual	l (100 yr)	tc	
		(m^3)	L/s)		(L/s)	(mm/hr)	(min)	
				8.4	8.4	178.6	10	
				5.6 4.3	5.6	120.0	20 30	
				4.3	4.3 3.5	91.9 75.1	30 40	
				3.0	3.0	64.0	40 50	
				3.0 2.6	3.0 2.6	55.9	50 60	
				2.0	2.0	49.8	70	
				2.1	2.1	45.0	80	
				1.9	1.9	41.1	90	
				1.8	1.8	37.9	100	
				1.7	1.7	35.2	110	
				1.5	1.5	32.9	120	
				1.0	1.0			
outary	on-Tribu	ontrolled - N	Uno			UNC-2	nage Area:	Subdrai
						1.00	Area (na): C:	
		Vetored	tored	Iroloace C-	Operation		t -	
						(100 yr) (mm/hr)		
		/		2.0	2.0	178.6	10	
				1.3	1.3	120.0	20	
				1.0	1.0	91.9	30	
				0.8	0.8	75.1	40	
				0.7	0.7	64.0	50	
				0.6	0.6	55.9	60	
				0.6	0.6	49.8	70	
				0.5	0.5	45.0	80	
				0.5	0.5	41.1	90	
				0.4	0.4	37.9	100	
				0.4	0.4	35.2	110	
				0.4	0.4	32.9	120	
						r –		SUMMARY
				0.400 -				
				0.138 ha 24.9 L/s 25.4 L/s		tal 100yr Flo	To	
				25.4 L/S				
				0.004 ha	-			
				0.004 ha 10.4 L/s	outary Area	Non-Tri 00yr Flow U	Total 1	
				0.004 ha	outary Area	Non-Tri	Total 1 Total 10	
				0.004 ha 10.4 L/s 42.7 L/s 53.0 L/s	outary Area ncontrolled ystem Flow	Non-Tri 00yr Flow U	Total 10	
				0.004 ha 10.4 L/s 42.7 L/s	outary Area ncontrolled ystem Flow	Non-Tri 00yr Flow U 0yr Major S	Total 10	
1	on-Trib	Vstored (m^3)	Und itored L/s)	(Us) (2.0 1.3 1.3 1.0 0.8 0.7 0.6 0.6 0.5 0.5 0.4 0.4 0.4 0.4 0.4 0.4	1.3 1.0 0.8 0.7 0.6 0.5 0.5 0.4 0.4 0.4 0.4 0.4 0.4 0.4	0.004 1.000 yr) 178.6 120.0 91.9 75.1 64.0 55.9 49.8 45.0	Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90 90 100 120 TO OUTLET	

C.3 BACKGROUND REPORT EXCERPTS (STORM DRAINAGE)

City of Ottawa Historical Storm increased by 20% to test the minor and major systems under extreme events

- Runoff Coefficients in the proposed phase calculated based on actual soft and hard surfaces on each phase, converted to equivalent percent imperviousness using the relationship C = (Imp. x 0.7) + 0.2 (see Appendix A1)
- Subcatchment areas and segment lengths defined from high-point to high-point
- Subcatchment width equal to the segment length for ramp and access road catchments, and 225 m/ha times the area for any other catchments
- Number of catchbasins based on servicing plan (Drawing SD-1)
- Catchbasin inflow restricted with inlet-control devices (ICDs) as necessary to meet the minor system inflow criteria
- Surface ponding in sag storage calculated using the cone equation (V = Area*Depth/3), based on grading plans (Drawings GP-1)
- Different segment cross-section types defined, accounting for parking lot areas, roof areas, ramp and access road areas, and grassed uncontrolled areas (see Appendices A2 to A4)
- Future development area was assumed to have a runoff coefficient of 0.80, to restrict minor system peak flows to 25.4 L/s (53 L/s/ha) and to provide 52.8 m³ of surface storage (110 m³/ha)

Drawing SD-1 summarizes the discretized subcatchments used in the analysis of the proposed Block 14 of the Longfields Development (LD), shows the proposed ICD schedule, and outlines the major system direction. The grading plan is also enclosed for review.

Tables 2.1 to 2.3 summarize the minor system inflow, the major system sag storage and the overflow peaks for the proposed Block 14 of the LD during the 5 year, 3hr Chicago storm, the July 1st, 1979 storm and the July 1st, 1979 storm increased by 20% respectively. **Appendices A1 to A4** summarize the DDSWMM modeling input and results for the site for the different storm events.

Segment	Peak Flow (m³/s)	DDSWMM Segment Depth (cm)	Maximum Capture (L/s)	Upstream MH	Overflow Peak ¹ (m ³ /s)	Max. Storage Used (m ³)	Static Ponding Depth (cm)⁴	Total Dynamic Flow Depth (cm)
BLDG-1	0.037	1.5	3.4	Ex.2100	0.000	45.5	4.0	1.5
BLDG-2	0.005	0.1	4.7	Ex.2100	0.000	0.0	0.0	0.1
PRKG-1	0.085	4.5	2.0	CB101A	0.042	28.6	19.0	23.5
PRKG-2	0.032	3.1	2.0	CB102A	0.001	29.2	26.0	29.1
PATIO	0.006	1.5	4.7	CB103	0.000	0.7	12.0	1.5

Table 2.1: 5 Year Storm DDSWMM Results

Stantec

CAMPANALE HOMES – LONGFIELDS BLOCK 14, STATION BUILDING, CITY OF OTTAWA STORMWATER MANAGEMENT REPORT

Stormwater Management Design January 10, 2014

Segment	Peak Flow (m³/s)	DDSWMM Segment Depth (cm)	Maximum Capture (L/s)	Upstream MH	Overflow Peak ¹ (m ³ /s)	Max. Storage Used (m ³)	Static Ponding Depth (cm)⁴	Total Dynamic Flow Depth (cm)
UNC1	0.003	0.1	0.0	NONE	0.003	0.0	0.0	0.1
UNC2	0.003	0.1	0.0	NONE	0.003	0.0	0.0	0.1
FUTURE	0.132	<mark>5.3</mark>	<mark>25.4</mark>	CB101B	0.069	<mark>52.8</mark>	N/A	N/A
		Pea	k Flow to Min	or System ² :			42 L/s	
		Majo	or System Pea	ak Outflow ³ :			48 L/s	

1. Major system overflow from segment

2. Represents the sum of the maximum capture rate of all segments

3. Includes the overflow peak from segment PRKG-1, PATIO, UNC1, UNC2

4. The static ponding depth represents the ponding depth within the sag

Segment	Peak Flow (m ³ /s)	DDSWMM Segment Depth (cm)	Maximum Capture (L/s)	Upstream MH	Overflow Peak ¹ (m ³ /s)	Max. Storage Used (m ³)	Static Ponding Depth (cm) ⁴	Total Dynamic Flow Depth (cm)
BLDG-1	0.036	1.5	5.9	Ex.2100	0.000	79.4	7.6	1.5
BLDG-2	0.004	0.1	4.5	Ex.2100	0.000	0.0	0.0	0.1
PRKG-1	0.177	6.1	2.0	CB101A	0.167	28.6	19.0	25.1
PRKG-2	0.035	3.2	2.0	CB102A	0.032	29.2	26.0	29.2
PATIO	0.006	1.6	5.8	CB103	0.000	0.9	12.0	1.6
UNC1	0.005	0.1	0.0	NONE	0.005	0.0	0.0	0.1
UNC2	0.005	0.1	0.0	NONE	0.005	0.0	0.0	0.1
FUTURE	<mark>0.142</mark>	<mark>5.5</mark>	25.4	CB101B	0.110	<mark>52.8</mark>	N/A	N/A
			k Flow to Min				46 L/s	
		Majo	or System Pea	ak Outflow ³ :		1	77 L/s	

Table 2.2: July 1st, 1979 Storm DDSWMM Results

1. Major system overflow from segment

2. Represents the sum of the maximum capture rate of all segments

3. Includes the overflow peak from segment PRKG-1, PATIO, UNC1, UNC2

4. The static ponding depth represents the ponding depth within the sag

Table 2.3: July 1st, 1979 Storm Increased by 20% DDSWMM Results

Segment	Peak Flow (m³/s)	DDSWMM Segment Depth (cm)	Maximum Capture (L/s)	Upstream MH	Overflow Peak ¹ (m ³ /s)	Max. Storage Used (m ³)	Static Ponding Depth (cm)⁴	Total Dynamic Flow Depth (cm)
BLDG-1	0.044	1.8	6.1	Ex.2100	0.010	82.5	7.6	9.4
BLDG-2	0.005	0.1	5.4	Ex.2100	0.000	0.0	0.0	0.1
PRKG-1	0.220	6.5	2.0	CB101A	0.209	28.6	19.0	25.5
PRKG-2	0.042	3.4	2.0	CB102A	0.039	29.2	26.0	29.4

Stantec

CAMPANALE HOMES – LONGFIELDS BLOCK 14, STATION BUILDING, CITY OF OTTAWA STORMWATER MANAGEMENT REPORT

Stormwater Management Design January 10, 2014

Segment	Peak Flow (m ³ /s)	DDSWMM Segment Depth (cm)	Maximum Capture (L/s)	Upstream MH	Overflow Peak ¹ (m ³ /s)	Max. Storage Used (m ³)	Static Ponding Depth (cm)⁴	Total Dynamic Flow Depth (cm)
PATIO	0.007	1.6	5.8	CB103	0.002	0.9	12.0	13.6
UNC1	0.010	0.1	0.0	NONE	0.007	0.0	0.0	0.1
UNC2	0.001	0.1	0.0	NONE	0.006	0.0	0.0	0.1
FUTURE	0.185	<mark>6.0</mark>	25.4	CB101B	<mark>0.139</mark>	<mark>52.8</mark>	N/A	N/A
Peak Flow to Minor System ² :			47 L/s					
Major System Peak Outflow ³ :			224 L/s					

1. Major system overflow from segment

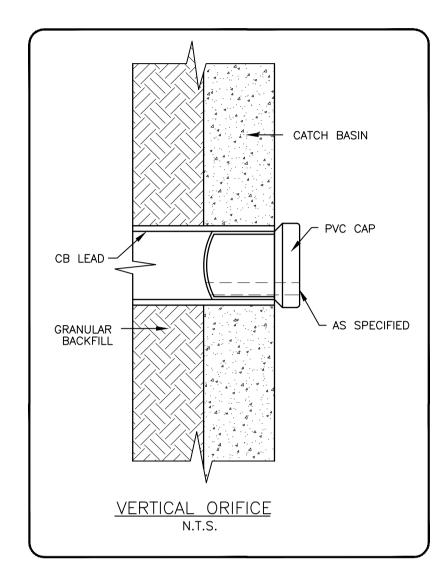
2. Represents the sum of the maximum capture rate of all segments

