Engineering Land/Site Development Municipal Infrastructure Environmental/ Water Resources Traffic/ Transportation Recreational # **Planning** Land/Site Development Planning Application Management **Municipal Planning** Urban Design Expert Witness (LPAT) Wireless Industry ### Landscape Architecture Streetscapes & Public Amenities Open Space, Parks & Recreation Community & Residential Commercial & Institutional Environmental Restoration # Mattino Developments Inc. Block 21, Mattino Way **Servicing Design Brief** # SERVICING DESIGN BRIEF MATTINO DEVELOPMENTS INC. BLOCK 21, MATTINO WAY ## Prepared By: ## NOVATECH Suite 200, 240 Michael Cowpland Drive Ottawa, Ontario K2M 1P6 > November 1, 2019 Revised: March 4, 2020 Revised: July 2, 2020 Revised: November 17, 2020 Revised: August 5, 2022 Revised: October 5, 2022 Revised: December 21, 2022 Novatech File: 112021-10 Ref: R-2019-189 December 21, 2022 City of Ottawa Infrastructure Services and Community Sustainability 110 Laurier Avenue West, 4th Floor Ottawa, ON K1P 1J1 Attention: Mr. Kelby Lodoen Unseth, Planner II Dear Mr. Lodoen Unseth: Reference: Mattino Developments Inc. Block 21, Mattino Way Servicing Design Brief Our File No.: 112021-10 Enclosed for your review and approval is the revised Servicing Design Brief for the proposed Block 21 development. If you have any questions or comments, please do not hesitate to contact us. Sincerely, **NOVATECH** Lucas Wilson, P.Eng. Project Manager # **TABLE OF CONTENTS** | 1.0 | INTRODUCTION | 1 | |---|--|------------| | 2.0 | ROADWAYS | 3 | | 2.1
2.2
2.3 | EXISTING CONDITIONSPROPOSED CONDITIONSROADWAY DESIGN | 3 | | 3.0 | GRADING | 3 | | 3.1
3.2 | EXISTING CONDITIONS PROPOSED CONDITIONS | | | 4.0 | EROSION AND SEDIMENT CONTROL | 4 | | 5.0 | SANITARY SEWERS | 5 | | 5.1
5.2
5.3 | EXISTING CONDITIONSPROPOSED CONDITIONSOFFSITE REQUIREMENTS | 5 | | 6.0 | WATER | 7 | | 6.1
6.2 | EXISTING CONDITIONSPROPOSED CONDITIONS | | | 7.0 | STORMWATER MANAGEMENT | 11 | | 7.2
7.3
7
7
7.4
7.5
7 | | | | 8.0 | TEMPORARY FLOW CONTROLS DURING CONSTRUCTION | 19 | | 8.1 | TEMPORARY SANITARY FLOW CONTROLS DURING CONSTRUCTION | 19 | | 9.0 | CONCLUSIONS AND RECOMMENDATIONS | 20 | | 10.0 | CLOSURE | 2 1 | ### **LIST OF TABLES** | Table 2-1: Roadway Structure | 3 | |---|----| | Table 5-1: Sanitary Sewer Design Parameters | 5 | | Table 6-1: Watermain Design Criteria | 9 | | Table 6-2: Water Flow Summary | 9 | | Table 6-3: Summary of Hydraulic Model Results - Maximum Day + Fire Flow | 10 | | Table 6-4: Summary of Hydraulic Model Results - Peak Hour Demand | 10 | | Table 6-5: Summary of Hydraulic Model Results – Maximum Pressure Check | 10 | | Table 7-1: Storm Sewer Design Parameters | 13 | | Table 7-2: Subcatchment Model Parameters | 16 | | Table 7-3: Inlet Control Devices & Design Flows | 17 | | Table 7-4: Overland Flow Results (100-year, 3-hour Chicago storm event) | 18 | | Table 7-5: 100-year HGL Elevations | 18 | | Table 7-6: Summary of Peak Flows | 19 | ### **LIST OF FIGURES** Figure 1-1: Key Plan Figure 1-2: Site Plan Figure 5-1: Sanitary Sewer Network Figure 6-1: Watermain Layout Figure 7-1: Storm Sewer Network ### **APPENDICES** Appendix A: Design Sheets Appendix B: SWM Calculations / Modeling Appendix C: Drawings Appendix D: Geotechnical Memorandums Novatech Page ii #### 1.0 INTRODUCTION The subject site is located within the Longfields community and is municipally known as 591 Via Mattino Way. The site is approximately 1.04 hectares and is bounded by a Transitway and Rail Corridor to the north and west, existing residential to the east, and the existing Longfields Central subdivision to the south. A key plan of the area is presented below in **Figure 1-1**. Figure 1-1: Key Plan The site is currently vacant. The proposed development will consist of 88 units in five three-storey apartment buildings (three 16-unit, two 20-unit apartments). The proposed site plan is shown in **Figure 2**. This Servicing Design Brief provides information on the considerations and approach by which Novatech has analyzed the existing site information for the subject site, and details how the development lands will be serviced while meeting the City requirements and all other relevant regulations. This report should be read in conjunction with the following: - Geotechnical Investigation, 'Proposed Residential Development, Mountshannon Drive, Ottawa, Ontario' prepared by Paterson dated January 31, 2013. - Geotechnical Review Block 21 Existing Soils Information Memorandum, prepared by Paterson dated November 12, 2019 (PG2306-MEMO.08). - Geotechnical Review Block 21 Existing Information Memorandum, prepared by Paterson dated November 23, 2020 (PG2306-MEMO.09). Figure 1-2: Site Plan #### 2.0 ROADWAYS # 2.1 Existing Conditions Currently there is access to the site through Via Mattino Way (Local Road). # 2.2 Proposed Conditions The development will be accessed from two entrances along Via Mattino Way. All roads within the development are 6.7m private roads with at-grade parking. # 2.3 Roadway Design Paterson has prepared a Geotechnical Investigation report for the development (January 2013) that provides recommendations for roadway structure, servicing and foundations. The site consists of private roads and at-grade parking; the recommended roadway structure is as follows: **Table 2-1: Roadway Structure** | Roadway Material Description | Pavement Structure Layer Thickness (mm) Private Road | | |--|--|--| | Asphalt Wear Course:
Superpave 12.5 (Class B) | 40 | | | Asphalt Binder Course:
Superpave 19.0 (Class B) | 50 | | | Base: Granular A | 150 | | | Sub-Base: Granular B – Type II | <u>400</u> | | | Total | 640 | | #### 3.0 GRADING # 3.1 Existing Conditions The site has a high point along the centre (north to south) and slopes approximately 1.0% easterly and westerly. A Geotechnical investigation was carried out by Paterson which included 10 test pits within the Longfields Central subdivision (4 within the subject site). Test pits were dug at depths ranging from 6.10m to 6.70m below existing grade with no bedrock encountered. Each test pit was dry upon completion; therefore, groundwater levels were estimated based on moisture levels and colour of the recovered soil samples and expected to be between 2m to 3m below existing ground. # 3.2 Proposed Conditions The design grades will tie into existing elevations along the Transitway to the west, Parkland to the north and east and the adjacent residential lands to the south. For detailed grading refer to drawing 112021-10-GR. The proposed grading will fall within these ranges: - Landscaped Area: Minimum 1% Maximum 7% - Roadway and Parking: Minimum 1.0% - Maximum Terracing Grade of 3H:1V #### 4.0 EROSION AND SEDIMENT CONTROL The following erosion and sediment control measures will be implemented during construction in accordance with the "Guidelines on Erosion and Sediment Control for Urban Construction Sites" (Government of Ontario, May 1987). - A qualified inspector should conduct regular visits to ensure the contractor is working in accord with the drawings and that mitigation measures are implemented as specified; - Filter socks are to be placed under all new and existing catchbasins and storm manhole covers; - Mud mats are to be placed at the construction entrances; - Silt fences around the area under construction to be placed per OPSS 577 and OPSD 219.110; - Application of topsoil and sod to disturbed areas; and, - After complete build-out, all sewers are to be inspected and cleaned and all sediment and construction fencing is to be removed. The proposed erosion and sediment control measures will be implemented prior to construction and will remain in place during construction until vegetation is established. There will be regular inspection and maintenance of the sediment control measures. It is important that precautions be taken during construction to prevent sediment from entering the proposed stormwater management systems. The erosion and sediment control plan is provided in **Appendix C**. #### 5.0 SANITARY SEWERS # 5.1 Existing Conditions An existing 200mm diameter sanitary stub is located at the eastern access to the site (MH119). There is also an existing 400mm diameter trunk sewer located north of the site. ## 5.2 Proposed Conditions The peak design flow parameters in **Table 5-1** have been used in the sewer capacity analysis. Unit and population densities and all other design parameters are specified in the City of Ottawa Sewer Design Guidelines (October 2012) and Technical bulletin ISTB-2018-01. Sanitary flow from Block 21 is proposed to connect into the existing 200mm diameter sanitary stub that was provided during the construction of Longfields Central. The sanitary sewer layout is shown on 112021-10-GP (**Appendix C**), and the design sheet is attached in **Appendix A**. The site (approx. 1.04ha) will outlet at MH 119 (east entrance) with a peak design flow of 2.5 L/s. The wastewater flow is routed through the Longfields Central Subdivision, directing flow to the East Barrhaven Trunk (EBHT) sanitary sewer. The EBHT drains into the West Rideau Collector Sewer (WRCS) on Merivale Road and eventually makes its way to the Robert O. Pickard Environmental Centre to be treated before being released to the Ottawa River. **Table 5-1: Sanitary Sewer Design Parameters** | Parameter | Design Parameter | |---------------------------------------|------------------------------------| | Apartment (2 bedroom) Unit Population | 2.1 people/unit | | Apartment Unit Density | 88 Units (per Site Plan) | | Residential Flow Rate, Average Daily | 280 L/cap/day | | Residential Peaking Factor | Harmon Equation (min=2.0,
max=4.0) | | Total Infiltration Rate | 0.33 L/s/ha | | Minimum Pipe Size | 200 mm | | Minimum Velocity | 0.6 m/s | | Maximum Velocity | 3.0 m/s | #### 5.3 Offsite Requirements For the design of Longfields Central, a peak design flow of 4.0 L/s was calculated from MH 119 to MH 117, accounting for future flows from Block 21 (Longfields Central sanitary design sheet excerpt included in **Appendix A**). With the detailed design of Block 21 being complete, the peak design flow calculated from MH 119 to MH 117 is now 3.2 L/s. Since the proposed flows are lower than previously accounted for in the Longfields Central Site Servicing and Stormwater Management Study, there will be sufficient capacity offsite to service the proposed development. Figure 5-1: Sanitary Sewer Network #### 6.0 WATER # 6.1 Existing Conditions The proposed development is located inside the 2W Pressure Zone. Reconfiguration of the existing pressure zone from 2W to 3C is anticipated in 2020. Existing 200mm diameter stubs are located at both entrances to the site off Via Mattino Way. An existing 200mm diameter watermain run along Boulder Way north of the site. # **6.2** Proposed Conditions Block 21 will be connected to the existing watermain network by way of two separate feed points. The two connections are proposed to the existing 200mm diameter stubs located at the entrances off Via Mattino Way. The development will be serviced by 200mm diameter watermains and will provide sufficient capacity to maintain appropriate pressures and fire flows throughout the development. **Figure 4** provides a high-level schematic of the proposed water distribution system. The watermain boundary conditions below were obtained from the City of Ottawa and have been included in **Appendix A**: Boundary Condition #1 – Located at Mountshannon Drive Existing 200mm x 400mm diameter watermain connection (Shown in **Appendix A**) | | Existing Zone 2W | Future Zone 3C | |-------------------------|-------------------------|----------------| | Demand Scenario | Head (m) | Head (m) | | Maximum HGL | 133.0 | 147.8 | | Peak Hour | 126.0 | 146.3 | | Max Day + FF of 200 L/s | 124.3 | 145.9 | | Max Day + FF of 250 L/s | 123.2 | 145.4 | Boundary Condition #2 – Located at Campanale Avenue (Shown in **Appendix A**) | | Existing Zone 2W | Future Zone 3C | |-------------------------|------------------|----------------| | Demand Scenario | Head (m) | Head (m) | | Maximum HGL | 133.0 | 147.8 | | Peak Hour | 125.9 | 146.6 | | Max Day + FF of 200 L/s | 119.4 | 141.6 | | Max Day + FF of 250 L/s | 115.8 | 138.9 | Construction of the first building within Block 21 is anticipated to be completed within 2021, later than what is anticipated for the reconfiguration to the future Zone 3C pressure zone. As such, the future Zone 3C boundary conditions will be used in the modelling for Block 21. City of Ottawa watermain design Parameters are outlined in **Table 6-1**. Figure 6-1: Watermain Layout Table 6-1: Watermain Design Criteria | Design Parameter | Design Criteria | |---------------------------------------|---| | Apartment (2 bedroom) Unit Population | 2.1 people/unit | | Density | 88 units | | Residential Demand | 280 L/c/d | | Maximum Day Demand | 2.5 x Average Day | | Peak Hour Demand | 2.2 x Maximum Day | | Fire Demand | 200 L/s (Building 5) 217 L/s (Building 2 and 3) 233 L/s (Building 1) 250 L/s (Building 4) | | Maximum Pressure | 690 kPa (100psi) unoccupied areas | | Maximum Pressure | 552 kPa (80psi) occupied areas outside of ROW | | Minimum Pressure | 275 kPa (40 psi) except during fire flow | | Minimum Pressure | 140 kPa (20 psi) fire flow conditions | **Table 6-2: Water Flow Summary** | Unit Type | Units | Population | Average
Day
Demand
(L/s) | Maximum
Day
Demand
(L/s) | Peak
Hour
Demand
(L/s) | |------------|-------|------------|-----------------------------------|-----------------------------------|---------------------------------| | Apartments | 88 | 185 | 0.599 | 1.497 | 3.294 | | Total | 88 | 185 | 0.599 | 1.497 | 3.294 | Based on the fire underwriters survey, the fire flows were calculated as 200 L/s (Building 5), 217 L/s (Building 2 and 3), 233 L/s (Building 1) and 250 L/s (Building 4). Hydrant spacing and locations per City of Ottawa guidelines are illustrated on the Fire Hydrant Coverage Plan in **Appendix A**. Fire flow calculations are provided in **Appendix A**. The proposed watermain was modeled using EPANET 2 (See 112021-10-GP for detailed watermain layout). A summary of the model results are shown below in **Table 6-3**, **Table 6-4** and **Table 6-5**. Full model results are included in **Appendix A**. Table 6-3: Summary of Hydraulic Model Results - Maximum Day + Fire Flow | Operating Condition | Minimum Pressure | |-----------------------|-------------------| | Building #1 (233 L/s) | 277.43 kPa (HYD2) | | Building #2 (217 L/s) | 300.48 kPa (HYD2) | | Building #3 (217 L/s) | 285.96 kPa (HYD2) | | Building #4 (250 L/s) | 222.79 kPa (HYD2) | | Building #5 (200 L/s) | 316.18 kPa (HYD2) | Table 6-4: Summary of Hydraulic Model Results - Peak Hour Demand | Operating Condition | Maximum Pressure | Minimum Pressure | |--------------------------|-------------------|------------------| | 3.294 L/s through system | 523.76 kPa (HYD1) | 519.73 kPa (T1) | The hydraulic modeling summarized above highlights the maximum and minimum system pressures during Peak Hour/Maximum Pressure Check conditions, and the minimum system pressures during the Maximum Day + Fire conditions. Since the Maximum Day + Fire Flow pressures are above the minimum 140 kPa and the Peak Hour Pressures onsite fall within the normal operating pressure range (345 kPa to 552 kPa) we conclude the proposed water design will adequately service the development Table 6-5: Summary of Hydraulic Model Results - Maximum Pressure Check | Operating Condition | Maximum Pressure | Minimum Pressure | |--------------------------|-------------------|-------------------| | 0.599 L/s through system | 559.07 kPa (HYD3) | 532.29 kPa (CAP1) | Average day pressures at HYD3 are slightly above 552 kPa at 559.07 kPa. Since the average day pressures are modelled within the watermain and not the service to the units, lower pressures will be encountered at the upper levels. Pressures at the first floor were modelled at Building 1, nearest HYD3. The average day pressures within the units are below 552 kPa. We conclude that pressure reducing valves are not necessary to reduce the modelled pressure below 552 kPa within the watermain as the modelled average day pressures within the services to the units are within the required range. #### 7.0 STORMWATER MANAGEMENT # 7.1 Stormwater Management Criteria The following stormwater management criteria for the proposed development was prepared in accordance with the City of Ottawa Sewer Design Guidelines (October 2012) and the Longfields Central Site Servicing and Stormwater Management Study (Novatech, 2014). This report was prepared in accordance with the Longfields Davidson Heights Serviceability Study Update Report (1998). - Provide a dual drainage system (i.e. minor and major system flows); - Maximize the use of surface storage available on site; - Control the runoff to MH122 to the allowable release rates Specified in Section 7.1.1 using on-site storage; - Ensure that no surface ponding will occur on the paved surfaces (i.e., private drive aisles or parking lots) during the 2-year storm event; - Ensure that ponding is confined within the parking areas at a maximum depth of 0.35 m for both static ponding and dynamic flow; and, - Provide guidelines to ensure that site preparation and construction is in accordance with the current Best Management Practices for Erosion and Sediment Control. For the approval of the Longfields Central Subdivision, the following assumptions were made for the future development of Block 21 (see **Appendix B** for Longfields Central report excerpts): - Restricted minor system flow of 37.5 L/s/ha; - On-Site storage of 270 m³ (270 m³/ha); - o 100 m³ of surface storage; - o 170 m³ of underground storage (superpipe and/or storage chambers). #### 7.1.1 Allowable Release Rate The allowable release rate for Block 21 (1.04 ha) was established based on the restricted minor system flow of 37.5 L/s/ha (37.6 L/s) for all storms up-to and including the 100-year storm event. ### 7.2 Existing Conditions Existing 525mm and 675mm diameter storm sewers run along Via Mattino Way adjacent to the proposed development. Stubs were provided at both entrances to the site (MH122 and MH124), a 250mm diameter storm sewer at the west entrance (MH124) and a 525mm diameter storm sewer at the east entrance (MH122). An existing 1350mm diameter trunk storm sewer runs along the adjacent parkland to the north. # 7.3 Proposed Conditions Runoff from Block 21 will be routed to the existing storm sewer system in Via Mattino Way through the existing 525mm diameter stub located at the private entrance to the east (MH122). The storm system within Longfields Central is directed to the 1350mm diameter trunk storm sewer within Mountshannon Drive and ultimately outlets to the Longfields Davidson Heights Stormwater Management Facility located southwest of the Leikin Drive and Bill Leathem Drive intersection. This existing facility provides water quality control prior to discharging to the Rideau River via Barrhaven Creek. As such, on-site stormwater quality controls are not required. **Figure 5** outlines the proposed storm sewer system layout, and how it will connect to the existing network along Via Mattino Way. Figure 7-1: Storm Sewer Network #### 7.3.1 Quality Control As previously discussed, the Lonfields Davidson Heights SWM Facility provides the Quality Control for the site. The proposed site has a drainage area of approximately 1.04 ha and a runoff coefficient of 0.71. The site was
previously referred to as areas 2A & 2B in the Longfields Central Design, which had a drainage area of 1.00 ha and runoff coefficient of 0.80 ha (refer to excerpt provided in **Appendix B**). When comparing the area x runoff coefficient values the proposed site has the same area, but a lower runoff coefficient than what was previously allocated, as shown below: | <u>Parameter</u> | Longfields Central Design | Current Design | |-------------------------------------|---------------------------|-----------------| | Drainage Area
Runoff Coefficient | 1.00 ha
0.80 | 1.00 ha
