

Jp2g Consultants Inc. ENGINEERS - PLANNERS - PROJECT MANAGERS 1150 Morrison Drive, Suite 410, Ottawa, ON K2H 8S9 T 613-828-7800, F 613-828-2600, www.jp2g.com 1150 Morrison Drive, Suite 410 Ottawa, ON, K2H 8S9 T.613.828.7800 F.613.828.2600 Project No. 19-5070A

Stormwater Management Report Fernbank Elementary School

480 Cope Drive, Ottawa, Ontario

Revision 1

Prepared for

City of Ottawa Infrastructure Services and Community Sustainability 110 Laurier Ave. West, 4th floor, Mail Code 01-14 Ottawa, Ontario, K1P 1J1

February 18, 2020

Table of Contents

1	Intr	oduction	1
2	Obj	ective	1
3	Des	ign Parameters	1
4	Wat	er Quantity Controls	2
	4.1	Pre-Development Conditions	2
	4.2	Allowable Release Rate	2
	4.3	Post-Development Conditions	2
	4.4	Onsite Stormwater Detention	2
	4.5	Proposed Release Rates	4
5	Ero	sion and Sediment Control	4
6	Cor	nclusion	5

*	SD-1	Stormwater Management Sub-Drainage Areas
*	Appendix A	Background Excerpts
*	Appendix B	Stormwater Management Calculations
*	Appendix C	Watts Drainage Adjustable Flow Control for Roof Drains – Data Sheet

1 Introduction

Jp2g Consultants Inc. was retained by N45 Architecture Inc. to complete a Stormwater Management Report suitable for City of Ottawa Site Plan Control Application, for the Ottawa Carleton District School Board's proposed Elementary School and Daycare Addition at Cope Drive and Rouncey Road, in the City of Ottawa. The total site area is approximately 2.84 ha and the proposed site development area includes the construction of a 360 m² one-storey day-care building, associated parking areas, play area, and landscaped areas. A pre-Consultation meeting was held with City of Ottawa staff on August 23, 2019, to determine the project constraints and requirements. The following report details the stormwater management calculations used for water quantity and quality control in accordance with the City of Ottawa's requirements.

Reference Drawings: SD1 – Stormwater Management Sub-Drainage Areas, C02 – Servicing Tables, C03 - Site Servicing Plan (November 28, 2019), and C04 - Site Grading and Drainage, Erosion and Sediment Control Plan (November 28, 2019).

2 Objective

The objective of the stormwater management plan is to control post-development peak flows to predetermined levels, and detain onsite, stormwater up to and including the 100-year storm event without affecting adjacent lands. Stormwater quality control will be provided by the downstream pond 6, no onsite quality control is required.

3 Design Parameters

Stormwater management criteria for this site, in terms of quantity control, is based on the following approved reports:

Servicing and Stormwater Management Report – Blackstone Community Phase 4-8 by Stantec, April 11, 2019.

The maximum allowable release rate for this site shall not exceed the criteria set in the approved servicing report. Flows in excess of the allowable release rate up to and including the 100-year event will be detained onsite.

The Modified Rational Method (Q = 2.78CiA) was chosen to calculate the post-development release rates, and onsite storage requirements for this development. Detailed stormwater management calculations are included in **Appendix B**. All proposed storm sewers were assigned a Manning's coefficient of roughness of 0.013 corresponding to smooth wall pipes. In accordance with City of Ottawa Sewer Design Guidelines (Section 5.4.5.2.1), the coefficients used for calculating the post-development release rate were C = 0.25 for grassed areas and C = 0.90 for hard surfaced areas including rooftops. The rainfall intensities used in this analysis are based on the IDF curves and equations, as per City of Ottawa Sewer Design Guidelines (Section 5.4.2).

4 Water Quantity Controls

4.1 Pre-Development Conditions

The existing site is an undeveloped parcel with a generally flat site topography that is sloped toward the east side of the property with an approximate elevation difference of 0.5 meter over approximately a 220-meter length. The proposed day-care facility will be constructed at the same time as the main school building. Services have been installed along Rouncey Road, as part of the development of the Blackstone Community Phase 4-8.

4.2 Allowable Release Rate

The stormwater management design criteria for this site is based on the subdivision servicing report as noted above. According to the Stantec study, the school site has an allowable release rate up to the 5 year-event of **575.7 L/s**. Refer to **Appendix A** – Background excerpts – Storm Water Management. Minimum storage requirement was set to **50 m3 / ha** per the Subdivision study.

4.3 Post-Development Conditions

Proposed site grading and drainage of the overall site was designed such that stormwater runoff will be collected by the roof and a new storm water collection system which will be connected to the existing 1200mm diameter municipal storm sewer on Rouncey Road and discharged to Pond 6 of the subdivision.

The storm sewer system consists of manholes, catchbasins, storm sewers, perforated subdrain system in landscaped area of the sportsfield. Predominantly, drainage areas are piped to the storm system except for areas fronting onto Cope Drive, the bus layby and a portion of the paved basketball court area. This last area is uncontrolled to permit the unrestricted flow from the building storm sewer and prevent backup to the building.

No surface ponding will occur during the 5-year event. Flows exceeding the allowable release rate up to the 100-year event are to be detained on site.

The overall site development area is approximately **2.84 ha** and has a post-development average weighted runoff coefficient of **C=0.59**, and **C=0.64** for the maximum and 100-year events, respectively. Overall onsite storage requirement was calculated to be **190 m³** for the 100-year event, which exceeds the minimum storage requirement of $50m^3/ha$.

4.4 Onsite Stormwater Detention

Stormwater detention is proposed on the school roof, in the proposed parking area, in the paved school yard as well as along the sportsfield swale.

Flows from the roof area, parking area and grassed areas will be controlled individually in order to provide less restricted flow path. The maximum allowable ponding depth will be limited to 250mm for paved areas and 300mm in grassed areas during 100-year events. Flow control is proposed at manholes CBMH5 and CBMH7.

Flow at CBMH5 serving the parking and paved areas will be limited to 300 L/s. The maximum ponding elevation in the parking area is 100.85 which is below the building finished floor elevation of 101.25. The flows from the parking areas will be restricted at CBMH5 by installing an orifice plate with a discharge rate of **300.0 L/s** at an estimated head of **2.05 m**. The orifice plate is shown on Drawing C006. The maximum head of water is dictated by the overland overflow elevation of 103.46m. The invert of the outlet pipe is 98.64.

The orifice plate was sized using the orifice equation:

 $Q = 0.61 \times A \times (2 \times g \times H)^{A0.5}$, where Q is the discharge rate in m³/s Orifice coefficient = 0.61 G= gravitational constant = 9.81 m²/s H = head of water (m) above the centre of the orifice = (100.85 - 98.64) - (0.5 x orifice diameter)

The orifice of 314mm provides the required flow

Q= 0.61 x A x $(2 x g x H)^{0.5}$ = 0.61 x $(\pi x (0.314/2)^2)$ x $(2 x 9.81 x (2.21 - (0.5 x 0.314))^{0.5}$ = 0.300 m³/s

Flow from the sportsfield and grassed areas will be restricted at CBMH7 by installing an orifice plate with a discharge rate corresponding to the 5-year event of **60 L/s by** at an estimated head of **1.93 m**. The orifice plate is shown on Drawing C006. The maximum head of water is dictated by the overland overflow elevation of 100.76m. The invert of the outlet pipe is 98.90.

The orifice plate was sized using the orifice equation:

 $Q = 0.61 \times A \times (2 \times g \times H)^{A0.5}$, where Q is the discharge rate in m³/s Orifice coefficient = 0.61 G= gravitational constant = 9.81 m²/s H = head of water (m) above the centre of the orifice = (100.76 - 98.90) - (0.5 x orifice diameter)

The orifice of 145mm provides the required flow

Q= 0.61 x A x $(2 x g x H)^{0.5}$ = 0.61 x $(\pi x (0.145/2)^2)$ x $(2 x 9.81 x (1.86 - (0.5 x 0.145))^{0.5}$ = 0.060m³/s

Flow from the combined school and daycare roof will also be detained on the roof by installing parabolic weirs, (Watts Drainage Adjustable Flow Control for Roof Drains, or equivalent approved products), at the 29 proposed roof drains limiting the flow from the roof to **18.3 L/s**. The resulting required storage is **153 m**³ for the 100-year event. Based on a maximum ponding depth of 150mm on the roof, the total available storage is approximately **194 m**³, which is sufficient to accommodate the 100-year event. Each flow control roof drain, complete with a single slot parabolic weir, will restrict flow at 5 GPM (0.32 L/s) per inch (25.4mm) of head to a maximum of 10 GPM (0.63 L/s). The restricted flow will outlet to the school's 300mm diameter storm sewer service at 4.0% slope downstream of any flow restriction.

Total	Controlled /	Run-off		Outlet	Total	Flow (L/s)	Required
Area	Uncontrolled	Coefficient		Location	Storage		Storage
					Provided		(cu.m.)
					(m ³)		
		5 year	100 year			100-year eve	ent
2.364	Controlled	0.59	0.64		343	378.3	190
0.480		0.54	0.58	Cope Drive		138.6	
				& Rouncey			
				Road ROW			
2.844					343	516.9	190

The following table summarizes on-site requirements during the 100-year event:

Note that storage within the subdrain clearstone trench was not included within the available storage volume. There is sufficient available ponding to accommodate the 100-year event.

The maximum ponding limits are indicated on **SD1**. In the event of a rainfall exceeding the 100-year event, runoff will remain on-site until ponding reaches the overspill elevation. In such event, the school yard and sport field major overland flow route will overflow towards Rouncey Drive and the parking area will overflow to Continental Avenue. The grade elevation at the overflow point is **0.30 m** below the school's finished floor elevation.

4.5 Proposed Release Rates

The proposed release rate for this site during the 100-year event, including uncontrolled flows (138.6 L/s) and controlled flows into the minor system of 378.3 L/s. Therefore, proposed release rates are within the allowable release rate for this site, determined to be 575.7 L/s in Section 4.2.