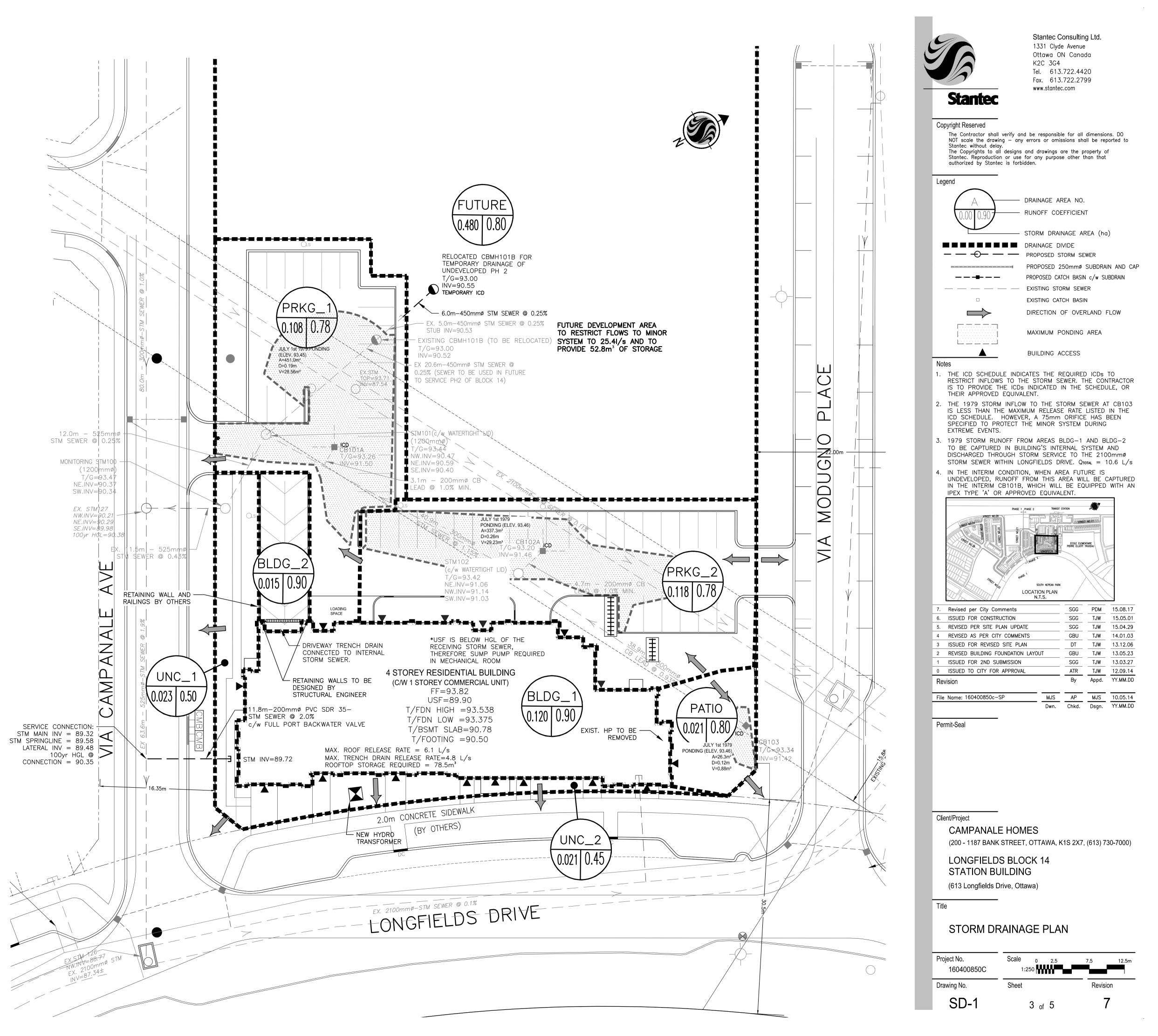
3. Includes the overflow peak from segment PRKG-1, PATIO, UNC1, UNC2

4. The static ponding depth represents the ponding depth within the sag

As can be seen in **Table 2.2**, the overall resulting minor system inflow from the proposed Block 14 of the LD during the July 1, 1979 storm is 46 L/s, thus meeting the 48 L/s minor system target release rate for the area. Major flows from the subject site have been directed to Via Campanale Avenue and Longfields Drive through engineered channels such as roadways and swales. The overall major system storage provided in the proposed Block 14 is equal to 193.9 m³, thus providing enough storage to mitigate the overall 1979 storm major system overflow peak from the site to 0.177 m³/s, which is less than the 0.223 m³/s 1979 storm overflow peak from Block 14 accounted for in the LD SWM Report (see area 127a in Page 4.5 in **Appendix C**). The results of the hydrologic analyses (DDSWMM input and output files) for the different storm events are summarized in **Appendices A2 to A4**.

The following table summarizes the ICD schedule across the proposed phase one of Block 14 of the LD.


		abic 2.4. i roposcu i nuse one	Concaulo	
Catchment ID	MH/CB ID	ICD Type / Size	ICD Invert (m)	Max. Release Rate (L/s)
PATIO	CB103	75mm Circular Orifice	91.42	5.8
PRKG-1	CB101A	Hydrovex 50 VHV-1	91.50	2.0
PRKG-2	CB102A	Hydrovex 50 VHV-1	91.46	2.0


Table 2.4: Proposed Phase One ICD Schedule

1. Hydrovex design curves have been added to Appendix D

In the interim condition, when area FUTURE is undeveloped, runoff from this area will be captured in an interim catchbasin (CB101B), which will be equipped with an IPEX Type 'A' or approved equivalent to restrict runoff to the minor system to 21.0 L/s, which is less than the post development target release rate of 25.4 L/s.

	ICD SCHEDULE			
AREA ID	CB ID	INV	ICD SIZE (mm) / TYPE	MAX. RELEASE RATE (L/s)
ΡΑΤΙΟ	CB103	91.42	75 mm	5.8
PRKG-1	CB101A	91.50	HYDROVEX 50 VHV-1	2.0
PRKG-2	CB102A	91.46	HYDROVEX 50 VHV-1	2.0
FUTURE	CB101B	90.55	IPEX 'A'	21.0

Appendix D : GEOTECHNICAL INVESTIGATION

patersongroup

Supplemental Geotechnical Investigation Proposed Residential Development Longfields Drive Ottawa, Ontario

Prepared For

Campanale Homes

March 11, 2013

Report: PG2119-2

Geotechnical Engineering

Environmental Engineering

Hydrogeology

Geological Engineering

Materials Testing

Building Science

Archaeological Studies

Paterson Group Inc.

Consulting Engineers 154 Colonnade Road South Ottawa (Nepean), Ontario Canada K2E 7J5

Tel: (613) 226-7381 Fax: (613) 226-6344 www.patersongroup.ca

TABLE OF CONTENTS

PAGE

1.0					
2.0	PROPOSED DEVELOPMENT				
3.0	METHOD OF INVESTIGATION3.1Field Investigation				
4.0	OBSERVATIONS4.1Surface Conditions				
5.0	DISCUSSION5.1Geotechnical Assessment.75.2Site Grading and Preparation.75.3Foundation Design.85.4Design for Earthquakes.95.5Basement Slab.105.6Pavement Design.10				
6.0	DESIGN AND CONSTRUCTION PRECAUTIONS6.1Foundation Drainage and Backfill.146.2Protection Against Frost Action.146.3Excavation Side Slopes.146.4Pipe Bedding and Backfill.166.5Groundwater Control.176.6Winter Construction.176.7Corrosion Potential and Sulphate.186.8Landscaping Considerations.18				
7.0	RECOMMENDATIONS				
8.0	STATEMENT OF LIMITATIONS				

APPENDICES

- Appendix 1 Soil Profile and Test Data Sheets Symbols and Terms Analytical Testing Results
- Appendix 2 Figure 1 Key Plan Drawing PG2119-2 - Test Hole Location Plan

1.0 INTRODUCTION

Paterson Group (Paterson) was commissioned by Campanale Homes to conduct a supplemental geotechnical investigation for the proposed residential development to be located along Longfields Drive, in the City of Ottawa (refer to Figure 1 - Key Plan presented in Appendix 2).

The objective of the investigation was to:

- Determine the subsoil and groundwater conditions at this site by means of test pits.
- □ Provide geotechnical recommendations for the foundation design for the proposed buildings and pavement structure design for the proposed development including construction considerations which may affect the design.

The following report has been prepared specifically and solely for the aforementioned project which is described herein. It contains our findings and includes geotechnical recommendations pertaining to the design and construction of the subject development as they are understood at the time of writing this report.

Investigating the presence or potential presence of contamination on the subject property was not part of the scope of work of this present investigation.

2.0 PROPOSED DEVELOPMENT

It is understood that the current phase of the proposed development consists of a four (4) storey residential-commercial building with one (1) underground parking level, which is to be located along Longfields Drive and just south of the existing City of Ottawa service easement, which crosses the site.

It is expected that the future phases of the proposed residential development will consist of residential townhouse blocks, and multi-storey residential buildings. It is also expected that local roadways, access lanes, driveways and parking areas are to be constructed for the proposed development.

3.0 METHOD OF INVESTIGATION

3.1 Field Investigation

The field program for our supplemental investigation was carried out on February 15, 2013 and the original investigation was carried out on May 20, 2010. Fourteen (14) test pits were completed as part of our site investigations. The test hole locations are shown on Drawing PG2119-2 - Test Hole Location Plan included in Appendix 2. The test pits were distributed to provide general coverage of the subject area, at a spacing in compliance with the "Geotechnical Investigation and Reporting Guidelines for Development Applications in the City of Ottawa" dated September 7, 2007.

The test pits were excavated using a hydraulic shovel operated by a local contractor. The fieldwork was conducted under the full-time supervision of our personnel under the direction of a senior engineer. The test pitting procedure consisted of excavating to the required depths at the selected locations. Sampling and testing the overburden in general accordance with ASTM D5434-12 - Guide for Field Logging of Subsurface Explorations of Soil and Rock.

Sampling and In Situ Testing

Soil samples were recovered along the sidewalls of the test pits by hand during excavation. All soil samples were classified on site, placed in sealed plastic bags and were transported to our laboratory for visual inspection. The depths at which the grab samples were recovered from the test holes are shown as G on the Soil Profile and Test Data sheets in Appendix 1.

Undrained shear strength testing was carried out at regular depth intervals in cohesive soils. Undrained shear strength testing was completed using a handheld, portable vane apparatus (field inspection vane tester Roctest Model H-60). This testing was done in general accordance with ASTM D2573-08 - Standard Test Method for Field Vane Shear Test in Cohesive Soil.

The subsurface conditions observed in the test holes were recorded in detail in the field. The soil profiles are logged on the Soil Profile and Test Data sheets in Appendix 1 of this report.

3.2 Field Survey

The test hole locations completed by Paterson for the most current investigation were surveyed and located in the field by Paterson personnel. Test pits were referenced to a temporary benchmark (TBM), consisting of the top spindle of fire hydrant located near the northeast corner of the subject property, along the east side of Longfields Drive. The provided TBM elevation is referenced to a geodetic datum.

The test pit locations for the original investigation were located and surveyed by Stantec Geomatics. The ground surface elevations at the test pit locations are referenced to a geodetic datum.

The ground surface elevations at the test hole locations are presented on Drawing PG2119-2 - Test Hole Location Plan included in Appendix 2.

3.3 Laboratory Testing

The soil samples recovered from the subject site were visually examined in our laboratory to review the results of the field logging. The subsurface soils were classified in general accordance with ASTM D2488-09a, Standard Practice for Description and Identification of Soils (Visual-Manual Procedure).

3.4 <u>Analytical Testing</u>

One (1) soil sample was submitted for analytical testing to assess the corrosion potential for exposed ferrous metals and the potential of sulphate attacks against subsurface concrete structures. The sample was submitted to determine the concentration of sulphate and chloride, the resistivity and the pH of the sample. The results are presented in Appendix 1 and are discussed further in Subsection 6.7.

The sample was selected from the silty clay, which is the predominant subsurface soil that will be encountered at footing and service installation depths. Additionally, finegrained soils such as silty clay, are considered to have a greater corrosion potential than coarse grained soil.