0.71 | | Area x Runoff Coefficient | 0.80 | 0.71 | #### 7.3.2 Minor System Design #### Storm Sewers The storm sewers comprising the minor system have been designed based on the criteria outlined in the Ottawa Sewer Design Guidelines using the principals of dual drainage. The design criteria used in sizing the storm sewers are summarized in **Table 6.1**. The proposed storm sewers have been designed using the rational method to convey peak flows associated with a 2-year rainfall event. The storm sewer design sheets are provided in **Appendix A**. The corresponding Storm Drainage Area Plan (Drawing 112021-10-STM) is provided in **Appendix C**. **Table 7-1: Storm Sewer Design Parameters** | Parameter | Design Criteria | |------------------------------------|--------------------------------| | Private Roads | 2 Year Return Period | | Storm Sewer Design | Rational Method | | IDF Rainfall Data | Ottawa Sewer Design Guidelines | | Initial Time of Concentration (Tc) | 10 min | | Minimum Velocity | 0.8 m/s | | Maximum Velocity | 3.0 m/s | | Minimum Diameter | 250 mm | # **Underground Storage** The allowable release rate is quite restrictive, as such underground storage will be required to attenuate runoff from the site. Underground storage will be provided using a series of 600mm diameter storm sewers and 1200mm diameter structures providing approximately 67 m³ of storage. Refer to the proposed General Plan of Services (112021-10-GP) for storage pipe layout. #### 7.3.3 Major System Design The site has been designed to convey runoff from storms that exceed the minor system capacity to Via Mattino Way. The roadway and parking areas have been graded to ensure that the 100-year peak overland flows are confined within the parking area at a maximum flow depth of 300mm. The site has been graded to provide an emergency overland flow route that spills along the roadway and outlets to Via Mattino Way at the eastern entrance to the site. #### Surface Storage The stage-storage curves for each inlet were calculated based on the proposed Grading Plan (drawing 112021-10-GR). The total surface storage shown in the stage-storage curves at each inlet is provided in **Appendix B**. Approximately 278 m³ of total surface storage is available within the low-points of the parking areas and amenity space. The total storage provided underground and on the surface is as follows: | Structure
ID | Underg
Storag | ground
ge (m³) | | Storage
1 ³) | Total Storage (m³) | | | | | | |------------------|-------------------|-------------------|-------------------|-----------------------------|--------------------|----------|--|--|--|--| | | Required (100-YR) | Provided | Required (100-YR) | Provided | Required (100-YR) | Provided | | | | | | CBMH1* | 13 | 13 | 8 | 22 | 21 | 35 | | | | | | CBMH5 | 8 | 8 | 25 | 22 | 33 | 30 | | | | | | TOTAL | 21 | 21 | 33 | 44 | 54 | 65 | | | | | | CBMH2* | - | - | 14 | 15 | 14 | 15 | | | | | | TOTAL | - | - | 14 | 15 | 14 | 15 | | | | | | MH7* | 17 | 17 | - | - | 17 | 17 | | | | | | CBMH4 | 10 | 10 | 17 | 26 | 27 | 36 | | | | | | CBMH7 | - | - | 36 | 35 | 36 | 36 | | | | | | CB1 | - | - | 39 | 39 | 39 | 39 | | | | | | TOTAL | 27 | 27 | 92 | 100 | 119 | 128 | | | | | | CBMH3* | 11 | 11 | 41 | 39 | 52 | 50 | | | | | | CBMH8 | - | - | 20 | 36 | 20 | 36 | | | | | | TOTAL | 11 | 11 | 61 | 75 | 67 | 86 | | | | | | CBMH6* | 8 | 8 | 38 | 44 | 46 | 52 | | | | | | TOTAL | 8 | 8 | 38 | 44 | 46 | 52 | | | | | | TOTAL
OVERALL | 67 | 67 | 239 | 278 | 300 | 346 | | | | | ^{*}Structure with ICD. #### 7.4 Hydrologic & Hydraulic Modeling The City of Ottawa Sewer Design Guidelines (October 2012) require hydrologic modeling for all dual drainage systems. The performance of the proposed storm drainage system for Block 21 was evaluated using the PCSWMM hydrologic/hydraulic modeling software. #### Design Storms The hydrologic analysis was completed using the following synthetic design storms and historical storms. The IDF parameters used to generate the design storms were taken from the Sewer Design Guidelines (October 2012). #### 3-Hour Chicago Storms: 25mm 3-hr Chicago storm 2-year 3-hr Chicago storm 5-year 3-hr Chicago storm 100-year 3-hr Chicago storm 100-year (+20%) 3-hr Chicago storm #### 12-Hour SCS Storms: 2-year 12-hr SCS storm 5-year 12-hr Chicago storm 100-year 12-hr Chicago storm 100-year (+20%) 12-hour SCS storm The 3-hour Chicago distribution generates the highest peak flows for both the minor and major systems and was determined to be the critical storm distribution for the design of the storm drainage system. The proposed drainage system has also been stress tested using a 3-hour Chicago design storm that has a 20% higher intensity and total volume compared to the 100-year event. #### Model Development The PCSWMM model accounts for both minor and major system flows (dual drainage), including the routing of flows through the storm sewer network (minor system), and overland along the road network (major system). The results of the analysis were used to: - Ensure no ponding in the paved areas following a 2-year event; - Calculate the storm sewer hydraulic grade line for the 100-year storm event; - Evaluate overland flow depths and ponding volumes in the paved areas during the 100year event; and - Determine the total major and minor system runoff from the site to Via Mattino Way. The model is capable of accounting for both static and dynamic storage within the private roadways and parking areas, including the overland flow across all high points and capture/bypass curves for inlets on continuous grade. The 100-year flow depths computed by the model represent the total (static + dynamic) ponding depths at low points for areas in road sags. #### Storm Drainage Area Plan & Subcatchment Parameters The Block 21 development has been divided into subcatchments based on the drainage areas tributary to each inlet of the proposed storm sewer system. The catchment areas are shown on the Storm Drainage Area Plan provided as drawing 112021-10-STM in Appendix C. The hydrologic parameters for each subcatchment were developed based on the Site Plan (Figure 2) and the Storm Drainage Area Plan specified above. Subcatchment parameters are outlined in Table 7-2. | Area ID | Catchment
Area | Runoff
Coefficient | Percent
Impervious | Zero
Imperv. | Flow
Length | Equivalent
Width | Average
Slope | |---------|-------------------|-----------------------|-----------------------|-----------------|----------------|---------------------|------------------| | | (ha) | (C) | (%) | (%) | (m) | (m) | (%) | | 1 | 0.08 | 0.79 | 84% | 25% | 25 | 32 | 1% | | 2 | 0.14 | 0.75 | 79% | 30% | 25 | 52 | 1% | | 3 | 0.09 | 0.74 | 77% | 40% | 20 | 45 | 1% | | 4 | 0.12 | 0.76 | 80% | 45% | 20 | 60 | 1% | | 5 | 0.08 | 0.74 | 77% | 30% | 20 | 40 | 1% | | 6 | 0.11 | 0.72 | 74% | 25% | 20 | 55 | 1% | | 7 | 0.15 | 0.71 | 73% | 40% | 20 | 75 | 1% | | 8 | 0.13 | 0.69 | 70% | 30% | 20 | 65 | 1% | | 9 | 0.05 | 0.34 | 20% | 25% | 15 | 47 | 1% | | 10 | 0.04 | 0.70 | 71% | 10% | 15 | 27 | 1% | | TOTAL | 1.00 ha | 0.71 | 73% | - | - | - | - | **Table 7-2: Subcatchment Model Parameters** # Infiltration Infiltration losses for all catchment areas were modeled using Horton's infiltration equation, which defines the infiltration capacity of the soil over the duration of a precipitation event using a decay function that ranges from an initial maximum infiltration rate to a minimum rate as the storm progresses. The default values for the Sewer Design Guidelines were used for all catchments. Horton's Equation: Initial infiltration rate: $f_o = 76.2 \text{ mm/hr}$ $f(t) = f_c + (f_o - f_c)e^{-k(t)}$ Final infiltration rate: $f_c = 13.2 \text{ mm/hr}$ Decay Coefficient: k = 4.14/hr #### **Depression Storage** The default values for depression storage in the Sewer Design Guidelines were used for all catchments. Rooftops were assumed to provide no depression storage (Zero Imperv. Parameter). Depression Storage (pervious areas): 4.67 mm Depression Storage (impervious areas): 1.57 mm #### Equivalent Width Equivalent Width' refers to the width of the sub-catchment flow path. This parameter is calculated as described in the Sewer Design Guidelines, Section 5.4.5.6. The flow paths used to calculate the equivalent widths are shown on the PCSWMM schematics provided in **Appendix B**. # Impervious Values Impervious values for each subcatchment area were calculated based on the proposed Site Plan (**Figure 2**) and correspond to the Runoff Coefficients using the following equation: $$\%imp = \frac{C - 0.2}{0.7}$$ # 7.5 Results of Hydrologic / Hydraulic Analysis The model was used to evaluate the performance of the proposed storm drainage system for Block 21. #### 7.5.1 Minor System Inflows to the storm sewer were modeled based on the characteristics of each inlet. All the catchbasins in the parking areas are located at low points. Inflows to the storm sewer are based on the ICD specified for the inlet and the maximum depth of ponding. ICDs have been sized to limit the outlet peak flows to the allowable release rate. Details are outlined as follows in **Table 6.4**. ICDs information is indicated on the General Plan of Services (drawing 112021-10-GP). Table 7-3: Inlet Control Devices & Design Flows | | | | | ICD Size | & Inlet Rate | | | |-----------------|-------------------------------|-------
-------------------|--------------------------------|---------------------------------|---------------------------------|-----------------------------------| | Structure
ID | ICD Type | T/G | Orifice
Invert | 100-year
Head on
Orifice | 2-year
Orifice
Peak Flow* | 5-year
Orifice Peak
Flow* | 100-year
Orifice Peak
Flow* | | | | (m) | (m) | (m) | (L/s) | (L/s) | (L/s) | | CBMH1 | Tempest
LMF
(Vortex 78) | 92.95 | 90.70 | 2.38 | 5.8 | 7.5 | 8.1 | | CBMH2 | Tempest
LMF
(Vortex 70) | 92.95 | 91.19 | 2.02 | 3.9 | 5.4 | 6.0 | | СВМН3 | Tempest
LFM
(Vortex 86) | 92.60 | 90.48 | 2.37 | 8.9 | 9.8 | 9.8 | | СВМН6 | Tempest
LMF
(Vortex 72) | 92.95 | 90.70 | 2.53 | 6.3 | 6.9 | 7.1 | | MH7 | Tempest
LMF
(Vortex 69) | 93.21 | 90.74 | 2.46 | 5.3 | 6.2 | 6.4 | ^{*}PCSWMM model results for a 3-hour Chicago storm distribution. #### 7.5.2 Major System The major system network was evaluated using the PCSWMM model to ensure that the ponding depths conform to City standards. A summary of ponding depths at each inlet for the 2-year, 5-year, 100-year and 100-year (+20%) events are provided in **Appendix B**. The maximum static and dynamic ponding depths are less than 0.35m during all events, thereby meeting the major system criteria. In addition, there is no cascading flow over the highpoint during the 100-year storm event. Table 7-4: Overland Flow Results (100-year, 3-hour Chicago storm event) | | T/G | Max. Stati | c Ponding | 100-yr Event | | | | | | | | |-----------|-------|------------|-------------|--------------|-------|-----------|--------------|--|--|--|--| | Structure | 1/G | Elev. | Spill Depth | Elev. | Depth | Cascading | Cascade | | | | | | | (m) | (m) | (m) | (m) | (m) | Flow? | Depth
(m) | | | | | | CB1 | 92.95 | 93.20 | 0.25 | 93.20 | 0.25 | N | 0.00 | | | | | | CBMH1 | 92.95 | 93.17 | 0.22 | 93.08 | 0.13 | N | 0.00 | | | | | | CBMH2 | 92.95 | 93.22 | 0.27 | 93.20 | 0.25 | N | 0.00 | | | | | | СВМН3 | 92.60 | 92.85 | 0.25 | 92.85 | 0.25 | N | 0.00 | | | | | | СВМН4 | 92.95 | 93.25 | 0.30 | 93.20 | 0.25 | N | 0.00 | | | | | | CBMH5 | 92.85 | 93.07 | 0.22 | 93.08 | 0.23 | Υ | 0.01 | | | | | | СВМН6 | 92.95 | 93.25 | 0.30 | 93.23 | 0.28 | N | 0.00 | | | | | | СВМН7 | 92.95 | 93.20 | 0.25 | 93.20 | 0.25 | N | 0.00 | | | | | | CBMH8 | 92.60 | 92.92 | 0.32 | 92.85 | 0.25 | N | 0.00 | | | | | An expanded table of the ponding depths at low points in the roadway (including the stress-test event) is provided in **Appendix B**. Based on these results, the proposed storm drainage system will not experience any adverse flooding even with a 20% increase to the 100-year event. #### 7.5.3 Hydraulic Grade Line The results of the analysis were used to determine if there would be any surcharging from the storm sewer system during the 100-year storm event. **Appendix B** provides a summary of the 100-year HGL elevation at each storm manhole within the proposed development, as well as a summary of the HGL elevations for a 20% increase (rainfall intensity and total precipitation) in the 100-year design event. The results of the HGL analysis and the stress testing indicates that the storm sewer does not surcharge during the 100-year event and 100-year+20% storm event The results of the HGL analysis were used to ensure that a minimum freeboard of 0.30m is provided between the 100-year HGL and the designed underside of footing elevations. The 100-year HGL elevations at each storm manhole with respect to the lowest adjacent underside of footing elevation are provided in **Table 7-5**. Table 7-5: 100-year HGL Elevations | Manhole ID | MH Invert
Elevation | T/G
Elevation | HGL Elevation
(100yr) | Design USF | Clearance
(100yr) | |----------------|------------------------|------------------|--------------------------|------------|----------------------| | | (m) | (m) | (m) | (m) | (m) | | HGL - Block 21 | | | | | | | MH01 | 90.01 | 92.75 | 90.68 | 91.51 | 0.83 | | MH03 | 90.19 | 93.40 | 90.69 | 91.51 | 0.82 | | MH05 | 90.32 | 93.23 | 90.69 | 91.53 | 0.84 | | MH07 | 90.74 | 93.21 | 90.79 | 91.70 | 0.91 | | MH09 | 90.52 | 93.23 | 90.70 | 91.74 | 1.04 | | EX MH122* | 89.77 | 92.85 | 90.68 | 91.03 | 0.35 | ^{*}Downstream 'fixed' outfall condition set at 100-year HGL within EX MH122 (90.68m). Initial depths based on fixed outfall elevation of 90.68m. An expanded table showing the results of the stress test (100-year +20% event) and the HGL elevations is provided in **Appendix B**. The stress test indicates that the HGL elevations will be below the USF elevations for this event. #### 7.5.4 Peak Flows The overall release rates from the ICDs were added to determine the overall release rate from the site. The results of this analysis indicate that the allowable release rates will be met for each storm event. Refer to **Table 7-6** for the modelled peak flows for each storm event. The results of the PCSWMM analysis indicate that outflows from the proposed development will not exceed the allowable release rate for all storm events. **Table 7-6: Summary of Peak Flows** | Design Event | Allowable
Release Rate
(L/s) | Controlled Minor System
Release Rate
(L/s) | Major System
Release Rate
(L/s) | |-----------------|------------------------------------|--|---------------------------------------| | 2-year | | 29.4 | 0 | | 5-year | 37.6 | 35.6 | 0 | | 100-year | | 37.4 | 0 | | 100-year (+20%) | - | 37.6 | 102.9 | ^{*}PCSWMM Model results for a 3-hr Chicago storm distribution; normal outfall condition. #### 8.0 TEMPORARY FLOW CONTROLS DURING CONSTRUCTION As specified in the City of Ottawa Sewer Design Guidelines (October, 2012), temporary flow controls are required during construction. This is to prevent the possibility of new incomplete sewer infrastructure from causing excessive flows within the existing / operational downstream sewer system. # 8.1 Temporary Sanitary Flow Controls During Construction During construction the incomplete sanitary sewer system will require a temporary flow control within the most downstream maintenance hole from the site (SAN MH-8). As the total sanitary flows from the proposed development are estimated to be 2.5 L/s a Tempest LMF ICD (Vortex – 45) will be required. The design head for the Tempest LMF ICD (Vortex – 45) is 2.0m, as per the Ottawa Sewer Design Guidelines, as the depth in SAN MH-8 is 3.8m. Supporting correspondence and documentation for the Tempest LMF ICD is provided in **Appendix B**. #### 9.0 CONCLUSIONS AND RECOMMENDATIONS The report conclusions are as follows: - 1) The proposed storm system will control post-development flow to the allowable release rate of 37.5 L/s/ha. All runoff volume from the 100-year storm event is stored on site using underground and above ground storage. Underground storage will be provided using a series of 600mm diameter storm sewers and 1200mm diameter structures. The Longfields Davidson Heights Stormwater Management Facility provides water quality control. - 2) The proposed sanitary sewer conforms to City design criteria and provides a gravity outlet for the development site. There is sufficient capacity in the downstream sanitary sewers to accommodate the flows outletting to the existing Mattino Way sanitary sewers. - 3) Connection to the existing watermains in Mattino Way will provide municipal water service to the development. - 4) There is adequate fire protection to the proposed development, in accordance with the Fire Underwriter's Survey. - 5) The proposed infrastructure (sanitary, storm and water) complies with City of Ottawa design standards. # 10.0 CLOSURE This report is respectfully submitted for review and approval. Please contact the undersigned should you have questions or require additional information. Sincerely, ### **NOVATECH** Prepared By: Lucas Wilson, P.Eng. Project Manager Reviewed By: Mark Bissett, P.Eng. Senior Project Manager # **APPENDIX A: Design Sheets** Storm Sewer Design Sheet (Rational Method) Sanitary Sewer Design Sheets Excerpt from Longfields Central Site Servicing Report (Sanitary Design Sheet) Watermain Boundary Conditions Watermain Boundary Conditions Verification Correspondence Watermain Modelling Fire Flow Calculations Figure 1: Fire Hydrant Coverage Plan # Block 21, Mattino Way: Storm Sewer Design Sheet (Rational Method) | LO | CATION | | | | | AREA | | | | | | | FL | .OW | | PROPOSED SEWER | | | | | | | | | |----------------|--------------|------------|--------------|--------------|---------------------|---------------------|--------------------|--------------------|------------|-----------------------------------|-------------------|------------------|-----------------------|-------|---------------------------------|------------------------|-------|------|-------|--------|----------|-----------------------|--------------------|---------| | Location | From
Node | To
Node | Hard Surface | Soft Surface | Towns Front
Yard | Towns
Front Yard | Towns
Rear Yard | Towns
Rear Yard | Total Area | Weighted
Runoff
Coefficient | Indivi
2.78 AR | Accum
2.78 AR | Time of Concentration | | ain Intensity (mm/hr) 5yr 10yr | Total Peak
Flow (Q) | Pipe | Size | Grade | Length | Capacity | Full Flow
Velocity | Time
of
Flow | Q/Qfull | | | | | 0.90 | 0.20 | Area | С | Area | С | (ha) | | | | | | (L/s) | (L/s) | Туре | (mm) | (%) | (m) | (l/s) | (m/s) | (min.) | (%) | | Block 21 | 0.26 | 0.08 | | | | | 0.34 | 0.74 | 0.70 | 0.70 | 10.00 | 76.81 | 53.4 | | | | | | | | | | | 2, 3, 6 | CBMH4 | 7 | | | | | | | 0.00 | | 0.00 | 0.00 | 10.00 | | 0.0 | 53.4 | CONC | 600 | 0.20 | 50.4 | 286.5 | 0.98 | 0.86 | 18.6% | | | | | | | | | | | 0.00 | | 0.00 | 0.00 | 10.00 | | 0.0 | | | | | | | | | | | 0.0.0 | 7 | 2 | | | | | | | 0.00 | | 0.00 | 0.70 | 10.86 | 73.67 | 51.2 | 51.2 | PVC | 200 | 4.00 | 39.7 | 100.9 | 1.38 | 0.40 | EO 00/ | | 2, 3, 6 | /
 3 | | | | | | | 0.00 | | 0.00 | 0.00 | 10.86
10.86 | | 0.0 | 51.2 | PVC | 300 | 1.00 | 39.7 | 100.9 | 1.38 | 0.48 | 50.8% | | | | | | | | | | | 0.00 | | 0.00 | 0.00 | 10.00 | | 0.0 | | | | | | | | | | | | | | 0.20 | 0.09 | | | | | 0.29 | 0.68 | 0.55 | 0.55 | 10.00 | 76.81 | 42.3 | | | | | | | | | | | 1, 4, 9, 10 | 9 | 5 | | | | | | | 0.00 | | 0.00 | 0.00 | 10.00 | | 0.0 | 42.3 | PVC | 375 | 0.25 | 50.3 | 91.5 | 0.80 | 1.05 | 46.2% | | | | | | | | | | | 0.00 | | 0.00 | 0.00 | 10.00 | | 0.0 | | | | | | | | | | | _ | _ | • | 0.11 | 0.04 | | | | | 0.15 | 0.71 | 0.30 | 0.85 | 11.05 | 73.01 | 61.9 | 24.0 | 00110 | 450 | 0.05 | 00.7 | 4.40.7 | 0.04 | 0.50 | 44.00/ | | / | 5 | 3 | | | | | | | 0.00 | | 0.00 | 0.00 | 11.05 | | 0.0 | 61.9 | CONC | 450 | 0.25 | 28.7 | 148.7 | 0.91 | 0.53 | 41.6% | | | | | | | | | | | 0.00 | | 0.00 | 0.00 | 11.05 | | 0.0 | 0.00 | | 0.00 | 1.54 | 11.57 | 71.25 | 109.9 | | | | | | | | | | | | 3 | 1 | | | | | | | 0.00 | | 0.00 | 0.00 | 11.57 | | 0.0 | 109.9 | CONC | 450 | 0.25 | 43.4 | 148.7 | 0.91 | 0.80 | 73.9% | | | | | | | | | | | 0.00 | | 0.00 | 0.00 | 11.57 | | 0.0 | | | | | | | | | | | | | | 0.15 | 0.06 | | | | | 0.21 | 0.71 | 0.41 | 1.96 | 12.37 | 68.76 | 134.5 | | | | | | | | | | | 5, 8 | 1 | EX122 | | | | | | | 0.00 | | 0.00 | 0.00 | 12.37 | | 0.0 | 134.5 | CONC | 525 | 0.25 | 37.2 | 224.3 | 1.00 | 0.62 | 59.9% | | | | | | | | | | | 0.00 | | 0.00 | 0.00 | 12.37 | | 0.0 | | | | | | | | | | | Longfields Cen | tral | 0.00 | | 0.00 | 0.00 | 10.00 | | 0.0 | | | | | | | | | | | 17, 27 | EX126 | EX124 | | | 0.22 | 0.62 | 0.05 | 0.54 | 0.27 | 0.61 | 0.45 | 0.45 | 10.00 | | 104.19 47.3 | 47.3 | PVC | 300 | 0.40 | 45.0 | 63.8 | 0.87 | 0.86 | 74.2% | | | | | | | | | | | 0.00 | | 0.00 | 0.00 | 10.00 | | 0.0 | 0.00 | | 0.00 | 0.00 | 10.86 | | 0.0 | | | | | | | | | | | 4, 5, 6 | EX124 | EX122 | | | 0.36 | 0.66 | 0.12 | 0.62 | 0.48 | 0.65 | 0.87 | 1.32 | 10.86 | | 99.9 132.0 | 132.0 | CONC | 525 | 0.25 | 92.3 | 224.3 | 1.00 | 1.53 | 58.8% | | | | | | | | | | | 0.00 | | 0.00 | 0.00 | 10.86 | | 0.0 | 0.00 | | 0.00 | 1.96 | 12.99 | 66.96 | 130.9 | | | | | | | | | | | | EX122 | EX120 | | | | | | | 0.00 | | 0.00 | 1.32 | 12.99 | | 90.67 119.8 | 250.8 | CONC | 675 | 0.30 | 18.6 | 480.3 | 1.30 | 0.24 | 52.2% | | | | | | _ | | | | | 0.00 | | 0.00 | 0.00 | 12.99 | | 0.0 | Q = 2.78 AIR WHERE: Q = PEAK FLOW IN LITRES PER SECOND (L/s) A = AREA IN HECTARES (ha) I = RAINFALL INTENSITY IN MILLIMETERS PER HOUR (mm/hr) R = WEIGHTED RUNOFF COEFFICIENT Q = (1/n) A R^(2/3)So^(1/2) WHERE: Q = CAPACITY (L/s) n = MANNING COEFFICIENT OF ROUGHNESS (0.013) $A = FLOW AREA (m^2)$ Project: Block 21 (112021-10) Designed: LRW > Checked: MAB Date: June 16, 2022 # Block 21, Mattino Way - Sanitary Sewer Design Sheet | | AREA | | | | | RESI | DENT | IAL | | | INF | ILTRATIC | N | | PIPE | | | | | | | | |------------|--------|-------|-------|------|--------|-------|-------|----------------|----------------|--------------------|-----------------------|------------------------|--------------------------|------------------------|--------------|--------------|---------------|----------------|----------------------------|-------------------------|----------------------------|------------| | | | | Tow | /ns | Apartm | ents | | | | | | | | | | | | | | | | | | ID | From | То | Units | Pop. | Units | Pop. | Pop. | Accum.