5 **Erosion and Sediment Control**

In accordance with City of Ottawa requirements, best management practices are to be implemented by the Contractor to provide protection of the area drainage system and the receiving water course, during construction activities. This includes limiting the amount of exposed soil, using filter bag inserts under the grates of catch basins and manholes, installing silt fences and other effective sediment traps, and installing and maintaining mud mats for outgoing construction traffic during construction activities.

6 Conclusion

The proposed site development includes a new school building with an attached daycare, a bus lay-by, asphalt parking, hard surface walkways and play areas, landscaped areas, a sports field and an area for portables. Roof drainage and surface runoff will be collected by a new storm sewer system which will be connected to the existing 1200mm diameter municipal storm sewer located on Rouncey Road. Post-development peak flows will be detained on the roof, in the parking area, in the school yard and in the bus lay-by in order to limit the post-development release rate to allowable levels. There is sufficient onsite storage to accommodate the 100-year event.

ID	Description	Value/result
01	Allowable release rate	Q _{allowable} = 575.7 L/s
02	Proposed release rate	Q _{100-yr post} = 516.9 L/s
03	Post-development runoff coefficient	$C_{5-yr post} = 0.58, C_{100-yr post} = 0.63$
04	Post-development onsite storage requirement	190 m ³
05	Proposed onsite storage	Parking lot and school yard: 190 m ³ , Roof: 153m ³ , Sportsfield: 6 m ³
06	Discharge outlet location	1200mm∳ storm sewer on Rouncey Road to Pond 6
07	Emergency runoff overflow locations	West side – curb cut in parking area towards Continental Avenue East side – from school yard to layby towards Rouncey Road

Summary of report

END OF REPORT

Prepared by:

Barbra Kimmerle, P.Eng. Civil Engineer

PONDING TABLE POND NO. LOCATION POND ELEV. (mi 0 20 3 POND EETH POND VC) IP 2 002 100.65 100.67 0.15 13.61 PA 100 000 50 100.67 0.15 13.61 PA 100 000 50 100.62 0.15 100.61 1.68 PA 100 000 50 100.62 0.15 100.61 1.68 PA 100 000 50 100.62 0.15 1.60 1.68 PA 100 000 50 100.61 1.68 1.69 PA 100 000 50 100.62 0.10 1.68 1.69 PA 100 000 50 PA 100 000 50 1.69 3.60 PA 100 000 50 PA 100 000 50 1.69 3.60 PA 100 000 50 PA 100 000 50 PA 100 000 50 1.								× 001
POND NO. LOCATION Imin Imin Imin P1 CH1 100.68 100.68 000.67 0.15 11.81 P4 CBMPI 100.65 100.22 0.13 24.81 P4 CBMPI 100.65 100.22 0.13 24.81 P4 CBMPI 100.65 100.22 0.13 24.81 P4 CBMPI 100.65 100.20 0.23 11.86 P4 CBMI4 100.65 100.20 0.23 11.66 P4 CBMI4 100.65 100.20 0.23 11.66 P4 CBMI4 100.65 100.20 0.23 11.66 P40 TCBH7 100.76 100.71 0.50 0.30 P1 CBMH7 100.76 100.21 0.30.41 100.22 0.30.41 P10 CBMI7 100.76 100.21 0.30.41 100.22 0.30.41 P10 CBMI7 100.76 100.21 0.30.41 100.21 100.21 MCONTICUM CHIMI CHIMI HUNDIM CHIMIN BUNCHAR AREA NTHIM	PONDIN	G TABLE		TOP OF CP				~
P1 051 100.85 100.80 0.22 97.83 P2 052 100.85 100.70 0.13 155.42 P3 054.11 100.85 100.72 0.13 34.41 P4 054.11 100.85 0.23 153.86 P4 054.11 100.85 0.23 153.86 P4 054.11 100.85 0.23 153.86 P4 054.11 100.82 0.02 0.33 44.16 P4 054.11 100.82 0.02 103.86 100.16 0.86 P10 054.12 0.02 103.11 1.02 1.03.11 1.02 1.03.11 1.02 P11 054.17 0.0.71 0.02.1 1.03.11 1.02 1.03.11 1	POND NO.	LOCATION	(m)	ELEV. (m)	(m)	(m ³)		
P2 028 100.67 0.18 15.42 P3 008641 000.65 100.72 0.13 15.41 P5 008041 000.85 100.85 0.20 15.96 P6 CRM14 000.85 100.85 0.20 15.96 P6 CRM14 100.85 100.85 0.20 15.96 P6 CRM14 100.85 100.85 0.20 15.96 P6 CRM14 100.85 100.07 0.00 0.38 P10 TCE12 100.76 10.01 10.30 P11 CDM17 100.76 10.31 4.53.01 P10 RODF I Total 32.02 P11 CDM17 100.71 10.62 10.31 4.53.01 P12 RODF I Total 32.02 10.95 ROTE RUNOFF COEFFICIENT RUNOFF COEFFICIENT Image: Coefficient Coeff	P1	CB1	100.85	100.60	0.25	37.93	$100^{\frac{10}{9}2}$	<u> </u>
P3 CEMM*1 108.85 100.70 0.13 24.81 P4 CEMM*1 108.85 100.72 0.13 24.81 P4 RCM15 108.85 102.82 0.14 90.80 P4 CEMM*1 102.85 102.82 0.14 90.80 P4 CEMM*1 102.85 102.82 0.14 90.80 P4 CEMM*5 102.85 102.82 0.14 90.80 P4 CEMM*5 102.85 102.82 0.14 90.80 P1 CEMM*7 100.75 600.01 0.38 0.38 P12 ROOF 0.12 153.11 10.55 10.52 153.11 NOTE PONDING VOLUME CALCULATERED MULTIP TOTALE DIVERSIDE PYTOR A COULSAL POND PROPOSED PMULTIP VIDUE THE PONDING BEY STOR A COULSAL POND PROPOSED DRAINAGE AREA BOUNDARY MAJOR OVERLAND FLOW ROUTE PROPOSED DRAINAGE AREA BOUNDARY PROPOSED DRAINAGE AREA BOUNDARY PROPOSED DRAINAGE AREA BOUNDARY PROPOSED BUILDING PROPOSED BUILDING MAJOR OVERLAND FLOW ROUTE MAJOR OVERLAND FLOW ROUTE PROPOSED BUILDING	P2	CB2	100.85	100.67	0.18	15.42	O b \$20 100.90 Store Benchmark ^{00.36} Ere Hudsont	~
Ря ОДМ 2 100.05 000.72 0.13 24.81 Рв ОДМ 35 100.05 0.00 3.64 197 ОДМ 35 100.05 0.00 0.25 3.44 197 СВМИ 1 100.05 100.06 0.25 3.44 197 СВМИ 1 100.05 100.06 0.38 100 P10 TCB:12 100.76 100.71 0.06 0.38 100 P11 CBM 7 100.76 100.21 13.301 32.02 100 100.12 13.301 100E PONONO VQLUEC CALCULATED IN MULTERVINE THE ADDING BUY 3 POR A CONSCAL POND 100 11 2.000 110 100.76	P3	CBMH1	100.85	100.70	0.15	13.81	Top of Spindle) Elevation=101.61	_