Paracel Laboratories (Paracel), of Ottawa, performed the laboratory analysis of the soil sample submitted for analytical testing. Paracel is a member of the Standards Council of Canada/Canadian Association for Environmental Analytical Laboratories (SCC/CAEAL). Paracel is accredited and certified by SCC/CAEAL for specific tests registered with the association.

The following testing guidelines were utilized for the submitted soil samples. The anions were analyzed using EPA 300.1, the pH was analyzed using EPA 150.1, the resistivity was analyzed using EPA 120.1, and the percent solids was determined using gravimetrics.

4.0 OBSERVATIONS

4.1 <u>Surface Conditions</u>

At the time of our field investigation, the site was snow covered. The majority of the ground surface across the subject site was relatively flat and grass covered. Several fill piles were noted west of TP 3-13 and TP 2-13. A treed area was noted to the south and east portion of the site. A skateboard park and a Hydro Transformer Station were located within the east and west central portions of the site, respectively.

4.2 Subsurface Profile

Generally, the subsurface profile at the borehole locations consists of topsoil or fill underlain by a very stiff to stiff silty clay followed by a compact to dense glacial till. Practical refusal to excavation was encountered at TP 2 to TP 5.

Fill, consisting of silty clay with sand, gravel, cobbles and boulders, was noted to extend from ground surface to maximum 2.3 m depth at TP 1-13, TP 2-13, TP 3-13, TP 4-13 and TP 5-13.

A brown silty clay deposit was encountered below the topsoil and/or fill layer at each test pit location and extended to depths ranging between 0.9 to 4.9 m depth. TP 4-12 and TP 5-12 were terminated within the silty clay layer at a 4 m depth. Undrained shear strength testing within the silty clay layer resulted in shear strength values between 50 to 130 kPa, which are indicative of a stiff to very stiff consistency.

A thin layer of sandy silt was encountered at TP 3-12, between 3.6 and 3.9 m depth. This layer is considered to be a compact relative density based on field observations.

Glacial till, consisting of silty sand with gravel, cobbles, boulders, and trace clay was encountered below the silty clay or sandy silt at all test pit locations, except TP 4-12, TP 5-12. Based on field observations, the glacial till is considered to be in a compact to dense state of compactness.

Reference should be made to the Soil Profile and Test Data sheets in Appendix 1 for specific details of the soil profiles encountered at each test hole location. Testing procedures performed on subsurface soils are described in Subsection 3.1 - Field Investigation.

Based on available geological mapping (bedrock geology mapping and drift thickness mapping), interbedded sandstone and dolomite of the March formation is present in this area with an overburden thickness ranging between 3 to 10 m. The geological mapping referenced refers to the Urban Geology of the NCR published by the National Resources Canada.

4.3 Groundwater

The groundwater level (GWL) were measured in the test pits at the time of excavation. Groundwater was encountered at depths of 3.2, 2.3, 1.8 and 3.2 m at TP 2, TP 3, TP 8 and TP 9, respectively. The remainder of the test pits were dry upon completion. It should be noted that surface/perched water due to recent precipitation events can lead to higher than typical groundwater infiltration levels. The long-term groundwater level can also be estimated based on moisture levels and colour of the recovered soil samples. Based on these observations at the test pit locations, the long-term groundwater table is expected between a 3 to 4 m depth. It should be noted that groundwater levels are subject to seasonal fluctuations. Therefore, the groundwater level could vary at the time of construction.

5.0 DISCUSSION

5.1 <u>Geotechnical Assessment</u>

From a geotechnical perspective, the subject site is suitable for the proposed development. It is expected that the proposed residential buildings will be founded on conventional style footings placed on an undisturbed, stiff silty clay or dense glacial till bearing surface. A permissible grade raise restriction is required for the proposed buildings where a silty clay layer is noted below underside of footing.

It is understood that the proposed building for the current phase of development will have one (1) level of underground parking below the building footprint. Due to the proposed building location, it is expected adequate space is available to maintain an open cut excavation during building construction.

The above and other considerations are discussed in the following paragraphs.

5.2 Site Grading and Preparation

Stripping Depth

Topsoil and fill, containing deleterious or organic materials, should be stripped from under any buildings and other settlement sensitive structures. Other settlement sensitive structures include, but are not limited to, underground services and paved areas.

Fill Placement

Fill used for grading beneath the building areas should consist, unless otherwise specified, of clean imported granular fill, such as Ontario Provincial Standard Specifications (OPSS) Granular A or Granular B Type II material, as specified in OPSS 1010 dated November 2003. This material should be tested and approved prior to delivery to the site, as per OPSS 1004 dated November 2012. The fill should be placed in lifts no greater than 300 mm thick and compacted using suitable compaction equipment for the lift thickness. Fill placed beneath the buildings should be compacted to at least 98% of its standard Proctor maximum dry density (SPMDD).

Non-specified existing fill along with site-excavated soil can be used as general landscaping fill where settlement of the ground surface is of minor concern. These materials should be spread in thin lifts and at least compacted by the tracks of the spreading equipment to minimize voids. If excavated stiff brown silty clay, free of organics and deleterious materials, is to be used to build up the subgrade level for areas to be paved, the silty clay, under dry conditions, should be compacted in thin lifts to a minimum density of 95% of their respective SPMDD. Non-specified existing fill and site-excavated soils are not suitable for use as backfill against foundation walls unless a composite drainage blanket connected to a perimeter drainage system is provided.

5.3 Foundation Design

Bearing Resistance Values

Strip footings, up to 3 m wide, and pad footings, up to 5 m wide, placed on an undisturbed, stiff silty clay can be designed using a bearing resistance value at serviceability limit states (SLS) of **100 kPa** and a factored bearing resistance value at ultimate limit states (ULS) of **200 kPa**. A geotechnical resistance factor of 0.5 was applied to the reported bearing resistance values at ULS.

Footings placed on an undisturbed, compact glacial till bearing surface can be designed using a bearing resistance value at SLS of **150 kPa** and a factored bearing resistance value at ULS of **225 kPa**.

An undisturbed soil bearing surface consists of one from which all topsoil and deleterious materials, such as loose, frozen or disturbed soil, have been removed prior to the placement of concrete for footings.

A permissible grade raise restriction of 2 m is recommended for areas where silty clay is encountered below underside of footing level. It should be further clarified that the permissible grade raise restriction noted is a conservative value, which was expected to be sufficient for the proposed development. It is expected that the underlying silty clay deposit can tolerate a higher grade raise without excessive settlement (ie.- less than 25 mm total settlement) occurring. Several properties of the silty clay deposit encountered on site are favourable for significant grade raises without excessive settlement, such as silty clay layer depth, stiffness of the deposit and low moisture levels of the majority of the deposit based on field observations. All of these factors were considered in calculating the permissible grade raise restriction.

The bearing resistance value given for footings at SLS will be subjected to potential post construction total and differential settlements of 25 and 15 mm, respectively.

Lateral Support

The bearing medium under footing-supported structures is required to be provided with adequate lateral support with respect to excavations and different foundation levels. Adequate lateral support is provided to the silty clay or glacial till above the groundwater table when a plane extending down and out from the bottom edge of the footing at a minimum of 1.5H:1V passes only through in situ soil of the same or higher capacity as the bearing medium soil.

5.4 Design for Earthquakes

The seismic site classification was based on extrapolating the results of our test hole locations. The average shear wave velocity of the upper 30 m of the subsurface profile below the proposed footing was determined based on the results of previous seismic shear wave velocity tests in similar deposits of silty clay and glacial till within the Ottawa area. Seismic shear wave velocities were determined for each layer based on the recorded N-values and historical seismic testing. A worst case scenario of layer depths was assumed with the abovenoted information and the seismic site classification was determined.

4 m thick layer of stiff silty clay	Vs 200 m/s
5 m thick layer of dense glacial till	Vs 300 m/s
21 m bedrock conservatively	<u>Vs 1500 m/s</u>
30 m	Vs30 592 m/s

Based on the rationale outlined above, a seismic site response **Class C** is applicable for foundation design at the subject site according to the OBC 2006.

It should be noted that the site is not susceptible to liquefaction based on the soil consistency and type encountered, which include a stiff silty clay and compact to dense glacial till deposit. Both of these soil types are not susceptible to liquefaction based on design earthquake data for the Ottawa area. Typical soils of concern for liquefaction potential in the Ottawa area are poorly graded, cohesionless soils in a loose state of compactness with a high groundwater table.

5.5 <u>Basement Slab</u>

With the removal of all topsoil and fill, if any, within the footprint of the proposed buildings, the native soil surface will be considered to be an acceptable subgrade on which to commence backfilling for floor slab construction.

Any soft areas should be removed and backfilled with appropriate backfill material prior to placing any fill. OPSS Granular B Type II, with a maximum particle size of 50 mm, are recommended for backfilling below the floor slab. It is recommended that the upper 200 mm of sub-floor fill consists of 19 mm clear crushed stone. All backfill material within the footprint of the proposed buildings should be placed in maximum 300 mm thick loose layers and compacted to at least 98% of its SPMDD.

5.6 Pavement Structure

The subgrade materials for the pavement structures are anticipated to be stiff silty clay, or compacted engineered fill. Table 1 presents the California Bearing Ratio (CBR) for the anticipated subgrade materials.

Table 1 - CBR for Subgrade Materials									
Soil Type	CBR Ratio								
Stiff Silty Clay	10								
Engineered Fill	70								

For residential driveways and car only parking areas, an Ontario Traffic Category A is applicable. For local roadways, an Ontario Traffic Category B should be used for design purposes. For design purposes, the pavement structures presented in the following tables could be used for the design of driveways, car only parking areas and local roadways. It should be noted that the pavement structure design presented in Table 2 is adequate for use for the underground parking garage.

Thickness (mm)	Material Description
50	Wear Course - HL-3 or Superpave 12.5 Asphaltic Concrete
150	BASE - OPSS Granular A Crushed Stone
300	SUBBASE - OPSS Granular B Type II

Table 3 - Recommended Pavement Structure - Local Roadways										
Thickness (mm)	Material Description									
40	Wear Course - HL-3 or Superpave 12.5 Asphaltic Concrete									
50	Binder Course - HL-8 or Superpave 19.0 Asphaltic Concrete									
150	BASE - OPSS Granular A Crushed Stone									
450	SUBBASE - OPSS Granular B Type II									
SUBGRADE - Either fill, in situ soil or OPSS Granular B Type I or II material placed over in situ soil or fill.										

Additionally, it is understood that underground parking is being considered for the multistorey buildings. The following pavement structures presented would be applicable.

Table 4 - Recommen	le 4 - Recommended Flexible Pavement Structure - Access Ramp										
Thickness (mm)	Material Description										
40	Wear Course - HL-3 or Superpave 12.5 Asphaltic Concrete										
50	Binder Course - HL-8 or Superpave 19.0 Asphaltic Concrete										
150	BASE - OPSS Granular A Crushed Stone										
400	SUBBASE - OPSS Granular B Type II										
	SUBGRADE - Either fill, in situ soil or OPSS Granular B Type I or II material placed over in situ soil or fill										

Minimum Performance Graded (PG) 58-34 asphalt cement should be used for this project.

The pavement structure subgrade materials are anticipated to be stiff silty clay, compact to dense glacial till or compacted engineered fill. No measures to prevent fines from entering the subbase materials are required for the subject site.

If soft spots develop in the subgrade during compaction or due to construction traffic, the affected areas should be excavated and replaced with OPSS Granular B Type II material.