Pop. | Peak
Factor | Peak Flow
(l/s) | Total
Area
(ha) | Accum.
Area
(ha) | Infilt.
Flow
(I/s) | Total
Flow
(I/s) | Size
(mm) | Slope
(%) | Length
(m) | Capacity (I/s) | Full Flow
Vel.
(m/s) | Actual
Vel.
(m/s) | Q/Q _{full}
(%) | d/D | | Block | k 21 | 6 | 4 | 0 | 0.0 | 88 | 184.8 | 184.8 | 184.8 | 3.5 | 2.1 | 0.86 | 0.86 | 0.3 | 2.4 | 200 | 0.65 | 73.0 | 27.6 | 0.85 | 0.43 | 8.7% | 0.216 | | | 4 | 2 | 0 | 0.0 | 0 | 0.0 | 0.0 | 184.8 | 3.5 | 2.1 | 0.02 | 0.88 | 0.3 | 2.4 | 200 | 0.65 | 43.4 | 27.6 | 0.85 | 0.43 | 8.7% | 0.077 | | | 2 | EX119 | 0 | 0.0 | 0 | 0.0 | 0.0 | 184.8 | 3.5 | 2.1 | 0.15 | 1.03 | 0.3 | 2.5 | 200 | 0.65 | 40.8 | 27.6 | 0.85 | 0.43 | 8.9% | 0.077 | | Via Matti | no Way | EX121 | EX119 | 24 | 64.8 | 0 | 0.0 | 64.8 | 64.8 | 3.6 | 0.8 | 0.70 | 0.70 | 0.2 | 1.0 | 200 | 1.00 | 84.1 | 34.2 | 1.06 | 0.40 | 2.9% | 0.108 | | | EX119 | EX117 | 4 | 10.8 | 0 | 0.0 | 10.8 | 260.4 | 3.5 | 2.9 | 0.10 | 0.80 | 0.3 | 3.2 | 200 | 0.35 | 18.2 | 20.2 | 0.62 | 0.38 | 15.8% | 0.297 | | Dooises Do | | | | | | - | | | | Denulation | D !! | 1 | | | | | | l . | 1 | D | DII- 04 / | 112021 10\ | Design Parameters: Population Density: Project: Block 21 (112021-10) Avg Flow/Person = 280 I/day ppl/unit units/net ha Comm./Inst. Flow = 35000 I/ha/day Apartment (2 Bedroom) 2.10 90 Infiltration = 0.33 I/s/ha Singles 3.40 Pipe Friction n = 0.013 Towns 2.70 60 Residential Peaking Factor = Harmon Equation (max 4, min 2) Designed: LRW Checked: MAB Date: June 16, 2020 | | | | | | | | | | SANIT | ARY SI | EWER D | ESIGN S | HEET | | | | | | | | | | | |----------------|---------|-----|-------|------------------|------|---------|----------------|----------------|-----------------|------------------|-----------------|-----------------|------------------------|--------------------------|------------------------|-----|-----------|------------|-------------------|-------------------------|----------------------------|---------------------|-------------------------| | | AREA | | | | RES | SIDENTI | AL | | | | CI | INF | ILTRATIO | N | | | | | | PIPE | | | | | AREA ID | From | То | Towns | Stacked
Towns | Java | Pop. | Accum.
Pop. | Peak
Factor | Peak Flow (I/s) | C/I Area
(Ha) | Peak Flow (I/s) | Total Area (ha) | Accum.
Area
(ha) | Infilt.
Flow
(I/s) | Total
Flow
(I/s) | | Slope (%) | Length (m) | Capacity
(l/s) | Full Flow
Vel. (m/s) | Q/Q _{full}
(%) | d/D _{full} | v/V _{full} (%) | | 645 Longfields | s Drive | C1 | C32 | 109 | 16 | | | 43.2 | 43.2 | 4.00 | 0.70 | | | 0.52 | 0.52 | 0.15 | 0.85 | 200 | 2.60 | 65.2 | 55.17 | 1.70 | 1.5% | 0.08 | 33.0% | A20 | 111 | 109 | 4 | | | 10.8 | 10.8 | 4.00 | 0.18 | | | 0.20 | 0.20 | 0.06 | 0.23 | 200 | 2.00 | 24.9 | 48.39 | 1.49 | 0.5% | 0.00 | 0.0% | <u> </u> | | | A1 | 109 | 107 | 10 | | | 27.0 | 81.0 | 4.00 | 1.31 | | | 0.29 | 1.01 | 0.28 | 1.60 | 200 | | 55.8 | 24.19 | 0.75 | 6.6% | 0.16 | 54.0% | | A2 | 107 | 105 | 10 | | | 27.0 | 108.0 | 4.00 | 1.75 | | | 0.27 | 1.28 | 0.36 | 2.11 | 200 | | 35.4 | 25.38 | 0.78 | 8.3% | 0.19 | 60.0% | | A3 | 105 | 103 | 6 | | | 16.2 | 124.2 | 4.00 | 2.01 | | | 0.17 | 1.45 | 0.41 | 2.42 | 200 | 1.75 | 41.8 | 45.26 | 1.40 | 5.3% | 0.16 | 54.0% | / | | | | A5 | 121 | 119 | 25 | | | 67.5 | 67.5 | 4.00 | 1.09 | | | 0.70 | 0.70 | 0.20 | 1.29 | 200 | 1.00 | 84.1 | 34.22 | 1.06 | 3.8% | 0.12 | 45.0% | | A6,A7 | 119 | 117 | 2 | | 80 | 149.4 | 216.9 | 4.00 | 3.51 | | | 1.10 | 1.80 | 0.50 | 4.02 | 200 | 0.35 | 18.2 | 20.24 | 0.62 | 19.9% | 0.30 | 78.0% | | A11,A21 | 117 | 115 | 1 | | | 2.7 | 219.6 | 4.00 | 3.56 | 0.20 | 0.17 | 0.28 | 2.08 | 0.58 | 4.31 | | 0.35 | 28.5 | 20.24 | 0.62 | 21.3% | 0.30 | 78.0% | | A12 | 115 | 113 | 3 | | | 8.1 | 227.7 | 4.00 | 3.69 | | | 0.09 | 2.17 | 0.61 | 4.30 | - | 0.35 | 18.8 | 20.24 | 0.62 | 21.2% | 0.30 | 78.0% | | A4 | 113 | 103 | 21 | | | 56.7 | 284.4 | 4.00 | 4.61 | | | 0.57 | 2.74 | 0.77 | 5.38 | 200 | 0.35 | 75.5 | 20.24 | 0.62 | 26.6% | 0.34 | 83.0% | | 140 144 | 400 | 404 | 44 | 40 | | 50.7 | 105.0 | 0.00 | 7.50 | | | 0.50 | 4.74 | 4.00 | 0.04 | 000 | 0.05 | 07.0 | 00.04 | 0.00 | 40.70/ | | 00.00/ | | A13,A14 | 103 | 101 | 11 | 10 | | 56.7 | 465.3 | 3.99 | 7.52 | | | 0.52 | 4.71 | 1.32 | 8.84 | 200 | 0.35 | 67.9 | 20.24 | 0.62 | 43.7% | 0.44 | 96.0% | **Longfields Central** Design Parameters: Infiltration = Connection to EBHT Avg Flow/Person = 350 I/day 0.28 l/s/ha 0.0 465.3 3.99 0.0 508.5 3.97 8.18 7.52 Residential Peaking Factor = Harmon Equation (max 4, min 2) MS3 0.013 Pipe Friction n = 50000 I/ha/day Comm./Inst. Flow = Peaking Factor Comm./Inst. = 1.5 101 Existing in Mountshannon Drive Population Density: 0.00 2.7 ppl/unit Towns Stacked Towns 2.7 ppl/unit Java 1.8 ppl/unit 4.71 5.17 1.32 1.45 300 | 0.32 | 15.5 | 57.07 20.24 0.62 0.67 0.78 43.7% 200 0.35 13.8 Project: 112021 Designed: LRW Checked: MAB Date: May 16, 2014 0.27 73.0% 0.44 96.0% # **Boundary Conditions for Longfields Block 21** # **Information Provided:** Date provided: Oct 2019 | | Demand | | |----------------------|--------|-----| | Scenario | L/min | L/s | | Average Daily Demand | 36 | 0.6 | | Maximum Daily Demand | 90 | 1.5 | | Peak Hour | 198 | 3.3 | | Fire Flow Demand #1 | 12000 | 200 | | Fire Flow Demand #2 | 15000 | 250 | # **Location:** #### **Results** #### Connection 1 - Boulder Way | | Existing | Zone 2W | Future Zone 3C | | | | | | |----------------------|----------|-----------------------------|----------------|-----------------------------|--|--|--|--| | Demand Scenario | Head (m) | Pressure ¹ (psi) | Head (m) | Pressure ¹ (psi) | | | | | | Maximum HGL | 133.0 | 57.8 | 147.8 | 78.8 | | | | | | Peak Hour | 125.9 | 47.9 | 146.2 | 76.6 | | | | | | Max Day plus Fire #1 | 117.4 | 35.7 | 138.6 | 65.9 | | | | | | Max Day plus Fire #2 | 112.7 | 29.1 | 134.5 | 60.0 | | | | | ¹ Ground Elevation = 92.3 m #### Connection 2 - Mountshannon | | Existing | Zone 2W | Future Zone 3C | | | | |----------------------|----------|--------------------------------------|----------------|-----------------------------|--|--| | Demand Scenario | Head (m) | Head
(m) Pressure ¹ (psi) | | Pressure ¹ (psi) | | | | Maximum HGL | 133.0 | 58.2 | 147.8 | 79.3 | | | | Peak Hour | 126.0 | 48.2 | 146.3 | 77.1 | | | | Max Day plus Fire #1 | 124.3 | 45.9 | 145.9 | 76.6 | | | | Max Day plus Fire #2 | 123.2 | 44.3 | 145.4 | 75.9 | | | ¹ Ground Elevation = 92 m #### **Connection 3 - Campanale** | | Existing | Zone 2W | Future Zone 3C | | | | |----------------------|----------|-----------------------------|----------------|-----------------------------|--|--| | Demand Scenario | Head (m) | Pressure ¹ (psi) | Head (m) | Pressure ¹ (psi) | | | | Maximum HGL | 133.0 | 56.0 | 147.8 | 77.0 | | | | Peak Hour | 125.9 | 46.0 | 146.6 | 75.4 | | | | Max Day plus Fire #1 | 119.4 | 36.7 | 141.6 | 68.2 | | | | Max Day plus Fire #2 | 115.8 | 31.6 | 138.9 | 64.4 | | | ¹ Ground Elevation = 93.6 m #### Notes: - 1) Confirm pressure reducing valves are not required once the pressure zone is reconfigured in 2020. - 2) A 203 mm watermain was inserted in the model as shown on page 1. - 3) Use the HGLs provided above to interpolate results for fires ranging from 200 l/s to 250 l/s, respectively. #### Disclaimer The boundary condition information is based on current operation of the city water distribution system. The computer model simulation is based on the best information available at the time. The operation of the water distribution system can change on a regular basis, resulting in a variation in boundary conditions. The physical properties of watermains deteriorate over time, as such must be assumed in the absence of actual field test data. The variation in physical watermain properties can therefore alter the results of the computer model simulation. Fire Flow analysis is a reflection of available flow in the watermain; there may be additional restrictions that occur between the watermain and the hydrant that the model cannot take into account. | | | Block 2
Water Der | | | | | |------------|------|----------------------|------------|-----------------------|-----------------------|---------------------| | | Area | | | Average Day
Demand | Maximum Day
Demand | Peak Hour
Demand | | | (ha) | Units | Population | | (L/s) | (L/s) | | Apartments | N/A | 88 | 185 | 0.599 | 1.497 | 3.294 | | Total | 0.00 | 88 | 185 | 0.599 | 1.497 | 3.294 | # **Water Demand Parameters** | Apartments (2 Bedroom) | 2.1 | ppl/unit | |------------------------|-----------|-----------| | Residential Demand | 280 | L/c/day | | Residential Max Day | 2.5 | x Avg Day | | Residential Peak Hour | 2.2 | x Max Day | | Residential Fire Flow | 200, 217, | I/s | | Residential Fire Flow | 233, 250 | L/S | # Block 21 - Watermain Demand | Node | Apartments | Total Population | Average Day
Residential Demand
(L/s) | Maximum Day
Residential Demand
(L/s) | Peak Hour
Residential Demand
(L/s) | Fire
Flow
(L/s) | |--------------------|------------|------------------|--|--|--|-----------------------| | HYD1 | | 0 | 0.000 | 0.000 | 0.000 | 233 | | HYD2 | 20 | 42 | 0.136 | 0.340 | 0.749 | 250 | | HYD3 | | 0 | 0.000 | 0.000 | 0.000 | 250 | | NODE1 | 68 | 143 | 0.463 | 1.157 | 2.545 | N/A | | Total | 88 | 185 | 0.599 | 1.497 | 3.294 | | | Water Demand Param | eters | | | | | · | | Singles | 3.4 | ppl/unit | Residential Max Day | | 2.5 | x Avg Day | | Apartments | 2.1 | ppl/unit | Residential Peak Hour | | 2.2 | x Max Day | | Residential Demand | 280 | L/c/day | Residential Fire Flow | | 200 - 250 | L/s | # Block 21 - Watermain Analysis | Network Table - Nodes | s - (Peak Hour) | | | | | | | |-----------------------|-----------------|----------|-----------|----------|----------|----------|-----| | | Elevation | Demand | Head | Pressure | Pressure | Pressure | | | Node ID | m | LPS | m | m | kPa | psi | | | Junc HYD1 | 92.91 | 0 | 146.3 | 53.39 | 523.76 | 75.96 | | | Junc HYD2 | 93.27 | 0.75 | 146.3 | 53.03 | 520.22 | 75.45 | | | Junc HYD3 | 93.04 | 0 | 146.3 | 53.26 | 522.48 | 75.78 | | | Junc T1 | 93.32 | 0 | 146.3 | 52.98 | 519.73 | 75.38 | | | Junc NODE1 | 93.27 | 2.55 | 146.3 | 53.03 | 520.22 | 75.45 | | | Resvr RES1 | 146.3 | -0.37 | 146.3 | 0 | 0.00 | 0.00 | | | Resvr RES2 | 146.6 | -18.23 | 146.6 | 0 | 0.00 | 0.00 | | | Network Table - Links | - (Peak Hour) | | | | | | | | | Length | Diameter | Roughness | Flow | Velocity | Headloss | Fri | | Link ID | m | mm | | LPS | m/s | m/km | Fa | | Pipe P1 | 40 | 204 | 110 | 3.07 | 0.09 | 0.09 | 0. | | Pipe P2 | 31 | 204 | 110 | 3.07 | 0.09 | 0.09 | 0. | | Pipe P3 | 39 | 204 | 110 | 0.75 | 0.02 | 0.01 | 0. | | Pipe P4 | 50 | 204 | 110 | 2.32 | 0.07 | 0.05 | 0. | | Pipe P5 | 51 | 204 | 110 | -0.23 | 0.01 | 0.00 | 0 | | Pipe P6 | 72 | 204 | 110 | -0.23 | 0.01 | 0.00 | 0 | | Network Table - Nodes | s - (Max Pressure Check | - Future Zone C3) | | | | | |-----------------------|-------------------------|-------------------|-------|----------|----------|----------| | | Elevation | Demand | Head | Pressure | Pressure | Pressure | | Node ID | m | LPS | m | m | kPa | psi | | Junc HYD1 | 92.91 | 0 | 147.8 | 54.89 | 538.47 | 78.10 | | Junc HYD2 | 93.27 | 0.14 | 147.8 | 54.53 | 534.94 | 77.59 | | Junc HYD3 | 93.04 | 0 | 147.8 | 54.76 | 559.07 | 81.09 | | Junc CAP1 | 93.54 | 0.11 | 147.8 | 54.26 | 532.29 | 77.20 | | Junc T1 | 93.32 | 0 | 147.8 | 54.48 | 534.45 | 77.52 | | Junc NODE1 | 93.27 | 0.35 | 147.8 | 54.53 | 534.94 | 77.59 | | Resvr RES1 | 147.8 | -0.96 | 147.8 | 0 | 0.00 | 0.00 | | Resvr RES2 | 147.8 | -0.87 | 147.8 | 0 | 0.00 | 0.00 | | Network Table - Links - | (Max Pressure Check | k - Future Zone 3C) | | | | | | |-------------------------|---------------------|---------------------|-----------|-------|----------|----------|----------| | | Length | Diameter | Roughness | Flow | Velocity | Headloss | Friction | | Link ID | m | mm | | LPS | m/s | m/km | Factor | | Pipe P1 | 40 | 204 | 110 | -0.34 | 0.01 | 0.00 | 0.061 | | Pipe P2 | 31 | 204 | 110 | -0.34 | 0.01 | 0.00 | 0.055 | | Pipe P3 | 39 | 204 | 110 | -0.14 | 0.00 | 0.00 | 0.055 | | Pipe P4 | 50 | 204 | 110 | -0.10 | 0.01 | 0.00 | 0.075 | | Pipe P5 | 51 | 204 | 110 | 0.26 | 0.01 | 0.00 | 0.058 | | Pipe P6 | 72 | 204 | 110 | -0.26 | 0.01 | 0.00 | 0.058 | Network Table - Nodes - (Fire Flow Summary) | Fire | Flow | Minimum Pressure | | | | | |---------|---------------|-------------------|-------------------|------|--|--| | Node | Flow
(L/s) | Pressure
(kPa) | Pressure
(PSI) | Node | | | | BLDG #1 | 233 | 277.43 | 40.24 | HYD2 | | | | BLDG #2 | 217 | 300.48 | 43.58 | HYD2 | | | | BLDG #3 | 217 | 285.96 | 41.48 | HYD2 | | | | BLDG #4 | 250 | 222.79 | 32.31 | HYD2 | | | | BLDG #5 | 200 | 316.18 | 45.86 | HYD2 | | | | Network Table - Nodes | (Max Day + FF 'Bldg 1') | , | | | | | |-----------------------|-------------------------|---------|--------|----------|----------|----------| | | Elevation | Demand | Head | Pressure | Pressure | Pressure | | Node ID | m | LPS | m | m | kPa | psi | | Junc HYD1 | 92.91 | 95 | 122.06 | 29.15 | 285.96 | 41.48 | | Junc HYD2 | 93.27 | 43.34 | 121.55 | 28.28 | 277.43 | 40.24 | | Junc HYD3 | 93.04 | 95 | 122.33 | 29.29 | 287.33 | 41.67 | | Junc T1 | 93.32 | 0 | 122.03 | 28.71 | 281.65 | 40.85 | | Junc NODE1 | 93.27 | 1.16 | 122.04 | 28.77 | 282.23 | 40.93 | | Resvr RES1 | 145.6 | -143.62 | 145.6 | 0 | 0.00 | 0.00 | | Resvr RES2 | 139.8 | -94.4 | 139.8 | 0 | 0.00 | 0.00 | | Network Table - Link | - Links (Max Day + FF 'Bldg 1') | | | | | | | |----------------------|---------------------------------|----------|-----------|---------|----------|----------|----------| | | Length | Diameter | Roughness | Flow | Velocity | Headloss | Friction | | Link ID | m | mm | | LPS | m/s | m/km | Factor | | Pipe P1 | 40 | 204 | 110 | 133.29 | 4.08 | 97.57 | 0.023 | | Pipe P2 | 31 | 204 | 110 | 38.29 | 1.17 | 9.69 | 0.028 | | Pipe P3 | 39 | 204 | 110 | 43.34 | 1.33 | 12.18 | 0.028 | | Pipe P4 | 50 | 204 | 110 | 5.05 | 0.15 | 0.23 | 0.038 | | Pipe P5 | 51 | 204 | 110 | 6.20 | 0.19 | 0.33 | 0.037 | | Pine P6 | 72 | 204 | 110 | -101 20 | 3 10 | 58 59 | 0.024 | | | Elevation | Demand | Head | Pressure | Pressure | Pressure | |------------|-----------|--------|--------|----------|----------|----------| | Node ID | m | LPS | m | m | kPa | psi | | Junc HYD1 | 92.91 | 95 | 124.82 | 31.91 | 313.04 | 45.40 | | Junc HYD2 | 93.27 | 61.34 | 123.9 | 30.63 | 300.48 | 43.58 | | Junc HYD3 | 93.04 | 61 | 125.5 | 32.46 | 318.43 | 46.18 | | Junc T1 | 93.32 | 0 | 124.81 | 31.49 | 308.92 | 44.80 | | lunc NODE1 | 93.27 | 1.16 | 124.81 | 31.54 | 309.41 | 44.88 | | Resvr RES1 | 145.7 | -133.6 | 145.7 | 0 | 0.00 | 0.00 | | Resvr RES2 | 140.7 | -88.42 | 140.7 | 0 | 0.00 | 0.00 | | Network Table - Lin | e - Links (Max Day + FF 'Bldg 2') | | | | | | | |---------------------|-----------------------------------|----------|-----------|--------|----------|----------|----------| | | Length | Diameter | Roughness | Flow | Velocity | Headloss | Friction | | Link ID | m | mm | | LPS | m/s | m/km | Factor | | Pipe P1 | 40 | 204 | 110 | 120.89 | 3.70 | 81.42 | 0.024 | | Pipe P2 | 31 | 204 | 110 | 59.89 | 1.83 | 22.17 | 0.026 | | Pipe P3 | 39 | 204 | 110 | 61.34 | 1.88 | 23.18 | 0.026 | | Pipe P4 | 50 | 204 | 110 | 1.45 | 0.04 | 0.02 | 0.046 | | Pipe P5 | 51 | 204 | 110 | 2.61 | 0.08 | 0.07 | 0.042 | | Pipe P6 | 72 | 204 | 110 | -97.61 | 2.99 | 54.79 | 0.025 | | Network Table - Nodes (Max Day + FF 'Bidg 3') | | | | | | | |---|-----------|---------|--------|----------|----------|----------| | | Elevation | Demand | Head | Pressure | Pressure | Pressure | | Node ID | m | LPS | m | m | kPa | psi | | Junc HYD1 | 92.91 | 61 | 125.16 | 32.25 | 316.37 | 45.89 | | Junc HYD2 | 93.27 | 95.34 | 122.42 | 29.15 | 285.96 | 41.48 | | Junc HYD3 | 93.04 | 61 | 125.26 | 32.22 | 316.08 | 45.84 | | Junc T1 | 93.32 | 0 | 124.47 | 31.15 | 305.58 | 44.32 | | Junc NODE1 | 93.27 | 1.16 | 124.8 | 31.53 |