Pis Lukuitis 100.05 00.05 0.24 19.48 Pis CBMH4 100.05 100.65 0.28 3.44 Pis CBMH4 100.05 100.62 0.18 3.04 Pis CBMH4 100.05 100.62 0.18 3.04 Pis CBMH5 100.05 100.62 0.18 3.04 Pis TCBE12 100.76 100.61 10.55 3.88 Pis TCBE12 100.76 10.12 15.51 INTERPONDE VOLUME CALCULATED VINUE THE NONE THE ENDING AGEADY THE TOBENTY INTERPONDE OF THE NONE THE FORMER AGEADY THE NUMERY ALL PROPOSED DRAINAGE AREA BOUNDARY REA ID REA (ha) TOBENTY ALL PROPOSED DRAINAGE AREA BOUNDARY PROPOSED DRAINAGE AREA BOUNDARY MAJOR OVERLAND FLOW ROUTE TOBENTY ALL PROPOSED DRAINAGE AREA BOUNDARY TOBENTY ALL PROPOSED DRAINAGE AREA BOUNDARY MAJOR OVERLAND FLOW ROUTE TOBENTY ALL PROPOSED DRAINAGE AREA BOUNDARY TOBENTY ALL PROPOSED DRAINAGE AREA BOUNDARY	P4	CBMH2	100.85	100.72	0.13	24.81		
PI CENTOLEC PI CENTOLE	P5		100.85	100.65	0.20	15.98		
Image: Control Image	P0 		100.85	100.59	0.20	30.60	0+3080 80 0.994 0.90	
Importantial results Importantial results Importantial results Importantial results Importantial results Importantial results Importantial results Importantial results Importantial results Importantial results Importantial results Importantial results Importantial results Importantial results Importantial results Importantial results Importantis Importantial results Im	 P8	CBMH5	100.85	100.60	0.25	41.66		
Internet to the total 100.76 100.76 100.76 100.76 P12 ROOF 100.76 100.81 0.12 153.01 Internet total 342.62 Internet total	P9	TCB12	100.76	100.71	0.06	0.38	P1 P1 _	P3 \
PTI OBMIT 100.76 100.61 0.15 4.58 PTI OBMIT 100.76 100.61 0.12 153.01 AREA ID RUNOFF COEFFICIENT AREA (ha) PROPOSED BUILDING MAJOR OVERLAND FLOW ROUTE	P10	TCB13	100.76	100.76	0.10	1.00		
P12 ROOF 0.12 158.01 NOTE: FORDING VOLUME CALCULATED BY MULTITUTION THE FORDING AREA BY THE MAXIMUM FORDING DEFINAND DIVIDING BY 3FOR A CONICAL POINT AREA ID RUNOFF COEFFICIENT AREA (ha) PROPOSED DRAINAGE AREA BOUNDARY PROPOSED BUILDING MAJOR OVERLAND FLOW ROUTE	P11	СВМН7	100.76	100.61	0.15	4.58	0 510074 0 510074 0 50000 CB ² 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	5% WINV
Interesting with the intervention of the product acts and the product acts	P12	ROOF			0.12	153.01		m 375mn
AREA ID RUNOFF COEFFICIENT AREA (ha) PROPOSED BUILDING MAJOR OVERLAND FLOW ROUTE					Total=	342.62		n@ PVC OD
AREA ID RUNOFF COEFFICIENT AREA (ha) PROPOSED DRAINAGE AREA BOUNDARY PROPOSED BUILDING MAJOR OVERLAND FLOW ROUTE	NOTE: PON	IDING VOLUME XIMUM PONDII	CALCULATED I	BY MULTIPLYING	G THE PONDING / FOR A CONICAL F	AREA BY THE POND		TM STOP
AREA ID RUNOFF COEFFICIENT AREA (ha) PROPOSED DRAINAGE AREA BOUNDARY PROPOSED DRAINAGE AREA BOUNDARY PROPOSED DRAINAGE AREA BOUNDARY MAJOR OVERLAND FLOW ROUTE								@ 0. CBM
AREA ID RUNOFF COEFFICIENT AREA (ha) PROPOSED DRAINAGE AREA BOUNDARY PROPOSED BUILDING MAJOR OVERLAND FLOW ROUTE								
AREA ID RUNOFF COEFFICIENT AREA (ha) PROPOSED DRAINAGE AREA BOUNDARY PROPOSED BUILDING MAJOR OVERLAND FLOW ROUTE							CB-2 TG 100.65 INV=99.66	3%
AREA ID RUNOFF COEFFICIENT AREA (ha) PROPOSED DRAINAGE AREA BOUNDARY PROPOSED BUILDING MAJOR OVERLAND FLOW ROUTE							N 5 107.00 Max Port	P4
AREA ID RUNOFF COEFFICIENT AREA (ha) PROPOSED DRAINAGE AREA BOUNDARY PROPOSED BUILDING MAJOR OVERLAND FLOW ROUTE								A4 Controlled
AREA ID RUNOFF COEFFICIENT AREA (ha) PROPOSED DRAINAGE AREA BOUNDARY PROPOSED BUILDING MAJOR OVERLAND FLOW ROUTE								0.104 0.90
AREA ID RUNOFF COEFFICIENT AREA (ha) PROPOSED DRAINAGE AREA BOUNDARY PROPOSED BUILDING MAJOR OVERLAND FLOW ROUTE								
AREA ID RUNOFF COEFFICIENT AREA (ha) PROPOSED DRAINAGE AREA BOUNDARY PROPOSED BUILDING MAJOR OVERLAND FLOW ROUTE								/
AREA ID RUNOFF COEFFICIENT AREA (ha) PROPOSED DRAINAGE AREA BOUNDARY PROPOSED BUILDING MAJOR OVERLAND FLOW ROUTE								
AREA ID RUNOFF COEFFICIENT AREA (ha) PROPOSED DRAINAGE AREA BOUNDARY PROPOSED BUILDING MAJOR OVERLAND FLOW ROUTE							101 26 0 #120 T G 100.90 T	75 .75
AREA ID RUNOFF COEFFICIENT AREA (ha) PROPOSED DRAINAGE AREA BOUNDARY PROPOSED BUILDING MAJOR OVERLAND FLOW ROUTE								~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Controlled 0.094 0.90 AREA (ha) PROPOSED DRAINAGE AREA BOUNDARY PROPOSED BUILDING MAJOR OVERLAND FLOW ROUTE		A	1	— AREA	ID		14.7m 250mmØ HDPE PERF. SMOOTH INNER	2
AREA (ha) PROPOSED DRAINAGE AREA BOUNDARY PROPOSED BUILDING MAJOR OVERLAND FLOW ROUTE		Contr	olled	RU	NOFF CO	EFFICIENT	CLOTH	
AREA (ha) PROPOSED DRAINAGE AREA BOUNDARY PROPOSED BUILDING MAJOR OVERLAND FLOW ROUTE		0.094	0.90				P 0 140 0 140	
PROPOSED DRAINAGE AREA BOUNDARY PROPOSED BUILDING MAJOR OVERLAND FLOW ROUTE				REA (ha)			WALL PIPE c/w FILTER CLOTH	
PROPOSED DRAINAGE AREA BOUNDARY PROPOSED BUILDING MAJOR OVERLAND FLOW ROUTE MAJOR OVERLAND FLOW ROUTE			,				14.7m 250mmØ HDPF	0.48
PROPOSED BUILDING MAJOR OVERLAND FLOW ROUTE MAJOR OVERLAND FLOW ROUTE	_			PROPOSED	DRAINAGE A	REA BOUNDAF	TCB6 TG 100.90	
MAJOR OVERLAND FLOW ROUTE	//	////					101.30 0×150 0	TCB9 TG 100, E INV=9 W INV=9
MAJOR OVERLAND FLOW ROUTE	_/_/				DOILDING			
			I	MAJOR OVE	RLAND FLOV	V ROUTE		
Мин-st 2 9 101.53 9 101.53 9 101.64 x 101.97 0 101.54 x 120 2 05 0 101.54 x 120 2 05 0 101.54 x 120 0 101.54 x 120			\neg					
							101.97 2.1%	
							5 2.9% X101.99 3.0%	BA OF
							UP TOUR TOUR AND A TOU	54 * * *
8 X = 1 3 20%							00 00 00 00 00 00 00 00 00 00 00 00 00	1001.63 92
x = 413 - 181, 2003 - 50% a 20% = 20%							- 10% oo	0 2