It is recommended that a compaction level between 91% and 96.5% be provided for Superpave 19.0. A compaction level between 92% to 97.5% be provided for Superpave 12.5. The pavement granular base and subbase should be placed in maximum 300 mm thick lifts and compacted to a minimum of 98% of the material's SPMDD using suitable vibratory equipment.

Pavement Structure Drainage

Satisfactory performance of the pavement structure is largely dependent on keeping the contact zone between the subgrade material and the base stone in a dry condition. Failure to provide adequate drainage under conditions of heavy wheel loading can result in the fine subgrade soil being pumped into the voids in the stone subbase, thereby reducing its load carrying capacity.

Due to the impervious nature of the subgrade materials, consideration should be given to installing subdrains in the silty clay during the pavement construction. These drains should be installed at each catch basin as per City of Ottawa standards and specifications. The subdrain inverts should be approximately 300 mm below subgrade level. The subgrade surface should be crowned to promote water flow to the drainage lines.

6.0 DESIGN AND CONSTRUCTION PRECAUTIONS

6.1 Foundation Drainage and Backfill

It is recommended that a perimeter foundation drainage system be provided for the proposed structures. The system should consist of a 100 mm to 150 mm diameter perforated corrugated plastic pipe, surrounded on all sides by 150 mm of 10 mm clear crushed stone, placed at the footing level around the exterior perimeter of the structure. The pipe should have a positive outlet, such as a gravity connection to the storm sewer.

Backfill against the exterior sides of the foundation walls should consist of free-draining non frost susceptible granular materials. The greater part of the site excavated materials will be frost susceptible and, as such, are not recommended for re-use as backfill against the foundation walls, unless used in conjunction with a drainage geocomposite, such as Miradrain G100N or Delta Drain 6000, connected to the perimeter foundation drainage system. Imported granular materials, such as clean sand or OPSS Granular B Type I granular material, should be used for this purpose.

6.2 Protection of Footings Against Frost Action

Perimeter footings of heated structures are required to be insulated against the deleterious effects of frost action. A minimum 1.5 m thick soil cover (or equivalent) should be provided in this regard.

Exterior unheated footings, such as those for isolated exterior piers, are more prone to deleterious movement associated with frost action than the exterior walls of the structure proper and require additional protection. The recommended minimum thickness of soil cover is 2.1 m (or equivalent).

6.3 Excavation Side Slopes

The side slopes of excavations in the soil and fill overburden materials should be either cut back at acceptable slopes or should be retained by shoring systems from the start of the excavation until the structure is backfilled. It is assumed that sufficient room will be available for the greater part of the excavation to be undertaken by open-cut methods (i.e. unsupported excavations). The excavation side slopes above the groundwater level extending to a maximum depth of 3 m should be cut back at 1H:1V or flatter. The flatter slope is required for excavation below groundwater level.

The Occupational Health and Safety Act and Regulations for Construction Projects defines a Type 2 material as a material that most closely exhibits the following characteristics:

- □ is very stiff in consistency, dense in compactive condition, and, if a standard penetration test is performed, has a standard penetration resistance of 30 to 50 blows per 300 mm
- **c**an be penetrated with moderate difficulty by a small, sharp object
- is difficult to excavate with hand tools
- □ has a low to medium natural moisture content and a damp appearance after it is excavated
- has no signs of water seepage
- does not include previously excavated soils

The Occupational Health and Safety Act and Regulations for Construction Projects defines a Type 3 material as a material that most closely exhibits the following characteristics:

- □ is stiff in consistency, compact in compactive condition, and, if a standard penetration test is performed, has a standard penetration resistance of 10 to 29 blows per 300 mm
- can be penetrated with moderate ease by a small, sharp object
- is moderately difficult to excavate with hand tools
- exhibits signs of surface cracking
- exhibits signs of localized water seepage

Type 3 soil can also include previously excavated soil that does not exhibit any of the characteristics of type 4 soil.

Based on observations performed at the test pit locations at the time of the field program and review of the recovered soil samples, the subsoil at this site is considered to be mainly a Type 2 and 3 soil according to the Occupational Health and Safety Act and Regulations for Construction Projects.

Excavated soil should not be stockpiled directly at the top of excavations and heavy equipment should be kept away from the excavation sides.

Slopes in excess of 3 m in height should be periodically inspected by the geotechnical consultant in order to detect if the slopes are exhibiting signs of distress. The frequency of these periodic inspections will be determined based on the height and slope of the affected area, the proximity to workers, the length of time that the slope is present on the site, and the existing condition of the slope. An initial inspection should occur once the slope is completed, and a schedule of inspections will be determined based on field observations.

It is the responsibility of the site contractor to ensure appropriate safety protection for all workers for the duration of the project. However, it is recommended that a trench box be used at all times to protect personnel working in trenches with steep or vertical sides. It is expected that services will be installed by "cut and cover" methods and excavations will not be left open for extended periods of time.

6.4 **Pipe Bedding and Backfill**

Bedding and backfill materials should be in accordance with City of Ottawa standards and specifications.

The pipe bedding for sewer and water pipes should consist of at least 150 mm of OPSS Granular A material. The material should be placed in maximum 300 mm thick lifts and compacted to a minimum of 95% of its SPMDD. The bedding material should extend at least to the spring line of the pipe.

The cover material, which should consist of OPSS Granular A, should extend from the spring line of the pipe to at least 300 mm above the obvert of the pipe. The material should be placed in maximum 300 mm thick lifts and compacted to a minimum of 95% of its SPMDD.

It should generally be possible to re-use the moist (not wet) brown silty clay above the cover material if the excavation and filling operations are carried out in dry weather conditions. Wet silty clay materials will be difficult to re-use, as the high water contents make compacting impractical without an extensive drying period.

Where hard surface areas are considered above the trench backfill, the trench backfill material within the frost zone (about 1.8 m below finished grade) should match the soils exposed at the trench walls to minimize differential frost heaving. The trench backfill should be placed in maximum 300 mm thick loose lifts and compacted to a minimum of 95% of the material's SPMDD.

To reduce long-term lowering of the groundwater level at this site, clay seals should be provided in the service trenches which are within the silty clay layer. The seals should be at least 1.5 m long (in the trench direction) and should extend from trench wall to trench wall. Generally, the seals should extend from the frost line and fully penetrate the bedding, subbedding and cover material. The barriers should consist of relatively dry and compactable brown silty clay placed in maximum 225 mm thick loose layers and compacted to a minimum of 95% of the material's SPMDD. The clay seals should be placed at the site boundaries and at strategic locations at no more than 60 m intervals in the service trenches.

6.5 <u>Groundwater Control</u>

The contractor should be prepared to direct water away from all bearing surfaces and subgrades, regardless of the source, to prevent disturbance to the founding medium.

The rate of flow of groundwater into the excavation through the overburden should be low to moderate. It is anticipated that pumping from open sumps will be sufficient to control the groundwater influx through the sides of the excavations.

6.6 <u>Winter Construction</u>

Precautions must be taken if winter construction is considered for this project.

The subsoil conditions at this site mostly consist of frost susceptible materials. In presence of water and freezing conditions, ice could form within the soil mass. Heaving and settlement upon thawing could occur.

In the event of construction during below zero temperatures, the founding stratum should be protected from freezing temperatures by the use of straw, propane heaters and tarpaulins or other suitable means. In this regard, the base of the excavations should be insulated from sub-zero temperatures immediately upon exposure and until such time as heat is adequately supplied to the building and the footings are protected with sufficient soil cover to prevent freezing at founding level.

Trench excavations and pavement construction are also difficult activities to complete during freezing conditions without introducing frost in the subgrade or in the excavation walls and bottoms. Precautions should be taken if such activities are to be carried out during freezing conditions. Additional information could be provided, if required.

6.7 <u>Corrosion Potential and Sulphate</u>

The results of analytical testing were evaluated according to industry accepted standards presented by A.B. Chance. It was stated that extremely acid soils (below a pH of 4.5) and very strong alkaline soils (above a pH of 9.1) is considered to have a significantly high corrosion loss rate.

The soil resistivity/corrosion rate potential was evaluated according to the following table:

Table 5 - Corrosion Potential										
Resistance Classification	Soil Resistivity (ohm-cm)	Corrosion Potential								
Low	0-2,000	Severe								
Medium	2,000-10,000	Moderate								
High	10,000-30,000	Mild								
Very High	Above 30,000	Unlikely								

The Canadian Standards Association (CSA) outlines the requirements for sulphate content in A23.1-04, Table 3. AASHTO T290-91 outlines the requirements for chloride content.

The results show that the sulphate content is less than 0.1%. These results are indicative that Type 10 Portland cement (Type GU, or normal cement) would be appropriate for this site. The results of the chloride content, pH and resistivity indicate the presence of an unlikely corrosion potential environment for exposed ferrous metals at this site.

6.8 Landscaping Considerations

Tree Planting Restrictions

The proposed residential buildings are located in a low sensitivity area with respect to tree plantings over a silty clay deposit. It is recommended that trees placed within 4 m of the foundation wall shall consist of low water demanding trees with shallow roots systems that extend less than 1.5 m below ground surface. Trees placed greater than 4 m from the foundation wall may consist of typical street trees, which are typically moderate water demand species with roots extending to a maximum depth of 2 m below ground surface.

It is well documented in the literature, and is our experience, that fast-growing trees located near buildings founded on cohesive soils that shrink on drying can result in long-term differential settlements of the structures. Tree varieties that have the most pronounced effect on foundations are seen to consist of poplars, willows and some maples (i.e. Manitoba Maples) and, as such, they should not be considered in the landscaping design.

Swimming Pools

The in-situ soils are considered to be acceptable for in-ground swimming pools. Above ground swimming pools must be placed at least 3 m away from the residence foundation and neighbouring foundations. Otherwise, pool construction is considered routine, and can be constructed in accordance with the manufacturer's requirements.

7.0 <u>RECOMMENDATIONS</u>

It is recommended that the following be carried out once the site development details are determined:

- Review detailed grading plan(s) from a geotechnical perspective.
- Observation of all bearing surfaces prior to the placement of concrete.
- Periodic observation of the condition of unsupported excavation side slopes in excess of 3 m in height, if applicable.
- Observation of all subgrades prior to backfilling.
- □ Field density tests to ensure that the specified level of compaction has been achieved.
- Sampling and testing of the bituminous concrete including mix design reviews.

A report confirming that these works have been conducted in general accordance with our recommendations could be issued upon request, following the completion of a satisfactory material testing and observation program by the geotechnical consultant.

8.0 STATEMENT OF LIMITATIONS

The recommendations made in this report are in accordance with our present understanding of the project. We request that we be permitted to review the grading plan once available and our recommendations when the drawings and specifications are complete.

A geotechnical investigation of this nature is a limited sampling of a site. The recommendations are based on information gathered at the specific test locations and can only be extrapolated to an undefined limited area around the test locations. The extent of the limited area depends on the soil, bedrock and groundwater conditions, as well the history of the site reflecting natural, construction, and other activities. Should any conditions at the site be encountered which differ from those at the test locations, we request notification immediately in order to permit reassessment of our recommendations.

The present report applies only to the project described in this document. Use of this report for purposes other than those described herein or by person(s) other than Campanale Homes or their agent(s) is not authorized without review by Paterson Group for the applicability of our recommendations to the altered use of the report.

Paterson Group Inc.

Stephanie Boisvenue, B.Eng.