309.31 | 44.86 | | Resvr RES1 | 145.7 | -133.58 | 145.7 | 0 | 0.00 | 0.00 | | Resvr RES2 | 140.7 | -88.45 | 140.7 | 0 | 0.00 | 0.00 | | Network Table - Links | s (Max Day + FF 'Bldg 3 | i') | | | | | | |-----------------------|-------------------------|----------|-----------|--------|----------|----------|----------| | | Length | Diameter | Roughness | Flow | Velocity | Headloss | Friction | | Link ID | m | mm | | LPS | m/s | m/km | Factor | | Pipe P1 | 40 | 204 | 110 | 125.26 | 3.83 | 86.96 | 0.024 | | Pipe P2 | 31 | 204 | 110 | 64.26 | 1.97 | 25.26 | 0.026 | | Pipe P3 | 39 | 204 | 110 | 95.34 | 2.92 | 52.45 | 0.025 | | Pipe P4 | 50 | 204 | 110 | 31.08 | 0.95 | 6.58 | 0.029 | | Pipe P5 | 51 | 204 | 110 | 32.24 | 0.99 | 7.04 | 0.029 | | Pipe P6 | 72 | 204 | 110 | -93.24 | 2.85 | 50.33 | 0.025 | | | Elevation | Demand | Head | Pressure | Pressure | Pressure | |------------|-----------|---------|--------|----------|----------|----------| | Node ID | m | LPS | m | m | kPa | psi | | Junc HYD1 | 92.91 | 60 | 119.21 | 26.3 | 258.00 | 37.42 | | Junc HYD2 | 93.27 | 95.34 | 115.98 | 22.71 | 222.79 | 32.31 | | Junc HYD3 | 93.04 | 95 | 118.61 | 25.57 | 250.84 | 36.38 | | Junc T1 | 93.32 | 0 | 118.04 | 24.72 | 242.50 | 35.17 | | Junc NODE1 | 93.27 | 1.16 | 118.6 | 25.33 | 248.49 | 36.04 | | Resvr RES1 | 145.4 | -153.49 | 145.4 | 0 | 0.00 | 0.00 | | Resvr RES2 | 138.9 | -101.53 | 138.9 | 0 | 0.00 | 0.00 | | Network Table - Links | s (Max Day + FF 'Bldg 4 | ') | | | | | | |-----------------------|-------------------------|----------|-----------|---------|----------|----------|----------| | | Length | Diameter | Roughness | Flow | Velocity | Headloss | Friction | | Link ID | m | mm | | LPS | m/s | m/km | Factor | | Pipe P1 | 40 | 204 | 110 | 148.84 | 4.55 | 119.68 | 0.023 | | Pipe P2 | 31 | 204 | 110 | 53.84 | 1.65 | 18.20 | 0.027 | | Pipe P3 | 39 | 204 | 110 | 95.34 | 2.92 | 52.45 | 0.025 | | Pipe P4 | 50 | 204 | 110 | 41.50 | 1.27 | 11.24 | 0.028 | | Pipe P5 | 51 | 204 | 110 | 42.66 | 1.31 | 11.83 | 0.028 | | Pipe P6 | 72 | 204 | 110 | -102.66 | 3.14 | 60.15 | 0.024 | | | Elevation | Demand | Head | Pressure | Pressure | Pressure | |------------|-----------|--------|--------|----------|----------|----------| | Node ID | m | LPS | m | m | kPa | psi | | Junc HYD1 | 92.91 | 53 | 128.23 | 35.32 | 346.49 | 50.25 | | Junc HYD2 | 93.27 | 94.34 | 125.5 | 32.23 | 316.18 | 45.86 | | Junc HYD3 | 93.04 | 53 | 128.27 | 35.23 | 345.61 | 50.13 | | Junc T1 | 93.32 | 0 | 127.52 | 34.2 | 335.50 | 48.66 | | Junc NODE1 | 93.27 | 1.16 | 127.86 | 34.59 | 339.33 | 49.22 | | Resvr RES1 | 145.9 | -123.3 | 145.9 | 0 | 0.00 | 0.00 | | Resvr RES2 | 141.6 | -81.73 | 141.6 | 0 | 0.00 | 0.00 | | Network Table - Links | s (Max Day + FF 'Bldg 5 | ') | | | | | | |-----------------------|-------------------------|----------|-----------|--------|----------|----------|----------| | | Length | Diameter | Roughness | Flow | Velocity | Headloss | Friction | | Link ID | m | mm | | LPS | m/s | m/km | Factor | | Pipe P1 | 40 | 204 | 110 | 115.81 | 3.54 | 75.20 | 0.024 | | Pipe P2 | 31 | 204 | 110 | 62.81 | 1.92 | 24.22 | 0.026 | | Pipe P3 | 39 | 204 | 110 | 94.34 | 2.89 | 51.44 | 0.025 | | Pipe P4 | 50 | 204 | 110 | 31.53 | 0.96 | 6.76 | 0.029 | | Pipe P5 | 51 | 204 | 110 | 32.69 | 1.00 | 7.22 | 0.029 | | Pipe P6 | 72 | 204 | 110 | -85.69 | 2.62 | 43.05 | 0.025 | | | Elevation | Demand | Head | Pressure | Pressure | Pressure | |------------|-----------|---------|--------|----------|----------|----------| | Node ID | m | LPS | m | m | kPa | psi | | Junc H1 | 92.91 | 97 | 111.32 | 18.41 | 180.60 | 26.19 | | Junc H2 | 93.27 | 97.34 | 108.62 | 15.35 | 150.58 | 21.84 | | Junc H3 | 93.04 | 97 | 111.67 | 18.63 | 182.76 | 26.51 | | Junc T1 | 93.32 | 0 | 110.76 | 17.44 | 171.09 | 24.81 | | Junc NODE1 | 93.27 | 1.16 | 111.02 | 17.75 | 174.13 | 25.26 | | Resvr RES1 | 145.4 | -171.72 | 145.4 | 0 | 0.00 | 0.00 | | Resvr RES2 | 138.9 | -124.31 | 138.9 | 0 | 0.00 | 0.00 | | Network Table - Links (Max | Day + FF '20 psi') |) | | | | | | |----------------------------|--------------------|----------|-----------|---------|----------|----------|----------| | | Length | Diameter | Roughness | Flow | Velocity | Headloss | Friction | | Link ID | m | mm | | LPS | m/s | m/km | Factor | | Pipe P1 | 40 | 204 | 110 | 166.67 | 5.10 | 147.58 | 0.023 | | Pipe P2 | 31 | 204 | 110 | 69.67 | 2.13 | 29.34 | 0.026 | | Pipe P3 | 39 | 204 | 110 | 97.34 | 2.98 | 54.51 | 0.025 | | Pipe P4 | 50 | 204 | 110 | 27.67 | 0.85 | 5.31 | 0.030 | | Pipe P5 | 51 | 204 | 110 | 28.83 | 0.88 | 5.72 | 0.029 | | Pipe P6 | 72 | 204 | 110 | -125.83 | 3.85 | 87.69 | 0.024 | As per 2020 Fire Underwriter's Survey Guidelines Novatech Project #: 112021-10 Project Name: Block 21 Date: 12/14/2022 Input By: Lucas Wilson Reviewed By: Mark Bissett **Building Description:** Bldg 1, 16 Unit Apartment | Step | | | Input | | Value Used | Total Fire
Flow
(L/min) | |------|---|--|---|--|-------------------------|-------------------------------| | | 1 | Base Fire Flo | W | | | (=////// | | | Construction Ma | terial | | Mult | plier | | | 1 | Coefficient related to type of construction | Type V - Wood frame Type IV - Mass Timber Type III - Ordinary construction Type II - Non-combustible construction Type I - Fire resistive construction (2 hrs) | Yes | 1.5
Varies
1
0.8
0.6 | 1.5 | | | | Floor Area | Type 1 - 1 lie resistive constituction (2 ms) | | 0.0 | | | | 2 | Α | Building Footprint (m²) Number of Floors/Storeys Area of structure considered (m²) | 460
3 | | 1,380 | | | | F | Base fire flow without reductions F = 220 C (A) ^{0.5} | | | | 12,000 | | | | Reductions or Surc | harges | | | | | | Occupancy haza | rd reduction or surcharge | FUS Table 3 | Reduction | Surcharge | | | 3 | (1) | Non-combustible Limited combustible Combustible Free burning Rapid burning | Yes | -25%
-15%
0%
15%
25% | -25% | 9,000 | | | Sprinkler Reduct | | FUS Table 4 | | ction | | | 4 | (2) | Adequately Designed System (NFPA 13) Standard Water Supply Fully Supervised System Area of Sprinklered Coverage (m²) | 0 | -30% -10% -10% ve Sub-Total 0% ulative Total | 0% | 0 | | | Exposure Surch | arge | FUS Table 5 | | Surcharge | | | 5 | (3) | North Side East Side South Side West Side | 3.1 - 10 m
20.1 - 30 m
3.1 - 10 m
>30m | | 20%
10%
20%
0% | 4,500 | | | | | Cum | ulative Total | 50% | | | | 1 | Results | | | | | | | | Total Required Fire Flow, rounded to nea | rest 1000L/mir | 1 | L/min | 14,000 | | 6 | (1) + (2) + (3) | (2,000 L/min < Fire Flow < 45,000 L/min) | | or
or | L/s
USGPM | 233 3,699 | As per 2020 Fire Underwriter's Survey Guidelines Novatech Project #: 112021-10 Project Name: Block 21 Date: 12/14/2022 Input By: Lucas Wilson Reviewed By: Mark Bissett Building Description: Bldg 2, 16 Unit Apartment | Step | | | Input | | Value Used | Total Fire
Flow
(L/min) | | |------|---------------------|--|-----------------|---------------|---------------------|-------------------------------|--| | | | Base Fire Flo |)W | | <u> </u> | | | | | Construction Ma | terial | | Mult | iplier | | | | | Coefficient | Type V - Wood frame | Yes | 1.5 | | | | | 1 | related to type | Type IV - Mass Timber | | Varies | | | | | | of construction | Type III - Ordinary construction | | 1 | 1.5 | | | | | C | Type II - Non-combustible construction | | 0.8 | | | | | | | Type I - Fire resistive construction (2 hrs) | | 0.6 | | | | | | Floor Area | | | | | | | | | | Building Footprint (m ²) | 460 | | | | | | _ | Α | Number of Floors/Storeys | 3 | | | | | | 2 | | Area of structure considered (m ²) | | | 1,380 | | | | | F | Base fire flow without reductions | | | | 12,000 | | | | Г | $F = 220 \text{ C } (A)^{0.5}$ | | | | 12,000 | | | | | Reductions or Sur | charges | | | | | | | Occupancy haza | rd reduction or surcharge | FUS Table 3 | Reduction | Reduction/Surcharge | | | | | | Non-combustible | Yes | -25% | | | | | 3 | | Limited combustible | | -15% | | | | | | (1) | Combustible | | 0% | -25% | 9,000 | | | | | Free burning | | 15% | | | | | | | Rapid burning | | 25% | | | | | | Sprinkler Reduction | | FUS Table 4 | Redu | ction | | | | | | Adequately Designed System (NFPA 13) | | -30% | | | | | | | Standard Water Supply | | -10% | | | | | 4 | (2) | Fully Supervised System | | -10% | | 0 | | | | (2) | | Cumulati | ve Sub-Total | 0% | U | | | | | Area of Sprinklered Coverage (m²) | 0 | 0% | | | | | | | | Cum | ulative Total | 0% | | | | | Exposure Surch | arge | FUS Table 5 | | Surcharge | | | | | · | North Side | 3.1 - 10 m | | 20% | | | | | | East Side | >30m | | 0% | | | | 5 | (2) | South Side | 10.1 - 20 m | | 15% | 4.050 | | | | (3) | West Side | 20.1 - 30 m | | 10% | 4,050 | | | | | | Cum | ulative Total | 45% | | | | | • | Results | | | | | | | | | Total Required Fire Flow, rounded to ne | arest 1000L/mir | 1 | L/min | 13,000 | | | 6 | (1) + (2) + (3) | (2 000 L/min < Fire Flow < 45 000 L/min) | | or | L/s | 217 | | | | 1 | (2,000 L/min < Fire Flow < 45,000 L/min) | | or | USGPM | 3,435 | | As per 2020 Fire Underwriter's Survey Guidelines Novatech Project #: 112021-10 Project Name: Block 21 Date: 12/14/2022 Input By: Lucas Wilson Reviewed By: Mark Bissett **Building Description:** Bldg 3, 16 Unit Apartment | Step | | | Input | | Value Used | Total Fire
Flow
(L/min) | | |------|---------------------|--|-----------------|---------------|------------|-------------------------------|--| | | | Base Fire Flo |)W | | <u> </u> | | | | | Construction Ma | terial | | Mult | iplier | | | | | Coefficient | Type V - Wood frame | Yes |
1.5 | | | | | 1 | related to type | Type IV - Mass Timber | | Varies | | | | | | of construction | Type III - Ordinary construction | | 1 | 1.5 | | | | | C | Type II - Non-combustible construction | | 0.8 | | | | | | | Type I - Fire resistive construction (2 hrs) | | 0.6 | | | | | | Floor Area | | | | | | | | | | Building Footprint (m ²) | 460 | | | | | | _ | Α | Number of Floors/Storeys | 3 | | | | | | 2 | | Area of structure considered (m ²) | | | 1,380 | | | | | F | Base fire flow without reductions | | | | 12,000 | | | | • | $F = 220 \text{ C } (A)^{0.5}$ | | | | 12,000 | | | | | Reductions or Sur | charges | | | | | | | Occupancy haza | rd reduction or surcharge | FUS Table 3 | Reduction | /Surcharge | | | | | (1) | Non-combustible | Yes | -25% | | | | | 3 | | Limited combustible | | -15% | | | | | | | Combustible | | 0% | -25% | 9,000 | | | | | Free burning | | 15% | | | | | | | Rapid burning | | 25% | | | | | | Sprinkler Reduction | | FUS Table 4 | Redu | ction | | | | | | Adequately Designed System (NFPA 13) | | -30% | | | | | | | Standard Water Supply | | -10% | | | | | 4 | (2) | Fully Supervised System | | -10% | | 0 | | | | (2) | | Cumulati | ve Sub-Total | 0% | U | | | | | Area of Sprinklered Coverage (m²) | 0 | 0% | | | | | | | | Cum | ulative Total | 0% | | | | | Exposure Surch | arge | FUS Table 5 | | Surcharge | | | | | | North Side | 20.1 - 30 m | | 10% | | | | | | East Side | >30m | | 0% | | | | 5 | (3) | South Side | 3.1 - 10 m | | 20% | 3,600 | | | | (3) | West Side | 20.1 - 30 m | | 10% | 3,000 | | | | | | Cum | ulative Total | 40% | | | | | • | Results | | | | | | | | | Total Required Fire Flow, rounded to ne | arest 1000L/mir | 1 | L/min | 13,000 | | | 6 | (1) + (2) + (3) | (2,000 L/min < Fire Flow < 45,000 L/min) | | or | L/s | 217 | | | | 1 | (2,000 L/IIIII > 1 II 6 1 IOW > 40,000 L/IIIIII) | | or | USGPM | 3,435 | | As per 2020 Fire Underwriter's Survey Guidelines Novatech Project #: 112021-10 Project Name: Block 21 Date: 12/14/2022 Input By: Lucas Wilson Reviewed By: Mark Bissett Building Description: Bldg 4, 20 Unit Apartment | Step | | | Input | | Value Used | Total Fire | | |------|---------------------|--|---------------------|---------------|------------|------------|--| | | | Base Fire Flo |)W | | | (L/min) | | | | Construction Ma | terial | | Multi | plier | | | | | Coefficient | Type V - Wood frame | Yes | 1.5 | | | | | 1 | related to type | Type IV - Mass Timber | | Varies | | | | | • | of construction | Type III - Ordinary construction | | 1 | 1.5 | | | | | C | Type II - Non-combustible construction | | 0.8 | | | | | | U | Type I - Fire resistive construction (2 hrs) | | 0.6 | | | | | | Floor Area | | | | | | | | | | Building Footprint (m ²) | 570 | | | | | | _ | A | Number of Floors/Storeys | 3 | | | | | | 2 | | Area of structure considered (m ²) | | | 1,710 | | | | | F | Base fire flow without reductions | | | | 14,000 | | | | Г | $F = 220 \text{ C } (A)^{0.5}$ | | | | 14,000 | | | | | Reductions or Sur | charges | | | | | | | Occupancy haza | rd reduction or surcharge | FUS Table 3 | Reduction/ | Surcharge | | | | | (1) | Non-combustible | Yes | -25% | | | | | 3 | | Limited combustible | | -15% | | | | | | | Combustible | | 0% | -25% | 10,500 | | | | | Free burning | | 15% | | | | | | | Rapid burning | | 25% | | | | | | Sprinkler Reduction | | FUS Table 4 | Redu | ction | | | | | | Adequately Designed System (NFPA 13) | | -30% | | | | | | | Standard Water Supply | | -10% | | | | | 4 | (2) | Fully Supervised System | | -10% | | 0 | | | | (2) | | Cumulativ | ve Sub-Total | 0% | U | | | | | Area of Sprinklered Coverage (m²) | 0 | 0% | | | | | | | | Cum | ulative Total | 0% | | | | | Exposure Surch | arge | FUS Table 5 | | Surcharge | | | | | | North Side | 20.1 - 30 m | | 10% | | | | | | East Side | 20.1 - 30 m | | 10% | | | | 5 | (3) | South Side | 3.1 - 10 m | | 20% | 4,200 | | | | (3) | West Side | >30m | | 0% | 4,200 | | | | | | Cumulative Total 40 | | 40% | | | | | • | Results | | | | | | | | | Total Required Fire Flow, rounded to ne | arest 1000L/mir | 1 | L/min | 15,000 | | | 6 | (1) + (2) + (3) | (2 000 L/min < Fire Flow < 45 000 L/min) | | or | L/s | 250 | | | | | 2,000 L/min < Fire Flow < 45,000 L/min) | | or | USGPM | 3,963 | | As per 2020 Fire Underwriter's Survey Guidelines Novatech Project #: 112021-10 Project Name: Block 21 Date: 12/14/2022 Input By: Lucas Wilson Reviewed By: Mark Bissett **Building Description:** Bldg 5, 20 Unit Apartment | Step | | | Input | | Value Used | Total Fire