Folder: C:\Barbra\01-Current Barbra\19-5070A - N45 New OCDSB Fernbank Elementary School\08 Drawings\04 ONGOING | Drawing: Fernbank Civil 18-02-2020.dwg | Layout: DRAINAGE | Print date: 5:38 PM February 18, 2020

project

FERNBANK ELEMENTARY SCHOOL

480 COPE DRIVE, OTTAWA, ONTARIO

seal

#18083

drawing title STORM DRAINAGE PLAN drawn by _{M.S.} scale 1:500 date checked by DEC 2019 B.K. drawing number project number SD1 revision CONTRACTOR TO VERIFY ALL DIMENSIONS AND NOTIFY THE ARCHITECT OF ANY DISCREPANCIES BEFORE WORK COMMENCES. DO NOT SCALE DRAWINGS.

Appendix A - Background Excerpts Stormwater Management

Jp2g Consultants Inc.

																																					ſ
Stantec	Blacks	stone Phase	s 4-8 119-04-15			DESIG	NI SEVI	۲.		UESIGN I = a / (t+l	b) ^c 1-2 vr	1 EKS	(As per Cit	y of Ottaw.	a Guidelin	es, 2012)																					
	REVISION: DESIGNED BY: CHECKED BY:	1 21	4 DT SG	FILE NI	JMBER:	160401	130			a = c = =	732.951 6.199 0.810	998.071 6.053 0.814	1174.184 6.014 0.816	1735.688 N 6.014 M 0.820 TI	AANNING'S 11NIMUM CC 1ME OF EN	n = DVER: TRY	0.013 2.00 m 10 mi	BEL	DDING CLASS	S = B																	
LOCATION AREA ID NUMBER	FROM TK M.H. M.I	TO ARE 	A AREA AR) (5-YEAF (ha)	N AREA R) (10-YEA	AREA R) (100-YEAF (ha)	AREA R) (ROOF) (ha)	C C (-)	C (5-YEAR) (-)	с (10-YEAR) (-)	с (100-YEAR) (-)	A x C (2-YEAR) (ha)	ACCUM AxC (2YR) (ha)	DRA A×C (5-YEAR) /	UNAGE ARE ACCUM. AxC (5YR) (1 (ha)	A A×C / 10-YEAR) Ax (ha)	ACCUM. C (10YR) (10 (ha)	A X C A D0-YEAR) AxC (ha)	CCUM. T :(100YR) (ha) (i	ofC l _{2Y} Trin) (mr	eve ls-re mn/ (mm/	ак ^h aver	us ⁱ loo-rea (mm/h)	R QCONTRO	or ACCUIV Ocorrec (L/s)	. С _{АСТ} (CIM360) (U/s)	(m)	PIPE WIDTH OR DIAMETE (mm)	H PIPE HEIGHT (mm)	PIPE SHAPE (-)	MATERIAL (-)	PIPE SELEC	SLOPE %	Gcap (FULL) (L/S)	(-) % EULL	VEL. (FULL) (m/s)	VEL. (ACT) (m/s)	TIME OF FLOW (min)
Fernbank Crossing P1-4 LM97A, CM97A	301 MS M97 M5	97 0.0	0 0.00 7 0.41	0.00	0.00	0.00	0.00 0.45	0.00	0.00	0.00	0.000 0.303	0.000 0.303	0.000	0.000 0.284	0.000	0.000	0.000	1.000.0	0.00 76. 0.50 74. 1.08	.81 104. .93 101.	.19 122. 61 119.	14 178.5 10 174.0	6 6451. 9 0.0	8 6451.8 6451.8	8 6451.8 3 6594.9	78.3 78.0	1950 2100	1950 2100	CIRCULAR	CONCRETE		0.30 0.20	8131.0 8089.5	79.35% 81.52%	2.64 2.26	2.60 2.24	0.50 0.58
F2006A	2048 200	05A 0.0	0.00	0.00	1.35	0.00	0.00	00.0	0.00	0.40	0.000	0.000	0.000	0.000	0.000	0.000	0.541 0).541 1. 11	0.00 76. 0.15	.81 104.	19 122.1	14 178.5	6 0.0	0.0	268.3	12.9	525	525	CIRCULAR	CONCRETE	•	0.50	317.2	84.57%	1.42	1.42	0.15
C2009A, C2009B C2008A L2007A C2006A, C2006B	2009 20 2008 20 2007 201 2006 200	008 0.0 007 0.0 066 0.5(05A 0.0(0 0.34 0 0.21 5 0.00	0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.39 0.00	0.70 0.70 0.00 0.70	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.219 0.000	0.000 0.000 0.219 0.219	0.238 0.150 0.000 0.385	0.238 0.388 0.388 0.774	0.000 0.000 0.000 0.000	0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.000000	0.000 0 0.000 0 0 0.000 0 0 0.000 0 0 0.000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 000.0 0.000 1.000.0 1.000.0	0.00 76 1.54 71. 2.95 67. 4.07 64.	.81 104. .37 96. .08 90.6 .04 86.6	.19 122. 72 113. 34 106.4 37 101.5	14 178.5 34 165.6 12 155.4 32 148.2	6 0.0 3 0.0 7 0.0 7 0.0	0.0	68.8 104.3 138.8 225.2	64.5 64.5 49.4 70.3	450 600 750 900	450 600 750 900	CIRCULAR CIRCULAR CIRCULAR CIRCULAR	CONCRETE CONCRETE CONCRETE CONCRETE		0.20 0.20 0.15 0.10	133.0 286.5 449.8 597.2	51.75% 36.41% 30.85% 37.71%	0.81 0.98 0.99 0.91	0.70 0.76 0.73 0.72	1.54 1.41 1.13 1.64
	2005A 201	0.01	0.00	00.00	0.00	0.00	0.00	0.00	0.00	0.00	0.000	0.219	0.000	0.774	0.000	0.000	0.000	1.541 1.	5.71 60. 5.15	.14 81.5	33 95.2	3 139.0	5 0.0	0.0	420.3	22.9	006	006	CIRCULAR	CONCRETE	•	0.10	597.2	70.37%	0.91	0.86	0.44
C2049A	2049 201	105 0.01	0 2.84	0.00	0.00	0.00	0.00	0.70	0.00	0.00	0.000	0.000	1.989	1.989	0.000	0.000	0.000	10000	0.00 76.).16	.81 104.	19 122.1	14 178.5	0.0	0.0	575.7	13.0	825	825	CIRCULAR	CONCRETE	•	0.25	748.8	76.89%	1.36	1.32	0.16
C2005A C2004A, C2004B C2002A	2005 201 2004 201 2003 201 2002 202	004 0.01 003 0.01 002 0.00	0 0.38 0.63 0.63 0.30 0.00	0.00 00.0	0.00 00.0 00.0	0.00 0.00 0.00	0.00 00.0 00.0	0.70 0.70 0.00 0.70	0.00 00.0 00.0	0.00 0.00 0.00	0.000 0.000 0.000 0.000	0.219 0.219 0.219 0.219	0.265 0.444 0.000 0.209	3.028 3.471 3.471 3.680	0.000 0.000 0.000 0.000	0.000.000.000.0000.0000.00000.000000000	0.000 0.0000 0.0000 0.0000 0.000000	0.541 10 0.541 10 0.541 10 0.541 10 0.541 20 0.541 20	6.15 59. 8.07 55. 9.98 52. 1.89 50.1	.17 80.(.37 74.8 .07 70.3 .64 68.3	01 93.6 30 87.5 30 82.2 50 79.9(8 136.7 6 127.8 7 120.0 9 116.64	7 0.0 4 0.0 8 0.0	0.0 0.0 0.0	914.4 947.0 889.9 904.8	120.0 119.0 55.9 56.7	1200 1350 1350 1350	1200 1350 1350 1350	CIRCULAR CIRCULAR CIRCULAR CIRCULAR	CONCRETE CONCRETE CONCRETE CONCRETE		0.10 0.10 0.10 0.10	1286.2 1760.8 1760.8 1760.8	71.09% 53.78% 50.54% 51.39%	1.10 1.19 1.19 1.19	1.05 1.04 1.03 1.03	1.91 1.91 0.92 0.92
L2047A L2046A L2044B, L2044C, L2044A	2047 20- 2046 204 2045 204 2044 200	346 0.3 345 0.4 344 0.0 344 0.0 347 0.0	0.00	0.00 00.00 00.00	0.00 0.00 0.00	0.00 0.00 0.00	0.71 0.71 0.00 0.49	0.00 0.00 0.00	0.00 0.00 0.00	0.0 0.0 0.0	0.219 0.347 0.000 0.587	0.219 0.566 0.566 1.153	0.000 0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000000	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000000	0000 11 0000 11 10000 14 14 14	0.00 76. 1.96 70. 3.01 66. 1.07 64. 1.95	.81 104. .01 94.6 .89 90.5 .06 86.7	19 122. 36 111.1 38 106.1 0 101.5	14 178.5 15 162.4 2 155.0 5 148.3	0.0	0.0 0.0 0.0	46.7 110.1 105.2 205.1	73.3 44.9 44.6 44.5	450 525 525 675	450 525 525 675	CIRCULAR CIRCULAR CIRCULAR CIRCULAR	CONCRETE CONCRETE CONCRETE CONCRETE		0.20 0.15 0.15 0.15	133.0 173.8 173.8 339.6	35.13% 63.34% 60.52% 60.40%	0.81 0.78 0.78 0.92	0.62 0.71 0.71 0.84	1.96 1.05 1.05 0.89
L20278, L2027A L2026A L20178, L2017A	2027 202 2026 201 2017 201	126 0.75 117 0.32 115 0.50	0000 0000	0.00 0.00 0.00	0.00 0.00	0.00	0.59 0.70 0.70	0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.465 0.236 0.350	0.465 0.701 1.051	0.000 0.000.0	0.000 0.000 0.000	0.000 0.0000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000000	0.000 0 0.000 0 0.000 0	0000 11 0000 12 0000 12 0000 14 00000 14 00000 14 00000 14 00000 14 00000 14 00000 14 00000 14 00000 14 00000000	0.00 76. 2.53 68. 1.63 62.0	.81 104. 30 92.5 66 84.7	19 122.1 10 108.3 17 99.20	14 178.5 18 158.3 3 144.9	6 0.0 9 0.0	0.0 0.0	99.2 132.9 182.9	128.6 105.3 89.5	450 525 600	450 525 600	CIRCULAR CIRCULAR CIRCULAR	CONCRETE CONCRETE CONCRETE		0.25 0.20 0.20	148.7 200.6 286.5	66.69% 66.25% 63.83%	0.91 0.90 0.98	0.85 0.83 0.91	2.53 2.10 1.65