Report Distribution:

- □ Campanale Homes (3 copies)
- Paterson Group (1 copy)

SIP PROFESSION AL 111 100116130 NCEOFON

David J. Gilbert, P.Eng.

APPENDIX 1

SOIL PROFILE & TEST DATA SHEETS

SYMBOLS AND TERMS

ANALYTICAL TESTING RESULTS

PG2119 PG2119 HOLE NO. TD 1_13	nator	eonar		in	Cor	nsulting	1	SOI	l pro	FILE AI	ND TES	T DATA		
DATUM Ground surface at test pit locations provided by States Geomatics PILE NO. PC2119 DERMARKS N 5014835; E 441573 DATE February 15, 2013 TP 1-13 SOIL DESCRIPTION 0 SAMPLE DEPTH 18 DEPTH 18 DEPTH 18 ELEV. 19 Pen. Resist. Blows0.3m 0 0	-			-		lineers	Ρ	roposed F	Resident		pment - Lo	ongfields Dr	rive	
IPOLENO BORINGS BY Hydraulic Shovel SOIL DESCRIPTION SOIL DESCRIPTION GROUND SURFACE G GROUND SURFACE G G GROUND SURFACE G G GROUND SURFACE G <th>DATUM Grou</th> <th>nd surface at test pit lo</th> <th>cation</th> <th>ns prov</th> <th>rided l</th> <th>oy Stant</th> <th></th> <th></th> <th></th> <th></th> <th>FILE NO.</th> <th>DOGIA</th> <th></th>	DATUM Grou	nd surface at test pit lo	cation	ns prov	rided l	oy Stant					FILE NO.	DOGIA		
BORINGS BY Hydraulic Shovel DATE February 15, 2013 TP 1-13 SOIL DESCRIPTION 5 SAMPLE DEPTH (m) Pen. Resist. Blows0.3m • 50 mm Dia. Cone • • 0 water Content % FILL: Brown silty clay with gravel and cobbles, trace topsoil - - 1 92.72 - <	REMARKS N 501	14835; E 441573												
SOIL DESCRIPTION SAMPLe DEPTH ELEV. (m) Pen. Resist. Blows:0.3m Dependence GROUND SURFACE -G 1 -G 1 -G 1 -G -G 1 -G -G <td< td=""><td>BORINGS BY Hyd</td><td>raulic Shovel</td><td></td><td></td><td></td><td>DA</td><td>ΔTE</td><td>February 1</td><td>15, 2013</td><td></td><td>HOLE NO.</td><td>TP 1-13</td><td>3</td></td<>	BORINGS BY Hyd	raulic Shovel				DA	ΔTE	February 1	15, 2013		HOLE NO.	TP 1-13	3	
Sector Mathematical stress M	-		Ę		SAMPLE					Pen. R	esist. Blo	ws/0.3m	, <u>с</u>	
GROUND SURFACE I	SOIL DE	SCRIPTION	PLO				к		(m)		• 5	0 mm Dia.	Cone	neter
GROUND SURFACE I			LATA	(PE	ABER	OVER.	ALUE ROD				Vater Cont	ent %	ezon	
FILL: Brown silty clay with gravel and cobbles, trace topsoil 	GROUND SUBEA	CE	STI	T) NUN NUN NUN		N O L O						ĒÖ		
FiLL: Brown silty clay with gravel and cobbles, trace topsoil 	CHOOND SON A			G	1			- 0-	-93.72				-	
G 2 I = 92.72 G 3 Very stiff to stiff, brown SILTY CLAY with sand seams - firm and grey by 3.5m depth G 4 - firm and grey by 3.5m depth G 5 G 6 G 7 End of Test Pit (TP dry upon completion) A = 89.72 - 2 = 91.72 - 4 = 89.72 - 4 = 89.72 - 2 = 91.72 - 4 = 89.72 - 4 = 89.72 - 2 = 40 - 60 - 80 - 100 - 20 - 40 - 60 - 80 - 100 - 20 - 40 - 60 - 80 - 100 - 20 - 40 - 60 - 80 - 100 - 20 - 40 - 60 - 80 - 100 - 20 - 40 - 60 - 80 - 100 														
G 2 I = 92.72 G 3 Very stiff to stiff, brown SILTY CLAY with sand seams - firm and grey by 3.5m depth G 4 - firm and grey by 3.5m depth G 5 G 6 G 7 End of Test Pit (TP dry upon completion) A = 89.72 - 2 = 91.72 - 4 = 89.72 - 4 = 89.72 - 2 = 91.72 - 4 = 89.72 - 4 = 89.72 - 2 = 40 - 60 - 80 - 100 - 20 - 40 - 60 - 80 - 100 - 20 - 40 - 60 - 80 - 100 - 20 - 40 - 60 - 80 - 100 - 20 - 40 - 60 - 80 - 100 - 20 - 40 - 60 - 80 - 100 													• • •	
G 2 I = 92.72 G 3 Very stiff to stiff, brown SILTY CLAY with sand seams - firm and grey by 3.5m depth G 4 - firm and grey by 3.5m depth G 5 G 6 G 7 End of Test Pit (TP dry upon completion) A = 89.72 - 2 = 91.72 - 4 = 89.72 - 4 = 89.72 - 2 = 91.72 - 4 = 89.72 - 4 = 89.72 - 2 = 40 - 60 - 80 - 100 - 20 - 40 - 60 - 80 - 100 - 20 - 40 - 60 - 80 - 100 - 20 - 40 - 60 - 80 - 100 - 20 - 40 - 60 - 80 - 100 - 20 - 40 - 60 - 80 - 100 														
G 2 Very stiff to stiff, brown SILTY CLAY G 3 G 4 G 4 G 4 G 4 G 4 G 4 G 4 G 4 G 5 G 6 G 6 G 7 H and grey by 3.5m depth G 6 G 7 G 7 H and grey by 3.5m depth G 6 G 7 H and grey by 3.5m depth G 7 G 7 H and grey by 3.5m depth G 7 G 7 H and grey by 3.5m depth G 7 G 7 H and grey by 3.5m depth G 7 G 7 H and grey by 3.5m depth G 7 G 7 H and grey by 3.5m depth G 7 G 8 G 7 G 90.72 J 100 State of the strength (kPa) 100	FILL: Brown silty and cobbles, trace	r clay with gravel e topsoil												
G 2 Very stiff to stiff, brown SILTY CLAY G 3 G 4 G 4 G 4 G 4 G 4 G 4 G 4 G 4 G 5 G 6 G 6 G 7 H and grey by 3.5m depth G 6 G 7 G 7 H and grey by 3.5m depth G 6 G 7 H and grey by 3.5m depth G 7 G 7 H and grey by 3.5m depth G 7 G 7 H and grey by 3.5m depth G 7 G 7 H and grey by 3.5m depth G 7 G 7 H and grey by 3.5m depth G 7 G 7 H and grey by 3.5m depth G 7 G 8 G 7 G 90.72 J 100 State of the strength (kPa) 100								1-	-92.72		· · · · · · · · · · · · · · · · · · ·			
G 3 Very stiff to stiff, brown SILTY CLAY with sand seams G G 4 - firm and grey by 3.5m depth G 3.666 G GLACIAL TILL: Dense, brown silty sand with gravel, cobbles, boulders G and of Test Pit G (TP dry upon completion) G			\bigotimes	G	2				•					
G 3 Very stiff to stiff, brown SILTY CLAY with sand seams G G 4 - firm and grey by 3.5m depth G 3.666 G GLACIAL TILL: Dense, brown silty sand with gravel, cobbles, boulders G and of Test Pit G (TP dry upon completion) G			\bigotimes	*										
G 3 Very stiff to stiff, brown SILTY CLAY with sand seams G G 4 - firm and grey by 3.5m depth G 3.666 G GLACIAL TILL: Dense, brown silty sand with gravel, cobbles, boulders G and of Test Pit G (TP dry upon completion) G				×									N 	
G 3 Very stiff to stiff, brown SILTY CLAY with sand seams G G 4 - firm and grey by 3.5m depth G 3.666 G GLACIAL TILL: Dense, brown silty sand with gravel, cobbles, boulders G and of Test Pit G (TP dry upon completion) G				×										
Very stiff to stiff, brown SILTY CLAY with sand seams G 4 - firm and grey by 3.5m depth G 5 G 6 G 7 End of Test Pit (TP dry upon completion) C 0 4 G 7 A - 89.72 C 0 112 C		<u>1.83</u>	1	1										
with sand seams G 4 - firm and grey by 3.5m depth G 5 G 6 G 6 G 6 G 7 End of Test Pit (TP dry upon completion) G 7 A-89.72 20 40 50 80 100 Shear Strength (kPa) 100				G	3			2-	-91.72					
with sand seams G 4 - firm and grey by 3.5m depth G 5 G 6 G 6 G 6 G 7 End of Test Pit (TP dry upon completion) G 7 A-89.72 20 40 50 80 100 Shear Strength (kPa) 100				1-									Î	
- firm and grey by 3.5m depth G 4 3-90.72 G 5 G 6 G 6 GLACIAL TILL: Dense, brown sitty sand with gravel, cobbles, boulders End of Test Pit (TP dry upon completion) G 7 4-89.72 20 40 60 80 100 Shear Strength (kPa) 100		prown SILTY CLAY												
- firm and grey by 3.5m depth 3.66 G 5 G 6 G 7 End of Test Pit (TP dry upon completion) 3.66 G 7 4.01 5.66 6.7 7.7 7.7 7.7 7.7 7.7 7.7	with sand seams													
- firm and grey by 3.5m depth 3.66 G 5 G 6 G 7 End of Test Pit (TP dry upon completion) 3.66 G 7 4.01 5.66 6.7 7.7 7.7 7.7 7.7 7.7 7.7														
- firm and grey by 3.5m depth 3.66 G G G G G 7 End of Test Pit (TP dry upon completion) 4-89.72 4-89.72 20 40 60 80 100 Shear Strength (kPa)				G	4				00 70					
3.66 G 6 GLACIAL TILL: Dense, brown silty sand with gravel, cobbles, boulders G 7 End of Test Pit 4-89.72 4-89.72 (TP dry upon completion) G 7 20 40 60 80 100 Shear Strength (kPa) 100 100 100								3-	-90.72					
3.66 G 6 GLACIAL TILL: Dense, brown silty sand with gravel, cobbles, boulders G 7 End of Test Pit 4-89.72 4-89.72 (TP dry upon completion) G 7 20 40 60 80 100 Shear Strength (kPa) 100 100 100														
GLACIAL TILL: Dense, brown silty sand with gravel, cobbles, boulders A.01 A.01 A.01 End of Test Pit (TP dry upon completion) A.01 A.01 A.01 Image: Algorithm of the second secon	- firm and grey by	3.5m depth											- 	
sand with gravel, cobbles, boulders 4.01 AAA G 7 End of Test Pit (TP dry upon completion) 4-89.72		<u>3.66</u>		G	6									
End of Test Pit (TP dry upon completion)	sand with gravel, o	cobbles, boulders		G	7									
(TP dry upon completion)		<u>4.01</u>		+				4-	-89.72					
20 40 60 80 100 Shear Strength (kPa)														
Shear Strength (kPa)	(TP dry upon com	pletion)												
Shear Strength (kPa)														
Shear Strength (kPa)														
Shear Strength (kPa)														
													1 00	
											-			