Flow
(L/min) | | |------|------------------|--|------------------|---------------------|------------|-------------------------------|--| | | | Base Fire Flo |)W | | | (2/11111) | | | | Construction Ma | terial | | Mult | iplier | | | | | Coefficient | Type V - Wood frame | Yes | 1.5 | | | | | 1 | related to type | Type IV - Mass Timber | | Varies | | | | | • | of construction | Type III - Ordinary construction | | 1 | 1.5 | | | | | C | Type II - Non-combustible construction | | 0.8 | | | | | | O | Type I - Fire resistive construction (2 hrs) | | 0.6 | | | | | | Floor Area | | | | | | | | | | Building Footprint (m ²) | 570 | | | | | | | A | Number of Floors/Storeys | 3 | | | | | | 2 | | Area of structure considered (m ²) | | | 1,710 | | | | | F | Base fire flow without reductions | | | | 14,000 | | | | Г | $F = 220 \text{ C (A)}^{0.5}$ | | | | 14,000 | | | | | Reductions or Sur | charges | | | | | | | Occupancy haza | rd reduction or surcharge | FUS Table 3 | Reduction | /Surcharge | | | | | (1) | Non-combustible | Yes | -25% | | | | | 3 | | Limited combustible | | -15% | | | | | | | Combustible | | 0% | -25% | 10,500 | | | | | Free burning | | 15% | | | | | | | Rapid burning | | 25% | | | | | | Sprinkler Reduct | tion | FUS Table 4 | Redu | ıction | | | | | | Adequately Designed System (NFPA 13) | | -30% | | | | | | | Standard Water Supply | | -10% | | | | | 4 | (0) | Fully Supervised System | | -10% | | _ | | | | (2) | ·, | Cumulati | ve Sub-Total | 0% | 0 | | | | | Area of Sprinklered Coverage (m²) | 0 | 0% | 070 | | | | | | Alou of opinimorou ooveruge (iii) | • | nulative Total | 0% | | | | | Exposure Surcha | arge | FUS Table 5 | | Surcharge | | | | | | North Side | >30m | | 0% | | | | | | East Side | >30m | | 0% | | | | 5 | | South Side | 20.1 - 30 m | | 10% | | | | | (3) | West Side | >30m | | 0% | 1,050 | | | | | | Cum | l
Iulative Total | 10% | | | | | | Results | | | 10/0 | | | | | | Total Required Fire Flow, rounded to ne | arget 10001 /mir | | L/min | 12,000 | | | 6 | (1) + (2) + (3) | Total Nequiled File Flow, Founded to fle | | or | L/IIIII | 200 | | | • | (1) (2) (0) | (2,000 L/min < Fire Flow < 45,000 L/min) | | or | USGPM | 3.170 | | | | | | | <u> </u> | OCOI W | 5,170 | | #### **Lucas Wilson** From: Sharif, Golam <sharif.sharif@ottawa.ca> Sent: Wednesday, December 21, 2022 8:51 AM To: Lucas Wilson Cc: Mark Bissett **Subject:** RE: Block 21 - 605 Via Way: Watermain Boundary Condition Verification #### Hi Lucas, I have received the confirmation from our water modelling unit. There is no significant change on the BC, therefore use the 2019 BC. Please attached the correspondence in your report. Thanks. #### Sharif From: Lucas Wilson < l.wilson@novatech-eng.com> Sent: December 19, 2022 3:21 PM **To:** Sharif, Golam <sharif.sharif@ottawa.ca> **Cc:** Mark Bissett <m.bissett@novatech-eng.com> Subject: RE: Block 21 - 605 Via Way: Watermain Boundary Condition Verification CAUTION: This email originated from an External Sender. Please do not click links or open attachments unless you recognize the source. ATTENTION : Ce courriel provient d'un expéditeur externe. Ne cliquez sur aucun lien et n'ouvrez pas de pièce jointe, excepté si vous connaissez l'expéditeur. Just wanted to follow up with you regarding the boundary condition verification. Since the fire flows haven't changed, is a verification still required? #### Thanks, Lucas Wilson, P.Eng., Project Manager | Engineering **NOVATECH** Engineers, Planners & Landscape Architects 240 Michael Cowpland Drive, Suite 200, Ottawa, ON K2M 1P6 | Tel: 613.254.9643 Ext: 282 | Fax: 613.254.5867 The information contained in this email message is confidential and is for exclusive use of the addressee. From: Lucas Wilson Sent: Wednesday, December 14, 2022 2:06 PM To: Sharif, Golam <<u>sharif.sharif@ottawa.ca</u>> Cc: Mark Bissett <<u>m.bissett@novatech-eng.com</u>> Subject: RE: Block 21 - 605 Via Way: Watermain Boundary Condition Verification **Sharif** – Previously provided fire flow values have been confirmed using the 2020 FUS guidelines (no change to fire flows), revised spreadsheet referencing 2020 FUS is attached. Let me know if you need anything else. #### Thanks, Lucas Wilson, P.Eng., Project Manager | Engineering #### **NOVATECH** Engineers, Planners & Landscape Architects 240 Michael Cowpland Drive, Suite 200, Ottawa, ON K2M 1P6 | Tel: 613.254.9643 Ext: 282 | Fax: 613.254.5867 The information contained in this email message is confidential and is for exclusive use of the addressee. From: Sharif, Golam <<u>sharif.sharif@ottawa.ca</u>> Sent: Wednesday, December 14, 2022 12:09 PM To: Lucas Wilson <<u>l.wilson@novatech-eng.com</u>> Cc: Mark Bissett <<u>m.bissett@novatech-eng.com</u>> Subject: RE: Block 21 - 605 Via Way: Watermain Boundary Condition Verification #### HI Lucas, Could you please update your FUS calculation. I believe your design and units have not changed, however, the 1999 FUS guideline has been updated. Please update that and we can verify if we can still use those BC. Thanks. #### Sharif From: Lucas Wilson < l.wilson@novatech-eng.com> Sent: December 13, 2022 3:26 PM **To:** Sharif, Golam <<u>sharif.sharif@ottawa.ca</u>> **Cc:** Mark Bissett <m.bissett@novatech-eng.com> Subject: Block 21 - 605 Via Way: Watermain Boundary Condition Verification CAUTION: This email originated from an External Sender.
Please do not click links or open attachments unless you recognize the source. ATTENTION : Ce courriel provient d'un expéditeur externe. Ne cliquez sur aucun lien et n'ouvrez pas de pièce jointe, excepté si vous connaissez l'expéditeur. It has been requested in the most recent City of Ottawa comments to request a new boundary condition verification as the boundary conditions attached are from 2019. I have also attached the water demand and fire flows provided in the most recent submission. Water Demand: Average Day Demand = 0.599 L/s Max Day Demand = 1.497 L/s Peak Hour Demand = 3.294 L/s Residential fire flows: Building 1 = 233 L/s Building 2 = 217 L/s Building 3 = 217 L/s Building 4 = 250 L/s Building 5 = 200 L/s Please let me know if you need any additional information. #### Thanks, Lucas Wilson, P.Eng., Project Manager | Engineering #### **NOVATECH** Engineers, Planners & Landscape Architects 240 Michael Cowpland Drive, Suite 200, Ottawa, ON K2M 1P6 | Tel: 613.254.9643 Ext: 282 | Fax: 613.254.5867 The information contained in this email message is confidential and is for exclusive use of the addressee. This e-mail originates from the City of Ottawa e-mail system. Any distribution, use or copying of this e-mail or the information it contains by other than the intended recipient(s) is unauthorized. Thank you. Le présent courriel a été expédié par le système de courriels de la Ville d'Ottawa. Toute distribution, utilisation ou reproduction du courriel ou des renseignements qui s'y trouvent par une personne autre que son destinataire prévu est interdite. Je vous remercie de votre collaboration. This e-mail originates from the City of Ottawa e-mail system. Any distribution, use or copying of this e-mail or the information it contains by other than the intended recipient(s) is unauthorized. Thank you. Le présent courriel a été expédié par le système de courriels de la Ville d'Ottawa. Toute distribution, utilisation ou reproduction du courriel ou des renseignements qui s'y trouvent par une personne autre que son destinataire prévu est interdite. Je vous remercie de votre collaboration. 3 #### **APPENDIX B** Excerpts from Longfields Central Site Servicing Report Tempest LMF Correspondence & Documentation PCSWMM Storage Node Curves PCSWMM Model Results (Ponding) PCSWMM Model Results (HGL) PCSWMM Model Schematics PCSWMM Model Results (100-year output data) # Longfields Central Site Servicing and Stormwater Management Study ## Prepared for: 171 Claridge Drive Ottawa, ON K2J 5V8 ## Prepared by: #### **NOVATECH ENGINEERING CONSULTANTS LTD.** Suite 200, 240 Michael Cowpland Drive Kanata, Ontario K2M 1P6 Issued: June 7, 2013 Revised: February 14, 2014 Revised: April 3, 2014 Revised: May 16, 2014 Revised: June 12, 2014 Revised: July 25, 2014 Ref: R-2014-073 Novatech File No. 112021 #### November 22, 2013 - Longfields Development (by Campanale) - o Revised Rearyard Areas: 0.34 ha + 0.29ha = 0.63 ha @ C = 0.54 - Right-Of-Way Areas: 0.28 ha+ 0.09 ha = 0.37 ha @ C = 0.69 It is therefore noted that the revised areas contributing from the Campanale Development total to 1.0 ha and may cause an increase in major system flow contributing to SWM Park 959. #### 5.4.5 Future Development Blocks During detailed design of the Longfields Development, it was determined that the medium density residential area is unable to provide the 64 L/s/ha and 100 m³/ha through surface storage within the roadway and rearyard areas as requested in the *Longfields Davidson Heights Serviceability Study Update Report (1998)*. To achieve the guidelines set out in the Longfields Davidson Heights Serviceability Study Update Report (1998) throughout the development, the following high unit residential blocks will be restricted to the design criteria provided below: #### Block 1 (0.21 ha) - Restricted minor system flow of 6.0 L/s (28.8 L/s/ha) - On-Site storage of 20.8 m³ (100 m³/ha) #### Block 2 (0.15 ha) - Restricted minor system flow of 9.6 L/s (64 L/s/ha) - On-Site storage of 25 m³ (167 m³/ha) #### Block 21 (1.0 ha) - Restricted minor system flow of 37.6 L/s (37.5 L/s/ha) - On-Site storage of 270 m³ (270 m³/ha) - o 100 m³ of surface storage - o 170 m³ of underground storage using either: - Superpipe storage - Underground storage chambers It has been determined that the storage suggested above for each future residential block is sufficient for each block and can be accommodated through both surface and subsurface storage. Conditions must be placed within the subdivision agreement and registered on title for the site plan for all future blocks for the on-site storage criteria and restrictive release rates provided above. Conceptual calculations have been completed for Block 21 to ensure sufficient storage is available within the future block. Through conceptual grading, it was determined that 100 m³ of surface storage can be provided within storage sags throughout the parking lot areas. The additional 170 m³ of necessary storage will be provided beneath the parking lot areas throughout the block using underground storage chambers. The chambers will be installed to provide temporary subsurface storage of runoff from storms up to 1:100 year event. The chambers conceptually designed for this report are provided by Stormtech (or approved equivalent) and have been designed with the following system requirements: # **TEMPEST Product Submittal Package R3** **Date:** June 15, 2022 **Customer: Novatech** **Contact:** Lucas Wilson **Location:** Ottawa **Project Name:** Mattino Way # **Tempest LMF ICD Rd** Shop Drawing Flow: 8.1 L/s Head: 2.38 m CBMH1 Flow: 6.0 L/s Head: 2.02 m CBMH2 Flow: 9.8 L/s Head: 2.37 m CBMH3 Flow: 7.1 L/s Head: 2.53 m CBMH6 Flow: 6.4 L/s Head: 2.46 m **MH7** Flow: 2.5 L/s Head: 2 m SAN MH8 #### **Square CB Installation Notes:** - 1. Materials and tooling verification: - Tooling: impact drill, 3/8" concrete bit, torque wrench for 9/16" nut, hand hammer, level, and marker. - Material: (4) concrete anchor 3/8x3-1/2, (4) washers, (4) nuts - 2. Use the mounting wall plate to locate and mark the hole (4) pattern on the catch basin wall. You should use a level to ensure that the plate is at the horizontal. - 3. Use an impact drill with a 3/8" concrete bit to make the four holes at a minimum of 1-1/2" depth up to 2-1/2". Clean the concrete dust from the holes. - 4. Install the anchors (4) in the holes by using a hammer. Put the nuts on the top of the anchors to protect the threads when you will hit the anchors with the hammer. Remove the nuts on the ends of the anchors - 5. Install the wall mounting plate on the anchors and screw the nut in place with a maximum torque of 40 N.m (30 lbf-ft). There should be no gap between the wall mounting plate and the catch basin wall. - 6. From ground above using a reach bar, lower the device by hooking the end of the reach bar to the handle of the LMF device. Align the triangular plate portion into the mounting wall plate. Push down the device to be sure it has centered in to the wall mounting plate and has created a seal. #### Round CB Installation Notes: (Refer to square install notes above for steps 1, 3, & 4) - 2. Use spigot catch basin wall plate to locate and mark the hole (4) pattern on the catch basin wall. You should use a level to ensure that the plate is at the horizontal. - 5. Install the CB spigot wall plate on the anchors and screw the 4 nuts in place with a maximum torque of 40 N.m (30 lb-ft). There should be no gap between the CB spigot wall plate and the catch basin wall. - 6. Apply solvent cement on the hub of the