L2016A, L2016B	2016 201	15 0.15	0.00	0.00	0.00	0.00	0.50	0.00	0.00	0.00	0.088	0.088	0.000	0.000	0.000	0.000.0	0.000.0	1000 16	0.00 76. 1.84	81 104.	19 122.1	4 178.56	0.0	0.0	18.9	38.3	300	300	CIRCULAR	PVC	•	0.65	77.5	24.33%	1.10	0.76	0.84
L2015A L2013A L2011A	2015 20 2014 201 2013 201 2013 201 2011 201 2011 201	014 0.21 113 0.00 112 0.51 110 0.55 10 0.55	0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.70 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.192 0.000 0.357 0.000 0.382	1.332 1.332 1.689 1.689 2.071	0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000 0.000	000000000000000000000000000000000000000	0.000.000.000.0000.0000.0000.0000.0000.0000	000 11 11 11 11 11 11 11 11 11 11 11 11	6.28 58. 7.55 56. 7.77 55. 1.04 53. 1.59 52.8 1.37	91 79.6 34 76.1 91 75.5 63 72.4 69 71.1	55 93.2 13 89.1 15 88.4 3 84.7 5 83.27 5 83.27	6 136.1 2 130.00 4 129.00 7 123.70 121.57	0.0	0.0 0.0 0.0 0.0	217.9 208.4 262.3 251.6 303.1	91.3 15.8 95.7 41.4 42.1	675 675 675 675 825	675 675 675 675 825	CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR	CONCRETE CONCRETE CONCRETE CONCRETE CONCRETE		0.40 0.40 0.40 0.40 0.15	554.6 554.6 554.6 554.6 580.0	39.29% 37.57% 47.30% 45.37% 52.26%	1.50 1.50 1.50 1.50 1.05	1.19 1.18 1.26 1.25 0.91	1.27 0.22 1.27 0.55 0.77
L2042A L2041A	2042 204 2041 204	41 0.32 40 0.20	0.00	0.00	0.00	0.00	0.74 0.74	0.00	0.00	0.00	0.235 0.150	0.235	0.000	0.000	0.000	0.000.0	0.000.0	.000 16 .000 11	0.00 76. 1.16 72. 1.39	81 104. 61 98.4	19 122.1 3 115.3	4 178.5t 6 168.55	0.0	0.0	50.2 77.8	70.8 83.1	300 375	300 375	CIRCULAR	PVC		0.65	77.5 132.9	64.78% 58.51%	1.10 1.26	1.02	1.16
L2043B, L2043A	2043 204	40 0.34	0.00	0.00	0.00	0.00	0.74	0.00	0.00	0.00	0.251	0.251	0.000	0.000	0.000	0 000.0	0.000.0	1000 10	.00 76.1	81 104.	19 122.1	4 178.56	0.0	0.0	53.6	107.2	300	300	CIRCULAR	PVC	•	0.65	77.5	69.08%	1.10	1.04	1.72
L2040A	2040 203	36 0.05	0.00	00.0	0.00	00.0	0.57	0.00	0.00	0.00	0.045	0.682	0.000	0.000	0.000	0 000.0	0.000.0	.000 12		70 93.0	6 109.0	3 159.30	0.0	0.0	130.2	48.3	525	525	CIRCULAR	CONCRETE		0.15	173.8	74.90%	0.78	0.75	1.07
L2039B, L2039A	2039 203	36 0.45	0.00	0.00	0.00	0.00	0.74	0.00	0.00	0.00	0.366	0.366	0.000	0.000	0.000	0 000'(.000 0.	.000 10	.00 76.(.84	81 104.1	19 122.1	4 178.56	0.0	0.0	78.0	105.7	375	375	CIRCULAR	PVC		0.40	104.3	74.80%	0.99	0.96	1.84
L2038A L2037A	2038 203 2037 203	37 0.35 36 0.36	00.0	0.00	0.00	0.00	0.74	0.00	00.0	0.00	0.257	0.257 0.522	0.000	0.000	0.000 0	0000.000.0	0.000 0.	.000 10 000 11	.00 76.8 .11 72.7 .21	81 104.1 78 98.6	19 122.1 6 115.6	4 178.56 2 168.98	0.0	0.0	54.9 105.6	69.9 83.4	300 450	300 450	CIRCULAR	PVC	• •	0.65 0.75	77.5 257.6	70.85% 41.01%	1.10 1.57	1.05 1.26	1.11
L2036A	2036 203	32 0.07	0.00	0.00	0.00	0.00	0.57	0.00	0.00	0.00	0.038	1.608	0.000	0.000	0.000 0	.000.0	.000.0	000 13	.46 65.6	66 88.8	9 104.1	2 152.05	0.0	0.0	293.3	44.0	825	825	CIRCULAR	CONCRETE		0.10	473.6	61.93%	0.86	0.79	0.93
L2033A, L2033B	2035 203 2034 203 2033 203.	34 0.00 33 0.00 32 0.73	0.00	0.00	0.00 0.00	0.00 0.00	0.00 0.00 0.74	0.00 0.00 0.00	0.00	0.00 0.00 0.00	0.000 0.000 0.539	0.000 0.000 0.539	0.000 0.000 0.000	0.000 0.0000 0	0.000 0	0.000.0	0 000.0	.000 10 000 10 000 10 12	0.00 76.6 0.00 76.6 0.00 76.6	81 104.1 81 104.1 31 104.1	19 122.1 19 122.1 19 122.1	4 178.56 4 178.56 4 178.56	0.0	0.0	0.0 0.0 115.0	85.0 11.7 113.4	300 300 450	300 300 450	CIRCULAR CIRCULAR CIRCULAR	PVC PVC CONCRETE	• • •	0.40 0.40 0.25	60.8 60.8 148.7	0.00% 0.00% 77.30%	0.86 0.86 0.91	0.00 0.00 0.88	0.00 0.00 2.14
L2032A, L2032B	2032 202	29 0.73	0.00	0.00	0.00	0.00	0.51	0.00	0.00	0.00	0.371	2.518	0.000	0.000	0.000 0	.000 0.	.000 0.	000 14		24 85.5	7 100.2	2 146.37	0.0	0.0	442.3	82.0	006	006	CIRCULAR	CONCRETE	•	0.15	731.4 (50.47%	1.11	1.01	1.35
L2031A, L2031B L2030B, L2030A	2031 203 2030 202	30 0.43 29 0.35	0.00	0.00	0.00	0.00	0.70 0.61	0.00	0.00	0.00	0.300 0.214	0.300 0.514	0.000	0.000	0.000 0	0000.000.00	0.000.00.00.00	000 16 000 11	.00 76.8 .99 69.9	81 104.1 32 94.7	19 122.1- 4 111.0(4 178.56 0 162.20	0.0	0.0	64.0 99.7	82.0 102.4	450 825	450 825	CIRCULAR	CONCRETE	••	0.20 0.10	133.0 473.6	18.10% 21.06%	0.81 0.86	0.69 0.57	1.99 3.02
L2029A, L2029B	2029 202	28 1.30	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.674	3.705	0.000	0.000	0.000.0	.000	.000 0.	000 15	.74 60.0 74	06 81.2:	3 95.11	138.87	0.0	0.0	618.2	111.7	1200	1200	CIRCULAR	CONCRETE	,	0.10	1286.2	18.07%	1.10	0.93	1.99
L2021A, L2021B	2021 202 2020 201	20 0.81	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.419	0.419 0.419	0.000	0.000 0	0.000 0	0 000.00	0.000.0.	000 10 000 10 10	.00 76.8 .14 76.2 .92	81 104.1 29 103.4	(9 122.1- 8 121.3(4 178.56	0.0	0.0	89.3 88.7	9.7 35.9	375 450	375 450	CIRCULAR	PVC CONCRETE		0.65 0.20	132.9 (57.23% 56.71%	1.26 0.81	1.18 0.76	0.14 0.79
L2026B L2024A, L2024B L2023A	2026 202 2025 202 2024 202 2023 202 2023 202 2022 2016	25 0.16 24 0.00 23 0.57 22 0.35 9 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.70 0.00 0.70 0.70 0.70	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.110 0.000 0.400 0.245 0.000	0.110 0.110 0.510 0.755 0.755	0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000 0.000	0 0000	0000	0000 0000 0000 0000 0000 000 000	000 10 000 11 000 13. 000 15.	.00 76.8 .69 70.8 .91 70.1 .88 64.5 61 60.3 90	81 104.1 37 96.0 17 95.00 55 87.37 6 81.63	(9) 122.1 4 112.5 8 111.4 7 102.34 9 95.59	4 178.56 4 164.46 1 162.80 1 149.48 139.58	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	23.5 21.7 99.4 135.5 126.7	75.3 9.6 89.0 76.1 12.2	300 300 675 675	300 300 600 675 675	CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR	PVC PVC CONCRETE CONCRETE CONCRETE		0.50 0.50 0.20 0.15 0.15	68.0 68.0 286.5 339.6 339.6 339.6	34.62% 31.95% 34.71% 89.88% 87.30%	0.97 0.97 0.98 0.92 0.92	0.74 0.72 0.75 0.73 0.71	1.69 0.22 1.97 1.73 0.29
L2019A, L2019B	2019 2024	28 0.64	0.00	0.00	0.00	0.00	0.56	0.00	0.00	0.00	0.360	1.534	0.000	0.000	.000 0.	.000	.0 000.	000 15.	.90 59.7 71	/3 80.77	7 94.57	138.08	0.0	0.0	254.6	81.3	825	825	CIRCULAR	CONCRETE	•	0.10	473.6	3.76%	0.86	0.75	1.81
L2018A, L2018B	2028 201i 2018 2010	18 0.00 0.71	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.000	5.240	0.000	0.000 0	0.000 0.00.0	000 000	000 000.	000 17. 000 17.	.74 55.9 92 55.6 10	38 75.6 ² 14 75.17	4 88.54 7 88.00	129.24	0.0	0.0	814.7 863.2	11.0 71.4	1200 1350	1200 1350	CIRCULAR	CONCRETE		0.10 0.10	1286.2 (1760.8 4	:3.34% 19.02%	1.10	1.01	0.18 1.18
L2010A, L2010B	2010 200	11 0.48	0.00	00.0	0.00	0.00	0.49	0.00	0.00	0.00	0.234	7,890	0.000	0 000.0	1.000 0.	000 0.0	.0 000.	900 20.	37 51.4	5 69.45	81.27	118.58	0.0	0.0	1127.6	88.2	1350	1350	CIRCULAR	CONCRETE	•	0.10	1760.8 6	4.04%	1.19	1.10	1.34