patersongro		In	Con	sulting		SOI	l pro	FILE A	ND TES	T DATA			
154 Colonnade Road South, Ottawa, O				ineers	 Geotechnical Investigation Proposed Residential Development - Longfields Drive Ottawa, Ontario 								
DATUM Ground surface at test pit lo	catior	ns prov	ided b	y Stante					FILE NO.	PG2119			
REMARKS N 5014843; E 441539									HOLE NO.				
BORINGS BY Hydraulic Shovel				DA	TE	February ⁻	15, 2013			TP 2-13	3		
SOIL DESCRIPTION	PLOT		SAM	SAMPLE		SAMPLE		DEPTH	ELEV.		esist. Blo 0 mm Dia		tion
	STRATA P	ТҮРЕ	NUMBER	% RECOVERY	VALUE E ROD	(m)	(m)				Piezometer Construction		
GROUND SURFACE	STR	Υ.Τ.	MUN	RECO	N VI			0 V 20	Vater Con 40 6		ËÖ		
FILL: Brown silty clay with sand.						- 0-	-93.69						
gravel and cobbles		××××											
Very stiff to stiff, brown SILTY CLAY		G	1				-92.69				10		
		G	2			2-	-91.69						
GLACIAL TILL: Compact to dense,		G	3			3-	-90.69						
brown silty sand with gravel and cobbles	1 1 1 1 1 1 1 1 1 1 1 1 1 1					4-	- 89.69						
End of Test Pit													
(TP dry upon completion)								20 Shea ▲ Undist	40 60 ar Strengt urbed △	0 80 1 h (kPa) Remoulded	00		

patersongro		In	Con	sulting		SOI	L PRO		ID TEST	DATA		
154 Colonnade Road South, Ottawa, O		-		ineers	Geotechnical Investigation Proposed Residential Development - Longfields Drive Ottawa, Ontario							
DATUM Ground surface at test pit lo	ocatior	is prov	ided b	y Stante					FILE NO.	PG2119		
REMARKS N 5014807; E 441520									HOLE NO.			
BORINGS BY Hydraulic Shovel				DA	TE Fe	bruary 1	5, 2013		HULE NU.	TP 3-13	8	
SOIL DESCRIPTION	PLOT		SAM	IPLE	DEPTH	ELEV.		esist. Blov 0 mm Dia.		Piezometer Construction		
	STRATA P	ТҮРЕ	NUMBER	% RECOVERY	N VALUE or RQD	(m)	(m)					
GROUND SURFACE	STI	L.	NUN	RECO	р ^и с И			20	40 60	80	ĒS	
FILL: Brown silty clay with sand, gravel, cobbles, boulders		G	1				-93.87 -92.87					
Very stiff, brown SILTY CLAY		G	2			2-	-91.87			12	5	
		G	3			3-	-90.87					
GLACIAL TILL: Dense, grey silty sand with clay, gravel, cobbles, boulders	6	G	4			4-	-89.87					
End of Test Pit (TP dry upon completion)	7	3										
								20 Shea ▲ Undistu	40 60 Ir Strength urbed △ F		00	

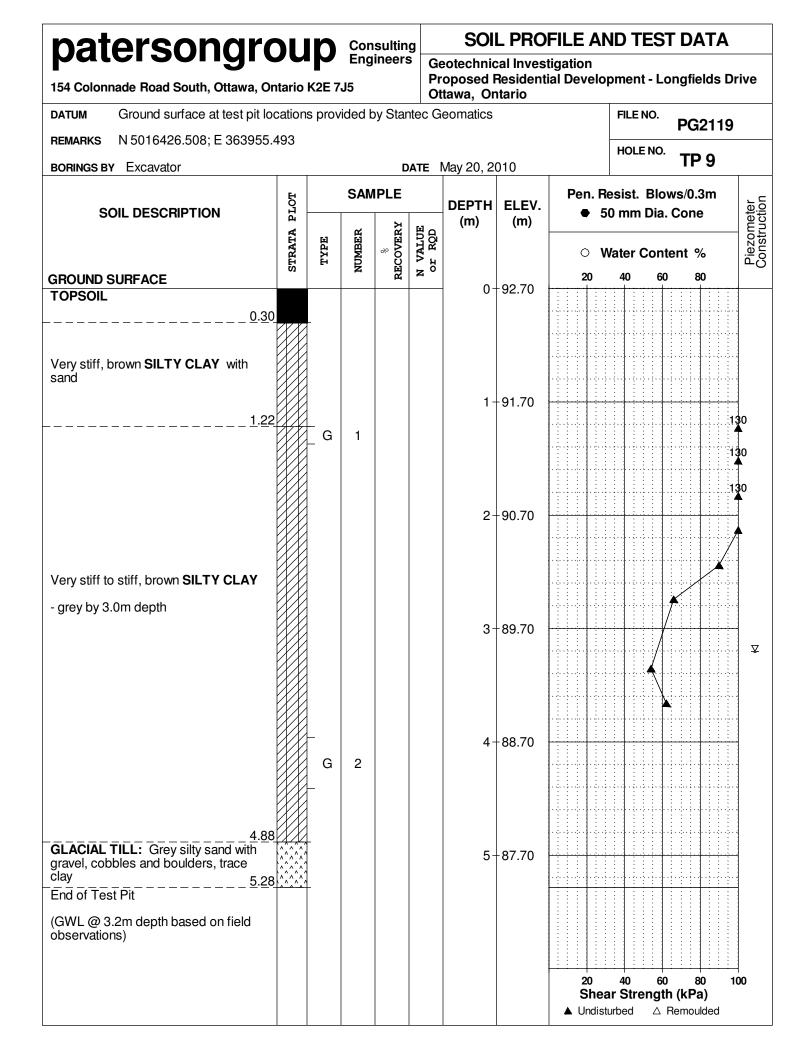
patersongro		In	Con	sulting		SOI	l pro	FILE AN	ND TES	T DATA		
154 Colonnade Road South, Ottawa, O				jineers	Geotechnical Investigation Proposed Residential Development - Longfields Drive Ottawa, Ontario							
DATUM Ground surface at test pit lo	ocatior	ns prov	ided k	oy Stant		-			FILE NO.	PG2119		
REMARKS N 5014785; E 441553									HOLE NO.			
BORINGS BY Hydraulic Shovel				DA	TE	February 1	15, 2013	1		TP 4-13	}	
SOIL DESCRIPTION	PLOT		SAN	IPLE		DEPTH	ELEV.		esist. Blo 0 mm Dia		tion	
	STRATA P	ТҮРЕ	NUMBER	% RECOVERY	N VALUE or RQD	KOD (m)	(m)	• Water Content %			Piezometer Construction	
GROUND SURFACE	้ง		ŭ	REC	z ^ö		04.04	20	40 6	0 80	10	
FILL: Brown silty clay with sand, gravel, cobbles, boulders, trace organics 1.09		G	1				-94.04					
Very stiff to stiff, brown SILTY CLAY		G	2			2-	-92.04				0	
		G	3			3-	-91.04					
End of Test Pit (TP dry upon completion)	1	G	4			4 -	-90.04					
								20 Shea ▲ Undist	40 6 ar Strengt urbed △	0 80 1 t h (kPa) Remoulded	00	

patersongro	ור	In	Con	sulting	g SOIL PROFILE AND TEST DATA Geotechnical Investigation Proposed Residential Development - Longfields Drive Ottawa, Ontario							
154 Colonnade Road South, Ottawa, O		-		ineers								
DATUM Ground surface at test pit lo	catior	is prov	ided k	by Stant		-			FILE NO.	PG2119		
REMARKS N 5014765; E 441573												
BORINGS BY Hydraulic Shovel				DA	TE	February 1	15, 2013		HOLE NO.	TP 5-13	}	
	Ĕ		SAN	IPLE				Pen. Re	esist. Blov	ws/0.3m	ц	
SOIL DESCRIPTION	PLOT			к	64	DEPTH (m)	ELEV. (m)	➡ 50	0 mm Dia.	Cone	neter uctio	
	STRATA	ТҮРЕ	NUMBER	% RECOVERY	VALUE r RQD	ROD		• v	later Conte	ent %	Piezometer Construction	
GROUND SURFACE	5.		REC N		N OL (04.01	20	40 60	80		
FILL: Brown silty sand with gravel		×				0-	-94.31					
0.30		×										
		× ×										
FILL: Brown silty clay, trace gravel,		< ×										
cobbles and boulders		G	1									
1.09		×				1-	-93.31					
		×										
		G	2									
POSSIBLE FILL: Brown silty clay		*										
		× ×										
		×				2-	-92.31					
2.29												
2												
Very stiff to stiff, brown SILTY CLAY		G	3			3-	-91.31					
										· · · · · · · · · · · · · · · · · · ·		
		-										
		1										
		G	4									
4.06	\$PZZ					4-	-90.31					
(TP dry upon completion)												
								20	40 60		00	
								Shea	urbed △ F	i (kPa) Remoulded		

patersongro		In	Con	sulting		SO	l pro	FILE AN	ND TES	ST DATA		
154 Colonnade Road South, Ottawa, Or				ineers	Geotechnical Investigation Proposed Residential Development - Longfields Drive Ottawa, Ontario							
DATUM Ground surface at test pit lo	catior	ns prov	/ided k	by Stant					FILE NO.	PG2119		
REMARKS N 5016186.844; E363985.6	613											
BORINGS BY Excavator				DA		May 20, 20	010		HOLENC	[^] TP 1		
	PLOT		SAN	IPLE		DEPTH	ELEV.			ows/0.3m	er	
SOIL DESCRIPTION		м	R	εRY	D D	(m)	(m)	• 5	• 50 mm Dia. Cone			
	STRATA	ТҮРЕ	NUMBER	% RECOVERY	N VALUE or RQD	, Н Ц		• V	Vater Cor	ntent %	Piezometer Construction	
GROUND SURFACE			2	RE	zÓ	0-	-92.81	20	40 6	60 80		
TOPSOIL 0.10 Very stiff, brown SILTY CLAY, some sand 0.60		G	1			0	52.01				30	
						1-	-91.81				30	
Very stiff to stiff, brown SILTY CLAY						2-	-90.81					
- grey-brown with silt seams by 3.0m depth			0			3-	-89.81					
<u>3.96</u>		G	2			4-	-88.81					
GLACIAL TILL: Grey silty sand with gravel, cobbles and boulders, trace clay 5.49						5-	-87.81					
End of Test Pit (TP dry upon completion)	- <u></u>	+										
								20 Shea ▲ Undist	ar Streng		00	

patersongro	ור	In	Con	sulting		SOI	l pro	FILE AND TEST DATA
154 Colonnade Road South, Ottawa, O		-		ineers	Pro			tigation ial Development - Longfields Drive
DATUM Ground surface at test pit lo	cation	s prov	vided b	by Stante		-		FILE NO. PG2119
REMARKS N 5016027.540; E 364014.	561							
BORINGS BY Excavator				DA	TE M	lay 20, 20	010	HOLE NO. TP 2
	E E		SAM	IPLE		DEDTU		Pen. Resist. Blows/0.3m
SOIL DESCRIPTION	A PLOT		~	XX		DEPTH (m)	ELEV. (m)	• 50 mm Dia. Cone
	STRATA	ТҮРЕ	NUMBER	% RECOVERY	N VALUE or RQD			Pen. Resist. Blows/0.3m □ ● 50 mm Dia. Cone □aamoorgia ○ Water Content % □adot addressed
GROUND SURFACE	01		4	RE	zö	0-	-94.87	20 40 60 80
TOPSOIL 0.20						0	54.07	
<u>1.2</u> 2	2	G	1			1-	-93.87	130
GLACIAL TILL: Brown silty sand		G	2			2-	-92.87	130
with gravel, cobbles and boulders, trace clay						3-	-91.87	
		G	3			4-	-90.87	
End of Test Pit Practical refusal to excavation @ 4.72m depth (GWL @ 3.15m depth based on field observations)	21^^^^							20 40 60 80 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded

patersongro	ור	in	Con	sulting		SOI	l pro	FILE AND TEST DATA					
154 Colonnade Road South, Ottawa, O		-		ineers	 Geotechnical Investigation Proposed Residential Development - Longfields Drive Ottawa, Ontario 								
DATUM Ground surface at test pit lo	catior	is prov	vided k	by Stante				FILE NO. PG2119					
REMARKS N 5016017.629; E 363872.	248												
BORINGS BY Excavator	GS BY Excavator						010	HOLE NO. TP 3					
	Б		SAN	IPLE	DE	ртн	ELEV.	Pen. Resist. Blows/0.3m	ž				
SOIL DESCRIPTION	A PLOT		æ	RY	(r	n)	(m)	• 50 mm Dia. Cone	ructic				
	STRATA	ТҮРЕ	NUMBER	% RECOVERY	VALUE r RQD			• Water Content %	Piezometer Construction				
GROUND SURFACE	Ω,		E	REC	N OL N	0	04.04	20 40 60 80	-0				
TOPSOIL 0.23	2					0-	-94.21						
Very stiff, brown SILTY CLAY with sand, trace gravel													
Very stiff, brown SILTY CLAY						1-	-93.21	130					
2.13	3	G	1			2-	-92.21	130 130 130) ⊻				
GLACIAL TILL: Brown silty sand with gravel, cobbles and boulders													
- grey by 2.7m depth						3-	-91.21						
3.50		G	2			0	01.21						
Practical refusal to excavation on boulders @ 3.50m depth													
(GWL @ 2.3m depth based on field observations)													
								20 40 60 80 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded	1				


patersongro		In	Cons Engin	ulting		SOI	l Pro	FILE AN	ND TES	T DATA							
• •	154 Colonnade Road South, Ottawa, Ontario K2E 7J5								 Geotechnical Investigation Proposed Residential Development - Longfields Drive Ottawa, Ontario 								
DATUM Ground surface at test pit lo	cation	s prov	vided by	Stante	-				FILE NO.	PG2119							
REMARKS N 5015974.312; E 363744.	604									PGZIIJ							
BORINGS BY Excavator				DA	те М	ay 20, 20	010		HOLE NO.	TP 4	_						
	РІОТ		SAMF	PLE		DEPTH	ELEV.		esist. Blo		no						
SOIL DESCRIPTION			ж	RY		(m)	(m)	• 5	0 mm Dia.	Cone	omete						
	STRATA	ТҮРЕ	NUMBER	RECOVERY	VALUE r ROD			• v	Vater Cont	ent %	Piezometer Construction						
GROUND SURFACE	s N		z	E RE	N O H	0	04.00	20	40 60	80							
TOPSOIL 0.25						0-	-94.33										
Very stiff, brown SILTY CLAY, some sand																	
						1-	-93.33			1	30						
Very stiff, brown SILTY CLAY with silt						2-	-92.33			15	30 30 30						
3.66		G	1			3-	-91.33			11 1 1	30						
GLACIAL TILL: Grey silty sand with gravel, cobbles and boulders, trace clay						4 -	-90.33										
4.57		1															
Practical refusal to excavation @ 4.57m depth																	
(TP dry upon completion)								20 Shea	40 60 ar Strengt		00						

patersongro		n	Con	sulting		SOI	l pro	FILE AN	ND TES	T DATA		
154 Colonnade Road South, Ottawa, On		-		lineers	Geotechnical Investigation Proposed Residential Development - Longfields Drive Ottawa, Ontario							
DATUM Ground surface at test pit loc	ation	s prov	ided k	by Stant	_				FILE NO.	PG2119		
REMARKS N 5016117.160; E 363754.4	461											
BORINGS BY Excavator				DA	TE	May 20, 20	010		HOLE NO	TP 5		
	PLOT		SAN	IPLE		DEPTH	ELEV.		esist. Blo		er on	
SOIL DESCRIPTION			м	RY	Ħ۵	(m)	(m)	• 5	0 mm Dia	. Cone	met	
	STRATA	ТҮРЕ	NUMBER	% RECOVERY	N VALUE or RQD			• v	Vater Con	tent %	Piezometer Construction	
GROUND SURFACE	Ŋ		Z	RE	z ö	0-	-93.89	20	40 6	0 80		
TOPSOIL 0.28							00.00					
Very stiff, brown SILTY CLAY , trace sand <u>0.91</u>		G	1			1-	-92.89				30	
GLACIAL TILL: Brown silty sand with gravel, cobbles and boulders, trace clay - grey by 2.6m depth						2-	-91.89				30	
						3-	-90.89					
		_ G	2			4-	- 89.89					
4.78 End of Test Pit	<u>^^^</u>	1										
Practical refusal to excavation on boulders @ 4.78m depth (TP dry upon completion)												
								20 Shea ▲ Undist	40 6 ar Strengt urbed △	0 80 1 t h (kPa) Remoulded	⊣ I 00	

patersongro		In	Con	sulting	g SOIL PROFILE AND TEST DATA Geotechnical Investigation Proposed Residential Development - Longfields Drive Ottawa, Ontario									
154 Colonnade Road South, Ottawa, On		_		neers										
DATUM Ground surface at test pit loc	ation	s prov	vided b	y Stante	ec Ge	omatics			FILE NO.	PG2119				
REMARKS N 5016134.355; E 363872.4	414								HOLEN					
BORINGS BY Excavator				DA	те М	ay 20, 20	010	1		^{^^} TP 6	1			
SOIL DESCRIPTION	PLOT		SAM	PLE		DEPTH	ELEV.		esist. Bl 0 mm Dia	ows/0.3m	ion			
SOIL DESCRIPTION		ы	R	ERY	Ba	(m)	(m)	• J			Piezometer Construction			
	STRATA	ТҮРЕ	NUMBER	RECOVERY	N VALUE or RQD			• V	Vater Co	ntent %	Piez			
GROUND SURFACE TOPSOIL	01		4	ER ;	z	0-	-93.80	20	40	60 80				
0.36 Very stiff, brown SILTY CLAY, with silt 1.73 GLACIAL TILL: Brown silty sand with gravel, cobbles and boulders, trace clay - grey by 2.8m depth 3.10 End of Test Pit (TP dry upon completion)		G	1			2-	-92.80 -91.80			1	30			
								20 Shea ▲ Undist	ar Streng		00			

patersongro		In	Con	sulting		SO	l Pro	FILE AN	ND TES	T DATA							
	154 Colonnade Road South, Ottawa, Ontario K2E 7J5									Geotechnical Investigation Proposed Residential Development - Longfields Drive Ottawa, Ontario							
DATUM Ground surface at test pit loc	cation	s prov	vided k	oy Stant	ec G	eomatics			FILE NO.	PG2119							
REMARKS N 5016301.136; E 363935.8	313								HOLE NO	1							
BORINGS BY Excavator				DA	TE	May 20, 20	010			TP 7							
SOIL DESCRIPTION	PLOT		SAN	IPLE		DEPTH	ELEV.	Pen. Resist. Blows/0.3m 50 mm Dia. Cone			tion						
	STRATA I	ТҮРЕ	NUMBER	* RECOVERY	N VALUE or RQD	(m)	(m)		Vater Con		Piezometer Construction						
GROUND SURFACE	ST	Ĥ	IDN I	REC	N N N N			20	40 6		۵Ğ						
TOPSOIL						- 0-	-93.16										
0.30 Very stiff, brown SILTY CLAY with sand and gravel						1-	-92.16										
						2-	-91.16				30 30 30						
Very stiff to stiff, brown SILTY CLAY - grey with silt seams by 3.2m depth		G	1			3-	-90.16										
4.27 GLACIAL TILL: Grey silty sand with						4-	-89.16			1	30						
gravel, cobbles and boulders, trace clay End of Test Pit						5-	-88.16										
(TP dry upon completion)																	
								20 Shea ▲ Undist	40 6 ar Strengt urbed △		⊣ 00						

patersongro		in	Con	sulting		SOI	l pro	FILE AN	ND TES	T DATA		
154 Colonnade Road South, Ottawa, On		-		ineers	Geotechnical Investigation Proposed Residential Development - Longfields Drive Ottawa, Ontario							
DATUM Ground surface at test pit loc	cation	is prov	vided b	by Stant	-				FILE NO.	PG2119		
REMARKS N 5016531.674; E 364013.9	RKS N 5016531.674; E 364013.968									PGZTI9		
BORINGS BY Excavator				DA	TE	May 20, 2	010		HOLE NO.	TP 8		
	Б		SAN	IPLE		DEPTH	ELEV.		esist. Blo		L L	
SOIL DESCRIPTION	A PLOT		~	х	Щ.	(m)	(m)	• 5	0 mm Dia.	Cone	mete 'uctic	
	STRATA	ТҮРЕ	NUMBER	* RECOVERY	N VALUE or RQD			0 V	Vater Cont	tent %	Piezometer Construction	
GROUND SURFACE	LS I	H	NN NN	REC	N O			20	40 60	80		
TOPSOIL 0.25						- 0-	-92.64					
Very stiff, brown SILTY CLAY, some sand						1-	-91.64					
Very stiff to stiff, brown SILTY CLAY - grey by 2.4m depth		G	1			2-	-90.64				06 ⊻ 30	
						3-	-89.64				30	
<u>4.17</u> GLACIAL TILL: Grey silty sand with gravel, cobbles and boulders, trace clay 4.57						4-	-88.64					
End of Test Pit		t										
(GWL @ 1.8m depth based on field observations)								20 Shea ▲ Undist	40 60 ar Strengti		00	

SYMBOLS AND TERMS

SOIL DESCRIPTION

Behavioural properties, such as structure and strength, take precedence over particle gradation in describing soils. Terminology describing soil structure are as follows:

Desiccated	-	having visible signs of weathering by oxidation of clay minerals, shrinkage cracks, etc.
Fissured	-	having cracks, and hence a blocky structure.
Varved	-	composed of regular alternating layers of silt and clay.
Stratified	-	composed of alternating layers of different soil types, e.g. silt and sand or silt and clay.
Well-Graded	-	Having wide range in grain sizes and substantial amounts of all intermediate particle sizes (see Grain Size Distribution).
Uniformly-Graded	-	Predominantly of one grain size (see Grain Size Distribution).

The standard terminology to describe the strength of cohesionless soils is the relative density, usually inferred from the results of the Standard Penetration Test (SPT) 'N' value. The SPT N value is the number of blows of a 63.5 kg hammer, falling 760 mm, required to drive a 51 mm O.D. split spoon sampler 300 mm into the soil after an initial penetration of 150 mm.

Relative Density	'N' Value	Relative Density %
Very Loose	<4	<15
Loose	4-10	15-35
Compact	10-30	35-65
Dense	30-50	65-85
Very Dense	>50	>85

The standard terminology to describe the strength of cohesive soils is the consistency, which is based on the undisturbed undrained shear strength as measured by the in situ or laboratory vane tests, penetrometer tests, unconfined compression tests, or occasionally by Standard Penetration Tests.