universal mounting plate and the spigot of the spigot CB wall plate. Slide the hub over the spigot. Make sure the universal mounting plate is at the horizontal and its hub is completely inserted onto the spigot. Normally, the corners of the universal mounting plate hub adapter should touch the catch basin wall. - 7. From ground above using a reach bar, lower the ICD device by hooking the end of the reach bar to the handle of the ICD device. Align the triangular plate portion into the mounting wall plate. Push down the device to be sure it has centered into the mounting plate and has created a seal. #### **CAUTION/WARNING/DISCLAIM:** - Verify that the inlet(s) pipe(s) is not protruding into the catch basin. If it is, cut it back so that the inlet pipe is flush with the catch basin wall. - Any required cement in the installation must be approved for PVC. - The solvent cement should not be used below 0°C (32°F) or in a high humidity environment. Please refer to the IPEX solvent cement guide to confirm required curing times or attend the IPEX Online Solvent Cement Training Course. - Call your IPEX representative for more information or if you have any questions about our products. ## **IPEX TEMPEST Inlet Control Devices Technical Specification** #### General Inlet control devices (ICD's) are designed to provide flow control at a specified rate for a given water head level and also provide odour and floatable control where specified. All ICD's will be IPEX Tempest or approved equal. All devices shall be removable from a universal mounting plate. An operator from street level using only a T-bar with a hook will be able to retrieve the device while leaving the universal mounting plate secured to the catch basin wall face. The removal of the TEMPEST devices listed above must not require any unbolting or special manipulation or any special tools. High Flow (HF) Sump devices will consist of a removable threaded cap which can be accessible from street level with out entry into the catchbasin (CB). The removal of the threaded cap shall not require any special tools other than the operator's hand. ICD's must have no moving parts. #### **Materials** ICD's are to be manufactured from Polyvinyl Chloride (PVC) or Polyurethane material, designed to be durable enough to withstand multiple freeze-thaw cycles and exposure to harsh elements. The inner ring seal will be manufactured using a Buna or Nitrile
material with hardness between Duro 50 and Duro 70. The wall seal is to be comprised of a 3/8" thick Neoprene Closed Cell Sponge gasket which is attached to the back of the wall plate. All hardware will be made from 304 stainless steel. ### **Dimensioning** The Low Medium Flow (LMF), High Flow (HF) and the High Flow (HF) Sump shall allow for a minimum outlet pipe diameter of 200mm with a 600mm deep Catch Basin sump. #### **Installation** Contractor shall be responsible for securing, supporting and connecting the ICD's to the existing influent pipe and catchbasin/manhole structure as specified and designed by the Engineer. #### Block 21 - Mattino Way (112021-10) PCSWMM Storage Curves (surface storage) | CB1-Storage | | | | | | | | |-------------|-----------|--------------------------|--|--|--|--|--| | Depth (m) | Area (m²) | Volume (m ³) | | | | | | | 0.00 | 0.36 | 0.00 | | | | | | | 1.77 | 0.36 | 0.64 | | | | | | | 1.82 | 28.00 | 1.35 | | | | | | | 1.87 | 92.00 | 4.35 | | | | | | | 1.92 | 190.00 | 11.40 | | | | | | | 1.97 | 290.00 | 23.40 | | | | | | | 2.02 | 377.00 | 40.07 | | | | | | | 2.021 | 0.00 | 40.26 | | | | | | | 2.77 | 0.00 | 40.26 | | | | | | | CBMH1-Storage | | | | | | | | |---------------|-----------|--------------------------|--|--|--|--|--| | Depth (m) | Area (m²) | Volume (m ³) | | | | | | | 0.00 | 1.17 | 0.00 | | | | | | | 2.25 | 1.17 | 2.63 | | | | | | | 2.30 | 17.00 | 3.09 | | | | | | | 2.35 | 68.00 | 5.21 | | | | | | | 2.40 | 142.00 | 10.46 | | | | | | | 2.45 | 222.00 | 19.56 | | | | | | | 2.47 | 254.00 | 24.32 | | | | | | | 2.48 | 0.00 | 25.59 | | | | | | | 3.25 | 0.00 | 25.59 | | | | | | | CBMH2-Storage | | | | | | | | |---------------|-----------|--------------------------|--|--|--|--|--| | Depth (m) | Area (m²) | Volume (m ³) | | | | | | | 0.00 | 1.17 | 0.00 | | | | | | | 1.76 | 1.17 | 2.06 | | | | | | | 1.81 | 5.60 | 2.23 | | | | | | | 1.86 | 22.60 | 2.93 | | | | | | | 1.91 | 50.80 | 4.77 | | | | | | | 1.96 | 90.30 | 8.30 | | | | | | | 2.01 | 141.20 | 14.08 | | | | | | | 2.03 | 164.60 | 17.14 | | | | | | | 2.04 | 0.00 | 17.96 | | | | | | | 3.04 | 0.00 | 17.96 | | | | | | | (m³) | |------| | 0 | | 8 | | 8 | | 6 | | 54 | | 86 | | 2 | | 3 | | 3 | |) | | CBMH4-Storage | | | | | | | | |---------------|-----------|--------------------------|--|--|--|--|--| | Depth (m) | Area (m²) | Volume (m ³) | | | | | | | 0.00 | 1.17 | 0.00 | | | | | | | 2.11 | 1.17 | 2.47 | | | | | | | 2.16 | 7.50 | 2.69 | | | | | | | 2.21 | 30.00 | 3.62 | | | | | | | 2.26 | 63.00 | 5.95 | | | | | | | 2.31 | 110.00 | 10.27 | | | | | | | 2.36 | 170.00 | 17.27 | | | | | | | 2.41 | 260.00 | 28.02 | | | | | | | 2.42 | 0.00 | 29.32 | | | | | | | 3.11 | 0.00 | 29.32 | | | | | | | CBMH5-Storage | | | | | | | | |---------------|-----------|--------------------------|--|--|--|--|--| | Depth (m) | Area (m²) | Volume (m ³) | | | | | | | 0.00 | 1.17 | 0.00 | | | | | | | 2.11 | 1.17 | 2.47 | | | | | | | 2.16 | 17.10 | 2.93 | | | | | | | 2.21 | 69.00 | 5.08 | | | | | | | 2.26 | 147.10 | 10.48 | | | | | | | 2.31 | 230.00 | 19.91 | | | | | | | 2.33 | 261.00 | 24.82 | | | | | | | 2.33 | 0.00 | 24.95 | | | | | | | 3.11 | 0.00 | 24.95 | | | | | | | CBMH6-Storage | | | | | | | | | |--|--------|-------|--|--|--|--|--|--| | Depth (m) Area (m ²) Volume (m | | | | | | | | | | 0.00 | 1.17 | 0.00 | | | | | | | | 2.25 | 1.17 | 2.63 | | | | | | | | 2.30 | 12.16 | 2.97 | | | | | | | | 2.35 | 48.59 | 4.48 | | | | | | | | 2.40 | 108.89 | 8.42 | | | | | | | | 2.45 | 193.72 | 15.99 | | | | | | | | 2.50 | 297.64 | 28.27 | | | | | | | | 2.55 | 417.45 | 46.15 | | | | | | | | 2.56 | 0.00 | 48.24 | | | | | | | | 3.25 | 0.00 | 48.24 | | | | | | | | CBMH7-Storage | | | | | | | | |---------------|-----------|-------------|--|--|--|--|--| | Depth (m) | Area (m²) | Volume (m³) | | | | | | | 0.00 | 1.17 | 0.00 | | | | | | | 2.06 | 1.17 | 2.41 | | | | | | | 2.11 | 17.00 | 2.86 | | | | | | | 2.16 | 68.00 | 4.99 | | | | | | | 2.21 | 148.30 | 10.40 | | | | | | | 2.26 | 260.00 | 20.60 | | | | | | | 2.31 | 400.00 | 37.10 | | | | | | | 2.32 | 0.00 | 39.10 | | | | | | | 3.06 | 0.00 | 39.10 | | | | | | | CBMH8-Storage | | | | | | | | |---|--------|-------|--|--|--|--|--| | Depth (m) Area (m ²) Volume | | | | | | | | | 0.00 | 1.17 | 0.00 | | | | | | | 1.86 | 1.17 | 2.18 | | | | | | | 1.91 | 8.20 | 2.41 | | | | | | | 1.96 | 33.00 | 3.44 | | | | | | | 2.01 | 75.00 | 6.14 | | | | | | | 2.06 | 132.00 | 11.32 | | | | | | | 2.11 | 205.00 | 19.74 | | | | | | | 2.16 | 290.00 | 32.12 | | | | | | | 2.18 | 321.00 | 38.23 | | | | | | | 2.181 | 0.00 | 38.39 | | | | | | | 2.86 | 0.00 | 38.39 | | | | | | # Block 21 - Mattino Way (112021-10) PCSWMM Model Results (Ponding) | CB / CBMH Invert Rim Spill | | | Ponding | HGL Elev. (m) ¹ | | | Ponding Depth (m) | | | Spill Depth (m) | | | | | | | |----------------------------|--------------|--------------|--------------|----------------------------|-------|-------|-------------------|------------------|------|-----------------|--------|------------------|------|------|--------|------------------| | ID | Elev.
(m) | Elev.
(m) | Elev.
(m) | Depth
(m) | 2-yr | 5-yr | 100-yr | 100-yr
(+20%) | 2-yr | 5-yr | 100-yr | 100-yr
(+20%) | 2-yr | 5-yr | 100-yr | 100-yr
(+20%) | | CB1 | 91.18 | 92.95 | 93.20 | 0.25 | 92.43 | 93.05 | 93.20 | 93.21 | 0.00 | 0.10 | 0.25 | 0.26 | 0.00 | 0.00 | 0.00 | 0.01 | | CBMH1 | 90.70 | 92.95 | 93.17 | 0.22 | 91.92 | 92.72 | 93.08 | 93.09 | 0.00 | 0.00 | 0.13 | 0.14 | 0.00 | 0.00 | 0.00 | 0.00 | | CBMH2 | 91.19 | 92.95 | 93.22 | 0.27 | 92.04 | 92.79 | 93.20 | 93.22 | 0.00 | 0.00 | 0.25 | 0.27 | 0.00 | 0.00 | 0.00 | 0.00 | | CBMH3 | 90.48 | 92.60 | 92.85 | 0.25 | 92.34 | 92.72 | 92.85 | 92.88 | 0.00 | 0.12 | 0.25 | 0.28 | 0.00 | 0.00 | 0.00 | 0.03 | | CBMH4 | 90.84 | 92.95 | 93.25 | 0.30 | 92.43 | 93.05 | 93.20 | 93.21 | 0.00 | 0.10 | 0.25 | 0.26 | 0.00 | 0.00 | 0.00 | 0.00 | | CBMH5 | 90.74 | 92.85 | 93.07 | 0.22 | 91.92 | 92.72 | 93.08 | 93.09 | 0.00 | 0.00 | 0.23 | 0.24 | 0.00 | 0.00 | 0.01 | 0.02 | | CBMH6 | 90.70 | 92.95 | 93.25 | 0.30 | 92.67 | 93.10 | 93.23 | 93.26 | 0.00 | 0.15 | 0.28 | 0.31 | 0.00 | 0.00 | 0.00 | 0.01 | | CBMH7 | 90.89 | 92.95 | 93.20 | 0.25 | 92.43 | 93.05 | 93.20 | 93.21 | 0.00 | 0.10 | 0.25 | 0.26 | 0.00 | 0.00 | 0.00 | 0.01 | | CBMH8 | 90.74 | 92.60 | 92.92 | 0.32 | 92.34 | 92.72 | 92.85 | 92.88 | 0.00 | 0.12 | 0.25 | 0.28 | 0.00 | 0.00 | 0.00 | 0.00 | ¹ 3-hour Chicago Storm. # Block 21 - Mattino Way (112021-10) Summary of Hydraulic Grade Line (HGL) Elevations | MH ID | Obvert Elevation | T/G Elevation | HGL Elevation ¹ | Surcharge | Clearance from T/G | HGL in Stress Test ¹ | |---------------|------------------|---------------|----------------------------|-----------|--------------------|---------------------------------| | WIH ID | (m) | (m) | (m) | (m) | (m) | (m) | | MH1 | 90.53 | 92.75 | 90.68 | 0.15 | 2.07 | 90.69 | | MH3 | 90.64 | 93.40 | 90.69 | 0.05 | 2.71 | 90.69 | | MH5 | 90.77 | 93.23 | 90.69 | 0.00 | 2.54 | 90.69 | | MH7 (D/S ICD) | 91.04 | 93.21 | 90.79 | 0.00 | 2.42 | 90.79 | | MH9 | 90.89 | 93.23 | 90.70 | 0.00 | 2.53 | 90.70 | ¹ 3-hour Chicago Storm; fixed outfall elevation of 90.68 m (100yr HGL in MH122). #### **Subcatchment ID's** #### Node ID's Date: 2022-06-16 M:\2012\112021\Block 21\DATA\Calculations\Sewer Calcs\SWM\PCSWMM\Model Schematic-Output\PCSWMM Model Schematic.docx ### Block 21 – Mattino Way (112021-10) PCSWMM Model Output 100yr 3-hour Chicago Storm | EPA STORM WATER MANAG | | | | | | | MH7
MH7-ICD
MH9 | STORAGE
STORAGE
STORAGE | 90.
90.
90. | 74
52 | 2.47
2.47
2.72 | 0.0
0.0
0.0 | | | |---|--|--|-------------------------------|--|--------------------|-------------------------|--|---|---|----------------------|--------------------------------------|-----------------------------|---|--| | Longfields Block 21 | 1 PCSWMM Model | (112021-10) | | | | | RYCB1 | STORAGE | 91. | 37 | 2.80 | 0.0 | | | | *********** Element Count ********** Number of rain gage | | | | | | | ********* Link Summary ********* | From Node | To Node | Ту | /pe | Length | %Slope | Roughness | | Number of subcatchm
Number of nodes
Number of links
Number of pollutant
Number of land uses | | | | | | | C01
C02
C04
C05
C06 | CBMH2
CB1
CBMH4
HP-CBMH4
CBMH6 | HP-CBMH2
HP-CB1
HP-CBMH4
CBMH7
HP-CBMH6 | co
co
co | DNDUIT DNDUIT DNDUIT DNDUIT DNDUIT | 2.0
2.0
2.0
2.0 | -11.0672
-12.5988
-15.1717
15.1717
-15.1717 | 0.0150
0.0150
0.0150
0.0150
0.0150 | | ************************************** | | | | | | | C07
C08
C09
C11 | HP-CBMH6
CBMH7
HP-CBMH7
HP-CBMH2 | CBMH1
HP-CBMH7
CBMH5
CBMH5 | C0
C0 | ONDUIT
ONDUIT
ONDUIT
ONDUIT | 2.0 | -12.5988
17.7743
18.8249 | 0.0150
0.0150
0.0150
0.0150 | | Name | Data Source | | Data
Type | Record
Interv | al | | C12
C13
C14 | CBMH1
HP-CBMH1
CBMH5 | HP-CBMH1
CBMH5
HP-CBMH5 | CO | ONDUIT
ONDUIT
ONDUIT | 2.0
2.0
2.0 | -11.0672
16.2088
-11.0672 | 0.0150
0.0150
0.0150 | | Raingagel | C3hr-100yr | | INTENS | ITY 10 mi | 1. | | C15
C16
C17 | HP-CBMH5
CBMH8
HP-CBMH8 | CBMH8
HP-CBMH8
CBMH3 | C0
C0 | ONDUIT
ONDUIT
ONDUIT | 2.0
2.0
2.0 | 24.1771
-16.2088
16.2088 | 0.0150
0.0150
0.0150 | | Subcatchment Summan | ry
** | | | | | | C18
C19
C20 |
CBMH3
HP-RYCB1
RYCB1 | HP-CBMH3
CBMH2
HP-RYCB1 | co | NDUIT
NDUIT
NDUIT | 2.0
2.0
2.0 | -12.5988
14.6549
-3.5021 | 0.0150
0.0150
0.0150 | | Name
 | Area
 | Width %Impe: | | ope Rain Ga

000 Raingage | | Outlet
CBMH5 | CB1-MH7
CBMH1-Storage
CBMH2-MH9
CBMH3-ICD-MH1 | CB1
CBMH01-Dummy
CBMH2-ICD
CBMH3-ICD | Dummy-CB1
CBMH1
MH9
MH1 | co | ONDUIT
ONDUIT
ONDUIT | 2.4
17.0
14.0
17.3 | 0.8334
0.1765
1.3573
0.5202 | 0.0130
0.0130
0.0130
0.0130 | | 02
03
04 | 0.14
0.09
0.12 | 56.00 78.0
45.00 77.3
60.00 80.0 | 50 1.00
10 1.00 | 000 Raingage
000 Raingage
000 Raingage | 1
1 | CBMH7
CBMH4
CBMH1 | CBMH4-MH7
CBMH5-CBMH1
CBMH5-Storage | CBMH4
CBMH5
CBMH5-Dummy | Dummy-CB1
CBMH1
CBMH5 | co | NDUIT
NDUIT | 41.7
20.2
20.0 | 0.1918
0.1980
0.2000 | 0.0130
0.0130
0.0130 | | 05
06 | 0.08
0.11 | 40.00 77.3
55.00 74.3 | 1.00
30 1.00 | 000 Raingage
000 Raingage | e1
e1 | CBMH8
CB1 | CBMH6-Storage1
CBMH6-Storage2 | CBMH6-Dummy1
CBMH6-Dummy2 | CBMH6
CBMH6 | co | NDUIT
NDUIT | 10.2
10.2 | 0.1961
0.1961 | 0.0130
0.0130 | | 07
08
09 | 0.15
0.13
0.05 | 75.00 72.9
65.00 70.0
33.33 20.0 | 00 1.00 | 000 Raingag
000 Raingag
000 Raingag | 1 | CBMH6
CBMH3
CBMH2 | CBMH7-CBMH4
cbmh8-cbmh3
Dummy-CB1-MH7 | CBMH7
CBMH8
Dummy-CB1 | CBMH4
CBMH3
MH7 | CO | ONDUIT
ONDUIT
ONDUIT | 25.6
29.4
8.7 | 0.1953
0.2041
0.2299 | 0.0130
0.0130
0.0130 | | 10 | 0.04 | 26.67 71.4 | | 000 Raingag | | RYCB1 | LCB01-CBMH7
LCB1-HP-LCB1 | LCB1
LCB1 | CBMH7
HP-LCB1 | co | NDUIT
NDUIT | 20.8 | 1.0097
-16.2088 | 0.0130
0.0350 | | ************ Node Summary | | | | | | | MH1-MH122
MH3-MH1
MH5-MH3 | MH1
MH3
MH5 | MH122
MH1
MH3 | CO | ONDUIT
ONDUIT
ONDUIT | 37.8
43.4
28.7 | 0.2381
0.2535
0.2439 | 0.0130
0.0130
0.0130 | | ************************************** | Type | Invert
Elev. | Max.
Depth | Ponded
Area | External
Inflow | | MH7-MH3
MH9-MH5
RYCB1-CBMH2 | MH7-ICD
MH9
RYCB1 | MH3
MH5
CBMH2 | CO | ONDUIT
ONDUIT
ONDUIT | 39.7
50.3
18.5 | 1.0076
0.2386
0.9730 | 0.0130
0.0130
0.0130 | | HP-CBMH1 | JUNCTION | 93.17 | 1.00 | 0.0 | | | O-CBMH1
O-CBMH2 | CBMH1
CBMH2 | MH9
CBMH2-ICD | OR | RIFICE | | | | | HP-CBMH2
HP-CBMH4
HP-CBMH5
HP-CBMH6 | JUNCTION JUNCTION JUNCTION JUNCTION | 93.22
93.25
93.07
93.25 | 1.00
1.00
1.00 | 0.0
0.0
0.0
0.0 | | | O-CBMH3
O-CBMH6
O-MH7 | CBMH3
CBMH6
MH7 | CBMH3-ICD
MH5
MH7-ICD | OR | RIFICE
RIFICE
RIFICE | | | | | HP-CBMH7
HP-CBMH8
HP-RYCB1 | JUNCTION
JUNCTION
JUNCTION | 93.20
92.92
93.24 | 1.00
1.00
1.00 | 0.0
0.0
0.0 | | | ************************************** | Summary | | | | | | | | HP-CB1
HP-CBMH3
HP-LCB1
MH122 | OUTFALL
OUTFALL
OUTFALL
OUTFALL | 93.20
92.85
0.00
89.92 | 1.00
1.00
94.34
0.53 | 0.0
0.0
0.0 | | | ************************************** | ******
Shape | Full
Depth | Full
Area | Hyd.