			IME OF FLOW (min)	0.72 1.03	0.21	0.27 2.01	0.87	0.84	1.09	0.62 1.14 0.60	1.27 1.71	0.15	0.66 0.10 0.88	0.21	0.55	0.78 1.58 0.13 1.45 0.70	1.09	0.74 0.66 0.68 0.69	0.23	1.22 0.08	0.51 0.16 0.08	0.05
			VEL 7 ACT) (m/s)	1.29 1.29	2.17	0.84 0.92	3.82	1.16	1.07	1.43 1.61 1.21),69),94	1,62	1.75 1.45 1.44	66'(.42	.195 .12 .20	.32	.40 .07 .05 .06	.55	28	43 43 42	.12
			/EL. "ULL) m/s)	.44 .44	505	06 ⁻	.85	.26	H.	30.80	.10 26	. 68	- 15 15 15	00	28	10 35 35 96 1 1 10	56	38.69	56 1	36 1 36 1	44 44 1	96 3
			-01L (F	30% 1 02% 1	.07% 2	13% C	26% C	60% 1	16% 1	38% 1 56% 1 94% 1	91% 1 24% 1	30% 1	13% 1 10% 1 53% 1	1. %1	1 1	13% 1 19% 1 13% 1 13% 1	1 13%	3% 1 13% 1 17% 1 16% 1	1% 1.	2% 1. 8% 1.	5% 1. 9% 1.	0% 5.
			مر (۱۱) الد (۱۹)	2.1 57. 2.1 58.	0.8 103	0.6 67. 9.8 68.	3.1 73.	2.9 64.	1.4 73.	1,8 63. 1,3 57. 1,0 65.	5 17. 2.9 32.	.1 75.	10 63. 15 59.	.3 81.5	4.4 59.1	5 52. 0 49. 0 45. 2 58.	9.0 48.4	0.2 44.1 2.0 46.5 3.9 35.5 3.9 36.0	9.0 82.4	5.9 69.9 5.9 67.2	2.1 82.2 2.1 80.9 2.1 80.5	8.7 16.9
			E E E E E	0 379 0 379	5 842	0 200 5 449	5 24(5 13:	5 73.	0 16 ⁴ 0 40 ³ 5 375	5 132	0 62(5 707 0 734 0 947	5 224	0 103	5 77 5 301 5 429 5 392	0 1819	2335 2335 3006 3006	181	3006) 3792) 3792) 3792	1808
			S SLOI	0.1 0.1	0.1	0.2	0.1	0.6	0.1	0.8	0.6	0.51	0.6	0.2!	0.3(0.65 0.45 0.46 0.26	0.20	0.20 0.10 0.10	0.20	0.10	0.0 0.10	1.00
			PIPESEI L CLAS (-)	· ·	, Ш	 9	, U	100 -	Ш	••••		Ш		W	۰ س	т. т. т. т. т. 111 пр. н. пр.	1	1 1 E 1	e N	, i		T
			MATERIA (-)	CONCRET	CONCRET	CONCRET	CONCRET	PVC	CONCRET	PVC CONCRET CONCRET	PVC	CONCRET	CONCRET CONCRET CONCRET	CONCRET	CONCRET	PVC CONCRET CONCRET CONCRET	CONCRET	CONCRETI CONCRETI CONCRETI CONCRETI	CONCRETI	CONCRET	CONCRETE CONCRETE CONCRETE	CONCRETH
			PIPE HAPE (-)	CULAR	CULAR	CULAR CULAR	CULAR	CULAR	CULAR	ICULAR CULAR CULAR	CULAR	CULAR	CULAR CULAR CULAR	CULAR	CULAR	CULAR CULAR CULAR CULAR CULAR	CULAR	CULAR CULAR CULAR CULAR	CULAR	CULAR	CULAR CULAR CULAR	CULAR
			че ЭНТ (80 CI	80	0 01	0 CH	5 CIF	0 CIE	0 20 CF	0 5 CF	5 CIF	00 00 00 00 00 00 00 00 00 00 00 00 00	5 CIF	0 CIF	C C C C C C	0 CIR	0 0 CR	0 CIR	0 CIR	0 CIR CIR	0 CIR
			/IDTH PIF AETE HEIO n) (m	00 18 00 18	00 24	5 52 0 75	0 60	5 37	66	5 37 5 52 0 60	0 30 5 37	29 - 67	5 67) 75 5 82	5 52	6	52 52 52 52 52 52 52 52 52 52 52 52 52 5	0 120	0 135 0 150 0 165 0 165	0 120) 165) 165) 180 180 180) 210) 210
			TH PIPE V OR DIAN	7 18(7 18(9 24(24(5 52 .4 75	s 60	5 37	06 06	s 37 1 52 1 60	8 30 2 37	07:	5 671 751 823	52:	300	525 3 600 575	120	135 150 165 165	120	1651 1651	180 1801 1801	2100
			50) LENG	.9 55. .2 79.	56.	7 13. 8 111.	8 42.	58.	1 70.	53.0 110.0 43.1	52.6 97.1	3 15.0	9 69.3 2 75.6	12.5	5 47.2	44.2 108.1 8.8 8.8 104. 39.7	9.96.6	9 61.7 1 42.5 5 42.5 3 43.7	21.8	94.7	1 43.9	8.4
			И. И _{АС} о. (CIA/3 (L/s)	2172 2200	8 8679	134. 306.	181.	85.5	535.	104. 231.(249.)	13.9 42.8	468.1	448. 436.	183.	618.1	40.4 148.7 137.6 183.6 229.1	881.0	1113. 1085. 1060. 1084.	1499.	2102.	3119. 3071. 3056.	3057.1
			r ACCUI Qcorm (L/s)	0.0 0.0	6451.	0.0	0.0	0.0	0.0	0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0 0.0 0.0 0.0	0.0	0.0 0.0 0.0	0.0	0.0 0.0	0.0	0.0
			Uconne (iJs)	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0 0.0	0.0	0.0	0.0 0.0	0:0	0.0	0.0 0.0 0.0 0.0	0.0	0.0 0.0 0.0	0.0	0.0 0.0	0.0	0.0
			¹ 100-теля (mm/n)	113.51 111,16	107.98	178.56 176.15	178.56	178.56	160.10	178.56 173.05 163.87	178.56 167.69	178.56	155.18 150.90 150.26	178.56	145.00	178.56 171.76 159.57 158.64 149.11	141.89	136,15 132.57 129.54 126.58	178.56	123.73 118.99	118.69 116.83 116.26	115.99
			ір-теля (ттт)	77.82 76.21	74.04	122.14 120.50	122.14	122.14	109.58	122.14 118.39 112.14	122.14 114.74	122.14	106.22 103.31 102.87	122.14	99.29	122.14 117.52 109.21 108.58 102.09	97.17	93.26 90.82 88.75 86.73	122.14	84.79 81.56	81.35 80.09 79.69	79.51
		m	ls-теля (mm/h)	66.51 65.15	63.30	104.19 102.80	104.19	104.19	93.52	104.19 101.01 95.70	104.19 97.91	104.19	90.67 88.20 87.82	104.19	84.78	104.19 100.27 93.21 92.67 87.16	82.97	79.65 77.58 75.81 74.10	104.19	72.44 69.70	69.52 68.44 68.11	67.95
		class =	l _{2-тел} я (mm/h)	49.29 48.29	46.93	76.81 75.79	76.81	76.81	69.04	76.81 74.49 70.63	76.81 72.24	76,81	66.96 65.15 64.88	76.81	62.66	76.81 73.95 68.81 68.42 64.40	61.34	58.91 57.39 56.11 54.85	76.81	53.64 51.62	51.50 50.70 50.46	50.34
		BEDDING	T of C (min)	21.71 21.81 22.53	23.56 23.56 23.77	10.00 10.27 12.28	10.00 10.87	10.00 10.84	12.28 13.37	10.00 10.62 11.77 12.36	10.00 11.27 12.99	10.00 10.15	12.99 13.65 13.75 14.63	10.00 10.21	14.63 15.18	10.00 10.78 12.35 12.48 13.94 13.94	15.18 16.28	16.28 17.01 17.67 18.35 19.03	10.00 10.23	19.03 20.26 20.34	20.34 20.85 21.01 21.09	21.09 21.13
		e ii	ACCUM. XC (100YR) (ha)	0.541 0.541	0.541	0000	0.000	0.000	0.000	0.000 0.000 0.000	0.000	0:000	0.000 0.000 0.000	0.370	0.370	0,000 0,000 0,000 0,000 0,000 0,000	0.370	0.370 0.370 0.370 0.370	0,000	0.370 0.370	0.370 0.370 0.370	0.370
	~	0.013 2.00 10	A × C 100-YEAR) / (ha)	0.000	0.000	0.000	0.000	0.000	0.000	0.000 0.000 0.000	0.000	0.000	0.000 0.000 0.000	0.370	0.000	0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.000	0.000 0.000 0.000 0.000	0.000	0.000	0.000 0.000 0.000	0,000
	1es, 2012	s n = :OVER: vtrry	АССИМ. «С (10YR) ((ha)	0.000	0.000	0.000	0.000	0.000	0.000	0.000 0.000 0.000	0.000	0.000	0.000 0.000 0.000	0.000	0.000	0.000 0.000 0.000 0.000 0.000	0.000	0.000 0.000 0.000 0.000	000.0	0.000	0.000 0.000 0.000	0.000
	a Guidelii	INIMUM C	А АхС 10-ҮЕАR) / (ha)	0.000	0.000	0.000	0.000	0.000	0.000	0.000 0.0000	0000	0.000	0.000 0.000 0.000	0.000.0	0.000	00000 00000 000000 000000	0.000	0.000	0.000	0000	0000	000.0
	of Ottaw :100 yr	735.688 N 6.014 N 0.820 T	VAGE ARE AUCUM. XC (5YR) ((ha)	3.974 4.371	4.654	0.000	0.000.0	0.127	0.736	0.361 0.823 0.823	0.000	0000.0	0000	0.000	0.000	000000000000000000000000000000000000000	000.0	.094 .094 .094 .325	.179	505	240	.287 (
	s per City	174.184 1 6.014 0.816	DRAU Axč, SYEAR) A (ha)	0.294	0.000	0.000	0.000	0.127	000.0	0.361 0.462 0.000	000.000	000.0	000	000.0	0000	000	000'	.271 000 231	; 179	000.000	000.000	<u>i</u> 000.
ß	1:5 yr (A	98.071 1 6.053 0.814	сс <i>ый</i> (с (2YR) ((ha)	9.262 9.262	9.565	0.631 0.631	0,852	0.230	1.794	0.000).065).214	.197	2.411 2.411 2.498	1 000'	1697	281 (1189 (1172)	.315 (473 (473 (473 (473 (; 000 [.]	.473 (.473 (1179 0	0 671.1
RAMETE	:2 yr	(2.951 9 (.199 (.810	A X C F YEAR) Av (ha)	000	0001	.631 (.852 (.230 (.080	000 (.065 (.197 2	000000000000000000000000000000000000000	000.	200	189 C 532 C 000 C 245 C 315 1	337 4	000 000 000 000 000	000	4 000 4	912 1: 000 1: 000 1:	000 11
SIGN PA	a / (t+b)°	200	с J-YEAR) (2 (-)	0.00	000	0.00	0.00	00.0	00.0	00.00	00'0	0.00 2	0 001	.40 0	0 007	80000	0	0000	0 00'	0.00 0	4 0 0	0 00.
BO	<u>n</u>	0 0 0 0 0 0	с YEAR) (10 (-)	8,8	00.	00.00	00,	8) 00.	8,8,8	88	00.	888	00	8	88888	8	8888	0 00	88	888	0 00
			с (EAR) (10 (-)	71 0	00.	00 02.	00.		00.	27.72 00 00 00 00	0.00	00 00	888	0 00	8	88888	0	70 0	70 0	0 00	000	0 00
WER	HEET wa)		с ЕАR) (5-)	0 00	0	59 0 00 0	58 0	47 0	47 0	00 0 00 0 47 0	57 0 57 0	70 0	57 0 57 0	0 0	51 0	0 0 0 0 0 0	44 .0.	8888	0. 0.	0.0	.0 0 0 0 0	0 00
RM SE	IGN SF y of Otta	01130	ЕА ОF) (2-Y	88	0	000	0	0 0	.0 00	000	00 00)0 ()	0000	00 0.	0.		o g	0000	0 01	00	000	0 0.
ST0	DES (Cit	1604	ЕА АН EAR) (RC a) (F	00 00	00.00	0.0	0, 0,	-io 0	0 0	000	00	0		2 0.	0	00000	0.0	0000	0.0	0.0	00000	0 0.0
		NUMBER:	са А. БАК) (100-Ү) (h	0.0	0 0.0	0.0	0 0.0	0 0.0	0 0.0	0 0.0	0.0	0.0	000	0 0.9	0.0	00000	0.0	0.000	0'0 0	0:0	0.0	0.0
			А АRE АR) (10-ҮЕ) (ha	1 0.0	0.0	0.0 0.0	0.0	8 0.0	0:0	0.0	0.0	0.0 0	0.0	0.0 0.0	0.0	00000	0.0	0.000	0.0	0.0	0.0	0.0
s 4-8	19-04-15	DT 4 SG	A ARE (R) (5-YEJ (ha	0.5	0.0	0.0	0.0	0.1	0.0	0.0	0.0	. 0.0	0.0	0.0	0.0	0.0000000000000000000000000000000000000	0.0	0.30	7,40	00'0 10'0	00.0 00.0	0.0
ne Phase	20		АКЕ) (2-YEA (hə)	0.00	0.00	0.00	1.48	0.45	0,17	0.00	0.11	3,14	0.00	00.00	0.39	0.27	0.77	0000 0000 0000	0.00	0.00	8.33 0.00 0.00	00.0
lacksto		вҮ: ВҮ:	то М.Н.	2000 M98	66W	1052	1050	1050	1049	1008 1007 1006	1020 1014	1014	1013 1012 1011	1011	1010	1019 1017 1017 1016 1010	1006	1005 1004 1003 1003	1002	1001 1000	822	ΜH
						艦。淵		關關		腦_	18 B	調整	超度	- 1912 - 191		- <u>199</u> (199) - 1992 - 1		220. 200 avas	- general de	協 1992 - 1		
	DATE:	REVISION: DESIGNED CHECKED	FROM M.H.	2001 2000	M98	1054	1053	1051	1050	1009 1008 1007	1015	1022	1014 1013 1013	1021	1011	1020 1019 1018 1018 1016 1016	1010	1005 1005 1003	1023	1002 1001	1000 13 1000	E
	Stantec	REVISION: DESIGNEE CHECKED	LOCATION AKEA IU RUMBER M.H.	C2001A 2001 C2000A 2000	86W	L1054A 1054 C1052A, C1052B 1052	L1053B, L1053A	L1051B, C1051A 1051	L1050B	C1009A C1008A L1007A 1007	L1015A 1015 L1020C, L1020B 1020	L1022A 1022	1014 1013 L1012A 1012	F1021A	L1011B, L1011A 1011	L1020A L1019B, L1019C, L1019A 1019 L1017A L1016A 1016	L1010A, L1010B 1010	C1006A 1006 1005 C1003A 1004	C1023A 1023	1002	L1000A 1000	Σ