Consistency	Undrained Shear Strength (kPa)	'N' Value
Very Soft	<12	<2
Soft	12-25	2-4
Firm	25-50	4-8
Stiff	50-100	8-15
Very Stiff	100-200	15-30
Hard	>200	>30

SYMBOLS AND TERMS (continued)

SOIL DESCRIPTION (continued)

Cohesive soils can also be classified according to their "sensitivity". The sensitivity is the ratio between the undisturbed undrained shear strength and the remoulded undrained shear strength of the soil.

Terminology used for describing soil strata based upon texture, or the proportion of individual particle sizes present is provided on the Textural Soil Classification Chart at the end of this information package.

ROCK DESCRIPTION

The structural description of the bedrock mass is based on the Rock Quality Designation (RQD).

The RQD classification is based on a modified core recovery percentage in which all pieces of sound core over 100 mm long are counted as recovery. The smaller pieces are considered to be a result of closely-spaced discontinuities (resulting from shearing, jointing, faulting, or weathering) in the rock mass and are not counted. RQD is ideally determined from NXL size core. However, it can be used on smaller core sizes, such as BX, if the bulk of the fractures caused by drilling stresses (called "mechanical breaks") are easily distinguishable from the normal in situ fractures.

RQD % ROCK QUALITY

90-100	Excellent, intact, very sound
75-90	Good, massive, moderately jointed or sound
50-75	Fair, blocky and seamy, fractured
25-50	Poor, shattered and very seamy or blocky, severely fractured
0-25	Very poor, crushed, very severely fractured

SAMPLE TYPES

SS	-	Split spoon sample (obtained in conjunction with the performing of the Standard
		Penetration Test (SPT))

- TW Thin wall tube or Shelby tube
- PS Piston sample
- AU Auger sample or bulk sample
- WS Wash sample
- RC Rock core sample (Core bit size AXT, BXL, etc.). Rock core samples are obtained with the use of standard diamond drilling bits.

SYMBOLS AND TERMS (continued)

GRAIN SIZE DISTRIBUTION

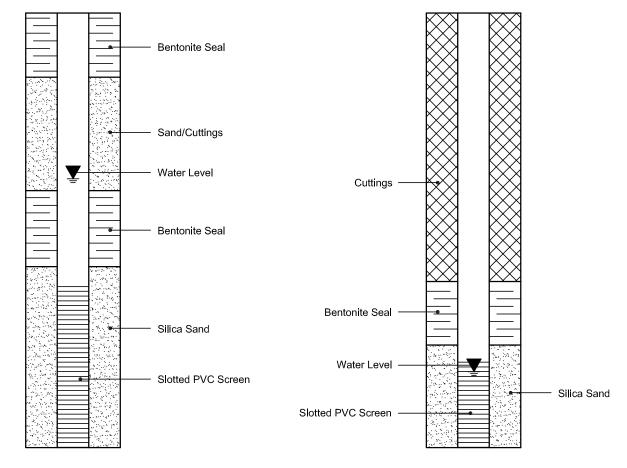
MC% LL PL PI	- - -	Natural moisture content or water content of sample, % Liquid Limit, % (water content above which soil behaves as a liquid) Plastic limit, % (water content above which soil behaves plastically) Plasticity index, % (difference between LL and PL)						
Dxx	-	Grain size which xx% of the soil, by weight, is of finer grain sizes These grain size descriptions are not used below 0.075 mm grain size						
D10	-	Grain size at which 10% of the soil is finer (effective grain size)						
D60	-	Grain size at which 60% of the soil is finer						
Сс	-	Concavity coefficient = $(D30)^2 / (D10 \times D60)$						
Cu	-	Uniformity coefficient = D60 / D10						
Cc and Cu are used to assess the grading of sands and gravels:								

Well-graded gravels have: 1 < Cc < 3 and Cu > 4Well-graded sands have: 1 < Cc < 3 and Cu > 4Well-graded sands have: 1 < Cc < 3 and Cu > 6Sands and gravels not meeting the above requirements are poorly-graded or uniformly-graded. Cc and Cu are not applicable for the description of soils with more than 10% silt and clay (more than 10% finer than 0.075 mm or the #200 sieve)

CONSOLIDATION TEST

p'o	-	Present effective overburden pressure at sample depth			
p'c	-	Preconsolidation pressure of (maximum past pressure on) sample			
Ccr	-	Recompression index (in effect at pressures below p'c)			
Сс	-	Compression index (in effect at pressures above p'c)			
OC Ratio)	Overconsolidaton ratio = p'_c / p'_o			
Void Ratio		Initial sample void ratio = volume of voids / volume of solids			
Wo	-	Initial water content (at start of consolidation test)			

PERMEABILITY TEST


k - Coefficient of permeability or hydraulic conductivity is a measure of the ability of water to flow through the sample. The value of k is measured at a specified unit weight for (remoulded) cohesionless soil samples, because its value will vary with the unit weight or density of the sample during the test.

SYMBOLS AND TERMS (continued) STRATA PLOT Topsoil Asphalt Peat Sand Silty Sand Fill ∇ Sandy Silt Clay Silty Clay Clayey Silty Sand Glacial Till Shale Bedrock

MONITORING WELL AND PIEZOMETER CONSTRUCTION

PIEZOMETER CONSTRUCTION

Certificate of Analysis

Order #: 1022053

Report Date: 31-May-2010 Order Date:25-May-2010

Client: Paterson Group Consulting Engineers Client PO: 9734 Proje

Client PO: 9734	Project Description: PG2119				
	Client ID:	TP9-G1	-	-	-
	Sample Date:	20-May-10	-	-	-
	Sample ID:	1022053-01	-	-	-
	MDL/Units	Soil	-	-	-
Physical Characteristics					
% Solids	0.1 % by Wt.	74.1	-	-	-
General Inorganics			-	-	
рН	0.05 pH Units	7.37	-	-	-
Resistivity	0.10 Ohm.m	222	-	-	-
Anions					
Chloride	5 ug/g dry	<5	-	-	-
Sulphate	5 ug/g dry	7	-	-	-

P: 1-800-749-1947 E: paracel@paracellabs.com

WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd, Unit #27 Mississauga, ON L5N 6J3 SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 3 of 7

APPENDIX 2

FIGURE 1 - KEY PLAN

DRAWING PG2119-2 - TEST HOLE LOCATION PLAN

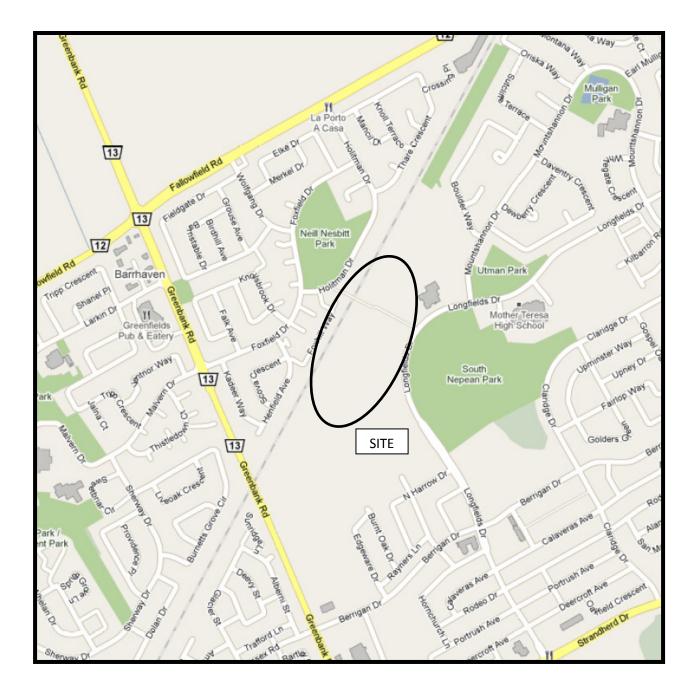
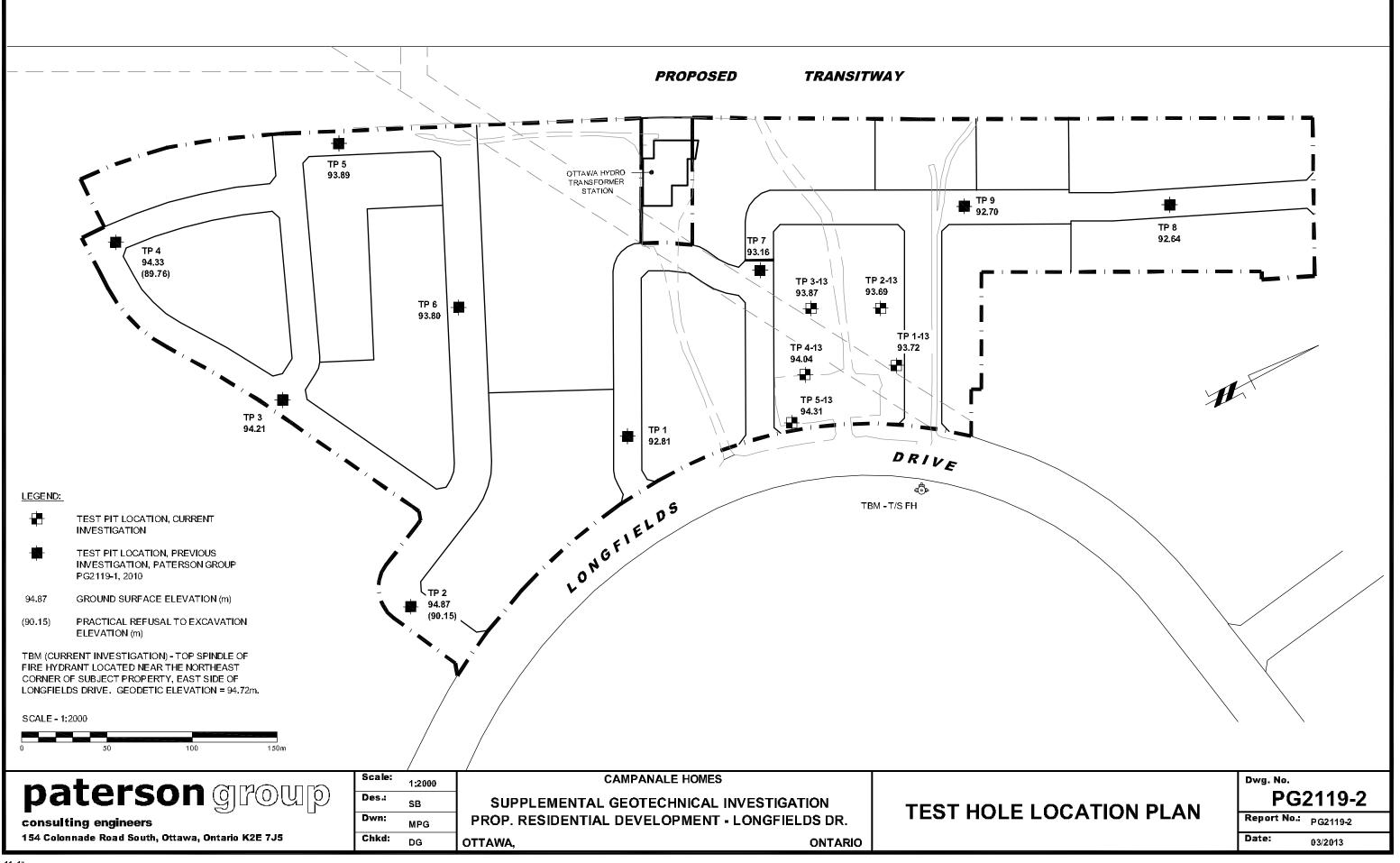



FIGURE 1 KEY PLAN

Appendix E: DRAWINGS