Rad. | Max. No
Width Bar | | ull
low | | CB1
CBMH01-Dummy
CBMH1 | STORAGE
STORAGE
STORAGE | 91.18
90.71
90.70 | 2.77
2.39
3.25 | 0.0
0.0
0.0 | | | C01
C02
C04 | RECT_OPEN RECT_OPEN RECT_OPEN | 1.00
1.00
1.00 | 3.00
3.00
3.00 | 0.75
0.75
0.75 | 3.00
3.00
3.00 | 1 54926
1 58604
1 64310 | .17 | | CBMH2
CBMH2-ICD
CBMH3 | STORAGE
STORAGE
STORAGE | 91.19
91.19
90.48 | 2.76
1.76
3.12 | 0.0 | | | C05
C06
C07 | RECT_OPEN
RECT_OPEN
RECT_OPEN | 1.00
1.00
1.00 | 3.00
3.00
3.00 | 0.75
0.75
0.75 | 3.00
3.00
3.00 | 1 64310
1 64310
1 64310 | 1.23 | | CBMH3-ICD
CBMH4 | STORAGE
STORAGE | 90.48
90.84 | 2.14 | 0.0 | | | C08
C09 | RECT_OPEN
RECT_OPEN | 1.00 | 3.00 | 0.75
0.75 | 3.00
3.00 | 1 58604
1 69608 | 1.17 | | CBMH5
CBMH5-Dummy
CBMH6 | STORAGE
STORAGE
STORAGE | 90.74
90.78
90.70 | 3.11
2.32
3.25 | 0.0
0.0
0.0 | | | C11
C12
C13 | RECT_OPEN RECT_OPEN RECT_OPEN | 1.00
1.00
1.00 | 3.00
3.00
3.00 | 0.75
0.75
0.75 | 3.00
3.00
3.00 | 1 71635
1 54926
1 66472 | .48 | | CBMH6-Dummy1
CBMH6-Dummy2
CBMH7 | STORAGE
STORAGE
STORAGE | 90.72
90.72
90.89 | 3.28
2.58
3.06 | 0.0
0.0
0.0 | | | C14
C15
C16 | RECT_OPEN
RECT_OPEN
RECT_OPEN | 1.00
1.00
1.00 | 3.00
3.00
3.00 | 0.75
0.75
0.75 | 3.00
3.00
3.00 | 1 54926
1 81183
1 66472 | .07 | | CBMH8
Dummy-CB1
LCB1 | STORAGE
STORAGE
STORAGE | 90.74
90.76
91.45 | 2.86
3.24
2.73 | 0.0
0.0
0.0 | | | C17
C18
C19 | RECT_OPEN
RECT_OPEN
RECT_OPEN | 1.00
1.00
1.00 | 3.00
3.00
3.00 | 0.75
0.75
0.75 | 3.00
3.00
3.00 | 1 66472
1 58604
1 63205 | .17 | | MH1
MH3
MH5 | STORAGE
STORAGE
STORAGE | 90.01
90.19
90.32 | 2.74
3.21
2.91 | 0.0
0.0
0.0 | | | C20
CB1-MH7
CBMH1-Storage | RECT_OPEN
CIRCULAR
CIRCULAR | 1.00
0.20
0.60 | 3.00
0.03
0.28 | 0.75
0.05
0.15 | 3.00
0.20
0.60 | 1 30898
1 29
1 257 | .94 | #### Block 21 - Mattino Way (112021-10) **PCSWMM Model Output** 100yr 3-hour Chicago Storm | CBMH2-MH9 | CIRCULAR | 0.30 | 0.07 | 0.07 | 0.30 | 1 | 112.66 | |----------------|-----------|------|------|------|------|---|----------| | CBMH3-ICD-MH1 | CIRCULAR | 0.30 | 0.07 | 0.07 | 0.30 | 1 | 69.75 | | CBMH4-MH7 | CIRCULAR | 0.60 | 0.28 | 0.15 | 0.60 | 1 | 268.96 | | CBMH5-CBMH1 | CIRCULAR | 0.60 | 0.28 | 0.15 | 0.60 | 1 | 273.25 | | CBMH5-Storage | CIRCULAR | 0.60 | 0.28 | 0.15 | 0.60 | 1 | 274.61 | | CBMH6-Storage1 | CIRCULAR | 0.60 | 0.28 | 0.15 | 0.60 | 1 | 271.91 | | CBMH6-Storage2 | CIRCULAR | 0.60 | 0.28 | 0.15 | 0.60 | 1 | 271.91 | | CBMH7-CBMH4 | CIRCULAR | 0.60 | 0.28 | 0.15 | 0.60 | 1 | 271.37 | | cbmh8-cbmh3 | CIRCULAR | 0.60 | 0.28 | 0.15 | 0.60 | 1 | 277.40 | | Dummy-CB1-MH7 | CIRCULAR | 0.60 | 0.28 | 0.15 | 0.60 | 1 | 294.41 | | LCB01-CBMH7 | CIRCULAR | 0.25 | 0.05 | 0.06 | 0.25 | 1 | 59.76 | | LCB1-HP-LCB1 | RECT_OPEN | 1.00 | 3.00 | 0.75 | 3.00 | 1 | 28488.04 | | MH1-MH122 | CIRCULAR | 0.53 | 0.22 | 0.13 | 0.53 | 1 | 209.86 | | MH3-MH1 | CIRCULAR | 0.45 | 0.16 | 0.11 | 0.45 | 1 | 143.54 | | MH5-MH3 | CIRCULAR | 0.45 | 0.16 | 0.11 | 0.45 | 1 | 140.81 | | MH7-MH3 | CIRCULAR | 0.30 | 0.07 | 0.07 | 0.30 | 1 | 97.07 | | MH9-MH5 | CIRCULAR | 0.38 | 0.11 | 0.09 | 0.38 | 1 | 85.64 | | RYCB1-CBMH2 | CIRCULAR | 0.30 | 0.07 | 0.07 | 0.30 | 1 | 95.39 | | | | | | | | | | NOTE: The summary statistics displayed in this report are based on results found at every computational time step, not just on results from each reporting time step. Analysis Options Flow Units LPS Process Models: Rainfall/Runoff YES RDII NO Snowmelt NO Groundwater NO Flow Routing YES Ponding Allowed YES Water Quality NO Infiltration Method HORTON Flow Routing Method DYNWAVE Surcharge Method EXTRAN Starting Date 10/10/2019 00:00:00 Ending Date 10/10/2019 00:00:00 Ending Date 10/17/2019 00:00:00 Antecedent Dry Days 0.0 Report Time Step 00:05:00 Wet Time Step 00:05:00 Maximum Trials 8 Number of Threads 4 Head Tolerance 0.001500 m $\,$ Control Actions Taken | Volume | Depth | |--------------------------|--| | hectare-m | mm | | | | | 0.071 | 71.667 | | 0.000 | 0.000 | | 0.012 | 11.916 | | 0.059
0.001
-0.974 | 59.673
0.776 | | Volume | Volume | | hectare-m | 10^6 ltr | | 0.000 | 0.000 | | 0.059 | 0.591 | | 0.000 | 0.000 | | 0.000 | 0.000 | | 0.002 | 0.019 | | 0.061 | 0.609 | | 0.000 | 0.000 | | | hectare-m 0.071 0.000 0.012 0.059 0.001 -0.974 Volume hectare-m 0.000 0.059 0.000 0.000 0.000 0.000 | | Exfiltration Loss | 0.000 | 0.000 | |-----------------------|-------|-------| | Initial Stored Volume | 0.003 | 0.027 | | Final Stored Volume | 0.003 | 0.027 | | Continuity Error (%) | 0.036 | | ********* Time-Step Critical Elements None ******** Highest Flow Instability Indexes Link O-CBMH2 (2) ******* Routing Time Step Summary ******* Minimum Time Step 0.26 sec 2.00 sec Average Time Step Maximum Time Step 2.00 sec Percent in Steady State Average Iterations per Step : 2.00 0.00 Percent Not Converging ******** Subcatchment Runoff Summary | | | | Total | Total | Total | Total | Imperv | Perv | Total | |--------|----------|--------|--------|-------|-------|-------|--------|--------|--------| | Total | Peak | Runoff | | | | | | | | | | | | Precip | Runon | Evap | Infil | Runoff | Runoff | Runoff | | Runoff | | | | | | | | | | | Subc | atchment | | mm | 10^6 1 | tr | LPS | 01 | | | 71.67 | 0.00 | 0.00 | 6.95 | 59.73 | 4.67 | 64.40 | | 0.05 | 38.40 | 0.899 | 71 67 | 0.00 | 0.00 | 0 51 | 55.74 | | 61 07 | | 0.09 | 65.69 | 0.865 | 71.67 | 0.00 | 0.00 | 9.51 | 55.74 | 6.23 | 61.97 | | 0.09 | 65.69 | 0.000 | 71.67 | 0.00 | 0.00 | 10.16 | 54.74 | 6.73 | 61.47 | | 0.06 | 42.32 | 0.858 | /1.0/ | 0.00 | 0.00 | 10.16 | 34.74 | 0.73 | 01.47 | | 04 | 12.02 | 0.000 | 71.67 | 0.00 | 0.00 | 8.85 | 56.87 | 5.94 | 62.80 | | 0.08 | 57.04 | 0.876 | | | | | | | | | 05 | | | 71.67 | 0.00 | 0.00 | 10.16 | 54.62 | 6.73 | 61.35 | | 0.05 | 37.62 | 0.856 | | | | | | | | | 06 | | | 71.67 | 0.00 | 0.00 | 11.42 | 52.57 | 7.50 | 60.07 | | 0.07 | 51.12 | 0.838 | | | | | | | | | 07 | | | 71.67 | 0.00 | 0.00 | 12.05 | 51.74 | 7.88 | 59.62 | | 0.09 | 69.27 | 0.832 | | | | | | | | | 08 | | | 71.67 | 0.00 | 0.00 | 13.36 | 49.57 | 8.66 | 58.23 | | 0.08 | 59.18 | 0.813 | 71 67 | 0.00 | 0.00 | 25.05 | | 01.00 | 25.04 | | 09 |
15.00 | 0 500 | 71.67 | 0.00 | 0.00 | 36.26 | 14.11 | 21.92 | 36.04 | | 0.02 | 15.98 | 0.503 | 71 67 | 0.00 | 0.00 | 10 67 | E0 20 | 0.45 | EO 74 | | 10 | 18.61 | 0.820 | 71.67 | 0.00 | 0.00 | 12.67 | 50.29 | 8.45 | 58.74 | | 0.02 | 10.61 | 0.020 | | | | | | | | ******* Node Depth Summary | Node | Type | Average
Depth
Meters | Maximum
Depth
Meters | Maximum
HGL
Meters | 0ccu | of Max
rrence
hr:min | Reporte
Max Dept
Meter | |----------|----------|----------------------------|----------------------------|--------------------------|------|----------------------------|------------------------------| | HP-CBMH1 | JUNCTION | 0.00 | 0.00 | 93.17 | 0 | 00:00 | 0.0 | | HP-CBMH2 | JUNCTION | 0.00 | 0.00 | 93.22 | 0 | 00:00 | 0.0 | | HP-CBMH4 | JUNCTION | 0.00 | 0.00 | 93.25 | 0 | 00:00 | 0.0 | | HP-CBMH5 | JUNCTION | 0.00 | 0.01 | 93.08 | 0 | 01:21 | 0.0 | | HP-CBMH6 | JUNCTION | 0.00 | 0.00 | 93.25 | 0 | 00:00 | 0.0 | | HP-CBMH7 | JUNCTION | 0.00 | 0.00 | 93.20 | 0 | 00:00 | 0.0 | | HP-CBMH8 | JUNCTION | 0.00 | 0.00 | 92.92 | 0 | 00:00 | 0.0 | | HP-RYCB1 | JUNCTION | 0.00 | 0.00 | 93.24 | 0 | 00:00 | 0.0 | ### Block 21 – Mattino Way (112021-10) PCSWMM Model Output 100yr 3-hour Chicago Storm | HP-0 | CB1 | OUTFALL | 0.00 | 0.00 | 93.20 | 0 | 00:00 | 0.00 | |------|-----------|---------|------|------|-------|---|-------|------| | HP-0 | CBMH3 | OUTFALL | 0.00 | 0.00 | 92.85 | 0 | 00:00 | 0.00 | | HP- | LCB1 | OUTFALL | 0.00 | 0.00 | 0.00 | 0 | 00:00 | 0.00 | | MH1: | 22 | OUTFALL | 0.76 | 0.76 | 90.68 | 0 | 00:00 | 0.76 | | CB1 | | STORAGE | 0.09 | 2.02 | 93.20 | 0 | 02:13 | 2.02 | | CBM | H01-Dummy | STORAGE | 0.07 | 2.37 | 93.08 | 0 | 01:21 | 2.36 | | CBM | H1 | STORAGE | 0.05 | 2.38 | 93.08 | 0 | 01:21 | 2.37 | | CBM | H2 | STORAGE | 0.02 | 2.01 | 93.20 | 0 | 01:28 | 2.01 | | CBM | H2-ICD | STORAGE | 0.00 | 0.05 | 91.24 | 0 | 01:28 | 0.05 | | CBM | H3 | STORAGE | 0.24 | 2.37 | 92.85 | 0 | 01:40 | 2.37 | | CBM | H3-ICD | STORAGE | 0.20 | 0.21 | 90.69 | 0 | 01:09 | 0.21 | | CBM | H4 | STORAGE | 0.11 | 2.36 | 93.20 | 0 | 02:12 | 2.36 | | CBM | H5 | STORAGE | 0.05 | 2.34 | 93.08 | 0 | 01:21 | 2.33 | | CBM | H5-Dummy | STORAGE | 0.05 | 2.30 | 93.08 | 0 | 01:20 | 2.29 | | CBM | H6 | STORAGE | 0.05 | 2.53 | 93.23 | 0 | 01:34 | 2.53 | | CBM | H6-Dummy1 | STORAGE | 0.05 | 2.51 | 93.23 | 0 | 01:34 | 2.51 | | CBM | H6-Dummy2 | STORAGE | 0.05 | 2.51 | 93.23 | 0 | 01:34 | 2.51 | | CBM | H7 | STORAGE | 0.10 | 2.31 | 93.20 | 0 | 02:13 | 2.31 | | CBM | H8 | STORAGE | 0.04 | 2.11 | 92.85 | 0 | 01:38 | 2.11 | | Dum | my-CB1 | STORAGE | 0.11 | 2.44 | 93.20 | 0 | 02:12 | 2.44 | | LCB: | 1 | STORAGE | 0.07 | 1.75 | 93.20 | 0 | 02:11 | 1.75 | | MH1 | | STORAGE | 0.67 | 0.67 | 90.68 | 0 | 01:32 | 0.67 | | MH3 | | STORAGE | 0.49 | 0.50 | 90.69 | 0 | 01:32 | 0.50 | | MH5 | | STORAGE | 0.36 | 0.37 | 90.69 | 0 | 01:32 | 0.37 | | MH7 | | STORAGE | 0.12 | 2.46 | 93.20 | 0 | 02:12 | 2.46 | | MH7 | -ICD | STORAGE | 0.00 | 0.05 | 90.79 | 0 | 02:13 | 0.05 | | MH9 | | STORAGE | 0.16 | 0.18 | 90.70 | 0 | 01:08 | 0.18 | | RYC | B1 | STORAGE | 0.02 | 1.83 | 93.20 | 0 | 01:28 | 1.83 | | | | | | | | | | | Node Inflow Summary | | | Lateral
Inflow | Maximum
Total
Inflow | Occu | of Max | Lateral
Inflow
Volume | Total
Inflow
Volume | Flow
Balance
Error | |--------------|----------|-------------------|----------------------------|------|--------|-----------------------------|---------------------------|--------------------------| | Node | Type | LPS | LPS | days | hr:min | 10^6 ltr | 10^6 ltr | Percent | | HP-CBMH1 | JUNCTION | 0.00 | 0.00 | 0 | 00:00 | 0 | 0 | 0.000 lt | | HP-CBMH2 | JUNCTION | 0.00 | 0.00 | 0 | 00:00 | 0 | 0 | 0.000 lt | | HP-CBMH4 | JUNCTION | 0.00 | 0.00 | 0 | 00:00 | 0 | 0 | 0.000 lt | | HP-CBMH5 | JUNCTION | 0.00 | 18.12 | 0 | 01:21 | 0 | 0.00725 | -0.001 | | HP-CBMH6 | JUNCTION | 0.00 | 0.00 | 0 | 00:00 | 0 | 0 | 0.000 lt | | HP-CBMH7 | JUNCTION | 0.00 | 0.00 | 0 | 00:00 | 0 | 0 | 0.000 lt | | HP-CBMH8 | JUNCTION | 0.00 | 0.00 | 0 | 00:00 | 0 | 0 | 0.000 lt | | HP-RYCB1 | JUNCTION | 0.00 | 0.00 | 0 | 00:00 | 0 | 0 | 0.000 lt | | HP-CB1 | OUTFALL | 0.00 | 0.00 | 0 | 00:00 | 0 | 0 | 0.000 lt | | HP-CBMH3 | OUTFALL | 0.00 | 0.00 | 0 | 00:00 | 0 | 0 | 0.000 lt | | HP-LCB1 | OUTFALL | 0.00 | 0.00 | 0 | 00:00 | 0 | 0 | 0.000 lt | | MH122 | OUTFALL | 0.00 | 37.41 | 0 | 01:35 | 0 | 0.628 | 0.000 | | CB1 | STORAGE | 51.12 | 61.83 | 0 | 01:10 | 0.0661 | 0.0714 | 0.017 | | CBMH01-Dummy | STORAGE | 0.00 | 12.46 | 0 | 01:07 | 0 | 0.00673 | 0.366 | | CBMH1 | STORAGE | 57.04 | 58.78 | 0 | 01:09 | 0.0754 | 0.142 | 0.007 | | CBMH2 | STORAGE | 15.98 | 34.09 | 0 | 01:10 | 0.018 | 0.0417 | -0.059 | | CBMH2-ICD | STORAGE | 0.00 | 6.02 | 0 | 01:28 | 0 | 0.0417 | 0.108 | | CBMH3 | STORAGE | 59.18 | 70.65 | 0 | 01:10 | 0.0757 | 0.133 | 0.006 | | CBMH3-ICD | STORAGE | 0.00 | 9.79 | 0 | 01:40 | 0 | 0.135 | 0.002 | | CBMH4 | STORAGE | 42.32 | 68.02 | 0 | 01:05 | 0.0553 | 0.142 | -0.016 | | CBMH5 | STORAGE | 38.40 | 92.08 | 0 | 01:09 | 0.0515 | 0.075 | 0.025 | | CBMH5-Dummy | STORAGE | 0.00 | 14.88 | 0 | 01:05 | 0 | 0.00817 | 0.059 | | CBMH6 | STORAGE | 69.27 | 69.41 | 0 | 01:10 | 0.0894 | 0.0975 | 0.035 | | CBMH6-Dummv1 | STORAGE | 0.00 | 11.43 | 0 | 01:05 | 0 | 0.00404 | 0.008 | | CBMH6-Dummy2 | STORAGE | 0.00 | 11.43 | 0 | 01:05 | 0 | 0.00404 | 0.008 | | CBMH7 | STORAGE | 65.69 | 67.63 | 0 | 01:10 | 0.0868 | 0.0911 | -0.012 | | CBMH8 | STORAGE | 37.62 | 37.62 | 0 | 01:10 | 0.0491 | 0.057 | -0.025 | | Dummy-CB1 | STORAGE | 0.00 | 59.38 | 0 | 01:06 | 0 | 0.214 | 0.019 | | LCB1 | STORAGE | 0.00 | 11.25 | 0 | 01:02 | 0 | 0.00431 | 0.048 | | MH1 | STORAGE | 0.00 | 37.41 | 0 | 01:35 | 0 | 0.629 | 0.000 | | MH3 | STORAGE | 0.00 | 27.62 | 0 | 01:33 | 0 | 0.489 | -0.000 | | MH5 | STORAGE | 0.00 | 21.26 | 0 | 01:30 | 0 | 0.27 | -0.001 | | MH7 | STORAGE | 0.00 | 18.55 | 0 | 01:06 | 0 | 0.208 | 0.002 | | MH7-ICD | STORAGE | 0.00 | 6.37 | 0 | 02:12 | 0 | 0.208 | 0.000 | | MH9 | STORAGE | 0.00 | 14.15 | 0 | 01:24 | 0 | 0.168 | -0.001 | | RYCB1 | STORAGE | 18.61 | 18.61 | 0 | 01:10 | 0.0235 | 0.0235 | -0.033 | No nodes were surcharged. Node Flooding Summary No nodes were flooded. | Storage Unit | Average
Volume
1000 m3 | Avg
Pcnt
Full | Pont | Exfil
Pcnt
Loss | Maximum
Volume
1000 m3 | Max
Pont
Full | 0cci | of Max
rrence
hr:min | Maximum
Outflow