Appendix B - Stormwater Management Calculations

Jp2g Consultants Inc.

Fernbank Elementary School – Cope Drive, Ottawa

B.1.1 - Allowable release rate

Using the criteria for the site from the subdivision Final Serviceability Report Development by Stantec (April 2019), the maximum allowable release rate is up to the 5 year discharge rate. Based on the weighted average the allowable release rate is:

 $\begin{aligned} & \mathbf{Q}_{\text{allowable}} = \mathbf{Q} = 2.78 \text{ C I A} \\ & \mathbf{Q}_{\text{allowable}} = 575.7 \quad |/\text{s} \end{aligned}$

B.1.2 - Post-development release rate

			Are	eas (m²)			
ID	Description	Туре	C _{0.90}	C _{0.25}	Total (m ²)	C _{post-5-year}	C _{post-100-yr} *
B1	Front of building	uncontrolled	447	1854	2301	0.38	0.40
A1	Western parking area 1	controlled	945		945	0.90	1.00
A2	Western parking area 2	controlled	960		960	0.90	1.00
A3	Western parking area 3	controlled	1033		1033	0.90	1.00
A4	Western parking area 4	controlled	1041		1041	0.90	1.00
A5	Playground at Daycare area 1	controlled	1140	499	1639	0.70	0.77
A6	Future portables area 1	controlled	43	130	173	0.41	0.44
A7	Playground at Daycare area 2	controlled	1591	517	2108	0.74	0.82
A8	Courts area 1	controlled	1604	829	2433	0.68	0.74
A9	Courts area 2	uncontrolled	970		970	0.90	1.00
A10	Bus loop area 1	uncontrolled	317	106	423	0.74	0.81
A11	Bus loop area 2	uncontrolled	391	65	456	0.81	0.89
A12	Sports Field	controlled	63	4791	4854	0.26	0.26
A13	Future portables area 2	controlled	24	1280	1304	0.26	0.26
A14	Future portables area 3	controlled	24	1040	1064	0.26	0.27
A15	Future portables area 4	controlled	24	1319	1343	0.26	0.26
A16	Back lot area 1	controlled	0	850	850	0.25	0.25
A17	Back lot area 2	uncontrolled	0	645	645	0.25	0.25
R1	Roof	controlled	3890		3890	0.90	1.00
			14507	13925	28432	0.58	0.63

*including 25% increase as per City of Ottawa Sewer Design Guidelines

Calculations for post-development runoff coefficient		$\begin{array}{c} C_{\text{post-5-year (col. D)}}\\ C_{\text{post-100-yr (col. E)}} \end{array}$	=(column A * 0.9 + column B * 0.2) / column C =(column A * 1.0 + column B * 0.2*1.25) / column note: 0.90 x 1.25 = 1.125, use max. 1.0	С
Calculations for average weighted runoff coefficient		C _{post-5-year} C _{post-100-yr}	=((15170*0.9)+(13211*0.25))/28381 =((15170*1.0)+(13211*0.25*1.25))/28381	0.58 0.63
Estimated time of concentration, t_c =	10.0	minutes	***As per City of Ottawa Sewer Design Guidelines (S	Section 5.4.5.2)
Based on Ottawa IDF curve, i _{5-year} =	998.071/ (t _c +6.0)53) ^{0.814}		
	104.2	mm/hr		
Based on Ottawa IDF curve, i _{100-years} =	1735.688/ (t _c +6	.014) ^{0.820}		
	178.6	mm/hr		
A.1.2.1 - uncontrolled flow				
Total uncontrolled area =	0.480	ha		
5-year Runoff coefficient, C =	0.54			
100-year Runoff coefficient, C =	0.58			
Estimated time of concentration, t_c =	10.0	minutes		
Q _{uncontrolled 5-year} =	74.7	l/s	0	
Q _{net-allowable 5-year} =	501.0	l/s	3 = 1-2	
Q _{uncontrolled} 100-year =	138.6	l/s	4	
Q _{net-allowable 100-year} =	437.1	l/s	\$ = 1-4	

B.1.3 - Post-development onsite storage

|--|

Total controlled area, A1 to A8 & A12 to A16 & R1	2.364	ha
5-year Runoff coefficient, C	0.59	
100-year Runoff coefficient, C	0.64	
100 yr net-allowable release rate	437.1	l/s

et-allowable release rate	437.1	I/S	

-	Time (minutes)	i _{5-year} (mm/hr)	Q _{actual} (I/s)	Q _{allowable} (I/s)	Q _{stored} (I/s)	V _{stored} (m ³)
peak Vstored>	10	104.2	404.3	437.1	-32.8	-19.7
	15	83.6	324.2	437.1	-112.9	-101.6
	20	70.3	272.6	437.1	-164.5	-197.4
	25	60.9	236.3	437.1	-200.8	-301.2
	30	53.9	209.2	437.1	-227.8	-410.1
	35	48.5	188.3	437.1	-248.8	-522.5
	40	44.2	171.4	437.1	-265.6	-637.5
	45	40.6	157.6	437.1	-279.4	-754.5
	50	37.7	146.1	437.1	-291.0	-872.9
	55	35.1	136.3	437.1	-300.8	-992.6
	60	32.9	127.8	437.1	-309.3	-1113.3
_	Therefore	-20	m ³ of onsite sto	orage required du	ring 5-year even	

5

Table 1.3.1b - 100-year onsite storage requirements

	Time (min)	i _{100-year} (mm/hr)	Q _{actual} (I/s)	Q _{allowable} (I/s)	Q _{stored} (I/s)	V _{stored} (m³)
	10	178.6	754.3	437.1	317.2	190.3
	15	142.9	603.6	437.1	166.6	149.9
	20	120.0	506.7	437.1	69.6	83.6
peak V stored>	25	103.8	438.7	437.1	1.6	2.4
	30	91.9	388.1	437.1	-49.0	-88.2
	35	82.6	348.8	437.1	-88.2	-185.3
	40	75.1	317.4	437.1	-119.6	-287.1
	45	69.1	291.7	437.1	-145.4	-392.5
	50	64.0	270.2	437.1	-166.9	-500.7
	55	59.6	251.9	437.1	-185.2	-611.2
	60	55.9	236.1	437.1	-201.0	-723.5
	Therefore	190	m ³ of onsite sto	rage required du	ring 100-year eve	en

B.1.3.2 - Estimated detention created by installing roof weirs

Total roof area, A3 0.389

5-year Runoff coefficient, C 0.90

100-year Runoff coefficient, C 1.00

Install 0.6309 l/s weirs at each of the 29 roof drains 18.3

Watts Drainage Adjustable Flow Control for Roof Drains, or approved equivalent

_	Time	i _{5-year}	Q _{actual}	Q _{allowable}	Q _{stored}	V _{stored}
_	(minutes)	(mm/hr)	(l/s)	(l/s)	(l/s)	(m°)
_	10	104.2	101.4	18.3	83.1	49.9
	15	83.6	81.3	18.3	63.0	56.7
eak V _{stored} >	20	70.3	68.4	18.3	50.1	60.1
	25	60.9	59.3	18.3	41.0	61.5
	30	53.9	52.5	18.3	34.2	61.5
	35	48.5	47.2	18.3	28.9	60.7
	40	44.2	43.0	18.3	24.7	59.3
	45	40.6	39.5	18.3	21.2	57.4
	50	37.7	36.6	18.3	18.4	55.1
	55	35.1	34.2	18.3	15.9	52.4
	60	32.9	32.1	18.3	13.8	49.6