LPS | |--------------|------------------------------|---------------------|------|-----------------------|------------------------------|---------------------|------|----------------------------|---------------------------| | CB1 | 0.001 | 2 | 0 | 0 | 0.039 | 97 | 0 | 02:13 | 40.49 | | CBMH01-Dummy | 0.000 | 3 | 0 | 0 | 0.000 | 99 | 0 | 01:21 | 2.62 | | CBMH1 | 0.000 | 0 | 0 | 0 | 0.008 | 30 | 0 | 01:21 | 61.22 | | CBMH2 | 0.000 | 0 | 0 | 0 | 0.014 | 77 | 0 | 01:28 | 6.02 | | CBMH2-ICD | 0.000 | 0 | 0 | 0 | 0.000 | 3 | 0 | 01:28 | 6.02 | | CBMH3 | 0.001 | 2 | 0 | 0 | 0.041 | 99 | 0 | 01:40 | 14.07 | | CBMH3-ICD | 0.000 | 9 | 0 | 0 | 0.000 | 10 | 0 | 01:09 | 9.79 | | CBMH4 | 0.000 | 1 | 0 | 0 | 0.017 | 57 | 0 | 02:12 | 27.62 | | CBMH5 | 0.000 | 1 | 0 | 0 | 0.025 | 100 | 0 | 01:20 | 18.29 | | CBMH5-Dummy | 0.000 | 2 | 0 | 0 | 0.000 | 99 | 0 | 01:20 | 5.60 | | CBMH6 | 0.000 | 1 | 0 | 0 | 0.038 | 79 | 0 | 01:34 | 29.52 | | CBMH6-Dummy1 | 0.000 | 1 | 0 | 0 | 0.000 | 77 | 0 | 01:34 | 1.88 | | CBMH6-Dummy2 | 0.000 | 2 | 0 | 0 | 0.000 | 97 | 0 | 01:34 | 1.88 | | CBMH7 | 0.001 | 2 | 0 | 0 | 0.036 | 92 | 0 | 02:13 | 35.31 | | CBMH8 | 0.000 | 1 | 0 | 0 | 0.020 | 52 | 0 | 01:38 | 20.91 | | Dummy-CB1 | 0.000 | 4 | 0 | 0 | 0.002 | 75 | 0 | 02:12 | 18.55 | | LCB1 | 0.000 | 3 | 0 | 0 | 0.001 | 64 | 0 | 02:11 | 2.41 | | MH1 | 0.001 | 24 | 0 | 0 | 0.001 | 25 | 0 | 01:32 | 37.41 | | MH3 | 0.000 | 15 | 0 | 0 | 0.001 | 16 | 0 | 01:32 | 27.62 | | MH5 | 0.000 | 12 | 0 | 0 | 0.000 | 13 | 0 | 01:32 | 21.26 | | MH7 | 0.000 | 5 | 0 | 0 | 0.003 | 99 | 0 | 02:12 | 6.37 | | MH7-ICD | 0.000 | 0 | 0 | 0 | 0.000 | 2 | 0 | 02:13 | 6.37 | | MH9 | 0.000 | 6 | 0 | 0 | 0.000 | 7 | 0 | 01:08 | 14.15 | | RYCB1 | 0.000 | 1 | 0 | 0 | 0.001 | 94 | 0 | 01:28 | 18.27 | | | Flow | Avg | Max | Total | |--------------|-------|------|-------|----------| | | Freq | Flow | Flow | Volume | | Outfall Node | Pont | LPS | LPS | 10^6 ltr | | | | | | | | HP-CB1 | 0.00 | 0.00 | 0.00 | 0.000 | | HP-CBMH3 | 0.00 | 0.00 | 0.00 | 0.000 | | HP-LCB1 | 0.00 | 0.00 | 0.00 | 0.000 | | MH122 | 83.62 | 1.28 | 37.41 | 0.628 | | | | | | | | System | 20.90 | 1.28 | 37.41 | 0.628 | | | | Maximum
 Flow | 0ccu | of Max | Maximum
 Veloc | Max/
Full | Max/
Full | |------|---------|------------------|------|--------|-------------------|--------------|--------------| | Link | Type | LPS | days | hr:min | m/sec | Flow | Depth | | C01 | CONDUIT | 0.00 | 0 | 00:00 | 0.00 | 0.00 | 0.10 | | C02 | CONDUIT | 0.00 | 0 | 00:00 | 0.00 | 0.00 | 0.12 | | C04 | CONDUIT | 0.00 | 0 | 00:00 | 0.00 | 0.00 | 0.12 | | C05 | CONDUIT | 0.00 | 0 | 00:00 | 0.00 | 0.00 | 0.12 | | C06 | CONDUIT | 0.00 | 0 | 00:00 | 0.00 | 0.00 | 0.14 | | C07 | CONDUIT | 0.00 | 0 | 00:00 | 0.00 | 0.00 | 0.06 | | C08 | CONDUIT | 0.00 | 0 | 00:00 | 0.00 | 0.00 | 0.12 | | C09 | CONDUIT | 0.00 | 0 | 00:00 | 0.00 | 0.00 | 0.11 | | C11 | CONDUIT | 0.00 | 0 | 00:00 | 0.00 | 0.00 | 0.11 | | C12 | CONDUIT | 0.00 | 0 | 00:00 | 0.00 | 0.00 | 0.06 | | C13 | CONDUIT | 0.00 | 0 | 00:00 | 0.00 | 0.00 | 0.11 | ### Block 21 – Mattino Way (112021-10) PCSWMM Model Output 100yr 3-hour Chicago Storm | C14 | CONDUIT | 18.12 | 0 | 01:21 | 0.05 | 0.00 | 0.12 | |----------------|---------|-------|---|-------|------|------|------| | C15 | CONDUIT | 18.15 | 0 | 01:21 | 0.05 | 0.00 | 0.13 | | C16 | CONDUIT | 0.00 | 0 | 00:00 | 0.00 | 0.00 | 0.13 | | C17 | CONDUIT | 0.00 | 0 | 00:00 | 0.00 | 0.00 | 0.12 | | C18 | CONDUIT | 0.00 | 0 | 00:00 | 0.00 | 0.00 | 0.12 | | C19 | CONDUIT | 0.00 | 0 | 00:00 | 0.00 | 0.00 | 0.12 | | C20 | CONDUIT | 0.00 | 0 | 00:00 | 0.00 | 0.00 |
0.01 | | CB1-MH7 | CONDUIT | 40.49 | 0 | 01:06 | 1.29 | 1.35 | 1.00 | | CBMH1-Storage | CONDUIT | 12.46 | 0 | 01:07 | 0.07 | 0.05 | 1.00 | | CBMH2-MH9 | CONDUIT | 6.02 | 0 | 01:28 | 0.83 | 0.05 | 0.16 | | CBMH3-ICD-MH1 | CONDUIT | 9.79 | 0 | 01:40 | 0.16 | 0.14 | 0.83 | | CBMH4-MH7 | CONDUIT | 27.62 | 0 | 01:07 | 0.19 | 0.10 | 1.00 | | CBMH5-CBMH1 | CONDUIT | 51.44 | 0 | 01:08 | 0.18 | 0.19 | 1.00 | | CBMH5-Storage | CONDUIT | 14.88 | 0 | 01:05 | 0.05 | 0.05 | 1.00 | | CBMH6-Storage1 | CONDUIT | 11.43 | 0 | 01:05 | 0.04 | 0.04 | 1.00 | | CBMH6-Storage2 | CONDUIT | 11.43 | 0 | 01:05 | 0.04 | 0.04 | 1.00 | | CBMH7-CBMH4 | CONDUIT | 29.61 | 0 | 01:05 | 0.26 | 0.11 | 1.00 | | cbmh8-cbmh3 | CONDUIT | 20.91 | 0 | 01:22 | 0.18 | 0.08 | 1.00 | | Dummy-CB1-MH7 | CONDUIT | 18.55 | 0 | 01:06 | 0.19 | 0.06 | 1.00 | | LCB01-CBMH7 | CONDUIT | 11.25 | 0 | 01:02 | 0.29 | 0.19 | 1.00 | | LCB1-HP-LCB1 | CONDUIT | 0.00 | 0 | 00:00 | 0.00 | 0.00 | 0.01 | | MH1-MH122 | CONDUIT | 37.41 | 0 | 01:35 | 0.17 | 0.18 | 1.00 | | MH3-MH1 | CONDUIT | 27.62 | 0 | 01:33 | 0.17 | 0.19 | 1.00 | | MH5-MH3 | CONDUIT | 21.26 | 0 | 01:30 | 0.14 | 0.15 | 0.90 | | MH7-MH3 | CONDUIT | 6.37 | 0 | 02:13 | 0.15 | 0.07 | 0.59 | | MH9-MH5 | CONDUIT | 14.15 | 0 | 01:23 | 0.19 | 0.17 | 0.63 | | RYCB1-CBMH2 | CONDUIT | 18.27 | 0 | 01:10 | 0.26 | 0.19 | 1.00 | | O-CBMH1 | ORIFICE | 8.14 | 0 | 01:21 | | | 1.00 | | O-CBMH2 | ORIFICE | 6.02 | 0 | 01:28 | | | 1.00 | | O-CBMH3 | ORIFICE | 9.79 | 0 | 01:40 | | | 1.00 | | O-CBMH6 | ORIFICE | 7.11 | 0 | 01:34 | | | 1.00 | | O-MH7 | ORIFICE | 6.37 | 0 | 02:12 | | | 1.00 | | | | | | | | | | | | Adjusted | | | Fraction of | | Time | in Flo | w Clas | w Class | | |---|-------------------|------|-----------|-------------|-------------|-------------|------------|--------------|-------------|------| | Conduit | /Actual
Length | Dry | Up
Dry | Down
Dry | Sub
Crit | Sup
Crit | Up
Crit | Down
Crit | Norm
Ltd | Inle | | C01 | 1.00 | 0.99 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | C02 | 1.00 | 0.96 | 0.04 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | C04 | 1.00 | 0.96 | 0.04 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | C05 | 1.00 | 0.96 | 0.04 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | C06 | 1.00 | 0.98 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | C07 | 1.00 | 0.99 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | C08 | 1.00 | 0.96 | 0.04 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | C09 | 1.00 | 0.98 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | C11 | 1.00 | 0.98 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | C12 | 1.00 | 0.99 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | C13 | 1.00 | 0.98 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | C14 | 1.00 | 0.98 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.99 | 0.00 | | C15 | 1.00 | 0.98 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.99 | 0.00 | | C16 | 1.00 | 0.98 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | C17 | 1.00 | 0.98 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | C18 | 1.00 | 0.98 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | C19 | 1.00 | 0.99 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | C20 | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | CB1-MH7 | 1.00 | 0.00 | 0.00 | 0.00 | 0.06 | 0.00 | 0.00 | 0.94 | 0.00 | 0.00 | | CBMH1-Storage | 1.00 | 0.76 | 0.20 | 0.00 | 0.04 | 0.00 | 0.00 | 0.00 | 0.96 | 0.00 | | CBMH2-MH9 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | | CBMH3-ICD-MH1 | 1.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | CBMH4-MH7 | 1.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.92 | 0.00 | | | 1.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.03 | 0.00 | | CBMH5-Storage | 1.00 | 0.00 | 0.96 | 0.00 | 0.04 | 0.00 | 0.00 | 0.00 | 0.96 | 0.00 | | | 1.00 | 0.78 | 0.18 | 0.00 | 0.03 | 0.00 | 0.00 | 0.00 | 0.97 | 0.00 | | CBMH6-Storage1
CBMH6-Storage2 | 1.00 | 0.78 | 0.18 | 0.00 | 0.03 | 0.00 | 0.00 | 0.00 | 0.97 | 0.00 | | CBMH7-CBMH4 | 1.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.00 | | cbmh8-cbmh3 | 1.00 | 0.00 | 0.00 | 0.00 | 0.25 | 0.00 | 0.00 | 0.75 | 0.01 | 0.00 | | cbmh8-cbmh3
Dummy-CB1-MH7
LCB01-CBMH7 | 1.00 | 0.00 | 0.00 | 0.00 | 0.99 | 0.00 | 0.00 | 0.00 | 0.02 | 0.00 | | LCB01-CBMH7 | 1.00 | 0.01 | 0.00 | 0.00 | 0.06 | 0.00 | 0.00 | 0.94 | 0.94 | 0.00 | | LCB1-HP-LCB1 | | 0.99 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | MH1-MH122 | 1.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | MH3-MH1 | 1.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | MH5-MH3 | 1.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | MH7-MH3 | 1.00 | 0.00 | 0.83 | 0.00 | 0.17 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | | MH9-MH5 | 1.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | | 0.00 | | RYCB1-CBMH2 | 1.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.99 | 0.00 | | CB1-MH7
CBMH1-Storage
CBMH4-MH7
CBMH5-CBMH1 | | Upstream | Dnstream | Above Full
Normal Flow | Limited | |--|------|----------|----------|---------------------------|---------| | CBMH4-MH7
CBMH5-CBMH1 | | 8.65 | | | 0.11 | | CBMH5-CBMH1 | 3.67 | 3.67 | 3.71 | 0.01 | 0.01 | | | 8.49 | 8.49 | 8.71 | 0.01 | 0.01 | | CBMH5-Storage | 3.65 | 3.65 | 3.71 | 0.01 | 0.01 | | | 3.61 | 3.61 | 3.65 | 0.01 | 0.01 | | CBMH6-Storage1 | 3.30 | 3.30 | 3.31 | 0.01 | 0.01 | | CBMH6-Storage2 | 3.30 | 3.30 | 3.31 | 0.01 | 0.01 | | CBMH7-CBMH4 | 8.37 | 8.37 | 8.49 | 0.01 | 0.01 | | cbmh8-cbmh3 | 3.45 | 3.45 | 3.49 | 0.01 | 0.01 | | Dummy-CB1-MH7 | 8.71 | 8.71 | 8.78 | 0.01 | 0.01 | | LCB01-CBMH7 | 7.92 | 7.92 | 8.37 | 0.01 | 0.01 | | MH1-MH122 16 | 8.00 | 168.00 | 168.00 | 0.01 | 0.01 | | MH3-MH1 16 | 8.00 | 168.00 | 168.00 | 0.01 | 0.01 | | MH7-MH3 | 0.01 | 0.01 | 167.75 | 0.01 | 0.01 | | RYCB1-CBMH2 | | | | | | Analysis begun on: Wed Jun 15 15:32:05 2022 Analysis ended on: Wed Jun 15 15:32:10 2022 Total elapsed time: 00:00:05 ## **APPENDIX C: Drawings** 112021-10-GP 112021-10-GR 112021-10-STM 112021-10-ESC #### **APPENDIX D: Geotechnical Memorandums** Geotechnical Review – Block 21 Existing Soils Information (Nov. 12/19) Geotechnical Review – Block 21 Existing Information (Nov. 23/20) # patersongroup # memorandum consulting engineers **Geotechnical Review - Block 21 Existing Soils** Information **Proposed Residential Development** Block 21 - 591 Via Mattino Way - Ottawa Mattino Homes - Mr. Pino Mattino - mattino.ca@gmail.com to: date: November 12, 2019 PG2306-MEMO.08 file: The present memorandum has been prepared to provide a geotechnical review of the existing soils information located within the area of Block 21 within the aforementioned site. The present report should be read in conjunction with Paterson Report PG2306-1 dated January 13, 2013. Our response is summarized below: ## **Review of Existing Soils Information - Block 21** Paterson has reviewed the above noted geotechnical report with respect to the location of Block 21 within the development. Based on our review, the proposed development at Block 21 is partially within the area of study. A consistent subsurface profile was noted across the area of study and it is anticipated that a similar subsurface profile will be encountered within Block 21. Therefore, the above noted geotechnical report is applicable for the proposed developments to be located within Block 21. A typical materials testing and inspection program for residential developments is required to be carried out during construction to confirm the geotechnical recommendations in the above noted geotechnical report, including the provided bearing capacities. Nov. 12 ° We trust that this information satisfies your immediate requirements. Paterson Group Inc. Colin Belcourt, P.Eng. David J. Gilbert, P.Eng. POLINCE OF ON # patersongroup # memorandum consulting engineers re: Geotechnical Review - Block 21 Existing Information Proposed Residential Development Block 21 - 591 Via Mattino Way - Ottawa to: Mattino Homes - Mr. Pino Mattino - mattino.ca@gmail.com date: November 23, 2020 file: PG2306-MEMO.09 Further to your request, Paterson Group (Paterson) prepared a response for the geotechnical review comments received from the City of Ottawa based on the memo issued on November 12, 2019 (PG2306-MEMO.06) for the proposed residential development of Block 21 within the aforementioned site. # **Review of Existing Geotechnical Information - Block 21** Paterson reviewed the available geotechnical information for Block 21. The subject site has a consistent subsoil profile which is suitable for the proposed residential development. The available geotechnical information for Block 21 is in general conformance with City of Ottawa Geotechnical Investigation Guidelines. It's expected that during the construction phase, each foundation will be subjected to a geotechnical field inspection to confirm geotechnical conditions and design parameters. # **Grading Plan Review** A grading plan prepared by Novatech Engineering (Drawing 112021-10-GR Revision 3 dated July 2, 2020 was reviewed and approved. Memo enclosed. We trust that this information satisfies your requirements. Best Regards, Paterson Group Inc. Carlos P. Da Silva, P.Eng., ing., QP_{ESA} # patersongroup # memorandum consulting engineers re: Grading Plan Review - Block 21 Proposed Residential Development Block 21 - 591 Via Mattino Way - Ottawa to: Mattino Homes - Mr. Pino Mattino - mattino.ca@gmail.com date: November 23, 2020 file: PG2306-MEMO.10 Further to your request, Paterson Group (Paterson) reviewed the following grading plan for the proposed residential complex with one basement level parking at the aforementioned site. ## **Grading Plan Review** A grading plan prepared by
Novatech Engineering (Drawing 112021-10-GR Revision 3 dated July 2, 2020 was reviewed for Block 21. #### **Paterson Review** Based on the stiff to very stiff nature of the upper silty clay deposit and the underlying firm clay, the final grading being proposed for the subject development is within the acceptable permissible grade raise of 1.2 m and considered satisfactory from a geotechnical perspective. We trust that this information satisfies your requirements. Best Regards, Paterson Group Inc. Carlos P. Da Silva, P.Eng., ing., QP_{ESA}