Therefore 62 m³ estimated roof detention

ha

l/s

Table 1.3.2b - 100-year estimated detention on new roof

	Time	İ _{100-year}	Q _{actual}	Q _{allowable}	Q _{stored}	V _{stored}
	(min)	(mm/hr)	(l/s)	(l/s)	(l/s)	(m³)
	10	178.6	193.1	18.3	174.8	104.9
	15	142.9	154.5	18.3	136.2	122.6
	20	120.0	129.7	18.3	111.4	133.7
	25	103.8	112.3	18.3	94.0	141.0
	30	91.9	99.3	18.3	81.1	145.9
peak V stored>	35	82.6	89.3	18.3	71.0	149.1
	40	75.1	81.3	18.3	63.0	151.1
	45	69.1	74.7	18.3	56.4	152.2
	50	64.0	69.2	18.3	50.9	152.6
	55	59.6	64.5	18.3	46.2	152.4
	60	55.9	60.4	18.3	42.1	151.7
	Therefore	153	m ³ estimated ro	of detention		

B.1.4 - Site storage

Total release rate (100-yr) < Allowable release rate (5-year)

			100-year event		
	overall site storage requirements		190	m ³	Table B.1.3.1
	Roof storage requirements		153	m ³	
	estimated roof ponding volume		153	m ³	Table B.1.3.2
	roof ponding depth		0.118	m	maximum allowable: 0.15m
	estimated parking area and school yard volume		184	m ³	
	maximum parking area and school yard ponding depth		0.25	m	maximum allowable: 0.25m
	Sportsfield ponding volume		6	m ³	Table B.1.3.4
	Maximum sportsfield ponding depth		0.15	m	maximum allowable: 0.30m
	Total available roof storage		153	m ³	at maximum ponding depth of 0.15m
	Total available parking area and school yard storage		190	m³	
	Total available onsite storage > overall storage requirements		<u>OK</u>		
	Total available onsite storage > estimated detention		<u>OK</u>		
B.1.5	- Release rate for site				
	Release rate				
	Allowable release rate (5-year)	575.7			Section B.1.1
	Uncontrolled release rate for (100-yr)	138.6			Section B.1.2.1
	Controlled release rate at roof drain (100-yr)	18.3			Section B.1.3.2
	Controlled release rate at CBMH-5 (100-yr)	300.0			Section B.1.3.3
	Controlled release rate at CBMH-7 (100-yr)	60.0			
	Total release rate (100-yr)	516.9			

<u>0K</u>

Fernbank Elementary School

Storm Sewer Pipe Design Without ICD Flow Control

Definitions	Manning's Coefficient =	Return Frequency (yrs) =	1 acre = 0.4047 hectares

Rational Method Q = 2.78 CIA (I/s), where C = Runoff Coefficient i = Rainfall Intensity (mm/hr) A = Areas in Hectares (ha)

0.013 5

Notes 1) Used City of Ottawa IDF Curve 2) Min. velocity = 0.8 m/sec 3) Max. velocity = 6.0 m/sec

hide

Jp2g Consultants Inc.

Designed BK Checked SM Dwg. Reference C1 Jp2g project No 19-5070A

							- 1	ſ				1													7
	Utilization	(%)	51.1	43.3	52.2	76.4	3.5		69.0	43.5		53.7	52	64.0		66.2	54.2	68.3	82.2	68.2	62.2	61.1	67.8	47.7	
	Tot. Time	(minutes)	10.5	10.9	10.5	11.4	10.2		12.0	12.5		13.0	10.1	12.8		17.3	17.6	18.0	18.5	19.0	19.1	13.3	13.2	13.2	
	Sect.Time	(minutes)	0.5	0.4	0.5	0.5	0.2		0.6	0.5		0.5	0.1	0.3		2.3	0.3	0.4	0.4	0.5	0.7	0.4	0.4	0.2	
	Velocity	(full) (m/s)	1.0	1.0	1.0	1.1	1.2		1.1	1.3		1.3	2.7	1.1		0.9	1.0	1.0	1.0	0.9	0.9	1.5	1.1	1.6	
DATA	Capacity	(tull) (I/s)	47.9	115.7	47.9	129.3	59.5		187.9	379.6	-	379.6	193.4	175.7	-	42.0	68.4	68.4	68.4	96.0	96.0	453.7	175.7	849.2	
SEWER I	Length	(m)	30.6	25.1	30.6	32.4	15.5		40.0	39.5		35.7	20.8	17.1		116.5	20.0	25.0	25.0	25.0	35.0	32.4	28.2	20.3	
0	Slope	(%)	0.65	0.40	0.65	0.50	1.00		0.40	0.35		0.35	4.00	0.35		0.50	0.50	0.50	0.50	0.30	0.30	0.50	0.35	0.35	
	actual	dia	250	381	250	381	250		457	610		610	300	457		250	300	300	300	375	375	610	457	825	
	Dia.	(mm)	250	375	250	375	250		450	600		009	300	450		250	300	300	300	375	375	600	450	825	
	Flow 100 years	(I/s)	42.0	85.7	42.9	169.3	3.5		222.0	283.0		349.1	173.7	192.6		47.6	63.3	79.7	96.0	111.8	102.1	474.8	203.9	692.8	
	Flow _{5-year}	(I/s)	24.5	20.0	25.0	98.8	2.1		129.6	165.3		204.0	101.4	112.5		27.8	37.1	46.7	56.2	65.5	59.8	277.4	119.1	404.8	
	i 100 years	(mm/hr)	178.6	173.9	178.6	170.4	178.6		166.5	162.1		158.4	178.6	158.4		142.9	131.4	129.8	127.9	126.1	126.1	155.2	156.5	155.2	
	i 5-year	(mm/hr)	104.2	101.5	104.2	99.5	104.2		97.2	94.7		92.5	104.2	92.5		83.6	76.9	76.0	74.9	73.8	73.8	90.7	91.5	90.7	
	tc	(min.)	10.0	10.5	10.0	10.9	10.0		11.4	12.0		12.5	10.0	12.5		15.0	17.3	17.6	18.0	18.5	18.5	13.0	12.8	13.0	
LOW	Cum.	2.78CA	0.24	0.49	0.24	0.99	0.02		1.33	1.75		2.20	0.97	1.22		0.33	0.48	0.61	0.75	0.89	0.81	3.06	1.30	4.46	
ш	Individual	2.78CA	0.24	0.26	0.24	0.26	0.02		0.32	0.41		0.46	0.97	0.24		0.33	0.15	0.13	0.14	0.14	0.06	0.04	0.09	0.10	
(ha)	ů,	0.25					0.013		0:050	0.051		0.083	0.000			0.479	0.128	0.104	0.110	0.110	0.085	0.064	0.011	0.007	
AREA	ů,	06.0	0.094	0.103	0.096	0.104	0.004		0.114	0.151		0.160	0.389	0.097			0.024	0.024	0.024	0.024			0.032	0.039	
Area no.			A1	A3	A2	A4	A6		A5	A7		A8	R1	A9		A12	A13	A14	A15	A15	A16	A17	A10	A11	
		To	CBMH1	CBMH2	CBMH2	CBMH3	CBMH3		CBMH4	CBMH5		CBMH6	CBMH8	CBMH9		RYCB2	TCB12	TCB16	TCB13	CBMH7	CBMH6	CBMH10	CBMH10	STMH1	1
LOCATION		From	CB-1	CBMH1	CB-2	CBMH2	RYCB1		CBMH3	CBMH4		CBMH5 **	Roof *	CBMH8		TCB1	RYCB2	TCB12	TCB16	TCB13	CBMH7***	CBMH6	CBMH9	CBMH10	-

Flow control to be installed at outlet

Notes:

Flow from controlled roof drains is limited to 18.3 L/s Flow restricted to 300 L/s Flow from infiltration trench - restricted to 60L/s . . .

Appendix C - Stormwater Management Calculations Watts Drainage Adjustable Flow Control for Roof Drains – Data Sheet

Jp2g Consultants Inc.

WATTS DRAINAGE	RD-100 Tag:	Large Capacity Roof Drain
Components:	B2 B2-DM	$ \begin{array}{c} \textcircled{\begin{tabular}{c} \hline \hline \hline \\ \hline \hline \\ $
SPECIFICATION: Watts Drainage Provide served device with integral gravel stop and served dome strainer.	boducts RD-100 epoxy coated cast iron ated flashing flange, flashing clamp elf-locking polyethylene (standard)	Order Code: RD-10
6-1/4"(158) - PIPE SI 2"(51), 3"(76), 4" 5"(127), 8"(203)	2-5/16"(59) WIDE SERRATED CLAMPING SURFACE "B2" BODY PUSH ON SHOWN (P) PUSH-ON GASKET (ASTM C-564) (102), 6"(152) NH (MJ) only	X Inside Caulk Options (Select One or More) Suffix Description -A Accutrol weir (specify # 1-6 slots) -B Sump Receiver Flange -BED Sump Receiver, Adj Ext., Deck Clamp -C Secondary Membrane Clamp -D Underdeck Clamp -B Stainless Steel Ballast Guard -H Adjustable Extension -K Ductile Iron Dome -K Ductile Iron Dome -R 2" High External Water Dam -SO Side Outlet** -V Fixed Extension (1-1/2",2",3",4") -W Adj. Water Level Regulator -W-1 Waterproofing Flange -Z Extended Integral Wide Flange -S Sediment Bucket
137	Deck opening 10" (254) with sump receiver 13-1/4" (337)	-12 Galvanized Dome
** Side Outlet (-SO) option only avai Underdeck Clamp (-BED and -D o	lable in 2"(51), 3"(76), 4"(102) pipe sizes. options) are not available when -SO is select	-60 PVC Body w/Socket Outlet
Job Name	Contractor	
Job Location	Contractor's P.O. No	0
Engineer	Representative	
WATTS Drainage reserves the right to modify or change produ previously or subsequently sold. See your WATTS Drainage rep CANADA: 5435 North Ser © Watts Drainage 2004	ct design or construction without prior notice and without incurring oresentative for any clarification. Dimensions are subject to manu vice Road, Burlington, ON, L7L 5H7 TEL: 905-332-6718 TC	g any obligation to make similar changes and modifications to products facturing tolerances. CANADA DLL-FREE: 1-888-208-8927 Website: www.wattsdrainage.ca

ES-WD-RD-100 CANADA 0403